
On Improvements of Multi-objective
Branch and Bound

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

Fakultät für Mathematik und Naturwissenschaften

Bergische Universität Wuppertal

vorgelegt von

Julius C. Bauß

Erstgutachter: PD Dr. Michael Stiglmayr

Zweitgutachterin: Prof. Dr. Sophie N. Parragh

Wuppertal, Februar 2024

Acknowledgements

During my work on this dissertation I have been supported by numerous people, who

always encouraged me and inspired me to develop new ideas. Time flew by but I am

grateful for all the memorable moments, awesome trips and great teamwork.

First of all I would like to thank my supervisor Michael Stiglmayr for always supporting

me and providing new solution approaches whenever I faced any difficulties. Especially, I

thank you for your excessive LATEX affinity, which might slightly rubbed off on me.

Moreover, I would like to thank all former and current members of the working group

Optimization of the University of Wuppertal for the friendly atmosphere and wonderful

time. I can proudly say we are more than just colleagues. I also would like to thank my

co-authors Sophie Parragh and Michael Stiglmayr for the great and productive work.

Furthermore, I had the opportunity to spend some time abroad to collaborate with

experts on multi-objective branch and bound. I thank Sune Lauth Gadegaard for welcom-

ing me in Aarhus a couple of days in February 2020 and I also thank Sophie Parragh for

hosting me in Linz in April 2022 and April 2023 for a week each. I was able to get new

inputs and further research ideas during all these trips.

A special thanks to Nicolas Forget for providing me with a baseline implementation on

which I could base my code on.

Additionally, I also like to thank Deutsche Forschungsgemeinschaft (project number

KL 1076/11-1) for the partial financial support.

Last but not least I thank my family and friends for always supporting and encour-

aging me whenever problems occurred. I particularly thank my parents, Kerstin and

Achim Bauß. Thank you for your love, care and support.

3

Contents

1 Introduction 7

1.1 Outline of this Thesis . 8

1.2 Publications . 10

2 Multi-objective Optimization Models and Properties 13

2.1 Multi-objective Optimization Models . 13

2.2 Optimality Conditions . 14

2.3 Bound Sets . 17

2.4 Polyhedral Theory . 21

3 Solution Methods 25

3.1 Objective Space Methods . 25

3.1.1 ε-constraint Method . 25

3.1.2 Weighted Sum Method . 28

3.1.3 Augmented Weighted Tchebycheff Method 33

3.1.4 Search Region Splitting Methods . 37

3.1.5 Two-phase Methods . 41

3.2 Decision Space Methods . 41

3.2.1 Multi-objective Dynamic Programming 42

3.2.2 Multi-objective Branch and Bound 43

4 Augmenting Bi-objective Branch and Bound by Scalarization-Based Information 53

4.1 A New Bi-objective Branching Strategy . 54

4.2 Augmenting Bi-objective Branch and Bound by Solving IP Scalarizations . 56

4.2.1 Using Weighted Sum Scalarizations 57

4.2.2 Using Augmented Weighted Tchebycheff Scalarizations 59

4.2.3 Algorithmic Control of IP Scalarizations 62

4.3 Numerical Tests . 62

4.3.1 Bi-objective Multidimensional Knapsack Problems 63

4.3.2 Bi-objective Assignment Problems 68

4.3.3 Bi-objective Discrete Uncapacitated Facility Location Problems . . . 71

4.3.4 Summary . 73

5

Contents

5 Adaptive Improvements of Multi-objective Branch and Bound 77

5.1 A New Multi-objective Node Selection Strategy 78

5.2 Solving IP Scalarizations to Improve the Upper and Lower Bound Set . . . 81

5.2.1 Warmstarting the Bound Sets . 81

5.2.2 Improving the Upper Bound Set by ε-constraint Scalarizations . . . 82

5.2.3 Using Simple Lower Bound Sets . 83

5.2.4 Algorithmic Control of the Presented Approaches 84

5.3 Numerical Tests . 85

6 Branching and Queuing for Multi-objective Branch and Bound 97

6.1 Sequencing of Subproblems . 97

6.1.1 Multi-objective Branching Rules . 98

6.1.2 Multi-objective Node Selection Strategies 99

6.2 Numerical Tests . 101

7 Conclusion 107

Nomenclature 109

Bibliography 111

6

1 Introduction

In today’s profit-oriented world, most of the everyday decisions, especially the ones with

an economic context, can be modeled as a mathematical optimization problem. Imagine

the following situation: a company has to decide which projects should be realized in the

next quarter. For every possible project the expected costs and the expected revenue are

known. Since the company has a limited budget, it is not possible to realize all projects,

i.e., it is necessary to select a subset of projects. Of course, the manager aims to find a set

of projects respecting the budget that maximizes the expected profit. This kind of problem

belongs to the so-called single-objective integer optimization models. The name derives

from the integrality of the decision variables. In the considered project selection problem,

the variables are not just integer but binary, which is a special case of integer problems.

Each variable models the decision if the corresponding should be realized or not. Integer

optimization problems are, in general, harder to solve than their continuous counterparts.

A common method to solve these kinds of problems is the branch and bound approach.

This algorithm divides an underlying problem, which is too hard to be solved directly,

into easier subproblems. In the last 50 years, the popularity of integer programs arose and

therefore more and more approaches have been developed (Nemhauser and Wolsey, 1988).

Hence, commercial single objective solvers, based on the branch and bound framework

gained popularity. The performance of single-objective solvers like CPLEX and Gurobi

has improved tremendously by the factor of about “100 000” in the last 30 years (Bixby,

2012). Thus, these commercial solvers and therewith branch and bound algorithms are

the gold-standard for single-objective integer optimization problems.

Now recall the project selection problem: the manager now wants to additionally con-

sider the sustainability-index of each project. By maximizing this index a second objective

is added to the previous problem. Thus, the problem transforms into a bi-objective integer

optimization problem. By adding even more objectives it transforms into a multi-objective

problem. Since these objectives are conflicting there is, in general, no solution which opti-

mizes both objectives simultaneously. Hence, compromise solutions have to be found where

it is not possible to improve one of the objectives without worsening at least one of the

others. Those solutions are called efficient or Pareto-optimal. The underlying optimality

concept has been derived by Vilfredo Pareto (1848–1923) and Francis Edgeworth (1845–

1926) in the late 1800s and is the most common in multi-objective optimization. While

branch and bound based algorithms are a standard approach to solve single-objective inte-

7

Chapter 1 Introduction

ger optimization problems, multi-objective branch and bound methods are rarely applied

compared to the predominant objective space methods. This is due to two reasons. On

the one hand, objective space methods rely on solving a series of scalarized single-objective

subproblems. Therefore, they benefit from the huge improvements of the optimized single-

objective solvers like CPLEX or Gurobi (see Bixby, 2012). On the other hand, branch

and bound approaches suffer from considerably weaker bounding in multiple objectives.

However, objective space methods always solve an integer problem from scratch. That is

one of the reasons why there is an increasing research interest on decision space methods

in the last decades, in particular on the branch and bound method.

A multi-objective branch and bound operates in the same way as its well-known single-

objective version. Since the considered problem is too hard to be solved directly, it is

divided into easier subproblems. Every created subproblem is associated with a node in

a tree data structure. Thereby, a node i is the child node of node j if and only if the

feasible set of the subproblem corresponding to node i is a subset of the feasible set of

the (sub)problem corresponding to node j. One of the first multi-objective branch and

bound methods with an underlying tree structure was proposed in Klein and Hannan

(1982). In each iteration an active node is selected and its corresponding lower bound

set is computed. The algorithm is initialized by investigating the root node to which the

original problem is associated. After the computation of the lower bound set, the upper

bound set is possibly updated and it is checked if it the node can be fathomed. If the

node cannot be fathomed, the corresponding problem has to be divided further into new

subproblems.

1.1 Outline of this Thesis

Branch and bound approaches are, as stated above, rarely used compared to objective

space methods in the multi-objective case. We propose improvements to increase the

performance of multi-objective branch and bound by using objective space information to

limit the impact of the mentioned shortcomings.

This thesis is organized in seven chapters. In the first three chapters, we introduce

basic mathematical concepts and present an extensive overview of solution methods. In

the remaining chapters, new strategies and approaches are proposed to improve the per-

formance of multi-objective branch and bound methods. We start by augmenting in the

bi-objective case and transfer those results and approaches to the multi-objective case.

Finally, different combinations of certain key components of branch and bound algorithms

are compared. In the following the content of each chapter is described in more detail.

8

1.1 Outline of this Thesis

Chapter 2 Basic concepts and definitions which are relevant in the remainder of this

work are presented. We start by introducing multi-objective optimization models with

their different properties. Since there is no natural order of the Rp, different dominance

relations used in multi-objective optimization are summarized and corresponding optimal-

ity conditions are defined. Afterwards, we give description of different upper and lower

bound sets, which are one of the key components of multi-objective branch and bound

frameworks. Moreover, a brief overview of polyhedral theory, which is mainly needed for

the description and computation of certain lower bound sets, is given.

Chapter 3 A detailed overview of different solution methods is provided. These are

distinguished between the so-called objective space methods and decision space methods.

Objective space methods scalarize the underlying problem by replacing it by a series of

single-objective problems. We give detailed descriptions of the most common scalarization

techniques, discuss their advantages and shortcomings, review related work and present

bi-objective examples. In the second part of this chapter, decision space methods, in

particular dynamic programming and the branch and bound algorithm, are discussed. We

describe its key components and present different approaches and techniques which are

proposed by literature.

Chapter 4 We focus on bi-objective integer optimization problems and therefore present

bi-objective branch and bound algorithms that are augmented by scalarization-based infor-

mation. A new node selection rule is introduced based on the approximated hypervolume

gap between lower and upper bound. Additionally, approaches to improve the bound

sets which lead to a higher probability to fathom a node by dominance are presented.

Their tremendous impact on the computational performances is evaluated regarding dif-

ferent problem classes, namely knapsack, uncapacitated facility location and assignment

problems.

Chapter 5 The approaches, presented in Chapter 4, are extended to the multi-objective

case with three and more objectives. Thereby, additional difficulties have to be consid-

ered since some of the properties used in Chapter 4 only hold in the bi-objective case.

Furthermore, we introduce another gap measure between lower and upper bound since

the approximated hypervolume gap strategy might be too costly for an increasing number

of objectives. Additionally, new approaches using objective space information to improve

the bounds by, e.g., warm starting the upper and lower bound set are proposed. The cor-

responding remarkable impact on the performance of multi-objective branch and bound

is tested on multi-objective benchmark instances which include knapsack, uncapacitated

9

Chapter 1 Introduction

facility location, capacitated facility location and generalized assignment problems.

Chapter 6 The previous chapters showed that the order in which the subproblems/nodes

are considered is crucial for the performance of the branch and bound algorithm. Since

there is a close correlation of the order and the total number of explored nodes, the

impact of different node selection strategies combined with various branching rules is

investigated. Regarding the node selection we focus on methods which rely on different

gap measures. All combinations are tested on multi-objective benchmark instances which

include knapsack, uncapacitated facility location and generalized assignment problems.

Chapter 7 This work is concluded by summarizing the main results.

1.2 Publications

The majority of the content of this thesis has been published or submitted to scientific

journals:

• J. Bauß and M. Stiglmayr (2024b). “Augmenting bi-objective branch and bound by

scalarization-based information”. In: Mathematical Methods of Operations Research.

doi: 10.1007/s00186-024-00854-3

• J. Bauß et al. (2023). “Adaptive improvements of multi-objective branch and bound”.

Submitted to EURO Journal on Computational Optimization. doi: 10.48550/

arXiv.2312.12192

• J. Bauß and M. Stiglmayr (2024a). “Adapting branching and queuing for multi-

objective branch and bound”. In: Operations Research Proceedings 2023. Accepted

for publictation. Springer. doi: 10.48550/arXiv.2311.05980

This work contains parts from the articles Bauß and Stiglmayr (2024b), Bauß et al. (2023)

and Bauß and Stiglmayr (2024a). Chapter 2 and Chapter 3 contain parts of all three

mentioned articles. Chapter 4 is mainly based on Bauß and Stiglmayr (2024b), Chap-

ter 5 is mainly based on Bauß et al. (2023) and Chapter 6 extends the article Bauß and

Stiglmayr (2024a). Additionally, the Julia implementations and created test instances

of the presented algorithms and approaches are publicly available in the following Git

repositories:

• J. Bauß and M. Stiglmayr (2023b). Augmented bi-objective branch and bound frame-

work. Git repository. url: https://git.uni-wuppertal.de/bauss/augmented-

bi-objective-branch-and-bound

10

https://doi.org/10.1007/s00186-024-00854-3
https://doi.org/10.48550/arXiv.2312.12192
https://doi.org/10.48550/arXiv.2312.12192
https://doi.org/10.48550/arXiv.2311.05980
https://git.uni-wuppertal.de/bauss/augmented-bi-objective-branch-and-bound
https://git.uni-wuppertal.de/bauss/augmented-bi-objective-branch-and-bound

1.2 Publications

• J. Bauß and M. Stiglmayr (2023a). Adaptive multi-objective branch and bound frame-

work. Git repository. url: https://git.uni-wuppertal.de/bauss/adaptive-

improvements-of-multi-objective-branch-and-bound

• J. Bauß and M. Stiglmayr (2023c). GAP and CFLP test instances. Git reposi-

tory. url: https://git.uni-wuppertal.de/bauss/generalized-assignment-

problem-test-instances

11

https://git.uni-wuppertal.de/bauss/adaptive-improvements-of-multi-objective-branch-and-bound
https://git.uni-wuppertal.de/bauss/adaptive-improvements-of-multi-objective-branch-and-bound
https://git.uni-wuppertal.de/bauss/generalized-assignment-problem-test-instances
https://git.uni-wuppertal.de/bauss/generalized-assignment-problem-test-instances

2 Multi-objective Optimization Models and

Properties

In this chapter, the basic concepts, notations and definitions of multi-objective optimiza-

tion are introduced. Among other things, optimality conditions are defined, the concept

of bound sets is explained and basic polyhedral theory is introduced. Most of these con-

cepts can be found in textbooks on multi-objective optimization, e.g., in Ehrgott (2005),

Miettinen (1998) or Steuer (1986).

2.1 Multi-objective Optimization Models

A generic multi-objective program can be written in the form:

min
(
z1(x), . . . , zp(x)

)>
s.t. x ∈ X,

(MOP)

where p ≥ 2 is the number of objective functions. Often the objective functions are given

in form of a vector, denoted as z(x) := (z1(x), . . . , zp(x))>. A vector x ∈ Rn is called a

solution. If additionally x ∈ X, then x is a feasible solution. The feasible set X is a subset

of the so-called decision space Rn. The image of X is defined by Y := {z(x) : x ∈ X}
and is a subset of the objective space Rp. An objective vector y ∈ Y is called feasible

point. In the following we will specifically consider problems where the objective functions

and constraints are linear and x is restricted to be integer and x = 0, namely a so-called

multi-objective integer linear program. Note that “=” is used as componentwise greater

or equal condition, i.e., xi ≥ 0 for all i = 1, . . . , p. A multi-objective linear program can

be written in the following form:

min z(x) = C · x
s.t. A x 5 b

x = 0

x ∈ Zn.

(MOILP)

The objective vector z(x) can be written as z(x) = C ·x ∈ Rp with the matrix of objective

coefficients C ∈ Rp×n. The set of feasible solutions is denoted by X := {x ∈ Zn : Ax 5

b, x = 0}, where A ∈ Rm×n is the matrix of constraint coefficients. Hence, Y is given by

13

Chapter 2 Multi-objective Optimization Models and Properties

Y := {C x : x ∈ X}. By restricting x to be binary, the problem becomes a multi-objective

0-1 linear program:

min z(x) =
(
z1(x), . . . , zp(x)

)>
s.t. Ax 5 b

x ∈ {0, 1}n.
(MO01LP)

MO01LPs which are based on the selection of elements/items are equipped with a specific

structure. This kind of problem is denoted as multi-objective combinatorial optimization

problem (MOCO). Thereby, the selection of items is formulated using the binary indicator

variables xi, i = 1, . . . , n, of a predefined ground set, where xi = 1 iff element i is selected

in the solution. This problem class contains, e.g., knapsack, assignment and facility lo-

cation problems, to mention just a few. A comprehensive introduction to combinatorial

optimization in multiple objectives is given in Ehrgott and Gandibleux (2000).

2.2 Optimality Conditions

While in the single-objective case (p = 1) feasible solutions can be compared by the value

of the objective function, in the multi-objective case (p ≥ 2) each solution is associated

with an objective vector in the objective space Rp. So in the optimization process, it is

necessary to compare vectors, instead of real values. Since the Rp has no “natural” order,

optimization is subject to a specific dominance relation. In this work we use the Pareto

concept of optimality (see, e.g., Ehrgott, 2005), which is based on the componentwise

order.

Definition 2.1. Let y1, y2 ∈ Rp. Then the dominance relations are defined as follows:

• y1 5 y2: y1 weakly dominates y2, if y1j ≤ y2j for j = 1, ..., p,

• y1 < y2: y1 strictly dominates y2, if y1j < y2j for j = 1, ..., p,

• y1 ≤ y2: y1 dominates y2, if y1 5 y2 and y1 6= y2.

Another frequently used ordering relation is the lexicographic order. Let y1, y2 ∈ Rp, then

the relation “≤lex” is defined as

y1 ≤lex y2 :⇔ y1 = y2 or y1k < y2k for k = min{j ∈ {1, . . . , p} : y1j 6= y2j }.

14

2.2 Optimality Conditions

Definition 2.2. Let π = (π1, . . . , πp) be a permutation of the indices 1, . . . , p. A feasible

solution x̄ ∈ X is called lexicographically optimal with respect to π if every solution x ∈ X
satisfies

zπ(x̄) ≤lex zπ(x) with zπ(x) = (zπ1(x), . . . zπp(x)).

Since the objectives of an (MOP) are usually conflicting, it is, in general, impossible to

find a feasible solution optimizing all objectives simultaneously. Hence, the goal is to find

feasible solutions that are the best possible compromise solutions regarding all objective

functions. A feasible solution x ∈ X is efficient if there is no other feasible solution

x̄ ∈ X that dominates it (z(x̄) ≤ z(x)). In other words, for an efficient solution it is not

possible to improve one of the objectives without worsening at least one of the others.

Furthermore, a feasible solution x ∈ X is weakly efficient if there is no other x̄ ∈ X that

strictly dominates it (z(x̄) < z(x)). This allows us to define the following sets.

Definition 2.3. The set of all efficient solutions is defined by

XE := {x ∈ X : @x̄ ∈ X, z(x̄) ≤ z(x)}.

Its corresponding set of images in the objective space, the non-dominated set, is defined as

YN := {z(x) ∈ Y : x ∈ XE}.

A point y ∈ YN is called non-dominated point or outcome vector.

Moreover, for any set Q ⊆ Rp we denote by QN the set of its non-dominated points (i.e.,

q ∈ QN ⇐⇒ @q̄ ∈ Q : q̄ ≤ q). Analogously, it is possible to define the set of weakly

efficient solutions and the set of weakly non-dominated points.

Definition 2.4. The set of all weakly efficient solutions is defined by

XWE := {x ∈ X : @x̄ ∈ X, z(x̄) < z(x)}.

Its corresponding image in the objective space is defined by

YWN := {z(x) ∈ Y : x ∈ XWE}.

A point y ∈ YWN is called weakly non-dominated.

To give further definitions of the different sets of solutions, we define some additional

operators to simplify the notation. Given two sets A,B ⊆ Rp, then A + B is defined

as A + B := {a + b : a ∈ A, b ∈ B}. This is often referred to as the Minkowski sum.

15

Chapter 2 Multi-objective Optimization Models and Properties

Furthermore, given a set A ⊆ Rp, a point y ∈ Rp is a convex combination of points of A,

if there exists a finite set of points {yi}ti=1 in A and λ ∈ Rt with λi > 0, i = 1, . . . , t,∑t
i=1 λi = 1 and y =

∑t
i=1 λiy

i. The convex hull of A, denoted by conv(A), is the set of

all convex combinations of points in A (see Nemhauser and Wolsey, 1988).

The set of non-dominated points YN can be decomposed into two different subsets.

Definition 2.5. The set of supported non-dominated points is defined by

YSN := {y ∈ YN : y ∈ (conv(Y) + Rp=)N},

with Rp= := {y ∈ Rp : y = 0}. The set

YUN := {y ∈ YN : y /∈ YSN}

is the set of all unsupported non-dominated points.

Note that the supported non-dominated points are located on the boundary of the convex

hull of Y +Rp=, while the unsupported non-dominated points can be located in its (relative)

interior. Moreover, we distinguish the supported non-dominated extreme points YSN1,

which are extreme points of conv(Y) +Rp= and the supported non-dominated non-extreme

points YSN2 := {y ∈ YSN : y /∈ YSN1}.
The Figure 2.1(a) shows an example of a set Y and its dominance relations. We can

see that the point y3 is (strictly) dominated by, e.g., y2. Further, all black points are

strictly dominated by at least one other point of Y . All yellow points, including y2,

are non-dominated, i.e., there are no other points that dominate them. The point y2

dominates y1, however not strictly. All blue points are weakly non-dominated, i.e., there

is no other point in Y that strictly dominates them. Figure 2.1(b) illustrates the different

subsets of the set of non-dominated points YN . The blue line represents the boundary of

conv(Y)+Rp=. The red and yellow points are supported, since they are in (conv(Y)+Rp=)N .

The green point is an unsupported non-dominated point. Additionally, the yellow points

are supported non-dominated extreme points, i.e., they are elements of YSN1. The red

point is not an extreme point and therefore an element of YSN2.

In this work we focus on solving (MO01LP), i.e., a special case of (MOILP). Never-

theless, all presented approaches can be easily transferred and used to solve (MOILP).

As solution of a multi-objective 0-1 linear program we consider a minimal complete set,

which is defined as the set of all non-dominated points y ∈ YN and one corresponding

efficient solution x̄ for each non-dominated point z(x̄) = y ∈ YN . A detailed comparison

of different solution concepts is given in Serafini (1987).

16

2.3 Bound Sets

z1

z2

y1

y2
y3

(a) The yellow points in the objective space are
non-dominated, while the blue points are just
weakly non-dominated. The remaining black
points are dominated.

z1

z2

(b) The yellow points are supported non-
dominated extreme points, while the red
point is a supported non-dominated non-
extreme point. The green point is an unsup-
ported non-dominated point.

Figure 2.1: An example of a set Y of a (MO01LP) with two objectives to show dominance
relations and distinctions of different subsets of YN .

2.3 Bound Sets

Several solution methods use bounding techniques to limit the area that contains all non-

dominated points. In the single-objective optimization, there is at most one optimal

objective value ȳ for each problem. Thus, the definition of a lower and an upper bound is

straightforward.

Definition 2.6. Let ȳ be the optimal value of a single-objective problem. A lower and

upper bound l and u on ȳ are real values with l ≤ ȳ ≤ u.

In the multi-objective case, we need to define bounds for the set of non-dominated points

YN . Using only single points as bounds, the following points are the most popular choices.

Definition 2.7. Let Y ∈ Rp be a set of points and YN ⊆ Y the set of its non-dominated

points. Then, the ideal point yI , the anti-ideal point yAI and the Nadir point yN are given

by:

yIj = min
y∈Y

yj , yAIj = max
y∈Y

yj and yNj = max
y∈YN

yj for j = 1, . . . , p.

17

Chapter 2 Multi-objective Optimization Models and Properties

Obviously, yI 5 ȳ 5 yN 5 yAI holds for all ȳ ∈ YN . Furthermore, it is easy to see that yI

and yN are the tightest upper and lower bounds of the non-dominated set YN consisting

of single points. Although these bounds are a direct extension of the single-objective case,

they are rather weak in the multi-objective case. Due to the conflicting objective functions,

there is in general no optimal solution which optimizes all objectives simultaneously, which

implies yI 6= yN . Hence, in general the ideal and the Nadir point can be located far away

from the non-dominated points. In Figure 2.2(a), an illustration of the ideal, anti-ideal

and Nadir point is given for a bi-objective example. The point yI can be computed at the

cost of solving p single-objective problems. However, the computation of yN is in general

hard for problems with three or more objectives even if the single-objective problems are

solvable in polynomial time, since it corresponds to an optimization over the efficient

set (see, e.g., Ehrgott and Tenfelde-Podehl, 2003; Kirlik and Sayın, 2015; Köksalan and

Lokman, 2015).

In Ehrgott and Gandibleux (2001), bound sets are introduced that consist of a certain

set of points instead of just a single point.

Definition 2.8 (cf. Ehrgott and Gandibleux, 2001). A set L ⊂ Rp is a lower bound set

for Ȳ ⊆ Y if

i) for each y ∈ Ȳ there is some l ∈ L with l 5 y,

ii) there is no pair y ∈ Ȳ and l ∈ L with y 5 l.

A set U ⊂ Rp is an upper bound set for Ȳ ⊆ Y if

i) for each y ∈ Ȳ there is some u ∈ U with y 5 u,

ii) there is no pair y ∈ Ȳ and u ∈ U with u 5 y.

In Ehrgott and Gandibleux (2007), the main results of Ehrgott and Gandibleux (2001)

have been discussed in more detail. To introduce the new definition of bound sets that

the authors proposed, it is necessary to define externally stable sets.

Definition 2.9 (cf. Ehrgott, 2005). A set Ȳ is said to be externally stable, if

Ȳ ⊂ (Ȳ + Rp=)N .

The following definition for bound sets ist the one this work will rely on.

Definition 2.10 (cf. Ehrgott and Gandibleux, 2007). A lower bound set L ⊂ Rp for

Ȳ ⊆ Y is a

i) Rp=-closed (i.e., the set L+ Rp= is closed),

18

2.3 Bound Sets

ii) Rp=-bounded (i.e., there exists a y ∈ Rp such that L ⊂ y + Rp=)

iii) externally stable set (i.e., L ⊂ (L+ Rp=)N),

such that Ȳ ⊂ (L+ Rp=). An upper bound set U ⊂ Rp for Ȳ ⊆ Y is a

i) Rp=-closed,

ii) Rp=-bounded,

iii) externally stable set,

such that Ȳ ⊂ cl
(
(U + Rp=){

)
.

Note that although this definition was introduced for (MOCO) it also can be applied to

(MOILP).

We say a lower bound set L is weakly dominated by an upper bound set U if for all

l ∈ L there exists an u ∈ U such that u 5 l. In the following, we use the term bound

set and bound synonymously for multi-objective optimization problems. We also denote a

lower bound set L as convex lower bound set or convex lower bound if L+Rp= is a convex

set. The set L is thereby not necessarily convex.

The standard approach to obtain lower bound sets for multi-objective integer programs

is solving relaxations.

Definition 2.11 (cf. Nemhauser and Wolsey, 1988). A relaxation of an (MOILP) is given

by any problem

min
(
z̄1(x), . . . , z̄p(x)

)>
s.t. x ∈ X̄,

with the following properties:

i) X ⊆ X̄

ii) z̄(x) 5 z(x) for x ∈ X.

The common way to obtain a lower bound for single-objective integer programs is solving

its linear relaxation. This approach can be extended to the multi-objective case. By solving

the linear relaxation of (MOILP) we obtain a valid lower bound that suits Definition 2.10

(Ehrgott and Gandibleux, 2007). The linear relaxation of a (MOILP) is formulated by

relaxing its integer variable constraints.

19

Chapter 2 Multi-objective Optimization Models and Properties

Definition 2.12. The linear relaxation of (MOILP) is given by:

min
(
z1(x), . . . , zp(x)

)>
s.t. A x 5 b

x = 0

x ∈ Rn.

The linear relaxation of a (MO01LP) is constructed analogously by replacing the con-

straints x ∈ {0, 1}n with 0 ≤ xi ≤ 1 for all i = 1, . . . , n. Note that we add the constraints

xi ≤ 1, i = 1, . . . , n to A and b in some formulations in Chapter 3, resulting in an extended

constraint matrix Ā x 5 b̄. In the implementation, however, variable bounds are handled

implicitly. Since the set of feasible solutions for the linear relaxation is a polyhedron in the

decision space and the objective functions are linear, its corresponding image in the ob-

jective space is a polyhedron as well. By only considering the non-dominated part of this

polyhedron in the objective space we get a valid lower bound set for the non-dominated

set of (MO01LP). A visualization of a bi-objective example is given in Figure 2.2(b).

A different valid lower bound set is obtained by solving a convex relaxation. This is

done by computing the convex hull of the feasible points, i.e., computing conv(Y). By

just considering its non-dominated points (i.e. conv(Y)N) we obtain the lower bound set.

An illustration of a bi-objective example can be found in Figure 2.2(c). Solving a linear

or convex relaxation can be done by using a dichotomic scheme (see, e.g., Aneja and Nair,

1979; Özpeynirci and Köksalan, 2010; Przybylski et al., 2010a). A detailed description of

a dichotomic search algorithm is given in Section 3.1.

The classical upper bound for a single-objective integer program is given by the so-

called incumbent solution. The incumbent solution is the currently best known solution of

a problem. This concept can be easily extended to the multi-objective case by considering

an incumbent list XU . This list contains all integer feasible solutions whose corresponding

outcome vectors are not dominated by other feasible solutions found so far. An upper

bound U is given by the image of the incumbent list, i.e., U := z(XU). Based on the upper

bound set U we can determine the set of so-called local upper bounds which bound the area

where new non-dominated points can be located. Note that in the literature these points

are also denoted as local Nadir points or corner points. Let U be the upper bound set given

by the incumbent list XU . Then we denote the set of local upper bounds by D(U). In

Klamroth et al. (2015), a formal definition for multiple objectives is given. Furthermore,

algorithms to compute and update the set of local upper bounds are presented. We slightly

adapt the definitions, proposed by Klamroth et al. (2015), to our notation and the previous

definition of bound sets. Let u ∈ D(U) be a local upper bound. Then a search zone C(u)

20

2.4 Polyhedral Theory

is defined by C(u) := {y ∈ Y : y 5 u}.

Definition 2.13 (cf. Klamroth et al., 2015). Let XU be an incumbent list and U := z(XU).

Then the corresponding set of local upper bounds D(U) is called an upper bound set with

respect to U if and only if

i) cl
(
(U + Rp=){

)
=
⋃
u∈D(U)C(u),

ii) ∀u1, u2 ∈ D(U), u1 6= u2, C(u1) 6⊂ C(u2).

For the bi-objective case, the formal definition of the set of local upper bounds is given in

the following.

Definition 2.14 (cf. Klamroth et al., 2015). Let U = {(y11, y12)>, . . . , (yt1, y
t
2)
>} be an

externally stable set with t > 1. Since an externally stable set in R2 can be naturally

ordered, we assume y11 < · · · < yt1 and yt2 < · · · < y12. Let M̄ = (M,M)> ∈ R2 be the global

upper bound with y < M̄ for all y ∈ Y . The set of local upper bounds is then given by:

D(U) := {(y11,M)>, (y21, y
1
2)>, (y31, y

2
2)>, . . . , (yn1 , y

n−1
2)>, (M,yn2)>}.

In Figure 2.2(d), a set of local upper bounds is visualized for a bi-objective example.

2.4 Polyhedral Theory

In this section, a brief overview of polyhedral theory is given. For a more detailed descrip-

tion, we refer to, e.g., Nemhauser and Wolsey (1988) or Schrijver (2003).

A hyperplane H is defined by H := {y ∈ Rp : a>y = a0} with its corresponding normal

vector a ∈ Rp. A hyperplane separates the space Rp into the two half-spaces H+ := {y ∈
Rp : a>y ≥ a0} and H− := {y ∈ Rp : a>y ≤ a0}.

Definition 2.15 (cf. Nemhauser and Wolsey, 1988). A polyhedron P ⊆ Rp is the set

of points that satisfy a finite number of inequalities, i.e., P := {y ∈ Rp : Â y = â}, with

Â ∈ Rq×p and â ∈ Rq. Thereby, q is the finite number of inequalities.

Hence, a polyhedron is the intersection of a finite number of half-spaces and therefore a

closed convex set.

Definition 2.16 (Nemhauser and Wolsey, 1988). A polyhedron P ⊆ Rp is called bounded,

if there exists a w > 0 such that P ⊆ {y ∈ Rp : − w ≤ yj ≤ w, j = 1, . . . p}. A bounded

polyhedron is called a polytope.

By dim(P) we denote the dimension of a polyhedron P. Let k ∈ Z be the number of

affinely independent points in P, then dim(P) = k − 1.

21

Chapter 2 Multi-objective Optimization Models and Properties

z1

z2

yI

yAI

yN

(a) The yellow points represent the set YN . The
ideal point yI is a valid lower bound and the
nadir point yN and anti-ideal point yAI are
valid upper bounds on them.

z1

z2

(b) The blue line represents the solution of the
linear relaxation. It is a valid lower bound
set on the set YN represented by the yellow
points.

z1

z2

(c) The blue line represents the solution of the
convex relaxation. It is a valid lower bound
set on the set YN represented by the yellow
points.

z1

z2

M̄

(d) The yellow points represent the set YN . The
red rectangles represent the corresponding set
of local upper bounds D(YN). They are a
valid upper bound set on the non-dominated
points.

Figure 2.2: An Illustration of different bounds and bound sets on the set of non-dominated
points YN for a bi-objective (MO01LP).

22

2.4 Polyhedral Theory

Definition 2.17 (Nemhauser and Wolsey, 1988). A polyhedron P ⊆ Rp is full-dimensional,

if dim(P) = p.

There are two common ways to describe a polyhedron. Namely, by using facets or by

using vertices and rays.

We start with the description by facets. Given a polyhedron P = {y ∈ Rp : Â y = â},
we want to figure out if all of the inequalities are necessary or some can be dropped. An

inequality and thus its corresponding half-space H+ is called valid regarding a polyhedron

P, if P ⊆ H+. Furthermore, a valid inequality a>y ≥ a0 is called a face, if there exist

a ȳ ∈ P with a>ȳ = a0. A valid inequality which is not a face is called redundant. A

face F can also be described as the intersection of a hyperplane H and the polyhedron P,

i.e., F := {y ∈ H : y ∈ P}, if it is not empty.

Definition 2.18 (Nemhauser and Wolsey, 1988). A face F of a polyhedron P is called

facet, if dim(F) = dim(P)− 1.

For each facet F of P, one inequality that represents F is necessary in the description

of P. By PH := {H+
1 , . . . ,H+

t } we denote the half-space representation of P, where the

half-spaces H+
1 , . . . ,H+

t correspond to the inequalities that describe the t facets of P. The

polyhedron P is then given by

P =
⋂

H∈PH

H.

Alternatively, instead of describing the polyhedron with the highest-dimensional faces,

the polyhedron can be described by using the lowest-dimensional faces.

Definition 2.19 (cf. Nemhauser and Wolsey, 1988). A face F of a polyhedron P is called

vertex, if dim(F) = 0.

Additionally, we need to define rays. A vector r ∈ Rp \ {0} is called ray of P if for all

y ∈ P the condition {ȳ = y + λr, λ ≥ 0} ⊆ P is fulfilled.

Definition 2.20 (cf. Nemhauser and Wolsey, 1988). A ray r ∈ Rp is an extreme ray,

if there do not exist rays r1, r2 ∈ Rp of P with r1 6= γr2 for any γ ≥ 0, such that

r = λ1r
1 + λ2r

2 with λ1, λ2 > 0.

Every facet F of a polyhedron P can be described by using a finite set of vertices VF and a

finite set of extreme rays RF . These sets need to satisfy F = conv(VF)+{∑r∈RF
λrr, λ =

0}. Therefore, we can introduce the vertex-ray representation of a polyhedron P denoted

by PVR = (VP , RP), where VP is the set of vertices of P and RP is the set of extreme rays

23

Chapter 2 Multi-objective Optimization Models and Properties

of P. The polyhedron P is then given by

P = conv(VP) +

∑
r∈RP

λrr, λ = 0

 .

Obviously, if a polyhedron P has no extreme rays, i.e., RP = ∅, it is an polytope. Many

algorithms keep track of the facets as well as the vertices and rays, denoted by (PH,PVR).

This approach is called double description method (see, e.g., Fukuda and Prodon, 1996).

Obviously, it is necessary to link both sets. Otherwise it is not clear which vertices and

rays correspond to which hyperplanes. The linking can be done by for example using an

adjacency matrix. This result is given by the well-known Minkowski-Weyl Theorem.

Theorem 2.21 (Minkowski-Weyl Theorem, cf. Ziegler, 1995). For P ⊆ Rp, the following

statements are equivalent:

i) P is a polyhedron, i.e., there exists some halfspace representation PH, such that

P =
⋂

H∈PH

H.

ii) There is a vertex-ray representation PVR such that

P = conv(VP) +

∑
r∈RP

λrr, λ = 0

 .

24

3 Solution Methods

In this chapter, we introduce some of the most relevant solution methods for multi-

objective integer linear problems. These solution approaches are often categorized in:

objective space methods and decision space methods.

In the first section, we present a selection of well-known scalarization methods. Thereby,

we clarify whether the generated solutions are guaranteed to be efficient. Moreover, it is

described whether all non-dominated points can be found with each specific approach or

whether just a subset of YN is generated.

In the second section, we restrict ourselves to multi-objective dynamic programming and

the multi-objective branch and bound method, since these are the most widely used decision

space methods. Particularly for the branch and bound method, each single component is

described in detail and a sufficient overview of the corresponding literature is given.

3.1 Objective Space Methods

The so-called objective space methods scalarize the underlying problem, i.e., it is replaced

by one or a series of single-objective problems to determine successively the set of efficient

solutions. In the case of multi-objective integer programming, these scalarized problems

can be solved with commercial single-objective integer programming solvers like CPLEX1

or Gurobi2. The utilization of these optimized singlecriteria solvers are a major advantage

and one of the reasons why these methods are predominant in comparison to the decision

space methods in multi-objective optimization.

A large variety of these methods is proposed in the literature but we restrict ourselves

to the best known approaches.

3.1.1 ε-constraint Method

The ε-constraint method was introduced for two objectives by Haimes et al. (1971) and

has been further discussed in Chankong and Haimes (1983). In this method, one of the

objective functions zk, k ∈ {1, . . . , p} of (MO01LP) is selected as the objective function

of the scalarized problem. The remaining p − 1 objective functions are transformed into

1https://www.ibm.com/products/ilog-cplex-optimization-studio
2https://www.gurobi.com

25

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com

Chapter 3 Solution Methods

constraints that bound the corresponding objective values. Hence, the ε-constraint scalar-

ization can be written in the form:

min zk(x)

s.t. zj(x) ≤ εj ∀j = 1, . . . , p, j 6= k

x ∈ X.

(εk-C)

Proposition 3.1 (cf. Ehrgott, 2005). Let x̄ be an optimal solution of (εk-C) for some

k ∈ {1, . . . , p}, i.e., x̄ ∈ Xk(ε). Then x̄ is weakly efficient.

Proof. Assume x̄ /∈ XWE . Then there is an x ∈ X such that zj(x) < zj(x̄) for all

j = 1, . . . , p. In particular, zk(x) < zk(x̄). Since zj(x) < zj(x̄) ≤ εj for all j 6= k, the

solution x is feasible for (εk-C). This is a contradiction to x̄ being an optimal solution of

(εk-C).

Note that if x̄ is an unique solution it is efficient (Ehrgott, 2005). Furthermore, it is

possible to generate all non-dominated points with this scalarization technique.

Proposition 3.2 (cf. Ehrgott, 2005). The feasible solution x̄ ∈ X is efficient if and only

if there exists an ε̄ ∈ Rp such that x̄ ∈ Xk(ε̄) for all k = 1, . . . , p.

Proof.

First assume x̄ /∈ Xk(ε̄) for some k ∈ {1, . . . , p} with ε̄ = z(x̄). Then, there must be

some x ∈ X with zk(x) < zk(x̄) and zj(x) ≤ zj(x̄) = ε̄j for all j 6= k, which would imply

x̄ /∈ XE .

On the contrary, suppose x̄ /∈ XE . Then there is an index k ∈ {1, . . . , p} and a feasible

solution x ∈ X such that zk(x) < zk(x̄) and zj(x) ≤ zj(x̄) for all j 6= k. Therefore x̄ can

not be an optimal solution of (εk-C) for any ε ∈ Rp for which it is feasible.

In every iteration of this method, the k-th objective is optimized with updated ε-values

to ensure improvement regarding the other objectives. Afterwards, the weakly non-

dominated points have to be filtered out. In Laumanns et al. (2006), an extension to three

and more objectives is presented. Many approaches based on the ε-constraint method

have been published in the last decades. For example Boland et al. (2017) and Kirlik

and Sayın (2014) combine the method with reduction of dimension in the tri- respectively

multi-dimensional case. There are also approaches that guarantee the efficiency of the gen-

erated solutions (see, e.g., Kirlik and Sayın, 2014; Mavrotas, 2009; Özlen and Azizoğlu,

2009). The two common ways to do this is by adding an augmentation term to the ob-

jective function (see, e.g., Özlen and Azizoğlu, 2009) or by using a so-called lexicographic

optimization (see, e.g., Kirlik and Sayın, 2014; Mavrotas, 2009). Other approaches, see

for example Bérubé et al. (2009), improve the choice of the values for ε.

26

3.1 Objective Space Methods

For two objectives the choice for ε is relatively straightforward, since it can be derived

from the previous iteration of this method. Given a non-dominated point ȳ ∈ R2. Without

loss of generality we choose k = 1, i.e., we minimize the first objective. The next (weakly)

non-dominated point with respect to z1 (if it exists) can be found by solving (εk-C) with

ε2 = ȳ2 − δ. Note that in general δ > 0 should be chosen sufficiently small, but since this

work only considers integer programming with integral coefficients δ = 1 is a valid choice.

For three and more objectives this approach is not straightforward anymore. Since the

natural order of the set of non-dominated points is lost in p ≥ 3 it is more difficult to

keep track of the search space which still needs to be examined. We refer to Dächert et al.

(2017) for an detailed overview of the difficulties and computation of the search region.

Furthermore, it is possible that numerous of ε-constraint scalarizations are infeasible and

therefore harder to solve. In Laumanns et al. (2006), an extension of the adaptive choice

to the multi-objective case is proposed. An ε-constraint method for two objectives is

presented in Algorithm 1.

Algorithm 1: Bi-objective ε-constraint Method

1 Input: Initial problem (MO01LP)
2 Output: Set of non-dominated points YN

3 x1 := argmin{z1(x) : x ∈ X, z2(x) ≤ ε2} with ε2 = M .
4 X̄ := {x1}
5 Set ε2 := z2(x

1)− 1.

6 while (εk-C) is feasible do
7 Determine x̄ := argmin{z1(x) : x ∈ X, z2(x) ≤ ε2}.
8 X̄ := X̄ ∪ {x̄}.
9 Set ε2 := z2(x̄)− 1.

10 XE := {x ∈ X̄ : z(x) is non-dominated}
11 YN := {z(x) ∈ R2 : x ∈ XE}

Note that Algorithm 1 can be adjusted by adding a lexicographic reoptimization step

between line 7 and line 8 (see, e.g., Mavrotas, 2009) to guarantee efficiency. Therefore,

after determining x̄ we determine x̂ := argmin{z2(x) : x ∈ X, z1(x) = z1(x̄)} and add x̂ to

X̄.

Example 3.3. In Figure 3.1, an illustration of the procedure of Algorithm 1 is given. In

Figure 3.1(a), the set Y of an (MO01LP) with p = 2 is visualized by the black points. The

yellow point z(x̄) ∈ Y is obtained by solving (εk-C) with ε2 = M . In Figure 3.1(b), we

see that z2 is bounded by ε2 = z2(x̄)− 1. This is visualized by the gray area, which shows

the now infeasible parts of Y . The yellow point is obtained by solving the corresponding

ε-constraint scalarization. In Figure 3.1(c) to Figure 3.1(g), this procedure is repeated.

27

Chapter 3 Solution Methods

Then in Figure 3.1(h), the ε-constraint scalarization is infeasible, i.e., the while-loop stops.

Since all non-dominated points are among the set of obtained points, we can filter those

for dominance. The final set of non-dominated points is visualized in Figure 3.1(i).

3.1.2 Weighted Sum Method

The weighted sum method is an objective space method based on the optimization of a

weighted sum of the p objective functions using positive weights. It was first formally

discussed in Gass and Saaty (1955). The weighted sum scalarization can be formulated as

min

p∑
j=1

λj zj(x)

s.t. x ∈ X,

(WSλ)

with λ ∈ Rp≥ and
∑p

j=1 λj = 1. The values λj , j = 1, . . . , p model the relative importance

among the objectives. Contrary to the ε-constraint scalarization, the set of feasible so-

lutions remains unchanged. This assures that the constraint structure does not change,

which is particularly important for combinatorial optimization problems. Geoffrion (1968)

showed that an optimal solution of (WSλ) is guaranteed to be efficient, respectively weakly

efficient, depending on the choice of λ.

In the following, we use the sets Λ0 := {λ ∈ Rp : λ ≥ 0,
∑p

j=1 λj = 1} and Λ := {λ ∈
Rp : λ > 0,

∑p
j=1 λj = 1} to denote the respective weight-spaces and thus ease the notation.

Proposition 3.4 (Ehrgott, 2005). Let x̄ be an optimal solution of (WSλ) with λ ∈ Rp≥.

Then the following statements hold.

i) If λ ∈ Λ0, then x̄ is weakly efficient.

ii) If λ ∈ Λ, then x̄ is efficient.

iii) If λ ∈ Λ0 and x̄ is a unique optimal solution of (WSλ), then x̄ is efficient and

z(x̄) ∈ YSN1.

Proof.

i) Assume x̄ /∈ XWE . Then there is an x ∈ X such that z(x) < z(x̄). Hence,

λ>z(x) < λ>z(x̄) also holds for all λ ∈ Λ0. This is a contradiction to x̄ being

an optimal solution of (WSλ).

ii) Assume x̄ /∈ XE . Then there is an x ∈ X such that zj(x) ≤ zj(x̄) for all

j = 1, . . . , p and zk(x) < zk(x̄) for at least one k ∈ {1, . . . , p}. Hence, λ>z(x) ≤

28

3.1 Objective Space Methods

z1

z2

(a) Initialize the algorithm by
obtaining the first point
(yellow) with ε2 =∞.

z1

z2

(b) Adapt ε and obtain the
next point.

z1

z2

(c) Adapt ε and obtain the
next point.

z1

z2

(d) Adapt ε and obtain the
next point.

z1

z2

(e) Adapt ε and obtain the
next point.

z1

z2

(f) Adapt ε and obtain the
next point.

z1

z2

(g) Adapt ε and obtain the
next point.

z1

z2

infeasible

(h) The ε-constraint scalar-
ization is infeasible. The
while-loop stops.

z1

z2

(i) Filter the obtained points
by dominance.

Figure 3.1: A bi-objective example to illustrate the procedure of a the ε-constraint method
given in Algorithm 1. The obtained point of each iteration is depicted in yellow.
The gray area represents the bounding of the second objective z2.

29

Chapter 3 Solution Methods

λ>z(x̄) holds for all λ ∈ Λ. This is a contradiction to x̄ being an optimal

solution of (WSλ).

iii) Assume x̄ /∈ XE . Then, there is an x ∈ X such that zj(x) ≤ zj(x̄) for all

j = 1, . . . , p and zk(x) < zk(x̄) for at least one k ∈ {1, . . . , p}. Consequently,

λ>z(x) ≤ λ>z(x̄) holds for all λ ∈ Λ0 . This is contradicting to x̄ being the

unique optimal solution of (WSλ).

Since we are only interested in efficient solutions, we can restrict the considered weight

space for linear multi-objective problems to Λ. Note that this is not possible for non-

linear continuous optimization problems as there might be non-dominated points with

unbounded trade-off. Feasible outcome vectors y ∈ Y whose corresponding efficient solu-

tion x ∈ XE with z(x) = y can be obtained as optimal solution of (WSλ) fo some weighting

vector λ ∈ Λ are denoted as supported non-dominated points (Ehrgott, 2005). Since in

general not all non-dominated points are supported, i.e., YN 6= YSN , not all non-dominated

points can be obtained by solving weighted sum scalarizations. Regardless of the chosen

weights it is not possible to obtain unsupported points YUN = YN\YSN by solving (WSλ).

In addition, although there exist weights such that x̄ with z(x̄) ∈ YSN2 is optimal for the

weighted sum scalarization, it is not guaranteed that a single-objective solver finds this

solution. In those cases, there is more than one feasible solution with identical optimal

objective value of (WSλ) but a solver returns only one these solutions.

Despite this limitation there are several weighted sum approaches proposed in the lit-

erature. Aneja and Nair (1979) developed a bi-objective weighted sum method with a

dichotomic search scheme. This scheme determines weights adaptively based on the con-

vex hull of already computed non-dominated points and guarantees to find all points in

YSN1. Extensions of this approach to the multi-objective case with p ≥ 3 are proposed

in Przybylski et al. (2010a) and Przybylski et al. (2019). Although the dichotomic ap-

proach is the gold standard for two objectives, its extension to more objectives is not

straightforward, since the computation of the convex hull is considerably more difficult

and numerically instable in higher dimensions. Moreover, the weight determined in the

dichotomic search, might have negative components. Thus, solving the corresponding

weighted sum scalarization would, in general, result in a dominated point. The authors

overcome this problem by using different ways to initialize the algorithm by computing the

boundary of the non-dominated set and determining the remaining set of non-dominated

points in a specific order. Further approaches for the multi-objective case can be found for

example in Özpeynirci and Köksalan (2010) and Bökler and Mutzel (2015). A weighted

30

3.1 Objective Space Methods

sum method for two objectives (based on Aneja and Nair, 1979) is given in the recursive

Algorithm 2.

Algorithm 2: Bi-objective Weighted Sum Method (dichotomic search)

1 Input: Initial problem (MO01LP)
2 Output: Subset of supported non-dominated points YWS ⊆ YSN
3 xi := argmin{(λi)>z(x), x ∈ X} for i = 1, 2 with λ1 := (1− δ, δ) and

λ2 := (δ, 1− δ), where ε > 0 is sufficiently small.
4 X̄ := {x1, x2}
5 X̄ := solveRecursion(x1, x2, X̄)
6 YWS := {z(x) ∈ R2 : x ∈ X̄}

Procedure: solveRecursion

1 Input: x1, x2 ∈ XE , X̄ ⊆ XE

2 Output: X̄ ⊆ XE

3 λ1 := z2(x
1)− z2(x2), λ2 := z1(x

2)− z1(x1)
4 x̄ := argmin{λ>z(x), x ∈ X}.
5 X̄ := X̄ ∪ x̄.
6 if λ1z1(x̄) + λ2z2(x̄) < λ1z1(x

1) + λ2z2(x
1) then

7 X̄ := solveRecursion(x1, x̄, X̄)
8 X̄ := solveRecursion(x̄, x2, X̄)

Example 3.5. In Figure 3.2, an illustration of Algorithm 2 can be found. The set of

feasible points Y of a (MO01LP) with two objectives is visualized by the black points. In

Figure 3.2(a), the two lexicographically optimal points are computed (red) by solving (WSλ)

with weights λ1 = (1 − δ, δ)> and λ2 = (δ, 1 − δ)> where δ > 0 is sufficient small. These

two points define a hyperplane in Figure 3.2(b) and its corresponding normal (with strictly

positive components) is chosen as weight. Solving this weighted sum scalarization yields a

new non-dominated point (red). Note that non-dominated points which were found in prior

iterations are depicted in yellow. In Figure 3.1(c), two new hyperplanes are obtained and

two weighted sum scalarizations are solved. Again, the red points depict the corresponding

objective vector of the obtained solutions. Note that one of the solved scalarizations does

not find a new non-dominated point. Therefore, this area can be neglected in following

iterations. In Figure 3.2(d), again, we obtain two new hyperplanes and therewith two new

weighted sum scalarizations that need to be solved. Since no new non-dominated points

are found, the algorithm stops. Note that it would be possible to find a new non-dominated

point in this iteration. But since this point is in YSN2, i.e., it is a supported non-dominated

31

Chapter 3 Solution Methods

point but not an supported non-dominated extreme point, it cannot be guaranteed that this

point is found by the single-objective solver. In Figure 3.2(e), the subset of YSN that is

obtained by solving this example is shown. Figure 3.2(e) visualizes all other non-dominated

points that were not found with this method. The blue point is unsupported and therefore

it was clear in advance, that it is not possible to obtain this point with the weighted sum

method. The green point is supported but since it is not extreme there is no guarantee that

it is found.

z1

z2

(a) Initialize the algorithm by
obtaining the two lexico-
graphically optimal solu-
tions (red).

z1

z2

(b) Obtain weight from al-
ready found points and
solve (WSλ).

z1

z2

(c) Obtain weights from al-
ready found points and
solve (WSλ).

z1

z2

(d) Obtain weights from al-
ready found points and
solve (WSλ).

z1

z2

(e) Subset of YSN obtained by
using the weighted sum
method.

z1

z2

(f) Non-dominated points
that were not found by
using the weighted sum
method.

Figure 3.2: A bi-objective example to illustrate the procedure of a the weighted sum
method given in Algorithm 2. The obtained points of each iteration is depicted
in red. Points that have been found in previous iterations are illustrated in
yellow.

32

3.1 Objective Space Methods

3.1.3 Augmented Weighted Tchebycheff Method

The augmented weighted Tchebycheff method belongs to the class of so-called reference

point methods. The objective function of the corresponding scalarizations is given by

minimizing the distance to a predefined reference point s ∈ Rp. Often norm induced

distance measures are applied. A corresponding reference point scalarization using a norm

‖.‖ can be written as

min ‖z(x)− s‖
s.t. x ∈ X.

(RP‖.‖)

The properties of the scalarization depend on the choice of the considered norm.

Definition 3.6. Let ‖.‖ : Rp → R= be a norm in Rp, i.e.,

i) ‖y‖ = 0⇔ y = 0

ii) ‖αy‖ = |α| · ‖y‖, ∀ y ∈ Rp, ∀ α ∈ R

iii) ‖y1 + y2‖ ≤ ‖y1‖+ ‖y2‖, ∀ y1, y2 ∈ Rp.

Then, the norm ‖.‖ is called

1. monotone, if

i) ‖y1‖ ≤ ‖y2‖ ∀ y1, y2 ∈ Rp : |y1j | ≤ |y2j | ∀ j = 1, . . . , p and

ii) ‖y1‖ < ‖y2‖ ∀ y1, y2 ∈ Rp : |y1j | < |y2j | ∀ j = 1, . . . , p.

2. strictly monotone, if

i) ‖y1‖ < ‖y2‖ ∀ y1, y2 ∈ Rp : |y1j | ≤ |y2j | ∀ j = 1, . . . , p and

∃ k ∈ {1, . . . , p} : |y1k| < |y2k|.

Proposition 3.7 (cf. Miettinen, 1998). Let x̄ be an optimal solution of (RP‖.‖).

i) If ‖.‖ is monotone then x̄ is weakly efficient.

ii) If ‖.‖ is monotone and x̄ is an unique optimal solution then x̄ is efficient.

iii) If ‖.‖ is strictly monotone then x̄ is efficient.

Proof.

i) Suppose x̄ /∈ XWE . Then, there is an x ∈ X with z(x) < z(x̄) and therefore

zj(x)− sj < zj(x̄)− sj holds for all j ∈ {1, . . . , p}. Hence, ‖z(x)− s‖ < ‖z(x̄)− s‖
also holds due to the monotonicity of ‖.‖ which is contradicting to the optimality of

x̄.

33

Chapter 3 Solution Methods

ii) Suppose x̄ /∈ XE . Then, there is an x ∈ X such that zj(x) ≤ zj(x̄) for all j = 1, . . . , p

and zk(x) < zk(x̄) for at least one k ∈ {1, . . . , p}. Hence, zj(x)−sj ≤ zj(x̄)−sj holds

for all j ∈ {1, . . . , p}, which implies ‖z(x) − s‖ ≤ ‖z(x̄) − s‖ since ‖.‖ is monotone.

This is contradicting the unique optimality of x̄.

iii) Suppose x̄ /∈ XE . Then, there is an x ∈ X such that zj(x) ≤ zj(x̄) for all j = 1, . . . , p

and zk(x) < zk(x̄) for at least one k ∈ {1, . . . , p}. Hence, zj(x)−sj ≤ zj(x̄)−sj holds

for all j ∈ {1, . . . , p}. Since ‖.‖ is a strictly monotone norm, ‖z(x)− s‖ < ‖z(x̄)− s‖
holds which is a contradiction to the optimality of x̄.

The weighted Tchebycheff method is an objective space method based on the monotone

weighted Tchebycheff maximum norm and has been introduced by Bowman (1976). First,

we introduce the weighted Tchebycheff norm. Let wj > 0, j = 1, . . . , p be positive weights

with
∑p

j=1wj = 1. Then the weighted Tchebycheff norm of a vector y ∈ Rp is defined by

‖y‖w∞ := max
j=1,...,p

{
wj · |yj |

}
. (3.1)

So, the weighted Tchebycheff scalarization of a multi-objective problem (MO01LP) with

respect to a given reference point s ∈ Rp can be written as:

min ‖z(x)− s‖w∞
s.t. x ∈ X.

(WTw)

The reference point has to be chosen such that s < z(x) for all x ∈ X. Otherwise, it is

not possible to determine all efficient solutions of the underlying multi-objective problem

(Miettinen, 1998). A point s ∈ Rp with these properties is also called an utopian point as

it strictly dominates the ideal point. The absolute values in (3.1) can be neglected, since

sj < zj(x), j = 1, . . . , p for all x ∈ X.

According to Proposition 3.7, the optimal solutions of (WTw) are in general only weakly

efficient. To overcome this drawback, several extensions of the weighted Tchebycheff

method have been developed which assure that the obtained solutions are efficient for

(MO01LP) (see, e.g., Kaliszewski, 1987; Steuer and Choo, 1983). One of them is the

so-called augmented weighted Tchebycheff method (Steuer and Choo, 1983). This method

relies on a slightly different scalarization where an augmentation term is added to the

weighted Tchebycheff norm which makes it a strictly monotone norm. The augmented

weighted Tchebycheff norm is defined as

‖z‖wτ := ‖z‖w∞ + τ ‖z‖1 , (3.2)

34

3.1 Objective Space Methods

where ‖z‖1 = |z1|+ . . .+ |zp| denotes the L1-norm, wj > 0, j = 1, . . . , p,
∑p

j=1wj = 1 and

τ > 0. The augmented weighted Tchebycheff scalarization can now be written as

min ‖z(x)− s‖wτ
s.t. x ∈ X.

(AWTw
τ)

According to Proposition 3.7, the obtained optimal solutions of (AWTw
τ) are efficient

and it is shown by Steuer and Choo (1983) that for every efficient solution x̄ there are

corresponding weights w and τ such that x̄ is an optimal solution of (AWTw
τ). But an

appropriate choice of the parameter τ is difficult in general. On the one hand, too small

values of τ can lead to numerical difficulties. On the other hand, non-supported efficient

solutions might be suboptimal for (AWTw
τ) if the value of τ is too large. However, for

bi-objective integer programming Dächert et al. (2012) propose an adaptive method to

determine an optimal value of τ . An augmented weighted Tchebycheff method for two

objectives is given in Algorithm 4. In this algorithm, the lexmin operator is used to

find the solution corresponding to the lexicographically optimal point zπ(x) for a given

permutation π. For the computation of w and τ we refer to Dächert et al. (2012).

Algorithm 4: Bi-objective Augmented Weighted Tchebycheff Method

1 Input: Initial problem (MO01LP)
2 Output: Set non-dominated points YN

3 xi := lexmin{zπi(x) : x ∈ X} for i = 1, 2 with π1 := (1, 2), π2 := (2, 1).
4 if z(x1) = z(x2) then
5 X̄ := {x1}
6 else
7 X̄ := {x1, x2}
8 ND := {z(x1), z(x2)}
9 while ∃ adjacent pair of points zi, zi+1 in ND not yet investigated do

10 Compute parameters w and τ and optionally the new reference point s
w.r.t. zi and zi+1.

11 x̄ := argmin{‖z(x)− s‖wτ : x ∈ X}.
12 if z(x̄) = zi or z(x̄) = zi+1 then
13 Label pair of zi, zi+1 as investigated.
14 else
15 X̄ := X̄ ∪ x̄
16 ND := ND ∪ z(x̄)

17 XE := X̄.
18 YN := ND

35

Chapter 3 Solution Methods

z1

z2

(a) Initialize the algorithm by
obtaining the two lexico-
graphically optimal solu-
tions (red).

z1

z2

(b) Solve (AWTwτ) with suffi-
cient parameters and ref-
erence point. A new non-
dominated point is ob-
tained.

z1

z2

(c) Solve (AWTwτ) two times
with sufficient parameters
and reference points. For
both scalarizations a new
non-dominated point is
obtained.

z1

z2

(d) (AWTwτ) is solved four
times with sufficient
parameters and reference
points. Only one of
the scalarizations yields
a new non-dominated
point.

z1

z2

(e) (AWTwτ) is solved two
times with sufficient pa-
rameters and reference
points. No new point is
found.

z1

z2

(f) Set of non-dominated
points YN .

Figure 3.3: A bi-objective example to illustrate the procedure of a the augmented weighted
Tchebycheff method given in Algorithm 4. The obtained points of each iter-
ation are depicted in red. Points that have been found in previous iterations
are illustrated in yellow.

36

3.1 Objective Space Methods

Example 3.8. In Figure 3.3, an illustration of solving a bi-objective (MO01LP) with Al-

gorithm 4 is given. The set of feasible points Y is given by the black points. In Figure

3.3(a), the algorithm is initialized by obtaining the two lexicoraphically optimal solutions

(red). Those currently adjacent points define the reference point (green) in Figure 3.3(b).

Solving (AWTw
τ) with sufficient parameters yields a new non-dominated point (red). In

Figure 3.3(c), we can see that (AWTw
τ) is solved two times with the corresponding com-

puted reference points and parameters. In each scalarization a new non-dominated point

is found (red). This procedure is repeated in Figure 3.3(d) where four scalarizations with

corresponding weights are solved. Since three of these scalariaztions yield points that have

been found already, only one new non-dominated point is found. In Figure 3.3(e), no new

point is obtained and therefore the algorithm comes to an end. Figure 3.3(f) visualizes the

set of non-dominated points YN (yellow).

3.1.4 Search Region Splitting Methods

Contrary to the ε-constraint method, where the restriction of the objective space is in-

creased step by step, search region splitting methods subdivide the objective space into

different search zones that can be explored independently. One of the first search region

splitting methods for two objectives is proposed in Chalmet et al. (1986) where the so-

called hybrid approach is used. The authors combine the weighted sum scalarization with

the ε-constraint scalarization. The resulting hybrid scalarization can be formulated as

min

p∑
j=1

λjzj(x)

s.t. zj(x) ≤ εj ∀j = 1, . . . , p

x ∈ X,

(HSελ)

with λ ∈ Λ0 and ε ∈ Rp. Since in this scalarization all p objective functions are bounded

by ε the objective space is divided into regions, which can be explored independently. Due

to the weighted sum objective with λ ∈ Λ0 every optimal solution x̄ of (HSελ) is weakly

efficient and for every efficient solution x̄ there exist suitable λ and ε = z(x̄) such that

x̄ is an optimal solution of (HSελ) (Chalmet et al., 1986). Contrary to the weighted sum

method, this approach generates all efficient solutions and not only the efficient solutions

x̄ with z(x̄) ∈ YSN .

There are numerous approaches of bi-objective search region splitting methods (see,

e.g., Hamacher et al., 2007; Leitner et al., 2016). Boland et al. (2015) propose im-

provements on the search region method of Chalmet et al. (1986). The search region

is split up into rectangles that can be explored individually. Each rectangle is then

37

Chapter 3 Solution Methods

split in half and those new rectangles are explored individually as well. Furthermore,

instead of solving a weighted sum objective, the authors propose a lexicographic opti-

mization in each rectangle. Given two points y1, y2 with y11 < y21, the corresponding

rectangular spanned by those points is defined as R(y1, y2). The so-called corner point

is denoted by RC(y1, y2) := (y12, y
2
1). Note that corner points correspond to local upper

bounds or local Nadir points of this rectangle. When a new rectangle is obtained it is

split half into the lower part RL(y1, y2) := R((y11,
1
2(y12 + y22)), y2) and the upper part

RU (y1, y2) := (y1, (y21,
1
2(y12 + y22))). During the algorithm problems of the following form

are solved:
lexmin zπ(x)

s.t. zj(x) ≤ εj ∀j = 1, . . . , p

x ∈ X.

(LEX-Pεπ)

The vector ε is given by the corner point of the rectangle to explore. Again, every optimal

solution x̄ of (LEX-Pεπ) is efficient and for every efficient solution x̄ there exist suitable π

and ε such that x̄ is the optimal solution of (LEX-Pεπ) (Boland et al., 2015). A bi-objective

search region splitting method based on Boland et al. (2015) is given in Algorithm 5.

Algorithm 5: Bi-objective Search Region Splitting Method

1 Input: Initial problem (MO01LP)
2 Output: Set of non-dominated points YN

3 xi := lexmin{zπi(x) : x ∈ X} for i = 1, 2 with π1 := (1, 2), π2 := (2, 1).
4 X̄ := {x1, x2}
5 L := {R(z(x1), z(x2))}
6 while L 6= ∅ do
7 Select and remove a rectangle R(y1, y2) from L.
8 x̄ := lexmin{zπ(x) : x ∈ X, z(x) ≤ ε} with π := (1, 2) and ε := RCL .
9 if z(x̄) 6= y2 then

10 X̄ := X̄ ∪ {x̄}
11 L := L ∪ {R(z(x̄), y2)}
12 x̂ := lexmin{zπ(x) : x ∈ X, z(x) ≤ ε} with π := (2, 1) and

ε := RC(z(x̄)− 1, 12(y12 + y22)).
13 if z(x̂) 6= y1 then
14 X̄ := X̄ ∪ {x̂}
15 L := L ∪ {R(y1, z(x̂))}

16 XE := X̄.
17 YN := {z(x) : x ∈ XE}.

By considering more than two objectives, additional difficulties occur. One of them is

the definition, respectively computation, of the corner points. Like already mentioned in

38

3.1 Objective Space Methods

z1

z2

(a) Obtaining the two lexico-
graphically optimal solu-
tions (red).

z1

z2

(b) Obtaining a new point
and updating rectangles.

z1

z2

(c) Obtaining a new point
and updating rectangles.

z1

z2

(d) Obtaining a new point
and updating rectangles.

z1

z2

(e) No new point is obtained.
The next unexplored rect-
angle is chosen.

z1

z2

(f) Obtaining a new point
and updating rectangles.

z1

z2

(g) Obtaining a new point.
Two rectangles are ex-
plored simultaniously.

z1

z2

(h) No new point is obtained.
Two rectangles are ex-
plored simultaniously.

z1

z2

(i) Set of non-dominated
points YN .

Figure 3.4: A bi-objective example to illustrate the procedure of a search region splitting
method given in Algorithm 5. The obtained points of each iteration are de-
picted in red. Points that have been found in previous iterations are illustrated
in yellow. The corner points are depicted in green.

39

Chapter 3 Solution Methods

Section 2.3 these corner points are also referred to as local Nadir points or local upper

bounds. Additionally, the subdivison of boxes after finding a new non-dominated point

is more difficult. If a box is subdivided into smaller boxes it can occur that for corner

points u1, u2 it holds C(u1) ⊂ C(u2), making the search zone defined by u1 redundant.

To avoid that, it is proposed to only consider a minimal set of these local upper bounds.

Algorithms for the tri-objective and multi-objective case are, e.g., proposed in Dächert

and Klamroth (2014) respectively Klamroth et al. (2015). In Dächert et al. (2017), an

more efficient way to compute the corner points in higher dimensions is proposed, which

is based on a neighborhood structure on the local upper bounds.

Example 3.9. In Figure 3.4, an example of solving a bi-objective (MO01LP) with Al-

gorithm 5 is given. The set of feasible outcome vectors is given by the black points. In

Figure 3.4(a), the two lexicographically optimal points are obtained and the corresponding

rectangle is spanned. Since there are no non-dominated points outside of this rectangle,

these parts can be ignored. For visualization, the parts that can be neglected are colored in

gray. The rectangle is split in half by the dashed line and the bottom rectangle is explored

first by solving (LEX-Pεπ) with suitable π and ε. The corresponding corner point of the

rectangle to explore is depicted by a green square. In Figure 3.4(b), a new non-dominated

point is found (red). The rectangles are updated and the upper part of the initial rectangle

is explored in the next step. A new non-dominated point (red) is found in Figure 3.4(c).

After updating the rectangles, the first iteration is completed and a new rectangle hast to

be chosen. In Figure 3.4(c), the bottom rectangle is chosen and it is split in half. After-

wards, the bottom part of the split rectangle is explored with a corresponding corner point

(green). A new non-dominated point (red) is found and both parts of the considered splitted

rectangle can be updated. Afterwards, the remaining upper rectangle is explored, where the

corresponding corner point (green) can be found in Figure 3.4(d). Since the corner point is

the only feasible point in the considered rectangle, it is found in Figure 3.4(e). In general,

if solving (LEX-Pεπ) yields an outcome vector that is already known, the corresponding

rectangle can be dismissed, since there are no further non-dominated points inside of it.

After updating the rectangles, the second iteration is completed. The same procedure is re-

peated in Figure 3.4(f) and Figure 3.4(g). For the reason of space, the last two iterations

of the algorithm are executed simultaneously in Figure 3.4(g) – Figure 3.4(i), by following

the the same routine as in the previous iterations. Since there are no unexplored rectangles

left in Figure 3.4(i), the algorithm stops. The set of non-dominated points is visualized in

red and yellow. Thereby, the red points are the non-dominated points obtained by solving

(LEX-Pεπ) in the last iterations.

Note that Algorithm 5 can be improved by utilizing the integrality of (MO01LP). During

40

3.2 Decision Space Methods

the algorithm it is not necessary to explore the lower part of a splitted rectangle with a

width smaller or equal one. Analogously it is not necessary to explore the upper rectangle

with a height lower or equal one. Therefore, the algorithm can be improved by reducing

the number of solved integer scalarizations.

3.1.5 Two-phase Methods

The so-called two-phase method was first introduced by Ulungu and Teghem (1995) for

bi-objective optimization problems. As the name suggests, this method runs in two steps.

In the first phase, the supported non-dominated extreme points are computed. This can

be done by, e.g., using a dichotmic scheme solving weighted sum scalarizations, like it is

presented in Section 3.1.2. In the second phase, the remaining non-dominated points are

generated by searching in triangles (in the bi-objective case) defined by two neighboring

supported non-dominated extreme points. There are different approaches proposed in

literature to obtain the remaining non-dominated points in the second phase. Some of

them are problem specific and can thus not be applied to general integer problems (see,

e.g., Przybylski et al., 2008, 2010b; Tuyttens et al., 2000; Ulungu and Teghem, 1995).

Cĺımaco and Pascoal (2016) propose to use the weighted Tchebycheff scalarization, which

has been described in Section 3.1.3, in the second phase. Another way to generate the

remaining non-dominated points is to use decision space algorithms (see, e.g., Visée et

al., 1998). A detailed description of decision space algorithms, especially the branch and

bound method, is presented in Section 3.2.

For a long time, the two-phase method has been restricted to the bi-objective case until

Przybylski et al. (2010b) have proposed a two-phase method for assignment problems with

more than two objectives.

3.2 Decision Space Methods

Besides their numerous advantages, all objective space methods share a crucial short-

coming when considering MOILPs. Since the scalarized problems are solved by a single-

objective solver like CPLEX or Gurobi, most of the information, besides the optimal

solution, is lost. So, in each iteration an integer program is solved from scratch, which

might lead to a high number of redundant iterations, since information from previous

iterations (like bounds, cuts or valid inequalities) are often not transferred to the follow-

ing iterations. Even though in some objective space methods starting solutions can be

transferred from previous iterations, a large number of very similar problems has to be

solved. Furthermore, most of these methods require to solve infeasible scalarized integer

problems. This might cause high computation times, depending on the problem class.

41

Chapter 3 Solution Methods

To overcome this shortcomings, decision space methods have been increasingly investi-

gated in the recent years. In this section, we focus on multi-objective dynamic programming

and multi-objective branch and bound, the two most common decision space approaches.

3.2.1 Multi-objective Dynamic Programming

The dynamic programming approach is a technique to solve MO01LPs that satisfy the

Bellman’s Principle of Optimality (Bellman, 1957). This principle states that optimal

solutions of the underlying problem can be derived from optimal solutions of corresponding

subproblems. The most prominent problems satisfying Bellman’s principle are knapsack

and shortest path problems. Dynamic programming relies on a recursive approach. A

detailed introduction into single-objective dynamic programming is given in, for example,

Bellman (1957), Nemhauser (1966) or Dreyfus (1977).

To obtain the solution of an underlying problem, a dynamic programming algorithm

is divided into Γ different stages, with at most Ξ states each. We describe the recursive

strategy with an example of a knapsack problem. Given the following problem

zdp := max

{
n∑
i=1

cixi :
n∑
i=1

aixi ≤ b1, x ∈ {0, 1}n
}
, (3.3)

with c, a ∈ Zn= and b ∈ Z≥, we can define the number number of stages Γ and states Ξ.

Every stage corresponds to the decision of fixing a variable to 0 or 1, i.e., there are Γ = n

stages. The number of states corresponds to the number of feasible left-hand side values

of the constraint, i.e., Ξ = b1 + 1. For every stage γ = 1, . . . , n we define Nγ := {1, . . . , γ}.
Then, we can define the subproblem corresponding to state ξ = 0, . . . , b1 in stage γ by

zγ(ξ) := max

{ ∑
i∈Nγ

cixi :
∑
i∈Nγ

aixi ≤ ξ, x ∈ {0, 1}γ
}
. (3.4)

Obviously, zn(b1) = zdp holds. zn(b1) is calculated from zn−1 which is respectively calcu-

lated from zn−2 and so on. The recursion is initialized by

z1(ξ) :=

c1 if a1 ≤ ξ
0 otherwise.

Then, for γ = 2, . . . , n, the following recursion can be defined to determine zn(b1):

zγ(ξ) :=

zγ−1(ξ) if ak > ξ

max{zγ−1(ξ), cγ + zγ−1(ξ − aγ)} otherwise.

42

3.2 Decision Space Methods

The dynamic programming approach can also be extended to the multi-objective case

with p ≥ 2, i.e., to solve (MO01LP). Then, every state ξ in stage γ contains not just

one optimal solution but a set of non-dominated points of the respective subproblem. A

detailed description of general multi-objective dynamic programming and problem specific

application is given in, for example, Klötzler (1978) and Kostreva and Lancaster (2008).

Klamroth and Wiecek (2000) review multiple single-objective dynamic programming ap-

proaches available in the literature for knapsack problems. Further, they extend this ap-

proaches to the multi-objective case and propose a comprehensive dynamic programming

framework.

3.2.2 Multi-objective Branch and Bound

While dynamic programming can only be applied to problems that satisfy the Bellman’s

Principle of Optimality, multi-objective branch and bound is a generic approach which

can be applied to all MOILPs. The general idea is similar to the dynamic programming

approach since it is based on a decomposition of the underlying problem into smaller

subproblems.

Due to its universal usability the class of decision space methods mostly refers to multi-

objective branch and bound algorithms. We give a detailed description of the crucial

components and an extensive literature overview.

A multi-objective branch and bound algorithm operates in the same way as its well-

known single-objective version. Analogously to the single-objective case, multi-objective

branch and bound can also be extended to continuous optimization problems (see, e.g.,

Eichfelder et al., 2021). However, we restrict ourselves to the description of discrete branch

and bound algorithms.

Since the underlying (MO01LP), which needs to be solved, is too hard to solve directly,

it is divided into easier subproblems. Every created subproblem is associated with a node,

resulting in a tree data structure where the root node represents the original problem.

Thereby, a node i is the child node of node j if and only if the fesaible set of the subproblem

corresponding to node i is a subset of the feasible set of the (sub)problem corresponding

to node j. One of the first, if not the first, multi-objective branch and bound approaches

was developed by Klein and Hannan (1982). Although the authors optimize only one of

the p objectives and add constraints for the remaining p − 1 objectives, which resembles

objective space methods (cf. Section 3.1), the presented approach has an underlying tree

structure. Therefore, it belongs to the class of branch and bound approaches.

In each iteration, an active node is selected and its corresponding lower bound set is

computed. We start with the root node to which the original problem is associated. After

43

Chapter 3 Solution Methods

the computation of the lower bound set, we possibly update the incumbent list and its

corresponding upper bound set and check if it is possible to fathom the node. If the

node cannot be fathomed, the corresponding problem needs to be further divided into

new subproblems (branching). As a result a branch and bound method is made up of the

following components:

• Lower bound

• Upper bound

• Node selection

• Fathoming

• Branching

The basic structure of a multi-objective branch and bound algorithm is summarized in

Algorithm 6.

Algorithm 6: Multi-objective Branch and Bound Algorithm

Step 0 Let ν0 be the node corresponding to the initial problem. Initialize the list of
nodes N := {ν0} and the incumbent list XU := ∅.

Step 1 Select and remove a node ν from N .

Step 2 Compute the lower bound set for the (sub)problem corresponding to ν.

Step 3 If a new integer feasible solution has been found update XU and U if necessary.

Step 4 Check whether node ν can be fathomed. If ν can be fathomed and N 6= ∅ go to
Step 1.

Step 5 Create two disjoint subproblems. Add the corresponding newly created nodes to
N . If N 6= ∅ go to Step 1.

Since the choice of each component is crucial for the performance of this method, we

present some of the most frequently used approaches for each of the components.

Lower bound In a branch and bound approach, in each iteration a node ν is selected

from the list of nodes N . Then, the lower bound set is computed for the corresponding

problem. Since bounding is considerably weaker in the multi-objective case, the bound

computation approach is crucial for the performance of these methods. Hence, different

approaches for the computation of the lower bound have been proposed in the last decades.

44

3.2 Decision Space Methods

One of the first approaches was the so-called minimal completion (see, e.g., Kiziltan

and Yucaoğlu, 1983; Klein and Hannan, 1982). In this approach, each variable is fixed to

0 or 1 (for (MO01LP)) depending on the sign of the corresponding objective coefficient.

In the single-objective case this is done by fixing each free variable xi, i ∈ {1, . . . , n}
to 1 if the corresponding objective coefficient ci ≤ 0. Thus, xi is fixed to 0 if ci > 0.

In Klein and Hannan (1982), this is done in the same way since the authors consider

ε-constraint scalarizations of the subproblems. The approach of Kiziltan and Yucaoğlu

(1983) is a straightforward extension to the multi-objective case. Thereby, the variable

xi, i ∈ {1, . . . , n} is fixed to 1 if the sum of the corresponding objective coefficients is

smaller or equal 0, i.e.,
∑p

j=1 c
j
i ≤ 0. Although such a solution is integer it is not necessarily

feasible, since it could violate certain constraints. The lower bound set is given by the

corresponding point in the objective space.

Another single point bounding approach is to use the ideal point as the lower bound. In

contradiction to the minimal completion approach, the ideal point approach considers the

constraint structure of the underlying problem. This approach yields in general a better

lower bound and is the best possible single point lower bound (cf. Section 2.3). For its

computation we need to solve p single-objective integer problems. Since this might result

in an expensive computation time, it is often replaced by using the ideal point of the linear

relaxation (see, e.g., Mavrotas and Diakoulaki, 1998, 2005). The bound can be computed

by the costs of solving p single-objective linear continuous problems, which is in general

significantly faster (Vincent et al., 2013).

Since using a single point as the lower bound indicates rather weak bounds, there are

several approaches that use bound sets consisting of multiple points (cf. Section 2.3). Sourd

and Spanjaard (2008) propose to use the solution of a convex relaxation as lower bound set

for bi-objective problems. This convex relaxations based on the convex combination, i.e.,

the weighted sum, of objective functions can systematically be solved by using, e.g., a di-

chotomic scheme. A bi-objective dichotomic scheme is presented in Aneja and Nair (1979)

and is extended to the multi-objective case in Przybylski et al. (2010a) and Przybylski

et al. (2019). Although using the convex relaxation yields a strong lower bound set, there

are drawbacks. Its computation tends to be very costly since numerous single-objective

integer problems have to be solved. Sourd and Spanjaard (2008) propose an approach to

improve the computation time by warmstarting the lower bound computation with the

corresponding lower bound set of the parent node. However, Vincent et al. (2013) showed

for their tested instances that using that lower bound set produces the fewest number of

nodes but requires high computation times. Another crucial aspect is the way this lower

bound is computed. Since the lower bound set is obtained by computing supported non-

dominated points with an inner approximation, the complete convex relaxation has to be

45

Chapter 3 Solution Methods

solved to guarantee a valid lower bound. Thus, it is not possible to stop the computation

early and use the already computed bound.

Like in the single-objective case, the most common lower bound set is obtained by solving

the linear relaxation. This bound is in general weaker compared to the bound obtained

by convex relaxation. However, the computation takes less time since the single-objective

continuous problems can be solved with commercial solvers like, e.g., CPLEX or GLPK.

In Vincent et al. (2013), Belotti et al. (2013) and Adelgren and Gupte (2022), the linear

relaxation is used to compute the lower bound set for mixed integer linear programs and

for integer linear problems (MOILP) in, e.g., Parragh and Tricoire (2019) and Gadegaard

et al. (2019). In Parragh and Tricoire (2019), the computation of the lower bound set

is warmstarted by using information of the parent node. There are different ways to

solve the linear relaxation. In the bi-objective case, it can be solved with the parametric

simplex (see, e.g., Ehrgott, 2005). Besides using the already discussed dichotomic schemes

the lower bound set can also be obtained with Benson’s outer approximation algorithm

(Benson, 1998; Ehrgott et al., 2012). The algorithm is initialized with a (weak) lower

bound which is improved in each iteration.

Definition 3.10. Let K,P ⊂ Rp be polyhedrons. If KN ⊆ P, then P is called an outer

approximation of K.

Let Y LR be the image in the objective space corresponding to the feasible solutions of the

linear relaxation XLR of an underlying problem. Then, the algorithm iteratively generates

better outer approximations of the polyhedron PLR := Y LR
N +Rp=. In the basic approach,

it is started with a polyhedron P := ȳ + Rp= where ȳ is dominating the ideal point, i.e.,

ȳ ≤ z(x) for all x ∈ XLR. In each iteration, one of the facets of PLR is constructed

by a hyperplane. An outer approximation P has to be updated with a cut, defined by

a hyperplane, if one of the vertices v ∈ VP of the vertex-ray representation of P is not

included in PLR. Therefore, Hamel et al. (2013) proposed to solve the following single-

objective problem in order to check if v ∈ Rp is in PLR:

min θ

s.t. Ā x 5 b̄

C x 5 v + θ c

x = 0

θ ≥ 0,

(3.5)

where C ∈ Rp×n is the matrix of objective coefficients, c = (1, . . . , 1)> ∈ Rp and v ∈ Rp is

the vertex that is checked. If the objective value θ of (3.5) is equal to zero, then v ∈ PLR.

Otherwise, we need to compute a cutting plane to separate the polyhedron and vertex v.

46

3.2 Decision Space Methods

In Hamel et al. (2013), it is shown that the dual of (3.5) can be transformed to

max −b̄>ψ − v>ω
s.t. −Ā> ψ 5 C>ω

c>ω = 1

ψ, ω = 0.

(3.6)

Let ψ∗, ω∗ be the optimal solution of (3.6), then the hyperplane H(v) := {y ∈ Rp : ω>y =

b̄>ψ} separates v from PLR and defines a facet of PLR. Consequently, the outer approx-

imation can be updated, i.e., Pnew := P ∩ H+(v) with H+(v) := {y ∈ Rp : ω>y ≥ b̄>ψ}.
This procedure is repeated until all vertices of the outer approximation are contained in

PLR. The outer approximation approach ensures that the algorithm can be aborted at

any time since the produced lower bound set is valid all the time. In Forget et al. (2022b)

an approach for warm-starting this outer approximation algorithm is proposed.

Since the single point lower bounds are rather weak and the more complex lower bound

sets, obtained by solving a linear or convex relaxation, tend to have higher computational

times due to the sometimes large number of facets, using a single hyperplane as the lower

bound set has become more popular. Such a hyperplane can be obtained by solving one

weighted sum scalarization. This idea is proposed in Stidsen et al. (2014) for bi-objective

mixed integer programs and is also used in Stidsen and Andersen (2018). In Parragh and

Tricoire (2019) and Gadegaard et al. (2019), this approach is combined with the more

complex linear relaxation approach for bi-objective instances. De Santis et al. (2020)

propose a method for multi-objective (p ≥ 3) (mixed) integer programs.

There exist also other approaches to obtain lower bound sets. However, most of them

are very problem specific (see, e.g., Jozefowiez et al., 2012). The approaches presented

above are the most commonly used techniques to obtain a valid lower bound set and can

be applied to general (MOILP).

Upper bound In single-objective branch and bound algorithms, the upper bound is usu-

ally given by the best found solution so far. In the multi-objective case, the direct extension

of this idea is used. An upper bound set U is given by an incumbent list XU . During the

run of the algorithm all feasible solutions are stored in this incumbent list if their images

are not dominated by the image of another feasible solution found so far. In particular,

after computing the lower bound set, the solutions corresponding to its extreme points

are checked for integer feasibility. Such a feasible solution x̂ ∈ X is added to XU if there

is no other x̄ ∈ XU dominating it, i.e., z(x̄) ≤ z(x̂). If the new solution x̂ is added to XU

47

Chapter 3 Solution Methods

all solutions x ∈ XU that are dominated by x̂ are removed from the incumbent list.

XU :=

XU if ∃x ∈ XU : z(x) ≤ z(x̂)

{x̂} ∪ {x ∈ XU : z(x̂) � z(x)} otherwise.

The set U is given by U := z(XU) and satisfies the properties of an upper bound set,

formulated in Definition 2.10 .

Node selection In each iteration of a branch and bound method, the first task is to

select an unexplored node from the tree of subproblems. We call this selected node active.

Since the order of the considered nodes has a significant impact on the number of created

nodes and thus on the computational time, there have been several approaches proposed

in the literature. Thereby, we distinguish between static strategies and dynamic strategies.

While dynamic strategies consider information gained in previous iterations for the choice

of the active node, static strategies consider the nodes in a consistent order, which might

depend on the instance, e.g., on objective or constraint coefficients.

Most of the multi-objective branch and bound algorithms proposed in literature use

static strategies. The best-known static strategies are the depth-first strategy and the

breadth-first strategy. The greatest advantage of both strategies is also their greatest

shortcoming; they are problem independent. Hence, they can be applied in the same way as

in its single-objective counterpart. Nevertheless, they do not take the information obtained

in previous iterations into account, which might lead to rather bad node selections. The

depth-first strategy is used in the majority of branch and bound approaches (see, e.g.,

Kiziltan and Yucaoğlu, 1983; Ulungu and Teghem, 1997; Vincent et al., 2013; Visée et al.,

1998). In, for example, Parragh and Tricoire (2019) the breadth-first strategy is used

after showing that it is more convenient for some of their problem classes. In Vincent

et al. (2013), it is shown that the depth-first strategy performs significant better on their

randomly generated test instances. Hence, it seems problem dependent which strategy

performs better. So it might be promising to use node selection strategies that adapt to

the structure of the underlying problem.

Although it is common to use dynamic strategies in single-objective branch and bound

methods they are rarely applied in the multi-objective case. Nevertheless, several different

dynamic approaches have been proposed in the last decades. One of them is to rely on

the optimal objective value of a linear relaxation of a weighted sum scalarization. In the

first place, this relaxation is solved to generate the lower bound set of the corresponding

subproblem. This technique is used by, e.g., Stidsen et al. (2014), Stidsen and Andersen

(2018), Gadegaard et al. (2019). In Belotti et al. (2013), another dynamic strategy is

48

3.2 Decision Space Methods

proposed. For all solutions computed by the linear relaxation (lower bound computation)

the integer infeasibility is summed up for all (integer) variables. Then, the node with the

largest sum of integer infeasibility (distance to the nearest integer solution) is selected.

One of the most used dynamic node selection strategies in the single-objective case is to

choose the node with the largest gap between the lower and upper bound. But since

the bounds are given by sets with multiple points in the multi-objective case, there are

numerous options to measure the gap. In Jesus et al. (2021), the gap is computed with the

so-called ε-indicator. Adelgren and Gupte (2022) use a slightly adapted Hausdorff distance

as gap measure. Forget and Parragh (2023) compare this gap measurement and a best

bound value derived from solving a weighted sum problem. We propose new node selection

strategies in Chapter 4 and Chapter 5 for the bi-objective respectively multi-objective case

by computing the so-called approximated hypervolume gap.

Fathoming In a worst-case scenario, a branch and bound approach produces the total

enumeration of all feasible solutions. However, fathoming rules allow to discard parts of

the solution space that are not necessary to determine a minimal complete set. The three

different cases that might occur are: infeasibility, optimality or dominance.

Fathoming by infeasibility: This case is completely analogous to the single-objective

branch and bound. If a relaxation used to determine the lower bound set is infeasible,

then the corresponding subproblem is infeasible, as well. This holds true since the feasible

set of the subproblem is a subset of the feasible set of its relaxation. Consequently, it is

possible to fathom the corresponding node by infeasibility.

Fathoming by optimality: Like in the single-objective case a node can be fathomed by

optimality if the upper bound U is equal to the lower bound L. This implies that this

node is solved to optimality and that there is no need to divide it further. But since the

bound sets in general consists of multiple points this rarely happens. In the cases where

connected lower bound sets are used it is not possible to obtain equality and therefore no

nodes can be fathomed by optimality. The only possibility where this rule can be applied

is when the lower and upper bound set consist of the same single point, i.e., the ideal

point.

Fathoming by dominance: A node can be fathomed by dominance if all points of the

lower bound set are dominated by at least one point of the upper bound set, i.e., if the

objective vectors of all feasible solutions of this subproblem are dominated by objective

vectors of points of the incumbent list. This dominance check might lead to difficulties

since the bound sets could possibly have different properties. Although the upper bound

49

Chapter 3 Solution Methods

set, i.e., the image of the incumbent list, is always a finite set of points for (MO01LP),

the lower bound can be computed in different ways. Therefore, the lower bound set can

be composed of a finite set of points (e.g., the ideal point), a unique hyperplane (e.g.,

obtained by solving a single weighted sum scalarization) or a complex lower bound (e.g.,

obtained by solving the linear relaxation). Depending on the shape of the lower bound

there are different approaches to verify dominance. The dominance check for lower bound

sets consisting of a finite number of points is straightforward. Every point of the upper

bound set is tested against each point of the lower bound set resulting in a finite number of

pairwise comparisons. Since a lower bound set with a finite number of points is required

for this dominance test it has been used mostly in the early publications about multi-

objective branch and bound approaches (see, e.g., Kiziltan and Yucaoğlu, 1983; Klein and

Hannan, 1982; Mavrotas and Diakoulaki, 1998; Visée et al., 1998).

Since in the last decades an increasing number of branch and bound approaches with a

more complex lower bound set were proposed, Sourd and Spanjaard (2008) present a more

general dominance test. It is possible to fathom a node ν if the objective vectors of all

feasible points of the subproblem corresponding to node ν are dominated by an objective

vector of a point of the incumbent list. This can be done easily by checking if all local

upper bounds are located below the lower bound set. In Sourd and Spanjaard (2008) and

Gadegaard et al. (2019), it is shown that this dominance test is valid for lower bound sets

that are obtained by solving the linear relaxation or the convex relaxation.

Another dominance test for bi-objective (MOILP) is used in Parragh and Tricoire (2019).

This test was proposed in Vincent et al. (2013) for bi-objective mixed-integer linear pro-

grams. The idea is to compute the lower bound L and compare it to U . Then, the parts

of the lower bound that are dominated by U are discarded, while the remaining parts of

the lower bound set are kept as disjunct subproblems. If no parts have to be kept, the

corresponding node can be fathomed by dominance. This procedure is also called objective

branching, which is described in more detail in the following paragraph “branching”. Note

that this can lead to many subproblems which can be partially handled by the introduction

of so-called super local upper bounds (Forget et al., 2022a).

By considering lower bound sets which are composed by an unique hyperplane, it is also

possible to use the dominance test of Sourd and Spanjaard (2008). However, the dominance

test can be eased in practice like it is shown in Stidsen et al. (2014). The authors propose

to keep track of the largest weighted sum value of the solutions in the incumbent list and

compare it to the objective value of the weighted sum scalarization which is solved to

obtain the lower bound. So, the dominance test is simplified to a comparison of two single

values. Additionally, the objective space is partitioned in different slices that are handled

independently. This is also an objective branching method.

50

3.2 Decision Space Methods

An overview of existing rules for fathoming by dominance can be found in Belotti et al.

(2016).

Branching If a node cannot be fathomed its corresponding problem is further divided

into smaller (usually disjoint) subproblems. Since we are considering (MO01LP) the two

subproblems are created by fixing a free variable xi to 0 or to 1 respectively. Thus,

the constraint xi = 1 or xi = 0 is added to the corresponding subproblem. Thereby,

i ∈ I(ν) ⊆ {1, . . . , n}, where I(ν) is the set of free variables of the corresponding node

ν, i.e., I(ν) contains the indices of the variables which have not been fixed yet. This

procedure results in a binary tree structure and is called decision space branching.

Of course, the choice of the variable on which the branching is applied is crucial for the

performance of the branch and bound algorithm. Therefore, several branching rules have

been proposed. Therefore, we distinguish again between static and dynamic strategies. If

the order of the variables that are branched is known in advance, we call this strategy static.

In every iteration, the first variable of the list of free variables of the the corresponding

subproblem is selected. In Achterberg et al. (2005), a comparison of the performance of

different branching strategies is given for the single-objective case.

The most basic static strategy is to always choose the free variable with the small-

est/largest index (see, e.g., Mavrotas and Diakoulaki, 1998). This approach is problem in-

dependent and therefore, its impact is based on luck. For the single-objective case, Kellerer

et al. (2004) propose a static branching rule for knapsack problems by choosing the most

promising variable according to the profit to weight ratio value ci/ai, i ∈ {1, . . . , n}, where

c ∈ Rn is the objective vector and a ∈ Rn contains the constraint coefficients. Although

there is no direct extension to the multi-objective case, there are some approaches that

consider the conflicting objective function coefficients (see, e.g., Bazgan et al., 2009; Jorge,

2010; Ulungu and Teghem, 1997). In Chapter 6, we show how this technique can also be

adapted to other problem classes. Vincent et al. (2013) propose a similar static branch-

ing rule based on the objective functions for the bi-objective case where the variables are

ranked based on their objective coefficients which makes it applicable to every problem

class.

Dynamic branching strategies take information into account that has been gained in

previous steps of the branch and bound algorithm and rely the variable selection on it.

Although most of the published papers use static strategies, there are several dynamic

approaches. One of them is to count how often a variable is not integer in all solutions

corresponding to the extreme points of the computed lower bound set and then to choose

the variable, which is most often fractional. Another approach is to consider the L1-

distance to the nearest integer solution and choose thus the variable that is most fractional

51

Chapter 3 Solution Methods

(Belotti et al., 2013). Stidsen et al. (2014), Stidsen and Andersen (2018) and Gadegaard

et al. (2019) give a single-objective solver the choice of their next variable to branch on

similar to their node selection strategies. Note that this is can be done due to the way the

lower bound is computed.

Additional to the classical decision space branching a method to create subproblems

has arose in the recent years. Instead of dividing the decision space by variable fixing,

the objective space is partitioned by adding constraints on the objective functions. This

procedure is often referred to as objective branching. Stidsen et al. (2014) propose two

different techniques to subdivide the objective space. In the first one, the objective space

is partitioned into different slices in the bi-objective case. Each of this created slices is

evaluated independently, which also makes it possible to parallelize the underlying branch

and bound (Stidsen and Andersen, 2018). In a second approach proposed by Stidsen et al.

(2014), upper bounds on the objective functions are added to discard parts of the objective

space where the lower bound is already dominated by points of the upper bound set. In

practice, for each part of the lower bound that is not dominated by U a new subproblem is

created. This approach was improved by Gadegaard et al. (2019) and Parragh and Tricoire

(2019). Although this approaches show promising results for the bi-objective case, for a

long time there was no extension to the multi-objective case. Forget et al. (2022a) propose

an objective branching algorithm for three and more objectives.

In the following chapters, we present different improvements and augmentations to some

of the key components of multi-objective branch and bound. By referring to the basic

structure, given in Algorithm 6, we can specify at what stage of the algorithm the new

approaches are applied. Additionally, we define a basic multi-objective branch and bound

framework by describing for each key component which approach is used. The presented

augmentations are then applied to this basic framework, which is given in the following.

Basic Multi-objective Branch and Bound Framework

• Lower bound: linear relaxation

• Upper bound: incumbent list

• Node selection: depth-first strategy

• Branching rule: most often fractional

A survey on multi-objective branch and bound approaches is provided in Przybylski and

Gandibleux (2017), a survey for its single-objective counterpart can be found in Morrison

et al. (2016).

52

4 Augmenting Bi-objective Branch and

Bound by Scalarization-Based Information

Although in the single-objective case the branch and bound based algorithms are the gold

standard for integer programming problems, objective space methods, presented in Sec-

tion 3.1, are preferred in the multi-objective case. This is mainly due to the fact that

objective space methods benefit from optimized single-objective solvers to solve scalar-

ized subproblems, while branch and bound methods suffer from the considerably weaker

bounding in multiple objectives (cf. Section 2.3).

In this chapter, we focus on bi-objective integer optimization problems and present

bi-objective branch and bound algorithms that are augmented by scalarization-based in-

formation. We propose modifications which improve the computational efficiency of bi-

objective branch and bound algorithms in two critical aspects. One of the weaknesses

of multi-objective branch and bound as compared to its single-objective counterpart is

the bounding procedure. While any feasible solution x̄ ∈ X dominates w.r.t. one (linear)

objective function a half-space in decision space (i.e., {x ∈ Rn : c>x ≥ c>x̄}), the set

of feasible solutions which are dominated by a solution x̄ in p ≥ 2 objective functions

(C ∈ Rp×n) forms a cone {x ∈ Rn : C x = C x̄}. The cone of dominated solutions is

smaller the more the objective functions are in conflict, leading also to a larger number

of efficient solutions. This implies that a significant part of the branch and bound tree

has to be enumerated and only a small number of branches can be pruned by dominance.

Despite of this general problem in multi-objective optimization, this asks for good bound-

ing procedures to avoid the unnecessary evaluation of dominated branches. This however,

requires good solutions in the incumbent list in early stages of the algorithm as well as

tight lower bounds.

In order to achieve this, we suggest a new branching strategy and the hybridization of

branch and bound with objective space methods. We determine scalarized subproblems

adapted to the state of the branch and bound and solve these to integer optimality. During

the run of branch and bound algorithms, scalarized relaxations are frequently solved to

compute the lower bound set. Since our approach involves additionally the solution of

scalarizations to integer optimality we refer to them as IP scalarizations.

Contribution Most of this chapter is contained in Bauß and Stiglmayr (2024b).

53

Chapter 4 Augmenting Bi-objective Branch and Bound

Organization of the Chapter The remaining chapter is organized as follows. In Sec-

tion 4.1, we propose a new dynamic node selection strategy which follows a best-first

approach. In Section 4.2, several approaches to improve the bound sets with IP scalar-

izations are introduced. Furthermore, two different kinds of hybrid bi-objective branch

and bound algorithms are proposed. Numerical results of different combinations of the

presented approaches are presented in Section 4.3, which show their impact and effective-

ness.

4.1 A New Bi-objective Branching Strategy

The branching strategy comprises two subsequent decisions: the choice of the active node

and its branching into subproblems, i. e., the decision on which variable the subproblem

is branched. This second step is denoted as branching rule. We discuss these two steps

together since the order in which the nodes are considered has a significant impact on the

branched variable. Instead of the static depth- or breadth-first we use a dynamic node

selection strategy, while we rely on the most fractional rule as branching rule.

The basic idea of our strategy is quite simple and a natural extension of choosing the

largest gap in the single-objective case (see, for example, Dechter and Pearl, 1985). For

every created node we compute the approximate hypervolume gap between lower and upper

bound. We use the definition of hypervolume proposed in Zitzler and Thiele (1999). In

every iteration, we choose the node with the largest hypervolume gap as active node (cf.

Jesus et al., 2021). Note that when a node is created during the branching process, the

approximated hypervolume gap of the parent node is assigned to it. We distinguish two

variants of the hypervolume gap: the total hypervolume gap and the local hypervolume

gap. While the total hypervolume gap measures the volume of the search region, i. e., the

volume between lower and upper bound set, the local hypervolume gap approach considers

only the volume of the largest search zone, i. e., the gap between a local upper bound and

the lower bound set. For a more detailed definition of search regions and search zones we

again refer to Klamroth et al. (2015).

Figure 4.1 illustrates the two different approaches. Here, z1, . . . , z4 ∈ U are points

of the upper bound and lu1, . . . , lu3 ∈ K ⊆ D(U) are their corresponding local upper

bounds, where K is a subset of the local upper bounds containing just the points above

the lower bound of node ν̄. The blue line represents the lower bound. Figure 4.1(a)

shows how to measure the total hypervolume gap of a node ν̄, in the following denoted by

thg(ν̄). For this approach we consider the approximated search region of the corresponding

node. Since there is a natural order in the bi-objective case, it is possible to consider the

approximated search zone of the first local upper bound, i.e., the local upper bound with

54

4.1 A New Bi-objective Branching Strategy

z1

z2

lu1

lu2

lu3

z1

z2

z3

z4

(a)

z1

z2

lu1

lu2

lu3

z1

z2

z3

z4

A

(b)

z1

z2

B

lu1

lu2

lu3

z1

z2

z3

z4

(c)

z1

z2

C

lu1

lu2

lu3

z1

z2

z3

z4

(d)

Figure 4.1: Example of computation of the two different approximated hypervolume gap
approaches.

the smallest z1-value. Therefore, we define the two spanning points, which, together

with the corresponding local upper bound, define a triangle. The spanning points of a

local upper bound lu are defined by spi(lu) := {l ∈ L : l3−i = lu3−i}, i = 1, 2. So, the

approximate hypervolume gap of lu is given by

hg(lu) :=
1

2

∣∣sp1(lu)1 − lu1
∣∣ · ∣∣sp2(lu)2 − lu2

∣∣.
55

Chapter 4 Augmenting Bi-objective Branch and Bound

For the remaining local upper bounds we compute the hypervolume of slices as shown in

the illustration. The hypervolume of the slice of lui, i = 1, . . . , |K| is defined as

sl(lui) :=

∣∣zi2 − sp2(lui−1)2∣∣+
∣∣lui2 − sp2(lui)2∣∣

2
·
∣∣zi1 − lui1∣∣.

So, the total (approximated) hypervolume gap, which is assigned to node ν̄, is given by

thg(ν̄) := hg(lu1) + sl(lu2) + . . .+ sl(lu|K|).

The Figures 4.1(b), 4.1(c) and 4.1(d) show the computation of the local hypervolume

gap. The local hypervolume gap of a node ν̄ is considered as the largest approximated

hypervolume gap of a local upper bound lu ∈ K. Therefore, the the local hypervolume

gap, which is assigned to node ν̄, is defined by

lhg(ν̄) := max
i=1,...,|K|

hg(lui).

In the given example, B is the largest approximated hypervolume and therefore is assigned

to node ν̄.

In Algorithm 6, the node with the largest assigned hypervolume gap is selected in Step 1.

The value of the hypervolume gap is updated in Step 4 if the node cannot be fathomed.

Note that in our presented algorithms in Section 4.2 the local upper bound is initialized

with the point (M,M)> with a sufficient large value M � 0. Therefore, it is possible to

apply the new branching strategies immediately at the beginning of the algorithm. Obvi-

ously, this approximation may neglect significantly large parts of the search regions and

search zones. However, the idea of the approximated hypervolume gap eases computation

and saves time. The efficiency of these new dynamic branching strategies is shown in

Section 4.3.

4.2 Augmenting Bi-objective Branch and Bound by Solving IP

Scalarizations

In this section, we introduce a method to incorporate scalarizations into branch and bound.

We build a hybrid branch and bound algorithm combining the partial enumeration of deci-

sion space with objective space information by solving scalarizations to integer optimality.

An integer optimal solution x̄ of a scalarization can be used to update upper and lower

bound. Obviously, the solution x̄ can be added to the incumbent list and its corresponding

image point z(x̄) can be added to the upper bound set. Moreover, a scalarizing function

56

4.2 Augmenting Bi-objective Branch and Bound by Solving IP Scalarizations

and its optimal solution x̄ define a level set, which can be included in the lower bound set

for all descendant nodes. In order to utilize these improved lower bounds in all nodes we

solve the IP scalarizations in the root node.

4.2.1 Using Weighted Sum Scalarizations

During the run of the branch and bound algorithm, a strategy triggers the IP solution

of weighted sum scalarizations in the root node. Thus, we solve problem (WSλ) for for

adaptively chosen values of λ ∈ Λ. Although we solve the IP scalarization in the root node

the parameter λ is gained from the currently active node. Thereby, λ is determined by

the largest approximated local hypervolume gap in the active node. This gap is spanned

by two points in the incumbent list together with their local upper bound. Note that

these points spanning the largest gap are already determined if the local hypervolume gap

branching strategy is applied. The corresponding value of λ is determined by computing

the normal to the hyperplane that is defined by those two points. Once λ is obtained, we

can solve problem (WSλ) with a single-objective integer linear programming solver. Let

x̄λ be the optimal solution of the weighted sum scalarization with weighting vector λ, then

z(x̄λ) is a supported non-dominated point of (MO01LP) with p = 2. Thus, we can add

x̄λ to the incumbent list and its corresponding image to U (if it was not found in previous

iterations) and filter the resulting list for non-dominance.

Moreover, the solution of integer scalarizations can also be used to tighten the lower

bound set, since the level set {y ∈ R2 : λ>y = λ>z(x̄λ)} provides the valid inequality

λ>z(x) ≥ λ>z(x̄λ) for all x ∈ X.

Figure 4.2 illustrates the update of the lower and upper bound set. In Figure 4.2(a),

z1, . . . , z4 indicate points that are currently in the upper bound U and lu1, . . . , lu3 are the

corresponding local upper bounds. The point z(x̄λ) is obtained by solving a weighted sum

scalarization (WSλ) to integer optimality. Since x̄λ is not contained in the incumbent list

so far, we can update the upper bound as it is shown in Figure 4.2(b). The new upper

bound then reads as U := {z(x̄λ)} ∪ {z ∈ U : z(x̄λ) � z}. Moreover, the lower bound

set L can be updated by integrating the green hyperplane into the lower bound set, i. e.,

L := {z ∈ L + R2
= : λ>z ≥ λ>z(x̄λ)}N as it is shown in Figure 4.2(c) and 4.2(d). In

this situation, both —the lower and upper bound— are updated, which is not the case in

general.

The example illustrates the benefits of hybridizing multi-objective branch and bound

with IP scalarizations. Due to weak bounding, nodes may not be fathomed by dominance

even if they do not contain additional non-dominated points. The tighter upper bound

increases the probability of fathoming a node by dominance in later iterations of the algo-

57

Chapter 4 Augmenting Bi-objective Branch and Bound

z1

z2

lu1

lu2

lu3

z1

z2

z3

z4

z(x̄λ)

(a)

z1

z2

lu4

lu5

z1

z5

z4

(b)

z1

z2

lu4

lu5

z1

z5

z4

(c)

z1

z2

lu4

lu5

z1

z5

z4

(d)

Figure 4.2: A bi-objective example of updating the lower and upper bound with the usage
of the weighted sum scalarization.

rithm. Also, the lower bound might be improved. Since we are solving an IP scalarization

in the root node, the obtained optimal level set is a valid inequality for all subproblems.

The weighted sum scalarization is applied between Step 2 and Step 3 of Algorithm 6.

We combine our new branching strategy and the augmentation with IP scalarizations

to our first hybrid branch and bound approach.

58

4.2 Augmenting Bi-objective Branch and Bound by Solving IP Scalarizations

Hybrid Bi-objective Branch and Bound Algorithm using Weighted Sum Scalarization

• Lower bound: linear relaxation

• Upper bound: incumbent list

• Node selection: node with the largest total/local hypervolume gap

• Branching: most fractional rule

• Adaptively solve weighted sum scalarizations in the root node to integer optimality
to improve lower and upper bounds by objective space information

Instead of using a static depth-first strategy (as in the basic multi-objective branch

and bound framework presented in Section 3.2.2) we apply the dynamic strategy based

on the hypervolume gap (c.f. Section 4.1). Even though the extreme points of the lower

bound sets might be updated by the weighted sum scalarization, the branching variable

is selected based on the original lower bounds. This is due to the fact that the preimages

of such intersection points of IP scalarizations and the lower bound set are in general not

available. Note that the weighted sum IP scalarizations are included adaptively into the

branch and bound. The description of their algorithmic control, however, is postponed to

Section 4.2.3.

In order to conclude the description of the proposed hybrid bi-objective branch and

bound algorithm using weighted sum scalarizations, we want to briefly discuss its ad-

vantages and shortcomings. Firstly, it is easy to determine the scalarization parameter

λ and to integrate the hyperplane into the lower bound set. Its advantage, however, is

that the lower bound remains convex. Therefore, the check for fathoming by dominance

remains intuitive. Unfortunately, the weighted sum scalarization can only find supported

non-dominated points and the lower bound cannot be improved beyond the convex hull

of YN . This motivates us to consider the augmented weighted Tchebycheff scalarization,

a scalarization approach which can determine also unsupported non-dominated points.

4.2.2 Using Augmented Weighted Tchebycheff Scalarizations

To solve an augmented weighted Tchebycheff scalarization (AWTw
τ), presented in Sec-

tion 3.1, it is necessary to predefine a reference point s, weights w ∈ R2
> and an appro-

priate parameter τ . Since we are in the bi-objective case and an appropriate choice for

τ is difficult in general, we use the proposed adaptive method of Dächert et al. (2012) to

determine the parameters w1, w2 and τ .

As a reference point s we use the local ideal point of two adjacent non-dominated

points. Since the augmented weighted Tchebycheff scalarization can only determine non-

59

Chapter 4 Augmenting Bi-objective Branch and Bound

dominated points (and the corresponding efficient solutions) which are (strictly) dominated

by the reference point, we obtain a non-dominated point in this box.

z1

z2

z1

z2

z3

lu1

(a)

z1

z2

z1

z2

z3

lu1

s

(b)

z1

z2

z1

z2

z3

lu2

lu3

s

(c)

z1

z2

z1

z2

z3

lu2

lu3

(d)

Figure 4.3: A bi-objective example of updating the lower and upper bound with the usage
of the augmented weighted Tchebycheff scalarization.

The goal to improve the lower bound set beyond the convex hull of non-dominated

points is the motivation to solve augmented weighted Tchebycheff scalarizations to integer

optimality. Figure 4.3 shows an example how such an update of the bounds could look

like. Here, z1 and z2 are two known non-dominated points (obtained with the weighted

60

4.2 Augmenting Bi-objective Branch and Bound by Solving IP Scalarizations

sum IP scalarization). Point z3 is an unsupported non-dominated point that has not been

found yet in Figure 4.3(a). By using the local ideal point of z1 and z2 as the reference

point s, Figure 4.3(b) illustrates how the non-dominated point z3 is found by applying the

augmented weighted Tchebycheff scalarization. In Figure 4.3(c) and 4.3(d), the resulting

improvements of the lower and upper bound are shown. Obviously, the lower bound is

improved beyond the convex hull of YN .

The augmented weighted Tchebycheff scalarization is applied between Step 2 and Step

3 of Algorithm 6. With these modified components we define our second hybrid branch

and bound approach:

Hybrid Bi-objective Branch and Bound Algorithm using Augmented Weighted Tcheby-
cheff Scalarization

• Lower bound: linear relaxation

• Upper bound: incumbent list

• Node selection: node with the biggest total/local hypervolume gap

• Branching: most fractional rule

• Adaptively solve weighted sum and augmented weighted Tchebycheff scalarizations
in the root node to integer optimality to improve lower and upper bounds by objec-
tive space information

In addition to the weighted sum scalarization, we use the augmented weighted Tcheby-

cheff scalarization. Since two adjacent non-dominated points are required as input of

the augmented weighted Tchebycheff scalarization, we cannot rely on points in the upper

bound set, which are only non-dominated so far. In fact, we apply augmented weighted

Tchebycheff IP scalarizations only to boxes spanned by points obtained as optimal solu-

tions of the weighted sum scalarization. Thus, we do not rely on parameters from the

currently active node, but solve the augmented weighted Tchebycheff scalarization in the

largest area defined by two adjacent known non-dominated points.

When using augmented weighted Tchebycheff IP scalarizations, the lower bound can

become tighter than the convex hull of the set of non-dominated points, which reduces

the area where new non-dominated points can be found. Additionally, we can find unsup-

ported non-dominated points in early stages of the algorithm. This improves the upper

bound in the beginning resulting in a higher chance of fathoming a node by dominance.

However, this also implies that the lower bound gets non-convex in general, which makes

the fathoming tests significantly harder, and the lower bound improves only locally.

61

Chapter 4 Augmenting Bi-objective Branch and Bound

4.2.3 Algorithmic Control of IP Scalarizations

In the previous subsections, we did not specify when to solve IP scalarizations, which

implies a significant computational cost itself. However, this might be the most crucial

part within the presented methods. Obviously, we aim at gaining as much information

as possible by solving IP scalarizations. More objective space information will lead to

tighter bounds that reduce the number of created nodes, due to a higher probability of

fathoming by dominance and smaller search zones. Moreover, a reduced number of created

nodes will reduce the total computation time. At the same time, solving overly many IP

scalarizations will have a negative impact on the computation time. Furthermore, at a

certain point the lower and upper bound will not improve anymore when solving additional

IP scalarizations.

So, there exists a trade-off between the reduction of the number of created subproblems

and the decrease of the computation time. The difficulty is to find an appropriate condition

to trigger an IP scalarization. Obviously, solving IP scalarizations more frequently in the

beginning of the branch and bound algorithm is very promising. The earlier the lower and

upper bounds are improved the more nodes might be fathomed. Moreover, solving an IP

scalarization when the active node has weak bounds will lead to stronger improvements

than in later stages of the algorithm. This is complemented by our adaptive branching

strategy, which tends to select subproblems with weak lower bounds first.

The hybrid branch and bound algorithm using augmented weighted Tchebycheff scalar-

ization entails also another problem. The augmented weighted Tchebycheff scalarization

improves the lower bound just locally. If we use this scalarization at the beginning of

the algorithm instead of the weighted sum scalarization, this could lead to an increase

of created nodes. Once again, the intuitive idea is to start with the weighted sum IP

scalarization more frequently in the beginning of the algorithm. This ensures that the

lower bound improves globally at early stages of the branch and bound. The augmented

weighted Tchebycheff scalarization should be used in later stages of the algorithm to find

unsupported non-dominated points and to improve the lower bound locally. The efficiency

of this idea and other approaches will be shown in the next section where we present nu-

merical test results.

4.3 Numerical Tests

All algorithms were implemented in Julia 1.7.1 and the linear relaxations were solved with

Bensolve 2.1 (Löhne and Weißing, 2017). The numerical tests were executed on a single

core of a 3.20 GHz Intel R© CoreTM i7-8700 CPU processor in a computer with 32 GB

62

4.3 Numerical Tests

RAM, running under openSUSE linux Leap 15.3.

We present numerical results of our new approaches and compare them to the basic

branch and bound framework presented in Section 3.2.2 which we use as baseline im-

plementation. We consider three different types of problems: multidimensional knapsack

problems, assignment problems and discrete uncapacitated facility location problems. The

implementation of the proposed multi-objective branch and bound method and the consid-

ered benchmark instances are publicly available (Bauß and Stiglmayr, 2023b). Multiple

combinations of parameter settings are used to solve these test problems. Thereby, we

compare the average number of explored nodes, the average number of solved IPs and

the average computation time for 20 instances per problem size. The different evaluated

approaches are

• the generic bi-objective Branch and Bouch (BB),

• bi-objective branch and bound using the local (BS1) respectively global (BS2) hy-

pervolume gap as node selection criterion,

• hybrid branch and bound including weighted sum IP scalarizations (WS), and

• different combinations of the hybrid branch and bound algorithm using weighted sum

IP scalarization (M1.α.β) and hybrid branch and bound algorithm using weighted

sum and augmented weighted Tchebycheff IP scalarization (M2.α.β.γ).

The parameter α ∈ {1, 2, 3} controls how often IP scalarizations are applied. Since the

number of IP scalarizations is chosen depending on the problem class, the meaning of the

different values for α is described in detail in the corresponding subsections. In general,

however, the larger the parameter α is chosen, the fewer IP scalarizations are solved. With

β we distinguish between the local (β = 1) and the global (β = 2) hypervolume gap strat-

egy. In the hybrid branch and bound algorithm using augmented weighted Tchebycheff

scalarization, we also distinguish between integrating the objective space information of

the augmented weighted Tchebycheff into the lower bound (γ = 1) or not (γ = 2).

Note that the parameter values for each of the problem classes yield from preliminary

test runs on a different set of instances, where they shown to provide good results. Thus,

the parameter values are chosen problem dependent but are not optimized for the specific

test instances.

4.3.1 Bi-objective Multidimensional Knapsack Problems

We consider bi-objective, multidimensional knapsack problems with one, two and three

linear restrictions (i. e., m = 1, 2, 3). For every problem size we randomly generate 20

63

Chapter 4 Augmenting Bi-objective Branch and Bound

instances of the form

max
n∑
i=1

cji xi j = 1, 2

s.t.
n∑
i=1

wi xi ≤ b

n∑
i=1

w̄it xi ≤ dt t = 1, ...,m− 1

x ∈ {0, 1}n

with cji ∈ [50, 100], wi ∈ [5, 15], b = 5n, w̄it ∈ [5, 15] and dt =
⌊
r n
2

⌋
with r ∈ [5, 15]. De-

pending on the parameter α we specify when and how often IP scalarizations are solved. In

M1.1.β and WS, we apply the weighted sum scalarization every 10-th iteration. In M1.2.β,

we apply it every 10-th iteration but only within the first n2 iterations. In M1.3.β, we

apply the weighted sum scalarization every 10-th iteration within the first n2/3 iterations,

every n-th iteration within the next n2/3 iterations and every 2n-th iteration within the

third n2/3 iterations. In M2.1.β.γ, we apply the weighted sum scalarization every 10-th

iteration and every 50-th iteration the augmented weighted Tchebycheff scalarization is

used instead. In M2.2.β.γ, we operate like in M1.2.β but after the first n2 iterations we ap-

ply the augmented weighted Tchebycheff scalarization every 50-th iteration. In M2.3.β.γ,

we operate like in M1.3.β but after the first n2 iterations we apply the augmented weighted

Tchebycheff scalarization every 50-th iteration. If a scalarization cannot be applied or the

same IP scalarization has already been solved before, no IP scalarization is solved in that

iteration.

First of all, we notice that our branching strategies have a huge impact on the number

of explored nodes and the computation time in knapsack problems. We observe that in

general the local hypervolume gap strategy works better than the global hypervolume gap

strategy. With the local strategy we can reduce the number of explored nodes by up to

76% (Table 4.1d and Table 4.2d) and the computation time by up to 73% (Table 4.1d).

Although the local strategy works better the global hypervolume gap strategy has also

a significant impact. The number of explored nodes can be reduced by up to 58% (Ta-

ble 4.3b) and the computation time by up to 52% (Table 4.3b). The number of nodes and

the computation time is reduced in all our approaches and we can notice that combinations

with the local hypervolume gap strategy work better.

By limiting the number of solved weighted sum IPs (i.e., in M1.2.β, M1.3.β, M2.2.β.γ

and M2.3.β.γ) we notice two consequences. The number of nodes increases while the

number of solved IPs decreases. Although the number of nodes (and thus the number of

64

4.3 Numerical Tests

knapsack problem, m = 1, n = 25
version nodes time (s) IPs solved
BB 2701.6 0.8190 0.0 20
BS1 1732.4 0.5392 0.0 20
WS 1539.4 0.7240 10.5 20
M1.1.1 1444.0 0.6850 10.6 20
M1.2.1 1444.0 0.5998 7.2 20
M1.3.1 1452.7 0.5766 5.8 20
M2.1.1.1 1362.5 0.8095 14.1 20
M2.2.1.1 1405.5 0.7378 10.4 20
M2.3.1.1 1423.5 0.6863 7.8 20
M2.1.1.2 1357.0 0.7250 14.0 20
M2.2.1.2 1418.7 0.6586 9.7 20
M2.3.1.2 1439.0 0.6073 6.9 20
BS2 1719.3 0.5389 0.0 20
M1.1.2 1435.3 0.6847 10.1 20
M1.2.2 1438.9 0.6094 6.9 20
M1.3.2 1441.7 0.5788 5.9 20
M2.1.2.1 1363.5 0.7772 13.6 20
M2.2.2.1 1413.5 0.6772 9.0 20
M2.3.2.1 1420.4 0.6408 7.5 20
M2.1.2.2 1358.8 0.7478 14.4 20
M2.2.2.2 1415.3 0.6566 9.4 20
M2.3.2.2 1418.8 0.6281 8.1 20

(a) Knapsack problem with m = 1 constraint
and n = 25 variables.

knapsack problem, m = 1, n = 50
version nodes time (s) IPs solved
BB 27916.3 18.153 0.0 20
BS1 11788.1 8.339 0.0 20
WS 14270.7 10.507 33.8 20
M1.1.1 10789.7 8.452 26.4 20
M1.2.1 10793.5 8.188 21.2 20
M1.3.1 10795.7 8.116 18.0 20
M2.1.1.1 9888.5 10.873 48.7 20
M2.2.1.1 10140.3 9.437 32.7 20
M2.3.1.1 10521.0 8.774 25.7 20
M2.1.1.2 9840.1 8.396 45.6 20
M2.2.1.2 10130.6 8.422 32.4 20
M2.3.1.2 10401.8 8.288 26.3 20
BS2 16739.8 11.397 0.0 20
M1.1.2 11026.3 8.861 26.1 20
M1.2.2 11024.5 8.860 19.9 20
M1.3.2 11047.4 8.645 16.1 20
M2.1.2.1 10071.8 10.907 45.9 20
M2.2.2.1 10421.4 9.587 31.8 20
M2.3.2.1 10583.2 9.448 24.5 20
M2.1.2.2 9994.1 8.940 46.7 20
M2.2.2.2 10413.4 8.820 32.6 20
M2.3.2.2 10568.9 8.727 25.2 20

(b) Knapsack problem with m = 1 constraint
and n = 50 variables.

knapsack problem, m = 1, n = 80
version nodes time (s) IPs solved
BB 153938.9 186.330 0.0 20
BS1 36392.0 50.952 0.0 20
WS 58825.7 79.545 54.0 20
M1.1.1 34337.7 50.431 41.7 20
M1.2.1 34333.9 50.312 33.1 20
M1.3.1 34307.1 50.505 26.4 20
M2.1.1.1 31643.7 81.625 100.2 20
M2.2.1.1 32708.9 68.939 76.2 20
M2.3.1.1 32986.3 69.848 63.6 20
M2.1.1.2 31274.5 46.721 102.9 20
M2.2.1.2 32795.7 48.576 76.3 20
M2.3.1.2 33025.8 48.358 63.4 20
BS2 90976.0 116.847 0.0 20
M1.1.2 39745.1 59.321 45.3 20
M1.2.2 40083.2 59.350 31.2 20
M1.3.2 39918.1 58.999 24.5 20
M2.1.2.1 31905.8 80.505 99.7 20
M2.2.2.1 34496.9 79.444 84.0 20
M2.3.2.1 34571.7 72.955 65.2 20
M2.1.2.2 32074.9 48.510 104.9 20
M2.2.2.2 34169.8 51.464 87.2 20
M2.3.2.2 34943.3 51.887 63.1 20

(c) Knapsack problem with m = 1 constraint
and n = 80 variables.

knapsack problem, m = 1, n = 100
version nodes time (s) IPs solved
BB 297345.3 484.676 0.0 20
BS1 68920.5 128.967 0.0 20
WS 128080.8 224.587 67.0 20
M1.1.1 67369.1 128.665 54.1 20
M1.2.1 67370.1 128.924 40.0 20
M1.3.1 67353.3 128.993 32.9 20
M2.1.1.1 58214.2 198.683 156.9 20
M2.2.1.1 61533.1 179.516 123.0 20
M2.3.1.1 62127.3 177.621 104.6 20
M2.1.1.2 58151.3 112.575 158.1 20
M2.2.1.2 61490.6 118.600 120.1 20
M2.3.1.2 61762.6 118.306 108.7 20
BS2 187306.9 318.524 0.0 20
M1.1.2 73766.2 144.684 54.8 20
M1.2.2 74065.4 144.677 37.9 20
M1.3.2 73865.0 144.306 31.0 20
M2.1.2.1 59512.7 200.754 158.1 20
M2.2.2.1 64489.2 192.211 127.0 20
M2.3.2.1 64330.5 187.803 114.7 20
M2.1.2.2 60470.8 118.479 157.8 20
M2.2.2.2 64943.8 127.428 123.5 20
M2.3.2.2 64711.1 126.525 113.5 20

(d) Knapsack problem with m = 1 constraints
and n = 100 variables.

Table 4.1: Numerical results of the bi-objective, one-dimensional knapsack problems.

65

Chapter 4 Augmenting Bi-objective Branch and Bound

knapsack problem, m = 2, n = 25
version nodes time (s) IPs solved
BB 3932.6 1.3324 0.0 20
BS1 2382.0 0.8426 0.0 20
WS 2049.6 1.0296 10.9 20
M1.1.1 1758.3 0.8999 9.9 20
M1.2.1 1815.6 0.8356 7.0 20
M1.3.1 1851.7 0.8112 5.8 20
M2.1.1.1 1655.3 1.0261 13.3 20
M2.2.1.1 1791.1 0.8898 8.5 20
M2.3.1.1 1831.0 0.8565 7.0 20
M2.1.1.2 1652.7 0.9496 13.3 20
M2.2.1.2 1778.9 0.8690 8.5 20
M2.3.1.2 1830.5 0.8451 6.7 20
BS2 2333.8 0.8314 0.0 20
M1.1.2 1796.0 0.9235 9.6 20
M1.2.2 1821.0 0.8441 6.4 20
M1.3.2 1867.9 0.8253 5.1 20
M2.1.2.1 1668.4 1.0192 13.4 20
M2.2.2.1 1762.0 0.8991 9.3 20
M2.3.2.1 1825.1 0.8711 7.2 20
M2.1.2.2 1664.9 0.9723 13.5 20
M2.2.2.2 1768.1 0.8766 9.1 20
M2.3.2.2 1828.8 0.8598 7.1 20

(a) Knapsack problem with m = 2 constraint
and n = 25 variables.

knapsack problem, m = 2, n = 50
version nodes time (s) IPs solved
BB 27916.3 18.153 0.0 20
BS1 11788.1 8.339 0.0 20
WS 14270.7 10.507 33.8 20
M1.1.1 10789.7 8.452 26.4 20
M1.2.1 10793.5 8.188 21.2 20
M1.3.1 10795.7 8.116 18.0 20
M2.1.1.1 9888.5 10.873 48.7 20
M2.2.1.1 10140.3 9.437 32.7 20
M2.3.1.1 10521.0 8.774 25.7 20
M2.1.1.2 9840.1 8.396 45.6 20
M2.2.1.2 10130.6 8.422 32.4 20
M2.3.1.2 10401.8 8.288 26.3 20
BS2 16739.8 11.397 0.0 20
M1.1.2 11026.3 8.861 26.1 20
M1.2.2 11024.5 8.860 19.9 20
M1.3.2 11047.4 8.645 16.1 20
M2.1.2.1 10071.8 10.907 45.9 20
M2.2.2.1 10421.4 9.587 31.8 20
M2.3.2.1 10583.2 9.448 24.5 20
M2.1.2.2 9994.1 8.940 46.7 20
M2.2.2.2 10413.4 8.820 32.6 20
M2.3.2.2 10568.9 8.727 25.2 20

(b) Knapsack problem with m = 2 constraint
and n = 50 variables.

knapsack problem, m = 2, n = 80
version nodes time (s) IPs solved
BB 153938.9 186.330 0.0 20
BS1 36392.0 50.952 0.0 20
WS 58825.7 79.545 54.0 20
M1.1.1 34337.7 50.431 41.7 20
M1.2.1 34333.9 50.312 33.1 20
M1.3.1 34307.1 50.505 26.4 20
M2.1.1.1 31643.7 81.625 100.2 20
M2.2.1.1 32708.9 68.939 76.2 20
M2.3.1.1 32986.3 69.848 63.6 20
M2.1.1.2 31274.5 46.721 102.9 20
M2.2.1.2 32795.7 48.576 76.3 20
M2.3.1.2 33025.8 48.358 63.4 20
BS2 90976.0 116.847 0.0 20
M1.1.2 39745.1 59.321 45.3 20
M1.2.2 40083.2 59.350 31.2 20
M1.3.2 39918.1 58.999 24.5 20
M2.1.2.1 31905.8 80.505 99.7 20
M2.2.2.1 34496.9 79.444 84.0 20
M2.3.2.1 34571.7 72.955 65.2 20
M2.1.2.2 32074.9 48.510 104.9 20
M2.2.2.2 34169.8 51.464 87.2 20
M2.3.2.2 34943.3 51.887 63.1 20

(c) Knapsack problem with m = 2 constraint
and n = 80 variables.

knapsack problem, m = 2, n = 100
version nodes time (s) IPs solved
BB 428526.3 1074.21 0.0 20
BS1 100962.6 326.98 0.0 20
WS 166108.1 464.71 67.3 20
M1.1.1 98831.5 323.54 54.8 20
M1.2.1 99313.5 325.32 39.0 20
M1.3.1 98770.6 322.65 32.6 20
M2.1.1.1 69951.9 402.48 149.4 20
M2.2.1.1 73433.8 379.33 119.6 20
M2.3.1.1 73424.7 371.63 103.0 20
M2.1.1.2 70172.3 212.40 153.2 20
M2.2.1.2 72824.8 219.73 121.6 20
M2.3.1.2 73651.5 221.96 107.5 20
BS2 271110.8 720.46 0.0 20
M1.1.2 113605.9 381.46 57.5 20
M1.2.2 117188.3 394.57 36.5 20
M1.3.2 113665.3 378.63 29.9 20
M2.1.2.1 70603.0 404.28 150.8 20
M2.2.2.1 77836.0 400.18 121.4 20
M2.3.2.1 76818.2 399.89 110.8 20
M2.1.2.2 72316.9 219.91 148.4 20
M2.2.2.2 78135.2 240.57 121.3 20
M2.3.2.2 77073.0 235.49 112.5 20

(d) Knapsack problem with m = 2 constraints
and n = 100 variables.

Table 4.2: Numerical results of the bi-objective, two-dimensional knapsack problems.

66

4.3 Numerical Tests

knapsack problem, m = 3, n = 25
version nodes time (s) IPs solved
BB 5247.4 2.0211 0.0 20
BS1 2628.2 1.0888 0.0 20
WS 2388.6 1.3174 12.0 20
M1.1.1 1970.1 1.1032 9.6 20
M1.2.1 1975.2 1.0055 6.6 20
M1.3.1 1980.4 0.9824 5.4 20
M2.1.1.1 1913.3 1.3484 15.7 20
M2.2.1.1 1935.5 1.0950 8.7 20
M2.3.1.1 1941.4 1.0205 6.5 20
M2.1.1.2 1916.4 1.1913 14.3 20
M2.2.1.2 1936.5 1.0734 8.7 20
M2.3.1.2 1941.7 0.9990 6.6 20
BS2 2617.1 1.0768 0.0 20
M1.1.2 1982.8 1.1242 9.8 20
M1.2.2 1983.1 1.0376 6.8 20
M1.3.2 1975.0 1.0045 5.9 20
M2.1.2.1 1935.4 1.3192 14.4 20
M2.2.2.1 1943.2 1.1729 10.1 20
M2.3.2.1 1935.9 1.1067 8.3 20
M2.1.2.2 1938.9 1.2467 14.3 20
M2.2.2.2 1943.5 1.1135 9.7 20
M2.3.2.2 1934.8 1.0448 7.8 20

(a) Knapsack problem with m = 3 constraint
and n = 25 variables.

knapsack problem, m = 3, n = 50
version nodes time (s) IPs solved
BB 54430.4 51.5026 0.0 20
BS1 15260.1 17.9276 0.0 20
WS 18112.9 20.5208 36.2 20
M1.1.1 13522.4 16.8431 28.8 20
M1.2.1 13530.7 16.4735 19.0 20
M1.3.1 13576.5 16.4442 15.0 20
M2.1.1.1 12345.3 22.1289 51.2 20
M2.2.1.1 12973.5 19.7592 34.5 20
M2.3.1.1 13014.0 19.6348 28.8 20
M2.1.1.2 12241.1 16.1190 53.6 20
M2.2.1.2 12934.3 16.2933 35.2 20
M2.3.1.2 12908.3 16.1009 30.4 20
BS2 22597.3 24.5736 0.0 20
M1.1.2 14645.7 18.6425 29.6 20
M1.2.2 14573.2 18.0521 16.8 20
M1.3.2 14597.0 17.9793 14.5 20
M2.1.2.1 12617.9 22.3518 54.7 20
M2.2.2.1 13324.9 20.7655 33.4 20
M2.3.2.1 13252.3 20.4366 30.6 20
M2.1.2.2 12682.4 16.8670 56.7 20
M2.2.2.2 13180.2 16.7601 33.6 20
M2.3.2.2 13274.4 16.8497 32.2 20

(b) Knapsack problem with m = 3 constraint
and n = 50 variables.

knapsack problem, m = 3, n = 80
version nodes time (s) IPs solved
BB 263971.6 724.999 0.0 20
BS1 81609.9 287.899 0.0 20
WS 121360.8 376.247 56.4 20
M1.1.1 80406.5 282.897 47.4 20
M1.2.1 79971.5 279.885 32.2 20
M1.3.1 80089.6 279.686 26.6 20
M2.1.1.1 54187.1 340.389 115.7 20
M2.2.1.1 55915.9 328.411 85.5 20
M2.3.1.1 58486.8 330.347 66.9 20
M2.1.1.2 53396.0 164.755 116.0 20
M2.2.1.2 56572.6 174.131 86.3 20
M2.3.1.2 57452.9 176.657 67.9 20
BS2 140681.4 390.578 0.0 20
M1.1.2 92175.8 334.414 50.5 20
M1.2.2 96339.3 350.148 29.1 20
M1.3.2 96099.5 348.915 24.0 20
M2.1.2.1 54119.5 349.261 112.5 20
M2.2.2.1 59379.8 344.899 89.1 20
M2.3.2.1 60326.6 349.874 74.2 20
M2.1.2.2 54595.6 176.09 119.7 20
M2.2.2.2 62851.9 211.373 88.9 20
M2.3.2.2 61200.8 205.413 76.6 20

(c) Knapsack problem with m = 3 constraint
and n = 80 variables.

Table 4.3: Numerical results of the bi-objective, three-dimensional knapsack problems.

67

Chapter 4 Augmenting Bi-objective Branch and Bound

considered subproblems) is increasing, the total computation time decreases. This implies

that the reduced computation time to solve IP scalarizations compensates the increase

of nodes, which results in a trade-off between the number of explored nodes and the

computation time. Another interesting aspect can be observed in M2.α.β.1 and M2.α.β.2.

The computation time can be reduced if we do not integrate the augmented weighted

Tchebycheff objective level set into the lower bound. This can be explained by the fact

that the lower bound improvements of augmented weighted Tchebycheff are only local

and do not compensate the computation time needed to integrate the information. The

intuitive assumption that the number of explored nodes will then rise significantly is false.

So, both our branching strategies work better, if we do not consider the local updates of

the lower bound.

We can reach a reduction of the explored nodes by up to 83% (Table 4.2d) and a reduc-

tion of the computation time by up to 80% (Table 4.2d) in the best case. The strategies

M2.1.1.1 and M2.1.1.2 seem to work best for knapsack problems. In most cases these two

strategies have the largest impact on the number of explored nodes. Nevertheless, M2.1.1.2

achieves for all instance sizes the best computation times, since computation time is saved

by not integrating the augmented weighted Tchebycheff objective space information into

the lower bound. Note that with rising numbers of variables and constraints the hy-

bridization techniques have larger impact on the performance of the branch and bound

algorithm.

4.3.2 Bi-objective Assignment Problems

We consider bi-objective assignment problems having n = `2 variables,

max
∑̀
i=1

∑̀
t=1

cjit xit j = 1, 2

s.t.
∑̀
i=1

xit = 1 t = 1, ..., `

∑̀
t=1

xit = 1 i = 1, ..., `

x ∈ {0, 1}`×`

with the cost coefficients cjit ∈ [50, 100]. The algorithmic strategy for the solution of IP

scalarizations depending on the value of the parameter α is chosen similarly to the previous

case of knapsack problems. However, we adapt the boundaries due to the different number

of nodes to explore in assignment problems. In M1.1.β, weighted sum scalarizations are

solved every 10-th iteration to integer optimality. In M1.2.β, we apply the weighted sum

68

4.3 Numerical Tests

every 10-th iteration within the first n · ` iterations. In M1.3.β, we apply the weighted

sum every 10-th iteration within the first n · `/3 iterations, every `-th iteration in the next

n · `/3 iterations and every n-th iteration in the third n · `/3 iterations. For M.2.α.β.γ, we

use the same algorithmic strategy as in hybrid branch and bound for knapsack problems.

If a scalarization cannot be applied or an IP with identical objective function has been

solved prior, no IP is solved in that iteration.

Due to the total unimodularity of the assignment problem, the weighted sum scalar-

izations do in general not improve the lower bound sets of subproblems. However, in

situations where the weighted sum IP scalarization generates a supported efficient so-

lution, whose corresponding non-dominated point is not an extreme point of the lower

bound set, the local upper bounds move closer to the lower bound set. This reduces the

gap between upper and lower bound and may lead to a decrease of the explored subprob-

lems. Note that this update of the upper bound set may also have the contrary effect

(the number of considered subproblems increases), since it can change the order in which

the subproblems are considered. Although in general the weighted sum IP scalarizations

are necessary to determine non-dominated points based on which the augmented weighted

Tchebycheff scalarization can be applied, they are redundant for assignment problems due

to the total unimodularity of their constraint matrix.

Thus, all supported non-dominated extreme points (and their corresponding solutions)

are obtained as extreme points of the lower bound set by the linear relaxation of the

original problem which is solved in the root node of the branch and bound tree. However,

we do not adjust our branch and bound algorithm for totally unimodular problem classes

to maintain comparable numerical results and general applicability.

Our branching strategies have a significant impact on the number of explored nodes

and the computation time. Again, the local hypervolume gap strategy performs better

than the global hypervolume gap strategy. With the local strategy we can reduce the

number of explored nodes by up to 39% (Table 4.4c) and the computation time by up to

33% (Table 4.4c). Using the global hypervolume gap strategy we can reduce the number

of explored nodes by up to 12% (Table 4.4b) and the computation time by up to 12%

(Table 4.4b). We reach a reduction of the explored nodes by up to 46% (Table 4.4d) and

a reduction of the computation time by up to 42% (Table 4.4d), in the best case. Again,

the strategies M2.1.1.1 and M2.1.1.2 seem to work best for assignment problems in terms

of explored nodes. Nevertheless, M2.1.1.2 leads to a better computation time which can

be explained by the same argument as before. Furthermore, strategy BS1 works very well

and is able to compete with the previously mentioned strategies with respect to number

of nodes and computation time without solving a single IP scalarization.

69

Chapter 4 Augmenting Bi-objective Branch and Bound

assignment problem, n = 100
version nodes time (s) IPs solved
BB 3117.0 5.1507 0.0 20
BS1 2422.2 4.1182 0.0 20
WS 3117.0 5.2631 19.2 20
M1.1.1 2425.1 4.1937 14.0 20
M1.2.1 2425.1 4.1564 12.0 20
M1.3.1 2425.1 4.1996 8.4 20
M2.1.1.1 2418.2 4.4063 19.8 20
M2.2.1.1 2420.5 4.2726 14.4 20
M2.3.1.1 2419.5 4.2242 9.7 20
M2.1.1.2 2420.5 4.3474 19.9 20
M2.2.1.2 2420.5 4.2014 14.6 20
M2.3.1.2 2423.0 4.2055 9.8 20
BS2 2948.9 4.9644 0.0 20
M1.1.2 2519.8 4.4349 14.1 20
M1.2.2 2518.7 4.4211 11.1 20
M1.3.2 2516.2 4.4203 7.7 20
M2.1.2.1 2499.7 4.6173 20.4 20
M2.2.2.1 2518.7 4.4661 12.2 20
M2.3.2.1 2516.2 4.4214 8.4 20
M2.1.2.2 2498.1 4.5400 19.6 20
M2.2.2.2 2518.7 4.4451 12.3 20
M2.3.2.2 2516.2 4.3972 8.4 20

(a) Assignment problem with n = 100 vari-
ables.

assignment problem, n = 144
version nodes time (s) IPs solved
BB 9661.9 28.2667 0.0 20
BS1 6255.4 18.9362 0.0 20
WS 9610.8 28.1363 33.4 20
M1.1.1 6274.5 18.9323 22.3 20
M1.2.1 6274.5 18.9869 14.3 20
M1.3.1 6274.5 18.9318 9.9 20
M2.1.1.1 6210.9 20.0216 46.0 20
M2.2.1.1 6279.9 19.4670 23.6 20
M2.3.1.1 6271.2 19.1542 12.7 20
M2.1.1.2 6171.0 19.4994 43.6 20
M2.2.1.2 6261.5 19.2851 24.7 20
M2.3.1.2 6270.5 18.8676 12.5 20
BS2 8448.0 24.7742 0.0 20
M1.1.2 6781.8 20.6825 24.1 20
M1.2.2 6779.4 20.5940 13.3 20
M1.3.2 6734.2 20.4270 9.3 20
M2.1.2.1 6472.8 20.8732 44.1 20
M2.2.2.1 6724.2 20.6838 16.8 20
M2.3.2.1 6682.3 20.4212 12.6 20
M2.1.2.2 6500.3 20.2536 42.6 20
M2.2.2.2 6737.7 20.5214 16.8 20
M2.3.2.2 6689.0 20.3987 13.0 20

(b) Assignment problem with n = 144 vari-
ables.

assignment problem, n = 225
version nodes time (s) IPs solved
BB 26810.5 160.712 0.0 20
BS1 16142.2 107.909 0.0 20
WS 26810.5 163.666 46.9 20
M1.1.1 16150.0 107.842 32.8 20
M1.2.1 16151.2 109.687 19.7 20
M1.3.1 16164.7 109.073 12.1 20
M2.1.1.1 15424.1 111.181 87.4 20
M2.2.1.1 15964.3 110.004 43.1 20
M2.3.1.1 16112.2 110.372 19.5 20
M2.1.1.2 15554.1 106.748 89.5 20
M2.2.1.2 16008.4 107.641 41.4 20
M2.3.1.2 16106.5 109.735 19.3 20
BS2 24566.2 152.341 0.0 20
M1.1.2 17499.1 117.481 34.2 20
M1.2.2 17591.4 118.804 16.8 20
M1.3.2 17287.8 116.681 11.3 20
M2.1.2.1 16095.7 115.012 85.8 20
M2.2.2.1 17048.8 116.275 31.6 20
M2.3.2.1 17093.3 117.976 17.8 20
M2.1.2.2 16183.0 110.920 79.6 20
M2.2.2.2 17104.7 117.885 32.2 20
M2.3.2.2 17070.0 117.557 16.7 20

(c) Assignment problem with n = 225 vari-
ables.

assignment problem, n = 324
version nodes time (s) IPs solved
BB 76643.0 798.644 0.0 20
BS1 47311.6 527.471 0.0 20
WS 75179.2 786.036 61.8 20
M1.1.1 47327.0 530.055 47.8 20
M1.2.1 47332.8 523.562 21.9 20
M1.3.1 47375.6 524.610 15.3 20
M2.1.1.1 40978.0 477.927 157.5 20
M2.2.1.1 43760.5 497.812 82.0 20
M2.3.1.1 44343.9 499.678 52.4 20
M2.1.1.2 41294.4 457.120 159.1 20
M2.2.1.2 43864.6 487.051 81.3 20
M2.3.1.2 44499.7 489.744 52.1 20
BS2 69042.4 723.853 0.0 20
M1.1.2 49367.5 565.719 48.5 20
M1.2.2 49053.0 553.130 23.0 20
M1.3.2 49221.4 554.594 15.2 20
M2.1.2.1 41840.5 489.647 150.2 20
M2.2.2.1 45621.0 520.469 67.2 20
M2.3.2.1 46915.9 533.692 39.4 20
M2.1.2.2 42726.6 474.220 156.2 20
M2.2.2.2 45901.6 513.111 67.1 20
M2.3.2.2 46902.8 526.440 43.5 20

(d) Assignment problem with n = 324 vari-
ables.

Table 4.4: Numerical results of the bi-objective assignment problems.

70

4.3 Numerical Tests

4.3.3 Bi-objective Discrete Uncapacitated Facility Location Problems

We consider discrete uncapacitated facility location problems of the form

min
∑̀
i=1

q∑
t=1

cjit xit +

q∑
t=1

κjtζt j = 1, 2

s.t.

q∑
t=1

xit = 1 i = 1, ..., `

xit ≤ ζt i = 1, ..., `, t = 1, ..., q

x ∈ {0, 1}`×q

ζ ∈ {0, 1}q

where ` is the number of customers and q the number of facilities. We randomly generate

coordinates of ` customers and q facilities in a square with length 200. The costs of

the first objective function correspond to the L1-distances between the customers and

facilities, while the costs of the second objective function are randomly generated (i.e.,

c2it ∈ [1, 200]) and κjt ∈ [200, 400]. The number of variables is n = (` + 1) q. We restrict

the numerical tests to problems where the number of facilities is 20% of the number

of customers. Again, we need to specify when and how often integer scalarizations are

applied: We use the same methods as before but adapt the boundaries due to the different

number of nodes to explore in discrete facility location problems. In M1.1.β, we apply the

weighted sum IP scalarization every 10-th iteration. In M1.2.β, we apply the weighted sum

every 10-th iteration within the first n2/4 iterations. In M1.3.β, we apply the weighted

sum scalarization every 10-th iteration in the first n2/4 iterations, every n/2-th iteration in

the next n2/4 iterations and every n-th iteration in the third n2/4 iterations. In M.2.α.β.γ,

we operate analogous to the methods used for knapsack and assignment problems. If a

scalarization cannot be applied or an IP with identical objective function has been solved

prior, no IP is solved in that iteration.

Again, both new branching strategies have an impact on the number of explored nodes

and the computation time. The local strategy, once more, leads to better results, namely

a reduction of the explored nodes by up to 52% (Table 4.5d) and a reduction of the

computation time by up to 45% (Table 4.5d). With the global hypervolume gap strategy

we can reach a reduction of the explored nodes by up to 24% (Table 4.5d) and a reduction

of the computation time by up to 21% (Table 4.5d). In the best case, we can reach a

reduction of the explored nodes by up to 57% (Table 4.5d) and of the computation time

by up to 50% (Table 4.5d). Once again, M2.1.1.2 seems to be the best choice with respect

to the number of explored nodes and with a rising number of variables it is also the best

71

Chapter 4 Augmenting Bi-objective Branch and Bound

facility location problem, n = 48
version nodes time (s) IPs solved
BB 1431.1 1.0851 0.0 20
BS1 999.8 0.7640 0.0 20
WS 1431.1 1.4550 15.4 20
M1.1.1 1000.2 0.8354 11.0 20
M1.2.1 1000.2 0.8219 8.8 20
M1.3.1 1000.2 0.8243 7.0 20
M2.1.1.1 999.7 0.9361 13.2 20
M2.2.1.1 1000.2 0.8361 9.9 20
M2.3.1.1 1000.2 0.8079 7.9 20
M2.1.1.2 999.3 0.8536 12.8 20
M2.2.1.2 1000.2 0.8182 9.9 20
M2.3.1.2 1000.2 0.8037 7.9 20
BS2 1268.6 0.9714 0.0 20
M1.1.2 1041.8 0.8654 12.3 20
M1.2.2 1041.8 0.8527 9.4 20
M1.3.2 1041.8 0.8592 7.4 20
M2.1.2.1 1036.5 0.9722 15.7 20
M2.2.2.1 1041.8 0.8761 10.3 20
M2.3.2.1 1041.8 0.8735 7.6 20
M2.1.2.2 1034.6 0.9678 15.1 20
M2.2.2.2 1041.8 0.8843 10.4 20
M2.3.2.2 1041.8 0.8654 7.6 20

(a) Facility location problem with 15 cus-
tomers and 3 facilities

facility location problem, n = 84
version nodes time (s) IPs solved
BB 7949.1 12.6393 0.0 20
BS1 4626.7 7.9303 0.0 20
WS 7490.2 12.2058 35.0 20
M1.1.1 4627.2 8.1249 26.5 20
M1.2.1 4627.2 8.1149 18.2 20
M1.3.1 4626.4 8.0610 13.9 20
M2.1.1.1 4527.8 9.2394 49.0 20
M2.2.1.1 4601.6 8.4311 26.5 20
M2.3.1.1 4610.4 8.2569 18.9 20
M2.1.1.2 4526.1 8.4415 45.3 20
M2.2.1.2 4591.1 8.1289 24.3 20
M2.3.1.2 4605.2 8.1312 19.8 20
BS2 7084.4 11.5822 0.0 20
M1.1.2 4873.8 8.7719 26.4 20
M1.2.2 4874.8 8.7534 17.5 20
M1.3.2 4894.1 8.7031 12.6 20
M2.1.2.1 4673.6 9.5755 49.7 20
M2.2.2.1 4832.0 8.9275 23.6 20
M2.3.2.1 4812.8 8.8050 17.4 20
M2.1.2.2 4628.9 8.7019 46.2 20
M2.2.2.2 4825.9 8.7491 24.4 20
M2.3.2.2 4807.5 8.5984 17.5 20

(b) Facility location problem with 20 cus-
tomers and 4 facilities

facility location problem, n = 130
version nodes time (s) IPs solved
BB 17461.9 51.6307 0.0 20
BS1 10684.0 34.5157 0.0 20
WS 16795.9 50.9317 51.4 20
M1.1.1 10753.9 35.4356 37.1 20
M1.2.1 10753.9 35.2764 25.5 20
M1.3.1 10753.9 35.1007 19.2 20
M2.1.1.1 10104.4 38.3909 89.7 20
M2.2.1.1 10678.1 35.7434 39.4 20
M2.3.1.1 10722.3 35.6262 27.7 20
M2.1.1.2 10103.0 34.5003 86.0 20
M2.2.1.2 10691.2 35.3730 39.1 20
M2.3.1.2 10718.6 35.1690 27.5 20
BS2 15474.7 46.5130 0.0 20
M1.1.2 11548.8 38.4891 39.3 20
M1.2.2 11601.4 38.5848 24.6 20
M1.3.2 11535.1 38.2917 18.0 20
M2.1.2.1 10684.3 39.8639 81.5 20
M2.2.2.1 11381.8 39.1988 37.2 20
M2.3.2.1 11336.0 38.7754 28.5 20
M2.1.2.2 10695.5 36.9098 78.3 20
M2.2.2.2 11341.6 38.2646 39.6 20
M2.3.2.2 11352.1 38.0063 25.9 20

(c) Facility location problem with 25 cus-
tomers and 5 facilities

facility location problem, n = 186
version nodes time (s) IPs solved
BB 67369.3 373.238 0.0 20
BS1 31844.1 203.145 0.0 20
WS 62192.8 349.741 70.0 20
M1.1.1 32106.6 206.244 53.1 20
M1.2.1 32097.9 206.851 33.4 20
M1.3.1 32148.5 207.199 23.8 20
M2.1.1.1 28384.2 224.486 186.8 20
M2.2.1.1 31074.5 218.314 101.2 20
M2.3.1.1 32004.8 209.608 50.1 20
M2.1.1.2 28558.8 186.010 172.7 20
M2.2.1.2 30946.4 202.329 97.8 20
M2.3.1.2 32011.8 207.715 47.5 20
BS2 50759.0 292.344 0.0 20
M1.1.2 35150.1 230.687 55.5 20
M1.2.2 35789.8 233.967 30.8 20
M1.3.2 35255.0 233.163 22.0 20
M2.1.2.1 29704.3 230.016 172.7 20
M2.2.2.1 33959.7 236.351 81.8 20
M2.3.2.1 34228.0 233.553 50.2 20
M2.1.2.2 30412.6 202.719 167.4 20
M2.2.2.2 34511.8 229.970 70.0 20
M2.3.2.2 34405.0 229.021 47.1 20

(d) Facility location problem with 30 cus-
tomers and 6 facilities

Table 4.5: Numerical results of the bi-objective integer facility location problems

72

4.3 Numerical Tests

choice regarding the computation time. With a smaller number of variables, BS1 leads to

good results with respect to both aspects without solving a single IP.

4.3.4 Summary

In all of the three tested problem classes (knapsack, assignment, discrete uncapacitated

facility location) a significant reduction of the number of explored nodes and the computa-

tion time can be realized with all presented combinations of the hybrid branch and bound

approach. With increasing problem size (number of variables) the impact of the presented

augmentations increases. Furthermore, the approaches perform better on problems where

the gap between YN and the solution of the linear relaxation is larger compared to totally

unimodular problems. The reduction in terms of the number of branch and bound nodes

and runtime we achieve with the proposed methods as compared to plain branch and

bound is visualized in Figure 4.4 for varying instance sizes.

The local hypervolume gap strategy for the node selection outperforms the global hy-

pervolume gap strategy in our numerical tests. A reason for this is that in the global

hypervolume gap strategy many small search zones can add up to a large gap although

the lower bound might be quite close to the non-dominated points. The local hypervolume

gap strategy chooses the node with the largest search zone, which has the biggest potential

to reduce this gap. Moreover, the local hypervolume gap strategy aims at an uniform dis-

tribution of points in the incumbent list. In our numerical test, M2.1.1.2 turns out to be

the best choice in most cases with respect to the number of explored nodes and computa-

tion time. In this version, we use the local hypervolume gap strategy for the choice of the

active node, every 10-th iteration the weighted sum IP scalarization is applied and every

50-th iteration we apply the augmented weighted Tchebycheff scalarization instead. Fur-

thermore, the objective space information gained by the augmented weighted Tchebycheff

scalarization is not used to update the lower bound set, since its local improvements do not

compensate the increased computation time. Although we need to solve more IPs than in

most other approaches, the computation time is the lowest compared to the others. So, us-

ing the augmented weighted Tchebycheff scalarization in the beginning of the branch and

bound works best. Due to the likelihood of finding unsupported non-dominated points in

the early stages of the algorithm, the upper bound can be further improved. This results

in a higher probability of fathoming a node by dominance. Nevertheless, with version

BS1 we also achieve a remarkable reduction in terms of the number of explored nodes and

computation time by using the local hypervolume gap strategy for node selection.

Concluding, we propose two approaches to incorporate objective space information in

bi-objective branch bound algorithms. By using the local or global (approximated) hy-

73

Chapter 4 Augmenting Bi-objective Branch and Bound

pervolume gap as node selection criterion, we guide the search of the branch and bound

algorithm in promising directions. Additionally, we adaptively solve scalarizations to inte-

ger optimality to improve the lower and upper bound set. The numerical results show the

effectiveness of both approaches and, in particular, of their combination. The dynamic

branching rule based on the local (approximated) hypervolume gap has large impact on

the number of explored subproblems, is compuationally efficient and can be easily inte-

grated in other multi-objective branch and bound algorithms. While we evaluate in this

chapter the individual contributions of our augmentations on a generic bi-objective branch

and bound, we will continue to extend our ideas in the following chapter.

74

4.3 Numerical Tests

45 5
0

5
5

60 65 70 75 8
0

8
5

9
0

9
5

1
00

0.5

1

1.5

2

2.5

3

3.5

4

·105

variables

n
o
d
es

BB
BS1

M1.1.1
M2.1.1.2

(a) Number of nodes for 2-D knapsack prob-
lems.

45 5
0

55 60 65 70 75 8
0

85 90 95

1
00

100

200

300

400

500

600

700

800

900

1,000

variables

ti
m
e
(s
)

BB
BS1

M1.1.1
M2.1.1.2

(b) Runtime for 2-D knapsack problems.

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

1

2

3

4

5

6

7

·104

variables

n
o
d
es

BB
BS1

M1.1.1
M2.1.1.2

(c) Number of nodes for assignment problems.

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

100

200

300

400

500

600

700

variables

ti
m
e
(s
)

BB
BS1

M1.1.1
M2.1.1.2

(d) Runtime for assignment problems.

50 60 70 80 90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

·104

variables

n
o
d
es

BB
BS1

M1.1.1
M2.1.1.2

(e) Number of nodes for facility location prob-
lems.

50 60 70 80 90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

50

100

150

200

250

300

350

variables

ti
m
e
(s
)

BB
BS1

M1.1.1
M2.1.1.2

(f) Runtime for facility location problems.

Figure 4.4: A visualization of the node and runtime reduction of the considered instances.

75

5 Adaptive Improvements of Multi-objective

Branch and Bound

In the previous chapter, it is shown that the incorporation of objective space information

can significantly improve bi-objective branch and bound algorithms. This observation

motivates us to extend these approaches to the multi-objective case with p ≥ 3 objectives.

In higher dimension, however, the non-dominated set is in general not naturally ordered

anymore. Moreover, the geometrical structure in the objective space is more complex.

Thus, the use of objective space information has to be restructured for the multi-objective

case.

We adapt the most promising approaches of Chapter 4 in combination with further

modifications to improve the performance of branch and bound for MOILPs with p ≥ 3

objectives. More precisely, we show how objective space information can improve the

computational performance of multi-objective branch and bound. Thereby, we focus on

dynamic branching strategies and the usage of IP scalarizations.

As already mentioned, there are two main shortcomings of multi-objective branch and

bound algorithms. Firstly, the bounding is weaker, compared to its single-objective coun-

terpart and secondly, optimized single-objective solvers lead to the supremacy of objective

space methods. Therefore, we utilize those single-objective solvers to solve scalarized in-

teger programs and use the obtained information to possibly improve the lower and upper

bound set. Furthermore, we present dynamic node selection strategies. Although it is

common to use dynamic strategies in the single-objective case, they are rarely applied in

multi-objective branch and bound.

Contribution Most of this chapter has been already published in Bauß et al. (2023).

Organization of the Chapter The remaining of the chapter is organized as follows. In

Section 5.1, we propose two different new multi-objective node selection strategies to

consider the most promising subproblems first. In Section 5.2, methods to improve the

bound sets by using scalarization techniques to benefit from objective space information

are presented. Thereby, we propose, among other things, a warmstarting technique for the

bound sets and a partial enumeration approach. The numerical tests of these approaches

are presented in Section 5.3 to show their impact.

77

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

5.1 A New Multi-objective Node Selection Strategy

The order in which nodes in a branch and bound tree are explored has a significant impact

on the total number of created nodes and therefore on the computation time. Choosing

the right nodes and obtaining good feasible solutions in early stages of the algorithm can

lead to a decrease of nodes to explore, since they could dominate numerous other nodes,

which as a result can be fathomed. The arising difficulty is to use a good node selection

strategy that causes a desirable reduction of nodes. Therefore, instead of using a static

strategy, like, e.g., the depth-first strategy, we propose a new dynamic strategy.

The underlying principle of this strategy is a direct extension of a node selection strategy

that is frequently used in the single-objective case. There, in each iteration the node with

the largest gap between upper and lower bound is selected (see, e.g., Dechter and Pearl,

1985; Morrison et al., 2016). In the multi-objective case, there are numerous approaches

to measure the gap between the lower bound set and the set of local upper bounds and/or

the points in the incumbent list. See Chapter 6, for a comparison of different gap measures

and the according queuing of subproblems. We propose to use the so-called approximate

hypervolume gap (cf. Section 4.1) to select the active subproblem from the queue, where

we rely on the definition of the hypervolume by Zitzler and Thiele (1999). Like in its

single-objective counterpart, in every iteration the node with the largest gap is selected.

Thereby, we distinguish two different ways to approximate the hypervolume gap.

The first approach is called the local hypervolume gap (see Section 4.1 for the bi-

objective case). Instead of measuring the total gap between the lower and upper bound

set, we only consider the largest gap between a single local upper bound and the lower

bound set, i.e., we only consider the volume of the largest search zone. Again, we refer to

Klamroth et al. (2015) for detailed analysis of search zones, search regions, corresponding

local upper bounds and their defining non-dominated points.

Figures 5.1(a) and 5.1(b) illustrate the local hypervolume gap approach for a bi-objective

example. The points z1, . . . , z4 ∈ U are points of the upper bound set U . Furthermore,

the points lu1, . . . , lu3 are their corresponding local upper bounds. Note that we only need

to consider the local upper bounds that are located above the lower bound set L of the

active node ν. The lower bound set L is illustrated by the blue line and is obtained by

solving the linear relaxation of the corresponding subproblem in node ν. For every local

upper bound the approximated volume of the corresponding search zone is computed as

the hypervolume of the simplex spanned by a local upper bound and p spanning points on

the lower bound set. Those spanning points w.r.t. a local upper bound lu are defined as its

axis-parallel projections on the lower bound set, i.e., spj(lu) := {l ∈ L : lp+1−j = lup+1−j}
for j = 1, . . . , p. Thus, the hypervolume gap between a local upper bound lu and the lower

78

5.1 A New Multi-objective Node Selection Strategy

z1

z2

z1

z2

z3

z4

lu1

lu2

lu3

(a)

z1

z2

z1

z2

z3

z4

lu1

lu2

lu3

(b)

z1

z2

z1

z2

z3

z4

lu1

lu2

lu3

(c)

z1

z2

z1

z2

z3

z4

lu1

lu2

lu3

(d)

Figure 5.1: A bi-objective example of computation of the two different approximated hy-
pervolume gap approaches. In (a) and (b), the the approximated hypervolume
gap (gray) is visualized for the local upper bounds lu1 and lu2. In (c) and
(d), the hypervolume of the box (gray) defined by the local ideal point and the
local upper bound lu1 respectively lu2 is shown.

bound set L is given by

hg(lu) :=
|det(G)|

p!
,

79

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

with G := (sp1 − lu, . . . , spp − lu) ∈ Rp×p.
Let K ⊂ D(U) be the subset of all local upper bounds which are located above the

lower bound set of node node ν. Then, the local hypervolume gap of node ν is defined

as the largest hypervolume spanned by a local upper bound in K and the corresponding

spanning points, i.e.,

lhg(ν) := max
i=1,...|K|

hg(lui).

Obviously, lhg(ν) is in general only a rough approximation since the real hypervolume of

the search zone is underestimated by neglecting possibly large parts. Even though this

approximation simplifies the computation significantly compared to the computation of the

real hypervolume of a search zone, it gets too time consuming with an increasing number

of objective functions. Both, the number of local upper bounds and the number of facets

of the lower bound set, increase substantially with the number of objectives. Since the

projection of the local upper bounds on the facets of the lower bound set to determine the

spanning points requires a significant amount of the total computation time, we simplify

the computation at this point further. Note that this is the direct extension of the bi-

objective local hypervolume gap presented in Section 4.1.

The second approach to measure the gap between the lower bound L and the upper

bound U is to compute the hypervolume of a search zone box that is defined by a local

upper bound lu and the local ideal point of the lower bound set lI , defined by lIj :=

minl∈L lj , j ∈ {1, . . . , p}. Therefore, the hypervolume of the box defined by local upper

bound lu is given by

hb(lu) :=

p∏
j=1

(luj − lIj).

Again, this is computed for every local upper bound located above the lower bound and

afterwards the volume of the largest box is assigned to the corresponding node. Conse-

quently, the gap between the lower bound and upper bound in node ν, using the hyper-

volume of a search zone approach, is given by

hsz(ν) := max
i=1,...,|K|

hb(lui).

When new nodes are created by branching, the approximated hypervolume gap of the

parent node is assigned to the child nodes to avoid the computation of the lower bound set

before the child node becomes active. Note that the set of local upper bounds is initialized

with the point (M, . . . ,M)> ∈ Rp with a sufficiently large value M � 0. This allows us

to immediately apply this node selection strategy at the beginning of our algorithm.

In Figures 5.1(c) and 5.1(d), the hypervolume of a search zone box approach is illus-

80

5.2 Solving IP Scalarizations to Improve the Upper and Lower Bound Set

trated. The gray area indicates the hypervolume of the box spanned by a local upper

bound and the local ideal point of the lower bound, which is illustrated by the green

triangle.

In Algorithm 6, the node with the largest assigned hypervolume gap is selected in Step 1.

The value of the hypervolume gap is updated in Step 4 if the node cannot be fathomed.

5.2 Solving IP Scalarizations to Improve the Upper and Lower

Bound Set

In this section, we propose ways to integrate objective space methods into a multi-objective

branch and bound framework. By solving suitable scalarizations to integer optimality, we

obtain non-dominated points and thus objective space information that can be used to

improve the lower as well as the upper bound set. Let x̄ be the integer optimal solution ob-

tained by solving a scalarization of the underlying problem. Since z(x̄) is non-dominated,

x̄ can be added to the incumbent list (if not contained already) and z(x̄) can be added to

U , which improves the upper bound set. Additionally, depending on the used scalarization

technique, the lower bound set might be improved. An improved lower bound reduces the

area where possibly new non-dominated points could be found and an improved upper

bound set leads to a higher fathoming rate.

5.2.1 Warmstarting the Bound Sets

A branch and bound algorithm benefits from good bound sets and the earlier good bounds

are obtained the more impact it has on the performance. Therefore, we present a warm-

starting approach for the bound sets. Recall, every optimal solution of (WSλ) is at least

weakly efficient for λ ∈ Λ0 but efficient for λ ∈ Λ, regarding a (MO01LP). This scalariza-

tion can only determine supported non-dominated points (cf. Section 3.1).

We solve a limited number of weighted sum scalarizations with different weights λ ∈ Λ

in a preprocessing step of the branch and bound algorithm. This produces a warmstart of

the lower and upper bound set. For the bi-objective case, this idea is proposed in Bökler

et al. (2023). The authors use an outer approximation algorithm to generate conv(Y)N ,

that can be used as an initial lower bound set in a multi-objective branch and bound

algorithm. However, this approach is way more difficult for p ≥ 3. It has to deal with

similar difficulties as the dichotomic search scheme approach (see Aneja and Nair, 1979;

Przybylski et al., 2010a, 2019). Hence, we use a predefined weight set Λ̄ to overcome these

problems. For every λ ∈ Λ̄, a weighted sum scalarization is solved in the root node of the

branch and bound tree.

81

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

For each λ ∈ Λ the scalarized problem (WSλ) can be solved with a single-objective

integer linear programming solver. Let x̄ be the optimal solution of (WSλ), then z(x̄) is a

(supported) non-dominated point. Hence, we can add this solution to the incumbent list,

if it is not contained already, and update the upper bound set and the list of corresponding

local upper bounds. Additionally, we obtain further objective space information, that can

possibly improve the lower bound set of all nodes that are explored during the algorithm.

The optimal solution yields a level set {y ∈ Rp : λ>y = λ>z(x̄)}, which implies the valid

inequality λ>z(x) ≥ λ>z(x̄) for all x ∈ X. Since this inequality is obtained by solving

a scalarization of the root node problem, it holds for every subproblem. In Chapter 4,

the level sets were integrated in an already computed lower bound set by computing

the potential cuts of a lower bound set L and the level set. However, if more than two

objectives are considered this would require a lot more computational time, because of the

large amount of geometrical operations. Therefore, we avoid this problem by adding the

corresponding inequality to the integer programming formulation of every subproblem.

During the algorithm the lower bounds are improving which might cause redundancy with

respect to these inequalities. Hence, in each iteration we check for redundancy in the

active node and delete redundant inequalities.

In Algorithm 6, the warmstart of the lower bound set is integrated in Step 0.

5.2.2 Improving the Upper Bound Set by ε-constraint Scalarizations

Since the weighted sum approach, which is applied as a warmstarting technique for the

lower bound set and the incument list, only generates supported non-dominated points, it

might be useful to also use other scalarization techniques, that can compute unsupported

non-dominated points. In Section 4.2, the augmented weighted Tchebycheff scalarization

is used to improve the upper bound by obtaining possibly unsupported non-dominated

points. Additionally, the corresponding level set is used to improve the lower bound set.

Unfortunately, the updated lower bound set had nearly no impact on the performance,

since the lower bound improves just locally and is computationally hard to handle due to

its (in general) non-convex structure.

Since we are not updating the lower bound set in this step and only aim at computing

unsupported non-dominated points we rely on the ε-constraint scalarization, which we

introduced in Section 3.1.1. Recall, every optimal solution of (εk-C) is weakly efficient. If

additionally the optimal solution of (εk-C) is unique, it is an efficient solution of the multi-

objective problem. Furthermore, all efficient solutions are optimal solutions of (εk-C) for

some vector ε ∈ Rp, i.e., all efficient solutions can be determined using the ε-constraint

scalarization (cf. Section 3.1.1). We apply the ε-constraint method proposed in Kirlik

82

5.2 Solving IP Scalarizations to Improve the Upper and Lower Bound Set

and Sayın (2014) that guarantees the efficiency of the generated solutions by using the

lexicographic optimization approach.

We adaptively solve ε-constraint scalarizations of the root node problem to integer

optimality to obtain possibly unsupported non-dominated points. The used ε is obtained

by the local upper bound lu, which spans the local hypervolume gap or the hypervolume

of a search zone box of the corresponding node. Since we consider integer programs with

integer coefficients, ε can be chosen as ε := (lu1 − 1, . . . , lup − 1)>. In the best case, the

obtained solution maps to a non-dominated point which has not been found before and

can thus be added to the incumbent list. However, there is no guarantee that this point

is an unsupported non-dominated point. It is not even guaranteed that the scalarized

problem is feasible. Nevertheless, if a new non-dominated point is found the upper bound

set is improved, which improves the fathoming rate.

The ε-constraint scalarization is applied between Step 2 and Step 3 of Algorithm 6.

5.2.3 Using Simple Lower Bound Sets

The methods proposed so far considered only scalarizations of the root node problem, such

that the obtained objective space information can be integrated into every node and the

corresponding subproblem, respectively. However, it is also possible to use scalarizations

in subproblems of the branch and bound. Then, the obtained information does not hold

for every node, but for all child nodes in the corresponding branch. Obtained solutions

are efficient for the subproblems but in general not efficient for the underlying problem,

since they might be dominated by solutions in other branches.

So, solving IP scalarizations in subproblems can be very time consuming and the ob-

tained information might even be useless. However, solving a weighted sum scalarization

to integer optimality compensates in some situations the additional costs. Instead of com-

puting the complete lower bound set which might have many extreme supported points

and facets, we adaptively solve a single weighted sum scalarization to integer optimality.

As already discussed, the level set of a scalarization in an optimal solution is a valid lower

bound on the objective values of the feasible solutions of the subproblem. So, we save the

time of computing the lower bound and use only the level set, obtained by solving the

weighted sum scalarization, as the lower bound set. Of course, this bound is weaker in

most of the covered region compared to the lower bound obtained by solving the linear

relaxation. This can be partially compensated by adding the so-called extreme facets of

the parent node to the lower bound set. By extreme facets we denote the facets of a lower

bound set that are parallel to the axes. Thus, the simple lower bound set consists of p+ 1

facets. Then, the obtained inequality holds for every child node of this branch and can

83

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

therefore be added as a constraint to the corresponding subproblems. Note that the test

for redundancy of those inequalities is done in the same way as described in Section 5.2.1.

In the best case, the obtained solution is efficient and has not been found before. Then,

it can be added to the incumbent list and the upper bound is improved.

A crucial component in this approach is the choice of the weight λ ∈ Λ, which should be

selected depending on the properties of the corresponding active node. Therefore, we take

into consideration all local upper bounds that were still located above the lower bound set

in the parent node. Then, for each objective k, we choose among the considered local upper

bounds the one with minimal objective value luk. Those p points define a hyperplane H.

The dichotomic search approach uses the normal vector µ ∈ Rp of H as the weight λ.

Unfortunately, for p ≥ 3 this normal vector µ may have negative components and cannot

be used as weighting vector. Nevertheless, if µ is componentwise non-negative, we use it

as weighting vector λ = µ. Otherwise, we use the weight λ = (1/p, . . . , 1/p)> ∈ Rp.

5.2.4 Algorithmic Control of the Presented Approaches

In the previous sections, improved components of multi-objective branch and bound algo-

rithms are proposed. However, their algorithmic control is not covered yet, in particular,

it is not specified when and how often IP scalarizations should be solved. Since the costs

of solving a scalarization to integer optimality are relatively high, this seems to be an im-

portant decision. In the first place, we want to obtain as much objective space information

as possible. As a result, the lower and upper bound will be improved significantly. These

improved bounds increase the probability of fathoming by dominance and reduce the size

of the search region. Both aspects will reduce the number of explored nodes, which will

in turn reduce the total computational time. However, solving an excessive number of

IP scalarizations will increase the computation time. In addition, if IP scalarizations are

applied too often, there is an increasing chance that solved scalarizations do not provide

new objective space information and are therefore redundant.

Obviously, there exists a trade-off between the decrease of the created nodes and the

decrease of the total computation time. It is therefore necessary to find proper conditions,

when to solve scalarizations to integer optimality. It is promising to already have good

bounds in the early stages of the algorithm. This would lead to an improved fathoming rate

from the beginning. Thus, we use a warmstarting approach, which solves IP scalarizations

in a preprocessing step. Like mentioned in Section 5.2.1, we use a predefined weight

set for that. Preliminary numerical tests have shown, that already a small number of

scalarizations solved to integer optimality have a high impact on the performance. We

therefore use a predefined weight set Λ̄ with |Λ̄| = p + 1. As weight vectors λ ∈ Λ̄ we

84

5.3 Numerical Tests

use the standard unit vectors and additionally a weight vector with equal weights, i.e.,

λ = (1/p, . . . , 1/p)> ∈ Rp. Note that we add a small augmentation term to the standard

unit vectors to guarantee efficiency.

Similar observations can be made, when the ε-constraint method is used to improve

the upper bound. Preliminary tests have shown, that it is more promising to solve these

IP scalarizations in the early stages of the algorithm. This increases chances of obtaining

unsupported non-dominated points early, which improves the upper bound set. Obviously,

when the ε-constraint scalarization is applied too often, we probably waste a lot of time

by solving multiple problems to integer optimality without any benefit.

By using the simple lower bound approach instead of computing the complete lower

bound set, some information is lost. The simple lower bound is in general weaker and

there is no information about extreme points of the lower bound set. In the numerical

tests, presented in Section 5.3, we will use the most often fractional rule (cf. Section 3.2.2).

This rule cannot be applied when the simple lower bound is used, as it is based on a single

integer solution and thus there is no fractional variable. However, in this case we use the

sum of ratios branching rule that is presented in Bazgan et al. (2009) for multi-objective

knapsack problems. A detailed description of this branching rule is given in Section 6.1.

This can be considered as a direct extension of the basic single-objective branching rule

for knapsack problems (cf. Kellerer et al., 2004). Note that this rule can also be applied to

other problem classes like facility location problems or generalized assignment problems

by interpreting the facility opening costs respectively the workload as weight.

We decided to apply the simple lower bound approach at certain levels of the branch

and bound tree. This means, that we compute the simple lower bound instead of the

complete bound set, when there is a certain number of fixed variables in the active node.

Since there is in general a high number of nodes at deeper levels in the tree, a high amount

of problems is solved to integer feasibility, resulting in possibly rising computation times.

The efficiency and impact of the presented approaches are presented in the next section.

5.3 Numerical Tests

All presented algorithms were implemented in Julia 1.9.0 and the linear relaxations (for

the lower bound set) were solved with Bensolve 2.1 (Löhne and Weißing, 2017). The

scalarizations were solved to integer optimality with CPLEX 20.1. The numerical test

runs were executed on a single core of a 3.20 GHz Intel R© CoreTM i7-8700 CPU with 32 GB

RAM. Note that the implementation of the proposed algorithms is publicly available (Bauß

and Stiglmayr, 2023a).

We present different combinations of our presented approaches and compare their per-

85

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

formance to the basic multi-objective branch and bound algorithm, which serves a baseline

implementation. The results are evaluated regarding the average number of explored nodes

and the average computational time over 10 instances. The time limit on solving a single

instance is set to two hours.

Additionally to the basic branch and bound approach, presented in Section 3.2.2, we

evaluate different combinations of the proposed approaches. These approaches show mea-

surable impact in our test runs on different sets of problems. All considered branch and

bound configurations are described in the following.

• BB. The basic branch and bound.

• NS(.). The basic branch and bound, but with the dynamic node selection strategy,

presented in Section 5.1. We distinguish between NS(LHG), when the local hyper-

volume gap is used, and NS(HSZ), when the hypervolume of the search zone box is

considered.

• WST. Same procedure as NS(.), but using a warmstart of the bound sets.

• EC. Same procedure as WST. Additionally, ε-constraint scalarizations are solved.

The scalarization is applied every n-th iteration within the first p n2 iterations.

• SLB. Same procedure as EC, but every fifth level of the branch and bound tree, the

simple lower bound is considered, instead of solving the linear relaxation.

• +TE. For every problem class, we consider the best performing approaches regarding

the number of nodes respectively the total time. In those approaches if only 10 or

less variables are free, we enumerate all 210 = 1024 solutions.

Note that the chosen parameters yield from preliminary numerical experiments on a

different set of instances. Of course, they are not optimized and we do not change these

parameter values for different problem classes, since we aim to show the impact of these

approaches on a variety of problems. Finally, we present the considered problem classes

and benchmark instances:

i) Knapsack problems (KP) benchmark instances from Kirlik and Sayın (2014). The

instances with 3 objectives and 40, 50, 60, 70 and 80 variables are solved. Addition-

ally, the instances with 4 objectives and 20, 30 and 40 variables are solved.

ii) Uncapacitated facility location problems (UFLP) benchmark instances from Forget

et al. (2022b). The instances with 3 objectives and 56, 72 and 90 variables are

considered, as well as the instances with 4 objectives and 42 and 56 variables.

86

5.3 Numerical Tests

iii) Capacitaded facility location problems (CFLP) instances from An et al. (2022) and

Bauß and Stiglmayr (2023c). We consider instances with 3 objectives and 65, 119

and 230 variables.

iv) Generalized assignment problems (GAP) test instances from Bauß and Stiglmayr

(2023c). The instances with 3 objectives and 48, 75 and 108 variables are solved.

Additionally, the instances with 4 objectives and 48 and 75 variables ware solved.

Remarks Regarding the Implementation Due to numerical difficulties, we slightly adapt

the implementation, as such it slightly differs from the presented approaches. The first

change affects the inequalities, obtained by solving a weighted sum scalarization to integer

optimality (cf. Section 5.2.1 and Section 5.2.3). Originally, all constraint coefficients of the

considered instances are integer. Nevertheless, the additional obtained inequalities, which

are added to the corresponding subproblems, contain in general non-integer coefficients.

Bensolve, which we use to compute our lower bound set, relies on the GLPK solver.

Unfortunately, for harder and larger problems, the solver faces numerical issues and aborts

the run of the algorithm in the worst case. To overcome this issues we round the constraint

coefficients in the following way.

Let ā1x1+, . . . ,+ānxn ≥ b̄, with ā ∈ Rn and b̄ ∈ R, be an inequality obtained during the

algorithm. Then, the modified inequality is given by dā1ex1+, . . . , d+ānexn ≥ bb̄c. Obvi-

ously, this constraint is weaker in general, but it is necessary to overcome the numerical

issues.

The second change also concerns the usage of the simple lower bounds (cf. Section 5.2.3).

The main motivation of using this simple lower bounds is to save computation time by

not using Bensolve to compute the complete lower bound set which may consist of a large

number of facets. But although we use CPLEX to solve just a single scalarization to

integer optimality instead of the complete lower bound set, this is unfortunately much

slower in the majority of the considered instances. This is due to the rather slow interface

to CPLEX in Julia. Especially the problem building takes a relatively large amount of

time. To partially overcome this problem, we limit the CPLEX computation time to
1
10 -th of the time needed to compute the lower bound with Bensolve in the root node.

If the program is not solved to optimality within the the given time, the best feasible

solution found so far is treated like the optimal solution to possibly update the upper

bound and the current best lower bound can be used as simple lower bound. Therefore,

it is also possible to use objective space information, although they might be worse. If no

feasible solution is found within the time limit and infeasibility is not proven, no additional

objective information can be added to the corresponding node.

87

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

(KP), p = 3, n = 40
approach nodes time (s) IPs sol.
BB 138365.8 97.55 0.0 10
NS(LHG) 49898.4 76.85 0.0 10
WST 48157.8 73.00 4.0 10
EC 45384.2 68.99 39.3 10
SLB 51869.0 100.17 9203.5 10
EC+TE 41948.0 68.76 38.4 10
SLB+TE 33993.0 106.21 6838.4 10

(a) Knapsack problem with n = 40 variables and
p = 3 objectives.

(KP), p = 3, n = 50
approach nodes time (s) IPs sol.
BB 391170.2 398.55 0.0 10
NS(LHG) 112975.4 317.70 0.0 10
WST 110409.0 299.95 4.0 10
EC 101027.0 254.48 50.6 10
SLB 97466.2 391.33 17479.4 10
EC+TE 98385.4 256.40 49.4 10
SLB+TE 94661.0 375.52 17492.8 10

(b) Knapsack problem with n = 50 variables and
p = 3 objectives.

(KP), p = 3, n = 60
approach nodes time (s) IPs sol.
BB 1201949.8 1794.81 0.0 10
NS(LHG) 321465.3 2591.44 0.0 8
WST 320631.0 2550.18 4.0 9
EC 313461.2 2103.35 62.1 10
SLB 247905.9 1946.32 45446.9 10
EC+TE 279708.3 1496.39 63.1 10
SLB+TE 276558.0 2082.41 49992.1 10

(c) Knapsack problem with n = 60 variables and
p = 3 objectives.

(KP), p = 3, n = 70
approach nodes time (s) IPs sol.
BB 2470128.8 4312.96 0.0 7
NS(LHG) 447631.9 4533.68 0.0 7
WST 447604.2 4489.07 4.0 7
EC 432262.9 4156.09 67.2 7
SLB 440161.9 4532.67 79311.0 7
EC+TE 439530.9 3828.58 67.8 8
SLB+TE 436677.6 4572.73 79311.2 8

(d) Knapsack problem with n = 70 variables and
p = 3 objectives.

(KP), p = 3, n = 80
approach nodes time (s) IPs sol.
BB 3433775.1 7200.00 0.0 0
NS(LHG) 376535.2 7200.00 0.0 0
WS 392186.7 7200.00 4.0 0
EC 429098.6 7200.00 88.8 0
SLB 500545.7 7158.29 87007.5 1
EC+TE 418424.2 7200.00 89.1 0
SLB+TE 505265.6 7105.14 88435.9 1

(e) Knapsack problem with n = 80 variables and
p = 3 objectives.

(KP), p = 4, n = 20
approach nodes time (s) IPs sol.
BB 9073.6 7.76 0.0 10
NS(LHG) 4398.0 6.19 0.0 10
WST 4230.8 6.33 5.0 10
EC 4185.6 7.12 38.7 10
SLB 4289.8 15.57 752.5 10
EC+TE 899.0 4.90 27.7 10
SLB+TE 742.8 8.73 303.4 10

(f) Knapsack problem with n = 20 variables and
p = 4 objectives.

(KP), p = 4, n = 30
approach nodes time (s) IPs sol.
BB 53531.0 90.03 0.0 10
NS(LHG) 21621.0 78.95 0.0 10
WST 19798.3 68.42 5.0 10
EC 19107.2 67.78 59.2 10
SLB 26117.0 206.31 4699.9 10
EC+TE 15618.0 73.85 59.3 10
SLB+TE 14554.0 135.63 3428.7 10

(g) Knapsack problem with n = 30 variables and
p = 4 objectives.

(KP), p = 4, n = 40
approach nodes time (s) IPs sol.
BB 325416.1 2070.93 0.0 8
NS(LHG) 115926.3 1815.93 0.0 8
WST 114715.6 1562.56 5.0 8
EC 110539.0 1511.55 72.4 8
SLB 85321.0 1410.12 14958.6 8
EC+TE 111540.9 2235.66 68.6 8
SLB+TE 73076.1 2974.74 11223.3 8

(h) Knapsack problem with n = 40 variables and
p = 4 objectives.

Table 5.1: Numerical results on multi-objective knapsack instances of Kirlik and Sayın
(2014).

88

5.3 Numerical Tests

Results of the Knapsack Problems The numerical results show that the dynamic node

selection strategy based on the local hypervolume gap has a large impact on the average

number of explored nodes. Note that preliminary tests on a different set of knapsack

problems have shown, that this dynamic strategy works better than the strategy based on

the search zone box. With the chosen node selection strategy we can reduce the number

of explored nodes by up to 71.1% (Table 5.1b), in problem sizes where all 10 instances

are solved, and up to 81.9% (Table 5.1d) in instance sizes where the same amount of

problems is solved. Since the computation of the local hypervolume gap can be expensive,

the total computation time can only be reduced by up to 21.6% (Table 5.1a). Note, that

there are also cases, where the total computation time increases, although the number of

explored nodes decreases (Table 5.1c and 5.1d). It is not surprising, that this occurs in the

instances with a larger amount of variables, since there are possibly more non-dominated

points and corresponding local upper bounds, which need to be considered during the gap

computation.

The approaches WST and EC reduce the average number of explored nodes in the

majority of the considered instances. Nevertheless, the impact on the performance is more

significant when EC is used. The usage of SLB can, especially for instances with a larger

amount of variables, reduce the computation time and the number of explored nodes. In

Table 5.1e, it is shown, that using SLB allows us to solve more instances in the given time

limit, which is an improvement compared to the other approaches. Nevertheless, especially

for smaller instance sizes, using SLB increases the computational time a lot. This is due

to the fact, that the CPLEX interface is rather slow in Julia.

The best working approaches for the considered benchmark instances are EC+TE and

SLB+TE. Regarding the average number of explored nodes SLB+TE seems to be the

best choice, since this approach creates the least amount of nodes in the majority of the

experiments. It is possible to reduce the number of nodes by up to 91.8% (Table 5.1f),

respectively 79.4% (Table 5.1c) if we omit the instance size p = 4, n = 20, since it highly

benefits from the enumeration. The best choice for KP regarding the total computation

time seems to be EC+TE, since it is the fastest approach in the majority of the solved

instances. The runtime can be reduced by up to 36.9% (Table 5.1f), respectively 36.2%

(Table 5.1b).

Results of the Uncapacitated Facility Location Problems Similar to the results of KP,

the dynamic node selection strategy has a significant impact on the number of explored

nodes and the total computation time. In contrast to the knapsack problems, preliminary

tests on a different set of UFLP have shown, that the dynamic node selection strategy

based on the search zone box works better. The reason for this might be the larger amount

89

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

(UFLP), p = 3, n = 56
approach nodes time (s) IPs sol.
BB 152349.4 216.07 0.0 10
NS(HSZ) 100222.6 217.16 0.0 10
WST 97243.4 204.34 4.0 10
EC 97649.4 205.35 39.0 10
SLB 95000.8 258.92 17888.5 10
WST+TE 96318.8 216.03 4.0 10
SLB+TE 95795.9 318.66 18159.4 10

(a) Uncapacitated facility location problem with
n = 56 variables and p = 3 objectives.

(UFLP), p = 3, n = 72
approach nodes time (s) IPs sol.
BB 482483.6 1321.29 0.0 10
NS(HSZ) 277068.6 1249.20 0.0 10
WST 310494.8 1377.52 4.0 10
EC 310802.8 1378.46 42.1 10
SLB 295379.0 1694.93 54184.4 10
WST+TE 310357.8 1310.23 4.0 10
SLB+TE 295245.3 1729.24 54187.9 10

(b) Uncapacitated facility location problem with
n = 72 variables and p = 3 objectives.

(UFLP), p = 3, n = 90
approach nodes time (s) IPs sol.
BB 1604980.2 7144.28 0.0 2
NS(HSZ) 757425.0 6742.37 0.0 7
WST 712808.9 6328.50 4.0 8
EC 733769.6 6310.58 48.1 8
SLB 715377.1 6814.74 105225.6 6
WST+TE 731303.1 6326.04 4.0 8
SLB+TE 731190.3 6623.71 107625.1 7

(c) Uncapacitated facility location problem with
n = 90 variables and p = 3 objectives.

(UFLP), p = 4, n = 42
approach nodes time (s) IPs sol.
BB 61048.4 293.36 0.0 10
NS(HSZ) 48404.8 272.20 0.0 10
WST 40328.0 226.39 5.0 10
EC 40947.6 228.46 27.4 10
SLB 42194.3 434.08 7406.1 10
WST+TE 37312.8 273.25 5.0 10
SLB+TE 37446.8 432.76 6918.8 10

(d) Uncapacitated facility location problem with
n = 42 variables and p = 4 objectives.

(UFLP), p = 4, n = 56
approach nodes time (s) IPs sol.
BB 435160.6 6175.10 0.0 5
NS(HSZ) 313120.4 5745.16 0.0 8
WST 264705.2 4309.92 5.0 10
EC 266740.2 4324.72 34.6 10
SLB 180643.0 5296.01 29414.9 6
WST+TE 262173.8 4721.79 5.0 10
SLB+TE 165112.8 5484.16 30455.25 6

(e) Uncapacitated facility location problem with
n = 56 variables and p = 4 objectives.

Table 5.2: Numerical results for multi-objective uncapacitated facility location instances
of Forget et al. (2022b).

90

5.3 Numerical Tests

of non-dominated points, that cause an even larger amount of local upper bounds. Again, a

high amount of local upper bounds increases the time needed to compute the gap between

lower and upper bound set. Therefore, the gap measure based on the search zone box

performs better, since its computation is way faster. The average number of explored

nodes can be reduced by up to 42.2% (Table 5.2b) and the total computation time can

be reduced by up to 7.2% (Table 5.2b). Furthermore, disregarding the improvements in

explored nodes and runtime, there are also improvements regarding the number of solved

instances within the given time limit of two hours. For the instance size n = 90, p = 3 the

amount of solved instances is improved from 2 to 7 (Table 5.2c) and for the instance size

n = 56, p = 4 the amount of solved instances is improved from 5 to 8 (Table 5.2e).

The WST method reduces the number of explored nodes and the total computation time,

in comparison with NS(HSZ), in nearly all considered instance sizes. Table 5.2b is the only

exception. Although EC yields similar results like WST, it is slightly worse in the majority

of the benchmark instances. Therefore, there is no need to solve the additional ε-constraint

scalarizations, since it is outperformed by WST. Although it seems that the number of

explored nodes can be further reduced with SLB, the computation time increases. This

even results in a reduced number of solved instances within the time limit (Table 5.2c and

Table 5.2e).

Regarding the total computation time WST is the best approach to solve uncapacitated

facility problems, since it is the fastest in the majority of the instances. In the best case,

the computation time is reduced by up to 30.2% (Table 5.2e), where at the same time the

number of solved instances is increased from 5 to 10. Regarding the number of explored

nodes WST+TE seems to be a good choice. In the majority of the benchmark instances,

this approach yields the lowest number of explored nodes. The average number of explored

nodes can be reduced by up to 55.5% in the best case (Table 5.2c).

Results of the Capacitated Facility Location Problems Similar to the uncapacitated

facility location problem, preliminary tests on a different set of instances have shown that

the dynamic search strategy based on the search zone boxes are computationally more

efficient. The number of nodes and the computation time are improved with NS(HSZ).

By using the suggested node selection strategy, the number of explored nodes can be

reduced by up 30.2% (Table 5.3b) and the total computation time improves by up to

18.9% (Table 5.3b). Using the warmstarting of bound sets (WST) has nearly no impact

on the number of explored nodes but the computational time increases. By using EC,

the number of nodes is reduced marginally, but there is an improvement regarding the

computation time, compared to WST. By also using the simple lower bounds, i.e., using

the SLB approach, the number of nodes and the computation time increases. Nevertheless,

91

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

(CFLP), p = 3, n = 65
approach nodes time (s) IPs sol.
BB 59890.6 48.40 0.0 10
NS(HSZ) 49007.6 46.31 0.0 10
WST 48857.0 47.18 4.0 10
EC 48839.6 45.89 20.6 10
SLB 48587.2 55.70 9195.8 10
EC+TE 48839.6 49.50 20.6 10
SLB+TE 47988.4 55.36 9203.3 10

(a) Capacitated facility location problem with
n = 65 variables and p = 3 objectives.

(CFLP), p = 3, n = 119
approach nodes time (s) IPs sol.
BB 460374.4 1134.55 0.0 10
NS(HSZ) 321311.6 919.95 0.0 10
WST 327431.8 939.44 4.0 10
EC 326869.2 919.65 23.8 10
SLB 345477.6 1009.03 62699.5 10
EC+TE 326869.2 942.93 23.8 10
SLB+TE 345477.6 1012.17 62699.5 10

(b) Capacitated facility location problem with
n = 119 variables and p = 3 objectives.

(CFLP), p = 3, n = 230
approach nodes time (s) IPs sol.
BB 660929.5 7200.00 0.0 0
NS(HSZ) 358055.8 7200.00 0.0 0
WST 362319.4 7200.00 0.0 0
EC 387534.1 7200.00 16.8 0
SLB 453839.3 7200.00 80912.8 0
EC+TE 391868.6 7200.00 16.8 0
SLB+TE 427363.5 7200.00 83468.0 0

(c) Capacitated facility location problem with
n = 230 variables and p = 3 objectives.

Table 5.3: Numerical results for multi-objective capacitated facility location instances of
An et al. (2022) and Bauß and Stiglmayr (2023c).

compared to our baseline implementation (BB) there are improvements regarding the

number of nodes and there can also be an improvement regarding the runtime.

The best approach regarding the computational time seems to be EC. In the best case,

the time can be reduced by 18.9% (Table 5.3b). Regarding the number of explored nodes,

there seems to be no consistency caused by the small amount of benchmark instances.

NS(HSZ), SLB+TE and EC seem to be good choices to decrease the number of explored

nodes, where those can be reduced by 30.2% in the best case.

Results of the Generalized Assignment Problems Preliminary numerical tests on a

different test set show, that the node selection with hypervolume of the search zone box

NS(HSZ) works better than the one with the local hypervolume gap NS(LHG). This node

selection strategy has a significant impact on the number of explored nodes and on the

computational time as well. The number of nodes is reduced by up to 53.4% (Table 5.4c),

while the average runtime is reduced by up to 38.9% (Table 5.4c).

We can observe that in the tri-objective instances WST outperforms EC, but in the

benchmark instances with four objectives EC outperforms WST. Therefore, the best choice

regarding the computation time for instances with three objectives is WST, which reduces

the computation time by up to 40.5% (Table 5.4c). For the instances with four objectives

EC seems to be the best choice regarding the computation time with a reduction of up to

92

5.3 Numerical Tests

(GAP), p = 3, n = 48
approach nodes time (s) IPs sol.
BB 27890.0 16.76 0.0 10
NS(HSZ) 20608.0 14.57 0.0 10
WST 18458.4 13.17 4.0 10
EC 18506.4 13.96 32.7 10
SLB 18567.8 20.51 3516.7 10
WST+TE 17469.0 14.08 4.0 10
EC+TE 17501.0 14.91 34.3 10
SLB+TE 17895.8 21.27 3336.5 10

(a) Generalized assignment problem with n = 48
variables and p = 3 objectives.

(GAP), p = 3, n = 75
approach nodes time (s) IPs sol.
BB 170359.4 220.20 0.0 10
NS(HSZ) 98703.4 162.00 0.0 10
WST 95179.0 154.56 4.0 10
EC 95760.4 157.35 44.5 10
SLB 66464.0 119.34 12716.6 10
WST+TE 94572.0 166.30 4.0 10
EC+TE 95134.0 168.09 45.1 10
SLB+TE 61568.0 113.74 11676.6 10

(b) Generalized assignment problem with n =
75 variables and p = 3 objectives.

(GAP), p = 3, n = 108
approach nodes time (s) IPs sol.
BB 1041528.2 2566.35 0.0 10
NS(HSZ) 484977.8 1569.04 0.0 10
WST 467268.8 1527.91 4.0 10
EC 469200.1 1534.35 53.7 10
SLB 387682.2 1603.55 74288.6 10
WST+TE 464769.0 1632.80 4.0 10
EC+TE 466327.2 1650.48 55.3 10
SLB+TE 367327.0 1746.80 68916.3 10

(c) Generalized assignment problem with n =
108 variables and p = 3 objectives.

(GAP), p = 4, n = 48
approach nodes time (s) IPs sol.
BB 145278.4 529.94 0.0 10
NS(HSZ) 99512.2 494.75 0.0 10
WST 85777.2 436.29 5.0 10
EC 77102.8 325.46 26.6 10
SLB 74366.3 386.94 13771.3 10
WST+TE 78313.0 494.43 5.0 10
EC+TE 78622.2 437.83 29.0 10
SLB+TE 73206.1 797.21 13150.0 10

(d) Generalized assignment problem with n =
48 variables and p = 4 objectives.

(GAP), p = 4, n = 75
approach nodes time (s) IPs sol.
BB 836528.8 6292.90 0.0 4
NS(HSZ) 490997.9 6185.76 0.0 5
WST 466591.2 6128.25 5.0 5
EC 466653.3 5984.18 33.4 5
SLB 297399.0 6423.18 54521.0 5
WST+TE 463480.6 6013.66 5.0 6
EC+TE 466678.0 6004.96 35.0 6
SLB+TE 282099.1 6925.44 55286.5 5

(e) Generalized assignment problem with n = 75
variables and p = 4 objectives.

Table 5.4: Numerical results for multi-objective generalized assignment instances of Bauß
and Stiglmayr (2023c).

93

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

38.6% (Table 5.4d). Regarding the average number of explored nodes SLB+TE performs

best, since it explores the fewest nodes in the majority of the considered instances. In the

best case, the number of nodes is reduced by 64.7% (Table 5.4e), considering the instance

sizes where all problems are solved. If we look at the results in Table 5.4e, we even see

a reduction of nodes by 66.3% and a simultaneous improvement in the number of solved

instances. Nevertheless, there are other approaches for this instance size, that solve even

more problems.

Summary and General Observations In all of the four tested problem classes (KP, UFLP,

CFLP and GAP), a significant reduction of the average number of explored nodes and

the average total computation time can be realized in nearly every tested adapted branch

and bound approach. With a rising number of variables the impact on the performance

increases, whereas a rising number of objective functions results in a decrease of the

performance. This is due to the general shortcomings of multi-objective branch and bound,

struggling with weaker bounds in higher dimensions. In Figure 5.2, performance profiles

of the corresponding best approaches are illustrated. Thereby, the x-axis represents the

time in seconds and the y-axis corresponds to the proportion of solved instances.

In three of the four considered problem classes, preliminary tests have shown, that the

dynamic node selection strategy based on the search zone box works better in terms of

computation time compared to the local hypervolume gap strategy. Only for knapsack

problems the local hypervolume gap is used. The stronger combinatorial structure of

UFLP, CFLP and GAP (compared to KP) leads to more complex lower bound sets, which

are computationally difficult to handle in the local hypervolume gap strategy.

Unfortunately, there is no clear winner that performs best on all considered benchmark

instances, but we can observe some tendencies. Regarding the number of nodes, SLB+TE

seems to be a good choice. For every considered problem class, SLB+TE performs com-

paratively good and is even the best choice in some of them. This approach can also

improve the number of solved instances in a few cases. But, due to the high amount of

solved integer programming scalarizations this approach often increases the total compu-

tation time, especially for smaller instance sizes. Regarding the total computation time,

WST and EC seem to be good choices. Both approaches are the best performing methods

in some of the problem classes and perform also comparatively good in the other ones.

Nevertheless, by just using the corresponding dynamic node selection strategy, remark-

able improvements are achieved with respect to both — the number of considered branch

and bound nodes and the computation time.

To conclude this chapter, we summarize its major contributions and findings. We pro-

pose different adaptive improvements for multi-objective branch and bound frameworks

94

5.3 Numerical Tests

using objective-space information to partially overcome its structural difficulties. We pro-

pose new dynamic node selection strategies, based on the multidimensional gap between

lower and upper bound set, which improve the number of explored nodes and the total

computation time. Furthermore, we use objective space information gained by solving

scalarized (sub)problems to integer optimality to improve the lower and upper bound set.

A warmstarting approach for the bound sets is proposed and partial enumeration is ap-

plied. Additionally, simple lower bound sets are used adaptively to omit the computation

of the complete lower bound set. The numerical results show the positive impact on dif-

ferent problem classes regarding the number of explored nodes and the computational

time.

This chapter shows, that the order in which the nodes are explored, has a significant

impact on the performance of multi-objective branch and bound algorithms. Since the

order depends on the node selection strategy and the branching rule, it might be promising

to include different combinations of those components. Especially the combination of

different dynamic, problem dependent strategies could result in further improvements.

95

Chapter 5 Adaptive Improvements of Multi-objective Branch and Bound

50
0

1,
00

0

1,
50

0

2,
00

0

2
,5
00

3
,0
0
0

3
,5
00

4
,0
00

4,
5
00

5,
0
00

5,
50

0

6
,0
00

6
,5
00

7
,0
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

p
ro
p
o
rt
io
n
o
f
in
st
an

ce
s
so
lv
ed

BB
EC+TE
SLB+TE

(a) Performance of tri-objective knapsack prob-
lems.

50
0

1,
00

0

1,
50

0

2,
00

0

2
,5
00

3
,0
0
0

3
,5
00

4
,0
00

4,
5
00

5,
0
00

5,
50

0

6
,0
00

6
,5
00

7
,0
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

p
ro
p
o
rt
io
n
o
f
in
st
an

ce
s
so
lv
ed

BB
EC+TE
SLB+TE

(b) Performance of 4-objective knapsack prob-
lems.

50
0

1,
00

0

1,
50

0

2,
00

0

2
,5
00

3
,0
00

3
,5
00

4
,0
00

4,
5
00

5,
00

0

5,
50

0

6
,0
00

6
,5
00

7
,0
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

p
ro
p
or
ti
on

of
in
st
an

ce
s
so
lv
ed

BB
WST

WST+TE

(c) Performance of tri-objective uncapacitated
facility location problems.

50
0

1,
00

0

1,
50

0

2,
00

0

2
,5
00

3
,0
00

3
,5
00

4
,0
00

4,
5
00

5,
00

0

5,
50

0

6
,0
00

6
,5
00

7
,0
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

p
ro
p
or
ti
on

of
in
st
an

ce
s
so
lv
ed

BB
WST

WST+TE

(d) Performance of 4-objective uncapacitated
facility location problems.

50
0

1
,0
00

1,
5
00

2,
0
00

2,
5
00

3,
0
00

3,
5
00

4,
0
00

4,
5
00

5,
00

0

5,
5
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

p
ro
p
or
ti
on

o
f
in
st
an

ce
s
so
lv
ed

BB
WST

SLB+TE

(e) Performance of tri-objective generalized as-
signment problems.

50
0

1,
0
00

1,
5
00

2,
00

0

2
,5
00

3
,0
00

3
,5
00

4
,0
00

4,
5
00

5,
0
00

5,
50

0

6
,0
00

6
,5
00

7
,0
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

p
ro
p
or
ti
on

o
f
in
st
an

ce
s
so
lv
ed

BB
EC

SLB+TE

(f) Performance of 4-objective generalized as-
signment problems.

Figure 5.2: Performance profiles of selected approaches regarding different problem classes.

96

6 Branching and Queuing for

Multi-objective Branch and Bound

In the previous chapters, we elaborated the importance of the order in which the nodes are

explored. A sequencing of subproblems can have significant impact on the performance

of a multi-objective branch and bound. Thereby, it is crucial not only to find efficient

solutions as soon as possible but also to find a set of (efficient) solutions whose images

are well distributed along the non-dominated frontier — in other words to find a good

representation of the non-dominated set. In this chapter we evaluate the performance of

multi-objective branch and bound algorithms depending on the branching and queuing of

subproblems. Note that both components affect each order. We use, e.g., the hypervolume

indicator as a measure for the gap between lower and upper bound set to implement

a multi-objective best-first strategy. We test and evaluate our approaches on different

problem classes.

Contribution The majority of this paper is published in Bauß and Stiglmayr (2024a).

Organization of the Chapter The remaining chapter is organized as follows. In Sec-

tion 6.1, we discuss some of the most common branching rules and node selection strategies

of multi-objective branch and bound frameworks. We also give an illustrative example of

different ways to measure the gap between lower and upper bound. In Section 6.2, we

test all combinations of the presented approaches on three different multi-objective prob-

lem classes, namely knapsack, uncapacitated facility location and generalized assignment

problems with p = 3 objectives.

6.1 Sequencing of Subproblems

In the introduction to multi-objective branch and bound algorithms (cf., Section 3.2.2),

we already gave a brief introduction into different branching rules and node selection

strategies. Based on this, we give more detailed and formal definitions of the considered

node selection and queuing strategies. Thereby, we restrict ourselves to the decision space

branching.

97

Chapter 6 Branching and Queuing for Multi-objective Branch and Bound

Firstly, we introduce some of the common branching rules. We focus on a selection of

well known approaches and distinguish them between static and dynamic rules. Secondly,

we formally introduce static and dynamic node selection strategies reconstructing the

best-first strategy in multiple objectives. Thereby, we mainly focus on different ways to

measure the gap between the lower and upper bound.

6.1.1 Multi-objective Branching Rules

In the binary case, decision space branching rules are restricted to the selection of an

appropriate branching variable. Therefore, it is necessary to apply a predefined branching

rule. As already mentioned in previous sections, we can distinguish between static and

dynamic strategies.

Static strategies fix a predefined order of the variables. In every iteration, the first

variable of this order, that is not fixed yet in the corresponding subproblem, is chosen.

Thus, static strategies are not able to adapt to the problem structure during the run of

the algorithm using information obtained in previous iterations. The most basic approach

is choosing the branching variable based on the variable indices (either in ascending or

descending order). This strategy does not even take problem specific properties into

account and is just based on the principle of chance. Thus, we do not consider those

approaches for the numerical test in Section 6.2.

Many approaches in the literature propose to use a specific order of the ratios between

costs and weights for single-objective knapsack problems (Kellerer et al., 2004). For clari-

fication, we recall that a multi-objective knapsack problem can be written in the following

form

max
n∑
i=1

cji xi j = 1, . . . , p

s.t.
n∑
i=1

wi xi ≤ b

x ∈ {0, 1}n.

In the single-objective case (p = 1), the profit to weight ratio of a variable xi is given

by c1i /wi. The variables are considered by a decreasing ratio, which implies that first

variables are the more promising ones. Since an extension to multiple objectives is not

straightforward, there are several different approaches (see, e.g., Bazgan et al., 2009; Jorge,

2010; Ulungu and Teghem, 1997).

Due to the multiple objectives, we define a ratio vector ri := (ri1, . . . , r
i
p) ∈ Rp for

each variable xi, i = 1, . . . , n by ri := (cji/wi)j=1,...,p. Bazgan et al. (2009) propose the

98

6.1 Sequencing of Subproblems

branching rule sum of ratios, where the entries of the ratio vectors are summed up, i.e.,

sri :=
∑p

j=1 c
j
i/wi for all i = 1, . . . , n. A free variable xi with the largest value sri is then

selected as branching variable. Note that we are considering multi-objective optimization

with minimization objectives in this work. Thus, we analogously consider the sum of

ratios in an increasing order. In Jorge (2010), a slightly different approach is proposed.

Again, the ratio vectors ri, i = 1, . . . , n are considered but instead of using the L1-norm,

we check for dominance among them and count how often each vector is dominated. So,

the variable with the ratio vector which is least often dominated by other ratio vectors is

selected as branching variable. We therefore refer to this as the dominance of ratios rule.

Both presented rules based on the ratio vectors were proposed for knapsack problems

but the branching scheme can be analogously applied on, e.g., facility location problems

and generalized assignment problems, when opening costs and workload of a task are

interpreted as the “weight” wi.

Dynamic branching strategies do not have a predefined order in which the variables

are considered. They take additional information into account, which is gained during

the algorithm. The choice of the next variable to branch on is therefore dependent on

the current node. The following two branching rules rely on the lower bound set L of a

node ν. The so-called most often fractional rule counts for every variable xi in how many

extreme points of the lower bound set L it attains an fractional value. The variable which

is most often fractional is chosen as branching variable. Belotti et al. (2013) propose a

slightly different approach. Instead of simply counting how often a variable is fractional,

they sum for each variable the distances to the next integer solution in all extreme points

of the lower bound set L. Then, the variable with the highest total distance is used as

branching variable. In the following we call this the how fractional rule.

6.1.2 Multi-objective Node Selection Strategies

In each iteration of a branch and bound algorithm, a node has to be selected. Similar to

the branching rules, the node selection strategies can be distinguished between static and

dynamic strategies.

The most frequently applied static strategies are depth-first search and breadth-first

search. The depth-first strategy selects (if possible) a newly created node, i.e., a child

node of the the current active node. If a node can be fathomed and no new nodes are

created in that iteration, the lastly created node is selected. Therefore, it follows a last

in first out approach. Contrary, the breadth-first strategy selects always the node which

was created first and has not been explored so far. Thus, this approach is based on a first

in first out principle. Both variants do not require additional computations, are easy to

99

Chapter 6 Branching and Queuing for Multi-objective Branch and Bound

implement, but do not adapt to the problem structure.

Dynamic node selection strategies choose the active node depending on the expected

improvement of the upper and/or lower bound set. There are several approaches which

mimic the best first node selection strategy which is most frequently applied in single-

objective branch and bound algorithms (see, e.g., Morrison et al., 2016). Although this

is the standard approach in the single-objective case, there is no direct extension to the

multi-objective case. However, there are several different gap measures proposed in the

literature. Some of them are presented and evaluated in the following. In these strategies,

the node with the largest gap is chosen as it is assumed that a large gap coincides with

a large potential of improvement. The methods mainly differ in the way the gap between

the lower and upper bound set is measured. Note that although the idea is to measure

the gap between lower and upper bound set, often the gap is measured between the lower

bound set L and the set of local upper bounds D(U). This distance represents the “open

space” in which additional non-dominated points might be located.

The first method is the local hypervolume gap strategy which is proposed for the bi-

objective case in Section 4.1 and is extended to the multi-objective case in Section 5.1.

In Jesus et al. (2021), the impact of the exact hypervolume gap on the performance

of multi-objectve branch and bound is evaluated. However, the numerical results show

that the evaluation of the hypervolume is computationally so demanding that its positive

effects on the number of created nodes are compensated in terms of runtime. To avoid

this computational effort the hypervolume of the largest search zone is approximated

by the volume of the simplex spanned by the local upper bound (cf. Section 5.1) and

the intersections of the extreme rays of its dominance cone with the lower bound set L.

Similarly, the largest hypervolume of a search-zone box spanned by a local upper bound

and the local ideal point of the lower bound set (cf. Section 5.1) can be used as a gap

measure.

The well known Hausdorff distance is also applied as measure of the gap between lower

bound and the upper bound. This approach has been recently used by Adelgren and

Gupte (2022) for bi-objective branch and bound approaches. The (directed) Hausdorff

distance for a node ν from the set of local upper bounds D(U) to the lower bound set L
is given by

hd(ν) := max
u∈D(U)

min
l∈L
l5u

d(u, l),

where d(u, l) is the L2-distance between two points u, l ∈ Rp.
The so-called width of enclosure, proposed in Eichfelder et al. (2021), is a similar method

to measure the gap. It only differs in the chosen distance measure between the two points.

100

6.2 Numerical Tests

Instead of the L2-distance the minimal componentwise distance is used. Therefore, the

width of enclosure of a node ν is given by

woe(ν) := max
u∈D(U)

min
l∈L
l5u

min
j=1,...,p

(uj − lj)

All the above presented gap measurements are illustrated in Figure 6.1 for a bi-objective

example.

Note that when a node is created in the algorithm we assign the gap of its parent node

to it to avoid the computational overhead of precomputing lower bounds. Moreover, the

gap would have to be updated in every node when the upper bound set changes. This is

computationally very demanding and the potential reduction in number of nodes cannot

compensate for this.

6.2 Numerical Tests

All the algorithms were implemented in Julia 1.9.0 and the linear relaxations (for the lower

bound set) were solved with Bensolve 2.1 (Löhne and Weißing, 2017). The numerical test

runs were executed on a single core of a 3.20 GHz Intel R© CoreTM i7-8700 CPU with 32 GB

RAM. The number of nodes and computation times are average values over 10 instances.

We present numerical results of all combinations of the branching rules and node selec-

tion strategies, that were introduced in the previous section. Thereby, we consider three

different tri-objective problem classes:

• Knapsack problems (KP) with 3 objectives and 30, 40 and 50 variables. The in-

stances are extracted from Kirlik and Sayın (2014).

• Uncapacitated facility location problems (UFLP) with 3 objectives and 42, 56 and

72 variables. We use the instances of Forget et al. (2022b).

• Generalized assignment problems (GAP) with 3 objectives and 27, 48 and 75 vari-

ables. The instances were randomly generated and are publically available in Bauß

and Stiglmayr (2023c).

To ease notation we define abbreviations for the tested branching strategies and node

selection rules in Table 6.1.

In Table 6.2, the numerical results for the tri-objective knapsack problem are shown.

The numbers in brackets indicate how many (if not all) of the instances have been solved

in the time limit of one hour. For all considered instance sizes the combination of local

hypervolume gap node selection and how fractional branching (HVG-HF) is the best choice

101

Chapter 6 Branching and Queuing for Multi-objective Branch and Bound

z1

z2

(a) The yellow triangle illustrates the local hyper-
volume gap of this example.

z1

z2

(b) The yellow box indicates the hypervolume of
a search-zone box.

z1

z2

(c) The Hausdorff distance between lower bound
and upper bound is depicted by the yellow
line.

z1

z2

(d) The yellow line indicates the width of enclo-
sure in the corresponding node.

Figure 6.1: An exemplary illustration of different gap measurements for a bi-objective
(MO01LP).

102

6.2 Numerical Tests

node selection branching rule

DF depth-first MOF most often fractional
BF breadth-first HF how fractional
HVG local hypervolume gap SR sum of ratios
HVB search-zone box DOM dominance of ratios
HD Hausdorff distance
WOE width of enclosure

Table 6.1: Abbreviations for node selection strategies and branching rules.

(KP)
p = 3, n = 30 p = 3, n = 40 p = 3, n = 50

nodes time(s) nodes time (s) nodes time (s)
DF-MOF 23985.0 12.8004 138368.4 111.1310 391170.2 438.8650
DF-HF 25386.8 13.5571 145034.2 115.6625 390635.6 436.7868
DF-SR 13251.6 7.5527 51868.0 41.9066 116711.2 135.2845
DF-DOM 13562.6 7.7311 55519.6 44.8569 123384.0 144.2920
BF-MOF 22689.6 17.7095 149388.0 196.9730 432790.0 757.8097
BF-HF 21375.0 16.2624 134515.2 179.8361 407798.4 739.3253
BF-SR 341674.8 200.2637 1269261.8 1256.6632 1433460.3 (5) 3187.8977 (5)
BF-DOM 329000.8 192.8351 1234688.4 1222.4330 1525962.0 (4) 3393.6130 (4)
HVG-MOF 10355.4 9.4816 49898.4 88.4784 112975.4 334.5662
HVG-HF 9886.0 8.7751 49432.8 81.3003 109233.2 307.8950
HVG-SR 27234.4 28.2833 101070.4 215.4569 206470.0 913.4311
HVG-DOM 24432.4 25.3734 93457.2 199.2275 196919.6 873.1798
HVB-MOF 14355.6 11.1059 94993.8 146.8714 233845.0 483.6893
HVB-HF 14241.4 10.4059 91549.2 130.7214 230877.6 462.5850
HVB-SR 36433.6 32.3518 151624.6 229.3973 325188.8 (9) 930.8374 (9)
HVB-DOM 35701.8 31.7019 148932.2 225.3204 348987.4 (9) 998.9598 (9)
HD-MOF 12462.2 9.6071 79112.4 126.2463 221310.9 (9) 821.2436 (9)
HD-HF 11919.6 9.0139 78892.8 127.9482 241806.8 826.3442
HD-SR 38704.4 38.9071 191524.8 571.2338 352888.6 (7) 2144.3936 (7)
HD-DOM 33764.6 33.9414 162471.4 484.5804 335842.2 (7) 2040.8080 (7)
WOE-MOF 15256.2 10.5954 82633.0 99.8712 238207.2 423.3763
WOE-HF 15068.8 10.2355 83082.8 101.3736 239090.6 434.7994
WOE-SR 37537.6 25.3568 264445.2 337.7509 721534.2 1628.2839
WOE-DOM 28092.8 18.9768 184564.6 235.7279 563025.8 (9) 1270.5786 (9)

Table 6.2: Tri-objective knapsack problems with 30, 40 and 50 variables (Kirlik and Sayın,
2014).

103

Chapter 6 Branching and Queuing for Multi-objective Branch and Bound

(UFLP)
p = 3, n = 42 p = 3, n = 56 p = 3, n = 72

nodes time(s) nodes time (s) nodes time (s)
DF-MOF 32880.8 38.8117 139834.2 224.0030 418528.6 1467.8659
DF-HF 36586.6 41.1587 145078.8 228.3968 467150.8 1584.7095
DF-SR 41969.0 41.6262 191415.4 268.0743 615405.2 1867.3283
DF-DOM 35405.8 39.2697 196196.0 282.8492 587028.4 1746.0606
BF-MOF 24487.8 33.5881 95060.2 248.2963 258674.4 1233.3230
BF-HF 26940.8 35.8490 100479.6 257.3975 281206.2 1335.8392
BF-SR 31165.4 35.7170 114821.8 269.1075 297056.4 1292.9423
BF-DOM 22001.2 29.1760 98421.6 238.5091 254647.0 1127.5445
HVG-MOF 23870.6 51.1781 91803.4 443.0579 233284.8 2780.9655
HVG-HF 26221.4 54.3288 96871.2 462.4322 252660.5 2957.6853
HVG-SR 30934.2 53.1506 112207.2 454.0694 279531.1 2726.9569
HVG-DOM 21482.8 42.3663 95210.4 404.7764 244279.6 2361.3996
HVB-MOF 24519.4 33.8085 95308.0 219.6553 255510.4 1298.5159
HVB-HF 26928.2 35.7254 99950.6 230.4688 278603.4 1359.0283
HVB-SR 31324.0 37.3422 114875.0 262.8621 298007.4 1384.1356
HVB-DOM 22179.4 29.7234 99157.2 211.9494 254735.6 1154.9444
HD-MOF 31687.4 40.3926 136396.2 256.0803 405774.0 1636.6743
HD-HF 35171.6 42.7147 141459.8 260.2738 455097.0 1752.7722
HD-SR 41224.0 43.8607 185167.4 309.8969 592779.0 2098.8174
HD-DOM 33231.8 40.0666 187920.8 334.2814 551169.4 1900.0103
WOE-MOF 27435.6 51.6598 114170.0 415.1545 319554.0 2751.3246
WOE-HF 30474.4 54.2606 117135.4 419.9718 344775.2 2917.7876
WOE-SR 34836.4 52.9098 139033.4 419.5647 377158.3 2720.1222
WOE-DOM 25593.0 44.2695 122627.0 394.0369 343180.7 2450.4333

Table 6.3: Tri-objective uncapacitated facility location problems with 42, 56 and 72 vari-
ables (Forget et al., 2022b).

with respect to the number of created branch and bound nodes. However, due to the

relatively costly computation of the local hypervolume gap, it does not lead to the best

computation times. Although the combination of depth-first search with the sum of ratios

branching rule (DF-SR) creates more nodes than HVG-HF, it is the best choice in terms

of the total computation time for all considered instance sizes. Note, that the static

combinations of BF-SR and BF-DOM perform considerably worse regarding number of

nodes and computation time in each problem size. If we consider the respectively best

approaches and compare them to DF-MOF, which is chosen in our baseline branch and

bound framework, we can reduce the number of nodes by up to 72.1% and the total

computation time by up to 69.2%.

In Table 6.3, the numerical results for the tri-objective uncapacitated facility location

problems are shown. Regarding the number of explored nodes, no combination of node

selection strategy and branching rule shows to be clearly superior to the others. But

the local hypervolume gap in combination with the most often fractional (HVG-MOF)

and dominacne of ratios rule (HVG-DOM) are the most promising. In the best case, we

achieve a reduction of explored nodes by up to 44.3% compared to the basic approach

DF-MOF. Regarding the computational time the combinations BF-DOM and HVB-DOM

yield the best results since they perform good all considered instance sizes. We can reach

104

6.2 Numerical Tests

a reduction of computation time by up to 24.8%. Note that both considered combinations

rely on the static dominance of ratios branching rule.

(GAP)
p = 3, n = 27 p = 3, n = 48 p = 3, n = 75

nodes time(s) nodes time (s) nodes time (s)
DF-MOF 2145.2 0.8989 25214.0 22.7623 150039.4 243.4742
DF-HF 2312.8 0.9342 25624.6 23.0392 148997.8 237.6341
DF-SR 2728.8 1.0449 31214.0 25.7561 187934.2 306.8806
DF-DOM 2814.2 1.0776 28019.0 23.1198 150022.8 227.3948
BF-MOF 1794.2 0.7826 17324.0 18.0416 83273.4 162.8612
BF-HF 1926.0 0.8348 17614.2 18.6211 85289.2 174.1150
BF-SR 2472.4 1.0170 23418.4 22.9168 113958.0 230.9721
BF-DOM 2617.4 1.0767 20730.6 20.2865 97610.8 188.5939
HVG-MOF 1778.4 0.8929 17030.6 22.7282 80720.2 276.1176
HVG-HF 1910.8 0.9563 17330.4 23.0759 82971.2 283.6493
HVG-SR 2430.2 1.1571 23147.0 28.0784 111541.8 405.7946
HVG-DOM 2585.2 1.2309 20442.2 24.7974 95689.8 320.4952
HVB-MOF 1802.0 0.8076 17285.4 17.9048 83615.4 166.1450
HVB-HF 1927.8 0.8504 17608.8 18.1974 85378.8 170.1354
HVB-SR 2450.8 1.0291 23538.2 22.3729 113930.0 228.2173
HVB-DOM 2609.6 1.0958 20879.0 19.8453 98906.0 188.6762
HD-MOF 2014.2 0.8762 23257.2 22.6969 132736.8 241.9842
HD-HF 2185.6 0.9402 23755.2 23.0600 129838.2 229.5523
HD-SR 2583.0 1.0513 30504.8 27.5358 172742.2 306.2228
HD-DOM 2716.8 1.1058 26249.4 23.6946 132324.4 223.6301
WOE-MOF 1891.6 0.9198 18414.0 23.1183 91496.4 280.4083
WOE-HF 2013.8 0.9715 18764.4 23.3688 91927.6 283.7661
WOE-SR 2502.0 1.1550 24475.2 27.8896 123246.4 400.8106
WOE-DOM 2627.6 1.2130 21986.2 25.0534 106589.6 314.8106

Table 6.4: Tri-objective generalized assignment problems with 27, 48 and 75 variables
(Bauß and Stiglmayr, 2023c).

Table 6.4 shows the numerical results of the corresponding tri-objective generalized

assignment problems. For all tested problem sizes the combination of the local hypervolume

gap node selection with the most often fractional branching rule (HVG-MOF) is the best

choice regarding the number of created notes. However, this approach does not achieve the

best computation times, since the reduction of nodes does not compensate the relatively

high computational costs of the dynamic node selection strategy. Regarding the total

computation time, the combination BF-MOF seems to be overall the best choice. Although

the time of BF-MOF is outperformed by HVB-MOF for n = 48, we still consider BF-MOF

as the best choice overall, since the difference is so small (0.76%). Compared to the baseline

combination DF-MOF, we can reach a reduction of nodes by up to 46.2% and a decrease

of the total computation time by up to 33.1%. Note that all favorable combinations for

the general assignment problems use the most often fractional branching rule (MOF).

Concluding, we tested 24 different combinations of decision space branching rules and

node selection strategies and compared their results. The numerical tests show that the

best approach in each problem class regarding the number of nodes uses the node selec-

tion strategy based on the local hypervolume gap. This again shows the huge impact of

105

Chapter 6 Branching and Queuing for Multi-objective Branch and Bound

this strategy, which is introduced in Section 4.1 and extended to multiple objectives in

Section 5.1. Due to its costly computation, this node selection strategy is not the best re-

garding the computation time, but it still yields competitive run times. Furthermore, the

corresponding branching rules are the two dynamic ones — most often fractional (MOF)

and how fractional (HF).

106

7 Conclusion

In this thesis, we investigate multi-objective branch and bound algorithms. We focus

on a selection of its key components and propose numerous approaches and techniques

to improve the performance. All approaches and components are described in detail for

(MO01LP) but can be easily extended to (MOILP).

We start by augmenting bi-objective branch and bound algorithms. Since the two-

dimensional objective space holds certain properties, like the natural order, it is plausible

to distinguish between the bi-objective and the multi-objective case with p ≥ 3 objec-

tive functions. We introduce two new node selection strategies, based on different gap

measurements between lower and upper bound. Numerical tests show that the local hy-

pervolume gap strategy outperforms the global hypervolume gap strategy. Using the local

hypervolume gap node selection strategy, we can reduce the number of created nodes in

the branch and bound tree by up to 76% and the computation time by up 73%. This

has a huge impact on the performance of bi-objective branch and bound by just changing

the node selection strategy. Additionally, we hybridized the branch and bound by adap-

tively solving scalarizations of the root node problem to integer optimality. This proposed

procedure yields objective space information to improve upper and lower bounds which

in turn results in a higher fathoming rate. The best performing proposed approach relies

on the new local hypervolume gap node selection strategy and the usage of weighted sum

and augmented weighted Tchebycheff scalarizations to improve the bound sets. We can

reduce the number of nodes by up to 83% and the total computational time by up to 80%

compared to the proposed basic multi-objective branch and bound approach.

Since the proposed methods have a considerable impact on bi-objective branch and

bound, we extend the most promising approaches to the multi-objective case with p ≥ 3.

Some of the proposed methods have to be reconsidered and redesigned due to the different

structure of the non-dominated set. Other methods can be directly extended and adapted.

However, their impact on the performance shows to be different. We present two node

selection strategies, where one is based on the local hypervolume gap and the other one

is based on the hypervolume of a search zone. However, numerical tests show that there

is no best strategy among these since their performance is depending on the considered

problem class. This is due to the structure of its non-dominated set, namely the number

of non-dominated points, the number of local upper bounds and the number of facets of

the lower bound sets. In the considered benchmark instances, the number of explored

107

Chapter 7 Conclusion

nodes is reduced by up to 82% and the total computation time is reduced by up to 22%

if the node selection strategy based on the local hypervolume gap is used. By choosing

the hypervolume of a search-zone box strategy, the number of nodes can be reduced by

up to 53% and the computation time is reduced by up to 39%. Furthermore, we present

ways to improve the bounds by solving scalarizations to integer optimality. We propose

a warmstarting scheme, a way to omit the computation of the complete lower bound set

and an adaptive scheme to possibly generate unsupported non-dominated points. With

different combinations of these approaches we can reduce the number of explored nodes

by up to 82% and the total computation time can be reduced by up to 41%.

After considering the components of node selection and bounds of multi-objective branch

and bound, we compare the performance of different static and dynamic branching rules

and node selection strategies. This is the first comprehensive study of branching rules and

node selection strategies for multi-objective branch and bound in literature. We test 24

different combinations and show that for each considered problem class the best approach

regarding the number of nodes uses our proposed node selection strategy based on the

local hypervolume gap. This again shows the significant impact of the new node selection

strategy.

108

Nomenclature

D(U) Set of local upper bounds

I(ν) Set of free variables in node ν

cl() Closure operator

conv() Convex hull operator

L Lower bound set

H Hyperplane seperating a space into two half-spaces

PH Half-space representation of polyhedron P

PVR Vertex-ray representation of polyhedron P

ν Node in a branch and bound tree

Rp> {y ∈ Rp : y > 0}

Rp≥ {y ∈ Rp : y ≥ 0}

Rp= {y ∈ Rp : y = 0}

U Upper bound set

A{ Complement of the set A

m Number of constraints

n Number of variables

p Number of objectives

x ∈ Rn Solution of an optimization problem

X Set of feasible solutions

XU Incumbent list

XE Set of efficient solutions

XWE Set of weakly efficient solutions

Y Set of points in the objective space with a corresponding feasible solution

YN Set of non-dominated points

109

Chapter 7 Conclusion

YSN1 Set of supported non-dominated extreme points

YSN2 Set of supported non-dominated non-extreme points

YSN Set of supported non-dominated points

YWN Set of weakly non-dominated points

z(x) ∈ Rp Objective vector of a solution x

110

Bibliography

Achterberg, T., T. Koch, and A. Martin (2005). “Branching rules revisited”. In: Operations

Research Letters 33.1, pp. 42–54. doi: 10.1016/j.orl.2004.04.002.

Adelgren, N. and A. Gupte (2022). “Branch-and-bound for biobjective mixed-integer linear

programming”. In: INFORMS Journal on Computing 34.2, pp. 909–933. doi: 10.1287/

ijoc.2021.1092.

An, D., S. N. Parragh, M. Sinnl, and F. Tricoire (2022). A matheuristic for tri-objective

binary integer programming. doi: 10.48550/ARXIV.2205.03386.

Aneja, Y. P. and K. P. K. Nair (1979). “Bicriteria transportation problem”. In: Manage-

ment Science 25.1, pp. 73–78. doi: 10.1287/mnsc.25.1.73.

Bauß, J. and M. Stiglmayr (2023a). Adaptive multi-objective branch and bound frame-

work. Git repository. url: https : / / git . uni - wuppertal . de / bauss / adaptive -

improvements-of-multi-objective-branch-and-bound.

Bauß, J. and M. Stiglmayr (2023b). Augmented bi-objective branch and bound frame-

work. Git repository. url: https://git.uni-wuppertal.de/bauss/augmented-bi-

objective-branch-and-bound.

Bauß, J. and M. Stiglmayr (2023c). GAP and CFLP test instances. Git repository. url:

https://git.uni-wuppertal.de/bauss/generalized-assignment-problem-test-

instances.

Bauß, J. and M. Stiglmayr (2024a). “Adapting branching and queuing for multi-objective

branch and bound”. In: Operations Research Proceedings 2023. Accepted for publicta-

tion. Springer. doi: 10.48550/arXiv.2311.05980.

Bauß, J. and M. Stiglmayr (2024b). “Augmenting bi-objective branch and bound by

scalarization-based information”. In: Mathematical Methods of Operations Research.

doi: 10.1007/s00186-024-00854-3.

Bauß, J., S. N. Parragh, and M. Stiglmayr (2023). “Adaptive improvements of multi-

objective branch and bound”. Submitted to EURO Journal on Computational Opti-

mization. doi: 10.48550/arXiv.2312.12192.

Bazgan, C., H. Hugot, and D. Vanderpooten (2009). “Solving efficiently the 0–1 multi-

objective knapsack problem”. In: Computers & Operations Research 36.1, pp. 260–279.

doi: 10.1016/j.cor.2007.09.009.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, p. 339.

111

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1287/ijoc.2021.1092
https://doi.org/10.1287/ijoc.2021.1092
https://doi.org/10.48550/ARXIV.2205.03386
https://doi.org/10.1287/mnsc.25.1.73
https://git.uni-wuppertal.de/bauss/adaptive-improvements-of-multi-objective-branch-and-bound
https://git.uni-wuppertal.de/bauss/adaptive-improvements-of-multi-objective-branch-and-bound
https://git.uni-wuppertal.de/bauss/augmented-bi-objective-branch-and-bound
https://git.uni-wuppertal.de/bauss/augmented-bi-objective-branch-and-bound
https://git.uni-wuppertal.de/bauss/generalized-assignment-problem-test-instances
https://git.uni-wuppertal.de/bauss/generalized-assignment-problem-test-instances
https://doi.org/10.48550/arXiv.2311.05980
https://doi.org/10.1007/s00186-024-00854-3
https://doi.org/10.48550/arXiv.2312.12192
https://doi.org/10.1016/j.cor.2007.09.009

Bibliography

Belotti, P., B. Soylu, and M. M. Wiecek (2013). A branch-and-bound algorithm for biob-

jective mixed-integer programs. Tech. rep. url: http://www.optimization-online.

org/DB_FILE/2013/01/3719.pdf.

Belotti, P., B. Soylu, and M. M. Wiecek (2016). “Fathoming rules for biobjective mixed

integer linear programs: Review and extensions”. In: Discrete Optimization 22, pp. 341–

363. doi: 10.1016/j.disopt.2016.09.003.

Benson, H. P. (1998). “An outer approximation algorithm for generating all efficient ex-

treme points in the outcome set of a multiple objective linear programming problem”.

In: Journal of Global Optimization 13.1, pp. 1–24. doi: 10.1023/A:1008215702611.

Bérubé, J.-F., M. Gendreau, and J.-Y. Potvin (2009). “An exact ε-constraint method for

bi-objective combinatorial optimization problems: Application to the traveling salesman

problem with profits”. In: European Journal of Operational Research 194.1, pp. 39–50.

doi: 10.1016/j.ejor.2007.12.014.

Bixby, R. E. (2012). “A brief history of linear and mixed-integer programming computa-

tion”. In: Documenta Mathematica.

Boland, N., H. Charkhgard, and M. Savelsbergh (2015). “A criterion space search algo-

rithm for biobjective integer programming: The balanced box method”. In: INFORMS

Journal on Computing 27.4, pp. 735–754. doi: 10.1287/ijoc.2015.0657.

Boland, N., H. Charkhgard, and M. Savelsbergh (2017). “The quadrant shrinking method:

A simple and efficient algorithm for solving tri-objective integer programs”. In: European

Journal of Operational Research 260.3, pp. 873–885. doi: 10.1016/j.ejor.2016.03.

035.

Bowman, V. J. (1976). “On the relationship of the Tchebycheff norm and the efficient fron-

tier of multiple-criteria objectives”. In: Lecture Notes in Economics and Mathematical

Systems. Springer Berlin Heidelberg, pp. 76–86. doi: 10.1007/978-3-642-87563-2_5.

Bökler, F. and P. Mutzel (2015). “Output-sensitive algorithms for enumerating the extreme

nondominated points of multiobjective combinatorial optimization problems”. In: Al-

gorithms - ESA 2015. Springer Berlin Heidelberg, pp. 288–299. doi: 10.1007/978-3-

662-48350-3_25.

Bökler, F., S. N. Parragh, M. Sinnl, and F. Tricoire (2023). “An outer approximation

algorithm for multi-objective mixed-integer linear and non-linear programming”. In:

Accepted for publication in: Mathematical Methods of Operations Research.

Chalmet, L., L. Lemonidis, and D. Elzinga (1986). “An algorithm for the bi-criterion

integer programming problem”. In: European Journal of Operational Research 25.2,

pp. 292–300. doi: 10.1016/0377-2217(86)90093-7.

Chankong, V. and Y. Haimes (1983). Multiobjective Decision Making: Theory and Method-

ology. North-Holland series in system science and engineering. North Holland.

112

http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf
http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf
https://doi.org/10.1016/j.disopt.2016.09.003
https://doi.org/10.1023/A:1008215702611
https://doi.org/10.1016/j.ejor.2007.12.014
https://doi.org/10.1287/ijoc.2015.0657
https://doi.org/10.1016/j.ejor.2016.03.035
https://doi.org/10.1016/j.ejor.2016.03.035
https://doi.org/10.1007/978-3-642-87563-2_5
https://doi.org/10.1007/978-3-662-48350-3_25
https://doi.org/10.1007/978-3-662-48350-3_25
https://doi.org/10.1016/0377-2217(86)90093-7

Bibliography

Cĺımaco, J. C. N. and M. M. B. Pascoal (2016). “An approach to determine unsupported

non-dominated solutions in bicriteria integer linear programs”. In: INFOR: Information

Systems and Operational Research 54.4, pp. 317–343. doi: 10.1080/03155986.2016.

1214448.

Dächert, K. and K. Klamroth (2014). “A linear bound on the number of scalarizations

needed to solve discrete tricriteria optimization problems”. In: Journal of Global Opti-

mization 61.4, pp. 643–676. doi: 10.1007/s10898-014-0205-z.

Dächert, K., J. Gorski, and K. Klamroth (2012). “An augmented weighted Tchebycheff

method with adaptively chosen parameters for discrete bicriteria optimization prob-

lems”. In: Computers & Operations Research 39.12, pp. 2929–2943. doi: 10.1016/j.

cor.2012.02.021.

Dächert, K., K. Klamroth, R. Lacour, and D. Vanderpooten (2017). “Efficient compu-

tation of the search region in multi-objective optimization”. In: European Journal of

Operational Research 260.3, pp. 841–855. doi: 10.1016/j.ejor.2016.05.029.

De Santis, M., G. Eichfelder, J. Niebling, and S. Rocktäschel (2020). “Solving multiobjec-

tive mixed integer convex optimization problems”. In: SIAM Journal on Optimization

30.4, pp. 3122–3145. doi: 10.1137/19m1264709.

Dechter, R. and J. Pearl (1985). “Generalized best-first search strategies and the optimality

of A∗”. In: Journal of the ACM 32.3, pp. 505–536. doi: 10.1145/3828.3830.

Dreyfus, S. E. (1977). The Art and Theory of Dynamic Programming. Academic Press,

p. 284.

Ehrgott, M. (2005). Multicriteria Optimization. Springer. doi: 10.1007/3-540-27659-9.

Ehrgott, M. and X. Gandibleux (2000). “A survey and annotated bibliography of multiob-

jective combinatorial optimization”. In: OR Spectrum 22.4, pp. 425–460. doi: 10.1007/

s002910000046.

Ehrgott, M. and X. Gandibleux (2001). “Bounds and bound sets for biobjective combinato-

rial optimization problems”. In: Lecture Notes in Economics and Mathematical Systems.

Springer Berlin Heidelberg, pp. 241–253. doi: 10.1007/978-3-642-56680-6_22.

Ehrgott, M. and X. Gandibleux (2007). “Bound sets for biobjective combinatorial opti-

mization problems”. In: Computers & Operations Research 34.9, pp. 2674–2694. doi:

10.1016/j.cor.2005.10.003.

Ehrgott, M. and D. Tenfelde-Podehl (2003). “Computation of ideal and Nadir values and

implications for their use in MCDM methods”. In: European Journal of Operational

Research 151.1, pp. 119–139. doi: 10.1016/s0377-2217(02)00595-7.

Ehrgott, M., A. Löhne, and L. Shao (2012). “A dual variant of Benson’s “outer approx-

imation algorithm” for multiple objective linear programming”. In: Journal of Global

Optimization 52, pp. 757–778.

113

https://doi.org/10.1080/03155986.2016.1214448
https://doi.org/10.1080/03155986.2016.1214448
https://doi.org/10.1007/s10898-014-0205-z
https://doi.org/10.1016/j.cor.2012.02.021
https://doi.org/10.1016/j.cor.2012.02.021
https://doi.org/10.1016/j.ejor.2016.05.029
https://doi.org/10.1137/19m1264709
https://doi.org/10.1145/3828.3830
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/978-3-642-56680-6_22
https://doi.org/10.1016/j.cor.2005.10.003
https://doi.org/10.1016/s0377-2217(02)00595-7

Bibliography

Eichfelder, G., P. Kirst, L. Meng, and O. Stein (2021). “A general branch-and-bound

framework for continuous global multiobjective optimization”. In: Journal of Global

Optimization 80.1, pp. 195–227. doi: 10.1007/s10898-020-00984-y.

Forget, N. and S. N. Parragh (2023). “Enhancing branch-and-bound for multiobjective 0-1

programming”. In: INFORMS Journal on Computing. doi: 10.1287/ijoc.2022.0299.

Forget, N., S. L. Gadegaard, K. Klamroth, L. R. Nielsen, and A. Przybylski (2022a).

“Branch-and-bound and objective branching with three or more objectives”. In: Com-

puters & Operations Research 148, p. 106012. doi: 10.1016/j.cor.2022.106012.

Forget, N., S. L. Gadegaard, and L. R. Nielsen (2022b). “Warm-starting lower bound

set computations for branch-and-bound algorithms for multi objective integer linear

programs”. In: European Journal of Operational Research 302.3, pp. 909–924.

Fukuda, K. and A. Prodon (1996). “Double description method revisited”. In: Lecture

Notes in Computer Science. Springer Berlin Heidelberg, pp. 91–111. doi: 10.1007/3-

540-61576-8_77.

Gadegaard, S. L., L. R. Nielsen, and M. Ehrgott (2019). “Bi-objective branch-and-cut al-

gorithms based on LP relaxation and bound sets”. In: INFORMS Journal on Computing

31.4, pp. 790–804. doi: 10.1287/ijoc.2018.0846.

Gass, S. and T. Saaty (1955). “The computational algorithm for the parametric objective

function”. In: Naval Research Logistics Quarterly 2.1-2, pp. 39–45. doi: 10.1002/nav.

3800020106.

Geoffrion, A. M. (1968). “Proper efficiency and the theory of vector maximization”. In:

Journal of Mathematical Analysis and Applications 22.3, pp. 618–630. doi: 10.1016/

0022-247x(68)90201-1.

Haimes, Y., L. Lasdon, and D. Wismer (1971). “On a bicriterion formation of the problems

of integrated system identification and system optimization”. In: IEEE Transactions on

Systems, Man, and Cybernetics, pp. 296–297.

Hamacher, H. W., C. R. Pedersen, and S. Ruzika (2007). “Finding representative systems

for discrete bicriterion optimization problems”. In: Operations Research Letters 35.3,

pp. 336–344. doi: 10.1016/j.orl.2006.03.019.

Hamel, A. H., A. Löhne, and B. Rudloff (2013). “Benson type algorithms for linear vector

optimization and applications”. In: Journal of Global Optimization 59.4, pp. 811–836.

doi: 10.1007/s10898-013-0098-2.

Jesus, A. D., L. Paquete, B. Derbel, and A. Liefooghe (2021). “On the design and anytime

performance of indicator-based branch and bound for multi-objective combinatorial op-

timization”. In: Proceedings of the Genetic and Evolutionary Computation Conference.

ACM. doi: 10.1145/3449639.3459360.

114

https://doi.org/10.1007/s10898-020-00984-y
https://doi.org/10.1287/ijoc.2022.0299
https://doi.org/10.1016/j.cor.2022.106012
https://doi.org/10.1007/3-540-61576-8_77
https://doi.org/10.1007/3-540-61576-8_77
https://doi.org/10.1287/ijoc.2018.0846
https://doi.org/10.1002/nav.3800020106
https://doi.org/10.1002/nav.3800020106
https://doi.org/10.1016/0022-247x(68)90201-1
https://doi.org/10.1016/0022-247x(68)90201-1
https://doi.org/10.1016/j.orl.2006.03.019
https://doi.org/10.1007/s10898-013-0098-2
https://doi.org/10.1145/3449639.3459360

Bibliography

Jorge, J. (2010). “Nouvelles propositions pour la résolution exacte du sac à dos multi-

objectif unidimensionnel en variables binaires. (New propositions for the exact solution

of the unidimensional multi-criteria knapsack problem with binary variables).” PhD

thesis. University of Nantes.

Jozefowiez, N., G. Laporte, and F. Semet (2012). “A generic branch-and-cut algorithm for

multiobjective optimization problems: Application to the multilabel traveling salesman

problem”. In: INFORMS Journal on Computing 24.4, pp. 554–564. doi: 10.1287/ijoc.

1110.0476.

Kaliszewski, I. (1987). “A modified weighted tchebycheff metric for multiple objective

programming”. In: Computers & Operations Research 14.4, pp. 315–323. doi: 10.1016/

0305-0548(87)90069-4.

Kellerer, H., U. Pferschy, and D. Pisinger (2004). Knapsack Problems. Springer Berlin

Heidelberg. doi: 10.1007/978-3-540-24777-7.

Kirlik, G. and S. Sayın (2014). “A new algorithm for generating all nondominated solutions

of multiobjective discrete optimization problems”. In: European Journal of Operational

Research 232.3, pp. 479–488. doi: 10.1016/j.ejor.2013.08.001.

Kirlik, G. and S. Sayın (2015). “Computing the nadir point for multiobjective discrete

optimization problems”. In: Journal of Global Optimization 62.1, pp. 79–99. doi: 10.

1007/s10898-014-0227-6.

Kiziltan, G. and E. Yucaoğlu (1983). “An algorithm for multiobjective zero-one linear

programming”. In: Management Science 29.12, pp. 1444–1453. doi: 10.1287/mnsc.29.

12.1444.

Klamroth, K. and M. M. Wiecek (2000). “Dynamic programming approaches to the mul-

tiple criteria knapsack problem”. In: Naval Research Logistics (NRL) 47.1, pp. 57–76.

doi: 10.1002/(sici)1520-6750(200002)47:1<57::aid-nav4>3.0.co;2-4.

Klamroth, K., R. Lacour, and D. Vanderpooten (2015). “On the representation of the

search region in multi-objective optimization”. In: European Journal of Operational

Research 245.3, pp. 767–778. doi: 10.1016/j.ejor.2015.03.031.

Klein, D. and E. Hannan (1982). “An algorithm for the multiple objective integer linear

programming problem”. In: European Journal of Operational Research 9.4, pp. 378–385.

doi: 10.1016/0377-2217(82)90182-5.

Klötzler, R. (1978). “Multiobjective dynamic programming”. In: Mathematische Oper-

ationsforschung und Statistik. Series Optimization 9.3, pp. 423–426. doi: 10.1080/

02331937808842507.

Kostreva, M. M. and L. C. Lancaster (2008). “Multiple objective dynamic programming”.

In: Encyclopedia of Optimization. Springer US, pp. 2497–2503. doi: 10.1007/978-0-

387-74759-0_430.

115

https://doi.org/10.1287/ijoc.1110.0476
https://doi.org/10.1287/ijoc.1110.0476
https://doi.org/10.1016/0305-0548(87)90069-4
https://doi.org/10.1016/0305-0548(87)90069-4
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1016/j.ejor.2013.08.001
https://doi.org/10.1007/s10898-014-0227-6
https://doi.org/10.1007/s10898-014-0227-6
https://doi.org/10.1287/mnsc.29.12.1444
https://doi.org/10.1287/mnsc.29.12.1444
https://doi.org/10.1002/(sici)1520-6750(200002)47:1<57::aid-nav4>3.0.co;2-4
https://doi.org/10.1016/j.ejor.2015.03.031
https://doi.org/10.1016/0377-2217(82)90182-5
https://doi.org/10.1080/02331937808842507
https://doi.org/10.1080/02331937808842507
https://doi.org/10.1007/978-0-387-74759-0_430
https://doi.org/10.1007/978-0-387-74759-0_430

Bibliography

Köksalan, M. and B. Lokman (2015). “Finding nadir points in multi-objective integer

programs”. In: Journal of Global Optimization 62.1, pp. 55–77. doi: 10.1007/s10898-

014-0212-0.

Laumanns, M., L. Thiele, and E. Zitzler (2006). “An efficient, adaptive parameter variation

scheme for metaheuristics based on the epsilon-constraint method”. In: European Jour-

nal of Operational Research 169.3, pp. 932–942. doi: 10.1016/j.ejor.2004.08.029.

Leitner, M., I. Ljubić, M. Sinnl, and A. Werner (2016). “ILP heuristics and a new exact

method for bi-objective 0/1 ILPs: Application to FTTx-network design”. In: Computers

& Operations Research 72, pp. 128–146. doi: 10.1016/j.cor.2016.02.006.

Löhne, A. and B. Weißing (2017). “The vector linear program solver Bensolve – notes on

theoretical background”. In: European Journal of Operational Research 260.3, pp. 807–

813. doi: 10.1016/j.ejor.2016.02.039.

Mavrotas, G. and D. Diakoulaki (1998). “A branch and bound algorithm for mixed zero-one

multiple objective linear programming”. In: European Journal of Operational Research

107.3, pp. 530–541. doi: 10.1016/s0377-2217(97)00077-5.

Mavrotas, G. and D. Diakoulaki (2005). “Multi-criteria branch and bound: A vector max-

imization algorithm for mixed 0-1 multiple objective linear programming”. In: Applied

Mathematics and Computation 171.1, pp. 53–71. doi: 10.1016/j.amc.2005.01.038.

Mavrotas, G. (2009). “Effective implementation of the ε-constraint method in multi-

objective mathematical programming problems”. In: Applied Mathematics and Com-

putation 213.2, pp. 455–465. doi: 10.1016/j.amc.2009.03.037.

Miettinen, K. (1998). Nonlinear Multiobjective Optimization. Springer US. doi: 10.1007/

978-1-4615-5563-6.

Morrison, D. R., S. H. Jacobson, J. J. Sauppe, and E. C. Sewell (2016). “Branch-and-

bound algorithms: A survey of recent advances in searching, branching, and pruning”.

In: Discrete Optimization 19, pp. 79–102. doi: 10.1016/j.disopt.2016.01.005.

Nemhauser, G. and L. Wolsey (1988). Integer and Combinatorial Optimization. John Wiley

& Sons, Inc. doi: 10.1002/9781118627372.

Nemhauser, G. L. (1966). Introduction to Dynamic Programming. John Wiley & Sons Inc,

p. 278.

Özlen, M. and M. Azizoğlu (2009). “Multi-objective integer programming: A general ap-

proach for generating all non-dominated solutions”. In: European Journal of Operational

Research 199.1, pp. 25–35. doi: 10.1016/j.ejor.2008.10.023.

Özpeynirci, Ö. and M. Köksalan (2010). “An exact algorithm for finding extreme sup-

ported nondominated points of multiobjective mixed integer programs”. In: Manage-

ment Science 56.12, pp. 2302–2315. doi: 10.1287/mnsc.1100.1248.

116

https://doi.org/10.1007/s10898-014-0212-0
https://doi.org/10.1007/s10898-014-0212-0
https://doi.org/10.1016/j.ejor.2004.08.029
https://doi.org/10.1016/j.cor.2016.02.006
https://doi.org/10.1016/j.ejor.2016.02.039
https://doi.org/10.1016/s0377-2217(97)00077-5
https://doi.org/10.1016/j.amc.2005.01.038
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.1007/978-1-4615-5563-6
https://doi.org/10.1007/978-1-4615-5563-6
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1002/9781118627372
https://doi.org/10.1016/j.ejor.2008.10.023
https://doi.org/10.1287/mnsc.1100.1248

Bibliography

Parragh, S. N. and F. Tricoire (2019). “Branch-and-bound for bi-objective integer pro-

gramming”. In: INFORMS Journal on Computing 31.4, pp. 805–822. doi: 10.1287/

ijoc.2018.0856.

Przybylski, A. and X. Gandibleux (2017). “Multi-objective branch and bound”. In: Euro-

pean Journal of Operational Research 260.3, pp. 856–872. doi: 10.1016/j.ejor.2017.

01.032.

Przybylski, A., X. Gandibleux, and M. Ehrgott (2008). “Two phase algorithms for the

bi-objective assignment problem”. In: European Journal of Operational Research 185.2,

pp. 509–533. doi: 10.1016/j.ejor.2006.12.054.

Przybylski, A., X. Gandibleux, and M. Ehrgott (2010a). “A recursive algorithm for find-

ing all nondominated extreme points in the outcome set of a multiobjective integer

programme”. In: INFORMS Journal on Computing 22.3, pp. 371–386. doi: 10.1287/

ijoc.1090.0342.

Przybylski, A., X. Gandibleux, and M. Ehrgott (2010b). “A two phase method for multi-

objective integer programming and its application to the assignment problem with three

objectives”. In: Discrete Optimization 7.3, pp. 149–165. doi: 10.1016/j.disopt.2010.

03.005.

Przybylski, A., K. Klamroth, and R. Lacour (2019). A simple and efficient dichotomic

search algorithm for multi-objective mixed integer linear programs. arXiv: 1911.08937

[math.OC].

Schrijver, A. (2003). Combinatorial Optimization. Springer, p. 1800.

Serafini, P. (1987). “Some considerations about computational complexity for multi ob-

jective combinatorial problems”. In: Recent Advances and Historical Development of

Vector Optimization. Springer Berlin Heidelberg, pp. 222–232. doi: 10.1007/978-3-

642-46618-2_15.

Sourd, F. and O. Spanjaard (2008). “A multiobjective branch-and-bound framework: appli-

cation to the biobjective spanning tree problem”. In: INFORMS Journal on Computing

20.3, pp. 472–484. doi: 10.1287/ijoc.1070.0260.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation and Applica-

tion. John Wiley, New York.

Steuer, R. E. and E.-U. Choo (1983). “An interactive weighted Tchebycheff procedure for

multiple objective programming”. In: Mathematical Programming 26.3, pp. 326–344.

doi: 10.1007/BF02591870.

Stidsen, T. and K. A. Andersen (2018). “A hybrid approach for biobjective optimization”.

In: Discrete Optimization 28, pp. 89–114. doi: 10.1016/j.disopt.2018.02.001.

117

https://doi.org/10.1287/ijoc.2018.0856
https://doi.org/10.1287/ijoc.2018.0856
https://doi.org/10.1016/j.ejor.2017.01.032
https://doi.org/10.1016/j.ejor.2017.01.032
https://doi.org/10.1016/j.ejor.2006.12.054
https://doi.org/10.1287/ijoc.1090.0342
https://doi.org/10.1287/ijoc.1090.0342
https://doi.org/10.1016/j.disopt.2010.03.005
https://doi.org/10.1016/j.disopt.2010.03.005
http://arxiv.org/abs/1911.08937
http://arxiv.org/abs/1911.08937
https://doi.org/10.1007/978-3-642-46618-2_15
https://doi.org/10.1007/978-3-642-46618-2_15
https://doi.org/10.1287/ijoc.1070.0260
https://doi.org/10.1007/BF02591870
https://doi.org/10.1016/j.disopt.2018.02.001

Bibliography

Stidsen, T., K. A. Andersen, and B. Dammann (2014). “A branch and bound algorithm for

a class of biobjective mixed integer programs”. In: Management Science 60.4, pp. 1009–

1032. doi: 10.1287/mnsc.2013.1802.

Tuyttens, D., J. Teghem, P. Fortemps, and K. V. Nieuwenhuyze (2000). “Performance of

the MOSA method for the bicriteria assignment Problem”. In: Journal of Heuristics

6.3, pp. 295–310. doi: 10.1023/a:1009670112978.

Ulungu, E. and J. Teghem (1995). “The two phases method: An efficient procedure to

solve bi-objective combinatorial optimization problems”. In: Foundations of Computing

and Decision Sciences 20, pp. 149–156.

Ulungu, E. and J. Teghem (1997). “Solving multi-objective knapsack problem by a branch-

and-bound procedure”. In: Multicriteria Analysis. Springer Berlin Heidelberg, pp. 269–

278. doi: 10.1007/978-3-642-60667-0_26.

Vincent, T., F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux (2013). “Multiple ob-

jective branch and bound for mixed 0-1 linear programming: Corrections and improve-

ments for the biobjective case”. In: Computers & Operations Research 40.1, pp. 498–

509. doi: 10.1016/j.cor.2012.08.003.

Visée, M., J. Teghem, M. Pirlot, and E. Ulungu (1998). “Two-phases method and branch

and bound procedures to solve the bi–objective knapsack problem”. In: Journal of Global

Optimization 12.2, pp. 139–155. doi: 10.1023/A:1008258310679.

Ziegler, G. M. (1995). Lectures on Polytopes. Springer New York. doi: 10.1007/978-1-

4613-8431-1.

Zitzler, E. and L. Thiele (1999). “Multiobjective evolutionary algorithms: a comparative

case study and the strength Pareto approach”. In: IEEE Transactions on Evolutionary

Computation 3.4, pp. 257–271. doi: 10.1109/4235.797969.

118

https://doi.org/10.1287/mnsc.2013.1802
https://doi.org/10.1023/a:1009670112978
https://doi.org/10.1007/978-3-642-60667-0_26
https://doi.org/10.1016/j.cor.2012.08.003
https://doi.org/10.1023/A:1008258310679
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1109/4235.797969

	Contents
	Introduction
	Outline of this Thesis
	Publications

	Multi-objective Optimization Models and Properties
	Multi-objective Optimization Models
	Optimality Conditions
	Bound Sets
	Polyhedral Theory

	Solution Methods
	Objective Space Methods
	-constraint Method
	Weighted Sum Method
	Augmented Weighted Tchebycheff Method
	Search Region Splitting Methods
	Two-phase Methods

	Decision Space Methods
	Multi-objective Dynamic Programming
	Multi-objective Branch and Bound

	Augmenting Bi-objective Branch and Bound by Scalarization-Based Information
	A New Bi-objective Branching Strategy
	Augmenting Bi-objective Branch and Bound by Solving IP Scalarizations
	Using Weighted Sum Scalarizations
	Using Augmented Weighted Tchebycheff Scalarizations
	Algorithmic Control of IP Scalarizations

	Numerical Tests
	Bi-objective Multidimensional Knapsack Problems
	Bi-objective Assignment Problems
	Bi-objective Discrete Uncapacitated Facility Location Problems
	Summary

	Adaptive Improvements of Multi-objective Branch and Bound
	A New Multi-objective Node Selection Strategy
	Solving IP Scalarizations to Improve the Upper and Lower Bound Set
	Warmstarting the Bound Sets
	Improving the Upper Bound Set by -constraint Scalarizations
	Using Simple Lower Bound Sets
	Algorithmic Control of the Presented Approaches

	Numerical Tests

	Branching and Queuing for Multi-objective Branch and Bound
	Sequencing of Subproblems
	Multi-objective Branching Rules
	Multi-objective Node Selection Strategies

	Numerical Tests

	Conclusion
	Nomenclature
	Bibliography

