Advances in Lidar Point Cloud
Segmentation for Automotive
Applications

Segmenting Outside the Box

von der Fakultit fiir Elektrotechnik, Informationstechnik und Medientechnik
der Bergischen Universitidt Wuppertal genehmigte

Dissertation

zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften

von

Frederik Lenard Hasecke

aus
Solingen
Wuppertal 2023
Tag der Priifung 08.11.2023
Hauptreferent Prof. Dr.-Ing. Anton Kummert

Korreferent Prof. Dr.-Ing. Bin Yang

Frederik Lenard Hasecke
Advances in Lidar Point Cloud Segmentation for Automotive Applications
Segmenting Outside the Box

Dissertation

Abstract

This dissertation presents a comprehensive study on novel lidar segmentation techniques and their
applications.

The first part focuses on the development of neural networks and heuristic algorithms to perform
tasks such as instance, semantic, and panoptic segmentation of lidar point clouds. These methods

have made significant advancements and hold promise for various practical applications.

The second part introduces novel techniques in lidar augmentation and domain adaptation. These
methods enhance the performance of segmentation algorithms, ensuring their robustness in the face
of changes in sensor configuration and environmental conditions. Furthermore, they enable the
training and application of segmentation networks with high effectiveness, even when dealing with
limited or no annotations.

In the third part novel applications based on lidar segmentation are introduced. The applications
include the creation of maps that represent the environment’s geometric and semantic informa-
tion, real-time object recognition on a single CPU core, and re-simulation environments designed
specifically for training advanced driver assistance systems.

Furthermore, the techniques devised in the second part were adapted and applied in a public
object recognition competition, where the proposed method secured the first-place position, further

validating their effectiveness and superiority.

The research findings from this study serve as compelling evidence for the effectiveness and efficiency
of the proposed methods. These methods hold significant practical value in real-world scenarios and
contribute to the advancement of lidar segmentation for autonomous systems. By showcasing their
applicability and impact, this work paves the way for further developments and improvements in the
field, ultimately driving progress in autonomous systems.

Zusammenfassung

Diese Dissertation bietet eine umfassende Studie iiber neuartige Lidar-Segmentierungsverfahren und
ihre verschiedenen Anwendungen.

Der erste Teil der Studie konzentriert sich auf die Entwicklung neuronaler Netze und heuristischer
Algorithmen fiir verschiedene Lidar-Punktwolken-Segmentierungsaufgaben, einschlieSlich Instanz-,
semantischer und panoptischer Segmentierung. Diese Methoden haben signifikante Fortschritte
erzielt und weisen grofles Potenzial fiir praktische Anwendungen auf.

Im zweiten Teil der Dissertation werden innovative Techniken zur Lidar Datenaugmentierung und
Dominenanpassung vorgestellt. Diese Techniken verbessern die Leistung der Segmentierungsalgo-
rithmen und gewihrleisten ihre Widerstandsfihigkeit gegeniiber Anderungen der Sensorkonfiguration
und der Umweltbedingungen. Dariiber hinaus ermoglichen sie ein effektives Training und den Einsatz

von Segmentierungsnetzwerken, selbst bei begrenzten oder fehlenden Annotationen.

Im dritten Teil werden neue Anwendungen auf der Grundlage der Lidar-Segmentierung vorgestellt.
Die Anwendungen umfassen die Erstellung von Karten, die die geometrischen und semantischen
Informationen der Umgebung darstellen, Objekterkennung in Echtzeit auf einem einzigen CPU-Kern
und Re-Simulationsumgebungen, die speziell fiir das Training fortschrittlicher Fahrerassistenzsys-

teme entwickelt wurden.

Weiterhin wurden die im zweiten Teil vorgestellten Techniken angepasst und erfolgreich in einem
offentlichen Wettbewerb zur Objekterkennung angewandt, wo sie den ersten Platz belegten, was ihre
Effektivitit und Uberlegenheit weiter bestiitigt.

Die in dieser Studie vorgestellten Forschungsergebnisse liefern tiberzeugende Beweise fiir die Wirk-
samkeit und Effizienz der vorgeschlagenen Methoden. Diese Methoden besitzen einen praktischen
Wert in realen Szenarien und tragen zur Weiterentwicklung der Lidar-Segmentierung fiir autonome
Systeme bei. Durch die Demonstration ihrer Anwendbarkeit und Wirkung schafft diese Arbeit die
Voraussetzungen fiir weitere Fortschritte und Verbesserungen auf diesem Gebiet und treibt letztlich

den Fortschritt bei autonomen Systemen voran.

Acknowledgement

I would like to express my deepest gratitude to my supervisor Prof. Dr.-Ing. Anton Kummert for
his unwavering support, guidance, and encouragement even during the times when our papers were
repeatedly rejected, his belief in my abilities kept me motivated and determined to persevere.

Furthermore I would like to express my gratitude to Dennis Miiller and Christian Nunn for their
support in helping me secure the scholarship for my PhD. I am deeply appreciative of the trust they
placed in me and their belief in my abilities.

I am deeply grateful to Andre Paus and Lukas Hahn for giving me the chance to participate in the
"@CITY" project that led to my masters thesis and my PhD. The trust they placed in me was crucial

in starting my academic journey. I am forever appreciative for the opportunity to work with them.

I would like to extend my sincere gratitude to Lutz Roese-Koerner and Urs Zimmermann, the two
Product Owners I had the pleasure of working with. I am deeply grateful for their guidance and
support, and even more so the way they shielded me from the industry-related challenges as much as
possible for me to focus on my research. Their mentorship and dedication have been invaluable and
I am truly grateful for the opportunity to work with them. Their support has not only helped me to
complete my research but also prepared me for the next step in my career.

I would also like to express my sincere gratitude to my colleagues and fellow PhD students, in
alphabetical order, Ido Freeman, Lukas Hahn, Martin Alsfasser and Pascal Colling for the stimulating
discussions, constructive feedback, and collaborative spirit throughout the duration of my PhD. Their
support and camaraderie have been an integral part of my academic journey. I have learned a lot
from all of them and their contributions have been invaluable. Their friendship and support have

been a ever present motivation and inspiration throughout my PhD.

On a personal note, I would love to express my heartfelt appreciation to my parents Bogusia
Hasecke and Jan Ulrich Hasecke, and my brother Jan Filip Tristan Hasecke for their unwavering
encouragement throughout my journey. Their love has been a constant source of strength and

inspiration.

And lastly, Rebecca, without your support in the past years I would not have been able to write
these words. From the gentle support, to the harsh kicks in the butt you always knew what to do and
what to say to bring me back on track. Your constant encouragement and belief in me have been my
greatest source of motivation and strength. You are my confidante, and my best friend. Your support
has been invaluable and I cannot express my gratitude enough. Your willingness to manage and take
care of our important life matters, to give me the time and strength to focus on my research is truly
admirable and I am forever grateful for your sacrifices. Your love and support have meant everything
to me and I am truly blessed to have you in my life. More than anyone else, I am most thankful for
you and the role you have played in my academic but more so my personal life.

vii

Contents

Contents

1 Introduction
1.1 Main Contributions e
1.2 Publications e e e

2 Fundamentals
2.1 Lidar Sensor Fundamentals
2.1.1 Automotive Lidar Sensors
2.2 DeepLearning e
2.2.1 Feedforward Neural Networks
2.2.2 Convolutional Neural Networks
2.23 Segmentation e e
2.3 DeepLearningonLidarData 0L,

I Developing Novel Algorithms and Networks for Lidar Segmenta-
tion

3 Contributions to Instance Segmentation:

Developing a New Clustering Algorithm for Lidar Data

3.1 Related Work L
3.1.1 Clustering Algorithms

3.2 Fast Lidar Image Clustering: Method
3.2.1 Ground Extraction
322 Clustering ot e e e e

3.3 Fast Lidar Image Clustering: Evaluation
33,1 Runtime. e
3.3.2 Segmentation Quality

3.4 Conclusion e

4 Contributions to Semantic Segmentation:

Creating an Advanced Network Architecture for Three-Dimensional Semantic

Segmentation of Lidar Point Clouds

4.1 RelatedWork e

4.2 RangePillars: Method
4.2.1 PointCloud to RangePillars
4.2.2 Multi-Scale Pillar Feature Aggregation
423 ImageBackbone L

ix

27

4.2.4 Pillar-Pixel-Point Classification 52

425 Hydraloss 53
4.3 RangePillars: Evaluation 55
43.1 AblationStudy 56
432 ProjectionCleaner 57
433 BenchmarkResults o 59
44 Conclusion e 60

Contributions to Panoptic Segmentation:
Developing Novel and Improved Methods for Panoptic Point Cloud Segmen-

tation 61
5.1 Related Work 62
5.2 Lidar Cluster Classification 62
5.2.1 Lidar Cluster Classification: Method 62
5.2.2 Lidar Cluster Classification: Evaluation 65
5.3 Lidar Image Panoptic Segmentation 67
5.3.1 Lidar Image Panoptic Segmentation: Method 67
5.3.2 Lidar Image Panoptic Segmentation: Evaluation 72
54 Conclusion 74

Enhancing Lidar Segmentation Perception and Adaptability: Novel
Techniques for Data Augmentation and Domain Adaptation 77

Developing Advanced Lidar Point Cloud Augmentation Methods for Improved

Segmentation 79
6.1 Related Work 81
6.1.1 Global Augmentations 81
6.1.2 Local Augmentations 81
6.1.3 Context Augmentationso 82
6.2 Structure Aware Lidar Augmentation Methods 83
6.2.1 Structure Aware Global Lidar Augmentation Methods 83
6.2.2 Structure Aware Point Cloud Injection 84
6.2.3 Structure Aware Point Cloud Fusion 85
6.3 Evaluation 87
6.3.1 Improving Segmentation 90
6.3.2 AblationStudy 91
6.3.3 Overcoming Data Scarcity 92
6.34 Stateofthe Art 92
6.4 Conclusion e 93
Enhancing Lidar Domain Adaptation for Robust Semantic Segmentation 95
7.1 Related Work 96
7.2 Lidar Domain Adaptation for Segmentation 97

7.2.1 Non-Causal Data Collection 97

722 Lidar Mesh Creation v 97

7.2.3 Virtual Lidar Sampling oo 99
7.2.4 Instance Injections 99
7.2.5 MixingDomains oL 100
7.2.6 PseudoLabels 102
7.3 Evaluation e e e e e 103
7.3.1 NuScenesto SemanticKITTT 103
7.3.2 SemanticKITTItoNuScenes 105
7.3.3 NuScenes to Velodyne AlphaPrime 107
7.3.4 SemanticKITTI to InnovizTwo 108
74 Conclusion e e e e e 109

lll Expanding the Horizons of Autonomous Driving: Novel Applica-
tions of Lidar Segmentation 111

8 Driving Forward with Lidar Segmentation:

Innovative Applications in the Automotive Industry 113
8.1 Lidar Segmentation for Radar Segmentation 115
8.1.1 RelatedWork 116
8.1.2 Method 117
8.1.3 Results 121
8.1.4 Conclusion 123
8.2 Lidar Segmentation for Online Detection 124
82.1 Method 125
822 Evaluation 126
823 Conclusion e 129
8.3 Lidar Segmentation for Closed Loop Re-Simulation 130
83.1 Method 131
8.3.2 Evaluation 134
833 Conclusion e 134
8.4 Lidar Segmentation Augmentation Techniques for Semi-Supervised Object Detection 136
84.1 Method 136
8.4.2 Evaluation 142
84.3 Submission 145
844 Conclusion 146

8.5 Conclusions on the Versatility and Effectiveness of Lidar Segmentation in Au-
tonomous Vehicles L 147
9 Conclusion and Outlook 149
Bibliography 153
Acronyms 167
Glossary 169

xi

xii

List of Figures

List of Tables

173

177

Introduction

Autonomous vehicles, or self-driving cars, have the potential to revolutionize transportation and
improve safety by eliminating human error. These vehicles use various sensors, such as cameras,
radar, ultrasonic, and lidar, to constantly scan their surroundings and make decisions based on the
collected data. By reducing the number of accidents caused by human factors such as distracted
or impaired driving, self-driving cars can enhance road safety. Furthermore, they can provide
greater mobility for elderly or disabled individuals who currently face transportation challenges
[65]. However, to gain acceptance from society and regulators, self-driving cars must demonstrate a
higher level of safety than human drivers, who already have a 99.999819% success rate in avoiding
crashes [64]. To achieve this, self-driving cars must process vast amounts of data from sensors and
other sources in real-time. This requires advanced machine learning algorithms and cutting-edge

engineering to ensure safe operations in various scenarios.

Creating a precise and dependable model of the environment is one of the primary challenges in
autonomous vehicle perception [146]. Humans create mental models of the environment using
various cognitive and sensory mechanisms, a complex process that accurately represents the shape,
position, properties, and context of all objects [170]. In contrast, lidar sensors, for example, generate
a three-dimensional point cloud of the environment by emitting laser light and measuring the time
it takes for the reflections to return [90]. Although the point cloud provides a rich and detailed
representation of the environment, it lacks inherent meaning or semantics. Therefore, specialized
algorithms and techniques are required to extract high-level abstract characteristics of the point cloud
data that are relevant and meaningful to the task at hand.

Lidar segmentation plays a crucial role in enabling autonomous vehicles to "see" and navigate through
their environment safely and efficiently, much like how human perception works. It involves breaking
down a point cloud obtained from a lidar sensor into smaller parts that correspond to different objects
or features within the environment. This is done by analyzing the characteristics of each point in
the cloud, namely its location and intensity, to determine which object it belongs to. By segmenting
the point cloud in this way, it becomes possible to detect and classify different objects within the
environment, such as vehicles, pedestrians, and obstacles. Lidar segmentation adds the missing
inherent meaning to the point clouds as explicit labels. These enable the autonomous vehicle’s
perception system to understand the layout and structure of the environment. This information is

crucial for anticipating and responding to dynamic events, such as a pedestrian crossing the road.

To provide some context, lidar segmentation is a well-studied problem in the field of autonomous
vehicles, and there are many approaches and algorithms that have been proposed in the literature to
segment separate instances of objects in general [149, 45, 220, 99] and specific objects and parts of
the environment [161, 162, 228, 7, 61, 132]. However, despite the progress made in this area, there

are still several challenges that need to be addressed.

One of the main challenges is the complexity and variability of the real-world environment [146].
Lidar sensors can generate noisy and incomplete data due to factors such as occlusions, reflections,
and interference from other sources [90]. Additionally, the geometry and appearance of objects can
vary greatly depending on factors such as sensor type [30, 166, 42, 60], environment [121], weather
[204], and seasonal changes [50]. These factors can make it difficult to develop robust and accurate

algorithms that are able to handle a wide range of scenarios.

Another challenge is the need for real-time processing and decision-making [146]. Autonomous
vehicles must be able to perceive and understand their environment in real-time to make safe and
timely decisions. This requires lidar segmentation algorithms that are efficient and fast enough to
process large amounts of data in real-time [45, 220, 99, 133].

Finally, there is a need for standardization and interoperability in algorithms that model the en-
vironment in autonomous vehicle perception. The integration of various sensor sources, such as
lidar, camera, and radar data, is crucial for creating a more complete and accurate model of the
environment. Combining different sensors using multi-modality and joint sensor reference frames
allows for capturing complementary information, improving the overall perception system’s relia-
bility and safety [62]. However, the integration of different sensor sources is a complex task that
requires advanced algorithms and techniques to handle the varied nature of data from different
sensors. Therefore, developing accurate and robust algorithms that can effectively utilize information
from different sensors is a critical challenge for the field of autonomous vehicle perception in general
and especially for segmentation of different sensor data.

This thesis investigates the role of lidar segmentation in the perception system of autonomous
vehicles and presents novel approaches to improve its accuracy and efficiency. The main research
question driving this work is oriented towards the presented challenges:

How can lidar segmentation be utilized to enhance the capabilities and improve the safety of
autonomous vehicles?

The ideas and methods proposed in this thesis are evaluated based on their practical application in
the automotive industry. Lidar segmentation is a complex problem that involves balancing various
conflicting goals, such as high performance and low cost or real-time run-ability in a vehicle and high
fault tolerance. Furthermore, there is a trade-off between the benefits of three-dimensional dense
information and its usability in navigation and decision algorithms. To address these challenges, this
thesis focuses on three variations of the main research question:

e How can lidar segmentation be enhanced?
e How can the training cost of lidar segmentation be reduced?

e What are feasible use cases of lidar segmentation for autonomous vehicles?

Chapter 1

1.1

This thesis introduces novel approaches to enhance lidar segmentation performance, resulting in
the extraction of valuable information from point clouds. The proposed algorithms and specialized
techniques represent significant advances in the field, addressing critical challenges in autonomous
vehicle perception systems. The research contributes to multiple aspects of autonomous vehi-
cle perception, highlighting the potential of lidar segmentation to improve safety, reliability, and
performance.

In CuaptER 2, the fundamental concepts of lidar sensors, machine learning, and segmentation are
outlined as they form the basis for the subsequent chapters and methods. Understanding these
concepts is crucial to comprehending the methods presented in this thesis.

The main body of this thesis is divided into three parts, each addressing one of the formulated
research questions.

In Part I, novel approaches for lidar segmentation are presented. These new methods were developed
to address the question of how lidar segmentation can be enhanced in general. These methods
include the FLIC (Fast Lidar Image Clustering) algorithm for real-time instance segmentation, the
RangePillars network for semantic segmentation, and two new methods for panoptic segmentation.

In Part II, the focus shifts to reducing training costs for lidar segmentation and enhancing the
robustness, thus aiming to answer the second formulated question "How can the training cost of
lidar segmentation be reduced?". The SAPCA (Structure Aware Point Cloud Augmentation) method
improves all metrics of semantic segmentation networks and outperforms state-of-the-art semi-
supervised methods while drastically reducing the amount of data needed for a well performing
segmentation network. Furthermore a novel domain adaptation method is presented, which improves
the generalization and robustness of semantic segmentation enabling the successful reuse of already

labeled data of a given sensor for entirely new lidar sensors.

The last part of this thesis, Part III, concludes by exploring new potential applications of lidar
segmentation in autonomous vehicles, advanced driver assistance systems and the application of
segmentation techniques for object detection tasks. These novel applications are proposals to answer

the third question of feasible use cases of lidar segmentation for autonomous vehicles.

Overall, this thesis presents novel methods of lidar segmentation, techniques for lidar segmentation,
and applications derived from lidar segmentation. The proposed methods are rigorously evaluated
using real-world data in challenging environments, with a focus on improving performance and
runtime, among other factors. This work emphasizes the importance and value of lidar segmentation
not only in the context of autonomous vehicle perception, but also in other fields, and provides
valuable insights and suggestions for future research and development in this area.

11

1.2

Parts of this dissertation have been published in the following peer-reviewed conference articles

(main contributor):

Frederik Hasecke, Lukas Hahn, and Anton Kummert

"FLIC: Fast Lidar Image Clustering"

10th International Conference on Pattern Recognition Applications and Methods
(ICPRAM), 2021

Best Student Paper Award

Covered in CHAPTER 3

Frederik Hasecke, Martin Alsfasser, Anton Kummert

"What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation”
33rd IEEE Intelligent Vehicles Symposium (IV), 2022

Covered in CHAPTER 6

Frederik Hasecke, Pascal Colling, and Anton Kummert

"Fake it, Mix it, Segment it: Bridging the Domain Gap Between Lidar Sensors"
12th International Conference on Pattern Recognition Applications and Methods
(ICPRAM), 2023

Covered in CHAPTER 7

Two proposed methods in this thesis were part of collaborations. Own contributions are listed in each
case. The two approaches were published in the following conference article and patent application:

Lukas Hahn, Frederik Hasecke, Anton Kummert

"Fast Object Classification and Meaningful Data Representation of Segmented Lidar
Instances"
23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), 2020

Covered in CHAPTER 5.2 and CHAPTER 8.2

Own contributions:

e Major contributions to the idea of the content of the article.

e Implemented and conducted major parts of the experiments.

Chapter 1

Lukas Hahn, Maximilian Schaefer, Kun Zhao, Frederik Lenard Hasecke, Yvonne

Schnickmann, Andre Paus
"Detection System for Predicting Information on Pedestrian"
US Patent US20220242453A1, 2022

Partly covered in CHAPTER 8.2

Own contributions:

e Contributions to the idea of the content of the patent.

e Minor contributions to the literature research and review.

Furthermore, a part of this thesis has been published as a winning challenge submission report,
which was not peer-reviewed prior to its publication on the workshop website. Additionally, there

are two more patents, which are still pending at the time of writing.

Frederik Hasecke and Anton Kummert

"Report on the LiDAR Self-Supervised Learning Challenge: Learning From a Limited
Amount of High-Resolution LiDAR Data"

ECCV workshop on 3D Perception for Autonomous Driving, A workshop at the European
Conference on Computer Vision (ECCV), 2022

First Place Winner

Covered in CHAPTER 8.4

Frederik Lenard Hasecke, Sonke Behrends
"Method, Device, and Computer Program for Determining a Change in Position and/or

Orientation of a Mobile Apparatus"
US Patent US20220217499A1, 2022
Covered briefly in CHAPTER 8.1

Own contributions:
e Major contributions to the idea of the patent.
o Implemented and conducted all experiments.
o General editing of the patent draft.

Frederik Lenard Hasecke, Moritz Luszek
"Data Structure for Efficient Training of Semantic Segmentation Models"
EU Patent 23154924.7, 2023

Covered in CHAPTER 8.1

Own contributions:
e Major contributions to the idea of the patent.
e Implemented and conducted all experiments.
o General editing of the patent draft.

1.2

Finally, it must be mentioned that parts of the work in this dissertation already had their roots in the
authors master’s thesis. Parts related to it can be found in cHAPTERS 3, 5.2 and 8.2.

Frederik Hasecke

"Extended Object Detection and Classification with Combined Lidar and Camera Sensor
Data"

Master’s Thesis, 2020

Chapter 1

Fundamentals

This chapter provides an overview of the fundamental concepts related to lidar sensors, machine
learning, and segmentation. The goal is to provide a strong foundation for the subsequent chapters
and methods presented in this thesis.

It is important to note that some of the formulations and variable namings introduced in this chapter
may not be directly transferred across chapters. For example, the distance d represents the distance
between the lidar sensor and an object in CHAPTER 2.1, but in CHAPTER 3, it refers to the distance
between two lidar points, independent of the lidar sensor’s position.

In this chapter, the basic principles of lidar sensors, including how they work, their components,
and the different types of lidar sensors, will be introduced. The basics of machine learning and
segmentation, including different approaches to machine learning, neural networks, and popular
segmentation methods, will also be covered. Throughout this thesis, consistency and clarity are
ensured by using a notation convention in which vectors are denoted in bold letters.

2.1

The work presented in this thesis is based on automotive lidar sensors. This section will briefly
present the underlying principles as well as the most common types of such sensors used in the
automotive industry.

Lidar sensors are a type of remote sensing technology that uses lasers to measure the distance to
objects. Lidar sensors are commonly used in autonomous vehicles for perception tasks and feature a
transmitter module and a receiver module that allow them to function mostly independent of ambient
conditions. They measure depth information using the time of flight principle:

co-t
d="2"
2 9

(2.1)
where the time 7 € R, is measured between the emission of a light pulse and the reception of its
reflection after it reflected of a target. The flight time is multiplied by the speed of light ¢¢ in %, to
calculate travel distance. This total distance is divided by two to receive the distance d in meters (1)
to the object, as the light travels to the object and back again [90].

The returns from a laser are not represented as discrete values, but rather as continuous values
because the response to short light pulses that are reflected by an object and received back by the
sensor follows a Gaussian distribution, which is a continuous probability distribution characterized
by a bell-shaped curve [90]. The mean g and variance o> of the distribution are dependent on various
factors such as the distance of the object and atmospheric conditions. This is shown in Ficure 2.1 a.

Sender

Receiver

Receiver b

Receiver ¢

Receiver d

Time

Pulse Response of a Lidar at Different Conditions. The same impulse (red) is sent out at the
same object with four different environmental conditions: A simple pulse response with a single
target (a), multiple responses due to a partial reflection by a raindrop (b), a soft pulse response
caused by a cloud of condensation (c) with a weaker target object response. And lastly a missing
response due to the absorption and scattering of the light by particles in the air (d).

However, there can also be several peaks resulting from a single light pulse. This occurs when a
laser beam is reflected back by multiple objects. This can happen, for example, through a raindrop or
a pane of glass which reflects part of the laser beam back to the receiver, while most of the emitted
beam hits the target behind the quasi-transparent target. FiGure 2.1 b shows the Gaussian distribution
of such a scenario. Likewise, each emitted laser beam has a cross-sectional area of the beam that
depends on the manufacturer. When hitting a solid target with only a part of the cross section, only a
part of the beam is reflected to the receiver. A second return is caused by the next object the rest of
the beam hits. Some lidar sensor manufacturers therefore allow the output of multiple depth values
per emitted laser beam to measure these multiple targets. Automotive lidar manufacturers usually
provide two returns, the strongest peak as well as the last measurable peak [103, 199], airborne lidar
even offer up to five return values [142]. The pulse response can also be a "soft" response or no
response at all due to environmental influences such as increased back-scattering from particles in
the air and absorbed light in the transmission respectively. These responses are shown in FIGURE 2.1
candd.

The intensity of the return peaks from a laser can reveal important information about the reflectivity of
target objects. This intensity is measured in watts (W), the unit of power or radiant flux, representing
the rate at which energy is transferred. The incident power of the laser determines the rate at which
it emits electromagnetic radiation, typically in the form of light. However, when the laser light
encounters an object, only a portion of it is reflected back, resulting in a decrease in the reflected
power compared to the emitted power. This is due to geometric influences, but also factors such
as absorption and scattering. To account for these influences, the general lidar equation is used in

atmospheric research [204]. In its simplest form, the equation is:

Pu=K Gq Ey, (2.2)

Chapter 2

where the received power P measured in W reflected from a distance d is composed by three
factors: lidar system performance K, geometric property G4 at distance d, and the range-dependent
environmental back-scattering and transmission coefficient E; [204]. The same equation is used
for automotive lidar sensors [194], as the equation takes the differences in range and environmental
conditions into account.

The system constant K depends entirely on a priori values: The average power of a single laser
pulse Py in W, the temporal pulse length 7 in seconds (s), the area of the receiver module A,.ceiver in
square meters m?, the overall unitless system efficiency 7 and the speed of light ¢ in =

coT

K =Py — Areceiver n. (23)

The incident power and wavelength of automotive lidar sensors can vary depending on the specific
type of sensor and the manufacturer. Both are known, predefined properties. Automotive lidar
sensors typically use low-power lasers with wavelengths in the near-infrared range. The exact
power of the laser beam can vary, but most automotive lidar sensors use relatively low power to
minimize the potential risk to human eyesight [90]. The wavelength is usually 905 nanometers (nm)
or 1,550 nm [129]. These wavelengths are outside the range of human vision and are considered safe
for use in automotive applications. 1,550 nm lasers have better eye safety and longer detection range
than 905 nm lasers, but they are approximately 145X more absorbed by the atmosphere, making
them 4 — 5x worse in detecting targets in rain and fog than their 905 nm counterparts. Moreover,
1,550 nm lasers have 97% less reflectivity in snow and consume on average more than ten times as
much power compared to 905 nm lasers [137]. Therefore, the choice of laser wavelength in lidar
systems involves trade-offs between eye safety, detection range, and targeted environments.

The geometric factor, G4, present in Equartion 2.2, incorporates both the surface area of the target,
Ay (in square meters), at a given distance d, and the dimensionless reflectance factor, «, of the object.

This relationship is expressed as:
Ag

Gd—E'K.

24)
Lidar operates by emitting a narrowly focused light beam towards a target, with the beam’s dispersion
reflected in the surface area of the target, A;. When the beam strikes the target, it scatters in all
directions, forming a spherical pattern of light. The lidar receiver captures only a fraction of this
scattered light, and due to the spherical scattering, the captured light decreases as the square of the

distance from the target, d.

To elaborate, the decay in signal strength with increasing distance adheres to a quadratic law, since the
receiver intercepts only a portion of the light scattered from a sphere with radius d. This intercepted

Ag

fraction is directly proportional to the solid angle, 7 which symbolizes the lidar system’s field of

view for scattered light at a given distance d [90].

The geometric factor of the lidar distinctly varies from the doubled inverse-square law typically found
in light sources or radar systems. These systems feature two-way propagation, causing spherical
scattering during both the outbound and return journeys. This bi-directional dispersion considerably
affects the received light or radar signal, culminating in a quartic dependency on distance in the radar
equation, denoted as 1/d*.

21

10

ANYA 'S

100% 10% 0% 500% 0 - 500%

Reflectivity of Different Surfaces. An ideal white Lambertian surface reflects 100% of the light
that it is struck by in a diffuse manner, meaning that the light is reflected equally in all directions.
In contrast, a dark Lambertian surface absorbs most of the light that it is struck by and reflects
only a small portion of it diffusely and uniformly in all directions. A specular surface, on the
other hand, reflects light in a specific direction, resulting in no emitted light from the lidar sensor
reaching the receiver. Retro-reflectors are surfaces that are designed to reflect light back to its
source through multiple reflections, and therefore tend to have higher reflectance compared to a
Lambertian surface. In the real world, most surfaces have a combination of gray Lambertian and
specular properties, with a varying degree of reflectance towards the receiver module.

The reflectance « in EqQuation 2.2 is a measure of the fraction of incident light that is reflected by a
surface. It is typically represented as a value between O and 1, where O indicates that the surface
absorbs all incident light and 1 indicates that the surface reflects all incident light. Reflectance is
similar to reflectivity, but it is usually defined for a specific angle of incidence and wavelength of
light. For example, the reflectance of a surface at a specific angle of incidence 6 in radians and

wavelength A in m is defined as:
ACRY

S L6’

where «(6, 1) is the reflectance of the surface at angle 8 and wavelength A, 7,(6, 2) is the intensity

«(0,)

(2.5)

of the reflected light at that angle and wavelength in watts per square meter (%), and /;(6,) is the
intensity of the incident light at that angle and wavelength. The intensity of the reflected light can
also be entirely different for the same inclination angle and the same wavelength given the influence
of the surface property of the target object. In the case of a Lambertian reflection, i.e., an equally
strong reflection in a semicircle independent of the angle of incidence, the reflectance for a defined
inclination angle and wavelength is given by

> (2.6)

where I" is the reflection property of the target. Specular surfaces, like glass or polished metal, have a
very low reflectance at all angles except for the angle at which light is reflected off them. This means
that these types of surfaces have a high degree of reflectivity only when viewed from the angle at
which light is reflected off. In Ficure 2.2, the influence of various surfaces on the reflection intensity

is shown. In reality there is no known material that exhibits a true Lambertian property [106].

The last term of the lidar Equation 2.2, the environmental term E,4, consists of the back-scattering 84
and the transmission a4, both of which depend on the distance d, which furthermore corresponds to
the length of the volume that the laser beam traverses. Further, both terms depend on the size, number,
nature, refractive index, and shape of all particles within the volume that the laser beam traverses. In
sunny weather with little dust and moisture in the air, these two terms have a neglectable influence
on the final reflection intensity, while they dominate in rainy, foggy and polluted environments. This

Chapter 2

is also shown in FiGure 2.1 for three receivers b, ¢ and d in which a laser beam traverses rain, a
cloud of fog and a heavily polluted environment respectively. In summary, the lidar equation can be

written as follows

cT Ag
Pys=Py ?Areceiver n EKH,F Ba ag. 2.7)

If the system parameters that are known in advance are summarized as ¢

cT Areceiverr]

)) (2.8)

co= Py

and fixed variables such as the wavelength are omitted, the only variables that remain are the light
fall-off, the target surface reflectance and the environmental influence

reflectance
d —
Pig=co — “ker Paaad - (2.9)
d SN—
— environment
fall-oft

The reflection intensity values are usually normalized by the distance and quantized as an 8-bit value
range. The resulting intensity values are therefore a combination of the inclination angle of the laser
beam 6, the reflection property I of the target, and the prevailing environmental conditions 8, and
ay for the back-scattering and transmission of the traversed volume

reflectance
P d dz — =
= Kkor Pa@a - (2.10)
co Ad SN——
— environment

quantized intensity

Most surfaces in the real world exhibit a mixture of Lambertian and specular properties, due to
which the relative intensity value can not draw direct conclusions onto the surface properties of the
targets without the entrance angle and the surface orientation of the target.

The points described so far refer to the functionality of individual lidar modules. A full lidar sensor
is a complete system that includes multiple lidar modules, as well as additional components such as
a processor, memory, and a communication interface. The full lidar sensor uses the data from the
individual lidar modules to create a three-dimensional map of the environment. This is usually done
by moving parts within the lidar sensor, that move the lidar modules around a defined point of origin
and measure the distance to a relative angle offset of a defined zero angle position in the vertical and
horizontal position. In the following section the most common types of lidar sensors are described in

more detail.

211

There are two main types of lidar sensors used in the automotive industry: mechanical lidar and
solid-state lidar [218, 118].

Mechanical lidar sensors usually use a spinning module to sweep multiple stacked laser beams across

the surrounding environment. The emitter-receiver modules are typically mounted on a rotating

21

11

12

platform that spins around a central axis to capture continuous recordings of the entire environment
in a 360° panoramic view in a sweeping pattern [118, 134, 218].

Solid-state lidars have multiple implementation methods but share the underlying principle of little
to no moving parts. In general there are four solid-state lidar methods: Microelectromechanical

systems, flash lidar, optical phase array and frequency-modulated continuous wave lidar [118].

e Microelectromechanical lidar sensors (MEMS) use tiny mirrors, that can be tilted by ap-
plying a voltage. This allows the system to scan the environment without using mechanical
scanning hardware. The receiver aperture which determines the signal-to-noise ratio, is
typically quite small for MEMS systems. To scan the environment in multiple dimensions,
multiple mirrors are used.

o Flash lidar uses a single large laser pulse to illuminate the environment and a focal plane
array of photo-detectors to capture the reflected light. This allows it to capture the entire scene
in a single image which is faster than the mechanical scanning method used by other lidar
sensor systems but requires a laser with a power output much higher than other lidar types and
is blinded by retro-reflectors, rendering it useless in an automotive context.

o Optical phased array (OPA) lidar is similar to phased-array radar. It uses an optical phase
modulator to control the phase and amplitude of light waves passing through the lens which
allows the system to "steer" the laser beam without mechanical moving parts. This makes
OPA lidar more reliable and efficient than other types of lidar.

¢ Frequency-Modulated Continuous-Wave (FMCW) lidar uses brief chirps of frequency-
modulated laser light to measure both distance and velocity. This method is simpler in terms
of computational load and optics compared to other types of lidar, but the chirp generation
adds complexity.

The sensors of the datasets [87, 39, 13, @112] used in this thesis use mechanical lidar sensors [196,
197, 199, 103] and, most likely, microelectromechanical lidar sensors [@111]. The latter is not
confirmed, as the sensor manual is not available at the time of writing.

In general, the type of lidar sensor used in a particular application will depend on factors such as the
required range, field of view, and resolution, as well as the need for real-time processing and the
constraints of the system. Rotating lidar sensors may be more suitable for applications that require
fast scanning and a wide field of view, while solid state lidar sensors may be better for applications

that require high resolution and a compact physical form.

2.2

"Deep learning is a type of machine learning that involves using artificial neural networks to learn
from data. These neural networks are composed of multiple layers of interconnected nodes which
process and transform the input data into a more useful form. The goal of deep learning is to
allow the model to automatically learn and improve from experience, without the need for explicit
programming. This is achieved by training the model on large amounts of labeled data and using
powerful computational resources to optimize the model’s performance. Deep learning has been used

Chapter 2

to achieve state-of-the-art performance in many fields, including computer vision, natural language
processing, and speech recognition."

It may not be surprising to the reader that the previous paragraph, was actually written by an artificial
neural network in response to the prompt "What is Deep Learning?" [176]. This is due to the fact
that deep learning has a transformative effect on numerous fields, and has already fundamentally
changed the way we approach many problems.

Deep learning also had a significant impact on lidar segmentation and other lidar perception tasks.
Previously, hand-crafted features and heuristic algorithms were the primary methods used for tasks
related to automotive and robotics perception. However, deep learning has now surpassed these
approaches in nearly every category. The following section will provide a brief overview of deep
learning, including an introduction to feedforward neural networks, convolutional neural networks,
and deep learning neural networks specifically designed for segmentation. In the final section of this
chapter, the use of lidar data with neural networks is briefly discussed, highlighting the integration of

three-dimensional point clouds with deep learning approaches.

2.2.1

A feedforward neural network is a machine learning algorithm inspired by the human brain. It has
multiple layers of interconnected neurons, where each neuron receives input from other neurons and
produces an output that is passed on to the next layer. The output of the final layer is the output
of the entire network. Supervised tasks of feedforward neural networks involve using input data
to produce an associated desired target output. The neurons in the network are trained to give the
desired output for a given input by adjusting their weights and biases in order to minimize the error
between the predicted output and the desired output. This process is known as training the network.
Once the network has been trained, it can use the learned relationships between input and output to
predict the desired output for new input data.

In more detail, the inputs to each neuron of a feedforward neural network are combined with weights
and biases to produce the output of each neuron. This is shown by the following equation:

P=fwy*x1 +woxx+...+w, xx, +b), (2.1

where x1,x7, ..., x, are the input values, wy,w», ...,w, are the weights, b is the bias, f is the activation
function and J is the predicted output of the neuron.

The activation function determines the output of each neuron in the network. It is typically a non-
linear function that maps the input to the output in a way that allows the network to learn complex
patterns in the data. A common activation function is the sigmoid function which is defined as

1
flx) = ; (2.12)
e

2.2

13

14

2 . e
'/
’/
1 <
’l
/l
‘/0
E 2 e A : : | X
UL A | 1 2 3
sigmoid
-1 |--= ReLU
----- leaky ReLU
tanh
!

Common Activation Functions of Neural Networks. The sigmoid activation function is plotted
in orange, the ReLU in dashed cyan, the leaky ReLU in dotted red and the fanh in dash-dotted
green.

where x is the input to the activation function and e is the base of the natural logarithm. There are
several other commonly used activation functions in neural networks, such as the hyperbolic tangent
(tanh) function

X —e X
=— 2.13
fo= S (2.13)
the rectified linear unit (ReLU) function
f(x) = max(0, x) (2.14)
and the leaky ReLU function
f(x) =max(a-x,x) (2.15)

where a is a small constant value, e.g. 0.1.

All four activation functions are plotted in Ficure 2.3. Each of these activation functions has its own
characteristics and advantages, and the choice of which activation function to use can depend on the
specific problem and the type of data that is being processed. In general, the sigmoid function is
often used in the output layer of a network when the output is a probability, while the ReLU function
is often used in the hidden layers of a network to improve the speed and performance of the network
[89].

During training, the weights and biases of a neural network are adjusted in order to reduce the error
between the predicted output and the desired target. This is done by computing the gradients of
the loss function with respect to the weights and biases using the backpropagation algorithm. An
optimization algorithm such as stochastic gradient descent (SGD) is used to update the weights and
biases based on these gradients. This process is repeated for multiple iterations until the network has
been fully trained and the error no longer decreases.

Chapter 2

The error of the predicted output § to the desired target y is evaluated by the loss function L which
produces a scalar value that represents the magnitude of the error. The mean squared error (MSE)
loss is a common loss function for regression tasks

1 n
LG.y)= — > iy’ (2.16)
i=1

The binary cross-entropy loss for binary classification tasks is

L(®,y) = —[ylog(® + (1 —y)log(1 -)] (2.17)

and the categorical cross-entropy loss for multi-class classification tasks

C
LGy ==) yelog(), (2.18)
c=1

where n is the number of samples, C is the number of classes, and y. is the true label for class c.

Regardless of the task and chosen loss function, the gradient of the loss is computed with respect to

the final output of the network
oL oL of

a5 af 9y
This gradient is then propagated backwards through the network, layer by layer, using the chain

(2.19)

rule of calculus to compute the gradients of the loss with respect to the weights and biases at each
layer. For a given layer / with input x, output y, weights w, and biases b, the gradient of the loss with
respect to the weights can be computed as

oL OL 0y
= 2.20
Bwl (952 6wl ()
and the gradient of the loss with respect to the biases can be computed as
L L 0y
6_ = 6_A . ﬂ (2.21)
6bl ﬁy abl

These gradients can then be used by an optimization algorithm such as SGD to update the weights
and biases of the network and reduce the error. The weights and biases are updated according to the
following equations:

OL
wWew—n- — (2.22)
ow
oL
b—b-n-— 2.23
“b=n-= (2.23)

where 7 is the learning rate which determines the size of the step taken in the direction of the gradient
during each iteration of training. A larger learning rate can lead to faster convergence, but can also
result in the algorithm overshooting the minimum of the loss function and failing to converge. A
smaller learning rate results in a more stable and reliable convergence, but can fail to reach the
optimal solution in a given number of iterations, or worse, settle in a local minimum. Finding an

2.2

15

16

Too High Learning Rate

Good Learning Rate

6

Influence of Learning Rates on Finding an Optimal Solution. The loss surface plot shows the
scalar value of the loss function Lg as a function of a set of parameters summarized as 8. The
results of three different optimization runs starting from the same point are shown. The dotted
red line represents a run with a low learning rate which lands in an early local minimum. The
green line represents a run with a medium learning rate which successfully reaches the global
minimum. The dashed blue line represents a run with a high learning rate which overshoots the
global minimum and lands in a high local minimum.

appropriate learning rate is an important part of training a neural network. FIGURE 2.4 shows the
influence of learning rates to find the optimal solution.

One of the most popular gradient-based optimization algorithms is stochastic gradient descent (SGD).
In SGD, the error is calculated for each training sample, and the weights and biases are adjusted
based on the gradients for this error. This process is repeated for each training sample, and the
weights and biases are updated on each iteration. This allows the algorithm to make rapid progress
towards the optimal solution, but it also means that the algorithm can be sensitive to the order in

which the data is presented.

To improve the performance of SGD, a number of variations and enhancements have been developed.
One example is mini-batch SGD which uses a small batch of examples to calculate the error and
update the weights and biases; momentum SGD which adds a momentum term to the update to help
the algorithm escape from local minima; and adaptive learning rate SGD which adjusts the learning

rate based on the current performance of the algorithm [89].

The training process is repeated for multiple epochs, where an epoch is a complete pass through the
training dataset. After each epoch, the error is typically calculated to evaluate the performance of
the network. The training process is stopped when the error reaches a satisfactory level or when a

predetermined number of epochs has been reached.

The parameter space of a deep neural network is extremely high-dimensional, with potentially
millions or even billions of parameters. The optimization of such a high-dimensional space is a
challenging task, especially since the loss function is often non-convex, meaning it has many local

minima that can trap the optimization algorithm [131].

Feedforward neural networks are versatile and can be used for a wide range of tasks, including
regression [125], classification [184], and dimensionality reduction [67]. Unfortunately, they still

Chapter 2

have some limitations, such as their inability to process data with complex temporal or spatial
dependencies and their susceptibility to overfitting. Overfitting refers to the situation where the

model has been trained too well on the training data, resulting in poor generalization to new data [89].

Overfitting can occur when a model is excessively complex, such as having too many parameters
relative to the amount of training data. It can also occur when a model is trained for too long, leading
to the model learning the noise in the training data instead of the underlying relationship. To prevent
overfitting, it is important to use techniques such as regularization and early stopping.

Regularization is a technique that adds a penalty term to the loss function which helps to prevent the
model from becoming too complex. Commonly used regularization techniques include L/ and L2

regularization.

L1 regularization, also known as Lasso regularization, adds a penalty term to the loss function that
is proportional to the absolute value of the weight coefficients. This has the effect of pushing some
of the weight coefficients towards zero, effectively removing those features from the model [95]. L2
regularization, also known as Ridge regularization, adds a penalty term to the loss function that is
proportional to the square of the weight coefficients [208]. This has the effect of "shrinking" the
weight coefficients which can help to reduce overfitting. L1 regularization is defined as

Li(w) = /IZ wl, (2.24)

while the definition of L2 regularization is

L2(w) = AZ w2, (2.25)

where w is a vector of the weight coefficients, and A is a hyperparameter that controls the strength of
the regularization. In both cases, the regularization term is added to the loss function which is then
minimized during training.

Another option to reduce overfitting is called Dropout [185]. This is a technique that randomly drops
some of the connections between neurons in the network during training. This can help to prevent
the network from becoming too reliant on any one feature which can lead to overfitting [185].

Finally the technique early stopping [159] involves monitoring the performance of the model on
a validation set during training, and stopping the training process when the performance on the
validation set starts to degrade. This can help to prevent the model from overfitting to the training
data.

Recent studies suggest that over-parameterized models in deep learning often optimize and generalize
well, and prevent overfitting, despite not following the conventional learning curve [152]. The cause
of this phenomenon remains unknown, but some studies suggest that over-parameterized classifier
layers lead to overfitting while over-parameterized hidden layers prevent the same [231]. Others
claim that stochastic gradient descent with random initialization introduces an implicit regularization
effect, biasing the learning process towards solutions that generalize well to unseen data, thereby

reducing overfitting in over parameterized neural networks [135].

Feedforward neural networks are versatile and can process various data formats, including numerical,

text, and categorical data. One of the key advantages of feedforward neural networks is their

2.2

17

18

simplicity and flexibility, as they can be applied to a wide range of tasks and data formats without
explicit assumptions about the structure of the input data. They are often used as a baseline for

comparison with more complex models.

However, feedforward neural networks are not suitable for processing grid-like data such as images
or voxels. They ignore the spatial relationships between the input data and treat it as a flat vector of
numbers, unable to effectively extract spatial features from the data. For example, processing an
image of a cat with a feedforward neural network would result in a poor prediction due to the lack of
spatial information [89].

To address this issue, Convolutional Neural Networks (CNNs) were developed to specifically process
grid-like data such as images. CNNs use convolutional layers to extract features from the input data
and then pass them through pooling layers to reduce the dimensionality of the data. This allows
CNN s to learn hierarchical representations of the data and be invariant to translation, making them

well-suited for tasks such as image classification and object detection.

However, with the advent of Vision Transformers (ViT) [70], there was a paradigm shift in the field
of computer vision. Vision Transformers are based on the Transformer architecture [195], which
was initially designed for natural language processing tasks. The ViT model divides an image into
patches and then feeds them into a Transformer encoder, which captures the global context of the
image. This enables ViT to process images without the use of convolutional layers and to outperform
CNNs on most vision tasks [192, 206, 94, 141, 69].

It is important to note that the neural networks discussed in this text are based on CNNs without
transformers. Transformer architectures are mentioned here only for the sake of completeness. The
focus of the next section is on the differences between feedforward neural networks and CNNs in
processing grid-like data, excluding transformer architectures.

2.2.2

Convolutional neural networks (CNNs) are a type of neural network that are specifically designed
to process data that has a grid-like structure, such as an image or a voxel grid. A CNN uses a set
of filters to extract features from the input data. These filters are convolved with the input data to

produce a set of feature maps [89].

In a CNN, a feature map is a representation of the input data after it has been processed by a
convolutional layer. Each element, or "neuron," in the feature map corresponds to a specific region in
the input data, and the values in the feature map represent the presence or absence of certain features

in that region.

For example, if the input data is an image, a feature map might represent the presence of edges,
corners, or other patterns in the image. The filters used in the convolutional layer are designed to
detect these features, and the resulting feature map is a representation of where in the input image

these features are present.

Chapter 2

The process of generating a feature map from the input data is called convolution. It involves
applying a filter which is a small matrix of numbers, to the input data. The filter is slid across the
input data, and at each location, the values in the filter are multiplied by the values in the input data at
that location, and the results are summed to produce a single value in the feature map. This process
is repeated for every location in the input data to produce the complete feature map. Feature maps
are an important part of a CNN because they capture the most important features of the input data
which can then be used by the rest of the network to make accurate predictions or decisions.

Convolutional two-dimensional filters are typically small, square matrices of weights that are learned
during the training process. For example, a convolutional filter might be a 3x3 matrix of weights, as

shown below:
Wi Wiz wi3

w21 w22 W23 (2.26)

w3p w3z w33

To convolve the filter with the input data, the filter is slid across the input data, one element at a

time, and the dot product is computed between the filter weights and the input data at each position.

For example, if the input data is a two-dimensional matrix, the dot product would be computed as
follows:

a

-1 L-

Xitk,j+1" Wk, 2.27)
=0

'\<>
||
~
11
<}
~

where i and j are the row and column indices of the input data x, and K and L are the size of the
filter.

The resulting feature maps are often passed through pooling layers. They are used to reduce the
dimensionality of the data by summarizing the output of the convolutional layers. This has several
benefits, including reducing the computational complexity of the network, and making the network
more invariant to small translations of the features [89].

There are several different types of pooling layers, but the most common types are max pooling and

average pooling. In a max pooling layer, the output of the convolutional layer is divided into a set

of regions, and the maximum value from each region is selected and output as a new feature map.

For example, if the input data is a two-dimensional matrix, the max pooling operation would be
performed as follows:

1
AX Xit+k, j+1 (2.28)

ylj 5

»Ba

-1 L-
axm;
=0 =
where i and j are the row and column indices of the input data, x is the input data, K and L are the
size of the pooling window, and j is the output of the pooling layer. The max function is applied
to, for example, each 2 x 2 region of the input data, and the resulting maximum value is used to
generate the output feature map. This operation reduces the dimensionality of the data to a quarter,
because the output feature map has half the number of rows and columns as the input data. In
average pooling, the process is very similar but the average value from each region of the input
data is used instead. Pooling is useful for CNNs because it reduces the size of the input data which
makes the network faster and more efficient. Additionally, pooling allows the network to retain the
most important features of the input data which are often distributed across multiple feature maps

2.2

19

20

Layer3 Layer10 Layer 20

Increasing Complexity of the Features CNN Layers are Able to Capture. The hierarchical
structure of a Convolutional Neural Network (CNN) enables it to learn progressively complex
features from the input data, starting with simple edges and corners in the first convolutional
layers and building up a rich representation to make accurate predictions or decisions. Images are
created using a VGG-16 network [180]. A subset of the feature maps is shown. These activations
are projected down to pixel space using a deconvolutional network approach.

and multiple convolutional layers. This can help the network to make more accurate predictions or

decisions [89].

The process of applying convolutional filters and pooling the results is usually repeated multiple
times and arranged in a hierarchical manner. By repeating the convolution and pooling process
multiple times, a CNN can learn increasingly complex features of the input data. For example,
in an image recognition task, the first convolutional layer might learn to detect simple edges and
corners, the second convolutional layer might learn to detect more complex shapes, and so on. This
hierarchical structure allows the CNN to build up a rich representation of the input data and make
more accurate predictions or decisions. This hierarchical structure of filters is shown in FIGURE 2.5

with images created using an open source repository for the visualization of activations'.

The final layers of a CNN depends on the specific task that the network is being used for. In
general, however, a CNN will have one or more fully-connected layers at the end of the network.
Fully-connected layers, also known as dense layers, are traditional feedforward neural network layers
in which each neuron in one layer is connected to every neuron in the next layer. This allows the
network to combine the information from all of the previous layers and make a final prediction or
decision based on the input data.

In image recognition, the final fully-connected layers of a CNN can use the output of earlier
convolutional and pooling layers to classify the input image into predefined categories. In an object
detection task, the final layers of a CNN might be used to generate a set of bounding boxes around
objects in the input image and to classify each object into one of several predefined categories.

Using a CNN for segmentation usually involves extracting features from an input image and reducing
the resolution of the feature maps at the bottleneck layer. These feature maps can then be up-sampled
to the input resolution using transposed convolutions. Transposed convolutions are essentially the
opposite of standard convolutions: they up-sample the input feature map by inserting zeros between
the elements and applying a convolutional filter. After up-sampling the feature maps to the input size,

Uhttps://github.com/utkuozbulak/pytorch-cnn-visualizations

Chapter 2

a final activation function, such as a softmax, can be applied to obtain class probabilities for each
pixel in the input image. The class with the highest probability can then be selected as the predicted
label for each pixel to obtain the final image segmentation.

2.2.3

Segmentation is the process of dividing an image into multiple segments or regions, each of which
corresponds to a specific object or class of objects. This is different from classification which

involves assigning a label to an entire image, rather than dividing it into multiple segments.

There are several different types of segmentation, including instance, semantic, and panoptic seg-
mentation. Instance segmentation involves dividing an image into segments, where each segment
corresponds to a different instance of an object. L.e., multiple segments may correspond to the same
object class, but each segment corresponds to a different individual object within the image. Semantic
segmentation involves dividing an image into segments, where each segment corresponds to a differ-
ent object class. IL.e., all segments of the same class are grouped together, regardless of whether they
correspond to the same individual object or not. Panoptic segmentation is a combination of instance
and semantic segmentation, where an image is divided into segments, each of which corresponds to
a different object class, and individual instances of objects are also identified and segmented. This
allows for a more comprehensive understanding of the objects and their relationships within the

image.

Convolutional neural networks (CNNs) are commonly used for image segmentation tasks, as they
are able to learn spatial hierarchies of features and can be used to effectively segment images into
different regions or objects. There are different approaches to implementing CNNs for segmentation,
including using fully convolutional networks [144] or encoder-decoder architectures [52]. While the
examples provided in this section are related to images for ease of understanding and similarity to
human vision, the concepts apply to the segmentation of three-dimensional point clouds in the same

way as they do for images.

Instance Segmentation

Instance segmentation is a type of segmentation that involves identifying and segmenting each
individual instance of an object in an image or a point cloud. For example, if an image contains
multiple cars, instance segmentation would identify and segment each car separately, rather than

treating all the cars as a single class.

A commonly used metric for instance segmentation is the Intersection over Union (IoU) metric. This
metric measures the overlap between the predicted segmentation mask and the ground truth mask for
a given instance. The IoU is calculated as the ratio of the area of overlap between the two masks
to the area of union between the two masks. The mathematical equation for the JoU between two
masks is

A[_ Apred mAgt

IoU = —

- (2.29)
Ay Apred U Agt

2.2

21

22

where Ay is the intersection, the area of overlap between the predicted and ground truth masks, Ay
is the Union, the area of union between the two masks, A, is the predicted mask, and A, is the
ground truth mask.

To evaluate the performance of an instance segmentation model, the IoU for each object in an image
is typically calculated and then averaged across all instances in the image. This produces a single
scalar value that can be used to compare the performance of different models

N
1
IoUy = 5 Z IoU, (2.30)
=1

where N is the number of instances in the image, loU, is the loU for the n-th instance.

In general, instance segmentation involves separating individual instances within an image or point
cloud. Some definitions consider instance segmentation as class-agnostic separation of objects, while
others require classification of the instances to distinguish foreground objects from the background
[221, 138].

Semantic Segmentation

Semantic segmentation is a type of segmentation that involves assigning a semantic label to each
pixel in an image or point in a point cloud. For example, semantic segmentation might classify the
pixels of an image into classes such as cars, road, buildings, and trees. Unlike instance segmentation,

semantic segmentation does not distinguish between individual instances of the same class.

The Intersection over Union (IoU) is also the metric of choice for semantic segmentation, more
specifically the mean Intersection over Union (mloU) metric. This metric measures the average
overlap between the predicted segmentation masks and the ground truth masks for all classes in an

image. The mathematical equation for mloU is

c

1 Al,c _ 1 predc mAgtc

EZ — 2.31)
C:

C
1
mloU = — IoU,. =
CCZ:; ‘ - AU,C C =1 prechAgtc

where C is the number of classes in the image, IoU, is the IoU for the c-th class, A;. is the
intersection, the area of overlap between the predicted and ground truth masks for the c-th class, Ay,
is the area of union between the two masks for the c-th class, A4, is the predicted mask for the
c-th class, and Ag, . is the ground truth mask for the c-th class.

The mloU metric is useful for evaluating the overall performance of a semantic segmentation model
on an entire dataset, as it provides a single scalar value that summarizes the model’s performance
across all classes in all images in the dataset.

Panoptic Segmentation

Panoptic segmentation is a type of segmentation which combines the capabilities of instance and
semantic segmentation to provide a more complete and detailed understanding of a scene. It involves

Chapter 2

identifying and segmenting each individual object instance, as well as assigning a semantic label to
each pixel in the image or point in a point cloud. This allows for a more comprehensive understanding
of the objects and their relationships within the image.

The Panoptic Quality (PQ) metric [119] measures the average Intersection over Union (IoU) between
ground truth S and predicted segmentation masks S for true positive pixels. The PQ is calculated by
dividing the above by the sum of true positive, false positive, and false negative segments (divided
by two) for a given class ¢

S e arp 10US,S)
PQc _ (S,S)eTP,

= , (2.32)
TPl + 3|FPc| + AFN|

where a true positive for the class c is defined as an JoU > 0.5. The class-wise PQ,. is averaged over

all classes to get the final system PQ.

The PQ metric can be seen as the multiplication of the Segmentation Quality (SQ) and Recognition
Quality (RQ) [158]. The SQ measures the overall quality of the predicted segmentation, and is
calculated as the average IoU between the ground truth and predicted segmentation masks for all
true positive pixels. The RQ measures the overall quality of the predicted classes for each pixel in
the predicted segmentation, and is calculated as the ratio of the total number of true positive pixels
to the total number of true positive pixels plus half the number of false positive and false negative
pixels. These two metrics can be written as follows:

Y s.$erp, 10U(S, S)

SQ.= 2.33
O TP.] (233)
TP
RO, = - - (2.34)
|TPC|+ lePc|+ §|FNC|
The PQ metric is the average of the SO and RQ metrics
PQ:.=S0:XRQ,, (2.35)

by which the PQ metric provides a single, scalar value that represents the overall performance of
the model on the panoptic segmentation task. A high PQ score indicates that the model is able to
accurately predict both the correct classes and instance for each pixel in the image.

2.3

In SecTion 2.1 lidar sensors and lidar data has been outlined. Raw lidar data is typically generated
by a lidar sensor as a stream of three-dimensional points, with each point representing the position
of an object surface reflection in the environment. Each point in the point cloud is indexed by a
triplet of values representing the x, y and z Cartesian coordinates of the point. The point cloud may
also include additional attributes or features associated with each point, such as the intensity of the

reflection.

23

23

24

This list of multi-dimensional entries is typically highly unstructured and irregular, with a large
number of points distributed in three-dimensional space. This makes it difficult for deep neural
networks which are designed to handle structured and regular input data, to effectively learn patterns
and features from the data.

One of the first networks to successfully process raw point clouds was the PointNet [161] architecture.
PointNet consists of a single fully-connected layer which takes as input a set of three-dimensional
points and applies a series of transformations to extract features from the points. The extracted
features are then fed through a series of fully-connected layers which are used to classify the
points. PointNet has been widely adopted in a variety of applications, and has demonstrated strong
performance on a number of benchmarks for point cloud processing tasks. The simplicity and
flexibility of the architecture has made it a popular choice for researchers and practitioners working
with point clouds.

PointNet++ [162] was an extension of PointNet. PointNet++ was designed to address some of the
limitations of PointNet, such as its reliance on global context and its inability to capture fine-grained
features and patterns in the point cloud. PointNet++ uses a hierarchical structure to process the point
cloud which allows it to capture both global and local context in the point cloud. At each level of the
hierarchy, PointNet++ uses a sampling and grouping operation to select a set of representative points,
and applies a PointNet-like architecture to these points to extract features and predict properties of
the points. The features and predictions from each level of the hierarchy are then aggregated to form
a global representation of the point cloud.

Based on this hierarchical approach of PointNet++ as well as the advances of CNNs, three-
dimensional voxel based networks [230, 188, 228, 10] improved the performance on lidar data
in deep neural networks immensely. Point cloud voxel nets are designed to handle large and complex
point clouds by dividing the point cloud into a set of voxels which are cubic cells in three-dimensional
space. Each voxel is assigned a set of points from the point cloud, and a PointNet-like architecture
is applied to each voxel to extract features and predict properties of the points. The same concept
can also be applied to two-dimensional birds-eye-view, top-down representations of the point cloud
[127, 232]. The grid structure of the voxels enable the use of convolutional operations in the two-
dimensional and three-dimensional grid patterns of the voxels. Encoder-decoder structures similar to
that used in image segmentation improve semantic segmentation, object detection and other tasks on

the lidar point clouds compared to the PointNet based networks.

Another pre-processing method for using unstructured and irregular lidar data with deep neural
networks is the range image projection [211, 7]. A range image is a two-dimensional grid of cells
that represents the distance from the sensor to each point in the environment. Each cell in the range
image is assigned a value that represents the distance to the nearest point in the environment, and the
values are typically represented as a set of discrete range bins.

Range image projections are often used in lidar-based perception systems, as they provide a compact
and efficient representation of the sparse and unevenly distributed point cloud that is easy to process
and analyze. Range image projections can also be used to visualize the point cloud and to understand
the structure and geometry of the point cloud as shown in FIGURE 2.6.

Chapter 2

50m

40m

30m

20m

10m

Om

Range Projection of a Three-Dimensional Point Cloud. The Cartesian point cloud (top) is
first projected onto the spherical coordinate system (middle) and then collapsed along the range
dimension to generate the final range image projection (bottom). The color of each point in the
image corresponds to its distance from the lidar sensor, with blue indicating points that are close
and red indicating points that are far away.

The latter pre-processing method is used multiple times throughout this thesis, as the lower di-
mensional representation shows the three-dimensional point cloud from the point of view of the
lidar sensor. Range image projections are closely related to the raw data that is output by the lidar
sensor which makes them well suited for developing sensor-centric methods. In Section 2.1 the
working principle of a single lidar module was presented, that yields only a depth value for a given
one-dimensional laser beam. The range image is therefore much closer to the original data. By using
a range image projection, it is possible to develop methods that are closely tied to the sensor data
and that are optimized for the specific characteristics and limitations of the sensor.

The range image projection typically necessitates the transformation of a Cartesian point cloud into
a spherical coordinate system. This transformation maps each Cartesian point (x,y,z € R) to the
spherical coordinates (r € R*;¢,0 € R):

N (VR
¢|=| atan2(y,x) |, with r € [0,inf) and ¢,0 € [-r, 7], (2.36)
0 asin(%)

where each point is projected from the coordinates x,y,z to the sphere coordinates r,¢,6, which

represent the range, azimuth angle, and elevation angle, respectively.

When transforming Cartesian coordinates to spherical coordinates, particularly in the context of
automotive lidar sensor data, it’s crucial to adopt a convention that closely aligns with the intuitive
understanding of the Cartesian system.

23

25

26

The inclination angle 6 is often defined in physics and mathematics as the angle from the positive
z-axis to the point in question, using the acos function. This convention can be counter-intuitive in
the context of automotive lidar sensors. Here, the angle of interest is the one ascending from the
xy-plane, which is usually aligned with the ground plane.

To maintain proximity to the Cartesian coordinate system and to align with the intuitive understanding
of angles in the context of lidar sensors, 6 is defined as the angle from the xy-plane to the point in
question. The asin function is used to calculate the defined inclination angle.

Using the azimuth and elevation angle, pixel coordinates are defined in the horizontal and vertical

image directions u and v, thus mapping the points from R? — R? by

1p1 g1
[u] = (21 =¢m]KVI], with u,v € N, (2.37)
v [1_(9+fup)f]h

where (u,v) are the image pixel coordinates, (h, w) are the height and width of the resulting range
image and f = f, + fiown is the vertical field-of-view of the lidar sensor. The image coordinates
(u,v) retain the depth information, thereby preserving the complete three-dimensional information in

a two-dimensional representation.

The principle of coordinate transformations to the spherical coordinate system and the range image
domain is consistently employed throughout this thesis in diverse contexts. The fundamental premise
is that a three-dimensional point cloud can be transposed into a two-dimensional image in the range
image domain, generally without any loss of information. However, careful consideration is required
for pixel coordinates that do not have an associated point in the three-dimensional cloud. Such
discrepancies may arise from factors like light absorption, total reflection, or objects being beyond
the sensor’s range. In these cases, the affected pixels are often explicitly flagged as ’not available’ or
alternatively assigned a zero or maximum range value. This treatment varies based on the specific
requirements of the application. In this work, the latter approach is consistently adopted for handling
such instances.

The representation of a point cloud as a two-dimensional image facilitates the application of image
processing techniques for data analysis and manipulation. This approach streamlines the analysis
process and enables the utilization of sophisticated tools, originally developed for image processing,
on point cloud data.

Chapter 2

Developing Novel Algorithms and
Networks for Lidar Segmentation

Contributions to Instance Segmentation:

Developing a New Clustering Algorithm for Lidar Data

As an introduction to segmentation,
and to establish the sensor-centric ap-
proach that accompanies this work
throughout, instance segmentation is
presented in the form of point cloud

clustering algorithms.

In this chapter, an algorithm that has
already been published in a confer-
ence paper [99] is described in detail.

Sections from the mentioned paper

are presented here in their entirety or
paraphrased. Additionally, an initial

Instance Segmentation Results of the Novel
version of the method was published Method Outlined in this Chapter. A three-
in the author’s master’s thesis [96]. dimensional point cloud is shown with clustered
points. Every instance is assigned a random color.

The "Fast Lidar Image Clustering"

(FLIC) algorithm achieves highly accurate point cloud segmentation and can run in real time,
processing data at a rate multiple times faster than the sensor’s recording frequency with minimal
fluctuation, regardless of the scene’s context. This is accomplished by working directly on the laser

range values of the sensor represented as a range image.

The FLIC algorithm overcomes the problem of sparsity in the point cloud by enforcing a two-
dimensional neighborhood on each measurement, allowing it to work with dense, two-dimensional
data with clearly defined neighborhood relationships between adjacent measurements. A Python
implementation of the algorithm runs in real time on a single Intel® Core™: i7-6820HQ CPU @ 2.70
GHz core, achieving a frame rate of up to 165 Hz. An example of the lidar instance segmentation
produced by the algorithm is shown in FiGure 3.1.

The following main contributions are provided in this chapter:

e A novel, real-time capable, CPU-based lidar range image clustering algorithm.

A method to reduce the under-segmentation of lidar clusters.

An evaluation of the proposed system on multiple open source lidar datasets.

o A comparison of the algorithm with state-of-the-art clustering methods for lidar point clouds.

29

30

3.1

Instance segmentation of lidar data is possible via various methods, such as using machine learning
algorithms to separate objects of unknown classes from each other by learning on labeled data [126,
223, 217]. Other approaches use heuristic methods which are hand-designed algorithms that use
domain-specific knowledge to process the data and separate instances from each other [149, 45, 220].
These methods can be used individually or in combination with the former, where the output of
the heuristic methods are fed into machine learning algorithms to improve their performance [153,
132].

The main disadvantage of heuristic methods is that they can be difficult to design and require a
high level of expertise in the domain. Additionally, heuristic methods are not as flexible as machine
learning algorithms which can adapt to new data and changing conditions. Finally, heuristic methods
may not be able to generalize to new situations, whereas machine learning algorithms can learn to
do so with enough training data.

On the other hand, the main advantage of heuristic methods is that they are hand-designed algorithms
that are based on domain-specific knowledge and experience. This means that they can be tailored
to the specific problem at hand and can often produce good results without the need for extensive
training data. Additionally, heuristic methods are usually computationally very efficient as they are
precisely adapted to the application [45, 227].

3.1.1

Clustering is a technique used in data mining and machine learning to group a set of data points
into clusters based on their similarities and dissimilarities. This is typically done using a distance
measure, such as Euclidean distance, to calculate the similarity between data points [41]. Clustering
is useful for various applications, including pattern recognition, data compression, and anomaly
detection.

There is a significant body of research on lidar clustering, particularly in automotive applications.
Most approaches focus on improving both segmentation accuracy and execution time. Many of these
methods involve separating objects in three-dimensional space, resulting in high accuracy but long
runtimes. Notable examples of three-dimensional lidar clustering algorithms include DBSCAN [77],
Mean Shift [84, 59], and OPTICS [32].

Other approaches to lidar clustering include voxelization to reduce the point cloud’s complexity and
find clusters in the resulting representation [104] or using bird’s eye view projection coupled with
height information to separate overlapping objects [123].

The authors of [149] have proposed using local convexity criteria on the spanned surface of three-
dimensional lidar points in a graph-based approach. The authors of [45] used a similar criterion
- the spanned angle between adjacent lidar measurements relative to the lidar sensor origin - to
segment objects. They further utilized the neighborhood conditions in the range image to achieve

the fastest execution time to date. The authors of [220] exploited the sequential relationship in scan

Chapter 3

Visualization of the Ground Segmentation Method of FLIC. Top: Ground segmentation; Blue
points represent ground points, red points are not part of the ground. Bottom: Angle image used
to find horizontal surfaces for the ground segmentation.

lines of lidar sensors to find break points in each line and merge the separate lines of channels into
three-dimensional objects in a subsequent step.

Other methods use machine learning directly on three-dimensional point clouds [126, 223, 217],
projections into a camera image [205], or on spherical projections of lidar points in the range image
space [207], to segment object instances in point clouds. While these methods show promise in some
cases, their longer runtimes currently prevent their application on embedded automotive hardware.

3.2

The raw data from lidar sensors is typically provided in one of two formats: either as a three-
dimensional representation of the measurements or as a list of range measurements. Each range
measurement is coupled with a number that relates to the lateral position and channel, such as
the index of the lidar module used to collect the data. These two values correspond to the y- and
x-position of the measurements in the range image. The two representations can be converted to
each other via a sphere projection applied to the three-dimensional data or a Cartesian projection
applied to the spherical values.

Regardless of the data’s origin, whether it came directly from the range measurements of the sensor
or from a three-dimensional point cloud, the data is further processed in the range image format. It
undergoes the same two-step process of ground extraction and subsequent clustering of contiguous
points.

3.2

31

32

Illustration of a General Triangle. The angle 8 is unknown, but can be calculated using
the lengths of the sides d; and d», along with their corresponding angle @. By applying the
trigonometric relationship, specifically the arctan function, 8 can be calculated using EqQuation 3.1

3.2.1

For object segmentation, it is assumed that the lidar is mounted on a ground-based vehicle. To
prevent the algorithm from erroneously connecting two instances through the ground plane, the
points belonging to the ground plane are removed from the main segmentation process. However, a
simple height-based threshold is not sufficient due to the unevenness of the road surface. Furthermore,
the orientation of the vehicle, such as pitching and rolling, can also influence the way the ground is

perceived in the sensor data, adding to the complexity of the segmentation process.

Given the detailed specifications of the lidar sensor, the angular position data for each channel is
utilized to ascertain the incident angle of the laser beam upon a surface. This information enables
the exclusion of range image values that correspond to a horizontal plane beneath a specified height
threshold. To achieve this, each cell of the range image is compared with its neighboring cell above
it to calculate the angle spanned between the line connecting the two and a line from the sensor’s
location to the cell in question .

B = arctan (- 2S00 3.1

dy—d>-cosa

in which the selected cell value is d,, the one above the cell is d; corresponding to the respective
depth measurement and « is the angle between the two measurements.

The trigonometric relationship between the depth values d; and d; as well as the angles @ and 3 can

be seen in FiGure 3.3.

As a result, the image shown in FiGure 3.2 is obtained, representing the angle values of the lidar
beam in relation to the connection spanned between the current lidar measurement and the lidar

channel below, as shown in FIGURE 3.4.

The g value in itself does not hold any meaning in relation to the ground plane. Therefore, the
relative angle is subtracted from the mounting angle of the given lidar channel in relation to the

horizontal view plane 6.

Chapter 3

Schematic Visualization of the Geometric Properties for the Ground Angle Determination.
The angle measurement of lidar points in the vertical direction is used to define a horizontal
orientation for the ground plane extraction. (Note that there is not 81, as the first lidar channel has
no previous channel, 3, is therefore extended to the first channel.)

Schematic Visualization of the Geometric Properties for the Point-Wise Distance Calcula-
tion. With the lidar Sensor in O, the lines OA and OB show two neighboring distance measure-
ments. The distance between the two measurements is calculated using the spanned angle «
between the points.

Using a lookup table of the absolute channel angles ¢, with respect to the channel r, all range
image cells that span a horizontal up to a certain threshold angle 6 of +10° to the sensor horizon are

classified as ground points
-0<6,—0,<86, (3.2)

where r corresponds to the given channel index.

This method classifies all lidar measurements reflected by horizontal surfaces. To prevent excessive
removal of valid measurements from elevated horizontal surfaces such as car roofs or hoods, a height
image is used, in which the range values are replaced by the Cartesian z-coordinate in relation to
the ego vehicle. This image is used to keep all horizontal surfaces above a certain height: a line
from the ground position of the ego vehicle to the maximum possible elevation spanned by the 10°
slope threshold. A comparable metric was described in [58] although with relative height thresholds
instead of absolute ones. The decision fell on absolute values to reduce the computation time. FIGURE
3.4 depicts the relationship of the channel angles J,- (angle in relation to the horizontal 0° line) to the
surface angles 3;.

3.2.2

A heuristic approach is employed to perform object instance segmentation on lidar sensor data by
clustering three-dimensional points in the two-dimensional range image space. The FLIC algorithm

relies on the removal of the lidar measurements belonging to the ground plane from the range image.

3.2

33

34

Inspired by the work in [45], the neighborhood relationship of adjacent measurements in the range
image is used for an efficient clustering. As visualized in Fiure 3.5 the given range values ||OA|| and
[|OB|| are compared for each pair of neighboring lidar measurements. The cosine law is applied to
calculate the Euclidean distance D in the three-dimensional space using the two-dimensional range

image with

D = V||OA|? +[|0B]? - 2]|OA]|- |OB||cos (3.3)

- \/d§+d§—2-d1 -dycosa. (3.4)

The « angle between adjacent lidar measurements is required for the calculation and is usually
provided by the manufacturer of the lidar sensor for both the horizontal and vertical direction
[198, 197, 196, 199, 103]. A threshold value is defined to determine if two points that are close
enough together belong to the same object. Points that exceed this value are considered too far
apart to be neighboring points on the same object. Typically, neighbors on a given object are
relatively close to each other. The distances of two neighboring points in the range image from two
separate objects are substantially larger. Pixel coordinates, that do not have a corresponding point
in the three-dimensional point cloud are filled with the sensor’s maximum range value to prevent
undersegmentation, i.e, a connection of two objects via an empty pixel position.

The computational is reduced by exclusively using variables which are given by the range mea-
surements and by pre-calculating the cosine of the given angle resolutions, the calculation of the
squared Euclidean distance are reduced to a total of four scalar multiplications, an addition and one
subtraction

D*=dy di+dy-dy—2-cosa-d, -d>. 3.5)

Constant

With the defined distance threshold, all lidar points in the range image can be connected to separated
clusters and cluster-less background points. The Euclidean distance as a threshold value enables
a single parameter implementation with a clear physical meaning which is adaptable to different

SEnsors.

A good performance was reached with a threshold of 0.8 m as the limit for a connection between
two points. This threshold theoretically enables the clustering of three-dimensional objects with
a Velodyne HDL-64E up to 114.6 m before the measured points are too far apart on a flat vertical
surface. Horizontally connected components can, in theory, be detected up to a distance of 509.3 m
which is more than four times the reliable range of the sensor for vehicles of 120 m as defined by the
manufacturer [196].

Connected-Component Labeling

FLIC exploits the grid structure of the range image to repurpose operations commonly used in
image processing. Specifically, the three-dimensional Euclidean clustering is transformed into a
two-dimensional connected-component labeling (CCL) problem. To do so, two virtual copies of
the range image are created: one copy is shifted by one pixel over the x-axis and the other over

the y-axis. These shifted images are used to compare each range value in the original range image

Chapter 3

Range Image and Distance Images of the Three-Dimensional Distance Between Neighbor-
ing Lidar Points in the Range Image. 7op: range image. Mid: horizontal distance between
each range value and its direct neighbor to the right in the original range image. Bottom: vertical
distance between range values.

with its vertical and horizontal neighbor over the whole image. Thus Equation 3.5 calculates the
three-dimensional distance on these images for each point with its vertical and horizontal neighboring
measurement. Applying the threshold on the resulting distance values yields two binary images
representing the connection or separation between two points in the range image. The original
range image is furthermore reduced to a binary image representing the presence and absence of lidar
measurements for all pixels of the range image. A visualization of the range image and the two
distance images of an example scene of the KITTI dataset [86] can be seen in FIGURE 3.6.

The three created binary images contain all the required information to segment the lidar measure-
ments of the whole frame into clusters and background points. For this, a simple and efficient image
processing algorithm is used; connected-component labeling. The 4-connected pixel connectivity,
also known as von Neumann neighbourhood [191], is defined as a two-dimensional square lattice
composed of a central cell and its four adjacent cells. To apply the pixel connectivity to the present
lidar data, the binary lidar presence values are combined with the binary threshold images of the
distances between lidar points. By arranging these three images as shown in FIGURE 3.7, it is straight
forward to apply CCL algorithms with a 4-connectivity on the resulting image to label each island of
interconnected measurements as a different cluster as shown in FiGure 3.8. The resulting segmented
image is then subsampled to the original range image size. Thus the three-dimensional cluster labels
are directly taken from the connected-component image, as each pixel corresponds to a given lidar
point in the three-dimensional point cloud.

There are a multitude of CPU-based implementations for CCL problems most common are the "one
component at a time" [2] and the two-pass algorithm [107]. The first method is in this work in the
form of the straight-forward implementation of the scipy library "label" for n-dimensional images
[201], as it provides a fast cython based function. More recent CCL algorithms make use of GPUs by
applying the CCL in parallel [101, 29]. This is a very promising approach, as all previous processing
steps in this work were applied to rasterized images and can be directly computed in parallel on
a GPU (This was not attempted in this approach, as the main goal was a real-time application for
CPU-based automotive hardware. A new and improved GPU implementation of the FLIC separation
metric is outlined in CHAPTER 5.3).

In a subsequent step to the CPU-based CCL, a threshold on the labeled clusters is applied for objects
below a certain number of lidar measurements to reduce false clusters resulting from noise in the
sensor. In the evaluation of this chapter a minimum of 100 points was chosen to be considered a
valid cluster candidate following the work in [45]. Objects of interest are cars, pedestrians and other

3.2

35

36

Schematic Visualization of the Combination of Binary Images to Connect Lidar Points. The
orange squares represent the binary value of present lidar measurements, the beige and purple
squares represent the horizontal and vertical connections of these measurements respectively. The
solid and dashed crosses show the 4-connectivity used by the connected-component labeling.

Connected-Component Label of a Car Resulting from the Combined Binary Images. The
binary range image and two binary neighbor connections are combined into a connection image
as shown in FiGure 3.7.

Chapter 3

Range Image Sub-Selections for Map Connections. The original range image is subsampled
for every second (top), every forth (mid) and every eighth (bottom) value, to create sparser copies
for the Map Connections.

road users in the close and mid range distance. Lower thresholds are recommended to include static
objects such as poles and debris on the road as well as objects farther away from the sensor.

Thus the lidar measurements are segmented into connected components of separate objects and

non-segmented points which corresponds to the ground plane and background noise.

Map Connections

Heuristic lidar segmentation algorithms are prone to under- and oversegmentation [149, 45]. Un-
dersegmentation refers to the problem where multiple objects are grouped into a single segment.
On the other hand, oversegmentation is when a single object is segmented into multiple smaller
segments. These problems arise often in lidar clustering due to the characteristics of lidar sensors.
Noise, occlusion, sparsity and missing measurements resulting from deflected laser beams lead to
missing connections between areas of the same object [149, 45]. This causes the direct neighborhood
approach described above to oversegment single objects into multiple clusters. Examples of such
challenging instances are shown in Ficure 3.10.

To overcome the limitations of the direct neighborhood approach and to ensure a more robust
segmentation, FLIC is extended by what is called Map Connections (MCs) in the following. The
schematic visualization in FIGURE 3.11 displays a connection of each measurement with its second
neighbor. Due to the known a angle between all measurements, the Euclidean distance calculation
can be extended from each measurement to any other in its vertical column or horizontal row while
still using the cosine law described in Equarion 3.5, by adjusting the angle to the given offset. This
allows to robustly connect segments of the same object which have no direct connection due to
missing measurements or obstruction by other objects in the range image. By sub-sampling the
whole range image the resulting binary image for the CCL algorithm shrinks accordingly as shown

in FiIGUure 3.9.

An example of the improved segmentation can be seen in FIGUre 3.10. In the evaluations in SEcTION
3.3 1, 6 and 14 MCs have been added along the main diagonal of the range image respectively.
The 6 MC connections are shown in Fiure 3.12. The Maps of reduced point-sets are smaller

than the original point-set and thus require only a fraction of the computation time on top of the

3.2

37

38

catsmsstsmssasnnsnseane o0

Map Connections Reduce Over-Segmentation. Left: Results using only the direct connectivity
between neighboring Lidar points. Right: A single additional MC between every second Lidar
measurement. The proposed MCs enable a more accurate segmentation of the car (top) and
reduce the over-segmentation of partially occluded objects, as shown by the truck in the bottom
images.

Schematic Visualization of Map Connections. Additional Map Connections (dotted lines)
between non-neighboring Lidar points on top of the direct connections to neighboring points
(yellow and blue squares).

directly connected clusters. The additional mapping of the cluster-ids of the original clusters with
the MCs, results in a slightly increased runtime as shown in Section 3.3.1. The combined use of the
direct connectivity of neighboring measurements and the MCs enable a pseudo three-dimensional
Euclidean clustering while exploiting the fast runtime of two-dimensional pixel connectivity. Thus,

the quality of the segmentation improves without sacrificing the real-time capability of the method.

3.3

The evaluation of the presented instance segmentation algorithm via range image clustering addresses

the two main goals of the application: speed and accuracy. The first experimental evaluation evaluated

Chapter 3

L]
L]
L

¢ ¢ + T
0 0 X 3 & 3 A
1 3 A

Pattern of Six Map Connections. The pictured structure increases the connection area with the
least amount of maps. The colored cells are pixel coordinates within the range image that are
compared beyond their direct neighbors via the Map Connections that are shown as arrows.

A
hd
FY
A 4

4
<
'Y
A4
4
<
'Y
A4
4
<

A
hd
A
v

@

4
hJ
'Y
I
1.4
A4
4
hJ
'Y
I
L4
v
4
i

- & @

Bogoslavskyi and Stachniss, 2016

3
10 FLIC
FLIC with 1 MC
FLIC with 6 MC
Sensor Frequency FLIC with 14 MC
102 e o o ——— [— - ESter et al., 1996 -

Runtime [ms]

10!

0 500 1000 1500 2000 2500
Frame

Frame-Wise Runtime of FLIC and Other Algorithms on a 64-beam Velodyne Dataset
[148]. Please note the logarithmic scale for the runtime.

the method’s ability to run in real time at typical sensor recording frequencies, preferably with a
constant processing rate and minimal fluctuations regardless of the scene’s context. The second

experiment focused on a quantitative assessment of segmentation quality.

3.3.1

Following the experimental setup in [45], the first experiment was carried out on the provided
data by Moosmann et al. [148] to support the claim, that the proposed approach was capable of
online segmentation in real time. All listed methods have been evaluated on the same Intel® Core™
i7-6820HQ CPU @ 2.70 GHz.

Ficure 3.13 shows the execution time of the five methods on the 2,500 Frames dataset [148]. The
FLIC algorithm ran with an average of 165 Hz and was therefore faster than the previously fastest
published algorithm of [45] of 152 Hz, while also exhibiting less fluctuation due to the binary image
implementation when used without any additional MCs. A box-plot of the average runtime of [45]
and the FLIC can be seen in FiGure 3.14 which shows the fluctuating nature of methods depending
on the scene context, as opposed to the presented FLIC.

3.3

39

40

N
w
o

E 200 iR
9
$150
Pl L
= 100 —
.%
g 50 —_—
x .
w
Bogoslavskyi FLIC FLIC FLIC FLIC
and Stachniss, 2016 with 1 MC with 6 MCs with 14 MCs

Average Segmentation Frequency of 2,500 Scans from a 64-beam Velodyne Dataset [148].
The presented approach with up to 14 Map Connections is compared to the method by Bo-
goslavskyi and Stachniss [45].

As can be seen in Figure 3.13, when adding MCs to the proposed method, the execution time suffers
from a slightly longer runtime, while still running at a frequency of 26 to 105 Hz depending on the
number of additional MCs. This is 2.6 to 10.5 times faster than the recording frequency of the lidar

Sensor.

3.3.2

For the evaluation of segmentation quality of the FLIC algorithm, the dataset SemanticKITTI [39]
was used. This dataset enriches the KITTI datasets [86] odometry challenge with semantic and

instance-wise labels for every lidar measurement.

To reduce the influence of the proposed ground plane extraction in SectioN 3.2.1 and focus on the
results of the clustering mechanisms, the evaluation was conducted once without the lidar points
of the classes "road", "parking", "sidewalk", "other-ground", "lane-marking" and "terrain”. And a
second time without any usage of the semantic labels by applying the ground extraction proposed in
SectioN 3.2.1 on all methods.

For each ground truth object with at least 100 lidar point measurements, each algorithm’s object
cluster output with the most ground truth overlap was selected. Using these two lists of points, the
Average Intersection over Union (IoU,) was calculated by averaging the Intersection over Union

values of every single instance over 10 sequences.

The connection and separation of instances solely through the distance carried the risk of under-
segmentation, e.g., in the case of objects that are very close together. For this reason, the results were
measured instance-wise in the evaluation. If two instances were represented by only one cluster,
only the object with the higher JoU was counted, while the second object was marked as "not found".
This metric was computed for each algorithm listed in TaBLE 3.1, for ten annotated sequences with
lidar instance ground truth in the dataset. The quality of FLIC was directly compared to the, at the
time, fastest lidar clustering algorithm [45], as well as the very precise three-dimensional Euclidean
density clustering algorithm DBSCAN [77]. The scikit-learn’s [156] implementation of the DBSCAN

Chapter 3

0.825
0.800
20.775
c
3
20.750
0.725

0.700

0.2 0.4 0.6 0.8 1.0
Euclidean Distance Parameter

Parameter Study of the Maximum Distance Between Two Points, to be Considered Part of
the Same Cluster. The dashed line shows the maximum IoU for the evaluation log. The plateau
between 0.5m and 0.8m shows a very broad and robust sweet spot for the FLIC algorithm.

algorithm was used in these evaluations. Considering the age of this algorithm, it might be surprising
to see that it is still used in modern clustering applications [224, 145, 55]. This long-term relevance
was also confirmed by the "Test of Time" Award from ACM SIGKDD [179]. The algorithm was also
revisited by the original authors in a follow-up paper [175] in 2017 to demonstrate the continued
relevance in many clustering applications. Therefore the DBSCAN was used to compare the pseudo
three-dimensional approach of the FLIC algorithm to two state-of-the-art algorithms, one for speed

and one for accuracy.

The IoU,, with the best-performing parameters of each method is presented in TasLe 3.1. With
the threshold parameter set as 0.8m, the FLIC algorithm outperformed [45] with only the direct
neighborhood implementation without any MCs while also exhibiting a faster run-time. This
parameter has been set with an additional experiment on a single log of the dataset, which was
excluded from the other validations. The results of this experiment are shown in FIGURE 3.15. The
Euclidean distance threshold has a clear physical meaning, that directly defines the connection of
points. It has a large global optimum and can be fine-tuned to different point densities of various

lidar sensors.

On average, the FLIC algorithm is 8% faster than the algorithm presented in [45]. However, for

the longest execution time of a given frame, there is a 15% difference between the two algorithms.

Together with the proposed MCs between all odd measurements, FLIC performs with an IoU,, score
even higher than the DBSCAN [77], as shown in TasLE 3.1 while FLIC is faster by a factor of 120.

Using six MCs, FLIC surpassed the performance of DBSCAN with an even larger margin and
managed to reach a noticeably higher IoU,,. A total of 14 MCs outperformed the three-dimensional
DBSCAN algorithm on four of the six shown metrics in TaBLE 3.1, with an average execution

frequency of 26 Hz it still runs at 2.6 times the sensor frequency.

Without any MCs FLIC is on average 120 times faster than the DBSCAN. With an increasing number
of additional MCs itis 67, 25 and 14 times faster than the DBSCAN Algorithm. The run-time increase
did not scale logarithmic as one would expect with additional MCs (as they re-apply the same function
to a smaller subset of the original point cloud). This issue resulted from the computational overhead
caused by the python implementation for the cluster matching between the maps. The algorithm

3.3

41

42

was not re-implemented in a different programming language, as the computation time was still far

below the sensor frequency.

The second column of TaBLE 3.1 shows, that the proposed ground extraction method of SecTiON
3.2.1 degraded the performance of all listed algorithms, except for [45]. This results from the fact,
that the metric for the ground segmentation is very similar to the cluster separation metric used
by Bogoslavskyi et al. [45]. A better ground separation leads to a much better performance for
the proposed method as the IoU,, values with the ground truth (GT) ground segmentation shows.
Improving the ground separation is therefore critical to improve the instance segmentation of the
FLIC.

For further evaluation of the instance-level performance, the object segmentation was computed
similarly to [45] by calculating the recall, which is the fraction of true positive detections out of
all GT instances. Ten bins of point-wise overlap of the ground truth and segmented clusters were
defined, ranging from an IoU of 0.5 to 0.95 in steps of 0.05. The recall of all bins was averaged into
one single metric score, the average Recall (R,;), which is shown in TabLE 3.1 for each method. In
addition to the overall precision metric, the evaluation also reports the recall for different overlap
values (0.5, 0.75, and 0.95) where an object is considered correctly segmented if its JoU with the
ground truth is greater than the respective overlap threshold. The recall, that showed how many

instances are matched with an JoU of more than the threshold thr is therefore defined as

3.6)
) 1, if IoU(n,m) >= thr,
with ap, =
0, else.

for N instances and M clusters in which each instance and cluster was matched via the Jaccard Index
(IoU) over a certain threshold zir. Please note, that due to the definition of the Intersection over

Union only one cluster can match a ground truth instance with an IoU > 0.5.

TaBLE 3.1 shows, that the FLIC algorithm matched on average more GT instances than [45] and
are close to the mean segmentation recall of the DBSCAN [77] algorithm. With a higher number
of MCs, FLIC achieved better recall values for overlap values of 0.5 and 0.75, while the DBSCAN
[77] algorithm matched more instances with higher overlap values due to the full three-dimensional

clustering on all points of the dataset.

Only up to 14 MCs were compared in this evaluation, in order to preserve the real-time capability.
However, with just these 14 MCs, FLIC achieved a clustering segmentation which performed
comparable to, and in some regards better, than the full three-dimensional algorithm. The high recall
values for the lower overlap regions of 0.5 and 0.75 are particularly important in the context of
driver assistance systems, since a missed instance can lead to dramatic outcomes, as opposed to a
not perfectly matched instance. The evaluation also demonstrated that the proposed MCs improved
the results of the FLIC algorithm immensely and helped to detect otherwise missed objects.

The performance of both FLIC and the method by [45] drops noticeably in the 0.95 IoU bracket
due to the underlying data. The SemanticKITTI dataset has a pre-applied ego-motion compensation,

Chapter 3

Comparison of the Segmentation Quality Using the Intersection over Union and the Recall
Average. The algorithms of [45] and [77] are directly compared to the FLIC

IoU, 7 IoU, 7 RyT RosT Ro75T Roos?T
Method (No Ground) (Ground) |
Bogoslavskyi et al.[45] 73.93 7393 | 5931 8375 6352 13.18
DBSCAN [77] 76.21 7277 | 7650 81.54 7645 69.25
FLIC 76.20 7231 | 63.73 8430 6751 22.03
FLIC (1 MC) 77.97 73.65 | 66.68 8560 7021 27.19
FLIC (6 MC) 81.14 7548 | 7192 8825 7499 36.05
FLIC (14 MC) 84.25 7639 | 7468 89.75 77.61 40.63

which slightly shifts and rotates the three-dimensional point cloud away from the original sensor
configuration to compensate for movement. This manipulation of the point cloud hurts the perfor-
mance of both methods in the 0.95 IoU bracket, which requires a precise projection of the raw data.
The DBSCAN algorithm runs directly on the manipulated three-dimensional data and does not suffer

from this issue.

3.4

This chapter presents a real-time algorithm for instance segmentation of lidar sensor data. The
algorithm efficiently segments objects based on their three-dimensional distance using raw range
images. A novel concept called "Map Connections" is introduced to make the approach more robust
against over-segmentation. The method preserves three-dimensional information in two-dimensional
representation for fast computation. The proposed approach outperforms comparable state-of-the-art
methods in terms of speed, runtime stability, and instance segmentation performance. The algorithm
has been utilized in various applications, including panoptic segmentation in CHAPTER 5.3, online
detection systems for vulnerable road users in CHAPTER 8.2, improved non-causal object detection

network [31], and test platform for collaborative perception algorithms [83].

3.4

43

Contributions to Semantic Segmentation:

Creating an Advanced Network Architecture for Three-Dimensional
Semantic Segmentation of Lidar Point Clouds

In this chapter, a new network for
semantic segmentation of lidar data
is presented, which is designed to
provide detailed and point-wise se-
mantic information about the environ-
ment for robots and autonomous ve-
hicles. The network is built with the
aim of improving the current state-
of-the-art in lidar semantic segmenta-
tion by leveraging the strengths of ex-
isting networks and combining their

underlying principles in a synergistic

way. Semantic Segmentation Results of the Novel Neu-
ral Network Presented in this Chapter. A three-
To achieve this, a new module called dimensional point cloud is shown with semantic clas-

RangePillars is introduced, which sified points. Every class is assigned a different color

acts as a bridge between projection-, voxel-, and point-based methods for semantic segmenta-
tion. This module is a modification of PointPillars [127] and is based on a spherical coordinate
system that allows for the combination of three-dimensional point cloud representations as voxels
and range image-like grid structures.

The use of RangePillars enables the integration of various segmentation networks, such as point-
based, range image-based, and voxel-based networks, in an end-to-end trainable fashion by combin-

ing the network data from all three configurations to leverage their respective strengths.
The following main contributions are provided in this chapter:

o A novel network architecture for semantic segmentation of lidar data.
e An evaluation of the proposed network architecture on open source lidar data.

e An extensive ablation study on the influence of each part of the proposed network architecture.

4.1

Semantic segmentation of point clouds is the process of assigning a class label to each point in a
point cloud, with the goal of dividing the point cloud into distinct regions or segments corresponding

45

46

to different objects or structures. There are three main categories of methods for performing semantic
segmentation on point clouds:

Point-based Methods

Point-based methods operate directly on the individual points in the point cloud. PointNet [161] was
the first deep learning architecture for this task. It did this by mapping all the points in the point
cloud to a multi-feature space and using max pooling to extract a point cloud-wise feature vector.
The extracted feature vectors are concatenated with the point-wise features and fed through a series
of fully-connected layers which are used to classify the points. PointNet++ [162] built upon this
approach by using hierarchical farthest point sampling to create a pyramid structure similar to a
convolutional neural network (CNN) which allows it to capture both global and local context in the
point cloud. KPConv [15], on the other hand, uses Kernel Point Convolutions to operate directly with
convolution operations on sampled point clouds spheres. These convolutions were applied to a given

radius neighborhood of points, treating them as spherical operations.

Voxel-based Methods

Voxel-based methods for semantic segmentation of point clouds involve dividing the three-dimensional
space occupied by the point cloud into a regular grid of small three-dimensional cells, or voxels

[230]. The main advantage of voxel-based methods is that they can handle large, unstructured point

clouds and can be efficient to process, as the voxel grid provides a fixed, regular structure that can

be easily processed by standard machine learning techniques [127]. The progress of voxel-based

processes was further accelerated by the advance of sub-manifold sparse convolutional networks [91]

which allows convolutional operation even on very sparsely populated voxel grids, leading to very

fine voxel sizes. SPVNAS [188] combines aggressive voxelization with a second point-based branch.
The finer details captured by the point-based branch are added to the sparse voxel-based features

to improve the final classification. Cylinder3D [228] partitions the point cloud into cylindrical

partitions, taking advantage of the cylindrical point distribution often found in rotating lidar scanners.
This partitioning allows for a more evenly distributed set of points, regardless of the range to the

origin. Asymmetrical three-dimensional convolution was then applied to these cylindrical partitions,
followed by a final point-wise refinement module to improve performance. FusionNet [222] fuses

the point-wise inner-voxel aggregation features with the features of a multi-scaled voxel-based

convolutional network to improve semantic segmentation. (AF)?-S3Net [22] is a modified version of
MinkNet42 [10] with additional attention blocks that fuse the attention of different scales to improve

the final classification.

Projection-based Methods

Projections-based methods use the two-dimensional panoramic range image projection of a point

cloud. It provides a compact and efficient representation of the sparse and unevenly distributed point

Chapter 4

cloud that is more efficient to process and analyze. One of the first approaches of semantic segmenta-
tion on range images was SqueezeSeg [211]. The SqueezeSeg architecture is a modified SqueezeNet
[110] version with reduced parameter size for a lower computational complexity. RangeNet++ [7]
built upon the Darknet53 [165] network architecture with adjustments to work with lidar projections
images, and it added max pooling operations only along the horizontal dimension. KPRNet [120]
combines a range image segmentation using a ResNeXt-101 encoder [11] with a subsequent KPConv
[15] layer before the final classification to reduce the errors caused by re-projections to the original
point cloud. SalsaNext [61] replaces it’s previous encoder-decoder structure from ResNet [18]
blocks to residual dilated convolution stacks with gradually increasing receptive fields, the authors
add a Baysian treatment to compute the uncertainty of the predictions via a point-wise epistemic
and aleatoric uncertainty. TORNADONet [88] utilized a PointPillars [127] feature extraction on
a cylindrical Bird-Eye-View projection of the original point cloud to replace the point features by
voxel features for a following projection segmentation using a modified SalsaNet [3].

The work most similar to the approach presented in this chapter is 3d-MiniNet [6], in which the
authors project the three-dimensional Cartesian point cloud onto a range image and stack projected
points in 3x3 grids to process them in a PointPillars [127] alike fashion to extract local three-
dimensional features as additional input to the range image segmentation. Their concept is optimized
for speed rather than segmentation quality, and they use the PointPillars solely as feature encoders.
The RangePillars presented in this chapter on the other hand encode all points of the original point
cloud, and can be used as feature encoders, but also as feature decoders, as which they improve the

final segmentation quality.

4.2

The RangePillars network is designed to use three-dimensional Cartesian point clouds as input data
and provides point-wise semantic labels as direct output. It consists of three stages: (1) A pillar-voxel
feature encoder network that converts a given three-dimensional point cloud to a list of voxels. (2)
a two-dimensional convolutional backbone in which range image features are combined with the
RangePillar-features; each pillar is used as a pixel and the high dimensional encoded features of the
RangePillars represents the feature channels of every pillar. And (3) a point-wise classification head
which combines the local point-wise pillar features with the point-wise projected pixel features for a

final classification of each point.

4.2.1

The RangePillars are designed as voxel representations for an evenly distributed grid structure of

points in a three-dimensional voxel grid. To achieve this the Cartesian point cloud is projected

4.2

47

48

Multi-Scale
Pillar Feature Pillar o
Aggregation Features Predictions

Image
Features

sy, (4 3 V¥

id

Image
Point Cloud Backbone
(G [| I [| i W,:r&%\
i\ %

Pillar-Pixel-Point Point
Classification Features

Architecture of the RangePillars Network. The Multi-Scale Pillar Feature Aggregation module
(blue) encodes the voxelized point cloud to extract pillar features. The image backbone (red)
concatenates the range image projection of the original point cloud with the RangePillars features
and processes it in an image encoder-decoder module. The Pillar-Pixel-Point Classification
module (green) concatenates the pillar and image features with the point-wise information, to
combine the information of all three modules for the final point-wise classifications. The plus sign
denotes a concatenation along the feature dimension.

into the spherical coordinate system, by mapping every Cartesian point (x,y,z € R) to the spherical
coordinates (r € R*; 4,0 € R):

r Va2 +y2+22
¢|=| atan2(y,x) |, with r € [0,inf) and ¢,6 € [-n, 7], “4.1)

0 asin(%)

where each point in the point cloud is transformed from the Cartesian coordinates (x, y,z) to spherical
coordinates (r, ¢,), where r represents the range, ¢ the azimuth angle, and 6 the elevation angle. The
azimuth and elevation angles are used to define bins in both directions, which are used to organize
the spherical point cloud into a grid structure. This approach is often used as an intermediate step to
turn a three-dimensional point cloud into a two-dimensional range image of the same [120, 215, 88,
3, 61, 6]. For the SemanticKITTI dataset, the scan-unfolding technique outlined in [19] was used to
re-engineer the index of the lidar channels, as the dataset did not provide the original lidar channel
indices in the data.

Ficure 4.3 illustrates the distinction between Cartesian voxels, Spherical three-dimensional voxels,
and the innovative RangePillars approach.

Usually, depending on the chosen bin size, each pixel in a range image is assigned the value of the
last point of the bin or the point closest to the sensor. All other points of the bin are ignored and not
represented in the range image.

The spherical grid structure on the other hand is simply a re-projection of the original point cloud.
All points are taken into account for the creation of the RangePillars: the points are arranged along
a new dimension, in which all points of a certain bin are grouped together. This allows a voxel

Chapter 4

Y Y
.x X
Comparison of Cartesian Voxels, Spherical three-dimensional Voxels, and RangePillars.
The figure showcases the differences between three voxel representation approaches: Carte-
sian Voxels, spherical three-dimensional Voxels, and the innovative RangePillars method. The
diagram highlights the distinct structural characteristics and encoding schemes of each voxel

representation. In each voxel grid, a single voxel is outlined in dashed red, providing a visual
representation of the size of each voxel within the respective representation.

treatment to the spherical bins and assigns for each point the mean position in both the Cartesian
x,y,z as well as in the spherical coordinates r,¢,6 and the pointwise offset to each of these mean
values. The reflection intensity is not influenced by the spherical coordinate transformation and
therefore added point-wise without a bin mean. This assigns the voxels with seven features per
point.

Opposed to previous voxel methods [127, 6, 88, 188, 228] a generally uniform distribution of
points is present in each bin, as the binning aligns to the recording method of the lidar sensor. A
sub-sampling of voxels which have too many points or operations geared towards sparse matrices
[91] are therefore not necessary. The RangePillars voxels keep all assigned points.

422

Depending on the chosen bin size in the voxelization of the point cloud, the resulting voxels can
have multiple points per voxel, with a small total number of voxels or in the other extreme, only one
point per voxel but a large amount of voxels. Both extremes are avoided by keeping 2 - 128 points in
each voxel to avoid sub-sampling inside each voxel, while ensuring a minimum amount of points to

enable a sufficient local point density for the inner-voxel operations.

To extract both fine-grained features from small-scale voxels with few points and rich contextual
information from coarser voxel scales, the point cloud is voxelized using multiple RangePillars
at different scales. These different RangePillars are then combined using a top-down, bottom-up
approach similar to the one described in [124], with the scales of the pillars chosen to be multiples of
each other. The largest scale RangePillars have the same resolution as a full-scale range image (1 :
64 %2048 = 131072 voxels with 2 points each). Each RangePillar is processed via a mini-PointNet

4.2

49

50

1S: 64x2048x2xC
1S: 64x2048x2xF

0.5S: 32x512x16xF

Point |Cloud Pillar Features

0.25S: 16x128x128xF Multi-Scale Pillar
Feature Aggregation

Multi-Scale Pillar Feature Aggregation. The Multi-Scale Pillar Feature Aggregation module
takes a point cloud that has been divided into three scales and encoded into range voxels as
input. The highest resolution scale, called /S, is processed by a mini PointNet module and then
downscaled to the 0.5S scale using a two-dimensional convolution. The downscaled /S features
are maxpooled along the point dimension and added onto the mid resolution scale, called 0.5,
along the feature dimension. The resulting tensor is processed again by the same mini PointNet
module as the higher scale voxels. The same process is repeated with the lowest scale, called
0.25S. After the lowest scale mini PointNet module, the features are upscaled to the 0.5 resolution
and added onto the features of the 0.5S mini PointNet, which is again processed by the same mini
PointNet. This process is repeated for the 1S scale pillar voxel features, which are the final output
of the Multi-Scale Pillar Feature Aggregation module.

[161], and are down-sampled by a factor of 2 in the vertical and 4 in the horizontal direction to
reach the mid scale RangePillars (0.5S: 32x 512 = 16384 voxels with 16 points each). The two
voxel scales are concatenated via their feature dimension, as described in [124]. This combines
the local high-resolution voxel features with the mid-resolution features of the mid scale the same
mini-PointNet of the higher resolution is applied to each pillar. This process is then repeated with
the enriched mid scale RangePillars to reach the lowest scale pillars (0.255: 16 x 128 = 2048 voxels
with 128 points each).

To bring the context of the lower scale RangePillars back up to the higher scale pillars, a second,
bottom-up path is applied. The coarse, lowest scale RangePillars are max pooled along their
point dimension, up-sampled, and concatenated onto the mid scale pillar feature vectors. These
RangePillars are again processed by a mini-PointNet. The process is repeated on these mid scale
pillars and they are in turn up-sampled and concatenated onto the highest scale RangePillars, to
add the context of the lower scale voxels as well as their own onto the fine scale pillars. The
mini-PointNet are applied to this final highest resolution RangePillars. In this way the coarse pillars
are enriched with the information of higher scale pillars, while the higher scale pillars gain the

context information of the surrounding RangePillars of various resolution.

Chapter 4

4.2.3

The concept of the RangePillars is applied to the SalsaNext [61] range image semantic segmentation
backbone: As a baseline a version of the SalsaNext has been adapted to work without the RangePil-
lars, but with additional image-feature input layers: The spherical coordinate transformed point
cloud as given in Equarion 4.1 is mapped from R? — R? by

1y _ 4 1
[“]z[Lol),withu,veN+, 42)
1% [1_(9+fup)f]h

where (u,v) are the image pixel coordinates, (h, w) are the height and width of the resulting range
image and f = f,, + fiown is the vertical field-of-view of the lidar sensor. The image coordinates
(u,v) are used to create a six channel image in the panoramic view. The input image consist of the
inverted range and the intensity values similar to the recommendation of Kochanov et al. [120].

Two additional input channels are added to the input image, that encode the normal vectors of each
point in the range image projection in relation to the lidar sensor. These are calculated by taking the
mean of the angles spanned between the point in question and the two neighboring points:

NRPJ’!O}"(u’ V)= 0~5(ARP,h0r(M, v+ 1)+ ARPJwr(u? v—1)) (4.3)
NRP,ver(u’ V) = O~5(ARP,ver(us v+1)+ ARP,ver(Ms v—1)), 4.4)

where Arpior, ARPyver € [—7, 7] are the spanned angles between the point and its pixel space neighbors,
and Ngphor, Nrpver € [—7,m] are the resulting relative normal vectors in relation to the sensor origin.
They are split into the horizontal and vertical neighbor in the range projected image respectively.
The angle images Arpjor and Agrp,.r are calculated via the law of tangents:

Rer(t,v+ Dsin(@or)
A AU, = t 45
RRhor (1, V) = are a“((RpR(u, V)~ RorGuv+ 1)cos(ahm>>) (4-2)
Rpr(u+1,v)sin(ayer)
A ver(U, = t R 46
R ver(4,) = arc a“((Rpr,)~ Ror(u+ Lv)cos(aver») (4-0)

where Rpp is the range projected range image and @y, @y, are the horizontal and vertical lidar
resolution respectively.

Further, two point-wise projected range distance images Dpg_nor and Dpgy.r € R which encode the
Euclidean distance of a point from it’s horizontal and vertical range image neighbors are concatenated
to the image features.

Dpg hor(u,v) = ||(cpr(u,v) = cpr(u,v + D)ll2 (4.7)

DpR ver(u,v) = ||(cpr(ut,v) — epr(u+ 1,v))|l2. 4.8)

They are calculated by the L, norm of the projected Cartesian point coordinates cpr and their
neighboring pixel values in the horizontal and vertical respectively. The projected Cartesian point

4.2

51

52

coordinates cpr are stored as a 3-channel image, in which each channel holds the information of the

three coordinates x, y and z

cpr,hor(0,u,v) = x 4.9)
cprhor(1,u,v) =y 4.10)
CPR,hor(2,1,V) = Z. “4.11)

This baseline image network with 6 input feature channels, was extended by adding the voxel-wise
RangePillar features. The input image features are concatenated with the mean voxel features in
the shape of pseudo-images resulting from the Multi-Scale Pillar Feature Aggregation step outlined
in SecTION 4.2.2. The voxel-wise max features are assigned to the corresponding pixel values that
are mapped from the voxels to the image pixels, as the number of the 1§ scale voxels aligns with
the number of pixels in the range projection image. Lastly, the classification head of the network is
adjusted, to output the second to last layer as a feature-rich output for the point-wise classification
network.

4.2.4

The point-wise classification combines the original point cloud with the output features of the
RangePillars from the Multi-Scale Pillar Feature Aggregation, and with the pixel-wise output
features from the adjusted image backbone. The Pillar-Pixel-Point Classification head uses the

original point IDs and coordinates for each point in the output image as well as the RangePillars.

Given the original point cloud in the form P € R¥V*G*+0) where N is the number of points, and C is
the number of additional features to the three Cartesian coordinates, the coordinates of the range
image projection and the RangePillar voxels can be projected into the same view. The coordinates
of the range image projection are given in the form RP € NY*2, where RP is in the same order as
P. The RangePillars IDs are given in the form RPV € NY¥*V*! where V is the number of voxels
and / is the number of inner-voxel points. These coordinates are used to re-project the features of
each RangePillar to a point-wise list. The point-wise RangePillar features are concatenated with

re-projected point-wise image output features and the points of the original point cloud.

The point-wise feature vector obtained by concatenating all three feature branches is processed by a
one-dimensional convolution layer to output the probabilities for the final classification of each point.
This point-wise segmentation combines the context-rich information from the image backbone with
the three-dimensional information from the RangePillars and the original points, helping to avoid
projection bleeding. This is a problem often seen in projection networks where borders between
classes in the range image become smudged and one class bleeds into another, even when the points
are far apart in the Cartesian point cloud [7].

Chapter 4

4.2.5

Real world datasets are highly imbalanced which is challenging for deep neural networks. In order
to reduce the bias to the more prominent classes, for the presented network, the strategy of SalsaNext
was adopted, by which more value is added to the underrepresented classes by weighting the softmax
cross-entropy 1oss Lyce as

C
. 1
Lyee(,y) = —Za/cyc log(¥,), with @, = — 4.12)
c=1

N

where C is the number of classes, y. is the true label and J, is the predicted label for class ¢, and @,
is the relative inverse square root of the class frequency f, which is the share of points of the given
class divided by the number of all points in the dataset.

Further, the Lovdsz-Softmax loss [8] L;s is added to the weighted categorical cross-entropy Lyce.

The Lovdsz-Softmax loss is a method used in image segmentation to improve the accuracy of models.

The key idea behind the Lovdsz-Softmax loss is to optimize the Jaccard index, also known as
Intersection over Union (IoU). The IoU is a common metric for the quality of image segmentation,
and it is more robust than simple pixel accuracy as it takes into account both the size and location of
the predicted segments. This makes it a more suitable metric for imbalanced datasets or datasets
with varying object sizes.

Given a vector of class probabilities f(c) for each class c in C, and a ground truth label y, a vector of

pixel errors m(c) is constructed for each class c as follows:

mey=11 7@ ife=y (4.13)
f(o) otherwise.

The Lovdsz-Softmax loss for class c is given by the Lov’asz extension of the Jaccard index for class

¢, applied to the vector of pixel errors m(c):

L(f(c)) = AJ(m(c)) (4.14)

Finally, the overall Lovdsz-Softmax loss is the average of the class-specific losses:

1 _
Lis = i ; AJ(m(c)), (4.15)

where AJ, is the Lovdsz extension of the Jaccard index for class ¢, f(c) is the vector of class

probabilities for class ¢, m(c) is the vector of pixel errors for class ¢, and C is the set of all classes.

The sum is over all classes ¢ in C, and |C| is the number of classes.

The Lovdsz extension is a mathematical tool used to extend set functions to real-valued vectors. It is

particularly useful for extending submodular functions, which are set functions that satisfy a natural

4.2

53

54

"diminishing returns" property. Submodular functions often arise when dealing with discrete objects

like sets of pixels in an image or sets of points in a point cloud.

In simpler terms, the Lovdsz extension takes a vector of computed errors, orders them in decreasing
order, and operates on these errors to compute a smooth approximation of the submodular Jaccard

Index. The final loss is the average of the Lovdsz-Softmax losses computed for each class.

By directly optimizing the IoU, the Lovdsz-Softmax loss can lead to improved performance on image
segmentation tasks, particularly when dealing with imbalanced or diverse datasets.

For a more detailed explanation of the Lovdsz-Softmax loss, the original paper [8] can be referred

to.

Both losses, the weighted categorical cross-entropy and the Lov’asz-Softmax loss, are combined
with a weighted influence for the final loss L

L = AyeeLyce + AisLys, (416)

where A, and A5 scale the influence of the weighted categorical cross-entropy and Lovdsz-Softmax

loss respectively.

The full network is trained in an end to end fashion which is causing considerable issues due
to the internal projections and sub-networks: the weights of the RangePillars feature encoder
are approaching zero values, due to the over-reliance of the full network on the image backbone
predictions resulting from the range image projection. In order to force the network to use the
RangePillar features and to lessen the bias towards the image backbone. The training loss is

furthermore extended by a multi-headed loss which will further on be called Hydra Loss.

The Hydra Loss is the addition of loss terms on intermediate classification heads at the preliminary
stages of the sub-networks. The original point cloud is encoded to the RangePillar voxels which
uses the Multi-Scale Pillar Feature Aggregation to combine local features of the fine voxels with the
global features of the coarser voxels grid. A classification head is added to the RangePillar feature
encoder sub-network, in order to classify each voxel of the 1S voxels separately. The loss of the
RangePillar Voxels Ly is combined by the two terms of the weighted categorical cross-entropy
Ly,,, and Lovdsz-Softmax loss Ly, , with a voxel weighting to the point-wise loss of the final full

network.

The same process is repeated for the image backbone: the final feature output layer of the SalsaNext
backbone is added to a separate image classification head, and both loss terms are calculated for this
third head. The three heads are shown in FiGURE 4.5.

Each head’s combination loss consists of the linear combination of a weighted categorical cross-
entropy term and a Lovdsz-Softmax loss term:

Ly = /lwceLVwce + AlsLV/S “4.17)
L= /lwceLlwcg + /11sLIIS (4 1 8)
Lp = /lwceLchc + /llsLPls- 4.19)

Chapter 4

Multi-Scale

Pillar Feature Pillar Pillar Head
Aggregation Features Predictions Voxel Loss
— 3 r
- P vl
E:’é’, % X v
Image Image Head
Features Predictions Image Loss
Y N BN
s L (- < oy 5
m‘ 0> ~C“,§\ oL | LI
| b h

Image
Point Cloud Backbone |
Point Head
Predictions Point Loss
/ e
ﬂ I ﬂ S ?}1\

Point

Features

()l

Y

P

-

Pillar-Pixel-Point
Classification

Loss Calculations of Intermediate Network Heads. At training time, the intermediate features
of the RangePillars and the image backbone are extracted and processed by classification heads.
The resulting predictions are used to calculate a voxel loss Ly and an image loss L; as well as the
final point loss Lp.

The final multi-headed Hydra Loss Ly of the entire network therefore consist of the three loss terms,
each adjusted by an origin loss weight

Ly =AyLy+A;L;+ ApLp (420)
LH = /1V(/1wceLVwce + /llSLV[_r) + /ll(/lwceLlwce + /llsLI/s) + /IP(/lwceLPWCg + /llsLPIS)’ (421)

where the indices V, I and P denote the head-origin of each combination loss term and associated
weight term of the voxel, image and point-wise head respectively.

4.3

The performance of the network and the ablation studies of its unique components were evaluated
on the SemanticKITTI [39] dataset using the mean Intersection over Union metric (as described in
Equarion 2.31 on page 22). This metric measures the overlap between the predicted labels and the
ground truth labels for each class and averages it over all classes. This metric is commonly used to

evaluate the performance of semantic segmentation models.

To evaluate the influence of each component of the network and the various hyperparameters of the
modules, ablation studies were conducted on a subset of the SemanticKITTI dataset. Only 10% of
the original training data were used for these studies for a total of 100 epochs, as training multiple
epochs for each configuration is computationally expensive and time consuming. The final trained
RangePillars network which was evaluated on the challenge submission server in SecTion 4.3.3, was
trained on the full training set. All networks were trained using a novel augmentation pipeline which
is presented separately in CHAPTER 6.

4.3

55

56

4.3.1

Ablation studies were conducted to understand the impact of RangePillars and their hyperparameters
on network performance by modifying or removing network components.

The first experiment tested the RangePillars modules’ impact on mloU. Additional image features
improved the mloU from 46.8 to 47.3 by concatenating the proposed image input features to the input.
The RangePillars were initially used as Pillar Feature Encoders before the image backbone, but did
not improve the final mloU (46.3) compared to the baseline network. Adding a set of RangePillars
after the image backbone improved the mloU from 46.8 to 57.8, demonstrating the positive impact
of this approach on the network’s performance.

The last variation of the RangePillars was using them on both sides of the image backbone as
explained in SEcTION 4.2. The loss parameters were A,,., = 1.0 for the weighted categorical cross-
entropy and A = 2.0 for the Lov’asz-Softmax loss in all three settings, these hyperparameter values
were found to have the best influence on the performance and prior work [61] used the same
weighting of the loss terms. The Hydra Loss for the third variation was set to reduce the influence of
the voxel and image head from 1.0 to 0.0 dynamically after 10 epochs for the voxel head and 20
epochs for the image head to avoid the weights of these networks from vanishing. However, this
setup did not improve the mloU but instead reduced it to 37.4.

Based on these results, the Pillar Feature Encoders were dropped in further experiments, as they
did not yield any improvements. The Hydra Loss was also replaced by only the point-wise loss
combination, as it was found to be more effective.!

The second ablation study investigated the influence of the hyperparameters within the RangePillars.
For these studies, the third row network in TaBLE 4.1 was selected, in which the RangePillars were
not used as an additional input feature pre-processing step for the image backbone but only as
the final Pillar-Pixel-Point Classification head. The mloU values for the various hyperparameter
configurations are listed in TABLE 4.2.

By reducing the filter depth of the RangePillars from 64 to 32 the final mloU score dropped by 2.1
points to 55.7. Increasing the depth from 64 to 128 on the other hand had no impact on the final
mloU, but the network converged quicker and reached the final performance on average 20 epochs
earlier than the 64 filter depth version.

Increasing the number of layers inside the RangePillars did not yield an improvement in the final
mloU. The original configuration of a single layer performed better than the use of 2, 4 and 8
layers, that reached an mloU of 56.6, 57.0 and 57,2 respectively. While the performance slightly
increases with more layers, the original single layer RangePillars reached an mloU of 57.8 with less
computational demand.

The influence of the filter depth on the final mloU appears to be very limited. Halving the number of
filters leads to a worse mloU, but doubling it has no noticeable effect. The number of layers after

I'The last configuration was also tested with a sequential training approach, where the Pillar Feature Encoders were first
trained with a Voxel head, then the image network was trained with the frozen Pillar Feature Encoder weights, and lastly,
the second RangePillar layer was trained with point-wise classification. The full network achieved an mloU of 56.5, but
with three times the training iterations and thus not comparable to the other results in TABLE 4.1.

Chapter 4

Influence of Hyperparameters of the

Influence of the RangePillar Modules in RangeP 'jll‘"' s on the Final Mgtric. The
the Full Network. The usage of the RangePillars are used in the Pillar-Pixel-
Point Classification step only and the influ-
ence of hyperparameter on the final mloU
is listed. Layer number one and filter depth
64, if not otherwise noted.

RangePillars as voxel feature encoders has
an almost not noticeable effect on the final
segmentation quality, while the Pillar-Pixel-
Point Classification usage of the RangePil-
lars noticeably increases the final mloU.

Hyperparameter Value ‘ mloU

Position of the RangePillars mloU 32 55.7
Baseline SalsaNext [61] 46.8 Filter Depth 64 | 578
Additional Image Inputs 47.3 128 57.8
Pillar Feature Encoder 46.3 1 57.8
Pillar-Pixel-Point Classification | 57.8 Layer Number 2 56.6
Both 37.4 4 57.0

8 57.2

the Multi-Scale Pillar Feature Aggregation does not seem to have a clear influence on performance.
Increasing the number of blocks to two, four, and even eight shows no clear trend and was discarded
due to the increased computational effort required for training and inference. Therefore, the final
RangePillars network had a layer number of one and a filter depth of 64.

4.3.2

The ablation study of TasLe 4.1 has shown that the RangePillars are particularly useful for the
Pillar-Pixel-Point Classification after the image backbone of the projection network. They present
a good option to mitigate the main problem of projection networks: The projection bleed of the
segmentation masks as shown in FIGURE 4.6. Two other modules have been published previously that
try to solve this issue:

The first module is a depth dependent two-dimensional k-nearest neighbors [82] (KNN) post-
processing module which was released with the network RangeNet++ [7]. For each pixel in a range
image, the classified label is compared with its direct pixel neighborhood and a depth-dependent
weighting is applied to reduce projection bleeding.

The second module is based on KPConv [15] and was used in KPRNet [120] to improve classifications
from a projection network re-projected onto the three-dimensional point cloud. KPRNet uses a
three-dimensional kNN sampling to find the seven closest points for each point. These points are
then processed in a KPConv layer to mitigate the bleed influence of the projection network.

The Pillar-Pixel-Point Classification module of this chapter falls into a similar category as the two
mentioned modules. It was designed to combine the efficiency of a two-dimensional neighborhood

search with the effectivity of a three-dimensional operation.

In TaBLE 4.3 the raw projection model output as well as the three methods are listed with their influ-
ence on the final mIoU and the increase in runtime they cause. As can be seen, the implementation of

4.3

57

58

=

3
w

]
=
-
m
=
e

Floure 4.0 Segmentation Bleeding of a Projection Network. Projection networks create segmentation
masks similar to image segmentation networks. Points that are next to each other in the projection
image can be very far in the three-dimensional point cloud (e.g., a car in front of a wall). A
rough segmentation edge between two objects in the segmentation mask can therefore set a

wrong classification to points that are very far away from the corresponding object (top). The
RangePillars (bottom) act as a projection cleaning module, that reduces this effect.

Chapter 4 Contributions to Semantic Segmentation:

Creating an Advanced Network Architecture for Three-Dimensional Se-
mantic Segmentation of Lidar Point Clouds

Comparison of the Pillar-Pixel-Point Classification Module with Current State-of-the-Art
Post-Processing Modules for Projection Networks. The usage of the RangePillars for the Pillar-
Pixel-Point Classification yields the best enhancement of the final mloU at a comparably low
additional runtime. The additional CPU-bound runtime of the data-loader for the three-dimensional
kNN sampling of KPConv as well as the cython [40] voxelization implementation of the RangePil-
lars are added to the reported absolute runtime for a fair evaluation.

Post-Processing Method \ mloU T Aabs.mloU T Arel. mloU T inference [ms] | absolute [ms] |
Base Network 46.8 +0.0 +0.0% 40 45
+ 2D kNN [7] 49.2 +2.4 +5.1% 44 50
+ KPConv Layer [15] 57.3 +10.5 +22.4% 69 102
+ Pillar-Pixel-Point Classification 57.8 +11.0 +23.5% 95 131

The Performance of the Original SalsaNext and the Proposed RangePillar Network on the Se-
manticKITTI Validation Data. Both the proposed RangePillar as well as the provided checkpoint
of the SalsaNext were inferred on the validation set of the dataset.

z 2 E 2
3 o =) 2 = =3 s g
o =] - <] o g =3 - 2 = <] 2 = 5 g a E
Methods mloUT | 8 < g E H] < s 2 ?__— g o_:‘ g g 2 E 2 g E:i
= < a8 = =} =g S a S =8 5] S @ =3 = g @ &,
® <) s = a < G2 = £ G o &
°© [2 = c =
SalsaNext [61] 0.0 945 426 802 80.6 483 80.8 61.6 651 531 449

56.9 86.7 40.7 420 793 425 646 694
61.3 940 314 573 866 583 625 755 0.6 949 515 822

oW
e

RangePillars 889 548 857 613 731 554 445

the RangePillars with an mloU of 57.8 outperforms both the two-dimensional kNN post-processing
module (49.2) as well as the KPCony projection cleaner network (57.3).

The inference time increase of the two-dimensional kNN post-processing module is neglectable with
5 ms, while both the KPConv projection cleaner network as well as the presented Pillar-Pixel-Point
Classification increase the runtime beyond a real-time capable application with an additional 57 and
86 ms, respectively. Both three-dimensional modules are therefor preferable for offline applications,
while the two-dimensional kNN enables an online projection cleaning at a lower performance.

4.3.3

Based on the results of the ablation studies on the validation set in SEction 4.3.1, the best combination
of modules and hyperparameters was chosen to be retrained on the full training set of the dataset.
The resulting network achieved an mloU of 61.3 on the validation set, 4.4 point higher than the
original SalsaNext with the two-dimensional kNN projection cleaning module with an mloU of
56.9.

The proposed additional RangePillar network on top of the original SalsaNext improves most classes,
as it prevents the projection bleeding effect much better than the original two-dimensional kNN
projection module of the SalsaNext, as shown in TaBLE 4.3.

4.3

59

60

4.4

The RangePillars network is not the new State of the Art for semantic segmentation. The network
was designed to combine a synergy of benefits from different network architectures. The evaluations
show that the combination of the range image and RangePillars features in the encoder of the image
backbone do not provide additional benefit, but on the contrary appear to degrade the performance
of the image backbone by introducing more noise than additional useful features.

The use of the proposed RangePillars as a post-processing module in a projection based network via a
Pillar-Pixel-Point Classification improved the final classification to a higher degree than comparable
modules.

Several new approaches have been tried in the development of this network, but in the meantime the
State of the Art has advanced as well. The advantages of the different network types mentioned in the
introduction have been recognized and combined in several new networks. 3d-MiniNet [6] achieved
an improvement in runtime by replacing the early sections of the encoder of a range image network
with a pseudo voxel architecture that uses pixel values within a range image as points. By doing
this, the authors avoid the overhead of voxelization and tensor re-structuring which caused major
problems in the development of the RangePillars network. RPVNet [16] has achieved a combination
of point-wise, image-wise and voxel-wise sub-networks, by multiple fusions of the features in all
three strands in different locations within the network. It is clear to see that the base idea that inspired
the development of the RangePillars was also recognized as a desirable synergy by others.

In conclusion the RangePillars are a promising additional network module that enhances projection
based networks by combining projection image features with point-wise and voxel-wise features
for precise point-wise semantic segmentations. Furthermore in the development of this network,
the foundation for further methods were developed which led to new augmentation methods for
the training of neural networks for lidar semantic segmentation which are presented separately in
CHAPTER 6.

Chapter 4

Contributions to Panoptic Segmentation:

Developing Novel and Improved Methods for Panoptic Point Cloud

Segmentation

Panoptic lidar segmentation combines
semantic and instance segmentation
by assigning each point a semantic
class and instance label. This process
enables machines to understand their
three-dimensional surroundings using
lidar data, making it a critical com-
ponent of computer vision. Recent
years have seen a surge in the devel-
opment of deep learning-based net-
works, greatly improving the accuracy
and efficiency of panoptic lidar seg-
mentation. In this chapter, the latest
advances in this area are explored and
new network combinations for panop-
tic lidar segmentation are designed
and implemented.

Panoptic Segmentation Results of One of the
Novel Method Combinations Outlined in this
Chapter. A three-dimensional point cloud is shown
with semantic classified and instance-wise separated
points. Every instance of the same class is assigned a
slightly different shade of the same color.

SecTioN 5.1 provides an overview of the current State of the Art of panoptic lidar segmentation and

outlines the three main methods for panoptic lidar segmentation.

In SecTioN 5.2, a state-of-the-art heuristic lidar clustering algorithm is used to extract object clusters,

which are subsequently classified using a CNN image classification network. This approach results

in an efficient panoptic lidar segmentation that can run on a single CPU core in real-time.

In SecTION 5.3, two state-of-the-art semantic segmentation networks are combined with heuristic lidar

clustering algorithms, and a parallel GPU approach is developed for the lidar clustering algorithm

discussed in CHAPTER 3.

The following main contributions are provided in this chapter:

e A novel CPU-based system for real-time panoptic segmentation of lidar data.

A novel GPU-based Euclidean clustering algorithm inspired by the FLIC algorithm.
A novel GPU-based two-step combination system for panoptic segmentation.
Evaluations of both proposed system architectures on open source panoptic lidar data.

A detailed comparison with state-of-the-art panoptic lidar segmentation methods.

61

62

5.1

There are three main approaches to panoptic segmentation: sequential, two-stage, and single-stage.

Sequential approaches handle the semantic segmentation independently of the instance segmentation
by combining a semantic segmentation with the object detection results of bounding box detection
algorithms. Examples of such a sequential combination were presented in [147], in which the
authors combined the RangeNet++ [7] and KPConvy [15] semantic segmentation networks with the
PointPillars [127] object detection network.

Two-stage approaches, such as EfficientLPS [181] and MOPT [109], detect foreground instances,
refine them, and then apply a semantic segmentation to the remaining background points.

Single-stage approaches, on the other hand, use unified networks to detect both the semantic and
instance segmentation in a single backbone. They usually use two heads for the final task split.
Examples of single-stage approaches include Panoptic RangeNet [147], Panoster [85], DS-Net [105]
and Panoptic-PolarNet [232].

There is also a special type of network for panoptic segmentation that combine heuristic clustering
algorithms with semantic segmentation and instance refinement modules. Prominent examples of
this type of network include Panoptic4D [36], GP-S3Net [164] and Panoptic-PHNet [132].

5.2

The lidar cluster classification [93] was the first reported method for panoptic segmentation, that was
able to run on a single CPU core in real time. The work outlined in this section was already published
in a conference paper [93] as well as in the doctoral thesis [92] of the first author of the same. Several
of the figures and tables in this section were reproduced from the referenced conference paper.

In this section a real time capable panoptic lidar segmentation algorithm is outlined. The method
combines the clustering algorithm described in CHAPTER 3 with a second stage that extracts important
features for a computationally efficient classification of the segmented lidar clusters. An example of
a panoptic segmented point cloud of the SemanticKITTI [39] dataset with this method can be seen in
FIGURE 5.2, compared to the same scene with the ground truth labels.

5.2.1

The method consists of two parts. The first part, the class-independent clustering of objects, has
already been presented in CHAPTER 3. The clustering step yields a point cloud with a ground
segmentation and individual cluster labels or each object that is not part of the ground.

The second part, the classification, builds on the instance-wise segmented point cloud. More precisely,
on the range image projection of the point cloud. The classification step is performed on the range

Chapter 5

car
Truck

Pedestrian

Free Space

Pedestrian

Free Space

Panoptic Segmentation of the Lidar Cluster Classification Method Outlined in Section 5.2.1.

The semantic class mapping was adjusted as shown in Ficure 5.5. The predictions of the methods
are shown in the top row with the semantic (left) and instance predictions (right) shown separately.
The remapped ground truth is shown in the bottom row. Please note that the instance IDs are
randomly colored.

image, similar to the clustering step. This reduction of the three-dimensional point cloud to the
two-dimensional representation is one of the main reasons for the high efficiency of the method.

The second reason for the efficiency of the proposed method is the re-formulation of a segmentation
problem to a classification problem. The preceding clustering algorithm outputs instance-wise pixel
segments within a range image. These masks are used to crop out the corresponding objects from
the range image to stand-alone images which are processed with a standard classification CNN.

Instead of the three color channels consisting of a red, a green and a blue channel, a combination
of three different feature layers is used: the lidar remission and two values representing the surface
normal structure. The remission is available in range coordinates by projecting the raw point-wise
remission values of the lidar point cloud. The surface structure is given in the form of the relative
normal vector scalar components of each point in relation to the sensor.

These are calculated by taking the mean of the angles spanned between the point in question and the

two neighboring points:

Nrphor(4,v) = 0.5(ARppor(, v + 1) + ARppor(u,v — 1)) (5.1
NRP,ver(ua V)= O~5(ARP,ver(us v+1) +ARP,V€V(M9 v—1)), (5.2)

where Arpior, ARPyver € [—7, 7] are the spanned angles between the point and its pixel space neighbors,

and Ngpnor, NrPyver € [—, 7] are the resulting relative normal vector scalar components in relation

5.2

63

64

Visualization of Normal Vectors. The horizontal (top) and vertical (middle) normal vector
component image, as well as a combined view of both components (bottom) are visualized.

to the sensor origin. They are split into the horizontal and vertical neighbor in the range projected

image respectively. The angle images Agpor and Agpyer are calculated via the law of tangents:

Rpr(u, v+ 1)sin(ap,r)
A = .
&Phor(1,V) arCta“((RPR(u, V)~ Rpr(u, v+ 1>cos(ahor>>) ©3)
Rpp(u+1,v)sin(ay.r)
A - 4
RPyer(i,V) = arctan (RerGiv)— Ror(u+ 1) cos(@v)) ’ 4

where Rpg is the range image and aj,,, @y, are the horizontal and vertical lidar resolution respec-
tively.

An exemplary representation of both normal component images Nrpjor and Ngp,.r can be seen in
Ficure 5.3, with an additional combined view for illustration purposes.

These simple calculations and the projection of the raw remission data results in a range image
projection image with three data channels: remission, vertical normal vector and horizontal normal
vector. Furthermore, a binary mask representing the shape of the instances is used, but not added to
the classification image. Based on the binary instance mask, the image is cropped to the instance,
and multiplied with the binary instance mask to remove the background in all three layers of the
cropped images. These are then classified by a small CNN.

The main objective of this work is to facilitate a fast classification of lidar instances which is capable
of running on CPU in real time. In [93] a mini-XCEPTION [34] variation with fewer separable
modules was used together with a second network branch that used statistical cluster information
such as instance size and point density. In this work the network does not use the second branch
and relies entirely on the cluster instance classification via the CNN. The architecture is shown in
FiGure 5.4. The reduced mini-XCEPTION [34] consists of two residual separable modules with a
maximum filter depth of 64. The complete CNN architecture has a total of 20,802 parameters. By
using depth-wise separable convolutions, in which each feature dimension is convoluted separately
in two-dimensional operations, the computation demand reduces immensely compared to normal
convolutions across all channels [56]. The CNN classifies each cluster instance image to one of five
classes: "Car", "Truck", "Pedestrian", "Bike" or the "None" class which denotes an object that is not

one of the four defined ones.

Chapter 5

Conv. Residual Connection
x1

Stride 2
Depthw. Sep. Depthw. Sep. Max
Conv. > Conwv. B 5

3x3 3x3 H

Lidar Image K Residual [Residual
Input 9 Conv. N Conv. Separable Separable Conv.
P 3x3x8 3x3x8 Module Module 3x3x8
32x32x3
32 \ 64

Network Architecture. The CNN is a lightweight version of a mini-XCEPTION [34] variation.

A 4

>
<
<
o
o
g
E
@«

SemanticKITTI New

unlabeled

car - Car
truck 1
other-vehicle .
bicyclist
motorcycle
motorcyclist
person Pedestrian

| building |
‘ fence
L___pole]

Occupied

traffic-sign Space

vegetation
trunk

road

sidewalk Free Space
other-ground

Reduced Class Mapping of the SemanticKITTI Dataset. The classes used in the training
and evaluation were remapped to match a subset of dynamic road user classes as well as two
background classes indicating free and occupied space respectively.

5.2.2

The described method was evaluated using the SemanticKITTI [39] dataset. The semantic classes of
all points were mapped to the five classes of the classification network as well as a general ground
class as shown in Ficure 5.5. The classification network has been trained with the annotated point
clouds of the available training logs "00" to "10" with the exception of log "08" which was kept for

validation.

TaBLE 5.1 shows the results for the class-wise semantic segmentation Intersection over Union (IoU)
metric of the combined approach of clustering the point cloud and classifying each cluster separately
on the validation log of the dataset. The semantic segmentation metric was chosen for the validation,
as only the class labels are trained by the CNN, while the instances are extracted by the heuristic
clustering approach. The ground /oU is not listed, as it results from the ground extraction of the

clustering method described in CHAPTER 3.2.1.

5.2

66

Semantic Segmentation Results. The average class-wise Intersection over Union (IoU) on the
re-mapped validation set. The results are reported once for the clustered instances of [99] and once
for the ground truth instances as input for the classification approach of this section.

Method ‘ None Car Truck Bike Pedestrian
FLIC Instances [99] | 954 750 47.2 265 28.2
GT Instances 994 92,6 732 525 55.8

Panoptic Segmentation Results. The results on the SemanticKITTI test set are shown for the four
metrics panoptic quality (PQ), segmentation quality (SQ), recognition quality (RQ) and mloU.

Class | PQT SQT RQT mloUT
Car 754 866 87.0 79.2
Truck 53 888 6.0 3.7
Bike 82 723 114 4.6

Pedestrian | 37.7 90.5 41.7 16.1

The score of this metric was computed for two approaches. First the full method, in which the
instances were clustered with the FLIC clustering algorithm of [99] as described in CHapPTER 3 and
classified with the CNN of Section 5.2.1. The second approach applied the classification directly
to the annotated ground truth instances in the dataset. This allowed for a comparison, on how the
performance was influenced by the quality of the provided object instances. As the results in TABLE
5.1 show, the performance of the classification depends directly on the segmentation quality of the
given object clusters. Especially the "Bike" and "Pedestrian" class show significant reliance on the
instance segmentation quality as the loU drops from 52.5 to 26.5 and from 55.8 to 28.2 respectively.
The other classes "Car", "Truck" and "None" also drop by 17.6, 26.0 and 4.0 mloU.

As the resulting class labels are provided instance-wise, the results can be directly used as panoptic
segmentation. The full method was validated on the panoptic segmentation benchmark of the
SemanticKITTI dataset. This challenge uses the Panoptic Quality (PQ) as described in Equarion 2.32
on page 23.

The presented approach was limited to the class set shown in FIGURE 5.5. The results in TABLE 5.2
were therefore reverse mapped to 4 of the 19 original classes of the SemanticKITTI dataset: "Car",

"Bicycle", "Truck" and "Pedestrian". All other classes were mapped to "Unknown".

The reverse mapping introduced wrong predictions to the "Truck" and "Bicycle" classes, as the
network merges the two original classes "other-vehicle" and "truck" to "Truck" as well the four
classes "bicycle", "bicyclist", "motorcycle" and "motorcyclist” to "Bike". Therefor three out of four
correct but re-mapped "Bike" predictions of the network are "wrong" for the evaluation server which

hurt the performance of these two classes.

The classification network presented in SEcTioN 5.2.1 was implemented in Python with Tensorflow
[1] and Keras [@57], devoid of any customization or optimizations. Most of the point clouds in
the dataset yielded fewer than 100 clusters. This is representative for automotive lidar scenes of
inner cities, suburbs and highways. The inference of 100 randomly selected input instances on
the proposed lightweight version of a mini-XCEPTION was measured multiple times on an Intel

Chapter 5

i7-6820HQ laptop CPU @ 2.70 GHz and an average inference time of 32 ms was recorded. The
presented combination of the FLIC algorithm presented in CHAPTER 3 and the classification network
described in SecTioN 5.2.1 is able to create a panoptic lidar segmentation in real-time entirely on
CPU.

5.3

Panoptic segmentation is a combination of semantic segmentation and instance segmentation. This
task is usually performed in a single network as described with multiple examples in SEction 5.1,
but a multi-step process is equally valid to reach the goal. In the previous SEcTION 5.2, a multi-step
process was presented which was designed for fast inference without the use of a GPU.

In this section a combination of state-of-the-art networks for semantic segmentation and a subsequent
instance segmentation is outlined. The combination of both tasks yields a panoptic segmentation of
lidar data with minimal additional overhead.

Furthermore a revised version of the algorithm proposed in CHAPTER 3 is described in SecTion 5.3.1.
In Section 5.3.2 the combination method of this Section is evaluated with two different networks for
semantic segmentation each combined with two different instance segmentation clustering methods.
This is done with respect to their final panoptic segmentation quality as well as the runtime of the
entire combination method. All four combinations are compared to current state-of-the-art panoptic
segmentation methods. The proposed combination method is one of the top three published methods
of the SemanticKITTI challenge with a Panoptic Quality (PQ) of 58.0, while another combination
of the proposed approach is currently the fastest method with a frequency of 37.8 lidar frames per
second at a respectable Panoptic Quality of 45.0.

5.3.1

For the combination methods presented here, two publicly available networks for semantic segmen-
tation of lidar data [228, 133] are combined with two class-independent instance clustering methods.
The two semantic segmentation networks are chosen because one has a very high semantic segmen-
tation quality [228] and the other a very high inference speed [133]. Both were made open-source by
their authors' 2.

Due to the fact that both selected semantic segmentation networks [228, 133] are running on a GPU,
the panoptic segmentation task and therefore also the instance segmentation is not restricted to CPU
based hardware as opposed to the method of Section 5.2. The instance clustering method of CHAPTER
3 is therefore revisited and reformulated in Section 5.3.1. First, however, the two open-source lidar
semantic segmentation models used will be presented.

"https://github.com/xinge®08/Cylinder3D
Zhttps://github.com/sj-1i/MINet

5.3

67

https://github.com/xinge008/Cylinder3D
https://github.com/sj-li/MINet

68

Cylinder3D

Cylinder3D [228] is a voxel-based semantic segmentation network that utilizes a three-dimensional
version of the cylindrical partitioning and processing of point clouds as proposed in PolarNet [225].
By dividing the point cloud into cylindrical voxels and extracting features from the resulting polar
grid, the network is able to effectively encode and classify the data. The feature extraction process
utilizes a PointNet-alike [161] multi-layer perceptron to process each voxel, and the resulting features
are fed into an encoder-decoder structure that is similar to a convolutional neural network used in
image processing. However, unlike traditional image CNNs which operate on a two-dimensional grid,
Cylinder3D operates on a three-dimensional voxel grid in polar coordinates. The final classifications
are refined for each individual point in the publication, but in the open-source implementation® used
in this chapter, the classifications are output voxel-wise instead. In order to improve performance,
the network was retrained using an augmentation pipeline described in CHAPTER 6.

MINet

MINet [133] is an architecture for the semantic segmentation of projected lidar point clouds in
a range image structure. It uses a multi-scale approach, in which a special focus was put on the
computational operations to be as efficient as possible and to avoid any redundant computation.
The authors created additional supervision of the intermediate layers, for better convergence of the
weights without additional runtime of the inference. The MINet architecture is able to process lidar
data many times faster than the recording time of the sensor at a comparably high mloU. In order
to improve performance, this network was also retrained using the same augmentation pipeline as

above which is outlined in CHAPTER 6.

FLIC++

The basic principle of the clustering method of CHAPTER 3 was revised. Instead of a sequential
iterative reformulation of the clustering to a connected-component labeling problem as done in
CHaPTER 3.2.2, the connectivity definition of the individual points is approached as a parallelizable
method in this section.

The basic assumption remains the same, namely that the lidar point cloud is still projected in the form
of a range image for a structured and lower-dimensional representation. Likewise, the Euclidean
distance between the lidar points is used as a decisive criterion to decide whether two points originate
from the same object. However, unlike in CHAPTER 3.2.2, the metric is not further reduced to the
squared distance as a function of the lidar sensor parameters and depth values as originally shown in
Equartion 3.5 on page 34. Rather, the three-dimensional Euclidean position values of all lidar points
are used in the form of a multichannel image corresponding to the structure of a range image. This
means the projected image does not have one value per pixel, but three separate values for the x y

and z Cartesian coordinates in a structure similar to an RGB image. This enables the calculation

3https://github.com/xinge008/Cylinder3D

Chapter 5

1|-64 » 1|64

0]-80

En)

FLIC++ Pattern of the Map Connections. The concept of the Map Connections of CHAPTER
3.2.2 was extended for more connections beyond direct neighbors in the near vicinity (top). The
Scout Connections (bottom) extend to very far points relative to each lidar point in order to bridge
larger gaps resulting from occlusion or missing return values. The numbers in the bottom image
correspond to the relative pixel offset to the Scout Connections in the vertical and horizontal pixel
space.

of the Euclidean distance d between two lidar points p and q directly via the absolute difference of

dp.q)=p-q| = /(p- 97 (5.5)

where p,q € R are the three-dimensional position vectors of each point in the range-projected image

their coordinates:

of the Cartesian coordinates.

One of the key findings in the evaluation of the FLIC algorithm in CHAPTER 3.3 was the improved
segmentation quality by adding Map Connections (MCs). TaBLE 3.1 on page 43 showed that with
more Map Connections between distant lidar pixels in the range image, the segmentation quality
increases due to a reduction of the over-segmentation of contiguous objects that do not have direct
connections in the range image.

In the present new revision of the clustering method, the main focus is therefore on enabling more
MCs beyond the immediate neighbors. The new approach does not subsample the depth image to
a sub-connection of a few individual MCs, but allows each individual lidar point to connect to its
direct neighbors and all defined MCs.

For this purpose, the connection pattern shown in FIGURE 5.6 is selected, as it considers both multiple
dense connections of the immediate surroundings (top), but can also bridge large occlusions by other
objects with more MCs. The latter is extended in this revision of the algorithm by very remote Map

5.3

69

70

—

Schematic Visualization of the Image Wrap Around. The Map Connections and Scout Con-
nections are brought to the target pixel position by copying the original image and shifting the
rows and columns according to the Connection position.

Connections which are further on also called Scout Connections (SCs). These add information of
"far" pixels in the projection image representation to bridge gaps created by occluded parts of an
object.

In order to compare an origin pixel with each of its connections, the Euclidean position image is
copied for each connection, and the rows and columns of the copies are shifted, and "wrapped
around" accordingly. This is done by shifting the copies of the original three-channel Euclidean
image containing the point coordinates as shown in FiGure 5.7 for a vertical and a horizontal
connection. The pixel position (u,v) in the original Euclidean image corresponds to the pixel
positions of the connection pixels in the shifted copy images.

These shifted images are stacked with the original image along a new, fourth dimension. EQuarion
5.5 is applied to this densely populated tensor along the new dimension. This reduces the four
dimensional tensor again to a three-dimensional image which contains the distance to each Map
and Scout Connection along the channel dimension of the image. The ordering of the channels
corresponds to the original ordering of the stacked shifted images.

With a defined threshold value the three-dimensional distance-encoding tensor is converted to a
binary one. Therefore as shown in FIGURE 5.8 a vector is created for each pixel position in the original
projection image, that corresponds to the binary decision of connection or separation from the given
pixel position to it’s connected pixels.

The same process is repeated with a second image that assigns ascending integer number values to
each pixel which is called ID image in the following. By shifting the ID image copies and stacking
them to an ID tensor, the channel positions of the IDs correspond to the same channel positions in
the binary connection tensor. This commonality allows to multiply the binary tensor with the ID
tensor and to thus zero all ID values that have no connection to the target pixel as shown in FIGURE
5.8.

Lastly, the ID tensor is reduced to its maximum value along the stacked ID channel dimension. This
assigns to each pixel position of the original projection image the maximum identity value of all its
connections. By repeating this process of assigning the IDs and reducing them to their maximum
along the stacked dimension several times, high ID values propagate along all connections until all

Chapter 5

Stacked IDs

’ Connected IDs

Binary Connections

Stacked Pixel ID Values of FLIC++ Connections. The IDs are taken from the shifted connec-
tion positions as shown in FIGURE 5.6, stacked along a new axis and multiplied by the binary value
of each connection. This results in a vector of every pixel ID that is connected to the target pixel
via the chosen clustering metric, and zeros for those that are not connected.

points of a cluster have the corresponding largest ID value, as the lower values are displaced by the
maximum operation.

This novel process replaces the problem formulation of a connected components labeling problem to
an entirely new approach. The whole process is implemented with parallelizable operators in the
deep learning framework PyTorch [155]. The new algorithm is called FLIC++, as the underlying
metric is the same as FLIC, but the novel approach enables a fast GPU based clustering with more
Map Connections and Scout Connections which results in a noticeably higher segmentation quality

as shown in the evaluation in SectiON 5.3.2.

Combination

The last step of the proposed method for panoptic segmentation is the combination of the mentioned
semantic segmentation networks with either the presented novel FLIC++ or the original CPU-bound
FLIC of CuapTER 3. One of the main weaknesses of the FLIC algorithm was the influence of the
ground extraction on the object separation quality as can be seen in TaBLE 3.1 on page 43. The
ground segmentation is therefore removed in the further development of the process. Instead, the
semantic segmentation output of the preceding network is used to mask out any point of the ground
classes from the point cloud presented to the instance segmentation part.

The combination method is therefore a sequential process using semantic segmentation to hide both
ground points and points of classes for which instance separation is not required. The lidar points
that are part of the classes that can be instantiated are passed to the instance separation as a projection
image. This reduces the instance separation process to the bare minimum, since only a fraction of
the original lidar points are used in the form of a depth image for the FLIC algorithm or in the form
of an Euclidean position image for the FLIC++. The instance separations is applied and finally
combined with the entire semantic labels of the previous network for a panoptic segmentation.

5.3

71

72

73 -

Stack Via Shifted Images Calculate Max ID Assign Max ID to Pixel
of Stack Column

Repeat Process

Cluster ID Assignment via Channel-wise Maximum Operation.. The ID values of the ID-
tensor are maxed along the stacked axis in order to assign the maximum ID of all connections to
the target pixel. The process is repeated multiple times to connect all points of each cluster.

5.3.2

In this section the four different combinations of each the two methods for semantic and instance
segmentation are evaluated and compared to each other as well as current state-of-the-art panoptic
segmentation methods. The SemanticKITTI dataset was used for the evaluation of the presented
method. This dataset offers an objective evaluation for testing panoptic segmentation methods: there
is a test dataset whose labels are not available to the public. The evaluation server has access to these
hidden labels and can thus objectively evaluate the quality of the results.

The core metric of the data set is the Panoptic Quality as described in Equarion 2.32 on page 23. In
the following, however, we extended the attention to the inference speed of all panoptic methods.
The FLIC algorithm of CHaPTER 3 has not only shown a higher instance segmentation quality than
previous clustering methods, but especially convinced with its fast execution runtime. The possibility
of an application such as panoptic segmentation in real time is a basic requirement for operation in a
robot or an autonomous vehicle. For this reason, both metrics are highlighted and compared in the
following to find the best combination method for each goal as well as the best middle ground for
both: the best Panoptic Quality that is still real time capable.

The combination of the FLIC with only one Map Connection and the MINet enabled a very fast
panoptic segmentation. The total combined runtime of 28.4 ms is many times faster than the
acquisition frequency of the sensor. Thus, this combination enables an online capable panoptic
lidar segmentation, with a PQ of 45.0. This combination is the currently fastest known panoptic

segmentation method on the SemanticKITTI dataset.

The Cylinder3D network shows a very good semantic segmentation metric value (mloU), but it is
not real-time capable, it needs more time for the processing of a lidar frame than the recording of the
same. The FLIC algorithm showed a very high instance segmentation performance in CHAPTER 3.3.2,
using 14 MCs. The combination of both methods reaches a PQ of 56.9 with a runtime of 208.5 ms.

Chapter 5

SW Q'O ++DI7A * SWOLT qE42pui)) &
SWYOY ++II74 * SW69T JININ 3%

SUI G'RE SUOYIIUUOD DI 1 UM DT * SWOLT q&Lopui)<)
SW G' G U0122UU0) dppy U0 YNM DT ¢ SWE9T INII &

[z€T] Jo s1oyIne oY) Aq paoTIou OS[e sem

SIY [, "}1odaI J19y) UT JOLID [BUWIOAP © A[ONI] ISOW SI I G~ JO SJS © YIM [G]] AU0)JY UO paseq SI Iom IIdy) Jey) Joey a3 0) an(J ‘8§ Jo Kouanbaiy §4S & wireld [G8] JO sioyine Y, «-

wlt | 7SO S6L an 9'8S 698 LS9 TLS 978 | 0¥9 | 0'8S ++DI74 + [8TT] agtapui)d)
a L0 | VLS 0SL 9°€9 S6b L'T8 €S Sep T8L | TSS | OLY ++0I74 + [€€1] 1oNIW
+8Y | 759 S6L an 98¢ 168 I'+9 LS 818 | 679 | 695 | [66] (OW #1) OIT4 + [82T] As1apunc)
L8LE | VLS 0°SL 9°¢9 S6b €08 8Ly L'8€ CLL | TES | OSY l66] (DM 1) D114 + [€€11 1oONIW
- 89 SIS 1'9L 0°€9 S'16 €L 699 LSS | 629 | ST19 [ce1] 1oNHd-ondoung

- 8'0L L'SL YL 796 998 ShL 059 08 | 069 | 009 [¥911 12NES-dD
LY | ¥'19 S6L 9tL S09 9L8 $'09 1°¢S 0€8 | T | ¥LS [181] Sd 71Ul

- 919 L'SL $'69 $'96 TL8 879 [§SY €78 | $T9 | 6°SS [so1]4oN-Sa
911 | S6S TLL 1'89 8¥S TL8 909 €'€s vI8 | L09 | T'¥S [ceT] 1oNvjog-ondound
& | 6°6S 88L 7’89 1SS €€ '8¢ v'6v L08 | 665 | LTS (8] 4a1s0UDg

- €19 S6L 899 0S 78 TEs €S 918 | 8°LS | €0S [9€] (oreds o[3uts) gpondounyd
69 | 9TS L'LL €'L9 9°¢S 08 gse 9°8T 8'8L | LOS M3% 6011 ZdOW
8Tl | 60S 9L 1'09 I'Ly 8°9L 8I¢ 9°6T S9L | 0Ly | 08¢ [L11] 1oN28uy dudound
lsds | Lnor | L09)0S | L0s)OU | L (9)0d | L @mos | L@od | Laod | LOs | L+0d | L Od | SPOYIOIA

*K1oA00dsa1 1X0) paurIopun uadIs pue OIfe) anjq

‘PIOQ PAI YIIM PIYTEUI ST UWINJOD YOBA JO J[NSDI JSq PII) PUB /S2q proIas)saq Y], "poyiau ay) Jo Ajiqeded owm-1ear e sojouap U} 9A0qe §JS YV “sioyine aanoadsar
Ay Aq pajrodai se uaAIS SI (§JS) puoIas 434 sunag Y], sylomiau uonejuawdas ondoued 1re-oy)-Jo-a1ess 03 paredwiod a1e [°¢'G NOLLOES Ul paqLIdSap Se ++) T4
[9AOU U} Y)IM PAUIQUIOD SYIOMIOU UOTIRIUSWSTIS ONUBLIAS JWES) SB [[oM SB U01102uuo)) dvpy duo Yim [66] D174 PUe [€€1] 2N PRUTRIIAI B ‘SU01102uu0) dpy
+1 WIm [66] D174 PUe [877] ds4apunjf) paurenal e Jo spoyjowl uoneuiquiod pajuasald oy], 39S 1S3, LLLIYPBuvuias 3y) uo SpoydJA uonejudwsag sndoue g

73

5.3

74

The newly presented FLIC++ algorithm of SEction 5.3.1 was combined with the same two semantic
segmentation networks. The 18 connections of the FLIC++ are not listed separately, since no
different versions are used here.

The combination of MINet and FLIC++ show a real-time capable panoptic segmentation at a runtime
of 57.7 ms with a better Panoptic Quality of 47.0 compared to the FLIC version. Thus, the FLIC++
and MINet combination needs a little more than half of the acquisition time of a lidar frame for the
panoptic segmentation of the same.

The last combination was that of the Cylinder3D network with the FLIC++. This method achieves
a PQ of 58.0 and is one of the top three methods for panoptic segmentation together with the
two methods GP-S3Net [164] (60.0 PQ) and Panoptic-PHNet [132] (61.5 PQ). The authors of
GP-S3Net have not published their inference runtime, therefor a direct comparison is not possible
with the runtime of the presented combination which requires 210.8 ms, a little more than twice the
acquisition time of a lidar frame with the present sensor. The authors of Panoptic-PHNet report an
SPS of 11.0 which is real-time capable, but at a batch size of 8 which is not representative for an
online application, as opposed to our method which is processed frame-wise to mimic an online
inference.

All presented combinations as well as the mentioned state-of-the-art methods are listed in TABLE 5.3
for the main metrics as well as the PO+ which is a modification of the PQ metric that uses just the
IoU for stuff classes without distinguishing between different segments. Furthermore the general SQ
is listed for each method as well as the mloU and for all stuff and thing classes the separate PQ, SQ
and RQ.

The evaluation shows that the combination of different semantic segmentation networks and the
presented FLIC and FLIC++ offers a good combination for panoptic segmentation. The method can
be arbitrarily adapted to different targets: If a better panoptic quality is desired, this can be achieved
by using non-real-time capable networks together with the FLIC++ algorithm. If, on the other hand,
the goal is a real-time application, one can keep the instance segmentation part and replace only the
semantic network part with a faster model. Here one has a large margin, since the fastest instance
segmentation method, the FLIC in its basic configuration creates an additional computation time of
only 6 ms as shown in cHAPTER 3.3.1 of page 39.

5.4

This chapter introduces two novel methods for lidar panoptic segmentation, a technique used to
label objects in a three-dimensional point cloud based on their class and instance. These methods
combine heuristic algorithms and deep learning to achieve highly accurate and efficient segmentation
results.

The effectiveness of these new methods is thoroughly evaluated and compared against the current
State of the Art in the field of lidar panoptic segmentation. The comparison demonstrates that
the proposed methods achieve competitive results in terms of both panoptic quality and runtime
efficiency.

Chapter 5

The results of this study highlight the potential of these new methods to significantly advance the field
of lidar panoptic segmentation, a crucial technology for various applications including autonomous
driving, robotics, and surveillance. With further development and refinement, these methods could
have broad and impactful applications in the field.

5.4

75

Enhancing Lidar Segmentation Perception
and Adaptability: Novel Technigques for
Data Augmentation and Domain
Adaptation

Developing Advanced Lidar Point Cloud
Augmentation Methods for Improved
Segmentation

In Cuapters 3, 4, and 5 of

Part I, new approaches for li-

dar data segmentation were pre- ,.,;’f#,; i
sented, each with their own ad- ¥, ///){’//// A=
vantages and disadvantages. The b/ /////((

methodology in CHAPTER 3 in-

volved an algorithmic approach
that used two predefined parame-
ters to separate the ground from
upright objects and objects from
each other. However, due to its 5 S //‘//.‘ ;

L

rigidity, this approach was prone

to corner cases, such as when Two Lidar Point Clouds Enriched via the Structure
it fails to separate two pedestri- Aware Point Cloud Augmentation Methods Presented
in this Chapter. The original lidar point clouds (top) are
augmented with parts of other point clouds to create en-
tirely new scenes (bottom) to train neural networks for
In contrast, deep learning ap- segmentation.

ans walking hand in hand or a

car parked very close to a wall.

proaches recognize the structure
and shape of objects themselves based on a larger number of internal parameters of the neural
networks. To train these networks effectively, as described in CHaPTERS 4 and 5, large amounts of

data are required to learn the generalized structure that defines a particular type of object.

However, annotating segmentation data is expensive, making it difficult to acquire enough data to
train well-performing networks for the task. To overcome this challenge, augmentation methods can
be used to modify annotated data to look like new data for the network during the training process.
In this chapter, novel augmentation methods are presented that are specifically designed for use in
training semantic segmentation networks, but also have applications beyond that for lidar-based
neural networks.

The augmentation methods presented in this chapter were created to address two issues with training
data for semantic segmentation: overfitting to small data pools and class imbalance. Public datasets,
such as SemanticKITTI [39] and nuScenes [13], as well as closed source datasets, like the internal
Aptiv lidar segmentation dataset, often have imbalanced class distributions, with certain classes, such
as cars, being more prevalent than others, like motorcyclists.

79

80

Despite a number of successful recent approaches for augmentation methods to overcome imbalance
and overfitting issues in the two-dimensional image domain [68, 14, 23], the extension of these
concepts into the three-dimensional lidar domain creates a domain shift between original data and
augmented data [28, 17, 5], as the underlying sensor structure is no longer valid and creates data that
a lidar sensor could never capture. Key characteristics of the data, such as scan line integrity, field of
view, and object occlusion, are extensively altered by these augmentation methods. Consequently,
this makes the use of networks that rely on these structural aspects, such as [7, 61], infeasible. These
key characteristics will be called the structure of lidar data in this chapter.

The proposed augmentation techniques of this chapter were designed to address the issues of class
imbalance and overfitting in the training data for semantic segmentation of lidar data. The methods
preserve the structure of the original raw lidar data while augmenting the content (compare FIGURE
6.1). The augmentation pipeline consists of two novel modules that can be applied to the training
of any neural network for semantic segmentation of lidar data. The first method injects additional
objects into a lidar point cloud, while the second method combines two point clouds to create a
third. The effectiveness of the augmentation pipeline was evaluated using state-of-the-art networks
for semantic segmentation of outdoor automotive lidar data. Neural networks from the three most
common approaches were used in the evaluation to demonstrate the model independence of the
proposed augmentation methods. KPConv [15] for the point-wise models, for the range image-based
models RangeNet++ [7], SalsaNext [61] and MINet [133], and lastly for the voxel-based models
Cylinder3D [228]. The presented method applied to the training of the later network achieves
state-of-the-art performance: it reached the 1*' place for "Semi-Supervised Semantic Segmentation"
on the SemanticKITTI dataset as of December 1% 2022 in the bins 1%, 10% and 50% 1.

The literature research, method description, evaluation, and large parts of the content of this chapter
were already published in a conference paper [97]. Some sections, figures and tables are taken in
part or in whole from these sources.

The following main contributions are provided in this chapter:

A novel lidar point cloud augmentation method.

A thorough evaluation of the method.

A detailed ablation study that illustrates the influence of all components.

A comparison with state-of-the-art lidar augmentation methods.

"https://paperswithcode.com/sota/semi- supervised-semantic-segmentation-on-24

Chapter 6

https://paperswithcode.com/sota/semi-supervised-semantic-segmentation-on-24

6.1

Neural networks are considered well performing when they generalize to unseen data. When
deploying a trained network, one expects a comparable result to that of the validation data that is
used to tune the network. Due to overfitting on training data this expectation might not be met. There
are various approaches to address this problem. In the following these approaches are separated into
model-related and data-related measures.

The first category of overfitting counter measures consists of methods such as regularization [95,
208] and dropout [185]. The former technique discourages the model from overfitting by imposing a
penalty on complexity. The later randomly "drops" parts of the network to prevent co-dependencies
among parts of the network.

The second category represents measures that are applied directly to the training data. The overarch-
ing goal is to continuously change the data so that overfitting can be prevented. This can also include
methods such as over-sampling rare classes [140], expanding the training data with other datasets [4]
and pretraining the network on other data domains [9].

In the point cloud domain however, data augmentation primarily relates to the direct modification of
the existing training data. Global augmentations are distinguished from local augmentations and
context augmentations. The former are applied to entire lidar frames, the second are applied to
individual objects and ultimately context augmentations represent the mixture of lidar frames with

the context of other frames on a larger scale than limited local augmentations.

6.1.1

Lidar point clouds as well as point clouds from other sensor types are usually augmented by applying
random translations, rotations, flips and point drops. These techniques show improved generalization
of neural networks due to a seemingly larger training dataset [25, 27].

6.1.2

In the two-dimensional image domain, different variations of Copy-Paste augmentations [23] have
been successfully used in various applications. These methods cut out parts of an image and paste
them onto another image. Similar approaches are also present in the three-dimensional lidar area.
Previous works have already shown the benefits of injecting underrepresented classes in object
detection tasks into training points. The most notable example is [216] in which Yan et al. created a
database that contains the cut-out point clouds of rare objects using the three-dimensional cuboid
annotation around the objects. During training these objects are sampled from the database and
injected into the point cloud at random locations. To ensure physically possible locations the cuboid
boundaries of injected objects were compared in bird’s-eye-view with other object cuboids to avoid
collisions [216]. The work of [21] additionally removed all points behind the cuboid of the injected
object in polar coordinates to remove any possible overlap with existing objects, thus sidestepping the

6.1

81

82

collision issue mentioned by [216]. In [108], Hu et al. applied a sub-sampling of the original sampled
injection object along the scan lines and between scan lines to extend the distance of injections in the
target point cloud, while keeping a similar structure of the lidar scan lines. The authors of [12] used a
multi-modal approach, in which they used an instance segmentation network to sample "foreground"
instances in the camera image. These were projected onto the lidar points to remove occluded
points. Lately, injection methods have also been mentioned in lidar segmentation publications [16,
232] which were described similarly to the method in [216]. The most comparable approach to the
injection augmentation presented in SEcTioN 6.2.2 is [20] in which the authors applied a Copy-Paste
algorithm [23] to the range image to inject cars in front of other objects, but cancel injections that

are injected behind other objects (e.g., other cars).

The injection method presented in SecTion 6.2.2 is the first to apply a point-wise occlusion competi-
tion between target and injection points, thus removing occluded points from the target point cloud
but also the injection objects according to their distance from the lidar sensor. This ensures that the
lidar sensor structure is retained and the augmented data can not be distinguished from real lidar
sensor data.

6.1.3

Augmenting the context of an entire scene is another approach to prevent overfitting of a network.
Object recognition models and models for semantic segmentation tend to perceive individual objects
together with their environment. In doing so, the network can place an excessive focus on the
environment which can change on unseen data in a different context [168, 5]. Context augmentation
is used to minimize such connections between objects and their context by using individual objects

in other scenes (see SEcTION 6.1.2) or by mixing entire scenes.

There are several examples in the image domain where parts of pictures were completely removed
[68], parts were cut out and pasted onto other pictures [23], or several pictures were blended together
in order to minimize the contextual dependence of the image content [14].

This type of augmentation is also used in the three dimensional domain. The approach presented
in [28] blended two point clouds of objects to generate new examples. The work in [17] extended
the approach of [23] into the three-dimensional domain and cut and pasted parts of one object point
cloud into another to create new mixes and enhance the model robustness against point attacks. The
authors of [5] overlayed two full scenes, to create a new combination scene. The authors showed
that out-of-context mixing reduces overfitting to the training set which lead to a better generalization
on unseen data.

The method for context augmentation presented in SEction 6.2.3 is the first to use a sensor-centric
approach for the fusion of two point cloud scenes. Thus, opposed to all previous mentioned
methods, the lidar sensor structure is kept intact and creates fused scenes which are structurally
indistinguishable from real data.

Chapter 6

Other augmentation methods that were published after the methods outlined in SecTioN 6.2 put a
similar focus on the lidar sensor structure for local and context augmentations. LaserMIX [122] fo-
cuses on the lidar scan lines as connected components. The authors assume an isotropic arrangement
of the scan lines around the sensor. They partition the point cloud along defined ring segments and
extract whole scan lines or segments of the same from a point cloud, and combine them with parts of
other point clouds. In this way they achieve a pseudo lidar structure of the generated point clouds,
but neglect the physical influence of the mixed parts among each other, e.g., in the form of occlusion
of distant areas by inserting objects in the near area.

PolarMIX [212] is an augmentation method that uses the rotational structure of 360° lidar sensors as
a basic assumption. The authors use a cylinder coordinate transformation to create local and context
augmentations for semantic segmentation data of lidar point clouds. They extract pie-like slices from
the point cloud to blend them with another point cloud for random angle slices. They also extract
the dynamic instances and insert them into other point clouds using a bird’s eye view Copy-Paste
approach. This approach, similar to the previous one, creates point clouds that produce good context
mixing but fail to generate the inherent physically limited structure of the lidar sensor.

In SecTioN 6.3.4, these two methods are directly compared with the one described in this chapter for
use in improving the training of neural networks for semantic segmentation of lidar point clouds.

6.2

The main focus of the augmentation methods for semantic lidar segmentation outlined in this section
is on preserving the data structure of the sensor. In CHapTER 2.1.1, the functionality of rotating
lidar sensors was briefly described. While these sensors map a complete 360° three-dimensional
point cloud of their environment, they are subject to clear physical limitations, such as the occlusion
by objects. Lidar sensors can not "see" through objects. For the sake of completeness, it should
be mentioned that some lidar sensors return multiple values per measurement, for example on a
window pane, a rain drop or the edge of a solid object, when measuring the depth of a point that is
not completely opaque or entirely blocking the light beam. The depth values for this first hit and
the object behind it are then returned as separate depth values. For fixed objects that are hit by the
entire laser beam these values are twice the same or they only return the single depth information
depending on the manufacturer and the user setting of the sensor. For the sake of simplicity, however,

these special cases are ignored in the following.

6.2.1

Most global augmentation methods, such as the ones mentioned in SecTioN 6.1.1 keep the previously
mentioned lidar structure intact. By globally rotating and flipping the point cloud around the sensor
origin, these methods ensure that the scan lines and the line-wise point distances are kept the same
relative to each other and to the sensor. No translations to the point clouds are used in the evaluations

6.2

83

84

Instances Injected into a Scene. 7op: Original lidar scene. Bottom: Augmented scene enriched
with additional @" pedestrians", ®"bicycles", ®"bicyclists" and @"other — vehicles".

in SecTION 6.3, as they change the point to sensor distance differently for every single lidar point and
therefore break the sensor structure.

6.2.2 Structure Aware Point Cloud Injection

The injection method outlined in this section is built on the concepts presented in SEcTioN 6.1.2, but
extended the sampling and the injection into the range image domain based on the recording method
of rotating lidar sensors. The range image is a very close representation of what the lidar sensor is
able to capture. The semantic point-wise labels are used to extract rare objects from the training data
without including the ground, unlike the methods mentioned in Section 6.1.2. All sampled objects
are stored in a database for optimized access. In the injection step objects are sampled from the
database and global augmentations (flips, rotations and point drops) are applied to the objects. As
these augmentations retain the original lidar structure, the injection object can be projected directly
into the range image domain, while changing the location and point density.

Each pixel in the range image of the to-be-injected object is compared with the corresponding pixels
of the target point cloud in the range image:

1, where O < Dgpini < Drp
s in j scene
SrPinj =] 6.1)
0, otherwise,

Chapter 6 Developing Advanced Lidar Point Cloud Augmentation Methods for Im-
proved Segmentation

where Sgpinj € {0, 1} is a binary mask in the range projection view, that defines, if the pixel position
in the range image will be occupied by the injection or the original scene. Dgpjnj, DRpscene € R+
are the range image projected point clouds of the injection and the original scene, respectively. The
point closer to the sensor wins the range competition and remains in the new point cloud, the farther
point is removed. The advantage of this method is, that for injected objects e.g., behind street lights,
the occluded points are removed from the injection object by the origin mask Sgp,; instead of
preventing the injection altogether which is different to the methods mentioned in Section 6.1.2.
With the same technique the points behind the injected object are removed to imitate the lidar shadow.
The objects are not translated in the range image between lidar channels, as this creates floating or

submerged objects in the target point cloud.

These two steps - sampling and injecting - enables the enrichment of any training point cloud with
additional objects, especially of rare classes. The structure of the point cloud is also kept consistent
with what the lidar sensor can capture. Therefore, the created point clouds are much more similar to
the validation and test data than other naive injection methods which create a noticeable difference
between training and test data. FIGURE 6.2 shows the direct comparison of a training point cloud for
semantic segmentation and the same point cloud augmented by the presented structure aware point
cloud injections. "Bicycles" denotes free-standing bicycles without a rider, while the "bicyclists"

label is assigned to bicycles with a rider.

In order to inject underrepresented classes, the shown approach compares the present class distribu-
tion in the target point cloud with a desired distribution. Additionally a parameter is defined for a
maximum number of injections. The process is started by randomly choosing an injection class: if
the given class is already present in the target point cloud, in a proportion larger than the desired
amount, the process switches to a different randomly chosen injection class. The random sampling,
checking and injection of objects into the target point cloud continues until either the desired class
distribution is reached, or alternatively the maximum number of injections.

6.2.3

The second augmentation module in this chapter goes beyond the injection of single objects into an
otherwise unchanged point cloud. Instead of a single object, this method uses a second training point
cloud and applies global structure-maintaining augmentations to it. To ensure a valid point cloud,
the second cloud is only rotated in increments of the horizontal sensor resolution and a translation
of the points is prevented. No scaling is applied to the point cloud, but random flips in the x and y
direction are allowed. These restrictions keep the structure of the second point cloud within the lidar

sensors recording capabilities.

Based on the range competition technique mentioned in SEcTioN 6.2.2, both point clouds are projected
into the range image domain and compared pixel-wise via EQuarion 6.1. The closer point is kept
by the binary origin mask Sgp;,;, and the farther one is discarded in order to generate a new scene

which results in a structurally as well as semantically valid point cloud.

A rotation limitation of £10° is used, to keep the probable direction along the street valid: most
recordings of automotive lidar data have a road at the front and back, while the sides are obstructed by

6.2

85

86

Visualization of the Point Cloud Fusion Method. a) Two separate independent point clouds
from the training set. b) Both point clouds overlayed on top of each other. ¢) Range competition
of both point clouds: The green points are closer to the lidar sensor. d) Fused point cloud of the
closer points of both parent point clouds. e) Final fused point cloud, exhibiting parts of each
parent point cloud.

Chapter 6

e.g., houses and parking cars, this limitation of the rotation is chosen to stay close to this orientation

for the generated fused point cloud. FiGure 6.1 and FiGure 6.3 e) show examples of generated scenes.

The global augmentations (i.e., rotations, flips and point drops) applied to the second point cloud
lower the likelihood of ever merging the same point clouds in the same arrangement, to a negligible
probability.

FiGure 6.3 visualizes the process to generate a point cloud consisting of parts of the two parent point
clouds. While the lidar data structure is preserved, there is a risk of objects from both point clouds
merging and thus causing an unrealistic representation. It can also happen that nonsensical scenes
are created, such as a freeway guardrail that blocks a house entrance, or a tree that protrudes from
the roof of a car. However these nonsensical, out-of-context fusions improve the networks as will be
shown in SectioN 6.3.1. In order to keep the parameters of the injection module valid, the fusion step
is applied before the injection step in the full pipeline.

6.3

The proposed augmentation methods were added to the training data-loaders of different neural
networks on the dataset SemanticKITTI [39] for most evaluations in this section. These networks
were trained on the annotated training sequences 0 —7 and 9 — 10, and validated on the annotated log
8. The injection and fusion methods only sampled data from the 10 training logs to ensure a fair

comparison and prevent the usage of validation data in the training pool.

The presented augmentation methods are not limited to a special kind of network, but can be added
to point-based, voxel-based and also range image-based networks without any issue, as the generated
point clouds exhibited the same structure and orientation as real raw data. In [19] a method was
proposed to re-engineer the lidar channel indices, that was also used in the following experiments
to improve the range image projection for the augmentation process. For all networks the same
augmentation parameters were used:

50% probability to apply global augmentations
30% probability to mix with a second random scene
50% probability to inject instances

maximum of three injected instances per frame
desired share of 2% for all injection classes

Point-based Networks

KPConv [15] was selected to represent point-based segmentation methods for the use with the
augmentation methods of this chapter. The decision fell on this network as it is the best performing
published point-wise network on the SemanticKITTI [39] leaderboard. The Pyforch implementation
by the original authors? was used, with slight modifications to the training parameters to fit the
training and validation loop into the available GPU, namely the input radius of each ball queries
was increased to 51 meters and the size of the first sub-sampling grid increased to 0.2 m. The other

Zhttps://github.com/HuguesTHOMAS/KPConv-PyTorch

6.3

87

88

parameters of the network were left as the authors provided them. These hardware-based limitations
lead to a decline in performance of the network on small classes such as bicycles and pedestrians as
can be seen in TABLE 6.1.

Voxel-based Networks

As the representative for voxel-based networks the public repository’ of the Cylinder3D [228]
network was used which was published by the original authors. To speed up the training time, a one
cycle learning rate scheduler [182] was added to the training loop. All other parameters were kept
as provided by the authors.

Range Image-based Networks

For the last group three open source networks were used: Rangenet++ [71*, SalsaNext [61]° and
MINet [133]°. These network types are based on the lidar structure of the point clouds and require a
consistent structure to function properly. Therefore three networks were used to showcase the struc-
ture retention of the augmentation pipeline. No parameters of these three networks were changed,
and the training scripts were used as provided by the authors.

TaBLE 6.1 presents a direct comparison of the provided checkpoints and the same models retrained
with the augmentation pipeline discussed in this chapter. To ensure a fair comparison, both the
baseline and augmentation versions of KPConv [15] were trained from scratch, as a pretrained
checkpoint was not available. The results demonstrate that the augmentation pipeline significantly
improved the performance in all three network categories, without any changes to the network or
hyperparameters.

The three range image based networks RangeNet++, MINet and SalsaNext improve by 3.5, 7.8 and
4.3 mloU respectively. The MINet retrained on the proposed augmentation pipeline outperforms the
original network on all 19 classes without the use of the edge-loss that was proposed in [133].

The point-based KPConv network improves by 2.6 mloU. The most improvement can be seen for the

classes "motorcycle" with 11.5 JoU and "person" which jumps from an IoU of 0.0 to 32.1.

Finally, even though the baseline Cylinder3D model had already been trained with various data
augmentations, such as instance injections, rotations, and scaling, the presented method managed to
further enhance its performance. Notably, it significantly improved the performance of underrep-

nn

resented classes such as "bicycle," "motorcycle," and "person," with improvements in IoU of 4.1,
4.9, and 5.3, respectively. Although the overall improvement in mloU was only 1.0, the presented

method improved the model’s accuracy especially for challenging classes.

3https://github.com/xinge008/Cylinder3D
4https://github.com/PRBonn/lidar—bonnetal
Shttps://github.com/Halmstad-University/SalsaNext
Shttps://github.com/sj-li/MINet

Chapter 6

88/S9NSST/QEIDPUTTAD/8006uUTX/Wod *qnuyr1h//:sd11y 99g “1oded

89

6.3

[eUISLIO QY UT PAJOU UBY) 19))2q swiograd a10§a1oy) pue Sureds PUL UONLIOI [9A[-2UBISUI S YONS ‘SUONBJUAWSNE BIBp SNOLIBA)M Paurel) uaaq Apeaie sey jurodyooyo pasn ayJ,

“JI0M)QU A1) JO UONBNTEAR 12112q B I0J pasn sem Surssadord-1sod NN-¥ & 1oy JONTIA O1seq oy, +

SIS | 8S9 | 9TL | 069 | 9°L8 | €8S | CT06 | ¥'O | 8T8 | €SP | 616 | 80 | 8T6 | 8IS | V'IL | 818 | 8'S8 | 9°8S | €L6 6'L9 VOdVS +
8IS | TY9 | SOL | 80L | 998 | L8 | S06 | OT | C'I8 | 8%F | 9%6 | 0°0 | TT6 | S9L | €0L | I'S8 | 608 | S¥S | I'L6 699 t [8ze] agtapurp)
€TE | 995 | €89 | L'PS | V'S8 | L'SS | 968 | 0°0 | 8°TL | S'€C | 806 | 0°0 | 0°0 | I'TE | €TCT | 608 | ¥'TL | 00 | 6°€6 6'Sh VOdVs +
€LE | 6SS | TOL | LIS | TI8 | 675 | S68 | 0°0 | L'IL | LOT | ¥06 | 000 | 00 00 | 90C | 96L | 60 00 | L'€E6 [74 [ST] auoDpdy
P8y | 1°C9 | STL | T°L9 | 0798 | L°OS | ¥'L8 | L'E€ | TO8 | I'CY | 9%6 | 0°0 | 1°08 | 6'TL | I'PS | ¥'99 | L'8S | TIY | ¥'06 19 VOdVS +
67y | 1°¢S | 1°S9 | 9'19 | 808 | €87 | 908 | §€ | TO8 | 9TF | S¥6 | 0°0 | ¥'69 | 9OF9 | STV | €6L | 0TV | L'OV | L'98 696 [19] ixaNDSIDS
8P | O°LS | T'0L | TT9 | 8€8 | 8SY | VL8 | ST | V6L | 6'8E | 1'€6 | 0°T | ¥'L8 | I'IL | I'9V | 9°SL | T'€9 | 6°0S | 9°06 9°09 VOdVs +
96 | SOS | TIL | T'LS | L'P8 | Scv | 1'€8 | 80 | #¥9L | T'€€ | §'16 | 00 | T'L9 | #'SS | 6'1€ | T9S | §9¢€ | 89¢ | 968 8¢S L [eeT1l IoNTIN
SLE | €SV | 9IL | 0°€S | 1'€8 | 8'8S | 0°L8 | ¥'0 | 9IS | 66FV | ¥'P6 | T9 | 899 | ¥'€S | L'6€ | SLS | 89S | I'VE | P'I6 £'9¢ VOdVS +
00V | TES | L'TL | 6CS | TP | TFS | 8S8 | CO0 | 6’18 | S9Y | 8¢6 | 00 | 6C9 | TSV | SST | LOV | I'Lv | O°ST | O'I6 8¢S (L] ++1oN28upy

& g o0 ,m v o0 2 - m =2

= = 2 E 3 = S 2 5 = 4 =

& 2 g E s m S & g 3 k= 2| S 2 4 e o s 8§ | | noqw SPOYIdIA

= & 5| E| &% | & |3 |5 | 38]|% S| 58| 2| g s | 2] 8| 28 S

° o

‘uoneIuSWSNY pnop) UIoJ 2IeMY 2INonng 10 YO JVS UONeUSISap oyl YIm pajeraaiqqe st xaydeyo
sty jo aurjadid uonejuowSne Y], J9S UONEBPI[RA LLLINOUuvuiag 3y} uo duipddid uonejuawdny pajudsalid 3Y) JNOYJM pUe YIIM SHIOMJIN SNOLIBA JO S)NSIY

https://github.com/xinge008/Cylinder3D/issues/88

90

The class-wise comparison revealed a significant overall improvement in all networks, particularly
for the underrepresented dynamic object classes. This can be attributed to the augmentation methods,
which encourage the networks to encounter these classes more frequently through the injection
technique. Furthermore, the fusion module mixed other classes out of their original context, resulting
in improvements for most classes, even those that were not explicitly injected. By focusing on the
underlying capabilities of the lidar sensor, the method enabled the augmentation of lidar data while
preserving its structural integrity. Consequently, this approach can be applied to various semantic
segmentation models for lidar data, as the augmented point clouds maintain the same structural

properties as the original raw data.

6.3.1
SemanticKITTI Dataset

The Cylinder3D that was retrained on the augmentation pipeline of this chapter was inferred on the
hidden test set of SemanticKITTI [39]. The results are directly compared to the provided checkpoint
of the official repository. Please note that no test time augmentations or hyperparameter tuning was
applied to the two listed results in TaBLE 6.2 . It is also worth mentioning, that the open sourced
Cylinder3D repository was not the complete network described in [228], but a reduced version’. As
this chapter is mainly concerned with the presented augmentation methods and not the capabilities
of the used network, the missing parts of the model were not re-implemented, and the code was
used as provided by the authors. TABLE 6.2 shows, that the model retrained with the augmentations
outperforms the original checkpoint on 14 out of 19 classes, marked with bold text in the table, while
they are on par for one more class. The mloU of the Cylinder3D model was improved by 1.5 points
from 63.9 to 65.4, solely by the augmentation pipeline of this chapter.

Furthermore, these results imply, that the generalization of the network further improves from the
augmentation methods. The offset between the test data and the validation data is larger for models,
that are tuned to the validation data, as a bias is introduced by using the best checkpoint for a given
validation set.

The original Cylinder3D checkpoint inferred on the test data reaches 95.52% of the performance
when inferred on the validation set as seen in TABLE 6.1. The augmentation methods of this chapter
improve the performance on both the validation and the test data, but they also narrow the gap
between the two, due to which the model trained on augmented data reaches 96.31% of the validation
performance on the test set. Less bias towards the validation data is introduced and the model is truly

generalizing better due to the proposed augmentation methods.

Aptiv Internal Dataset

The same network and augmentation pipeline was used with a different lidar dataset. The internal

Aptiv dataset for lidar segmentation is built on the Hesai Pandora sensor [103]. The entire dataset

"https://github.com/xinge008/Cylinder3D/issues/23

Chapter 6

Results of Cylinder3D with and without the Presented Augmentation Pipeline on the Hidden
SemanticKITTI Test Set. The augmentation pipeline of this chapter is abbreviated with the
designation SAPCA for Structure Aware Point Cloud Augmentation.

Soa

Methods mloU 1 g

a[okorq
[oAd10)0UX
Sonn
uoszad
1s110401q
[oKd1010W
peor
Suryred
N[eMOpIS
punois-1ayo
Surpring
Q0uQj
yunx
ugis-oyen

o

& 1S | 3[o1yar-19yj0
& & | uonep

@ N g
==

= s
~N o -

Cylinder3D [228] 63.9 96.7
+SAPCA 65.4 96.8

)
=o

1
oo
—_—
—
N
oW
® o

a
KR
o2

N v

61.4

2
2
-

Results of Cylinder3D Networks with and without the Presented Augmentation Pipeline on
the Aptiv Validation Set. The augmentation pipeline of this chapter is abbreviated with the
designation SAPCA for Structure Aware Point Cloud Augmentation.

Methods ‘ mloU T ‘ Car ‘ Truck ‘ Bike ‘ Person ‘ Guardrail ‘ Road ‘ Overdrivable ‘ Underdrivable ‘ Nondrivable
Cylinder3D [228] 64.7 89.4 | 62.6 | 32.6 71.1 58.6 86.4 54.2 333 94.1
+ SAPCA 71.3 90.7 | 76.5 | 51.1 73.7 63.5 88.0 67.4 35.6 95.4

contains 4,502 panoptically annotated frames. When compared to the SemanticKITTI dataset [39]
with its 23,201 panoptically annotated frames, the difficulty of training networks on this data and
the importance of effective augmentation methods becomes apparent. The dataset was divided
into 3,875 training samples and 627 frames for validation, for the purpose of training the semantic
segmentation network Cylinder3D [228]. The same network was trained twice from scratch with the
same parameters. As shown in In TaBLE 6.3, the network trained with the augmentation methods
outperforms the original network trained on the raw data for every single class. The mloU improved

by a total of 6.6 points representing a relative improvement of 10.2%.

6.3.2

An ablation study of the individual augmentation components listed in SEcTION 6.2 was conducted
with the Cylinder3D model using the SemanticKITTI dataset. The main focus of this study was to
understand the impact of each part of the augmentation pipeline on the final performance of the
network. The baseline in TABLE 6.4 was a basic Cylinder3D network retrained from the original
checkpoint without any augmentations. The validation loop started after the first 10 epochs and ran
for a total of 30 epochs to measure the performance. Global augmentations improved the final mean
Intersection over Union (mloU) score only slightly from 65.18 to 65.73 (4+0.55). A more significant
increase was observed in the final segmentation quality by adding either the fusion module reaching
an mloU of 67.29 (+2.11) or the injection module with 66.97 (+1.79). The best results were achieved
by combining all methods which resulted in an mloU of 67.92 (+2.74). It is worth noting that using
only the fusion method performed better than just the injection method. This appears to be due to
the recombination of all classes, rather than just the dynamic subset on which the injection method

produces better results.

6.3

91

92

Ablation Study using the Cylinder3D Network on the SemanticKITTI Validation Set. All
models are trained from the original checkpoint with the same parameters.

Baseline Global Augs. Inject Fusion ‘ mloU 7T

v 65.18
v v 65.73
v v v 66.97
v v v 67.29
v v v v 67.92

Performance on Reduced Data Sizes. Cylinder3D models trained from scratch on artificially
reduced subsets of the training data.

Data ‘ Baseline +Augmentations Aabs. Arel.
100% 60.36 67.16 +6.80 +11.27%
50% 57.55 64.94 +7.39 +12.84%
10% 53.90 63.98 +10.08 +18.70%
1% 37.32 50.86 +13.54 +36.28%

6.3.3

The augmentation pipeline creates novel scenes by merging parts of the existing training data. To
evaluate its benefits, it was compared to the addition of real annotated lidar data. The size of the
SemanticKITTI dataset was reduced by selecting every second, tenth, and one hundredth data sample
in a uniform manner from the scene and injection databases. Four Cylinder3D [228] networks
were trained from scratch on the reduced subsets, with and without the augmentation pipeline,
and evaluated on the complete validation set. As shown in TaBLE 6.5, the augmentation methods
improved the performance on all data subsets. The networks trained with the augmentation pipeline
demonstrated significantly better results compared to the baseline networks trained on the same
reduced dataset. Moreover, the augmentation pipeline provided a greater absolute and relative
performance offset for smaller subsets of data. Notably, the model trained using the augmentation
pipeline with the same parameters and only 10% of the original data outperformed the baseline
trained on the full dataset by 3.62 mloU. This suggests that the scenes generated by the augmentation

methods are more effective than labeling ten times more data.

6.3.4

Two recently published augmentation pipelines can be compared to the one presented in this
chapter. TABLE 6.6 shows a comparison between the augmentation pipeline presented here and the
performance boost achieved by LaserMIX [122] and PolarMIX [212] on a Cylinder3D model for
semantic segmentation of the SemanticKITTI dataset.

The authors of both publications reported their results on a 10% and 50% subset of the dataset, there-
fore it is not possible to make a full comparison of the final performance. Nonetheless, the presented
method achieved a more significant improvement of 64.0 mloU on the 10% subset than the other

Chapter 6

Comparison of the Presented Augmentation Methods to Current State-of-the-Art Lidar Aug-
mentation Methods. Cylinder3D models trained from scratch on full and artificially reduced
subsets of the training data. The performance of the presented augmentation pipeline was compared
to the two state-of-the-art lidar augmentation methods PolarMIX [212] and LaserMIX [122] trained
on reported sets and subset of the SemanticKITTI dataset. The augmentation pipeline of this chapter
is abbreviated with the designation SAPCA for Structure Aware Point Cloud Augmentation.

SemanticKITTI [39]
1% 10% 50% 100%

Cylinder3D [228] 373 539 576 60.4
Cylinder3D [228] + LaserMIX [122] | 50.6 60.0 62.3 -
Cylinder3D [228] + PolarMIX [212] - 62.5 - -
Cylinder3D [228] + SAPCA 509 640 649 67.2

Method

methods, which achieved 60.0 and 62.5 mloU, respectively. Additionally, the method outperformed
LaserMIX [122] on the 50% subset, achieving an mloU of 64.9 compared to LaserMIX’s 62.3. Based
on the reported results, it can be inferred that the presented method performs better on the entire

dataset than the other two methods.

As of December 1%, 2022, when used with a Cylinder3D model on reduced data pools, the presented
method holds the top position for "Semi-Supervised Semantic Segmentation" on the SemanticKITTI
dataset for the 1%, 10%, and 50% bins 8.

6.4

This chapter proposes augmentation techniques to address imbalanced datasets for semantic seg-
mentation networks. The augmentation pipeline is effective in improving generalization abilities,
even with limited data. The approach retains a structure similar to real lidar sensor data, making it
compatible with various neural network designs. Evaluations presented in SEction 6.3 show that the
proposed augmentation methods significantly improve the performance of multiple lidar semantic
segmentation models, regardless of dataset size or network design. Furthermore, the proposed
method outperforms the current state-of-the-art for semi-supervised lidar semantic segmentation,
without the need for additional annotated training data. This is a remarkable accomplishment,
considering that data annotation is both time-consuming and expensive. Additionally, the proposed
method yields more significant performance improvements for semantic lidar segmentation than a

ten-fold increase in additional annotated training data.

Shttps://paperswithcode.com/sota/semi- supervised- semantic-segmentation-on-24

6.4

93

https://paperswithcode.com/sota/semi-supervised-semantic-segmentation-on-24

Enhancing Lidar Domain Adaptation for
Robust Semantic Segmentation

In the previous chapter, novel meth-
ods for lidar augmentation were intro-
duced and evaluated to improve the
performance of semantic segmenta-
tion networks for lidar data by adding
more objects and variety to the train-
ing data. These augmentation tech-
niques are highly effective in address-
ing class imbalance and increasing

training data diversity. However, aug-

mentations alone may not be suffi-

cient for achieving well-performing L. . .

Panoptic Lidar Point Clouds and Their Respec-
tive Twins in a Different Lidar Sensor Domain.
yond a certain dataset due to the sig- The lidar structure and the existing classes of both
datasets was modified so that the scenes existed in
both domains: Real nuScenes (top left) as synthetic
SemanticKITTI (bottom left), real SemanticKITTI
sensor types [30, 166, 42, 60], envi- (bottom right) as synthetic nuScenes (top right).

ronments [121], or seasons [50]. Net-

semantic segmentation networks be-

nificant variation of lidar data across
different domains, such as different

works trained on one domain may not generalize well to another, resulting in poor performance on

unseen data.

To address this issue, domain adaptation techniques were proposed to bridge the gap between
different domains and improve the generalization of semantic segmentation networks for lidar data.
Domain adaptation refers to the process of adapting a model trained on one domain to perform well

on another domain, without the need for an entirely new annotated training dataset.

Current state-of-the-art domain adaptation methods for lidar segmentation use alignment of geometric
and feature statistics at the data level [30, 166], and use network-specific adaptations at the model

level to reduce the domain shift between datasets [42, 60].

In this chapter, a new method for domain adaptation is presented that was published in a conference
paper [98]. The method exclusively aligns different lidar domains at the data level using sensor-
aware domain adaptation modules and data fusion methods that are self- and semi-supervised. By
combining point clouds into a static mesh and ray tracing the mesh with a virtual target lidar, the

source data is recreated in the structure of the target sensor, as shown in FIGure 7.1. These techniques,

95

96

along with self- and semi-supervised methods, effectively reduce the domain shift between datasets
and enable the training of effective lidar segmentation networks.

The following main contributions are provided in this chapter:

e A novel lidar domain adaption method.
o A thorough evaluation of the proposed semantic segmentation domain adaption method.
o A detailed ablation study that illustrates the influence of all components.

e A comparison to state-of-the-art lidar semantic segmentation domain adaptation methods.

7.1

Pretraining and fine-tuning are techniques commonly used in domain adaptation to enhance a model’s
performance on a specific task or domain. The approach involves training the model on a large,
general-purpose dataset before fine-tuning it on the specific domain or task [51, 187]. This helps
the model to better understand the unique characteristics and nuances of the target domain or task,
resulting in improved performance [189, 47].

Unfortunately, the technique described does not work as well for lidar segmentation [171], therefor
other approaches have been explored. In general, domain adaptation for lidar semantic segmentation

can be divided into two large categories: ’simulation-to-real’ and 'real-to-real’ domain adaptation.

The ’simulation-to-real’ methods create large pools of annotated training data for a target sensor
with a computer program to simulate the sensor data [72]. While this approach can generate a large
amount of data, trained networks suffer from a "domain shift" when applied to real data, as simulated
environments are too smooth and clean compared to the real world. To address this issue, some
researchers have proposed data-level methods to adjust the appearance and sparsity of simulated
point clouds to be more similar to real recordings [213, 226], or have added pseudo-labeled real
data to simulated data [169]. In addition, simulation environments are constrained in their ability
to generate diverse scenarios due to the limited number of pre-designed building blocks available
[72].

Several approaches have been proposed for ’real-to-real’ lidar domain adaptation, in which the
source domain data are real recordings of a different sensor. These approaches include translation
and removal of lidar channels [30], summarization and mesh filling of point clouds [128, 42], surface
completion using Poisson surface reconstruction and ray tracing [219], in-painting of sparse labels
[113], and use of generative adversarial networks [60] and range image masking [166] to make one
dataset look like another.

Previous domain adaptation approaches for lidar semantic segmentation have been limited to specific
data structures [166, 60] or have resulted in rough target point clouds with limited details which
prevents precise segmentations [128, 42, 219, 113].

Chapter 7

This chapter proposes a novel domain adaptation method that combines unsupervised domain
adaptation with fusion techniques of self-supervised pseudo labels. By utilizing minimal annotations,
the method achieves competitive results in the target domain and overcomes the limitations of
previous approaches.

7.2

In the following section a data-centric approach is outlined for panoptic lidar domain adaptation that
preserves semantic and instance labels of the source dataset. The proposed method recreates the
scene from the source dataset into a three-dimensional point cloud that matches the shape, range,
and structure of any other lidar sensor. This enables the training of various segmentation networks
on the generated data. To minimize the domain shift between the generated data and the real data of
the target sensor, dynamic objects from the target sensor are incorporated into the static scenes. This
is done using either a small pool of annotated data or pseudo-labeled data from previous iterations of

trained networks.

7.2.1

To generate a denser representation of real-world scenes captured and annotated in a source dataset,
the points of sequential scenes are accumulated over their entire sequence. Both the SemanticKITTI
[39, 87] and nuScenes [13, 26] datasets provide ego-motion ground truth that is used for this purpose.
To prevent dynamic objects such as moving cars and pedestrians from appearing multiple times in
the static point map, all dynamic instances are removed from the point scenes. The resulting scene
point clouds appear denser, but the points are still zero-dimensional objects in a three dimensional
world (as shown in Fiure 7.2 b), i.e., they fill no volume. To sub-select or ray trace the scene point
cloud using the structure of the target lidar sensors, methods such as closest-point sampling can be
used. However, these methods introduce unrealistic representations, such as visible points behind
walls or other objects, due to the lack of direct occlusions [128]. These gaps are instead filled with
a mesh representation derived from the scene point cloud in order to create a three dimensional
representation of the sequence.

7.2.2

Recreating surface models from point clouds has been studied for almost a century [66], and various
methods have been developed, including alpha shapes [74], truncated signed distance functions
[63], and the Poisson surface reconstruction algorithm [116]. The latter is used in the presented
method.

Poisson surface reconstruction is a method used to reconstruct a watertight, triangulated approxima-
tion of an unknown model’s surface, based on a set of samples that lie on or near the surface of the

7.2

97

‘\:_Zf__\\ < ,-'.<::

| JL /

Restructuring of a Single Dataset in the Form of Two Different Sensors. The SemanticKITTI
dataset (a) was summed up for all point clouds in a sequence (b), a mesh world was created (c)
and finally retraced in the lidar structure of the VLP-32C (d) used in the nuScenes dataset as well
as the InnovizTwo lidar sensor (e).

Chapter 7 Enhancing Lidar Domain Adaptation for Robust Semantic Segmentation

model. These samples contain a point and an inward-facing normal. The algorithm works by ap-
proximating the indicator function of the model and extracting the isosurface as a three-dimensional
mesh model. For further information, please refer to the original publication on "Poisson Surface
Reconstruction" by Kazhdan and Hoppe[116].

The Open3D [229] implementation of the Poisson surface reconstruction algorithm is used in the
following to recreate the scene point cloud as a mesh object. For each mesh vertex the ten nearest
neighbors in the original scene point cloud are chosen via k-nearest neighbors sampling [81]. The
most frequent values for the class and instance labels are assigned to the vertex of the mesh surface.
The intensity value reflects the mean value of the ten nearest original points, with an inverse linear

distance weighting.

In CuaptEr 2.1 the general lidar equation for the remission (compare Equation 2.10) was broken
down to the two main influences: reflectance of the target and environmental properties. The
environmental properties can not be recreated in the given mesh model, as the volume between
surfaces and the sensor is not modeled. Further, the reflectance is based on the reflectivity of the
target surface and the inclination angle of the laser beam. While the latter can be modeled from
the surface normals of the mesh recreation, the surface properties are too diverse to recreate in an
efficient manner [194]. As a result, a choice was made to allocate predetermined intensity levels to
each vertex based on the ten closest original points, using inverse linear distance as the weighting
factor.

7.2.3

The point cloud of the mesh object in the structure of the target lidar sensor is recreated using
a simplified ray casting method. The mesh environment is projected from Cartesian to spherical
coordinates. The mesh transformed to the spherical coordinates is recorded as a depth image from
the perspective of the lidar sensor. The camera’s location and rotation are adjusted to match the
target sensor. The render resolution is chosen as three times the lidar resolution and subsampled
to the target sensor’s resolution. This decreases the discretization effects at longer ranges, which
would cause the effect of "growing" objects at farther ranges. The depth, azimuth, and elevation
angle of each pixel are re-transformed into the Cartesian coordinate system to obtain a pseudo lidar
point cloud in the structure of the target sensor. The semantic, instance, and reflection values from
the mesh model are assigned from the mesh faces to the newly created points. This allows for the
structure of any number of different lidar sensors to be recreated using a single mesh world, as shown
in FIGURE 7.2.

7.2.4

The previously outlined method successfully captures the source data’s content in the target data
structure. However, it only portrays the stationary components of the source data in the resulting
scenes. To overcome this limitation, a semi-supervised approach is utilized to reintroduce dynamic
objects into the otherwise empty scenes. General purpose object detectors [127, 178] are applied to

7.2

99

100

Target Domain Data Injection into Generated Lidar Point Clouds. The generated static scene
(a) was combined with sampled target sensor (pseudo) ground truth data (b), that was extracted
from cuboid labels or alternatively bounding box predictions. The instances were injected into the
generated scenes to create dynamic lidar data (c) consisting of parts of the source and the target
domain.

the unlabeled target lidar data. The points within the box predictions, along with their semantic and
instance labels, are cut out and inserted into the recreated segmentation scenes as dynamic objects.
This injection process is shown in FiIGUre 7.3. The insertion is done via the structure aware point
cloud injection method described in CHapPTER 6.2.2 for lidar augmentation of data from the same
domain. Another option is to employ the injection method using limited sets of ground truth cuboid

or segmentation labels, provided they are accessible for the target data.

The injection technique provides three key benefits. Firstly, it reintroduces dynamic objects into
the otherwise static scene. Secondly, it balances the distribution of underrepresented classes, thus
increasing the exposure for segmentation networks. Finally, by combining real instance point clouds
with generated scene point clouds, it effectively reduces the gap between the real and generated

domains.

For the semi-supervised approaches in Section 7.3.1 and 7.3.2, a subset of the provided bounding box

labels from the KITTI [87] and nuScenes [13] datasets, respectively, are used for instance injection.

7.2.5

Recently multiple lidar augmentation methods have been published that go beyond injecting single
objects into a scene. They attempt complete mixtures between two lidar point clouds recorded at
different positions and times. The straightforward concatenation of two point clouds, as proposed by
Mix3D [5], is used to break up the context of certain classes and objects. A different approach, was
presented in CHAPTER 6.2.3 which keeps only parts of each point cloud according to their distance to
the lidar sensor. This creates a mixed point cloud while maintaining the structure of the lidar sensor.
The domain mixing approach of this section is based on the latter method and combines synthetic
generated scenes with a subset of target lidar data, as shown in FIGURE 7.4.

Chapter 7

Point-wise Domain Fusion by Range. A generated lidar scene (a) and a (pseudo) ground truth
lidar frame of the target sensor (b) were selected at random. Both frames are moved to the same
origin (c) and a point-wise range competition (d) in the range image domain was applied: the
green points were closer to the lidar sensor. A new point cloud (e) exhibiting parts of the real
target data (blue) as well as the labeled generated data (red) emerges. The final result (f) is a
structurally intact point cloud consisting of both generated and real data.

7.2

101

102

SemanticKITTI

unlabeled
car

Panoptic nuScenes

noise
vehicle.car

Truck

=

truck

blcychst

motorcycle

motorcyclist .‘

person Pedestrian human.pedestrian

OtherVehche vehicle.construction

I movable _object.trafficcone
Structure II

other-vehicle

building

fence
static.manmade
trafflc -sign
vegetation
trunk

road
'
sidewalk flat.sidewalk

Ground
other-ground flat.other

terrain Terrain

Joint Class Mapping of the Datasets. The classes of both datasets used in the evaluation are
remapped to match the different classes in joint categories, that are present in both datasets for a
uniform class label set.

By mixing a small subset of real, annotated data of the target dataset with the generated scenes, the
diversity of the dataset is increased. Furthermore the interpolation of the two domains within a single
point cloud reduces the domain shift between them even further. A similar effect was noticed by the
authors of another study [169], who found that merging patches of different domain sources pulls
them closer together in the total distribution. The domain fusion method of this section increases
this pull effect due to the structure aware fusion of the different point clouds.

7.2.6

The technique of pulling domains together to reduce the shift between them can be applied in both
semi-supervised and unsupervised ways. In the unsupervised approach, a network trained on the
domain adapted data is used to create pseudo labels for unlabeled data of the target domain. The
same methods as in the semi-supervised approach are then applied, using the pseudo labeled data
instead of a small annotated data pool. To decrease the influence of incorrect labels, points with a
class prediction confidence lower than 85% are removed. The reformulated use of the fusion method
of CuapTER 6.2.3 with these pseudo label has an advantage over other pseudo label approaches.
Uncertain regions are not left empty, but are populated with the complete scene point clouds of the
generated samples. The pseudo labels only add more information from the real point cloud, but do

not remove points of the synthetic point cloud when they can not fill the empty spaces.

Chapter 7

7.3

The efficacy of the lidar domain adaptation method is showcased by utilizing two publicly available
datasets, namely SemanticKITTI [39] and panoptic nuScenes [26]. These datasets feature distinct
lidar sensors that are mounted on vehicles of varying heights and operate in different geographic
locations. Therefore, they create a significant domain gap between the different automotive lidar
segmentation datasets. To facilitate the application of the domain adaptation method and enable
performance comparison between the two datasets, a shared set of classes is created by remapping
the classes in both datasets to a common set, as illustrated in FIGure 7.5. As some previous methods
[128, 42] for lidar domain adaptation use different class combinations, a direct comparison with
those methods is not feasible. Therefore, only the methods proposed in [60] and [166] are used for

performance comparison.

7.3.1

The panoptic lidar labels, instance-wise attributes for dynamic objects, and ego-motion ground truth
of the nuScenes dataset are utilized to remove dynamic objects from the lidar point clouds and
combine all the point clouds in a sequence using their ego-motion as outlined in Section 7.2.1.

The dataset is divided into multiple sub-sequences, each containing 20 frames, acquired at a rate
of 2Hz, for a total of 10 seconds. The goal is to recreate panoptic segmentation lidar data in
the structure of the Velodyne HDL-64E lidar sensor data. This is accomplished by summing all
point clouds in each sequence and creating a three-dimensional mesh world using Poisson surface
reconstruction. The spherical projection of the three-dimensional mesh is used to capture a depth
image in the recording structure of the target sensor with a virtual orthographic camera. Minimum
and maximum vertical and horizontal angles and image resolutions are defined to recreate the static
scenes in the lidar structure of the KITTI [87] dataset. The generated data comprises panoptic labels,
which offer a more comprehensive annotation of the scene. However, for the semantic segmentation
evaluations that follow, only the semantic labels are utilized, as they are deemed sufficient for the

specific analysis being conducted.

To evaluate the impact of each module in the domain adaptation method, an ablation study was
conducted. Replacing the original nuScenes data with the recreated lidar frames resulted in a
significant performance increase, from 19.1 mloU to 30.7 mloU, when evaluating the model on the
validation log 08 of the SemanticKITTI dataset.

Further improvements were achieved by utilizing the trained network to generate pseudo labels for
unlabeled data from the target sensor and combining them with the generated frames, resulting in a
total mloU of 34.3. Addition of the object detection cuboid labels from the original three-dimensional
object detection dataset [87] as structure-aware point cloud injections, without the pseudo labels,

resulted in an mloU of 31.9.

7.3

103

NuScenes to SemanticKITTI Ablation Study of the Presented Domain Adaption Method Using the Cylinder3D Network [228]. The classes are joined from the
source and target dataset according to Fiure 7.5. "GT Frames" denote the addition of a small subset of 100 annotated target frames (0.5% of the training data), while
"GT Inst." is the addition of cuboid detections as point-wise labels. All Cylinder3D networks have been trained from scratch with the same parameters to ensure a fair
evaluation. The chapter’s method was compared to the unsupervised domain adaptation method of [166] and the semi-supervised domain adaptation of [60] which
uses 100 annotated target frames for the training. The reported loUs are listed alongside the chapter’s domain adaptation methods ablation values. Best results are
shown in bold red, second best in italic blue text.

e % a z = @ »
= < Q = o) 2 Q 3 a Z) o
: T %z | & | ®* % & & &oe T 5 = & ¥
190645 09 00 50 00 10 383 110 506 48 337
Unsupervised v 307|861 68 S8 160 12 34 446 299 642 329 471
VA 343 888 30 10 169 03 10 493 425 740 512 493
v v 39786 198 69 76 109 18 SI8 4262 669 3858 432
Semi-Supervised | v/ /v | 631 [931 311 501 433 654 135 868 849 87.0 731 658
Vv v v | 674|940 508 582 519 716 139 883 858 882 753 670
Rochan et al. [166] 235 (496 18 46 63 125 20 657 579 822 296 340
Corral et al. [60] V| 462|873 276 292 269 346 244 617 464 703 523 474
Subervised 100 Frames v/ | 490|912 16 81 26 301 60 833 853 83 733 696
P Full Target Dataset 758 | 965 847 623 537 702 532 895 860 9L0 792 67.3

T The target baseline mloU is higher than reported by the original authors, as the reduced joint class set as shown in FIGURE 7.5 was used, and therefore some of the bad performing
classes are eliminated from the evaluation.

Chapter 7

104

Incorporating 100 frames from the target domain, which constituted less than 0.5% of the original
dataset, and mixing them with the synthetic data using the structure-aware point cloud fusion method,
resulted in a remarkable performance increase, up to an mloU of 63.1.

The final version of the semi-supervised domain adaptation method included all the previously
mentioned components and pseudo labels derived from the previous network applied to unlabeled
target lidar data. The final network achieved a performance of 67.4 mloU, which is equivalent to
89% of the segmentation quality of the same network trained on the full target dataset which is 75.8
mloU.

In comparison, training the same network directly on the 100 sampled frames of the target dataset
used in the semi-supervised approach resulted in a lower mloU of 49.0.

The results of the ablation study, as shown in TaBLE 7.1, demonstrate that all the domain adaptation,

injection, and fusion methods significantly improve the final segmentation quality.

When compared to two state-of-the-art lidar domain adaptation methods for semantic segmentation,
the presented method demonstrates superior performance. The first method, an unsupervised
approach that performs domain adaptation in the range image domain, reports an mloU of 23.5
[166]. The second method, a semi-supervised approach, uses parts of the annotated target dataset
and domain adaptation, resulting in an mloU of 46.2 with the use of 100 annotated frames of the
target dataset [60]. The method presented in this chapter achieves an mloU of 67.4, while using only
100 ground truth frames, demonstrating the effectiveness of the domain fusion and injection methods
in reducing the domain shift between the datasets.

7.3.2

To showcase the universality of the approach, a reverse domain adaptation is carried out by using the
training data from the SemanticKITTI dataset to replicate the content in the lidar sensor structure of
the nuScenes panoptic segmentation dataset. The Cylinder3D [228] semantic segmentation network
is trained on the fully unsupervised method using only generated frames and pseudo labels. A
second Cylinder3D model is trained with the semi-supervised domain adaptation approach, using all
modules from Section 7.2. Both are compared to fully supervised training on the source and target
datasets, as shown in TABLE 7.2. An improvement in semantic segmentation quality is observed with
each additional component of the method.

The performance of 7.4 mloU on the nuScenes validation data is observed with naive training on
the SemanticKITTI data. However, the unsupervised domain adaptation improves the performance
to an mloU of 29.2 which is slightly lower than the unsupervised approach by [166] with 34.5
mloU. The lower performance of the unsupervised method on the nuScenes dataset, compared to
the SemanticKITTI dataset, is attributed to the different vertical aperture angles of the two lidar
sensors. The VLP-32C lidar sensor (nuScenes) has a larger vertical opening angle and can "see"
up to ~ 40.73 m above the road surface, while the HDL-64E sensor (SemanticKITTI) is limited to
~ 3.48 m above the ground. This large discrepancy impacts the performance noticeably more for a

7.3

105

SemanticKITTI to NuScenes Domain Adaption Methods Using the Cylinder3D Network [228]. All Cylinder3D networks have been trained from scratch with
the same parameters to ensure a fair validation. The loU of the cited papers was listed as provided by the authors. Best results are shown in bold red, second best in
italic blue text.

Method 7 mloU T 7 Car Truck Bicycle Motorcycle Pedestrian OtherVehicle Structure Nature Road Ground Terrain
No Domain Adaption 7 7.4 7 3.7 0.3 0.0 0.1 0.1 0.5 18.2 0.1 113 1.2 0.1
Unsupervised 292 | 723 0.0 0.0 0.3 0.1 4.8 59.3 385 778 25.9 42.1
Semi-supervised 589 | 780 57.0 14.1 53.6 51.9 39.1 79.9 77.0 91.0 523 53.9
Unsupervised [166] 345 | 544 15.8 3.0 1.9 27.7 7.6 65.7 579 822 29.6 34.0
100 Target Frames + [60] 483 | 69.0 377 55 9.4 45.4 23.5 69.0 747 78.8 56.1 61.8
100 Target Frames 46.3 | 70.3 27.1 2.0 0.1 40.3 14.7 78.1 76.0 90.7 52.1 58.0
Full Target Datasett 69.5 | 80.0 61.7 11.9 38.0 72.1 34.2 82.6 814 94.0 63.7 60.7

T The target baseline mloU is lower than reported by the original authors, as we are training from scratch.

Chapter 7

106

Pedestrian

OtherVehicle

Ground

Terrain

Inference Results of the Cylinder3D [228] Semantic Segmentation Network Trained on
NuScenes Data Recreated in the Structure of the Velodyne Alpha Prime Sensor. The net-
work performs well for most classes even at distances > 50 m, but it exhibits a high uncertainty in
ambiguous regions, especially vegetation areas are prone for false detections of various classes.

three-dimensional point-wise domain adaptation than a range image variant, as the latter samples the
closest point in the image to fill the gaps [128, 166].

The best performing semi-supervised method utilizes 0.36% of the original target training data, and
reaches a final mloU of 58.9, as shown in TaBLE 7.2. To prevent data leakage, injection instances
are sampled from the same 100 frames. This results in a performance of 85% when compared to
a network trained on the fully labeled target dataset which has an mloU of 69.5. The presented
semi-supervised method even outperforms the fully supervised network on three out of 11 classes.

Compared to the state-of-the-art semi-supervised domain adaptation method by [60], which reaches
48.3 mloU, the presented semi-supervised approach shows a significantly higher performance with an
mloU of 58.9. Even their method with 500 labeled frames does not reach a comparable performance
with it’s mloU of 52.3.

7.3.3

In this section, the lidar domain adaptation method was applied once again to the nuScenes dataset.
Synthetic data in the structure of the high-resolution lidar sensor Velodyne Alpha Prime was generated.
Furthermore raw automotive lidar data was captured in multiple scenarios in Wuppertal, Germany to
get a pool of unlabeled real data for the pseudo labels.

7.3

107

108

Structure

Ground

Terrain

Inference Results of the SalsaNext [61] Semantic Segmentation Network Trained on Se-
manticKITTI Data Recreated in the Structure of the InnovizTwo Sensor. Due to the low
number of cuboid instances for our injection module, the absence of segmentation ground truth
and the very large vertical field of view, the performance on this sensor is not as precise as on the
Velodyne Alpha Prime and even less than the two open source datasets.

The target lidar has a vertical resolution of 128 non-uniform lidar channels, four times the resolution
of the nuScenes lidar, and a horizontal resolution of 1800 points per scan line, resulting in twice the
horizontal resolution of the nuScenes lidar data. Additionally, the range of the target sensor is 100 m
farther with 300 m.

Similar to the previous section, all points within a scene were aggregated to gather as many original
lidar measurements as possible, resulting in a comparably sparse point cloud due to the lower
resolution of the source lidar. To address this, a meshing process was employed to connect the point

cloud and cover the entire visible surrounding.

Two off-the-shelf three-dimensional bounding box algorithms [127, 178] were applied to unlabeled
target data of the Velodyne Alpha Prime, and a Kalman filter [115] was used to filter out most false
detections.

The approach discussed in SEction 7.2.4 was employed to extract lidar points from the detected
cuboids and integrate them into the produced training dataset as semantic instances. FIGURE 7.6
presents the qualitative outcomes of the trained semantic segmentation model. However, due to the
absence of any publicly accessible semantic or panoptic segmentation dataset for the Velodyne Alpha

Prime sensor, a quantitative assessment cannot be provided.

7.3.4

To showcase the domain adaptation capability of the method, it was applied to another dataset with
a different lidar sensor that lacked segmentation labels. The InnovizTwo lidar sensor was selected,
which has a high resolution, directional configuration with a limited aperture angle of 120° x 40°
and can sense objects up to 300 m away. The InnovizTwo has a much higher point density in the

given direction than the Velodyne Alpha Prime. The data from the InnovizTwo sensor was obtained

Chapter 7

from a self-supervised object detection challenge, and the domain adaptation was performed from
the low-resolution, 360° rotating lidar sensor of the SemanticKITTI dataset to the high-resolution
directional InnovizTwo sensor.

Point-wise instances were defined for the semi-supervised injection module of the domain adaptation
using the provided cuboid labels of 100 annotated frames. The results of the trained SalsaNext
semantic segmentation model for the InnovizTwo data can be seen in FIGURE 7.7.

Similar to the previous section, since there is no annotated dataset available for the InnovizTo lidar

sensor, a quantitative analysis cannot be provided.

7.4

In this chapter, a novel domain adaptation method to recreate annotated segmentation lidar data in
the structure of different lidar sensors was presented.

The evaluation demonstrated, that the proposed method improves semantic segmentation via domain
adaptation by up to +21.2 mloU compared to the current State of the Art. An extensive ablation
study was conducted to show the influence of each module in reducing the domain gap between
generated and real data.

The method operates solely at the data level and can be used with any lidar semantic segmentation
model. This is especially useful for future uses, as the state of the art for segmentation models is a
constantly changing and improving area of research.

In the future, the application of the method to panoptic segmentation networks and three-dimensional
bounding box detectors represents a good opportunity for further development and improvement of
the method.

7.4

109

Expanding the Horizons of Autonomous
Driving: Novel Applications of Lidar
Segmentation

Driving Forward with Lidar Segmentation:

Innovative Applications in the Automotive Industry

As demonstrated in previous chap-
ters, lidar segmentation is a powerful
tool that enhances the utility of point
clouds. By dividing the data into dis-
tinct segments, it becomes more fea-
sible for human observers to under-
stand the structure of the sensor’s en-
vironment. However, the true value
of segmented point clouds lies in their
applications for driver assistance sys-
tems and autonomous vehicles. In
this chapter, several applications of
segmented point clouds will be pre-
sented. These not only demonstrate
the value of segmentation algorithms
but also explain the necessity of seg-
menting lidar data to support such ap-

plications.

Applications of Lidar Segmentation. Examples of
the new applications of lidar segmentation presented
instance provides additional informa- in this chapter.

Segmenting lidar data by class and

tion that can be useful for decision-

making. For example, a lamppost is not as important to an autonomous vehicle as a pedestrian. The
latter can change its position in the future. This distinction is not possible from unordered raw lidar
data, but can be facilitated by semantic segmentation. By classifying the static background, not only
the dynamic pedestrian can be clearly separated from the rest of the lidar points, but the background
itself can also be divided into different spatial regions. For example, the spatial segmentation of
road surfaces versus that of a curbstone is important for trajectory planing. A cuboid detection
of a pedestrian merely indicates its presence. A semantic and panoptic segmentation can provide
additional information, such as the fact that the pedestrian should not be avoided via the sidewalk,
but that the free road surface should be used instead.

Lidar segmentation provides a comprehensive representation of the environment. It enables well-
informed decisions based on a holistic understanding of the surroundings. This is an improvement
over reactive decision-making based on limited detections, and can improve the safety and efficiency

of autonomous systems.

113

114

Currently, the direct processing of three-dimensional segmented point clouds is computationally
too expensive for online decision-making algorithms. In addition, segmentation networks have a
certain latency before the processed point cloud can be passed on to the decision-making algorithm.
As aresult, segmented lidar point clouds are rarely used in live applications. However, their high
information content makes them suitable for providing a ground truth for offline training of other

sensors and algorithms and as a tool for human evaluation and refinement of a given scene.

In the following sections, four novel methods are presented, each in their own dedicated section. All
methods have lidar segmentation as a common basis. The first method entails the reformulation of
lidar segmentation data to create semantic grid maps which are used to train online segmentation
algorithms based on radar data. The second method introduces a novel CPU-based real-time lidar
detection algorithm which is based on panoptic lidar segmentation. The third method describes a
simulation environment for Advanced Driver Assistance Systems (ADAS) re-simulation which is
based on lidar segmentation data recorded in the real world. The last method demonstrates the use of
lidar segmentation training augmentation and domain adaptation techniques to train a lidar object
detector on a limited dataset.

The following main contributions are provided in this chapter:

e A novel semantic grid map generation algorithm.
e A novel online CPU-based object detection algorithm.
o A novel closed loop re-simulation system.

o Novel augmentation and adaption methods to train semi-supervised object detection networks

Chapter 8

8.1

To extract relevant information from

lidar segmentations for subsequent ap-

plications, it is typically necessary
to reformulate the underlying point MotorBicycle
Person

cloud segmentations. Occupancy and
(Guardraill

semantic grid maps are common types

oad

of representations used in robotics Overdrivable

and autonomous systems to represent Nondrivable

the environment in a structured and

simplified way.

Lidar sensors which use lasers to mea-
sure the distance to objects in a 360°
field of view, can be used to create

semantic maps from point clouds [44,

80]. Yet radar sensors are a more cost-

effective method to create semantic)
Lidar Segmentation Grid Maps. Bird’s eye view

maps of the environment around a vehicle provide
sumer applications in the automotive structured and sensor-agnostic information that can
industry. These are much less expen- be used for decision algorithms and path planing. The
top row shows the semantic information in a 50 cm by
50 cm resolution 80 m to the front, 60 m to the back
a comparable depth measurement of and 40 m to the sides of the vehicle. The bottom row
the environment. However, due to the shows the associated height information for the same
grid cells.

maps [143, 160], especially for con-

sive than lidar sensors and provide

complexity of radar sensor data, pre-
processing is required to obtain the desired information. Also automotive radar sensors have a
significantly lower resolution than lidar sensors, meaning they are not as accurate in detecting the
shape and size of objects.

This section presents an automatic ground truth generation algorithm that takes advantage of the
strengths of lidar sensors over radar sensors. The algorithm is based on the lidar segmentation
process, to generate high-resolution semantic grid maps that can be utilized as ground truth for radar
sensors. By employing this method, it becomes possible to develop and train grid map segmentation
networks that can produce structured two-dimensional semantic grid maps from complex radar
data.

The method presented in this section combines several state-of-the-art algorithms from the fields of
semantic lidar segmentation, three-dimensional bounding box detection, non-causal tracking and
Simultaneous Localization And Mapping (SLAM) to create high resolution and far-range pseudo

ground truth semantic grid maps for the training of radar networks.

8.1

115

116

8.1.1

Occupancy grid maps are a type of representation used in robotics and autonomous systems to
represent the environment. They are created by discretizing the environment into a grid of equally-
sized cells. Each cell is then marked as either occupied or unoccupied based on the presence or
absence of objects in that region [75]. This allows a robot to build a high-level understanding of
its surroundings and can be used for a variety of tasks such as localization, navigation, and path
planning [46, 209, 174]. Occupancy grid maps can be created using various types of sensor data,
including lidar, camera, and radar.

Occupancy grid maps are often used in conjunction with other types of representations, such
as semantic maps or height maps, to provide a more detailed and accurate understanding of the
environment [79, 173].

Initially, semantic extensions to these occupancy maps were limited to information that explicitly
predicted the road surface [130] or combined free-space and obstacle height estimations [38]. Further
extensions of these methods assign a specific class to each pixel of the grid map and combine the
semantic information with occupancy information. These are used to build a two-dimensional bird’s

eye view map of the entire environment [173].

Semantic grid maps can be created from different sensor sources. Camera sensors were used, because
of their high pixel density and the low price. However, due to the lack of depth information, no
certainty is guaranteed and several additional components were needed: for example, a stereo camera
setup [130], a sensor fusion with additional depth information [139] or a neural network estimation

of the three-dimensional world extended from the monocular image [136].

Other approaches based on lidar data use deep learning methods, to predict dense two-dimensional
grid maps from single lidar point clouds [44, 80, 157]. These approaches either introduce uncertain
labels to unknown and occluded regions due to the network’s guesses, or are artificially masked to

the area visible to the sensor at a given time.

An approach that was used as a basis of the method presented in the next section, creates semantic
grid maps from lidar data that were annotated by human labelers. The point clouds are rasterized into
a discrete grid pattern, and assigns the most frequent label of each bin. This produces a very sparse
and coarse grid map, since the bins have to be large in order to have at least one semantic labeled
point in most bins. Furthermore, the resulting sparse grid maps are limited to what the sensor can
see at a given time. Occlusions and moving objects can therefore create large uncertain regions.

An iteration of this approach involves using a Simultaneous Localization and Mapping (SLAM)
method to capture the movement of the ego vehicle. The trajectory is used to overlay sequential lidar
frames that had been annotated by humans. This increases the number of lidar points and thus fills
some of the gaps that single lidar frames are not able to capture. These approaches are not scalable,
as they require manual annotations and the sequential point clouds have to cover the same area in
order to bolster the points of a given area. However, highly dynamic environments such as highways
have comparably few point clouds that map the same region before the car leaves it again.

Chapter 8

Comparing Information Representation: Real World, Semantic Segmented Lidar Frame,
Two-Dimensional Grid Map, and Three-Layer Grid Map. The two-dimensional grid map
classifies the entire space under the tree canopy as occupied, while the three-layer grid map reveals
a clear driving corridor extending to the curb stone.

The method presented in the next section combines the use of sequential lidar data, ego-motion
estimation, three-dimensional bounding box detection, lidar segmentation and three-dimensional
surface estimation methods to create high resolution, far-range birds eye view maps of the entire

surrounding for the training of radar sensors with a very high certainty.

8.1.2

The method described in this section creates high-resolution birds eye view maps. These grid maps
encode the three-dimensional and semantic lidar information of the environment as a three-layer grid
map. The first layer encodes the semantic label information of each pixel. The second layer holds
the information of the tallest point in each cell, excluding overhanging objects. The third and last
layer also provides a height information, but in a worms eye view map, i.e., seen from below. This
third map provides the lowest, overhanging point of each cell. The two geometric values together
provide the information of the drivable corridor for a given cell. These maps are sensor independent
and can be used to train, for example, semantic segmentation algorithms for radar data. A schematic
comparison is presented in FIGURE 8.3, illustrating the information representation of the real world,
a semantic segmented lidar frame, a two-dimensional grid map, and the proposed three-layer grid
map.

To create this efficient grid map data, three independent algorithms that process the raw lidar data
are combined.

The first method is an automatic generation of three-dimensional bounding box annotations. For
this, an ensemble of several existing detection networks [127, 178] is applied to the lidar data and
combined by a common Kalman tracker [115] to produce reliable automatic bounding box labels
from the detections.

The second method is an automatic semantic segmentation of the lidar point clouds. Each individual
lidar point is assigned a specific class. Unlike the previous method, there is no combination of
multiple algorithms, and consists of a single Cylinder3D [228] network trained with the augmentation
methods of CHAPTER 6.

8.1

117

118

The third method estimates the ego motion. It is a novel combination of a lidar Simultaneous
Localization and Mapping (SLAM) method [177] with recorded information of the host data, such as
speed and yaw rate.

The first method is not a new contribution of this dissertation. The interested reader is therefore
referred to the corresponding sources for more detailed information on the two detection networks
[127, 178] and the Kalman tracker [115].

The second method, lidar semantic segmentation, has already been presented multiple times through-
out this thesis. The chosen network Cylinder3D was presented in SEcTioN 5.3.1. The training and

evaluation of the model can be seen in SecTiON 6.3.1.

The third method is a novel combination that was developed in the course of this thesis and published
as a patent application [100].

Reliable and Precise Ego Motion Estimation

Accurate ego motion estimation is a vital aspect in generating a reliable map. To achieve this, a
combination of SLAM and host vehicle information has been developed for the specific application
at hand. The ego motion estimation method is briefly presented below:

Dead Reckoning is a technique for calculating the value of a time-dependent variable by adding
changes to a previous value. This technique provides a rough approximation of the vehicle’s motion
by using it’s previous position and incorporating its host data, i.e., it’s speed and turn rate [78].
However, due to the accumulation of small errors the predicted motion quickly drifts, resulting in an

offset of several meters from reality after just a few seconds [49].

The ego motion obtained from a SLAM algorithm is typically highly accurate. However, any
error in the estimation can result in a catastrophic failure. For instance, when navigating through
environments lacking clear features, such as on a freeway, other vehicles moving parallel to the ego
vehicle may be incorrectly interpreted as stationary objects, leading to the estimation of self-motion
at a significantly slower pace, such as walking speed, instead of the actual highway speed.

To overcome this challenge, a novel approach was developed in this thesis, which involves a
combination of the two methods. The approach involves matching the accurate ego motion estimates
obtained from the SLAM algorithm with the relative motion data obtained from the host vehicle at
regular intervals of one second. If the error between the two trajectories is small, it can be assumed
with high confidence that the SLAM algorithm has produced a more precise ego motion estimate due
to its high precision. However, if the error between both methods exceeds a predefined threshold,
it is likely that the SLAM algorithm has produced an erroneous estimate, and the interval is filled
with the dead reckoning of the vehicle data. This method ensures that a seamless sequential ego
motion estimate is created, which combines the high precision of the SLAM algorithm with the high
accuracy of the vehicle data. This results in an ego motion estimate that is both precise and accurate,

ensuring a valid ego motion estimation.

In Ficure 8.4 ego motion outputs are shown for two scenes, one on a highway and another in
an inner city scene, showcasing the issues of SLAM-only and host-only methods compared to

Chapter 8

SLAM Method

Host Method
Combination Method
dGPS Ground Truth

,

Ego Motion Combination Method Compared to SLAM and Host Vehicle Based Ego Motion.

The SLAM ego motion (blue) is generally more precise than the host vehicle dead reckoning

(green), but can fail entirely in scenes without meaningful structures of the static background.

Especially highways offer few significant objects for SLAM algorithms. Left: The presented
combination method (orange) achieves a significant improvement of the final ego motion, that
is very close to the true measured Differential Global Positioning System (dGPS) path that the
target vehicle drove (red). Right: The presented method recognizes the errors in the SLAM and
uses Host information.

the presented combination approach. The ground truth was measured using a Differential Global
Positioning System (dGPS). DGPS systems are much more precise and reliable than conventional
Global Positioning Systems (GPS) systems. A mobile dGPS receiver can significantly improve the
accuracy of its satellite-derived GPS position, from around 20 m down to centimeter accuracy, by
using short-range signals from ground-based transmitters [76]. Unfortunately dGPS are very costly
and therefore not available beyond research and development vehicles.

The performance of the SLAM method on the inner city log was found to be excellent, with only a
slight deviation from the ground truth dGPS data. However, the motion estimated from the Host data
begins to drift after the first turn. The presented combination method bridges a short failure of the
SLAM with the Host data for an even better performance than any one of the two.

In contrast, the highway scene highlights the potential risks of relying solely on the SLAM algorithm.

In an environment lacking distinct features, the SLAM algorithm often produces an erroneous ego
motion estimate. However, the combination method detects the significant difference between the
two ego motion estimates and switches to using the Host motion data for most of the log. Although
the combination method cannot correct the drifting motion of the Host data, it ensures that the ego
motion estimate is at worst imprecise but not entirely incorrect.

Combination of Independent Algorithms

The presented novel method further processes the three independent algorithms, namely the semantic
segmentation, bounding box automatic label generation, and ego motion estimation.

Firstly, the point cloud is analyzed to differentiate between static and dynamic elements, including
houses, road surfaces, poles, parked cars, pedestrians, moving cars, bicycles, and trucks. This is
achieved through the use of semantic segmentation predictions and automatically generated bounding
boxes throughout the recorded time interval.

8.1

119

120

To separate the dynamic elements from the static ones, the Kalman tracker of the bounding boxes
assigns a velocity attribute to each tracked automatic bounding box label. As a result, dynamic cars
can be distinguished from static ones through this process.

The dynamic points are then extracted and removed from the point cloud, leaving only the static
points. This allows for the use of the combination ego motion method described in Section 8.1.2 to
create a denser point cloud representation of the environment. Despite the increased point density,
many areas remain empty due to the sparsity of lidar data at larger distances.

To improve coverage of the static environment, all points in the condensed cloud are used to create
a three-dimensional mesh object using the Poisson surface reconstruction algorithm [116]. The
vertices of the mesh object are compared to the original scene point cloud and a k-nearest-neighbors
algorithm is applied to select the ten closest points in the original cloud for each vertex. This is done
to match the semantic segmentation labels of the original points to the vertices. Each point’s label is
determined by its corresponding class frequency, with certain classes being given more weight as
they are deemed more critical. For instance, the "Guardrail" class is more crucial than the "Road"
class because ignoring the former could result in an accident.

The process is described in more detail in CHAPTER 7.2.2 for the application of domain adaption. The
steps are visualized in FIGURE 7.2 (a - ¢) on page 98.

For dynamic objects, the three-dimensional box labels from the automatic bounding box annotation
method are used to transfer these boxes to the three-dimensional mesh world at the appropriate times
and locations. By combining the static mesh world with the dynamic boxes, the complete spatial and
temporal course of the recorded time period can be displayed.

To use this holistic world representation for training radar segmentation networks, the data is reduced
to a pseudo map representation. Methods from the computer graphics domain are used for this step.
Two virtual cameras take "pictures" from above and below the target vehicle to create a semantic
map, as well as two 2.5D elevation maps. The first camera, looking from "top to bottom," records
the height of the tallest object around the vehicle in every defined grid cell. The second camera,
capturing an image of the mesh world from below the vehicle, records the lowest protruding object
from above, down to the car. The mesh structure of the world enables this simple formulation, as
the face elements of the meshes have clearly defined surface normals. Faces seen from the correct
side are visible to the virtual cameras, while the backside of surfaces is invisible to them as shown
in Ficure 8.5. Therefore, the virtual camera below the ego vehicle, does not capture the ground or
vehicles, but only faces that are above the vehicle, with the faces facing towards the bottom. In the
same way, the virtual camera above the ego vehicle is not blocked by overhanging objects, as the
faces are oriented towards the vehicle. In this way, regions such as bridges, trees, signs on highways,
and tunnels can be mapped with their height in a data format that emulates the two-dimensional
nature of radar segmentation maps. They still encode the three-dimensional information of the
environment for the most important objects of each grid cell, i.e., the information closest to the
vehicle.

These three maps, the semantic, the bird’s eye view height map and the worm’s eye view height map,
create a pseudo three-dimensional representation of the environment with a much more efficient
data structure. Using this data, radar segmentations can be trained, for the classes of the lidar

Chapter 8

Mesh World Rendering. The environment mesh (top) is captured by two virtual depth cameras.
These cameras are located above (bottom left) and below (bottom right) the ego vehicle.

segmentation as well as the height and the overhang height for live applications using only radar
data.

The presented method can be scaled to high resolution maps due to the underlying world represen-
tations as mesh objects and can be enlarged to cover high range applications. The method is not
limited to the range and point density of the lidar sensor but can be used beyond the lidar capabilities
due to combination of the segmentation, the cuboid detection and the ego motion estimation.

8.1.3 Hesulis

At the time of writing, there is no available ground truth dataset to quantitatively evaluate the
proposed method for semantic and height map generation. There are three dimensional voxel
elements of the SemanticKITTI dataset for a scene completion task [39], that is similar to the task at
hand. The creators encoded three-dimensional information in a Cartesian voxel grid and assigned
semantic labels. The data format suffers immensely from a missing exclusion of dynamic objects
due to which the ground truth is unreliable. The nuScenes dataset has high definition maps for the
recorded scenes of their logs, but this map offers only the semantic information about the static
environment. Furthermore the nuScenes lidar sensor is artificially reduced to a 2 Hz frequency which
greatly decreases the capabilities of the proposed method.

The evaluation of the presented method was therefore purely qualitative. In Ficure 8.2 multiple
scenes of the proposed method are shown. The resulting maps can be tuned to specific user settings
depending on the desired range and resolution. FiGURE 8.6 illustrates a comparison between the
original lidar point cloud and the reconstructed scene using the final 2.5D grid maps.

8.1 Lidar Segmentation for Radar Segmentation

121

Three-Dimensional Reconstruction of the Encoded Grid Map Data. The three-dimensional
lidar point cloud (top) shows the target scene as recorded by the sensor with the semantic
segmentation and cuboid detection labels. The method outlined in SecTioN 8.1.2 creates an efficient
multi-layer grid map format, encoding the most important spatial and semantic information of the
scene to recreate the full scene (bottom).

122 Chapter 8 Driving Forward with Lidar Segmentation:
Innovative Applications in the Automotive Industry

The resulting multi-layer grid maps encode the semantic label and the important aspects of a valid
driving corridor, with three values per grid cell. This data format is highly efficient, as it represents
three-dimensional information in two two-dimensional grid images. Moreover, it allows for easy
comparison to other modalities that produce grid maps, such as camera-based or radar-based online

algorithms.

8.1.4

In this section a novel method for semantic, height and overhang-height encoded grid maps was
presented. The maps represent a sensor agnostic segmentation of the environment around a vehicle.
They are created by a combination of machine learning, SLAM and other heuristic algorithms to
generate accurate and detailed maps of the environment. These can be used for the training of

segmentation algorithm used for autonomous driving and robotic navigation systems.

The method shows generally very promising results over a large variety of scenarios, ranging from
inner city to highway areas. A few issues were identified during the visual inspection of the results,
namely missing detections in both the cuboid as well as the segmentation labels, which can lead
to false static objects in the middle of the road. As a future task, these issues are to be addressed
via moving object segmentation, and semantic segmentation with temporal consistency as future
work.

Overall the presented method is effective in accurately representing the true environment and pre-
senting meaningful information in a compact data structure. The method represents a valuable
contribution to the field of environment segmentation and mapping, as it creates a new data structure
for novel algorithms, by combining present independent algorithms. Combining multiple indepen-
dent algorithms increases the overall reliability of the method and utilizes the advantages of each
component while providing an additional fail-safe mechanism. By combining the SLAM with the
Host motion and integrating segmentation and cuboid labels, the method is capable of filtering out
errors in each other. These features make it a useful tool for various applications, including trajectory
prediction, path planning, and map-less autonomous driving.

8.1

123

124

8.2

The methods presented in CHAPTERS 3
and 5.2 were not originally designed
for instance and panoptic segmenta-
tion application. The goal was to de-
velop a lidar object detection method
that can run live in a vehicle while us-
ing as few resources as possible for a
publicly funded project.!

The detection of other road users,
especially vulnerable ones, was de-

signed into an overall system for in-

teraction with them. This means that
Online Object Detection From Panoptic Segmen-

after the recognition of all road users tation. The bounding boxes are created with the clus-
in the environment, further subsys- tering method of CHAPTER 3 together with the lidar
tems followed [92]. This included cluster classification method outlined in SEcTiON 5.2.

The purple boxes represent car detections, the red
boxes are pedestrian detections and the blue boxes
tion recognition [202], prediction of are bike detections.

tracking the road users [172], inten-

future movement [172], gesture [210,
48] and facial expression recognition [114], and finally the decision algorithms for the ego vehicle
itself [102].

State of the Art object detection methods at the time [230, 24, 53, 216, 127] performed very well for
the detection of the other road users, but most methods were not capable of real time applications,
i.e., an inference at the sensor’s frequency. Furthermore, all of these required an entire GPU solely

for the detection of other road users, thus blocking the resources for the subsequent modules.

The method described in this section is different from previous work because it was designed to
run in real time on a single CPU core, thus it is much more efficient and left more than enough
time and resources for the following algorithms. The proposed method uses a combination of
clustering and image classification, to identify objects in the point cloud and yields three-dimensional
bounding boxes as output for the following processes. It starts by dividing the point cloud into
smaller segments, clustering points that belong to the same object. Then, it uses a classification
algorithm to identify the type of object in each cluster. Finally, it fits a cuboid around the classified
object cluster to create an object detection cuboid label. This approach allows the algorithm to run
quickly and accurately on a single CPU core, making it a valuable tool for applications that require
real-time object detection on lidar point clouds.

I'This work was a result of the research project @ CITY Automated Cars and Intelligent Traffic in the City: Subproject 7 -
Interaction with weaker road users

Chapter 8

Bounding Box Size Estimation via a Convex Hull. Each classified instance is projected onto
the x,y plane. A convex hull (dashed black polygon) is applied to the point set to calculate the
smallest rectangle (red) around the shape out of all possible rectangles (blue).

8.2.1

In the cHaPTERS 3 and 5.2, the real-time capability of the panoptic segmentation method used here was
presented in detail. However, panoptic segmentation is not the best data structure for the subsequent
algorithms in the system. Panoptic segmented lidar data is still multidimensional with millions of
points that are captured per second. This data density is too large for further processing by a real
time capable system. For this reason, the online capable panoptic segmentation is reformulated to a

real-time capable object detection which works without the use of a GPU.

The classified clusters for each of the defined classes "Car", "Truck", "Pedestrian” and "Bike" are
reformulated to instance bounding boxes. This step simplifies the data structure for the following
parts of the full vehicle system. An example of the resulting bounding boxes are shown in FIGURE
8.7.

The box dimensions and orientation are defined by a minimum area rectangle algorithm. As a first
step the minimum and maximum value of the Cartesian z dimension (height) are extracted. Next, for
an efficient implementation, the point cloud is collapsed along the z dimension in order to turn the
point cloud into a two dimensional point set. A convex hull [167] in two dimensions is formulated
around the point set as shown in FiGure 8.8. This is done, as the orientation of the minimum area
rectangle has to be the same as one of the edges of the convex hull of the point set. For this reason,
the angle to the original orientation in the x —y plane is calculated using the arctan for each edge e

between adjacent vertices of the convex hull
b4
¢ = arctan(e) % (5) 8.1)

where % is the modulo operator to normalize ¢ to the range {R |0<x< %}

The process of calculating ¢ is illustrated in FiGure 8.9.

8.2

125

126

Points with Convex Hull and Edge Angle Orientation. Each edge of the convex hull is indicated
by a line segment. The angle between a given edge e and the x-axis is computed using the arctan
function.

For each edge angle, the vertices of the convex hull are rotated, and the minimum and maximum
values of the x and y dimensions are determined by a vectorised minimum operation in an efficient
manner. Since the target area is a rectangle, the arctan is limited to a 90° angle. The resulting
rectangle areas are calculated and the minimum area for each cluster is determined. The corner
positions of the minimum rectangle, together with the previously determined minimum and maximum
height, results in a three-dimensional cuboid that contains the position, dimensions and rotation of
the corresponding instance, while the class was already predicted by the lidar image classification
outlined in CHAPTER 5.2.1. These cuboids are better suited for real-time applications, as subsequent
algorithms only need to process this vector abstraction of the objects which consists of only eight
values instead of a long list of points associated with the given object.

8.2.2

There are certain disadvantages of this method to the previously mentioned state-of-the-art algorithms
[230, 24, 53, 216, 127] for object detection in lidar data. The dimensions of the cuboids depend on
the lidar points themselves. In case of partial occlusions the cuboid will only reflect the visible part
of the instance, as shown in FiGURE 8.7, the car at the far left of the origin. Also, the orientation is
not related to the orientation of the road user, but can point in any direction.

Despite these restrictions, the presented method achieves a competitive recall in real time on a single
CPU as shown in the following.

Recall

The presented reformulation of the panoptic segmentation to an object detection task was evaluated
on the SemanticKITTI [39] dataset instead of a three-dimensional bounding box dataset such as the
original KITTI dataset [86]. This was done as the cuboid orientation and size diversion did not result

from the underlying detection algorithm but the following minimum area rectangle fitting.

As a metric for evaluating the detection quality, the Average Recall was used. For each ground truth
instance, the classified cluster with the highest loU score was compared. A ground truth instance
was considered "found" if the IoU score exceeded a defined threshold and the class prediction was
correct. Thus, the evaluation was still linked to the point-wise segmentation quality.

Chapter 8

Average Recall of the Detection Method. The Recall for the three IoU thresholds 0.5, 0.75 and
0.95 as well as the Average Recall are reported once for the clustered instances of [99] and once for
the ground truth instances as input for the classification approach of this section.

Method | RyT RosT RozsT Roos?
FLIC Instances [99] 40.7 44.1 41.9 314
Ground Truth Instances | 55.4 - - -

The Recall (R) for a given threshold is defined as

Ry = l iai, with a; = Lot maxjﬁl loU Wy M) 2 IoUnr (8.2)
N Py 0, otherwise,

where N is the number of instances, M is the number of clusters and Ry, is the Recall above the
IoU,y, threshold. For the Average Recall, the proportion of ground truth instances that were found
was calculated for ten JoU bins from 0.5 to 0.95 in steps of 0.05 and averaged over all ten bins.
TasLE 8.1 shows the Average Recall (R,;) defined in this way for the ten bins as well as the Recall of
the three selected bins 0.5, 0.75 and 0.95. The detection was also validated for the influence of the
selected clustering method by extracting the instances directly from the ground truth and predicting
the class label via the lidar image classification. The result has either an JoU of 0 or 1 and is therefore
only shown for the Average Recall in TABLE 8.1.

In retrospect, this evaluation has two major weaknesses: First, the IoU is calculated directly from
the points and not from the overlap of two-dimensional or three-dimensional cuboids, as common
in object detection. Thus this method is not comparable with state-of-the-art methods [230, 24, 53,
216, 127]. Second, false positives are not included in the Recall metric, because only the prediction
results overlapping the ground truth instances are evaluated.

The comparison of the results shown in TaBLE 8.1 to the class-agnostic evaluation of the FLIC in

CHAPTER 3.3 presents additional insights. The classification CNN reduces the Average Recall to 40.7.

A perfect classification would result in an Average Recall of 74.7 as shown in TasLE 3.1. Even using

ground truth instances which are directly presented to the CNN only reach an Average Recall of 55.4.

This indicates, that the lightweight CNN is the performance bottleneck of the entire method, and not
the cluster quality of the FLIC.

Runtime

The method presented in this section is composed of four main steps: clustering, data arrangement,
prediction, and bounding box fitting. The data arrangement was not explicitly presented, as it consists
of cropping the cluster instances and resizing them to 32 x 32 patches. The process is depicted in
it’s entirety in FiGure 8.10. The runtime of the method was analyzed to evaluate its computational
efficiency on a single Intel® Core™ i7-11850H @ 2.50GHz CPU core. The results are listed in
TaBLE 8.2.

8.2

127

128

Lidar Point Cloud Range Projection Range Image FLIC Clustering Clustered Data Arrangement
Range Image
Stacked . . Classified . Classified ot oxe
Image barehes Lightweight CNN Pivelivedt #» Re-Projection HPM p Bounding Box Fitting 3D Bounding Boxes

Flowchart Illustrating the Steps Involved in the Object Detection Algorithm using Lidar
Data. The algorithm begins with the raw lidar point cloud and progresses through various stages,
ultimately leading to the generation of three-dimensional bounding boxes. Key operations are
highlighted in blue, while data structures employed between steps are represented as rounded
parallelograms. The range projection and re-projection steps are included for completeness but
are depicted in gray to reflect their basic nature in the process.

The clustering step in this algorithm utilizes the FLIC algorithm, which exhibits a runtime complexity
of O(np), where n, represents the number of points in the lidar data. The FLIC algorithm is essentially
a traditional "one component at a time" connected components labeling (CCL) algorithm. It operates
by visiting each pixel (lidar point in a range image) once and performing operations on neighboring
pixels to establish connectivity and assign labels. Since every pixel is processed exactly once, the
complexity remains linear in relation to the number of pixels, resulting in a complexity of O(n,)
[2]. This step’s purpose is to group the lidar points into clusters that correspond to different objects
within the scene. On average, with four Map Connections, the mean runtime for a single point cloud
is 30 ms, with a standard deviation of 2.82 ms.

The data arrangement step involves the transformation of the clustered lidar data into a cropped
lidar image format suitable for the prediction step. This step has a runtime complexity of O(n.) as it
involves iterating through the clusters n. and arranging the data in a specific format. As this step was
not optimized but ran in a Python loop, the mean runtime for a given lidar frame is 35 ms with a
standard deviation of 3.39 ms.

The prediction step involves the use of a trained convolutional neural network to predict the class of
each cluster sequentially on a CPU. The runtime of this step can be considered as O(n.), where m is
the number of clusters. A mean prediction time of 15 ms with a standard deviation of 5.76 ms was
measured for representative sets of clusters.

The final step is the fitting of bounding boxes around each predicted object. This step has a runtime
complexity of O(n,,) as it involves iterating over the predicted objects n,, and fitting a bounding box
around each one. The measured mean runtime is 0.25 ms for a single point cloud with a standard
deviation of 0.02 ms.

To determine the big O notation for the full sequence of all four steps, the worst-case scenario among
the steps has to be considered. Since the steps are performed sequentially, the complexity of the most
complex step defines the overall complexity [37]. Each step exhibits a linear complexity, therefore,
the big O notation for the full sequence of all four steps is also linear O(n), in which 7 is defined
more general, as the complexity depends on the number sets of the sub-steps.

Chapter 8

Runtime Profiling of the Detection Method. The method was profiled on an urban scene of 300
frames, in which at all times cars, pedestrians and cyclists are present. It is clear to see, that the two
main components FLIC and the lightweight CNN only have a combined ratio of 0.56 of the total
runtime, while the inefficient data arrangement has the largest individual share with 0.43. The time
complexities are related to the number of lidar points n, the number of clusters m and the number
of predicted instances of the four classes car, truck, bike and pedestrian, p.

Sub Method | Time (ms) | Ratio Complexity
FLIC Clustering 30 0.37 O(np)
Data Arrangement 35 0.43 O(n.)
Lightweight CNN 15 0.19 o)
Bounding Box Fitting 0.25 0.00 O(np)
Total 81 1.0 on)

8.2.3

A novel method for online object detection using CPU-based panoptic lidar segmentation was
presented in this section. A classification convolutional neural network was combined with a
clustering technique and a cuboid fitting algorithm to segment a lidar point cloud in real-time and
extract objects as three-dimensional cuboid detections from the environment.

The evaluation of this method shows promising results, but there is still room for improvement.

Particularly the classification of the segmented clusters could be improved by a modern image
classification network for better accuracy and inference speed [91]. Despite this, the visual inspection
of the results shows good results, especially when combined with a tracking method which suppresses
false positive predictions. The tracking is not included in this work. The method has been successfully
implemented and tested as part of the publicly funded research project " @ CITY Automated Cars and
Intelligent Traffic in the City: Subproject 7 - Interaction with weaker road users".

In summary, this method offers a promising technique for online object detection utilizing lidar data.

It has the potential to become an essential tool in autonomous systems, thanks to the benefits of
real-time object detection on a single CPU core. With further research, this approach could lead to
even better performance and practical applications.

8.2

129

8.3

The development and verification of
modern Advanced Driver Assistance
Systems (ADAS) can be a challeng-
ing task. It typically requires signifi-
cant amounts of data to be recorded,
stored, curated and annotated. All
of which is then used to re-simulate
the recorded data on the ADAS algo-
rithms and software.

The SAE (Society of Automotive En-
gineers) defines 5 levels for steps

MotorBicycle

along the path to fully autonomous

driving [@33] based on the level of Guardrail

Overdrivable
and the vehicle’s ability to operate in

control a driver has over the vehicle

different conditions. Level 0, no au-
tomation, where the driver controls
the vehicle. Level 1, driver assis-
tance, where automated systems as-

sist in specific situations, e.g., adap-
Re-Simulation Environment Created from Li-

i)) dar Segmentation. The entire environment is re-
warning. Level 2, partial automation, simulated (bottom) from the original lidar data (top).

where the vehicle can perform more

tive cruise control and lane departure

complex functions such as following other vehicles, change lanes, and park itself under certain
conditions, but requires the driver to be ready to take control at any time. Level 3, conditional
automation, where drivers can disengage in specific situations and allow the car to take over driving
duties in stop-and-go traffic, but requires the driver to remain alert and ready to take control. Level 4,
high automation, where the vehicle’s system can handle all driving functions for routine routes. And
level 5, full automation, where the vehicle is fully autonomous and does not require a driver.

ADAS features of level 1 can be verified by replaying sensor inputs and measuring the performance of
the systems for their specific use cases. However, for the development and verification of autonomous
driving systems of level 2 and beyond, this approach is no longer valid. This is because such systems
require active control of the vehicle, and previously recorded data cannot be used as a stimulus for
the software stack. Closed-loop simulations are necessary, which provide a reactive input stimulus
and accurately create artificial perception inputs, mimicking the actual sensor and actuator behavior.
It is important to provide realistic, challenging, and diverse scenarios in the simulation to ensure the
software performs well in all kinds of situations. The static scenery of the simulation must be rich,
realistic, and diverse. It must accurately capture the variety of the real world. Dynamic content, such
as other road users, must also be included and exhibit realistic and diverse behavior.

130 Chapter 8

Traditional methods for creating simulations, such as hand-crafted scene modeling [71] and proce-
dural generation based on mathematical rules [193], can be costly and time-consuming, and may
struggle to cover the sheer variety of scenarios that need to be simulated.

A more efficient and effective approach is offered by the proposed solution of this section. It uses
machine learning and data-driven techniques to generate and populate realistic and diverse dynamic
environments for re-simulations.

8.3.1

The method in this section is an alternative solution to a simulation-driven re-simulation. Instead of
using a hand-crafted scene environment for the ADAS system, the variety of real-world scenarios
is directly captured and turned into an accurate full-scale closed-loop re-simulation by recreating
the real data in a simulation environment. This avoids the engineering effort of creating simulated
environments from scratch, while increasing the scene’s complexity and realism. The method is split
into three parts. The recreation of the static environment, the population of the re-simulated scene
with the original dynamic actors, and lastly the sensor re-simulation of novel viewpoints.

Static Environment

The recreation of the static environment is straight forward and a re-implementation of the scene
reconstruction that was outlined in CHAPTER 7.2.2 and in SecTioN 8.1. Once for the domain adaptation
between different lidar sensors and once for the creation of automatic semantic grid map ground truth
creation. Quickly summarized, the method works as follows. First, a real-world scene is captured by
driving in the environment with a vehicle. This vehicle is equipped with a lidar scanner that records
point cloud data of the surrounding.

The lidar frames are processed by three independent algorithm branches:

(a) An ensemble of multiple object detection networks [127, 178] for cars, pedestrians, two-
wheelers and trucks. All combined and corrected by a Kalman filter [115].

(b) An ego-motion estimation algorithm that combines SLAM [177] and host vehicle velocity
information, presented in SEcTioN 8.1.2.

(c) A high quality semantic segmentation network [228].

The lidar points of all dynamic objects are removed by using the tracked cuboid detections of (a)
to select all points inside of the cuboids. The remaining, static points are accumulated to one large
point cloud, by adjusting the relative position of each point cloud using the ego-motion estimation
of (b). All points of the resulting global point cloud are already segmented by (c) to have a class
label associated with each point. Last the global point cloud is processed with a Poisson surface
reconstruction algorithm [116] to create a three-dimensional mesh from the point cloud. Each
vertex and face of the mesh inherits the semantic segmentation of the global lidar points with a
distance-wise and class-wise weighted influence of the ten closest points to each vertex.

8.3

131

132

Mesh Recreation of Rigid Dynamic Objects. The point clouds of the dynamic rigid road users
are accumulated over the whole sequence (left) and registered via point2plane ICP [54] to each
other (middle) in order to create a dense object point cloud which is used to recreate the object
as a mesh (right) via the Poisson surface reconstruction algorithm [116].

With this, a fully reconstructed three-dimensional model of the static environment becomes available
as a basis for the re-simulation. This recreation of the real-world data removes the need for manually
designing this environment or generating it procedurally from a catalog of rules.

Dynamic Environment

The previously removed dynamic objects are used to re-populate the static scene. A random subset
selection of the dynamic content is “replayed”. By varying the randomly selected subset of objects
which are instantiated, multiple variants of the scene can be created for re-simulation. All dynamic
content is inherently consistent and meaningful as it is the true behavior observed in the real world.
This removes the need for manually designing dynamic actors in the scene and controlling the
behavior of these actors.

The actors are represented by three-dimensional meshes. Rigid dynamic objects, such as cars and
trucks, can be restored as mesh objects in their original shape if they passed the recording vehicle
during the original recording, or were overtaken so that the vehicles were recorded from multiple
perspectives. The process of reconstructing a dynamic vehicle is as follows. All points included in
each of the cuboids belonging to the same vehicle track are extracted and overlayed in a coordinate
system which represents the relative position of each point in its respective cuboid.

These axis aligned cuboid point clouds are combined into one dense point cloud by iferative closest
point alignment (ICP) [54]. For this, an efficient implementation of the point2plane ICP is used
which is faster and more precise than the point2point ICP [35]. The normal vector of each point is
calculated by using the range image representation. It is calculated twice for each point in the range

image, each time by a cross product between the direction vectors from the point in question to two

Chapter 8

of its neighboring points in the range image. The cross product is calculated between the northern
and eastern neighbor and between the southern and western neighbor:

Nyg = ay Xag (8.3)

Ngw = as Xawy, (8.4)

where the two normal vectors nyr and ngw are averaged to obtain the final point-wise normal vector

n=0.5nyg +ngw). (8.5)

The point2plane ICP then follows the general steps as outlined in [54]. It iteratively finds the closest
point on a reference plane to each point in the target point cloud, and adjusts the position of the target
point cloud to minimize the distance between these closest points. This process is repeated until the
alignment between the two point clouds is deemed sufficiently accurate. The process of accumulating
point clouds of the same object via point2plane ICP is shown in FIGURE 8.12 (middle).

Usually, a vehicle can only be seen from three sides in a drive-by scenario. Nonetheless, vehicles
are usually symmetrical. The point cloud can therefore be mirrored along the length axis of the
bounding box to fill the missing side. The final object point cloud is then processed with the Poisson
surface reconstruction algorithm [116] in order to recreate the surface of the rigid object which is

then used as a mesh proxy in the re-simulation.

Opposed to rigid road users, non-rigid road users, such as pedestrians and cyclists, cannot be
replicated from the point clouds. This is because the relative motion of limbs prevents the point
clouds from accumulating. It would lead to an incorrect representation of these road users. Rigid
actors, that are only partially visible can also not be reconstructed in their entirety. These road users
are therefore represented by proxy meshes, i.e., pre-defined general shaped mesh objects of the given
classes. These are scaled and oriented according to their bounding box parameters.

Re-Simulation

A single recorded log can thus provide a realistic static environment plus a wide variety of dynamic
content within the scene. The original scene can be augmented to new scenarios by removing singular
instances, or change the position of the ego vehicle in the recorded scene. To further increase the
amount of diversity, the recreated scene can be used to define one of the actors as the ego-vehicle in
the recorded log. The initial kinematic properties of the simulated agents can be altered within the
simulation, e.g., the actual spawning position can be drawn from a Gaussian random distribution
centered around the real-world target actor or slightly change the initial velocity. In short a single
log of a couple of minutes can provide the source material for hundreds of realistic, meaningful and

semantically correct augmented scenes for re-simulation.

The depth of the re-simulation can also be adjusted to the needs of the ADAS system. In the
abstracted version, the true sensor inputs are not required, as the decision model is fed the cuboids as
pseudo outputs of the perception stack. The quality of the detections can be adjusted to drop cuboids

at random, add false positives or add noise to the position, orientation or velocity estimations. The

8.3

133

134

inputs to the decision model can be reproduced for the given simulation and evaluated for validity,
by checking for intersections of the ego vehicle with objects and the static mesh world. This would
indicate accidents caused by the system.

On top of the abstracted information of the static and dynamic content, the inclusion of the whole
perception stack on which the decision model depends is also possible. Due to the holistic represen-
tation of the static scene as well as the dynamic actors for the entire recorded time frame, a complete
picture of the entire scene at any point in time is recreated. The recreation of raw lidar data for
the perception stack can be derived directly from the mesh environment. The mesh world, objects
and proxy objects are regenerated in the structure of a defined lidar sensor by projecting the whole
scenario for the given position in space and time. The process was already described in detail in
CHAPTER 7 for the recreation of lidar data from a mesh world for domain adaptation between different

SE€nsors.

The resulting point cloud exhibits the same structure and orientation as the defined input sensor. The
sensor parameters can also be adjusted, to recreate the raw sensor data for a different lidar sensor
than the one that recorded the original data as shown in CHAPTER 7.

8.3.2

The performance of the presented re-simulation method could not be evaluated due to missing ground
truth data. As such, the evaluation was carried out via a visual inspection of the results. As shown in
Ficure 8.13, a wide variety of scenarios can be be re-simulated ranging from urban inner city scenes,

to large open road and even to parking garages.

The mesh environment and the mesh representations of the dynamic actors enable a rich and
diverse set of re-simulations. The meshes are accurate reconstructions of the underlying real world
environment. This can be seen in the direct comparison of the mesh environment and the original
three-dimensional lidar measurements shown in FiGURE 8.11. These results suggest that the method
is able to generate realistic and accurate synthetic data that enables a re-simulation of abstracted data
as well as the perception stack due to the regeneration of sensor input data from the simulation.

8.3.3

This section presents a new method that uses machine learning and heuristic techniques to simulate
ADAS features accurately. The method generates synthetic abstracted data for decision and path
planning algorithms as well as sensor data for the perception stack of an ADAS system. At the time
of writing a similar method to the one outlined in this section has been published by NVIDIA called
"NVIDIA DRIVE Sim" [@154]. It can not, however, be directly compared to the performance of the
presented method as it is not openly available. Future research will focus on testing and evaluating
the potential of this method. Overall, this method shows promise in advancing the development of
more efficient and precise re-simulation of ADAS features, which could be valuable for researchers

and developers in this field.

Chapter 8

Various Reconstructed Scenes. The presented method is not restricted to specific environments.
The combination of a reliable ego-motion estimation with multiple object detection networks
and a high quality semantic segmentation network enables the recreation of a wide variety of
scenarios.

8.3 Lidar Segmentation for Closed Loop Re-Simulation 135

136

8.4

The companies Innoviz Technologies
and NVIDIA conducted a joint work-
shop at the European Conference on
Computer Vision 2022. For this, they
created a challenge [@112] in which
they published a small dataset of the
new InnovizTwo lidar sensor [@111].
The objective of the challenge was
to develop an object detection model
for a hidden dataset from the same
lidar sensor. Participants were pro-
vided with 1,200 unannotated lidar
scenes and 100 bounding box anno-

tated scenes to train their networks. A

promotional image of the InnovizTwo
Prediction Result of the Method Outlined in this

)) Section. Visualisation of a single InnovizTwo li-
shown in FiGure 8.14. The ultimate dar frame, that was part of the "The LiDAR Self-

aim was to create the most effective Supervised Learning Challenge: Learning From
a Limited Amount of High-Resolution LiDAR
data."[@112].

The augmentation methods presented in CHAPTER 6 were created for the improvement of networks

lidar data used in the challenge is

performing model for this specific task.

for semantic segmentation of 360° rotating lidar sensor data. In [31] a simplified version of the
method presented in SEcTioN 6.2.2 was used to improve three-dimensional bounding box detection
networks with great success in quality and efficiency. An adaptation and combination of the methods
of CHAPTERS 6 and 7 seemed a promising solution to train a well-performing object detection model
from the limited amount of data. In particular, they represented promising candidates, considering the
evaluation of these methods for training networks for semantic segmentation with harshly reduced

amount of data as shown in Section 6.3.3 and SecTtioN 7.3.

The method outlined in this section won the 1 place? in the "The LiDAR Self-Supervised Learning
Challenge: Learning From a Limited Amount of High-Resolution LiDAR data" of the ECCV
workshop on 3D Perception for Autonomous Driving [@112].

8.4.1

This section provides a brief summary of the reformulated augmentation and domain adaption
methods of CuapTeRs 6 and 7. The focus of the method lays on tuning and reformulating them for
use with a solid-state lidar and for three-dimensional bounding box detection. The OpenPCDet [190]

2https ://eval.ai/web/challenges/challenge-page/1861/leaderboard/4375 (Please note that the ranking is
listed in reverse order, with the first method listed last and the last method listed first.)

Chapter 8

https://eval.ai/web/challenges/challenge-page/1861/leaderboard/4375

implementation of PV-RCNN [24] is used as a baseline and toolkit for development. The challenge
organizers provided a forked version of this repository that was adjusted for the InnovizTwo data
format [@112].

In an initial statistical analysis, the number of instances per class are summed and compared. In
order to have a sufficiently large training and validation set, the 103 annotated lidar frames are split,
so that both sets have a similar class distribution. The training set consists of 53 frames and the
validation set of 50 frames.

The utilized method is split into four main aspects. Instance injections, mesh injections, scene fusion,
and a novel use of pseudo labels. The main focus for the injection and fusion augmentations is to
manipulate the data only in certain ways, such that the resulting scene could in fact be recorded
by the sensor. In plain language, no manipulation is applied to the point cloud which the sensor
would not be able to capture due to the underlying physical limitations such as resolution, range and
occlusion. An example of a non-valid injection would be a pedestrian standing behind a high wall.

Instance Injection

To ensure a structurally intact instance injection, the objects are not simply considered as the
contiguous contents of a box, but each lidar point belonging to the object is checked individually.
The range image projection is an efficient method for this task [97]. The point clouds of the dataset
are transformed into an image-like representation using a spherical coordinate transformation. Due
to the discrete sampling of the individual lidar channels and the lack of intersections between them,
each lidar point can be assigned to a fixed pixel within the range image. This allows for the injection
of an object into the scene, either fully or partially, depending on whether the corresponding lidar
point of the new object or an existing object within the original scene is closer to the lidar sensor.
Projecting the data onto a range image representation reduces the dimensionality to two dimensions
instead of three which is computationally more efficient. As a result, injections can be applied at
training time with a dynamic re-sampling of instances, rather than using a fixed set of pre-augmented
scenes. The chosen training data split is sampled for all bounding box labels and the points inside
of those boxes. Thus a database is created, consisting of 439 cars, 19 pedestrians, 14 cyclists and
36 trucks. These objects can be injected only at two relative positions to the lidar sensor due to the
underlying physical properties of the InnovizTivo lidar sensor. The original sampling position and the
x-axis (left-right) mirror of the same. Any other shift or rotation of the instances would disrupt the
structural integrity of the lidar point cloud and create a scene that the lidar sensor could not capture
in reality. This is one of the main differences between this method and the rotating lidar scanners
discussed in CHAPTER 6, as the rotation structure allowed for the rotation-independent injection of
instances. The process of the instance injection is visualized in FiGure 8.15. A pedestrian is sampled
from the database (red) and injected into a lidar scene (blue). The occlusion of the new injection
is highlighted in the point cloud (cyan shadow) and will be removed in order to preserve the lidar
sensor structure.

8.4

137

138

InnovizTwo Instance Injection. The pedestrian is cropped from a different frame and injected
via the structure aware point cloud injection method as outlined in SectioN 6.2.2. Both the lidar
scene (blue branch) and the injection (red branch) are projected into the range image view and a
point-wise range competition is applied to each point pair. The cyan lidar points represent the
occlusion shadow of the pedestrian, that will be removed in order to produce a physically valid
injection.

Mesh Injection

There are few examples of important classes such as pedestrians and cyclists in the training set of
the InnovizTwo data. While re-injecting instances into more frames slightly alleviates this problem,
it also carries the risk of overfitting on these few examples and decreasing performance on unseen
examples. Pedestrians and cyclists are commonly included in object detection datasets, such as
those in [86, 13, 50, 186, 117, 214]. Naive Copy-Paste injection methods [216, 21] can be used to
incorporate these objects, but these approaches do not preserve the underlying lidar structure. The
structure-preserving method presented in this section cannot be used to inject objects captured by a
different type of lidar sensor, as this would lead to structural flaws in the resulting point cloud. It is
also worth noting that using data from a different domain can negatively impact the performance of
the network, as outlined in CaapTER 7 with respect to semantic segmentation. Therefor synthetic
data in the structure of the InnovizTwo is generated for these classes, to increase the injection data
pool without introducing a domain shift.

The basic functionality and recording mode of the sensor [@111] is taken into account and used to
recreate a virtual twin of the sensor as already done for semantic segmentation in CHAPTER 7. This
includes re-engineering of the sensor origin, the relative position of each lidar measurement in the
spherical coordinate system projection, and the reliable detection range from the available real data.

This information is used to reformulate an orthogonal camera in the spherical coordinate system.

With this virtual twin sensor, open-source three-dimensional mesh models (see FiGure 8.16) of
pedestrians [@183, @163, @200] and bikes [@150, @151, @203, @73, @43] are recorded in
the spherical coordinate system. The captured depth images are sub-sampled to the lidar sampling

structure of the sensor and re-transformed to the corresponding Cartesian coordinates.

Chapter 8

Three-Dimensional Mesh Models. Royalty-free [@150, @151, @203, @73, @43] and creative
common licensed three-dimensional mesh models [@ 183, @163, @200] are used in this work,
that are re-posed and recombined in order to create diverse examples of underrepresented classes.

The resulting point cloud instances are saved in a second injection database. The process of sub-
sampling the depth images to the lidar sensor structure is visualized in FiGure 8.17. The resulting
instance point clouds can be inserted with their bounding boxes into the scenes while keeping the
structure of the lidar sensor intact as shown in Ficure 8.18. The synthetic injections have the same
structural properties as the original point clouds of the dataset. These mesh injections combine
the 'real-to-real’ domain adaptation method of CHaPTER 7 with simulated mesh objects to a mixed
’simulation-to-real’ domain adaptation method.

Scene Fusion

Another challenge posed by the limited number of training scenes is the availability of negative
examples for the neural networks, i.e., locations in the lidar frames that do not belong to the target
classes. The more scenes that are available, whether full of objects or almost completely empty, the
better object detection networks can distinguish between the desired classes and background objects
that are similar in appearance. To address this, the structure-aware point cloud fusion method of
SectioN 6.2.3 is adapted for use with the InnovizTwo lidar sensor with special care for the bounding
box labels. In the original work outlined in CHAPTER 6, the fusion method could lead to merged
objects, such as two cars overlapping each other. In order to prevent these unrealistic object mergings,
the Intersection over Union of all cuboid labels of both parent point clouds are calculated in the birds
eye view projection. If two boxes overlap each other with an JoU > 0, the cuboid label as well as the
points inside the cuboid of the second point cloud are removed, to prevent them from merging.

The last step of the method compares two complete scenes point by point and generates new scenes
by keeping only partial aspects of the two "parent" point clouds. With 53 originally available frames,
a total of 532 = 2,809 fused frames can be created by combining each point cloud with every other,
and even increased to 53° = 148,877 training frames by also adding an x-axis mirror of one of the

8.4 Lidar Segmentation Augmentation Techniques for Semi-Supervised
Object Detection

139

Mesh Objects are Retraced in the InnovizTwo Structure. The models are captured by a
virtual depth camera with the field of view of the sensor (a) the depth image is cropped to the
instance for this visualization. The sensor’s lidar tracing positions (b) are used to subsample
the depth image to the individual lidar point positions (c) which are re-transformed to the
three-dimensional Cartesian point coordinates (d) via their range, azimuth and elevation angle.

Synthetic Object Injected into Real InnovizTwo Data. The meshes are retraced in multiple
random positions and rotations, in order to inject the resulting point clouds of the underrepre-
sented classes in the structure of the InnovizTwo sensor. The blue cuboids and their contents
represent the inserted bicycles and motorcycles, while the red boxes are additionally created
pedestrians. The purple boxes are cars of the original scene.

140 Chapter 8

Lo WL

Scene Fusion Process on InnovizTwo Data. Two randomly selected point clouds of the train-
ing dataset are combined by projecting them into the sensors field of view in a range image
representation. The image domain allows for an efficient point-wise range competition between
the two lidar frames in order to generate a new point cloud consisting of parts of each parent
point cloud.

"parent" point clouds. This process can be further varied by adding a third point cloud to the fusion
point cloud. The process for InnovizTwo lidar data is illustrated in FiGure 8.19.

Semi-Supervised Pseudo Labels

Using the augmented data described earlier, a PV-RCNN network [24] is trained and subsequently
applied to the 1,200 unlabeled frames in the dataset. The prediction labels generated by the network
are then saved in a new dataset. Training directly on this new data would result in only marginal
improvements, as the errors of the original network would be consolidated by this data. For this
reason, the predictions are first processed before they are used as pseudo labels for training.

For each class at different distance bins, threshold scores are fine-tuned on the validation set, with the
goal of keeping only detections which are certain to be correct. The defined thresholds are selected
for each range and class bin to yield close to zero false positive detections on the validation set. A
similar performance to the validation set is expected on the unlabeled data, therefore these thresholds

are set to prevent the addition of too many false positives to the pseudo label training data.

Detections from the unlabeled data above the selected thresholds are extracted as additional new
ground truth. All detections below these thresholds are removed from the new pseudo labeled data.
Not only are the box labels removed, but also the corresponding lidar points inside the boxes. This
is an important step, as the very high threshold values decide that many valid detections are not
confident enough and therefore are not to be trusted as pseudo ground truth labels. Removing the
cuboids while keeping the underlying lidar points would create false negatives.

This simple data cleaning enables the addition of pseudo ground truth labels into the injection

database as well as using whole pseudo ground truth frames as additional scene fusion parent point

8.4

141

142

clouds. This combination of ground truth and pseudo ground truth boosts the mean Average Precision
of the PV-RCNN network by 22.62 from 57.25 to 79.87, as can be seen in TaBLE 8.3.

8.4.2

The performance of the PV-RCNN models on the validation data is evaluated via the mean Average
Precision (mAP) metric. It is calculated by first computing the Average Precision (AP) for each
class, and then taking the mean of all class-wise APs. The AP is calculated as the area under the
precision-recall curve which is a graph showing the precision on the y-axis and the recall on the
x-axis. The precision is the fraction of true positive detections out of all positive detections, and the
recall is the fraction of true positive detections out of all ground truth instances.

The Intersection over Union (IoU) is used as a decision threshold whether a detected bounding box
is a true positive or a false positive. The loU is a measure of overlap between two bounding boxes.
It is calculated as the ratio of the area of the intersection of the two bounding boxes divided by the
area of their union. An IoU > 0.5 between a ground truth cuboid of a given class and a prediction of
the same is defined a true positive for the AP.

The equation for calculating the AP is
n
AP = (Ri=Ri1)Py, (8.6)
k=1

where Ry, is the recall at the k™ point along the precision-recall curve, Py is the precision at the k'
point, and # is the total number of sample points on the precision-recall curve. The mAP is calculated

as

C
1
mAP = ZAPC, (8.7)
c=1

al

where C is the number of classes and AP, is the AP of the ¢ class. The precision and the recall
are collected at 41 sampling points along the precision-recall curve to average the class-wise AP. In
summary, the mAP is a metric that combines the precision and recall of an object detection algorithm
across multiple classes. It is used to evaluate the performance of the object detection models in this
section.

To compare the presented method to a baseline and to measure the influence of all parts of the
method, three versions of the same network were trained. One on the original data, one on the
augmented data and one version on the data with the augmentations and the proposed pseudo label
additions. All networks were trained on a single NVIDIA RTX 2080 Ti for 1000 epochs, a total of
53,000 iterations, with a batch size of one, and a one-cycle learning rate scheduler [182] with a
maximum rate of 0.01. All three trained models were evaluated using the mean Average Precision

metric.

Incorporating additional augmentations and pseudo labels has a significant impact on the performance
of the proposed methods, as demonstrated by the increase in the mAP from 55.97 to 57.25, and

ultimately reaching 79.87, as shown in TaBLE 8.3.

Chapter 8

",

Validation Set Predictions of the Three Evaluation Models. The network predictions of cars,
pedestrians, bikes and trucks are shown as purple, red, blue and black boxes, respectively. The
ground truth cuboids are colored yellow. All three networks successfully detect the car instances.
Only the models trained using the augmentation methods successfully detect the pedestrian on
the left and the bicycle on the far right. The model trained with the augmentation methods and
additional pseudo labels correctly detects and predicts the truck in the background. The model

trained with just the augmentations falsely classifies it as a car. The model trained on the original
data does not detect it at all.

8.4 143

144

Mean Average Precision and Average Precision per Class. The performance of the baseline
trained on the original data is compared to the same network trained with the presented augmentation
methods, and with additional pseudo labels.

Method ‘ mAP T ‘ APcar T APpea. T APCyc. T APruek T
Baseline 55.97 93.32 0.00 33.33 97.22
Augmentations 57.25 91.47 8.33 43.06 86.14
Augs. + Pseudo Labels 79.87 90.41 75.00 61.11 92.96

The baseline model, which was trained without the augmentations and pseudo labels, has the highest
AP for the car and truck classes, with values of 93.32 and 97.22, respectively. However, it exhibits the
worst performance on the pedestrians and cyclists classes, with values of 0.00 and 33.33, respectively.
The augmentation methods and mesh injections of the simulation domain adaptation improve the
performance on the pedestrians and cyclists classes to 8.33 and 43.06, respectively, while reducing
the AP on cars and trucks to 91.47 and 86.14, respectively.

The third network, which was trained on the augmented data as well as the pseudo labeled data,
reaches the best performance for pedestrians with an AP of 75.00 and for cyclists with an AP of
61.11. The performance for cars is slightly lower than the previous two networks with an AP of
90.41, and the network reaches a AP of 92.96 for trucks, slightly less than the baseline model but
better than the augmentation model.

In conclusion, the effectiveness of the proposed methods for improving object detection in challenging
scenarios is highlighted by the results obtained. However, it is important to view the results with
some caution due to the limited number of samples in the validation set, which consisted of only
50 lidar frames, with only 351 cars, 41 trucks, 11 pedestrians, and a total of 11 cyclists. To address
this limitation, a qualitative evaluation via visual inspection was performed by inferring on the
entire validation set. The model trained with the augmentation methods was found to demonstrate a
visibly better performance compared to the model trained solely on the training set. The best visible
performance was exhibited by the model trained on both the augmented data and pseudo labels.

For the ECCV challenge a different metric was used to measure the performance of the final
submission. The evaluation was extended to additionally measure the performance of the three
trained models on the validation set using the average Intersection over Union in the xy-coordinate
plane

IoUxy, ;, = 0.5 IoUxy, 4, GTvsper +0.5x IoUxy, 11, DetvsGT (8.8)

where IoUxy, 4, GTvsper 15 the average IoU of each ground truth annotations best fitting detection,
and IoUxy, 4, pervscr 18 the average IoU of each detections best fitting ground truth annotation. It is
noteworthy that the JoUxy, , of the PV-RCNN model, trained with the augmentation methods and
fused pseudo labels, performed worse than the baseline network trained on the raw data. This is
due to the fact that the car class is heavily over-represented in the validation set, and the challenge
metric does not evaluate class-wise, but rather averages over all instances regardless of the class.
The mAP metric and visual inspection of the results were used for the development of the presented
method. The IoUyy, , was ignored in the development and only used as a target metric for the final
submission in the challenge.

Chapter 8

Class Agnostic Intersection over Union. The three evaluation models are compared with the
metric used in the challenge.

Method ‘ IoUxy, u T IoUxy u 6rvspes T 1oUxy, i, DetvsGr T
Baseline 0.60 0.49 0.71
Augmentations 0.50 0.69 0.31
Augs. + Pseudo 0.51 0.70 0.31

Submission Results of the Challenge. Five teams submitted their results for the test set of the

challenge.
Team Name ToUxy, u T
Gott 0.36
DUTH-VCG 0.48
dgist-cvlab 0.61
BITvisionLab 0.66
FrederikH 0.68

8.4.3

The evaluation metric of this challenge was /oUxy, ,, where for each annotation the best fitting
prediction is taken into account (JoUxy, ,,, GTvsDer) and vice versa (IoUxy, i, pervsGT) @S seen in
Equarion 8.8. Based on this metric the PV-RCNN models were tuned in order to boost the perfor-
mance on the challenge metric. This decision led to the use of an ensemble of multiple PV-RCNN
models instead of a single one, and they were each trained for a total of 265,000 iterations. Three
different voxel grids were used, as the performance of the classes and range bins was different
depending on the grid size and resolution. The performance for every class and every range bin
(0—50m, 50-100m, and > 100 m) was evaluated in order to select three models, that had the best
combination performance for all 12 range/class bins.

For all three models, the detections were kept without any confidence threshold, to keep the hard
and uncertain detections of pedestrians and cyclists, as well as far range detections of all classes.
These three networks detected more of the ground truth instances than a single model was able to
detect, but they also introduced more false positives. Therefore an extension of the model ensemble
with 5 additional checkpoints for each of the three voxel grids was added, in which the minimum
confidence was raised to very high values, in order to only keep the predictions that were very certain
to be correct.

This ensemble of a total of 18 models enabled the detection of very hard ground truth instances such
as far away cyclists and pedestrians, while at the same time very confidently detecting easy targets,
i.e., close cars. This combination increased the metric of JoUyy, , two-fold.

The first part of Equarion 8.8, IoUxy, i, GT vsper» compares each GT cuboid only to the best matching
prediction and ignores all others. The three networks that were not limited with confidence thresholds,
detected very difficult objects, which raised this part of the equation. The false positives are no

concern for this part of the equation. The additional confident networks improved the IoU of the

8.4

145

146

T et A L AmER R

Combined Submission Predictions. The results of multiple PV-RCNN models trained on three
different voxel grid resolutions are combined to boost the challenge metric on the test set.

easier targets by offering multiple predictions for the same ground truth which raised the probability
of generating a very well fitting detection.

The second part of Equation 8.8, IoUxy, i, pervsGT, compares each prediction cuboid with their best
matching GT cuboid, even if another prediction already matches the same GT cuboid. By using
multiple confident model outputs, the JoUxy, .., pervsGr term of the equation was further raised, as
multiple predictions boxes for easy targets fit the GT cuboids relatively well. This raises the average
which minimizes the influence of any false positives from the three non-threshold networks.

Thus both parts of the equation for the final metric were raised by the proposed ensemble. The
final results for this challenge had an IoUyy, ;, score of 0.68, higher by 0.02 than the next best
submission as shown in TaBLE 8.5. An example of a submission frame which combines the output of

all sub-models can be seen in FIGURE 8.21

8.4.4

The use of multiple novel methods, including data augmentation, domain adaptation, and semi-
supervised learning via pseudo labels, was described in this chapter for the purpose of training a well
performing neural network for lidar object detection. This method was outlined in detail, and the
evaluation shows the value of each part of the method, with impressive results being achieved. The
method achieved the first place of the "The LiDAR Self-Supervised Learning Challenge: Learning
From a Limited Amount of High-Resolution LiDAR data." of the ECCV 2022 workshop on 3D
Perception for Autonomous Driving [@112].

Chapter 8

8.5

The potential of lidar segmentation for enhancing the capabilities of autonomous vehicles has been
highlighted in this chapter through the presentation of four different novel applications for automotive

use cases.

The first method utilizes lidar segmentation, object detection, and heuristic algorithms to create
semantic grid map data for the training of automotive online segmentation algorithms. This approach
offers a more efficient and effective way of training algorithms, enabling them to better detect objects

and navigate the environment.

The second method employs panoptic segmentation to create an online lidar detection algorithm that
runs on a single CPU core. This method has demonstrated promising results for real-time object
detection and classification, which is critical for the safety of autonomous vehicles.

The third method introduces a novel re-simulation environment that enables the training and testing
of ADAS and AD software stacks. This environment facilitates the development and testing of
more advanced and complex software, thereby accelerating the progress towards fully autonomous
vehicles.

The fourth method uses lidar segmentation augmentation and domain adaptation techniques to train
a challenge-winning semi-supervised object detection network. This approach has shown great
promise in improving the accuracy and efficiency of object detection, especially when dealing with
limited labeled data.

These methods illustrate the versatility and effectiveness of lidar segmentation in the automotive
industry, showcasing how this technique can be applied in various ways to enhance the capabilities
of autonomous vehicles. The applications presented in this chapter are just a few examples of the
wide range of possibilities that exist for lidar segmentation, and it is exciting to envision the future

advancements that will emerge as this technology continues to evolve.

8.5

147

Conclusion and Outlook

In this final chapter, the main research findings presented in this dissertation will be synthesized by
providing a comprehensive summary of the key points and their implications. The broader signifi-
cance of the research within the field will also be discussed, highlighting the research limitations
and offering recommendations for future work, specifically in the area of lidar segmentation for
autonomous vehicles.

To reiterate, the main research question addressed by this dissertation is how lidar segmentation
can be utilized to enhance the capabilities and improve the safety of autonomous vehicles. The
dissertation presents novel approaches for generating segmentation labels for lidar data, as well as
methods for improving the training and robustness of these algorithms. Additionally, it introduces
various cutting-edge applications of lidar segmentation in the automotive sector.

The research is divided into three main parts, with each part aiming to answer a different variation of

the main research question.

In Part I, multiple novel approaches for instance, semantic, and panoptic segmentation are presented.
These aim to answer the first variation of the main research question of this thesis: How can lidar
segmentation be enhanced?

CHAPTER 3 of Part I presents the FLIC algorithm, which achieves real-time instance segmentation
of lidar sensor data by reformulating the clustering of a three-dimensional point cloud to a two-
dimensional connected-components-labeling problem. It exploits the underlying sensor structure as
arange image to connect points by their three-dimensional distance to each other. To make the FLIC
more robust against over-segmentation, Map Connections were added to the algorithm to bridge
partial occlusions. The approach was evaluated on multiple datasets and not only was faster than
comparable state-of-the-art methods but also provided significantly better instance segmentation
quality.

CHAPTER 4 of ParT I presents the RangePillars network, which functions as an additional module
to be used with projection networks for semantic segmentation of lidar data. The RangePillars
network encodes the three-dimensional lidar point cloud to a spherical voxel grid aligned with the
range image structure of the chosen two-dimensional projection network for semantic segmentation.
The main contribution of the RangePillars network is that it improves the predicted segmentation
labels by fusing the three-dimensional geometric information with the range image networks pixel
features for a more precise separation between objects. The RangePillars network was evaluated
on the SemanticKITTI dataset and achieved a higher mloU than previous methods that improve the
three-dimensional labels of two-dimensional projection networks.

CHAPTER 5 of ParT I presents two novel methods for lidar panoptic segmentation: Lidar Cluster
Classification and Lidar Image Panoptic Segmentation. The former method combines the FLIC

149

150

with an additional lightweight CNN that classifies the clusters to a specific set of classes. The
latter method combines existing lidar semantic segmentation networks with additional instance
segmentation achieved with the FLIC. A novel FLIC++ algorithm is also introduced that improves
the FLIC via a parallelized approach. Both Lidar Cluster Classification and Lidar Image Panoptic
Segmentation were evaluated on the SemanticKITTI dataset for panoptic segmentation. The former
achieves real-time panoptic segmentation on a single CPU core, and the latter achieves a place in the
top three methods for lidar panoptic segmentation on the dataset.

In Parrt II the main research question of this thesis is presented from a practical standpoint: How can

the training cost of lidar segmentation be reduced?

Instead of developing new neural networks or increasing investment in gathering and labeling
additional training data, existing semantic segmentation models are improved using the Structure
Aware Point Cloud Augmentation (SAPCA) approach presented in CHAPTER 6 of Part II. This
approach employs novel lidar-centric augmentation methods that improve all key metrics of semantic
segmentation, and is more effective than increasing the amount of data by a factor of ten. The
approach was evaluated on the SemanticKITTI dataset as well as the closed source Aptiv panoptic
segmentation dataset. The augmentations improved all five neural networks they were applied to.
Furthermore, the presented method outperformed the current State of the Art for semi-supervised

lidar semantic segmentation.

In CHapTER 7 of ParT II, the augmentation methods of the previous chapter are revisited for training
semantic segmentation models beyond a single dataset and lidar sensor. Neural networks for
lidar semantic segmentation often suffer from poor generalization performance when trained on a
single domain, as lidar data can vary greatly between different domains, such as different sensor
types, environments, or seasons. This issue is addressed by introducing a new method for domain
adaptation for lidar segmentation, aligning different lidar domains using sensor-aware domain
adaptation modules. Self- and semi-supervised fusion methods at the data level enable effective
training of lidar segmentation networks. The chapter provides a thorough evaluation and comparison
to state-of-the-art methods on multiple real world datasets, demonstrating significant improvement
caused by the novel domain adaptation methods.

By proposing novel approaches and techniques such as lidar augmentation, domain adaptation,
and self-supervised learning, the two chapters answer the question of how to reduce the training
cost for lidar segmentation. The techniques enable the training of well-performing networks using
minimal amounts of labeled data frames, while improving the performance and generalization of the

segmentation networks.

The last part of this thesis, Part III aimed to answer the last formulation of the main research

question: What are feasible use cases of lidar segmentation for autonomous vehicles?

In Cuaprter 8 of Part III, multiple feasible use cases are explored. The chapter provides examples
of diverse novel applications of lidar segmentation in the automotive industry, including creating
semantic grid map data, developing an online lidar detection algorithm, establishing a novel re-
simulation environment for ADAS and AD software stack training and testing, and training a semi-
supervised object detection network using lidar segmentation augmentation and domain adaptation

Chapter 9

techniques. These methods demonstrate the usefulness and effectiveness of lidar segmentation in

enhancing the capabilities of autonomous vehicles.

While this dissertation has introduced innovative lidar segmentation algorithms and models, as well
as new data augmentation and domain adaptation techniques, there are still several limitations in
current approaches that need to be addressed. These include integrating lidar segmentation with other
sensors, enhancing robustness to adverse weather conditions, and achieving real-time implementation
on low-power and low-cost hardware platforms. Future research should focus on these areas to
further advance the field and expedite the deployment of autonomous vehicles in various domains.

The presented work has advanced the State of the Art for lidar segmentation, as evidenced by the
first-place award in a conference challenge!, top scores in public benchmarks??, and a best student
paper award*. These advancements have been applied in various applications that improve the
capabilities and safety of autonomous vehicles.

As aresult, I hope that this dissertation inspires further research in the field of lidar segmentation
and contributes to the ongoing efforts to make autonomous vehicles safer and more efficient. It has
been an honor to share this work, and I hope it piques the reader’s interest and encourages them to
contribute to this exciting and rapidly evolving field.

lhttps ://eval.ai/web/challenges/challenge-page/1861/leaderboard/4375
2https://paperswithcode.com/sota/semi-supervised-semantic-segmentation-on-24
3https://codalab.lisn.upsaclay. fr/competitions/7092#results
“https://icpram.scitevents.org/PreviousAwards.aspx#2021

151

https://eval.ai/web/challenges/challenge-page/1861/leaderboard/4375
https://paperswithcode.com/sota/semi-supervised-semantic-segmentation-on-24
https://codalab.lisn.upsaclay.fr/competitions/7092#results
https://icpram.scitevents.org/PreviousAwards.aspx#2021

Bibliography

[1]Martin Abadi, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015 (cit. on p. 66).

[2]Ayman AbuBaker, Rami Qahwaji, Stan Ipson, and Mohmmad Saleh. “One scan connected component
labeling technique”. In: 2007 IEEE International Conference on Signal Processing and Communica-
tions. IEEE. 2007, pp. 1283-1286 (cit. on pp. 35, 128).

[3]Eren Erdal Aksoy, Saimir Baci, and Selcuk Cavdar. “Salsanet: Fast road and vehicle segmentation in
lidar point clouds for autonomous driving”. In: arXiv preprint arXiv:1909.08291 (2019) (cit. on pp. 47,
48).

[4]Alexandre Rame et al. “OMNIA Faster R-CNN: Detection in the wild through dataset merging and
soft distillation™. In: arXiv preprint arXiv:1812.02611 (2018) (cit. on p. 81).

[S]Alexey Nekrasov et al. “Mix3D: Out-of-Context Data Augmentation for 3D Scenes”. In: International
Conference on 3D Vision (3DV). 2021 (cit. on pp. 80, 82, 100).

[6]Alonso Inigo et al. “3d-mininet: Learning a 2d representation from point clouds for fast and efficient
3d lidar semantic segmentation”. In: I[EEE Robotics and Automation Letters 5.4 (2020), pp. 5432-5439
(cit. on pp. 47-49, 60).

[7]Andres Milioto et al. “Rangenet++: Fast and accurate lidar semantic segmentation”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 4213-4220 (cit. on
pp- 1, 24,47, 52, 57, 59, 62, 80, 88, 89).

[8]Berman Maxim et al. “The lovasz-softmax loss: A tractable surrogate for the optimization of the
intersection-over-union measure in neural networks”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 4413-4421 (cit. on pp. 53, 54).

[9]Brekke Asmund et al. “Multimodal 3d object detection from simulated pretraining”. In: Symposium of
the Norwegian Al Society. Springer. 2019, pp. 102—113 (cit. on p. 81).

[10]Christopher Choy et al. “4d spatio-temporal convnets: Minkowski convolutional neural networks”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp- 3075-3084 (cit. on pp. 24, 46).

[11]Dhruv Mahajan et al. “Exploring the limits of weakly supervised pretraining”. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 181-196 (cit. on p. 47).

[12]Hangi Zhu et al. “VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo
Data Fusion”. In: arXiv preprint arXiv:2111.14382 (2021) (cit. on p. 82).

[13]Holger Caesar et al. “nuscenes: A multimodal dataset for autonomous driving”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 11621-11631 (cit. on
pp. 12,79, 97, 100, 138).

[14]Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”. In: International Conference on
Learning Representations. 2018 (cit. on pp. 80, 82).

153

154

[15]Hugues Thomas et al. “Kpconv: Flexible and deformable convolution for point clouds”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2019, pp. 6411-6420 (cit. on pp. 46, 47, 57,
59, 62, 73, 80, 87-89).

[16]Jianyun Xu et al. “Rpvnet: A deep and efficient range-point-voxel fusion network for lidar point cloud
segmentation”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp- 16024-16033 (cit. on pp. 60, 82).

[17]Jinlai Zhang et al. “PointCutMix: Regularization Strategy for Point Cloud Classification”. In: arXiv
preprint arXiv:2101.01461 (2021) (cit. on pp. 80, 82).

[18]Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 770-778 (cit. on p. 47).

[19]Larissa T Triess et al. “Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study”. In: 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2020, pp. 1116-1121 (cit. on pp. 48,
87).

[20]Lue Fan et al. “Rangedet: In defense of range view for lidar-based 3d object detection”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 2918-2927 (cit. on p. 82).

[21]Martin Alsfasser et al. “Exploiting polar grid structure and object shadows for fast object detection
in point clouds”. In: Tielfth International Conference on Machine Vision (ICMV 2019). Vol. 11433.
International Society for Optics and Photonics. 2020, 114330G (cit. on pp. 81, 138).

[22]Ran Cheng et al. “2-s3net: Attentive feature fusion with adaptive feature selection for sparse semantic
segmentation network”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 12547-12556 (cit. on p. 46).

[23]Sangdoo Yun et al. “Cutmix: Regularization strategy to train strong classifiers with localizable features”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 6023-6032
(cit. on pp. 80-82).

[24]Shaoshuai Shi et al. “Pv-rcnn: Point-voxel feature set abstraction for 3d object detection”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 10529-10538
(cit. on pp. 124, 126, 127, 137, 141).

[25]Venice Erin Liong et al. “AMVNet: Assertion-based Multi-View Fusion Network for LIDAR Semantic
Segmentation”. In: arXiv preprint arXiv:2012.04934 (2020) (cit. on p. 81).

[26]Whye Fong et al. “Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation and
tracking”. In: arXiv preprint arXiv:2109.03805 (2021) (cit. on pp. 97, 103).

[27]Xu Yan et al. “Sparse Single Sweep LiDAR Point Cloud Segmentation via Learning Contextual Shape
Priors from Scene Completion”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 4. 2021, pp. 3101-3109 (cit. on p. 81).

[28]Yunlu Chen et al. “Pointmixup: Augmentation for point clouds”. In: Computer Vision—-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part III 16. Springer.
2020, pp. 330-345 (cit. on pp. 80, 82).

[29]Stefano Allegretti, Federico Bolelli, Michele Cancilla, and Costantino Grana. “A block-based union-
find algorithm to label connected components on GPUs”. In: International Conference on Image
Analysis and Processing. Springer. 2019, pp. 271-281 (cit. on p. 35).

[30]Inigo Alonso et al. “Domain adaptation in LiDAR semantic segmentation by aligning class distribu-
tions”. In: arXiv preprint arXiv:2010.12239 (2020) (cit. on pp. 2, 95, 96).

[31]Martin Alsfasser. “Contributions to Tracking and Artificial Intelligence Based Lidar Signal Processing
for Automotive Applications”. Dissertation. Bergische Universitit Wuppertal, 2022 (cit. on pp. 43,
136).

[32]Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jorg Sander. “OPTICS: ordering points
to identify the clustering structure”. In: ACM Sigmod record 28.2 (1999), pp. 4960 (cit. on p. 30).

[34]Octavio Arriaga, Matias Valdenegro-Toro, and Paul Ploger. “Real-time convolutional neural networks
for emotion and gender classification”. In: arXiv preprint arXiv:1710.07557 (2017) (cit. on pp. 64, 65).

[35]K. S. Arun, T. S. Huang, and S. D. Blostein. “Least-Squares Fitting of Two 3-D Point Sets”. In: I[EEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-9.5 (1987), pp. 698-700 (cit. on
p. 132).

[36]Mehmet Aygun, Aljosa Osep, Mark Weber, Maxim Maximov, Cyrill Stachniss, Jens Behley, and
Laura Leal-Taixé. “4d panoptic lidar segmentation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 5527-5537 (cit. on pp. 62, 73).

[37]Paul Bachmann. Zahlentheorie: th. Die analytische Zahlentheorie (1894). Vol. 2. BG Teubner, 1894
(cit. on p. 128).

[38]Hernan Badino, Uwe Franke, and David Pfeiffer. “The stixel world-a compact medium level represen-
tation of the 3d-world”. In: Joint Pattern Recognition Symposium. Springer. 2009, pp. 51-60 (cit. on
p- 116).

[39]Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen
Gall. “SemanticKITTI: A dataset for semantic scene understanding of lidar sequences”. In: Proceedings
of the IEEFE International Conference on Computer Vision. 2019, pp. 9297-9307 (cit. on pp. 12, 40, 55,
62, 65,79, 87,90, 91, 93,97, 103, 121, 126).

[40]Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and Kurt Smith.
“Cython: The best of both worlds”. In: Computing in Science & Engineering 13.2 (2011), pp. 31-39
(cit. on p. 59).

[41]Jon Louis Bentley. “Multidimensional binary search trees used for associative searching”. In: Commu-
nications of the ACM 18.9 (1975), pp. 509-517 (cit. on p. 30).

[42]Borna Besié, Nikhil Gosala, Daniele Cattaneo, and Abhinav Valada. “Unsupervised domain adaptation
for lidar panoptic segmentation”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 3404-3411
(cit. on pp. 2, 95, 96, 103).

[44]Frank Bieder, Sascha Wirges, Johannes Janosovits, Sven Richter, Zheyuan Wang, and Christoph Stiller.
“Exploiting multi-layer grid maps for surround-view semantic segmentation of sparse LiDAR data”. In:
2020 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2020, pp. 1892—1898 (cit. on pp. 115, 116).

[45]Igor Bogoslavskyi and Cyrill Stachniss. “Fast range image-based segmentation of sparse 3D laser scans
for online operation”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2016, pp. 163-169 (cit. on pp. 1, 2, 30, 34, 35, 37, 39-43).

[46]Johann Borenstein, Yoram Koren, et al. “Histogramic in-motion mapping for mobile robot obstacle
avoidance”. In: IEEE Transactions on robotics and automation 7.4 (1991), pp. 535-539 (cit. on p. 116).

[47]Shubhankar Borse, Ying Wang, Yizhe Zhang, and Fatih Porikli. “Inverseform: A loss function for
structured boundary-aware segmentation”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2021, pp. 5901-5911 (cit. on p. 96).

[48]Markus Braun, Fabian B Flohr, Sebastian Krebs, Ulrich Kref3e, and Dariu M Gavrila. “Simple Pair
Pose-Pairwise Human Pose Estimation in Dense Urban Traffic Scenes”. In: 2021 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2021, pp. 1545-1552 (cit. on p. 124).

155

156

[49]Martin Brossard, Axel Barrau, and Silvere Bonnabel. “AI-IMU dead-reckoning”. In: IEEE Transactions
on Intelligent Vehicles 5.4 (2020), pp. 585-595 (cit. on p. 118).

[50]Keenan Burnett, David J Yoon, Yuchen Wu, et al. “Boreas: A Multi-Season Autonomous Driving
Dataset”. In: arXiv preprint arXiv:2203.10168 (2022) (cit. on pp. 2, 95, 138).

[51]Rich Caruana. “Learning many related tasks at the same time with backpropagation”. In: Advances in
neural information processing systems 7 (1994) (cit. on p. 96).

[52]Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. “Encoder-
decoder with atrous separable convolution for semantic image segmentation”. In: Proceedings of the
European conference on computer vision (ECCV). 2018, pp. 801-818 (cit. on p. 21).

[53]Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille. “Object as Hotspots: An Anchor-Free 3D
Object Detection Approach via Firing of Hotspots™. In: arXiv: 1912.12791 [cs.CV] (2019). arXiv:
1912.12791 [cs.CV] (cit. on pp. 124, 126, 127).

[54]Yang Chen and Gérard Medioni. “Object modelling by registration of multiple range images”. In:
Image and vision computing 10.3 (1992), pp. 145-155 (cit. on pp. 132, 133).

[55]Hao Cheng, Yao Li, and Monika Sester. “Pedestrian group detection in shared space”. In: 2019 IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2019, pp. 1707-1714 (cit. on p. 41).

[56]Frangois Chollet. “Xception: Deep learning with depthwise separable convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017, pp. 1251-1258 (cit. on p. 64).

[58]Phuong Chu, Seoungjae Cho, Sungdae Sim, Kiho Kwak, and Kyungeun Cho. “A Fast Ground Segmen-
tation Method for 3D Point Cloud.” In: Journal of information processing systems 13.3 (2017) (cit. on
p- 33).

[59]Dorin Comaniciu and Peter Meer. “Mean shift: A robust approach toward feature space analysis”. In:
IEEE Transactions on pattern analysis and machine intelligence 24.5 (2002), pp. 603-619 (cit. on
p- 30).

[60]Eduardo R Corral-Soto et al. “LiDAR few-shot domain adaptation via integrated CycleGAN and 3D
object detector with joint learning delay”. In: 2021 IEEFE International Conference on Robotics and
Automation (ICRA). IEEE. 2021, pp. 13099-13105 (cit. on pp. 2, 95, 96, 103-107).

[61]Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy. “SalsaNext: Fast Semantic Segmentation of
LiDAR Point Clouds for Autonomous Driving”. In: arXiv preprint arXiv:2003.03653 (2020) (cit. on
pp. 1,47, 48, 51, 56, 57, 59, 80, 88, 89, 108).

[62]Henggang Cui. Technically Speaking: Predicting the future in real time for safer autonomous driving.
Accessed on March 18, 2023. 2022 (cit. on p. 2).

[63]Brian Curless and Marc Levoy. “A volumetric method for building complex models from range images”.
In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. 1996,
pp- 303-312 (cit. on p. 97).

[64]Steve DaSilva. Human Drivers Avoid Crashes 99.999819% of the Time, Self-Driving Cars Need to Be
Even Safer. Jalopnik. Accessed on March 17, 2023. 2023 (cit. on p. 1).

[65]Johannes Deichmann, Eike Ebel, Kersten Heineke, Ruth Heuss, Martin Kellner, and Fabian Steiner. Au-
tonomous driving’s future: Convenient and connected. https://www.mckinsey.com/industries/
automotive-and-assembly/our-insights/autonomous-drivings- future-convenient-
and- connected. Accessed on March 17, 2023. McKinsey & Company, 2023 (cit. on p. 1).

[66]Boris Delaunay et al. “Sur la sphere vide”. In: Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk 7.793-800 (1934), pp. 1-2 (cit. on p. 97).

https://arxiv.org/abs/1912.12791
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected

[67]David DeMers and Garrison Cottrell. “Non-linear dimensionality reduction”. In: Advances in neural
information processing systems 5 (1992) (cit. on p. 16).

[68]Terrance DeVries and Graham W Taylor. “Improved regularization of convolutional neural networks
with cutout”. In: arXiv preprint arXiv:1708.04552 (2017) (cit. on pp. 80, 82).

[69]Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and
Baining Guo. “Cswin transformer: A general vision transformer backbone with cross-shaped windows”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp- 12124-12134 (cit. on p. 18).

[70]Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. “An image is worth 16x16 words:
Transformers for image recognition at scale”. In: arXiv preprint arXiv:2010.11929 (2020) (cit. on
p. 18).

[71]Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. “CARLA:
An open urban driving simulator”. In: Conference on robot learning. PMLR. 2017, pp. 1-16 (cit. on
p. 131).

[72]Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In: Proceedings of the 1st
Annual Conference on Robot Learning. 2017, pp. 1-16 (cit. on p. 96).

[74]Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. “On the shape of a set of points in the
plane”. In: IEEE Transactions on information theory 29.4 (1983), pp. 551-559 (cit. on p. 97).

[75]Alberto Elfes et al. “Occupancy grids: A stochastic spatial representation for active robot perception”.
In: Proceedings of the Sixth Conference on Uncertainty in Al. Vol. 2929. Morgan Kaufmann San Mateo,
CA. 1990, p. 6 (cit. on p. 116).

[76]Per K Enge. “The global positioning system: Signals, measurements, and performance”. In: Interna-
tional Journal of Wireless Information Networks 1.2 (1994), pp. 83—-105 (cit. on p. 119).

[77]Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. “A density-based algorithm for
discovering clusters in large spatial databases with noise.” In: Kdd. Vol. 96. 34. 1996, pp. 226-231
(cit. on pp. 30, 40-43).

[78]Ariane S Etienne, Joélle Berlie, Joséphine Georgakopoulos, and Roland Maurer. “Role of dead
reckoning in navigation.” In: (1998) (cit. on p. 118).

[79]Péter Fankhauser and Marco Hutter. “A universal grid map library: Implementation and use case for
rough terrain navigation”. In: Robot Operating System (ROS). Springer, 2016, pp. 99-120 (cit. on
p. 116).

[80]Juncong Fei, Kunyu Peng, Philipp Heidenreich, Frank Bieder, and Christoph Stiller. “PillarSegNet:
Pillar-based semantic grid map estimation using sparse LiDAR data”. In: 2021 IEEE Intelligent Vehicles
Symposium (IV). IEEE. 2021, pp. 838-844 (cit. on pp. 115, 116).

[81]Evelyn Fix and Joseph Lawson Hodges. “Discriminatory analysis. Nonparametric discrimination:
Consistency properties”. In: International Statistical Review/Revue Internationale de Statistique 57.3
(1989), pp. 238-247 (cit. on p. 99).

[82]Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrimination: Small
sample performance. Tech. rep. California Univ Berkeley, 1952 (cit. on p. 57).

[83]Tobias Fleck, Lennart Jauernig, Rupert Polley, Philip Schorner, Marc René Zofka, and J Marius Zollner.
“Infra2Go: A Mobile Development Platform for Connected, Cooperative and Autonomous Driving”.
In: () (cit. on p. 43).

157

[84]Keinosuke Fukunaga and Larry Hostetler. “The estimation of the gradient of a density function, with
applications in pattern recognition”. In: IEEE Transactions on information theory 21.1 (1975), pp. 32—
40 (cit. on p. 30).

[85]Stefano Gasperini, Mohammad-Ali Nikouei Mahani, Alvaro Marcos-Ramiro, Nassir Navab, and
Federico Tombari. “Panoster: End-to-end panoptic segmentation of lidar point clouds”. In: /EEE
Robotics and Automation Letters 6.2 (2021), pp. 3216-3223 (cit. on pp. 62, 73).

[86]Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous driving? the kitti
vision benchmark suite”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. 2012, pp. 3354-3361 (cit. on pp. 35, 40, 126, 138).

[87]Andreas Geiger et al. “Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite”.
In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2012, pp. 3354-3361
(cit. on pp. 12, 97, 100, 103).

[88]Martin Gerdzhev, Ryan Razani, Ehsan Taghavi, and Bingbing Liu. “TORNADO-Net: mulTiview tOtal
vaRiatioN semAntic segmentation with Diamond inceptiOn module”. In: arXiv preprint arXiv:2008.10544
(2020) (cit. on pp. 47-49).

[89]Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016 (cit. on pp. 14, 16-20).

[90]Heinrich Gotzig and Georg Otto Geduld. “LIDAR-sensorik™. In: Handbuch Fahrerassistenzsysteme.
Springer, 2015, pp. 317-334 (cit. on pp. 1, 2,7, 9).

[91]Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. “3d semantic segmentation with
submanifold sparse convolutional networks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 9224-9232 (cit. on pp. 46, 49, 129).

[92]Lukas Hahn. “Aspects of Active Learning, Architecture Search and Lidar Panoptic Segmentation
towards Pedestrian Perception in Autonomous Driving”. Dissertation. Bergische Universitit Wuppertal,
2022 (cit. on pp. 62, 124).

[93]Lukas Hahn, Frederik Hasecke, and Anton Kummert. “Fast Object Classification and Meaningful Data
Representation of Segmented Lidar Instances”. In: 23rd IEEE International Conference on Intelligent
Transportation Systems (ITSC) (2020) (cit. on pp. 62, 64).

[94]Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. “Transformer in
transformer”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 15908-15919
(cit. on p. 18).

[95]Stephen Hanson and Lorien Pratt. “Comparing biases for minimal network construction with back-
propagation”. In: Advances in Neural Information Processing Systems 1 (1988), pp. 177-185 (cit. on
pp- 17, 81).

[96]Frederik Hasecke. “Extended Object Detection and Classification with Combined Lidar and Camera
Sensor Data”. MA thesis. Bergische Universitit Wuppertal, 2020 (cit. on p. 29).

[97]Frederik Hasecke, Martin Alsfasser, and Anton Kummert. “What Can be Seen is What You Get:
Structure Aware Point Cloud Augmentation”. In: 2022 IEEE Intelligent Vehicles Symposium (IV). IEEE.
2022, pp. 594-599 (cit. on pp. 80, 137).

[98]Frederik Hasecke, Pascal Colling, and Anton Kummert. “Fake It, Mix It, Segment It: Bridging the
Domain Gap Between Lidar Sensors”. In: Proceedings of the 12th International Conference on Pattern
Recognition Applications and Methods. 2023, pp. 743-750 (cit. on p. 95).

158

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[99]Frederik Hasecke, Lukas Hahn, and Anton Kummert. “FLIC: Fast Lidar Image Clustering”. In:
Proceedings of the 10th International Conference on Pattern Recognition Applications and Methods.
2021, pp. 25-35 (cit. on pp. 1, 2, 29, 66, 73, 127).

[100]Frederik Lenard Hasecke and Sonke Behrends. Method, Device, and Computer Program for Determin-
ing a Change in Position andjor Orientation of a Mobile Apparatus. U.S. Patent 20220217499A1, 2021
(cit. on p. 118).

[101]Arthur Hennequin, Lionel Lacassagne, Laurent Cabaret, and Quentin Meunier. “A new Direct Con-
nected Component Labeling and Analysis Algorithms for GPUs”. In: 2018 Conference on Design and
Architectures for Signal and Image Processing (DASIP). IEEE. 2018, pp. 7681 (cit. on p. 35).

[102]Franziska Henze, Natalie Magdalena Stasinski, Dennis Fassbender, and Christoph Stiller. “Developers’
Information Needs during Test Drives with Automated Vehicles in Real Traffic: A Focus Group
Study”. In: 13th International Conference on Automotive User Interfaces and Interactive Vehicular
Applications. 2021, pp. 81-85 (cit. on p. 124).

[103]Hesai. “Pandora All-in-One Sensing Solution for Autonomous Driving - User’s Manual”. In: () (cit. on
pp- 8, 12, 34, 90).

[104]Michael Himmelsbach, Felix V Hundelshausen, and H-J Wuensche. “Fast segmentation of 3D point
clouds for ground vehicles”. In: 2010 IEEE Intelligent Vehicles Symposium. IEEE. 2010, pp. 560-565
(cit. on p. 30).

[105]Fangzhou Hong, Hui Zhou, Xinge Zhu, Hongsheng Li, and Ziwei Liu. “Lidar-based panoptic seg-
mentation via dynamic shifting network”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 13090-13099 (cit. on pp. 62, 73).

[106]Andreas Hope and Kai-Olaf Hauer. “Three-dimensional appearance characterization of diffuse standard
reflection materials”. In: Metrologia 47.3 (2010), p. 295 (cit. on p. 10).

[107]Joseph Hoshen and Raoul Kopelman. “Percolation and cluster distribution. I. Cluster multiple labeling
technique and critical concentration algorithm”. In: Physical Review B 14.8 (1976), p. 3438 (cit. on
p- 35).

[108]Jordan SK Hu and Steven L Waslander. “Pattern-Aware Data Augmentation for LIDAR 3D Object
Detection”. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE.
2021, pp. 2703-2710 (cit. on p. 82).

[109]Juana Valeria Hurtado, Rohit Mohan, Wolfram Burgard, and Abhinav Valada. “Mopt: Multi-object
panoptic tracking”. In: arXiv preprint arXiv:2004.08189 (2020) (cit. on pp. 62, 73).

[110]Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size”.
In: arXiv preprint arXiv:1602.07360 (2016) (cit. on p. 47).

[113]Peng Jiang and Srikanth Saripalli. “LiDARNet: A boundary-aware domain adaptation model for point
cloud semantic segmentation”. In: 2021 IEEFE International Conference on Robotics and Automation
(ICRA). IEEE. 2021, pp. 2457-2464 (cit. on p. 96).

[114]Philip Joisten, Ziyu Liu, Nina Theobald, Andreas Webler, and Bettina Abendroth. “Communication
of automated vehicles and pedestrian groups: An intercultural study on pedestrians’ street crossing
decisions”. In: Proceedings of Mensch und Computer 2021. 2021, pp. 49-53 (cit. on p. 124).

[115]Rudolph Emil Kalman. “A new approach to linear filtering and prediction problems”. In: (1960) (cit. on
pp. 108, 117, 118, 131).

159

160

[116]Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Poisson surface reconstruction”. In: Pro-
ceedings of the fourth Eurographics symposium on Geometry processing. Vol. 7. 2006 (cit. on pp. 97,
99, 120, 131-133).

[117]R. Kesten et al. Level 5 Perception Dataset 2020. https://level-5.global/level5/data/. 2019
(cit. on p. 138).

[118]Motaz Khader and Samir Cherian. “An introduction to automotive lidar”. In: Texas Instruments (2020)
(cit. on pp. 11, 12).

[119]Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dolldr. “Panoptic segmenta-
tion”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 9404-9413 (cit. on
p. 23).

[120]Deyvid Kochanov, Fatemeh Karimi Nejadasl, and Olaf Booij. “KPRNet: Improving projection-based
LiDAR semantic segmentation”. In: arXiv preprint arXiv:2007.12668 (2020) (cit. on pp. 47, 48, 51,
57).

[121]Lingdong Kong, Niamul Quader, and Venice Erin Liong. “ConDA: Unsupervised Domain Adaptation
for LIDAR Segmentation via Regularized Domain Concatenation”. In: arXiv preprint arXiv:2111.15242
(2021) (cit. on pp. 2, 95).

[122]Lingdong Kong, Jiawei Ren, Liang Pan, and Ziwei Liu. “LaserMix for Semi-Supervised LiDAR
Semantic Segmentation”. In: arXiv preprint arXiv:2207.00026 (2022) (cit. on pp. 83, 92, 93).

[123]Dmitriy Korchev, Shinko Cheng, Yuri Owechko, et al. “On real-time lidar data segmentation and
classification”. In: Proceedings of the International Conference on Image Processing, Computer Vision,
and Pattern Recognition (IPCV). The Steering Committee of The World Congress in Computer Science,
Computer ... 2013, p. 1 (cit. on p. 30).

[124]Hongwu Kuang, Bei Wang, Jianping An, Ming Zhang, and Zehan Zhang. “Voxel-FPN: Multi-scale
voxel feature aggregation for 3D object detection from LIDAR point clouds”. In: Sensors 20.3 (2020),
p- 704 (cit. on pp. 49, 50).

[125]Tin-Yau Kwok and Dit-Yan Yeung. “Constructive algorithms for structure learning in feedforward
neural networks for regression problems”. In: IEEE transactions on neural networks 8.3 (1997),
pp. 630-645 (cit. on p. 16).

[126]Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Martin R Oswald. “3d instance segmentation via
multi-task metric learning”. In: Proceedings of the IEEE International Conference on Computer Vision.
2019, pp. 9256-9266 (cit. on pp. 30, 31).

[127]Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. “Pointpil-
lars: Fast encoders for object detection from point clouds”. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2019, pp. 12697-12705 (cit. on pp. 24, 45-47, 49, 62, 99,
108, 117, 118, 124, 126, 127, 131).

[128]Ferdinand Langer, Andres Milioto, Alexandre Haag, Jens Behley, and Cyrill Stachniss. “Domain
transfer for semantic segmentation of LiDAR data using deep neural networks”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 8263-8270 (cit. on
pp. 96, 97, 103, 107).

[129]Ltd. Leishen Intelligent System Co. 905nm VS 1550nm: which is better for automotive LiDAR?
Accessed: 2022-12-08. 2022 (cit. on p. 9).

[130]Dan Levi, Noa Garnett, Ethan Fetaya, and Israel Herzlyia. “StixelNet: A Deep Convolutional Network
for Obstacle Detection and Road Segmentation.” In: BMVC. Vol. 1. 2. 2015, p. 4 (cit. on p. 116).

https://level-5.global/level5/data/

[131]Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. “Visualizing the loss landscape
of neural nets”. In: Advances in neural information processing systems 31 (2018) (cit. on p. 16).

[132]Jinke Li, Xiao He, Yang Wen, Yuan Gao, Xiaogiang Cheng, and Dan Zhang. “Panoptic-PHNet: To-
wards Real-Time and High-Precision LiDAR Panoptic Segmentation via Clustering Pseudo Heatmap”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp- 11809-11818 (cit. on pp. 1, 30, 62, 73, 74).

[133]Shijie Li, Xieyuanli Chen, Yun Liu, Dengxin Dai, Cyrill Stachniss, and Juergen Gall. “Multi-scale
interaction for real-time lidar data segmentation on an embedded platform”. In: IEEE Robotics and
Automation Letters 7.2 (2021), pp. 738=745 (cit. on pp. 2, 67, 68, 73, 80, 88, 89).

[134]You Li and Javier Ibanez-Guzman. “Lidar for autonomous driving: The principles, challenges, and
trends for automotive lidar and perception systems”. In: IEEE Signal Processing Magazine 37.4 (2020),
pp- 50-61 (cit. on p. 12).

[135]Yuanzhi Li and Yingyu Liang. “Learning overparameterized neural networks via stochastic gradient
descent on structured data”. In: Advances in neural information processing systems 31 (2018) (cit. on
p- 17).

[136]Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and Jifeng Dai.
“BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal
Transformers”. In: arXiv preprint arXiv:2203.17270 (2022) (cit. on p. 116).

[137]Velodyne Lidar. A Guide to Lidar Wavelengths for Autonomous Vehicles and Driver Assistance.
Accessed: 2022-12-08. 2021 (cit. on p. 9).

[138]Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C Lawrence Zitnick. “Microsoft coco: Common objects in context”. In: European conference on
computer vision. Springer. 2014, pp. 740-755 (cit. on p. 22).

[139]Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and Hua Yang. “Dynamic spatial propagation
network for depth completion”. In: arXiv preprint arXiv:2202.09769 (2022) (cit. on p. 116).

[140]Charles X Ling and Chenghui Li. “Data mining for direct marketing: Problems and solutions.” In: Kdd.
Vol. 98. 1998, pp. 73-79 (cit. on p. 81).

[141]Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
“Swin transformer: Hierarchical vision transformer using shifted windows”. In: Proceedings of the
IEEE/CVF international conference on computer vision. 2021, pp. 10012-10022 (cit. on p. 18).

[142]Bharat Lohani. “Airborne altimetric LIDAR: Principle, data collection, processing and applications”.
In: URL: http://home. iitk. ac. in/~ blohani/LiDAR_Tutorial/Airborne_AltimetricLidar_Tutorial. htm,
accessed Feb (2008) (cit. on p. 8).

[143]Jakob Lombacher, Kilian Laudt, Markus Hahn, Jiirgen Dickmann, and Christian Wohler. “Semantic
radar grids”. In: 2017 IEEE intelligent vehicles symposium (IV). IEEE. 2017, pp. 1170-1175 (cit. on
p. 115).

[144]Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 3431-3440 (cit. on p. 21).

[145]Jiao Mao, Guoliang Xu, Wanlin Li, Xiaohui Fan, and Jiangtao Luo. “Pedestrian detection and recogni-
tion using lidar for autonomous driving”. In: 2019 International Conference on Optical Instruments
and Technology: Optical Sensors and Applications. Vol. 11436. International Society for Optics and
Photonics. 2020, 114360R (cit. on p. 41).

161

[146]Margarita Martinez-Diaz and Francesc Soriguera. “Autonomous vehicles: theoretical and practical chal-
lenges”. In: Transportation Research Procedia 33 (2018). XIII Conference on Transport Engineering,
CIT2018, pp. 275-282 (cit. on pp. 1, 2).

[147]Andres Milioto, Jens Behley, Chris McCool, and Cyrill Stachniss. “Lidar panoptic segmentation for
autonomous driving”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2020, pp. 8505-8512 (cit. on pp. 62, 73).

[148]Frank Moosmann. Interlacing self-localization, moving object tracking and mapping for 3d range
sensors. Vol. 24. KIT Scientific Publishing, 2013 (cit. on pp. 39, 40).

[149]Frank Moosmann, Oliver Pink, and Christoph Stiller. “Segmentation of 3D lidar data in non-flat urban
environments using a local convexity criterion”. In: 2009 IEEE Intelligent Vehicles Symposium. IEEE.
2009, pp. 215-220 (cit. on pp. 1, 30, 37).

[152]Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. “Deep
double descent: Where bigger models and more data hurt”. In: Journal of Statistical Mechanics: Theory
and Experiment 2021.12 (2021), p. 124003 (cit. on p. 17).

[153]Lucas Nunes, Xieyuanli Chen, Rodrigo Marcuzzi, Aljosa Osep, Laura Leal-Taixé, Cyrill Stachniss, and
Jens Behley. “Unsupervised Class-Agnostic Instance Segmentation of 3D LiDAR Data for Autonomous
Vehicles”. In: IEEE Robotics and Automation Letters 7.4 (2022), pp. 8713—-8720 (cit. on p. 30).

[155]Adam Paszke, Sam Gross, Francisco Massa, et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019, pp. 8024—8035 (cit. on p. 71).

[156]F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825-2830 (cit. on p. 40).

[157]Kunyu Peng, Juncong Fei, Kailun Yang, et al. “MASS: Multi-attentional semantic segmentation of
LiDAR data for dense top-view understanding”. In: IEEE Transactions on Intelligent Transportation
Systems (2022) (cit. on p. 116).

[158]Lorenzo Porzi, Samuel Rota Bulo, Aleksander Colovic, and Peter Kontschieder. “Seamless scene
segmentation”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 8277—
8286 (cit. on p. 23).

[159]Lutz Prechelt. “Automatic early stopping using cross validation: quantifying the criteria”. In: Neural
networks 11.4 (1998), pp. 761-767 (cit. on p. 17).

[160]Robert Prophet, Anastasios Deligiannis, Juan-Carlos Fuentes-Michel, Ingo Weber, and Martin Vossiek.
“Semantic segmentation on 3D occupancy grids for automotive radar”. In: IEEE Access 8 (2020),
pp- 197917-197930 (cit. on p. 115).

[161]Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet: Deep learning on point sets for
3d classification and segmentation”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 652—660 (cit. on pp. 1, 24, 46, 50, 68).

[162]Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space”. In: Advances in neural information processing systems 30
(2017) (cit. on pp. 1, 24, 46).

[164]Ryan Razani, Ran Cheng, Enxu Li, Ehsan Taghavi, Yuan Ren, and Liu Bingbing. “GP-S3Net: Graph-
based panoptic sparse semantic segmentation network”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 16076—16085 (cit. on pp. 62, 73, 74).

[165]Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv preprint arXiv:1804.02767
(2018) (cit. on p. 47).

162

[166]Mrigank Rochan et al. “Unsupervised domain adaptation in lidar semantic segmentation with self-
supervision and gated adapters”. In: 2022 International Conference on Robotics and Automation
(ICRA). IEEE. 2022, pp. 2649-2655 (cit. on pp. 2, 95, 96, 103-107).

[167]R Tyrrell Rockafellar. Convex analysis. Vol. 18. Princeton university press, 1970 (cit. on p. 125).

[168]Amir Rosenfeld, Richard Zemel, and John K Tsotsos. “The elephant in the room”. In: arXiv preprint
arXiv:1808.03305 (2018) (cit. on p. 82).

[169]Cristiano Saltori, Fabio Galasso, Giuseppe Fiameni, Nicu Sebe, Elisa Ricci, and Fabio Poiesi. “CoSMix:
Compositional Semantic Mix for Domain Adaptation in 3D LiDAR Segmentation”. In: arXiv preprint
arXiv:2207.09778 (2022) (cit. on pp. 96, 102).

[170]Dario D Salvucci. “Modeling driver behavior in a cognitive architecture”. In: Human factors 48.2
(2006), pp. 362-380 (cit. on p. 1).

[171]Jules Sanchez, Jean-Emmanuel Deschaud, and Frangois Goulette. “COLA: COarse LAbel pre-training
for 3D semantic segmentation of sparse LiDAR datasets”. In: arXiv preprint arXiv:2202.06884 (2022)
(cit. on p. 96).

[172]Maximilian Schéfer, Kun Zhao, Markus Biihren, and Anton Kummert. “Context-aware scene prediction
network (caspnet)”. In: 2022 [EEE 25th International Conference on Intelligent Transportation Systems
(ITSC). IEEE. 2022, pp. 3970-3977 (cit. on p. 124).

[173]Marcel Schreiber, Vasileios Belagiannis, Claudius Gléser, and Klaus Dietmayer. “A multi-task recurrent
neural network for end-to-end dynamic occupancy grid mapping”. In: arXiv preprint arXiv:2202.04461
(2022) (cit. on p. 116).

[174]Marcel Schreiber, Vasileios Belagiannis, Claudius Gldser, and Klaus Dietmayer. “Dynamic occupancy
grid mapping with recurrent neural networks”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2021, pp. 6717-6724 (cit. on p. 116).

[175]Erich Schubert, Jorg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. “DBSCAN revisited,
revisited: why and how you should (still) use DBSCAN”. In: ACM Transactions on Database Systems
(TODS) 42.3 (2017), pp. 1-21 (cit. on p. 41).

[176]John Schulman, Barret Zoph, Christina Kim, et al. ChatGPT: Optimizing Language Models for
Dialogue. 2022 (cit. on p. 13).

[177]Tixiao Shan and Brendan Englot. “LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry
and Mapping on Variable Terrain”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 4758-4765 (cit. on pp. 118, 131).

[178]Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. “From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation network™. In: IEEE transactions
on pattern analysis and machine intelligence 43.8 (2020), pp. 2647-2664 (cit. on pp. 99, 108, 117, 118,
131).

[179]ACM SIGKDD. “2014 SIGKDD Test of Time Award”. In: https:/www.kdd.org/Newsfview/2014-sigkdd-
test-of-time-award (2014) (cit. on p. 41).

[180]Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale image
recognition”. In: arXiv preprint arXiv:1409.1556 (2014) (cit. on p. 20).

[181]Kshitij Sirohi, Rohit Mohan, Daniel Biischer, Wolfram Burgard, and Abhinav Valada. “Efficientlps:
Efficient lidar panoptic segmentation”. In: IEEE Transactions on Robotics (2021) (cit. on pp. 62, 73).

163

164

[182]Leslie N Smith and Nicholay Topin. “Super-convergence: Very fast training of neural networks using
large learning rates”. In: Artificial intelligence and machine learning for multi-domain operations

applications. Vol. 11006. SPIE. 2019, pp. 369-386 (cit. on pp. 88, 142).

[184]Eduardo D Sontag. “Feedforward nets for interpolation and classification”. In: Journal of Computer
and System Sciences 45.1 (1992), pp. 2048 (cit. on p. 16).

[185]Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
“Dropout: a simple way to prevent neural networks from overfitting”. In: The journal of machine
learning research 15.1 (2014), pp. 1929-1958 (cit. on pp. 17, 81).

[186]Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, et al. “Scalability in Perception for Autonomous
Driving: Waymo Open Dataset”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2020 (cit. on p. 138).

[187]Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall, Michael B
Gotway, and Jianming Liang. “Convolutional neural networks for medical image analysis: Full training
or fine tuning?” In: IEEE transactions on medical imaging 35.5 (2016), pp. 1299-1312 (cit. on p. 96).

[188]Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song Han. “Searching
Efficient 3D Architectures with Sparse Point-Voxel Convolution”. In: arXiv preprint arXiv:2007.16100
(2020) (cit. on pp. 24, 46, 49).

[189]Andrew Tao, Karan Sapra, and Bryan Catanzaro. “Hierarchical multi-scale attention for semantic
segmentation”. In: arXiv preprint arXiv:2005.10821 (2020) (cit. on p. 96).

[190]OpenPCDet Development Team. OpenPCDet: An Open-source Toolbox for 3D Object Detection from
Point Clouds. https://github.com/open-mmlab/OpenPCDet. 2020 (cit. on p. 136).

[191]Tommaso Toffoli and Norman Margolus. Cellular automata machines: a new environment for modeling.
MIT press, 1987 (cit. on p. 35).

[192]Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. “Training data-efficient image transformers & distillation through attention”. In: International
conference on machine learning. PMLR. 2021, pp. 10347-10357 (cit. on p. 18).

[193]Apostolia Tsirikoglou, Joel Kronander, Magnus Wrenninge, and Jonas Unger. “Procedural modeling
and physically based rendering for synthetic data generation in automotive applications”. In: arXiv
preprint arXiv:1710.06270 (2017) (cit. on p. 131).

[194]Patrik Vacek, Otakar Jasek, Karel Zimmermann, and Tomas Svoboda. “Learning to predict lidar
intensities”. In: IEEE Transactions on Intelligent Transportation Systems 23.4 (2021), pp. 3556-3564
(cit. on pp. 9, 99).

[195]Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017) (cit. on p. 18).

[196]Velodyne. “HDL-64E High Definition Lidar Sensor - User’s Manual”. In: () (cit. on pp. 12, 34).

[197]Velodyne. HDL32E High Definition LiDAR Sensor - User’s Manual and Programing Guide. 2015
(cit. on pp. 12, 34).

[198]Velodyne. VLP-16 LiDAR PUCK - User’s Manual. 2015 (cit. on p. 34).
[199]Velodyne. VLS-128 User Manual. 2018 (cit. on pp. 8, 12, 34).

[201]Pauli Virtanen, Ralf Gommers, Travis E Oliphant, et al. “SciPy 1.0: fundamental algorithms for
scientific computing in Python”. In: Nature methods 17.3 (2020), pp. 261-272 (cit. on p. 35).

https://github.com/open-mmlab/OpenPCDet

[202]Carina Vogl, Moritz Sackmann, Ludwig Kiirzinger, and Ulrich Hofmann. “Frenet coordinate based
driving maneuver prediction at roundabouts using LSTM networks”. In: Proceedings of the 4th ACM
Computer Science in Cars Symposium. 2020, pp. 1-9 (cit. on p. 124).

[204]Ulla Wandinger. “Introduction to lidar”. In: Lidar. Springer, 2005, pp. 1-18 (cit. on pp. 2, 8, 9).

[205]Brian H Wang, Wei-Lun Chao, Yan Wang, Bharath Hariharan, Kilian Q Weinberger, and Mark
Campbell. “LDLS: 3-D Object Segmentation Through Label Diffusion From 2-D Images”. In: IEEE
Robotics and Automation Letters 4.3 (2019), pp. 2902-2909 (cit. on p. 31).

[206]Wenhai Wang, Enze Xie, Xiang Li, et al. “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions”. In: Proceedings of the IEEE/CVF international conference on
computer vision. 2021, pp. 568-578 (cit. on p. 18).

[207]Yuan Wang, Yang Yu, and Ming Liu. “PointIT: A fast tracking framework based on 3D instance
segmentation”. In: arXiv preprint arXiv:1902.06379 (2019) (cit. on p. 31).

[208]Andreas S Weigend, David E Rumelhart, and Bernardo A Huberman. “Generalization by weight-
elimination with application to forecasting”. In: Advances in Neural Information Processing Systems.
1991, pp. 875-882 (cit. on pp. 17, 81).

[209]Martin Wermelinger, Péter Fankhauser, Remo Diethelm, Philipp Kriisi, Roland Siegwart, and Marco
Hutter. “Navigation planning for legged robots in challenging terrain”. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 1184-1189 (cit. on p. 116).

[210]Julian Wiederer, Arij Bouazizi, Ulrich Kressel, and Vasileios Belagiannis. “Traffic control gesture
recognition for autonomous vehicles”. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2020, pp. 10676—-10683 (cit. on p. 124).

[211]Bichen Wu et al. “Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object
segmentation from 3d lidar point cloud”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). 2018, pp. 18871893 (cit. on pp. 24, 47).

[212]Aoran Xiao, Jiaxing Huang, Dayan Guan, Kaiwen Cui, Shijian Lu, and Ling Shao. “PolarMix: A
General Data Augmentation Technique for LIDAR Point Clouds”. In: arXiv preprint arXiv:2208.00223
(2022) (cit. on pp. 83, 92, 93).

[213]Aoran Xiao et al. “Transfer learning from synthetic to real LIDAR point cloud for semantic segmenta-
tion”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 3. 2022, pp. 2795—
2803 (cit. on p. 96).

[214]Pengchuan Xiao et al. “Pandaset: Advanced sensor suite dataset for autonomous driving”. In: 2027
IEEE International Intelligent Transportation Systems Conference (ITSC). 2021, pp. 3095-3101 (cit. on
p. 138).

[215]Chenfeng Xu, Bichen Wu, Zining Wang, Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi
Tomizuka. “Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation”.
In: arXiv preprint arXiv:2004.01803 (2020) (cit. on p. 48).

[216]Yan Yan, Yuxing Mao, and Bo Li. “Second: Sparsely embedded convolutional detection”. In: Sensors
18.10 (2018), p. 3337 (cit. on pp. 81, 82, 124, 126, 127, 138).

[217]Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, and Niki Trigoni.
“Learning object bounding boxes for 3d instance segmentation on point clouds”. In: Advances in Neural
Information Processing Systems. 2019, pp. 6740—-6749 (cit. on pp. 30, 31).

[218]De Jong Yeong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. “Sensor and sensor fusion
technology in autonomous vehicles: A review”. In: Sensors 21.6 (2021), p. 2140 (cit. on pp. 11, 12).

165

166

[219]Li Yi, Boqing Gong, and Thomas Funkhouser. “Complete & label: A domain adaptation approach to
semantic segmentation of lidar point clouds”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2021, pp. 15363-15373 (cit. on p. 96).

[220]Dimitris Zermas, Izzat Izzat, and Nikolaos Papanikolopoulos. “Fast segmentation of 3d point clouds: A
paradigm on lidar data for autonomous vehicle applications”. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2017, pp. 5067-5073 (cit. on pp. 1, 2, 30).

[221]Chi Zhang, Guosheng Lin, Fayao Liu, Rui Yao, and Chunhua Shen. “Canet: Class-agnostic segmen-
tation networks with iterative refinement and attentive few-shot learning”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 5217-5226 (cit. on
p- 22).

[222]Feihu Zhang, Jin Fang, Benjamin Wah, and Philip Torr. “Deep fusionnet for point cloud semantic
segmentation”. In: Computer Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XXIV 16. Springer. 2020, pp. 644—663 (cit. on p. 46).

[223]Feihu Zhang, Chenye Guan, Jin Fang, Song Bai, Ruigang Yang, Philip Torr, and Victor Prisacariu.
“Instance segmentation of lidar point clouds”. In: /CRA 4.1 (2020) (cit. on pp. 30, 31).

[224]Shuyang Zhang, Fulong Ma Di Wang, Chao Qin, Zhengyong Chen, and Ming Liu. “Robust Pedestrian
Tracking in Crowd Scenarios Using an Adaptive GMM-based Framework™. In: () (cit. on p. 41).

[225]Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Zerong Xi, Boqing Gong, and Hassan Foroosh.
“Polarnet: An improved grid representation for online lidar point clouds semantic segmentation”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp- 9601-9610 (cit. on p. 68).

[226]Sicheng Zhao et al. “ePointDA: An end-to-end simulation-to-real domain adaptation framework for
LiDAR point cloud segmentation”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 4. 2021, pp. 3500-3509 (cit. on p. 96).

[227]Yiming Zhao, Xiao Zhang, and Xinming Huang. “A divide-and-merge point cloud clustering algorithm
for LiDAR panoptic segmentation”. In: 2022 International Conference on Robotics and Automation
(ICRA). IEEE. 2022, pp. 7029-7035 (cit. on p. 30).

[228]Hui Zhou, Xinge Zhu, Xiao Song, Yuexin Ma, Zhe Wang, Hongsheng Li, and Dahua Lin. “Cylinder3D:
An Effective 3D Framework for Driving-scene LiDAR Semantic Segmentation”. In: arXiv preprint
arXiv:2008.01550 (2020) (cit. on pp. 1, 24, 46, 49, 67, 68, 73, 80, 88-93, 104-107, 117, 131).

[229]Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for 3D Data Processing”.
In: arXiv:1801.09847 (2018) (cit. on p. 99).

[230]Yin Zhou and Oncel Tuzel. “VoxelNet: End-to-End Learning for Point Cloud Based 3D Object
Detection”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 4490-4499
(cit. on pp. 24, 46, 124, 126, 127).

[231]Zhi-Hua Zhou. “Why over-parameterization of deep neural networks does not overfit?” In: Science
China Information Sciences 64 (2021), pp. 1-3 (cit. on p. 17).

[232]Zixiang Zhou, Yang Zhang, and Hassan Foroosh. “Panoptic-polarnet: Proposal-free lidar point cloud
panoptic segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 13194-13203 (cit. on pp. 24, 62, 73, 82).

[@33]Aptiv. What Are the Levels of Automated Driving? Accessed: 2023-02-12. 2020. urL: https://www.
aptiv.com/en/insights/article/what-are-the-levels-of-automated-driving (cit. on
p- 130).

[@43]Bicycle Free 3D model. kyumamoon. UrL: https://www.cgtrader.com/free- 3d-models/
vehicle/bicycle/bicycle-36e28aba-d615-4c71-b4d6-c74782b673a3 (cit. on pp. 138, 139).

[@57]Francois Chollet et al. Keras. 2015. urL: https://github.com/fchollet/keras (cit. on p. 66).

[@73]Dutch Bike Free 3D model. eslamovich. urL: https://www.cgtrader.com/free-3d-models/
vehicle/bicycle/dutch-bike (cit. on pp. 138, 139).

[@111]Innoviz. InnovizTwo Website. Accessed: 2022-09-05. 2022. urL: https://innoviz.tech/innoviztwo
(cit. on pp. 12, 136, 138).

[@112]Innoviz and NVIDIA. ECCV workshop on 3D Perception for Autonomous Driving: The LiDAR Self-
Supervised Learning Challenge: Learning From a Limited Amount of High-Resolution LiDAR data.
Accessed: 2022-09-15. 2022 (cit. on pp. 12, 136, 137, 146).

[@150]Moped Free low-poly 3D model. Goran Dodic. UrRL: https: //www . cgtrader . com/ free-3d-
models/vehicle/motorcycle/moped (cit. on pp. 138, 139).

[@151]motorcycle Free 3D model. qq577148845. urL: https://www.cgtrader.com/free-3d-models/
vehicle/bicycle/motorcycle-fcfd399a-5552-4d55-806b-9eb459£3887e (cit. on pp. 138,
139).

[@154]NVIDIA Showcases Novel Al Tools in DRIVE Sim to Advance Autonomous Vehicle Development.
NVIDIA. urL: https://blogs.nvidia.com/blog/2022/03/23/drive-sim- omniverse-
neural-ai-digital-twin/ (cit. on p. 134).

[@163]Rain Rig. Blender Foundation. urL: https://studio.blender.org/characters/5fled640e9115ed35ea4b3fb/
v2/ (cit. on pp. 138, 139).

[@183]Snow Rig. Blender Foundation. urL: https://studio.blender.org/characters/snow/v2/
(cit. on pp. 138, 139).

[@200]Vincent Rig. Blender Foundation. urL: https://studio.blender.org/characters/5718a967c379c£04929a4247/
v1/ (cit. on pp. 138, 139).

[@203]Wabi Lightning SE Fixed Gear Bicycle Free 3D model. Semyon Filippov. urL: https : / /www .
cgtrader . com/free-3d-models/vehicle/bicycle/wabi-lightning- se- fixed- gear-
bicycle (cit. on pp. 138, 139).

167

https://www.aptiv.com/en/insights/article/what-are-the-levels-of-automated-driving
https://www.aptiv.com/en/insights/article/what-are-the-levels-of-automated-driving
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/bicycle-36e28aba-d615-4c71-b4d6-c74782b673a3
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/bicycle-36e28aba-d615-4c71-b4d6-c74782b673a3
https://github.com/fchollet/keras
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/dutch-bike
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/dutch-bike
https://innoviz.tech/innoviztwo
https://www.cgtrader.com/free-3d-models/vehicle/motorcycle/moped
https://www.cgtrader.com/free-3d-models/vehicle/motorcycle/moped
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/motorcycle-fcfd399a-5552-4d55-806b-9eb459f3887e
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/motorcycle-fcfd399a-5552-4d55-806b-9eb459f3887e
https://blogs.nvidia.com/blog/2022/03/23/drive-sim-omniverse-neural-ai-digital-twin/
https://blogs.nvidia.com/blog/2022/03/23/drive-sim-omniverse-neural-ai-digital-twin/
https://studio.blender.org/characters/5f1ed640e9115ed35ea4b3fb/v2/
https://studio.blender.org/characters/5f1ed640e9115ed35ea4b3fb/v2/
https://studio.blender.org/characters/snow/v2/
https://studio.blender.org/characters/5718a967c379cf04929a4247/v1/
https://studio.blender.org/characters/5718a967c379cf04929a4247/v1/
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/wabi-lightning-se-fixed-gear-bicycle
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/wabi-lightning-se-fixed-gear-bicycle
https://www.cgtrader.com/free-3d-models/vehicle/bicycle/wabi-lightning-se-fixed-gear-bicycle

Acronyms

Advanced Driver Assistance Systems.

Convolutional Neural Network.

Central Processing Unit.

Density Based Spatial Clustering of Applications with Noise.

Fast Lidar Image Clustering.
False Negative.

False Positive.

Graphics Processing Unit.

Ground Truth.

Light Amplification by Stimulated Emission of Radiation.
Light Emitting Diode.

Light Detection and Ranging.

Mean Squared Error.

Radio Detection and Ranging.

Red, Green and Blue.

Structure Aware Point Cloud Augmentation.

Stochastic Gradient Descent.

True Positive.

Voxel Feature Encoding.

169

Glossary

Analysis of a model’s performance after removing components/features.
Technique to generate new data from existing data.
Average Intersection over Union over all instance (see PAGE 22).

A metric used to evaluate the accuracy of object detection (see PaGe 142).

A control system where the output affects the input.

Grouping similar data points into clusters.
Adapting a model trained on one domain to another domain.
The vehicle the sensor is mounted on.

Segmenting individual objects.

Intersection over Union (see PaGe 21).

Connection between pixels beyond the direct pixel neighborhood.
The average AP value over multiple object classes (see PAGe 142).
A three-dimensional model consisting of vertices, edges, and faces.

Mean Intersection over Union over all classes (see PAGe 22).

Not limited to a particular time sequence or order.

A large-scale autonomous driving dataset with various sensor modalities.
Making predictions on new data in real-time.

Combining semantic and instance segmentation.
A voxel in a 2D grid.
Collection of data points in three-dimensional space.

Panoptic Quality, combining instance and semantic information (see PaGe 23).

171

172

Labels generated by a model for unlabeled data.

Voxels in a spherical coordinate system.
Processing data and producing output with minimal delay.

The proportion of true positive samples correctly identified (see PaGe 42).

Connection between pixels very far beyond the direct pixel neighborhood.
Dividing an object into distinct parts or regions.
Training a model with unlabeled data via pretext tasks.
Segmenting data into meaningful parts (e.g., objects).
A large-scale outdoor semantic segmentation dataset.
Training a model with both labeled and unlabeled data.
Current highest level of performance on a task.

Training a model with labeled input-output pairs.

Teaching a model to make predictions from input data.

Training a model with unlabeled data without any supervision.

A three-dimensional pixel or volumetric pixel.

List of Figures

2.1
22
23
24
2.5
2.6

3.1
3.2
33
34
35

3.6

3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
44
4.5
4.6

5.1

52

53

Pulse Response of a Lidar at Different Conditions. 8
Light Reflectivity of Different Surfaces. 10
Common Activation Functions of Neural Networks. 14
Influence of Learning Rates on Finding an Optimal Solution. 16
Increasing Complexity of the Features CNN Layers are Able to Capture. 20
Range Projection of a Three-Dimensional Point Cloud. 25
Instance Segmentation Results of the Novel Method Outlined in this Chapter. 29
Visualization of the Ground Segmentation Method of FLIC. 31
[lustration of a General Triangle. 32

Schematic Visualization of the Geometric Properties for the Ground Angle Determination. 33
Schematic Visualization of the Geometric Properties for the Point-Wise Distance
Calculation. 33

Range Image and Distance Images of the Three-Dimensional Distance Between Neigh-

boring Lidar Points in the Range Image. 35
Schematic Visualization of the Combination of Binary Images to Connect Lidar Points. 36
Connected-Component Label of a Car Resulting from the Combined Binary Images.. 36
Range Image Sub-Selections for Map Connections. 37
Map Connections Reduce Over-Segmentation 38
Schematic Visualization of Map Connections. 38
Pattern of Six Map Connections. i i 39

Frame-Wise Runtime of FLIC and Other Algorithms on a 64-beam Velodyne Dataset. 39
Average Segmentation Frequency of 2,500 Scans from a 64-beam Velodyne Dataset. 40
Parameter Study of the Maximum Distance Between Two Points, to be Considered

Part of the Same Cluster. 41

Semantic Segmentation Results of the Novel Neural Network Presented in this Chapter. 45
Architecture of the RangePillars Network. 48
Comparison of Cartesian Voxels, Spherical three-dimensional Voxels, and RangePillars. 49

Multi-Scale Pillar Feature Aggregation. 50
Loss Calculations of Intermediate Network Heads. 55
Segmentation Bleeding of a Projection Network. 58

Panoptic Segmentation Results of One of the Novel Method Combinations Outlined in

this Chapter. e 61
Panoptic Segmentation of the Lidar Cluster Classification Method Outlined in SecTioN

S2. 0. o 63
Visualization of Normal Vectors 64

173

174

54
55
5.6
5.7
5.8
59

6.1

6.2
6.3

7.1

7.2
7.3
7.4
1.5
7.6

7.7

8.1
8.2
8.3

8.4

8.5
8.6
8.7
8.8
8.9
8.10

8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

Lightweight CNN Network Architecture. 65

Reduced Class Mapping of the SemanticKITTI Dataset. 65
FLIC++ Pattern of the Map Connections. 69
Schematic Visualization of the Image Wrap Around. 70
Stacked Pixel ID Values of FLIC++ Connections 71
Cluster ID Assignment via Channel-wise Maximum Operation. 72

Two Lidar Point Clouds Enriched via the Structure Aware Point Cloud Augmentation

Methods Presented in this Chapter. 79
Instances Injected intoa Scene. L 84
Visualization of the Point Cloud Fusion Method. 86

Panoptic Lidar Point Clouds and Their Respective Twins in a Different Lidar Sensor

Domain. 95
Restructuring of a Single Dataset in the Form of Two Different Sensors. 98
Target Domain Data Injection into Generated Lidar Point Clouds. 100
Point-wise Domain Fusion by Range. 101
Joint Class Mapping of the Datasets. 102
Inference Results of the Cylinder3D Semantic Segmentation Network Trained on

NuScenes Data Recreated in the Structure of the Velodyne Alpha Prime Sensor. . . . 107
Inference Results of the SalsaNext Semantic Segmentation Network Trained on Se-

manticKITTI Data Recreated in the Structure of the InnovizTwo Sensor. 108
Applications of Lidar Segmentation. 113
Lidar Segmentation Grid Maps. 115
Comparing Information Representation: Real World, Semantic Segmented Lidar

Frame, Two-Dimensional Grid Map, and Three-Layer GridMap 117
Ego Motion Combination Method Compared to SLAM and Host Vehicle Based Ego

Motion. 119
Mesh World Rendering. L 121
Three-Dimensional Reconstruction of the Encoded Grid Map Data. 122
Online Object Detection From Panoptic Segmentation. 124
Bounding Box Size Estimation viaa Convex Hull. 125
Points with Convex Hull and Edge Angle Orientation. 126
Flowchart Illustrating the Steps Involved in the Object Detection Algorithm using

LidarData. 128
Re-Simulation Environment Created from Lidar Segmentation. 130
Mesh Recreation of Rigid Dynamic Objects. 132
Various Reconstructed Scenes. o oo oL 135
Prediction Result of the Method Outlined in this Section. 136
InnovizTwo Instance Injection. L o L. 138
Three-Dimensional Mesh Models. 139
Mesh Objects are Retraced in the InnovizTwo Structure. 140
Synthetic Object Injected into Real InnovizTwo Data. 140
Scene Fusion Process on InnovizIwoData 141

8.20 Validation Set Predictions of the Three Evaluation Models. 143
8.21 Combined Submission Predictions. 146

175

List of Tables

3.1

4.1
4.2
43

4.4

5.1
52
53

6.1

6.2

6.3

6.4
6.5
6.6

7.1

7.2

8.1
8.2
8.3
8.4
8.5

Comparison of the Segmentation Quality Using the Intersection over Union and the

Recall Average e 43
Influence of the RangePillar Modules in the Full Network. 57
Influence of Hyperparameters of the RangePillars on the Final Metric. 57
Comparison of the Pillar-Pixel-Point Classification Module with Current State-of-the-

Art Post-Processing Modules for Projection Networks. 59
The Performance of the Original SalsaNext and the Proposed RangePillar Network on

the SemanticKITTI Validation Data. 59
Semantic Segmentation Results. o oL 66
Panoptic Segmentation Results. o oL 66
Panoptic Segmentation Methods on the SemanticKITTI TestSet. 73

Results of Various Networks with and without the Presented Augmentation Pipeline

on the SemanticKITTI Validation Set. 89
Results of Cylinder3D with and without the Presented Augmentation Pipeline on the

Hidden SemanticKITTI Test Set. 91
Results of Cylinder3D Networks with and without the Presented Augmentation

Pipeline on the Aptiv Validation Set. 91
Ablation Study using the Cylinder3D Network on the SemanticKITTI Validation Set. 92
Performance on Reduced Data Sizes. 92

Comparison of the Presented Augmentation Methods to Current State-of-the-Art Lidar
Augmentation Methods. Lo 93

NuScenes to SemanticKITTI Ablation Study of the Presented Domain Adaption Method
Using the Cylinder3D Network. 104
SemanticKITTI to NuScenes Domain Adaption Methods Using the Cylinder3D Network. 106

Average Recall of the Detection Method. 127
Runtime Profiling of the Detection Method. 129
Mean Average Precision and Average Precisionper Class. 144
Class Agnostic Intersection over Union. 145
Submission Results of the Challenge. 145

177

LIST OF TABLES 179

	Abstract
	Acknowledgement
	Contents
	Contents
	1 Introduction
	1.1 Main Contributions
	1.2 Publications

	2 Fundamentals
	2.1 Lidar Sensor Fundamentals
	2.1.1 Automotive Lidar Sensors

	2.2 Deep Learning
	2.2.1 Feedforward Neural Networks
	2.2.2 Convolutional Neural Networks
	2.2.3 Segmentation

	2.3 Deep Learning on Lidar Data

	I Developing Novel Algorithms and Networks for Lidar Segmentation
	3 Contributions to Instance Segmentation: Developing a New Clustering Algorithm for Lidar Data
	3.1 Related Work
	3.1.1 Clustering Algorithms

	3.2 Fast Lidar Image Clustering: Method
	3.2.1 Ground Extraction
	3.2.2 Clustering

	3.3 Fast Lidar Image Clustering: Evaluation
	3.3.1 Runtime
	3.3.2 Segmentation Quality

	3.4 Conclusion

	4 Contributions to Semantic Segmentation: Creating an Advanced Network Architecture for Three-Dimensional Semantic Segmentation of Lidar Point Clouds
	4.1 Related Work
	4.2 RangePillars: Method
	4.2.1 Point Cloud to RangePillars
	4.2.2 Multi-Scale Pillar Feature Aggregation
	4.2.3 Image Backbone
	4.2.4 Pillar-Pixel-Point Classification
	4.2.5 Hydra Loss

	4.3 RangePillars: Evaluation
	4.3.1 Ablation Study
	4.3.2 Projection Cleaner
	4.3.3 Benchmark Results

	4.4 Conclusion

	5 Contributions to Panoptic Segmentation: Developing Novel and Improved Methods for Panoptic Point Cloud Segmentation
	5.1 Related Work
	5.2 Lidar Cluster Classification
	5.2.1 Lidar Cluster Classification: Method
	5.2.2 Lidar Cluster Classification: Evaluation

	5.3 Lidar Image Panoptic Segmentation
	5.3.1 Lidar Image Panoptic Segmentation: Method
	5.3.2 Lidar Image Panoptic Segmentation: Evaluation

	5.4 Conclusion

	II Enhancing Lidar Segmentation Perception and Adaptability: Novel Techniques for Data Augmentation and Domain Adaptation
	6 Developing Advanced Lidar Point Cloud Augmentation Methods for Improved Segmentation
	6.1 Related Work
	6.1.1 Global Augmentations
	6.1.2 Local Augmentations
	6.1.3 Context Augmentations

	6.2 Structure Aware Lidar Augmentation Methods
	6.2.1 Structure Aware Global Lidar Augmentation Methods
	6.2.2 Structure Aware Point Cloud Injection
	6.2.3 Structure Aware Point Cloud Fusion

	6.3 Evaluation
	6.3.1 Improving Segmentation
	6.3.2 Ablation Study
	6.3.3 Overcoming Data Scarcity
	6.3.4 State of the Art

	6.4 Conclusion

	7 Enhancing Lidar Domain Adaptation for Robust Semantic Segmentation
	7.1 Related Work
	7.2 Lidar Domain Adaptation for Segmentation
	7.2.1 Non-Causal Data Collection
	7.2.2 Lidar Mesh Creation
	7.2.3 Virtual Lidar Sampling
	7.2.4 Instance Injections
	7.2.5 Mixing Domains
	7.2.6 Pseudo Labels

	7.3 Evaluation
	7.3.1 NuScenes to SemanticKITTI
	7.3.2 SemanticKITTI to NuScenes
	7.3.3 NuScenes to Velodyne Alpha Prime
	7.3.4 SemanticKITTI to InnovizTwo

	7.4 Conclusion

	III Expanding the Horizons of Autonomous Driving: Novel Applications of Lidar Segmentation
	8 Driving Forward with Lidar Segmentation: Innovative Applications in the Automotive Industry
	8.1 Lidar Segmentation for Radar Segmentation
	8.1.1 Related Work
	8.1.2 Method
	8.1.3 Results
	8.1.4 Conclusion

	8.2 Lidar Segmentation for Online Detection
	8.2.1 Method
	8.2.2 Evaluation
	8.2.3 Conclusion

	8.3 Lidar Segmentation for Closed Loop Re-Simulation
	8.3.1 Method
	8.3.2 Evaluation
	8.3.3 Conclusion

	8.4 Lidar Segmentation Augmentation Techniques for Semi-Supervised Object Detection
	8.4.1 Method
	8.4.2 Evaluation
	8.4.3 Submission
	8.4.4 Conclusion

	8.5 Conclusions on the Versatility and Effectiveness of Lidar Segmentation in Autonomous Vehicles

	9 Conclusion and Outlook
	Bibliography
	Acronyms
	Glossary
	List of Figures
	List of Tables

