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und Werte, die sie an mich weitergegeben haben, sowie für die vielen schönen
gemeinsamen Erlebnisse danken. Meiner Schwester Laura und meinem Schwa-
ger Maximilian danke ich für die tiefe freundschaftliche Verbundenheit und die
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Introduction

The consideration of the spectra of operators is an elegant means to transform an
intricate and abstract object like an operator in a Banach space into a subset of the
complex plane which is much easier to grasp and can be handled more intuitively.
Theoretical significance abounds in this concept, as the analysis of the spectrum
yields valuable insights into the properties of the corresponding operator. This
leads to a wide range of applications across diverse domains where spectral theory
has had far-reaching impacts and remains a dynamic field of ongoing research.

However, the exact determination of an operator’s spectrum, whether through
analytical or computational methods, is only possible in rare cases. Moreover, the
susceptibility of the spectrum to perturbations poses a substantial challenge, intro-
ducing uncertainties from model variations, approximations, and computational
errors.

In this thesis, we will explore various approaches aimed to address these chal-
lenges. Our primary tools are spectral supersets which provide more opportunities
for numerical computation strategies and / or exhibit greater resilience with regard
to perturbations. These supersets navigate a fine line, as they still need to be precise
enough to offer insights into key properties of the operator under consideration.

One way to construct a perturbation-resistant superset of the spectrum of an
operator A is to consider the union of the spectra of slightly perturbed versions of
A. The resulting set is called the ε-pseudospectrum defined as

σε(A) =
⋃

∥P∥<ε

σ(A+ P )

for some ε > 0. See [51] for an in-depth treatment of pseudospectra, their applica-
tions and many examples. The numerical computation of σε(A) has been intensively
studied in the matrix case. However, for infinite-dimensional operators the usual
procedure is to compute the pseudospectra of finite-dimensional approximations
but so far convergence properties remain unproven in the general case.

Our approach, considering Hilbert spaces, is based on the idea to establish an
enclosure of the pseudospectrum using the well-known numerical range

W (A) = {⟨Ax, x⟩ | x ∈ D(A), ∥x∥ = 1} ,

see [23] for an overview. More precisely, we utilize the numerical ranges of the

xi
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inverses of shifted versions of A and first show that

σε(A) ⊂
⋂
s∈S

[(
Bδs(W ((A− s)−1))

)−1
+ s
]

(1)

for ε > 0 and S ⊂ ϱ(A). Furthermore, we prove that, depending on the choice of
S, this enclosure can be remarkably precise in the sense that it is contained in the
closure of the pseudospectrum under optimal selection of shifts.

To obtain a numerically computable superset of σε(A), we refine our approach
further. We demonstrate that it suffices to calculate the numerical ranges of
approximating matrices, i.e.

σε(A) ⊂
⋂
s∈S

[(
Bδs(W ((An − s)−1))

)−1
+ s
]

(2)

for n sufficiently large, where (An)n is a sequence of matrices which approximates
the operator A strongly and S is a finite subset of ϱ(A). At this point, we can
leverage the existence of highly effective algorithms in the literature for computing
numerical ranges of matrices.

The introduction of a decomposition H = H1 ⊕H2 of a Hilbert space H gives
the opportunity to take the concept of the numerical range one step further. In
this scenario, every bounded operator A : H → H can be expressed as a block
operator matrix of the form

A =

[
A B
C D

]
where A : H1 → H1, B : H2 → H1, C : H1 → H2, D : H2 → H2 are bounded
operators. With this at hand, the quadratic numerical range (QNR) is defined by

W 2(A ) =
⋃

x∈SH1
,y∈SH2

σ

([
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

])
,

where SHi
= {x ∈ Hi | ∥x∥ = 1}, i = 1, 2. The monograph [52] provides a detailed

overview of many properties of the QNR and in [45] and [46], approximation
schemes for unbounded operators are established and convergence theorems are
proven relating the QNR of an operator to the QNR of its finite-dimensional
discretizations.

However, to the best of our knowledge, there are no effective algorithms for
numerical computation available even for the matrix case prior to this work.
The prevailing method relies on random vector sampling, which is not only very
expensive but also tends to yield bad results, particularly for higher-dimensional
matrices.

We present a novel computational method that achieves superior results in
less time. The key innovation lies in the strategic selection of the utilized vector
pairs (x, y) ∈ SH1

× SH2
, resulting in a point cloud that represents a high-quality

approximation of the image of the actual QNR, even with a relatively small
set of vectors. This selection process places particular emphasis on those (x, y)



xiii

that correspond to points near the boundary of the QNR. At the heart of this
methodology is the maximization of a purposefully tailored objective function. This
enables us to seek the boundary of the quadratic numerical range when moving
from an interior point in a specified direction. With the application of speedup
techniques, we demonstrate through various examples that the resulting algorithm
outperforms the random vector method in both quality of the produced images
and computational speed.

This thesis unfolds as follows: Chapter 1 lays the groundwork with known results
about the spectral theory for unbounded operators. We present the contents in a
manner tailored to meet the requirements of the subsequent chapters. Alongside
explanations of the fundamental principles, we place particular emphasis on the
theory of spectral perturbations, certain spectral subsets, and the spectra of
compact operators.

Moving forward to Chapter 2, we delve deeper into the three aforementioned
spectral supersets that underlie the entirety of this thesis. For each of these sets,
we start by outlining their basic properties and especially their relation to the
spectrum. Subsequently, we provide an overview of the current state-of-the-art
techniques for their numerical computation, summarizing the key principles of the
algorithms available in the existing literature. Each of the three sections ends with
a consistent example, enabling us to make meaningful comparisons between the
spectral supersets.

In Chapter 3, we expand upon the content presented in the article [18]. This
chapter details the process of obtaining the enclosure (1) and specifies how it can be
designed in an optimal way. Additionally, we explore various approximation schemes
enabling the derivation of a computable enclosure (2) for the pseudospectrum of
an infinite-dimensional operator that is expressed in terms of finite-dimensional
matrices. We commence with a more general strong approximation scheme, pro-
gressing to a uniform approximation scheme that provides an additional estimate
for the starting index n0 at which (2) holds on bounded sets. The requirements for
both of these schemes are satisfied for example by finite element discretizations as
we show. In subsequent sections, we study two classes of structured block operator
matrices and explain how to derive strong approximations for them. The obtained
results are applied to the advection-diffusion operator, the Hain-Lüst operator and
a Stokes-type operator and then discussed on the basis of the plotted enclosures.
Afterwards, in the concluding section of this chapter, we explore the relationship
between the pseudospectra of a third class of structured block operator matrices
and the pseudospectra of their Schur complements.

Moving on to the final Chapter 4, which builds upon the article [30], we focus
on the development of the novel algorithm for computing the quadratic numerical
range of matrices. Beginning with foundational analytical considerations, we
establish conditions under which segments of the QNR can be expressed through
explicit formulas. We also delve into the analysis of curves and their derivatives
within the QNR. Subsequently, we outline our approach for seeking the boundary
through the maximization of an objective function and describe how this function
can be chosen and why it needs to be adapted to the size and shape of the QNR
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in order to deal with non-convex regions. We support our method by proving
that this adaptation can in in fact result in the obtainment of a given boundary
point up to a small error whenever a weak regularity condition is satisfied. The
resulting algorithm at this point enables us to progress towards the boundary of
the quadratic numerical range after specifying an arbitrary point in the interior
and an arbitrary search direction. Building upon this foundation, we then develop
an algorithm that computes an approximation of the QNR of any given matrix
while automatically adapting the objective function in the process. Additionally,
we introduce a speedup technique that significantly reduces computational effort.
Multiple examples illustrate the high efficacy of this approach, particularly in
comparison to the random vector sampling method. We conclude this chapter with
a section devoted to the question why random vector sampling yields suboptimal
results for higher-dimensional matrices. We show that the probability that a point
in the QNR, determined by the random vector method, lies outside of a small
neighborhood of the expected value decreases exponentially with an increase in the
dimension of the matrix if its norm remains constant.



Chapter 1

The Spectra of Operators

Knowledge about the eigenvalues of a matrix or more generally about the spectrum
of a linear operator is a powerful tool in analysis and numerics and is of great
importance in many different areas. These range from more abstract problems
in functional analysis and control theory or stability analysis of linear dynamical
systems to applied settings in mechanics, chemistry, physics, economics and ecology.

In this chapter, we will outline the basis of the theory surrounding the spectra of
operators. Our focus is on the aspects that will be most relevant to the scope of this
thesis, like the influence of perturbations, certain spectral subsets and the special
case of compact operators. For more information we refer to [15, 32, 47, 51, 56]
where this topic is treated on a much broader scale.

1.1 The Spectra of Unbounded Operators

In linear algebra, a point λ ∈ C is said to be an eigenvalue of a square matrix M
if M − λI is not injective (or equivalently not surjective) where I is the identity
matrix. In this section we give a brief overview on how the concept of eigenvalues
can be extended to the concept of spectra of potentially unbounded linear operators
A : D(A) ⊂ X → X acting on a potentially infinite dimensional complex Banach
space X .

Let I denote the identity on X .

Definition 1.1.1. a) The resolvent set ϱ(A) is the set of all λ ∈ C for which
A− λI is bijective and the resolvent operator

R(A, λ) := (A− λI)−1

is bounded.

b) The spectrum of A is defined by

σ(A) = C \ ϱ(A),

i.e. it is the set of all λ ∈ C for which A−λI does not have a bounded inverse.

1



2 1. The Spectra of Operators

In the following we will abbreviate an expression like A−λI by A−λ whenever
its meaning is clear from the context.

It is immediate from the definition that

σ(α+ βA) = α+ βσ(A) (1.1)

for α, β ∈ C.
The concept of spectra is of interest only, if the operator under consideration is

closed, i.e. if its graph G(A) := {(x,Ax) |x ∈ D(A)} is a closed subset of X × X .
This is because if A is not closed, we always have σ(A) = C due to the fact that in
this case none of the A− λ with λ ∈ C is closed either and if A− λ is invertible,
we have

G
(
(A− λ)−1

)
= {((A− λ)x, x) |x ∈ D(A)}

and thus (A−λ)−1 is not closed too and therefore not bounded. On the other hand,
if A is closed, the boundedness of (A− λ)−1 follows directly from the surjectivity
of A− λ by use of the closed graph theorem.

Theorem 1.1.2. Let λ ∈ ϱ(A). Then the following assertions hold:

a) R(A, λ)−R(A,µ) = (λ− µ)R(A, λ)R(A,µ) for all µ ∈ ϱ(A);

b) The function R(A, ·) : ϱ(A) → L(X ), λ 7→ R(A, λ), is analytic;

c) ∥R(A, λ)∥ ≥ 1
dist(λ,σ(A)) .

Proof. a) From the definition of the resolvent we see that

x = (A− λ)R(A, λ)x = R(A, λ)(A− λ)x

holds for every x ∈ D(A). In other words, A and R(A, λ) commute on the
domain of A. Furthermore, we have

R(A, λ) = R(A, λ)(AR(A,µ)− µR(A,µ)),

R(A,µ) = (AR(A, λ)− λR(A, λ))R(A,µ)

also by definition of the resolvent. Subtracting these two equations and
using the commutation property just mentioned yields the desired resolvent
equation.

b), c) Let µ ∈ C with |λ− µ| ≤ δ
∥R(A,λ)∥ for some δ ∈ (0, 1). We will show that

µ ∈ ϱ(A) and

Rµ :=

∞∑
n=0

(µ− λ)nR(A, λ)n+1 (1.2)

coincides with R(A,µ). For x ∈ X we have

∥(µ− λ)nR(A, λ)n+1x∥ ≤ δn

∥R(A, λ)∥n
∥R(A, λ)∥n+1∥x∥

= δn∥R(A, λ)∥∥x∥
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and thus the series (1.2) converges with ∥Rµ∥ ≤ ∥R(A,λ)∥
1−δ . By using a) we

have
(A− µ)R(A, λ) = (λ− µ)R(A, λ) + I.

This can be used to obtain

(A− µ)Rµ = −
∞∑
n=0

(µ− λ)n+1R(A, λ)n+1 +

∞∑
n=0

(µ− λ)nR(A, λ)n

= I

and similarly
Rµ(A− µ)x = x

for all x ∈ D(A), which concludes the proof. ❑

Corollary 1.1.3. σ(A) is a closed subset of C.

Proof. ϱ(A) is open because by Theorem 1.1.2 c) we know that for every λ ∈ ϱ(A)
the open ball around λ with radius 1/∥R(A,λ)∥ is contained in ϱ(A). ❑

Theorem 1.1.4. If A is bounded, then σ(A) is compact. More precisely we have

max
{
|λ|
∣∣λ ∈ σ(A)

}
= lim
n→∞

∥∥An∥∥1/n
= inf
n∈N

∥∥An∥∥1/n ≤ ∥A∥.

r(A) := infn∈N
∥∥An∥∥1/n

is called the spectral radius of A.

The proof of Theorem 1.1.4 requires the following lemma about sequences in R.

Lemma 1.1.5. Let (an)n ⊂ R be a sequence that satisfies 0 ≤ an+m ≤ anam for
all m,n ∈ N. Then

lim
n→∞

n
√
an = inf

n∈N
n
√
an =: a.

Proof. Let ε > 0 and choose N ∈ N such that N
√
aN < a + ε. Let b :=

max{a1, . . . , aN} and write n ∈ N in the form n = kN + r with k ∈ N and
1 ≤ r ≤ N . Then we have

n
√
an = a

1/n
kN+r ≤

(
akNar

)1/n ≤ (a+ ε)
kN/nb

1/n

= (a+ ε)(a+ ε)−
r/nb

1/n ≤ a+ 2ε

for n large enough. ❑

Proof of Theorem 1.1.4. By choosing an =
∥∥An∥∥ in Lemma 1.1.5 we have that∥∥An∥∥1/n

converges to r(A) = infn∈N∥An∥1/n for n→ ∞. Let |λ| > r(A). Then

lim sup
n→∞

∥∥∥∥(Aλ
)n∥∥∥∥1/n

= lim
n→∞

∥∥An∥∥1/n

|λ|
=
r(A)

|λ|
< 1
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ensures the convergence of Rλ := −λ−1
∑∞
n=0

(
A
λ

)n
. Moreover,

(A− λ)Rλ = −
∞∑
n=0

λ−(n+1)An+1 +

∞∑
n=0

λ−nAn = I

and similarly Rλ(A− λ) = I. Thus, λ ∈ ϱ(A), Rλ = R(A, λ) and σ(A) ⊂ Br(A)(0).

Hence, with Corollary 1.1.3, σ(A) is compact and r0 := max
{
|λ|
∣∣λ ∈ σ(A)

}
exists

with r0 ≤ r(A).
It remains to show r0 ≥ r(A). Let therefore |µ| > r0. For an arbitrary l ∈ L(X )′

we consider the function
fl(λ) := l (R(A, λ))

which is analytic on
{
λ ∈ C

∣∣ |λ| > r0
}
by Theorem 1.1.2 b). As we have already

seen, this function can be represented as

fl(λ) = −
∞∑
n=0

l(An)λ−(n+1) (1.3)

on
{
λ ∈ C

∣∣ |λ| > r(A)
}
. From [11, Theorem V.1.11] we know that the series

representation of a complex-analytic function is unique and so the equality (1.3)
also holds on the larger set

{
λ ∈ C

∣∣ |λ| > r0
}
and in particular in µ. Due to the

convergence we conclude

lim
n→∞

l
(
Anµ−(n+1)

)
= 0

which makes
(
Anµ−(n+1)

)
a weak null-sequence since l ∈ L(X )′ was chosen ar-

bitrarily. Hence,
(
Anµ−(n+1)

)
is bounded therefore there exists a K > 0 such

that ∥∥An∥∥1/n ≤ K
1/n|µ|(n+1)/n → |µ|.

Thus, |µ| ≥ r(A) for every |µ| > r0 which implies r0 ≥ r(A). ❑

Theorem 1.1.6. Let X be a Hilbert space with inner product ⟨·, ·⟩ and A ∈ L(X )
normal, i.e. A∗A = AA∗. Then we have

r(A) = ∥A∥.

Proof. We have ∥A∗A∥ ≤ ∥A∗∥∥A∥ = ∥A∥2 and

∥Ax∥2 = ⟨Ax,Ax⟩ = ⟨A∗Ax, x⟩ ≤ ∥A∗Ax∥

for every x ∈ X with ∥x∥ = 1. Hence, ∥A∗A∥ = ∥A∥2 and thus also
∥∥(A∗A)2

∥∥ =
∥A∗A∥2. With this at hand we see∥∥A2

∥∥2 =
∥∥(A2

)∗
A2
∥∥ =

∥∥(A∗A)2
∥∥ = ∥A∗A∥2 =

(
∥A∥2

)2
,

i.e.
∥∥A2

∥∥ = ∥A∥2, and because An is normal for every n ∈ N as well we have

∥A∥2k =
∥∥A2k

∥∥ for all k ∈ N. Hence,

r(A) = lim
n→∞

∥∥An∥∥1/n
= lim
k→∞

∥∥A2k
∥∥1/2k

= ∥A∥. ❑
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Lemma 1.1.7. Let A be closed and λ ∈ ϱ(A). Then we have

σ(R(A, λ)) \ {0} = (σ(A)− λ)−1.

Proof. For a µ ∈ C \ {0} we have

R(A, λ)− µ = −
(
A− (λ+ 1

µ )
)
µR(A, λ).

Note that R(A, λ) : X → D(A) is bijective and therefore R(A, λ) − µ : X → X
is bijective if and only if A − (λ + 1

µ ) : D(A) → X is bijective. Hence, we have

µ ∈ ϱ(R(A, λ)) if and only if λ+ 1
µ ∈ ϱ(A) if and only if µ = (ν − λ)−1 for some

ν ∈ ϱ(A). ❑

Corollary 1.1.8. Let X be a Hilbert space, A ∈ L(X ) normal and λ ∈ ϱ(A). Then
we have

∥R(A, λ)∥ =
1

dist(λ, σ(A))
.

Proof. Since R(A, λ) is normal as well this is a direct consequence of Theorem 1.1.6
and Lemma 1.1.7 because

∥R(A, λ)∥ = max
{
|µ|
∣∣µ ∈ σ(R(A, λ))

}
= max

{
1

|µ− λ|

∣∣∣∣µ ∈ σ(A)

}
=

1

dist(λ, σ(A))
. ❑

We conclude this section with the consideration of block operator matrices.
The following results can be found in [52] and we also include the proofs here for
convenience of the reader. Let X1 and X2 be Banach spaces such that X = X1×X2.

Definition 1.1.9. a) An operator A : D(A ) ⊂ X → X that can be written in
the form

A =

[
A B
C D

]
with linear operators A : D(A) ⊂ X1 → X1, B : D(B) ⊂ X2 → X1, C : D(C) ⊂
X1 → X2 and D : D(D) ⊂ X2 → X2 such that

D(A ) =
(
D(A) ∩ D(C)

)
×
(
D(B) ∩ D(D)

)
is called block operator matrix ;

b) Let A be a block operator matrix. Then the operator function S defined by

S(λ) = D − λ− C(A− λ)−1B for λ ∈ ϱ(A)

is called Schur complement of A ;
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c) σ(S) := {λ ∈ ϱ(A) | 0 ∈ σ(S(λ))};

d) ϱ(S) := {λ ∈ ϱ(A) | 0 ∈ ϱ(S(λ))}.

Such a block operator matrix does not need to be closed or closable even if we
assume all of its entries A, B, C and D to be closed. It is therefore natural to
ask under which conditions A is closed or closable and how this closure can be
obtained.

Theorem 1.1.10. Let A be a block operator matrix and assume that C is closable,
D(A) ⊂ D(C), ϱ(A) ̸= ∅, D(B) is a dense subset of X2 and that for some (and
hence for all) λ ∈ ϱ(A), the operator (A− λ)−1B is bounded on D(B). Then A is
closable (closed, respectively) if and only if S(λ) is closable (closed, respectively)
for some (and hence for all) λ ∈ ϱ(A). In this case, the closure A is given by

A = λ+

[
I 0

C(A− λ)−1 I

] [
A− λ 0

0 S(λ)

] [
I (A− λ)−1B
0 I

]
(1.4)

independently of λ ∈ ϱ(A) where

D(A ) =

{[
x
y

]
∈ X1 ×X2

∣∣∣∣x+ (A− λ)−1By ∈ D(A), y ∈ D(S(λ))

}
.

Proof. We start by noting that the assumptions on (A− λ)−1B and S(λ) do not
depend on the choice of λ ∈ ϱ(A). This is because from the resolvent identity
Theorem 1.1.2 a) we get that for λ0 ∈ ϱ(A) the differences

(A− λ0)
−1B − (A− λ)−1B = (λ0 − λ)(A− λ0)

−1(A− λ)−1B,

S(λ0)− S(λ) = −(λ0 − λ)(I + C(A− λ0)
−1(A− λ)−1B)

are bounded. Next, (A − λ) can be written in the form

A − λ =

[
I 0

C(A− λ)−1 I

] [
A− λ 0

0 S(λ)

] [
I (A− λ)−1B
0 I

]
(1.5)

where (A− λ)−1B = (A− λ)−1B|D(B) can be replaced by (A− λ)−1B because for
the domain of the middle factor we have

D(A)×D(S(λ)) = D(A)×
(
D(B) ∩ D(D)

)
⊂ D(A)×D(B).

With this, the first and last factor in (1.5) are bounded and boundedly invertible in
X1×X2. Therefore, A −λ is closable (closed, respectively) if and only if the middle
factor is. Now since ϱ(A) ̸= ∅ implies that A is closed, we have that A − λ is
closable (closed, respectively) if and only if S(λ) is and the closure of A −λ is then
given by taking the closure of the middle factor in (1.5). Lastly, the independence
of A on λ implies the independence of the right hand side of (1.4) on λ. ❑
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Corollary 1.1.11. Under the assumptions of Theorem 1.1.10 we have

σ(A ) \ σ(A) = σ(S)

and, for λ ∈ ϱ(S) = ϱ(A ) ∩ ϱ(A) ⊂ ϱ(A ),

(A − λ)−1

=

[
I −(A− λ)−1B
0 I

] [
(A− λ)−1 0

0 S(λ)
−1

] [
I 0

−C(A− λ)−1 I

]

=

[(
(A − λ)−1

)
1

(
(A − λ)−1

)
2(

(A − λ)−1
)
3

(
(A − λ)−1

)
4

]
,

where (
(A − λ)−1

)
1
= (A− λ)−1 + (A− λ)−1B S(λ)

−1
C(A− λ)−1,(

(A − λ)−1
)
2
= −(A− λ)−1B S(λ)

−1
,(

(A − λ)−1
)
3
= −S(λ)

−1
C(A− λ)−1,(

(A − λ)−1
)
4
= S(λ)

−1
.

Proof. This is a direct consequence of Theorem 1.1.10 because the first and last
factor in the right hand side of (1.4) are bounded and boundedly invertible in
X1 ×X2. ❑

In [52], results like Theorem 1.1.10 and Corollary 1.1.11 are also given for
differently structured block operator matrices but the versions stated here suffice
for the scope of this thesis.

1.2 The Spectra of Perturbed Operators

Let us come back to the consideration of general linear operators A : D(A) ⊂ X → X
and study the influence of perturbations of A on the spectrum σ(A).

Theorem 1.2.1. Let λ ∈ ϱ(A). Then the following assertions hold:

a) λ ∈ ϱ(A+ P ) for any P ∈ L(X ) that satisfies ∥P∥ < 1
∥R(A,λ)∥ ;

b) Conversely, for any ε > 1
∥R(A,λ)∥ , there exists a P ∈ L(X ) with ∥P∥ < ε such

that (A+ P )x = λx for some x ∈ D(A), x ̸= 0, i.e. λ ∈ σ(A+ P ).

Proof. a) Let P ∈ L(X ) with ∥P∥ < 1
∥R(A,λ)∥ and rewrite

A+ P − λ = (I + P (A− λ)−1)(A− λ).

Here, ∥−P (A − λ)−1∥ ≤ ∥P∥∥(A − λ)−1∥ < 1 implies the invertibility of
I+P (A−λ)−1 by a Neumann-series argument. Hence, A+P −λ is invertible.
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b) Let ε > 1
∥R(A,λ)∥ . Then ∥εR(A, λ)∥ > 1 and thus there exist u ∈ D(A) and

v ∈ X with ∥u∥ > 1 and ∥v∥ = 1 such that εR(A, λ)v = u or equivalently

R(A, λ)
εv

∥u∥
=

u

∥u∥
.

This proves the existence of x ∈ D(A) and y ∈ X with ∥x∥ = 1 and ∥y∥ < ε
such that y = (A− λ)x. Now take S := span{x} and consider the functional
PS ∈ S′ that maps an element of S, i.e. a scalar multiple µx of x, to µ. We
have ∥PS∥ = 1 and by the Hahn-Banach theorem, PS can be extended to

a functional P̃ on X with the same norm and P̃ |S = PS . Multiplying the

scalar value of P̃ to −y results in an operator P ∈ L(X ) with ∥P∥ = ∥y∥ < ε
such that (A+ P )x = λx. ❑

The results of Theorem 1.2.1 are also referred to as the upper semicontinuity
of the spectrum. Roughly speaking, it says that a small perturbation of A can
only result in a small enlargement of σ(A). However, the spectrum can be lower
simidiscontinuous in general as the following example from [32, p. 210] shows. Here,
the spectrum of A shrinks suddenly when it is subject to a small perturbation.

Example 1.2.2. Let X = ℓp(Z), p ≤ 1 ≤ ∞, and let {xn}n∈Z be the canonical
basis on X , i.e. xn = (δnj)j . Define A ∈ L(X ) via Ax0 = 0 and Axn = xn−1

for n ̸= 0. Then ∥A∥ = 1 and thus σ(A) is a subset of the unit disk in C by
Theorem 1.1.4. Due to the fact that for any λ ∈ C with |λ| < 1 the vector
u :=

∑∞
n=0 λ

nxn satisfies (A − λ)u = 0 and because σ(A) is closed, we have
equality, namely

σ(A) =
{
λ ∈ C

∣∣ |λ| ≤ 1
}
.

Now let ε > 0 and consider the perturbation P ∈ L(X ) with ∥P∥ = ε defined via
Px0 = εx−1 and Pxn = 0 for n ̸= 0. Then we have (A + P )mxn = εxn−m for
0 ≤ n < m and (A+P )mxn = xn−m for n ∈ Z\ [0,m[, which implies ∥(A+P )m∥ =
max{1, ε} for all m ∈ N. Hence, r(A+ P ) = limm→∞∥(A+ P )m∥1/m = 1 and thus

σ(A+ P ) ⊂
{
λ ∈ C

∣∣ |λ| ≤ 1
}

(1.6)

as before. However, 0 ∈ ϱ(A+P ), because A+P is invertible with (A+P )−1x−1 =
ε−1x0 and (A + P )−1xn−1 = xn for n ≠ 0. Moreover, we have ∥(A + P )−1∥ =
max{1, ε−1} for all m ∈ N, which implies r

(
(A + P )−1

)
= 1 as above. Thus,

σ
(
(A+ P )−1

)
⊂
{
λ ∈ C

∣∣ |λ| ≤ 1
}
and by Lemma 1.1.7 this and (1.6) yield

σ(A+ P ) =
{
λ ∈ C

∣∣ |λ| = 1
}
.

Hence, an arbitrarily small perturbation of A can result in the shrinkage of the
spectrum from the whole unit disk to the unit circle.

In the matrix case however, this can not happen as the following result shows.
Before we we state it, we have to clarify the notion of the distance between two
sets in C.
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Definition 1.2.3. For two nonempty sets K,L ⊂ C we define the distance
dist(K,L) via

dist(K,L) = sup
k∈K

(
inf
l∈L

∥k − l∥
)

and the Hausdorff-distance dH(K,L) via

dH(K,L) = max {dist(K,L),dist(L,K)} .

Note, that K ⊂ Bε(L) whenever dist(K,L) < ε and dist(K,L) ≤ ε whenever
K ⊂ Bε(L).

Theorem 1.2.4. Let X be finite dimensional. Then σ(A) is a continuous function
of A in the sense that

lim
∥P∥→0

dH
(
σ(A+ P ), σ(A)

)
= 0.

Proof. This is [32, Theorem II.5.14]. ❑

However, for some A, σ(A) can still be very sensitive with regard to perturba-
tions even though there is a continuous dependence.

Example 1.2.5. Consider the n× n matrix

A =



1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 . . . . . . 0 1


with its only eigenvalue λ = 1 and consider the perturbed version

A+ P =



1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 1
ε 0 . . . 0 1


with some ε > 0. Then, for x :=

[
ε−

n−1
n ε−

n−2
n . . . 1

]⊺
we have

(A+ P )x =
(
1 + ε

1
n

)
x.

Therefore, a perturbation of order O(ε) produced a perturbation of an eigenvalue

of order O
(
ε

1
n

)
.
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1.3 Spectral Subsets

The spectrum can be decomposed into different subsets, depending on the reason
why A− λ is not boundedly invertible.

Definition 1.3.1. a) The point spectrum σp(A) consists of all λ ∈ C for which
A− λ is not injective. The elements in σp(A) are called eigenvalues of A.

b) The continuous spectrum σc(A) consists of all λ ∈ C for which A − λ is
injective, not surjective and has dense range.

c) The residual spectrum σr(A) consists of all λ ∈ C for which A−λ is injective,
not surjective and does not have dense range.

If A is closed, we have σ(A) = σp(A) ∪ σc(A) ∪ σr(A), and if dimX < ∞, we
have σ(A) = σp(A).

Lemma 1.3.2. Let A be closed and densely defined. Then we have

σr(A) = σp(A
′),

where A′ denotes the adjoint of A.

Proof. Let λ ∈ C. By the Hahn-Banach theorem we know that

(A− λ)D(A) ̸= X

if and only if there exists a continuous linear functional 0 ̸= x′ ∈ X ′ with

x′((A− λ)x) = 0 (1.7)

for all x ∈ D(A). This is equivalent to x′(Ax) = λx′(x) for all x ∈ D(A) which
means that x′ ∈ D(A′) and (A′ − λ)x′ = 0. ❑

Remark 1.3.3. If A : D(A) ⊂ H → H is a closed and densely defined operator on a
Hilbert space H with inner product ⟨·, ·⟩, the result of Lemma 1.3.2 can also be
expressed in terms of the Hilbert space adjoint A∗ of A, namely

σr(A) = (σp(A
∗))∗.

The complex conjugation on the right hand side of this equation stems from the
fact that in this case (1.7) can be rewritten as

⟨(A− λ)x, y⟩ = 0

with some y ∈ H by the Fréchet-Riesz theorem. Due to the antilinearity of the
inner product in the second argument we now obtain (A∗ − λ)y = 0.

Let λ ∈ C. If there exists a nonzero x ∈ D(A) (called eigenvector) with
(A− λ)x = 0 we have λ ∈ σp(A). If we weaken this condition and assume instead
that there exists no constant c > 0 such that ∥(A− λ)x∥ ≥ c∥x∥ for all x ∈ D(A)
then λ is an element of another – potentially larger – subset of σ(A) that will be
defined next.
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Definition 1.3.4. The approximate point spectrum σapp(A) is defined as the set
of all λ ∈ C for which there exists a sequence (xn)n ⊂ D(A) with ∥xn∥ = 1 for all
n ∈ N such that (A− λ)xn converges to 0 as n→ ∞. The elements in σapp(A) are
called approximate eigenvalues of A and the corresponding sequences (xn)n are
the approximate eigenvectors.

The spectrum, point spectrum and approximate point spectrum are related by
σp(A) ⊂ σapp(A) ⊂ σ(A).

Lemma 1.3.5. We have
∂σ(A) ⊂ σapp(A),

where ∂σ(A) denotes the boundary of σ(A).

Proof. Let λ ∈ ∂σ(A). Then there exists a sequence (λn)n ⊂ ϱ(A) with

lim
n→∞

λn = λ.

By Theorem 1.1.2 we have

lim
n→∞

∥R(A, λn)∥ = ∞

and therefore there exists a sequence (yn)n ⊂ X with ∥yn∥ = 1 for all n ∈ N such
that

lim
n→∞

∥R(A, λn)yn∥ = ∞.

Let xn := 1
∥R(A,λn)yn∥R(A, λn)yn. Then ∥xn∥ = 1, xn ∈ D(A) for all n ∈ N and

lim
n→∞

(A− λ)xn = lim
n→∞

(
1

∥R(A, λn)yn∥
yn + (λn − λ)xn

)
= 0.

Hence, λ ∈ σapp(A). ❑

Lemma 1.3.6. Let A be a closed operator. Then the following assertions hold:

a) σapp(A) = σp(A) ∪ {λ ∈ C | (A− λ)D(A) is not closed in X};

b) σ(A) = σapp(A) ∪ σr(A).
Proof. Let λ /∈ σapp(A). Then there exists a constant c > 0 such that

∥(A− λ)x∥ ≥ c∥x∥ (1.8)

for all x ∈ D(A). Let (yn)n = ((A − λ)xn)n be a sequence in (A − λ)D(A) with
limn→∞ yn = y ∈ X . Then the inequality (1.8) implies that (xn)n is a Cauchy
sequence and therefore we have limn→∞ xn = x for some x ∈ X . By the closedness
of A we obtain x ∈ D(A) and y = (A− λ)x and therefore (A− λ)D(A) is closed.

If on the other hand, (A − λ)D(A) is closed and (A − λ) is injective, then
(A− λ)−1 exists on (A− λ)D(A) and is closed because A is. Hence, (A− λ)−1 is
bounded by the closed graph theorem and therefore

∥x∥ = ∥(A− λ)−1(A− λ)x∥ ≤ c∥(A− λ)x∥

holds for all x ∈ D(A) and thus we have λ /∈ σapp(A). This proves a) which implies
b). ❑
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1.4 The Spectra of Compact Operators

A linear operator A : X → X is called compact, if one of the following equivalent
conditions is satisfied:

a) A maps every bounded set to a relatively compact set;

b) A maps the closed unit ball to a relatively compact set;

c) For every bounded sequence (xn)n in X , the sequence (Txn)n contains a
converging subsequence.

Theorem 1.4.1 (Riesz, Schauder). Let A be compact. Then the following assertions
hold:

a) The possibly empty set σ(A)\{0} contains at most countably many eigenvalues
λj of A;

b) If σ(A) is infinite, then λj → 0 as j → ∞.

Proof. See [47, Theorem 2.10]. ❑

Corollary 1.4.2. Let A be a closed operator with compact resolvent. Then the
following assertions hold:

a) σ(A) is either empty or σ(A) = σp(A) contains at most countably many
eigenvalues λj;

b) If σ(A) is infinite, then |λj | → ∞ as j → ∞.

Proof. Let µ ∈ ϱ(A). From Lemma 1.1.7 we obtain

σ(R(A,µ)) \ {0} = (σ(A)− µ)−1.

Moreover, by replacing ’bijective’ with ’injective’ in the proof of this lemma, we
also get the equality

σp(R(A,µ)) \ {0} = (σp(A)− µ)−1.

From Theorem 1.4.1 we know that σ(R(A,µ)) \ {0} contains at most countably
many eigenvalues µj of R(A,µ) that converge to zero if there are infinitely many.
Hence, we have

(σ(A)− µ)−1 = σ(R(A,µ)) \ {0} = σp(R(A,µ)) \ {0} = (σp(A)− µ)−1

These facts imply assertions a) and b), where λj = µ+ µ−1
j . ❑



Chapter 2

Spectral Supersets

The explicit computation of the whole spectrum of a linear operator by analytical
or numerical techniques is only possible in rare cases. Moreover, the spectrum
is in general quite sensitive with respect to small perturbations of the operator.
Therefore, one is interested in supersets of the spectrum that are easier to compute
and that are also robust under perturbations.

In this chapter, we recall what is known about these desired properties when it
comes to the ε-pseudospectrum, the numerical range and the quadratic numerical
range. For each of these we start by giving the definitions and basic properties.

2.1 The ε-Pseudospectrum

Let X be a complex Banach space and A : D(A) ⊂ X → X a linear operator. As we
have already seen in Section 1.2, the spectrum of A tends to be quite sensitive with
respect to small perturbations of the operator. It is therefore natural to consider
the union of the spectra of versions of A that have been slightly perturbed.

Definition 2.1.1. The ε-pseudospectrum of A is defined as

σε(A) =
⋃

∥P∥<ε

σ(A+ P ).

The notion of the ε-pseudospectrum has been independently introduced by
Landau [35], Varah [54], Godunov [33], Trefethen [49] and Hinrichsen and Pritchard
[25]. Besides the fact that the pseudospectrum is robust under perturbations, it is
also suitable to determine the transient growth behavior of linear dynamic models
in finite time, which may be far from the asymptotic behavior. For an overview on
the pseudospectrum and its applications we refer the reader to [51] and [14].

Scaling and shifting of the operator A translates to the pseudospectrum in the
following way: We have

σε(α+ βA) = α+ βσ ε
|β|

(A)

13
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for α, β ∈ C because of (1.1).
From Theorem 1.1.2 c), we have

∥R(A, λ)∥ ≥ 1

dist(λ, σ(A))

for all λ ∈ ϱ(A). Thus, ∥R(A, λ)∥ approaches ∞ when λ approaches the spectrum.
We will therefore introduce the following notational convention that will tacitly be
used throughout this thesis.

If λ ∈ σ(A), we write ∥R(A, λ)∥ = ∞.

Theorem 2.1.2. The ε-pseudospectrum can be equivalently defined by

σε(A) =

{
λ ∈ C

∣∣∣∣ ∥R(A, λ)∥ > 1

ε

}
.

Proof. This is a consequence of Theorem 1.2.1. Let λ ∈
⋃

∥P∥<ε σ(A+ P ). Then

there exists a P ∈ L(X ) with ∥P∥ < ε such that

λ ∈ σ(A+ P ). (2.1)

Now suppose ∥R(A, λ)∥ ≤ 1
ε , i.e.

1
∥R(A,λ)∥ ≥ ε. Then Theorem 1.2.1 a) implies

λ ∈ ϱ(A+ P ), which contradicts (2.1). The other inclusion follows directly from
Theorem 1.2.1 b). ❑

For two sets K,L ⊂ C we define

K + L =
{
k + l

∣∣ k ∈ K, l ∈ L
}
.

Theorem 2.1.3. The following spectral inclusion properties hold:

a) In general, we have
σε(A) ⊃ σ(A) + Bε(0);

b) If X is a Hilbert space and A ∈ L(X ) a normal operator, then

σε(A) = σ(A) + Bε(0).

Proof. a) σε(A) ⊃ σ(A) is obvious. Let λ ∈ ϱ(A) with dist(λ, σ(A)) < ε. Then
Theorem 1.1.2 c) yields

∥R(A, λ)∥ ≥ 1

dist(λ, σ(A))
>

1

ε
.

Hence, λ ∈ σε(A) by Theorem 2.1.2.

b) Let λ ∈ σε(A) \ σ(A). Then

1

dist(λ, σ(A))
= ∥R(A, λ)∥ > 1

ε

by Corollary 1.1.8 and Theorem 2.1.2. ❑
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Figure 2.1: σε(A) from Example 2.1.4 computed with EigTool

The numerical computation of the pseudospectrum of a matrix has been inten-
sively studied in the literature. Most algorithms use simple grid-based methods,
where one computes the smallest singular value of A−z at the points z of a grid, or
path-following methods, see the survey [50] or the overview at [14]. Both methods
face several challenges. The main problem of grid-based methods is first to find
a suitable region in the complex plane and then to perform the computation on
a usually very large number of grid points. The main difficulty of path-following
algorithms is to find a starting point, that is, a point on the boundary of the
pseudospectrum. Moreover, as the pseudospectrum may be disconnected it is
difficult to find every component. However, there are several speedup techniques
available, see [50], which are essential for applications.

The usual procedure to compute the pseudospectrum of a linear operator on
an infinite-dimensional Hilbert space is to approximate it by matrices and then
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to calculate the pseudospectrum of one of the approximating matrices. In [51,
Chapter 43], spectral methods are used for the approximation, but no convergence
properties of the pseudospectrum under discretization are proved. So far, only
few results are available concerning the relations between the pseudospectra of the
discretized operators and those of the infinite-dimensional operator. Convergence
properties of the pseudospectrum under discretization have been studied for the
linearized Navier-Stokes equation [19], for band-dominated bounded operators
[40] and for Toeplitz operators [7]. Bögli and Siegl [4, 6] prove local and global
convergence of the pseudospectra of a sequence of linear operators which converge in
a generalized resolvent sense. In [10], Colbrook et al. introduced a way of computing
pseudospectra of operators that can be written as an infinite-dimensional matrix.
Here, the operator A gets truncated and the algorithm produces subsets of the
pseudospectrum that converge to σε(A) with a form of error control as the size of the
truncation increases. Further, Wolff [57] shows some abstract convergence results
for the approximate point spectrum of a linear operator using the pseudospectra of
the approximations.

Example 2.1.4. Let us consider the matrix

A =


0 0 0 2i
0 0 0 0
0 0 −1 + 2i 2− 2i
3 0 2− 2i −1 + 2i

 .
Figure 2.1 depicts the boundaries of the sets σ 1

3
(A), . . . , σ 7

3
(A) computed with the

EigTool Matlab package from [13]. Here, the black dots represent the eigenvalues
of A. As we see, the level sets differ from σ(A) + Bε(0) and if ε is small enough,
σε(A) consists of several disconnected components.

2.2 The Numerical Range

Another well-established and thoroughly studied superset is the numerical range.
It is always convex which comes with both advantages and disadvantages as we will
see in the following short overview on its fundamental properties and in compari-
son to other spectral supersets later on. More details can be found in [22, 23, 27, 32].

Let H be a Hilbert space over C and let ⟨·, ·⟩ : H ×H → C denote the inner
product on H. We will consider a linear operator A : D(A) ⊂ H → H.

Definition 2.2.1. The numerical range of the operator A is defined by

W (A) = {⟨Ax, x⟩ | x ∈ D(A), ∥x∥ = 1} .

In the literature, this set is sometimes also referred to as the field of values of A.

It is immediate form the definition that

W (α+ βA) = α+ βW (A) (2.2)
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for α, β ∈ C. If the operator A is bounded, then W (A) is bounded as well because
of

|⟨Ax, x⟩| ≤ ∥A∥

for all x ∈ H with ∥x∥ = 1 by the Cauchy-Schwarz inequality. If in addition
dimH <∞, then W (A) is compact since it is the image of a compact set under a
continuous mapping.

Theorem 2.2.2 (Toeplitz-Hausdorff Theorem). The numerical range W (A) is a
convex set.

Proof. Let λ and κ be elements of W (A). We will show that the line segment
between λ and κ is also included in W (A). Due to the linearity of the numerical
range (2.2) we can assume without loss of generality that λ = 0 and κ = 1, so let
x, y ∈ D(A) with ∥x∥ = ∥y∥ = 1 such that ⟨Ax, x⟩ = 0 and ⟨Ay, y⟩ = 1. Our goal
is to find coefficients α, β ∈ R such that for z = αx+ βy ∈ D(A) the system{

∥z∥2 = α2 + β2 + 2αβℜ⟨x, y⟩ = 1,

⟨Az, z⟩ = β2 + αβ(⟨Ax, y⟩+ ⟨Ay, x⟩) = r
(2.3)

with 0 < r < 1 is satisfied. (2.3) is clearly solvable whenever B := ⟨Ax, y⟩+ ⟨Ay, x⟩
is real. In the other case, if B ∈ C \R, we can multiply x by an appropriate scalar
factor in order to obtain a version of (2.3) with a real B. To this end consider
x̃ = µx where µ = a+ ib satisfies the system{

|µ|2 = a2 + b2 = 1,

ℑB(x̃) = aℑB(x) + bℜ(⟨Ax, y⟩ − ⟨Ay, x⟩) = 0

which is clearly solvable. ❑

Theorem 2.2.3. The following spectral inclusion properties hold:

a) σp(A) ⊂W (A);

b) σapp(A) ⊂W (A);

c) If A is bounded, we have σ(A) ⊂W (A);

d) If A is closed and has compact resolvent, we have σ(A) ⊂W (A).

Proof. a) Let λ ∈ σp(A) with corresponding eigenvector x ∈ D(A) such that
∥x∥ = 1. Then ⟨Ax, x⟩ = λ.

b) Let λ ∈ σapp(A). Then there exists a sequence of approximate eigenvectors
(xn)n ⊂ D(A) such that limn→∞∥(A− λ)xn∥ = 0. By the Cauchy-Schwarz
inequality we obtain

⟨Axn, xn⟩ − λ = ⟨(A− λ)xn, xn⟩
≤ ∥(A− λ)xn∥



18 2. Spectral Supersets

and therefore
lim
n→∞

⟨Axn, xn⟩ = λ.

This yields λ ∈W (A).

c) From Theorem 1.1.4 we know that σ(A) is bounded and from Lemma 1.3.5
we have ∂σ(A) ⊂ σapp(A). This together with b) proves the assertion.

d) This follows immediately from a) and Corollary 1.4.2. ❑

Theorem 2.2.4. If A ∈ L(H) is a normal operator, then the closure of the
numerical range coincides with the convex hull of the spectrum, i.e.

W (A) = conv(σ(A)).

Proof. W (A) coincides with conv(σ(A)) if and only if every closed half plane in
C containing σ(A) also contains W (A). Since rotating and shifting A rotates and
shifts σ(A) and W (A) accordingly, it suffices to consider the case where

σ(A) ⊂ {λ ∈ C | ℜλ ≤ 0} . (2.4)

Suppose, W (A) ̸⊂ {λ ∈ C | ℜλ ≤ 0}, i.e. there exists a+ib ∈W (A) with a > 0. Let
x ∈ D(A), ∥x∥ = 1, with ⟨Ax, x⟩ = a+ib and take y ∈ H such that Ax = (a+ib)x+y
and ⟨x, y⟩ = 0.
For any λ ∈ R with λ > 0 we have λ ∈ ϱ(A) by (2.4) and

dist(λ, σ(A)) =
1

∥R(A, λ)∥
≤ ∥(A− λ)x∥

by Corollary 1.1.8. This implies

λ2 ≤ dist(λ, σ(A))2 ≤ ∥(a− λ+ ib)x+ y∥2

= (a− λ)2 + b2 + ∥y∥2.

Hence, 2aλ ≤ a2 + b2 + ∥y∥2 with a > 0 for every λ ∈ R with λ > 0. This is
impossible. ❑

Let us now consider a bounded linear operator A : H → H where dimH <∞,
i.e. the case in which H is isomorphic to Cn for some n ∈ N and A has a matrix
representation. Over the years, several approaches for the numerical computation
of W (A) in the matrix case have been developed and they are based on at least
one of the two following core ideas. Note, that the convexity of the numerical range
is exploited in all of them.

The first method has been introduced by Johnson in [31] and is based on the
following observation: If 0 ≤ θ ≤ 2π and xθ is a unit eigenvector associated to
the largest eigenvalue of the hermitian matrix 1

2

(
eiθA+ e−iθA∗), then ⟨Axθ, xθ⟩ ∈

∂W (A). An approximation to W (A) is then obtained by choosing a mesh θj = (j−
1) 2πk , j = 1, . . . , k, and the computation of the boundary points pθj = ⟨Axθj , xθj ⟩
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Figure 2.2: The numerical range and the eigenvalues of A from Example 2.2.5

such that the union of line segments that join pθj to pθj+1
, j = 1, . . . , k, can be

plotted. In [12], Cowen and Harel paid particular attention to the case in which a
flat segment occurs in the boundary of W (A) and in [8], Braconnier and Higham
applied a specific implementation of the Lanczos method to optimize the required
eigenvalue solves for the hermitian matrices. Loisel and Maxwell developed an
algorithm for the computation of ∂W (A) that is based on tracking the dominant
eigenpair of the Hermitian part of eitA by solving an ordinary differential equation,
see [41].

The second method for the computation of the numerical range is based on
the fact that W (A) is always an ellipse if dimH = 2, see [23, Lemma 1.1-1]. For
a bounded operator A, Theorem 2.2.2 can also be deduced from this property
by showing that W (A) is equal to the union of the numerical ranges of all two-
dimensional compressions of A, see [23, Theorem 1.1-2]. In [42], Marcus and Pesce
showed that for matrices it is sufficient to consider the compressions derived from
pairs of real orthonormal vectors, i.e.

W (A) =
⋃
x,y

W (Axy)

where

Axy =

[
⟨Ax, x⟩ ⟨Ay, x⟩
⟨Ax, y⟩ ⟨Ay, y⟩

]
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with x and y varying over all pairs of real orthonormal vectors. They utilized
this result to develop an algorithm for the computation of the numerical range
by generating a random set of real orthonormal vector pairs and computing the
union of the sets W (Axy). Bebiano et al. improved this approach by using suitably
chosen vectors which generate boundary points of W (A), see [2], and Uhlig made
use of Johnson’s algorithm to select x and y such that each ellipse is more likely to
constrain the boundary, see [53].

Example 2.2.5. Let us consider the matrix

A =


0 0 0 2i
0 0 0 0
0 0 −1 + 2i 2− 2i
3 0 2− 2i −1 + 2i


from Example 2.1.4 again. Figure 2.2 depicts the numerical range W (A) as a blue
set and the eigenvalues of A as red crosses. The computation of the numerical
range was done in Matlab using Johnson’s algorithm.

2.3 The Quadratic Numerical Range

In [37], Langer and Tretter introduced the quadratic numerical range (QNR) as a
new concept to enclose the spectrum of a block operator matrix in a Hilbert space.
The QNR is a subset of the numerical range that is not necessarily convex and
consists of at most two connected components which need not be convex either. See
[36] and the monograph [52], where many more properties are proven as well. For
applications of the QNR, we refer to [17], [29], [34] and [39] where the superset is
exploited for Krylov type methods, damped systems, spectral perturbation results
and the location of zeros of polynomials. In [45] and [46] approximation schemes
for possibly unbounded operators are established and convergence theorems are
proven relating the QNR of an operator to the QNR of its finite-dimensional
discretizations.

This section is devoted to state the definition and basic properties of the
quadratic numerical range. Let therefore H be a Hilbert space over C, let ⟨·, ·⟩ : H×
H → C be the inner product onH and consider an arbitrary but fixed decomposition
of H denoted by H1 ⊕H2 = H. Furthermore, let A : H → H be a bounded linear
operator that will henceforth be written in the block operator matrix form

A =

[
A B
C D

]
where A : H1 → H1, B : H2 → H1, C : H1 → H2, D : H2 → H2 are bounded
operators. Note, that every bounded operator on H can be written in such a form
once a decomposition H = H1 ⊕H2 is chosen.
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Definition 2.3.1. The quadratic numerical range (QNR) is given by

W 2(A ) =
⋃

x∈SH1
,y∈SH2

σ

([
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

])
,

where SHi = {x ∈ Hi | ∥x∥ = 1}, i = 1, 2.

In other words, the QNR consists of the solutions λ of the quadratic equations

λ2 − (⟨Ax, x⟩+ ⟨Dy, y⟩)λ+ ⟨Ax, x⟩⟨Dy, y⟩ − ⟨By, x⟩⟨Cx, y⟩ = 0 (2.5)

with (x, y) ∈ SH1
× SH2

.
Just as for the numerical range and the spectrum itself, we have

W 2(α+ βA ) = α+ βW 2(A )

for α, β ∈ C.
In order to shorten the notation we will henceforth use the abbreviations

Mx,y :=

[
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

]
∈ C2×2

for (x, y) ∈ SH1
×SH2

. This matrix can also be written in the formMx,y = PA |ranP ,
where P is the orthogonal projection to the two-dimensional subspace of H1 ⊕H2

spanned by

[
x
0

]
and

[
0
y

]
. Hence, we have

W 2(A ) ⊂ {λ ∈ C | |λ| ≤ ∥A ∥} . (2.6)

The eigenvalues of a matrix depend continuously on its entries, see Theorem 1.2.4,
and therefore the mapping

SH1
× SH2

∋ (x, y) 7→ σ(Mx,y) (2.7)

is continuous as well. Thus, if dimH <∞, W 2(A ) is compact since it is the image
of a compact set under a continuous mapping. Moreover, the continuity of (2.7)
explains the fact, that the QNR consists of at most two connected components.

Theorem 2.3.2. We have

W 2(A ) ⊂W (A ).

Proof. Let λ ∈W 2(A ). Then there exist (x, y) ∈ SH1
×SH2

such that λ ∈ σ(Mx,y),

i.e. there exists a vector

[
v1
v2

]
∈ C2 with |v1|2 + |v2|2 = 1 such that

[
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

] [
v1
v2

]
= λ

[
v1
v2

]
.
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Taking the scalar product with

[
v1
v2

]
yields

〈[
A B
C D

] [
v1x
v2y

]
,

[
v1x
v2y

]〉
= λ.

This implies λ ∈W (A ) because

∥∥∥∥[v1xv2y
]∥∥∥∥ = 1. ❑

Theorem 2.3.3. The following spectral inclusion properties hold:

a) σp(A ) ⊂W 2(A );

b) σ(A ) ⊂W 2(A ).

The proof of Theorem 2.3.3 requires the following lemma about 2× 2 matrices.

Lemma 2.3.4. Let M ∈ C2×2. If there exists a vector x ∈ C2 such that

∥x∥ = 1 and ∥Mx∥ < ε (2.8)

for some ε > 0, then dist(0, σ(M)) ≤
√
∥M∥ε.

Proof. We only have to consider the case in which 0 /∈ σ(M). Then we can
transform (2.8) into an estimate for the norm of M−1 via

∥M−1∥ = sup
∥y∥=1

∥M−1y∥ >
∥∥∥∥M−1 Mx

∥Mx∥

∥∥∥∥
=

∥∥∥∥ x

∥Mx∥

∥∥∥∥ =
∥x∥

∥Mx∥
>

1

ε
.

(2.9)

Moreover, because M−1 can be written as

M−1 =
1

detM
(U⊺MU)

⊺

with the unitary matrix U :=

[
0 1
−1 0

]
and because taking the transpose of a

matrix does not change the norm, we obtain

∥M−1∥ =
∥M∥

|detM |
=

∥M∥
|λ1λ2|

where λ1 and λ2 are the eigenvalues of M . Combining this with (2.9) yields

min{|λ1|, |λ2|} ≤
√

∥M∥ε. ❑
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Proof of Theorem 2.3.3. a) Let λ ∈ σp(A ). Then there exists an eigenvector
(x, y) ∈ H1 ⊕H2 such that

Ax+By = λx,

Cx+Dy = λy.

By choosing (x̂, ŷ) ∈ SH1
× SH2

such that x = ∥x∥x̂ and y = ∥y∥ŷ (with
x̂ ∈ SH1

arbitrary if e.g. x = 0) this gives us

⟨Ax, x̂⟩+ ⟨By, x̂⟩ = λ⟨x, x̂⟩,
⟨Cx, ŷ⟩+ ⟨Dy, ŷ⟩ = λ⟨y, ŷ⟩,

which can be rewritten as

Mx̂,ŷ

[
∥x∥
∥y∥

]
= λ

[
∥x∥
∥y∥

]
.

Hence, λ ∈ σp(Mx̂,ŷ) ⊂W 2(A ).

b) By Lemma 1.3.6 b) we have σ(A ) = σapp(A )∪ σr(A ) and we split the proof
into two cases according to this decomposition.
Let λ ∈ σapp(A ). Then there exists a sequence (xn, yn)n ⊂ H1 ⊕H2 with
∥xn∥2 + ∥yn∥2 = 1 for all n ∈ N such that

lim
n→∞

∥∥∥∥(A − λ)

[
xn
yn

]∥∥∥∥ = 0.

Choosing (x̂n, ŷn) ∈ SH1 × SH2 as in part a) of the proof, we obtain

lim
n→∞

(
Mx̂n,ŷn − λ

) [∥xn∥
∥yn∥

]
= 0.

This together with ∥Mx̂n,ŷn∥ ≤ ∥A ∥ for all n ∈ N (c.f. (2.6) and the reasoning
above) yields

lim
n→∞

dist(λ, σ(Mx̂n,ŷn)) = 0

by Lemma 2.3.4, i.e. λ ∈W 2(A )
Let now λ ∈ σr(A ). Then by Remark 1.3.3 we have λ ∈ σp(A ∗) and therefore
λ ∈ W 2(A ∗) by part a). W 2(A ∗) coincides with W 2(A )∗, because all the
coefficients in (2.5) are complex conjugated. Hence, λ ∈W 2(A ). ❑

Example 2.3.5. Let us consider the matrix

A =


0 0 0 2i
0 0 0 0
0 0 −1 + 2i 2− 2i
3 0 2− 2i −1 + 2i


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Figure 2.3: The QNR and the eigenvalues of A from Example 2.3.5

from Examples 2.1.4 and 2.2.5 again with the decomposition C4 = C2 ⊕ C2.
Figure 2.3 depicts the quadratic numerical range W 2(A ) as a blue set and the
eigenvalues of A as red crosses. The computation of the QNR was done in Python
by use of the algorithm introduced in Chapter 4.



Chapter 3

Pseudospectrum Enclosures
by Discretization

As described in Section 2.1, the ε-pseudospectrum of an operator is defined as the
union of the spectra of slightly perturbed versions of the operator. This superset
of the spectrum is robust under perturbations and preserves valuable information.
Unfortunately, it is hard to compute in the infinite-dimensional case, which is why
we are interested in a computable yet tight enclosure.

A simple method to enclose the pseudospectrum is in terms of the numerical
range. More precisely, under an additional weak assumption, the ε-pseudospectrum
is contained in an ε-neighborhood of the numerical range of the operator, see
Remark 3.1.9. While this superset is easy to compute for matrices, it can not
distinguish disconnected components of the pseudospectrum as the numerical range
is convex.

In this chapter, we propose a new method to enclose the pseudospectrum via
the numerical range of the inverse of the matrix or linear operator. More precisely,
for a linear operator A on a Hilbert space and ε > 0 we show

σε(A) ⊂
⋂
s∈S

[(
Bδs(W ((A− s)−1))

)−1
+ s
]
, (3.1)

see Theorem 3.1.3. Here, S is a suitable subset of the resolvent set of A and the
inverse of a subset B ⊂ C is defined via B−1 :=

{
b−1

∣∣ b ∈ B \ {0}
}
. This inclusion

holds for matrices as well as for linear operators on Hilbert spaces. Further, we
show that the enclosure of the pseudospectrum in (3.1) becomes optimal in the
sense that it is contained in the closure of the pseudospectrum if the set S is chosen
optimally, see Theorem 3.1.6. The idea to study the numerical range of the inverses
stems from the fact that the spectrum of a matrix can be expressed in terms of
inverses of shifted matrices [26].

We will then refine the enclosure (3.1) of the pseudospectrum of linear oper-
ators further and show that it is sufficient to calculate the numerical ranges of

25
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approximating matrices. More precisely, we show in Theorem 3.2.6 that

σε(A) ⊂
⋂
s∈S

[(
Bδs(W ((An − s)−1))

)−1
+ s
]

(3.2)

if n is sufficiently large. Here (An)n is a sequence of matrices which approximates
the operator A strongly. We refer to Section 3.2 for the precise definition of strong
approximation. If we even have a uniform approximation of the operator A, then we
are able to prove an estimate for the index n such that (3.2) holds in intersections
with compact subsets of the complex plane, see Section 3.3. In Section 3.4 we
show that finite element discretizations of elliptic partial differential operators yield
uniform approximations. Further, as an example of a strong approximation we
study in Sections 3.5 and 3.6 two classes of structured block operator matrices.
Subsequently, in Section 3.7, we apply our obtained results to the advection-
diffusion operator, the Hain-Lüst operator and a Stokes-type operator by plotting
and discussing the computed supersets.

From a numerical point of view this new method faces similar challenges as
grid-based methods as a suitable set S of points has to be found and then the
numerical ranges of a large number of matrices have to be computed. However, this
new method has the advantage that it enables us to enclose the pseudospectrum of
an infinite-dimensional operator by a set which is expressed by the approximating
matrices.

In the final section we investigate the relation of the pseudospectrum of a block
operator matrix to the pseudospectrum of its Schur complement.

This chapter is an extended version of the article [18]. Here, some of the
results have been improved, newly added or are accompanied by more detailed
explanations.

Let H be a Hilbert space with inner product ⟨·, ·⟩. If not explicitly stated
different we assume that A : D(A) ⊂ H → H is a closed and densely defined linear
operator throughout this chapter.

3.1 Pseudospectrum Enclosures using the Numer-
ical Range

In this section we present the basic idea of considering numerical ranges of shifted
inverses of an operator in order to obtain an enclosure of its pseudospectrum.

The central idea is the following: If λ ∈ C is such that 1/λ has a certain positive
distance δ to the numerical range of the inverse operator A−1, then this yields an
estimate of the form

∥(A− λ)x∥ ≥ ε∥x∥, x ∈ D(A),

with some constant ε > 0. This will in turn be used to show λ ∈ ϱ(A) with
∥(A− λ)−1∥ ≤ 1

ε , i.e. λ ̸∈ σε(A). We make this explicit with the next proposition:
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Proposition 3.1.1. Suppose that 0 ∈ ϱ(A). Then for every 0 < ε < 1
∥A−1∥ and

δ ≥ ∥A−1∥2ε
1−∥A−1∥ε we have

σε(A) ⊂
(
Bδ(W (A−1))

)−1
.

Proof. The inclusion is trivial for δ = ∞, so we can assume δ <∞. Let us denote

U :=
(
Bδ(W (A−1))

)−1 ⫋ C. As a first step we show that

∥(A− λ)x∥ ≥ ε for all λ ∈ C \ U, x ∈ D(A), ∥x∥ = 1. (3.3)

So let λ ∈ C \ U . We consider two cases. First suppose that |λ| > 1
∥A−1∥ − ε.

Then λ ≠ 0, λ−1 ̸∈ Bδ(W (A−1)) and hence dist(λ−1,W (A−1)) ≥ δ. For x ∈ D(A),
∥x∥ = 1 we find

δ ≤ |λ−1 − ⟨A−1x, x⟩| = |⟨(λ−1 −A−1)x, x⟩| ≤ ∥(λ−1 −A−1)x∥.

Consequently,

∥(A− λ)x∥ = |λ|∥A(λ−1 −A−1)x∥ ≥ |λ|
∥A−1∥

∥(λ−1 −A−1)x∥

>
δ

∥A−1∥

(
1

∥A−1∥
− ε

)
=
δ(1− ∥A−1∥ε)

∥A−1∥2
≥ ε.

In the other case if |λ| ≤ 1
∥A−1∥−ε then |λ|∥A−1∥ ≤ 1−∥A−1∥ε and hence I−λA−1

is invertible by a Neumann series argument with ∥(I − λA−1)−1∥ ≤ 1
∥A−1∥ε . For

x ∈ D(A) with ∥x∥ = 1 this implies

∥(A− λ)x∥ = ∥A(I − λA−1)x∥ ≥ 1

∥A−1∥∥(I − λA−1)−1∥
≥ ε.

We have thus shown (3.3). In particular, λ ∈ C \ U implies λ ̸∈ σapp(A), i.e.

σapp(A) ∩ C \ U = ∅. (3.4)

By Theorem 2.2.2 and because A−1 is bounded, the set Bδ(W (A−1)) is convex and
bounded. Therefore, C \ Bδ(W (A−1)) is connected and hence also

C \ U =
(
C \ Bδ(W (A−1))

)−1
.

On the other hand, the boundedness of Bδ(W (A−1)) implies that a neighborhood
around 0 belongs to C \ U . Consequently, the set C \ U is connected and satisfies
0 ∈ ϱ(A)∩C\U . Using (3.4) and the fact that ∂σ(A) ⊂ σapp(A) (see Lemma 1.3.5),
we conclude that

C \ U ⊂ ϱ(A).

Now (3.3) implies that if λ ∈ C \U then ∥(A− λ)−1∥ ≤ 1
ε and therefore we obtain

λ ̸∈ σε(A). ❑
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The following simple example demonstrates that the δ-neighborhood around the
numerical range is actually needed to obtain an enclosure of the pseudospectrum.

Example 3.1.2. Let A = diag(−1 + i,−1− i, 1 + i, 1− i) ∈ C4×4. Then A−1 =
1
2diag(−1− i,−1 + i, 1− i, 1 + i) is normal and because of the compactness of the
numerical range in finite dimensions and Theorem 2.2.4, its numerical range is
simply the convex hull of its eigenvalues. Thus, W (A−1) is the following square:

1−1

1

−1

Then, using the fact that z 7→ 1
z is a Möbius transformation, we obtain for

W (A−1)−1 the following curve plus its exterior:

1 2−1−2

1

−1

We see that W (A−1)−1 touches the spectrum of A. This is of course clear: if an
eigenvalue 1/λ of A−1 is on the boundary of W (A−1), then the eigenvalue λ of A
is on the boundary of W (A−1)−1. In particular in this example we do not have
σε(A) ⊂W (A−1)−1 for any ε > 0 since σε(A) contains discs with radius ε around
the eigenvalues, see Theorem 2.1.3.

Applying Proposition 3.1.1 to the shifted operator A− s and then taking the
intersection over a suitable set of shifts, we obtain our first main result on an
enclosure of the pseudospectrum:
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Theorem 3.1.3. Consider a set S ⊂ ϱ(A) such that

M := sup
s∈S

∥(A− s)−1∥ <∞.

Then for 0 < ε < 1
M we get the inclusion

σε(A) ⊂
⋂
s∈S

[(
Bδs(W ((A− s)−1))

)−1
+ s
]
, (3.5)

where δs ≥ ∥(A−s)−1∥2ε
1−∥(A−s)−1∥ε .

Proof. For every s ∈ S we can apply Proposition 3.1.1 to the operator A− s and
obtain

σε(A)− s = σε(A− s) ⊂
(
Bδs(W ((A− s)−1))

)−1
. ❑

Proposition 3.1.4. For s ∈ ϱ(A) and 0 < δ <∞ we have that

Bρs(s) ∩
[(
Bδ(W ((A− s)−1))

)−1
+ s
]
= ∅

where ρs =
1

w((A−s)−1)+δ ≥ 1
∥(A−s)−1∥+δ . Here,

w((A− s)−1) := sup
∥x∥=1

|⟨(A− s)−1x, x⟩|

denotes the numerical radius.

Proof. Let s ∈ ϱ(A) and t ∈
(
Bδ(W ((A− s)−1))

)−1
+ s. Then

1

t− s
∈ Bδ(W ((A− s)−1))

and we can estimate

1

|t− s|
< δ + sup

∥x∥=1

|⟨(A− s)−1x, x⟩| = δ + w((A− s)−1) =
1

ρs
.

This implies |t− s| > ρs and therefore t /∈ Bρs(s). ❑

The sets
(
Bδs(W ((A− s)−1))

)−1
in Theorem 3.1.3 are unbounded whenever

δs ≥ inf
∥x∥=1

|⟨(A− s)−1x, x⟩| =: m((A− s)−1)

and this will always be the case if

ε ≥ m((A− s)−1)

∥(A− s)−1∥(∥(A− s)−1∥+m((A− s)−1))

due to δs ≥ ∥(A−s)−1∥2ε
1−∥(A−s)−1∥ε . This phenomenon is very common as we will see in the

next and other examples.
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Figure 3.1: Improvement of pseudospectrum enclosure by shifts

Example 3.1.5. Let us consider the matrix

A = diag(−1 + i,−1− i, 1 + i, 1− i) ∈ C4×4

from Example 3.1.2 again. Figure 3.1 depicts the eigenvalues of A as red crosses, the
boundary of σε(A) with ε = 1/2 as dotted black lines, the shifts S as green crosses

and the boundaries of the sets
(
Bδs(W ((A− s)−1))

)−1
with δs =

∥(A−s)−1∥2ε
1−∥(A−s)−1∥ε as

blue lines. In the top left, we have S = {0}, i.e. we are in the case of Proposition 3.1.1
without any shifts. As we can see, this only enables us to exclude a neighborhood
of 0 from the pseudospectrum. However, the introduction of shifts in the top right
and bottom of the figure causes a drastic improvement of the enclosure.

The following theorem shows that the enclosure of the pseudospectrum in
Theorem 3.1.3 becomes optimal if the shifts are chosen optimally. In particular,
the enclosure can be a superset of σε(A) and a subset of σε(A).

Theorem 3.1.6. Let ε > 0 and Sγ :=
{
s ∈ ϱ(A)

∣∣∣ ∥(A− s)−1∥ = 1
ε+γ

}
for γ > 0.

Let further ∥(A−s)−1∥2ε
1−∥(A−s)−1∥ε ≤ δs <∞. Then the following assertions hold:
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a) σε(A) ⊂
⋂
γ>0

⋂
s∈Sγ

[(
Bδs(W ((A− s)−1))

)−1
+ s
]

⊂
{
λ ∈ C

∣∣∣∣ ∥(A− λ)−1∥ ≥ 1

ε

}
;

b) If ε−1 is not a global minimum of the norm of the resolvent of A, we have{
λ ∈ C

∣∣∣∣ ∥(A− λ)−1∥ ≥ 1

ε

}
= σε(A);

c) If ε−1 is not a global minimum of the norm of the resolvent of A, we have

σε(A) =
⋂
γ>0

⋂
s∈Sγ

[(
Bδs(W ((A− s)−1))

)−1

+ s

]
;

d) If A is normal with compact resolvent and L > 0, there exists an ε0 > 0
(depending on L) such that for all ε < ε0 we have

σε(A) ∩ BL(0) =
⋂
γ>0

⋂
s∈Sγ

[(
Bδ̂s(W ((A− s)−1))

)−1
+ s
]
∩ BL(0),

where δ̂s =
∥(A−s)−1∥2ε
1−∥(A−s)−1∥ε .

Proof. a) The first inclusion follows from Theorem 3.1.3. In order to prove the
second inclusion first note that

Sγ ∩
⋂
s∈Sγ

[(
Bδs(W ((A− s)−1))

)−1
+ s
]
= ∅

for every γ > 0 by Proposition 3.1.4. Hence,⋂
γ>0

⋂
s∈Sγ

[(
Bδs(W ((A− s)−1))

)−1
+ s
]
⊂
⋂
γ>0

C \ Sγ

= C \
⋃
γ>0

Sγ = C \
{
s ∈ ϱ(A)

∣∣∣∣ ∥(A− s)−1∥ < 1

ε

}
=

{
s ∈ C

∣∣∣∣ ∥(A− s)−1∥ ≥ 1

ε

}
.

b) From [6, Theorem 3.2] we have that the norm of the resolvent can only be
constant on an open subset of ϱ(A) at its minimum. Since by assumption
ε−1 is not this minimum, we obtain the equality{

λ ∈ C
∣∣∣∣ ∥(A− λ)−1∥ ≥ 1

ε

}
= σε(A).
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c) Taking the closure in Theorem 3.1.3 yields

σε(A) ⊂
⋂
γ>0

⋂
s∈Sγ

[(
Bδs(W ((A− s)−1))

)−1

+ s

]
.

The other inclusion can be shown as in part a) since we also have

Sγ ∩
⋂
s∈Sγ

[(
Bδs(W ((A− s)−1))

)−1
+ s
]
= ∅

for every γ > 0 as a consequence of Proposition 3.1.4.

d) By a) it suffices to show that λ ∈ ϱ(A) ∩ BL(0), ∥(A − λ)−1∥ = 1
ε implies

λ /∈
(
Bδ̂s(W ((A− s)−1))

)−1
+ s for some γ > 0 and s ∈ Sγ . Let

ε1 =
1

2
min

{
dist(µ, σ(A) \ {µ})

∣∣∣µ ∈ σ(A) ∩ BL(0)
}
.

Since A has compact resolvent, Corollary 1.4.2 yields that the minimum
exists and is positive. With

ε0 =
1

2
min

{
dist(µ, σ(A) \ {µ})

∣∣∣µ ∈ σ(A) ∩ BL+3ε1(0)
}

(3.6)

we then have 0 < ε0 ≤ ε1. Let now ε < ε0 and λ ∈ ϱ(A) ∩ BL(0) with ∥(A−
λ)−1∥ = 1

ε . Since A is normal, we get dist(λ, σ(A)) = ε by Corollary 1.1.8
and hence there exists a µ ∈ σ(A) such that |λ− µ| = ε. In particular, we
have µ ∈ BL+ε1(0). Choose now γ ∈ (0, ε0 − ε), i.e. ε < ε+ γ < ε0, and set

s = µ+
ε+ γ

ε
(λ− µ).

Then s ∈ Bε0(µ) and

dist(s, σ(A)) = |µ− s| = ε+ γ.

Indeed, if µ′ ∈ σ(A)∩BL+3ε1(0) with µ ≠ µ′, then Bε0(µ)∩Bε0(µ
′) = ∅ and

hence |µ′−s| > ε0. If µ
′ ∈ σ(A) and |µ′| > L+3ε1, then dist(µ′,Bε0(µ)) > ε1

since Bε0(µ) ⊂ BL+ε1+ε0(0) and thus |µ′ − s| > ε1 ≥ ε0. Due to |µ− s| < ε0
we therefore obtain dist(s, σ(A)) = |µ− s| and because A is normal we can
conclude

∥(A− s)−1∥ =
1

ε+ γ

by Corollary 1.1.8 again, i.e. s ∈ Sγ . Since

1

δ̂s + ∥(A− s)−1∥
=

(
∥(A− s)−1∥

1− ∥(A− s)−1∥ε

)−1

=
1

∥(A− s)−1∥
− ε

= γ,

(3.7)
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Proposition 3.1.4 implies

Bγ(s) ∩
[(
Bδ̂s(W ((A− s)−1))

)−1
+ s
]
= ∅.

By our choice of s we have λ ∈ Bγ(s) and thus

λ /∈
(
Bδ̂s(W ((A− s)−1))

)−1
+ s. ❑

Remark 3.1.7. i) Note that ε0 in part d) depends on L. For instance, if we
consider an operator A with

σ(A) =

{
µn =

n∑
k=1

1

k

∣∣∣∣∣n ∈ N

}

we have limn→∞ |µn − µn+1| = 0, limn→∞ µn = ∞ and from (3.6) we obtain
ε0 → 0 for L→ ∞.

ii) The cutoff with the large ball BL(0) in part d) is not needed in the matrix case
(i.e. dimH <∞), or if the eigenvalues of A satisfy a uniform gap condition.
On the other hand, the equality in d) will typically not hold for all ε > 0, i.e.
the restriction ε < ε0 is needed, even in the matrix case. This is illustrated
with the next (counter-)example.

Example 3.1.8. Let the normal matrix A be given by

A =

(
1 0
0 −1

)
and consider ε = 1. Then σε(A) = B1(1) ∪ B1(−1), see Corollary 1.1.8, and in
particular 0 /∈ σε(A). See Figure 3.2 for the pseudospectrum with an enclosure.

We will show now that 0 ∈
(
Bδ̂s(W ((A− s)−1))

)−1
+ s for all s ∈ Sγ , γ > 0, where

δ̂s =
∥(A−s)−1∥2ε
1−∥(A−s)−1∥ε . Hence,

σε(A) ⫋
⋂
γ>0

⋂
s∈Sγ

[(
Bδ̂s(W ((A− s)−1))

)−1
+ s
]

in this case. First observe that for s ∈ Sγ , i.e. ∥(A − s)−1∥ = 1
ε+γ , we have

1

δ̂s+∥(A−s)−1∥
= γ, see (3.7). This implies

δ̂s =
1

γ
− ∥(A− s)−1∥ =

1

γ
− 1

ε+ γ
=

ε

γ(ε+ γ)
=

1

γ(1 + γ)

since ε = 1. We also have

(A− s)−1 =

(
(1− s)−1 0

0 (−1− s)−1

)
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Figure 3.2: Exemplary enclosure of the 1-pseudospectrum of A from Example 3.1.8.

The blue lines depict the boundaries of the sets
(
Bδ̂s(W ((A − s)−1))

)−1
+ s for

some s in an Sγ .

and hence

W ((A− s)−1) =
{
r(1− s)−1 + (1− r)(−1− s)−1

∣∣ r ∈ [0, 1]
}
.

Due to A being normal, Sγ is the boundary of the (1+ γ)-neighborhood of {−1, 1}.
Thus by taking s0 ∈ Sγ with ℜs0 = 0 we have

|s|2 ≥ |s0|2 = (1 + γ)2 − 12 = γ2 + 2γ

and hence |s| > γ, see Figure 3.3. From

|(±1− s)−1 − (−s−1)| =
∣∣∣∣ 1

±1− s
+

1

s

∣∣∣∣ = 1

|s|| ± 1− s|
≤ 1

|s|(1 + γ)

we get

dist
(
− s−1,W ((A− s)−1)

)
≤ min
r∈[0,1]

r
∣∣(1− s)−1 − (−s−1)

∣∣+ (1− r)
∣∣(−1− s)−1 − (−s)−1

∣∣
≤ 1

|s|(1 + γ)
<

1

γ(1 + γ)
= δ̂s.

This shows that −s−1 ∈ Bδ̂s(W ((A− s)−1)) and therefore

0 ∈
(
Bδ̂s(W ((A− s)−1))

)−1
+ s.

Remark 3.1.9. Note that under the assumption σ(A) ⊂ W (A) (which holds for
example if A has a compact resolvent by Theorem 2.2.3) it is known (see e.g.
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1−1

s0
γ s ∈ Sγ

Figure 3.3: 1-pseudospectrum of A from Example 3.1.8 with Sγ

[51] for the matrix case) that the pseudospectrum can also be enclosed by an
ε-neighborhood of the numerical range, namely

σε(A) ⊂ Bε(W (A)). (3.8)

Indeed, for λ ∈ σε(A) \ σ(A) we have ∥(A− λ)−1∥ > 1
ε and therefore

∥(A− λ)x∥ < ε for all x ∈ D(A), ∥x∥ = 1.

This implies

|⟨Ax, x⟩ − λ| = |⟨(A− λ)x, x⟩| ≤ ∥(A− λ)x∥ < ε

for x ∈ D(A), ∥x∥ = 1. See Remark 3.7.3 for a comparison of the enclosure (3.8)
with our method (3.5).

3.2 A Strong Approximation Scheme

In this section we consider finite-dimensional approximations An to the full operator
A. Our aim is to prove a version of Theorem 3.1.3 which provides a pseudospectrum
enclosure for the full operator A in terms of numerical ranges of the approximating
matrices An; this will allow us to compute the enclosure by numerical methods.

We suppose that 0 ∈ ϱ(A) and consider a sequence of approximations An of
the operator A of the following form:

a) Un ⊂ H, n ∈ N, are finite-dimensional subspaces of the Hilbert space H;

b) Pn ∈ L(H) are projections (not necessarily orthogonal) onto Un, i.e. R(Pn) =
Un, such that

lim
n→∞

Pnx = x for all x ∈ H; (3.9)
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c) An ∈ L(Un) are invertible such that

lim
n→∞

A−1
n Pnx = A−1x for all x ∈ H. (3.10)

In this case we say that the family (Pn, An)n∈N approximates A strongly. Note
that (3.9) implies that

⋃
n∈N Un is dense in H and that supn∈N ∥Pn∥ <∞ by the

uniform boundedness principle.

Lemma 3.2.1. Let Un, Pn be such that (3.9) holds and let An ∈ L(Un) be invertible.
Then the following assertions are equivalent:

a) limn→∞A−1
n Pnx = A−1x for all x ∈ H, i.e. (3.10) holds;

b) supn∈N ∥A−1
n ∥L(Un) <∞ and for all x ∈ D(A) there exists a sequence (xn)n

with xn ∈ Un such that

lim
n→∞

xn = x, lim
n→∞

Anxn = Ax.

Proof. a) ⇒ b). The uniform boundedness principle yields

sup
n∈N

∥A−1
n Pn∥L(H) <∞.

Since ∥A−1
n u∥ = ∥A−1

n Pnu∥ ≤ ∥A−1
n Pn∥L(H)∥u∥ for all u ∈ Un, this shows the first

part. For the second, let x ∈ D(A) and set y = Ax and xn = A−1
n Pny. Then

xn → A−1y = x and Anxn = Pny → y = Ax as n→ ∞.
b)⇒ a). Let y ∈ H. Set x = A−1y and choose xn ∈ Un according to b). Then

A−1
n Pny = A−1

n PnAx = A−1
n (PnAx−Anxn) + xn.

Since both PnAx → Ax and Anxn → Ax as n → ∞ and ∥A−1
n ∥ is uniformly

bounded, we obtain a). ❑

The following lemma shows that if A is approximated by An strongly, then
A−λ is approximated by An−λ strongly too, provided ∥(An−λ)−1∥ is uniformly
bounded in n.

Lemma 3.2.2. Suppose that (Pn, An)n∈N approximates A strongly. If λ ∈ ϱ(A) is
such that λ ∈ ϱ(An) for all n ∈ N and supn∈N ∥(An − λ)−1∥ <∞, then

lim
n→∞

(An − λ)−1Pnx = (A− λ)−1x for all x ∈ H.

Proof. This follows immediately from Lemma 3.2.1 since

lim
n→∞

Anxn = Ax ⇐⇒ lim
n→∞

(An − λ)xn = (A− λ)x

whenever limn→∞ xn = x. ❑
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Remark 3.2.3. In the literature there is a variety of notions describing the approxi-
mation of a linear operator. Two notions that are close to our definition of a strong
approximation scheme are generalized strong resolvent convergence, considered
in [3, 4, 55], and discrete-stable convergence, see [9]. There are however subtle
differences between these two notions and our setting: First, we do not assume that
Pn(D(A)) ⊂ D(An). Second, in Lemma 3.2.1 b) we do not have the convergence of
AnPnx to Ax, which would be the case for discrete-stable convergence. Up to these
differences, the results of Lemmas 3.2.1 and 3.2.2 are well known in the literature,
see [3, Lemma 1.2.2, Theorem 1.2.9] and [9, Lemma 3.16].

We now prove a convergence result for the numerical range of the inverse
operator under strong approximations.

Lemma 3.2.4. Suppose that (Pn, An)n∈N approximates A strongly. Then the
following assertions hold:

a) For every x ∈ H with ∥x∥ = 1 there exists a sequence (yn)n with yn ∈ Un
and ∥yn∥ = 1 for all n ∈ N such that

lim
n→∞

⟨A−1
n yn, yn⟩ = ⟨A−1x, x⟩;

b) For all δ > 0 there exists an n0 ∈ N such that

W (A−1) ⊂ Bδ
(
W (A−1

n )
)

for all n ≥ n0.

Proof. a) We set yn = Pnx/∥Pnx∥. Note that yn is well defined for almost all
n since ∥Pnx∥ → ∥x∥ = 1. We get yn → x as n→ ∞ and

|⟨A−1x, x⟩ − ⟨A−1
n yn, yn⟩| ≤ |⟨A−1x−A−1

n Pnx, x⟩|+ |⟨A−1
n Pnx, x− yn⟩|

+ |⟨A−1
n (Pnx− yn), yn⟩|

≤ ∥A−1x−A−1
n Pnx∥+ ∥A−1

n ∥∥Pnx∥∥x− yn∥
+ ∥A−1

n ∥∥Pnx− yn∥,

which yields the assertion.

b) Since W (A−1) is bounded, it is precompact and hence there exist points
z1, . . . , zm ∈W (A−1) such that

W (A−1) ⊂
m⋃
j=1

Bδ/2(zj).

For every j ∈ {1, . . . ,m} we have zj = ⟨A−1xj , xj⟩ with some xj ∈ H,
∥xj∥ = 1, and by a) there exists nj ∈ N such that for all n ≥ nj there is a
yj ∈ Un with ∥yj∥ = 1 such that∣∣⟨A−1xj , xj⟩ − ⟨A−1

n yj , yj⟩
∣∣ < δ

2
.
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Hence,

W (A−1) ⊂
m⋃
j=1

Bδ
(
⟨A−1

n yj , yj⟩
)
⊂ Bδ

(
W (A−1

n )
)

for all n ≥ n0 := max{n1, . . . , nm}. ❑

The previous lemma allows us easily to prove an approximation version of the
basic enclosure result Proposition 3.1.1.

Proposition 3.2.5. Suppose that (Pn, An)n∈N approximates A strongly. For

0 < ε < 1
∥A−1∥ and δ > ∥A−1∥2ε

1−∥A−1∥ε there exists an n0 ∈ N such that

σε(A) ⊂
(
Bδ(W (A−1

n ))
)−1

for all n ≥ n0.

Proof. By Proposition 3.1.1 we have

σε(A) ⊂
(
Bδ̂(W (A−1))

)−1

where δ̂ = ∥A−1∥2ε
1−∥A−1∥ε . Since δ − δ̂ > 0, Lemma 3.2.4 yields a constant n0 ∈ N such

that
W (A−1) ⊂ Bδ−δ̂

(
W (A−1

n )
)

for all n ≥ n0.

Consequently, Bδ̂(W (A−1)) ⊂ Bδ(W (A−1
n )) for n ≥ n0 and the proof is complete.

❑

Combining the previous proposition with shifts of the operator, we get our
second main result. It is analogous to Theorem 3.1.3, but provides an enclosure
of the pseudospectrum of the infinite-dimensional operator in terms of numerical
ranges of the approximating matrices.

Theorem 3.2.6. Suppose that (Pn, An)n∈N approximates A strongly. Let the shifts
s1, . . . , sm ∈ ϱ(A) be such that

sup
n∈N

∥(An − sj)
−1∥ <∞ for all j = 1, . . . ,m.

Let 0 < ε < 1
maxj=1,...,m ∥(A−sj)−1∥ and δj >

∥(A−sj)−1∥2ε
1−∥(A−sj)−1∥ε for all j = 1, . . . ,m.

Then there exists an n0 ∈ N such that

σε(A) ⊂
m⋂
j=1

[(
Bδj (W ((An − sj)

−1))
)−1

+ sj

]
for all n ≥ n0.

Proof. In view of Lemma 3.2.2, Proposition 3.2.5 can be applied to every A− sj .
Hence, there exists an nj ∈ N such that

σε(A− sj) ⊂
(
Bδj (W ((An − sj)

−1))
)−1

for all n ≥ nj .

Since σε(A) = σε(A− sj) + sj , the claim follows with

n0 := max{n1, . . . , nm}. ❑
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3.3 A Uniform Approximation Scheme

In this section we pose additional assumptions on the approximations An of the
infinite-dimensional operator A, that will allow us to estimate the starting index n0
for which the pseudospectrum enclosures from Proposition 3.2.5 and Theorem 3.2.6
hold on bounded sets.

Throughout this section we assume that A has a compact resolvent, 0 ∈ ϱ(A)
and that D(A) ⊂ W ⊂ H where the Hilbert space W is continuously and densely
embedded into H. The closed graph theorem then implies A−1 ∈ L(H,W). Further,
we suppose that there is a sequence of approximations of the operator A in the
following sense:

a) Un ⊂ H, n ∈ N, are finite-dimensional subspaces of H;

b) There exist projections Pn ∈ L(H) onto Un, n ∈ N, not necessarily orthogonal,
with supn∈N ∥Pn∥ <∞ and ∥(I − Pn)|W∥L(W,H) → 0 as n→ ∞;

c) There exist invertible operators An ∈ L(Un), n ∈ N, such that ∥A−1 −
A−1
n Pn∥ → 0 as n→ ∞.

We say that (Pn, An)n∈N approximates A uniformly. For ∥(I − Pn)|W∥L(W,H) we
will write abbreviatory ∥I − Pn∥L(W,H).

Remark 3.3.1. i) Property c) already implies that A has compact resolvent:
Indeed, A−1 is the uniform limit of the finite rank operators A−1

n Pn and
hence compact.

ii) If (Pn, An)n∈N approximates A uniformly, then also strongly. Note here that
from b) we first obtain Pnx→ x for x ∈ W, which can then be extended to
all x ∈ H by the density of W in H and the uniform boundedness of the Pn.
One particular consequence of the strong approximation is

sup
n∈N

∥A−1
n ∥ <∞,

see Lemma 3.2.1.

iii) Property c) amounts to the convergence of An to A in generalized norm
resolvent sense, see [3, 4, 55] for this notion. Note however that our setting
has the additional assumption that Pn → I uniformly in L(W,H) where
D(A) ⊂ W ⊂ H. For generalized norm resolvent convergence this is not the
case, but it will be a crucial element in the following proofs.

In order to obtain improved enclosures of the pseudospectrum under a uniform
approximation scheme, that is, additional estimates of the starting index n0 for
which the pseudospectrum enclosures from Proposition 3.2.5 and Theorem 3.2.6
hold on bounded sets, we refine the results from Section 3.1 in terms of certain
subsets of the full numerical range of A−1. For d > 0 we define

W (A−1, d) =
{
⟨A−1x, x⟩

∣∣ ∥x∥ = 1, x ∈ W, ∥x∥W ≤ d
}
. (3.11)
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Clearly, we have W (A−1, d) ⊂W (A−1). Moreover, since W is dense in H we get⋃
d>0

W (A−1, d) =W (A−1). (3.12)

Proposition 3.3.2. Let L > 0 and d = L∥A−1∥L(H,W). Then the following
assertions hold:

a) σ(A) ∩ BL(0) ⊂W (A−1, d)−1;

b) If in addition 0 < ε < 1
∥A−1∥ , L > ε and δ ≥ ∥A−1∥2ε

1−∥A−1∥ε , we have

σε(A) ∩ BL−ε(0) ⊂
(
Bδ(W (A−1, d))

)−1
.

Proof. a) Let λ ∈ σ(A) with |λ| ≤ L. Since A has compact resolvent, there
exists an x ∈ D(A) with ∥x∥ = 1 and Ax = λx by Corollary 1.4.2. This
implies

1

|λ|
∥x∥W = ∥A−1x∥W ≤ ∥A−1∥L(H,W)∥x∥ = ∥A−1∥L(H,W)

and thus we obtain

∥x∥W ≤ ∥A−1∥L(H,W)|λ| ≤ L∥A−1∥L(H,W) = d.

Consequently, λ−1 = ⟨A−1x, x⟩ ∈W (A−1, d).

b) The proof is similar to the one of Proposition 3.1.1. We set

U =
(
Bδ(W (A−1, d))

)−1

and first show

∥(A− λ)x∥ ≥ ε for all λ ∈ BL−ε(0) \ U
and x ∈ D(A) with ∥x∥ = 1.

(3.13)

Let therefore λ ∈ BL−ε(0) \ U and x ∈ D(A) with ∥x∥ = 1. We consider
three cases. Suppose first that |λ| > 1

∥A−1∥ − ε and ∥x∥W ≤ d. Then λ ̸= 0

and from λ ̸∈ U we obtain dist(λ−1,W (A−1, d)) ≥ δ, which implies

δ ≤ |λ−1 − ⟨A−1x, x⟩| = |⟨(λ−1 −A−1)x, x⟩| ≤ ∥(λ−1 −A−1)x∥.

Thus,

∥(A− λ)x∥ = |λ|∥A(λ−1 −A−1)x∥ ≥ |λ|
∥A−1∥

∥(λ−1 −A−1)x∥

>
δ

∥A−1∥

(
1

∥A−1∥
− ε

)
=
δ(1− ∥A−1∥ε)

∥A−1∥2
≥ ε.
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In the second case assume ∥x∥W ≥ d. Then

d ≤ ∥x∥W ≤ ∥A−1∥L(H,W)∥Ax∥,

which in view of λ ∈ BL−ε(0) implies

∥(A− λ)x∥ ≥ ∥Ax∥ − |λ| ≥ d

∥A−1∥L(H,W)
− |λ| = L− |λ| ≥ ε.

Finally, if |λ| ≤ 1
δ+∥A−1∥ , the same reasoning as in the proof of Proposi-

tion 3.1.1 can be applied. Indeed, |λ|∥A−1∥ ≤ 1−∥A−1∥ε yields that I−λA−1

is invertible by a Neumann series argument with ∥(I − λA−1)−1∥ ≤ 1
∥A−1∥ε .

For x ∈ D(A) with ∥x∥ = 1 this implies

∥(A− λ)x∥ = ∥A(I − λA−1)x∥ ≥ 1

∥A−1∥∥(I − λA−1)−1∥
≥ ε.

Hence, we have ∥(A−λ)x∥ ≥ ε once again and therefore (3.13) is proven. Now,
since A has a compact resolvent, (3.13) yields that λ ∈ BL−ε(0) \ U implies
λ ∈ ϱ(A) with ∥(A − λ)−1∥ ≤ 1

ε by use of Corollary 1.4.2. Consequently,

σε(A) ∩ BL−ε(0) ⊂ U . ❑

From Proposition 3.3.2 we get again a shifted version:

Theorem 3.3.3. Let S ⊂ ϱ(A) be such that

M0 := sup
s∈S

∥(A− s)−1∥ <∞ and M1 := sup
s∈S

∥(A− s)−1∥L(H,W) <∞.

For 0 < ε < 1
M0

, L > ε, d = LM1 and δs ≥ ∥(A−s)−1∥2ε
1−∥(A−s)−1∥ε we get the inclusion

σε(A) ∩
⋂
s∈S

BL−ε(s) ⊂
⋂
s∈S

[(
Bδs(W ((A− s)−1, d))

)−1
+ s
]
.

Proof. Apply Proposition 3.3.2 b) to A− s for all s ∈ S and note that

λ ∈ σε(A− s) ∩ BL−ε(0)

if and only if
λ+ s ∈ σε(A) ∩ BL−ε(s). ❑

Remark 3.3.4. By the continuity of the embedding W ↪→ H, the conditionM1 <∞
already implies M0 <∞.

For a uniform approximation scheme, the numerical range of A−1 can now be
approximated with explicit control on the starting index n0:

Lemma 3.3.5. Suppose that (Pn, An)n∈N approximates A uniformly and set

C0 = sup
n∈N

(
∥A−1

n ∥∥Pn∥+ 6∥A−1
n ∥∥Pn∥2

)
. (3.14)

Then the following assertions hold:
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a) If d > 0, 0 < δ ≤ C0

2 and n0 ∈ N are such that for every n ≥ n0

∥A−1 −A−1
n Pn∥+ dC0∥I − Pn∥L(W,H) < δ,

we have

W (A−1, d) ⊂ Bδ(W (A−1
n )) for all n ≥ n0;

b) If δ > 0 and n0 ∈ N are such that for every n ≥ n0 we have ∥A−1−A−1
n Pn∥ <

δ, then

W (A−1
n ) ⊂ Bδ(W (A−1)) for all n ≥ n0.

Proof. Let x ∈ W with ∥x∥ = 1 and ∥x∥W ≤ d. Then we obtain

|⟨A−1x, x⟩ − ⟨A−1
n Pnx, Pnx⟩|

≤ |⟨A−1x−A−1
n Pnx, x⟩|+ |⟨A−1

n Pnx, x− Pnx⟩|
≤ ∥A−1 −A−1

n Pn∥∥x∥2 + ∥A−1
n ∥∥Pn∥∥x∥∥I − Pn∥L(W,H)∥x∥W

≤ ∥A−1 −A−1
n Pn∥+ d∥A−1

n ∥∥Pn∥∥I − Pn∥L(W,H)

as well as

|1− ∥Pnx∥| ≤ ∥x− Pnx∥ ≤ ∥I − Pn∥L(W,H)∥x∥W
≤ d∥I − Pn∥L(W,H).

Let n ≥ n0. Then

|1− ∥Pnx∥| ≤ d∥I − Pn∥L(W,H) <
δ

C0

≤ 1

2

and hence ∥Pnx∥ ≥ 1
2 . Let xn = Pnx

∥Pnx∥ . Then ∥xn∥ = 1 and∣∣∣∣1− 1

∥Pnx∥2

∣∣∣∣ = ∣∣∣∣∥Pnx∥2 − 1

∥Pnx∥2

∣∣∣∣ = (∥Pnx∥+ 1)|∥Pnx∥ − 1|
∥Pnx∥2

=

(
1

∥Pnx∥
+

1

∥Pnx∥2

)
|1− ∥Pnx∥|

≤ 6|1− ∥Pnx∥|
≤ 6d∥I − Pn∥L(W,H).

This implies

|⟨A−1
n Pnx, Pnx⟩ − ⟨A−1

n xn, xn⟩| =
∣∣∣∣⟨A−1

n Pnx, Pnx⟩ −
⟨A−1

n Pnx, Pnx⟩
∥Pnx∥2

∣∣∣∣
=

∣∣∣∣1− 1

∥Pnx∥2

∣∣∣∣ |⟨A−1
n Pnx, Pnx⟩|

≤ 6d∥I − Pn∥L(W,H)∥A−1
n ∥∥Pn∥2,
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and thus for n ≥ n0 we arrive at

|⟨A−1x, x⟩ − ⟨A−1
n xn, xn⟩|

≤ ∥A−1 −A−1
n Pn∥+ d∥I − Pn∥L(W,H)(∥A−1

n ∥∥Pn∥+ 6∥A−1
n ∥∥Pn∥2)

≤ ∥A−1 −A−1
n Pn∥+ dC0∥I − Pn∥L(W,H)

< δ.

This yields ⟨A−1x, x⟩ ∈ Bδ(W (A−1
n )) if n ≥ n0 and proves a).

In order to show part b), let x ∈ Un with ∥x∥ = 1. As x = Pnx we have

|⟨A−1
n x, x⟩ − ⟨A−1x, x⟩| ≤ ∥A−1

n x−A−1x∥∥x∥ = ∥A−1
n Pnx−A−1x∥

≤ ∥A−1 −A−1
n Pn∥.

Thus, ⟨A−1
n x, x⟩ ∈ Bδ(W (A−1)) for n ≥ n0. ❑

Corollary 3.3.6. If (Pn, An)n∈N approximates A uniformly, then

W (A−1) =
{
λ ∈ C

∣∣∣∃(λn)n∈N with λn ∈W (A−1
n ) and lim

n→∞
λn = λ

}
or, equivalently,

W (A−1) =
⋂
m∈N

⋃
n≥m

W (A−1
n ).

Proof. We first show the inclusion ”⊃”. Let (λn)n∈N be a convergent sequence
in C with λn ∈ W (A−1

n ) and define λ = limn→∞ λn. Let δ > 0 be arbitrary.
Lemma 3.3.5 b) implies that there exists an n0 ∈ N such that λn ∈ Bδ(W (A−1))
for every n ≥ n0. This implies λ ∈ Bδ(W (A−1)) for every δ > 0, and thus
λ ∈W (A−1).

Conversely, let λ ∈W (A−1, d) for some d > 0. Using Lemma 3.3.5 a), we can
construct a sequence (λn)n∈N in C with λn ∈W (A−1

n ) and λ = limn→∞ λn. The
statement now follows from (3.12). ❑

The last result shows that W (A−1) can be represented as the pointwise limit
of the finite-dimensional numerical ranges W (A−1

n ). Lemma 3.3.5 even yields a
uniform approximation, but this is asymmetric, since one inclusion only holds for
the restricted numerical range W (A−1, d). A more symmetric result is discussed in
the next remark:

Remark 3.3.7. If Un ⊂ W for some n ∈ N then, due to the fact that the space Un
is finite-dimensional,

dn := sup
x∈Un

∥x∥W
∥x∥

<∞.

Using the same reasoning as in the proof of Lemma 3.3.5 b), we then obtain

W (A−1
n ) ⊂ Bδ(W (A−1, dn))

if ∥A−1 −A−1
n Pn∥ < δ.
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Note however that for finite element discretization schemes the condition Un ⊂
W will usually not be fulfilled. In our examples for instance, Un are piecewise
linear finite elements while W ⊂ H2(Ω) is a second order Sobolev space, and thus
Un ̸⊂ W.

Under a uniform approximation scheme the pseudospectrum can be approxi-
mated as follows.

Proposition 3.3.8. Suppose that (Pn, An)n∈N approximates A uniformly. Let
r > 0, 0 < ε < 1

∥A−1∥ and

∥A−1∥2ε
1− ∥A−1∥ε

< δ ≤ ∥A−1∥2ε
1− ∥A−1∥ε

+
7

2
∥A−1∥.

If we choose n0 ∈ N such that for every n ≥ n0

∥A−1 −A−1
n Pn∥+ (r + ε)∥A−1∥L(H,W)C0∥I − Pn∥L(W,H) < δ − ∥A−1∥2ε

1− ∥A−1∥ε
,

where C0 is defined in (3.14), we obtain

σε(A) ∩ Br(0) ⊂
(
Bδ(W (A−1

n ))
)−1

for all n ≥ n0.

Proof. Let δ̂ = ∥A−1∥2ε
1−∥A−1∥ε , L = r + ε and d = L∥A−1∥L(H,W). Proposition 3.3.2

implies
σε(A) ∩ Br(0) ⊂ (Bδ̂(W (A−1, d)))−1.

Next, note that

δ − δ̂ ≤ 7

2
∥A−1∥ = lim

n→∞

7

2
∥A−1

n Pn∥

≤ 1

2
lim sup
n→∞

(
∥A−1

n ∥∥Pn∥+ 6∥A−1
n ∥∥Pn∥2

)
≤ C0

2
,

because Pn is a projection. We can therefore apply Lemma 3.3.5 with δ replaced
by δ − δ̂ and n0 chosen as stated above and obtain

W (A−1, d) ⊂ Bδ−δ̂(W (A−1
n )) for n ≥ n0

and hence the assertion. ❑

3.4 Finite Element Discretization

As an example for a uniform approximation scheme defined in Section 3.3 we now
consider finite element discretizations. We use the standard textbook approach via
form methods, which can be found e.g. in [1, 48].
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Let V and H be Hilbert spaces with V ⊂ H densely and continuously embedded.
In particular, there is a constant c > 0 such that

∥x∥ ≤ c∥x∥V for all x ∈ V. (3.15)

Moreover, we consider a bounded and coercive sesqui-linear form a : V × V → C,
that is, there exist constants M,γ > 0 such that

|a(x, y)| ≤M∥x∥V∥y∥V and ℜa(x, x) ≥ γ∥x∥2V (3.16)

for all x, y ∈ V. Let A : D(A) ⊂ H → H be the operator associated with a, which
is given by

D(A) =
{
x ∈ V

∣∣∃cx > 0 : |a(x, y)| ≤ cx∥y∥ for y ∈ V
}
,

⟨Ax, y⟩ = a(x, y) for all x ∈ D(A) and y ∈ V.

Another way of phrasing it is that x ∈ D(A) if and only if x ∈ V and there exists
an f ∈ H with a(x, y) = ⟨f, y⟩ for every y ∈ V . In this case we have Ax = f . Then

A is a densely defined, closed operator with 0 ∈ ϱ(A) and ∥A−1∥ ≤ c2

γ , where c > 0

is the constant from (3.15).
Let (Un)n∈N be a sequence of finite-dimensional subspaces of V which are nested,

that is Un ⊂ Un+1. We denote by an = a|Un the restriction of a from V to Un. The
form an is again bounded and coercive with the same constants M and γ. Let
An ∈ L(Un) be the operator associated with an, i.e.

an(x, y) = ⟨Anx, y⟩ for x, y ∈ Un.

Then again 0 ∈ ϱ(An) and ∥A−1
n ∥ ≤ c2

γ . Let Pn ∈ L(H) be the orthogonal

projection onto Un. Thus, ∥Pn∥ = 1 and An = PnAn+1|Un , that is, An is a
compression of An+1.

To obtain a uniform approximation scheme, we now consider an additional
Hilbert space W which is densely and continuously embedded into H such that
D(A) ⊂ W ⊂ V . We assume that there exists a sequence of operators Qn ∈ L(W,V)
with R(Qn) ⊂ Un and

lim
n→∞

∥I −Qn∥L(W,V) = 0. (3.17)

Lemma 3.4.1. For all n ∈ N the estimates

∥I − Pn∥L(W,H) ≤ c∥I −Qn∥L(W,V),

∥A−1 −A−1
n Pn∥ ≤ cM

γ
∥A−1∥L(H,W)∥I −Qn∥L(W,V)

hold. In particular, the family (Pn, An)n∈N approximates A uniformly.

Proof. For w ∈ W we calculate

∥w − Pnw∥ = inf
u∈Un

∥w − u∥ ≤ ∥w −Qnw∥ ≤ c∥w −Qnw∥V

≤ c∥I −Qn∥L(W,V)∥w∥W ,
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which shows the first assertion. Moreover, for f ∈ H we set x = A−1f and
xn = A−1

n Pnf and obtain

a(x, y) = ⟨Ax, y⟩ = ⟨f, y⟩ for all y ∈ V,
a(xn, u) = ⟨Anxn, u⟩ = ⟨Pnf, u⟩ = ⟨f, u⟩ for all u ∈ Un.

Using the Lemma of Cea [48, Theorem VII.5.A], we find

∥A−1f −A−1
n Pnf∥ = ∥x− xn∥ ≤ c∥x− xn∥V ≤ cM

γ
inf
u∈Un

∥x− u∥V

≤ cM

γ
∥x−Qnx∥V ≤ cM

γ
∥I −Qn∥L(W,V)∥x∥W

≤ cM

γ
∥I −Qn∥L(W,V)∥A−1∥L(H,W)∥f∥,

which implies the second assertion. ❑

Theorem 3.4.2. Let A be the operator associated with the coercive form a and let
An, Qn be as above. Moreover, let r > 0, 0 < ε < 1

∥A−1∥ and

∥A−1∥2ε
1− ∥A−1∥ε

< δ ≤ ∥A−1∥2ε
1− ∥A−1∥ε

+
7

2
∥A−1∥.

If n0 ∈ N is such that for every n ≥ n0

∥I −Qn∥L(W,V) <
δ − ∥A−1∥2ε

1−∥A−1∥ε

c∥A−1∥L(H,W)

(
M
γ + (r + ε) 7c

2

γ

) ,
then

σε(A) ∩ Br(0) ⊂
(
Bδ(W (A−1

n ))
)−1

for all n ≥ n0.

Proof. We check that the conditions of Proposition 3.3.8 are satisfied: Using
Lemma 3.4.1, we estimate for n ≥ n0 and with C0 from (3.14),

∥A−1 −A−1
n Pn∥+ (r + ε)∥A−1∥L(H,W)C0∥I − Pn∥L(W,H)

≤ c∥A−1∥L(H,W)∥I −Qn∥L(W,V)

(
M

γ
+ (r + ε)

7c2

γ

)
< δ − ∥A−1∥2ε

1− ∥A−1∥ε
. ❑

Example 3.4.3 (Finite element discretization of elliptic partial differential opera-
tors). Let Ω ⊂ R2 be a bounded, open, convex domain with polygonal boundary Γ
and ΓD ⊂ Γ a union of polygons of Γ. Let

V := H1
0 (Ω),
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equipped with the H1-norm. On V we consider the sesqui-linear form

a(u, v) =

∫
Ω

 2∑
i,j=1

aijuxivxj +

2∑
i=1

biuxiv + cuv

 dx, (3.18)

where aij ∈ C0,1(Ω) and bi, c ∈ L∞(Ω). We suppose that a is coercive and
uniformly elliptic. Let {Tn}n∈N be a family of nested, admissible and quasi-uniform
triangulations of Ω satisfying supT∈Tn diam(T ) ≤ 1

n . Furthermore, let

W := H2(Ω) ∩H1
0 (Ω),

be equipped with the H2-norm, and

Un :=
{
u ∈ C0(Ω)

∣∣u|T ∈ P1(T ), T ∈ Tn, u|Γ = 0
}

for n ∈ N.

Here, P1(T ) denotes the set of polynomials of degree 1 on the triangle T . We get
Un ⊂ V. Moreover, the operator A associated with a is given by

Au = −
2∑

i,j=1

∂xj (aijuxi) +

2∑
i=1

biuxi + cu,

D(A) = W.

For the proof of D(A) = W we refer to [21, Theorem 3.2.1.2 and §2.4.2].
By the Sobolev embedding theorem we have H2(Ω) ↪→ C0(Ω). For u ∈ W

we define Qnu as the unique element of Un satisfying (Qnu)(x) = u(x) for every
vertex of the triangulation Tn. Then Qn ∈ L(W,V) with R(Qn) ⊂ Un. Moreover,
[1, Theorem 9.27] implies that there is a constant K > 0 such that

∥I −Qn∥L(W,V) ≤
K

n
, n ∈ N.

We conclude that Theorem 3.4.2 can be applied in this example with n0 ∈ N chosen
such that

n0 >
Kc∥A−1∥L(H,W)

(
M
γ + (r + ε) 7c

2

γ

)
δ − 2∥A−1∥2ε

.

Note, that in Example 3.4.3 we can also consider Ω to be an open interval in R.
All results continue to hold in an analogous way.

3.5 Discretization of Structured Block Operator
Matrices I

In this section we investigate discretizations of a certain kind of block operator
matrices. Let H1 and H2 be Hilbert spaces with inner products ⟨·, ·⟩H1 and ⟨·, ·⟩H2
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respectively such that H = H1 ×H2 and consider block operator matrices of the
form

A =

[
A B
C D

]
,

where A is a closed, densely defined linear operator A : D(A) ⊂ H1 → H1, B ∈
L(H2,H1), C ∈ L(H1,H2) and D ∈ L(H2). Then the block operator matrix A
is a closed, densely defined operator on the product space H1 ×H2 with domain
D(A ) = D(A)×H2. Additionally, we assume that 0 ∈ ϱ(A), 0 ∈ ϱ(D) and that
both A and −D are uniformly accretive, i.e. there exist constants γA, γD > 0 such
that

ℜ⟨Ax, x⟩H1 ≥ γA∥x∥2H1
for all x ∈ D(A), (3.19)

ℜ⟨Dy, y⟩H2
≤ −γD∥y∥2H2

for all y ∈ H2. (3.20)

Moreover, we either suppose

1

4
(∥B∗∥+ ∥C∥)2 < γAγD (3.21)

or
C = B∗. (3.22)

Note, that (3.21) implies the existence of an η > 0 such that

γAη := γA − 1

2η
(∥B∗∥+ ∥C∥) > 0,

γDη := γD − η

2
(∥B∗∥+ ∥C∥) > 0.

In the next lemma we show that under the above assumptions there is a gap
in the spectrum of A along the imaginary axis, and we also prove an estimate
for the norm of the resolvent. Similar results were obtained in [37, 38] under the
additional assumption that A is sectorial and, in [38], without the condition that
B and D are bounded. However, no corresponding resolvent estimates were shown.
We remark that the boundedness of D is not essential in Lemma 3.5.1 but will be
used thereafter.

Lemma 3.5.1. a) If (3.21) holds, we have{
λ ∈ C

∣∣−γDη < ℜλ < γAη
}
⊂ ϱ(A )

and

∥(A − λ)−1∥ ≤ 1

min
{
γAη −ℜλ, γDη + ℜλ

}
if −γDη < ℜλ < γAη.

b) If (3.22) holds, we have
{
λ ∈ C

∣∣ − γD < ℜλ < γA
}
⊂ ϱ(A ) and

∥(A − λ)−1∥ ≤ 1

min{γA −ℜλ, γD + ℜλ}

if −γD < ℜλ < γA.
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Proof. Consider the block operator matrix

J =

[
I 0
0 −I

]
.

a) For λ ∈ U :=
{
λ ∈ C

∣∣ − γDη < ℜλ < γAη
}
, x ∈ D(A) and y ∈ H2 we

estimate

ℜ
〈
J(A − λ)

[
x
y

]
,

[
x
y

]〉
= ℜ

(
⟨(A− λ)x, x⟩H1

+ ⟨y,B∗x⟩H2
− ⟨Cx, y⟩H2

− ⟨(D − λ)y, y⟩H2

)
≥ (γA −ℜλ)∥x∥2H1

− ∥y∥H2
∥B∗x∥H2

− ∥Cx∥H2
∥y∥H2

+ (γD + ℜλ)∥y∥2H2

≥ (γA −ℜλ)∥x∥2H1
− (∥B∗∥+ ∥C∥)∥x∥H1

∥y∥H2

+ (γD + ℜλ)∥y∥2H2

≥ (γA −ℜλ)∥x∥2H1
− (∥B∗∥+ ∥C∥)

(
1

2η
∥x∥2H1

+
η

2
∥y∥2H2

)
+ (γD + ℜλ)∥y∥2H2

≥ cλ

∥∥∥∥[xy
]∥∥∥∥2 ,

where cλ = min{γAη −ℜλ, γDη + ℜλ}.

b) For λ ∈ U :=
{
λ ∈ C

∣∣ − γD < ℜλ < γA
}
, x ∈ D(A) and y ∈ H2 we estimate

ℜ
〈
J(A − λ)

[
x
y

]
,

[
x
y

]〉
= ℜ

(
⟨(A− λ)x, x⟩H1

+ ⟨By, x⟩H1
− ⟨B∗x, y⟩H2

− ⟨(D − λ)y, y⟩H2

)
= ℜ⟨(A− λ)x, x⟩H1

−ℜ⟨(D − λ)y, y⟩H2

≥ (γA −ℜλ)∥x∥2H1
+ (γD + ℜλ)∥y∥2H2

≥ cλ

∥∥∥∥[xy
]∥∥∥∥2 ,

where cλ = min{γA −ℜλ, γD + ℜλ}.

In both cases, it follows that∥∥∥∥J(A − λ)

[
x
y

]∥∥∥∥∥∥∥∥[xy
]∥∥∥∥ ≥

∣∣∣∣〈J(A − λ)

[
x
y

]
,

[
x
y

]〉∣∣∣∣ ≥ cλ

∥∥∥∥[xy
]∥∥∥∥2

for all

[
x
y

]
∈ D(A ) and therefore∥∥∥∥(A − λ)

[
x
y

]∥∥∥∥ ≥ cλ

∥∥∥∥[xy
]∥∥∥∥ for all

[
x
y

]
∈ D(A ), (3.23)
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because ∥Jw∥ = ∥w∥ for all w ∈ H1 × H2. In particular, λ ̸∈ σapp(A ), i.e.
U ∩ σapp(A ) = ∅. The adjoint of A is the block operator matrix

A ∗ =

[
A∗ B
B∗ D∗

]
,

which also satisfies the assumptions of this lemma. Indeed, (3.20) obviously also
holds for D∗. Moreover, the uniform accretivity (3.19) of A together with 0 ∈ ϱ(A)
imply that A−γA is m-accretive, see [32, §V.3.10]. This in turn yields that A∗−γA
is m-accretive too and hence

ℜ⟨A∗x, x⟩H1
≥ γA∥x∥2H1

for all x ∈ D(A∗).

It follows that (3.23) also holds for A ∗. In particular, kerA ∗ = {0} or, equivalently,
R(A ) ⊂ H1 ×H2 is dense. On the other hand, (3.23) implies that kerA = {0}
and that R(A ) is closed. Consequently, R(A ) = H1 ×H2 and therefore 0 ∈ ϱ(A ).
Using ∂σ(A ) ⊂ σapp(A ) and the connectedness of the set U , we obtain U ⊂ ϱ(A ).
Now, (3.23) implies ∥(A − λ)−1∥ ≤ 1/cλ for all λ ∈ U . ❑

We consider approximations An of A of the form

An =

[
An Bn
Cn Dn

]
,

where

a) (P1,n, An)n∈N is a family which approximates A strongly in the sense of
Section 3.2;

b) all projections P1,n are orthogonal and all An are uniformly accretive with
the same constant γA as in (3.19);

c) U2,n ⊂ H2, n ∈ N, are finite-dimensional subspaces of H2 and P2,n : H2 →
U2,n are orthogonal projections onto U2,n;

d) Bn = P1,nB|U2,n
, Cn = P2,nC|U1,n

and Dn = P2,nD|U2,n
, where U1,n =

R(P1,n).

Lemma 3.5.2. The following assertions hold:

a) Either
{
λ ∈ C

∣∣ − γDη < ℜλ < γAη
}
⊂ ϱ(An) and

∥(An − λ)−1∥ ≤ 1

min{γAη −ℜλ, γDη + ℜλ}
for − γDη < ℜλ < γAη,

if (3.21) holds, or
{
λ ∈ C

∣∣ − γD < ℜλ < γA
}
⊂ ϱ(An) and

∥(An − λ)−1∥ ≤ 1

min{γA −ℜλ, γD + ℜλ}
for − γD < ℜλ < γA,

if (3.22) holds.
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b) (Pn,An)n∈N approximates A strongly where Pn = diag(P1,n, P2,n).

Proof. a) From

⟨Dny, y⟩H2
= ⟨P2,nDy, y⟩H2

= ⟨Dy, y⟩H2
for all y ∈ U2,n

it follows that −Dn is uniformly accretive with constant γD from (3.20).
Consequently, Lemma 3.5.1 can be applied to An.

b) In view of a) and Lemma 3.2.1 it suffices to show that for all

[
x
y

]
∈ D(A)×H2

there exist

[
xn
yn

]
∈ U1,n × U2,n such that

lim
n→∞

[
xn
yn

]
=

[
x
y

]
and lim

n→∞
An

[
xn
yn

]
= A

[
x
y

]
. (3.24)

Let therefore

[
x
y

]
∈ D(A)×H2. From Lemma 3.2.1 we get xn ∈ U1,n with

xn → x and Anxn → Ax as n→ ∞. Set yn = P2,ny. Then yn → y and

∥Dnyn −Dy∥H2
≤ ∥P2,n(Dyn −Dy)∥H2

+ ∥P2,nDy −Dy∥H2

≤ ∥Dyn −Dy∥H2
+ ∥P2,nDy −Dy∥H2

→ 0,

n→ ∞,

i.e. Dnyn → Dy. The proof of Bnyn → By and Cnxn → Cx is the same.
Hence, we have shown (3.24). ❑

Theorem 3.5.3. Let either s1, . . . , sm ∈
{
λ ∈ C

∣∣ − γDη < ℜλ < γAη
}
, 0 < ε <

minj=1,...,m

(
min{γAη −ℜsj , γDη + ℜsj}

)
and

δj >
ε

min{γAη −ℜsj , γDη + ℜsj}2 − εmin{γAη −ℜsj , γDη + ℜsj}

for j = 1, . . . ,m, if (3.21) holds, or s1, . . . , sm ∈
{
λ ∈ C

∣∣ − γD < ℜλ < γA
}
,

0 < ε < minj=1,...,m (min{γA −ℜsj , γD + ℜsj}) and

δj >
ε

min{γA −ℜsj , γD + ℜsj}2 − εmin{γA −ℜsj , γD + ℜsj}

for j = 1, . . . ,m, if (3.22) holds.

Then there exists an n0 ∈ N such that

σε(A ) ⊂
m⋂
j=1

[(
Bδj (W ((An − sj)

−1))
)−1

+ sj

]
for all n ≥ n0.
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Proof. Lemma 3.5.1 yields

∥(A − sj)
−1∥ < 1

ε
and Lemma 3.5.2 implies

∥(An − sj)
−1∥ < 1

ε
.

for j = 1, . . . ,m. Hence, the assertion follows from Theorem 3.2.6. ❑

Remark 3.5.4. Suppose that A is the operator associated with a bounded coer-
cive sesqui-linear form a on a densely and continuously embedded Hilbert space
V1 ⊂ H1 and that U1,n, W, P1,n ∈ L(H1) and An ∈ L(U1,n) are chosen as in
Section 3.4. Then (P1,n, An) approximates A uniformly, and hence also strongly,
see Remark 3.3.1. Moreover, the coercivity of a implies that A and all An are
uniformly accretive with constant γA = γ from (3.16). Hence, all assumptions of
this section are fulfilled in this case.

Furthermore, this setting would also be covered by the assumptions of the next
section.

Example 3.5.5. As an example for a block operator matrix that fits into the
framework of this section we take a look at the Hain-Lüst operator. See [45] and
[46] for results on the approximation of the quadratic numerical range of such a
block operator. The Hain-Lüst operator is defined by

A =

[
A B
B∗ D

]
=

[
− 1

100
d2

dξ2 + 2 I

I 2e2πi· − 3

]
on the Hilbert space H := L2(0, 1)× L2(0, 1) with

D(A) =
{
u ∈ H2(0, 1)

∣∣u(0) = u(1) = 0
}
,

D(B) = D(D) = L2(0, 1)

and D(A ) = D(A) × D(D). Here, all the assumptions stated in the beginning
of this section are fulfilled because we have 0 ∈ ϱ(A) ∩ ϱ(D) and A and −D are
uniformly accretive with γA = 2+ 1

400 and γD = 1 because of the Poincaré-Friedrichs
inequality, see [56, p. 231], and the fact that ℜ

(
2e2πiξ − 3

)
≤ −1 for all ξ ∈ [0, 1].

Thus, we have the spectrum free strip
{
λ ∈ C

∣∣ − 1 < ℜλ < 2 + 1
400

}
⊂ ϱ(A )

and a corresponding bound of the norm of the resolvent by Lemma 3.5.1. Confer
Example 3.7.2, where we construct finite element discretization matrices for this
operator and plot a superset of the pseudospectrum that gives us the ability to
distinguish disconnected components of the spectrum, in particular by displaying a
portion of the spectrum free strip.

3.6 Discretization of Structured Block Operator
Matrices II

In this section we will consider a different class of structured block operator matrices
that – when compared to the setting in Section 3.5 – is more general in the sense
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that it also allows for unbounded off-diagonal entries and more restrictive in the
sense that it requires the operator in the top left to be associated to a sesqui-linear
form.

Let therefore H1,H2 be Hilbert spaces with inner products ⟨·, ·⟩H1
and ⟨·, ·⟩H2

respectively such that H = H1 × H2 and consider a block operator matrix
A : D(A ) ⊂ H → H of the form

A =

[
A B
C D

]
with D(A ) = D(A)×D(B) such that the following assumptions are fulfilled:

a) There is a densely and continuously embedded Hilbert space V1 ⊂ H1, i.e.
there exists a c > 0 such that

∥x∥H1
≤ c∥x∥V1

for all x ∈ V1,

and a : V1 × V1 → C is a bounded and coercive sesqui-linear form, i.e. there
exist constants M,γA > 0 such that

|a(x, u)| ≤M∥x∥V1
∥u∥V1

and ℜa(x, x) ≥ γA∥x∥2V1

for all x, u ∈ V1 such that the operator A : D(A) ⊂ H1 → H1 is associated
with a. This means, that x ∈ D(A) if and only if x ∈ V1 and there exists
an f ∈ H1 with a(x, u) = ⟨f, u⟩H1 for every u ∈ V1. In this case we have
Ax = f . Then A is a densely defined closed operator with 0 ∈ ϱ(A);

b) B : D(B) ⊂ H2 → H1 is a linear and densely defined operator such that V1 ⊂
D(B∗) and there exists a constant kB∗ > 0 such that ∥B∗u∥H2

≤ kB∗∥u∥V1

for all u ∈ V1;

c) C : D(C) ⊂ H1 → H2 is a linear and densely defined operator such that
V1 ⊂ D(C) and there exists a constant kC > 0 such that ∥Cx∥H2

≤ kC∥x∥V1

for all x ∈ V1;

d) D ∈ L(H2) and −D is uniformly accretive, i.e. there exists a constant γD > 0
such that ℜ⟨Dy, y⟩H2 ≤ −γD∥y∥2H2

for every y ∈ H2;

e) Either

1

4
(kB∗ + kC)

2 < γAγD (3.25)

or

C = B∗. (3.26)

Note, that (3.25) implies the existence of an η > 0 such that

γAη := γA − 1

2η
(kB∗ + kC) > 0,

γDη := γD − η

2
(kB∗ + kC) > 0.
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The given assumptions do not guarantee that A is a closed operator. In order
to obtain an inclusion like

σε(A ) ⊂
⋂
s∈S

[(
Bδs(W ((An − s)−1))

)−1
+ s
]

for a suitable set S and sufficiently large n ∈ N we therefore have to make sure
that A is closable and we have to find suitable approximation matrices An. We
will accomplish that by introducing the following form:

Definition 3.6.1. Let V := V1 ×H2 and ã : V × V → C,

ã

([
x
y

]
,

[
u
v

])
:= a(x, u) + ⟨y,B∗u⟩H2

− ⟨Cx, v⟩H2
− ⟨Dy, v⟩H2

.

Lemma 3.6.2. ã is a bounded and coercive sesqui-linear form.

Proof. We have∣∣∣∣ã([xy
]
,

[
u
v

])∣∣∣∣ ≤M∥x∥V1
∥u∥V1

+ ∥y∥H2
∥B∗u∥H2

+ ∥Cx∥H2
∥v∥H2

+ ∥Dy∥H2
∥v∥H2

≤M∥x∥V1
∥u∥V1

+ kB∗∥y∥H2
∥u∥V1

+ kC∥x∥V1
∥v∥H2

+ ∥D∥∥y∥H2
∥v∥H2

≤ M̃

2
(∥x∥V1

+ ∥y∥H2
) (∥u∥V1

+ ∥v∥H2
)

≤ M̃

∥∥∥∥[xy
]∥∥∥∥

V

∥∥∥∥[uv
]∥∥∥∥

V

with M̃ = 2max
{
M,kB∗, kC , ∥D∥

}
> 0.

For the coercivity, we consider two cases. If (3.25) holds, we obtain

ℜã
([

x
y

]
,

[
x
y

])
≥ γA∥x∥2V1

+ ℜ(⟨y,B∗x⟩H2
− ⟨Cx, y⟩H2

) + γD∥y∥2H2

≥ γA∥x∥2V1
− ∥y∥H2

∥B∗x∥H2
− ∥Cx∥H2

∥y∥H2
+ γD∥y∥2H2

≥ γA∥x∥2V1
− (kB∗ + kC)∥y∥H2

∥x∥V1
+ γD∥y∥2H2

≥ γA∥x∥2V1
− (kB∗ + kC)

(
η

2
∥y∥2H2

+
1

2η
∥x∥2V1

)
+ γD∥y∥2H2

=

(
γA − 1

2η
(kB∗ + kC)

)
∥x∥2V1

+
(
γD − η

2
(kB∗ + kC)

)
∥y∥2H2

(3.27)

≥ γ̃

∥∥∥∥[xy
]∥∥∥∥2

V
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with γ̃ = min
{
γAη, γDη

}
> 0. In the other case, if (3.26) holds, we have

ℜã
([

x
y

]
,

[
x
y

])
≥ γA∥x∥2V1

+ ℜ(⟨y,B∗x⟩H2
− ⟨Cx, y⟩H2

) + γD∥y∥2H2

= γA∥x∥2V1
+ γD∥y∥2H2

(3.28)

≥ γ̃

∥∥∥∥[xy
]∥∥∥∥2

V

with γ̃ = min{γA, γD} > 0. ❑

Denote by JÃ the operator associated to ã, where

J =

[
I 0
0 −I

]
.

Then JÃ is closed with 0 ∈ ϱ(JÃ ). For

[
x
y

]
∈ D(A ) = D(A) × D(B) ⊂ V and[

u
v

]
∈ V we have

ã

([
x
y

]
,

[
u
v

])
= a(x, u) + ⟨y,B∗u⟩H2

− ⟨Cx, v⟩H2
− ⟨Dy, v⟩H2

= ⟨Ax+By, u⟩H1 + ⟨−Cx−Dy, v⟩H2

=

〈
JA

[
x
y

]
,

[
u
v

]〉
.

Hence, JA ⊂ JÃ holds and thus A is closable with A ⊂ Ã .
We also obtain the existence of a spectrum free strip similar to Lemma 3.5.1:

Lemma 3.6.3. a) If (3.25) holds, we have{
λ ∈ C

∣∣−γDη < ℜλ < c−2γAη
}
⊂ ϱ(Ã )

and

∥(Ã − λ)−1∥ ≤ 1

min
{
c−2γAη −ℜλ, γDη + ℜλ

}
if −γDη < ℜλ < c−2γAη.

b) If (3.26) holds, we have
{
λ ∈ C

∣∣ − γD < ℜλ < c−2γA
}
⊂ ϱ(Ã ) and

∥(Ã − λ)−1∥ ≤ 1

min{c−2γA −ℜλ, γD + ℜλ}

if −γD < ℜλ < c−2γA.
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Proof. Let λ ∈ U :=
{
λ ∈ C

∣∣−γDη < ℜλ < c−2γAη
}
and

[
x
y

]
∈ D(Ã ). Just as in

(3.27) we obtain

ℜ
〈
J(Ã − λ)

[
x
y

]
,

[
x
y

]〉
≥ cλ

∥∥∥∥[xy
]∥∥∥∥2 ,

where cλ = min{c−2γAη −ℜλ, γDη + ℜλ} and with the same arguments that led
to (3.23) we therefore have∥∥∥∥(Ã − λ)

[
x
y

]∥∥∥∥ ≥ cλ

∥∥∥∥[xy
]∥∥∥∥ for all

[
x
y

]
∈ D(Ã ). (3.29)

In particular, λ ̸∈ σapp(Ã ), i.e. U ∩ σapp(Ã ) = ∅. Because of 0 ∈ ϱ(Ã ) we can

use ∂σ(Ã ) ⊂ σapp(Ã ) and the connectedness of the set U to obtain U ⊂ ϱ(Ã ).

Now, (3.29) implies ∥(Ã − λ)−1∥ ≤ 1/cλ for all λ ∈ U which proves a). For b), the
same line of reasoning can be applied with (3.28) instead of (3.27). ❑

Theorem 3.6.4. Let U1,n ⊂ V1, n ∈ N, be a finite dimensional subspace for which
there exists a mapping Qn : V1 → U1,n with

lim
n→∞

∥x−Qnx∥V1 = 0 for all x ∈ V1

and let U2,n ⊂ H2, n ∈ N, be a finite dimensional subspace for which there exists a
projection P2,n ∈ L(H2) with R(P2,n) = U2,n and

lim
n→∞

∥y − P2,ny∥H2
= 0 for all y ∈ H2.

Let further P1,n ∈ L(H1) be a projection with R(P1,n) = U1,n and

lim
n→∞

∥x− P1,nx∥H1 = 0 for all x ∈ H1

and denote by JÃn the operator associated to the restricted form

ã|U1,n×U2,n
: (U1,n × U2,n)× (U1,n × U2,n) → C.

Then

([
P1,n 0
0 P2,n

]
, Ãn

)
n∈N

is a strong approximation of Ã in the sense of

Section 3.2.

Proof. Let us define

Rn =

[
Qn 0
0 P2,n

]
.

For

[
f
g

]
∈ H we set

[
x
y

]
= Ã −1

[
f
g

]
and

[
xn
yn

]
= Ã −1

n

[
P1,n 0
0 P2,n

] [
f
g

]
.
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Then we have

ã

([
x
y

]
,

[
u
v

])
=

〈
JÃ

[
x
y

]
,

[
u
v

]〉
=

〈[
f
−g

]
,

[
u
v

]〉

for all

[
u
v

]
∈ V and

ã

([
xn
yn

]
,

[
un
vn

])
=

〈
JÃn

[
xn
yn

]
,

[
un
vn

]〉
=

〈
J

[
P1,n 0
0 P2,n

] [
f
g

]
,

[
un
vn

]〉
=

〈[
f
−g

]
,

[
un
vn

]〉

for all

[
un
vn

]
∈ U1,n × U2,n. With this at hand we can now make use of the lemma

of Cea [48, Theorem VII.5.A] in order to estimate∥∥∥∥Ã −1

[
f
g

]
− Ã −1

n

[
P1,n 0
0 P2,n

] [
f
g

]∥∥∥∥
H

=

∥∥∥∥[xy
]
−
[
xn
yn

]∥∥∥∥
H

≤ max{c, 1}
∥∥∥∥[xy

]
−
[
xn
yn

]∥∥∥∥
V

≤ max{c, 1}M̃
γ̃

inf[
un
vn

]
∈U1,n×U2,n

∥∥∥∥[xy
]
−
[
un
vn

]∥∥∥∥
V

≤ max{c, 1}M̃
γ̃

∥∥∥∥[xy
]
−Rn

[
x
y

]∥∥∥∥
V

= max{c, 1}M̃
γ̃

(
∥x−Qnx∥2V1

+ ∥y − P2,ny∥2H2

) 1
2 → 0

for n→ ∞. ❑

Now Theorem 3.2.6 can be applied here in order to obtain the inclusion

σε(Ã ) ⊂
⋂
s∈S

[(
Bδs(W ((Ãn − s)−1))

)−1
+ s
]

for a suitable set S.

In the following we are interested in finding sufficient conditions under which

the equality Ã = A holds.

Remark 3.6.5. A∗ is densely defined with D(A∗) ⊂ V1, because A
∗ is associated

to the adjoint form a∗ of a defined by a∗(u, x) = a(x, u) for x, u ∈ V1, see [32,
Theorem 6.2.5, p. 323]. This is true because if we denote the operator associated
to a∗ by Aad, we have

⟨Ax, u⟩H1
= a(x, u) = a∗(u, x) = ⟨Aadu, x⟩H1

= ⟨x,Aadu⟩H1
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for all x ∈ D(A) and u ∈ D(Aad). This implies Aad ⊂ A∗. Since we have 0 ∈ ϱ(A),
we also have 0 ∈ ϱ(A∗) and because of 0 ∈ ϱ(Aad) we can therefore conclude
Aad = A∗.

Lemma 3.6.6. If D(C∗) is a dense subset of H2, we have

A

[
x
y

]
=

[
A(x+A−1By)
Cx+Dy

]

for all

[
x
y

]
∈ D(A ) where

D(A ) =

{[
x
y

]
∈ H

∣∣∣∣x+A−1By ∈ D(A), y ∈ D(CA−1B)

}
.

Proof. As seen in Remark 3.6.5, we have D(A∗) ⊂ V1 ⊂ D(B∗) and therefore the
inclusion

A−1B ⊂ (B∗A−∗)∗ ∈ L(H2,H1)

holds, so A−1B is bounded on D(B). The closure of A−1B is then given by
A−1B = (B∗A−∗)∗. Furthermore, the denseness of D(C∗) is equivalent to C being
closable, so we can conclude that CA−1B is also closable. The assertion then
follows from Theorem 1.1.10 via

A

[
x
y

]
=

[
I 0

CA−1 I

] [
A 0

0 D − CA−1B

] [
I A−1B
0 I

] [
x
y

]
=

[
A(x+A−1By)

C(x+A−1By) +Dy − CA−1By

]

for all

[
x
y

]
∈
{[

x
y

]
∈ H

∣∣∣∣x+A−1By ∈ D(A), y ∈ D(CA−1B)

}
and

CA−1B ⊂ C A−1B. ❑

Lemma 3.6.7. If D(C∗) is a dense subset of H2, we have

A ∗
[
u
v

]
=

[
A∗(u+A−∗C∗v)
B∗u+D∗v

]

for all

[
u
v

]
∈ D(A ∗) where

D(A ∗) =

{[
u
v

]
∈ H

∣∣∣∣u ∈ D(B∗), u+A−∗C∗v ∈ D(A∗)

}
.
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Proof. We have D(A) ⊂ V1 ⊂ D(C) and therefore the inclusion

A−∗C∗ ⊂ (CA−1)∗ ∈ L(H2,H1)

holds, so A−∗C∗ is bounded on D(C∗). The closure of A−∗C∗ is then given by
A−∗C∗ = (CA−1)∗.

Let

[
u
v

]
∈ D(A ∗) be such that

〈
A

[
x
y

]
,

[
u
v

]〉
=

〈[
x
y

]
,

[
w
z

]〉

for all

[
x
y

]
∈ D(A ). If we then choose x to be 0, we obtain

⟨By, u⟩H1
= ⟨y, z −D∗v⟩H2

.

Hence, u ∈ D(B∗) and z = B∗u+D∗v. If on the other hand we choose y to be 0,
we obtain

⟨Ax, u⟩H1 + ⟨CA−1Ax, v⟩H2 = ⟨x,w⟩H1

or equivalently

⟨Ax, u+A−∗C∗v⟩H1 = ⟨x,w⟩H1 .

Hence, u+A−∗C∗v ∈ D(A∗) and w = A∗(u+A−∗C∗v). Since for any[
u
v

]
∈
{[

u
v

]
∈ H

∣∣∣∣u ∈ D(B∗), u+A−∗C∗v ∈ D(A∗)

}
we do also obtain the equation〈

A

[
x
y

]
,

[
u
v

]〉
=

〈[
x
y

]
,

[
A∗(u+A−∗C∗v)
B∗u+D∗v

]〉

for every

[
x
y

]
∈ D(A ), the proof is complete. ❑

Definition 3.6.8. Let n ∈ N. We define the Frobenius inner product ⟨·, ·⟩F on
Hn×n

2 via

⟨K,L⟩F =

n∑
i=1

n∑
j=1

⟨Ki,j , Li,j⟩H2

for all K,L ∈ Hn×n
2 .
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Theorem 3.6.9. Suppose that one of the following conditions is fulfilled:

a) D(C∗) and R(C|D(A)) are dense in H2, a(x, u) = α⟨Cx,B∗u⟩H2
holds for

an α ∈ C \ {0} and all x, u ∈ V1 and B is closed;

b) R(B∗|D(A∗)) is dense in H2 and A∗ = αC∗B∗ holds for an α ∈ C \ {0} with
1
α /∈ σp(D

∗);

c) H1 = Hn
2 , V1 = V1,1 × · · · × V1,n ⊂ D(C∗)n ∩ D(B)n and

⋂n
i=1 V1,i is dense

in H2 for some n ∈ N. Furthermore, a(x, u) = α⟨C∗x,Bu⟩F holds for an
α ∈ C \ {0} and all x, u ∈ V1 where

B : V1 ⊂ H1 → Hn×n
2 , Bu :=

[
Bu1 . . . Bun

]
,

is closable and
C : D(C) ⊂ Hn×n

2 → H1

such that V1 ⊂ D(C∗) and R(C∗|D(A)) is dense in Hn×n
2 . Moreover, B∗u =

β
∑n
i=1(Bui)i for all u ∈ V1 and some β ∈ C with |β| = 1 and Cx =

γ
∑n
i=1(C

∗x)i,i for all x ∈ V1 and some γ ∈ C.

Then we have

Ã = A .

Remark 3.6.10. Note that the assumptions on a in a) and c) imply A = αBC|D(A),

A∗ = αC∗B∗|D(A∗) and A = αB∗C∗|D(A), A
∗ = αCB respectively.

Proof of Theorem 3.6.9. a) In this setting we can state the operator Ã explicitly.

Let

[
x
y

]
∈ D(Ã ) and

[
f
g

]
∈ H be such that

ã

([
x
y

]
,

[
u
v

])
=

〈[
f
g

]
,

[
u
v

]〉
for all

[
u
v

]
∈ V.

Then we have

ã

([
x
y

]
,

[
0
v

])
= ⟨−Cx−Dy, v⟩H2 = ⟨g, v⟩H2

for all v ∈ H2 which implies g = −Cx−Dy and we also have

ã

([
x
y

]
,

[
u
0

])
= ⟨αCx+ y,B∗u⟩H2 = ⟨f, u⟩H1

for all u ∈ V1 which implies αCx+ y ∈ D(B) and f = B(αCx+ y). On the

other hand, if we choose

[
x
y

]
∈ V such that αCx+ y ∈ D(B), we obtain that

ã

([
x
y

]
,

[
u
v

])
= a(x, u) + ⟨y,B∗u⟩H2

− ⟨Cx, v⟩H2
− ⟨Dy, v⟩H2

= ⟨αCx+ y,B∗u⟩H2
− ⟨Cx+Dy, v⟩H2

= ⟨B(αCx+ y), u⟩H1
− ⟨Cx+Dy, v⟩H2
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holds for all

[
u
v

]
∈ V. This shows

JÃ

[
x
y

]
=

[
B(αCx+ y)
−Cx−Dy

]

for all

[
x
y

]
∈ D(Ã ) =

{[
x
y

]
∈ V

∣∣∣∣αCx+ y ∈ D(B)

}
.

Due to D(C∗) being dense in H2, A is given as in Lemma 3.6.6 and since

Ã is also a closed extension of A we have A ⊂ Ã . By the same line
of reasoning as in the beginning of the proof of Lemma 3.6.6 we see that
A−1B = (B∗A−∗)∗ ∈ L(H2,H1). In addition, we have A = αBC|D(A) and
thus, using D(A∗) ⊂ D(B∗) from Remark 3.6.5,

1

α
I|D(A) = A−1BC|D(A) ⊂ (C∗B∗A−∗)∗ ∈ L(H1)

holds which implies 1
αI = A−1BC = (C∗B∗A−∗)∗ and because of A−1BC ⊂

(C∗B∗A−∗)∗ we can therefore deduce A−1BC = 1
αI|D(C). Combining this

with B ⊂ AA−1B we see that for x ∈ V1 and y ∈ H2, αCx + y ∈ D(B)
implies x+A−1By ∈ D(A). This is because from αCx+ y ∈ D(AA−1B) we
get A−1B(αCx+ y) ∈ D(A) and the fact that A−1B is defined on H2 yields
x+A−1By ∈ D(A). The same arguments explain

B(αCx+ y) = A(x+A−1By) for all

[
x
y

]
∈ D(Ã ).

It remains to show that y ∈ D(CA−1B). Since A is invertible and A =
αBC|D(A), we have that C|D(A) is injective and therefore

CA−1B|R(C|D(A)) = CA−1BCC|−1
D(A)|R(C|D(A)) =

1

α
I|R(C|D(A)).

Now the assumption thatR(C|D(A)) is dense inH2 implies that CA−1B = 1
αI,

i.e. D(CA−1B) = H2. Thus, the inclusion Ã ⊂ A also holds true.

b) Because of A∗ = αC∗B∗|D(A∗) and D(A∗) ⊂ D(C∗B∗), the inclusion

R(B∗|D(A∗)) ⊂ D(C∗)

holds. Therefore, D(C∗) is dense in H2 as well, so A and A ∗ are given
as in Lemma 3.6.6 and Lemma 3.6.7 respectively. We will now show that

0 ∈ ϱ(A ). To this end, first note that since Ã is a closed extension of A , we

have A ⊂ Ã . Hence, we can use that the inequality

ℜ
〈

A

[
x
y

]
,

[
x
y

]〉
≥ γ̃

∥∥∥∥[xy
]∥∥∥∥2

V
≥ 1

max{c, 1}
γ̃

∥∥∥∥[xy
]∥∥∥∥2

H
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holds for all

[
x
y

]
∈ D(A ) and some γ̃ > 0 by Lemma 3.6.2 to see that A

is injective with closed range. In order to obtain 0 ∈ ϱ(A ) it is therefore

sufficient to prove kerA ∗ = {0}. So let

[
u
v

]
∈ D(A ∗) be such that A ∗

[
u
v

]
=

0. This leads to the two equations

A∗(u+A−∗C∗v) = 0, (3.30)

B∗u+D∗v = 0. (3.31)

From (3.30) we obtain u = −A−∗C∗v, because 0 ∈ ϱ(A∗) and thus (3.31)
gives us

−B∗A−∗C∗v +D∗v = 0. (3.32)

By the same line of reasoning as in the beginning of the proof of Lemma 3.6.7
we see that A−∗C∗ ∈ L(H2,H1) and since B∗ is closed, so is B∗A−∗C∗.
Therefore, B∗A−∗C∗ is closable and B∗A−∗C∗ ⊂ B∗A−∗C∗. A∗ is invertible
and by assumption we have A∗ = αC∗B∗|D(A∗), so B

∗|D(A∗) is injective and

A−∗C∗B∗|D(A∗) =
1
αI|D(A∗) holds. This implies

B∗A−∗C∗|R(B∗|D(A∗)) = B∗A−∗C∗B∗B∗|−1
D(A∗)|R(B∗|D(A∗))

=
1

α
I|R(B∗|D(A∗)).

Hence, we obtain B∗A−∗C∗ = B∗A−∗C∗ = 1
αI by using that R

(
B∗|D(A∗)

)
is dense in H2. With this at hand, (3.32) simplifies to(

D∗ − 1

α
I

)
v = 0

and since we have 1
α /∈ σp(D

∗) by assumption this implies v = 0 and therefore

also u = 0, i.e. kerA ∗ = {0}. Due to R(A ) being closed we can now

conclude that R(A ) = H holds, so we have 0 ∈ ϱ(A ). From A ⊂ Ã and

0 ∈ ϱ(A ) ∩ ϱ(Ã ) we then get the asserted equality A = Ã .

c) Here we can state the operator Ã explicitly again. Let

[
x
y

]
∈ D(Ã ) and[

f
g

]
∈ H be such that

ã

([
x
y

]
,

[
u
v

])
=

〈[
f
g

]
,

[
u
v

]〉
for all

[
u
v

]
∈ V.

Then we have

ã

([
x
y

]
,

[
0
v

])
= ⟨−Cx−Dy, v⟩H2

= ⟨g, v⟩H2
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for all v ∈ H2 which implies g = −Cx−Dy and we also have

ã

([
x
y

]
,

[
u
0

])
= ⟨αC∗x,Bu⟩F + ⟨y,B∗u⟩H2

= ⟨αC∗x,Bu⟩F +

〈
y, β

n∑
i=1

(Bui)i

〉
H2

= ⟨αC∗x,Bu⟩F +
〈
βdiag(y, . . . , y),Bu

〉
F

= ⟨f, u⟩

for all u ∈ H1 which implies αC∗x+ βdiag(y, . . . , y) ∈ D(B∗) and

f = B∗(αC∗x+ βdiag(y, . . . , y)
)
.

On the other hand, if we choose

[
x
y

]
∈ V such that

αC∗x+ βdiag(y, . . . , y) ∈ D(B∗),

we obtain that

ã

([
x
y

]
,

[
u
v

])
= a(x, u) + ⟨y,B∗u⟩H2 − ⟨Cx, v⟩H2 − ⟨Dy, v⟩H2

= ⟨αC∗x,Bu⟩F +
〈
βdiag(y, . . . , y),Bu

〉
F

− ⟨Cx+Dy, v⟩H2

=
〈
B∗(αC∗x+ βdiag(y, . . . , y)

)
, u
〉
H1

− ⟨Cx+Dy, v⟩H2

holds for all

[
u
v

]
∈ V. This shows

JÃ

[
x
y

]
=

[
B∗(αC∗x+ βdiag(y, . . . , y)

)
−Cx−Dy

]
for all

[
x
y

]
∈ D(Ã ) =

{[
x
y

]
∈ V

∣∣∣∣αC∗x+ βdiag(y, . . . , y) ∈ D(B∗)

}
. Due

to D(C∗) being dense in H2, A is given as in Lemma 3.6.6 and since Ã is

also a closed extension of A we have A ⊂ Ã . Because of our assumption
on a we have A∗ = αCB and thus D(A∗) ⊂ D(B). We therefore obtain the
inclusion

A−1B∗ ⊂ (BA−∗)∗ ∈ L(Hn×n
2 ,H1),

so A−1B∗ is bounded on D(B∗). The closure of A−1B∗ is then given by
A−1B∗ = (BA−∗)∗. In addition, we have A = αB∗C∗|D(A) and thus

1

α
I|D(A) = A−1B∗C∗|D(A) ⊂ (CBA−∗)∗ ∈ L(H1)
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holds which implies 1
αI = A−1B∗C∗ = (CBA−∗)∗ and because of A−1B∗C∗

⊂ (CBA−∗)∗ we can therefore deduce

A−1B∗C∗ =
1

α
I|D(C∗). (3.33)

Let K ∈ Hn×n
2 be such that each column Ki ∈ Hn

2 = H1, i = 1, . . . , n, is an
element of D(B∗). Then for u ∈ D(B) we obtain

⟨Bu,K⟩F =
〈[
Bu1 . . . Bun

]
,K
〉
F

=

n∑
i=1

⟨Bui,Ki⟩H1
=

n∑
i=1

⟨ui, B∗Ki⟩H2

=

〈u1...
un

 ,
B

∗K1

...
B∗Kn

〉
H1

.

This implies D(B∗)n ⊂ D(B∗) and for K ∈ D(B∗)n we have

B∗K =

B
∗K1

...
B∗Kn

 .
For y ∈ H2 define Yj as the vector in H1 = Hn

2 with y in the j-th component
and 0 everywhere else. Then

V2 :=
{
y ∈ H2

∣∣Yj ∈ V1 for all j = 1, . . . , n
}
=

n⋂
i=1

V1,i

is a dense subset of H2. Let now y ∈ V2. Then

B∗Yj = β

n∑
i=1

(BYj,i)i = β(By)j

for all j = 1, . . . , n. For Y :=
[
Y1 . . . Yn

]
= diag(y, . . . , y) we thus obtain

Y ∈ D(B∗)n and B∗diag(y, . . . , y) = βBy which implies

A−1B∗ βdiag(y, . . . , y) = |β|2A−1By = A−1By.

Since V2 is dense in H2, A−1B∗ ∈ L(Hn×n
2 ,H1) and A−1B ∈ L(H2,H1) by

the same line of reasoning as in the beginning of the proof of Lemma 3.6.6,
we conclude that

A−1B∗ βdiag(y, . . . , y) = A−1By

holds for every y ∈ H2. Combining this with B∗ ⊂ AA−1B∗ and (3.33)
we see that for x ∈ V1 and y ∈ H2, αC

∗x + βdiag(y, . . . , y) ∈ D(B∗)
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implies x+A−1By ∈ D(A). This is because from αC∗x+ βdiag(y, . . . , y) ∈
D(AA−1B∗) we get

A−1B∗
(
αC∗x+ βdiag(y, . . . , y)

)
= x+A−1By ∈ D(A).

The same arguments explain

B∗(αC∗x+ βdiag(y, . . . , y)
)
= A(x+A−1By)

for all

[
x
y

]
∈ D(Ã ). It remains to show that y ∈ D(CA−1B). Since A

is invertible and A = αB∗C∗|D(A), we have that C∗|D(A) is injective and
therefore

C∗A−1B∗|R(C∗|D(A)) = C∗A−1B∗C∗C∗|−1
D(A)|R(C∗|D(A))

=
1

α
I|R(C∗|D(A)).

Now the assumption thatR(C∗|D(A)) is dense inH2 implies that C∗A−1B∗ =
1
αI. By our assumption on C we thus obtain for y ∈ V2 that

CA−1By = γ

n∑
i=1

(
C

∗
A−1By

)
i,i

=
γ

β

n∑
i=1

(C
∗
A−1B

∗
diag(y, . . . , y))i,i

=
γ

αβ

n∑
i=1

(diag(y, . . . , y))i,i

=
nγ

αβ
y.

We conclude CA−1B|V2 = nγ
αβ I|V2 and due to V2 being dense in H2 we also

have CA−1B = nγ
αβ I, i.e. D(CA−1B) = H2. Thus, the inclusion Ã ⊂ A also

holds true. ❑

Remark 3.6.11. We see from the proof that the assumptions in a) that R(C|D(A)) is
dense in H2 and in c) that Cx = γ

∑n
i=1(C

∗x)i,i for all x ∈ V1 and some γ ∈ C and

that R(C∗|D(A)) is dense in Hn×n
2 are only required to show that y ∈ D(CA−1B).

Hence, in case they are not fulfilled, we still obtain the inclusions A ⊂ Ã ⊂ Â
where

Â

[
x
y

]
=

[
A(x+A−1By)
Cx+Dy

]
for all

[
x
y

]
∈ D(Â ) :=

{[
x
y

]
∈ V

∣∣∣∣x+A−1By ∈ D(A)

}
.

The following Example 3.6.12 is inspired by [5, Example 4.16] and deals with a
Stokes-type block operator matrix that fits into the framework of this section. In the
subsequent Example 3.6.13, this operator is then considered on a two-dimensional
spacial domain.
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Example 3.6.12. Let H1 = H2 = L2(0, 1) and choose α1, α2 ∈ C\{0} and γD > 0
such that either

5

4
(|α1|+ |α2|)2 < γD or α2 = −α1. (3.34)

With this, consider the Stokes-type block operator matrix

A =

[
A B
C D

]
:=

[
− d2

dξ2 α1
d
dξ

α2
d
dξ −γD + i

]

where

D(A ) =
{
x ∈ H2(0, 1)

∣∣∣x(0) = d
dξx(1) = 0

}
×
{
y ∈ H1(0, 1)

∣∣ y(1) = 0
}
.

Here, all the assumptions made in the beginning of this section are fulfilled:

a) A : D(A) ⊂ H1 → H1, A = − d2

dξ2 , with

D(A) =
{
x ∈ H2(0, 1)

∣∣∣x(0) = d
dξx(1) = 0

}
is associated to the sesqui-linear form

a : V1 × V1 → C, a(x, u) =
〈

d
dξx,

d
dξu
〉
H1

,

where V1 =
{
x ∈ H1(0, 1)

∣∣x(0) = 0
}
and we have

|a(x, u)| ≤ ∥x∥V1
∥u∥V1

and ℜa(x, x) ≥ γA∥x∥2V1

for all x, u ∈ V1 with γA = 1
5 by the Poincaré-Friedrichs inequality, see [56,

p. 231];

b) B : D(B) ⊂ H2 → H1, B = α1
d
dξ , with

D(B) =
{
y ∈ H1(0, 1)

∣∣ y(1) = 0
}

is densely defined, D(B∗) = V1 and ∥B∗u∥H ≤ |α1|∥u∥V1
for all u ∈ V1;

c) C : D(C) ⊂ H1 → H2, C = α2
d
dξ , with

D(C) =
{
x ∈ H1(0, 1)

∣∣x(0) = 0
}
= V1

is densely defined and ∥Cx∥H ≤ |α2|∥x∥V1
for all x ∈ V1;

d) D ∈ L(H2), y 7→ (−γD + i)y, satisfies ℜ⟨Dy, y⟩H2 ≤ −γD∥y∥2H2
for every

y ∈ H2;

e) With kB∗ = |α1| and kC = |α2| we either have 1
4 (kB∗ + kC)

2 < γAγD or
C = B∗ by (3.34).
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Moreover, D(C∗) = R(C|D(A)) =
{
v ∈ H1(0, 1)

∣∣ v(1) = 0
}
is dense in L2(0, 1),

B is closed and a(x, u) = α ⟨Cx,B∗u⟩ holds for all x, u ∈ V1 where α = − 1
α1α2

.

Hence, Theorem 3.6.9 a) can be applied and we obtain Ã = A with A as in
Lemma 3.6.6.

Additionally, the set R(B∗|D(A∗)) =
{
u ∈ H1(0, 1)

∣∣u(1) = 0
}
= D(C∗) is

dense in L2(0, 1), we have A∗ = αC∗B∗ and if we further assume −α1α2 ̸= −γD− i,
we ensure 1

α /∈ σp(D
∗). In this case, Theorem 3.6.9 b) can be applied as well.

Furthermore, Lemma 3.6.3 provides the existence of a spectrum free strip with
a corresponding bound for the norm of the resolvent.

Example 3.6.13. Let Ω ⊂ R2 be a bounded open domain with piecewise C1-
boundary contained in [−s, s]2 for an s > 0, H1 = L2(Ω)2, H2 = L2(Ω) and choose
α1, α2 ∈ C \ {0} and γD > 0 such that

(4s2 + 1)(|α1|+ |α2|)2 < γD. (3.35)

With this, consider the Stokes-type block operator matrix

A =

[
A B
C D

]
:=

[
−∆ α1 grad
α2 div −γD + i

]
where D(A ) = H2(Ω)2 ∩H1

0 (Ω)
2 ×H1

0 (Ω). Here, all the assumptions made in the
beginning of this section are fulfilled:

a) A : D(A) ⊂ H1 → H1, A = −∆, is the vector valued Laplace operator with
D(A) = H2(Ω)2 ∩H1

0 (Ω)
2. A is associated to the sesqui-linear form

a : V1 × V1 → C, a(x, u) = ⟨gradx,gradu⟩F ,

where V1 = H1
0 (Ω)

2 and we have

|a(x, u)| ≤ ∥x∥V1
∥u∥V1

and ℜa(x, x) ≥ γA∥x∥2V1

for all x, u ∈ V1 with γA = 1
4s2+1 by the Poincaré-Friedrichs inequality, see

[56, p. 231];

b) B : D(B) ⊂ H2 → H1, B = α1 grad, with D(B) = H1
0 (Ω) is densely defined,

V1 ⊂ H1(Ω)2 ⊂ D(B∗) =
{
u ∈ L2(Ω)2

∣∣div u ∈ L2(Ω)
}

and ∥B∗u∥H2 ≤
2|α1|∥u∥V1 for all u ∈ V1;

c) C : D(C) ⊂ H1 → H2, C = α2 div, with V1 ⊂ D(C) = H1(Ω)2 is densely
defined and ∥Cx∥H2

≤ 2|α2|∥x∥V1
for all x ∈ V1;

d) D ∈ L(H2), y 7→ (−γD + i)y, satisfies ℜ⟨Dy, y⟩H2
≤ −γD∥y∥2H2

for every
y ∈ H2;

e) With kB∗ = 2|α1| and kC = 2|α2| we have 1
4 (kB∗ + kC)

2 < γAγD by (3.35).
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Here, C∗ is given by −α2 grad and via integration by parts we see that our
regularity assumptions on ∂Ω yield D(C∗) = H1

0 (Ω) which is dense in L2(Ω).
Moreover, H1 = H2

2, V1 = D(C∗)2 = D(B)2 and with

C : D(C)2 ⊂ H2×2
2 → H1, CK =

[
CK1

CK2

]
,

a(x, u) = − 1
α1α2

⟨C∗x,Bu⟩, B∗u = −α1

α1

(
(Bu1)1+(Bu2)2

)
and Cx = 1

α2

(
(C∗x)1,1

+ (C∗x)2,2
)
hold for all x, u ∈ V1. However, R(C∗|D(A)) is orthogonal to{

K ∈ H1(Ω)2×2

∣∣∣∣ [divK1

divK2

]
= 0

}
and therefore not dense in H2×2

2 . Hence, by Remark 3.6.11 we have A ⊂ Ã ⊂ Â
with A as in Lemma 3.6.6.

Furthermore, Lemma 3.6.3 provides the existence of a spectrum free strip with
a corresponding bound for the norm of the resolvent.

3.7 Numerical Examples

In order to exemplify the previously developed theory we take a look at the results
of numerical computations. We investigate the steps that were involved in the
discretization of a given operator and describe a visualization of supersets of the
pseudospectrum that was created by using Matlab.

Example 3.7.1. Let us consider the the advection-diffusion operator A : D(A) ⊂
L2(0, 1) → L2(0, 1) defined by

A = η
d2

dξ2
+

d

dξ

with D(A) =
{
x ∈ H2(0, 1)

∣∣x(0) = x(1) = 0
}
, which has also been examined in

[51, pp. 115]. For x ∈ D(A) and u ∈ C∞(0, 1) we have

⟨Ax, u⟩ =
∫ 1

0

(
η
d2

dξ2
x(ξ) +

d

dξ
x(ξ)

)
u(ξ) dξ

=

∫ 1

0

d

dξ
x(ξ)u(ξ)− η

d

dξ
x(ξ)

d

dξ
u(ξ) dξ

=: a(x, u).

(3.36)

Let
{
T 1
n

}
n∈N be the family of decompositions of the interval (0, 1) where every

subinterval T ∈ T 1
n
is of length 1

n and set

Un =
{
x ∈ C(0, 1)

∣∣∣x|T ∈ P1(T ), T ∈ T 1
n
, x(0) = x(1) = 0

}
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0

1

i−1
n

i
n

i+1
n

1

φi+1φi

Figure 3.4: ’Hat’ function φi

for n ∈ N. Here, P1(T ) denotes the set of polynomials of degree 1 on the subinterval
T . The piecewise linear ’hat’ functions

φi =


nξ − i+ 1, ξ ∈ ( i−1

n , in ),

i+ 1− nξ, ξ ∈ ( in ,
i+1
n ),

0, else,

for i ∈ {1, . . . , n− 1} form a basis of Un, cf. Figure 3.4. Evaluating (3.36) at these
basis functions, the finite-element discretization matrices An of A are given by

An =
(
(a(φi, φj))i,j · (⟨φi, φj⟩)

−1
i,j

)⊺
.

With the choice of η = 0.015, Figure 3.5 shows the eigenvalues of An for n = 40
(red) and the sets (

Bδj (W ((An − sj)
−1))

)−1
+ sj

(blue) for a number of shifts s1, . . . , sm where δj = 1.1
∥(An−sj)−1∥2ε
1−∥(An−sj)−1∥ε and ε ≈ 16.

Figure 3.5: Pseudospectrum approximation for the advection-diffusion operator
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The shifts are located at a certain distance to the expected pseudospectrum so
as to obtain a relatively small superset thereof. The black line corresponds to the
boundary of σε(An) computed by EigTool, see [13]. This demonstrates the result
of Theorem 3.2.6 which actually yields an enclosure for the pseudospectrum of the
operator A while the black line only shows the boundary of the pseudospectrum of
the approximation matrix An.

Example 3.7.2. In this example we will reconsider the Hain-Lüst operator from
Example 3.5.5 which fits into the framework of section 3.5. We recall that the
Hain-Lüst operator is defined by

A =

[
A B
B∗ D

]
=

[
− 1

100
d2

dξ2 + 2 I

I 2e2πi· − 3

]
on the Hilbert space H := L2(0, 1)× L2(0, 1) with

D(A) =
{
u ∈ H2(0, 1)

∣∣u(0) = u(1) = 0
}
,

D(B) = D(D) = L2(0, 1)

and D(A ) = D(A)×D(D). Hence, for

[
x
y

]
∈ D(A ) and

[
u
v

]
∈ C∞(0, 1)×C∞(0, 1)

with u(0) = u(1) = v(0) = v(1) = 0 we have〈
A

[
x
y

]
,

[
u
v

]〉
=

∫ 1

0

((
− 1

100

d2

dξ2
+ 2

)
x(ξ) + y(ξ)

)
u(ξ) dξ

+

∫ 1

0

(
x(ξ) +

(
2e2πiξ − 3

)
y(ξ)

)
v(ξ) dξ

=

∫ 1

0

1

100

d

dξ
x(ξ)

d

dξ
u(ξ) +

(
2x(ξ) + y(ξ)

)
u(ξ) dξ

+

∫ 1

0

(
x(ξ) +

(
2e2πiξ − 3

)
y(ξ)

)
v(ξ) dξ

=: a

([
x
y

]
,

[
u
v

])
.

(3.37)

As in the previous example, let
{
T 1
n

}
n∈N be the family of decompositions of the

interval (0, 1) where every subinterval T ∈ T 1
n
is of length 1

n and set

U1,n = U2,n =
{
u ∈ C(0, 1)

∣∣∣u|T ∈ P1(T ), T ∈ T 1
n
, u(0) = u(1) = 0

}
for n ∈ N. Here, P1(T ) denotes the set of polynomials of degree 1 on the subinterval
T . The piecewise linear ’hat’ functions

φ̃i =


nx− i+ 1, x ∈ ( i−1

n , in ),

i+ 1− nx, x ∈ ( in ,
i+1
n ),

0, else,
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Figure 3.6: Pseudospectrum approximation for the Hain-Lüst block operator matrix

for i ∈ {1, . . . , n− 1} form a basis of Uj,n, j = 1, 2, and therefore the functions

φi =

{
(φ̃i, 0), i ≤ n− 1,

(0, φ̃i−n+1), i > n− 1,

for i ∈ {1, . . . , 2(n − 1)} form a basis of U1,n × U2,n. Evaluating (3.37) on these
basis functions, the finite-element discretization matrices An of A are given by

An =
(
(a(φi, φj))i,j · (⟨φi, φj⟩)

−1
i,j

)⊺
.

Due to Lemma 3.5.2, Theorem 3.2.6 can be applied here. In order to illustrate the
inclusion specified therein the boundaries of the sets(

Bδj (W ((An − sj)
−1))

)−1
+ sj

(blue) are depicted in Figure 3.6 for shifts s1, . . . , sm ∈ ϱ(A ). The choice of the
shifts was determined by the expected shape of the pseudospectrum aiming to
obtain a relatively small superset thereof. They are located on two circles around
−3 with radii greater and smaller than 2 and on lines parallel to the real axis in

the right half plane. Here, n = 600, δj = 1.1
∥(An−sj)−1∥2ε
1−∥(An−sj)−1∥ε and ε ≈ 0.4. The red

dots are the eigenvalues of An while the black lines correspond to the boundaries
of the pseudospectrum of the approximation matrix σε(An) computed by EigTool,
see [13]. Note that according to Theorem 3.2.6 the intersection of the blue areas
form an enclosure of the pseudospectrum of the actual operator σε(A ), while the
black lines only give the information for the discretized operator. Furthermore,
a large portion of the spectrum free strip

{
λ ∈ C

∣∣ − 1 < ℜλ < 2 + 1
400

}
⊂ ϱ(A )

mentioned in Example 3.5.5 becomes visible.
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Remark 3.7.3. As already mentioned in Remark 3.1.9, we also have the enclosure

σε(A) ⊂ Bε(W (A))

for operators A with a compact resolvent.

Figure 3.7: ε-neighborhood of the numerical range of the advection-diffusion
operator

Figure 3.8: ε-neighborhood of the numerical range of the Hain-Lüst block operator
matrix
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Note that, because both sides of the enclosure are in terms of the same operator
A, this only yields an enclosure for the discretized operator when applied numerically,
not the full operator. So let us take a look at the discretizations of the advection-
diffusion operator (Figure 3.7) and the Hain-Lüst operator (Figure 3.8) again.
Here, the ε-neighborhoods of the numerical ranges are depicted by green lines. As
you can see, this approach leads to a very similar result in case of the advection-
diffusion operator (where the pseudospectrum is convex), while it fails to distinguish
disconnected components of the pseudospectrum in case of the Hain-Lüst operator.

Example 3.7.4. Let us reconsider the Stokes-type block operator matrix from
Example 3.6.12 that fits into the framework of Section 3.6. Here, H1 = H2 =
L2(0, 1), V1 =

{
x ∈ H1(0, 1)

∣∣x(0) = 0
}
and

A =

[
A B
C D

]
:=

[
− d2

dξ2
1

100
d
dξ

1
100

d
dξ −1 + i

]

with

D(A ) =
{
x ∈ H2(0, 1)

∣∣∣x(0) = d
dξx(1) = 0

}
×
{
y ∈ H1(0, 1)

∣∣ y(1) = 0
}
.

As we have already seen, Ã = A holds in this case where A is given as in
Lemma 3.6.6.
Let further

{
T 1
n

}
n∈N be the family of subintervals of (0, 1) of length 1

n and set

U1,n = U2,n =
{
x ∈ C(0, 1)

∣∣∣x|T ∈ P1(T ), T ∈ T 1
n
, x(0) = 0

}
⊂ V1

for n ∈ N where P1(T ) denotes the set of polynomials of degree 1 on the subinterval
T . We will now show that every x ∈ V1 can be approximated by a function in
U1,n in the H1-norm. Let therefore x ∈ V1 and ε > 0. Since C∞(0, 1) is dense in
L2(0, 1), there exists an f ∈ C∞(0, 1) such that∥∥∥ d

dξx− d
dξf
∥∥∥
L2
<
ε

2
.

d
dξf ∈ C∞(0, 1) on the other hand is uniformly continuous on [0, 1] and thus there

exists a δ > 0 such that for all ξ1, ξ2 ∈ [0, 1] with |ξ1 − ξ2| < δ we have∣∣∣ d
dξf(ξ1)−

d
dξf(ξ2)

∣∣∣ < ε

2
.

Now take n ∈ N such that 1
n < δ and choose a piecewise constant function vn that

takes an arbitrary value of d
dξf in every T ∈ T 1

n
. Then∥∥∥ d

dξf − vn

∥∥∥
∞
<
ε

2
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Figure 3.9: Pseudospectrum approximation for the Stokes-type block operator
matrix

and hence ∥∥∥ d
dξx− vn

∥∥∥
L2

≤
∥∥∥ d
dξx− d

dξf
∥∥∥
L2

+
∥∥∥ d
dξf − vn

∥∥∥
L2

≤
∥∥∥ d
dξx− d

dξf
∥∥∥
L2

+
∥∥∥ d
dξf − vn

∥∥∥
∞

<
ε

2
+
ε

2
= ε.

With this, defining un via

un(ξ) :=

∫ ξ

0

vn(s) ds for all ξ ∈ [0, 1],

we obtain un ∈ U1,n and ∥∥∥ d
dξx− d

dξun

∥∥∥
L2
< ε.

It therefore remains to verify

∥x− un∥L2 < ε,

which holds true because by using x(0) = un(0) = 0 we have

∥x− un∥2L2 =

∫ 1

0

|x(s)− un(s)|2 ds

=

∫ 1

0

∣∣∣∣∫ s

0

d
dξx(t) dt−

∫ s

0

vn(t) dt

∣∣∣∣2 ds
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≤
∫ 1

0

(∫ s

0

∣∣∣ d
dξx(t)− vn(t)

∣∣∣dt)2

ds

≤
∥∥∥ d
dξx− vn

∥∥∥2
L1

≤
∥∥∥ d
dξx− vn

∥∥∥2
L2

< ε2.

Therefore, all the assumptions of Theorem 3.6.4 are fulfilled and thus Theorem 3.2.6
can be applied in order to obtain

σε(Ã ) ⊂
⋂
s∈S

[(
Bδs(W ((Ãn − s)−1))

)−1
+ s
]

for a suitable set S. The strong approximation matrices Ãn are again obtained via
finite-element discretization by first constructing the basis ’hat’ functions

φ̃i =


nx− i+ 1, x ∈ ( i−1

n , in ),

i+ 1− nx, x ∈ ( in ,
i+1
n ),

0, else,

for i ∈ {1, . . . , n− 1} that form a basis of Uj,n, j = 1, 2, and

φi =

{
(φ̃i, 0), i ≤ n− 1,

(0, φ̃i−n+1), i > n− 1,

for i ∈ {1, . . . , 2(n− 1)} that form a basis of U1,n × U2,n and by then computing

Ãn =
(
(ã(φi, φj))i,j · (⟨φi, φj⟩)

−1
i,j

)⊺
.

Figure 3.9 depicts the eigenvalues of Ãn for n = 180 (red) and the sets(
Bδj (W ((An − sj)

−1))
)−1

+ sj

(blue) for a number of shifts s1, . . . , sm where δj = 1.1
∥(An−sj)−1∥2ε
1−∥(An−sj)−1∥ε and ε ≈ 0.3.

The choice of the shifts was determined by the expected shape of the pseudospectrum
aiming to obtain a relatively small superset thereof. Here, the positions of the
chosen shifts are illustrated by green crosses that are located at the origin, on
a circle with radius 4/5 around −1 + i as well as above and below the real
axis with a distance of 4/5 to {z ∈ C | ℑz = 0}. The black lines correspond to

the boundary of σε(Ãn) computed by EigTool, see [13]. This demonstrates the
result of Theorem 3.2.6 which actually yields an enclosure for the pseudospectrum

of the operator Ã = A while the black line only shows the boundary of the

pseudospectrum of the approximation matrix Ãn. Moreover, the plot shows a part
of the spectrum free strip

{
λ ∈ C

∣∣ − 1 < ℜλ < 1
5

}
⊂ ϱ(A ) from Lemma 3.6.3.
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3.8 Pseudospectra of Schur Complements

In this section we will relate the pseudospectra of a certain class of block operator
matrices to the pseudospectra of their Schur complements. Before we can state
this relation and the required assumptions precisely, we first have to introduce a
couple of definitions. Let therefore X1 be a Banach space such that X = X1 ×X1.
In the following, all appearing matrix norms are the operator norm induced by the
vector 2-norm.

Definition 3.8.1. Let 0 ≤ ω < π. A linear operator T : D(T ) ⊂ X1 → X1 is called
sectorial of angle ω, if σ(T ) ⊂ Secω and

sup
{
∥λ(T − λ)−1∥

∣∣λ /∈ Secω′
}
<∞

for all ω < ω′ < π. Here, Secω := {z ∈ C | z ̸= 0 and |arg z| < ω} for 0 < ω < π
and Sec0 := (0,∞).

For a thorough introduction to sectorial operators we refer to [24].
Throughout this section, we will consider specific structured block operator

matrices A : D(A ) ⊂ X → X of the form

A =

[
T 2 βT
γT δ

]
,

where T : D(T ) ⊂ X1 → X1 is a densely defined sectorial operator of some angle
0 ≤ ω < π with ϱ(T 2) ̸= ∅, β, γ, δ ∈ C and D(A ) = D(T 2)×D(T ).

Recall from Definition 1.1.9 that the Schur complement of A is given by

S(λ) = δ − λ− βγT (T 2 − λ)−1T for λ ∈ ϱ(T 2)

and that its spectrum and resolvent are defined by

σ(S) =
{
λ ∈ ϱ(T 2)

∣∣ 0 ∈ σ(S(λ))
}

and ϱ(S) =
{
λ ∈ ϱ(T 2)

∣∣ 0 ∈ ϱ(S(λ))
}

respectively. Similarly, we now define the pseudospectrum of the operator function
S by

σε(S) =
{
λ ∈ ϱ(T 2)

∣∣ 0 ∈ σε(S(λ))
}

for ε > 0.

We have that
(T 2 − λ)−1T ⊂ T (T 2 − λ)−1 ∈ L(X1).

Hence, (T 2 − λ)−1T is bounded on D(T ) and the closure is given by

(T 2 − λ)−1T = T (T 2 − λ)−1

since T is densely defined. We also obtain

T (T 2 − λ)−1T ⊂ T 2(T 2 − λ)−1 ∈ L(X1)
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and thus
S(λ) = δ − λ− βγT 2(T 2 − λ)−1. (3.38)

With Theorem 1.1.10 we conclude that for an arbitrary λ ∈ ϱ(T 2) the closure A is
given by

(A − λ)

[
x
y

]
=

[
I 0

γT (T 2 − λ)−1 I

] [
T 2 − λ 0

0 S(λ)

] [
I β(T 2 − λ)−1T
0 I

] [
x
y

]
=

[
I 0

γT (T 2 − λ)−1 I

] [
T 2 − λ 0

0 S(λ)

] [
I βT (T 2 − λ)−1

0 I

] [
x
y

]
=

[
I 0

γT (T 2 − λ)−1 I

] [
(T 2 − λ)(x+ βT (T 2 − λ)−1y)

S(λ)y

]
=

[
(T 2 − λ)(x+ βT (T 2 − λ)−1y)

γTx+ βγT 2(T 2 − λ)−1y + S(λ)y

]
=

[
(T 2 − λ)(x+ βT (T 2 − λ)−1y)

γTx+ (δ − λ)y

]

for all

[
x
y

]
∈ D(A ) where

D(A ) =

{[
x
y

]
∈ X

∣∣∣∣x+ βT (T 2 − λ)−1y ∈ D(T 2)

}
.

Note, that βT (T 2 − λ)−1y ∈ D(T ) is always true which yields x ∈ D(T ) whenever[
x
y

]
∈ D(A ). From Corollary 1.1.11 we have that

σ(A ) \ σ(T 2) = σ(S) (3.39)

and, for λ ∈ ϱ(S) = ϱ(A ) ∩ ϱ(T 2) ⊂ ϱ(A ),

(A − λ)−1 =

[(
(A − λ)−1

)
1

(
(A − λ)−1

)
2(

(A − λ)−1
)
3

(
(A − λ)−1

)
4

]
, (3.40)

where (
(A − λ)−1

)
1
= (T 2 − λ)−1 + βγT (T 2 − λ)−1S(λ)

−1
T (T 2 − λ)−1,(

(A − λ)−1
)
2
= −βT (T 2 − λ)−1S(λ)

−1
,(

(A − λ)−1
)
3
= −γS(λ)

−1
T (T 2 − λ)−1,(

(A − λ)−1
)
4
= S(λ)

−1
.

(3.41)
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Theorem 3.8.2. Let ε > 0. Then we have:

a) The inclusion

σε(S) ⊂ σε(A ) \ σ(T 2)

holds;

b) For L > 0 the inclusion(
Bε(σ(T

2)) \ (Bε(δ) ∪ σ(T 2))
)
∩ BL(0) ⊂

(
σεL(A ) \ σ(T 2)

)
∩ BL(0)

holds with εL := ε+ |βγ|
(
1 + 1

εL
)
;

c) If we further assume that 0 ∈ σ(T ), the inclusion

Bε(δ) \ σ(T 2) ⊂ σε(A ) \ σ(T 2)

holds.

Remark 3.8.3. Recall from Theorem 2.1.3 that if T 2 is a normal operator on a
Hilbert space, we have Bε(σ(T

2)) = σε(T
2).

Proof of Theorem 3.8.2. a) For λ ∈ σε(S) there exists a P ∈ L(X1) with ∥P∥ <
ε such that

0 ∈ σ
(
δ + P − λ− βγT 2(T 2 − λ)−1

)
.

Here, δ + P − λ− βγT 2(T 2 − λ)−1 can be interpreted as the closure of the

Schur complement of the operator

[
T 2 βT
γT δ + P

]
which yields

λ ∈ σ

([
T 2 βT
γT δ + P

])
\ σ(T 2)

by using (3.39) and thus σε(S) ⊂ σε(A ) \ σ(T 2).

b) Let now λ ∈ ϱ(S) ∩
(
Bε(σ(T

2)) \ Bε(δ)
)
∩ BL(0) ⊂ ϱ(A ). From (3.40) we

have that ∥∥(A − λ)−1
∥∥ ≥

∥∥((A − λ)−1
)
1

∥∥
≥ max

{
|µ|
∣∣µ ∈ σ

((
(A − λ)−1

)
1

)}
by Theorem 1.1.4. Therefore, using (3.41) and applying the spectral mapping
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theorem for sectorial operators, [24, Theorem 2.7.8], yields∥∥(A − λ)−1
∥∥ ≥ sup

µ∈σ(T )

∣∣∣(µ2 − λ)−1 + βγµ2(µ2 − λ)−2

·
(
δ − λ− βγµ2(µ2 − λ)−1

)−1
∣∣∣

= sup
µ∈σ(T )

∣∣∣∣δ − λ− βγµ2(µ2 − λ)−1 + βγµ2(µ2 − λ)−1

(µ2 − λ)
(
δ − λ− βγµ2(µ2 − λ)−1

) ∣∣∣∣
= sup
µ∈σ(T )

∣∣∣∣ δ − λ

(µ2 − λ)(δ − λ)− βγµ2

∣∣∣∣
= sup
µ∈σ(T )

1∣∣µ2 − λ− βγµ2

δ−λ
∣∣

= sup
µ∈σ(T )

1∣∣µ2 − λ− βγ
δ−λ (µ

2 − λ)− βγ
δ−λλ

∣∣
>

1

ε+ |βγ|
(
1 + 1

εL
)

Hence, in combination with (3.39) we obtain(
Bε(σ(T

2)) \ (Bε(δ) ∪ σ(T 2))
)
∩ BL(0) ⊂

(
σεL(A ) \ σ(T 2)

)
∩ BL(0).

c) It remains to consider the case in which λ ∈ ϱ(S) ∩ Bε(δ) ⊂ ϱ(A ) and
0 ∈ σ(T ). Here, we estimate∥∥(A − λ)−1

∥∥ ≥
∥∥((A − λ)−1

)
4

∥∥ ≥ max
{
|µ|
∣∣∣µ ∈ σ

(
S(λ)

−1
)}

≥ sup
µ∈σ(T )

1∣∣δ − λ− βγµ2

µ2−λ
∣∣ > sup

µ∈σ(T )

1

ε+
∣∣ βγµ2

µ2−λ
∣∣

=
1

ε

by using the same reasoning as before. This implies

Bε(δ) \ σ(T 2) ⊂ σε(A ) \ σ(T 2)

by utilizing (3.39) and the proof is complete. ❑

Theorem 3.8.4. Let X1 be a Hilbert space, ε > 0 and further assume that
there exists an L > 0 such that T (T 2 − λ)−1 is a normal operator for every
λ ∈

(
ϱ(A ) ∩ BL(0)

)
\ σε(T 2). Then the inclusion(

σε(A ) \ σ(T 2)
)
∩ BL(0) ⊂

(
σεL(S) ∪

[
σε(T

2) \ σ(T 2)
])

∩ BL(0)
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holds with

εL := ε

(
1 + |β|

√
ε+ L

ε

)(
1 + |γ|

√
ε+ L

ε

)
·
(
|δ − βγ|+ L

ε
+

|βγ|L
ε2

+ 1

)
.

Proof. Let λ ∈
(
ϱ(A )∩BL(0)

)
\σε(T 2) ⊂ ϱ(S)∩ϱ(T 2). Looking at Corollary 1.1.11,

(A − λ)−1 can also be written in the form[
I −βT (T 2 − λ)−1

0 I

] [
(T 2 − λ)−1 0

0 S(λ)
−1

] [
I 0

−γT (T 2 − λ)−1 I

]
.

This allows us to estimate∥∥(A − λ)−1
∥∥ ≤

(
1 + |β|

∥∥T (T 2 − λ)−1
∥∥) (∥∥(T 2 − λ)−1

∥∥+ ∥∥S(λ)−1∥∥)
·
(
1 + |γ|

∥∥T (T 2 − λ)−1
∥∥)

Here, the normality of T (T 2 − λ)−1 makes Theorem 1.1.6 applicable and the
spectral mapping theorem for sectorial operators, [24, Theorem 2.7.8], can be used
to deduce

∥∥T (T 2 − λ)−1
∥∥ = sup

µ∈σ(T )

∣∣∣∣ µ

µ2 − λ

∣∣∣∣ = sup
µ∈σ(T )

(
|µ2|

|µ2 − λ|2

) 1
2

≤ sup
µ∈σ(T )

(
1

ε

|µ2 − λ+ λ|
|µ2 − λ|

) 1
2

<

(
1

ε

(
1 +

L

ε

)) 1
2

=

√
ε+ L

ε
. (3.42)

Using (3.38), we obtain∥∥(T 2 − λ)−1
∥∥+ ∥∥S(λ)−1∥∥
≤
∥∥(T 2 − λ)−1S(λ)

∥∥∥∥S(λ)−1∥∥+ ∥∥S(λ)−1∥∥
=
(∥∥(T 2 − λ)−1

(
δ − λ− βγT 2(T 2 − λ)−1

)∥∥+ 1
) ∥∥S(λ)−1∥∥

where we can estimate∥∥(T 2 − λ)−1
(
δ − λ− βγT 2(T 2 − λ)−1

)∥∥ ≤ 1

ε

∥∥δ − λ− βγ + βγλ(T 2 − λ)−1
∥∥

≤ 1

ε

(
|δ − βγ|+ |λ|+ |βγλ|

ε

)
<

|δ − βγ|+ L

ε
+

|βγ|L
ε2

.
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Combining this with (3.42) yields

∥∥(A − λ)−1
∥∥ < (1 + |β|

√
ε+ L

ε

)(
1 + |γ|

√
ε+ L

ε

)
·
(
|δ − βγ|+ L

ε
+

|βγ|L
ε2

+ 1

)∥∥S(λ)−1∥∥
If we additionally assume that λ ∈ σε(A ), we therefore have∥∥S(λ)−1∥∥ > 1

εL
. ❑

In combination with Theorem 3.8.2, we have shown the following chain of
inclusions:

Corollary 3.8.5. Let X1 be a Hilbert space, ε > 0 and further assume that 0 ∈ σ(T )
and that there exists an L > 0 such that T (T 2 − λ)−1 is a normal operator for
every λ ∈

(
ϱ(A ) ∩ BL(0)

)
\ σε(T 2). Then the chain of inclusions(

σε(S) ∪
[(
Bε(σ(T

2)) ∪ Bε(δ)
)
\ σ(T 2)

])
∩ BL(0)

⊂
(
σεL(A ) \ σ(T 2)

)
∩ BL(0)

⊂
(
σε̂L(S) ∪

[
σε(T

2) \ σ(T 2)
])

∩ BL(0)

holds with εL := ε+ |βγ|
(
1 + 1

εL
)
and

ε̂L := εL

(
1 + |β|

√
ε+ L

ε

)(
1 + |γ|

√
ε+ L

ε

)
·
(
|δ − βγ|+ L

ε
+

|βγ|L
ε2

+ 1

)
.

Example 3.8.6. Let Y be a Banach space, p ∈ [1,∞), X1 = Lp(R,Y) and consider
the operator T : D(T ) ⊂ Lp(R,Y) → Lp(R,Y) with

Tx =
d

dξ
x

for all x ∈ D(T ) = W 1,p(R,Y). From [24, Theorem 8.4.1] we have that T is
densely defined and sectorial of angle π/2 with σ(T ) = iR. In particular, 0 ∈ σ(T )
and via the spectral mapping theorem for sectorial operators, [24, Theorem 2.7.8],
ϱ(T 2) ̸= ∅. Hence, Theorem 3.8.2 can be applied to the block operator matrix

A : D(A ) ⊂ Lp(R,Y)× Lp(R,Y) → Lp(R,Y)× Lp(R,Y),

A =

[
d2

dξ2 β d
dξ

γ d
dξ δ

]
,

with β, γ, δ ∈ C and D(A ) =W 2,p(R,Y)×W 1,p(R,Y).
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Let us now consider the case in which p = 2, i.e. where X1 is a Hilbert space.
Here, T 2 is self-adjoint and in particular normal which yields Bε(σ(T

2)) = σε(T
2)

by Theorem 2.1.3. Moreover, T is skew-adjoint and (T 2 − λ)−1 is normal for every
λ ∈ ϱ(T 2) because T 2 − λ is. Thus, as T and (T 2 − λ)−1 commute, so do T ∗ and
(T 2 − λ)−1 and T and (T 2 − λ)−∗. These facts imply

T (T 2 − λ)−1
(
T (T 2 − λ)−1

)∗ ⊃ T (T 2 − λ)−1(T 2 − λ)−∗T ∗

= (T 2 − λ)−∗T ∗T (T 2 − λ)−1|D(T∗)

= −(T 2 − λ)−∗T 2(T 2 − λ)−1|D(T∗)

and therefore

T (T 2 − λ)−1
(
T (T 2 − λ)−1

)∗
= T (T 2 − λ)−1 (T (T 2 − λ)−1)

∗

⊃ −(T 2 − λ)−∗T 2(T 2 − λ)−1|D(T∗)

= −(T 2 − λ)−∗T 2(T 2 − λ)−1 ∈ L(X1)

because D(T ∗) = D(T ) is dense in X1. Here, the fact that the right hand side
is everywhere defined yields equality. The commutativity of T (T 2 − λ)−1 and(
T (T 2 − λ)−1

)∗
is now obtained by the observation(

T (T 2 − λ)−1
)∗
T (T 2 − λ)−1 ⊃ −(T 2 − λ)−∗T 2(T 2 − λ)−1 ∈ L(X1)

where the fact that the right hand side is everywhere defined yields equality again.
We have thus shown that T (T 2 − λ)−1 is a normal operator for every λ ∈ ϱ(T 2).
Hence, Theorem 3.8.4 and Corollary 3.8.5 can be applied to this example with an
arbitrary L > 0.



Chapter 4

Computing the Quadratic
Numerical Range

The development of effective algorithms for the computation of the quadratic
numerical range (QNR) of a matrix A faces several challenges and ideas approved
for the numerical range W (A ) can not be adapted straightforwardly. This is in
particular true because in contrast to the numerical range, the QNR does not need
to be convex in general, see for instance Example 2.3.5 or Section 4.4. See also
Section 2.2 for an overview on the different techniques utilized in numerical range
computation which all essentially rely on convexity.

So far, the only method for computing the quadratic numerical range is based
on random vector sampling, see [16] for a Matlab implementation. This method
however comes with various disadvantages. We show that especially for higher
dimensional matrices the computed points will very likely cluster in a small subset
of each component making convergence very slow and computationally expensive.
More precisely, we show that the probability of a point in the QNR generated
by the random vector sampling method to be outside of a small neighborhood of
the expected value decays exponentially with an increase of the dimension of the
matrix when its norm stays constant.

We will present and exemplify of a novel algorithm for the computation of the
quadratic numerical range of a matrix that yields much better results in less time
compared to the random vector sampling method. This new approach is more
deterministic and based on the idea of seeking the boundary by maximization of
an objective function. Multiple examples illustrate the efficacy of this algorithm
by comparing it side to side to the random vector sampling approach.

This chapter is based on the article [30] and its contents are organized as follows:
Section 4.1 provides an overview of the fundamental components that constitute
the new algorithm. In Section 4.2 we examine curves in the quadratic numerical
range and develop useful tools regarding their differentiation. Section 4.3 contains
the algorithm for the computation of the QNR alongside explanations for the
chosen procedure. This algorithm is then exemplified in Section 4.4 where it is
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compared to the random vector sampling method. In Section 4.5, a bound on the
probability for the random vector sampling method to produce a point exceeding
a neighborhood of the expectation value in dependence on norm and size of the
matrix is given.

Throughout this chapter we consider matrices A ∈ Cn×n with a block decom-
position of the form

A =

[
A B
C D

]
where A : H1 → H1, B : H2 → H1, C : H1 → H2, D : H2 → H2 and H1 ⊕H2 :=
Cn1 ⊕ Cn2 = Cn. Note that every matrix can be written in such a form once a
decomposition Cn = H1 ⊕H2 is chosen. We denote the scalar product on Cn1 and
Cn2 by ⟨·, ·⟩ and ∥·∥ denotes either the 2-norm of a vector or the operator norm of
a matrix induced by the 2-norm.

4.1 A New Computational Technique

The algorithm that is described in this chapter enables us to compute a very precise
approximation of the quadratic numerical range of a given matrix. Its effectiveness
stems from its innovative ability to detect points that are either on the boundary
or at least very close to the boundary of the QNR.

At the core of this detection process is a specially designed objective function,
the maximization of which involves calculating its steepest ascent gradient. This
step necessitates the examination of differentiable curves within the QNR and a
meaningful distinction of the two points within the quadratic numerical range that
are associated with the same vector pair in the unit spheres.

As we will see, the objective function features a penalty term that allows for the
detection of points on highly non-convex parts of the boundary. Proposition 4.3.1
ensures that a relatively weak condition on a given boundary point is sufficient for
it to be detectable by the algorithm up to a small error.

At this point, we are able to progress towards the boundary of the quadratic
numerical range after specifying an arbitrary starting point in the interior and an
arbitrary search direction. In order to develop an efficient algorithm that builds
upon this procedure, a sensible choice of starting points from the cloud of previously
computed QNR points is crucial.

The utilized selection process employs a ”box approach”, that not only ensures
a uniform distribution of the starting points but also prioritizes those that are
presumably already relatively close to the boundary. With this strategy, the
computational cost is significantly reduced.

Furthermore, the iterative nature of the process that allows for the detection
of boundary points coupled with a random choice of search directions leads to a
filling of the interior over time and results in a cloud of points that resembles a
sharply contoured and connected image of each QNR component.
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4.2 Curves within the Quadratic Numerical Range

Let us start by recalling that the quadratic numerical range (QNR) is defined by

W 2(A ) =
⋃

x∈SH1
,y∈SH2

σ

([
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

])
,

where SHi = {x ∈ Hi | ∥x∥ = 1}, i = 1, 2. In other words, the QNR consists of the
solutions λ of the quadratic equations

λ2 − (⟨Ax, x⟩+ ⟨Dy, y⟩)λ+ ⟨Ax, x⟩⟨Dy, y⟩ − ⟨By, x⟩⟨Cx, y⟩ = 0 (4.1)

with (x, y) ∈ SH1
× SH2

.

Just as in the introductory Section 2.3 we will shorten our notation in the
following way:

Mx,y :=

[
ax by,x
cx,y dy

]
:=

[
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

]
∈ C2×2 (4.2)

for (x, y) ∈ SH1
× SH2

.

Proposition 4.2.1. Let (x0, y0) ∈ SH1 × SH2 be such that σ(Mx0,y0) consists of
two simple eigenvalues. Then there exists a neighborhood U ⊂ SH1 ×SH2 of (x0, y0)
such that

⋃
(x,y)∈U σ(Mx,y) consists of two disconnected components W1 and W2

that can be separated by a straight line and there exists θ0 ∈ [0, 2π] and a branch of
the complex root

√
· : G→ C with G = C \ {reiθ0 | r ≥ 0} such that

W1 =

ax + dy
2

+

√(
ax − dy

2

)2

+ by,xcx,y

∣∣∣∣∣∣ (x, y) ∈ U

 (4.3)

and

W2 =

ax + dy
2

−

√(
ax − dy

2

)2

+ by,xcx,y

∣∣∣∣∣∣ (x, y) ∈ U

 . (4.4)

Proof. From Theorem 1.2.4 we have that the eigenvalues of a matrix depend
continuously on its entries. Therefore, there exists a neighborhood U ⊂ SH1

× SH2

of (x0, y0) such that
⋃

(x,y)∈U σ(Mx,y) consists of two disconnected components W1

and W2 that can be separated by a straight line. Without loss of generality, we
assume that W1 and W2 are separated by the imaginary axis because considering
the shifted and rotated matrix eiθ(A + zI) for some θ ∈ [0, 2π] and z ∈ C would
lead to the computation of the eigenvalues of[

ãx b̃y,x
c̃x,y d̃y

]
= eiθ

[
ax + z by,x
cx,y dy + z

]
,
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so the radicant would be given by(
ãx − d̃y

2

)2

+ b̃y,xc̃x,y = e2iθ

((
ax − dy

2

)2

+ by,xcx,y

)

and thus G̃ = e2iθG.
So let us assume W1 ⊂ C+ and W2 ⊂ C− and let λ1 ∈ W1 and λ2 ∈ W2 be
eigenvalues of Mx,y for given (x, y) ∈ U , i.e. ℜλ2 < 0 < ℜλ1 and λ1 and λ2 are
solutions of (ax − λ)(dy − λ)− by,xcx,y = 0 which is equivalent to(

λ− ax + dy
2

)2

=

(
ax − dy

2

)2

+ by,xcx,y.

Then there is a solution q ∈ C of q2 =
(
ax−dy

2

)2
+by,xcx,y such that λ1 =

ax+dy
2 +q

and λ2 =
ax+dy

2 − q. It follows

0 < ℜ(λ1 − λ2) = 2ℜq

and we conclude that q ∈ C+ and thus q2 ∈ C\R≤0. So by defining G := C\R≤0 =
C \ {reiπ | r ≥ 0} and

√
· : G→ C as the principal branch of the complex root with

ℜ
√
z > 0 for all z ∈ G we obtain

λ1 =
ax + dy

2
+

√(
ax − dy

2

)2

+ by,xcx,y

and

λ2 =
ax + dy

2
−

√(
ax − dy

2

)2

+ by,xcx,y. ❑

Remark 4.2.2. Note, that the assumption in Proposition 4.2.1 on σ(Mx0,y0) to
consist of two simple eigenvalues is fulfilled for every (x0, y0) ∈ SH1 ×SH2 ifW 2(A )
consists of two disconnected components. Furthermore, we have U = SH1

× SH2
if

the two components of W 2(A ) can be separated by a straight line. In this case,
the formulas in (4.3) and (4.4) can be used to match each of the two eigenvalues of
a matrix Mx,y to a specific component.

In the following we will consider curves in the QNR, i.e. continuous mappings
λφ,ψ from an interval I into W 2(A ) which are generated from continuous curves
φ : I → SH1

and ψ : I → SH2
such that λφ,ψ(t) solves (4.1) with φ(t) in place of x

and ψ(t) in place of y for all t ∈ I. We are interested in the derivative of such a
curve in the QNR and in order to shorten the notation in the upcoming formulas
we will henceforth and similarly to (4.2) use the abbreviations

Mφ,ψ :=

[
aφ bψ,φ
cφ,ψ dψ

]
:=

[
⟨Aφ,φ⟩ ⟨Bψ,φ⟩
⟨Cφ,ψ⟩ ⟨Dψ,ψ⟩

]
: I → C2×2

for curves (φ,ψ) : I → SH1 × SH2 .
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Theorem 4.2.3. Let (x0, y0) ∈ SH1 × SH2 be such that σ(Mx0,y0) consists of two
simple eigenvalues. Let t1 > 0 and (φ,ψ) : [0, t1] → SH1

× SH2
, t 7→ (φ(t), ψ(t)),

with (φ(0), ψ(0)) = (x0, y0) be a differentiable curve in SH1
× SH2

. Then there
exists a 0 < t0 ≤ t1 such that σ(Mφ,ψ) : [0, t0] → C2 consists of two differentiable
curves. Denote by λφ,ψ : [0, t0] → C one of these two curves. Then

d

dt
λφ,ψ =

〈
S(φ,ψ, λφ,ψ)

[
φ
ψ

]
,

[
φ̇

ψ̇

]〉
+

〈
S(φ,ψ, λφ,ψ)

[
φ̇

ψ̇

]
,

[
φ
ψ

]〉
with

S(φ,ψ, λφ,ψ) =
1

2λφ,ψ − aφ − dψ

[
(λφ,ψ − dψ)A cφ,ψB

bψ,φC (λφ,ψ − aφ)D

]
.

Proof. From Proposition 4.2.1 we have that there exists a neighborhood U ⊂
SH1

× SH2
of (x0, y0) such that

⋃
(x,y)∈U σ(Mx,y) consists of two disconnected

components W1 and W2 that can be described in a differentiable dependence
on the (x, y) ∈ U via the formulas in (4.3) and (4.4). We therefore obtain that
σ(Mφ,ψ) : [0, t0] → C2 consists of two differentiable curves by choosing t0 > 0 such
that (φ(t), ψ(t)) ∈ U for all t ∈ [0, t0].
An eigenvalue λφ,ψ(t) of Mφ,ψ(t), t ∈ [0, t0], satisfies(

λφ,ψ(t)− aφ(t)
)(
λφ,ψ(t)− dψ(t)

)
− bψ,φ(t)cφ,ψ(t) = 0,

so that upon differentiation we get(
d

dt
λφ,ψ − d

dt
aφ

)
(λφ,ψ − dψ) + (λφ,ψ − aφ)

(
d

dt
λφ,ψ − d

dt
dψ

)
− d

dt
bψ,φcφ,ψ − bψ,φ

d

dt
cφ,ψ = 0.

(4.5)

Herein

d

dt
aφ = ⟨Aφ̇, φ⟩+ ⟨Aφ, φ̇⟩

d

dt
bψ,φ = ⟨Bψ̇, φ⟩+ ⟨Bψ, φ̇⟩

d

dt
cφ,ψ = ⟨Cφ̇, ψ⟩+ ⟨Cφ, ψ̇⟩

d

dt
dψ = ⟨Dψ̇, ψ⟩+ ⟨Dψ, ψ̇⟩,

which transforms (4.5) into

(2λφ,ψ − aφ − dψ)
d

dt
λφ,ψ

=

〈[
(λφ,ψ − dψ)A cφ,ψB

bψ,φC (λφ,ψ − aφ)D

] [
φ
ψ

]
,

[
φ̇

ψ̇

]〉
+

〈[
(λφ,ψ − dψ)A cφ,ψB

bψ,φC (λφ,ψ − aφ)D

] [
φ̇

ψ̇

]
,

[
φ
ψ

]〉
.

(4.6)
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Now the fact that
⋃
t∈[0,t0]

σ(Mφ,ψ(t)) consists of two disconnected components

implies that λφ,ψ(t) ̸= aφ+dψ
2 (t) for all t ∈ [0, t0] because the sum of the eigenvalues

of Mφ,ψ(t) is equal to the sum of its diagonal entries. This allows us to divide (4.6)
by 2λφ,ψ − aφ − dψ, yielding the desired formula for the derivative of λφ,ψ. ❑

4.3 An Algorithm for Computing the QNR

Our goal is to develop an algorithm for the computation of the quadratic numerical
range that does not only rely on random vector sampling. This means, that we
want to make a choice on the utilized vectors (x, y) ∈ SH1

× SH2
such that the

image resulting from the point cloud of eigenvalues of the matrices Mx,y is a very
good approximation of the image of the actual QNR even for a small number of
vectors. We will therefore place particular emphasis on those (x, y) ∈ SH1 × SH2

that correspond to boundary points of W 2(A ).

4.3.1 Seeking the Boundary

Starting at a given point λ0 ∈ W 2(A ) with corresponding (x0, y0) ∈ SH1
× SH2

we wish to gradually compute a sequence (xn, yn)n∈N ⊂ SH1
× SH2

such that
the associated (λn)n∈N in the quadratic numerical range converge towards the
boundary. In order to do so we first have to declare a direction in which we want
to approach the boundary, so in the following, we will therefore start by focusing
on moving parallel to the positive real axis since every other direction can be easily
reduced to this case by a rotation of the matrix A .

If we would leave it at aiming for ℜλn+1 ≥ ℜλn for every n ∈ N however, we
could face the problem of missing out on points on concave parts of the boundary, cf.
Figure 4.1, where starting from λ0 an algorithm that only focuses on maximization
of the real part would eventually either move toward b or toward c but has no
reason to stop at a. We overcome this problem by seeking a sequence (λn)n∈N that

•
a

•
λ0

•
c

•
b

ℜ

ℑ

Figure 4.1: The boundary of the QNR might have concave parts
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ℜ

ℑ

•
λ0

•
λ0

Figure 4.2: Level sets of fα,λ0
for p small (left) and p large (right)

satisfies
ℜλn+1 − p

(
ℑ(λn+1 − λ0)

)2 ≥ ℜλn − p
(
ℑ(λn − λ0)

)2
with a given penalty constant p > 0 for all n ∈ N. More precisely, we will consider
the objective function fα,λ0

: SH1
× SH2

→ R, given by

fα,λ0(x, y) = ℜλ(α)x,y − p
(
ℑ(λ(α)x,y − λ0)

)2
(4.7)

for some α ∈ [0, 2π[, and aim to construct a sequence (xn, yn)n∈N ⊂ SH1
× SH2

such that fα,λ0
(xn, yn) increases with n. Here and from now on, λ

(α)
x,y specifically

denotes the one of the two eigenvalues λ
(α)
x,y and λ̃

(α)
x,y of Mx,y such that

ℜ(eiαλ(α)x,y) > ℜ(eiαλ̃(α)x,y), if ℜ(eiαλ(α)x,y) ̸= ℜ(eiαλ̃(α)x,y),

or ℑ(eiαλ(α)x,y) ≥ ℑ(eiαλ̃(α)x,y), if ℜ(eiαλ(α)x,y) = ℜ(eiαλ̃(α)x,y).

Note, that if W 2(A ) consists of two disconnected components that can be
separated by a straight line, α can be chosen such that each component is either

the set of all λ
(α)
x,y or the set of all λ̃

(α)
x,y = λ

(α+π)
x,y with (x, y) ∈ SH1

× SH2
.

Figure 4.2 illustrates the effect of the penalty constant p on the level sets of fα,λ0

for different choices of p, showing that a larger p leads to a significant narrowing of
the search direction. The picture also indicates, that in practice p has to be chosen
in dependence on the size and shape of the QNR.

This dependence will be specified in the next result, which can be interpreted
as follows: If a boundary point λ∂ with the same imaginary part as λ0 satisfies the
additional condition, that there exists an r > 0 such that for every 0 < ε < r there
exists a δ > 0 such that{

z ∈ C
∣∣∣ ε
2
< ℜ(z − λ∂) < ε, |ℑ(z − λ∂)| < δ

}
∩W 2(A ) = ∅ (4.8)

holds, our strategy of creating a sequence in SH1
× SH2

for which the value of the
objective function increases can in fact result in the obtainment of λ∂ up to a small
error if p is chosen large enough. Figure 4.3 illustrates condition (4.8).
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ℜ

ℑ

W 2(A ) C \W 2(A )

λ∂

•

ε
2

ε box with height 2δ

λ0

•

r

Figure 4.3: λ∂ satisfies Condition (4.8)

Proposition 4.3.1. Let λ0 ∈ W 2(A ) and λ∂ ∈ ∂W 2(A ) with ℑλ∂ = ℑλ0
and suppose that λ∂ satisfies Condition (4.8) for some r > 0. Then for every
ε > 0 there exist p > 0 and (xm, ym) ∈ SH1 × SH2 such that for all but up
to one α ∈ [0, π[ at least one of the objective functions fα,λ0 or fα+π,λ0 given

by (4.7) has a local maximum in (xm, ym) and λ
(α)
xm,ym ∈ Bε(λ∂) ∩ ∂W 2(A ) or

λ
(α+π)
xm,ym ∈ Bε(λ∂) ∩ ∂W 2(A ) respectively.

Proof. Let ε > 0. Without loss of generality, we assume that λ∂ = 0 and therefore
also ℑλ0 = 0 by applying a shift to A . Moreover, we will assume that ε < r, where
r > 0 is the constant for which (4.8) holds. Hence, there exists a δ > 0 such that{

z ∈ C
∣∣∣ ε
2
< ℜz < ε, |ℑz| < δ

}
∩W 2(A ) = ∅ (4.9)

and for which we assume that δ <
√
3
2 ε.

Let us define the set

K :=
{
z ∈ C

∣∣∣ (ℜz > ε

2
∧ |ℑz| < δ

)
∨ ℜz > ε

}
and consider the function

F : C → R, F (z) := ℜz − p(ℑz)2.

By choosing p > ε
δ2 >

4
3ε , we have (ℑz)2 < δ2 < 3

4ε
2 if F (z) ≥ 0 and ℜz ≤ ε and

obtain {
z ∈ C \K

∣∣F (z) ≥ 0
}
⊂ Bε(0).

Hence, the restriction of the continuous function F to C \K has a local maximum
in Bε(0).
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This can be used in the context of the quadratic numerical range because due
to (4.9) we have

W 2(A ) ∩ Bε(0) ⊂ C \K

and we also know that {z ∈ C \K |F (z) ≥ 0} ∩W 2(A ) is non-empty because of
0 = λ∂ ∈ W 2(A ) and F (0) = 0. Therefore, the restriction of F to the closed
set W 2(A ) has a local maximum at some λ ∈ W 2(A ) ∩ Bε(0) and there exist
(xm, ym) ∈ SH1

× SH2
such that λ is an eigenvalue of Mxm,ym .

Furthermore, λ ∈ ∂W 2(A ) holds because if we assume otherwise, there exists
a γmax > 0 such that λ+ γ ∈W 2(A ) and F (λ+ γ) = F (λ) + γ > F (λ) for every
γ ∈ ]0, γmax[ which is a contradiction to λ being a local maximum.

From Theorem 1.2.4 we know that the eigenvalues of a matrix depend con-
tinuously on its entries, so if λ is the only eigenvalue of Mxm,ym , there exists a

neighborhood U of (xm, ym) such that λ
(α)
x,y ∈ Bε(0) and λ

(α+π)
x,y ∈ Bε(0) for all

(x, y) ∈ U and all α ∈ [0, π[. Hence, both fα,λ0
and fα+π,λ0

have a local maximum
in (xm, ym) and

λ(α)xm,ym = λ(α+π)xm,ym = λ ∈ Bε(0) ∩ ∂W 2(A )

for all α ∈ [0, π[.

In the other case, if λ is one of two distinct eigenvalues ofMxm,ym , we choose α ∈
[0, π[ such that ℜ(eiαλ(α)xm,ym) ̸= ℜ(eiαλ(α+π)xm,ym) and again by continuity we will find a

neighborhood U of (xm, ym) such that ℜλ1 ̸= ℜλ2 for all λ1 ∈
{
eiαλ

(α)
x,y

∣∣ (x, y) ∈ U
}

and λ2 ∈
{
eiαλ

(α+π)
x,y

∣∣ (x, y) ∈ U
}
and either λ

(α)
x,y ∈ Bε(0) for all (x, y) ∈ U if

λ = λ
(α)
xm,ym or λ

(α+π)
x,y ∈ Bε(0) for all (x, y) ∈ U if λ = λ

(α+π)
xm,ym . Hence, either fα,λ0

or fα+π,λ0
has a local maximum in (xm, ym) and λ

(α)
xm,ym = λ ∈ Bε(0) ∩ ∂W 2(A )

or λ
(α+π)
xm,ym = λ ∈ Bε(0) ∩ ∂W 2(A ) respectively. ❑

Let us now fix an α ∈ [0, 2π[. As explained above, we are looking for a
sequence (xn, yn)n∈N ⊂ SH1 × SH2 such that fα,λ0(xn, yn) increases with n. Let
us say we arrived at (xn, yn) so far, so our goal is to find (xn+1, yn+1) such that
fα,λ0

(xn+1, yn+1) ≥ fα,λ0
(xn, yn).

As a first step, we will therefore identify the steepest ascent gradient of fα,λ0

in (xn, yn). Considering a differentiable curve

(φ,ψ) : [0, t1] → SH1 × SH2 , t 7→ (φ(t), ψ(t)),

with (φ(0), ψ(0)) = (xn, yn) and assuming that σ(Mxn,yn) consists of two simple

eigenvalues λn and λ̃n with ℜ(eiαλn) > ℜ(eiαλ̃n), we know by Theorem 4.2.3 that
there exists a 0 < t0 ≤ t1 and a differentiable curve λφ,ψ : [0, t0] → W 2(A ) such
that

fα,λ0

(
φ(t), ψ(t)

)
= ℜ

(
λφ,ψ(t)

)
− p
(
ℑ
(
λφ,ψ(t)− λ0

))2
for all t ∈ [0, t0]. If we take a look at d

dtfα,λ0

(
φ(·), ψ(·)

)
at the point t = 0, we see



92 4. Computing the Quadratic Numerical Range

that again by Theorem 4.2.3

d

dt
fα,λ0

(
φ(0), ψ(0)

)
= ℜ

(
d

dt
λφ,ψ(0)

)
− 2pℑ(λn − λ0)ℑ

(
d

dt
λφ,ψ(0)

)
= ℜ

(〈
S(xn, yn, λn)

[
xn
yn

]
,

[
φ̇(0)

ψ̇(0)

]〉
+

〈
S(xn, yn, λn)

[
φ̇(0)

ψ̇(0)

]
,

[
xn
yn

]〉)
− 2pℑ(λn − λ0)ℑ

(〈
S(xn, yn, λn)

[
xn
yn

]
,

[
φ̇(0)

ψ̇(0)

]〉
+

〈
S(xn, yn, λn)

[
φ̇(0)

ψ̇(0)

]
,

[
xn
yn

]〉)
= ℜ

〈
T+(xn, yn, λn)

[
xn
yn

]
,

[
φ̇(0)

ψ̇(0)

]〉
− 2pℑ(λn − λ0)ℑ

〈
T−(xn, yn, λn)

[
xn
yn

]
,

[
φ̇(0)

ψ̇(0)

]〉
= ℜ

〈
T+(xn, yn, λn) + 2pℑ(λn − λ0)iT−(xn, yn, λn)

[
xn
yn

]
,

[
φ̇(0)

ψ̇(0)

]〉
= ℜ

〈
T (xn, yn, λn, λ0)

[
xn
yn

]
,

[
φ̇(0)

ψ̇(0)

]〉
where

T+(xn, yn, λn) := S(xn, yn, λn) + S∗(xn, yn, λn),

T−(xn, yn, λn) := S(xn, yn, λn)− S∗(xn, yn, λn)

and

T (xn, yn, λn, λ0) := T+(xn, yn, λn) + 2pℑ(λn − λ0)iT−(xn, yn, λn).

Let us denote the tangential space of SH1
in xn with regard to the real part

of the inner product of H1 by TxnSH1
:= {u ∈ H1 | ℜ⟨xn, u⟩ = 0} and analogously

TynSH2
:= {v ∈ H2 | ℜ⟨yn, v⟩ = 0}. Then, for (u, v) ∈ TxnSH1

× TynSH2
with

∥u∥ = ∥v∥ = 1, we will consider the curves φ : [0, 2π] → SH1 and ψ : [0, 2π] → SH2

defined by

φ(t) = cos(t)xn + sin(t)u and ψ(t) = cos(t)yn + sin(t)v, (4.10)

which satisfy ∥φ(t)∥2 = cos2(t) + 2ℜ⟨cos(t)xn, sin(t)u⟩ + sin2(t) = 1, φ(0) = xn
and φ̇(0) = u as well as ∥ψ(t)∥2 = 1, ψ(0) = yn and ψ̇(0) = v.

Therefore, our problem can be simplified to finding a vector (u, v) ∈ TxnSH1
×

TynSH2
with ∥u∥ = ∥v∥ = 1 for which the term

ℜ
〈
T (xn, yn, λn, λ0)

[
xn
yn

]
,

[
u
v

]〉
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is maximized. This vector is given by the normalized orthogonal projection of[
w
z

]
:= T (xn, yn, λn, λ0)

[
xn
yn

]
onto TxnSH1 × TynSH2 , i.e.[

ũ
ṽ

]
=

[
w −ℜ⟨w, xn⟩xn
z −ℜ⟨z, yn⟩yn

]
,

[
u
v

]
=

[
ũ/∥ũ∥
ṽ/∥ṽ∥

]
.

With u and v at hand, we will now, in a second step, search for (s, t) ∈
[0, 2π]× [0, 2π] such that fα,λ0

(
φ(s), ψ(t)

)
is maximal with φ and ψ as in (4.10)

Algorithm 4.3.1: Seeking the Boundary

Input: A, B, C, D, x0, y0, λ0, p, α, and imax

1 function f(s, t, A,B,C,D, x, y, u, v, p, α, λ0)
2 x = cos(s)x+ sin(s)u
3 y = cos(t)y + sin(t)v

4 return ℜλ(α)x,y − pℑ
(
λ
(α)
x,y − λ0

)2
5 function find boundary(A,B,C,D, x, y, λ0, p, α)

6 if 2λ
(α)
x,y ̸= ax + dy then

7 S = 1

2λ
(α)
x,y−ax−dy

[
(λ(α)
x,y−dy)A cx,yB

by,xC (λ(α)
x,y−ax)D

]
8 T+ = S + S∗

9 T− = S − S∗

10 T = T+ + 2pℑ
(
λ
(α)
x,y − λ0

)
iT−

11
[
w
z

]
= T

[ x
y

]
12 if w ̸= 0 and z ̸= 0 then

13 u = w−ℜ⟨w,x⟩x
∥w−ℜ⟨w,x⟩x∥

14 v = z−ℜ⟨z,y⟩y
∥z−ℜ⟨z,y⟩y∥

15 Determine (s, t) ∈ [0, 2π]× [0, 2π] such that
f(s, t, A,B,C,D, x, y, u, v, p, α, λ0) is maximal

16 x = cos(s)x+ sin(s)u
17 y = cos(t)y + sin(t)v

18 return
(
x, y)

19 (x[0], y[0]) = find boundary(A,B,C,D, x0, y0, λ0, p, α)
20 for i = 1, . . . , imax − 1
21 (x[i], y[i]) = find boundary(A,B,C,D, x[i− 1], y[i− 1], λ0, p, α)
22 if (x[i], y[i]) == (x[i− 1], y[i− 1]) then
23 return {(x[0], y[0]), . . . , (x[i− 1], y[i− 1])}

24 return (x, y)
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and we have effectively reduced our problem to a two-dimensional optimization.
This yields a new pair of vectors (xn+1, yn+1) := (φ(s), ψ(t)) ∈ SH1

× SH2
with

fα,λ0
(xn+1, yn+1) ≥ fα,λ0

(xn, yn).
Algorithm 4.3.1 summarizes in pseudocode how we proceed towards the bound-

ary in direction of the positive real axis. It takes the matrix A in form of its
decomposition parts A, B, C and D, a starting point λ0 ∈ W 2(A ) with corre-
sponding (x0, y0) ∈ SH1 × SH2 , a penalty constant p, an angle α and a number
of iterations imax as its input and returns arrays x ⊂ SH1 and y ⊂ SH2 . Note,
that the algorithm does not only return the vectors associated to the point closest
to the boundary after imax iterations but an array of vectors that can be used to
compute some points along the way. Later on, these points can be plotted as well
in order to fill out the interior of the quadratic numerical range.

4.3.2 Box Approach

In order to formulate an algorithm which computes the quadratic numerical range
of a given matrix A with increasing quality we proceed as follows:
Initially, we fix an α ∈ [0, π[ for the objective function (4.7) and compute a
few points within W 2(A ) by using the random vector sampling method, i.e. we

randomly generate some (x, y) ∈ SH1 × SH2 and insert the eigenvalues λ
(α)
x,y of

Mx,y in an array W and the other eigenvalues λ
(α+π)
x,y of Mx,y in a second array W̃ .

Those points will serve as candidates for the starting points λ0 of Algorithm 4.3.1,
but in order to control their number and decrease the required iteration steps of
Algorithm 4.3.1, we will preselect the starting points via a box approach such that
the computational cost will be reduced.

We start by creating a rectangular grid of small equally sized boxes covering
all the sampled points in W . Then, we pick one sample point from the interior of
each box that is non-empty as a representative and determine all non-empty boxes
that are not surrounded by other non-empty boxes. Now, only the representatives
of those boxes will be used as a starting point λ0. This ensures that the λ0 will be
evenly spread throughout the cloud of computed points even though they might
cluster. Moreover, it allows us to restrict our choice of starting points to those that
are presumably already close to the boundary, which leads to a higher chance of
reaching the boundary within only a few iterations of Algorithm 4.3.1.

For each starting point, we will then select some randomly oriented but equally
spread search directions, rotate the matrix A accordingly and proceed towards
the boundary via Algorithm 4.3.1. This yields new vectors (x, y) ∈ SH1 × SH2 and

we subsequently insert the new corresponding points λ
(α)
x,y into W . At this point, it

has also shown to be advantageous to compute the other eigenvalues as well and
insert them into W̃ .

Afterwards, we do the same for α+ π in place of α and W̃ interchanged with
W by using a separate grid of boxes and obtain larger clouds of points W and W̃
as a result. Now, the whole process can be repeated via the construction of new
grids of boxes.

If we repeat this procedure over and over again, the number of starting points
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will eventually remain relatively constant. At this point, we increase the number of
boxes, i.e. reduce their size, in order to increase the resolution of the box approach
and therefore heighten our ability to distinguish potential starting points in the
interior from potential starting points close to the boundary.

When it comes to the determination of the penalty constant p one has to
balance two aspects: Larger penalty constants lead to higher accuracy in the given
search direction, c.f. Proposition 4.3.1, while smaller penalty constants result in a
faster convergence towards the boundary. We therefore start with a small penalty
constant to cover a large area in the beginning and increase p over time while also
making it dependent on the size of the cloud of points in the current iteration.

Algorithm 4.3.2 explains in pseudocode, how the starting points are selected and
how p is chosen. It takes arrays x ⊂ SH1 , y ⊂ SH2 and W ⊂W 2(A ), the square
root of the number of boxes b and the current iteration i as its input and returns
arrays x0 ⊂ SH1

, y0 ⊂ SH2
and λ0 ⊂W 2(A ) as well as the penalty constant p.

Algorithm 4.3.3 contains the full instructions for the computation of the nu-
merical range. It takes the matrix A in form of its decomposition parts A, B, C
and D, an angle α and the time the algorithm should run for τmax as its input and
returns a cloud of points (W, W̃ ) ⊂W 2(A ). The square roots of the numbers of

boxes b and b̃ will be increased in dependence of counters c and c̃ that keep track
of the number of starting points.

Algorithm 4.3.2: Grid

Input: x, y, W , b and i
1 x0 = {}, y0 = {}, λ0 = {}, G = zeros(b, b) and I = zeros(b, b)
2 ℜmax = maxℜW , ℑmax = maxℑW , ℜmin = minℜW and ℑmin = minℑW
3 p = i/max{ℜmax −ℜmin,ℑmax −ℑmin}
4 hℜ = (ℜmax −ℜmin)/b and hℑ = (ℑmax −ℑmin)/b
5 for j = 0 to the length of W −1
6 k = integer((ℑmax −ℑW [j])/hℑ) and l = integer((ℜW [j]−ℜmin)/hℜ)
7 if k == b then k −= 1 and if l == b then l −= 1
8 if G[k][l] == 0 then G[k][l] = 1 and I[k][l] = j + 1

9 for k = 1, . . . , b − 2
10 for l = 1, . . . , b − 2
11 if G[k +m][l + n] = 1 for all m,n ∈ {−1, 0, 1} then I[k][l] = 0

12 j = 0
13 for k = 0, . . . , b − 1
14 for l = 0, . . . , b − 1
15 if I[k][l] ̸= 0 then
16 x0[j] = x[I[k][l]− 1], y0[j] = y[I[k][l]− 1], λ0[j] =W [I[k][l]− 1]

and j += 1

17 return (x0, y0, λ0, p)
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Algorithm 4.3.3: Computing the Quadratic Numerical Range

Input: A, B, C, D, α and τmax

1 τ = current time + τmax and timeflag = false

2 A =
[
A B
C D

]
, W = {}, W̃ = {}, b = 20, b̃ = 20, c = 0 and c̃ = 0

3 Generate arrays of random vectors x ⊂ SH1
and y ⊂ SH2

4 n = length of x
5 for i = 0 to n− 1

6 W [i] = λ
(α)
x[i],y[i] and W̃ [i] = λ

(α+π)
x[i],y[i]

7 for i = 0, . . . ,∞
8 for j = 0, π
9 if j == 0 then (x0, y0, λ0, p) = Grid(x, y,W, b, i)

10 if j == π then (x0, y0, λ0, p) = Grid(x, y, W̃ , b̃, i)
11 for k = 0 to the length of λ0 −1
12 θ0 = random angle in [0, 2π[
13 for l = 0, . . . , 4
14 θ = θ0 + l 2π5 and

[
A B
C D

]
= eiθA

15 (x̂, ŷ) = Seeking the Boundary(A,B,C,D, x0[k],

16 y0[k], e
iθλ0[k], p, α+ j − θ, 2)

17 n̂ = length of x̂
18 for m = 0 to n̂− 1

19 W [n+m] = λ
(α)
x̂[m],ŷ[m] and W̃ [n+m] = λ

(α+π)
x̂[m],ŷ[m]

20 x[n+m] = x̂[m] and y[n+m] = ŷ[m]

21 if current time > τ then timeflag = true and break
22 n += n̂

23 if timeflag == true then break

24 if timeflag == true then break
25 if j == 0 then

26 if 1 ≥ (length of λ0)/c > 0.99 then b = integer(
√
2b)

27 c = length of λ0

28 if j == π then

29 if 1 ≥ (length of λ0)/̃c > 0.99 then b̃ = integer(
√
2b̃)

30 c̃ = length of λ0

31 if timeflag == true then break

32 return (W, W̃ )

Example 4.3.2. Let us consider a small example to see how the starting points
are selected from an existing cloud of points.

The top-left panel of Figure 4.4 displays a set of 100 points within one of the
QNR components that have been computed via random vector sampling. The
top-right panel provides a zoomed-in view, showing the same cloud overlaid by a
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Figure 4.4: Starting point selection via grid of boxes

rectangular grid of boxes with b = 5 that precisely encompasses the points. Within
each non-empty box that is not surrounded by other non-empty boxes, one point is
selected and highlighted in red. These red points are now chosen as starting points
for the algorithm’s first iteration and five random search directions are determined
for each of them. The bottom-left panel depicts the subsequent cloud of points
after the iterative process 4.3.1 was executed for all of these directions, illustrating
the algorithm’s advancement toward the component’s boundary. Note that in this
simple example, the QNR component to be computed coincides with the square
[0, 2]× [−i, i].

After 15 iterations, as shown in the bottom-right panel, the algorithm has
effectively identified portions within the interior of the quadratic numerical range,
strategically choosing starting points (red) that are relatively uniformly distributed
and close to the boundary.
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4.4 Examples

The following pictures are the result of a Python implementation of Algorithm 4.3.3.
Here, the search for (s, t) ∈ [0, 2π]× [0, 2π] such that fα,λ0

(
φ(s), ψ(t)

)
is maximal

with φ and ψ as in (4.10) is further reduced to a one-dimensional optimization,
i.e. s = t, in order to speed this step up. This allows us to compute much more
points in the QNR within the same amount of time and we obtain better pictures
in the end.

For comparison, we also provide pictures computed via random vector sampling.
To obtain a uniform distribution of vectors on the unit spheres, they are generated
by sampling from a multivariate normal distribution with zero mean and identity
covariance matrix, followed by normalization.

Example 4.4.1. Let us consider the matrix

A1 =



2 i 0 . . . 0 1 3 + i 0 . . . 0

i
. . .

. . .
. . .

... 3 + i
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0 0

. . .
. . .

. . . 0
...

. . .
. . .

. . . i
...

. . .
. . .

. . . 3 + i
0 . . . 0 i 2 0 . . . 0 3 + i 1
1 3 + i 0 . . . 0 −2 i 0 . . . 0

3 + i
. . .

. . .
. . .

... i
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0 0

. . .
. . .

. . . 0
...

. . .
. . .

. . . 3 + i
...

. . .
. . .

. . . i
0 . . . 0 3 + i 1 0 . . . 0 i −2



,

where the blocks A, B, C and D are equally sized tridiagonal matrices, cf. [52,
Example 1.1.5]. In Figure 4.5, the results of the algorithm are compared to the
random vector sampling method when executed for the determination of the QNR
of A1 with dim(A1) = 40. In the top row, the execution time was one minute and
in the bottom row 40 minutes while the plots in the left column are a result of
the algorithm and the plots in the right column are a result of the random vector
sampling method. Here, α was chosen to be zero such that the sets W (dark blue)

and W̃ (light blue) coincide with the two disconnected components of W 2(A1).
As we see, the algorithm is capable of detecting the rough shape of the quadratic
numerical range already after a short period of time and refines the result very
well afterwards while the random vector sampling method is only able to locate a
small area of the QNR which gets slightly enlarged over time.

Figure 4.6 demonstrates the efficacy of the algorithm (left) even when the
dimension of A1 is increased to 4000. Here, the superiority over the random vector
sampling method (right) becomes even more visible. The computation time was
two hours in both pictures.
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Figure 4.5: QNR of A1: Algorithm versus random vector sampling for different
amounts of time

Figure 4.6: QNR of high dimensional A1: Algorithm versus random vector sampling

Example 4.4.2. Let us consider a smaller matrix like

A2 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−2 −1 0 0 i 5i 0 0
−1 −2 −1 0 −5i i 5i 0
0 −1 −2 −1 0 −5i i 5i
0 0 −1 −2 0 0 −5i i


,
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Figure 4.7: QNR of A2 with the algorithm (left) and random vector sampling
(right)

cf. [52, Example 1.3.3]. Figure 4.7 shows the quadratic numerical range of A2 after
executing the algorithm and the random vector sampling method with α = π/2
for 30 minutes each. Although the random vector method generally covers a much
bigger part of the quadratic numerical range of smaller matrices like this when
compared to higher dimensional ones, here, it still fails to adequately depict some
parts of the boundary and struggles to close the gap between the two components,
which seem to be connected as the plot of the algorithm suggests. As we see, this
is not compensated by the fact that only 1.579.020 points were computed with the
algorithm while 58.846.988 points were sampled via the random vector method
within the same amount of time.

Example 4.4.3. Let us consider the matrices

A3 =


0 0 0 1
0 1 2 3
0 −2 −1 0
−1 −3 0 0

 ,
cf. [52, Example 1.3.10], and

Figure 4.8: QNR of A3
Figure 4.9: QNR of A4
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A4 =


0 0 0 0 0
0 0 1 + i 0 0
0 2i 0 0 0
0 0 0 0 0
−1 2 −2 i 0

 .
Figures 4.8 and 4.9 demonstrate how the result of the algorithm can look like if

the QNR consists of only one connected component and α is arbitrarily chosen to
be 0. They are the result of an execution of the algorithm for 15 minutes each.

4.5 Concentration Phenomenon for Random Sam-
pling

As we see in the examples of Section 4.4 and especially in Figures 4.5 and 4.6 the
points in the quadratic numerical range computed via the random vector sampling
method are very unequally spread and cluster in a small subset of each component.
In this section, we will examine this phenomenon and prove that the probability
of a sampling point to fall outside of a small neighborhood of the expected value
decays exponentially with an increase of the dimension of the matrix when its norm
stays constant.

Proposition 4.5.1. Consider the probability spaces (SHi ,B(SHi),σi), i = 1, 2,
where σi is the normalized surface measure. Let

M : SH1
× SH2

→ C2×2, (x, y) 7→
[
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

]
.

Then the expected value EM of M is given by

EM =

[
trace(A)
dim(H1)

0

0 trace(D)
dim(H2)

]
.

Proof. The expected value is

EM =

∫
SH1

×SH2

[
⟨Ax, x⟩ ⟨By, x⟩
⟨Cx, y⟩ ⟨Dy, y⟩

]
d(σ1 × σ2)(x, y)

=

[ ∫
SH1

⟨Ax, x⟩dσ1(x)
∫
SH1

×SH2
⟨By, x⟩d(σ1 × σ2)(x, y)∫

SH1
×SH2

⟨Cx, y⟩d(σ1 × σ2)(x, y)
∫
SH2

⟨Dy, y⟩dσ2(y)

]
.

Here,∫
SH1

×SH2

⟨By, x⟩d(σ1 × σ2)(x, y) =

∫
SH2

〈
By,

∫
SH1

xdσ1(x)

〉
dσ2(y)

=

∫
SH2

⟨By, 0⟩dσ2(y)

= 0
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by Fubini’s theorem and via a similar argumentation we also obtain∫
SH1

×SH2

⟨Cx, y⟩d(σ1 × σ2)(x, y) = 0.

Let d be the dimension of H1 and denote by e1, . . . , ed an orthonormal basis of H1.
Then the trace of A is given by

trace(A) =

d∑
k=1

⟨Aek, ek⟩ =
d∑
k=1

⟨AUek, Uek⟩,

where U is an arbitrary unitary matrix. Denoting the normalized Haar measure on
the unitary group U(d) by µ we have by Fubini’s theorem

trace(A) =

∫
U(d)

d∑
k=1

⟨AUek, Uek⟩dµ(U)

=

∫
SH1

∫
U(d)

d∑
k=1

⟨AUek, Uek⟩dµ(U) dσ1(x)

= d

∫
SH1

∫
U(d)

⟨AUx,Ux⟩dµ(U) dσ1(x)

= d

∫
U(d)

∫
SH1

⟨AUx,Ux⟩dσ1(x) dµ(U)

= d

∫
SH1

⟨Ax, x⟩dσ1(x)

due to the invariance of the Haar measure and σ1 under unitary transformations.
It follows analogously that

trace(D) = dim(H2)

∫
SH2

⟨Dy, y⟩dσ2(y),

which concludes the proof. ❑

Recall from Definition 1.2.3 that for two nonempty sets K,L ⊂ C we define the
distance dist(K,L) via

dist(K,L) = sup
k∈K

(
inf
l∈L

∥k − l∥
)

and the Hausdorff-distance dH(K,L) via

dH(K,L) = max {dist(K,L),dist(L,K)} .

Note, that K ⊂ Bε(L) whenever dist(K,L) < ε and dist(K,L) ≤ ε whenever
K ⊂ Bε(L).
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Lemma 4.5.2. Let M1,M2 ∈ C2×2. Then

dH
(
σ(M1), σ(M2)

)
≤
(
(∥M1∥+ ∥M2∥)∥M1 −M2∥

) 1
2 .

Proof. For a λ ∈ ϱ(M1), [32, p. 28] yields that

∥(λ−M1)
−1∥ ≤ ∥λ−M1∥

|det(λ−M1)|
≤ ∥λ−M1∥

dist(λ, σ(M1))2

or in other words

dist(λ, σ(M1)) ≤
(
∥λ−M1∥∥(λ−M1)

−1∥−1
) 1

2 .

If we further assume λ ∈ σ(M2), we have

∥λ−M1∥ ≤ ∥M2∥+ ∥M1∥

on one hand and on the other hand we obtain

∥(λ−M1)
−1∥−1 ≤ ∥M2 −M1∥

because otherwise ∥(λ−M1)
−1∥−1 > ∥M2 −M1∥ implies

∥(M2 −M1)(λ−M1)
−1∥ < 1

and therefore I − (M2 −M1)(λ−M1)
−1 = (λ−M2)(λ−M1)

−1 is invertible by a
Neumann series argument. This yields λ ∈ ϱ(M2), which is a contradiction.

Hence, we have

dist(λ, σ(M1)) ≤
(
(∥M1∥+ ∥M2∥)∥M1 −M2∥

) 1
2

for every λ ∈ σ(M2) and we analogously obtain

dist(λ, σ(M2)) ≤
(
(∥M1∥+ ∥M2∥)∥M1 −M2∥

) 1
2

for every λ ∈ σ(M1). Thus,

dH
(
σ(M1), σ(M2)

)
= max

{
dist

(
σ(M1), σ(M2)

)
,dist

(
σ(M2), σ(M1)

)}
= max

{
sup

λ∈σ(M1)

dist(λ, σ(M2)), sup
λ∈σ(M2)

dist(λ, σ(M1))

}
≤
(
(∥M1∥+ ∥M2∥)∥M1 −M2∥

) 1
2 . ❑

Theorem 4.5.3. Denote by Sn−1 the (n− 1)-dimensional sphere in Rn and let
f : Sn−1 → R be a function with Lipschitz constant L. Then for all ε > 0 we have

σ

(∣∣∣∣f(x)− ∫
Sn−1

f dσ

∣∣∣∣ > ε

)
≤ 4 exp

(
−δε

2n

L2

)
where σ is the normalized surface measure on Sn−1 and δ > 0 an absolute constant.
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Proof. This is [44, Corollary V.2]. ❑

Theorem 4.5.4. Consider M as in Proposition 4.5.1. Then we have for all ε > 0

σ1 × σ2

(
dH(σ(Mx,y), σ(EM)) > ε

)
≤ 32 exp

(
−β ε4n0

∥A ∥4

)
where β > 0 is an absolute constant and n0 = min{dim(H1),dim(H2)}.

Proof. We start by considering the function ℜ⟨A·, ·⟩ : SH1 → R for which we have

|ℜ⟨Ax, x⟩ − ℜ⟨Ay, y⟩| ≤ 2∥A∥∥x− y∥, x, y ∈ SH1 .

Thus, from Theorem 4.5.3 and Proposition 4.5.1, we obtain

σ1

(∣∣∣∣ℜ⟨Ax, x⟩ − ℜ trace(A)

dim(H1)

∣∣∣∣ > ε

)
≤ 4 exp

(
−δε2 dim(H1)

4∥A∥2

)
and analogously

σ1

(∣∣∣∣ℑ⟨Ax, x⟩ − ℑ trace(A)

dim(H1)

∣∣∣∣ > ε

)
≤ 4 exp

(
−δε2 dim(H1)

4∥A∥2

)
with an absolute constant δ > 0. Combining both of these statements, we get

σ1

(∣∣∣∣⟨Ax, x⟩ − trace(A)

dim(H1)

∣∣∣∣ > ε

)
≤ σ1

(∣∣∣∣ℜ⟨Ax, x⟩ − ℜ trace(A)

dim(H1)

∣∣∣∣ > ε√
2

)
+ σ1

(∣∣∣∣ℑ⟨Ax, x⟩ − ℑ trace(A)

dim(H1)

∣∣∣∣ > ε√
2

)
≤ 8 exp

(
−δε2 dim(H1)

8∥A∥2

) (4.11)

and via the same argumentation with D in place of A we obtain

σ2

(∣∣∣∣⟨Dy, y⟩ − trace(D)

dim(H2)

∣∣∣∣ > ε

)
≤ 8 exp

(
−δε2 dim(H2)

8∥D∥2

)
. (4.12)

In order to find an estimate like this for σ1 × σ2(|⟨By, x⟩| > ε) as well we first fix
y ∈ SH2

and consider the function gy : SH1
→ C, x 7→ ⟨By, x⟩. For this we have

σ1 (|gy(x)| > ε) ≤ 8 exp

(
−δε2 dim(H1)

2∥B∥2

)
again by Theorem 4.5.3 and a similar argumentation as before because Egy = 0.
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Considering Ω := {(x, y) ∈ SH1 × SH2 | |⟨By, x⟩| > ε}, we then obtain

σ1 × σ2(|⟨By, x⟩| > ε) =

∫
SH2

∫
SH1

1Ω(x, y) dσ1 dσ2

=

∫
SH2

σ1 (|gy(x)| > ε) dσ2

≤
∫
SH2

8 exp

(
−δε2 dim(H1)

2∥B∥2

)
dσ2

= 8 exp

(
−δε2 dim(H1)

2∥B∥2

)
.

(4.13)

The estimate

σ1 × σ2(|⟨Cx, y⟩| > ε) ≤ 8 exp

(
−δε2 dim(H2)

2∥C∥2

)
(4.14)

can be shown via the same arguments and we then combine (4.11), (4.12), (4.13)
and (4.14) to obtain

σ1 × σ2(∥Mx,y − EM∥ > ε)

≤ σ1 × σ2(∥Mx,y − EM∥F > ε)

≤ 32 exp

(
−δε2 n0

8max{4∥A∥2, ∥B∥2, ∥C∥2, 4∥D∥2}

)
≤ 32 exp

(
−δε2 n0

32∥A ∥2

)
,

(4.15)

where ∥·∥F denotes the Frobenius norm.
Next, we apply Lemma 4.5.2 to obtain

dH
(
σ(Mx,y), σ(EM)

)
≤
(
(∥Mx,y∥+ ∥EM∥)∥Mx,y − EM∥

) 1
2 ,

where we have ∥Mx,y∥ ≤ ∥A ∥ becauseMx,y = PA |ranP , where P is the orthogonal

projection to the two-dimensional subspace of H1 ⊕H2 spanned by

[
x
0

]
and

[
0
y

]
.

Moreover, ∥EM∥ ≤ ∥EM∥F ≤
√
2∥A ∥ because the trace of a matrix is the sum of

its eigenvalues. Thus,

dH
(
σ(Mx,y), σ(EM)

)
≤
(
(1 +

√
2)∥A ∥∥Mx,y − EM∥

) 1
2

and we conclude by using (4.15) that

σ1 × σ2

(
dH(σ(Mx,y), σ(EM)) > ε

)
≤ σ1 × σ2

(((
1 +

√
2
)
∥A ∥∥Mx,y − EM∥

) 1
2

> ε

)
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= σ1 × σ2

(
∥Mx,y − EM∥ > ε2(

1 +
√
2
)
∥A ∥

)

≤ 32 exp

(
−δ ε4

(3 + 2
√
2)∥A ∥2

n0
32∥A ∥2

)
= 32 exp

(
−β ε4n0

∥A ∥4

)
with β = δ

(96+64
√
2)
. ❑

Remark 4.5.5. Equation (4.11) can also be interpreted in the context of the
numerical range and yields an estimate for the probability of a point in W (A )
that is computed via the random vector sampling method to fall outside of a small
neighborhood of the expected value.

In [43], Martinsson and Tropp reformulated a result from [20] such that an
exponential bound for the deviation of the estimation of the trace of a matrix A
via ⟨Ax, x⟩ is obtained. The proof however relies on A to be a self-adjoint positive
semi-definite matrix.

Example 4.5.6. Let us consider the matrix

A5 =



2 0 . . . . . . . . . 0 1 0 . . . . . . . . . 0

0
. . .

. . .
... 0 0

. . .
...

...
. . . 2

. . .
...

...
. . .

. . .
. . .

...
...

. . . −2
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . .
. . . 0

0 . . . . . . . . . 0 −2 0 . . . . . . . . . 0 0
0 0 . . . . . . . . . 0 1 + i 0 . . . . . . . . . 0

0
. . .

. . .
... 0

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 + i

. . .
...

...
. . .

. . .
. . .

...
...

. . . 1− i
. . .

...
...

. . . 0 0
...

. . .
. . . 0

0 . . . . . . . . . 0 1 0 . . . . . . . . . 0 1− i


with A, B, C and D equally sized. We have ∥A5∥ ≈ 2.36 independent of its
dimension. In Figure 4.10, each plot depicts 10.000.000 points in the QNR of a
version of A5 with dim(A5) = 4n, n = 1, . . . , 4, that were generated via the random
vector sampling method. The concentration phenomenon proven in Theorem 4.5.4
becomes clearly visible and with an increase of the dimension, the QNR seems
to split into two disconnected components, which is not the case as Figure 4.11
shows. There, only 225.048 points have been computed, but they give a much more
accurate picture of the QNR.
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Figure 4.10: QNR of A5 computed with the random vector sampling method for
different dimensions

Figure 4.11: QNR of A5 with dim(A5) = 256 computed with the algorithm in 13
minutes
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