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CHAPTER 1

INTRODUCTION

These days, artificial intelligence is en vogue and neural networks exhibit excellent
performance in computer vision tasks like image classification [153, 158], object
detection [39, 123], semantic segmentation [25, 138] or instance segmentation [5,
61]. Its fields of applications are diverse, such as chatbots on websites [146], speech
recognition and voice output on cell phones [150], as well as in safety-critical tasks
such as automated driving [20] and medical diagnosis [78]. Probably the best-
known chatbot at the moment is ChatGPT, which is based on artificial intelligence
and communicates with users via text-based messages and images, where the
user receives an answer to every question or task. For the task of automated
driving, more and more technical assistance systems are installed in vehicles,
such as an intelligent brake assistant, driver fatigue detection, parking assistance,
etc. For this purpose, the environment is recorded by different sensors, e.g., by
Cameras, Radar or Lidar sensors, and then combined for a unified output. The
rapid development has been made possible by the use of graphics processing units
(GPUs), as well as the amount of (annotated) data and advanced architectures.

Even though artificial intelligence became very famous in recent years, the origins
of neural networks date back to the early 1940s. In 1943, McCulloch and Pitts de-
scribed the interconnection of elementary units as a kind of network similar to the
interconnection of neurons in the brain, which can be used to compute virtually
any logical or arithmetic function and can be used, for instance, for spatial pattern
recognition [104]. Six years later, Donald Olding Hebb presents the first neural
learning method in which the change in synaptic transmission is represented as
a change in the weight of the neural graph [65]. The first successful applications
have been the Mark I Perceptron [129] published in 1958 by Frank Rosenblatt and
Charles Wightman, which could recognize simple digits, and the ADALINE [166]
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1 Introduction

(ADAptive LInear NEuron) published in 1960 by Bernard Widrow and Marcian
E. Hoff, which has been used in analogue telephones for real-time echo filtering.
The late 1960s witnessed a temporary end to research and funding in the field of
neural networks as Marvin Minsky and Seymour Papert showed that important
problems could not be solved with the perceptron model of Rosenblatt and Wight-
man. Over the next decades, there have been several publications in the field of
artificial neural networks, and in 1985, Minsky’s view was disproved by mak-
ing non-linearly separable problems solvable by multilayer perceptrons through
the backpropagation of error learning procedure [68]. Nevertheless, the renais-
sance in neural network research came along in 2012, when Alex Krizhevsky et
al. [84] won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-
2012) in image classification with AlexNet. AlexNet is a convolutional neural
network (CNN) that achieved a top-5 error rate of 15.3%, over ten percentage
points lower than the runner-up. The main reason for the strong performance
was the depth of the AlexNet, which could be realized by using GPUs during
training. This was followed by several milestones in image classification: VG-
GNet [149] in 2014, studying the effect of the convolutional network depth on
its accuracy, GoogLeNet [155] in 2015, increasing the depth and width of the
network while keeping the computational budget constant, ResNets [63] in 2016,
applying a residual learning framework to ease the training of deep networks, as
well as vision transformers [35] in 2020, applying attentions in image classification
frameworks.

The task of object detection is to locate and classify objects of interest, and
its beginnings date back to the early 2000s, where, for instance, human faces
were detected with hand-crafted features and a sliding window approach [164].
The era of deep learning in object detection began in 2014 with the proposal
of regions with CNN features (R-CNN [49]). This two-stage detection approach
is comprised of the extraction of region proposals via selective search and the
rescaling of these proposals to a fixed size in order to classify them with linear
support vector machines. Improvements to this framework are the Fast R-CNN
(2015) [48] and the Faster R-CNN [123] (2015). The former makes use of the
entire image as input for feature extraction rather than of each region proposal
individually. Furthermore, it introduces region of interest (RoI) pooling to feed a
concatenation of extracted features in a fully-connected layer for the classification
of regions. The latter replaces the selective search by a separate network that
learns to predict region proposals, resulting in a reduced number of proposals while
maintaining strong performance. In 2017, feature pyramid networks [95] (FPNs)
have been introduced, which allow the detection of smaller objects by rescaling
the input images to different sizes. One-stage approaches like Yolo [121] “You
only look once” (2016) and SSD [99] (2016) get rid of the determination of region
proposals by dividing the input image into cells and placing predefined proposals
in these cells. In recent years, there have been several extensions of the original
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Yolo, with the aim to maximize the performance while maintaining the real-time
applicability by reducing the trainable parameters, computation effort and the
amount of proposals. The currently most powerful object detectors are based on
transformers, i.e., the DETR architectures [15], which introduced attention for
object detectors, as well as swin transformers [100], which are hierarchical vision
transformers that use shifted windows.

All neural networks are statistical models and therefore error-prone, which can
have disastrous consequences, especially in safety-critical applications such as
automated driving. Probably the most famous accident of a self-driving car dates
back to 2018 [111], in which the car struck a pedestrian pushing a bicycle laden
with shopping bags due to an incorrect prediction. This example demonstrates
that the errors produced by a neural network are of extreme interest, especially
for safety-relevant tasks. Of particular interest in object detection are not only
incorrectly located or misclassified predictions and overlooked objects, but also
incorrectly labeled data used for training or evaluation of the underlying CNNs.
Therefore, it is desirable to develop methods that can prevent or at least detect
the presence of these errors.

In image classification, predicted class probabilities exist for each output, which
can be used to determine uncertainties. A first approach is to use dispersion
measures, such as classification entropy [148], which is a measure of disorder, or
probability margin, which is one minus the difference between the highest and
second highest class probability. The greater these dispersions are, the more
difficult it is to decide between classes and the more uncertain the prediction.
Furthermore, there are sampling approaches, such as deep ensembles [88], where
the same network is trained several times on the identical input data. Since
the training of such networks is not deterministic, we obtain different outputs
for the identical input, and we can determine uncertainties about the different
predictions, such as the mutual information, which is a dispersion measure based
on the classification entropy. Since for deep ensembles we have to train a network
several times, which is costly in terms of computations and thus time intensive,
they are often approximated by Monte-Carlo dropout [44]. Therefore, a network
is trained only once, where a number of neurons are randomly switched on and
off during training, resulting in non-deterministic predictions and an uncertainty
determination analogous to the deep ensembles during inference.

In the present thesis, we address methods for uncertainty quantification (UQ) in
object detection and their applications for the tasks of active learning and auto-
mated label error detection. However, UQ methods still find applications in many
other domains in object detection, such as confidence calibration, performance in-
crease, more robust object detectors, out-of-distribution detection, etc. In object
detection, each prediction is given an objectness score, which is oftentimes inter-
preted as the confidence of the presence of an object. This score is oftentimes
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over-confident, i.e., the score tends to be high even if no object is nearby. Confi-
dence calibration is the task of calibrating the score, such that the average of the
confidence values matches the average correctness of the predictions, i.e., if a pre-
diction gets a score of 90 percent, it should also be a correct prediction nine times
out of ten. Some works use UQ methods for this task [83, 86, 118, 144], whereas
in [125], calibrated uncertainty estimates are used to increase the test perfor-
mance of the underlying object detector. The robustness of object detectors can
be improved in various circumstances, such as training with missing labels [167],
or resisting adversarial attacks [22, 34, 186]. Adversarial attacks alter images so
that no differences from the original image are visually apparent, but cause the
object detector to make incorrect predictions [23, 101, 168]. Out-of-distribution
is the task of detecting unusual objects of interest that have not been seen during
training and which the object detector cannot predict reliably. One application is
the open-world object detection, where the task is to detect a known set of object
categories while simultaneously identifying unknown objects [54, 108].

The following paragraphs provide an overview of related work and a brief summary
of our work in each research area of interest, concluding with a paragraph that
introduces the structure of the following chapters.

Uncertainty Quantification in Object Detection Issues addressed by UQ are
active learning, label error detection, as well as active learning incorporating label
errors. Oftentimes, the input for 2D object detection [39, 123] are camera images
and the input for 3D object detection [89, 172] are Lidar point clouds. Here, the
errors of interest are incorrect predictions, i.e., misclassified or incorrectly located
predictions (false positives), or overlooked objects (false negatives). The occur-
rence of these errors can have disastrous consequences in safety-related tasks. In
each area of the input, predictions are distributed, and each prediction is equipped
with a confidence score, which is pushed towards 1 in training if an object is in
the immediate surroundings and towards 0 otherwise. Then, a threshold on the
confidence score is used to decide which instances are foreground and which are
background. In general, it is impossible to choose a threshold so that no errors
occur, i.e., no false positives and false negatives. Perhaps the simplest approach
of UQ is to interpret the prediction-based confidence score as the quality of the
prediction. In practice, this does not always work well, e.g., oftentimes the con-
fidence score only considers the localization and not the classification, such that
a misclassified prediction still has a high confidence score, although it is a false
positive. Since classification also takes place in object detection, each prediction
also consists of class probabilities. Therefore, the dispersion measures for classi-
fication can be transferred to the instances in object detection, i.e., classification
entropy and probability margin can be calculated for each prediction without fur-
ther adjustment. Furthermore, uncertainties about the class probabilities can be
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determined by the sampling approach, e.g., by the mutual information. Other UQ
methods are based on Monte-Carlo dropout [107, 108] and receive for each input
multiple outputs, where the predictions are the mean of the dropout outputs, and
the standard deviations in the localization, confidence score and class probabili-
ties are interpreted as uncertainty. In [41, 57, 83, 90], the output was extended
by further neurons to estimate the uncertainty of individual output variables,
resulting in a modified loss function.

In Chapter 4, we introduce a post-processing UQ method for 2D object detection
termed MetaDetect. We compute prediction-wise uncertainty metrics based on
predictions that were suppressed in the forward pass. Once we trained a meta
model based on these metrics and the quality of the respective predictions, for
which we need the ground truth, we obtain a quality estimation for each in-
stance, especially without any ground truth information. These quality estimates
provide better statistical separability between true positives and false positives
compared to the naive confidence score of the underlying object detector and the
uncertainties obtained by Monte-Carlo dropout.

In Chapter 8, we introduce LidarMetaDetect (LMD), inspired by MetaDetect
(Chapter 4), which is a post-processing UQ method for 3D object detection based
on Lidar point clouds. We also get prediction-wise quality estimates and in ad-
dition we show that the quality estimates obtained by a meta model are well-
calibrated compared to the over-confident score of the object detector.

Application of Uncertainty Quantification Methods in Active Learning for
Object Detection One application of UQ in object detection is active learning
(AL). AL is an alternating process of training a model and labeling data. The
AL cycle starts with an initially labeled set of images. Iteratively, a model is
trained, images are determined from previously unlabeled images that are labeled,
and then added to the current training dataset. Overall, this iteration continues
until either a number of AL steps or a performance limit is reached. At each
step, the test performance is measured to compare different AL methods, which
differ in the determination of the images to be labeled, called query. The most
naive baseline method is random query, in which the images to be labeled are
drawn randomly from all previously unlabeled images. A single AL experiment
requires multiple AL steps for each query method, as well as multiple runs of
each of these methods to statistically validate the experiment, which leads to
very high computational costs and thus in very high research and development
costs. Nevertheless, there are some works that have introduced new AL methods
in object detection. Instance-wise uncertainties are thereby determined by the
application of dispersion measures of class probabilities [10, 135] or Monte-Carlo
dropout [59]. In addition, there are methods that either predict an image-wise
loss [179] or modify the loss function to obtain uncertainty estimates [24, 183].
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Due to the high cost and duration of AL experiments, previous works have often
shown AL results for only one dataset and/or architecture. In addition, the results
of the individual works are difficult to compare with each other, since no general
AL setup exists and each work chooses its own setup, such as the dataset, the
architecture, the number of initially labeled images, the size of the query, etc.
Therefore, a fast and general AL development environment is desirable.

In Chapter 5, we introduce a sandbox environment which enables faster develop-
ment and fair comparability of AL methods. This sandbox contains two object
detection datasets, which require a comparatively small amount of training data to
obtain a good performance. Therefore, only down-scaled versions of state-of-the-
art object detectors are used for the AL experiments. This results in accelerated
AL experiments with a factor of up to 32 compared to experiments on commonly
used datasets in object detection and state-of-the-art object detectors. We show
with correlation coefficients over the entire AL course, that different query strate-
gies on conventional AL setups have similar rankings compared to the results
obtained using our sandbox, i.e., new methods can be developed cost-efficiently
using our sandbox and generalize well to common setups.

Uncertainty Quantification Methods for Label Error Detection Labeling
data by a human is a dull and time-consuming task, as well as error-prone, result-
ing in erroneous benchmark datasets [113, 132]. Once data is labeled, networks
are trained and evaluated based on it, and labels are typically not questioned.
By inspecting some false positive predictions (see Chapter 4), we repeatedly find
actual true positives but categorized as false positives based on incorrect labels.
Although the idea of automated label error detection has been around since the
early 2000s in the context of part-of-speech annotation, this area has only been
little explored. In terms of image classification, real label errors were found on
the MNIST [91] dataset due to prediction uncertainties [113] and studied to which
extent they affect benchmark results [114]. For the task of semantic segmenta-
tion, a post-processing UQ method [132] identifies missing labels or labels with
an incorrect class affiliation in the Cityscapes [27] dataset. In object detection,
a UQ method based on the class probabilities is applied to find labels with an
incorrect class affiliation [70]. Note, that these label errors were simulated and
are no real label errors.

In Chapter 6, we introduce a label error detection method for object detection.
This method is based on the loss of the detector, i.e., the calculated label er-
ror scores are based not only on the prediction itself, but on the agreement and
disagreement between prediction and the potentially erroneous labels. We con-
sider four different types of label errors: missing labels, correctly localized labels
with an incorrect class affiliation, labels with correct classification but inaccu-
rate localization, and labels that actually represent background. We introduce
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a benchmark with simulated label errors, and we also detect real label errors on
commonly used datasets in object detection. Compared to baselines methods,
such as the UQ method based on class probabilities [70], our method is the only
one that detects all four types of label errors efficiently.

Furthermore, in Chapter 8, we use the prediction-wise uncertainty estimates ob-
tained by LMD to identify missing labels, labels with an incorrect class affiliation
and labels with an inaccurate localization for 3D bounding box annotation with
Lidar point clouds. In all experiments shown, label error detection with LMD
outperforms a random baseline as well as the naive confidence score of the object
detector significantly.

Uncertainty Quantification Methods in Active Learning with Noisy Oracle
Since labeling data is error-prone, it is not surprising that the commonly used
datasets in object detection contain label errors (Chapter 6). Therefore, many
published AL results in object detection are based on erroneous labels, i.e., label
errors are present during training and evaluation. Nevertheless, no AL methods
in object detection incorporate label errors so far, whereas some works exist for
the classification task. In [80], an active label correction algorithm is introduced
that robustly estimates label confidence values via classification entropy, while
preventing redundancies during the cleaning procedure. In [180], suspicious noisy
samples are filtered via comparison of predicted class probabilities and the current
(possibly incorrect) label. Then, these samples are reviewed by either a weak and
more cost-saving or a strong and more cost-intensive labeler, which provide either
binary or categorical feedback. The QActor module, presented in [181], introduces
a label cleaning module in the AL cycle, that filters proposals for noisy labels by
the highest loss between prediction and actual label, which are then reviewed by
the oracle.

In Chapter 7, we introduce for the first time an AL method that incorporates
label errors within the AL cycle in object detection, where we present a review
module which becomes active after querying and labeling data. During review,
we discriminate between correct label and label error, where re-labeling the latter
results in a cleaner dataset for training the model in the next AL step. To generate
label error proposals, we apply the label error detection method from Chapter 6
and compare it to a random review baseline. In total, we detect two types of
label errors: missing labels and labels with a correct localization but an incorrect
class affiliation. Note, that the choice of the query strategy is independent of the
choice of the review method. We show that if label errors occur during the labeling
process, the review can increase the test performance significantly. However, this
requires a review with high precision in terms of label error detection, such as the
instance-wise loss (Chapter 6), whereas the random review even leads to a slight
reduction in test performance compared to AL methods without reviewing labels.
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Structure The remainder of the present thesis is structured as follows: in Chap-
ter 2, we introduce theoretical foundations of neural networks, the task of object
detection and uncertainty quantification applied to object detection. The intro-
duced theoretical basics and the corresponding notations should help to under-
stand the developed methods discussed in the following chapters. In more detail,
we present the structure of neural networks, how they are trained, which learning
tasks they can approximate and which prerequisites have to be met. Furthermore,
we introduce convolutional neural networks (CNNs), since the architectures of
modern object detectors are based on CNNs. Afterwards, we present the task
of object detection and lead step-by-step through the training and inference pro-
cess, in order to establish the foundations for the methods that follow and later
show at which point in the training and inference process each method applies.
Finally, the topic of uncertainty and its application to object detection will be
highlighted, where all the presented methods will be employed in at least one
of the following chapters. Then, in Chapter 3, we summarize the basic ideas
and most important results of the following chapters to present an overview of
all topics covered and their relationships to each other. Chapter 4 - Chapter 8
have all the same structure: the introduction is followed by related work, method
description, the numerical results and the respective chapter closes with a con-
clusion. In Chapter 4, we present a post-processing UQ method for 2D object
detection. Chapter 5 introduces an AL sandbox that enables fast development
and fair comparability of AL methods and generalizes well to common AL setups
with state-of-the-art datasets and architectures. A loss-based label error detec-
tion method for 2D object detection is introduced in Chapter 6, which is able
to identify four different types of label errors efficiently. The ideas of Chapter 5
and Chapter 6 are merged together in Chapter 7, where we assume label errors
in the generic AL cycle. We present a review module that allows label errors to
be reviewed and corrected during the experiment, leading to a significant increase
in performance throughout the runtime. In Chapter 8, the idea of Chapter 4
is extended to 3D object detection with Lidar point clouds, where we use the
generated uncertainty estimates to identify real label errors on commonly used
datasets as a direct application of this post-processing UQ method. Finally, we
close with a conclusion in Chapter 9, comparing the obtained results and discuss
further research and application areas for future work.
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CHAPTER 2

REVIEW OF BASIC MATERIAL

This chapter provides an overview of the foundations that are prerequisites for
the chapters that follow. The idea of supervised learning for classification and re-
gression is introduced in Section 2.1. The basics of neural networks and especially
convolutional neural networks for the task of image classification are presented
in Section 2.2. Both subsections are mainly based on the textbooks [51, 147].
The structure of the networks with the division into different layers, the appli-
cation of activation functions, as well as convolution and pooling operations and
their transposed are explained. Furthermore, we introduce how neural networks
learn from data and why they are able to approximate different function classes,
such as polynomials. Then, in Section 2.3, the generic object detection training
and inference are explained, as well as the general object detection architecture.
Afterwards, two state-of-the-art architectures, YoloV3 and Faster R-CNN, are
discussed followed by the commonly used evaluation metrics in object detection,
such as precision, recall and mean average precision. The chapter concludes with
the task of uncertainty quantification, the distinction between aleatoric and epis-
temic uncertainty, and the application of uncertainty-based methods in object
detection in Section 2.4, which is mainly based on [72].

2.1 Supervised Learning

Machine learning algorithms learn from data. These algorithms can be broadly
categorized into supervised, unsupervised and reinforcement learning tasks.
In reinforcement learning, an agent learns a strategy based on a reward system,
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2 Review of Basic Material

such as learning to play backgammon from scratch [157]. For supervised and
unsupervised tasks, learning is based on a given dataset

X =
{
xi,j, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}

}
, (2.1)

which contains n data points, each described by d different features. For a dataset
consisting of camera images, n is the amount of different images and the number
of corresponding features d is the number of pixels within a single image. With X
as input, unsupervised learning algorithms aim to learn useful properties about
the structure of the dataset, i.e., the probability distribution that generated X .
For supervised learning tasks, there exists a true probability distribution p(x, y)
that assigns to each input x ∈ Rd a probability for each label y ∈ DY . Here, DY
represents the target domain, which can be a set of C classes DY = {1, . . . , C}
(classification) or the set of real numbers DY = R (regression). Often it is sim-
plistically assumed that there is a unique ground truth function f ∗ : Rd → DY ,
which provides a unique label to each input, e.g., a one-hot probability vector
for classification. The overall goal of supervised learning algorithms is to learn
to predict the labels Y from the input X , i.e., a function f is learned as an ap-
proximation for f ∗. This approximation can be learned by different algorithms,
such as linear or logistic regression, support vector machines or neural networks,
where the selection of the appropriate model depends on the underlying problem.

2.2 Neural Networks

Artificial neural networks are statistical models inspired by the functionality of
the human brain. Based on this structure, a neural network consists of many
individual but interconnected neurons that can be used to learn and predict highly
complex tasks on a given data basis X . As has been observed in recent years,
such neural networks have applications in computer vision, such as perception in
automated driving or medical diagnosis. The following subsection is mainly based
on [147].

Feed Forward Neural Networks

A neural network can be interpreted as a directed graph G = (V,E), with neu-
rons as nodes and the interconnections of the neurons as edges. The strength of
the connection between neurons is described by a weight function w : E → R.
The input of a neuron is the weighted sum of the outputs of the neurons with
an incoming edge. In addition, a bias can be added due to a single neuron that
does not receive any input. Furthermore, neural networks can be divided into L

10
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input hidden output

Figure 2.1: An exemplary structure of an FFN with one input layer (blue), two hidden
layers (yellow), one output layer (green) and bias units (gray).

different layers, i.e., each neural network has one input layer, a various number
of hidden layers, and one output layer. Thus, the nodes of the graph G can be
decomposed into V = ∪̇Ll=0V

(l), such that every node in V (l−1) is connected to
some nodes in V (l) ∀ l ∈ {1, . . . , L}. If the neural network does not include cycles,
it is called feedforward. An example structure of a feedforward neural network
(FFN) is shown in fig. 2.1. An FFN is called fully-connected, if each neuron is
connected to all neurons of the previous layer and all neurons of the following
layer, see fig. 2.1. The architecture of a neural network is fixed in advance of the
training process, thus neural networks learn only by weight adjustments. The
number of trainable parameters is determined by the complexity of the network.
The complexity depends on the number of layers L (depth) and the maximum
number of neurons per layer max

l∈{0,...,L}
N (l) (width). The output of a neural net-

work is determined by a forward pass, i.e., by a chain of functions whose number
corresponds to the depth L of the network:

f(x,w) = (f (L) ◦ f (L−1) ◦ . . . ◦ f (1))(x,w) = f (L)(f (L−1)(. . . (f (1)(x,w)))), (2.2)

with given input x, weights w and the number of layers L. The output of the
network is determined iteratively and thus the output of layer l can be interpreted
as a function of the output of the previous layer l − 1:

h(l) = f (l)(h(l−1)) = φ(l)(W (l)h(l−1) + b(l)) = φ(l)(a(l)), ∀l ∈ {1, . . . , L}, (2.3)

11
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Figure 2.2: Activation functions on an interval of [−3, 3].

with f (l) : RN(l−1) → RN(l)
, W (l) ∈ RN(l−1)×N(l)

as weights, b(l) ∈ RN(l)
as bias and

φ : RN(l) → RN(l)
as activation function for the input a(l) of layer l. Note, that

the weights w can be rewritten as

w̃ =


0 0 . . . 0

W (1) 0 . . . 0
...

. . . 0
...

0 0 W (L) 0

 . (2.4)

Activation Functions In (2.3), a layer-dependent activation function φ(l) is ap-
plied to the input a(l) of the corresponding layer l ∈ {1, . . . , L}. Equipping an
FFN with activation functions can happen on a trial and error basis. See fig. 2.2
for an overview of the activation functions presented in the following.
The Heavyside function is defined as:

Heavyside(a) = 1a>0. (2.5)

This function activates the neuron when the input is greater than zero and sets
the output of the neuron to zero otherwise. Neural networks usually learn with
gradient-based optimization methods and backpropagation, assuming differentia-
bility of the activation functions. Since the Heavyside function is not differen-
tiable, and the derivative even disappears completely, differentiable approxima-
tions of the Heavyside function with non-disappearing gradients are applied, i.e.,
the sigmoid, or also called logistic, function.

12
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This function and the corresponding derivate are defined by:

sig(a) =
1

1 + e−a
=

ea

ea + 1
and sig′(a) =

e−a

(1 + e−a)2
. (2.6)

Analogous to the Heavyside function, the function values of the sigmoid function
range from zero to one. Moreover, the function is monotonically increasing and, in
particular, differentiable. Furthermore, the curve of the sigmoid function flattens
very quickly, see fig. 2.2. The gradients are determined with the chain rule during
backpropagation, resulting in activations within the interval of (0, 1). This can
lead to vanishing gradients, especially in the first layers of a deep neural network,
and in the worst case the gradients become zero and the neural network cannot
continue learning. An improvement is obtained by the hyperbolic tangent function,
which is a scaled version of the sigmoid function:

tanh(a) =
ea − e−a
ea + e−a

and tanh′(a) = 1−
(ea − e−a
ea + e−a

)2
. (2.7)

The range of the function is in [−1, 1] and the values of the derivative around the
origin are also larger compared to the sigmoid function. However, the gradients
also tend quickly towards zero, such that the problem of vanishing gradients still
exists.
The rectified linear unit (ReLU) prevents this phenomenon:

g(a) = max{0, a} and g′(a) =


0, if a < 0

1, if a > 0

undefined, if a = 0.

(2.8)

If g′(0) = 0 is chosen for the derivative of the ReLU function, g is differentiable
everywhere and g′(a) = Heavyside(a). Thus, the computation of the derivative
is not only very efficient, but also avoids the problem of vanishing gradients.
Neurons whose gradients are equal to zero do not provide training feedback for
upstream layers during backpropagation. If this phenomenon happens in various
neurons, the capacity of the neural network will decrease. This problem can be
solved with the LeakyReLU activation, which allows a small gradient even when
a neuron is not activated:

g̃(a) =

{
0.01 · a, if a ≤ 0

a, if a > 0.
and g̃′(a) =

{
0.01, if a ≤ 0

1, if a > 0.
(2.9)

However, the LeakyReLU is rarely applied due to a worse performance compared
to the ReLU activation.
Activation functions are also applied in the output layers of neural networks. For
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Figure 2.3: Left: the “tooth” function t from (2.13) and the iterated “sawtooth” func-
tions t2 and t3 from (2.14). Right: f∗(x) = x2 and the approximation functions f0, f1
and f2.

instance, the softmax function is often applied as an activation function in the
output layer of a multi-class classification model, in order to make the output
interpretable. Assuming that the input has to be categorized into one out of C
classes, the output of neuron ai is defined as:

softmax(ai) =
eai

C∑
i=1

eai
. (2.10)

Since
C∑
i=1

softmax(ai) = 1, softmax(ai) can be interpreted as the probability that

the input belongs to class i ∈ {1, . . . , C}.

Universal Approximation A neural network can be described by the parame-
ters (V,E, φ, w). Here, (V,E, φ) is the architecture of the neural network or the
hypothesis class :

HV,E,φ = {hV,E,φ,w : RN(1) → RN(L)

with w : E → R}. (2.11)

One of the fundamental questions is how well can the best function f : Rd → DY of
the hypothesis class HV,E,φ approximate the ground truth function f ∗ : Rd → DY
with f ∗(X ) = Y . The universal approximation theorem states that FFNs with
a linear output layer and at least one hidden layer with a non-linear activation
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Figure 2.4: Left: unity partitioning functions ψ(x). Right: partitioning of a 2D-unity
square with an activated region in blue.

function can approximate any continuous function on a closed and bounded subset
of Rn ([69]). These theorems have been proven for different activation functions,
see [28] for the sigmoid function (HV,E,sig) and for the sketch of the proof for the
ReLU function (HV,E,g), we follow [176]:

We assume an FFN with several input neurons, an amount of hidden layers with
ReLU as activation function and one output neuron. The approximation error for
the ground truth function f ∗ : [0, 1]d → R and its approximation f : [0, 1]d → R
is given by:

‖f ∗ − f‖∞ = max
x∈[0,1]d

|f ∗(x)− f(x)|. (2.12)

First, it is shown that the function f ∗(x) = x2 can be approximated with any
error ε > 0 on the segment [0, 1] by a ReLU network. Therefore, we define the
“tooth” function t : [0, 1]→ [0, 1]:

t(x) =

{
2x, x < 1

2

2(1− x), x ≥ 1
2

(2.13)

and the iterated functions:

ts(x) = t ◦ t ◦ . . . ◦ t︸ ︷︷ ︸
s×

(x). (2.14)
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The latter function ts is a “sawtooth” function with 2s−1 uniformly distributed
“teeth”, see [156]:

ts(x) =

{
2s(x− 2k

2s
), x ∈ [2k

2s
, 2k+1

2s
], k = 0, 1, . . . , 2s−1 − 1,

2s(2k
2s
− x), x ∈ [2k−1

2s
, 2k
2s

], k = 0, 1, . . . , 2s−1.
(2.15)

If s is increased by one in (2.14), the number of teeth doubles, see fig. 2.3 (left)
with t(x) = t1(x). Let fm be piece-wise linear interpolations of f ∗(x) = x2,
then f ∗ can be approximated by linear combinations of ts, see fig. 2.3 (right).
The resulting 2m + 1 breakpoints have the identical function values as f ∗ at the
given points. If m is increased by one, the residual between fm−1 and fm can be
described as a sawtooth function:

fm−1 − fm =
tm(x)

22m
(2.16)

and therefore applies:

fm(x) = x−
m∑
s=1

ts(x)

22s
. (2.17)

The function fm approximates f ∗ with error εm = 2−2m−2, which decreases with
increasing m. Considering (2.17), fm consists only of the input x and the lin-
ear interpolations t1, . . . , tm. The latter can be implemented by a finite ReLU
network, since the single application of the “tooth” function from (2.13) can be
rewritten as t(x) = 2g(x) − 4g(x − 1

2
) + 2g(x − 1), and the “sawtooth” function

from (2.14) can be implemented by nesting layers applying the tooth function.
As of now, it is shown that we can approximate x2 arbitrarily well, and therefore
also y2 and (x+ y)2. Since

xy =
1

2
((x+ y)2 − x2 − y2), (2.18)

a ReLU network is also able to multiply multiple input neurons, i.e., polynomials
of higher order, as well as polynomials of higher dimension can be approximated
by a ReLU network (with sufficient depth and width). Not only polynomials of
any form can be approximated with ReLU networks, but also different classes of
functions, e.g., functions which have a local Taylor expansion up to degree n at
each point with a sufficiently small residual term. These local Taylor series, that
locally approximate the underlying function, are polynomials up to degree n and
can be approximated by a ReLU network. To limit the local interpolation of the
Taylor series to a certain range, the unity is decomposed as a product of step
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functions ψ:

ψ(x) =


1, |x| < 1,

0, 2 < |x|,
2− |x|, 1 ≤ |x| ≤ 2,

(2.19)

see fig. 2.4 (left). With this partition of the unity, the interpolations of the Taylor
series can be locally restricted, see fig. 2.4 (right), and implemented by a ReLU
network. Furthermore, fig. 2.4 also shows how to realize higher dimensions of the
feature space.

Note, that the approximation of more complex functions with basis functions
is not a new concept, but the argument goes back to finite element theory [9].
Yarotsky [176] transferred this idea to neural networks with ReLU as activation
function, where error bounds can also be given depending on the width and depth
of the neural network.

Learning from Data

After demonstrating which classes of functions can be approximated by neural
networks, we introduce a learning algorithm for neural networks, i.e., how the
adjustments of the weights in the neural network are realized. The training pro-
cedure of a neural network is based on a given learning function, called loss func-
tion. The ground truth function f ∗ is approximated by f , which is learned based
on the loss function and the stochastic gradient descent, requiring backpropagation
to determine the gradients. Furthermore, various regularizations are used during
the learning process to prevent the network from memorizing the training data
(overfitting).

Loss Functions The loss function determines the discrepancy between predic-
tions and labels based on the training data S = {(x1, y∗1), . . . , (xn, y

∗
n)}, with

inputs xi and labels y∗i , i = 1, . . . , n. Thereby, x is generated by a probability
distribution D over a domain set X and then labeled by f ∗(x) = y∗, where y∗

is determined from the set of potential labels DY . The learner has to output
a hypothesis hS : X → Y to predict the labels, especially for new data points.
Usually, D and f ∗ are unknown and the task is to learn the latter. In order to
measure the performance of the current hypothesis, the error of the hypothesis is
defined by the probability that the hypothesis predicts a wrong label on a random
data point generated by D:

LD,f∗(hS) = Px∼D[hS(x) 6= f ∗(x)] = D({x : hS(x) 6= f ∗(x)}). (2.20)

17



2 Review of Basic Material

LD,f∗(hS) = L(hS) is also called generalization error, but is rather a theoreti-
cal expression, since in practice D and f ∗ are unknown. Since only the training
dataset S is available as input to the learner, the generalization error is approxi-
mated by the empirical risk :

LS(hS) =
|i ∈ [n] : hS(xi 6= y∗i )|

n
, (2.21)

where a hypothesis that minimizes LS(hS) is called empirical risk minimizer
(ERM) [162].
In general, there exists a hypothesis hS with LS(hS) = 0, i.e., perfect performance
on the training data, but a high generalization error. This memorization of the
training data is called overfitting and can be mitigated or, in the best-case, to-
tally avoided by an inductive bias, e.g., one possibility is to choose the network
architecture independently of the training data, i.e., to determine a hypothesis
class HV,E,φ. With this inductive bias, the ERMH learner uses the ERM rule and
determines the hypothesis hS ∈ H with the lowest possible error for the training
dataset S:

ERMH(S) = argmin
hS∈H

LS(hS). (2.22)

If the hypothesis hS ∈ H that minimizes LS(hS) is not unique, one of these
hypotheses can be freely chosen. The difference of the generalization error and
the empirical risk is defined as the estimation error (|L(hS) − LS(hS)|) and the
difference of the empirical risk and the lowest possible error with inductive bias
is defined as the approximation error (|LS(hS) − min

hS∈H
LS(hS)|). Restricting the

hypothesis class reduces the possibility of overfitting (lower estimation error), but
also results in a stronger inductive bias (higher approximation error). This trade-
off is also called bias-complexity-tradeoff [47].

Since the empirical risk of misclassification from (2.22) is not differentiable, other
objective functionals are used in practice. Maximum likelihood estimation [2]
(MLE) determines such an empirical risk minimizer, where the parameters θ of a
probability distribution D are estimated based on a given dataset S. In general,
the goal of MLE is to determine the model parameters that maximize the likeli-
hood function. Furthermore, MLE is an empirical risk minimizer for the log loss
function of the generalization error:

−log
(
Dθ(x)

)
, (2.23)

with input x ∼ D and the distribution Dθ, which is dependent of the parameter θ.
Assuming that the input x is independently and identically distributed according
to Dθ, (2.23) is called negative log-likelihood. Since the underlying probability dis-
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tribution is unknown, and only the training data S is available, the generalization
error from (2.23) is replaced with the empirical risk:

argmin
w

n∑
i=1

(
−log

(
Dθ(xi)

))
. (2.24)

Note, that x ∼ D, and not x ∼ Dθ, and assuming that xi, i = 1, . . . , n, are inde-
pendently and identically distributed according to D, the expected generalization
error of θ is given by:

Ex[−log(Dθ(x))] (2.25)

= Ex

[
n∑
i=1

(
−log

(
Dθ(xi)

))]
(2.26)

= −
n∑
i=1

(
D(xi)log

(
Dθ(xi)

))
(2.27)

=
n∑
i=1

(
D(xi)log

(
1

Dθ(xi)

))
(2.28)

=
n∑
i=1

(
D(xi)log

(
D(xi)

Dθ(xi)

1

D(xi)

))
(2.29)

=
n∑
i=1

(
D(xi)log

(
D(xi)

Dθ(xi)

))
+

n∑
i=1

(
D(xi)log

(
1

D(xi)

))
(2.30)

= KL(D(x)||Dθ(x)) + H(D(x)). (2.31)

KL represents the Kullback-Leibler divergence [85], which is a measure of the
difference between two probability distributions, with KL(D(x)||Dθ(x)) ≥ 0 and
equality if and only if D(x) = Dθ(x). H represents the Shannon entropy [148],
which is a measure of average information contained in a distribution.

The general goal is to have the output of the neural network be identical to
the labels Y . For considering a multi-class classification problem with C classes,
the output from the last layer L, ŷ = softmax(a(L)), is a probability vector
ŷi ∈ [0, 1]C , ∀i ∈ {1, . . . , n}, and the labels Y are present as unit vectors y∗

i ∈
{0, 1}C , ∀i ∈ {1, . . . , n}. In (2.27), by replacing the true distribution D(x) by the
labels Y and the predicted distribution Dθ(X ) by the output ŷ, the cross-entropy
is obtained by:

L(ŷ, y∗) = −
C∑
i=1

y∗
i

log(ŷi). (2.32)
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By minimizing cross-entropy, the output ŷ converges to the given probability
distribution of the labels y.

Stochastic Gradient Descent For some classes of hypotheses, such as linear re-
gression, the ERM can be computed with a closed form solution, which becomes
infeasible for neural networks. Therefore, the following two paragraphs refer only
to the training of neural networks. Using the loss function, which measures the
difference between output and labels, stochastic gradient descent (SGD) [6] mini-
mizes this difference. SGD is an iterative algorithm that takes a hypothesis class
H with an initial hypothesis hw0 ∈ H as input, which is determined by the initial
weights w0, as well as the direction of descent, the step size ε > 0 and a stopping
condition. The stopping condition can be a number of iterations T , or the arrival
at an (approximate) local minimum (early stopping). The direction of descent is
defined as the direction of the steepest descent and the weights w are adjusted
every iteration:

wi+1 = wi − ε
(

1

n

n∑
i=1

∇wiL(ŷ, y)

)
. (2.33)

The output of the network ŷ and thus the gradient of the loss function depends
on the weights wi of the current iteration i. In order to circumvent memory
restrictions, only a randomly chosen batch m � n of data points is used in a
single iteration, rather than the whole training dataset, resulting in:

wi+1 = wi − ε
(

1

m

m∑
i=1

∇wiL(ŷ, y)

)
. (2.34)

To ensure that each training data point has an impact on the learning process, the
iterations can be divided into epochs, in which each data point enters a batch at
least once. The step size ε is a hyperparameter that controls the stagnation of the
SGD, which is mostly tuned by trial and error. In practice, ε is not identical for
each iteration, but decreases as the training process progresses, resulting in step
size schedules εi, i ∈ {1, . . . , T} that adjust ε depending on the current training
progress [29]. A further hyperparameter is the momentum α ∈ [0, 1), which
increases the rate of stagnation dramatically [120]. Momentum uses decreasing
averaged gradients from the previous iterations for the current weight update:

νi+1 = ανi − ε
(

1

m

m∑
i=1

∇wiL(ŷ, y)

)
(2.35)

wi+1 = wi + νi+1, (2.36)
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with ν0 = 0. A commonly used SGD algorithm with momentum is the Adam
algorithm [81], which is often used in applications.

In general, gradient-based algorithms are motivated by ideas for convex optimiza-
tion problems. These algorithms are applied due to simplicity and straightfor-
ward application to neural networks, although most loss surfaces are non-convex
in deep learning. Moreover, gradient-based algorithms are likely to reach approx-
imate local minima, since finding the global minimum (empirical risk minimizer)
is NP-hard [147].

Backpropagation The gradients in SGD are computed by backpropagation [136].
The backpropagation, and thus the adjustment of the weights, in iteration i is
based on the current loss Lwi(ŷ, y∗). Therefore, the partial derivatives have to
be determined for each weight. When determining the partial derivatives for the
weights W (l), which are located on the edges from layer l − 1 to layer l, all other
weights of the network are fixed. Let `(l) : RN(l) → R be the loss function of
the subnetwork defined by layers {l, . . . , L} as a function of the neurons in layer
l. The inputs of the neurons in layer l are a(l) = W (l)h(l−1) and the outputs are
h(l) = φ(l)(a(l)). Then, the loss can be defined as a function of W (l):

g(l)(W (l)) = `(l)(h(l)) = `(l)(φ(l)(a(l))) = `(l)(φ(l)(W (l)h(l−1))). (2.37)

Let

W̃ (l) = [W
(l)
1,1,W

(l)
1,2, . . . ,W

(l)

1,N(l−1) ,W
(l)
2,1, . . . ,W

(l)

N(l),N(l−1) ]
T ∈ RN(l−1)·N(l)

(2.38)

be a column vector of the weights and

H̃(l−1) =


h̃(l−1) 0 . . . 0

0 h̃(l−1) . . . 0
...

...
. . .

...

0 0 . . . h̃(l−1)

 ∈ RN(l)×(N(l−1)·N(l)) (2.39)

be a matrix of the outputs h(l−1) with h̃(l−1) = [h
(l−1)
1 , h

(l−1)
2 , . . . , h

(l−1)
N(l−1) ] ∈ RN(l−1)

.
Then, (2.37) can be reformulated:

g(l)(W̃ (l)) = `(l)(φ(l)(H̃(l−1)W̃ (l))) (2.40)

Applying the chain rule, as well as a(l) = H̃(l−1)W̃ (l) and h(l) = φ(l)(a(l)), yields

JW̃ (l)(g(l)) = Jh(l)(`
(l))diag((φ(l))′(a(l)))H̃(l−1), (2.41)
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Algorithm 1: Backpropagation

Input : data point (x, y), weights w, graph (V,E), activation φ

Initialization: layers V (0), . . . , V (L) where V (l) = {v(l)1 , . . . , v
(l)

N(l)}, weight

w
(l+1)
i,j of (v

(l)
j , v

(l+1)
i )

Forward :
1 set h(0) = x
2 for l = 1, . . . , L do
3 for i = 1, . . . , N (l) do

4 set a
(l)
i =

N(l−1)∑
j=1

w
(l)
i,jh

(l−1)
j

5 set h
(l)
i = φ(l)(a

(l)
i )

6 end

7 end
Backward :

8 set δ(L) = (φ(L))′(ŷ)
9 for l = L− 1, . . . , 1 do

10 for i = 1, . . . , N (l) do

11 δ
(l)
i =

N(l+1)∑
j=1

w
(l+1)
j,i δ

(l+1)
j (φ(l))′(a

(l+1)
j )

12 end

13 end

Output : partial derivative δ
(l)
i (φ(l))′(a

(l)
i )h

(l−1)
j for each edge

(v
(l−1)
j , v

(l)
i ) ∈ E

with J as the Jacobian. With defining δ(l) = Jh(l)(`
(l)), (2.41) can be rewritten

as:

JW̃ (l)(g(l)) = [δ
(l)
1 (φ(l))′(a

(l)
1 )h̃(l−1), . . . , δ

(l)

N(l)(φ
(l))′(a

(l)

N(l))h̃
(l−1)] (2.42)

It remains to determine δ(l) = Jh(l)(`
(l)). For the last layer L applies:

`(L) = L(ŷ, y∗) and δ(L) = Jh(L)(`(L)) = (φ(L))′(ŷ). (2.43)

With `(l)(h(l)) = `(l+1)(φ(l+1)(W (l+1)h(l))) and the chain rule, it follows for all
hidden layer l ∈ {1, . . . , L− 1}:

δ(l) = Jh(l)(`
(l)) (2.44)

= Jφ(l+1)(W (l+1)h(l))(`
(l+1))diag((φ(l+1))′(W (l+1)h(l)))W (l+1) (2.45)

= Jh(l+1)(`(l+1))diag((φ(l+1))′(a(l+1)))W (l+1) (2.46)

= δ(l+1)diag((φ(l+1))′(a(l+1)))W (l+1) (2.47)
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Due to the iterative use of intermediate terms, backpropagation is very efficient
in computing the gradients of a layer l. A summary of the backpropagation is
shown in alg. 1.

Convolutional Neural Networks

Fully-connected FFNs perform well on many tasks, but face the curse of dimen-
sionality [4] on higher dimensional inputs. Adding more features, such as higher
resolution images, exponentially increases the amount of data needed to ensure
proper generalization. To prevent this overparametrization, convolutional neural
networks (CNNs) replace the matrix multiplication with a convolution layer in
at least one layer of the FFN. This results in sparse interactions, since not all
neurons of one layer are connected to all neurons of the subsequent layer, as well
as in parameter sharing, since only one set of kernel-parameters is learned, rather
than a set of parameters for every interconnection of the neurons of both layers.
Furthermore, the convolution layer is equivariant to translation due to parameter
sharing. Usually, a convolutional layer consists of a convolution operation, fol-
lowed by a nonlinear activation function and a pooling operation. The following
subsection is mainly based on [51].

Convolution The convolution operation for two integrable functions I : R→ R
and K : R→ R is defined by:

(I ∗K)(t) =

∫
R
I(a)K(t− a)da. (2.48)

The first argument I is often referred to as the input, the second argument K as
the kernel and the output (I ∗K) as the feature map. In general, data is given in
discrete form, e.g., evaluations/measurements for specific points in time. Then,
with assuming that I : Z→ R and K : Z→ R, the discrete convolution is defined
as:

(I ∗K)(t) =
∞∑

a=−∞

I(a)K(t− a). (2.49)

In machine learning applications, I is the input of a layer and the parameters of
the kernel K with predefined size are learned by the underlying algorithm, where
a two-dimensional kernel is required, if a two-dimensional image is used as input.
Then, (2.49) can be reformulated as:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (2.50)
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Input

I ∈ R3×3
Kernel

K ∈ R2×2
Feature Map

(I ∗K) ∈ R2×2

Figure 2.5: An example of a convolution on two-dimensional input data. The values of
the blue square in I and the kernel K are used to compute the corresponding brown
square in the feature map (I ∗K).

Figure 2.6: An example of two deconvolution operations on two-dimensional input data
(blue squares). The higher dimensions of the outputs (brown squares) result from the
zero paddings (dashed squares).
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max pooling

Figure 2.7: An example of max pooling operation on two-dimensional input data with
a kernel size of 2 × 2 and stride of 2. Higher color intensities indicate the maximum
value of the corresponding square.

max unpooling

Figure 2.8: An example of a max unpooling operation with stored locations from fig. 2.7.

Due to the fact that the convolution operation is commutative, and with flipping
the kernel K relative to the input I, (2.50) can be rewritten as:

(K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.51)

In practice, the cross-correlation is used as implementation of the convolution
operation:

(I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (2.52)

Deconvolution Deconvolution [124] reverses the convolution operation, i.e., the
dimensions of the input and output of the associated convolution are swapped.
Thus, deconvolution leads to an increase in dimension, which is especially required
if the input and the output should have identical dimensions. In fig. 2.6, two de-
convolutions are shown with two inputs (blue squares) and the respective outputs
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a

b

c

d

0

0

convolution pooling activation

Figure 2.9: An exemplary structure of a convolutional layer consisting of the input (blue)
with zero padding (white), a convolution operation (brown), one pooling operation
(yellow) and an activation function (green). The colors for the convolution operation
indicate shared weights.

(brown), where the increases in dimension are achieved due to zero padding, i.e.,
the input is surrounded by zeros (left), as well as individual input entries are
separated by zeros (right).

Pooling A pooling operation partitions the 2D input into regular blocks, typ-
ically of size 2 × 2, where each block is replaced by a local statistical summary.
There are different types of pooling, e.g., average, min or max pooling, as well as
the L2-norm of a block. However, in practice, the max pooling operation [189] is
commonly used, see fig. 2.7. Max pooling operations always select the maximum
value of a regular block and are therefore approximately invariant to small trans-
lations of the input. Using max pooling, it is more important whether a feature
is active, rather than the exact location of this feature.

Unpooling The unpooling operation reverses the pooling operation, i.e., the
input dimension for the associated pooling operation has to be identical to the
output dimension of the unpooling operation. Figure 2.8 shows the max unpool-
ing operation for the corresponding max pooling operation from fig. 2.7. The
locations of the maximum entries of each regular block from the pooling opera-
tion are stored to ensure that the values for the max unpooling operation can be
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weight layer
ReLU ReLU

 identity

weight layer +

Figure 2.10: An exemplary architecture of a residual block with two weighted layers
and ReLU as activation function.

assigned to the correct locations. The remaining entries are padded with zeros
for max unpooling.
A simplified example of a convolution layer of a CNN with an input (with zero
padding), a convolution and a pooling operation as well as a layer-specific acti-
vation function is shown in fig. 2.9.

Residual Block Intuitively, a CNN performs superior with increasing depth, as
more and more complex functions can be approximated [48, 49]. However, this
assumption is only conditionally valid. In practice, the performance saturates
at a certain depth and then decreases rapidly, respectively the training error
increases with increasing depth of the CNN [62]. This degradation problem is
not caused by overfitting and implies that smaller neural networks are easier
to optimize compared to more complex ones. Therefore, residual learning has
been introduced [63] to prevent this problem. In common networks, the output
of each layer is passed directly to the next layer. In networks with residual
blocks (ResNet), the output of a layer is not only passed directly to the next
layer, but also to further subsequent layers realized by skip connections. These
skip connections apply identity mappings and merge the current output with the
outputs of previous layers, see fig. 2.10. Assuming that f(x,w) is the output of
the subnetwork enclosed by the skip connection, these stacked layers do not learn
a desired underlying mapping R(x) directly, but explicitly fit a residual mapping

f(x,w) = R(x)− x, (2.53)

where the original mapping is reformulated as f(x,w) + x. Residual mappings
are easier to optimize than the original mappings, since it is easier to push the
residual towards zero than to learn the identity with a set of nonlinear layers.
The possibility of skipping entire layers allows that simple tasks can be solved
efficiently with more complex networks. Since the introduction of skip connections
does not lead to any additional parameters or higher computational effort, the
weights of the network can be trained with SGD and backpropagation without
any further adjustments.
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Transformer Layer A transformer layer [163] learns an attention between the
t-dimensional input tokens h = [h1, . . . , hñ] ∈ Rt×ñ. To realize this, three weight
matrices are learned: the value weights WV , the query weights WQ and the key
weights WK with corresponding dimension dK . The attention A(WQ,WK ,WV ) is
defined as:

A(WQ,WK ,WV ) = WV · h · softmax

(
(WQ · h)T · (WK · h)√

dK

)
(2.54)

with WV ∈ Rd×t, where d is the output dimension of the previous layer, WQ ∈
RdK×t, WK ∈ RdK×t, and a column-wise softmax activation. The dimension dK
of WQ and WK can be interpreted as a hyperparameter of the transformer layer.
Except for the bias, WV ·h corresponds to a fully-connected layer and the softmax
normalizes the attention weights between the input tokens. The attention allows
the neural network to assign higher weights to the relevant tokens instead of
assigning the same importance to all tokens. For instance, with an image as input,
disjoint image areas are the input tokens for the transformer layer. In general,
attention will assign a higher weight to tokens that contain one (or more) objects
than tokens that contain only background.

Universal Approximation The universal approximation for FFNs was intro-
duced in Section 2.2, and some works present universal approximation properties
for CNNs. In [117], the authors show that every FFN is equivalent to a CNN
and thus also the approximation properties. Note, that all presented results are
based on CNNs without any pooling operation and with convolutions that are not
based on zero padding. In [188], it is shown that a CNN with a sufficient depth
can approximate any continuous function to any degree of accuracy on a closed
and bounded subset of Rn. Assuming that no pooling operations are present, any
continuous and translation-equivariant function can be approximated by CNNs
[177].

2.3 Object Detection

Object detection is the task of identifying individual objects on input data. These
objects belong to different predefined classes, e.g., different road users in traffic
scenes (cars, pedestrians, etc.) or everyday objects such as animals, cutlery or
similar. Object detection includes the recognition of the presence (objectness),
the localization and the classification of objects. Deep learning techniques and
in particular CNNs are able to perform object detection without the need to pre-
define specific features. An object detector has to be trained on the underlying
task with as much data as possible to perform well. To obtain a training dataset,
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Annotations Anchor Distribution Anchor Assignment

Figure 2.11: Generic training of an object detector. Left: image with annotated boxes
in red, center: image with annotations and anchor distribution in blue, right: image
with annotations and anchor assignment. The green boxes visualize positive anchors
and the blue boxes negative anchors.

images have to be annotated beforehand, either manually or automatically. Some
annotated public datasets exist for this purpose, consisting for instance of street
scenes (KITTI [46], Berkeley DeepDrive [182]) or everyday situations (Pascal
VOC [38], MS-COCO [97]). Nevertheless, object detection still finds applications
in many other fields.

For benchmarking, the task of an object detector is to locate and classify the
annotated objects correctly and, if possible, prevent false predictions, i.e., pre-
dicting objects without annotation nearby. Object detectors consist of a backbone,
a neck and a detection architecture. The backbone is responsible for image-wise
feature extraction and is adapted during training. The neck connects the back-
bone with the detector head by collecting feature maps from different stages of
the backbone. The detection architecture trains and infers based on the extracted
feature maps from the neck. The combination of backbone, neck and detector ar-
chitecture determines the object detector. Note, that the detection architecture
is often interpreted as an object detector, where the backbone can be freely re-
placed. Although the training and inference differs depending on the choice of
the detection architecture, the generic training and inference procedure follow the
same conceptual idea independent of the architecture.

Generic Object Detection Training

Any image x from the training dataset is equipped with a set Y containing G
ground truth bounding boxes (also called annotations or labels), i.e.,

Y = {bi, i = 1, ..., G} , (2.55)
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area of the intersection

area of the union

Figure 2.12: Intersection over union for two boxes.

where each ground truth box is a tuple

bi = (xi, yi, wi, hi, ci) (2.56)

containing the box center (xi, yi), the box extent (wi, hi) and a class index ci

from the set of classes {1, ..., C}. Figure 2.11 (left) shows an image with annotated
boxes, where the corresponding classes of the annotations are not visualized. Since
the task of object detection consists of three subtasks (objectness, localization,
classification), the overall loss L consists of three different loss terms:

L = Lcls + Lreg + Lobj, (2.57)

where Lcls is the classification loss, Lreg the regression loss and Lobj the objectness
loss. The object detector is trained as follows: given an image x, the neck extracts
image-dependent features of the backbone and the detector head distributes a
fixed number N0 of bounding boxes called anchors

Ba = {bia = (xia, y
i
a, w

i
a, h

i
a), i = 1, . . . , N0} (2.58)

all over the image. Figure 2.11 (center) shows an image with annotated boxes
in red and distributed anchors in blue. For the sake of clarity, the number of
distributed anchors is greatly reduced compared to the real application, where
the number of anchors is usually of order 105. The architecture is decisive in how
the anchors look and how they are distributed on the image. Then, the anchors
are assigned to the ground truth boxes w.r.t. the intersection over union.

Intersection over Union For the task of object detection, the intersection over
union (IoU , also called Jaccard index [74]) describes the degree of overlap of two
boxes. The IoU ∈ [0, 1] of two boxes b1, g1 is defined as the number of pixels that
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are located in both boxes divided by the number of pixels that are located in at
least one box:

IoU (b1, g1) =
|b1 ∩ g1|
|b1 ∪ g1|

(2.59)

The IoU is equal to zero if the two boxes do not intersect with each other and is
equal to one if the localization of the two boxes is identical. The definition of the
IoU is visualized in fig. 2.12.

The prediction and ground truth assignment in training is exemplary shown in
fig. 2.11 (right). The green boxes are positive anchors, i.e., anchors that have an
IoU with at least one ground truth box greater or equal than a threshold (mostly
between 0.5 and 0.7), and the blue boxes are negative anchors, i.e., anchors that
have IoU values smaller than the threshold with all ground truth boxes. In
practice, there are still anchors that are completely ignored during training, e.g.,
if the threshold for negative anchors is 0.3 and that for positive ones is at 0.7,
then all anchors that have their highest IoU with a ground truth box between
0.3 and 0.7 are completely suppressed. Therefore, we focus only on negative and
positive anchors in the following. After the assignment, all anchors are given a
score sia ∈ {0, 1} and class probabilities (pi1, . . . , p

i
C) to learn:

Ba = {bia = (xia, y
i
a, w

i
a, h

i
a, s

i
a, p

i
1, . . . , p

i
C), i = 1, . . . , N0} (2.60)

with {
sia = 1, if bia is a positive anchor,

sia = 0, if bia is a negative anchor,
(2.61)

and(pi1 . . . , p
i
C) = ~ec, if bia is a positive anchor and c is the class of the

assigned ground truth box b ∈ Y
,

(pi1 . . . , p
i
C) = ~0, if bia is a negative anchor.

(2.62)

Since the object detector is initialized with weights, e.g., randomly or pre-trained
on another dataset, it is able to infer even before the first training iteration. The
predictions are denoted as:

B = {b̂i = (x̂i, ŷi, ŵi, ĥi, ŝi, p̂i1, . . . , p̂
i
C), i = 1, . . . , N0}, (2.63)

where (x̂i, ŷi, ŵi, ĥi) represent the predicted localization, ŝi the predicted object-
ness and (p̂i1, . . . , p̂

i
C) the predicted class probabilities.
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Here, the objectness of the prediction b̂iobj = {ŝi, i = 1, . . . , N0} is in [0, 1] and is
pushed to one during training if the corresponding anchor bia is positive (sia = 1)
and to zero otherwise (sia = 0). The binary cross-entropy (BCE) is an exemplary
objectness loss Lobj which is defined as:

Lobj =

N0∑
i=1

sia · log(ŝi) + (1− sia) · log(ŝi). (2.64)

Further objectness loss functions are for instance the mean squared error (MSE)
or the focal loss. The latter is a BCE with dynamic weighting, where especially
the errors of the current training iteration are strongly weighted.

The localization of the prediction b̂ireg = {(x̂i, ŷi, ŵi, ĥi), i = 1, . . . , N0} is inferred
as a normalized scaling of the corresponding i-th anchor bia ∈ Ba:

t̂ix =
x̂i − xia
wia

, t̂iy =
ŷi − yia
hia

, t̂iw = log

(
ŵi

wia

)
, t̂ih = log

(
ĥi

hia

)
. (2.65)

If the anchor is positive, exchanging the prediction b̂i with the assigned ground
truth box b ∈ Y in (2.65) yields the true offsets tix, t

i
y, t

i
w and tih. Otherwise,

we define tix = tiy = tiw = tih = 0. The smooth-L1 loss ([48]) is an example for a
regression loss Lreg and is defined for one coordinate tk ∈ {tx, ty, tw, th} as:

Lreg,tk =

N0∑
i=1

sia ·
{

0.5(t̂ik − tik)2, if |t̂ik − tik| < 1,

|t̂ik − tik| − 0.5, else,
(2.66)

where sia provides a masking such that localization is learned only from the pos-
itive anchors. The overall regression loss Lreg is the sum of the regression losses
for one coordinate from (2.66):

Lreg = Lreg,tx + Lreg,ty + Lreg,tw + Lreg,th . (2.67)

Further regression losses are for instance the MSE or the L1 loss.

The classification of the prediction b̂icls = {(p̂i1, . . . , p̂iC), i = 1, . . . , N0} consists of
predicted class probabilities with

C∑
c=1

p̂ic = 1 ∀i = 1, . . . , N0. (2.68)

The cross-entropy (CE, see (2.27)) is a commonly used classification loss Lcls and
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Anchor Distribution Inference Score Thresholding NMS

Figure 2.13: Generic inference of an object detector. Left: image with annotations in red
and anchor distribution in blue, center left: image with annotations and predictions with
score, center right: image with annotations and predictions after score thresholding with
sε = 0.5, right: image with annotations and predictions after non-maximum suppression
(NMS).

is adapted to:

Lcls = −
N0∑
i=1

si ·
C∑
c=1

pic · log(p̂ic). (2.69)

Analogous to the localization, classification is learned from positive anchors only.

Generic Object Detection Inference

After training, the underlying object detector is able to infer a test dataset where
no ground truth has to be available. In most academic datasets, annotations exist
for the test images, or at least for a validation set, to ensure an automated evalu-
ation of developed methods. For generating image-wise predictions, the inference
follows a conceptually similar idea to the training. Anchors are distributed over
the entire image (2.58) and the object detector generates predictions as in (2.63).
Figure 2.13 (left) shows an image with annotations in red and distributed anchors
in blue. The predictions are inferred as offsets from the anchor boxes (which is
not visualized due to clarity) and every prediction has an assigned objectness
score, see fig. 2.13 (center left). There are many predicted boxes that do not
significantly overlap any ground truth box and therefore represent background.
These predictions should have a low objectness score, since background boxes are
always marked as negative anchors during training. In order to suppress these
background predictions, a score threshold sε ∈ [0, 1] is chosen, such that mostly
foreground boxes remain as predictions:

Bs = {b̂i ∈ B : ŝi ≥ sε}, (2.70)
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Algorithm 2: Non-maximum Suppression (NMS)

Input : predictions b̂ ∈ Bs after score thresholding with ŝ as
corresponding score vector, IoU threshold τIoU

1 set BNMS = ∅
2 while Bs 6= ∅ do
3 m = argmax ŝ

4 M = b̂(m)

5 BNMS = BNMS ∪ {b̂(m)}
6 for b̂i ∈ Bs do
7 if IoU (M, b̂i) ≥ τIoU then

8 Bs = Bs \ {b̂i}
9 end

10 end

11 end

Output: predictions b̂ ∈ BNMS after NMS

see fig. 2.13 (center right). If the score threshold sε is too large (here 0.8), predic-
tions representing an object are suppressed. If the score threshold sε is too small
(here 0.3), predictions representing background are not suppressed. The choice
of this hyperparameter plays a crucial role and should be chosen depending on
the underlying task. If false predictions are not critical and all objects should
be found, a small score threshold is recommended. If false predictions should
be prevented and overlooked objects are comparatively acceptable, a larger score
threshold should be selected. After score thresholding, there are still several sim-
ilarly located boxes representing the same object, all of which have a high score.
However, since only a single prediction is supposed to represent exactly one ob-
ject, score thresholding is typically followed by the non-maximum suppression
(NMS), see fig. 2.13. Let BNMS = ∅. Iteratively, the NMS selects the prediction
b̂i ∈ Bs on the image with the highest score (BNMS = BNMS ∪{b̂i}) and removes it
from Bs. Then, all remaining predictions that have a significantly high IoU with
the selected prediction (typically between 0.5 and 0.7) are removed from Bs. This
is repeated until Bs = ∅ and only the set of predictions after score thresholding
and NMS BNMS remains. Note, that the calculated IoU s are class-dependent, i.e.,
the IoU of two predictions with different assigned classes is always zero. For a
detailed algorithm of the NMS, see alg. 2 and for a visualization, see fig. 2.13
(right).

Architectures

Object detectors generally fall into two categories: one-stage and two-stage object
detectors, where the detection architecture consists of one or two stages, see
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Figure 2.14: Object detector architecture with an input image, backbone, feature pyra-
mid network as neck and an object detector head. One-stage object detectors end after
the first stage and two-stage object detectors after the second stage.

fig. 2.14. In general, the backbone extracts image-wise features and the neck
connects the backbone with the detection architecture. In the following, we will
discuss the YoloV3 [39] architecture representative of one-stage object detectors
and the Faster R-CNN [123] representative of two-stage detectors, both with a
feature pyramid network [95] as a neck. YoloV3 uses the Darknet-53 [121] as a
backbone and the Faster R-CNN uses ResNets [63] with various depths. Further
backbones are for instance ResNeSt [187], as well as Swin transformer [100], and
further architectures are RetinaNet [96] (one-stage) and Cascade R-CNN [14]
(two-stage).

Each architecture has different approaches to learning and generating predictions.
In the following, we introduce the training and inference of YoloV3 and Faster
R-CNN in detail to better understand the different approaches. The resulting
hyperparameters will affect the performance of the object detector, e.g., which
labeled bounding boxes are difficult or impossible to detect due to their size or
aspect ratio.

YoloV3 architecture In order to generate predictions, whether in training or
inference, a number of anchors are distributed to all feature maps of the neck
from fig. 2.14. The larger a feature map is, that still smaller objects should be
detected on it and vice versa. The respective feature map is divided into grid
cells and predefined anchors are placed in these cells. For instance, three anchors
with aspect ratios 2 : 1, 1 : 1 and 1 : 2 are placed in each cell to detect objects
of any shape. See fig. 2.15 for a visualization of the grid cells and the cell-
wise distributed anchors. Note, that a smaller feature map is divided into fewer
cells compared to feature maps of higher resolution. The sizes and ratios of the
anchors can also be determined in a pre-processing step with a cluster algorithm,
e.g., k-means [58], using the localizations of the annotations used for training.
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Neck YoloV3 Grids Anchor Distribution

Figure 2.15: Cell splitting of feature maps and anchor distribution for the YoloV3 ar-
chitecture.

After inferring the anchors, and independently of the underlying feature maps,
all resulting predictions form the set B, which are either assigned to the ground
truth boxes in the training process or form the basis for score thresholding and the
NMS for the inference. The architecture is called Yolo, or “you only look once”,
since the predictions consist of the localization, an objectness score and class
probabilities. Thus, all three tasks are trained or predicted simultaneously. Let
Ba be the set of anchors analogous to (2.58) and strictly following [39], only one
anchor is assigned to a ground truth box, i.e., only the predictions that have the
highest IoU with a ground truth box are positive. All other anchors that have an
IoU above the IoU threshold will be ignored during training. However, in current
implementations, learning still occurs from all positively assigned anchors. The
localization loss Lreg is a sum of squared errors:

Lreg =

N0∑
i=1

sia[(t
i
x − t̂ix)2 + (tiy − t̂iy)2+

(tiw − t̂iw)2 + (tih − t̂ih)2].
(2.71)

For classification, YoloV3 applies a sigmoid activation, as the set of classes can
contain overlapping classes, e.g., dog and animal. The resulting classification loss
Lcls is the sum of the binary cross-entropy loss (see (2.64)) for every class:

Lcls =

N0∑
i=1

C∑
c=1

pic · log(p̂ic) + (1− pic) · log(p̂ic), (2.72)
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Figure 2.16: The second stage of the Faster R-CNN. Left: the proposals from the first
stage and the corresponding feature map from the neck are the input for the second
stage. Center: the localization-dependent feature extraction is based on the localization
of the proposals. Right: the features of the overlapping cells are unpooled to a fixed
resolution (here 7× 7).

as well as for the objectness loss Lobj:

Lobj =

N0∑
i=1

sia · ŝi + (1− sia) · ŝi. (2.73)

Faster R-CNN architecture Faster R-CNN consists of two stages, the region
proposal network (first stage) and the region of interest (second stage). The
first stage is similar to the concept of YoloV3, except that only localization and
objectness are learned. Moreover, not only anchors with different aspect ratios
are distributed over the cells, but also anchors of different sizes, e.g., three aspect
ratios and three scales result in nine anchors per cell. The first stage regression
loss Lreg,1 is the smooth-L1 loss from (2.66) and the objectness loss Lobj is the
binary cross-entropy from (2.64). In the second stage, Faster R-CNN learns a
bounding box refinement and a classification based on the proposals from the
first stage after score thresholding and NMS (b̂i ∈ BNMS, see (2.70) and alg. 2).
For every single proposal from the first stage b̂i ∈ BNMS, a region of interest (RoI)
pooling layer extracts a fixed-sized crop from the feature map, see fig. 2.16. After
squeezing the cropped feature map to a vector, a fully-connected network ends in
two sibling output layers. These are responsible for the bounding box refinement
and the classification. Proposals from the first stage can have a high objectness
score and will be guided to the second stage, although they have no assigned
ground truth box. For bounding box refinement, the second stage regression loss
Lreg,2 is the smooth-L1 loss from the offset of the proposal from the first stage and
the assigned ground truth box. If the proposal from the first stage has no assigned
ground truth box, the second stage regression loss Lreg,2 is equal to zero. Since
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Image 1 Image 2

Figure 2.17: The dataset for prediction and ground truth assignment consists of two
images and in total of three ground truth boxes (red) and five predictions (blue) with
associated scores in brackets.

the highest class probability is the final score of the prediction, “background” is
added as class C + 1 to the set of classes in order to push the negative anchors
towards a high background probability. Let b̂i ∈ BNMS, i = 1, . . . , N1, be the
region proposals from the first stage. Then, the classification loss Lcls is defined
as the cross-entropy loss with C + 1 classes:

Lcls = −
N1∑
i=1

C+1∑
c=1

pic · log(p̂ic), (2.74)

where piC+1 is equal to one if the anchor is negative and equal to zero otherwise.

Evaluation Metrics

The most commonly used evaluation metric for the performance of an object
detector on a dataset is the mean average precision. Before the mean average
precision is defined, further metrics are introduced.

Prediction and Ground Truth Assignment The assignment of prediction and
ground truth is necessary to quantify performance. More precisely, with the as-
signment of prediction to ground truth, predictions are classified into correct (true
positive) and incorrect (false positive), as well as a distinction is made between
detected and non-detected (false negative) ground truth boxes. A schematic illus-
tration of the assignment of predictions and ground truth is shown in fig. 2.17. The
red boxes (g1, g2, g3) are ground truth objects and the blue boxes (b1, . . . , b5) are
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Image Id Prediction Score max IoU Assigned GT TP/FP Precision Recall

2 b3 0.93 0.7 g3 TP 1.00 0.33
1 b2 0.92 0.0 − FP 0.50 0.33
2 b4 0.87 0.5/0.0 g3/− FP 0.33 0.33
1 b1 0.82 0.65 g1 TP 0.50 0.67
2 b5 0.61 0.0 − FP 0.40 0.67

Table 2.1: The predictions are sorted in image-independent descending order by the
score, assigned to the ground truth boxes and classified as true positive (TP) or false
positive (FP). The precision and recall are accumulated from top to bottom.

the predictions with corresponding scores in brackets. In order to assign predic-
tion to ground truth, the predictions are sorted in image-independent descending
order by the score, see table 2.1 (columns Image ID - Score). Then, in descending
order, the IoU between the current prediction and all ground truth boxes of the
associated image is determined. If the maximum IoU between prediction and
ground truth is greater than or equal to a threshold δ (in the following δ = 0.5),
then the prediction is assigned to the associated ground truth box and the latter
is suppressed for subsequent IoU calculations. If the prediction is assigned to
a ground truth box, it is classified as a true positive (TP), otherwise as a false
positive (FP). In table 2.1 (columns Image ID - TP/FP), b3 and b1 are TPs, and
b2, b4, as well as b5 are FPs. If b3 would not exist or had a smaller score than b4,
then b4 would have been a TP since b4 has an IoU = 0.5 with g3.

Precision and Recall Precision and recall are two performance metrics which
are applied, e.g., in object detection. The precision is also called positive predictive
value and indicates the ratio between TPs and all predictions. The recall is also
called sensitivity and specifies the ratio between assigned ground truth boxes
and all ground truth boxes. In the following, we assume a set of predictions
B = {b̂i, i = 1, . . . , N} sorted in descending order by score and a set of ground
truth boxes Y = {bi, i = 1, . . . , G}. In order to determine precision and recall,
the following three quantities are required:

• True positives (TPs): set of predictions, each of which is assigned to a
different ground truth box, i.e.

TPs = {b̂i ∈ B |
∃ non-assigned bj ∈ Y with IoU (b̂i, bj) ≥ δ,

@ non-assigned bk ∈ Y with IoU (b̂k, bj) ≥ IoU (b̂i, bj),

i = 1, . . . , N},

(2.75)

where non-assigned refers those ground truth boxes that were not assigned
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to a prediction with a higher score, i.e., to b1, . . . , bi−1.

• False positives (FPs): set of predictions that are not assigned to a ground
truth box, i.e.

FPs = {b̂i ∈ B | @ non-assigned bj ∈ Y with IoU (b̂i, bj) ≥ δ,

i = 1, . . . , N}.
(2.76)

• False negatives (FNs): set of ground truth boxes that were not assigned to
any prediction, i.e.

FNs = {bj ∈ Y | @ non-assigned b̂i with IoU (b̂i, bj) ≥ δ,

j = 1, . . . , G}.
(2.77)

FNs are overlooked objects, such as g2 in fig. 2.17. The precision is defined as:

Precisionsε =
|TPs|

|TPs|+ |FPs| (2.78)

and the recall is defined as:

Recallsε =
|TPs|

|TPs|+ |FNs| . (2.79)

Note, that precision and recall are both dependent of the score threshold sε, and
are accumulated for all predictions with a score greater than or equal sε, see
table 2.1.

Mean Average Precision The precision recall curve is shown in fig. 2.18. The
x-markers represent the threshold-dependent precision and recall values from ta-
ble 2.1 and the blue graph visualizes the connection between them. The average
precision (AP) is defined as a modified area under the precision recall curve.
More precisely, with prec(rec) as the maximal precision for recall rec, reci as the
recall from the prediction with the i-th highest score (rec0 := 0, recn+1 := 1) and
a number of n underlying predictions, the AP is defined as:

AP =
n∑
i=0

(reci+1 − reci) max
rec≥reci+1

prec(rec), (2.80)

where max
rec≥recn+1

prec(rec) := 0. In fig. 2.18, the gray area visualizes the area under

the modified precision recall curve with AP = (0.33 − 0) · 1 + (0.67 − 0.33) ·
0.5 = 0.5. The AP is calculated for each class individually, considering only the
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Figure 2.18: The precision recall curve (blue) for table 2.1 with corresponding interpo-
lation and area under curve (gray).

class-associated predictions and ground truth boxes, i.e., AP i is the AP for class
i, i = 1, . . . , C. The mean average precision (mAP) is defined as the class-wise
mean of the APs:

mAP =
1

C

C∑
i=1

AP i. (2.81)

The higher the mAP ∈ [0, 1], the better the object detector performs on the given
dataset. Sometimes the mAP is written as mAP0.5 in order to show the underlying
IoU threshold. There exist different modifications of the mAP , i.e., the 11-point
evaluation [38] where the sum from (2.80) is evaluated only at eleven predefined
points [0, 0.1, . . . , 1] or the mAP0.5:0.05:0.95 [97] where the mAP is averaged over ten
different IoU thresholds [0.5, 0.55, . . . , 0.95]. In the following, the mAP definition
from (2.81) is used in the following chapters.

2.4 Uncertainty Quantification

CNNs are usually applied for the task of object detection due to their strong per-
formance. However, these statistical models are error-prone, and it is important
to detect and understand the errors produced. Therefore, uncertainty quantifica-
tion of object detectors is of highest interest, especially in safety-relevant tasks,
such as perception in autonomous driving or medical diagnosis. In general, two
different types of uncertainty are distinguished: aleatoric and epistemic uncer-
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Adding Feature

Figure 2.19: Aleatoric uncertainty for a binary classification. Top: two classes (blue
and red) are overlapping which causes aleatoric uncertainty. Bottom: by adding a
new feature dimension, the two classes become separable and the aleatoric uncertainty
vanishes.

tainty, even if these are usually not clearly separable in applications. In practice,
object detectors are often not well-calibrated and therefore not reliable. More
precisely, object detectors are often over-confident, i.e., weak or even false predic-
tions still receive high scores. Therefore, uncertainty quantification is of highest
interest for the task of object detection. This subsection is mainly based on [72].

Aleatoric Uncertainty Aleatoric, or also called statistical, uncertainty can be de-
scribed as the irreducible part of the uncertainty. If the data generating process is
fixed, aleatoric uncertainty cannot be reduced through additional training data.
For instance, predicting a dice result with a six-sided dice will not be more certain
by adding more information about previous dice rolls. Due to the given statistical
component of the task, there is an irreducible, i.e., aleatoric uncertainty. Other-
wise, if the data generating process is not fixed, then aleatoric uncertainty can be
reduced, see fig. 2.19. By adding a second feature dimension, the aleatoric uncer-
tainty vanishes. However, adding feature dimensions is not feasible in most cases,
and even if it were, all previously annotated data would have to be extended with
the new feature, which is usually associated with a very large effort. In object de-
tection, aleatoric uncertainty can be quantified by the prediction-wise objectness
score, as well as dispersion measures applied to the predicted class probabilities,
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2.4 Uncertainty Quantification

? ?

Figure 2.20: Epistemic uncertainty for a binary classification with perfect separating
class boundaries in gray. Left: the model can learn very different class boundaries. As
the underlying data distribution is unknown, every gray class boundary is equally good.
Right: the variety of perfect separating class boundaries is reduced due to additional
training data.

e.g., the classification entropy or probability margin [72].

Epistemic Uncertainty Epistemic, or also called systematic, uncertainty repre-
sents the reducible part of the uncertainty. Epistemic uncertainty can be reduced
by adding more data to the underlying training set, see fig. 2.20. With less train-
ing data (left), the model can learn various class separations while the training
error remains zero. On the other hand (right), the class boundary sharpens and
the epistemic uncertainty decreases.

In the following, we will introduce the uncertainty quantification methods that
are important for the present thesis. All these methods were developed for the
task of image classification and then adapted to object detection.

Entropy The classification entropy [148] has its origin in information theory
and indicates the mean information of a distribution. For the task of image
classification, the entropy indicates the uncertainty of a prediction p̂i = p̂i1, . . . , p̂

i
C

and is defined as:

H(p̂i) = −
C∑
c=1

p̂ic · log(p̂ic). (2.82)

The entropy is maximal if p̂ic = 1
C
∀c = 1, . . . , C and minimal if p̂i = ~ec, c ∈

{1, . . . , C}, see fig. 2.21 (left). In this three-class classification problem, the en-
tropy is maximal for p̂i1 = p̂i2 = p̂i3 = 1

3
and minimal in each of the three corners.

The entropy is always greater or equal to zero, but the maximum entropy in-
creases with the number of classes. Dividing by the maximum entropy (log( 1

C
))
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Figure 2.21: Entropy (left) and probability margin (right) of a class probability for
three classes, with pi3 = 1− (pi1 + pi2). Dark blue represents high uncertainty and white
represents low or no uncertainty.

results in a normalized version of the entropy (∈ [0, 1]). Oftentimes, entropy does
not represent image-wise uncertainty, but box-wise uncertainty in object detec-
tion. Each prediction also contains class probabilities, such that the entropy of
each prediction can be computed without adjustment. In general, if the training
dataset contains sufficient data, the entropy quantifies aleatoric uncertainty [72].

Probability Margin Analogous to entropy, the probability margin is a measure
of image-wise predictive uncertainty in image classification. For a prediction
p̂i = p̂i1, . . . , p̂

i
C , the probability margin is defined as:

PM(p̂i) = 1− (p̂icmax
− max

c6=cmax

p̂ic), (2.83)

with cmax = argmax
c=1,...,C

p̂ic. By definition, PM(p̂i) ∈ [0, 1]. The probability margin

is minimal if p̂i = ~ec, c ∈ {1, . . . , C} and maximal if p̂icmax
= max

c 6=cmax

p̂ic. The maxi-

mum is not unique, since only the highest and second highest class probabilities
have to be identical, see fig. 2.21 (right). The adaptation for object detection is
straightforward and is done analogously to entropy as a box-wise uncertainty.

Ensembles Another method for uncertainty quantification is the ensemble ap-
proach [88]. Here, several outputs are generated for one input by different models.
The joint prediction is derived from averaging the outputs of several class proba-
bilities and the standard deviations yield uncertainty predictions. Let p̂i,j be the
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2.4 Uncertainty Quantification

predicted class probabilities of the j-th output (j = 1, . . . , J). Then, the joint

prediction p̂
i

and the corresponding class-wise uncertainty σ
p̂
i
c
, c = 1, . . . , C are

given by:

p̂
i

=
1

J

J∑
j=1

p̂i,j and σ
p̂
i
c

=

√√√√√ J∑
j=1

|p̂ic − p̂i,jc |

J
. (2.84)

After a model is trained and the weights are fixed, the model is deterministic,
i.e., the model generates the identical output for the same input. Therefore, the
uncertainties from (2.84) are always zero. However, training a model is not de-
terministic, due to, e.g., the random initialization of SGD, the randomly chosen
mini batch, etc. Thus, if J models are trained independently based on a given
dataset, the same input will receive J different predictions during inference. The
higher the standard deviations, the less the different initialized models agree for
the input, resulting in an uncertain prediction. Unlike entropy and the probabil-
ity margin, which determine only classification uncertainties in object detection,
the ensemble approach also considers localization uncertainties. The ensemble
uncertainty DE of the entire prediction can be aggregated over the individual
uncertainties, e.g., the maximum:

DE = max
ς∈{x̂i,ŷi,ŵi,ĥ

i
,ŝ
i
,p̂
i
1,...,p̂

i
C}
σ(ς). (2.85)

Note, that this uncertainty is stemming from the weights and therefore epistemic.

Monte-Carlo Dropout Ensemble approaches are computationally very inten-
sive, since for J different outputs, J different models have to be trained. Thus,
ensembles are often replaced by Monte-Carlo dropout [44] to save computational
effort. Instead of training several models, only one model is trained, where in at
least one layer Monte-Carlo dropout is applied. Therefore, a predefined percent-
age of neurons are randomly turned off, and applying Monte-Carlo dropout during
inference leads to J different predictions. Thus, the uncertainties from (2.84) are
non-zero, and the prediction-wise Monte-Carlo uncertainty DMC can be deter-
mined analogously to (2.85). Furthermore, Monte-Carlo dropout uncertainty is
an approximation of the model uncertainty of Bayesian networks and therefore
quantifies epistemic uncertainty, which is also theoretically underpinned [44].
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CHAPTER 3

APPLICATIONS OF UNCERTAINTY

QUANTIFICATION METHODS IN OBJECT

DETECTION

Uncertainty quantification (UQ) plays an important role for the task of object
detection. Due to the implementation of most object detectors, class probabilities
and objectness scores cannot become exactly zero, since the respective loss func-
tion is not defined at this point, see (2.64), and (2.69). In practice, a very small
value (∼ 10−16) is added to each class probability and the objectness score, thus
for each prediction the uncertainty can never be exactly zero. For the detection of
false predictions and erroneous data, which is used for training and evaluating, we
introduce uncertainty-based methods that quantify uncertainty, as well as apply
uncertainty methods for the tasks of active learning and label error detection.

In the following, we summarize the basic idea of every subsequent chapter and
reference the passages from Chapter 2 for a better understanding of the prereq-
uisites and methodology. Furthermore, we show the most important results and
provide an overview of the following chapters and explain their interplay.

3.1 MetaDetect

MetaDetect (Chapter 4) yields prediction-wise uncertainty estimations. There-
fore, we utilize models based on box-wise uncertainty metrics with the aim to
predict either TP vs. FP (IoU ≥ 0.5 vs. IoU < 0.5) for meta classification
or to predict the IoU directly for meta regression. These so-called meta models
are for instance logistic/linear regression, random forest, gradient boosting and
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3 Applications of Uncertainty Quantification Methods in Object Detection

Figure 3.1: Box-wise scatter plot of true IoU and predicted IoU values for the KITTI
dataset, the YoloV3 network and a score threshold t = 0.01. The predicted IoU values
are generated with gradient boosting.

shallow neural networks. Here, the box-wise uncertainty metrics are based only
on the prediction itself (BNMS; alg.2) and the associated candidate boxes that are
suppressed during NMS (Bs; (2.70)). These uncertainty metrics are for instance:

• the prediction itself, i.e., the localization, the score and the predicted class
probabilities,

• dimensions of the prediction, e.g., the circumference and the area,

• the number of suppressed candidate boxes during NMS,

• as well as minimum, maximum, mean and standard deviation of the local-
ization, scores and class probabilities of all candidate boxes.

Once the meta model has been trained on a labeled validation set, a predicted
IoU (2.59), i.e., a predicted quality is obtained for each prediction, especially
for unlabeled images. In our experiments, we show that MetaDetect provides
more reliable uncertainty and quality estimates compared to the box-wise entropy
(2.82) and the prediction-wise objectness score of the object detector. The latter
is obvious, since the score itself is one of the metrics of MetaDetect. In general,
the more information, i.e., metrics, available to the meta model, the better it
should perform (apart from overfitting). Figure 3.1 shows a scatter plot of the
true IoU and the predicted IoU obtained by a meta regression model, where a
single point represents a prediction. The meta model would be perfect if each
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Figure 3.2: Left: Utilized time for one AL step (training until convergence + evaluating
the query) for investigated settings in hours. Ranking correlations between area under
mAP curve (AUC ) values for the YOLOv3 detector (image-wise center and box-wise
right).

point was placed on the line between the origin and (1,1), which would mean that
the IoU for each prediction could be predicted perfectly. Although this is not the
case, the points still seem to be concentrated along this line.

3.2 Active Learning Sandbox

In general, the research in active learning (AL) focuses on the development of new
query strategies. In general, query strategies determine which previously unla-
beled images should be labeled to extend the current training dataset. There are
no restrictions on how the query is determined, e.g., based on random selection
or based on UQ methods. When developing a new query strategy, an AL setup
has to be chosen including object detectors, datasets, training parameters, the
amount of initially labeled and queried images and the number of AL steps T .
Since we have experienced ourselves that the development on common setups is
very time-consuming, we rather focus on creating a universal setup for fast devel-
opment and fair comparability of AL methods (Chapter 5), than on developing
a new query strategy based on MetaDetect. With simpler tasks to be learned,
which are realized by self-generated datasets, and object detectors with compar-
atively few learnable parameters, we achieve a reduction for the duration of an
AL experiment of up to 32, see fig. 3.2 (left). Furthermore, the results generalize
well when comparing different baseline methods (such as the random query, as
well as uncertainty-based queries, such as the sum of box-wise entropy (2.82),
probability margin (2.83), or Monte-Carlo dropout (2.85)) for different datasets,
see fig. 3.2 (right). The correlation of the ranking of methods during the AL cycle
is very similar across datasets, thus adding strong value to the development of
new methods with our sandbox.
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Figure 3.3: Visualization of our instance-wise loss method for detecting label errors.
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Figure 3.4: Visualization of detected label errors in real test datasets. The top row of
images depicts the label error proposals and the bottom row the corresponding labels
from the dataset. The image pairs belong from left to right in steps of two to BDD,
KITTI, COCO and VOC.

3.3 Identifying Label Errors

During the development of MetaDetect and the AL sandbox, we often spotted im-
ages with erroneous labels. In fig. 3.1, several predictions exist with true IoU = 0,
but with high predicted IoU . Upon closer inspection of these predictions, their
evaluation was based on missing or misclassified labels. The idea of identifying
label errors efficiently as an application of MetaDetect works only for missing la-
bels and labels with an incorrect class assignment, where only false positives are
reviewed in descending order by the predicted quality estimation. Since MetaDe-
tect is prediction-based, all predictions covering a randomly spawned label are
suppressed during score thresholding due to their small prediction quality score.
Furthermore, MetaDetect can identify inaccurate located labels only randomly,
since prediction quality estimates are determined independently of the labels. In
general, clean labels of the test dataset are necessary to ensure fair method eval-
uation on test data, whether pure UQ, uncertainty-based query development in
AL, as well as for the task of label error detection.
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Figure 3.5: Left: Our active learning cycle consists of training on labeled data L, query-
ing and labeling informative data points Q out of a pool of unlabeled data U by an
oracle and a review of acquired data R = L ∪ Q. Right: EMNIST-Det AL curves for
Faster R-CNN, where flips and misses are simultaneously present in the training data.

For our label error benchmark, four different types of label errors are simulated:

• drops: missing labels,

• flips: correct localization but wrong classification,

• shifts: correct classification but inaccurate localization and

• spawns: labels that actually represent background.

In order to identify all four types of label errors efficiently, we developed an
instance-wise loss method (see Chapter 6; fig. 3.3; (2.57)) and compared its per-
formance to a random baseline, the box-wise objectness score, the box-wise clas-
sification entropy (2.82), as well as to a method from related work inspired by
the box-wise probability margin, see [70] and (2.83). For the instance-wise loss,
the drops are identified by a high first stage classification loss, the flips by a high
second stage regression loss, the shifts by a high first and second stage regres-
sion loss and the spawns by a high first and second stage classification loss. Our
method outperforms all baselines in the benchmark setting and is also capable of
identifying real label errors on commonly used test datasets in object detection,
see fig. 3.4.

3.4 Active Learning with Noisy Oracle

In the previous AL experiments (Section 3.2) we did not consider label errors,
although we have identified a huge amount of real label errors on commonly used
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3 Applications of Uncertainty Quantification Methods in Object Detection

Figure 3.6: Box-wise scatter plot of true IoUBEV and predicted IoUBEV values for LMD
on CenterPoint, nuScenes and score threshold 0.1. The predictions are based on a GB
regressor.

test datasets in Section 3.3. In general, related work assume a perfect oracle, i.e.,
the (human) labeler does not make any errors during label acquisition, which does
not hold in practice. In order to give the AL setup from Section 3.2 a more practi-
cal orientation, we will incorporate label errors into the AL cycle in the following
(Chapter 7), see fig. 3.5 (left), which are efficiently identified by the instance-wise
loss from Section 3.3. We evaluate all experiments in terms of annotation budget,
which is split into the amount of queried bounding box labels and the amount
of reviewed labels. We show that the strong performing highest loss (HL) review
improves the test performance in terms of mAP (2.81) significantly compared to
the same query method without or with the poor performing random (R) review,
see fig. 3.5 (right). In general, the uncertainty-based query methods select the
most uncertain images and the highest loss review proposes labels where we are
most certain to have made an error.

3.5 LidarMetaDetect

LidarMetaDetect (LMD; Chapter 8) transfers the idea of MetaDetect (Section 3.1)
to 3D bounding boxes with Lidar point cloud data. Lidar is a form of 3D
laser scanning and generates sparsely distributed points in 3D space. Due to
the sparsely occupied annotations, the object detection task is significantly more
difficult compared to 2D and therefore UQ is of particular interest. Analogous to
MetaDetect, the uncertainty metrics used for LMD are for instance:

52



3.5 LidarMetaDetect

Figure 3.7: Proposed annotation errors in nuScenes (top two) and KITTI (bottom
two). Top images show point clouds with annotations in purple and the proposal in
red. Camera images aid the evaluation.

• the prediction itself, i.e., the geometry, the score and the predicted class
probabilities,

• dimensions of the prediction, e.g., the surface area and the volume,

• the number of Lidar points within the prediction,

• minimum, maximum, mean and standard deviation over all assigned re-
flectance values,

• the number of suppressed candidate boxes during NMS,

• as well as minimum, maximum, mean and standard deviation of the local-
ization, scores, class probabilities and reflectance statistics of all candidate
boxes.
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Figure 3.6 shows a scatter plot of the true IoUBEV (which is an IoU for 3D bound-
ing boxes) and the predicted IoUBEV obtained by a meta regression model. The
points concentrate along the line from (0,0) to (1,1) and therefore provide reliable
uncertainty estimations in terms of IoUBEV. As an application of LMD, we show
results in terms of confidence calibration and label error detection. The latter
focuses in particular on missing and misclassified labels, which can be identified
more effectively with LMD compared to the objectness score of the object de-
tector or a random baseline. Figure 3.7 shows examples of detected label errors
in the KITTI [46] test dataset, a state-of-the-art dataset for 3D bounding boxes
with Lidar point clouds. Note, that all identified label errors are real label errors
and no simulated ones.
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CHAPTER 4

METADETECT: UNCERTAINTY QUANTIFICATION

AND PREDICTION QUALITY ESTIMATES FOR

OBJECT DETECTION

The presented contents in the following chapter are taken almost word-by-word
from [141].

4.1 Introduction

In recent years, deep neural networks have surpassed other approaches in many
tasks with unstructured data. However, their in-transparent nature poses many
questions and problems. In particular in safety-critical applications, the reliability
of deep neural network predictions is of highest interest as neural networks tend
to provide high confidences even when they fail [52]. In order to detect these
and therefore make neural networks more interpretable, meaningful uncertainties
are required [103]. A broad survey on uncertainty in machine learning can be
found in [72]. A very important and also reducible type of uncertainty is the
model uncertainty resulting from the fact that the ideal parameters are unknown
and have to be estimated from data [3, 36, 44, 103]. Bayesian models consider
these uncertainties [103]. However, as Bayesian models for deep learning are
nowadays infeasible, many frameworks based on variational approximations have
been proposed [3, 36, 44]. For instance, Monte-Carlo (MC) dropout [44] is used
as a feasible approximation to Bayesian inference.

In classification tasks, a natural approach to detect incorrect predictions / false
positives is to introduce a dispersion measure on the softmax probabilities, such
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Object Detection

as the entropy or one minus the highest softmax probability and then threshold
on this [66, 94]. As in the works [17, 102, 130, 131, 133], that extend [66] to
semantic segmentation, we refer to this task as meta classification. A good meta
classification performance requires well-adjusted predictive uncertainty measures.
Variational approximations of Bayesian learning are one approach to this. How-
ever, also feasible ones like [44] still require numerous inferences of one and the
same input in order to estimate predictive uncertainty. In object detection, the
network’s objectness score is subject to thresholding which in a natural sense
can be considered built in meta classification as part of state-of-the-art object
detection pipelines [39, 123].

Confidence calibration has been proposed to account for the miscalibration of the
objectness score [53, 118]. However, most approaches (e.g. histogram-based ones
[86]) calibrate the score in a statistical sense. This is not sufficient to account
for the correctness or quality of a single predicted bounding box. Therefore,
uncertainty estimates for object detection networks seem more promising.

In [107] a baseline for meta classification in object detection is presented. The
localization variables are determined using the candidate boxes that are present
after the score thresholding and before the non-maximum suppression (NMS). The
mean values of the associated candidate boxes represent the predicted bounding
box and the added variances represent the localization uncertainty. In combi-
nation with the class uncertainty, which is generated from the entropy of the
class probabilities in a softmax output, an uncertainty measure is obtained for
each box. A threshold is used to decide whether the box is accepted or re-
jected as a prediction. To generate the uncertainty not only from the output,
in [57, 64, 83, 90] the loss is changed in such a way that the uncertainties of the
localization variables are learned and displayed in their own newly introduced
neurons. In [57, 83] MC dropout is used for the localization and variance calcu-
lation of the predicted bounding boxes. The uncertainty introduced in the loss
combined with the localization variance is applied to the individual anchor box-
es/priors. In [57] the NMS is replaced by a Bayesian inference, in particular the
assignment is done with a different cluster method. The performance with respect
to prediction accuracy for all the listed performance metrics (mAP , PDQ Score,
mGMUE, mCMUE) increases compared to other state-of-the-art methods intro-
duced in [41, 42, 83, 90, 107, 108]. In [108], classification uncertainty is extracted
from object detection networks via MC dropout.

For semantic segmentation, a number of works that estimate the segmentation
quality have been introduced [17, 71, 102, 115, 130, 133, 134]. These works make
use of the richness of information of the segmentation networks output, as there
is a probability distribution available in each pixel of a given segment. In object
detection tasks, this richness is not present.
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Figure 4.1: Examples of predicted bounding boxes with objectness score / true IoU /
predicted IoU . The predictions, and therefore the data to train and evaluate gradient
boosting, are made with the YoloV3 network, the KITTI dataset and a score threshold
t = 0.01.

Our Contribution

In this chapter, we extend the false positive detection baseline of [66] from classi-
fication to object detection. Comparable to the works in semantic segmentation
[17, 102, 130, 133] we consider two (meta) tasks: Discrimination between true
positive (IoU ≥ 0.5) and false positive (IoU < 0.5) boxes which is termed meta
classification and regression with IoU values which is termed meta regression. To
approach these tasks, we introduce a post-processing framework that in general
can be added to any object detection network. Only by means of the network’s
output, our framework trains two models, i.e., one for each meta task. More pre-
cisely, we construct a set of handcrafted and interpretable metrics that may reveal
the network’s uncertainty about a prediction. Amongst others, this includes the
number of candidate boxes before NMS that overlap with the given predicted box
to a chosen extent, the score, the class probability distribution, the boxes size
and aspect ratio and many others. If desired, these metrics can be extended by
MC dropout statistics. In general any object-wise metric that seems to be helpful
can be added. From this we obtain a structured dataset where the rows amount
to the predicted objects in a given number of images and the columns amount to
the constructed metrics. From this set of metrics we learn both meta tasks with
different classical machine learning models, i.e., linear ones, shallow neural net-
works and gradient boosting. Figure 4.1 illustrates the effect of meta regression.
In the depicted cases, the bounding boxes are predicted with an overconfident
score, whereas the true IoU is significantly lower and the predicted IoU is close
to the true one.

In our numerical experiments, we study the correlation of our constructed metrics
with the IoU of prediction and ground truth, we study different sets of metrics
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and compare those to a score baseline. For both meta tasks, we significantly out-
perform the baseline. This is observed consistently over different datasets (KITTI
[46], Pascal VOC [38] and COCO [97]) and different object detection networks
(YoloV3 [39] and Faster R-CNN [123]). We do not observe an improvement when
performing MC dropout with a modified YoloV3 network and including the ob-
tained uncertainties into our set of metrics. This strengthens the statement, that
our approach is reliable.

Related Work

In this section, we clarify the differences between related works and ours. The idea
behind this work is in spirit similar to the approaches for semantic segmentation
[17, 71, 102, 115, 130, 133, 134], however the nature of the output provided by
segmentation networks and object detection networks is so different, such that
the resulting uncertainty metrics are also clearly different.

Our approach is solely based on post-processing. One can plug in MC dropout
quantities if the network architecture allows, however, this is not mandatory. On
the other hand, references [57, 64, 83, 90] incorporate the uncertainty quantifica-
tion into the original network and change their loss functions and also the ultimate
layer. This requires additional training and does not aim at quantifying the un-
certainty of the original network. In addition, as opposed to the other works we
provide a simple and modular statistical benchmark suite that can be used for
any object detection network in combination with any object-wise uncertainty
quantification method to obtain performance indicators for the latter.

In [107] box-wise uncertainty information is calculated by means of associated
candidate boxes. Whether a prediction is accepted or rejected is decided by
simply thresholding on the resulting measure. Beyond that, neither meta re-
gression, meta classification nor a general statistical evaluation of uncertainty
measures is performed. Instead, they use their uncertainty measure to improve
the NMS. In [118] a confidence calibration method is introduced, that trains a
shallow Bayesian neural network on the confidence calibration task. The param-
eter uncertainties of the Bayesian network are then used to estimate the object
detector’s uncertainty, given the localization variables and the specific confidence
level. However, unlike in our method, neither meta classification was performed,
nor predictive uncertainty for a given input was calculated. In [108] the authors
extract classification, localization and spatial uncertainty under MC dropout and
turn this into an overall performance improvement. In comparison to our work, no
meta classification or regression is performed, and the proposed concept requires
dropout inference.
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4.2 The Generic Object Detection Pipeline

In this section we briefly review the concept of object detection and its commonly
used components, as they will be of interest for our uncertainty quantification
method and experiments with those.

A typical performance measure, that indicates to which extent a prediction is in
accordance to the ground truth, is the IoU , see (2.59).

Downstream of a typical object detection pipeline, the candidate boxes B are
filtered by discarding all boxes b̂i whose corresponding estimated score values si

remain below a chosen threshold sε, see (2.70). That is, we define filtered candidate
boxes

Bs = {b̂i ∈ B : ŝi ≥ sε} . (4.1)

Typically, this is followed by the NMS, see alg. 2. Afterwards, BNMS represents
the set of predicted boxes.

4.3 Uncertainty Metrics for Object Detection

In this section we construct uncertainty metrics for every b̂i ∈ BNMS. We do so
in two stages, first by introducing the general metrics that can be obtained from
the object detection pipeline as is. Second, we extend this by additional metrics
that can be computed when using MC dropout.

We consider a predicted bounding box b̂i ∈ BNMS and its corresponding filtered
candidate boxes b̂j ∈ Bs, that were discarded by the NMS. The number of corre-
sponding candidate boxes b̂j ∈ Bs filtered by the NMS intuitively gives rise to the
likelihood of observing a true positive. The more candidate boxes b̂j belong to b̂i,
the more likely it seems that b̂i is a true positive. We denote by N i the number
of candidate boxes b̂j belonging to b̂i but suppressed by NMS. We increment this
number by 1 and also count in b̂i.

For a given image x we have the set of predicted bounding boxes BNMS and the
ground truth Y . As we want to calculate values that represent the quality of the
neural network’s prediction, we first have to define uncertainty metrics for the
predicted bounding boxes in BNMS. For each b̂i ∈ BNMS, we define the following
quantities:

• the number of candidate boxes N i ≥ 1 that belong to b̂i (b̂i belongs to
itself),

• the predicted box b̂i, i.e., the values of the tuple (x̂i, ŷi, ŵi, ĥi, ŝi, p̂i1, . . . , p̂
i
C) ∈

R5+C ,
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• the size d = (ŵi · ĥi) and the circumference g = 2 · ŵi + 2 · ĥi,

• IoU pb : the IoU of b̂i and the box with the second highest score that was

suppressed by b̂i. This value is zero if there are no boxes corresponding to
b̂i suppressed by the NMS (N i = 1),

• the minimum, maximum, arithmetic mean and standard deviation for all
(x̂i, ŷi, ŵi, ĥi, ŝi), size d and circumference g from b̂i and all the filtered
candidate boxes that were discarded from b̂i in the NMS,

• the minimum, maximum, arithmetic mean and standard deviation for the
IoU of b̂i and all the candidate boxes corresponding to b̂i that suppressed
in the NMS,

• relative sizes rd = d/g, rdmin = d/gmin, rdmax = d/gmax, rdmean = d/gmean

and rdstd = d/gstd ,

• the IoU of b̂i and the most overlapping ground truth box, this is not an input
to a meta model but serves as the ground truth provided to the respective
loss function.

Altogether, this results in 46 + C uncertainty metrics.

We now elaborate on how to calculate uncertainty metrics for every b̂i ∈ BNMS

when using Monte-Carlo dropout. To this end, we consider the bounding box b̂i ∈
BNMS that was predicted without dropout, and then we observe under dropout J
times the output of the same anchor box that produced b̂i and denote them by
b̂i1, . . . , b̂

i
J . For these J + 1 boxes we calculate the minimum, the maximum, the

arithmetic mean and the standard deviation for the localization variables and the
objectness score over b̂i, b̂i1, . . . , b̂

i
J . This is done for every b̂i ∈ BNMS and results

in 20 additional dropout uncertainty metrics. This means 66 + C uncertainty
metrics in total. Executing this procedure for all available test images we end
up with a structured dataset. The number of predicted objects constitutes to
the number of rows and the columns are given by the registered metrics. After
defining a training / test splitting of this dataset, we learn meta classification
(IoU ≥ 0.5 vs. IoU < 0.5) and meta regression (quantitative IoU prediction)
from the training part of this data.

All these presented metrics, except for the true IoU , can be computed without
the knowledge of the ground truth. Our aim is to analyze to which extent they
are suited for the tasks of meta classification and meta regression.
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(b) KITTI + Faster R-CNN
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(d) Pascal VOC + Faster R-CNN
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(e) COCO + YoloV3

0.00.20.40.60.8
score threshold

104

105

nu
m

be
r o

f o
bj

ec
ts

#TP
#FP

(f) COCO + Faster R-CNN

Figure 4.2: Comparison of the number of true positives (TP) and false positives (FP)
for different score thresholds, the YoloV3 and Faster R-CNN network and the KITTI,
Pascal VOC and COCO datasets.
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4.4 Numerical Experiments: Pascal VOC, KITTI
and COCO

In this section we investigate the properties of the metrics defined in the previous
sections for the example of object detection for three different datasets and two
different networks. We deploy the YoloV3 network [39] for which we use a refer-
ence implementation in Tensorflow [1] as well as weights self-trained on the KITTI
dataset [46], the Pascal VOC2007 dataset [38] and the COCO dataset [97]. For
KITTI, we split the labelled training images as for the test images are no labels
available. The images 0-5480 are used to train our network and the last 2000 (im-
ages 5481-7480) are used to evaluate our method. For Pascal VOC, we used the
training images from the years 2007 to 2011 to train our network, and we evaluate
our method on the 4952 Pascal VOC2007 test images. For COCO, we train on all
COCO2014 training images and evaluate our method on 2500 randomly selected
test images from the COCO2014 test images. For Faster R-CNN [123], we use
a reference implementation in Tensorflow as well as pre-trained weights for all
three datasets. When evaluating our method on the KITTI dataset we use all
available labelled images. The Faster R-CNN is trained exclusively for the two
classes “person” and “car”. Eventually, the Faster R-CNN might have overfitted
the training data. Indeed, we observe high prediction accuracy. For Pascal VOC
and COCO, we use the same images as for our tests with the YoloV3 network.

For more information about the default training and test parameters that we do
not deviate from, we refer to the publicly available source codes and to [39, 121,
123] for a detailed explanation of the respective parameters.

We evaluate our methods for meta classification and regression on 33 different
score thresholds, starting at 0.01, continuing with thresholds equal to k/40 until
reaching 0.8 (k = 1, . . . , 32). Over the course of thresholds, the highest mean
average precision (mAP) values obtained by YoloV3 are 91.99% on KITTI, 86.9%
on Pascal VOC and 61.13% on COCO. For a given class, the average precision
(AP) is the area under precision recall curve. Mean average precision is the mean
of the AP values for all considered classes. For all three datasets the mAP is equal
to the Pascal VOC metric [38], which determines true and false positives by means
of an IoU threshold equal to 0.5 (AP@.5), which is consistent with our definition
of meta classification. For Faster R-CNN, we evaluate our method also on these 33
different score thresholds, with one exception which is the KITTI dataset. The
classes “person” and “car” are often predicted with extremely confident scores
(very close to 1 or 0) such that the predictions differ only marginally at thresholds
near 0.8 and 0.1. Therefore, thresholds of 10−1, . . . , 10−12 were chosen for the
KITTI dataset. This leads to highest obtained mAP values for Faster R-CNN
which are 89.33% on KITTI, 80.31% on Pascal VOC and 55.29% on COCO.
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ŝistd 0.8370 ŝimean,MC 0.8239
ŝi 0.8231 ŝimean 0.8147
N i 0.7149 IoU i

pb,std 0.6529
IoU i

pb,high 0.6021 IoU i
pb,mean 0.5019

ŷihigh 0.4174 ŷi 0.4054
d/gihigh 0.4049 ŷimean,MC 0.4044
x̂istd 0.4029 ŷistd 0.4013
d/gistd 0.3995 gistd 0.3904
ŷimean 0.3876 gihigh 0.3821

Table 4.1: Strongest Pearson correlation coefficients for some constructed box-wise met-
rics for the KITTI dataset, the YoloV3 network and a score threshold t = 0.01.

Figure 4.2 depicts the number of true positives and false positives for the YoloV3
and Faster R-CNN network and the KITTI, Pascal VOC and COCO datasets.
It is intuitively clear that as the score threshold decreases the number of TPs
and FPs increases. The sum of TPs and FPs equals the number of all predicted
bounding boxes and therefore constitutes the number of examples for training
and evaluation of our meta models. The order of magnitude of the number of
predictions is between 103 and 106.

In what follows, all results (if not stated otherwise) were computed from 10 re-
peated runs where training and validation sets (both of the same size) were re-
sampled. We give mean results as well as standard deviations over the obtained
results in brackets.

Correlation of Box-Wise Metrics with the IoU

Table 4.1 contains the Pearson correlation coefficients of the box-wise metrics
with the IoU of prediction and ground truth for the KITTI test images and
a score threshold t = 0.01 for the YoloV3 network. The score metrics seem
to have strong correlations with the IoU , which is expected as it is supposed
to discriminate true positives from false positives. The endings high,mean, std
represent the maximum, the arithmetic mean and the standard deviation, re-
spectively, of the corresponding filtered candidate boxes for a given metric. The
ending mean,MC represents the arithmetic mean of the corresponding dropout
predictions b̂i, b̂i1, . . . , b̂

i
J for the respective metric. Note that, although the 4

score related metrics (sistd , s
i
mean,MC , s

i, simean) show the highest correlation with
the IoU ≥ 0.8, these metrics may be very similar. Indeed, the correlation coeffi-
cients between these four metrics range from 0.81 to 0.99. Four additional metrics
(N i, IoU i

pbstd
, IoU i

pb,high , IoU i
pb,mean) also show decent correlations 0.5 ≤ ρ ≤ 0.8,

all other metrics only show a minor correlation. However, they may still contribute
to a diverse set of metrics.
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Meta Regression IoU

Score threshold sε Method Score baseline MetaDetect MetaDetect+dropout

0.5
LR 0.4188(±0.0080) 0.4447(±0.0059) 0.4477(±0.0065)
GB 0.3966(±0.0069) 0.4485(±0.0104) 0.4478(±0.0102)
NN 0.3448(±0.0096) 0.4435(±0.0097) 0.4436(±0.0114)

0.3
LR 0.5837(±0.0097) 0.6131(±0.0094) 0.6116(±0.0098)
GB 0.5679(±0.0099) 0.6206(±0.0095) 0.6216(±0.0084)
NN 0.5704(±0.0088) 0.6078(±0.0094) 0.6166(±0.0096)

0.1
LR 0.7133(±0.0032) 0.7594(±0.0032) 0.7591(±0.0033)
GB 0.7138(±0.0037) 0.7766(±0.0025) 0.7780(±0.0025)
NN 0.7120(±0.0029) 0.7568(±0.0042) 0.7635(±0.0060)

Table 4.2: Comparison of R2 values for the score baseline and all available metrics (with
and without dropout) for KITTI and YoloV3. We used linear regression (LR), gradient
boosting (GB) and shallow neural nets (NN) for the task of meta regression.

Comparison of Different Meta Classifiers and Regressors

For meta classification (classification of IoU ≥ 0.5 vs. IoU < 0.5), we compare
results in terms of classification accuracy and in terms of the area under curve
corresponding to the receiver operator characteristic curve (AUROC , see [30]).
The receiver operator characteristic curve is obtained by varying the decision
threshold of the classification output for deciding whether IoU ≥ 0.5 or IoU <
0.5. For the task of meta regression, we state resulting standard deviations σ of
the linear regression fit’s residual as well as R2 values. Throughout this section,
we consider the following combinations of inputs: Score / score baseline refers
to a meta regressor or classifier that was only trained by means of the score
metric si which is a sensible baseline. MetaDetect refers to a meta regressor or
classifier trained with 46+C metrics that include all metrics except for those that
correspond to MC dropout. MetaDetect+dropout refers to all available 66 + C
metrics including dropout. MetaDetect+dropout is only available for YoloV3,
since for this network we inserted a dropout layer with dropout rate 0.5 in all
three detection branches right before the final convolutional layer and retrained
the network.

For the task of meta regression and meta classification several models (meta
models) can be used. The meta models we consider are linear regression (LR),
gradient boosting (GB) and a shallow neural network (NN) with two hidden
layers. In Table 4.2, we state R2-values for meta regression with the KITTI
dataset and the YoloV3 network for three different score thresholds sε. We be
observed that gradient boosting outperforms linear regression and the shallow
neural network consistently for all three score thresholds. This is in accordance
to the results depicted by Figure 4.4. Gradient boosting outperforms the linear
regression and the shallow neural network as a meta regression model for all 33
different score thresholds. In all our tests, we observed the same behavior for
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Figure 4.3: Box-wise scatter plot of true IoU and predicted IoU values for the KITTI
dataset, the YoloV3 network and a score threshold t = 0.01. The predicted IoU values
are generated with gradient boosting.
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Figure 4.4: R2 values for the task of meta regression for the score baseline and all
uncertainty measures for the KITTI dataset, the YoloV3 network and different score
values. The R2 values are calculated with linear regression, gradient boosting and a
shallow neural net.
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R2-values for Meta Regression

Network Dataset sε Score baseline Score & Loc. MetaDetect MetaDetect+do dropout

YoloV3

KITTI
0.5 0.3966(±0.0069) 0.4300(±0.0101) 0.4485(±0.0104) 0.4478(±0.0102) 0.4315(±0.0127)

0.3 0.5679(±0.0099) 0.6036(±0.0079) 0.6206(±0.0095) 0.6216(±0.0084) 0.6029(±0.0102)

0.1 0.7138(±0.0037) 0.7517(±0.0028) 0.7766(±0.0025) 0.7780(±0.0025) 0.7527(±0.0030)

VOC
0.5 0.3468(±0.0094) 0.3637(±0.0084) 0.3853(±0.0113) 0.3851(±0.0098) 0.3631(±0.0097)

0.3 0.4234(±0.0081) 0.4445(±0.0067) 0.4700(±0.0078) 0.4672(±0.0089) 0.4435(±0.0081)

0.1 0.5384(±0.0051) 0.5577(±0.0047) 0.5907(±0.0057) 0.5879(±0.0065) 0.5579(±0.0045)

COCO
0.5 0.2317(±0.0089) 0.2570(±0.0095) 0.2787(±0.0077) 0.2774(±0.0084) 0.2486(±0.0097)

0.3 0.4428(±0.0058) 0.4755(±0.0058) 0.4978(±0.0070) 0.4960(±0.0062) 0.4710(±0.0064)

0.1 0.4931(±0.0028) 0.5459(±0.0035) 0.5914(±0.0030) 0.5911(±0.0028) 0.5457(±0.0033)

FRCNN

KITTI
10−1 0.3703(±0.0136) 0.3921(±0.0145) 0.4101(±0.0153)

10−6 0.8930(±0.0017) 0.9056(±0.0013) 0.9178(±0.0014)

10−12 0.7927(±0.0020) 0.8471(±0.0017) 0.8819(±0.0013)

VOC
0.5 0.4844(±0.0106) 0.5120(±0.0116) 0.5430(±0.0121)

0.3 0.5682(±0.0084) 0.5911(±0.0091) 0.6182(±0.0089)

0.1 0.6289(±0.0054) 0.6601(±0.0069) 0.6836(±0.0074)

COCO
0.5 0.4178(±0.0046) 0.4250(±0.0049) 0.4330(±0.0052)

0.3 0.4730(±0.0076) 0.4799(±0.0077) 0.4890(±0.0068)

0.1 0.5438(±0.0056) 0.5558(±0.0050) 0.5651(±0.0041)

Table 4.3: Comparison of R2 values for the score baseline, score + localization, dropout
(do) and all available metrics (with and without dropout) for KITTI, Pascal VOC and
COCO. Especially, for Faster R-CNN there are no dropout metrics available. We used
gradient boosting (GB) for the task of meta regression.

meta regression and meta classification for all three datasets. For this reason,
only meta regression and meta classification results with gradient boosting are
presented in the following. These findings indicate that there is a significant
portion of mutual information contained in our metrics. The increase in R2 when
going from a single score metric to all our 46 +C metrics is ranging from 1.52 to
9.83 percent points (pp). On average the gain is about 4.86 pp. When further
extending the considered metrics to 66 + C by the MC dropout metrics, we do
neither observe a significant nor consistent increase in R2 values.

Comparisons for Different Datasets, Networks and Sets of
Metrics

Due to our observations in the previous paragraph, we fix all our meta classifiers
and regressors to gradient boosting. Table 4.3 presents results for meta regression
in terms of regression R2 for all three datasets and both networks with three score
thresholds each. Obviously, the tendencies indicated by the previously studied Ta-
ble 4.2 are confirmed by Table 4.3 for the different datasets and networks. In all
cases MetaDetect provides distinct increases in comparison to the score baseline.
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Meta Classification IoU ≥ 0.5 vs. IoU < 0.5

Accuracies

Network Dataset sε Score baseline Score & Loc. MetaDetect MetaDetect+do dropout

YoloV3

KITTI
0.5 0.9411(±0.0023) 0.9417(±0.0021) 0.9421(±0.0017) 0.9422(±0.0023) 0.9415(±0.0022)

0.3 0.9090(±0.0021) 0.9094(±0.0020) 0.9129(±0.0032) 0.9134(±0.0025) 0.9092(±0.0030)

0.1 0.9063(±0.0020) 0.9072(±0.0022) 0.9090(±0.0030) 0.9103(±0.0027) 0.9058(±0.0022)

Pascal
VOC

0.5 0.8562(±0.0034) 0.8579(±0.0030) 0.8597(±0.0046) 0.8607(±0.0039) 0.8559(±0.0026)

0.3 0.8456(±0.0037) 0.8478(±0.0027) 0.8485(±0.0030) 0.8483(±0.0035) 0.8456(±0.0030)

0.1 0.8496(±0.0036) 0.8513(±0.0029) 0.8541(±0.0030) 0.8535(±0.0032) 0.8505(±0.0034)

COCO
0.5 0.8106(±0.0020) 0.8170(±0.0019) 0.8223(±0.0022) 0.8224(±0.0027) 0.8181(±0.0029)

0.3 0.7828(±0.0025) 0.7888(±0.0026) 0.7949(±0.0023) 0.7958(±0.0020) 0.7901(±0.0037)

0.1 0.9006(±0.0006) 0.9026(±0.0007) 0.9044(±0.0007) 0.9045(±0.0008) 0.9028(±0.0007)

Faster
R-
CNN

KITTI
10−1 0.9637(±0.0009) 0.9646(±0.0012) 0.9655(±0.0013)

10−6 0.9731(±0.0008) 0.9737(±0.0006) 0.9741(±0.0005)

10−12 0.9949(±0.0001) 0.9954(±0.0001) 0.9961(±0.0002)

Pascal
VOC

0.5 0.8202(±0.0051) 0.8270(±0.0048) 0.8300(±0.0052)

0.3 0.8364(±0.0048) 0.8401(±0.0055) 0.8433(±0.0054)

0.1 0.8689(±0.0053) 0.8711(±0.0047) 0.8750(±0.0058)

COCO
0.5 0.7679(±0.0022) 0.7692(±0.0021) 0.7705(±0.0020)

0.3 0.7897(±0.0028) 0.7907(±0.0025) 0.7915(±0.0032)

0.1 0.8495(±0.0023) 0.8498(±0.0027) 0.8501(±0.0026)

AUROCs

Network Dataset sε Score baseline Score & Localization MetaDetect MetaDetect+do dropout

YoloV3

KITTI
0.5 0.9059(±0.0069) 0.9073(±0.0061) 0.9270(±0.0035) 0.9272(±0.0038) 0.9253(±0.0052)

0.3 0.9377(±0.0028) 0.9432(±0.0023) 0.9484(±0.0027) 0.9489(±0.0024) 0.9469(±0.0028)

0.1 0.9577(±0.0018) 0.9626(±0.0015) 0.9665(±0.0011) 0.9666(±0.0012) 0.9631(±0.0011)

Pascal
VOC

0.5 0.8670(±0.0058) 0.8708(±0.0065) 0.8723(±0.0065) 0.8732(±0.0062) 0.8686(±0.0053)

0.3 0.8835(±0.0044) 0.8885(±0.0042) 0.8898(±0.0039) 0.8907(±0.0041) 0.8867(±0.0044)

0.1 0.9136(±0.0018) 0.9172(±0.0019) 0.9193(±0.0018) 0.9199(±0.0021) 0.9161(±0.0020)

COCO
0.5 0.7918(±0.0049) 0.8068(±0.0056) 0.8153(±0.0035) 0.8160(±0.0041) 0.8036(±0.0046)

0.3 0.8567(±0.0025) 0.8671(±0.0023) 0.8748(±0.0025) 0.8751(±0.0022) 0.8695(±0.0022)

0.1 0.8937(±0.0019) 0.9097(±0.0012) 0.9235(±0.0008) 0.9239(±0.0011) 0.9182(±0.0012)

Faster
R-
CNN

KITTI
10−1 0.9692(±0.0025) 0.9737(±0.0029) 0.9777(±0.0033)

10−6 0.9860(±0.0002) 0.9899(±0.0005) 0.9942(±0.0004)

10−12 0.9959(±0.0002) 0.9970(±0.0001) 0.9984(±0.0002)

Pascal
VOC

0.5 0.8854(±0.0027) 0.8901(±0.0031) 0.8985(±0.0032)

0.3 0.9083(±0.0030) 0.9113(±0.0029) 0.9169(±0.0033)

0.1 0.9284(±0.0025) 0.9315(±0.0030) 0.9356(±0.0029)

COCO
0.5 0.8444(±0.0021) 0.8468(±0.0020) 0.8490(±0.0026)

0.3 0.8617(±0.0023) 0.8635(±0.0027) 0.8654(±0.0029)

0.1 0.8914(±0.0015) 0.8932(±0.0019) 0.8951(±0.0018)

Table 4.4: Comparison of meta classification accuracies and AUROC values for the score
baseline, the score + localization variables, dropout (do) and all available metrics (with
and without dropout) for the KITTI, Pascal VOC and COCO datasets. For Faster
R-CNN there are no dropout metrics available. We used gradient boosting (GB) for
meta classification.
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Figure 4.5: Examples of predicted bounding boxes with a true IoU = 0 but with high
meta classification probabilities. These examples predicted by the YoloV3 network are
counted as FPs as there is no corresponding ground truth available. Our prediction
quality estimates signal with very high IoU values, that an object is present. The
predictions, and therefore the data to train and evaluate gradient boosting, are obtained
by the YoloV3 network applied to the KITTI dataset.

For the COCO dataset, YoloV3 network and score threshold 0.1 we even observe
an increase of 9.83 percent points. Analogously to our findings in the previous
paragraph, MetaDetect+dropout is not able to further improve. In our tests we
also observed, although the dropout rate is set to 0.5, that the variation intro-
duced by dropout inference seems to be rather limited. We performed 10 forward
passes under dropout. In general, a more stochastic behavior of the inference,
which could be promoted by additional dropout layers of an analogous batch
normalization approach, could lead to an improvement. Here, we refer to the
modular nature of our framework MetaDetect which allows for the incorporation
of any uncertainty metric.

Figure 4.3 shows a scatter plot of the true IoU of prediction and ground truth and
the IoU estimated by MetaDetect. The scattered points are well concentrated
along the diagonal axis corresponding to the identity id : a 7→ a. This signals, that
we obtain a well calibrated IoU estimate. The limited deviation from the identity
shows, that this estimate gives rise to predictive uncertainty and an object-wise
quality estimate. For example images, we refer to Figure 4.1

Considering the task of meta classification which amounts to false positive detec-
tion, we also achieve clear improvements when considering all our metrics instead
of only considering the score si. Note that a naive meta classification baseline is
random guessing. This can be implemented by randomly sampling real numbers
from the uniform distribution over the unit interval and discriminating according
to a chosen threshold. The corresponding AUROC value is 0.5 and the best clas-
sification accuracy is given by the frequency of the dominant class (which depends
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on the score threshold in the object detection pipeline).

Results are summarized in Table 4.4 in terms of classification accuracy and
AUROC . Our findings in these tables are similar to those for meta regression,
the advantage of MetaDetect over the score baseline seems to be slightly more
pronounced in terms of AUROC than in terms of accuracy. In terms of accuracy,
we observe an average increase of 0.43 pp, while in terms of AUROC , we obtain
an average increase of 1.05 pp. The highest increase overall is obtained for the
YoloV3 network and the COCO dataset with a score threshold t = 0.5 with 1.17
pp in terms of classification accuracy and for the YoloV3 network and the COCO
dataset with a score threshold t = 0.1 with 2.98 pp in terms of AUROC .

Figure 4.5 shows examples of predicted bounding boxes that have a true IoU = 0.
Thus, according to the ground truth they are FPs, but with high meta classifi-
cation probabilities. Indeed, these boxes each represent an object of the correct
class. Hence, more reliable meta classifiers may also help to identify labeling
errors.

Comparison with State-of-the-Art-Methods

Related works calculate uncertainty for object detection by means of the local-
ization variables [86] and/or MC dropout [83, 108, 118] or learn the uncertainty
already in training with an adapted loss function [90]. In [57] the standard detec-
tion inference and NMS is reformulated in a Bayesian sense and in [64] different
approaches of merging candidate boxes to gain performance are evaluated. Our
approach, MetaDetect, also quantifies uncertainty from the softmax probabilities,
the localization and MC dropout and therefore needs only the predictions that
remain before the NMS. For this reason, MetaDetect can be applied to any object
detection network and it, in contrast to [57, 64, 90], does not require any changes
to the network’s architecture or the loss function. MetaDetect can also handle
other merging approaches (different from NMS) as long as there exist candidate
boxes for the final predictions.

None of the works mentioned in this paragraph states meta classification / regres-
sion results. However, a viable approach to compare them with our work is to
compare the corresponding uncertainty quantification (UQ) methods with respect
to meta classification and regression performance.

Table 4.3 and Table 4.4 illustrate that MetaDetect outperforms score & local-
ization (which corresponds to the UQ used in [86]) and Monte-Carlo dropoutout
(corresponding to [83, 108, 118]). Furthermore, we have seen that adding the
dropout metrics to the set of metrics of MetaDetect does not yield any significant
improvement of R2 / AUROC values. Considering R2 / AUROC values averaged
over score thresholds sε, networks and datasets, MetaDetect outperforms score &
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localization by 2.24 / 0.49 pp, respectively, as well as Monte-Carlo dropoutout by
2.70 / 0.37 pp, respectively.

Note that, due to the generic nature of MetaDetect, adding more metrics as inputs
will increase the meta classification / regression performance as long as we do not
encounter overfitting. Those metrics can stem from the network’s output but
also from inside the network or any uncertainty quantification method of interest.
Also approaches that modify the loss function and/or the network’s training can
be considered in this framework.

4.5 Conclusion and Outlook

In this chapter, we extended the notion of [66] from classification to object detec-
tion, considering the tasks of meta classification and meta regression introduced
in [102, 130, 133] for semantic segmentation. We introduced a generic frame-
work for quality estimation and false positive detection that can be extended
by any uncertainty measure for object detection. To demonstrate the ability of
our framework to perform these tasks more efficiently than state-of-the-art base-
lines, we introduced a variety of different uncertainty metrics and also considered
widely used MC dropout [44] uncertainty. To study the individual metric’s per-
formance we compared correlation coefficients of the different metrics with each
other and found that some of our metrics may well contribute to the overall meta
regression and classification performance. This is confirmed by further numerical
experiments where we compared different meta regressors and classifiers, i.e., lo-
gistic/linear regression, gradient boosting and shallow neural networks. We found
that gradient boosting yields the best performance. Furthermore, with a thor-
ough study of meta classification and regression performance over three different
datasets and two different object detection networks, our method consistently out-
performs the score baseline by a significant margin. In terms of meta classification
we improve over the results of the score baseline by up to 1.17 pp classification
accuracy and 2.98 pp AUROC . For meta regression obtain an improvement up
to 9.83 pp in R2.

We plan to incorporate these improved quality estimates into an active learning
pipeline as well as performing an evaluation of the applicability of MetaDetect to
data quality estimation. We believe that many labeling errors can be detected by
means of a well-calibrated quality estimate.

Our source code is publicly available at GitHub. The application of MetaDetect
to images of video sequences can be found on YouTube.
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CHAPTER 5

TOWARDS RAPID PROTOTYPING AND

COMPARABILITY IN ACTIVE LEARNING FOR DEEP

OBJECT DETECTION

The presented contents in the following chapter are taken almost word-by-word
from [126].

5.1 Introduction

Deep learning requires huge amounts of data, typically annotated by vasts amounts
of human labor [11, 93, 184]. In particular in complex computer vision tasks such
as object detection (OD), the amount of labor per image can lead to substantial
costs for data labeling. Therefore, it is desirable to avoid unnecessary labeling
effort and to have a rather large variability of the database. Active learning
(AL) [145] is one of the key methodologies that aims at labeling the data that
matters for learning. AL alternates model training and data labeling as illustrated
in fig. 5.1. At the core of each AL method is a query strategy that decides post-
training which unlabeled data to query for labeling. The computation cost of AL is
in general at least an order of magnitude higher than ordinary model training and
so is its development [93, 160], which comprises several AL experiments of T query
steps with different parameters, ablation studies, etc. Hence, it is notoriously chal-
lenging to develop new AL methods for applications where model training itself is
already computationally costly. In the field of OD, a number of works overcame
this cumbersome hurdle [10, 24, 31, 37, 59, 116, 135, 140, 152, 179, 183]. However,
these works did so in highly inhomogeneous settings which makes a comparison

71



5 Towards Rapid Prototyping and Comparability in Active Learning for Deep
Object Detection
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object detector
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Figure 5.1: The generic pool-based AL cycle consisting of training on labeled data L,
querying informative data points Q out of a pool of unlabeled data U and annotation
by a (human) oracle. In practice, training compute time is orders of magnitude larger
than evaluating the AL strategy itself or the query step.

difficult. Besides that, AL with real-world data may suffer from other influencing
factors, e.g., the quality of labels to which end fundamental research is conducted
on AL in presence of label errors [7, 8, 180, 181]. These observations demand for a
development environment that enables rapid prototyping, cutting down the huge
computational efforts of AL in OD and fostering comparability and transparency
of different AL methods.

Our Contribution In this chapter, we propose a development environment that
drastically cuts down the computational cost of developing AL methods. To this
end, we construct (a) two datasets that generalize MNIST [91] and EMNIST [26]
to the setting of OD making use of background images from MS-COCO [97] and
(b) a selection of suitable small-scale models. We conduct experiments showing
that results on our datasets generalize to a similar degree to complex real-world
datasets (Pascal VOC [38] and BDD100k [182]), as they generalize among each
other. We also demonstrate a reduction of computational effort of AL experiments
by factors of up to 32. Further, a nuanced evaluation protocol is introduced to
prevent wrong conclusions from misleading evidence encountered in experiments.
We summarize our contributions as follows:

• We propose a sandbox environment with two datasets, three network ar-
chitectures, several AL baselines and an evaluation protocol. This allows
for broad, detailed and transparent comparisons at lowered computational
effort.

• We analyze the generalization ability of our sandbox in terms of AL rank cor-
relations. We find similar performance progressions indicating that results
obtained by our sandbox generalize well to Pascal VOC and BDD100k, i.e.,
to the same extent as results generalize between Pascal VOC and BDD100k.
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• We contribute to future AL development by providing an implementation
of our pipeline in a flexible environment as well as an automated framework
for evaluation and visualization of results. This involves configurations and
hyperparameters (see GitHub).

5.2 Related Work

Numerous methods of AL have been developed in the classification setting [145]
and largely fall into the categories of uncertainty-based and diversity-based query
strategies. While uncertainty methods make use of the current model’s prediction,
diversity methods exploit the annotated dataset together with the current model
and seek representative coverage of the data generating distribution. Due to in-
creased complexity in annotations in OD, AL plays a large role in OD which has
been addressed by some authors. Yoo and Kweon [179] present a task-agnostic
method based on a loss estimation module. Brust et al. [10] estimate prediction-
wise uncertainty by the probability margin and aggregate to image uncertainty in
different ways. Roy et al. [135] follow a similar idea using classification entropy.
Moreover, a white-box approach similar to query-by-committee is introduced.
Haussmann et al. [59] utilize ensembles to estimate classification uncertainty via
mutual information while Schmidt et al. [140] use combinations of localization and
classification uncertainty. But in particular, as training a variety of detector heads
in each step is very costly, ensemble query methods tend to be approximated by
Monte-Carlo dropout [44, 45]. Other works investigate special AL-adapted OD ar-
chitectures or loss functions [24, 183]. In this paper we compare uncertainty-based
methods with each other that are exclusively based on fully supervised training of
non-adapted object detectors [10, 24, 59, 135]. The preceding literature is difficult
to compare since datasets, models, frameworks and hyperparameters for training
and inference heavily differ from each other. Unlike the works mentioned, we aim
at putting the AL task itself on equal footing between different settings to im-
prove development speed and evaluation transparency. In our work, we compare
some above-mentioned methods to each other with equivalent configurations for
frequently used datasets and architectures. Comparative investigations of this
kind has escaped previous research in the field.

5.3 A Sandbox Environment with Datasets, Models
and Evaluation Metrics

In this section we describe the objective of AL and our sandbox environment.
The main setting we propose consists of two semi-synthetic OD datasets and
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COCO background

MNIST numbers:
transformed and colorized

S

V

H

Figure 5.2: Generation scheme of semi-synthetic OD data from MNIST digits on a
non-trivial background image from MS-COCO.

down-scaled versions of standard OD models leaving the detection mechanism
unchanged. Additionally, we introduce evaluations capturing different aspects of
the observed AL curve.

Active Learning The term active learning refers to a setup (cf. fig. 5.1) where
only a limited amount of fully annotated data L is available together with a task-
specific model. In addition, there is a pool (or a stream, however, we focus on
pool-based AL) of unlabeled data U from which the model queries those samples
Q which are most informative. Afterwards, Q is annotated by an oracle (usually
a human worker), added to L and the model is fine-tuned or fitted from scratch
again. Success of the query strategy is measured by observing an increase in test
performance after training on L∪Q. Evaluation of the current model performance
before each query step leads to graphs like the ones in fig. 5.3. Querying can take
diverse algorithmic forms, see Section 5.2 or [145].

Datasets We construct an OD problem by building a synthetic overlay to images
from the real-world MS-COCO dataset (fig. 5.2), which constitutes the data of our
sandbox. COCO images with deleted annotations provide a realistic, feature-rich
background on which foreground objects are spawned to be recognized. We utilize
two sets of foreground categories: MNIST digits and EMNIST letters. We apply
randomized coloration (uniform (h, s, v) ∼ U([0.0, 1.0] × [0.05, 1.0] × [0.1, 1.0]))
and opacity (α ∼ U([0.5, 0.9])) to foreground instances such that trivial edge
detection becomes unfeasible. In addition, we apply image translation, scaling
and shearing to all numbers/letters. The number of instances per background
image is Poisson-distributed with mean λ = 3. Tight bounding box (and instance
segmentation) annotations are obtained from the original transformed gray scale
versions and the category label are inherited. Compared to simple OD datasets
such as SVHN [112], the geometric variety in our datasets is more similar to those
of large OD benchmarks such as Pascal VOC or MS-COCO. The reduction in the
dataset complexity allows for high performance even for small architectures and
leads to quickly converging training and low inference times. In the following we
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Figure 5.3: Area under AL curve (AUC ) metric at different stages of an AL curve for
two different query strategies (averaged, taken from experiments in fig. 5.5).

Dataset cx cy w h # categories

SVHN 0.099 0.059 0.048 0.161 10
Pascal VOC 0.217 0.163 0.284 0.277 20
MS COCO 0.254 0.209 0.220 0.234 80
KITTI 0.229 0.080 0.067 0.157 8
BDD100k 0.224 0.133 0.059 0.086 10
MNIST-Det 0.233 0.233 0.054 0.054 10
EMNIST-Det 0.233 0.233 0.066 0.065 26

Table 5.1: Standard deviations of center coordinates, width and height (all relative to
image size) of bounding boxes, as well, as number of categories in the training split for
several object detection datasets.

use the terms “MNIST-Det” and “EMNIST-Det” to refer to the two datasets.

Dataset Variability When comparing to existing OD datasets, our sandbox
datasets MNIST-Det and EMNIST-Det resemble in variability the common bench-
marks like Pascal VOC, MS COCO, KITTI or BDD100k. This can be seen when
looking at the variations in bounding box localization across each dataset. When
normalizing to the total image resolution, we can compare the standard deviations
in the annotation center coordinates cx, cy as well as the bounding box extent
w and h, which we have collected in table 5.1. The SVHN dataset consisting
of photographs of house numbers shows little variability, especially in the center
localization of the object (which are mostly centered on the image). Figure 5.4
shows samples from the MNIST-Det and EMNIST-Det datasets.
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Detector Backbone # params Backbone # params

RetinaNet ResNet50 36.5M ResNet18 20.1M
Faster R-CNN ResNet101 60.2M ResNet18 28.3M
YOLOv3 Darknet53 61.6M Darknet20 10.3M

Table 5.2: Exemplary OD architectures with backbone configurations employed in the
experiments and associated number of parameters.

Darknet53 Darknet20
Type Size Blocks Filters Blocks Filters

Conv 3× 3 32 32
Conv 3× 3/2 64 32

Conv 1× 1 32 32
Conv 3× 3 1× 64 1× 64
Residual

Conv 3× 3/2 128 64

Conv 1× 1 64 32
Conv 3× 3 2× 128 1× 64
Residual

Conv 3× 3/2 256 128

Conv 1× 1 128 64
Conv 3× 3 8× 256 1× 128
Residual

Conv 3× 3/2 512 256

Conv 1× 1 256 128
Conv 3× 3 8× 512 2× 256
Residual

Conv 3× 3/2 1024 512

Conv 1× 1 512 256
Conv 3× 3 4× 1024 2× 512
Residual

Table 5.3: Configuration of Darknet20 compared with Darknet53 in analogy to [39,
Tab. 1]. At equal resolution input, the feature maps also remain at the same resolution
at each stage.
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Figure 5.4: Dataset samples from MNIST-Det (top three rows) and EMNIST-Det (bot-
tom three rows) including annotations.
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Models Modern OD architectures utilize several conceptually different mecha-
nisms to solve the detection task. Irrespective of the amount of accessible data,
some applications of OD may require high inference speed while others may re-
quire a large degree of precision or some trade-off between the two. The under-
lying detection mechanism is, however, disjoint to some degree from the depth of
the feature extraction in the backbone. The latter is mainly responsible for the
quality and resolution of features. We use architectures with reduced network
depth while keeping the detection head unchanged. Table 5.2 shows the choices
for a YOLOv3 [39], RetinaNet [96] and Faster R-CNN [123] setup, which we have
adapted together with the resulting number of parameters.

In our experiments we used a YOLOv3 detector with the standard Darknet53
backbone on VOC and BDD. In our down-scaled version we replace the back-
bone with an analogous architecture working on the same resolutions, such that
all strides remain the same and the detection mechanism works identically. Ta-
ble 5.3 shows the configuration comparison between the standard Darknet53 ar-
chitecture and our adapted version (here, called Darknet20) which significantly
reduces depth and the number of feature channels extracted. All other model and
data augmentation configurations remain unchanged. For Faster R-CNN we use a
ResNet101 backbone on VOC and BDD while for RetinaNet, we use a ResNet50.
Here, we use a Feature Pyramid Network (FPN) with [256, 512, 1024, 2048] chan-
nels. Both are down-scaled to ResNet18 backbones with [64, 128, 256, 512]-channel
FPN to accelerate training and inference. The parameter count is reduced by up
to a factor of around six leading to a significant decrease in training and inference
time.

For all architectures, we insert dropout layers between the two last layers (convo-
lutional layers at all stages for YOLOv3/RetinaNet and fully connected for Faster
R-CNN). For all experiments involving sampling, i.e., Monte-Carlo dropout and
mutual information experiments, we use dropout rates of 0.5 and perform 10
forward passes.

Active Learning Methods in Object Detection The often used uncertainty-
based query strategies from image classification, such as entropy, probability mar-
gin, Monte-Carlo dropout, and mutual information, determine instance-specific
but not image-wise uncertainty estimates. However, the query strategies investi-
gated here involve image-wise selection for annotation. It is, therefore, useful to
introduce an aggregation step like in [10] to obtain image-wise query scores.

For a given image x, a neural network predicts a fixed number N0 of bounding
boxes b̂i = {x̂i, ŷi, ŵi, ĥi, ŝi, p̂i1, . . . , p̂C}, i = 1, . . . , N0, where x̂i, ŷi, ŵi, ĥi rep-
resent the localization, ŝi the objectness score (or analog) and p̂i1, . . . , p̂

i
C the
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class probabilities for the C classes, see (2.63). Only the set of boxes post-non-
maximum-suppression (NMS) and score thresholding are used to determine pre-
diction uncertainties, see (2.70) and alg. 2. The choice of threshold parameters for
NMS significantly influences the queries, since they decide surviving predictions.

Given a prediction b̂i we compute its classification entropy H(b̂i) (2.82) and the
squared probability margin score, here also denoted as PM(b̂i) (2.83). Further-
more, cmax denotes the class with highest probability. We implement dropout
layers in order to draw Monte-Carlo dropout samples at inference time, where
activations of the same anchor box b̂i,1, . . . , b̂i,J are sampled J times. The final
predictions and corresponding standard deviations are determined by (2.84), and
the dropout uncertainty by (2.85). Note that for all these methods, uncertainty
is only considered in the foreground instances.

Therefore, either the sum, average, or maximum is taken over predicted instances
to obtain a final query score for the image. Summation, for instance, tends to pre-
fer images with many instances while averaging is strongly biased by the thresh-
olds (e.g., large amounts of false positives could be filtered by a higher thresh-
old). In the presented experiments, we use summation whereas further image-
aggregation methods like averaging or taking the maximum are also addressed.
Additionally, random acquisition acts as a completely uninformed baseline for us.
Diversity-based methods make use of latent activation features in neural networks
which heavily depend on the OD architecture. Since purely diversity-based meth-
ods have been far less prominent in the literature, we focus on the more broadly
established uncertainty baselines.

Evaluation In the literature, methods are frequently evaluated by counting the
number of data samples needed to cross some fixed reference performance mark.
For OD, performance is usually measured in terms of mAP50 [38] for which there
is a maximum value mAPmax

50 known when training on all available data. Some
percentage, x · 10−1 · mAPmax

50 needs to be reached with as few data points as
possible. Collecting performance over amount of queried data gives rise to curves
such as in the top right of fig. 5.1 which we call AL curves in the following.

“Amount of training data” usually translates to the number of images which
acts as a hyperparameter and is fixed for each method. Considering that each
bounding box needs to be labeled and there tends to be high variance in the
number of boxes per image in most datasets, it is not clear whether to measure
annotated data in terms of images or boxes. Therefore, we stress that the scaling
of the t-axis is particularly important in OD. Both views, counting images or
boxes, can be argued for. Therefore, we evaluate the performance of each result
not only based on images, but also transform the t-axis to the number of annotated
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boxes. By interpolation between query points and averaging over seeds of the same
experiment, we obtain image- or box-wise standard deviations of the performance.

In light of the complexity of the AL problem, we adopt the area under the AL
curve (AUC ). It constitutes a more robust metric compared to horizontal or
vertical cross-sections through the learning curves. Figure 5.3 shows two AL
curves on the right and corresponding AUC at two distinct points t1 and t2.
Note that in practice, mAPmax

50 is not a quantity that is known. Therefore, the
AL experiment may be evaluated at any given vertical section of t training data
points. Knowing mAPmax

50 (or the 0.9 ·mAPmax
50 -mark shown in fig. 5.3) may lead

to wrong conclusions in the presented case which is taken from the scenario in
fig. 5.5. Ending the experiment at t1 clearly determines the red curve (which also
has a higher AUC ) as preferable. Ending the experiment at t2 favors blue by
just looking at the current mAP50. However, the AUC still favors red, since it
takes the complete AL curve into account. This is in line with our qualitative
judgement of the curves when regarded up to t2. We use AUC for calculating
rank correlations in Section 5.4. The raw results of the AUC metric are shown
in the supp. material.

5.4 Experiments

In this section, we present results of experiments with our sandbox environment as
well as established datasets, namely Pascal VOC and BDD100k, in the following
abbreviated as VOC and BDD. We do so by presenting AL curves, summarizing
benchmark results and discussing our observations for different evaluation metrics.
We then show quantitatively that our sandbox results generalize to the same
extent to VOC and BDD as results obtained on those datasets generalize between
each other. In other words, we demonstrate the dataset-wise representativity of
the results obtained by our sandbox. Thereafter, this is complemented with a
study on the computational speedup when using the sandbox instead of VOC or
BDD.

Implementation We implemented our pipeline in the open source MMDetec-
tion [19] toolbox. In our experiments for VOC, U initially consists of “2007 train”
+ “2012 trainval” and we evaluate performance on the “2007 test”-split. When
tracking validation performance to assure convergence, we evaluate on “2007 val”.
Since BDD is a hard detection problem, we filtered frames with “clear” weather
condition at “daytime” from the “train” split as initial pool U yielding 12,454 im-
ages. We apply the same filter to the “val” split and divide it in half to get a test
dataset (882 images for performance measurement) and a validation dataset (882
images for convergence tracking). For the (E)MNIST-Det datasets we generated
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YOLOv3 RetinaNet Faster R-CNN

MNIST-Det 0.962 0.908 0.937
EMNIST-Det 0.959 0.919 0.928
Pascal VOC 0.794 0.748 0.797
BDD100k 0.426 0.464 0.525

Table 5.4: Maximum mAP50 values achieved by the models in table 5.2 on the respective
datasets (standard-size detectors on VOC and BDD; sandbox-size on (E)MNIST-Det).
The entire available training data is used.

Query Training
|Uinit| |Q| εs image resolution T batch size training iters image resolution

Y
O

L
O

v
3 MNIST-Det 100 50 0.5 300× 300 8 4 35,000 300× 300

EMNIST-Det 100 100 0.5 320× 320 8 4 50,000 320× 320
Pascal VOC 200 150 0.5 608× 608 15 4 18,750 [(320, 320), (608, 608)]
BDD100k 1,100 700 0.5 608× 608 8 4 160,000 [(320, 320), (608, 608)]

F
R

C
N

N

MNIST-Det 100 50 0.7 300× 300 8 4 30,000 300× 300
EMNIST-Det 100 100 0.7 320× 320 8 4 30,000 320× 320
Pascal VOC 100 100 0.7 1000× 600 15 4 18,750 1000× 600
BDD100k 1,250 750 0.7 1000× 600 8 4 170,000 1000× 600

R
et

in
aN

et MNIST-Det 100 50 0.5 300× 300 8 4 25,000 300× 300
EMNIST-Det 225 125 0.5 300× 300 8 4 35,000 300× 300
Pascal VOC 550 350 0.5 1000× 600 8 4 60,000 1000× 600
BDD100k 1,000 500 0.5 1000× 600 8 4 175,000 1000× 600

Table 5.5: Overview of important AL hyperparameters for querying data and model
training for all datasets and architectures.

20,000 train images, 500 validation images and 2,000 test images. For reference,
we collect in table 5.4 the achieved performance of the respective models for each
dataset which determines the 90% mark investigated in our experiments.

AL Parameters Table 5.5 gives an overview of chosen hyperparameters for the
AL cycle for all datasets and architectures. Thereby, |Uinit| stands for the num-
ber of initially annotated images, |Q| for the size of the selected query, εs for
the score threshold for query inference (thereby, determining instance-wise uncer-
tainty) and T for number of AL steps. The hyperparameters for training are the
batch size, which is always 4, the number of training iterations, and the image
resolution. It follows from table 5.5 (particularly, |Uinit|, |Q| and T ) that all ar-
chitectures considered in our experiments need the fewest images for our sandbox
datasets MNIST-Det and EMNIST-Det to reach the 90% max performance mark.
Therefore, for the sandbox datasets we chose |Uinit| and |Q| smaller than for VOC
and BDD. Moreover, the sandbox datasets have lower image resolutions, which
leads to faster training and inference times, even if occasionally the training iter-
ations are lower for VOC, e.g., for Faster R-CNN and YOLOv3. Apart from the
latter case, the most iterations to obtain convergence in the training processes
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Figure 5.5: Comparison of YOLOv3 AL curves on three different datasets.

are needed for BDD with up to 175,000. The score threshold of 0.5 for YOLOv3
and RetinaNet, and 0.7 for Faster R-CNN was determined by ablation studies for
EMNIST-Det and then adopted for the other datasets. For all query methods, we
incorporate a class-weighting (the same as in [10]) for computing instance-wise
uncertainty scores.

Benchmark Results We first investigate differences in AL results with respect
to the datasets where we fix the detector. This comparison uses the YOLOv3
detector on Pascal VOC, BDD100k and our EMNIST-Det dataset. We use the
five query baselines described in Section 5.3. We obtain AL curves averaged over
four random seeds and evaluated in terms of queried images as well as in terms of
queried boxes, respectively. fig. 5.5 shows the AL curves with shaded regions indi-
cating point-wise standard deviations obtained by four averaged runs each. The
top column shows performance according to queried images while the second col-
umn shows the same curves but according to queried boxes. We observe that the
uncertainty-based query strategies tend to consistently outperform the random
query in image-wise evaluation. However, when regarding the number of queried
bounding boxes, the separation vanishes or is far less clear. For EMNIST-Det, the
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# queried images # queried bounding boxes
MNIST-Det EMNIST-Det Pascal VOC BDD100k MNIST-Det EMNIST-Det Pascal VOC BDD100k

Y
O

L
O

v
3

Random 327.9 595.6 2236.8 5871.2 1079.1 1825.3 5344.2 116362.1
Entropy 245.5 398.8 1732.8 5389.3 1004.9 1583.0 4695.4 110694.9
Prob. Margin 256.2 429.0 1858.5 4895.2 1013.7 1617.1 4787.6 100376.3
MC Dropout 256.3 416.2 1679.4 5200.5 1115.3 1671.6 4875.1 110427.6
Mutual Inf. 249.8 399.5 1884.2 5912.9 1061.9 1602.7 5527.0 125050.1

F
as

te
r

R
-C

N
N Random 450.0 843.4 1293.7 6434.3 2140.0 2891.7 3125.2 129219.0

Entropy 384.5 561.6 1030.6 5916.7 1608.4 2156.4 2707.0 123008.6
Prob. Margin 408.7 626.2 1036.5 5761.6 1622.9 2285.1 2711.6 117889.3
MC Dropout 390.5 647.4 1127.5 6296.4 1818.1 2773.8 3624.7 130533.8
Mutual Inf. 395.3 572.6 1080.2 6385.7 1695.6 2235.3 3026.5 132855.7

R
et

in
aN

et

Random 390.3 950.4 2555.4 3616.2 1283.8 2957.7 6220.0 69842.0
Entropy (sum) 288.6 687.7 1961.2 2866.5 1292.0 2708.6 5421.6 64939.7
Prob. Margin (sum) 310.8 733.9 2087.3 2901.5 1277.5 2721.5 5445.6 64794.9
MC Dropout (sum) 293.3 749.6 2745.3 3027.7 1317.4 2926.4 7047.9 62395.5
Mutual Inf. (sum) 289.6 719.0 2881.9 3124.9 1248.0 2677.4 7389.0 61712.9

Table 5.6: Amount of queried images and bounding boxes necessary to cross the 90%
performance mark during AL. Lower values are better. Bold numbers indicate the
lowest amount of data per experiment and underlined numbers are the second lowest.

difference between the random and the uncertainty-based queries decreases sub-
stantially, such that only a small difference in box-wise evaluation is visible. For
VOC and BDD, the random baseline falls roughly somewhere in-between the un-
certainty baselines in box-wise evaluation. This indicates that greedy acquisition
with highest sum of uncertainty tends to prioritize images with a large amount of
ground truth boxes. Obtaining many training signals improves detection perfor-
mance in these cases, while giving rise to a higher annotation cost in the bottom
panels. From this observation, we conclude that comparing AL curves based only
on the number images gives an incomplete impression of performance and an-
notation costs. Additionally, instance-wise evaluation should be considered. We
attribute the smoother curve progression in EMNIST-Det and VOC compared
with BDD to the fact that BDD is a far more complicated detection problem
with many small objects. However, the AL curve fluctuations on BDD tend to
average out as we consider the AUC metric. This becomes clear in light of the
results in the following section, where we study generalization across datasets.

In table 5.6 we show additional results. For each detector to reach 0.9 ·mAPmax
50 ,

the table shows the number of images required, resp. the number of boxes per
method. We see the rankings often favor the entropy baseline, however, the over-
all rankings are rather unstable throughout the table. Note in particular, that
for (the arguably hardest detection problem) BDD, random beats the mutual in-
formation for YOLOv3. In the analog setting for Faster R-CNN the image-wise
margin of the mutual information merely becomes slim. This observation also
holds for box-wise evaluation and is more pronounced. In six cases, random beats
some informed method. For RetinaNet, we notice striking ranking differences be-
tween image- and instance-wise evaluation. Particularly, instance-wise evaluation
has rather irregular method rankings between datasets for the RetinaNet detec-
tor. These results yield further evidence that the consideration of only a single
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MNIST-Det EMNIST-Det Pascal VOC BDD100k

Y
O

L
O

v
3

Random 89.28 88.95 72.10 38.22
Entropy 91.53 91.75 73.08 39.28
Prob. Margin 91.03 91.42 72.65 39.35
MC Dropout 91.08 91.42 72.78 38.80
Mutual Inf. 91.05 91.42 72.22 38.30

F
as

te
r

R
-C

N
N Random 83.20 83.92 74.67 47.02

Entropy 85.27 87.15 75.10 48.30
Prob. Margin 85.00 86.62 75.40 48.35
MC Dropout 85.28 86.05 74.25 47.27
Mutual Inf. 85.27 87.07 74.35 47.27

R
et

in
aN

et

Random 82.95 83.70 69.58 43.20
Entropy 85.35 86.15 71.80 43.97
Prob. Margin 84.38 85.78 71.55 43.75
MC Dropout 85.02 85.60 68.17 43.50
Mutual Inf. 85.33 86.10 68.12 43.48

Table 5.7: Mean average precision results per query method for maximal amount of im-
ages selected; higher values are better. Bold numbers indicate the highest performance
per experiment and underlined numbers are the second highest.

evaluation metric for active learning performance is insufficient.

We conclude that in order to assess the viability of a method, AL curves should
be viewed from both angles: performance over number of images and over number
of boxes queried.

Further Benchmark Results Table 5.7 shows the mAP50 achieved after the final
query for each method and detector-dataset constellation in the style of table 5.6.
For each AL curve, the final performance (most queried images allowed according
to table 5.5) is independent of an image- or instance-wise point of view. Overall,
the entropy baseline is consistently among the best two methods, however, the
overall rankings show a medium degree of variance across datasets and across
detectors especially when regarding instance-wise evaluation in table 5.6. Com-
paring vertical sections through AL curves shows overall roughly similar behavior
as the results in table 5.6 (horizontal sections), however, we observe differences
in the method rankings in terms of amount of data queried vs. final detection
performance (e.g., Faster R-CNN on the MNIST-Det dataset).

In table 5.8 we collect the values of the AUC metric. Note, that the AUC
metric scales with the t-axis, i.e., results between different datasets can only be
compared qualitatively. The same is true for comparisons between image- and
instance-wise evaluations. When comparing with table 5.6, we see a high degree
of ranking similarity with the amount of data required to cross the 90%-mark in
both, image- and instance-wise evaluation. We conclude with previous findings
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# queried images # queried bounding boxes
MNIST-Det EMNIST-Det Pascal VOC BDD100k MNIST-Det EMNIST-Det Pascal VOC BDD100k

Y
O

L
O

v
3

Random 290.9 543.3 1645.1 1691.9 1503.8 2438.7 4274.3 37327.3
Entropy 299.6 577.4 1685.2 1728.8 1519.0 2491.4 4324.6 37816.6
Prob. Margin 298.1 571.9 1664.5 1733.6 1516.2 2485.3 4303.4 37931.1
MC Dropout 298.3 571.8 1684.9 1727.9 1503.8 2465.5 4284.6 37550.7
Mutual Inf. 299.1 578.0 1666.8 1716.1 1509.4 2482.6 4233.2 37514.5

F
as

te
r

R
-C

N
N Random 273.0 542.6 1207.9 2220.1 1448.6 2643.7 3121.5 47767.9

Entropy 281.3 567.1 1237.6 2266.7 1465.2 2703.6 3168.8 48167.8
Prob. Margin 279.7 561.3 1236.4 2274.7 1465.2 2692.5 3168.3 48449.2
MC Dropout 280.5 557.0 1227.0 2247.3 1451.4 2619.7 3052.8 47718.9
Mutual Inf. 280.2 566.6 1230.5 2247.8 1457.5 2697.4 3123.8 47714.8

R
et

in
aN

et

Random 270.4 677.5 1743.6 1380.5 1438.2 2896.9 4614.9 33141.5
Entropy 279.1 701.9 1819.7 1421.6 1446.2 2932.4 4714.6 33431.4
Prob. Margin 276.8 696.5 1802.8 1414.7 1445.6 2928.4 4722.5 33339.5
MC Dropout 279.0 696.3 1730.6 1406.2 1445.6 2915.8 4535.9 33452.9
Mutual Inf. 278.5 699.3 1734.7 1400.8 1449.1 2940.7 4543.9 33495.2

Table 5.8: Area under AL curve results per query method for maximal amount of data
(images/bounding boxes) selected; higher values are better. Bold numbers indicate the
highest AUC per experiment and underlined numbers are the second highest.

on the rank correlations, that even in a rather late evaluation (when some fixed
reference mark in performance has already been crossed), the AUC shows more
similarity with the 90% ranking than raw detection performance (table 5.7). For
instance, compare the Faster R-CNN row from table 5.6 with the corresponding
row in table 5.8.

Further Image-Aggregation Methods Figure 5.6 shows test mAP50 for differ-
ent image aggregations, namely sum, average and maximum, for the RetinaNet
on EMNIST-Det. The left panels show mAP50 scores as a function of the number
of queried images while the right panels show mAP50 scores as a function of the
number of queried instances. For all four uncertainty baselines, the sum domi-
nates the maximum and the maximum dominates the average in the image-wise
evaluation. Nevertheless, the average remains consistently better than random,
except for mutual information, where both curves are almost on par. A clearly
different course is obtained when considering the instance-wise evaluation. For the
same number of images queried, the sum prefers images with many boxes, whereas
the average queries images with even fewer boxes than the random baseline. In
terms of performance, the average outperforms the sum and maximum, which are
tied, and the random baseline for entropy and probability margin. For mutual
information, the average and sum are best, whereas for Monte-Carlo dropout all
curves are hardly distinguishable from each other. Comparable behaviors could
also be observed on the other architectures and datasets.

Investigations of the kind presented here under normal conditions (using a full-
scale standard object detector and a benchmark dataset) would require weeks of
compute time and yield valuable information on sensitive parameters for querying.
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Figure 5.6: Ablation study on the aggregation method for RetinaNet on the EMNIST-
Det dataset.
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Figure 5.7: Intensity diagrams of rank correlations between the mAP50, resp. cumulative
AUC and the final rankings obtained at the 0.9 ·mAPmax

50 -mark.

Using our sandbox environment makes extensive ablation studies of hyperparam-
eters possible within a few days.

Generalization of Sandbox Results Instead of evaluating the pure performance
at each AL step we have proposed computing the corresponding AUC as a more
robust metric of AL performance. With respect to the final method ranking
at mAPmax

50 , we compute Spearman rank correlations with the mAP50 metric
at each point t. We compare these with the analogous correlations with the
respective AUC at each point. Figure 5.7 shows intensity diagrams representing
the rank correlations both, in terms of image-wise and box-wise evaluation. The
t-axes are normalized to the maximum number of images, resp. bounding boxes
queried, color indicates the Spearman correlation of the rankings. In fig. 5.7
both, mAP50 and AUC show overall high correlation with the method ranking,
especially towards the end of the curves. We see that the correlations for AUC
fluctuates far less. Moreover, the average correlation across entire AL curves tends
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Figure 5.8: Curves of rank correlations between the cumulative AUC and the final
rankings at the 90% max performance mark for the RetinaNet (left half) and the Faster
R-CNN (right half) detector.

to be larger for AUC than mAP50. Ranking correlations for mAP50 and AUC
for RetinaNet and Faster R-CNN, see fig. 5.8, tend to show similar behavior as
for the YOLOv3 detector. The AUC fluctuates less then the mAP50 and both
metrics show overall high correlation with the 90% max performance ranking.
For the image-wise evaluation, both metrics have correlations greater or equal
than 0.5. In the instance-wise evaluation, on the other hand, the correlations
increase only gradually. Even though the average correlations are identical for
the mAP50 and the AUC , the latter is clearly more stable with respect to the
90% max performance ranking and has a higher minimum correlation. Note
that the final ranking of either method does not need to be perfectly correlated
with the mAPmax

50 -ranking for two reasons. Firstly, the latter does not take into
consideration early performance gains and secondly, the mAPmax

50 -ranking is a
horizontal section through the curves while mAP50 and AUC are vertical sections.
We conclude that AUC tends to be highly correlated with the mAPmax

50 -ranking
and is more stable with respect to t than mAP50.

Next, we study comparability of AL experiments between the sandbox setting
and full-complexity problems (VOC and BDD). To this end, we consider the
cross-dataset correlations of the AUC score when fixing the detection architec-
ture. Figure 5.9 shows correlation matrices for image- and instance-wise evalu-
ation on the left for the YOLOv3 detector. VOC-BDD correlations tend to be
similar to EMNIST-Det-VOC and EMNIST-Det-BDD correlations in image-wise
evaluation. However, when correcting for variance in instance-count per image
in box-wise evaluation on the right, we find correlations are generally high. In
particular, results for BDD and VOC are roughly equally correlated with results
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Figure 5.9: Ranking correlations between AUC values for the YOLOv3 detector (image-
wise left and box-wise right).
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Figure 5.10: Ranking correlations between AUC values for the RetinaNet and Faster
R-CNN detector, left: image-wise; right: instance-wise evaluation.

on any other dataset. Figure 5.10 shows correlation matrices for the RetinaNet
and Faster R-CNN. The image-wise comparison shows the highest correlation
of 0.7 when comparing MNIST-Det, EMNIST-Det and BDD respectively. VOC
has the highest correlation with BDD of 0.6, but the correlation with EMNIST-
Det is similar with 0.5. No conclusions can be drawn between the rankings of
MNIST-Det and VOC due to the low correlation of 0.1. In the instance-wise
comparison, MNIST-Det has very high correlations of 0.9 with EMNIST-Det and
BDD, and the comparability of the rankings of EMNIST-Det and BDD is also
given by a correlation of 0.7. However, it is again noticeable that VOC is hardly
comparable with any other dataset. This could be attributed to some dataset
characteristics. On one hand, we observed many missing labels when looking
at the VOC data (cf. fig. 5.11). On the other hand, the instance sizes of BDD
and EMNIST-Det/MNIST-Det seem to be rather comparable as opposed to the
instance sizes in VOC. We conclude that comparing methods in the simplified
setting yields a similar amount of information about relative performances of AL
as the full-complexity setting.
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Compute Time AL for advanced image perception tasks tends to be highly time
intensive, compute-heavy and energy consuming. This is due to the fact that at
each AL step the model should be guaranteed to fit to convergence and there
are multiple steps of several random seeds to be executed. Figure 5.12 shows the
time per AL step used in our setting when run on a Nvidia Tesla V100-SXM2-
16GB GPU with a batch size of four. The time-axis is scaled logarithmically, so
the experiments on EMNIST-Det are always faster by at least half an order of
magnitude. Training of YOLOv3 on VOC does not start from COCO-pretrained
weights (like YOLOv3+BDD) since the two datasets VOC and COCO are highly
similar. In this case, we opt for an ImageNet [137]-pretrained backbone like for
the other detectors. Overall, we save time up to a factor of around 14 for VOC
and around 32 for the BDD dataset. Translated to AL investigations, this means
that the effects of new query strategies can be evaluated within half a day on a
single Nvidia Tesla V100-SXM2-16GB.

5.5 Conclusion

In this cahpter, we investigated the possibility of simplifying the active learning
setting in object detection to accelerate development and evaluation. We found
that for a given detector, active learning results, in particular on instance level,
generalize well between different datasets, including (E)MNIST-Det. Particu-
larly, we find a representative degree of result comparability between our sandbox
datasets and full-complexity active learning. In our evaluation, we included a
more direct measurement of annotation effort in counting the number of boxes in
addition to queried images. Meanwhile, we can save more than an order of mag-
nitude in total compute time by the down-scaling of the detector and reducing
the dataset complexity. Our environment allows for consistent benchmarking of
active learning methods in a unified framework, thereby improving transparency.
We hope that the present sandbox environment, findings and configurations along
with the implementation will lead to further and accelerated progress in the field
of active learning for object detection.
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5.5 Conclusion

Figure 5.11: Annotation examples (full annotation!) from the Pascal VOC [38] test
dataset.
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Figure 5.12: Utilized time for one AL step (training until convergence + evaluating the
query) for investigated settings in hours.
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CHAPTER 6

IDENTIFYING LABEL ERRORS IN OBJECT

DETECTION DATASETS BY LOSS INSPECTION

The presented contents in the following chapter are taken almost word-by-word
from [142].

6.1 Introduction

Nowadays, the predominant paradigm in computer vision is to learn models from
data. The performance of the model largely depends on the amount of data and
its quality, i.e., the diversity of input images and label accuracy [40, 73, 75, 79, 87].
Deep neural networks (DNNs) are particularly data hungry [154]. In this chapter,
we focus on the case of object detection where multiple objects per scene belonging
to a fixed set of classes are annotated via bounding boxes [38].

In many industrial and scientific applications, the labeling process consists of
an iterative cycle of data acquisition, labeling, quality assessment, and model
training. Labeling data is costly, time-consuming and error-prone, e.g., due to
inconsistencies caused by multiple human labelers or a change in label policy
over time. Therefore, at least a partial automation of the label process is de-
sirable. One research direction that aims at this goal is automated label error
detection [33, 113, 132].

The extent to which noisy labels affect the model performance is studied by [12,
167]. Wu et al. [167] observe that the model is able to tolerate a certain amount of
missing annotations in training data without losing too much performance on Pas-
cal VOC and Open Images V3 test sets. In contrast, Buttner et al. [12] shows that
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection

inaccurate labels in terms of annotation size in training data yields to significant
decrease of test performance. Other methods model label uncertainty [108, 127]
or improve robustness w.r.t. noisy labels [16, 43, 92, 186].

Up to now, automated detection of label errors has received less attention. There
exist some works on image classification datasets [113, 114, 159], one work on se-
mantic segmentation datasets [132] and some works for object detection [70, 82].
Label errors may affect generalization performance, which makes their detection
desirable [114]. Furthermore, there is business interest in improving and acceler-
ating the review process by partial automation.

Here, we study the task of label error detection in object detection datasets by
a) introducing a benchmark and b) developing a detection method and compare
it against four baselines. We introduce a benchmark by simulating label errors
on the BDD100k [182] and EMNIST-Det (Chapter 5) dataset. The latter is
a semi-synthetic dataset consisting of EMNIST letters [26] pasted into COCO
images [97] of which we expect to possess highly accurate labels. The types of label
errors that we consider are missing labels (drops), correct localization but wrong
classification (flips), correct classification but inaccurate localization (shifts), and
labels that actually represent background (spawns). We address the detection of
these errors by a novel method based on monitoring instance-wise object detection
loss. We study the effectiveness of our method in comparison to four baselines.
Then, we demonstrate for commonly used object detection test datasets, such as
BDD100k [182], MS-COCO [97], Pascal VOC [38] and KITTI [46], and also for
a proprietary dataset on car part detection by the company ControlExpert that
our method detects label errors by reviewing moderate sample sizes of 200 images
per dataset. Our contributions can be summarized as follows:

• We introduce a novel method based on the instance-wise loss for detecting
label errors in object detection.

• We introduce a benchmark for identifying four types of label errors on
BDD100k and EMNIST-Det.

• We apply our method to detect label errors in commonly used and propri-
etary object detection datasets and manually evaluate the error detection
performance for moderate sample sizes.

To contribute to future development of label error detection methods and po-
tentially cleaning up object detection datasets, we provide an implementation of
our benchmark, method and baselines as well as label files that include simulated
label errors and model checkpoints that allow to reproduce of our results, see
GitHub.
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6.2 Related Work

Figure 6.1: Example image from the Pascal VOC 2007 test dataset with two labeled
boats marked by the blue boxes and multiple unlabeled boats.

6.2 Related Work

The influence of noisy labels in the training as well as in the test data is an active
and current research topic. The labels for commonly used image classification
datasets are noisy [114] and this also applies to object detection. Figure 6.1
shows an image from the Pascal VOC 2007 (VOC) test dataset containing just
two labeled boats, but clearly more can be seen.

For the task of image classification, some learning methods exist that are more
robust to label noise [50, 56, 67, 76, 113, 122, 165, 170, 185]. Moreover, the
task of label error detection has been tackled in [21, 114] and theoretically un-
derpinned in [113]. Chen et al. [21] filter whole samples with noisy labels, but
individual label errors are not detected. Northcutt et al. present label errors in
image classification datasets and study to which extent they affect benchmark
results [114] followed by the introduction of the task of label error detection [113].
The latter introduces a confident learning approach, assuming that the label er-
rors are image-independent. Then, the joint distribution between the noisy and
the true labels with class-agnostic label uncertainties is estimated and utilized to
find label errors. This method allows finding label errors on commonly used im-
age classification (i.e., MNIST or ImageNet) and sentiment classification datasets
(Amazon Reviews), resulting in improved model performance by re-training on
cleaned training data. This line of works has been recently extended to the task
of multi-label classification in [159], where a single object is shown per image but
may carry multiple labels.

For object detection, Wu et al. [167], as well as Xu et al. [169] study how noisy
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection

training labels affect the model performance, observing that the model is reason-
ably robust when dropping labels. To counter label errors in object detection,
methods that model label uncertainty [108, 127] or more robust object detectors
have been developed [12, 43, 77, 92, 169, 186]. Buttner et al. [12] simulate label
errors and introduce a co-teaching approach for more robust training with noisy
training data. For the task of label error detection, Koksal et al. [82] simulate
different types of label errors in video sequences. Predictions and labels of con-
secutive frames are compared and then manually reviewed to eliminate erroneous
annotations. Hu et al. [70] introduce a probability differential method (PD) to
identify and exclude annotations with wrong class labels during training.

For semantic segmentation, a benchmark is introduced by Rottmann et al. [132] to
detect missing labels. For this purpose, uncertainty estimates are used to predict
for each false positive connected component whether a label error is present or
not. Detection is performed by considering the discrepancy of the given (noisy)
label and the corresponding uncertainty estimate.

Our work introduces the first benchmark with four types of label errors for label
error detection methods on object detection datasets as well as a label error detec-
tion method (that detects all four types of label errors) and a number of baselines.
The label error detection methods simulate a) different types of label errors and
detect these with the help of a tracking algorithm [82] for images derived from
video sequences or b) class-flips and identify these via a probability differential
(PD) [70], where, however, the focus is on training. For our benchmark, we ran-
domly simulate four types of label errors and detect them simultaneously with a
new and four baseline methods, including PD. In our method, the discrepancy
between the prediction or expectation of the network and the actual labels is
used to find label errors. This discrepancy is determined by the classification and
regression loss from the first and second stage of the detector. This allows to find
not only simulated but also real label errors on commonly used object detection
test datasets.

6.3 Label Error Detection

In this section we describe our label error benchmark as well as the setup and
evaluation for real label errors on commonly used object detection test datasets
and a proprietary dataset. We describe which datasets are used, which types
of label errors are considered and the way we simulate label errors inspired by
observations that we made in commonly used datasets and by related work. We
then introduce our detection method as well as four additional baseline methods.
This is complemented with evaluation metrics used to compare the methods with
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each other on our label error benchmark and the evaluation procedure for com-
monly used test datasets where we manually review the findings of our method
for moderate sample sizes.

Label Error Benchmark

In the following, we distinguish between the label error benchmark and the de-
tection of real label errors, where in the former, label errors are simulated (and
therefore known) and the performance of the five different methods are evalu-
ated automatically. In the latter case, label errors are not simulated but real and
therefore automated evaluation is impossible as the real label errors are unknown.
To enable a reliable evaluation, only datasets containing almost no real label er-
rors are used for the benchmark. We observe that commonly used datasets in
object detection, such as MS-COCO, Pascal VOC or KITTI, contain significant
amounts of label errors, thus they are not suitable for the benchmark. Nev-
ertheless, to demonstrate the performance of our instance-wise loss method on
these datasets, a moderate sample size of 200 label error proposals are manually
reviewed and counted for each dataset.

Datasets

For our benchmark, we use the semi-synthetic EMNIST-Det dataset and BDD100k,
in the following referred to as BDD. EMNIST-Det consists of 20,000 training and
2,000 test images. To have the best possible labels for BDD, we filter the training
and validation split, such that we only use daytime images with clear weather
conditions. This results in 12,454 training images and the validation data is split
into equally-sized test and validation sets, each consisting of 882 images.

Simulated Label Errors

We consider four different types of label errors: missing labels (drops), correct lo-
calization but wrong classification (flips), correct classification but inaccurate
localization (shifts), and labels that actually represent background (spawns).
Any dataset is equipped with a set of G labels, see (2.55) and (2.56). Let
I = {1, . . . , G} be the set of indices of all boxes bi ∈ Y , i = 1, . . . , G. We
now describe all types of label errors applied to Y , and we make the assumption
that a single label is only perturbed by one type of label error instead of multiple
types. We choose a parameter γ ∈ [0, 1] representing the relative frequency of
label errors.
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(a) Label Drop (b) Class Flip (c) Label Spawn (d) Loc. Inaccuracy

Figure 6.2: Examples of the different types of simulated label errors. The images are
from the EMNIST-Det test dataset (Chapter 5).

Drops For dropping labels, we randomly choose a subset Id of I with cardinality
|Id| = bγ

4
· Gc. We drop all labels Yd = {bi : i ∈ Id} and denote I\d = I \ Id.

Analogously, Y\d = Y \ Yd.

Flips For flipping class labels, we randomly choose a subset If of I\d with car-

dinality |If | = bγ
4
· Gc and copy Ỹf = Yf = {bi : i ∈ If}. Then, we randomly

flip the class of every label in Ỹf to a different label. We denote I\f = I\d \ If
and Y\f = (Y\d \ Yf ) ∪ Ỹf .

Shifts To insert shifts, we change the localization of labels. We randomly choose
a subset Ish of I\f with cardinality |Ish| = bγ

4
· Gc and copy Ỹsh = Ysh = {bi :

i ∈ Ish}. For the shift of a box b̃i ∈ Ỹsh, the new values ỹ, h̃ are determined
analogously to x̃ = N (x, 0.15 · w) and w̃ = N (w, 0.15 · w) drawn from a normal
distribution with itself as the expected value and 0.15·w as the standard deviation.
To avoid the shift being too small or too large, the parameters are repeatedly
chosen until the intersection over union (IoU ) of the original label bi ∈ Ysh and
b̃i ∈ Ỹsh is in the interval of [0.4, 0.7], ∀i = 1, ..., bγ

4
·Gc. We denote I\sh = I\f \Ish

and Y\sh = (Y\f \ Ysh) ∪ Ỹsh.

Spawns For spawning labels, we randomly choose a subset Isp of I\sh with

cardinality |Isp| = bγ4 ·Gc and copy Ỹsp = Ysp = {bi : i ∈ Isp}. Then, we assign

every label b̃i ∈ Ỹsp randomly to another image. Since in our experiments all
images in a dataset have the same resolution, this ensures that objects do not
appear in unusual positions or outside of an image. For instance, a car in BDD is
more likely to be found on the bottom part of the image rather than in the sky.
We denote the set of noisy labels as Ỹ = Y\sh ∪ Ỹsp.
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One example per label error type is shown in fig. 6.2. Note that the number of
labels G is unchanged as the number of drops and spawns is the same.

Baseline Methods

The four baselines that we compare our instance-wise loss method with are based
on a) inspecting the labels without the use of deep learning, b) the box-wise
detection score c) the classification entropy (2.82) of the two-stage object detectors
and d) the probability differential from [70].

Naive Baseline We introduce a naive baseline to show the significant improve-
ment of deep learning in label error detection for object detection over manual
label review. We assume that all label errors can be smoothly found by taking
a single look at all existing noisy labels and the (actually unknown) drops, i.e.,
by performing b(1 + γ

4
) · Gc operations. This simplified assumption is of course

unrealistic, however the corresponding results can serve as a lower bound for the
effort of manual label review.

Detection Score Baseline The detection score baseline works as follows: For
a given image from the set of all images of the dataset x ∈ X , a neural net-
work predicts a fixed number N0 of bounding boxes for the first stage Ba, see
(2.63). Then, we add the boxes of the labels as proposals for the second stage
to ensure that at least one prediction exists for each label, which is particularly
important for the detection of spawns. For this purpose, each ground truth label
from Y is assigned with a detection score of ŝ0 = 1. After adding the labels
to Ba, only those N1 boxes that remain after class-independent non-maximum
suppression (NMS) and score thresholding on ŝ0 with sε ≥ 0, get into the sec-
ond stage B = {(x̂i, ŷi, ŵi, ĥi, ŝi0) : i = 1, . . . , N1}. After box refinement and
classification as well as NMS on the detection score ŝi2, N2 label error proposals
remain. Here, ŝi2 is the detection score of the detection head and unlike ŝi0, ŝ

i
2

represents not only the presence of an object, but also takes the class probabili-
ties of the predicted object into account. The remaining N2 label error proposals
BNMS = {(x̂i, ŷi, ŵi, ĥi, ŝi2, p̂i1, . . . , p̂iC) : i = 1, . . . , N2}, are defined by the local-

ization (x̂i, ŷi, ŵi, ĥi), the detection score ŝi2 and the class probabilities p̂i1, . . . , p̂
i
C .

The predicted class is given by ĉi = argmaxk=1,...,C p̂
i
k. Score thresholding is omit-

ted here, or the score τ used for this is equal to 0, since τ > 10−4 would suppress
most of the label error proposals that detect spawns. The detection score of these
proposals is mostly very close to zero unless a second true label is nearby. After
inferring each image x ∈ X as described above, we get label error proposals for
the whole dataset by

⋃
x∈X
BNMS.
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Add GT as Proposals
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Figure 6.3: Visualization of our instance-wise loss method for detecting label errors.
The red label indicates a spawn, the blue one a drop and the yellow one a correct label.

Entropy Baseline The entropy baseline follows the same procedure, only the
NMS in the first and second stage are based on the respective box-wise entropy
(2.82) rather than the detection score.

Probability Differential Baseline For the PD baseline from [70], we do not
add the boxes of the labels as proposals. Furthermore, score thresholding and
NMS is not applied, such that every box b̂ ∈ Ba also remains in BNMS. After
assigning every label with sufficiently overlapping predictions, the probability
differential (PD) for every label b ∈ Y with class c and the m assigned predictions
b̂i (i = 1, . . . ,m) is defined as:

PD(b) =

m∑
i=1

(
1 + max

k∈{1,...,C}\{c}
p̂ik − p̂ic

)
2m

. (6.1)

The PD of a label is in [0, 1] and intuitively, the more the probabilities of the
predictions and the class of the label differ (higher PD) the more likely a label
error is present. Note, that drops are always overlooked, since the probability
differential is defined only for existing ground truth boxes and the drops are not
part of the noisy labels.

Instance-wise Loss Method

Our method to detect the introduced label error types is based on an instance-
wise loss for two-stage object detectors. The NMS is no longer based on the
detection score or the entropy, but on the box-wise loss of the respective stage.
Every prediction b̂0 ∈ Ba is assigned with a region proposal loss (LRPN ), which is
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Figure 6.4: Illustration of the probabilistic statement about predicted confidences con-
ditioned to correct and incorrect given labels. PAC learning leads to concentration of
the confidences around 1−pF and pF

C−1 , respectively. The separation on the confidences
carries over to the cross-entropy loss.

the sum of a classification (binary cross-entropy; (2.64)) and regression (smooth-
L1; (2.67)) loss for the labels and the prediction itself. The computation of the
loss is identical to the one in training. Since not all labels are associated with a
proposal after the first stage, i.e., the model may predict only background near
a label, we add the labels themselves to the set of label error proposals. After
box refinement and classification, every box b̂1 ∈ B is assigned with a region of
interest loss (LROI ), which is the sum of a classification (cross-entropy; (2.69))
and regression (smooth-L1) loss for the labels and the prediction itself. Then
LRPN and LROI are summed up to obtain an instance-wise loss score. A sketch of
our method is shown in fig. 6.3. We can find the dropped blue label for “N” since
the predictions near the object should have a high detection score, resulting in a
high first stage classification loss. The spawned red label is assigned with a high
classification loss from the first and second stage, since the assigned predictions
should have a score close to zero in the first stage and an almost uniform class
distribution in the second stage. Whether the yellow label is a flip is irrelevant
for the first stage, since the loss should be small either way. If the box is classified
correctly according to the associated label, there is a large classification loss for
a flip and a small one otherwise. The shifts are addressed by the first and second
stage regression loss.

Theoretical Justification Our goal is to show that the flip of a test label is sta-
tistically captured by the cross-entropy loss evaluated at a deep neural network’s
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(DNN1) prediction on a test sample x and the corresponding label y.

The rough intuition for this statement is that a probably approximate correct
learner [147] (PAC-learner) p̂ has probabilistic bounds for having predictive dis-
tribution close to the data-generating distribution p. Therefore, sufficient data
sampling and empirical loss minimization will lead to statistical concentration
of confidences p̂ around p. If p does not suffer from too strong label noise, we
obtain separation between confidences on incorrect and confidences on correct
labels. This separation then carries over to the negative log-likelihood (i.e., cross-
entropy) loss by monotony.

We assume data points (x, y) ∼ p following some noisy data generating distri-
bution p, where x ∼ Px follows a marginal distribution Px. In practice, training
and test data originate from the same data pool and we do not see any reason
to assume that they follow different labeling procedures. However, it is sufficient
to require that for testing data (x, y), x follows the same marginal distribution
x ∼ Px. Our proof builds on the existence of a true labeling function f : x 7→ y
and the assumption that the data distribution p introduces stochastic flips of
labels that occur with a fixed uniform rate pF ∈ [0, 1). This flip probability
pF is uniformly distributed over all C − 1 incorrect classes which are not f(x).
Furthermore, pF leads to the following constraints on p when conditioned to x:

p(f(x)|x) := 1− pF, p(y|x) := pF/(C − 1) ∀y 6= f(x). (6.2)

A statistical model p̂ = p̂(y|x) PAC-learns classification on samples of the (noisy)
data generating distribution p = p(y|x). In the present treatment, we assume
PAC-learning with respect to the Kullback-Leibler (KL) divergence

DKL(p(·|x)‖p̂(·|x)) = −
∫

log

(
dp̂(y|x)

dp(y|x)

)
p(y|x) dy. (6.3)

In the following our goal is to show probabilistic statements about the cross-
entropy loss

`CE(p̂(x)‖y) := −
C∑
c=1

yc · log(p̂c(x)) (6.4)

on test data pairs (x, y). We show that the loss is above a certain threshold if an
incorrect label is given and below some threshold in case of a correct, non-flipped
label. Non-overlapping intervals indicate that the statistical separation between
losses given correct and false labels seen in our experiments can be explained
theoretically.

We assume PAC-learnability for the proof. This assumption can be justified via

1Technically, it is not required that the model is a DNN as long as PAC-learnability is fulfilled.
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the error decomposition of empirical risk minimization for the KL divergence over
the hypothesis space H with training data {(x1, y1), . . . , (xn, yn)}:

D(p‖p̂) :=Ex∼px [DKL(p(·|x)‖p̂(·|x))]

≤ inf
h∈H

D(p‖h) +

(
1

n

n∑
j=1

`CE(p̂(xj)‖yj)− inf
h∈H

`CE(h(xj)‖yj)
)

+ 2 · sup
h∈H

∣∣∣∣∣D(p‖h)− 1

n

n∑
j=1

`CE(h(xj)‖yj)−H(p(·|x))

∣∣∣∣∣ < ε

(6.5)

where H = −∑C
c=1 p(c|x) · log(p(c|x)) is the entropy of the data generating dis-

tribution2. The first term is the model misspecification error given by H . In
practice, we assume an expressive DNN with a large amount of capacity (appeal-
ing to universal approximation) which allows for this error to be negligible. In
particular, in this case, no restrictions need to be made in the choice of H . The
second term measures the error of the learning algorithm w.r.t. an empirical risk
minimizer h. Similarly to the term, an expressive DNN trained to convergence
leads to small contributions by this term. Lastly, the third term is the sampling
error made as compared to the loss D(p‖h) in the true distribution. The third
term can be controlled by application of concentration inequalities and chaining
under certain assumptions (see [161]) which is why the sum of the three terms
can be made smaller than some fixed ε > 0 given sufficient amount of data.

Proposition 1 (Statistical separation of the cross-entropy loss). Let training and
testing labels be given under a stochastic flip in p(·|x) with probability pF as above,
let the label distribution p(·|x) be PAC-learnable by the hypothesis space of p̂(·|x)
w.r.t. DKL (to precision ε and confidence 1−δ) and let κ > 0. If pF <

C−1
C

(1−2κ),
we obtain strict separation of the loss function

`CE(p̂(x)‖f(x)) < − log(1− pF − κ) < − log(κ+ pF
C−1) < `CE(p̂(x)‖ỹ) (6.6)

for any incorrect label ỹ 6= f(x) with probability 1 − δ over chosen training data
and with probability 1− 2ε

κ2
over the choice of x.

Proof. We aim at bounding maxy=1,...,C |p(y|x) − p̂(y|x)| by the total variation
distance. PAC-learnability asserts that given enough data, the p̂-distributions
illustrated in Fig. 6.4 are concentrated around 1− pF for true labels and pF

C−1 for
incorrect labels. In particular, PAC-learnability implies

Ex∼px [DKL(p(·|x)‖p̂(·|x))] < ε (6.7)

2Together with the cross-entropy `CE, the entropy H yields an unbiased risk function for DKL.
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with probability 1 − δ over the choice of training data. Let κ > 0. From this
PAC result, we derive bounds for the probability of maxy=1,...,C |p(y|x) − p̂(y|x)|
exceeding κ via the total variation distance. We have

Px(‖p(·|x)− p̂(·|x)‖TV ≥ κ) ≤Px(
√

2DKL(p(·|x)‖p̂(·|x)) ≥ κ)

≤Px
(
DKL(p(·|x)‖p̂(·|x)) ≥ κ2

2

)
≤ 2

κ2
Ex∼px [DKL(p(·|x)‖p̂(·|x))] <

2ε

κ2

(6.8)

with probability 1−δ over the choice of training data. Here, the first inequality is
the application of Pinsker’s inequality and the third due to the Markov inequality.

Assume that we are given a correct label y for x, then with probability 1− δ over
training data and with probability 1− 2ε

κ2
over sampling x, we have that

|p(y|x)− p̂(y|x)| = |(1− pF)− p̂(y|x)| ≤ max
y
|p(y|x)− p̂(y|x)| (6.9)

≤‖p(·|x)− p̂(·|x)‖TV < κ. (6.10)

This implies p̂(y|x) > 1 − pF − κ and therefore, by monotony of the logarithm
`CE(p̂(y|x)‖y) < − log(1− pF − κ). Similarly, if y is any incorrect label, we have
the probabilistic statement

|p(y|x)− p̂(y|x)| =
∣∣∣∣ pF
C − 1

− p̂(y|x)

∣∣∣∣ ≤ max
y
|p(y|x)− p̂(y|x)| < κ, (6.11)

i.e., p̂(y|x) < κ + pF
C−1 and we have `CE(p̂(x)‖y) > − log

(
κ+ pF

C−1

)
. Finally, we

obtain separability of losses with true versus false labels in probability if

1− pF − κ > κ+
pF

C − 1
⇐⇒ pF <

C − 1

C
(1− 2κ). (6.12)

Evaluation Metrics

Ignoring that a few natural label errors exist in EMNIST-Det and BDD, we
benchmark the five methods introduced in above by means of our label error
simulation. To this end, we take the label error proposals of the respective method
and the set of original labels Y and decide for every proposal whether it is a
label error, which corresponds to a true positive (TPl), or no label error, which
corresponds to a false positive (FPl). Label errors that are not detected are called
false negatives (FNl). A proposal of a label error detector is a TPl if the IoU
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Figure 6.5: Example image from the CE test data with labels and a missing “Mirror-
Right”.

between the proposal under consideration and a noisy label on the image is greater
or equal to a threshold 1 ≥ α > 0. Here, the noisy label categorizes what type of
label error is detected by the proposal. If the IoU is less than α, the proposal is
a FPl . After determining this for each proposal from the dataset, the area under
the receiver operator characteristic curve (AUROC , see [30]) and F1 values, which
is the harmonic mean of precision and recall (see [32]), is calculated according to
the decision between TPl and FPl . F1 values are determined with thresholding
on the score of the respective method (loss/detection score/entropy/PD). We
always choose the optimal threshold, i.e., the threshold at which the F1 value is
maximized (max F1). Note, since the naive baseline considers images and thus
label error proposals in random order, the associated AUROC values are always
0.5.

Detection of Real Label Errors

For commonly used datasets we proceed as follows. We consider for each dataset
200 proposals of our method with highest loss and manually flag them as TPl or
FPl , based on the label policy corresponding to the given dataset. Note that we
can still compute precision values, but we are not able to determine AUROC or
max F1 values since the number of total label errors is unknown. Since several
label errors can be detected with one proposal, precision describes the ratio of pro-
posals with at least one label error and the total number of proposals considered,
i.e., 200.
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection

Dataset Backbone mAP50 mAP
(∗)
50

EMNIST-Det Swin-T 98.2 98.0
EMNIST-Det ResNeSt101 96.4 95.2

BDD Swin-T 52.1 50.3
BDD ResNeSt101 56.8 52.9

COCO Swin-T 54.1
KITTI Swin-T 38.6
VOC Swin-T 83.3
CE Swin-T 70.0

Table 6.1: Validation of object detection performance on our datasets. (∗) indicates
learning with simulated label errors (γ = 0.2).

6.4 Numerical Results

In this section we study label error detection performance on our label error bench-
mark as well as for real label errors in BDD, VOC, MS-COCO (COCO), KITTI
and the proprietary dataset from ControlExpert (CE). The benchmark results are
presented in terms of AUROC and max F1 values for the joint evaluation of all
label error types, i.e., when all label error types are present simultaneously. For
the latter, we show how many real label errors we can detect among the top-200
proposals for each real-world dataset. For an exemplary image of the CE dataset,
see fig. 6.5. The labels divide the car into parts, such as the two wheels “Wheel-
FrontRight” and “WheelRearRight” as well as doors, roof, etc. The example also
includes a drop with the missing mirror “MirrorRight”.

Implementation Details

We implemented our benchmark and methods in the open source MMDetection
toolbox ([19]). Our models are based on a Swin-T transformer and a ResNeSt101
backbone, both with a CascadeRoIHead as the object detection head, with a total
number of trainable parameters of approximately 72M and 95M. As hyperparam-
eters for the label error benchmark we choose relative frequency of label errors
γ = 0.2, the value for score thresholding after the first stage sε = 0.25, the value
for score thresholding after the second stage τ = 0 and the IoU -value α = 0.3
from which a proposal for a label error is considered a TPl . We show perfor-
mance results for the respective models and for each dataset in table 6.1. The
upper half shows results on original (mAP50) and noisy training data (mAP∗50),
for which γ = 0.2 also holds. The bottom half of the table presents performance
of the models that we use for predicting label errors on real datasets. This hap-
pens in each case based on a model trained on unmodified/original labels and the
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6.4 Numerical Results

Dataset Batch Size Image Resolution # Training Iterations Learning Rate

EMNIST-Det 24 300× 300 24,000/48,000(∗) 0.02
BDD 4 1333× 800 150,000/250,000(∗) 0.01

KITTI 6 1000× 600 70,000 0.01
COCO 12 1000× 600 250,000 0.02
VOC 6 1000× 600 70,000 0.02
CE 4 1000× 600 200,000 0.01

Table 6.2: Training hyperparameters for the Swin-T and the ResNeSt101 ((∗)) backbone.

Swin-T backbone. The performance results obtained have all been evaluated on
unmodified test datasets.

The dataset-dependent hyperparameters for training are stated in table 6.2. The
original images from EMNIST-Det have an image resolution of 320× 320 pixels,
i.e., we do not artificially scale them to a higher image resolution. The BDD
images also contain many small labels while having a high original resolution
(1280 × 720), which is a challenging setup. To get the best possible label error
detection, we keep this high resolution and rescale the images to 1333×800 pixels.
KITTI, COCO, VOC and CE are each rescaled to an image resolution of 1000×600
pixels. The batch size for all datasets is in the range of 4-24, the initial learning
rate is either 0.02 or 0.01 depending on the dataset, and the number of training
iterations is in the range of 24,000-250,000. All numbers apply to the Swin-T
backbone except the numbers (∗) for the training iterations of EMNIST-Det and
BDD, which apply to the ResNeSt101 backbone. All other hyperparameters are
identical for the different architectures. The files for the configurations used in
training are published with the code on GitHub.

Datasets For the detection of real label errors we use the same split for BDD as
introduced in Section 6.3 as well as VOC, COCO, KITTI and CE. The training
data for VOC consists of “2007 train” + “2012 trainval” and we predict label
errors on the “2007 test”-split. COCO is trained on the train split and label errors
are predicted on the validation split from 2017. For KITTI we use a scene-wise
split, resulting in 5 scenes (S = {2, 8, 10, 13, 17}) and 1,402 images for evaluation
as well as 16 scenes ({0, 1, . . . , 20}\S) and 6,407 images for training. The subset of
CE data used includes 20,100 images for training and 1,070 images for evaluation.
In the images, a car is in focus and the task is to do a car part detection. The
labels consist of 29 different classes and divide the car into different parts, i.e., the
four wheels, doors, number plate, mirrors, bumper, etc. Compared to the static
academic datasets, the CE dataset is dynamic and thus of heterogeneous quality.
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection
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Figure 6.6: The two left plots in (a) show evaluations based on the predictions of a
model trained on original training data and the two right ones in (b) based on noisy
training data with γ = 0.2. The number of considered label error proposals depends on
threshold τ .

Benchmark Results for Simulated Label Errors

Table 6.1 shows that although 20% of the training labels are modified, the per-
formance in terms of mAP50 to mAP∗50 only decreases by a maximum of 1.2
percent points (pp) for EMNIST-Det and 3.9 pp for BDD. In both cases, the
performance decreases more for the backbone containing more trainable param-
eters (ResNeSt101). This is consistent with the results for image classification
from [114]. Architectures with fewer trainable parameters seem more suitable for
handling label errors in the training data, possibly due to the network having
less capacity to overfit the label errors. Figure 6.6 shows exemplary plots for
AUROC and F1 curves for the Swin-T backbone and BDD. On the two left plots
we show results based on original training data and the two right plots based
on noisy training data. The ranking of the methods is not identical everywhere:
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6.4 Numerical Results

AUROC max F1

Dataset Backbone Train Labels Loss Detection Score Entropy PD Loss Detection Score Entropy PD

EMNIST-Det Swin-T Original 99.46 73.24 71.49 59.67 95.54 64.74 49.58 62.32
EMNIST-Det Swin-T Noisy 99.40 82.44 77.32 62.26 93.43 62.37 45.25 62.24
EMNIST-Det ResNeSt101 Original 99.84 88.45 86.70 60.59 94.31 62.56 38.81 60.82
EMNIST-Det ResNeSt101 Noisy 99.87 93.11 86.40 61.82 90.74 59.50 34.53 59.01

BDD Swin-T Original 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66
BDD Swin-T Noisy 92.16 89.21 69.42 57.58 35.97 31.68 18.33 34.72
BDD ResNeSt101 Original 95.79 87.47 83.58 60.31 54.62 31.99 20.37 47.16
BDD ResNeSt101 Noisy 92.97 90.76 78.18 56.79 27.85 25.65 18.10 27.74

Table 6.3: Label error detection experiments with two different backbones; higher values
are better. Bold numbers indicate the highest AUROC or max F1 per experiment and
underlined numbers are the second highest.

in terms of AUROC , loss (our method) is superior, followed by detection score,
then entropy (our baselines) and finally PD. In terms of max F1, PD outperforms
the detection score and the entropy but is inferior compared to the loss. Because
AUROC considers rates and (max) F1 considers absolute values and the number
of label error proposals varies widely (PD = number of labels G, here 17,064;
others > 80,000), the methods behave very differently with respect to AUROC
and max F1. However, our loss method outperforms all other methods on both
metrics. Note, that the small step in the upper right of each of the AUROC plots
are the false negatives according to the label errors (FNl), i.e., the simulated la-
bel errors that are not found by the methods. This number of FNl is vanishingly
small in relation to all simulated label errors, except PD as the method is not able
to detect drops. The generally observed behavior for BDD also does not change
when looking at the results for the ResNeSt101 backbone in table 6.3. When com-
paring the results for the different backbones with each other the AUROC for the
loss and PD seems to remain similar, whereas the AUROC for detection score/en-
tropy increases by 10.65/11.85 pp for original training data and 1.55/8.76 pp for
noisy training data. The situation is different for the max F1 values. For label
error detection, loss/entropy/PD performs superior with the Swin-T backbone for
original training data (1.97/1.84/5.50 pp). In particular, the loss and PD seem to
handle the noisy training data more effectively, resulting in 8.12 pp max F1 differ-
ence between Swin-T and ResNeSt for the loss and 6.98 pp difference for PD. The
detection score increases by 0.85 pp with the ResNeSt101 backbone on original
training data, but on noisy data the Swin-T outperforms the ResNeSt101 by 6.03
pp. Also, for EMNIST-Det it holds that the loss outperforms the detection score
and both outperform the entropy. In contrast to the results of BDD, the detection
score slightly outperforms PD in all EMNIST-Det experiments also in terms of
max F1. The AUROC for loss appears to be stable across backbone and training
data quality with only a maximum 0.47 pp difference overall. The AUROC values
for the detection score and entropy are superior with the ResNeSt101 backbone,
but inferior in terms of max F1 and the detection score performs superior in terms
of AUROC based on noisy training data, but inferior in terms of max F1. For
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection

AUROC max F1

Label Error Type Dataset Backbone Train Labels Loss Score Entropy PD Loss Score Entropy PD

Drop

EMNIST-Det Swin-T Original 98.94 99.12 88.16 0.00 94.91 89.63 56.70 0.00
EMNIST-Det Swin-T Noisy 98.85 99.19 88.22 0.00 93.27 90.24 48.97 0.00
EMNIST-Det ResNeSt101 Original 99.66 99.65 78.33 0.00 93.58 87.02 32.82 0.00
EMNIST-Det ResNeSt101 Noisy 99.91 99.94 78.79 0.00 86.42 81.03 19.21 0.00

BDD Swin-T Original 94.92 96.05 51.48 0.00 41.80 48.38 2.37 0.00
BDD Swin-T Noisy 91.72 93.64 52.88 0.00 37.93 46.93 1.45 0.00
BDD ResNeSt101 Original 94.52 93.61 73.14 0.00 45.89 35.67 7.11 0.00
BDD ResNeSt101 Noisy 91.89 91.84 62.25 0.00 26.29 22.62 1.75 0.00

Flip

EMNIST-Det Swin-T Original 99.74 99.78 91.09 99.34 92.89 90.08 59.51 86.79
EMNIST-Det Swin-T Noisy 99.62 99.83 90.79 99.51 89.42 88.70 49.32 87.44
EMNIST-Det ResNeSt101 Original 99.96 99.97 78.95 99.07 90.77 86.70 31.65 82.93
EMNIST-Det ResNeSt101 Noisy 99.89 99.94 78.50 98.83 81.49 80.35 18.98 80.49

BDD Swin-T Original 99.68 98.36 50.63 98.53 74.54 58.79 2.75 73.86
BDD Swin-T Noisy 99.56 98.12 50.06 98.32 60.31 58.91 2.13 71.23
BDD ResNeSt101 Original 99.80 98.16 75.93 97.96 72.81 54.38 7.12 69.95
BDD ResNeSt101 Noisy 99.31 97.24 64.34 97.13 44.94 40.15 2.18 61.75

Shift

EMNIST-Det Swin-T Original 99.80 51.52 93.55 40.71 91.76 11.14 49.41 10.61
EMNIST-Det Swin-T Noisy 99.56 50.26 88.01 50.70 87.86 10.92 40.71 10.88
EMNIST-Det ResNeSt101 Original 99.67 51.28 86.14 45.54 88.65 11.28 30.32 10.56
EMNIST-Det ResNeSt101 Noisy 99.30 53.73 80.52 51.91 85.97 13.99 25.65 10.95

BDD Swin-T Original 65.49 51.76 61.17 50.24 16.78 11.22 14.99 10.55
BDD Swin-T Noisy 57.23 52.57 57.91 52.85 12.73 11.44 12.88 10.94
BDD ResNeSt101 Original 65.84 51.51 63.37 54.19 17.56 11.40 14.76 11.86
BDD ResNeSt101 Noisy 55.92 50.85 56.18 52.54 12.58 10.87 12.17 11.13

Spawn

EMNIST-Det Swin-T Original 99.37 75.62 97.92 97.04 98.87 19.89 65.08 78.97
EMNIST-Det Swin-T Noisy 99.68 50.95 98.48 97.16 97.77 19.26 59.18 79.33
EMNIST-Det ResNeSt101 Original 99.84 57.98 99.40 96.12 98.06 18.96 37.84 74.19
EMNIST-Det ResNeSt101 Noisy 99.93 76.31 99.33 94.89 94.93 15.89 35.39 67.92

BDD Swin-T Original 98.48 66.33 98.07 92.09 74.97 2.23 20.24 50.81
BDD Swin-T Noisy 90.55 78.13 92.98 78.00 17.98 9.21 11.32 10.94
BDD ResNeSt101 Original 95.80 79.79 97.00 87.57 60.38 5.04 13.75 38.71
BDD ResNeSt101 Noisy 90.30 89.19 95.74 76.07 7.39 6.92 11.08 28.55

Table 6.4: AUROC and max F1 values for loss, detection score (Score), entropy and
PD for all dataset-backbone-training label combinations; higher values are better. Bold
numbers indicate the highest AUROC or max F1 per experiment and underlined num-
bers are the second highest.

PD, the AUROC seems to be rather stable comparing the two backbones, but
the max F1 is superior for Swin-T compared to ResNeSt101.

Benchmark Results for Individual Simulated Label Error Types

In the above-analyzed experiments, all label errors occur simultaneously, but the
evaluation can also be conditioned on the individual label error types. For drops
or flips we consider only the false positives according to ỹ, i.e., all boxes that
have a maximum class-wise IoU of less than α(= 0.3) with all noisy labels of
the associated image. Then, we can calculate AUROC and max F1 values on
this subset. We do the same for the shifts, except that we only consider the true
positives according to Ỹ . For the spawns, we must consider both true positives and
false positives according to Ỹ , since the predicted class, that overlaps sufficiently
with the spawned label, can be the same as the class of the spawn itself.
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6.4 Numerical Results

The benchmark results for individual simulated label errors are stated in ta-
ble 6.4. For drops, the detection score and instance-wise loss perform similarly
well, with the AUROC values differing by at most 1.92 pp and a minimal AUROC
of 91.72%. The difference in the max F1 values is more pronounced, with the loss
at EMNIST-Det outperforming the detection score by 3.03 to 6.56 pp. For BDD,
the detection score of Swin-T is superior to the loss by up to 9 pp, whereas the
loss for ResNeSt101 outperforms the detection score by up to 10.22 pp. The en-
tropy reaches a maximum of 88.22%/56.70% AUROC/max F1 for EMNIST-Det
and 73.14%/7.11% for BDD, which is far from the numbers achieved for the loss
and the detection score. PD is not able to detect drops, as the bounding boxes of
the labels are also the label error proposals itself.

A similar behavior can be observed for the flips, where the AUROC values for
loss and detection score only differ by a maximum of 1.64 pp. In terms of max F1

the loss outperforms the detection score and entropy in every case. PD performs
inferior in terms of AUROC compared to the loss, but in terms of max F1 PD
outperforms the loss for BDD based on both backbones trained on noisy data.

For the shifts, the detection score and PD have similar performance as the naive
baseline in terms of AUROC and all max F1 values are < 14%. Except for
BDD trained on noisy data, where entropy performs superior to the loss, loss
outperforms all baselines.

For the spawns, the detection score performs similar compared to the shifts. PD
performs well especially in terms of max F1, where PD even outperforms the loss
for RestNeSt101 on BDD with noisy training data by 20.16 pp, otherwise loss is
superior to PD. In the cases where entropy outperforms loss, the difference is at
most 5.44 pp in terms of AUROC and 3.69 pp in terms of max F1.

The detection score can neither reliably detect the shifts nor the spawns, whereas
the entropy cannot detect the drops and flips well, especially for complicated
problems such as BDD. PD cannot reliably detect the shifts and is not able to
detect drops by design. All in all, the loss method is the only one of those
presented that can detect all four different types of label errors efficiently.

Benchmark Results for Different Noise Intensity in Training Table 6.5 shows
mAP , AUROC and max F1 values for different noise intensities for Swin-T on
the BDD training dataset. In our experiments, it makes no difference whether the
labels of the training data contain 5% or 20% noise, the mAP is between 50.2%
and 50.4%, where the model has a mAP of 52.1% due to training on the original
training data. All mAP evaluations are based on the test data with original and
thus unmodified labels.
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection

AUROC max F1

γ # train images mAP50 Loss Detection Score Entropy PD Loss Detection Score Entropy PD

0 12,454 52.1 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66
0.05 12,454 50.4 93.44 88.09 71.76 59.16 43.36 30.78 18.54 42.98
0.1 12,454 50.2 93.21 89.05 70.98 58.56 39.36 30.79 18.53 37.92
0.2 12,454 50.3 92.61 89.21 69.42 57.58 35.97 31.68 18.33 34.72

Table 6.5: Validation of object detection performance and label error detection exper-
iments for different noise for training Swin-T on BDD; higher values are better. Bold
numbers indicate the highest AUROC or max F1 per experiment and underlined num-
bers are the second highest.

AUROC max F1

γ # train images mAP50 Loss Detection Score Entropy PD Loss Detection Score Entropy PD

0 1,556 45.1 94.79 69.56 72.61 59.86 58.67 30.59 25.95 50.77
0 3,113 49.7 95.25 73.69 72.70 59.93 56.48 31.38 24.64 50.13
0 6,227 51.3 95.18 74.95 73.21 60.12 55.79 31.55 24.52 49.78
0 12,454 52.1 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66

0.2 1,556 40.7 94.82 84.98 73.53 58.73 44.47 27.07 18.72 33.87
0.2 3,113 46.9 93.35 88.90 70.31 58.98 35.45 28.38 18.28 33.45
0.2 6,227 49.1 93.08 90.31 70.80 58.37 33.60 30.38 18.18 33.43
0.2 12,454 50.3 92.61 89.21 69.42 57.58 35.97 31.68 18.33 34.72

Table 6.6: Validation of object detection performance and label error detection exper-
iments for different noise and number of images for training Swin-T on BDD; higher
values are better. Bold numbers indicate the highest AUROC or max F1 per experiment
and underlined numbers are the second highest.

On the one hand, the AUROC /max F1 values decrease with increasing noise in-
tensity by 3.69/20.62 pp for loss, by 2.31/3.88 pp for entropy and by 3.01/17.94
pp for PD, respectively. For the detection score, on the other hand, the AUROC
value increases by 12.39 pp from 76.82% to 89.21% and the max F1 value in-
creases only marginally by 0.54 pp to 31.68%. Nevertheless, the loss outperforms
the detection score/entropy/PD in every case by at least 3.40/21.68/35.71 pp in
terms of AUROC and by at least 4.29/17.64/0.38 pp in terms of max F1. All
AUROC /max F1 evaluations are based on the test data with γ = 0.2 and thus
on the identical label basis as for table 6.3.

Benchmark Results for Different Amounts of Training Images Table 6.6
shows mAP , AUROC and max F1 values for different amounts of training images
for Swin-T on BDD. Therefore, the subsets with fewer images are always included
in the subsets with more images and the identically sized subsets with different
noise intensities contain the same images.

The mAP increases the more images are used for training and the less label errors
exist in the training data. Here, the model trained on 6,227 and unmodified labels
(γ = 0) has a 0.8 points higher mAP than the model trained on 12,454 images
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6.4 Numerical Results

Dataset Label Errors Precision Spawn Drop Flip Shift

BDD 34 15.5 3 2 26 3

KITTI 96 47.5 75 0 4 17

COCO 50 24.5 14 1 18 17
COCO(∗) 125 61.0 0 125 0 0

VOC 23 11.5 13 0 10 0
VOC(∗) 175 71.5 0 175 0 0

CE(∗) 194 97.0 0 0 0 0

Table 6.7: Categorization of the top-200 proposals for real label errors with the loss
method for the Swin-T backbone. (∗) indicates the evaluation of proposals based on the
detection of drops.
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Figure 6.7: Visualization of detected label errors in real test datasets. The top row of
images depicts the label error proposals and the bottom row the corresponding labels
from the dataset. The image pairs belong from left to right in steps of two to BDD,
KITTI, COCO and VOC.

with γ = 0.2. In this case, after comparing the performances, it is worth to review
and improve the underlying labels instead of labeling new images and add them
to the training set.

The AUROC values increase as the number of images increases with γ = 0. With
γ = 0.2, the values for loss and entropy decrease as the number of images increases.
The max F1 values decrease independently of γ with increasing number of images
for loss and entropy, whereas the values increase for detection score. The decrease
in AUROC and max F1 values for loss and entropy could be due to overfitting of
the model. For PD, AUROC and max F1 values remain almost constant for the
respective datasets. However, the loss always outperforms all baselines in terms
of AUROC and max F1. All AUROC /max F1 evaluations are based on the test
data with γ = 0.2 and thus on the identical label basis as for table 6.3.
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection

Evaluation for Real Label Errors

We now aim at detecting real instead of simulated label errors. The considered
real-world datasets apart from BDD (VOC, COCO, KITTI, CE) are more sim-
ilar in complexity to BDD than to EMNIST-Det. For BDD we observed in the
benchmark results that the loss method for the Swin-T backbone seems to be more
stable according to label errors in the training data, as especially the max F1 val-
ues for the loss and noisy labels are superior for Swin-T than for ResNeSt101. As
we suspect label errors in the VOC, COCO, KITTI and CE training datasets, we
use the Swin-T backbone to detect as many label errors as possible. Furthermore,
we showed in table 6.3 that the loss method outperforms the detection score, en-
tropy and PD in each presented experiment, hence we detect label errors using
only the loss method in the following. Since we manually look at all proposals
individually and we are not able to look at all proposals (i.e., about 265,000 for
VOC), we categorize the top-200 proposals into TPl or FPl . If a TPl is found
we also note which type of label error is present and if we are not sure whether
the proposal is TPl or FPl , we conservatively interpret it as FPl . The results
are summarized in table 6.7. For BDD, there are at least 34 label errors, which
mostly consist of flips. Since KITTI consists of image sequences, it happens that
one label error appears on several consecutive frames. When this happens, it
usually affects objects that are visible on previous frames but are covered by, for
instance, a bus for several frames but are still labeled. Label error proposals that
fall into “Don’t Care” areas are not considered. In total, we find 96 label errors
with a precision of 47.5% on KITTI. As COCO and VOC consist of images of
different everyday scenes that really differ from image to image, the variability
of the representation of objects is very high in these two datasets. Since a label
error proposal is enforced for each label, this also applies to the labels that are
classified as background. In a usual test setting, these labels would have been false
negatives of the model, i.e., overlooked labels. The resulting loss is so high that
these proposals end up in the reviewed top-200 proposals. Nevertheless, 50 label
errors can be detected on COCO and 23 on VOC. When dealing with these two
datasets, we noticed that drops are the most present label error type, although we
did not find any among the top-200 proposals. We use this knowledge to restrict
the proposals to those that have a class-independent IoU with the labels of the
image of less than α. Using this subset and re-reviewing the top-200 proposals,
we are able to find 125 drops with a precision of 61.0% for COCO and 175 drops
with a precision of 71.5% for VOC. For the calculation of the precision see Sec-
tion 6.3. Prior knowledge about the label quality of the dataset and the types
of label errors that occur helps to detect a specific type of label error. From the
high precisions for VOC and COCO, we conclude that our method can help to
correct the label errors resulting in cleaner benchmarks. Exemplary label errors
for the above datasets are shown in fig. 6.7. The first proposal detects a shift, the
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Figure 6.8: Visualization of further detected real label errors in test datasets for BDD
(top), COCO (center) and VOC (below).

second a flip, the third and fourth a spawn and the remaining proposals detect
drops. For CE, we filter the proposals by drops, resulting in 194 detected drops
with a precision of 97%.

Further Real Label Error Examples

Further detected real label errors are presented in fig. 6.8. The top row shows
examples for BDD, where all found label errors are flips, except for the third
proposal from the right. These proposals can be interpreted as two label errors.
Either the “car” label on the “bus” is wrong (spawn) and the bus was forgotten
to be labeled (drop), or the localization is inaccurate (shift) and the label has
a wrongly assigned class (flip). The middle and bottom rows represent detected
real label errors on COCO and VOC. All proposals show drops and at the fourth
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6 Identifying Label Errors in Object Detection Datasets by Loss Inspection

proposal from the left in the middle row “pizza”, the two small labels “pizza” are
also count as spawns resulting in three label errors for this single proposal.

6.5 Conclusion

In this chapter, we introduced a benchmark for label error detection for object
detection datasets. We for the first time simulated and evaluated four different
types of label errors on two selected datasets that appear to be suitable for fur-
ther method development. Furthermore, we developed a novel method based on
instance-wise loss scoring and compare it with four baselines. Our method prevails
by a significant margin in experiments on our simulated label error benchmark.
In our experiments with real label errors, we found a number of label errors in
prominent datasets as well as in a proprietary production-level dataset. With
the evaluation for individual label error types we can detect real label errors on
commonly used test datasets in object detection with a precision of up to 71.5%.
Furthermore, we presented additional findings. Models with fewer parameters are
more robust to label errors in training sets while models with more parameters
suffer more. We make our code for benchmark, evaluation and method publicly
available on GitHub.
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CHAPTER 7

DEEP ACTIVE LEARNING WITH NOISY ORACLE IN

OBJECT DETECTION

The presented contents in the following chapter are taken almost word-by-word
from [143].

7.1 Introduction

In the previous decade, deep learning has revolutionized computer vision models
across many different tasks like supervised object detection [15, 39, 123]. Object
detection has various potential real-world applications, many of which have not
yet been developed in a sense that public datasets are rarely or just not available.
When such a new field is to be developed, there are many practical challenges
during dataset curation and creation. Oftentimes, data can be recorded with,
e.g., cameras in large amount at acceptable cost, while acquiring corresponding
labels might be comparatively costly and might require expert knowledge. Active
learning aims at maintaining model performance while reducing the amount of
training data by leveraging data informativeness for the label acquisition. The
model is utilized in turn to find the data, in our case from a large pool of un-
labeled data, for which new labels would improve the model performance most
efficiently, see [10, 145] and Chapter 5. The goal is to request as few annotations
with human labor as possible and to obtain a well-performing model that makes
accurate predictions. When developing and simulating active learning models in
a laboratory setup, one typically assumes an oracle that provides correct labels
for queried data points [10]. However, in practice, such an oracle does not exist
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Figure 7.1: Our active learning cycle consists of training on labeled data L, querying
and labeling informative data points Q out of a pool of unlabeled data U by an oracle
and a review of acquired data R = L ∪Q.

and any person that labels data produces errors with some frequency [173]. Es-
pecially in complex domains such as medical applications where expert opinions
are required for the annotation process, there exists variability between differ-
ent oracles [139]. Some works have considered active learning with noisy oracles
in image classification [55, 171, 180, 181]. In the present work, we consider ac-
tive learning with a noisy oracle, to the best of our knowledge for the first time,
in object detection. More precisely, we utilize recent findings on label errors in
Chapter 6 to simulate two types of predominantly occurring label errors in object
detection oracles. On the one hand we treat missed bounding box labels which do
not appear in the ground truth at all. On the other hand, we consider bounding
box labels with incorrect class assignment which are likely to induce undesired
training feedback. We do so for the EMNIST-Det dataset (Chapter 5) which is
an extension of EMNIST [26] to the object detection and instance segmentation
setting. We complement this with the BDD100k dataset [182] which has mostly
clean bounding box annotations of variable size. Both datasets have high qual-
ity bounding box labels such that we can simulate label errors without greater
influence of naturally occurring label noise. We introduce independent and iden-
tically distributed errors into the labels which have been queried at some point
in the data-acquisition process. We simulate a label reviewer as a human in the
loop who has access to the label error detection module introduced in Chapter 6,
which is integrated into the active learning cycle, see fig. 7.1. We compare different
sources for label error proposals which are to be considered after data acquisition.
Furthermore, we use different methods to generate label error proposals for the
reviewer. The efficiency of the proposal method controls the frequency of justified
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review cases, i.e., the efficiency of the budget utilization for label reviewing. The
review oracle is assumed to contain smaller amounts of noise since labels do not
have to be generated from scratch. Instead, only individual proposals have to be
reviewed.

In our experiments, we observe that a label error detection method applied to ac-
tive learning with a noisy oracle clearly outperforms active learning with manual
(uninformed / random) label review and active learning without any label review.
We compare different query strategies with and without review in terms of per-
formance as a function of annotation budget (split into labeling and reviewing
cost). Improvement of performance is observed consistently for random queries
as well as for an uncertainty query based on the entropy of the object detector’s
softmax output. Furthermore, our findings are consistent over two datasets, i.e.,
an artificial one and a real world one, as well as across two different object detec-
tors. The success of our method seems to be due to a strong performance of the
label error detection method.

Our contribution can be summarized as follows:

• We contribute the first method that performs partially automated label
review and active label selection for object detection.

• We provide an environment for performing rapid prototyping of methods
for active learning with noisy oracles.

• Our method outperforms manual and review-free active learning for different
queries, datasets and underlying object detectors.

Our method can be used with humans in the loop for labeling and label review
to maximize model performance at minimal annotation budget, thus aiding data
acquisition pipelines with partial automation.

7.2 Related Work

Our contribution is located at the intersection of two disciplines which both aim at
reducing the tiresome workload of repetitive image annotation by human workers.
Active learning aims at reducing the overall amount of annotations given while the
goal of label reviewing is to control or improve the quality of present annotations.

For an overview of related work for label error detection in object detection, see
Section 6.2, and for active learning in object detection, see Section 5.2.
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7 Deep Active Learning with Noisy Oracle in Object Detection

Active Learning with Noisy Oracle in Classification The intersection between
active learning and training under label noise has been addressed in the context
of classification tasks before. While Kim [80] used an active query mechanism for
cleaning up labels, the proposed training algorithm itself is not active. Younesian
et al. [180] consider noisy binary and categorical oracles by assigning different
label costs to both in an online, stream-based active learning setting. Yan et
al. [171] treat the query complexity of noisy oracles with a reject option in a
theoretical manner. Gupta et al. [55] consider batch-based active learning with
noisy oracles under the introduction of the QActor framework by Younesian et al.
[181] which has a label cleaning module in its active learning cycle is most related
to our approach. One of the proposed quality models chooses examples to clean
via the cross-entropy loss which are then re-labeled by the oracle.

7.3 Active Learning with Noisy Oracle

In this section, we describe the task of active learning in object detection as well as
the addition of a review module to the generic active learning cycle. While in the
active learning setting, new labels are queried on the basis of an informativeness
measure, the presence of erroneous or misleading oracle responses can counteract
the benefit of the informed data selection. In order to account for new data
containing incorrect labels, we introduce a review module that generates proposals
for label errors to review and to potentially correct.

Active Learning with Review in Object Detection

Most of the commonly used datasets in object detection, e.g., MS-COCO [97] and
Pascal VOC [38], are also the most commonly used datasets in active learning and
contain label errors [132], see Chapter 6. This means that active learning methods
developed on these datasets are also evaluated based on noisy labels. To consider
label errors during active learning experiments, we introduce a review module.
The adapted active learning cycle is visualized in fig. 7.1 where the annotation
budget is divided into the query and the review with parameter λ ∈ [0, 1]. After
obtaining labels for the queried images Q by an oracle, we introduce a review step
where an oracle reviews the active labels R = L ∪Q. Note, that acquisition and
review of data are two independent modules.

Queries In the following, we investigate two different query strategies: random
selection and selection based on the entropy of the softmax output of the object
detector, see Section 5.3. For the former, images are randomly chosen from U . For
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Figure 7.2: Schematic illustration of the label error detection mechanism using highest
loss for missed labels (top, blue) and label flips (bottom, green). The detection of
misses considers false positive predictions of the object detector while the detection of
flips considers ground truth boxes, each of them matching at least one of the predictions
in localization.

the latter, images are selected based on the predictive classification uncertainty
according to the current model, where we use the sum of instance-wise entropies
as aggregation method. Note, that both queries are independent of the label
errors, since the random selection is independent of predictions and labels, as
well as the image-wise query score for the entropy method is determined based
on the predictions only. Note, that query algorithms are based on unlabeled data
and oracle noise does not directly impact the selection of images. However, oracle
noise does influence model training.

Review Module In order to account for noisy oracles, we allow for incorrect
annotations given in response to an active learning query. To counter-act the
negative influence of noisy annotations, we introduce a review module into the
active learning cycle in which proposals for label reviews are given and part of the
annotation budget is used to clean up some annotation errors. In the following,
we introduce the detection of two different kinds of label errors: missing labels
(misses) and labels with incorrect class assignments (flips).

For one active learning cycle, we allow for the consumption of a fixed annotation
budget C. This budget C is split up into a fraction CQ = (1−λ)C used for querying
new annotations and CR = λC used for reviewing data.

After the query, Q is automatically labeled and, together with L, forms the set
of active images for the next cycle. Before the next training cycle starts, we
regard R = L ∪ Q as the set of annotations which are potentially reviewed.
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7 Deep Active Learning with Noisy Oracle in Object Detection

We adapt the instance-wise loss method from Chapter 6 to a post-processing
label error detection method, where the detection of misses and flips are two
independent tasks. When both types of label errors are simultaneously present,
we use a parameter α ∈ [0, 1] to distribute the review budget CR in reviewing
misses (αCR) and flips ((1− α)CR). In the following, we introduce two different
review functions: a random review and the highest loss based review.

An illustration of our label error detection method can be found in fig. 7.2. We
consider the set of all predictions on images from R and the corresponding noisy
labels Ỹ . To detect misses, we select those predictions that are identified as false
positive predictions according to the noisy ground truth Ỹ . To get an order for
the review, we sort the false positives in descending order by the objectness score
ŝ for the highest loss based review and in random order for the random review.
Large values of ŝ on false positives, where objectness is supposed to be small,
amounts to a large objectness loss.

For the flips, every label from Ỹ is assigned to the most overlapping prediction if
the IoU of the two boxes is greater than of equal to IoUε. Then, the cross-entropy
loss of the possibly incorrect label and the predicted probability distribution is
used as a review score for every given label. In case there is no sufficiently
overlapping prediction, the respective label is not considered for review. Note,
that for given label class c̃, the cross-entropy loss of the assigned prediction b̂ is

CE(b̂|c̃) = −
C∑
c=1

δcc̃ log (p̂c) = − log (p̂c̃) , (7.1)

where δij is the Kronecker symbol, i.e., δij = 1 if i = j and δij = 0 otherwise.
That is, the label with assigned prediction that has the lowest corresponding class
probability p̂c̃ generates the highest loss. In case of the random review method, we
randomly select assigned labels for review by uniformly sampling over all labels.

7.4 Numerical Experiments

In this section, we present our active learning setup with automatically labeling
and reviewing data as well as new active learning hyperparameters. Afterwards,
we show results for both query functions with and without review for two different
datasets and object detectors in terms of mAP . We also measure the performance
of the review proposal mechanism in terms of precision.
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Experimental Setup

For our active learning setup, automated labeling and reviewing is desirable.
Therefore, we simulate label errors for all training images of the underlying
datasets. We do not include evaluations of the active learning experiments on
the widely used MS-COCO or Pascal VOC datasets. For an automated review
procedure, the frequently occurring label errors in both datasets would lead to
strongly biased results. Evaluations on either dataset would require manual an-
notation review after each active learning cycle for several repetitions of the same
experiment. This manual review after each cycle is necessary in practice, however,
out of scope for an experimental evaluation of the proposed method.

Datasets and Models We make use of the EMNIST-Det dataset (Chapter 5)
with 20,000 training images and 2,000 test images as well as BDD100k [182]
(BDD), where we filter the training and validation split, such that we only use
daytime images with clear weather conditions, resulting in 12,454 training images.
Furthermore, the validation set is split into equally-sized test and validation sets,
each consisting of 882 images. Since EMNIST-Det is a simpler task to learn
compared to BDD, we apply a RetinaNet [96] and a Faster R-CNN [123] with
a ResNet-18 [63] backbone for EMNIST-Det, as well as a Faster R-CNN with a
ResNet-101 backbone for BDD. Note, that this setup was introduced and used in
Chapter 5 and Chapter 6.

Based on clean training data, the test performance for EMNIST-Det in terms of
mAP is 91.2% for Faster R-CNN and 90.9% for RetinaNet. For Faster R-CNN,
the test performance decreases to 90.2% with simulated misses in the training
data and to 89.2% with simulated flips. Simulating misses and flips simultane-
ously yields a test performance of 89.4% for Faster R-CNN and 89.3% for Reti-
naNet. For BDD and Faster R-CNN, a test performance of 50.0% is obtained for
unmodified training data and 48.9% for training data including misses and drops.

Simulation of Label Errors For the simulation of misses and flips, we follow
Chapter 6. Since only two types of label errors are present, we simulate misses

and flips with cardinality
γ

2
·G each, where G is the amount of clean labels and

γ is the relative frequency of label errors.

We denote the training set including label errors by

Ỹ = {(xi, yi, wi, hi, c̃i)}, (7.2)

where c̃i represents the potentially flipped class for each label bi.
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Active Learning Review Training
|Uinit| C sε T γl γr IoUε α batch size training iters

Faster R-CNN EMNIST-Det 150 200 0.7 20 0.2 0.05 0.3 0.5 4 25,000
RetinaNet EMNIST-Det 150 200 0.5 20 0.2 0.05 0.3 0.5 4 38,000

Faster R-CNN BDD100k 625 10,000 0.7 7 0.2 0.05 0.3 0.5 4 170,000

Table 7.1: Overview of important training, review and active learning hyperparameters
for all datasets and networks.

Note, that label errors are not simulated on the test dataset to ensure an unbiased
evaluation of test performance.

Automated Review of Label Errors Since the oracle is noisy with error fre-
quency γr, the review is also error-prone, i.e., misses are detected with probabil-
ity 1 − γr and still overlooked with probability γr. The flips, whether the label
error proposal was a false alarm or not, are corrected with probability 1− γr and
randomly misclassified with probability γr.

Implementation Details We implemented our active learning methods in the
open source MMDetection toolbox [19]. For the label error simulation, we choose
the relative frequency of label errors γl = 0.2, the relative frequency of label errors
during review γr = 0.05, the value for score-thresholding sε = 0.7 for Faster R-
CNN and sε = 0.5 for RetinaNet as well as the IoU -value IoUε = 0.3 that assigns
predictions with labels. We choose γr < γl, assuming that the oracle is more
engaged in viewing and evaluating single boxes during the review compared to
labeling from scratch, with all boxes having to be located and classified on a
new image. As hyperparameters for the active learning cycle, the initially labeled
set consists of 150 randomly picked images EMNIST-Det and of 625 randomly
picked images for BDD. The budget for a single active learning step C is 200 for
EMNIST-Det and C = 10,000 for BDD. Labeling a single box has cost 1, as does
reviewing a label error proposal, whether miss or flip and also whether a label
error was identified or not. If misses and flips are simultaneously present in the
experiment, we set the ratio between reviewing misses and flips α = 0.5. Finally,
the number of active learning steps for EMNIST-Det is T = 20 and for BDD
T = 7. For an overview of training, review and active learning hyperparameters,
see table 7.1.

Results

In the following, we show active learning results for EMNIST-Det and BDD.
Therefore, we compare six different methods, the random and entropy query,
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Figure 7.3: EMNIST-Det ablation study of the ratio between labeled and reviewed
bounding boxes for Faster R-CNN where both label error types are present. We compare
the random query without review with random query and highest loss review (RHL)
with the chosen ration λ in parentheses.

both without review, as well with random review or review by highest loss. Fur-
thermore, we present performance results for both review methods in terms of
precision over the whole active learning course.

Ablation for the Ratio of Queried and Reviewed Bounding Boxes For the
methods with review, the fraction λ of the amount of new data queries and the
amount of bounding box reviews plays a significant role. Therefore, we repeat
the same experiment for EMNIST-Det and Faster R-CNN with different values
for λ, see fig. 7.3. These results are based on training data with simulated flips
and misses. The gray and yellow lines indicate the 100% and 90% reference
performance mark of the model trained with the entire (noisy) dataset. The
random query with highest loss review (RHL) is visually almost identical for λ =
0.1, λ = 0.16 and λ = 0.2. All these three methods outperform the uninformed
random query. The random query without review performs similar to the random
query with highest loss review with λ = 0.3 and outperforms the informed random
query for λ = 0.4, i.e., at about λ = 0.3 is the break-even-point, at which it is no
longer worthwhile to review more bounding boxes instead of labeling new ones.
We hypothesize that this tipping point is strongly dependent on our chosen setup
with a relative frequency of label errors of γl = 0.2. Since the red curve seems to
be most favorable, we set the fraction between queries and reviews to λ = 0.2 in
all the following experiments.

Active Learning with Different Label Error Types We first investigate active
learning curves for EMNIST-Det and Faster R-CNN. We consider active learning
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(b) Label Misses
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(c) Flips + Misses

Figure 7.4: EMNIST-Det active learning curves, where only flips are present (left), only
misses (center) as well as where flips and misses are simultaneously present (right).

curves where a) we simulated only misses, b) only flips, and c) both label error
types occur equally often in the training dataset, each with noise rate γl = 0.1.We
compare both query strategies, random and entropy, without review, with highest
loss (HL) review and with random (R) review, respectively. The obtained active
learning curves are averaged over four random initializations and evaluated in
terms of the total annotation budget consumed. Note, that for the active learn-
ing methods without review the total amount of annotation budget is equal to the
amount of (possibly incorrect) labeled bounding boxes. For those methods incor-
porating a review step the total amount of annotation budget represents the sum
of labeled and reviewed bounding boxes. Figure 7.4 shows active learning curves
in terms of test performance with point-wise standard deviations. For all three
active learning curves, we observe that the entropy method outperforms random
at every point. Furthermore, the queries without review perform superior to the
respective query with random review. Entropy HL and random HL, i.e., both
methods with highest loss review clearly outperform the strategies without re-
view and with random review. We conclude that the success of reviewing queries
strongly depends on the performance of the review methods and that random
review is too expensive in terms of annotation budget. From this we conclude
that it is more worthwhile to acquire new (noisy) labels than to randomly review
the active labels, at least for the given amount of noise we studied.

All in all, the distance between the active learning curves of the six methods is
significantly larger for label flips as compared to misses. Moreover, the maximum
performance with simulated label errors is also inferior for the flips compared to
the misses. We hypothesize that the reason for this is the sub-sampling from the
negatively associated anchors [123] during training. This mechanism leads to only
partial learning from the misses, whereas an incorrect foreground class induced
from flips has a negative impact on every gradient step.

The significant difference of the active learning curves of the respective queries
with random review and the highest loss review can be attributed to the high
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(c) FRCNN + BDD
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(d) FRCNN + EMNIST
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Figure 7.5: Review quality results for random highest loss (top) and entropy highest
loss (bottom). Misses and flips are simultaneously present in all experiments.

precision of the highest loss review. The random review has an expected precision
of γl. Figure 7.5 shows the precision for the highest loss review applied after
random query in (a) and after entropy query in (d) across the span of all active
learning cycles. In both plots, (a) and (d), flips and misses are simultaneously
present, i.e., both plots correspond to the respective method from fig. 7.4 (c).
The blue lines visualize the precision for the review identifying a flip and the
orange lines analogously for the misses. Here, the precision for detecting flips
is always above 50% and tends to improve as the active learning experiment
progresses, whereas the precision for the detection of misses is even consistently
above 90%. In general, flips are more difficult to detect compared to misses due
to the different construction of the detection methods of either label error type,
recall fig. 7.2.

Comparing Faster R-CNN with RetinaNet on EMNIST-Det For the following
results, we compare only the random query without review with the random and
entropy query, both with highest loss review. Figure 7.6 shows active learning
curves for these methods for Faster R-CNN in (a) and for RetinaNet in (b). Note,
that in both cases both label error types are present. Moreover, (a) is a trimmed
version of fig. 7.4 (c) to make it more convenient to compare the results from both
detectors visually. We observe that the curves for Faster R-CNN and RetinaNet
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Figure 7.6: Comparison of EMNIST-Det active learning curves for Faster R-CNN (left)
and RetinaNet (right) where both label error types are present.

Network Method mAP@2000 mAP@4000

Faster R-CNN
Random 68.97(±1.09) 77.41(±0.28)

Random HL 72.13(±0.64) 80.92(±0.23)
Entropy HL 75.13(±0.79) 82.87(±0.29)

RetinaNet
Random 68.38(±0.52) 78.04(±0.51)

Random HL 72.94(±1.06) 80.40(±0.34)
Entropy HL 74.39(±0.28) 81.86(±0.27)

Table 7.2: Mean average precision values in % with standard deviations in parenthe-
ses for 2000 and 4000 queried and reviewed annotations for Faster R-CNN (top) and
RetinaNet (bottom) for EMNIST-Det. Note, that in every experiment both label error
types are present; the upper half represents fig. 7.6 (a) and the bottom half fig. 7.6 (b).

look very similar over the entire active learning course. All curves start at just
below 40% mAP and the respective methods end at similar test performances.
The ranking of the methods is always the same: entropy HL outperforms random
HL and random without review. Also, random HL outperforms random without
review. For RetinaNet, random HL seems to be closer to entropy HL as compared
to Faster R-CNN.

These observations are also supported by table 7.2, wherein we stated the mAP
values with standard deviations in parentheses. We compare performance for the
total annotation budget consumed equal to 2000 and 4000 from the active learning
curves shown in fig. 7.6. In particular, for entropy with highest loss review, the
mAP@2000 for Faster R-CNN is 0.74 percent points (pp) higher and even 1.01
mAP@4000 pp higher. For Faster R-CNN, the difference between entropy HL and
random HL is 3 pp for mAP@2000 and 1.95 for mAP@4000. For RetinaNet, the
difference is only 1.45 pp for mAP@2000 and 1.46 for mAP@4000.
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Figure 7.7: BDD active learning curves for Faster R-CNN where both label error types
are present.

Comparing the quality of the highest loss review, the results for RetinaNet are
highly correlated to the results of Faster R-CNN, see fig. 7.5. For RetinaNet,
the precision for the highest loss review in combination with random query is
visualized in (b) and with the entropy query in (e). Here, the precision for de-
tecting the misses is at or above 90%. The precision for the detection of flips
is always greater or equal to 60% and from active learning cycle 7 onward even
always above 80%. We observe that the precision of the highest loss review in-
creases while the experiments progresses, i.e., object detectors trained with more
data generate better label error proposals. We hypothesize that with more data,
overfitting can be more effectively prevented and that the object detectors will
generalize better, thus label errors in the active labels will not be as significant
when sufficient data is available.

Results for BDD with Faster R-CNN Figure 7.7 shows active learning curves
for the random query without review, as well as for the random and entropy query
both with highest loss review. Comparable to the results for EMNIST-Det, the
ranking of the methods is identical over the entire active learning course. The
uninformed random query is inferior to both informed queries and entropy HL
is superior to random HL. Note, that the distance between the two queries with
review is marginal. In contrast, there is a significant difference between either
one and the random query without review.

The review quality of the highest loss review for the random query is shown in
fig. 7.5 (c) and for the entropy query in (f). Again, the misses are detected at all
times with a precision of nearly 100%. Starting at just under 50%, the precision
for identifying flips increases steadily over the active learning course ending at
close to 80%. We conclude that involving a label review in the active learning cycle
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7 Deep Active Learning with Noisy Oracle in Object Detection

is also highly beneficial in the more complex BDD real world dataset. Analogous
to the results for EMNIST-Det, the highest loss review becomes more precise as
the experiments progress and the number of active labels increases.

7.5 Conclusion

In this chapter, we considered label errors in active learning cycles for object de-
tection for the first time, where we assumed a noisy oracle during the annotation
process. We realized this assumption by simulating two types of label errors for
the training data of datasets which are reasonably free of intrinsic label errors.
These types of label errors are missing bounding box labels as well as bounding
box labels with an incorrect class assignment. We introduce a review module to
the active learning cycle, that takes as input the currently labeled images and
the corresponding predictions of the most recently trained object detector. Fur-
thermore, we detect both types of label errors by a random review method and a
method based on the highest loss of the model’s predictions and the correspond-
ing noisy labels. We observe that the incorporation of random review leads to
an even worse test performance compared to the corresponding query without
review. Nevertheless, we show that the combination of query strategies, like ran-
dom selection or instance-wise entropy, with an accurate review yields a significant
performance increase. For both query strategies, the improvement obtained by
including the highest loss review persists during the whole active learning course
for different dataset-network-combinations. We make our code for reproducing
results and further development publicly available at GitHub.
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CHAPTER 8

LMD: LIGHT-WEIGHT PREDICTION QUALITY

ESTIMATION FOR OBJECT DETECTION IN LIDAR

POINT CLOUDS

The presented contents in the following chapter are taken almost word-by-word
from [128].

8.1 Introduction

In recent years, deep learning has achieved great advances in the field of 3D ob-
ject detection on Lidar data [89, 172, 174, 178]. Deep neural network (DNN)
architectures for this task are well-developed, however, there is little work in the
area of uncertainty quantification (UQ) for such models [18, 105, 106, 119, 175].
UQ is crucial for deployment of DNN-based object detection in the real world,
since DNNs as statistical models statistically make erroneous predictions. Down-
stream algorithms are supposed to further process the predictions of perception
algorithms and rely on statistically accurate and meaningful UQ. Aleatoric un-
certainty is usually estimated by adding variance parameters to the network pre-
diction and fitting them to data under a specific assumption for the distribution
of residuals [18, 41, 42, 105, 106]. Such approaches usually alter the training
objective of the detector by appealing to the negative log-likelihood loss for nor-
mally distributed residuals. Epistemic uncertainty is oftentimes estimated via
Monte-Carlo dropout [18] or deep ensembles [175]. In such approaches, model
sampling leads to a significant increase in inference time. Inspired by lines of
research from Chapter 4 and [125] in the field of 2D object detection on camera
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DNN objectness score LMD score

Figure 8.1: Prediction of a Lidar point cloud object detector with the native objectness
score (left) and LMD meta classifier scores (right) and corresponding camera images
below. Detections based on the objectness score are highly threshold-dependent and
may lead to false positive detections. Detections based on LMD scores are more reliable
and separate true from false predictions in a sharper way.

images, we develop a framework for UQ in 3D object detection for Lidar point
clouds. This approach does not alter the training objective and can be applied
to any pre-trained object detector and does not require prediction sampling. Our
framework, called LidarMetaDetect (short LMD), performs two UQ tasks: (1)
meta classification, which aims at estimating the probability of a given prediction
being a true positive vs. being a false positive; (2) meta regression, which esti-
mates the localization quality of a prediction compared with the ground truth.
Note that, outside of the context of UQ for DNNs, the terms meta classification
and meta regression refer to different concepts, see [98] and [151], respectively.
LMD operates as a post-processing module and can be combined with any DNN
without modifying it. Our methods learn on a small sample of data to assess the
DNN’s reliability in a frequentist sense at runtime, i.e., in the absence of ground
truth. In essence, we handcraft a number of uncertainty scores on bounding box
level, by which we convert both UQ tasks into structured machine learning tasks.
To the best of our knowledge, our method is the first purely post-processing-based
UQ method for 3D object detection based on Lidar point clouds. We conduct
in-depth numerical studies on the KITTI [46], nuScenes [13] as well as a propriety
dataset from Aptiv, including comparisons of our methods with baseline methods
on common uncertainty quantification benchmarks, ablation studies of relevant
parameters and the relevance of our uncertainty features. This is complemented
with down stream tasks where (1) we demonstrate that our UQ increases the
separation of true and false predictions and leads to well-calibrated confidence
estimates and (2) we show that our UQ can be utilized for the detection of erro-
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neous annotations in Lidar object detection datasets. We evaluate the label error
detection capabilities of our method by reviewing proposals on moderate samples
from KITTI and nuScenes. Our contributions can be summarized as follows:

• We develop the first purely post-processing based UQ framework for 3D
object detection in Lidar point clouds.

• We compare our UQ methods to baselines and show that they clearly out-
perform the DNN’s built-in estimates of reliability.

• We find annotation errors in the most commonly used publicly available
Lidar object detection datasets, i.e., KITTI and nuScenes.

We make our code publicly available on GitHub.

8.2 Related Work

In recent years, technologically sophisticated methods such as perception in Li-
dar point clouds have received attention in the UQ branch due to their potential
industrial relevance in the autonomous driving sector. Methods for 3D object
detection roughly fall into the categories of aleatoric and epistemic UQ. Aleatoric
UQ methods usually build on estimating distributional noise by adding a vari-
ance output for each regression variable while epistemic UQ methods utilize some
kind of model sampling either appealing to Monte-Carlo dropout or deep ensem-
bles. The authors of [105] estimate aleatoric uncertainty by a two-dimensional
discretization scheme over the Lidar range and introducing a variance-weighted
regression loss for a multi-modal distributional prediction in order to improve
detection performance. In [106], aleatoric uncertainty is estimated by adding
scale regression variables to the network output, modeling Laplace-distributed
residuals under a label noise assumption via a Kullback-Leibler divergence loss.
Heteroscedastic aleatoric uncertainty is estimated in [42] for the region proposal
and the detection head of an object detector separately by modeling diagonal-
covariance normally distributed bounding box regression. Feng et al. [41] achieve
joint estimation of aleatoric and epistemic UQ by adding regression variables
that model the covariance diagonal of a multi-variate normal distribution of the
four bounding box parameters alongside Monte-Carlo dropout total variance for
the epistemic component. Chen et al. [18] extract aleatoric uncertainty informa-
tion from a self-supervised projection-reconstruction mechanism propagated to
3D object detection on camera images. Further, epistemic uncertainty of object
localization is quantified via Monte-Carlo dropout. Yang et al. [175] perform UQ
for 3D object detection on Lidar and extend the multi-input multi-output model
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MIMO [60] which modifies the network to be supplied simultaneously with n in-
puts and providing n outputs. This simulates a deep ensemble at inference time
at the cost of increased memory consumption for input and output layers.

In the field of 2D object detection in camera images by DNNs, methods for
UQ have been developed in a series of works Chapter 4 and [125] related with
research on UQ in semantic segmentation [130, 131]. In Chapter 4, we utilize
the pre-NMS anchor statistics in a post-processing approach to obtain box-wise
confidence and IoU -estimates. In [125], instance-wise gradient scores are used
in a post-processing scheme to obtain calibrated uncertainty estimates improving
detection performance. Inspired by these lines of research, we develop a framework
for UQ in 3D object detection for Lidar point clouds. We use lightweight post-
processing models on top of a pre-trained Lidar point cloud object detector in
order to obtain improved uncertainty and IoU -estimates. In contrast to previous
work, our approach has the advantage that it may be applied to any pre-trained
object detector without alteration of training or architecture and does not carry
the computational and memory cost of sampling weights in a Bayesian manner
like Monte-Carlo dropout or deep ensembles. We show that this approach leads
to more reliable object detection predictions and that it can be applied in an
intuitive way in order to detect annotation errors in object detection datasets.

8.3 Proposed Method

In this section we describe our post-processing mechanism and how it can be
applied to improve detection performance and to detect annotation errors. Our
method assumes an object detector f(·) which maps point clouds X to a list of
N bounding boxes

f(X) =
{
b̂1, . . . , b̂N

}
. (8.1)

Point clouds X = (p1, . . . ,pNpt) consist of Lidar points p = (x, y, z, r) ∈ R4 rep-
resented by three coordinates (x, y, z) and a reflectance value r each. Bounding

boxes are represented by features b̂j(X) = (x̂j, ŷj, ẑj, ̂̀j, ŵj, ĥj, θ̂j, ŝj, π̂j1, . . . , π̂jC).

Here, x̂j, ŷj, ẑj, ̂̀j, ŵj, ĥj, θ̂j define the bounding box geometry, ŝj is the object-
ness score and (π̂j1, . . . , π̂

j
C) is the predicted categorical probability distribution.

The latter defines the predicted class κ̂j = argmaxc=1,...,C π̂
j
c while the objectness

score ŝj is the model’s native confidence estimate for each prediction. Out of the
N bounding boxes, only a small amount NNMS will be left after non-maximum
suppression (NMS) filtering and contribute to the final prediction of the detector

NMS[f(X)] =
{
b̂i : i ∈ INMS

}
, (8.2)
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b̂i

X ∩ b̂i
X \ b̂i

f(X) \ Prop(̂bi)

Prop(̂bi)

b̂i

Figure 8.2: Left: Illustration of the P i and Φi features counting Lidar points falling
into a given predicted box. From the points X ∩ b̂i, reflection statistics are generated.
Right: Schematic illustration of the proposal set Prop(̂bi) for a given predicted box b̂i

(here, in two dimensions for simplicity). From the proposal boxes, further pre-NMS
statistics are derived.

where we let INMS ⊂ {1, . . . , N} denote the post-NMS index set indicating sur-
vivor boxes.

LMD Features From this information we generate geometrical and statistical
features for each b̂i ∈ NMS[f(X)] for the purpose of UQ. In addition to the
bounding box features

φ̂i := {x̂i, ŷi, ẑi, ̂̀i, ŵi, ĥi, θ̂i, ŝi, κ̂i} (8.3)

of b̂i we compute the geometric features volume V i = ̂̀iŵiĥi, surface area Ai =
2(̂̀iŵi+̂̀iĥi+ŵiĥi), relative size F i = V i/Ai, number of Lidar points P i = |X∩b̂i|
within b̂i and fraction of Lidar points Φi = P i/|X| in b̂i, see fig. 8.2 on the left
for an illustration.

Moreover, each Lidar point that falls into b̂i (i.e., in X ∩ b̂i) has a reflectance
value r. We add the maximal (ρimax), mean (ρimean) and standard deviation (ρistd)

over all reflectance values of points in b̂i. Lastly, for each b̂i, we take the pre-NMS
statistics into consideration which involves all proposal boxes in f(X) that are

NMS-filtered by b̂i, i.e., the pre-image

Prop(̂bi) := NMS−1[{b̂i}]. (8.4)

These are characterized by having a significant three-dimensional IoU3D with b̂i,
see fig. 8.2 on the right.
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Figure 8.3: Schematic illustration of the LMD meta regression pipeline. Training of the
model is based on the output f(X) of a fixed (frozen) object detector and the bounding
box ground truth Y . Meta classification follows the same scheme with binary training
targets τ i = 1{ιi>0.5}.

The number of proposal boxes N i := |Prop(̂bi)| is an important statistics since
regions with more proposals are more likely to contain a true prediction. We
further derive minimum, maximum, mean and standard deviation statistics over
proposal boxes b̂ ∈ Prop(̂bi) for all

mi ∈ φ̂i ∪ {V i, Ai, F i, P i, Φi, ρimax, ρ
i
mean, ρ

i
std}, (8.5)

as well, as the IoU3D and bird-eye intersection over union IoUBEV values between
b̂i and all proposals Prop(̂bi). Overall, this amounts to a vector ξi(X) of length
n = 90 consisting of co-variables (features) on which post-processing models are

fit in order to predict the IoU BEV between b̂i and the ground truth or classify
samples as true (TP) or false positives (FP). We call a box a TP if IoU BEV ≥ 0.5,
otherwise we declare it FP.

Post-Processing On an annotated hold-out dataset Dval (consisting of point
cloud-annotation tuples (X, Y )), we compute a structured dataset

X = (ξ1, . . . , ξNval) ∈ Rn×Nval
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consisting of feature vectors for each of the Nval predicted boxes over all of Dval.
The illustration of our method in fig. 8.3 shows this scheme for one particular
Lidar frame (X, Y ) and the respective prediction on it. Further, we compute

ιi := IoUBEV(̂bi(X), Y ) between prediction and ground truth form Dval as target
variables Y = (ι1, . . . , ιNval) ∈ RNval . We then fit a light-weight (meta-) regression
model R : ξi 7→ Yi on (X,Y) which acts as post-processing module of the detector

in order to produce IoUBEV-estimates ι̂i := R(ξi) for each detection b̂i. Similarly,
we fit a binary (meta-) classification model C obtaining the binary targets 1{Y>0.5}
which allows us to generate alternative confidence estimates τ̂ i := C(ξi) ∈ [0, 1]

for each prediction b̂i in post-processing. Note that C is a potentially non-linear
and non-monotonous function of the features ξi and, therefore, can change the
obtained confidence ranking per frame and influence detection performance as
opposed to simple re-calibration methods [53, 110].

Meta classification empirically turns out to produce confidence estimates which
are both, sharper (in the sense of separating TPs from FPs) and better calibrated
that those produced natively by the detector, i.e., the objectness score. However,
when regarding the cases of disagreement between the computed IoUBEV and C,
we frequently find that C is to be trusted more than the computed IoUBEV due to
missing annotations. We use this observation in order to generate proposals (in
descending estimation τ̂ i) based on the object detector in comparison with the
given ground truth (FP according to the ground truth, i.e., ιi < 0.5) that serve
as suggestions of annotation errors.

8.4 Numerical Results

In this section we study meta classification and meta regression performance for
two benchmark datasets as well as a proprietary dataset by Aptiv. The meta
classification results are presented in terms of accuracy and area under receiver
operator characteristics curve (AUROC [30]) and the meta regression results are
presented in terms of R2. We compare our uncertainty quantification method
LidarMetaDetect (LMD) with two baseline methods (score, box features). More-
over, we detect annotation errors on both benchmark datasets using LMD.

Implementation Details We implemented our method in the MMDetection3D
toolbox [109]. For our experiments, we consider the PointPillars [89] and Center-
Point [178] architectures. The mean average precision (mAP@IoU0.5) for KITTI
based on IoUBEV is 69.0 for CenterPoint and 68.8 for PointPillars. On KITTI,
the mAP@IoU0.5 based on IoU3D is 64.2 for CenterPoint and 68.8 for PointPillars
and for Aptiv, the mAP@IoU0.5 based on IoU3D is 39.5 for CenterPoint and 43.7
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Figure 8.4: Strongest correlation coefficients for constructed box-wise features and
IoUBEV for the CenterPoint architecture on the nuScenes test dataset and a score
threshold τ = 0.1.

for PointPillars. NuScenes performance is given as a weighted sum of mAP as
well as the nuScenes detection score (NDS). For CenterPoint, the mAP is 57.4
and the NDS is 65.2 and for PointPillars the mAP is 40.0 and the NDS is 53.3.
For KITTI and Aptiv, the models were trained individually while available pub-
lic model weights from MMDetection3D are used for nuScenes. The performance
results obtained have all been evaluated on respective test datasets. For KITTI,
the images and associated point clouds are split scene-wise, such that the training
set consists of 3,712, the validation set of 1,997, and the test set of 1,772 frames.
For nuScenes, the validation set is split scene-wise into 3,083 validation and 2,936
test frames. The Aptiv dataset consists of 50 sequences, split into 27, 14, 9 se-
quences with about 145K, 75K, 65K cuboid annotations for training, validation
and testing, respectively. Every sequence is about two minutes long while every
fifth point cloud is annotated. The covered locations are countryside, highway
and urban from and around (anonymous). The dataset includes four classes: 1.
smaller vehicles like cars and vans, 2. larger vehicles like busses and trucks, 3.
pedestrians and 4. motorbikes and bicycles.
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max{si} 0.8056 si 0.8050
std{si} 0.7456 mean{si} 0.7289
mean{ρimax} 0.5769 max{ρimax} 0.5768
ρimax 0.5739 min{ρimax} 0.5381
mean{IoU i

BEV} 0.5083 min{IoU i
3D} 0.4984

max{IoU i
3D} 0.4974 max{P i} 0.4593

max{si} 0.8493 si 0.8490
mean{si} 0.8309 std{si} 0.7116
N i 0.6258 max{`i} 0.5631
max{wi} 0.5174 mean{`i} 0.5159
max{ρimax} 0.5144 mean{wi} 0.5129
max{F i} 0.5120 mean{F i} 0.5089

Table 8.1: Strongest correlation coefficients for constructed box-wise features and
IoUBEV for the CenterPoint (left) and PointPillars (right) architecture on the KITTI
test dataset and a score threshold τ = 0.1.

max{si} 0.7516 std{si} 0.6991
si 0.6755 mean{si} 0.5847
N i 0.3007 max{IoU i

3D} 0.2900
mean{IoU i

3D} 0.2707 std{ρimax} 0.2652
std{IoU i

3D} 0.2560 max{ρimax} 0.2556
max{P i} 0.2519 mean{P i} 0.2500

max{si} 0.7554 std{si} 0.7344
mean{si} 0.7161 N i 0.6629
si 0.6244 std{wi} 0.4535
std{F i} 0.4228 std{yi} 0.3879
std{`i} 0.3794 std{IoU i

3D} 0.3689
std{IoU i

BEV} 0.3581 std{P i} 0.3433

Table 8.2: Strongest correlation coefficients for constructed box-wise features and
IoUBEV for the CenterPoint (left) and PointPillars (right) architecture on the nuScenes
test dataset and a score threshold τ = 0.1.

Correlation of Box-wise Features with the IoUBEV Figure 8.4 shows the
Pearson correlation coefficients of the constructed box-wise dispersion measures
with the IoUBEV of prediction and ground truth for CenterPoint on the nuScenes
test dataset. The score features have strong correlations (> 0.5) with the IoUBEV.
Note that, although the four score-related features show the highest individual
correlation, these features may be partially redundant. The number of candidate
boxes N i is also reasonably correlated with the IoUBEV (0.3007), whereas the
remaining features only show a minor correlation (< 0.3). However, they may still
contribute to higher combined explanatory information in meta classification.

Table 8.1, table 8.2 and table 8.3 show the Pearson correlation coefficients of
the constructed box-wise dispersion measures with the IoUBEV of prediction and
ground truth for the KITTI, nuScenes and Aptiv test datasets. Comparable to the
results from fig. 8.4, the score features have strong correlations (> 0.5) with the
IoUBEV, independently of the underlying dataset or architecture. Especially for
the PointPillars architecture, the number of proposal boxes N i has a correlations
> 0.6 for nuScenes and KITTI and > 0.5 for Aptiv, whereas for CenterPoint, N i

shows minor correlations (< 0.45). Moreover, the overlaps of the proposal boxes
(different IoU features), as well as the localization of the box (especially `, h
and w) and the maximal reflectance value of points within the box (ρimax) seem
to be reasonably correlated with the IoUBEV. Although the other features have
rather smaller correlations with the IoUBEV, they may still contribute to a more
informative set of features for meta classification and regression.
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max{si} 0.7649 si 0.7358
std{si} 0.6598 mean{si} 0.5913
max{IoU i

3D} 0.5656 mean{IoU i
3D} 0.5596

max{IoU i
BEV} 0.5573 mean{IoU i

BEV} 0.5555
`i 0.3736 min{`i} 0.3731
mean{`i} 0.3724 max{`i} 0.3694

max{si} 0.7596 mean{si} 0.7577
std{si} 0.7570 si 0.7108
N i 0.5226 std{`i} 0.5225
std{F i} 0.4488 std{hi} 0.3998
std{IoU i

3D} 0.3879 std{ρimax} 0.3802
std{zi} 0.3727 max{IoU i

3D} 0.3443

Table 8.3: Strongest correlation coefficients for constructed box-wise features and
IoUBEV for the CenterPoint (left) and PointPillars (right) architecture on the Aptiv
test dataset and a score threshold τ = 0.1.

Meta Classification Meta Regression

Accuracies AUROC s R2

Method LogReg RF GB MLP LogReg RF GB MLP RR RF GB MLP

Score 0.8777 0.8524 0.8772 0.8773 0.8644 0.8617 0.8623 0.8640 0.4641 0.4675 0.4733 0.4751
Box Features 0.8877 0.9049 0.9203 0.8975 0.9056 0.9454 0.9529 0.9293 0.5292 0.6681 0.6792 0.6249

LMD 0.9118 0.9166 0.9297 0.9200 0.9450 0.9581 0.9628 0.9530 0.6451 0.7242 0.7296 0.7122

Table 8.4: Comparison of meta classification accuracy and AUROC as well as meta
regression R2 values for the score baseline, bounding box features and LMD for Center-
Point and nuScenes test dataset with score threshold 0.1; higher values are better. Bold
numbers indicate the highest performance and underlined numbers represent the second
highest (row-wise). Models used are Logistic Regression (LogReg), Ridge Regression
(RR), Random Forest (RF), Gradient Boosting (GB) and a Multi Layer Perceptron
(MLP).

Comparison of Different Meta Classifiers and Regressors Different models
can serve as post-processing modules for meta classification (C) and meta regres-
sion (R, see Section 8.3). For meta classification, the meta models under consid-
eration are logistic regression (LogReg), random forest (RF), gradient boosting
(GB) and a multilayer perceptron (MLP) with two hidden layers. For meta regres-
sion, analogous regression models are used, only the logistic regression is replaced
with a ridge regression (RR).

The respective meta models are trained on the box-wise features ξi of the vali-
dation sets Dval and evaluated on the features of the test sets which are disjoint
from Dval. LMD uses all available features to train the meta models, whereas in
the score baseline only the score of the prediction ŝi is used to fit the meta model.
For the bounding box features baseline, the box features of the prediction φ̂i are
used, in which the score ŝi is also included. Table 8.4 presents meta classification
accuracy and AUROC as well as meta regression R2 for the CenterPoint archi-
tecture on the nuScenes dataset. For the score baseline, all meta models perform
similarly well. For the meta classification accuracy there are differences of up
to 2.53 percent points (pp), for the AUROC of at most 0.27 pp and for meta
regression R2 of up to 1.10 pp. For the box features the maximum differences
increase to 3.26 pp in terms of accuracy, to 4.73 pp for AUROC and to 15.00
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Meta Classification Meta Regression

Accuracies AUROC s R2

Dataset Network Score Box LMD Score Box LMD Score Box LMD

KITTI
PointPillars 0.8921 0.8931 0.9004 0.9530 0.9537 0.9592 0.7108 0.7131 0.7287
CenterPoint 0.8688 0.8691 0.8806 0.9274 0.9343 0.9466 0.6235 0.6472 0.6840

nuScenes
PointPillars 0.8398 0.8708 0.8915 0.8129 0.9002 0.9280 0.4055 0.5593 0.6413
CenterPoint 0.8772 0.9203 0.9297 0.8623 0.9529 0.9628 0.4732 0.6792 0.7296

Aptiv
PointPillars 0.7939 0.8489 0.8615 0.8558 0.9274 0.9396 0.5096 0.6568 0.6924
CenterPoint 0.8265 0.8440 0.8548 0.8914 0.9134 0.9275 0.5456 0.6286 0.6591

Table 8.5: Comparison of meta classification accuracy and AUROC as well as meta
regression R2 for the score baseline, bounding box features and LMD for all available
network-dataset combinations with IoUBEV threshold 0.5, score threshold 0.1 and GB as
meta model. Higher values are better. Bold numbers indicate the highest performance
and underlined numbers represent the second highest (row-wise).

pp for R2. In particular, for the box features and LMD, the non-linear models
(RF, GB, MLP) outperform the linear model in both learning tasks. LMD out-
performs the baselines box features/score by 0.94/5.20 pp in terms of accuracy,
by 0.99/9.84 pp in terms of AUROC and by 5.04/25.45 pp in terms of R2. If
overfitting of the meta model is made unlikely by choosing appropriate hyperpa-
rameters, the performance of the meta model typically benefits from adding more
features, since the available information and number of parameters for fitting are
increased. Overall, GB outperforms all other meta models, especially when multi-
ple features are used to train and evaluate the respective learning task. Therefore,
only results based on GB are shown in the following experiments.

Comparison for Different Datasets and Networks Table 8.5 shows meta clas-
sification accuracy and AUROC as well as meta regression R2 for all network-
dataset combinations based on GB models. In all cases LMD outperforms both
baselines and the bounding box features outperform the score baseline. This is to
be expected, since the score is contained in the box features and the box features
are contained in the set of features of LMD. The improvement from the score
baseline to LMD ranges from 0.83 to 6.76 pp in terms of meta classification ac-
curacy, from 0.62 to 10.51 pp in terms of AUROC and from 1.79 to 25.64 pp in
terms of meta regression R2. The improvement from the bounding box features
to LMD ranges from 0.73 to 2.07 pp in terms of meta classification accuracy, from
0.55 to 2.78 pp in terms of AUROC and from 1.56 to 8.20 pp in terms of meta
regression R2. This illustrates that the addition of features, other than just the
bounding box features of the prediction itself, has a significant impact on meta
classification and meta regression performances and, therefore, separation of TP
and FP predictions.
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Figure 8.5: Confusion matrix of a GB classifier for LMD on CenterPoint, nuScenes and
score threshold 0.1.

Figure 8.6: Box-wise scatter plot of true IoUBEV and predicted IoUBEV values for LMD
on CenterPoint, nuScenes and score threshold 0.1. The predictions are based on a GB
regressor.
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Accuracies AUROC s

Dataset Network Method LogReg RF GB MLP LogReg RF GB MLP

KITTI

PointPillars
Score 0.8955 0.8848 0.8921 0.8940 0.9566 0.9497 0.9530 0.9566

Box Features 0.8961 0.8958 0.8931 0.8846 0.9564 0.9548 0.9537 0.9482
LMD 0.9000 0.9028 0.9004 0.8844 0.9589 0.9621 0.9592 0.9479

CenterPoint
Score 0.8726 0.8651 0.8688 0.8725 0.9322 0.9242 0.9274 0.9322

Box Features 0.8727 0.8719 0.8691 0.8608 0.9244 0.9387 0.9343 0.9271
LMD 0.8818 0.8847 0.8806 0.8700 0.9421 0.9522 0.9466 0.9362

nuScenes

PointPillars
Score 0.8402 0.8106 0.8398 0.8403 0.8151 0.8130 0.8129 0.8150

Box Features 0.8409 0.8613 0.8708 0.8653 0.8499 0.9018 0.9002 0.8957
LMD 0.8875 0.8842 0.8915 0.8908 0.9208 0.9257 0.9280 0.9252

CenterPoint
Score 0.8777 0.8524 0.8772 0.8773 0.8644 0.8617 0.8623 0.8640

Box Features 0.8877 0.9049 0.9203 0.8975 0.9056 0.9454 0.9529 0.9293
LMD 0.9118 0.9166 0.9297 0.9200 0.9450 0.9581 0.9628 0.9530

Aptiv

PointPillars
Score 0.7956 0.7929 0.7939 0.7954 0.8582 0.8555 0.8558 0.8580

Box Features 0.8184 0.8508 0.8489 0.8472 0.8933 0.9289 0.9274 0.9255
LMD 0.8506 0.8599 0.8615 0.8515 0.9273 0.9382 0.9396 0.9300

CenterPoint
Score 0.8279 0.8149 0.8265 0.8279 0.8946 0.8900 0.8914 0.8946

Box Features 0.8340 0.8452 0.8440 0.8439 0.9029 0.9155 0.9134 0.9085
LMD 0.8478 0.8559 0.8548 0.8529 0.9187 0.9294 0.9275 0.9227

Table 8.6: Comparison of meta classification accuracy and AUROC for the score base-
line, bounding box features and LMD for all available network-dataset combinations
with IoUBEV threshold 0.5 and score threshold 0.1. Models used for meta classification
are Logistic Regression (LogReg), Gradient Boosting (GB), Random Forest (RF) and
a Multi Layer Perceptron (MLP). Higher values are better. Bold numbers indicate the
highest performance and underlined numbers represent the second highest (row-wise).

For CenterPoint and nuScenes, the confusion matrix fig. 8.5 shows that the GB
classifier based on LMD identifies most TPs and true negatives. Therefore, pre-
dictions that are in fact FPs are also predicted as FPs. Note, that here we
regard “meta” true negatives conditional on the detectors prediction (each ex-
ample is a detection TP or FP that is binarily classified). The values on the off-
diagonals indicate the errors of the meta classifier. 7,002 predictions are predicted
as FPs even though they are TPs. In contrast, 4,484 predictions are predicted
as TPs, even though they are actually FPs. Figure 8.6 shows a scatter plot of
the true IoUBEV of prediction and ground truth and the IoUBEV estimated by
LMD meta regression based on a GB model, where each point represents one
prediction. Well-concentrated points around the identity (dashed line) indicate
well-calibrated IoUBEV-estimates and, therefore, object-wise quality estimates.

Extended Comparison of Different Meta Classifiers Table 8.6 presents meta
classification accuracy and AUROC for different meta classification models for
the KITTI, nuScenes and Aptiv test datasets. For the score baseline and besides
of PointPillars and nuScenes, the linear model (LogReg) outperforms the random
forest, gradient boosting and the MLP, where the difference is at most 2.96 per-
centage points (pp) in terms of meta classification accuracy. In terms of meta
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R2

Dataset Network Method RR RF GB MLP

KITTI

PointPillars
Score 0.6901 0.6726 0.7108 0.7146

Box Features 0.6973 0.7044 0.7131 0.6819
LMD 0.7151 0.7301 0.7287 0.6837

CenterPoint
Score 0.6220 0.5877 0.6235 0.6273

Box Features 0.6260 0.6446 0.6472 0.6274
LMD 0.6631 0.6863 0.6840 0.6538

nuScenes

PointPillars
Score 0.3903 0.4006 0.4055 0.4054

Box Features 0.4187 0.5586 0.5593 0.5356
LMD 0.6105 0.6346 0.6413 0.6244

CenterPoint
Score 0.4641 0.4675 0.4733 0.4751

Box Features 0.5292 0.6681 0.6792 0.6249
LMD 0.6451 0.7242 0.7296 0.7122

Aptiv

PointPillars
Score 0.5005 0.5013 0.5096 0.5106

Box Features 0.5469 0.6484 0.6568 0.6482
LMD 0.6401 0.6830 0.6924 0.6614

CenterPoint
Score 0.5458 0.5329 0.5456 0.5469

Box Features 0.5749 0.6200 0.6286 0.6136
LMD 0.6210 0.6541 0.6591 0.6332

Table 8.7: Comparison of meta regression R2 for the score baseline, bounding box
features and LMD for all available network-dataset combinations using an IoUBEV

threshold of 0.5 and score threshold of 0.1. Models used for meta regression are Ridge
Regression (RR), Gradient Boosting (GB), Random Forest (RF) and a Multi Layer
Perceptron (MLP). Higher values are better. Bold numbers indicate the highest per-
formance and underlined numbers represent the second highest (row-wise).

classification AUROC , the linear model outperforms all other meta models of at
most 0.8 pp. For the bounding box features and LMD, random forest or gradient
boosting are in most cases the best meta models in terms of meta classification
accuracy and AUROC . In general, the bounding box features outperform the
score baseline and LMD outperforms the bounding box features.

Extended Comparison of Different Meta Regressors Table 8.7 states meta
regression R2 for different meta regression models for the KITTI, nuScenes and
Aptiv test datasets. Random forest and gradient boosting outperforms the linear
model (ridge regression) and the MLP in every case for the bounding box features
and LMD. Except for CenterPoint on Aptiv, both MLP and gradient boosting
are the superior meta models (compared to random forest and ridge regression)
in terms of meta regression R2 for the score baseline. Comparable to the results
of table 8.4 of the main paper and the results for meta classification (table 8.6),
the bounding box features outperform the score baseline and LMD outperforms
the bounding box features.
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Figure 8.7: Feature selection using a greedy heuristic for CenterPoint, nuScenes and
score threshold 0.1. The left figure contains meta classification AUROC and the right
one contains meta regression R2. The dashed line shows the performance when incor-
porating all features (LMD).

Meta Classification

Number of Features

Dataset Network 1 2 3 4 5 6 7 8 9 10 All

KITTI
PointPillars 0.9482 0.9512 0.9530 0.9543 0.9564 0.9576 0.9580 0.9584 0.9587 0.9588 0.9592
CenterPoint 0.9149 0.9268 0.9372 0.9405 0.9420 0.9439 0.9452 0.9458 0.9462 0.9463 0.9466

nuScenes
PointPillars 0.9117 0.9175 0.9214 0.9248 0.9253 0.9257 0.9259 0.9263 0.9268 0.9273 0.9280
CenterPoint 0.9253 0.9417 0.9591 0.9603 0.9609 0.9611 0.9614 0.9617 0.9619 0.9620 0.9628

Aptiv
PointPillars 0.8940 0.9182 0.9233 0.9288 0.9312 0.9330 0.9339 0.9348 0.9352 0.9356 0.9396
CenterPoint 0.9051 0.9150 0.9177 0.9195 0.9209 0.9226 0.9242 0.9255 0.9259 0.9268 0.9275

Table 8.8: Feature selection for meta classification AUROC using a greedy heuristic
for all network-dataset combinations, score threshold 0.1 and a GB classifier. The
right-most column shows the the performance when incorporating all features (LMD).

Feature Selection for Meta Classification and Meta Regression Overall,
LMD is based on 90 features, which partly describe very similar properties. In
order to get a subset of features which contains as few redundancies as possible
but is still powerful, we apply a greedy heuristic. Starting with an empty set, a
single feature that improves the meta prediction performance maximally is added
iteratively. Figure 8.7 shows results in terms of AUROC for meta classification
and in terms of R2 for meta regression for CenterPoint on nuScenes. The tests
for the meta classification and the meta regression are independent of each other,
i.e., the selected features of the two saturation plots do not have to match. When
using five selected features, the associated meta models perform already roughly
as well as when using all features (LMD), i.e., 0.19 pp worse in terms of meta
classification AUROC and 0.92 pp worse in terms of meta regression R2. With
ten features used, the respective differences with the results obtained by LMD are
< 0.1 pp and thus negligible.

Extended Feature Selection for Meta Classification and Meta Regression
Table 8.8 shows feature selection results in terms of meta classification AUROC
and table 8.9 shows feature selection results in terms of meta regression R2. For
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Meta Regression

Number of Features

Dataset Network 1 2 3 4 5 6 7 8 9 10 All

KITTI
PointPillars 0.7053 0.7121 0.7165 0.7195 0.7217 0.7229 0.7237 0.7248 0.7260 0.7267 0.7287

CenterPoint 0.6134 0.6449 0.6626 0.6746 0.6776 0.6791 0.6808 0.6815 0.6824 0.6833 0.6840

nuScenes
PointPillars 0.5931 0.6069 0.6174 0.6265 0.6318 0.6359 0.6383 0.6390 0.6397 0.6401 0.6413

CenterPoint 0.5892 0.6591 0.7079 0.7158 0.7204 0.7243 0.7264 0.7280 0.7286 0.7289 0.7296

Aptiv
PointPillars 0.5860 0.6300 0.6454 0.6615 0.6679 0.6740 0.6774 0.6806 0.6845 0.6875 0.6924

CenterPoint 0.5856 0.6301 0.6358 0.6400 0.6472 0.6500 0.6537 0.6558 0.6564 0.6572 0.6591

Table 8.9: Feature selection for meta regression R2 using a greedy heuristic for all
network-dataset combinations, score threshold 0.1 and a GB regressor. The right-most
column shows the the performance when incorporating all features (LMD).

Figure 8.8: Reliability plots of the score (left) and GB classifier for LMD (right) with
calibration errors (ECE, MCE) for CenterPoint, nuScenes test dataset, score threshold
0.1 and IoUBEV threshold 0.5.

both tasks, meta classification and regression, a few features are sufficient to reach
roughly the same performance as when using all features (LMD). Meta models
using five or more selected features are at most 0.84 pp below the performance
of LMD in terms of meta classification AUROC and at most 2.45 pp in terms
of meta regression R2. With ten features used, the respective differences to the
performance results achieved by LMD are ≤ 0.4 pp in terms of meta classification
AUROC and < 0.5 pp in terms of meta regression R2.

Confidence Calibration The score and the meta classifier confidences are di-
vided into 10 confidence bins to evaluate their calibration errors. Figure 8.8 shows
exemplary reliability plots for the object detector score and LMD based on a GB
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Figure 8.9: Proposed annotation errors in nuScenes (top two) and KITTI (bottom
two). Top images show point clouds with annotations in purple and the proposal in
red. Camera images aid the evaluation.

classifier with corresponding expected (ECE [110]) and maximum calibration er-
ror (MCE [110]). The score is over-confident in the lower confidence ranges and
well-calibrated in the upper confidence ranges, whereas the GB classifier for LMD
is well-calibrated over all confidence ranges. This observation is also reflected in
the corresponding calibration errors, as the GB classifier for LMD outperforms the
score by 8.07 pp in terms of ECE and by 11.48 pp in terms of MCE. This indicates
that LMD improves the statistical reliability of the confidence assignment.

Annotation Error Detection as an Application of Meta Classification The
task of annotations error detection with LMD is inspired by fig. 8.6. There are a
number of predictions with IoUBEV = 0 but with high predicted IoUBEV. After
looking at these FPs it has been noticed that the prediction itself is, in fact, correct
and the corresponding ground truth is not. More precisely, incorrect ground truth
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KITTI Annotation Error Analysis (RF)

Network Classes Random Smart LMD

PointPillars

Pedestrian 8/53 1/1 2/4

Cyclist 3/22 1/1 2/2

Car 9/25 76/98 88/94

Overall 20/100 78/100 92/100

CenterPoint

Pedestrian 4/25 25/40 7/7

Cyclist 1/11 8/12 1/1

Car 22/64 38/48 89/92

Overall 27/100 71/100 97/100

Table 8.10: Comparison of detected annotation errors for the KITTI test dataset using
object detectors as baselines and RF as best LMD classifier with a score threshold of
0.1 and an IoUBEV threshold of 0.5.

corresponds to missing labels, labels with a wrong assigned class or the location
of the annotation is inaccurate, i.e., the 3D bounding box is not correctly aligned
with the point cloud. Annotation error detection with LMD works as follows: all
FP predictions, i.e., predictions that have IoUBEV < 0.5 with the ground truth,
are sorted by the predicted IoUBEV in a descending order across all images. Then,
the first 100 predictions, i.e., the top 100 FPs with highest predicted IoUBEV, are
manually reviewed, see fig. 8.9 for examples of proposals by this method. In this
case, a GB classifier is used to predict the box-wise IoUBEV. We compare LMD
against a score baseline which works in the same way, except that the FPs are
sorted by the objectness score. As a random baseline, 100 randomly drawn FPs
are considered for review which provides an insight into how well the respective
test dataset is labeled. In general, if it was unclear whether an annotation error
was present or not, this case was not marked as annotation error, i.e., the following
numbers are a conservative (under-)estimation. LMD finds 43 annotation errors
from 100 proposals and, in contrast, the score only 6 out of 100. Even the random
baseline still finds 3 annotation errors, which indicates that there is a significant
number of annotation errors in the nuScenes test dataset and that these can be
found at far smaller effort with LMD than with the score.

Extended Annotation Error Detection as an Application of Meta Classifica-
tion Table 8.10 presents annotation error detection results for the KITTI test
dataset. In each experiment, we manually reviewed 100 candidates provided by a
given detection method. For the random baseline (randomly reviewing FPs of the
network) applied to PointPillars, we discover 20 annotation errors. Using Center-
Point, this number increases to 27 annotations errors with the random baseline
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nuScenes Annotation Error Analysis (GB)

Network Classes Random Score LMD

PointPillars

Car 1/27 10/55 13/49
Pedestrian 1/29 4/10 −

Barrier 0/18 − −
Traffic Cone 0/10 − −

Truck 0/6 13/23 12/30
Trailer 0/1 0/10 1/6
Bicycle − − −

Construction Vehicle 0/4 − 0/6
Bus 0/2 0/2 2/9

Motorcycle 0/3 − −
Overall 2/100 27/100 28/100

CenterPoint

Car 2/51 0/8 31/62
Pedestrian − 5/14 2/2

Barrier 0/8 1/15 0/1
Traffic Cone − 0/4 −

Truck 0/14 0/3 8/30
Trailer 0/15 0/21 0/1
Bicycle − − −

Construction Vehicle 0/14 − 2/3
Bus 1/8 0/33 0/1

Motorcycle − 0/2 −
Overall 3/100 6/100 43/100

Table 8.11: Comparison of detected annotation errors for the nuScenes test dataset using
object detectors as baselines and GB as best LMD classifier with a score threshold of
0.1 and an IoUBEV threshold of 0.5.

and CenterPoint, which indicates that there might be significant number of anno-
tation errors in the KITTI test dataset. This is already confirmed by the smart
score baseline. Combining it with PointPillars, we find 78 annotation errors and
with CenterPoint, we find 71. Although these numbers seem enormous, LMD is
capable of detecting even more annotation errors. With PointPillars we detect 92
and with CenterPoint 97 annotation errors.

Table 8.11 shows annotation error detection results for the nuScenes test dataset.
We detect only 6 annotation errors using the smart score baseline and Center-
Point, whereas we can find 43 annotation errors using LMD and CenterPoint.
Considering PointPillars, the gap between the detection results of the smart score
baseline and LMD vanishes. With the smart score baseline we detect 27 and with
LMD 28 annotation errors. This observation is in agreement with table 8.6,
where CenterPoint achieves superior AUROC values compared to PointPillars on
the nuScenes test dataset.

Supplementing the samples of our annotation error proposal method, we show
additional proposals for the nuScenes test dataset in fig. 8.10 and respectively for
the KITTI test dataset in fig. 8.11.
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Figure 8.10: Additional annotation error proposals on the nuScenes test dataset.
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Figure 8.11: Additional annotation error proposals on the KITTI test dataset.
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8.5 Conclusion

In this chapter, we have introduced a purely post-processing-based uncertainty
quantification method (LMD). A post-processing module, which is simple to fit
and can be plugged onto any pre-trained Lidar object detector, allows for swift
estimation of confidence (meta classification) and localization precision (meta
regression) in terms of IoUBEV at inference time. Our experiments show that
separation of true and false predictions obtained from LMD is sharper than that
of the base detector. Statistical reliability is significantly improved in terms of
calibration of the obtained confidence scores and IoUBEV is estimated to consid-
erable precision at inference time, i.e., without knowledge of the ground truth. In
addition to statistical improvement in decision-making, we introduce a method
for detecting annotation errors in real-world datasets based on our uncertainty
estimation method. Error counts of hand-reviewed proposals which are shown
for broadly used public benchmark datasets suggest a highly beneficial industrial
use case of our method beyond improving prediction reliability. We also hope
that our investigations will spark future research in the domains of light-weight
uncertainty estimation and annotation error detection for large-scale datasets.
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CHAPTER 9

CONCLUSION AND OUTLOOK

In this thesis, we have introduced new uncertainty quantification methods for
2D (Chapter 4) and 3D (Chapter 8) object detection. Both methods are post-
processing approaches and are thus independent of the underlying object detection
architecture. Furthermore, we have studied different uncertainty quantification
methods applied to active learning (Chapter 5), label error detection (Chapter 6),
and active learning with noisy oracle (Chapter 7).

The following paragraphs consist of the connections between the individual meth-
ods, as well as open questions and further areas of application for the future.

Uncertainty Quantification Methods in Object Detection In Chapter 4, we
presented MetaDetect, a post-processing and output-based uncertainty quantifi-
cation method for 2D object detection. MetaDetect provides prediction quality
estimates based on meta models and uncertainty metrics, that depend only on the
predictions itself and the corresponding discarded candidate boxes during non-
maximum suppression. These prediction quality estimates are obtained by the
prediction of either a meta regression or a meta classification model, and provide
more reliable confidence scores compared to the objectness score of the object
detector, as well as the confidence scores obtained by Monte-Carlo dropout un-
certainty. LidarMetaDetect (LMD) is introduced in Chapter 8, which is the appli-
cation of MetaDetect to 3D object detection with Lidar point cloud data. LMD
is also a post-processing and output-based uncertainty quantification method,
where the set of uncertainty metrics is extended by prediction-wise point cloud
information, e.g., the amount of Lidar points that are located in the predicted
bounding box. Apart from the higher reliability of the quality estimates obtained
by LMD, these estimates are well-calibrated in contrast to the objectness score of
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the object detector. Moreover, we used LMD uncertainties to identify real label
errors on commonly used test datasets in 3D object detection efficiently, resulting
in a fairer evaluation of methods after correcting these errors. The results of both,
MetaDetect and LMD, agree, that tree-based models (random forests, gradient
boosting) outperform linear models and shallow neural networks in terms of meta
classification accuracy and AUROC , as well as in meta regression R2. Since we
have shown that a small amount of metrics (about 5-10) is sufficient to obtain
comparable performances for meta classification and regression compared to us-
ing all available metrics (LMD), and since the metrics used can be calculated and
provided directly in the forward pass for each prediction, both MetaDetect and
LMD are suitable for real-time applications. Once a meta model has been trained,
a quality estimate could be obtained for each prediction without significant addi-
tional effort, which is particularly interesting for safety-critical applications, such
as automated driving. On the other hand, the set of uncertainty metrics can be
easily extended to increase meta classification and regression performance, which
has been already shown in [125], where MetaDetect is extended with gradient-
based and architecture-dependent metrics.

Application of Uncertainty Quantification Methods in Active Learning for
Object Detection Developing new active learning methods is very costly and
time-consuming, since a single active learning experiment consists of several model
trainings. When uncertainty-based methods are chosen as query, a number of hy-
perparameters have to be studied, since their choice can significantly affect the
performance, e.g., the score threshold that decides which predictions are used for
uncertainty determination. In Chapter 5, we have introduced a sandbox environ-
ment for faster development of active learning methods. Therefore, we presented
datasets, which consist of COCO images as background and labeled MNIST let-
ters or EMNIST digits as ground truth. With these datasets, several imple-
mented uncertainty-based active learning methods, and down-scaled versions of
state-of-the-art object detectors, we obtained comparable rankings of the methods
compared to state-of-the-art datasets and architectures. Since the datasets are
self-created, they can be adapted to other datasets as desired, e.g., special class
imbalances or different sizes and ratios of labels can be simulated. Furthermore,
other active learning methods, e.g., density-based methods, can be implemented
and compared with the existing uncertainty-based and random methods.

Uncertainty Quantification Methods for Label Error Detection in Object
Detection In Chapter 8, we applied a meta classifier to sort false positive pre-
dictions by the obtained confidence in descending order. In general, two types
of label errors could be detected efficiently: missing labels, and labels with cor-
rect localization but an incorrect class affiliation. Note, that some very poorly
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localized labels could also be identified, since the corresponding prediction was
marked as false positive. This pipeline for label error detection can also be ap-
plied analogously for MetaDetect, but poorly localized labels are detected rarely
and randomly spawned labels are not detected at all. In order to identify all four
types of label errors efficiently, we have introduced a label error detection method
for 2D object detection based on instance-wise loss in Chapter 6. We used a
two-stage object detector to accumulate the instance-wise first and second stage
classification and regression loss to obtain scores for the individual label error
proposals. Moreover, each label was added as a proposal for the second stage to
provide at least one label error proposal for every labeled bounding box, which
is vital for detecting spawned labels. We used simulated label errors to show
that models have higher test performance when trained on clean data, and that
it may be worth cleaning the current data rather than putting the same effort
into acquiring new images and labels. Furthermore, both methods, LMD and
the instance-wise loss, identified a huge amount of real label errors on commonly
used test datasets in object detection, like Pascal VOC, COCO, BDD100k, and
KITTI. We have concluded this work by demonstrating that our methods can also
be applied in industry to remove label errors from training and test datasets. In
addition, the instance-wise loss method could be extended to effectively identify
all four types of label errors in 3D object detection as well.

Uncertainty Quantification Methods in Active Learning with Noisy Oracle
Since we have introduced an active learning sandbox that enables fast develop-
ment, and since we have found a huge amount of real label errors on commonly
used test datasets in object detection, we combined both topics and incorporate
label errors into the generic active learning cycle. Therefore, we have introduced
a review module that allows to re-label incorrect labels, and which is independent
of the chosen query strategy. We have applied the instance-wise loss method of
Chapter 6 to efficiently detect missing labels, as well as correctly localized labels
with an incorrect class affiliation. We have observed, that an efficient review
leads to a significant performance increase compared to a query without or with
an inefficient (random) review. For all experiments shown, we have simulated
label errors to automatically review and re-label them if necessary. This simula-
tion entails further hyperparameters to be studied, such as the simulated noise
for the training data, i.e. how good is the (human) labeler, the noise during the
review, i.e. how good is the (human) reviewer, how much effort is invested in the
acquisition of new labels relative to the review of current labels, etc. All these
ablations can be studied comparatively fast with the active learning sandbox, and
the possible customization of datasets, architectures, and hyperparameters, allow-
ing the entire setup to be tailored to the specific setup of individual industrial
applications.
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