
Doctoral Dissertation

On Practical
Subversion-Resilience

Pascal Bemmann, M.Sc.

October 30, 2023

Submitted to the
School of Electrical, Information and Media Engineering

University of Wuppertal

for the degree of
Doktor-Ingenieur (Dr.-Ing.)

This work is licensed under a Creative Commons Attribution 4.0 International
(CCBY 4.0) License. To view a copy of this license, visit https://creativeco
mmons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Pascal Bemmann
Place of birth: Lübbecke, Germany

Author’s contact information:
pasbemcal@gmail.com

Thesis Advisor:

Second Examiner:

Thesis submitted:
Thesis defense:
Last revision:

Prof. Dr.-Ing. Tibor Jager
University of Wuppertal, Wuppertal, Germany
Prof. Dr. Rongmao Chen
College of Computer, National University of
Defense Technology, Changsha, China
October 30, 2023
January 31, 2024
February 28, 2024

Publication Overview
Publications in this thesis.
[BBCJ23] Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor Jager.

Subversion-resilient public key encryption with practical watchdogs.
Cryptology ePrint Archive, Paper 2021/230, 2023. URL: https:
//eprint.iacr.org/archive/2021/230/20231011:061958.
This is the corrected full version of:
Pascal Bemmann, Rongmao Chen, and Tibor Jager. Subversion-
resilient public key encryption with practical watchdogs. In Juan
Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages
627–658, Virtual Event, May 10–13, 2021. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-030-75245-3_23.

[BBD+23] Pascal Bemmann, Sebastian Berndt, Denis Diemert, Thomas Eisen-
barth, and Tibor Jager. Subversion-resilient authenticated encryp-
tion without random oracles. In Applied Cryptography and Net-
work Security - 21st International Conference, ACNS 2023, Kyoto,
Japan, June 19-22, 2023, Proceedings, Part II, pages 460–483, 2023.
doi:10.1007/978-3-031-33491-7_17

[BBC24] Pascal Bemmann, Sebastian Berndt, and Rongmao Chen. Subversion-
resilient signatures without random oracles. In Applied Cryptography
and Network Security - 22nd International Conference, ACNS 2024,
Abu Dhabi, United Arab Emirates, 2024. To appear.

Other publications.
[BBB+17] Pascal Bemmann, Felix Biermeier, Jan Bürmann, Arne Kemper, Till

Knollmann, Steffen Knorr, Nils Kothe, Alexander Mäcker, Manuel
Malatyali, Friedhelm Meyer auf der Heide, Sören Riechers, Johannes
Schaefer, and Jannik Sundermeier. Monitoring of domain-related
problems in distributed data streams. In Structural Information
and Communication Complexity - 24th International Colloquium,
SIROCCO 2017, Porquerolles, France, June 19-22, 2017, Revised Se-
lected Papers, volume 10641 of Lecture Notes in Computer Science,
pages 212–226. Springer, 2017

5

https://eprint.iacr.org/archive/2021/230/20231011:061958
https://eprint.iacr.org/archive/2021/230/20231011:061958
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1007/978-3-031-33491-7_17

Acknowledgements
I want to express my heartfelt appreciation to my supervisor, Tibor Jager. I
am so thankful for the opportunity to do my Ph.D. with you and like to thank
you for your patience, trust, and support over the last years. Not only is Tibor
a great mentor and researcher, but also a fantastic team leader who made my
stay with the research group one of the best times of my life. I am genuinely
thankful to Tibor for his mentor- and leadership, which have made a significant
impact on my academic as well as my personal growth. His contributions have
been invaluable, and I could not be more grateful.

My journey certainly would not have been the same without the amazing
colleagues in Tibor’s group. Thank you, (in alphabetical order) Peter Chvo-
jka, Gareth T. Davies, Denis Diemert, Jan Drees, Amin Faez, Kai Gellert,
Tobias Handirk, Raphael Heitjohann, Christian Holler, Máté Horváth, Saqib
Kakvi, Rafael Kurek, Lin Lyu, Jutta Maerten, David Niehues, Marloes Ven-
ema, and Jonas von der Heyden. I thoroughly enjoyed the atmosphere in the
office, whether it was your support in finding some obscure old papers I could
not find (nor understand) or “enduring” yet another “pick a card, any card“. I
would like to especially thank Denis for making our countless train rides more
enjoyable and for your overall support, may it be for research or personal mat-
ters.

I also had the pleasure of collaborating with exceptionally talented researchers.
I would like to thank (in alphabetical order) Sebastian Berndt, Rongmao Chen,
Denis Diemert, Thomas Eisenbarth, and Tibor Jager. Rongmao and Sebastian,
I would like to thank both of you for your warm welcome and our productive
collaboration during my stay in Leuven and Lübeck, respectively. It was great
fun working with both of you. Of course, I would like to additionally thank
Rongmao Chen for co-reviewing this thesis.

I would also like to thank my close friends, who unfortunately have scattered
around Germany, mostly preferring the northern parts. I enjoy that no matter
how far apart we are or how long we have not seen each other, it is always like
we just met yesterday.

Zu guter Letzt möchte ich meiner Familie danken. Zuerst wäre da Kai, der
nicht nur mein Bruder, sondern auch mein bester Freund ist. Danke, dass du
für mich da bist und ich auf dich zählen kann, komme was wolle. Besonderer
Dank geht auch an meine wundervolle Frau Sonja. Du bist meine beste Fre-
undin sowie mein emotionaler Anker. Du gabst mir die Kraft auch in schweren
Zeiten durchzuhalten. Ich könnte mir keine bessere Partnerin an meiner Seite
vorstellen. Auch wenn du erst gegen Ende dieser Arbeit in Erscheinung ge-

i

treten bist, so möchte ich auch meinem Sohn Emil danken, für den Support
vor meinem Bauch während des Schreibens diverse Abschnitte dieser Arbeit.
Weiterer Dank geht an meine Schwiegermutter Jutta, die mich von Anfang an
in der Familie willkommen geheißen hat. Zu guter Letzt möchte natürlich auch
noch ganz besondersn meinen Eltern, Sabine und Frank, für ihre endlose und be-
dingungslose Unterstützung danken. Ihr erst habt diese Arbeit ermöglicht und
mich zu dem gemacht, der ich heute bin, wofür ich euch ewig dankbar bleiben
werde.

ii

Abstract
With the 2013 Snowden revelations it became evident that state-level adversaries
are capable and willing to compromise the integrity of widely employed cryp-
tographic schemes through subversion attacks. These covert intrusions involve
tampering with the implementation of cryptographic algorithms, allowing sensi-
tive information to be secretly leaked to adversaries. A concerted effort emerged
within the scientific community to formulate formal models capturing these at-
tacks and devise robust countermeasures. Unfortunately, these endeavors soon
encountered a sobering reality: generic attacks posed an insurmountable chal-
lenge, rendering defense against such attacks impossible without introducing
additional assumptions. One countermeasure is the introduction of a trusted
guardian, named the watchdog, entrusted with testing implementations of cryp-
tographic schemes before their use. In this framework, a scheme is considered
secure if either the watchdog can successfully detect subversion or the adversary
fails to breach the scheme’s security.

Despite commendable progress in developing subversion-resilient schemes in
watchdog models, this thesis aims to enhance practicality by focusing on two
key domains while minimizing reliance on trusted operations and avoiding the
use of random oracles.

We present the first construction of public-key encryption with practical
watchdogs only requiring linear testing time. Previous approaches consider
asymptotic running times, which can lead to a huge testing overhead, rendering
them somewhat impractical in real-world scenarios. In contrast, our model uses
concrete running times, enhancing the watchdog’s deployment feasibility.

We also introduce the first construction of authenticated encryption subject-
ing both encryption and decryption to subversion, and the first construction
of digital signatures subjecting all algorithms to subversion, without relying on
random oracles. Previous work either omitted critical algorithms from subver-
sion or leaned heavily on random oracles.

While our constructions require further improvement for large-scale deploy-
ment, our contributions constitute important steps toward more practical subver-
sion-resilient schemes.

iii

Zusammenfassung
Die sichere Kommunikation über das Internet ist zu einem festen Bestandteil
unseres Alltags geworden. Wir verlassen uns darauf, dass unsere Kreditkar-
tendaten nicht kompromittiert werden, wenn wir im Internet einkaufen. Von
modernen Instant-Messaging Apps wie WhatsApp und Signal erwarten wir,
dass unsere privaten Gespräche mit Freunden und Familie vor dem Zugriff
Dritter geschützt sind. All dies ist durch den Einsatz moderner Kryptogra-
phie möglich geworden. In den letzten Jahren wurde aufgedeckt, dass mächtige
Angreifer diese Sicherheit, an die wir uns so lange gewöhnt haben, im großen
Stil untergraben haben. Im Jahr 2013 wurde durch die Snowden-Enthüllungen
die massenhafte und verdachtsunabhängige Überwachung der Telekommunika-
tion auf globaler Ebene, vor allem durch die USA, bekannt. Insbesondere
wurde festgestellt, dass die Sicherheit gängiger kryptographischer Protokolle
durch die Verwendung von sogenannter Backdoors (deutsch „Hintertüren“) un-
tergraben wurde. Diese Backdoors beschreiben Angriffe, bei denen die Im-
plementierung kryptografischer Primitive unbemerkt verändert wird. Dadurch
wurde es möglich, dass Geheimdienste unberechtigten Zugriff auf eine Kommu-
nikation erhielten, die zuvor als sicher galt. Diese Enthüllungen stießen einer
Reihe von wissenschaftlichen Arbeiten an, die diese Angriffe formal beschrieben
sowie geeignete Gegenmaßnahmen entwickelten. Eine dieser Gegenmaßnahmen
ist das so genannte „Watchdog“-Modell. Hierbei wird angenommen, dass ein
vertrauenswürdiger Wächter (Watchdog) eine Implementierung, die mutmaßlich
Backdoors enthält, gegen eine Spezifikation testet, bevor diese tatsächlich zum
Einsatz kommt. Ein Angreifer ist nur dann erfolgreich, wenn er es schafft, die
Tests des Watchdogs zu umgehen, und es ihm trotzdem gelingt, die Sicher-
heit einer Primitive zu brechen. Es wurden bereits beeindruckende Fortschritte
beim Entwurf von sicheren Primitiven in diesem Modell erzielt. Dennoch gibt
es nach wie vor eine Reihe von Aspekten in den bisher zur Verfügung stehenden
Primitiven, welche die Anwendbarkeit einschränken.

Diese Arbeit identifiziert zwei Hauptaspekte, welche für die Anwendbarkeit
backdoor-resistenter Primitiven essentiell sind. Zum Einen entwickeln wir die
erste Konstruktion von Backdoor-resistenter Public-Key Verschlüsselung, die
von einem Watchdog effizient getestet werden kann. Vorherige Arbeiten täti-
gen nur wage asymptotische Aussagen über die Laufzeit des Watchdogs, was
potentiell zu einem enormen Mehraufwand beim Testen führen kann. In un-
serem Modell hingegen können wir für unsere Konstruktion konkrete Laufzeiten
sowie Sicherheitsgarantien angeben. Zum Anderen präsentieren wir die ersten
Konstruktionen für Authenticated Encryption sowie Digitale Signaturen, bei

v

denen alle relevanten Algorithmen vom Angreifer bereitgestellt werden, ohne
idealisierte Primitiven zu nutzen. Frühere Arbeiten haben entweder kritische
Algorithmen wie Entschlüsselung oder Verifikation vom Einfluss des Angreifers
ausgenommen oder idealisierte Primitive wie Random Oracles verwendet.

Es bedarf noch weiterer Verbesserungen damit unsere Konstruktionen im
großen Maßstab Anwendung finden können. Dennoch stellen unsere Beiträge
wichtige Meilensteine auf dem Weg zu wahrlich praktischen, Backdoor-resistenten
Primitiven dar.

vi

Contents
Acknowledgements ii

Abstract iii

Zusammenfassung v

Acronyms xi

1 Introduction 1
1.1 Motivating Subversion Resilience 1

1.1.1 Legal Backdoors . 2
1.1.2 Scope of this Thesis . 4

1.2 Related Work . 4
1.2.1 Attacks . 4
1.2.2 Countermeasures and Models 8
1.2.3 Miscellaneous . 13

1.3 Contributions of this Thesis . 15
1.4 Thesis Outline . 16

2 Preliminaries 17
2.1 Notation . 17
2.2 Provable Security . 17
2.3 The Random Oracle Model . 19

I Subversion-Resilient Public-Key Encryption with Prac-
tical Watchdogs 21

3 Practical Watchdogs 25
3.1 Our Results . 27
3.2 Main Technical Challenge . 28
3.3 Our Approach . 28
3.4 Comparison with Prior Work 29

4 Concrete Subversion Model 33
4.1 A General Security Definition for Cryptographic Schemes 33
4.2 Subversion-Resilience with an Offline Watchdog 34

vii

4.3 The Split-Program Model and Trusted Amalgamation 36

5 Subversion-Resilient Randomness Generators 41
5.1 Construction . 42
5.2 Security . 44

6 Subversion-Resilient Key Encapsulation Mechanisms 47
6.1 Main Technical Challenge . 49
6.2 Our Proposed KEM . 51
6.3 Efficient Instantiations . 57
6.4 From OW to IND Security . 58

7 Subversion-Resilient Public-Key Encryption 59

8 On the Impossibility of Subversion-Resilient Indistinguishability 63

9 Discussion 67

II Security under Complete Subversion Without Random
Oracles 69

10 Complete Subversion 73

11 Asymptotic Subversion Model 77

12 Subversion-Resilient Authenticated Encryption 83
12.1 Symmetric Cryptography under Complete Subversion 84
12.2 Technical Challenges . 85
12.3 Our Contributions . 86
12.4 Comparison with Prior Work 87
12.5 Pseudorandom Functions . 88

12.5.1 Constructing Subversion-Resilient PRFs 90
12.6 Message Authentication Codes 92

12.6.1 MAC from PRFs . 94
12.7 Symmetric Encryption . 95

12.7.1 Subversion-Resilience of Stream Ciphers. 97
12.8 Constructing Subversion-Resilient Authenticated Encryption . . 99

12.8.1 Achieving Subversion-Resilience via Encrypt-then-MAC 101
12.9 Discussion . 103

13 Subversion-Resilient Digital Signatures 105
13.1 Technical Challenges . 107
13.2 Our Contributions . 109
13.3 Subversion-Resilient Signatures in Other Models 110

viii

13.4 Outline . 112
13.5 Simplifying Assumptions . 112
13.6 One-Way Functions . 112

13.6.1 One-Way Functions and Permutations 113
13.6.2 Subversion-Resilient One-Way Functions 115

13.7 Hash Functions . 116
13.8 Constructing Subversion-Resilient Signatures 120

13.8.1 Digital Signatures . 120
13.8.2 Lamport Signatures . 122
13.8.3 The Naor-Yung Construction 123

13.9 Discussion . 127

III Conclusion 131

14 Discussion 133
14.1 Offline Watchdogs vs. Alternative Models 133
14.2 Our Results . 134
14.3 Open Problems . 136
14.4 Conclusion . 140

Bibliography 142

ix

Acronyms
ASA Algorithm-Substitution Attack
DS digital signature
HF hash function
KEM key encapsulation mechanism
MAC message authentication code
MPC multi-party computation
NIZK non-interactive zero-knowledge (proof of) knowledge
OWF one-way function
OWP one-way permutation
PKE public-key encryption
PRF pseudo-random function
RF reverse firewall
rTCR random target-collision-resistant
TCR target-collision-resistant

xi

1 Introduction
Modern cryptography is crucial in our current digital age. We expect to do
online shopping without our credit card information being compromised. We
rely on instant messaging apps like WhatsApp or Signal that utilize end-to-
end encryption to keep our online conversations with friends and family pri-
vate. All of this is possible by means of modern cryptography. Over the last
decades, researchers have designed and analyzed schemes that allow provably
secure communication even in the presence of powerful adversaries. However,
it was recently revealed that state-level adversaries undermined these efforts,
trying to covertly access communication previously assumed to be secure.

1.1 Motivating Subversion Resilience
It has been discovered that modern cryptography is vulnerable to attacks known
as subversion or backdoor attacks. In these kinds of attacks, an attacker alters
the implementation of a cryptographic scheme. This enables the attacker to leak
secret information via seemingly inconspicuous communication covertly. To the
best of our knowledge, Petersen and Turn [PT67] were the first to tackle this
topic in a scientific work in 1967. They described a class of active infiltration
attacks that use “trapdoor” entry points to bypass security measures and permit
direct access to data. It is important to note that the term “trapdoor” used in
their work corresponds to the term “backdoor” used in cryptography nowadays.
Later, Young and Yung [YY97] discussed the notion of kleptography and, thus,
the possibility of backdooring cryptographic primitives. Although Young and
Yung’s work received attention in academic circles, it was not believed to be
a feasible or realistic threat at the time. However, this dramatically changed
in 2013 with the incident known as the Snowden revelations. In June 2013,
documents from Edward Snowden, a former NSA (National Security Agency)
contractor, were simultaneously published by The Washington Post and The
Guardian [Gre], gaining public attention. These documents revealed efforts
to implement a global mass surveillance network driven mainly by the United
States and the United Kingdom. Barton Gellman, leading the coverage of the
revelations for The Washington Post, summarized the findings as follows [Gel]:

“Taken together, the revelations have brought to light a global surveillance
system that cast off many of its historical restraints after the attacks of Sept.

11, 2001. Secret legal authorities empowered the NSA to sweep in the
telephone, Internet, and location records of whole populations.”

1

Part of these revelations was “Project Bullrun” which aimed to deliberately
weaken the security of widely employed cryptographic schemes. As reported in
[PLS13], within this project, resources were used to

“Insert vulnerabilities into commercial encryption systems, IT systems,
networks, and endpoint communications devices used by targets”

and
“Influence policies, standards, and specifications for commercial public key

technologies.”
Internal NSA memos leaked as part of the Snowden revelation indicated that the
NSA was involved in the standardization process of the Dual_EC standard. It
was later concluded that the Dual_EC standard was indeed backdoored [BG13],
which was formally analyzed by Checkoway et al. [CMG+16].

Following these events, Juniper Networks disclosed several security vulner-
abilities [Pri15] that were discovered two years after the Snowden revelations.
These vulnerabilities were caused by unauthorized code in ScreenOS, the oper-
ating system of VPN routers. The target was a pseudorandom number generator
used by Juniper Networks to establish VPN connections. Here, it was discovered
that an unauthorized party had changed one parameter of the Dual_EC con-
structions, specifically altering one point of the used elliptic curve. Further
research showed that it was possible to manipulate this point in a way that
would enable the recovery of the entire state of the pseudorandom number gen-
erator. This would allow the party who generated this point to decrypt all VPN
traffic covertly, as they would have access to all random coins produced.

The revelations made by Snowden had a significant impact on the crypto-
graphic community. Clearly, state-level adversaries were capable of and willing
to compromise the security of modern communication through backdoors.

Further, in February 2022, the Washington Post and German public broad-
caster ZDF published an article on the Swiss company Crypto AG [Milb]. The
article revealed that the company, which sold equipment for encryption to over
120 countries, was secretly bought in 1970 by the American and German se-
cret agencies CIA (Central Intelligence Agency) and BND (Bundesnachricht-
endienst). Over the last decades, Crypto AG deliberately weakened the se-
curity properties of the sold equipment so that the mentioned agencies could
efficiently decrypt encrypted data without knowing the secret key used for en-
cryption. This was part of Operation Rubikon, which enabled the CIA and BND
to decrypt diplomatic and military transmissions from foreign states. This was
used, for example, during the Falkland Wars and the US conflicts in Lybia and
Panama.

1.1.1 Legal Backdoors
All examples so far highlight the secret rollout of backdoors. However, recently,
there has been a public debate surrounding another type of backdoor, namely,

2

publicly enforcing backdoors through legal means. In 2018, Australia passed a
law [Kar] that requires businesses to provide user information to law enforce-
ment agencies, even if the data is protected by cryptography. This poses a
particular problem for end-to-end encryption used in modern messaging apps
like WhatsApp and Signal. This is because, within these apps, only the two
endpoints communicating with each other can access the encrypted messages,
while service providers cannot access the users’ messages. However, Australia
now demands access to end-to-end encrypted data, ultimately forcing businesses
to introduce some form of cryptographic backdoor into their systems. This is a
concern because the current state of end-to-end encryption explicitly prohibits
this access and leads to two main issues:

1. The first issue with this demand is that it must be guaranteed that other
parties cannot exploit this backdoor. While a backdoor opens up new
criminal investigation possibilities, it is also an attractive attack vector
for adversaries. Thus, backdoors deliberately weaken secure end-to-end
encryption, and society has to rely on government agencies to keep the
backdoor only available to them.

2. The second issue is whether society is willing to give such powerful tools
to its government in the first place. This decision must be taken carefully
because widely employed backdoors threaten to undermine digital security
and individual freedom. This is even more important if non-democratic
regimes were given access to backdoored schemes. As seen in the case
of biometric data collected before the deduction of American troops in
Afghanistan [Wat], this critical data fell into the hands of the Taliban.

Although the goal of law enforcement to use this additional data to fight crime
is honorable, the risk of deliberately lowering the security of all communication
does not seem to outweigh the benefits. Because even with lawfully acquired
data, it is questionable if accessing and storing data on a large scale for some time
(called data retention, or Vorratsdatenspeicherung in German) has a positive
effect on crime-fighting statistics. A study [Vor] from 2011 was conducted by
the “Arbeitskreis Vorratsdatenspeicherung” in Germany. They concluded that
after the EU data retention directive 2006/24 was implemented, data retention
“has certainly not led to a larger share of registered crime being cleared than in
previous years” [Vor], taking crime statistics up to 2009 into account. A more
recent study commissioned by the EU and conducted by the Belgian consulting
firm Milieu [Mila] also investigated data retention. This study could not make
definitive statements about the effectiveness of data retention due to the lack of
data.

As a reaction to the above revelations and political developments, numerous
works developed new models to formalize these previously neglected attacks
and find appropriate countermeasures to this newly exposed threat. This kind
of attack is the main threat this thesis aims to defend against: the covert change
in implementations with the goal of exfiltrating secret information.

3

1.1.2 Scope of this Thesis
To capture the aforementioned subversion attacks, this thesis only examines
attacks that exploit cryptographic schemes to leak confidential information to
an outside entity. This can, for example, include using unreliable randomness
during message encryption or revealing the message instead of outputting a
ciphertext. We need to acknowledge that other forms of information leakage are
not within the scope of this thesis. For instance, such a case could be a computer
sending an encrypted message to its receiver and also secretly forwarding the
message to the NSA encrypted under the NSA’s public key without notifying
the user. This issue is not solely of a cryptographic nature but should instead be
dealt with at the operating system or software level. One possible approach to
detect this attack is the use of Intrusion Detection Systems [BC10], which could
be used to detect abnormal network traffic by comparing the header of a data
packet with a list of permissible recipients. It is essential to understand that
subversion attacks targeting non-cryptographic algorithms pose a significant
security threat and must be addressed through appropriate measures, which
also need to guarantee subversion-resilience. While this thesis does not cover
all possible attack scenarios, we aim to provide an initial layer of protection by
focusing on preventing attacks on the cryptographic building blocks themselves.

1.2 Related Work
To enable a complete assessment of the contributions of this thesis, it is crucial
to have a solid understanding of the prior research in the field of subversion.
We categorize prior work into three groups: Attacks, countermeasures, and mis-
cellaneous. It is important to note that there may be some overlap, especially
for the first two categories, as some works suggest both attacks and counter-
measures against the proposed attacks. The miscellaneous group includes works
covering various topics, all loosely connected to the topic of subversion.
Terminology. Before discussing prior work, we need to clarify some terminol-
ogy. Throughout prior work and this thesis, the terms backdoor and subversion
are used interchangeably. Both refer to attacks where the adversary changes the
implementation of a cryptographic scheme. As in most scientific works, we also
use the term subversion in this thesis. Sometimes, a subclass of attacks called
Algorithm-Substitution Attack (ASA) are considered. These are subversion at-
tacks where merely a single algorithm of a cryptographic scheme is substituted
by the implementation of the adversary.

1.2.1 Attacks
Various works highlight the imminent threat of subversion attacks on crypto-
graphic primitives by describing attacks and emphasizing the need for appro-

4

priate countermeasures. All of the following attacks have in common that a
subversion attack succeeds by leaking confidential information while remaining
undetected, with respect to some detection models. Different models make dif-
ferent statements and assumptions about detection, which we discuss in more
detail in Section 1.2.2. We begin by describing generic attacks, after which
we discuss more specific attacks against compositions of algorithms, harder-to-
detect asymmetric subversion attacks, and attacks on Post-Quantum schemes.

Generic attacks. The first work to formally introduce subversion attacks is
due to Bellare, Paterson, and Rogaway [BPR14]. They propose ASA, where
an adversary substitutes the specification of an algorithm of a cryptographic
primitive with its own implementation. Their work focuses on the encryption
algorithm of symmetric encryption schemes, but the underlying approach can
also be generalized to other schemes. They propose two attacks utilizing the
random coins chosen during encryption. The first attack replaces a block ci-
pher’s initialization vector (IV) with an encryption of the symmetric encryption
key. This encryption is done with a special subversion key only known to the
adversary. Thus, only that adversary can decrypt the IV with regards to the
special subversion key and can, therefore, obtain the secret key to decrypt other
ciphertexts. This attack is undetectable as long as the adversary uses an en-
cryption scheme whose ciphertexts are indistinguishable from random to encrypt
the encryption key by the user. All modern encryption schemes used in practice
have this property, highlighting the impact of this attack. The second attack
called the biased-ciphertext attack is more versatile, as it only requires the en-
cryption algorithm to use some random coins and can easily be applied to any
other randomized cryptographic primitive. The goal of this attack is to leak the
secret key bit by bit via biased ciphertexts, In detail, the adversary again has a
subversion key K̃, which is used as a key for a pseudo-random function (PRF)
F (for details on PRFs, see Section 12.5). If a message M is encrypted with
the subverted encryption scheme, the scheme runs the specification of the en-
cryption algorithm Enc(K, M) to obtain a ciphertext C. It then checks whether
F (K̃, C) = K[0], i.e., if F is evaluated on the subversion key and ciphertext,
the output equals the first bit of the secret key. If not, a new ciphertext is
recomputed with new randomness. This process is also often called rejection
sampling. Thus, any adversary holding the subversion key can learn the first bit
of the secret key from the ciphertext. This approach can now easily be extended
to leak the secret key bit by bit via several ciphertexts. However, this only holds
if the implementation can hold a state between executions to keep track of the
currently leaked bit.

As described above, the powerful biased-ciphertext attacks have the downside
that they require the implementation to hold state between executions. Thus, in
case of state resets or stateless schemes, this attack becomes infeasible. Bellare,
Jaeger, and Kane [BJK15] then presented an even stronger variety of this attack,
circumventing the requirement of holding a state. Their idea is to leak random

5

secret key bits and their index via the biased-ciphertext attack. They showed
that, given enough ciphertexts, the secret key can be recovered while the attack
cannot be detected within their model. To summarize, their work showed that
powerful subversion attacks can be carried out against all randomized schemes
without the requirement that the implementation needs to hold a state.

All these attacks illustrate that using randomness can be leveraged in a sub-
version setting. While randomness allows to defend against standard adver-
saries, it enables subversion attacks. However, not only randomized schemes are
vulnerable to subversion attacks. Degabriele, Farshim, and Poettering [DFP15]
introduced input-trigger attacks for symmetric encryption schemes, where spe-
cially chosen inputs trigger an attack. In detail, the adversary prepares the
implementation of the encryption algorithm such that for a special message M∗

called the trigger, the encryption algorithm outputs the secret key as a cipher-
text. Thus, any adversary obtaining encryptions of M∗ can trivially break the
security of the considered scheme. Note that this attack can directly be applied
to other primitives. This attack can only be detected by strong security models,
where a (monitoring) party gets access to transcripts of all communication of
the adversary. We discuss these different models in Section 1.2.2.

So far, all of the mentioned works considered attacks on a sending party’s
algorithms, i.e., the party computing a ciphertext or signature. In a series of
works, Armour, Farshim, and Poettering [AP22, DFP15, AP19] showed that the
receiving parties, i.e., the party decrypting ciphertexts or verifying signatures
can be subject to subversion attacks. Their main idea is to alter the behavior of
the receiver’s algorithm to leak information through artificially induced decryp-
tion errors. This means that the implementation either rejects valid ciphertexts
or accepts bogus signatures. An adversary observing this behavior of the re-
ceiver can use this information to learn information about the user’s secret key
or simply accept invalid signatures. Third parties cannot detect these attacks
in their proposed security model.

With all these powerful subversion attacks introduced in the literature, Berndt
and Liśkiewicz [BL17] investigated common properties of ASA and showed that
successful ASAs correspond to secure stegosystems and vice versa. Steganogra-
phy is the concept of hiding secret messages in ordinary communication. The
authors also showed lower bounds on the exfiltration rate for universal ASAs on
symmetric encryption, i.e., an ASA that works for all encryption schemes where
the exfiltration rate of an ASA on symmetric encryption schemes describes how
many bits of secret information can be leaked via a single ciphertext. In [BL17],
it was shown that no universal ASA could leak more than O(1) · log(λ) bits of
information, where λ is the security parameter.

Composition and Protocols. So far, all mentioned works mainly considered
a single primitive in isolation and subversion attacks against that primitive.
However, in practice, usually, many different schemes work together to guarantee
security. Thus, Chen, Huang, and Yung [CHY20] considered subversion of the

6

KEM/DEM paradigm, where secret and public-key encryption schemes work in
conjunction. While previous works considered leaking secret keys in a symmetric
setting, it is unclear how this translates to a public-key setting. The authors
pointed out weaknesses in composed cryptographic primitives, allowing them to
bypass the known logarithmic upper bound from [BL17].

Berndt, Wichelmann, Pott, Traving, and Eisenbarth [BWP+22] proposed sub-
version attacks on cryptographic protocols rather than individual cryptographic
schemes. They showed that the highly desirable security property of forward
security implies the applicability of algorithm-substitution attacks. They ana-
lyzed subversion attacks on TLS, WireGuard, and Signal and showed that for
TLS and WireGuard, long-term secrets can be leaked within a few messages.
In the case of Signal, the double-ratchet protocol turns out to be highly im-
mune against ASAs. Unfortunately, choices in the implementation of Signal’s
multi-device support again allowed for subversion attacks. But Signal is not the
only protocol susceptible to subversion attacks. Recently, Cogliati, Ethan, and
Jha [CEJ23] proposed an algorithm-substitution attack on MTProto2.0, the un-
derlying authenticated encryption scheme of Telegram’s end-to-end encryption
protocol. Their attacks exploit the random padding in MTProto2.0 while also
showing that only minor changes can make the protocol subversion-resilient,
assuming all ciphertexts can be correctly decrypted.

Asymmetric subversion attacks. So far, all mentioned attacks can be de-
scribed as symmetric subversion attacks. The adversary uses a secret (sym-
metric) subversion key that is also used in the implementation. However, this
approach has a downside: if a third party can access this subversion key, this
party could also make use of the backdoor. With this observation, Lie, Chen,
Wang, and Wang [LCWW18] and Wang, Chen, Liu, Wang and Wang [WCL+22]
proposed asymmetric attacks on signatures and identification schemes. These
attacks use asymmetric keys, just as in public-key encryption. The implemen-
tation uses the public key, while the adversary has the corresponding secret key.
This way, if a third party gets access to the public key used in the implementa-
tion, this party cannot make use of the backdoor. The authors showed that this
approach still allows the adversary to recover the signing key efficiently, further
emphasizing the impact of subversion attacks.

Post-Quantum Schemes. With the rise of post-quantum schemes over the
last years, the natural question arises if these schemes are susceptible to more
sophisticated subversion attacks beyond the generic attacks presented above.
Several works show that this is indeed also the case. Yang, Chen, Li, Qu,
and Yang [YCL+20] proposed a practical subversion attack against the well-
known lattice-based encryption scheme proposed by Regev [Reg05]. Thus, their
work can be seen as a possibility result of the vulnerability of LWE (Learn-
ing With Errors)-based cryptosystem. Also, post-quantum signature schemes
can also be targeted by subversion attacks, as shown by Galteland and Gjøs-
teen [GG19]. They analyzed all digital signature schemes submitted to NIST’s

7

post-quantum cryptography standardization Project and showed that subliminal
channels could be embedded in all submissions. Further, Jiang, Han, Zhang, Ma,
and Wang [JHZ+23] showed that current post-quantum cryptosystems could
also be targets of subversion attacks. They present a practical attack for gen-
eral randomized algorithms with a certain structure that this randomness can
be revealed to an adversary. This allows them to present a series of ASAs on
public-key primitives such as public-key encryption, key-encapsulation mecha-
nisms, and digital signatures. Their attacks highlight the threat of ASAs, as
their attacks can be used to attack the ongoing NIST post-quantum standards.
Summary. Consequently, subversion attacks are possible against virtually all
kinds of modern cryptographic schemes.

1.2.2 Countermeasures and Models
As the above attacks threaten the security and privacy of modern applications,
different countermeasures arise to defend against these extremely powerful at-
tacks. Before we dive into the different approaches, we emphasize that these
make inherently different assumptions and are sometimes hard to compare. Each
model has advantages and disadvantages, and we are convinced that a careful
evaluation of a fitting model must be done for each application. We hope that
this overview can help us make an adequate choice to defend against subversion
attacks while also allowing us to assess the contributions of this thesis better.

In Section 1.2.1, we saw various generic attacks against cryptographic primi-
tives. We emphasize that due to their generic nature, it is impossible to defend
against these attacks without additional assumptions. In the following, we give
an overview of different assumptions that enable us to defend against subversion
attacks. These assumptions vary from introducing trusted parties, requiring a
certain architectural design of the considered primitive, or simply introducing
trusted operations. Note that while these different approaches share common
ideas, it can be hard to compare them in general. However, all aim to minimize
the necessary assumptions as best as possible. Unsurprisingly, there is a ten-
dency for stronger security properties to require stronger security assumptions.
Thus, in the following, we provide an overview of the approaches found in the
literature to defend against these powerful subversion attacks.
Watchdogs. The watchdog model was introduced by Bellare, Patterson, and
Rogaway [BPR14].1 This model introduces a trusted party called the watchdog.
This party has access to the subverted implementation of a scheme as well as to
an honest specification. It is then allowed to query the subverted implementation
for inputs of its choice. Usually, this means that the watchdog samples inputs
uniformly at random from the input domain, asks for the subverted output,
and compares it to the output of the honest specification under the same input.

1Although the authors do explicitly reference a watchdog model, they introduce the concept
of a detection-based defense against subversion attacks.

8

Security, i.e., subversion-resilience, is then informally captured by the following
two requirements:

• either the watchdog has a “high” chance of detecting the attack
• or some security guarantee for the underlying scheme holds.

This approach follows a detection-based strategy, which is motivated by the
presence of a proud-but-malicious adversaries. This means that they would not
engage in an attack with a high chance of getting detected. For example, there
could be political repercussions if a state-level adversary is caught carrying out
subversion attacks. The above notion does not capture adversaries that do not
care about being detected.

Various different watchdog types were classified by Russell, Tang, Yung, and
Zhou [RTYZ16]. As the different types greatly impact the meaning of security
in the corresponding model, we also give an overview and highlight why we
chose to use a universal offline watchdog in this thesis.
Online/Offline: A watchdog can either be offline or online. An offline watch-

dog engages in testing before an adversary interacts with the implemen-
tation and tries to break the security of a scheme. On the other hand,
an online watchdog (first introduced by Degabriele, Farshim, and Poet-
tering [DFP15]) is granted direct access to transcripts of interactions of
the adversary with the subverted scheme.

Access to information: An important aspect to consider is which information
the watchdog is given access to. While this is not relevant for offline
watchdogs because the watchdog can, for example, choose secret keys
by itself, it is essential for online watchdogs. Omniscient watchdogs get
access to all secrets and even access to the internal state of the considered
construction. Here, giving the online watchdog as little information as
possible is desirable to minimize the necessary trust put in the watchdog.

Order of quantification: The order in which the watchdog and the adversary
are quantified in the definition is subtle but important. There are two
possibilities:

• For all adversaries, there exists a watchdog
• There exists one watchdog that defends against all adversaries

The former class of watchdogs is often used to argue that specific subver-
sion attacks could potentially be detected by a watchdog. While useful
from a theoretical perspective, this type of watchdog is of limited use in
practice. The latter class of watchdogs is often called universal watchdogs.
From a practical perspective, universal watchdogs are the desirable class
of watchdogs. This is because we can guarantee security against all possi-
ble adversaries after running such a watchdog. Otherwise, one would need
to run a watchdog for every possible adversary (which seems infeasible) or
hope that the fear of detection by a watchdog specific to its attack prevents

9

an adversary from engaging in an attack. Obviously, designing a scheme
that can be proven secure with a universal watchdog is significantly more
complex than designing one with a non-universal watchdog.

There are many ways to combine the three properties mentioned above. We can
use a non-universal omniscient online watchdog to limit an adversary’s options
by employing a powerful watchdog. Alternatively, we can use a universal offline
watchdog and limit the necessary trust put in it as much as possible.

The offline watchdog model, which we consider in this thesis and is illustrated
in Fig. 1.1, can be structured into two phases. In the first phase, the detection
phase, the watchdog is aware of a specification. After the adversary provides
its implementation of the scheme, the watchdog either approves or rejects the
implementation by comparing the implementation to the specification. In case
of approval, a second phase, called the surveillance phase, starts. The adversary
tries to break the security of the scheme while interacting with the subverted
implementation.

Watchdog Adversary

SPEC � �
� / �

�Subverted Implementation Adversary

Detection Phase

Surveillance Phase

Figure 1.1: Illustration of the offline Watchdog model. In the detection phase,
the adversary provides its implementation, which the watchdog tests
against the specification and either accepts or rejects the implemen-
tation. Afterwards, in the surveillance phase, the adversary tries to
break the security of the subverted implementation.

We now provide a brief overview of the available constructions within watch-
dog models of previous works. Note that we do not delve into much detail here
and discuss the works mentioned in later chapters (Section 3.4, Section 12.4)
more thoroughly and compare them to our approach. The first formal construc-
tion within an online watchdog model (although not called this way) was by Bel-
lare, Paterson, and Rogaway [BPR14]. They showed that symmetric encryption
with unique ciphertexts can be proven subversion-resilient if we abandon ran-
domized schemes. Ateniese, Magri, and Venturi showed similar results for signa-
tures [AMV15], proving that unique signatures are subversion-resilient against

10

subversion attacks meeting basic undetectability requirements. As a downside,
both works basically do not consider subversion of the decryption or verification
algorithm. Additionally, only considering deterministic schemes severely lim-
its the possibilities for cryptographic primitives. In the face of generic attacks
against randomized schemes, Russell et al. [RTYZ16, RTYZ17] proposed the
trusted amalgamation and split-program model, which allows more fine-grained
access to the building blocks of a primitive as well as dedicated testing of ran-
domness generations. This new architectural assumption allowed for more prim-
itives to be proven subversion-resilient, including (trapdoor) one-way permuta-
tions [RTYZ16], encryption schemes [RTYZ17], random oracles [RTYZ18], and
signatures [CRT+19]. All of these works utilize asymptotic security definitions,
where attacks are deemed unsuccessful if a watchdog can detect subversion with
some tiny yet non-negligible probability. Additionally, no scheme could achieve
subversion-resilience where all algorithms are subject to subversion without us-
ing idealized cryptographic primitives such as random oracles (see Section 2.3
for a deeper discussion).
Cryptographic Reverse Firewalls. A different approach uses cryptographic
reverse firewalls, or shortly reverse firewall (RF), which was first introduced by
Mironov and Stephens-Davidowitz [MS15]. RFs are proxies located between the
corrupted machine and an adversary. A simple example of where a RF could
be located would be a home router, which relays the communication of a desk-
top computer over the internet. While ordinary firewalls protect a system from
outside sources, reverse firewalls protect from attacks launched from the imple-
mented system itself. The main idea of RFs is that this proxy applies some
operation to potentially subverted outputs (and possibly inputs from outside
parties), thus removing possible biases. In contrast to watchdogs, reverse fire-
walls can be seen as a preventive approach rather than one for detection. For an
illustration of this approach consider Fig. 1.2, where in- and outgoing messages
of a subverted implementation are manipulated by the reverse firewall.

Reverse FirewallSubverted
Implementation

Adversary

�
�
�

�

�

�
�

Figure 1.2: Illustration of the reverse firewall model. The reverse firewall ma-
nipulates all traffic routed through it.

In order to obtain meaningful security guarantees, it is required from RFs to

11

preserve security rather than create it. A protocol guarded by RF should thus be
secure in a standard setting without a RF, while the RF provides additional se-
curity guarantees in a subversion setting. Otherwise, one could shift all the logic
into the RF and thus basically remove all attack capabilities of the adversary.
The reverse firewalls are not trusted as they cannot access the user’s secret keys.
That being said, it is assumed that the reverse firewall has access to “good” ran-
domness, i.e., it can use uniformly random coins. Previous works showed reverse
firewalls can be constructed for a variety of (re-randomizeable) cryptographic
primitives such as key exchange and public-key encryption [DMS16], multiparty
computation [MS15, CMY+16, CMNV22], digital signatures [AMV15] and inter-
active proof systems [GMV20]. RFs can easily defend against stateful subversion
due to their online approach. As the RF is always sanitizing in- and outputs, it
does not matter if the implementation changes its behavior after some specific
time passed.

Bossuat, Bultel, Fouque, Onete, and van der Merwe [BBF+20] showed that
reverse firewalls can also be applied to TLS-like protocols and thus be applied
to secure channels (called the record layer). This is surprising since all previous
works only applied to rerandomizeable primitives such as public-key encryption
or signatures. As the record layer is not rerandomizeable, the authors broke
with one assumption made throughout previous works. The reverse firewall is
allowed to share a key with both participating parties. However, this is set up
in a way such that the reverse firewall cannot access the encrypted messages.

Another work that applies reverse firewalls to non-rerandomizeable primitives
is due to Dauterman, Corrigan-Gibbs, Marières, Boneh, and Rizzo [DCM+19].
The idea is that by setting up keys in a certain way and deriving randomness
in a deterministic way, a party can “rerandomize” ECDSA signatures such that
the output is uniformly random in the set of all valid signatures for a given
message.

Another downside apart from requiring access to uniformly random coins is
that RFs need and must self-destruct on inputs that the RF cannot handle. The
notion of self-destruction was first put forward by Ateniese, Magri, and Venturi
[AMV15] for the case of digital signatures. Prior works required signatures
to be verifiable, i.e. the adversary would only get access to valid signatures.
Ateniese, Magri, and Venturi extended the security definition and allowed invalid
signatures to be handled by the RF. The problem is that an invalid signature
cannot be randomized in general. The question arises of how the RF handles this
situation. Unfortunately, as shown in [AMV15], the only thing the RF can do
is to self-destruct, i.e., not output anything when given an invalid signature and
not respond to any further queries to avoid attacks. Basically, given an invalid
signature, the scheme stops working altogether. If the reverse firewall drops
invalid signatures, the adversary could use this to establish a covert channel to
leak secret key material. Depending on whether or not the RF responses could
correlate to bits of the secret key. Additionally, the adversary could use the self-
destructing behavior to carry out extremely simple Denial-of-Service attacks.

12

One could argue that it is possible to detect this behavior. However, one would
again engage in an (online) detection approach and not solely rely on reverse
firewalls for prevention.

Since the reverse firewall continuously sanitizes communication, a sudden
change in the implementation’s behavior does not make a difference as long
as the reverse firewall can sanitize communication in the first place. Thus,
reverse firewalls can defend even against stateful subversion attacks.
Self-Guarding Schemes. While most subversion-resilient schemes were proven
secure in one of the two above models, another model was introduced by Fis-
chlin and Mazaheri [FM18]. Their self-guarding schemes use an honest sampling
phase where the scheme acts according to a specification. During this phase,
samples of outputs of the primitives are collected, which can then later be used in
the subversion phase, where the implementation is altered. Thus, this approach
actively prevents attacks but does not need an online external party in contrast
to reverse firewalls. The authors provide constructions for self-guarding CPA-
secure public-key encryption from any homomorphic encryption scheme (e.g.,
ElGamal [ElG84]) and self-guarding symmetric-key encryption scheme from any
CPA-secure scheme. In both cases, the number of messages one can encrypt is
limited by the number of samples collected in the first phase. Additionally, they
provide a construction for self-guarding signatures, which can be used to sign
arbitrary many messages but can only defend against stateless subversion.
Immunization. Dodis, Ganesh, Golovnev, Juels and Ristenpart [DGG+15]
formalized an immunization model for pseudorandom generators, where an im-
munization function is applied to the output of the generator. Depending on the
knowledge of the subverter about this function, the authors show different ap-
proaches for choosing the immunization function in such a way that the output
of the subverted pseudorandom generator is indistinguishable from the output
of an honest pseudorandom generator.

1.2.3 Miscellaneous

Parameter Subversion. In this thesis, we consider subversion of the algo-
rithms used in a cryptographic scheme. Another important aspect of crypto-
graphic schemes is parameters. These could be, for instance, a description of a
group or a common reference string or, in the case of Dual_EC , points on an
elliptic curve. There is a line of research (including [BFS16, Fuc18, ALSZ21,
AS21, Bag19]) investigating parameter subversion. Note that these works do
not try to make it impossible to subvert parameters but rather investigate and
construct schemes where all other algorithms, besides parameter generation, be-
have according to the specification. The question arises as to how these honestly
behaving algorithms can prevent the subverted parameters from impacting the
security of the considered scheme. Most works in this area focus on the sub-
version in the context of non-interactive zero-knowledge (proof of) knowledge

13

(NIZK), where the schemes use a common reference string. This random string,
which all parties can access during protocol runs, is usually set up in a trusted
manner.

Note that in this thesis, parameter generation can be seen as part of the
key generation, as we use methods to generically sanitize key generation from
the work of Russell, Tang, Yung, and Zhou [RTYZ17]. As we assume that key
generation can be further split into smaller building blocks, our constructions
can avoid parameter subversion. Thus, if it is known that the method used for
parameter computations uses that method proposed by Russell et al. [RTYZ16]
(and also used in Part II of this thesis), protection against parameter subversion
is guaranteed.
Hardware Trojans. While we focus on backdoors in cryptographic primitives,
prior work also considered backdoors in hardware, also known as hardware tro-
jans. There is a variety of works on this topic [ABK+07, WS10, WS11, HFK+10]
covering various classes of attacks as well as coming up with adequate counter-
measures. Since these works operate on an entirely different abstraction level,
comparing their results to ours is hard. However, similar techniques, such as
more fine-grained access to building blocks and trusted operations like an XOR,
seem common in both worlds.
Discussion in the Scientific Community. While the endeavors to achieve
subversion-resilient were mainly theoretical, the worry of backdoors opened dis-
cussions in the scientific community. As the first example, there was a discussion
on the standardization of post-quantum cryptography asking for specific treat-
ments to prevent subversion attacks2. Thus, the threat of backdoors already
impacts current proposals for cryptographic constructions. As a second exam-
ple, an “elliptic curves seeds bounty“ was recently announced3. In 1997, NIST
standardized various elliptic curves. These curves are specified by a coefficient
and a random seed value. These values are then used to derive keys transpar-
ently and verifiable. However, it is unclear how the random seeds were gener-
ated. Rumors say that the seeds were obtained by applying SHA-1 to English
sentences. To outrule that these values were also chosen in a way that enables
to break security (as it was in the case of Dual_EC), members of the cryp-
tographic community announced a 12.000$ bounty for anyone who can provide
the (supposedly) used English sentences for deriving the seeds.

2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WFRDl8DqYQ4?pli=1 , last ac-
cessed 25.10.2023

3https://words.filippo.io/dispatches/seeds-bounty/ , last accessed 25.10.2023

14

1.3 Contributions of this Thesis
From our perspective, an offline watchdog best captures what one intuitively
expects when considering subversion-resilience:

Test an implementation once before use, and one can be sure that either the
subversion attack is detected or the adversary can not break the security of the

scheme.
Offline watchdogs only require one-time testing before a scheme is used and do
not require access to the keys used during the actual communication. Thus, all
constructions in this thesis are proven secure in an universal offline watchdog
model, as we deem these properties essential for a watchdog to be actually usable
in practice. While significant progress has been made in developing subversion-
resilient schemes in the offline watchdog model, several critical properties still
need further improvement. To the best of our knowledge, no construction of
subversion-resilient cryptography is yet used in practice. In order to make steps
towards changing this, our main research question of this thesis is:

How can we improve subversion-resilient schemes in a universal offline
watchdog model to make them more practical?

While the approaches of prior work differ in their details, we identified two
main aspects all works mentioned in Section 1.2.2 that achieve subversion-
resilience in an offline watchdog model have in common:

1. Firstly, all prior work utilizing offline watchdogs used abstract asymptotic
running times to describe the watchdog’s runtime. While theoretically
sound, this gives little guidance for practitioners on how long the watchdog
would need to be run and allows schemes to be considered secure while
enduring a potentially huge testing overhead.

2. Secondly, all prior work either excludes critical algorithms from subver-
sion, only considers deterministic schemes, or utilizes idealized random
functions (called random oracles, see Section 2.3) to obtain subversion-
resilience when all algorithms are implemented by the adversary.

In this thesis, we address both these issues and summarize our contributions as
follows:

Practical Watchdogs. We propose the first watchdog model with a concrete
security model providing specific security guarantees for fixed runtimes of
the watchdog. Within this model, we provide constructions for subversion-
resilient randomness generators and subversion-resilient public-key en-
cryption using watchdogs with linear or even constant running time. As
our main contribution, we construct a subversion-resilient key encapsula-
tion mechanism, enabling subversion-resilient public-key encryption given
only a trusted XOR operation.

15

Complete Subversion without Random Oracles. We propose the first con-
struction for authenticated encryption where both the encryption and
decryption algorithm are provided by the adversary and the first con-
struction of digital signatures where all algorithms are subject to sub-
version. Both constructions achieve subversion-resilience without relying
on random oracles. While we do not formally include subversion of key
generation for our construction of authenticated encryption, techniques
from this and prior work can be applied in a straightforward fashion to
also include sanitizing key generation. In both constructions, we revisit
classical results from cryptography and observe that certain cryptographic
schemes we use as building blocks are naturally subversion-resilient. Our
results show that subversion-resilience can be achieved without random
oracles but at the cost of larger ciphertext and signature sizes.

All of our constructions use the trusted amalgamation andsplit-program model
proposed by Russell et al. [RTYZ16, RTYZ17], which allows the watchdog
more fine-grained access to the building blocks of a primitive and decouple
randomness generation from a randomized algorithm. Although this thesis does
not provide constructions suitable for large-scale deployment, we believe that our
contributions are important steps toward making subversion-resilient schemes
more practical.

1.4 Thesis Outline
We briefly introduce some notation and foundational concepts used in this the-
sis in Chapter 2. Then, in Part I, we discuss the topic of subversion-resilient
public-key encryption with practical watchdogs in a concrete security setting.
We explore how to construct subversion-resilient one-way public-key encryption
while also discussing the limitations in achieving stronger security notions. In
Part II, we investigate ways to achieve subversion-resilience in an asymptotic
setting under complete subversion without using random oracles. Specifically,
we provide constructions of subversion-resilient authenticated encryption and
digital signatures. Finally, we conclude this thesis in Part III by discussing our
results and open problems.

16

2 Preliminaries

2.1 Notation
In this section, we shortly introduce the notation used throughout this thesis.
We use s

$← S to denote that s is sampled uniformly at random from the set
S. Let A be a randomized algorithm. Then we use y ← A(x) to denote A
outputting y on input x. Sometimes, we explicitly reference the random coins
used by A. Then, we use A(x; r) to denote A running with input x and using
the random coins r and use A(; r) if A is called without input. Let N be the set
of the natural numbers. Then we use [n] to denote the set of natural numbers
of 1 to n, i.e. {1, 2, . . . , n− 1, n}. We use ⊕ to denote the bitwise exclusive OR
(XOR) operation on two bitstrings.

In this thesis, it’s important to differentiate between the specification and the
implementation of a primitive Π that is being used. To distinguish between
the two, we use Π̂ when referring to the primitive’s specification and Π̃ when
referring to the implementation provided by the adversary.

2.2 Provable Security
As stated earlier, having a solid theoretical foundation for our security proofs
is essential. Therefore, we briefly explain cryptographic reductions and the two
approaches used to define security in this thesis. Our reference material for this
section is primarily the book written by Katz and Lindell [KL14]. The modern
approach of provable security wants to capture the notion that a primitive is
secure if

• security is preserved against efficient adversaries, and
• efficient adversaries can break security only with a very small probability.

To make this approach sound, it is crucial to provide formal definitions of what
efficient and very small mean in this context. We continue describing two
common approaches: the concrete approach and the asymptotic approach.
The Concrete Approach. The concrete approach introduces two constants t
and ε, where t denotes the running time of an adversary and ε with 0 ≤ ε ≤ 1.
Then, the security of a scheme Π can be (informally) stated as found in [KL14]:

Π is (t, ε)-secure if every adversary running for time at most t breaks the
security of Π with probability at most ε.

17

This approach of defining security (while additionally requiring a formalization
of “breaking the security of Π”) is useful in practice, as it captures what users are
usually interested in. However, one must be careful in interpreting the results
stated in the above form. For instance, it is unclear how results translate to
some t′ vastly greater or smaller than t. Also, with the above approach, no
scheme is ever simply secure. While this approach allows discussion for certain
choices of t and ε, it depends on the application when a (t, ε)-secure scheme can
be considered secure.
The Asymptotic Approach. In contrast to the concrete approach, the
asymptotic approach describes the running time of the adversary of the ad-
versary as well as its success probability as functions of a security parameter
λ ∈ N. A scheme is instantiated based on this security parameter. A bigger
λ usually corresponds to longer keys used within a scheme. The adversary’s
running time and success probability are then expressed as functions of λ. We
use the abbreviation ppt (probabilistic, polynomial-time) for probabilistic al-
gorithms algorithms with running time polynomial in λ. Additionally, we call
algorithms efficient if their running time is polynomial in λ. For describing
the success probability of adversaries, we use the notion of negligible functions,
which is defined as follows.

Definition 1. A function f is negligible if for every polynomial p(·) there exists
N ∈ N such that for all integers n > N it holds that f(N) < 1

p(n) .

Informally speaking, a function being negligible means that it vanishes faster
than any inverse polynomial in λ. A simple example for a negligible function
is f(x) = 1

2x . We can now put the above together and describe the notion of
asymptotic security as follows, again closely following [KL14]:

Π is secure if every ppt adversary A breaks the security of Π only with
negligible probability.

Note in contrast to the concrete approach, this way of phrasing security only
makes statements about security for “large enough” values of λ since we consider
asymptotic behavior.
Note on a Unifying Approach. We want to note that there is the possibility
to unify the two above approaches by accessing the two values (t, ε) of the
concrete approach as functions in the security parameter. Thus, the concrete
approach could be considered more general. However, we use the two classical
approaches presented above to keep the distinction clear and not overload the
notation.
Cryptographic Reductions. We have explored two different methods for
formalizing security. In addition, we must define what it means for a specific
scheme to be secure. This is accomplished through security experiments, also
known as security games. A security game outlines an adversary’s capabilities
and what it takes to break security. A trusted challenger performs necessary

18

actions like computing keys and passing them to the adversary. There are essen-
tially two kinds of problems in security games: search and indistinguishability.
A search problem involves finding specific information or a solution that meets
certain criteria in a big search space. Indistinguishability problems arise when
an adversary is presented with a challenge that could have been computed in
one of two possible ways. The adversary’s task is determining which method
was used to compute the challenge with a probability much more significant
than mere chance. As we now understand what security for a specific scheme
means, the next step is to establish a way to formally prove that a given scheme
attains the desired security property. For this, we use cryptographic reductions.
In cryptography, we want to prove statements of the form

If some assumed to be hard problem X holds, then construction Y is secure.

Here, the hard problem X could be, for example, a mathematical problem for
which no efficient algorithms are known or that some building block has a certain
security property (in this thesis, we always have the latter case). The security
of construction Y (which we want to prove) can be expressed in either the
asymptotic or concrete setting. However, it is unclear how statements of the
above form would be formally proven directly. Instead, we can make use of the
contraposition of the above statement:

If Y is not secure, there exists an algorithm that can solve X.

This is far more manageable, as this is equivalent to asking to construct an
adversary for “X is not true”, i.e., solve a mathematical problem or break the
security of a building block while using an adversary against Y . Almost all
proofs in this thesis follow this generic template.

2.3 The Random Oracle Model
We refer to the random oracle model throughout this thesis, although we do not
use it for our constructions. Therefore, we briefly explain this model. A com-
mon approach in modern cryptography is to construct and prove cryptographic
schemes in the random oracle model. A random oracle is an idealized random
function often used to replace a cryptographic hash function (see Section 13.7).
A random oracle responds to a query with a uniformly random element of its
range after being given an element from its domain. Since a random oracle is
still a function, it always responds with the same output if queried multiple
times with the same input. To formally capture this approach, Bellare and
Rogaway [BR93] introduced the random oracle methodology to design practical
schemes with random oracles. Their paradigm can be summarized as follows:

19

1. Devise a scheme in the random oracle model.
2. Prove the security of the scheme in the random oracle model.
3. Replace the oracle access to the random oracle by computations of a hash

function.
Thus, the random oracle model is a heuristic, which can provide secure and
practical schemes if a “good enough” hash function is used as a replacement.
Many modern constructions with security proofs in the random oracle are used
in practice, often using SHA-256 as an instantiation for the random oracle. As
we discuss shortly, there are theoretical limitations to the above approach.
Limitations. Unfortunately, Canetti, Goldreich, and Halevi [CGH04] have
shown that the random oracle methodology does not grant secure schemes in
general. To show this, they build (artificial) constructions of signature and
asymmetric encryption schemes, which are secure if used with a random oracle
but insecure if any implementation of the random oracle is used. This means
that a security proof in the random oracle model does not necessarily imply
that the considered construction is also secure in the standard model. However,
to the best of our knowledge, there is not a single practical scheme that has
been shown to be insecure due to the use of random oracles. Additionally,
a description of a truly random function is incredibly huge. This is because
uniformly random values can not be compressed significantly more than simply
storing all values in a list, which can be derived from Shannon’s source coding
theorem [Sha49a]. Therefore, even storing a local copy of a random oracle would
be impractical.

From a theoretical perspective, avoiding random oracles is preferred as it
minimizes the number of assumptions necessary to achieve security and uses
sound assumptions for proofs instead of heuristics. Unfortunately, this often
induces decreased efficiency, such as in signature or ciphertext size, compared
to constructions with random oracles.

20

Part I

Subversion-Resilient Public-Key
Encryption with Practical

Watchdogs

In the upcoming chapters, we examine the protection of public-key
encryption against subversion attacks using practical offline watchdogs

and investigate their limitations.

21

Author’s Contributions. In collaboration with Rongmao Chen and Tibor
Jager, the author of this thesis developed a subversion-resilience model with
practical watchdogs and a construction for subversion-resilient one-way public-
key encryption, originally published in [BCJ21]. The key contribution of the au-
thor of this thesis was the idea to use combiners to achieve subversion-resilience,
which was supported by a corresponding security proof. The aforementioned
authors later discovered a subtle flaw in the proof and, with the support of Se-
bastian Berndt, revisited the result [BCJ21] and proved that the initially stated
claims are valid for a weaker security notion and provided an impossibility result
for the originally considered security notion. These new results were published
in [BBCJ23].

23

3 Practical Watchdogs
As mentioned in Section 1.3, we aim to improve the practicality of the offline
watchdog model. As a reminder, the watchdog is a trusted entity that tests
a possibly subverted primitive before actual use. An adversary tries to break
the security of the considered scheme while avoiding detection by the watchdog.
Informally speaking, a cryptographic scheme is considered subversion-resilient
if either the watchdog detects the subversion with some “high” probability or
the adversary can not break the security. With this general setting in mind, our
main concern is identifying the aspects that make a subversion-resilient scheme
practical. In this part of this thesis, we focus on the watchdog’s practical con-
siderations rather than the details and properties of the considered primitives.
Powerful Watchdogs. Generally, a watchdog’s capability to prevent sub-
version attacks increases as it becomes more powerful. To illustrate, consider
a simple example. If a watchdog had unlimited time to run, it could test a
cryptographic algorithm on every possible input, including those algorithms
with exponentially big input spaces. As a result, it could quickly identify any
subverted implementations that differ from the specified behavior, ensuring se-
curity in the subversion setting. However, the exponential running time of such
a strong watchdog renders it practically useless, as secure schemes must have
exponentially big input spaces (including the key and randomness space). This
is because otherwise, an adversary could engage in a simple brute-force attack
to, for example, obtain a secret key and trivially break security. From a prac-
tical standpoint, the offline watchdog method appears appealing since it only
requires a single check rather than the continuous monitoring that online watch-
dogs demand. Nonetheless, as demonstrated by our previous example, even a
one-time check may result in excessive testing overhead.

In particular, we are interested in techniques to construct cryptographic
schemes that utilize offline watchdogs with a concretely bounded, low running
time while achieving strong security guarantees. As we illustrate in Section 6.1
in more technical detail, using a weaker watchdog for testing makes it more
challenging for the designer, as cryptographic components may deviate more
often from their specifications. Thus, special treatments are required to achieve
subversion resilience in this stronger setting. All the above points lead us to our
main research question in this chapter.

What security notions can be achieved with practical offline watchdogs doing
minimal testing?

25

Prior work by Russell, Tang, Yung, and Zhou [RTYZ16, RTYZ17] utilizes
asymptotic security definitions and considers a watchdog already successful if it
has a non-negligible probability of detecting a malicious subversion. Although
theoretically sound, these asymptotic definitions do not provide clear guidance
on the practical duration of the watchdog’s testing, indicating a need for im-
provement in practical applicability. To obtain some concrete acceptable de-
tection probability, this could require the offline watchdog to do a polynomial
amount of testing, where in the worst case, the running time of the watchdog
might even have to exceed the running time of the adversary, which seems not
very practical. As pointed out by Russell, Tang, Yung, and Zhou [RTYZ17] and
also discussed in Chapter 8, while the detection probability can be amplified
via repetition, this cannot be adapted to a particular non-negligible function as
long as the watchdog’s running time is fixed and independent of the adversary.

Additionally, it’s unclear how long the watchdog needs to run concretely before
confidently determining whether a component is secure in an asymptotic setting.
Moreover, if there are device switches or software updates and the watchdog
needs to test the implementation repeatedly, the testing overhead will further
increase.

Detection Probability. In addition to the issue of testing overhead, assert-
ing a scheme secure if there is a non-negligible chance of detecting subversion
might not be sufficient for some use cases. For example, consider investigative
journalists or whistleblowers who could face severe consequences if their work
or identity is exposed through subverted cryptography. In this scenario, it is
desired that one can be overwhelmingly confident that the security of the consid-
ered scheme cannot be broken if the watchdog test passes. Therefore, schemes
with efficient watchdogs are crucial for making subversion-resilient schemes rel-
evant for practical use. In the theory of self-testing/correcting programs by
Blum, Luby, and Rubinfeld [BLR90], limited testing by the tester/corrector is
also considered a central design goal. Notably, it is required that the running
time of the tester/corrector should be at most within a constant multiplicative
factor of that of the underlying program. Thus, we believe it is also meaningful
to reduce the running time of the watchdog when establishing security if we view
the (possibly) subverted algorithm as a to-be-corrected program that executes
in a limited time.

Our Goal. In this part, we address the practicality of subversion resilience
by examining the testing overhead of the watchdog. We aim to construct
subversion-resilient cryptosystems in an offline watchdog model with concrete
security definitions, such that we can construct highly efficient watchdogs that
are guaranteed to run significantly faster than an adversary, ideally in linear
or even in constant time. We believe this is a necessary step towards mak-
ing Russell et al.’s [RTYZ16, RTYZ17] watchdog model applicable in real-world
applications.

26

3.1 Our Results
We provide the first constructions of a subversion-resilient random number gen-
erator, key encapsulation mechanism (KEM), and public-key encryption (PKE)
schemes with offline watchdogs that perform only limited testing while still
achieving meaningful security guarantees:

• We provide a parameterized refinement of the asymptotic watchdog model
by Russell et al. [RTYZ16, RTYZ17]. More precisely, we present a generic
model to capture the goal of subversion-resilience with a universal offline
watchdog and trusted amalgamation for any cryptographic primitive. The
model is defined with concrete security parameters so that specific bounds
on the runtime of the watchdog are explicitly given. This requires a con-
ceptual modification of the joint security experiment involving the watch-
dog and the adversary.

• Within this new model, we construct a simple randomness generator that
is guaranteed to output uniformly random bits, even if the watchdog only
tests the underlying component for a constant time. While an essential
building block for our key encapsulation and public-key encryption con-
structions, it is also of independent interest. This randomness generator
can also be used in our constructions in Part II.

• Based on this randomness generator as well as an additional trusted
XOR operation, we design a subversion-resilient one-way key encapsu-
lation mechanism using watchdogs running in linear time. This means
that an adversary cannot compute the key encapsulated in a given ci-
phertext, even if it provides the implementation used for computing said
ciphertext. This KEM implies a subversion-resilient one-way public-key
encryption scheme with a watchdog with practical running time. The
size of public keys and ciphertexts of this scheme is linear in the security
parameter to achieve standard security guarantees.

• We show that prior results claiming that our KEM construction is indistin-
guishable are indeed impossible to achieve for some subclass of reductions.

One might wonder why exactly we chose to design subversion-resilient KEM
and PKE schemes over any other primitives. The reason for this is twofold.

1. KEMs are an essential building block of modern cryptographic protocols.
Having access to subversion-resilient KEM schemes hopefully enables the
construction of more advanced subversion-resilient protocols. Also, KEMs
play an essential role in the field of post-quantum cryptography, as demon-
strated by the recent decision of NIST to standardize CRYSTALS-KYBER
as the primary algorithm used for key-establishment.1

1https://www.nist.gov/news-events/news/2022/07/pqc-standardization-process-
announcing-four-candidates-be-standardized-plus, last accessed on 17.10.2023

27

https://www.nist.gov/news-events/news/2022/07/pqc-standardization-process-announcing-four-candidates-be-standardized-plus
https://www.nist.gov/news-events/news/2022/07/pqc-standardization-process-announcing-four-candidates-be-standardized-plus

2. Achieving subversion-resilience at all with practical watchdogs is a chal-
lenging task. In our security model, the adversary is not given any oracle
access but rather a single challenge ciphertext. This allows us to use a
combiner approach to obtain security as long as one of many different
building blocks is secure. Other primitives, like symmetric encryption,
allow the adversary to access an oracle repeatedly. This makes the de-
velopment of constructions with efficient watchdogs even harder, as we
can not guarantee that oracle queries are simulated correctly. Consider
Chapter 9 for a more detailed discussion on this subject.

Thus, we focus on KEMs and PKE while leaving the development of efficient
watchdogs for other primitives as an interesting open problem.

3.2 Main Technical Challenge
As we use KEMs as our primary building block to construct subversion-resilient
public-key encryption, let us briefly explain why constructing subversion-resilient
KEMs with practical watchdogs is a challenging task. Due to the inherently ran-
domized nature of KEMs, it is hard to guard them against subversion attacks.
Given any (black-box) construction of a KEM, it can be shown that an adver-
sary can always prepare an implementation of a KEM in such a way that the
adversary obtains subverted outputs of the KEM with “high” probability. At
the same time, a watchdog only has a “low” chance of detecting this attack. We
refer to Section 6.1 for more technical details. Therefore, the main challenge is to
design a countermeasure that prevents this generic attack while simultaneously
enabling the watchdog to engage only in limited testing while still achieving
security.

3.3 Our Approach
We adapt a model proposed in the work of Russell et al. [RTYZ17] called
the trusted amalgamation model, which allows schemes to be split into smaller
building blocks. Within our new model, we propose the following approach. We
construct a subversion-resilient randomness generator, which can be tested in
constant time to obtain random coins for our scheme. We use the classical von
Neumann extractor [von51] to obtain uniformly random coins in a subversion-
resilient manner. With this as a building block, we use cryptographic combiners
[Sha49b, GHP18]. A cryptographic combiner takes as input several different
candidates of a cryptographic scheme. It combines them so that the resulting
scheme is secure if at least one of the candidates is secure. We adapt this
approach and use n instantiations of a KEM in parallel, where n is a parameter
that can be chosen appropriately depending on the application. We run the key
generation algorithm n times in parallel to obtain n key pairs. To encapsulate

28

a key, we also run the Encaps algorithm n times in parallel, using a previously
generated public key. This gives us n ciphertext/key pairs. While all ciphertexts
are just output as the final ciphertext, the amalgamation executes an XOR
function on all keys. As we see in the security analysis in Section 6.2, as long as
one public key and the ciphertext under that public key are computed according
to the specification, this is sufficient for our reduction to be successful.
On the KEM combiner. Giacon, Heuer, and Poettering [GHP18] proposed
several KEM combiners for various security properties. However, they consider
a different setting from ours. In their work, it is assumed that there are several
different KEMs are available, and at least one KEM (although it is not known
which) is secure by assumption. Their approach is useful, for example, to com-
bine several different KEM based on different hardness assumptions. This way,
the combined scheme is still secure, even of some hardness assumptions can be
broken. Our primary approach based on the XOR combiner from [GHP18] is
to use the watchdog doing limited testing to ensure that the subverted KEM
is consistent with its specification at some points, which can be used to argue
for the security of our construction. Thus, the testing only guarantees that at
least one instance is output according to the specification, unlike in a traditional
combiner setting where the security of one complete building block is given by
assumption. One may wonder whether we could use combiners for public-key
encryption directly to obtain a subversion-resilient PKE scheme. Unfortunately,
this is not the case. From a syntactical level, most of the currently known com-
biners would be considered part of the trusted amalgamation in our model.
However, since we consider a runtime-constrained watchdog, we can not rule
out the possibility that the PKE scheme would, for instance, output the mes-
sage instead of a ciphertext for a specified message m. Such an attack is known
as an input trigger attack [DFP15] and prevents us from directly using most
existing combiners or amplifiers in our setting.

Russell et al. [RTYZ16, RTYZ17] argued that subverted encryption algo-
rithms cannot directly access the input message to rule out input trigger at-
tacks. Thus, they blind the message with a random coin, which is output as
part of the ciphertext. This approach does not work in our setting since this
still requires (at least) polynomial time testing by the watchdog to obtain an
overwhelming detection probability. In our construction, we bypass this type
of attack by directly performing the XOR operation on the message with the
output key of our designed subversion-resilient KEM.

3.4 Comparison with Prior Work
Existing Constructions in the Watchdog Model. There have been various
constructions in the typical watchdog model by Russell et al. [RTYZ17]. Based
on the split-program methodology [RTYZ16], several cryptographic schemes
were proposed and proved to be subversion-resilient in the complete subver-

29

sion setting [RTYZ16, RTYZ17, RTYZ18, CRT+19]. Notably, Russell et al.
[RTYZ16] constructed subversion-resilient (trapdoor) one-way permutations in
the offline watchdog model (assuming fixed public input distributions). The
main idea is to use a standard hash function (modeled as a random oracle) to
remove the ability of an adversary to embed any potential backdoors in the func-
tion. Further, based on this general sanitizing strategy, they built a subversion-
resilient signature scheme with online watchdogs and subversion-resilient pseu-
dorandom generators (PRG) with offline watchdogs. To generically eliminate
subliminal channels in randomized algorithms, Russell et al. [RTYZ17] pro-
posed a double-splitting strategy where the randomness generation is carried
out by mixing the output of two independent components with an immuniza-
tion function. Based on this, they showed how to immunize each algorithm of an
encryption scheme, including symmetric-key encryption and public-key encryp-
tion, with offline watchdogs. Chen, Huang, and Yung [CHY20] also discussed
how to construct subversion-resilient key encapsulation mechanisms using this
helpful strategy. Russell, Tang, Yung, and Zhou [RTYZ18] considered how to
correct subverted random oracles and Chow, Russell, Tang, Yung, Zhao, and
Zhou [CRT+19] further extended their results to construct subversion-resilient
signature schemes in the offline watchdog model. Ateniese, Francati, Magri, and
Venturi [AFMV19] relied on an additional independent (untamperable) source
of public randomness and proposed a subversion-secure immunizer in the plain
model for a broad class of deterministic primitives.

Some other constructions also implicitly rely on the (polynomial-testing)
watchdog to achieve subversion-resilience. Bellare, Patterson, and Rogaway
[BPR14] showed that symmetric encryption producing unique ciphertexts could
resist subversion attacks, assuming all subverted ciphertexts are decryptable.
This decryptability condition was further relaxed by Degabriele, Farshim, and
Poettering [DFP15] for considering the possibility of input-trigger attacks. Note
that both require an omniscient watchdog that needs to access the decryption
key for verifying the ciphertext decryptability produced by the supplied imple-
mentation of the encryption algorithm. Similarly, Ateniese, Magri, and Venturi
[AMV15] showed that unique signatures are subversion-resilient on the condi-
tion that all subverted signatures are valid. They also proved the unforgeability
of unique signatures still holds against random message attacks when the veri-
fiability condition is relaxed in a way similar to what is considered by [DFP15].
Their constructions require an online watchdog as the signature scheme is pub-
licly verifiable.

All of these constructions have in common that they utilize polynomial-time
watchdogs while defining attacks as unsuccessful if they can detected with some
non-negligible probability.

Combiner and Amplification. As mentioned earlier, Giacon et al. [GHP18]
proposed a variety of combiners for KEMs. There are several works constructing
combiners for other primitives such as authenticated encryption with associated

30

data (AEAD) by Poettering and Rösler [PR20] and functional encryption by
Jain, Manohar, and Sahai [JMS20]. Our approach relies on trusted amplifi-
cation to build fully functional schemes from individual “secure enough” com-
ponents to achieve security. Amplification is strongly related to cryptographic
combiners. Given a cryptographic scheme with some “weak” security guaran-
tee, an amplifier can construct a scheme with stronger security guarantees (for
example, simply by repeated executions). Amplification has been applied to dif-
ferent primitives like functional encryption [JKMS20], interactive cryptographic
protocols [DIJK09], and CCA-secure public-key encryption [HR05].
Subversion-Resilient Random Oracles. Although set in an asymptotic
model, the results of Russell et al. [RTYZ18] with regards to sanitizing sub-
verted random oracles share a similar underlying idea to our approach. That
is, their approach also utilizes the rough idea of basing the security of their
construction on the event that one of many instances of the random oracle is
computed according to the specification. To prove security, they also utilize a
trusted XOR. However, they also heavily utilize that only a negligible fraction
of outputs of the random oracle deviate from the specification. One of their
main challenges is correct simulation, as the adversary can adaptively query the
subverted random oracle. As the security models considered for our subversion-
resilient constructions do not include repeated oracle access, we can avoid this
issue.
Outline. In Chapter 4 we describe our formal model for subversion in a concrete
security setting and efficient watchdogs. In Chapter 5 we provide definitions
for subversion-resilient randomness generators and prove a simple construction
secure in that model. We use this as a foundation to construct subversion-
resilient key encapsulation mechanisms with efficient watchdogs, assuming a
trusted XOR operation is available in Chapter 6. In Chapter 7, this gives us
the leverage to construct subversion-resilient public-key encryption. Finally, we
show that our KEM construction can not directly be used to obtain (previously
claimed) stronger security notions before discussing our results in Chapter 9.

31

4 Concrete Subversion Model
After getting an intuition for our approach, this chapter presents a formal model
for capturing the notion of practical watchdogs in a concrete security setting.
Our model is a variant of the security definitions from [RTYZ16, RTYZ17] and
is similar in spirit to theirs but better captures our security goals for watchdogs
with bounded running time.

4.1 A General Security Definition for
Cryptographic Schemes

We define a cryptographic scheme Π as a tuple of n algorithms

Π = (Π1, . . . , Πn).

Note that for a specific primitive, n is a fixed and usually small number. For
example, for a public-key encryption scheme, which is typically defined as a
tuple of algorithms (Gen, Encrypt, Decrypt), we have n = 3 and

(Π1, Π2, Π3) = (Gen, Encrypt, Decrypt).

The (abstract) security notion GOAL of Π is defined via a security experiment
ExpGOAL

A,Π which involves Π and an adversary A and outputs a bit b ∈ {0, 1}. In
this experiment, the adversary is asked to break the security of the Π. In the
sequel, we consider security experiments based on the indistinguishability of two
distributions or search problems.1 In the former category, the adversary is given
a challenge, which was computed in one of two possible ways. The adversary is
then asked to distinguish these two cases. In the latter category, the adversary
must compute a solution to a given problem instead of distinguishing between
two possibilities.

To capture both cases formally, we generically define the advantage function
of A with respect to Π and experiment Exp and a value δ ∈ {0, 1/2} indicating
whether a search or indistinguishability experiment is considered, respectively,
as

AdvGOAL
A,Π (δ) :=

∣∣∣Pr
[
ExpGOAL

A,Π = 1
]
− δ

∣∣∣.
1We consider cases where the adversary wins if it can cause an abort/fail to occur a subcat-

egory of search problems.

33

When δ = 0, the advantage captures search problems. This is because it equals
the probability that the adversary calculates a solution to the search problem.
If δ = 1/2, the advantage captures indistinguishability since it is the difference
to 1/2, i.e., simply guessing. In the concrete security setting, we say the scheme
Π is (t, ε)-secure, if

AdvGOAL
A,Π (δ) ≤ ε

for all A running in time at most t. Note that in later chapters, δ is clear from
context, and we thus take the liberty to drop it to ease notation.

4.2 Subversion-Resilience with an Offline
Watchdog

Usually, in modern cryptography, the security experiment is executed with an
honest specification of the considered scheme. That is, all algorithms act in
accordance with some specification. To model subversion attacks where the
adversary can alter the implementation of a scheme, we thus need to choose
a different approach. We follow Russell et al.’s works [RTYZ16, RTYZ17] and
consider a setting where the adversary itself provides the implementation used in
the security experiment of the considered scheme. More precisely, we consider an
adversary A that consists of two parts (A0,A1), where A0 produces a (possibly
subverted) implementation and a state st

(Π̃1, . . . , Π̃n, st)← A0().

Then A1(st) engages in the security experiment Exp, which uses Π̃ = (Π̃1,
. . . , Π̃n). The state st is used here to model that A0 can pass information to
A1. In such a strong adversarial setting, achieving meaningful security without
further assumptions is impossible (see Section 1.2 for an overview of generic
attacks). Therefore, based on the fact that in the real world, implementations
of algorithms can be tested before deployment in an application, Russell et
al. [RTYZ16, RTYZ17] used an additional party called the watchdog. The
watchdog aims to detect a possible subversion in the implementation supplied
by the adversary. The watchdog WD is aware of an “honest” (not subverted)
specification of the scheme, denoted by

Π̂ = (Π1, . . . , Πn),

and has oracle access to the implementation Π̃ = (Π̃1, . . . , Π̃n) produced by A0.
The adversary A is only considered successful if it breaks the security of the
scheme and the subverted implementation evades detection by the watchdog.
Hence, we consider the subversion-resilience security experiment ExpSRGOAL

WD,A,Π̂
from Fig. 4.1, which involves a subversion adversary A = (A0,A1), a watchdog
WD, a protocol specification Π̂ and an underlying experiment Exp .

34

ExpSRGOAL
WD,A,Π̂

(Π̃, st)← A0()

if WDΠ̃()
Draw bit b with Pr[b = 1] = δ

return b

return ExpGOAL
A1(st),Π̃

ExpSRGOAL
WD,A,Π̂

(Π̃, st)← A0()

if WDΠ̃()
Draw bit b with Pr[b = 1] = δ

return b

return ExpGOAL
A1(st),AM(Π̃)

Figure 4.1: Security experiments with offline watchdog and subverted im-
plementation. Left: Without trusted amalgamation and with
Π̂ = (Π1, . . . , Πn). Right: With trusted amalgamation and Π̂ =
(AM, Π1, . . . , Πn)

At the beginning of the experiment, adversary A0 produces a (subverted)
implementation Π̃ and a state st. The watchdog is provided oracle access to Π̃.
If WD outputs true, which means that the watchdog has detected a subverted
implementation, the experiment outputs either 0 or a random bit, depending on
the value δ referring to search or indistinguishability experiments. This implies
that A has zero advantage if it outputs an implementation that WD recognizes
as subverted. If WDΠ̃() = false, then the security experiment Exp is executed,
using the adversarially-provided implementation Π̃ of Π̂ and with an adversary
A1(st) that may depend on the state produced by A0(). Note that the watchdog
can be completely unaware of the internal workings of each algorithm as long
as it has access to the in- and output behavior of the specification for all values
it wants to test the implementation on.

To avoid trivial watchdogs that always output true, such that any scheme
would be provably secure, we require that the watchdog is correct in the sense
that it always outputs false when provided with oracle access to the actual
protocol. Formally:

Definition 2. We say that WD is a correct watchdog for protocol specification
Π̂, if

Pr
[
WDΠ̂() = false

]
= 1.

All watchdogs in this thesis trivially fulfill this property. As one would intu-
itively expect, our watchdogs sample input according to some distribution and
then compare the implementation with the outputs of the specification under
the same inputs. Thus, our watchdogs never reject the protocol specification.

Note that in the above security experiment (Fig. 4.1), WD verifies Π̃ prior to
the experiment Exp. That is, our definition only considers offline watchdogs that
simply check the supplied implementations by the adversary with no access to
the full transcript of the experiment Exp. As discussed in [RTYZ16, RTYZ17],

35

such a watchdog is preferable over online watchdogs because it only carries out a
one-time check on the implementation and does not require constant monitoring
of all communication. In this thesis, we only consider a universal watchdog,
which means it is quantified before the adversary in the security definition.
Thus, for a secure scheme, there exists a single watchdog that defends against
all considered adversaries.

4.3 The Split-Program Model and Trusted
Amalgamation

The above offline watchdog model is meaningful and was used to establish se-
curity for some specific cryptographic primitives [RTYZ16]. However, it turns
out that it is still not generic enough to achieve subversion-resilience for many
other primitives. Particularly, it is known that if the user makes only black-box
use of the subverted implementation of randomized algorithms, it is hopeless to
eliminate a steganographic channel built on the output of algorithms [RTYZ17].
Therefore, a non-black-box model is required for general feasibility results.

Motivated by the above, Russell et al. [RTYZ17] proposed the trusted amal-
gamation model, where the specification of each algorithm is split into a constant
number of components. Precisely, a scheme Π is still represented by a tuple of
algorithms (Π1, . . . , Πn), but n may be larger than the actual number of algo-
rithms of a protocol. The actual algorithms are then amalgamated by combining
these underlying building blocks in a trusted way that the adversary cannot in-
fluence. Using such a somewhat relaxed model, Russell et al. [RTYZ17] showed
how to generically design stego-free specifications for randomized algorithms,
which are algorithms for which the adversary cannot distinguish its implemen-
tation from the specification. These play a crucial role in the construction of
subversion-resilient encryption schemes in their offline watchdog model.

Note that for a meaningful construction of a subversion-resilient cryptosystem,
the amalgamation should be as-simple-as-possible, such that most of the com-
plexity of the involved algorithms is contained in the algorithms Π = (Π1, . . . , Πn)
that may be subject to subversion. Otherwise, one could simply shift all logic
into the trusted amalgamation and obtain a “secure” scheme, as we took away
all attack possibilities of the adversary. To make this approach more precise, we
explicitly define an amalgamation function AM and include it in the specifica-
tion of the scheme. For instance, for a public-key encryption scheme, we would
have the specification

Π̂ = (AM, Π) = (AM, (Π1, . . . , Πn))

for which
AM(Π1, . . . , Πn) = (Gen, Encrypt, Decrypt)

holds.

36

As depicted in Fig. 4.1, the subversion-resilience security experiment with
trusted amalgamation proceeds precisely as the basic experiment described
above, except that the watchdog has access to all procedures

(Π̃1, . . . , Π̃n, st)← A0()

produced by A0 individually. The security experiment is then executed with
the amalgamated primitive

AM(Π̃1, . . . , Π̃n).

Following our example for public-key encryption, this would correspond to

AM(Π̃1, . . . , Π̃n) = (G̃en, Ẽncrypt, D̃ecrypt).

With our security model set up, we can now define the advantage of a subversion
adversary in the split program model with offline watchdog as

AdvSRGOAL
WD,A,Π̂(δ) :=

∣∣∣Pr
[
ExpSRGOAL

WD,A,Π̂

]
− δ

∣∣∣.
We now provide our full security definition, which is inspired by the works

of Russell et al. [RTYZ16, RTYZ17], in the context of our general model. We
aim to find a reasonable balance between allowing strong subversion adversaries
while still being realistic and achievable for randomized cryptographic schemes
with exponential-sized input spaces. We also slightly changed the wording in
our definition compared to [RTYZ17, RTYZ16]. Instead of requiring that a
watchdog exists that the below statement holds, we require that it is possible
to efficiently construct a watchdog. Admittedly, all the watchdogs proposed in
[RTYZ17, RTYZ16] would also fulfill a definition using our wording. However,
this subtlety outrules watchdogs that in theory exist, but cannot be efficiently
constructed and are therefore unfit for practical use.

Definition 3. A specification of a cryptographic protocol Π̂ = (AM, Π) is
(tWD, tA, ε)-subversion-resilient-GOAL in the offline watchdog model with trusted
amalgamation, if one can efficiently construct a correct watchdog algorithm WD
running in time at most tWD such that for any adversary A = (A0,A1) running
in time at most tA it holds that

AdvSRGOAL
WD,A,Π̂(δ) ≤ ε

using the experiment shown in Fig. 4.1.

For convenience, we also refer to schemes as simply subversion-resilient in
this chapter, with the understanding that they fulfill Definition 3. It might
seem counterintuitive to define security with regards to the specification if the
underlying security experiment is executed with the subverted implementation.

37

Our definition can be interpreted in the following way. While the security exper-
iment is executed with the subverted implementation provided by the adversary,
the watchdog (which is also executed in the experiment) tests the implemen-
tation with respect to that specification, and the adversary outputs subverted
algorithms that syntactically follow the specification of the trusted amalgama-
tion.
Measuring the Watchdog’s Runtime. While we assign a value to the run-
time of the watchdog, we still need to give this value meaning. In the following,
we will measure the watchdog’s runtime in terms of queries issued to the spec-
ification. Thus, our results can be interpreted in terms of testing queries with
additional testing overhead due to the recomputation of the queried algorithm.
Split-Program Model. Following Russell et al. [RTYZ16], we use the split-
program model and allow randomized algorithms to be split into a probabilistic
part (the randomness generation) and a deterministic part, where all parts can
be tested individually. The trusted amalgamation then feeds the generated ran-
domness into the deterministic algorithms. For simplicity, we do not explicitly
reference the split-program model in our theorems but consider it part of the
trusted amalgamation model.
Stateless and Deterministic Subversion. We assume that a subverted im-
plementation of a deterministic primitive is also deterministic. Otherwise, a
subverted implementation could probabilistically deviate from the specification
with some probability, where this probability could be chosen depending on
the watchdog and its bounded running time so that the watchdog might fail
to detect the subversion. We also remark here that we only consider stateless
subversion in this thesis. Thus, the subverted implementation does not hold any
state between different executions. Note that we are mainly interested in offline
watchdogs which run in bounded time for testing. A trivial attack to evade such
detection is called the time-bomb attack, which only becomes active when the
underlying algorithm is at some specific state. Specifically, the implementations
would behave honestly when they are under testing by the offline watchdog, and
at a later point in time, the malicious behavior would be triggered to wake up.
It is clear that such a tricky attack is impossible to detect by our considered
(i.e., bounded running time) watchdog. To prevent such an attack in hardware
tokens, some previous work requires a semi-online watchdog to perform test-
ing regularly [DFS16]. Therefore, we insist that our considered model does not
capture stateful subversion. Another approach to consider stateful subversion
is reverse firewalls, as discussed in Section 1.2.2.
Comparison with Previous Watchdog Models The security model pre-
sented in this section is a refinement of the security models from [RTYZ17,
RTYZ16]. We follow the concrete security approach instead of considering
asymptotic definitions and assume the specification could be divided into an
arbitrary number of components. Similar to prior work, we consider a sin-
gle security experiment that can be separated into a “detection phase” and a

38

“surveillance phase”. Note that in [RTYZ17, RTYZ16], two advantage functions
are defined: one for the watchdog and another for the adversary. Security then
holds if either the detection advantage of the watchdog is non-negligible or the
adversaries’ advantage is negligible. We change the model in the regard that we
enforce that the adversary “loses” the security experiment in case the watch-
dog detects subversion by outputting either a random or zero bit (depending
on whether a search or indistinguishability problem is considered) instead of
executing the security experiment with the subverted implementation. In this
way, we simplify the security definition by using a single advantage function.
Our choice for this model has primarily notational advantages for achieving
subversion-resilience with efficient watchdogs.

39

5 Subversion-Resilient Randomness
Generators

After presenting our security model, we now show how to generate randomness
in a way that allows a watchdog to guarantee in constant time that the outputs
of our construction are uniformly random. Thus, the produced outputs are not
just indistinguishable from random, but truly random, while the watchdog’s
runtime is also independent of an adversary’s runtime. The following construc-
tion is then later used to generate the random coins for our subversion-resilient
KEM and PKE scheme and can also be used as a building block for our con-
structions of Part II. Additionally, this construction is of independent interest
as it is a general and efficient tool to provide uniformly random coins to any
cryptographic primitives in our model.

A randomness generator is a randomized algorithm that outputs some strings.
It is an abstraction of any means of obtaining random coins, even though these
may be severely biased. We consider a randomness generator secure if its outputs
are indistinguishable from uniformly random strings.

Definition 4. We say that a randomness generator RG is (t, ε)-indistinguishable
if for any adversary A running in time t it holds that

AdvIND
A,RG = |Pr[ExpIND

A,RG − 1/2]| ≤ ε

with ExpIND
A,RG displayed in Fig. 5.1.

Following Definition 3, we say that a randomness generator is subversion-
resilient under trusted amalgamation if the randomness generator produces out-
puts that are indistinguishable from random, even in a security experiment
which uses a trusted amalgamation of a subverted implementation.

Definition 5. We say the specification of a randomness generator R̂GSR =
(AMRG, RGSR) is (tWD, tA, ε)-subversion-resilient in the offline watchdog model
with trusted amalgamation, if one can efficiently construct a correct watchdog
WD running in time at most tWD, such that for any adversary A = (A0,A1)
running in time at most tA it holds that:

AdvSRIND
WD,A,R̂GSR ≤ ε

with the used experiments shown in Fig. 5.1.

41

ExpIND
A,RG

b
$← {0, 1}

if b == 0
return AO() == b

if b == 1
return ARG() == b

ExpSRIND
WD,A,R̂GSR

(R̃GSR, st)← A0()

if WDR̃GSR

b
$← {0, 1}

return b

return ExpIND
A1(st),AM(R̃GSR)

Figure 5.1: Left: Experiment for a randomness generator RG. Oracle O returns
uniformly random strings. Right: Subversion-resilience experiment
for randomness generators.

Known impossibilities. Russell et al. [RTYZ17] showed that immunizing a
single randomness generator against subversion with an immunizing function
is impossible. Essentially, they adopt the approach of subverting algorithms
from [BPR14, BJK15] to randomness generators, showing that one can easily
introduce a bias into a single source via rejection sampling. A subverted im-
munizing function can then maintain this bias. This bias may furthermore be
“hidden” because detecting it requires knowledge of a secret key only known
to the adversary to compute some predicate, such that a watchdog cannot de-
tect it efficiently. In contrast, a subverting adversary may easily distinguish the
subverted RG from random.

Russel et al. [RTYZ17] introduces the double splitting approach to overcome
this general impossibility. Here, two RGs are run independently in parallel. The
outputs of these two RGs are then fed into an immunization function, which
may also be subverted. Russel et al. showed that if the immunization function
is modeled as a random oracle, then this yields a randomness generator whose
output is indistinguishable from the outputs of a non-subverted randomness
generator, even for the subverting adversary. They also provide a standard-
model construction of a randomness generator that outputs a single bit and a
watchdog that tests whether one bit appears significantly more often than the
other. Using the Chernoff bound, they argue that the watchdog will notice a
bias after gathering enough samples. The randomness generator would then be
run n times independently to obtain a n bit output.

5.1 Construction
We describe a new construction, which applies the “two independent RNG”
approach of [RTYZ17] differently. Our construction is extremely simple and
efficient to test, yet provides perfect random bits and does not require a random
oracle.

42

AMRG(RG, VN)
b0 = b1 := ⊥
while b0 == b1

b0 ← RG()
b1 ← RG()

b := VN(b0, b1)
return b

Figure 5.2: The trusted amalgamation function AMRG for a randomness gener-
ator RG and a von Neumann extractor VN.

The specification R̂GSR = (AM, RG, VN) of our randomness generator consists
of the following building blocks:

• A probabilistic algorithm RG outputs a bit RG() ∈ {0, 1}.
• A simple binary and deterministic immunization function VN : {0, 1} ×
{0, 1} → {0, 1}, which is defined as follows:

VN(b0, b1) :=

0 if b0 < b1,

1 if b0 > b1,

⊥ else.

Note that this function is the classical von Neumann extractor [von51].
The von Neumann extractor takes as input two bits with some (arbitrary and

unknown, but fixed) bias and outputs a uniformly random bit as long as the
two input bits are distinct from each other.

Using these two building blocks, we construct an algorithm that outputs a
single bit using a trusted amalgamation. The amalgamation is essentially a
simple while-loop, given in Fig. 5.2. It can be easily generalized to output n
bits by calling it n times.

The amalgamation function AMRG is extremely simple. It runs RG twice
independently and applies VN to the output. This is repeated in a while-loop
until the output of VN is not the error symbol ⊥, but a bit b ∈ {0, 1}.
Producing Outputs. Since we have VN(b0, b1) = ⊥ ⇐⇒ b0 = b1, whether
the above algorithm produces any output at all depends on the probability that
the two executions of RG computing b0 and b1 in the while-loop yield b0 6= b1.
Let p := Pr[RG = 1], then we have

Pr[b0 6= b1] = 2p(1− p).

Hence, it takes an expected (p(1 − p))−1 executions of RG and (2p(1 − p))−1

executions of VN to generate an output bit. For instance, if RG is truly random,
we would have 4 expected executions of RG and 2 of VN. Even if RG is a rather

43

bad random number generator, say with p = 1/4, then one would expect about
5 + 1/3 executions of RG and 2 + 2/3 of VN. Although not relevant for security,
the case that p = 0 or p = 1 would lead to our construction never producing any
outputs, as the RG only outputs either 0 or 1. Additional testing can circumvent
this case by checking if RG outputs both 0 and 1 at all.

5.2 Security
The proof that R̂GSR is a subversion-resilient randomness generator uses the
fact that the adversary provides a single implementation R̃G, which is then
queried twice by the trusted amalgamation. Therefore, the two bits b0, b1 are
computed independently in every while loop and are identically distributed. The
watchdog only has to test the implementation of the von Neumann extractor on
all four possible inputs. It is not necessary to test the randomness generator’s
implementation at all to achieve security.

Theorem 1. The specification R̂GSR as defined above is (O(1), tA, 0)-subversion-
resilient in the offline watchdog model with trusted amalgamation.

Note that the theorem asserts that we can construct a constant-time watch-
dog. It is independent of the runtime of the adversary or any bias possibly
embedded in the subverted implementation of RG. Also, as our construction
always outputs uniformly random bits, our construction is even information-
theoretically secure, i.e. secure even against adversaries with unlimited runtime.

Proof. The only component we test is the implementation of VN : {0, 1} ×
{0, 1} → {0, 1}, a very simple function with only four possible inputs. Therefore,
it can be checked on all possible inputs in constant time. The watchdog WD runs
a given implementation ṼN on all four possible inputs and checks the correctness
of the output with the specification.

If ṼN deviates from the specification on any input, the watchdog will detect
this with probability 1. Thus, this would immediately lead to an advantage of
0 for the adversary.

Provided that ṼN implements VN correctly and using the fact that the two
bits b0, b1 ← R̃G() are computed independently in every while loop, we obtain
that when R̃G outputs a bit b then we have

Pr[b = 0] = Pr[b0 = 0 ∧ b1 = 1] = Pr[b0 = 1 ∧ b1 = 0] = Pr[b = 1]

and thus Pr[b = 0] = Pr[b = 1] = 1/2, again leading to an advantage of 0 for
the adversary.

The main advantage of our proposed RG is that it achieves perfect security
using a constant-time watchdog. Russell et al. [RTYZ17] also described several

44

alternative approaches to purify randomness in the standard model. Below, we
provide more discussion about their approaches. It is worth mentioning that in
[AFMV19], Ateniese et al. proposed a different approach to eliminating the re-
quirement of random oracles by essentially relying on an additional independent
and untamperable source of public randomness.
Simple Multi-Splitting. The first approach proposed in [RTYZ17] is simple
multi-splitting, which means that n copies of RG (each outputting a single bit)
are run, and all outputs are concatenated and output. The main problem with
this approach is that RG has to be tested many times. Otherwise, the watchdog
is unable to notice a small but non-negligible bias.
More efficient Construction using Randomness Extractors. The second
approach uses randomness extractors but in a totally different way. Precisely, it
is observed that a watchdog making O(n2c) queries can verify that the output of
each RG has at least c log n bits of entropy (for some constant c). Thus, Russell
et al. [RTYZ17] proposed to run RG for log n times to obtain a random string of
length log n, which is then used as a seed for a randomness extractor. This ex-
tractor can then obtain more random bits from RG, which can be expanded with
a pseudorandom generator (PRG) afterwards. In this case, a watchdog would
have to check RG for entropy and recompute all calculations of the extractor
and the PRG to check if these components follow their specifications.

A disadvantage of our construction of RG is that we do not have a strict
upper bound on its running time, but only expected bounds. However, this
is a minor disadvantage since the lack of functionality will be an automated
way to detect subversion that introduces a too-heavy bias in RG. The efficiency
can be improved by conducting additional testing. For instance, the watchdog
could also test RG and check for a too-heavy bias p that would significantly
harm performance. Note, however, that even a particularly bad underlying
randomness generator RG, which always outputs a constant 0, would only harm
correctness but not the security of RG.

45

6 Subversion-Resilient Key
Encapsulation Mechanisms

Key encapsulation mechanisms are techniques to transport symmetric crypto-
graphic key material using public-key cryptography securely. Keys are uniformly
generated and then encapsulated under a public key. Only parties possessing
the secret key can decapsulate ciphertexts to retrieve the encapsulated key. The
idea of KEMs is that it is hard for an adversary to obtain information on the
encapsulated key without access to the secret key. KEMs are an essential build-
ing block for our construction of public-key encryption, as messages can be
encrypted by applying an XOR to the message and the encapsulated key. We
use the following standard definitions for key encapsulation mechanisms and
their security.
Definition 6. A key encapsulation mechanism KEM = (Gen, Encaps, Decaps)
consists of three algorithms with the following syntax.

• Gen(): The randomized key generation algorithm outputs a key pair (sk, pk).
• Encaps(pk): The randomized encapsulation algorithm takes as input a

public key pk. It outputs a key K ∈ KS, where KS is called the key space
defined by pk (either implicitly or explicitly), and a ciphertext C.

• Decaps(sk, C) : The deterministic decapsulation algorithm takes a secret
key sk and a ciphertext C. It outputs a key K ∈ KS or a distinguished
error symbol ⊥.

A KEM is indistinguishable or IND-secure if no adversary can distinguish
whether it is given a public key, a ciphertext and the key encapsulated in that
ciphertext, or a public key, a ciphertext and a random key from the key space.
Intuitively speaking, this property captures that encapsulated keys look random
to adversaries.
Definition 7. We say that KEM = (Gen, Encaps, Decaps) is (tA, ε)-indistinguish-
able if for any adversary A running in time at most tA it holds that

AdvIND
A,KEM := |Pr[ExpIND

A,KEM]− 1/2| ≤ ε

with ExpIND
A,KEM as defined in Figure 6.1.

A weaker notion is one-way security. In some scenarios it may be sufficient
that an adversary could potentially distinguish between encapsulated and ran-
dom keys, as long it can not compute encapsulated keys with probability sig-
nificantly better than guessing. Thus, the corresponding security experiments

47

ExpIND
A,KEM

(sk, pk)← Gen()

K0
$← KS

(C∗, K1)← Encaps(pk)

b
$← {0, 1}

bA ← A(pk, Kb, C∗)
if bA == b

return 1
else

return 0

ExpOW
A,KEM

(sk, pk)← Gen()
(C∗, K∗)← Encaps(pk)
(K)← A(pk, C∗)
if K∗ == K

return 1
else

return 0

Figure 6.1: Left: Indistinguishability experiment for key encapsulation mecha-
nisms. Right: One-way experiment for key encapsulation mecha-
nisms.

ExpSRGOAL
WD,A,K̂EMSR

(K̃EMSR, st)← A0()

if WDK̃EMSR()
Draw bit b with Pr[b = 1] = δ

return b

return ExpGOAL
A1(st),AM(K̃EMSR)

Figure 6.2: Subversion-resilience GOAL experiment for key encapsulation mech-
anisms where GOAL ∈ {IND, OW} and δ ∈ {0, 1/2}, accordingly.

hand the adversary a public key and ciphertext, which wins if it responds with
the encapsulated key.

Definition 8. We say that KEM = (Gen, Encaps, Decaps) is (tA, ε)-one-way if
for any adversary A running in time at most tA it holds that

AdvOW
A,KEM := |Pr[ExpOW

A,KEM]| ≤ ε

with ExpOW
A,KEM as defined in Figure 6.1.

We define subversion-resilient KEMs by adapting Definition 3 to KEMs.

Definition 9. We say that the specification K̂EMSR = (AMKEM, KEMSR) of
a key encapsulation mechanism is (tWD, tA, ε) subversion-resilient one-way, or
subversion-resilient indistinguishable, respectively, in the offline watchdog model
with trusted amalgamation, if one can efficiently construct a correct watchdog

48

WD running in time at most tWD such that for any adversary A = (A0,A1)
running in time at most tA it holds that:

AdvSRGOAL
WD,A,K̂EMSR(δ) ≤ ε

with GOAL ∈ {OW, IND} and δ ∈ {0, 1/2}, accordingly.

6.1 Main Technical Challenge
As our formal definitions are set up, let us illustrate our main technical chal-
lenges in achieving subversion-resilient KEMs in more detail.
The Difficulty of Recognizing a Subverted KEM with a Watchdog.
Let KEM = (Gen, Encaps, Decaps) be the specification of a legitimate (i.e., not
subverted) KEM. Let Rgen, Renc be the randomness spaces of Gen and Encaps.
Let F be the deterministic function parameterized by a KEM which takes as
input randomness (r, s) ∈ Rgen × Renc for Gen and Encaps, respectively, and
then computes

(pk, sk, C, K) = FKEM(r, s)
with

(pk, sk)← Gen(; r) and (C, K)← Encaps(pk; s).

Now let K̃EM = (G̃en, Ẽncaps, D̃ecaps) be a (possibly subverted) implementa-
tion of the algorithms of KEM. We observe that if

FKEM(r, s) = FK̃EM(r, s) (6.1)

on all (r, s) ∈ Rgen × Renc, then the security of the originally specified scheme
KEM implies security of K̃EM, if (r, s) are indeed chosen randomly. If Equa-
tion (6.1) holds, then the implementations G̃en and Ẽncaps agree with the spec-
ification on all inputs, and these are the only algorithms of K̃EM used in the
security experiment. The same holds if Equation (6.1) holds for all but a neg-
ligible fraction of all r, s, since the probability that a security experiment chose
(r, s) such that Equation (6.1) does not hold would be negligible. Unfortu-
nately, we are not able to test efficiently whether Equation (6.1) holds for all
but a negligible fraction of all r, s. Let

Neq :=
{
(r, s) : FKEM(r, s) 6= FK̃EM(r, s)

}
(6.2)

and

Eq :=
{
(r, s) : FKEM(r, s) = FK̃EM(r, s)

}
. (6.3)

That is, Neq contains all “bad” randomness values such that Equation (6.1)
does not hold with respect to (KEM, K̃EM). Analogously, Eq contains all ”good”

49

randomness values for which Equation (6.1) does hold. Since Neq and Eq are
disjoint sets, we have

Neq ∪ Eq = Rgen ×Renc and Neq ∩ Eq = ∅.

Note that testing whether |Neq|/2λ is negligible by repeatedly running F on
different inputs takes exponential time. Even if we granted the watchdog a very
large running time by allowing it to evaluate F a polynomial P (λ) of times,
where P (λ) is large, this watchdog could still fail to recognize that |Neq| is
non-negligible with very high probability.

For instance, suppose that Neq ⊂ Rgen × Renc were a random subset of size
|Neq| = |Rgen ×Renc|/P 2(λ). Then a watchdog running in time P would detect
the subversion only with probability

Pr[WD detects subversion] = Pr[WD samples from Neq at least once] ≤ 1
P (λ)

where the inequality results from applying the union bound [Boo47](also known
as Boole’s inequality) as well as using that sampling from Neq occurs with
probability 1/P 2(λ) when sampling once. Simultaneously, the scheme would be
insecure since we have

|Rgen ×Renc| · 1
P 2(λ)

|Rgen ×Renc|
= 1

P 2(λ)

and thus the security experiment would choose “bad” randomness (r, s) ∈ Neq
with significant probability 1

P 2(λ) . We want to emphasize that this attack al-
lows the adversary to adjust the probabilities freely, increasing their success
probability or probability of evading detection while decreasing the other.
Our Approach to Overcoming the Technical Difficulties. We build a sub-
version-resilient one-way KEM KEMSR = (GenSR, EncapsSR, DecapsSR) based
on a regular KEM = (Gen, Encaps, Decaps) in the following way. For ease of
exposition, we describe a less efficient scheme here. Our actual scheme can be
instantiated much more efficiently by trading the size of keys and ciphertexts
for a reasonably increased running time of the watchdog. For more details, see
Section 6.3.

A key pair (pk, sk) = ((pki)i∈[λ], (ski)i∈[λ]) of KEMSR consists of λ many public
keys

(pk1, sk1), . . . , (pkλ, skλ)← Gen()
of KEM. In order to generate an encapsulated key, we run (Ci, Ki)← Encaps(pki)
for all i ∈ [λ], and return

(C, K) := ((C1, . . . , Cλ), K1 ⊕ · · · ⊕Kλ).

Here, the ⊕ is part of the trusted amalgamation function.

50

The security proof against subversion in the watchdog model of this construc-
tion is based on the following idea. and let Neq be as in Equation (6.2). We
construct a reduction to the security of the underlying KEM that goes through
if the simulated security experiment generates at least one pair (pki, Ci) using
“good” randomness, that is, choosing (r, s) $← Rgen×Renc such that (r, s) ∈ Eq.

Note that even if the underlying KEM is heavily subverted, for instance, such
that half of all randomness tuples (r, s) are “bad” and we have

|Neq| = |Rgen ×Renc|
2 (6.4)

we would still have

Pr
[
(r, s) 6∈ Neq : (r, s) $← Rgen ×Renc

]
= 1/2.

Therefore, the probability that the experiment generates at least one pair (pki, Ci)
using “good” randomness is 1 − 1

2
λ, which is almost certain, up to a negligibly

small probability. If the adversary produces a subverted implementation where
|Neq| is larger than in Equation (6.4), then, of course, it becomes less likely
that the experiment chooses “good” randomness. However, already for |Neq|
as in Equation (6.4) we are able to detect the subversion almost certainly, and
with a very efficient watchdog. Concretely, a watchdog running F λ times and
comparing the output to the specification is able to detect the subversion with
overwhelming probability 1− 1

2
λ. This detection probability increases with larger

|Neq|.
In order to ease the notation and make our approach clear, the above sketch of

our construction uses λ many executions of the KEM procedures and a watchdog
that tests each algorithm λ many times. As we see in our construction, these
parameters can be adjusted to allow for tradeoffs between ciphertext (and key)
size and runtime of the watchdog.

6.2 Our Proposed KEM
Thus, armed with the necessary definitions and intuition of the upcoming chal-
lenge, we can finally provide our construction of subversion-resilient KEMs.
Construction. We are now ready to describe our construction with these defi-
nitions in place. Let R̂GSR = (AMRG, RGSR) be the specification of a subversion-
resilient randomness generator. Further, let n > 0 be an arbitrary constant,
allowing us to adjust the construction. Since we focus on the key encapsulation
mechanism in this section, we use

RG() := AMRG(RGSR)

51

VN

VN

RG

RG

RG

RG

Gen

Gen

AMRG

AMRG AMKEM

r0

r1

r0

r1

(sk, pk)

r1

rn

(sk1, pk1)

(skn, pkn)

Figure 6.3: Subversion-resilient KEM: Key generation algorithm.

to simplify notation. Let (Gen, Encaps, Decaps) be a key encapsulation mech-
anism. From these building blocks, we define a specification of a subversion-
resilient key encapsulation mechanism

K̂EMSR = (AMKEM, KEMSR) = (AMKEM, (RGSR, Gen, Encaps, Decaps))

where the trusted amalgamation AMKEM defines algorithms (GenSR, EncapsSR,
DecapsSR) as follows.

• GenSR() : Compute ri ← RG() and (ski, pki)← Gen(; ri) for all i ∈ [n] and
output

pk := (pki)i∈[n] and sk := (ski)i∈[n].

See Fig. 6.3 for an illustration.
• EncapsSR(pk) : On input pk = (pk1, . . . , pkn) compute ri ← RG() and

(Ci, Ki)← Encaps(pki; ri) for all i ∈ [n] and output

C := (C1, . . . , Cn) and K := K1 ⊕ · · · ⊕Kn.

See Fig. 6.4 for an illustration.
• DecapsSR(C, sk) : On input sk = (sk1, . . . , skn) and C = (C1, . . . , Cn)

compute Ki = Decaps(ski, Ci) for all i ∈ [n]. If there exists i ∈ [n] such
that Ki = ⊥, then output ⊥. Otherwise output

K = K1 ⊕ · · · ⊕Kn.

The trusted amalgamation function AMKEM essentially consists of simple loops
with n independent iterations of calls to the underlying RG and KEM procedures,

52

VN

VN

RG

RG

RG

RG

Encaps

pk1

pkn

Encaps

AMRG

AMRG AMKEM

r0

r1

r0

r1

(C, K)⊕

r1

rn

C1
K1

Kn

K

Cn

Figure 6.4: Subversion-resilient KEM: Encapsulation algorithm.

plus a simple XOR function. A trusted XOR was also used in [RTYZ17] to
handle large message spaces for public-key encryption.
Security Analysis.

Theorem 2. Let KEM be a (tA, ε) one-way key encapsulation mechanism and
R̂GSR be the specification of a (O(1), tB, 0) subversion-resilient randomness gen-
erator. Then K̂EMSR as defined above with parameters n, nWD > 0 ∈ N is
(tWD, t′

A, ε′) subversion-resilient one-way in the offline watchdog model with
trusted amalgamation assuming a trusted XOR operation, with

tWD ∈ O(nWD), t′
A ∈ O(tA + tB + n),

ε′ ≤ max
{

2−nWD , 2ε +
(

nWD

nWD + n

)nWD

·
(

1− nWD

nWD + n

)n}
.

Proof. The following notation and helper functions are useful for the following
proof. Let Rgen, Renc denote the randomness space of the algorithms Gen and
Encaps, respectively. Let FKEM be the deterministic function parameterized by
a key encapsulation mechanism KEM = (Gen, Encaps, Decaps) which takes as
input randomness (r, s) ∈ Rgen×Renc for Gen and Encaps, respectively, and then
computes

(pk, sk, C, K) = FKEM(r, s) (6.5)

with

(pk, sk)← Gen(; r) and (C, K)← Encaps(pk; s) .

53

For KEM (which is part of the specification K̂EMSR) and a corresponding im-
plementation K̃EM we can now define sets Neq and Eq as

Neq :=
{
(r, s) : FKEM(r, s) 6= FK̃EM(r, s)

}
(6.6)

and

Eq :=
{
(r, s) : FKEM(r, s) = FK̃EM(r, s)

}
. (6.7)

Hence, set Neq contains all “bad” randomness values where the implementation
deviates from the specification, and Eq contains all “good” randomness values
where specification and implementation match. Since Neq and Eq are disjoint
sets, we have

Neq ∪ Eq = Rgen ×Renc and Neq ∩ Eq = ∅ .

Watchdog Construction. We construct a universal offline watchdog WD,
which proceeds as follows.

1. First WD runs the watchdog for R̂GSR as a subroutine. If this algorithm
outputs true, then WD outputs true. Otherwise, WD proceeds.

2. Then, for i ∈ [nWD], WD picks (ri, si) $← Rgen×Renc uniformly at random
and checks whether

FKEM(ri, si) = FK̃EM(ri, si)

holds where F is as defined in Equation (6.5). If any of these checks fail,
then the watchdog outputs true. Otherwise, it outputs false.

Note that the above watchdog performs only a constant number of queries to
check RG plus nWD many evaluations of each Gen and Encaps.
Security analysis. Before we dive into the analysis, let us start with a general
bound on the success probability of adversaries that help us out later. We will
use that the fraction of randomness inputs eq to Gen×Encaps is at least 1/2 for
any adversary A winning the subversion security game with probability at least
1/2nWD . This is because any implementation winning the subversion experiment
needs to pass the watchdog’s test beforehand, and in both cases, uniformly
random coins are provided to the subverted building blocks. Thus, we naturally
obtain

Pr[WDK̃EMSR] ≥ Pr[ExpSROW
WD,A,K̂EMSR = 1].

Now, assume that eq < 1/2. Then, we can conclude that

Pr[ExpSROW
WD,A,K̂EMSR = 1] ≤ Pr[WDK̃EMSR] < 1/2nWD .

This contradicts that A wins with probability at least 1/2nWD , which is why we
can conclude that eq ≥ 1/2 holds.

54

To analyze the security of our scheme with respect to this watchdog, consider
the following sequence of games.
Game 0. This Game is the ExpSROW

WD,A,K̂EMSR experiment.

Game 1. This game is identical to Game 0, except all invocations of R̃G
are replaced with uniformly random bits. Since WD runs the watchdog for
R̂GSR as a subroutine, it outputs true only if the watchdog for R̂GSR does.
By the (O(1), tB, 0)-subversion-resilience of RG this game is therefore perfectly
indistinguishable from Game 0.
Game 2. This game is identical to Game 1, except that the execution of game
ExpA

KEM is changed in the following way. After computing

(sk, pk) = ((pki)i∈[n], (ski)i∈[n])

for (ski, pki) = G̃en(; ri), and then

(C∗, K1) = ((C∗
1 , . . . , C∗

n), (K11 ⊕ . . .⊕K1n))

with (C∗
i , K1i) = Ẽncaps(pki; si) and uniform ri, si, the experiment checks whether

an index i ∈ [n] exists such that

FKEM(ri, si) = (pki, ski, Ci, Ki) = FK̃EM(ri, si).

Thus, the experiment ensures that at least one ciphertext was computed accord-
ing to the specification, with a public key that was also computed according to
the specification. If such a ciphertext was not output, then the game simply
aborts.

Note that Game 2 and Game 1 only differ if an abort occurs after the watchdog
has approved the implementation. Therefore, the probability of this event is

Pr[Abort] = Pr
[

WDK̃EM = false ∧
Challenger aborts ExpOW

A,KEM

]
(∗)= Pr

[
WDK̃EM = false

]
· Pr

[
Challenger aborts ExpOW

A,KEM

]
≤
(

|Eq|
|Rgen ×Renc|

)nWD

·
(

|Neq|
|Rgen ×Renc|

)n

(∗∗)
≤
(

nWD

nWD + n

)nWD

·
(

1− nWD

nWD + n

)n

with Neq and Eq as defined in Equation (6.6) and Equation (6.7), respectively.
Note that the equation marked with (∗) holds because the two events are in-
dependent since they only depend on the used randomness, and the watchdog
samples its randomness independently from the experiment. The following in-
equality holds by the watchdog’s definition and the abort condition. The bound
marked with (∗∗) holds since the previous line can be written as pλ · (1− p)λ for

55

some p ∈ [0, 1]. Calculating the derivative of this function and computing the
root yields that the term is maximized for

p =
(

|Eq|
|Rgen ×Renc|

)
= nWD

nWD + n
.

Thus, if we fix nWD and n, the above term states the best bound any adversary
can achieve.

Now, we are ready to argue that security in Game 2 is implied by the security
of the underlying KEM. To this end, consider a (tA, ε2) adversary A2 which
breaks the security of Game 2. From this, we construct a (tB, ε) adversary B
breaking the security of the underlying KEM.
Construction of B. Adversary B receives as input a challenge ch = (pk∗, C∗)
and then simulates Game 2 as follows.

First, B obtains an implementation K̃EMSR and state st from A0. It runs the
watchdog for K̂EMSR as specified above. In case the watchdog outputs false, B
outputs 0, just like the original security experiment. Otherwise, B continues to
simulate Game 2.

If this is the case, then the adversary B generates n keys (sk, pk) = ((sk1,
. . ., skn), (pk1, . . . , pkn)) using the amalgamated algorithm G̃en, based on
the implementation provided by A0. To compute the challenge ciphertexts,
B computes ciphertexts Ci and keys Ki for i ∈ [n] by running Ẽncaps using
uniformly random coins. As in Game 2, the adversary B now checks whether
there exists (ski, pki, Ci, Ki) for some i ∈ [n] which were computed according to
the specification. In case no such pair is found, B aborts.

Otherwise, let i denote the smallest index for which this condition is fulfilled.
Then, B computes the challenge ciphertext for A by replacing (pki, Ci) by its
own challenge ch = (pk∗, C∗). More formally, B outputs (st, pk, C) with pk =
(pk1, . . . , pkn) and C = (C1, . . . , Cn) to A1, where (pki, Ci) = (pk∗, C∗). Finally,
let A output a key K. B then computes K∗ = K⊕n

i=1 Ki where Ki are the keys
simulated by B.

Now observe that if A indeed computes the correct key, then so does B, since
B simulated n − 1 keys and can therefore compute the correct solution for its
own challenge.

It remains to analyze the advantage of B. If the embedded challenge could
also have been output by A’s implementation, then B simulates Game 2 cor-
rectly. We can lower bound the probability of this event by 1/2 by utilizing our
observation earlier that eq ≥ 1/2. Thus, we have

Pr[ExpB
KEM] = Pr[ch ∈ Eq] · Pr[A wins G2|ch ∈ Eq]

+ Pr[ch /∈ Eq] · Pr[A wins G2|ch /∈ Eq]
≥ 1/2 · Pr[A wins G2|ch ∈ Eq]
= 1/2 · Pr[A wins G2].

56

Security parameter λ n dlog2(nWD)e

128 32 8
128 16 11
128 8 18
128 4 33

256 64 9
256 32 12
256 16 19
256 8 34

Table 6.1: Instantiating our construction and the watchdog with different values
n and nWD. Recall that n is the number of parallel KEM instances
used in our construction, and nWD is the number of tests (on each
Gen and Encaps) done by the watchdog.

Putting the above together, we obtain 2ε ≥ ε2. Since Game 2 and Game 1 only
differ by the abort condition, we obtain that

ε2 = ε1 − Pr[Abort] ≥ ε1 −
(

nWD

nWD + n

)nWD

·
(

1− nWD

nWD + n

)n

.

Finally, Game 1 and Game 0 are perfectly indistinguishable due to the (O(1), tB, 0)-
subversion-resilience of R̂G. Since Game 0 is the original subversion-resilience
Game ExpSROW

WD,A,K̂EMSR, we obtain that

ε0 ≤ 2ε +
(

nWD

nWD + n

)nWD

·
(

1− nWD

nWD + n

)n

which completes the proof.

6.3 Efficient Instantiations
After presenting our construction, the question arises of how to instantiate our
scheme in a meaningful way. The variable n determines the efficiency of the
constructed scheme in terms of the number of parallel instances of the underlying
KEM (note that this has a direct impact on the size of keys and ciphertexts),
while nWD determines the number of tests performed by the watchdog. Both
together determine the overall security guarantee inherited from the underlying
KEM, as well as the efficiency of the construction.

57

Defining nWD and n as variables yields interesting tradeoffs between the
watchdog’s runtime, the size of ciphertexts and keys, and the obtained se-
curity bounds. In Table 6.1 we consider different choices of n and nWD for
λ ∈ {128, 256}, i.e., “128-bit” and “256-bit” security. For different values of n,
we compute the number nWD of tests performed by the watchdog to achieve that(

nWD

nWD + n

)nWD

·
(

1− nWD

nWD + n

)n

≤ 2−λ

holds. Note that together with the assumption that the underlying KEM is
instantiated such that it provides ε ≤ 2−λ, we thus obtain a security bound on
the subversion-resilient KEM of

ε0 ≤ 2ε +
(

nWD

nWD + n

)nWD

·
(

1− nWD

nWD + n

)n

≤ 3 · 2−λ.

Table 6.1 shows how our subversion-resilient KEM can be instantiated. For
instance, for λ = 128 and with n = 8, the watchdog only needs to test the
Gen and Encaps algorithm only 218 = 262.144 times, which can be practically
accomplished for many underlying KEM constructions within a short time on
moderate hardware. Even for λ = 128 and with n as small as n = 4 only
233 ≈ 8.6 billion tests are already sufficient, which also seems practically feasible
since it can be accomplished for most underlying KEMs within minutes or at
most few hours on standard hardware such as a laptop computer.

6.4 From OW to IND Security
Note that one-way security is strictly weaker than indistinguishability. However,
as we show in Chapter 8, it seems that IND-security in our model and with our
construction does not directly follow from a combiner-like approach. That being
said, there are transformations to obtain an IND-secure KEM from a one-way
KEM by applying a random oracle to the computed key. As the random oracle
behaves like a random function and the key fed as input can not be computed
by an adversary, the resulting output is indistinguishable from random keys. In
[RTYZ18] Russell et al. showed how to sanitize subverted random oracles in an
asymptotic setting. Unfortunately, their approach heavily relies on their asymp-
totic model, and after the watchdog’s testing, specification and implementation
deviate only on a negligible fraction of inputs, which does not seem possible to
guarantee in our model.

58

7 Subversion-Resilient Public-Key
Encryption

After successfully developing a subversion-resilient one-way KEM, we now aim
to build a subversion-resilient one-way public-key encryption scheme. Public-
key encryption is a cryptographic technique that employs a pair of keys: a
public key, which is widely distributed and used for encrypting data, and a
private key, which is kept secret by the recipient and employed for decrypting
the data. The public key can only be used to encrypt messages, which can only
be decrypted by the corresponding private key, ensuring secure communication
and data protection.

We show that the standard way to construct public-key encryption from a
KEM also preserves subversion-resilience, provided that a trusted XOR op-
eration is given. We begin by recalling the standard definition of public-key
encryption and its standard one-way security definition.

Definition 10. A public key encryption scheme PKE = (GenPKE, Encrypt, Decrypt)
consists of three algorithms with the following syntax:

• GenPKE() : The randomized key-generation algorithm outputs a key pair
(sk, pk).

• Encrypt(pk, M) : The randomized encryption algorithm takes as input the
public key pk and a message M and outputs the ciphertext C.

• Decrypt(sk, C) : The deterministic decryption algorithm takes as input the
secret key sk and the ciphertext C. It outputs a message M or the error
symbol ⊥.

One-way security captures the notion that an adversary should be unable to
compute the message encrypted in a ciphertext. Thus, the experiment (depicted
in Fig. 7.1) chooses a random message, which is then encrypted under a previ-
ously generated public key. The adversary then wins if it can return the message
that was encrypted. We want to mention that there are other ways of defining
one-way security for public-key encryption schemes. The winning requirement
is outputting a message M , such that the challenge ciphertexts decrypt to M .
In a non-subversion setting, these two ways of defining one-way security are
equivalent. However, we chose the following approach to guard the decryption
algorithm from subversion due to the aforementioned challenges in guarding the
decryption algorithm from subversion.

59

ExpOW
A,PKE

(sk, pk)← GenPKE()

M∗ $←M
C∗ ← Encrypt(pk, M∗)
M ← A(pk, C∗)
if M∗ == M

return 1
else

return 0

ExpSROW
WD,A,P̂KESR

(P̃KESR, st)← A0

if WDP̃KESR

return b = 0
return ExpOW

A1(st),AM(P̃KESR)

Figure 7.1: Left: One-way experiment for public-key encryption schemes with
message spaceM. Right: Subversion-resilience one-way experiment
for public-key encryption schemes.

Definition 11. We say that PKE = (GenPKE, Encrypt, Decrypt) with message
space M is (tA, ε)-one-way if for any adversary A running in time at most tA
it holds that

AdvOW
A,PKE := |Pr[ExpOW

A,PKE]| ≤ ε

with ExpOW
A,PKEA shown in Figure 7.1.

Definition 12. We say that a specification of a public-key encryption scheme
P̂KESR = (AMPKE, PKESR) is (tWD, tA, ε)-subversion-resilient one-way in the
offline watchdog model with trusted amalgamation if one can efficiently construct
a correct watchdog WD running in time at most tWD such that for any adversary
A = (A0,A1) running in time tA it holds that

AdvSROW
WD,A,P̂KESR ≤ ε

with the used experiments shown in Fig. 7.1.

Description of the Construction. We then can construct a subversion-
resilient public-key encryption scheme from a subversion-resilient key encapsu-
lation mechanism in a straightforward manner. Keys for the PKE are generated
identically to the way keys are generated in the KEM. To encrypt a message,
a ciphertext/key pair is computed by the encapsulation algorithm. The amal-
gamation then takes both the key and the message and applies a ⊕ operation
to them. This value is then output together with the ciphertext computed by
the encapsulation algorithm. Thus, let K̂EMSR = (AMKEM, KEMSR) be the
specification of a subversion-resilient key encapsulation mechanism with

AMKEM(K̂EMSR) = (GenSRKEM, EncapsSR, DecapsSR).

60

We then construct the specification of a public-key encryption scheme P̂KESR =
(AMPKESR, KEMSR) with

AMPKESR(KEMSR) = (GenSRPKE, EncryptSR, DecryptSR)

where each algorithm is defined as follows:
• GenSRPKE(): Output (sk, pk) = GenSRKEM().
• EncryptSR(pk, M): Compute (C, K)← EncapsSR(pk) and output (C, K⊕

M).
• DecryptSR(sk, C): Parse C = (C0, C1). Compute K ← DecapsSR(sk, C0).

Output M = C1 ⊕K.
Thus, the specification of our public-key encryption scheme is basically the speci-
fication of the underlying subversion-resilient key encapsulation mechanism, and
the amalgamation AMPKESR is almost identical to AMKEM. The only difference
is that the message is additionally computed via an XOR to the key K during
encrypt.
Security Analysis. With this simple construction setup, we continue with
its security analysis. Subversion-resilience of the new public-key encryption
scheme follows directly from the security of the underlying KEM and the usage
of a trusted XOR.

Theorem 3. Let K̂EMSR = (AMKEM, KEMSR) be the specification of a (tWD, tA, ε)
subversion-resilient one-way KEM. Then P̂KESR as described above is (tWD, tA, ε)
subversion-resilient one-way in the offline watchdog with trusted amalgamation
assuming a trusted XOR operation.

Proof. The watchdog for PKE simply runs the watchdog for K̂EMSR as a sub-
routine. Any adversary A against the one-wayness of P̂KESR can then be used
to construct an adversary B that breaks the one-wayness of K̂EMSR. Thus, let
B receive the challenge (pk, C) and then be asked to return the encapsulated
key K in C. B then forwards (pk, (C, R)) to A, where R is chosen uniformly at
random from the message space. Thus, instead of actually computing K ⊕M
for some random M , B chooses a uniformly random element since K is not
known. Due to the XOR, for every R chosen by B, there exists some M ′ such
that R = K ⊕M ′ where K is the key encapsulated in B’s challenge. Thus, if
B indeed breaks the one-wayness of P̂KESR, it will return M ′. This then allows
B to compute R ⊕M ′ = K ⊕M ′ ⊕M ′ = K, which breaks the one-wayness of
K̂EMSR. As the success probabilities of A and B coincide, it follows that PKE
is subversion-resilient iff K̂EMSR is subversion-resilient.

Given a subversion-resilient KEM, it was not hard to construct a subversion-
resilient PKE scheme with a very simple trusted amalgamation function in the
watchdog model. Note that our construction avoids input-trigger attacks, as

61

during encryption the message is directly fed into the trusted XOR operation.
A similar technique was used by Russell et al. [RTYZ17] also used a trusted
XOR operation to defend against input trigger attacks but in a different way
from ours. In their approach, they sample a uniform mask to XOR the message
before being encrypted. The mask sampling is also sanitized via their pro-
posed double-split construction. Since our construction of subversion-resilient
KEM needs a trusted XOR operation already, the construction of PKE does
not require any additional assumption if compared with the proposed KEM.
Furthermore, our construction is simpler and only requires a much less runtime-
bounded watchdog.

One may wonder why we do not directly build a subversion-resilient public-key
encryption scheme since the experiment chooses M uniformly at random and
thus does not allow the adversary to choose input triggers freely. However, we
then again run into problems similar to the ones presented in Chapter 8. There
will always be non-negligible many input triggers in the implementation, as long
as the watchdog engages in polynomial many testing queries. Thus, we utilize
a trusted XOR and base the security of our scheme on a subversion-resilient
KEM.

62

8 On the Impossibility of
Subversion-Resilient
Indistinguishability

The original security proof in [BCJ21] aimed to show subversion-resilience with
regard to the security notion of indistinguishability, i.e. Definition 7. Unfortu-
nately, as we show in the following, a very subtle detail invalidates the proposed
security proof. On a very high level, the proof strategy was the following:

• The testing of the watchdog guarantees with overwhelming probability
that at least one pair (pki, Ci) generated in the subversion security exper-
iment does not deviate from the specification.

• We can replace this pair by the challenge pair (pk∗, C∗) obtained in the
KEM security experiment.

• To be successful, the subversion adversary thus needs also to solve this
challenge (pk∗, C∗) due to the combiner property.

Thus, this strategy mostly followed directly the proof strategy of the previous
section. Unfortunately, the above strategy does not hold up against scrutiny,
as (pk∗, C∗) might never be the output of the subverted implementation. A
simple example of this would be an implementation, which would never output
a public key ending in “0”. The adversary could thus identify such instances and
fail intentionally, effectively canceling out its advantage. Based on this, we now
show that every reduction that performs such a simple embedding such that the
adversary has “direct access” to it can not be successful.

Theorem 4. Let R be a reduction that reduces the security of a subversion-
resilient KEM KEMSR to the security of an indistinguishable KEM KEM. Let
pk = (pk0, . . . , pkn), C = (C0, . . . , Cn) be the public key and ciphertext of
KEMSR. Furthermore, let R be any reduction, that after running the watchdog
for KEMSR, takes a public key / ciphertext pair (pk∗, C∗) of KEM and replaces
any pki, Ci where i ∈ [n] with (pk∗, C∗) before handing this new challenge to
some adversary. Then, if there exists an adversary B which breaks the (t, ε)-
subversion-resilience of KEMSR, there exists an adversary A which breaks the
(t, ε)-subversion-resilience of KEMSR, but cannot be used by the (single-stage)
reduction R of the form defined above to break the indistinguishability of KEM.

63

In other words, for every reduction R that follows the strategy explained
above, there is always an attacker A that can break the subversion-resilience
without breaking the indistinguishability for R.

Proof. First, the adversary prepares its implementation, such that the outputs
of (Gen, Encaps) deviate from the specification for a fraction neq of all (ran-
domness) inputs of Gen× Encaps. Similarly, we use eq = 1− neq to denote the
fraction of inputs for which outputs follow the specification. Then, the q denote
the amount of tests performed by watchdog on(Gen, Encaps).

Now, we construct the adversary A. If the watchdog approves the implemen-
tation (i.e., it never encounters a deviation from the specification), A is given
its challenge ch = (pk∗, K∗, C∗). Due to the possibility of using our von Neu-
mann construction, the keys in the challenge will always be uniform bitstrings.
Thus, we can ignore K∗ in the following and simply use ch = (pk∗, C∗). We now
distinguish the two following scenarios:

• If the challenge given to A is correctly distributed with regard to the
subverted implementation, the adversary flips a biased coin with bias =
neq/eq. For the event with probability bias, the adversary runs B to break
the security of the scheme with probability ε. Otherwise (which happens
with probability 1− bias), the adversary samples a uniformly distributed
bit and returns this random bit.

• If the challenge given to A is not correctly distributed, there is a public
key/ciphertext pair that the subverted implementation could not have
produced. Now, A tries to deliberately output a wrong solution, as they
know they are used in a reduction R. To do so, A runs B to obtain a bit b
and then outputs 1− b. Hence, it outputs the correct bit with probability
1− ε.

Now, let us analyze Adv :=
∣∣∣Pr[ExpIND

R,KEM = 1]− 1/2
∣∣∣, i.e., the advantage of

the reduction R in breaking the indistinguishability security of the underlying
KEM. By definition, this advantage equals |Pr[SR = 1]− 1/2|. Here, SR is the
subversion security game played by A, where the reduction embeds a challenge
somewhere in a construction such that the adversary has access to this challenge.
To analyze Adv, we introduce the following events:
detected: This event describes that the Watchdog outputs “true” during its

testing phase, i.e., the watchdog accepts the implementation.
A: This event (“attack”) refers to A flipping its coin and then trying to break

the security of the considered scheme (which happens with probability
bias).

R: This event (“random”) is the complementary event to “attack” and refers to
A simply outputting a random bit.

64

Now, the law of total probability gives

Adv = |Pr[SR = 1|detected] · Pr[detected]
+ Pr[SR = 1|¬ detected ∧ ch /∈ Eq] · Pr[¬ detected ∧ ch /∈ Eq]
+ Pr[SR = 1|¬ detected ∧ ch ∈ Eq ∧ A] · Pr[¬ detected ∧ ch ∈ Eq ∧ A]
+ Pr[SR = 1|¬ detected ∧ ch ∈ Eq ∧R] · Pr[¬ detected ∧ ch ∈ Eq ∧R]
− 1/2|.

Plugging in the probabilities that the subverted implementation is detected (or
not) and the different scenarios for A shows that this is equal to

Adv (1)=|1/2 · (1− eqq)
+ ε · (eqq · neq)
+ (1− ε) · (eqq+1 · bias)
+ 1/2 · (eqq+1 · (1− bias))
− 1/2|

(2)=|1/2 · (1− eqq)
+ ε · (eqq · neq)
+ (1− ε) · (eqq+1 · neq/eq)
+ 1/2 · (eqq+1 · (1− neq/eq))
− 1/2|

(3)=|1/2 · (1− eqq)
+ (eqq · neq)
+ 1/2 · eqq+1

− 1/2 · eqq+1neq/eq))
− 1/2|

=|1/2 ·
(
1− eqq + eqq · neq + eqq+1

)
− 1/2|

=|1/2 · (1− eqq + eqq(neq + eq))− 1/2|
=|1/2 · (1− eqq + eqq)− 1/2|
=0

where in equation (1), we simply replaced the probabilities of the events with
the corresponding values of eq and neq and the probabilities according to A’s
strategy. In (2) we substituted bias with neq/eq, according to its definition. All
equations after (3) are simple manipulations. Hence, we conclude that R is not
breaking the indistinguishability of KEM.

Note that the bias bias = neq/eq chosen by the adversary A is independent
of the number of tests q performed by the watchdog. Hence, this value cancels

65

out one additional eq term, which is always true, independent of the size of q.
Also, the size of Neq (and therefore neq) can not be made arbitrarily small by
simply more testing of the watchdog, as long as the watchdog is independent
of the adversary and engages in a fixed number of tests. Consider an adversary
which prepares its implementation with neq = ((q/q + 1)) were q denotes the
amount of testing queries by the watchdog, The probability that the adversary
avoids detection is then (1− (q/q + 1))q and approaches 1/e for q →∞, which
is non-negligible, while the probability of being handed a subverted challenge is
neq, which is also non-negligible. Thus, as long as the adversary is allowed to
make its implementation depend on the watchdog, the above impossibility can
not be circumvented with additional polynomial-time testing.

Note that Theorem 4 is phrased explicitly to capture the results proposed in
[BCJ21]. It seems that even broader statements about impossibility are pos-
sible in this setting of subversion-resilience: Instead of directly embedding a
challenge, a reduction could also try to rerandomize it before embedding it if
KEM is sufficiently rerandomizeable. However, this approach also does not seem
to work, as the reduction does not know whether the rerandomized challenge
can be computed by the implementation, as the reduction can not recompute
the randomness used for the challenge. Otherwise, it would directly break the
security of KEM. On the other hand, a general impossibility result regarding
indistinguishability with limited testing is also not possible. If a construction
shifts all computations to the trusted amalgamation, it is trivially subversion-
resilient. However, we would deem such a scheme impractical, since it removes
all attack capabilities of the adversary, Thus, one would require a formalization
that not “too much trust” is put into the amalgamation to acquire meaning-
ful impossibility results. However, such a formalization is far from trivial and
beyond the scope of this thesis. We thus leave this formalization as an open
direction for future work. Additionally, our impossibility result only captures an
approach where we run the adversary a single time. Breaking with this assump-
tion and utilizing multiple runs of the adversary is another interesting direction
for future research to improve our results.

66

9 Discussion
After presenting our results, let us discuss our contributions.
Efficient Watchdogs but Increased Key and Ciphertext Size. Further
reducing the watchdog’s testing overhead is crucial to make our approach more
suitable for efficient use on a larger scale. While previous works achieved results
in an asymptotic setting, the question remains how these results would be real-
ized in practice. Especially only requiring a non-negligible detection advantage
is most likely not accurately modeling the requirements intuitively expected
from subversion-resilient systems. Our contributions with regard to efficient
watchdogs can thus be seen as a bridging step between these two worlds. Our
public-key encryption scheme guarantees that the user running the watchdog
can be sure that no adversary can utilize a backdoor. This security comes with
the price of increased key and ciphertext size and only guarantees one-way se-
curity. We still believe that our scheme can be helpful in applications where
security against subversion is critical while the decreased efficiency might be
acceptable. This could, for example, be an investigative journalist who wishes
to communicate with its sources. In this scenario, only small amounts of data
must be exchanged, and the additional overhead might be acceptable. Also, if
our PKE (or KEM) scheme would be used to exchange key material and, on top
of that, another subversion-resilient scheme (like our AEAD scheme presented in
Section 12.8), the increased key and ciphertext size could also be justified. See
Chapter 14 for a deeper discussion on this possible direction for future research.
(Im)possibility of Black-Box Constructions. Both our constructions of
subversion-resilient KEM and PKE schemes rely on a trusted XOR operation.
We conjecture that such a trusted operation is necessary to achieve subversion-
resilience with a watchdog of “low” runtime. This holds even if the randomness
generation of the algorithm is split from the deterministic part of the encryp-
tion algorithm. We illustrate the observation underlying this conjecture with
the example of public-key encryption. To achieve indistinguishability against
an adversary with polynomial running time, an exponentially big key and ran-
domness space are required (as otherwise, an adversary could obviously simply
compute the secret key or determine the randomness used in the challenge ci-
phertext by exhaustive search). Thus, a watchdog with a non-negligible success
probability in detecting a subversion would have to test “many” inputs to rule
out input-trigger style attacks, such as those described by Degrabiele et al.
[DFP15]. Therefore, constructing a watchdog with high detection probability
immediately requires exponential running time. Thus, we conjecture that some

67

sort of trusted operation is necessary to achieve subversion-resilience.
Repeated Oracle Access. In the security models used in this chapter, the
adversary is given only a single challenge and is then asked to provide some
response. In the security model for public key encryption by Russell et al.
[RTYZ17], the adversary was also given access to an encryption oracle. Since
they utilize asymptotic security definitions and prove that outputs of their sub-
verted encryption algorithm are indistinguishable from non-subverted runs of
the encryption algorithm, this additional oracle access is of no use to the ad-
versary. For our approach, it is not clear how access to an encryption oracle
could be given to the adversary while providing a sound simulation during the
reduction. This is because of the following. Our proof idea requires that one of
many ciphertext / public key pairs is computed according to the specification.
This allows us to embed a challenge for that pair. However, if repeated oracle
access is granted to the adversary, it cannot be guaranteed that this honest pair
always occurs on the same index. For example, in the first query, the first output
is in accordance with the specification, while in the second query, the second
pair is. Thus, it is not clear how a reduction would be able to simulate this
correctly. However, this reflects the different approaches of the results of this
thesis and the results of Russell et al. [RTYZ17]. While Russell et al. aimed for
indistinguishability of the implementation and the specification and then used
this to argue for the subversion-resilience of their construction, our goal is only
to guarantee some security guarantee. For our construction, the adversary is
able to distinguish its implementation from the specification, but this still does
not give it the power to break the one-way security of our scheme. Addition-
ally, not providing an encryption oracle gives very little additional power to the
adversary. This is because the adversary is aware of both the specification and
the implementation and could thus compute all outputs of an encryption oracle
by itself.
Limited Impossibility. Our impossibility result in Chapter 8 is phrased to
specifically capture the results presented in [BCJ21]. A natural question is
whether our limited impossibility results can be proven in a more general form
or whether other proof techniques allow our (or a similar) construction to be
proven subversion-resilient indistinguishable. As we only show the impossibility
of reductions that run the adversary only once, a natural option could be to run
the adversary multiple times. This, together with some bound on the probability
that the adversary is simulated correctly, and for example, a majority vote over
all runs of the adversary, could potentially lead to positive results. However, a
careful investigation is necessary to bring substance to this approach.

68

Part II

Security under Complete
Subversion Without Random

Oracles

In the following chapters, we present the first construction of
subversion-resilient authenticated encryption where encryption and
decryption are subject to subversion, and the first construction of

digital signatures where all algorithms are subject to subversion, in an
asymptotic offline watchdog model while abstaining from using

random oracles.

69

Author’s Contributions. The author of this thesis observed that the Encrypt-
then-MAC approach can be leveraged for subversion-resilience. The main build-
ing block of subversion-resilient PRFs was constructed as joint work with Se-
bastian Berndt, Denis Diemert, Tibor Jager, and Thomas Eisenbarth through
several iterations while the author of this thesis focused on the security of PRFs
and MACs. These results were published in [BBD+23].

With subversion-resilient PRFs being available, the author of this thesis sug-
gested revisiting classical results in cryptography and using this primitive to
obtain subversion-resilient signatures. The author’s main contributions are the
construction of subversion-resilient one-way functions and the idea of using clas-
sical approaches to obtain digital signatures from symmetric primitives, while
Sebastian Berndt focused on the details of the Naor-Yung construction. The
construction details, such as target-collision-resistant hash functions, were de-
veloped in joint work with Sebastian Berndt and Rongmao Chen. The results
on subversion-resilient signatures were published in [BBC24].

71

10 Complete Subversion
In Part I, we saw that achieving one-way security for KEMs and PKE with
practical watchdogs in a concrete security setting is indeed possible. However,
constructing indistinguishable KEMs in our model remains an interesting open
problem. While our proposed model and constructions allow for more practical
watchdogs, this comes with the downside of increased key and ciphertext size.
Although utilizing an efficient watchdog in a concrete security setting is desir-
able, improving our results seems hard. As indicated by our results from the
previous chapter, this task could even be impossible.

As we see shortly, in an asymptotic security setting using watchdogs described
with asymptotic running times, many issues that arise in a concrete security
setting with practical watchdogs can be circumvented. Therefore, this part of
this thesis focuses on enhancing both security and practicality in an asymptotic
setting. Although the runtime of the watchdog is crucial for the practicality
of a subversion-resistant scheme, other factors must also be considered. What
other properties would we intuitively expect from a practical subversion-resilient
scheme? Since the adversary provides the implementation of a scheme, we would
assume that subversion resilience guarantees security even if all algorithms of the
cryptographic scheme are provided by the adversary. However, in prior works,
subversion-resilience was often only proven with regard to partial subversion.
This means that the adversary only provides implementations for selected (of-
ten only a single) algorithms from a cryptographic scheme. Depending on the
application, it can be difficult to justify that a powerful adversary is capable
of modifying the implementation of widely used cryptographic schemes to ex-
clude critical algorithms from subversion attacks. It can be difficult to justify
excluding algorithms critical for security from subversion attacks if a powerful
adversary changes the implementation of widely used cryptographic schemes.

Thus, while allowing results that can be seen as important stepping stones,
partial subversion does not accurately model the threats we face in practice. A
more practical approach models adversaries with regards to complete subversion,
i.e., consider adversaries that provide implementations for all algorithms of a
cryptographic primitive. However, in most prior works, either

• adversaries are not allowed to provide implementations of the decryption
or verification algorithms or

• primitives use idealized primitives such as random oracles.
Generally, security experiments for weaker security properties like one-way se-
curity often grant the adversary oracle access to fewer algorithms than stronger

73

security notions. Note, however, that in some cases excluding some algorithms
of a cryptographic scheme does not make a difference with regard to security
properties, as for some security notions, not all algorithms are relevant for se-
curity. Consider our model and result on subversion-resilient KEMs from Part I
as an illustrative example. There, the adversary provides an implementation
for the key generation and encapsulation algorithm. Technically, the adversary
could also provide an implementation of the decapsulation algorithm. However,
neither the one-way nor the indistinguishability security definitions ever use this
algorithm. Thus, even if the adversary provides an implementation of the de-
capsulation algorithm, it does not make a difference in security1 in our case. For
stronger2 security properties like the security of authenticated encryption, the
decryption algorithm is an integral part of the security experiment. Excluding
this algorithm from subversion in this setting is thus far more restricting than
excluding the decapsulation algorithm in a one-way secure KEM.

Sometimes, algorithms are excluded to enable positive results in the first
place in the presence of generic attacks. For example, previous works only
consider subversion of parameter generation [BFS16], key generation [Bag20],
or key generation and signing [CRT+19] while the remaining algorithms are not
subverted. This enabled researchers to develop techniques to achieve subversion-
resilience at all, potentially with additional assumptions, like for example the
trusted amalgamation model or a trusted XOR operation.
Attacks. Only considering the subversion of selected algorithms usually meant
excluding algorithms run by the receiving party, i.e. the decryption of an en-
cryption scheme or verification algorithm of a signature scheme. In general, it is
unknown what strategy an adversary uses when making querying oracles corre-
sponding to these algorithms. Thus, the watchdog cannot effectively test these
algorithms according to the same distribution that the adversary accesses the
oracles. One of the main problems is that this implies input-trigger style attacks
[DFP15], where the algorithm deviates from the specification for adversarially
chosen inputs. In the case of decryption or verification, simple attacks allow to
break the security of the considered scheme. For this, the adversary prepares
its implementation such that for some x (either a ciphertext or signature), the
decryption oracle outputs the symmetric key, or the verification algorithm out-
puts the signing key (or accepts the signature). With an offline watchdog, it is
impossible to detect this attack as long as the ciphertext or signature space is
“sufficiently large”. This is because the watchdog does not know the distribu-
tion, according to which the adversary will query the decryption or verification
oracle. Thus, the probability that a watchdog tests x by choosing random in-

1This does however influence the corretness of the scheme, as this property can not be
guaranteed anymore, at least not for all inputs. While correctness can be important for
some constructions, including our construction of authenticated encryption, in general,
correctness is not necessary to achieve security, and we thus do not consider it a security
property.

2If compared to indistinguishability notions of encryption

74

puts is negligible. As we discussed in Section 1.2, there is a series of works
by Armour, Farshim, and Poettering [AP22, DFP15, AP19] that focuses on at-
tacking the algorithms used by message receivers, i.e. verification or decryption
algorithms. They propose novel attacks that can break the security of various
schemes, such as encryption and signature schemes while remaining undetected.
Since their attacks are generic, it is impossible to defend against these attacks
without further assumptions. Their work highlights the need for constructions
to defend against attacks under complete subversion, i.e., where all algorithms
that are relevant in practice, are subject to subversion, while minimizing the
additional assumptions.

Random Oracles. In previous works, one way to achieve subversion resilience
under complete subversion and to circumvent the attacks mentioned above was
using a (subversion-resilient) random oracle [RTYZ16, RTYZ17, CRT+19]. In
a series of works, Russell et al. [RTYZ16, RTYZ17] modeled building blocks
as random oracles obtaining constructions for subversion-resilient randomness
generators, encryption schemes, one-way permutations and signatures under
complete subversion. However, these works only use random oracles in specific
circumstances (i.e., known input distributions) and do not provide constructions
for subversion-resilient random oracles. Russell et al. [RTYZ18] then showed
that subversion-resilient random oracles can be constructed in an asymptotic
setting under the assumption that a trusted XOR operation is available. Their
construction uses many different random oracles. For each instance of a random
oracle, a random blinding value is chosen, after which a trusted XOR is applied
to this blinding value and the input. The key insight is that these random values
are chosen after the adversary provided its implementation. A trusted XOR is
then applied to all these instances with different blinding values and once again
feed into a random oracle to obtain the final output. Russell et al. provide a
sophisticated analysis of their scheme, overcoming the main challenge that the
adversary can adaptively query the random oracle, making sound simulation a
tough challenge.

Subversion-resilient oracles were then utilized by Chow et al. [CRT+19] to
develop subversion-resilient signature schemes under complete subversion using
subversion-resilient random oracles as an essential building block. This is be-
cause random oracles can be used to randomly map potentially input triggers on
a large domain. This allows the watchdog again to test algorithms according to
a known input distribution, i.e. sample random inputs. This way, it is unlikely
that an input trigger that is fed into the random oracle, again “hits” a trigger,
where the implementation deviates from the specification.

While this approach yielded positive results, the question remained whether
random oracles are necessary to achieve subversion-resilience under complete
subversion. Ateniese, Francati, Magri, and Venturi [AFMV19] proposed a generic
approach to guard cryptographic schemes against complete subversion, without
using random oracles. While granting new insights and developing interesting

75

techniques to avoid random oracles, their work has a few limitations. First, their
work only applies to deterministic primitives. Further, their approach relies on
an additional independent source of public randomness, while some of their
results (e.g., with regard to signatures) also require online watchdogs. Thus,
they avoided random oracles but could not guard randomized primitives and
required a public randomness source, which might not be available. Therefore,
our primary research question for the second part of this thesis is:

Is it possible to construct subversion-resilient primitives without random
oracles in an offline watchdog model under complete subversion?

We can answer this question positively, even for schemes that are not de-
terministic. We show that subversion-resilietn authenticated encryption can be
constructed while encryption and decryption are subject to subversion. For
digital signatures we show how to achieve subversion-resilience, even if all al-
gorithms are subject to subversion in the trusted amalgamation model and a
few simple, trusted operations are available. As we explain in Section 12.1 in
more detail, our results for subversion-resilient authenticated encryption exclude
key generation from subversion to simplify our contributions while emphasizing
that constructions from this and prior work be used to sanitize key generation
for our construction. While this may sound to violate the notion of complete
subversion, we argue that this still captures complete subversion for the case of
symmetric cryptography in meaningful way.

Both our constructions share a similar underlying idea in their approach.
We revisit classical results from cryptography and build both primitives us-
ing symmetric primitives. We observe that certain building blocks of these
classical results naturally obtain subversion-resilience. Given some additional
operations, i.e., a trusted XOR, a trusted comparison, a “trusted data struc-
ture”, and more fine-grained access to the building blocks, we can prove our
constructions subversion-resilient. Both approaches share the idea of building
the corresponding primitive starting from symmetric primitives, which enables
the recomputation of symmetric primitives during decryption/verification, cir-
cumventing input trigger attacks. Thus, we utilize trusted assumption to avoid
feeding adversarially chosen inputs directly into subverted components, as men-
tioned by Russell et al. [RTYZ16, RTYZ17]. Our results prove that various
building blocks are subversion-resilient as bridging steps.

76

11 Asymptotic Subversion Model
As in Part I, we begin by providing the security model for our constructions.
We define the notion of subversion-resilience in an asymptotic security setting
and loosely follow the approach by Russell, Tang, Yung, and Zhou [RTYZ17,
RTYZ16].

We again use the trusted amalgamation model to enable our results. We
provide generic security definitions in an asymptotic setting and briefly recall
the trusted amalgamation model for completeness and refer to Section 4.3 for a
more detailed discussion.
Security Experiments. A security experiment ExpGOAL

A,Π for a cryptographic
primitive Π with security objective GOAL involves one party, namely the adver-
saryA trying to break the security objective against Π̂. In contrast, a subversion
experiment ExpSRGOAL

WD,A,Π̂ is executed with an implementation of the considered
primitive by the adversary and consists of three phases involving two parties: In
the first phase, the adversary A provides a subverted implementation Π̃. This
implementation is then examined by a watchdog WD that tries to detect the
subversion in the second phase. Finally, in the third phase, the adversary A
takes part in the security experiment, where the subverted implementation is
used. In the following, we always treat A as pair (A0,A1), where A0 provides
the subverted implementation Π̃ and A1 takes part in the security experiment.
As usual, we denote the security parameter by λ.
Amalgamation. As discussed earlier, there is no black-box way to prevent
subversion attacks in the watchdog model, as universal undetectable attacks
are known, e.g., by Berndt and Liśkiewicz [BL17]. To still give security guar-
antees against subverted implementations, different non-black-box models were
presented in the literature. In this part of this thesis, we follow Russell, Tang,
Yung, and Zhou [RTYZ17] who introduced the trusted amalgamation model.
Intuitively, this model splits all its components into subroutines with a more
fine-granular resolution than the usual division into different algorithms. For
example, a signature scheme consists of the three algorithms (KGen, Sign, Ver),
but each might again consist of several subroutines (which might even be shared
among the algorithms). We denote the list of subroutines by Π = (Π1, . . . , Πn).
The idea behind the trusted amalgamation model is each of these subroutines
Πi might be subverted by the attacker, but the composition of them is per-
formed by a trusted amalgamation function Am that is not subverted. Hence,
Am is given the list Π, producing all the needed algorithms for the primitive.
The security experiment is then played on Am(Π̃), where Π̃ denotes the list of

77

subverted subroutines provided by the attacker. To provide meaningful security
guarantees, one thus aims to make the amalgamation functions as simple as pos-
sible to allow automatic or manual verification. Typically, these amalgamation
functions only consist of a few simple operations like an XOR. To formalize this
scenario, we represent the specification Π̂ of a primitive as Π̂ = (Am, Π). As a
shortcut, we simply write (Am, Ψ̂) if a construction uses a subversion-resilient
Ψ̂ = (AmΨ, Ψ) as a building block with the understanding that Am uses AmΨ
as a subroutine. In case the amalgamation is very simple, we take the liberty
to describe it only informally via text to avoid notional overhead. This way we
can avoid a big notional overhead and put more focus on our used techniques.
In case the amalgamation function is the identity function, we refer to a spec-
ification as the trivial specification and do not explicitly state Am. Sometimes,
we consider the amalgamation function for a single algorithm Πi of a primitive,
denoted by Ami. Unlike to Part I.
Split-program model. In addition to trusted amalgamation, Russell, Tang,
Yung, and Zhou [RTYZ16] used the split-program methodology. Like modern
programming techniques, randomness generation is assumed to be split from a
randomized algorithm. The watchdog can then test the randomness generator
and the deterministic algorithm individually. We also use this methodology and
will simply see it as part of the trusted amalgamation model.
Deterministic and Stateless Subversion. Due to the inherent limitations
of a universal offline watchdog model, we will also assume in this part of this
thesis that the subverted implementation of a deterministic building block is
also deterministic and assume that the implementation is not allowed to hold
any state between executions.
Asymptotic Subversion-Resilience. Next, we define the notion of subversion-
resilience in an asymptotic setting based on the definitions by Russell et al.
[RTYZ16, RTYZ17]. Intuitively, we extend a “conventional” security experi-
ment Exp by a preceding check for subversion of the primitive. Afterwards,
the security experiment is executed. This is illustrated in Fig. 11.1. As we
study both decision (i.e., indistinguishability) and search (i.e., unpredictabil-
ity) problems in this paper, we associate with experiment Exp a “baseline win
probability” denoted by δ that gives the winning probability of a naive attacker,
i.e., δ = 0 for search problems and δ = 1/2 for decision problems. To extend
Exp, we first run A0 to obtain a subverted implementation Π̃ (Fig. 11.1, l. 1).
The watchdog WD then tests the implementation before we run the security ex-
periment Exp with adversary A1 on the amalgated, subverted implementation
Am(Π̃) as usual (Fig. 11.1, l. 3). The variable st is only used to synchronize
A0 and A1. Throughout this thesis, we use the convention that the watch-
dog outputs “true” if subversion is detected. To formalize subversion-resilience,
consider the next definition and the corresponding security experiment shown
in Fig. 11.1.

78

ExpSRGOAL
WD,A,Π̂(1λ)

1 :
2 : (Π̃, st)← A0(1λ)

3 : bWD ←WDΠ̃(1λ)
4 : return ExpGOAL

A1(st),Am(Π̃)(1
λ)

Figure 11.1: The security experiment for subversion-resilient GOAL with spec-
ification Π̂ = (Am, Π) in an offline watchdog model with trusted
amalgamation.

Definition 13. A specification of a primitive Π̂ = (Am, Π) is subversion-
resilient GOAL in the offline watchdog model with trusted amalgamation if one
can efficiently construct a ppt watchdog algorithm WD such that for any ppt
adversary A = (A0,A1) it holds

AdvSRGOAL
A,Π̂ (1λ, δ) is negligible or DetWD

A,Π̂(1λ) is non-negligible

where
AdvSRGOAL

A,Π̂ (1λ, δ) = |Pr[ExpSRGOAL
WD,A,Π̂(1λ) = 1]− δ|

and
DetWD

A,Π̂(1λ) = |Pr[WDΠ̃(1λ)]−WDΠ(1λ)]|

using the experiment shown in Fig. 11.1, with δ ∈ {0, 1
2} indicating whether a

search or a decision problem is considered.

Note that AdvSRGOAL
A,Π̂ (1λ, δ) is not parameterized by the watchdog WD. We

chose this approach to simplify notation, as the watchdog testing does not di-
rectly influence the adversary’s advantage. We also drop δ to help readability
further, as δ is apparent from the context.

All watchdogs we propose in this part of this thesis will also be correct, i.e.
Pr[WDΠ(1λ) = 1], meaning the watchdog will never reject the specification. This
is because all watchdogs presented in this thesis only compare the outputs of
the specification and the implementation on common inputs. While this allows
a simplification for the detection advantage, we stick to the above definition to
more closely follow prior work.

For public-key encryption, the above model is not equivalent to the model
proposed by Russell, Tang, Yung, and Zhou [RTYZ17], where the adversary has
access to a subverted encryption oracle, unlike our model, the adversary cannot
access such an oracle. For symmetric encryption, our more general definition
captures theirs with some differences in syntax.

Further, note that GOAL-subversion-resilience implies GOAL security as the
above definition also has to hold for an adversary that outputs the specification
as its implementation. To shorten the notation, in the following, we call prim-
itives just subversion-resilient GOAL with the understanding that they fulfill

79

Definition 13. Finally, all upcoming construction use correct watchdogs, i.e.
fulfill Definition 2.
Achieving Subversion-Resilience. To prove our upcoming constructions
of PRFs and one-way functions subversion-resilient, we rely on an observation
made by Russell, Tang, Yung, and Zhou [RTYZ16] that is particularly useful
for algorithms with a public input distribution. This means that all parties
(including the watchdog) can sample inputs according to this input distribution.
For instance, an algorithm where all inputs are uniformly random bitstrings has
a public input distribution. On the other hand, an algorithm that obtains inputs
from an adversary during a security game where the adversary can freely choose
the input is not considered public. In this case, the input distribution is not
known in advance for arbitrary adversaries.

Russell et al. then observe the following: If a deterministic primitive is only
given inputs according to a public distribution and the implementation deviates
from the specification with some probability δ (with inputs chosen according
to this public input distribution), then a ppt watchdog can detect this with
probability at least δ. Hence, the number of inputs the implementation deviates
from the specification must be negligible to stay undetected.

Lemma 1 ([RTYZ16]). Consider an implementation Π̃ := (Π̃1, . . . , Π̃k) of a
specification Π̂ = (Π̂1, . . . , Π̂k), where Π̂1, . . . , Π̂k are deterministic algorithms.
Additionally, for each security parameter λ, public input distributions X1

λ, . . . ,
Xk

λ are defined respectively. If there exists a j ∈ [k] such that Pr[Π̃j(x) 6= Π̂k(x) :
x

$← Xj
λ] = δ, this can be detected by a ppt offline watchdog with probability at

least δ.

An instructive example to understand the usefulness of this lemma is the
following. Suppose we are given a single function f and a probability distribution
X on the domain of f . In an experiment, the adversary can now issue a query,
where x

$← X is drawn and the pairs (x, f(x)) are given to the adversary.
The goal of the adversary is to obtain a sample (x?, f̃(x?)), where x? ∈ X∗

for some subset X? ⊆ Supp(X) such that f̃(x?) 6= f̂(x?) where Supp(X) is
the subset of values the variable X can take. Clearly, if the adversary can
only perform a bounded number of samples, the density of X? with regards to
X cannot be arbitrarily small. But, as the distribution X is publicly known,
a watchdog can also sample according to X and check the implementation f̃
against the specification f̂ on these samples. Then, it is not hard to see that
the adversary wins if the watchdog distinguishes the implementation from the
specification. This lemma is used to argue for the subversion-resilience of our
most fundamental building blocks, one-way functions, and weak PRFs.
Comparison with Concrete Model. Let us compare this asymptotic model
to the concrete model proposed in Chapter 4. In the concrete model, we explic-
itly make the adversary lose the security game in case of detection, while the
asymptotic model instead makes use of two distinct advantages. This creates a

80

gap between the two models. Consider an attack where the implementation of
the adversary gets rejected by the watchdog with some non-negligible probabil-
ity. While the asymptotic model deems this attack unsuccessful, it is allowed
in the model of Chapter 4. Therefore, the asymptotic model is weaker, as it
outrules attacks that are allowed in our concrete model. However, the big ad-
vantage of the asymptotic approach is that it Lemma 1 to be applied. This is not
possible in the concrete model, as we do not have a baseline to outrule attacks
with non-negligible detection probability. Thus, while outruling an arguably
bis class of potential adversaries, this gives us immense leverage in designing
subversion-resilient schemes.
Randomness Generation. All following construction will rely on “good”
randomness being available. Thus, we need a subversion-resilient randomness
generator (see Chapter 5). Currently, there are two options available. First,
one can directly use our randomness generator from Chapter 5. While our pre-
vious result was stated in the concrete setting, it directly translates into the
asymptotic setting. The other option would be to use one of the constructions
proposed by Russell, Tang, Yung, and Zhou [RTYZ17]. As mentioned in Chap-
ter 5, the authors propose two constructions of randomness generators without
random oracles. One is based on simple multi-splitting, where a randomness
generator is used to obtain a single random bit, while the other uses random-
ness extractors. Both utilize the asymptotic framework proposed in [RTYZ17].
For our upcoming constructions, any fo these constructions can be used. Hence,
for simplicity, we abstract away the randomness generation and assume that
our constructions generate uniformly random bits while being able to test the
randomized algorithms on selected random coins. This assumption allows us to
simplify notation, significantly help readability, and focus on our contributions
with regard to achieving subversion-resilience under complete subversion.

81

12 Subversion-Resilient
Authenticated Encryption

Before we present the details of our approach to achieving subversion-resilient
authenticated encryption, let us briefly discuss the main challenges for this goal
and the structure of this chapter. First, let us explain the intuition behind the
notion of authenticated encryption. Authenticated encryption combines sym-
metric encryption and data authentication to provide confidentiality and data
integrity. Thus, not only is the encrypted data kept secret, but it can also be
verified that it has not been tampered with during transmission. Authenticated
encryption has many applications. It is for example an essential building block
in cryptographic protocols like TLS [Res18] or Instant Messaging protocols like
WhatsApp or Signal. Examples of authenticated encryption schemes are AES-
GCM (Galois Counter Mode) [SMC08] and AES-CCM (counter with cipher
block chaining message authentication code) [WHF03]. A prominent example
where authenticated encryption is used is TLS. There, authenticated encryp-
tion provides confidentiality of transmitted messages and guarantees that the
encrypted data was not manipulated during transit. Many authenticated en-
cryption schemes also allow the message to contain so-called associated data
(AD). This data is not confidential, but tampering with it will be detected.
A typical example of associated data is the header of a network packet. For
a packet to be routed, it is necessary to be able to access the destination ad-
dress within the header. However, no intermediate node during the transmission
should be able to change the destination address.

While there has been tremendous progress in constructing subversion-resilient
schemes, including subversion-resilient symmetric and public-key encryption
[RTYZ17], authenticated encryption where both encryption and decryption are
subject to subversion has not been achieved in an offline watchdog model. This
is due to input-trigger attacks, which previously could not be avoided without
using heavy machinery such as a random oracle or a model where the decryption
algorithm is exempt from subversion. Thus, this leads to the following research
question:

Is it possible to design a subversion-resilient authenticated encryption without
random oracles in the offline watchdog model under complete subversion?

In this chapter, we answer this question affirmatively. We revisit classical results
from cryptography and see that these constructions grant subversion-resilient

83

authenticated encryption, given a few trusted operations. As an important
stepping stone, we also propose the first construction of message authentication
code (MAC), where both the tag and the verification algorithm are implemented
by the adversary. Before we dive into the details of our approach, let us discuss
our view on authenticated encryption under complete subversion and briefly
highlight the main challenges that need to be overcome.

12.1 Symmetric Cryptography under Complete
Subversion

While we state our goal as constructing subversion-resilient authenticated en-
cryption under complete subversion, we will exclude key generation from subver-
sion in our model and constructions. While this might sound counterintuitive,
let us explain why we chose this approach contrary to previous works [RTYZ17]
where key generation is explicitly sanitized. Although a key generation algo-
rithm is necessary for formal security models to obtain keys used in the security
experiment, the key generation algorithm of symmetric primitives, including au-
thenticated encryption, is not always directly executed in practice. To illustrate
this, we consider two examples of how symmetric cryptography is usually used
in practice.
Local Encryption. In some cases, symmetric encryption is used “locally”. One

example of this is a party sampling a random key (which usually is a
random bitstring) and using it for encrypting local files. In this case,
providing a subversion-resilient key generation algorithm can be mean-
ingful if key generation simply means generating random bits. Currently,
two options for achieving this are available. Again, these are either the
randomness generator from Chapter 5 or the randomness generator from
[RTYZ17]. Both can directly be applied, as they produce random bits in a
subversion-resilient manner without using random oracles. It is straight-
forward to add these to our following contributions by adding an additional
simple game hop to all our proofs, replacing the key generation algorithm
with a subversion-resilient randomness generator. However, even in the
case of local encryption, there are use cases where the computation of keys
is not done by simply choosing random bits but rather by deriving keys
from some other input. For the example of encrypted local files, this can
mean to derive a symmetric key from a user password, which can include
the usage of a key derivation function.

Communication via the Internet. The other scenario is when an encryption
scheme is used to secure communication via the Internet. In this case, the
key generation algorithm is just an abstraction of some way two communi-
cating parties derive a common secret key. Simply running a (subversion-
resilient) randomness generator is not meaningful in this context, as it is

84

unclear how both parties would obtain the same key. One approach would
be that one party computes the symmetric key and then sends this key to
its intended communication partner, potentially with our KEM construc-
tion of Chapter 6. This however potentially requires an additional secure
channel for key transportation, depending on the considered setting. An-
other approach for this issue is the execution of a (subversion-resilient)
key exchange protocol between the two parties. This could for exam-
ple be realized by a key exchange protocol guarded by a reverse firewall
[DMS16, MS15].

Thus, while a useful abstraction in security definitions, a key generation algo-
rithm does not necessarily accurately model the usage of symmetric cryptogra-
phy in practice in general. While the subversion-resilient generator from this
and previous works can indeed generate random keys in a subversion-resilient
manner, this does not grant significant new insights.

Thus, we choose to exclude the key generation algorithm from subversion in
this chapter while still claiming to aim for complete subversion. This simplifying
assumption enables us to focus on previously unsolved challenges. We can avoid
notational overhead and focus on the protection of the vulnerable decryption
algorithm. Additionally, the abstraction of the key generation also allows the
inclusion of other means of deriving a symmetric key. For a deeper discussion
on possible future research in this direction, consider Section 14.3.

To model our approach of complete subversion while excluding key generation
accurately, the specification of our schemes in this chapter will not include the
key generation algorithm and thus will not be implemented by the adversary.
Nevertheless, we include the key generation algorithm in the description of our
schemes for completeness to formalize the above-mentioned abstraction. Thus,
a key generation algorithm always samples keys uniformly at random from an
associated key sapce.

12.2 Technical Challenges
Before we describe our solution, it is instructive to understand the difficul-
ties in constructing subversion-resilient authenticated encryption where both
the encryption and decryption algorithms are provided by the adversary. The
main challenge is guarding the decryption algorithm against subversion. This
is (once again) due to the aforementioned input trigger attacks, as first formal-
ized by Degabriele, Farshim, and Poettering [DFP15]: Such an attack modifies
the underlying algorithm only on a single, arbitrary input x∗ called the trigger.
Whenever the algorithm is given x∗ as input, it deviates from the specification
by, e.g., outputting the secret key. As these triggers are chosen randomly by the
attacker, no offline watchdog can detect the presence of these triggers. Thus,
Degabriele, Farshim, and Poettering proposed a solution using an online watch-
dog. These triggers are naturally connected to security experiments that model a

85

search problem. Namely, in the final communication step of these experiments,
the adversary usually sends some input directly evaluated by the underlying
primitive. This direct transfer of information from the attacker to the primitive
leads to trigger attacks, as the attacker can simply choose to submit such a
trigger that solves the search problem. Now, security experiments that aim to
secure the authenticity of information are typically modeled as search problems,
where the attacker’s task is to produce some forgery. Hence, such primitives,
including authenticated encryption and MACs are vulnerable to trigger attacks.
Furthermore, even if one only considers decision problems, a direct transfer of
information from the attacker to the primitive still allows for the use of input
triggers. But even stronger attacks are possible, as shown by Armour and Po-
ettering [AP19]. They proposed generic attacks on the decryption algorithm of
authenticated encryption schemes. Concretely, they propose both an inactive
and an active attack, where they manipulate the decryption algorithm to accept
certain bogus ciphertexts. This way, they can still guarantee perfect correctness
while establishing a covert channel through decryption error events.

12.3 Our Contributions

Our overall approach is visualized in Fig. 12.1 and can be summarized as fol-
lows. As our main building block, we rely on weak pseudorandom functions.
When evaluated on random inputs, these keyed functions are indistinguishable
from truly random functions. One main insight is that Weak PRFs are natu-
rally resilient to subversion in our model, assuming stateless subversion. This
is because this primitive only obtains random inputs, which can be tested by
an offline watchdog. Therefore, any implementation that passes the watchdog’s
check is indistinguishable from random. By applying the classical Naor-Reingold
transformation [NR99], we can generate subversion-resistant PRFs from weak
PRFs. The trusted amalgamation within our constructions can be viewed as a
trusted data structure. Adversarially chosen inputs are only accessible by the
trusted amalgamation and can be interpreted as a path over uniformly random
keys. Using subversion-resilient PRFs, the classical “PRF-as-MAC” approach by
Goldreich, Goldwasser, and Micali [GGM84b] guarantees subversion-resilience
through canonical verification and a trusted comparison operation. We further
show that the randomized counter mode can also be made subversion-resilient by
utilizing subversion-resilient PRFs, assuming a trusted XOR operation, which
can be generalized to stream ciphers. Finally, we prove that subversion-resilient
authenticated encryption can be achieved by combining the aforementioned in-
gredients through the traditional “Encrypt-then-MAC” approach [BN00, BN08].
Overall, we revisit classical results from cryptography to show that well-known
constructions can be proven subversion-resilient with more fine-grained access
due to the trusted amalgamation model and a few trusted operations.

86

wPRF SR-PRF
Datastructure

Trusted

SR-MAC
Trusted ==

SR-AE

SR-SE
Trusted ⊕

Figure 12.1: Overview of our construction. Here, SR denotes subversion-
resilience, HF denotes hash function, wPRF/PRf denotes (weak)
pseudorandom function, and AE denotes authenticated encryption.
Comments beside arrows highlight trusted operations.

12.4 Comparison with Prior Work
This thesis presents the first constructions of subversion-resilient message au-
thentication codes and subversion-resilient authenticated encryption under com-
plete subversion, i.e. where both the tag and verification algorithms, or both
the encryption and decryption algorithms, respectively, are implemented by
the adversary. Prior work by Russell et al. [RTYZ17] achieved IND-CPA secure
symmetric encryption utilizing a trusted XOR using offline watchdogs. Ateniese
et al. [AFMV19] security under complete subversion, but only for deterministic
primitives or using online watchdogs.

Thus, achieving authenticated encryption where both encryption and decryp-
tion are subject to subversion and MACs where verification is subject to sub-
version have not been achieved in an offline watchdog model.

As we use subversion-resilient PRFs as our main building block, let us discuss
other works investigating this notion. Fischlin, Janson, and Mazaheri [FJM18]
also observed that weak PRFs are a helpful tool to defend against backdoors.
They show that a backdoored weak PRF implies a public-key encryption scheme,
arguing that the difference in performance can be easily detected. Further,
they show that applying the randomized cascade (RC) construction by Maurer
and Tessaro [MT08] to a weak PRF immunizes HMAC against backdoors. As
discussed later, using the RC construction also works for our construction but
requires modeling the used prefix-free encoding as a trusted building block.
Also, while Fischlin, Janson, and Mazaheri focus on the properties of HMAC
as a PRF, we focus on the subversion-resilience property of a MAC and its role
in the Encrypt-then-MAC approach. As our model does not include detection
based on the performance time of the subverted algorithm, we base the security
of our construction on the subversion resilience of weak PRFs.

Dodis, Ganesh, Golovnes, Juels and Ristenpart [DGG+15] constructed subver-
sion-resilient pseudorandom generators in both the semi-private and the private
immunization model. We believe that classical constructions of PRFs from

87

PRGs, such as the one by Goldreich, Goldwasser, and Micali [GGM84a], can
also be used to obtain PRFs in the immunization model. But, while our con-
structions rely on an offline watchdog and the amalgamation assumption, the
constructions in the immunization model rely on the fact that parts of the im-
plementation (i.e., the immunization function) are hidden from the subverter.
These assumptions are orthogonal to each other.

Note that our approach could also be realized using a subversion-resilient
random oracle instead of a PRF. Arguably, a subversion-resilient random oracle
is a stronger assumption than a weak PRF (in the standard model), which we
base our results on in this thesis.
Outline. We continue by constructing subversion-resilient pseudorandom func-
tions in Section 12.5. This is our main building block for our construction of
subversion-resilient message authentication codes in Section 12.6 and subversion-
resilient symmetric encryption in Section 12.7. Finally, we combine all these in-
gredients to obtain subversion-resilient authenticated encryption in Section 12.8
and discuss our results in Section 12.9.

12.5 Pseudorandom Functions
A PRF is a mathematical function that generates data that appears random
but is actually generated deterministically using a key and input. Inputting
the same key and input into a PRF always produces the same output, which
appears random to any party without the key. PRFs are commonly used in
cryptographic constructions, such as deriving encryption keys from previously
negotiated secret keys.

To make things more formal, a PRF is a keyed function F : K × D → R
associated with a key space K, that is indistinguishable from a function sampled
uniformly at random from the set of all functions D → R. Specifically, to
account for the fact that the (size of) the domain and range of a function may
differ depending on the security parameter, let K = ⋃

λ∈NKλ, D = ⋃
λ∈NDλ, and

R = ⋃
λ∈NRλ. Additionally, we use Func(D,R) to denote the set of all functions

mapping elements from D to R. This part of this thesis only considers spaces
that are subsets of {0, 1}∗.1 Let us recall the standard definition of (weak) PRFs,
which captures that these functions are indistinguishable from random functions
if only evaluated under random inputs. In the security experiment ExpwPR

A,F , the
adversary is given both the function evaluation and the random input used to
evaluate the function. This is important because without providing the random
input, even simple functions like the identity function would meet the security
definition since the random input would not be known to the adversary.

1We only require that we can efficiently sample uniform elements of D and K and that D is
a quasi group with operation ⊕.

88

ExpPR
A,F (1λ)

b
$← {0, 1}

K
$← Kλ

if b == 1
b′ ← AF (K,·)(1λ)

else

g
$← Func(Dλ,Rλ)

b′ ← Ag(·)(1λ)
return b′ == b

ExpwPR
A,F (1λ)

b
$← {0, 1}

K
$← Kλ

if b == 1
b′ ← A($,F (K,$))(1λ)

else

g
$← Func(Dλ,Rλ)

b′ ← A($,g($))(1λ)
return b′ == b

Figure 12.2: The security experiment for (weak) PRFs. Here, $ denotes an input
argument chosen uniformly at random from Dλ upon any query
issued by the adversary. Further, if K ∈ Kλ, the oracle F (K, ·) can
only be queried on elements of Dλ.

Definition 14. Let T ∈ {wPR, PR} and let ExpT
A,F be defined as shown in

Fig. 12.2. We define

AdvT
A,F (1λ) := |Pr[ExpT

A,F (1λ) = 1]− 1/2|.

We say that F is pseudorandom if AdvPR
A,F (1λ) is negligible for all ppt adver-

saries A. Further, we say that F is weakly pseudorandom if AdvwPR
A,F (1λ) is

negligible for all ppt adversaries A.

In the experiments displayed in Fig. 12.2 keys are chosen uniformly randomly
from the key space. As mentioned earlier, this approach is an abstraction of
any means to derive keys used for the PRF, including using our randomness
generator from Chapter 5 as a building block.
Weak PRFs are Subversion-Resilient. The first observation is that since
all inputs given to the PRF are distributed uniformly at random, they follow a
publicly known distribution. This allows us to apply Lemma 1. For an imple-
mentation F̃ of a specification F̂ of a weak PRF, let Neqλ ⊆ Kλ × Dλ be the
set of inputs, where F̃ deviates from the specification, i.e., Neqλ = {(K, x) ∈
Kλ × Dλ | F̃ (K, x) 6= F̂ (K, x)}. Now, consider the proportional amount p of
Neqλ, i.e., p = |Neqλ|

|Kλ×Dλ| . As the input distribution of the weak PRF experiment
is public, Lemma 1 now directly implies the existence of a ppt watchdog with
detection probability p (simply testing F̃ on uniformly random inputs). Hence,
for an adversary to succeed in the subversion experiment, p must be negligible.
But, as all inputs to the weak PRF are drawn randomly, the probability that an
adversary making q queries will ever encounter an input to the weak PRF that
belongs to Neqλ is bounded by q · p and is thus negligible for ppt adversaries, as
q is bounded by a polynomial in λ, yielding the following theorem.

89

Theorem 5. If F is weakly pseudorandom, then the trivial specification F̂ = F
is subversion-resilient weakly pseudorandom in the offline watchdog with trusted
amalgamation.

12.5.1 Constructing Subversion-Resilient PRFs
As we now have access to subversion-resilient weak PRFs, the question becomes
how we can elevate this to subversion-resilient PRFs. Revisiting classical results,
we see that the classical Naor–Reingold construction [NR99] can be used to
construct a (standard) PRF from a weak PRF that is subversion-resilient. An
intuitive way to understand the Naor-Reingold construction is the following.
Instead of directly feeding inputs into a weak PRF, the input is interpreted in
a specific way. Each input bit is seen as a pointer to one of two (previously)
randomly generated keys. These two keys are then fed into a weak PRF, which
now obtains two random values as input. This way, two input bits lead to one
output of a weak PRF. Based on this, we can build a tree structure to combine
two evaluations of a weak PRF by again feeding their outputs into a weak PRF.
For a simple visualisation of this approach, consider Fig. 12.3.

Thus, we can use this construction to construct subversion-resilient PRF but
must allow our trusted amalgamation to handle adversarially chosen inputs and
interpret single bits as pointers to well-generated keys to achieve this.
The Naor–Reingold Construction. Let Fw : K × D → R be a weak PRF.
For the sake of simplicity, we only focus on the case that elements of K, D,
and R are of equal length and refer the reader to the survey by Bogdanov
and Rosen [BR17] for generalizations. We now construct a (standard) PRF
F (`) : K2·` × {0, 1}` → R that is parameterized by some integer ` of the form
` = 2r describing the message length. It is easiest to construct F (`) inductively.
In the simplest case of ` = 1, the key of F (`) consists of two randomly sampled
keys of F (i.e., two random bit strings K0, K1 ∈ K). On input x ∈ {0, 1},
it returns Kx, i.e., F (1)((K0, K1), x) = Kx. Given F (`), we construct F (2`)

inductively as follows. A key of F (2`) consists of two keys K
(`)
0 and K

(`)
1 of F (`)

(which in turn consists each of 2` keys of Fw). On input x = (x1, x2, . . . , x2`),
the function F (2`) applies F (`) with the first key K

(`)
0 to the first half of x to

obtain a key for Fw and then computes F (`) with the second key on the second
half of x to obtain a value. More formally,

F (2`)((K(`)
0 , K

(`)
1), (x1, . . . , x2`)) =

Fw(F (`)(K(`)
0 , (x1, . . . , x`)), F (`)(K(`)

1 , (x`+1, . . . , x2`))).

A useful alternate interpretation is the following (with a simple example shown
in Fig. 12.3). The key of F (2`) consists of 2` key pairs (Ki,0, Ki,1) for i = 1, . . . , 2`.
On input (x1, . . . , x2`), we construct a complete binary tree of height r, where
r = log(2`). The final level of this binary tree contains the 2` leaves. To produce

90

(K1,0 , K1,1) (K2,0, K2,1) (K3,0, K3,1) (K4,0 , K4,1)

Fw(K1,0, K2,1) Fw(K3,1, K4,0)

Fw(Fw(K1,0, K2,1), Fw(K3,1, K4,0))

F (1)

F (2)

F (4)

Figure 12.3: The alternate interpretation of the Naor-Reingold construction as
labeling of a complete binary tree for the value x = (0, 1, 1, 0). The
corresponding leaf values are highlighted in grey.

the output of F (2`), we now construct a labeling of the vertices. We first label
the i-th leave of the tree with Ki,xi

, i.e., the message bit xi determines whether
we take Ki,0 or Ki,1. To obtain the label of an inner node v of the tree, we
compute Fw(left(v), right(v)), where left(v) (resp. right(v)) is the label of the
left (resp. right) child of v. Finally, the output of F (2`) is the label of the tree’s
root. It is well-known that this construction gives a PRF F (`) if Fw is weakly
pseudorandom.

Theorem 6 ([NR99, Thm. 5.1]2). Let ` ∈ N with ` = 2r. If Fw is weakly
pseudorandom, then F (`) is pseudorandom.

Thus, we now consider the specification F̂ (`) = (Am, Fw) which takes inputs
of length l = 2r for some r ∈ N. The amalgamation function Am takes as
input the weak PRF and parses adversially provided input according to the
above description of the Naor-Reingold construction. Now, observe that a non-
subverted, honest call structure to the underlying function Fw (provided by the
trusted amalgamation) directly implies the subversion-resilience of F (`). At the
lowest level, F (1) only returns completely random values (due to the random
keys), which is clearly subversion-resilient. The inputs to F (2) are thus com-
pletely random values that follow a public input distribution, and Lemma 1
directly implies subversion-resilience.

Theorem 7. If Fw is weakly pseudorandom, then for each ` with ` = 2r,
F̂ (`) = (Am, Fw) is subversion-resilient pseudorandom in the offline watchdog
with trusted amalgamation.

Proof. Our watchdog simply samples random keys and random inputs for the
weak PRF Fw and checks for deviations from the specification. As for the
subversion-resilience of Fw discussed above, let Neqλ be the set of inputs for
which F̃w deviates from its specification. As shown before, by applying a watch-
dog that simply tests a sufficient number of random inputs to Fw, we know that
the probability p = |Neqλ|

|Kλ×Dλ| is negligible. We only choose one of two random
values on the lowest level, corresponding to F (1). Hence, the watchdog can

2Naor and Reingold use the notion of a synthesizer, which are in our context equivalent to
weakly PRFS [BR17].

91

easily verify the correctness of F (1) as there are only constantly many different
inputs. In the next level, corresponding to F (2), the function Fw is only applied
to these completely random inputs. If an adversary makes q ∈ poly(λ) many
queries, the probability that one of the calls to Fw on this level deviates from
the specification is at most q · (`/2) · p, which is negligible. Conditioned on the
event that all calls to Fw on the level corresponding to F (2) follow the specifi-
cation, the inputs to the q · (`/4) calls to Fw on the level corresponding to F (4)

are indistinguishable from random (due to the security of the specification of
the weak PRF). Hence, with probability q · (`/4) · p, these inputs also do not
belong to Neqλ, if the inputs on the level corresponding to F (2) do not belong
to Neq. Let E`′ be the event that all inputs on the level corresponding to F (`′)

do not belong to Neqλ. By iterating the above argumentation, it is not hard to
see that Pr[E`′ | E`′/2] ≥ 1− q · (`/`′) · p holds. From Pr[E2] ≥ 1− q · (`/2) · p,
we can conclude via a simple induction that

Pr[E`′] = Pr[E`′ | E`′/2] · Pr[E`′/2] + Pr[E`′ | ¬E`′/2] · Pr[¬E`′/2]

≥
∏r′

i=1(1− q · (`/2i) · p)

for `′ = 2r′ . Hence, all probabilities Pr[E`′] are of the form 1 − negl(λ) for a
negligible function negl. We can thus conclude that the probability that any
input to Fw belongs to Neqλ is negligible. The original security guarantee due
to Theorem 6 then directly implies the subversion-resilience of F (`).

Alternative Constructions. In principle, any transformation from weak to
standard PRFs can be used in our construction. We chose the Naor-Reingold
construction due to its simplicity and as it only requires the amalgamation
function to act as a trusted data structure and no additional trusted operations
like an XOR. Alternatively, the randomized cascade construction by Maurer and
Tessaro [MT08] can be used. There, adversarially chosen messages are directly
fed into a prefix-free encoding, which must be modeled as a trusted operation
to prevent input triggers. Another alternative is the IC construction by Maurer
and Sjödin [MS07], where the input provided by the adversary is processed bit-
wise, and either a weak PRF is executed, or a previously computed value is used
in an iterative process.

12.6 Message Authentication Codes
We present the first construction of subversion-resilient MACs, where also the
verification algorithm is subject to subversion. Our construction uses any subver-
sion-resilient PRFs, e.g., the one from the previous section. Informally speaking,
a MAC is a digital fingerprint of a message. It’s like adding a seal to a message
to prove it has not been tampered with during transmission. Utilizing symmet-
ric keys, a MAC ensures a message’s integrity so that if some tampers with the

92

message, the receiving party of the MAC will notice during verification. MACs
are commonly used in communication protocols like TLS to ensure the data a
browser sends and receives has not been tampered with during transit. Thus,
it is an essential tool for modern digital communication.

Having established an intuition for MACs, we recall the standard formal def-
inition of MACs. A MAC works on a keyspace K, message space M, and tag
space T . Also, we have K = ⋃

λ∈NKλ, M =Mλ∈N, and T = ⋃
λ∈N Tλ.

Definition 15. We call a triple MAC = (KGen, Tag, Vf) a message authentica-
tion code for key space K, message space M, and tag space T and each ppt
algorithm is defined as follows:

• The randomized key generation algorithm KGen produces upon the secu-
rity parameter 1λ as input a key K

$← Kλ.
• The randomized tagging algorithm Tag is given a key K ∈ Kλ and a

message M ∈Mλ and returns a tag T ∈ Tλ.
• The deterministic verification algorithm Vf is given a key K, a message M ,

and a tag T and returns a bit b.

For perfect correctness, we require that for all K ∈ Kλ, for all M ∈ Mλ,
and all T ∈ Supp(Tag(K, M)), it holds Vf(K, T) = 1. Next, we recall the
standard security notion of (strong) unforgeability of MACs. This property
captures that an adversary can not forge MACs while being allowed to obtain
MACs for messages of its choice. The adversary is deemed successful if it can
compute a tag T for a message M , where the pair (M, T) was not received as
an answer to a previous oracle query. This captures strong unforgeability, as it
allows the adversary to output forgeries for a message M it issued to its oracle,
as long as it provides a different tag. This stronger property is necessary for the
Encrypt-then-MAC approach to be secure [BN00, BN08].

ExpSUF-CMA
A,MAC (1λ)

K ← KGen(1λ)
Query← ∅
(M, T)← ATag(K,·)(1λ)
return (M, T) 6∈ Query ∧ Vf(K, M, T) == 1

Figure 12.4: The forgery experiment for MACs. On input M ∈ Mλ the oracle
Tag(K, ·) computes T ← Tag(K, M), stores (M, T) in Query and
returns T .

93

Definition 16. Let MAC be a message authentication code and let ExpSUF-CMA
A,MAC

be defined as shown in Fig. 12.4. We define

AdvSUF-CMA
A,MAC (1λ) := Pr[ExpSUF-CMA

A,MAC (1λ) = 1]

and say that MAC is strongly unforgeable under a chosen message attack, or
SUF-CMA-secure, if AdvSUF-CMA

A,MAC (1λ) is negligible for all ppt adversaries A.

12.6.1 MAC from PRFs
Consider the following generic construction of a (fixed-length) deterministic
MAC based on a PRF. Let F be a keyed function F : K × D → R. We de-
fine MACF = (KGenF , TagF , VfF) with key space K, message space M, and tag
space T such that
Key generation. KGenF on input 1λ outputs a uniform key K

$← Kλ,
Tagging. TagF on input key K ∈ Kλ and message M ∈ Dλ, returns T =

F (K, M), and
Verification. VfF on input a key K ∈ Kλ, message M ∈ Dλ, and a tag T ∈ Rλ,

outputs 1 if and only if T == TagF (K, M).
It is a well-known result by Goldreich, Goldwasser, and Micali that a PRF can
directly be used to construct a MAC, which we recall.

Theorem 8 ([GGM84b]). If F is pseudorandom, then MACF is SUF-CMA-
secure.

Sketch. Since F is a PRF, no ppt adversary detects (with non-negligible prob-
ability) whether the tag oracle is implemented with a truly random function
instead of the PRF. Thus, if we instantiated the above MAC construction with
a truly random function f ∈ Func(D,R), then any adversary can only forge a
tag for some message m by guessing the image of m under f . This probability,
however, is negligible. Hence, MACF is secure.

Theorem 8 guarantees that the security of the underlying function F directly
transfers to MACF . Thus, this approach directly grants subversion-resilience if
the == operation during the verification is part of the trusted amalgamation,
and we use a subversion-resilient PRF. Thus, M̂ACF = (Am, F̂), where F̂ is the
specification of a subversion-resilient PRF, and Am calls the PRF for tagging
and verification it recomputes the MAC using the implementation of the PRF
and compares the result with its input. Thus, the watchdog simply runs the
watchdog of the underlying subversion-resilient PRF.

Theorem 9. If F̂ is subversion-resilient pseudorandom , then M̂ACF = (Am, F̂)
is subversion-resilient SUF-CMA-secure in the offline watchdog with trusted
amalgamation assuming a trusted == operation.

94

Proof. The watchdog for M̂ACF simply runs the watchdog for F̂ . Thus, like in
the proof of Theorem 8, no ppt adversary detects whether the tag oracle uses
a truly random or F̂ . This time, however, this follows from the subversion-
resilience of the PRF rather than “standard” pseudorandomness. Therefore, if
we instantiated M̂ACF with a truly random function f ∈ Func(D,R), then any
adversary can only forge a tag for some message m by guessing the image of m
under f . This probability, however, is negligible. Adding that tags, which would
be rejected by the specification, are also rejected by our construction since the
comparison operation is trusted, grants the above theorem.

Additionally, we observe that M̂ACF also guarantees perfect correctness. This
is because the (deterministic) verification algorithm always recomputes tags
the same way the (determinstic) tagging algorithm does and the comparison
is a trusted operation. Thus, we see that canonical verification grants perfect
correctness.

Theorem 10. M̂ACF (`) = (Am, F̂ (`)) is perfectly correct.

We can conclude that the PRF presented in Section 12.5.1 (built from a weak
PRF) is a subversion-resilient, perfectly correct, and deterministic MAC as well.

Corollary 1. The specification M̂ACF (`) = (Am, F̂ (`)) is SUF-CMA-secure under
subversion and perfectly correct assuming a trusted == operation .

12.7 Symmetric Encryption
This section discusses how to construct subversion-resistant symmetric encryp-
tion using a classical construction method based on PRFs. Symmetric encryp-
tion involves using a single key shared between two parties for encrypting and de-
crypting messages. Secure encryption guarantees confidentiality, meaning only
the party with the secret key can decrypt the ciphertext to access the encrypted
message. Symmetric encryption is much faster than asymmetric (public-key)
encryption. This is why it is commonly used to encrypt large amounts of data.
However, the downside is that that if two parties want to use symmetric encryp-
tion to encrypt their communication, they need a way to agree on a common
secret key before communication.

More formally, a symmetric encryption scheme works on a keyspace K, mes-
sage space M, and ciphertext space C. As usual, we have K = ⋃

λ∈NKλ,
M = Mλ∈N, and C = ⋃

λ∈N Cλ. Our construction does not increase ciphertext
size compared to the standard construction of encryption from PRFs.

95

Definition 17. We call a triple SE = (KGen, Enc, Dec) a symmetric encryption
scheme SE with key space K, message space M, and ciphertext space C, and
each ppt algorithm is defined as follows:

• The randomized key generation algorithm KGen outputs upon the security
parameter 1λ as input a key K

$← Kλ.
• The randomized encryption algorithm Enc is given a key K ∈ Kλ and a

message M ∈Mλ and returns either a ciphertext C ∈ Cλ or a symbol ⊥.
• The deterministic decryption algorithm Dec is given a key K and a cipher-

text C, and returns either a message M ∈Mλ or the symbol ⊥.

We say that Π has perfect correctness, i e., for all K ∈ Kλ, all M ∈ Mλ

and all C ∈ Supp(Enc(K, M)), we have Dec(K, C) = M if C 6= ⊥. For se-
curity, we consider IND$-CPA-security, i.e., indistinguishability from random
bits [RBBK01, Rog02], which can be shown to imply IND-CPA-security in the
left-or-right sense (see, e.g., [BDJR97]) by a straightforward reduction.

Definition 18. Let SE be a symmetric encryption scheme and let ExpIND$-CPA
A,SE

be defined as shown in Fig. 12.5. We define

AdvIND$-CPA
A,SE (1λ) :=

∣∣∣Pr[ExpIND$-CPA
A,SE (1λ) = 1]− 1/2

∣∣∣
and say that SE is IND$-CPA-secure if AdvIND$-CPA

SE (A) is negligible for all ppt
adversaries A.

ExpIND$-CPA
A,SE (1λ)

K ← KGen(1λ)

b
$← {0, 1}

b′ ← ARoRb(·)(1λ)
return (b == b′)

Figure 12.5: Security experiment for IND$-CPA-security, where RoR0(M) =
$K(M) and RoR1(M) = Enc(K, M) such that $K(M) computes
C ← Enc(K, M) and if C = ⊥, outputs ⊥, and otherwise, outputs
a random string of length |C|.

Symmetric Encryption from PRFs. In Section 12.5, we construct subversion-
resilient PRFs. A classical use case of PRFs is the construction of symmetric
encryption. While one can use PRFs to generically construct a fixed-length
symmetric encryption scheme (or a block cipher), we can also use PRFs to
construct stream ciphers for messages of (almost) arbitrary length. Stream Ci-
phers produce a pseudorandom keystream, which is used to encrypt data via
a bitwise XOR. Recall the following construction of a stream cipher SEKS =

96

(KGenKS, EncKS, DecKS) based on a PRF KS: K × D → R. KGen on input 1λ

outputs a uniform key K
$← Kλ, EncKS on input a key K ∈ Kλ and a message

M ∈ Rλ, outputs a ciphertext (IV, C), where IV $← D and C := KS(K, IV)⊕M ,
and DecKS on input a key K ∈ Kλ and a ciphertext (IV, C) ∈ Dλ×Rλ, outputs
M := KS(K, IV)⊕ C.

12.7.1 Subversion-Resilience of Stream Ciphers.
Next, we show that the above construction is subversion-resilient if the un-
derlying function KS is a subversion-resilient weak PRF. Thus, we consider
ŜEKS = (Am, K̂S) where K̂S is the specification of a subversion-resilient weak
PRF and Am chooses uniformly random IVs (with a subversion-resilient ran-
domness generator) and then calls the underlying PRF and applies the trusted
XOR operation.

Theorem 11. If K̂S is subversion-resilient weakly pseudorandom, then ŜEKS =
(Am, K̂S) is subversion-resilient IND$-CPA-secure in the offline watchdog with
trusted amalgamation given that the randomness generation and XOR operation
are trusted.

Sketch. The watchdog runs the watchdog for K̂S. The main idea of the proof
is that the output of KS is indistinguishable from uniformly random bits for
uniformly random IVs and any adversary, even under subversion. Thus, for any
message M , the output of Enc is indistinguishable from uniformly random bits
under subversion for any adversary as well. Hence, ŜEKS is IND$-CPA-secure
under subversion.

Key Stream Derivation of CTR. It remains to demonstrate that this con-
struction can be instantiated. The (randomized) counter mode (CTR$) is a pop-
ular instantiation of the above construction. The above construction, in combi-
nation with KSCTR defined next, yields CTR$. Given a PRF F : K × D → R,
we define the function KSCTR : K ×D → R` as

(K, IV) 7→
(
F (K, IV), F (K, IV ⊕ 〈1〉n), . . . , F (K, IV ⊕ 〈`− 1〉n)

)
,

where ` ∈ poly(λ) and 〈i〉n denotes the n-bit binary representation of i ∈ N.
Next, we show that KSCTR is a subversion-resilient weak PRF, assuming that
handling the state (i.e., the counter) as well as the XOR operation is modeled
as part of the amalgamation.

Theorem 12. If F̂ is subversion-resilient pseudorandom, then K̂SCTR = (Am, F̂)
is subversion-resilient weak pseudorandom in the offline watchdog with trusted
amalgamation assuming randomness generation, the XOR operation and the
handling of the counter are part of the trusted amalgamtion.

97

Sketch. The watchdog for K̂SCTR runs the watchdog for F̂ as a subroutine.
To prove that the KSCTR is secure even if the building block F is subverted,
the main idea is as follows: If F is indistinguishable from random (even under
subversion), then KSCTR is indistinguishable from random for uniformly random
inputs as long as the sequence (IV, . . . , IV ⊕ 〈` − 1〉n) does not overlap for two
PRF queries. This is because an adversary could directly observe the structure
and distinguish the function from random. By a simple argument, one can
bound this probability by q2`

|D| , which is negligible for polynomial block length `,
polynomial IV length log(|D|), and a polynomial number of PRF queries q.

Note that the above theorem could alternatively also be proven directly, as the
KDF has a public input distribution since both K and IV are chosen uniformly
at random. Then, however, the watchdog would need to test the KDF with
random K and IV for l blocks polynomial many times.

Furthermore, KSCTR is not a PRF, as the adversary can choose the IVs such
that they overlap, which enables the adversary to distinguish KSCTR from a truly
random function with overwhelming probability. Finally, Theorem 11 and 12
implies that the randomized counter mode CTR$ is subversion-resilient.

Corollary 2. Let CTR$ be the stream cipher construction above instantiated
with KSCTR. Then, ĈTR$ is subversion-resilient IND$-CPA-secure in the of-
fline watchdog with trusted amalgamation assuming that randomness generation,
the XOR operation and the handling of the counter are part of the trusted amal-
gamation.

Thus, IND$-CPA security directly follows from the security of the underly-
ing PRF. While security is preserved, this does not automatically mean that
correctness is also preserved: the decryption algorithm is not executed in the
IND$-CPA security experiment but is fundamental for correctness. As discussed
by Russell, Tang, Yung, and Zhou [RTYZ17] this would allow for censorship of
chosen messages. If we consider a black box decryption algorithm, perfect cor-
rectness is impossible to achieve, as a single input trigger (for example, for C?

the decryption always outputs a constant value) violates the perfect correctness
requirement while highly unlikely to being detected by a watchdog. Neverthe-
less, as in our construction, the adversary only implements the underlying PRF,
so our construction automatically satisfies perfect correctness.

Theorem 13. The specification ŜEKS is perfectly correct.

Proof. Correctness follows from the “canonical decryption” 3 of the stream ci-
pher as the same value as during the encryption procedure are computed. Thus,
even if KS(K, IV) deviates from the specification, the subverted output cancels

3By this we mean recomputing a value and applying it via ⊕ to the ciphertext to decrypt.

98

out by the ⊕ operation:

D̃ec(K, Ẽnc(K, M)) = D̃ec(K, (K̃S(K, IV)⊕M))
= K̃S(K, IV)⊕ K̃S(K, IV)⊕M

= M

Note that Russell et al. [RTYZ17] also achieved correctness for subversion-
resilient symmetric but tolerated a negligible decryption error. This is because
the authors viewed the decryption algorithm as an algorithm with a public input
distribution and can check consistency with the specification up to a negligible
failure probability. Due to more fine-grained access to the decryption procedure
and the trusted XOR, we can guarantee perfect correctness.

12.8 Constructing Subversion-Resilient
Authenticated Encryption

Given subversion-resilient building blocks, we now see that the classical Encrypt-
then-MAC approach grants us subversion-resilient authenticated encryption, for
which we now provide a formal definition.

An authenticated encryption scheme works on a keyspaceK, message spaceM,
data space D, and ciphertext space C. As usual, we have K = ⋃

λ∈NKλ,
M = Mλ∈N, D = ⋃

λ∈NDλ, and C = ⋃
λ∈N Cλ. In the following, we assume

that the message space Mλ and the ciphertext space Cλ contain a special sym-
bol ⊥.

Definition 19. We call a triple AD = (KGen, Enc, Dec) a authenticated en-
cryption scheme with associated data for key space K, message space M, data
space D, and ciphertext space C, and each ppt algorithm is defined as follows:

• The randomized key generation algorithm KGen outputs a key K
$← Kλ

upon input the security parameter 1λ.
• The randomized encryption algorithm Enc is given a key K ∈ Kλ, a mes-

sage M ∈Mλ, associated data D ∈ Dλ and returns a ciphertext C ∈ Cλ.
• The deterministic decryption algorithm Dec is given a key K ∈ Kλ, a

ciphertext C ∈ Cλ, associated data D ∈ Dλ and returns a message M ∈
Mλ.

A authenticated encryption scheme with associated data AD = (KGen, Enc,
Dec) is said to be perfectly correct if for all K ∈ Kλ, M ∈ Mλ, and D ∈ Dλ it
holds Dec(K, Enc(K, (M, D)), D) = (M, D).

99

ExpAE
A,AD(1λ)

Q ← ∅

b
$← {0, 1}

K ← KGen(1λ)
if b == 1

b′ ← AEnc(K,·,·),Dec(K,·,·)(1λ)
else

b′ ← A$K(·,·),⊥(·,·)(1λ)
return b′ == b

Oracle $K(M, D)

C
$← {0, 1}|C|

Q = Q∪ {((M, D), C)}
return C

Oracle ⊥(M, D)
if ((M, D), C ′) ∈ Q

return (M, D)
else

return ⊥

Figure 12.6: The security experiment for AEAD. The oracle Enc(K, ·, ·) expects
for K ∈ Kλ a message M ∈Mλ and data D ∈ Dλ, while Dec(K, ·, ·)
expects a ciphertext C ∈ Cλ and data D ∈ Dλ.

Definition 20. Let AD be an authenticated encryption scheme with associated
data and let ExpAE

A,AD be defined as shown in Fig. 12.6. We define

AdvAE
A,AD(1λ) :=

∣∣∣Pr[ExpAE
A,AD(1λ)]− 1/2

∣∣∣
and say that AD is AE-secure if AdvAE

A,AD(1λ) is negligible for all ppt adver-
saries A.

Usually, the experiment requires that the adversary does not ask for decryp-
tion of outputs of the encryption oracle. For b = 0, the experiment cannot
output a message since it is just given a random string. This case is excluded
in most works as this would trivially break security (and the adversary already
knows the answer to the query). Hence, there is no need to manage the set Q ex-
plicitly. In the context of subversion, this approach, unfortunately, also rules out
a natural, challenging attack. An adversary could provide an implementation
for the decryption algorithm, which, instead of a certain message M?, simply
outputs the secret key, allowing the adversary to trivially break security. If the
decryption algorithm is modeled as a black box, this attack seems unavoidable
since a watchdog cannot efficiently detect the trigger message M?. Even the
amalgamation of several subverted components cannot prevent this attack if no
trusted component is ever used, as an input trigger for the “first” component can
again directly lead to input trigger of the next subverted component and so on.
Thus, some sort of trusted operation is necessary to defend against this kind of
attacks. As seen by our construction of stream ciphers with “canonical decryp-
tion” in combination with a trusted XOR operation and our MAC construction
with canonical verification, perfect correctness is guaranteed. To include this
attack in our model, we change the behavior of the oracles in the experiment
for b = 0 by introducing bookkeeping of the queries. This allows the adversary

100

to ask for decryptions of encryption queries without trivially breaking security.
An interesting side effect of this definition is that every scheme satisfying this
security notion also needs to satisfy correctness (although only up to negligible
failure probability), as the adversary could distinguish the two worlds of the
experiment otherwise.

12.8.1 Achieving Subversion-Resilience via
Encrypt-then-MAC

The classical way to construct authenticated encryption relies on using a MAC
that is applied on a ciphertext, after a message is encrypted. Decryption then
first verifies the MAC and afterwards performs the underlying decryption algo-
rithm. Due to the strong unforgeability of the MAC, an adversary cannot use
decryption, and the security experiment reduces to IND$-CPA-security. This
is useful for achieving subversion-resilience, as symmetric encryption, which is
IND$-CPA secure under subversion, does not guarantee security for the de-
cryption algorithm and avoids input trigger attacks. While our construction
of stream ciphers guarantees correctness under random inputs, this cannot be
guaranteed if the adversary can freely choose the inputs for the decryption al-
gorithm. The reason for this again is input trigger attacks since no watchdog
knows the distribution of the queries made by the adversary. The Encrypt-
then-MAC approach with subversion-resilient MAC ensures that input trigger
attacks are ruled out even if the verify algorithm is subverted. Combined with
a subversion-resilient encryption scheme, the adversary must forge a MAC to
obtain a decryption of a ciphertext that it did not obtain as an output of the
encrypt oracle.
Encrypt-then-MAC. Let MAC = (Gen, Tag, Vf) be a MAC and SE$ = (KGen$,
Enc$, Dec$) be a symmetric encryption scheme. Then, the authenticated en-
cryption scheme with associated data AD = ADSE$,MAC = (KGenAD, EncAD,
DecAD) is defined as follows: The key generation algorithm KGenAD(1λ) first
obtains a key KMAC ← KGenMAC(1λ), another key K$ ← KGen$(1λ) and outputs
K = (KMAC, K$). The encryption algorithm EncAD(K = (KMAC, K$), M, D) first
calls the underlying encryption algorithm Enc$ to compute a ciphertext C$ ←
Enc$(K$, M), then produces a tag T ← Tag(KMAC, C$ || D), and outputs C =
(C$, T). The decryption algorithm DecAD(K = (KMAC, K$), C = (C$, T), D)
first verifies the MAC of C by computing b = Vf(KMAC, C$ || D, T). If b = 0
(i e. the verification failed), it returns ⊥. Else, it computes M ← Dec$(K$, C$)
and returns M . The straightforward reduction to the security of MAC and SE$
can be used to obtain the following well-known theorem.
Theorem 14 ([BN08]). If MAC is SUF-CMA-secure and SE$ is IND$-CPA-
secure, then AD is AE-secure.

Thus, we consider the specification ÂD = (Am, (ŜE, M̂AC)) where the amal-
gamation function Am builds the authenticated encryption scheme as described

101

above. First, it uses the specification of the encryption scheme to encrypt the
message. Afterwards, it uses the specification of the MAC to compute a tag
over the previously obtained ciphertext.

Correctness of SE and MAC is directly inherited by AD. Note that in [BBC24],
only correctness of SE was required. This however is not sufficient to argue that
AD is also perfectly correct. While the security of MAC guarantees that no
invalid tags are accepted, it does not guarantee that valid tags get accepted.

Theorem 15. If ŜE$ and M̂AC are perfectly correct, then ÂD is perfectly correct.

We prove that the Encrypt-then-MAC approach is indeed sound if both the
encryption scheme and the MAC are subversion-resilient, following the proof
idea of Bellare and Namprempre [BN00, BN08].

Theorem 16. If ŜE$ is subversion-resilient IND$-CPA-secure, M̂AC is subver-
sion-resilient SUF-CMA-secure and ŜE$ and M̂AC are perfectly correct, then
ÂD = (Am, (ŜE$, M̂AC)) is subversion-resilient AE-secure in the offline watchdog
with trusted amalgamation and perfectly correct.

Sketch. The watchdog for ÂD runs the watchdog for ŜE and M̂AC. Note that
there is no need to test the components in combination, as both allow arbitrary
input distributions while being subverted and executed independently. Assum-
ing that the watchdog does not detect subversion, we can follow the proof of
Bellare and Namprempre [BN00, BN08] for the Encrypt-then-MAC approach.
The main difference is to base the security on the subversion-resilience of the
building blocks rather than the “standard” security properties. However, these
only differ by the watchdog’s preceded check and the implementation usage in-
stead of the specifications. Thus, in the same way, IND$-CPA security in the
classical setting does grant any security guarantees for the decryption algorithm,
we also do not need to immunize the subverted decryption algorithm. First, we
replace the decryption algorithm for b = 1 with an oracle that always answers
with the ⊥ symbol, except if the input was obtained by querying the encrypt
oracle. Suppose the output of the encrypt oracle was handed to the decryption
oracle. In that case, the adversary always obtains the correct answer, either
by the correctness of the encryption scheme for b = 1 or due to the bookkeep-
ing if b = 0. Now assume C was not obtained via the encrypt oracle. If C is
malformed and the decryption oracle returns a ⊥ symbol, the adversary cannot
distinguish this from an oracle that always returns the ⊥ symbol. The last
case that remains is that C is a valid ciphertext and such that the encrypted
message (M, D) was not issued to the encryption oracle. Again, This case is
impossible since any adversary reaching this case would have successfully forged
a tag for (M, D), thus breaking the subversion resilience of M̂AC. Therefore,
we can “disable” the decryption oracle. Then, however, we can base security
entirely on the subversion-resilience of ŜE, as the adversary can only effectively
use the encrypt oracle. We replace the encrypt oracle with an oracle returning

102

random bits. This change is again indistinguishable by the subversion-resilience
of ŜE. We changed all oracles so that for both choices of b, the adversary is
given access to the same oracles, thus being unable to win the experiment apart
from guessing the bit b.

12.9 Discussion
As we have presented our construction, let us discuss our results and alternative
approaches for proofing our results.
Using weak PRFs instead of PRFs. In our construction of subversion-
resilient authenticated encryption, one may think that using weak PRFs instead
of “standard” PRFs as a building block may be sufficient. However, it is unclear
how to obtain MACs from (subversion-resilient) weak PRFs, as the security of
MACs against forgery attacks is modeled as a search problem. While we would
be able to answer all tagging queries via random queries to the PRF (e.g., via
a Carter-Wegman style [WC81] construction), handling the final forgery query
is a challenge, as this query is directly made on the verification algorithm.
The Price of Complete Subversion without Random Oracles. Achieving
subversion-resilience under complete subversion is crucial for meaningful secu-
rity guarantees in practice. Excluding certain algorithms from subversion seems
hard to justify if the adversary is even able to alter a standardized cryptographic
scheme, as illustrated by the Dual_EC incident. As mentioned earlier, defend-
ing against subversion attacks on the receiving algorithms, i.e., decryption and
verification, is challenging in an offline watchdog model. This is due to crip-
pling input trigger attacks, quickly leading to impossibility statements without
further assumptions. Thus, we demonstrate that defending against such attacks
is possible, even in an offline watchdog model. Unfortunately, this comes with
a price. We require a few trusted operations and more fine-grained access to
the building blocks. All of these assumptions seem unavoidable to us as long
as no other or additional assumptions are being made. For a deeper discussion
on necessary assumptions, consider Chapter 14. Random oracles are a valuable
tool in this context, as subversion-resilient random oracles allow mapping ad-
versarially chosen inputs to another domain without the risk of input triggers.
However, as discussed in Section 2.3, there are limitations to random oracles.
Our contributions show that subversion-resilience under complete subversion
can be achieved, even without random oracles.

103

13 Subversion-Resilient Digital
Signatures

After we designed subversion-resilient authenticated encryption in Chapter 12,
the natural question becomes for which other primitives we can construct watch-
dogs under complete subversion. A natural choice are digital signature (DS).
Digital signatures are often seen as the digital equivalent of handwritten signa-
tures. They are used for verifying the authenticity of digital messages. Given a
valid digital signature on some message, any other party (a.k.a. the verifier) can
assure that the signature was indeed issued by a signer known to the verifier.
Regarding security, it should be hard for other parties to forge signatures on
behalf of a signer. To achieve this, digital signatures make use of public-key
cryptography. A signer produces two keys: a private signing key and a public
verification key. The signing key, only known by the signer, is used to compute
signatures, while the verification key is publicly known and can be used by every
party to verify signatures.

Digital signatures play a vital role in constructing modern-day cryptographic
protocols. A prominent example is TLS, where they are primarily used for au-
thentication. For example, if connecting to a website using HTTPS, the server
provides a digital certificate, including the server’s public key. This certificate
is signed by a trusted Certificate Authority (CA). A client then uses the CA’s
public key to verify this signature. If verification is successful, the client can
be sure it connects to its intended communication partner. Not only are digital
signatures used in TLS, but they are also utilized in software distribution and
other scenarios. Thus, as an essential building block in various modern appli-
cations, digital signatures are an attractive target for backdoor attacks. Unlike
the previous parts of this thesis, there are several works available that already
propose subversion-resilient signatures, even under complete subversion where
all algorithms are provided by the adversary. We continue by highlighting prior
work on subversion-resilient signatures in watchdog models to obtain a good
understanding of the state-of-the-art constructions as well as their limitations.
After we present our approach, we highlight previous works in other models.
Online Watchdogs. Russell et al. [RTYZ16] proposed the first subversion-
resilient signature scheme in the online watchdog model with random oracles.
In particular, they consider the complete-subversion setting where all crypto-
graphic algorithms are subject to subversion attacks. At the core of their design
is a slight variant of a full domain hash scheme where the message is hashed

105

together with the public key. Precisely, such a modification enables provable se-
curity by rendering any random oracle queries made before the implementations
provided (by the adversary) useless, as the public key is generated freshly after
the adversary commits to the implementations. More generally, they pointed out
that in their definitional framework, it is impossible to construct a subversion-
resistant signature scheme with just an offline watchdog, even if only the signing
algorithm is subverted. Note that in the same work, Russell et al. [RTYZ16]
also proposed subversion-resilient one-way permutations. They considered a
stronger security setting, where the adversary can choose the function index
(public parameters pp in Definition 22). This, in turn, makes the use of ran-
dom oracles necessary. We observe that this stronger notion is not needed to
construct subversion-resilient signatures, and we can thus remove the random
oracle dependency.
Offline Watchdogs. Chow et al. [CRT+19] improved Russell et al.’s [RTYZ16]
construction by presenting two schemes with offline watchdogs. They bypassed
Russell et al.’s impossibility [RTYZ16] by using a more fine-grained split-program
model adopted in [RTYZ17] for a semantically secure encryption scheme. The
first construction is without random oracles and only considers the partial-
subversion model where key generation and signing are subverted while the
verification algorithm is not. By adopting a domain-separation technique and a
one-time random tag structure, they extended the idea by Russell et al. (origi-
nally for an encryption algorithm) to the context of a signature scheme. They
also proposed another subversion-resilient signature scheme in the complete-
subversion model but with random oracles. Their main idea is inspired by the
correction of subverted random oracles due to Russell et al. [RTYZ18].

Despite significant progress made in constructing subversion-resilient signa-
ture schemes in the watchdog model, the state-of-the-art constructions (using
offline watchdogs) require random oracles for achieving security in the complete-
subversion model, and if without random oracles, only security in the partial-
subversion model (where the verification algorithm is not subverted) is achieved.
This motivates us to ask the following question.

Is it possible to design subversion-resilient signatures without random oracles
in the offline watchdog model under complete subversion?

We can answer this question affirmatively. Similar to our approach for achiev-
ing subversion-resilient authenticated encryption, we utilize that we can build
signatures from smaller building blocks. We see that classical results of cryptog-
raphy can be adapted to grant subversion-resilient signatures under complete
subversion. Notably, this time, indeed all algorithms are subject to subversion,
although we rely on known methods to protect key generation. This captures
the use of digital signatures in practice, where one party computes all key ma-
terial and publishes its verification key. However, we want to emphasize that

106

we apply known techniques from prior work and focus on our contributions to
protecting the verification algorithm.

Before we summarize our results and discuss other approaches to obtain
subversion-resilient signatures, let us first highlight the challenges in design-
ing subversion-resilient signatures in an offline watchdog model under complete
subversion.

13.1 Technical Challenges
The difficulty of designing signature schemes that are secure against complete
subversion mainly lies in the problem of restoring the security of the subverted
verification algorithm. The main challenge is twofold:

The first reason is (yet again) the existence of input trigger attacks. Input
trigger attacks on digital signatures are very similar to those on authenticated
encryption, which we presented in the previous chapter. An adversary prepares
a special signature σ̃, which the verification algorithm accepts for all messages.
An attacker can randomly choose σ̃ and hard-code it into the subverted im-
plementation. A polynomial time watchdog with only black-box access to the
signatures scheme has only a negligible chance of detecting this, while the at-
tacker can trivially break security. Intuitively, this attack is possible as input
distribution to the verification algorithm is determined by the adversary dur-
ing the run of the security experiment. Thus, for an offline watchdog that is
executed before the security experiment, it is difficult to test the verification al-
gorithm according to the same distribution and outrule the above attack. This
holds unless we assume some strategy by the adversary. One example of this
is subversion under random message attacks [AMV15], where the adversary is
only allowed to ask for signatures on random messages. Thus, similar to our
contributions from Section 12.8, more fine-grained access to the verification al-
gorithm seems again necessary to defend against this simple and generic attack
while not limiting the attack capabilities of the adversary.

The second big challenge is that a common technique to develop signature
schemes based on symmetric primitive as first proposed by Merkle [Mer90], uses
collision-resistant hash functions. But, due to the structure of the security ex-
periment of collision-resistant hash functions, they are also highly vulnerable
to input trigger attacks (see Section 13.9 for a more detailed discussion). Pre-
vious constructions thus needed heavy machinery such as the random oracle
model [CRT+19, RTYZ18], sophisticated online watchdogs [AMV15, RTYZ18],
or a trusted initialization phase [FM18]. Approaches using a collision-resistant
hash function in the standard model with an offline watchdog thus seem some-
what futile.

Both issues around input triggers described above occur since the adversary
can prepare its implementation with input triggers as the challenge computed
by the adversary is directly input in the (possibly) subverted implementation.

107

To avoid this, in our constructions, we utilize building blocks, where the ad-
versary needs to commit to its implementation before a challenge, and values
within the construction are chosen by the security experiment. This way, the
adversary can freely choose the inputs to our construction, but since the imple-
mentation is set up before the challenge, it is hard for the adversary to adapt.
As mentioned earlier, Russell et al. [RTYZ18] also used a similar idea but
needed the random oracle model. We can circumvent the need for the ran-
dom oracle model by choosing our primitives carefully and revisiting classical
results in a subversion setting. As we show later we use a classic result that
target-collision-resistant (TCR) hash functions are sufficient to build digital sig-
natures. To break target-collision-resistance, the adversary first commits to an
input, then the hash function is specified, and afterwards, the adversary tries
to find a collision. The task thus becomes to construct target-collision-resistant
hash functions in a subversion-resilient manner.
Practical Interpretation. The above approach of choosing challenges and
random values after the implementation is provided is sound in our theoretical
model. One might wonder whether such an approach is a theoretical artifact,
similar to the abstraction of key generation for symmetric key primitives, and
thus is little meaningful for practice. Since this is not the case, let us briefly
discuss why this approach is also a meaningful model for practical use. The secu-
rity experiment choosing a random challenge resembles the way the considered
primitive is often used as a building block. If during the security experiment,
a uniformly random input is chosen, a construction will also usually choose a
uniformly random input to compute outputs in order to simulate the security
experiment correctly. Concretely, we can choose fresh random coins in our con-
struction by utilizing subversion-resilient randomness generators from prior or
this work to remove possible biases and prevent input triggers. Thus, the se-
curity model captures how a building block will actually be used in a bigger
construction. Then one might ask, whether this still is meaningful in a subver-
sion setting. Even though a powerful adversary provides the implementation,
we do not deem it that powerful that it is able to adjust its implementation for
every random value chosen by a primitive during runtime. For example, chang-
ing the implementation of a popular Instant Messaging app might be within the
scope of current real-life adversaries. However, we deem it unlikely for subver-
sion attacks to be able to continuously update the implementation, potentially
even every time after some random value is chosen while remaining undetected.
Here, detection refers to noticing a change in the implementation for example
via updates, and not the testing of the watchdog.

108

13.2 Our Contributions

Our overall approach is illustrated in Fig. 13.1 and our main contributions can
be summarized as follows.

• We show that a standard one-way permutation (OWP) is a subversion-
resilient one-way function (OWF) in the offline watchdog model by taking
advantage of the order of events in the security experiment. Russell et
al. also showed how to construct subversion-resilient OWPs with random
oracles [RTYZ16]. Our construction of OWFs does not rely on random
oracles but rather only needs standard OWP as a building block.

• Lamport one-time signatures (OTS) are subversion-resilient if built from
subversion-resilient OWFs and a trusted comparison.

• We prove that a classical construction to obtain target-collision-resistant
(TCR) hash functions from a random target-collision-resistant (rTCR)
hash function, where in the security experiment one input is chosen uni-
formly at random from the domain rather than provided by the adversary,
can be used to obtain subversion-resilient TCR hash functions. This ap-
proach uses a trusted XOR and a random blinding value to randomize the
input provided by the adversary.

• From subversion-resilient OTS, subversion-resilient target-collision resis-
tant hash functions, and subversion-resilient PRFs, we build subversion-
resilient signature via the classical Naor-Yung [NY89] construction of dig-
ital signatures.

Thus, similar to the work of Chow et al. [CRT+19], we allow the watchdog
more fine-grained access to the verification algorithm by breaking it down into
smaller building blocks. This, in turn, allows for a similar approach as seen in
the previous chapter for the case of authenticated encryption. We build sig-
natures from symmetric primitives by revisiting classical results and show that
we can construct the necessary building blocks in a subversion-resilient manner.
This way, during the verification of the signatures, we recompute symmetric
primitives, which allows the watchdog to do meaningful testing. A critical in-
sight of this thesis is that the security of some primitives can be guaranteed
if we consider an adversary who has to commit to its implementation before
a random challenge is computed. We then see that all the ingredients can be
combined to prove the classical Naor-Yung construction for digital signatures to
be subversion-resilient. However, while achieving subversion-resilience without
random oracles, this comes with the price of decreased efficiency (both in sig-
nature size and computational costs) if compared to other subversion-resilient
signatures. For an overview, consider Table 13.1.

109

OWP

SR-OWF

SR-OTS

Trusted ==

SR-Signatures

rTCR HF

SR-TCR HF

Trusted ⊕

wPRF

SR-PRF

Trusted
data structure

Theorem 7

Figure 13.1: Overview of our construction. Here, SR denotes subversion-
resilience, HF denotes hash function, OWP/OWF denotes one-
way permutation/function, PRF denotes pseudo-random function,
(r)TCR denotes (random) target collision-resistance, and OTS
denotes one-time signature. Comments beside arrows highlight
trusted operations.

13.3 Subversion-Resilient Signatures in Other
Models

Several works in the field of cryptography have explored different angles of de-
fense against subversion attacks, resulting in the proposal of various subversion-
resilient signature schemes. Although these schemes may be generally incom-
parable due to the different models and assumptions they are built upon, un-
derstanding their differences can provide valuable insights into the landscape
of subversion-resilient cryptography. Below, we present an overview of current
subversion-resilient signature schemes in other models.
Subversion-Resilient Signatures via Reverse Firewalls. In [AMV15],
Ateniese et al. showed that signature schemes with unique signatures are subver-
sion-resilient against all subversion attacks that meet the verifiability condition.
This condition essentially requires that signatures produced by the subverted
signature algorithm should almost always be verified correctly under the tar-
get verification key.1 They adopted the reverse firewall model for construct-
ing subversion-resilient signature schemes to relax such a strong requirement.
Mironov and Stephens-Davidowitz [MS15] originally introduced the notion of
RFs, which is assumed to be non-subverted and has access to a reliable source
of randomness to re-randomize cryptographic transcripts. In the context of
signature schemes, a RF is a (possibly stateful) algorithm that takes a mes-
sage/signature pair as input and produces an updated signature. The main

1In [AMV15], only subverted signing algorithms are considered while both key generation
and verification algorithms are assumed to be trusted.

110

goal of a RF is to prevent potential covert leakage of sensitive information from
subverted signatures. As a general result, Ateniese et al. showed that every re-
randomizable signature scheme (including unique signatures as a special case)
admits a RF that preserves unforgeability against arbitrary subversion attacks.
Such a RF must have a self-destruct capability, which means that the RF can
publicly check the validity of each outgoing message/signature pair before up-
dating the signature. If the RF encounters an invalid pair during this process,
it stops processing further queries. The self-destruct capability is essential for
the RF to maintain functionality and preserve the unforgeability of the signa-
ture scheme simultaneously. One could note that a RF could be viewed as an
“active” online watchdog with the additional self-destruct capability. Thus, like
the online watchdog model, a RF can defend against stateful subversion, which
is inherently not captured by the universal offline watchdog model.

Subversion-Resilient Signatures via Self-guarding. Fischlin and Maza-
heri [FM18] proposed a novel defense mechanism called self-guarding algorithms,
which could counter stateless subversion of deterministic unforgeable signature
schemes. The self-guarding signature scheme introduces a trusted initialization
phase during which genuine message-signature pairs are generated for randomly
chosen messages. More precisely, a random message denoted as m$ is signed in
the initialization phase, resulting in a signature sample σ$. Later, when signing
a message m, the (possibly) subverted signing algorithm is executed twice, once
with m$ and once with the bit-wise XOR of m and [m$||σ$], where || represents
concatenation. The order of signing these two messages is chosen randomly.
If the signing algorithm deviates for one of the two signatures, the subversion
is detected with a probability of 1/2. This process can be repeated multiple
times with independent key pairs to increase the detection probability to an
overwhelming level. From the above, we know that unlike in the reverse fire-
wall model, where a good source of randomness and the self-destruct capability
are required, self-guarding schemes rely on a temporary trust phase during ini-
tialization. Also, one might think that the initialization phase of self-guarding
schemes could be executed by a watchdog, where a specified program could im-
mediately provide a detection solution. However, there is a notable difference:
Self-guarding schemes involve passing states between the initialization and later
phases, whereas watchdogs typically do not forward data to individual users.
Another significant distinction between self-guarding and the watchdog model
is that self-guarding schemes do not require the subverted algorithm to be avail-
able from the start.

The diversity of subversion-resilient signature schemes reflects the complexity
of defending against subversion attacks. The choice of models and assumptions
is crucial in determining the scheme’s effectiveness and practicality. Under-
standing the strengths and limitations of these subversion-resilient signature
schemes is essential for designing secure cryptographic systems in the presence
of potential subversion attacks.

111

13.4 Outline
We continue by proving that one-way permutations constitute subversion-resilient
one-way functions in Section 13.6. Afterwards, we provide a construction for
subversion-resilient TCR hash functions in Section 13.7. Finally, in Section 13.8,
we combine these ingredients to obtain subversion-resilient signatures.

13.5 Simplifying Assumptions
For our upcoming construction of subversion-resilient signatures, we will need
access to uniformly random coins and subversion-resilient PRFs. Fortunately,
for both primitives, there are already subversion-resilient schemes available. For
randomness generation, we can either use our randomness generator from Chap-
ter 5 or the randomness generator from Russell et al. [RTYZ17]. To help read-
ability and focus on the challenge of protecting the verification algorithm, we
will not explicitly state the use of a subversion-resilient randomness generator
and simply assume access to uniformly random bits. Thus, our results can be
extended by an additional game hop in our security proof and change the sub-
verted randomness generator with a subversion-resilient randomness generator.
Note that we will use these random coins, especially for key generation, and
we assume the trusted amalgamation model includes the split-program model,
and we are therefore able to test algorithms while using specified random coins.
Thus, we can follow prior work by Russell et al. [RTYZ17] and guarantee that
key generation can be efficiently tested utilizing Lemma 1, guaranteeing that
the watchdog either detects subversion or keys are generated honestly. In the
following, we will only cover this briefly for completeness and put more emphasis
on our new contributions. For PRFs, we already showed in Section 12.5 how
to construct subversion-resilient PRFs from weak PRFs. Thus, in the following,
we assume that subversion-resilient PRFs are available, can be used in a black
box fashion, and avoid adding additional notational overhead by restating the
specific construction from Section 12.5.

13.6 One-Way Functions
As we have seen in Section 12.5, certain primitives are inherently subversion-
resilient in our considered model. One such primitive is weak PRFs, which do
not allow the attacker to input any value during the security game but rather
choose random inputs for the oracle during the experiment. Thus, one could
hope a similar result also holds for one-way functions. Unfortunately, it seems
that solely relying on one-wayness is insufficient, as we need the outputs of
the considered function also to be (pseudo-) random and sufficiently large. By
guaranteeing these properties, we can argue that an adversary has a low chance

112

that a prepared trigger matches a random challenge and thus wins the secu-
rity experiment. Therefore, instead of one-way functions, we consider one-way
permutations, which we use later to construct one-time signatures, particularly
Lamport signatures [Lam79]. This way, the challenge given to the adversary in
the security game is a uniformly random element from the domain of the per-
mutation. The critical point in our security proof is that an adversary cannot
access enough entropy to “hit” a random output of the one-way function/per-
mutation while avoiding detection. In general, we can not assess the output
distribution of a one-way function, even if the input is random. However, this is
different for a one-way permutation, as the uniform input distribution implies a
uniform output distribution. Thus, since the input distribution of the one-way
permutation is public, Lemma 1 implies that there is only a negligible proba-
bility that the one-way permutation deviates from the specification. Then, we
can argue that the adversary cannot access enough entropy to develop an input
that matches its challenge after being evaluated.

13.6.1 One-Way Functions and Permutations
A OWF is a function that is easy to compute on all inputs but is hard to invert
given an image of a randomly chosen input. It is currently not known whether
one-way functions, in fact, do exist. However, there are several candidates for
which there are no algorithms that break the security of these candidates. To
give an illustration, we briefly describe two popular candidates in cryptography.
The first candidate is the multiplication (and factoring) of two large prime
numbers. The function thus takes two primes p and q as inputs and returns the
product N = p · q. Inverting requires the factorization of N, for which currently
no efficient algorithms are known. The famous RSA encryption scheme [RSA78]
is based on the assumption that the above function is hard to invert. Another
famous candidate is discrete exponentiation (and logarithm). Here, a finite
abelian group G for order n ∈ N is given, together with a generator g. Given
a random element k with 1 ≤ k ≤ n, the function then computes c = gk.
While this evaluation can be computed efficiently, there are groups for which no
efficient algorithms are known that compute the logarithm k = logg c. Typical
choices for the group G are cyclic groups or cyclic subgroups of elliptic curves
over finite fields.

In addition to one-way functions, we also use a primitive called OWP. These
are one-way functions, which, in addition, are also permutations. Famous can-
didates for OWP are trapdoor functions like the RSA [RSA78] or Rabin cryp-
tosystem [Rab79].

We recall the standard definition of OWFs and OWPs. These use families of
one-way functions (and permutations) rather than addressing single functions.
This is because most candidates’ domain and range might differ depending on
the security parameter. In the following, we assume inputs are bitstrings. Our
following approach could also potentially be applied as long as there is a trusted

113

mapping between the range and domain of the one-way function and bistrings.

Definition 21. A (family of) one-way functions Π consists of two ppt algo-
rithms KGen and Eval, where each algorithm is defined as follows:

• The randomized algorithm KGen returns the public parameters pp upon
input the security parameter 1λ.

• The deterministic algorithm Eval takes the public parameters pp and an
element x ∈ {0, 1}λ and returns an element y ∈ {0, 1}λ.

If Eval(pp, ·) is a permutation on {0, 1}λ, we call Π a family of one-way permu-
tations.

With this definition, we can define security for one-way functions and one-way
permutations. In the case of one-way functions, the security experiment sam-
ples a uniformly random element from the domain and hands the adversary an
evaluation of that element. In the case of one-way permutations, the adversary
is simply handed a uniform element from the range of the function. In both
cases, the adversary is afterwards asked to return a preimage of the value given
to it.

Definition 22. Let Π = (KGen, Eval) be a one-way function or one-way per-
mutation and let ExpInv

A,Π be defined as shown in Fig. 13.2. We define

AdvInv
A,Π(1λ) :=

∣∣∣Pr[ExpInv
A,Π(1λ) = 1]

∣∣∣
and say that Π is secure if AdvInv

A,Π is negligible for all ppt adversaries A.

ExpInv
A,Π(1λ)

(pp)← KGen(1λ)
if Π is a permutation

y∗ $← {0, 1}λ

else

x
$← {0, 1}λ

y∗ = Eval(pp, x)
x∗ ← A(pp, y∗)
if Eval(pp, x∗) == y∗

return 1
return 0

Figure 13.2: One-way function/ -permutation security experiment.

Note that other definitions exist in which x∗ is chosen uniformly at random
from the domain and y∗ = Eval(pp, x∗) is given to the adversary. In the classical,

114

i.e., non-subversion setting, both definitions are equivalent for permutations. In
our case, there is also little difference in our results. Since all inputs to Eval are
known, i.e., public, an adversary can guarantee that Eval follows the specification
but with negligible probability. Thus, in our proof in the next section, we could
introduce an additional game hop and replace Ẽval with Êval, but instead, we
use this more straightforward way of defining security.

13.6.2 Subversion-Resilient One-Way Functions
We see that starting from any “standard” one-way permutation, we directly
obtain a subversion-resilient one-way function without the need of any further
amalgamation, assuming that we already have a subversion-resilient key gener-
ation algorithm as stated in Section 11.

The idea is that by applying Lemma 1 and using that we use a permutation,
the challenge handed to the adversary is a random element. Then, we can use
that the adversary has to provide its implementation before the execution of
the inverting experiment, i.e., the challenge is independent from the subverted
implementation. Since the subversion can only utilize negligible many triggers
to avoid detection by the watchdog, the probability that a trigger can be used
to break security is also negligible. Thus, it needs to find an input that can then
be used to break the one-wayness of the specification without making use of an
input trigger, which contradicts the usual non-subversion security.

Note that it is impossible (with polynomial testing time) to ensure that the
implementation provided by an adversary is still a permutation. Even changing
the output under a single input leads to the function not being a permutation
anymore, which can only be detected with negligible probability by a polynomial
time watchdog. Fortunately, we only utilize the permutation property of the
specification to guarantee a uniform output distribution of honest evaluations.
Thus, we lose the permutation property in exchange for subversion-resilience.

Theorem 17. Let Π = (KGen, Eval) be a one-way permutation. Then, the trivial
specification Π̂ = (KGen, Eval) is a subversion-resilient secure one-way function
in offline watchdog model with trusted amalgamation, assuming randomness
generation is part of the trusted amalgamation.

Proof. Let Π̂ = (KGen, Eval) be the specification of a permutation, and Π̃ be the
implementation of Π̂ provided byA. First, the watchdog simply tests K̃Gen poly-
nomially many times using uniformly random coins. Afterwards, it runs KGen
for pp, samples uniformly random x and compares Ẽval(pp, x) to Êval(pp, x).
Whenever a mismatch between the specifications and the implementation is
found, the watchdog returns “true”. Following Russell et al. [RTYZ17], we ar-
gue that either the watchdog detects subversion or pp is computed according
to the specification. To prove the subversion-resilience, let T ⊆ PP × {0, 1}λ

denote the trigger set such that (pp, x) ∈ T ⇔ Ẽval(pp, x) 6= Êval(pp, x) where

115

PP denotes the public parameter space. Thus, T contains all inputs for which
the implementation deviates from the specification. To avoid the detection by
a watchdog, we know that the density of T needs to be negligible, i.e., we have
|T |/(|PP| · 2λ) ∈ negl(λ). Due to the flow of the subversion experiment, the
attacker needs to provide the implementation Π̃ before the parameters pp and
the challenge y∗ are chosen in the security game. Hence, the set T is indepen-
dent of pp and y∗ and so is the image of T , i.e., img(T). Now, whenever the
attacker is successful (as in ’wins the security experiment’) on input y∗, they
will output a value x∗ such that Ẽval(pp, x∗) = y∗. We now distinguish whether
the adversary uses a trigger, i.e., whether (pp, x∗) ∈ T or (pp, x∗) /∈ T holds. If
(pp, x∗) 6∈ T , we know that y∗ = Ẽval(pp, x∗) = Êval(pp, x∗). Thus, the attacker
on the subverted implementation can be transformed into an attacker on the
non-subverted specification, breaking the one-wayness of Π. If (pp, x∗) ∈ T , we
can not predict Ẽval(pp, x∗), however it can only redistribute weight within T ,
as Eval(pp, ·) is a deterministic mapping on {0, 1}λ \ T . Now, T is independent
from y∗ and y∗ is uniformly drawn from {0, 1}λ. Together, this implies that the
expected probability (upon the random choice of y∗) of a subversion attacker
to win when submitting any trigger x∗ (and setting up its implementation ac-
cordingly beforehand) is at most |T |/(|PP| · 2λ), i.e., negligible. Hence, the
probability that a trigger x∗ with Ẽval(pp, x∗) = y∗ exists is negligible.

13.7 Hash Functions
Another crucial building block we use are hash functions. Generally speaking, a
hash function is a function that maps inputs of arbitrary length to a fixed-size
range. In this thesis, we are interested in cryptographic hash functions, which we
simply call hash function (HF). These are hash functions with additional prop-
erties. The most commonly found in the literature is called collision-resistance.
For a collision-resistant hash function, it is hard to find two different inputs that
are mapped to the same output (and thus collide). Cryptographic hash func-
tions are found in various applications as building blocks for other cryptographic
primitives. Most notably, they are used in digital signatures and message au-
thentication codes to reduce the input size before signing or tagging. However,
hash functions are also used in other scenarios, such as checksums, to detect
accidental data corruption.

Since we build one-time signatures from one-way functions, we need a way to
hash two public keys (of the one-time signature) down to the size of one public
key to make the signature construction of Naor and Yung [NY89] work. Unfor-
tunately, subversion-resilient collision-resistant hash functions seem impossible
(without any additional assumptions), as we discuss in Section 13.9. On the
positive side, just like in the case of standard signatures, subversion-resilient
target collision-resistant hash functions are sufficient for our case, and we see
that they can be constructed using a trusted XOR. So, let us begin by providing

116

the necessary (security) definitions.

Definition 23. A family of hash functions H is a pair of ppt algorithms (Gen, H)
where each algorithm is defined as follows:

• The randomized algorithm Gen takes as input the security parameter 1λ

and outputs a (non-secret) key s.
• The deterministic algorithm H takes as input a key s and a string x ∈
{0, 1}∗ and outputs Hs(x).

Note that we only consider keyed hash functions that take a fixed-length
input, which is sufficient for our use case. We assume that inputs have length 2λ.
Our approach can also handle inputs with lengths up to 2λ, but this would imply
more encoding and notation overhead as inputs would need to be interpreted as
2λ long items with leading zeros.
Keyed vs. Unkeyed. In practice, hash functions are not keyed. Following
the approach of Rogaway [Rog06], our theorems could be rephrased such that
breaking the security of some schemes using secure hash functions leads to find-
ing collisions. We chose to use keyed functions instead, as the construction of
the TCR hash function that we use explicitly introduced a blinding value, which
is most conveniently modeled as part of a key. A similar approach was used by
Russell et al. [RTYZ18] for their construction of subversion-resilient random
oracles. For a deeper discussion on keyed and unkeyed hash functions, consider
[KL14].

We consider two different but related security notions concerning hash func-
tions in the following. Target-collision-resistance describes the notion that if an
adversary outputs some x, it can not output a y such that x and y collide, given
that the key of the hash function was chosen after the adversary provided x.

Definition 24. Let H = (Gen, H) be a family of hash functions and let ExpTCR
A,H

be defined as shown in Fig. 13.3. We define

AdvTCR
A,H(1λ) :=

∣∣∣Pr[ExpTCR
A,H(1λ) = 1]

∣∣∣
and say that H is TCR if AdvTCR

A,H is negligible for all ppt adversaries A.

We see that the weaker notion of random target-collision-resistance is in-
credibly useful for our approach. This notion is the same as target-collision-
resistance, but the adversary does not choose the value x but rather chooses
uniformly at random from the domain of the hash function.

Definition 25. Let H = (Gen, H) be a family of hash functions and let ExprTCR
A,H

be defined as shown in Fig. 13.3. We define

AdvrTCR
A,H (1λ) :=

∣∣∣Pr[ExprTCR
A,H (1λ) = 1]

∣∣∣
and say that H is rTCR if AdvrTCR

A,H is negligible for all ppt adversaries A.

117

ExpTCR
A,H(1λ)

(x, st)← A0(1λ)
s← Gen(1λ)
y ← A1(s, x, st)
if Hs(x) == Hs(y) and x 6= y

return 1
return 0

ExprTCR
A,H (1λ)

x
$← D

s← Gen(1λ)
y ← A(s, x)
if Hs(x) == Hs(y) and x 6= y

return 1
return 0

Figure 13.3: (random) Target-collision resistance security experiment for hash
functions. In the left experiment, we use that A = (A0,A1) and
use st to denote the state passed between the subroutines of the
adversary.

Big Domains. Before we present our construction, let us quickly illustrate
a powerful subversion attack against hash function families with big domains
inspired by the attack on one-way permutations by Russel et al. in [RTYZ16].
Let H = (Gen, H) with H : {0, 1}2λ → {0, 1}λ be a family of hash functions,
which hashes inputs to outputs half the input size. Then, an adversary could
prepare its implementation such that H̃s(k ‖ y) := y for some randomly sampled
string k. With this construction, an input trigger exists for every element in
the range of H, enabling the adversary to win the security experiment trivially.
Additionally, detecting this attack is very hard for an offline watchdog without
knowledge of k. Assuming the watchdog samples random inputs for the hash
function, the probability for a random input to match y is (1

2)λ, which is neg-
ligible in λ. Since the watchdog only has a polynomial running time, it has a
negligible probability of detecting this attack. Thus, we only use hash functions
where the domain and range of the hash functions are of similar size to rule out
this otherwise unpreventable attack. More concretely, we only consider hash
functions where the output is one bit shorter than the input. Larger input sizes
are then handled by constructing hash functions for different input sizes and
hashing the input down through these different hash functions. We must run a
watchdog for each input length individually to guarantee subversion-resilience.
However, this seems unavoidable to prevent the above attack.

Construction. Similar to our construction of subversion-resilient one-way func-
tions, we use the fact that the rTCR hash function has a random challenge. More
formally, let H = (Gen, H) be a family of rTCR hash functions. Then we con-
struct a TCR hash function H′ = (Gen′, H′) as follows: To sample a key s, the
algorithm Gen′ first executes Gen and then additionally samples a uniformly
random element r from the domain of the hash function and finally outputs
s′ = (s, r) as the key. Now, H ′ evaluates inputs as H′

s′(x) := Hs(x ⊕ r). Thus,
this construction has an additional blinding value as part of its key, which is

118

XOR’ed to the input before evaluating the hash function. Our watchdog tests
Gen for uniformly random coins to sanitize key generation. Thus, just as in
[RTYZ17], we can guarantee that either s is computed in accordance with the
specification or the watchdog detects subversion. To compute the blinding value,
we can use any construction from [RTYZ17] or our construction from Chapter 5
to produce random coins in a subversion-resilience manner that does not use
random oracles.

We note that the XOR operation is part of the trusted amalgamation when we
prove subversion-resilience. This is essential to the construction and prevents
the attacker from feeding adversarially chosen inputs directly into subverted
components, similar to Russell et al. [RTYZ17]. Just like in the section about
one-way function, the order of events is critical for our analysis. Our secu-
rity proof again uses that the hash function (and especially the random value
provided along) is provided to the adversary after the adversary provides its
implementation. Note that in a non-subverted setting, our construction is the
folklore construction to obtain a TCR hash function from a rTCR hash function.2

In the proof, we use that target collision-resistant hash functions with small
input domains need to distribute their inputs somewhat “equally” into the range
of the hash functions. Otherwise, this would contradict its target collision re-
sistance property.

Lemma 2. Let H = (Gen, H) with H : {0, 1}λ → {0, 1}λ−1 be a rTCR family of
hash functions. Then, the set {x ∈ {0, 1}λ | Hs(x) = z} is negligible in λ with
probability 1− negl(λ) upon random choice of z and s.

Thus, we can state our final result on hash functions. Here, the trusted
amalgamation Am takes the input x and the second part of the key r applies
the XOR operation to both and calls the underlying hash function.

Theorem 18. Let H = (Gen, H) with H : {0, 1}λ → {0, 1}λ−1 be a rTCR family
of hash functions. Then the specification (Am, Gen′, H′) with the family of hash
functions H′ = (Gen′, H′), with H′ : {0, 1}λ → {0, 1}λ−1 as described above, is
subversion-resilient target-collision-resistant in the offline watchdog model with
trusted amalgamation, assuming the XOR operation and randomness generation
is part of the amalgamation.

Proof. Let H be a rTCR hash function family, and let T be the trigger set of H,
i.e., (s, x) ∈ T ⇔ H̃s(x) 6= Ĥs(x). Just as in [RTYZ17], we can use Lemma 1
to argue that either the keys s′ output by Gen′ are computed according to the
specification or the watchdog detects subversion. Further, due to Lemma 1,
we know that |T | ∈ negl(λ). Hence, our watchdog for H queries Gen and H′

on random inputs. Due to the trusted XOR used in H′, Lemma 1 implies
that with high probability the value Hs(x ⊕ r) is a non-subverted output, as
s′ = (s, r) is chosen after the adversary provides its implementation. Now, let

2Unfortunately, we could not find an explicit reference for this construction.

119

A be an adversary against the subversion-resilience of H′, i.e., A first outputs
x, is then handed s′ = (s, r) and then outputs a value y 6= x and succeeds if
Hs(x⊕ r) = Hs(y⊕ r). We now distinguish two cases. In the first case, we have
that (s, y) /∈ T . If A can output y 6= x such that H′

s′(x) = H′
s′(y) (where both

inputs do not lead to input trigger), we can construct an adversary B which
breaks the rTCR of H as follows. After A outputs some value x, the adversary
B obtains (s, x′) from its challenger. Now, B forwards s′ = (s, r) with r = x⊕x′

to A which answers with some y. Finally, B forwards y ⊕ r to its challenger.
We observe that in the case that A finds a collision such that H′

s′(x) = H′
s′(y), it

holds that H′
s′(x) = Hs(x′ ⊕ x⊕ x) = Hs(x′) and H′

s′(y) = Hs(y ⊕ x⊕ x′). Since
x 6= y, it also holds that x′ 6= y⊕ x′ ⊕ x. Thus, if A finds a collision, so does B,
at least if H does not deviate from its specification with regard to (s, y)3.

The other case is (s, y) ∈ T . But, as we now argue, this can only happen
with negligible probability. Remember that H maps λ-bit string to (λ − 1)-bit
strings. Now, let H−1

s (z) ⊆ {0, 1}λ denote the set of preimages of an element
z ∈ {0, 1}λ−1. By Lemma 2, the size of H−1

s (z) must be negligible for all but
negligible many pairs (s, z). Hence, the probability that there is some y ∈
H−1

s (Hs(x)) with (s, y) ∈ T is negligible since A commits to its implementation
before H and its associated blinding value is chosen and A has only negligible
many input trigger. Thus, any adversary that breaks the subversion-resilience
of H′ can also be used to break the security of H.

As stated before, the above construction only reduces the input size by a
single bit. Hence, to hash a string of length 2λ down to length λ, we need a
hash family H` : {0, 1}` → {0, 1}`−1 for each ` = 2λ, 2λ − 1, . . . , λ + 1. Thus,
we can combine polynomially many hash functions in an iterative process, to
obtain a hash function that maps inputs to outputs half the input size.

13.8 Constructing Subversion-Resilient Signatures
Finally, we have all the ingredients to prove the signature scheme based on the
Naor-Yung construction [NY89] subversion-resilient. As a necessary stepping
stone, we see that the classical Lamport signatures are subversion-resilient if
instantiated with a subversion-resilient one-way function. Then, all the previ-
ous sections’ building blocks can be combined to obtain a subversion-resilient
signature, where even the verification algorithm is subject to subversion.

13.8.1 Digital Signatures
Digital signatures are used to verify the authenticity and integrity of messages.
A secure digital signature ensures that a message has not been altered during

3This resembles the “classical” security proof of the construction.

120

transmission and was indeed created by a specific sender. For this, it uses public-
key cryptography. A sender has a secret singing key and a public verification
key. As the names suggest, the signing key is used to sign messages, while
everybody can use the verification key to verify signatures. We continue by
recalling the standard definition of digital signatures.

Definition 26. A digital signature scheme Σ = (KGen, Sign, Vf) consists of
three ppt algorithms, with each algorithm defined as follows:

• On input 1λ the randomized key generation algorithm KGen outputs a pair
of keys (sk, vk).

• The randomized signing algorithm Sign takes as input the secret signing
key sk and a message m from the message space and outs a signature σ.

• The determinstic verification algorithm Vf takes as input the public veri-
fication key vk, a message m, and a signature σ. It outputs a bit b where
b = 1 indicates a valid signature, while b = 0 means the signature cannot
be verified.

We say a signature scheme is correct if for every key pair (sk, vk) generated by
KGen(1λ) and every message m ∈ M it holds that Vf(vk, (m, Sign(sk, m)) = 1
but with negligible probability.

Note that here, we explicitly do not require perfect correctness as we did
for the construction of subversion-resilient MACs and symmetric encryption
presented in Chapter 12. As we discuss in Chapter 14, this is because our
construction can not achieve perfect correctness and we suspect this notion
can not be achieved. For a short further discussion on correctness, consider
Section 13.9.

Next, we recall the standard definition of existential unforgeability for digital
signatures. After generating a key pair, the adversary is given the verification
key and access to a sign oracle. Thus, the adversary can ask for signatures on
messages of its choice. The adversary wins if it can output a message signature
pair (m, σ), such that σ is a valid signature for m. In order to rule out trivial
attacks, the adversary does not win if it previously issued a query for m to its
oracle.

Definition 27. Let Σ = (KGen, Sign, Vf) be a signature scheme and let ExpEUF
A,Σ

be defined as shown in Fig. 13.4 where A has access to an oracle returning
σi = Sign(sk, mi) on input mi and where Q denotes the set of all queries that A
issued to its signing oracle. We define

AdvEUF
A,Σ(1λ) :=

∣∣∣Pr[ExpEUF
A,Σ(1λ) = 1]

∣∣∣
and say that Σ is existentially unforgeable if AdvEUF

A,Σ(1λ) is negligible for all ppt
adversaries A.

121

ExpEUF
A,Σ(1λ)

(sk, vk)← KGen(1λ)
(M, σ)← ASign(sk,·)(1λ, vk)
if Vf(pk, (M, σ)) == 1 and M /∈ Q

return 1
return 0

Figure 13.4: Unforgeability experiment for digital signatures.

A weaker form of security is one-time security. While existentially unforgeable
signatures allow for multiple sign queries, one-time signatures, as the name
suggests, only allow a single sign query to be issued by the adversary.

Definition 28. We say a signature is a one-time signature if Definition 27 holds
and the attacker is only allowed to issue a single query to its signing oracle.

While this severely limits the adversary’s capabilities, it allows the construc-
tion of one-time signatures from one-way functions, as discussed in the next
section.

13.8.2 Lamport Signatures
Using the results of Section 13.6, we have access to subversion-resilient one-way
functions and can directly obtain classical Lamport signatures [Lam79] given a
trusted comparison. So, let us quickly recall the definition of the aforementioned
Lamport signatures for messages of length `, which uses a family of one-way
functions (KGen, Eval) as its main building block.

The key generation algorithm chooses ` many values xi,0, xi,1 ∈ {0, 1}λ uni-
formly at random as well as pp = KGen(1λ). Then compute yi,0 = Eval(pp, xi,0)
and yi,1 = Eval(pp, xi,1). The verification key vk consists of all y values and the
signing key of all x values. On input a message M ∈ {0, 1}` with M = M1 . . . M`,
the signing algorithm simply outputs the signature σ = (x1,M , . . . , x`,M`

). On
input a verification key vk, a message M ∈ {0, 1}` with M = (M1 . . . M`), and a
signature σ = (x1, . . . , x`), the verification algorithm outputs 1 iff Eval(pp, xi) =
yi,Mi

for all 1 ≤ i ≤ `.
Then, it is not hard to see that the security of the Lamport signatures scheme

follows directly from the security of the used one-way function. Similarly, the
Lamport signature scheme’s subversion-resilience follows from the subversion-
resilience of the used one-way function. However, additionally, we need a
trusted comparison for the above construction to be secure. Similar to our
results for subversion-resilient MACs, a trusted comparison seems unavoidable
to obtain subversion-resilient signatures under complete subversion. Otherwise,
the subverted implementation could ignore the output of Eval and output 1

122

for a value chosen by the adversary and embedded into the implementation.
Thus, the subversion-resilience of Lamport signatures directly boils down to the
subversion-resilience of the one-way function.

Theorem 19. Let Π be a subversion-resilient secure one-way function. Then
Lamport signatures using Π as the one-way function are subversion-resilient
existentially unforgeable one-time signatures in the offline watchdog model under
with trusted amalgamation where the “==” operations is part of the trusted
amalgamation .

Our proof closely follows the classical proof for the security of Lamport sig-
natures, as, for example, found in [KL14].

Proof. Following Russell et al. [RTYZ17], we argue that either the watchdog
detects subversion or (sk, vk) is computed according to the specification. This
is because the watchdog can test the underlying KGen algorithm and together
with uniformly random bits, test F on a public input distribution.

Given an adversary A, which breaks the subversion-resilient existential un-
forgeability of Lamport Signatures with some non-negligible probability ε, we
can then construct an adversary B which breaks the subversion-resilience of
the underlying one-way function is defined as follows: It chooses i∗ $← {0, 1}`

and b∗ $← {0, 1}. Given y as a challenge, B then sets yi∗,b∗ := y. B then
continues by choosing xi,b

$← {0, 1}n for all i ∈ [`] and b ∈ {0, 1} and setting
yi,b := Ẽval(pp, xi,b). Together with yi,b, these values form the public key pk,
which is given to A. Note that due to Lemma 1, all yi,b values follow the spec-
ification but with negligible probability due to the testing of the watchdog. A
requests a forgery on some message M ′. If M ′

i∗ = b∗ then B aborts, and re-
turns the correct signature σ = (x`,M ′

1
, . . . x`,M ′

`
) otherwise. Finally, A outputs

a forgery (M, σ) with σ = (x1, . . . , x`). If A outputs a forgery at (i∗, b∗), then B
outputs xi∗ . Thus, B guesses at which index A makes it forgery and for which
message bit. The probability for guessing both correct is at least ε/2`, where
ε is the success probability of A because B made its guesses independently
before A attempts its forgery or message query. Thus, B successfully breaks
the subversion-resilience of the above construction, as ε is non-negligible by the
assumption of this proof.

13.8.3 The Naor-Yung Construction
Before we dive into the classical Naor-Yung construction, let us provide some
intuition on the approach. The main idea is to follow a tree-based approach
and heavily use one-time signatures, where each node is associated with a key
pair of a one-time signature scheme. Messages to be signed are then interpreted
as a path in this tree. The signing key is used for each node to sign the keys
of the two child nodes. Since the Lamport signature can not sign messages
bigger than its public key, a hash function allows the signing of two verification

123

ε

vkε

σε = SignOTS(skε, Hsε(vkε‖0‖vkε‖1); rε)

0
vk0

1 σ1 = SignOTS(sk1, Hs1(vk1‖0‖vk1‖1); r1)
vk1

00 01 10
vk10

σ10 = SignOTS(sk10, 10; r10)

11
vk11

Figure 13.5: Simplified illustration of the Naor-Yung construction of digital sig-
natures from one-times signatures for signing the message M = 10
where the derivation of randomness via PRFs is ignored.

keys. Here, a target-collision-resistant hash function is sufficient to guarantee
security. While the original construction is stateful to keep track of which keys
were used for the one-time signature scheme, it is known that it can be extended
via PRFs and deterministically recomputation of keys to make the construction
stateless. Note that the PRFs are only needed to sign messages and not for
signature verification. A simplified example of the approach, not considering
the PRFs, is shown in Fig. 13.5. We continue with the construction and are
given a one-time signature scheme (KGenOTS, SignOTS, VfOTS), a target-collision
resistant hash function family H = (Gen, H) with H = {Hs : {0, 1}2λ → {0, 1}λ},
4 and a pseudorandom function (KGenPRF, F). Furthermore, for a string w ∈
{0, 1}∗, we define Pre(w) ⊆ {0, 1}∗ as the set of prefixes of w, including the
empty string ε and w itself. For technical reasons, we assume that for w ∈
{0, 1}λ, we have Pre(w) ⊆ {0, 1}λ+dlog(λ)e and |Pre(w)| = |w| + 1 to guarantee
that all prefixes have the same length and to differentiate them uniquely.5 We
also assume that the verification key vk corresponding to a secret key sk can
easily be derived from sk. Now, we define our signature scheme (KGen, Sign, Vf)
as depicted in Fig. 13.6.

Thus, our amalgamation function here only follows the amalgamation func-
tions of the underlying primitives while not introducing additional trusted op-
erations besides handing in and outputs from one primitive to another.

4By applying the aforementioned iterative process for each value between 2λ and λ
5This prevents complications and allows us to identify each prefix uniquely.

124

KGen(1λ)

(sk, vk)← KGenOTS(1λ)
kkeys ← KGenPRF(1λ)
ksigs ← KGenPRF(1λ)
khashs ← KGenPRF(1λ)
return ((sk, kkeys, ksigs, khashs), vk)

Vf(vk, m, σ)
Parse σ as (σm, vkm, (σw, sw, vkw‖0,

vkw‖1)w∈Pre(m)\{m}))
vkε = vk
for w ∈ Pre(m) \ {m}

bw = VfOTS(vkw, Hsw(vkw‖0‖vkw‖1), σw)
bm = VfOTS(vkm, m, σm)
return

∧
w∈Pre(m)

bw

Sign((sk, kkeys, ksigs, khashs), m)
skε = sk
vkε = vk
for w ∈ Pre(m) \ {ε}

rw = F (kkeys, w)
(skw, vkw) = KGenOTS(1λ; rw)

for w ∈ Pre(m) \ {m}
rw,h = F (khashs, w)
sw = Gen(1λ; rw,h)
rw = F (ksigs, w)
σw = SignOTS(skw, Hsw(vkw‖0‖vkw‖1); rw)

rm = F (ksigs, m)
σm = SignOTS(skm, m; rm)
return (σm, (σw, sw, vkw‖0,

vkw‖1)w∈Pre(m)\{m})

Figure 13.6: Our proposed signatures scheme.

Theorem 20. Given a subversion-resilient one-time signature scheme Σ̂ =
(AmΣ, KGenOTS, SignOTS, VfOTS) a subversion-resilient target-collision-resistant
hash function family Ĥ = (AmH, Gen, H), and a subversion-resilient PRF F̂ =
(AmF , KGenPRF, F), then the specification (Am, Σ̂, Ĥ, F̂) where the amalgamation
build the signature scheme as displayed in Fig. 13.6 is a stateless, subversion-
resilient existentially unforgeable digital signature scheme in the offline watchdog
with trusted amalgamation where all algorithms are subject to subversion, as-
suming randomness generation is part of the trusted amalgamation.

In the following proof, we follow the proof by Naor and Yung [NY89], but
we need to adapt the proof somewhat. First, Naor and Yung only considered a
stateful signature, while our use of the PRF makes the complete construction
stateless. Furthermore, we must ensure that we reduce the security to the
subversion-resilience of the building blocks rather than their original security
properties, as we only work with the (possibly) subverted implementation here
and not with the specification.

Proof. As a first step, the watchdog for the signature scheme simply runs the
watchdog of all building blocks, i.e., of the one-time signature, the watchdog of
the hash function, and the watchdog of the PRF. Note that subversion-resilience
of key generation either follows from Lemma 1, or in the case of PRFs due to
the access of uniformly random bits, which can directly be used as keys. If none

125

of these watchdogs detect a subversion, we follow an adaption of the proof by
Naor and Yung [NY89].

Now, we replace the values generated by the PRF with completely random
strings, i.e., all strings rw, rw,h, and rm are now independent random strings
that are stored by the system for reuse in case that the values are needed again.
Suppose this would be distinguishable from the setting where the PRF is used.
In that case, we can easily build an attacker against the subversion-resilience
of the PRF by simulating all other parts of the construction. We also ignore
cases where some randomly chosen values (random strings or keys) collide, as
this only happens with negligible probability.

Let Asigs be an attacker against the subversion-resilience of the signature
scheme that is successful with non-negligible probability 1/p(λ) for some non-
negligible function p. In the following, we now show that such an attacker implies
the existence of an attacker AOTS against the one-time signature and an attacker
Ahashs against the hash function such that at least one of these attackers is also
successful with non-negligible probability. AsASIG wins the subversion-resilience
game with non-negligible probability, it outputs a valid message-signature pair
(M∗, σ∗) with M∗ 6∈ QM with non-negligible probability. Here, QM is the set of
messages for which A queried its signing oracle. Let QS be the set of signatures
returned by the signing oracles. By definition, for each M ∈ QM and each corre-
sponding answer σ ∈ QS, we have σ = (σM , (σw, sw, vkw‖0, vkw‖1)w∈Pre(M)\{M}).
Similarly, we also have σ∗ = (σ∗

m∗ , (σ∗
w∗ , sw∗ , vkw∗‖0, vkw∗‖1)w∗∈Pre(m∗)\{m∗}). By

construction of the verification algorithm, a successfully forged signature σ∗

must contain a tuple (σ∗
w∗ , sw∗ , vkw∗‖0, vkw∗‖1) that is not contained in any sig-

nature in QS. Now, we need to distinguish two cases.
If Hsw∗ (vkw∗‖0‖vkw∗‖1) 6= Hsw∗ (vkw′‖0‖vkw′‖1) for all vkw′‖0 and vkw′‖1 contained

in the signatures in QS, we can construct an attacker AOTS against the one-time
signature. The attacker AOTS is given some verification key vk′ from the one-
time signature and simulates the complete security experiment, but instead of
sampling the key pair (skw∗ , vkw∗), it sets vkw∗ = vk′. To sign a message with
skw∗ , it uses its oracle to the signing algorithm of the one-time signature. Finally,
AOTS outputs the message-signature pair (M ′, σ′) = (Hsw∗ (vkw∗‖0‖vkw∗‖1), σ∗

w∗),
which is a valid pair as (M∗, σ∗) was a valid pair for the signature scheme. Fur-
thermore, as Hsw∗ (vkw∗‖0‖vkw∗‖1) 6= Hsw∗ (vkw′‖0‖vkw′‖1) holds for all verification
keys vkw′‖0 and vkw′‖1 contained in QS, the one-time signing oracle was never
queried on the value Hsw∗ (vkw∗‖0‖vkw∗‖1). Hence, (M ′, σ′) is a successful forgery
of the one-time signature.

If some signature in QS contains a tuple (σ∗
w∗ , sw∗ , vkw′‖0||vkw′‖1) with

Hsw∗ (vkw∗‖0||vkw∗‖1) = Hsw∗ (vkw′‖0‖vkw′‖1),

which was created by signing a message M ′, we can build the attacker Ahashs
against the hash function as follows: The attacker Ahashs simulates the complete
experiment but does not sample a hash function Hsw∗ . Instead, before Hsw∗

126

is evaluated during a signing operation of M ′, the attacker returns the value
vkw′‖0‖vkw′‖1 to the hash function challenge and then obtains a hash function h,
which will be used as Hsw∗ . Finally, the attacker AH outputs vkw∗‖0||vkw∗‖1. As
Hsw∗ (vkw∗‖0||vkw∗‖1) = Hsw∗ (vkw′‖0‖vkw′‖1), this is a valid collision of the hash
function keyed with sw∗ .

IfA wins the security experiment with probability p(λ) for some non-negligible
function p(λ), the attackerAOTS wins with probability pOTS(λ), and the attacker
Ahashs wins with probability phashs(λ), we have p(λ) ≤ pOTS(λ)+phashs(λ). Hence,
either AOTS or Ahashs is successful if A is successful.

13.9 Discussion
Efficiency. To provide a better evaluation of our results, we present an overview
of subversion-resilient signature constructions from literature in Table 13.1. The
table highlits that while our construction grants the strongest security in the
watchdog model, i.e., no random oracle and complete subversion, it also has the
biggest signature size. Note that for the reverse firewall (RF) model and the self-
guarding (SG) model, additional/other assumptions are applied (verifiability,
honest sample phase).

Table 13.1: Comparison of different approaches for subversion-resilient signature
schemes. Here σ denotes the size of an underlying signature scheme,
m denotes the length of the messages to be signed, and s is the size
of the key of our hash function.

Construction Model RO Complete Subv. Signature size Stateful subv.
[AMV15] RF 7 7 σ X
[FM18] SG 7 7 ≈ λ ·m + 2λσ 7

[RTYZ16] online WD X X m X
[CRT+19] offline WD X X m 7

[CRT+19] offline WD 7 7 2(m + σ) 7

This Thesis offline WD 7 X m(σ + |s|+ 2|vk|) + σ 7

It is well known that digital signatures can be constructed from one-way
and collision-resistant hash functions. Thus, we now discuss the construction of
subversion-resilient collision-resistant hash functions and explain why this seems
impossible if the hash function is not idealized as a random oracle.
Subversion-Resilient Collision Resistance via Black-Box Testing. Sim-
ilar to the case of weak PRFs (see Section 12.5) and one-way permutations (see
Section 13.6), one may hope that simply taking any hash function and testing it
sufficiently may already grant positive results. Unfortunately, this seems impos-
sible. Consider an adversary which provides an implementation H̃ of H, which
only differ for two values m0, m1 from H in the sense that H̃(m0) = 0 = H̃(m1).

127

Any watchdog that samples messages from the (finite) domain6 of the hash func-
tion uniformly at random only has negligible probability in testing for m0 or m1.
Conversely, the adversary can trivially output a collision by outputting m0, m1.
While this observation is not very involved, to the best of our knowledge, it was
not yet formally written down in previous works.
Implications for Signatures. In teaching books for modern cryptography,
such as [KL14], the construction of Naor-Yung is often displayed by utilizing
collision-resistant hash functions instead of target-collision-resistant hash func-
tions. This is useful from a teaching perspective, as collision resistance is in-
troduced in courses, and there is little benefit in introducing target-collision
resistance if only the Naor-Yung construction is considered. While the classical
setting makes little difference in which notion is used, the distinction between
these two notions is crucial in the subversion setting. As the stronger notion
seems impossible to achieve, the weaker and sufficient property allows for the
subversion-resilient construction.
Subversion-Resilient Hash Functions via Combiners. One may wonder
whether one can use a similar approach proposed in Part I and use cryptographic
combiners to obtain a subversion-resilient hash function. However, this approach
also seems futile. This is because even if we can guarantee that at least one
instance (or even more instances) does not deviate from the specification, it
seems hard to argue how this can be used to say that finding collisions is hard
without assuming some pseudorandomness of hash values. This is which is why
random oracles are helpful in this regard, as they fulfill this requirement.
Randomized Subversion. Following previous works, we assume that the
subverted implementation of deterministic algorithms is also deterministic. Note
that our proof for subversion-resilient one-way function can be adapted to allow
the implementation of the one-way permutation to be potentially randomized.
This is possible because the subverted algorithm is also executed once during
the final check of the security game. In security games, where the subverted
algorithm is executed multiple times, a careful analysis is required to determine
whether this can also be allowed. We refrained from investigating this further
as we focused on our main contributions, leaving this an exciting direction for
future research.
Correctness. Note that both of our signature construction satisfies our cor-
rectness definition, even under subversion, but not perfect correctness. This
is because after the testing of the watchdog Lemma 1 can be used to argue
that only for negligible many inputs correctness is violated. Unfortunately,
our approach cannot achieve perfect correctness (as achieved by the symmetric
encryption construction in Section 12.7). We suspect that (polynomial time)
offline watchdogs can not achieve perfect correctness, as even a single trigger
is sufficient to violate perfect correctness. To the best of our knowledge, there

6As it is the case for tree-based signatures

128

are no constructions available that could make similar use of a trusted XOR
as in Section 12.7 or other operations that allow to cancel terms out during
verification.

129

Part III

Conclusion

We conclude this thesis by discussing our results and pointing out
open problems for further research.

131

14 Discussion
Our results indicate that achieving stronger notions of subversion-resilience
comes with the price of decreased efficiency, as in bigger keys, ciphertexts, or
signatures. While this seems like a big downside, we must remind ourselves that
we are dealing with a security model with arguably one of the most powerful
adversaries in the context of cryptography. Achieving security at all against an
adversary that is in control over the whole implementation is a big challenge.
Hopefully, after showing the general feasibility, our results can enable future
research to improve our schemes and develop schemes with better efficiency
or fewer assumptions. Thus, we now discuss our results further and propose
directions for future research before concluding this thesis.
Outline. In Section 14.1 we continue by comparing the offline watchdog model
to other models found in the literature. Afterwards in Section 14.2, we discuss
our results of the previous chapters with regard to their limitations, instan-
tiations, and alternative approaches. Further, we discuss open problems for
future research in Section 14.3. We propose approaches for further improving
our results, unifying existing techniques and approaches, and directions for com-
pletely new approaches. Finally, we briefly summarize and conclude this thesis
in Section 14.4.

14.1 Offline Watchdogs vs. Alternative Models
As mentioned before, all our constructions are proven secure in an offline watch-
dog model. Since the different models are based on completely different assump-
tions, we emphasize that neither model is strictly better than the other. We
firmly believe that being aware of all these aspects and having various available
tools can enable us to make better-informed decisions about which approach fits
an application best.
Reverse Firewalls. If we compare watchdogs to reverse firewalls, we no-
tice both models have advantages and disadvantages. Usually, RFs can handle
public-key primitives well, while watchdogs handle symmetric primitives well.
This does not mean that they cannot handle the other types of primitives.
However, as demonstrated by various works (including this one), additional as-
sumptions are usually required, or an efficiency loss occurs. In our model, we
assume a trusted watchdog has fine-grained access to the used building blocks,
and we require a trusted amalgamation. RFs on the other hand require that
the reverse firewall itself is not subverted and potentially requires the RF to

133

self-destruct for input it cannot process. Then again, reverse firewalls can easily
handle stateful subversion, while offline watchdogs need to depend on the ad-
versary to defend against this type of attacks. Depending on the application, it
is crucial to carefully evaluate which assumption can be better justified.
Self-Guarding Algorithms. Self-guarding algorithms [FM18] use a sampling
phase, where the algorithm still computes outputs according to the specifica-
tion. To employ this in practice, one would need to ensure that such a phase
can indeed be guaranteed. We suspect that this would potentially be viable if
somehow some guarded environment can be created to collect these backdoor-
free samples. Self-guarding algorithms are similar to the watchdog model in
the sense that both assume that some operations are exempt from subversion.
In our model, these are all operations within the trusted amalgamation. For
self-guarding algorithms, on the other hand, these are all algorithms, although
only during the trusted sample phase. However, for some primitives, such as
public-key encryption, the number of sanitized outputs is limited by the num-
ber of collected samples, which reduces the practicality of the self-guarding
algorithms.
Immunization. In the immunization model of Dodis et al. [DGG+15] some
immunization function that is exempt from subversion is applied to the output
of pseudorandom generators. Thus, they use the leverage that the construction
can rely on the act that the immunization function indeed behaves as specified.
Thus, they differentiate to which degree the adversary is aware of the immuniza-
tion function. In contrast, our approach aims to guarantee that the behavior
of some implementations is in accordance with a specification without applying
operations after the implementation produces an output.

14.2 Our Results

Limitations of Our Approach. While advancing the state-of-the-art in
subversion-resilient cryptography, our results come with a few limitations. All
our results are in the trusted amalgamation model, which requires more fine-
grained testing access beyond black-box access. Additionally, we make use of
several trusted operations, although these seem necessary in the presence of
generic attacks. Also, we can not defend against stateful subversion attacks
as we only consider universal watchdogs which are independent of the adver-
sary. That being said, all these assumptions seem necessary to achieve our
obtained security guarantees. If we remove the trusted amalgamation model or
the trusted operations, generic attacks such as input triggers on the receiving
algorithm are possible. Thus, we aimed to minimize the necessary trust assump-
tions as best as possible while avoiding using “cryptographic operations”, such
as hashing, as a trusted operation.

134

Concrete Instantiations and Minimal Assumptions. In both parts of this
thesis, we start from generic building blocks (one-way KEMs, weak PRFs, one-
wy permutations) and build more complex primitives with them as a foundation.
This allows us to plug in any concrete instantiation with the required security
guarantees. The way our watchdogs are defined, the exact details of the used
scheme do not matter for testing as long as the input and output behavior is
specified. So, the natural question is whether watchdogs for specific schemes
would, for example, allow for schemes with fewer assumptions. However, the
problem arises regarding to which degree operations can be usefully modeled
as trusted operations. We argue that trusted operations, such as an XOR or
a comparison, are “simple enough” such that it can be assured that they are
not subverted. If one would consider specific schemes using, for example, cyclic
groups, one could argue that one could apply the trusted amalgamation model
and require such fine-grained access that the watchdog can even test group
operations. If such an approach would lead to a secure scheme, this would most
likely only grant very few meaningful results, as the adversary’s power is severely
limited. We believe that operations like an XOR or a comparison, which are
“non-cryptographic”, form a useful middle ground between requiring more fine-
grained access than only black-box access and minimizing the required access
as best as possible.

Code Verification vs Watchdogs. While some may suggest that verifying
the software against specifications can resolve the issue of backdoors, it’s worth
noting that the complete code of some widespread schemes may not be accessible
as they are closed-source. Also, obfuscating the code could also make this
approach more challenging than it initially appears. Additionally, our watchdog
model actually does not require access to a complete description of the in- and
output behavior. It suffices to obtain information on the values sampled by
the watchdog during its testing phase. This is captured by our models, as the
watchdog is only given oracle access to the specification.

Stego-Freeness vs Subversion-Resilience. In the security proofs for both
our constructions in Part II, we always prove the subversion resilience of a
building block to then argue for the subversion resilience of the overall scheme.
Russell et al. [RTYZ17] proposed the notion of stego-freeness. This notion
describes a scenario where an adversary cannot distinguish between an algo-
rithm’s implementation and specification. The authors presented various ver-
sions of stego-freeness, differing on whether the adversary can choose the algo-
rithm’s inputs freely or if they’re chosen based on a known distribution. Their
approach to achieving subversion-resilient CPA secure encryption involves re-
placing all building blocks of an encryption scheme with their specification and
then playing the security game with the amalgamated specification. Security
is guaranteed by the security of the specification, and their analysis is based
on their asymptotic framework and conditioned on the implementation passing
the watchdog’s testing. However, in our concrete security model of Part I, this

135

approach creates issues with security notions that involve indistinguishability.
After the watchdog’s tests, we lack a similar “baseline” to argue for security.
Our construction allows the adversary to always distinguish between the imple-
mentation and specification in our model. Nevertheless, when only considering
one-way security, we do not need a similar notion of stego-freeness in our model.
For our analysis, the event that one instance follows the specification is sufficient.
On the other hand, we want to mention that parts of our results from Part II
could be reworked to utilize stego-freeness instead of subversion-resilience. Ba-
sically, the proofs would change because if one could show that certain building
blocks could be replaced with their specification, the original security proofs
hold without redoing the security proof with the subversion-resilient property.
That being said, the above does not apply to all our used building blocks, for
example, the decryption algorithm of the symmetric encryption scheme. Over-
all, proving our results via stego-freeness would introduce notational overhead
to correctly model our use of subversion-resilience, as we aimed to show the
subversion resilience of all building blocks anyway.

14.3 Open Problems
While this thesis proposes advancements in the field of subversion, many inter-
esting open problems remain for the future. Here, we want to discuss some of
these possible research directions.
Building on Our Results. A natural question is if it is possible to further
improve our constructions. Improvement can, for example, mean achieving the
same security notions while using fewer assumptions or improving the schemes’
efficiency to match modern schemes’ efficiency better. In case our work al-
ready proposes the minimal amount of trusted operations or the “least complex”
trusted operations, the task would be to formally prove this, requiring adequate
formalizations of the above statements.

We already observed in Part II, that we used a very similar approach and
techniques for both our constructions of authenticate encryption and digital sig-
natures. The question becomes whether we can achieve general theorems of the
form: “If we take a construction for a cryptographic scheme and prove all build-
ing blocks subversion-resilient, then the resulting construction is also subversion-
resilient”. Similar results were shown by Chakraborty, Magri, Nielsen, and Ven-
turi [CMNV22] in the UC (Universal Composability) model for constructions
in the reverse firewall model. A theorem of the above form could be incredi-
bly useful in proving TLS-like protocols subversion-resilient. Speaking of which,
this thesis provides the necessary building blocks for a TLS-like protocol: KEMs
for exchanging key material digital signatures and MACs for guaranteeing in-
tegrity and authenticity, as well as authenticated encryption for guaranteeing
confidentiality. However, when considering the subversion-resilience of TLS, the
question of how to handle states under subversion arises. This is important not

136

only when dealing with stateful subversion but also when dealing with notions
like forward security, a standard security property of TLS. Roughly speaking,
forward security means that given access to the current state of a party, past
communication remains secure. Updating the secret key material in a “save”
manner while deleting old key material can lead to forward security. A simple
subversion attack could be that an adversary does not erase old key material.
Additionally, as demonstrated by Berndt et al. [BWP+22], forward secrecy im-
plies ASAs. One possible approach to prevent these attacks would be to limit
the space available to the adversary. Thus, it can use the disk space reserved
by the non-subverted scheme in any way it wishes but does not get access to
save more data. This could be motivated by operating systems that prevent
applications from arbitrarily allocating disk additional disk space. Thus, the
adversary could store different keys then computed by the specification. This
could, in turn, lead to detection, as the adversary might be unable to continue
the protocol correctly. The detection model would thus need to formally in-
corporate this. Other possible approaches would be to adjust the state-leaking
oracle so that the adversary cannot access the saved old key material. However,
it is not clear how this could be achieved or motivated.

A similar question arises if we consider the subversion of modern instant mes-
saging protocols. So far, prior work only considered subversion attacks on these
protocols [BWP+22, CEJ23], and possible countermeasures against their specific
attacks. However, to the best of our knowledge, no Instant Messaging proto-
col has yet proven to be subversion-resilient. It’s an interesting and important
question: Which properties of modern messaging protocols can be guaranteed
under subversion? Can existing protocols achieve this property, can they be
adapted to achieve them, or are entirely new protocols needed? We hope that
the building blocks proposed in this thesis can help as a foundation for this line
of research.

Complete Subversion with Practical Watchdogs. Our results of Part I
do not require random oracles while also allowing the adversary to provide
the implementation for all algorithms relevant to the security experiment (thus
excluding decapsulation/decryption). Thus, one could potentially argue that
also the results Part I achieve subversion-resilience under complete subversion
without random oracles. However, as prior results by Russell et al. [RTYZ17]
could also be interpreted this way, we focus only on the practical aspects of the
watchdog.

Countermeasures against Stateful Subversion for Offline Watchdogs.
More generally, finding new countermeasures against stateful subversion in a
universal offline watchdog model would also be incredibly useful, even at the
cost of some other, additional assumption. So far, only reverse firewalls and
online watchdogs with access to the state can effectively defend against stateful
subversion. Russell [RTYZ16] et al. proposed a way that offline watchdogs can
also defend against stateful attacks if the runtime of the watchdog is allowed

137

to depend on the adversary. However, then one would consider non-universal
watchdogs, which we aimed to avoid. Defending against stateful subversion
with a universal offline watchdog whose running time is independent of the
adversary seems impossible without further assumptions. This is because of
the aforementioned time-bomb attacks. If the watchdog runs for time t, but
the implementation of the adversary only diverts from the specification at time
t + 1, this attack can not be detected. Thus, the question is how this simple
but generic attack can be circumvented by additional assumptions, such as a
regular state reset done in a trusted manner. Such an approach is known from
the field of hardware trojans. Dziembowski, Faust, and Standaert [DFS16]
guard deterministic functions by proposing a semi-online watchdog (which they
did not refer to as such) that regularly tests tokens against the specification.
It’s interesting whether similar or completely different techniques could be used
in a formal watchdog model to prove randomized schemes subversion-resilient.
Combining Watchdogs and Reverse Firewalls. A different approach to
tackle the subversion-resilience of, for example, TLS-like protocols would be to
combine a reverse firewall and a watchdog approach. The usual intuition is that
reverse firewalls work well for public-key primitives that are rerandomizeable.
At the same time, watchdogs generally fit a symmetric and non-rerandomize-
able scheme better (“well” and “better” referring to either fewer assumptions
or better efficiency). Thus, instead of forcing a complete protocol to use only
one of the two, it would seem natural to combine the approaches. The reverse
firewall handles the key exchange/agreement while the watchdog handles the
primitives utilizing these keys. Again, generic results similar to UC-style results
would be preferable, with an appropriate model combining reverse firewalls and
watchdogs. Ultimately, comparing this approach to constructions using solely
a watchdog or reverse firewall approach is an interesting direction for future
research.
Combiners. In Part I, we saw that cryptographic combiners can achieve sub-
version-resilient one-way secure KEMs. Thus, the question becomes whether
a similar approach can be used for other primitives with security properties
modeled as search problems. Obvious candidates are the primitives considered
in Part II. It is known from previous works that combiners exist for one-way
functions as presented by Harnik, Kilian, Naor, Reingold, and Rosen [HKN+05]
and hash functions as proposed by Fischlin, Lehmann, and Pietrzak [FLP14],
although both approaches double the output size of the primitive by simply
concatenating the outputs of two instances. Another important question is
whether repeated oracle access introduces further complications, as discussed
in Chapter 9. Thus, it needs to be investigated whether similar results to our
results of Part II can also be achieved in a concrete security setting with efficient
watchdogs using the aforementioned combiners.
Post-Quantum. There are several works that outline attacks on post-quantum
schemes [YCL+20, GG19, JHZ+23]. Yang, Chen, Li, Qu, and Yang [YCL+20]

138

mention in their work that existing approaches [MS15, RTYZ17, RTYZ16], can
be used to prevent their attack. While our and prior work allows for cur-
rent post-quantum schemes to be plugged in as a building block as we build
upon generic building blocks, investigating whether existing schemes can already
achieve subversion-resilience with fewer assumptions as compared to generic ap-
proaches is a possible direction for future work.
MPC. So far, several works [MS15, CGPS21, CDN20, CMNV22] proposed ap-
proaches multi-party computation (MPC) protocols with reverse firewalls exist.
Investigating whether similar results can be achieved in a watchdog model would
be interesting. For this, an adequate model is required that clearly defines the
adversaries’ capabilities. Some form of subversion is already built in some MPC
models. This is because it makes little difference whether the adversary com-
pletely controls a party or that party uses a subverted implementation. Addi-
tionally, security against covert security as introduced by Aumann and Lindell
[AL07] is already an established security notion. Covert security captures that
honest parties are guaranteed to detect any misbehavior by a malicious party
with a constant probability. Thus, the honest parties participating in such an
MPC protocol could be viewed as online watchdogs. Investigating relations to
online and offline watchdog models, as well as whether covert security directly
translates to subversion resilience is an interesting open question.
More Parameters for Detection. In our models and constructions, the
watchdogs compare the input and output behavior of the specification and the
implementation. Although we require fine-grained access to the used building
block to achieve strong security notions, we do not need more intrusive access,
as, for example, direct access to the code. Note, however, that other param-
eters can be considered when modeling a watchdog. Since the watchdog can
access a building block’s input and outputs, it might not be far-fetched that
other information is also available. This could, for example, include the run-
time of an algorithm or the power consumption of an implementation. Taking
the example of the von Neumann extractor or subversion attacks via rejection
sampling, the runtime of the subverted algorithm might be much higher than
the runtime of the specification. In an offline watchdog model, this information
might be easy to obtain. On the other hand, an online watchdog that requires
constant monitoring of the runtime of algorithms and power consumption is
much more intrusive. Fishlin and Mazaheri [FM18] used the runtime of sub-
verted algorithms to argue that weak PRFs can not be subverted without being
detected. However, their security model does not formally capture this. Thus,
it is an exciting problem to formally model these additional parameters, give the
watchdog access to this new information, and investigate whether this allows
simpler constructions with a stronger watchdog.
Moving to the Real World. While our research grants further theoretical
insights, seeing how our constructions perform in the real world would be desir-
able. Especially how our assumptions on trusted operations could, for instance,

139

be realized in software or hardware. Overall, our constructions are much less
efficient than current state-of-the-art constructions. The question is whether
this loss is acceptable for certain applications. For instance, we would suspect
that investigative journalists or whistleblowers would be willing to accept if their
communication takes longer but can be certain that their means of communica-
tion is subversion-resilient.

14.4 Conclusion
In this thesis, we identify key aspects that we consider critical for subversion-
resilient schemes to be practical. In Part I we focus on efficient testing in offline
watchdog models. We propose a security model in a concrete security setting.
Within this model, we construct a subversion-resilient randomness generator
with constant testing time and a subversion-resilient one-way public-key encryp-
tion scheme with linear testing time. As our primary technique, we use combin-
ers for KEMs to construct subversion-resilient one-way KEMs using a trusted
XOR, which also allows the construction of subversion-resilient one-way public-
key encryption. Thus, we propose the first cryptographic constructions with
efficient watchdogs. We also showed that the claimed results on indistinguisha-
bility of a previous version of our results were impossible to achieve with our pro-
posed approach. In Part II, we change the focus to designing subversion-resilient
schemes, where all practically relevant algorithms are subject to subversion while
not using idealized primitives as building blocks. Due to the limitations of our
model in Part I, we use an asymptotic security setting and focus on construct-
ing subversion-resilient schemes under complete subversion without random or-
acles. Ultimately, we propose the first construction of authenticated encryption
where implementations for both the encryption and decryption algorithm are
provided by the adversary and digital signatures where all algorithms are sub-
ject to subversion, both without random oracles. Our constructions follow the
same approach, building the primitives from smaller, symmetric primitives. We
observe weak PRFs and one-way-permutation are naturally subversion-resilient
(with one-way-permutation granting subversion-resilient one-way functions) in
our used models. This allows us to revisit classical results from cryptography in
the context of subversion. In detail, we see that the classical Encrypt-then-MAC
approach grants subversion-resilient authenticated encryption and Naor-Yung
signatures can be constructed in a subversion-resilient manner. Both times, we
prove various other important building blocks such as symmetric encryption,
MACs, and target-collision-resistant hash functions subversion-resilient along
the way. All our results are in the trusted amalgamation and split-program
model and only require a few simple operations, such as an XOR, trusted com-
parison, or a trusted data structure, but do not rely on random oracles. This
thesis makes steps toward more practical subversion-resilient schemes without
random oracles.

140

While we deem it unlikely that our proposed construction will be rolled out on
a grander scale due to the increased key and output size, we hope that our con-
tributions can help enable future research to design truly practical subversion-
resilient schemes that find widespread use in practice.

141

Bibliography
[ABK+07] Dakshi Agrawal, Selçuk Baktir, Deniz Karakoyunlu, Pankaj Ro-

hatgi, and Berk Sunar. Trojan detection using IC fingerprinting.
In 2007 IEEE Symposium on Security and Privacy, pages 296–310,
Oakland, CA, USA, May 20–23, 2007. IEEE Computer Society
Press. doi:10.1109/SP.2007.36.

[AFMV19] Giuseppe Ateniese, Danilo Francati, Bernardo Magri, and Daniele
Venturi. Public immunization against complete subversion with-
out random oracles. In Robert H. Deng, Valérie Gauthier-Umaña,
Martín Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of
LNCS, pages 465–485, Bogota, Colombia, June 5–7, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-21568-2_23.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert ad-
versaries: Efficient protocols for realistic adversaries. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 137–156,
Amsterdam, The Netherlands, February 21–24, 2007. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-540-70936-7_8.

[ALSZ21] Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Za-
jac. On subversion-resistant SNARKs. Journal of Cryptology,
34(3):17, July 2021. doi:10.1007/s00145-021-09379-y.

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi.
Subversion-resilient signature schemes. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015, pages
364–375, Denver, CO, USA, October 12–16, 2015. ACM Press.
doi:10.1145/2810103.2813635.

[AP19] Marcel Armour and Bertram Poettering. Subverting decryption in
AEAD. In Martin Albrecht, editor, 17th IMA International Con-
ference on Cryptography and Coding, volume 11929 of LNCS, pages
22–41, Oxford, UK, December 16–18, 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-35199-1_2.

[AP22] Marcel Armour and Bertram Poettering. Algorithm substitution
attacks against receivers. Int. J. Inf. Sec., 21(5):1027–1050, 2022.

143

https://doi.org/10.1109/SP.2007.36
https://doi.org/10.1007/978-3-030-21568-2_23
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1007/978-3-030-35199-1_2

[AS21] Behzad Abdolmaleki and Daniel Slamanig. Subversion-resistant
quasi-adaptive NIZK and applications to modular zk-SNARKs. In
Mauro Conti, Marc Stevens, and Stephan Krenn, editors, CANS
21, volume 13099 of LNCS, pages 492–512, Vienna, Austria, De-
cember 13–15, 2021. Springer, Heidelberg, Germany. doi:10.100
7/978-3-030-92548-2_26.

[Bag19] Karim Baghery. Subversion-resistant simulation (knowledge) sound
nizks. In Martin Albrecht, editor, Cryptography and Coding - 17th
IMA International Conference, IMACC 2019, Oxford, UK, Decem-
ber 16-18, 2019, Proceedings, volume 11929 of Lecture Notes in
Computer Science, pages 42–63. Springer, 2019. doi:10.1007/97
8-3-030-35199-1_3.

[Bag20] Karim Baghery. Subversion-resistant commitment schemes: Def-
initions and constructions. In Konstantinos Markantonakis and
Marinella Petrocchi, editors, Security and Trust Management - 16th
International Workshop, STM 2020, Guildford, UK, September 17-
18, 2020, Proceedings, volume 12386 of Lecture Notes in Computer
Science, pages 106–122. Springer, 2020. doi:10.1007/978-3-030-
59817-4_7.

[BBB+17] Pascal Bemmann, Felix Biermeier, Jan Bürmann, Arne Kemper,
Till Knollmann, Steffen Knorr, Nils Kothe, Alexander Mäcker,
Manuel Malatyali, Friedhelm Meyer auf der Heide, Sören Riech-
ers, Johannes Schaefer, and Jannik Sundermeier. Monitoring of
domain-related problems in distributed data streams. In Structural
Information and Communication Complexity - 24th International
Colloquium, SIROCCO 2017, Porquerolles, France, June 19-22,
2017, Revised Selected Papers, volume 10641 of Lecture Notes in
Computer Science, pages 212–226. Springer, 2017.

[BBC24] Pascal Bemmann, Sebastian Berndt, and Rongmao Chen.
Subversion-resilient signatures without random oracles. In Applied
Cryptography and Network Security - 22nd International Confer-
ence, ACNS 2024, Abu Dhabi, United Arab Emirates, 2024. To
appear..

[BBCJ23] Pascal Bemmann, Sebastian Berndt, Rongmao Chen, and Tibor
Jager. Subversion-resilient public key encryption with practical
watchdogs. Cryptology ePrint Archive, Paper 2021/230, 2023.
URL: https://eprint.iacr.org/archive/2021/230/20231011:
061958.

[BBD+23] Pascal Bemmann, Sebastian Berndt, Denis Diemert, Thomas Eisen-
barth, and Tibor Jager. Subversion-resilient authenticated encryp-

144

https://doi.org/10.1007/978-3-030-92548-2_26
https://doi.org/10.1007/978-3-030-92548-2_26
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-030-59817-4_7
https://doi.org/10.1007/978-3-030-59817-4_7
https://eprint.iacr.org/archive/2021/230/20231011:061958
https://eprint.iacr.org/archive/2021/230/20231011:061958

tion without random oracles. In Applied Cryptography and Net-
work Security - 21st International Conference, ACNS 2023, Kyoto,
Japan, June 19-22, 2023, Proceedings, Part II, pages 460–483, 2023.
doi:10.1007/978-3-031-33491-7_17.

[BBF+20] Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina
Onete, and Thyla van der Merwe. Designing reverse firewalls for the
real world. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A.
Schneider, editors, ESORICS 2020, Part I, volume 12308 of LNCS,
pages 193–213, Guildford, UK, September 14–18, 2020. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-58951-6_10.

[BC10] Bazara I. A. Barry and H. Anthony Chan. Intrusion detection
systems. In Peter P. Stavroulakis and Mark Stamp, editors, Hand-
book of Information and Communication Security, pages 193–205.
Springer, 2010. doi:10.1007/978-3-642-04117-4_10.

[BCJ21] Pascal Bemmann, Rongmao Chen, and Tibor Jager. Subversion-
resilient public key encryption with practical watchdogs. In Juan
Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages
627–658, Virtual Event, May 10–13, 2021. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-75245-3_23.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway.
A concrete security treatment of symmetric encryption. In 38th
FOCS, pages 394–403, Miami Beach, Florida, October 19–22, 1997.
IEEE Computer Society Press. doi:10.1109/SFCS.1997.646128.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs
with an untrusted CRS: Security in the face of parameter sub-
version. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804,
Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-662-53890-6_26.

[BG13] James Ball Julian Borger and Glenn Greenwald. Revealed: how
us and uk spy agencies defeat internet privacy and security, 2013.
URL: https://www.theguardian.com/world/2013/sep/05/nsa-
gchq-encryption-codes-security [cited 29.10.2023].

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance
without the state: Strongly undetectable algorithm-substitution at-
tacks. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, edi-
tors, ACM CCS 2015, pages 1431–1440, Denver, CO, USA, Octo-
ber 12–16, 2015. ACM Press. doi:10.1145/2810103.2813681.

145

https://doi.org/10.1007/978-3-031-33491-7_17
https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-642-04117-4_10
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/978-3-662-53890-6_26
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://doi.org/10.1145/2810103.2813681

[BL17] Sebastian Berndt and Maciej Liskiewicz. Algorithm substitution
attacks from a steganographic perspective. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, edi-
tors, ACM CCS 2017, pages 1649–1660, Dallas, TX, USA, Oc-
tober 31 – November 2, 2017. ACM Press. doi:10.1145/313395
6.3133981.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correcting with applications to numerical problems. In 22nd
ACM STOC, pages 73–83, Baltimore, MD, USA, May 14–16, 1990.
ACM Press. doi:10.1145/100216.100225.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryp-
tion: Relations among notions and analysis of the generic compo-
sition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545, Kyoto, Japan, December 3–7,
2000. Springer, Heidelberg, Germany. doi:10.1007/3-540-44448-
3_41.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryp-
tion: Relations among notions and analysis of the generic compo-
sition paradigm. Journal of Cryptology, 21(4):469–491, October
2008. doi:10.1007/s00145-008-9026-x.

[Boo47] George Boole. The mathematical analysis of logic. Philosophical
Library, 1847.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Secu-
rity of symmetric encryption against mass surveillance. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, vol-
ume 8616 of LNCS, pages 1–19, Santa Barbara, CA, USA, Au-
gust 17–21, 2014. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-44371-2_1.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Dorothy E. Den-
ning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria
Ashby, editors, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press. doi:10.1145/168588.168596.

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three
decades later. In Yehuda Lindell, editor, Tutorials on the Founda-
tions of Cryptography, pages 79–158. Springer International Pub-
lishing, 2017. doi:10.1007/978-3-319-57048-8_3.

[BWP+22] Sebastian Berndt, Jan Wichelmann, Claudius Pott, Tim-Henrik
Traving, and Thomas Eisenbarth. ASAP: Algorithm substitution

146

https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1145/100216.100225
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-319-57048-8_3

attacks on cryptographic protocols. In Yuji Suga, Kouichi Saku-
rai, Xuhua Ding, and Kazue Sako, editors, ASIACCS 22, pages
712–726, Nagasaki, Japan, May 30 – June 3, 2022. ACM Press.
doi:10.1145/3488932.3517387.

[CDN20] Suvradip Chakraborty, Stefan Dziembowski, and Jesper Buus
Nielsen. Reverse firewalls for actively secure MPCs. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 732–762, Santa Barbara, CA, USA,
August 17–21, 2020. Springer, Heidelberg, Germany. doi:10.100
7/978-3-030-56880-1_26.

[CEJ23] Benoît Cogliati, Jordan Ethan, and Ashwin Jha. Subverting tele-
gram’s end-to-end encryption. IACR Trans. Symmetric Cryptol.,
2023(1):5–40, 2023. URL: https://doi.org/10.46586/tosc.v2
023.i1.5-40, doi:10.46586/TOSC.V2023.I1.5-40.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004. doi:10.1
145/1008731.1008734.

[CGPS21] Suvradip Chakraborty, Chaya Ganesh, Mahak Pancholi, and Pratik
Sarkar. Reverse firewalls for adaptively secure MPC without
setup. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part II, volume 13091 of LNCS, pages 335–364,
Singapore, December 6–10, 2021. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-92075-3_12.

[CHY20] Rongmao Chen, Xinyi Huang, and Moti Yung. Subvert KEM to
break DEM: Practical algorithm-substitution attacks on public-key
encryption. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 98–128,
Daejeon, South Korea, December 7–11, 2020. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-64834-3_4.

[CMG+16] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua
Fried, Shaanan Cohney, Matthew Green, Nadia Heninger, Ralf-
Philipp Weinmann, Eric Rescorla, and Hovav Shacham. A system-
atic analysis of the juniper dual EC incident. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 468–479, Vienna, Aus-
tria, October 24–28, 2016. ACM Press. doi:10.1145/2976749.29
78395.

[CMNV22] Suvradip Chakraborty, Bernardo Magri, Jesper Buus Nielsen, and
Daniele Venturi. Universally composable subversion-resilient cryp-

147

https://doi.org/10.1145/3488932.3517387
https://doi.org/10.1007/978-3-030-56880-1_26
https://doi.org/10.1007/978-3-030-56880-1_26
https://doi.org/10.46586/tosc.v2023.i1.5-40
https://doi.org/10.46586/tosc.v2023.i1.5-40
https://doi.org/10.46586/TOSC.V2023.I1.5-40
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1007/978-3-030-92075-3_12
https://doi.org/10.1007/978-3-030-64834-3_4
https://doi.org/10.1145/2976749.2978395
https://doi.org/10.1145/2976749.2978395

tography. In Orr Dunkelman and Stefan Dziembowski, editors, EU-
ROCRYPT 2022, Part I, volume 13275 of LNCS, pages 272–302,
Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-06944-4_10.

[CMY+16] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun Guo,
and Mingwu Zhang. Cryptographic reverse firewall via malleable
smooth projective hash functions. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS,
pages 844–876, Hanoi, Vietnam, December 4–8, 2016. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-53887-6_31.

[CRT+19] Sherman S. M. Chow, Alexander Russell, Qiang Tang, Moti Yung,
Yongjun Zhao, and Hong-Sheng Zhou. Let a non-barking watchdog
bite: Cliptographic signatures with an offline watchdog. In Dongdai
Lin and Kazue Sako, editors, PKC 2019, Part I, volume 11442 of
LNCS, pages 221–251, Beijing, China, April 14–17, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-17253-4_8.

[DCM+19] Emma Dauterman, Henry Corrigan-Gibbs, David Mazières, Dan
Boneh, and Dominic Rizzo. True2f: Backdoor-resistant authentica-
tion tokens. In 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019, pages 398–416.
IEEE, 2019. doi:10.1109/SP.2019.00048.

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A
more cautious approach to security against mass surveillance. In
Gregor Leander, editor, FSE 2015, volume 9054 of LNCS, pages
579–598, Istanbul, Turkey, March 8–11, 2015. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-48116-5_28.

[DFS16] Stefan Dziembowski, Sebastian Faust, and François-Xavier Stan-
daert. Private circuits III: Hardware trojan-resilience via testing
amplification. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 142–153, Vienna, Austria, October 24–28, 2016.
ACM Press. doi:10.1145/2976749.2978419.

[DGG+15] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels,
and Thomas Ristenpart. A formal treatment of backdoored pseu-
dorandom generators. In Elisabeth Oswald and Marc Fischlin, ed-
itors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
101–126, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-46800-5_5.

148

https://doi.org/10.1007/978-3-031-06944-4_10
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1109/SP.2019.00048
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1145/2976749.2978419
https://doi.org/10.1007/978-3-662-46800-5_5

[DIJK09] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valen-
tine Kabanets. Security amplification for interactive crypto-
graphic primitives. In Omer Reingold, editor, TCC 2009, vol-
ume 5444 of LNCS, pages 128–145. Springer, Heidelberg, Germany,
March 15–17, 2009. doi:10.1007/978-3-642-00457-5_9.

[DMS16] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz.
Message transmission with reverse firewalls—secure communica-
tion on corrupted machines. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
341–372, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-53018-4_13.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 10–18, Santa
Barbara, CA, USA, August 19–23, 1984. Springer, Heidelberg, Ger-
many.

[FJM18] Marc Fischlin, Christian Janson, and Sogol Mazaheri. Backdoored
hash functions: Immunizing HMAC and HKDF. In Steve Chong
and Stephanie Delaune, editors, CSF 2018 Computer Security
Foundations Symposium, pages 105–118, Oxford, UK, July 9–12,
2018. IEEE Computer Society Press. doi:10.1109/CSF.2018.000
15.

[FLP14] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust
multi-property combiners for hash functions. Journal of Cryptology,
27(3):397–428, July 2014. doi:10.1007/s00145-013-9148-7.

[FM18] Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic
protocols against algorithm substitution attacks. In Steve Chong
and Stephanie Delaune, editors, CSF 2018 Computer Security
Foundations Symposium, pages 76–90, Oxford, UK, July 9–12,
2018. IEEE Computer Society Press. doi:10.1109/CSF.2018
.00013.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, vol-
ume 10769 of LNCS, pages 315–347, Rio de Janeiro, Brazil,
March 25–29, 2018. Springer, Heidelberg, Germany. doi:10.1
007/978-3-319-76578-5_11.

[Gel] Barton Gellman. Edward snowden, after months of nsa revelations,
says his mission’s accomplished. URL: https://www.washington
post.com/world/national-security/edward-snowden-after-

149

https://doi.org/10.1007/978-3-642-00457-5_9
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1109/CSF.2018.00015
https://doi.org/10.1109/CSF.2018.00015
https://doi.org/10.1007/s00145-013-9148-7
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html

months-of-nsa-revelations-says-his-missions-accomplish
ed/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_sto
ry.html [cited 15.10.2023].

[GG19] Herman Galteland and Kristian Gjøsteen. Subliminal channels
in post-quantum digital signature schemes. Cryptology ePrint
Archive, Report 2019/574, 2019. https://eprint.iacr.org/
2019/574.

[GGM84a] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to con-
struct random functions (extended abstract). In 25th FOCS, pages
464–479, Singer Island, Florida, October 24–26, 1984. IEEE Com-
puter Society Press. doi:10.1109/SFCS.1984.715949.

[GGM84b] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryp-
tographic applications of random functions. In G. R. Blakley and
David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages
276–288, Santa Barbara, CA, USA, August 19–23, 1984. Springer,
Heidelberg, Germany.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM com-
biners. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part I, volume 10769 of LNCS, pages 190–218, Rio de Janeiro,
Brazil, March 25–29, 2018. Springer, Heidelberg, Germany. doi:
10.1007/978-3-319-76578-5_7.

[GMV20] Chaya Ganesh, Bernardo Magri, and Daniele Venturi. Crypto-
graphic reverse firewalls for interactive proof systems. In Artur
Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th In-
ternational Colloquium on Automata, Languages, and Program-
ming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference), volume 168 of LIPIcs, pages 55:1–55:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL:
https://doi.org/10.4230/LIPIcs.ICALP.2020.55, doi:
10.4230/LIPICS.ICALP.2020.55.

[Gre] Glenn Greenwald. Nsa collecting phone records of millions of ver-
izon customers daily. URL: https://www.theguardian.com/wo
rld/2013/jun/06/nsa-phone-records-verizon-court-order
[cited 15.10.2023].

[HFK+10] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K.
Martin, and Jonathan M. Smith. Overcoming an untrusted com-
puting base: Detecting and removing malicious hardware automat-
ically. In 2010 IEEE Symposium on Security and Privacy, pages

150

https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://eprint.iacr.org/2019/574
https://eprint.iacr.org/2019/574
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.4230/LIPIcs.ICALP.2020.55
https://doi.org/10.4230/LIPICS.ICALP.2020.55
https://doi.org/10.4230/LIPICS.ICALP.2020.55
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order

159–172, Berkeley/Oakland, CA, USA, May 16–19, 2010. IEEE
Computer Society Press. doi:10.1109/SP.2010.18.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon
Rosen. On robust combiners for oblivious transfer and other prim-
itives. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 96–113, Aarhus, Denmark, May 22–26, 2005.
Springer, Heidelberg, Germany. doi:10.1007/11426639_6.

[HR05] Thomas Holenstein and Renato Renner. One-way secret-key agree-
ment and applications to circuit polarization and immunization of
public-key encryption. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 478–493, Santa Barbara, CA, USA,
August 14–18, 2005. Springer, Heidelberg, Germany. doi:10.100
7/11535218_29.

[JHZ+23] Haodong Jiang, Jiang Han, Zhenfeng Zhang, Zhi Ma, and Hong
Wang. Practical algorithm substitution attacks on real-world
public-key cryptosystems. IEEE Trans. Inf. Forensics Secur.,
18:5069–5081, 2023. doi:10.1109/TIFS.2023.3304124.

[JKMS20] Aayush Jain, Alexis Korb, Nathan Manohar, and Amit Sahai.
Amplifying the security of functional encryption, uncondition-
ally. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 717–746,
Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidel-
berg, Germany. doi:10.1007/978-3-030-56784-2_24.

[JMS20] Aayush Jain, Nathan Manohar, and Amit Sahai. Combiners for
functional encryption, unconditionally. In Anne Canteaut and Yu-
val Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 141–168, Zagreb, Croatia, May 10–14, 2020. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-45721-1_6.

[Kar] Paul Karp. Australia’s war on encryption: the sweeping new powers
rushed into law. URL: https://www.theguardian.com/tech
nology/2018/dec/08/australias-war-on-encryption-the-
sweeping-new-powers-rushed-into-law [cited 14.10.2023].

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography, Second Edition. CRC Press, 2014.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way
function. Technical Report SRI-CSL-98, SRI International Com-
puter Science Laboratory, October 1979.

151

https://doi.org/10.1109/SP.2010.18
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11535218_29
https://doi.org/10.1007/11535218_29
https://doi.org/10.1109/TIFS.2023.3304124
https://doi.org/10.1007/978-3-030-56784-2_24
https://doi.org/10.1007/978-3-030-45721-1_6
https://www.theguardian.com/technology/2018/dec/08/australias-war-on-encryption-the-sweeping-new-powers-rushed-into-law
https://www.theguardian.com/technology/2018/dec/08/australias-war-on-encryption-the-sweeping-new-powers-rushed-into-law
https://www.theguardian.com/technology/2018/dec/08/australias-war-on-encryption-the-sweeping-new-powers-rushed-into-law

[LCWW18] Chi Liu, Rongmao Chen, Yi Wang, and Yongjun Wang. Asymmet-
ric subversion attacks on signature schemes. In Willy Susilo and
Guomin Yang, editors, ACISP 18, volume 10946 of LNCS, pages
376–395, Wollongong, NSW, Australia, July 11–13, 2018. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-93638-3_22.

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 218–238, Santa
Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Ger-
many. doi:10.1007/0-387-34805-0_21.

[Mila] Milieu. Study on the retention of electronic communications non-
content data for law enforcement purposes. URL: https://www.
statewatch.org/media/1453/eu-com-study-data-retention-
10-20.pdf [cited 12.10.2023].

[Milb] Greg Miller. The intelligence coup of the century. URL: https:
//www.washingtonpost.com/graphics/2020/world/national-
security/cia-crypto-encryption-machines-espionage/ [cited
12.10.2023].

[MS07] Ueli M. Maurer and Johan Sjödin. A fast and key-efficient re-
duction of chosen-ciphertext to known-plaintext security. In Moni
Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages
498–516, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg,
Germany. doi:10.1007/978-3-540-72540-4_29.

[MS15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic re-
verse firewalls. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 657–686,
Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-46803-6_22.

[MT08] Ueli M. Maurer and Stefano Tessaro. Basing PRFs on constant-
query weak PRFs: Minimizing assumptions for efficient symmetric
cryptography. In Josef Pieprzyk, editor, ASIACRYPT 2008, vol-
ume 5350 of LNCS, pages 161–178, Melbourne, Australia, Decem-
ber 7–11, 2008. Springer, Heidelberg, Germany. doi:10.1007/978-
3-540-89255-7_11.

[NR99] Moni Naor and Omer Reingold. Synthesizers and their application
to the parallel construction of pseudo-random functions. J. Comput.
Syst. Sci., 58(2):336–375, 1999.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and
their cryptographic applications. In 21st ACM STOC, pages 33–43,

152

https://doi.org/10.1007/978-3-319-93638-3_22
https://doi.org/10.1007/0-387-34805-0_21
https://www.statewatch.org/media/1453/eu-com-study-data-retention-10-20.pdf
https://www.statewatch.org/media/1453/eu-com-study-data-retention-10-20.pdf
https://www.statewatch.org/media/1453/eu-com-study-data-retention-10-20.pdf
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage/
https://doi.org/10.1007/978-3-540-72540-4_29
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-540-89255-7_11
https://doi.org/10.1007/978-3-540-89255-7_11

Seattle, WA, USA, May 15–17, 1989. ACM Press. doi:10.1145/
73007.73011.

[PLS13] Nicole Perlroth, Jeff Larson, and Scott Shane. Secret documents
reveal nsa campaign against encryption, 2013. URL: https://ar
chive.nytimes.com/www.nytimes.com/interactive/2013/09/
05/us/documents-reveal-nsa-campaign-against-encryption
.html [cited 29.10.2023].

[PR20] Bertram Poettering and Paul Rösler. Combiners for AEAD. IACR
Trans. Symmetric Cryptol., 2020(1):121–143, 2020. URL: https:
//doi.org/10.13154/tosc.v2020.i1.121-143, doi:10.13154/T
OSC.V2020.I1.121-143.

[Pri15] Emily Price. Juniper networks security flaw may have exposed us
government data, 23.12.2015. URL: https://www.theguardian.
com/technology/2015/dec/22/juniper-networks-flaw-vpn-
government-data [cited 29.10.2023].

[PT67] Harold E. Petersen and Rein Turn. System implications of informa-
tion privacy. In AFIPS Spring Joint Computing Conference, vol-
ume 30 of AFIPS Conference Proceedings, pages 291–300. AFIPS
/ ACM / Thomson Book Company, Washington D.C., 1967.

[Rab79] Michael O. Rabin. Digitalized signatures and public-key functions as
intractable as factorization. MIT Laboratory for Computer Science,
1979. Technical Report 212.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: A block-cipher mode of operation for efficient authenticated
encryption. In Michael K. Reiter and Pierangela Samarati, editors,
ACM CCS 2001, pages 196–205, Philadelphia, PA, USA, Novem-
ber 5–8, 2001. ACM Press. doi:10.1145/501983.502011.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors,
37th ACM STOC, pages 84–93, Baltimore, MA, USA, May 22–24,
2005. ACM Press. doi:10.1145/1060590.1060603.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Ver-
sion 1.3. RFC 8446, August 2018. URL: https://www.rfc-
editor.org/info/rfc8446, doi:10.17487/RFC8446.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data.
In Vijayalakshmi Atluri, editor, ACM CCS 2002, pages 98–107,
Washington, DC, USA, November 18–22, 2002. ACM Press. doi:
10.1145/586110.586125.

153

https://doi.org/10.1145/73007.73011
https://doi.org/10.1145/73007.73011
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://doi.org/10.13154/tosc.v2020.i1.121-143
https://doi.org/10.13154/tosc.v2020.i1.121-143
https://doi.org/10.13154/TOSC.V2020.I1.121-143
https://doi.org/10.13154/TOSC.V2020.I1.121-143
https://www.theguardian.com/technology/2015/dec/22/juniper-networks-flaw-vpn-government-data
https://www.theguardian.com/technology/2015/dec/22/juniper-networks-flaw-vpn-government-data
https://www.theguardian.com/technology/2015/dec/22/juniper-networks-flaw-vpn-government-data
https://doi.org/10.1145/501983.502011
https://doi.org/10.1145/1060590.1060603
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q.
Nguyen, editor, Progress in Cryptology - VIETCRYPT 06, volume
4341 of LNCS, pages 211–228, Hanoi, Vietnam, September 25–28,
2006. Springer, Heidelberg, Germany.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Com-
mun. ACM, 21(2):120–126, 1978.

[RTYZ16] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou.
Cliptography: Clipping the power of kleptographic attacks. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 34–64, Hanoi, Vietnam, De-
cember 4–8, 2016. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-53890-6_2.

[RTYZ17] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng
Zhou. Generic semantic security against a kleptographic adver-
sary. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 907–922, Dal-
las, TX, USA, October 31 – November 2, 2017. ACM Press.
doi:10.1145/3133956.3133993.

[RTYZ18] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou.
Correcting subverted random oracles. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 241–271, Santa Barbara, CA, USA, Au-
gust 19–23, 2018. Springer, Heidelberg, Germany. doi:10.100
7/978-3-319-96881-0_9.

[Sha49a] Claude E. Shannon. Communication theory of secrecy systems.
Bell Syst. Tech. J., 28(4):656–715, 1949.

[Sha49b] Claude E. Shannon. Communication theory of secrecy systems.
Bell Systems Technical Journal, 28(4):656–715, 1949.

[SMC08] Joseph A. Salowey, David McGrew, and Abhijit Choudhury. AES
Galois Counter Mode (GCM) Cipher Suites for TLS. RFC 5288,
August 2008. URL: https://www.rfc-editor.org/info/rfc528
8, doi:10.17487/RFC5288.

[von51] John von Neumann. Various techniques used in connection with
random digits. In A.S. Householder, G.E. Forsythe, and H.H. Ger-
mond, editors, Monte Carlo Method, pages 36–38. National Bureau
of Standards Applied Mathematics Series, 12, Washington, D.C.:
U.S. Government Printing Office, 1951.

154

https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://doi.org/10.17487/RFC5288

[Vor] Arbeitskreis Vorratsdatenspeicherung. Serious criminal offences, as
defined in sect. 100a stpo, in germany according to police crime
statistics. URL: http://www.vorratsdatenspeicherung.de/ima
ges/data_retention_effectiveness_report_2011-01-26.pdf
[cited 12.10.2023].

[Wat] Human Rights Watch. New evidence that biometric data systems
imperil afghans. URL: https://www.hrw.org/news/2022/03/3
0/new-evidence-biometric-data-systems-imperil-afghans
[cited 12.10.2023].

[WC81] Mark N. Wegman and Larry Carter. New hash functions and
their use in authentication and set equality. J. Comput. Syst. Sci.,
22(3):265–279, 1981.

[WCL+22] Yi Wang, Rongmao Chen, Chi Liu, Baosheng Wang, and Yongjun
Wang. Asymmetric subversion attacks on signature and identifica-
tion schemes. Pers. Ubiquitous Comput., 26(3):849–862, 2022.

[WHF03] Doug Whiting, Russ Housley, and Niels Ferguson. Counter with
CBC-MAC (CCM). RFC 3610, September 2003. URL: https:
//www.rfc-editor.org/info/rfc3610, doi:10.17487/RFC3610.

[WS10] Adam Waksman and Simha Sethumadhavan. Tamper evident mi-
croprocessors. In 2010 IEEE Symposium on Security and Privacy,
pages 173–188, Berkeley/Oakland, CA, USA, May 16–19, 2010.
IEEE Computer Society Press. doi:10.1109/SP.2010.19.

[WS11] Adam Waksman and Simha Sethumadhavan. Silencing hardware
backdoors. In 2011 IEEE Symposium on Security and Privacy,
pages 49–63, Berkeley, CA, USA, May 22–25, 2011. IEEE Computer
Society Press. doi:10.1109/SP.2011.27.

[YCL+20] Zhichao Yang, Rongmao Chen, Chao Li, Longjiang Qu, and
Guomin Yang. On the security of LWE cryptosystem against sub-
version attacks. Comput. J., 63(4):495–507, 2020.

[YY97] Adam Young and Moti Yung. Kleptography: Using cryptog-
raphy against cryptography. In Walter Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 62–74, Konstanz, Ger-
many, May 11–15, 1997. Springer, Heidelberg, Germany. doi:
10.1007/3-540-69053-0_6.

155

http://www.vorratsdatenspeicherung.de/images/data_retention_effectiveness_report_2011-01-26.pdf
http://www.vorratsdatenspeicherung.de/images/data_retention_effectiveness_report_2011-01-26.pdf
https://www.hrw.org/news/2022/03/30/new-evidence-biometric-data-systems-imperil-afghans
https://www.hrw.org/news/2022/03/30/new-evidence-biometric-data-systems-imperil-afghans
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://doi.org/10.17487/RFC3610
https://doi.org/10.1109/SP.2010.19
https://doi.org/10.1109/SP.2011.27
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/3-540-69053-0_6

	Acknowledgements
	Abstract
	Zusammenfassung
	Acronyms
	Introduction
	Motivating Subversion Resilience
	Legal Backdoors
	Scope of this Thesis

	Related Work
	Attacks
	Countermeasures and Models
	Miscellaneous

	Contributions of this Thesis
	Thesis Outline

	Preliminaries
	Notation
	Provable Security
	The Random Oracle Model

	Subversion-Resilient Public-Key Encryption with Practical Watchdogs
	Practical Watchdogs
	Our Results
	Main Technical Challenge
	Our Approach
	Comparison with Prior Work

	Concrete Subversion Model
	A General Security Definition for Cryptographic Schemes
	Subversion-Resilience with an Offline Watchdog
	The Split-Program Model and Trusted Amalgamation

	Subversion-Resilient Randomness Generators
	Construction
	Security

	Subversion-Resilient Key Encapsulation Mechanisms
	Main Technical Challenge
	Our Proposed KEM
	Efficient Instantiations
	From OW to IND Security

	Subversion-Resilient Public-Key Encryption
	On the Impossibility of Subversion-Resilient Indistinguishability
	Discussion

	Security under Complete Subversion Without Random Oracles
	Complete Subversion
	Asymptotic Subversion Model
	Subversion-Resilient Authenticated Encryption
	Symmetric Cryptography under Complete Subversion
	Technical Challenges
	Our Contributions
	Comparison with Prior Work
	Pseudorandom Functions
	Constructing Subversion-Resilient PRFs

	Message Authentication Codes
	MAC from PRFs

	Symmetric Encryption
	Subversion-Resilience of Stream Ciphers.

	Constructing Subversion-Resilient Authenticated Encryption
	Achieving Subversion-Resilience via Encrypt-then-MAC

	Discussion

	Subversion-Resilient Digital Signatures
	Technical Challenges
	Our Contributions
	Subversion-Resilient Signatures in Other Models
	Outline
	Simplifying Assumptions
	One-Way Functions
	One-Way Functions and Permutations
	Subversion-Resilient One-Way Functions

	Hash Functions
	Constructing Subversion-Resilient Signatures
	Digital Signatures
	Lamport Signatures
	The Naor-Yung Construction

	Discussion

	Conclusion
	Discussion
	Offline Watchdogs vs. Alternative Models
	Our Results
	Open Problems
	Conclusion

	Bibliography

