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1. Introduction
Statistical mechanics focuses on understanding the macroscopic properties of many-body
systems. These are encoded in the so-called correlation functions. Particularly, they
are employed in the linear response theory or "Kubo theory" [71] which describes the
linear response of a system with respect to small external perturbations. However, for an
arbitrary system, determining the correlation functions is almost impossible, even in the
thermodynamic limit1 where boundary effects are neglected.

Most of the time, certain idealised models are considered as an approximation. For
instance, if the effective interaction is short-ranged, one can assume only nearest neighbour
interactions as a simplification. Though, this is usually not enough to calculate the prop-
erties of the system exactly. Of course, there are several other methods to approximate
the thermodynamic behaviour of the system. However, these methods mostly neglect
long-range correlations. Therefore, they tend to fail in describing the system accurately,
especially in the vicinity of critical points.

Another idea is to simplify the structure, or rather the topology, of the system until it
becomes exactly solvable. In the case of quantum models, one of the simplest and probably
most popular examples is the band model in solid state physics, where the system is reduced
to an effective one particle problem. However, there are many one-dimensional exactly
solvable quantum many-body systems such as the Heisenberg model [50], a one-dimensional
chain of spins with nearest neighbour exchange interaction. In practical applications, it
can be used to approximate systems with an effective one-dimensional structure. For
instance copper-pyrimidine-dinitrate or copper-benzoate are specific examples that have
been studied [44].

The first exact approach to the isotropic Heisenberg model goes back to Bethe 1931,
where he derived a system of coupled non-linear equations for rapidities that parametrise
the energy spectrum and the eigenvectors of the Hamiltonian [9]. However, against his
expectations, he didn’t succeed in generalising his method for higher dimensions. Today,
his method is known as the Bethe ansatz, representing one of the fundamental tools for
analysing exactly solvable many-particle systems. This is also because of the correspon-
dence of one-dimensional quantum chains and two-dimensional classical vertex models
which was established in terms of different mappings due to Suzuki and Trotter [87] [82,83].
Specifically, an example of the "Trotter formula" for the statistical operator of the SU(n)
Spin chain will be used in Section 3.6.

Separately from Bethe’s work, Onsager solved the two-dimensional Ising model in 1944
using the so-called star-triangle equation [78]. Later, a similar relation was recovered

1The size of the system is sent to infinity while the particle density is kept constant.
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for the Boltzmann-weights of the eight-vertex-model by Baxter, who discovered that it
implies the commutativity of a one-parameter family of transfer matrices [4–6]. The same
relation was discovered by C. N. Yang as a consistency equation for the factorization of
the one-dimensional N-particle quantum scattering problem with delta potential into two
particle scattering processes [91].

The Yang–Baxter-equation (YBE) for the R-matrices emerged as a fundamental struc-
ture in quantum integrable models and led to the development of the algebraic Bethe
ansatz [37]. Moreover, quantum groups were introduced as a mathematical structure
that can be used for construction of new solutions of the YBE [33], [53]. In the represen-
tation theory of Yangians and quantum affine algebras, R-matrices play the role of the
intertwiners between the so-called evaluation representations. Additionally, the theory of
quantum groups provides a connection to different parts of mathematics such as knot the-
ory and the representation theory of algebraic groups of non-zero characteristic [29] (cf. [1]).

As there is no general solution to the Bethe ansatz equations, the eigenvalues and
eigenvectors of the Heisenberg Hamiltonian are not known explicitly and the canonical
partition function can therefore not be obtained directly. Consequently, several more
sophisticated methods were developed, such as the thermodynamic Bethe ansatz (TBA)
due to Yang and Yang, Gaudin and Takahashi [92] [42] [84], along with a quantum transfer
matrix approach by Klümper [63, 64]. These methods specifically target the analysis
of the partition function in the thermodynamic limit and its behaviour at finite, non-
zero temperature, as it is impossible to achieve zero-temperature conditions experimentally.

Though, when we want to know more about the local properties of the system, we
have to consider general correlations. We regard the partition function as the ’zero-point
function’ and use it to normalize the (reduced) density matrix. The first non-trivial result
is due to Takahashi [85], who evaluated the ground state correlators of length m = 3
of the Heisenberg-model in terms of the value of the Riemann zeta function ζ(3). For
general length m, another approach to the correlation functions of the Heisenberg model 2

in the thermodynamic limit was presented fifteen years later by Jimbo, Miki, Miwa and
Nakayashiki [73] within the framework of the representation theory of quantum affine
algebras.

Based on Baxter’s corner-transfer matrix method, their results are obtained in terms of
multiple integrals by calculating the correlation functions of a more general inhomogeneous
XXZ-model through traces of products of vertex operators that depend on respective
spectral parameters. The original correlators are then recovered by taking the homogeneous
limit. For the inhomogeneous model, the correlators vary with the spectral parameters as
the vacuum does.

2Precisely, the ground state correlation functions in the anti-ferroelectric (massive or rather gapped)
regime.
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Generally, it is explained in the book by Jimbo and Miwa [54] that their construction
provides a physical solution of the so-called quantum-Knizhnik–Zamolodchikov equation
(qKZ) in the sense that the correlation functions of the inhomogeneous model are obtained
by specialising half of the spectral parameters appropriately. The corresponding equation
for the inhomogeneous correlation functions was later called reduced quantum-Knizhnik–
Zamolodchikov equation (rqKZ) [15,18]. Moreover, the connection to the qKZ equation
led to a generalisation of the multiple integral representation for the critical regime [54],
as well as the derivation of a multiple-integral representation for the gapless regime [55].

Initially, the Knizhnik–Zamolodchikov equation (KZ) emerged within the context of
conformal field theory, when Knizhnik and Zamolodchikov discovered a linear differential
equation for the n-point correlation functions of the primary fields of the Wess–Zumino–
Witten models [66]. The correlation functions of two-dimensional conformal field theories
generally fulfil a system of linear partial differential equations [7] which reduce to the KZ
equation due to the affine Kac–Moody algebra symmetry of the Wess–Zumino–Witten
models.

Remarkably, the correlation functions are completely determined by the KZ equation
and the crossing symmetry for the 4-point functions. For the form factors of integrable two
dimensional quantum field theories, Smirnov derived functional equations of difference type
in 1987 [61]. Furthermore, he could find an integral equation for the soliton form-factors
of the Sine-Gordon model [80]. Shortly after, Frenkel and Reshetikhin introduced an
analogon of the KZ equation for quantum affine algebras [40].

From the point of view of representation theory, this functional equation of difference
type at level 0 corresponds to Smirnov’s equations, while the construction for the inhomo-
geneous XXZ-model mentioned earlier corresponds to the level −4 (cf. [15]).

An independent derivation of the multiple integral representation for the inhomogeneous
correlation functions of the XXZ-model was attained by Kitanine, Maillet and Terras [62]
through the algebraic Bethe ansatz. Their result includes an external magnetic field and
validates the result in [55] for the critical regime.

The multiple integrals were explicitly calculated for the XXX spin chain with no external
fields by Boos and Korepin up to the length m = 4 [22]. Interestingly, the correlation
functions were written in terms of sums of zeta functions evaluated at odd positive integer
arguments, with rational coefficients [23,24].

In 2004, Boos, Jimbo, Miwa, Smirnov and Takeyama succeeded to construct the
inhomogeneous density operator of length m of the XXX spin chain in its ground state [15].
More precisely, they derived a recursion for the inhomogeneous density operator based on
its fundamental properties and the rqKZ equation. Anyhow, the solution to this recursion
was presented shortly after and could even be generalised to the XXZ and XYZ spin
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chains [16–18]. The result expresses the inhomogeneous density operator of length m in
terms of a single 2-point function and operators whose entries are rational functions of the
spectral parameters. These are obtained in a purely algebraic way that doesn’t involve the
physical parameters of the model. Therefore, the 2-point function can be interpreted as the
’physical part’, whereas the operators are regarded the ’algebraic part’ of the construction.
However, in the case of the XXZ spin chain, two 2-point functions are required.

The fact that all correlations can be expressed in terms of a few transcendental functions
is called factorisation of the correlation functions. Indeed, it can be shown that the multiple
integral representations factorise. For a small number of integrations it was shown in the
papers [22] [12, 13]. Subsequently, due to similar findings regarding finite temperature
and external magnetic fields [47] [46] [48], along with the factorisation of the multiple
integrals for the XXZ spin chain [12] [19] [13], the conjecture that the algebraic part is
generally independent of the physical parameters was formulated. Most remarkably, the
latter could be described by a basis of fermionic operators established in papers [19,20] by
Boos, Jimbo, Miwa, Smirnov and Takeyama.

For the XXZ spin chain, they demonstrated that the correlation functions with external
magnetic field and finite temperature can be expressed through two functions: A 1-point
function and a specific 2-point function [56]. A description of these functions in terms of
integral equations was derived by Boos and Göhmann [10].

Remarkably, the algebraic part seems to be quite general and it can be used to describe
the correlation functions even before taking the thermodynamic limit [32] [1]. Recently, it
has been found applicable even in calculating thermal form factors [49]. With its growing
range of applications, the question of classifying the algebraic structure represented by
the fermionic basis becomes increasingly important. Yet, it is unclear to what extend the
fermionic basis can be applied and it has to be checked in each specific case.

So far, the fermionic basis is established for the basic models related to Uq(ŝl2). This
leads to the question of whether or how it extends to other symmetries. Arguably, the
next in complexity are the models related to Uq(ŝln) and their rational counterparts.

For the rational sln models, the R-matrix is proportional to the S-matrix of the SU(N)
Gross–Neveu model, which is an interesting quantum field theory by itself [45] [89,90,93–95]
[3]. The correlation functions of relativistic quantum field theories can be studied starting
from solutions of a set of functional equations known as the ’form factor axioms’ [8] [67] [80].
As in the sl2 case, we may expect that a continuum limit of the rational sln vertex models
can be described by the SU(N) Gross–Neveu model. Therefore, extending the fermionic
basis to the rational sln models would also shed new light on the problem of calculating
correlation functions of the SU(N) Gross–Neveu model.

For the Uq(ŝln) models, the vertex operators were constructed and multiple integral
representation were obtained in the massive regime in the papers [70] [41] [68]. However,
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the formulas are quite extensive and provided only up to normalization, yielding explicit
results only for the one-point function [70].

In 2018, the first explicit results for the correlators of the rational sl3-invariant funda-
mental exchange model for up to m = 3 lattice sites were obtained in the papers [14] [79]
using a novel higher rank generalisation of the rqKZ equation. It was also mentioned
in [14] that a direct extension of the fermionic structure wasn’t obvious. Therefore, they
returned to the original idea that led to its discovery, the construction of solutions of the
rqKZ equation. One year later, a generalisation of the rqKZ equation for general untwisted
quantum affine algebras was presented [65]. Following the logic in [14] and using this
result for the rqKZ equation for higher rank, the question about a generalisation of the
2004 construction [15] for higher rank naturally arises.

Therefore, the overall goal of this dissertation is to present an ansatz of generalising the
construction of the recursion relations for the correlation functions of the XXX spin chain
by Boos, Jimbo, Miwa, Smirnov and Takeyama in 2004 [15] for rank n > 1.





1 Introduction 7

Structure of the dissertation

As I recently published the results of my research in a paper together with my supervisor
Hermann Boos [21], the plan for my dissertation is to provide an extended version of it
where certain things are explained in more detail. Thus, I will keep the structure as follows.

In Section 2 I give a more detailed introduction to the 2004 paper [15] and comment on
more recent results regarding the sl3 case and the questions that appear for higher rank.

In Section 3 I introduce the notation and outline the essential definitions that form the
foundation of this dissertation. I explain how my graphical notation is understood and
introduce the main object of interest, the reduced density matrix, denoted as D, which
serves to encode all possible correlation functions.

In Section 4 I review the construction of the paper [15] in my notation and explain how
the operator Xk can be understood from a representation-theoretical point of view. I use
my graphical notation to visualize the construction as well as the operator Xk.3 This is
done to prepare my ansatz for the generalization to higher rank presented in Section 5
and familiarize the reader with my graphical notation.

In Section 4.1 I explain the basic construction of the operator X̃k and demonstrate how
it can be used to calculate the residues of the density matrix of length m in terms of the
density matrix of length m−2. I then highlight its reliance on one crucial projector identity
for the reduced density matrix, which can be derived from its fundamental properties. In
doing so, I prepare the generalisation to higher rank in Section 5.1.

In Section 4.2 I explain how T-systems play the main role in proving that only the
Kirillov–Reshetikhin module Wk contributes to the operator Xk. This covers the rank
1 case of the generalisation presented in Section 5.2. Additionally, I clarify that this is
the main reason one can represent the operator Xk as a transfer matrix over an auxiliary
space of ’fractional dimension’ λ ∈ C.

In Section 5 I present my ansatz for the generalisation of the construction in [15] and
visualize it graphically. I explain my definition of the Snail Operator X̃k for rank n ∈ N and
show how it naturally generalizes the operator Xk in [15] from a representation-theoretical
point of view.

In Section 5.1 I show two new projector identities and explain how they can be used
for the calculation of the residues in the case of sl3 (rank 2). I explain how one of them
naturally generalizes the projector identity for sl2 and write down a first definition for the
Snail Operator X̃k. I point out that the second identity can only be used for calculating
the residues in the case of sl3 and discuss possible solutions for higher rank.

3referred to as the Snail Operator X̃k in my notation
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In Section 5.2 I review the extended T-systems introduced in the paper [74] and show
how they can be applied to analyse the representations that contribute to the Snail
Operator X̃k. As we shall see, the result for sl2 naturally generalises as certain minimal
snake modules play the role of the Kirillov–Reshetikhin modules for sl2.

In Section 6, I provide a summary of my results, outline the next steps to be taken, and
revisit the challenges emerging for rank n > 1 and, in particular, n > 2.
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2. Recent results and the basic idea
As described in the introduction, a recursion formula for the correlation functions of the
sl2-invariant fundamental exchange model (the XXX spin chain) in the thermodynamic
limit was proven by Boos, Jimbo, Miwa, Smirnov and Takeyama in 2004 [15]. This was
due to the structure of the correlators of an inhomogeneous model as functions of their
inhomogeneity parameters. In particular, they satisfy the so-called rqKZ equation.

In the case of sl3 explicit results of Klümper and Ribeiro [79] and Boos, Nirov and
Hutsalyuk [14] for the density matrix of up to operator length three were derived in 2018.
Moreover, a version of the rqKZ equation for sl3 is used in both cases.

In 2019, Klümper, Nirov and Razumov presented functional equations of the form of the
rqKZ equation in the case when the R-matrix is defined in terms of an arbitrary untwisted
quantum affine algebra. Notably, due to the fact that the first fundamental representation
does in general not coincide with its dual, two successive steps are needed to obtain a
closed form of the rqKZ equation [65].

Thus, the question of whether the construction in [15] can be generalised for higher rank
naturally arises. In particular, how and if relations for all the residues of the inhomogeneous
density operator can be obtained using the higher rank generalisation of the rqKZ equation
in [65]. Secondary, if it is possible to generalise the operator Xk in [15] which was used to
prove the recursion relations for the density operator. At last, if similar recursion relations
can be proven.

The following Sections 2.1, 2.2, 3-5 and the Appendix A are similar to Sections 1.1, 1.2,
2-4 and the Appendix of the paper [21] where I recently published the results of my research
together with my supervisor Hermann Boos. However, I will add some explanations and
references to clarify certain aspects.

2.1. The sl2 case

Let’s consider the Hamiltonian HXXX = 1
2
∑

j

(
σx

j σ
x
j+1 + σy

jσ
y
j+1 + σz

jσ
z
j+1

)
of the rational

sl2-invariant model which corresponds to the gapless case q → 1, ∆ = q+q−1

2 of the
Heisenberg XXZ spin chain. Here, the σj are the Pauli matrices acting on the j-th site of
the form σj = 1⊗(L+j−1) ⊗ σ ⊗ 1⊗(L−j), where 1 is the identity operator and we assume a
chain of length 2L for instance. It can be obtained as the logarithmic derivative of the
row to row transfer matrix

tra (Ra,−L+1(λ)Ra,−L+2(λ) · · ·Ra,L(λ)) ,
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where R ∈ End(V ⊗V ) is the rational R-matrix acting on the local Hilbert spaces V = C2.
One can now consider a more general inhomogeneous chain generated by the transfer
matrix

tra (Ra,−L+1(λ) · · ·Ra,0(λ)Ra,1(λ− λ1) · · ·Ra,m(λ− λn)Ra,m+1(λ) · · ·Ra,L(λ)) ,

which is still exactly solvable. The correlation functions of this model in the thermodynamic
limit are obtained in terms of multiple integrals from the vertex operator approach for
the gapped (massive) regime by analytic continuation. Factorisation of these multiple
integrals into products of single integrals was proven in the papers [22] [23]. However, the
construction introduced in 2004 in the paper [15] provides another way of describing the
correlation functions, i.e., the (reduced) density matrix. In particular, the conjecture

[D1,...,m(λ1, . . . , λm)]ϵ̄1...ϵ̄m

ϵ1...ϵm
:=⟨0|(E ϵ̄1

ϵ1 )1 · · · (E ϵ̄m
ϵm

)m|0⟩ =
=
∑∏

ω(λi − λj)f(λ1, . . . , λm) (2.1)

where ω(λ) is a single transcendental function and the functions f(λ1, . . . , λm) are rational
was proven. This is due to a recursion relation where the correlation functions are presented
in terms of a transfer matrix over an auxiliary space of ’fractional dimension’. It is an
analytic continuation of an operator Xk with respect to k.4 For the homogeneous limit,
values of the ζ-function at odd integers appear as the coefficients in the Taylor series of
ω (cf. [15]). This result was generalised for the XXZ spin chain and further led to the
fermionic structure of the correlation functions described in the series of papers "Hidden
Grassmann structure in the XXZ-model" ( [19], [20], etc.).

2.2. The sl3 case

Let’s consider more generally the Hamiltonian H(n+1) = ∑
j Pj,j+1 [88] [81] of the rational

sln+1-invariant model (the SU(n+ 1) spin chain), where Pj,j+1 is the permutation operator
acting on the j-th and (j + 1)-th sites and local Hilbert spaces V = Cn+1.

As before, it can be obtained as the logarithmic derivative of the row to row transfer
matrix

tra (Ra,−L+1(λ)Ra,−L+2(λ) · · ·Ra,L(λ)) ,

where R ∈ End(V ⊗ V ) is the rational R-matrix acting on the local Hilbert spaces
V = Cn+1. Similarly, one can consider the inhomogeneous chain generated by the transfer
matrix

tra (Ra,−L+1(λ) · · ·Ra,0(λ)Ra,1(λ− λ1) · · ·Ra,m(λ− λm)Ra,m+1(λ) · · ·Ra,L(λ)) .

The correlation functions of this model in the thermodynamic limit can again be obtained
in terms of multiple integrals by the vertex-operator approach for the massive regime by
4In our notation we also call this operator the ’Snail Operator’.
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taking the limit q → 1 [70] [41] [68].5 Though, it is not known whether a factorisation
property similar to (2.1) does exist. As for now, not much is known about the correlation
functions.

Nevertheless, the rqKZ equation could be generalised for the sl3 case and an attempt to
explicitly solve it led to the first explicit results for the short range correlation functions
of up to operator length three [14], [79].

Since the construction for sl2 is mainly based on the rqKZ equation and some fusion
relations,6 there is hope for it to have a sl3 generalisation as well. Especially the operator
Xk in [15] seems to have a promising generalisation. This will be explained in more detail
later. Regardless, we still don’t know whether all the other properties of the operator Xk

can be generalised and if there is a way to prove a recursion relation for the correlation
functions just like in the case of sl2.

5In fact, this is not proven to our knowledge and we can only suspect that this limit can be taken in
analogy to the sl2 case.

6resulting in projector identities for the reduced density matrix
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3. General definitions
As the definitions we employ are scattered across various papers, we have chosen to collect
the important definitions in this section. In addition, we fix our graphical notation as there
are different conventions in the literature. Moreover, we introduce crossing transforms with
a slight shift in the spectral parameter different from what can be found in the literature.
This is because the spectral and the loop parameters of the corresponding fundamental
representations can easily be identified like this.

3.1. Cartan data

Let g be a finite-dimensional simple Lie algebra of rank n over C and let h be a Cartan
subalgebra of g. We normalize the invariant inner product ⟨·, ·⟩ on g such that the square
length of the maximal root equals 2. Furthermore, we identify h and h∗ through h 7→ ⟨·, h⟩.
Let I = {1, . . . , n} and let {αi}i∈I be the set of simple roots with the corresponding simple
coroots {α∨

i }i∈I and fundamental weights {ωi}i∈I . Let A := (aij) denote the Cartan matrix
and let di, i = 1, . . . , n, be the relatively prime integers such that B = (bij) = (diaij) is
symmetric. We have

2⟨αi, αj⟩ = aij⟨αi, αi⟩, 2⟨αi, ωj⟩ = δi,j⟨αi, αi⟩, bij = d∨⟨αi, αj⟩, (3.1)

where d∨ is the maximal number of edges connecting two nodes in the Dynkin diagram of g.
At last we denote the (positive) weight and root lattice by P (P+) and Q (Q+), respectively.
We have that P (P+) and Q (Q+) are the Z-span (Z≥0-span) of the fundamental weights
and simple roots, respectively. Then we have a partial order ≤ on P in which λ ≤ λ′ iff
λ′ − λ ∈ Q+. If α ∈ Q, define the root space

gα = {x ∈ g | [h, x] = α(h)x for allh ∈ h}.

We set ∆ := {α ∈ Q |α ≠ 0, gα ̸= 0} the set of roots of g and ∆+ := ∆ ∩ Q+ (resp.
∆− := −∆+) the set of positive (resp. negative roots). Then we have ∆ = ∆+ ⨿ ∆−.

3.2. The Yangian Y (g) and the quantum affine algebra Uq(g̃)

Since we will work with finite-dimensional representations of the Yangian Y (g) for the
SU(n) spin chain and the rational sln+1 vertex model throughout the entire dissertation,
we shall recap its second Drinfeld realization. As we will also consider finite-dimensional
(type 1) representations of the quantum affine algebra Uq(g̃) later, it is helpful to write
down its second Drinfeld realization as well. This is also because of the description of the
finite dimensional representation theory in terms of q-characters or, equivalently, Drinfeld
polynomials, which we will use. We refer to the book [29] and the paper [28], where almost
all the information can be found.
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Definition 3.1 (the second Drinfeld realization of the Yangian). The second Drinfeld
realization of the Yangian Y (g) is the associative algebra with generators X±

i,r, Hi,r, i =
1, . . . , n, r ∈ N and defining relations

[Hi,r, Hj,s] = 0,
[Hi,0, X

±
j,s] = ±diaijX

±
j,s,

[Hi,r+1, X
±
j,s] − [Hi,r, X

±
j,s+1] = ±1

2diaij(Hi,rX
±
j,s +X±

j,sHi,r),

[X+
i,r, X

−
j,s] = δi,jHi,r+s,

[X±
i,r+1, X

±
j,s] − [X±

i,r, X
±
j,s+1] = ±1

2diaij(X±
i,rX

±
j,s +X±

j,sX
±
i,r),∑

σ∈Sm

[X±
i,rσ(1)

, [X±
i,rσ(2)

, . . . , [X±
i,rσ(m)

, X±
j,s] · · · ]] = 0,

for all sequences of non-negative integers r1, . . . , rm, where m = 1 − aij and Sm is the
symmetric group of degree m. ⊙

The Hopf structure is given in terms of the generators x, J(x), for x ∈ g, by

∆(x) = x⊗ 1 + 1 ⊗ x,

∆(J(x)) = J(x) ⊗ 1 + 1 ⊗ J(x) + 1
2[x⊗ 1, t],

S(x) = −x, S(J(x)) = −J(x) + 1
4cx,

ϵ(x) = ϵ(J(x)) = 0,

where c is the eigenvalue of the Casimir element t ∈ U(g) in the adjoint representation of
g, also regarded as an element t ∈ U(g)⊗2 in the second equality (cf. [29] Chapter 12.1).
The isomorphism φ between the two realizations of Y (g) is given by

φ(Hi) = d−1
i Hi,0, φ(J(Hi)) = d−1

i Hi,1 + φ(vi),
φ(X±

i ) = X±
i,0, φ(J(X±

i )) = X±
i,1 + φ(w±

i ),

where

vi = 1
4
∑

β∈∆+

dβ

di

⟨β, αi⟩(X+
β X

−
β +X−

β X
+
β ) − di

2 H
2
i ,

w±
i = ±

∑
β∈∆+

dβ

(
[X±

i , X
±
β ]X∓

β +X∓
β [X±

i , X
±
β ]
)

− 1
4di(X±

i Hi +HiX
±
i ).

Let us also recap that this Hopf algebra has a one-parameter group of automorphisms
τa, a ∈ C. It is one of the main reasons for its importance as it allows us to define a
one parameter family of modules to any given module by adjoining different parameters
a ∈ C by τa, i.e., pulling back by τa. The proof of the following proposition is given in [29]
(Proposition 12.1.5).
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Proposition 3.2 (the Hopf algebra automorphism τa). There is a one-parameter group
of Hopf algebra automorphisms τa of Y (g), a ∈ C, given by

τa(Hi,r) =
r∑

s=0

(
r

s

)
ar−sHi,s, τa(X±

i,r) =
r∑

s=0

(
r

s

)
ar−sX±

i,s. (3.2)

⊙

Thus, if V is any Y (g) module, it is convenient to write V (λ) for the pullback of V by
τλ.

Remark 3.3. If g is of type A, one has in addition an evaluation homomorphism eva :
Y (g) →→ U(g) for all a ∈ C such that the composition U(g) ↪ ι−→ Y (g) eva−−→→ U(g) is the
identity map (cf. [29] Proposition 12.1.15). A representation defined through the pullback
by eva is then called an evaluation representation. If V is any representation of g, we have

τ ∗
b ev∗

a(V ) = τ ∗
0 ev∗

a+b(V ) = τ ∗
a+b ev∗

0(V ) for all a, b ∈ C

in this case. We may therefore write V (λ) := ev∗
λ(V ) such that V (λ) = τ ∗

λ(V ) by identifying
V with ev∗

0(V ) as a representation of the Yangian. Finally, we should emphasize that eva is
just an algebra homomorphism, not a Hopf algebra homomorphism. We will see that pulling
back by eva doesn’t commute with taking duals, i.e., ∗(ev∗

a(V )) ̸= ev∗
a(V ∗) ̸= (ev∗

a(V ))∗.
This will be discussed in Section 3.5 in detail. In fact, we will see that the (shifted) dual
module V ⊛(λ) that we use corresponds to the module ev∗

λ(V ∗) in the cases when we have
an evaluation homomorphism. ⊙

For the definition of the q-deformed case, we assume that q ∈ C is not a root of unity
and use the definitions

[k]q := qk − q−k

q − q−1 , [k]q! := [k]q[k − 1]q · · · [1]q,
[
k

l

]
q

:= [k]q!
[k − l]q![l]q!

for the q-number, q-factorial and q-binomial, respectively.

Definition 3.4 (the second Drinfeld realization of Uq(g̃)). Let g̃ be the untwisted affine Lie
algebra associated to g. The second Drinfeld realization of the quantum affine algebra Uq(g̃)
is the associative algebra with generators C±1/2, K±1

i , Hi,r, X ±
i,s, i = 1, . . . , n, r ∈ Z\{0},

s ∈ Z and defining relations

KiK−1
i = K−1

i Ki = 1, C1/2C−1/2 = 1,
C±1/2 are central,

[Ki,Kj] = [Ki,Hj,r] = 0,

[Hi,r,Hj,s] = δr,−s
1
r

[raij]qi

Cr − C−r

qj − q−1
j

,

KiX ±
j,rK−1

i = q
±aij

i X ±
j,r,
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[Hi,r,X ±
j,s] = ±1

r
[raij]qi

C∓|r|/2X ±
j,r+s,

X ±
i,r+1X ±

j,s − q
±aij

i X ±
j,sX ±

i,r+1 = q
±aij

i X ±
i,rX ±

j,s+1 − X ±
j,s+1X ±

i,r

[X +
i,r,X −

j,s] = δi,j

C(r−s)/2Φ+
i,r+s − C−(r−s)/2Φ−

i,r+s

qi − q−1
i∑

σ∈Sm

m∑
k=0

(−1)
[
m

k

]
qi

X ±
i,rσ(1)

· · · X ±
i,rσ(k)

X ±
j,sX ±

i,rσ(k+1)
· · · X ±

i,rσ(m)
= 0, i ̸= j,

for all sequences of non-negative integers r1, . . . , rm, where m = 1 − aij, qi = qdi and the
elements Φ±

i,r are determined by equating coefficients of powers of u in the formal power
series

Φ± =
∞∑

r=0
Φ±

i,±ru
±r = K±1

i exp
(

±(qi − q−1
i )

∞∑
s=1

Hi,±su
±s

)
. ⊙

Again, the Hopf algebra structure is only given in terms of the (chevalley) generators
X+

i , X
−
i , Ki and K−1

i , i = 0, . . . , n, of Uq(g̃) by

∆q(Ki) = Ki ⊗Ki,

∆q(X+
i ) = X+

i ⊗Ki + 1 ⊗X+
i , ∆q(X−

i ) = X−
i ⊗ 1 +K−1

i ⊗X−
i ,

Sq(Ki) = K−1
i , Sq(X+

i ) = −X+
i K

−1
i , Sq(X−

i ) = −KiX
−
i ,

ϵq(Ki) = 1, ϵq(X+
i ) = ϵq(X−

i ) = 0.

It is mapped onto the Drinfeld generators by a C(q)-algebra isomorphism f . Let θ =∑n
i=1 miαi be the highest root of g, set qθ = qi if θ is Weyl group conjugate to αi, and set

Kθ := ∏n
i=1 Kmi

i . Suppose that the root vector X̄+
θ of g is expressed in terms of the simple

root vectors as

X̄+
θ = λ[X̄+

i1 , [X̄
+
i2 , . . . , [X̄

+
ik
, X̄+

j ] · · · ]]

for some λ ∈ C. Define maps w±
i : Uq(g̃) → Uq(g̃) by

w±
i (a) := X ±

i,0a− K±1
i aK∓1

i X ±
i,0.

Then, the isomorphism f is defined on generators by

f(K0) := CK−1
θ , f(Ki) := Ki, f(X±

i ) := X ±
i,0, i = 1, . . . , n,

f(X+
0 ) := µw−

i1 · · ·w−
ik

(X −
j,1)K−1

θ , f(X−
0 ) := λKθw

+
i1 · · ·w+

ik
(X +

j,−1),

where µ ∈ C(q) is determined by the condition (cf. [29] p. 393)

[X+
0 , X

−
0 ] = K0 −K−1

0

qθ − q−1
θ

.
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Remark 3.5. If A is the generalised Cartan matrix of g̃, then g̃ = L(A)′ which can be
defined as the 1-dimensional central extension of the loop algebra L(g) = C[t, t−1]⊗C g, i.e.,
g̃ = L(g) ⊕ Cc. We refer to L(A) by ĝ, which is obtained from g̃ by adjoining an element
d that acts as a derivation. Thus we have ĝ = g̃⊕Cd = L(g) ⊕Cc⊕Cd. The difference is
that the simple roots in the Cartan subalgebra of g̃ are linear dependent, whereas d removes
the degeneracy for ĝ. As a consequence, Uq(ĝ) may be obtained from Uq(g̃) by introducing
additional generators D±1 and relations

DD−1 = D−1D =1
DHi,rD−1 = qrHi,r, [D,Ki] = [D, C] = 0,

DX ±
i,rD−1 = qrX ±

i,r.

We emphasize this fact, because the notation in the literature can be confusing. Our
definitions are in agreement with the definitions of Kac [58], Carter [25], the book of Chari
and Pressley on quantum groups [29] and the paper of Nirov and Razumov [77]. ⊙

Remark 3.6 (type 1). A representation V of Uq(g̃) is said to be of type 1, if the Ki act
semisimply with eigenvalues which are integer powers of q and C acts as the identity. In fact,
these are representations of the quotient of Uq(g̃) by the ideal generated by C1/2 − 1, which
is the quantum loop algebra Uq(L(g)). Conversely, any finite dimensional representation
can be obtained by twisting with certain algebra automorphisms (cf. [29] Prop. 12.2.3).
Thus, we can only consider finite dimensional (type 1) representations of Uq(L(g)) as
stated above. ⊙

Similar to the Yangian one has a one-parameter group of automorphisms τa, a ∈ C×, of
Uq(g̃) given by

τa(X ±
i,r) = arX ±

i,r, τa(Hi,s) = asHi,s, τa(K±1
i ) = K±1

i , τa(C±1/2) = C±1/2. (3.3)

If g is of type A there is also an evaluation homomorphism eva, a ∈ C, due to Jimbo
(1986). Though, for n ≥ 2 it takes values in Uq(gln+1) instead of Uq(sln+1). Nevertheless,
regarding a finite dimensional type 1 representation of Uq(sln+1) as a type 1 representation
of Uq(gln+1), the pullback by eva is well defined and again called evaluation representation
(cf. [29] 12.2.C). Furthermore, it can be stated that every finite-dimensional irreducible
type 1 representation of Uq(s̃ln+1) is isomorphic to a subquotient of a tensor product of
evaluation representations (cf. [29] Corr. 12.2.14).

To close this part, we cite the last remark in Chapter 12.2 in [29], which explains the
similarity between the representation theory of the Yangians and quantum loop algebras.

Remark 3.7. The close similarity of the representation theory of the Yangians and
quantum loop algebras can be described by an observation due to Drinfeld (1987) (see [35]
at the end of Section 6). Let Uh(L(g)) be the algebra generated by the elements Hi,r, X ±

i,r

for i = 1, . . . , n, r ∈ Z with defining relations as in Definition 3.4, but with q replaced by
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eh, Ki by edihHi,0 and C1/2 by 1. Let φ be the map Uh(L(g)) h=0−−→ U(L(g)) u=1−−→ U(g) and
A be the C[[h]]-subalgebra of Uh(L(g)) ⊗C[[h]] C((h)) generated by Uh(L(g)) and h−1 ker(φ).
Then, A/hA ∼= Y (g). ⊙

Moreover, there is a general theorem which gives an equivalence of categories between
finite dimensional representations of Yangians and of quantum affine algebras described
in [43].

3.3. Graphical notation

Let V be a n+ 1 dimensional complex vector space. We represent V graphically by an
oriented line. An operator O ∈ End(V ) is associated with a symbol, for instance a point,
on the line. Let |v⟩ ∈ V and A,B ∈ End(V ), then A ·B|v⟩ is depicted in Figure 1.

A B

Figure 1: The product A ·B of two operators acting on the vector |v⟩.

We can interpret V as a fundamental representation of the Yangian Y (sln+1) by using
the evaluation homomorphism eva : Y (g) → U(g) and defining V ≡ V (a) := ev∗

a V
7 (see

Remark 3.3) where V is the fundamental representation of g to the fundamental weight
ω1. Of course, any other fundamental weight ωi, i = 1, . . . , n, can be taken equivalently.8

Using the automorphism τλ (see Proposition 3.2) we can define a family of (fundamental)
representations with spectral parameter λ ∈ C with it, i.e. V (λ) := τ ∗

λ(V ) the pullback
of V by τλ. This can be done for any g, but in general we don’t have an evaluation
homomorphism. A representation V of g can still be lifted, but the ambiguity of defining
an origin (such as the pullback ev∗

0(V ) =: V (0) of V at 0 ∈ C) remains (see [29] Thm.
12.5.3). Thus, we may identify the rational R-matrix (πV (λ) ⊗ πV (µ))(R) =: R(λ − µ) ∈
End(V (λ) ⊗ V (µ)) with any positively oriented vertex between such oriented lines with
spectral parameters λ and µ, respectively, where R is the (pseudo-)universal R-matrix
of the Yangian Y (g). Note that the orientation of the vertex is naturally induced by the
orientation of the lines (c.f. Figure 2).

RAM

µ
Figure 2: The rational R-matrix.

7We use the sign ≡ when we want to clarify that different notations refer to the same object.
8But the dimension of V can be different when i ̸= 1, n.
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More generally, if V and W are arbitrary Y (g)-modules, we may represent them by
different lines and identify (πV ⊗πW )(R) =: RV W with any positive oriented vertex between
them. We thus obtain the Yang–Baxter equation (YBE) RUVRUWRV W = RV WRUWRUV

for arbitrary Y (g)-modules U , V and W . It is depicted in Figure 3.

U

V

W W
Figure 3: The Yang–Baxter equation (YBE).

Let us also introduce the singlet, which we can use to connect a fundamental represen-
tation V1 (black) with it’s dual (antifundamental) representation V 1̄ (blue).9 We denote it
by a cross. It is depicted in Figure 4 in the top left, whereas its dual vector is depicted in
the bottom left. Considering the tensor products between them, we obtain (n + 1)P−

1,1̄

and (n+ 1)P−
1̄,1 (second and third picture from the left in Figure 4), where P−

1,1̄ and P−
1̄,1

are the projectors onto the singlet in V1 ⊗ V 1̄ and V 1̄ ⊗ V1, respectively.10 The third and
fourth picture in Figure 4 show (n+ 1)P−

1,1̄P1̄,1 and (n+ 1)P−
1̄,1P1,1̄, where in this case Pa,b

is the permutation operator Va ⊗ Vb → Vb ⊗ Va : a⊗ b 7→ b⊗ a.

1 1 1 1

1 1 1 1

Figure 4: The graphical representation of the singlet and its dual as well as the
different (tensor) products between them. These describe the projector
P− onto the singlet up to the action of the permutation operator P .

To this end, let us remark that we use hooks to connect the opposite ends of a line (cf.
Section 3.6). It should be clear that a closed loop canonically corresponds to taking the
trace in the corresponding space - "a (closed) line with no open ends corresponds to a
constant".

9Of course, a singlet in the tensor product of any representation with its dual can be used in this way.
10This also fixes the normalization of the singlet.
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3.4. The rational R-matrix of type An

Let g be the finite-dimensional simple Lie algebra of type An over C (i.e. g = sln+1(C)) and
denote by I = {1, . . . , n} the set of vertices in its Dynkin diagram. Let ωi (i ∈ I) be the
set of fundamental weights and P = Z{ωi : i ∈ I} be the (fundamental) weight lattice (as
in Section 3.1). We use the Khoroshkin–Tolstoy formula [11] [86] for the (pseudo-)universal
R-matrix of Uq(ĝ) and take the rational limit q → 1 to define the rational R-matrix for
two fundamental representations V (λ) and V (µ) with fundamental weight ω1 as in [14].

Definition 3.8 (the rational R-matrix). We obtain the rational R-matrix R(λ − µ) ∈
End(V (λ) ⊗ V (µ))

R(λ− µ) = ρ(λ− µ)
λ− µ+ 1 ((λ− µ)1 + P ) , ρ(λ) = −

Γ( λ
n+1)Γ( 1

n+1 − λ
n+1)

Γ(− λ
n+1)Γ( 1

n+1 + λ
n+1)

, (3.4)

where 1 is the identity and P is the permutation operator (P (a⊗ b) = b⊗ a) by identifying
V (λ) and V (µ) as representations of U(g) ↪ ι−→ Y (g). ⊙

In this sense, we may therefore just write V instead of V (λ) and in particular R ∈
End(V ⊗ V ), whenever the spectral parameters of the corresponding lines are clear from
the context. Of course, since V (λ) ⊗ V (µ) is an irreducible Y (g)-module for general λ and
µ, this definition coincides with the direct definition above through the (pseudo-)universal
R-matrix of the Yangian up to a scalar factor. To be more precise, let us close this part
with the following Remark on the scalar prefactor ρ(λ).

Remark 3.9. The scalar prefactor ρ(λ) satisfies the functional relations

ρ(λ)ρ(−λ) = 1, ρ(λ)ρ(n+ 1 − λ) = λ(λ− (n+ 1))
(λ− 1)(λ− n) . (3.5)

As stated above and in [14], it can be regarded as a quasi-classical or rational limit q → 1 of
the Khoroshkin–Tolstoy formula [11]. Alternatively, it can be obtained using the algebraic
structure of the Yangian double of sln+1 [59] [60]. ⊙

3.5. The dual modules and crossing symmetry

To understand the explanations in the next two sections, it is essential to provide a good
understanding of the dual module V ∗ (and ∗V ) of V , where V is assumed to be either
a representation of Y (g) or Uq(g̃). So let A be either Y (g) or Uq(g̃) and V be a finite
dimensional (type 1) representation of A. Since V is a left module, the dual space V ⋆ is
obviously a right module. It can be made into a left module in two ways via the antipode S
as follows. We define the dual module V ∗ to be the left module with the module operation
of a ∈ A given by

⟨av|w⟩ =: ⟨v|S(a)w⟩, v ∈ V ⋆, w ∈ V,

where ⟨·|·⟩ is the dual pairing. For the other dual module ∗V we simply replace S

by S−1 (cf. [77] for the case of Uq(g̃)). Since the antipode S is an anti-automorphism
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of A, so is S−1. Thus V ∗ and ∗V are left modules and we call V ∗ and ∗V the dual
modules. Since the τa given by (3.2) and (3.3) are Hopf algebra automorphisms, they
commute with the action of the antipode S, i.e. S ◦ τa = τa ◦ S. We can therefore
just write V ∗(λ) := τ ∗

λ(V ∗) = (τ ∗
λ(V ))∗ = (V (λ))∗ (and ∗V (λ)). Now let R be the

(pseudo-)universal R-matrix of A.11 Using (S ⊗ id)(R) = R−1 and the transposition map
t : End(V ) → End(V ⋆) defined for M ∈ End(V ) by

⟨M tv|w⟩ = ⟨v|Mw⟩, v ∈ V ⋆, w ∈ V,

we come to the equation

(πV ∗(λ) ⊗ πV (µ))(R) = (πV (λ) ⊗ πV (µ))(R−1)t1 , (3.6)

where t1 = t⊗ id. Equations of the form (3.6) that include R, R−1 and the transpositions
t1 = t⊗ 1 or t2 = 1 ⊗ t are called crossing relations. They are obtained by using either
(S⊗ id)(R) = R−1 or (id⊗S−1)(R) = R−1 and the definition of the dual modules (cf. [77]).

However, in the case when A is the Yangian, g is of type An and V a representation
of g,12 there is another unique way to define a dual representation of V (λ) = ev∗

λ(V ).
Since the antipode of g 13 is its own inverse, there is only one dual representation V ∗

of g and we can define V ⊛(λ) := ev∗
λ(V ∗). Note that this definition is different from

the definition above since eva is not a Hopf algebra homomorphism. Using the relation
eva ◦S = S ◦ eva− c

4
, where c is the eigenvalue of the Casimir element of g 14 in the adjoint

representation, we find the relation V ⊛(λ) = V ∗(λ− n+1
2 ) = ∗V (λ+ n+1

2 ), where we have
used that c = 2(n+ 1) for g = L(An) = sln+1.

On one side, for g = sl2 we have V ∗ ∼= V and therefore V ⊛(λ) ∼= V (λ) compared
to V ∗(λ) ∼= V (λ + 1) (and ∗V (λ) ∼= V (λ − 1)). On the other side, the square of the
antipode and τa are related through S2 = τ c

2
in general. Thus we have V ⊛⊛(λ) ∼= V (λ),

V ∗∗(λ) ∼= V (λ + c
2) and ∗∗V (λ) ∼= V (λ − c

2) for the double duals. Similarly, in the case
when A is the quantum affine algebra Uq(g̃), we have S2 = τqc ◦ Adqx (cf. [77] Equation
(2.59)), where x = 2ν−1(ρ), ρ = ∑n

i=1 ωi and ν is the isomorphism from g to g⋆ by the
standard invariant bilinear form and therefore V ∗∗(λ) ∼= V (λqc) and ∗∗V (λ) ∼= V (λq−c).
If g = sl2, we have V ∗(λ) ∼= V (λq2) (and ∗V (λ) ∼= V (λq−2)). Note that the spectral
parameters of the Yangian are additive, whereas the spectral parameters of the quantum
affine algebras are multiplicative in our definition. Hence, we can write down the following
Definition.

11As the Yangian and the quantum affine algebras are not quasitriangular [29].
12Of course, any representation of the Yangian is naturally a representation of g ↪

ι−→ Y (g).
13S(x) = −x, for all x ∈ g. To be precise, it extends to U(g). In situations where this is not important,

we will simply write g by abusing the fact that g ↪
ι−→ U(g) and the universal property of the universal

enveloping algebra.
14It is defined through the standard invariant bilinear form on g.
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Definition 3.10. Let V be a finite dimensional (type 1) representation of Y (g) (respectively
Uq(g̃)). Then, we denote by V ⊛ the unique dual representation of g ↪ ι−→ Y (g) (respectively
Uq(g) ↪ ι−→ Uq(g̃)) such that V ⊛⊛ ∼= V as a representation of A. As we have seen above, it
is V ⊛ = τ ∗

− c
4
(V ∗) = τ ∗

c
4
(∗V ) (respectively V ⊛ ∼= τ ∗

q−c/2(V ∗) ∼= τ ∗
qc/2(∗V )). ⊙

Remark 3.11. In fact, from the point of view of the finite-dimensional representation
theory, V and V ⊛ are characterized by the loop weights with corresponding loop parameters
and their Drinfeld polynomials have the same roots (see [29] ch. 12). ⊙

Using this definition, we can define the crossing transforms of the R-matrix as follows.

Definition 3.12 (the crossing transforms). Let V be a finite dimensional (type 1) rep-
resentation of Y (g) (respectively Uq(g̃)). Let R be the (pseudo-)universal R-matrix of
Y (g) (respectively Uq(g̃)). Let R(λ, µ) := (πV (λ) ⊗ πV (µ))(R). Then we define the crossing
transforms of R as

R⊛(λ|µ) := (πV ⊛(λ) ⊗ πV (µ))(R) and R⊛⊛(λ|µ) := (πV (λ) ⊗ πV ⊛(µ))(R). (3.7)

In the case of the Yangian we have

R⊛(λ|µ) = R⊛(λ− µ) = (πV ⊛(λ) ⊗ πV (µ))(R) = (πV (λ− c
4 ) ⊗ πV (µ))(R−1)t1 and

R⊛⊛(λ|µ) = R⊛⊛(λ− µ) = (πV (λ) ⊗ πV ⊛(µ))(R) = (πV (λ) ⊗ πV (µ+ c
4 ))(R−1)t2 .

In the quantum affine case we get

R⊛(λ|µ) = R⊛(λ/µ) = (πV ⊛(λ) ⊗ πV (µ))(R) = (πV (λq−c/2) ⊗ πV (µ))(R−1)t1 and

R⊛⊛(λ|µ) = R⊛⊛(λ/µ) = (πV (λ) ⊗ πV ⊛(µ))(R) = (πV (λ) ⊗ πV (µqc/2))(R−1)t2 . ⊙

Note that there are only two crossing transforms in this case since V ⊛⊛ ∼= V .

Definition 3.13 (charge conjugation operator). Let V be an irreducible finite dimensional
(type 1) representation of Y (g) (respectively Uq(g̃)). Let ei, i = 0, . . . ,m, be an ordered
basis of V such that ei is a weight vector of weight λi > λi+1. Then we define the charge
conjugation operator C = C−1 ∈ End(V ) by mapping ei to em−i, i.e. reversing the order
of the basis. For instance if V is the fist fundamental representation and g of type A, the
highest weight vector e0 of weight ω1 is mapped to the lowest weight vector en of weight
−ωn and vice versa. On its dual space V ⋆ the dual basis e⋆

i =: ei (⟨e⋆
i |ej⟩ = δi

j
15) of weight

−λi < −λi+1 is mapped to e⋆
n−i = en−i, i = 0, . . . , n. Then we have again an ordered basis

ēi := Ce⋆
i = e⋆

n−i = en−i such that ē0 is the highest and ēn is the lowest weight vector of
weight ωn and −ω1, respectively. However, by abuse of notation we will use the same
symbol C in any case. ⊙

15δ is the dual map or dual pairing as above.
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Finally, we can define the (rational)R-matrix acting on the tensor product of fundamental
and antifundamental representations of sln+1 ↪

ι−→ Y (sln+1) using its crossing transforms
and the charge conjugation operator.

Definition 3.14 (R-matrix for fundamental and antifundamental representations). Let
g := sln+1 and V be the fundamental representation of g with highest weight ω1. Taking
into account the fact that highest weight vectors are mapped to lowest weight vectors for
the dual representations, we use the charge conjugation operator C to define the R-matrix
acting on the tensor products of fundamental and antifundamental representations via its
crossing transforms (Definition 3.12) similar to [14], i.e. a change of basis.16

R̄(λ) := (1 ⊗ C)R⊛⊛(λ)(1 ⊗ C−1) = (1 ⊗ C)
(
R(−λ− n+ 1

2 )
)t2

(1 ⊗ C−1) and

¯̄R(λ) := (C ⊗ 1)R⊛(λ)(C−1 ⊗ 1) = (C ⊗ 1)
(
R(−λ− n+ 1

2 )
)t1

(C−1 ⊗ 1). ⊙

Using this definition and the explicit form of the rational R-matrix in Definition 3.4, we
get the expression

R̄(λ) = ρ̄(λ)
λ+ n−1

2
((λ+ n+ 1

2 )1 − C̃ ⊗ C̃) = ¯̄R(λ), (3.8)

where ρ̄(λ) := ρ(λ+ n+1
2 )−1, C̃ is the morphism from either V ⊗ V ⋆ → C or C → V ⋆ ⊗ V

obtained from C by the natural isomorphism ∼. As for C, by abuse of notation, we use
the same symbol C̃ for the morphisms from V ⋆ ⊗ V → C and C → V ⊗ V ⋆ such that
C̃ ⊗ C̃ ∈ End(V ⊗ V ⋆) or End(V ⋆ ⊗ V ). Note that R̄ and ¯̄R can’t be equal as operators,
since they act on different spaces, but the operators 1 (identity) and C̃ ⊗ C̃ are defined
on either V ⊗ V ⋆ or V ⋆ ⊗ V as explained.17 Note also that the spectral parameters are
slightly shifted compared to [14].

Remark 3.15. In the following, when V is a fundamental representation with highest
weight ω1, we will correspondingly write V instead of V ⊛ to keep the notation short.
Moreover, we will use a bar to index antifundamental spaces. Let’s assume for instance
that the R-matrix acts on fundamental spaces indexed by 1 and 2, i.e. R = R12. Then
we write R̄ = R̄12̄ and ¯̄R = ¯̄R1̄2. This fits to our graphical notation for the singlet in
Section 3.3, however, when we talk about representations of the Yangian Y (sln), we should
emphasize that these singlets only exist in the tensor products V (λ) ⊗ V (λ + n+1

2 ) and
V (λ) ⊗ V (λ+ n+1

2 ). Having this in mind, we can justify omitting spectral parameters and
mostly treat singlets similar to the singlets in the Lie algebra sln.

16Note that we take the same definition as in [14] here, such that a change of sign of the spectral parameter
corresponds to choosing the opposite coproduct for the Hopf algebra structure. In practice this is not a
problem as long as we stick to one definition. We refer the reader to the book [29] for the details.

17Precisely speaking, we use the fact that the maps 1 and C are functors on appropriate categories
such that R̄(λ) and ¯̄R(λ) are given in terms of the same (endo)functors, but evaluated on different
objects.
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3.6. The reduced density matrix of the rational sln+1-invariant model

Using the rational R-matrix (3.4) and our graphical notation, we can define the partition
function of the rational sln+1-invariant model and its reduced density matrix D.

Let the rational sln+1 vertex model be defined on a lattice of the size L × M . As we
are interested in the thermodynamic limit when L,M → ∞, we may consider periodic
boundary conditions and an even number of horizontal lines M = 2N , i.e. our model is
defined on the square lattice with vertices on the torus TL,2N = Z/L× Z/2N .

We can now define the partition function of the model by giving every horizontal
and vertical line of the lattice an orientation and a spectral parameter, i.e. we fix the
representation V (λ) corresponding to a line by making use of our graphical notation defined
above. Then, the partition function is graphically represented by the lattice itself with
oriented horizontal and vertical lines and corresponding spectral parameters. Let’s now
fix one orientation for the vertical lines, let’s say "up", and introduce a staggering for the
orientation of the horizontal lines. This is useful for the definition of temperature and the
correspondence to the density operator ρ = exp(−HL/T ) of the SU(n+ 1) spin chain with
periodic boundary conditions (p.b.c.) in the limit N → ∞. To be more precise, we define
the monodromy matrices Ta;1,2,...,L(λ; (µi)L

1 ) := Ra,L(λ − µL) · · ·Ra,2(λ − µ2)Ra,1(λ − µ1)
and T a;1,2,...,L(λ; (µi)L

1 ) := (Ta;1,2,...,L)−1(λ; (µi)L
1 ) = R1,a(µ1 −λ)R2,a(µ2 −λ) · · ·RL,a(µL −λ)

and leave away the second set of lower indices whenever it is clear from the context (see
Figure 5).

a Rmi a

ML ML 1 M M

anmi na

ML ML 1 M M
Figure 5: The monodromy matrices Ta(λ; (µi)L

1 ) and T a(λ; (µi)L
1 ).

Then, the row to row transfer matrices t and t are defined through the traces of the
monodromy matrices t(λ; (µi)L

1 ) := tra(Ta(λ; (µi)L
1 )) and t(λ; (µi)L

1 ) := tra(T a(λ; (µi)L
1 ))

over the auxiliary space a. This is how the spaces corresponding to the horizontal lines are
called, whereas the spaces corresponding to vertical lines are called the quantum space.
Setting the parameters µi, i = 1, . . . , L, of the vertical lines to zero and the parameters for
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the N horizontal lines pointing towards the right (resp. left) to β
2N

(resp. − β
2N

) we have

exp (−βHL) = lim
N→∞

(
t

(
− β

2N

)
t

(
β

2N

))N

in operator norm on the space V ⊗L, where HL is the Hamiltonian of the SU(n+ 1) spin
chain of length L with p.b.c. and β = 1/T the inverse temperature.18 In this case we omit
writing the dependence on the µi = 0, i = 1, . . . , L. The partition function of the model is
depicted in Figure 6, where we introduce hooks to show that a line forms a closed loop,
i.e. we take the trace over the corresponding space.

ß
2N 2N

2N 1
PM

Zum ß

ß
2 2N

1 ß 2N

L L 1 2 1

Figure 6: The partition function of the L× 2N staggered vertex model.

It is the trace over the spaces 1, . . . , L of the product of the transfer matrices

ZL×2N(β) = tr1,...,L

(t(− β

2N

)
t

(
β

2N

))N
 .

Note that in the limit N → ∞ we obtain the partition function of the SU(n + 1) spin
chain ZL(β) = tr1,...,L[exp(−βHL)].

18It is called the "Trotter formula" for the statistical operator. When n = 1 we have HL = HXXX
L , the

Hamiltonian of the XXX spin chain.
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Definition 3.16. Let N ∋ m ≤ L and consider the observables O ∈ End(V ⊗m). We define
the inhomogeneous (reduced) density matrix Dm(µ1, . . . , µm) ∈ (End(V ⊗m))⋆ by

Dm(µ1, . . . , µm)(O) := 1
ZL×2N(β)×

tr1,...,L

O1,...,m

(
t

(
− β

2N ;µm, . . . , µ1, 0, . . . , 0
)
t

(
β

2N ;µm, . . . , µ1, 0, . . . , 0
))N

 , (3.9)

where we identify O ∈ End(V ⊗m) with O1,...,m ∈ End(V ⊗L) by

End(V ⊗m) ↪ιmL−−→ End(V ⊗L) : O 7→ O1,...,m := O ⊗ 1⊗(L−m),

and 1 ∈ End(V ) is the identity operator. ⊙

Remark 3.17. Using the periodicity, it should be clear that every observable O ∈ End(V ⊗L)
that acts non trivially only on a segment V ⊗m of length m ≤ L can be identified with
an element O ∈ End(V ⊗m). In this sense, we have a morphism D which represents the
(inhomogeneous) density matrix for every m ∈ N via

End(V ⊗k) ↪ιkl−→ End(V ⊗l) : O 7→ O1,...,k := O ⊗ 1⊗(l−k) ∀ k ≤ l.

It is the unique morphism defined on the direct limit lim−→ End(V ⊗m).19

We write D =: lim−→Dm,20 and call it the (inhomogeneous) reduced density matrix.
We should also emphasize that it is well defined in the inhomogeneous case only because

of the translational invariance of the R-matrix.21 We will later call it the left-right reduction
property of Dm. By abuse of notation, we will sometimes use the term ’reduced density
matrix’ when referring to Dm or correlation functions in general. ⊙

Remark 3.18. Note that we choose the numbering of the parameters µi, i = 1, . . . ,m,
from right to left as in [14]. This is of course a matter of taste but it may be easier to
have a corresponding notation. We also choose the numbering of the spaces according
to the parameters from right to left. However, setting the parameters µi, i = 1, . . . ,m,
to zero we obtain the reduced density matrix Dm of the L × 2N staggered vertex model
with temperature T (cf. Figure 7). Furthermore, by abuse of notation we may also write
Dm(µ1, . . . , µm) in any of the limits N → ∞, L → ∞, T → 0 and call it the (generalised)
reduced density matrix of the rational sln invariant model. ⊙

Let us now provide a way to derive the reduced qKZ equations on the infinite lattice
(L,N → ∞). We put the upper index (0) if we refer to the usual density matrix Dm =: D(0)

m

and introduce an additional density matrix D(1)
m where the vertical line with parameter µ1

is replaced by an antifundamental line with the same parameter. It is depicted in Figure
19Precisely speaking, we should replace End(V ⊗m) with End(V ⊗L) for all m ≥ L in the case when L is

kept finite.
20We will oftentimes omit writing the dependence on the spectral parameters to keep the notation short.
21I.e. the R-matrix is of difference type.
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8. In the finite lattice case, we obtain the difference equations derived in the Appendix
of [14]. They are given by

D(0)
m (βj, µ2, . . . , µm|β1, . . . , βN ; β̄1, . . . , β̄N)

(
A

(1)
1,1̄|2,...,m

(βj|µ2, . . . , µm)
(
X1̄,2,...,m

))
=

D(1)
m (βj − n+ 1

2 , µ2, . . . , µm|β1, . . . , βN ; β̄1, . . . , β̄N)
(
X1̄,2,...,m

)
and (3.10)

D(1)
m (β̄j, µ2, . . . , µm|β1, . . . , βN ; β̄1, . . . , β̄N)

(
A

(2)
1̄,1|2,...,m

(β̄j|µ2, . . . , µm) (X1,...,m)
)

=

D(0)
m (β̄j − n+ 1

2 , µ2, . . . , µm|β1, . . . , βN ; β̄1, . . . , β̄N) (X1,...,m) (3.11)

in general, where the N horizontal lines pointing towards the left have the spectral
parameters βj, j = 1, . . . , N , and the N horizontal lines pointing towards the right22 are
replaced by antifundamental lines with parameters β̄j = n+1

2 − βj pointing towards the left
by means of the crossing symmetry (Section 3.5). Setting βj to β

2N
we come back to the

density matrices D(0) and D(1) for the temperature T = 1
β

with homogeneous horizontal
parameters as defined above. Taking the limits T → 0 and N , L → ∞ carefully, we
obtain true difference equations usually referred to as the reduced qKZ equation (cf. [65]
and [14]).23 A precise definition of the operators A(1) and A(2) is given in the Appendix A.
For the discussion of the limits we refer to the paper [14].

2N 1
B2

1 β
2N

µm Mm 1 Mz M1
ImMi Um

2N 2N

m m 1 2 1 L m 1

Figure 7: The reduced density matrix Dm ≡ D(0)
m of the L× 2N staggered vertex

model.

22with spectral parameters −βj , j = 1, . . . , N ,
23In this situation, we normalize our R-matrix by the partition function per lattice site. Consequently, we

have ZL×2N (0) = 1 as stated in the introduction.
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2N 1
Bz

1 β
2N

1 Um Mme Mz M1Immer Um Z

β
2N 2N

m m 1 2 1 L m 1

Figure 8: The reduced density matrix D(1)
m of the L× 2N staggered vertex model.
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4. The construction for sl2

Now, having introduced our graphical notation and established our interest in the reduced
density matrix, we are in a position to review the construction in the paper [15]. It is
based on the fact that the density matrix Dm satisfies a certain difference equation in
the infinite lattice limit, the reduced quantum Knizhnik–Zamolodchikov (rqKZ) equation.
Furthermore, the reduced density matrix D satisfies a list of properties [54].

4.1. The construction of the residues and the projector identity

We write the indices 1, . . . ,m whenever we need to clarify the corresponding spaces for D,
i.e. Dm ≡ D1,...,m.

Proposition 4.1. The functional Dm
24 possesses the following properties:

1. Dm is invariant under the action of sl2.

2. Dm satisfies the R-matrix relations

D1,...,i+1,i,...,m(λ1, . . . , λi+1, λi, . . . , λm) =
Ri+1,i(λi+1,i)D1,...,m(λ1, . . . , λm)Ri,i+1(λi,i+1).

3. Dm has the left-right reduction property

tr1(D1,...,m(λ1, . . . , λm)) = D2,...,m(λ2, . . . , λm)
trm(D1,...,m(λ1, . . . , λm)) = D1,...,m−1(λ1, . . . , λm−1)

for all m ∈ N, where D1,...,m−1(λ1, . . . , λm−1) := 1 for m = 1.

4. The rqKZ equation

D1,...,m(λ1 − 1, λ2, . . . , λm) = A1̄,1|2,...,m(λ1|λ2, . . . , λm)(D1̄,2,...,m(λ1, λ2, . . . , λm)).

5. D1,..,m(λ1, . . . , λm) is meromorphic in λ1, . . . , λm with at most simple poles at λi−λj ∈
Z\{0,±1}.

6. For all 0 < δ < π:

lim
λ1→∞
λ1∈Sδ

D1,...,m(λ1, . . . , λm) = 1
211D2,...,m(λ2, . . . , λm),

where Sδ := {λ ∈ C|δ < | arg(λ)| < π − δ}. ⊙

24Using the transposition isomorphism End(V ⊗m)⋆ ∼= End(V ⊗m) we identify Dm : End(V ⊗m) → C for
any m ∈ N (cf. Definition 3.16) with an element in End(V ⊗m).
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To keep the notation short we omit the indices 2, . . . ,m and write A1̄,1(λ1|λ2, . . . , λm)
instead of A1̄,1|2,...,m(λ1|λ2, . . . , λm) from now on. A1̄,1(λ1|λ2, . . . , λm) is given by either
A

(1)
1,1̄(λ1|λ2, . . . , λm) or A(2)

1̄,1(λ1|λ2, . . . , λm) in the Appendix A. It simplifies in the case of
sl2 because the fundamental and antifundamental representations are isomorphic (V ∼= V ).
A1,1̄(λ1|λ2, . . . , λm) is depicted in Figure 9, where the cross on the bottom right stands for
the operator −2PP− with P− being the projector onto the singlet in V1(λ1) ⊗ V1̄(λ1 − 1).
Identifying V (λ1) and V (λ1 − 1) as representations of U(g) ↪ ι−→ Y (g) as above, we have
−2PP− = 2P−, which is how we define any other vertex with a cross that doesn’t
interchange the spectral parameters of the horizontal and vertical line.25

1
An

1

Figure 9: The graphical representation of the operator A1,1̄ which appears in the
rqKZ equation (Property 4 above).

The analytic Properties 5 and 6 in Proposition 4.1 are obtained from an integral formula
constructed in [54] and [69]. They are derived in the Appendix B of [15].

Remark 4.2.

• Due to ρ(λ)ρ(−λ) = 1 and ρ(λ − 1)ρ(λ) = − λ
λ−1 the coefficients in 2 and 4 in

Proposition 4.1 are rational.

• D1,...,m(λ1, . . . , λm) is translational invariant

D1,...,m(λ1 + u, . . . , λm + u) = D1,...,m(λ1, . . . , λm)

• D1,...,m(λ1, . . . , λm) fulfils the spin conservation rule

[D1,...,m(λ1, . . . , λm)]ϵ̄1...ϵ̄m

ϵ1...ϵm
= 0 if m1(ϵ) ̸= m1(ϵ̄),

where the components of D are given by

[D1,...,m(λ1, . . . , λm)]ϵ̄1...ϵ̄m

ϵ1...ϵm
:= D1,...,m(λ1, . . . , λm)

(
(E ϵ̄1

ϵ1 )1 · · · (E ϵ̄m
ϵm

)m

)
,

E ϵ̄i
ϵi

= eϵi
⊗ eϵ̄i and m1(ϵ) is the number of ϵi, i = 1, . . . ,m, with ϵi = 1.

• 1 - 6 in Proposition 4.1 determine Dm completely (see [15]).

25In other words it doesn’t change the orientation of the outgoing lines.
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7. From 2, 3, 4 and 5, the analyticity of Dm at λ1 = λ2, in Proposition 4.1, we obtain

P−
12D1,2,...,m(λ− 1, λ, . . . , λn) = P−

12D3,...,m(λ3, . . . , λn),

where (P−
11̄)2 = P−

11̄ is the projector onto the singlet. ⊙

As Dm is meromorphic in λ1 with at most simple poles, it is completely determined by
its residues and asymptotic behaviour. Using the rqKZ equation repeatedly, a relation of
the form

res
λ1,j=±(k+1)

D1,...,m(λ1, . . . , λm) =

res
λ1,j=±(k+1)

{
∓ ω(λ1,j)

1 − λ2
1,j

X̃ [1,j](λ1, . . . , λm)
}

(Dm−2(λ2, . . . , λ̂j, . . . , λm)) (4.1)

for the residues of D1,...,m(λ1, . . . , λm) is proven in [15], where ω(λ1,j)
1−λ2

1,j
X̃ [1,j](λ1, . . . , λm) is

a single meromorphic function.26 Furthermore, the asymptotics of Dm were calculated
such that a reduction relation for the reduced density matrix could be obtained using
Liouville’s theorem. Let us derive Equation (4.1) in our notation. Using the R-matrix
relations 2 in Proposition 4.1 we can suppose j = 2. Then, by applying the rqKZ equation
4 in Proposition 4.1 repeatedly, D1,...,m(λ1 − k − 1, λ2, . . . , λm) can be expressed in terms
of several A’s with shifted arguments acting on D1,...,m(λ1 − 1, λ2, . . . , λm)

res
λ1=λ2−(k+1)

D1,...,m(λ1, . . . , λm) = res
λ1=λ2

D1,2,...,m(λ1 − (k + 1), λ2, . . . , λm) =

res
λ1=λ2

{Ab̄,b(λ1 − k|λ2, . . . , λm) · · ·Aa,ā(λ1 − 1|λ2, . . . , λm)Da,2,...,m(λ1 − 1, λ2, . . . , λm)},

(4.2)

where the indices are a = b = 1 if k is even and a = 1̄ = b̄ when k is odd setting ¯̄1 := 1.
Finally, one uses the projector identity 7 in Remark 4.2 to see that D3,...,m(λ3, . . . , λm) can
be pulled out of the residue as it doesn’t depend on λ12 =: λ1 − λ2. This is only possible,
because the residue of Aa,ā(λ1 − 1|λ2, . . . , λm) at λ1 = λ2 contains the projector P−

a,2 just
at the right position, i.e., we can apply the projector identity 7 in Remark 4.2. We obtain

res
λ1=λ2−(k+1)

D1,...,m(λ1, . . . , λm) =

res
λ1=λ2

{Ab̄,b(λ1 − k|λ2, . . . , λm) · · ·Aa,ā(λ1 − 1|λ2, . . . , λn)}D3,...,m(λ3, . . . , λm)

and see that the product res
λ1=λ2

{Ab̄,b(λ1 − k|λ2, . . . , λm) · · ·Aa,ā(λ1 − 1|λ2, . . . , λm)} is one
(quite unhandy) expression for the operator X̃k which we call ’Snail Operator’. Suppose
for simplicity k = 2, then we apply the rqKZ equation two times (Figure 10). Taking the
residue at λ1 = λ2, R12(λ1 − λ2 − 1) in the red circle (Figure 10) reduces to 2P−

12 up to a
scalar prefactor.
26We use the short hand notation λij := λi − λj .
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RmRm 1 123 122 113

11 1

11 2

RmRm 1 13 122 113

Figure 10: Applying the rqKZ equation two times.

As a consequence, we can apply the projector identity 7 in Remark 4.2 to obtain the
result in Figure 11,27 where we have split the operator 2P−

12 into the tensor product of a
singlet in V1 ⊗ V2 (a cross with two ingoing lines) and its dual in V ⋆

1 ⊗ V ⋆
2 (a cross with

two outgoing lines), respectively.28 The operator in the box with the dashed red line
(multiplied by the scalar prefactor) is the Snail Operator for sl2 and k = 2 loops.

11 122

mhm 1 123 12 13

Figure 11: The Snail Operator with two loops (k = 2). Note that it is only defined
in terms of the limit λ1 → λ2 − 1 of (λ1 − λ2 + 1) times Figure 10.

Due to the fact that we have projectors in the last two loops and the spectral parameters
of successive lines differ by exactly one, the Snail Operator can be further simplified by
applying identities similar to the identities in Figure 12. Note that we omit the prefactor
of the R-matrix in this figure, i.e. taking the numerical R-matrix r(λ) := λ+ P instead of
R(λ). The arguments of the r’s are written next to the vertices.
27To be precise, Figure 11 has to be understood as the limit λ1 → λ2 − 1 of (λ1 − λ2 + 1) times Figure 10.
28The sl2 case of the definition in Section 3.3
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1 1

2
1
12

2 2 3

3
2

3 4

Figure 12: Two identities for the numerical R-matrix r(λ) := λ+ P .

In general, it was shown in [15] that the k loops of the Snail Operator fuse to a single
irreducible representation of the Yangian, the Kirillov–Reshetikhin module Wk. As a
representation of sl2 it is just the irreducible spin-k/2 representation. This was proven
in a combinatoric way. As we are going to investigate the generalisation for higher rank,
we shall explain the algebraic structure behind this in the next subsection. However, the
projector identity 7 in Remark 4.2 is the key identity which was used to reduce Dm to
Dm−2 such that it can be pulled out of the residue. Therefore, let us try to understand
it graphically. After applying the first part of the rqKZ equation once, we set λ1 = λ2,29

use the fact that R(0) = P (Figure 13 inside the red circles) and use the YBE to pull the
second line out to the left (long green arrows in Figure 13).

mitm 1 123 R R1 mMm1 123 R R1

Figure 13: After applying the rqKZ equation once, the second vertical line is pulled
out towards the left along the long green arrows using the YBE. For the
first line, the two projectors P− are split up into the tensor product of
two singlets, respectively (Figure 14 on the left).

After that, we split up the two operators 2P− (the two crosses in Figure 13) into the
tensor product of a singlet and its dual. The result is shown in Figure 14 on the left.
Finally, the singlet and its dual on the straight lines cancel out, as they are now considered
as mappings from V ⋆ to V and V to V ⋆, respectively.30 Of course, they correspond to the
29This is only well defined because of the analyticity of Dm at λ1 = λ2.
30The singlet is considered as a mapping from ∗V to V in this case. In general it relates either ∗V and V

or V ∗ and V . Similarly for its dual.
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different ways of interpreting the charge conjugation operator C, having the isomorphism
V ∼= V for sl2 in mind. Using the left-right reduction, Property 3 in Proposition 4.1, we
obtain the result on the right in Figure 14.

RmRm 1 123 R R1 Rm Rm 1 123 R R1

Figure 14: The two singlets on the vertical line cancel. Then, by applying the
left-right reduction (Property 3) for the two additional vertical lines,
the result on the right is obtained.

4.2. T-systems and the Snail Operator X̃k

Let us now turn back to the discussion of the Snail Operator X̃k in the special case of sl2.
As the general case will be described in Section 5.2 in complete detail, we intend to provide
a first explanation of the quite surprising simplification that was proven in [15]. It can be
stated in the following way: "In the tensor product of the k fundamental representations
that appear in the Snail Operator with k loops, all but one irreducible representation cancel
out.The Kirillov–Reshetikhin module Wk, which is the spin-k/2 irreducible representation
of sl2 ↪ ι−→ Y (sl2)."

As was discussed in Section 3.3, where we introduced our graphical notation, every
line is associated with a fundamental representation of the Yangian Y (sl2). Drawing
the Snail Operator in a slightly less compact way by not splitting up the projector P−,
we can propose that it has k closed loops (Figure 15). Again, since the R-matrix R(λ)
has a simple pole at λ = 1, Figure 15 is only understood in terms of the residue at
λ1 = λ2 − k − 1. As above, we multiply it by the scalar prefactor obtained from R(λ)
in the limit λ → −1. However, we explain how Figure 15 can be made into a precise
definition in a moment. The fundamental representations of the successive lines (loops) in
the Snail Operator are obtained by pulling back the spin-1/2 fundamental representation
V = V (1) of sl2 by evλ−l, l = 1, . . . , k. It is called the spin-1/2 evaluation representation
V (1)(λ − l) to the loop parameter a = λ − l ∈ C. Generally, we define the spin-k/2
evaluation representation V (k)(a) of Y (sl2) to the loop parameter a ∈ C as the pullback of
V (k) by eva (V (k)(a) := ev∗

a V
(k)), where V (k) is the spin-k/2 irreducible representation of

sl2. It is closely related to the definition of the Kirillov–Reshetikhin module W (k)(a). We
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have W (k)(a) := V (k)(a+ 1
2(k− 1)). Therefore, V = V (1)(λ− l) = W (1)(λ− l), l = 1, . . . , k,

are the fundamental representations of the successive lines.

11 12

13

mhm 1 123 R RKI

11

12

13

mhm 1 123 R RKI

Figure 15: The Snail Operator with k loops depicted in two equivalent ways. Note
that is only understood in terms of the residue at λ := λ2 = λ1 + k + 1.

Looking at the right side in Figure 15, we use the identity A1 = trVα(AαPα,1), A ∈
End(V1), to write the Snail Operator as the residue at λ = λ2 of the product of the
monodromy matrices

Tαl;2,3,...,2m−1(λ− l;λ2, λ3, . . . , λm) :=
tra{T a;2,3,...,m(λ− l;λ2, λ3, . . . , λm)Ta;2m−1,2m−2,...,m+1(λ− l;λ2, λ3, . . . , λm)Ra,αl

(0)}

multiplied by the operator

P2,α1,...,αk,1 := 2kP−
α1,2P

−
α2,α1 · · ·P−

αk,αk−1
P−

1,αk

and contracted over the spaces 2, α1, . . . , αk. Note that we used the projector identity
(P−

α1,2)2 = P−
α1,2 to be able to introduce the operator P and the identity Pa,αl

= Ra,αl
(0) to

define the monodromy matrices nicely in terms of a product of R-matrices. In fact, the
operator P turns out to be the projector onto the Kirillov–Reshetikhin module W (k)(λ)
in the tensor product of the spaces α1, . . . , αk times the singlet in the tensor product of
two spin 1 representations built from the spaces V1 ⊗ V 1 and V2 ⊗ V 2 when acting on the
R-matrices on the vertical line with spectral parameter λ.31 Here, we identified V1 ⊗ V 1

with V1 ⊗ V ⋆
1

∼= End(V1) using the dual of the singlet in V ⋆
1 ⊗ (V 1)⋆ and similarly for V2.

Let us explain the representation theory behind this.
In the category of finite dimensional representations of the Yangian Y (sl2) we consider

tensor products of the fundamental (evaluation) representations. Now, the main observation
is due to Chari and Pressley (1991) (cf. [28] Proposition 4.9) for Uq(s̃l2), which can be
translated for Y (sl2) using the equivalence of representations for Yangians and quantum
affine algebras explained at the end of Section 3.2. The statement is as follows.

31P itself has rank 2k, but it is further reduced to k + 1 due to the fusion properties of the R-matrices.
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Proposition 4.3 (special position). The tensor product V := W (k)(a) ⊗ W (l)(b) of
Kirillov–Reshetikhin modules has a unique proper subrepresentation W iff there is a
0 < p ≤ min{k, l} such that b− a = k−l

2 ±
(

k+l
2 − p+ 1

)
. In this case the modules W (k)(a)

and W (l)(b) are said to be in special position. We have the short exact sequence

W ↪→ W (k)(a) ⊗W (l)(b) →→ V/W,

where the composition factors W and V/W are irreducible. They are given as follows.

1. If b− a = k − p+ 1, we have

W ∼= W (k−p)(a) ⊗W (l−p)(b+ p),
V/W ∼= W (p−1)(a+ k − p+ 1) ⊗W (k+l−p+1)(b− k + p− 1). (4.3)

As a representation of sl2,

W ∼= V (k+l−2p) ⊕ V (k+l−2p−2) ⊕ · · · ⊕ V (|m−n|).

2. If b− a = −l + p− 1, we have

W ∼= W (p−1)(a− k) ⊗W (k+l−p+1)(b),
V/W ∼= W (k−p)(a+ p) ⊗W (l−p)(b). (4.4)

As a representation of sl2,

W ∼= V (k+l) ⊕ V (k+l−2) ⊕ · · · ⊕ V (m+n−2p+2). ⊙

Using this proposition, we see that neighbouring lines in the Snail Operator are in
special position with respect to each other. As we can forget about the spectral parameter
of any trivial representation C ∼= W (0)(a) =: W (0), we can write the short exact sequence
between two successive lines as

W (0) ↪→ W (1)(λ− 1) ⊗W (1)(λ) →→ W (2)(λ− 1).

Considering a partition of unity with the respective projectors onto the composition factors
in the Snail Operator, the projector onto W (0) cancels out. It can easily be checked by
using the identities in Figure 12. Now, writing only the irreducible composition factors of
the possible short exact sequences in Proposition 4.3, we get equations in the Grothendieck
ring, the T-systems. Usually it is referred to the case when k = l, where we have the
T-system [72]

[W (k)(λ− 1)][W (k)(λ)] = [W (k+1)(λ− 1)][W (k−1)(λ)] + 1, (4.5)
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which is oftentimes written in terms of transfer matrices with the respective representations
in the auxiliary space [52]. Using this equation, one can derive the T-system 32

[W (1)(λ− k)][W (k)(λ− k + 1)] = [W (k+1)(λ− k)] + [W (k−1)(λ− k + 2)], (4.6)

which appears in the Snail Operator in its successive lines. In fact, it was proven that the
second component (in Equation (4.6)) cancels out in every step, similar to the case k = 1
above [15]. Therefore, only the Kirillov–Reshetikhin module W (k) remains in the Snail
Operator with k loops.

Furthermore, it is possible to analytically continue the definition of the operator Xk

with respect to k ∈ C. This is done in the paper [15] by defining a trace function

Trx : U(sl2) ⊗ C[x] → C[x]

such that we have for any non negative integer k

Trk+1(A) = trV (k) π(k)(A) (A ∈ U(sl2)).

The analytical continuation is then defined roughly by replacing the R-matrices in the
definition above by L-operators and applying the trace function. The exact details are
described in the paper [15]. Since it is defined through a separate algebraic construction,
we stop our review here and comment on it later when we discuss the higher rank case.
Anyhow, the generalisation we present is not of Kirillov–Reshetikhin type for higher rank.
In fact, we will see that it is a certain minimal snake module [74].

32Equivalently, we can choose l = 1 in proposition 4.3.
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5. The construction for higher rank
Having outlined the construction in the sl2 (rank 1) case, we are now prepared to discuss
our generalization to higher rank. For the basic construction we focus especially on the sl3

(rank 2) case, as we can use the results of the paper [14] to explain how some residues can
already be calculated. At the end of Section 5.1, we discuss the difficulties that emerge
for rank n > 2. Nevertheless, the representation-theoretical explanation in Section 5.2
concerning the Snail Operator X̃k covers the general (rank n) case.

5.1. Projector identities and the construction of the residues for sl3

Let us start with the generalisation of the properties of the reduced density matrix D.

Properties 5.1. Analogous to the sl2 case, Dm ≡ D1,...,m fulfills the following properties.

1. Dm is invariant under the action of sln+1.

2. The R-matrix relations

D1,...,i+1,i,...,m(λ1, . . . , λi+1, λi, . . . , λm) =
Ri+1,i(λi+1,i)D1,...,m(λ1, . . . , λn)Ri,i+1(λi,i+1).

3. The left-right reduction property

tr1(D1,...,m(λ1, . . . , λm)) = D2,...,m(λ2, . . . , λm)
trm(D1,...,m(λ1, . . . , λm)) = D1,...,m−1(λ1, . . . , λm−1).

4. The rqKZ equation

D
(1)
1̄,2,...,m

(λ1 − n+ 1
2 , λ2, . . . , λm) =

A
(1)
1,1̄|2,...,m

(λ1|λ2, . . . , λm) (D1,2,...,m(λ1, λ2, . . . , λm)) :=

tr1(R1m(λ1 − λm) · · ·R12(λ1 − λ2)D1,2,...,m(λ1, λ2, . . . , λm)
(n+ 1)P−

1,1̄R21(λ2 − λ1) · · ·Rm1(λm − λ1)), (5.1)

D1,2,...,m(λ1 − n+ 1
2 , λ2, . . . , λm) =

A
(2)
1̄,1|2,...,m

(λ1|λ2, . . . , λm)(D(1)
1̄,2,...,m

(λ1, λ2, . . . , λm)) :=

tr1̄( ¯̄R1̄m(λ1 − λm) · · · ¯̄R1̄2(λ1 − λ2)D(1)
1̄,2,...,m

(λ1, λ2, . . . , λm)

(n+ 1)P−
1,1̄R̄21̄(λ2 − λ1) · · · R̄m1̄(λm − λ1)). (5.2)

In contrast to the sl2 case, the fundamental and the antifundamental representation
are not isomorphic. This has the consequence that the rqKZ equation splits into two
parts. Combining them, we obtain a closed equation for Dm of difference type. ⊙
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To keep the notation short we omit the indices 2, . . . ,m and write A(1)
1,1̄(λ1|λ2, . . . , λm)

respectively A(2)
1̄,1(λ1|λ2, . . . , λm) from now on. A(1)

1,1̄(λ1|λ2, . . . , λm) and A(2)
1̄,1(λ1|λ2, . . . , λm)

are depicted in Figure 16, where the crosses in the bottom right stand for the operator
(n+ 1)PP− as explained in Section 3.3.

A A

Figure 16: The graphical representation of the operators A(1)
1,1̄ and A(2)

1̄,1 which appear
in the first and the second part of the rqKZ equation Property 4.

A complete derivation of the rqKZ equation in the general case of an untwisted quantum
affine algebra is given in the paper [65]. Of course, this does not directly cover the case of
the Yangian, but it can be seen as a limiting case as explained in Remark 3.7. In terms of
representation theory it is explained in [43].

Remark 5.2.

• Due to ρ(λ)ρ(−λ) = 1 and ρ(λ)ρ(n+1−λ) = − (n+1−λ)λ
(n−λ)(1−λ) the coefficients in Propertys

2 and 4 are rational.

• D1,...,m(λ1, . . . , λm) is translationally invariant

D1,...,m(λ1 + u, . . . , λm + u) = D1,...,m(λ1, . . . , λm)

• D1,...,m(λ1, . . . , λm) fulfils the colour conservation rule

[D1,...,m(λ1, . . . , λm)]ϵ̄1...ϵ̄m

ϵ1...ϵm
= 0 if ∃k ∈ {1, . . . , n} mk(ϵ) ̸= mk(ϵ̄)

where the components of D are given by

[D1,...,m(λ1, . . . , λm)]ϵ̄1...ϵ̄m

ϵ1...ϵm
:= D1,...,m(λ1, . . . , λm)

(
(E ϵ̄1

ϵ1 )1 · · · (E ϵ̄n
ϵn

)m

)
,

E ϵ̄i
ϵi

= eϵi
⊗ eϵ̄i and mk(ϵ) is the number of ϵi, i = 1, . . . ,m, with ϵi = k. ⊙

Similarly, we have a conjecture for the analytic properties of D (see below). We expect
that they can be proven in the same way as for the sl2 case, using integral formulas
obtained from the vertex operator approach in the massive regime and considering the
limit q → 1. Generally, one could use the results in the papers [70] [41] [68]. For now, we
will assume them to be correct and leave a complete proof open to future work.
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Conjecture 5.3. The analytic properties of D are as follows.

5. D1,...,m is meromorphic in λ1, . . . , λm with at most simple poles
at λi − λj ∈ Z\{0,±1, . . . ,±n}.

6. ∀ 0 < δ < π :

lim
λ1→∞
λ1∈Sδ

D1,...,m(λ1, . . . , λm) = 1
n+ 111D2,...,m(λ2, . . . , λm),

where Sδ := {λ ∈ C|δ < | arg(λ)| < π − δ}. ⊙

Looking at the results in the paper [14], we can verify that they are satisfied in the case
of sl3 for the one, two, and three site density matrix (m ≤ 3).

Finally, we need an analogue of the projector identity 7 in Remark 4.2 which was the key
identity to be able to decouple the Snail Operator from the density matrix. Fortunately,
it naturally generalises to higher rank as follows. When considering the tensor product
of two (anti)fundamental representations, a singlet can only be produced when a pair of
fundamental and antifundamental representations is tensored. Therefore, we have to start
with D(1) in the general case. Looking at D, we can at best hope for identities that include
projectors which appear in the tensor product of two fundamental representations of sln+1.

Corollary 5.4.

7. Using again the Properties 2, 3, 4 and the analyticity of Dm at λ1 = λ2, we obtain

P−
1̄2D

(1)
1̄,2,...,m

(λ− n+ 1
2 , λ, . . . , λn) = P−

1̄2D3,...,m(λ3, . . . , λn),

where (P−
1̄1)2 = P−

1̄1 is the projector onto the singlet. ⊙

The derivation is done in the same way as for sl2. Let us explain it again anyway. After
applying the first part of the rqKZ equation once, we set λ1 = λ2,33 use the fact that
R(0) = P (Figure 17 inside the red circles) and apply the YBE repeatedly to pull the
second line out to the left (long green arrows in Figure 17). After that, we split up the
two operators 2P− (the two crosses in Figure 17) into the tensor product of a singlet and
its dual. The result is shown in Figure 18 on the left. Finally, the singlet and its dual on
the straight lines cancel out as they are now considered as mappings from V ⋆ to V and V
to V ⋆, respectively.34 Of course, they correspond to the different ways of interpreting the
charge conjugation operator C. Using the left-right reduction (Property 3), we obtain the
result at the right in Figure 18. However, in general we only obtain this projector identity
for D(1).

33This is only well defined because of the analyticity of Dm at λ1 = λ2.
34To be precise, the singlet is considered a mapping from ∗V to V in this case. In general it relates either

∗V and V or V ∗ and V . Similarly for its dual.
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Am 1m 1 123 R MY 1m11 13 R MY

Figure 17: After applying the first part of the rqKZ equation, the second vertical
line is pulled out towards the left along the long green arrows using
the YBE. For the first line, the two projectors P− are split up into the
tensor product of two singlets, respectively (Figure 18 on the left).

1m11 13 R MY RmRm 1 123 R MY

Figure 18: The two singlets on the vertical line cancel. Then, by applying the
left-right reduction (Property 3) for the two closed vertical lines, the
result on the right is obtained.

For now, let us close the generalisation of the properties of D (and D(1)). We will return
to this problem in a moment.

The idea for the generalisation of the sl2 construction remains the same. Since D1,...,m

is meromorphic in λ1, . . . , λm with at most simple poles at λi − λj ∈ Z\{0,±1, . . . ,±n},
it is completely determined by its residues and asymptotic behaviour. Using the R-matrix
relations (Property 2), we can assume i = 1, j = 2 and k positive without loss of generality.
In fact, looking at the residue of the operator A(2)

1̄,1(λ1|λ2, . . . , λm) at λ1 = λ2 − n+1
2 , we

obtain the projector P−
1̄2 onto the singlet as before. This means that we can calculate the

residues of D1,...,m(λ1, λ2, . . . , λm) at λ1 = λ2 −k(n+1), k = 1, 2, . . . , in the exact same way
as for sl2. We explain it again anyway, as this is the case when we have to apply the rqKZ
equation 2k − 1 times (i.e. 2k − 1 loops). Starting with D1,...,m(λ1 − k(n+ 1), λ2, . . . , λm),
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we apply the rqKZ equation, Property 4, 2k − 1 times

res
λ1=λ2−k(n+1)

D1,...,m(λ1, . . . , λm) = res
λ1=λ2

D1,2,...,m(λ1 − k(n+ 1), λ2, . . . , λm) =

res
λ1=λ2

{A(2)
1̄,1(λ1 − (2k − 1)n+ 1

2 |λ2, . . . , λm)A(1)
1,1̄(λ1 − (2k − 2)n+ 1

2 |λ2, . . . , λm) · · ·

· · ·A(2)
1̄1 (λ1 − n+ 1

2 |λ2, . . . , λm)D(1)
1̄,2,...,m

(λ1 − n+ 1
2 , λ2, . . . , λm)}. (5.3)

Now, we use projector identity 7 in Corollary 5.4 to see that we can pull D3,...,m(λ3, . . . , λm)
out of the residue as it doesn’t depend on λ12 =: λ1 − λ2. This is only possible, because
the residue of A(2)

1̄1 (λ1 − 1|λ2, . . . , λm) at λ1 = λ2 contains the projector P−
1̄,2 just at the

right position. We obtain

res
λ1=λ2−(k+1)

D1,...,m(λ1, . . . , λm) = X̃2k−1D3,...,m(λ3, . . . , λm) (5.4)

and see that the product

X̃2k−1 := res
λ1=λ2

{A(2)
1̄,1(λ1 − (2k − 1)n+ 1

2 |λ2, . . . , λm)×

× A
(1)
1,1̄(λ1 − (2k − 2)n+ 1

2 |λ2, . . . , λm) · · ·A(2)
1̄1 (λ1 − n+ 1

2 |λ2, . . . , λm)}

can be used as a first definition of the Snail Operator X̃k for higher rank. Suppose for
simplicity k = 2, then we apply the rqKZ equation three times (Figure 19).

MmMm1 123122112M1

MY
11 m1

11 32

RmRm 1 123122112M1

Figure 19: Applying the rqKZ equations 3 times.

Taking the residue at λ1 = λ2, ¯̄R1̄2(λ1 − λ2 − n+1
2 ) in the red circle (Figure 19) reduces

to 2P−
1̄2 up to a scalar prefactor. As a consequence, we can apply the projector identity

7 in Corollary 5.4 to obtain the result in Figure 20.35 Where we have split the operator

35To be precise, Figure 20 has to be understood as the limit λ1 → λ2 − n+1
2 of (λ1 − λ2 + n+1

2 ) times
Figure 19 as in the sl2 case.
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2P−
1̄2 into the tensor product of a singlet in V 1̄ ⊗ V2 (a cross with two ingoing lines) and its

dual in (V 1̄)⋆ ⊗ V ⋆
2 (a cross with two outgoing lines), respectively (cf. Section 3.3). The

operator in the box with the dashed red line (multiplied by the scalar prefactor) is the
Snail Operator with three loops.

131 DM1

132

1m11 123 12 12211

Figure 20: The Snail Operator with three loops. Note that it is only defined in
terms of the limit λ1 → λ2 − n+1

2 of (λ1 − λ2 + n+1
2 ) times Figure 19.

Due to the fact that we have projectors in the last two loops of the Snail Operator and
the spectral parameters of successive lines differ by exactly n+1

2 , the Snail Operator can
be further simplified by applying identities similar to Figure 21. Note that we omit the
prefactor of the R-matrix in this Figure, i.e., taking the numerical R-matrices r(λ) = λ+P

and r̄ = ((λ+ n+1
2 )1 − C̃ ⊗ C̃) = ¯̄r instead of R(λ), R̄(λ) and ¯̄R(λ). The arguments of the

r’s are written next to the vertices.

mi mi
2 2

1

M11mi
2 2

311mA 2 z

M1
3

3 4
Figure 21: Identities for the numerical R-matrices in analogy to the sl2 case.

Moreover, we claim that the k loops of the Snail Operator X̃k again fuse to a single
irreducible representation of the Yangian Y (sln+1), the minimal snake module which we
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call S(k). However, as a representation of sln+1, S(k) will not be irreducible anymore if
n ≥ 2. Before we give a detailed definition of snake modules [74] and the minimal snake
module S(k), let us come back to the discussion of the pole structure of D1,...,m in the
remaining cases.

We consider the residue of the density matrix D1,...,m at λ1 = λ2−k(n+1)−l, l = 1, . . . , n.
Using the fact that D1,...,m has no poles at λ1 −λ2 ∈ {0,±1, . . . ,±n} (Property 5) and the
properties of the prefactors of R(λ) and R̄(λ) (respectively ¯̄R(λ)), it is easy to see that the
density matrix cannot have poles at λ1 = λ2 − k(n+ 1) − l for l = 2, . . . , n (see Appendix
A). Thus, only the case l = 1 remains for discussion. The idea is the same as in the case
l = 0. We apply the rqKZ equation to reduce D1,...,m(λ1 − k(n+ 1) − 1, λ2, . . . , λm) to a
product of A(1)’s and A(2)’s acting on D1,...,m(λ1 − 1, λ2, . . . , λm)

D1,2,...,m(λ1 − k(n+ 1) − 1, λ2, . . . , λm) =

res
λ1=λ2

{A(2)
1̄,1(λ1 − (2k − 1)n+ 1

2 − 1|λ2, . . . , λm)A(1)
1,1̄(λ1 − (2k − 2)n+ 1

2 − 1|λ2, . . . , λm) · · ·

· · ·A(1)
1̄1 (λ1 − 1|λ2, . . . , λm)D1,2,...,m(λ1 − 1, λ2, . . . , λm)}.

At λ1 = λ2 we have a simple pole as long as limλ1→λ2 D1,2,...,m(λ1 − 1, λ2, . . . , λm) ̸= 0.
Taking the residue at λ1 = λ2, R12(λ1 − λ2 − 1) reduces to the projector onto the second
fundamental representation with fundamental weight ω2 up to a scalar prefactor. In the
case of sl2 there is no fundamental weight ω2 and we observe that it is exactly the projector
onto the singlet.36 This is clear by the isomorphy of the fundamental and antifundamental
representation (or self-duality of representations) for sl2. Therefore, everything goes
completely analogous to the case l = 0 (cf. Section 4). However, in the case of sl3 the
fundamental representation with fundamental weight ω2 is exactly the antifundamental
representation. Thus, we expected to find the projector identity

R12(−1)D1,2,...,m(λ− 1, λ, . . . , λm) = F 1,2
1̄ D

(1)
1̄,3,...,m

(λ− 1
2 , λ3, . . . , λm)F 1̄

1,2, (5.5)

where F 1̄
1,2 is a map from V1 ⊗ V2 to V 1̄ (’fusion’) and F 1,2

1̄ is a map from V 1̄ to V1 ⊗
V2 (’defusion’) such that F 1,2

1̄ F 1̄
1,2 = R12(−1). Since R12(−1) is proportional to the

projector onto V 1̄ ⊂ V1 ⊗ V2, the decomposition into F 1̄
1,2 and F 1,2

1̄ is unique if we demand
F 1,2

1̄ := (F 1̄
1,2)t, the transpose of F 1̄

1,2. Thus, the projector identity Equation (5.5) reduces
D1,2,...,m(λ − 1, λ, . . . , λm) to D(1)

1̄,3,...,m
(λ − 1

2 , λ3, . . . , λm). Then, the idea is to apply the
rqKZ equation (Property 4) to D(1)

1̄,3,...,m
(λ− 1

2 , λ3, . . . , λm) one more time to recover the
usual density matrix D1,3,...,m(λ+ 1, λ3, . . . , λm) of length m− 1 as follows

R12(−1)D1,2,...,m(λ− 1, λ, . . . , λm) =
F 1,2

1̄ A
(1)
1,1̄|3,...,m

(λ+ 1|λ3, . . . , λm) (D1,3,...,m(λ+ 1, λ3, . . . , λm))F 1̄
1,2. (5.6)

36Up to a minus sign, which can be absorbed into the prefactor.
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Now, as D1,3,...,m(λ+ 1, λ3, . . . , λm) doesn’t have a pole at λ = 0 37, we can pull it out of
the residue as in the case l = 0. Using Mathematica and the results in the papers [14]
and [79], we could verify this identity for m ≤ 3 and reproduce the first few residues in
this situation in the described way. However, in general when the rank is greater than
two, ω2 is just the second fundamental representation and we can only hope to find an
identity which reduces the first two fundamental lines of D1,2,...,m(λ− 1, λ, . . . , λm) to a
line associated with the second fundamental representation and spectral parameter λ− 1

2 .
This will be clear from the discussion of the extended T-systems in the next section. The
corresponding Young tableaux for the tensor product of two fundamental representations
of sln+1 are depicted in Figure 22.

Wn Wn 2W

Wz
Figure 22: Decomposition of the tensor product of two fundamental representations

of sln+1 into its irreducible components in terms of Young tableaux.

From this point, it is unclear for us how to come back to D1,3,...,m(λ+ 1, λ3, . . . , λm) in
general. It seems that additional information is needed when the rank n is greater than
2. Note that this problem has already been observed in the paper [79], and a solution
was presented by introducing two possible generalisations of the physical density operator.
However, yet we do not know if there is a similar construction to describe the residues
corresponding to the case l = 1 above.

5.2. Extended T-systems and the Snail Operator X̃k

Let us now return to the case l = 0 and the discussion of the Snail Operator X̃k in the
general case. The idea is similar to the sl2 case and the short exact sequences that appear
are almost analogue. However, it turns out that the representations we have to deal with
are not the higher rank Kirillov–Reshetikhin modules, but specific modules known as
snake modules. These were initially introduced by Mukhin and Young in 2012 [74] for
the quantum affine algebras of type A and B. Of course, they also apply to the Yangians
by means of the equivalence of categories between finite dimensional representations of
Yangians and of quantum affine algebras stated in [43]. Clearly, our specific focus remains
on the type An in this dissertation, i.e., Y (sln+1). We draw the Snail Operator in two
equivalent ways as shown in Figure 23. Since the R-matrix ¯̄R(λ) has a simple pole at
λ = n+1

2 , Figure 23 is only understood in terms of the residue at λ := λ1 = λ2 − k(n+ 1).
As above, we multiply it by the scalar prefactor obtained from R̄(λ) in the limit λ → −n+1

2 .
However, we explain how Figure 23 can be made into a precise definition regardless. We

37as long as the other spectral parameters are in general position in the sense of Property 5 in Conjecture
5.3
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remind the reader that every black line is associated with a fundamental representation,
whereas any blue line is associated with an antifundamental representation, of the Yangian
Y (sln+1). As explained in Sections 3.3 and 3.5, they can be obtained by pulling back
the fundamental (respectively antifundamental) representation V = V

(1)
1 (respectively

V = V (1)
n ) of sln+1 to the fundamental weight ω1 (respectively ωn) by the evaluation

homomorphism eva, where a ∈ C is the spectral parameter associated to the corresponding
line. We write eva

∗(V (1)
1 ) =: V (1)

1 (a) and eva
∗(V (1)

n ) =: V (1)
n (a). Moreover, we define

the evaluation representations of the sln+1 representations V (k)
i with highest weight kωi,

i = 1, . . . , n, as V (k)
i (a) := ev∗

a(V (k)
i ). They are related to the higher rank Kirillov–

Reshetikhin modules via W (k)
i (a) := V

(k)
i (a+ 1

2(k− 1)), where W (k)
1 (a) = W (k)(a) recovers

the definition for sl2 in Section 4.2. The fundamental representations of the successive
lines are therefore given by W (1)

n (λ− l(n+ 1) + n+1
2 ), l = 1, . . . , k, and W (1)

1 (λ− l(n+ 1)),
l = 1, . . . , k − 1.
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Figure 23: The Snail Operator with 2k− 1 loops is depicted in two equivalent ways.
Note that this picture is only understood in terms of the residue at
λ := λ1 = λ2 − k(n+ 1).

Looking at the right side of Figure 23, we use the identity A1 = trVα(AαPα,1), A ∈
End(V1), to write the Snail Operator X̃2k−1 as the residue at λ = λ2 of the alternating
product of the monodromy matrices

T̄ᾱ2l−1;2,3,...,2m−1(λ− (2l − 1)n+ 1
2 ;λ2, λ3, . . . , λm) :=

trā{T ā;2,3,...,m(λ− (2l − 1)n+ 1
2 ;λ2, λ3, . . . , λm)×

× Tā;2m−1,2m−2...,m+1(λ− (2l − 1)n+ 1
2 ;λ2, λ3, . . . , λm)Rā,ᾱ2l−1(0)} l = 1, . . . , k,

and

Tα2l;2,3,...,2m−1(λ− l(n+ 1);λ2, λ3, . . . , λm) :=
tra{T a;2,3,...,m(λ− l(n+ 1);λ2, λ3, . . . , λm)×
× Ta;2m−1,2m−2,...,m+1(λ− l(n+ 1);λ2, λ3, . . . , λm)Ra,α2l

(0)} l = 1, . . . , k − 1,
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multiplied by the operator

P2,α1,...,α2k−1,1 := (n+ 1)2k−1P−
ᾱ1,2P

−
α2,ᾱ1 · · ·P−

ᾱ2k−1,α2k−2
P−

1,ᾱ2k−1

and contracted over the spaces 2, ᾱ1, α2, ᾱ3, . . . , α2k−2, ᾱ2k−1.
Note that we used the projector identity (P−

ᾱ1,2)2 = P−
ᾱ1,2 to be able to introduce the

operator P, and the identity Pa,αp = Ra,αp(0) = Rā,ᾱp(0) to define the monodromy matrices
nicely in terms of a product of R-matrices. Moreover, for the monodromy matrices with
index ā, we replace the primary fundamental (black) line, associated with the auxiliary
space indexed by a in their original definition (see Section 3.6), with an anti-fundamental
(blue) line corresponding to the index ā.

As in the sl2 case, we expect that P is a projector on some subrepresentation in the
tensor product of the spaces ᾱ1, α2, ᾱ3, . . . , α2k−2, ᾱ2k−1 times the supposed singlet in the
tensor product of two adjoint representations built from the spaces V1 ⊗ V 1 and V2 ⊗ V 2

when acting on the R-matrices on the vertical line with spectral parameter λ.38 Here, we
again identify V1 ⊗ V 1 with V1 ⊗ V ⋆

1
∼= End(V1) using the dual of the singlet in V ⋆

1 ⊗ (V 1)⋆

and similarly for V2. Moreover, adding a fundamental monodromy matrix in the alternating
product above,39 it should be clear that one can in principle also consider an even number
of loops for the definition of the Snail Operator X̃2k. Using Mathematica, we checked this
projection property for the Snail Operator with 2, 3 and 4 loops in the case of sl3, where
the dimension of the corresponding space is reduced to 8, 21 and 55, respectively. Indeed,
these are the dimensions of the corresponding minimal snake modules S(2)

1 , S(3)
1 and S

(4)
1

discussed below, respectively.
Therefore, we are interested in the irreducible composition factors in the tensor product

of fundamental and antifundamental representations of the Yangian Y (sln+1). Though,
in contrast to the sl2 case, the representation theory for rank (n ≥ 2) is fairly different.
The irreducible representations of the Yangian Y (sln+1) are not necessary irreducible as
representations of sln+1 anymore. However, for any representation of sln+1 we still obtain
representations of the Yangian of the same (Lie algebra) weight using eva. For any other
type symmetries where no evaluation homomorphism is present, even this property doesn’t
hold. In this case one can consider minimal affinizations (MA) among all the possible
affinizations.40 Luckily, the fundamental modules always have only one, up to equivalence,
i.e. isomorphy as a representation of g, (minimal) affinization (see [30] Section 6 for further
details).

However, in order to understand the irreducible composition factors in the tensor prod-
ucts of the fundamental (evaluation) representations of the Yangian Y (sln+1), we need to
dig deeper into the representation theory. We intend to give a short review of the paper [74]

38P itself has rank (n + 1)2k−1, but it is further reduced due to the fusion properties of the R-matrices.
39i.e. l runs from 1 to k in both cases,
40A representation of Y (g) that has the representation of g as a proper g-subrepresentation.
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of Mukhin and Young and explain how their extended T-systems naturally generalise the
rank 1 case explained above. As the paper [74] is about the quantum affine algebras, we
may later use the equivalence of categories between finite dimensional representations of
Yangians and of quantum affine algebras (cf. [43]) to come back to the Yangians. We shall
also refer the reader to the papers [52], [38], [30], [28] and the books [25], [29], where the
proofs and some basic definitions can be found.

We restrict ourselves to the category C of finite dimensional Uq(g̃)-modules of type 1. As
explained in Remark 3.6, we can equivalently consider the category of finite dimensional
(type 1) representations of the quantum loop algebra Uq(L(g)). Therefore, C1/2 ≡ 1 and
the Hi,r and Ki mutually commute.41 As a consequence, we can write any object V ∈ C
as a direct sum of common generalised eigenspaces for the action of the Ki and Hi,r, the
so-called loop- or l-weight-spaces of V .

The eigenvalues are given in the following Proposition (cf. [38] Prop. 2.4).

Proposition 5.5 (l-weight). The eigenvalues of the Hi,r (r > 0) in an l-weight-space W
of V are always of the form

qm − q−m

m(q − q−1)

 ki∑
r=1

(air)m −
li∑

s=1
(bis)m

 air, bir ∈ C×. (5.7)

They completely determine the eigenvalues of Hi,r (r < 0) and Ki on W . The collection of
eigenvalues (5.7) is called the l-weight of W . ⊙

Definition 5.6 (q-character). Define the q-character of V as a Laurent polynomial with
positive integer coefficients in some indeterminates Yi,a (i ∈ I, a ∈ C×) which encode the
decomposition of V into l-weight-spaces.

The collection of eigenvalues (5.7) is encoded by the Laurent monomial

∏
i∈I

 ki∏
r=1

Yi,air

li∏
s=1

Y −1
i,bis

 , (5.8)

and the coefficient of it in the q-character of V is the dimension of W . We equivalently
say that the monomial (5.8) is the l-weight of W . Moreover, define Y := Z[Y ±1

i,a ]i∈I;a∈C×

and let P ⊂ Y be the multiplicative abelian subgroup of all monomials. Then P is in
bijection with the set of all l-weights and χq(V ) ∈ Y denotes the q-character of V ∈ C. ⊙

Remark 5.7. Certainly, the notion of the Yi,a can be interpreted as a short hand notation
for the Drinfeld polynomial Pi(u) = 1 − ua. We will recall some of their properties in
terms of the Yi,a in a moment. However, we shall refer the reader to the results of Chari
and Pressley [29], [28], [30], [31] in the case of quantum affine algebras and the result of
Drinfeld [34] for the Yangians. In particular, for each i ∈ I and a ∈ C× we can define
an irreducible representation Vωi

(a) := V (P(i)
a ) to the highest weight P(i)

a , which is the
41Since Uq(g̃) is a Hopf algebra, C is an abelian monoidal category.
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I-tuple of polynomials Pi(u) = 1 − ua and Pj(u) = 1, ∀j ̸= i. Anyhow, we prefer to define
everything in terms of the Yi,a as in [38], [39], [52] and [74] and call them the fundamental
l-weights. ⊙

The properties of the q-character χq and the relation to the usual character χ of the
corresponding Uq(g)-module are summarized in the following Theorem (cf. [38] Theorem
2.2 and [39] Section 3).

Theorem 5.8 (properties of χq).

1. χq is an injective ring-homomorphism from the Grothendieck ring Rep(Uq(g̃)) to Y.

2. For any finite-dimensional representation V of Uq(g̃), we have
χq(V ) ∈ Z+[Y ±1

i,a ]i∈I;a∈C×(=: Y+).

3. Let χ : Rep(Uq(g)) → Z[e±ωi ]i∈I be the Uq(g)-character homomorphism, let wt : Y →
Z[e±ωi ]i∈I be the homomorphism 42 defined by Y ±1

i,a 7→ e±ωi and let res: Rep(Uq(g̃)) →
Rep(Uq(g)) be the restriction homomorphism. Then the diagram

Rep(Uq(g̃)) χq //

res

��

Z[Y ±1
i,a ]i∈I,a∈C×

wt

��
Rep(Uq(g)) χ // Z[e±ωi ]i∈I

commutes (i.e. χq(V ) reduces to χ(V ) on the subalgebra Uq(g) ≤ Uq(g̃)).

4. Rep(Uq(g̃)) is a commutative ring which is isomorphic to Z[ti,a]i∈I;a∈C×, where ti,a is
the class of Vωi

(a).43 ⊙

As for the representation theory of g (or rather Uq(g)), we can introduce the notion of
dominant and highest (l-)weights for Uq(g̃). It can be stated in the following way (cf. [29]
and [30]).

Definition 5.9 (dominant and highest l-weights).

1. For each j ∈ I, a monomial m = ∏
i∈I,a∈C× Y

ui,a

i,a ∈ P is said to be j-dominant
(resp. j-anti-dominant) ⇔ uj,a ≥ 0 (resp. uj,a ≤ 0) for all a ∈ C×. It is said to be
(anti-)dominant if it is j(-anti)-dominant for all j ∈ I. We denote by P+ ⊂ P the
set of dominant monomials.

2. Let P(V ) := {m ∈ P : m is a monomial of χq(V )} ⊂ P and let m ∈ P(V ) be
dominant, then a vector |m⟩ ∈ Vm\{0} is called a highest l-weight vector with highest
l-weight m, if X +

i,r|m⟩ = 0 for all i ∈ I, r ∈ Z and |m⟩ is a simultaneous eigenvector
for the Ki and Hi,r. V is called a highest l-weight representation with highest l-weight
m, if V = Uq(g̃)|m⟩. ⊙

42induced by the homomorphism of abelian groups wt : P → P , Yi,a 7→ ωi

43Vωi
(a) = V

(1)
i (a) when g is of of type A.
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Now, we can state the following Theorem analogy to the theorem of the highest weight.

Theorem 5.10 (theorem of the highest l-weight).

1. Let m ∈ P+ be dominant, then there is a unique finite-dimensional simple module,
denoted L(m) that is highest l-weight with highest l-weight m.

2. Conversely, every finite dimensional irreducible Uq(g̃)-module is of the form L(m)
for some m ∈ P+. ⊙

In addition, we should add the following Definition.

Definition 5.11 (special, thin, prime, real).

1. A module V ∈ C is said to be special (resp. anti-special), if χq(V ) has exactly one
dominant (resp. anti-dominant) monomial, or rather, l-weight.

2. It is called thin, if no l-weight space of V has dimension greater than one.

3. V is said to pe prime, if it is not isomorphic to a tensor product of two nontrivial
Uq(ĝ)-modules.

4. V is called real, if V ⊗ V is simple. ⊙

As P is an ’affine’ analogue of the weight lattice, we can also introduce an ’affine’
analogue of the root-lattice. Let’s also assume that g is single laced for simplicity (see e.g.
in [74] Section 2.3 for the general case).

Definition 5.12 (the ’affine’ root lattice). For i ∈ I, a ∈ C× and A = (aij) the Cartan
matrix define

Ai,a = Yi,aqYi,aq−1
∏
j ̸=i

Y
aij

j,a , (5.9)

then wt(Ai,a) = αi, i.e. Ai,a can be viewed as an ’affine’ simple root.
Let Q be the subgroup of P generated by the Ai,a, i ∈ I, a ∈ C×, and let Q± be the

monoid generated by A±1
i,a , i ∈ I, a ∈ C×. Then Q can be viewed as the ’affine’ root lattice

and Q+ (Q−) the sets of positive (negative) ’affine’ simple roots. ⊙

The ’affine’ weight lattice P and the ’affine’ root lattice Q are compatible with the usual
weight lattice P and root lattice Q as follows.

Corollary 5.13 (partial order).

1. There is a partial order ≤ on P such that m ≤ m′ iff m′m−1 ∈ Q+.

2. The partial order on P is compatible with the partial order on P in the sense
m ≤ m′ ⇒ wtm ≤ wtm′.

3. For all m+ ∈ P+ we have P(L(m+)) ⊂ m+Q−. ⊙
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Therefore, we can conclude that χq(L(m)) = m
(
1 +∑

p Mp

)
, where the Mp are mono-

mials in the variables A−1
i,a .

Let us now focus on symmetries of type A, where we have an evaluation homomorphism.
We refer the reader to the original paper [74] for the discussion of type B.

We recap some facts for the case g = sl2 in terms of l-weights (see [28]). Due to
Jimbo’s homomorphism eva : Uq(ŝl2) → Uq(sl2), we can get type 1 spin k/2 evaluation
representations V (k)(a) by pulling back with eva as explained in Section 3.2. Then, V (k)(a)
is a highest l-weight representation with highest l-weight Yaqk−1Yaqk−3 · · ·Yaq−k+1 =: Sk(a),
called q-String. Let V = V (k)(a) ⊗ V (l)(b) and 0 ≤ p < min{k, l} be an integer. Then V

is irreducible iff b/a ̸= q±(k+l−2p). In this case, Sk(a) and Sl(b) are said to be in general
position. Otherwise Sk(a) and Sl(b) are in special position and V = V (k)(a) ⊗ V (l)(b) has
a unique proper submodule (c.f. Proposition 4.3). In addition, every finite dimensional
simple Uq(ŝl2)-module is isomorphic to a tensor product of evaluation representations. The
module W (k)(a) := V (k)(aqk−1) is called Kirillov–Reshetikhin module.

Coming back to the general case, we have seen above (Theorem 5.8 Property 4) that the
Grothendieck ring of C is the polynomial ring over Z in the classes [Vωi

(a)] (i ∈ I, a ∈ C×)
of fundamental modules. Then, Kirillov–Reshetikhin modules (KR) are defined as follows.

Definition 5.14 (Kirillov–Reshetikhin module). Let i ∈ I and a ∈ C×. The Kirillov–
Reshetikhin module W (k)

i (a) is defined in terms of Theorem 5.10 by

W
(k)
i (a) := L(Si

k(aqk−1)),

where the q-string Si
k(aqk−1) is defined as Si

k(aqk−1) := Yi,aqk−1Yi,aqk−3 · · ·Yi,aq−k+1.44 ⊙

Note that we have wt(W (k)
i (a)) = kωi. Therefore, in type A, it is given by evaluation

representation V
(k)

i (aqk−1) = ev∗
aqk−1(V (k)

i ).45 In particular, W (1)
i (a) coincides with the

fundamental module Vωi
(a). Using this definition, the classes [W (k)

i (a)] in Y satisfy the
T-system

[W (k)
i (a)][W (k)

i (aq2)] = [W (k+1)
i (a)][W (k−1)

i (a)] +
∏

aij=−1
[W (k)

j (aq)]. (5.10)

It generalises the T-system (4.5) and is sometimes referred to as ’the T-system’ [72] [76] [51].
In fact, it can be used to calculate the class [W (k)

i (a)] inductively as a polynomial in the
classes of fundamental modules [Vωi

(a)], i ∈ I, a ∈ C× (c.f. [52]). In physics, this system
of equations is usually written in terms of transfer matrices with corresponding auxiliary
spaces.46 However, the Kirillov–Reshetikhin modules and the T-system only cover a small
part of the prime irreducible modules for rank n ≥ 2. In type A, they cover exactly
44It is obtained from the q string Sk(aqk−1) above by mapping Yaql 7→ Yi,aql .
45Using the equivalence of categories between finite dimensional representations of Yangians and of

quantum affine algebras, we see that this definition, in fact, coincides with the definition for the Yangian
case given at the beginning of this section.

46"The product in Rep(Uq(g̃)) describes traces of tensor products."
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the evaluation representations of representations of Uq(sln) which have a rectangular
Young tableau. In particular, the tensor product of fundamental and antifundamental
representations in the Snail Operator is not included. Moreover, this product contains
prime simple composition factors which are not evaluation representations. Thus, in order
to understand this tensor product of fundamental and antifundamental representations,
one has to define more general modules. Luckily, this is already done by Mukhin and
Young in the paper [75], where they introduce the so-called Snake modules to describe
certain (prime) simple modules. In fact, it turns out that they cover all the prime simple
objects in C (cf. [52] Conjecture 13.2 and [36]).

The Snake modules in type A are defined as follows. Define subsets X := {(i, k) ∈
I × Z : i − k = 1 mod 2} and W := (i, k) : (i, k − 1) ∈ X ⊂ I × Z. We fix a ∈ C× and
only work with representations whose q-characters lie in the subring Z[Y ±1

i,aqk ](i,k)∈X ⊂ Y.
Indeed, these form a subcategory CZ of C closed under taking tensor products. Conversely,
every simple object S in C can be written as a tensor product S1(a1) ⊗ · · · ⊗ Sk(ak) for
some simple objects S1, . . . , Sk ∈ CZ and ai

aj
∈ C\q2Z, here S(a) is the pullback of S by

τa ∈ AutUq(ĝ) (see [52] 3.6 and 3.7 and [26] for the proof). By abuse of notation, we set
Yi,aqk =: Yi,k, Ai,aqk =: Ai,k, Z[Y ±1

i,k ](i,k)∈X = YZ and Z[A±1
i,k ](i,k)∈W = QZ.

Definition 5.15 (snake position, snakes and snake modules). Let (i, k) ∈ X .

1. A point (i′, k′) ∈ X is said to be in snake position with respect to (i, k) iff
k′ − k ≥ |i′ − i| + 2.

a) The point (i′, k′) is in minimal snake position to (i, k) iff k′ − k is equal to
the lower bound.

b) We say that (i′, k′) ∈ X is in prime snake position with respect to (i, k) iff
min{i′ + i, n+ 1 − i− i′} ≥ k′ − k ≥ |i′ − i| + 2.

2. A finite sequence (it, kt) (1 ≤ t ≤ M ∈ N) of points in X is a snake iff for all
2 ≤ t ≤ M , (it, kt) is in snake position with respect to (it−1, kt−1).

a) It is a minimal (resp. prime) snake iff any two successive points are in
minimal (resp. prime) snake position to each other.

3. The simple module L(m) is called a (minimal/prime) snake module iff m =∏M
t=1 Yit,kt for some (minimal/prime) snake (it, kt)1≤t≤M . ⊙

One can now proof the following Properties (cf. [75], [74], [27]).

Theorem 5.16 (snake modules).

1. Snake modules are special, anti-special and thin.

2. A snake module is prime iff its snake is prime.

3. Prime snake modules are real.
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4. If a snake module is not prime then it is isomorphic to a tensor product of prime
snake modules defined uniquely up to permutation. ⊙

Thus, prime snake modules are prime, special, anti-special, thin, and real and any
snake module decomposes into a tensor product of prime snakes. We claim that these are
exactly the building blocks that we were looking for to solve our problem of finding the
irreducible composition factors in our tensor product of fundamental and antifundamental
representations above. Indeed, we can use the main result of Mukhin and Young [74],
which is the existence of a short exact sequence called the extended T-system. To write it
down in a nice way, it is helpful to add the following Definition.

Definition 5.17 (neighbouring points and neighbouring snakes).

1. For any two successive points (i, k) and (i′, k′) define the neighbouring points by

Xi′,k′

i,k :=

((1
2(i+ k + i′ − k′), 1

2(i+ k − i′ + k′))) k+i>k′−i′

∅ k+i=k′−i′

Yi′,k′

i,k :=

((1
2(i′ + k′ + i− k), 1

2(i′ + k′ − i+ k))) k+N+1−i>k′−N−1+i′

∅ k+N+1−i=k′−N−1+i′.

2. For any prime snake (it, kt)1≤t≤M we define its neighbouring snakes
X := X(it,kt)1≤k≤M

and Y := Y(it,kt)1≤t≤M
by concatenating its neighbouring points. ⊙

Now, the extended T-system is stated as follows (cf. [74] Theorem 4.1).

Theorem 5.18 (the extended T-system). Let (it, kt) ∈ X , 1 ≤ t ≤ M , be a prime snake
of length M ≥ 2. Let X and Y be its neighbouring snakes. Then we have the following
relation in the Grothendieck ring Rep(Uq(g̃)).

[
L

(
M−1∏
t=1

Yit,kt

)] [
L

(
M∏

t=2
Yit,kt

)]
=
[
L

(
M−1∏
t=2

Yit,kt

)] [
L

(
M∏

t=1
Yit,kt

)]

+
L

 ∏
(i,k)∈X

Yit,kt

L
 ∏

(i,k)∈Y
Yit,kt

 , (5.11)

where the summands on the right hand side are classes of irreducible modules, i.e.

L

(
M−1∏
t=2

Yit,kt

M∏
t=1

Yit,kt

)
∼= L

(
M−1∏
t=2

Yit,kt

)
⊗ L

(
M∏

t=1
Yit,kt

)

L

 ∏
(i,k)∈X

Yit,kt

∏
(i,k)∈Y

Yit,kt

 ∼= L

 ∏
(i,k)∈X

Yit,kt

⊗ L

 ∏
(i,k)∈Y

Yit,kt

 . ⊙

To demonstrate how it works, a simple example of the extended T-system for a minimal
snake of length 5 in A4 is depicted in Figure 24 below. Note that in the case of KR
modules, i.e., when the minimal snake is a straight line, the theorem reduces to the
standard T-system.
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Ag

Figure 24: A simple example of the extended T-system for a minimal snake
(it, kt)1≤t≤5 in A4. It is a short exact sequence of snake modules defined
by the minimal snake, its neighbouring snakes and the snakes obtained
from it by omitting the first or the last element.

We are now in the position to analyse the tensor product of fundamental and antifun-
damental lines in the Snail Operator. Using the equivalence of categories between finite
dimensional representations of Yangians and of quantum affine algebras explained at the
end of Section 3.2, we note that everything can be defined in exactly the same way. We
take λ ∈ C fixed and set Yi,λ+ k

2
=: Yi,k as well as Ai,λ+ k

2
=: Ai,k by abuse of notation. We

note that the loop variables of the successive lines in the Snail Operator are in minimal
snake position. Using the extended T-system, we can now prove the following assertions.

Theorem 5.19 (Snake and Snail). The tensor product

W
(1)
N(m)(λ+ k

2) ⊗W
(1)
N(m+1)(λ+ k + n+ 1

2 ) ⊗ · · · ⊗W
(1)
N(m+l)(λ+ k + l(n+ 1)

2 ), (5.12)

k ∈ Z, of l+1 many antifundamental and fundamental representations has Fibonacci(l+1)
many composition factors, one of which is the minimal snake module

S(l+1)
m (λ+ k

2) := L(
l∏

t=0
YN(t+m),k+t(n+1)), k ∈ Z, (5.13)

where N(t) :=
{

1, t even
n, t odd . In particular, we can prove the existence of short exact sequences

of the form

[S(1)
m+1(λ− l

n+ 1
2 )][S(l)

m (λ− (l − 1)n+ 1
2 )] =[S(l+1)

m+1 (λ− l
n+ 1

2 )]+

+ [S(l−1)
m+1 (λ− (l − 2)n+ 1

2 )] (5.14)

which we may also call extended T-systems. ⊙

The proof of the theorem is given in the Appendix A. We state the following conjecture.

Conjecture 5.20 (Snake in the Snail). The extended T-systems (5.14) (m odd) appear in
the successive lines of the Snail Operator and the component corresponding to [S(l−1)

m+1 (λ−
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(l + 2)n+1
2 )] cancels out, i.e. the Snail Operator X̃k can be defined through a single

irreducible representation of the Yangian just like in the sl2 case. The minimal snake
module S(k)

1 (λ− (k − 1)n+1
2 ). ⊙

We checked the first few steps of this conjecture in Mathematica. So n = 2 and up to
k = 4 loops as explained above. Moreover, we can also set n = 3, 4, . . . in the program,
but the calculational effort grows rapidly. However, a general proof might be done by
induction and considering a corresponding partition of unity. We haven’t analysed the
projectors yet, but a proof should be possible in the future. Let us emphasize again, that
the Snail Operator X̃k only applies to our problem when the number of loops k is odd.
This was discussed in Section 5.1. We should also say that it is possible to calculate the
q-character of the minimal snake module S(k)

m using the path description and Theorem
6.5 in [74]. Moreover, we can analyse S(k)

m as a representation of sln+1 and calculate the
Young tableaux of all its irreducible subrepresentations. At last, we remark that snake
modules can be seen as part of a cluster algebra. Thus, the extended T-systems can be
understood as explicit cluster relations. We have seen that it can be helpful to understand
these kind of relations.
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6. Conclusion
The derivation of recursion relations for the correlation functions of the sl2-invariant
fundamental exchange model in the thermodynamic limit by Boos, Jimbo, Miwa, Smirnov
and Takeyama in 2004 [15] marked the starting point of a long story that ultimately led to
the discovery of the fermionic basis for the correlators of the XXX and XXZ spin chains.
Motivated by this discovery and its extensions to scenarios involving finite magnetic field,
temperature, finite size, and even thermal form factors, the question about a generalisa-
tion to higher rank emerged. As a direct generalisation of the fermionic basis was not
immediately evident (cf. [14]), the idea for the ansatz presented in this dissertation is
similar to the original construction in [15]. The latter is primarily based on the so-called
rqKZ equation and a crucial projector identity derived using the fundamental properties
of the generalised reduced density matrix, denoted as D.

Precisely speaking, since the generalized reduced density matrix D is meromorphic in its
spectral parameters with at most simple poles, it is completely determined by its residues
and the asymptotic behaviour. Fortunately, as the asymptotic behaviour was known from
the multiple integral formulas that were obtained earlier by the vertex operator approach
(see [54]), it is enough to know all the residues47. These, however, are determined by the
rqKZ equation and the projector identity in terms of the density matrix of length m− 2.
Moreover, an operator Xk (for the residue at λij = −(k + 1)) that acts on the density
matrix of length m− 2 is defined through this relation. In my notation, it is the operator
X̃k which I call ’Snail Operator’ (cf. Section 4.1).

However, the discovery of the fermionic basis is mostly due to the surprisingly nice
properties of the operator Xk, proven [15] in complete detail. Most importantly, it is
completely determined by a single irreducible spin-k/2 representation of the Yangian
Y (sl2), the Kirillov–Reshetikhin module (KR), denoted by Wk. Here, I decided to shed
light on this property from a representation-theoretical point of view and describe it in
terms of short exact sequences called T-systems. This was done, in particular, to prepare
the analysis of the Snail Operator for higher rank, discussed in Section 5.2. Additionally,
the surprising fact that it is possible to analytically continue the operator Xk with respect
to k using a certain trace function (cf. Section 4.2) was briefly discussed.

As the higher rank generalization of the rqKZ equation derived in [14] and [65] splits
into two parts (cf. Property 4 Section 5.1), an additional density operator must be
introduced where one vertical line is replaced by an antifundamental line. Using the
R-matrix symmetry of the density operator, the first fundamental line is replaced by an
antifundamental line without loss of generality and called D(1) (cf. Section 3.6). Now, the
idea is the same as for sl2. By applying the generalised properties of the reduced density

47by means of Liouville’s theorem in complex analysis
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matrix, I have introduced two novel projector identities – one which is analogous to the
sl2 case and one entirely new. Consequently, this leads to the division of the residues into
two disjoint sets. The first set of residues can be calculated in terms of the density matrix
of length m− 2 as previously described, allowing for the definition of a generalised Snail
Operator, denoted as X̃k, for rank n ∈ N.

However, the remaining residues can only be calculated in the case of sl3 in terms of
the density matrix of length m − 1. This is because the new identity produces a line
corresponding to a fundamental representation with fundamental weight ω2, which is the
antifundamental representation only for sl3, i.e., it doesn’t close in general. Anyway, in
the case of sl3, I used the density operator D(1) and the second part of the rqKZ equation
to show a closed identity for D. In general, another solution has to be found. One idea
is to produce an antifundamental line (and thus a closed relation for D) by constraining
the spectral parameters of n − 2 additional vertical lines such that they are in special
position with respect to the others. Moreover, already in the sl3 case, a third vertical line
in special position is necessary to produce a singlet and thus n − 1 lines in general. In
this case, a closed relation that relates the density operator of length m to the density
operator of length m − (n + 1) is expected. Another idea that doesn’t fix additional
parameters is presented in the paper [79] by introducing two possible generalisations
of the physical density operator. However, the construction of a Snail Operator that
describes all residues remains unclear in both cases. Nevertheless, in the case of sl3, the
described identities can be used to calculate the residues of the density matrix of length
m in terms of the density matrix of length m − 2 and m − 1. I have verified this in
Mathematica using the explicit results of Klümper and Ribeiro [79] and Boos, Hutsalyuk
and Nirov [14] for the reduced density matrix of up to operator length three (cf. Section 5.1).

Returning to the case analogous to sl2, I used the extended T-systems introduced by
Mukhin and Young in 2012 [74] to illustrate how the short exact sequences that appeared
in my representation-theoretical description of the Snail Operator for sl2 extend to rank
n ∈ N. For this extension, a certain minimal snake module takes the role of the KR module
for n > 1. Moreover, it is a prime irreducible module as before and it reduces to the KR
module Wk when n is set equal to 1. The statement that all but this irreducible snake
module cancel in the Snail Operator is formulated in Conjecture 5.20. However, when the
rank n is greater than 1, it is irreducible only when considered a representation of the
Yangian Y (sln). As a representation of g ↪ ι−→ Y (g) it is generally characterized by more than
one Young tableau. An inductive construction of the projectors is necessary to establish a
general proof. To this end, I explained how the path description in the paper [74] can be
used to compute the Young tableaux of all irreducible sln subrepresentations (cf. Section
5.2).

Moreover, a generalisation of the algebraic construction described in [15] and, in par-
ticular, the question about the definition of the Snail Operator in terms of a generalised
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trace function, are interesting questions that have to be answered towards a higher rank
generalisation of the fermionic basis.

In the future, it might also be interesting to investigate vertex models where repre-
sentations other than fundamental representations are considered on the edges. In the
situation of sl2 the spin 1 case has been considered in [57] and [2]. Of course, even the
consideration of symmetries different from type A is possible. Certainly, for the calcu-
lation of residues of the reduced density matrix, we have seen that additional projector
relations are necessary whenever the representation is not self-dual. Conversely, when
the representation is self-dual, the rqKZ equation reduces to a single equation as both
parts are identical in this scenario. Hence, we expect to be able to define a Snail Operator
that describes all residues as in the situation for sl2. For instance, this would be the case
when n is odd and we take fundamental representations of sln+1 of fundamental weight ωn+1

2
.

Bringing it all together, we have seen that the Snail Operator can naturally be generalised
for higher rank. However, as the fundamental representation is not self-dual when the
rank n is greater than 1, the necessity to derive additional projector identities became
apparent. I investigated this problem and presented a solution for the calculation of the
residues in the situation of sl3. Nonetheless, due to the separation of the rqKZ equation
into two "dual" parts, only half of the residues is determined by the Snail Operator. On
one side, the Snail Operator is still an interesting object, and its properties seem to
naturally generalise. Moreover, we expect that further investigation will lead to a better
understanding of the solutions of the rqKZ equation and possibly provide one way to
generalise the fermionic basis. On the other side, finding a nice description of the remaining
residues is another interesting task towards the overall goal of proving recursion relations
for the reduced density matrix. As a starting point, I explained a few ideas that can lead
to a ’Snail Operator’-like description. Certainly, these ideas require further investigation
and a complete solution is not yet evident. Conclusively, even if we fail to describe the
remaining residues nicely in the general case, there is at least hope to find a generalisation
of the fermionic basis to the self-dual models, where this ambiguity is absent.
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Appendix A
Let the action of the density matrices D and D(1) be defined as

D1,...,m(λ1, . . . , λn)(X1,...,m) := tr1,...,m (D1,...,m(λ1, . . . , λm)X1,...,m) ,
D

(1)
1̄,2,...,m

(λ1, . . . , λm)(X1̄,2,...,m) := tr1̄,2,...,m

(
D

(1)
1̄,2,...,m

(λ1, . . . , λm)X1̄,2,...,m

)
,

where on the right hand side D is understood as an element of End(V ⊗m) via the
transposition isomorphism (End(V ⊗m)⋆ ∼= End(V ⊗m)). Then, one can write the two part
reduced qKZ equation as

D
(1)
1̄,2,...,m

(λ1 − n+ 1
2 , λ2, . . . , λm) = A

(1)
1,1̄|2,...,m

(λ1|λ2, . . . , λm) (D1,...,m(λ1, λ2, . . . , λm)) :=

tr1 (R1m(λ1 − λm) · · ·R12(λ1 − λ2)D1,...,m(λ1, λ2, . . . , λm) ×

×(n+ 1)P−
11̄R21(λ2 − λ1) · · ·Rm1(λm − λ1)

)
, (A.1)

D1,...,m(λ1 − n+ 1
2 , λ2, . . . , λm) = A

(2)
1̄,1|2,...,m

(λ1|λ2, . . . , λm)
(
D

(1)
1̄,2,...,m

(λ1, λ2, . . . , λm)
)

:=

tr1̄

( ¯̄R1̄m(λ1 − λm) · · · ¯̄R1̄2(λ1 − λ2)D(1)
1̄,2,...,m

(λ1, λ2, . . . , λm) ×

×(n+ 1)P−
11̄R̄21̄(λ2 − λ1) · · · R̄m1̄(λm − λ1)

)
, (A.2)

where (P−
11̄)2 = P−

11̄ is the projector onto the singlet in the tensor product V ⊗ V of the
fundamental and antifundamental representation of sln.

Proof of the pole structure of Dm. We use the rqKZ equation to calculate
D1,...,m(λ1 − k(n+ 1) − l, λ2, . . . , λm), k ∈ N, l = 0, 1, . . . , n, in terms of a product of
R-matrices and D1,...,m(λ1 − l, λ2, . . . , λm). We assume that the parameters λ3, . . . , λm are
in general position (in the sense of Property 5 Conjecture 5.3) and therefore just write out
the R-matrices that depend on the difference λ1 − λ2

res
λ1=λ2

D1,...,m(λ1 − k(n+ 1) − l, λ2, . . . , λm) =

res
λ1=λ2

tr1̄[. . . ¯̄R1̄2(λ1 − λ2 − k(n+ 1) + n+ 1
2 − l)tr1[. . . R12(λ1 − λ2 − (k − 1)(n+ 1) − l) . . .

. . . tr1̄[. . . ¯̄R1̄2(λ1 − λ2 − n+ 1
2 − l)tr1[. . . R12(λ1 − λ2 − l)D1,...,m(λ1 − l, λ2, . . . , λm)

R21(λ2 − λ1 + l) . . . ]R̄21̄(λ2 − λ1 + n+ 1
2 + l) . . . ] . . .

. . . R21(λ2 − λ1 + (k − 1)(n+ 1) + l) . . . ]R̄21̄(λ2 − λ1 + k(n+ 1) − n+ 1
2 + l) . . . ].

Since D1,...,m(λ1 − l, λ2, . . . , λm), l = 0, 1, . . . , n, has no poles at λ1 = λ2 due to Property 5
Conjecture 5.3, the pole at λ1 = λ2 is completely determined from the prefactors of the
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R-matrices. Writing them out, we obtain

k∏
j=1

1
λ12 − j(n+ 1) − l

· 1
λ12 − (j − 1)(n+ 1) − l

· 1
λ12 − (j − 1)(n+ 1) − l + 1 ·

· 1
λ12 − (j − 1)(n+ 1) − l − 1 ,

which has a simple pole at λ12(= λ1 − λ2) = 0 iff l = 0 or l = 1. Thus, the density matrix
D1,...,m(λ1, λ2, . . . , λm) has no poles at λ1 = λ2 − k(n+ 1) − l for l = 2, . . . , n and at most
simple poles for l = 0, 1.

Proof of Theorem 5.19. To proof the first part of the theorem, we use the q-characters of
the fundamental modules W (1)

1 (a) = L(Y1,0) and W (1)
n (a) = L(Yn,0). They are very easy

to obtain by using the path formula (6.3) in Theorem 6.5 of [74]. Namely,

χq(W (1)
1 (a)) = Y1,0 + Y −1

n,n+1 +
n−1∑
k=1

Yk+1,kY
−1

k,k+1, (A.3)

χq(W (1)
n (a)) = Y −1

1,n+1 + Yn,0 +
n−1∑
k=1

Y −1
k+1,n+1−kYk,n+1−(k+1). (A.4)

Using the multiplicativity of the q-character Theorem 5.8, we can easily calculate the
q-character of the tensor product

W
(1)
N(m)(λ+ k

2) ⊗W
(1)
N(m+1)(λ+ k + n+ 1

2 ) ⊗ · · · ⊗W
(1)
N(m+l)(λ+ k + l(n+ 1)

2 ). (A.5)

Assume m is odd, then the product is of the form

(Y −1
1,k+n+1 + Yn,k + . . . )(Y1,k+n+1 + Y −1

n,k+2(n+1) + . . . )(Y −1
1,k+3(n+1) + Yn,k+2(n+1) + . . . )

(Y1,k+3(n+1) + Y −1
n,k+4(n+1) + . . . ) · · · ,

where we omitted all the non dominant monomials in every bracket that can’t multiply to
dominant monomials due the shift in the second index (i.e. the spectral parameter). We
want to count the number of dominant monomials. Fortunately, this is an easy
combinatoric task. Starting from the left, we choose one of the two l-weights in the first
bracket. If we choose the anti-dominant one, we have to choose the dominant one in the
next factor if we want to multiply to a dominant monomial, otherwise we still have the
free choice for the next factor as soon as it is not the last. We pick one of the two options
and look at the next factor if possible. Obviously, the situation is the exact same. Thus,
the problem of finding the number of dominant monomials in the q-character is equivalent
to the number of options to partition l + 1 objects into boxes of size m ≤ 2. The solution
to this problem is

⌊ l
2 ⌋∑

k=0

(
l − k

k

)
, (A.6)
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which is equal to the (l + 1)th Fibonacci number Fibonacci(l + 1). The argument for m
even works the exact same way. Thus, the number of irreducible composition factors is
smaller or equal to Fibonacci(l + 1). Moreover, all the dominant monomials obtained in
this way are the dominant monomials of certain snake modules. Due to Theorem 5.16 we
know that these are isomorphic to the tensor product of minimal snakes. Now, let’s
assume that we have an irreducible composition Factor of the tensor product (A.5). Then,
it has to be of the form L(m) where m is one of the dominant monomials in the
q-character of (A.5). As we have seen, L(m) is a snake module. Thus, since snake
modules are special, it contains only one dominant monomial. Subtracting the q-character
of L(m) from the q-character in the tensor product (A.5), the q-character of the other
composition factor contains all the Fibonacci(l + 1) − 1 remaining dominant monomials.
Therefore, by induction, we conclude that there must be exactly Fibonacci(l + 1) many
composition factors.
For the second part of the theorem we have to prove the existence of a short exact
sequence of the form

[S(1)
m+1(λ)][S(l)

m (λ+ n+ 1
2 )] = [S(l+1)

m+1 (λ)] + [S(l−1)
m+1 (λ+ 2n+ 1

2 )], (A.7)

where we omitted the term ln+1
2 since it can be absorbed into the spectral parameter. We

prove the existence by induction over l. The case l = 1 is clear as it is one of the simplest
cases (M = 2) of the extended T-system (Theorem 5.18). Thus, we only need to prove the
step l − 1 → l. By the extended T-system (Theorem 5.18) we have

[S(l)
m (λ+ n+ 1

2 )][S(l)
m+1(λ)] = [S(l+1)

m+1 (λ)][S(l−1)
m (λ+ n+ 1

2 )] + 1. (A.8)

We multiply the induction hypothesis by [S(l)
m (λ+ n+1

2 )] and obtain

[S(1)
m+1(λ)][S(l−1)

m (λ+ n+ 1
2 )][S(l)

m (λ+ n+ 1
2 )] =

[S(l)
m+1(λ)][S(l)

m (λ+ n+ 1
2 )] + [S(l−2)

m+1 (λ+ 2n+ 1
2 )][S(l)

m (λ+ n+ 1
2 )] (A.8)=

[S(l+1)
m+1 (λ)][S(l−1)

m (λ+ n+ 1
2 )] + 1 + [S(l−1)

m+1 (λ+ 2n+ 1
2 )][S(l−1)

m (λ+ n+ 1
2 )] − 1 =

([S(l+1)
m+1 (λ)] + [S(l−1)

m+1 (λ+ 2n+ 1
2 )])[S(l−1)

m (λ+ n+ 1
2 )], (A.9)

where we applied equation (A.8) to both terms on the left hand side. This is the desired
equation multiplied by [S(l−1)

m (λ+ n+1
2 )]. As the Grothendieck ring is an integral domain,

(A.9) proves the second part of the theorem.
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