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Chapter 1
Introduction

According to projections by the United Nations Department of Economic and So-
cial Affairs, two-thirds of all people will live in a city by 2050 [167]. Higher traffic
volumes in major cities are the result, leading to an increase in the probability of
accidents for all road users [97] and thus inevitably to an increased need for safer
components in and on the vehicle. To address this, research into better detection
and decision-making methods using artificial intelligence (AI) is necessary. It can
be considered a core technology specifically for autonomous driving.

The continuous enhancement of neural networks and the increasing amount of
training data improved the recognition accuracy of real street scenes [22, 35, 151]
which led to first tests with autonomous driving vehicles. This repeatedly re-
sulted in fatal accidents [118, 119, 120]. A series of unfortunate circumstances led
to a misinterpretation of the situation in each case and shows that the evaluation
of rare situations can still be error-prone for AI algorithms. To counteract this,
adding safety-critical driving situations, so-called corner cases, to the training
data is essential to increase the performance of AI algorithms. These are cur-
rently only available to a limited extent, if at all, in publicly provided datasets.
The targeted generation of corner cases is also challenging, as they do not con-
stantly occur in road traffic, and if they do, they have to be recorded and labeled.
This means, that to obtain a large amount of data with safety-critical driving
situations, a high number of drives would also be required, which would consume
costs and time. A much bigger problem, however, is that the targeted generation
of corner cases can also be risky, as one is specifically looking for safety-critical
situations and is forced to put oneself in immediate danger. Moreover, compliance
with traffic regulations would only be possible in a secured area, which in turn
can only reflect the real traffic situation to a limited extent, as other road users
must also be included in order to maintain realism.
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1 Introduction

In contrast to real data generation, synthetic data generation does not incur addi-
tional costs for labeling or procuring expensive sensors, as these are immediately
available in the virtual world. Only a computer with suitable software for au-
tonomous driving is needed. Furthermore, synthetic data is easily changeable,
allowing a high number of different data to be generated in a very short time.
Changeable parameters are e.g. the environment, the number of objects, the
weather or the time of day. The selective disregard of traffic rules of individual
road users can also be implemented. The disadvantages of synthetic data are the
unreal-looking world but also the unnatural movement patterns of road users, so
that transferability to the real world (domain shift) is problematic.

It follows that generating corner cases in the real world is expensive and not eas-
ily feasible for security reasons. The goal of this work is therefore to generate
synthetic corner cases that are problematic for AI algorithms as quickly as pos-
sible. This is done using simulation software, a specially designed test rig and
two human drivers who are supposed to evaluate critical driving situations with
human perception.

In addition to the targeted data acquisition of safety-critical corner cases, the
redundant evaluation of a scene by means of a second sensor can also increase
safety in road traffic. Therefore, another goal is to investigate whether the pre-
diction of a fusion network of two sensors in a less frequent domain, namely night,
can find more objects than the prediction of a sensor-specific network considered
alone. For this, camera and radar data will be used from the real world, since
synthesizing a physically accurate radar sensor is difficult.

This thesis is organized as follows. Chapter 2 provides an overview of the funda-
mentals in the field of artificial intelligence that are relevant to the remainder of
this thesis. For this purpose, the concept of neural networks, with main reference
to the textbooks [62, 117] will be discussed. In addition, a description is given of
how autonomous driving can be optimized through the use of semantic segmen-
tation networks. Chapter 3 presents the driving simulator that was developed
in the scope of this thesis. First, the software used and the specially developed
inference sensor are explained. Then the hardware components are presented that
are necessary in interaction with the simulation software and the inference sensor
in order to achieve the task of generating targeted corner cases. Since driving in
real-time is essential for the accomplishment of the task, a detailed description of
how this task was realized follows. In Chapter 4, the levels of autonomous driving
are presented before the term corner case is described in more detail. Following
this definition, three publications are presented that contribute scientifically in
this field. One publication is not to record safety-critical data in order to increase
reliability, but on a methodical basis, where a redundant evaluation of the scene is
carried out by means of two sensors, using different technologies for data record-
ing. The second publication provides new datasets containing Out-of-Distribution

2



objects (OoD), as well as a method for detecting unknown objects and tracking
them in video sequences, in order to subsequently package similar unknown ob-
jects together as a new object class. Whereas the third publication is a listing
of datasets containing OoD objects in the context of autonomous driving and is
intended to serve as an overview for researchers in this field.

Chapter 5 presents the scientific work with the driving simulator. First, the
experiments and the recording pipeline are described, followed by an investigation
of whether and to what extent adding corner cases to the training leads to a
longer survival time. Furthermore, survival analysis is used to investigate whether
universal models can be replaced by expert models that are only trained on certain
domains in order to save development time for the application. Next, a corner
case trajectory taxonomy is presented where the corner cases created during the
driving campaigns are classified. Finally, a conclusion and outlook are provided
in Chapter 6.
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Chapter 2
State of the Art and Theoretical
Foundation

This chapter provides an overview of the fundamentals in the field of deep learning
(DL) that are relevant to the remainder of this thesis. The fundamentals from
this chapter come mainly from two textbooks [62, 117] unless otherwise noted.
First, the concept of feedforward neural networks will be explained followed by
the learning process. Next, convolution neural networks (CNNs) are introduced
as a special case of neural networks before image segmentation is described as a
concept for recognizing objects on pixel level for autonomous driving. Finally,
the model development process is described to illustrate the steps required to use
neural networks in practice.

2.1 Feedforward Neural Networks

As for humans, neurons play an important role in pattern recognition in com-
puters. Biological neural networks consist of multiple interconnected neurons,
also called nerve cells, of which humans have between 10 and 100 billion in the
brain. Following the biological model, artificial neural networks in computer sci-
ence also include neurons - also known as perceptrons - that contain connections
with numerical values, the weights w.

The perceptron denotes the smallest unit of a neural network and is itself a single-
layer neural network for the task of binary classification. Figure 2.1 shows the
schematic structure of a single perceptron. Each perceptron consists of several
weighted inputs wi ·xi, a bias value b, a propagation function σ and an activation
function φ which produces an output value a. The propagation function returns
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2 State of the Art and Theoretical Foundation

x1

x2

xn

1

...

w1

w2

wn

b

propagation function

ρ =
∑n

i=1wixi + b

activation function

φ(ρ)
a

Figure 2.1: Perceptron.

the weighted sum of all inputs, while the activation function propagates a calcu-
lated value or not, which depends on the bias value as it shifts the threshold to
fire on the x-axis. Together the functions are defined as

a = φ(ρ) = φ
( n∑
i=1

wixi + b
)
. (2.1)

Connecting multiple perceptrons so that their output provides the input to a
downstream perceptron creates a neural network with multiple layers, as shown
in Figure 2.2. In case they do not contain any loops or connections at the same
layer, such networks are referred to as feedforward networks or multilayer per-
ceptrons (MLP). If there are feedback connections the network is called recurrent
neural network (RNN) [148]. In MLPs each edge in the graph connects the output
of one perceptron to the inputs of all perceptrons in the following layer.

Typically, those neural networks are organized in three different layer types: in-
put, hidden and output layer [154]. The input layer contains visible information
about input data represented by numerical values in the form of an input vec-
tor. The number of neurons corresponds to its dimensionality. The input layer
is followed by one or more hidden layers extracting complex information using
function approximations. The term hidden refers to the fact that the informa-
tion contained in these layers emerges indirectly from the input data and are not
observed during training. In computer vision tasks, for instance, this is where
contours or edges are detected. The output layer is the network’s last layer and
provides a final result. In classification tasks, for example, a probability value is
calculated for each class, or in regression tasks a certain value is predicted. The
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2.2 Learning Process
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ŷ1

ŷ2
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Figure 2.2: A feedforward neural network processes information through multiple hidden
nodes in one direction only. Whenever a neural network possesses more than one hidden
layer, it is termed deep neural network.

output of a feedforward neural network is determined by a chain of functions

ŷ = f(x; θ) = fL(fL−1(. . . (f 1(x; θ1); . . .); θL−1); θL) (2.2)

based on the order of layers, with parameters θ = (θ1, θ2, . . . , θL) and θl = (wl, bl),
l = 1, 2, . . . , L, where wl denotes the weight matrix and bl the bias term of a single
layer l.

MLPs can model any logical function with enough hidden units, but this also
results in many parameters and thus increased computation time. [38, 179]

2.2 Learning Process

First, a general overview of the training process in supervised learning is given
with the help of Figure 2.3, before all individual parts are explained in more
detail.

Solving a task with machine learning requires data from which patterns can be
learned. In computer vision, this data consists of images whose quality, size,
and variety significantly influence the performance of the task to be tackled.
During the learning process, significant properties and features of the dataset
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2 State of the Art and Theoretical Foundation

targetinput

prediction

neural network loss function error

optimizerweights

data pair

Figure 2.3: Learning process in supervised learning. An input image is processed
through a neural network, including weights, to make a prediction. Subsequently, a
loss function compares the prediction with the target, generating an error term. This
error is then used by an optimization algorithm to adjust the weights to minimize the
error in following iterations.

S = (s1, s2 . . . , sN) with N being the dataset’s full length, are to be observed
from an unknown distribution D to obtain a predictor hs : X → (0, 1)Y , with Y =
{1, . . . , Y }, which fits the dataset. X is a set of objects which are represented as
vectors and Y is a set of possible labels. For this, data pairs of sn = (xn, yn) ∀n =
1, 2, . . . , N are used to supervise the process, where x ∈ X is the input vector and
y ∈ Y the target vector. [154]

So, input data is transformed into an input vector and forwarded into a neural
network. Afterwards the network’s output ŷ is compared to the target y using
a loss function which delivers an error. Afterwards an optimizer algorithm like
AdaGrad [47], Adam [86], etc. back propagates the error through the network
while adjusting the weights. The optimizer uses the gradient descent method
for weight adjustment. The training data is divided into small packages, called
batches, and passed through the network. After each batch, the weights are
adjusted. An entire pass of all images occurring in training data is called an
epoch and can take different amounts of time depending on the software (network,
dataset, image size, etc.), but also hardware (number of available graphics cards
and their memory size, hard disk speed, etc.). After the first epoch, performance
measurement begins with a validation dataset designed to test performance on
previously unseen images and reflect the generalization capabilities of the training
success so far.
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2.2 Learning Process

Data If enough data is available, a recommended approach is the hold-out
method where the available dataset S is divided into three different parts - train,
validation and test dataset - to promote generalization. A good thumb of rule is
a split of 2:1:1, which is used for small datasets. The more data available, the
higher the proportion of training data can be. [3] The training set is the biggest
part which is needed to learn complex features to build the model. It serves as
the knowledge foundation of a model and should be large, clean and diverse1.
Any lack of knowledge in training data could, for example, lead to accidents
in driving situations with autonomous driving vehicles when testing in the real
world [118, 119, 120]. The main task of the validation set is model selection and
parameter tuning [3]. It is used for performance computation during training and
is thereby responsible for parameter adjustments, such as the learning rate. After
selecting the best model, performance verification on unseen but similar data is
done on a test set that serves as an estimator for the true error [154].

If insufficient data is available, the validation set would be small and result in
a noisy estimate of predictive performance [11]. In such cases the k-fold cross
validation (KFCV) or leave-one-out cross validation (LOOCV) method can be
used to obtain accurate estimates of the true error during training.

The KFCV method divides the training set into Ks equal subsets were one sub-
set ks ∈ {1, . . . , Ks} is used for testing and error estimation and to remain for
training. This process is repeated Ks times, each time using another subset for
testing. The average performance of all test subsets is then stated. LOOCV, on
the other hand, is a special case of KFCV that omits only one sample. Especially
the LOOCV method is computationally expensive and should be only used for
very small datasets. [3, 154]

Activation Function An important element in neural networks is the activation
function φ, which is responsible for efficient learning and thus for the quality of the
predictions. They add a nonlinear property to the neural network allowing it to
approximate more complex functions like the XOR-example, where the two classes
{(0, 0), (1, 1)} and {(0, 1), (1, 0)} need to be separable. Activation functions are
also differentiable, so gradients can be calculated through them which is needed
for the backpropagation algorithm. The activation function plays two important
roles in deep neural networks. First, within hidden layers they determine the
range of values at which a perceptron is activated, which is also referred to as
”firing”. Second, as part of the output layer, they provide a probability value for
each class. The softmax activation function is often used in this case, where a
probability value is assigned to each class and the aggregation of all probabilities

1A. Karpathy, CVPR 2021 Workshop on Autonomous Driving, Keynote., 2021
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2 State of the Art and Theoretical Foundation

Figure 2.4: Different activation functions (blue) with its derivative (orange).

equals 1. The softmax activation function is often used in this context. Figure 2.4
illustrates frequently used activation functions with its derivatives.

Loss Function The goal of supervised learning is to reliably predict each label y
of the label set Y for any input x of an input set X . During training, the so-called
loss or cost function ` compares the prediction of the model with its target and
calculates a distance value, also referred to as loss. The loss is used as a feedback
signal to adjust the networks weights in the direction of the negative gradient for
minimization purposes. This is called the gradient descent algorithm.

A way to calculate the error is to count the number of misclassifications using the
indicator function I as

I(y, ŷ) =

{
1, y = argmax(ŷ)

0, y 6= argmax(ŷ)
, (2.3)

which equals 1 if the prediction is correct or 0 when incorrect. When using I, all
errors are considered equal, which is not practical in reality since some errors are
more costly than others. Therefore, asymmetric loss functions can be used, which
penalize certain errors more [117]. Another problem using this function is that it
is not differentiable and thus unsuitable for the backpropagation algorithm.

Empirical Risk Minimization The goal of the learning algorithm is to find the
predictor hD : X → (0, 1)Y that minimizes the error in relation to the unknown
dataset D and the target function f : X → (0, 1)Y . The target function delivers
the correct answer to the observed data, and we assume that the predictor does not
predict the correct answer, from which follows that h 6= f . Since D is unknown,
the true error cannot be computed straightforwardly. Therefore, an error LS(h),
also known as the empirical risk or error, can be calculated on a subset S ∈
{Strain,Sval,Stest} as follows:

LS(h) =
1

N

N∑
n=1

`(yn, ŷn) . (2.4)
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2.2 Learning Process

Equation (2.4) provides an averaged error, where N is the length of all data pairs
and ` the loss function, which gets a vector of class probabilities ŷ in addition
to the correct class y. Since the goal during training is error minimization, the
parameter search to minimize the empirical error on the training data is called
Empirical Risk Minimization (ERM). [117, 154]

A typical approach for minimization is the stochastic gradient descent (SGD)
algorithm. It is an iterative method for optimizing a differentiable function to
find the global minimum. Its derivation provides information about the direction
to reach the minimum with respect to the model parameters which is done by
small shifts in the direction of the negative gradient. During training, the data
is divided into small sub-packages, called batches, which are randomly selected.
Based on the error term of each batch, the model parameters θ = {w, b} are
updated to reduce the error in the next iteration step is by

θ(is + 1) = θ(is)− η
∂L
∂θ

, (2.5)

with η being the step size and ` the loss function.

The algorithm used to compute the gradient of a loss function applied to the
networks output with respect to the weights in each layer is known as back-
propagation [148] and can be subsequently used by a gradient-based optimization
algorithm based on SGD for learning [62, 117]. For this purpose, the gradient
of the error needs to be propagated back to calculate the next error. Figure 2.5
serves as an illustration to help to understand this process better.

...

al+1
1 = f(al1, a

l
2, . . . , a

l
i)

al1

∂L
∂al1

= ∂L
∂al+1

1

∂al+1
1

∂al1

al2

∂L
∂al2

= ∂L
∂al+1

1

∂al+1
1

∂al2

ali

∂L
∂ali

= ∂L
∂al+1

1

∂al+1
1

∂ali

al+1
1

∂L
∂al+1

1

Figure 2.5: Gradient flow calculus.
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Using a learning rate η allows to scale the step size. If the step size is too large,
the minimum could be skipped and thus never reached. A step size that is too
small, on the other hand, could result in a global minimum never being reached
because of being trapped in a local minimum. Therefore, a dynamic step size has
been established in practice, which is large enough at the beginning to skip local
minima, but decreases with time to ideally reach the global minimum with small
steps.

Since this simple optimization algorithm is capable of computing gradients quickly
and is therefore well suited for large datasets, both SGD and other optimizers
based on it, such as AdaGrad [47] or Adam [86], find application in deep learning.

Regularization The ERM algorithm runs the risk of overfitting. This refers to
a predictor that is too strongly oriented to the training data (analogy to mem-
orization) and thus performs poorly on similar but unknown data. In contrast,
the term underfitting refers to the case where training was too short and complex
correlations were not learned. While training, the errors of training data and
validation data are tracked with the number of iterations. As soon as both curves
behave in opposite directions, this represents the perfect region where the model
neither under- nor overfits and generalizes the best.

There are some regularization techniques that counteract or prevent overfitting.
These include early stopping, weight decay, image augmentation, feature selection,
L1 or L2 regularization or drop-out, in addition to using larger amounts of data.

• Early stopping [116]
Overfitting can be prevented by stopping the training earlier than planned.
To do this, the loss values for the training and validation datasets must
be monitored during the training. Since the validation error as opposed
to the training error worsens after a certain point, the training should be
terminated early. A termination condition EES is defined, which specifies
how many epochs in a row the best validation loss must not drop below
until the training is terminated.

• Weight decay [69]
Weight decay, also called L2-regularisation, is a technique for minimizing a
loss function by adding the L2 norm as a penalty term to the loss function,
preventing the model from becoming too complex. In this case, the loss
function changes as follows:

Lwd = LS + λpenΩ(w) (2.6)

= LS + λpen
1

2
‖w‖2

2 . (2.7)
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With Ω(w) describing the penalty parameter and λpen ∈ R+ the regulation
parameter.

• Image augmentation [62]
This is a process of generating new data by manipulating copies of the
existing training images. This procedure improves generalization and is
especially useful for small datasets as it enables an increased number of
training images. Manipulation techniques are rotation, translation, scaling,
cropping, hue and contrast, to name a few.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are specialized neural networks for pro-
cessing data that have a well-known, grid-like topology like time-series or image
data [95]. CNNs divide the input into overlapping 2D arrays, also referred to as
receptive fields which represent parts of an object, and comparing each array to a
series of small weight matrices, better known as kernels [117]. Instead of general
matrix multiplications, the convolution operator ∗, which is the main core of this
network, takes place in at least one layer.

Early CNN design patterns consisted of alternating convolutional layers with
ReLU activation and max-pooling layers followed by one or more fully-connected
layers at the end for classification purposes, such as Yann LeCun’s LeNet [96]. As
CNNs have grown larger and more complex over time, the convention of combin-
ing several repetitive layers into one block is often found. In the previous example,
the sequence of convolution, ReLU activation and pooling would be combined into
a convolution block.

. . . ...
...

...

dog
cat
mouse

...

monkey

input
conv +
ReLU pooling

conv +
ReLU pooling pooling flatten

fully
connected

feature learning classification

Figure 2.6: A simple CNN for image classification [117]. The input image passes through
several blocks where features are detected and then a classification is provided as output.
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Even though CNNs are also divided into three layers, the hidden layers can be
further divided into two parts. First, there is the feature learning area, which
consists mainly of convolutional blocks, and the classification area, which consists
of the flattening, fully connected, and softmax layer (see Figure 2.6).

Compared to conventional neural networks, CNNs have several advantages, such
as a lower memory requirement due to sparse connections between layers or weight
sharing and thus fewer model parameters, faster processing of large amounts of
data, additional storage of spatial information and robustness to altered lighting
conditions, which is why they are increasingly used in image recognition since
AlexNet [94] won the ImageNet challenge in 2015 [149].

Convolution In general, a convolution is a mathematical operation between two
functions f and g that results in a third function s. Therefore, every value of f is
replaced by the weighted average of the surrounding values. One use case would
be signal or image processing, where convolution can filter out background noise
to some extent.

When applying convolution a fixed matrix, also known as a kernel K, is moved
over the complete image I and the convolution operator is applied to each con-
sidered subarea, also known as receptive field. The kernel constantly moves by
a fixed pixel width sw, referred to as stride. A convolution with sw > 1 is also
termed strided convolution, which reduces redundancies and speeds up computa-
tion time. The disadvantage is a drop in performance due to loss of information.
All numbers in the receptive field are multiplied by the corresponding value from
the kernel in order to sum up all factors according to

M(i, j) = (I ~K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) . (2.8)

This equation is a special form of the convolution formula that requires no flipping
of the kernel and is known as cross-correlation. The result is then offset with a
bias value to create an entry in a new matrix called feature map M . A schematic
representation of a convolution, including the ReLU activation function, is shown
in Figure 2.7. This figure illustrates that convolution results in a dimensional
reduction, which causes information to be lost at the image borders. Especially
with small images this can lead to problems, so that a technique called zero
padding can be applied. It appends artificial zeros to the borders of the image or
feature map in order to preserve the dimensions.

The convolution operator, that contributes to maintain most of the spatial in-
formation, gives CNNs two important properties that are not present in classical
dense layer neural networks. First, they are translationally invariant, so patterns
can be detected anywhere in the image, and second, they learn spatial hierarchies
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Figure 2.7: Schematic representation of a convolution including ReLU applied to an
input image returning a so-called feature map. The convolution is first calculated
on the first image segment (dimension 3 × 3) of the input with a kernel of the same
dimension, subsequently the bias term is added to finally apply the activation function
in order to save it as a numerical value in a feature map. Following this procedure, the
kernel slides over the entire image and fills the feature map piece by piece.

of patterns. Only small local patterns are detected in the first layers, from which
more complex patterns are detected in deeper layers that are still connected to
the previous ones. [31]

Pooling With pooling, the feature maps created by convolution are reduced in
size by combining neighboring pixels which reduces the dimensions of the feature
maps. The most common form of pooling is max pooling and is shown in Fig-
ure 2.8. Initially, the pooling process is similar to convolution, where the input
feature map is first divided into overlapping 2D image arrays. Then, only the
maximum value of each array is written to a new feature map, which reduces
the size of the subsequent feature map. Unlike convolution, pooling provides no
learnable weights w.

0 0 1 1 0

0 2 1 1 0

1 2 2 1 0

2 2 2 0 0

1 2 2 0 0

max()max()

2 2 1 1

2 2 2 1

2 2 2 1

2 2 2 0

max()

Minput pooling Moutput

Figure 2.8: Schematic representation of max pooling. The input is first divided into
overlapping 2D arrays (here dimension 2× 2) in order to compute the maximum value
of each array afterwards. We use a stride value of 1 to subdivide the arrays in this
example.
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Fully-Connected Conventional neural networks consist mainly of fully-connected
layers. Their characteristic is that each neuron interacts with each neuron in the
next layer. Even though this type of interconnections can be used to resolve
tasks, redundant computations commonly occur, resulting in increased computa-
tion time. Therefore, they are more commonly used in CNNs in the classification
area, where classification is subsequently performed using the probability output
of, for example, a softmax layer.

Other building blocks Over time, additional blocks for CNNs found application
in scientific and commercial works, which could achieve more efficient and bet-
ter performance for solving image classification tasks. Some of them are briefly
explained from here, while detailed information can be found in the sources pro-
vided.

• Deconvolution and transposed convolution [117, 181]
While a deconvolution only inverts the standard convolution with a known
filter, the transposed convolution upsamples the feature map using learnable
parameters.

• Dropout [62, 158]
An algorithm for randomly removing neurons to prevent overfitting. During
this process, connections that have already been learned are deliberately
deleted so that other neurons contribute to the solution of a problem. Even
if better performance can be achieved with dropout, one disadvantage to be
mentioned is the longer computing time.

• Batch normalization [79, 117]
Batch normalization is a normalization layer that increases the stability of
a deep neural network. It ensures that the activations within a layer have
a mean of zero and a unit variance when averaged over the samples in a
batch.

• Pyramid pooling [182]
A pyramid pooling module (PPM) was introduced in 2017 which fuses fea-
tures under different pyramid scales to accumulate contextual information
based on different regions. For this purpose pyramid pooling is done after
a convolution layer, where different pooling steps are performed in parallel,
generating feature maps of different sizes in different branches. This is fol-
lowed by a convolution step in each branch with a subsequent upsampling
step so that all feature maps can be concatenated with the original feature
map.
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original semantic instance panoptic

Figure 2.9: Examples of image segmentation tasks.

2.4 Image Segmentation

In computer vision, a common task is image segmentation, where the image is
divided at the pixel level into coherent parts or segments that conceptually be-
long together [55, 161] and create a new image, also known as a mask. An image
usually consists of three channels (red, green, blue) with values stored with an
accuracy of 8 bits. Coloring contiguous segments creates a clustering of the entire
image, where closed contours of each segment and the color allow for conclu-
sions about the type of segment. Image segmentation on segment level exists in
three different levels of detail: semantic segmentation, instance segmentation and
panoptic segmentation. In addition, the content of an image is usually divided
into the two categories things, which are countable objects such as humans or
vehicles, and stuff, which are formless regions with similar texture or material
like sky or road [2, 70, 87].

Semantic Segmentation An important application for autonomous driving is
semantic segmentation, where each pixel of an image is assigned to a specific
class. In this process, the original images are reduced in advance to the most
important features and contiguous areas are assigned to the same class. For
human visualization, each class is assigned a color in RGB space, resulting in
color blob-like images which is shown in Figure 2.9.

The image shows some vehicles and pedestrians on the road. When learning this
scene, it is more important to learn that there are vehicles and pedestrians than to
classify each specific feature of the vehicle, such as the vehicle class, window panes
or of the pedestrians like the cloth color. Even though the different features can
help distinguish a vehicle from humans, feature reduction is essential for solving
more complex tasks such as autonomous driving.

Semantic segmentation networks build upon the CNN architecture, with the dif-
ference that they do not classify the entire image, but each individual pixel.
Therefore, they usually have nearly symmetric encoder-decoder structure, where
each downsampling step in the encoder part is compensated by an upsampling
step in the decoder part. This ensures that the original size of the input image is
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input output

encoder decoder

backbone

Figure 2.10: U-Net architecture according to [145]. An input image passes through
an encoder-decoder structure to produce a pixel-by-pixel binary prediction. In this
example, the task is to segment the road.

almost preserved. The encoder part extracts features and downsamples the input
image, while the decoder part converts the encoder’s low-resolution representa-
tions back into the original format. Downsampling - done with convolution blocks
including stride and pooling - captures high level properties while losing spatial
information whereas upsampling - done with transposed convolution blocks - par-
tially restores this spatial information.

An evolution of this structure is U-Net, introduced in 2015, which uses skip
connections to better reconstruct spatial information during upsampling [145].
Each - except the last - convolutional block (3 convolutional layers with ReLU) is
followed by a copy of the feature map, resulting in two branches. The first branch
is pooled using a 2 × 2 kernel and the second is cropped and concatenated in
the upsampling process, which leads to more precise information reconstruction,
see Figure 2.10. Since the U-Net does not use padding layers, the output layer is
a scaled down version of the input image.

Last but not least, there is the output layer for pixel classification. However, se-
mantic segmentation does not focus on differentiation between multiple instances,
so overlapping instances of the same class will result in a merge. If distinction
between instances is desired, instance or panoptic segmentation should be used.
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Instance Segmentation The overall goal of instance segmentation is to distin-
guish between instances of the same semantic class. In addition, dynamic things,
i.e., objects of high interest in road traffic like pedestrians or vehicles are consid-
ered, so that stuff is not taken into account. With instance segmentation, the task
of object detection takes place at the pixel level. R-CNN [59] can be counted as
a pioneer in this field, where the network first extracts many bottom-up propos-
als before localization and segmentation. Based on this, further networks were
developed that aim to identify things such as MNC [39], Mask R-CNN [71] or
FCIS [102].

Panoptic Segmentation Panoptic segmentation combines the tasks of seman-
tic segmentation with instance segmentation. This image segmentation method
identifies both things by class labels and additionally distinguishes between differ-
ent instances, and stuff, marking related areas with similar structures. [87] This
is typically done by using two branches of segmentation models, semantic and in-
stance, resulting in a merge. Some well known panoptic networks are OANet [106],
UPSNet [176], AUNet [101] as well as the real-time network PanoNet [29].

2.5 Object Detection

Object detection is a computer vision task with the aim to detect instances of
objects of specific classes. Therefore, a bounding box is drawn around a predicted
object, see Figure 2.11. A common object detection algorithm is YOLO (You Only
Look Once), which uses 1×1 convolutions, thereby obtaining the size of the input
feature map. There are several versions, with YOLOv3 [142] performing well on
any given input resolution. Furthermore, due to its multiscale architecture it finds
objects of different sizes in images. It is also popular for embedded systems due
to its real-time capability and provides good accuracy [114].

Figure 2.11: Bounding box examples from CARLA.
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2.6 Evaluation Metrics

Several evaluation metrics for neural networks are available. This subsection
focuses on the main metrics used in this work.

Intersection over Union The Intersection over Union (IoU), also known as the
Jaccard index [81, 82], represents a similarity measure for quantities in the range
from 0 (no intersection) to 1 (perfect match). Defined as

IoU(A,B) =
|A ∩B|
|A ∪B|

, A,B ⊆ Rn , (2.9)

this metric is calculated from the overlap of two quantities divided by the merged
quantity.

In computer vision the IoU is used to describe the overlap of the ground truth and
the predicted object. It can be used for bounding boxes, but also for semantic
segmentation, see Figure 4.10. In addition to the IoU, there is also the mIoU,
which takes into account the mean IoU value of all classes considered.

ground truth prediction IoU

Figure 2.12: By means of the IoU for semantic segmentation, ground truth and predic-
tion are compared with each other in such a way that the intersection of both is divided
by the union.
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Accuracy The pixel accuracy describes the number of correctly predicted pixels
divided by the total number of pixels

pixel accuracy =
# correct pixel classifications

# all pixel classifications
. (2.10)

The accuracy in object detection can be expressed in finding a class or not. For
this purpose, the confusion matrix, which visualizes the performance of a model,
can be used to compare the prediction with the ground truth. For this we use
a condition to mark an object as found, e.g. IoU ≥ 0.5. In case we found the
ground truth object we call this a true positive (TP), otherwise a false negative
(FN). Furthermore, if the model predicts an object but no ground truth data is
available to this object, this is referred to false positive (FP). If there is no object
and we do not recognize something there, this is called a true negative (TN). Then
we can compute the accuracy as

accuracy =
TP + TN

TP + TN + FP + FN
. (2.11)

Mean Average Precision The mean average precision (mAP) is a popular met-
ric used to measure the performance of object detection models. It describes
the reliability of a network’s prediction for an object. The IoU value serves as a
threshold to determine whether an object is found or not. Typically, a threshold
of at least IoU ≥ 0.5 is used for this purpose.

2.7 Model Development Process

In order to use a neural network in the real world, several process steps are
required that are iteratively repeated to solve an underlying problem. The model
development process, according to [159] can be divided into 5 steps starting with
Data Acquisition. The focus here is on obtaining data. These represent a subset
of the real world that is needed to solve a specific problem. Consideration should
be given at the Preprocessing step to ensure that data are standardized and
accurate, i.e., that images and labels match, and that they are anonymous so
that no person, license plates or other metadata can be used to derive personal
conclusions. In addition, the data should be made available in such a way that
neural networks can work with them. This usually involves the development of
a suitable data loader that also separates the data into training, validation and
test data. Next Modeling starts, where the right algorithm needs to be chosen.
For this purpose, self-built, as well as publicly available models can be used.
Depending on the underlying model, hyperparameters can be adjusted to achieve
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the best performance in combination with the training and validation data used.
Often this requires a targeted parameter tuning, as the best parameters depend
on the architecture and data. Evaluation starts after the final model was chosen.
It will be tested on unseen data (test dataset) to measure the real performance
of the model.

Model
Development

Process

Data Acquisition
P
reprocessing

Modeling

Ev
al
ua
ti
on

D
ep
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ym
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t

Figure 2.13: The model development process2.

In addition to the test dataset, the model can also be tested on other available
datasets, called benchmark datasets, to demonstrate its robustness and general-
ization abilities and compare it to other models using performance metrics such as
accuracy, IoU (Intersection over Union), mAP (mean Average Precision) and oth-
ers. In the Deployment step, the model is tested in the real world. This involves
integrating it into a closed system so that sensors and preprocessing methods are
used to provide input data to the model, which is then processed in real time.
Subsequent algorithms can be used to handle the output signal, for example, to
control actuators or to forward images to a screen. After the model has been
field-tested and tried out in the real world, an optimization step can be started
by restarting the entire process. This includes, among other things, targeted data
generation in order to eliminate the weaknesses that have been occurred.

2Created with code from: https://texample.net/tikz/examples/pdca-cycle/, accessed:
2023-03-25
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Chapter 3
Driving Simulator

This chapter describes the steps taken to create a custom driving simulator that
allows control of a vehicle in a virtual world using only the output of a seg-
mentation network. For this purpose, the simulator setup is described before
the software used, called CARLA [44], is introduced. This is followed by a de-
scription of the inference sensor implemented in CARLA before presenting some
optimization steps necessary to achieve a smoother driving experience.

3.1 Introduction

If one or more entities, human or machine, are capable of controlling a vehicle in
the synthetic world by means of a control unit, this is called driving simulation.
There are several possible applications for driving simulators for human drivers.
Besides entertainment and driving school or safety training, they are increasingly
used in the scientific field like in [45, 66, 67, 173]. Such simulation systems are
particularly suitable for observing and evaluating human behavior in critical driv-
ing situations without endangering anyone seriously. The driving behavior should
be as authentic as possible so that the driver experiences situations like in a real
vehicle. On the hardware side, this includes a control unit (steering wheel and
pedals), a powerful computer with a graphics and sound card, one or more dis-
plays and a driver’s seat including vehicle body. In addition, realistic software
is required that not only provides graphical accuracy, including realistic lighting
conditions, but also simulates the movement of various road users in compliance
with traffic regulations.

By building a custom driving simulator, we would like to cover two use cases. One
is to generate data quickly and safely, which increasingly consists of safety-critical
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driving situations, and the other is to use it as a demonstration object to show
the world how AI works and to enable people to assess AI more realistically.

3.2 Software

Game engines such as Unreal Engine [160], Unity [168], CryEngine [37], etc.,
provide state-of-the-art graphics and sophisticated physics modeling to create re-
alistic environments. In turn, increasingly realistic and lifelike scenes are enabling
the use of AI to improve autonomous driving. Based on a game engine, various
driving simulations have been developed in recent years that can be used by sci-
entists and companies to emulate the real world as closely as possible in the vir-
tual world. Even though driving simulations for automated driving like NVIDIA
DRIVE SimTM [127], Apollo Simulation [6], Autoware [162] or SVL Simulator,
formerly LGSVL Simulator [144], have their raison d’être, the open source driv-
ing simulation software CARLA [44] gains great popularity with its unrestricted
changeability.

Since CARLA is open source and free, has a large and active community, receives
regular updates and new features and the number of publications using CARLA
is steadily increasing, this software serves as the basis for the driving simulator.

Most of the upcoming information about CARLA and the Unreal Engine is taken
from the documentation of both34 and from own user experience. If other sources
are used, they will be mentioned separately.

3.2.1 CARLA

CARLA, which stands for CAR Learning to Act, is an open source driving simu-
lator that can be used for data generation and/or testing of AI algorithms [44]. It
uses the gaming engine Unreal Engine 4 [160], which calculates and displays the
behavior of various road users while taking physics into account, thus enabling re-
alistic driving. CARLA is mostly written in C++ but can be handled via Python
API (Application Programming Interface). The installation of CARLA is simple
and the documentation well written, so that the included scripts run without ma-
jor problems. Furthermore, the CARLA platform can be modified and adapted
to one’s own use case, which is essential for the planned experiments.

3https://carla.readthedocs.io/en/0.9.13/ accessed: 2022-11-16
4https://docs.unrealengine.com/4.26/en-US/ accessed: 2022-11-16

24



3.2 Software

Unreal Editor CARLA uses a modified fork of the Unreal Engine 4, which needs
to be first cloned from the GitHub’s page. This requires a GitHub account and
an Epic Games account to be linked together. Afterwards, the engine has to
be compiled from the cloned repository to create an executable program. This
process is called software build which is a general term in the world of software
development. This installs the so-called Unreal Editor, which can be used to edit
the levels or, in the case of CARLA, the individual maps.

When using the Unreal Editor in CARLA, two different licenses - Unreal R©Engine
End User License Agreement (EULA)- were selectable: EULA for Publishing and
EULA for Creators. Using the Unreal Engine for research purposes, the EULA
for Creators was the right choice. In 2022 the two licenses were replaced by a
single Unreal Engine EULA that covers all use cases [51, 52].

Installation and Start Several versions of CARLA have been released during
the work on this dissertation, with version 0.9.14 being the most recent at the time
of writing, whereas most of the research has been conducted using modified code
from version 0.9.10. Figure 3.1 shows a timeline of the most important changes
between the versions.

0.1.0 . . . 0.9.10 0.9.11 0.9.12 0.9.13 0.9.14

start

OpenStreetMap

deterministic TM

Unreal Engine 4.26

instance sensor

Cityscapes label

Figure 3.1: CARLA timeline with the biggest changes from version 0.9.10, where the
OpenStreetMap integration occurred, allowing real streets to be integrated into a cus-
tom CARLA map. Version 0.9.11 brought a fully deterministic traffic manager (TM)
that produces the same results and behaviors under the same conditions. In version
0.9.12, the graphics became more realistic due to a newer Unreal Engine version. Ver-
sion 0.9.13 brought an instance segmentation sensor and the latest version modified the
semantic segmentation class labels to be the same as the Cityscapes ones.

CARLA can be installed on various operating systems, however for licensing
and customization reasons the Linux distribution Ubuntu LTS 18.04 was chosen.
CARLA can be installed in three ways: building it on your own, downloading it
as a prepackaged version or running it in a Docker container. The software uses
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a client-server architecture, where the server manages everything related to the
simulation, such as rendering objects and sensors, physics computation or world
state updates, see Figure 3.2.

server

client 1 client 2 client 3 .... client n

Figure 3.2: Server-client architecture in CARLA.

The CARLA server can be started either directly via the executable file or via
the Unreal Editor. After that a window opens, which shows a virtual city. Using
the keyboard and mouse pointing, the user can look around the whole world from
the point of view of an all-seeing observer, called spectator. This is the active
server that clients can connect to via Python API to interact with the world.
The Python API is either build, already precompiled from the download file of
CARLA or by using CARLA’s pip package from pypi.org. The latter is only
possible from version 0.9.12 and higher.

Clients The user is able to execute various scripts that interact as a client with
the CARLA world via the Python API. In addition to custom scripts, the user
can use ready-made clients such as the traffic manager (TM), which takes the
control of all non-player characters (NPCs). The TM is a module, written in
the programming language C++, that can be connected to CARLA as a client
and populates as well as controls actors in CARLA to simulate realistic urban
traffic conditions. To avoid unexpected and erroneous results it is important that
both, the server and the TM are running in synchronous mode. The TM works
as follows: First the current state of each traffic participant including position,
velocity and additional information is stored. Furthermore, all entries of removed
or defective traffic participants are cleaned up. Second, the movement of each
actor is calculated to apply all the calculated positions of the actors as the third
and last step.

Since traffic control is computationally intensive for each traffic participant, a
hybrid physics mode was implemented in CARLA that removes the physics bot-
tleneck. This is done by elimination of physical movements of road users outside a

26

pypi.org


3.2 Software

certain radius around the ego vehicle. The road user movements are done by tele-
portation in each simulation step and are only changed back when they reappear
within the radius of the ego vehicle.

Additional traffic simulators such SUMO (Simulation of Urban MObility) [110]
or PTV Vissim [54] can be connected to CARLA to generate specific movements
or behaviors of the road users.

Furthermore, the CARLA documentation provides a tutorial that introduces the
main features and allows to create the first custom script. In addition to the
tutorial, the software provides ready-made scripts intended for interaction with
the virtual environment. For example, there is a script to control an ego-vehicle
with a steering wheel that enables discovering the different maps or a recording
script that stores spatial information about each road user so that previously
driven drives can be reloaded which allows the subsequent storing of data with
different sensors.

Combining the two scripts and adding a custom sensor called inference sensor were
part of this thesis. This sensor produces an output using a pre-trained semantic
segmentation network such that it is possible to interact with the networks output
in real-time. ”Driving with the eyes of the AI”, so to speak. Figure 3.3
shows two camera-based (RGB and semantic segmentation), one point cloud based
(LiDAR) and the self-designed inference sensor.

Simulation Time In CARLA it is necessary to distinguish between the real time
and the simulated time, since the latter has its own clock and is controlled by the
server. The elapsed time between two simulation moments can be configured be-
tween a few milliseconds up to several seconds and is called time step. Depending
on the task, a fixed or variable time step can be chosen. The fixed time step was
mainly used in this thesis, which is important to mention since the variable time
step is the default value in CARLA.

The client is in total control over the simulation in synchronous mode with a fixed
time step. For an optimal physical substepping the constraints

tδ ≤ tsubstepnsubsteps , (3.1)

tsubstep

!

≤ 0.01666 , (3.2)

need to be fulfilled, where tδ is the fixed delta in seconds, tsubstep the maximal
substep delta time and nsubsteps the maximal substeps.

27



3 Driving Simulator

RGB semantic

LiDAR inference

Figure 3.3: Examples of CARLA sensors including the self-designed inference sensor
showing the exact same situation.

Actors and Blueprints Actors are all elements that interact directly or indirectly
with other elements in the simulation and can be placed into or removed from a
certain map. They contain all information about the model packed into so-called
assets, consisting of all the methods, attributes and rendering information like
meshes, textures and surface materials.

Blueprints in CARLA are predefined and ready-made actors which the user can
incorporate into the simulation. They can include animations or attributes which
can be partially modified, depending on the type of blueprint. All available
blueprints in CARLA are listed in the blueprint library and can be spawned into
the world, a term more commonly used in simulations or games than the word
placed. Every blueprint gets a unique ID which can be used to change attributes
or to receive information. There are fixed and changeable attributes. For exam-
ple vehicles have fixed attributes like the number of wheels - depending on the
blueprint model - and changeable attributes like color or speed.

Blueprints can be placed via PythonAPI in the CARLA world, this can be done
with a modification of the Unreal Editor coordinates. The visibility of blueprints
depend on their surface, which is determined by their geometry (created through
meshes or brush surfaces), and their material (defined by texture and material
parameters). Meshes define the actual geometry of an object/actor which creates
the surface. The Unreal Engine distinguishes between 3 different mesh types:
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Figure 3.4: Weather blueprint graph for CARLA in Unreal Engine (UE). The gameplay
scripting language is called Blueprint Visual Scripting based on a node graph where
developers can use the programming language C++ to make blueprint nodes. Since
the graphs in UE can be displayed and edited visually, no C++ programming skills
are required to make logical connections, which is helpful for game designers or artists.
Blueprint nodes imply a self-contained functionality performing something unique and
exist in different types which are listed in Table 3.1. [140]

static, dynamic and skeletal. Materials define surface properties of objects such as
color, reflectivity, unevenness, transparency, etc. They dictate the engine exactly
how a surface should interact with light. Components of material are textures and
several material parameters. If the light behavior of the real world needs to be
simulated, physically based materials are required. Therefore, material attributes
such as base color, roughness, metallic and specular have to be used. Textures are
image files that are mapped to surfaces which the material is already applied to.
They provide pixel-wise information about color, gloss, transparency and some
other aspects.

However, there are also functional blueprints like sensors that have no visible
surfaces and can only be attached to other blueprints.

Sensors Sensors in the CARLA world are actors, a common term in the Blueprint
Visual Scripting language and not to be mistaken with the mechanical term, that
retrieve data from their environment. They are attached to a vehicle and collect
data either at each simulation step or at a specific event. In CARLA there are
three types of sensors: cameras, detectors and others which are listed in Table 3.2.
Camera sensors capture a special viewpoint of the CARLA world and return an
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Type Description CARLA examples
Class Most common blueprint type. Functional-

ities can be created visually using a graph
and stored in a content package called asset.
Blueprint classes can be placed as instances
into maps and interact with other blueprints.

Vehicles, walkers, lights,
propfactory, weather,
sensors

Level Level-wide global event graph. It is the
gameplay area that contains everything a
player can see and interact with.

Maps

Interface Interacting functions that connect blueprints
together so that different types of objects can
share particular functionality.

The BoundingBox()-
function places a 3D
frame around an actor
or element to describe
the geometry.

Data-only Blueprint classes without node graphs. They
inherit from its parent class and are used to
make small changes. No new elements can
be added.

All walkers are data-
only blueprints except of
the parent walker.

Macro Set of nodes placed as an instance for reusing
and time saving purposes. Macros are col-
lapsed graphs to hide complexity and are col-
lected in the Blueprint Macro Library.

-

Table 3.1: Overview of all blueprint types in Blueprint Visual Scripting.

image. Detectors work differently. They retrieve data when a specific event oc-
curs. This can be, for example, a lane crossing or a collision returning a special
value instead of an image. Other sensors include all other sensors that do not fall
into these two categories. For example, there are the two LiDAR sensors or the
radar sensor, which record a point cloud in space.

Non-Player-Characters The term Non-Player-Characters (NPC) is used to de-
scribe dynamic objects in the simulation that move according to a certain pattern
controlled by the traffic manager. In CARLA these objects are vehicles and walk-
ers. The number is variable and limited by the size of the map.

In CARLA there are two - including bicycles and motorcycles - and four wheeled
3D modelled vehicles which are similar looking to their role models. All vehicles
possess an autopilot mode, which is not based on any machine learning algorithm.
The gear shift and each single wheel of a vehicle can be controlled by physical
controls. Also, most vehicles have lights, which can be turned on or off by the
user. Although there are many vehicles free to use, it is possible to integrate self
created vehicle models into CARLA. Because of the big and active community of
this project almost every upgrade of the software provides new models.

Walkers move on the sidewalk with predefined moving patterns, where all bones
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sensor name type description
RGB camera photorealisitc image
semantic
segmentation

camera subdivision into classes at pixel level

instance
segmentation

camera subdivision into classes at pixel level and a unique
object ID

depth camera gray-scale map with depth information
optical flow camera motion of each pixel of the RGB camera
DVS (Dynamic
Vision Sensor)

camera perception of local changes in brightness

collision detector perception of collisions between actors
lane invasion detector checks whether the lane line is crossed
obstacle detector registers obstacles ahead of the ego vehicle
LiDAR other 4D point cloud with space dimensions and an inten-

sity loss value
semantic
LiDAR

other space dimensions, angle of incidence, object index
and semantic class of each point

radar other polar coordinates, distance and velocity of each point
IMU other retrieve values for accelerometer, gyroscope and com-

pass
GNSS other for transmission of position and time
RSS other a mathematical model to ensure safety

Table 3.2: Available sensors in CARLA 0.9.14

are moving, from one random point to another. In most cases, the streets are
crossed at traffic lights or crosswalks. Even if they primarily choose the shortest
walking route, a risk factor can be set to control the disregard of traffic rules. The
higher this value, the greater the likelihood that a pedestrian will cross the street
on the red light or suddenly step into the roadway to create dangerous situations.

Maps The map represents the simulated world. By default, six maps (Town01-
05 and Town10) are available with the possibility to include four additional ones
(Town06, Town07, Town11, Town12). All of them use the OpenDRIVE 1.4 stan-
dard [48] to describe for example roads, lanes or junctions. The provided maps
are characterized by a great variability. The maps differ in size and shape, as well
as in complexity. One can choose between single-lane and multi-lane roads, ur-
ban or rural areas. In addition, some maps contain special features such as traffic
circles, tunnels, rails, hills, etc. Table 3.3 provides an overview of all available
maps (default and the additional ones) in CARLA 0.9.14 and Figure 3.5 presents
some examples. Moreover, the user may create his or her own maps or export
real maps with OpenStreetMap and include them into CARLA. For this purpose,
the map only has to be converted to the OpenDRIVE format. In this way, the
real street shape is adopted, but static objects such as buildings or trees have to
be added manually.
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map description

Town01 single-lane normal-sized city
Town02 single-lane small sized city
Town03 complex city with tunnel, traffic circles and unevenness
Town04 highway with a small city
Town05 multi-lane large city
Town06 long highways
Town07 rural environment
Town10 a detailed metropolis
Town11 the biggest map with 400 km2 and long straight road
Town12 business district with skyscrapers, residential areas, highways and rural

Table 3.3: Overview of available maps in CARLA 0.9.14

Figure 3.5: Overview of the map variety in CARLA. Due to the large number of maps
that are provided, several situations can be created.

3.2.2 Additional Software

In order to realize the planned project, further software is required for the imple-
mentation of the project in addition to the operating system, CARLA and the
Unreal Engine. The most important ones are briefly explained in this subsection.

Git Git [164] is a distributed version control software, which saves and tracks
changes of computer files. The software is free and open source and particularly
helpful in programming, so that changes to the code do not immediately lead
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to complete failure, but are first tested by using branches, so that the original
code is preserved. Even though Git doesn’t have to be used compulsorily, it
definitely helps when developing algorithms and in conjunction with a service
such as GitHub [60] or GitLab [61], these are stored securely and can be made
available to other developers.

CUDA Compute Unified Device Architecture (CUDA) is a parallel computing
architecture from NVIDIA that enables a significant increase in computing power
by leveraging the graphics processing unit (GPU). For this purpose, NVIDIA pro-
vides a toolkit that includes GPU-accelerated libraries, debugging and optimiza-
tion tools, a C/C++ compiler and a runtime library. The use of the CUDA toolkit
is possible under the most commonly used operating systems (Windows, Linux
and Mac OS), as long as a CUDA-capable NVIDIA graphics card is used. [34]
CUDA is essential for training and testing neural networks because it enables
parallel computation of matrices and thus offers a significant advantage over the
CPU.

TensorRT NVIDIA’s TensorRT [125] is a deep learning software development
kit for high-performance inference based on NVIDIA’s parallel computing plat-
form CUDA. It generates individually optimized runtime engines for pre-trained
models, related to the user’s own hardware configuration. There are three in-
stallation options for TensorRT, namely the installation from an installation file,
via a pip-package and as a Docker container. Additionally, TensorRT needs the
package PyCuda to control CUDA via Python.

TensorRT aims at fast processing of input data and uses several optimization
techniques with little sacrifice of accuracy. For example, FP16 or INT8 is used
instead of FP32, the floating-point format commonly used in deep learning, which
speeds up processing. FP16 and INT8 have less memory but also lower accuracy
than FP32, but this does not seem to have a major impact on the accuracy of
the system when focusing on inference [121, 124]. Furthermore, GPU memory re-
quirements can be minimized by reusing memory and merging layers and tensors
by fusing nodes in a kernel optimizes the use of GPU memory. Selecting ap-
propriate data layers and algorithms based on the particular GPU platform and
processing data in parallel accelerate inference time, as does the use of dynamic
kernels for recurrent neural networks. [125]

The workflow of TensorRT can be divided into two phases, build and deployment,
see Figure 3.6. In the build phase, a pretrained model is transformed into a TRT
module and several optimization steps are performed. The transformation into
a TRT module happens only once and works as follows: First, a model must
be defined and trained with an arbitrary machine learning framework. Then,

33



3 Driving Simulator
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Figure 3.6: The TensorRT workflow is divided into a build and a deployment phase [126].

the model must be converted into the Open Neural Network eXchange (ONNX)
format [163]. Since the ONNX format is an open format for representing deep
learning models, it does not matter which framework is used. The most popular
ML frameworks such as PyTorch, TensorFlow, Caffe2, MXNet, Matlab, etc. sup-
port the ONNX format. Then the following 6 optimization steps are performed,
if possible, to save the TRT module afterwards:

1. precision reduction

2. layer and tensor fusion by merging nodes

3. kernel auto-tuning for selecting the best configuration related to the graphics
card/hardware in use

4. dynamic tensor memory through reuse of tensors

5. multi-stream design for parallel processing

6. time fusion for recurrent networks

The deployment phase runs on an embedded device where the TensorRT software
needs to be installed. Afterwards the converted model from the building phase
can be imported and a batch of input data can be processed. In contrast to
training, only the forward path takes place during inference.

3.3 Hardware Components

To create a realistic driving experience, hardware components are needed to inter-
act with CARLA. In addition to a powerful computer, monitors including mounts,
control units such as steering wheels and pedals, and driving seats are required,
which are to be arranged as shown in Figure 3.7. The computer should meet the
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system requirements of common driving simulation software while having one or
more powerful graphics cards capable of using advanced machine learning models
to compute real-time outputs of synthetic images.

Figure 3.7: Schematic drawing of the
planned driving simulator containing the
most important components: workstation,
seat, control unit, rack and monitors. Cre-
ated with FreeCAD [143].

Figure 3.8: Insides of the ordered work-
station. Next to 3 graphics cards, the 16
RAM bars and the two cores (covered by
the cooling unit) are shown.

Workstation To meet the requirements for CARLA - version 0.9.10 was cur-
rent at the time of procurement - and the planned data collection pipeline with
two human drivers, one of whom requires real-time output from the neural net-
work, the following hardware specification was created: A workstation from Dell
(Precision T7920) ideally suited for compute-intense applications, see Figure 3.8.
Two Intel Xeon Gold 6258R with a base clock speed of 3.0 GHz and turbo boost
speed of 4.00 GHz with 24 cores serve as the central processing unit (CPU). A
1 TB (16× 64 GB) RAM offers high access speeds as well as enough memory to
swap computations. For data production, the use of fast hard disk drive storage
is advisable, which is why the operating system as well as the simulation and
storage of the data is first done on one 2 TB solid state drive (SSD) with the
M2 form factor and 3rd generation PCIe (Peripheral Component Interconnect
express). The data is subsequently copied to a RAID 5 system equipped with 4
hard disk drives (HDD) containing 12 TB each for further processing. Although
SSDs with PCIe interfaces are faster - write speeds are about 11.6 times faster
and read speeds are 14.4 times faster than an HDD with a SATA interface - they
are more expensive and have a shorter lifespan than HDDs, which are still used
for storing large amounts of data. [122, 172]

To have redundant data storage, it is recommended to use a RAID (Redundant
Arrays of Inexpensive Disks) system, where several HDDs are virtually connected
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to one another so that no data is lost in the event of a hard disk failure. Depending
on space, cost and application, different RAID systems can be arranged, with
RAID 5 being used for the simulator. [135] It uses parity for data redundancy
instead of mirroring, which requires less storage space. Because mirroring keeps
multiple copies of data, RAID 5 can restore a failed drive using the parity data
that is not stored on a single hard drive. This configuration allows the contents
of 3 hard drives to be backed up redundantly using 4 hard disks.

In addition, a powerful graphics processor must perform real-time inference as
quickly as possible to enable driving on the prediction. Table 3.4 gives an overview
of the common graphics cards for workstations at the time of ordering. Since the
RTX A6000 was still quite new on the market, it was not possible to get one.
For price/performance reasons, we opted 3 NVIDIA Quadro RTX 8000 with 48
GB storage. Opting for multiple graphics cards has 2 advantages: flexibility in
implementing the task and dual use. First, it wasn’t clear whether using a single
graphics card would be enough. Multiple graphics cards mean more flexibility to
move multiple processes to different cards if needed. Furthermore, it is possible to
connect 2 identical graphics cards via SLI (Scalable Link Interface) - a technology
from NVIDIA - to increase performance. On the other hand, the goal was to be
able to use the graphics cards for training neural networks as well, so that 3× 48
GB are available for training.

Specs Quadro
P6000

Quadro
GV100

Quadro
RTX 8000

Quadro
RTX
A6000

H100
(SXM
socket)

Launch Oct. 2016* Mar. 2018* Aug. 2018* Oct. 2020* Mar. 2022*
Architecture Pascal Volta Turing Ampere Hopper
Transistors [Mrd] 11.8* 21.1* 18.6* 28.3* 80.0*
GPU memory [GB] 24 32 48 48 80
Memory bandwidth [GB/s] 432 870 672 768 3350
Memory type GDDR5x HBM2 GDDR6 GDDR6 HBM3*
Base/Boost clock [MHz] 1506*/1645* 1132*/1627* 1395*/1770* 1410*/1800* 1065*/1780*
Memory clock [MHz] 1127* 848* 1750* 2000* 1500*
effective [Gbps] 9* 1.7* 14* 16* 3*
CUDA cores 3840 5120 4608 10752 8448*
Tensor cores - 640 576 336 528*
RT cores - - 72 84 -
Single-Precision 12.63* 14.8 16.3 38.7 30.07*
performance [TFlops]
TMUs 240* 320* 288* 336* 528*
ROPs 96* 128* 96* 112* 24*

Table 3.4: Specifications for workstation graphics cards available late 2020. Informations
from NVIDIA’s official data sheets. *Missing items from: www.techpowerup.com/

gpu-specs/. The last column shows the latest graphics card at the time of writing.
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Control Unit The control unit represents the interface between human and ma-
chine. It enables the human to control a vehicle in CARLA freely via the steering
wheel and the brake or throttle pedals. The device of choice was the Logitech
G29 [108], which is also pre-implemented in CARLA’s control script and can
therefore be used as a controller almost without any problems. Only the use of
the force feedback, which imitates vibrations, caused problems under the Linux
distribution used. However, thanks to the open source software Oversteer - Steer-
ing Wheel Manager for Linux [5], it was possible to set at least a fixed resistance
value so that the user gets a more realistic steering experience as without. In
addition, the steering wheel has a steering range of 900 degrees.

Monitors Since the terms monitor, display, and screen are sometimes used as
synonyms, we will introduce the following definitions during this thesis to avoid
misunderstandings. Monitors are stand-alone devices that connect to another
device, usually a computer, to display information. It possesses a display in the
front, which consists of a glass and a panel underneath. Nowadays, LCD (Liq-
uid Crystal Display) screens are usually equipped with TN (Twisted Nematics),
VA (Vertical Alignment) or IPS (In Plane Switching) panels, the latter being
characterized by purer and more natural colors as well as viewing angle stability.
All-in-one devices such as mobile phones or laptops have built-in displays, which
is why they are not referred to as monitors. A screen is the entire visual out-
put, which can be spread across multiple monitors. For the driving simulator 4
monitors are needed, 3 for the graphical output, which together represent a large
screen, and one for the control station, which is used to start the CARLA world
and to make all settings. The monitors are attached to a TV mount and placed
in front of the driver’s seat. It is important to ensure that the driver’s eyes are
able to see all 3 displays at the same time. All monitors - labeled Dell UP2716D
- have an IPS panel, a display diagonal of 68.47 cm (27 inches) and a display
resolution of 2560× 1440 (WQHD). With a refresh rate of 60 Hz, a response time
of 6 ms and a maximum brightness of 300 cd/m2, the displays are well suited for
the project.

Rack and Seat The rack is the steel frame of the driving simulator that carries
seat, steering wheel and pedals, see Figure 3.9a. Since the simulator is also
supposed to serve as a demonstration object, it was necessary during procurement
to ensure that the rack is height-adjustable and at the same time stands firmly
on the ground so that it can be used by different human body types. In addition,
the simulator should be easy to assemble and disassemble so that it can be set up
in other locations.
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(a) Rack with seat and control unit. (b) TV mount with 3 monitors.

Figure 3.9: Rack, control unit and tv mount.

Figure 3.10: The fully assembled simulator with control center including peripheral
devices and a monitor. The simulator can be used for demonstration purposes by
driving freely in the virtual world of CARLA with support of a control unit and 3
monitors.

3.4 Code Adaptation and Acceleration

For the realization of the research project, we used the python API to modify the
script for manual control from the official CARLA 0.9.10 repository. In doing so,
we added another sensor - the inference sensor - which evaluates the CARLA RGB
images in real-time and outputs the neural network’s prediction on the screen.
This involved training a semantic segmentation network according to the Model
Development Process from Section 2.7 and providing it to the inference sensor.

By connecting a control unit including a steering wheel, pedals, a seat and a
screen to CARLA, we enable a human driver to experience perception from the
network’s point of view. We are, so to speak, driving with the eyes of the AI,
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which is why we call our approach:

A-Eye: Driving with the eyes of AI .

The first attempts to implement a segmentation network - DeepLabV3 [27] with
two different backbones (ResNet50 and ResNet101 [72]) - in CARLA using the
inference function showed that it is possible to drive on the output of the seg-
mentation network. However, it also became clear that smooth driving is not
possible at 0.99 fps respectively 1.27 fps with a resolution of 2560× 1280, which
is why some optimization steps were still to be made. Real-time performance for
semantic segmentation is described with about 24 fps [180]. This corresponds
to the standard frame rate for cinema and television and ensures fluid looking
movements with low enough latency.

Resolution The resolution should be inversely proportional to the frame rate,
since segmentation networks have to predict fewer pixels for smaller images. Con-
sequently, a suitable resolution should be found at which an appropriate image
resolution with good recognizability of the driving scenes should be found. For
this purpose, the time for executing the inference function up to display visual-
ization was measured for 4 different resolutions, each for 2 networks and is shown
in Table 3.5. Although the reduction in frame rate may increase as the resolution
is reduced, Figure 3.11 also shows that the output quality falls below a reasonable
level. Based on these findings, 1280× 640 was chosen as the appropriate resolu-
tion, which means 2.46 million fewer pixels to predict than with a 2560 × 1280
resolution. A lower image resolution would create a black border on a WQHD
resolution screen, so the screen resolution must also be reduced to completely fill
the screen. Since only a handful can be selected, 1280 × 720 was chosen as the
most suitable screen resolution.

Resolution
Network

2560x1280 1280x640 640x320 320x160
speed/image [ms] 1.012 0.247 0.073 0.033

DeeplabV3-ResNet101
framerate [1/s] 0.988 4.053 13.79 30.25
speed/image [ms] 0.788 0.202 0.059 0.022

DeeplabV3-ResNet50
framerate [1/s] 1.269 4.959 16.86 45.82

Table 3.5: Overview of the different framerates according to resolution size for
DeeplabV3 with two different backbones. It becomes clear that the resolution has
a big influence on the frame rate.
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(a) 2560× 1280 (b) 1280× 640

(c) 640× 320 (d) 320× 160

Figure 3.11: Resolution study with DeepLabV3-ResNet-101 to determine the best cost-
benefit ratio. Although reducing the resolution from (a) to (b) barely affects perception,
further reduction is not recommended because it makes perception much less accurate.

Segmentation Model Although the reduction of the resolution led to an im-
proved frame rate, smooth driving with 4–5 fps was still not possible. Therefore,
the next step was to try out different segmentation networks. With nearly 61 mil-
lion parameters DeepLabv3 with ResNet-101 backbone does not seem to be appli-
cable for real-time processing (42 million parameters for DeepLabV3-ResNet50),
so more suitable networks were sought. Therefore, a search for suitable real-
time segmentation networks was an initial step. The following Table 3.6 lists the
fastest five segmentation networks according to the authors of [133] on real-time
inference for the Cityscapes test dataset in 2021.

We see that all models work with a smaller number of parameters than the first
two used. Also, almost all values are created with NVIDIA’s deployment tool
TensorRT, except for the ones from Fast-SCNN. This was one reason why we
initially focused on Fast-SCNN, as it was fast enough with 8.1 ms per frame at
2048×1024 resolution to run initial tests without additional software. Looking at
the fastest segmentation networks on the official Cityscape’s leaderboard page5,
there are 2 Fast-SCNN models in the top 3, as long as the input resolution is
halved or quartered, see Table 3.7. With a speed of 3.5 ms per frame and a mIoU

5https://www.cityscapes-dataset.com/benchmarks/#scene-labeling-task and listed by the
best runtime, accessed: 2023-02-24
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network year
speed
[ms]

fps
[1/s]

mIoU
[%]

np
[mio]

γ GPU TensorRT

STDC1-50 [53] 2021 4.0 250.4 71.9 8.44 0.5 GTX 1080Ti v5.0.1.5
FasterSeg [28] 2019 6.1 163.9 71.5 4.4 1.0 GTX 1080Ti v5.1.5
BiSeNetV2 [180] 2020 6.4 156.0 72.6 5.23* 0.5 GTX 1080Ti v5.1.5
Fast-SCNN [139] 2019 8.1 123.5 68.0 1.11 1.0 Titan XP -
DDRNet-23-slim [132] 2021 9.8 101.6 77.4 5.7 1.0 GTX 2080Ti v6.0.1

Table 3.6: Overview of the fastest five real-time segmentation models evaluated on the
Cityscapes test dataset in 2021 according to [133]. γ represents the downsampling
ratio corresponding to the Cityscapes resolution of 2048×1024 for inference and np the
number of model parameters. Each entry was taken from the corresponding publication,
if mentioned. If not, they were determined from another source and marked with *.

of still 62.8 %, the network still seems reasonable with half resolution, so upscaling
the network’s output is an additional optimization option in the future.

resolution γ mIoU [%] drop [%] speed [ms] speedup [%]
2048× 1024 1.00 68.0 - 8.10 -
1024× 512 0.50 62.8 7.647 3.50 56.79
512× 256 0.25 51.9 23.68 2.06 74.57

Table 3.7: Speedup possibilities for Fast-SCNN through resolution reduction according
to Cityscapes leaderboard5.

Fast-SCNN, which stands for Fast Segmentation Convolutional Neural Network,
uses two encoder branches which are added before classification. As shown in Fig-
ure 3.12 the networks architecture is composed in four modules: learning to down-
sample, global feature extractor, feature fusion and classifier.

+

learning to downsample global feature extractor feature fusion classifier

Conv2D DSConv Bottleneck Pyramid Pooling Upsample DWConv

Figure 3.12: Fast-SCNN architecture. [139].

1. Learning to downsample
This module consists of 3 layers, the first consisting of a typical 2D con-
volution followed by 2 depth-wise separable convolutions (DSConv). The
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latter, as shown when Francois Chollet introduced the Xception architec-
ture [32], are more computationally efficient than the standard ones and
reduce overfitting. DSConvs consists of 2 parts: first, depth-wise convolu-
tion is performed to merge the outputs in the second step. Unlike standard
convolution, where the convolution operator is applied to all input channels,
depth-wise convolution (DWConv) is performed only for a single one sepa-
rately. Afterwards all channels are combined, resulting in a single-channel
output tensor. A kernel of size 3× 3 and a stride of 2 is used for all layers,
followed by batch normalization and ReLU as activation function.

2. Global feature extractor
Working with nine inverted residual bottleneck blocks helps to detect global
features due to the relatively large input resolution (1/8 of the original
image resolution). Also, all bottleneck blocks use DWConvs. Last, pyramid
pooling is added to accumulate contextual information based on different
regions.

3. Feature fusion
For efficiency, the features of the two branches are added. This is done by
upsampling the output of the global feature extractor and applying a DW-
Conv before adding the output of a standard convolution with the output
of another standard convolution, which receives the output of the learning-
to-downsample module as a skip connection.

4. Classifier
Adding few layers after feature fusion increases accuracy, so that two DSConv
and one standard convolution are used before the final softmax activation
during training or the less computationally intensive argmax function during
inference, respectively.

Inference Pipeline Both the resolution reduction and the use of a faster seg-
mentation network were able to improve the frame rate. The next step was to
optimize the inference pipeline where the inference sensor plays a central role
of the A-Eye approach. This sensor is designed to convert the CARLA image
into the form required by the network as quickly as possible. The network then
provides a probability value per pixel for each class, with the most likely value
being selected and stored in an output array. Since its entries consist of class IDs,
these must then be converted to RGB space before being sent to the users screen.
This conversion is referred to as mapping. Afterwards, those RGB images are dis-
played using Pygame [156], a python gaming library which converts NumPy [129]
arrays to so-called surface objects to represent images to the user. In order to
optimize the inference pipeline, it first had to be divided into the following con-
tiguous blocks to measure how long each block takes to compute, subsequently
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improving them when possible. Reasonable blocks are preprocessing, inference,
mapping and displaying. Table 3.8 provides an overview of the inference pipeline
duration, broken down by each individual block, at the beginning and at the end
after all modifications have been made.

block baseline [ms]
modification impact [ms]

current state [ms]
a b c d

pre-processing 37.19 -18.25 0 0 0 18.94
inference 13.24 0 0 0 0 13.24
mapping 65.64 0 -21.70 -27.95 -11.77 4.22
displaying 2.77 0 +5.77 0 -3.62 4.92

sum 118.84 100.59 84.66 56.71 41.32 41.32

Table 3.8: Overview of all modifications made that affect the clients frame rate. Tests
performed with Fast-SCNN on Town03 in CARLA 0.9.10 at a resolution of 1280× 640
with a server framerate of 30 fps. The numerical values are averaged values over a
period of at least 10 seconds.

Modifications made to speed up image processing:

a. Preventing transformation to another format:
Preprocessing involves converting the raw image signal from CARLA into
the suitable form for the network. The signal, a NumPy array, must be
sent through the same normalization process as used for training. This was
not possible in a direct way due to the following error message: ValueError:
At least one stride in the given numpy array is negative, and tensors with
negative strides are not currently supported. Therefore, a workaround via the
image library Pillow [33] was necessary. Although Pillow is intended for fast
access and processing of images, time was lost during the transformation.
The underlying NumPy error message could be bypassed by copying the
array, so no conversion to Pillow format was needed anymore.

b. Mapping outsourcing to GPU:
Unlike the CPU, which processes operations sequentially, GPU units can
split large processes into many parts and execute them in parallel. This is
especially efficient for operations with many repetitions and provides faster
output. Accordingly, outsourcing the mapping of class IDs to the appropri-
ate color values in RGB space to the GPU speeds up as parallel operations
can be performed. For this reason, mapping was done with PyTorch arrays
instead of NumPy arrays, which was more time-saving. However, after map-
ping, the array must be loaded on the CPU because Pygame [156], which
is essential for CARLA, converts NumPy arrays to surface objects. This is
why the displaying part becomes slower.
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c. Mapping boost using torch.where function from torch library:
The mapping function iterates through a list of all classes found by the
network, with each class entry creating a boolean mask array and transfer-
ring this to a new array with the corresponding RGB value. Boolean mask
arrays are arrays which include only True or False values. By wrapping
the torch.where function around a boolean masked array this speeds up the
mapping process.

d. Vectorization:
Despite optimized mask generation by PyTorch functions, for loops were still
part of the inference pipeline. A technique that works without loops is called
vectorization, which thereby speeds up Python code. This was implemented
with a Pillow function called putpallete. An additional advantage is that a
Pillow image can be efficiently converted to a NumPy array, which is needed
for Pygame and therefore leads to a speedup in displaying.

After those modifications, the processing time is about 41.32 ms per frame, which
corresponds to 24.20 fps. This means that the goal of achieving a real-time per-
formance of more than 24 fps has been achieved on one monitor. Although this
is already an acceptable working speed, further optimization steps could allow
faster processing with more pixels, so that eventually 3 monitors can be used.
The table offers that preprocessing now takes up the largest portion of the pro-
cessing time, followed by the inference part. Various attempts to speed up the
preprocessing failed, so the next step was to try to improve the inference time
using a deployment tool, which is a very common way in research and industry.

Deployment Training a neural network takes much longer than deployment.
During the training phase, the network is allowed to iteratively learn contextual
information that should be processed as quickly as possible in the deployment
phase. While a large memory size plays an important role during training phase
to take advantage of the large number of parameters, efficiency plays a larger role
in the second phase so that data can be processed in nearly real-time. Various
tricks can be used to achieve faster processing without major sacrifices in accuracy.
For example, the authors of [43] were able to show that numerous weights in a
neural network are redundant and can therefore be omitted. [3]

Therefore, deployment tools can identify the savings potential and apply it to the
hardware configuration used. A commonly used deployment tool is NVIDIA’s
TensorRT [125], which optimizes computation to the hardware used, parallelizes
computations and reuses memory.

For this, the fully trained model needs to be converted to a TensorRT model,
a step, that takes only few minutes. During deployment, the models run on a
graphics card of the workstation where the TensorRT runtime was installed in
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the version 8.2.3.0. Afterwards the converted model can be imported and a batch
of input data can be processed. Table 3.9 shows the time measurement of two
segmentation networks, Fast-SCNN and BiSeNetV2, as standard and TensorRT
models, respectively. The pre-/post-comparison of both networks illustrates that
the use of TensorRT models lead to a significant speedup, 2.57× for the Fast-
SCNN and 2.75× for the BiSeNetV2. As a result, the total duration of the
inference pipeline for the Fast-SCNN network is now 33.23 ms, which corresponds
to 30.09 fps.

model
inference time [ms]

standard model TensorRT model
Fast-SCNN 13.24 5.15
BiSeNetV2 36.95 13.45

Table 3.9: Differences in the inference time of 2 models after they were converted to a
TensorRT model at a resolution of 1280× 640. The speedup results, for instance, from
parallelizing calculations, reusing memory, and reducing accuracy to an acceptable level.

Field of View A larger field of view provides a more realistic driving experience
because, on one hand, the driver perceives more of the simulation environment
and thus the occurrence of perceptual errors is emphasized more. On the other
hand, the driver is less influenced by the real environment because he or she can
only notice the screen and no other movements in the corner of his eye. For this
reason, the driving experience should be presented on three monitors instead of
one. As the findings from the resolution study show, an increase in resolution
goes hand in hand with a lower frame rate. This is also shown in Table 3.10,
which shows that real-time capability could not be achieved at 11.02 fps on a
3840 × 640 resolution with Fast-SCNN. Even though the setup with 3 monitors
does not seem suitable for the further research project, the setup with 3 monitors
can be used for demonstration purposes to show visitors or event participants
what semantic segmentation networks perceive and on what basis autonomous
vehicles make decisions. Additionally, the lower fps are barely noticed in public,
but this setup leaves a remaining impression, which almost every person could
attest us so far.

model
time [ms]

3 monitors 1 monitor
Fast-SCNN 90.79 33.23
BiSeNetV2 98.18 41.77

Table 3.10: Inference pipeline time measurement for 3 and 1 monitors.
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3.5 Error Occurrence and Correction

This is a list of errors that occurred when setting up the test rig and editing the
CARLA code.

RuntimeError: rpc::rpc error during call in function version While working
with CARLA versions older than 0.9.12 the client library is loaded via *.egg-file
corresponding to the python version used by the computer. The library provides
an interface to control CARLA using python. This type of error occurs when the
*.egg-file is corrupted so that a client is no longer able to connect to the server.
Possible troubleshooting options are:

1. rebuilt the *.egg-file

2. the wrong PythonPath is given

3. there are multiple *.egg-files and the wrong one is loaded.

In the present case, possibly the hasty unplugging of the power supply led to
this error, as the computer had not yet completely shut down and the *.egg-file
became corrupted. Newer CARLA versions also allow loading the client library
via a *.whl-file or as a pip package. The latter can be downloaded and installed
via pypi.org. Especially when working with the pip package this error should
no longer occur.

Low FPS rate when starting server via the Unreal Editor Unreal Engine 4
lowers the performance of the server when running in background. This is the
default mode and can be disabled. For this purpose, one has to uncheck the box
use less CPU in the background in the editor preferences (Editor Preferences B
General B Performance).

Serialization error using TensorRT If the error message Error Code 1: Seri-
alization (Serialization assertion stdVersionRead == serializationVersion failed.
Version tag does not match) appears, it is caused by the fact that the TensorRT
version on the machine does not match the one used to convert the neural network
into a TensorRT model. It is necessary to use the identical versions for the build
and for the deployment to avoid this error message. This happens quickly when
working on different machines, so it is recommended to run build and deployment
on the same machine if possible.
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Retrospective saving of rides not possible The use of the driving simulator
aims at targeted data generation. This requires free driving without knowing
when corner cases occur. To save resources, the recording and playback func-
tions implemented in CARLA are used. The recording function saves the most
important information of all road users per frame, which includes e.g. coordi-
nate information and object parameters. These can later be loaded by the replay
function and CARLA reconstructs the original rides from this information. The
rides can be repeated as often as desired and saved from different angles and with
different sensors.

In the beginning there were some problems with the self-designed reloading script,
because the ego-vehicle gets its own ID, which is used during the subsequent
recording from the ego-perspective. However, spawning takes longer, which re-
sulted in replaying without catching the ego-vehicle and thus ending in the zero
point of the respective map. A longer pause before starting the recording solved
the problem.
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Chapter 4
Corner Cases in Autonomous Driving

This chapter first introduces the levels of autonomous driving before the term
corner case and its various types are described in more detail. Following this
definition, three publications are presented that contribute scientifically in this
field. The first one works on a methodical basis, where a redundant evaluation of
the scene is carried out by means of two sensors, using different technologies to
absorb sensor driven corner cases. The second publication describes the creation
of new datasets with so-called Out-of-Distribution (OoD) objects, which repre-
sent corner cases at the object level. In addition, methods for detecting, tracking
and clustering OoD objects in video sequences are presented. Whereas the third
publication is a listing of datasets containing OoD objects in the context of au-
tonomous driving and is intended to serve as an overview for researchers in this
field.

4.1 Levels of Driving Automation

The Society of Automotive Engineers (SAE) has introduced a taxonomy for levels
of driving automation [80] which is based on [130]. Arising from this is a classifi-
cation of automation into 6 levels of motor vehicles, ranging from no automation
to full automation, see Table 4.1. Level 0 describes a state of no automation,
where the human driver is in full control of the driving situation. In Level 1, the
driver retains permanent control of the vehicle and is supported by single assis-
tance systems such as cruise control or lane departure warning. In Level 2, the
driver remains in control of the vehicle, with some tasks being performed without
human interaction. To achieve this, single systems are combined in such a way
that individual tasks can be performed autonomously, e.g. automatic parking or
lane keeping by steering coupled with braking and accelerating the vehicle. Unlike
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in Level 1, the driver is allowed to take his hands off the steering wheel for short
time periods, while all assistance systems must be constantly monitored by the
driver, as he will be held liable for accidents that occur due to malfunctions. Level
3 describes a situation in which the driver is allowed to take his eyes off the road
and hands off the steering wheel since the vehicle temporarily operates on its own.
The driver must be able to control the vehicle at any time, as the vehicle should
raise a signal in case of problems or uncertainty. In those cases, the algorithm
offers proposals or solutions, which should be confirmed or rejected by the driver.
In Level 4, the vehicle controls autonomously in predefined situations, so that
the human takes over the observer role and assumes control when the situation
changes. For example, a vehicle could take control when traffic conditions are
reasonable, such as good weather and little traffic, and then hand it back to the
human when conditions change like heavy rain or increased traffic. Level 5 marks
the target state in which the human takes over the passenger role and the vehicle
is controlled fully autonomously, regardless of the complexity of the situation.

level name description
0 no driving automation driver in full control
1 driver assistance driver supported by single systems
2 partial driving automation single tasks performed automatically
3 conditional driving automation autonomous driving with human supervision

4 high driving automation
autonomous driving under predefined conditions
without human supervision

5 full driving automation no human driver needed

Table 4.1: Levels of driving automation according to ISO/SAE PAS 22736:2021.

These levels describe the states that autonomous driving can assume. The legal
situation in Germany currently permits high driving automation, but only under
certain conditions6. Namely, only in pre-approved areas under regular supervi-
sion by a technical supervisor. Even though today’s algorithms work well, they
are prone to errors, especially when it comes to special cases that rarely occur.
Therefore, it is necessary for science to make progress in detecting safety-critical
driving situations, so-called corner cases, so that policy will allow higher than
Level 3 without restrictions.

4.2 Corner Case

When thinking about autonomous vehicles that move safely through traffic, it is
necessary to perceive the environment correctly in order to provide safe driving.

6Autonome-Fahrzeuge-Genehmigungs-und-Betriebs-Verordnung from 24. June 2022 (BGBl. I
p. 986)
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Especially the detection of atypical and dangerous situations is crucial for the
safety of all road users. In order to improve the ability of today’s models to handle
such critical situations, datasets are required that allow for targeted training and,
more importantly, testing with such critical situations.

Even though there is no uniform definition for the term corner case in the context
of autonomous driving, most definitions in the literature mean the same thing,
namely a rare but untypical safety-critical driving situation. This can include
objects on or near the road that were not part of the training data, but also objects
that are part of the training data that come together in a complex constellation,
resulting in a safety-critical driving situation.

According to [18], a corner case for camera-based systems in the field of au-
tonomous driving describes a ”non-predictable relevant object/class in relevant
location”. This means that the unpredictable happens to moving objects (rele-
vant class) interacting with each other on the road (crossing trajectories). Based
on this definition, a corner case detection framework was presented to calculate
a corner case score based on video sequences. The authors of [19] subsequently
developed a systematization of corner cases, in which they divide corner cases into
different levels and according to the degree of complexity. In addition, examples
were given for each corner case level. This was also the basis for a subsequent pub-
lication with additional examples [20]. Since the approach in these references is
camera-based, a categorization of corner cases at sensor level was adapted in [73],
where radar and LiDAR sensors were also considered. The authors define the 4
superordinate layers sensor, content, temporal and method, which also take the
previously defined levels into account. Since this is a scientifically consistent def-
inition that also considers different sensor modalities, we would like to adopt it.
Table 4.2 provides a general overview of the different layers.

Method Layer Corner Case While Sensor, Content and Temporal Layer de-
scribe corner cases from the perspective of the human driver, the Method Layer
specifies corner cases in machine learning models due to lack of knowledge. Ac-
cordingly, epistemic uncertainty comes into play, which can be addressed by tar-
geted data generation. Therefore, our focus is on this type of layer to increase
security. In the following, we explain corner cases of the other layers by providing
example images, where we additionally infer each image using a semantic seg-
mentation network to simultaneously show errors of the Method Layer when the
network has not been trained on such examples.

Sensor Layer Corner Case The Sensor Layer takes into account all cases where
the sensor’s hardware or software has led to unclean data and thus produces
outliers. For example, misaligned or damaged components provide different data
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corner case layer description example

sensor
unclean data due to hardware or
physical problems of the sensor

broken lense, overexposure

content - domain level
constant change in visual
appearances

weather conditions,
left and right-hand traffic

content - object level anomalies on or beside the road
animals, novelty objects,
flooded streets

content - scene level
known objects in unusual quantity
or location

traffic jam, demonstrations,
fallen trees lying on the street

temporal
consideration of the trajectories of
road users in video sequences

pedestrian appears behind a bus,
child runs after a ball

method
errors/uncertainties in prediction
due to lack of knowledge

training in sunny weather,
but tested in fog

Table 4.2: Overview of corner case layers. While sensor, content and time layer denote
a corner case according to human understanding, the method layer refers to prediction
errors due to epistemic uncertainty.

than the standard, which is safety-critical like shown in Figure 4.1. Common
measurement errors occur with the LiDAR sensor, for example, due to intensity
values that are too high or too low, or with the radar sensor due to interference
phenomena. Furthermore, too small object surfaces can lead to misperception due
to the coarse resolution of both sensors. To avoid Sensor Layer corner cases, but
also to safeguard traffic situations, sensor fusion approaches can be used, which
combine data from at least two sensors. These data can either be sent together
through a fusion network, or first processed by separate networks in order to fuse
both predictions. A way to apply the latter in object detection with the use of
image and radar data is described in Section 4.3.

Figure 4.1: A broken lens represents a corner case at the Sensor Layer.

Content Layer Corner Case This layer is divided into domain, object and scene
level. Corner cases at the Domain Level describe a constant change of visual
appearance, such as driving on roads in other countries as road signs or even
traffic routing (left-hand traffic) differs. Especially this kind of corner case is
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challenging for machine learning algorithms as they see similar data that consists
of one or a few different domains during training. If these are subsequently tested
in an unknown domain, problems may arise in the prediction due to a lack of
generalizability. This is shown in Figure 4.2, where neither fog nor tunnel images
were part of the training data. A typical domain shift also occurs when models
are trained on synthetic data but tested on real images.

Figure 4.2: Examples of Domain Level corner cases. If neither fog (above) nor tunnel
drives (below) are part of the training, neural networks have problems dealing with
such situations, which can lead to safety-critical situations.

An Object Level corner case describes anomalies on or beside the road that are
rare but very relevant for safety reasons. For example, when objects that are
not naturally found along the road are located there. These include animals,
unknown or undefinable objects, among others. Figure 4.3 shows an example of
zoo animals on the street, which were not part of the training set. In the context
of anomalies, terms such as outlier, Out-of-Distribution (OoD), and novelty are
also used, for which there is no clear differentiation. In the Method Layer context,
we therefore follow the authors of [166], who describe outliers and OoD objects
as subcategories of anomalies and refer to them as noise or samples drawn from a
different distribution than the one on which the model was trained. Furthermore,
the authors define novelties as previously unseen objects that represent a new
concept and occur in higher quantities. These can be new items as well as objects
that only occur in certain localities like skis and snowmobiles in snowy regions,
surfboards on trailers in surfing regions or vehicles that are almost unique to Asia,
such as Tuk Tuks.

Science is currently focusing on finding such anomalies, therefore addressing un-
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Figure 4.3: Example of an Object Level corner case with some zoo animals on the street.

certainty in this area is an important focus to be made, as the authors of [85]
have shown that semantic segmentation performance improves when uncertainty
is taken into account. That is why some recent scientific work is concerned with
the segmentation of OoD [8, 9, 10, 24].

Distinguishing between important and unimportant anomalies is a major diffi-
culty, as anomalies such as leaves on the road do not have to lead to emergency
braking. For this reason, more research needs to be done in this area to enable
Level 4 and 5 for autonomous driving. The different levels are described in more
detail in Section 4.1.

If known objects occur in an unusually high quantity or if the place where known
objects occur is untypical, then we speak of Scene Level corner cases. Such
examples are demonstrations where many people can be seen at the same time
(unusual quantity, see Figure 4.4), or fallen trees lying on the road (unusual
location).

Figure 4.4: Example of a Scene Level corner case with many pedestrians on the street.
A scene that was not present in this form during training and still seems not to be a big
problem for the segmentation network. A sign of good generalizability for the human
class.

Temporal Layer Corner Case The Temporal Layer deals with corner cases in
video sequences where the trajectories of road users become relevant. Thereby,
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contextual information must also be taken into account for the distinction between
dangerous and harmless. For example the trajectories of a vehicle and a pedestrian
may cross at a traffic light. If the driver identifies the red phase and reduces his
speed, the pedestrian can cross the road unharmed, otherwise a safety-critical
situation occurs. A more detailed description of corner cases in this layer was
done in a joint work [150], which is discussed in more detail in Section 5.3.

Based on this preliminary work, we define corner cases in the field of autonomous
driving as follows: Safety-critical driving situations that are challenging for AI
algorithms because they were not represented in the training data. These can
include anomalies and/or several known objects that interact in an untypical way
with each other.

4.3 YOdar: Uncertainty-based Sensor Fusion for
Vehicle Detection with Camera and Radar
Sensors [93]

The prediction of neural networks also strongly depends on the sensor quality.
Even data from another sensor manufacturer can lead to misinterpretations. If
noise is added to the data due to damage or wear, this can lead to so-called Sensor
Layer corner cases. But also Domain Level corner cases can be irritating for the
prediction of camera-based networks if they were not included in the training
data. One way to become more robust against such corner cases is to use at
least two redundant systems with different sensors. In this way, sensor-specific
problems can be intercepted by the other system, leading to increased security.
Therefore, in this work we focus on the night domain, which is difficult for camera
sensors but leaves the radar sensor unaffected.

Previous studies show that the use of more than one sensor, the so-called sensor
fusion, leads to an improvement in object detection accuracy, e.g. when combining
camera and LiDAR sensors [65, 68, 107, 157, 174]. Up to now, datasets containing
real street scenes using radar data and another sensor are rather the exception,
although synthetic data with different sensors, such as camera and radar sensors,
can be generated using simulators like CARLA [44] or LSGVL [144].

With the publication of the nuScenes dataset [22], the scientific community ob-
tained access to real street scenes recorded with different sensors including radar.
In total there are 5 radar sensors distributed around the car that generate the data.
Ever since, the number of published papers dealing with sensor fusion combining
radar with other sensors with the help of the nuScenes dataset has increased,
see e.g. [83, 123, 141]. We now briefly review these approaches. The authors
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of [83] propose an object detection convolutional neural network (CNN) named
RVNet which is equipped with two input branches and two output branches.
One input branch processes image data, the other one radar data. Similarly to
YOLOv3 [142], the network utilizes two output branches to provide bounding box
predictions, i.e., one branch is supposed to detect smaller obstacles, the other one
larger obstacles. The authors conclude that radar features are useful for detecting
on-road obstacles in a binary classification framework. On the other hand the fea-
tures extracted from radar data seem not to be useful in a multiclass classification
framework due to the sparsity of the data.

Another deep-learning-based radar and camera sensor fusion for object detec-
tion is the CRF-Net (CameraRadarFusionNet) [123], which automatically learns
at which level the fusion of both sensor data is most beneficial for object de-
tection. The CRF-Net uses a so-called BlackIn training strategy and combines
a RetinaNet (VGG backbone), a custom-designed radar network and a Feature
Pyramid Network (FPN) for classification and regression problems. The main
branch is composed of five VGG-Blocks, every block receives pre-processed radar
and image data for further processing which is forwarded to the FPN-Blocks.
The network is tested on the nuScenes dataset and a self-build one. The authors
provide evidence that the BackIn training strategy leverages the detection score
of a state-of-the-art object detection network.

Furthermore, a fusion approach for LiDAR and radar is introduced in [141]. This
approach is designed for multi-class object detection of pedestrian, cyclist, car and
noise (empty region of interest) classes. To this end, LiDAR and radar data are
first processed individually. The LiDAR branch detects objects and tracks them
over time. On the other hand, the radar branch provides the object classifica-
tion, where three independent fast Fourier transforms (FFTs) are applied on the
range-Doppler-angle spectrum. After time synchronization the two branches are
merged, resulting in regions of interest. These regions are fed to the CNN, based
on the VGGNet architecture, which computes the classes probabilities. Since this
approach works well for vehicle and noise classification but has problems with
pedestrians and cyclist classes the network was improved by applying a track-
ing filter on top of the classifier. They used a Bayes filter which improved the
classification performance for the two challenging classes.

In summary, the works presented [83, 123] aim at simultaneously fusing and in-
terpreting image and radar data within a CNN. In [141], LiDAR and radar data
are first fused and afterwards a CNN processes the fused input. While these
approaches are beneficial with respect to maximizing performance, they require
additional fallback solutions in case that a sensor drops out. Also in contrast
to other sensor fusion solutions, our approach preserves the option to use both
networks redundantly. In this way, indications of only one of the networks can be
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used for scenario constructions that are alternative to the main scenario provided
by the fusion approach.

It also seems inevitable that sensor fusion approaches require additional uncer-
tainty measures to verify the quality of the developed methods and networks. A
tool for semantic segmentation called MetaSeg that estimates prediction qual-
ity on segment level was introduced in [146] and extended in [112, 147, 153]. It
learns to predict whether predicted components intersects with the ground truth
or not, which can be viewed as meta classifying between two classes (IoU = 0 and
IoU > 0). To this end, metrics are derived from the CNN’s output and pass them
on to another meta-classifier. This work of false positive detection was extended
in [25] where the number of overlooked objects was reduced by only paying with a
few additional false positives. The overproduction of false positives is suppressed
by MetaSeg. Following these approaches for uncertainty quantification, we use
metrics from the output of two CNNs. We pass them through to a gradient boost-
ing classifier, which reduces the number of false positive predictions. In addition,
by reducing the score threshold for object detection, we are able to improve over
the performance of the respective single sensor networks.

In our tests, we utilize a YOLOv3 [142] as a state-of-the-art object detection net-
work to process the camera data and complement this with a custom-designed
CNN that performs a 1D binary segmentation which is supposed to detect ob-
stacles. Further downstream of our computer vision pipeline we introduce a very
general uncertainty-based fusion algorithm. Based on the predictions of both
CNNs and their uncertainties as well as other geometrical meta-information, the
fusion algorithm learns to provide a prediction by means of a structured dataset.
In our experiments we demonstrate for the case of street scenes recorded at night,
that this approach significantly improves the object detection accuracy. Further-
more, both networks only show moderate correlation which further supports our
safety argument.

4.3.1 Characteristics

Today’s vehicles are equipped with sensors for recording driving dynamics, which
register movements of the vehicle in three axes, as well as sensors for detecting
the environment. The latter try to map the vehicle environment as accurately as
possible to promote automated driving. This section briefly describes the char-
acteristics of the three most used sensors for the perception of the environment
for automated driving, i.e., camera, radar and LiDAR, including their advan-
tages and disadvantages. Camera sensors take two-dimensional images of light
by electrical means. They are accurate in measuring edges, contour, texture and
coloring. Furthermore, they are easily integrated into the design of a modern
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vehicle. However, 3D localization from images is challenging and weather-related
visual impairment can lead to higher uncertainties in object detections [170].

Radar sensors use radio waves to determine the range, angle and relative velocity
of objects. Long-range radar sensors have a high range capability up to 200 −
250 m [41, 83, 152] and are cheaper than LiDAR sensors [4]. Compared to cameras,
radar sensors are less affected by environmental conditions and pollution [4, 41,
57]. On the other hand, radar data is sparse and does not delineate the shape of
the obstacles [57, 83]. LiDAR sensors use a light beam, emitted from a laser, to
determine the distances and shapes of objects.

LiDAR sensors are highly accurate in 3D localization and surface measurements
as well as a long-range view up to 300m [137]. They are expensive to buy and
bad weather conditions like rain, fog or dust reduce the performance [4, 41].

Each sensor has its advantages and disadvantages (summarized in Table 4.3), so
that a sensor fusion with at least two sensors makes sense in order to provide a
better safety standard.

specifications camera radar LiDAR
range ++ +++ +++

distance
resolution ++ +++ ++

angle
range +++ ++ +++
resolution +++ + ++
velocity resolution + +++ ++

classification
object categorization +++ + ++

environment
night time + +++ +++
rainy/cloudy weather + +++ ++

+ = good, ++ = better, +++ = best

Table 4.3: Overview of the advantages and disadvantages of the most common sensors
for autonomous driving [136].

4.3.2 Object Detection via Radar

In this section we introduce the 1D segmentation network that we equip for de-
tecting vehicles. First we explain the pre-processing method, then we describe
the network architecture, the loss function and the network output.

Preprocessing In a global 3D coordinate system, the radar data is situated in a
2D horizontal plane. Hence, before training a neural network, we pre-process the
radar data for two reasons. First, in order to simplify the fusion after processing
each sensor with a neural network separately, we project the given radar data
into the same 2D perspective as given by the front view camera. Secondly, one
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can observe that after this projection, the remaining section of the radar sensor
modality is close to 1D. Figure 4.5 depicts radar points projected into the front
view camera image. Darker colors indicate closer objects and brighter colors
indicate more distant objects. Consequently, we build and train a neural network
to perform a 1D segmentation.

Figure 4.5: Preprocessing and prediction of the radar network. On the left we see the
radar points projected to the front view camera image, the brighter the color value,
the further away the points are. The center image is divided into a certain number of
slices Ns from which we generate the input matrix for the training of the CNN. The
right-hand image corresponds to the output of the radar network.

To be more specific, we pre-process the ground truth for training the radar net-
work as illustrated in Figure 4.6. That is, we divide the given front view image
into a chosen number Ns of slices and generate an occupancy array of length Ns.
The ith entry of this array is equal to 1 if there is a ground truth object inter-
secting with the ith slice of the image and 0 else. This ground truth construction
defines the desired prediction for the radar network.

Figure 4.6: Ground truth vector for radar data. Every slice that overlaps with a bound-
ing box in the front view camera image obtains the value 1, otherwise 0.

The radar data is pre-processed similarly to the ground truth as we aim at provid-
ing the neural network with an input tensor of size Ns×Nt×Nf where Nt denotes
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the number of considered time steps and Nf denotes the number of features. By
assigning radar points to image slices we can drop the x-coordinate (which is im-
plied by the array index up to an quantization error). For each slice i = 1, . . . , Ns

which contains at least one radar point we store the following Nf features in the
input matrix: y-coordinates (indicating the distance of the reflection point), the
height coordinate with respect to the front view image that the radar point ob-
tains by projection into the image plane as well as the relative lateral and the
longitudinal velocity.

Network Architecture The network architecture for the radar network is based
on a FCN-8-network [109] and is depicted in Figure 4.7. The hidden layers consist
of three convolution blocks, three deconvolution blocks followed by a concatenate
layer, a fourth convolution block, a flatten layer and one fully-connected block.
Finally, the network contains a sigmoid layer from which we get in [0, 1]. Each
convolution and deconvolution block includes a (de-)convolution layer, a batch
normalization and a leaky ReLU as activation function, respectively. The convo-
lution blocks capture context information while losing spatial information whereas
the deconvolution blocks restore this spatial information. Using bypasses, con-
text information can be linked with spatial information. Furthermore, each fully
connected block consists of a dense layer followed by a leaky ReLU activation
function (except for the final layer where we use a sigmoid activation function).
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Figure 4.7: CNN architecture of our custom FCN-8 inspired radar network.

Loss function Let D = {(r(i), q(i)) : i = 1, . . . , n} denote a dataset of tuples
containing radar data r(i) ∈ RNs×Nt×Nf and ground truth q(i) ∈ {0, 1}Ns . The
radar network g provides an array of estimated probabilities indicating whether a
given slice s is occupied or not. We denote ε(i) = g(r(i)). For training the neural
network we use the binary cross-entropy for each array entry s = 1, . . . , Ns, i.e.,
for a single data sample (r(i), q(i)) we have

`(q(i)
s , ε

(i)
s ) = −αq(i)

s log
(
ε(i)
s

)
− (1− q(i)

s ) log
(
1− ε(i)

s

)
, (4.1)

where α is a tunable parameter. We introduced this parameter in order to ac-
count for the imbalance of zeros and ones in the ground truth. When train-
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ing with stochastic batch gradient descent, the loss function is summed over all
s = 1, . . . , Ns and then the mean is computed over all indices i in the batch.

Output The predictions of the radar network result in a vector consisting of
values in [0, 1] that estimate the probability of occupancy. Neighboring slices
whose predicted probabilities are above a certain threshold Tg are recognized as
one coherent object, also called slice bundle. Figure 4.8 shows for example an
image with four slice bundles. The more a slice bundle fills in a bounding box,
the higher the 1D IoU gets.

Figure 4.8: Image of a radar detection example with four predicted slice bundles.

4.3.3 Object Detection via Sensor Fusion

After describing the object detection method using radar sensor data in the pre-
vious section, this section deals with the image detection method and the fusion
of both methods. Various object detection networks have been developed in re-
cent years, whereby the YOLOv3 network has become a very good choice when
fast and accurate real-time detection is desired [7, 142]. It has been observed
that YOLOv3 works very well under good weather and visibility conditions but
has problems with object recognition in bad visibility like hazy weather [99, 165]
or darkness, like Xiao et al. have investigated for object detection with RFB-
Net [175]. In our experiments, we focus on object detection by camera and radar
at night. To this end, we first use each method separately in order to connect
both outputs with gradient boosting [56], see Figure 4.9. Similarly to [146] we
derive metrics from each CNN output and pass them through a gradient boost-
ing classifier to increase the number of detected vehicles. The data and metrics
used for the classifier are explained in Section 4.3.4. The YOLOv3 threshold Tf
for vehicle detection is set to a low value such that we get a higher number of
bounding box predictions. From the many predicted bounding boxes, gradient
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CNN-Input CNN-Output Prediction by YOLOv3

Prediction by fusion

Figure 4.9: Illustration of our YOdar method. In the top branch, the YOLOv3 pro-
duces many candidate bounding boxes, but after score thresholding and non-maximum
suppression, only one of both cars is detected. By lowering the object detection thresh-
old and fusing the obtained boxes with the radar prediction, both cars are detected by
YOdar as shown in the bottom right panel.

boosting select those boxes that are likely to contain an object according to the
output of both networks. On the one hand, the radar sensor should detect vehicles
not recognized by the YOLOv3 network. On the other hand, gradient boosting
should support the decision-making process by additional information in case the
YOLOv3 network is uncertain.

4.3.4 Fusion Metrics and Methods

The fusion method that we introduce in this section is of generic nature. There-
fore, we denote by f the arbitrary camera network and by g a 1D segmentation
radar network. Given an input scene (x, r), we obtain two network outputs, one
for the image input x, one for the radar input r. Each prediction obtained by f
consists of a set B = {b1, . . . , bκ} containing κ boxes where κ depends on x. Each
box bi is identified with a tuple ξi that contains an objectness score value zi, a
probability f(v|x, bi) that the box bi contains a vehicle v, a center point with its
x-coordinate cxi ∈ R and y-coordinate cyi ∈ R as well as width ςi ∈ R and height
ϑi ∈ R of the box, i.e.,

ξi = (zi, f(v|x, bi), cxi , c
y
i , ςi, ϑi) . (4.2)
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For the radar network g we obtain a 1D output of probabilities, gs(v|r) for each
of the slices s = 1, . . . , n, that this slice s belongs to a vehicle v, recall Figure 4.6.
As depicted in Figure 4.5 we identify slices s and bounding boxes bi. In order to
aggregate slices s from the radar network over bounding boxes bi obtained by the
camera network, let Si denote the set of all slices s that intersect with the box bi.
We denote by

µi =
1

|Si|
∑
s∈Si

gs(v|r) (4.3)

the average probability of observing a vehicle in the box bi according to the radar
network’s probabilities. The standard deviation corresponding to Equation (4.3)
is termed σi. As a set of metrics, by which we compute a fused prediction, we
consider

Mi(x, r) = (ξi, Ai, µi, σi) , (4.4)

where Ai = ςi · ϑi denotes the size of the box bi. In summary, we use these nine
metrics Mi(x, r) for all scenes (x, r) and boxes bi that are visible with respect to
the front view camera.

To perform the fusion of the camera based network prediction and the radar based
network prediction we proceed in two steps. First we compute the ground truth
which states for each box predicted by the camera network whether it is a true
positive (TP) or a false positive (FP). Afterwards we train a model to discriminate
by means of Mi whether bi is a TP or an FP.

More precisely, for the sake of computing ground truth, we define TP and FP in
the given context as follows: For a predicted box bi and a ground truth box qa,
which has the biggest intersection |qa ∩ bi| of all ground truth boxes of the same
class, the intersection over union is defined as follows:

IoU(bi) = max
qa

|qa ∩ bi|
|qa ∪ bi|

. (4.5)

Oftentimes we omit the argument bi if it is clear from the context. Given a
chosen threshold Γ ∈ [0, 1) we define that bi is a TP if IoU(bi) > Γ and an FP
if IoU(bi) ≤ Γ . For the sake of completeness, we define that a false negative is a

ground truth box a that fulfills maxbi
|qa∩bi|
|qa∪bi| ≤ Γ . Note that in the latter definition,

the ground truth element is fixed while the left-hand side of this expression is
maximized over all predicted boxes. After computing the ground truths, i.e.,
whether a box bi predicted by the camera network yields a TP or an FP, we train
a model. The gathered metrics Mi yield a structured dataset where the columns
are given by the different metrics and the rows are given by all predicted boxes
bi for each input scene (x, r). By means of this dataset and the corresponding
TP/FP annotation, we train a classifier to predict whether a box predicted by
the camera network is a TP or an FP.
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Figure 4.10: IoU calculation for 1D and 2D bounding boxes.

The IoU can be calculated in different dimensions D = 1, 2. In this work the
1D IoU is used for the radar network. As soon as a low threshold Tg has been
reached, a predicted object is considered as TP, otherwise as FP. The 2D IoU is
used for the YOLOv3 network, analogously we speak of TP and FP according
to a threshold Tf . An illustration is given in Figure 4.10. The mean average
precision (mAP) is a popular metric used to measure the performance of models.
The mAP is calculated by taking the average precision (area under precision as
a function of recall, a.k.a. precision recall curve) over one class.

4.3.5 Numerical Experiments

As explained in detail in the previous section, we use a custom FCN-8-like network
for processing the radar data from the nuScenes dataset [22]. It contains urban
driving situations in Boston and Singapore. The dataset has a high variability of
scenes, i.e., different locations, weather conditions, daytime, recorded with left- or
right-hand traffic. In total, the dataset contains 1,000 scenes, each of 20 seconds
duration and each frame is fully annotated with 3D bounding boxes. The vehicle
used, a Renault Zoe, was set up with 6 cameras at 12 Hz capture frequency, 5
long-range radar sensors (FMCW) with 13 Hz capture frequency, 1 spinning lidar
with 20 Hz capture frequency, 1 global positioning system module (GPS) and 1
inertial measurement unit (IMU). Each scene is divided into several time frames
for which each sensor provides a suitable signal.

For our experiments, the YOLOv3 network was pretrained with day images from
the COCO dataset [103] and afterwards with 249 randomly selected scenes from
the nuScenes dataset containing 10,000 images with different weather conditions
and times of day. Furthermore, we have trained a CNN with radar data from the
nuScenes dataset to detect vehicles. 743 of the scenes (29,853 frames) were used
as training data, 82 scenes (3,289 frames) as validation data and 25 scenes (1,006
frames) as test data, see Table 4.4. For the test set, we consider exclusively all
frames recorded at night that are not part of the training data in order to create
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a perception-wise challenging test situation. For the training and validation sets
we used a natural split of day and night scenes pre-defined by the frequencies in
the nuScenes dataset. Due to the resolution of the radar data, we focus on the
category vehicle in our evaluation. This includes the semantic categories car, bus,
truck, bicycle, motorcycle and construction vehicle.

splitting
number of images/frames night images/frames [%]

YOLOv3 radar YOLOv3 radar
train 10,000 29,853 7.08 9.04
val 3,289 3,289 8.57 8.57
test 1,006 1,006 100 100

Table 4.4: Data used for training, validation and testing of the radar and YOLOv3
model.

Training As input, the radar network obtains a tensor with the dimensions
160× 3× 4 that contains for each of the 160 considered slices the current frame
(i.e., the current time step) and two previous frames. Each frame contains four
features, i.e., x-, and y-coordinates, lateral and longitudinal velocity. From the
radar data we removed all ground truth bounding boxes that do not contain any
radar points with valid velocity vectors.

The radar network is implemented in Keras [30] with TensorFlow [1] backend.
Training on one NVIDIA Quatro GPU P6000 takes 229 seconds training time.
The network structure is shown in Figure 4.7 and the training parameters are
shown in Table 4.5. We have trained the neural network three times with three
different learning rates, i.e., the first 20 epochs with a learning rate of 10−3, 10
epochs with 10−4 and 10 epochs with 10−5. The networks output vector has the
same dimension (160× 1) as the ground truth vector, where each entry contains
a probability value, whether there is a vehicle in the respective area or not. If the
probability value of a single slice is equal or higher than the threshold Tg = 0.5,
then the network predicts a vehicle. The higher the probability value, the brighter
the slice is displayed in Figure 4.5.

parameter radar YOLOv3
batchsize 128 6
learning rate 10−3 10−4 10−5 10−4 − 10−6

epochs 20 10 10 100
weight decay 3× 10−4 variable
loss function modified binary-crossentropy binary-crossentropy
optimizer Adam Adam

Table 4.5: Training parameters.
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Figure 4.11: Vehicles recognized at night with consideration of the respective distance
from the ego car. An object is considered as detected when it has an IoU ≥ 0.5 with
the ground truth. These are average values from three test runs.

The YOLOv3 network was trained with 10,000 images consisting of different
scenes. Therefore, we converted the 3D bounding boxes in the nuScenes dataset
into 2D bounding ones. To this end, we chose the smallest 2D bounding box
that contains the front and rear surfaces of the 3D bounding box in the given
ego car view. YOLOv3 is implemented in the Python framework TensorFlow [1].
Training with the same GPU as used for the custom radar network takes 50.32
hours training time. The training parameters are stated in Table 4.5.

Evaluation All results in this section are averaged over 3 experiments to obtain
a better statistical validity. Figure 4.11 shows absolute numbers of recognized ob-
jects (IoU ≥ 0.5 with the ground truth) at night for each of the networks (radar
and YOLOv3) standalone as well as for our uncertainty-based fusion approach
(YOdar). The numbers are broken down corresponding to distance intervals along
the horizontal axis. The lavender bar (in the background) displays the numbers
of vehicles in the ground truth for the given distance interval. The blue bar states
the numbers of objects recognized by the radar network. The performance of
the radar network is low, only a small percentage of objects are found. After 20
meters, the performance decreases with growing distance. The poor recognition
of objects from radar can be explained by the small number of points provided
for each frame. In addition, relative velocities are used for training, which means
that mainly moving objects can be recognized and stationary or parked vehicles
remain undetected. The orange bar shows a significant increase of objects recog-
nized by the YOLOv3 network compared to the radar network. Although mainly
closer objects are recognized, there remain difficulties in object recognition with
more distant objects. The green bar shows the objects recognized by YOdar.
Compared to the YOLOv3 network, more vehicles are recognized for each of the
given distances. In total, compared to the YOLOv3 network, the sensor fusion
approach recognizes 313 vehicles more (which amounts to an increase of 9.20
percent points).

So far, we have seen that we recognize more objects with the YOdar approach
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than with YOLOv3 or our radar network separately. However, the increased
sensitivity also yields some additional FPs. In order to compare the number of
FPs for YOLOv3 and YOdar, we adjust the sensitivity of the YOLOv3 network
by lowering the threshold Tf such that the TP level for YOLOv3 is roughly equal
to the TP level of YOdar. The resulting number of FPs is given in Table 4.6.
Indeed, YOdar generates 575 less FP predictions than YOLOv3 for a common
TP level, on which we let YOdar operate in our tests.

network
unchanged output TP level adjustment

TP FP TP FP
YOLOv3 1,154 98 1,478 1,024
YOdar 1,467 449 1,467 449

Table 4.6: Comparison of the number of false positives for YOLOv3 and YOdar at a
common level of false positives.

Digging deeper into the discussed results, we now break down the distance inter-
vals along the distance radii. Figure 4.12 states the absolute numbers of objects
broken down by distance (vertical axis) and the pixel intervals of width 100 of
the input image with a total width of 1600 pixels (horizontal axis). More pre-
cisely, each interval denoted by i on the horizontal axis represents the pixels
(row , column) with column ∈ [i − 99, i]. A ground truth object is a member of
such an interval, if the center of the box is contained in the respective interval
and has the respective distance from the ego car. Thus, this can be viewed as a
spatial distribution of the ground truth where the center of the bottom row is the
area closest to the ego car. The majority of the objects is located in the intervals
given by i = 500, . . . , 1200.

Figure 4.13 shows the relative amount of objects recognized by the YOLOv3
network. It shows that mainly objects closer to the ego car and straight ahead
are recognized, while objects farther away or located on the very left or very
right end of the image often remain unrecognized. Figure 4.14 states in absolute
numbers how many additional objects are recognized in each particular area when
using YOdar instead of YOLOv3. The increase is clear and also mostly in the
relevant areas close to the ego car and straight ahead. This is in line with the
idea of focusing with the radar on objects in motion (by considering objects that
carry velocities). These results show that an uncertainty-based fusion approach
like YOdar is indeed able to increase the performance significantly. This finding
is also confirmed by the mAP and accuracy values stated in Table 4.7. While
YOLOv3 achieves 31.36% mAP, YOdar achieves 39.40% which is also close to
state of the art deep learning based fusion results for the nuScenes dataset with
the natural split of day and night scenes as reported in [123].
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Figure 4.12: Ground truth heatmap displaying the spatial distribution of the test data,
broken down by distance (vertical axis) and the pixel intervals of width 100 of the front
view input image with a total width of 1600 pixels (horizontal axis). More precisely,
each interval denoted by i on the horizontal axis represents the pixels (row , column)
with column ∈ [i− 99, i].

Figure 4.13: Relative amount of objects recognized by the YOLOv3 network evaluated
on the test data. The underlying geometry is the same as in Figure 4.12.

radar YOLOv3 YOdar
accuracy [%] 14.42 33.90 43.10
mAP [%] 7.93 31.36 39.40

Table 4.7: Accuracies and mAP scores of all three networks.
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Figure 4.14: Number of objects recognized by YOdar minus the number of objects
recognized YOLOv3. The underlying geometry is the same as in Figure 4.12.

4.3.6 Conclusion

We introduced the uncertainty-based sensor fusion approach YOdar, which first
processes camera and radar data individually before post-processing their results
through a gradient boosting method to provide a joint prediction for both net-
works. Each branch detects objects, the camera branch uses a YOLOv3 network
trained with day and night scenes and the radar branch uses a custom-based
radar network. The outputs of every branch are aggregated and then passed
through a post-processing classifier that again learns the same vehicle detection
task. Compared to the YOLOv3 network, the YOdar fusion method detects at
night a significant additional amount of vehicles in total. While YOLOv3 achieves
31.36% mAP, YOdar achieves 39.40% mAP which is also close to state of the art
deep learning based fusion results for the nuScenes dataset with the natural split
of day and night scenes.

With the YOdar approach we could show that the use of two different sensors,
camera and radar, provides an improvement in object detection and thus is also
more robust against different corner case types. As soon as more radar data is
available, further investigations can be performed to support these results. In
addition, it should be investigated whether the use of a third sensor, for example
LiDAR, makes sense and/or whether two sensors are sufficient to increase safety
to such an extent that the cost-benefit calculation does not work out with three
sensors.
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4.4 Datasets for Tracking and Retrieval of
Out-of-Distribution Objects [111]

In autonomous driving, it is very important to detect objects that are outside
the semantic space of the network, so-called Out-of-Distribution objects (OoD).
As described in the taxonomy for corner cases, OoD objects are corner cases at
the object level, which need to be identified. This can be performed at pixel-level
which is commonly known as OoD segmentation, see also [10, 13, 21, 23, 24, 63,
64, 104, 105].

If the task of OoD segmentation is to be modeled in reality, algorithms should be
available that detect OoD objects in video sequences and track them over time
to forecast critical situations more accurately. Therefore, we present the novel
task of OoD tracking as a combined hybrid computer vision task consisting of
OoD detection, OoD segmentation, and object tracking and additionally provide
a way to use tracking for retrieving OoD objects of the same class. This is first
done by identifying an OoD object from the first frame in which it occurs and
assigning a unique ID across multiple frames. In order to be able to achieve the
task of tracking, suitable datasets are needed that contain video sequences with
OoD objects. For this reason, we provide two annotated datasets, one recorded
in the real world, named Street Obstacle Sequences (SOS), and one in a synthetic
environment, named CARLA-WildLife (CWL). In addition, we provide a third
unannotated dataset, named Wuppertal Obstacle Sequences (WOS), to serve as
an application. Some examples of the datasets are shown in Figure 4.15.

Figure 4.15: Some examples of the SOS (top), CWL (middle) and WOS (bottom)
datasets.

70



4.4 Datasets for Tracking and Retrieval of Out-of-Distribution Objects [111]

Figure 4.16: Collection of objects in CARLA-WildLife dataset.

4.4.1 Generation of the CARLA-WildLife Dataset

Since the recording and labeling of real data is time-consuming, as witnessed for
the SOS dataset, and the selection of diverse real-world OoD objects is limited in
practice, we additionally introduce a synthetic dataset for OoD detection offering
a large variety of OoD object types. The main advantage of synthetic data is that
they can be produced inexpensively with accurate pixel-wise labels of full scenes,
besides being able to manipulate the scenes as desired. For OoD segmentation
we define the street as the region of interest, while everything outside this area
is defined as void and does not appear in the evaluation part. The area of the
street, on the other hand, is classified binary between street and no street, i.e.,
OoD.

By adding free of cost available assets from Unreal Engine marketplace [160]
to the driving simulation software CARLA [44], we generate 26 synthetic video
sequences recorded at a rate of 10 frames per second with 18 different object
types placed on the streets of CARLA. During the sequences, the ego vehicle
moves towards these objects, including, for example, dogs, wolves, balls, canoes,
pylons, or bags. See Figure 4.16 for an overview of all objects placed in CWL.
The objects were selected based on whether they could cause hazardous street
scenarios. Since these objects are not included in the standard set of semantic
labels provided by CARLA, each object type is added as extra class retroactively.

In addition to the semantic segmentation based on the Cityscapes labeling policy
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(and including the OoD class), CWL further provides instance segmentation, i.e.,
individual OoD objects of the same class can be distinguished within each frame,
and tracking information, i.e., the same object instance can be identified over the
course of video frames. Moreover, we provide pixel-wise distance information for
each frame of entire sequences as well as aggregated depth information per OoD
object depicting the shortest distance to the ego-vehicle, see Figure 4.17.

(a) original (b) semantic

(c) semantic OoD (d) instance OoD

(e) depth raw

Figure 4.17: Available data for each sequence in CWL. Besides the original rgb image,
we provide the semantic mask according to the Cityscapes classes and add new ones to
them corresponding to the object type class. Furthermore, we provide OoD masks for
semantic, instance and depth. (e) reveals the raw depth mask we extract from CARLA.
Each pixel has a distance value on the logarithmic scale and must first be converted.
This conversion is also done for CWL on 16 bit and is also provided.
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Adding assets into CARLA The visibility of objects in Unreal Engine depend
on their surface, which is determined by their geometry (created through meshes
or brush surfaces), and their material (defined by texture and material param-
eters). Meshes define the actual geometry of an object/actor which creates the
surface. UE distinguishes between 3 different mesh types: static, dynamic and
skeletal.

Materials define surface properties of objects such as color, reflectivity, uneven-
ness, transparency, etc. They dictate the engine exactly how a surface should
interact with light. Components of material are textures and several material pa-
rameters. If the light behavior of the real world needs to be simulated, physically
based materials are required. Therefore, material attributes such as base color,
roughness, metallic and specular have to be used. Textures are image files that
are mapped to surfaces which the material is already applied to. They provide
pixel-wise information about color, gloss, transparency and some other aspects.

A static mesh is a geometry that consists of a bunch of polygons which are cached
and rendered by the graphics card. They are 3D models created in third-party
modeling applications like Blender7 or Autodesk 3ds Max8 and can be imported
into the Unreal Editor via the content browser. They are stored in packages as
*.fbx -file and can be used in several ways to create renderable elements.

In order to add new assets to the Unreal Engine and thus to the CARLA world,
it is necessary to have ready-made *.fbx -files that contain geometry, textures as
well as material data. Once an object’s *.fbx -file has been imported into the
Unreal Engine, it is available as an object and can be dragged and dropped into
a CARLA map. Besides the location coordinates, the size, color and some other
parameters of an object can also be changed, like shown in Figure 4.18.

Figure 4.18: The model view of an asset in Unreal Editor (left), placed in the CARLA
world and appearing in the CWL dataset (right).

7https://www.blender.org/ accessed 2022.11.17
8https://www.autodesk.com/products/3ds-max/ accessed 2022.11.17
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CARLA labels all newly added assets as unknown, which is why the ID for un-
known classes (0) in CARLA is stored for the semantic segmentation ID. Several
attempts to import those objects into CARLA as a new class failed, so we had
to spend more time in post-processing to give each asset a unique class ID. Some
assets have additional animations that were exhibited when the dataset was cre-
ated. To do this, each object placed on the road had to be unchecked under Play
on the Animation tab. If, in addition to the new objects, the user wants to place
other traffic participants, such as vehicles, that can move freely, the PhysicsAc-
tor preset under the Collision tab must be set to NoCollision. Otherwise, these
objects will represent a static object that cannot be overtaken, and the traffic
behind it will jam.

4.4.2 Method

An overview of our method can be found in Figure 4.19. First, we create the
region of interest and an entropy heatmap from an input image. From these
two pieces of information, we obtain the OoD segmentation after the method
introduced in [24], which is also based on an evaluation of the prediction quality
using meta classification [147]. This is done for each frame, so that the tracking
algorithm, introduced in [112], then assigns a unique ID to a newly found object
in a sequence that ideally spans multiple frames. An identical object is found
under the condition that either center points are close to each other or if the
overlapping of segmentation in successive frames is sufficiently large. In parallel,
the retrieval algorithm, adapted from [128, 166], clusters similar objects from the
OoD segmentation into the 2D embedding space, which thus form new classes.
False predicted OoD objects are sorted out based on the tracking information by
requiring a minimum number of frames with the same ID.

4.5 Datasets for Anomaly Detection [17]

As described in the previous subsection, corner cases can be divided into 4 layers,
where the content layer can be further subdivided into 3 levels. In addition to the
domain and scene level, there is also the object level, which contains anomalies
and unknown objects on and next to the road. Especially for object detection or
semantic segmentation algorithms it is challenging to deal with such objects, as
they have to gather their experience from the data provided during training and
have to map new, unknown classes onto previously defined classes. This often
leads to the networks becoming uncertain in the areas of anomaly and dividing
them into different areas, using semantic segmentation networks as an example,
resulting in undefinable color blobs. For this reason, anomaly or unknown object
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input

region of interestentropy heatmap

OoD prediction

tracking masks2D embedding

Figure 4.19: Overview of our OoD tracking and retrieval method. The OoD segmen-
tation is done using the region of interest and an entropy heatmap. Afterwards, each
newly found OoD object is assigned its own ID, which can be used to track it across
multiple frames. Additionally, similar objects in the 2D embedding space are grouped
as separate classes, so that the same objects from the sequences of each frame end up
in the same area.

detection is a very active research area [14, 16, 26, 46, 166] to move one step closer
to autonomous driving. So a joint work to an anomaly survey paper was done,
that lists all the publicly available datasets (as the end of January 2023) that will
hopefully bring humanity closer to the future vision of safe autonomous driving.

Our criteria to be included in the list were as follows. The dataset must be
publicly available, contain sensor data from the ego-perspective and provide pixel-
or point-wise anomaly labels in the form of a validation set. After screening a lot
of papers, we found a total of 16 that met these criteria which are clustered by
their benchmark, see Table 4.8.

In addition to publication date and sensor type, we provide information about the
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dataset year sensors size (test/val) resolution anomaly source temporal
#OoD
classes

ground truth

Fishyscapes [12, 13]
FS Lost and Found 2019 camera 275 / 100 2048× 1024 recording no 1 semantic mask
FS Static 2019 camera 1,000 / 30 2048× 1024 data augmentation no 1 semantic mask
CAOS [74]
StreetHazards 2019 camera 1,500 1280× 720 simulation yes 1 semantic mask
BDD-Anomaly 2019 camera 810 1280× 720 class exclusion no 3 semantic mask
SegmentMeIfYouCan [23]

RoadAnomaly21 2021 camera 100 / 10
2048× 1024
1280× 720

web sourcing no 1 semantic mask

RoadObstacle21 2021 camera 327 (+55) / 30 1920× 1080 recording yes 1 semantic mask
CODA [100]
CODA-KITTI 2022 camera, LiDAR 309 1242× 1376 void classes no 6 bounding boxes
CODA-nuScenes 2022 camera, LiDAR 134 1600× 900 void classes no 17 bounding boxes
CODA-ONCE 2022 camera, LiDAR 1,057 1920× 1020 aut. OoD proposal no 32 bounding boxes
CODA2022-ONCE 2022 camera, LiDAR 717 1355× 720 aut. OoD proposal no 29 bounding boxes

CODA2022-SODA10M 2022 camera 4,167
1280× 720
958× 720

aut. OoD proposal no 29 bounding boxes

Wuppertal OoD Tracking [111]
Street Obstacle Sequences (SOS) 2022 camera, depth 1,129 1920× 1080 recording yes 13 instance mask
CARLA-WildLife (CWL) 2022 camera, depth 1,210 1920× 1080 simulation yes 18 instance mask
Misc
Lost and Found [138] 2016 stereo cameras 2,104 2048× 1024 recording yes 42 semantic mask
WD-Pascal [9] 2019 camera 70 1920× 1080 data augmentation no 1 semantic mask
Vistas-NP [64] 2020 camera 11,167 varying class exclusion no 4 semantic mask

Table 4.8: Overview over all analyzed datasets, clustered by the benchmark in which
they were presented.

size of the dataset, including resolution, whether the images are video sequences
or incoherent scenes, how many Out-of-Distribution (OoD) objects are included,
and in what form the labels are available. In addition, we provide each dataset
sorted by one of the following anomaly sources:

• Automated OoD Proposal
This approach allows the use of large unlabeled datasets. An automated
proposal method is used to generate initial anomaly proposals. This can
be done using various anomaly detection approaches, such as uncertainty,
intermediate detections, geometric priorities, or model inconsistencies. Sub-
sequently, human experts take care of false positives and refine the proposal.

• Data Augmentation
For this technique, any dataset can be used as a baseline. By synthetic
manipulation of scenes [58, 90], anomalies are pasted onto the original image
and can be labeled accordingly. Anomalies are typically not included in the
Cityscapes classes.

• Recording and Simulation
Here, anomalies are recorded through data collection by driving in the real
world [111, 138] or in the synthetic world [15, 74, 91]. Currently, these are
available as static objects, although dynamic OoD objects are also available
with WOS. Often, anomalies are also not included in the Cityscapes classes.

• Class Exclusion
This approach is based on a labeled dataset. Hypothetical anomalies are
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created by excluding frames with known classes from the train and valida-
tion splits. A novel test split is created with these, treating the selected
classes as anomalies.

• Web Sourcing
In this approach, human experts actively search for images that include
atypical classes. As a reference list for known classes, often Cityscapes
classes are used.

• Misc Classes
Based on a labeled dataset, all regions which are either labeled with void or
misc can be examined further. These terms are often used interchangeably
and mostly refer to uncommon objects or irrelevant areas. Human experts
then relabel those classes as anomalies, if appropriate.

77





Chapter 5
Applications for Driving Simulator

This chapter presents some applications of the self-designed driving simulator in
a research environment. Firstly, an approach is described that uses two human
drivers to find corner cases in real time during a driving campaign, in order
to save them for further training. Subsequently, in another driving campaign,
it is investigated whether driving with a model trained with corner cases lasts
longer than driving with models without corner cases. Based on this, a survival
analysis is carried out to investigate, in a third driving campaign, the probability
of survival under different weather conditions. Expert models of one domain will
be compared with a universal one. Finally, the corner cases generated during all
driving campaigns will be classified into a corner case trajectory taxonomy.

5.1 A-Eye: Driving with the Eyes of AI for Corner
Case Generation [91]

Despite AI systems achieve impressive performance in solving specific tasks, e.g.
in automated driving, they lack understanding of the context of safety in traffic.
In contrast, while humans are often described as lousy drivers, as they tend to be
diverted or feel fatigue, humans have a fine understanding, when a traffic scene
could lead to a situation, where humans are at risk.

It has been observed previously, that to increase robustness and performance of
AI algorithms many clean and diverse scenes are needed [84]. However, a large
amount of annotated data per se might not imply safe operation in those rare
situations, where road users are exposed to a substantial risk. This is why we aim
to present an accelerated testing strategy that leverages human risk perception
to capture corner cases of the Method Layer and thereby achieve performance
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improvement in safety-critical scenes. In order to obtain many safety-critical
corner cases in a short time, we stop training at an early stage so that the network
is sufficiently well-trained. Nevertheless, the scenes generated in this way are still
useful to improve fully trained networks.

For this purpose, a semantic network is trained with synthetic images from the
open source driving simulation software CARLA [44]. In addition, the driving
simulator described in Chapter 3 is modified to create a test rig with two control
units to steer the ego-vehicle with two human drivers. In this process, the semantic
segmentation network Fast-SCNN is integrated into CARLA in such a way that
first the original CARLA image is sent through the network and the prediction
is displayed on the screen of one driver. The second driver, in turn, sees the real
CARLA image and is supposed to intervene as a safety driver only if he or she
feels that a situation is being wrongly assessed by the other driver. We aim to
consider situations in which the AI algorithms lead to incorrect evaluations of
the scene which we refer to as safety-relevant corner cases (Method Layer), in
order to improve performance through targeted data enrichment. This is done
by exchanging images from the original dataset with the safety-critical corner
cases, thus keeping the total amount of data fixed. We show that the semantic
segmentation network that contains safety-critical corner cases in the training
data performs better on similar critical situations than the network that does not
contain any safety-critical situations.

Our approach somehow follows the idea of active learning, where we get feedback
on the quality of the prediction by interactively querying the scene. However,
unlike in standard active learning we do not leave the query strategy to the
learning algorithm, but make use of the human’s fine-tuned sense of risk to query
safety-relevant scenes from a large amount of street scenes, leading to enhanced
performance in safety-critical situations.

The contributions of this work can be summarized as follows:

• An experimental setup, that could also be implemented in the real world,
permits testing the safety of the AI perception separately from the full
system safety including the driving policy of an automated vehicle.

• A proof of concept for the retrieval of training data for automated driving
with a human-in-the-loop approach that is safety-relevant.

• A proof that training on safety-relevant situations generated during poor
network performance is beneficial for the recognition of street hazards.

Human-Centered AI According to the Defense Advanced Research Project
Agency (DARPA), the development of AI systems is divided into 3 waves [42, 75].
While in the first wave patterns were recognized by humans and linked into logical
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relationships (crafted knowledge), statistical learning could be used in the second
wave due to improved computing power and increased memory capacity.

We are currently in the third wave, which relates to the explainability and con-
textual understanding of AI. Here, the black-box approaches, which emerged in
the second wave, are to be understood so that AI decision-making becomes com-
prehensible to humans. This last point is therefore also an important one in the
HCAI initiative, which aims to connect different domains with human-centered
AI [98].

On this basis, the authors of [177, 178] developed an extended HCAI framework
that defines the following three different design goals for the human-centered
AI: Ethically Aligned Design that avoid biases or unfairness of AI algorithms
such that these algorithms make decisions according to human criteria and rules.
Technology Design which considers human and machine intelligence to exploit
synergies. Human Factors Design to make AI-solutions explainable. The aim is
to give humans an insight into the decision-making process of AI algorithms, so
that trust in the current technology can be increased. For this purpose, we have
built a specially developed test rig to incorporate human behavior into the further
development of AI in the field of autonomous driving. At the same time, we would
like to use the test rig to provide a demonstration object to illustrate AI algorithms
to society. The focus will be on allowing humans to visually perceive and interact
with the decision-making of AI algorithms. In the context of autonomous driving
this would mean:

Driving with the eyes of AI .

Human behaviors can also be analyzed using driving simulators. For example,
in [45] a realistic test rig including a steering wheel and pedals for data collection
was developed. Therefore, thirteen subjects were recruited to drive on differ-
ent routes while being distracted by static or dynamic objects or by answering
messages on their cell phones. By adding nonlinear human behaviors and using
realistic driving data, the authors have been able to predict human driving behav-
ior more accurately in testing. Another driving simulator was presented in [66] to
develop and evaluate safety and emergency systems. The control units are con-
nected to a generic simulator for academic robotics which uses the Modular Open
Robots Simulation Engine MORSE [50]. They used an experiment with four road
users, one human driver and three vehicles driving in pilot mode and forcing two
out of 36 collision situations (a lead vehicle stopped and a vehicle changing lanes)
defined by the National Traffic Safety Administration (NHTSA). The impact of
a driver assistance system on the driver was one of the factors studied.
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5.1.1 Experimental Setup

Driving Simulator Targeted enrichment of training data with safety-critical
driving situations is essential to increase the performance of AI algorithms. Since
the generation of corner cases in the real world is not an option for safety reasons,
generation remains in the synthetic world, where specific critical driving situations
can be simulated and recorded. For this purpose, the autonomous driving simu-
lator CARLA [44] is used. It is open source software for data generation and/or
testing of AI algorithms. It provides various sensors to describe the scenes such
as camera, LiDAR and radar and delivers ground truth data. CARLA is based
on the Unreal Engine game engine [160], which calculates and displays the behav-
ior of various road users while taking physics into account, thus enabling realistic
driving. Furthermore, the world of CARLA can be modified and adapted to one’s
own use case with the help of a Python API.

For our work, we used the API to modify the script for manual control from the
CARLA repository. In doing so, we added another sensor, the inference sensor,
which evaluates the CARLA RGB images in real-time and outputs the neural
network semantic prediction on the screen. An example is shown in Figure 5.1.
By connecting a control unit including a steering wheel, pedals and a screen, to
CARLA, we make it possible to control a vehicle with the eyes of the AI in
the synthetic world of CARLA. We also connected a second control unit with
the same components to the simulator, so that it is possible to control the same
vehicle with two different control units, see Figure 5.2. The second control unit
is thus operated on the basis of CARLA’s clear image and can intervene at any
time. It always has priority and triggers the last three seconds of driving, which
are buffered, to be written to the hard disk. The pseudocode for corner case
triggering is shown in Algorithm 5.1. In order for the semantic driver to follow
the traffic rules in CARLA, the script had to be modified additionally. The code
has been modified to display the current traffic light phase in the upper right
corner and the speed in the upper center. In addition, the record and replay
function from CARLA was used to create a replay script, which can be used to
reconstruct the driven scenes retrospectively and thus save the desired sensors
subsequently.

Test Rig The test rig consists of the following components: a workstation with
CPU, 3x GPU Quadro RTX 8000, 2 driving seats, 2 control units (steering wheel
with pedals), one monitor for each control unit and two monitors for the control
center. The driving simulator software used is the open source software CARLA
version 0.9.10.
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Figure 5.1: View of the semantic driver
(top) and the safety driver (bottom).

Figure 5.2: Test rig including steering
wheels, pedals, seats and screens.

Algorithm 5.1: Corner case detection with (i, ICC) ∈ N0, δt ∈ R≥0,

ν ∈ [0, 1], ϕ ∈ [−450, 450]. The semantic driver is in full control of

the vehicle using the ManualControl() function as long as the safety

driver does not intervene. As soon as this happens, a counter i goes up

until a certain value ICC is exceeded and the safety driver is temporary

in control over the vehicle. This was necessary to prevent very small

movements of the steering wheel from being interpreted as intervention,

which initially led to no smooth driving. The threshold value for ICC

is kept low so that triggering in the millisecond range remains possible.

The variable ν describes the pedal position of brake and throttle while

ϕ specifies the steering angle.

1 Input: i, ICC, d, t, δt

2 Output: CornerCaseDetection()

3 t← t0

4 while i < I do

5 if νsafebrake(t) = νsafethrottle(t) = 0 ∧ ϕsafesteer(t) == ϕsafesteer(t− δt) then

6 i← 0;

7 ManualControl(νsembrake, νsemthrottle, ϕsemsteer)

8 else

9 i← i+ 1

10 ManualControl(νsafebrake, νsafethrottle, ϕsafesteer)

11 t← t+ δt

Dataset for Initial Training and Testing For training, a custom dataset was
generated using CARLA 0.9.10, consisting of 85 scenes with 60 frames each. In

83



5 Applications for Driving Simulator

addition, there is a validation dataset with 20 scenes. The dataset was generated
on seven maps with one fps and contains the corresponding semantic segmentation
image in addition to the rendered synthetic image. The maps include the five
standard maps in CARLA and two additional maps that offer a mix of city,
highway and rural driving. Various parameters can be set in CARLA, we focused
on the number of Non-Player-Characters (NPCs), including cars, motorcycles,
bicycles and pedestrians, and on environment parameters such as sun position,
wind and clouds. Depending on the size of the map, the number of NPCs ranged
from 50 to 150.

The clouds and wind parameters can be set in the range between 0 and 100,
with 100 being the highest value. The wind parameter is responsible for the
movement of tree limbs and passing clouds and was in the range of 0 and 50.
The cloud parameter describes the cloudiness, where 0 means that there are no
clouds at all and 100 that the sky is completely covered with clouds. We have
chosen values between 0 and 30. The altitude describes the angle of the sun in
relation to the horizon of the CARLA world, with values between −90 (midnight)
and 90 (midday). Values between 20 and 90 were used for our purpose. The
other environmental parameters like rain, wetness, puddles or fog are set to zero.
The parameters are chosen so that the scenes reflect everyday situations with a
natural scattering of NPCs and in similar good weather. During data generation,
the movement of all NPCs was controlled by CARLA.

Furthermore, 21 corner case scenes were used as test data, each containing 30
frames. Another test dataset containing 21 standard scenes without corner cases
serves as a comparison, each containing 30 frames.

Training To drive on the predicted semantic mask, a real-time capable network
architecture is needed. For these purposes, the Fast Segmentation Convolutional
Neural Network (Fast-SCNN) model was used [139]. It uses two branches to
combine spatial details at high resolution and deep feature extraction at lower
resolution achieving a mean Intersection over Union (mIoU) of 0.68 at 123.5 fps on
the Cityscapes dataset [35]. The network was implemented in the python package
PyTorch [134] and training was done on a NVIDIA Quadro RTX 8000 graphics
card. Sixteen of the 23 classes available in CARLA were used for training. Cross
entropy was used as the loss function and ADAM as the optimization algorithm.
A polynomial decay scheduler was also used to gradually reduce the learning rate.

We intentionally stopped the training after 5 epochs to increase the frequency
of perception errors for the network. The resulting network is sufficiently well-
trained to recognize the road and all road users, although objects further away
are poorly recognized. An example is shown at the top of Figure 5.1.
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Experimental Design Two operators conducted the driving campaign and the
duration of driving as a safety driver or semantic driver was set at 50:50. Both par-
ticipants had time to familiarize themselves with the hardware and the CARLA
world before the start of the first driving campaign so that driving errors could be
minimized. Two driving campaigns are planned; the first campaign will generate
targeted corner cases and the second will test whether adding the corner cases in-
cluded in campaign 1 leads to an improvement in the perception of safety-critical
situations.

5.1.2 Retrieval of Corner Cases

For the generation of corner cases, we consider the following experimental setup.
Two test operators record scenes in our specially constructed test rig (see Fig-
ure 5.2), where one subject (safety driver) gets to see the original virtual image
and the other (semantic driver) the output of the semantic segmentation net-
work (see Figure 5.1). The test rig is equipped with controls such as steering
wheels, pedals and car seats and connected to CARLA to simulate realistic traffic
participation.

The corner cases were generated as shown in Figure 5.3, using the real-time se-
mantic segmentation network Fast-SCNN where visual perception was limited by
intentionally stopping training early. This is sufficient to move in the virtual
streets, but is poor enough to enhance corner cases of the Method Layer. We note
that, according to [169], there were 128 accidents involving autonomous vehicles
on the road during test operations in 2014-2018, at least 6% of which can be
directly linked to misbehavior by the autonomous vehicle. It follows that at least
every 775,335 km driven, a wrongful behavior of the autonomous vehicle occurs.
Using a poorly trained network as a part of our accelerated testing strategy, we
were able to generate corner cases after 3.34 km in average between interventions
of the safety driver. We note, however, that the efficiency of the corner cases
was evaluated using a fully trained network. Figure 5.4 shows two safety-critical
corner cases where the safety driver had to intervene to prevent a collision.

If the safety driver triggered the recording of a corner case, the test operators
label the corner case with one of four options available (overlooking a walker or
a vehicle, disregarding traffic rules, intervening out of boredom) and may leave
a comment. Furthermore, the kilometers driven and the duration of the ride
are notated. The operators were told to obey the traffic rules and not to drive
faster than 50 km/h during the test drives. After a certain familiarization period,
driving errors decreased and sudden braking by the semantic driver was also
reduced. The reason for this is that the network partially represents areas as
vehicles or pedestrians with fewer pixels. Over time, the drivers learned to ignore
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Figure 5.3: Two human subjects can control the ego vehicle. The semantic driver moves
the vehicle in compliance with traffic rules in the virtual world and sees only the output
of the semantic segmentation network. The safety driver, who sees only the original
image, assumes the role of a driving instructor and intervenes in the situation by braking
or changing the steering angle as soon as a hazardous situation occurs. Intervening in
the current situation indicates poor situation recognition of the segmentation network
and represents a corner case. Triggering a corner case ends the acquisition process and
a new run can be started.

such situations because experience showed that there was no object there based
on the previous frames.

The rides are tracked and by the intervention of the safety driver the last 3 seconds
of the scene are saved. Subsequently, the scenes can be loaded and images saved
from the ego vehicle’s perspective using the camera and the semantic segmentation
sensor. We collect 50 corner cases before retraining from scratch with a mixture
of original and corner case images. For each corner case, the last 3 seconds are
saved at 10 fps before the intervention by the safety driver. In total, we get 1500
new frames. When using this corner case data for retraining, we delete the same
number of frames from the original training dataset.

We selected 50 corner cases in connection with pedestrians. Therefore, the in-
clusion of corner case scenes into the training dataset significantly increases the
average number of pixels with the pedestrian class in the training data. To es-
tablish a fair comparison of the efficiency of corner cases as compared to a simple
upsampling of the pedestrian class, we created a third dataset that contains ap-
proximately the same number of pixels per scene for the pedestrian class as the
dataset with the corner cases, see Table 5.1.
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Figure 5.4: Two examples of a corner case where the safety driver had to intervene to
avoid a collision due to the poor prediction of the semantic segmentation network (both
images on the right).

train data test data
safety-critical natural distribution

name pixelped/scene IoUped mIoU IoUped mIoU
natural distribution 3583.6 0.4600 0.6954 0.4937 0.7610
pedestrian enriched 6101.1 0.5399 0.6911 0.5586 0.7554
corner case enriched 6215.7 0.5683 0.7173 0.5384 0.7517

Table 5.1: Performance measurement on two test datasets. The comparison shows that
the addition of safety-critical scenes in training also improves performance in testing
with safety-critical scenes.

5.1.3 Evaluation and Results

All results in this section are averaged over 5 experiments to obtain a better
statistical validity. For testing purposes, we generated 21 additional corner cases
for validation. With the same setup as before, we train the Fast-SCNN for 200
epochs on all three datasets and thereby obtain three networks. Table 5.1 shows
the evaluation of all three models on the class pedestrian for the 21 safety-critical
test corner cases. We see that adding corner cases to the training data leads to an
improvement in pedestrian detection in safety-critical situations, which can also
be shown by an example in Figure 5.5. There we see a situation with a pedestrian
crossing the road, with a slope directly behind him that seems to end the road at
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corner case enriched natural distribution

pedestrian enriched ground truth

Figure 5.5: Evaluation on corner case test data shows that the model using corner case
data in training recognizes pedestrians better than the model trained with the natural
distributed dataset or the dataset which contains more pedestrians.

the level of the horizon. Therefore, the networks that did not have corner cases
in the training data seem to have problems with this situation, while the model
with corner cases detects the humans much better.

While training the network using naive upsampling of pedestrians does not have
any positive effect on the classe’s Intersection over Union (IoU) as compared with
the original training data, we achieve a gain in the IoU by 2.19% when using
the dataset containing corner cases. In addition, the 3 models were tested on a
dataset with a natural distribution of pedestrians. Here it can be seen that the
model trained with corner cases does not perform as well as the model with the
same number of pedestrians. It follows that the model performs better in critical
situations, while the models without corner cases perform less well.

Since our method for generating corner cases in safety-critical situations provides
an improvement in detecting pedestrians in safety-critical situations, we launched
a second campaign to verify how long it takes driving with the 3 trained networks
to identify a corner case. When conducting the second driving campaign, the
same operating parameters were set as in the first campaign and the duration
until a corner case occurred was recorded. This includes the same maps and
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weather conditions as well as the same two drivers. However, the two drivers
were not aware of the network’s underlying training data. Table 5.2 shows the
duration and kilometers driven for the different datasets, as well as the occurrence
of corner cases during these rides. We see that adding corner cases during training
also reduces the frequency until new corner cases reappear.

dataset
distance time #CC meandCC

stddCC
meantCC

stdtCC

d [km] t [min] [-] [km/CC] [km/CC] [min/CC] [min/CC]
natural disritbution 121.32 411 13 7.73 14.25 25.93 39.60
pedestrian enriched 163.09 500 21 7.52 10.47 23.25 28.72
corner case enriched 153.38 528 11 13.84 8.68 47.47 31.87

Table 5.2: Corner case appearances on Fast-SCNN trained with 3 different datasets.

We therefore demonstrated the benefits of our method to generate corner cases,
especially for safety-critical situations. We were also able to show that adding
safety-critical corner cases recorded by intentional perceptional distortions im-
proves performance, so future datasets should include such situations.

5.1.4 Conclusion

Due to the lack of explanation and transparency in the decision-making of today’s
AI algorithms, we developed an experimental setup that allows to visualize these
decisions and thus to allow a human driver to evaluate the driving situations
while driving with the eyes of AI, and from this to extract data that includes
safety-critical driving situations. Our self-developed test rig provides two human
drivers to control the ego vehicle in the virtual world of CARLA. The semantic
driver receives the output of a semantic segmentation network in real-time, based
on which she or he is supposed to navigate in the virtual world. The second
driver takes the role of the driving instructor and intervenes in dangerous driving
situations caused by misjudgments of the AI. We consider driver interventions by
the safety driver as safety-critical corner cases which subsequently replaced part
of the initial training data. We were able to show that targeted data enrichment
with corner cases created with limited perception leads to improved pedestrian
detection in critical situations.

In addition, we continue the further development of AI by means of human risk
perception to identify situations that are particularly important to humans and
thus train the AI precisely where it is particularly challenged by a human per-
spective. Therefore we next investigate whether a single network is required to
overcome the so-called domain gap, which describes the difference in data during
training and deployment, or whether, for cost and performance reasons, different
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networks should be used depending on the task. This will be investigated in the
next chapter using different weather conditions and survival analysis.

5.2 survAIval: Survival Analysis with the Eyes of
AI [92]

If automotive manufacturers want to put autonomous vehicles higher than level
2 on the road, they should ensure that safety-critical driving situations are reg-
istered and that a safe solution for all road users is found as quickly as possible.
One way to achieve this is to provide a large amount of diverse data to the network
during training. Especially closing the gap of domain shifts requires targeted data
generation from multiple domains to achieve a good performance. Even if using
more data and the best models leads to overcoming the domain gap, the question
is whether this is the most efficient way from the manufacturer’s point of view.
In this regard, we investigate whether overcoming the domain gap in different
weather conditions with specialized networks works as well or even better than a
general model in the sense that all weather modalities are covered during training.
Here, we make use of the method presented in Section 5.1 for finding synthetic
corner cases with two human drivers and evaluate them using survival analysis to
make statements about the influencing variables on upcoming corner cases.

5.2.1 Survival Analysis

Survival analysis is the study of lifespans, also survival times, and their influencing
factors [115]. It uses statistical methods to investigate time intervals between
sequential events. Groups, but also individuals can be considered as the unit of
study when an expected event happens during a considered time period like the
time from birth until death, the time from entry a clinical trial until death, the
time from buying a vehicle until an accident happens, or other use cases. The
basic goals of survival analysis are [89]:

• estimation and interpretation of survivor or hazard functions

• comparing survivor and/or hazard functions

• relationship determination of explanatory variables to lifespans

First, some typical terms of survival analysis are introduced with an overview
in Table 5.3.

The observation time period is described by a beginning point tstart = 0 and an end
point tend > 0 defined by a failure condition due to a special event [77]. An event
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term explaination
observation time observation period for which start and end points are known
entity single object or individual of the observed study
event change in status (e.g. life to death, accident-free to accident)
entry starting state (e.g. birth, date of vehicle purchase)
failure time T exit time of a subject
risk set all test objects in the study

censoring
incomplete information about either entry before or/and
event after the observation time

truncation
non-observable data that either does not exist or whose entry
and exit state have not been observed

lifespan duration until an event occurs

hazard
probability that an observed entity has a certain
event at time t

Table 5.3: Terms in survival analysis.

implies a change in status, e.g., from alive to dead, from healthy to sick, or from
accident-free to accident and is usually easy to find. However, defining the exact
failure event is a more difficult task in some cases [113]. Although it is desirable to
know each the beginning and end point of an individual observed in the study, one
or both are not always observed which is known as censoring. Figure 5.6 provides
an overview of some typical observation types, where white circles describe the
entry state. Using our experiments with the driving simulator, the beginning
point of pedal pressing may describe the entry state. A cross represents a change
of state, such as the occurrence of a corner case due to an impaired perception,
while black circles refer to a change of state that was triggered by unexpected
reasons like an intervention out of boredom rather than a corner case as cause
of impaired perception. Observations 1 and 9 describe a truncated state, which
is non-observable data that either does not exist or whose entry and exit state
have not been observed. Observations 2, 7, 8 characterize left-censored data as
their starting points are not identifiable as they occurred prior the observation
start. In addition, observations 5 to 8 escape the observation time unchanged, so
they are referred to as right-censored as their exit event could not be observed. In
addition, the events of observations 2–4 are observed during the observation time,
with only 3 being uncensored since both start and end times are known. Although
an event was detected at observation 4, the expected event did not occur and/or
there were other causes for this condition.

Parts of the theory of survival analysis are taken from [89], unless otherwise stated.
The continuous random variable T describes the time of occurrence of an event,
which denotes the time of death of a subject, the time of failure of a machine,
start of a disease or similar. t denotes a particular time of interest, which can
be used to describe the probability that T has not yet occurred at time t, i.e.,
that the entity has survived. Accordingly, the survival function S(t) represents
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Figure 5.6: Examples of different observation types. Circles mark the beginning of an
observation, while crosses or black circles mark an event. When there is no information
about either the entry and/or the event state, this is referred to as censoring.

the probability that the event of an entity at time t did not occur in the observed
time period, and can be formulated as follows:

S(t) = Pr(T > t) . (5.1)

Two ways to describe a survival distribution are survival and hazard functions.
As a survival function, the so-called Kaplan-Meier [49] estimator is often used,
which estimates the probability that an event for an entity does not occur within
a certain time interval. It is defined as follows:

Ŝ(tj) =

j∏
i=0

ni − di
ni

. (5.2)

The observation time tj is therefore divided into j-parts, each of which considers a
time interval ∆t = (ti, ti+1]. With n being denoted by the number of entities which
are alive at ∆t and d the number of entities which already left the observation at
∆t.

Since T is a continuous random variable, it is necessary to work with the proba-
bility density function f(t), which describes the probability, that an event occurs
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in a time interval. The cumulative density function F (t), which is the area under
the density function up to the value t, describes the probability, that the event
occurs at time T ≤ t:

F (t) =

∫ t

−∞
f(u) du . (5.3)

On the other hand, if we consider the probability that an event will not occur
until a given time, which is what the survival function means, we can also write
the following:

S(t) = 1− F (t) . (5.4)

In many situations, it is crucial to know how an individual risk for a particular
outcome changes over time due to other events. For example, weather conditions
can negatively affect the lifespan of a semantic driver when the model was not
trained with such data. In addition, the use of multiple unknown weather variables
can lead to interactions, which in turn can alter a semantic driver’s lifespan. For
those cases the hazard rate h(t) indicates the probability that an observed entity
experiences a failure event the next short time interval ∆t [88]. It describes the
risk of the actual failure rate as a function of time.

The hazard rate is defined as

h(t) = lim
∆t→0+

Pr(t ≤ T < t+ ∆t|t ≤ T )

∆t
=
f(t)

S(t)
. (5.5)

The cumulative hazard H(t) is used to estimate the hazard probability which is
defined as follows:

H(t) = − log(S(t)) =

∫ t

0

h(s) ds . (5.6)

The hazard ratio (HR) is a measure of the relative survival experience of two
groups (A or B) and is defined as follows:

HR =
OA/EA
OB/EB

. (5.7)

The ratioO/E describes the relative death rate of a group, whereO is the observed
number of deaths and E the expected number of deaths [113]. The HR is useful
to compare two individuals or groups.

The Cox proportional hazards model, introduced in 1972 [36], uses the hazard
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function as a function of the influencing variables and is defined as

h(t,Z) = h0(t) exp

(
p∑
i=1

βiZi

)
, Z = (Z1, Z2, . . . , Zp), (5.8)

where h0 describes the baseline hazard, which depends only on time and is there-
fore equivalent to the Kaplan-Meier estimator. Z denotes the influence variables,
which are time-independent and β the regression coefficients of the influence vari-
ables to be estimated.

The Cox model is often called proportional hazards model since the ratio of the
risk for 2 entities with covariates Z and Z∗ is proportional. The relative risk, also
known as the hazard ratio (HR), describes that an individual with risk factor Z
will experience an event proportional to an individual with risk factor Z∗. The
relative risk is defined as follows: [88]

HR =
h(t,Z)

h(t,Z∗)
=
h0(t) exp(

∑p
i=1 βiZi)

h0(t) exp(
∑p

i=1 βiZ
∗
i )

(5.9)

= exp

[
p∑
i=1

βi(Zi − Z∗i )

]
. (5.10)

It becomes noticeable that HR is independent of time.

Additionally, probabilities about the occurrence of an event can be calculated
with the hazard function so that the influence of different parameters can be
taken into account. Furthermore, events that have already occurred are included
in the calculation so that the probability of an event occurring in the next time
step can be predicted. This can be done with the partial likelihood, including a
risk set R(td) and an index set of death times D:

L(β) =
D∏
d=1

exp(
∑p

i=1 βiZdi)∑
j∈R(td) exp(

∑p
i=1 βiZji)

. (5.11)

To optimize the regression coefficients we can maximize the log-likelihood, i.e.,

β∗ = argmax log(L(β)) . (5.12)

This is done by computing:

∇β log(L(β)) = 0 , (5.13)

which can be solved numerically.
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5.2.2 Experimental Design

After learning the basics of survival analysis, we will use it to find factors that
affect survival while driving in the driving simulator. We will use the setup
presented in Section 5.1 and observe how long it takes for a corner case to occur
under different weather conditions. For this study, the previously used semantic
segmentation network Fast-SCNN [139] is trained on good weather data, which
we refer to clear, and serves as a baseline before being fine-tuned with different
weather conditions, namely rain, fog and night. Figure 5.7 gives an overview of
the different weather conditions. In addition, a further model is re-trained on all 3
weather conditions, referred to as mix, resulting in a total of 5 models available for
the experiments. For post-training, 2100 additional images per weather setting
(300 per map) are provided for training and 420 for testing. In the following, we

rain fog night

Figure 5.7: Overview of the used weather conditions. The grayish sky, falling water
drops as well as water puddles on the road are characteristic for rain. In the case of
fog, fine water droplets cover the image, and it is especially tough to see in depth.
Night images are characterized by many dark areas, with streetlights and vehicle lights
illuminating the scenes.

refer to each of the weather conditions rain, fog and night as expert models, since
they are specifically trained on one domain. In contrast, all 3 weather settings
are available to the mix model during training, which we refer to universal model.
The baseline and universal models are tested on all five test datasets, whereas the
expert models are tested on the respective trained conditions as well as on the
clear ones. Table 5.4 gives an overview of the performance of all models on the
particular test data.

The evaluation of the initial model shows a significant decrease of all IoU values in
any weather conditions, with the safety-critical class human below 0.1 for fog and
night being awful. In contrast, the performance of the universal model remains
largely the same. Additionally, compared to the mix model, the expert models
perform better in rain and night and worse in fog for the human class. In the
mIoU, the universal model always outperforms the experts. This comparison has
already shown the tendency for the expert models to perform at least as well or
even slightly better than the universal model in the human class, while the overall
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model test data
clear rain fog night mix

IoUped mIoU IoUped mIoU IoUped mIoU IoUped mIoU IoUped mIoU
clear 0.487 0.759 0.368 0.586 0.024 0.207 0.063 0.191 0.123 0.321
rain 0.379 0.606 0.485 0.718 - - - - - -
fog 0.074 0.130 - - 0.301 0.596 - - - -
night 0.292 0.302 - - - - 0.402 0.655 - -
mix 0.451 0.657 0.471 0.734 0.326 0.644 0.369 0.694 0.402 0.682

Table 5.4: Test data model performance in all weather conditions.

performance in the mIoU is best for the universal model in all weather conditions.
The next step is to conduct the weather driving campaign, where each model is
also tested under these weather conditions in order to obtain a reliable statement
about its performance in test.

The experiments are conducted as described in Section 5.1, so that two drivers
drive freely on the roads of CARLA. During the rides, the semantic driver has
full control over the vehicle, while the safety driver observes the rides and should
intervene in the scene only in safety-critical driving situations using the brake
pedal or the steering wheel. Intervention indicates incorrect assessment of the
scene, which is a corner case of the Method Layer. Differences from the previous
driving campaigns include the number of maps and the duration of the rides.
This time, the focus is only on Town01 and Town03, since they have a high
variability and due to their moderate size the number of vehicles and pedestrians
does not need to be set excessively high in order to consistently see some, which
relieves the traffic manager and thus computations on the CPU. In addition to
the reduced number of maps, the drives will be limited to 600 seconds. If no
corner case occurs during this time, the drive is stopped, which corresponds to
a right-censored observation. In addition, the drivers didn’t know what data the
network had been trained on during the experiments as well as what weather
condition they were driving in. The baseline and universal models are tested
for 120 minutes on each weather setting (clear, rain, fog, night). In addition, the
expert models are tested on the respective weather condition, also for 120 minutes
each. In total, this results in 1320 minutes with 11 different combinations.

5.2.3 Results

A total of 160 drives with a maximum length of 600 seconds were performed.
If no corner case occurs in this time, the drives are aborted so that we have a
right-censored data point. Therefore, the number of rides per combination varies,
as models in which a corner case appears more quickly can also be driven more
frequently. The software used for survival analysis is lifelines [40]. Figure 5.8
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clear rain fog night

baseline model

expert model rain

expert model fog

expert model night

universal model

Figure 5.8: Model outputs on each weather setup. Under the baseline model, it would
be still possible to drive in rain, whereas fog and night would become a risk. The expert
models perform well in their domain but quite worse in the other ones. On the other
hand, the universal model performs sufficiently well in all weather conditions.

shows the predictions of the models in each weather condition, whereas Table 5.5
presents the total number of corner cases registered with respect to the trained
model and the driven weather conditions. As we can see, there are barely corner
cases in the expert models, which is why we group them together in their own
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model type, the experts type. All observations during the study are visualized
in Figure 5.9(a). In total, we have 48 observations of corner cases that can be
used for survival analysis. Furthermore, the two students drove 406.838 km on
the virtual streets of CARLA.

model type trained
tested

clear rain fog night
baseline clear 4 5 13 17

experts
rain - 0 - -
fog - - 0 -

night - - - 1
universal mix 1 3 1 3

Table 5.5: List of all observed corner cases during weather campaign by model and
tested weather condition.

As a first step, we consider the plot for the Kaplan-Meier estimation in Fig-
ure 5.9(b) for the 3 model types baseline, universal and experts, which shows that
the probability of a corner case occurring is lowest for the expert model, closely
followed by the universal model. The baseline model seems to be very sensitive to
different weather conditions, which is why there is only a survival probability of
63.24% after 300 seconds and at the end of the observation period only 42.65%.

(a) lifespans (b) Kaplan-Meier estimation

Figure 5.9: (a) Lifespans of all observations during the study. Red lines show the
occurrence of a corner case, whereas blue lines are right-censored. The majority of the
drives, approx. 70%, did not lead to a corner case. (b) Kaplan-Meier estimation for all
model types. The probability that no corner case occurs is highest in the expert models,
followed by the universal model. The poor generalizability in bad weather provides that
the survival probability in the base model decreases significantly over time.

We then use the Cox model to obtain the regression coefficients. For this, the
input variables must first be preprocessed. For the weather parameter rain the
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Figure 5.10: The comparison of the hazard ratios shows that the night ensures that a
corner case is more likely to occur. If an expert or universal model is used instead, a
corner case occurs less frequently, which is also evident from the Kaplan-Meier estimate.

values can range from 70 to 100 and for fog from 50 to 100. The parameter night
is assigned to a Boolean variable and the value 1 is set as soon as the sun position
parameter (∈ [−90, 90]) is < 0. Additionally, we distinguish on which model we
are driving, for this we use also a Boolean variable and set a 1 for either the
expert model or the universal model.

Table 5.6 shows the evaluations of the Cox model. The analysis demonstrates
that 3 covariates can be classified as significant, as their confidence interval is
below 0.05. Fog is significant with 92% and rain even only with 58%.

The hazard rate is calculated using the expert model as an example. Since this
value is a boolean variable, it can be calculated as follows:

HRexpert =
hexpert=1(t)

hexpert=0(t)
= 0.02 . (5.14)

Driving with an expert model reduces the hazard rate by 98% with a low ranging
confidence interval.

covariate
hazard ratio

HR
95% confidence interval

for the hazard ratio
confidence level

p
rain 1.01 0.99 - 1.02 0.42
fog 1.01 1.00 - 1.02 0.08
night 5.83 2.23 - 15.22 < 0.005
experts 0.02 0.00 - 0.17 < 0.005
universal 0.17 0.08 - 0.38 < 0.005

Table 5.6: Cox proportional hazards model.

Next we have a closer look to the probabilities for all models in different weather
conditions. Figure 5.11 shows the performance for all models over time and for the
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weather conditions rain, fog, night. The baseline model has the biggest problems
when driving on unseen weather conditions, with the highest probability of a
corner case occurring at night. It also appears to be the most problematic for the
universal and expert models, with significantly higher survival probabilities. The
comparison between the universal and the expert models indicates that the latter
perform noticeably better on their trained domains than the universal models.

(a) baseline (b) universal (c) experts

Figure 5.11: The survival probabilities for rain, fog and night clearly show that the
baseline model struggles with all bad weather settings. The universal model seems to
be more robust, but the probability of survival at night also drops to 69% at the end
of the study, whereas the expert model assures a survival of 95%.

5.2.4 Conclusion

Although the validity of such a few data points must be treated with caution, a
trend does seem to emerge, namely that the use of expert models indeed seems
to be more appropriate, as an omniscient model has to find a balance to perform
well in each domain. Therefore, it may be useful to focus on some basic data and
add other models for special cases that are temporarily responsible for prediction.
Examples of use would be driving in left-hand traffic or in snowy winter regions, so
that an appropriately trained model could be used. It would also be conceivable
to have a separate trained model for each country that may be used when crossing
borders. This solution might be based on the vehicle’s GPS coordinates and would
not require an additional upstream classification network.

5.3 A Taxonomy of Corner Cases in Trajectory
Datasets for Automated Driving [150]

As a next step, corner cases from the Temporal Layer will be considered, in
which several consecutive frames can describe a safety-critical driving situation.
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Especially for autonomous driving vehicles, the focus is on safe navigation in road
traffic, which requires knowledge about future movement and behavior patterns
of all road users. This is why recent studies focus on the task of motion planning
for autonomous vehicles finding a path or trajectory to avoid collisions [131]. The
so-called trajectory of each road-user needs to be predicted in order to avoid
harm. Especially unusual but critical and rare trajectories can be challenging for
AI algorithms and need to be considered in training and validation for machine
learning methods. This is why we introduced a definition of trajectory corner
cases as follows:

A corner case in a trajectory dataset is a highly relevant but mostly very rare
and anomalous trajectory. The relevance of a trajectory is mainly determined by
the interaction with other agents (e.g., road users), the surrounding environment,
norms and (traffic) rules, and most importantly, by the task at hand.

Based on this definition, a taxonomy was developed to help understand critical
driving situations and, if applicable, provide reasons for their occurrence. Here,
corner cases are categorized according to their origin in the driver’s information
processing system, whether human or machine, and the corner case class. For
this purpose, we developed a unified model of the information processing pipeline
for automated vehicles, human drivers, and vulnerable road users (VRUs) with
different stages, see Figure 5.12. We used Wickens’ human information process
pipeline as a role model, which is widely used and generally accepted in traffic
psychology and traffic safety research [155, 171].

road user

environment

perception decision-making

computing and attention resources

knowledge

goal and risk tolerance

execution body dataset recording
trajectory

sensor/sensory data

tr
a
je

ct
o
ry

tr
a
je

ct
o
ry

. . .

Figure 5.12: Schematic of unified processing pipeline for all kinds of road users (human,
automated vehicle or VRU). The figure has been slightly modified for simplification.

The driver information processing system produces data that can be divided into
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different classes of trajectory corner cases, differentiating between single and mul-
tiple trajectories with or without environmental influences. The final taxonomy
with examples can be found in Table 5.7.

stage ego trajectory
ego trajectory &
other road users

ego trajectory &
environment

ego trajectory &
other road users &
environment

perception emergency braking
due to inattention

near collision due to
missed junction sign

wrongly driving in
one-way street due
to overlooked sign

crash due to over-
looked sign

decision
making

high velocity in
sharp corner

near collision in
lane changing due
to time pressure

planned disregard
for a puddle that
covers a large hole

failure to under-
stand priority at
complex crossing

goal and
risk toler-
ance

kick-down start tail gating cutting corners willingly taken right
of way

execution stall engine rear-end collision
because of insuffi-
cient braking

scrape obstacle
when parking

rolling too far into
an intersection due
to insufficient brak-
ing

body tire burst rear-end collision
due to brake failure

collision due to fail-
ing headlights

taken right of way
due to broken wind-
shield or camera op-
tics

computing
and at-
tention
resources

any of the examples from stages 1 – 5

knowledge high velocity in sur-
prisingly sharp cor-
ner

pedestrian at cross-
walk looking away is
interpreted as yield-
ing

U-turn in no passing
area

slow approach to
intersection inter-
preted as giving
right of way

environment crash with fallen
tree

collision due skid-
ding on ice

leaving the road due
to aquaplaning

taken right of way
due to impaired vis-
ibility

trajectory
recording

noisy IMU measurements or failed tracking of ego road user in camera image

Table 5.7: Taxonomy with example situations for trajectory corner cases. The rows
describe the system component where the corner case occurs. The columns identify
the trajectory corner case class, which describes the type of data required to detect the
corner case. Ego refers to the road user causing the corner case. The colors represent
the responsible area in the processing pipeline. The table has been slightly modified for
simplification. c©2023 IEEE

During the experiments from Section 5.1, where two human drivers were driving
in the virtual streets of CARLA, various corner case situations were recorded from
which the trajectory data could subsequently be obtained and classified into the
developed taxonomy. In the following there will be shown some examples that
contributed to the structure of the table, among others.
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In Figure 5.13 an accident occurs even though the ego vehicle is obeying the
traffic rules due to the fact that the road user in the opposite lane is driving
too fast around the curve and crosses the lane of the ego vehicle. Due to the
increased speed, the road user crosses the oncoming lane, so this situation would
be classified as goal and risk tolerance related to the environmental trajectory.

(a) (b) (c)

Figure 5.13: While driving too fast in a tight curve, one road user crossed the oncoming
lane, resulting in a head-on collision between two road users. The consequence of a high
goal and risk tolerance.

A rear-end collision into an end of a traffic jam can be caused by too timid braking
in combination with driving too fast, see Figure 5.14. The road user seems to have
underestimated his own speed or the low speed of the road users ahead. Such
a situation would be classified in the execution stage including ego trajectory &
other road users.

(a) (b) (c)

Figure 5.14: Driving into the end of a traffic jam due to insufficient braking by the road
user resulted in a collision.

Figure 5.15 shows a vehicle driving towards a two-lane traffic circle. Next to
this vehicle is a bus, which somewhat obscures the view of the road. While the
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bus driver allows a cyclist to pass, the vehicle owner collides with him due to
impaired visibility. This situation is not classified as a perception error, because
the cyclist was not perceivable behind the bus. Instead, as the decision-making
should account for the possibility of occluded road users with priority, the error
is attributed to this category.

(a) (b) (c)

Figure 5.15: Due to overlapping phenomena in the traffic cycle, the ego road user could
not see the oncoming cyclist at the right time, which led to a near collision. A perception
error with impaired decision-making.

Figure 5.16 describes the illegal turn into a one-way street due to a perceptual
error, namely overlooking the one-way street sign. Looking only at the ego tra-
jectory, nothing has gone wrong since the vehicle is still on the asphalted road
and does not make any untypical movements. If, on the other hand, we look at
the context, it becomes obvious that overlooking the one-way street places this
perception error in the ego trajectory & environment category.

(a) (b) (c)

Figure 5.16: The unauthorized turn of the ego vehicle into a one-way street leads to a
perception error of the category environment.
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Chapter 6
Conclusion & Outlook

When thinking about autonomous driving vehicles that move safely through traf-
fic, it is necessary to perceive the environment correctly in order to provide safe
driving. To ensure this, deep learning algorithms must be extensively trained and
tested with data required to solve the task. This data should cover numerous driv-
ing situations and ideally also include safety-critical scenes. Scenes can become
safety critical if they were not present in the training data for deep learning al-
gorithms and lead to uncertainty and incorrect predictions when confronted with
them. Therefore, in this work, we have addressed the detection and generation of
such safety-critical driving situations. To this end, the theoretical foundations of
deep learning were first presented, describing the learning process and introduc-
ing semantic segmentation as a computer vision task for autonomous driving. A
driving simulator was then constructed to display the output of a semantic seg-
mentation network to the screen in real-time, allowing a human driver to move
a vehicle in a simulated environment using a control unit, including a steering
wheel and pedals, a seat and one or three monitors. The construction of the sim-
ulator as well as the open source software CARLA, which serves as the simulation
environment for the scientific work, were described in detail. Furthermore, the
inference sensor implemented in CARLA was presented, which enables driving on
the output of a semantic segmentation network in the first place. Additionally,
all improvement steps, including code acceleration techniques, that were neces-
sary to enable driving with the inference sensor in real-time (at least 24 fps) were
explained.

Since this driving simulator is planned to be used for finding safety-critical sit-
uations in road traffic, the term corner case and its different levels needed first
to be introduced. Since the main focus of this work is on the so-called Method
Layer corner case, which is based on epistemic uncertainty, the consideration of
the other layers was partially investigated in side projects, see [17, 111, 150].
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With a well-functioning driving simulator providing a real-time output of a seman-
tic segmentation network and the knowledge about corner cases, the detecting of
the latter was tackled. For this purpose, the driving simulator was equipped with
a second control unit along with a seat and monitor, so that two human drivers
are able to control the same vehicle in the simulation environment. Even though
both drivers can control the same vehicle at the same time, the display output is
different. One of the drivers gets to see the output of the semantic segmentation
network, whereas the other driver sees the original output of CARLA. The latter
is given the task of a supervisor and should only take control of the vehicle as
soon as a safety-critical driving situation arises according to human understand-
ing. With this setup, we were able to recognize and record safety-critical driving
situations that are challenging for the AI, so-called methodical corner cases, in
a first driving campaign. With these recordings, we were then able to train a
model that was less susceptible to methodical corner cases, resulting in longer,
damage-free drivings within a second driving campaign.

Following the example of the first two driving campaigns, a third campaign was
launched. In predefined observation times, it was measured whether and how long
it takes for a corner case to appear. The survival time was examined on models
that were trained on special weather domains (rain, fog, night) and subsequently
tested in these domains. In comparison, a universal model was trained to face all
domains during training, which was also tested on these weather domains. These
runs were evaluated using the Cox proportional hazard model to determine in-
fluencing variables on corner case occurrence frequency. Even though the small
number of data points is not yet significant enough, there seems to be a ten-
dency that expert models are an option for time and cost reasons, which can be
added according to the application at hand. This would be possible, for example,
through an upstream domain classification model that first classifies the current
scene into a domain and then reads in the suitably trained model.

Even though the driving simulator was primarily designed to find corner cases
quickly and safely, it can also be used as a demonstration object to make deep
learning algorithms available to society in the form of visual output. In doing
so, each and every person could form his/her own opinion whether to trust the
”unknown” machine. In addition, this driving simulator should contribute to
the acceptance of a new technology, since autonomous driving under Level 5,
according to scientists and automotive producers, is only a matter of time.

As a demonstration object, it is easy to show the limitations of deep learning
systems and how important the selection of data is for training. Simple change of
e.g. weather parameters is possible by pressing a button to demonstrate difficulties
in for the model unknown domains. Students can also be introduced to the field of
deep learning in a demonstrative way, which can support the university teaching
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mission. In this context, the driving simulator can help to achieve rapid success
in this area playfully, making research fun.

Although a major part of this work has to do with data generation, there is also
another way to increase safety when corner cases occur. This is important because
no matter how much corner case data is produced, there are always unknown
objects hard to deal with or possible combinations of known parameters that can
lead to uncertainty, in the worst case, to traffic accidents. One way to be more
robust against such corner cases is to use at least two redundant systems with
different sensors. In this way, sensor-specific problems can be intercepted by the
other system, leading to increased safety. This is why we introduced the YOdar
approach, which demonstrates that a fusion model using data from two different
sensors, namely camera and radar, provides an improvement in object detection
in a critical domain, if barely known, such as nighttime compared to the results
of each model individually.

Let us now turn to the outlook to conduct further research with the results pre-
sented in this work. Even though we are able to record safety-critical driving
situations with the driving simulator, these are only available in the synthetic
world. There are clear discrepancies between the image quality and the natural
movements of vehicles and pedestrians compared to reality. This domain gap
must be addressed in future research. One way that has become increasingly
popular in recent years is the use of so-called Generative Adversarial Networks
(GAN), which could be used to transfer synthetic images into the real world. The
authors of [76, 78, 183] are already showing promising results. Therefore, we are
optimistic that in the future research will be able to generate real-looking images
from the corner cases created in this work, as these can subsequently be used to
train neural networks with a mixture of real and synthetic images. It could also
save time and money by eliminating the need for expensive labeling of data, as
this information is already present.

It would also be conceivable to carry out the experiments from Chapter 5 in the
real world. Therefore, for example, a driving school vehicle could be used that
can be controlled with two control units and is equipped with a camera that
captures real-time images and transmits them to a computer that also feeds the
image through a semantic segmentation network. This output could be visualized
to the semantic driver through VR (Virtual Reality) glasses. In this case, the
safety driver would take over the task of the driving instructor, who ensures that
safe driving is guaranteed, as known in driving schools. In the process, driving
situations similar to the setup in Chapter 5 can be recreated with the eyes of the
AI and safety-critical driving situations can be found in reality. Of course, these
experiments should first be conducted in a closed area and at low speeds.

The promising results from the YOdar approach could be investigated in more
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detail as soon as more radar data is available. Talking of which, as the YOdar
approach uses real data, this could also be outsourced to the synthetic world once
a physics-based sensor is implemented in a simulated environment. This might
also save time and costs, although the domain shift between the real and synthetic
world would also need to be investigated. An interesting research question would
also be whether the use of a third sensor, e.g. LiDAR, makes sense and/or whether
two sensors are sufficient to increase safety to such an extent that the cost-benefit
calculation using three sensors does not add up. The incorporation and use of
two sensors is from a vehicle manufacturer’s point of view preferable to three, as
long as the level of safety remains reasonably the same. Real-time processing of
all three sensor data can also be difficult and requires additional research.

In summary, the addition of corner cases for deep learning algorithms in automo-
tive is relevant for safety reasons and a contribution to this can be made by the
driving simulator presented in this thesis, which makes the following possible:

Driving with the eyes of AI for corner case generation.
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