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Chapter 1
Introduction

The development and improvement of deep convolutional neural networks (DNNs)
for complex tasks such as detecting diseases in medical images or operating as
perception systems in automated vehicles is a rapidly evolving research area. To
obtain information about an entire scene, semantic segmentation DNNs classify
image data on pixel level, providing further information such as location, shape or
context of an object. Restricted to a closed semantic world, which assumes that
all objects can be assigned to one of the predefined classes, state-of-the-art DNNs
as for instance the DeepLabV3+ [25] or the PSPNet [155] already achieve high
segmentation accuracy. However, these DNNs are ill-equipped to operate in an
open world, where they will inevitably be confronted with domain shifts or novel
classes. The first refers to a shift of the data generating distribution, which can be
due to different day times, weather conditions or countries. This means a changed
appearance of known classes, causing a performance drop of the segmentation
DNN. Furthermore, novel classes may appear, regardless of whether the domain
is shifted or not. For example, this happens due to technical innovations such
as e-scooters, which have been approved for road traffic in Germany since June
2019, or to a change of location, e.g. from urban to coastal street scenes. The
semantic segmentation DNN employed in Figure 1.1 was trained on the urban
Cityscapes dataset [29], which e.g. does not include any boats. However, near
the coast, boats may appear frequently, either as trailer, or, as depicted in the
example, carried or dragged by pedestrians. Urged to make a decision, the DNN
incorrectly assigns the boat pixels to known classes such as fence, pedestrian or
car. This issue of selecting a class despite having a low confidence is addressed
by adding an I don’t know output class.

Open World Open world approaches embrace the detection and learning of
unknown classes. However, there exist many notions of anomaly detection (or

1



1 Introduction

coast scene images predicted semantic segmentation

Figure 1.1: A semantic segmentation DNN trained on German urban street scenes,
applied to scenes near the coast of Croatia (top) and Malta (bottom). Pedestrians are
crossing the street with a boat, which is not included in the model’s underlying classes.

segmentation), which are defined inconsistently in literature. The following tax-
onomy has been introduced in [147]. Anomaly detection describes the task of
identifying all instances, either in training or test data, that do not fit the model’s
underlying distribution. If this task is applied during inference of the test data,
i.e., without any knowledge of labels or the data generating distribution, it is
referred to as out-of-distribution (OoD) detection. The intention of open world
applications is not only to detect anomalous objects, but novel classes. This is
denoted as novelty detection, i.e., the detection of objects which correspond to a
new semantic class. Open set recognition describes the task of fitting a machine
learning model to work well on in-distribution data while recognizing anomalies.
When the model is further extended by novel classes, the task is termed open
world recognition. This is, while open set recognition only demands the model to
classify anomalous or novel objects as none-of-the-knowns, open world recognition
requires a distinction of different novel semantic classes as well as corresponding
labels. Besides, there is also the task of outlier detection, which seeks to detect
covariate or label values that are extreme and therefore distort the fitting of a
machine learning model. For example, this could be a consequence of a defect
sensor or direct sun exposure. Thus, outlier are extreme or rare observations,
drawn from the data generating distribution, while anomalies are drawn from a
different distribution as depicted in Figure 1.2.

Solutions of open world recognition problems are defined as a tuple [6], which in-
cludes a model, a novelty detector, a labeling process and an incremental learning

2
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Figure 1.2: Open world recognition builds upon novelty detection, which can be under-
stood as detecting anomalies from another distribution and equip them with labels.

function. The most basic concept is to collect anomalous data samples belong-
ing to novel classes. In order to incrementally train a model to adapt to these
novel classes, annotated data, called ground truth (GT), is required. In supervised
learning approaches, the data is annotated by humans. There are well-established
methods for supervised incremental learning that address the issue of catastrophic
forgetting [94], i.e., the performance drop on previously acquired knowledge while
learning the novel classes. Although originally developed for image classification
or object detection tasks, some incremental learning approaches are also applica-
ble to semantic segmentation [98]. Since human annotators are expensive, semi-
and weakly supervised approaches were developed, which utilize (few) labeled and
unlabeled data. Few-shot learning approaches require at most 5 labeled samples
of a novel class. Even more sophisticated zero-shot approaches learn novel classes
without any image GT, but with information from different modalities, e.g. from
text about an object’s appearance, properties or functionalities. Finally, unsu-
pervised approaches create pseudo-labels by grouping the anomalies into visually
related clusters [50, 134]. Each cluster thus constitutes a novel, but unlabeled,
semantic class. While this is rather basic for image classification, semantic seg-
mentation requires pixel-level pseudo-labels.

Contribution This work addresses the problem of learning novel classes in an
unsupervised manner, with focus on the semantic segmentation of street scenes.
Currently, research in this area suffers from a lack of datasets for anomaly de-
tection, and in particular for novelty detection. Anomaly datasets require a wide
variety of anomalous object types to ensure that methods can generalize well.
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However, most of the anomalies such as bottles, balls or tree stumps are negligible
when learning new classes, hence it is sufficient to recognize them as anomalies or
obstacles on the road. For novelty detection, datasets are needed which contain
frequently occuring novelties such as animals, boats or e-scooters in the test data.
Ideally, these objects are not present in the training images. A survey [12] of the
existing datasets for anomaly segmentation in street scenes provides a structured
overview, discusses the different strategies and issues regarding dataset creation,
and the general problem of not having a universal definition of normality. Several
datasets have been created in the context of this thesis. The RoadAnomaly21 and
RoadObstacle21 datasets [21] are part of the SegmentMeIfYouCan1 [21] bench-
mark, which provides a comparative overview of existing anomaly segmentation
approaches. The Wuppertal OoD tracking datasets [88] contain video sequences
for the detection and tracking of anomalies over multiple frames, followed by
clustering, where novel classes are identified by clustering feature embeddings of
image patches that are tailored to the proposed anomalies.

The first proposed approach [134] on open world recognition extends a seman-
tic segmentation DNN by novel classes, using anomaly segmentation along with
clustering as labeling process. Next, pseudo-labels are generated by mapping the
cluster labels back to a pixel-level. The DNN is fine-tuned on the pseudo-labeled
data by incremental learning, adapting to the novel classes without any human-
annotated GT. As the first attempt to extend a semantic segmentation DNN by
novel classes using clustering, it is considered as a baseline for further approaches
in the field of unsupervised open world semantic segmentation.

Since the baseline approach suffers from noisy pseudo-labels and from clustering
methods that are highly sensitive to the choice of hyperparameters, the question
arises, whether the clustering of anomalies can be incorporated into the fine-
tuning of the model. In a more sophisticated approach [133], the anomalies are
not clustered and pseudo-labeled in a preprocessing step, but a matrix of pairwise
distances between them is computed. Then the model is extended by empty
classes and trained with a modified loss function. This loss pushes the model to
concentrate the softmax scores for anomalies in the empty classes, and based on
the distance matrix, it distributes the anomalies to the new classes.

In summary, this thesis encompasses several works on anomaly datasets, such as
a benchmark for evaluating anomaly segmentation approaches and an anomaly
retrieval and clustering approach tailored to video sequences, and finally two
pioneering approaches in the field of unsupervised open world recognition for
semantic segmentation.

1https://segmentmeifyoucan.com
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Structure The thesis is organized as follows. The fundamentals in Chapter 2
give an overview of the theory behind deep learning, providing the basis for the
methods developed in the main chapters. Section 2.1 covers learning theory for
supervised learning, including learnability and sources of error and uncertainty in
machine learning. Next, Section 2.2 provides an overview of deep (convolutional)
neural networks, giving a mathematical description of feed forward networks in
general and going into more detail on convolutional neural networks as well as
on optimization algorithms applied to neural networks. DNNs can be used in
computer vision to interpret and understand visual data such as videos or im-
ages. More specifically, they can learn to identify, classify, or localize objects in
the visual world. The computer vision tasks image classification and semantic
segmentation are considered in Section 2.3, including a review of state-of-the-art
DNNs and common evaluation metrics. While the previous sections were mostly
tailored to supervised learning approaches, there is a wide variety of machine
learning paradigms that address learning with few labeled or even unlabeled data
samples, some of which are presented in Section 2.4.

Chapter 3 deals with anomalies in street scenes, including datasets and applica-
tions, starting with a survey of datasets in Section 3.1, that discusses approaches
to generating anomalous datasets. It further gives a definition of normality, and
provides an overview of existing datasets. Then, Section 3.2 provides an overview
of several anomaly segmentation methods and introduces an approach for anomaly
clustering and retrieval, along with appropriate evaluation metrics.

The open world recognition approach for semantic segmentation of street scene
images with pseudo-labels is presented in Chapter 4. It starts with an introduction
to the topic in Section 4.1, outlining the main steps of the method and describing
the experimental setup, followed by the related works in Section 4.2. The discov-
ery of novel classes and the pseudo-labeling process are presented in Section 4.3,
describing anomaly detection by meta regression, clustering of image patch em-
beddings and novelty segmentation. Then, detailed information on the extension
of the DNN’s semantic space by class-incremental learning is given in Section 4.4,
followed by experiments and results in Section 4.5 and a conclusion in Section 4.6.

Next, the approach of novelty detection with empty classes is presented in Chap-
ter 5. Starting with an introduction in Section 5.1 and the related works in Sec-
tion 5.2, the method for image classification is introduced in Section 5.3. It is
divided into four building blocks, which are the learning model, the OoD detec-
tion approach, the computation of a distance matrix, and the class-incremental
learning with the proposed loss functions. In Section 5.4, the approach is adapted
to the task of semantic segmentation. The experiments and results are provided
in Section 5.5. Finally, Section 5.6 discusses possibilities for further improvements.

This thesis concludes in Chapter 6 with a summary of the main contributions
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along with a discussion of the inherent difficulties and challenges of the proposed
open world approaches, and an outlook on future work raising possible improve-
ments.
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Chapter 2
Foundations

To enable machines like cars or robots to interact with the world, they need
to be aware of their environment. Cameras or different sensors such as radar
or LiDAR are used to create a representation of the surrounding area, which is
then interpreted by a parameterized statistical model. Deep learning employs
artificial neural networks which are capable of solving highly complex perception
tasks. However, these neural networks require a huge amount of labeled data to
learn the best parameterization, which is time-consuming and expensive. This
chapter introduces the theoretical foundations of statistical learning and deep
neural networks for image data, followed by an overview of learning approaches
which leverage unlabeled data to improve the performance of a neural network.

2.1 Statistical Learning Theory for Supervised
Learning

In the context of statistical learning with parameterized models, learning refers
to optimizing the model parameters. To this end, the performance of a model is
measured by computing a loss function over labeled training samples. Usually,
the parameter choice is restricted to a hypothesis space, which is a predefined
set of feasible models. This chapter introduces the main learnability concepts for
hypothesis spaces. Furthermore, the error of a statistical model is decomposed
into different error types, showing that the error can be minimized if each of the
errors is controllable.

7



2 Foundations

2.1.1 Learning Models and Learnability

Supervised machine learning approaches employ parameterized statistical models
fθ : Y × X → (0, 1) with∫

Y
fθ(y|x)dy = 1 or

∑
y∈Y

fθ(y|x) = 1 ,

for a continuous or a discrete target space Y , respectively, to estimate a data
generating distribution PX,Y in terms of a conditional probability density function
pY |X . This is done by observing a training set S = {(xi, yi)}mi=1 ∼ P⊗mX,Y , which is
assumed to be independent and identically distributed, to learn the parameters
θ ∈ Θ of the statistical model, such that fθ ≈ pY |X . Thereby, the learning
algorithm can be restricted to a predefined set of functions, called the hypothesis
space H ⊆ {fθ : θ ∈ Θ}.

A popular statistical method for estimating the model parameters is maximum
likelihood estimation (MLE) [9, 127], yielding a parameter estimate θ̂, which
maximizes the likelihood, i.e., which satisfies the equation

θ̂ = argmax
θ∈Θ: fθ∈H

m∏
i=1

fθ(yi|xi) . (2.1)

This is done by solving the first-order optimality condition ∇θ`(S|fθ) = 0 of the
negative log-likelihood function

`(S|fθ) = − log(
m∏
i=1

fθ(yi|xi)) = −
m∑
i=1

log(fθ(yi|xi)) . (2.2)

The true loss of a statistical model fθ in terms of the negative log-likelihood is
defined as

L(fθ) = E(x,y)∼PX,Y [− log(fθ(y|x))] . (2.3)

Since the data generating distribution PX,Y is unknown, a learning algorithm can
only estimate the true loss in terms of the empirical loss function

LS(fθ) =
1

m

m∑
i=1

− log(fθ(yi|xi)) , (2.4)

which averages the negative log-likelihood over the examples in S. A learning
algorithm is called an empirical risk minimizer (ERM) [127], if it yields a param-
eterization which satisfies

fθ̂ ∈ argmin
fθ∈H

LS(fθ) . (2.5)

8



2.1 Statistical Learning Theory for Supervised Learning

It follows, that with the negative log-likelihood as empirical loss function, the
ERM coincides with MLE.

For a classification task with a finite set of classes Y = {1, . . . , Q}, the cross-
entropy loss is employed as

`CE(y, fθ) = −
Q∑
q=1

1{q=y} log(fθ(q|x)) = − log(fθ(y|x)) ∀(x, y) ∈ S , (2.6)

which is just the same as the negative log-likelihood. Therefore, the conditional
probability pY |X is represented by a so-called one-hot encoding with p(y|x) = 1
for (x, y) ∈ S and p(y′|x) = 0 for all y′ 6= y, (x, y) ∈ S.

Furthermore, the negative log-likelihood is directly related to the Kullback-Leibler
(KL) divergence [72] between the data and the model distributions

KL(pY |X ||fθ) = E(x,y)∼PX,Y [log(
pY |X(y|x)

fθ(y|x)
)] (2.7)

= −E(x,y)∼PX,Y [log(fθ(y|x))] + E(x,y)∼PX,Y [log(pY |X(y|x))] (2.8)

= L(fθ)− L(pY |X) ,

which satisfies KL(pY |X ||fθ) ≥ 0 with KL(pY |X ||fθ) = 0 if and only if pY |X = fθ [9],
but is neither symmetric, nor does it satisfy the triangle equality [102]. With that,
learning can be understood as minimization of the KL divergence between the true
and the estimated distributions.

Assuming that the realizability assumption pY |X ∈ H is satisfied, a hypothesis
space H is called probably approximately correct (PAC) learnable [127], if there
exists a sample complexity function mH : (0, 1)2 → N and a learning algorithm
A, which yields a function fθ̂ = A(S) so that for all ε, δ ∈ (0, 1), PX,Y and
m ≥ mH(ε, δ), it holds that

P(x,y)∼PX,Y ([L(fθ̂)− L(pY |X)] > ε) ≤ δ . (2.9)

Whenever the realizability assumption is not satisfied, a learner cannot eliminate
the model error

εmodel = min
fθ∈H
L(fθ)− L(pY |X) . (2.10)

Agnostic PAC learnability therefore only requires that the KL divergence con-
verges to this model error, i.e.,

P(x,y)∼PX,Y ([L(fθ̂)− L(pY |X)] > ε+ εmodel) ≤ δ . (2.11)

That is, a hypothesis space H is (agnostic) PAC learnable [127], if there exists a
learning algorithm, which probably – with confidence (1− δ) – yields an approxi-
mately – up to an error of ε (+ εmodel) – correct function if the sample size m is
sufficiently large.

9



2 Foundations

Furthermore, a hypothesis space H is agnostically PAC learnable, whenever it
has the uniform convergence property [127], i.e., whenever there exists a sample
complexity function mUC

H : (0, 1)2 → N, so that for all ε, δ ∈ (0, 1), PX,Y and
m ≥ mUC

H (ε, δ), S ∼ P⊗mX,Y is ε-representative with a probability of at least 1− δ,
or formally,

P(x,y)∼PX,Y ({∃ fθ ∈ H : |LS(fθ)− L(fθ)| > ε}) ≤ δ . (2.12)

2.1.2 Sources of Error and Uncertainty

H

fθbest
pY |X

fθ∗
fθ̂

εmode
l

ε s
a
m
p
li
n
g

εo
pt

Figure 2.1: Hypothesis space H which does not include the true probability distribution
pY |X , illustrating the sources of model, sampling and optimization errors. Here, fθbest =
argminfθ∈H L(fθ) denotes the best model in H, fθ∗ = argminfθ∈H LS(fθ) an ERM and
fθ̂ = A(S) the model obtained by an algorithm A.

The true error of a learned model A(S) = fθ̂ regarding the true conditional prob-
ability density function pY |X can be expressed as the KL divergence KL(pY |X ||fθ̂),
which can be upper bounded by a telescopic sum decomposing into the model,
optimization and sampling error [127], Figure 2.1. With fθ∗ ∈ argmin

fθ∈H
LS(fθ), the

error decomposition is stated as

KL(pY |X ||fθ̂) = L(fθ̂)− L(pY |X)

≤ inf
fθ∈H
L(fθ)− L(pY |X) model error

+ LS(fθ̂)− LS(fθ∗) optimization error

+ 2 sup
fθ∈H
|L(fθ)− LS(fθ)| sampling error

which is proved as follows1.

1Private discussion with H. Gottschalk
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2.1 Statistical Learning Theory for Supervised Learning

Proof.

KL(pY |X ||fθ̂) = L(fθ̂)− L(pY |X)

= L(fθ)− L(pY |X) for any fθ ∈ H
+ LS(fθ̂)− LS(fθ)

+ L(fθ̂)− LS(fθ̂)

+ LS(fθ)− L(fθ)

≤ L(fθ)− L(pY |X)

+ LS(fθ̂)− LS(fθ∗) LS(fθ∗) ≤ LS(fθ)

+ L(fθ̂)− LS(fθ̂)

+ LS(fθ)− L(fθ)

≤ L(fθ)− L(pY |X)

+ LS(fθ̂)− LS(fθ∗)

+ 2 sup
fθ′∈H

|L(fθ′)− LS(fθ′)|

≤ inf
f ′θ∈H
L(f ′θ)− L(pY |X) inf

f ′θ∈H
L(f ′θ) ≤ L(fθ)

+ LS(fθ̂)− LS(fθ∗)

+ 2 sup
fθ∈H
|L(fθ)− LS(fθ)|

The model error
εmodel = inf

fθ∈H
L(fθ)− L(pY |X) (2.13)

arises from restricting the learner to a predefined hypothesis space H, which was
already discussed in the context of agnostic PAC learning, Equation 2.10. It can
be reduced by enlarging the hypothesis space at the cost of increased complexity.
Obviously, this error disappears whenever the realizability assumption is satis-
fied. In terms of neural networks, the model error can be controlled due to their
universal approximation property.

Definition 2.1 (Universal Approximation [15]). Consider a function space F ,
endowed with a distance d : F × F → R, and let H be a subset of F including
functions which can be represented by a neural network. Then, H is a universal
approximator for the space F , if H is d-dense in F , i.e.,

∀f ∗ ∈ F , ∀ε > 0, ∃f ∈ H : d(f ∗, f) < ε . (2.14)

The optimization error
εopt = LS(fθ̂)− LS(fθ∗) (2.15)
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occurs when the computation of the ERM is NP-hard and thus the learning algo-
rithm A, e.g. a heuristic, only returns a proxy for fθ∗ . Consequently, it is reducible
by employing a proper optimization algorithm such as stochastic gradient descent.
Finally, the sampling error

εsampling = sup
fθ∈H
|L(fθ)− LS(fθ)| (2.16)

can be controlled if H has the uniform convergence property, Equation 2.12,
stating that the sampling error vanishes for a sufficiently large sample size.

Instead of the general error inherent in a model, one is often interested in the
predictive uncertainty for a concrete input x ∈ X . It can be quantified e.g. by
computing the entropy [102]

H(fθ(·|x)) =
∑
q∈Y

fθ(q|x) log(fθ(q|x)) , (2.17)

which measures the variance of fθ(·|x) or the prediction confidence. Therefore,
the entropy score is misleading for uncalibrated confidence. In [53], it has been
shown that the class of neural networks with rectified linear unit (ReLU) acti-
vations produces predictions with arbitrarily high confindece for far away from
the training data. Especially in saftey-critical applications such as automated
driving, neural networks should know when they don’t know [96].

Similar to the model error, the predictive uncertainty can also be decomposed into
different sources, which are epistemic and aleatoric uncertainty [60]. Epistemic
uncertainty includes the reducible part of the uncertainty. It is related to the
model and the optimization error and thus, reducible by minimizing the respec-
tive errors. Aleatoric uncertainty corresponds to the irreducible part, explaining
the variability in outcome due to randomness, caused by a non-deterministic de-
pendency between X and Y , e.g. when prediciting the outcome in coin flipping.
That is, aleatoric uncertainty is tailored to the data, while epistemic uncertainty
denotes the uncertainty about the choice of the model parameters θ, see Fig-
ure 2.2.

2.2 Deep Neural Networks

Neural networks are statistical models, which, in the context of supervised learn-
ing, approximate a probability density function pY |X over Q classes by fitting a
parameterized statistical model fθ : X → (0, 1)Q to a labeled dataset S ∼ P⊗mX,Y .
A popular type of neural networks is the feedforward neural network, which is a
chain of functions or layers that are connected by weight matrices. The input

12
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x1

x2

aleatoric uncertainty epistemic uncertainty

x1

x2

fθbest

Figure 2.2: (Left): since the classes are not separable, the model exhibits high aleatoric
uncertainty for the red exampel, although pY |X is known. (Right): the small amount
of data causes high epistemic uncertainty regarding the parameter choice.

flows from one to the next layer by matrix multiplications. In order to solve tasks
with high complexity, the number of layers increases, meaning that a neural net-
work becomes deeper. However, the capacity of a neural network is limited by
computational constraints. Convolutional neural networks reduce the parameters
of a neural network by replacing matrix multiplications with convolution oper-
ations. This chapter introduces feedforward and convolutional neural networks
and explains how to optimize the parameters of neural networks.

2.2.1 Feedforward Neural Networks

Feedforward neural networks are a specific type of neural networks, which can be
described by an acyclic or feedforward graph, i.e., the information flows only in
one direction. In its simplest form, a feedforward neural network consists of one
perceptron neuron.

Definition 2.2 (Perceptron Neuron [121]). Let x ∈ X , dim(X ) = n be an input
vector. A perceptron neuron is a mapping fθ : X → {0, 1} with

fθ(x) =

{
1 ωᵀx+ b > 0

0 otherwise
, (2.18)

where the parameters θ = {ω, b} consist of a weight vector ω ∈ Rn and a bias
b ∈ R.

13
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The perceptron neuron is a deterministic model, capable of solving any binary
classification problem for a linearly separable training dataset [9] by thresholding
on the weighted sum of the input with threshold −b. In order to solve more com-
plex tasks than binary classification, the perceptron neuron has been extended
to the multilayer perceptron (MLP) [44] or multilayer neural network, which is a
composition of multiple functions or layers. According to the universal approxi-
mation theorem, they can approximate any continuos function.

x1

x2

. . .

xn0

1

input layer

z
(1)
1

z
(1)
2

z
(1)
3

. . .

z
(1)
n1

1

hidden layer

fθ(x)

output layer

Figure 2.3: A multilayer neural network with one hidden layer and one output neuron.
The weights and biases are omitted in this visualization.

Definition 2.3 (Multilayer Neural Network [44]). Let x ∈ X be an input vector
and fθ(0)(x) = x the input layer. A multilayer neural network is a mapping
fθ : X → RQ, Q ∈ N, which is a composition of L ∈ N, L ≥ 2 layers

fθ(x) = (fθ(L) ◦ fθ(L−1) ◦ . . . ◦ fθ(1))(x) , (2.19)

where fθ(1) , . . . , fθ(L−1) are the hidden and fθ(L) the output layer. Let nl ∈ N, l ∈
{0, . . . , L} denote the number of neurons in layer fθ(l) . The set of parameters
θ = {θ(l)}Ll=1 with θ(l) = {ω(l), b(l)} consists of weight matrices ω(l) ∈ Rnl×nl−1 ,
linking each layer to the preceding layer, and bias vectors b(l) ∈ Rnl . The output
per layer is defined as

z(l) = fθ(l)(z
(l−1)) = φ(ω(l)z(l−1) + b(l)) , l ∈ {1, . . . , L}, z(0) = x , (2.20)

where φ : Rnl → Rnl denotes an activation function.
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Figure 2.4: Graphs of the ReLU, leaky ReLU, sigmoid and tanh activation functions
and their respective derivatives for an interval from −3 to 3.

A multilayer neural network consisting of one hidden layer and one output neuron
is illustrated in Figure 2.3.

In order to obtain the universal approximation property, activation functions,
cf. Figure 2.4, perform non-linear transformations to the input. One of the most
widely used activation functions is the sigmoid or logistic activation function,

φsigmoid(a) =
1

1 + e−a
∈ [0, 1] , (2.21)

which takes real values in [0, 1] and is thus commonly used to predict probabili-
ties. It is differentiable and provides a smooth gradient, however, the derivative
saturates for large positive or negative numbers, which causes vanishing gradients.
The same holds for the tanh activation function

φtanh(a) =
ea − e−a

ea + e−a
∈ [−1, 1] , (2.22)

however, it is zero centered, which simplifies learning for the next layer. Thus, it
is usually preferred to the sigmoid activation function. The rectified linear unit
(ReLU) activation function

φReLU(a) = max(0, a) ∈ [0,∞) (2.23)
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is the default activation function recommended for use with most MLPs. As
it is a piece-wise linear function with two linear pieces, it preserves many of
the properties which simplify the optimization with gradient-based methods and
which make the model generalize well. Furthermore, it does not require floating
point operations, allowing a fast computation. However, it causes the dying ReLU
problem, since the gradient becomes zero on the negative half-axis. Consequently,
the weights and biases of some neurons won’t be updated, which can create “dead”
neurons, i.e., neurons which never get activated. Hence, the leaky ReLU

φleakyReLU(a) = max(0.1 · a, a) ∈ (−∞,∞) , (2.24)

adds a small positive slope. Although not zero, gradients on the negative half-axis
are still small values which makes learning time-consuming. Further modifications
of the ReLU function are not discussed in this work.

For classification problems with Y = {1, . . . , Q}, the values of the output neurons
should represent estimates of the probabilities pY |X(y|x) for an input x ∈ X to
have class affiliation y ∈ Y . Therefore, the softmax function

σ(z(L))i =
ez

(L)
i∑Q

j=1 e
z
(L)
j

∈ [0, 1], i = 1 . . . , Q (2.25)

is applied in order to convert the output of the neural network into a probability
distribution of q possible outcomes. The final class prediction for an input x ∈ X
is then obtained by applying a decision rule, which is usually the maximum a-
posteriori principle [9], yielding

ŷ = argmax
q∈Y

fθ(x)q . (2.26)

While multilayer neural networks perform well on many tasks where the input
space X is low-dimensional, they are limited by the curse of dimensionality [5, 9].

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are feedforward neural networks with at
least one convolutional layer, in which the general matrix multiplication is re-
placed by the convolution operation. Convolution layers reduce the amount of
parameters by parameter sharing. Instead of a weight matrix, where each weight is
applied to the input once, convolution layers consist of a set of parameters, called
kernel, which slides over the input, using the same parameters multiple times. In
contrast to fully connected neural networks, where each neuron is connected to
every neuron in the next layer, CNNs have sparse interactions. Furthermore, they
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are capable of learning translation invariances. In particular in computer vision,
where the model inputs are images, neural networks need to be invariant to trans-
lations in order to recognize instances of the same class, regardless of e.g. their
size, rotation or position in the image. Convolution layers are usually followed
by a pooling layer to reduce redundancy, and a final fully connected layer which
maps the extracted features onto the output classes. Furthermore, normalization
layers can be added to increase the stability of the CNN.

original image blurred image horizontal edges

Figure 2.5: Application of convolutions in image processing, using kernels for Gaussian
image blurring and horizontal edge detection, respectively.

The idea of transforming an image by convolutions is also exploited in image
processing, where fixed kernels instead of learnable parameters are employed to
perform operations on an image, e.g. for edge detection, image sharpening or
blurring. In Figure 2.5, the kernels for horizontal edge detection and Gaussian
image blurring,

kblur =
1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 & kedge =


0 0 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0


are applied to each color channel of an RGB image separately, and the resulting
feature maps are averaged or stacked, respectively.

Definition 2.4 (Convolution Operation [44]). In general, a convolution is an
operation on two real-valued integrable functions x : R → R and k : R → R,
denoted by ∗ and defined as

(x ∗ k)(i) =

∫
R
x(j)k(i− j)dj . (2.27)

In machine learning applications, these functions correspond to the discrete input
and kernel vectors. Therefore, we introduce the discrete convolution operation.
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∗ =

x3,0 x3,1 x3,2 x3,3

x2,0 x2,1 x2,2 x2,3

x1,0 x1,1 x1,2 x1,3

x0,0 x0,1 x0,2 x0,3

0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0

k1,−1 k1,0 k1,1

k0,−1 k0,0 k0,1

k−1,−1 k−1,0 k−1,1

c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,2 c1,3

c2,0 c2,1 c2,2 c2,3

c3,0 c3,1 c3,2 c3,3

image
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Figure 2.6: Application of a 2D discrete convolution (or cross correlation) with zero
padding.

Definition 2.5 (Discrete Convolution Operation [44]). Let x = (xi)
n
i=1 ∈ X be an

input vector, k = (ki)
K
i=−K ∈ R2K+1 a kernel. The discrete convolution operation

is defined as

ci = (x ∗ k)i =
∑
j∈Z

xjki−j , i ∈ {1, . . . , n} , (2.28)

where xi = 0 ∀i /∈ {1, . . . , n}, ki = 0 ∀i /∈ {−K, . . . ,K}.

The discrete convolution can also be applied to two-dimensional input data, e.g.
to a grayscale image.

Definition 2.6 (2D Discrete Convolution Operation [44]). Let x = (xi,j)
H,W
i,j=1 ∈ X

be a two-dimensional input, k = (ki,j)
K
i,j=−K ∈ R2K+1×2K+1 a quadratic kernel.

The two-dimensional discrete convolution operation is defined as

ci,j = (x ∗ k)i,j =
∑
r∈Z

∑
s∈Z

xr,ski−r,j−s , i ∈ {1, . . . , H}, j ∈ {1, . . . ,W} , (2.29)

where xi,j = 0 ∀i /∈ {1, . . . , H}, j /∈ {1, . . . ,W}, ki,j = 0 ∀i, j /∈ {−K, . . . ,K}.
The discrete convolution operation can be extended to even higher dimensional
data and for non-quadratic kernels.

Usually, kernels are chosen to be significantly smaller than the input data. Hence,
summing over the kernel indices reduces the number of operations and is there-
fore computationally more efficient, which is why the cross-correlation function is
usually implemented instead.

18



2.2 Deep Neural Networks

∗ =
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Figure 2.7: Application of a depth-wise convolution (or cross correlation) with three
kernels to an RGB image. Each 3×3 kernel slides across one image channel with stride
δ = 1, producing three feature maps which are fused, for example by averaging.

Definition 2.7 (Cross-Correlation [44]). Let x = (xi,j)
H,W
i,j=1 ∈ X be a two-

dimensional input, k = (ki,j)
K
i,j=−K ∈ R2K+1×2K+1 a quadratic kernel. The cross-

correlation is defined as

ci,j = (x ∗ k)i,j =
∑
r∈Z

∑
s∈Z

xi+r,j+skr,s (2.30)

=
K∑

r=−K

K∑
s=−K

xi+r,j+skr,s

where xi,j = 0 ∀i /∈ {1, . . . , H}, j /∈ {1, . . . ,W}.

The cross-correlation is the same as the convolution with the kernel being flipped
on both axes. Adding zero rows and columns around the input matrix x is referred
to as zero padding, allowing the computation of a feature map c ∈ RH×W of
the same size as the input and the retainment of boundary information. The
computation of the feature map is visualized in Figure 2.6 as a kernel, which
slides across an image. The step size δ ∈ N, by which the kernel moves in each
convolution, called stride, can be incorporated into the cross-correlation as follows.

Definition 2.8 (Cross-Correlation with Stride [44]). Let x = (xi,j)
m,n
i,j=1 ∈ X be

a two-dimensional input, k = (ki,j)
K
i,j=−K ∈ R2K+1×2K+1 a quadratic kernel and

δ ∈ N the stride. The cross-correlation with stride is defined as

ci,j = (x ∗ k)i,j =
∑
r∈Z

∑
s∈Z

xi+r,j+skr,s (2.31)

=
K∑

r=−K

K∑
s=−K

xδi+r,δj+skr,s
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where xi,j = 0 ∀i /∈ {1, . . . ,m}, j /∈ {1, . . . , n}.

Commonly, a convolution layer consists of multiple kernels to learn different visual
features. Besides the standard point-wise convolution, different types of convolu-
tion layers like the transposed or the dilated convolution have been devised. For
three dimensional inputs as in Figure 2.7, depth-wise convolutions apply separated
2D kernels to each color or depth channel of the input.

Pooling functions are applied in neural networks to replace the output of the pre-
ceding layers by a summary statistic of the surrounding values like the maximal
or the average value as visualized in Figure 2.8 and Figure 2.9. Since pooling
consolidates information of a neighborhood, it can be applied to reduce the di-
mension of an input feature map by using non-overlapping pooling regions [44],
i.e., using a stride δ = p, p ∈ N for a p× p pooling region cf. Figure 2.8.

max. pooling 2× 2

stride= 2

1 2 3 4

3 2 1 0

4 6 7 8

1 1 2 3

3 4

6 8

maximum pooling

average pooling 2× 2

stride= 2

1 2 3 4

3 2 1 0

4 6 7 8

1 1 2 3

2 2

3 5

average pooling

Figure 2.8: Example for applying maximum and average pooling, respectively.

original image max pooling average pooling

Figure 2.9: Illustration of maximum and average pooling applied to an RGB image,
using 9× 9 non-overlapping pooling regions.

Definition 2.9 (Maximum and Average Pooling). Let x = (xi)
H,W
i,j=1 ∈ X be an

input, p× p, p ∈ N the size of the pooling region and δ ∈ N the stride. Maximum
pooling is defined as

ci,j = max
1≤r,s≤p

xδ(i−1)+r,δ(j−1)+s . (2.32)

Average pooling is defined as

ci,j =
1

p2

p∑
r=1

p∑
s=1

xδ(i−1)+r,δ(j−1)+s . (2.33)
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A CNN can be divided into two main parts, which are feature extraction and
classification. The features are extracted by the convolution and pooling layers.
These are then mapped to the output classes by fully connected layers, where
each neuron is connected to every neuron in the next layer by a weight vector, to
learn non-linear combinations of the features.

Finally, batch normalization layer [61] are usually included in CNNs to adaptively
reparameterize DNNs during training. They are applied to the input and hidden
layers of a DNN in order to standardize the layer inputs.

Definition 2.10 (Batch Normalization [44]). Let A(l) = (a
(l)
i )mbatch

i=1 ∈ Rmbatch×nl ,
l ∈ {0, . . . , L−1} denote the batch activations, where a(l) = ω(l)z(l−1) +b(l). Then,
the mean and standard deviation are computed by

µ̂ =
1

mbatch

mbatch∑
i=1

A
(l)
i,• (2.34)

and

σ̂ =

√√√√ζ +
1

mbatch

mbatch∑
i=1

(A(l) − µ̂)2
i , (2.35)

respectively, where ζ is a very small number to ensures that σ̂ > 0. With that,
the activations are replaced by

Ā(l) =
A(l) − µ̂

σ̂
. (2.36)

During training, the mean and standard deviation are computed by back prop-
agating through the operations in Equation 2.34 and Equation 2.35, while at
test time, they are replaced by running averages which where collected during
the training. In convolution layers, the same mean and standard deviation is
applied to every spatial location within the feature map. Usually, two param-
eters γ, β ∈ R are included in Equation 2.36, replacing the activations A(l) by
γĀ(l) + β, l ∈ {0, . . . , L − 1}. These parameters allow the neurons to have any
mean and standard deviation, which are not determined by complex interactions
with other layers, but simply by the learnable parameters γ and β.

2.2.3 Training of Neural Networks

The estimated class-probabilities for some input x ∈ X are obtained by propagat-
ing the input forwards through the neural network. During the training process
of a neural network, a loss function is computed based on the final output. In
order to update the parameters θ of all layers, the information flows backwards
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from the output to the input layer. Backpropagation [31] is an algorithm, which
computes the gradient of the loss function with respect to all parameters of the
neural network, which are then used by a gradient descent optimization algorithm.

Backpropagation A multilayer neural network is defined as a composition of
functions

fθ(x) = (fθ(L) ◦ fθ(L−1) ◦ . . . ◦ fθ(1))(x) ,

cf. Equation 2.19, with parameters θ(l) = {ω(l), b(l)} for l = 1, . . . , L. Using the
chain rule, the gradient of a loss function LS with respect to the model parameters
θ(l) is computed by

∇θ(l)LS ◦ fθ = ∇θl(LS ◦ fθ(L) ◦ . . . ◦ fθ(l)) (2.37)

= ∇f
θ(L)
LSJf

θ(L−1)
fθ(L) . . . Jf

θ(l+1)
fθ(l+2)Jf

θ(l)
fθ(l+1)Jθ(l)fθ(l) ,

where ∇ denotes the gradient, J the Jacobian of a function. Since the gradient
of a deeper layer

∇θ(l+1)LS ◦ fθ = ∇f
θ(L)
LSJf

θ(L−1)
fθ(L) . . . Jf

θ(l+1)
fθ(l+2)Jθ(l+1)fθ(l+1)

shares the most computations with ∇θ(l)LS ◦fθ and using the associativity of ma-
trix multiplication, backpropagation recursively computes the gradients, starting
from the last layer and storing only vectors from previous iterations instead of big
matrices. In this way, backpropagation allows efficient computation of gradients,
which is particularly useful when training deep neural networks with up to several
million parameters.

Definition 2.11 (Local Gradient [127]). Let fθ : X → Rq, q ∈ N be a neural
network as defined in Equation 2.19 with L ∈ N layers and let LS : Rq → [0,∞)
denote a loss function. The local gradient of the l-th layer is defined as

δ(l) = ∇a(l)LS ◦ fθ ∀l = 1, . . . , L , (2.38)

where a(l) = (ω(l)z(l−1) + b(l)).

Definition 2.12 (Backpropagation [31, 127]). Let fθ : X → Rq, q ∈ N be a neural
network as defined in Equation 2.19 with L ∈ N layers and activation functions
φ(l), l = 1, . . . , L. The local gradients regarding a loss function LS : Rq → [0,∞)
are obtained by

δ(L) = diag(φ
′(L)(a(L)))∇fθLS (2.39)

for the last layer, and for the previous layers by backpropagation

δ(l) = diag(φ
′(l)(a(l)))ωᵀ(l+1)δ(l+1) l = 1, . . . , L− 1 . (2.40)
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The gradient of LS with respect to the weights ω(l) in the l-th layer is obtained
by

∇
ω
(l)
•,i
LS ◦ fθ = z

(l−1)
j δ(l) ∀i = 1, . . . , nl l = 1, . . . , L (2.41)

and by

∇b(l)LS ◦ fθ = δ(l) l = 1, . . . , L (2.42)

with respect to the biases.

Optimizer Since backpropagation allows to efficiently compute the gradients of
a loss function with respect to the parameters in a neural network, these can
be optimized by gradient descent algorithms, which iteratively update the model
parameters θ to

θ(t+ 1) = θ(t)− η · ∇θ(LS ◦ fθ)|θ=θ(t) , t ∈ N , (2.43)

where θ(t) denotes the parameters after t iterations.

Input: learning rate η, initial parameters θ(0), training set S, loss
function `

t = 01

while stopping criterion not met do2

sample a batch {(x1, y1), . . . , (xm̄, ym̄)} ⊂ S3

compute gradient estimate as ĝ := 1
m̄
∇θ

(∑m̄
i=1 `(fθ(xi), yi)

)
|θ=θ(t)4

update parameters: θ(t+ 1) = θ(t)− η · ĝ5

t = t+ 16

t∗ = t7

Output: optimized parameters θ̂ = θ(t∗)

Algorithm 2.1: Stochastic gradient descent [44, 118].

The most common optimization algorithms for neural networks are the stochastic
gradient descent (SGD) [118] and the Adam [66] optimizers. In each training step,
the model receives a batch {(xi, yi)}m̄i=1 ⊆ S. It can be shown that the average
gradient on this batch is an unbiased estimate of the gradient [44]. The SGD
algorithm updates the parameters of a neural network according to Equation 2.43,
but replacing the gradient by an estimate as shown in Algorithm 2.1.
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Input: learning rate η, initial parameters θ(0), initial velocity ν(0),
training set S, loss function `, weight decay α

t = 01

while stopping criterion not met do2

sample a batch {(x1, y1), . . . , (xm̄, ym̄)} ⊂ S3

compute gradient estimate as ĝ := 1
m̄
∇θ

(∑m̄
i=1 `(fθ(xi), yi)

)
|θ=θ(t)4

update velocity: ν(t+ 1) = αν(t)− η · ĝ5

update parameters: θ(t+ 1) = θ(t) + ν(t+ 1)6

t = t+ 17

t∗ = t8

Output: optimized parameters θ̂ = θ(t∗)

Algorithm 2.2: Stochastic gradient descent with momentum [44, 114].

Usually, the learning rate is not fixed throughout the training, but gradually
decreases by the application of learning rate schedulers. Furthermore, learning
can be accelerated by the method of momentum. This algorithm considers an
exponentially decreasing moving average of past gradients and continues to move
in their direction. It changes the update rule in Algorithm 2.1 by adding a velocity
ν, which denotes the direction and speed at which the parameters θ move through
the parameter space Θ. Further, a weight decay hyperparameter α ∈ [0, 1) adjusts
the speed at which the effects of previous gradients diminish. The SGD algorithm
with momentum is provided in Algorithm 2.2.

Input: learning rate η, initial parameters θ(0), training set S, loss
function `, weight decay rates β1, β2 ∈ [0, 1)

t = 0, µ(0) = 0, ν(0) = 01

while stopping criterion not met do2

sample a batch {(x1, y1), . . . , (xm̄, ym̄)} ⊂ S3

compute gradient estimate as ĝ := 1
m̄
∇θ

(∑m̄
i=1 `(fθ(xi), yi)

)
|θ=θ(t)4

update first moment estimate: µ(t+ 1) = β1µ(t) + (1− β1)ĝ5

update second moment estimate: ν(t+ 1) = β2ν(t) + (1− β2)ĝ2
6

compute bias-corrected first moment estimate:7

µ̂(t+ 1) = µ(t+ 1)/(1− βt+1
1 )

compute bias-corrected second moment estimate:8

ν̂(t+ 1) = ν(t+ 1)/(1− βt+1
2 )

update parameters: θ(t+ 1) = θ(t)− η · µ̂(t+ 1)/(
√
ν̂(t+ 1) + ζ)9

t = t+ 110

t∗ = t11

Output: optimized parameters θ̂ = θ(t∗)

Algorithm 2.3: Adam optimizer [66].

The Adam [66] optimizer computes individual adaptive learning rates for different
parameters from estimates of the gradients’ first and second moments, which we

24



2.2 Deep Neural Networks

denote as µ and ν, respectively. The pseudo-code is provided in Algorithm 2.3.
The parameter ζ prevents division by zero and is usually very small, e.g. ζ = 10−8.

Scheduler While the Adam optimizer automatically adapts the learning rate
η, the SGD algorithm uses a constant learning rate, which needs to be carefully
chosen such that the algorithm converges to a local optimum. Instead of an
exhaustive grid search to fit η for each training, a learning rate scheduler can
be employed to decrease η over time. If the scheduler satisfies the Robbins-
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Figure 2.10: Examples of some common learning rate schedules.

Monro [118] conditions

ηt → 0, t→∞,
∑∞

t=1 η
2
t∑∞

t=1 ηt
→ 0 (2.44)

the SGD theoretically converges to a local optimum [102]. Common examples of
learning rate schedulers are illustrated in Figure 2.10.

Definition 2.13 (Learning Rate Scheduler [102]). At given milestones ti with
i ∈ N, the piece-wise constant scheduler adjusts the learning rate to specified
values ηi ∈ (0, 1). Then, the learning rate in iteration t ∈ N is obtained by

ηt = ηi : t ∈ [ti, ti+1) . (2.45)

Using a step decay with reduction factor γ ∈ (0, 1), the learning rate is adjusted
to values

ηi = η0 · γi . (2.46)

Alternatives to piece-wise constant schedulers are the exponential decay

ηt = η0e
−λt , λ ∈ R , (2.47)

or the polynomial decay

ηt = η0(βt+ 1)−α , α, β ∈ R . (2.48)
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2.3 Deep Learning for Computer Vision

horse

object detection semantic segmentation depth estimation

Figure 2.11: Visualization of different computer vision tasks for three consecutive frames
of a video, including object detection and classification (left), semantic segmentation
(middle) and depth estimation (right).

Computer vision encompasses all approaches which enable machines to gain a
high level of understanding from image and video data. In computer vision,
understanding means transforming visual data into numerical or symbolic infor-
mation. Computer vision tasks include e.g. object classification, detection and
segmentation, video tracking, motion or depth estimation. Some of these appli-
cations are visualized in Figure 2.11. Roughly speaking, object detection is the
task of classifying and localizing objects which belong to an underlying set of
semantic classes by tranforming an image into a set of bounding box coordinates
and class-probabilities. Semantic segmentation and depth estimation models pro-
vide class-probability or depth estimates for each image pixel, respectively. While
this work focusses on image classification and in particular semantic segmentation
tasks, open world applications can leverage further information e.g. using depth
or tracking information to improve anomaly detection or retrieval results. In this
section, we introduce image classification and semantic segmentation, including
some popular CNN architectures and the main evaluation metrics. Both tasks
operate on an image input space X = [0, 255]H×W×C and yield class-probability
estimates over classes Y = {1, . . . , Q}.

2.3.1 Image Classification

An image classification model with softmax activation

fθ : X → (0, 1)Q (2.49)

estimates the class-probabilities that an image x ∈ X has class affiliation y ∈ Y .
The input images are usually tailored to one or more objects stemming from the
same class. Consequently, image classification is not suitable for understanding
entire scenes with multiple classes, nor for object localization. In the context
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cat dog rat

Figure 2.12: A shallow image classification CNN with underlying classes 0 =̂ cat, 1 =̂ dog
and 2 =̂ rat. The model consists of two convolution layers (pink), each followed by
a pooling layer (purple), a flattening (green) and a fully connected layer with three
neurons, yielding class-probability estimates for an image of a cat.

of this work, image classification is mainly used to identify anomaly clusters by
tailoring images to single anomalies.

In Figure 2.12, a shallow CNN produces class-probability estimates over Y =
{0, 1, 2} =̂ {cat , dog , rat} for an image of a cat. The final prediction follow-
ing Equation 2.26 is obtained by

ŷ = argmax
q∈{0,1,2}

fθ(x)q = 0 =̂ cat .

The LeNet [74] is one of the earliest CNNs, possessing convolution, pooling and
fully connected layers as introduced in Subsection 2.2.2. It is capable of solving
simple image classification tasks such as the classification of handwritten digits
from the MNIST [75]. For tasks with an increased complexity, more sophisticated
CNN architectures like ResNet [51] or DenseNet [59] have been developed.

3
×

3
co

n
v

b
at

ch
n
or

m

R
eL

U

3
×

3
co

n
v

b
at

ch
n
or

m

+

R
eL

U

z(l)

ResNet block

z(l) fθ(l+1) fθ(l+2) fθ(l+3) fθ(l+4)

DenseNet block

Figure 2.13: Building blocks of the CNN architectures ResNet and DenseNet.

The ResNet architecture has been developed in 2015, extending the simple CNN
structure by residual blocks, cf. Figure 2.13 (left).

Definition 2.14 (Residual Block [102]). Let F be a block of stacked layers fθ(l) ◦
. . . ◦ fθ(l+s) , s ∈ N, where the input flows straight forward through the layers,
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yielding z(l+s) = F(z(l)). Additionally, a skip connection adds the input z(l) to
the output z(l+s), yielding

z(l+s) = φ(z(l) + F(z(l))) , (2.50)

hence, the model only needs to learn the residual between the input and output
of a residual block.

Using residual blocks allows us to train very deep models, since the gradient can
flow directly from the output to the previous layers via the skip connections [102].

Instead of employing addition, the DenseNet (2016) uses skip connections to
concatenate the in- and output of each layer, cf. Figure 2.13 (right).

Definition 2.15 (DenseNet Block [102]). Let F be a block of stacked layers
fθ(l+1) ◦ . . . ◦ fθ(l+s) , s ∈ N, and let all layers be connected by a skip connection.
The output of a DenseNet block is obtained by

z(l+s) = [z(l), fθ(l+1)(z(l)), fθ(l+2)(z(l), fθ(l+1)(z(l))), . . .] . (2.51)

Due to the dense connectivity, the output layer has access to all previous fea-
tures, which can enhance the performance of a CNN at the expense of increased
computational cost.

2.3.2 Semantic Segmentation

image semantic segmentation instance segmentation

Figure 2.14: Semantic segmentation is the pixel-wise classification into semantic classes,
while instance segmentation is the pixel-wise classification into instances of object
classes like cat and a background class, including e.g. wall or ground.

Instead of estimating the probability that an entire image has one class affiliation,
a semantic segmentation network yields class-probabilities per pixel. Besides lo-
calizing and classifying objects in an image, semantic segmentation also considers
background classes, provides context and shape information. However, it does not
distinguish between instances of the same class. Instance segmentation allows the
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pixel-wise classification of object instances instead of classes while treating any
non-object classes such as sky, road, building or nature as background. An exam-
ple for both, semantic and instance segmentation, is provided in Figure 2.14. A
combination of semantic and instance segmentation to enrich the instance labels
with background classes is referred to as panoptic segmentation [67].

Let the pixel positions of the images x ∈ X be denoted as

z ∈ Z = {(h,w) : h ∈ {0, . . . , H − 1}, w ∈ {0, . . . ,W − 1}} ,

hence, a pixel of x ∈ X is defined as xz, z ∈ Z. A semantic segmentation model
with softmax activation

fθ : X → (0, 1)H×W×Q (2.52)

estimates class-probabilities for each pixel over the classes Y = {1, . . . , Q}. Again,
following Equation 2.26, the final class prediction at pixel position z is obtained
by

ŷz = argmax
q∈Y

f(x)z,q ∀z ∈ Z . (2.53)

Since semantic segmentation is far more complex than image classification, more
sophisticated model architectures have been developed.

A popular architecture for semantic segmentation neural networks is the encoder-
decoder architecture. The encoder reduces the dimension of an input into a bot-
tleneck using standard convolution computed by Equation 2.30. This bottleneck
captures high-level properties of the input images, which are then mapped back
to the input resolution by the decoder. Adding skip connections from the input
to the output layer mitigates the information loss in the bottleneck.

To upsample the feature map, the decoder employs transposed convolutions.
These are also known as deconvolutions, however, this is not appropriate, since
deconvolutions remove the effect of a convolution to reconstruct the original input.
Transposed convolutions are easier to understand by transforming the standard
convolution into a matrix vector multiplication first. To this end, consider the
following example.

Example. Let x ∈ R4×4 denote an input matrix, which can be flattened into a
vector x̃ = (x0,•, x1,•, x2,•, x3,•)

ᵀ, k ∈ R3×3 a kernel. Then, a convolution without
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padding and stride δ = 1 yields a feature map c ∈ R2×2, where

c0,0 = k−1,−1x0,0 + k−1,0x0,1 + k−1,1x0,2

+ k0,−1x1,0 + k0,0x1,1 + k0,1x1,2

+ k1,−1x2,0 + k1,0x2,1 + k1,1x2,2

c0,1 = k−1,−1x0,1 + k−1,0x0,2 + k−1,1x0,3

+ k0,−1x1,1 + k0,0x1,2 + k0,1x1,3

+ k1,−1x2,1 + k1,0x2,2 + k1,1x2,3

c1,0 = k−1,−1x1,0 + k−1,0x1,1 + k−1,1x1,2

+ k0,−1x2,0 + k0,0x2,1 + k0,1x2,2

+ k1,−1x3,0 + k1,0x3,1 + k1,1x3,2

c1,1 = k−1,−1x1,1 + k−1,0x1,2 + k−1,1x1,3

+ k0,−1x2,1 + k0,0x2,2 + k0,1x2,3

+ k1,−1x3,1 + k1,0x3,2 + k1,1x3,3 .

This is equivalent to compute

(c0,•, c1,•) := k̃x̃

with

k̃ =


k−1,• 0 k0,• 0 k1,• 0

00 k−1,• 0 k0,• 0 k1,•

0
k−1,• 0 k0,• 0 k1,• 0

0 k−1,• 0 k0,• 0 k1,•

 ,

followed by reshaping into c =

(
c0,•
c1,•

)
.

Definition 2.16 (Transposed Convolution[102]). Let c ∈ Rr×s, r, s ∈ N be a
feature map, k ∈ R2K+1×2K+1, K ∈ N a kernel, and m × n the desired output
shape. By flattening, we obtain (c0,•, . . . , cr,•) ∈ Rr·s, and transforming the kernel
like in Example 2.3.2 yields k̃ ∈ Rr·s×m·n. The transposed convolution is obtained
by computing

(u0,•, . . . , um,•) := k̃ᵀc̃ , (2.54)

followed by reshaping into u =

u0,•
...

um,•

.

An illustrative example showing the idea of the encoder-decoder architecture is
provided in Figure 2.15, where the encoder transforms an RGB input image into a
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Encoder Decoder

Figure 2.15: Simplified illustration of an encoder-decoder architecture: An RGB image
of a cat is transformed into a sketch by the encoder. The decoder transforms the sketch
back into an RGB image using transposed convolutions.

sketch of a cat, and the decoder tries to reconstruct the image with the comprised
information. By adding a reconstruction loss, DNNs can be trained to improve
the bottleneck features, i.e., to capture as much information as possible. The
more informative the features are, the more similar the input and output will
be. These models are called autoencoders. However, instead of reconstructing the
input image, the decoder can also produce dense predictions such as a pixel-wise
semantic segmentation mask [107], cf. Figure 2.16 and Figure 2.18.

Encoder Decoder

Bottleneck

1× 1 conv

3× 3 conv + ReLU

2× 2 max pooling

2× 2 transposed conv

skip connection

Figure 2.16: U-Net architecture for biomedical segmentation, e.g. for images from the
ImageCHD dataset [146].

One of the first encoder-decoder networks for the task of biomedical segmentation
was the U-Net [120], which is illustrated in Figure 2.16. It consists of a contracting
path (encoder) and an expansive path (decoder). The encoder consists of blocks
of two unpadded 3×3 convolutions, each followed by a ReLU function, and a 2×2
max pooling with stride δ = 2 for downsampling. The decoder consists of blocks
of a transposed 2 × 2 convolution for upsampling, which is concatenated with
the output of the skip connection, followed by two 3× 3 convolutions and ReLU
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functions. In the final layer, a 1 × 1 convolution is applied to map the features
to the number of output classes. As border pixels get lost due to the unpadded
convolutions, cropping is applied to the features before the skip connections, input
and output are not of the same size.

The repeated combination of max-pooling and striding in convolutional layers
reduces the dimension of the resulting feature maps, which can be remedied by
transposed convolutions like in the U-Net. However, this requires additional mem-
ory and time. The DeepLab [23] uses atrous convolutions instead, which adds a
rate or dilation factor ρ ∈ N to the standard convolution. For a stride δ = 1, the
atrous convolution, similar to Equation 2.31, is computed as

ρ = 1 ρ = 2 ρ = 3

Figure 2.17: Atrous convolution using a 3× 3 kernel, a stride δ = 1 and dilation factors
1, 2 and 3.

Definition 2.17 (Atrous Convolution [102]). Let x = (xi,j)
H,W
i,j=1 ∈ X be a two-

dimensional input, k = (ki,j)
K
i,j=−K ∈ R2K+1×2K+1 a quadratic kernel and ρ ∈ N

the dilation factor. The atrous convolution is defined as

ci,j = (x ∗ k)i,j =
K∑

r=−K

K∑
s=−K

xi+ρr,j+ρskr,s , (2.55)

where xi,j = 0 ∀i /∈ {1, . . . , H}, j /∈ {1, . . . ,W}.

The atrous convolution with ρ = 1 is identical to the standard convolution. For
ρ ≥ 2, the atrous convolution skips every ρ-th input element, so it is also called
convolution with holes [92]. Visually, the atrous convolution applies zero padding
to the kernel, adding ρ−1 rows and columns between those of the kernel, cf. Fig-
ure 2.17.

Example. Let k = (ki,j)
1
i,j=−1 be a kernel, ρ = 2. The atrous convolution applies
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zero padding to the kernel, yielding

k−1,−1 k−1,0 k−1,1

k0,−1 k0,0 k0,1

k1,−1 k1,0 k1,1

 pad7→


k−1,−1 0 k−1,0 0 k−1,1

0 0 0 0 0
k0,−1 0 k0,0 0 k0,1

0 0 0 0 0
k1,−1 0 k1,0 0 k1,1

 .

The advantages of atrous convolutions are that they convert image classification
networks into dense feature extractors without including any additional learnable
parameters like the transposed convolutions do. Thus, they speed up the training
of the DNN. Furthermore, they allow us to arbitrarily enlarge the field-of-view
of kernels at any layer, which offers to control the trade-off between accurate
localization and context assimilation [102].

Encoder

Decoder

Deep CNN

1×1 conv

3×3 conv
ρ = 6

3×3 conv
ρ = 12

3×3 conv
ρ = 18

image
pooling

1×1 conv

1×1 conv concat

upsample
by 4

3×3 conv upsample
by 4

Figure 2.18: Architecture of the DeepLabv3+ model with encoder-decoder structure for
the task of semantic segmentation: The features obtained by a deep CNN are passed
into the decoder twice, once straight and once after application of the atrous spatial
pyramid pooling module (ASPP), which applies atrous convolutions with different di-
lation factors.

Using the DeepLabv3 [24] as encoder, the DeepLabv3+ [25], which is illustrated
in Figure 2.18, adds a decoder module which upsamples the encoder features by
a factor of 4 and then concatenates them with the low-level features from the
backbone, whose channels are reduced first by a 1 × 1 convolution. After that,
a few 3 × 3 convolutions are applied for feature refinement, followed by another
upsampling by a factor of 4.

The PSPNet [155] is not a full semantic segmentation network itself. As the
DeepLabv3, it can be employed as encoder and extended by an arbitrary de-
coder. The PSPNet shown in Figure 2.19 uses a deep CNN equipped with atrous
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Encoder

concatenate

Deep CNN pooling

conv

conv

conv

conv

upsampling

Figure 2.19: Architecture of the PSPNet: The feature map obtained by a deep CNN is
passed into the pyramid pooling module, which produces four feature maps at different
scales. These are upsampled and concatenated with the initial feature map. These
fused features can then be passed into any decoder model.

convolutions as backbone for feature extraction. The resulting feature map is fed
into the pyramid pooling module, where it is pooled at different sizes and then
passed through a convolution layer. Finally, all feature maps are upsampled and
concatenated with the original feature map which was input to the pooling mod-
ule. Fusing features at different scales enables the model to capture both, high
and low resolution features. Usually, the decoder consists of a convolution layer,
followed by a 8× bilinear upsampling.

DeepLabV3+ image PSPNet

Figure 2.20: Comparison of the semantic segmentation predictions of a street scene
obtained by a DeepLabV3+ and a PSPNet, respectively.

Both, the DeepLab and the PSPNet perform spatial pyramid pooling and thus,
exploit multiscale information. However, the DeepLabV3+ outperforms the PSP-
Net with upsampling decoder, as it is capable of capturing high resolution infor-
mation and thus, more accurate to detail. A comparison of both architectures is
provided for a street scene image from the A2D2 [42] dataset in Figure 2.20.
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2.3.3 Evaluation Metrics

Image classification as well as semantic segmentation models can be evaluated
by computing a confusion matrix [49], summarizing the numbers of correct and
incorrect predictions. For binary classification with a positive (y = 1) and a neg-
ative (y = 0) class as in Figure 2.21, the confusion matrix includes the quantities

• true positives (TP): number of correct positive predictions (ŷ = y = 1)

• false positives (FP): number of incorrect positive predictions (ŷ = 1, y = 0)

• true negatives (TN): number of correct negative predictions (ŷ = y = 0)

• false negatives (FN): number of incorrect negative predictions (ŷ = 0, y = 1)
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Figure 2.21: Confusion matrix for binary classification: Y =̂ {elephant ,no elephant}.

The confusion matrix can also be extended to a Q × Q matrix for multi-class
classification. With respect to class q ∈ Y = {1, . . . , Q}, the quantities are
obtained by

TPq =
∑
(y,ŷ)

1{ŷ=q}1{y=q} , (2.56)

FPq =
∑
(y,ŷ)

1{ŷ=q}1{y 6=q} , (2.57)

TNq =
∑
(y,ŷ)

1{ŷ 6=q}1{y 6=q} , (2.58)

FNq =
∑
(y,ŷ)

1{ŷ 6=q}1{y=q} , (2.59)

which are adapted to semantic segmentation by counting over pixels instead of
images. Using these quantities, several evaluation metrics can be computed to

35



2 Foundations

measure the performance of a model. The per-class accuracy is obtained by

accuracyq =
TPq + TNq

TPq + TNq + FPq + FNq

∀q ∈ Y , (2.60)

measuring the percentage of images or pixels, which are correctly classified with
respect to a class q. Accuracy is misleading for underrepresented classes, since
it is biased to the TN predictions. Hence, a model which never predicts a rare
class q may still achieve high accuracy scores. Separate metrics to quantify the
different error types are precision and recall, obtained by

precisionq =
TPq

TPq + FPq

, recallq =
TPq

TPq + FNq

∀q ∈ Y . (2.61)

The precision measures the percentage of correctly classified images or pixels
which are predicted to have class affiliation q, the recall the percentage of correctly
classified images or pixels which have GT q. Hence, precision quantifies FPs (type
1 errors), recall FNs (type 2 errors). The F1-score provides the harmonic mean
of precision and recall, i.e., it is obtained by

F1q =
2 · TPq

2 · TPq + FNq + FPq

∀q ∈ Y . (2.62)

Measuring the error types separately is particularly significant when one type of
error is more serious than the other. For example, overlooking an obstacle on the
road ahead is likely to lead to an accident, while predicting a non-existent road
hazard leads to unnecessary braking of the vehicle in the worst case.

Pixel-wise Evaluation A popular evaluation metric for semantic segmentation
is the Intersection over Union (IoU) or Jaccard index

IoUq =

∑
(y,ŷ)

∑
z∈Z 1{ŷz=q∧yz=q}∑

(y,ŷ)

∑
z∈Z 1{ŷz=q∨yz=q}

∀q ∈ Y , (2.63)

measuring the relative number of matching predicted and GT pixels with respect
to a class q ∈ Y . The computation of the IoU is visualized in Figure 2.22 for the
pedestrian class in one frame.

To obtain an overall quality measure, the class-wise IoU scores are usually aver-
aged over all classes, yielding

mean IoU =
1

Q

Q∑
q=1

IoUq . (2.64)
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image ground truth

predicted segmentation IoUpedestrian

Figure 2.22: Computation of the IoU with respect to the pedestrian class.

Segment-wise Evaluation Pixel-wise evaluation metrics report the averaged
performance of the DNN over all pixels in the evaluation data, not providing any
pixel- or instance-specific quality scores. To compute the IoU for a specific GT
(or predicted) segment, which is a connected component of pixels that share the
same GT (or predicted) class, the union involves only predicted (or GT) segments
which intersect with the segment of interest. In the case that several GT segments
which are close together are covered by one predicted segment, or that one GT
segment is covered by several predicted segments, the IoU is over-pessimistic,
cf. Figure 2.23. Hence, an adjusted version of the IoU [122] further occludes
pixels from the union which are covered by another segment of the respective
class.

Depending on a predefined threshold τ ∈ [0, 1), a GT segment s is a true positive,
if IoU(s) > τ , a false negative else. Similar, a predicted segment ŝ is a false
positive, if IoU(s) ≤ τ .

2.4 Learning from Unlabeled Data

Supervised learning approaches require lots of labeled training data. While unla-
beled data exists in quantity, image annotation is time-consuming and expensive,
in particular for semantic segmentation. The question arises, whether machine
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Figure 2.23: (Left): Two GT segments, outlined in green & red, intersect with one
predicted segment (orange). Green: IoU 68.18% vs. sIoU 87.01%; red: IoU 21.68% vs.
sIoU 68.44%. (Right): Two predicted segments (orange & pink) intersect with one GT
segment, outlined in green. Orange: IoU 78.97% vs. sIoU 81.69%; pink: IoU 03.44%
vs. sIoU 18.91% [21].

learning algorithms can benefit from the unlabeled data. Common tasks in un-
supervised learning are clustering and dimensionality reduction, which are solely
based on patterns in the input data. More sophisticated learning approaches for
DNNs leverage unlabeled data for downstream tasks like semantic segmentation.

2.4.1 Unsupervised Learning Algorithms

While in supervised learning, a model is trained on a dataset S consisting of
labeled samples (x, y) to learn a mapping from the input space X to the target
space Y , unsupervised learning describes algorithms where the model observes
only the inputs U = {xi}mi=1 ⊆ X without information about the corresponding
labels {yi}mi=1 yi ∈ Y ∀i = 1, . . . ,m. In the context of neural networks, unsuper-
vised learning approaches fit an unconditional model p(x) instead of a conditional
model p(y|x), to detect patterns in the data. Usually, clustering and dimensional-
ity reduction algorithms seek a partition or projection of given data samples, e.g.
by optimizing loss functions or performing neighborhood search. Since they do
not fit a model, these methods are not suitable for integrating new data samples
into existing clusters or low-dimensional feature spaces.

Clustering Clustering is an effective approach to identify patterns in unlabeled
data. It is a relevant tool in the context of open world recognition, as it can
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k-means DBSCAN agglomerative
clustering

spectral clustering

Figure 2.24: Comparison of common clustering methods for a two-dimensional example.

be employed to identify anomalies which stem from the same (unknown) class.
Following [145], clustering algorithms can be divided into nine categories, e.g.
into partition-based, density-based or hierarchical clustering approaches. Some
selected approaches are introduced as follows, cf. Figure 2.24.

Definition 2.18 (k-means [39, 90, 127]). Let U = {xi}mi=1 ⊆ X be a set of n-
dimensional inputs, D a distance metric and k ∈ N a given number of clusters.
The k-means algortihm partitions the input data U into k clusters U1, . . . ,Uk,
which are represented by their centroids

x̃i = argmin
x̃∈X

∑
x∈Ui

D(x, x̃)2 , (2.65)

minimizing the cost function

min
k∑
i=1

∑
x∈Ui

D(x, x̃i)
2 . (2.66)

Since quadratic programming is NP-hard, i.e., not solvable in polynomial time,
heuristics are applied to approximate the optimal solution. The k-means algo-
rithm randomly initializes k ∈ N centroids and allocates each xi, i = 1, . . . ,m,
to the cluster whose centroid is nearest. Next, the centroids are updated in each
dimension to

x̃i,j =
1

|Ui|
∑
x∈Ui

xj ∀j = 1, . . . , n, i = 1, . . . , k , (2.67)

which is repeated until some stopping criterion is satisfied.

In k-means, clusters are assumed to be compact in terms of the sum of squared
distances to the centroids. Hence, it is not capable of handling data, where
clusters are of varying size or densities. Furthermore, outliers have a huge impact
on the cluster centroids. The Density-Based Spatial Clustering of Applications
with Noise [36] (DBSCAN) algorithm detects clusters of varying shapes and sizes,
without a specified number of clusters. Furthermore, it is able to identify noise.
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ε
core border noise

Figure 2.25: Visualization of the DBSCAN algorithm, resulting in two clusters and one
noise observation. Here, a data point is considered a core point, if its ε-neighborhood
contains at least δ = 3 observed data points.

Definition 2.19 (DBSCAN [36]). Let U = {xi}mi=1 ⊆ X be a set of inputs. DB-
SCAN differentiates between core points, border points and noise, cf. Figure 2.25.
For given parameters ε ∈ (0,∞), δ ∈ N, an input xi, i ∈ {1, . . . ,m} is a core point,
if its ε-neighborhood Bε(xi) contains at least δ inputs xj, j = 1, . . . ,m. Two core
points xi, xj, i 6= j are connected, if ∃xk ∈ Bε(xi) ∩ Bε(xj), k ∈ {1, . . . ,m}. An
input xi, which is not a core point itself, is called border point, if there is a core
point xj, such that xi ∈ Bε(xj). Otherwise, xi is considered noise. Finally, each
chain of connected core points including their respective border points constitutes
a cluster.

However, DBSCAN fails if the cluster densities deviate too much. Furthermore,
it is highly sensitive to the choice of the parameters ε and δ, which is overcome
in an improved version called OPTICS [2].

Hierarchical clustering methods produce a hierarchical structure of the data, al-
lowing clusters to be selected at different hierarchical levels. To this end, agglom-
erative clustering or divisive clustering algorithms are employed, which recursively
merge or split clusters, respectively.

Definition 2.20 (Agglomerative Clustering [39]). Let U = {xi}mi=1 ⊆ X be a set
of inputs, D a distance metric. Agglomerative clustering initializes m clusters
Ui = {xi}, i = 1, . . . ,m. There are different possibilities to measure the dis-
tance between two clusters Ui and Uj. Single-link clustering considers the closest
distance between Ui and Uj, yielding

Dsl(Ui,Uj) = min
x∈Ui,x′∈Uj

D(x, x′) , (2.68)

complete-link clustering the largest distance

Dcl(Ui,Uj) = max
x∈Ui,x′∈Uj

D(x, x′) , (2.69)

and group average clustering takes the average distance

Dac(Ui,Uj) =
1

|Ui| · |Uj|
∑
x∈Ui

∑
x′∈Uj

D(x, x′) (2.70)

40



2.4 Learning from Unlabeled Data

over all pairs (x, x′) ∈ Ui×Uj. In every iteration, agglomerative clustering merges
the two clusters with the smallest intra-cluster distance.

Since most clustering methods perform poorly or are not applicable to high di-
mensional data, dimensionality reduction is usually applied as a preprocessing
step, projecting the input data into a low-dimensional space while retaining the
most important features.

Definition 2.21 (Spectral Clustering [49]). Let U = {xi}mi=1 ⊆ X be a set of n-
dimensional inputs. Spectral clustering computes an undirected similarity graph,
where each xi is represented by a node vi ∈ V , i = 1, . . . ,m, and each pair of
nodes (vi, vj), i 6= j is connected by a weighted edge. The weights ωi,j ≥ 0 are
computed by the Gaussian similarity function

ωi,j = exp(−‖xi − xj‖2/2σ2) ∀i, j ∈ {1, . . . ,m} , (2.71)

where the parameter σ controls the width of the neighborhoods. Next, the eigen-
vectors z•,1, . . . , z•,m of the graph Laplacian L, where

Li,j =

{∑n
j=1 ωi,j i = j

−ωi,j i 6= j
∀i, j ∈ {1, . . . ,m} , (2.72)

are computed and sorted by increasing eigenvalues. Finally, the k-means algo-
rithm is applied to cluster the rows of the matrix

(
z•,1 . . . , z•,d

)
∈ Rm×d, d < n,

where zi,• is the d-dimensional representation of xi, i = 1, . . . ,m.

Further linear [127] and nonlinear [49] dimensionality reduction approaches can be
applied to simplify not only clustering, but also the training of predictive models
by tackeling the curse of dimensionality.

Dimensionality Reduction Similar to spectral clustering, Principal Component
Analysis (PCA) [112] performs dimensionality reduction on the basis of eigenvec-
tors and -values to find linear transformation matrices W,U for dimensionality
reduction and reconstruction, respectively, cf. Figure 2.26.

Definition 2.22 (PCA [112, 127]). Let U = {xi}mi=1 ⊆ X be a set of n-dimensional
inputs, which should be mapped into a d-dimensional space, d < n. The goal of
PCA is to find linear transformation matrices W ∈ Rd×n and U ∈ Rn×d which
minimize the total squared distance between x and UWx, i.e., which solve the
objective

argmin
W,U

m∑
i=1

‖xi − UWxi‖2
2 . (2.73)
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Figure 2.26: Reconstructed samples of the MNIST dataset (bottom row) after reducing
the dimension of the original data (top row) from 784 to 50.

By computing the eigenvectors v•,1, . . . , v•,n of the covariance matrix
∑m

i=1 xix
ᵀ
i ∈

Rn×n with corresponding eigenvalues λ1 ≥ . . . ≥ λn, the solution to Equation 2.73
is obtained by

U =
(
v•,1 . . . v•,d

)
W = Uᵀ . (2.74)

Instead of applying linear transformations, manifold learning approaches perform
nonlinear dimensionality reduction, thus, they can generalize to all structures
of data. The basic idea of manifold learning is that the data samples are ac-
tually samples from a low-dimensional manifold M, which is embedded in a
high-dimensional space X . In the following, the three approaches Multidimen-
sional Scaling (MDS) [70, 71], t-Distributed Stochastic Neighbor Embedding (t-
SNE) [135] and Uniform Manifold Approximation and Projection (UMAP) [95]
are introduced, cf. Figure 2.27.

MDS t-SNE UMAP

Figure 2.27: Comparison of manifold learning approaches, employed to the Digits
dataset for the digits 0, 1, 2, 3.

Definition 2.23 (MDS [49, 70, 71]). Let U = {xi}mi=1 ⊆ X be a set of n-
dimensional inputs, M a d-dimensional manifold, d ≤ n, and D an arbitrary
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distance metric. The goal of MDS is to find latent vectors {zi}mi=1 ∈ M, which
have approximately the same pair-wise distances as the input vectors, i.e., which
satisfy

D(zi, zj) ≈ D(xi, xj) ∀i, j = 1, . . . ,m . (2.75)

The stress function
m∑
i=1

m∑
j=1

(D(xi, xj)−D(zi, zj))
2 (2.76)

is minimized by employing gradient descent.

Least squares scaling emphasises large distances, which do not capture the local
structure of the data. Hence, Sammons Mapping [124] extends the stress function
by a factor, yielding the non-convex Sammon’s stress

m∑
i=1

m∑
j=1j 6=i

(D(xi, xj)−D(zi, zj))
2

D(xi, xj)
, (2.77)

which upweights the small distances. With t-SNE and UMAP, more spohisticated
methods to capture local structure have been developed.

Definition 2.24 (t-SNE [135]). Let U = {xi}mi=1 ⊆ X be a set of n-dimensional
inputs andM a d-dimensional manifold, d ≤ n. Assuming that neighbors are cho-
sen proportionally to their probability density under a Gaussian with center at xi
and adjustable variance σi, stochastic neighbor embedding computes conditional
probabilities

p(xj|xi) =
exp(− 1

2σ2
i
‖xi − xj‖2)∑

k 6=i exp(− 1
2σ2
i
‖xi − xk‖2)

, (2.78)

which represent the likelihood of xj ∈ U being a neighbor of xi ∈ U . In the d-
dimensional manifold M, the Gaussian distribution is replaced by a Student’s-t
distribution, yielding conditional probabilities

p′(zj|zi) =
(1 + ‖zi − zj‖2)−1∑
k<l(1 + ‖zk − zl‖2)−1

(2.79)

for all zi, zj ∈M. Gradient descent is applied to minimize the KL divergence

m∑
i=1

m∑
j=1

p(xj|xi) log

(
p(xj|xi)
p′(zj|zi)

)
(2.80)

between the conditional distributions.

Hence, t-SNE captures local structures since it preferably pulls distant samples
together rather than pushing nearby samples apart. However, the implementation
of t-SNE takes O(N2) time. UMAP is a much faster manifold learning algorithm,
which furthermore preserves global structure better than t-SNE.
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Definition 2.25 (UMAP [95]). Let U = {xi}mi=1 ⊆ X be a set of n-dimensional
inputs andM a d-dimensional manifold, d ≤ n. First, UMAP constructs a graph
whose nodes represent the input data x ∈ U . A weighted edge indicates the likeli-
hood that two samples are connected in terms of Euclidean distances. To this end,
each node is extended by a variable radius based on the distance to its k-nearest
neighbor. Two inputs are connected if their radii are overlapping. Since the total
distances between connected nodes are replaced by probabilities, the connected-
ness in UMAP is called fuzzy. The goal of UMAP is to fit a d-dimensional graph
which retains most of the structure and characteristics of the input data. Rep-
resenting both graphs by their common set of edges E and their respective edge
weight functions p, p′ : E → [0, 1], UMAP employs gradient descent to optimize
the cross entropy loss∑

e∈E

(
p(e) log

(
p(e)

p′(e)

)
+ (1− p(e)) log

(
1− p(e)
1− p′(e)

))
. (2.81)

In the field of deep learning, unlabeled data can also be leveraged to improve the
performance of DNNs.

2.4.2 Unlabeled Data in Semantic Segmentation

While unsupervised learning usually does not include class predictions, several
learning paradigms like self-supervised, semi-supervised or few-shot learning lever-
age unlabeled data to improve the performance of a classification or segmentation
DNN. These paradigms do not contradict each other and can be summarized as
follows. Self-supervised learning uses unlabeled data to create proxy supervised
tasks, semi-supervised learning takes advantage of unlabeled data to enhance
training on a small labeled training set and few-shot learning comprises all ap-
proaches which can handle very small sample sizes m ≤ 5, e.g. by leveraging
prior knowledge.

Self-Supervised Learning Self-supervised learning extracts labels from the in-
put data to solve a proxy-supervised task with the goal of learning useful feature
representations. That is, self-supervised learning can be used to train an encoder,
whose knowledge can later be transferred to a downstream task such as image
classification or semantic segmentation. For example, in [35], spatial context is
used as supervisory signal. Therefore, a random image patch as well as one of its
eight possible neighbor patches are sampled, and the DNN is trained to predict
the localization of the neighbor patch, cf. Figure 2.28.

Context encoders [111] generate the pixel values of a missing image region based
on the surrounding pixels, cf. Figure 2.29. The authors suggest three different
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Figure 2.28: Given the center patch of an image, the model learns the relative position
of a randomly sampled neighbor patch.

strategies for selecting the masked regions. The simplest shape is the central
square patch, which works well for the inpainting task. However, the learned
features focus on the constant border pixels and thus do not generalize well. This
is mitigated by sampling multiple, possibly overlapping blocks per image, so that
the pixel positions of the region boundaries vary significantly. However, these
boundaries are still very sharp. Therefore, as a third approach, arbitrary shapes
are extracted from the GT masks of another dataset and randomly inserted into
the images.

Figure 2.29: The context encoder learns to inpaint missing regions in an image.

Another approach [26] uses contrastive learning together with image augmenta-
tions such as cropping, color distortion or Gaussian blurring. More specifically, for
a given anchor image, data augmentation methods are applied to create positive
images, while the rest of the images contained in the dataset or batch are consid-
ered negative images, see Figure 2.30 for an example. Then, the DNN is trained
with a contrastive loss to align the feature embeddings of positive pairs while
pulling negative images apart. An overview of further approaches is provided
in [1].
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anchor positive positive negative negative

Figure 2.30: Examples for positive and negative images for contrastive learning.

Semi-Supervised Learning Semi-supervised learning includes all approaches,
where a model is trained on both, labeled and unlabeled data. An overview of
different approaches is provided in [109]. For example, self-supervised approaches
are employed to learn high-level features of unlabeled data, followed by super-
vised fine-tuning for a specific task. Furthermore, DNNs are trained on a small
labeled dataset, which is continuously enriched by self-labeled samples [76]. These
pseudo-labels for unlabeled samples are obtained by the DNNs predictions. Usu-
ally, only reliable predictions with low softmax entropy are considered. However,
unreliable predictions are used as negative samples to occlude classes which are
not likely [139]. Another line of work is consistency regularization, including
e.g. approaches which push the decision boundaries into low-density regions by
entropy minimization [45], or enforce consistency between two segmentation net-
works perturbed with different initialization on the same input image [28].

large estimation error
due to small sample
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Figure 2.31: FSL strategies to leverage prior knowledge.

Few-Shot Learning Few-shot learning (FSL) describes all learning approaches
where a DNN is trained on only few labeled data, i.e., usually having access to
less than five labeled samples. As discussed in Subsection 2.1.2, the estimation
error can be reduced by increasing the sample size. Thus, the empirical risk LS
in FSL may be a bad approximation of the expected risk L, making the empirical
risk minimizer unreliable. This problem is alleviated by including prior knowledge
in order to
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1. increase the sample size using data augmentation

2. constrain the complexity of the hypothesis space by discarding hypotheses
that are unlikely to be optimal

3. or to alter the search strategy by providing a good initialization or by guid-
ing the search steps.

The effects of all three strategies are illustrated in Figure 2.31 [140]. For example,
the PANet [138] learns and aligns robust prototypes for each semantic class in the
feature space. Then, each pixel is labeled as the class of the nearest prototype.
The PFENet [131] uses a pretrained image classification CNN to produce prior
masks which indicate the probability of each pixel belonging to some target class.

Zero-shot learning (ZSL) is a special case of FSL, where novel classes are learned
without labeled training data for a specific task. ZSL approaches leverage infor-
mation from other modalities and transfer the information to the current task.
Although this approach is already close to unsupervised learning, it requires ad-
equate knowledge about the image features of unseen classes. This is inspired by
how people learn. Consider e.g. a child that knows horses but not zebras. Having
the prior knowledge that a zebra is very similar to a horse, but having black and
white stripes, it will be able to recognize a zebra when seeing it for the first time,
cf. Figure 2.32.

known class horse known concept
stripes

unknown class zebra

Figure 2.32: The basic idea of zero-shot-learning is to leverage prior knowledge, e.g.
about the class horse and the concept stripes, to recognize a previously-unseen class
like the class zebra.

For example, ZSL leverages word features to get an idea of the corresponding vi-
sual features. For this purose, the ZS3Net [14] employs a semantic segmentation
DNN together with a generator to align text with visual embeddings. The seg-
mentation DNN is trained on a closed set of semantic classes, and ZSL is applied
to incrementally extend it by novel classes. Therefore, the generator is trained on
word2vec [99] embeddings of the known class labels to generate synthetic features,
which match the features produced by the segmentation DNN. This generator is

47



2 Foundations

utilized to produce synthetic features for novel classes. Then, the classifier of the
segmentation DNN is fine-tuned on these synthetic features for novel along with
real features for known classes.
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Chapter 3
Road Anomalies

Being capable of recognizing anomalies is of utmost importance for safety-critical
applications such as automated driving. To this end, datasets are required which
allow for extensive testing and evaluation of proposed anomaly segmentation ap-
proaches along with appropriate evaluation metrics. In the context of open world
recognition, the anomalies are not only recognized but also classified in terms of
clustering.

3.1 Perception Datasets for Autonomous Driving

DNNs used in perception systems for autonomous driving require a huge amount
of data to train on, as they must reliably achieve high performance in all kinds of
situations. However, these DNNs are usually limited to a closed set of semantic
classes available in their training data and are therefore unreliable when con-
fronted with previously unseen instances. Therefore, several perception datasets
have been created for the evaluation of anomaly detection methods, which can
be categorized into three groups: real anomalies in real-world, synthetic anoma-
lies augmented into real-world and fully synthetic scenes. This section further
divides anomaly datasets into different anomaly sources, followed by a definition
of normality and an overview of existing datasets, which is summarized in Ta-
ble 3.1. The section concludes with a discussion of existing challenges in gener-
ating anomaly datasets for semantic segmentation.
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dataset year sensors size (test/val) resolution anomaly source #OoD Labels ground truth

Fishyscapes [11]
FS Lost and Found 2019 Camera 275 / 100 2048× 1024 Recording 1 Semantic Mask
FS Static 2019 Camera 1,000 / 30 2048× 1024 Data Augmentation 1 Semantic Mask

CAOS [54]
StreetHazards 2019 Camera 1,500 1280× 720 Simulation 1 Semantic Mask
BDD-Anomaly 2019 Camera 810 1280× 720 Class Exclusion 3 Semantic Mask

SegmentMeIfYouCan [21]

RoadAnomaly21 2021 Camera 100 / 10
2048× 1024
1280× 720

Web Sourcing 1 Semantic Mask

RoadObstacle21 2021 Camera 327 (+55) / 30 1920× 1080 Recording 1 Semantic Mask

Wuppertal OoD Tracking [88]
Street Obstacle Sequences (SOS) 2022 Camera, Depth 1,129 1920× 1080 Recording 13 Instance Mask
CARLA-WildLife (CWL) 2022 Camera, Depth 1,210 1920× 1080 Simulation 18 Instance Mask

Misc
Lost and Found [113] 2016 Stereo Cameras 2,104 2048× 1024 Recording 42 Semantic Mask
WD-Pascal [8] 2019 Camera 70 1920× 1080 Data Augmentation 1 Semantic Mask
Vistas-NP [46] 2020 Camera 11,167 Varying Class Exclusion 4 Semantic Mask

Table 3.1: Overview of anomaly datasets for semantic segmentation of street scenes,
clustered by the benchmark in which they were presented.

3.1.1 Anomaly Sources

Anomaly datasets can be divided into different anomaly sources. Some of them
utilize existing datasets, such as automated OoD proposal, misc classes, class
exclusion and data augmentation, while web sourcing, recording and simulation
create completely new data.

• Automated OoD proposal allows for the utilization of large, unlabeled datasets.
Here, an automated proposal method is used to generate first anomaly pro-
posals. This can be done with any anomaly detection approach, e.g. un-
certainty, intermediate detections, geometric priors, or model contradictions.
Subsequently, human experts take care of false positives and refine the propos-
als.

• The misc classes approach is based on a labeled dataset. All regions which
are either labeled with void or misc can be examined further. These terms are
often used interchangeably and mostly refer to uncommon objects or irrelevant
areas. Human experts then relabel those classes as anomalies, if appropriate.

• Class exclusion is based on a labeled dataset. Hypothetical anomalies are
created by excluding frames with known classes from the train and validation
splits. A novel test split is created with these, treating the selected classes as
anomalies.

• In web sourcing, human experts actively search for images that include atypical
classes.

• In recording and simulation, anomalies are recorded through data collection by
driving in the real or synthetic world.
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• For data augmentation, any unlabeled dataset can be used as a baseline. By
synthetic manipulation of scenes, anomalies are pasted onto the original image
and can be labeled accordingly.

3.1.2 Definition of Normality

There is no clear definition of whether an object is anomalous or not. However,
a common approach is to define anomalies as none-of-the-known classes with
respect to the 19 Cityscapes [29] evaluation classes. Most anomaly techniques
adhere to the definition of Cityscapes as normality : For web sourcing, simulation,
data augmentation and recording, the anomalous objects are selected to fit into
this definition. For the void class approaches, the definition of anomalous objects
depends on the respective underlying dataset, as the void or misc category isn’t
clearly defined, either. Also, for the automated OoD proposal technique, the def-
inition of normality strongly depends on the underlying classes of the employed
detector(s). Finally, for class exclusion, normality depends on the choice of ex-
cluded classes. The anomalies labeled by this approach are usually not anomalous
with respect to Cityscapes and as such do not represent anomalies which would
be rare in the real world.

Cityscapes The Cityscapes dataset [29] consists of urban street scene images,
which were acquired from a moving vehicle during spring to fall, showing 50
different, mostly German cities in good weather conditions. In total, 5,000 images
of resolution 2,048×1,024 are provided with dense pixel-level annotations. These
are partitioned into a training, test and validation split of sizes 2,975, 1,525 and
500, respectively. For the test data, the labels are withheld for benchmarking
purposes. The ground truth differentiates between 30 visual classes which can be
grouped into the eight categories flat, construction, nature, vehicle, sky, object,
human and void. Classes that are too rare were excluded from the benchmark,
leaving the 19 evaluation classes road, sidewalk, building, wall, fence, pole, traffic
sign, traffic light, vegetation, terrain, sky, person, rider, car, truck, bus, train,
motorcycle and bicycle. These 19 classes are often considered as normality.

3.1.3 Anomaly Datasets

This subsection provides an overview of anomaly datasets, some of which have
been created in the context of this thesis. Other anomaly datasets which are
not considered here are e.g. the StreetHazards and the BDD-Anomaly datasets
included in the CAOS benchmark [54], the WD-Pascal [8] and the Vistas-NP [46]
datasets.
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Figure 3.1: Lost and Found: Visualization of exemplary real anomaly types in real-world
scenes.

Lost and Found The Lost and Found dataset [113] was introduced in 2016 by
Pinggera et al., being the first dataset with a focus on the detection of small road
hazards, as shown in Figure 3.1.

The provided stereo masks for the task of semantic segmentation allow for pixel-
and instance-level evaluation, as proposed by the authors. Their instance-level
approach is based on a 3D stixel representation, which is very method-specific. As
the dataset provides data from stereo cameras, geometric methods can be applied.
The anomalies include 42 individual object types that can realistically be found in
a street environment. The objects are categorized into standard objects, random
hazards, emotional hazards as animals or toys, random non-hazards, and humans
and include both static and dynamic obstacles.

The data was collected in the greater Stuttgart area, Germany. It includes irreg-
ular road surfaces, large object distances, and illumination changes [113]. Typical
environments include housing areas, parking lots, or industrial areas [10].

FS Lost and Found FS Static

Figure 3.2: Fishyscapes: Samples from the val splits, showing real-world scenes with
real (left) and synthetic (right) anomalies.

Fishyscapes The Fishyscapes (FS) benchmark [11] was introduced in 2019 by
Blum et al. for the evaluation of anomaly detection methods in semantic segmen-
tation. While most of the data is withheld for evaluation, the authors provide
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validation sets for the different datasets FS Lost and Found and FS Static. A
third FS Web dataset is completely withheld. The first dataset is a subset of the
Lost and Found dataset [113]. The others are based on the Cityscapes [29] val-
idation data, overlayed with anomalous objects which are either extracted from
the generic Pascal VOC [37] dataset or crawled from the internet. The FS Static
validation frames are automatically generated from the Cityscapes dataset.

The FS datasets are designed for the task of semantic segmentation. FS Lost
and Found is enriched with fine-grained binary semantic masks. The refined
annotation of the background is shown by comparing Figure 3.2 with Figure 3.1.
Furthermore, sequences, where the anomalous objects are bicycles or children,
are filtered out, as they can be assigned to one of the Cityscapes classes. For FS
Static and FS Web, novel objects are blended into already annotated scenes from
Cityscapes, resulting in fully annotated semantic masks. The anomalies extracted
from the Pascal VOC dataset belong to the classes airplane, bird, boat, bottle, cat,
chair, cow, dog, horse, sheep, sofa, and tvmonitor.

As all images originate from the Cityscapes or the Lost and Found datasets,
they are recorded at daytime under clear weather conditions. For the augmented
Cityscapes data, this also entails that the street scenes include instances from
known classes, such as humans or other vehicles. Depending on the anomaly
type, the anomalies have a higher probability to appear either on the lower- or
the upper half.

RoadAnomaly21 RoadObstacle21

Figure 3.3: SegmentMeIfYouCan: Real-world examples from the RoadAnomaly21 test
and the RoadObstacle21 val splits.

SegmentMeIfYouCan The SegmentMeIfYouCan benchmark [21] was developed
in 2021 by Chan, Lis, Uhlemeyer, Blum1 et al. along with two real-world datasets.
A previous version of the RoadAnomaly21 dataset was already published in 2019
by Lis et al. [84]. The current version was both refined and extended. It consists

1Equal contribution
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of images collected from the internet, which show anomalous objects on or near
the road. The RoadObstacle21 dataset was recorded by the authors and includes
anomalous objects placed on the road ahead. Similar to FS Lost and Found, which
is also included in the benchmark, these datasets only contain real anomalies.

Both datasets are designed for the task of semantic segmentation, the semantic
masks include binary anomaly labels. RoadAnomaly21 is designed for general
anomaly detection in full street scenes, whereas in RoadObstacle21, the road is
considered the region of interest, i.e., the not anomaly class. Thus, everything
not included in this region is assigned to the void class, which is represented
in Figure 3.3. The anomalies in RoadAnomaly21 can be categorized into animals,
e.g. elephant, cow, horse, unknown vehicles, e.g. airplane, boat trailer, tractor,
and others, such as tent, piano, or cones. In RoadObstacle21, each object on the
road ahead is considered an obstacle. However, all obstacles in this dataset also fit
the definition of anomaly as objects which cannot be assigned to the Cityscapes
classes. Semantic masks are in both cases only published for small validation sets.

In RoadAnomaly21, images are collected from web resources and thus depict
a wide variety of environments and settings. All images are recorded during
daytime and in clear weather. The anomalies can appear anywhere in the image,
even in the sky. Therefore, they are not necessarily street hazards. The images
of RoadObstacle21 are recorded in Germany and Switzerland on seven different
road types, also during daytime and in clear weather. Additionally, there are 55
annotated frames by night and in snowy weather conditions.

CARLA-WildLife Street Obstacle Sequences

Figure 3.4: Wuppertal OoD Tracking: Two examples showing simulated (left) and real
(right) anomalies.

Wuppertal OoD Tracking Datasets for OoD tracking [88] were introduced
in 2022 by Maag et al.2, enabling OoD detection and tracking over video se-
quences. The Street Obstacle Sequences (SOS) dataset contains annotated real-

2With contribution of the author of this thesis
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world scenes with real anomalies. The CARLA-WildLife (CWL) dataset is a
synthetic dataset similar to StreetHazards [54], where freely available assets were
inserted as anomalies. A third dataset, Wuppertal Obstacle Sequences (WOS),
consists of real-world, but unlabeled sequences.

SOS and CWL provide labels for the tasks of semantic segmentation, instance
segmentation and depth estimation. The datasets include semantic masks with
binary as well as class-specific anomaly labels. Analogously to RoadObstacle21,
the road represents the region of interest, thus, everything besides the road is
assigned to the void class. Furthermore, both datasets include instance and depth
masks. For SOS, 1,129 out of the 8,994 total frames were manually labeled. For
CWL, also pixel-wise distance masks and fully annotated semantic masks are
available. The anomalies in SOS belong to 13 anomaly types, e.g. bag, umbrella
or toy, the anomalies in CWL to 18 anomaly types, e.g. dogs, pylons or bags.

3.1.4 Discussion

Besides the inconsistent definition of normality, which was already discussed
in Subsection 3.1.2, existing anomaly datasets suffer from several issues, involving
realism and domain shifts, a small dataset size as well as missing labels for the
regular task.

The recording of anomalies in the real world is time-consuming, as they are rarely
present in ordinary street scenes and thus, have to be selected and placed man-
ually. Furthermore, anomalies that would lead to dangerous driving situations
cannot be captured. Consequently, anomaly techniques such as data augmenta-
tion and simulation emerged to tackle these issues. Simulation has the advantage
of having full control. Thus, anomalies certainly do not appear in the training
data. However, a natural domain gap to reality exists, so anomaly detection
methods that perform well on synthetic data are not implicitly reliable on real-
world data. The same holds for data augmentation, which mixes two domains,
leading to unrealistic results. For example, anomalies in WD-Pascal and Street-
Hazards are often placed in implausible locations or scaled in unrealistic ways. To
ensure that methods really detect the anomalous objects that are pasted into the
images, Fishyscapes pursues two strategies: Augmenting the Cityscapes images
and pasting in objects from known classes. The first strategy prevents a method
from only detecting pixels that differ from the non-augmented image, the second
indicates whether only the domain shift is identified.

Datasets which include real-world scenes showing anomalies that fit the defini-
tion of normality, either recorded or collected from web resources, are usually
very small. Lost and Found as the largest of these datasets only provides coarse
annotations, followed by the Street Obstacle Sequences dataset, which however
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is highly redundant as the frames are extracted from 20 video sequences. These
datasets are mainly for evaluation purposes and not for training. They also pro-
vide a wide variety of different anomaly types, which is beneficial for evaluating
anomaly detection but is a hindrance for further processing of these anomalies, e.g.
in terms of image retrieval, clustering and incremental learning. While Vistas-NP
is a comparably large dataset, it is still not comparable to regular perception
datasets with hundreds of thousands of frames. Generating larger datasets as a
combination of similar datasets requires that those have a proper anomaly tech-
nique, definition of normality and labeling policy. Such datasets include FS Lost
and Found, RoadAnomaly21, RoadObstacle21 and SOS. In particular, it is not
possible to combine other datasets in a meaningful way due to different labeling
policies.

3.2 Applications

Anomaly segmentation methods can be evaluated on the introduced datasets.
The SegmentMeIfYouCan benchmark [21] provides a comparative overview of
existing approaches by evaluating them on a pixel- and a segment-level. Usually,
anomaly segmentation approaches yield per-pixel anomaly scores u(x)z for an
image x ∈ X , and the final anomaly prediction is obtained by thresholding on
these scores. In [122, 123] a meta regression model has been developed which
provides prediction quality scores on a segment-level, yielding anomaly segments
as segments with poor prediction quality. On top of that, novel classes along the
proposed anomalies are discovered by clustering in the feature space.

3.2.1 Anomaly Segmentation

As anomalous images or image regions are expected to correlate with high uncer-
tainty, uncertainty estimation can be employed to compute anomaly scores. Some
metrics for uncertainty quantification for deep neural networks, which derive di-
rectly from the softmax probabilities, are e.g. the maximum softmax probabil-
ity [55], its extension ODIN [81] or the softmax entropy [55]. Another possibility
for uncertainty quantification is to compute uncertainty scores in previous layers,
for example by computing the Mahalanobis distance [77] of the latent features in
the penultimate layer. Furthermore, approximations to Bayesian inference such
as ensembles [73] or Monte Carlo dropout [40] treat model parameters as distribu-
tions and quantify the discrepancies in the softmax confidences of different models
or inferences, respectively, e.g. by computing the mutual information score [100].
Other anomaly detection approaches leverage modifications of the model archi-
tecture [33], or exploit additional data, e.g. by incorporating an anomaly dataset
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during training, both for image classification [56, 96] and semantic segmenta-
tion [8, 22, 63]. Recent anomaly segmentation methods employ generative models
to reconstruct or resynthesize the original input image and then identify the dis-
crepancies between the original and reconstructed image [30, 34, 83, 84, 101, 142].

Pixel-Level Anomaly Segmentation Let fθ : X → (0, 1)H×W×Q denote a se-
mantic segmentation DNN as defined in Subsection 2.3.2 with underlying classes
Y = {1, . . . , Q}, but before the softmax activation σ(·) : RQ → (0, 1)Q. The max-
imum softmax probability (MSP) is a commonly-used baseline for OoD detection
at image level [55]. It computes an anomaly score for each pixel z ∈ Z as

u(x)z = 1−max
q∈Y

σ(fθ(x)z,q), x ∈ X . (3.1)

Let t ∈ R \ {0} be a temperature scaling parameter and ε ∈ R a perturbation
magnitude. ODIN [81] adds small perturbations to every pixel z ∈ Z of image x
by

x̃z = xz − εsign

(
− ∂

∂xz
log max

q∈Y
σ(fθ(x)z,q/t)

)
. (3.2)

Then, an anomaly score is obtained analogously to Equation 3.1 via the MSP as

u(x)z = 1−max
q∈Y

σ(fθ(x̃)z,q/t) . (3.3)

The Mahalanobis distance is computed for the features produced by the penul-
timate layer. Thus, let fθ(L−1) denote the penultimate layer of fθ. Under the
assumption that

P (fθ(L−1)(x)z|yz = q) = N(fθ(L−1)(x)z|µq,Σq) , (3.4)

an anomaly score for each pixel z can be computed as the Mahalanobis dis-
tance [77]

u(x)z = min
q∈Y

(fθ(L−1)(x)z − µ̂q)ᵀΣ̂q−1

(fθ(L−1)(x)z − µ̂q) , (3.5)

where µ̂q and Σ̂q are estimates of the class mean µq and class covariance Σq,
respectively, of the latent features in the penultimate layer. This Mahalanobis
distance yields an estimate of the likelihood of a test sample with respect to the
closest class distribution in the training data, which are assumed to be class-
conditional Gaussians.

Anomaly segmentation via Monte Carlo dropout (MC dropout) considers discrep-
ancies over multiple samplings. Let M ∈ N denote the number of Monte Carlo
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samplings and q̂m := σ(fθ(x)z,q) the softmax probability of class q ∈ Y for sample
m ∈ {1, . . . ,M}. One can compute the predictive entropy as

Ê(fθ(x)) = −
∑
q∈Y

(
1

M

M∑
m=1

q̂m

)
log

(
1

M

M∑
m=1

q̂m

)
. (3.6)

As suggested in [100], the mutual information can then be used to define an
anomaly score

u(x)z = Ê(fθ(x))− 1

M

∑
q∈Y

M∑
m=1

q̂m log (q̂m) . (3.7)

In [33], an approach to learning the confidence with respect to the presence of
anomalies was proposed. The void classifier approach adapts this by using the
Cityscapes void class to approximate the anomaly distribution. A Cityscapes
DNN fθ : X 7→ RH×W×(Q+1) is trained with an additional class, i.e., a dust-
bin [154]. Then, the anomaly score for each pixel z ∈ Z is computed as the
softmax score for the void class, which yields

u(x)z = σ(fθ(x)z,Q+1), x ∈ X . (3.8)

Starting from a pretrained DNN, entropy maximization introduces a second train-
ing objective to maximize the softmax entropy on OoD pixels [22, 56, 63]. This
yields the multi-criteria loss function

(1−λ)E(x,y)∼Xin [`in(σ(fθ(x)z), yz)] +

λEx′∼Xout [`out(σ(fθ(x
′)z))] , λ ∈ [0, 1] ,

(3.9)

where `in is the empirical cross entropy and `out the averaged negative log-
likelihood over all classes for the in-distribution data Xin and the out-distribution
data Xout, respectively. To approximate Xout, a subset of the COCO dataset [82] is
used whose images do not depict any object classes also available in Xin, which is
the Cityscapes dataset [29]. The COCO subset together with the Cityscapes train-
ing data are then included into a tender retraining of the pretrained Cityscapes
model. The anomaly score is then computed via the softmax entropy as

u(x)z = −
∑
q∈Y

σ(fθ(x)z,q) log (σ(fθ(x)z,q)) . (3.10)

Segment-Level Anomaly Segmentation Given that the GT is available, the
prediction quality of a semantic segmentation DNN can be easily quantified by
computing the IoU, cf. Equation 2.63. Meta regression [122, 123] can be applied
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as a post-processing tool to estimate the prediction quality for unlabeled data.
Therefore, the predicted segmentation mask for an image x ∈ X is broken down
into its segments s ⊆ x, which are connected pixels xz, z ∈ Z that share the same
class prediction. Next, pixel-wise anomaly scores are computed and aggregated
over each component, yielding

u(s) =
1

|s|
∑
z: xz∈s

u(x)z, ∀s ⊆ x . (3.11)

In addition, geometrical information about the components are considered, in-
cluding e.g. the segment size |s|, its location in the image or the class predictions
for neighboring pixels. Altogether, structured arrays for each segment in an image
(batch) are obtained as input for the regression model. Given a labeled training
dataset, the adjusted IoU is computed for all segments, composing the target
value for the training of the meta regressor. The inversed meta regression output
at test time can be used as an anomaly score

û(s), s ⊆ x , (3.12)

analogously to the pixel-level approaches. A visual comparison of the introduced
anomaly scores is provided in Figure 3.5.

image & annotation maximum softmax MC dropout ODIN

Mahalanobis void classifier entropy maximization MetaSeg

Figure 3.5: Collection and visualization of anomaly segmentation methods.

Evaluation Metrics Anomaly segmentation methods yield per-pixel anomaly
scores u(x) ∈ R|Z| for an image x ∈ X to discriminate between the two classes
1 =̂ anomaly and 0 =̂ non-anomaly. The final class prediction is obtained by

ŷ(τ)z = 1{u(x)z≥τ}, τ ∈ R, ∀z ∈ Z . (3.13)

We evaluate the separability of the pixel-wise anomaly scores via the area under
the precision-recall curve (AuPRC).
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Then, for the anomaly class q =̂ anomaly we compute the precision and re-
call scores as defined in Equation 2.61, but considered as functions of τ . The
AuPRC approximates

∫
precision(τ) drecall(τ) and is threshold independent [13].

It also puts emphasis on detecting the minority class, making it particularly well
suited as our main evaluation metric since the pixel-wise class distributions of
RoadAnomaly21 and RoadObstacle21 are considerably unbalanced.

To consider the safety point of view, we also include the false positive rate at 95%
true positive rate (FPR95) in our evaluation, where the true positive rate (TPR)
is equal to the recall of the anomaly class. The false positive rate (FPR) is the
number of pixels falsely predicted as anomaly over the number of all non-anomaly
pixels. Hence, for the anomaly class q we compute

FPR95 =
FPq

FPq + TNq

s.t. TPR = 0.95 , (3.14)

also depending on the threshold τ ∈ R. The metric FPR95 indicates how many
false positive predictions are necessary to guarantee a desired true positive rate.
Note that, any prediction which is contained in a ground truth labeled region of
class void is not counted as false positive. In particular for the RoadObstacle21
dataset the evaluation is therefore restricted to the road area.

3.2.2 Anomaly Clustering

Anomaly segmentation can be also used as a pre-processing step for further tasks,
e.g. for tracking, clustering or retrieval. Retrieval methods in general tackle the
task of seeking related samples from a large database corresponding to a given
query. Early works in this context aim to retrieve images that match best a
query text or vice versa [3, 48, 58, 93]. Another subtask deals with content-based
image retrieval, which can be sub-categorized into instance- and category level
retrieval. This is, given a query image depicting an object or scene, retrieving
images representing the same object/scene or objects/scenes of the same category,
respectively. To this end, these images must satisfy some similarity criteria based
on some abstract description. In a first approach called QBIC [38], images are
retrieved based on (global) low level features such as color, texture or shape.
More advanced approaches utilize local level features [4, 87], still they cannot
fully address the problem of semantic gap [129], which describes the disparity
between different representation systems [52]. Recent methods such as [91, 103]
apply machine/deep learning to learn visual features directly from the images
instead of using hand-crafted features.

In the following, images are not directly retrieved for some given query image. In-
stead, all objects/images that are contained in the database are clustered based on
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their visual similarity, as it has been proposed in [108]. This particularly includes
OoD objects. Furthermore, the single frame based approach is extended to video
sequences, enhancing the effectiveness by incorporating tracking information over
multiple frames. Therefore, the detected OoD objects are passed into a feature
extractor, resulting in a time series of feature vectors on which we employ a low
dimensional embedding via the t-SNE algorithm, cf. Subsection 2.4.1. Here the
time series viewpoint makes it easy to clean the data and avoid false positives,
e.g. by setting a filter to the minimum length. Clustering of similar objects,
either on the basis of frames or on time series meta-clusters enables the retrieval
of previously unseen objects [108, 134] which enables novelty detection. In the
following, we apply this on the SOS and the CWL datasets as well as on self-
recorded unlabeled data that contains OoD road obstacles. This provides a first
method that enables the unsupervised detection of potentially critical situations
or corner cases related to OoD objects from video data.

Evaluation Metrics The evaluation of OoD object clusters Ui ∈ {U1, . . . ,Un},
which contain the two-dimensional representatives of the segments s of OoD ob-
ject predictions, depends on the differentiation level of these objects. We consider
an instance level and a semantic level based on object classes. Let Y = {1, . . . , Q}
and Y ID = {1, . . . , P} denote the set of semantic class and instance IDs, respec-
tively. For some proposed OoD segment s, ys and yID

s correspond to the ground
truth class and instance ID with which s has the highest overlap. On instance
level, we aspire that OoD objects which belong to the same instance in an im-
age sequence are contained in the same cluster. This is, we compute the relative
amount of OoD objects per instance in the same cluster,

CSinst =
1

P

P∑
i=1

max
Uj∈{U1,...,Un}

|{s ∈ Uj | yID
s = i}|∑

Uj∈{U1,...,Un}
|{s ∈ Uj | yID

s = i}|
∈ [0, 1] , (3.15)

averaged over all instances. On a semantic level, we pursue two objectives. The
first concerns the semantic class impurity of the clusters,

CSimp =
1

n

n∑
i=1

|{ys|s ∈ Ui}| ∈ [1, Q] , (3.16)

averaged over all clusters Ui ∈ {U1, . . . ,Un}. Secondly, we aspire a low fragmen-
tation of classes into different clusters
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CSfrag =
1

Q

Q∑
i=1

|{Uj ∈ {U1, . . . ,Un}|∃s ∈ Uj : ys = i}| , (3.17)

i.e., ideally, each class constitutes exactly one cluster. Here, we average over the
semantic classes in Y .

OoD prediction 2D embedding OoD tracking

OoD embedding refinement

Figure 3.6: Method overview: The OoD prediction is used to produce the tracking IDs
and a 2D embedding. The tracking information can be used for a refinement of the
embedding space.

Method On top of segmentation and tracking of OoD objects, we perform a
method similar to content-based image retrieval in order to form clusters of the
OoD objects that constitute novel semantic concepts. To this end we adapt
an existing approach [108, 134] to video sequences by incorporating the track-
ing information which we obtain e.g. as described in [88]. That is, we require
the tracking information to be available for each frame x and apply OoD object
retrieval as a post-processing step which does not depend on the underlying se-
mantic segmentation network nor on the OoD segmentation method but on given
OoD segmentation masks, cf. Figure 3.6.

For each frame x and OoD segment s ⊆ x, let ŷIDs denote the predicted tracking
ID. To diminish the number of the false positives, we only cluster predicted seg-
ments that are tracked over multiple frames of an image sequence {xt}Tt=1, based
on some length parameter ι ∈ N. Further, each frame x is tailored to boxes
around the remaining OoD segments s, which are vertically bounded by the pixel
locations min(h,w):x(h,w)∈s h and max(h,w):x(h,w)∈s h, horizontally by min(h,w):x(h,w)∈sw
and max(h,w):x(h,w)∈sw. Image clustering usually takes place in a lower dimensional
latent space due to the curse of dimensionality. To this end, the image patches
are fed into an image classification ResNet152 [51] (without its final classifica-
tion layer) trained on ImageNet [32], which produces feature vectors of equal
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size regardless of the input dimension. These features are projected into a low-
dimensional space by successively applying two dimensionality reduction tech-
niques, namely PCA and t-SNE. As final step, the retrieved OoD object predic-
tions are clustered in the low-dimensional space, e.g. via the DBSCAN clustering
algorithm, cf. Subsection 2.4.1.

Experiments Next, we evaluate the clustering of OoD segments obtained by
some OoD object segmentation method. In Table 3.2, we report the clustering
metrics CSinst, CSimp and CSfrag with (ι = 10) and without (ι = 0) incorporating
the OoD tracking information, respectively. For both, the CWL and the SOS
dataset, all clustering metrics improve when applying the OoD tracking as a pre-
processing step. A reason for this is, that the tracking information “tidies up”
the embedding space, e.g. by removing noise, which enhances the performance
of the clustering algorithm. For CWL (with 18 object types), 1266/1026 OoD
segments are clustered into 22/23 clusters without/with using tracking results,
for SOS (with 13 object types), we obtain 23/24 clusters which contain 1437/888
OoD segments in total. For the clustering, we applied the DBSCAN algorithm
with hyperparameters ε = 4.0 and δ = 15.

without tracking with tracking (ι = 10)
dataset CSinst ↑ CSimp ↓ CSfrag ↓ CSinst ↑ CSimp ↓ CSfrag ↓

SOS 0.8652 2.5217 2.8182 0.8955 1.7917 1.9091
CWL 0.8637 2.8181 2.2500 0.8977 2.1739 1.8000

Table 3.2: Object clustering results for the SOS and the CWL dataset. We report
results for clustering with and without incorporating the object tracking information.

Retrieval of OoD Objects for WOS In addition to the labeled datasets SOS
and CWL, we applied our toolchain to another dataset which we abbreviate as
WOS. As this dataset does not include any annotated data, it serves as a test
scenario, only. This is, we do not provide any evaluation results, but some visu-
alizations of the retrieved clusters. We trained two meta classifiers on SOS and
CWL, respectively. Since the results for both meta classification models are simi-
lar and the domain shift between SOS and WOS is less, we limit our visualizations
onto this respective meta model, while increasing the minimal tracking length to
ι = 25.

As illustrated in Figure 3.7, we are able to retrieve clusters constituted of OoD
objects such as dogs, cf. Figure 3.8. Our dataset includes three different dogs,
that are visible in multiple scenes. We observe that these three dogs do not
constitute one overall dog cluster, however, each of them forms a cluster containing
multiple sequences, as well as different postures, sizes/distances, backgrounds and
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Figure 3.7: Clustering of proposed OoD segments (plus some example images) via DB-
SCAN in the feature space for a minimum tracking length ι = 25.

perspectives. Moreover, some retrieved clusters represent OoD objects like balls,
bags or skateboards. Further, we discover many false positive OoD predictions
such as humans, sidewalks, manhole covers or shadows.

Figure 3.8: Example images taken from three different clusters, all representing the
overall category dog.
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Chapter 4
Towards Unsupervised Open World
Semantic Segmentation

For the semantic segmentation of images, state-of-the-art deep neural networks
(DNNs) achieve high segmentation accuracy if that task is restricted to a closed
set of classes. However, as of now DNNs have limited ability to operate in an open
world, where they are tasked to identify pixels belonging to unknown objects and
eventually to learn novel classes, incrementally. Humans have the capability to
say: “I don’t know what that is, but I’ve already seen something like that”.
Therefore, it is desirable to perform such an incremental learning task in an un-
supervised fashion. We introduce a method where unknown objects are clustered
based on visual similarity. Those clusters are utilized to define new classes and
serve as training data for unsupervised incremental learning. More precisely,
the connected components of a predicted semantic segmentation are assessed by
a segmentation quality estimate. Connected components with a low estimated
prediction quality are candidates for a subsequent clustering. Additionally, the
component-wise quality assessment allows for obtaining predicted segmentation
masks for the image regions potentially containing unknown objects. The respec-
tive pixels of such masks are pseudo-labeled and afterwards used for re-training
the DNN, i.e., without the use of ground truth generated by humans. In our ex-
periments we demonstrate that, without access to ground truth and even with few
data, a DNN’s class space can be extended by a novel class, achieving considerable
segmentation accuracy.

source code & data: https://github.com/SUhlemeyer/novelty-learning
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4.1 Introduction

image & novelty annotation prediction quality estimation

prediction of the initial DNN prediction of our extended DNN

Figure 4.1: Comparison of the semantic segmentation predictions of an initial DNN
(bottom left) whose semantic space does not include the category bus and a DNN which
is incrementally extended by this novel class (bottom right, novel class in orange) for
an image from the Cityscapes dataset. The novel class is highlighted in orange (top
left). Further, the initial prediction exhibits a low prediction quality (top right) on
pixels belonging to the novel objects, which is indicated by red color.

Semantic segmentation is a computer vision task that terms the classification of
image data on pixel level, cf. Subsection 2.3.2. State-of-the-art approaches are
based on deep convolutional neural networks (DNNs) [25, 137, 155] introduced
in Subsection 2.2.2, benefiting from finely annotated datasets, e.g. for automated
driving [29, 42, 105, 150]. However, DNNs for semantic segmentation are usually
trained on a predefined, closed set of classes. This closed world setting assumes,
that all classes present during testing were already included in the training set.
In an open world setting, this assumption does not hold. In particular for safety-
critical open-world applications like perception systems for automated driving, it
is indispensable that neural networks recognize previously unseen objects instead
of wrongly assigning them to one-of-the-known classes. In addition, they must
constantly adapt to evolving environments.

Some terms often used interchangeably for anomaly are outlier, out-of-distribution
(OoD) object and novelty. As there is no clear convention on how to distinguish
these terms, we define them as subcategories of anomalies: outliers and OoD
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objects denote noise or samples drawn from another distribution than the model
was trained on, respectively. In this work, we are seeking novelties, which we
define as previously-unseen objects that constitute a new concept, i.e., objects
of the same category appear frequently. In automated driving, detecting and
learning those novel classes becomes necessary, e.g. due to new appearances
like e-scooters or due to local specialities like boat trailers near the sea. The
concept of detecting and learning novelties was first introduced in [6] as open
world recognition. Open world recognition for different computer vision tasks is
an emerging research area [6, 19, 62, 128], still only little explored for unsupervised
methods [50, 104], yet.

We propose a new and modular procedure for learning new classes of novel objects
without any handcrafted annotation:

1. Anomaly segmentation to detect suspicious objects,

2. clustering of potentially novel objects,

3. creation of so-called pseudo-labels, and

4. incremental learning of novel classes.

In the following, we will outline each of these four steps in more detail.

For the first step, we post-process the predictions of an underlying semantic seg-
mentation DNN via a meta regressor, that estimates the quality of the predicted
segments, similar as proposed in [89, 122, 123]. In the following, the term seg-
ment will always refer to connected components of pixels in the semantic seg-
mentation prediction. The segment-wise quality score is obtained on the basis of
aggregated dispersion measures and geometrical information, i.e., without requir-
ing ground truth. The output of the semantic segmentation DNN on anomalous
objects is often split into several segments. To this end, we first aggregate neigh-
boring segments, i.e., segments that have at least one adjacent pixel each, with
quality estimates below some threshold, into (potentially) anomalous objects,
termed suspicious objects.

For the second step, we adapt the idea introduced in [108] and presented in Sub-
section 3.2.2 to gather segments with poor prediction quality and to cluster them
into visually related neighborhoods. Therefore, all suspicious objects (of sufficient
size) are cropped out in the RGB images and the resulting image patches are fed
into a convolutional neural network (CNN), e.g. for image classification. Whether
an image patch is sufficiently large depends on the minimum input size required
by this CNN. To obtain comparable information about the suspicious objects,
we then extract the features provided by the penultimate layer of the CNN, i.e.,
right before the final classification layer. By reducing the dimensionality of these
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features up to two, we enable the use of low-dimensional, unsupervised clustering
techniques, such as [36, 90].

As third, we obtain pseudo-labels for novel classes in an automated manner:
each (large / dense enough) cluster constitutes a novel category, and each pixel
belonging to a clustered object is assigned to the appropriate (not necessarily
named) class. More precisely, the prediction of the segmentation model is updated
at those pixel positions to the next “free” label ID.

Finally, the segmentation network is incrementally extended by these novel classes,
cf. Figure 4.1. To this end, we apply established incremental learning methods
[57, 119]. However, these are mainly examined for supervised learning tasks, while
we do not include any hand-labeled new data. This last two steps were never done
in literature so far.

We perform five experiments, following a hierarchical structure of complexity.
For the first three experiments, the initial segmentation network is trained on the
Cityscapes dataset, but on different subsets of the available training classes. Here,
we do not change the data itself, but the training IDs of the Cityscapes classes,
i.e., we create artificial anomalies by class exclusion, cf. Subsection 3.1.1. For the
other experiments, we start with an initial segmentation network that is trained
on Cityscapes and test our method on the A2D2 dataset. For those, we have
a mapping between the Cityscapes and the A2D2 classes. For most Cityscapes
classes, there is a matching class in A2D2. In some cases, A2D2 has coarser
classes, e.g. we map the Cityscapes classes vegetation and terrain to the A2D2
class nature.

To outline our contributions, we demonstrate in our experiments that our method
is able to incrementally extend a neural network by novel classes without collect-
ing or annotating novelties manually. To the best of our knowledge, we are the
first to introduce an unsupervised approach for open world semantic segmentation
with DNNs. Fine-tuning neural networks on automatically created pseudo-labels
instead of human-made annotations is economically valuable. We observe in all
experiments, that even a poor labeling quality is sufficient to learn novel classes,
achieving IoU values around 40%. Further, the amount of new data was less
mostly than 100 images, respectively. Unsupervised open world semantic seg-
mentation therefore is a powerful tool for open world applications, that provides
an enormous potential for future improvement.

4.2 Related Works

In this section, we first review anomaly detection methods and briefly go into class
discovery approaches. Then we describe different strategies for class-incremental
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learning. Finally, we give an overview of existing work on open world computer
vision tasks.

Novelty Detection The detection of anomalous objects in general is a key task
in many machine learning applications. Early works estimate the prediction un-
certainty, e.g. by uncertainty measures derived from the softmax probability
[55, 81]. Uncertainty-based approaches can be further improved by integrating
anomalous data into the training procedure [22, 33]. Another line of works em-
ploys generative models such as autoencoders (AEs) or generative adversarial
models (GANs) to reconstruct or synthesize images and measure the reconstruc-
tion quality. Various of those novelty detection methods are described in [136],
not only reconstruction-, but also density- or distance-based. A benchmark for
anomaly segmentation, i.e., anomaly detection methods for semantic segmenta-
tion, was recently published in [21], providing a cleaner comparison of proposed
methods. Given a set of anomalies, the prevailing approach for class discovery
is to form clusters based on some similarity measure or intrinsic features with
traditional clustering methods. A detailed survey of image clustering has been
published in [85].

Class-Incremental Learning Class-incremental learning refers to the extension
of a neural network’s semantic space by further, previously unknown, classes.
This extension is achieved by fine-tuning a model on additional, usually human-
annotated data [64, 68, 80, 97], whereas in this work we only provide pseudo-labels
for these new images. The primary issue to tackle when re-training a neural net-
work is to mitigate the performance loss on previously learned classes, commonly
known as catastrophic forgetting [94]. To this end, we employ two different strate-
gies: first, we penalize large variations of the softmax output (compared to the
one of the original network) [57], second we utilize a subset of the previously-seen
training data [119].

The first strategy belongs to the category of regularization based approaches,
or more specifically to knowledge distillation methods. These were originally
developed to distill knowledge from sophisticated into simpler models [57], i.e., for
model compression. Thereupon, distillation methods have evolved for incremental
learning in image classification [64, 65, 78, 80, 148], some of which were later
adapted to semantic segmentation [68, 97, 130].

The second approach belongs to so-called rehearsal methods [119], where old
training data is included in the re-training process [17, 117].
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Figure 4.2: Illustration of the overall framework.

Open World The open world setting was first introduced in [6] for image clas-
sification. The authors formally define the solution of open world recognition
problems as a tuple, consisting of a recognition function, a novelty detector, a
labeling process and an incremental learning function. Ideally, these steps should
be automated, however, most approaches presume a supervised setting, i.e., they
require ground truth for detected novelties. In summary, open world recognition
covers the entire process from discovering up to learning novel classes.

A supervised solution for open world object detection is presented in [62], based
on contrastive clustering, an unknown-aware proposal network and energy based
unknown identification. A similar approach was proposed in [19] for open world
semantic segmentation, where novel classes are learned via few-shot learning.
In [50], an unsupervised method to obtain pseudo-labels for image classification
based on cluster assignments is introduced. There exists also some prior work for
unsupervised open world semantic segmentation [104], however, the segmentation
mask is obtained via agglomerative clustering of superpixels and there is no update
of the neural network at all. While it is capable of creating ad hoc novel classes
unsupervised on given images, it does not create a consistent semantic category
over multiple images.

Our work introduces an open world semantic segmentation framework, where
a neural network is incrementally extended by novel classes. These classes are
discovered and labeled without any human effort. Therefore, our work goes
beyond all existing approaches in this research area.
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4.3 Discovery of Unknown Semantic Classes

Whether a class is novel or not depends on the neural network’s underlying
set of known classes Y = {1, . . . , Q}. Let fθ : X → (0, 1)|Z|×Q be a seman-
tic segmentation DNN which is trained on the classes in Y , mapping an image
x ∈ X ⊆ [0, 1]|Z|×3 onto its softmax probabilities for each pixel z ∈ Z. Then,
fθ(x)z,q ∈ (0, 1) denotes the probability with which the model fθ assigns some
pixel xz, z ∈ Z to a class q ∈ Y . As decision rule, we apply the argmax
function, i.e., we obtain the semantic segmentation mask m̂(x) ∈ Y |Z| with
m̂(x)z = argmaxq∈Y fθ(x)z,q. In the following, we will estimate the prediction
quality on a segment-level instead of pixel-wise, employing a meta regression ap-
proach that was first introduced in [122]. On that account, we denote a segment,
i.e., a connected component of pixels that share the same class in m̂(x), as s ⊆ x.

4.3.1 Meta Regressor

As model for the meta regressor we apply the gradient boosting from the scikit-
learn v.0.24.2 library using the standard settings. The training datasets con-
tain from 67 to 75 uncertainty metrics depending on the number of classes. We
train on 313, 720 to 946, 318 segments. Further details on the definition of the
segment-wise metrics, the exact size of the training data and the tree models ob-
tained are provided in the Appendix. For any predicted segment k, the gradient
boosting regressor, via clipping, outputs a value between 0 and 1, where a value
close to 0 expresses low, a value close to 1 high prediction quality.

The motivation to use a segment-wise meta regression framework is to identify
segments with low predicted IoU as candidate segments that potentially stem
from OoD objects.

4.3.2 Uncertainty Metrics and Prediction Quality Estimation

We consider novelties as none-of-the-known objects, i.e., they differ semantically
from the model’s training data. Assuming that the segmentation DNN produces
unstable predictions on these unexplored entities, various measurable phenomena
occur. For instance, the model exhibits a high prediction uncertainty. This is
quantified by dispersion measures as the softmax entropy, probability margin or
variation ratio, which we compute pixel-wise via

Ez(fθ(x)) = − 1

log(Q)

∑
q∈Y

fθ(x)z,q log(fθ(x)z, q) , (4.1)
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Dz(fθ(x)) = 1−max
q∈Y

fθ(x)z,q + max
q∈Y\{m(x)z}

fθ(x)z,q , (4.2)

Vz(fθ(x)) = 1−max
q∈Y

fθ(x)z,q , (4.3)

respectively. These are then averaged over the segments s or over the segment
boundary. Moreover, we examine some geometrical properties of the segments,
such as their size, i.e., the number of pixels |s| contained in s, their shape or
their position in the image. For in-depth details on the constructed metrics, we
refer to [122]. By feeding these metrics into a meta regression model, we obtain
prediction quality estimates for each segment s, which we denote by 1 − û(s) ∈
[0, 1], cf. Equation 3.12. These quality estimates approach the true segment-wise
Intersection over Union (IoU) with reasonably high accuracy [122]. To fit the
meta regressor, we compute the metrics plus the true IoU values of all segments
included in the training data of the segmentation network. This meta model is
then applied to unseen data, i.e., data that was not included in the training of fθ,
for the purpose of anomaly segmentation. Here, we consider a segment s to be
anomalous, if its quality score is below some predefined threshold τ ∈ [0, 1], i.e.,
if û(s) ≥ τ . By that, we identify individual segments as unknown, however, the
semantic segmentation of unknown objects usually consists of several segments,
i.e., of different predicted classes. As we can uniquely assign each pixel xz to a
segment s, we obtain a binary pixel-wise classification mask â ∈ {0, 1}|Z| by

âz = 1{û(s)≥τ}, xz ∈ s ∀z ∈ Z , (4.4)

where the class prediction âz = 1 indicates anomalous pixels. Finally, the con-
nected components in the anomaly mask â merge adjacent anomalous segments
into suspicious objects. Under ideal conditions,

1. the semantic segmentation network performs perfectly on in-distribution
data,

2. the meta model detects all (but only) unknowns, and

3. novel objects of different classes are separable.

4.3.3 Embedding and Clustering of Image Patches

Image clustering usually takes place in a lower dimensional latent space due to
the curse of dimensionality. To this end, we feed image patches tailored to the
suspicious objects into an image classification DenseNet201 [59], which is trained
on the ImageNet dataset [32] with 1000 classes. The patches are not equally sized.
That nevertheless the DenseNet feature extractor returns features of equal size
(1, 920) for each patch is a consequence of the application of the AdaptiveAvg-
Pool2d layer that is applied as the last layer after the fully convolutional and
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. . .
Feature

Extraction

Figure 4.3: Coarse illustration of the feature extraction process. Detected unknown
objects, e.g. humans and guardrails, are cropped out (indicated by the red box). The
image patches are passed to an encoder, producing feature vectors which are projected
into a two-dimensional space.

depth-wise interconnected layers of the DenseNet. Put shortly, this last layer
pools over both spatial dimension of the feature maps and thereby the output
is not dependent on the size of the input, that is transported through the fully
convolutional layers. Their feature representations are further compressed, result-
ing in a two-dimensional embedding space as illustrated in Figure 4.2. We apply
two commonly used dimensionality reduction techniques. For complexity reasons,
we compute the first 50 principal components [112] before deploying the better
performing t-SNE method [135] with Euclidean distance as similarity measure.

This procedure for image embedding is adopted from [108], where the authors
evaluated several feature extractors, distance metrics and feature dimensions. We
employ the best performing setup in this quantitative analysis to obtain clusters of
visually related image patches. Beyond that, we identify these clusters using the
DBSCAN algorithm, cf. Subsection 2.4.1. The cluster with the most remaining
core points (or all clusters that involve “enough” core points) will be used to
extend the segmentation network by new classes.

4.3.4 Novelty Segmentation

Using pseudo-labels instead of manually annotated targets is a cost-efficient (in
the sense of human effort) method of training neural networks on unlabeled data.
For the sake of simplicity we assume that exactly one cluster is returned by the
aforementioned procedure. For some image x ∈ X , we denote the predicted
segmentation mask by m̂(x) and the respective segments by s. Let U1, . . . ,Uk
denote the proposed clusters. If ∃s ⊆ x and i ∈ {1, . . . , k}, so that s ∈ Ui,
i.e., if image x (probably) contains a novel class, we include the tuple (x, ỹ) ∈
X × {1, . . . , Q,Q+ 1, . . . , Q+ k}|Z| into the re-training data Snovel for learning

73



4 Towards Unsupervised Open World Semantic Segmentation

image from A2D2 semantic
segmentation

prediction

prediction quality
estimation from 0
(red) to 1 (green)

pseudo ground truth

Figure 4.4: Novelty segmentation: example for obtaining pseudo ground truth with
regard to some image patch (outlined in red) of image x. If segments inside the red box
exhibit quality estimates below some predefined threshold, they are “re-labeled” in the
segmentation mask m(x).

the novel classes Q+ 1, . . . , Q+ k. Here, ỹ denotes the pseudo-label, where

ỹz =

{
Q+ i , if s ∈ Ui, xz ∈ s, i ∈ {1, . . . , k}
m̂(x)z , otherwise

, (4.5)

i.e., a pixel z is either assigned to a novel class ID Q + 1, . . . , Q + k, or to the
class q ∈ Y that was predicted by the initial model fθ. An example for acquiring
pseudo ground truth for one image is given in Figure 4.4. In the following section
we extend the segmentation DNN fθ by fine-tuning it on Snovel.

4.4 Extension of the Model’s Semantic Space

In this section we describe our approach to semantic incremental learning with the
pseudo ground truth acquired by novelty segmentation. Starting from our initial
segmentation model fθ, we seek an extended model fθ+ : X → (0, 1)|Z|×(Q+k)

that retains the knowledge of fθ while additionally learning the novel classes Q+
1, . . . , Q+k. Denote the extended semantic space by Y+ = Y∪{Q+1, . . . , Q+k}.
In more detail, we replace the ultimate layer fθ(L) and reinitialize only the affected
weights to obtain the initial model fθ+ for re-training, i.e., the model we train
on the newly collected data Snovel. As loss function we apply a weighted cross
entropy loss [149], denoted by `ce,ω. The class-wise weights ωq ∈ (0, 1], q ∈ Y+,
are recalculated for each batch based on the inverse class frequency to alleviate
class imbalances.

To mitigate the problem of catastrophic forgetting [94], we pursue two strategies,
namely knowledge distillation [57] and rehearsal [119].

Knowledge distillation in class-incremental learning aims at minimizing variations
of the softmax output restricted to only the old classes q ∈ Y . This is realized by

74



4.4 Extension of the Model’s Semantic Space
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Figure 4.5: Bar plots showing the relative frequencies of predicted classes for instances
of the corresponding novel classes human and bus, each with an exemplary image. The
novel pixels in the images are overlayed with the pseudo-label and the initially predicted
classes, respectively.

an additional distillation loss function [98] `d, where

`d(fθ+(x), fθ(x)) := − 1

|Z|
∑
z∈Z

∑
q∈Y

fθ(x)z,q log(fθ+(x)z,q) . (4.6)

Overall, we aim at minimizing the objective

L := λ E[`ce,ω(fθ+(x), ỹ)] + (1− λ) E[`d(fθ+(x), fθ(x))], λ ∈ [0, 1] (4.7)

with λ regulating the impact of the distillation loss.

Rehearsal methods propose to replay (some of) the data Strain ⊂ X × Y |Z| seen
during the training of the initial model fθ. We select a subset Sknown ⊆ Strain that
contains as much data as Snovel. This subset is chosen largely at random, but in
such a way that it involves classes, that are

1. not or rarely present in Snovel (class frequency), or

2. similar or related to the novel class.

As there is no measure for the second case, we identify those classes by considering
the frequency, with which a class is predicted by fθ on pixels assigned to the
novel class. This is, for all data (x, ỹ) ∈ Snovel, known classes q ∈ Y and novel
classes q′ ∈ {Q + 1, . . . , Q + k}, we sum up the number of pixels z ∈ Z where
ỹz = q′ ∧ m̂(x)z = q. An example is given in Figure 4.5, where the classes truck,
train and car are the most frequently predicted classes for instances of the novel
class bus.
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4.5 Experiments

We evaluate our approach on the task of detecting and incrementally learn-
ing novel classes in traffic scenes, for which there exist large datasets such as
Cityscapes [29] and A2D2 [42]. To this end, all evaluated segmentation DNN’s
were trained on a training split and only on a subset of all available classes. We
then perform our experiments on a test split of the same dataset on which the
DNN was trained in order to extend it by exactly one or even multiple novel
classes. We measure the performance of the extended models computing the eval-
uation metrics intersection over union (IoU), precision and recall for a validation
set.

4.5.1 Experimental Setup

As segmentation DNNs we employ the DeepLabV3+ [25] and the PSPNet [155].
The first is trained for different subsets of known classes on the Cityscapes dataset.
Moreover, both models are pre-trained on Cityscapes with all 19 classes and then
fine-tuned on the A2D2 dataset. Here we use a label mapping between both
datasets through which 14 classes remain.

We perform five experiments: For the first three experiments, a DeepLabv3+
with a WideResNet38 backbone is trained on the Cityscapes dataset, where 1)
the classes person & rider, 2) the class bus and 3) the classes person & rider,
bus and car are excluded. In a fourth experiment, a DeepLabv3+ as well as a
PSPNet based on a ResNet50 backbone are fine-tuned on the A2D2 dataset, for
which we specified subsets for training, testing and validation, including 2975,
1355 and 451 annotated images, respectively. Then, we also apply our method to
the A2D2 dataset without prior fine-tuning, i.e., under a domain shift, employing
a DeepLabV3+ trained on Cityscapes. Our experiments follow a hierarchical
structure with increasing complexity:

1. Construction of a “well” separated category (human),

2. Construction of a category in the midst of known similar categories (bus),

3. Construction of multiple novel categories (human, bus and car),

4. Construction of a new category under domain shift with ground truth for
known classes (guardrail, with fine-tuning),

5. Construction of a new category under domain shift without ground truth
(guardrail, without fine-tuning).
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Each of those initial DNNs is employed to predict the semantic segmentation
masks for the images contained in the respective test set. For the segment-wise
prediction quality estimation, we apply a gradient boosting model to obtain the
uncertainty scores u(s) ∈ [0, 1] for each segment s ⊆ x and image x in the test set.
The threshold in Equation 4.4 is set to τ = 0.5, i.e., a segment s is considered as
anomalous, if u(s) ≥ 0.5. To extract features of the suspicious objects, we employ
a DenseNet201 [59], trained on the ImageNet dataset [32] with 1,000 classes. Note
that the DBSCAN hyperparameters have to be selected dependent on the density
of the desired clusters.

For the class-incremental extension of an initial DNN fθ, we replace its final layer
to obtain a larger DNN fθ+ . Only the decoder of this model is trained for 70
epochs on the newly collected data Snovel together with the replayed data Sknown.
We use random crops of size 1,000 × 1,000 pixels, the Adam optimizer with a
learning rate of 5 · 10−5 and a weight decay of 10−4. Further, the learning rate
is adjusted after every iteration via a polynomial learning rate policy [23]. The
distillation loss and the cross-entropy loss are weighted equally in the overall loss
function defined in Equation 4.7, i.e., λ = 0.5 (analogously to [97]).

As the five experiments struggle with different issues, the experimental setup
slightly differs. For the first case, we construct the novel category human, which
is “well” separable from all known classes, to enhance the purity of the “hu-
man cluster” and to simplify the learning of novel objects. However, we observe
that the DNN tends to “overlook” many humans, i.e., they are assigned to the
class predicted in the background, e.g. to the road class. As a consequence, the
segment-wise anomaly detection fails to detect such persons, which is why these
will be assigned to other classes in our acquired pseudo ground truth. To not
distract the extended segmentation network, we modify the pseudo-labels by ig-
noring all known classes q ∈ Y during the incremental training procedure. The
bus class added in the second experiment is closely related to other classes in the
vehicle category, such as truck, train and car, which complicates the construc-
tion of pure clusters. We mitigate the impact of objects from similar classes by
discarding all objects from the cluster that consist of only one segment in the
predicted segmentation. Experiment three extends the previous ones by facing
multiple unknown classes, namely human, bus and car. The last two experiments
deal with an additional domain shift from urban street scenes in Cityscapes to
countryside and highway scenes in A2D2. To bridge this gap, we fine-tune the ini-
tial DNN on our A2D2 training set, which, however, requires A2D2 ground truth
for the known classes. Without fine-tuning, the prediction quality and thereby
the quality of our pseudo ground truth suffers. On that account, we discard im-
ages that are generally rated as badly predicted, i.e., where the relative amount
of pixels with a low quality estimate exceeds 1/3 of the image in total. Moreover,
we renounce the replay of previously-seen data, since this prevents the DNN from
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adapting to the new domain.

4.5.2 Evaluation of Results

mIoUY IoUnovelty mIoUY+

1. experiment: Cityscapes, human DeepLabV3+

initial DNN 68.63 00.00 64.82
extended DNN (ours) 68.53 39.80 66.94
extended DNN (supervised) 69.43 59.33 68.87
oracle 71.05 72.85 71.15

2. experiment: Cityscapes, bus DeepLabV3+

initial DNN 66.94 00.00 63.42
extended DNN (ours) 67.07 44.73 65.89
extended DNN (supervised) 66.74 41.40 65.41
oracle 69.48 76.66 69.86

3. experiment: Cityscapes, multi DeepLabV3+

initial DNN 56.99 00.00 & 00.00 50.29
extended DNN (ours) 57.52 40.22 & 81.27 57.90
oracle 77.28 81.90 & 94.94 78.59

4. experiment (a): A2D2, guardrail DeepLabV3+ (fine-tuned)

initial DNN 75.77 00.00 70.72
extended DNN (ours) 72.07 46.10 70.34
oracle 75.23 74.58 75.19

4. experiment (b): A2D2, guardrail PSPNet (fine-tuned)

initial DNN 68.77 00.00 64.19
extended DNN (ours) 64.54 32.79 62.42
oracle 67.71 69.08 67.80

5. experiment: A2D2, guardrail DeepLabV3+ (not fine-tuned)

initial DNN 59.38 00.00 55.42
extended DNN (ours) 60.48 20.90 57.84

Table 4.1: Comparing overview of all evaluated models, where the results for our ex-
tended DNNs are highlighted in gray. As performance metrics, we provide the mean
IoU over the old and new classes, denoted by mIoUY and mIoUY+ , respectively, and
the IoU value of the novel class(es), IoUnovelty.

In the following, all evaluation values belonging to our extended models are aver-
aged over five runs of the respective experiment. We provide a qualitative com-
parison of different models for all conducted experiments in Table 4.1, reporting
the mean IoU over the known classes and over the extended class set, denoted
as mIoUY and mIoUY+ , respectively, as well as the IoU value of the novel classes
(IoUnovelty). The models considered in this comparison are the initial and the
extended DNN, where the class space is extended via our method. For the first
and second experiment we further compare our approach with a baseline, where
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a DNN is extended using a self-training approach. That is, we employ a so-called
teacher network, which is already trained on the extended semantic space Y+,
to produce pseudo-labels for some student network. Thereby, we obtain a high
quality pseudo ground truth. Apart from this, the baseline DNN is extended
analogously to ours. In addition, for the first four experiments we provide results
of an oracle, i.e., a DNN, that is initially trained on the extended class set Y+

and only with human-annotated ground truth. In the fifth experiment, we extend

IoU precision recall IoU precision recall

1. experiment: DeepLabV3+
Cityscapes, human initial extended

human 00.00 00.00 00.00 39.80 60.60 53.72
mean over Y 68.63 79.79 80.94 68.53 83.32 77.17
mean over Y+ 64.82 75.36 76.44 66.94 82.05 75.86

2. experiment: DeepLabV3+
Cityscapes, bus initial extended

bus 00.00 00.00 00.00 44.73 58.33 66.15
mean over Y 66.94 79.32 79.55 67.07 82.46 76.31
mean over Y+ 63.42 75.15 75.36 65.89 81.19 75.78

3. experiment: DeepLabV3+
Cityscapes, multi initial extended

human 00.00 00.00 00.00 40.22 68.74 49.65
car 00.00 00.00 00.00 81.27 86.56 93.05
mean over Y 56.99 65.75 80.88 57.52 78.53 65.77
mean over Y+ 50.29 58.01 71.37 57.90 78.43 66.43

4. experiment (a): DeepLabV3+
A2D2, guardrail initial extended

guardrail 00.00 00.00 00.00 46.10 80.41 52.09
mean over Y 75.77 87.86 83.47 72.07 89.01 78.44
mean over Y+ 70.72 82.00 77.90 70.34 88.44 76.69

4. experiment (b): PSPNet
A2D2, guardrail initial extended

guardrail 00.00 00.00 00.00 32.79 70.75 38.04
mean over Y 68.77 84.57 76.79 64.54 86.41 71.22
mean over Y+ 64.19 78.93 71.67 62.42 85.36 69.01

5. experiment: DeepLabV3+
A2D2, guardrail initial extended

guardrail 00.00 00.00 00.00 20.90 77.12 22.32
mean over Y 59.38 79.50 68.14 60.48 84.08 66.61
mean over Y+ 55.42 74.20 63.60 57.84 83.61 63.66

Table 4.2: Direct comparison of the initial and the extended DNNs for all conducted
experiments. We report the IoU, precision and recall values for the novel class (high-
lighted with gray rows), respectively, as well as averaged over the previously-known and
the extended class spaces Y and Y+.
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the initial DNN by a novel class derived from a different dataset. To some extent,
the oracle from experiment 4(a) can serve as a coarse reference for experiment 5.
In Table 4.2 we give a more detailed overview about all experiments, reporting
not only the IoU, but also the precision and recall values of the novel class as
well as averaged over Y and Y+. Note that the fourth experiment is evaluated
twice, once for (a) the DeepLabV3+ and once for (b) the PSPNet. In general,
we observe that our approach succeeds in incrementally extending a DNN by a
novel class, while the performance on previously-known classes remains stable.
On Cityscapes, we achieve IoU values for the novel classes human and bus of
IoUhuman = 39.80±0.73% and IoUbus = 44.73±1.46%, respectively. For the third
experiment with two novel classes, we obtain similar results for the human class
with IoUhuman = 40.22±1.77% and for the car class even IoUcar = 81.27±1.16%.
While these IoU values are a considerable achievement for a method working
without ground truth, the distinct gaps to the oracle’s IoU values still leave room
for further improvement. Compared to the baseline DNN, we do not achieve
competitive performance in the first experiment, while in the second experiment,
our approach actually performs slightly better. This is explained by the fact,
that the pseudo ground truth for the human class incorporates much more noise
than that for the bus class. In the fourth experiment we mitigate the domain
shift from Cityscapes to A2D2 by prior fine-tuning of the networks, using A2D2
ground truth. By that, we obtain IoU values of IoUguardrail = 46.10 ± 4.8% for
the DeepLabV3+ and IoUguardrail = 32.79 ± 3.48% for the PSPNet. We con-
clude, that our approach achieves better results for models which are initially
better-performing. Without fine-tuning the DeepLabV3+ on A2D2, we obtain
IoUguardrail = 20.90±1.73%, while the mean IoU over the previously-known classes
Y slightly increases from 59.38% to 60.48± 0.47%.

image patch prediction quality estimation

Figure 4.6: Image patch, semantic segmentation and prediction quality estimation for
a scene, where a cyclist is overlooked by the initial DNN.

Experiment 1 For the first experiment, we trained a DeepLabV3+ on the
Cityscapes dataset, excluding the classes pedestrian and rider, both together con-
stituting the class human. This novelty is well separable from all the known
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classes as these belong to different, non-organic categories. As there are no sim-
ilar classes, humans are either totally “overlooked” by the segmentation DNN,
i.e., assigned to the class predicted in their background, or predicted as related
classes, e.g. as bicycle, motorcycle or car, cf. Figure 4.5. Since our anomaly de-
tection method fails to spot overlooked persons, these remain mislabeled even in
the pseudo ground truth, thus negatively affecting the incremental training pro-
cedure. For an example, we refer to Figure 4.6, where a cyclist is assigned to the
background classes road and car. To prevent this issue, we ignore all known classes
q ∈ Y present in the pseudo-labels. Our newly collected data Snovel contains 76
pseudo-labeled images. The replayed training data is selected such that at least
25% - 35% of the images contain cars, motorcycles and bicycles, respectively. We
evaluated the initial and the extended DNN on the Cityscapes validation data.
Class-wise results are provided in Table 4.3.

1. experiment DeepLabV3+
Cityscapes, human initial extended

class IoU precision recall IoU precision recall

road 97.34 98.35 98.96 97.43 ± 0.05 98.54 ± 0.12 98.86 ± 0.08
sidewalk 80.63 89.39 89.16 80.51 ± 0.23 89.50 ± 0.50 88.91 ± 0.67
building 88.91 92.80 95.50 89.40 ± 0.05 93.42 ± 0.20 95.42 ± 0.24
wall 47.24 74.57 56.32 47.74 ± 0.57 78.92 ± 0.49 54.71 ± 0.77
fence 51.03 66.76 68.41 49.20 ± 0.44 70.06 ± 1.55 62.33 ± 1.26
pole 52.90 72.68 66.02 53.30 ± 0.39 74.42 ± 1.41 65.31 ± 1.64
traffic light 55.44 75.04 67.98 55.33 ± 0.19 75.49 ± 1.24 67.47 ± 1.21
traffic sign 66.66 86.22 74.61 66.32 ± 0.62 87.54 ± 1.41 73.27 ± 1.67
vegetation 89.95 93.60 95.85 90.15 ± 0.03 94.01 ± 0.22 95.65 ± 0.22
terrain 56.29 77.66 67.17 55.29 ± 0.47 75.88 ± 1.67 67.14 ± 1.77
sky 93.76 96.38 97.18 93.60 ± 0.11 96.01 ± 0.26 97.39 ± 0.19
human 00.00 00.00 00.00 39.80 ± 0.73 60.60 ± 1.20 53.72 ± 1.42
car 90.61 92.97 97.27 91.16 ± 0.21 95.25 ± 0.50 95.50 ± 0.47
truck 69.66 80.23 84.09 68.98 ± 0.56 84.92 ± 2.35 78.70 ± 1.97
bus 76.90 88.59 85.35 71.57 ± 0.60 87.25 ± 1.33 79.95 ± 1.15
train 70.35 83.33 81.87 63.11 ± 3.17 89.63 ± 1.61 68.13 ± 3.93
motorcycle 24.45 28.57 62.92 32.92 ± 1.13 53.91 ± 2.07 45.89 ± 2.21
bicycle 54.57 59.30 87.24 59.01 ± 0.61 71.62 ± 2.43 77.20 ± 3.38

mean over Y 68.63 79.79 80.94 68.53 ± 0.27 83.32 ± 0.28 77.17 ± 0.60
mean over Y+ 64.82 75.36 76.44 66.94 ± 0.27 82.05 ± 0.25 75.86 ± 0.55

Table 4.3: IoU, precision and recall values (on a class-level as well as averaged over the
classes in Y and Y+, respectively) evaluated on the Cityscapes validation data for both,
the initial and the extended DNN from the first experiment.

Besides the novel class, which achieves an IoU value of nearly 40% with approxi-
mately 50-60% precision and recall, the incremental training has only little impact
on previously-known classes. For many classes, however, we observe an improve-
ment in precision at the expense of the corresponding recall values, e.g. for the
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image & annotation initial DNN extended DNN

baseline oracle ground truth

Figure 4.7: Comparison of the semantic segmentation predictions of all DNNs evaluated
in the first experiment for an exemplary scene from the Cityscapes validation data.

classes fence, truck and train. This is also reflected in the mean precision and
recall values over Y , i.e., while precision increases by 3.53%, recall decreases by
3.77%. Especially the classes motorcycle and bicycle gain performance regarding
the IoU and precision, which is mainly due to human pixels initially assigned to
those classes, while the proportion of bikes (motor- or bicycles) that are predicted
correctly drops significantly. A comparison of all evaluated models in the first ex-
periment is illustrated for an example image in Figure 4.7. We observe a reduction
of noise in the model’s predictions, starting from the initial DNN, to the extended
DNN, the baseline and the oracle. Nonetheless, the predicted segmentation of our
extended DNN comes close to those predicted by the comparative models that
both require ground truth for the novel class.

Experiment 2 The setup of the second experiment is the same as in the first
one (DeepLabV3+, Cityscapes dataset), but excluding busses from the set of
known classes instead of humans. This novelty belongs to the vehicle category,
thus being akin to other vehicle classes as train or truck. These are also the
classes the objects declared as novel were predicted for the most part, as we
illustrated in Figure 4.5. On that account, at least 50% of the 55 images in Snovel

contain trucks, 30% trains. As a consequence of the visual relatedness, trucks and
trains that exhibit a low prediction quality, i.e., that are treated as anomalies,
contaminate the cluster of busses in the two-dimensional embedding space. We
observed, that the segmentation network predicts most of these “detected” trucks
and trains correctly, while it assigns multiple classes, i.e., multiple segments in
the semantic segmentation prediction, to a bus. Thus, we delete anomalies from
the embedding space, whose predicted segmentation consists of only one segment
(ignoring segments with less than 500 pixels).
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2. experiment DeepLabV3+
Cityscapes, bus initial extended

class IoU precision recall IoU precision recall

road 97.63 98.81 98.80 97.57 ± 0.03 98.76 ± 0.09 98.79 ± 0.08
sidewalk 81.60 89.65 90.09 81.57 ± 0.10 90.07 ± 0.46 89.63 ± 0.45
building 90.19 94.50 95.19 89.90 ± 0.10 94.22 ± 0.26 95.15 ± 0.25
wall 48.77 78.07 56.51 44.89 ± 3.11 79.23 ± 1.36 50.94 ± 4.20
fence 53.86 70.97 69.08 51.74 ± 0.81 71.82 ± 0.62 64.92 ± 1.27
pole 55.03 75.71 66.83 54.05 ± 0.61 77.62 ± 1.11 64.06 ± 1.54
traffic light 55.87 77.29 66.84 54.70 ± 0.92 80.15 ± 2.02 63.35 ± 2.46
traffic sign 68.21 87.02 75.94 67.88 ± 0.32 87.87 ± 0.98 74.91 ± 1.08
vegetation 90.35 93.98 95.91 90.21 ± 0.09 93.70 ± 0.33 96.04 ± 0.26
terrain 54.03 79.90 62.53 52.77 ± 0.46 75.06 ± 1.14 64.00 ± 1.01
sky 93.64 96.14 97.30 93.26 ± 0.29 95.55 ± 0.63 97.49 ± 0.36
person 71.65 83.27 83.70 71.02 ± 0.21 82.22 ± 0.87 83.92 ± 0.65
rider 48.77 68.86 62.58 47.15 ± 0.73 70.85 ± 1.32 58.55 ± 1.99
car 91.90 94.65 96.94 91.76 ± 0.11 95.35 ± 0.61 96.07 ± 0.62
truck 47.51 51.19 86.87 54.14 ± 1.85 69.81 ± 4.17 71.09 ± 5.25
bus 00.00 00.00 00.00 44.73 ± 1.46 58.33 ± 3.13 66.15 ± 5.16
train 43.57 48.58 80.88 55.46 ± 1.64 74.35 ± 5.75 69.19 ± 5.46
motorcycle 44.35 61.76 61.13 41.66 ± 1.17 71.22 ± 1.70 50.16 ± 2.38
bicycle 68.00 77.42 84.82 67.52 ± 0.28 76.38 ± 0.64 85.35 ± 0.44

mean over Y 66.94 79.32 79.55 67.07 ± 0.12 82.46 ± 0.56 76.31 ± 0.46
mean over Y+ 63.42 75.15 75.36 65.89 ± 0.10 81.19 ± 0.54 75.78 ± 0.34

Table 4.4: IoU, precision and recall values (on a class-level as well as averaged over the
classes in Y and Y+, respectively) evaluated on the Cityscapes validation data for both,
the initial and the extended DNN from the second experiment.

image & annotation initial DNN extended DNN

baseline oracle ground truth

Figure 4.8: Comparison of the semantic segmentation predictions of all DNNs evaluated
in the second experiment for an example image from the Cityscapes validation data.
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Again, we provide a class-wise evaluation on the Cityscapes validation split in Ta-
ble 4.4 and present a comparison of different models for one exemplary street scene
in Figure 4.8. Here, large parts of the bus in the foreground are predicted cor-
rectly by our extended DNN. The bus in the background is even better recognized
by our network than by the baseline and oracle. Analogous to the first experi-
ment, the most similar classes truck and train show increasing IoU and precision,
but decreasing recall values. Averaged over the known classes q ∈ Y , we again
observe improvement in IoU and precision with a concurrent drop in recall. Av-
eraged over the extended class set Y+, all three performance measures increase
after class-incremental learning.

Experiment 3 In the next experiment we extend the previous ones by enlarging
the set of novel classes, withholding the classes pedestrian & rider, bus and car.
Again, we trained a DeepLabV3+ network on the Cityscapes dataset to learn the
remaining, non-novel classes. We reconsidered our approach to reject possibly

3. experiment DeepLabV3+
Cityscapes, multi initial extended

class IoU precision recall IoU precision recall

road 95.43 96.41 98.95 96.62 ± 0.07 98.29 ± 0.20 98.27 ± 0.22
sidewalk 77.23 83.84 90.74 76.42 ± 0.26 84.27 ± 0.98 89.16 ± 0.91
building 87.21 91.05 95.39 87.42 ± 0.12 92.66 ± 0.30 93.92 ± 0.40
wall 45.86 68.38 58.20 40.36 ± 0.59 76.67 ± 1.57 46.03 ± 1.07
fence 47.86 59.63 70.79 41.15 ± 1.47 69.23 ± 2.40 50.44 ± 2.54
pole 51.63 69.15 67.09 48.68 ± 0.48 73.74 ± 1.13 58.93 ± 1.42
traffic light 55.61 77.70 66.17 45.62 ± 0.47 72.64 ± 0.85 55.09 ± 1.07
traffic sign 64.84 80.37 77.04 58.34 ± 0.74 86.84 ± 0.70 64.01 ± 1.23
vegetation 88.26 91.27 96.40 88.61 ± 0.22 91.80 ± 0.43 96.22 ± 0.21
terrain 53.22 72.42 66.74 45.43 ± 0.77 79.11 ± 1.55 51.66 ± 1.67
sky 93.58 96.11 97.27 92.41 ± 0.16 95.56 ± 0.19 96.56 ± 0.10
human 00.00 00.00 00.00 40.22 ± 1.77 68.74 ± 4.84 49.65 ± 4.80
car 00.00 00.00 00.00 81.27 ± 1.16 86.56 ± 2.20 93.05 ± 1.12
truck 9.31 9.41 89.35 25.59 ± 7.41 61.27 ± 5.50 30.77 ± 9.90
train 41.70 45.05 84.87 49.87 ± 5.21 60.85 ± 8.56 73.99 ± 2.61
motorcycle 4.03 4.12 66.09 14.30 ± 2.72 63.79 ± 3.44 15.64 ± 3.31
bicycle 39.13 41.30 88.15 51.97 ± 1.58 71.26 ± 1.98 65.95 ± 4.30

mean over Y 56.99 65.75 80.88 57.52 ± 0.80 78.53 ± 1.20 65.78 ± 1.00
mean over Y+ 50.29 58.01 71.37 57.90 ± 0.68 78.43 ± 1.10 66.43 ± 0.94

Table 4.5: In-depth evaluation on the Cityscapes validation data for the third experi-
ment, where we incrementally extend a DeepLabV3+ by the novel classes human and
car on the Cityscapes dataset. We provide IoU, precision and recall values obtained for
both, the initial and the extended DNN, on a class-level as well as averaged over the
classes in Y and Y+, respectively.
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image & annotation initial DNN extended DNN

oracle ground truth

Figure 4.9: Comparison of the semantic segmentation predictions of all DNNs evaluated
in the third experiment for an example image from the Cityscapes validation data.

known objects from the embedding space to improve the purity of novel object
clusters. Instead of rejecting anomalous segments that consist of only one pre-
dicted segment in the semantic segmentation mask, we include a random choice
of objects / segments from each known class into the embedding space. If an
anomalous object can be assigned to an existing class, it is no longer taken into
account in the further procedure. To decide whether an object is novel or known,
we consider its 2.75-neighborhood. If this contains at least 10 known objects from
which at least 80% belong to the most frequent class, we assume the anomaly be-
longs to even this class, i.e., we reject it. Consequently, we discard the detected
bus segments since these are closely related to the classes truck and train. How-
ever, we obtain two clusters, one for the class car (1375 segments) and one for
the class human (135 segments). We incrementally expand the model by these
classes, achieving a similar IoU value (around 40%) for the human class as in
experiment 1, where we only learned a single class. For the bus class, we even get
an IoU value of more than 80%. Detailed results are provided in Table 4.5.

Experiment 4a The fourth experiment involves two different network architec-
tures. Results for the first one are shown in experiment 4(a), results for the other
one in 4(b). We start with a DeepLabV3+ network trained on the Cityscapes
dataset and aim to detect and learn the guardrail class using images taken from
the A2D2 dataset. To mitigate a performance drop caused by the domain shift
from Cityscapes to A2D2, we first fine-tune the decoder for 70 epochs on our
A2D2 training split, applying the same hyperparameters we used for the incre-
mental training. By that, we improve the mean IoU of the initial network from
59.38% to 75.77%. The classes which suffer the most are person, motorcycle
and bicycle, which is presumably due to their rare occurrence on country roads
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4. experiment (a) DeepLabV3+
A2D2, guardrail initial extended

class IoU precision recall IoU precision recall

road 95.59 97.21 98.29 95.93 ± 0.06 97.94 ± 0.18 97.91 ± 0.15
sidewalk 72.01 86.73 80.92 72.08 ± 0.41 85.29 ± 0.84 82.33 ± 1.28
building 87.82 93.58 93.44 85.75 ± 0.67 93.13 ± 0.53 91.54 ± 1.01
fence 59.35 81.59 68.53 56.76 ± 0.37 79.89 ± 2.40 66.29 ± 1.63
pole 56.13 76.39 67.91 54.31 ± 0.24 77.86 ± 0.52 64.23 ± 0.66
traffic light 68.41 85.10 77.72 65.48 ± 0.19 84.21 ± 0.77 74.65 ± 0.83
traffic sign 76.34 86.78 86.38 74.53 ± 0.38 89.98 ± 1.11 81.30 ± 1.19
vegetation 91.61 94.01 97.29 92.00 ± 0.23 94.81 ± 0.38 96.89 ± 0.17
sky 97.96 98.72 99.22 97.81 ± 0.03 98.57 ± 0.07 99.22 ± 0.04
person 67.60 79.28 82.11 64.27 ± 0.58 87.70 ± 0.87 70.65 ± 1.21
car 93.19 96.73 96.22 92.42 ± 0.11 96.04 ± 0.35 96.08 ± 0.35
truck 84.99 88.51 95.53 80.98 ± 2.66 84.75 ± 3.29 94.82 ± 0.69
motorcycle 48.68 84.71 53.37 26.05 ± 2.72 90.18 ± 2.09 26.85 ± 3.04
bicycle 61.08 80.65 71.57 50.65 ± 3.27 85.78 ± 2.10 55.43 ± 4.78
guardrail 00.00 00.00 00.00 46.10 ± 4.79 80.41 ± 2.12 52.09 ± 6.42

mean over Y 75.77 87.86 83.47 72.07 ± 0.39 89.01 ± 0.48 78.44 ± 0.52
mean over Y+ 70.72 82.00 77.90 70.34 ± 0.50 88.44 ± 0.40 76.69 ± 0.47

Table 4.6: In-depth evaluation on the A2D2 validation data for the fourth experiment,
where we first fine-tune and then incrementally extend a DeepLabV3+ by the novel class
guardrail on the A2D2 dataset. We provide IoU, precision and recall values obtained
for both, the initial and the extended DNN, on a class-level as well as averaged over
the classes in Y and Y+, respectively.
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Figure 4.10: Comparison of the semantic segmentation predictions of all DNNs evaluated
in the fourth experiment (a) for an example image from the A2D2 dataset.

and highways, and therefore, low frequency in the re-training data, which involves
only 30 pseudo-labeled and 30 replayed images. Details are provided in Table 4.6.
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Experiment 4b In experiment 4(b), we employ the PSPNet instead of the
DeepLabV3+, for the rest we proceed as in the previous subsection. Again,
the training data consists of 30 images with pseudo ground truth and 30 labeled,
replayed images (containing only old classes) from the A2D2 training split. Note
that these 30 images are not the same as in experiment 4(a) due to the different
network providing predictions of estimated low quality on different images. In
total, the initial and the extended PSPNet are outperformed by DeepLabV3+,
however, both architectures show similar patterns:

• extended DNN exhibits a high precisionguardrail and a low recallguardrail

• classes that are mostly affected by re-training: person, motorcycle, bicycle

• averaged over Y and Y+, respectively, IoU and recall values decrease, pre-
cision values increase

For more detailed information we refer to Table 4.7.

4. experiment (b) PSPNet
A2D2, guardrail initial extended

class IoU precision recall IoU precision recall

road 95.18 97.10 97.96 94.93 ± 0.21 96.94 ± 0.55 97.86 ± 0.34
sidewalk 66.15 83.68 75.94 62.19 ± 2.28 82.28 ± 2.09 71.99 ± 4.75
building 84.32 92.46 90.54 82.38 ± 0.46 90.78 ± 0.86 89.91 ± 1.04
fence 54.48 76.84 65.18 50.67 ± 1.24 80.91 ± 1.85 57.62 ± 2.33
pole 44.60 63.94 59.59 42.15 ± 0.91 65.52 ± 2.19 54.31 ± 2.89
traffic light 58.94 81.14 68.30 56.07 ± 0.17 80.65 ± 1.85 64.83 ± 1.37
traffic sign 71.30 87.71 79.22 67.63 ± 0.47 87.61 ± 0.71 74.79 ± 0.56
vegetation 90.68 93.12 97.18 90.65 ± 0.11 93.71 ± 0.41 96.53 ± 0.32
sky 97.57 98.44 99.10 97.21 ± 0.12 98.06 ± 0.19 99.12 ± 0.10
person 59.17 82.53 67.64 46.20 ± 1.13 82.99 ± 0.99 51.04 ± 1.60
car 89.39 94.36 94.44 86.82 ± 0.34 93.90 ± 0.57 92.01 ± 0.60
truck 77.83 84.05 91.31 73.53 ± 1.91 82.11 ± 2.40 87.58 ± 1.25
motorcycle 19.73 76.72 20.99 7.00 ± 2.02 94.92 ± 3.73 7.04 ± 2.07
bicycle 53.49 71.82 67.70 46.05 ± 1.37 79.31 ± 2.49 52.44 ± 2.71
guardrail 00.00 00.00 00.00 32.79 ± 3.47 70.75 ± 2.04 38.04 ± 4.90

mean over Y 68.77 84.57 76.79 64.54 ± 0.28 86.41 ± 0.77 71.22 ± 0.69
mean over Y+ 64.19 78.93 71.67 62.42 ± 0.42 85.36 ± 0.78 69.01 ± 0.94

Table 4.7: In-depth evaluation on the A2D2 validation data for the fourth experiment,
where we first fine-tune and then incrementally extend a PSPNet by the novel class
guardrail on the A2D2 dataset. We provide IoU, precision and recall values obtained
for both, the initial and the extended DNN, on a class-level as well as averaged over
the classes in Y and Y+, respectively.

Experiment 5 Finally, we perform the same experiment as in 4(a) without prior
fine-tuning the initial DNN on A2D2. Consequently, the domain shift causes many
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Figure 4.11: Comparison of the semantic segmentation predictions of all DNNs evaluated
in the fourth experiment (b) for an example image from the A2D2 dataset.

noisy predictions, exhibiting low prediction quality estimates. We exclude such
images from the further process based on two criteria:

1. mean quality score (averaged over pixels) less than 0.7

2. more than 1/3 of all pixels with quality estimate less than 0.9.

If at least one criterion holds, we reject the image, cf. Figure 4.12.

approved rejected

Figure 4.12: Illustration of prediction quality differences (green color indicates high,
red color low prediction quality), caused by the domain shift from Cityscapes to A2D2,
mainly due to weather conditions.
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5. experiment DeepLabV3+
A2D2, guardrail initial extended

class IoU precision recall IoU precision recall

road 89.88 92.18 97.30 93.15 ± 0.19 94.89 ± 0.23 98.07 ± 0.12
sidewalk 47.91 76.22 56.33 35.28 ± 2.43 86.95 ± 0.98 37.26 ± 2.67
building 70.94 86.88 79.45 71.25 ± 1.46 90.51 ± 0.89 77.03 ± 2.21
fence 26.08 35.30 49.94 26.20 ± 0.49 37.25 ± 1.46 46.99 ± 1.26
pole 42.59 59.24 60.25 42.77 ± 0.37 62.91 ± 0.73 57.21 ± 0.85
traffic light 47.59 85.85 51.64 52.52 ± 0.70 89.21 ± 1.15 56.10 ± 1.19
traffic sign 54.89 82.49 62.13 57.23 ± 0.25 87.34 ± 1.03 62.42 ± 0.43
vegetation 69.15 96.68 70.83 73.42 ± 0.41 95.05 ± 0.62 76.35 ± 0.34
sky 94.96 98.25 96.59 96.92 ± 0.09 97.81 ± 0.13 99.08 ± 0.05
person 59.77 71.00 79.08 59.58 ± 1.23 84.68 ± 2.45 66.88 ± 2.89
car 90.47 95.72 94.28 90.72 ± 0.16 96.14 ± 0.39 94.16 ± 0.53
truck 62.64 83.61 71.40 71.10 ± 0.24 89.44 ± 0.51 77.62 ± 0.36
motorcycle 28.39 70.82 32.15 32.77 ± 3.05 79.50 ± 3.43 35.96 ± 4.24
bicycle 46.04 78.74 52.57 43.84 ± 1.01 85.43 ± 1.50 47.41 ± 1.56
guardrail 00.00 00.00 00.00 20.90 ± 1.73 77.12 ± 3.95 22.32 ± 2.07

mean over Y 59.38 79.50 68.14 60.48 ± 0.47 84.08 ± 0.49 66.61 ± 0.64
mean over Y+ 55.42 74.20 63.60 57.84 ± 0.48 83.61 ± 0.68 63.66 ± 0.63

Table 4.8: In-depth evaluation on the A2D2 validation data for the fifth experiment,
where we incrementally extend a DeepLabV3+ (trained on Cityscapes) by the novel
class guardrail on the A2D2 dataset. We provide IoU, precision and recall values ob-
tained for both, the initial and the extended DNN, on a class-level as well as averaged
over the classes in Y and Y+, respectively.

image & annotation initial DNN extended DNN

Figure 4.13: Comparison of the semantic segmentation predictions of all DNNs evaluated
in the fifth experiment for an example image from the A2D2 dataset.

Applying our method, we obtain 70 pseudo-labeled images. The incorporation of
data seen during training of the initial DNN, i.e., the Cityscapes training data,
restrains the network from adapting to the new domain. We therefore decided to
extend the model only on Snovel.

Class-wise evaluation results are reported in Table 4.8. Even with a domain shift,
we achieve an IoU of 20.90 ± 1.73% for the novel class. This is less than the value
obtained with prior fine-tuning. However, this DNN still outperforms the PSPNet
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from the previous experiment considering only the precision. The low recall values
are tolerable since many guardrails are still assigned to the “supercategory” fence.
For most other classes, the IoU values increase or remain roughly the same. In
contrast to the other experiments, the motorcycle class improves in IoU, precision
and recall values. Only classes that are rare in rural street scenes, e.g. sidewalk
or bicycle, suffer from the incremental training.

Segmentations of the same input image are provided in Figure 4.10, Figure 4.11
and Figure 4.13 for the experiments 4(a), 4(b) and 5. All three extended DNNs
have learned to predict the novel class to some extent. The prior fine-tuned
networks show similar predictions, though DeepLabV3+ is much more precise
than the PSPNet and better recognizes the guardrail on the right. The model
from the fifth experiment predicts the left guardrail as fence (which is not totally
mistaken), though it performs better on the right-hand guardrail than the others.
Both oracles illustrate, that the guardrail class is learnable with high accuracy,
still leaving room for improvement of unsupervised methods.

4.6 Conclusion

In this work, we have introduced a new and modular procedure for the class-
incremental extension of a semantic segmentation network, where novel classes
are detected, annotated and learned in an unsupervised fashion. While there
already exists an unsupervised open world approach for semantic segmentation
[104], we are the first in this field to extend a neural network’s semantic space
by robust novel classes. We performed five hierarchically structured experiments
with an increasing level of difficulty. We demonstrated that our approach can deal
with novelties that are either “well” separated or related to known categories,
and that it is even applicable when the test data is sampled from a slightly
different distribution than the DNN was trained on. Moreover, we applied two
different models in the fourth experiment, where the initial DeepLabV3+ already
outperformed the initial PSPNet. This performance gap is also reflected in the
model’s ability to learn the novel class, thus we conclude that our method benefits
significantly from high performance networks.

90



Chapter 5
Detecting Novelties with Empty Classes

For open world applications, deep neural networks (DNNs) need to be aware of
previously unseen data and adaptable to evolving environments. Furthermore,
it is desirable to detect and learn novel classes which are not included in the
DNNs underlying set of semantic classes in an unsupervised fashion. The method
proposed in this article builds upon anomaly detection to retrieve OoD data as
candidates for new classes. We thereafter extend the DNN by k empty classes
and fine-tune it on the OoD data samples. To this end, we introduce two loss
functions, which 1) entice the DNN to assign OoD samples to the empty classes
and 2) to minimize the inner-class feature distances between them. Thus, instead
of ground truth which contains labels for the different novel classes, the DNN
obtains a single OoD label together with a distance matrix, which is computed in
advance. We perform several experiments for image classification and semantic
segmentation, which demonstrate that a DNN can extend its own semantic space
by multiple classes without having access to ground truth.

5.1 Introduction

For computer vision tasks such as image classification or semantic segmentation,
deep neural networks (DNNs) learn to classify instances, either on a per image-
or per pixel-level, into a limited number of predefined classes. State-of-the-art
DNNs achieve high accuracy when trained in a supervised fashion and deployed
in a closed world setting, in which the learner is not confronted with OoD data. In
practice, however, concepts not seen at training time might occur, which is why
so-called open world recognition [6] has emerged as a practically more relevant
problem formulation. It combines OoD detection with class-incremental learning,
i.e., retraining the model with newly observed classes. Nevertheless, methods
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image ground truth

baseline ours

Figure 5.1: Comparison of two segmentation DNNs which were extended by the classes
human and car. While the segmentation masks are similar for the initial classes, the
humans and cars are much better segmented by the DNN which was extended by our
empty classes approach. The novel classes are marked with green contours in the image
and ground truth.

of this kind are typically updated in a supervised fashion, commonly employing
humans for annotation.

First attempts to learn in an unsupervised manner have been made to achieve
cheaper labeling. In open world image classification, clustering methods like k-
means [90] or DBSCAN [36] allow for an unsupervised labeling of instances in
feature regions that appear to be novel. Approaches in this direction leverage such
methods to obtain pseudo-labels for detected OoD images [50, 128]. However, the
quality of these pseudo-labels strongly depends on the clustering performance.
Furthermore, the OoD candidates are assigned to fixed labels, which are likely to
be noisy and thus unreliable, whereas in our method, they are put in relation to
each other. In open world semantic segmentation [104, 134], pseudo-labeling on
a per pixel-level is required, rendering the problem more complex. More recently,
few-shot learning [19], where a model is trained to generalize well on novel classes
with only few labeled examples, has also been proposed to deal with the lack of
labeled data as another (semi-)supervised strategy.

In our work, we introduce a new unsupervised approach for incrementally ex-
tending DNNs by capturing novel concepts in additional classes of hypothetical
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nature. To this end, we proceed from an initial model aware of hitherto known
classes, which is augmented by an OoD detection mechanism to distinguish these
classes from unknown categories. When treating additional data with potentially
additional but unknown classes, we suggest extending the model by additional
auxiliary neurons in the DNN’s output layer constituting the suspected novel
classes to be recognized, which we dub empty classes. To predict outcomes of
these classes, our model is fine-tuned by a clustering loss that aims to recog-
nize similar concepts for OoD data, allowing to flexibly adapt the learned feature
representations to distinguish the already known classes from the new learning
outcomes.

We conduct experiments on several datasets with increasing level of difficulty,
starting with image classification of MNIST [74] digits as well as the slightly
more sophisticated data from FashionMNIST [144]. Next, we apply our approach
to low- and medium-resolution images from the CIFAR10 [69] and Animals10
dataset, respectively. Finally, we also adapt our method to the complex task
of semantic segmentation of street scenes from the Cityscapes [29] dataset. In
three out of four image classification experiments, our method outperforms the
baseline, where a DNN is fine-tuned on k-means labeled OoD data. Furthermore,
our extended segmentation DNN achieves better results than the baseline [134] for
the novel class car, and significantly reduces the number of overlooked humans.
See Figure 5.1 for an example.

5.2 Related Works

Open world recognition [6] refers to the problem of adapting a learning system to
a non-delimitable and potentially constantly evolving target domain. As such, it
combines the disciplines of open set learning [125], where incomplete knowledge
over the target domain is assumed at training time, with incremental learning [18],
in which the model is updated by exploring additional target space regions at test
time, thereby adapting to novel target information. Typically, open set recogni-
tion is formalized by specifying a novelty detector, a labeling process and an
incremental learning function, allowing for a generalized characterization of such
systems [6].

Most of previous approaches consider the open world recognition problem in the
context of classification, where novel concepts are in form of previously unseen
classes. While a plethora of methods has been proposed to tackle the individual
sub-problems for classification problems, for which we refer to [110] for a more

https://www.kaggle.com/datasets/alessiocorrado99/animals10
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Figure 5.2: (I) A binary classification model is trained on two classes and additional
noise data for entropy maximization. (II) OoD samples in the test data are obtained
by entropy thresholding. (III) The training data is enriched with the OoD samples and
a distance matrix, containing their pair-wise Euclidean distances. (IV) The model is
class-incrementally extended by three novel classes.

comprehensive overview, literature on holistic approaches for open world classifi-
cation is rather scarce. In [128], a metric learning approach is used to distinguish
between pairs of instances belonging to the same classes, allowing to detect in-
stances that can not be mapped to known classes and being used to learn novel
class concepts. Moreover, [106] suggests a semi-supervised learning approach that
applies clustering on learned feature representations to reason about unknown
classes. Related to this, [141] describes a kernel method using an alternative
loss formulation to learn embeddings to be clustered for class discovery. More
recently, similar concepts have also been tailored to specific data modalities, such
as tabular data [132].

In the domain of semantic segmentation, open world recognition is also covered
under the term zero-shot semantic segmentation [14]. To predict unseen categories
for classified pixels, a wide range of methods leverage additional language-based
context information [14, 86, 143]. Besides enriching visual information by text,
unsupervised methods, e.g. , employing clustering based on visual similarity
[134] or contrastive losses [19, 41], have also been considered. More recently, [20]
adopts semantic segmentation based on LiDAR point clouds by augmenting con-
ventional classifiers with predictors recognizing unknown classes, thereby enabling
incremental learning.

In a more general context, unsupervised representation learning [116] constitutes
a major challenge to generalize learning methods to unseen concepts. Methods of
this kind are typically tailored to data modalities, e.g. , by specifying auxiliary
tasks to be solved [43, 151]. In the domain of images, self-supervised learning
approaches have emerged recently [16, 79], which commonly apply knowledge
distillation between different networks, allowing for learning in a self-supervised
fashion. Other methods include ideas stemming from metric [47] or contrastive
learning [27].
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Figure 5.3: Open world recognition models must be able to recognize known classes
while detecting OoD data from novel classes and furthermore to incrementally learn
these novel classes. Instead of labeling the OoD samples, our method computes pair-
wise distances between them, which serve as input for a clustering loss function.

5.3 Method Description

This section introduces a training framework for unsupervised class-incremental
learning with empty classes. For the sake of brevity, all equations are introduced
for image classification and adapted to semantic segmentation in Section 5.4.
First, we give a motivating example in Figure 5.2, where we enrich data stem-
ming from the Two Moons dataset with OoD samples and extend the model by
three novel classes. As in-distribution data 1,000 samples are drawn from the
Two Moons dataset with noise = 0.1. Additionally, 100 OoD data samples are
drawn from a uniform distribution over [−4, 4]2. Then, a shallow neural network,
consisting of 4 fully connected layers, is trained on these samples to minimize the
cross entropy with respect to the Two Moons data while maximizing the entropy
on the OoD data. As test data, another 750 samples are drawn from the Two
Moons dataset, together with 500 OoD samples belonging to three blobs, centered
at x̃1 = (−1.5,−0.95), x̃2 = (2.5, 1.5) and x̃3 = (3,−1), respectively, with 0.25
standard deviation. These blobs represent the novel classes. The test data is then
fed into the trained model, and is considered to be OoD if the softmax entropy
exceeds a threshold of 0.8. Finally, the initial model is extended by three empty
classes in the last layer and then fine-tuned on the Two Moons training sam-
ples plus the OoD samples detected in the test data. The OoD data is clustered
into the empty classes through our proposed loss function, without requiring any
previous (pseudo-)labeling.

The following method description is also illustrated in Figure 5.3.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
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5 Detecting Novelties with Empty Classes

I) Learning Model For an input image x ∈ X , let fθ(x) ∈ (0, 1)Q denote the
softmax probabilities of some image classification model fθ : X → (0, 1)Q with
underlying classes Y = {1, . . . , Q}. Consider a test dataset which includes images
from classes q ∈ {1, . . . , Q,Q + 1, . . .}. Note that our framework does not neces-
sarily assume labels for the test data as these will be only used for evaluation and
not during the training. Furthermore, let u(x) ∈ [0, 1] denote some arbitrary un-
certainty score which derives from the predicted class-probabilities fθ(x). Thus,
a test image x is considered to be OoD, if u(x) > τ for some threshold τ ∈ [0, 1].

Next, we extend the initial model fθ by k ∈ N empty classes in the final classifica-
tion layer, which is then denoted as fθ+k : X → (0, 1)Q+k, and fine-tune it on the
OoD data UOoD ⊂ X . Therefore, we compute pairwise distances dij = d(xi, xj)
for all (xi, xj) ∈ UOoD × UOoD as a pre-processing step, e.g. using the pixel-wise
Euclidean distance or any distance metric in the feature space of some embedding
network. The model fθ+k is then fine-tuned on (a subset of) the initial training
data Strain, enriched with the unlabeled OoD samples from the test data. For the
in-distribution samples (x, y), we compute the cross-entropy loss

`ce(x, y) = −
Q∑
q=1

1{q=y} log(fθ+k(x)q) . (5.1)

Further, we entice the model to predict one of the empty classes Q+1, . . . , Q+k for
OoD data by minimizing the class-probabilities fθ+k(x)1, . . . , fθ+k(x)Q, x ∈ UOoD,
i.e., by computing

`ext(x) =
1

Q

Q∑
q=1

fθ+k(x)q . (5.2)

Finally, we aim to divide the data among the empty classes based on their simi-
larity. Thus, our clustering loss is computed pair-wise as

`cluster(xi, xj) =
α

Q+ k
· dij ·

Q+k∑
q=1

fθ+k(xi)qfθ+k(xj)q , (5.3)

where α ∈ R>0 can be adjusted to control the impact of the clustering loss
function. Together, these three loss functions give the overall objective

L = λ1E(x,y)∼Strain [`ce(x, y)]

+ λ2Ex∼UOoD [`ext(x)] (5.4)

+ λ3Exi,xj∼UOoD [`cluster(xi, xj)] ,

where the hyperparameters λ1, λ2 and λ3 can be adjusted to balance the impact
of the objectives.

96



5.3 Method Description

II) OoD Detection OoD detection is a preprocessing part of our framework,
which can be exchanged in a plug and play manner. In our experiments, we
implemented entropy maximization [56] for image classification and thus perform
OoD detection by thresholding on the softmax entropy.

The idea of entropy maximization is the inclusion of known unknowns into the
training data of the initial model in order to entice it to exhibit a high softmax
entropy

u(x) = − 1

log(Q)

Q∑
q=1

fθ(x)q log(fθ(x)q) (5.5)

on OoD data x ∈ UOoD. Therefore, during training the initial model, we compute
the entropy maximization loss

`em(x) = −
Q∑
q=1

1

Q
log(fθ(x)q) (5.6)

for known unknowns x ∈ UOoD, giving the overall objective

L = λ E(x,y)∼Strain [`ce(x, y)]

+ (1− λ) Ex∼UOoD [`em(x)] . (5.7)

In the Two Moons example, these OoD data was uniformly distributed noise. For
image classification, we employ the domain-agnostic data augmentation technique
mixup [153]. This is, an OoD image is obtained by computing the average of two
in-distribution samples. Entropy maximization was also introduced for semantic
segmentation of street scenes [22, 63], where the OoD samples originate from the
COCO dataset [82]. Furthermore, the OoD loss and data was only included in
the final training epochs, which means that existing networks can be fine-tuned
for entropy maximization.

III) Distance Matrix Next, we compute pair-wise distances for the detected
OoD samples, which constitute the OoD dataset for the incremental learning.
For simple datasets such as Two Moons or MNIST, the distance can be measured
directly between the data samples. For MNIST, this is done by flattening the
images and computing the Euclidean distance between the resulting vectors. For
more complex datasets, we employ embedding networks to extract useful features
of the images. These embedding networks are arbitrary image classification mod-
els, trained on large datasets such as ImageNet [32] or CIFAR100 [69], which need
to be chosen carefully and individually for each experiment as the clustering loss
strongly depends on their ability to extract separable features for the known and
especially the novel classes.
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The feature distances are either computed in the high-dimensional feature space
directly, or, for the sake of transparency and better visual control, in a low-
dimensional re-arrangement. Applying the manifold learning medthod UMAP
to the entire test data, we reduce the dimension of the feature space to two.
The distance matrix is then computed as the Euclidean distances in the low-
dimensional space for all pairs of OoD samples.

IV) Incremental Learning For class-incremental learning, we minimize three
different loss functions defined in Equation 5.1, Equation 5.2 and Equation 5.3.
The cross-entropy loss (Equation 5.1) is computed for in-distribution to mitigate
catastrophic forgetting [94]. The OoD samples are pushed towards the novel
classes by the extension loss (Equation 5.2), which is minimized whenever the
probability mass is concentrated in the empty classes, i.e.,

`ext(x)→ 0 for

Q+k∑
q=Q+1

fθ+k(x)q → 1, x ∈ UOoD . (5.8)

The cluster loss (Equation 5.3) is computed for all pairs of OoD candidates con-
tained in a batch. Thus, it has a runtime complexity of O(n2), as for n OoD
candidates, we need to compute n2−n

2
terms. Furthermore, the minimum of the

cluster loss is probably greater than zero, as samples which belong to the same
class rarely share exactly the same features. To reach this minimum for two OoD
samples xi, xj with a large distance, they should be assigned to different classes,
i.e., whenever fθ+k(xi)q is significantly different from zero, we desire that fθ+k(xj)q
becomes small.

5.4 Adjustments for Semantic Segmentation

The softmax output of a semantic segmentation DNN fθ : X → (0, 1)|Z|×Q pro-
vides class-probabilities for image pixels, denoted as z = (h,w) ∈ Z. Thus, the
OoD detector must not only identify OoD images, but also give information about
their pixel positions. To store these information, we generate OoD instance masks
as illustrated in Figure 5.4 by thresholding on the obtained OoD score and by
distinguishing between connected components in the resulting OoD mask.

For semantic segmentation, the loss functions are computed for pixels of OoD
objects instead of images. Let Zs denote the set of pixel positions which belong
to an OoD candidate s ⊆ x. The extension loss is computed equivalently to
Equation 5.2 as

`ext(s) = − 1

|Zs|
∑
z∈Zs

1

Q

Q∑
q=1

fθ+k(x)z,q . (5.9)
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Figure 5.4: For semantic segmentation, each of the OoD objects is assigned a unique
ID, no matter if they belong to the same novel class as the elephants, or to different
classes as the cone and the monster costume [21].

For two OoD candidates si ⊆ xi, sj ⊆ xj with distance dij, the cluster loss is
computed as

`cluster(si, sj) =
α

Q+ k
dij

Q+k∑
q=1

fθ+k(xi)q fθ+k(xj)q , (5.10)

where

fθ+k(x)q =
1

|Zs|
∑
z∈Zs

fθ+k(x)z,q (5.11)

denotes the mean softmax probability over all pixels z ∈ Zs for some class q ∈
{1, . . . , Q+ k}.

For OoD detection in semantic segmentation, we adapt a meta regression ap-
proach [122, 123], using uncertainty measures such as the softmax entropy and
further information which derives from the initial model’s output, to estimate
the prediction quality on a segment-level. Here, a segment denotes a connected
component in the semantic segmentation mask, which is predicted by the initial
model. That is, meta regression is a post-processing approach to quantify uncer-
tainty aggregated over segments, and considering that the model likely is highly
uncertain if confronted with OoD objects, it can be applied for OoD detection.
In contrast to image classification, where images are either OoD or not, semantic
segmentation is performed on images which can contain in-distribution and OoD
pixels at the same time. Aggregating uncertainty scores across segments simpli-
fies the detection of OoD objects as contiguous OoD pixels, since it removes the
high uncertainty for class boundaries.

For an initial DNN, we use the training data to fit a gradient boosting model as
meta regressor, which then estimates segment-wise uncertainty scores u(s) for all
segments s ⊆ x ∈ U test.
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5 Detecting Novelties with Empty Classes

5.5 Numerical Experiments

We perform several experiments for image classification on MNIST [74], Fash-
ionMNIST [144], CIFAR10 [69] and Animals10, as well as on Cityscapes [29] to
evaluate our method for semantic segmentation. To this end, we extend the ini-
tial models by empty classes, i.e., , neurons in the final classification layer with
randomly initialized weights, and fine-tune them on OoD data, retraining with
fixed encoder. For evaluation, we provide accuracy scores - separately for known
and novel classes - for image classification, (mean) Intersection over Union (IoU),
precision and recall values for semantic segmentation.

The OoD classes in the following experiments were all chosen in a way that they
are semantically far away from each other. For example, the Animals10 classes
horse (1), cow (6) and sheep (7) are semantically related, as they are all big
animals which are mostly on the pasture, whereas elephant (2) and spider (8) are
well separable classes, which is also visible in the two-dimensional feature space.

5.5.1 Experimental Setup

For each experiment, we consider the following dataset splits: the training data
denotes images with ground truth for the initially known classes. We train the
initial model on these images and replay them during the training of the extended
model to avoid catastrophic forgetting. The test data consist of unlabeled images
which include both, known and unknown classes. This dataset is fed into the OoD
detector to identify OoD data, on which the model gets extended. The evaluation
dataset includes images with ground truth for known and novel classes and is
used to evaluate the models. If there are such labels available for the test data,
evaluation images may be the same as the test images.

Our approach requires prior OoD detection. For image classification, we employed
entropy maximization during training the initial model. The softmax entropy for
the test data is visualized as a summary statistic in Figure 5.5 and sample-wise
in Figure 5.6. We observe that the DNN exhibits high entropy scores on OoD data
for all datasets except MNIST. However, the entropy for MNIST in-distribution
data is sufficiently small, so that we detect most OoD samples using a threshold
of τ = 0.1. Further, the initial FashionMNIST DNN is uncertain regarding the
in-distribution classes t-shirt/top (0), pullover (2) and shirt (6). However, this
may be aleatoric uncertainty. To avoid too many false positive OoD predictions,
we choose a high threshold τ = 0.75. For the remaining datasets, in-distribution
and OoD samples are well separable by the softmax entropy, thus, there is a large
interval of proper thresholds.
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MNIST: 0, 5, 7 FashionMNIST: 1, 8

Cifar10: 11, 12 Animals10: 3, 4, 8, 9

Figure 5.5: Visualization of the softmax entropy, that the initial models exhibit on
samples of known and OoD classes, respectively.

Here, we only provide the experimental setup for fine-tuning the extended model.
For all experiments, we tuned the weighting parameters λ1, λ2, λ3 in Equation 5.4
by observing all loss functions separately over several epochs using different pa-
rameter configurations to ensure that each loss term decreases. The following
descriptions of the experiments, sorted by the datasets, include the network ar-
chitecture, the known and novel classes, information about the dataset splits and
the generation of the distance matrix. Further information about the experiments
are provided in Table 5.1. We performed experiments using the Adam and the
SGD optimizer as well as different batch sizes. In particular the batch size for
semantic segmentation was bounded by memory limitations. The hyperparame-
ters which are related to the loss functions, namely α, λ1, λ2, λ3, were selected by
trying out and monitoring the course of the loss functions.

MNIST We employ a shallow neural network consisting of two convolutional
layers, each followed by a ReLU activation function and max pooling, and a fully
connected layer. From the digits 0, . . . , 9, we select 0, 5 and 7 as novel classes. All

101



5 Detecting Novelties with Empty Classes

MNIST: 0, 5, 7 FashionMNIST: 1, 8

Cifar10: 11, 12 Animals10: 3, 4, 8, 9

Figure 5.6: Visualization of the softmax entropy per data sample, that the initial models
exhibits on test samples.

images in the MNIST training set which belong to these classes are excluded from
our training data. The MNIST test images compose our test set, and together
with the original labels, our evaluation set. The distance matrix is computed as
pixel-wise Euclidean distance between the OoD images.

FashionMNIST Using the same network architecture as for MNIST, our initial
model is trained on eight out of ten classes, excluding the classes trouser (1)
and bag (8). Our dataset splits are created analogously to those from MNIST.
Also, the distance matrix is obtained analogously by computing the pixel-wise
Euclidean distances between the OoD images.

CIFAR10 The setting for CIFAR10 differs slightly from the other experiments to
ensure comparability with existing approaches. Thus, as initial model, we employ
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dataset MNIST FashionMNIST Cifar10 Animals10 Cityscapes

# empty classes 3 2 2 4 2
# epochs 30 30 30 30 200
optimizer adam sgd sgd adam adam
learning rate 1e-2 1e-2 1e-2 5e-3 5e-3
momentum - 0 0.9 - -
weight decay - 0 1e-4 - -
batch size 2,500 500 1,000 1,000 10
α 5 2.5 5 2.5 2.5
λ1 0.45 0.45 0.45 0.45 0.375
λ2 0.45 0.45 0.45 0.45 0.375
λ3 0.1 0.1 0.1 0.1 0.25

Table 5.1: Overview of training parameters for each dataset.

a ResNet18 which is trained on the whole CIFAR10 training split, including all
ten classes. For testing, we enrich the CIFAR10 test split with images from
CIFAR100. Therefore, we split CIFAR100 into an unlabeled and a labeled subset:
the classes {0, . . . , 49} are possible OoD candidates, thus, all samples belonging to
these classes are considered to be unlabeled. We extend the CIFAR10 test data by
the classes apple (0) and clock (22), mapping them onto the labels (10) and (11),
respectively. As before, we evaluate our models on the labeled test data. The
labeled CIFAR100 subset includes the classes {50, . . . , 99} and is used together
with the CIFAR10 training data to train a ResNet18 as an embedding network. To
compute the distances, we feed the whole test data into this embedding network
and extract the features of the penultimate layer. These are further projected into
a 2D space with UMAP. Then, the distance matrix is computed as the pixel-wise
Euclidean distance between the 2D representations of the OoD images.

Animals10 As initial model, we employ a ResNet18 which is trained on six out of
ten classes. As novel classes we selected butterfly (3), chicken (4), spider (8) and
squirrel (9). The dataset splits are obtained analogously to those from MNIST.
The distances are computed as for CIFAR10, but employing a DenseNet201, which
is trained on ImageNet with 1,000 classes, as embedding network.

Cityscapes For comparison reasons with the baseline, we adapt the experimen-
tal setup from [134], where the class labels human (person, rider), car and bus
are excluded from the 19 Cityscapes evaluation classes. Like the baseline, we
extend the DNN by two empty classes and exclude the class bus from the evalua-
tion. Thus, we train a semantic segmentation DeepLabV3+ with WideResNet38
backbone on 2,500 training samples with 15 trainable classes. We apply meta
regression to the Cityscapes test data and crop out image patches tailored to the
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Figure 5.7: Visualized ground truth (left) and prediction of the MNIST dataset by the
initial (middle) and extended (right) model. The three novel classes 0, 5 and 7 are
outlined in orange. The extended model’s accuracy is ∼ 94%.

Figure 5.8: Visualized ground truth (left) and prediction of the FashionMNIST dataset
by the initial (middle) and extended (right) model. The two novel classes 1 and 8 are
outlined in orange. The extended model’s accuracy is ∼ 85%.

predicted OoD segments, i.e., , connected component of OoD pixels. Afterwards,
we compute distances between these image patches analogously to Animals10 as
the Euclidean distances between 2D representations of features which we obtain
by feeding the patches into a DenseNet201 trained on 1,000 ImageNet classes.

5.5.2 Evaluation & Ablation Studies

We compare our evaluation results to the following baselines. For image classi-
fication, we employ the k-means clustering algorithm to pseudo-label the OoD
data samples and fine-tune the model on the pseudo-labeled data using the cross-
entropy loss. For semantic segmentation, we compare with the method presented
in [134], which also employs clustering algorithms in the embedding space to
obtain pseudo-labels. Furthermore, to get an idea of the maximum achievable
performance, we train oracle models which have learned all available classes in a
fully supervised manner.
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Figure 5.9: Visualized ground truth (left) and prediction of the CIFAR10 dataset by
the initial (middle) and extended (right) model. The two novel classes 10 and 11 are
outlined in orange. The extended model’s accuracy is ∼ 89%.

Figure 5.10: Visualized ground truth (left) and prediction of the Animals10 dataset by
the initial (middle) and extended (right) model. The four novel classes 3, 4, 8 and 9 are
outlined in orange. The extended model’s accuracy is ∼ 95%.

For the ablation studies, we evaluate our image classification approach on “clean”
OoD data (−detection). Therefore, we do not detect the OoD samples in the test
data by thresholding on some anomaly score, but by considering the ground truth.
In this way, we simulate a perfect OoD detector. Since the results of our method
are also affected by the quality of the distance matrix, we further analyze our
method for a synthetic distance matrix (−−distance), where two OoD samples
xi, xj ∈ UOoD have a distance d(xi, xj) = 0 if they stem from the same class,
d(xi, xj) = 1 otherwise. Thus, the OoD samples are labeled by the distance
matrix and the fine-tuning is supervised, allowing a pure comparison of our loss
functions with the cross-entropy loss. We do not provide ablation studies for
semantic segmentation, since the Cityscapes test data does not include publicly
available annotations.

Image Classification As shown in Table 5.2 and visualized in Figure 5.7, Fig-
ure 5.8, Figure 5.9 and Figure 5.10, our approach exceeds the baseline’s accuracy
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for novel classes by 36.60 and 24.09 percentage points (pp) for CIFAR10 and An-
imals10, respectively. This is mainly caused by in-distribution samples which are
false positive OoD predictions, or by OoD samples which are embedded far away
from their class centroids. Consequently, different OoD classes are assigned to the
same cluster by the k-means algorithm. As our approach uses soft labels, the DNN
is more likely to reconsider the choice of the OoD detector during fine-tuning.

In the ablation studies, we omit the OoD detector (−detection) and select the
OoD samples based on their ground truth instead. Thereby, we observe an
improvement of the accuracy of novel classes for the CIFAR10 and Animals10
datasets, while the performance remains constant for FashionMNIST and signifi-
cantly decreases for MNIST. We further compute a ground truth distance matrix
(−−distance) with distances 0 and 1 for samples belonging to the same or to dif-
ferent classes, respectively. Since this is supervised fine-tuning, these DNNs are
comparable to oracles. We observe, that the oracles tend to perform better on
the initial and worse on the novel classes. However, this might be a consequence
of the class-incremental learning.

Image Classification
supervised unsupervised ablation studies

dataset OoD accuracy initial oracle ours baseline −detection −−distance

MNIST 0 5 7
known 96.68% 98.54% 96.20% 95.94% 97.45% 96.54%
novel - 95.85% 97.94% 84.62% 74.52% 97.00%

FashionMNIST 1 8
known 81.54% 83.75% 81.41% 85.08% 81.89% 81.39%
novel - 90.83% 90.05% 92.85% 89.90% 95.00%

CIFAR10 10 11
known 91.45% 91.86% 90.51% 90.29% 88.90% 86.94%
novel - 89.53% 70.00% 33.40% 78.80% 87.00%

Animals10 3 4 8 9
known 96.29% 95.80% 93.76% 92.78% 94.46% 95.20%
novel - 97.65% 96.68% 72.59% 97.02% 97.90%

Table 5.2: Quantitative evaluation of the image classification experiments. For all eval-
uated models, the accuracy is stated separately for the previously-known and the un-
labeled novel classes. The highest scores for the unsupervised approaches are bolded.

Semantic Segmentation The quantitative results of our semantic segmenta-
tion method, reported in Table 5.3, demonstrate, that the empty classes are
“filled” with the novel concepts human and car. Thereby, the performance on
the previously-known classes is similar to the baseline even without including a
distillation loss [98]. For the car class, our method outperforms the baseline with
respect to IoU (+2.87 pp), precision (+0.55 pp) and recall (+3.06 pp). We lose
performance in terms of IoU for the human class due to a higher tendency for
false positives, cf. Figure 5.12. However, the false negative rate is significantly
reduced, which is indicated by an increase in the recall value of 26.89 pp. The
improved recall score is also visible in Figure 5.11, showing two examples from
the Cityscapes validation dataset. In the top row, several pedestrians are crossing
the street, which are mostly segmented by our DNN, whereas the baseline DNN
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image ground truth ours baseline

Figure 5.11: Visual comparison of the segmentation masks produced by our method
and by the baseline for two image cutouts from the Cityscapes validation dataset. The
ground truth contours of the novel classes are highlighted with green.

mostly misses the persons in the center as well as all heads. In the bottom row,
the person in front of the car is completely overlooked by the baseline, and also
some cars in the background are missed.

predicted segmentation softmax entropy

Figure 5.12: For highly uncertain regions, the extended DNN tends to predict the novel
human class, which causes the low precision score.

When examining the OoD masks, we observed that the connected components
are often very extensive, which is caused by neighboring OoD objects. Thus, the
embedding space contains many large image patches which are not tailored to a
single OoD object, but rather to a number of parked cars, a crowd of people or
even a bicyclist riding next to a car, which appreciably impairs our results.
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Semantic Segmentation

supervised unsupervised
dataset class metric initial oracle ours baseline

Cityscapes

0, . . . , 14 mean IoU 56.99% 77.28% 59.72% 57.52%
15 (human) IoU - 81.90% 33.87% 40.22%
16 (car) IoU - 94.94% 84.14% 81.27%
0, . . . , 14 mean precision 65.75% 88.03% 84.63% 78.53%
15 (human) precision - 89.22% 37.80% 68.74%
16 (car) precision - 96.83% 87.11% 86.56%
0, . . . , 14 mean recall 80.88% 85.38% 65.38% 65.78%
15 (human) recall - 90.90% 76.54% 49.65%
16 (car) recall - 97.99% 96.11% 93.05%

Table 5.3: Quantitative evaluation of the semantic segmentation experiment on the
Cityscapes dataset. IoU, precision and recall values are provided for both novel classes,
as well as averaged over the previously-known classes. The highest scores for the unsu-
pervised approaches are bolded.

5.6 Conclusion & Outlook

In our work, we proposed a solution to open world classification for image classi-
fication and semantic segmentation by learning novel classes in an unsupervised
manner. We suggested postulating empty classes, which allow one to capture
newly observed classes in an incremental learning approach. This way, we allow
our model to detect new classes in a flexible manner, potentially whitewashing
mistakes of previous OoD detectors.

As our method employs several hyperparameters, e.g. , to specify the number of
novel empty classes, we envision an automatic derivation of the optimal number
of new classes as future work. In this regard, replacing the Elbow method in the
eventual clustering by more suitable criteria appears desirable [126]. Moreover,
we shall investigate approaches to improve the generalizability of our approach
to embedding models of arbitrary kind to derive distance matrices, not being tai-
lored to specific datasets. Furthermore, the semantic segmentation performance
could be improved by incorporating depth information into the OoD segmentation
method to obtain OoD candidates on instance- instead of segment-level.
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Chapter 6
Conclusion & Outlook

This thesis addressed the discovery and incremental learning of novel classes in
the semantic segmentation of street scenes. While state-of-the-art convolutional
neural networks already achieve remarkable performance when their training and
testing domains coincide, they are not capable of continuously adapting to evolv-
ing environments. Neural networks used as perception systems in automated
vehicles require a huge amount of labeled training data coupled with reliable
anomaly segmentation approaches.

Conclusion To enhance the comparability of anomaly segmentation approaches,
and motivated by the lack of appropriate data, we invested time in the acquisition
and labeling of several datasets, along with a benchmark suite to evaluate anomaly
segmentation methods using pixel- and segment-level performance metrics. While
using anomaly segmentation as an alerting system is sufficient for infrequently oc-
curring anomalous objects, it seemed reasonable to include frequently occurring
unknown classes in the DNN’s semantic space. We realized that large amounts of
unlabeled data can be easily collected and examined for anomalies. To discover
novel classes among the anomalies, we proposed a feature clustering approach
that extracts features of image patches tailored to the predicted anomalies, using
an image classification network trained on 1, 000 classes. The intention of this was
that an almost omniscient classification DNN is capable of producing separable
features for different types of anomalies, allowing the detection of novel classes
by clustering algorithms.

We further investigated incremental learning of novel classes using pseudo-labels
obtained by combining the binary anomaly segmentation masks with the division
of the anomalies into different clusters. Limited by the lack of suitable datasets,
we performed several experiments on the Cityscapes dataset with artificial novel
classes obtained by class exclusion. We found that our method is prone to errors
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6 Conclusion & Outlook

in several aspects. First, anomaly segmentation approaches typically produce
false positive and false negative predictions. Thus, instances from known classes
contaminate the feature space, complicating the feature clustering. In the context
of video sequences, we proposed to use tracking information as a filter, assum-
ing that true positives are consistently tracked over multiple frames. For single
frames, we purposely inserted known classes into the feature space to identify
anomaly predictions that are likely to be false positives. The main problems with
false negative anomaly predictions are, that they reduce the amount of training
data, and that pseudo-labels are very fuzzy when only fragments of the objects
are detected. Furthermore, binary anomaly masks are not able to detect instance-
level anomalies. Another hindrance is the quality of the extracted features. We
observed, that features of related classes such as bus and train are not separable
in the proposed feature space. Furthermore, the anomaly classes have different
densities in the feature space depending on their visual diversity, which impedes
the clustering.

We then developed a method that replaces hard pseudo-labels with pairwise dis-
tances between the anomalies. Therefore, the clustering was incorporated into
the training of the extended DNN in the form of an additional loss function.
The intention was to preferably, but not strictly, cluster the anomalies into novel
classes. Instead of fine-tuning the DNN only on the data related to the formed
clusters, we used the total amount of OoD data. We observed, that the increased
amount of data significantly improved the recall scores for the anomaly classes at
the cost of an increased number of false positives. We noticed, that these false
positives are usually accompanied by high softmax entropy.

Outlook Both of the open world semantic segmentation methods we presented
are based on anomaly segmentation and feature embedding methods that can eas-
ily be replaced in a plug-and-play manner by more advanced approaches. Anomaly
scores obtained by any method can be averaged over segments and then used as
(additional) input to the meta regression model. Instance-level anomalies could
be detected by incorporating depth-information, or by using class-agnostic object
detectors as proposed in [7]. Furthermore, zero-shot learning and self-supervised
contrastive learning are promising research directions to improve the performance
of the feature extractor, e.g. by learning visual features from natural language
supervision [115]. Self-supervised feature extractors can even be leveraged for
unsupervised training of a semantic segmentation DNN [152]. Semi-supervised
learning could be applied as a refinement of our methods by using and iteratively
updating the confident predictions of the extended DNN as pseudo-labels for un-
labeled data. In summary, unsupervised open world semantic segmentation is a
growing area of research with much potential for future work, but there is still a
lack of appropriate datasets to provide a fair evaluation.
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