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1 Introduction

Theoretical many-body physics deals with systems with a large number of interacting parti-
cles and aims to calculate experimentally measurable observables from microscopic relations.
This is a major challenge, since the dimension of the Hilbert space for any such appropriately
regularised system, and thus the number of states, grows exponentially with the number of
constituents. In general, one has to employ perturbation theory or purely numerical methods.
However, from perturbation theory one can only expect reliable results far enough from phase
transition points and only if the perturbation is small. For numerical approaches one has to
extrapolate to realistic system sizes that are not achievable numerically. Such extrapolations
are generally difficult to justify theoretically and are usually justified with experimental data.

There exists a special class of interacting many-body systems which are exactly solvable
(integrable). One of these systems is the one-dimensional spin 1/2 XXZ chain, also known
as Heisenberg-Ising chain, a generalisation of the one-dimensional Heisenberg model. The
Heisenberg model was introduced by Heisenberg in 1928 [22] and describes the (anti-) ferro-
magnetism of magnetic insulators with an effective Hamiltonian. The Hamiltonian describes
the nearest neighbour interaction of localised spins resulting from Coulomb interaction and
the Pauli principle. ∆ is an anisotropy parameter that may capture effects such as dipol-dipol
and spin-orbit interactions. The Hamiltonian of the spin 1/2 XXZ Heisenberg chain with 2L
lattice sites is given by

HXXZ = J
L∑

j=−L+1

(
σxj−1σ

x
j + σyj−1σ

y
j + ∆(σzj−1σ

z
j − 1)

)
. (1.1)

Here σαj , α = x, y, z, denote the Pauli matrices acting on the j-th site of the chain, and
we assume periodic boundary conditions. The parameter J determines the strength of the
exchange interaction and is taken to be positive in this work. One may introduce a magnetic
field h in z-direction without breaking the integrability of the model by adding a Zeeman-term
to the Hamiltonian,

H = HXXZ −
h

2

L∑
j=−L+1

σzj . (1.2)

Examples of materials with one-dimensional substructures that can be described by the XXZ
chain are Cu(py)2Cl2 or Cu(py)2Br2 [45].

The ground-state phase diagram of the XXZ chain depicted in Figure 1.1 was obtained
by Yang and Yang in 1966 [43]. At temperature T = 0 the spin 1/2 XXZ chain is separated
into three different quantum phases by second order phase transitions in the ∆-h-plane [43].
In the ferromagnetic regime the ground state is the fully polarised state and correlations are
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Figure 1.1: Ground-state phase diagram of the spin 1/2 XXZ chain [43]. The phases are
separated by the lower and upper critical fields h` = 4J sh(γ)ϑ4(0| e−γ), where ch(γ) = ∆
and ϑ4 is one of the Jacobi-Theta functions [39], and hu = 4J(1+∆). For h < 0, the diagram
is symmetric with respect to the ∆-axis. A first order phase transition line separates the
ferromagnetic regime at h = 0.

trivial. At h = 0, there is a first order phase transition line in the ferromagnetic regime,
since the orientation of the spins in the fully polarised state changes with the direction of the
magnetic field. In the antiferromagnetic massive regime the ground state is twofold degener-
ate and the energy spectrum is gapped. In the antiferromagnetic massless regime there is a
gapless, continuous energy spectrum. For T > 0 no phase transitions are present. However,
the characteristics in each regime at T = 0 transfer to the case T > 0 such that the regimes
require different analyses at low temperatures.

In 1931, Bethe first calculated the spectrum of the isotropic Heisenberg chain (i.e. ∆ = 1)
with the so-called coordinate Bethe Ansatz [7]. Lieb applied this Ansatz to calculate the
eigenvectors of the transfer matrix of the ice model in 1967 [31], enabling him to calculate
the residual entropy of two-dimensional ice. He observed that the wave functions are the
same as for the XXZ chain [30] that had been obtained by Orbach [32] and studied by Yang
and Yang [41]. Lieb’s result was generalised by Sutherland later in 1967 [36] by introducing
the six-vertex model, from which the ice model can be obtained as a special case.

In the early 1970s, Baxter found that the Bethe Ansatz works for the six vertex model
provided that two transfer matrices for different rows and with different spectral parameters
commute [3]. This is given if the R-matrices of the model satisfy a local commutativity
condition, the so-called Yang-Baxter equation [5, 6, 40]. He also found that the Hamiltonian
of the XXZ chain is generated from the transfer matrix of the six-vertex model by taking its
logarithmic derivative [4]. The spectrum and the eigenvectors of the XXZ chain can also be
determined using the algebraic Bethe Ansatz [12,34]. This has the advantage over the method
originally used by Bethe that the comparatively simpler expressions for the eigenstates are
also suitable for calculating expectation values and matrix elements of local operators [24,35].
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This was the basis to develop an approach to the calculation of ground state correlation func-
tions based on the Bethe Ansatz, starting with [23,25].

In this work, we use the quantum transfer matrix formalism as introduced in [26,27]. The
quantum transfer matrix is a very useful tool to calculate the thermodynamic properties of the
model. Its spectrum and eigenvectors can be obtained with the algebraic Bethe Ansatz. The
quantum transfer matrix has one eigenvalue of largest modulus, also called the “dominant”
eigenvalue, which has a finite gap to the eigenvalue of next-largest modulus. The dominant
eigenvalue determines the free energy and thus enables the calculation of quantities such as
the magnetisation and susceptibility and all its static correlation functions [19,20]. Although
this method has the advantage that only one state of the quantum transfer matrix has to
be taken into consideration, calculating two-point correlation functions becomes more and
more complex with increasing distances [8,33]. For the calculation of correlation functions at
large distances, the thermal form factor series presented in [10] provides a suitable expression.
This series includes not only the dominant state but also all other eigenstates of the quantum
transfer matrix, which are also referred to as “excited states”, and has the form

〈x1ym+1〉T,h =
∑
n

Axyn e−
m
ξn

+imφn . (1.3)

The sum runs over all eigenstates of the quantum transfer matrix, the summands consist
of amplitudes Axyn and correlation lengths ξn as well as phases φn. The correlation lengths
and the phases can be determined from the ratio of the eigenvalue of an excited state to the
eigenvalue of the dominant state [26]. The form factor series approach also offers access to
the calculation of dynamical correlation functions [18].

It is possible to reformulate the Bethe Ansatz equations as a non-linear integral equation
and replace solving the Bethe Ansatz equations by solving an equivalent non-linear problem.
This then consists of solving the non-linear integral equation and a finite number of quan-
tisation conditions, sometimes also called “higher-level Bethe Ansatz equations”. With the
help of the solution to the non-linear problem one can give integral expressions for the eigen-
values, and thus also for the free energy and for the correlation lengths [26]. Furthermore, it
is possible to express the amplitudes in terms of the non-linear problem. In order to give an
explicit expression of the series (1.3) all excited states of the quantum transfer matrix have to
be known. In the massive regime, an explicit expression for the form factor series for the lon-
gitudinal two-point function has been obtained at low temperatures in 2021 [2], for which the
knowledge of the excitations of the quantum transfer matrix was important. In particular, the
non-existence of string-type excited states enabled the derivation of the explicit expression. It
is anticipated that in the massless regime a detailed knowledge of the spectrum of the quan-
tum transfer matrix also leads to an explicit expression for correlation functions in the future.

The study of the low-temperature spectrum of the quantum transfer matrix in the massless
regime is the subject of this work. In [15], a rigorous solvability theory of the aforementioned
non-linear integral equation describing the thermodynamics of the XXZ chain has been es-
tablished. The theorems for the unique solvability of the non-linear problem equivalent to the
Bethe Ansatz equations are presented in Chapter 3. An expansion of the solution function of
the non-linear integral equations for low temperatures is presented in Chapter 4. The terms
of this low-temperature expansion are given in terms of solutions to linear integral equa-
tions. The leading order is given by the so-called “dressed energy” ε. At low temperatures,
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Chapter 1. Introduction

the Bethe roots parametrising the dominant eigenvalue come close to the curve Re ε = 0.
The thorough understanding of the behaviour of the dressed energy forms the basis for the
solvability theory and the analysis of the low-temperature spectrum of the quantum transfer
matrix. The behaviour of the dressed energy in the complex plane is the subject of Chapter 5.
The analysis for the cases 0 < ∆ < 1 and −1 < ∆ < 0 is considerably different. In the range
0 < ∆ < 1 all properties required for the construction of the solvability theorems and the
analysis of the spectrum of the quantum transfer matrix can be described mathematically
rigorously. This is so far only possible to a limited extent within the range −1 < ∆ < 0,
as discussed in detail in Chapter 5. In Chapter 6, the low temperature expansion of the
solution to the non-linear integral equation and the properties of the dressed energy are used
to make statements about the excited states of the quantum transfer matrix. In particular,
it is studied whether string-type excitations of the quantum transfer matrix may exist in the
massless regime at low temperatures. For 0 < ∆ < 1 mathematically rigorous statements can
be given, for −1 < ∆ < 0 we provide conjectures supported by numerics. In Chapter 7 we
rigorously identify the dominant eigenvalue and show that the correlation lengths are given
by the spectrum of the free Boson c = 1 conformal field theory in the leading order.

Publications related to this thesis

The results of this work have been published in [14] and [15]. More specifically, Chapters 3,
4, 6 and 7 are published in [15] and the results from Chapter 5 are partly published in [14]
and [15], the results in Section 5.4 are unpublished so far. The proof of Theorem 6.2 is a
simplified variation of the proof of Theorem 6.2 in [15].
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2 The quantum transfer matrix
formalism

In this chapter, the algebraic Bethe Ansatz [12] and the quantum transfer matrix formalism
[27], which are fundamental for this work, are briefly outlined. The non-linear problem, which
is equivalent to the Bethe Ansatz equations of the quantum transfer matrix, is introduced in
the second section. In parts, this chapter follows the reasoning and notation of [13,16].

2.1 Algebraic Bethe Ansatz and quantum transfer matrix

The spin 1/2 XXZ chain is a “fundamental Yang-Baxter integrable” model [6]. The object
which underlies the integrability of such models is the so-called “R-matrix” R(λ, µ) : C2 7−→
End(Cd ⊗ Cd), which fulfils the “Yang-Baxter equation”

R12(λ, µ)R13(λ, ν)R23(µ, ν) = R23(µ, ν)R13(λ, ν)R12(λ, µ) . (2.1)

The indices of the R-matrices indicate on which spaces they act non-trivially, the arguments of
the R-matrices are called spectral parameters. The R-matrix satisfies the regularity condition

R(λ, λ) = P , (2.2)

where P denotes the permutation operator, and can be normalised such that it is unitary,

R12(λ, µ)R21(µ, λ) = id . (2.3)

The R-matrix of the XXZ spin 1/2 chain is

R(λ, µ) =


1

b(λ− µ) c(λ− µ)
c(λ− µ) b(λ− µ)

1

 , (2.4)

with

b(λ) = sh(λ)
sh(λ+ η) and c(λ) = sh(η)

sh(λ+ η) . (2.5)

With the R-matrix we associate the transfer matrices

t⊥(λ) = tra{Ra,L(λ, 0) . . . Ra,−L+1(λ, 0)} , (2.6)
t̄⊥(λ) = tra{R−L+1,a(0, λ) . . . RL,a(0, λ)} , (2.7)
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Chapter 2. The quantum transfer matrix formalism

where a denotes an auxiliary space. The Hamiltonian of the XXZ chain can be generated
with these transfer matrices,

hR t̄⊥(0)t′⊥(0) = −hRt⊥(0)t̄′⊥(0) = hR

L∑
j=−L+1

∂λŘj−1,j(λ, 0)
∣∣∣
λ=0

= hR
2 sh(η)

L∑
j=−L+1

(
σxj−1σ

x
j + σyj−1σ

y
j + ch(η)(σzj−1σ

z
j − 1)

)
= HXXZ , (2.8)

where we set Ř = PR, hR = 2J sh(η), ch(η) = ∆ and σαj , α ∈ {x, y, z}, denote the Pauli
matrices. With periodic boundary conditions it holds by definition that ŘL,−L+1 = Ř−L,−L+1
and σαL = σα−L. External fields can be coupled to the Hamiltonian by introducing a twist

Θ(α) = eαϕ̂ , (2.9)

α ∈ C, ϕ̂ ∈ EndCd. Using the U(1) symmetry of the R-matrix,

[R12(λ, µ),Θ1(α)Θ2(α)] = 0 , (2.10)

it follows that

[t̄⊥(0)t′⊥(0),Θ−L+1(α) . . .ΘL(α)] = 0 . (2.11)

Setting ϕ̂ = σz

2 , this allows us to add a Zeeman-term

H = HXXZ − hSz with Sz = 1
2

L∑
j=−L+1

σzj (2.12)

to HXXZ without affecting the integrability.
In order to calculate the statistical operator, we use the “Trotter formula”

e−
H
T = lim

N→∞
e
h
T
Sz
[
t⊥

(
− hR

2NT

)
t⊥

(
hR

2NT

)]N
(2.13)

which follows from (2.8). N is called “Trotter number”. Setting

ρ̃N,L = e
h
T
Sz
[
t⊥

(
− hR

2NT

)
t⊥

(
hR

2NT

)]N
and ZN,L = tr−L+1,...,L{ρ̃N,L} (2.14)

we get the finite Trotter number approximant to the statistical operator

ρN,L = ρ̃N,L
ZN,L

. (2.15)

We define the “staggered and twisted inhomogeneous monodromy matrix”

Ta(λ|α) = eαϕ̂a Rt12N a
(ν2N , λ)Ra 2N−1(λ, ν2N−1) . . . Rt12 a(ν2, λ)Ra 1(λ, ν1) , (2.16)

νk = (−1)k−1hR/(2NT ), where we have introduced 2N vertical spaces 1, ..., 2N , also called
“auxiliary spaces”. The superscript t1 denotes the transposition with respect to the first
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2.1. Algebraic Bethe Ansatz and quantum transfer matrix

space. Since the R-matrix (2.4) fulfils the Yang-Baxter equation (2.1), the monodromy
matrix generates a representation of the Yang-Baxter algebra

Rjk(λ, µ)Tj(λ|α)Tk(µ|α) = Tk(µ|α)Tj(λ|α)Rjk(λ, µ) . (2.17)

Using the monodromy matrix and setting α = h/T , we can rewrite ρ̃N,L as

ρ̃N,L = tr1...2N{T1(0|α) . . . TL(0|α)} . (2.18)

In the auxiliary space a = −L+ 1, ..., L, the monodromy matrix is a 2 × 2-matrix

Ta(λ|α) =
(
A(λ) B(λ)
C(λ) D(λ)

)
a

(2.19)

with operators acting on C2⊗2N as entries. Its trace

t(λ|α) = tra{Ta(λ|α)} = A(λ) +D(λ) (2.20)

is called “quantum transfer matrix”. Due to the commutativity

[t(λ|α), t(µ|α)] = 0 , (2.21)

which is a consequence of (2.17), the eigenvectors |ψn〉 are independent of the spectral param-
eter. Assume that the quantum transfer matrix has a unique maximal eigenvalue Λ0(0|α) in
the vicinity λ = 0, which is real, positive and non-degenerate and that there is always a gap of
finite size between the dominant and the next largest eigenvalue. [17,27,37]. This eigenvalue
is called the “dominant eigenvalue” and the corresponding eigenvector |ψ0〉 the “dominant
state”. The other eigenvalues are either real or appear in complex conjugated pairs and are
also referred to as “excited states” of the quantum transfer matrix. The numbering of the
eigenvalues is chosen such that they are ordered by size,

Λ0(0|α) > |Λ1(0|α)| ≥ |Λ2(0|α)| ≥ . . . . (2.22)

We can use this property to find a simple expression for the free energy per lattice site in the
thermodynamic limit,

f(T, h) = −T lim
L→∞

lim
N→∞

1
2L lnZN,L = −T lim

L→∞
lim
N→∞

1
2L ln

{
tr1,...,2N{t(0|α)2L}

}
= −T lim

L→∞
lim
N→∞

1
2L ln


22N−1∑
n=0

Λ2L
n (0|α)

 = −T lim
N→∞

ln Λ0(0|α) . (2.23)

In the last step we used (2.22) and assumed the commutativity of the limits L → ∞ and
N →∞. This commutativity has not been rigorously justified yet for all temperatures. How-
ever, (2.23) has been used to study the thermodynamics of integrable models, in particular
for the XXZ chain [26, 27] and the results match those obtained with other methods. Re-
cently, the commutativity was proven for sufficiently high but finite temperatures [17]. The
authors expect the result to be generalisable to all quantum integrable models associated
with a fundamental R-matrix.
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Chapter 2. The quantum transfer matrix formalism

Under the assumption that the limits commute, we can express correlation functions by

〈x(1)
j . . . x

(k−j+1)
k 〉T,h = lim

L→∞

tr−L+1,...,L{e−H/T x(1)
j . . . x

(k−j+1)
k }

tr−L+1,...,L{e−H/T }

= lim
N→∞

〈ψ0| tr{T (0|α)x(1)} . . . tr{T (0|α)x(k−j+1)} |ψ0〉
Λk−j+1

0 (0|α) 〈ψ0|ψ0〉
, (2.24)

where x(n)
m denote local operators at site m [19]. In particular, by inserting the identity

id =
22N−1∑
n=0

|ψn〉 〈ψn|
〈ψn|ψn〉

, (2.25)

we can perform the “form factor expansion” for two-point correlation functions of the oper-
ators x and y in the Trotter limit [10]

〈x1ym+1〉T,h = lim
N→∞

22N−1∑
n=0

〈ψ0| tr{T (0|α)x} |ψn〉 〈ψn| tr{T (0|α)y} |ψ0〉
Λ0(0|α)Λn(0|α) 〈ψ0|ψ0〉 〈ψn|ψn〉

(Λn(0|α)
Λ0(0|α)

)m
. (2.26)

Defining amplitudes by

Axyn = 〈ψ0| tr{T (0|α)x} |ψn〉 〈ψn| tr{T (0|α)y} |ψ0〉
Λ0(0|α)Λn(0|α) 〈ψ0|ψ0〉 〈ψn|ψn〉

(2.27)

and correlation lengths ξn > 0 by

Λn(0|α)
Λ0(0|α) = e−

1
ξn

+iφn , (2.28)

with phases φn ∈ R, one can rewrite (2.26) as [10]

〈x1ym+1〉T,h = lim
N→∞

22N−1∑
n=0

Axyn e−
m
ξn

+imφn . (2.29)

This series is also called “thermal form factor series”. The thermal form factor series for
dynamical two-point correlation functions is [18]

〈x1ym+1(t)〉T,h = lim
N→∞

eitαs(x)
22N−1∑
n=0

Axyn e−
1
ξn

+iφn
(

Λn( iJt sh(η)
N |α) Λ0(− iJt sh(η)

N |α)
Λ0( iJt sh(η)

N |α) Λn(−iJt sh(η)
N |α)

)N
,

(2.30)

where x is such that Θ(α)xΘ(−α) = eαs(x) x.

The eigenvalues Λn(λ|α) and the eigenstates |ψn〉 of the quantum transfer matrix can be
obtained with the algebraic Bethe Ansatz. For this, consider the pseudo vacuum

|0〉 =
[(

1
0

)
⊗
(

0
1

)]⊗N
. (2.31)
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2.2. Auxiliary functions and non-linear integral equations

The action of the operators A(λ) and D(λ) from (2.19) onto this pseudo vacuum is

A(λ) |0〉 = eα/2
N∏
j=1

b(ν2j − λ) |0〉 = a(λ) |0〉 , (2.32)

D(λ) |0〉 = e−α/2
N∏
j=1

b(λ− ν2j−1) |0〉 = d(λ) |0〉 . (2.33)

For a set {µ} = {µj}Mj=1 ⊂ C define the function

Q(λ|{µ}) =
M∏
j=1

sh(λ− µj) . (2.34)

If this set satisfies the Bethe-Ansatz equations

d(µj)
a(µj)

Q(µj + η|{µ})
Q(µj − η|{µ})

= −1, j = 1, . . . ,M, (2.35)

the eigenstates and eigenvalues of the quantum transfer matrix can be determined with the
elements of this set. The elements µj are then called “Bethe roots”.

The system of equations (2.35) has multiple solutions {µ(n)} = {µ(n)
j }

Mn
j=1, which are

numbered with index n. With each set {µ(n)}, an eigenstate of the quantum transfer matrix
can be generated using the operator B(λ),

|ψn〉 = B(µ(n)
Mn

) . . . B(µ(n)
1 ) |0〉 . (2.36)

C(λ) determines the bra

〈ψn| = 〈0|C(µ(n)
1 ) . . . C(µ(n)

Mn
) . (2.37)

The corresponding eigenvalue is given by

Λn(λ|α) = a(λ)Q(λ− η|{µ(n)})
Q(λ|{µ(n)})

+ d(λ)Q(λ+ η|{µ(n)})
Q(λ|{µ(n)})

(2.38)

with

Q(λ|{µ(n)}) =
Mn∏
j=1

sh(λ− µ(n)
j ). (2.39)

The numbering of the eigenvalues is chosen as in (2.22).

2.2 Auxiliary functions and non-linear integral equations
By introducing an auxiliary function

a(λ|{µ}) = d(λ)
a(λ)

Q(λ+ η|{µ})
Q(λ− η|{µ}) , (2.40)

the Bethe Ansatz equations (2.35) can be rewritten as

1 + a(λ(n)
j |{µ

(n)}) = 0, j = 1, . . . ,Mn . (2.41)

9



Chapter 2. The quantum transfer matrix formalism

However, equation (2.41) is not only solved by the Bethe roots {µ(n)
j }

Mn
j=1, there exist 2N

other zeros of 1+an(λ) which are not Bethe roots. These arise because the auxiliary function
is a ratio of polynomials in e2λ, each having degree 2N +Mn.

In this work, we analyse the antiferromagnetic massless regime of the XXZ chain, restrict-
ing ourselves to the range −1 < ∆ < 1 and positive magnetic fields h > 0. We choose the
parametrisation

η = −iγ with γ ∈ (0, π) , (2.42)

where we remind that ∆ = ch(η).

Using the residue theorem and partial integration, the auxiliary function an(λ) can be
rewritten as an integral equation [27]. For this purpose, a simple closed contour Cn is defined,
which, for each state n, includes only the Bethe roots and the N -fold pole at −hR/(2NT ),
but no other zeros of 1 + an(λ) or other poles. Furthermore set

sγ = sign(π − 2γ) and γm = min(γ, π − γ) . (2.43)

Then, the “monodromy condition”�
Cn

dω
2πi ∂ω ln(1 + an(ω)) = Mn −N = −sn (2.44)

holds, where sn is the so-called “(pseudo-) spin of the n-th excited state”. Set

wN (λ) = h−NT ln
(

sh(λ+ iγ
2 −

hR
2NT )

sh(λ+ iγ
2 + hR

2NT )
sh(λ− iγ

2 + hR
2NT )

sh(λ− iγ
2 −

hR
2NT )

)
(2.45)

and define the kernel function

K(λ) = sγ
2πi (cth(λ− iγm)− cth(λ+ iγm)) = sin(2γ)

2π sh(λ− iγ) sh(λ+ iγ) (2.46)

which is an iπ periodic function with poles at λ = ±iγ mod iπ. Assume that Cn is such that
λ ± iγm is outside of Cn to ensure that the poles of K are not in Cn. Then we obtain the
identity
�

Cn

dµ
2πi ln

(sh(iγ − λ+ µ)
sh(iγ + λ− µ

)
∂µ ln(1 + an(µ))

=
Mn∑
j=1

ln

sh(iγ − λ+ λ
(n)
j )

sh(iγ + λ− λ(n)
j )

−N ln
(

sh(iγ − λ− hR
2NT )

sh(iγ + λ+ hR
2NT )

)
= ln an(λ) +

wN (λ− iγ
2 )

T
− iπsn

= −sn ln
(sh(λ− κ − iγ)

sh(λ− κ + iγ)

)
+
�

Cn

dµK(λ− µ) LnCn(1 + an)(µ) . (2.47)

Here, the second line is obtained using the residue theorem and identifying with the definition
(2.40) and the third line by partial integration and with (2.44). Thus we find an integral
equation for an(λ) [16,28],

ln an(λ) = −sn ln
(sh(λ− κ − iγ)

sh(λ− κ + iγ)

)
−

wN (λ− iγ
2 )

T
+
�

Cn

dωK(λ− ω) LnCn(1 + an)(ω) .

(2.48)
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2.2. Auxiliary functions and non-linear integral equations

Above, we have set the logarithm for a contour C and λ ∈ C

LnC (1 + an)(λ) =
�

C λκ

dω a′n(ω)
1 + an(ω) + ln(1 + an(κ)) . (2.49)

κ denotes a point on the contour C . The contour C λ
κ runs from κ to λ along the contour

C . This definition ensures that the function LnCn(1 + an)(λ) is holomorphic and no jumps of
2πi occur along the curve Cn. The “ln” on the right-hand side denotes the principal branch
of the logarithm.

With this formulation, the contour Cn contains the information on the states and therefore
differs for all states of the quantum transfer matrix. Another possibility is to fix a reference
contour and consider all states relative to it.

For the low-temperature analysis throughout this work it will be more convenient to
introduce the auxiliary function û(λ) by

e−
1
T
û(λ) =

d(λ+ iγ
2 )

a(λ+ iγ
2 )
Q(λ− iγ|{λ})
Q(λ+ iγ|{λ})

= e−
h
T (−1)s

 M∏
j=1

sh(iγ − λ+ λj)
sh(iγ + λ− λj)

 · (sh(λ+ iγ
2 −

hR
2NT )

sh(λ+ iγ
2 + hR

2NT )
sh(3iγ

2 + λ+ hR
2NT )

sh( iγ
2 − λ+ hR

2NT )

)N
.

(2.50)

û(λ) is a meromorphic function and the by −iγ/2 shifted Bethe roots {λ} = {λj}Mj=1 are a
subset of zeros of 1 + e− 1

T
u. Introduce

θ(λ) =

i ln
(

sh(iγ+λ)
sh(iγ−λ)

)
for |Imλ| < γm ,

−πs2 + i ln
(

sh(iγ+λ)
sh(λ−iγ)

)
for γm < |Imλ| < π

2 ,
(2.51)

where “ln” denotes the principal branch of the logarithm. θ(λ) is an iπ-periodic holomorphic
function on C \

⋃
υ=±{R+± iγm + iπZ} with cuts along {R+± iγm + iπZ}. We introduce the

+ boundary value θ+(λ) = limε→0+ θ(λ+ iε) which is needed only at the cuts. Note that

θ′(λ)
2π = K(λ) . (2.52)

Let D ⊂ C be a bounded and simply connected domain which contains ±hR/2NT − iγ/2.
For two elements z1, z2 ∈ D with Re z1 = Re z2 it shall hold that |Im (z1 − z2)| < γm.
Furthermore û shall be piecewise continuous on ∂D. This contour can be used to rewrite
(2.50) as a non-linear integral equation. Let B ≡ {λj}Mj=1 denote the set of by −iγ/2 shifted
Bethe roots, Ŷ the set of the shifted Bethe roots outside D and X̂ the set of zeros of 1+e− 1

T
û

which are not Bethe roots inside D, more precisely

X̂ = {x̂a}|X̂|a=1 where x̂a ∈ D \
{
± hR

2NT −
iγ
2

}
, (2.53)

Ŷ = {ŷa}|Ŷ|a=1 where ŷa ∈
{
z ∈ C

∣∣∣∣− π

2 < Im z ≤ π

2

}
\D , (2.54)

11



Chapter 2. The quantum transfer matrix formalism

such that

1 + e−
1
T
û(x̂a) = 0 for a = 1, . . . , |X̂| , (2.55)

1 + e−
1
T
û(ŷa) = 0 for a = 1, . . . , |Ŷ| . (2.56)

The latter equations are also referred to as “higher level Bethe Ansatz equations” or quan-
tisation conditions, the elements of X̂ are called “hole” roots, the elements of Ŷ are called
“particle” roots. Since we will only consider the shifted Bethe roots in the analysis to come,
we will refer to B = {λj}Mj=1 as the Bethe roots from now on.

e− 1
T
û is a meromorphic function with poles at −hR/(2NT ) − iγ/2 and at the so-called

“singular roots” defined by

Ŷsg = {ŷsg;a}
|Ŷsg|
a=1 where ŷsg;a = ŷa − is2γm ∈ D . (2.57)

For û(λ) the monodromy condition

m = −
�
∂D

dµ
2πiT

û′(µ)
1 + e− 1

T
û(µ)

= −s− |Ŷ| − |Ŷsg|+ |X̂| (2.58)

holds. By rewriting

∏
µ∈B

sh(iγ − λ+ µ)
sh(iγ + λ− µ) =

∏
µ∈{B\Ŷ}∪X̂

sh(iγ − λ+ µ)
sh(iγ + λ− µ) ·

∏
µ∈Ŷ

sh(iγ − λ+ µ)
sh(iγ + λ− µ) ·

∏
µ∈X̂

sh(iγ + λ− µ)
sh(iγ − λ+ µ)

(2.59)

in (2.50) and taking the singular roots into account we find the non-linear integral equation

û(λ) = wN (λ)− iπsT − iT
∑

µ∈Ŷ⊕Ŷsg	X̂

θ+(λ− µ) + mθ+(λ− κ)

− T
�
∂D

dµK(λ− µ) Ln∂D(1 + e−
1
T
û)(µ) . (2.60)

Here and in the following we use for two sets A, B and some function f the notation∑
µ∈A⊕B

f(µ) =
∑
µ∈A

f(µ) +
∑
µ∈B

f(µ) ,
∑

µ∈A	B
f(µ) =

∑
µ∈A

f(µ)−
∑
µ∈B

f(µ) (2.61)

and similarly

∏
µ∈A⊕B

f(µ) =
∏
µ∈A

f(µ) ·
∏
µ∈B

f(µ) ,
∏

µ∈A	B
f(µ) =

∏
µ∈A f(µ)∏
µ∈B f(µ) . (2.62)

Remark. By defining X̂ and Ŷ as sets, it is implicitly assumed that the zeros of 1 + e− 1
T
û are

simple. In general, the zeros may appear with multiplicities kx, ky and one defines

X̂ =
{

(x, kx)
∣∣∣∣x ∈ D \ {± hR

2NT −
iγ
2

}
, kx ∈ N

}
, (2.63)

Ŷ =
{

(x, kx)
∣∣∣∣y ∈ C \D, −π2 < Im z ≤ π

2 , ky ∈ N
}
, (2.64)

12



2.2. Auxiliary functions and non-linear integral equations

such that

∂pλ

(
1 + e−

1
T
û(λ)

) ∣∣∣∣
λ=x

= 0 for p = 0, . . . , kx − 1 and ∂kxλ

(
1 + e−

1
T
û(λ)

) ∣∣∣∣
λ=x
6= 0 ,

(2.65)

∂pλ

(
1 + e−

1
T
û(λ)

) ∣∣∣∣
λ=y

= 0 for p = 0, . . . , ky − 1 and ∂
ky
λ

(
1 + e−

1
T
û(λ)

) ∣∣∣∣
λ=y
6= 0

(2.66)

for any (x, kx) ∈ X̂, (y, ky) ∈ Ŷ. (2.57)-(2.62) should then be adjusted accordingly. This
can be done in a simple way by interpreting X̂, Ŷ as defined in (2.53), (2.54) as well as B
not as sets, but as collections of parameters, where each parameter is repeated due to its
multiplicity. A more precise notation of (2.61) and (2.62) for this case is given in Appendix
A of [15].

It was shown in [15] that for solutions which give rise to eigenstates of the quantum
transfer matrix all multiplicities kxa , kya are equal to one. Thus in this thesis only these
solutions will be considered, and the reader shall be referred to [15] for the more general case.

The analysis of the Bethe Ansatz equations (2.35) is now replaced by solving an equivalent
non-linear problem, namely by finding a function û solving the non-linear integral equation
(2.60) along with the sets X̂ and Ŷ satisfying the higher level Bethe Ansatz equations (2.55),
(2.56). It is possible to express all physically relevant observables in terms of the solutions
(û, X̂, Ŷ) to the non-linear problem. For instance, we can rewrite the eigenvalue (2.38) as

Λ̂(λ|B) = a(λ)(1 + e−
1
T
û(λ− iγ

2 ))
Q(λ+ iγ

2 |B)
Q(λ− iγ

2 |B)
. (2.67)

The latter equation can be rewritten as

ln Λ̂(λ|û, X̂, Ŷ) = h

2T +
∑

µ∈Ŷ⊕Ŷsg	X̂

ip0(µ− λ) + imp0(κ − λ)

−
�
∂D

dµ
2π p

′
0(µ− λ) Ln∂D(1 + e−

1
T
û)(µ) (2.68)

where

p0(λ) = i ln
(

sh( iγ
2 + λ)

sh( iγ
2 − λ)

)
. (2.69)

With this expression for the eigenvalue, the free energy (2.23) and the correlation lengths
(2.28) can be expressed in terms of the solutions (û, X̂, Ŷ) to the non-linear problem. This is
also true for the amplitudes (2.27) [10].

The benefits of considering the non-linear problem instead of the original system of Bethe
Ansatz equations become apparent when studying the infinite Trotter number limit, as the
number of higher level Bethe Ansatz equations remains finite even for infinite Trotter number.
Consider wN in the Trotter limit,

lim
N→∞

wN (λ) = h− 2J sin2(γ)
sh(λ+ iγ

2 ) sh(λ− iγ
2 )

.= ε0(λ) . (2.70)
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λ

iγ
2

− iγ
2

−iγ

− 3iγ
2

T
J

� 1

T
J

� 1

Cdom

Figure 2.1: Sketch of the Bethe roots B (•) and other zeros of 1+e− 1
T
û (◦) of the dominant

state and the integration contour Cdom in the complex plane. The “×” mark the Fermi points.
For low temperatures, the Bethe roots move toward the Fermi points, for high temperatures
they move towards iγ/2. The other zeros move analogously, for low temperatures they move
towards the (by −iγ shifted) Fermi points, for high temperatures they move towards iγ/2
and −3iγ/2.

ε0 is called “bare energy”. Taking the limit N → ∞ in (2.60) leads to the replacement of
wN (λ) by ε0(λ) in the non-linear integral equation, and thus we obtain a new non-linear
integral equation

u(λ) = ε0(λ)− iπsT − iT
∑

µ∈Y⊕Ysg	X
θ+(λ− µ) + mθ+(λ− κ)

− T
�
∂D

dµK(λ− µ) Ln∂D(1 + e−
1
T
u)(µ) (2.71)

with the formal replacement x̂a ↪→ xa, ŷa ↪→ ya in the non-linear problem described above.
If the solutions converge, (û, X̂, Ŷ) → (u,X,Y) for N → ∞, one can easily take the Trotter
limit of the eigenvalue (2.68). However, rigorously establishing this convergence is non-trivial.
A rigorous proof is given in [15].

For the numerical analysis, fixing one contour for all states is very convenient. A reason-
able choice for the fixed contour is the contour of the dominant state, namely the contour that
contains all Bethe roots of the dominant state but no other zeros of 1+e− 1

T
û. The behaviour

of the Bethe roots of the dominant state has been analysed for the limits T → 0+ [10],
T → ∞ [17], ∆ = 0 [18] and by numerics for small Trotter number [21], and based on
these analyses one can choose a contour Cdom. Furthermore, one can identify s = 0 for the
dominant state. For h > 0, the Bethe roots of the dominant state are located in the strip
−γ

2 < Imλ < 0, the other zeros of 1 + e− 1
T
û are located in the strips 0 < Imλ < γ

2 and
−3γ

2 < Imλ < −γ
2 as depicted in Figure 2.1. In the infinite Trotter number limit, − iγ

2 is an

14



2.2. Auxiliary functions and non-linear integral equations

Reu(λ) = 0

q
(+)
u

Cdom

Cu

Reλ

Reu(λ) = 0

q
(+)
uCdom

Cu

Reλ

Figure 2.2: Sketch of a configuration of Bethe roots B (•) and other zeros of 1 + e− 1
T
u (◦)

for two states with s = 0 on the lhs and s 6= 0 on the rhs with the contours Cdom and Cref .
q

(+)
u solves u(λ) = 0. For s = 0, the particle is a particle with respect to both contours,
however for s 6= 0 the Bethe root encircled in grey is a particle with respect to Cdom but not
with respect to Cu.

accumulation point of the Bethe roots, iγ
2 and −3iγ

2 are accumulation points of the other ze-
ros. For low temperatures, the Bethe roots and the zeros move towards the so-called “Fermi
points” located on the real axis, resp. towards the by −iγ shifted Fermi points, for high
temperatures the roots move towards the accumulation points. This allows one to choose a
straight contour for the dominant state,

Cdom = [−R− iγ
2 − iε, R− iγ

2 − iε] ∪ [R− iγ
2 − iε, R] ∪ [R,−R] ∪ [−R,−R− iγ

2 − iε] (2.72)

for some ε > 0 small enough and R > 0 large enough. In order to solve the non-linear problem
numerically, introduce the functions [27]

b(λ) = e−
1
T
u(λ− iγ

2 −iε) and b(λ) = e
1
T
u(λ) . (2.73)

In absolute values, the function b is, for low temperatures, small on the lower part of the
contour Cdom and the function b is small on the upper part of Cdom. By sending the left
and right part of Cdom to ±∞, i.e. sending R → ∞, the integral along these parts do not
contribute, since the integration kernel K vanishes. One can then rewrite the coupled system
of integral equations with integrals along the real axis and bring them to a form which is
suitable for numerical calculation by using Fourier transformation and the convolution the-
orem [27]. The solutions to the non-linear integral equations are obtained by an iteration
algorithm. For excited states, one simultaneously solves the non-linear integral equation and
the higher-level Bethe Ansatz equations.

The definition of holes and particles depends on the definition of the reference contour.
In this work we start by defining a reference contour Cref which, as we will see a posteriori,
is equivalent to the straight contour Cdom for T low enough. Then we will deform Cref to
another contour Cu which has better properties for our analysis, cf. Properties 4.1. Holes
and particles will be defined with respect to Cu in the subsequent analysis. In particular,
Cu has the property of passing through the two zeros q(±)

u of u(λ) = 0. Following the curve
Reu(λ) = 0 for the dominant state and excited states in the sector s = 0, there is no Bethe
root or other zero of 1 + e− 1

T
u on the curve between q

(±)
u and the real axis and thus the

definition of holes and particles remains the same for Cdom and Cu. However, this can change
when s 6= 0. For T low enough, there might be some Bethe root or zero of 1 + e− 1

T
u between

q
(±)
u and the real axis along the curve Reu(λ) = 0, as illustrated in Figure 2.2. This can be
understood through the first order in the low-T expansion of u, cf. Corollary 4.5. In order
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Chapter 2. The quantum transfer matrix formalism

to obtain a numerical solution to the non-linear problem with holes and particles defined
with respect to Cu, one has to adapt the hole and particle term similarly to (2.59) and then
proceed to formulate the functions b and b with the contour Cdom.
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3 Solvability of the non-linear
problem

In order to analyse the existence and uniqueness of solutions to the non-linear problem
for temperatures low enough, we first introduce multiple linear integral equations that are
essential for describing the non-linear integral equation for low temperatures. Using one of the
functions defined by a linear integral equation, the dressed energy, we fix a specific integration
contour Cref and formulate the non-linear problem in terms of Cref . Furthermore, we give
the hypotheses we assume for the sets of hole and particle parameters in this analysis. Then,
we are able to present the theorems about the existence of unique solutions to the non-linear
integral equation without the higher level Bethe Ansatz equations holding as constraints (off-
shell), and about the unique solvability of the non-linear problem under the validity of the
higher level Bethe Ansatz equations (on-shell).

3.1 Linear integral equations
In this section we introduce several functions which are solutions to a linear integral equation
of the form

f(λ|Q) = f0(λ)−
� Q

−Q
dµK(λ− µ)f(µ|Q) , (3.1)

where f0(λ) ∈ C0([−Q,Q]), the space of continuous functions on [−Q,Q], is referred to as
driving term. The existence and uniqueness of a solution to (3.1) follows from the conver-
gence of the Neumann series of the corresponding integral operator, which is discussed in
Proposition 5.2.

Introduce the linear integral equation

ε(λ|Q) = ε0(λ)−
� Q

−Q
dµK(λ− µ)ε(µ|Q) , (3.2)

where the driving term is the bare energy ε0 defined in (2.70), which is even and monotonically
increasing on R+. Its minimum on R is therefore at λ = 0,

min
λ∈R

ε0(λ) = ε0(0) = h− 4J(1 + ∆) , (3.3)

where we remind that ∆ = cos(γ). In the limit λ→∞ the bare energy converges to h,

lim
λ→∞

ε0(λ) = h . (3.4)
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Chapter 3. Solvability of the non-linear problem

The condition ε0(0) = 0 determines the upper critical field

hc = 4J(1 + ∆) . (3.5)

For 0 < h < hc there exists a unique solution QF > 0 of the equation ε(Q|Q) = 0 (Theo-
rem 5.6). QF is called the “Fermi rapidity” or “Fermi point”. We define the dressed energy
by

ε(λ) = ε(λ|QF ) . (3.6)

In the following, we denote f(λ|QF ) = f(λ). f0(λ) is called the “bare” and f(λ) the “dressed”
quantity. Introduce the dressed charge

Z(λ) = 1−
� QF

−QF
dµK(λ− µ)Z(µ) , (3.7)

the dressed phase

φ(λ, µ) = θ(λ− µ)
2π −

� QF

−QF
dν K(λ− ν)φ(ν, µ) (3.8)

with θ from (2.51), the dressed momentum

p(λ) = p0(λ)−
� QF

−QF

dµ
2π θ(λ− µ)p′(µ) (3.9)

where p0 was defined in (2.69), and the root density

ρ(λ) = sin γ
2π sh(λ− iγ

2 ) sh(λ+ iγ
2 )
−
� QF

−QF
dµK(λ− µ)ρ(λ) . (3.10)

The resolvent is given by

R(λ, µ) = K(λ− µ)−
� QF

−QF
dν K(λ− ν)R(ν, µ) . (3.11)

In the following analysis we need another set of solutions to linear integral equations with
a different integration contour. This integration contour Cε is defined by

Cε =
{
λ ∈ C

∣∣∣∣−π2 < Imλ ≤ 0 and Re ε(λ) = 0
}
. (3.12)

The solution to the integral equations subordinate to the integration contour Cε is denoted
with an index c. Define εc(λ) as the solution to the integral equation

εc(λ) = ε0(λ)− lim
α→0−

�
Cε

dµK(λ− µ)εc(µ− iα) , (3.13)

and similarly

Zc(λ) = 1−
�

Cε

dµK(λ− µ)Zc(µ) , (3.14)
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cdT
− iγ

2

QF−QF

Ĉε

Figure 3.1: Sketch of the integration contour Ĉε. Ĉε coincides with Cε with the exception
of a vicinity around the point −iγ/2, where it corresponds to an arc of the disk D− iγ

2 ,cdT
.

φc(λ, µ) = θ(λ− µ)
2π −

�
Cε

dµK(λ− µ)φc(ν, µ), (3.15)

and

pc(λ) = p0(λ)− lim
α→0−

�
Cε

dµ
2π θ(λ− µ)p′c(µ+ iα) , (3.16)

and the resolvent

Rc(λ, µ) = K(λ− µ)−
�

Cε

dν K(λ, ν)Rc(ν, µ) . (3.17)

Note that ε(λ) = εc(λ) if |Imλ| < γ
2 , as proven in Lemma 5.12. Furthermore, we define one

last linear integral equation

WN (λ) = wN (λ)−
�

Ĉε

dµK(λ− µ)WN (µ) (3.18)

with Ĉε as introduced in Figure 3.1 and wN defined in (2.45). WN is the finite Trotter number
analogue of the dressed energy εc. In the Trotter limit N →∞ it holds thatWN (λ)→ εc(λ)
uniformly on {

λ ∈ C
∣∣∣∣|Imλ| < γ

2

}
\
⋃
σ=±

Dσiγ,ε for any ε > 0 , (3.19)

where we define discs by

Dz0,r = {z ∈ C
∣∣|z − z0| < r} . (3.20)

The linear integral equations are analysed in detail in Chapter 5.

3.2 Working hypotheses
In the analysis to come, we restrict the discussion to the regime

0 ≤ ∆ < 1 ⇒ 0 < γ ≤ π

2 (3.21)
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0−δT δT

Γ(R)
δT

it(−)
R − δT it(+)

R + δT−δT δT

Γ(L)
δT

−δT + it(−)
L δT + it(+)

L

0

Figure 3.2: Definition of the contours Γ(L/R)
δT

used to define the reference contour Cref . Note
that t(±)

L > 0 and t
(±)
R < 0.

if not explicitly stated otherwise. While some of the results can be obtained also for −1 <
∆ < 0, there are still several technical results missing. This comprises some properties of the
dressed energy in the complex plane, which is discussed in more detail in Section 5.4.

We now give a more precise definition of the reference contour of the non-linear integral
equation. In order to do so, first note that for 0 < γ ≤ π

2 the dressed energy ε is a double
covering map on

Uε =
{
z ∈ C

∣∣− π

2 < Im ≤ π

2

}
\
{

[−QF , QF ]± iγ, 0, iπ
2

}
(3.22)

and the maps εL/R = ε
∣∣
UL/R;ε

: UL/R;ε → ε(UL/R;ε) with

UL;ε =
{
z ∈ Uε

∣∣∣∣Re z < 0 or Re z = 0 and 0 < Im z <
π

2

}
, (3.23)

UR;ε =
{
z ∈ Uε

∣∣∣∣Re z > 0 or Re z = 0 and − π

2 < Im z < 0
}

(3.24)

are biholomorphisms subordinate to the double covering map. This will be proven in Propo-
sition 5.9. Then we define the reference contour by

Cref = ε−1
R

(
Γ(R)
δT

)
∪ ε−1

L

(
Γ(L)
δT

)
∪ γ(−) ∪ γ(+) , (3.25)

where Γ(L/R)
δT

are defined as depicted in Figure 3.2 with

δT = −MT lnT (3.26)

and M > 0. Fix cd > 0 small enough and define the arcs γ(±) as depicted in Figure 3.3 such
that

• γ(−) is given by the counterclockwise oriented arc of ∂D− iγ
2 ,cdT

joining y(−)
R to y(−)

L and

• γ(+) is given by the counterclockwise oriented arc of ∂D− iγ
2 ,cdT

joining y(+)
L to y(+)

R .

y
(±)
L/R are defined by

y
(±)
L = ε−1

L (±δT + iR+) ∩ ∂D− iγ
2 ,cdT

and y
(±)
R = ε−1

R (±δT + iR−) ∩ ∂D− iγ
2 ,cdT

, (3.27)

20



3.2. Working hypotheses

cdT
− iγ

2

QF−QF

Cref

γ(−)

γ(+)

y
(−)
L

y
(+)
L

y
(+)
R

y
(−)
R

Cε

Figure 3.3: Sketch of the integration contours Cε and Cref .

and since D− iγ
2 ,cdT

⊂ Uε, they are well defined. y(±)
L/R determine t

(±)
L/R as introduced in Fig-

ure 3.2 by t
(±)
L/R = ε(y(±)

L/R).
Now, we consider the non-linear problem (2.53)-(2.60) subordinate to the reference con-

tour Cref , i.e. we choose D = Int Cref , ∂D = Cref . Understanding the higher level Bethe
Ansatz equations as subsidiary conditions, we can analyse the non-linear problem on- or off-
shell, meaning that the higher level Bethe Ansatz equations (2.55) and (2.56) are constraints
that shall be satisfied (on-shell) or not (off-shell). We introduce X, Y by

X = {xa}|X|a=1 where xa ∈ Int Cref \
{
± hR

2NT −
iγ
2

}
, (3.28)

Y = {ya}
|Y|
a=1 where ya ∈

{
z ∈ C

∣∣∣∣− π

2 < Im z ≤ π

2

}
\ Int Cref (3.29)

and

Ysg = {ysg;a}
|Ysg|
a=1 where ysg;a ∈ Int Cref + iγ . (3.30)

We shall impose several hypotheses for these parameter sets. In order to do so, first define
a metric on C/iπZ,

diπ(z, z′) = inf
r∈Z
|z − z′ − irπ| . (3.31)

Hypothesis 3.1. Assume that the sets X, Y are such that

(i) there exists c > 0 such that diπ(Y− υiγ,±QF ) > c, with υ ∈ {±},

(ii) there exists cref > 0 large enough such that diπ(Y− υiγ,Cref) > crefT with υ ∈ {±},

(iii) there exists csep > 0 such that X ∩ D− iγ
2 ,csepT

= ∅, Y ∩ D± iγ
2 ,csepT

= ∅, Y ∩ D− 3iγ
2 ,csepT

= ∅,

(iv) there exists cloc > 0 such that diπ(X,±QF ) > cloc and diπ(Y,±QF ) > cloc.

Hypothesis 3.2. For the sets X̂, Ŷ subject to quantisation conditions of the form (2.55) and
(2.56), we shall relax Hypothesis 3.1 (iv) and additionally impose
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Chapter 3. Solvability of the non-linear problem

−QF QF

−QF + i(γ − ε) QF + i(γ − ε)

−QF − i(γ − ε) QF − i(γ − ε)

− iγ
2

Cε

M

Figure 3.4: Sketch of the curve Cε and the strip M.

(v) there exists crep > 0 such that

diπ(z, z′) > crepT for all z 6= z′ with z, z′ ∈ X̂ or z, z′ ∈ Ŷ , (3.32)

(vi) the roots are simple ∗,

(vii) there exists ε > 0 small enough such that X̂ ∩ D− iγ
2 ,εT

= ∅, Ŷ ∩ D± iγ
2 ,εT

= ∅ and
Ŷ ∩ D− 3iγ

2 ,εT = ∅.

(v) is sometimes referred to as the repulsion principle.

Furthermore, introduce the functional space

EM =
{
f

∣∣∣∣f ∈ O(M), f(λ) −−−−−−→
λ∈M→∞

0, ||f ||L∞(M) ≤ CMT 2
}

(3.33)

where M is given in Figure 3.4, O(M) denotes the space of holomorphic functions on M,
CM is some not too small T -independent constant, and T is treated as a small parameter
such that TCM < 1. The space EM with distance

dEM (f, g) = ||f − g||L∞(M) (3.34)

is a complete metric space [15].

∗This means that kx = 1 for all x ∈ X̂ and ky = 1 for all y ∈ Ŷ if one defines X̂ and Ŷ not as sets but as
collections of parameters (2.63)-(2.66). The simplicity of the roots is already implied by the definition of X̂
and Ŷ as sets, but for the sake of completeness this hypothesis is nevertheless listed here.
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3.3. Existence and uniqueness of solutions to the non-linear problem

3.3 Existence and uniqueness of solutions to the non-linear
problem

In order to give a statement about the existence and uniqueness of solutions, we first need to
introduce several technical notations, starting with the off-shell problem. From now on, we
use the notation

υL = −1 and υR = 1 . (3.35)

Note, that with Hypothesis 3.1 (iv) we have ensured that there are no elements of X and
Y in a vicinity of ±QF . We now construct sets complementary to X and Y which contain
parameters inside DυαQF ,cloc , α ∈ {L,R}, such that

X̂′ =
⋃

α∈{L,R}
{x̂(α)

0;a}
κ(α)

0
a=1 and Ŷ′ =

⋃
α∈{L,R}

{ŷ(α)
0;b }

y
(α)
0
b=1 , (3.36)

X′ =
⋃

α∈{L,R}
{x(α)

0;a}
κ(α)

0
a=1 and Y′ =

⋃
α∈{L,R}

{y(α)
0;b }

y
(α)
0
b=1 , (3.37)

where the parameters satisfy

û(x̂(α)
0;a ) = −2πiTυα

(
h

(α)
0;a + 1

2

)
and û(ŷ(α)

0;b ) = 2πiTυα
(
p

(α)
0;b + 1

2

)
, (3.38)

u(x(α)
0;a ) = −2πiTυα

(
h

(α)
0;a + 1

2

)
and u(y(α)

0;b ) = 2πiTυα
(
p

(α)
0;b + 1

2

)
, (3.39)

with x̂(α)
0;a , ŷ

(α)
0;b , x

(α)
0;a , y

(α)
0;b ∈

⋃
α∈{L,R} DυαQF ,cloc and h(α)

0;a , p
(α)
0;b ∈ N. This means that the quan-

tisation conditions have to be fulfilled also for the “off-shell” problem in a small vicinity of
the Fermi points. In (3.38), resp. (3.39), the particle and hole roots are defined in a way that
the zeros of û(λ), resp. u(λ), are located between the particle and hole roots on the curve
Re û(λ) = 0, resp. Reu(λ) = 0. The definition of particle and hole roots depends on the
choice of the integration contour, as elaborated in Section 2.2. We have defined particles as
Bethe roots outside our reference contour and holes as zeros of 1+e− 1

T
û, resp. 1+e− 1

T
u, that

are not Bethe roots inside our reference contour. However, the definitions (3.38), resp. (3.39),
do not necessarily match with the definition of particle and hole roots with respect to Cref .
As shown in Figure 3.5, there may be roots located between Cref and the line Im û(λ) = 0,
resp. Im u(λ) = 0, and we have to adapt the sets X̂′ and Ŷ′ to sets X̂′ref , Ŷ′ref , resp. X′, Y′ to
X′ref , Y′ref , such that they match the definition of particles and holes with respect to Cref .

The definition of particles and holes in (3.38), resp. (3.39), separated by the zero of û,
resp. u, offers a more intuitive approach to the particle and hole formulation, although the
technical modifications might seem more complicated at first glance. In the further analysis,
and also in the proof of Theorem 3.3 and Theorem 3.4 in [15], we modify the integration
contour such that it passes through the zeros of û, resp. u. Since the quantisation conditions
hold in the vicinity of the Fermi points, we can control the residual contributions arising due
to the deformation.

Theoretically, it would also be possible to define the particle and hole roots in a way that
they are separated by the solutions of û(λ) = 2πiTp±, such that they match the definition
of particle and hole roots with respect to Cref without further modifications. However, this
formulation leads to more complicated expressions and technical problems later on.
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Chapter 3. Solvability of the non-linear problem

We define

X̂ = Y⊕ Ŷ′ ⊕ Ysg 	 X	 X̂′ and X = Y⊕ Y′ ⊕ Ysg 	 X	 X′ (3.40)

as well as the function

u1(λ|X) = −iπsZc(λ)− 2πi
∑
y∈X

φc(λ, y) . (3.41)

Now, we can introduce the proper space of functions for the analysis to come,

ÊM = {û(λ) =WN (λ) + Tu1(λ|X̂) + f(λ)|f ∈ EM} (3.42)

for finite Trotter number and

ẼM = {u(λ) = ε0(λ) + Tu1(λ|X) + f(λ)|f ∈ EM} (3.43)

for infinite Trotter number.

Given any û ∈ ÊM , we denote the set of zeros of 1 + e− 1
T
û(λ) that are located in DυαQF ,cloc

between Cref and the line where Im û(λ) = 0 by Ẑ(α). For each α ∈ {L,R}, either Ẑ(α)∩ X̂′ = ∅
or Ẑ(α) ∩ Ŷ′ = ∅. So we introduce the sets of non-trivial intersections

ẐX =
⋃

α∈{L,R}
{z ∈ Ẑ(α)|Ẑ(α) ∩ X̂′ 6= ∅} and ẐY =

⋃
α∈{L,R}

{z ∈ Ẑ(α)|Ẑ(α) ∩ Ŷ′ 6= ∅} . (3.44)

Then, we define modified sets of local zeros around ±QF by

X̂′ref =
{

X̂′ \ ẐX

}
∪
{
ẐY \ Ŷ′

}
and Ŷ′ref =

{
Ŷ′ \ ẐY

}
∪
{
ẐX \ X̂′

}
(3.45)

and analogously, omitting the hat, for the infinite Trotter number case. Finally, we introduce

X̂ref = Y⊕ Ŷ′ref ⊕ Ysg 	 X	 X̂′ref and Xref = Y⊕ Y′ref ⊕ Ysg 	 X	 X′ref (3.46)

and the notation

X̂ref;κ = X̂ref ⊕ {κ}⊕m and Xref;κ = Xref ⊕ {κ}⊕m . (3.47)

Theorem 3.3. Existence and uniqueness of solutions to the non-linear integral equation [15].
Let X and Y as defined in (3.28), (3.29) with |X| and |Y| fixed satisfy Hypothesis 3.1. Let
p

(α)
0;a , h

(α)
0;a ∈ N such that

Tp
(α)
0;a = o(1) , a = 1, . . . , y(α)

0 and Th
(α)
0;a = o(1) , a = 1, . . . ,κ(α)

0 (3.48)

with y
(α)
0 , κ(α)

0 fixed such that

0 = −s− |Y| − y
(L)
0 − y

(R)
0 − |Ysg|+ |X|+ κ(L)

0 + κ(R)
0 , (3.49)

where s ∈ Z is the spin. Then there exist T0 > 0 small enough, η > 0 small enough and
C

(0)
M

> 0 large enough such that the space ÊM introduced in (3.42) is well-defined, provided
that

T0 > T > 0 , η >
1

NT 4 and CM > C
(0)
M
. (3.50)
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QF

ŷ(R)
0;1

x̂(R)
0;1

x̂(R)
0;2

x̂(R)
0;3

x̂(R)
0;4

Im û(λ) = 0

DQF ,cloc

Cref

−QF

ŷ(L)
0;4

ŷ(L)
0;3

ŷ(L)
0;2

ŷ(L)
0;1

x̂(L)
0;1 Im û(λ) = 0

D−QF ,cloc

Cref

Figure 3.5: A sketched example of parameter sets X̂′ and Ŷ′. The shaded parameters are
between the line where Im û(λ) = 0 and Cref and thus have to be removed from X̂′ and Ŷ′ to
obtain X̂ref and Ŷref .

In particular, the system of equations (3.38) is uniquely solvable for any given û ∈ ÊM. For
this range of parameters, the non-linear integral equation

û(λ) = wN (λ)− iπsT − iT
∑

y∈X̂ref;κ

θ+(λ− y)− T
�

Cref

dµK(λ− µ) LnCref (1 + e−
1
T
û)(µ)

(3.51)

subject to the index condition

m = −
�

Cref

dµ
2πiT

û′(µ)
1 + e 1

T
û(µ)

= −s− |Y| − |Ŷ′ref | − |Ysg|+ |X|+ |X̂
′
ref | , (3.52)

is well-defined on ÊM and admits a unique solution λ 7→ û(λ|X̂) belonging to ÊM. X̂ref;κ
appearing in (3.51) is as introduced in (3.46) and (3.47) while X̂ has been defined in (3.40).

For λ uniformly away from ±iγ/2, the unique solution û(λ|X̂) converges, as N →∞, to
the unique solution u(λ|X) of the non-linear integral equation

u(λ) = ε0(λ)− iπsT − iT
∑

y∈Xref;κ

θ+(λ− y)− T
�

Cref

dµK(λ− µ) LnCref (1 + e−
1
T
u)(µ) ,

(3.53)

subject to the index condition

m = −
�

Cref

dµ
2πiT

u′(µ)
1 + e 1

T
u(µ)

= −s− |Y| − |Y′ref | − |Ysg|+ |X|+ |X′ref | , (3.54)

on the space of functions ẼM, as defined in (3.43), on which it is well-defined for the range
of parameters considered. Xref appearing in (3.53) has been introduced in (3.46) and (3.47),
X has been defined in (3.40).

Proof. The proof is given in section 4 and 5 in [15].

Theorem 3.3 provides the existence of a unique solution to the off-shell non-linear problem
for temperatures low enough. Throughout the proof, one uses the properties of the dressed
energy proven in Chapter 5, in particular that it is a double covering map for 0 < γ ≤ π

2
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Chapter 3. Solvability of the non-linear problem

(Proposition 5.9). This is one of the technical results missing for a generalisation of Theo-
rem 3.3 to the full massless regime 0 < γ < π.

Next, we formulate a theorem about the unique solvability of the on-shell non-linear
problem. Define the sets satisfying the “higher level” Bethe Ansatz equations by

X̂ = X⊕ X̂′ref with 1 + e−
1
T
û(x|Ŷ) = 0 and û′(x|Ŷ) 6= 0 ∀x ∈ X̂ , (3.55)

Ŷ = Y⊕ Ŷ′ref with 1 + e−
1
T
û(y|Ŷ) = 0 and û′(y|Ŷ) 6= 0 ∀y ∈ Ŷ , (3.56)

where

Ŷ = Ŷ ⊕ Ŷsg 	 X̂ with Ŷsg =
{
y ∈ Int Cref

∣∣∣y + iγ ∈ Ŷ
}
. (3.57)

X̂ and Ŷ shall satisfy Hypothesis 3.1 and Hypothesis 3.2, û(λ|Ŷ) is the unique solution to
(3.51) and (3.52) on the space ÊM . Analogously, define the infinite Trotter number counter-
parts of the hole and particle sets X and Y satisfying the higher level Bethe Ansatz equations
with respect to the solution of the non-linear integral problem (3.53) and (3.54) in the infinite
Trotter number case by omitting the hat in the equations above. There exists T0 > 0, η > 0
small enough such that for any 0 < T < T0 and η > 1/NT 4

x̂a = xa + O
( 1
NT 3

)
for X = {xa}|X|a=1 and X̂ = {x̂a}|X̂|a=1 (3.58)

and

ŷa = ya + O
( 1
NT 3

)
for Y = {ya}|Y|a=1 and Ŷ = {ŷa}|Ŷ|a=1 (3.59)

with a remainder uniform in T . This follows from Corollary 4.5. In order to consider the
unique solvability of the on-shell non-linear problem, we rewrite the quantisation conditions
in logarithmic form

û(x̂(L)
a |Ŷ) = 2πiT (h(L)

a + 1
2) and û(ŷ(L)

a |Ŷ) = −2πiT (p(L)
a + 1

2) , (3.60)
û(x̂(R)

a |Ŷ) = −2πiT (h(R)
a + 1

2) and û(ŷ(R)
a |Ŷ) = 2πiT (p(R)

a + 1
2) , (3.61)

with h(α)
a , p

(α)
a ∈ N. Again, the equations for the infinite Trotter number case are obtained

by omitting the hats.

Theorem 3.4. Unique solvability of the quantisation conditions [15].

(i) Assume s ∈ Z, fixed integers |X̂(α)|, |Ŷ(α)| with α ∈ {L,R} such that

s + |Ŷ(L)|+ |Ŷ(R)| − |X̂(L)| − |X̂(R)| = 0 (3.62)

and pairwise distinct integers

0 ≤ h(α)
1 < . . . < h

(α)
|X̂(α)| , 0 ≤ p(α)

1 < . . . < p
(α)
|Ŷ(α)|

(3.63)

that may possibly depend on T such that Th(α)
a and Tp(α)

a admit a limit for T → 0+.
Then, there exist T0 > 0, η > 0 small enough such that for any 0 < T < T0 and η >
1/NT 4 there exists a unique solution (û(λ|Ŷ), X̂, Ŷ) to the non-linear problem (3.51)
and (3.52) with quantisation conditions (3.60) and (3.61) which satisfies Hypothesis 3.1
and Hypothesis 3.2.

26



3.3. Existence and uniqueness of solutions to the non-linear problem

(ii) Any such solution gives rise to a non-zero Bethe eigenstate of the quantum transfer
matrix.

(iii) Solutions of the non-linear problem subordinate to different choices of integers {h(α)
a }|X

(α)|
a=1 ,

{p(α)
a }|Y

(α)|
a=1 are different.

(iv) An analogous statement holds for the infinite Trotter number case.

Proof. The proof is given in [15], in particular (i) and (iii) are given in Theorem 6.5 in [15]
and (ii) in Proposition 7.2 in [15].
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4 The non-linear integral equation
for low temperatures

In this chapter, we want to bring the non-linear integral equations for finite (3.51) and infinite
(3.53) Trotter number into a form that is more suitable for the low-T analysis. This form
is also the basis for the proof of the solvability theorem, Theorem 3.3. In order to do so,
we first deform the contour Cref to a contour that is more convenient for the low-T analysis
and rewrite the non-linear integral equation in terms of the new contour. This enables us to
derive the low-temperature expansion of the solution to the non-linear integral equation.

4.1 A contour with better properties

We may rewrite the integrals appearing in the non-linear integral equations (3.51), (3.53) by
partial integration,

−imθ(λ− κ)−
�

Cref

dµK(λ− µ) LnCref (1 + e−
1
T
u)(µ) =

�
Cref

dµ
2πiT θ(λ− µ) u′(µ)

1 + e 1
T
u(µ)

.

(4.1)

We want to slightly deform the contour Cref to Cu, a contour adapted to u satisfying Proper-
ties 4.1. In particular, we want to deform the contour Cref in the vicinity of the Fermi points,
such that the deformed contour has the desired property of passing through the zeros of u.

Properties 4.1. Properties of the deformed contour Cu [15].

(i) Cu passes through two zeros q(±)
u of 1 − e− 1

T
u which satisfy u(q(±)

u ) = 0 and these are
the only two zeros of 1− e− 1

T
u on Cu. These zeros are such that ±Reu′(q(±)

u ) > c > 0
for some c > 0 uniformly in T, 1/N small enough.

(ii) u ∈ O(V±QF ), where V±QF is an open neighbourhood of ±QF containing D±QF ,ε for
some ε > 0 independent of T and N and such that u : V±QF → D0,% with % > 0 and
independent of T and N , is a biholomorphism.

(iii) There exists J (±)
δ ⊂ Cu such that u(J (−)

δ ) = [−δ, δ] and u(J (+)
δ ) = [δ,−δ] for some

δ > 0, which may depend on T but such that δ > −TM lnT as T → 0+. [a, b] denotes
the oriented segment run along Cu from a to b.

(iv) The complementary set Jδ = Cu\{J (−)
δ ∪J (+)

δ } is such that |Reu(λ)| > δ
2 for all λ ∈ Jδ.

(v) 1 + e− 1
T
u has no poles in the bounded domain Uu such that ∂Uu = Cref − Cu.
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QF Cref

Cuq
(+)
u

x
(R)
1

x
(R)
2

−QF Cref

Cu

q
(−)
u

x
(L)
2

x
(L)
1

τRτL

Figure 4.1: Sketch of the zeros q(±)
u of u crossed when deforming Cref to Cu. x(α)

k are defined
by u(x(α)

k ) = 2πiT (k − 1
2) with k ∈ {1, 2} such that pL = pR = 2.

(vi) The zeros of 1 + e− 1
T
u in the bounded domain Uu correspond to the unique solutions

x
(α)
k in VυαQF to the equation u(x(α)

k ) = 2πiT (k − 1
2) where k ∈ I(α)

u ⊂ Z, α ∈ {L,R}
and |I(α)

u | is bounded uniformly in T and 1/N small enough.

(vii) There exist unique τα ∈ Cref , τα ∈ VυαQF with α ∈ {L,R} such that

u(τα) = 2πiT (pα − 1
2 + εα) with pα ∈ Z , εα ∈ [0, 1) (4.2)

and pα uniformly bounded in T , 1/N small enough.

Thus, on Cu the function u has only two zeros q(±)
u , that separate the contour into a part

where Reu is negative and where Reu is positive. Depending on pα, we may explicitly give
the set I(α)

u by

I(α)
u =


J1, pαK if pa > 0 ,
∅ if pα = 0 ,
J1 + pα, 0K if pα < 0 ,

(4.3)

where Ja, bK denotes an interval of integers. By the implicit function theorem and since u is
biholomorphic in V±QF we reason that a simply connected curve Reu(λ) = 0 exists in V±QF .
On this curve, the solutions of u(λ) = 2πiT (k − 1

2) are located. By using ±Reu′(q(±)
u ) >

c > 0 and the Cauchy Riemann equations we conclude, that the imaginary part Im u(λ)
is monotonically increasing counterclockwise along the curve Reu(λ) = 0 in V±QF . When
deforming Cref to Cu we add or subtract pole contributions depending on α = R or α = L
and pα > 0 or pα < 0,

�
Cref

dµ
2πiT f(µ) u′(µ)

1 + e 1
T
u(µ)

=
�

Cu

dµ
2πiT f(µ) u′(µ)

1 + e 1
T
u(µ)

−
∑

α∈{L,R}
υα

1pα∈N?
pα∑
a=1

f(x(α)
a )− 1pα∈−N?

0∑
a=1+pα

f(x(α)
a )

 , (4.4)

where 1A is 1 if A is true and 0 otherwise.
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JinJout

q
(+)
u

J
(+)
δ

q
(−)
u

J
(−)
δ

Cu

Figure 4.2: A sketch of the deformed contour Cu. Jin denotes the part of Cu running from
q

(+)
u to q(−)

u , Jout denotes the complement running from q
(−)
u to q(+)

u .

Lemma 4.2. [15] Let u(λ) satisfy Properties 4.1. Then 1 + e− 1
T
u(λ) has index m = 0

relatively to Cu, i.e.

−
�

Cu

dµ
2πiT

u′(µ)
1 + e 1

T
u(µ)

= 0 . (4.5)

Proof. As depicted in Figure 4.2, denote the part of Cu joining q(+)
u to q(−)

u and on which
Reu is negative by Jin. The complement is denoted by Jout = Cu \Jin. Then, we can rewrite

−
�

Cu

dµ
2πiT

u′(µ)
1 + e 1

T
u(µ)

= −
�
Jin

dµ
2πiT u′(µ) +

�
Jin

dµ
2πiT

u′(µ)
1 + e− 1

T
u(µ)
−
�
Jout

dµ
2πiT

u′(µ)
1 + e 1

T
u(µ)

.

(4.6)

We want to evaluate the integrals separately. Start with

−
�
Jin

dµ
2πiT u′(µ) = 1

2πiT
(
u(q(+)

u )− u(q(−)
u )

)
= 0 (4.7)

where Properties 4.1 (i), namely u(q(±)
u ) = 0, is used for the second equality. Next,

�
Jin

dµ
2πiT

u′(µ)
1 + e− 1

T
u(µ)

= 1
2πi ln

(
1 + e

1
T
u(µ)

)∣∣∣∣q
(−)
u

q
(+)
u

= 0 (4.8)

where the antiderivative can be taken in terms of the principal branch of the logarithm due
to Reu(µ) < 0 for µ ∈ Jin. Similarly, one obtains

−
�
Jout

dµ
2πiT

u′(µ)
1 + e 1

T
u(µ)

= 1
2πi ln

(
1 + e

1
T
u(µ)

)∣∣∣∣q
(+)
u

q
(−)
u

= 0 , (4.9)

which entails the claim.

4.2 An equivalent non-linear integral equation

Introduce the notation

|u|(λ) = sign(Reu(λ))u(λ) . (4.10)
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Chapter 4. The non-linear integral equation for low temperatures

Lemma 4.3. [15] Let f be a holomorphic function in an open neighbourhood of Cu and have
zero index with respect to Cu such that

�
Cu

dµ f(µ) = 0 with F being the antiderivative of f
on Cu. Then, for any (u(λ),Cu) satisfying Properties 4.1 and having index m with respect to
Cref it holds that

− 2πimF (κ) +
�

Cref

dµ f(µ) LnCref (1 + e−
1
T
u)(µ) =

�
Cu

dµ f(µ) LnCu(1 + e−
1
T
u)(µ)

− 2πi
∑

α∈{L,R}
υα

1pα∈N?
pα∑
a=1

F (x(α)
a )− 1pα∈−N?

0∑
a=1+pα

F (x(α)
a )

 , (4.11)

where
�

Cu

dµ f(µ) LnCu(1 + e−
1
T
u)(µ) =

�
C−QF ;QF

dµ
T
f(µ) +

� q
(+)
u

QF

dµ
T
f(µ)u(µ)

+
� −QF
q

(−)
u

dµ
T
f(µ)u(µ) +

�
Cu

dµ f(µ) ln
(
1 + e−

1
T
|u|(µ)

)
. (4.12)

C−QF ;QF denotes any curve joining −QF to QF such that µ 7→ f(µ)u(µ) is holomorphic in
the domain delimited by the curve Jin and [q(−)

u ,−QF ] ∪ C−QF ;QF ∪ [QF , q(+)
u ].

Furthermore, it holds that
�

Cu

dµ f(µ) ln
(
1 + e−

1
T
|u|(µ)

)
= −π

2T

6

(
f(q(+)

u )
u′(q(+)

u )
− f(q(−)

u )
u′(q(−)

u )

)
+ O(T 3) . (4.13)

Proof. First, observe that by using the index condition (3.54) and backwards partial integra-
tion one gets

−2πimF (κ) +
�

Cref

dµ f(µ) LnCref (1 + e−
1
T
u)(µ) =

�
Cref

dµ
T
F (µ) u′(µ)

1 + e 1
T
u(µ)

=
�

Cu

dµ
2πiT F (µ) u′(µ)

1 + e 1
T
u(µ)

− 2πi
∑

α∈{L,R}
υα

1pα∈N?
pα∑
a=1

F (x(α)
a )− 1pα∈−N?

0∑
a=1+pα

F (x(α)
a )

 , (4.14)

where the second equality stems from (4.4). Similarly to the first equality one obtains by
partial integration and by using the zero index condition with respect to Cu, as ensured by
Lemma 4.2, �

Cu

dµ
T
F (µ) u′(µ)

1 + e 1
T
u(µ)

=
�

Cu

dµ f(µ) LnCu(1 + e−
1
T
u)(µ) . (4.15)

Similarly to (4.6), we split the contour Cu into Jin and Jout,�
Cu

dµ
T
F (µ) u′(µ)

1 + e 1
T
u(µ)

=
�
Jin

dµ
T
F (µ)u′(µ)−

�
Jin

dµ
T
F (µ) u′(µ)

1 + e− 1
T
u(µ)

+
�
Jout

dµ
T
F (µ) u′(µ)

1 + e 1
T
u(µ)

= −
�
Jin

dµ
T
f(µ)u(µ) +

�
Jin

dµ f(µ) ln
(
1 + e

1
T
u(µ)

)
+
�
Jout

dµ f(µ) ln
(
1 + e−

1
T
u(µ)

)
,

(4.16)

32
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where the latter equality is obtained by partial integration. The boundary terms arising from
the partial integration vanish due to the condition u(q(±)

u ) = 0. Recall that Reu(λ) < 0 on
Jin and that µ 7→ f(µ)u(µ) is holomorphic in the domain limited by Jin and [q(−)

u ,−QF ] ∪
C−QF ;QF ∪ [QF , q(+)

u ], one obtains (4.12).
In order to prove the second part of the lemma, we make use of Properties 4.1 (iii) and (iv)
and decompose

�
Cu

dµ f(µ) ln
(
1 + e−

1
T
|u|(µ)

)
= Iex + I

(+)
in + I

(−)
in . (4.17)

Due to the estimates of f and u one may estimate

Iex =
�
Jδ

dµ f(µ) ln
(
1 + e−

1
T
|u|(µ)

)
= O(T

M
2 ) . (4.18)

To estimate Iin, one performs a local change of variables z = u(λ) around q(±)
u , and gets

I
(±)
in =

�
J

(±)
δ

dµ f(µ) ln
(
1 + e−

1
T
|u|(µ)

)
= −

� ±δ
∓δ

dν f
u′
◦ u−1
± (ν) ln

(
1 + e−

|ν|
T

)
, (4.19)

where we have taken the change of orientation induced by u around q
(−)
u into account and

u−1
± denotes the local inverse around q(±)

u which exists due to Properties 4.1 (ii). Applying
Lemma A.2, one obtains

I
(±)
in = ∓π

2T

6
f(q(±)

u )
u′(q(±)

u )
+ O(T 3) , (4.20)

which entails the claim.

Lemma 4.3 ensures, that the non-linear integral equation (3.51) may be recast as

û(λ|X̂) = wN (λ)− iπsT − iT
∑
y∈X̂

θ+(λ− y)− T
�

Cû

dµK(λ− µ) LnCû(1 + e−
1
T
û)(µ|X̂)

(4.21)

subject the index condition, comp. Lemma 4.2,

m = −
�

Cû

dµ
2πiT

û′(µ)
1 + e 1

T
û(µ)

= −s− |Y| − |Ŷ′| − |Ysg|+ |X|+ |X̂
′| = 0 (4.22)

with X̂ = Y⊕ Ŷ′⊕Ysg	X	 X̂′ as defined in (3.40), where X̂′, Ŷ′ can be also set in terms of X̂ref ,
Ŷref and the solutions x̂

(α)
k ∈ VυαQF , VυαQF being a small neighbourhood of υαQF , solving

û(λ|X̂) = 2πiT (k − 1
2)

X̂′ =
{ ⋃
α∈{L,R}
υapα<0

{x̂(α)
k }k∈I(α)

û

\ Ŷ′ref

}
∪
{

X̂′ref \
⋃

α∈{L,R}
υαpα>0

{x̂(α)
k }k∈I(α)

û

}
, (4.23)

Ŷ′ =
{ ⋃
α∈{L,R}
υαpα>0

{x̂(α)
k }k∈I(α)

û

\ X̂′ref

}
∪
{

Ŷ′ref \
⋃

α∈{L,R}
υαpα<0

{x̂(α)
k }k∈I(α)

û

}
. (4.24)
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For the Trotter limit one obtains the non-linear integral equation by omitting the hats in
(4.21) and replacing wN by ε0,

u(λ|X) = ε0(λ)− iπsT − iT
∑
y∈X

θ+(λ− y)− T
�

Cu

dµK(λ− µ) LnCu(1 + e−
1
T
u)(µ|X) ,

(4.25)

satisfying

m = −
�

Cu

dµ
2πiT

u′(µ)
1 + e 1

T
u(µ)

= −s− |Y| − |Y′| − |Ysg|+ |X|+ |X′| = 0 . (4.26)

As above, X = Y ⊕ Y′ ⊕ Ysg 	 X 	 X′ according to (3.40), and X′, Y′ are defined as in (4.23),
(4.24) with the replacements X̂′ref ↪→ X′ref , Ŷ′ref ↪→ Y′ref and x̂

(α)
k ↪→ x

(α)
k , x(α)

k being the solutions
to u(λ|X) = 2πiT (k − 1

2) in a small neighbourhood of υαQF .

4.3 The low-temperature expansion of the auxiliary function

After recasting the non-linear integral equation for û(λ|X̂) in (4.21), we are in the position
to determine the low-T , large N asymptotic expansion of its solution.

Proposition 4.4. Rewriting the non-linear integral equation as a starting point for the low-T ,
large-N asymptotic expansion of its solution [15].

(i) Every solution û(λ|X̂) to the non-linear problem (3.51) and (3.52) satisfying Proper-
ties 4.1 solves the non-linear integral equation

û(λ|X̂) =WN (λ) + Tu1(λ|X̂) + R̂T [û(∗|X̂)](λ) . (4.27)

whereWN is given in (3.18) and u1 is defined in (3.41). The operator R̂T decomposes
as R̂T = R̂(1)

T + R̂(2)
T with

R̂
(1)
T [û(∗|X̂)](λ) = −

� q
(+)
û

QF

dµRc(λ, µ)û(µ|X̂)−
� −QF
q

(−)
û

dµRc(λ, µ)û(µ|X̂) (4.28)

and

R̂
(2)
T [û(∗|X̂)](λ) = −T

�
Cû

dµRc(λ, µ) ln
(
1 + e−

1
T
|û|(µ|X)

)
. (4.29)

Rc(λ, µ) is the resolvent kernel defined in (3.17).

(ii) Conversely, any solution to (4.27) subject to (3.52) and satisfying Properties 4.1 solves
the non-linear integral equation (3.51) with the range of parameters X̂ref as defined in
(3.46).

(iii) The same statements hold for any solution u(λ|X) to the non-linear problem for infinite
Trotter number (3.53) and (3.54) when Properties 4.1 are satisfied, if one replaces
WN ↪→ εc, with εc as defined in (3.13).
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Proof. Use (4.12), where the contour C−QF ,QF is identified with the contour Ĉε to transform
the non-linear integral equation (4.21). One obtains

(id + K̂Ĉε
)[û(∗|X̂)](λ) = wN (λ)− iπT s− iT

∑
y∈X̂

θ+(λ− y) +KT [û(∗|X̂)](λ) , (4.30)

where

(id + K̂Ĉε
)[f(∗)](λ) = f(λ) +

�
Ĉε

dµK(λ− µ)f(µ) (4.31)

and the operator KT decomposes as KT = K (1)
T +K (2)

T with

K
(1)
T [û(∗|X̂)](λ) = −

� q
(+)
û

QF

dµK(λ− µ)û(µ|X̂)−
� −QF
q

(−)
û

dµK(λ− µ)û(µ|X̂) (4.32)

and

K̂
(2)
T [û(∗|X̂)](λ) = −T

�
Cû

dµK(λ− µ) ln
(
1 + e−

1
T
|û|(µ|X)

)
. (4.33)

Set

û1(λ|X̂) = −iπsẐc(λ)− 2πi
∑
y∈X̂

φ̂c(λ, y) (4.34)

where Ẑc, φ̂c are defined by (3.14), (3.15) with the replacement Cε ↪→ Ĉε. By inverting
id + K̂Ĉε

, one can rewrite (4.30) as

û(λ|X̂) =WN (λ) + T û1(λ|X̂)−
� q

(+)
û

QF

dµ R̂c(λ, µ)û(µ|X̂)−
� −QF
q

(−)
û

dµ R̂c(λ, µ)û(µ|X̂)

− T
�

Cû

dµ R̂c(λ, µ) ln
(
1 + e−

1
T
|û|(µ|X)

)
(4.35)

with R̂c(λ, µ) being the resolvent with respect to the integration contour Ĉε. The operator
id−R̂c inverts id +K̂Ĉε

. This is discussed in detail in Section 5.1. One may deform the
contour Ĉε to Cε in the action of the inverse id− R̂c in all functions exceptWN , leading to
the replacements û1(λ|X̂) ↪→ u1(λ|X) and R̂c(λ, µ) ↪→ Rc(λ, µ), which entails the claims for
û(λ|X̂).
The proof is analogous for u(λ|X) with the exception that one may directly deform C−QF ,QF
to Cε as there are no cuts along [− iγ

2 + hR
2NT ,−

iγ
2 −

hR
2NT ] of ε0(λ), as opposed to wN .

Corollary 4.5. Low-T , small-1/NT 3 asymptotic expansion of the solution to the non-linear
integral equation [15]. Any solution to the non-linear problem (3.51) and (3.52) satisfying
Properties 4.1 admits the low-T , small-1/(NT 3) asymptotic expansion

û(λ|X̂) = εc(λ) +
bM/2c−1∑
k=1

T kuk(λ|X̂) + O
( 1
NT 3 + T bM/2c

)
(4.36)
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with M as introduced in Properties 4.1 (iii), u1 as defined by (3.41) and

u2(λ|X̂) =
∑
σ=±

σ
Rc(λ, σQF )
2ε′c(σQF )

((
u1(σQF |X̂)

)2
+ π2

3

)
. (4.37)

The zeros q(±)
û admit the expansion

q
(σ)
û = σQF +

bM/2c−1∑
k=1

q
(σ)
k T k + O

( 1
NT 3 + T bM/2c

)
(4.38)

with

q
(σ)
1 = −u1(σQF |X̂)

ε′c(σQF ) . (4.39)

Similarly, any solution u(λ|X) for the infinite Trotter number problem (3.53) and (3.54)
admits the low-T expansion

u(λ|X) = εc(λ) +
bM/2c−1∑
k=1

T kuk(λ|X) + O
(
T bM/2c

)
(4.40)

and the zeros expand as

q(σ)
u = σQF +

bM/2c−1∑
k=1

q
(σ)
k T k + O

(
T bM/2c

)
with q

(σ)
1 = −u1(σQF |X)

ε′c(σQF ) . (4.41)

Moreover, uniformly away from the cuts and singularities of the functions, particularly
on Cref , it holds for the low-T and large-NT expansions that

û(λ|X̂) = u(λ|X̂) + O
( 1
NT 3

)
(4.42)

with a remainder that is uniform in T → 0+ and NT →∞.

Proof. We use (4.27) to access the first few terms of the low-T expansion for û(λ|X̂),

R̂
(1)
T [û(∗|X̂)](λ) = −Rc(λ, q(+)

û )û′(q(+)
û |X̂)

� q
(+)
û

QF

dµ (µ− q(+)
û ) + O

(
(QF − q(+)

û )3
)

−Rc(λ, q(−)
û )û′(q(−)

û |X̂)
� −QF
q

(−)
û

dµ (µ− q(−)
û ) + O

(
(QF + q

(−)
û )3

)
= 1

2(QF − q(+)
û )2Rc(λ, q(+)

û )û′(q(+)
û |X̂)− 1

2(QF + q
(−)
û )2Rc(λ, q(−)

û )û′(q(−)
û |X̂)

+ O
(∑
σ=±
|QF − σq(σ)

û |
3
)

(4.43)

and

R̂
(2)
T [û(∗|X̂)](λ) = π2T 2

6
∑
σ=±

σ
Rc(λ, q(σ)

û )
û′(q(σ)

û )
+ O(T 4) . (4.44)
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Altogether

R̂T [û(∗|X̂)](λ) = π2T 2

6
∑
σ=±

σ
Rc(λ, q(σ)

û )
û′(q(σ)

û )
+ 1

2
∑
σ=±

σRc(λ, q(σ)
û )û′(q(σ)

û |X̂)(QF − σq(σ)
û )2

+ O
(
T 4 +

∑
σ=±
|QF − σq(σ)

û |
3
)
. (4.45)

So far, we have established that

û(λ|X̂) =WN (λ) + Tu1(λ|X̂) + O
(
T 2 +

∑
σ=±
|QF − σq(σ)

û |
2
)

(4.46)

which, using thatWN (λ) = εc(λ)+O(1/NT ) uniformly away from the singularities at ±iγ/2,
yields

0 = û(q(σ)
û |X̂) = ε′c(σQF )(q(σ)

û − σQF ) + Tu1(σQF |X̂)

+ O
(

1
NT

+ T 2 + T
∑
σ=±
|QF − σq(σ)

û |+
∑
σ=±
|QF − σq(σ)

û |
2
)

(4.47)

from which the expansion for q(σ)
û (4.38) follows. After inserting this into (4.45) one arrives

at the claimed low-T expansion for û(λ|X̂). The O(1/NT 3) loss of precision on Cref in (4.36)
and (4.42) stems from Cref being at distance cdT from the singularity at −iγ/2 such that
WN (λ) = εc(λ) + O(1/NT 3) uniformly on Cû.

For almost all λ ∈ C \
⋃
n∈Z, υ=± Dυiγ/2+iπn,η, η > 0 the analytic continuation of û is

û(λ|X̂) = εc(λ) + Tu1(λ|X̂) + T 2u2(λ|X̂)− T
∑
σ=±

σ ln
(
1 + e−

1
T
û(λ−iσγ|X̂)

)
1λ−iσγ∈Int Cû

+ 2πiT
∑
σ=±

nλ;σ1λ−iσγ∈Int Cû + O
(
T 3 + 1

NT

)
, (4.48)

where nλ;σ ∈ Z may depend on λ and σ.
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5 The dressed energy

In the following chapter, we discuss the properties of the dressed energy introduced in Sec-
tion 3.1 in detail. A dressed energy function was introduced in the context of the Bose gas
with delta function interaction [44]. For the XXZ chain in the critical regime, the dressed
energy in the form (3.2), (3.6) first appeared in the low-temperature limit of the thermo-
dynamic Bethe Ansatz equations in [38]. As we have shown in the previous discussion, the
solution to the non-linear integral equation is given by the dressed energy in leading order in
T and is therefore of utmost importance for the description of the spectrum of the quantum
transfer matrix for low temperatures.

We remind the reader that the definitions for ε in (3.2) and εc in (3.13) differ in the choice
of the integration contour, which is [−QF , QF ] for ε and Cε (3.12) for εc. As we have seen in
Corollary 4.5, the dressed energy describes the auxiliary function u in the lowest order in T .
Since the Bethe roots are zeros of 1 + e− 1

T
u, their positions move close to the solutions of

εc(λ) = 2πiT (n+ 1
2) , (5.1)

i.e. they come close to the curve Re εc(λ) = 0. We will discuss the existence of this curve in full
rigour, starting with Re ε(λ) and later showing that the curves Re ε(λ) = 0 and Re εc(λ) = 0
are equal for 0 < γ < π/2.

We work with the linear integral equations of the form (3.1) as introduced in Section 3.1
and adapt the notation f(λ|Q) for functions satisfying the linear integral equation (3.1) with
arbitrary integration limits Q and f(λ) = f(λ|QF ) if we choose Q = QF , where QF is
the Fermi point as introduced in (3.6). The existence and uniqueness of the Fermi point is
subject of [11]. However, note that the proof in [11] is not complete since it is not valid if
2πJ sin(γ)/γ < h < hc. The complete proof is given in Theorem 5.6.

For an efficient discussion we introduce a slightly different notation for the integration
kernel K in this chapter where its dependence on the parameter γ is explicitly expressed,

K(λ|γ) = 1
2πi (cth(λ− iγ)− cth(λ+ iγ)) . (5.2)

Since K and ε0 are both iπ periodic functions, the dressed energy ε is also iπ periodic and
by construction a meromorphic function on a cylinder with cuts,

Sγ(QF ) =
{
z ∈ C

∣∣∣∣−π2 < Im z ≤ π

2 and z /∈ [−QF , QF ]± iγm
}
, (5.3)

with γm = min(γ, π − γ) as defined in (2.43).

39



Chapter 5. The dressed energy

5.1 Properties of kernel and resolvent

We use the Fourier transform of a function g : C→ C in the convention

F [g](k) =
�
R

dλ g(λ) eikλ . (5.4)

Lemma 5.1. Properties of the kernel function K [14]. Let γ ∈ (0, π).

(i) K(λ|γ) is a smooth, even and real function for λ ∈ R and

lim
λ→∞

K(λ|γ) = 0 . (5.5)

(ii) For all λ ∈ R, K(λ|γ) > 0 if γ ∈ (0, π/2) and K(λ|γ) < 0 if γ ∈ (π/2, π).

(iii) For λ ∈ R+, K(λ|γ) is monotonically decreasing if γ ∈ (0, π/2) and monotonically
increasing if γ ∈ (π/2, π).

(iv) K(λ|γ) is meromorphic on Sγ(Q) with two simple poles at λ = ±iγ if γ ∈ (0, π/2) or
λ = ±i(π − γ) if γ ∈ (π/2, π).

(v) For x, y ∈ R it holds that

ReK(x+ iy|γ) = 1
2 (K(x|γ − y) +K(x|γ + y)) , (5.6)

implying that ReK(x+ iy|γ) is an even function of x for fixed y and an even function
of y for fixed x as well as

lim
x→∞

ReK(x+ iy|γ) = 0 . (5.7)

(vi) The kernel satisfies the following simple identities

K(λ+ iπ
2 |γ) = −K(λ|π2 − γ) , (5.8a)

K(λ|γ) = K(λ|γ − π) , (5.8b)
K(λ| − γ) = −K(λ|γ) . (5.8c)

(vii) The Fourier transform of the kernel is

F [K(∗|γ)](k) =
sh(k(π2 − γ))

sh(kπ2 )
. (5.9)

Proof. (i), (ii) and (iii) can be quickly verified if we rewrite the kernel in the form

K(λ|γ) = sin(2γ)
2π(sh2(λ) + sin2(γ))

, (5.10)

while (iv) can be read of from definition (5.2). Under complex conjugation it holds that

K(x+ iy|γ) = K(x− iy|γ) , (5.11)
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which implies

ReK(x+ iy|γ) = 1
2 (K(x+ iy|γ) +K(x− iy|γ)) = 1

2 (K(x|γ − y) +K(x|γ + y)) , (5.12)

where we again used definition (5.2) of the kernel in the last step. (5.7) then follows from
(5.6) and (5.5). The identities (vi) are directly verified with definition (5.2). The Fourier
transform (vii) is calculated using the iπ-periodicity of the kernel and the residue theorem,
compare with Lemma A.1.

Note, that if γ = π/2 (⇒ ∆ = 0), the kernel becomes K(λ|π/2) = 0, so the dressed
quantities are equal to the bare ones. For this case, the spin chain can be mapped to free
Fermions by a Jordan Wigner transformation and ∆ = 0 is thus called the “free Fermion
point” of the model.

Define the integral operator K̂ : C0([−Q,Q]) → C0([−Q,Q]) with integration kernel
K(·|γ) by

K̂f(λ) =
� Q

−Q
dµK(λ− µ|γ)f(µ) . (5.13)

The resolvent RQ(λ, µ) is defined as the kernel of the integral operator id−R̂Q, which is the
inverse operator to id +K̂ acting on C0([−Q,Q]). The invertibility of id +K̂ is established in
the following proposition.

Proposition 5.2. Invertibility of id +K̂ [11]. Let γ ∈ (0, π). The integral operator id +K̂ :
C0([−Q,Q])→ C0([−Q,Q]) with the sup-norm ‖f‖∞ = max{|f(λ)| : λ ∈ [−Q,Q]} is invert-
ible and its resolvent RQ(λ, µ) is represented by the Neumann series

RQ(λ, µ)

= K(λ− µ|γ) +
∞∑
n=1

(−1)n
� Q

−Q
dnν K(λ− ν1|γ)

[
n−1∏
m=1

K(νm − νm+1|γ)
]
K(νn − µ|γ) .

(5.14)

Proof. In order to prove the invertibility of id +K̂, we prove the convergence of the Neumann
series

(id +K̂)−1 =
∞∑
n=0

(−K̂)n , (5.15)

which follows from

‖K̂‖ = sup
f∈C0([−Q,Q])

‖K̂f‖∞
‖f‖∞

≤ max
λ∈[−Q,Q]

� Q

−Q
dµ |K(λ− µ|γ)| <

�
R

dµ |K(µ|γ)|

= |F [K(·|γ)](0)| =
∣∣∣∣1− 2γ

π

∣∣∣∣ < 1 . (5.16)

The Neumann series for RQ(λ, µ) follows from id−R̂Q = ∑∞
n=0(−K̂)n.
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Corollary 5.3. Properties of the resolvent kernel RQ for finite Q > 0 [11,14].

(i) RQ(λ, µ) is a meromorphic function of λ on Sγ(Q) with simple poles at λ = µ ± iγ if
γ ∈ (0, π/2) or λ = µ± i(π − γ) if γ ∈ (π/2, π), and a smooth function in Q ∈ (0,∞).

(ii) RQ(λ, µ) is symmetric in (λ, µ) and RQ(λ, µ) = RQ(−λ,−µ).

(iii) The integral operators R̂Q and K̂ commute,
� Q

−Q
dν K(λ− ν|γ)RQ(ν, µ) =

� Q

−Q
dν RQ(λ, ν)K(ν − µ|γ) . (5.17)

Proof. (i) and (ii) follow from the Neumann series (5.14) of RQ and from using the properties
of K from Lemma 5.1 (i) and (iv). The smoothness of RQ in Q ∈ (0,∞) follows, since each
summand of the Neumann series is a smooth function of Q. (iii) follows from the invertibility
of id +K̂. (id +K̂)(id−R̂Q) = id ⇔ id = (id +K̂)−1(id−R̂Q)−1 = (id−R̂Q)(id +K̂) ⇒
K̂R̂Q = R̂QK̂. This implies (5.17).

The relation (id +K̂)(id−R̂Q) = id implies that the resolvent fulfils the integral equation

RQ(λ, µ) +
� Q

−Q
dν K(λ− ν|γ)RQ(ν, µ) = K(λ− µ|γ) . (5.18)

Writing (3.1) as

f0(λ) = (id +K̂)f(λ|Q) (5.19)

and applying (id−R̂) from the left hand side allows us to rewrite the function f(λ|Q) by
means of the resolvent kernel

f(λ|Q) = (id−R̂Q)f0(λ) = f0(λ)−
� Q

−Q
dµRQ(λ, µ)f0(µ) . (5.20)

This implies
� Q

−Q
dµK(λ− µ)f(µ) =

� Q

−Q
dµRQ(λ, µ)f0(µ) . (5.21)

For Q → ∞, the Neumann series (5.14) only depends on the difference λ− µ and (5.18)
becomes

R(λ− µ|γ) +
�
R

dν K(λ− ν|γ)R(ν − µ|γ) = K(λ− µ|γ) . (5.22)

This is a convolution type integral equation which can be solved exactly by Fourier transfor-
mation, as pointed out in Lemma 5.4.

Lemma 5.4. Properties of the resolvent kernel R for Q =∞ [42].

(i) R has the Fourier integral representation

R(λ|γ) =
�
R

dk
2π

sh(k(π2 − γ)) eikλ

2 ch(kγ2 ) sh(k2 (π − γ))
, (5.23)

which is valid for |Imλ| < γ if γ ∈ (0, π/2) and |Imλ| < π − γ if γ ∈ (π/2, π).
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(ii) For γ ∈ (0, 2π/3), R can be written in the representation

R(λ|γ) = π

2γ(π − γ)

�
R

dy
K( y

1−γ/π |γ̃)
ch(πγ (λ− y)) , γ̃ = γ/2

1− γ/π

{
∈ (0, π2 ) , if γ ∈ (0, π2 ) ,
∈ (π2 , π) , if γ ∈ (π2 ,

2π
3 ) ,

(5.24)

which is valid for |Imλ| < γ/2.

(iii) For γ ∈ (0, 2π/3), R is even on R and

lim
λ→∞

R(λ|γ) = 0 . (5.25)

(iv) For γ ∈ (0, π/2), R(λ|γ) > 0 for λ ∈ R and monotonically decreasing on R+.

(v) For γ ∈ (π/2, 2π/3), R(λ|γ) < 0 for λ ∈ R and monotonically increasing on R+.

Proof. (i) follows from Fourier transforming (5.22), applying the convolution theorem, using
the Fourier transformed kernel (5.9) and

1 + F [K](k) =
2 ch(kγ2 ) sh(k2 (π − γ))

sh(kπ2 )
. (5.26)

To prove (ii), we rescale k ↪→ k(1− γ/π) in the integral (5.23) and use the Fourier transfor-
mation

F [g](k) = γπ

π − γ
1

ch( γπk
2(π−γ))

where g(λ) = 1
ch(λ(1− π

γ )) . (5.27)

(iii), (iv) and (v) are a direct consequence of the integral representation (5.24) and the
properties of the kernel K from Lemma 5.1 (ii) and (iii). 1/ ch in the integrand of (5.24)
determines the behaviour of R(λ) together with the sign of K(·|γ̃), where for γ ∈ (0, π/2)⇒
γ̃ ∈ (0, π/2) ⇒ K(λ|γ̃) > 0 for λ ∈ R, and for γ ∈ (π/2, 2π/3) ⇒ γ̃ ∈ (π/2, π) ⇒ K(λ|γ̃) <
0.

Recast the linear integral equation (3.1) as

f0(λ|Q) = f(λ|Q) +
�
R

dµK(λ− µ|γ)f(µ|Q)−
�
R\[−Q,Q]

dµK(λ− µ|γ)f(µ|Q) . (5.28)

Acting with the inverse operator id − R̂ on id + K̂, understood as an integral operator on
C0
b (R), the space of continuous functions on R that are bounded at infinity, we get

f(λ|Q) = f∞(λ) +
�
R\[−Q,Q]

dµR(λ− µ|γ)f(µ|Q) (5.29)

with

f∞(λ) = f0(λ)−
�
R

dµR(λ− µ|γ)f0(µ) . (5.30)

This is sometimes referred to as “change of integration contour trick” [11]. In particular, we
obtain for the resolvent RQ

RQ(λ, µ) = R(λ− µ|γ) +
�
R\[−Q,Q]

dν R(λ− ν|γ)RQ(ν, µ) . (5.31)
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Chapter 5. The dressed energy

Understanding the integral operators R̂ and R̂Q as acting on C0
b (R \ [−Q,Q]), R̂ is the

resolvent of the operator id +R̂Q, so (id−R̂)(id +R̂Q) = id. We get another representation
of f(λ|Q) by means of RQ,

f(λ|Q) = f∞(λ) +
�
R\[−Q,Q]

dµRQ(λ, µ)f∞(µ) . (5.32)

For ε(λ|Q), we find

ε∞(λ) = hπ

2(π − γ) −
2πJ sin(γ)
γ ch(πλγ )

(5.33)

and for ρ(λ|Q)

ρ∞(λ) = 1
2γ ch(πλγ )

. (5.34)

Lemma 5.5. Bounds of the resolvent kernel [11].

(i) The resolvent kernels RQ and R satisfy the following bounds uniformly in (λ, µ) ∈ R2:

RQ(λ, µ) > R(λ− µ|γ) > 0 if γ ∈ (0, π/2) , (5.35)
R(λ− µ|γ) < RQ(λ, µ) < 0 if γ ∈ (π/2, π) . (5.36)

(ii) For λ, µ > 0, it holds that

RQ(λ, µ)−RQ(λ,−µ) > 0 if γ ∈ (0, π/2) , (5.37)
RQ(λ, µ)−RQ(λ,−µ) < 0 if γ ∈ (π/2, π) . (5.38)

Proof. (i) For the bounds in (5.35), note that R(λ−µ|γ) > 0 was already proven in Lemma 5.4
(iv). For the first inequality in (5.35), we use the integral equation (5.31) and, understanding
the integral operator R̂ as acting on C0

b (R \ [−Q,Q]), express RQ in terms of a Neumann
series

RQ(λ, µ) = (id−R̂)−1R(λ− µ|γ) =
∞∑
n=0

R̂nR(λ− µ|γ)

= R(λ− µ|γ) +
∞∑
n=1

�
R\[−Q,Q]

dnν R(λ− ν1|γ)
[
n−1∏
m=1

R(νm − νm+1|γ)
]
R(νn − µ|γ) .

(5.39)

The convergence of the series is proven with the same argument as in (5.16) and using that,
for γ ∈ (0, π/2),

F [R(∗|γ)](0) = 1− π

2(π − γ) < 1 . (5.40)

With R(λ − µ|γ) > 0, it follows that all terms of the Neumann series are positive, which
entails the claim. For (5.36), RQ(λ, µ) < 0 can be read of the Neumann series (5.14). Since
K(λ|γ) < 0 if γ ∈ (π/2, π) (Lemma 5.1 (ii)), this series consists only of negative terms.
Using (5.31) and Lemma 5.4 (v), which gives that R(λ|γ) < 0 if γ ∈ (π/2, π), we obtain
RQ(λ, µ) > R(λ− µ|γ).
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(ii) To prove (5.38), use thatK(λ|γ) < 0 for γ ∈ (π/2, π) and thatK(λ|γ) is monotonically
increasing for λ > 0 (Lemma 5.1 (ii), (iii)) to show that K(λ− µ|γ)−K(λ+ µ|γ) < 0. With
the Neumann series (5.14), we obtain

RQ(λ, µ)−RQ(λ,−µ)

= K(λ− µ|γ)−K(λ+ µ|γ) +
∞∑
n=1

(−1)n
� Q

0
dnν (K(λ− ν1|γ)−K(λ+ ν1|γ))

×
[
n−1∏
m=1

K(νm − νm+1|γ)−K(νm + νm+1|γ)
]

(K(νn − µ|γ)−K(νn + µ|γ)) < 0 .

(5.41)

Similarly, we can prove (5.37) by expressing RQ(λ, µ)−RQ(λ,−µ|γ) in terms of the Neumann
series (5.39) and observing that R(λ − µ|γ) − R(λ + µ|γ) > 0 for γ ∈ (0, π/2), using the
positivity and monotonicity of R(λ) from Lemma 5.4 (iv).

5.2 Existence and uniqueness of the Fermi point

By expressing the bare energy ε0 defined in (2.70) using the notation (5.2) as

ε0(λ) = h− 4πJ sin(γ)K(λ|γ/2) , (5.42)

we can read off the behaviour immediately from the properties of K (Lemma 5.1) which
have been presented in Section 5.1. Since it is symmetric, has a minimum at λ = 0, is
monotonically increasing on R+ and converges to h for λ → ∞, we conclude that it has a
unique and positive zero Q0 in the parameter regime 0 < h < hc. The bare energy and its
positive zero give important bounds in the following theorem.

Theorem 5.6. Existence and uniqueness of the Fermi point [11,14]. Let γ ∈ (0, π).

(i) ε(λ|Q) is a smooth function of (λ,Q) ∈ R × (0,∞) that is even in λ.

(ii) Define

ε̃(λ) = h− 2πJ sin(γ)
γ ch(πλγ )

. (5.43)

Then, for λ ∈ R and γ ∈ (0, π/2), ε(λ|Q) is subject to the bounds

ε0(λ) < ε(λ|Q) for 0 < Q ≤ Q0 , (5.44a)
ε(λ|Q) < ε̃(λ) for Q ≥ 0 . (5.44b)

For λ ∈ R and γ ∈ (π/2, π), ε(λ|Q) satisfies the bounds

ε0(λ) > ε(λ|Q) for 0 < Q ≤ Q0 , (5.45a)
ε(λ|Q) > ε̃(λ) for Q ≥ 0 . (5.45b)

(iii) For any h ∈ (0, hc) there exists a unique solution QF to the equation ε(Q|Q) = 0. This
solution QF is called “Fermi point” or “Fermi rapidity”.
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(iv) For γ ∈ (0, π/2), the Fermi rapidity is bounded by

QF < Q0 (5.46)

and, if a positive zero Q̃ with ε̃(Q̃) = 0 (⇔ h < 2πJ sin(γ)/γ) exists, by

Q̃ < QF . (5.47)

For γ ∈ (π/2, π), a zero Q̃ exists for all h ∈ (0, hc) and QF satisfies the bounds

Q̃ > QF > Q0 . (5.48)

(v) The function h : (0, hc) → R+, h 7→ QF is a smooth and monotonically decreasing
function with limh→0QF =∞ and limh→hc QF = 0 for γ ∈ (0, π).

Proof. (i) The smoothness in Q follows from the smoothness of RQ in Q ∈ (0,∞), proven in
Corollary 5.3 (i). The evenness in λ follows from the evenness of ε0 in λ.

(ii) Let γ ∈ (0, π/2). The lower bound follows from using RQ(λ, µ) > 0 (Lemma 5.5 (i))
(5.20) with f0 = ε0,

ε(λ|Q) = ε0(λ)−
� Q

−Q
dµRQ(λ, µ)ε0(µ) , (5.49)

and ε0(λ) < 0 if λ ∈ (−Q0, Q0) gives, with the restriction 0 < Q ≤ Q0, that ε0(µ) < 0 in
the integral (5.49). This provides the lower bound (5.44a). For the upper bound, we use the
dressed charge (3.7) and the root density (3.10) with arbitrary Q to rewrite

ε(λ|Q) = hZ(λ|Q)− 4πJ sin(γ)ρ(λ|Q) . (5.50)

Using (5.20) and RQ(λ, µ) > 0 again, we get the upper bound for the dressed charge

Z(λ|Q) = 1−
� Q

−Q
dµRQ(λ, µ) < 1 . (5.51)

For the root density we can estimate a lower bound when writing it in the form (5.32),

ρ(λ|Q) = ρ∞(λ) +
�
R\[−Q,Q]

dµRQ(λ, µ)ρ∞(µ) > ρ∞(λ) > 0 , (5.52)

where once again, RQ(λ, µ) > 0 was used and (5.34) ⇒ ρ∞(λ) > 0. Altogether, this yields

ε(λ|Q) < h− 4πJ sin(γ)ρ∞(λ) = ε̃(λ) . (5.53)

Now let γ ∈ (π/2, π). Then, it follows from Lemma 5.5 (i) that RQ(λ, µ) < 0 and with similar
arguments as for γ ∈ (0, π/2) we now get ε0(λ) as upper and ε̃(λ) as lower bound.

(iii) Let γ ∈ (0, π/2). Taking the derivative ∂λε(λ|Q) in the form (5.32), using partial
integration and the evenness of ε(λ|Q) and ε∞(λ), we get

∂λε(λ|Q) = ε′∞(λ) + ε(Q|Q) [R(λ−Q|γ)−R(λ+Q|γ)] +
�
R\[−Q,Q]

dµR(λ− µ|γ)∂µε(µ|Q)

= ε′∞(λ) + ε(Q|Q) [RQ(λ,Q)−RQ(λ,−Q)] +
� ∞
Q

dµ [RQ(λ, µ)−RQ(λ,−µ)] ε′∞(µ) .

(5.54)
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5.2. Existence and uniqueness of the Fermi point

For the derivative ∂Qε(λ|Q) we obtain

∂Qε(λ|Q) = −ε(Q|Q) [RQ(λ,Q) +RQ(λ,−Q)] , (5.55)

which yields
dε(Q|Q)

dQ = −2ε(Q|Q)RQ(Q,−Q) + ε′∞(Q) +
� ∞
Q

dµ [RQ(Q,µ)−RQ(Q,−µ)] ε′∞(µ) .

(5.56)

Because of (5.37) and ε′∞(λ) > 0 for λ > 0, the integral and ε′∞(Q) are positive. Consequently,
every zero of Q 7→ ε(Q|Q) belongs to an open set on which the function is increasing. Since
Q 7→ ε(Q|Q) is a continuous function, it has at most one zero. ε(0|0) = ε0(0) = h − hc
and limQ→∞ ε(Q|Q) = limλ→∞ ε∞(λ) = hπ

2(π−γ) > 0 imply that if and only if 0 < h < hc,
Q 7→ ε(Q|Q) has a unique, positive zero QF .

Let γ ∈ (π/2, π). In a similar way as before, we obtain from ε(λ|Q) in the form (3.1)

∂λε(λ|Q) = ε′0(λ) + ε(Q|Q) [K(λ−Q)−K(λ+Q)]−
� Q

−Q
dµK(λ− µ)∂µε(µ|Q)

= ε′0(λ) + ε(Q|Q) [RQ(λ,Q)−RQ(λ,−Q)]−
� Q

0
dµ [RQ(λ, µ)−RQ(λ,−µ)] ε′0(µ) . (5.57)

For the derivative ∂Qε(λ|Q) we get (5.55), the same result as previously. Combining this
yields

dε(Q|Q)
dQ = −2ε(Q|Q)RQ(Q,−Q) + ε′0(Q)−

� Q

0
dµ [RQ(Q,µ)−RQ(Q,−µ)] ε′0(µ) . (5.58)

Use ε′0(λ) > 0 for λ > 0 and (5.38) which implies that the bracket in the integral is negative
and therefore, again, every zero of Q 7→ ε(Q|Q) belongs to an open set on which the function
is increasing. With similar reasoning as above, we find that Q 7→ ε(Q|Q) has a unique positive
zero QF if and only if 0 < h < hc.

(iv) The bounds follow from the monotonicity of ε̃ and ε0 and (ii).
(v) The smoothness of h 7→ QF follows from the implicit function theorem. The mono-

tonicity follows from implicit differentiation, using (5.50) and (5.54), (5.56) or (5.57), (5.58)
respectively,

dQF
dh = −Z(QF )

ε′(QF ) < 0 , (5.59)

where we used ε′(QF ) > 0, which follows from (5.54), (5.57), and Z(QF ) > 0. For γ ∈
(π/2, π), the latter follows from writing Z in the resolvent form (5.20) and using RQ(λ, µ) < 0,
for γ ∈ (0, π/2) it follows from writing Z in the form (5.32) with Z∞ = π

2(π−γ) > 0 and using
RQ(λ, µ) > 0. For γ ∈ (0, π/2), the limit limh→0QF = ∞ follows from (5.47), the limit
limh→hc QF = 0 from (5.46). For γ ∈ (π/2, π), the limit limh→0QF = ∞ follows from
QF > Q0, (5.48), the limit limh→hc QF = 0 from the integral equation for ε in the form
(5.49). From Lemma 5.5 (i) we know that RQ(λ, µ) < 0 if γ ∈ (π/2, π), and by definition it
holds that ε0(0) = 0 for h = hc. Since ε0(λ) is even and monotonically increasing on λ ∈ R+,
we know that ε0(λ)|h=hc ≥ 0. Therefore we get

ε(λ|Q) = ε0(λ) +
� Q

−Q
dµ |RQ(λ, µ)|ε0(µ) ≤ 0 , (5.60)

and in order to fulfil ε(QF |QF )
∣∣
h=hc = 0 the only possibility is QF = 0.
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Figure 5.1: Exemplary plot of the function QF (h) for J = 1, γ = 1.2 with critical magnetic
field hc ≈ 5.45. It holds that limh→0QF =∞ and limh→hc QF = 0.

5.3 The dressed energy in the complex plane for 0 < ∆ < 1

We proceed to analyse the dressed energy in the complex plane, more precisely on Sγ(QF ).
The analysis for ∆ ∈ (0, 1) (γ ∈ (0, π/2)) is considerably different from the case ∆ ∈ (−1, 0)
(γ(∈ π/2, π)). For ∆ ∈ (0, 1) we obtain a complete picture of the behaviour and properties
of the dressed energy which we prove mathematically rigorously.

Theorem 5.7. The dressed energy in the complex plane [14]. Let γ ∈ (0, π/2).

(i) For all λ ∈ Sγ(QF ), the function λ 7→ Re ε(λ) is even in x = Reλ and y = Imλ.

(ii) For 0 ≤ y < γ/2, the function x 7→ Re ε(x + iy) is monotonically increasing for x > 0
and has, for every y, a single simple zero x(y).

(iii) For y ∈ (0, γ/2), x(y) defines a smooth function which behaves at the boundaries as
x(0) = QF and for y → (γ/2)− as

x(y) ∼
√

2J sin(γ)
c

(
γ

2 − y
)

(5.61a)

with

c = 1
1− γ/π

{
h

2 +
� ∞
QF

dµK
(

µ

1− γ/π

∣∣∣∣γ̃) ε(µ)
}
> 0 and γ̃ = γ/2

(1− γ/π) . (5.61b)

(iv) Within the strip |y| < γ/2, Re ε(λ) is subject to the bounds

Re ε0(λ) < Re ε(λ) < Re ε̃(λ) . (5.62)
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Figure 5.2: The curve Re ε(λ) = 0 for J = 1, γ = 1.3 with various values of the magnetic
field in units of hc ≈ 5.07. As stated in Theorem 5.7, Re ε(λ) = 0 describes a simple closed
curve inside the strip |Imλ| < γ/2 which is symmetric with respect to the real and imaginary
axis. For h close to the critical field, the curve narrows more and more to an hourglass shape,
until at h = hc it forms a cusp which signals the transition to the fully polarized massive
regime.

(v) For λ ∈ Sγ(QF ) with |y| > γ/2, Re ε(λ) is strictly positive with the bounds

Re ε(λ) > h for π

2 −
1
2

(
π

2 − γ
)
< |y| < π

2 , (5.63a)

Re ε(λ) > h

2 for γ < |y| < π

2 −
1
2

(
π

2 − γ
)
, (5.63b)

Re ε(λ) > min
{
h

2 ,
hγ

π − γ

}
for γ

2 < |y| < γ . (5.63c)

(vi) For all λ ∈ Sγ(QF ), the function λ 7→ Im ε(λ) is odd in x = Reλ and y = Imλ.

(vii) Along the curve x(y), Im ε is monotonically increasing,

d Im ε(x(y) + iy)
dy > 0 . (5.64)

At the boundaries, Im ε(x(0)) = 0 and for y → (γ/2)−

Im ε(x(y) + iy) ∼
√

2cJ sin(γ)
γ/2− y . (5.65)

Proof. In the following proof, we will fix λ = x+ iy, x, y ∈ R.
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Figure 5.3: Re ε(x+ iy) for various values of y with J = 1, γ = 1.3, h = 0.4hc ≈ 2.03. The
function x 7→ Re ε(x+ iy) is symmetric in x, monotonically increasing (decreasing) for x > 0
(x < 0) and converges to h for x→ ±∞.

Proof of (i)

The evenness of Re ε(x+ iy) in x and y is follows from the integral equation for ε(λ) in the
form (3.1),

Re ε(x+ iy) = Re ε0(x+ iy)− Re
� QF

−QF
dµK(x+ iy|γ)ε(µ)

= h− 4πJ sin(γ)Re (K(x+ iy|γ))−
� QF

−QF
dµRe (K(x+ iy − µ|γ))ε(µ)

= h− 2πJ sin(γ)(K(x|γ − y) +K(x|γ + y))

− 1
2

� QF

−QF
dµ (K(x− µ|γ − y) +K(x− µ|γ + y))ε(µ) , (5.66)

where in the last step (5.6) was used. Since the kernel K is even in x and ε(µ) is even in
µ ∈ R, the expression above is clearly even.

Proof of (ii)

In order to prove the monotonicity of Re ε(x+ iy), consider the integral equation for ε(λ) in
the resolvent form,

ε(λ) = ε∞(λ) +
�
R\[−QF ,QF ]

dµR(λ− µ|γ)ε(µ) , (5.67)
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with ε∞(λ) as in (5.33). Then, if x > 0 and −γ/2 < y < γ/2, the real part of 1/ ch(πλ/γ),
which appears in Re ε∞(λ) and ReR(λ), is

Re
(

1
ch(πλγ )

)
=

ch(πxγ ) cos
(
πy
γ

)
ch2(πxγ ) cos2(πyγ ) + sh2(πxγ ) sin2(πyγ )

> 0 . (5.68)

Its derivative is

∂xRe
(

1
ch(πλγ )

)
= −π

γ

sh(πxγ ) cos
(
πy
γ

)
(ch2(πxγ ) + sin2(πyγ ))

(ch2(πxγ ) cos2(πyγ ) + sh2(πxγ ) sin2(πyγ ))2 < 0 . (5.69)

We conclude, using K(µ|γ̃) > 0 for µ ∈ R and γ ∈ (0, π/2), that the real part of the resolvent
R(λ) is even, positive and monotonically decreasing for x > 0 and

∂xRe ε∞(λ) = −2πJ sin(γ)
γ

∂xRe
(

1
ch(πλγ )

)
> 0 . (5.70)

Observe, that for x, µ > 0

ReR(λ− µ|γ)− ReR(λ+ µ|γ) > 0 , (5.71)

which follows from the monotonicity of ReR(λ). Altogether, recalling that µ ∈ (QF ,∞) ⇒
ε(µ) > 0, we obtain after partial integration

∂xRe ε(λ) = Re ε′∞(λ) +
� ∞
QF

dµRe [R(λ− µ|γ)−R(λ+ µ|γ)]ε′(µ) > 0 . (5.72)

This proves, that Re ε(x+ iy) is monotonically increasing for x > 0 and y ∈ (−γ/2, γ/2). In
order to show that the function x 7→ Re ε(x + iy) has a zero, we examine its behaviour at
x = 0 and x→∞. For x→∞, consider Re ε(x+ iy) in the form (5.66). Since ε is bounded
on [−QF , QF ], and limx→∞ReK(λ− µ|γ) = 0 for all µ ∈ [−QF , QF ], we conclude

lim
x→∞

Re ε(λ) = lim
x→∞

Re ε0(λ) = h . (5.73)

For the behaviour at x = 0, we compute the second derivative

∂2
xRe ε(λ)

∣∣
x=0 = Re ε′′∞(iy)−

� ∞
QF

dµRe [R′(µ− iy|γ) +R′(µ+ iy|γ)]ε′(µ) . (5.74)

The first term in the integral is negative, since, for µ ∈ (QF ,∞), the resolvent is monotoni-
cally decreasing. The second term is positive since, for µ ∈ (QF ,∞), ε(µ) is monotonically
increasing. For Re ε′′∞(iy) we get the explicit result

Re ε′′∞(iy) = ε′′∞(iy) = 2π3J sin(γ)
γ3

1 + sin2(πyγ )
cos3(πyγ ) > 0 (5.75)

if y ∈ (−γ/2, γ/2).
This yields ∂2

xRe ε(λ)
∣∣
x=0 > 0 and since Re ε(λ) is harmonic, it follows that ∂2

yRe ε(iy) < 0.
Because ε is an even function in x and y, we get ε′(0) = 0 and therefore ∂yRe ε(iy)

∣∣
y=0 = 0 and

∂yRe ε(iy) < 0 on y ∈ (0, γ/2). Using the evenness of ε again, we conclude that y 7→ Re ε(iy)
has a unique maximum at y = 0 on y ∈ (−γ/2, γ/2) and therefore Re ε(iy) < ε(0) < 0 for all
y ∈ (−γ/2, γ/2).

Together with (5.73) and the monotonicity, we can conclude, that x 7→ Re ε(x+ iy) has,
for every y ∈ (0, γ/2), a unique positive zero.
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Figure 5.4: The curves Re ε̃(λ) = 0, Re ε(λ) = 0, Re ε0(λ) = 0 for J = 1, γ = 0.55 and
h = 0.4hc ≈ 2.96. The curve Re ε(λ) = 0 is enclosed by Re ε̃(λ) = 0 and Re ε0(λ) = 0.

Proof of (iii)

The function (0, γ/2) → R+, y 7→ x(y) is smooth due to the implicit function theorem.
x(0) = QF follows by the definition of the Fermi point QF . For λ → (iγ/2)−, we approach
a pole of ε(λ). Consider ε(λ) in the resolvent form (5.67) and expand the right hand side in
the vicinity of λ = iγ/2,

ε(λ) = hπ

2(π − γ) + 2iJ sin(γ)
λ− iγ

2
+ lim
y→(γ/2)−

�
R\[−QF ,QF ]

dµR(iy − µ|γ)ε(µ) + O
(
λ− iγ

2

)
.

(5.76)

This expansion allows us to take the real part to zero and obtain an equation for x(y), which
we can solve to leading order for y → (γ/2)−, yielding (5.61a). The form of the constant c is
obtained by inserting the representation (5.24) for the resolvent into the integral and using
the Plemelj formula to calculate the boundary value.

Proof of (iv)

For the lower bound, we use the integral representation

Re ε(λ) = Re ε0(λ)−
� QF

−QF
dµRe (RQ(λ, µ))ε0(µ) . (5.77)

For µ ∈ (−QF , QF ) we obtain from (5.44a) that ε0(µ) < 0. Using that ReR(λ|γ) > 0, we
can recast (5.31) for y ∈ (−γ/2, γ/2) and x, µ ∈ R as

ReRQ(λ, µ)

= ReR(λ− µ|γ) +
�
R\[−QF ,QF ]

dν Re (R(λ− ν|γ))RQ(ν, µ) > ReR(λ− µ|γ) > 0 . (5.78)
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The integral is positive, since RQ(ν, µ) > 0 for ν, µ ∈ R. Re ε(λ) > Re ε0(λ) then follows from
(5.77).

For the upper bound consider

Re ε(λ) = hReZ(λ)− 4πJ sin(γ) Re ρ(λ) . (5.79)

With ReRQ(λ, µ) > 0 it follows that

ReZ(λ) = 1−
� QF

−QF
dµReRQ(λ, µ) < 1 . (5.80)

For the real part of the root density, one finds

Re ρ(λ) = Re ρ∞(λ) +
�
R\[−QF ,QF ]

dµRe (R(λ− µ|γ))ρ(µ) > Re ρ∞(λ) > 0 (5.81)

where ReR(λ− µ|γ) > 0 for x, µ ∈ R, y ∈ (−γ/2, γ/2) and ρ(µ) > ρ∞(µ) > 0, which follows
from (5.52), was used to estimate the integral. (5.80) and (5.81) allow us to estimate

Re ε(λ) < h− 4πJ sin(γ) Re ρ∞(λ) = Re ε̃(λ) , (5.82)

which is the upper bound.
The functions Re ε0(x+iy) and Re ε̃(x+iy) are explicit functions, which are even in x and

y, a property already used several times throughout the proof. We can formulate Theorem 5.7
(ii) also for x 7→ Re ε0(x + iy) and, if a positive zero Q̃ of ε̃ (⇔ h < 2πJ sin(γ)/γ) exists,
for x 7→ Re ε̃(x + iy). This provides us two smooth curves, which enclose the curve x(y),
as solution to Re ε(x(y) + iy) = 0, in the strip |y| < γ/2. An example of this is shown in
Figure 5.4.

If h > 2πJ sin(γ)/γ, a positive zero Q̃ ∈ R+ of ε̃ does not exist, however, there exists a
Q̃im ∈ (0, iγ/2) ⊂ iR+, for which ε̃(Q̃im) = 0, and for y ∈ (Q̃im + (γ/2− Q̃im)/2, γ/2), we can
formulate Theorem 5.7 (ii) for x 7→ Re ε̃(x + iy), which, using the symmetry of ε̃, gives us
two smooth curves as depicted in Figure 5.5.

Proof of (5.63a)

In order to prove (v), we prove each boundary (5.63a)-(5.63c) step by step, as each strip of
Sγ(QF ) requires a different analysis.

For (5.63a) we want to derive another integral equation for ε(λ), starting from ε(λ) in
the form (3.1). We consider y > γ/2, the estimates for y < −γ/2 follow by the symmetry of
ε(λ).

For this, note the following properties of ε(λ) on 0 < y < π/2.

(i) ε(λ) has a simple pole at iγ/2 with residue

resλ= iγ
2

= 2iJ sin(γ) , (5.83)

(ii) ε(λ) jumps across the cut at [−QF , QF ] + iγ (compare Lemma 5.8 (i)), where

ε+(λ)− ε−(λ) = ε(λ− iγ) (5.84)

(iii) and

lim
Reλ→∞

Re ε(λ) = h . (5.85)
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Figure 5.5: The curves Re ε̃(λ) = 0, Re ε(λ) = 0, Re ε0(λ) = 0 with J = 1, γ = 0.55,
h = 0.9hc ≈ 6.67 and h > 2πJ sin(γ)/γ ≈ 5.97. A real, positive zero of ε̃ does not exist, and
Re ε̃(λ) = 0 is split into two separate curves cutting the imaginary axis at ±Q̃im.

We want to study ε(λ) on the by iπ/2 shifted real axis, and therefore set Imλ = π/2 for now.
Deform the integration contour [−QF , QF ] as depicted in Figure 5.6. With this contour, we
can rewrite the integral

� QF

−QF
dµK(λ−µ|γ)ε(µ)

=− ε(λ− iγ)− 4πJ sin(γ)K(λ− iγ/2|γ) +
�
R+ iπ

2

dµK(λ− µ|γ)ε(µ)

−
�
R\[−QF ,QF ]

dµK(λ− µ|γ)ε(µ)−
� QF

−QF
dµK(λ− µ− iγ|γ)ε(µ)

=− ε0(λ− iγ)− 4πJ sin(γ)K(λ− iγ/2|γ)

+
�
R+ iπ

2

dµK(λ− µ|γ)ε(µ)−
�
R\[−QF ,QF ]

dµK(λ− µ|γ)ε(µ) . (5.86)

Observe that

ε0(λ) + ε0(λ− iγ) + 4πJ sin(γ)K(λ− iγ/2|γ) = 2h . (5.87)

We insert the integral (5.86) into the integral equation (3.1) for ε(λ), simplify with (5.87)
and obtain

ε(λ) = 2h−
�
R+ iπ

2

dµK(λ− µ|γ)ε(µ) +
�
R\[−QF ,QF ]

dµK(λ− µ|γ)ε(µ) . (5.88)

Setting λ = z + iπ/2 and

ω(z) = ε(z + iπ/2) (5.89)

54



5.3. The dressed energy in the complex plane for 0 < ∆ < 1
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λ

Figure 5.6: Deformation of the original integration contour, which runs along the real axis
from −QF to QF . The vertical parts on the right and left hand side are moved to ±∞.

it follows with the identities of the kernel from Lemma 5.1 (vi), that

ω(z) = 2h−
�
R\[−QF ,QF ]

dwK(z − w|π/2− γ)ε(w)−
�
R

dwK(z − w|γ)ω(w) . (5.90)

This equation can be solved for ω(z) by employing Fourier transformation and the convolution
theorem. For λ ∈ R introduce

εb(λ) = ε(λ)1λ∈R\[−QF ,QF ] . (5.91)

Then

F [ω](k) = 4πh δ(k)
1 + F [K(∗|γ)](k) −

F [K(∗|π2 − γ)](k)
1 + F [K(∗|γ)](k) F [εb](k) = 2πh δ(k)

1− γ/π − F [D](k)F [εb](k)

(5.92)

where we used the Fourier transform of the kernel (5.9), δ(k) denotes the Dirac delta distri-
bution, and set

F [D](k) =
F [K(∗|π2 − γ)](k)
1 + F [K(∗|γ)](k) =

sh(kγ2 )
sh(k(π−γ)

2 )
. (5.93)

An inverse Fourier transformation gives

D(z) = 1
1− γ/π K

(
z

1− γ/π

∣∣∣∣π2 − γ̃
)

(5.94)

with γ̃ = γ/2
1−γ/π as in (5.24). Altogether, we find the representation

ω(z) = h

1− γ/π −
1

1− γ/π

�
R\[−QF ,QF ]

dwK
(
z − w

1− γ/π

∣∣∣∣π2 − γ̃
)
ε(w) , (5.95)

valid in the strip γ < |Imλ| < π/2. γ 7→ γ̃ is a monotonically increasing bijection of
the interval (0, π/2), and therefore γ 7→ π

2 − γ̃ is a monotonically decreasing bijection of
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the same interval. The kernel of the integral (5.95) as a function of z − ω has poles at
±i(π2 − γ) mod i(π − γ). The kernel is furthermore, with Lemma 5.1 (ii), positive, and for
w ∈ R \ [−QF , QF ], ε(w) is also positive. In order to estimate a lower bound, we rewrite
ω(z) in terms of the resolvent kernel R. Insert (5.22) with γ ↪→ π

2 − γ̃ for the kernel in (5.95),

Reω(z) = h

1− γ/π −
1

1− γ/π

�
R\[−QF ,QF ]

dwRe
(
R

(
z − w

1− γ/π

∣∣∣∣π2 − γ̃
))

ε(w)

− 1
(1− γ/π)2

�
R

dvRe
(
R

(
z − v

1− γ/π

∣∣∣∣π2 − γ̃
)) �

R\[−QF ,QF ]
dwK

(
v − w

1− γ/π

∣∣∣∣π2 − γ̃
)
ε(w) .

(5.96)

We want to analyse the monotonic behaviour of Reω(z). Set x = Re z = Reλ and b = Im z =
Imλ− π/2 = y − π/2. For the x-derivative, we obtain

∂xReω(z) =− 1
1− γ/π

� ∞
QF

dwRe
[
R

(
z − w

1− γ/π

∣∣∣∣π2 − γ̃
)
−R

(
z + w

1− γ/π

∣∣∣∣π2 − γ̃
)]

ε′(w)

− 1
(1− γ/π)2

� ∞
0

dwRe
[
R

(
z − w

1− γ/π

∣∣∣∣π2 − γ̃
)
−R

(
z + w

1− γ/π

∣∣∣∣π2 − γ̃
)]

×
� ∞
QF

dvRe
[
K

(
w − v

1− γ/π

∣∣∣∣π2 − γ̃
)
−K

(
w + v

1− γ/π

∣∣∣∣π2 − γ̃
)]

ε′(v) . (5.97)

Here, the first integral in (5.96) was partially integrated once, the second twice. The bound-
ary terms vanish, since ε(QF ) = 0 and the real parts of R and K vanish for x → ±∞.
Furthermore, the evenness of ε was used. Now write R(z/(1− γ/π)|π/2− γ̃) in the represen-
tation (5.24), valid for |b| < 1

2(π2 − γ), i.e. π2 −
1
2(π2 − γ) < y < π

2 , and with (5.68) and (5.69)
we get that ReR(z/(1− γ/π)|π/2− γ̃) > 0 and monotonically increasing on x > 0 implying
that

Re
[
R

(
z − w

1− γ/π

∣∣∣∣π2 − γ̃
)
−R

(
z + w

1− γ/π

∣∣∣∣π2 − γ̃
)]

> 0 (5.98)

for x > 0, w > 0. The same is true for the kernel function K. Since ε′(w) > 0 for w > 0, we
conclude that ∂yReω(z) < 0 for x > 0, which implies that the function x 7→ Reω(x + iy) is
monotonically decreasing on R+. Because of (5.85), we know that limx→∞Reω(z) = h. As
ω(z) is even in x, we get the boundary

Reω(z) > h > 0 , (5.99)

which yields (5.63a).

Proof of (5.63b)

To prove (5.63b), we continue to work with ω(z) as derived in (5.95). We keep the notation
x = Re z = Reλ and b = Im z = Imλ − π/2 = y − π/2, so with y ∈ (γ, π/2 − (π/2 − γ)/2)
follows Im z = b ∈ (γ − π/2, (γ − π/2)/2). Note that b < 0. Since the representation (5.24)
of R(z/(1 − γ/π)|π/2 − γ̃) is not valid for this range of b, we take a different approach and
analyse the integral in (5.95) directly. Using (5.6), we rewrite the real part of the kernel as

ReK
(
z − w

1− γ/π

∣∣∣∣π2 − γ̃
)

= 1
2

[
K

(
x− w

1− γ/π

∣∣∣∣γ+

)
+K

(
x− w

1− γ/π

∣∣∣∣γ−)] (5.100)
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where

γ± = π

2 − γ̃ ±
b

1− γ/π . (5.101)

We evaluate the range of γ± in order to obtain the sign and monotonic behaviour of the two
kernel functions using Lemma 5.1 (ii) and (iii), and get

0 < γ+ <
π

4 , γ+ < γ− < π . (5.102)

This leads us to a case distinction where γ− ∈ (0, π/2) or γ− ∈ (π/2, π).
First, consider γ− ∈ (0, π/2). Taking the x-derivative of Reω(z), integrating partially

and using the monotonicity of the kernels and ε′(w) > 0 for w > 0, we conclude that

∂xReω(z) = − 1
2(1− γ/π)

� ∞
QF

dw
∑
σ=±

[
K

(
x− w

1− γ/π

∣∣∣∣γσ)−K (
x+ w

1− γ/π

∣∣∣∣γσ)] ε′(w) < 0 ,

(5.103)

so x 7→ Reω(x + ib) is monotonically decreasing, and since limx→∞Reω(z) = h and ω(z) is
even, we get the boundary Reω(z) > h.

For the second case, γ− ∈ (π/2, π), K(x/(1 − γ/π)|γ−) < 0 for x ∈ R, and therefore we
can estimate

Reω(z) > h

1− γ/π −
1

2(1− γ/π)

�
R\[−QF ,QF ]

dwRe
[
K

(
x− w

1− γ/π

∣∣∣∣γ+

)]
ε(w) . (5.104)

We can further estimate the integral

− 1
2(1− γ/π)

�
R\[−QF ,QF ]

dwRe
[
K

(
x− w

1− γ/π

∣∣∣∣γ+

)]
ε(w)

> − h

2(1− γ/π)

�
R\[−QF ,QF ]

dwReK
(
x− w

1− γ/π

∣∣∣∣γ+

)
> − h

2(1− γ/π)

�
R

dwRe
[
K

(
x− w

1− γ/π

∣∣∣∣γ+

)]
= −h2

�
R

dwReK(w|γ+) = −h2F [ReK(∗|γ+)](0) = − hγ

2(π − γ) + hb

π − γ
.

(5.105)

With this lower bound for the integral and using b ∈ (γ − π/2, (γ − π/2)/2) we can find a
lower bound for Reω(z),

Reω(z) > h

1− γ/π −
hγ

2(π − γ) + hb

π − γ
>

h

1− γ/π −
hγ

2(π − γ) + h
γ − π

2
π − γ

= h

(1
2 + γ

π − γ

)
>
h

2 . (5.106)

Thus we obtain (5.63b).
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Proof of (5.63c)

Last we prove (5.63c). For this, consider ε(λ) in the resolvent form (5.67). Define

RI(λ|γ) = π

2γ(π − γ)

�
R

dy
K( y

1−γ/π |γ̃)
ch(πγ (λ− y)) , (5.107)

which is different from R(λ|γ) for Imλ = y ∈ (γ/2, γ). An analytic continuation of (5.24)
yields

R(λ|γ) = RI(λ|γ) + 1
1− γ/πK

(
λ− iγ/2
1− γ/π

∣∣∣∣γ̃) , (5.108)

where it was used that 1/ ch(πλ/γ) has a pole at iγ/2. Note, that

Re ε∞(λ) = hπ

2(π − γ) −
2πJ sin(γ)

γ
Re 1

ch(πλγ )
>

hπ

2(π − γ) > 0 (5.109)

for y ∈ (γ/2, γ). Inserting (5.108) into (5.67), we obtain

Re ε(λ) = Re ε∞(λ) +
�
R\[−QF ,QF ]

dµRe [RI(λ− µ)]ε(µ)

+ 1
1− γ/π

�
R\[−QF ,QF ]

dµRe
[
K

(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃)] ε(µ) . (5.110)

In order to estimate a lower bound for Re ε(λ), we have to estimate both integrals. We begin
with the first integral,
�
R\[−QF ,QF ]

dµRe [RI(λ− µ|γ)]ε(µ)

> h

�
R\[−QF ,QF ]

dµRe [RI(λ− µ|γ)] > h

�
R

dµRe [RI(λ− µ|γ)]

= h

2γ(1− γ/π)

�
R

dν K
(

ν

1− γ/π

∣∣∣∣γ̃)Re
�
R

dµ 1
ch(πγ (λ− µ− ν))

= −h2
1

(1− γ/π)

�
R

dν K
(

ν

1− γ/π

∣∣∣∣γ̃) = −h2F [K(∗|γ̃)](0) = −h2
1− 2γ

π

1− γ
π

.

(5.111)

For the second integral, rewrite

ReK
(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃) = 1
2

[
K

(
x− µ

1− γ/π

∣∣∣∣ y

1− γ/π

)
+K

(
x− µ

1− γ/π

∣∣∣∣ γ − y1− γ/π

)]
. (5.112)

Note that, for γ/2 < y < γ,

0 < γ − y
1− γ/π < γ̃ <

y

1− γ/π < 2γ̃ . (5.113)

Recalling that 0 < γ̃ < π/2, we observe that the first kernel on the right hand side of (5.112)
is positive. If y/(1− γ/π) < π/2, (5.113) implies that the second kernel is also positive, and
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Figure 5.7: The imaginary part Im ε(λ) along the curve Re ε(λ) = 0 in a symmetric log-
arithmic color scale with J = 1, γ = 0.55, h = 0.4hc ≈ 2.96. In counter-clockwise direc-
tion, the imaginary part is monotonically increasing along the curve. A change of sign of
Im ε(λ) takes place at the poles λ = ±iγ/2 since limImλ→±γ/2,Reλ→0+ Im (λ) = ±∞ and
limImλ→±γ/2,Reλ→0− Im (λ) = ∓∞. Around the poles, a small range of the curve Re ε(λ) = 0
has to be left out, as the infinitely large imaginary parts cannot be represented by the color
scale.

the entire integral is positive. In the other case, we estimate similarly to (5.105)

1
1− γ/π

�
R\[−QF ,QF ]

dµRe
[
K

(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃)] ε(µ)

>
h

2 F
[
ReK

(
∗
∣∣∣∣ y

1− γ/π

)]
(0) = h

2 −
hy

π − γ
>
h

2 −
hγ

π − γ
. (5.114)

Altogether, we obtain

Re ε(λ) >
{

hγ
π−γ if y < π−γ

2 ,
h
2 if y > π−γ

2 ,
(5.115)

which proves (5.63c).

Proof of (vi)

(vi) follows from the evenness of K(λ|γ) and from

ImK(x+ iy|γ) = −ImK(x− iy|γ). (5.116)
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Proof of (vii)

We denote Re ε = u, Im ε = v and set Reλ = x > 0, Imλ = y ∈ (0, γ/2) and consider λ as
a function of y, λ(y) = x(y) + iy. The curve u(λ) = 0 exists in the strip |y| < γ/2 and by
implicit differentiation, we obtain

dx
dy = −uy

ux
, (5.117)

where ux, uy denote the partial derivatives with respect to x, y. From (ii) follows ux > 0.
Using the Cauchy Riemann equations,

ux = vy , uy = −vx , (5.118)

the derivative of the imaginary part is then

dv
dy = vx

dx
dy = −vx

uy
ux

+ vy =
u2
y

ux
+ ux > 0 . (5.119)

Using the symmetry of ε, we entail the claim. (5.65) follows from inserting (5.61a) into the
Laurent expansion of ε.

Lemma 5.8. The dressed energy ε around its cuts [15].

(i) For the boundary values of ε below and above its cuts at (−QF , QF ) ± iγ it holds that
for x ∈ (−QF , QF )

ε+(x+ iγ)− ε−(x+ iγ) = ε(x) and ε+(x− iγ)− ε−(x− iγ) = −ε(x) . (5.120)

At the endpoints λ = ±QF + viγ with v = ±, these boundary values exhibit O((λ ∓
QF − viγ) ln(λ∓QF − viγ)) behaviour.

(ii) The maps [−QF , QF ]→ R, x 7→ Im ε±(x+ iγ) are strictly increasing.

(iii) The oriented curves

Γ± =
{
z ∈ C

∣∣z = ε±(x+ iγ) , x ∈ [±QF ,∓QF ]
}

(5.121)

form a Jordan curve Γ = Γ+ ∪ Γ− ⊂ C, implying that the domain Int Γ is connected.

Proof. (i) Recast the linear integral equation (3.1) for ε as

ε(λ) = ε0(λ)−
� QF

−QF

dµ
2πi cth(λ− µ− iγ)[ε(µ)− ε(λ− iγ)]

+
� QF

−QF

dµ
2πi cth(λ− µ+ iγ)[ε(µ)− ε(λ+ iγ)]

+ ε(λ− iγ)
2πi ln

(sh(λ−QF − iγ)
sh(λ+QF − iγ)

)
+ ε(λ+ iγ)

2πi ln
(sh(λ−QF + iγ)

sh(λ+QF + iγ)

)
.

(5.122)
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−QF QF

iγ

−iγ

λ

fu(QF ) = 0fu(−QF ) = −∞

2πi2πi

2πi 2πi

fl(−QF ) = 0 fl(QF ) = −∞

Figure 5.8: Cuts of the dressed energy at (−QF , QF )±iγ and behaviour of the phase around
the branch points.

For µ ∈ [−QF , QF ], the integrands are now holomorphic in λ. Let λ = x + iγ with x ∈
[−QF , QF ]. Then a Taylor expansion around µ = x yields

[ε(µ)− ε(λ− iγ)] cth(λ− µ− iγ) = [ε(µ)− ε(x)] cth(x− µ)
= −ε′(x)(µ− x) cth(µ− x) + O(µ− x) , (5.123)

which is a regular expression. A similar expression can be obtained for λ = x− iγ.

The behaviour of the boundary values below and above the cuts, ε±(λ), can be observed
by analysing the ln functions. Again, set λ = x + iγ with x ∈ (−QF , QF ) (⇒ x + QF > 0
and x−QF < 0) and

fu(x) = sh(x−QF )
sh(x+QF ) > 0 , f ′u(x) = sh(2QF )

sh2(x+QF )
> 0 . (5.124)

Thus fu(x) is a monotonic function in x, and since limx→Q−F
= 0 and limx→−Q+

F
= −∞,

the function x 7→ fu(x) is a bijection from (−QF , QF ) to (−∞, 0). The interval (−∞, 0)
is the branch cut of the principal branch of the logarithm. Similarly, setting λ = x − iγ,
x ∈ (−QF , QF ) we can define fl(x),

fl(x) = sh(x+QF )
sh(x−QF ) > 0 , f ′l (x) = − sh(2QF )

sh2(x−QF )
< 0 (5.125)

which is monotonically decreasing and has boundary values limx→Q−F
= −∞ and limx→−Q+

F
=

0. Thus, x 7→ fl(x) is a bijection from (−QF , QF ) to (0,−∞).
Using the definition of the principal branch, we obtain that

ε±(x+ iγ) = “continuous part” + ε(x)
2πi

[
±iπ + ln

(sh(QF − x)
sh(QF + x)

)]
(5.126)

and thus

ε+(x+ iγ)− ε−(x+ iγ) = ε(x) . (5.127)
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−QF QF

−QF + iγ QF + iγ

iγ
2

0

λ

iα

Figure 5.9: Deformation of the integration contour from −QF to QF along the real axis to
obtain (5.132). The left and right hand side move to ±∞ and α > 0 small enough.

For ε±(x− iγ) we get

ε±(x− iγ) = “continuous part” + ε(x)
2πi

[
∓iπ + ln

(sh(QF + x)
sh(QF − x)

)]
(5.128)

and

ε+(x− iγ)− ε−(x− iγ) = −ε(x) . (5.129)

From (5.122), (5.126) and (5.128), using ε(±QF ) = 0, we can read off the singular be-
haviour of the boundary functions at the branch points,

ε±(λ)
∣∣
λ→σQF+iγ ∼ (λ− σQF − iγ) ln(λ− σQF − iγ) , (5.130)

ε±(λ)
∣∣
λ→σQF−iγ ∼ (λ− σQF + iγ) ln(λ− σQF + iγ) , (5.131)

where σ = ±.

(ii) From (5.120) and using that for x ∈ [QF , QF ] ⇒ ε(x) ∈ R follows Im ε+(x + iγ) =
Im ε−(x+iγ). Thus it is sufficient to consider ε−(x+iγ). Recall that ε(λ) is meromorphic on
Sγ(QF ), defined in (5.3). We consider the range 0 < Imλ < γ, where ε(λ) has a simple pole
at iγ/2 with resλ= iγ

2
= 2iJ sin(γ). We introduce α > 0 small enough, deform the integration

contour of ε(λ) in the form (3.1) as depicted in Figure 5.9 and obtain

ε(λ) = ε0(λ) + 4πJ sin(γ)K(λ− iγ/2|γ) +
�
R\[−QF ,QF ]

dµK(λ− µ|γ)ε(µ)

−
� ∞
−∞

dµK(λ− µ− iγ + iα)ε(µ+ iγ − iα) . (5.132)

Setting λ = x+ iγ − iα, x ∈ R, and using (5.87), yields

ε(x+ iγ − iα) +
� ∞
−∞

dµK(x− µ)ε(µ+ iγ − iα)

= 2h− ε0(x− iα) +
�
R\[−QF ,QF ]

dµK(x− µ+ iγ − iα|γ)ε(µ) . (5.133)
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Defining

η(x) = Im ε−(x+ iγ) (5.134)

and sending α→ 0+, we obtain

η(x) +
� ∞
−∞

dµK(x− µ)η(µ) =
 
R\[−QF ,QF ]

dµG(x− µ)ε(µ) , (5.135)

with

G(x) = lim
α→0+

ImK(x+ iγ − iα) = lim
α→0+

−ImK(x− iγ + iα)

= 1
4π [cth(x− 2iγ) + cth(x+ 2iγ)− 2P cth(x)] . (5.136)

where P denotes the principal value. (5.135) can be solved by means of the convolution
theorem,

η(x) =
 
R\[−QF ,QF ]

dµψ0(x− µ)ε(µ) (5.137)

with

F [ψ0](k) = F [G](k)
1 + F [K](k) . (5.138)

The denominator can be obtained from (5.26) and for the Fourier transform of G we compute

F [G](k) = lim
α→0+

sh(k(π2 − γ − α)) sh(kγ)
i sh(kπ2 )

. (5.139)

Thus altogether

F [ψ0](k) = lim
α→0+

sh(k(π2 − γ − α)) sh(kγ2 )
i sh(k(π−γ)

2 )
. (5.140)

In order to evaluate the inverse Fourier transform, we use the identity
�
R−i0+

dk
8πi

e−ikx

sh(k(π−γ)
2 )

= 1
2(π − γ)

1
1 + e

2πx
π−γ

(5.141)

and get

ψ0(x) = e−
πγ
π−γ

4(π − γ)

[
ei π
π−γ

sh( πγ
π−γ (x− iγ)) + e−i π

π−γ

sh( πγ
π−γ (x+ iγ)) −

2
sh( πx

π−γ )

]
. (5.142)

Reducing this to a common denominator yields

ψ0(x) = f(x)g(x) (5.143)

with

f(x) = −
1− cos

(
2πγ
π−γ

)
sh( π

π−γ (x+ iγ)) sh( π
π−γ (x− iγ)) , g(x) =

cth( πx
π−γ )

4(π − γ) . (5.144)
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Figure 5.10: The Jordan curve Γ = Γ+ ∪ Γ−, as defined in (5.121), in the complex plane
for J = 1, γ = 1.3, h = 0.65hc ≈ 3.30. ε± is evaluated by ε±(x + iγ) = ε(x + iγ ± iδ) with
δ = 10−4. Since the cut at [−QF , QF ] + iγ is in the regime where Re ε(λ) > 0, compare
Theorem 5.7, Γ is located in the right half plane. From Theorem 5.7 also follows that Im ε(λ)
is odd in Reλ⇒ Im ε±(x+iγ)

∣∣
x=0 = 0 and with (5.120) we obtain that the distance between

the curves Γ+ and Γ− for x = 0 is |ε(0)| = −ε(0).

For these functions it holds that f(x) = f(−x) and g(x) = −g(−x), implying that ψ0(x) is
odd. Moreover, for x ∈ R+, f(x) < 0, g(x) > 0, f ′(x) > 0, g′(x) < 0. This leads to

ψ′0(x) = f ′(x)g(x) + f(x)g′(x) > 0 (5.145)

for x ∈ R \ {0}. Using that ε(µ) > 0 for µ ∈ R \ [−QF , QF ], we conclude that

η′(x) =
�
R\[−QF ,QF ]

dµψ′0(x− µ)ε(µ) > 0 (5.146)

for x ∈ [−QF , QF ], which entails the claim. Note that the integral representation for η is
well defined at x = ±QF as ε(±QF ) = 0.

(iii) The strict increase property (ii) ensures that each of the curves Γ± does not intersect
with itself. From ε(±QF ) = 0 follows with (5.120) that the curves γ± meet at x = ±QF .
Assume that the curves intersect away from these points. Then there exists x1, x2 ∈ [QF , QF ]
such that ε+(x1 + iγ) = ε−(x1 + iγ). From Im ε+(x1 + iγ) = Im ε−(x1 + iγ) follows x1 = x2
by using the strict increase property. But then the real part of (5.120), Re ε+(x1 + iγ) −
Re ε−(x2 + iγ) = ε(x1) < 0 leads to a contradiction. Therefore the curve Γ = Γ+ ∪ Γ− must
be a Jordan curve.

Proposition 5.9. The dressed energy is a double covering map on Uε [15]. Let Γ be as
introduced in Lemma 5.8.
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−QF QF

R+ iπ
2

R− iπ
2

α

α

QF + iγ−QF + iγ

QF − iγ−QF − iγ

Figure 5.11: The integration contour Γα for Jα(z).

(i) For every z ∈ C \ Int Γ the map Sγ(QF ) → C, λ 7→ ε(λ) − z has exactly two zeros,
counted with multiplicities. These zeros are double if z = ε(0) or z = ε( iπ

2 ) and simple
otherwise.

(ii) Uε = Sγ(QF ) \ {0, iπ
2 } is a double cover of ε(Uε) = C \

{
Int Γ ∪ {ε(0), ε( iπ

2 )}
}
.

(iii) Define

UL;ε =
{
z ∈ Uε

∣∣∣∣Re z < 0 or Re z = 0 and 0 < Im z <
π

2

}
, (5.147)

UR;ε =
{
z ∈ Uε

∣∣∣∣Re z > 0 or Re z = 0 and − π

2 < Im z < 0
}
. (5.148)

Then the maps εL/R = ε
∣∣
UL/R;ε

: UL/R;ε → ε(UL/R;ε) are biholomorphisms.

Proof. (i) Define the integration contour Γα as depicted in Figure 5.11 and consider the
integral

Jα(z) =
�

Γα

dµ
2πi

ε′(µ)
ε(µ)− z , (5.149)

which is well defined for α > 0 small enough provided that |Re z| is large enough. Observe that
ε(R± iπ

2 ) ⊂ [−M,M ] for someM > 0 and that the values of ε around the [−QF , QF ]+iγ stay
close to the curve Γ and are bounded. The same is true around [−QF , QF ]− iγ by symmetry
of ε. Thus, for α > 0 small enough and |Re z| large enough we can compute Jα(z) by means
of the residue theorem,

Jα(z) = # {λ ∈ Int Γα|ε(λ) = z} − 2 , (5.150)

where the −2 stems from the two simple poles of ε at ±iγ/2 and # counts the number of
elements in the set, in this case the number of zeros of ε(λ)−z counted with their multiplicities.
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iπ
2 ≡ −

iπ
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iπ
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− iπ
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λ

iγ

−iγ
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UL;ε UR;ε
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UL;ε

Figure 5.12: The domain Uε divided into UL;ε and UR;ε (lhs). The infinite toothpaste
tube UL;ε (rhs), the cut from −QF + iγ to −QF − iγ and the points 0, iπ

2 do not belong to
UL;ε.

Since ε has differentiable O((λ ∓ QF − viγ) ln(λ∓QF − viγ)), v = ±, behaviour at the
endpoints ±QF + viγ and smooth boundary values on (−QF , QF ) ± iγ, we may rewrite the
integral (5.149) in the limit α→ 0+ as

J0+(z) =
� QF

−QF

dµ
2πi

[
ε′+(µ+ iγ)

ε+(µ+ iγ)− z −
ε′−(µ+ iγ)

ε−(µ− iγ)− z + ε′+(µ− iγ)
ε+(µ− iγ)− z −

ε′−(µ− iγ)
ε−(µ− iγ)− z

]

=
� QF

−QF

dµ
πi

[
ε′+(µ+ iγ)

ε+(µ+ iγ)− z −
ε′−(µ+ iγ)

ε−(µ− iγ)− z

]
, (5.151)

where ε±(µ+ iγ) = ε∓(−µ− iγ) was used, which follows since ε is even. For Re z < −ℵ with
ℵ > 0 large enough we may take this integral explicitly,

J0+(z) = 1
πi

[ ln(ε+(µ+ iγ)− z)
ln(ε−(µ+ iγ)− z)

]QF
−QF

= 0 . (5.152)

Here we have used that ε+(±QF + iγ) = ε−(±QF + iγ) which follows from (5.120) and
ε(±QF ) = 0. Since z 7→ J0+ is analytic on the connected domain C \ Int Γ, it follows that
it vanishes on this domain. With (5.150) follows that λ 7→ ε(λ) − z has exactly two zeros
for any z ∈ C \ Int Γ, counted with multiplicities. If λ0 ∈ Sγ(QF ) is a solution to ε(λ) = z
then also −λ0 and iπ − λ0 are solutions to this equation, since ε is even and iπ periodic.
Thus, if λ0 6= {0, iπ

2 }, the solutions appear in pairs of simple zeros {λ0,−λ0} if Imλ0 6= π
2 ,

and {λ0, iπ− λ0} if Imλ0 = π
2 while the parity and iπ periodicity imply that 0, iπ

2 are double
zeros.

(ii) follows from (i) which implies that every z ∈ ε(Uε) has exactly two preimages in Uε.

(iii) follows since UL;ε ∪ UR;ε = Uε and under the inversion ı : λ 7→ −λ it holds that
ıUL;ε = UR;ε, implying that the restricted maps are bijections.

If we identify the points on the lines Imλ = ± iπ
2 modulo iπ and the points of the intervals

(0, iπ
2 ), (− iπ

2 , 0) modulo point reflections, UL;ε and UR;ε are smooth manifolds. This results
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in rolling Uε into a cylinder of infinite length and then glueing the intervals (0, iπ
2 ), (− iπ

2 , 0)
together. As a result UL;ε and UR;ε look like infinite toothpaste tubes with a cut, compare
Figure 5.12.

5.4 The dressed energy in the complex plane for −1 < ∆ < 0

For ∆ ∈ (−1, 0), we establish a theorem similar to Theorem 5.7. However, we cannot transfer
all properties from the dressed energy in the regime ∆ ∈ (0, 1) in full mathematical rigour.
Note, that the cuts of the dressed energy are now at [−QF , QF ]± i(π − γ).

Lemma 5.10. Monotonicity of the bare energy ε0 in the complex plane for γ ∈ (π/2, π).

(i) For 0 ≤ y < (π − γ)/2, the function x 7→ Re ε0(x+ iy) is monotonically increasing for
x > 0.

(ii) For γ/2 < y < π/2, the function x 7→ Re ε0(x + iy) is monotonically decreasing for
x > 0 and Re ε0(x+ iy) > h.

(iii) For y ∈ (0, π/2) \ {γ/2}, the function y 7→ ε0(iy) is monotonically decreasing.

Proof. (i), (ii) Rewrite the real part of the bare energy as

Re ε0(x+ iy) = h− 2πJ sin(γ/2)
[
K

(
x

∣∣∣∣γ2 − y
)

+K

(
x

∣∣∣∣γ2 + y

)]
(5.153)

and analyse the sign of the two kernels on the right hand side. Since γ/2− y ∈ (−π/2, π/2),

y >
γ

2 ⇒ K

(
x

∣∣∣∣γ2 − y
)
< 0 , (5.154a)

y <
γ

2 ⇒ K

(
x

∣∣∣∣γ2 − y
)
> 0 , (5.154b)

and for γ/2 + y ∈ (π/4, π)

γ

2 + y <
π

2 ⇔ y > (π − γ)/2⇒ K

(
x

∣∣∣∣γ2 + y

)
< 0 , (5.155a)

γ

2 + y >
π

2 ⇔ y < (π − γ)/2⇒ K

(
x

∣∣∣∣γ2 + y

)
> 0 . (5.155b)

From γ > π/2 follows (π − γ)/2 > γ/2 and therefore, for y ∈ (γ/2, π/2), both kernels have
a negative sign and we obtain that Re ε0(x+ iy) > h. With the monotonic behaviour of the
kernels we obtain that the function x 7→ Re ε0(x+ iy) is monotonically decreasing for x > 0.
For y < (π − γ)/2, both kernels have a positive sign and the function x 7→ Re ε0(x + iy) is
monotonically increasing.

(iii) follows from

∂yε0(iy) = 2J sin(γ)∂y
[

ctg
(
y − γ

2

)
− ctg

(
y + γ

2

)]
= −4J sin2(γ) sin(y) cos(y)

sin2 (y − γ
2
)

sin2 (y + γ
2
) < 0 .

(5.156)
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Theorem 5.11. The dressed energy in the complex plane for γ ∈ (π/2, π).

(i) For all λ ∈ Sγ(QF ), the function λ 7→ Re ε(λ) is even in x = Reλ and y = Imλ.

(ii) Within the strip 0 < |y| < min{γ − π
2 , π − γ}, Re ε(λ) is subject to the bounds

Re ε̃(λ) < Re ε(λ) < Re ε0(λ) . (5.157)

(iii) For 0 ≤ y < (π − γ)/2, the function x 7→ Re ε(x + iy) is monotonically increasing for
x > 0 and has, for every y, a single simple zero x(y).

(iv) For (π − γ)/2 < y < γ/2, the function x 7→ Re ε(x + iy) has, for every y, at least one
simple zero x(y). ∗

(v) For λ ∈ Sγ(QF ) with |y| > γ/2, Re ε(λ) is strictly positive with the bounds

Re ε(λ) > h for max
{
π − γ, γ2

}
< |y| < π

2 (5.158)

and, if γ/2 < π − γ,

Re ε(λ) > h

2 for γ

2 < |y| < π − γ . (5.159)

Proof. Fix λ = x+ iy, x, y ∈ R

Proof of (i)

The evenness of Re ε(x + iy) in x and y follows, analogously to Theorem 5.7 (i), from the
integral equation (3.1) for ε(λ) and the evenness of the kernel K.

Proof of (ii)

For the upper bound, choose y > 0 and rewrite (3.1) using the properties of the kernel from
Lemma 5.1,

Re ε(x+ iy) = Re ε0(x+ iy) + 1
2

� QF

−QF
dµ [K(x− µ|π − γ − y) +K(x− µ|π − γ + y)]ε(µ) .

(5.160)

Consider the integration kernels. From π − γ ∈ (0, π/2) follows π − γ − y ∈ (−π/2, π/2).
Thus

π − γ − y > 0⇔ y < π − γ ⇒ K(x− µ|π − γ − y) > 0 , (5.161a)
π − γ − y < 0⇔ y > π − γ ⇒ K(x− µ|π − γ − y) < 0 . (5.161b)

For the other kernel we get π − γ + y ∈ (0, π),

π − γ + y <
π

2 ⇔ y < γ − π

2 ⇒ K(x− µ|π − γ + y) > 0 , (5.162a)

π − γ + y >
π

2 ⇔ y > γ − π

2 ⇒ K(x− µ|π − γ + y) < 0 . (5.162b)

∗Numerics suggests that there is also only a single simple zero in this strip. However, this is not yet
mathematically rigorously proven.
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With the definitions

γ− = min
{
γ − π

2 , π − γ
}
, γ+ = max

{
γ − π

2 , π − γ
}
, (5.163)

we conclude that both kernels in (5.160) have a positive sign if y < γ−, while for y > γ+ both
kernels have a negative sign, which, using ε(µ) < 0 for µ ∈ [−QF , QF ], results in

Re ε(x+ iy) < Re ε0(x+ iy) if 0 < y < γ− , (5.164)

Re ε(x+ iy) > Re ε0(x+ iy) > h if γ+ < y <
π

2 , (5.165)

where Re ε0(x+ iy) > h follows from Lemma 5.10.
For the lower bound in the strip 0 < y < γ−, consider the real part of the Neumann series

of the resolvent kernel RQF (λ, µ), λ = x+ iy, µ ∈ R, and use (5.161a) and (5.162a),

ReRQF (λ, µ) = ReK(λ− µ|γ) +
∞∑
n=1

(−1)n
� QF

−QF
dnν Re (K(λ− ν1|γ))

×
[
n−1∏
m=1

K(νm − νm+1|γ)
]
K(νn − µ|γ)

= −ReK(λ− µ|π − γ)−
∞∑
n=1

(−1)n
� QF

−QF
dnν Re (K(λ− ν1|π − γ)))

×
[
n−1∏
m=1

K(νm − νm+1|γ)
]
K(νn − µ|γ)

< 0 . (5.166)

Hence, we find the lower bounds

ReZ(λ) = 1−
� QF

−QF
dµReRQF (λ, µ) > 1 , (5.167)

Re ρ(λ) = Re ρ∞(λ) +
�
R\[−QF ,QF ]

dµReRQF (λ, µ)ρ∞(µ) < Re ρ∞(λ) , (5.168)

for the real parts of the dressed charge and root density. Thus

Re ε(λ) = hReZ(λ)− 4πJ sin(γ)Re ρ(λ) > h− 4πJ sin(γ)Re ρ∞(λ) = Re ε̃(λ) , (5.169)

which entails the claim.

Proof of (iii)

Let y ∈ (0, (π − γ)/2). Then, for x > 0, we obtain by partial integration

∂xRe ε(x+ iy) = ∂xRe ε0(x+ iy)

+ 1
2

� Q

0
dµ

∑
σ=±

[K(x− µ|π − γ + σy)−K(x+ µ|π − γ + σy)] ε′(µ) > 0 . (5.170)

Here, we used the monotonicity of Re ε0 and K(∗|π − γ ± y) and ε′(µ) > 0 for µ > 0. Using
that for 0 < y < γ/2, ε0(iy) is a continuous, monotonically decreasing function and Re ε(λ) <
Re ε0(λ) it follows that Re ε(iy) < Re ε0(iy) < ε0(0) < 0 and with limx→∞Re ε(λ) = h we
conclude that x 7→ Re ε(x+ iy) has a unique positive zero for every y ∈ (0, (π − γ)/2).
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Proof of (iv)

In order to show that in the strip (π− γ)/2 < y < γ/2 the function x 7→ Re ε(x+ iy) has, for
every y, at least one zero, we will prove that Re ε(iy) < 0 and use that limx→∞Re ε(x+iy) =
limx→∞Re ε0(x + iy) = h > 0. The latter follows from the boundedness of ε on [−QF , QF ],
and since limx→∞ReK(λ− µ|γ) = 0 for all µ ∈ [−QF , QF ].

In order to prove that Re ε(iy) < 0 we use that ε(0) < 0 and show that the function
y 7→ Re ε(iy) is monotonically decreasing. Consider the integral

−
� QF

−QF
dµ∂yReK(iy − µ|γ)ε(µ) = −

� QF

−QF
dµ [∂µImK(iy − µ|γ)] ε(µ)

=
� QF

0
dµ [ImK(iy − µ|γ)− ImK(iy + µ|γ)]ε′(µ) = 2

� QF

0
dµ ImK(iy − µ|γ)ε′(µ) < 0 .

(5.171)

In the first step, we used ∂yReK(iy − µ|γ) = Re (−i∂µK(iy − µ|γ)) = ∂µImK(iy − µ|γ), for
the second step partial integration was performed. For the third and fourth step, rewrite the
imaginary part as

ImK(x+ iy|γ) = − sinh(2x) sin(2γ) sin(2y)
π [cos(2(γ − y))− ch(2x)] [cos(2(γ + y))− ch(2x)] . (5.172)

It can be easily seen that ImK(x+ iy|γ) = −ImK(x− iy|γ), and for y ∈ (0, π/2), y 6= π− γ,
γ ∈ (π/2, π) follows

ImK(x+ iy|γ) =
{
> 0 if x > 0 ,
< 0 if x < 0 ,

(5.173)

which leads to the integral (5.171) being negative. Therefore, with Lemma 5.10 (iii), it holds
that

∂yRe ε(iy) = ∂yε0(iy)−
� QF

−QF
dµ∂yReK(iy − µ|γ)ε(µ) < 0 . (5.174)

ε(iy) jumps at y = i(π − γ), where

ε+(i(π − γ))− ε−(i(π − γ)) = −ε(0) , (5.175)

but due to the monotonicity ε−(i(π − γ)) < ε(0) and thus it follows that ε+(i(π − γ)) =
ε−(i(π − γ)) − ε(0) < 0. We can conclude that Re ε(iy) < 0 for y ∈ (0, γ/2), which entails
the claim.

In this strip, the function x 7→ Re ε(x + iy) is not necessarily monotonic in x as the
monotonicity is only rigorously proven for 0 < y < (π − γ)/2. If y > (π − γ)/2 one of
the kernels in (5.153) changes its sign and may become, for some y, large enough such that
x 7→ Re ε0(x + iy) is not monotonic anymore. Similarly, the real part of the integral is not
monotonic for some y > γ− large enough. Figure 5.13 shows a plot of the behaviour of
these functions for different y. In the previous paragraphs, it was proven that both the real
part of ε0 and the integral are negative for x = 0 and using the monotonic behaviour of the
kernels, one can deduce, that both functions have one maximum and then converge to h and
0 respectively. Therefore both functions have, for every 0 < y < γ/2 a single simple positive
zero. However, this is not yet mathematically rigorously proven for their sum Re ε(x + iy),
although numerics suggest (compare Figure 5.13) that also x 7→ Re ε(x + iy) has a single
simple zero.
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5.4. The dressed energy in the complex plane for −1 < ∆ < 0
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Figure 5.13: The function Re ε(x+iy) and its summands for various values of y with J = 1,
γ = 2.0, h = 0.75hc ≈ 1.75. The curves which are monotonically increasing in x are coloured
in blue, those which do not behave monotonically in x are colored in red. All curves have a
single simple positive zero x(y).

Proof of (v)

For γ+ < y < π/2 we find that the integral in (5.170) is negative due to the behaviour
of the kernels, (5.161b) and (5.162b). Taking the monotonicity of Re ε0(x + iy) into ac-
count, Lemma 5.10, we can conclude that Re ε(x + iy) is monotonically decreasing for
max{γ+, γ/2} < y < π/2, and with limx→∞Re ε(x+ iy) = h the lower bound (5.158) follows.

If γ+ < γ/2, there is nothing else to prove. If γ+ > γ/2 ⇒ γ+ = π − γ, so we consider
the range γ/2 < y < π − γ. γ/2 < π − γ indicates γ < 2π/3, and for γ ∈ (π/2, 2π/3), the
representation (5.24) of the resolvent is valid for 0 < y < γ/2. Now, we proceed as in the
proof of (5.63c) and analytically continue (5.24). Again, we obtain

Re ε(λ) = Re ε∞(λ) +
�
R\[−QF ,QF ]

dµRe [RI(λ− µ)]ε(µ)

+ 1
1− γ/π

�
R\[−QF ,QF ]

dµRe
[
K

(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃)] ε(µ) (5.176)

where Re ε∞(λ) > hπ
2(π−γ) > 0, but now, since γ ∈ (π/2, 2π/3), ReRI(λ − µ|γ) > 0, so it

remains only to estimate the second integral. As before, we rewrite

ReK
(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃) = 1
2

[
K

(
x− µ

1− γ/π

∣∣∣∣ y

1− γ/π

)
+K

(
x− µ

1− γ/π

∣∣∣∣ γ − y1− γ/π

)]
. (5.177)
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For γ/2 < y < π − γ it holds that

0 < γ − y
1− γ/π < γ̃ <

y

1− γ/π < π . (5.178)

Recalling that π/2 < γ < π, the left kernel is negative and we estimate similarly to (5.105)

1
2(1− γ/π)

�
R\[−QF ,QF ]

dµK
(
x− µ

1− γ/π

∣∣∣∣ y

1− γ/π

)
ε(µ)

>
h

2F
[
K

(
∗
∣∣∣∣ y

1− γ/π

)]
(0) = h

2 −
hy

π − γ
> −h2 . (5.179)

In the last step, we used y ∈ (γ/2, π−γ). For the other kernel, we make a case distinction. If
γ−y

1−γ/π ∈ (0, π/2), the kernel is positive and thus also the integral with this kernel is positive.
We can then estimate the lower bound

Re ε(x+ iy) > hπ

2(π − γ) −
h

2 >
h

2 . (5.180)

In the other case, we estimate

1
2(1− γ/π)

�
R\[−QF ,QF ]

dµK
(
x− µ

1− γ/π

∣∣∣∣ γ − y1− γ/π

)
ε(µ)

>
h

2F
[
K

(
∗
∣∣∣∣ γ − y1− γ/π

)]
(0) = h

2 −
h(γ − y)
π − γ

>
h

2 −
hγ

2(π − γ) , (5.181)

and get the lower bound

Re ε(x+ iy) > hπ

2(π − γ) −
hγ

2(π − γ) = h

2 , (5.182)

which entails the claim.

5.5 The dressed energy on the curved contour
Above, we have introduced the dressed energy εc as solution to the linear integral equation
(3.13), integrated along the curved contour Cε (3.12). εc(λ) is an iπ periodic function and
meromorphic on {z ∈ C|z /∈ Cε ± iγ + iπZ} with simple poles at ±iγ/2 + iπZ. Thus, for
γ ∈ (0, 2π/3), we may deform the integration contour Cε to [−QF , QF ] without picking up
the poles or cuts of εc at Cε ± iγm, which entails that

εc(λ) = ε(λ) for |Im (λ)| < γ

2 if 0 < γ <
π

2 , (5.183a)

εc(λ) = ε(λ) for − γ

2 < Im (λ) ≤ 0 if π

2 < γ <
2π
3 . (5.183b)

Define the domain

Dε =
{
λ ∈ C

∣∣∣∣|Imλ| < γ

2 and Re ε(λ) < 0
}

(5.184)

and, denoting the upper (lower) closed half-plane as H±,

D(↑)
ε = Dε ∩H+ and D(↓)

ε = Dε ∩H− . (5.185)
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5.5. The dressed energy on the curved contour

Furthermore, we introduce the short hand notation

Dε;iπ = Dε + iπZ and D
(↓)
ε;iπ = D(↓)

ε + iπZ . (5.186)

Using (5.183a) and (5.183b), we can rewrite the integral equation (3.13) for γ ∈ (0, 2π/3) as

εc(λ) = ε0(λ)−
� QF

−QF
dµK(λ− µ|γ)εc(µ)−

�
∂D

(↓)
ε

dµK(λ− µ|γ)ε(µ) (5.187)

and by using the residue theorem we can rewrite the latter integral as

εc(λ) = ε(λ)− ε(λ+ iγ)1
λ+iγ∈D(↓)

ε;iπ
+ ε(λ− iγ)1

λ−iγ∈D(↓)
ε;iπ

. (5.188)

In the following, we will analyse where the zeros of Re εc(λ) are, based on the continuation
(5.188) and the analysis in Section 5.3, respectively Section 5.4.

Lemma 5.12. Let γ ∈ (0, π/2). If λ ∈ Dε;iπ, then Re εc(λ) < 0 and if λ /∈ Dε;iπ, then
Re εc(λ) > 0, implying that the functions Re ε(λ) and Re εc(λ) have the same zeros.

Proof. From Theorem 5.7 follows that

Re ε(λ) > 0 if λ /∈ Dε and Re ε(λ) < 0 if λ ∈ Dε . (5.189)

In order to prove the first part of the statement, we use that for λ ∈ Dε follows that
εc(λ) = ε(λ), and with (5.189) follows Re εc(λ) < 0 for λ ∈ Dε.

In order to prove the second part of the statement we have to discuss several cases, de-
pending on whether λ± iγ ∈ D(↓)

ε .

(i) λ /∈ D(↓)
ε and λ± iγ /∈ D(↓)

ε .
In this case, using (5.188), it follows that εc(λ) = ε(λ), and the claim follows from Theo-
rem 5.7.

(ii) λ /∈ D(↓)
ε and λ− iγ /∈ D(↓)

ε but λ+ iγ ∈ D(↓)
ε .

Using (5.188), we get that in this case

Re εc(λ) = Re ε(λ)− Re ε(λ+ iγ) > 0 , (5.190)

since Re ε(λ) > 0 as λ /∈ D(↓)
ε and Re ε(λ+ iγ) < 0 as λ+ iγ ∈ D(↓)

ε .

(iii) λ /∈ D(↓)
ε and λ+ iγ /∈ D(↓)

ε but λ− iγ ∈ D(↓)
ε .

In this regime, (5.188) takes the form

Re εc(λ) = Re ε(λ) + Re ε(λ− iγ) , (5.191)

and since Re ε(λ + iγ) < 0, the sign cannot be read off immediately as in (ii). Since λ −
iγ ∈ D(↓)

ε , we use the representation (5.67) for Re ε(λ − iγ). From λ − iγ ∈ D(↓)
ε follows

Imλ ∈ (γ/2, γ), and we can therefore use the representation (5.110) for Re ε(λ) from the
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proof of (5.63c). This yields

Re εc(λ) = Re ε∞(λ) + Re ε∞(λ− iγ) +
�
R\[−QF ,QF ]

dµReRI(λ− µ|γ)ε(µ)

+
�
R\[−QF ,QF ]

dµReRI(λ− iγ − µ|γ)ε(µ)

+ 1
1− γ/π

�
R\[−QF ,QF ]

dµRe
[
K

(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃)] ε(µ)

= hπ

π − γ
+ π

π − γ

�
R\[−QF ,QF ]

dµRe
[
K

(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃)] ε(µ) , (5.192)

where we used that ch(πγ (λ − iγ)) = − ch(πλγ ), and therefore, with the definition (5.107) of
RI , ReRI(λ − µ − iγ|γ) = −ReRI(λ − µ|γ). Analogously to the proof of (5.63c), we get
that the last integral in (5.192) is either positive or has the lower bound h

2 −
hγ
π−γ , compare

to (5.114). Hence

Re εc(λ) > hπ

π − γ
+ h

2 −
hγ

π − γ
= 3h

2 > 0 . (5.193)

(iv) λ /∈ D(↓)
ε and λ± iγ ∈ D(↓)

ε .
This is a combination of cases (ii) and (iii). Here

Re εc(λ) = Re ε(λ)− Re ε(λ+ iγ) + Re ε(λ− iγ) > Re ε(λ) + Re ε(λ− iγ) > 3h
2 > 0 .

(5.194)

Using the iπ periodicity of ε and εc, one obtains the statements for Dε;iπ.

Second, we consider the case γ ∈ (π/2, 2π/3). In this case, the statements in Section 5.4
which are mathematically provable are not as strict as in the previous case γ ∈ (0, π/2), and
the same is true for εc(λ). However, we can derive some conjectures from numerics, which are
outlined in Conjecture 5.14. Lemma 5.13 contains the mathematically provable statements.

Lemma 5.13. Let γ ∈ (π/2, 2π/3) and denote λ = x+ iy.

(i) For −(π− γ)/2 < y < (π− γ)/2 and λ /∈ D(↓)
ε + i(π− γ) the function x 7→ Re εc(x+ iy)

is monotonically increasing for x > 0 and has, for every y, single simple zero x(y).

(ii) For −γ/2 < y < −(π − γ)/2 the function x 7→ Re εc(x + iy) has, for every y, at least
one simple positive zero x(y).

(iii) For λ ∈ Dε \ {D(↓)
ε + i(π − γ)} ⇒ Re εc(λ) < 0.

(iv) For γ/2 < |Imλ| < (π − γ), Re εc(λ) is strictly positive.

(v) The curve Re ε(λ) = 0 and the cut Cε + i(π − γ) of εc(λ) cross each other at Imλ =
(π − γ)/2.

(vi) For λ ∈ {z ∈ Int(D(↓)
ε + i(π− γ))|Im z < γ/2} the function λ 7→ εc(λ) is antisymmetric

in Imλ around the by i(π − γ)/2 shifted real axis and symmetric in Reλ.

(vii) For λ ∈ {z ∈ Int(D(↓)
ε + i(π − γ))|Im z = (π − γ)/2} it holds that Re εc(λ) = 0.
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Figure 5.14: Cuts of the dressed energy εc (orange, green) and the curve Re εc(λ) = 0
(blue) for J = 1, γ = 2 and h = 0.65hc ≈ 1.52. The encircled ± indicate the sign of Re εc(λ)
in the respective domain.

Conjecture 5.14. Let γ ∈ (π/2, 2π/3) and denote λ = x+ iy.

(i) For −γ/2 < y < γ/2 and λ /∈ D(↓)
ε + i(π − γ) the function x 7→ Re εc(x + iy) has, for

every y, a single simple positive zero x(y).

(ii) For γ/2 < |Imλ| < π/2, Re εc(λ) is strictly positive.

(iii) Define

Dl =
{
z ∈ Int(D(↓)

ε + i(π − γ))
∣∣∣∣Im z ∈

(
π − 3γ

2 ,
π − γ

2

)}
, (5.195)

Du =
{
z ∈ Int(D(↓)

ε + i(π − γ))
∣∣∣∣Im z ∈

(
π − γ

2 ,
γ

2

)}
. (5.196)

For λ ∈ Dl, respectively λ ∈ Du, the function x 7→ Re εc(x + iy) has, for every y, a
single simple positive zero xl(y), respectively xu(y).

(iv) Let λ = x+ iy ∈ Dl. Then for |x| ≶ xl(y)⇒ Re εc(x+ iy) ≷ 0.

(v) Let λ = x+ iy ∈ Du. Then for |x| ≶ xu(y)⇒ Re εc(x+ iy) ≶ 0.

Proof of Lemma 5.13. (i)-(iii) follow from Theorem 5.11 since in this regime it holds that
εc(λ) = ε(λ).
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(iv) If −(π − γ) < Imλ < −γ/2 we infer from (5.188) that ε(λ) = εc(λ) and the claim
follows from Theorem 5.11. For γ/2 < Imλ < (π−γ) we conclude from (5.188) that we need
to consider three different cases,

εc(λ) = ε(λ) if λ /∈ D(↓)
ε + i(π − γ) , (5.197a)

εc(λ) = ε(λ) + ε(λ− iγ) if λ ∈ {D(↓)
ε + i(π − γ)} \ {D(↓)

ε + iγ} , (5.197b)
εc(λ) = ε(λ) + ε(λ− iγ)− ε(λ− i(π − γ)) if λ ∈ D(↓)

ε + i(π − γ) . (5.197c)

For (5.197a) the claim follows immediately from Theorem 5.11. In case (5.197b) we use the
representation (5.176) for Re ε(λ), and proceed similarly as in (5.192)

Re ε(λ) + Re ε(λ− iγ) = hπ

π − γ
+ 1

1− γ/π

�
R\[−QF ,QF ]

dµRe
[
K

(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃)] ε(µ)

>
hπ

π − γ
+ min

{
−h2 ,−

hγ

2(π − γ)

}
= hmin

{
π − γ/2
π − γ

,
π + γ

π − γ

}
> 0 . (5.198)

In case (5.197c) observe that −Re ε(λ− i(π − γ)) > 0 and the claim follows with (5.198).

(v) On the cut Cε + i(π − γ) it holds that Re ε(λ − i(π − γ)) = 0. By symmetry,
λ = x+ i(π − γ)/2 solves the equation Re ε(λ) = Re ε(λ− i(π − γ)).

(vi) follows from

εc(x+ iy + i(π − γ)/2) = ε(x+ iy + i(π − γ)/2) + εc(x+ iy − i(π − γ)/2)
= −εc(x− iy + i(π − γ)/2) (5.199)

where we used that ε(λ) is odd in Imλ.

(vii) follows since

Re εc(x+ i(π − γ)/2) = Re ε(x+ i(π − γ)/2) + Re ε(x− i(π − γ)/2) = 0 . (5.200)

For γ ∈ (2π
3 , π) the representation of εc(λ) (5.188) is not valid since on the one hand the

cuts of ε(λ) at [−QF , QF ]± i(π − γ) are located within the strip Imλ ∈ (−γ
2 ,

γ
2 ) and on the

other hand the cut of εc(λ) at Cε + i(π − γ) moves into D(↓)
ε . This can be easily seen in

Figure 5.14.
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6 Analysis of the quantisation con-
ditions

In Section 6.1 and Section 6.2 we choose 0 < γ < π/2. We start by reformulating the non-
linear problem with quantisation conditions given in Section 2.2 adapted to a contour Cû
such that Properties 4.1 are satisfied. This formulation is used to determine the possible sets
of parameters X̂ and Ŷ for finite, respectively X and Y for infinite Trotter number that solve
the quantisation conditions and are compatible with Hypothesis 3.1 and Hypothesis 3.2.

6.1 The solution to the non-linear integral equation in a fac-
torised form

For the analysis of the quantisation conditions for low temperatures in the following, we use
a from Cref slightly deformed contour Cû associated with û(λ|Ŷ), as in Section 4.3. Cû and
û(λ|Ŷ) shall satisfy Properties 4.1 and Cû shall have a distance of at most O(T ) from Cref .
Furthermore, we require that Cû has a width of at most O(−T lnT ) around Cε except around
−iγ/2, which is a property that stems from the definition of Cref (3.25).

It is sufficient to assume that the contour Cû satisfies these properties without knowing it
explicitly for the analysis of the quantisation conditions. However, such an integration con-
tour exists and can be explicitly constructed. This is necessary to prove Theorem 3.3, namely
the existence and uniqueness of solutions of the non-linear integral equation (3.51). The ex-
plicit construction is done in Section 4.2 of [15] as part of the proof of the aforementioned
theorem. As for the construction of Cref in (3.25), it requires knowledge of the properties of
the dressed energy, in particular that the dressed energy is a double covering map on Uε,
which is the statement of Proposition 5.9.

Let û(λ|Ŷ) be the unique solution to the non-linear integral equation

û(λ|Ŷ) = wN (λ)− iπsT − iT
∑
y∈Ŷ

θ+(λ− y)− T
�

Cû

dµK(λ− µ) LnCû(1 + e−
1
T
û)(µ|Ŷ) ,

(6.1)

where û(λ|Ŷ) and Cû satisfy Properties 4.1. û(λ|Ŷ) is subject to the monodromy condition

m = −
�

Cû

dµ
2πiT

û′(µ|Ŷ)
1 + e 1

T
û(µ|Ŷ)

= −s− |Ŷ| − |Ŷsg|+ |X̂| . (6.2)

77



Chapter 6. Analysis of the quantisation conditions

One defines

Ŷ = Ŷ ⊕ Ŷsg 	 X̂ , (6.3)

and X̂, Ŷ and Ŷsg are given by

X̂ = {x̂a}|X̂|a=1 where x̂a ∈ Int Cû , (6.4)

Ŷ = {ŷa}|Ŷ|a=1 where ŷa ∈
{
z ∈ C

∣∣∣∣− π

2 < Im z ≤ π

2

}
\ Int Cû (6.5)

and

Ŷsg = {ŷsg;a}
|Ŷsg|
a=1 where ŷsg;a = ŷa − iγ ∈ Int Cû . (6.6)

X̂ and Ŷ shall satisfy Hypothesis 3.1 and Hypothesis 3.2 and the elements in X̂ and Ŷ shall
fulfil the quantisation conditions

1 + e−
1
T
û(x̂a|Ŷ) = 0 and û′(x̂a|Ŷ) 6= 0 for a = 1, . . . , |X̂| , (6.7)

1 + e−
1
T
û(ŷa|Ŷ) = 0 and û′(ŷa|Ŷ) 6= 0 for a = 1, . . . , |Ŷ| . (6.8)

Furthermore, introduce the shifted singular roots

ˆ̃
Ysg =

{
y ∈ Ŷ|y − iγ ∈ Ŷsg

}
, (6.9)

such that Ŷ may be partitioned into two disjoint sets

Ŷ = Ŷr t ˆ̃
Ysg . (6.10)

The elements of Ŷr are called “regular roots”. One obtains the non-linear problem for the
infinite Trotter number case by exchanging wN ↪→ ε0 in (6.1) and omitting the hat in (6.1)-
(6.8). There exists T0 > T > 0 and η > 1/NT 4 such that for T0 low enough and η small
enough it holds that

x̂a = xa + O
( 1
NT 3

)
and ŷa = ya + O

( 1
NT 3

)
(6.11)

for the roots. This follows from Corollary 4.5.
In order to analyse the quantisation conditions and in particular the elements of X̂ and

Ŷ subject to the quantisation conditions in the low-T , small-1/NT 4 limit, it is convenient to
rewrite the solution to the non-linear integral equation in a factorised form. To do so, first
introduce the auxiliary function

Φ̂(λ|Ŷ) = 1
T

(WN (λ)− εc(λ)) + u1;reg(λ|Ŷ) + 1
T
R̂T [û(∗|Ŷ)](λ) , (6.12)

with R̂T as defined in Proposition 4.4 and

u1;reg(λ|Ŷ) = −iπsZc(λ)− 2πi
∑
y∈Ŷ

φc;reg(λ, y) , (6.13)
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6.1. The solution to the non-linear integral equation in a factorised form

φc;reg is defined by

φc;reg(λ, µ) = −
�

Cε

dν K(λ− ν)φc(ν, µ) (6.14)

such that φc(λ, µ) decomposes as φc(λ, µ) = φc;reg(λ, µ) + 1
2πθ(λ − µ). φc;reg is smooth on

C\{Cε± iγ+iπZ}×C\{Cε+R−± iγ+iπZ}, it has jump discontinuities on the complement of
this set and logarithmic singularities at the endpoints of the discontinuity curves component-
wise. With the analysis in Section 4.3 we obtain

Φ̂(λ|Ŷ) = u1;reg(λ|Ŷ) + O(T ) , (6.15)

where the control remainder is uniform in 1/NT 4, in λ uniformly away from ±iγ/2 + iπZ
and with respect to the elements of X̂ and Ŷ. Using (4.27) and (4.48) we may rewrite the
auxiliary function as

e−
1
T
û(λ|Ŷ) = e−

1
T
εc(λ) ∏

y∈Ŷ

sh(iγ + y − λ)
sh(iγ − y + λ) · e

−Φ̂(λ|Ŷ) ·

(
1 + e− 1

T
û(λ−iγ|Ŷ)

)1λ−iγ∈DŶ;iπ(
1 + e− 1

T
û(λ+iγ|Ŷ)

)1λ+iγ∈DŶ;iπ
, (6.16)

with

DŶ;iπ = DŶ + iπZ and DŶ = Int Cû (6.17)

We want to consider the factorisation explicitly depending on whether λ ± iγ is in DŶ;iπ or
not. As the case where both λ+ iγ ∈ DŶ;iπ and λ− iγ ∈ DŶ;iπ is excluded by definition, there
remain three cases to distinguish.

For λ such that λ± iγ /∈ DŶ;iπ, one obtains

e−
1
T
û(λ|Ŷ) = e−

1
T
εc(λ)

∏
y∈Ŷr

sh(iγ + y − λ)
sh(iγ − y + λ)


 ∏
y∈ ˆ̃
Ysg

sh(iγ + y − λ) sh(y − λ)
sh(iγ − y + λ) sh(2iγ + λ− y)


×

∏
x∈X̂

sh(iγ + λ− x)
sh(iγ + x− λ)

 · e−Φ̂(λ|Ŷ) . (6.18)

For λ− iγ ∈ DŶ;iπ one finds that

e−
1
T
û(λ|Ŷ) = e−

1
T
ε

(−)
c;2 (λ)

∏
y∈Ŷr

sh(iγ + y − λ) sh(2iγ + y − λ)
sh(iγ − y + λ) sh(λ− y)


×

 ∏
y∈ ˆ̃
Ysg

−sh2(iγ + y − λ) sh(2iγ + y − λ)
sh2(iγ − y + λ) sh(2iγ + λ− y)


×

∏
x∈X̂

sh(iγ + λ− x) sh(λ− x)
sh(iγ + x− λ) sh(2iγ + x− λ)

 · e−Φ̂(−)
2 (λ|Ŷ)

(
1 + e

1
T
û(λ−iγ|Ŷ)

)
,

(6.19)
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where we set

ε
(−)
c;2 (λ) = εc(λ) + εc(λ− iγ) and Φ̂(−)

2 (λ|Ŷ) = Φ̂(λ|Ŷ) + Φ̂(λ− iγ|Ŷ) . (6.20)

In the last case, λ+ iγ ∈ DŶ;iπ, we find

e−
1
T
û(λ|Ŷ) = e−

1
T
εc(λ)

∏
y∈Ŷr

sh(iγ + y − λ)
sh(iγ − y + λ)


 ∏
y∈ ˆ̃
Ysg

sh(iγ + y − λ) sh(y − λ)
sh(iγ − y + λ) sh(2iγ + λ− y)


×

∏
x∈X̂

sh(iγ + λ− x)
sh(iγ + x− λ)

 · e−Φ̂(λ|Ŷ)

1 + e− 1
T
û(λ+iγ|Ŷ)

, (6.21)

with

e−
1
T
û(λ+iγ|Ŷ) = e−

1
T
εc(λ+iγ)

∏
y∈Ŷr

sh(y − λ)
sh(2iγ − y + λ)


 ∏
y∈ ˆ̃
Ysg

sh(y − λ) sh(y − λ− iγ)
sh(2iγ + λ− y) sh(3iγ + λ− y)


×

∏
x∈X̂

sh(2iγ + λ− x)
sh(x− λ)

 · e−Φ̂(λ+iγ|Ŷ) .

(6.22)

Now, consider the product of regular roots and observe that the function λ 7→ e− 1
T
û(λ+iγ|Ŷ)

admits a zero at any regular root y ∈ DŶ;iπ − iγ. For these roots, the quantisation conditions
do not differ from the case λ ± iγ ∈ DŶ;iπ such that one only obtains functionally different
quantisation conditions for shifted singular roots.

6.2 Structure of solutions to the quantisation equations

Throughout the rest of this chapter, we take γ/π to be irrational. This assumption guarantees
that the domains do not intersect and allows us to introduce maximal roots. If we take T
small enough, the domain DŶ;iπ satisfies

DŶ;iπ ∩ {DŶ;iπ + ipγ} = ∅ for any p ∈ J−P, P K \ {0} (6.23)

with fixed P ∈ N. For T , 1/NT 4 small enough the stronger property

d(DŶ;iπ,DŶ;iπ + ipγ) ≥ c > 0 for p ∈ J1, P K (6.24)

holds.
Subject of this section is the analysis of the structure of the elements in X̂, Ŷ. In order

to state the result, we first give the definition of a thermal r-string.
Definition 6.1. For r ∈ N∗ a point y ∈ C is called the top of a thermal r-string if it satisfies

Re ε(−)
c;k (y) < 0 for k = 1, . . . , r − 1 and Re ε(−)

c;r (y) = 0 (6.25)

in which

ε
(−)
c;k (λ) =

k−1∑
s=0

εc(λ− isγ) . (6.26)

εc(λ) is the dressed energy as defined in (3.13). If r = 1, it is additionally imposed that
0 ≤ Im y ≤ γ/2.
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6.2. Structure of solutions to the quantisation equations

Now, we are in the position to formulate the main result of this section.
Theorem 6.2. Structure of solutions to the quantisation equations [15]. Let Ŷ be as defined
in (6.3)-(6.8) and such that |Ŷ| is bounded in T , 1/NT 4 small enough. Then there exist T0
and η small enough such that, for all T0 > T > 0 and η > 1/NT 4, the elements of X̂, Ŷ
satisfy

Re εc(x̂a) = o(1) for a = 1, . . . , |X̂| , (6.27)
Re εc(ŷa) = o(1) for a = 1, . . . , |Ŷ| , (6.28)

when T , 1/NT 4 → 0+. In particular, there are no singular roots and no thermal r-strings
with r > 1.

For infinite Trotter number, an analogous result holds associated with u(λ|Y) and the
corresponding set of quantisation conditions.

This theorem states that the roots in X̂ and Ŷ admit a regular structure and that all
solutions to the quantisation conditions are located in some neighbourhood around the curve
Re εc(λ) = 0, i.e. around the curve Re ε(λ) = 0 since Re εc and Re ε have the same zeros
(Lemma 5.12).

The idea of the proof is as follows. We will first show that the roots ŷa ∈ Ŷ necessarily
group in thermal r-strings (Lemma 6.4). To do so, we need to introduce the concept of
(weakly) maximal roots (Definition 6.3). We observe that each string can contain at most
one singular root (Lemma 6.4) and that the (weakly) maximal root is always a regular root
(Lemma 6.5). Using the quantisation conditions in the factorised form, we analyse all possi-
ble solutions and construct string-type solutions with r = 2 in the process by multiplying the
quantisation conditions for the string components. The top y of these strings has to satisfy
the inequalities Re εc(y) < 0 and Re ε(−)

c;2 (y) = o(1) (compare (6.25)), otherwise we continue
with the construction of a string of length r = 3 whose top has to satisfy Re εc(y) < 0,
Re ε(−)

c;2 (y) < 0 and Re ε(−)
c;3 (y) = o(1). However, in Lemma 6.6 we show that, based on the

properties of the dressed energy established in Chapter 5, for λ ∈ C such that Re εc(λ) < 0
it holds that Re ε(−)

c;2 (λ) > 0 and therefore these inequalities cannot be met.

The proof presented in this work is a simplified variation of the proof in [15]. In [15],
we construct general strings of length r which can be categorised into three different classes:
strings that consist only of regular roots, strings that end on a singular root and strings that
contain one singular root inside. However, the argument used to disprove the existence of
strings of length r > 1 is the same as in this work, namely that there can be no 2-strings
due to the properties of the dressed energy and thus the series of inequalities for longer
strings cannot be satisfied. Although it may seem more complicated to construct strings of
arbitrary length r first, this classification provides a basis for the analysis of strings in the
range −1 < ∆ < 0 in the future.
Definition 6.3. (Weakly) maximal roots. Let Ŷ be defined as in (6.5), let |Ŷ| be uniformly
bounded in T , 1/NT 4 → 0+ and choose some ς > 0. A root y ∈ Ŷ = Ŷr t ˆ̃

Ysg is called
maximal if

(i) y ∈ Ŷr is such that

diπ(y + iγ, y′) > ςT for all y′ ∈ Ŷr , (6.29)

diπ(y + 2iγ, y′) > ςT for all y′ ∈ ˆ̃
Ysg , (6.30)
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(ii) y ∈ ˆ̃
Ysg is such that

diπ(y + iγ, y′) > ςT for all y′ ∈ Ŷr . (6.31)

A root y ∈ Ŷ = Ŷr t ˆ̃
Ysg is called weakly maximal if (i) and (ii) hold except for a single

root y′ ∈ Ŷ. For this root, the following lower bounds hold:

(i) For y ∈ Ŷr

diπ(y + iγ, y′) > e−
cT
T if y′ ∈ Ŷr , (6.32)

diπ(y + 2iγ, y′) > ςT if y′ ∈ ˆ̃
Ysg , (6.33)

(ii) for y ∈ ˆ̃
Ysg

diπ(y + iγ, y′) > e−
cT
T if y′ ∈ Ŷr , (6.34)

with cT = o(1) as T → 0+.

Lemma 6.4. Decomposition of Ŷ [15]. Let Ŷ be defined as in (6.5), let |Ŷ| be uniformly
bounded in T , 1/NT 4 → 0+ and choose some ς > 0 small enough such that

ς < min
{
crep
4 ,

C|Ŷ|

(1 + |Ŷ|)T

}
where C|Ŷ| = min

{
diπ(ipγ, 0)

∣∣∣ p = 1, . . . , 1 + |Ŷ|
}

(6.35)

and with crep from Hypothesis 3.2 (v).
Then, the set Ŷ admits the decomposition

Ŷ =
p⋃
s=1
Ŷ(s) with Ŷ(s) = {y`,s}ks`=0 and Ŷ(s) ∩ Ŷ(s′) = ∅ if s 6= s′ , (6.36)

in which each Ŷ(s) contains at most one shifted singular root from ˆ̃
Ysg. For the roots in Ŷ(s)

it holds that

(i) y0,s is a maximal root,

(ii) for ` = 0, . . . , ks − 1 and uniformly in T , 1/NT 4 → 0+, it holds that

diπ(y`,s, y`+1,s + in`,sγ) ≤ ςT , (6.37)

with n`,s = 1 if n`,s ∈ Ŷr and n`,s = 2 if n`,s ∈ ˆ̃
Ysg,

(iii) for any y ∈ Ŷ(s) and y′ ∈ Ŷ \ Ŷ(s) it holds that

diπ(y, y′ + imyγ) > ςT , (6.38)

where my = 1 if y ∈ Ŷr and my = 2 if y ∈ ˆ̃
Ysg.
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6.2. Structure of solutions to the quantisation equations

Proof. The first part of the proof is dedicated to proving the existence of maximal roots,
which is done by contradiction. We distinguish the two cases ˆ̃

Ysg = ∅ and ˆ̃
Ysg 6= ∅.

Starting with the first case ˆ̃
Ysg = ∅, implying Ŷ = Ŷr, we assume that maximal roots do

not exist. As a consequence, for any y ∈ Ŷ there exists y′ ∈ Ŷ such that diπ(y+ iγ, y′) ≤ ςT .
Thus, pick some y0 ∈ Ŷ and then y1 ∈ Ŷ such that diπ(y0 + iγ, y1) ≤ ςT . Assume there
exists y′1 ∈ Ŷ such that it holds that diπ(y0 + iγ, y′1) ≤ ςT . Then

diπ(y1, y
′
1) ≤ diπ(y1, y0 + iγ) + diπ(y0 + iγ, y′1) ≤ 2ςT < crepT , (6.39)

which contradicts the repulsion of roots, Hypothesis 3.2 (v), and one concludes that y1 is
unique. One then continues to build a chain of regular roots y0, . . . , y|Ŷ| such that diπ(ys +
iγ, ys+1) ≤ ςT for s = 0, . . . , |Ŷ| − 1. These roots are always pairwise distinct. This becomes
clear, when one picks two distinct roots ya, yb, a, b ∈ J0, |Ŷ|K, a 6= b, assumes a < b by
symmetry, and sets b = a+ k with k > 0. We find the bound

diπ(ya, ya+k) ≥ |diπ(ya, ya + ikγ)− diπ(ya + ikγ, ya+k)| (6.40)

and furthermore

diπ(ya + ikγ, ya+k) ≤
k∑
s=1

diπ(ya+s−1 + i(k + 1− s)γ, ya+s + i(k − s)γ)

=
k∑
s=1

diπ(ya,a+s−1 + iγ, ya+s) ≤ kςT ≤ |Ŷ|ςT . (6.41)

Finally, we obtain

diπ(ya, ya + ikγ) ≥ min
{

diπ(0, ipγ) , p = 1, . . . , |Ŷ|
}
≥ C|Ŷ| . (6.42)

Altogether, we conclude

diπ(ya, ya+k) ≥ C|Ŷ| − |Ŷ|ςT > ςT , (6.43)

ensuring that all roots are indeed pairwise distinct. However, in this way we have created
a sequence of |Ŷ| + 1 pairwise different elements from Ŷ, which is in contradiction to the
cardinality |Ŷ| of Ŷ.

For the second case, assume that ˆ̃
Ysg 6= ∅. We start by picking some y0 ∈ ˆ̃

Ysg and then
find by construction y1 ∈ Ŷr such that diπ(y0 + iγ, y1) ≤ ςT . With an analogous argument as
in the first case, we reason that y1 is unique. Then, we continue the chain with y2, . . . , yk ∈ Ŷr
such that diπ(ys + iγ, ys+1) ≤ ςT for s = 0, . . . , k− 1. By the non-existence of maximal roots,
there either exists a y ∈ Ŷr for which diπ(yk + iγ, y) ≤ ςT holds, or there exists y′ ∈ ˆ̃

Ysg such
that diπ(yk + 2iγ, y′) ≤ ςT . In the latter case, it would hold that

diπ(y0 + (2 + k)iγ, y′) ≤ diπ(yk + 2iγ, y′) +
k−1∑
s=0

diπ(ys + (2 + k − s)iγ, ys+1 + (1 + k − s)iγ)

≤ (k + 1)ςT . (6.44)
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By definition of ˆ̃
Ysg, it holds that y0, y′ ∈ DŶ;iπ + iγ and thus

diπ(y0 + (2 + k)iγ, y′) ≥ diπ(DŶ;iπ + (3 + k)iγ,DŶ;iπ + iγ) ≥ c (6.45)

which follows from (6.24), and is a contradiction to (6.44), so there may be only one singular
root y0 in the chain.

We then pick yk+1 ∈ Ŷr such that diπ(yk + iγ, yk+1) ≤ ςT and hereby extending the chain
by another regular root and continues in this way, until we have built a chain y0, . . . , y|Ŷ| such
that diπ(ys+iγ, ys+1) ≤ ςT . As before, we then show that the roots are pairwise distinct which
is in contradiction to the cardinality |Ŷ|. Altogether, we infer the existence of maximal roots.

Next, we continue to prove (ii) and (iii). The maximal root is either a shifted singular or
a regular root, and we start by assuming that y0 ∈ ˆ̃

Ysg. There are two possibilities,

(i) there exists y′ ∈ Ŷr such that diπ(y0, y′ + 2iγ) ≤ ςT or

(ii) for all y ∈ Ŷ it holds that diπ(y0, y + 2iγ) > ςT .

In the second case, we set Ŷ(1) = {y0} and (6.38) holds. This reasoning is repeated until
there are no maximal shifted singular roots left.

In the first case, set y1 = y′ such that diπ(y0, y1 + 2iγ) ≤ ςT holds. Similarly to the proof
of part (i) of the lemma, we prove that y1 is unique. Again, there are two possibilities to
continue,

(i) there exists y′ ∈ Ŷr such that diπ(y1, y′ + iγ) ≤ ςT or

(ii) for all y ∈ Ŷ it holds that diπ(y1, y + iγ) > ςT .

In the second case, we set Ŷ(1) = {y0, y1} and start again with another maximal shifted
singular root. In the first case, we repeat the reasoning until we eventually end up in case
(ii).

Assume, we have built a chain with y0 ∈ ˆ̃
Ysg and y1, . . . , yk ∈ Ŷr of pairwise distinct roots,

such that

diπ(y0, y1 + 2iγ) ≤ ςT and diπ(ys, ys+1 + iγ) ≤ ςT for s = 1, . . . , k − 1 . (6.46)

Again, we arrive at the two different cases

(i) there exists y′ ∈ Ŷr such that diπ(yk, y′ + iγ) ≤ ςT or

(ii) for all y ∈ Ŷ it holds that diπ(yk, y + iγ) > ςT .

In the first case, we continue to build the chain with regular roots. In the second case, we
set Ŷ(1) = {y0, . . . , yk}. It holds that

for all y ∈ Ŷ \ Ŷ(1) diπ(y0, y + 2iγ) > ςT , (6.47)
for all y ∈ Ŷ \ Ŷ(1) diπ(ys, y + iγ) > ςT for s = 1, . . . , k , (6.48)

where the first inequality follows from the uniqueness of the root y1 and the second inequality
follows, for s = 1, . . . , k − 1, from the chain of bounds

diπ(ys, y + iγ) ≥ diπ(ys+1 + iγ, y + iγ)− diπ(ys, ys+1 + iγ) ≥ crepT − ςT ≥ ςT , (6.49)
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6.2. Structure of solutions to the quantisation equations

where the repulsion of roots, Hypothesis 3.2 (v), was used. For s = k the uniqueness follows
from (ii). We then repeat the reasoning for Ŷ \ Ŷ(1) until there are no maximal shifted
singular roots left. At some point, the process has to terminate since |Ŷ| is finite and we
obtain chains Ŷ(s) = {y`,s}ks`=0, s = 1, . . . , p′ such that y0,s ∈ ˆ̃

Ysg maximal and y`,s ∈ Ŷr for
` = 1, . . . , ks satisfy (6.37) and (6.38).

It remains to consider the chains where the maximal root is regular. For this case,
consider the set Ŷ ′ = Ŷ \ ⋃p′s=1 Ŷ

(s). Pick a maximal root y0 ∈ Ŷr, and build, analogously
to the previous case, a chain {y0, . . . , yk} = Ŷ(p′+1) containing at most one shifted singular
root such that

diπ(y`, y`+1 + in`,p′+1γ) ≤ ςT for ` = 0, . . . , k − 1 , (6.50)
diπ(ys, y + n`,p′+1iγ) > ςT for all y ∈ Ŷ ′ \ Ŷ(p′+1) for ` = 0, . . . , k (6.51)

with n`,p′+1 = 1 if y` ∈ Ŷr and n`,p′+1 = 2 if y` ∈ ˆ̃
Ysg. This process is repeated until there

are no maximal regular roots left in Ŷ, leading to the claim.

Lemma 6.5. Maximal or weakly maximal roots cannot be shifted singular roots [15]. There
exist T0, η small enough such that for 0 < T < T0 and η > 1/NT 4 a root y0 ∈ Ŷ, which is
maximal or weakly maximal, is necessarily a regular root, y0 ∈ Ŷr.

Proof. The statement of the lemma is proven by contradiction. Assume that the (weakly)
maximal root is a shifted singular root y0 ∈ ˆ̃

Ysg. Then, using the factorised form of û(λ|Ŷ)
(6.19), the quantisation condition (6.8) for y0 takes the form

− 1 = e−
1
T
Ê

(−)
2 (λ)

∏
y∈Ŷr

sh(iγ + y − y0) sh(2iγ + y − y0)
sh(iγ − y + y0) sh(y0 − y)


×

 ∏
y∈ ˆ̃
Ysg

−sh2(iγ + y − y0) sh(2iγ + y − y0)
sh2(iγ − y + y0) sh(2iγ + y0 − y)


∏
x∈X̂

sh(iγ + y0 − x) sh(λ− x)
sh(iγ + x− y0) sh(2iγ + x− y0)


(6.52)

where

Ê
(−)
2 (λ|Ŷ) = ε

(−)
c;2 (λ) + T Φ̂(−)

2 (λ|Ŷ) . (6.53)

According to Hypothesis 3.2 (vii), y0 /∈ Di γ2 ,ε
mod iπ, implying that y0 ∈ {DŶ + iγ} \ Di γ2 ,ε

mod iπ. From the definition of DŶ and Lemma 5.12 follows that

d
(
{DŶ + iγ} \ Diγ2 ,ε

+ iπZ,Dε;iπ
)
≥ C > 0 (6.54)

with ε > 0 small enough and for some constant C uniform in T and 1/NT 4 small enough and
thus d(y0,Dε;iπ) > C. Dε;iπ is defined as in (5.186). Lemma 5.12 also establishes that

Re εc(y0) ≥ c0 > 0 since y0 ∈ {DŶ + iγ} \ Di γ2 ,ε
. (6.55)

It results from y0 − iγ ∈ DŶ \ D−iγ2 ,ε
mod iπ that Re εc(y0 − iγ) = O(−T lnT ) and thus,

for T and 1/NT 4 small enough, we conclude that Re ε(−)
c;2 (y0) ≥ 3c0/4 > 0. Taken that
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uniformly on
{
{DŶ + iγ} \ Di γ2 ,ε

}
∪
{
DŶ \ D−i γ2 ,ε

}
we have the estimateWN −εc = O(1/NT ),

we conclude that

Re Ê(−)
2 (y0|Ŷ) ≥ c0/2 > 0 . (6.56)

With this lower bound, we have established that the factor in (6.52) containing E(−)
2 (y0|Ŷ)

is, for T and 1/NT 4 small enough, exponentially small. In order for (6.52) to have solutions,
this exponentially small term thus has to be compensated by some pole of the expression.
All possible cases are now discussed one by one.

• There exists y ∈ ˆ̃
Ysg such that, for some c > 0,

y0 = y − iγ + O(e−
c
T ) or y0 = y − 2iγ + O(e−

c
T ) . (6.57)

However, both cases cannot be fulfilled due to the spacing properties (6.24) of DŶ.
Because y0, y ∈ ˆ̃

Ysg, it holds that y0, y ∈ DŶ + iγ, which would imply that

O(e−
c
T ) = diπ(y0, y − iγ) ≥ d

(
DŶ;iπ + iγ,DŶ;iπ

)
(6.58)

or

O(e−
c
T ) = diπ(y0, y − 2iγ) ≥ d

(
DŶ;iπ + iγ,DŶ;iπ − iγ

)
. (6.59)

This however, is in contradiction to (6.24) for T small enough.

• There exists y ∈ Ŷr such that, for some c > 0

y0 = y + O(e−
c
T ) or y0 = y − iγ + O(e−

c
T ) . (6.60)

The first equation is in contradiction to the repulsion of roots, Hypothesis 3.2 (v). The
second case implies diπ(y0+iγ, y) = O(e− c

T ), which is in contradiction to the maximality
or weak maximality of y0, namely that diπ(y0 +iγ, y) > ςT for some ς > 0 small enough
in the case where y0 is a maximal root or, in case y0 is a weakly maximal root, for
all but at most one y ∈ Ŷr for which it holds that diπ(y0 + iγ, y) > e−

cT
T with some

cT = o(1).

• There exists x ∈ X̂ such that, for some c > 0,

y0 = x+ 2iγ + O(e−
c
T ) or y0 = x+ iγ + O(e−

c
T ) . (6.61)

Knowing that x ∈ DŶ and y0 ∈ DŶ, the first case would imply that d(DŶ;iπ,DŶ;iπ+iγ) =
O(e− c

T ), which cannot be true due to (6.24). However, a deeper analysis is required to
reject the second case.

Assume there exists x1 ∈ X̂ such that x1 = y0 − iγ + ϑ0, with ϑ0 = O(e− c
T ) for some

c > 0. In order to write down the quantisation condition for x1, we start from (6.18) and
obtain

− 1 = e−
1
T
Ê(x1|Ŷ)

∏
y∈Ŷr

sh(iγ + y − x1)
sh(iγ + x1 − y)


 ∏
y∈ ˆ̃
Ysg\{y0}

sh(iγ + y − x1) sh(y − x1)
sh(iγ + x1 − y) sh(2iγ + x1 − y)


× sh(iγ + y0 − x1) sh(y0 − x1)

sh(iγ + x1 − y0) sh(2iγ + x1 − y0)

∏
x∈X̂

sh(iγ + x1 − x)
sh(iγ + x− x1)

 (6.62)
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6.2. Structure of solutions to the quantisation equations

with

Ê(λ|Ŷ) = εc(λ) + T Φ̂(λ|Ŷ) . (6.63)

In the second line of (6.62), the term sh(iγ + x1 − y0) becomes exponentially small, and
has to be compensated by another term. First however, we establish that this is the only
exponentially small term in the denominator of (6.62).

• Assume there exists y ∈ Ŷr such that

x1 = y − iγ + O(e−
c
T ) . (6.64)

It follows that y = y0 + O(e− c
T ), which is in contradiction to the repulsion of roots,

Hypothesis 3.2 (v).

• Assume there exists y ∈ ˆ̃
Ysg \ {y0} such that

x1 = y − iγ + O(e−
c
T ) or x1 = y − 2iγ + O(e−

c
T ) . (6.65)

In the first case it follows that y = y0 + O(e− c
T ), which is again a contradiction to the

repulsion principle. For the second case, it follows that y0 = y− iγ + O(e− c
T ) but since

y, y0 ∈ DŶ;iπ + iγ one arrives at

O(e−
c
T ) = diπ(y0, y − iγ) ≥ d(DŶ;iπ + iγ,DŶ;iπ) , (6.66)

which contradicts (6.24).

Last, we consider the product over the hole roots X̂. The curve Cû = ∂DŶ is a curve of with
at most of O(−T lnT ) around Cε, except around −iγ/2, which is avoided at distance cdT .
Thus, the product over hole roots is bounded from below and above by constants uniformly
in T , 1/NT 4.

This proves, that sh(iγ+x1−y0) is the only exponentially small term in the denominator
of (6.62). (6.62) can only be satisfied, if the exponentially large term 1/ sh(iγ + x1 − y0) is
compensated by a zero of the expression.

Due to the properties of DŶ and since x /∈ D−i γ2 ,ε
, as declared in Hypothesis 3.1 (vii), we

have the lower bound

Re Ê(x1|Ŷ) ≤ −CT lnT (6.67)

for some constant C > 0 only depending on |X̂| and |Ŷ| but not on T , provided that 1/NT 4

small enough. Thus, the prefactor e− 1
T
εc(x1|Ŷ) cannot compensate the exponentially large

term 1/ sh(iγ + x1 − y0). Next, we analyse the other factors for possible zeros, that could
compensate the exponentially large term.

• Assume there exists y ∈ Ŷr such that

x1 = y + iγ + O(e−
c
T ) . (6.68)

In this case, there is no direct contradiction and it requires a deeper analysis. Set
y = x1−iγ+ϑ1 with ϑ1 = O(e− c

T ) and recall x1 = y0−iγ+ϑ0, leading to y = y0−2iγ+ϑ2
with ϑ2 = ϑ0 + ϑ1 = O(e− c

T ). By virtue of the repulsion property Hypothesis 3.2 (v),

87



Chapter 6. Analysis of the quantisation conditions

such y may exist. By virtue of Lemma A.3, there exist constants C, C̃ > 0 and d ∈ N,
which only depend on |X̂| and |Ŷ| such that

C−1T d ≤
∣∣∣∣sh(iγ + y − x1)
sh(iγ + x1 − y)

∣∣∣∣ ≤ CT−d viz. C̃−1T d ≤
∣∣∣∣ϑ1
ϑ0

∣∣∣∣ ≤ C̃T−d (6.69)

and, for some c = o(1),

C−1T d e−
cT
T ≤

∣∣∣∣e− 1
T

(εc(y0)+εc(y0−iγ)) sh(2iγ + y − y0)
sh(iγ + x1 − y)

∣∣∣∣ ≤ CT−d (6.70)

i.e.

C̃−1T d̃ e−
cT
T ≤

∣∣∣∣ϑ2
ϑ0

∣∣∣∣ ≤ C̃T−d̃ , (6.71)

where d̃ > 0. Above, it is used that εc(y0− iγ) = O(−T lnT ) since y0− iγ ∈ DŶ \D−i γ2 ,ε
.

From the inequality (6.69) and from ϑ2 = ϑ0 + ϑ1 we infer that∣∣∣∣ϑ2
ϑ0

∣∣∣∣ ≤ ČT−d (6.72)

for some constant Č > 0. However, (6.71) implies that∣∣∣∣ϑ2
ϑ0

∣∣∣∣ ≥ c e
c′
T , (6.73)

where c, c′ > 0, which is in contradiction to (6.72) for T → 0+, and thus there cannot
exist y ∈ Ŷr such that (6.68) holds.

• Assume there exists y ∈ ˆ̃
Ysg \ {y0} such that

x1 = y + O(e−
c
T ) or x1 = y + iγ + O(e−

c
T ) . (6.74)

The first case implies that y0 = y1 + iγ +O(e− c
T ), but since y0, y1 ∈ ˆ̃

Ysg, it follows that
y0, y1 ∈ DŶ;iπ+iγ which cannot be true since it would imply that diπ(DŶ;iπ+iγ,DŶ;iπ+
2iγ) = O(e− c

T ) which is in contradiction to the spacing property (6.24). Likewise, the
second case is in contradiction to (6.24), as it leads to y0 = y + 2iγ + O(e− c

T ) which
implies diπ(DŶ;iπ + 2iγ,DŶ;iπ + 3iγ) = O(e− c

T ).

Altogether, we can conclude that a maximal or weakly maximal root cannot be a shifted
singular root. As the existence of maximal root has been established in Lemma 6.4, we
conclude that a maximal or weakly maximal root has to be a regular root.

In order to prove that the condition (6.25) cannot be fulfilled for r ≥ 2 we will show in
the following lemma that, if λ is such that Re ε(−)

c;1 (λ) = Re εc(λ) is negative, it follows that
Re ε(−)

c;2 (λ) is positive.
First, similarly to ε(−)

c;k in (6.26), we introduce the functions ε(−)
0;k (λ) and K(−)

k (λ) by

K
(−)
k (λ) =

k−1∑
s=0

K(λ− isγ) = 1
2πi (cth(λ− ikγ) + cth(λ− i(k − 1)γ)− cth(λ+ iγ)− cth(λ)) ,

(6.75)

ε
(−)
0;k (λ) =

k−1∑
s=0

ε0(λ− isγ) = kh− 2iJ sin(γ)
(
cth(λ+ iγ2 )− cth(λ− i(k − 1

2)γ)
)
. (6.76)
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We remind the definitions of Dε, D(↑/↓)
ε and D(↓)

ε;iπ in (5.184)-(5.186). Similarly to rewriting
εc(λ) in terms of ε(λ) in (5.188), we can rewrite ε(−)

c;k (λ) by using the residue theorem as

ε
(−)
c;k (λ) = ε

(−)
k (λ)− ε(λ+ iγ)1

λ+iγ∈D(↓)
ε;iπ
− ε(λ)1

λ∈D(↓)
ε;iπ

+ ε(λ− i(k − 1)γ)1
λ−i(k−1)γ∈D(↓)

ε;iπ
+ ε(λ− ikγ)1

λ−ikγ∈D(↓)
ε;iπ

, (6.77)

with ε(−)
k being defined as in (6.26) with εc ↪→ ε.

Lemma 6.6. About the real part of ε(−)
c;2 (λ) [15]. Let γ ∈ (0, π/2). If λ ∈ Dε;iπ it holds that

Re ε(−)
c;2 (λ) > 0.

Proof. For k = 2, the representation (6.77) takes the form

ε
(−)
c;2 (λ) = ε

(−)
2 (λ)− ε(λ+ iγ)1

λ+iγ∈D(↓)
ε;iπ
− ε(λ)1

λ∈D(↓)
ε;iπ

+ ε(λ− iγ)1
λ−iγ∈D(↓)

ε;iπ
+ ε(λ− 2iγ)1

λ−2iγ∈D(↓)
ε;iπ

. (6.78)

Since 0 < γ < π/2, it holds that if λ ∈ Dε;iπ ⇒ λ± iγ /∈ λ ∈ Dε;iπ. Due to the iπ-periodicity
of ε, it is sufficient to consider λ ∈ Dε. We distinguish two cases.

(i) λ ∈ D(↑)
ε .

In this case, we can easily check that λ − 2iγ /∈ D(↓)
ε;iπ, as Imλ − 2iγ ∈ (−2γ,−3γ/2) ⊂

(−π,−3γ/2). Thus, we obtain

Re ε(−)
c;2 (λ) = Re ε(−)

2 (λ) = Re ε(λ) + Re ε(λ− iγ) . (6.79)

We proceed analogously to the proof of Lemma 5.12, case (iii). For ε(λ), we choose the
representation (5.67), and for ε(λ − iγ) one uses the analytic continuation of the resolvent
kernel,

R(λ|γ) = RI(λ|γ) + 1
1− γ/πK

(
λ+ iγ/2
1− γ/π

∣∣∣∣γ̃) , (6.80)

with RI(λ|γ) given in (5.107). Using the iγ-anti-periodicity of RI(λ|γ) and ch(πγλ), we obtain

Re ε(−)
c;2 (λ) = hπ

π − γ
+ π

π − γ

�
R\[−QF ,QF ]

dµRe
[
K

(
λ− µ− iγ/2

1− γ/π

∣∣∣∣γ̃)] ε(µ) , (6.81)

which is the same expression as in (5.192), leading to the estimate

Re ε(−)
c;2 (λ) > 3h

2 > 0 . (6.82)

(ii) λ ∈ D(↓)
ε .

Here, it holds that Imλ − 2γ ∈ (−5γ
2 ,−2γ) and it depends on the value of γ, whether

λ− 2iγ ∈ D(↓)
ε;iπ.
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(a) γ < 2π
5 . It follows that −5γ

2 > −π and thus λ − 2iγ /∈ D(↓)
ε;iπ, therefore the expression

for Re ε(−)
c;2 (λ) reduces to

Re ε(−)
c;2 (λ) = Re ε(λ− iγ) . (6.83)

The positivity follows from λ− iγ /∈ Dε;iπ and Lemma 5.12.

(b) γ > 2π
5 . There are two possible cases

ε
(−)
c;2 (λ) =

ε(λ− iγ) if λ− 2iγ /∈ D(↓)
ε;iπ ,

ε(λ− iγ) + ε(λ− 2iγ) if λ− 2iγ ∈ D(↓)
ε;iπ .

(6.84)

In the first case, as in case (ii)(a), we conclude that Re ε(−)
c;2 (λ) > 0. In the second case,

we proceed as in case (i), where the representation (5.67) is used for ε(λ−2iγ) as λ−2iγ ∈
D

(↓)
ε;iπ, and the analytic continuation of the resolvent kernel for the representation of

ε(λ− iγ). With the same arguments as before, we arrive at Re ε(−)
c;2 (λ) > 3h

2 > 0.

The estimations in the cases considered entail the claim of the lemma.

Proof of Theorem 6.2

Proof. (6.27) follows as a consequence of the properties of DŶ.
In order to prove (6.28), we construct a sequence that would become a 2-string for T → 0+,

and then show that the necessary condition for strings of length r ≥ 2 cannot be fulfilled.
Pick a maximal root y0,p ∈ Ŷ(p) which must be, by virtue of Lemma 6.5, a regular root and
call it y0 from now on. The quantisation condition for such a root is given by

− 1 = e−
1
T
εc(y0)

 ∏
y∈Ŷr\{y0}

sh(iγ + y − y0)
sh(iγ − y + y0)


 ∏
y∈ ˆ̃
Ysg

sh(iγ + y − y0) sh(y − y0)
sh(iγ − y + y0) sh(2iγ + y0 − y)


×

∏
x∈X̂

sh(iγ + y0 − x)
sh(iγ + x− y0)

 · e−Φ̂(y0|Ŷ) . (6.85)

Now consider the exponential function containing εc(y0). There are three different possibilities
here,

(i) Re εc(y0) ≥ c > 0 ,

(ii) Re εc(y0) = o(1) ,

(iii) Re εc(y0) ≤ −c < 0 ,

with some c > 0. In the first case, the term in (6.85) becomes exponentially small for T → 0+

and needs to be compensated by one of the other terms in the product. This would mean
that one of the following three cases were true:

• There exists y ∈ Ŷr \ {y0} such that y = y0 + iγ + O(e− c
T ). This contradicts the

maximality of y0.
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• There exists y ∈ ˆ̃
Ysg such that y = y0 + iγ + O(e− c

T ) or y = y0 + 2iγ + O(e− c
T ).

Consider the first scenario. By point (i) and (ii) of Hypothesis 3.1 it holds that diπ(y−
iγ,±QF ) > c and diπ(y − iγ,Cref) > crefT . Furthermore, it holds that y − iγ ∈ Int Cref
and diπ(y−iγ, y0) = O(e− c

T ). However, the contour Cû is displaced from Cref by an O(T )
scale close to ±QF and by order O(cT ) with some c > 0, where c� cref , away from some
T -independent neighbourhood of ±QF . This yields that, since diπ(y0,±QF ) > c/2,
y0 ∈ DŶ which cannot be true by construction.
The second scenario contradicts the maximality of y0.

• There exists x ∈ X̂ such that x = y0 − iγ + O(e− c
T ). By Hypothesis 3.1 (i), the shifted

singular roots are located in Int Cref \
⋃
σ=± DσQF ,c + iγ + iπZ and regular roots belong

to the exterior of{
Int Cref \

⋃
σ=±

DσQF ,c + iγ + iπZ
}
∪
{

Int Cref \
⋃
σ=±

DσQF ,c + iπZ
}
, (6.86)

while x ∈ Int Cref \
⋃
σ=± DσQF ,c. This leads to the chain of upper bounds

O(e−
c
T ) = diπ(y0 − iγ, x)

≥ min
{

diπ
(
y0 − iγ,Cref \

⋃
σ=±

DσQF ,c
)
,diπ

(
y0 − iγ,

⋃
σ=±

DσQF ,c
)}
≥ crefT , (6.87)

where Hypothesis 3.1 (i) and (ii) were used for the last bound. Clearly, (6.87) is a
contradiction.

Therefore, for T small enough, Re εc(y0) ≥ c > 0 cannot be true.

In case (ii), there is nothing else to do and y0 converges to a thermal 1-string. One may
then iterate the analysis for the remaining roots in Ŷ \{y0}. If kp = 0, following the notation
of Lemma 6.4, it holds that Ŷ(p) = {y0} and we restart the analysis with the subset Ŷ(p−1).
If kp > 0, there exists a unique y′ ∈ Ŷ(p), such that diπ(y0, y′+ iγ) < ςT , and in the notation
of Lemma 6.4 one identifies y′ = y1,p. Using the properties of the roots from Lemma 6.4 and
Hypothesis 3.2 (vii) along with Re εc(y0) = o(1), implying that for some ε > 0 it holds that
−o(1) < Im y0 <

γ
2 − ε, one infers from the quantisation condition for y0 (6.85) that

CT d ≤
∣∣ e− 1

T
εc(y0) sh(iγ + y′ − y0)

∣∣ ≤ C−1T−d (6.88)

for some constants C, d > 0. Since Re εc(y0) = o(1) it follows that | sh(iγ + y′ − y0)| ≥ e− 1
T
cT

with cT = o(1). Using the spacing bounds from Lemma 6.4, it is evident that y′ is a weakly
maximal root. One may then restart the reasoning above with the weakly maximal root and
is again faced with three possibilities,

(a) Re εc(y′) ≥ c > 0 ,

(b) Re εc(y′) = o(1) ,

(c) Re εc(y′) ≤ −c < 0 .

(a) is forbidden, since the exponentially small term occurring in the quantisation condi-
tion cannot be compensated by another term of the product. This can be shown analo-
gously to case (i) for the maximal root. The second case cannot be true since, as stated
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above, Re εc(y0) = o(1) implies −o(1) < Im y0 <
γ
2 − ε, and if Re εc(y′) = o(1) this implies

−o(1) < Im y′ < γ
2 − ε, which is in contradiction to diπ(y0, y′ + iγ) < ςT for 0 < γ < π

2 .
Knowing from Lemma 5.12 that Re εc(y′) ≤ −c < 0 is only possible if y′ ∈ Dε;iπ, case (c) can
be rejected with similar reasoning.

In case (iii), the term containing εc(y0) becomes exponentially large and has to be compen-
sated by another term on the right hand side, which approaches zero exponentially fast. One
way to compensate this term is to have x ∈ X̂ such that x = y0 + iγ+O(e− c

T ). The quantisa-
tion condition for x is given by inserting x into (6.18). However, this equation then contains
an exponentially small factor sh(iγ + y0 − x), which cannot be compensated by e− 1

T
εc(x), as

the latter decays to zero algebraically in T . This exponentially small contribution can thus
be only cancelled if x approaches a pole of the expression with exponential precision. Assume
there exists y ∈ Ŷr such that y = x + iγ + O(e− c

T ). Using Hypothesis 3.1 (i) it follows that
y − iγ /∈ D±QF ,c. Using the fact that 1 + e− 1

T
û(λ|Ŷ) has no roots in Cref − Cû, it follows that

x ∈ Int Cref \
⋃
σ=± DσQF ,c/2. Hence, taken that y − iγ ∈ C \

{
{Int Cref + iπZ}⋃σ=± DσQF ,c

}
,

one obtains

O(e−
c
T ) = diπ(y − iγ, x) ≥ d(x,Cref \

⋃
σ=±

DσQF ,c/2) . (6.89)

The definition of Cref ensures that

d(X̂,Cref \
⋃
σ=±

DσQF ,ε′) ≥ cT (6.90)

for some ε′ > 0 and c > 0 small enough and independent of N and T provided that 1/NT 4 is
small enough. For a more detailed consideration, we refer the reader to [15], Proposition 4.4
and 4.6. (6.89) is in contradiction to (6.90) for T , 1/NT 4 low enough. Another possibility to
compensate the exponentially large term is the existence of y ∈ ˆ̃

Ysg such that y = x + iγ +
O(e− c

T ) or y = x+ 2iγ + O(e− c
T ). The first case yields y0 = y − 2iγ which is a contradiction

to the maximality of y0, and the second case yields

O(e−
c
T ) = diπ(y − 2iγ, x) ≥ d(DŶ,DŶ − iγ) . (6.91)

This contradicts (6.24) for T small enough. Thus, the quantisation equation for the hole root
cannot be satisfied if x = y0 + iγ + O(e− c

T ).
The exponentially large driving term in (6.85) could also be compensated, if there existed

some y ∈ ˆ̃
Ysg such that y = y0 + O(e− c

T ). However, this is in contradiction to the repulsion
of roots, Hypothesis 3.2 (v).

Altogether, this means that the only possibility to compensate the exponentially large
term in (6.85) is the existence of y ∈ Ŷr t ˆ̃

Ysg such that y = y0 − iγ + O(e− c
T ).
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In the next step we consider the product of the subsidiary conditions for y0 and y1. y1
could be a regular or a shifted singular root. If y1 ∈ Ŷr \ {y0}, we obtain

1 = e−
1
T

(εc(y0)+εc(y1))
1∏
s=0


 ∏
y∈Ŷr\{y0,y1}

sh(iγ + y − ys)
sh(iγ − y + ys)


∏
x∈X̂

sh(iγ + ys − x)
sh(iγ + x− ys)



×

 ∏
y∈ ˆ̃
Ysg

sh(iγ + y − ys) sh(y − ys)
sh(iγ − y + ys) sh(2iγ + ys − y)


 · e−Φ̂(y0|Ŷ)−Φ̂(y1|Ŷ) . (6.92)

Again, we check the exponential function containing εc(y0) + εc(y1), and arrive at the three
cases

(i) Re εc(y0) + Re εc(y1) ≥ c > 0 ,

(ii) Re εc(y0) + Re εc(y1) = o(1) ,

(iii) Re εc(y0) + Re εc(y1) ≤ −c < 0 .

First, we want to reject (i). In this case the exponentially small term in the product cannot
be compensated by another term of the product, which is obtained with similar reasoning as
above and by using the repulsion property, Hypothesis 3.2 (v). If (ii) were true, y0 and y1
would form a sequence that converges to a 2-string for T → 0+. If (iii) were true, we would
continue iteratively until either we would arrive at a condition similar to (ii) and thus obtain
an r-string or the chain terminates due to the finiteness of Ŷ(s). This provides us with a set
of inequalities that must hold for the existence of the r-strings.

However, Lemma 5.12 states that, for 0 < γ < π
2 , Re εc(λ) < 0 if λ ∈ Dε;iπ and

Re εc(λ) > 0 if λ /∈ Dε;iπ, so necessarily the top of the string y0 has to satisfy y0 ∈ Dε;iπ
in order to form a string with length r > 1. But, using Lemma 6.6, for y0 ∈ Dε;iπ follows
Re ε(−)

c;2 (y0) > 0, which implies that conditions (ii) and (iii) cannot be met for T and 1/NT 4

small enough.

If y1 ∈ ˆ̃
Ysg we obtain, with y2 = y1 − iγ,

−1 = e−
1
T

(εc(y0)+εc(y1)+εc(y2))
2∏
s=0


 ∏
y∈Ŷr\{y0}

sh(iγ + y − ys)
sh(iγ − y + ys)


∏
x∈X̂

sh(iγ + y0 − x)
sh(iγ + x− y0)




×
∏

y∈ ˆ̃
Ysg\{y1}

(
−sh2(iγ + y − y1) sh(2iγ + y − y1)

sh2(iγ + y1 − y) sh(2iγ + y1 − y)
· sh(iγ + y − y0) sh(y − y0)

sh(iγ + y0 − y) sh(2iγ + y0 − y)

)

× e−Φ̂(y0|Ŷ)−Φ̂(y1|Ŷ)−Φ̂(y2|Ŷ) (6.93)

and we distinguish the cases

(i) Re εc(y0) + Re εc(y1) + Re εc(y2) ≥ c > 0 ,

(ii) Re εc(y0) + Re εc(y1) + Re εc(y2) = o(1) ,

(iii) Re εc(y0) + Re εc(y1) + Re εc(y2) ≤ −c < 0 .
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For the first scenario, the quantisation equation (6.93) has an exponentially small prefactor
that has to be compensated by some pole of the expression.

• There exists y ∈ Ŷr \ {y0} such that y − iγ = ys + O(e− c
T ) for s ∈ {1, 2}. However,

this leads to y = ys−1 + O(e− c
T ), which is a contradiction to the repulsion of roots,

Hypothesis 3.2 (v).

• There exists y ∈ ˆ̃
Ysg such that y− iγ = ys+O(e− c

T ) or y−2iγ = ys+O(e− c
T ) for s = 1.

For the first scenario we obtain

O(e−
c
T ) ≥ diπ(y1, y − iγ) ≥ diπ(DŶ;iπ + iγ,DŶ;iπ) , (6.94)

a contradiction to (6.24).
In the second scenario, the reasoning is similar and we find the upper bound

O(e−
c
T ) ≥ diπ(yk − iγ + 2iγ, y − iγ) ≥ diπ(DŶ + 2iγ,DŶ) , (6.95)

which again contradicts the spacing property (6.24).

• There exists x ∈ X̂ such that x+ iγ = ys+O(e− c
T ) for s ∈ {1, 2}. For s = 2 this implies

that x+ 2iγ = y1 + O(e− c
T ) which leads to

O(e−
c
T ) ≥ diπ(DŶ + 2iγ,DŶ + iγ) , (6.96)

contradicting the spacing property (6.24).
The possibility x + iγ = y1 + O(e− c

T ) cannot be immediately excluded. One proceeds
similarly to the proof of Lemma 6.5. Consider the quantisation equation for the hole
root x obtained from (6.18). The equation for x then contains an exponentially small
term, sh(iγ + y − y1), in the denominator. Analogously to the proof of Lemma 6.5, we
prove that this term cannot be compensated by shifted singular roots in the numerator.
Thus assume there exists y ∈ Ŷr such that y = x− i + ϑ2 with ϑ2 = O(e− c

T ) implying
that y = y1 − 2iγ + ϑ3, with ϑ3 = O(e− c

T ). It follows that x = y1 − iγ + ϑ1, where
ϑ1 = ϑ2 + ϑ3. Using Lemma A.3, there exist C > 0 and d ∈ N such that

C−1Tn <

∣∣∣∣ sh(iγ + y − x)
sh(iγ + x− y1)

∣∣∣∣ < CT−n (6.97)

and

C−1Tn e−
1
T
cT <

∣∣∣∣e− 1
T

∑2
p=0 εc(yp) sh(2iγ + y − yk)

sh(iγ + x− yk)

∣∣∣∣ < CT−n . (6.98)

Thus, for some other constant C̃ > 0,

C̃−1T d <

∣∣∣∣ϑ2
ϑ1

∣∣∣∣ < C̃T−d and C̃−1T d e−
1
T
cT <

∣∣∣∣e− 1
T

∑2
p=0 εc(yp) ϑ3

ϑ1

∣∣∣∣ < C̃T−d .

(6.99)

Using ϑ3 = ϑ2 + ϑ1, the first inequality implies∣∣∣∣ϑ3
ϑ1

∣∣∣∣ ≤ ČT−d . (6.100)

However, this is in contradiction to the second equality for T, 1/NT 4 → 0+ due to
Re εc(y0) + Re εc(y1) + Re εc(y2) ≥ c > 0.
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For case (ii) and (iii), note that, as y2 ∈ DŶ \ D− iγ
2 ,ε

mod iπ, it holds that Re εc(y2) =
O(−T lnT ). From the condition Re εc(y0) ≤ c < 0 follows, using Lemma 5.12, that y0 ∈ Dε;iπ.
However, applying Lemma 6.6, it holds that Re ε(−)

c;2 (y0) > 0. Combining these arguments,
we conclude that

Re εc(y0) + Re εc(y1) + Re εc(y2) ≥ c̃ > 0 (6.101)

for some c̃ > 0 and T , 1/NT 4 low enough. Hence, conditions (ii) and (iii) cannot be fulfilled
for T and 1/NT 4.

This allows us to conclude that strings of length r ≥ 2 cannot exist. Combining this
with the statement that maximal roots are always regular, we have also proved Ŷsg = ∅.
This entails the claim of the theorem, namely that the elements of the solution set Ŷ to the
quantisation conditions are of the form (6.27) and (6.28).

6.3 Conjecture for −1 < ∆ < 0

Based on the analysis of the previous section, we formulate a conjecture for the case π/2 <
γ < π.

Conjecture 6.7. Let π/2 < γ < π, s ∈ Z and û(λ|Ŷ) the solution to the non-linear integral
equation (6.1) and the monodromy condition (6.2). Ŷ = Ŷ ⊕ Ŷsg 	 X̂ shall be defined as
in (6.3)-(6.6) and X̂ and Ŷ shall satisfy Hypothesis 3.1 and Hypothesis 3.2 and fulfil s =
|X̂|− |Ŷ|− |Ŷsg|, where |X̂|, |Ŷ| and |Ŷsg| are bounded for T , 1/NT 4 small. 1 = r1 < . . . < rp
denote the possible string lengths.

Then, there exist T0, η small enough such that, for all T0 > T > 0 and η > 1/NT 4 the
elements of X̂ and Ŷ may be represented as

X̂ = {x̂1, . . . , x̂n} and Ŷ =
{{
{y(rk)
a;` }

rk−1
`=0

}nrk
a=1

}p
k=1

(6.102)

in which

Re εc(x̂a) = o(1) for a = 1, . . . , |X̂| , (6.103)

for T, 1/NT 4 → 0+, and

ŷ
(rk)
a;` = ŷ

(rk)
a;0 − `iγ + O(e−

c
T ) , ` = 1, . . . , rk − 1 , (6.104)

with c > 0 and ŷ(rk)
a;0 satisfies

Re ε(−)
c;` (ŷ(rk)

a;0 ) < −c`,rk for ` = 1, . . . , rk − 1 and Re ε(−)
c;rk(ŷ(rk)

a;0 ) = o(1) (6.105)

for T, 1/NT 4 → 0+, for some constants c`,rk > 0 and with ε(−)
c;` (λ) as defined in (6.26).

For the range π/2 < γ < 2π/3, it holds that rk ≤ 2, namely that strings that could appear
in this regime have a length of at most 2.
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Some parts of the proof of the above conjecture already exist, as they are transferable
from the case γ ∈ (0, π/2). In particular, this includes the construction of the strings and the
corresponding preliminary work, Lemma 6.4 and Lemma 6.5. The construction of the strings
is analogous to the methodology in the proof of Theorem 6.2. This general construction
can be found in [15], Lemma 6.9-6.11. Three different types of strings are obtained: Strings
consisting of regular roots, strings consisting of regular roots and ending on a singular root
and strings consisting of regular roots and containing a singular root inside.

Other parts of the proof are still missing, mainly the proof of the existence and uniqueness
of solutions to the non-linear integral equation (3.51). One of the main ingredients missing
to prove a theorem such as Theorem 3.3 for γ ∈ (π/2, π) is a full characterisation of the map
ε, in particular whether ε is a double covering map or not, as in Proposition 5.9.

However, with knowledge of the properties of ε and εc in Section 5.4 and Section 5.5,
we can already make statements about the satisfiability of the string condition in the case
γ ∈ (π/2, 2π/3).

With a few observations one can conclude that the condition necessary for the existence
of strings (6.25) can be fulfilled for strings of length r = 2. Rewrite the analytic continuation
(6.77) of ε(−)

c;2 (λ) as

ε
(−)
c;2 (λ) = ε(λ) + ε(λ+ i(π − γ))− ε(λ− i(π − γ))1

λ−i(π−γ)∈D(↓)
ε;iπ
− ε(λ)1

λ∈D(↓)
ε;iπ

+ ε(λ+ i(π − γ))1
λ+i(π−γ)∈D(↓)

ε;iπ
+ ε(λ+ 2i(π − γ))1

λ+2i(π−γ)∈D(↓)
ε;iπ

(6.106)

where D(↓)
ε;iπ is defined as in (5.184)-(5.186). Observe, that ε(λ + i(π − γ)) has poles at

λ1 = i(−π + 3γ/2), λ2 = iγ/2. For γ ∈ (π/2, 2π/3) one obtains

−γ/2 < −π + 3γ/2 < 0, (6.107)

implying this pole is located in D(↓)
ε . We remind that for Reλ→∞⇒ Re ε(λ)→ h and thus

Re ε(−)
c;2 (λ)→ 2h for Reλ→ ±∞. Using the change of sign at the pole, Re ε(λ1±i0+i(π−γ)) =

±∞, we conclude that there must exist zeros of the function Re ε(−)
c;2 (λ) for λ ∈ D(↓)

ε;iπ and
Imλ ∈ (−γ/2,−π+ 3γ/2). Set λ ∈ D(↓)

ε;iπ and Imλ ∈ (−γ/2,−π+ 3γ/2). Then, Re ε(−)
c;2 (λ) is

Re ε(−)
c;2 (λ) = 2Re ε(λ+ i(π − γ)) . (6.108)

Theorem 5.11 (iii) and (iv) in combination with the implicit function theorem suggest that, for
π/2 < γ < 2π/3, Re ε(λ+i(π−γ)) = 0 forms at least one smooth and simply connected curve.
In particular, the function x(−)

2 7→ Re ε(−)
c;2 (x(−)

2 + iy) has, for every y in some restricted range
y ∈ (y0,−π+ 3γ

2 ), −γ
2 < y0, at least one simple positive zero x(−)

2 (y). This is a mathematically
rigorous argument implying that the condition

Re ε(−)
c;1 (λ) = Re εc(λ) < 0 , and Re ε(−)

c;2 (λ) = 0 (6.109)

can be satisfied for π/2 < γ < 2π/3.

Numerics suggests that there exists only one unique simple zero x(−)
2 (y), which is illus-

trated in Figure 6.1 and Figure 6.2. Furthermore, it suggests that there are no other zeros
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Figure 6.1: Re ε(−)
c;2 (x + iy) for various values of y with J = 1, γ = 2, h = 0.65hc ≈ 1.51.

The function x 7→ Re ε(−)
c;2 (x+ iy) is strictly positive in the range −π + 3γ

2 < y < γ
2 (red) has

zeros in the range −γ
2 < y0 < y < −π + 3γ

2 (blue). The zeros are simple and unique on R+

and R−.

of Re ε(−)
c;2 (λ) in Dε;iπ, in particular that Re ε(−)

c;2 (λ) < 0 for λ ∈ D(↓)
ε;iπ and “below” the curve

x
(−)
2 (y) and Re ε(−)

c;2 (λ) > 0 for λ ∈ Dε;iπ and “above” the curve x(−)
2 (y), as depicted in Fig-

ure 6.2.

For γ ∈ (π/2, 2π/3), the strings are constructed similarly to the case γ ∈ (0, π/2). From
(6.92) follows, that the top of a 2-string has to satisfy

ε
(−)
c;2 (λ) = 2iπn for n ∈ Z . (6.110)

Numerically, the tops of the strings can be determined by finding the intersection of the
curves Re ε(−)

c;2 (λ) = 0 and Im ε
(−)
c;2 (λ) = 2πn, as depicted in Figure 6.2. Note that n = 0

is not possible, since Im ε(λ + i(π − γ)) = 0 is, due to the properties of the kernel K, only
possible if Imλ+ (π− γ) = 0 - a condition that cannot be satisfied for Imλ ∈ (−γ

2 ,−π+ 3γ
2 ).

For the next step, we check if the string condition (6.25) can hold for the top of a string
of length 3, namely

Re εc(λ) < 0 , Re ε(−)
c;2 (λ) < 0 and Re ε(−)

c;3 (λ) = 0 . (6.111)

Based on the previous analysis, this condition can only be met for λ ∈ D(↓)
ε;iπ and Imλ ∈

(−γ/2,−π + 3γ/2). Using the representation (6.77) in order to rewrite Re ε(−)
c;3 with ε, one

gets

Re ε(−)
c;3 (λ) = Re ε(λ− iγ) + Re ε(λ− 2iγ) + Re ε(λ− 3iγ)1

λ−3iγ∈D(↓)
ε;iπ

(6.112)
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Figure 6.2: Numerical results for possible string tops for strings with length 2 with J = 1,
γ = 2, h = 0.65hc ≈ 1.51. In order to satisfy the string condition, one must find Re ε(−)

c;2 (λ) =
0 where Re εc(λ) < 0. The encircled ± denote the sign of Re εc(λ) (blue) and Re ε(−)

c;2 (λ)
(red) in the respective domain. The possible string tops are located at the intersections of
the curves Re ε(−)

c;2 (λ) = 0 and Im ε
(−)
c;2 (λ) = 2πn.

for λ ∈ D(↓)
ε;iπ and Imλ ∈ (−γ/2,−π + 3γ/2). It can be easily inferred that the first term is

negative, the second term is positive and the third term is either zero or negative. None of the
terms has poles in the considered regime. With the methods previously used to estimate the
sign of a sum of ε with shifted arguments, it is not possible to estimate the sign of Re ε(−)

c;3 (λ).

However, numerical calculations suggest that Re ε(−)
c;3 (λ) is positive for λ ∈ D(↓)

ε;iπ and
Imλ ∈ (−γ/2,−π + 3γ/2), as depicted in Figure 6.3. This in turn implies that for γ ∈
(π/2, 2π/3) the string condition may only be fulfilled for strings of length 2.

98



6.3. Conjecture for −1 < ∆ < 0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

4.0

4.5

5.0

5.5

6.0

R
e
ε(−

)
c
;3

(x
+

iy
)

-1.0 = −γ
2

-0.94

-0.89

-0.83

-0.77

-0.71

-0.66

-0.6

-0.54

-0.48

-0.43

-0.37

-0.31

-0.26

-0.2

-0.14 = −π + 3γ
2

3h

Figure 6.3: Re ε(−)
c;3 (x + iy) for various values of y in the range −γ

2 < y < −π + 3π
2 with

J = 1, γ = 2, h = 0.65hc ≈ 1.51. This is the only range in which Re ε(−)
c;2 (x+ iy) may become

negative. Since Re ε(−)
c;3 (x+ iy) is strictly positive in this domain, the string condition (6.25)

is not satisfied for strings of length ≥ 3.
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7 Low-temperature behaviour of
physical observables

In the previous chapter we have established that string-type excitations and singular roots
do not occur for 0 < ∆ < 1 and that the solutions to the higher level Bethe Ansatz equations
come close to the curve Re ε(λ) = 0. In this chapter, we derive a low-T expansion up to
quadratic order in T for these solutions. Based on their low-temperature behaviour, we
classify these roots in close and far roots. We analyse the eigenvalues for low temperatures,
which determine the correlation lengths (2.28) and identify the configuration belonging to
the eigenvalue of largest modulus. The results are compared with results from the conformal
field theory for free massless Bosons with central charge c = 1.

7.1 Low-temperature behaviour of particle and hole roots

In this section, the first three terms of the low-T expansion of the particle and hole roots in
the infinite Trotter number limit, ya ∈ Y and xa ∈ X, are obtained. The function u(λ|Y) and
the sets X, Y are as defined in Section 6.1. Both types of roots are located in a neighbourhood
of the curve Re ε(λ) = 0. Since ε is a double covering map on Uε = Sγ(QF ) \ {0, iπ

2 }, as it is
stated in Proposition 5.9, it is convenient to split the curve into two parts Γ(α)

ε ,

Γ(α)
ε = {z ∈ Uα;ε|Re ε(z) = 0} , (7.1)

where UL;ε and UR;ε are given in (5.147) and (5.148). The hole and particle roots satisfying
the quantisation conditions (6.7) and (6.8) and are located close to Γ(L)

ε , respectively Γ(R)
ε

are divided into a left and right part such that X = X(L) ∪ X(R) and Y = Y(L) ∪Y(R) with

X(α) = {x(α)
a }

|X(α)|
a=1 and Y(α) = {y(α)

a }
|Y(α)|
a=1 for α ∈ {L,R} . (7.2)

The hole and particle roots x(α)
a and y

(α)
a close to Γ(L)

ε , respectively Γ(R)
ε , (compare Theo-

rem 6.2) are solutions to

u(x(L)
a |Y) = 2πiT (h(L)

a + 1
2) and u(y(L)

a |Y) = −2πiT (p(L)
a + 1

2) , (7.3)

respectively to

u(x(R)
a |Y) = −2πiT (h(R)

a + 1
2) and u(y(R)

a |Y) = 2πiT (p(R)
a + 1

2) , (7.4)

with h(α)
a , p

(α)
a ∈ N.
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Figure 7.1: An example of a particle-hole configuration with J = 1, γ = 2, h = 2 ≈ 0.39hc,
T = 0.2. The hole roots x(α)

a and particle roots y(α)
a are numerically obtained by solving (7.3)

and (7.4) with quantum numbers h(α)
a and p(α)

a .

The hole and particle roots admit the low-T asymptotic expansions

x(α)
a '

∑
k≥0

x
(α)
a;kT

k and y(α)
a '

∑
k≥0

y
(α)
a;kT

k . (7.5)

The coefficients can be computed order by order by inserting these expansions into the quan-
tisation conditions (7.3) and (7.4) and by using the low-T expansion (4.40) of u(λ|Y). For
the leading term one obtains

x
(α)
a;0 = ε−1

α (−υα2πiT (h(α)
a + 1

2)) and y
(α)
a;0 = ε−1

α (υα2πiT (p(α)
a + 1

2)) , (7.6)

where υL = −1 and υR = +1 and εα = ε
∣∣
Uα;ε

: Uα;ε → ε(Uα;ε) as introduced in Proposi-
tion 5.9. A Taylor expansion yields the first order terms

x
(α)
a;1 = −

u1(x(α)
a;0 |Y0)

ε′(x(α)
a;0 )

and y
(α)
a;1 = −

u1(y(α)
a;0 |Y0)

ε′(y(α)
a;0 )

(7.7)

where

Y0 =
{
{y(L)
a;0 }

|Y(L)|
a=1 ∪ {y(R)

a;0 }
|Y(R)|
a=1

}
	
{
{x(L)

a;0 }
|X(L)|
a=1 ∪ {x

(R)
a;0 }

|X(R)|
a=1

}
. (7.8)
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In the second order we obtain

x
(α)
a;2 = −

ε′′(x(α)
a;0 )

2ε′(x(α)
a;0 )

(x(α)
a;1 )2 −

u′1(x(α)
a;0 |Y0)

ε′(x(α)
a;0 )

x
(α)
a;1 −

u2(x(α)
a;0 |Y0)

ε′(x(α)
a;0 )

− 1
ε′(x(α)

a;0 )

∑
β∈{L,R}

|X(β)|∑
b=1

(∂
x

(β)
b

u1(z|Y))x(β)
b;1 +

|Y(β)|∑
b=1

(∂
y

(β)
b

u1(z|Y))y(β)
b;1

 ∣∣∣∣
Y=Y0, z=x(α)

a;0

(7.9)

and

y
(α)
a;2 = −

ε′′(y(α)
a;0 )

2ε′(y(α)
a;0 )

(y(α)
a;1 )2 −

u′1(y(α)
a;0 |Y0)

ε′(y(α)
a;0 )

y
(α)
a;1 −

u2(y(α)
a;0 |Y0)

ε′(y(α)
a;0 )

− 1
ε′(y(α)

a;0 )

∑
β∈{L,R}

|X(β)|∑
b=1

(∂
y

(β)
b

u1(z|Y))x(β)
b;1 +

|Y(β)|∑
b=1

(∂
y

(β)
b

u1(z|Y))y(β)
b;1

 ∣∣∣∣
Y=Y0, z=y(α)

a;0

.

(7.10)

For low temperatures we distinguish two different types of roots. The so-called “far” roots
are roots with quantum numbers h(α)

a , p(α)
a scaling with T such that Th(α)

a and Tp(α)
a approach

some fixed real number in the low-T limit. For T → 0+, these far roots condense densely
on the curve Re ε(λ) = 0. The so-called “close” roots are those with quantum numbers h(α)

a ,
p

(α)
a not scaling with T and thus they collapse into the Fermi points ±QF in the low-T limit.

We denote the close roots with indices ± and the far roots with fL, fR such that

X(L) = X(fL) ⊕ X(−) and X(R) = X(fR) ⊕ X(+) , (7.11)
Y(L) = Y(fL) ⊕Y(−) and Y(R) = Y(fR) ⊕Y(+) , (7.12)

where

X(α) = {x(α)
a }

n
(α)
h
a=1 and Y(α) = {y(α)

a }
n

(α)
p

a=1 for α ∈ {−,+, fL, fR} . (7.13)

n
(α)
h and n(α)

p denote the cardinalities of the sets X(α) and Y(α) for α ∈ {−,+, fL, fR}. For
the close roots, the leading order term (7.6) reduces to υαQF . For the close roots one can
expand the leading order terms x(α)

a;0 and y(α)
a;0 in T and find a more explicit low-T expansion

x(α)
a = υαQF −

2πiT
ε′(υαQF )

(
h(α)
a + 1

2 + υα
u1(υaQF |Y(far)

0 )
2πi

)
+ O(T 2) , (7.14)

y(α)
a = υαQF + 2πiT

ε′(υαQF )

(
p(α)
a + 1

2 − υα
u1(υaQF |Y(far)

0 )
2πi

)
+ O(T 2) , (7.15)

with

Y(far)
0 = Y0

∣∣
x

(±)
a;0 =±QF ,y(±)

a;0 =±QF
. (7.16)

Introduce the difference of close particle and hole roots

`(σ) = σ(n(σ)
p − n

(σ)
h ) with σ = ± . (7.17)
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Figure 7.2: The low-T asymptotic expansion (7.5) in leading and next-leading order and
the explicit low-T expansion (7.14), (7.15) for a configuration with one hole (�) and one
particle (•) for varying temperature with p(R)

1 = 0, h(R)
1 = 0, γ = 1.3, h = 2 ≈ 0.39hc J = 1.

On the left hand side, T goes from 0.001 to 0.2 in 20 linear steps, on the right hand side T
takes on values from 0 to 0.002 in 20 linear steps. The darker the colour of the data points,
the lower the temperature.

In the upcoming analysis it is useful to gather the “macroscopic” data in the set

Y(far) = Y(fL) ⊕Y(fR) 	 X(fL) 	 X(fR) ⊕ {QF }⊕`
(+) ⊕ {−QF }⊕−`

(−)
, (7.18)

and one can see that

u1(λ|Y) = u1(λ|Y(far)) + O(T ) . (7.19)

7.2 The eigenvalues for low temperatures

The form factor representations (2.26) and (2.30) of two-point correlation functions are com-
posed of amplitudes and eigenvalue ratios of the form

lim
N→∞

Λ̂n(0)
Λ̂0(0)

, lim
N→∞

(
Λ̂n(Jt sin(γ)

N ) Λ̂0(−Jt sin(γ)
N )

Λ̂0(Jt sin(γ)
N ) Λ̂n(−Jt sin(γ)

N )

)N
. (7.20)

In this section we want to analyse these eigenvalue ratios for low temperatures and compare
them with the results from conformal field theory.
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Recall the equation for the eigenvalue expressed in terms of the non-linear problem (2.68).
One may rewrite this equations in terms of the solution (û(∗|Ŷ), X̂, Ŷ) of the non-linear
problem with respect to the contour Cû as introduced in Section 6.1 by

ln Λ̂(λ|û(∗|Ŷ), X̂, Ŷ) = h

2T +
∑

µ∈Ŷ⊕Ŷsg	X̂

ip0(µ− λ) + imp0(κ − λ)

−
�

Cû

dµ
2π p

′
0(µ− λ) LnCu(1 + e−

1
T
û)(µ|Ŷ) (7.21)

with the bare momentum p0 as given in (2.69). In order to do so, we first rewrite (2.67) with
respect to the contour Cref and then deforms Cref to Cû, which is allowed since Cû satisfies
Properties 4.1.

For the infinite Trotter number limit of an eigenvalue associated with (û(∗|Ŷ), X̂, Ŷ) it
holds that

lim
N→∞

Λ̂(0|û(∗|Ŷ), X̂, Ŷ) = Λ(0|u(∗|Y),X,Y) = e
h

2T · eiP(Y) , (7.22)

where

P(Y) =
∑
y∈Yκ

p0(y)−
�

Cu

dλ
2πi p

′
0(λ) LnCu(1 + e−

1
T
u)(λ|Y) , (7.23)

where we remind that Yκ = Y⊕ {κ}⊕m. Furthermore, it holds that

lim
N→∞

(
Λ̂(Jt sin γ

N |û(∗|Ŷ), X̂, Ŷ)
Λ̂(−Jt sin γ

N |û(∗|Ŷ), X̂, Ŷ)

)N
= eitE(Y) (7.24)

with

E(Y) =
∑
y∈Yκ

ε0(y)−
�

Cu

dλ
2πi ε

′
0(λ) LnCu(1 + e−

1
T
u)(λ|Y) . (7.25)

ε0 is the bare energy as defined in (2.70).
We want to analyse the low-T limit of P and E. In order to do so, we first establish

Proposition 7.1. Let g′ be a function which is meromorphic in an open neighbourhood of Cu
and define the function f ′c as the unique solution to the linear integral equation

f ′c(λ) = g′(λ)− lim
α→0−

�
Cε

dµK(λ− µ)f ′c(µ+ iα) (7.26)

and its antiderivative by

fc(λ) = g(λ)− lim
α→0−

�
Cε

dµ
2π θ(λ− µ)fc(µ+ iα) . (7.27)

g is an iπ-periodic, meromorphic function on C \ Γg;cut where Γg;cut denotes the cuts of g in
C. g shall have at most one single pole at − iγ

2 in the neighbourhood of Cu. θ is an iπ periodic
and odd function on C \Γθ;cut, and thus one may continue fc to an iπ-periodic, meromorphic
function on C \ Γfc;cut.
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Proposition 7.1. Low-T expansion of an auxiliary quantity [15]. Let Cu, X, Y and u(λ|Y)
be as introduced in Section 6.1 for infinite Trotter number and g′ and g as defined in (7.26)
and (7.27). Then, the quantity

G(Y) =
∑
y∈Yκ

g(y)−
�

Cu

dλ
2πi g

′(λ) LnCu(1 + e−
1
T
u)(λ|Y) (7.28)

admits the low-T expansion

G(Y) = 1
T
G−1 + G0(Y) + TG1(Y) + O(T 2) , (7.29)

with

G−1 = − lim
α→0−

�
Cε

dµ
2πi εc(µ+ iα)g′(µ+ iα) , (7.30)

G0(Y) =
∑
y∈Y

fc(y) + s

2(fc(QF )− fc(−QF )) (7.31)

and

G1(Y) =
∑
σ=±

σf ′c(σQF )
4πiε′c(σQF )

(
(u1(σQF |Y))2 + π2

3

)
. (7.32)

Proof. First, we apply Lemma 4.3 to recast G(Y) as

G(Y) =
∑
y∈Y

g(y)− lim
α→0−

�
Cε

dµ
2πiT g′(µ+ iα)u(µ+ iα|Y)−

� q
(+)
u

QF

dµ
2πiT g′(µ)u(µ|Y)

−
� −QF
q

(−)
u

dµ
2πiT g′(µ)u(µ|Y)−

�
Cu

dµ
2πi g

′(µ) ln
(
1 + e−

1
T
|u|(µ|Y)

)
. (7.33)

Expanding the integrands around the zeros q(±)
u of u(λ|Y), we obtain

� q
(+)
u

QF

dµ
2πi g

′(µ)u(µ|Y) +
� −QF
q

(−)
u

dµ
2πi g

′(µ)u(µ|Y)

= 1
4πig

′(q(−)
u )u′(q(−)

u |Y)
(
q(−)
u +QF

)2
− 1

4πig
′(q(+)

u )u′(q(+)
u |Y)

(
q(+)
u −QF

)2

+ O
(
(QF + q(−)

u )3
)

+ O
(
(QF − q(+)

u )3
)

= −T 2 ∑
σ=±

σg′(σQF )
4πiε′c(σQF )(u1(σQF |Y))2 + O(T 3) , (7.34)

where the low-T expansion (4.41) of q(±)
u is used for the second equality. Furthermore, it

follows from (4.13) that
�

Cu

dµ
2πi g

′(µ) ln
(
1 + e−

1
T
|u|(µ|Y)

)
= −Tπ

2

3
∑
σ=±

σg′(σQF )
4πiε′c(σQF ) + O(T 2) . (7.35)
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For the remaining integral in (7.34), insert the low-T expansion (4.40) of u(λ|Y) up to the
second order in T and G−1 takes the form claimed in (7.30). We find

G1(Y) = 1
4πi

∑
σ=±

σ

ε′c(σQF )

(
(u1(σQF |Y))2 + π2

3

)

×
(
g′(σQF )− lim

α→0−

�
Cε

dµ
2πiRc(µ, σQF )g′(µ+ iα)

)
, (7.36)

where the right term is equal to f ′c(σQF ) and G1(Y) takes the form claimed in (7.32). It
remains to consider

G0(Y) =
∑
y∈Y

g(y)− lim
α→0−

�
Cε

dµ
2πig

′(µ+ iα)u1(µ|Y) . (7.37)

To transform the integral, write the dressed charge and the dressed phase in terms of the
resolvent, namely

Zc(λ) = (id−R̂c)[1](λ) and φc(λ, µ) = (id−R̂c)
[
θ(∗ − µ)

2π

]
(λ) (7.38)

where id−R̂c is the inverse integral operator to id +K̂Cε and thus
�

Cε

dµ
2πig

′(µ+ iα)u1(µ|Y) = − s

2

�
Cε

dµ g′(µ)(id−R̂c)[1](µ)

−
∑
y∈Y

�
Cε

dµ g′(µ+ iα)(id−R̂c)
[
θ(∗ − y)

2π

]
(µ)

= − s

2 lim
α→0−

�
Cε

dµ f ′c(µ+ iα)−
∑
y∈Y

lim
α→0−

�
Cε

dµ
2π f

′
c(µ)θ(µ− y)

= − s

2(fc(QF )− fc(−QF )) +
∑
y∈Y

(g(y)− fc(y)) . (7.39)

To obtain the second equality, we use the fact that the resolvent kernel is a symmetric function
and thus the action of the resolvent can be moved onto g′ in the integrand. The last equality
is obtained by explicitly evaluating the integral on the left hand side and inserting (7.27)
for the integral on the right hand side. Altogether, this entails that G(Y) takes the low-T
expansion claimed in the proposition.

Using Proposition 7.1 with g = p0 and fc = pc, we get the low-T expansion of P(Y),
namely

P(Y) = − 1
T

� QF

−QF

dµ
2πi εc(µ)p′0(µ) +

∑
y∈Y

pc(y) + s

2(pc(QF )− pc(−QF ))

+ T
∑
σ=±

σp′c(σQF )
4πiε′c(σQF )

(
(u1(σQF |Y))2 + π2

3

)
+ O(T 2) , (7.40)

where the integration contour Cε has been deformed to [−QF , QF ] for the first term which
we define as 1

T P−1. We proceed to rewrite the other terms. Recall the separation of X and
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Y into close and far roots, (7.11) and (7.12). Then

∑
y∈Y(−)⊕Y(+)

	X(−)	X(+)

pc(y) ≈ n(−)
p pc(−QF ) + n(+)

p pc(QF )− n(−)
h pc(−QF )− n(+)

h pc(QF )

= `(+)pc(QF )− `(−)pc(−QF ) (7.41)

and thus, using that pc is odd,

∑
y∈Y

pc(y) + s

2(pc(QF )− pc(−QF ))

=
∑

y∈Y(fL)⊕Y(fR)

	X(fL)	X(fR)

pc(y) + (`(−) + `(+) + s)pc(QF ) .= P0(Y(far)) . (7.42)

Define

$1(H) = 2πi
vF

∑
σ=±

∑
α∈H(σ)

(
α+ 1

2

)
, (7.43)

where H denotes the set of close root quantum numbers,

H =
⋃
σ=±

H(σ) with H(σ) = {p(σ)
a }

n
(σ)
p

a=1 ∪ {h
(σ)
a }

n
(σ)
h
a=1 , (7.44)

and vF is the Fermi velocity defined by

vF = ε′c(QF )
p′c(QF ) . (7.45)

For the O(T )-term, use (7.19) and the (anti-)symmetry of εc and pc to rewrite

∑
σ=±

σp′c(σQF )
4πiε′c(σQF )

(
(u1(σQF |Y))2 + π2

3

)

= 1
4πivF

∑
σ=±

(
u1(σQF |Y(far))

(
(u1(σQF |Y(far))− 4πi`(σ)

)
+ π2

3

)
+$1(H) . (7.46)

We set the first term on the right-hand side of (7.46) to P1(Y(far)). Thus, P(Y) admits the
low-T expansion

P(Y) = 1
T
P−1 + P0(Y(far)) + T

(
P1(Y(far)) +$1(H)

)
+ O(T 2) . (7.47)

Similarly, we find the low-T expansion of E(Y),

E(Y) = 1
T
E−1 + E0(Y(far)) + T

(
E1(Y(far)) + ς1(H)

)
+ O(T 2) , (7.48)
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with

E−1 = −
� QF

−QF

dµ
2πi εc(µ)ε′0(µ) , (7.49)

E0(Y(far)) =
∑

y∈Y(fL)⊕Y(fR)

	X(fL)	X(fR)

εc(y) , (7.50)

E1(Y(far)) = 1
4πi

∑
σ=±

u1(σQF |Y(far))
(
u1(σQF |Y(far))− 4πi`(σ)

)
, (7.51)

ς1(H) = 2πi
∑
σ=±

σ
∑

α∈H(σ)

(
α+ 1

2

)
. (7.52)

The result (7.47) allows us to identify the root configuration Y that gives rise to the
eigenvalue of largest modulus. To do so, we determine the configuration minimising the
imaginary parts of P0(Y(far)) and P1(Y(far)) +$1(H). We do this in two steps. First we find
the configuration of far roots that minimises Im P0(Y(far)) and then we fix the configuration
of close roots by minimising Im [P1(Y(far)) +$1(H)].

Proposition 7.2. The configuration Y minimising ImP(Y) [15]. Im P0(Y(far)) is minimal
for

Y(fL) = Y(fR) = X(fL) = X(fR) = ∅ , (7.53)

i.e. when there are no far roots. If (7.53) holds, Im [P1(Y(far)) +$1(H)] is minimal for

n(−)
p = n(+)

p = n
(−)
h = n

(+)
h = 0 and s = 0 , (7.54)

i.e. when there are no close roots and the spin is zero. For this minimising configuration it
thus holds that Y = ∅ and

P(∅) = 1
T
P−1 − T

πi
6vF

+ O(T 2) . (7.55)

Proof. To simplify the minimisation, it is convenient to rewrite (7.47). First note that the
configuration minimising Im$1(H) is the fully packed one, meaning that p(σ)

a = a − 1 for
a = 1, . . . , n(σ)

p and h(σ)
a = a− 1 for a = 1, . . . , n(σ)

h such that (7.44) takes the form

Hmin =
⋃
σ=±

H(σ)
min with H(σ)

min = {a− 1}n
(σ)
p

a=1 ∪ {a− 1}n
(σ)
h
a=1 . (7.56)

For the fully packed configuration, we can rewrite (7.43) as

$1(Hmin) = iπ
vF

∑
σ=±

(
(n(σ)
p )2 + (n(σ)

h )2
)
. (7.57)

Next, we explicitly rewrite u1(λ|Y(far)) using the definition of Y(far) from (7.18),

u1(λ|Y(far)) = −iπsZc(λ)− 2πi`(+)φc(λ,QF ) + 2πi`(−)φc(λ,−QF )
− 2πi

∑
y∈Y(fL)⊕Y(fR)

	X(fL)	X(fR)

φc(λ, y) . (7.58)
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We use the monodromy condition

`(+) − `(−) = |X(fL)|+ |X(fR)| − |Y(fL)| − |Y(fR)| − s (7.59)

and the identities [29]

Zc(QF ) = 1 + φc(QF , QF )− φc(QF ,−QF ) , (7.60)
1

Zc(QF ) = 1 + φc(QF , QF ) + φc(QF ,−QF ) (7.61)

as well as the symmetry

φc(λ, µ) = −φc(−λ,−µ) (7.62)

and obtain

u1(σ|Y(far)) = u(σ)(Y(far)) + 2πi
(
`(σ) − `(−)Zc(QF ) + σs

2Zc(QF )

)
, (7.63)

where

u(+)(Y(far)) = −2πi
∑

y∈Y(fL)⊕Y(fR)

	X(fL)	X(fR)

(φc(QF , y)− φc(QF , QF )− 1) , (7.64)

u(−)(Y(far)) = −2πi
∑

y∈Y(fL)⊕Y(fR)

	X(fL)	X(fR)

(φc(−QF , y)− φc(−QF , QF )) . (7.65)

With (7.63) we can reorganise the O(T ) term in (7.47) as

P1(Y(far)) +$1(H) = P1(Y(far)) + Π1(H) (7.66)

with

P1(Y(far)) = πi
vF

∑
σ=±

(
u(σ)(Y(far))

2πi − 2`(−)Zc(QF ) + σs

Zc(QF )

)
u(σ)(Y(far))

2πi , (7.67)

and

Π1(H) = 2πi
vF

(
− 1

12 + Z2
c (QF )(`(−))2 + s2

4Z2
c (QF ) +

∑
σ=±

n(σ)
p n

(σ)
h

)
+$1(H)−$1(Hmin) .

(7.68)

The low-T expansion of P(Y) is now in the form

P(Y) = 1
T
P−1 + P0(Y(far)) + T

(
P1(Y(far)) + Π1(H)

)
+ O(T 2) . (7.69)

For |Imλ| < γ
2 it holds that pc(λ) = p(λ) and

Im p(λ) > 0 for 0 < Imλ <
π

2 and Im p(λ) < 0 for − π

2 < Imλ < 0 . (7.70)

Thus, the terms occurring in the sum in (7.42) are all positive and the configuration that
minimises P0(Y(far)) is the one in which there are no far roots, as stated in the proposition.
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For such a configuration Y(far) reduces to Y(far) = {QF }⊕`
(+)⊕{−QF }⊕−`

(−) and furthermore
P1(Y(far)) = 0 such that, for T low enough,

Im
(
P(Y)− 1

T
P−1

)
≥ Im

(
P(Ymin)− 1

T
P−1

)
= − πT6vF

+ 2πT
vF

(
Z2
c (QF )(`(−))2 + s2

4Z2
c (QF ) +

∑
σ=±

n(σ)
p n

(σ)
h

)
+ O(T 2) . (7.71)

Here Ymin denotes the configuration of hole and particle roots X and Y minimising the right
hand side of (7.71), namely a configuration without far roots and with “fully packed” close
roots corresponding to the quantum numbers (7.56).

The terms in the brackets on the right hand side of (7.71) are all positive, and the right
hand side is minimal for `(−) = 0, s = 0 and n(σ)

p n
(σ)
h = 0. Without far roots, the monodromy

condition (7.59) reduces to `(+)−`(−) = −s, implying that `(+) = 0 and thus n(±)
p = n

(±)
h = 0.

Thus, the configuration minimising ImP(Y) in the low-T limit is Y = ∅, as stated in the
proposition, and P(∅) is given by (7.55).

With Proposition 7.2 we have identified the eigenvalue Λ(0|u(∗|∅), ∅, ∅) of largest modu-
lus in the class of eigenvalues corresponding to configurations satisfying Hypothesis 3.1 and
Hypothesis 3.2. As a short-hand notation, we write Λ(0|u(∗|∅), ∅, ∅) ≡ Λ(0|∅).

For a conformal field theory with central charge c, the low-temperature expansion of the
free energy per lattice site for one-dimensional quantum systems is [1]

f = e0 −
πc

6vF
T 2 + O(T 3) , (7.72)

where e0 is the ground state energy per lattice site. Inserting Λ(0|∅) into the formula for the
free energy (2.23) and using (7.22) with (7.55), we observe that the eigenvalue belonging to
the root configuration Y = ∅ yields exactly the same prefactor in quadratic order in T if we
identify the central charge with c = 1. This is a strong indication that Λ(0|∅) is, indeed, the
true dominant eigenvalue of the quantum transfer matrix.

Free massless Bosons are also described by a conformal field theory with c = 1 and thus
belong to the same universality class as the spin 1/2 XXZ chain in the critical regime. This
means, that the low-energy quantitative behaviour of the models close to the critical point
T = 0 is the same.

Consider a particle-hole configuration Ŷk with corresponding eigenvalue Λ̂(λ|Ŷk) with
s = 0, for which the limit

lim
T→0+

1
T

lim
N→∞

ln Λ̂(0|Ŷk)
Λ̂(0|∅)

(7.73)

exists. It follows the proof of Proposition 7.2 that n(σ)
p = n

(σ)
h and n(+)

p + n
(−)
p = n

(+)
h + n

(−)
h

and, as we furthermore infer from the proof of the minimisation problem, these configurations
give rise to the leading contributions for low temperatures. For this class of excitations we
obtain

lim
N→∞

ln Λ̂(0|Ŷk)
Λ̂(0|∅)

= −2πT
vF

∑
σ=±

∑
α∈H(σ)

(
α+ 1

2

)
+ O(T 2) (7.74)
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where H(σ) is defined in (7.44) denotes the set of close root quantum numbers. Furthermore,
using (7.48), it holds that

lim
N→∞

N

t
ln
(

Λ̂(Jt sin(γ)
N |Ŷk) Λ̂(−Jt sin(γ)

N |∅)
Λ̂(Jt sin(γ)

N |∅) Λ̂(−Jt sin(γ)
N |Ŷk)

)
= −2πT

∑
σ=±

σ
∑

α∈H(σ)

(
α+ 1

2

)
+ O(T 2) . (7.75)

In the term ∑
α∈H(σ)

(
α+ 1

2

)
we can identify the spectrum of free Bosons. Indeed, the

eigenvalues of the energetic mode operators in the free Boson c = 1 conformal field theory
are of the form ∑

α∈H(σ)

(
α+ 1

2

)
[9]. The spectrum of the free Bosons is thus reproduced in

the spectrum of the quantum transfer matrix at low temperatures.
Reminding the definition of the correlation lengths (2.28), we can see that the correlation

lengths diverge in the zero temperature limit. While for T > 0 the correlation functions
decay exponentially, for T = 0 the behaviour changes and they decay algebraically, which is
the expected behaviour for gapless one dimensional systems at the critical point T = 0. For
low temperatures the asymptotics of the correlation functions is determined by particle hole
excitations close to the Fermi points.
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8 Summary and Outlook

In this work, we studied the spectrum of the quantum transfer matrix of the spin 1/2
Heisenberg-Ising chain in the critical regime −1 < ∆ < 1 that can be obtained from the
solutions to the Bethe Ansatz equations. Given the restriction that a few (weak) hypotheses
apply, we were able to construct the spectrum of the quantum transfer matrix for low tem-
peratures in a mathematically rigorous way.

To do so, we considered the non-linear problem which is equivalent to the Bethe Ansatz
equations in a form suitable for the low-temperature analysis, consisting of solving a non-
linear integral equation and a finite set of higher level Bethe Ansatz equations which is
different for each eigenstate of the quantum transfer matrix. We derived an asymptotic
expansion of the solution to the non-linear integral equation for low temperature and large
Trotter number. In this expansion the solution to the non-linear integral equation is in the
leading order given by the dressed energy, which solves a linear integral equation of Fredholm
type. The dressed energy appeared in two slightly different definitions, which differ in the
choice of the integration contour. With ε we denoted the dressed energy for which the
integration is along the real axis, with εc the one integrated along the curve Re ε = 0. The
latter is the one describing the solution to the non-linear integral equation in leading order
in T . εc can be obtained from ε by analytical continuation. In some regions of the complex
plane, such as along the real axis, the functions are equal.

The study of the dressed energy is a central part of this work and knowledge of its
behaviour in the complex plane is essential for the analysis of the spectrum of the quantum
transfer matrix. In the analysis of the dressed energy we distinguished the cases 0 < ∆ < 1
and −1 < ∆ < 0. We completed the proof of the existence and uniqueness of the Fermi
points ±QF in [11] for the full range of the magnetic field 0 < h < hc and for both 0 < ∆ < 1
and −1 < ∆ < 0. We proved that ±QF → ±∞ for h→ 0 and ±QF → 0 for h→ hc.

For the range 0 < ∆ < 1 we could rigorously prove all properties of the dressed energy
in the complex plane needed in the analysis with methods of real analysis. We showed
that Re ε(λ) = 0 forms a simply connected curve in the complex strip |Imλ| ≤ γ/2 which
goes through the Fermi points ±QF and ±iγ/2. The imaginary part of the dressed energy
is monotonically increasing counterclockwise along this curve and is divergent at ±iγ/2.
For Re εc we obtained the same zeros as for Re ε. Furthermore, we established that the
dressed energy ε is a double covering map of the strip {z ∈ C| − π/2 < Im z ≤ π/2, z /∈
[−QF , QF ]± iγ ∧ z /∈ {0, iπ/2}}. This enabled us to define a controllable integration contour
Cref for the non-linear integral equation and is one of the main ingredients for the proof of
the existence and uniqueness of solutions to the non-linear problem in [15].

For −1 < ∆ < 0 the methods previously used do not allow us to derive equally rigorous
properties for the dressed energy. Some of the properties mentioned above, such as the exis-
tence of a simply connected curve Re ε(λ) = 0, could only be proved for narrower strips, since
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certain monotonicity properties of the dressed energy are no longer given. A difficulty in the
analysis was raised by the cuts of εc and ε, which are for ∆ < 0, resp. for ∆ < −1/2 located in
the strip |Imλ| ≤ γ/2. In those cases in which the properties could not be rigorously proven,
the analysis was supported with numerics. Consequently, the double covering property could
not be transferred to the regime −1 < ∆ < 0.

Using the low-temperature expansion of the solution to the non-linear integral equation in
a factorised form and with properly adapted integration contour, which is a slight deformation
of Cref , we studied the possible solutions to the higher level Bethe Ansatz equations for
0 < ∆ < 1. First, we introduced the concept of (weakly) maximal roots and then showed that
the roots in Ŷ necessarily group in thermal r-strings whose top is such a (weakly) maximal
root. In the process of constructing all possible solutions to the quantisation conditions,
the factor e− 1

T
εc(λ) in the factorised solutions to the non-linear integral equation played an

important role. Depending on the sign of the real part of εc one must compensate the
exponentially small or large term by another term in the product, leading to the hypothetical
existence of r-strings. For the r-strings, we encountered a series of r inequalities that must
be satisfied by the real part of the dressed energy. However, these inequalities cannot be
satisfied for r = 2 and thus also not for r > 2, proving that string-type excitations of the
quantum transfer matrix cannot exist. Since the maximal roots are regular, this also excludes
the existence of singular roots.

Thus, we have rigorously proved that only solutions for which Re εc(λ) = o(1) in the
low-T limit are possible solutions to the higher level Bethe Ansatz equations. We obtained a
picture in which, in analogy to the Fermi sea, particles and holes arise for the excited states
of the quantum transfer matrix.

These particle-hole excitations were studied for low temperatures and we obtained ex-
pansions up to quadratic order in T for the particle and hole rapidities. We distinguished
“close” and “far” roots, where the close roots are those which collapse, in the low-T limit, to
the Fermi points ±QF and the far roots are those scaling with T and thus condensing on the
curve Re εc(λ) = 0. We considered the eigenvalues of the quantum transfer matrix, which can
be expressed in terms of solutions to the non-linear problem and obtained a low-T expansion.
We were able to rigorously determine the eigenvalue of largest modulus Λ(0|∅) within the
class of solutions subject to the hypotheses we imposed, which belongs to the state with no
particles and no holes. The dominant eigenvalue of the quantum transfer matrix determines
the free energy of the XXZ chain. In comparison with the result for the free energy from
conformal field theory with central charge c = 1 we saw that Λ(0|∅) takes precisely the form
conjectured for the dominant eigenvalue. It is reasonable to assume that we have, indeed,
explicitly constructed the dominant eigenvalue of the quantum transfer matrix.

This analysis rigorously justifies the straightening of integration contours in the numerical
study of the non-linear integral equation, which so far has only been justified empirically from
several limits and numerics for small Trotter numbers.

The ratio of eigenvalues of excited states of the quantum transfer matrix to the leading
eigenvalue determines the correlation lengths. With our techniques we were able to identify
a class of next-leading eigenvalues of the quantum transfer matrix which reproduce the spec-
trum of the c = 1 free Boson conformal field theory for low temperatures. We saw, that for
low temperatures the correlation lengths are determined by the close roots, i.e. by particle-
hole excitations close to the Fermi points. The leading correlation length determines the
asymptotics of the static correlation functions and also for dynamical correlation functions
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in a cone in the spacelike regime [Göhmann, Kozlowski; in preparation].

The knowledge of the spectrum of the quantum transfer matrix is an important step
in the calculation of two-point correlation functions with the thermal form factor series.
The amplitudes in this series can also be expressed in terms of solutions of the non-linear
problem [10]. In the massive regime, the knowledge of the full spectrum of the quantum
transfer matrix enabled the derivation of an explicit expression of the form factor series for
the longitudinal two-point function [2]. It is anticipated that this work will make it possible
to derive an explicit form factor series also for the massless regime in the near future.

It is furthermore of interest to fully generalise the results from this work to the regime
−1 < ∆ < 0. The first step would be to find a different approach for studying the dressed
energy in that regime and deriving expressions that allow a rigorous analysis of the function
in the complex plane.
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A Auxiliary Lemmata

Lemma A.1. Let g : C→ C be an (anti-)periodic meromorphic function f(λ+ iπ) = ±f(λ)
that decreases sufficiently fast for Reλ→ ±∞, and define the contour

C = lim
R→∞

[−R,R] ∪ [R,R+ iπ] ∪ [R+ iπ,−R+ iπ] ∪ [−R+ iπ,−R] . (A.1)

Then it holds that �
R

dy eiky f(y) = 2πi
1∓ e−kπ

∑
a∈Int C

Resa
[
eiky f(y)

]
. (A.2)

Proof. On the one hand
�

C
dy eiky f(y) =

�
R

dy
(
eiky f(y)− eik(y+iπ) f(y + iπ)

)
= (1∓ e−kπ)

�
R

dy eiky f(y) , (A.3)

on the other hand �
C

dy eiky f(y) = 2πi
∑

a∈Int C

Resa
[
eikyf(y)

]
. (A.4)

Lemma A.2. Let g be a k + 1 times continuously differentiable function on the interval
[−δ, δ] with δ ≥ −MT lnT , M > 0 large enough. Then

� δ

−δ
dz g(z) ln

(
1 + e−

1
T
|z|
)

=
bk/2c∑
r=0

2T 2r+1(1− 2−1−2r)ζ(2 + 2r)g(2r)(0) + O(T k+2) , (A.5)

where ζ is the Riemann zeta function and bk/2c denotes the integer part of k/2.

Proof. Consider the Taylor integral formula

g(t) =
k∑
r=0

tr

r!g
(r)(0) +Rk(t) with |Rk(t)| ≤ Ck |t|k+1 . (A.6)

Then
� δ

−δ
dz g(z) ln

(
1 + e−

1
T
|z|
)

=
� δ

T

− δ
T

dt Tg(Tt) ln
(
1 + e−|t|

)

=
k∑
r=0

g(r)(0)T r+1

r!

� δ
T

− δ
T

dt tr ln
(
1 + e−|t|

)
+
� δ

−δ
dz Rk(z) ln

(
1 + e−

1
T
|z|
)
, (A.7)
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where, up to O(TM ) corrections, the limits of the integration under the sum can be replaced
by ±∞. It holds that

� ∞
−∞

dt tr ln
(
1 + e−|t|

)
=
{

2
�∞

0 dt tr ln
(
1 + e−t

)
if r ∈ 2N ,

0 r ∈ 2N + 1 ,
(A.8)

and
� ∞

0
dt tr ln

(
1 + e−t

)
= Γ(2r + 1)ζ(2r + 2)(1− 2−1−2r) , (A.9)

where Γ is the well-known Gamma function. For the remainder we estimate∣∣∣∣∣
� δ

−δ
dz Rk(z) ln

(
1 + e−

1
T
|z|
)∣∣∣∣∣ ≤ 2CkT k+2

� ∞
0

dt tk+1 ln
(
1 + e−t

)
= O(T k+2) , (A.10)

which entails the claim.

Lemma A.3. [15] Let k ≥ 0 and y0, . . . , yk−1 ∈ Ŷr if k > 0, where y0 is a maximal or
weakly maximal root with

yp = yp+1 + iγ + δp with δp = O(e−
1
T
dp) and dp > 0 for p = 0, . . . , k − 1 . (A.11)

Let yk ∈ ˆ̃
Ysg, yk+1 = yk − iγ. Assume that there exists x1 ∈ X̂ and yk+2 ∈ Ŷr such that

iγ + x1 − yk = ϑk , iγ + yk+2 − x1 = ϑk+1 and 2iγ + yk+2 − yk = ϑk+2 , (A.12)

where ϑk, ϑk+1, ϑk+2 = O(e− c
T ). Then, there exist constants Cx, Cy > 0 and integers dx, dy,

all uniform in T, 1/NT 4 → 0+ and only depending on |X̂| and |Ŷ| such that

C−1
x T dx ≤

∣∣∣∣sh(iγ + yk+2 − x1)
sh(iγ + x1 − yk)

∣∣∣∣ ≤ CxT−dx , (A.13)

C−1
y T dy e−

1
T
cT ≤

∣∣∣∣e− 1
T

∑k+1
s=0 εc(ys)

sh(2iγ + yk+2 − yk)
sh(iγ + x1 − yk)

∣∣∣∣ ≤ CyT−dy , (A.14)

with cT = o(1) as T → 0+.

Proof. The estimates can be obtained by looking separately at the quantisation conditions
for x1 and yk. By taking the product over the subsidiary conditions defining the roots
y0, . . . , yk−1 and the singular root yk, together with yk+1 = yk − iγ, one obtains

(−1)k =

k+1∏
s=0

e−
1
T
Ê(ys|Ŷ)

 ∏
y∈Ŷr;k−1

sh(iγ + y − ys)
sh(iγ + ys − y)


∏
x∈X̂

sh(iγ + ys − x)
sh(iγ + x− ys)




×

 ∏
y∈ ˆ̃
Ysg;k

[
−sh2(iγ + y − yk) sh(2iγ + y − yk)

sh2(iγ + yk − y) sh(2iγ + yk − y)

]
k−1∏
s=0

sh(iγ + y − ys) sh(y − ys)
sh(iγ + ys − y) sh(2iγ + ys − y)

 ,

(A.15)
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with the notation

Ŷr;k−1 = Ŷr \ {y0, . . . , yk−1} and ˆ̃
Ysg;k = ˆ̃

Ysg \ {yk} . (A.16)

We may recast this equation in the form

(−1)k =
(
k+1∏
s=0

e−
1
T
Ê(ys|Ŷ) sh(iγ + yk+2 − yk+1)

sh(iγ + x1 − yk)

) 4∏
`=1
P` , (A.17)

with P` given as below. We make use of the relation between the roots yk, yk+2 and x1 and
introduce δk = 0 and δk+1 = −ϑk+2 for convenience. Then

P1 =

 k∏
s=0

∏
y∈Ŷr;k−1

sh(iγ + y − ys)
sh(iγ + ys − y)

 ∏
y∈Ŷr;k−1
\{yk+2}

sh(iγ + y − yk+1)
sh(iγ + yk+1 − y)

=

 ∏
y∈Ŷr;k−1

sh(y − x1 + ϑk)
sh(iγ + y0 − y)

k∏
s=1

sh(y − ys − δs−1)
sh(ys−1 − y − δs−1)

 ∏
y∈Ŷr;k−1
\{yk+2}

sh(y − yk+2 − δk+1)
sh(yk − y − δk)

(A.18)

and

P2 = sh(iγ + yk − x1)
sh(iγ + yk+1 − yk+2) = sh(2iγ − ϑk)

sh(2iγ − ϑk+2) . (A.19)

Using the structure of the iγ-shifts between the roots yp, one obtains

P3 =

 ∏
x∈X̂\{x1}

sh(iγ + yk − x)
sh(iγ + x− yk)

 k+1∏
s=0
s 6=k

∏
x∈X̂

sh(iγ + ys − x)
sh(iγ + x− ys)

=

 ∏
x∈X̂\{x1}

sh(2iγ + x1 − x+ ϑk)
sh(x− x1 − ϑk)

 k+1∏
s=0
s 6=k

∏
x∈X̂

sh(iγ(2− k − s)− x1 − x+ ξs)
sh(iγ(s− k) + x− x1 − ξs)

(A.20)

for some ξs = O(e− c
T ). Last, for some ξ′s = O(e− c

T ), one has

P4 =
∏

y∈ ˆ̃
Ysg;k

[
−sh2(iγ + y − yk) sh(2iγ + y − yk)

sh2(iγ + yk − y) sh(2iγ + yk − y)

k−1∏
s=0

sh(iγ + y − ys) sh(y − ys)
sh(iγ + ys − y) sh(2iγ + ys − y)

]

=
∏

y∈ ˆ̃
Ysg;k

[
−sh2(iγ + y − yk) sh(2iγ + y − yk)

sh2(iγ + yk − y) sh(2iγ + yk − y)

×
k−1∏
s=0

sh(iγ(1 + s− k) + y − yk + ξ′s) sh(iγ(s− k) + y − yk + ξ′s)
sh(iγ(1− s+ k) + yk − y − ξ′s) sh(iγ(2 + k − s) + yk − y − ξ′s)

]
. (A.21)

We now find upper and lower bounds for the product terms P`, starting with P1. Since
Rex1 = Re ys + O(e− c

T ) for s = 0, . . . , k + 2 and since x1 ∈ Int Cref
⋃
σ=± DσQF ,cT for some

c > 0 only depending on |X̂|, |Ŷ|, one concludes that Re ys is bounded in T for s = 0, . . . , k+2.
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Thus, for any y ∈ Ŷr;k−1 such that |Re y| ≥ K for some K > 0 large enough, one gets for
some constant C > 0 and for s = 0, . . . , k

C ≤
∣∣∣∣sh(iγ + y − ys)
sh(iγ + ys − y)

∣∣∣∣ ≤ C−1 . (A.22)

Thus, it remains to consider regular roots for which |Re y| ≤ K. In that case, Hypothesis 3.2
(v) implies

C ′ ≥ | sh(ys−1 − y − δs−1)| ≥ c′T and C ′ ≥ | sh(y − ys − δs−1)| ≥ c′T (A.23)

for s = 1, . . . , k and y ∈ Ŷr;k−1 with C ′, c′ > 0. Note, that if s = k, one imposes yk /∈ Ŷr;k−1.
Similarly for all y ∈ Ŷr;k−1 \ {yk+2} one obtains

C ′ ≥ | sh(yk − y − δk)| ≥ c′T and C ′ ≥ | sh(y − yk+2 − δk+1)| ≥ c′T . (A.24)

Since y0 is a maximal or weakly maximal root, and since Re y and Re y0 are bounded, there
exist C ′, c′ > 0 such that

C ′ ≥ | sh(iγ + y0 − y)| ≥ c′T or C ′ ≥ | sh(iγ + y0 − y)| ≥ e−
1
T
cT (A.25)

for all y ∈ Ŷr;k−1. Here the second bound holds for at most a single y ∈ Ŷr;k−1. Observe,
that x1 = yk − iγ + ϑk together with Hypothesis 3.1 (i) ensures that d(x1,±QF ) ≥ c/2 for T
small enough. Since

x1 ∈
{

Int Cref \
⋃
σ=±

DσQF ,c/2 + iπZ
}

and y ∈ C \
{
{Int Cref + iπZ} ∪DŶ

}
if y ∈ Ŷr;k−1 ,

(A.26)

one may estimate

diπ(y, x1) ≥ diπ

(
Cref \

⋃
σ=±

DσQF ,c/2, X̂

)
≥ cT for any y ∈ Ŷr;k−1 . (A.27)

Taken that ϑk is exponentially small and assuming that |Re y| ≤ K, one arrives at the
estimates

C ′ ≥ | sh(y − x1 + ϑk)| ≥ c′T (A.28)

with C ′, c′ > 0. We conclude, that there exist C1 > 0 and d1 ∈ N such that

C1T
d1 ≤ |P1| ≤ C−1

1 T−d1 e
1
T
cT . (A.29)

For P2 we immediately obtain from (A.19) that for some C2 > 0

C2 ≤ |P2| ≤ C−1
2 . (A.30)

In order to find lower and upper bounds for P3, first observe that due to the boundedness of
Rex1, Re ys is bounded from above in T for any s. This entails that all arguments appearing
in (A.20) are also bounded from above. We use the spacing property (6.24) and get, given
ξ = O(e− c

T ) and for any p 6= 0 and x ∈ X̂

diπ(x± ipγ, x1)− O(e−
c
T ) ≥ d(DŶ;iπ,DŶ;iπ + ipγ)− O(e−

c
T ) ≥ c , (A.31)
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for some c > 0. This implies that | sh(ipγ ± (x − x1) + ξ)| ≥ c′ for a certain c′. For p = 0,
we use Hypothesis 3.2 (v) to show that | sh(x− x1 − ξk)| ≥ cT for some c > 0. As the upper
bounds hold trivially for each factor, we conclude that there exist C3 > 0 and d3 ∈ N such
that

C3 ≤ |P3| ≤ C−1
3 T−d3 . (A.32)

Last, we want to bound P4. We use that, given ξ = O(e− c
T ), for any p 6= 0 and x ∈ ˆ̃

Ysg;k,
one estimates

d(DŶ;iπ + (p+ 1)iγ,DŶ;iπ + iγ)− O(e−
c
T ) ≥ c (A.33)

for some c > 0 and T low enough, and therefore | sh(ipγ + y + yk + ξ)| ≥ c′ for some c′ > 0.
From the repulsion property Hypothesis 3.2 (v) we get | sh(y−yk+ξ)| ≥ cT . With the upper
bounds being trivial, this ensures that for some C4 > 0 and d4 ∈ N we find the bounds

C4T
d4 ≤ |P4| ≤ C−1

4 . (A.34)

Recast (A.17) as

sh(iγ + yk+2 − yk+1)
sh(iγ + x1 − yk)

k+1∏
s=0

e−
1
T
εc(ys) = (−1)k

k+1∏
s=0

eΦ̂(ys|Ŷ)
4∏
`=1
P
−1
` . (A.35)

Since Φ̂(ys|Ŷ) is bounded, this along with the bounds for P`, entails (A.14).

In order to derive the bounds (A.13), consider the quantisation condition for x1 ∈ X̂, that
may be recast in the form

−1 = e−
1
T
Ê(x1|Ŷ) sh(iγ + yk+2 − x1)

sh(iγ + x1 − yk)

4∏
`=1
P̃` (A.36)

with

P̃1 =
∏

y∈Ŷr\{yk+2}

sh(iγ + y − x1)
sh(iγ + x1 − y) =

∏
y∈Ŷr\{yk+2}

sh(y − yk+2 + ϑk+1)
sh(yk − y + ϑk)

, (A.37)

P̃2 = sh(iγ + yk − x1) sh(yk − x1)
sh(iγ + x1 − yk+2) sh(2iγ + x1 − yk)

= sh(2iγ − ϑk) sh(iγ − ϑk)
sh(2iγ − ϑk+1) sh(iγ + ϑk)

, (A.38)

P̃3 =
∏

y∈ ˆ̃
Ysg;k

sh(iγ + y − x1) sh(y − x1)
sh(iγ + x1 − y) sh(2iγ + x1 − y) =

∏
y∈ ˆ̃
Ysg;k

sh(y − yk+2 + ϑk+1) sh(y − x1)
sh(yk − y + ϑk) sh(2iγ + x1 − y)

(A.39)

and

P̃4 =
∏

x∈X̂\{x1}

sh(iγ + x1 − x)
sh(iγ + x− x1) . (A.40)
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P̃1 is bounded as previously by splitting the bounds according to |Re y| ≥ K and |Re y| ≤ K
for some K > 0 large enough and by using the repulsion of roots, Hypothesis 3.2 (v). We
obtain

C̃1T
d̃1 ≤ |P̃1| ≤ C̃−1

1 T−d̃1 (A.41)

for d̃1 ∈ N and C̃1 > 0. We directly estimate for some C̃2 > 0 that

C̃2 ≤ |P̃2| ≤ C̃−1
2 . (A.42)

For P̃3 consider Hypothesis 3.2 (v) as well as the lower bounds

| sh(y − x1)| ≥ c and | sh(2iγ + x1 − y)| ≥ c , (A.43)

for some c > 0 and all y ∈ ˆ̃
Ysg;k since d(DŶ;iπ,DŶ;iπ+iγ) > c′ and d(DŶ;iπ+2iγ,DŶ;iπ+iγ) > c′

for some c′ > 0. Altogether, for C̃3 > 0 and d̃3 ∈ N, we find

C̃3T
d̃3 ≤ |P̃3| ≤ C̃−1

3 T−d̃3 . (A.44)

For the estimates relative to P̃4, we use that γ/2 + ε′ − ε ≥ |Im (x− x1)| ≥ 0, leading to the
bounds

C̃4 ≤ |P̃4| ≤ C̃−1
4 . (A.45)

We recast (A.36) as

sh(iγ + yk+2 − x1)
sh(iγ + x1 − yk)

= − e
1
T
Ê(x1|Ŷ)

4∏
`=1
P̃
−1
` (A.46)

and observe that x1 ∈ DŶ \ D−iγ/2,ε as follows from Hypothesis 3.2 (vii). Thus, one has
the estimate Re εc(x1) = O(−T lnT ). Along with the boundedness of Φ̂(ys|Ŷ), this entails
(A.13), completing the proof.
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