
Doctoral Dissertation

How Machine Learning Enables
Automated Side-Channel

Detection

Jan Peter Drees, M.Sc.

April 19, 2023

Submitted to the
School of Electrical, Information and Media Engineering

University of Wuppertal

for the degree of
Doktor-Ingenieur (Dr.-Ing.)

Copyright © 2023 by Jan Peter Drees. All rights reserved.
Printed in Germany.

Jan Peter Drees
Place of birth: Coesfeld, Germany

Author’s contact information:
jdrees@mailbox.org

Thesis Advisor:

Second Examiner:

Thesis submitted:
Thesis defense:
Last revision:

Prof. Dr.-Ing. Tibor Jager
University of Wuppertal, Wuppertal, Germany
Prof. Dr.-Ing. Juraj Somorovsky
Paderborn University, Paderborn, Germany
April 19, 2023
July 12, 2023
November 15, 2023

Acknowledgements
First, I would like to thank my advisor Tibor Jager for convincing me to pursue
Cryptography by making me an offer I could not refuse. You supported me every
step of the way and created a working environment for experimentation and
growth. I would like to extend my deepest gratitude to my collaborator Pritha
Gupta, without whom none of this would have been possible. In addition to
teaching me the arcane magic that is machine learning, you supported me as a
colleague and as a friend. I would further like to thank my other coauthors Juraj
Somorovsky, Eyke Hüllermeier, Arunselvan Ramaswamy, Claudia Priesterjahn,
and Alexander Konze. Additionally, I would like to thank Karlson Pfanschmidt,
Alexander Tornede, Gabriel Zaid, Łukasz Chmielewski, Maikel Kerkhof, Guilherme
Perin, and Stjepan Picek for their valuable and helpful suggestions on hardware
side channels. My thanks also extend to Björn Haddenhorst and Vitalik Melnikov
for their support with the side-channel detection theory. The help of the transport
layer security (TLS) attacker community was also much appreciated, especially
Robert Merget who helped create the TLS attacker Bleichenbacher client. Special
thanks go to Anastasija Berlinblau, Dennis Funke, and Varun Nandkumar Golani,
who helped by contributing experiments, code improvements, and datasets as
part of their theses. Further, my colleagues at the ITSC group were instrumental
in helping me navigate the maze of research and teaching, and as such I want
to thank Jutta, Kai, Máté, Lin, David, Marloes, Pascal, Denis, Amin, Tobias,
Raphael, Jonas, Gareth, Peter, Saqib, and Rafael. Experiments were performed
on resources provided by the Paderborn Center for Parallel Computing (PC2).

Außerdem möchte ich meiner Familie und meinen Freunden danken, ohne die
ich diese Dissertation nicht hätte schreiben können. Allen voran Aida, die meinen
Fokus im entscheidenden Moment geschärft hat und die trotz der Anstrengungen
für mich da war. Außerdem meinen Eltern Ute und Georg, die schon als Kind
meine Neugier gefördert und meinen Wissensdurst gestillt haben. Ich danke ihnen
und meiner ganzen Familie für ein allzeit offenes Ohr, auch wenn ich mal wieder
nicht mit dem Reden aufhören konnte. Dazu danke ich denjenigen, die mich bei
meiner Promotion unterstützt haben, unter anderem Helena, Jonas, Stefan und
Tim, sowie allen anderen Flunkyballern. Zuletzt möchte ich allen danken, die
mich auf meinem Weg begleitet haben und die ich hier nicht genannt habe, deren
Unterstützung ich aber trotzdem nicht missen möchte.

i

Contents
1 Introduction 1

1.1 State of the Art . 3
1.2 Our Contributions . 4
1.3 Outline . 6
1.4 Publication Overview . 7

2 Fundamentals 9
2.1 Side-Channel Attacks . 9

2.1.1 Remote Side Channels . 11
2.1.2 Local Side Channels . 15

2.2 Machine Learning . 18
2.3 Formal Definition of Machine Learning 22
2.4 Statistical Tests . 27

3 New Techniques for Side-Channel Detection with Machine Learning 31
3.1 Introduction . 31
3.2 The Information Leakage Problem 34
3.3 Our Approaches for Information Leakage Detection 36

3.3.1 Paired t-Test Approaches 36
3.3.2 Fisher’s Exact Test Approaches 38
3.3.3 On Robustness . 38

3.4 Empirical Evaluation . 40
3.4.1 Dataset Descriptions . 40
3.4.2 Implementation Details . 44
3.4.3 Results . 44

3.5 Conclusion and Open Problems 47

4 Application to Bleichenbacher’s Attack 51
4.1 Introduction . 52
4.2 Related Work . 54
4.3 Preliminaries . 56

4.3.1 Bleichenbacher’s Attack on TLS 56
4.3.2 Machine Learning . 59

4.4 Implementation of Automated Side-Channel Detection 62
4.4.1 Manipulated TLS Client 63
4.4.2 Feature Extraction . 65
4.4.3 Classification Model Learning 66

iii

4.4.4 Error Correction and Report Generation 68
4.5 Analysis . 69

4.5.1 Test Setup . 69
4.5.2 Basic Approach Validation 70
4.5.3 Detecting Klíma-Pokorný-Rosa Side Channels 72
4.5.4 Detecting ROBOT Side Channels 72
4.5.5 Testing open-source Implementations 75
4.5.6 Commercial Integration 75

4.6 Conclusions and Open Problems 76

5 Automating Hardware Attacks 79
5.1 Introduction . 80
5.2 Related Work . 81
5.3 Background . 82

5.3.1 Supervised Learning for Profiled Side-Channel Attacks . . 83
5.3.2 Convolutional Neural Networks 86
5.3.3 Leakage Model . 88
5.3.4 Neural Architecture Search 88

5.4 Our Approach . 90
5.4.1 Two-Dimensional Input Reshaping 91
5.4.2 Search Strategies . 92

5.5 Setup of Our Parameter Study . 94
5.5.1 Methodology . 94
5.5.2 Baseline Architectures . 97
5.5.3 Computing Hardware and Runtime 97

5.6 Parameter Study Results . 98
5.6.1 Overall Reliability . 98
5.6.2 Optimal Neural Architecture Search Parameters 99
5.6.3 Comparison with Fixed Architectures 101

5.7 Conclusion and Open Problems 104

6 Conclusion and Outlook 107

Bibliography 109

Appendix 129
A Minimum Bleichenbacher Dataset Sizes 129
B Hardware Datasets . 131
C Neural Architecture Search Space 135

iv

1 Introduction
In a world where digital communication has become ubiquitous, protecting it
against malicious actors is as important as ever. This is where modern cryptography
shines, using authentication and encryption methods to protect data during storage
and while being transmitted, from online banking credentials to company secrets
and sensitive personal data. Using state-of-the-art cryptographic protocols like
TLS, the vast majority of the communication online is already protected against
eavesdropping during transport [Goo23]. The capabilities of current cryptographic
protocols to resist these attacks are reflected in their rigorous mathematical security
proofs, making it increasingly infeasible to break the protocol outright. However,
all these proofs have to rely on at least some simplifying assumptions, which do
not necessarily hold when deployed in actual implementations running on physical
hardware [DPW11]. This means that an attacker can try to gather information
via channels that are not considered in security proofs. This could be as simple as
trying to recover a user’s password by listening to the sound of the keystrokes of a
user typing it in [ZZT09] or as complex as measuring the power consumption of a
server’s cryptography chip to recover the secret key used inside [CRR03]. All of
these would be considered side-channel attacks, as information necessary for the
attack is gathered not by reading the encrypted messages on the “main” channel
but instead by some other unintended side-channel not considered in security
proofs.

Remote side channels Side channels are dangerous because they can be used to
attack implementations of cryptographic protocols which have been proven secure.
One of these attacks is Bleichenbacher’s attack [Ble98], which uses information
gathered from side channels like error messages returned by a web server to break
Rivest–Shamir–Adleman (RSA) encryption. It allows the decryption of data
secured with the transport layer security (TLS) protocol and can be executed fully
remotely over the internet. While a security proof for the RSA key exchange used
in TLS exists [JKM18], any implementation needs to take care that it does not
inadvertently leak the information necessary for Bleichenbacher’s attack through a
side channel. Many of the recent attacks on TLS used a side channel, circumventing
its security guarantees [Avi+16; BSY18; Mer+21; MDK14].

Hardware side channels In contrast to remote side channels like the error
messages used by Bleichenbacher [Ble98], local side channels target the hardware
running the cryptographic algorithms. This is done either via fine-grained power

1

consumption measurement or by placing an electromagnetic probe within a few
millimeters of the chip executing the software. This type of attack is usually not
geared towards attacking consumer hardware but high-value targets like military
equipment, hardware security modules used in servers, or smart cards. These
devices are designed with the premise of adversaries gaining physical access to
them, so recovering secret keys inside them needs to be infeasible even with local
access. In this area, hardware side-channel attacks are a big threat, as only a
handful of measurements of cryptographic operations on the targeted device can
be sufficient to recover the secret keys [Pic+23].

Scanning for side channels Consequently, detecting and removing side channels
in the various implementations of cryptographic protocols is a big priority. In
the areas of remote side channels, this is usually done by scanning servers for
their reaction to inputs chosen by IT security researchers. For example, Böck,
Somorovsky, and Young [BSY18] conducted scans for Bleichenbacher side channels.
Their input was deliberately designed to confront the implementation with unex-
pected data or behavior, exposing issues with error handling. They then manually
analyse the reaction of the server for variations that would indicate possible side
channels, which they found both in the form of TLS alert messages, as expected,
but also in the TCP timeout and disconnect behavior of the servers.

The state of detection That these vulnerabilities were discovered 20 years
after the initial publication of the attack by Bleichenbacher [Ble98] highlights the
challenges faced by IT companies in avoiding side channels. While the testing
of functional requirements is the de-facto standard in the software development
process, e.g., automated regression testing in continuous integration (CI) pipelines,
the testing for security issues can be more difficult to achieve. The manual, time-
intensive, and expensive investigation, usually done by outside IT security experts,
necessary to check cryptographic software for side channels, appears thoroughly
out of date in comparison. That does not mean that automation is impossible:
After Böck, Somorovsky, and Young [BSY18] had discovered which new inputs
triggered the side channel in TLS servers, and they knew which parts of the server
behavior to watch out for, they were able to provide a script that tests for these
specific side channels. This script was integrated into the online TLS checker
from Secure Sockets Layer (SSL) labs1, which made it much more accessible to
website operators with limited knowledge of cryptography. This example shows
how automated side-channel detection mechanisms are helpful tools in testing
existing implementations and during software testing as part of the development
process. However, it should also be pointed out that such tools are rarely provided
and many side channels are only reported to hardware and software manufacturers.
This means users of devices may be unable to determine if they are affected and if

1https://www.ssllabs.com/ssltest/

2

https://www.ssllabs.com/ssltest/

updates provided by the manufacturer are actually effective in removing the side
channel.

The automation gap Based on these observations, we can identify a discrepancy
between the needs of software developers working on cryptographic implementa-
tions, the users of these cryptographic implementations, and the tools provided by
cryptographers working on side-channel attacks. While it is certainly not possible
to reliably detect all side channels in an automated way, such testing might be
feasible for certain remote side channels. Automated side-channel detection tools
would have to address the knowledge gap between software developers and cryp-
tographers and be easy to use. If these tools require no human intervention, this
would even allow integration into standard testing toolboxes and CI pipelines.

Goals of this thesis This thesis aims to achieve the following

• to formalize side-channel detection as an information leakage problem

• to explore the connection between machine learning algorithms and informa-
tion leakage detection

• to propose automated solutions for side-channel detection

• to implement these solutions and apply them to remote side channels

• to identify and explore additional automation steps necessary for hardware
side channels and assess their impact

1.1 State of the Art
Some automated detection methods for side channels exist but are limited in scope
to specific use cases.

For example, to detect the Bleichenbacher side channels in the ROBOT attacks,
Böck, Somorovsky, and Young [BSY18] used the statistical tests Fisher’s exact
test and chi-squared test to detect the side channels of specific aspects of the
TLS server behavior. Current versions of the TLS attacker [Som16] are also able
to check for specific Bleichenbacher side channels using a simpler fingerprinting
method where any deviation in the fingerprint is interpreted as a side-channel
vulnerability. One advantage of TLS attacker is the flexibility of the TLS client
that supports various ways to manipulate the padded messages and to deviate from
the usual handshake routine (as exploited by the ROBOT attacks). A drawback
of these approaches is the inability to combine behavior features as each feature is
tested independently.

When we look beyond the task of detecting side channels, fuzzing can be
a helpful complementary method. In fuzzing, the software is confronted with

3

automatically generated invalid inputs and monitored for undesirable behavior
like crashes. This was contributed to by de Ruiter and Poll [dP15] with their
protocol state fuzzing of TLS. Their approach uses machine learning to recreate
the internal state machine of TLS implementations based on the server’s reaction
to fuzzed input messages. While this would not detect all side channels, past
Bleichenbacher side channels like ROBOT have often been created by improper
error handling. Thus, removing unintended states and code paths discovered with
this fuzzing technique removes possible sources of leakage and could already go
some way to preventing side channels in the first place.

A recent development is DL-LA, a method created by Moos, Wegener, and
Moradi [MWM21] to detect information leakage in hardware datasets using a deep
learning classifier. Developed concurrently and independently of our approaches
for remote side channels, their method also uses a machine learning classifier to
detect leakage. It is able to detect arbitrary information leakage and is able to
combine different behavioral features. However, their underlying assumption relies
on a machine learning model being able to outperform a classifier that guesses
randomly. In practice, this restricts their approach to balanced datasets.

In the hardware side-channel attack community, most attacks require careful
crafting of the attack model architecture. This has recently inspired Wu, Perin,
and Picek [WPP20] and Rijsdijk, Wu, Perin, and Picek [Rij+21] to create a
white-box approach that automates this architecture creation. For our purposes,
this is unsuitable, as the returned performance estimate that we could use to
detect leakage is optimistically biased. Acharya, Ganji, and Forte [AGF22] recently
proposed a different, black-box approach for automated hardware attacks. Their
method deviates from the usual attack methodology as they don’t use a single
model but simultaneously optimize several models.

1.2 Our Contributions
We advance the state of the art in the following areas:

New Techniques for Side-Channel Detection with Machine Learning When
it comes to the detection of local side channels, machine learning has been
successfully used to improve attacks in the last few years. However, approaches
to the automated detection of side-channel vulnerabilities have been lacking.
Some statistical approaches have been used successfully, e.g. for the ROBOT
attacks [BSY18], but they are limited in flexibility.

We provide a formalization of side-channel detection as an information leakage
problem and propose a novel approach for the detection of information leakage
using machine learning. This approach is the first to use the performance of the
machine learning algorithm itself for fully automated detection of remote side
channels. We also propose variations that are able to handle imbalanced datasets
properly by comparing the algorithm performance to classifiers that reflect the

4

imbalance. In addition, we increase the resistance of our approach to noise and
variations in side-channel behavior by employing an ensemble of machine learning
algorithms and aggregating their results. We demonstrate that our approach
outperforms state-of-the-art approaches experimentally, both on synthetic data
and on real-world remote side channel datasets.

Application to Bleichenbacher’s Attack We apply our automated approach to
detect side channels in cryptographic protocol implementations, which automati-
cally detects general patterns in network protocol traffic that might give rise to a
padding oracle. We consider Bleichenbacher side-channel vulnerabilities in TLS
as our specific use case, with the approach itself being transferable to other side
channels. Over the previous decades, many research papers appearing at leading
academic security conferences [Ble98; KPR03; JSS12; Deg+12; Bar+12; Mey+14;
Zha+14; Avi+16; Fel+18; BSY18; Ron+19] showed that such vulnerabilities ap-
pear again and again in popular open-source software and widely-used commercial
products. This makes the detection of such side channels with an automated
tool especially useful, as issues with Bleichenbacher-like side channels can be
spotted easily during the development process before the large-scale deployment
of a vulnerable implementation.

Existing solutions using manual detection scripts are limited in capability to
specific, known side channels. General tools like the TLS attacker are more capable
in this regard, but still only consider certain behavioral elements of a TLS server,
considering each element in isolation.

We implement and analyse our approach in a new software solution (the open-
source AutoSCA-tool) which is able to analyse a given TLS server implementation
automatically. Our solution is the first which relies entirely on the ability to learn
patterns of interest for the specific implementation without being restricted to
single features or the predictions of a pre-trained model. It is also able to provide
an easy-to-understand side-channel assessment for software engineers.

We confirm that the AutoSCA-tool is reliably able to detect known vulnerabilities
in TLS server implementations, like the bad version oracle in OpenSSL [KPR03]
or the ROBOT vulnerabilities in commercial TLS appliances [BSY18]. We also
used the tool to scan the most visited websites according to the Alexa Top 500
ranking and notified the operators of vulnerable servers. We additionally verify
that recent versions of 13 different popular open-source TLS implementations
contain no detectable side-channel vulnerabilities.

Automating Hardware Attacks In the area of attacks using local side channels,
such as power consumption or electromagnetic emissions, machine learning has
repeatedly demonstrated its usefulness. Hardware side-channel detection can
be achieved by running the attack and checking if it is able to succeed. This
is in contrast to padding oracle side-channel attacks, which can be ruined by a
single false positive and for which the necessary padding oracle implementations

5

would have to be created individually for different leakages. However, the attacks
themselves are far more difficult, as the measurements usually contain a lot of
noise and their dependency on secret key material is highly complex. As such,
fully automating the attacks themselves is the necessary next step to automated
side-channel detection. While the most powerful attacks already use deep learning,
the architecture used for the attack is hand-tailored to each dataset.

We use neural architecture search (NAS) to create a novel approach to hardware
attacks that fully automates the crucial step of architecture design. In contrast to
recent works by Wu, Perin, and Picek [WPP20] and Rijsdijk, Wu, Perin, and Picek
[Rij+21], our approach is fully black-box, which means it returns a realistic estimate
of the attack performance. Our method is also designed such that the attack is
executed not only once but several times with different train-validate splits and on
independent parts of the test database, resulting in a more substantial performance
evaluation. We additionally performed a big parameter study, enabling the first
comparison of different search strategies (including Greedy and Hyperband) and
dataset input shapes on 10 benchmark hardware datasets. The results demonstrate
that our approach is on par with fixed architectures from Benadjila, Prouff, Strullu,
Cagli, and Dumas [Ben+20] and Zaid, Bossuet, Habrard, and Venelli [Zai+19],
even outperforming them on some datasets.

1.3 Outline
The remainder of the thesis is structured in the following way:

Chapter 2: Fundamentals This chapter introduces the general concept of side
channels as well as some more specific details on padding side channels and
hardware side channels. This is followed by a high-level introduction to the most
important concepts of machine learning, as well as a definition of the notation
used throughout the thesis.

Chapter 3: New Techniques for Side-Channel Detection with Machine Learn-
ing This chapter lays the theoretical foundation for automated side-channel
detection using machine learning. It introduces the general method we created, as
well as an empirical comparison of different ways to implement it using synthetic
and real-world datasets.

Chapter 4: Application to Bleichenbacher’s Attack This chapter uses the
method presented in the previous chapter to create automated detection software
for Bleichenbacher-like side channels. We use the software to test various TLS
servers in lab environments and on the web, demonstrating its usefulness.

Chapter 5: Automating Hardware Attacks This chapter investigates automat-
ing hardware side-channel attack and detection. To this end we propose a novel

6

approach that uses neural architecture search (NAS) to automate the process of
architecture selection necessary for applying deep learning, achieving full automa-
tion. We follow this up with a detailed parameter study on which combination
of NAS search strategy and input shape performs the best on the 10 reference
datasets we gathered and compare our approach to fixed architecture baselines.

Chapter 6: Conclusion and Outlook This chapter discusses the impact of this
thesis on automated side-channel detection and its future development.

1.4 Publication Overview
The foundation for this thesis are the following papers. Each of them is discussed
in more detail in the respective chapter. The following publications have been
published in peer-reviewed conference proceedings:

Jan Peter Drees, Pritha Gupta, Eyke Hüllermeier, Tibor Jager, Alexander
Konze, Claudia Priesterjahn, Arunselvan Ramaswamy, and Juraj Somorovsky.
“Automated Detection of Side Channels in Cryptographic Protocols: DROWN the
ROBOTs!” In: Proceedings of the 14th ACM Workshop on Artificial Intelligence
and Security. AISec ’21. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 169–180. doi: 10.1145/3474369.3486868

Pritha Gupta, Arunselvan Ramaswamy, Jan Peter Drees, Eyke Hüllermeier,
Claudia Priesterjahn, and Tibor Jager. “Automated Information Leakage De-
tection: A New Method Combining Machine Learning and Hypothesis Testing
with an Application to Side-channel Detection in Cryptographic Protocols.” In:
Proceedings of the 14th International Conference on Agents and Artificial Intel-
ligence. ICAART ’22. Setúbal, Portugal: SciTePress, 2022, pp. 152–163. doi:
10.5220/0010793000003116

Pritha Gupta, Jan Peter Drees, and Eyke Hüllermeier. “Automated Side-
Channel Attacks Using Black-Box Neural Architecture Search”. In: Proceedings
of the 18th International Conference on Availability, Reliability and Security.
ARES ’23. Benevento, Italy: Association for Computing Machinery, 2023. doi:
10.1145/3600160.3600161

7

https://doi.org/10.1145/3474369.3486868
https://doi.org/10.5220/0010793000003116
https://doi.org/10.1145/3600160.3600161

2 Fundamentals
In this chapter, we introduce the fundamental concept of side-channel attacks in
Section 2.1 before diving into relevant examples and related work for remote side
channels in Section 2.1.1 as well as for local side channels in Section 2.1.2. Due to
the considerable amount of machine learning (ML) methods applied throughout
this thesis, Section 2.2 contains a very high-level introduction to the central
concepts, using an application example to illustrate them. Section 2.3 then follows
up on this by more formally defining these methods along with the notation used
throughout this thesis. We conclude the necessary fundamentals by covering the
statistical tests and analysis methods used in our approaches in Section 2.4.

2.1 Side-Channel Attacks
A side channel consists of (unintended) leakage of sensitive information from a
computing device. A side-channel attack uses the leaked information to reconstruct
the original, sensitive information. Such attacks were initially used by governments
to spy on each other, for example when NATO (in the TEMPEST programs) and
Soviet governments (in the PEMIN programs) used the electromagnetic emissions
from cipher machines to decrypt important diplomatic communication during the
early cold war [Eas21].

Nomenclature For our purposes, we need to differentiate between distinct
components: A side-channel attack describes an algorithm that uses access to
a formally defined oracle to output some desirable secret, like a reconstructed
secret key, the decryption of a ciphertext, or a forged signature. In the context
of Bleichenbacher’s attack, the oracle gets an RSA-encrypted ciphertext as input
and returns whether the contained message is properly formatted according to the
PKCS#1v1.5 padding standard. Since this distinction is only possible with access
to the plaintext, this is leaking secret information. As such, the oracle needs to
be implemented by using the side channel in a given protocol implementation.
A transport layer security (TLS) server returning different TLS alert messages
depending on the correctness of the padding contains a possible Bleichenbacher side
channel. The oracle would use the side channel by executing a new TLS handshake
with the TLS server, using the input ciphertext in the client key exchange message.
It would then observe the server’s reaction and depending on the TLS alert message
return “padding correct” or “padding incorrect” as the output. Bleichenbacher’s
attack then queries the oracle repeatedly with manipulated ciphertexts as the

9

Remote Local

Error messages

Response timing

EM

Sound

Caches

Power consumption

Vicinity

Figure 2.1: Examples of side channels and their classification according to [Spr+17]

input, gathering enough secret information to be able to return the plaintext or a
forged signature after a few thousand queries.

Evolution of attacks This distinction between the side-channel attack, the oracle,
the side channel itself, and the implementation can be helpful in understanding
the properties of different attacks. For example, it is sufficient to remove the side
channel in a particular implementation to eliminate the risk posed by the attack
entirely. In turn, improvements to an oracle or the attack itself (like the ROBOT
improvements [BSY18]) can mean that previously unexploitable or hidden side
channels suddenly become an issue. And efficiency improvements to the attack
(like the improvements by Bardou et al. [Bar+12]) can make a side-channel
vulnerability exploitable that was previously considered impractical in the real
world.

Classification Using the classification system proposed by Spreitzer, Moonsamy,
Korak, and Mangard [Spr+17], we can categorize different side channels based
on the way in which they can be exploited. Figure 2.1 shows some examples and
roughly how we could classify them. On the extreme end of the scale, most power
side channels require local physical access to the target device. The electromagnetic
(EM) emitted by a device can sometimes be detected in a neighboring building,
given the emissions are strong enough and the attacker has a sensitive antenna.
However, some side-channel attacks using EM require the attacker to be millimeters
away from the chip running the software, exemplifying how the categorization is
only broadly possible. On the other end, a Bleichenbacher side channel using TLS
alert messages is exploitable remotely by anyone connected to the internet. This
means that the threat model of various side channels can differ significantly, from
criminals trying to steal login credentials remotely to nation-state actors recovering
confidential codes from captured military hardware. Another important distinction
to make is that a side-channel attack does not use unintended implementation
behavior to access information on the main communication channel [Spr+17]. As
such attacks using buffer overflows like Heartbleed [Dur+14] are not considered
side-channel attacks.

10

2.1.1 Remote Side Channels
For our purposes, any side channel that can be exploited over the internet can
be considered a remote side channel. This category mostly consists of servers
returning differing error messages or differences in their timing behavior.

Attacker model For remote side channels, our attacker model usually considers
an adversary that has unlimited ability to interact with the implementation by
sending messages over the network. This is a reasonable assumption for many
protocols, as servers (for example web and mail servers) will respond to all requests
essentially indefinitely. Most filtering limiting the traffic from a single source can
be circumvented and will be ineffective against an adversary with distributed
networks (botnets or virtual private networks (VPNs)) or sufficient patience. The
side channel consists of the replies from the implementation, which encompasses
both the intended protocol messages as well as the metadata and accompanying
network traffic, like TCP packets or timing information. For some side channels,
we also assume the attacker has acquired some ciphertexts they want to decrypt
in advance, for example by sniffing traffic on the local network or a meddler-in-
the-middle attack.

Padding oracles Padding oracle attacks are a special case of side-channel attacks
that are usually exploitable remotely. During the encryption process of a short
message, additional data called padding has to be added such that the resulting
plaintext matches the length requirements of the encryption scheme. This is
essential when using block ciphers, which can only operate on inputs where the
length is a multiple of the block size. Adding randomized padding is also essential
(but not necessarily sufficient) to be able to achieve IND-CPA secure encryption
from deterministic public-key encryption schemes, like textbook RSA [KOS17].
As such, padding standards describe the method by which the sender adds this
additional data and how the receiver removes it. In all of these attacks, the
oracle returns the padding validity for a given ciphertext, or more formally, a
binary correct/incorrect whether the decryption of the ciphertext conforms to the
specification of the padding standard. Although this may seem like leaking only a
tiny bit of information, if the attacker repeats the query to the oracle with slightly
different variations of the same ciphertext over and over, they can narrow down the
possible values of the plaintext until only a single option remains. This effectively
allows the attacker to decrypt a given ciphertext without access to the secret key
or to forge a signature in the case of Bleichenbacher’s attack on RSA. To be able
to repeat the queries, the ciphertexts produced by the encryption scheme need to
be malleable, which allows the attacker to manipulate a ciphertext in a manner
that results in predictable changes to the plaintext. In the case of RSA, this is due
to its inherent multiplicative homomorphism, while in the case of the cipher block
changing (CBC) mode of operation, a modification of the initialization vector
(IV) results in predictable changes to the first block. The most famous attacks in

11

Client Server

Client Hello
Server Hello

Certificate

Server Hello Done Client Key Exchange

Change Cipher Spec

Finished Change Cipher Spec

Finished
Encrypted Data

Figure 2.2: A typical TLS 1.2 handshake

this family are Bleichenbacher’s attack on PKCS#1v1.5 Rivest–Shamir–Adleman
(RSA) padding [Ble98], Vaudenay’s attack on CBC padding [Vau02], and Manger’s
attack on OAEP RSA padding [Man01].

SSL and TLS TLS is perhaps the single most commonly used cryptographic
protocol in existence. It is used when browsing the web and is currently supported
by the vast majority of websites. Google reports that as of 1st of April 2023, 96 %
of web pages visited by German Google Chrome users on Windows were loaded
over TLS, although this percentage can vary by platform and country [Goo23].
TLS is a broad standard that can be employed in various situations, from transport
encryption for web applications, emails, voice over IP (VoIP) calls, and VPN
traffic. We should note here that the very first versions of TLS were called Secure
Sockets Layer (SSL), but the protocol standard was renamed when it became
an Internet standard in 1999 [DA99]. We use TLS to refer to all versions of the
standard including the earlier SSL versions unless specifically noted otherwise.

The RSA key exchange TLS itself does not specify a single choice of crypto-
graphic algorithm for key exchange, symmetric encryption, and integrity check
but instead defines possible combinations that a device can implement. A TLS
connection goes through the two phases shown in Figure 2.2: The first is the
handshake, during which the parties authenticate each other and exchange crypto-
graphic keys. These keys are then used by the transport protocol in the second
phase to transmit the actual payload data in a bidirectional session securely. The
very first key exchange included in TLS was the RSA key exchange, and several
other algorithms have been added since. In the case of TLS key exchange, RSA
is used as a public key encryption algorithm, with the TLS client generating a
new secret key and encrypting it with the public key of the TLS server. Upon

12

reception of the encrypted data, the server uses its secret key to decrypt, and
both parties are now in possession of the same secret that they use to derive the
various authentication and encryption keys for the transport protocol. Another
application of RSA is the digital signatures of the certificate of a TLS server, a
file that the client uses to verify that a malicious meddler-in-the-middle is not
impersonating the website it is connecting to.

The history of Bleichenbacher’s attack In this thesis, we mostly consider
Bleichenbacher’s attack as an example of a remote side-channel attack. The specific
workings of the actual attack on RSA, as well as the underlying mathematical
properties, are covered in detail in Section 4.3.1. The attack was first published
by Bleichenbacher [Ble98], and he estimated that a real-world attack on the RSA
key exchange used in TLS would require executing a million TLS handshakes.
As such, his attack gained the nickname of “the million message attack”. His
original attack targeted SSL version 3 [FKK11], but its fundamental logic applies
to all protocols using the PKCS#1v1.5 padding method. As a consequence of
exposing the issue with PKCS#1 padding, the PKCS#1 standard was updated
from the vulnerable padding in version 1.5 [Kal98] to include a different padding
type, OAEP, in version 2 [KS98]. However, when TLS version 1.0 [DA99] was
standardized as a successor to SSL version 3, the standard did not switch to the
new padding type and still requires PKCS#1v1.5 padding for RSA key exchange,
all the way up to TLS version 1.2 [DR08]. Instead, the TLS standard was
updated to explicitly state “The best way to avoid vulnerability to this attack is to
treat incorrectly formatted messages in a manner indistinguishable from correctly
formatted RSA blocks” in TLS version 1.0 [DA99, Section 7.4.7.1]. In 2003, Klíma,
Pokorný, and Rosa published their attack on the RSA key exchange [KPR03],
which used a different oracle than Bleichenbacher’s attack. They used the behavior
of TLS implementations rejecting key exchange messages that contained an invalid
TLS version number as a side channel to construct a bad version oracle. Since
the valid TLS version values were two known bytes, they were able to modify
Bleichenbacher’s attack to use these bytes in the middle of the message instead
of the first two bytes. In the response, TLS version 1.1 expanded its section on
handling Bleichenbacher to recommend that implementations should not respond
with a TLS alert in case the received TLS version number was incorrect [DR06,
Section 7.4.7.1]. When TLS version 1.2 was released in 2008, the section got
expanded once again, with two different algorithm descriptions on how to handle
incorrect paddings in a way that no timing side channel would result[DR08, Section
7.4.7.1]. However, a decade later there were still new Bleichenbacher side channels
found when Böck, Somorovsky, and Young [BSY18] investigated the timeout
behavior of closed source TLS servers when facing incomplete TLS handshakes.
Their investigation revealed that 27 of the 100 most visited webpages (according
to the Alexa ranking2) were vulnerable to Bleichenbacher attacks using their new

2https://web.archive.org/web/20180321225122/https://www.alexa.com/topsites

13

https://web.archive.org/web/20180321225122/https://www.alexa.com/topsites

side channels. In the same year, TLS version 1.3 was standardized, which finally
removed the RSA key exchange method altogether, but still allows RSA and
the PKCS#1v1.5 padding for signing certificates [Res18]. Even now, many TLS
servers still offer TLS version 1.2 or lower for backward compatibility reasons,
and F5 reported that as of the end of 2021, 52 % of the surveyed web servers still
supported RSA key exchange [WV21].

New Bleichenbacher side-channels and attacks In 2002, Klíma and Rosa
[KR03] were able to generalize the attacks of Bleichenbacher and Manger, showing
that the generation of a forged RSA signature could be done in all cases where a
decryption side-channel attack was present. Later, Jager, Schinzel, and Somorovsky
[JSS12] applied Bleichenbacher’s attack on the XML encryption used in web
services. Bardou, Focardi, Kawamoto, Simionato, Steel, and Tsay [Bar+12] were
able to optimize the attack itself and apply it to various hardware implementations,
among them the Estonian ID cards. Instead of requiring a “million messages”,
the improved attack on 1024-bit RSA could now complete with a median of 14500
oracle queries. Meyer, Somorovsky, Weiss, Schwenk, Schinzel, and Tews [Mey+14]
found several new side channels in TLS implementations, including two timing side
channels large enough to be detectable over a network. Zhang, Juels, Reiter, and
Ristenpart [Zha+14] used a cache-based side channel to extract information across
virtual machine boundaries in a cloud hosting context. This way, they were able
to execute the attack on XML encryption from [JSS12] on a TLS server inside a
different virtual machine running on the same physical hardware of a cloud hoster.
In 2015, Jager, Schwenk, and Somorovsky [JSS15] were able to impersonate TLS
1.3 and QUIC servers, protocols that do not support the vulnerable RSA key
exchange, by using a different server vulnerable to Bleichenbacher’s attack, as
long as the RSA key was shared between the servers. This meant that a single
vulnerable server, for example, one supporting TLS 1.2 as a fallback or an old mail
server, could be sufficient to attack users of state-of-the-art cryptography. This
was followed by the DROWN attack [Avi+16], which demonstrated that a server
supporting outdated cryptography, specifically export cipher suites for SSLv2,
could be used to launch Bleichenbacher’s attack. They adapted Bleichenbacher’s
attack such that a comparably easy brute-force attack on the weak export ciphers
could be used as a stand-in for the usual side channel, enabling a similar attack
on the RSA key exchange. Xiao, Li, Chen, and Zhang [Xia+17] were able to
attack a TLS library running in the SGX enclave of Intel CPUs. Their attack
used side channels discovered by analyzing the control flow of the TLS library
to run Bleichenbacher’s attack in a non-enclave process, successfully decrypting
the TLS handshake executed by the library in the enclave. As explained above,
Böck, Somorovsky, and Young [BSY18] discovered new side channels exposed by
executing incomplete TLS handshakes. Felsch, Grothe, Schwenk, Czubak, and
Szymanek [Fel+18] further expanded the reach of Bleichenbacher’s attack to the
IPSec VPN protocol. They attacked the RSA-based IKE handshake used in IPSec.

14

They were able to transfer a side-channel attack against the RSA key exchange to
impersonate hosts using non-RSA key exchange methods that use RSA only for
authentication. Ronen, Gillham, Genkin, Shamir, Wong, and Yarom [Ron+19]
created another variant of the attack, this time by using microarchitectural side
channels exposed by cache timing to execute a downgrade attack on the TLS
handshake. Because of the limited time before an in-progress TLS handshake
times out, they expanded Bleichenbacher’s attack to support parallelized execution.
Using this performance improvement, they were able to demonstrate the practical
feasibility of their downgrade attacks. Finally, Kelesidis [Kel21] recently proposed
further improvements to the attack, reducing the number of necessary oracle
queries another 75 % compared to the improved attack in [Bar+12].

2.1.2 Local Side Channels
The term local, hardware, power, or physical side-channel attack refers to a class
of attacks that rely on close physical proximity to a device to be able to detect
the side-channel leakage. This is almost always done by receiving electromagnetic
emissions from the device or by measuring its power consumption. These leakage
types are sufficiently similar that common attack approaches can be used for both
types.

Attacker model For local attacks, our attacker model is different from the one
used in remote side channels. The first prerequisite is that the adversary has
already obtained a sufficient level of hardware access. For our investigation, we
assume the chip running the cryptographic algorithm is in physical possession
of the adversary. This is one of the strongest assumptions possible, as this level
of access usually means that all software protections, warning systems, etc. are
rendered ineffective. However, it is still a reasonable assumption for many high-
security applications, especially military hardware that can be captured by an
enemy, unattended servers that rely on a trusted platform module (TPM) or secure
cryptoprocessor for attestation, or smart cards that can be stolen or obtained by
a malicious user. Another usual assumption is that the adversary either chooses
or knows the external inputs and outputs of the attacked system [Pic+23]. For
our purposes, we assume the attacker chooses a plaintext and sends it as input
to the system. The system encrypts it using a secret key contained inside and
outputs the associated ciphertext such that the attacker can observe it.

Measurement process In such a situation, an adversary can connect probes
for power consumption on the pins of a chip or place probes for electromagnetic
radiation within millimeters of the circuitry of the chip. Sometimes the chip
packaging is even removed to allow for closer access to the emissions. These
probes can then be connected to a dedicated measurement system, often a high-
precision oscilloscope, which records the received signal. However, local side

15

CNN
model

Predict key

CNN
training

Secret key

Template
device

Measurements
(power, EM)

Target
device

Measurements
(power, EM)

Used key

Figure 2.3: High-level concept of a deep learning template attack.

channels can also use more subtle and non-destructive measurement techniques
like Hertzbleed [Wan+22], which allows determining the power consumption
indirectly by measuring timing remotely and reconstructing the operating frequency
of the processor. Other possibilities include the placement of amplifiers for
electromagnetic radiation, which allows for attacks from a further distance [Eas21].

Attack scenarios The attack measurements can be divided into individual traces,
with each trace representing the time-series data of the received signal for one
cryptographic operation, e.g., one encryption or one generation of a signature.
The first hardware attacks in the research community considered the premise of
simple power analysis (SPA), which only uses one trace. In SPA, the attacker
has gained access to the target device, measures its power consumption once, and
then tries to deduce the secret from this measurement alone. SPA attacks can
already be sufficient. Some algorithms like DES or modular exponentiation can
result in an obvious pattern of operations that is observable in the trace [KJJ99;
CFR10]. However, the attacks can get much more powerful if more than one trace
is considered, as now their differences can be used to isolate the influence of the
computations on the secret itself. These are called differential power analysis
(DPA) and were also introduced by Kocher, Jaffe, and Jun [KJJ99].

Template attacks The biggest step up for hardware attacks was the introduction
of template attacks. These attacks extend the attacker model and assume that the
attacker can gain access to an identical, “cloned” copy of the target device, called
the template device. Figure 2.3 illustrates this concept for a convolutional neural
network (CNN) model. The attacker tries known secrets on the template device,
observing the side-channel leakage of thousands of cryptographic computations.
This can be used to create a model of how the choice of the secret key influences
the side-channel leakage, either by statistical methods or by machine learning,
usually deep learning. In the attack phase, this leakage model is then used to

16

reconstruct the secret used by the actual target device based on a few traces
obtained from it. This extension to the attacker model is even stronger, but we
can still argue that it applies in many cases. For almost all commercially available
devices, including smart cards and TPMs, it can be as easy as buying a second
device or ordering the same chip from a manufacturer. One caveat is however
necessary: In academic datasets, the template attack is often only simulated and
both datasets are actually gathered with the same measurement setup on the
same physical device. They, therefore, represent the best case where the template
device is virtually identical to the target device, overestimating the performance
of attacks in the real world.

Application of machine learning When considering the structure of a template
attack, it becomes apparent that the approach lends itself to applying machine
learning (as is discussed in depth in Sections 2.2 and 2.3). The profiling dataset
gathered from the template device becomes the training data and is labeled
with the secret used (or some derivation of it). Consequently, the attack dataset
gathered from the target device becomes the test dataset, but that requires that
this dataset contains labels. In any analysis of an attack method, the actual secret
key used in the attack measurements has to be known to enable evaluation of
the attack’s success. This means that generating labels for the test dataset is
straightforward.

Performance metrics As Picek, Perin, Mariot, Wu, and Batina [Pic+23] explain,
the performance metrics commonly used in hardware attacks differ significantly
from the ones used for machine learning. Instead of averaging the prediction
accuracy over several traces, a single prediction score is generated for the whole
attack dataset. A single attack trace usually contains too much noise and too
little information on the secret, preventing us from making an informed prediction
at once. By aggregating these individual predictions the small bias towards the
actual secret can be accumulated to give a reliable final prediction for the secret.
As such, the reliability of an attack is determined with the success rate, which
measures how often a given attack is expected to succeed, given a dataset of a
certain size. To measure the efficiency, alternative metrics are used which focus
on the necessary size of the attack dataset, which is usually the deciding factor in
the runtime and real-world feasibility for an attack.

Countermeasures According to Mangard, Oswald, and Popp [MOP08], there
are two categories of methods preventing local side-channel attacks, both aiming
to decouple the measurable leakage from the secret. The first is hiding, which aims
to make the measurable leakage independent of the data being processed. This
can be done by ensuring all computations result in the same leakage or by fully
randomizing the leakage. However, even with the most careful design, some leakage
will remain. The second is masking, which makes the processed (intermediate) data

17

independent of the secret. One example would be boolean masking, which creates
the intermediate data by XORing the secret with a random bitstring or mask. The
computations are then adjusted to account for this, such that the output remains
unchanged. As with a one-time pad, this effectively hides the secret from the
adversary. Obviously, this relies on the adversary not being able to reconstruct the
mask value which needs to contain sufficient entropy. Obtaining this entropy can
be difficult on integrated hardware, as the only reliable option, dedicated hardware
entropy generators, significantly increase the complexity and power consumption.
Another weakness is the process of masking the secret, which in itself can become
a target for the side-channel attack. This has been demonstrated before, with
attacks first determining the mask value and using this knowledge to attack the
actual secret value [Pic+23].

Defense effectiveness Chari, Jutla, Rao, and Rohatgi [Cha+99] developed a
theoretic foundation that quantifies how much masking is necessary to achieve
security against a certain adversary. Their model assumes the adversary is able to
observe a restricted number of data paths in the implementation, giving rise to
the notion of higher-order masking protecting against adversaries able to observe
more than one path. While there have been several successful side-channel attacks
against implementations using boolean masking, the most promising current
method is affine masking as presented in [von01; Fum+11]. The ASCADv2
dataset [Ben+20] combines this technique with boolean masking, and currently,
there are no known successful attacks on the dataset [Pic+23].

2.2 Machine Learning
Fundamentally, machine learning (ML) is a field that attempts to create al-
gorithms that can automatically learn from past experiences to make future
predictions [Mit97]. This is done by collecting training data, which is used by the
learning algorithm to create and optimize a model that makes predictions based
on data instead of pre-programmed rules [KBA96]. The following Section is a
high-level introduction to this subject, followed by more detailed formal definitions
in Section 2.3.

Three broad categories of ML approaches are usually used: supervised learning,
unsupervised learning, and reinforcement learning. In this thesis, we only use
supervised learning methods where the training data consists of example pairs of
input and output. The output label corresponds to the “ground truth” output
for a given input, such that the algorithm can pick up on patterns and make
predictions on unlabeled data.

Application example Let us consider a real-world example to illustrate the
different ML concepts: An engineer at a post office is tasked with automating the
sorting of mail. Incoming envelopes are scanned and the handwritten address of the

18

Class "0"

Class "1"

Class "2"

Class "3"

Class "4"

Class "5"

Class "6"

Class "7"

Class "8"

Class "9"

Training Validation Test

Figure 2.4: An example of the MNIST supervised learning dataset [LeC+98],
adapted from [Ste17].

receiver needs to be determined by the automated system. In a supervised learning
case, the engineer already has access to a number of scanned envelopes where the
characters of the address have been identified manually. Our training dataset (as
shown in Figure 2.4) consists of images of different handwritten characters, all
labeled with the actual character depicted. The machine learning algorithm is
tasked with learning from this data by identifying the similarities within the group
of images depicting the same character. It would then return a model that is able
to give a prediction for the character contained in an image without access to
the associated label. This allows the system to recognize the characters on a new
letter arriving at the post office and thus enables sorting the mail automatically.

Classification In the example, we have to define the desired output of the model.
Since each character belongs to a distinct category or class, we want the model to
give a single prediction: “This character is a 6”. This type of task consisting of
predicting a single class for a given input is called classification. In Figure 2.4, we
see that the training data is labeled with the 10 classes that are possible when
recognizing handwritten numbers. Instead of getting a single prediction, we can
also use ML models that output a score for each of the 10 classes representing

19

how certain the model is that the input belongs to this class. Such outputs are
common when dealing with deep learning, e.g. using CNNs. We can transform
this output into a single prediction by returning the class with the highest score.

Features Having defined the output, how should the input to the model be
represented? In the handwriting case, the original input might be a png file
outputted from a scan software, but most machine learning algorithms expect a
vector of real values as input, which could be implemented as an array of floats or
integers. These individual values are called features and transforming the original
data into this representation is called feature engineering. Clever representations
can lead to fewer features with higher information content, which makes it easier
for the algorithm to pick up on what is actually relevant, increasing its performance.
In the example, the trivial approach would be to feed each png file as an array of
bits into the algorithm. However, this means that the files contain unnecessary
information, such as metadata, and that the machine learning algorithm is faced
with raw data without any context. A better approach would be to transform the
png file into an array of floats representing the grayscale lightness values of each
pixel. This way the machine learning algorithm is only confronted with relevant
data, and in a format that requires less interpretation. Because the performance
of a ML model can depend heavily on feature engineering, it is usually done by
experts with some knowledge in the respective application area.

Generalization In our case, we want the algorithm to be able to read the
handwriting of many different people, not only the ones we used in our training
dataset. This is the big challenge for every machine learning model: Generalization.
That is, does the model work well on data it has not been exposed to before? For
this to happen, the model needs to learn some kind of pattern in the data instead
of blindly memorizing and reproducing the training examples. However, the way
we train a model is restricted to optimization for the training dataset only. When
the model only works well on the training data but performs much worse on other
data, overfitting occurs. This would be bad for a mail sorting algorithm, as it
cannot be trained on the handwriting of every single person sending mail, but is
still expected to detect the addresses. Because overfitting is such a big issue, there
are many methods to combat it, which we cover in the respective chapters.

Train-validate-test split So how do we evaluate the real-world performance of
our model? Instead of directly applying it to route mail, which could be costly if
the model makes frequent mistakes, we instead use it on a dataset with known
labels. The purpose of this dataset is to assess the ability of the algorithm to
generalize, detecting overfitting. For this, the original dataset of labeled images
is split into different parts as shown in Figure 2.4. The first part is the training
dataset, which is the data the ML model is trained on directly. The second
part is the validation dataset on which we determine the performance of the

20

trained model. We ask the model to predict the labels of the characters in this
dataset and compare the prediction to the label in the dataset, which act as
the ground truth. Since the trained model has not been exposed to this data
before, the performance on this part of the data is a pretty good indicator of the
generalizability or usefulness in the real world. The validation data is used to
adjust different parameters of the training process, such as learning rate and model
complexity, in a process called hyperparameter optimization. After adjusting the
hyperparameters, we use the third part of the data, or testing dataset, to again
apply the model. This “holdout dataset” gives us the final performance estimate,
as this data has not been used in the previous process at all.

Hyperparameter optimization As mentioned, the purpose of the validation
dataset is to be used as the testing dataset for hyperparameter optimization
(HPO). This process is necessary as most machine learning algorithms possess
hyperparameters, that is, parameters that influence what kind of model can be
created by the algorithm (e.g. the depth of a decision tree or the number of
layers in a deep network) and how the model is trained (e.g. the learning rate
of gradient-based models). The learning rate determines how much the model
should be adjusted in each iteration of the training process, influencing the model
training. The optimal choice of this parameter depends on the properties of the
dataset as well as choices for other hyperparameters and is therefore impossible
to determine in advance. Suboptimal hyperparameter choices can result in less
accurate models, or even in the model not performing at all, and as such their
tuning is a fundamental task in machine learning [HBF11]. While it would be
possible to use a trial-and-error approach to tune these hyperparameters, the fact
that a single hyperparameter can usually not be adjusted independently from others
means the possible search space for hyperparameter combinations can be very large.
Fortunately, this search for a good combination can be treated as an optimization
problem for which approximate solutions can be created programmatically. The
approach is the following: Pick a hyperparameter combination, train the model
on the training dataset with these parameters, and evaluate the model on the
validation dataset. This process is repeated for different combinations, exploring
the search space of hyperparameter combinations using a search strategy that is
guided by the performance of combinations that have already been tried. Finally,
the combination with the best performance becomes the final hyperparameter
choice and is used for the final model.

Cross-validation Using the process laid out above, we could already create a
successful ML model that allows for the automatic recognition of handwritten
characters. However, we are left with a single estimate of the model performance
on the test dataset. The actual training process can have varying results based
on randomized methods, which training data it is presented with, and even in
which order the individual training samples are processed. Maybe we just got very

21

(un-)lucky and the test dataset happened to contain only legible handwriting?
Our engineer might not dare introduce the system on this result alone, and rightly
so. Luckily, we have another method we can use to increase our confidence in
the performance results: The method of outer cross-validation repeats the entire
training process using different splits of the dataset into training and validation
data on the one side and test data on the other. This way, the training is done
on a slightly different dataset each time, and the evaluation is on a different
test dataset as well. The same process can be applied in the hyperparameter
optimization process to create different train vs. validate splits, called inner
cross-validation. When both of these methods are combined, we call the process
nested cross-validation. Inner cross-validation is used to make the optimization
more robust, while outer cross-validation can be used to detect overfitting more
reliably. In outer cross-validation, the performance of models produced with
different splits is aggregated to produce an overall performance estimate for the
machine learning algorithm. This way, the engineer does not have to be worried
as much about the system accidentally performing well on a single test dataset
while failing on others.

2.3 Formal Definition of Machine Learning
In the following, we are formally defining the ML process as used in the remainder
of this thesis. It is a unification of the notation used in [Gup+22] and [Dre+21].

Dataset Let X ∈ Rd be the set of all possible inputs and let Y be the set of
all possible classes. For the sake of simplicity, we let Y = {0, 1, . . . , K − 1},
where K ∈ N with 2 ≤ K < ∞ represents the number of classes, also referred
as class-label. The learning problem is called multi-class classification when the
number of classes is K > 2 and binary classification if K = 2 [Mit97]. The training
dataset is defined as D = {(x1, y1), . . . , (xN , yN)}, consisting of |D| = N training
instances in form of tuples (xi, yi), such that yi ∈ Y is the ground truth class-label
associated with input instance xi ∈ X . We assume it is generated by the unknown
and possibly probabilistic target function f : X → Y .

Hypothesis space The hypothesis space H defines the set of all candidate
functions the learner can choose its predicted functions h from. This set is
dependent on the specific algorithm, e.g. the hypothesis space for linear regression
would only contain linear functions.

Classification The goal in binary classification is to find a predicted function
f̂ : X → Y that approximates the target function f . Formally speaking, the task
of the learner is to induce a hypothesis h ∈ H with low generalization error (risk)

R(h) =
∫

X ×Y
L(y, h(x)) d P (x, y) (2.1)

22

where L : Y×Y → R is a loss function, and P a joint probability measure modeling
the underlying data-generating process of f . The loss function commonly used for
classification is the 0-1 loss (using the indicator function Jŷ ≠ yK, which equals 1
iff ŷ ̸= y, and 0 otherwise):

L01(y, ŷ) := Jŷ ̸= yK (2.2)

Empirical risk minimizer Since the underlying data-generating process and
corresponding distribution P (x, y) is unknown to the learner, Equation (2.1)
cannot be minimized directly. Instead, learning is accomplished by minimizing (a
regularized version of) the empirical risk, which is determined by applying the
hypothesis function h on the training data:

Remp(h) = 1
N

N∑
i=1

L(yi, h(xi)) . (2.3)

The learning process returns the final hypothesis f̂ ∈ H, a classification function
that minimizes the risk calculated in Equation (2.3).

Evaluation Using the predicted function f̂ we can determine its predictions ŷ =
(ŷ1, . . . , ŷN) with ŷi = f(xi), ∀i ∈ {1, . . . , N}. We then compare the predictions
to the ground truth class-label y and evaluate the difference using the measures
used for classification as per [Koy+15].

Accuracy The accuracy is defined as the proportion of correct predictions:

mACC(ŷ, y) := 1
N

N∑
i=1

Jŷ = yK. (2.4)

Error rate In the case of classification, the error rate is defined based on the
accuracy:

E(ŷ, y) = 1 − mACC(ŷ, y) (2.5)

Confusion Matrix Many evaluation metrics for binary classifiers are defined
using the number of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). Formally, they are defined as:

TN(ŷ, y) =
∑N

i=0Jyi = 0, ŷi = 0K

TP(ŷ, y) =
∑N

i=0Jyi = 1, ŷi = 1K

FP(ŷ, y) =
∑N

i=0Jyi = 0, ŷi = 1K

FN(ŷ, y) =
∑N

i=0Jyi = 1, ŷi = 0K

(2.6)

23

Using these, the confusion matrix is defined as:

M (ŷ, y) =
(

TN(ŷ, y) FP(ŷ, y)
FN(ŷ, y) TP(ŷ, y)

)
(2.7)

F1-Score F1-Score is an accuracy measure that accounts for an imbalance
between positive and negative instances in the dataset by incorporating both the
FP and the FN and is defined as:

mF1(ŷ, y) = 2TP(ŷ,y)
(2TP(ŷ,y)+FN(ŷ,y)+FP(ŷ,y)) (2.8)

False Negative Rate FNR is defined as the ratio of FN to the total positive
instances:

mF NR(ŷ, y) = FN(ŷ,y)
(FN(ŷ,y)+TP(ŷ,y)) (2.9)

False Positive Rate FPR is defined as the ratio of FP to the total negative
instances:

mF P R(ŷ, y) = FP(ŷ,y)
(FP(ŷ,y)+TN(ŷ,y)) (2.10)

Cross-validation f̂ only minimizes the in-sample error (Ein), but we wish to find
a function that generalizes well, minimizing the out-of-sample error Eout. This
is achieved with the train-validate-test split, returning a single estimate of Eout

on the test dataset. To better evaluate the performance of f̂ , one employs outer
cross-validation techniques, in which the dataset is split into many pairs k of train
and validate vs. test datasets3 and which allows several estimates of Eout. In inner
cross-validation, the hyperparameter optimization goal for f̂ is an estimate of
Eout on the validation dataset achieved by creating k splits into train vs. validate
datasets.

The methods used in this thesis are Monte Carlo cross-validation (MCCV)
[Smy96; XL01] and k-fold cross-validation (KFCV) [RTL09]. In k-fold cross-
validation (KFCV) the whole dataset is split into k equal parts, each to be used as
the test dataset for one of the k evaluation rounds [RTL09]. The remainder of the
dataset is then used for training (or training and validation datasets in the case of
outer cross-validation) [VB12]. For Monte Carlo cross-validation (MCCV) each
sample for the training dataset is selected at random without replacement from the
full dataset. s defines the proportion of the dataset to be used for training, with
the remaining 1 − s proportion of instances for a given training set constituting
the test set [Smy96]. This process is repeated for a selected number of splits k,
generating k pairs of train vs. test datasets at random.

In these techniques, different training datasets overlap, i.e. the same instance
can appear in multiple training datasets [Smy96; RTL09]. The major difference
is that in MCCV different testing datasets overlap, causing some bias in the

3The number of dataset splits k should not be confused with the number of classes K

24

estimation, while in KFCV each instance gets tested exactly once [Smy96; RTL09].
On the other hand, MCCV has an advantage over KFCV in terms of the number of
possible ways the dataset can be split, as the maximum number of possible splits
k can be very large [XL01]. So, KFCV provides a nearly unbiased performance
estimate for algorithms with high variance, while MCCV gives a more biased
performance estimate with less variance [VB12].

Hyperparameter optimization The learning algorithm uses hyperparameters
to control the learning process. ML algorithms have different hyperparameters
apart from the model parameters, that should be set for an algorithm, such as
the number of estimators and the maximum depth of each decision tree (DT)
for random forest (RF) or the learning rate of the perceptron learning algorithm
(PLA). The class of optimization approaches used to solve the task of choosing
a set of optimal hyperparameters for a learning algorithm is called HPO and
the approach itself is called hyperparameter optimizer [HBF11]. Typically, a
hyperparameter optimizer is provided with a search space, a defined range of
possible values each hyperparameter can take for the given algorithm, and it runs
for a given number of maximum trials. For each trial, it applies one combination
of hyperparameter values from the search space and evaluates its performance
using a loss function. Generally, we set aside a validation dataset sampled from
the training dataset, for performance evaluation the loss function or metric used
is called the validation loss or validation accuracy. For binary classification, the
error rate is used as the validation loss, as defined in Equation (2.5).

For formalizing the HPO problem, we define a vector as θ = (θ1, . . . , θn), for
some n ∈ N, which denotes n hyperparameters of the learner. Each hyperparameter
can be an integer, real-valued or categorical, i.e., θi ∈ R, θi ∈ Z or θi ∈ {0, . . . , ci},
for some c ∈ N, where ci is the number of categories [FSH15]. For a given
learner, each hyperparameter can only take a certain range of values, which is
represented by Θi, ∀i ∈ [n], such that Θi = [c1, c2]. The ranges depend on the
type of parameter, with c1, c2 ∈ R for real-valued hyperparameters, c1, c2 ∈ Z for
integers, and c1 = 0, c2 ∈ N for categorical hyperparameters. For finding the best
hyperparameters, an objective function is defined as g : Θ 7→ R, which maps the
hyperparameter vector θ to a real-valued validation loss. This loss is generally
obtained by evaluating the model for a given θ on the validation dataset set aside
earlier. For binary classification, the error rate is used as the validation loss, as
defined in ℓacc eq. (2.5). The HPO task is to find an optimal combination of
hyperparameters such that: θ∗ = arg minθ∈Θ g(θ)

Hyperparameter optimizers A simple hyperparameter optimizer suggested in
the literature is random search (Random), in which the optimizer randomly
samples the combination of values from given ranges for a certain number of trials
and outputs the hyperparameters for which algorithm produces the best validation
accuracy [FSH15].

25

A more sophisticated approach is to use the Bayesian optimization technique,
which is more efficient for producing the optimal hyperparameters for the same
number of trials [HBF11]. It builds a probabilistic model of the function g, by
iteratively evaluating a set of parameters θ to obtain the validation loss and then
updating the underlying model. These methods use an acquisition function that
samples the set of parameters θ using the posterior distributions over objective
functions. Under certain assumptions, Bayesian optimization techniques have been
proven to converge to the optimal solution (hyperparameters), while Random
search does not [HBF11; FSH15].

Binary classifiers The following is a very high-level overview of the binary
classifiers in this thesis.

Among the most commonly used binary classifiers proposed in the literature
are perceptron learning algorithm (PLA) [FS99], logistic regression (LR) [YHL11],
and Ridge classifier (RC) [HK70]. These algorithms are limited to solving binary
classification problems involving linearly separable data. Since we cannot assume
that the data is separable by a hyperplane, we also consider support vector
machines (SVMs). SVM is a popular algorithm that uses a kernel trick (which can
also be applied to linear models) to classify data that is not linearly separable. This
results in its candidate space encompassing linear and non-linear functions [Pla99;
CV95]. A decision tree (DT) is another promising approach. It learns a set of
hierarchical rules, splitting the dataset into regions at each node of the tree [RM05].

Given the substantial difference in properties of the described algorithms, com-
bining several classifiers to solve a classification problem can improve their reliabil-
ity. These are called ensemble-based approaches, in which multiple classifiers are
trained on the dataset and their predictions aggregated to obtain the final predicted
function [Rok10]. One ensemble-based approach is bagging, where each classifier is
trained only on a subsample created by sampling the given training dataset with
replacement. The individual trained binary classifier are called the base learners,
for which we use DTs. The two bagging approaches we consider are extra tree
(ET), which uses mean aggregation of the predictions [GEW06], and random forest
(RF), which uses majority voting for aggregation [Bre01]. Another way to build an
ensemble is to use boosting, in which a set of weak learners are combined to create
a single strong learner [Rok10]. The weak learners are successively trained and
more weight is given to the wrongly classified instances each round. We again take
DTs as the weak learners to build the complete binary classifier. Three popular
approaches of this category are adaptive boosting (AB) [FS97], gradient boosting
(GB), which improves the optimization of AB [Fri01], and histogram gradient
boosting (HGB), which is overall faster than GB [Ke+17].

Feature Importance Feature importance refers to techniques that assign a score
to each input feature based on their usefulness for predicting the class-label
ŷ. Generally, decision-tree-based binary classifiers are used to calculate feature

26

Repeated process,

function

Dataset,

input
Process

Intermediate

data

condition

Output,

metric

Figure 2.5: Example diagram illustrating the design used in this thesis.

importance. In a DT, the importance of a feature is based on the depth of the
node on which the feature was used to split the data. The lower the depth in the
DT, the higher the importance. In RF, each individual decision tree is used to
calculate the feature importance. In order to reduce the variance and noise in the
calculation, the overall feature importance is the mean of the importance in the
individual trees.

Diagrams In this thesis, we use several diagrams to illustrate the detailed
workings of the machine learning methods involved. These roughly use a shared
design demonstrated in Figure 2.5.

2.4 Statistical Tests
In this section, we explain the statistical tests used for our proposed information
leakage detection (ILD) approaches in Section 3.3 in more detail.

Paired t-Test The paired t-test (PTT) is used to compare two samples (generated
from an underlying population) in which the observations in one sample can be
paired with observations in the other sample [Dem06]. In our ILD application, we
apply KFCV and use the same k train-test dataset pairs for evaluating a baseline
classifier (e.g. majority class classifier) that we want to compare a binary classifier
to. This produces k paired accuracy estimates of majority class classifier (amc)
with the binary classifier (aj). For binary classifier Cj , let H0(aj = amc) be the null
hypothesis and H1(aj ̸= amc) be the alternate hypothesis. H0(aj = amc) indicates
that the underlying distribution of two populations is the same, which means that
there is no difference between the performance of 2 binary classifiers [Dem06].
H1(aj ̸= amc) instead implies that there is a significant difference between the
performance of 2 binary classifiers.

The p-value quantifies the probability of accepting H0 and is evaluated by
determining the area under the Student’s t-distribution curve at value t, which
is 1 − cdf(t). The t-statistic is evaluated as t = µ

σ/
√

k
, with hypothesized value

27

µ = 1
k

∑k
i=1 di. We use the difference between the classifier accuracy and majority

class classifier accuracy with di = aj i − amci and σ2 = ∑k
i=1

(µ−di)2

k−1 . We have
to adjust this p-value to correct for the dependency in estimates due to KFCV.
Nadeau and Bengio [NB03] proposed to do this by modifying the variance σ in the
following way: σ2

Cor = σ2(1
k

+ 1
k−1). This variance σ2

Cor is then used to calculate
the value of the t-statistic as t = µ

σCor
.

Due to its asymptotic nature, the paired t-test requires a large number of
estimates k to produce a precise p-value. This in turn diminishes the effect of the
correction term 1

(k−1) for σ2
Cor. For a given dataset size, increasing k reduces the

test set size, causing each accuracy estimate to become less precise.

Fisher’s Exact Test Fisher’s exact test (FET) is a non-parametric test that is
used to calculate the probability of non-dependence between two classification
methods. It analyses the contingency table M (see Equation (2.7)) containing
the result of classifying objects by the two methods [Fis22]. For example, given
a sample of people, we can divide them based on whether they have ever been
to Australia and based on if they ever got attacked by a Kangaroo. Assuming
that the sample is a good representation of people and that most people that get
attacked by a Kangaroo are living in Australia, the FET would produce a very
low p-value, implying that the two classification methods are correlated.

The p-value is computed using the Hypergeometric distribution as:

Pr(M |N, R, r) =
C

(R)
(TN)×C

(N−R)
(r−TN)

C
(N)
(r)

=
C

(FN+TN)
(TN) ×C

(FP+TP)
(FP)

C
(TP+TN+FP+FN)
(TN+FP)

where r = TN + FP, N = FP + TP + FN + TN, R = TN + FN and C
(n)
(r) is the

combinations of choosing r items from the given n items. The p-value is calculated
by summing up the probabilities Pr(M) for all tables having a probability equal
to or smaller than that observed M . This test considers all possible tables with
the observed marginal counts for TN of the matrix M to calculate the chance of
getting a table at least as “extreme”.

Holm-Bonferroni correction When running several hypothesis tests where each
rejected hypothesis results in an overall decision, care has to be taken when it
comes to the rejection criteria α of the individual tests. For example, executing a
number of tests that individually control the error rate (probability of false positive
or Type 1 errors) at level α will result in the overall result exceeding level α. This
is a result of the probability of at least one hypothesis test rejecting a hypothesis
erroneously increasing with a growing number of tests. The Holm-Bonferroni
method controls this family-wise error rate by adjusting the rejection criteria α
for each individual hypothesis [Hol79]. We consider a family of null hypotheses
F = H1, . . . , HJ and obtain p-values p1, . . . , pJ , from independently testing each
classifier Cj ∈ C, such that J = |C|. For getting an aggregated decision, the
significance level for the set F is not higher than the pre-specified threshold, e.g.,

28

α = 0.01. The p-values are sorted in ascending order, i.e. p1 ≤ p2, . . . pj−1 ≤ pJ ,
and for each hypothesis Hj ∈ F , if pj < α

J+1−j
, Hj is rejected. Let Hm+1 be the

first hypothesis for which the p-value does not validate rejection, i.e., pm+1 > α
J−m

.
Then, the rejected hypotheses are {H1, . . . , Hm} and the accepted hypotheses are
{Hm+1, . . . , HJ}.

29

3 New Techniques for Side-Channel
Detection with Machine Learning

In this chapter, we create the theoretical foundation in preparation for the fol-
lowing chapters on applications. We start by introducing the overall scenario of
information leakage, the underlying concept of side channels, in Section 3.1. This is
followed by a formal definition of information leakage in Section 3.2. Based on this,
we explore the connection between machine learning classifiers and information
leakage, demonstrating how the performance of a binary classifier can be used
as an indicator for information leakage. We use this concept in Section 3.3 to
develop a concrete methodology for machine learning-based side-channel detection,
proposing 4 new methods using statistical tests for the detection. We then proceed
to compare these methods to two baseline methods on synthetic datasets and in a
real-world side channel scenario in Section 3.4. We are able to demonstrate that
our approaches based on Fisher’s exact test (FET) outperform the state-of-the-art,
reliably detecting information leakage in the majority of scenarios. After showing
that our approaches are the first that are able to handle dataset imbalances
properly, we conclude this chapter in Section 3.5.

Author’s contribution The contents of this chapter are based on joint work
together with Pritha Gupta, Arunselvan Ramaswamy, Eyke Hüllermeier, Claudia
Priesterjahn, and Tibor Jager [Gup+22]. Pritha Gupta contributed the theory
formalizing the relationship between the Bayes classifier accuracy and information
leakage. Based on this she contributed the formal definition of information leakage
detection, including the usage of t-test and Fisher’s Exact Test to detect leakage.
She contributed the synthetic datasets and design of the experimental setup, with
the result analysis being performed jointly by Pritha Gupta and the author. The
author’s main contributions are the idea of using the Holm-Bonferroni correction
and the creation of the OpenSSL real-world datasets.

3.1 Introduction
According to Hettwer, Gehrer, and Güneysu [HGG20], information leakage (IL) is
defined as the unintended disclosure of sensitive information to an unauthorized
individual or an eavesdropper via observable system information. Detecting
these ILs is crucial since they can cause electrical blackouts and theft of valuable

31

or sensitive data like medical records and national security secrets [HGG20].
Information leakage detection (ILD) is the task of detecting IL in a given system.

Information leakage detection A system, intentionally or inadvertently, releases
huge amounts of information publicly (called the observable information), which
can be recorded by any outside observer. Specifically, IL takes place in this system if
the observable information is connected, directly or indirectly, to secret information
(secret keys, plaintexts) processed by the system, which may compromise security.
The majority of current statistical methods estimate the mutual information
between observable and secret information to quantify IL. However, these estimates
suffer from the problem of the curse of dimensionality since it can be very difficult
to determine which part of the observable information is actually connected to
the secret. In addition, they strongly rely on time-consuming manual analysis
by domain experts [CCG10]. As machine learning for ILD has been shown to
be highly effective, current research focuses on the development and application
of machine learning specifically for ILD [MWM21; Mus+18]. These approaches
analyse the accuracy of a supervised learning model on the data extracted from
the given system. The dataset is created by using the observable information
as input and the secret information as the output [MWM21]. These methods,
however, are domain-specific and unprepared to handle imbalanced datasets. This
increases the likelihood that they would either overlook novel ILs (false negatives)
or mistakenly identify leaks in the system (false positives) [Pic+18]. Our approach
tackles this problem by using supervised learning algorithms and the evaluated
confusion matrix to detect the IL which inherently takes the imbalance in the
dataset into account [HK18].

Applications As a use-case for ILD, we consider the problem of side-channel
detection in cryptographic systems. A cryptographic system unintentionally
releases observable information via one of many possible channels, such as network
messages, CPU caches, power consumption, or electromagnetic radiation. The
secret information in this case could be a plaintext being encrypted, the secret
key used in the cryptographic algorithm, or some other confidential information.
These leakages are exploited by a side-channel attack (SCA) to reveal the secret
information to an adversary, potentially rendering all implemented cryptographic
protections irrelevant [MWM21; Mus+18]. The existence of a side channel in a
cybersecurity system is equivalent to the occurrence of IL. Note however, that a
system that contains a side channel is not necessarily vulnerable to a SCA, as
sometimes the amount of information being leaked is simply not sufficient to reveal
secret keys or plaintexts [Ber+17]. In other cases, leaking a single bit of secret
information can be enough to allow powerful attacks [KR03]. As such, we have to
regard all IL as dangerous until proven otherwise.

32

Side-channel detection In this field, the most relevant literature uses machine
learning to perform SCAs, not preventing side channels through early detection of
ILs [HGG20]. Current machine learning-based approaches are able to detect side
channels, thus preventing SCA on the algorithmic and hardware levels and this
has been presented by Zhang, Zheng, Nan, Hu, and Yu [Zha+20], Perianin, Carré,
Dyseryn, Facon, and Guilley [Per+21], and Mushtaq, Akram, Bhatti, Chaudhry,
Lapotre, and Gogniat [Mus+18]. These approaches apply the supervised-learning
techniques using the observable system information as input to classify a system
as vulnerable (with IL) or non-vulnerable (without IL). For generating the binary
classification datasets, they extract observable information from the secured
systems as input, label them as 0 (non-vulnerable) and then introduce known
ILs in these systems and label them 1 (vulnerable). This process makes these
approaches domain-specific and misses novel side channels [Per+21]. Current
state-of-the-art automated learning-based approaches improve this by analyzing
the accuracy of supervised-learning models on the binary classification data
extracted from the given system, such that observable information is used as
input and partial (sensitive) information is used as output [MWM21; Dre+21].
These approaches are restricted to detecting side channels accurately only if the
extracted data is balanced, not noisy, and also produces a large number of false
positives. The problem of imbalanced, noisy system datasets is very common in
real-life scenarios [Zha+20].

Our Contributions We propose a novel approach that provides a general solution
for detecting IL by testing the learnability of the binary classifiers on the extracted
binary classification data from the system. Learnability is the ability of the classifier
to learn from patterns in the training data to give reliable predictions, and this
ability implies that there are useful patterns to be learned, which constitutes IL.
To account for any imbalance in the dataset we use weighted versions of the binary
classifiers and test the evaluated confusion matrices using FET [HK18]. The
FET inherently takes the imbalance into account by indirectly using the Mathews
correlation coefficient evaluation measure, which is zero if the predictions are
obtained by guessing the label (random guessing) or predicting the majority label
(majority class classifier) [CTJ21]. To account for the noise, we define an ensemble
of binary classifiers which includes a deep multi-layer perceptron, and aggregate
their FET results (p-values) to get the final verdict on the IL in a system. We
show that our approach is more efficient (detection time) and accurate in detecting
side channels in real-world cryptographic OpenSSL transport layer security (TLS)
protocol implementations and ILs in synthetic scenarios as compared to the current
state-of-the-art.

33

3.2 The Information Leakage Problem
In this section, we formalize the condition for information leakage (IL) in a given
system using the binary classification problem described in Section 2.3. We also
define the information leakage detection (ILD) task of classifying a given system
as vulnerable or non-vulnerable.

Information leakage IL occurs in a system when observable information (mea-
surable behavior) X is directly or indirectly correlated to secret information (secret
keys, plaintexts) Y of the system. We can formulate this as an empirical task using
the dataset D containing the measured behavior X and the known secret values y.
In this setting, IL exists if there is some information present in the features X
that can be used to derive the label y. By minimizing the empirical risk given
in Equation (2.3) using a machine learning algorithm, we obtain a mapping f̂
between observable input and secret output.

We suggest using the Bayes predictor f b to check for dependencies (correlation)
between X and Y , equivalent to checking for IL in a system. The Bayes predictor
can be seen as the “perfect” classifier, which uses the full knowledge about the
underlying distribution that a dataset is generated from to make the best possible
predictions for a given loss function. In our case, we use the (pointwise) Bayes
predictor f b that minimizes the expected 0-1 loss (L01) of the prediction ŷ for
given input x:

f b(x) = arg minŷ∈Y
∑

y∈Y
L01(ŷ, y) p(y|x)

= arg minŷ∈Y Ey[L01(ŷ, y)|x], (3.1)

where Ey[L01] is the expected 0-1 loss with respect to y ∈ Y and p(y|x) is the
conditional probability of the class y given an instance x. In the case where no
side channel exists and X and Y are independent of each other, we know that
the distribution p(y) is simply the prior distribution of y. Given this distribution
p(y|x) = p(y), the Bayes predictor f b can be simplified to:

f b(x) = arg maxy∈Y p(y) (3.2)

Correspondingly, the prediction of f b for every point x ∈ X is label 0 if
p(1) < p(0) and label 1 if p(1) > p(0). This implies the Bayes predictor behaves
as a majority class classifier, a classifier that always predicts the single majority
class that is present most often in the dataset, when p(y|x) = p(y). Hence, if f b

produces a 0-1 loss less than the 0-1 loss of a majority class classifier, we conclude
p(y|x) ̸= p(y), implying a dependency between X and Y . However, note that an
equal 0-1 loss does not necessarily imply p(y|x) = p(y). Based on this observation,
we can consider a known distribution p(y|x). If f b produces a loss (significantly)
lower than that of a majority class classifier, we imply that IL occurs in the system,
else we assume no IL. If we further restrict p(1) = p(0) corresponding to a perfectly

34

balanced dataset, the Bayes predictor becomes equivalent to a random guessing.
In this special case, it would suffice to compare the f b loss to that of a random
guessing.

In reality, we cannot construct a Bayes classifier f b simply because we do not
know enough information about the underlying distribution. Instead, we can try to
approximate f b using an empirical risk minimizer f̂ which we produce by training a
sufficiently powerful machine learning classifier on D and minimizing Equation (2.3).
Using this, we quantify the IL in a system as the difference between average 0-1 loss
(1 − mACC) for f̂ and the majority class classifier. If this difference is significant
enough, then we conclude that IL occurs in the system used to generate D. This
condition is the basis for our ILD approaches proposed in Section 3.3.

Information leakage detection Using this relationship, the problem of ILD is
reduced to analyzing the learnability of binary classifiers on a given dataset. We
can use the following hypothesis to test for IL in a real-world setting: Suppose
the mapping function produced by the supervised learning algorithm accurately
predicts the outputs using the inputs. In that case, the correlation between the
input and output is sufficiently high and implies the system leaks information.

We require an ILD approach to return a simple leakage/no leakage evaluation
for a given system. The task of the ILD approach is therefore to assign a label
to the dataset D extracted from a system such that 0 indicates occurrence and 1
indicates the absence of IL in the system. The binary classification dataset D is
constructed by representing the observable information of the system as inputs
X ⊂ Rd and secret information as outputs Y = {0, 1}. Given a dataset D of size
N , the task of detecting IL boils down to associating D with a label in {0, 1},
where 0 suggests “no information leakage” and 1 suggests “information leakage”.
Thus, we are interested in the function I defined as:

I :
⋃

N∈N
(X × Y)N → {0, 1} , (3.3)

which takes a dataset D (extracted from the system) of any size as input and
returns an assessment of the possible existence of IL in the given system as an
output. We denote the mapping Î as the predicted IL function produced by an
ILD approach.

Datasets For many systems, we cannot decide if information leakage exists based
on running an ILD approach on a single dataset D. Instead, we extract several
datasets using different methods and aggregate them into a “meta” dataset. One
application would be detecting a Bleichenbacher side channel in a cryptographic
system. Since there are several input types of manipulated PKCS#1v1.5 padding,
the detection approach needs to check for IL separately for each input type. We
define the overall IL-Dataset L as a collection of these individual datasets D.
Let L = {(Di, zi)}NI

i=1 be the IL-Dataset, such that NI ∈ N, zi ∈ {0, 1}, ∀i ∈ [NI]

35

Let z = (z1, . . . , zNI
) be the ground-truth vector, generated by the I, such that

zi = I(Di), ∀i ∈ [NI]. Let ẑ = (ẑ1, . . . , ẑNI
) be the corresponding prediction vector,

such that ẑi = Î(Di), ∀i ∈ [NI]. Since the ILD task produces binary decisions, their
accuracy is measured using the binary classification evaluation metrics. Specifically,
accuracy for the ground-truth z and predictions ẑ is calculated using mACC(z, ẑ)
defined in Equation (2.4). To avoid confusion, we refer to L as IL-Dataset and
each D as the dataset.

3.3 Our Approaches for Information Leakage
Detection

In this section, we describe our proposed ILD approaches using binary classification
and statistical tests as shown in Figure 3.1. In addition, we describe an aggregation
method based on using a set of binary classifiers and Holm-Bonferroni correction
to make our approaches more robust.

3.3.1 Paired t-Test Approaches
From the machine learning perspective, IL occurs in a system if a binary clas-
sification algorithm trained on the dataset extracted from the system produces
an accurate mapping between input (observable information) and output (secret
information). This accuracy should be significantly better than that of the Bayes
predictor evaluated on the dataset extracted from a secure system. For such
systems, the inputs and outputs are independent of each other and the Bayes
predictor becomes a majority class classifier as per Equation (3.2).

Paired comparisons The comparison between k accuracies obtained from k-fold
cross-validation (KFCV) of the binary classifier and majority class classifier can
be implemented with paired statistical tests between the performance estimates.
These tests examine the probability (p-value) of observing the statistically sig-
nificant difference between the paired samples (accuracies of the majority class
classifier and binary classifier) [Dem06]. The p-value is the probability of obtaining
test results (mean of the difference between the accuracies) at least as extreme as
the observation, assuming that the null hypothesis (H0) is true [Dem06]. The null
hypothesis H0 states that the accuracies are drawn from the same distribution,
which would imply there is no difference in performance or, more formally, for the
average difference between the paired samples drawn from the two populations to
be zero (∼ 0) [Dem06].

Paired test choices Out of many paired statistical tests, the most commonly
used paired tests are the paired t-test and the Wilcoxon-signed rank test [Dem06].
These tests assume that each accuracy estimate is independent of all others. Using

36

3.3 Our Approaches for Information Leakage Detection

Data

-fold

nested

cross-

validation

Confusion

Matrices

Fisher's

Exact Test

Fisher's

Exact Test
FET-Sum

Mean

Median FET-Median

FET-Mean

Accuracies

Majority

voting

accuracies Paired t-test PTT-Majority

Paired t-testRandom

guessing

accuracies

PTT-Random

p values of 11

classifiers

Holm-

Bonferroni

correction

Final decision

Number of

rejected

hypotheses

Check if

for each

classifier

Figure 3.1: Our approaches for Information Leakage Detection

37

KFCV violates this assumption of independence because the training data across
each fold overlaps. Nadeau and Bengio [NB03] showed that the violation of
independence in the paired tests leads to overestimating the t statistic, resulting
in tests being optimistically biased. We consequently choose to use their corrected
version of the paired t-test because it accounts for the dependency in KFCV, as
explained in Section 2.3. The shortcoming of the paired t-tests is their asymptotic
nature and the assumption that the samples (difference between the accuracies)
are normally distributed, which results in optimistically biased p-values.

3.3.2 Fisher’s Exact Test Approaches
To address the problem of class imbalance and incorrect p-value estimation, we
propose to use FET on the evaluated k confusion matrices (using KFCV) to detect
IL. IL is likely to occur if there exists a (sufficiently strong) correlation between
the inputs x and the outputs y in the given data D. The predictions produced by
the classifier Cj is defined as f̂(x) = ŷ, where f̂ is the predicted function as per
Equation (2.3). ŷ can be interpreted as a single point encapsulating the complete
information contained in the input vector x. If there exists a correlation, then
ŷ will contain input information that is relevant/used for predicting the correct
outputs (TP, TN). We can therefore determine the existence of IL by examining
the dependency between predictions ŷj of classifier Cj and the ground-truth y.

We propose to apply FET on the confusion matrix for calculating the prob-
ability of independence between the model predictions ŷ and the actual labels
y [Fis22]. FET is a non-parametric test that is used to calculate the probability of
independence (non-dependence) between two classification methods, in this case,
classification of instances according to ground-truth y and the binary classifier
predictions ŷ [Fis22]. The null hypothesis H0 states that the model predictions
ŷ and ground-truth labels y are independent, implying the absence of IL. While
the alternate hypothesis H1 states that the model predictions ŷ are (significantly)
dependent on the ground-truth labels y, implying the occurrence of IL.

The advantage of using FET is that the p-value is calculated using the Hyper-
geometric distribution exactly rather than relying on an approximation that only
becomes exact with sample size approaching infinity, as is the case for many other
statistical tests. In addition to that, this approach directly tests the learnability
of a binary classifier without having to consider a random guessing or majority
class classifier.

3.3.3 On Robustness
For making our ILD approaches more robust, we define a set of 11 binary classifiers
C that are evaluated on the extracted dataset D of the given system. The
motivation of using an ensemble of binary classifiers, rather than just one binary
classifier is that each binary classifier restricts their hypothesis space H, based on
the assumptions imposed on h. In addition, the statistical tests are asymmetric in

38

nature, and as such, they can only be used to reject H0, which implies that we can
prove the existence of IL but not its absence. To work around both restrictions,
we use a set of multiple binary classifiers (C, |C| = 11) to detect IL more reliably
inculcating greater trust in the absence of IL, if all classifiers fail to find an accurate
matching.

The set of binary classifiers C (|C| = 11) includes simple and commonly used
linear classifiers, which assume linear dependencies between the input and output,
such as Perceptron, Logistic Regression, and Ridge Classifier. C also includes
support vector machine (SVM), which classifies the non-linearly separable data
using a kernel trick, i.e., its hypothesis space also contains non-linear functions. C
also includes decision tree (DT) and extra tree (ET), which learn a set of rules
using a tree for classification [GEW06]. To learn more complex dependencies
with very high accuracy, we also include ensemble based binary classifiers in C.
The ensemble based approaches train multiple binary classifiers (base learners)
on the given dataset and the final prediction is obtained by aggregating the
predictions of each base learner. The two most popular approaches proposed
to build a diverse ensemble of learned base learners are bagging and boosting
[KZP06]. To achieve diversification, bagging generates sub-sampled datasets from
the given training dataset and boosting successively trains a set of weak learners
(Decision Stumps) by giving more weight to the previously misclassified instances
each round [KZP06]. The bagging-based approaches included in C are ET (mean
aggregation) and random forest (RF) (majority voting aggregation). We choose
adaptive boosting (AB) and gradient boosting (GB) from the available boosting-
based approaches [KZP06]. We also include a deep multi-layer perceptron, as they
are the universal approximators that, in theory, can approximate any continuous
function between input and the output [Cyb89].

For evaluation of each binary classifier Cj, we use nested KFCV with hyper-
parameter optimization to get k unbiased estimates of accuracies and confusion
matrices [BG04]. As shown in Figure 3.1, for each binary classifier Cj ∈ C,
aj = (aj1, . . . , ajk) denotes the k accuracies and Mj = {M k

j }k
k=0 denotes set of k

confusion matrices.

Paired t-test approaches Our proposed approach based on the paired t-test
(PTT) is PTT-Majority, which compares amc, the accuracy of the majority class
classifier, with aj , that of the binary classifier Cj . We denote the baseline approach
used for the AutoSCA-tool described in Chapter 4 as PTT-Random, which
uses a paired t-test to test if the binary classifier Cj (aj) performs significantly
better than random guessing (arg). Note that the relationship between the Bayes
classifier and random guessing is only applicable for balanced datasets and does
not hold for imbalanced datasets.

FET approaches We propose three new FET-based approaches FET-Sum,
FET-Mean and FET-Median. Since we acquire k confusion matrices Mj for

39

each binary classifier Cj, we need further aggregation methods to reach a final
FET p-value. As the test dataset in KFCV does not overlap for various folds,
each confusion matrix M k

j may be viewed as a separate estimate. Since FET
is only applicable for 2 × 2 matrices containing natural numbers, we aggregate
the confusion matrices using sum (∑k

k=1 M k
j for classifier Cj) and apply FET to

obtain the final p-value. We refer to this approach as FET-Sum. The second
method involves applying the FET to each confusion matrix M k

j ∈ Mj in order
to determine k p-values, which are subsequently aggregated. Bhattacharya and
Habtzghi [BH02] showed that the median aggregation operator provides the best
estimation of the true p-value. We aggregate k p-values using the median operator
and refer to this approach as FET-Median. We also investigate using the
arithmetic mean operator for the aggregation instead and refer to this approach
as FET-Mean.

We apply these approaches to each classifier Cj ∈ C and produce |C| = 11
p-values as shown in Figure 3.1. To detect IL, we aggregate the p-values using
the Holm-Bonferroni correction as described in Section 2.4. Using this correction
yields the value m, which denotes the number of binary classifiers for which the
null hypothesis H0 was rejected.

Detection condition The sufficient condition for the existence of IL in the system
is that even if one binary classifier is able to learn an accurate mapping between
input and output, i.e. if m = 1 then IL occurs in the system. Using different types
of binary classifiers and m = 1 makes our approach more general and can detect a
diverse class of ILs in a system. Although m = 1 is the appropriate choice from
an information-theoretic point of view, choosing m > 1 can be useful in real-world
scenarios where false positives need to be minimized.

3.4 Empirical Evaluation
In this section, we provide an extensive evaluation of our proposed approaches,
detecting the IL in synthetic and real-world scenarios. In particular, we show that
our approach outperforms the state-of-the-art,4 as presented in [Dre+21; MWM21],
with respect to detection accuracy, efficiency, and generalization capability with
respect to class imbalance in the datasets. We also describe the IL-Datasets used
to illustrate our ideas.

3.4.1 Dataset Descriptions
As stated earlier, we need to generate a binary classification dataset from the
system under consideration for IL detection. In this section, we describe the
generation process for these datasets from synthetic and real-world systems. Recall

4Since the paper on the application of these techniques to Bleichenbacher’s attack was published
first, it is considered to be the state-of-the-art for this comparison

40

from Section 3.3.3, that k refers to the number of folds of nested KFCV used for
evaluation of binary classifiers. class imbalance parameter is the proportion of
positive instances in a given dataset D, defined as: r = |{(xi,yi)∈D | yi=1}|

|D| .

Synthetic Dataset Generation For simulating a realistic leakage detection
scenario, we generate synthetic binary classification datasets D from vulnerable
and non-vulnerable systems, using Algorithm 1. This approach enables us to
generate datasets with varying degrees of imbalance r and parameter k for KFCV.
For each system, the inputs x of the datasets are produced using the d-dimensional
(d = 10) multi-variant normal distribution. To imitate a vulnerable system
containing IL, the corresponding labels (output) are produced using a function
y = f(x), which causes the output to depend on the inputs. To imitate a non-
vulnerable system which does not contain IL, the corresponding labels (output) are
produced using Bernoulli distribution. Specifically, y ∼ Bernoulli(p = r, q = 1 − r)
with class imbalance parameter r makes the output independent of the inputs.
Algorithm 1 generates balanced IL-Datasets, containing 10 datasets extracted
from the vulnerable systems and 10 from the non-vulnerable systems. Each D
contains 200 × k instances with dimensionality 10, out of which r × 200 × k are
labeled 1 and the rest as 0. This ensures that the number of instances in the
test dataset, used for evaluation of a binary classifier (|D|/k = 200) is the same
across different scenarios, making accuracy and confusion matrix estimates fair
(TP + FP + TN + FN = 200). We implement Algorithm 1 by modifying the
make_classification function in scikit-learn [Ped+11].

The main goal of our empirical evaluation is to analyse how our proposed ILD
approaches perform compared to baselines in regards to efficiency (detection time)
and generalization capability with respect to the class imbalance parameter r.
The total time taken by the ILD approaches is linear w.r.t. the dataset size.
Because the test dataset size needs to remain constant for a fair comparison, we
choose |D| = k × 200, and thus overall runtime is in O(k). For analyzing the
efficiency, we generate 28 IL-Datasets with each dataset D of size |D| = k ∗ 200,
for value of k ranging from 3 to 30 and fixed class imbalance r = 0.1, 0.3, 0.5,
as detailed in Table 3.1. To gauge the generalization capability, we generate 25
IL-Datasets with each dataset D of size |D| = k ∗ 200 for fixed k = 10, 20, 30 with
class imbalance r varying between 0.01 and 0.51, as detailed in Table 3.1.

OpenSSL Dataset Generation The real-world classification datasets are gener-
ated from the network traffic of 2 OpenSSL TLS servers, one of which is vulnerable
to Bleichenbacher’s attack (contains IL) and the other being non-vulnerable (se-
cure, does not contain IL). We generate the data using the AutoSCA-tool,5 the
details of which are covered in Chapter 4. For now, it suffices to assume that
the tool uses a modified TLS client to send requests with manipulated padding

5https://github.com/ITSC-Group/autosca-tool

41

https://github.com/ITSC-Group/autosca-tool

Table
3.1:O

verview
ofthe

IL-D
atasets

used
for

the
experim

ents
Scenario

Fixed
Param

eter
IL-D

ataset
L

configuration
Binary

C
lassification

D
ataset

D
configuration

#
System

s
|L

|
#

z
=

0
#

z
=

1
|D

|
#

y
=

0
#

y
=

1
#

Features
Effi

ciency
k

for
K

FC
V

,
3

≤
k

≤
30

r
=

0.1
20

10
10

200
×

k
180

×
k

20
×

k
10

r
=

0.3
20

10
10

200
×

k
140

×
k

60
×

k
10

r
=

0.5
20

10
10

200
×

k
100

×
k

100
×

k
10

G
eneralization

class
im

balance
param

eter
r

0.01
≤

r
≤

0.51

k
=

10
20

10
10

2000
2000

×
(1

−
r)

2000
×

r
10

k
=

20
20

10
10

4000
4000

×
(1

−
r)

4000
×

r
10

k
=

30
20

10
10

6000
6000

×
(1

−
r)

600
×

r
10

C
onfiguration

ofthe
O

penSSL
IL-D

atasets
O

penSSL0.9.7a
(Vulnerable)

O
penSSL0.9.7b

(N
on-Vulnerable)

r
=

0.1
20

-
10

11124
10012

1112
88

r
=

0.1
10

-
11078

9971
1107

88
O

penSSL0.9.7a
(Vulnerable)

O
penSSL0.9.7b

(N
on-Vulnerable)

r
=

0.3
20

-
10

14302
10012

4290
88

r
=

0.3
10

-
14244

9971
4273

88
O

penSSL0.9.7a
(Vulnerable)

O
penSSL0.9.7b

(N
on-Vulnerable)

r
=

0.5
20

-
10

19991
10012

9979
88

r
=

0.5
10

-
19995

9971
10024

88

42

Algorithm 1 Generate IL-Dataset L for given k, r

1: Define L = {}, N = k × 200, NL.
2: Sample weight-vector β ∼ N(1, σ), σ ∼ [0, 2]
3: Define µ as vertices of d-dimensional hypercube.
4: for j ∈ {2 × j − 1}NL/2

j=1 do
5: Draw i.i.d. samples xi ∼ N(µ, Id), ∀i ∈ [N]
6: Define Dj = {}, Dj+1 = {}. ▷Dj: With IL, Dj+1: No IL
7: for (i = 1; i <= N ; i++) do
8: Calculate score si = sigmoid(xi · β)
9: Label yi: yi = Jsi < rK.

10: Dj = Dj ∪ {(xi, yi)} ▷Add instance
11: end for
12: for (i = 1; i <= N ; i++) do
13: Label yi: yi ∼ Bernoulli(p = r, q = 1 − r).
14: Dj+1 = Dj+1 ∪ {(xi, yi)} ▷Add instance
15: end for
16: L ∪ {(Dj, 1), (Dj+1, 0)} ▷Add datasets
17: end for
18: return L

to a TLS server. In this setting, IL occurs when an attacker can deduce the ma-
nipulation in the message only by observing the server’s reaction to the message.
Therefore, the server’s reaction is recorded as a network trace by the tool and
exported to a labeled dataset suitable for classifier training. The most popular
TLS server, OpenSSL, comes to mind when deciding which TLS server to employ
for our experiment. According to the OpenSSL changelog,6 a fix for the Klíma-
Pokorny-Rosa [KPR03] bad version attack touched on in Section 2.1.1 was applied
in version 0.9.7b. Consequently, version 0.9.7a contained IL in the form of a bad
version side channel, while version 0.9.7b does not contain this IL. This provides
the chance to collect suitable datasets from these servers and use them in our
demonstration. To generate the dataset, we configure the modified TLS client
to manipulate the TLS version bytes contained in the premaster secret (PMS) it
sends to the OpenSSL server. For each handshake, the client flips a coin to either
keep the correct TLS version in place or replace it with the non-existing “bad”
version 0x42 0x42.

In the resulting dataset, class label y = 0 is used for handshakes with the correct
TLS version and class label y = 1 for handshakes with non-existing TLS version.
This handshake process is then repeated 20 000 times, with each handshake being
extracted into a single instance in the dataset. This approach produces datasets
with approximately 10 000 instances per class. We refer to these (mostly) balanced
datasets as r = 0.5 in our experiments. In addition, we also generate datasets with

6https://www.openssl.org/news/changelog.html

43

https://www.openssl.org/news/changelog.html

artificial class imbalance r = 0.3 and r = 0.1 by sampling from the full dataset,
resulting in imbalanced datasets containing around 14 000 handshakes and 11 000
handshakes respectively. We generate IL-Datasets containing 10 datasets from
0.9.7a (with IL) and 10 datasets from 0.9.7b (without IL) as shown in Table 3.1.
All real-valued features of the TLS and TCP layers in the messages sent by the
server as a reaction to the manipulated TLS message are part of an instance in
the dataset. This results in datasets with a large dimensionality, containing 88
features, only a handful of which are actually correlated to the output.

3.4.2 Implementation Details
The main goal of our empirical evaluation is to analyse how our proposed ILD
approaches perform in comparison to the baselines in regards to efficiency (detec-
tion time), generalization capability with respect to the class imbalance parameter
r, and overall ILD accuracy. Table 3.1 describes the IL-Datasets used for these
experimental scenarios. We use PTT-Random as a baseline, which compares the
accuracy of a random guessing to a set of binary classifiers (ensemble). For this
ensemble, we use our defined set of binary classifiers described in Section 3.3.3.
We also consider DL-LA as another baseline, which trains a deep multi-layer per-
ceptron on a balanced binary classification dataset and propose that if its accuracy
is significantly greater than 0.5, then IL exists in the given system [MWM21].

We apply nested KFCV with hyperparameter optimization on |C| = 11 binary
classifiers as described in Section 3.3.3. We employ the weighted versions of binary
classifiers described by Hashemi and Karimi [HK18] to improve the accuracy of the
binary classifiers for imbalanced datasets (r < 0.5). They penalize misclassification
of positive (y = 1) and negative (y = 0) instances by 1

r
and 1

1−r
, respectively. For

our experiments, the rejection criteria for statistical tests is set to α = 0.01, giving
us 99 % confidence for our prediction. The binary classifiers, stratified KFCV, and
evaluation measures were implemented using the scikit-learn library [Ped+11] and
the statistical tests using SciPy [Vir+20]. The hyperparameters of each binary
classifier were tuned using the Bayesian optimization technique with the Gaussian
process surrogate model implemented by scikit-optimize [Hea+20]. The code
for the experiments and the generation of plots with detailed documentation is
publicly available on GitHub.7

3.4.3 Results
In this section, we discuss the results of the experiments outlined above. Recall
that k is the number of folds used for conducting KFCV and r is the proportion of
positive instances in the dataset D. Each IL-Dataset contains binary classification
datasets of size 200 × k. In Figures 3.2 to 3.4, we compare the detection accuracy

7https://github.com/prithagupta/ML-ILD

44

https://github.com/prithagupta/ML-ILD

0 5 10 15 20 25 30
k

40%

60%

80%

100%
A

cc
ur

ac
y

r = 0.1

0 5 10 15 20 25 30
k

r = 0.3

0 5 10 15 20 25 30
k

r = 0.5 (Balanced)

FET-Mean
FET-Median

FET-Sum
PTT-Majority

PTT-Random (Baseline)
DL-LA (Baseline)

Figure 3.2: Accuracy of detection approaches on synthetic IL-Datasets evaluated
using a varying number of folds k for KFCV

of FET-Mean, FET-Median, FET-Sum, PTT-Majority with the baselines
PTT-Random and DL-LA.

Efficiency In Figure 3.2, the value k used for k-fold cross-validation KFCV is
varied between 3 and 30 and shown on the X-axis, and the resulting accuracy of
the ILD approaches along the Y-axis. Additionally, we compare the performance
for different choices of class imbalance parameter r (r = 0.1, r = 0.3, and r = 0.5
(balanced)), producing three individual plots shown side-by-side.

Overall, we observe that the performance of FET-Mean and FET-Median (∼
100%) does not change with the value of k (number of cross-validation estimates)
for all three IL-Datasets, while FET-Sum is very unstable for balanced dataset
r = 0.5 and slightly unstable for imbalanced datasets. The PTT-Majority
approach outperforms the baselines, but there is no single fixed value of k for
which the approach is able to handle arbitrary imbalance. A good choice to
prevent unstable and inaccurate results would require a small value k < 7 for
balanced datasets (r = 0.5) and a large value k > 7 for imbalanced datasets
r = 0.1, 0.3, which is an issue in applications where the imbalance is not known in
advance. A possible reason for this behavior could be the paired t-test producing
optimistically biased p-values due to the low deviation in estimated accuracy of
the majority class classifier. We also observe that DL-LA performs similarly to
PTT-Random, with both failing to detect IL in imbalanced datasets accurately.
In general, we observed that FET-based approaches require a lower number of
estimates k, and are thus more efficient in detecting ILs.

Handling imbalance In Figure 3.3, the value r (class imbalance) is varied
between 0.05 and 0.5 and shown on the X-axis, and the resulting accuracy of the
ILD approaches along the Y-axis. Additionally, we compare the performance for

45

3 New Techniques for Side-Channel Detection with Machine Learning

0.0 0.1 0.2 0.3 0.4 0.5
r

40%

60%

80%

100%

A
cc

ur
ac

y

K=10

0.0 0.1 0.2 0.3 0.4 0.5
r

K=20

0.0 0.1 0.2 0.3 0.4 0.5
r

K=30

FET-Mean
FET-Median

FET-Sum
PTT-Majority

PTT-Random (Baseline)
DL-LA (Baseline)

Figure 3.3: Accuracy of detection approaches on synthetic IL-Datasets containing
datasets with varying imbalance r

1 2 3 4 5 6 7 8 91011
m

40%

60%

80%

100%

A
cc

ur
ac

y

K=20, r = 0.1

1 2 3 4 5 6 7 8 91011
m

K=20, r = 0.3

1 2 3 4 5 6 7 8 91011
m

K=20, r = 0.5 (Balanced)

FET-Mean
FET-Median

FET-Sum
PTT-Majority

PTT-Random (Baseline)

Figure 3.4: Accuracy of detection approaches on OpenSSL datasets with varying
Holm-Bonferroni cut-off parameter m.

46

different choices of k (k = 10, k = 20, and k = 30), producing three individual
plots shown side-by-side.

The FET-based approaches perform very well for all datasets r ≥ 0.05, even if
the number of estimates is as low as k = 10. As before, PTT-Majority achieves
a high detection accuracy for larger numbers of estimates k = 20, k = 30 only
with high imbalance 0.05 ≤ r < 0.3, with deteriorating accuracy for r ≥ 0.3.
The baselines are not able to detect ILs in imbalanced datasets. This is to be
expected for PTT-Random as most of the binary classifiers easily achieve the
same accuracy as a majority class classifier (1 − r), which means that they always
outperform random guessing (0.5) even when there is no IL.

OpenSSL dataset In Table 3.2, we summarize the overall performance in terms
of FPR, FNR, Accuracy, and F1-Score (as defined in Section 2.3) of ILD
approaches on the real datasets, fixing k = 20 based on the previous results.
Overall FET-Mean and FET-Median outperform other approaches in detecting
side channels in the OpenSSL case study. As anticipated, the baselines successfully
detect side channels for balanced datasets but not for imbalanced datasets. The
PTT-Majority approach works well for imbalanced datasets but produces false
positives for balanced datasets. The FET-Sum approach overestimates ILs in the
servers, resulting in false positives for both balanced and imbalanced datasets.

In Figure 3.4 we also explore the effectiveness of ILD approaches for different
values of the Holm-Bonferroni parameter m on these datasets. The DL-LA
approach is not included in these comparisons since it does not apply the Holm-
Bonferroni correction. For very low values of m, some ILD approaches produce a
large number of false positives, because the tests are underestimating the p-values.
For very high values of m, the inability of some of the binary classifiers to learn
an accurate enough mapping to support rejecting the null hypothesis results in a
lot of false negatives. While m = 1 is the choice supported by information theory,
it can result in false positives in practice. Based on the requirements at hand, it
will therefore be necessary to tune m to balance avoiding false positives and false
negatives.

FET-Median appears to be the optimal choice, achieving an accuracy of 100 %
in almost all cases. The overall performance of FET-Median and FET-Mean
is consistently very high (between 99 % and 100 %) for all but the most extreme
choices of m ≥ 10. FET-Median slightly outperforms FET-Mean because the
median aggregation results in more accurate p-values [BH02]. PTT-Majority
and FET-Sum are not reliable for estimating the correct p-values and produce
large false positives, especially for m < 4.

3.5 Conclusion and Open Problems
We presented a novel machine learning-based framework to detect the possibility
of IL in a given system. To do this, we first used its observable and secret system

47

Table
3.2:R

esults
on

the
O

penSSL
datasets

for
every

approach
using

k
=

20
and

m
=

1.
T

he
best

entry
is

m
arked

in
bold.

class
im

balance
r

=
0.1

class
im

balance
r

=
0.3

class
im

balance
r

=
0.5

(Balanced)
A

pproach
F

P
R

F
N

R
A

ccuracy
F

1-Score
F

P
R

F
N

R
A

ccuracy
F

1-Score
F

P
R

F
N

R
A

ccuracy
F

1-Score
F

E
T

-M
ean

0.0021
0.0

0.999
0.999

0.0182
0.0

0.9909
0.9911

0.0164
0.0

0.9918
0.9919

F
E

T
-M

edian
0.0021

0.0
0.999

0.999
0.0455

0.0
0.9773

0.9778
0.0327

0.0
0.9836

0.9839
F

E
T

-Sum
0.66

0.0
0.67

0.7519
0.84

0.0
0.58

0.7043
0.9564

0.0
0.5218

0.6766
P

T
T

-M
ajority

0.0473
0.0

0.9764
0.9769

0.3309
0.0

0.8345
0.8585

0.3145
0.0

0.8427
0.8674

P
T

T
-R

andom
(Baseline)

1.0
0.0

0.5
0.6667

1.0
0.0

0.5
0.6667

0.1836
0.0

0.9082
0.9179

D
L-LA

(Baseline)
1.0

0.0
0.5

0.6667
1.0

0.0
0.5

0.6667
0.4727

0.0
0.7636

0.8111

48

data to create an adequate (binary) classification dataset. The dataset was then
used to train an ensemble of classification models. We deduce the existence of IL
when either the ensemble performance is significantly better than majority voting
or using the more complex statistical test FET.

The major advantages of the presented approach over previous ones are:

• it accounts for imbalances in datasets

• it has a very low false positive rate

• it is robust to noise in the generated dataset

• it is time-efficient

• it outperforms the state-of-the-art machine learning-based approaches

These advantages are partly due to our IL inference using the non-parametric
FET, applied on the confusion matrix of the learning models, as opposed to direct
IL inference using learning accuracies. The Holm-Bonferroni correction technique
contributes to the increased robustness in particular. We presented extensive
empirical evidence for our claims and compared our approach to other baseline
approaches, including a deep-learning-based one.

In the future, we aim to extend our work to detect new and unknown side
channels. We are also interested in exploring IL detection when the generated
dataset yields a multi-class classification problem with more than 2 classes. This
calls for extending the proposed FET methods to take multi-class classification
issues into account.

Research Question 1. Is it possible to generalize the FET approach to ≥ 3
classes while maintaining the theoretical guarantees on optimality?

Another interesting question that remains unanswered concerns the connections
between information leakage in a purely informatic-theoretical view and the
approaches outlined above.

Research Question 2. Is there a different way to formulate the information
leakage problem that leads to a more direct detection approach, ideally without
involving any statistical tests?

Alternatively, we might be able to eliminate the need for the Holm-Bonferroni
correction altogether by replacing the set of classifiers with a single AutoML
method, predicting the best pipeline, and then using statistical tests to detect IL.

49

4 Application to Bleichenbacher’s
Attack

In this chapter, we apply the methodology developed in the previous Chapter 3 to
detecting Bleichenbacher side channels. Accordingly, we start by introducing the
context for our work in Sections 4.1 and 4.2. We then cover the working of Bleichen-
bacher’s side-channel attack including how it can be used to decrypt confidential
data sent over transport layer security (TLS) in Section 4.3.1. We then revisit the
methodology from Chapter 3 in Section 4.3.2 and derive a Bleichenbacher-specific
version of it. We use this method to create the automated Bleichenbacher side-
channel detection tool “AutoSCA-tool” which we describe in detail in Section 4.4.
In Section 4.5, we evaluate this tool on various TLS servers containing Bleichen-
bacher side channels. We validate the functionality with a version of OpenSSL
that is deliberately manipulated to contain an easy-to-detect side channel in
Section 4.5.2. We can then apply the tool on the bad version oracle by Klíma,
Pokorný, and Rosa [KPR03] in Section 4.5.3 and a recreation of the ROBOT
side channels [BSY18] in Section 4.5.4. In Section 4.5.5 we then check for pre-
viously unknown side channels present in the most commonly visited webpages
and current versions of open-source TLS servers. In Section 4.5.6, we demonstrate
how the modularity and fully automatic capabilities of the AutoSCA-tool can be
used to detect Bleichenbacher side channels as part of commercial TLS standard
conformance testing. Section 4.6 concludes this chapter.

Author’s contribution The following is joint work together with Pritha Gupta,
Eyke Hüllermeier, Tibor Jager, Alexander Konze, Claudia Priesterjahn, Arun-
selvan Ramaswamy, and Juraj Somorovsky [Dre+21]. Pritha Gupta designed
and implemented the machine learning module, including the feature importance
feedback technique. A majority of the results in [Dre+21] were contributed by the
author, encompassing the following technical contributions:

• Creating a modular framework that allows switching between different TLS
clients and network recording tools

• Design and implementation of the feature extraction process

• Implementation of the framework, the “AutoSCA-tool”

• Designing and running the experiments and scans

51

• Result analysis and discussion were joint work by Pritha Gupta and the
author

4.1 Introduction
Many recent attacks on cryptographic protocols deployed in practice do not break
the cryptographic algorithms directly. Instead, they are based on side-channel
information. For instance, this includes many recent attacks on TLS, probably the
most widely-used and well-analysed cryptographic protocol on the Internet, such
as DROWN [Avi+16], ROBOT [BSY18], Raccoon [Mer+21], POODLE [MDK14],
and many more.

One particularly important family are padding oracle attacks, such as the attacks
by Bleichenbacher [Ble98], Manger [Man01], and Vaudenay [Vau02]. Padding
oracle attacks have found countless applications.

Since the original publication of Bleichenbacher’s attack in 1998, follow-up
works have developed many different approaches which construct the padding
oracle required for this attack, which then often yields an efficient attack on
the considered implementation or application [KPR03; JSS12; Deg+12; Bar+12;
Mey+14; Zha+14; Avi+16; Fel+18; Ron+19].

Unexpected side channels Particularly surprising constructions of padding
oracles were shown in the ROBOT attack by Böck, Somorovsky, and Young
[BSY18]. This work demonstrated that padding oracles can appear in very subtle
and quite unexpected forms. For example, one would probably expect that the
TCP protocol, which is used to transport TLS messages, cannot provide an
exploitable padding oracle, because it is merely a transport protocol that operates
on a completely different network layer. The protocol is independent of the
cryptographic keys used in higher-layer protocols (such as TLS running over TCP),
and therefore should not be able to leak any information. However, Böck et al.
showed, very surprisingly, that certain TLS implementations may terminate a
TCP session in different ways, depending on whether a padding error occurred
or not. This could be used to construct a new padding oracle. The authors
of the ROBOT paper also found new vulnerabilities in commercial products by
Cisco, Citrix, F5, Symantec, and Cavium, and even demonstrated a forgery of a
valid digital signature using Facebook’s Rivest–Shamir–Adleman (RSA) certificate
that was based on a padding oracle provided by Facebook’s custom TLS server
implementation.

All padding oracle attacks appearing in the literature so far seem to have been
found manually, that is, via careful analyses of TLS server responses by specialized
expert security researchers, who thoroughly analysed one popular implementation
after another. Of course, this approach does not scale well with a growing number
of implementations. Furthermore, even for experts it is very difficult to find

52

“unexpected” side channels that go beyond what one is specifically looking for,
such as the aforementioned TCP side channel [BSY18], for instance.

Research challenge The development of techniques that are capable of find-
ing such cryptographic side channels automatically, without the need for time-
consuming manual analysis, is a foundational open problem. The main difficulty
is that in order to be able to identify even unexpected side channels, it is not
sufficient to check against a list of known or typical vulnerabilities. Instead, one
has to analyse the behavior of an implementation and efficiently recognize general
patterns that depend on the validity of the padding, and thus might give rise to a
padding oracle.

For example, in the context of TLS implementations, we would like to have a
tool that can be executed against any concrete TLS implementation, possibly after
every significant code modification or before every release of a new software version.
Such a tool should not require any extensive and time-consuming manual analysis
or supervision by an expert security researcher. Instead, it should be usable
without expert knowledge, ideally in a fully-automated way that allows running
automated tests, possibly in the regression testing phase of a CI/CD pipeline.
This would significantly reduce the attack surface of practical applications.

Our contributions We propose an automated approach to detect side channels
such as padding oracles in cryptographic protocol implementations, which uses a
variety of classification algorithms from machine learning to automatically detect
general patterns in network protocol traffic that might give rise to a padding oracle.
Our solution does not merely use the predictions of a pre-trained model but relies
on the ability to learn patterns of interest.

In order to analyse this general approach, we consider Bleichenbacher-like attacks
on TLS as a concrete use case. This class of attacks provides a prime example
of a cryptographic side-channel attack on the protocol level. A long sequence of
research papers appearing at leading academic security conferences [Ble98; KPR03;
JSS12; Deg+12; Bar+12; Mey+14; Zha+14; Avi+16; Fel+18; BSY18; Ron+19]
showed that such vulnerabilities appear repeatedly in popular open-source software
and widely-used commercial products. Hence, this is an ideal reference for the
development and analysis of an automated methodology to detect side-channel
attacks on the protocol level.

In order to minimize the probability that a padding oracle vulnerability remains
undetected in the automated analysis, we propose to train an ensemble of machine
learning algorithms and aggregate them. Concretely, we consider 10 algorithms
from different families, including for instance Logistic Regression, Support Vector
Machines, Decision Trees, Random Forest, and Boosting algorithms. Since detec-
tion of vulnerabilities is most useful when one can also provide information of the
origin of recognized patterns (e. g., which particular protocol message exhibits
the pattern), we focus on machine learning (ML) algorithms that are amenable to

53

feature importance techniques.
We implement and analyse this approach in a tool which automatically analyses

a given TLS server implementation. The tool implements a TLS client to generate
training and testing data and then applies the machine learning algorithms to
detect potential side channels.

We confirm that the tool is indeed able to detect known vulnerabilities in
TLS server implementations reliably. Concretely, the tool correctly identifies
the vulnerability identified in [KPR03] in OpenSSL version 0.9.7a, while no
vulnerability is identified in version 0.9.7b (which patches this vulnerability).
We also confirm that the tool reliably detects all padding oracle vulnerabilities
described in the ROBOT paper [BSY18]. Since some of these vulnerabilities were
found in proprietary implementations (e. g., Facebook’s and Cisco’s) which are
not publicly available for analysis, we patched an mbedTLS8 server according to
the description of the behavior of these implementations from the ROBOT paper
[BSY18] to simulate these padding oracles. Finally, we analyse the most recent
versions of 13 different popular open-source TLS implementations (cf. Table 4.2),
but (as expected) without finding any new vulnerabilities. We conclude that the
tool is able to reliably detect known vulnerabilities, with a general and generic
approach. We consider this as an indicator that the approach will also work for
future, new side channels that exhibit distinguishable patterns on the network
layer.

To assist in removing identified potential vulnerabilities, the tool also provides
detailed feedback about detected patterns to developers, for which we rely on
feature importance techniques of the considered ML algorithms.

We hope that the ideas developed here may potentially detect new subtle
and complex side channels in the future before large-scale deployment of an
implementation.

Supplementary material We make the AutoSCA-tool9 and all data10 publicly
available as open-source on Github.

4.2 Related Work
Attacks based on Bleichenbacher’s The original padding oracle considered in
[Ble98] was based on distinguishable error messages returned by a TLS server
implementation.11 Subsequent protocol versions then required indistinguishable
error messages, in order to remove this particular way to construct a padding
oracle. The difficulty of detecting and preventing all possible side channels that

8https://tls.mbed.org/
9https://github.com/ITSC-Group/autosca-tool

10https://github.com/ITSC-Group/autosca-data
11Early versions of TLS were actually called SSL, and re-named to TLS with the specification

of TLS 1.0 by the IETF in 1999. We use the term TLS for all protocols versions.

54

https://tls.mbed.org/
https://github.com/ITSC-Group/autosca-tool
https://github.com/ITSC-Group/autosca-data

may give rise to a padding oracle has been demonstrated by many research papers
that appeared since the original publication of Bleichenbacher’s attack in 1998.
Klíma et al. [KPR03] introduced a new variant (a “bad version oracle”, a special
case of a padding oracle) and also used timing as a new way to construct the
padding oracle required for Bleichenbacher’s attack. Jager et al. [JSS12] showed
that XML Encryption inherently provides a padding oracle, which is based on
application layer properties of Web services and XML. Degabriele et al. [Deg+12]
described attacks on the Europay-Mastercard-Visa (EMV) specification. Bardou
et al. [Bar+12] developed a clever variant of Bleichenbacher’s algorithm that
may improve the performance of attacks significantly. They also found new
padding oracles in several applications, including RSA SecurID tokens and several
other hardware tokens, Siemens CardOS smartcards, hardware security modules,
and even the cryptography implementation of the Estonian ID card. Meyer
et al. [Mey+14] found several new padding oracles in the Java Secure Socket
Extension (JSSE) TLS implementation and in hardware security appliances using
the Cavium NITROX Secure Sockets Layer (SSL) accelerator chip. The DROWN
attack [Avi+16] discovered another new vulnerability in OpenSSL that was present
in OpenSSL releases from 1998 to early 2015, which gave rise to extremely efficient
Bleichenbacher-style attacks, by leveraging an additional vulnerability in OpenSSL
even in less than one minute on a single CPU. In 2018, Felsch et al. found new
padding oracles in widely used IPSec implementations by Cisco, Huawei, Clavister,
and ZyXEL [Fel+18]. Zhang et al. [Zha+14] and Ronen et al. [Ron+19] considered
settings where the attacker is able to run code on the same physical machine
as the victim, which circumvents many countermeasures to the aforementioned
attacks. Even though this is a strong attacker model, it seems very reasonable in
certain applications, such as cloud computing.

Automated scanning for vulnerabilities Recent analyses on new side-channel
vulnerabilities come with large-scale evaluations of frequently used servers to
estimate the attack impact. Such analyses were performed for ROBOT [BSY18],
RACCOON [Mer+21], or CBC padding oracle attacks [Mer+19]. All these
analyses have in common that the used scanners send test vectors to the servers
and evaluated the potential side channels based on differences in server responses.
Nevertheless, such an approach comes with potential false positives and negatives,
resulting from unstable Internet connections and server behaviors; one broken
TCP connection or connection timeout can change the server response resulting
in a different behavior and thus in a potential side-channel report. Merget et al.
attempted to solve these problems by rescanning vulnerable servers and by careful
statistical tests [Mer+19]. The results of these approaches were integrated into
common TLS scanning tools, such as SSLlabs12 or testssl.sh.13 Therefore, the
tools are now able to cover a very wide range of specific and known vulnerabilities.
12https://www.ssllabs.com/ssltest/
13https://testssl.sh/

55

https://www.ssllabs.com/ssltest/
https://testssl.sh/

While the statistical tests developed in [Mer+19; Mer+21] are well-suited for
precisely finding padding oracle vulnerabilities, the side channels they search for
have to be manually defined by the researchers. For example, TLS-Attacker, which
was used in [Mer+19; Mer+21], explicitly searches for side channels resulting from
different messages, message counts, and TCP connection state differences. All these
side channels have been defined after careful manual vulnerability assessments
performed in the previous years [BSY18; Mer+19; Mer+21]. It is not guaranteed
that the list of the side channels TLS-Attacker and other scanners search for is final.
Unexpected behavior in the TLS implementation or the underlying TCP stack can
reveal new side channels beyond message differences and TCP connection states,
which are not explicitly analysed. This gap is addressed in our research; our tool
observes the whole TLS communication and provides it to the machine learning
algorithms, which are able to detect side channels without previous assumptions
and explain the potential vulnerability to the developer.

Machine learning in side-channel analysis Previously, machine learning algo-
rithms have been applied to detect side-channel attacks on the algorithmic and
hardware level (cf. [Hos+11; Ler+15; MPP16b; Car+19], for instance, [HGG20]
for a recent survey, as well as [Zha+20; Zai+21] for more recent works). To best
of our knowledge, ours is the first approach to consider side-channel attacks on
the cryptographic protocol level. A different research direction was proposed by
Beck et al. , who analysed the automatic exploitation of adaptive chosen cipher-
text attacks [BZG20]. In their work, they assumed a vulnerable implementation
allowing an attacker to modify ciphertexts. They concentrated on the automatic
exploitation development with SAT and SMT solvers based on the malleability
characteristics of the encryption scheme. Our work extends this interdisciplinary
research direction by analyzing ML algorithms for detecting new side channels.

4.3 Preliminaries
This section gives a brief introduction to Bleichenbacher’s attack in the context of
TLS in Section 4.3.1. We particularly consider TLS 1.2. We further summarize
relevant concepts and terminology from machine learning in Section 4.3.2.

4.3.1 Bleichenbacher’s Attack on TLS
The TLS 1.2 Handshake The TLS 1.2 [DR08] handshake, shown in Figure 2.2, is
an essential first step in the establishment of a secure TLS connection. Performing
the handshake, client and server agree on which cryptographic algorithms and
parameters to use, they exchange the secret keys they later use to encrypt the
actual data being transmitted, and the server proves its identity to the client:

The TLS Handshake consists of the following sequence of messages.

56

a1 22 [...] 58 18 00 d6 a8 [...] ac 88

Block
Type

Padding String

Separator

PreMasterSecret
Randomness

03 03

TLS Version

0200

Figure 4.1: Padded Premaster Secret PMS.

(1) The client initiates the connection with the ClientHello message, and
proposes different sets of cryptographic algorithms (so-called “cipher suites”) it
supports.

(2) The server selects a cipher suite and sends it to the client in the ServerHello
message. It then proves its identity with a digital signature with respect to a
certificate signed by a trusted third party. The ServerHelloDone message signals
the end of this message flow. In the following, we consider a setting where a cipher
suite based on RSA key transport is used.14

(3) The client uses the agreed-upon algorithms to perform the actual key
exchange with the ClientKeyExchange (CKE). In the case of RSA-based key
transport, the client generates a new random key called the premaster secret (PMS)
and encrypts it with RSA, such that only the server can decrypt it. It then signals
that the remainder of the conversation will be encrypted with this PMS by sending a
ChangeCipherSpec (CCS) message. Finally, the Finished (FIN) message contains
a cryptographic checksum overall key exchange messages, computed with a key
derived from the PMS.

(4) The server decrypts the PMS and uses it to derive several cryptographic
keys, which are then used to decrypt and verify the checksum of the FIN message.
It concludes the handshake by sending CCS and FIN messages. Thereafter, all
communication is protected using the keys derived from the PMS. Note that all
cryptographic keys used for a TLS session are derived from PMS and other public
values (such as nonces sent in plain text in the ClientHello and ServerHello
messages).

RSA-PKCS#1v1.5 Encryption All TLS cipher suites based on RSA key trans-
port use the RSA-PKCS#1v1.5 encryption scheme [Kal98] in order to transport
the PMS from the client to the server. Essentially, this encryption scheme pads
the PMS with constants and random bytes, as defined in Figure 4.1. The PMS
is a random 48-byte string. The leading 00 02, the separator byte 00, and the
TLS version number 03 03 (which refers to TLS 1.2) are constants. The padding
string is chosen at random from all byte strings that do not contain a 00 byte (to
14The only cipher suite which is mandatory to implement in TLS 1.2 is of this type

(TLS_RSA_WITH_AES_128_CBC_SHA).

57

guarantee that the separator byte is uniquely identified), and such that the total
length of the padded string (including the PMS and all constants) is equal to the
size of the RSA modulus N . The resulting padded string M is then encrypted
with the “textbook” RSA encryption function as c = M e mod N . We say that a
ciphertext is PKCS#1v1.5-conformant or has valid padding, if M = c1/e mod N
satisfies the padding scheme from Figure 4.1. There are several ways in which a
ciphertext can be non-conformant, which we cover in Section 4.4.1.

Bleichenbacher’s Attack Bleichenbacher’s attack assumes that a “padding
oracle” is available, which takes as input a ciphertext, and returns whether the
ciphertext contains a plaintext with valid PKCS#1 v1.5 padding, with respect to a
given target public key (N, e). Such an oracle may be constructed in many different
ways, e.g., based on error messages returned by a TLS server implementation. A
long sequence of research papers has developed many different ways to concretely
construct such an oracle for certain concrete implementations or applications
[Ble98; KPR03; JSS12; Deg+12; Bar+12; Zha+14; Mey+14; Avi+16; Fel+18;
BSY18; Ron+19].

Bleichenbacher described a seminal algorithm [Ble98] which is able to use such an
oracle in order to effciently compute the RSA decryption function c 7→ c1/e mod N
with respect to any number c mod N . Note that this can in particular be used to
decrypt RSA PKCS#1 v1.5 ciphertexts, but also to compute valid RSA signatures
with respect to the RSA key (N, e) contained in a server’s certificate.

Essentially, the idea of Bleichenbacher’s algorithm is as follows. Suppose that
c = M e mod N be a PKCS#1-conformant ciphertext. This is without loss of
generality, because if c is not, then one can use the oracle to “randomize” c by
computing ĉ = cρe = (Mρ)e mod N for random ρ, until ĉ is PKCS#1-conformant,
and then continue with ĉ. Thus, the number c = M1/e mod N lies in the interval
[2B, 3B), where B denotes the number modulo N whose binary representation is

B = 00 01 ... 00 = 28(ℓ−2)

and where ℓ is the byte-length of the RSA modulus N .
Bleichenbacher’s algorithm chooses a small integer s, computes

c′ = (c · se) mod N = (Ms)e mod N,

If the padding oracle reveals that c′ has a valid padding, then this implies that
2B ≤ Ms − rN < 3B, for some r, which is equivalent to

2B + rN

s
≤ M <

3B + rN

s
.

Thus, M must lie in the interval

M ∈ [⌈(2B + rN)/s⌉, ⌊(3B + rN)/s⌋).

58

By repeatedly choosing new s, this yields a set of intervals that narrows down
the possible values of M , until only one possibility is left, which has to be the
plaintext.

The perfomance of Bleichenbacher’s algorithm mainly depends on the provided
oracle, and how precisely it checks the validity of the padding. Bardou et al.
described an improvement to Bleichenbacher’s algorithm [Bar+12], and also
analysed the concrete efficiency for various types of oracles.

4.3.2 Machine Learning
A binary classifier in our application considers two categories: 0 for secure imple-
mentation, and 1 for the considered side channel, cf. Figure 4.3. For our training
dataset, we extract real-valued features from the network traffic (x) and label each
instance with the class-label, which represents the side channel corresponding to
the type of error in the message (1) or if the message passed was correct. If there is
an information leak or existence of a side channel in the system under test (SUT),
then we can say that a classification algorithm can be used to learn an appropriate
function/mapping between the network data and class-label. In particular, each
data point is a two-tuple (x, y), where x is the real-valued d-dimensional feature
vector extracted from network traffic, and y is its ground-truth class-label, see Sec-
tion 2.3. The label y, takes one of two values which is determined by the property
of the ciphertext. It is 0 when the padding is correct, and 1 when the padding is
incorrect. We say that the SUT is vulnerable when the classification algorithm is
able to learn on the binary classification data for the given manipulation, with high
accuracy. This in turn implies an ability to distinguish between server reactions
for the correct and incorrectly padded plaintext. Hence, when a server is secure,
then all binary classifiers will not be able to label the instances x correctly, i.e. the
accuracy should be very low. This corresponds to the observation in Section 3.2
that the Bayes classifier, the best possible binary classifier, is equivalent to random
guessing if there is no information leakage. Using this concept, we determine the
existence of the side channel with respect to a particular manipulation.

To ensure the robustness of our system, we employ multiple binary classification
algorithms and aggregate the corresponding binary classifiers in order to decide on
the vulnerability of the SUT. Recall that solving a binary classification task is akin
to finding an unknown target function. As explained in Section 2.3 each binary
classification algorithm is associated with a candidate space for the aforementioned
target function. By employing a large set of binary classification algorithms,
we are increasing the chance of finding mapping that is very close to the target
function. Then we will be searching for the target function within the union of the
candidate space. We obtain a set of binary classification models by training the set
of binary classification algorithms [Mit97]. Each binary classification algorithm can
therefore be thought of as searching its candidate space, for a predicted function
that fits the given training dataset most accurately [Mit97]. In this thesis, we
use Bayesian optimization techniques with the Gaussian processes to perform

59

the hyperparameter optimization (HPO) for different binary classifiers [FSH15].
The full list of the classifiers we chose, as well as an in-depth explanation of their
workings, is covered in Section 2.3.

Hypothesis Tests Comparing the performance of two algorithms is a common
problem in ML. In our approach, we want to compare the binary classifiers listed in
the previous section with the random guessing (RG) baseline. This corresponds to
the PTT-Random approach discussed in Chapter 3, which should work reasonably
well for the balanced datasets we generate. For a given dataset D = {(xi, yi), . . .},
RG generates each class-label (yi ∈ {0, 1}) uniformly at random without using
the input xi. Assuming that the proportion of class-label 0 and 1 is equal in
the given dataset, the accuracy of approximately 50% implies that the input
features x are not used to predict corresponding class-labels ŷ. For k = 2 the
RG produces an estimated average Eout or accuracy of 50 %. So, one can say
that if a binary classifier is using input features x to predict the corresponding
class-labels ŷ, its estimated out-of-sample accuracy would be greater than 50 %
(Eout > 0.5). A binary classifier can only produce accuracy lower than 50 % if
there exists noise in the dataset, i.e. if our testing dataset is not large enough
or the number of accuracy estimates k is very low. Therefore, we use the Monte
Carlo cross-validation (MCCV) approach to produce k = 30 estimates, with 30%
of the data used for testing (ts = 0.7) [BG04].

One way to imply that the binary classifier can learn something about the
class-labels using the input vectors x is to consider the differences of the mean
accuracies of RG and the given binary classifier. However, this approach can
be misleading as it is hard to know whether the difference between the mean
accuracies (1 − Eout) is real or a result of a statistical fluke. For this reason,
well-established techniques compare two resulting populations, rather than just
their mean differences. For comparing the performance of two classifiers, there are
two statistical tests which are proposed in the literature, the paired t-test [Dem06]
and the Wilconson-Signed Rank test [Wil92].

Paired t-test The paired t-test is used to study if there is a statistical differ-
ence between two samples observed from two populations. Mathematically, it
approaches the problem by assuming a null hypothesis H0(aj == arg). After
applying the t-test, if the null hypothesis H0(aj == arg) is rejected, it indicates
that the groups are different with high probability. Here, aj, ∀j ∈ {1, . . . , 10}
represents the population of the out-of-sample accuracy estimates of the binary
classifier j and arg represents the population out-of-sample accuracy estimates of
RG [BF04; Dem06].

The t-statistic value is used with the Student-t distribution with N − 1 degrees
of freedom to quantify the p-value by calculating the area under the t-distribution

60

curve at value t, which is computed as

µ = 1
N

N∑
i=1

(di = ai − rgi), σ2 = 1
N

N∑
i=1

(µ − di)2

N − 1 , t = µ

σ
. (4.1)

The p-value pj is the probability of obtaining test results at least as extreme as the
results observed during the test, assuming that the null hypothesis is correct [LR06;
Dem06]. The critical value α of a statistical test defines the boundaries of the
acceptance region of the test [LR06; Dem06], i.e. if we nhave p-value pj < α for
binary classifier cj, then the null hypothesis H0(cj == crg) is rejected and we can
say that cj is significantly different/better than RG.

Corrected paired t-test A problem with using the Paired Student’s t-test (and
Wilconson-Signed Rank) is that the accuracy estimates of the binary classifiers
are not independent. This is because the same data is used to train the model
multiple times. This lack of independence in the evaluation means that the Paired
Student’s t-Test is optimistically biased. Nadeo and Bengio [NB03] showed that
the violation of independence in the paired t-test might lead to an underestimation
of the variance of differences. To solve this problem with the paired Student’s
t-test, they propose to correct the variance estimate by taking this dependency
into account. The corrected variance is given by σ2

Cor = σ(1
N

+ ts

1 − ts
), where ts

is fraction of training datasets used by MCCV [BG04; NB03]. The t-statistic is
calculated in the similar manner as in Equation (4.1), such that t = µ

σCor

.

Holm-Bonferroni correction In statistics, this method is used to aggregate the
the p-values of multiple hypothesis tests [Hol79]. To describe the process, we
assume that we compared J classifiers with RG and produced p-values p1, . . . , pJ

and the corresponding hypothesis are H1, . . . , HJ . The significance level is defined
for complete family, α = 0.01. For each p-value, test whether pj <

α

J + 1 − j
, If

so, reject Hj and the index j identifies the first p-value that is not low enough
to validate rejection. Then the rejected hypotheses are H1, . . . , Hj−1 and the
accepted hypotheses are Hj, . . . , HJ . For our experiments, j ≥ 2 (i.e., if at least
one hypothesis is rejected) implies that performance significantly better than RG
was achieved. In this case, we conclude that there exists a mapping between
input space x to class-labels y, and reject the null hypothesis, for the family of
classifiers. If j = 1 then no p-values were low enough for rejection, therefore no
null hypotheses H1, . . . , HJ are rejected (i.e., all null hypotheses are accepted).
In this case, the analysis result will be given as “vulnerable”, while the analysis
concludes with “non-vulnerable” otherwise.

61

Manipulated

TLS Client

TLS

Server

Network

Tap

Feature

Extraction

Classification

Model Learning

Report

Generation

Stage 1

Stage 2

Stage 3

Stage 4

Figure 4.2: Components of the AutoSCA-tool

4.4 Implementation of Automated Side-Channel
Detection

In this section, we describe how we implement our proposed approach in a software
tool. The tool consists of the components shown in Figure 4.2, running after each
other in four discrete stages:

Stage 1 The manipulated TLS client connects to the TLS server which is to
be tested. The client then executes a pre-configured number of requests with
manipulated padding while a network tap records all the exchanged messages. We
describe this client in Section 4.4.1. We treat the server as a black box and run
it in a docker container. For the network tapping, we record all traffic on the
respective docker interface with tcpdump.

Stage 2 The raw data recorded in Stage 1 is transformed into a dataset
that is suitable for machine learning. The feature extractor achieves this by
extracting real-valued features from the messages contained in the network trace.
It also matches these handshakes with the manipulation information from the
manipulated TLS client, labeling each handshake with the associated padding
manipulation. This is described in depth in Section 4.4.2.

Stage 3 The dataset is used to train and test classifiers. After training, the
learned models are executed on the test data sets, testing the accuracy of their
predictions. This process is repeated for different splits into test and training sets
and the overall accuracy is determined. This process is presented in Section 4.4.3.

Stage 4 The results of the machine learning process are evaluated. The
performance of each machine learning model is compared to a simple RG algorithm,

62

applying the Holm-Bonferroni test for significance. The final report then contains
information on whether a model was able to significantly outperform RG, which
would indicate the presence of a padding side channel. Feature importance is
also included in the report as feedback to the software developer. This is shown
in Section 4.4.4.

4.4.1 Manipulated TLS Client
For Bleichenbacher’s attack, we need to recognize patterns in protocol network
traffic that make it possible to distinguish messages with incorrect padding from
messages with correct padding. Therefore we implement a TLS client that ex-
ecutes handshakes with valid and invalid paddings. The client builds upon
TLS-Attacker [Som16],15 a Java-based tool that allows for sending arbitrary TLS
protocol messages with flexible modifications. It has already been used to detect
new Bleichenbacher side channels [Som16] and implements several modified proto-
col flows. We use TLS-Attacker in our tool to execute n TLS handshakes (where
n is a parameter, we choose n ∈ {500, 50000}), using a TLS Cipher Suite based
on RSA key exchange.

The structure of the PKCS#1 v1.5 padded CKE message offers several distinct
ways in which a handshake may not conform to the specification. We call each
of these deviations a manipulation. TLS-Attacker already supports sending CKE
messages with various padding manipulations. These manipulations include all
attack vectors presented by Böck et al. in the ROBOT paper [BSY18], extended
with attack vectors by Meyer et al. [Mey+14] and Klíma et al. [KPR03]. We use
the following manipulations for our experiments:

• Correctly formatted PKCS#1 message: Standard-compliant message, the
real PMS replaced with a random string of appropriate length

• Incorrect first byte: Replacing the first byte of the message, which should
be 0x00, with a non-zero value (we chose a constant, 0x17)

• Incorrect Second Byte: Replacing the second byte of the message (block
type), which should be 0x02, with a different constant (0x17)

• Invalid TLS version in PMS: Setting the TLS version bytes in the payload
to an incorrect constant (0x42 0x42, a non-existing version)

• No 0x00 separator byte: Except for the first byte, all other bytes in the
padded string that are 0x00 (particularly the separator byte) are replaced
with 0x01

• 0x00 in PKCS#1 padding: The second byte of the padding string, which
should be non-zero, is replaced with 0x00

15https://github.com/tls-attacker/TLS-Attacker

63

https://github.com/tls-attacker/TLS-Attacker

• 0x00 in PKCS#1 padding: Replacing the ninth byte of the padding string,
which should be non-zero, with 0x00

• PMS is the empty string: Placing the 0x00 separator at the last byte, creating
a payload of length 0.

• 0x00 On the last-but-one: Placing the 0x00 separator at the last-but-one
byte, creating a payload of size 1.

• Correctly formatted, but short |PMS| = 47: Valid padding for a 47 bytes PMS,
which should be 48 bytes long

• Correctly formatted, but 1 byte shorter: An otherwise correctly padded
message, but with the the total length being one byte too short (not matching
the RSA modulus size)

This aims to cover the majority of classes of padding errors one might expect. Of
course, completeness cannot be guaranteed, but the set of considered manipulations
can be easily extended, if considered useful in a particular context.

The client chooses at random whether and which manipulation to apply to a
ciphertext. It then executes the handshake with the (manipulated) ciphertext.
This process is repeated n times. The client logs which padding manipulation
from the list above was applied to each handshake, which will be used in Stage 2
to match the observed network traffic to the manipulation. For example, when
choosing “Incorrect first byte”, the client manipulates the padding by replacing
the first byte (which should be 0x00) with a different constant. For the handshake
message corresponding to a correct padding, the PMS is replaced with randomness,
in order to ensure that the handshake will still fail as soon as the FIN message
is processed. This corresponds to a step in the Bleichenbacher attack where the
decrypted message has correct padding by chance and the padding oracle returns
“correct padding”, but where the actual PMS contained, which is unknown to the
attacker, does not match the one used by the attacker in the FIN message. This
way of randomly selecting a manipulation for each new handshake eliminates
information leakage from the order of execution of the handshakes while producing
balanced datasets for sufficiently large dataset sizes.

Our client also supports several different “workflows” of the TLS handshake.
The first workflow we use is that of a “regular” handshake, consisting of CKE, CCS,
and FIN messages. It is also necessary to test with a shortened workflow of a single
CKE, without a CCS or FIN message, to trigger some vulnerabilities discovered in
ROBOT [BSY18]. The workflow (full or shortened) and the padding manipulation
are selected at random when executing a handshake.

Note that the missing CCS and FIN messages can result in server connection
timeouts. Because of the timeout caused by the shortened workflow waiting for
a potential response from the server, this becomes a limiting factor in client
throughput. Consequently, the timeout for the client disconnecting from an idle

64

session needs to be set high enough to not miss any messages from the server.
We used a timeout of one second for experiments in a local environment and
three seconds for remote servers, which turned out to be appropriate for the
respective network delays and gave the analysed TLS libraries enough time for
their responses.

4.4.2 Feature Extraction
The “padding oracle” in Bleichenbacher’s attack is essentially an abstraction of a
way that enables the attacker to efficiently distinguish whether the tested server
acts differently on validly or invalidly padded ciphertexts. We consider an attacker
that is able to observe and record the entire network traffic. Therefore we need to
ensure that the same information is available to the ML algorithms, including the
labeled padding modifications performed by the TLS client.

The data obtained in Stage 1 is the traffic exchanged between the manipulated
TLS client and the TLS server, recorded using tcpdump. This results in a .pcap
file containing all messages in their original binary representation, as well as
their metadata. The feature extractor transforms the raw data into a feature
representation that is applicable for training a classifier. A standard approach is
to use datasets consisting of labeled real-valued vectors, where the label contains
the class the particular vector (called “instance”) belongs to.

In our case, each handshake corresponds to a single instance in the dataset,
with the padding manipulation used as the class label for the instance. Thus,
handshakes with the same manipulation end up as instances of the same class
in the dataset. An instance has to be represented by an n-dimensional real-
valued vector, where each dimension corresponds to a feature. Hence, we have to
reduce all network messages belonging to a handshake to a single vector. This is
necessary because these messages are intrinsically linked with each other through
the handshake process and have to be treated as a single entity in ML, in order to
be able to capture patterns exhibited by combinations of messages.

To achieve this transformation, we build upon the popular network analysis
tool Wireshark, which our tool automatically interacts with using the Python
library pyshark. By taking all the protocol fields from the Wireshark output, we
can transform the messages into real-valued feature vectors compatible with ML.

The result of this transformation is a vector of high dimensionality. We need
to make sure its dimensionality is not too high, as this affects the performance
of most ML algorithms negatively due to a phenomenon often called the “curse
of dimensionality” or the “peaking phenomenon” [Hug68; TK09]. The peaking
phenomenon states that the predictive power of a learning model (classifier) first
increases with the number of features in the dataset, but after a certain number it
starts deteriorating instead of improving steadily [TK09]. One way to mitigate
this problem is by increasing the size of the dataset to at least 5 training instances
for each dimension in the dataset, or by reducing the dimensionality of the feature
vectors [TK09].

65

The dimensionality of our dataset is higher, if the feature vector contains more
messages or more network protocol fields. We can discard all messages sent by
the server before it receives the manipulated Client Key Exchange itself, as they
cannot be influenced by the padding manipulation. This reduces the number of
messages contained in the vector reducing the dimensionality at the same time.

We also chose to only export data on the TCP and TLS layer in our experiments.
Our decision was based on the previous works on side-channel attacks [Mer+19;
BSY18], which only detected behavioral differences on the TCP layer and above.
Our reductions dramatically reduce the feature dimensionality, making the experi-
ments feasible with limited resources.

Note that in our experiments in this chapter, we do not consider the timing of
messages, even though several attacks construct a padding oracle using timing.
The treatment of timing information requires further consideration. We decided to
configure the current feature extractor to filter out all timing-related features in our
experiments to prevent accidental leaks of padding status from the client side. A
non-constant-time client implementation (like TLS-Attacker) could inadvertently
leak information about the used padding manipulation into the timing features,
causing false positives.

However, note that while our investigations in this chapter do not consider timing,
it is possible to use the AutoSCA-tool for this purpose. This was demonstrated
later by Berlinblau [Ber21], who identified which specific features contain client-
side timing information and have to be excluded from the extraction process.
Based on her work, Funke [Fun22] improved the AutoSCA-tool to be able to use a
high-precision timing network card. When connecting to a vulnerable server on
the local network, the tool was able to detect timing side channels of around 30 µs.
However, similar to our investigations in this chapter, these improvements did not
reveal any new side channels in current open-source TLS servers.

Finally, because we are using supervised machine learning, we label the vector
with the padding manipulation applied by the client in this handshake.

4.4.3 Classification Model Learning
In this section, we discuss the steps taken by the ML component in order to
determine the existence of a pattern in the dataset, which would imply the
existence of a side channel. This process is illustrated in Figure 4.3.

Multi-class to binary conversion The dataset obtained in Stage 2 consists of
handshakes, involving either a correctly padded message or one of 10 plaintext
manipulations. When using a multi-label classifier on the dataset, we observed
that the performance was poor. This was because of the fact that many different
manipulations may lead to the same server behavior. In its stead we formulate
K binary classification problems, since we are interested in distinguishing any
of the K manipulations from the correct padding, as this indicates information

66

...

Create binary classification datasets

with correct padding vs. manipulation

 Monte-Carlo samples

Corrected paired t-test

Holm-Bonferroni correction

Check side-channel existence

Training with nested

hyperparameter optimization

Correct

padding

Manipulation

1

Manipulation

for each

dataset
for each

classifier

Overall report

Evaluation

of -th

dataset

Dataset

conversion

Report

generation

Figure 4.3: Concept of classification model learning (stage 3) and report generation
(stage 4).

leakage. Recall that every instance x is associated with a discrete valued class-
label y ∈ {0, 1, . . . , K} = [K]. It takes value 0 when there is no manipulation,
and values between 1 and K are directly related to the types of manipulation.
Our binary classifier considers manipulation k, where 1 ≤ k ≤ K and tries to
distinguish it from the correct plaintext for all K manipulations individually.

Evaluation At the core of the process described in Figure 4.3 is a familiy of
binary classifiers that are trained to distinguish between correct padding and a
specific manipulation. Evaluating the performance of the classifiers outside the
given dataset is pertinent, since we do not want the classifiers to overfit the given
dataset. Within our framework, overfitting refers to the problem of finding a
pattern within the dataset that does not exist in general. We use cross-validation
as discussed in Section 2.3 to be able to detect and avoid overfitting. Since we are
interested in creating a robust detection method, we use the MCCV approach to
get several accuracy estimates with less variance for our binary classifiers. Another

67

key step in training a binary classifier successfully is to tune its hyperparameters.
For this we use HPO as presented in Section 2.3, with 2-fold cross-validation to
get the best hyperparameters for the classifier. For the actual classifier training,
we use 30 splits of the dataset into 70 % training data and 30 % validation data.
This results in k = 30 Monte-Carlo samples of the predicted accuracy. Finally,
note that we train multiple classifiers independently to increase the robustness of
our verdict.

Since the binary classifier needs to be significantly better than the RG to imply
information leakage, we apply the corrected paired t-test. This test provides a t-
score and a p-value. The t-score quantifies the performance difference between the
binary classifier and RG. The associated p-value gives us the confidence that the
t-score represents the true performance difference. Note that a better performance
than RG typically implies a high classification accuracy. To summarize, we return
the p-values of the family of binary classifiers for each manipulation, which are
subsequently interpreted in stage 4. In order to conduct the experiments in a fair
and unbiased way, we use a family of classifiers listed in Section 4.3.2. We use
the scikit-learn [Ped+11] library, which implements the required ML algorithms,
cross-validation techniques and evaluation measures. For HPO we use the scikit-
optimize library [Hea+20], which implements different hyperparameter optimizers
compatible with the binary classifiers implemented in scikit-learn [Ped+11].

4.4.4 Error Correction and Report Generation
As explained in the previous section, in order to increase the test robustness, we
use an ensemble of binary classifiers. Because it is not known in advance which
classifier might perform particularly well on a new, unknown side channel, trying
several in an ensemble increases the chance that a suitable one is among them.

Family-wise error rate Since we have multiple classifiers, the false positive
rate when combining them is higher than if only a single one were used, as
a single classifier outperforming the RG is already sufficient to conclude that
implementation is vulnerable. The p-values obtained from the multiple independent
tests of each classifier, therefore, need to be adjusted and then aggregated to give
us a final verdict on the vulnerability of the server with respect to the manipulation.
We use the Holm-Bonferroni test [Hol79] as described in Section 4.3.2 to correct
this error.

Feedback We aim to provide detailed information about any detected side
channels to support software developers in removing them. The first information
we provide is which manipulations were distinguishable from correct padding. This
indicates which padding check is at fault. Another important part of the report is
whether this side channel was detectable with the full (CKE, CCS, FIN) handshake
or the shortened one (CKE only). The random forest classifier additionally provides

68

information about the importance of features (c.f. Section 2.3) in the dataset.
This can provide valuable feedback for the software developer about which parts
of a network trace need to be investigated and what the cause of the potential
padding oracle vulnerability could be. For example, as explained in the analysis
below, a different TLS alert message in response to a padding failure can be easily
pointed out, since this is the single most important feature in the dataset.

4.5 Analysis
We explore the capabilities of our proposed methodology by applying the tool
described in Section 4.4 to various TLS server implementations. In Section 4.5.1,
we explain our experimental setup. In Section 4.5.2, we describe the results of a
first basic validation of the approach, which executes our tool against a completely
insecure implementation, and one implementation which is considered secure. The
test confirms that the vulnerabilities are found and that the secure implementation
does not exhibit any noticeable patterns. In Sections 4.5.3 and 4.5.4 we continue
the analysis by testing the ability to spot diverse real-world side channels. To
this end, we investigate the side channels discovered in ROBOT [BSY18] and
the side channel in OpenSSL Version 0.9.7a from [KPR03]. Again, the analysis
confirms that the tool can successfully and reliably detect all of these side channels.
Finally, in Section 4.5.5 we also present the results of an analysis of the most
recent versions of a large number of popular open-source implementations, which
does not yield any new unknown vulnerabilities.

4.5.1 Test Setup
The tool performs and captures n ∈ {500, 50000} handshakes. Usually, we
run 50,000 handshakes, since ML algorithms often tend to classify more reliably
based on larger datasets. For the ROBOT attack, we experimented with 500
handshakes, as this size is better suited for a large-scale scan of public servers
and more appropriate for a quick scan as part of automated regression testing.
Depending on the network conditions and timeout settings, the 500 handshakes
can be completed in as few as fifteen seconds, with the feature extraction taking
about ten seconds. The training process of the classifiers is by far the most
time-consuming stage of the process, but for a dataset of this size, it remains
under three minutes. In comparison, the overall running time for the big 50,000
handshake datasets is just under two hours.

Our analysis showed that this is a reasonably large number of requests to provide
sufficient confidence in the analysis result. Detailed analysis of the proper dataset
size is covered in Appendix A. All handshakes are executed sequentially without
any waiting time.

The servers are running on the same machine as the rest of the setup, isolated in
docker containers. The network traffic is captured on the docker virtual network

69

0%
20%
40%
60%
80%

100%
A

cc
ur

ac
y

DamnVulnerable
OpenSSL

OpenSSL
1.1.1k

OpenSSL
0.9.7a

OpenSSL
0.9.7b

0.000
0.003
0.006
0.009
0.012
0.015

p-
va

lu
e

Random Guesser
Logistic Regression
Ridge Classifier
Support Vector
Machine

Decision Tree
Extra Tree
Random Forest
Ada Boost

Gradient Boosting
Perceptron Learning
Algorithm
Histogram Gradient
Boosting

Figure 4.4: Performance of different classifiers. The two plots on the left are
obtained in the basic approach validation, considering DamnVulner-
ableOpenSSL and OpenSSL 1.1.1k. The two plots on the right are
obtained in the analysis of the Klíma-Pokorný-Rosa attack [KPR03].

interface, which ensures there is no interfering traffic. Since both server and client
run on the same physical machine, we introduce an artificial 2 ms delay on the
interface. Otherwise the very low delay could cause aggressive TCP retransmissions,
which appear as noise in the collected dataset and make the automated detection
of patterns more difficult and less reliable. The 2 ms delay produces TCP behavior
that is closer to the real world, while still being low enough not to negatively
influence the timeout of the client, which is set to 50 ms, or overall performance.

The tool is executed on an otherwise idle workstation with an AMD Ryzen 9
3950X 16-core CPU, 64GB RAM and an Nvidia RTX 2080 Super GPU, running
Debian 10.7 and Python 3.7.3.

When executing the machine learning component, we get 30 accuracy estimates
samples using ns = 30 MCCV train-test datasets. This sample size allows applying
the Holm-Bonferroni test at a significance level of α = 0.01, which is shown as a
horizontal bar in the figures. This 99% confidence threshold appears to be a good
tradeoff between false positives and false negatives.

4.5.2 Basic Approach Validation
We use the OpenSSL version 1.1.1k (released in August 2021) as our baseline for
a non-vulnerable server implementation, as it is considered to be secure against

70

Table 4.1: Most important features leading to a side channel in DamnVulnera-
bleOpenSSL, extracted automatically using the random forest algo-
rithm.
Feature Name Importance
Description of first TLS Alert 1.0
TCP ACK number of the 2nd TCP Disconnect 0.93
TCP RST of the 2nd TCP Disconnect 0.90

Bleichenbacher padding oracle attacks, based upon the scrutiny of both the open-
source community as well as the attention of security researchers. Our baseline
for a vulnerable server implementation is DamnVulnerableOpenSSL,16 a patched
TLS implementation which intentionally contains a padding oracle vulnerability
for experimental and educational purposes.

Figure 4.4 shows how the different classifiers perform on our two baseline
datasets. For the non-vulnerable OpenSSL 1.1.1k, all classifiers achieve an ac-
curacy of approximately 50%. Consequently, none of the p-values exceeds the
threshold for acceptance, i.e., to be considered potentially vulnerable. For Damn-
VulnerableOpenSSL, some classifiers perform quite well while some others, like
perceptron learning algorithm (PLA) or support vector machine (SVM), do not
outperform RG. This is also reflected in the associated p-values. The performance
of the classifiers decision tree (DT) and extra tree (ET) is somewhat higher than
50%. However, their p-values indicate that we cannot rule out that this happened
by chance. The performance of other classifiers, e.g random forest (RF), which
significantly outperform RG when applying the Holm-Bonferroni correction, means
that we can still conclude this server is vulnerable. We consider this as support of
the approach of using many different machine learning algorithms in parallel.

Table 4.1 shows the most important features in the random forest algorithm for
DamnVulnerableOpenSSL. This is the feedback that the tool provides to a software
developer on the detected side channel. The highest importance is associated to
the TLS alert message. Since DamnVulnerableOpenSSL was specifically crafted to
return a different TLS alert for incorrect paddings (handshake failure instead
of bad record mac), this confirms that the tool provides correct feedback.

Our approach was also able to spot another subtle change in the error handling;
in case of a padding failure, the server disconnects the TCP connection slightly
differently, by sending a TCP reset right after a TCP finished message, instead of
waiting for the client to acknowledge the TCP finished. This causes the RST TCP
flag on the second disconnect message to be set only when processing incorrect
padding, which consequently appears as the third most important feature in telling
the two classes apart. This behavior also causes a shift in the acknowledgement
numbers, which was detected and used by the random forest algorithm, as indicated
16https://github.com/tls-attacker/DamnVulnerableOpenSSL

71

https://github.com/tls-attacker/DamnVulnerableOpenSSL

by the second-highest feature importance score. Hence, the approach is also capable
of identifying such subtle side channels.

4.5.3 Detecting Klíma-Pokorný-Rosa Side Channels
As a next step, we analysed the detection of real-world side channels in old
implementations. According to the OpenSSL changelog,17 prior versions of this
implementation exposed several side channels. The first changes were applied
prior to version 0.9.5, where Bleichenbacher’s attack was fixed after publication
of the original paper in 1998. As mentioned in the release notes, this fix was not
sufficient, as the error caused by a padding failure was not properly ignored. Even
worse, the countermeasures were accidentally removed in version 0.9.5. This is
explained in the release notes for version 0.9.6b (released in 2001), claiming that
this version then contained the first working protection against Bleichenbacher’s
attack. Unfortunately, the source code of these versions is no longer available for
download.

Versions 0.9.6j and 0.9.7b (released in 2003) then contained another change, this
time to address the recently published Klíma-Pokorný-Rosa bad version oracle
attack [KPR03]. Version 0.9.7a (vulnerable) and 0.9.7b (not vulnerable to the
Klíma-Pokorný-Rosa attack) are available and can be compiled, so we use them
to analyse the approach when faced with a bad version side channel.

TLS handshakes with manipulated ClientKeyExchange (CKE) messages contain-
ing an incorrect TLS version resulted in different server behavior of version 0.9.7a.
This was correctly detected by our tool. The classifiers were able to significantly
outperform RG. The tool consequently detected the Klíma-Pokorný-Rosa bad
version side channel present in 0.9.7a. We then tested 0.9.7b and no classifier was
able to outperform RG, with the tool returning a “not vulnerable” result. This
indicates that the applied countermeasures are successful in preventing these side
channels.

4.5.4 Detecting ROBOT Side Channels
Another range of real-world side channels to apply our tool on was presented in
the ROBOT paper [BSY18], where Böck, Somorovsky and Young found numerous
side channels in public web servers. Most of these were found in closed source
TLS server implementations. The authors informed the affected vendors, most
of which published updated software versions for their devices. Consequently, we
expect these side channels to be no longer present in most web-facing TLS servers.

To verify our approach is also suitable for large-scale internet scans, we ran
our tool on the domains in the Alexa Top 500 web page ranking.18 Because this
scan necessitates connecting to machines outside of our control, the workstation
17https://www.openssl.org/news/changelog.html
18https://web.archive.org/web/20180321225122/https://www.alexa.com/topsites

72

https://www.openssl.org/news/changelog.html
https://web.archive.org/web/20180321225122/https://www.alexa.com/topsites

4.5 Analysis

0%
20%
40%
60%
80%

100%

A
cc

ur
ac

y
Cisco ACE F5 v1 Facebook v2

0.000
0.002
0.004
0.006
0.008
0.010

p-
va

lu
e

0%
20%
40%
60%
80%

100%

A
cc

ur
ac

y

Netscaler GCM PAN OS cnblogs.com

0.000
0.002
0.004
0.006
0.008
0.010

p-
va

lu
e

Random Guesser
Logistic Regression
Ridge Classifier
Support Vector Machine
Decision Tree
Extra Tree

Random Forest
Ada Boost
Gradient Boosting
Perceptron Learning Algorithm
Histogram Gradient Boosting

Figure 4.5: Performance of different classifiers for the ROBOT servers generated
with manipulated ClientKeyExchange (CKE) messages containing 0x17
instead of 0x00 as the first byte of the PKCS#1 v1.5 padding. Each
server was successfully labeled as vulnerable by at least one of the
used classifiers.

73

used for the scans serves an informational web page with contact information for
concerned server operations that want to opt out of the scans. The tool was set
up to execute an independent test consisting of 500 handshakes with each of the
domains in the Alexa Top 500 ranking. For 5 domains the hypothesis test rejected,
indicating a possible vulnerability. To investigate further, a larger test with 50000
handshakes was executed with these servers. This revealed that 4 of the 5 were
false positives. The fifth, cnblogs.com, is a genuinely vulnerable server, with the
result of the initial 500-handshake scan shown in Figure 4.5. This was confirmed
using the established ssllabs19, tls-scanner20 and testssl.sh21 TLS scanners, which
were able to detect the side channel as well. We then reached out to the server
operators and notified them of the issue, but did not get any response.

This confirms that our approach scales to hundreds of web servers, albeit at the
cost of an increased running time compared to other ROBOT scanners. On the
other hand, our approach requires fewer assumptions about the nature of the side
channel. Additionally, this test also proves that the tool can be applied outside of
lab conditions in the real world, where network behavior has a bigger influence on
the recorded traffic traces.

We have thus determined that almost all of the side channels covered in ROBOT
have since been removed from high-profile web servers. To evaluate if our tool
would be able to detect these side channels nonetheless, we deliberately recreated
them by imitating their behavior in modified versions of mbedTLS. We decided
to imitate five ROBOT vulnerabilities that cover a representative set of server
behaviors:

• When F5 v1 (CVE-2017-6168) and Facebook v2 are tested with the reduced
workflow of a single ClientKeyExchange (CKE) message, this should result
in a TCP timeout caused by the server waiting for the CCS and FIN message.
For incorrect paddings, these servers do not wait but abort prematurely with
a TLS alert or a TCP disconnect (TCP finished message).

• Cisco ACE (CVE-2017-17428) responds with a TLS alert 47 instead of alert
20 if the padding check fails.

• Citrix Netscaler (CVE-2017-17382) gives a TLS alert 51 for correct padding
but does not send any data for incorrect padding, causing the TCP session
to time out.

• PAN OS (CVE-2017-17841) sends the same TLS alert 40 in both cases, but
also sends a duplicate of the alert in case of a padding failure.

Again, we performed 500 handshakes to generate the datasets as we did in the
Alexa 500 scan. As can be seen in Figure 4.5, the tool was able to correctly classify
19https://www.ssllabs.com/ssltest
20https://github.com/tls-attacker/TLS-Scanner
21https://testssl.sh/

74

https://www.ssllabs.com/ssltest
https://github.com/tls-attacker/TLS-Scanner
https://testssl.sh/

Table 4.2: open-source TLS servers tested
Name Version
BearSSL 0.6
BoringSSL commit 3743aafd
Botan 2.17.3
Bouncy Castle 1.64
GnuTLS 3.7.0
LibreSSL 3.2.3
MatrixSSL 4.3.0
Mbed TLS 2.25.0
OCaml-TLS 0.12.8
OpenSSL 1.1.1k
s2n 0.10.25
tlslite-ng 0.8.0-alpha40
wolfSSL 4.4.0

all servers as vulnerable. This was confirmed by a Holm-Bonferroni test, with at
least one classifier significantly outperforming RG in each experiment.

4.5.5 Testing open-source Implementations
After establishing that our method is indeed able to detect known side channels,
we applied it to up-to-date open-source TLS server implementations. Table 4.2
shows all software versions we investigated. For this experiment, we executed
50.000 handshakes each.

After applying the Holm-Bonferroni correction, we concluded that no classifier
significantly outperformed random guessing for any of the servers we tested.
Our experiments excluded timing side channels and are limited to the range of
manipulated handshakes executed by the TLS clients, and as such might miss
novel attack methods. We are confident, however, that within these limitations not
a single of these TLS servers is vulnerable to a conventional Bleichenbacher-like
padding oracle attack.

4.5.6 Commercial Integration
Finally, with the previous experimental results inspiring confidence into the
reliability of the detection method, the detection component was included in the
TLS Server Inspector. This is a a commercial software offered by the company
achelos GmbH that is used to test TLS servers, e.g. those used in sensitive
applications like health care, for compliance to the TLS standard specification.
The achelos engineers were able to integrate the detection mechanism due to
the modular design of the AutoSCA-tool, which allowed them to reuse existing

75

Figure 4.6: Screenshot of the automatic detection running in the TLS Server
Inspector. The server tested contains a side channel, which is detected
and causes the test case to fail. The main window shows the feedback
view with details of the detected side channel.

software components like the TLS client and the network tap. Figure 4.6 shows
the result of such a test in the case of a side channel being detected, with the
full engineer feedback on the details of the side channel shown in the right panel.
This demonstrates the fully automatic nature of our approach, allowing a software
tester without special training in cryptography to execute the Bleichenbacher test
case simply as part of a larger suite of security tests.

4.6 Conclusions and Open Problems
We propose, implement, and analyse an approach to automatically detect protocol-
level side channels in implementations of cryptographic protocols such as TLS. We
consider Bleichenbacher’s attack as a concrete use case, due to its repeated appear-
ance in many popular open-source implementations and widely-used commercial
products.

A major advantage of our approach is that the side-channel vulnerability de-
tection is fully automated, robust, and therefore scales much better than manual
analysis. In particular, it could be applied as a standard test before every release
of a new version of an implementation, possibly automatically in a CI/CD pipeline.

76

This would also prevent the accidental removal of countermeasures, as happened
in version 0.9.5 of OpenSSL, for example.

Our analysis confirms that this approach, despite being fully automated, is
able to reliably recognize the patterns in network traffic on which the padding
oracles identified by Klíma, Pokorný, and Rosa [KPR03] and ROBOT [BSY18] are
based. We did not yet find new weaknesses in the popular TLS implementations
that we have analysed with our tool. However, we were able to reliably detect
the aforementioned padding oracles with a general and generic approach, which
provides confidence that it will also work for future, new side channels that exhibit
distinguishable patterns on the network layer.

In our analyses, we showed that a single binary classification algorithm is not
reliable enough to detect every side channel; the used classification algorithms
performed differently based on the tested TLS server side channels. The robustness
of our approach was achieved by the usage of an ensemble of machine learning
algorithms for the task of detecting vulnerabilities. This is further reinforced
by the use of a family-wise statistical test to greatly reduce the chance that a
vulnerability found by our ensemble is an accident. This technical knowledge can
be used by designing future approaches for side-channel analyses.

We have intentionally focused on ML algorithms amenable to feature importance
techniques, because we consider an automated tool particularly useful, if it is
able to provide concrete feedback on potential vulnerabilities. This is especially
important if the detected side channel is subtle, as a software engineer using our
tool might simply be unable to address the underlying issue otherwise. Adding deep
learning methods implemented in scikit-learn to the ensemble of algorithms would
be straightforward. This might be desirable as deep learning methods are usually
considered to be more powerful in the case of very complex relationships between
features and labels. However, deep learning is generally less easily interpretable
and often treated as a black box.

Research Question 3. Are there ways to add interpretability to deep learning
methods such that they can be used in the context of side-channel detection as
well?

We believe that the techniques developed in this Chapter are applicable more
generally, beyond Bleichenbacher’s attack on the network layer. One obvious
alternative would be Vaudenay’s attack on CBC padding [Vau02]. However,
non-padding side-channel attacks usually don’t result in the clear padding cor-
rect/incorrect distinction considered here.

Research Question 4. Is it possible to apply the method to side channels where
the oracle has a larger number of possible answers?

Possible future extensions could additionally take local states of implementations,
as in [Zha+14; Ron+19], into account by using them as additional features.

The way in which our tool generates the data using its own TLS client ensures
that the dataset remains balanced. This setup might not be suitable for other

77

applications, resulting in imbalanced data. Chapter 3 showed that some detection
approaches are better suited to handle this imbalance, while others fail outright.

Research Question 5. Which side channels might result in imbalanced data? Is
our approach able to detect them with alternative detection methods, e.g. FET-
Mean and FET-Median?

78

5 Automating Hardware Attacks

In this chapter, we look beyond the remote side-channel detection investigated in
the previous chapters. Instead, we focus on local side-channel attacks on devices
like smart cards and trusted platform modules (TPMs), which we introduce in
Section 5.1. As we explore in Section 5.2, machine learning and especially deep
learning is already an established attack method for local side channels. The special
attack methodology for these attacks is covered in Section 5.3.1, with the existing
metrics already sufficiently capable to detect local side channels. To achieve side-
channel detection, it is therefore sufficient to run the attack and check if it is able to
succeed to some degree. However, state-of-the-art attacks are not fully automated,
as the architecture of the deep learning models (covered in Section 5.3.2) has to be
tailored to each device and dataset manually. We therefore propose to automate
this process using neural architecture search (NAS) as presented in Section 5.3.4.
This proposed approach also needs to result in a reliable performance estimate
in a black-box setting, which we develop in Section 5.4. To analyse our attack
performance for different input shapes and hyperparameter optimizer we performed
a big parameter study on a supercomputer, which we describe in Section 5.5. In
Section 5.6, we investigate the performance and determine the optimal combination
of input shapes and hyperparameter optimizer and compare our NAS performance
to that of hand-crafted architectures. This demonstrates that our attack method
is able to achieve a similar attack efficiency to non-automated attack. This
makes NAS a viable alternative for preliminary investigations of new datasets and
enables automated side-channel detection for local side channels. Section 5.7 then
concludes the chapter and presents future research directions.

Author’s contribution The following chapter is based on joint work together
with Pritha Gupta and Eyke Hüllermeier [GDH23]. Pritha Gupta contributed the
implementation of the experimental setup, design and execution of the experiments,
the idea to use input reshaping and specific search strategies, and collected the
baseline models. The proposed methodology for black-box testing as well as the
result analysis and interpretation were developed jointly by Pritha Gupta and the
author of this thesis. The author’s contributions are the collection and evaluation
of the datasets used for the experiments and the performance analysis of the attack
convergence.

79

5.1 Introduction
When it comes to hardware side channels, machine learning techniques have
long been the tool of choice for attackers. One of the most powerful tools, deep
learning, is particularly promising, as it is capable of learning very complex
mappings between the secret key used in the encryption and the observed power
consumption or electromagnetic emissions. One issue with using convolutional
neural networks (CNNs) is designing an appropriate architecture for the network.
A good architecture that matches the requirements of the dataset at hand can
perform incredibly well, sometimes even predicting the correct key byte after
observing a single attack trace. On the other side, a bad architecture may fail to
give any useful predictions, no matter how much training data it is given. The
hardware side channel community has been struggling with this, failing to come up
with good and general rules for architecture designs that are suitable for arbitrary
attack datasets. There is one way around this issue, though: Instead of trying
to come up with architecture design guidelines by manual architecture tweaking,
why not treat the choice of architecture as just another machine learning (ML)
hyperparameter that can be optimized automatically? This can be achieved with
NAS, which explores a pre-defined hyperparameter space of CNN architectures by
repeatedly training models and determining their performance. If done correctly,
this approach should be able to easily identify which architecture works well for
any given dataset, performing at least as well as carefully constructed manual
models.

The NAS approach was first applied to hardware side channels recently by
Wu, Perin, and Picek [WPP20] and Rijsdijk, Wu, Perin, and Picek [Rij+21],
paving the road for automatic architecture design. These approaches use the
secret key of the traces in the attack dataset to perform the search for an optimal
architecture [WPP20; Rij+21]. This is only acceptable in a white-box setting,
as the attack dataset can no longer be used as a test dataset to get an unbiased
performance estimation. The strategy for performing the actual NAS has a large
impact on the quality of the final architecture, with [WPP20] exploring Random
and Bayesian search strategies and [Rij+21] proposing a search strategy based
on reinforcement learning. The experimental analysis of these works was also
limited in scope, as only a small number of datasets were considered. Even though
the state-of-the-art CNN architectures were inspired by 2-D image classification
models, ML-based side-channel attacks (SCAs) have only been applied to them
using 1-D inputs.

Our contributions

• We propose a NAS approach that relies only on using the profiling dataset
for optimization, which makes it suitable for a black-box setting. In addition,
it is set up to perform several independent attacks, which produces more
reliable performance estimates.

80

• We expand the previous NAS experiments into a large-scale parameter study,
investigating the impact of search strategy by considering four different
search strategies, including Greedy and Hyperband, as well as 2-D CNNs.
Our evaluation is performed on 10 publicly available reference datasets in
both the identity (ID) and Hamming weight (HW) leakage model.

• We also conduct a performance comparison between the CNN architectures
obtained from our NAS approach and the state-of-the-art fixed architectures
proposed by Benadjila, Prouff, Strullu, Cagli, and Dumas [Ben+20] and
Zaid, Bossuet, Habrard, and Venelli [Zai+19].

5.2 Related Work
Breaking cryptographic implementations using their side-channel emissions has a
long history, particularly in the intelligence community, who has been aware of
such issues since the 1950s. In the scientific world, a breakthrough was achieved in
1999 with the introduction of differential power analysis (DPA) by Kocher, Jaffe,
and Jun [KJJ99]. This attack needs to observe a large number of cryptographic
operations, e.g. en- or decryptions, while measuring the power consumption or
electromagnetics (EMs) of the target device. These traces, consisting of thousands
of measurements over time, are then matched to possible computations of the
executed function using statistical methods, revealing the encryption keys.

This approach of attacking the target device directly requires thousands of
observations during the attack, making it difficult to execute in real-world scenarios
where only a handful of traces can be obtained. If a device sufficiently similar to
the target device can be obtained, for example by buying a second copy of the
device, its profile (a model of its leakage) can be created by observing a large
number of cryptographic operations with known keys and plaintexts. In the attack
phase, fewer measurements need to be obtained from the actual target device,
which are subsequently matched up with this leakage model. Chari, Rao, and
Rohatgi [CRR03] developed template attacks for this scenario, where several parts
of an attack trace are matched to the distributions of the template traces.

Creating such a function linking secret key inputs to output traces was soon
recognized to be a possible application for ML algorithms. These models are
trained on the profiling traces and predict the secret key used on the attack
traces. Early ML-based SCAs were already capable of dealing with measurement
noise and misalignment in the traces [Hos+11]. Soon, the ML models grew more
sophisticated and the attacks became more successful, capable of breaking devices
that have been explicitly hardened against side-channel attacks after observing
only a handful of attack traces [Hos+11; Ler+15; PHG17; LBM15; Heu+20;
GHO15; CDP17; Pic+23]

Tuning a ML model properly by choosing appropriate hyperparameters is
paramount for its success, with well-tuned models outperforming template at-

81

tacks [Pic+17; LBM15]. Deep learning is especially promising, as it is capable of
approximating any continuous function in idealized settings where the universal
approximation assumption holds [Cyb89]. The deep learning networks multilayer
perceptrons (MLPs) and CNNs have proven to be very powerful for performing
SCAs [Zai+19; SAS21]. However, these models have to be provided with an archi-
tecture, e.g. different types of neural layers arranged after each other, each with
their own parameters [Zai+19; Wou+20]. Designing an appropriate architecture
can be more of an art than a science, prompting a wave of experimentation with
different architectures, both created from scratch as well as existing ones taken
from image classification tasks [Ben+20]. In order to alleviate this issue, Perin,
Chmielewski, and Picek [PCP20] proposed using ensembles of multiple networks
and aggregating their predictions. While this approach improves the generaliza-
tion properties of existing CNNs architectures for hardware side channels, it also
increases the computational cost and the number of trainable parameters of the
model without addressing the underlying issue of architecture design.

This challenge to design optimal neural architectures is not unique to the hard-
ware side-channel community. It has led to active exploration in the new area of
NAS, which treats the design of neural architectures as another optimization prob-
lem for which approximate solutions can be determined automatically [Ren+21].
This idea has been picked up recently by Wu, Perin, and Picek [WPP20] and
Rijsdijk, Wu, Perin, and Picek [Rij+21] and applied to hardware side channels
for the first time. These works apply a white-box scenarios and use the attack
traces for optimizing the architecture with Random and Bayesian search strate-
gies [WPP20] or using reinforcement learning [Rij+21]. These initial investigations
show very promising results, being able to produce very capable CNN and MLP
models on the ASCAD benchmark dataset created by Benadjila, Prouff, Strullu,
Cagli, and Dumas [Ben+20] and the CHES_CTF dataset.

Another technique for hyperparameter optimization and neural architecture
design that was developed by Acharya, Ganji, and Forte concurrently to ours
is InfoNEAT [AGF22]. They created an algorithm that evolves several neural
network architectures and their hyperparameters simultaneously. Instead of
the usual approach where a single neural network needs to predict the whole
key byte, it trains a separate neural network for each possible key byte value,
using a one-versus-all multi-class classification approach. In combination with
an architecture selection based on information-theoretic metrics this makes it
uniquely suited for hardware attacks. Unfortunately, this also means that their
results cannot be directly compared with more traditional approaches striving for
a single architecture.

5.3 Background
In a hardware SCA, an attacker wants to determine the secret key used in a
cryptographic operation, e.g. an encryption operation, running on a target device

82

they can observe. For non-profiled attacks, the attacker is limited to observing
the device without access to the private key being used, relying entirely on their
observations of EM radiation or power consumption, for example [Pic+23]. In
many cases, it is reasonable to assume that an attacker can also gain access to
a second device matching the target device, called a “profiling” device, e.g. by
obtaining an identical model [Pic+23]. This enables a profiled SCA, where the
attacker can build a behavioral profile of the target device by running a large
number of cryptographic operations with known secret keys on the profiling device.
They thus obtain a set of N observation traces x1, . . . , xN in the first profiling
phase. Each profiling trace is a time series of d instances of measured power
consumption or electromagnetic radiation, represented by a d-dimensional real-
valued vector xi ∈ Rd, ∀i ∈ {1, . . . , N}. In the attack phase, this profile is used to
recover the secret key from the observed behavior of the target device.

5.3.1 Supervised Learning for Profiled Side-Channel Attacks
The application of ML to hardware attacks differs slightly from the method
described in Section 2.3.

Application to AES-128 In the Advanced Encryption Standard (AES), the non-
linear SubBytes method is being applied byte-wise to the inputs containing round
keys derived from the full secret key. Because SubBytes uses an input-dependent
S-box array lookup, this method is usually the target for SCAs. Another advantage
of targeting this method is the independent operation on each input byte, allowing
independently attacking specific round key bytes. Without loss of generality, we
only consider attacking a single, specific key byte in a specific round of AES-128,
as the same attack can be applied to multiple key bytes across multiple AES
rounds to retrieve the full key [WPP20].

Profiling Dataset Structure The attacker records the traces x1, . . . , xN from
the profiling device. Each of these N profiling traces corresponds to a single
known secret key byte ki ∈ K (with K = {0, ..., 255}) and a known plaintext byte
pi. In case the attacker used different keys for each profiling trace, the key bytes
k1, . . . , kN are also different in each trace, while k1 = k2 = . . . = kN = k if the
attacker used the same key for each profiling trace. The profiling trace is then
labeled with yi = ϕ(pi, ki) using a function ϕ. The function ϕ maps the plaintext
pi and the key ki to a value that is assumed to relate to the deterministic part
of the measured leakage xi [Pic+18]. This mapping depends on the assumed
leakage model and is usually defined using the AES S-box function sbox() itself:
ϕ(pi, ki) = sbox(pi ⊕ ki). This identity leakage (ID) leakage model results in 256
possible labels corresponding to the possible values of the input byte. This labeling
results in the profiling dataset Dprofiling = {(x1, y1), . . . , (xN , yN)}, which is then
used by the profiling supervised learning algorithm to build a profiling model.

83

Supervised Learning The task of the profile is to predict the secret key value
ki that was used in the cryptographic operation observed in attack trace xi,
for which the true secret key value is unknown. This can be formalized as a
supervised learning task, where the learner is provided with a set of training data
Dprofiling = {(xi, yi)}N

i=1 ⊂ X × Y of size N ∈ N, with X = Rd the input space (in
our case the measured traces) and Y = {0, . . . , C − 1} the output space (the 256
possible labels or “classes” produced by ϕ(pi, ki) as defined above). The task of
the learning algorithm is to find a target function f : X → Y which, given any
query x ∈ X as input, predicts the corresponding output y in an accurate manner.
Instead of simply predicting a single label, the most commonly used approach is
to give a probability score for each candidate label. This allows the attacker to
use the model on more than a single attack trace, aggregating the probabilities
over multiple observations.

The function f can often be parameterized by parameters w ∈ Rn, where n is
the number of trainable parameters. Typically, the target function is represented
using a probabilistic scoring function S : X → [0, 1]C , which is also parameterized
by w. For a given instance (xi, yi), this function assigns a probability score for
each label, such that si := Sw(xi) = (si,0, . . . , si,C−1), where si,j := Sw(xi)[j]
corresponds to the probability score for label j ∈ Y for the given instance xi.
Typically, neural networks are used to estimate the parameters w of the target
function f . These networks implement a scoring function U : X → RC , which
assigns a real-valued score for each label, such that Uŵ(x) = u = (u0, . . . , uC−1),
where uj := u[j]. These scores are then transformed into (pseudo-)probabilities
by means of the softmax function:

Sŵ(x)[j] = exp(u[j])∑C−1
k=0 exp(u[k])

. (5.1)

The aim of supervised learning is to learn a w∗ with minimal expected loss:

w∗ ∈ arg min
w

∫
L(Sw(x), y) dP (x, y) , (5.2)

where L is a loss function [0, 1]C × Y → R and P the (unknown) data-generating
process. One way to approximate w∗ is to minimize the empirical risk on the
profiling dataset Dprofiling:

ŵ = arg min
w∈Rn

Remp(w) (5.3)

with
Remp(w) = 1

N

N∑
i=1

L(Sw(xi), yi) = 1
N

N∑
i=1

L(si, yi) . (5.4)

categorical cross-entropy (CCE) is often used as the loss function in SCA [Pic+23]:

L(si, yi) = LCCE(si, yi) = −
C−1∑
j=0

Jyi = jK log(si,j) , (5.5)

84

where JzK is the indicator function returning 1 if condition z is true and 0 otherwise.
Finally, the target function f is defined as fŵ(x) = arg maxj∈YSŵ(x)[j].

Attack Methodology The attacker records the attack traces x1, . . . xNa from
the device under attack, by sending Na plaintexts (or ciphertexts) p1, . . . pNa . Each
of these Na attack traces xi corresponds to the unknown key byte k∗ ∈ K (with
K = {0, . . . , 255}) of the device and a known plaintext pi. In order to perform the
attack, the attacker needs to consider every possible key byte candidate k ∈ K. For
each instance (xi, pi), a label is generated for every key byte candidate k ∈ K using
the same ϕ(pi, k) function used during the profiling phase. The resulting labels are
denoted by the vector yi = (yi,0, . . . yi,K−1), such that yi,k = ϕ(pi, k), ∀k ∈ K. The
labeling results in the attack dataset Dattack = {(xi, yi), . . . , (xN , yNa

)}, which
is then used by the learned profiling model to acquire the secret key byte k∗

of the device. To perform the attack, the learned probabilistic scoring function
Sŵ is used to acquire the scores for every possible key byte candidate k ∈ K.
For a given attack instance (xi, yi), the scores of every key byte candidate are
denoted by the vector ŝi := (Sŵ(xi)[yi,0], . . . Sŵ(xi)[yi,K−1]) = (ŝi,0, . . . , ŝi,K−1),
such that ŝi,k := Sŵ(xi)[yi,k] represents the score of the key byte candidate
k ∈ K [Ben+20]. Using these predicted scores, the cumulative score for each key
byte candidate k ∈ K is calculated over several attack traces using the maximum
log-likelihood [Ben+20; Pic+23]:

dNa [k] = log
(

Na∏
i=1

ŝi,k

)
=

Na∑
i=1

log(ŝi,k) (5.6)

Using the likelihood to acquire the cumulative scores is an outlier-sensitive opera-
tion, as a single low score value can completely disqualify the true key [Lom+14].
To increase robustness and reduce sensitivity toward low scores, the attack is run
multiple times on shuffled traces of the attack dataset to obtain the corresponding
cumulative scores dNa [k].

Guessing Entropy The guessing entropy (GE) is the number of guesses that are
required by a model to predict the correct key byte k∗ [Mas94]. It is acquired
using the ranking vector, which contains the position of each key: rNa [k̃] =
1 +

(∑
k∈K\k̃JdNa [k] > dNa [k̃]K

)
, ∀k̃ ∈ K, and the guessing entropy of k∗ is rNa [k∗],

or rk∗ . Because of the repeated attacks, we acquire multiple GE values, which
we average to determine the final estimated GE. The QtGE

value is the minimum
number of attack traces that are required for the very first guess of the model to
be correct, i.e. rQtGE

[k∗] = 1, and it can be used to describe the efficiency of the
attack model [Rij+21]. In case the available attack traces Na are not sufficient,
this value is not well-defined, but for the sake of being able to perform aggregation
in the experiments, we choose to set it to Na.

85

5.3.2 Convolutional Neural Networks
A Neural Network consists of a series of interconnected layers containing Neurons
that connect an input layer that is activated according to observation with an
output layer corresponding to the prediction of the model for this observation.
The structure of these interconnections as well as the method of layer operation
can vary significantly and defines the overall Neural Architecture. The MLPs is a
very simple Neural Network, only employing fully connected, or “dense”, layers.
These were shown to perform SCA efficiently in case there are no countermeasures
applied by the system, but often fail for more challenging tasks [Ben+20; MPP16a].

In recent work, the CNNs have proven to be very effective in learning a multiclass
classification model and breaking a system via hardware side channels, even if such
a system implements countermeasures [Zai+19]. CNNs have shown to be very
robust towards the most common countermeasures, namely masking [MPP16a;
MDP19] and desynchronization [CDP17]. A CNN contains convolutional and
pooling layers in addition to dense layers as shown in Figure 5.1. A CNN can be
viewed as an MLP where only each neuron of the layer l is connected to a set of
neurons of the layer l − 1, therefore can perform all the operations that can be
performed by an MLP [Kle17; Zai+19]. In addition to that, the CNN architecture
imposes inductive biases that are useful for many important applications and
that the MLP networks would have to learn [Kle17; Zai+19]. A recent study has
shown that overall, CNNs are more efficient and better suited to perform SCA
on hardware datasets than MLPs [Cha+22], which is why we chose to focus on
different CNN architectures.

The convolutional block consists of the convolutional layer and a pooling layer
and the dense block consists of the dense (fully-connected layer). The batch
normalization operation is typically applied after the convolutional layer and
dense layer. Each layer has some trainable parameters ŵ which are used to get
the final target function f (c.f. Section 5.3.1) and some hyperparameters. The
hyperparameters are configuration variables of the layer external to the learning
model (f) and hugely influence finding an optimal target function f . Now, we
briefly describe the operations performed by these layers.

Convolutional Operation This operation basically re-estimates the value of the
input value by taking a weighted average of the neighboring values. The weights
are defined using a kernel of some size wk (wk for 1-D data or wk × wk for 2-D
data) and these weights are learned using back propagation algorithm [Zai+19].
This kernel is shifted over the input data (1-D vector or 2-D maps) with a stride
until the entire data is covered. The convolutional operation is performed for
every shift and produces a weighted average value. Typically this operation is
applied multiple times using different kernels and this number is called the filter
size fi of the convolutional layer. If this operation is applied without padding,
then the dimensionality of output decreases, and this operation is called the valid
padding operation. In order to preserve the dimension, the data is padded with 0,

86

and this operation is called same padding [Zai+19].
The number of trainable parameters for convolutional layers are [in × fi × wk ×

out] + out for 1-D data and [in × fi × wk × wk × out] + out for 2-D data, where in
denotes the number of inputs and out denotes the number of outputs [Rij+21]. The
two hyperparameters which need to be searched for an optimal CNN architecture
are the kernel size and number of filters for each convolutional layer as listed
in Table 2.

Pooling Operation This operation applies down-sampling on the input ac-
quired from the previous layer and produces a condensed representation. This
operation reduces the number of trainable parameters of the CNN and avoids
over-fitting [Zai+19]. The pooling operation of some size wp (wp for 1-D data
or wp × wp for 2-D data) and stride, is shifted across the input and reduces it
by applying a max operation or an average operation. Similar to convolutional
operation, pooling operation could also be applied with (preserves dimensionality)
or without padding (dimensionality decreases), and the operations are called
“same” or “valid padding” respectively. This layer does not have any trainable
parameters and the hyperparameters which need to be searched for an optimal
CNN architecture are the poolsize wp, number of strides, and pooling operation
type as listed in Table 2.

Dense Layers This layer consists of weights W ∈ Rd×nh and biases b ∈ Rnh ,
where d is the dimensionality of the input x ∈ Rd and nh is the number of hidden
units of the layer [Ben+20]. The output of this layer is evaluated using the
formula W x + b. Typically, an activation function (e.g. ReLU, Elu) is also
applied to each element of the output and the weights and biases are learned
using the back-propagation algorithm [Ben+20]. The last dense layer is applied
using softmax function (c.f. Section 5.3.1), which converts real-valued scores to
softmax-scores. The number of trainable parameters for dense layers is the sum of
nh for each input plus the bias b: n = (in × nh + nh × out) + (nh + out) where in
denotes the number of inputs and out denotes the number of outputs [Rij+21].
The hyperparameter which needs to be searched is the number of hidden units for
each dense layer as listed in Table 2.

Batch-Normalization Layer This layer was introduced to lower internal covari-
ance shift in neural network and thus making the convergence faster [IS15]. It was
possible to use larger learning rates for the training process. This layer normalizes
every data point xi in a training batch by estimating the expected mean and the
variance of the training batch. The number of trainable parameters for batch
normalization is 4 × d, where d is the dimensionality of the input. For NAS, we
can choose to either apply it or not in each convolutional block and in each dense
block.

87

5.3.3 Leakage Model
The leakage model defines which information is expected to be leaking from the
device in the measurements. Since we focus on AES-128 in our experiments, we
assume the output to the S-box function is leaked. Additionally, we only target a
single S-box corresponding to a single key byte in the very first execution step of
SubBytes in the first AES round. We believe our results apply to other key bytes
and later rounds, as determined by [GJS19]. We investigate two types of leakage
models for this output byte, the Hamming weight (HW) leakage model and the
identity (ID) leakage model.

Identity Leakage Model In this model, the attacker assumes that the leakage l or
power consumption is directly linked to the entire S-box output. For the 8-bit S-box
used in AES, this leakage model results in 256 classes representing every possible
value of the input byte. The dataset is then labeled with ϕ(pi, ki) = sbox(pi ⊕ ki).

Hamming Weight Leakage Model In this model, the attacker assumes that
the leakage l or power consumption is directly linked to the number of bits set
to 1 in the S-box output, which is equivalent to its Hamming weight (HW). For
the 8-bit S-box used in AES, this leakage categorizes 256 possible inputs into
9 classes, from 0 bits set to 8 bits set. This is done with the labeling function
ϕ(pi, ki) = HW (sbox (pi ⊕ ki)). This causes several outputs to map to the same
class, since e.g., the output values 1 and 4 both belong to HW class 1, and the full
output value cannot be recovered. Using the redundant information over several
S-boxes and SubBytes rounds, as well as the relationship between them, this still
allows full key recovery, as for example demonstrated in the CHES 2018 CTF
challenge by the AGSJWS team [GJS19]. Choosing this leakage model produces
a large class imbalance because while only a single output maps to class 0 and 8
each, 70 outputs map to class 4. This can have a large effect on a machine learning
process and may require custom metrics to account for the imbalance [Pic+18].

5.3.4 Neural Architecture Search
The first handcrafted CNN architecture is shown in Figure 5.1a, which Benadjila,
Prouff, Strullu, Cagli, and Dumas [Ben+20] proposed to attack the ASCAD
dataset. This architecture was later optimized manually to produce dataset-
specific smaller architectures (for example Figure 5.1a shows the architecture
produced by Zaid, Bossuet, Habrard, and Venelli [Zai+19] for attacking ASCAD_f
desync50 and ASCAD_f desync100). This shows that an optimal CNN architecture
is dependent on the dataset and designing it manually requires expert knowledge.
This challenge is not unique to side-channel attacks, and consequently, there
have been recent developments in automating this process by employing “Neural
Architecture Search”. NAS treats the task of finding a suitable architecture for a
given dataset as a simple optimization problem (using objective) that can be solved

88

Convolution

Pooling

Dense Layer

Softmax Dense Layer

Input

256 Softmax Scores

Dense Layer

Convolution

Pooling

Convolution

Pooling

Convolution

Pooling

Convolution

Pooling

(a) ASCAD baseline from
[Ben+20]

Convolution

Pooling

Dense Layer

Softmax Dense Layer

Input

256 Softmax Scores

Dense Layer

Convolution

Pooling

Convolution

Pooling

Dense Layer

(b) Zaid baseline from
[Zai+19]

Dense Blocks

Convolution Blocks

Batch Normalization

Convolution

Dense Layer

Softmax Dense Layer

Input

256 Softmax Scores

Batch Normalization

Pooling

(c) Our NAS base architec-
ture

Figure 5.1: CNN architecture comparison

automatically. NAS takes a search space A containing possible architectures and
the dataset as input and, using a specified search strategy, automatically searches
for the optimal architecture as shown in Figure 5.2. Typically, NAS uses an
evaluation metric, e.g. accuracy or a loss function as its objective, which is used as
a criterion to evaluate or measure the performance of an architecture. The dataset
is split into training data Dtrain, which is is used for training a new architecture
A ∈ A and validation data Dval which is used to evaluate the performance A.
In the end, the NAS produces the best-performing architecture according to the
defined objective [EMH19]. This motivated the usage of NAS approach, which
takes the profiling dataset as input and automatically produces an optimal CNN
architecture to perform the SCA for a given dataset [EMH19].

Previous Proposals Recent works propose using NAS for SCA [WPP20; Rij+21].
They first proposed different white-box metrics for defining the objective for
performing the NAS using Random and Bayesian search strategy [WPP20].
These white-box metrics determine the cumulative score of the secret key byte on
the labeled attack dataset in order to evaluate the performance of an architecture.
This work was extended by proposing a novel reinforcement learning based NAS

89

approach which uses the white-box objective as the reward function for learning
the Q-function [Rij+21]. The Q-function is used to guide the search and choose
the hyperparameters of the next architecture to be evaluated. This approach
uses guessing entropy and QtGE

value of the secret key byte k∗ of the system, to
evaluate its white-box objective or the reward function. The drawback of these
approaches is that it uses the attack dataset to evaluate the objective function to
find the architecture, which poses two major issues. First, it no longer allows the
detection of overfitting, e.g. where a model is specifically matching only the data
it has been exposed to before, performing exceptionally well on training data, but
the model does not generalize, meaning that its performance with any other data
is poor. Since the attack dataset is also used for hyperparameter-optimization,
the architecture is specifically fitted to the attack dataset. To detect overfitting, a
holdout dataset, which is deliberately withheld during the entire model selection,
parameter tuning and training process, has to be used, since only the performance
on this holdout can predict the generalization capabilities of the model. If this
holdout dataset is used in any part of the process, even if it was just manually
inspected to select which specific classifier to train on it, data-snooping occurs
and it is no longer useful for assessing generalization [Jen00]. This is the case for
[Rij+21] and [WPP20], and therefore we cannot be sure if overfitting occurred in
these experiments. Second, testing a model on the same attack dataset for which
its architecture has been optimized will necessarily result in an over-estimation
of its real-world attack performance where the architecture cannot be optimized
for the unknown key in the attack dataset. This is acceptable in a white-box
or gray-box setting where some parts of the attacked device are assumed to be
known, but is not compatible with the black-box setting we assume, where the
attack dataset would be considered unlabeled for the purposes of training. The
performance results reported in [Rij+21] and [WPP20] are thus not necessarily
representative of real-world performance on an unlabeled attack dataset and cannot
be meaningfully compared to our work.

5.4 Our Approach
We aim to produce an unbiased, optimal CNN architecture in a black-box setting
with the help of NAS. Since NAS was designed primarily to use only the training
dataset for finding an optimal architecture, we devised an approach, illustrated
in Figure 5.2, which can satisfy these black-box requirements. This follows
the standard training-test-validation split used in many ML methods. For this
the profiling dataset is split into validation and training dataset, such that the
training dataset Dtrain is used to train the architecture under consideration and
validation data Dval is used to estimate the performance of said architecture. In
our approach, the search strategy uses a predefined search space A (c.f. Table 2)
containing CNN architectures (1-D or 2-D depending on the input shape) to
perform NAS. Typically, the search strategy initially suggests some architectures

90

Search

Strategy
Evaluate

Accuracy of

Architecture

Profiling

Dataset

Train

Attack

Dataset

Decile 1

Decile 10

Final

Model

Evaluate

10 Guessing

Entropy Values

10 Values

Neural

Architecture

Search

Validation
Data

Best

Architecture

Training

Data

Search

Space

Train

}
Figure 5.2: Schematic of our NAS approach for black-box attacks

A ∈ A randomly (exploration) and uses their evaluated accuracy to make future
suggestions (exploitation). The training data (Dtrain) is used for training the
architectures A and the validation data (Dval) is used for evaluating the accuracy
of A. The attack dataset (Dattack) acts as the holdout data for independent
evaluation of the final model. Since we are only using the profiling and not
the attack dataset for searching and evaluating the architecture A ∈ A under
consideration, this makes our NAS optimization a black-box approach [Rij+21].
This is in contrast to Wu, Perin, and Picek [WPP20] and Rijsdijk, Wu, Perin, and
Picek [Rij+21], which use the attack dataset instead of a validation dataset for
guiding the search, making their approach white-box since the attack dataset can
then not be used to give an unbiased performance evaluation. In the end, NAS
suggests the architecture which has the highest accuracy. The best-performing
architecture is then trained on the complete profiling dataset (Dprofiling), which
improves the performance while only incurring a marginal computational overhead
compared to the actual search. Similar to the folds used in cross-validation, the
attack dataset (Dattack) is split into 10 equal parts (deciles) and each part is used
to independently evaluate the attack efficiency of this model using the guessing
entropy and QtGE

measures defined in Section 5.3.1.

5.4.1 Two-Dimensional Input Reshaping
The measurement traces of the datasets have to be transformed into the proper
shape for the neural network to process. The most straightforward transformation
is to produce a One-Dimensional input from the time series input, define a

91

8 4 3 60 9

Square with length

8 4 3

60 9

5 5 5
Imputation

with mean

(a) Square Input Conversion

8 4 3 60 9

Rectangle

Dimension

8 4 3

60 9

(b) Rectangle Input Conversion

Figure 5.3: Conversion technique of 1-D input to 2-D inputs

search space containing 1-D CNN architectures (c.f. Table 2), and apply NAS to
find an optimal architecture. While most of the 1-D CNN architectures that are
explored for performing SCA to break AES-128 encryption were originally inspired
by popular 2-D CNN architectures proposed for image classification, like VGGNet,
Inceptionv3 [Ben+20], they are only applied on one-dimensional inputs. Recent
work has shown that using 2-D CNNs could increase the accuracy and efficiency for
breaking post-quantum key-exchange (PQKE) protocols [Kas+21; Het+20]. This
motivates us to also explore using two-dimensional inputs for AES-128 attacks,
applying NAS on a search space containing 2-D CNN architectures (c.f. Table 2).

In order to convert the one-dimensional input of length d to a two-dimensional
input, we propose to use two techniques Square and Rectangle. In the Square
approach shown in Figure 5.3a, we create a perfect square of dimension ⌊

√
d⌋ + 1,

but since most feature spaces will not result in a full square we need to fill the
remaining places with the mean value of the instance. For forming a Rectangle
input, we create the rectangle shown in Figure 5.3b, which is as close as possible
to a square without the need to fill it with mean values. These dimensions can be
determined by using the two factors of d which are closest to

√
d.

5.4.2 Search Strategies
The search strategy used in NAS has a huge influence both on search performance
and runtime. The previous work on applying NAS for performing SCA only
considered Bayesian and Random search strategies [WPP20], which are not
necessarily time-efficient [EMH19; Li+17]. We explore the four search strategies
Random, Greedy, Hyperband, and Bayesian with 1000 fixed trials and use
their respective implementations provided by AutoKeras [JSH19].

Typically, search strategies first explore the search space by trying many sub-
stantially different architectures. This is followed by exploitation, in which well-
performing architectures are further improved via small changes. Because each
search algorithm is only allowed to consider a limited number of architectures
(in our case 1000), it should have a balanced trade-off between exploration and

92

exploitation in order to perform efficiently and accurately.

Random The Random search technique chooses a unique architecture configura-
tion uniformly at random (with replacement) from the complete search space and
evaluates its performance. This process is repeated for a specified number of trials
but is preempted if it has exhausted the search space or the same configuration
is chosen multiple times. This means it focuses only on exploration without any
exploitation.

Greedy The Greedy search algorithm proposed by Jin [Jin21] works in two
distinct stages, exploration and exploitation. In the exploration stage, it evaluates
uniformly randomly chosen models for a limited number of trials [JSH19]. In the
exploitation stage, it generates models which are neighboring the best-performing
model from the first stage and exclusively try to improve this model. This is done
by traversing a hierarchical hyperparameter tree representing the hyperparameters
of the best-performing model, as well as possible changes such that the new
hyperparameter values remain close to that of the best-performing model with high
probability [Jin21]. This tree is rebuilt if a better architecture is found, at which
point this architecture becomes the starting point for subsequent exploitation. The
algorithm continues the exploitation process until either the trial limit is reached
or until it has exhausted the entire search space. The Greedy search algorithm
is time-efficient, but it might get stuck in local optima since it performs limited
exploration, e.g. for only 1 % of the maximum number of trials in AutoKeras [Jin21;
JSH19].

Hyperband The Hyperband search algorithm is based on the successive halving
algorithm [Li+17]. The Successive Halving algorithm divides the resources (time,
epochs) equally into a specific number of hyperparameter configurations. In
each time step (2-3 epochs) it checks their performance and at the end keeps
the top-half best-performing configurations. This process is repeated until only
the best-performing configurations are left. The Hyperband algorithm is time-
efficient and balances the trade-off between exploration (check many models with
a low budget) and exploitation (provide a high budget to the best-performing
architectures) very well [Li+17].

Bayesian The Bayesian search algorithm is based on Bayesian optimization,
which assumes a (black-box) function f ′ : Θ → R over the hyperparameter space
θ ∈ Θ = (Θ1, . . . , Θn), such that θ = (θ1, . . . , θn) represents one hyperparameter
configuration [FSH15]. Each hyperparameter space can be an integer, real or
categorical, i.e., Θi ∈ R or Θi ∈ Z or Θi ∈ {0, . . . , c}, for some c ∈ N, where
c is the number of categories. For finding the best configuration function f ′,
which maps a configuration θ to the estimated real-valued validation accuracy, a
probabilistic model using a Gaussian process is used. This probabilistic model

93

provides the properly balanced trade-off between exploitation and exploration of
the search space [Li+17]. At the end of the 1000 fixed trials the best configuration
is obtained as θ∗ = arg maxθ∈Θ f ′(θ).

5.5 Setup of Our Parameter Study
The performance of the final model returned by performing NAS as described in
Section 5.4 heavily depends on two factors or parameters: First, the search strategy
employed for NAS, which has a huge influence both on search performance and
runtime, and second, the shape of the input features. In order to determine the best-
performing options for both of these factors, we need to perform a parameter study.
The methodology for this study is outlined in Section 5.5.1, while Appendix B
presents the datasets we used for the experiments and Section 5.5.3 covers the
hardware necessary for it. Because we investigate how our automated NAS setup
compares to manually crafted baseline architectures, we additionally trained the
fixed CNN architectures we describe in Section 5.5.2.

5.5.1 Methodology

We proposed a black-box NAS approach to automatically perform a SCA as
described in Section 5.4. The two main phases of our empirical study are first
analyzing the expected success rate of our approach for a given parameter com-
bination of the search strategy and input shape. Using this, we determine the
best parameter combination of the search strategy and input shape, which should
be used by NAS to perform SCA. In addition, we would also like to compare the
attack performance of the CNN architectures produced by the NAS configured
with the best parameter combination of the search strategy and input shape with
the state-of-the-art handcrafted CNN architectures.

Parameter Study The attack performance of the final architecture produced by
the NAS is heavily dependent on the search strategy used and the input shape
of the data. For the parameter study, we consider 4 search strategies, namely
Random, Greedy, Hyperband and Bayesian (c.f. Section 5.4.2). Our input
data could be One-Dimensional (1-D CNN), rectangular (2-D CNN) or square
(2-D CNN) shaped (c.f. Section 5.4.1). For each of the 12 possible parameter
combinations of input shape and search strategy we apply NAS to acquire the
best-performing model on 10 datasets (c.f. Appendix B). This model is then
trained on a complete profiling dataset Dprofiling and evaluated on 10 equal parts
(deciles) of the attack dataset Dattack. In the end, we acquire 10 guessing entropy
values and 10 QtGE

values, which are aggregated to achieve the final performance
of the experiment run.

94

Loss Function Investigation We initially intended to also investigate the in-
fluence of the loss function in our parameter study, considering the most com-
monly used loss function CCE and comparing it to 6 other specialized loss func-
tions, among them ranking loss (RKL) and focal-loss categorical cross-entropy
(FLCCE) [Ker+22]. The parameter study was set up to combine all possible
combinations of 3 input shapes, 4 search strategies, and 7 loss functions, and then
run on the supercomputer (c.f. Section 5.5.3). When analyzing the results, we
discovered that a small bug in the ML library we used, AutoKeras, prevented
the loss function parameter to be passed onto the actual CNN training module,
forcing all of the experiments to use the default value CCE instead. We therefore
effectively evaluated our NAS approach for the same choice of input shape and
search strategy 7 times, using CCE as the loss function each time. Each of the
7 runs produced a different split of profiling dataset Dprofiling into training Dtrain

and validation Dval dataset, resulting in a different best architecture returned by
NAS and a different final model. These experiments had already been executed
and consumed significant resources, so we had to consider if the results should be
outright discarded or not. Because of the randomization involved, it is necessary to
run such an experiment several times and average the results to get a statistically
significant and “realistic” estimation of performance [LT20].22 Consequently, we
decided to keep all of the original experiments and aggregate the results of the 7
models as independent repetitions of the same NAS experiment. Unfortunately,
we are not be able to determine the impact of the loss function.

Evaluation of Single Experiment Run A single experiment run for our study
consists of applying NAS configured with a unique combination of input shape,
search strategy, dataset, and leakage model. For each experiment, there are a
total of 70 attacks being executed: 7 different models are trained based on unique
random seeds, then the attack is executed for each of the 10 attack deciles for
each model. The results of the 70 attacks are then aggregated to determine the
performance with the following metrics.

Success Rate A single attack is considered to be successful if the final guessing
entropy is 1, e.g. the correct key byte is at the top of the predictions with
rk∗ = 1 [TPR13]. The success rate is defined as the empirically determined
probability of an attack being successful. For our 70 attacks, we can therefore count
the number of successful attacks and divide by the total number of attacks [TPR13],
returning a percentage value.

Attack Efficiency QtGE
Even though several approaches might achieve a high

success rate, it is still preferable for them to use fewer attack traces, making them
more efficient. This can be measured by the QtGE

value, which counts the number
of attack traces that are required to achieve a successful attack. To calculate the
22As recommended in https://github.com/keras-team/autokeras/issues/359

95

https://github.com/keras-team/autokeras/issues/359

QtGE
for an experiment run, we can average the QtGE

values of the 70 individual
attacks. This value can be sensitive to outliers, e.g. unsuccessful attacks where
QtGE

is set to Na.

Evolution of Guessing Entropy Another analysis method of the model per-
formance involves plotting the development of the GE value “over time”, after
observing a certain number of attack traces. As detailed in Section 5.3.1, this GE
is already the result of running the attack 100 times on shuffled attack traces. For
our analysis, we aggregate the 10 attack runs by averaging and reporting the 7
NAS models individually.

Implementation Details To implement NAS for different search strategies and
search spaces as well as input shapes, we extend the AutoModel, DenseBlock,
ConvBlock and ClassificationHead classes of the popular NAS python library
AutoKeras [JSH19]. The code for the experiments and the generation of plots
with detailed documentation is publicly available on GitHub23.

Architecture Search Space To perform NAS, we need to define the search
space containing a reasonable range of CNN architectures and hyperparameters.
Fundamentally, our architecture consists of layer blocks as shown in Figure 5.1c,
with up to 5 convolution blocks followed by up to three dense blocks and a softmax
dense layer. In addition to the architecture, our search space also contains the
respective hyperparameters for each layers, such as kernel sizes for convolutional
layers, the activation function, or the number of hidden units in a dense block. We
have to define slightly different search spaces for 2-D and 1-D CNN architectures
to avoid generating invalid configurations (see Appendix C for the full details). We
selected the range for each hyperparameter by analyzing the related work [Rij+21;
WPP20], ensuring that our search space includes all possible 1-D baseline CNN
architectures [Zai+19; Ben+20]. As such the search strategies could in theory
find these fixed architectures and match their performance, e.g. Random is
certain to find these architectures eventually. We also included the range of
each hyperparameter from the search space designed for 1-D CNN architectures
proposed by the current work done on NAS for performing SCA [Rij+21; WPP20].
If the characteristics of the dataset are known in advance, it is possible to reduce
this search space to make the search more efficient. We chose not to tailor the
search space to the dataset like this, as this way the architecture design remains
fully automated, requiring no manual analysis of the dataset. Using our search
space, the total number of possible hyperparameter configurations is 40 758 681 600
for 1-D CNNs and 2 264 371 200 for 2-D CNNs. Each search strategy is provided
with the same budget limit of 1000 trials, which means that only around 5×10−5 %
of 2-D search space and 2.5 × 10−6 % of 1-D search space can be explored in order
to produce an optimal CNN architecture.
23https://github.com/prithagupta/deep-learning-sca

96

https://github.com/prithagupta/deep-learning-sca

Datasets We want to investigate the behavior of NAS in a wide range of set-
tings using well-known datasets to enable direct comparisons to other works in
hardware side-channel attacks. We, therefore, chose to focus on five datasets that
have already been investigated before: ASCAD v1, DPA contest v4.1, AES_RD,
AES_HD, and CHES CTF 2018 AES-128. All of these datasets record imple-
mentations of AES-128, which means the same overall approach should work
automatically for each of them, without any need for dataset-specific tuning.
However, the systems incorporate different types of leakage countermeasures,
e.g. masking or random delays. For ASCAD v1 we used both fixed keys (AS-
CAD_f) and variable key dasets (ASCAD_r) as well as their desynchronized
counterparts (desync50 and desync100). The details of all these datasets are listed
in Appendix B.

5.5.2 Baseline Architectures
We also need to train fixed baseline architectures for comparison with our NAS
approach. We chose to use the ASCAD architecture as proposed in [Ben+20] and
ZAID architectures as proposed in [Zai+19]. The ASCAD baseline is the CNN
model inspired from the image recognition baseline VGG-16 CNN model [SZ15]
and shown in Figure 5.1a. Zaid et al. proposed several specific architectures for
ASCAD_f, ASCAD_f 50ms, ASCAD_f 100ms, AES_HD, AES_RD and DPAv4
datasets [Zai+19]. For ASCAD_r, ASCAD_r 50ms, ASCAD_r 100ms there
is no specific proposal, so we use the corresponding baselines proposed for the
fixed-key versions (ASCAD_f, ASCAD_f 50ms, ASCAD_f 100ms). Since CHES
CTF is known to be a very hard dataset, we use the deepest CNN proposed by
ZAID [Zai+19], which is the architecture for the ASCAD_f 100ms dataset.

We also need to point out that the ZAID baseline is not uncontroversial in
the hardware side-channel community, as follow-up work by Wouters, Arribas,
Gierlichs, and Preneel [Wou+20] was able to reduce the size of the proposed
architecture by 52 % without a reduction in performance. Additionally, they were
able to disprove some of the claims about the design methodology used to arrive
at the specific architecture choice in [Zai+19]. This does not disqualify these
architectures for our investigations, as the increased computational demand by
the larger network is not part of our comparison, but clearly demonstrates that
further optimization to these architectures is still possible.

5.5.3 Computing Hardware and Runtime
Our experiments necessitate training millions of CNN models in total, which
requires thousands of hours of GPU time. We ran them in parallel on a su-
percomputer equipped with GPU nodes, which allowed us to finish the entire
parameter study in a few weeks. These GPU nodes consist of two AMD Milan
7763 CPUs running at 2.45 GHz, 512 GB of main memory, and four Nvidia A100
GPUs equipped with NVLink and 40 GB HBM2 GPU memory. A single NAS

97

experiment, which consists of determining the best architecture through repeated
intermediate model training followed by a final model training, takes less than
2 days on these shared GPU nodes. All search strategies were provided with a
budget for 1000 trials, but only Random and Bayesian search strategies used
up the entire budget every time. The Greedy strategy used only a portion of the
provided budget, which resulted in a maximum running times of 5 hours, while the
preemption technique of Hyperband results in a reduced maximum running time
of 12 hours. We also ran some experiments on consumer hardware in the form of
a $2500 gaming PC, where the longest experiment took 22 hours. We consider
this runtime to be a reasonable assumption for the lower limit of computational
resources that an attacker might be willing to commit to a single attack, with
well-equipped attackers likely far exceeding these constraints.

5.6 Parameter Study Results
We ran the full parameter study outlined in Section 5.5, combining the possible
options for search strategy and input shape. These were applied to the 10 datasets
detailed in Appendix B, both for an ID leakage model as well as an HW leakage
model. Additionally, we trained the baseline architectures described in Section 5.5.2
for each of the datasets.

5.6.1 Overall Reliability
First, we want to determine the overall reliability of our NAS approach, so we
determined the success rate in all the experiments executed for each dataset in
the ID leakage model. In our context, an attack is considered successful if the
final guessing entropy is 1 after processing all the traces in the respective attack
dataset decile. We show this per-dataset attack success rate in Figure 5.4a), giving
a rough indication of how difficult attacking each dataset is. The first observation
is the relative ease with which the DPAv4 dataset can be attacked: Even when
taking all the suboptimal combinations of the search strategy and input shape into
account, over 75 % of the attacks on it are successful. This is hardly surprising,
as the dataset variant we consider effectively contains no countermeasures (see
Appendix B for details). When comparing the non-desynchronized version of
ASCAD_f and ASCAD_r to their desynchronized counterparts, the degradation
in reliability caused by the increased difficulty incurred by desynchronization is
clear, although some of the attacks are still able to succeed. We also need to point
out the disastrous performance of NAS when applied to the CHES CTF dataset,
where only a handful of attacks were able to recover the full identity value. This
can be traced back to a reduced number of 500 attack traces available for the
attack because of our decile split, with convergence plots (see Section 5.6.3 for the
full details) indicating that all models would have succeeded given a larger attack
dataset.

98

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e
Dataset

AES_RD
AES_HD
CHES CTF
DPAv4

ASCAD_f
ASCAD_r
ASCAD_f desync50

ASCAD_r desync50
ASCAD_f desync100
ASCAD_r desync100

(a) Over all parameter choices (b) Using 1-D and Random

Figure 5.4: Success rate of all experiment runs for each dataset. An experiment
is successful if the final model is able to predict the correct key byte
after processing all provided attack traces)

Hamming Weight Model NAS struggled a little more in experiments using the
HW leakage model, with generally slower convergence and similar success rate,
which is why we don’t show them here. Because the model only predicts 9 classes,
it already takes more attack traces for the guessing entropy to reduce since a
single prediction is more limited in information content than the 256 classes in the
ID model. Upon manual investigation of the models produced by NAS, a large
portion of them would simply predict a HW of 4 regardless of input. Due to the
inherent class imbalance of HW datasets [Pic+18], this “blind” strategy produces
a decent accuracy of over 27 % on random inputs. A NAS search algorithm using
accuracy as the optimizing goal can get stuck on this local optimum, degrading
the overall success rate of an attack.

5.6.2 Optimal Neural Architecture Search Parameters
In order to answer the question of which NAS parameter to choose, we plotted
the success rate for every possible NAS parameter combination of input shape
and search strategy. We chose to plot them separately for synchronized and
desynchronized datasets because of the large difference in performance.

Synchronized Datasets Figure 5.5a shows the influence of the choice of each
possible NAS parameter combination (input shape and the search strategy) on the

99

Bayesian
Greedy

Hyperband
Random

Search Strategy

0%

20%

40%

60%

80%

100%
Su

cc
es

s
R

at
e

Input Shape
One-Dimensional Rectangular Square

Bayesian
Greedy

Hyperband
Random

(a) Synchronized datasets (b) Desynchronized datasets

Figure 5.5: Influence of NAS parameters on the success rate.

overall performance of synchronized datasets for ID leakage. This clearly shows
that the choice of search strategy has a significant impact on the success rate,
which rises from around 20 % to around 70 % when going from Bayesian search
via Greedy and Hyperband to Random search. Random search strategy
clearly outperforms the other strategies, but it comes at the price of being slower,
taking about 5 times longer than Greedy and Hyperband (c.f. Section 5.5.3),
mostly because it keeps exploring the search space until the limit of 1000 trials is
reached. For synchronized datasets, using the Hyperband strategy might be a
viable alternative, as it still produces a CNN with a success rate of around 50 %,
while being substantially faster than Random search. When comparing input
shapes, there does not appear to be a consistent difference between 1-D and 2-D
for synchronized datasets, demonstrating the ability of NAS to adjust to vastly
different situations. This also shows that while using 2-D CNNs can be a viable
option, they fail to provide any improvements compared to the 1-D input shape.

Desynchronized Datasets Figure 5.5b shows the influence of the parameter
choices on the success rate for desynchronized datasets. The difference between
Random and its competitors grows even larger on these datasets, to the point
that choosing Hyperband for its speed is no longer a viable option. When
desynchronization gets introduced, the input shape starts to play a major role. The
1-D CNN architecture is able to compensate for desynchronization to a large degree,
with its performance essentially unchanged when paired with Random search.
Wouters, Arribas, Gierlichs, and Preneel [Wou+20] observed a similar behavior
where the first convolutional block successfully removes the desynchronization in

100

the dataset by using the convolutional and pooling operation on neighboring values
in the trace. Converting one-dimensional to two-dimensional inputs changes the
local relationship between neighboring values, which makes re-synchronizing the
traces more difficult. Clearly, 2-D architectures struggle with re-synchronization
in our experiments and are not a viable option for desynchronized datasets.

Overall Reliability of Optimal NAS Parameters As discussed above, it is clear
that using Random search strategy with One-Dimensional inputs gives the
highest chances of producing a CNN model which can break the system successfully,
especially when desynchronization is involved. We wanted to determine what
success rate can be achieved for this specific combination, plotting it per-dataset
in Figure 5.4b. The results show that for all other datasets apart from CHES CTF,
over 57 % of the attacks are successful, sometimes even with a phenomenal success
rate of 100 %. We can conclude that the combination of One-Dimensional input
shape and Random search strategy appears to be by far the best choice when it
comes to reliably creating successful attack models.

5.6.3 Comparison with Fixed Architectures
As determined in Section 5.6.2, using the Random search strategy and One-
Dimensional input shape yields CNN architectures which can perform SCA with
a high success rate. We are also interested in the efficiency of the architectures
produced by One-Dimensional and Random, as well as how they compare to
traditional fixed architectures.

Comparison of QtGE
We determined the efficiency of the models with their

QtGE
value, which counts the number of attack traces necessary for the model

prediction to reach a GE of 1, with lower QtGE
indicating a more efficient attack.

We report the median QtGE
for the 7 models NAS produced with Random search

strategy on One-Dimensional inputs as well as the model produced ASCAD and
ZAID baseline architectures in Table 5.1. On the “easy” datasets AES_RD and
DPAv4 our NAS is able to perform instantaneous attacks, requiring a single attack
trace. We observe that our NAS models outperform the baselines for 4 out of 10
datasets, but especially the ZAID baselines specializing for desynchronization are
much better suited for datasets with desynchronization, where NAS is only able
to achieve better efficiency than the ASCAD baseline. However, these specialized
models were not able to achieve successful attacks at all for the CHES CTF,
synchronized ASCAD, and ASCAD_f desync50 datasets, indicated by the QtGE

matching the total number of attack traces. This indicates some issues when
relying solely on the QtGE

for efficiency: The averaged QtGE
is influenced by the

success rate, as unsuccessful attacks will be considered with the total number of
attack traces.

101

5 Automating Hardware Attacks

100 101 102 103
0

30
60
90

120
150
180

AES_RD

100 101 102 103

AES_HD

100 101 102
0

30
60
90

120
150
180

CHES_CTF

100 101

DPAv4

100 101 102 103
0

30
60
90

120
150
180

M
ea

n
G

ue
ss

En
tr

op
y

ASCAD_f

Architecture
Our NAS Models ASCAD Baseline ZAID Baseline

100 101 102 103 104

ASCAD_r

100 101 102 103
0

30
60
90

120
150
180

ASCAD_f desync50

100 101 102 103 104

ASCAD_r desync50

100 101 102 103
0

30
60
90

120
150
180

ASCAD_f desync100

100 101 102 103 104

ASCAD_r desync100

Number of Attack Traces
Figure 5.6: Guess entropy convergence of the 7 NAS models compared to the fixed

architecture baseline models for each dataset.

102

Table 5.1: Comparison of the median QtGE
metric for the different datasets on

ID leakage. Entries where the attack failed (guessing entropy did not
reach a rank of 1) are highlighted in italic and the best model for each
dataset is highlighted in bold.

Dataset ASCAD baseline ZAID baseline Our NAS
AES_RD 270.3 3.0 1.0
AES_HD 2500.0 504.4 1172.8
CHES CTF 498.5 500.0 500.0
DPAv4 49.3 2.9 1.0
ASCAD_f 703.5 116.5 118.3
ASCAD_r 322.0 10000.0 136.3
ASCAD_f desync50 920.9 136.9 202.0
ASCAD_r desync50 4449.0 56.1 139.7
ASCAD_f desync100 974.6 82.5 391.7
ASCAD_r desync100 6664.2 10000.0 87.9

Comparison of GE Convergence For the datasets with ID leakage, we therefore
also plotted the GE to get a more detailed comparison. Again we compare
the evolution of the models produced by NAS using Random search on One-
Dimensional inputs against the two baselines and plot their GE convergence
in Figure 5.6. Instead of averaging the 7 NAS models, we plot each model
individually and only take the average GE over the 10 attack deciles of each
model. This plot reveals that for most of the datasets, the NAS models match the
baseline architectures, with the very best NAS model outperforming the baseline
in the majority of the datasets (6 of 10). But just considering the best model
is not representative of the general performance: On AES_HD, for example, it
becomes apparent that while most NAS architectures perform similarly to the
ZAID baseline, 3 out of the 7 models become outliers with significantly slower
convergence. One of the models even started with a diverging prediction, only
achieving a decent guess entropy towards the very end of the dataset. Similar
behavior can be observed with ASCAD_r, where 5 out of 7 models outperform the
ASCAD baseline and two outlier models suffer much slower convergence. For the
desynchronized datasets, a similar issue occurs, and in total NAS outliers appear
to be present in 6 of the 10 datasets we considered.

When taking a closer look at the ZAID baseline for ASCAD_r and ASCAD_r
desync100, the baseline itself appears to be affected by a random outlier model, even
though it is a fixed architecture. This failure to reproduce the performance of the
ZAID baselines on the random key variant of the fixed key dataset it was specifically
optimized for points to further issues with the fixed architecture approach. The
issue with reproducibility pointed out by Wouters, Arribas, Gierlichs, and Preneel
[Wou+20] appears in our experiments as well. While the QtGE

reported in [Zai+19]

103

appear to agree reasonably well with our results on the ASCAD_f dataset, for
ASCAD_f desync100 the reported mean QtGE

of 270 in [Zai+19] and median
QtGE

of 82.5 in our experiments disagree. While our approach differs from their
experiments e.g. by splitting the attack dataset into 10 parts, this does not suffice
to explain the observed difference.

Generalization We observed the best NAS architecture going from outperforming
the state-of-the-art on ASCAD_r and AES_HD to being vastly inferior simply
because of a different train-validation dataset split. This indicates that the
performance of NAS, like most ML processes, can sometimes vary heavily with small
changes and randomization. Considering that the default approach for evaluating
ML-based SCAs usually does not repeat the experiment with different train-
validation-test splits or other cross-validation techniques, their generalizability is
unclear. When looking at CHES_CTF, it also becomes obvious why splitting
attack datasets into independent deciles as we did is not done more frequently:
The attack dataset appears to be simply too small to be split into 10 parts, as all
of the models, although appearing to be converging, simply did not reach a GE of
1 at the end.

When taking all of this into account, we can nonetheless conclude that NAS
comes very close to state-of-the-art fixed architectures in terms of attack efficiency,
but it is not able to do so consistently. This is promising, as it means that manual
per-dataset architecture design can potentially be avoided altogether with NAS.

5.7 Conclusion and Open Problems
In this Chapter, we proposed to perform a black-box objective (using only profiling
dataset) NAS to perform the SCA on hardware systems containing ID and HW
leakages. In order to understand the impact of different NAS parameters like the
search strategy and input shape of the data (1-D or 2-D) on the performance of
the best model, we performed a detailed parameter study. We considered the 4
search strategies implemented by AutoKeras, Random, Greedy, Hyperband,
and Bayesian. We also considered converting the original one-dimensional inputs
to two-dimensional rectangular and square inputs, enabling us to use 2-D CNNs
architectures. These choices were combined to create a large-scale parameter
study, investigating the influence of search strategy and input shape on 10 different
datasets and in the ID and HW leakage models. In order to get a better estimate
of the success rate of each combination, we repeat the attack 10 times over different
attack dataset parts, for 7 independent NAS models. Upon detailed analysis of
the results of the study, we concluded that using the Random search strategy
on one-dimensional inputs yields the best-performing CNN architectures for the
medium-sized computational budgets we used. The attack performance is overall
worse in the HW leakage model, presumably due to its inherent class imbalance.
We also compared the efficiency of these NAS models with previously proposed

104

state-of-the-art CNN baselines. We showed that for most of the synchronized
datasets, the 7 models produced by applying NAS were more efficient and required
less attack traces than the baseline.

Considering that our approach was able to match the performance of hand-
crafted architectures, NAS allows for fully automated attacks on devices or datasets
with unknown characteristics. Our experiments highlight the importance of
exploration, which needs to be considered when choosing search strategies for
hardware attacks in the future. Given that a real-world attacker is likely to commit
even bigger budgets to an attack, which enables Random search to find even
better architectures, our results should be considered only a lower limit to the
capabilities of actual attackers. The apparent ability of NAS to generate useful
architectures in various circumstances also allows for non-biased comparison of
side-channel attack methods where current comparisons are skewed by the fixed
architecture that is considered, e.g. loss functions. A big issue we observed was
the susceptibility of the ML models to small variations in the training datasets,
which current works applying ML to SCA are not accounting for. We were able to
spot this issue because of the repeated training with different training-validation
splits, but a broader discussion on how to achieve more consistent performance
evaluations when applying ML to SCA needs to take place.

Research Question 6. Considering the big spread in ML performance observed
for different train-validate splits, how much of the reported advantage of recent
hardware attack methods (e.g. specialized loss functions) is actually attributable
to the method itself? Are these results reproducible at all or are they simply
dependent on specific architecture choices that favor the proposed method and
random variations in the training process? What would their performance look like
when using our method?

Possible future improvements could mitigate the imbalance in the HW leakage
model, which negatively affected our results. This could be addressed by moving
away from optimizing for accuracy alone towards more elaborate metrics such as
balanced accuracy, Matthew’s correlation coefficient, or AUC-score [GBV20]. Ad-
ditionally, there are different class weighting techniques proposed in the literature
which penalize the misclassification of a minority class more than that of a majority
class, which could improve the convergence and learning of a CNN [HK18]. One
limitation of our study is that we only considered previously attacked datasets,
which allows for a direct comparison with other approaches.

Research Question 7. Does NAS allow for successful attacks on datasets for
which currently no attacks with fixed architectures exist, e.g. ASCADv2?

We constrained our study to four search strategies, but there are more sophis-
ticated alternatives that have been observed to be more time-efficient and more
effective than e.g. Random search in finding an optimal architecture [Ren+21].

105

Another possible efficiency improvement would be early stopping, where some hy-
perparameter optimization runs are aborted early if the performance is particularly
underwhelming or if no further improvement occurs.

Research Question 8. What is the lower limit to the maximum number of trials
where NAS stops to be a viable solution? How much better do the attacks get when
considering even larger computational budgets for Random search?

106

6 Conclusion and Outlook
Impact of this Thesis We have created a theoretical framework utilizing machine
learning to achieve the task of detecting information leakage, which we can apply
to cryptographic side channels. The methods we developed have laid the ground
for fully automatic side-channel detection tools like the AutoSCA-tool. We have
demonstrated the capabilities of the tool in the real world and its first industrial
application, the transport layer security (TLS) inspector software, already uses it
to detect Bleichenbacher-like side channels in TLS. When it comes to local attacks,
our improvements use NAS to eliminate the necessity of domain expert input for
the architecture design phase of the machine learning attacks. This takes the
community a further step towards full automation, both on the attack and on the
detection side. Overall, our contributions to both remote and local side-channel
detection demonstrate that automated side-channel detection is indeed feasible
and practical.

The future of side-channel attacks The twenty-five-year-long history of Blei-
chenbacher side channels has shown that publishing an attack and updating the
relevant RFC will not suffice to fix it, and even in 2023 new Bleichenbacher vulner-
abilities are being discovered24. Even worse, the number of contexts in which the
attack can be applied keeps growing, and accordingly also the variety of potentially
vulnerable soft- and hardware. While the Rivest–Shamir–Adleman (RSA) key
exchange that the original attack targeted has been removed from the newest TLS
standard 1.3, the need for backward compatibility and the continued use of RSA
for signatures in TLS means that the danger of Bleichenbacher vulnerabilities is
still not eliminated. It is already apparent that local side-channel attacks on newly
introduced post-quantum cryptography are possible, and the hardware community
is working on attacking symmetric algorithms set to replace AES [GLS22].

While our approach of automating the detection of remote side channels with
machine learning scales much better than manual investigation, we are still
dependent on the knowledge about client misbehavior that can trigger behavior
differences in servers. Introducing a fuzzing-like approach for this task could be
the big enabler of previously unknown and unexpected side-channel detection.
On the hardware side, the ever-improving attacks result in shrinking margins of
error when it comes to manufacturers eliminating leakage. Here, new protections
are already available that should counter all but the most advanced attacks (for
example those that combine multiple probe locations with immense computing
24CVE-2023-0361, GnuTLS issue #1050

107

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0361
https://gitlab.com/gnutls/gnutls/-/issues/1050

power). However, their adoption with new hardware generations is naturally
slower than that of cryptographic software, and as such side-channel detection
will still remain an important challenge in the upcoming decades.

We have observed that the publication of new attacks will gather substantial
attention from the research community and the media alike. At the same time,
the detection and prevention of side channels are seemingly under-represented.
Considering the outlook that side channels are here to stay for the foreseeable future,
more effort should be spent on prevention. This encompasses minimizing possible
side-channel issues during the design phase of new cryptographic algorithms and
improving how we tackle the side channels we already know about, for which
machine learning-based automatic detection is an important step forward.

108

Bibliography
[AGF22] Rabin Y. Acharya, Fatemeh Ganji, and Domenic Forte. “Information

Theory-based Evolution of Neural Networks for Side-channel Analysis”.
In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2023.1 (2022), pp. 401–437. doi: 10.46586/tches.v2023.
i1.401-437. url: https://tches.iacr.org/index.php/TCHES/
article/view/9957.

[Avi+16] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger,
Maik Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Hal-
derman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. “DROWN: Breaking TLS
Using SSLv2”. In: USENIX Security 2016: 25th USENIX Security
Symposium. Ed. by Thorsten Holz and Stefan Savage. Austin, TX,
USA: USENIX Association, 2016, pp. 689–706.

[Bar+12] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simion-
ato, Graham Steel, and Joe-Kai Tsay. “Efficient Padding Oracle
Attacks on Cryptographic Hardware”. In: Advances in Cryptology
– CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti.
Vol. 7417. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, 2012, pp. 608–625. doi: 10.
1007/978-3-642-32009-5_36.

[Ben+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas. “Deep learning for side-channel analysis and introduc-
tion to ASCAD database”. In: Journal of Cryptographic Engineering
10.2 (June 2020), pp. 163–188. doi: 10.1007/s13389-019-00220-8.

[Ber+17] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot
Bruinderink, Nadia Heninger, Tanja Lange, Christine van Vredendaal,
and Yuval Yarom. “Sliding Right into Disaster: Left-to-Right Sliding
Windows Leak”. In: Cryptographic Hardware and Embedded Systems –
CHES 2017. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529.
Lecture Notes in Computer Science. Taipei, Taiwan: Springer, Heidel-
berg, Germany, 2017, pp. 555–576. doi: 10.1007/978-3-319-66787-
4_27.

[Ber21] Anastasija Berlinblau. “Detection of Timing Side Channels: Extend-
ing the AutoSCA Tool”. Bachelor’s Thesis. Bergische Universität
Wuppertal, 2021.

109

https://doi.org/10.46586/tches.v2023.i1.401-437
https://doi.org/10.46586/tches.v2023.i1.401-437
https://tches.iacr.org/index.php/TCHES/article/view/9957
https://tches.iacr.org/index.php/TCHES/article/view/9957
https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.1007/978-3-642-32009-5_36
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/978-3-319-66787-4_27

[BF04] Remco R. Bouckaert and Eibe Frank. “Evaluating the Replicability of
Significance Tests for Comparing Learning Algorithms”. In: Advances
in Knowledge Discovery and Data Mining. Ed. by Honghua Dai, Ra-
makrishnan Srikant, and Chengqi Zhang. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 3–12.

[BG04] Yoshua Bengio and Yves Grandvalet. “No Unbiased Estimator of
the Variance of K-Fold Cross-Validation”. In: Journal of Machine
Learning Research 5 (2004), pp. 1089–1105.

[BH02] Bhaskar Bhattacharya and Desale Habtzghi. “Median of the p Value
under the Alternative Hypothesis”. In: The American Statistician 56.3
(Nov. 2002), pp. 202–206. url: http://www.jstor.org/stable/
3087299.

[Bha+14] Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley,
and Zakaria Najm. “Analysis and Improvements of the DPA Contest
v4 Implementation”. In: Security, Privacy, and Applied Cryptography
Engineering - 4th International Conference, SPACE 2014, Pune, India,
October 18-22, 2014. Proceedings. Ed. by Rajat Subhra Chakraborty,
Vashek Matyas, and Patrick Schaumont. Vol. 8804. Lecture Notes in
Computer Science. Springer, 2014, pp. 201–218. doi: 10.1007/978-
3-319-12060-7_14.

[Ble98] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard PKCS #1”. In: Advances in
Cryptology – CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, 1998, pp. 1–12. doi: 10.1007/BFb0055716.

[Bre01] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct.
2001), pp. 5–32. doi: 10.1023/A:1010933404324.

[BSY18] Hanno Böck, Juraj Somorovsky, and Craig Young. “Return Of Blei-
chenbacher’s Oracle Threat (ROBOT)”. In: USENIX Security 2018:
27th USENIX Security Symposium. Ed. by William Enck and Adri-
enne Porter Felt. Baltimore, MD, USA: USENIX Association, 2018,
pp. 817–849.

[BZG20] Gabrielle Beck, Maximilian Zinkus, and Matthew Green. “Automating
the Development of Chosen Ciphertext Attacks”. In: USENIX Security
2020: 29th USENIX Security Symposium. Ed. by Srdjan Capkun and
Franziska Roesner. USENIX Association, 2020, pp. 1821–1837.

[Car+19] Mathieu Carbone, Vincent Conin, Marie-Angela Cornélie, François
Dassance, Guillaume Dufresne, Cécile Dumas, Emmanuel Prouff,
and Alexandre Venelli. “Deep Learning to Evaluate Secure RSA
Implementations”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2019.2 (2019). https://tches.iacr.org/

110

http://www.jstor.org/stable/3087299
http://www.jstor.org/stable/3087299
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/978-3-319-12060-7_14
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1023/A:1010933404324
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://tches.iacr.org/index.php/TCHES/article/view/7388

index . php / TCHES / article / view / 7388, pp. 132–161. doi: 10 .
13154/tches.v2019.i2.132-161.

[CCG10] Konstantinos Chatzikokolakis, Tom Chothia, and Apratim Guha.
“Statistical measurement of information leakage”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by Javier
Esparza and Rupak Majumdar. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 390–404.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional
Neural Networks with Data Augmentation Against Jitter-Based Coun-
termeasures - Profiling Attacks Without Pre-processing”. In: Cryp-
tographic Hardware and Embedded Systems – CHES 2017. Ed. by
Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes in
Computer Science. Taipei, Taiwan: Springer, Heidelberg, Germany,
2017, pp. 45–68. doi: 10.1007/978-3-319-66787-4_3.

[CFR10] Jean-Christophe Courrège, Benoit Feix, and Mylène Roussellet. “Sim-
ple Power Analysis on Exponentiation Revisited”. In: Smart Card
Research and Advanced Application. Ed. by Dieter Gollmann, Jean-
Louis Lanet, and Julien Iguchi-Cartigny. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 65–79. doi: 10.1007/978-3-642-12510-
2_6.

[Cha+22] Lipeng Chang, Yuechuan Wei, Shuiyu He, and Xiaozhong Pan. “Re-
search on Side-Channel Analysis Based on Deep Learning with Differ-
ent Sample Data”. In: Applied Sciences 12.16 (2022), p. 8246. doi:
10.3390/app12168246.

[Cha+99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
“Towards Sound Approaches to Counteract Power-Analysis Attacks”.
In: Advances in Cryptology – CRYPTO’99. Ed. by Michael J. Wiener.
Vol. 1666. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, 1999, pp. 398–412. doi: 10.
1007/3-540-48405-1_26.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. “An Efficient Method for
Random Delay Generation in Embedded Software”. In: Cryptographic
Hardware and Embedded Systems – CHES 2009. Ed. by Christophe
Clavier and Kris Gaj. Vol. 5747. Lecture Notes in Computer Science.
Lausanne, Switzerland: Springer, Heidelberg, Germany, 2009, pp. 156–
170. doi: 10.1007/978-3-642-04138-9_12.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template At-
tacks”. In: Cryptographic Hardware and Embedded Systems – CHES 2002.
Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar.
Vol. 2523. Lecture Notes in Computer Science. Redwood Shores,
CA, USA: Springer, Heidelberg, Germany, 2003, pp. 13–28. doi:
10.1007/3-540-36400-5_3.

111

https://tches.iacr.org/index.php/TCHES/article/view/7388
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-642-12510-2_6
https://doi.org/10.1007/978-3-642-12510-2_6
https://doi.org/10.3390/app12168246
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/3-540-36400-5_3

[CTJ21] Davide Chicco, Niklas Tötsch, and Giuseppe Jurman. “The Matthews
correlation coefficient (MCC) is more reliable than balanced accu-
racy, bookmaker informedness, and markedness in two-class confusion
matrix evaluation”. In: BioData Mining 14.1 (2021), p. 13. doi:
10.1186/s13040-021-00244-z.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In:
Machine Learning 20.3 (Sept. 1995), pp. 273–297. doi: 10.1007/
BF00994018. url: https://doi.org/10.1007/BF00994018.

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of Control, Signals, and Systems 2.4 (Dec.
1989), pp. 303–314. doi: 10.1007/BF02551274.

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246
(Historic). RFC. Obsoleted by RFC 4346, updated by RFCs 3546,
5746, 6176, 7465, 7507, 7919. Fremont, CA, USA: RFC Editor, Jan.
1999. doi: 10.17487/RFC2246. url: https://www.rfc- editor.
org/rfc/rfc2246.txt.

[Deg+12] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P.
Smart, and Mario Strefler. “On the Joint Security of Encryption and
Signature in EMV”. In: Topics in Cryptology – CT-RSA 2012. Ed. by
Orr Dunkelman. Vol. 7178. Lecture Notes in Computer Science. San
Francisco, CA, USA: Springer, Heidelberg, Germany, 2012, pp. 116–
135. doi: 10.1007/978-3-642-27954-6_8.

[Dem06] Janez Demšar. “Statistical Comparisons of Classifiers over Multiple
Data Sets”. In: Journal of Machine Learning Research 7 (Dec. 2006),
pp. 1–30. doi: 10.5555/1248547.1248548. url: https://www.jmlr.
org/papers/volume7/demsar06a/demsar06a.pdf.

[dP15] Joeri de Ruiter and Erik Poll. “Protocol State Fuzzing of TLS Im-
plementations”. In: USENIX Security 2015: 24th USENIX Security
Symposium. Ed. by Jaeyeon Jung and Thorsten Holz. Washington,
DC, USA: USENIX Association, 2015, pp. 193–206.

[DPW11] Jean Paul Degabriele, Kenny Paterson, and Gaven Watson. “Provable
Security in the Real World”. In: IEEE Security & Privacy 9.3 (2011),
pp. 33–41. doi: 10.1109/MSP.2010.200.

[DR06] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.1. RFC 4346 (Historic). RFC. Obsoleted by RFC
5246, updated by RFCs 4366, 4680, 4681, 5746, 6176, 7465, 7507, 7919.
Fremont, CA, USA: RFC Editor, Apr. 2006. doi: 10.17487/RFC4346.
url: https://www.rfc-editor.org/rfc/rfc4346.txt.

112

https://doi.org/10.1186/s13040-021-00244-z
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF02551274
https://doi.org/10.17487/RFC2246
https://www.rfc-editor.org/rfc/rfc2246.txt
https://www.rfc-editor.org/rfc/rfc2246.txt
https://doi.org/10.1007/978-3-642-27954-6_8
https://doi.org/10.5555/1248547.1248548
https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
https://doi.org/10.1109/MSP.2010.200
https://doi.org/10.17487/RFC4346
https://www.rfc-editor.org/rfc/rfc4346.txt

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard). RFC. Obsoleted
by RFC 8446, updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568,
7627, 7685, 7905, 7919, 8447, 9155. Fremont, CA, USA: RFC Editor,
Aug. 2008. doi: 10.17487/RFC5246. url: https://www.rfc-editor.
org/rfc/rfc5246.txt.

[Dre+21] Jan Peter Drees, Pritha Gupta, Eyke Hüllermeier, Tibor Jager, Alexan-
der Konze, Claudia Priesterjahn, Arunselvan Ramaswamy, and Juraj
Somorovsky. “Automated Detection of Side Channels in Cryptographic
Protocols: DROWN the ROBOTs!” In: Proceedings of the 14th ACM
Workshop on Artificial Intelligence and Security. AISec ’21. New York,
NY, USA: Association for Computing Machinery, 2021, pp. 169–180.
doi: 10.1145/3474369.3486868.

[Dur+14] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,
Michael Bailey, and J. Alex Halderman. “The Matter of Heartbleed”.
In: Proceedings of the 2014 ACM Internet Measurement Conference.
IMC ’14. Vancouver, BC, Canada: Association for Computing Ma-
chinery, 2014, pp. 475–488. doi: 10.1145/2663716.2663755.

[Eas21] David Easter. “The impact of ‘Tempest’on Anglo-American commu-
nications security and intelligence, 1943–1970”. In: Intelligence and
National Security 36.1 (2021), pp. 1–16. doi: 10.1080/02684527.
2020.1798604.

[EMH19] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural
Architecture Search: A Survey”. In: Journal of Machine Learning
Research 20 (2019), 55:1–55:21. url: http://jmlr.org/papers/
v20/18-598.html.

[Fel+18] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam Czubak, and
Marcin Szymanek. “The Dangers of Key Reuse: Practical Attacks
on IPsec IKE”. In: USENIX Security 2018: 27th USENIX Security
Symposium. Ed. by William Enck and Adrienne Porter Felt. Baltimore,
MD, USA: USENIX Association, 2018, pp. 567–583.

[Fis22] R. A. Fisher. “On the Interpretation of χ2 from Contingency Tables,
and the Calculation of P ”. In: Journal of the Royal Statistical Society
85.1 (Nov. 1922), pp. 87–94. doi: 10.2307/2340521.

[FKK11] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer
(SSL) Protocol Version 3.0. RFC 6101 (Historic). RFC. Fremont,
CA, USA: RFC Editor, Aug. 2011. doi: 10.17487/RFC6101. url:
https://www.rfc-editor.org/rfc/rfc6101.txt.

113

https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.1145/3474369.3486868
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1080/02684527.2020.1798604
https://doi.org/10.1080/02684527.2020.1798604
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
https://doi.org/10.2307/2340521
https://doi.org/10.17487/RFC6101
https://www.rfc-editor.org/rfc/rfc6101.txt

[Fri01] Jerome H Friedman. “Greedy function approximation: a gradient
boosting machine”. In: Annals of statistics 29 (Nov. 2001), pp. 1189–
1232. doi: 10.1214/aos/1013203451. url: http://www.jstor.
org/stable/2699986.

[FS97] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Gener-
alization of On-Line Learning and an Application to Boosting”. In:
Journal of computer and system sciences 55.1 (Aug. 1997), pp. 119–
139. doi: 10.1006/jcss.1997.1504.

[FS99] Yoav Freund and Robert E. Schapire. “Large Margin Classification
Using the Perceptron Algorithm”. In: Machine Learning 37.3 (Dec.
1999), pp. 277–296. doi: 10.1023/A:1007662407062. url: https:
//doi.org/10.1023/A:1007662407062.

[FSH15] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. “Ini-
tializing Bayesian Hyperparameter Optimization via Meta-Learning”.
In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence. AAAI’15. Austin, Texas: AAAI Press, 2015, pp. 1128–
1135.

[Fum+11] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu
Rivain. “Affine Masking against Higher-Order Side Channel Analysis”.
In: SAC 2010: 17th Annual International Workshop on Selected Areas
in Cryptography. Ed. by Alex Biryukov, Guang Gong, and Douglas R.
Stinson. Vol. 6544. Lecture Notes in Computer Science. Waterloo,
Ontario, Canada: Springer, Heidelberg, Germany, 2011, pp. 262–280.
doi: 10.1007/978-3-642-19574-7_18.

[Fun22] Dennis Michael Funke. “Pushing the AutoSCA Tool to Picosecond
Precision: Improving Timing Side Channel Detection”. Bachelor’s
Thesis. Bergische Universität Wuppertal, 2022. doi: 10.13140/RG.2.
2.33070.08005.

[GBV20] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for
Multi-Class Classification: an Overview. 2020. doi: 10.48550/ARXIV.
2008.05756. arXiv: 2008.05756.

[GDH23] Pritha Gupta, Jan Peter Drees, and Eyke Hüllermeier. “Automated
Side-Channel Attacks Using Black-Box Neural Architecture Search”.
In: Proceedings of the 18th International Conference on Availability,
Reliability and Security. ARES ’23. Benevento, Italy: Association for
Computing Machinery, 2023. doi: 10.1145/3600160.3600161.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely Ran-
domized Trees”. In: Machine Learning 63.1 (Apr. 2006), pp. 3–42.
doi: 10.1007/s10994-006-6226-1. url: https://doi.org/10.
1007/s10994-006-6226-1.

114

https://doi.org/10.1214/aos/1013203451
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.13140/RG.2.2.33070.08005
https://doi.org/10.13140/RG.2.2.33070.08005
https://doi.org/10.48550/ARXIV.2008.05756
https://doi.org/10.48550/ARXIV.2008.05756
https://arxiv.org/abs/2008.05756
https://doi.org/10.1145/3600160.3600161
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. “Neural network-
based attack on a masked implementation of AES”. In: 2015 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). 2015, pp. 106–111. doi: 10.1109/HST.2015.7140247.

[GJS19] Aron Gohr, Sven Jacob, and Werner Schindler. CHES 2018 Side
Channel Contest CTF - Solution of the AES Challenges. Cryptology
ePrint Archive, Report 2019/094. https://eprint.iacr.org/2019/
094. 2019.

[GLS22] Aron Gohr, Friederike Laus, and Werner Schindler. “Breaking Masked
Implementations of the Clyde-Cipher by Means of Side-Channel Anal-
ysis A Report on the CHES Challenge Side-Channel Contest 2020”.
In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2022.4 (2022), pp. 397–437. doi: 10.46586/tches.v2022.
i4.397-437.

[Goo23] Google. HTTPS encryption on the web. 2023. url: https : / / t
ransparencyreport . google . com / https / overview (visited on
03/22/2023).

[Gup+22] Pritha Gupta, Arunselvan Ramaswamy, Jan Peter Drees, Eyke Hüller-
meier, Claudia Priesterjahn, and Tibor Jager. “Automated Informa-
tion Leakage Detection: A New Method Combining Machine Learning
and Hypothesis Testing with an Application to Side-channel Detec-
tion in Cryptographic Protocols.” In: Proceedings of the 14th Inter-
national Conference on Agents and Artificial Intelligence. ICAART
’22. Setúbal, Portugal: SciTePress, 2022, pp. 152–163. doi: 10.5220/
0010793000003116.

[HBF11] Matthew Hoffman, Eric Brochu, and Nando de Freitas. “Portfolio
Allocation for Bayesian Optimization”. In: Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence. UAI’11.
Barcelona, Spain: AUAI Press, 2011, pp. 327–336.

[Hea+20] Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and
Iaroslav Shcherbatyi. scikit-optimize/scikit-optimize. Version v0.8.1.
Sept. 2020. doi: 10.5281/zenodo.4014775. url: https://doi.org/
10.5281/zenodo.4014775.

[Het+20] Benjamin Hettwer, Tobias Horn, Stefan Gehrer, and Tim Güneysu.
“Encoding Power Traces as Images for Efficient Side-Channel Anal-
ysis”. In: 2020 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST). 2020, pp. 46–56. doi: 10.1109/
HOST45689.2020.9300289.

115

https://doi.org/10.1109/HST.2015.7140247
https://eprint.iacr.org/2019/094
https://eprint.iacr.org/2019/094
https://doi.org/10.46586/tches.v2022.i4.397-437
https://doi.org/10.46586/tches.v2022.i4.397-437
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://doi.org/10.5220/0010793000003116
https://doi.org/10.5220/0010793000003116
https://doi.org/10.5281/zenodo.4014775
https://doi.org/10.5281/zenodo.4014775
https://doi.org/10.5281/zenodo.4014775
https://doi.org/10.1109/HOST45689.2020.9300289
https://doi.org/10.1109/HOST45689.2020.9300289

[Heu+20] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens.
“Lightweight Ciphers and Their Side-Channel Resilience”. In: IEEE
Transactions on Computers 69.10 (2020), pp. 1434–1448. doi: 10.
1109/TC.2017.2757921.

[HGG20] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. “Applications
of machine learning techniques in side-channel attacks: a survey”. In:
Journal of Cryptographic Engineering 10.2 (June 2020), pp. 135–162.
doi: 10.1007/s13389-019-00212-8.

[HK18] Mahdi Hashemi and Hassan A. Karimi. “Weighted Machine Learning”.
In: Statistics, Optimization & Information Computing 6.4 (Nov. 2018),
pp. 497–525. doi: 10.19139/soic.v6i4.479.

[HK70] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Biased
Estimation for Nonorthogonal Problems”. In: Technometrics 12.1
(1970), pp. 55–67. doi: 10.1080/00401706.1970.10488634.

[Hol79] Sture Holm. “A Simple Sequentially Rejective Multiple Test Proce-
dure”. In: Scandinavian Journal of Statistics 6.2 (1979). Full pub-
lication date: 1979, pp. 65–70. doi: 10.2307/4615733. url: http:
//www.jstor.org/stable/4615733.

[Hos+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Ver-
bauwhede, and Joos Vandewalle. “Machine learning in side-channel
analysis: a first study”. In: Journal of Cryptographic Engineering 1.4
(Dec. 2011), pp. 293–302. doi: 10.1007/s13389-011-0023-x.

[Hug68] G. Hughes. “On the mean accuracy of statistical pattern recognizers”.
In: IEEE Transactions on Information Theory 14.1 (1968), pp. 55–63.
doi: 10.1109/TIT.1968.1054102.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift”. In:
Proceedings of the 32nd International Conference on Machine Learn-
ing (ICML). Ed. by Francis R. Bach and David M. Blei. Vol. 37. JMLR
Workshop and Conference Proceedings. JMLR.org, 2015, pp. 448–456.
url: http://proceedings.mlr.press/v37/ioffe15.html.

[Jen00] David Jensen. “Data Snooping, Dredging and Fishing: The Dark Side
of Data Mining a SIGKDD99 Panel Report”. In: SIGKDD Explor.
Newsl. 1.2 (Jan. 2000), pp. 52–54. doi: 10.1145/846183.846195.

[Jin21] Haifeng Jin. “Efficient neural architecture search for automated deep
learning”. PhD thesis. Texas A&M University, 2021. url: https:
/ / oaktrust . library . tamu . edu / bitstream / handle / 1969 . 1 /
193093/JIN-DISSERTATION-2021.pdf.

116

https://doi.org/10.1109/TC.2017.2757921
https://doi.org/10.1109/TC.2017.2757921
https://doi.org/10.1007/s13389-019-00212-8
https://doi.org/10.19139/soic.v6i4.479
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.2307/4615733
http://www.jstor.org/stable/4615733
http://www.jstor.org/stable/4615733
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1109/TIT.1968.1054102
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1145/846183.846195
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf

[JKM18] Tibor Jager, Saqib A. Kakvi, and Alexander May. “On the Secu-
rity of the PKCS#1 v1.5 Signature Scheme”. In: ACM CCS 2018:
25th Conference on Computer and Communications Security. Ed.
by David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang. Toronto, ON, Canada: ACM Press, 2018, pp. 1195–1208. doi:
10.1145/3243734.3243798.

[JSH19] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-Keras: An Efficient
Neural Architecture Search System”. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. Ed. by Ankur Teredesai, Vipin Kumar, Ying Li, Rómer
Rosales, Evimaria Terzi, and George Karypis. ACM, 2019, pp. 1946–
1956. doi: 10.1145/3292500.3330648.

[JSS12] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. “Bleichen-
bacher’s Attack Strikes again: Breaking PKCS#1 v1.5 in XML En-
cryption”. In: ESORICS 2012: 17th European Symposium on Research
in Computer Security. Ed. by Sara Foresti, Moti Yung, and Fabio
Martinelli. Vol. 7459. Lecture Notes in Computer Science. Pisa, Italy:
Springer, Heidelberg, Germany, 2012, pp. 752–769. doi: 10.1007/978-
3-642-33167-1_43.

[JSS15] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “On the Security of
TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption”.
In: ACM CCS 2015: 22nd Conference on Computer and Communi-
cations Security. Ed. by Indrajit Ray, Ninghui Li, and Christopher
Kruegel. Denver, CO, USA: ACM Press, 2015, pp. 1185–1196. doi:
10.1145/2810103.2813657.

[Kal98] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Infor-
mational). RFC. Obsoleted by RFC 2437. Fremont, CA, USA: RFC
Editor, Mar. 1998. doi: 10.17487/RFC2313. url: https://www.rfc-
editor.org/rfc/rfc2313.txt.

[Kas+21] Priyank Kashyap, Furkan Aydin, Seetal Potluri, Paul D. Franzon, and
Aydin Aysu. “2Deep: Enhancing Side-Channel Attacks on Lattice-
Based Key-Exchange via 2-D Deep Learning”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 40.6
(2021), pp. 1217–1229. doi: 10.1109/TCAD.2020.3038701.

[Kat+09] Toshihiro Katashita, Akashi Satoh, Takeshi Sugawara, Naofumi Homma,
and Takafumi Aoki. “Development of side-channel attack standard
evaluation environment”. In: 19th European Conference on Circuit
Theory and Design, ECCTD 2009, Antalya, Turkey, August 23-27,
2009. IEEE, 2009, pp. 403–408. doi: 10.1109/ECCTD.2009.5275001.

117

https://doi.org/10.1145/3243734.3243798
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1007/978-3-642-33167-1_43
https://doi.org/10.1007/978-3-642-33167-1_43
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.17487/RFC2313
https://www.rfc-editor.org/rfc/rfc2313.txt
https://www.rfc-editor.org/rfc/rfc2313.txt
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.1109/ECCTD.2009.5275001

[KBA96] John R. Koza, Forrest H. Bennett, and Martin A. Andre Davidand
Keane. “Automated Design of Both the Topology and Sizing of Analog
Electrical Circuits Using Genetic Programming”. In: Artificial Intelli-
gence in Design ’96. Ed. by John S. Gero and Fay Sudweeks. Springer
Netherlands, 1996, pp. 151–170. doi: 10.1007/978-94-009-0279-
4_9. url: https://doi.org/10.1007/978-94-009-0279-4_9.

[Ke+17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen,
Weidong Ma, Qiwei Ye, and Tie-Yan Liu. “LightGBM: A Highly
Efficient Gradient Boosting Decision Tree”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems.
Vol. 30. NIPS’17. Long Beach, California, USA: Curran Associates
Inc., 2017, pp. 3149–3157. doi: 10.5555/3294996.3295074.

[Kel21] Evgnosia-Alexandra Kelesidis. “An Optimization of Bleichenbacher’s
Oracle Padding Attack”. In: Innovative Security Solutions for Informa-
tion Technology and Communications - 14th International Conference,
SecITC 2021, Virtual Event, November 25-26, 2021, Revised Selected
Papers. Ed. by Peter Y. A. Ryan and Cristian Toma. Vol. 13195.
Lecture Notes in Computer Science. Springer, 2021, pp. 145–155. doi:
10.1007/978-3-031-17510-7_10. url: https://doi.org/10.
1007/978-3-031-17510-7_10.

[Ker+22] Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek.
“Focus is Key to Success: A Focal Loss Function for Deep Learning-
Based Side-Channel Analysis”. In: Constructive Side-Channel Analysis
and Secure Design. Ed. by Josep Balasch and Colin O’Flynn. Cham:
Springer International Publishing, 2022, pp. 29–48. doi: 10.1007/978-
3-030-99766-3_2.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power
Analysis”. In: Advances in Cryptology – CRYPTO’99. Ed. by Michael
J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 1999, pp. 388–
397. doi: 10.1007/3-540-48405-1_25.

[Kle17] Matthew Kleinsmith. CNNs from different viewpoints. Feb. 2017.
url: https://medium.com/impactai/cnns- from- different-
viewpoints-fab7f52d159c.

[KOS17] Eike Kiltz, Adam O’Neill, and Adam D. Smith. “Instantiability of RSA-
OAEP Under Chosen-Plaintext Attack”. In: Journal of Cryptology
30.3 (July 2017), pp. 889–919. doi: 10.1007/s00145-016-9238-4.

[Koy+15] Oluwasanmi Koyejo, Pradeep Ravikumar, Nagarajan Natarajan, and
Inderjit S. Dhillon. “Consistent Multilabel Classification”. In: Pro-
ceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2. NIPS’15. Montreal, Canada: MIT
Press, 2015, pp. 3321–3329. doi: 10.5555/2969442.2969610.

118

https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.5555/3294996.3295074
https://doi.org/10.1007/978-3-031-17510-7_10
https://doi.org/10.1007/978-3-031-17510-7_10
https://doi.org/10.1007/978-3-031-17510-7_10
https://doi.org/10.1007/978-3-030-99766-3_2
https://doi.org/10.1007/978-3-030-99766-3_2
https://doi.org/10.1007/3-540-48405-1_25
https://medium.com/impactai/cnns-from-different-viewpoints-fab7f52d159c
https://medium.com/impactai/cnns-from-different-viewpoints-fab7f52d159c
https://doi.org/10.1007/s00145-016-9238-4
https://doi.org/10.5555/2969442.2969610

[KPR03] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa. “Attacking RSA-
Based Sessions in SSL/TLS”. In: Cryptographic Hardware and Embed-
ded Systems – CHES 2003. Ed. by Colin D. Walter, Çetin Kaya Koç,
and Christof Paar. Vol. 2779. Lecture Notes in Computer Science.
Cologne, Germany: Springer, Heidelberg, Germany, 2003, pp. 426–440.
doi: 10.1007/978-3-540-45238-6_33.

[KR03] Vlastimil Klíma and Tomás Rosa. “Further Results and Considerations
on Side Channel Attacks on RSA”. In: Cryptographic Hardware and
Embedded Systems – CHES 2002. Ed. by Burton S. Kaliski Jr., Çetin
Kaya Koç, and Christof Paar. Vol. 2523. Lecture Notes in Computer
Science. Redwood Shores, CA, USA: Springer, Heidelberg, Germany,
2003, pp. 244–259. doi: 10.1007/3-540-36400-5_19.

[KS98] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography Specifications
Version 2.0. RFC 2437 (Informational). RFC. Obsoleted by RFC 3447.
Fremont, CA, USA: RFC Editor, Oct. 1998. doi: 10.17487/RFC2437.
url: https://www.rfc-editor.org/rfc/rfc2437.txt.

[KZP06] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. “Machine learning:
a review of classification and combining techniques”. In: Artificial
Intelligence Review 26.3 (2006), pp. 159–190. doi: 10.1007/s10462-
007-9052-3.

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. “A ma-
chine learning approach against a masked AES - Reaching the limit
of side-channel attacks with a learning model”. In: Journal of Cryp-
tographic Engineering 5.2 (June 2015), pp. 123–139. doi: 10.1007/
s13389-014-0089-3.

[LeC+98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
“Gradient-based learning applied to document recognition”. In: Pro-
ceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[Ler+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markow-
itch, and François-Xavier Standaert. “Template Attacks vs. Machine
Learning Revisited (and the Curse of Dimensionality in Side-Channel
Analysis)”. In: COSADE 2015: 6th International Workshop on Con-
structive Side-Channel Analysis and Secure Design. Ed. by Stefan
Mangard and Axel Y. Poschmann: vol. 9064. Lecture Notes in Com-
puter Science. Berlin, Germany: Springer, Heidelberg, Germany, 2015,
pp. 20–33. doi: 10.1007/978-3-319-21476-4_2.

[Li+17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. “Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization”. In: Journal of Machine Learning
Research 18.1 (Jan. 2017), pp. 6765–6816. doi: 10.5555/3122009.
3242042.

119

https://doi.org/10.1007/978-3-540-45238-6_33
https://doi.org/10.1007/3-540-36400-5_19
https://doi.org/10.17487/RFC2437
https://www.rfc-editor.org/rfc/rfc2437.txt
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.5555/3122009.3242042
https://doi.org/10.5555/3122009.3242042

[Lom+14] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche,
and Adrian Thillard. “How to Estimate the Success Rate of Higher-
Order Side-Channel Attacks”. In: Cryptographic Hardware and Em-
bedded Systems – CHES 2014. Ed. by Lejla Batina and Matthew
Robshaw. Vol. 8731. Lecture Notes in Computer Science. Busan,
South Korea: Springer, Heidelberg, Germany, 2014, pp. 35–54. doi:
10.1007/978-3-662-44709-3_3.

[LR06] Erich L Lehmann and Joseph P Romano. Testing statistical hypotheses.
Springer Science & Business Media, 2006. url: https : / / link .
springer.com/book/10.1007/0-387-27605-X.

[LT20] Liam Li and Ameet Talwalkar. “Random Search and Reproducibility
for Neural Architecture Search”. In: Proceedings of The 35th Uncer-
tainty in Artificial Intelligence Conference. Ed. by Ryan P. Adams and
Vibhav Gogate. Vol. 115. Proceedings of Machine Learning Research.
PMLR, July 2020, pp. 367–377. url: https://proceedings.mlr.
press/v115/li20c.html.

[Man01] James Manger. “A Chosen Ciphertext Attack on RSA Optimal Asym-
metric Encryption Padding (OAEP) as Standardized in PKCS #1
v2.0”. In: Advances in Cryptology – CRYPTO 2001. Ed. by Joe Kil-
ian. Vol. 2139. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, 2001, pp. 230–238. doi:
10.1007/3-540-44647-8_14.

[Mas94] J.L. Massey. “Guessing and entropy”. In: Proceedings of 1994 IEEE
International Symposium on Information Theory. 1994, p. 204. doi:
10.1109/ISIT.1994.394764.

[MDK14] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE
Bites: Exploiting The SSL 3.0 Fallback. 2014. url: https://www.
openssl.org/~bodo/ssl-poodle.pdf.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. “A Comprehensive
Study of Deep Learning for Side-Channel Analysis”. In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020.1 (2019).
https://tches.iacr.org/index.php/TCHES/article/view/8402,
pp. 348–375. doi: 10.13154/tches.v2020.i1.348-375.

[Mer+19] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig Young, Janis
Fliegenschmidt, Jörg Schwenk, and Yuval Shavitt. “Scalable Scanning
and Automatic Classification of TLS Padding Oracle Vulnerabilities”.
In: USENIX Security 2019: 28th USENIX Security Symposium. Ed. by
Nadia Heninger and Patrick Traynor. Santa Clara, CA, USA: USENIX
Association, 2019, pp. 1029–1046.

120

https://doi.org/10.1007/978-3-662-44709-3_3
https://link.springer.com/book/10.1007/0-387-27605-X
https://link.springer.com/book/10.1007/0-387-27605-X
https://proceedings.mlr.press/v115/li20c.html
https://proceedings.mlr.press/v115/li20c.html
https://doi.org/10.1007/3-540-44647-8_14
https://doi.org/10.1109/ISIT.1994.394764
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://doi.org/10.13154/tches.v2020.i1.348-375

[Mer+21] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky,
Johannes Mittmann, and Jörg Schwenk. “Raccoon Attack: Find-
ing and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E)”. In:
USENIX Security 2021: 30th USENIX Security Symposium. Ed. by
Michael Bailey and Rachel Greenstadt. USENIX Association, 2021,
pp. 213–230.

[Mey+14] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk,
Sebastian Schinzel, and Erik Tews. “Revisiting SSL/TLS Implementa-
tions: New Bleichenbacher Side Channels and Attacks”. In: USENIX
Security 2014: 23rd USENIX Security Symposium. Ed. by Kevin Fu
and Jaeyeon Jung. San Diego, CA, USA: USENIX Association, 2014,
pp. 733–748.

[Mit97] Tom M. Mitchell. Machine learning, International Edition. McGraw-
Hill Series in Computer Science. McGraw-Hill, 1997. url: https:
//www.worldcat.org/oclc/61321007.

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: Revealing the secrets of smart cards. Vol. 31. Springer Science
& Business Media, 2008. doi: 10.1007/978-0-387-38162-6.

[MPP16a] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff.
“Breaking Cryptographic Implementations Using Deep Learning Tech-
niques”. In: Security, Privacy, and Applied Cryptography Engineering.
Ed. by Claude Carlet, M. Anwar Hasan, and Vishal Saraswat. Cham:
Springer International Publishing, 2016, pp. 3–26. doi: 10.1007/978-
3-319-49445-6_1.

[MPP16b] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff.
“Breaking Cryptographic Implementations Using Deep Learning Tech-
niques”. In: Security, Privacy, and Applied Cryptography Engineering -
6th International Conference, SPACE 2016, Hyderabad, India, Decem-
ber 14-18, 2016, Proceedings. Ed. by Claude Carlet, M. Anwar Hasan,
and Vishal Saraswat. Vol. 10076. Lecture Notes in Computer Science.
Springer, 2016, pp. 3–26. doi: 10.1007/978-3-319-49445-6_1.
url: https://doi.org/10.1007/978-3-319-49445-6_1.

[Mus+18] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham
Chaudhry, Vianney Lapotre, and Guy Gogniat. “NIGHTs-WATCH:
A Cache-Based Side-Channel Intrusion Detector Using Hardware Per-
formance Counters”. In: Proceedings of the 7th International Work-
shop on Hardware and Architectural Support for Security and Pri-
vacy. HASP ’18. Los Angeles, California: Association for Computing
Machinery, 2018. doi: 10.1145/3214292.3214293. url: https:
//doi.org/10.1145/3214292.3214293.

121

https://www.worldcat.org/oclc/61321007
https://www.worldcat.org/oclc/61321007
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1145/3214292.3214293
https://doi.org/10.1145/3214292.3214293

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. “DL-LA: Deep
Learning Leakage Assessment”. In: IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2021.3 (2021). https://
tches.iacr.org/index.php/TCHES/article/view/8986, pp. 552–
598. doi: 10.46586/tches.v2021.i3.552-598.

[NB03] Claude Nadeau and Yoshua Bengio. “Inference for the Generalization
Error”. In: Machine Learning 52.3 (Sept. 2003), pp. 239–281. doi:
10.1023/A:1024068626366. url: https://doi.org/10.1023/A:
1024068626366.

[PCP20] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. “Strength
in Numbers: Improving Generalization with Ensembles in Machine
Learning-based Profiled SCA”. In: IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020.4 (2020). https://
tches.iacr.org/index.php/TCHES/article/view/8686, pp. 337–
364. doi: 10.13154/tches.v2020.i4.337-364.

[Ped+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. “Scikit-Learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (Nov. 2011), pp. 2825–2830.

[Per+21] Thomas Perianin, Sebastien Carré, Victor Dyseryn, Adrien Facon, and
Sylvain Guilley. “End-to-end automated cache-timing attack driven
by machine learning”. In: Journal of Cryptographic Engineering 11.2
(2021), pp. 135–146. doi: 10.1007/s13389- 020- 00228- 5. url:
https://doi.org/10.1007/s13389-020-00228-5.

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. “Template attack
versus Bayes classifier”. In: Journal of Cryptographic Engineering 7.4
(Nov. 2017), pp. 343–351. doi: 10.1007/s13389-017-0172-7.

[Pic+17] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain
Guilley, Domagoj Jakobovic, and Nele Mentens. “Side-channel analysis
and machine learning: A practical perspective”. In: 2017 International
Joint Conference on Neural Networks (IJCNN). 2017, pp. 4095–4102.
doi: 10.1109/IJCNN.2017.7966373.

[Pic+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and
Francesco Regazzoni. “The Curse of Class Imbalance in Side-channel
Evaluation”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2019.1 (2018). https://tches.iacr.org/index.
php / TCHES / article / view / 7339, pp. 209–237. doi: 10 . 13154 /
tches.v2019.i1.209-237.

122

https://tches.iacr.org/index.php/TCHES/article/view/8986
https://tches.iacr.org/index.php/TCHES/article/view/8986
https://doi.org/10.46586/tches.v2021.i3.552-598
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1023/A:1024068626366
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.1007/s13389-020-00228-5
https://doi.org/10.1007/s13389-020-00228-5
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1109/IJCNN.2017.7966373
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237

[Pic+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla
Batina. “SoK: Deep Learning-Based Physical Side-Channel Analy-
sis”. In: ACM Computing Surveys 55.11 (Feb. 2023). doi: 10.1145/
3569577.

[Pla99] John C. Platt. “Fast Training of Support Vector Machines Using
Sequential Minimal Optimization”. In: Advances in Kernel Methods:
Support Vector Learning. Cambridge, MA, USA: MIT Press, 1999,
pp. 185–208. doi: 10.5555/299094.299105. url: https://dl.acm.
org/doi/10.5555/299094.299105.

[PWP21] Guilherme Perin, Lichao Wu, and Stjepan Picek. AISY - Deep Learning-
based Framework for Side-channel Analysis. Cryptology ePrint Archive,
Report 2021/357. https://eprint.iacr.org/2021/357. 2021.

[Ren+21] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-yao Huang, Zhihui Li,
Xiaojiang Chen, and Xin Wang. “A Comprehensive Survey of Neural
Architecture Search: Challenges and Solutions”. In: ACM Computing
Surveys (CSUR) 54.4 (May 2021). doi: 10.1145/3447582.

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446 (Proposed Standard). RFC. Fremont, CA, USA: RFC
Editor, Aug. 2018. doi: 10.17487/RFC8446. url: https://www.rfc-
editor.org/rfc/rfc8446.txt.

[Rij+21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. “Re-
inforcement Learning for Hyperparameter Tuning in Deep Learning-
based Side-channel Analysis”. In: IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2021.3 (2021). https://
tches.iacr.org/index.php/TCHES/article/view/8989, pp. 677–
707. doi: 10.46586/tches.v2021.i3.677-707.

[RM05] Lior Rokach and Oded Maimon. “Decision Trees”. In: Data Mining
and Knowledge Discovery Handbook. Ed. by Oded Maimon and Lior
Rokach. Boston, MA: Springer US, 2005, pp. 165–192. doi: 10.1007/
0-387-25465-X_9.

[Rok10] Lior Rokach. “Ensemble-based classifiers”. In: Artificial Intelligence
Review 33.1 (Feb. 2010), pp. 1–39. doi: 10.1007/s10462-009-9124-
7. url: https://doi.org/10.1007/s10462-009-9124-7.

[Ron+19] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David
Wong, and Yuval Yarom. “The 9 Lives of Bleichenbacher’s CAT: New
Cache ATtacks on TLS Implementations”. In: 2019 IEEE Symposium
on Security and Privacy. San Francisco, CA, USA: IEEE Computer
Society Press, 2019, pp. 435–452. doi: 10.1109/SP.2019.00062.

123

https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://doi.org/10.5555/299094.299105
https://dl.acm.org/doi/10.5555/299094.299105
https://dl.acm.org/doi/10.5555/299094.299105
https://eprint.iacr.org/2021/357
https://doi.org/10.1145/3447582
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1109/SP.2019.00062

[RTL09] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-Validation”.
In: Encyclopedia of Database Systems. Ed. by LING LIU and M.
TAMER ÖZSU. Boston, MA: Springer US, 2009, pp. 532–538. doi:
10.1007/978-0-387-39940-9_565. url: https://doi.org/10.
1007/978-0-387-39940-9_565.

[SAS21] Mehwish Shaikh, Qasim Ali Arain, and Salahuddin Saddar. “Paradigm
Shift of Machine Learning to Deep Learning in Side Channel Attacks
- A Survey”. In: 2021 6th International Multi-Topic ICT Conference
(IMTIC). 2021, pp. 1–6. doi: 10.1109/IMTIC53841.2021.9719689.

[Smy96] Padhraic Smyth. “Clustering Using Monte Carlo Cross-Validation”.
In: Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI Press,
1996, pp. 126–133.

[Som16] Juraj Somorovsky. “Systematic Fuzzing and Testing of TLS Libraries”.
In: ACM CCS 2016: 23rd Conference on Computer and Communica-
tions Security. Ed. by Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi. Vienna, Austria:
ACM Press, 2016, pp. 1492–1504. doi: 10.1145/2976749.2978411.

[Spr+17] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan
Mangard. “Systematic classification of side-channel attacks: A case
study for mobile devices”. In: IEEE Communications Surveys &
Tutorials 20.1 (2017), pp. 465–488. doi: 10 . 1109 / COMST . 2017 .
2779824.

[Ste17] Josef Steppan. A few samples from the MNIST test dataset. File:
MnistExamples.png. 2017. url: https://commons.wikimedia.org/
wiki/File:MnistExamples.png.

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2015. doi: 10.48550/arXiv.1409.1556.

[TK09] Sergios Theodoridis and Konstantinos Koutroumbas. “Chapter 5 -
Feature Selection”. In: Pattern Recognition (Fourth Edition). Ed. by
Sergios Theodoridis and Konstantinos Koutroumbas. Fourth Edition.
Boston: Academic Press, 2009, pp. 261 –322. doi: https://doi.org/
10.1016/B978-1-59749-272-0.50007-4. url: http://www.scien
cedirect.com/science/article/pii/B9781597492720500074.

[TPR13] Adrian Thillard, Emmanuel Prouff, and Thomas Roche. “Success
through Confidence: Evaluating the Effectiveness of a Side-Channel At-
tack”. In: Cryptographic Hardware and Embedded Systems – CHES 2013.
Ed. by Guido Bertoni and Jean-Sébastien Coron. Vol. 8086. Lecture

124

https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1109/IMTIC53841.2021.9719689
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1109/COMST.2017.2779824
https://doi.org/10.1109/COMST.2017.2779824
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/https://doi.org/10.1016/B978-1-59749-272-0.50007-4
https://doi.org/https://doi.org/10.1016/B978-1-59749-272-0.50007-4
http://www.sciencedirect.com/science/article/pii/B9781597492720500074
http://www.sciencedirect.com/science/article/pii/B9781597492720500074

Notes in Computer Science. Santa Barbara, CA, USA: Springer, Hei-
delberg, Germany, 2013, pp. 21–36. doi: 10.1007/978-3-642-40349-
1_2.

[Vau02] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Ap-
plications to SSL, IPSEC, WTLS...” In: Advances in Cryptology –
EUROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332. Lecture
Notes in Computer Science. Amsterdam, The Netherlands: Springer,
Heidelberg, Germany, 2002, pp. 534–546. doi: 10.1007/3- 540-
46035-7_35.

[VB12] Gitte Vanwinckelen and Hendrik Blockeel. “On estimating model
accuracy with repeated cross-validation”. In: BeneLearn 2012: Pro-
ceedings of the 21st Belgian-Dutch conference on machine learning.
2012, pp. 39–44.

[Vir+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy
1.0: fundamental algorithms for scientific computing in Python”. In:
Nature Methods 17.3 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

[von01] Manfred von Willich. “A Technique with an Information-Theoretic
Basis for Protecting Secret Data from Differential Power Attacks”.
In: 8th IMA International Conference on Cryptography and Coding.
Ed. by Bahram Honary. Vol. 2260. Lecture Notes in Computer Science.
Cirencester, UK: Springer, Heidelberg, Germany, 2001, pp. 44–62.

[Wan+22] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner. “Hertzbleed:
Turning Power Side-Channel Attacks Into Remote Timing Attacks on
x86”. In: USENIX Security 2022: 31st USENIX Security Symposium.
Ed. by Kevin R. B. Butler and Kurt Thomas. Boston, MA, USA:
USENIX Association, 2022, pp. 679–697.

[Wil92] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In:
Breakthroughs in Statistics: Methodology and Distribution. Ed. by
Samuel Kotz and Norman L. Johnson. New York, NY: Springer New
York, 1992, pp. 196–202. doi: 10.1007/978-1-4612-4380-9_16.
url: https://doi.org/10.1007/978-1-4612-4380-9_16.

125

https://doi.org/10.1007/978-3-642-40349-1_2
https://doi.org/10.1007/978-3-642-40349-1_2
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16

[Wou+20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel.
“Revisiting a Methodology for Efficient CNN Architectures in Profiling
Attacks”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020.3 (2020). https://tches.iacr.org/index.
php / TCHES / article / view / 8586, pp. 147–168. doi: 10 . 13154 /
tches.v2020.i3.147-168.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I Choose You: Auto-
mated Hyperparameter Tuning for Deep Learning-based Side-channel
Analysis. Cryptology ePrint Archive, Report 2020/1293. https://
eprint.iacr.org/2020/1293. 2020.

[WV21] David Warburton and Sander Vinberg. The 2021 TLS Telemetry
Report. 2021. url: https://www.f5.com/labs/articles/threa
t-intelligence/the-2021-tls-telemetry-report (visited on
04/01/2023).

[Xia+17] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. “STACCO:
Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS
Vulnerabilities in Secure Enclaves”. In: ACM CCS 2017: 24th Confer-
ence on Computer and Communications Security. Ed. by Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. Dallas,
TX, USA: ACM Press, 2017, pp. 859–874. doi: 10.1145/3133956.
3134016.

[XL01] Qing-Song Xu and Yi-Zeng Liang. “Monte Carlo cross validation”. In:
Chemometrics and Intelligent Laboratory Systems 56.1 (2001), pp. 1
–11. doi: https://doi.org/10.1016/S0169-7439(00)00122-2.
url: http://www.sciencedirect.com/science/article/pii/
S0169743900001222.

[YHL11] Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. “Dual Coordinate
Descent Methods for Logistic Regression and Maximum Entropy
Models”. In: Machine Learning 85.1-2 (Oct. 2011), pp. 41–75. doi:
10.1007/s10994-010-5221-8. url: https://doi.org/10.1007/
s10994-010-5221-8.

[Zai+19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
“Methodology for Efficient CNN Architectures in Profiling Attacks”.
In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2020.1 (2019). https://tches.iacr.org/index.php/
TCHES/article/view/8391, pp. 1–36. doi: 10.13154/tches.v2020.
i1.1-36.

[Zai+21] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard,
and Alexandre Venelli. “Ranking Loss: Maximizing the Success Rate
in Deep Learning Side-Channel Analysis”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2021.1 (2021).

126

https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/https://doi.org/10.1016/S0169-7439(00)00122-2
http://www.sciencedirect.com/science/article/pii/S0169743900001222
http://www.sciencedirect.com/science/article/pii/S0169743900001222
https://doi.org/10.1007/s10994-010-5221-8
https://doi.org/10.1007/s10994-010-5221-8
https://doi.org/10.1007/s10994-010-5221-8
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36

https://tches.iacr.org/index.php/TCHES/article/view/8726,
pp. 25–55. doi: 10.46586/tches.v2021.i1.25-55.

[Zha+14] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
“Cross-Tenant Side-Channel Attacks in PaaS Clouds”. In: ACM CCS
2014: 21st Conference on Computer and Communications Security. Ed.
by Gail-Joon Ahn, Moti Yung, and Ninghui Li. Scottsdale, AZ, USA:
ACM Press, 2014, pp. 990–1003. doi: 10.1145/2660267.2660356.

[Zha+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai
Yu. “A Novel Evaluation Metric for Deep Learning-Based Side Channel
Analysis”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020.3 (2020). https://tches.iacr.org/index.
php/TCHES/article/view/8583, pp. 73–96. doi: 10.13154/tches.
v2020.i3.73-96.

[ZZT09] Li Zhuang, Feng Zhou, and J Doug Tygar. “Keyboard acoustic ema-
nations revisited”. In: ACM Transactions on Information and System
Security (TISSEC) 13.1 (2009), pp. 1–26.

127

https://tches.iacr.org/index.php/TCHES/article/view/8726
https://doi.org/10.46586/tches.v2021.i1.25-55
https://doi.org/10.1145/2660267.2660356
https://tches.iacr.org/index.php/TCHES/article/view/8583
https://tches.iacr.org/index.php/TCHES/article/view/8583
https://doi.org/10.13154/tches.v2020.i3.73-96
https://doi.org/10.13154/tches.v2020.i3.73-96

Appendix

A Minimum Bleichenbacher Dataset Sizes
For a given learning model, in-sample error (or accuracy) Ein is its performance
on the training dataset, and the out-of-sample error (or accuracy) Eout is its
performance on the test data. The plot consisting of the evolution of the two
error/accuracy scores as the size of the training set increases are called learning
curves. For small n, the in-sample accuracy Ein might be much lower since it’s
quite easy to perfectly fit fewer data points, however, the out-of-sample error Eout

will be very large. The reason behind this might be that the learning model is built
around a small data, and it almost certainly won’t be able to generalize accurately
on data the learner hasn’t seen before. Generally, for the large training set size,
the learning model cannot fit perfectly anymore the training set and the training
error becomes larger, while the out-of-sample error Eout decreases, because the
model is trained on more data, so it manages to fit the test dataset better. After
a certain number of training instances N , the Eout stays roughly the same, which
implies that adding more training instances won’t produce significantly better
models. According to the VC-dimension theory, this N represents the sample
complexity of an algorithm, i.e. the number of training examples that are required
to successfully learn a target function. More precisely, the sample complexity is
the number of training-samples that we need to supply to the algorithm, so that
the function returned by the algorithm is within an arbitrarily small error of the
best possible function, with probability arbitrarily close to 1.

We plot different the learning curves of the subset of binary classifiers, perceptron
learning algorithm (PLA) from linear models, decision tree (DT), support vector
machine (SVM), random forest (RF) from bagging and histogram gradient boosting
(HGB) from boosting models, as shown in Figure 1. As seen in Figure 1, most
of the binary classifiers show no significant decrease in the out-of-sample error
after a certain number of instances. We can use this concept to determine the
number of samples that should be generated by the system under test (SUT) for
each class-label. For OpenSSL 1.1.1k, we can see that the PLAs and SVM require
less than 200 instances to converge, i.e. to reach minimum possible error rate
i.e. 0.5 same as random guessing (RG). While more complex binary classifiers
like DT, RF and HGB are not able to converge even with 3600 instances. So,
we cannot say with confidence if the system is not vulnerable, since it can be
the case that the vulnerability exists but the existing models are not able to
capture it yet. While for the DamnVulnerable OpenSSL server, almost all complex

129

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

0%
10%
20%
30%
40%
50%
60%
70% Perceptron

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Support Vector
Machine

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Decision
Tree

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Random
Forest

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Histogram Gradient
Boosting

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00

0%
10%
20%
30%
40%
50%
60%
70%Er

ro
r-

R
at

e

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00 40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00
40

00

Number of Training Instances

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00 40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00
40

00

In-Sample Error Ein Out-of-Sample Error Eout

Damn Vulnerable OpenSSL

OpenSSL 1.1.1i

Figure 1: Learning curves of different classifiers for class-label “Wrong first byte
(0x00 set to 0x17)” for DamnVulnerableOpenSSL and OpenSSL 1.1.1i

models like DT, bagging and boosting techniques require less than 50 instances
to converge, i.e. to reach the minimum possible error rate of 0.0. The learning
curves for PLA is interesting, as it requires more instances (400). As we have seen
in Section 4.4.3, even if one of the classifiers can significantly perform better than
RG, after applying the Holm-Bonferroni adjustment, the SUT will be marked as
vulnerable to the given class-label. Summarizing these curves, we can imply that
if there exists a vulnerability or side channel in the SUT, our approach should be
able to detect it for the countable number of instances with high probability. But,
we cannot imply non-vulnerability or absence of side channels in the SUT since it
might be the case that the side channel exists but the current models are not able
to identify it yet.

130

B Hardware Datasets
The following lists the 10 hardware datasets used in the experiments shown in
Chapter 5. It appears in the appendix of [GDH23], with this dataset collection
contributed by the author to the paper, among the other contributions discussed
in Chapter 5. Details about the number of features, traces, as well as URLs where
the datasets can be obtained are shown in Table 1. Further datasets and their
details have been collected by the author and published on Github25.

ASCAD The ASCAD dataset26 was proposed as a benchmark dataset, containing
electromagnetic (EM) radiation measurements obtained from an ATMega8515
device (8-bit microcontroller with AVR architecture) running AES-128 [Ben+20].
The implementation is coded in assembly language and uses 1st order boolean
masking. The measurements were executed by placing a copper coil close to the
device and recording the EM emissions. We utilize the original v1 dataset in both
fixed key (ASCAD_f) and variable key (ASCAD_r) variants. The traces in these
datasets have been temporally aligned and only a subset of samples are selected,
based on the signal-to-noise ratio [Ben+20]. Additionally, we consider variants
created by Benadjila et al. where the traces have been randomly desynchronized by
a maximum of 50 as well as 100 samples, simulating imprecise temporal alignment
of the traces.

CHES CTF The CHES CTF dataset27 is a reduced (50 000 traces) and prepro-
cessed dataset included in the AISY framework [PWP21], derived from the original
measurements (500 000 traces) done for the CHES 2018 AES CTF challenge28.
The software implementation of AES-128 is protected using 1st order boolean
masking and runs on a STM32 microcontroller. The dataset we use contains a
single fixed key in the training dataset and a different fixed key in the attack
dataset.

AES_RD AES_RD29 was collected from an AES-128 software implementation
incorporating random delays as a hiding countermeasure [CK09]. The measure-
ments target the power consumption of an 8-bit ATMEL AVR microcontroller.
The random delay (RD) countermeasure adds a random number of up to 16
additional microcontroller instructions at several places throughout the processing
of the actual AES instructions, rendering the attack more difficult because of the
resulting trace misalignment. The target of the attacks, the sub-byte operation in
the first AES round, is therefore separated from the start of the execution (start
25https://github.com/ITSC-Group/sca-datasets
26https://github.com/ANSSI-FR/ASCAD
27http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
28https://chesctf.riscure.com/2018/content?show=training
29https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-

SCA/tree/master/AES_HD

131

https://github.com/ITSC-Group/sca-datasets
https://github.com/ANSSI-FR/ASCAD
http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
https://chesctf.riscure.com/2018/content?show=training
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_HD
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_HD

of the trace) by 32 of these random delays [CK09]. We use the converted dataset
as analysed in [Zai+19].

AES_HD AES_HD30 contains EM measurements obtained from a Xilinx Virtex-
5 FPGA (on the SASEBO-GII board [Kat+09]) running an unprotected AES-
128 VHDL implementation [Pic+18]. It records the AES decryption operation
instead of the encryption operation and targets the register writing in the last
AES round. It assumes the difference in the last round leaks, and thus uses a
distance leakage model based on the ciphertext bytes cj

i used in the decryption,
specifically the 12th (c11

i) and 8th (c7
i) ciphertext bytes. We calculate the label as

ϕ(ci, ki) = sbox−1(c11
i ⊕ ki) ⊕ c7

i , but as opposed to the Hamming Distance (HD)
model used in [Pic+18] we just use this identity instead of its Hamming Weight.
The dataset contains measurements obtained “using a high sensitivity near-field
EM probe, placed over a decoupling capacitor on the power line”[Pic+18]. We
again use the converted dataset as analysed in [Zai+19].

DPAv4 The DPAv4 dataset31 was used in the fourth edition of the DPA con-
test32 and contains traces obtained from a software implementation running on
a microcontroller [Bha+14]. The measurements are obtained by recording the
power consumption of the ATMEL AVR-163 microcontroller running an AES-128
implementation protected with rotating S-Box masking. We use the “improved”
masked AES-128 target contained in dataset version 4.2 from [Zai+19]. In or-
der to be consistent while comparing our approach with the performance of
the baselines proposed by [Zai+19], we assume that the mask value is known,
essentially nullifying the masking. Accordingly, we generate the labels using
ϕ(pi, ki) = sbox(pi ⊕ki)⊕Mi, with Mi denoting the mask value. As with [Zai+19],
we target the first byte being processed in the first AES round.

30https://github.com/AESHD/AES_HD_Dataset/
31https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-

SCA/tree/master/DPA-contest%20v4
32http://www.dpacontest.org/v4/42_traces.php/

132

https://github.com/AESHD/AES_HD_Dataset/
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/DPA-contest%20v4
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/DPA-contest%20v4
http://www.dpacontest.org/v4/42_traces.php/

Ta
bl

e
1:

D
et

ai
ls

of
th

e
da

ta
se

ts
co

ns
id

er
ed

D
at

as
et

#
Fe

at
ur

es
#

Pr
ofi

lin
g

tr
ac

es
#

A
tt

ac
k

tr
ac

es
Ta

rg
et

by
te

U
R

L

A
SC

A
D

_
f

70
0

50
00

0
10

00
0

2
AS

CA
D.

h5
fro

m
ht

tp
s:

//
gi

th
ub

.c
om

/A
NS

SI
-

FR
/A

SC
AD

/t
re

e/
ma

st
er

/A
TM

EG
A_

AE
S_

v1
/A

TM
_

AE
S_

v1
_f

ix
ed

_k
ey

A
SC

A
D

_
fd

es
yn

c5
0

70
0

50
00

0
10

00
0

2
AS

CA
D_

de
sy

nc
50

.h
5

fro
m

"
A

SC
A

D
_

fd
es

yn
c1

00
70

0
50

00
0

10
00

0
2

AS
CA

D_
de

sy
nc

10
0.

h5
fro

m
"

A
SC

A
D

_
r

14
00

50
00

0
10

00
00

2
AS

CA
D.

h5
fro

m
ht

tp
s:

//
gi

th
ub

.c
om

/A
NS

SI
-

FR
/A

SC
AD

/t
re

e/
ma

st
er

/A
TM

EG
A_

AE
S_

v1
/A

TM
_

AE
S_

v1
_v

ar
ia

bl
e_

ke
y/

A
SC

A
D

_
r

de
sy

nc
50

14
00

50
00

0
10

00
00

2
AS

CA
D_

de
sy

nc
50

.h
5

fro
m

"
A

SC
A

D
_

r
de

sy
nc

10
0

14
00

50
00

0
10

00
00

2
AS

CA
D_

de
sy

nc
10

0.
h5

fro
m

"
C

H
ES

C
T

F
22

00
45

00
0

50
00

2
ht

tp
:/

/a
is

yl
ab

da
ta

se
ts

.e
wi

.t
ud

el
ft

.n
l/

ch
es

_c
tf

.h
5

A
ES

_
H

D
12

50
50

00
0

25
00

0
0

ht
tp

s:
//

gi
th

ub
.c

om
/g

ab
za

i/
Me

th
od

ol
og

y-
fo

r-
ef

fi
ci

en
t-

CN
N-

ar
ch

it
ec

tu
re

s-
in

-
SC

A/
bl

ob
/m

as
te

r/
AE

S_
HD

/A
ES

_H
D_

da
ta

se
t.

zi
p

A
ES

_
R

D
35

00
25

00
0

25
00

0
0

ht
tp

s:
//

gi
th

ub
.c

om
/g

ab
za

i/
Me

th
od

ol
og

y-
fo

r-
ef

fi
ci

en
t-

CN
N-

ar
ch

it
ec

tu
re

s-
in

-
SC

A/
tr

ee
/m

as
te

r/
AE

S_
RD

/A
ES

_R
D_

da
ta

se
t

D
PA

v4
40

00
45

00
50

00
0

ht
tp

s:
//

gi
th

ub
.c

om
/g

ab
za

i/
Me

th
od

ol
og

y-
fo

r-
ef

fi
ci

en
t-

CN
N-

ar
ch

it
ec

tu
re

s-
in

-
SC

A/
bl

ob
/m

as
te

r/
DP

A-
co

nt
es

t%
20

v4
/D

PA
v4

_
da

ta
se

t.
zi

p

133

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/
http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip

C Neural Architecture Search Space
The hyperparameter search space used for the experiments in Chapter 5 is discussed
here. Table 2 contains the full details on all hyperparameters we are tuning.

The hyperparameters for the convolutional layer are the kernel size and the
number of filters, for the pooling layer the poolsize wp, the number of strides
and pooling operation type and for a dense layer the number of hidden units.
The network, layer, and dense block hyperparameters are the same for both 1-D
convolutional neural network (CNN) search space and 2-D CNN search space.
Additionally, the range of convolutional kernel size, convolutional filters, and
pooling types for each convolutional block is also the same for both search spaces.
To avoid the formation of invalid 2-D CNN architectures, the range of pooling
strides is smaller and the poolsize value is set using the kernel size, which is the
suggested default of AutoKeras [JSH19]. This makes the search space relatively
smaller for 2-D CNNs. The padding type is set to the “same” padding type for
convolutional layer and “valid” padding type for pooling layer for 1-D CNNs
search space. To avoid the formation of invalid 2-D CNN, the padding type for
the convolutional and pooling layer is set using the kernel size of the convolutional
layer, using the formulae proposed by AutoKeras [JSH19].

135

Table
2:O

verview
ofthe

Search
Space

for
our

neuralarchitecture
search

(N
A

S)
approach

H
yperparam

eter
Type

H
yperparam

eter
Possible

O
ptions

W
hole

N
etwork

O
ptim

izer
{’adam

’,’adam
_

w
ith_

weight_
decay’}

Learning
rate

{1e91,5e92,1e92,5e93,1e93,5e94,1e94,5e95,1e95}

Every
Layer

D
ropout

{0.0,0.1,0.2,0.3,0.4,0.5}
U

se
Batch

N
orm

alization
{True,False}

A
ctivation

Function
{’relu’,’selu’,’elu’,’tanh’}

C
onvolutional

Block

#
Blocks

{1,2,3,4,5}
C

onvolutionalK
ernelSize

{2,3,4,5,6,7,8,9,10,11,12,13,14}
C

onvolutionalFilters
{2,8,16,32,64,128,256}

Pooling
Type

{’m
ax’,’average’}

Pooling
Strides

1-D
C

N
N

{2,3,4,5,6,7,8,9,10}
Pooling

Poolsize
1-D

C
N

N
{2,3,4,5}

Pooling
Strides

2-D
C

N
N

{2,4}
Pooling

Poolsize
2-D

C
N

N
C

onvolutionalK
ernelSize-1

D
ense

Block
#

Blocks
{1,2,3}

H
idden

U
nits

{2,4,8,16,32,64,128,256,512,1024}

136

	Introduction
	State of the Art
	Our Contributions
	Outline
	Publication Overview

	Fundamentals
	Side-Channel Attacks
	Remote Side Channels
	Local Side Channels

	Machine Learning
	Formal Definition of Machine Learning
	Statistical Tests

	New Techniques for Side-Channel Detection with Machine Learning
	Introduction
	The Information Leakage Problem
	Our Approaches for Information Leakage Detection
	Paired t-Test Approaches
	Fisher's Exact Test Approaches
	On Robustness

	Empirical Evaluation
	Dataset Descriptions
	Implementation Details
	Results

	Conclusion and Open Problems

	Application to Bleichenbacher's Attack
	Introduction
	Related Work
	Preliminaries
	Bleichenbacher's Attack on TLS
	Machine Learning

	Implementation of Automated Side-Channel Detection
	Manipulated TLS Client
	Feature Extraction
	Classification Model Learning
	Error Correction and Report Generation

	Analysis
	Test Setup
	Basic Approach Validation
	Detecting Klíma-Pokorný-Rosa Side Channels
	Detecting ROBOT Side Channels
	Testing open-source Implementations
	Commercial Integration

	Conclusions and Open Problems

	Automating Hardware Attacks
	Introduction
	Related Work
	Background
	Supervised Learning for Profiled Side-Channel Attacks
	Convolutional Neural Networks
	Leakage Model
	Neural Architecture Search

	Our Approach
	Two-Dimensional Input Reshaping
	Search Strategies

	Setup of Our Parameter Study
	Methodology
	Baseline Architectures
	Computing Hardware and Runtime

	Parameter Study Results
	Overall Reliability
	Optimal Neural Architecture Search Parameters
	Comparison with Fixed Architectures

	Conclusion and Open Problems

	Conclusion and Outlook
	Bibliography
	Appendix
	Minimum Bleichenbacher Dataset Sizes
	Hardware Datasets
	Neural Architecture Search Space

