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Kurzfassung  
 
Der Verkehrssektor spielt eine wichtige Rolle bei der Einhaltung der ehrgeizigen Klimaschutzziele des 
Pariser Klimaabkommens und wird daher von den Regierungen hinsichtlich der CO2eq Emissionen 
stark reguliert. Aufgrund der daten- und rechenzeitintensiven Modelle hat sich die wissenschaftliche 
Arbeit in diesem Bereich bisher meist auf Teilaspekte des skizzierten Themas konzentriert. So wird 
die Antriebsstrangauslegung und -optimierung meist für einzelne Fahrzeuge im Privatbesitz durchge-
führt. In dieser Arbeit wird eine Methode zur ganzheitlichen Gestaltung und Bewertung von nachhal-
tigen Mobilitätssystemen vorgestellt. Diese Methode kombiniert eine agentenbasierte Mobilitätssimu-
lation mit den Ergebnissen einer Antriebssimulation, einer Lebenszyklusanalyse und einem Kosten-
modell in einem multidisziplinären Ansatz. Mit Hilfe dieser Methode werden die CO2eq Emissionen, 
die Mobilitätskosten aus Kunden- und Investitionssicht sowie der Energiebedarf der Mobilität für ein 
gesamtes Mobilitätssystem berechnet. In diesem Zusammenhang können auch Dekarbonisierungs-
strategien modelliert und analysiert werden. Mit der kombinierten Methodik ist es möglich, verschie-
dene Parameter des Mobilitätssystems in einer theoretischen Analyse zu optimieren, wie zum Beispiel 
das Antriebsportfolio. Die Beobachtungen zeigen, dass mit diesem Ansatz verschiedene Parameter 
des Mobilitätssystems optimiert und Potenziale identifiziert werden können.  
 
Schlagwörter: Mobilitätssimulation, Antriebsstrangsimulation, Life-Cycle-Assessment, nachhaltige 
Mobilitätssysteme 

 

Abstract 
 
The transport sector plays an important role in meeting the ambitious climate change targets of the 
Paris Climate Agreement and is therefore heavily regulated by governments in terms of CO2eq emis-
sions. Due to the data and computational time intensive models, scientific work in this area has mostly 
focused on partial aspects of the outlined topic. For example, powertrain design and optimization is 
mostly performed for individual privately owned vehicles. In this thesis, a method for holistic design 
and evaluation of sustainable mobility systems is presented. This method combines an agent-based 
mobility simulation with the results of a powertrain simulation, a life cycle analysis and a cost model 
in a multidisciplinary approach. This method is used to calculate CO2eq emissions, mobility costs from 
a customer and investment perspective, and mobility energy demand for an entire mobility system. In 
this context, decarbonization strategies can also be modeled and analyzed. With the combined meth-
odology, it is possible to optimize different parameters of the mobility system in a theoretical analysis, 
such as the powertrain portfolio. Observations show that this approach can be used to optimize var-
ious parameters of the mobility system and identify potentials.  
 
Keywords: Mobility simulation, powertrain simulation, life-cycle-assessment, sustainable mobility sys-
tems 
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1 Introduction 1 

1 Introduction 

 Motivation and problem statement 

The transport sector plays an important role in complying with the ambitious climate protection tar-

gets of the Paris Climate Agreement and is therefore highly regulated by the governments with regard 

to CO2eq emissions. Regional solutions have emerged from the commitment of the climate agreement 

and are being implemented. In Germany, for example, the transport sector was the third largest con-

tributor to greenhouse gas emissions, with a share of 19% in 2019 [Bundesministerium für Umwelt 

2019]. On European level, the European Commission agreed on the Green Deal with the goal of 

achieving net zero greenhouse gas emissions by 2050. This means an 80-95% reduction in emissions 

by 2050 compared to 1990 [Bothe et al. 2020] and additional compensation through reforestation or 

carbon capturing and storage. Identifying effective ecologically, economically and sociologically rea-

sonable pathways to achieve net-zero emissions in the transport sector can only be achieved by holistic 

approaches, due to the complexity and interactions. Such a holistic approach needs to incorporate 

human behavior, sector coupling, vehicles and powertrains, transportation modes, energy sources, and 

infrastructure. Due to data and computation time intensive models, scientific work in this field has so 

far mostly focused on partial aspects of the outlined topic. For example, powertrain design and opti-

mization is mostly performed for single vehicles in private ownership. Mobility simulations for fleet 

vehicles often neglect essential aspects of driving energy consumption or the detailed mapping of 

charging processes. And in sustainability assessment, there are severe limitations in terms of system 

boundaries and extrapolated dynamics such as concerning future energy chains. Methods already exist 

for performing life-cycle-assessment (LCA) of individual vehicles. However, these are mostly consid-

ered separately from the systems. I.e., the vehicle with its production process and an assumed constant 

use phase is considered and evaluated. While the underlying assumptions are valid for most internal 

combustion engine vehicles, the electrification and digitalization of mobility create new opportunities 

that also need to be considered. Electric vehicles can be used while parking, e.g. due to their electrical 

storage, but also after the actual life phase, there are possible further second-uses for different com-

ponents such as the battery or the e-motors. When limited to a specific stage of the life cycle, such as 

the use phase of a vehicle, the balance of emission sources and savings for a given component might 

be over- or underestimated, compared to a holistic view. This brief example illustrates that the narrow 

sector-specific, geographical and temporal perspective only gives a limited view on overall emissions. 

This can lead to incorrect assessments of the effectiveness of measures in the vehicle and beyond, and 

subsequently to misleading decisions. Additionally, emission balances and savings have to be put into 

perspective with economic feasibility and sociological reasonability. To get a meaningful statement 
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about the real impact of the vehicles, a holistic view beyond the system boundaries of a vehicle and 

vehicle lifetime has to be performed.  

 Goal of this study 

Therefore, this thesis presents a method for holistic design and assessment of sustainable mobility 

systems. This method combines an agent-based mobility simulation with the results of a powertrain 

simulation, a life cycle analysis and a cost model in a multi-disciplinary approach. With the help of this 

method, CO2eq emissions, mobility costs from the customer's and investment point of view as well 

as mobility energy demand are calculated for a whole mobility system. In this context, decarbonization 

strategies can be modeled and analyzed. The focused actuators of the mobility system include power-

train types, vehicle and mobility concepts, such as autonomous driving robotaxis, new technologies, 

such as smart-charging, that can be applied in parallel as well as the time course of the emissions. In 

addition, political measures, such as driving bans in inner cities, can be implemented and evaluated. 

The scientific claim of this work extends in the environment of novel mobility concepts over simula-

tion-based powertrain design including requirements analysis, and extended life-cycle-assessment ap-

proaches, being combined in a holistic system optimization approach. Furthermore, methods for the 

forecast of key-values such as CO2eq emissions are derived and the calculation time is optimized by 

analyzing system parameters as well as downscaling and simplifying of the mobility system. 

 Structure of the work 

The thesis is structured as follows. In chapter 2, the state of the art is presented. Here, the relevant 

topics of agent-based mobility simulation, powertrain simulation, life cycle analysis and the combina-

tion of the individual methods are considered in more detail. The chapter concludes with a critical 

examination of the considered sources, as well as a target picture of the method developed here. 

Chapter 3 describes the derived need for action in this thesis. In chapter 4 the new holistic method is 

described. The following chapters deal with the individual modules of the method. Chapter 5 describes 

the agent-based mobility simulation and its integration into the method. In chapter 6, the powertrain 

simulation as well as the evaluation of the mobility forms of the mobility system are presented. Chapter 

7 presents the extended life cycle analysis. Chapter 8 describes the cost calculation. In addition, the 

method is integrated in an optimization procedure, which is described in Chapter 9. In Chapter 10, a 

sensitivity analysis is performed to analyze the robustness of the method and to identify sensitivities. 

In the next step presented in chapter 11, the method is applied to the Berlin region as an example and 

the method is validated. Here, two optimization scenarios are carried out. In chapter 12 a critical 

discussion of the results of this thesis and the fulfillment of the target picture is performed. Finally, 

the summary and the outlook are presented in chapter 13.  
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2 State of the art 

The achievement of developing a method for holistic mobility system analysis and optimization re-

quires the application and combination of methods from very different disciplines, which are the 

agent-based mobility simulation, powertrain simulation as well as the life-cycle-assessment. In the fol-

lowing, an overview of these methods and the relevant state of the art is given. 

 Agent-based modeling and mobility simulation 

For the simulation in general, it is necessary to make an abstraction of the real world complexity. A 

middle course must be found that on the one hand takes into account as many aspects as possible and 

on the other hand remains feasible in terms of parameter set, computation times and analysis of re-

sults. Different approaches to traffic simulation models are [Herdt 2005]: 

• Microscopic: Observation of individual vehicles or agents  

• Mesoscopic: Mixture of macroscopy and microscopy  

• Macroscopic: Observation of the dynamics of vehicle collectives 

The goal of this thesis is to analyze the mobility behaviors and emission sources of discrete individuals. 

Thus, it is necessary to use micro- to mesoscopic models. Here in particular, agent-based models are 

used to calculate the dynamic behavior in a mobility system. In this field MATSim (Multi Agent 

Transport Simulation) is an open-source tool used in a wide range of scientific mobility related work. 

For a detailed description of MATSim, the reader is referred to [Horni et al. 2016]. 

Typical use cases for the mobility simulation are in the field of city planning or the impact analysis of 

mobility concepts. In [Querini et al. 2014] an approach with reference to this thesis is described. Here 

the potential environmental benefits of policies aiming at promoting the deployment of electric vehi-

cles and car use in Luxembourg and neighboring France is evaluated. This study points out that agent 

based modeling allows to obtain a holistic life cycle inventory that includes all the variability of the car 

characteristics and uses. In [Bishoff et al. 2019] the impact of a largescale electrification of vehicles in 

long-distance trips is evaluated by combining an agent-based long distance transport model of Sweden 

with a detailed model of energy consumption and battery charging. Energy consumption and charging 

schemes are simulated for different types of vehicles and chargers. In a first application, vehicle traffic 

is assumed fully electrified. Results demonstrate that the daily estimate for energy consumption equals 

approximately 40% of the current Swedish electricity consumption. These studies show that a combi-

nation of agent-based models with different methods such as a LCA or powertrain simulation is pos-

sible and feasible and enables the analysis of mobility systems. 
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Various approaches are known for generating input data for mobility simulations, concerning traffic 

demand, traffic networks, and schedules, differing in the level of detail and necessary sources. For 

example in [Hörl et al. 2020]  a methodology is proposed for an open-source and modular framework 

for population synthesis in the context of agent-based traffic simulation. The framework establishes a 

clear path from raw data to the final scenario. In [Horni et al. 2016] the necessary input data generation 

such as plans for agents from statistical data and surveys or network from e.g. OpenStreetMap is 

described. [Ziemke et al. 2019] describe how a scenario can be generated for the Berlin metropolitan 

area exclusively on the basis of open data and fully synthetic traffic demand. Since MATSim is used 

as a tool for the mobility simulation in this thesis, the fundamentals of agent-based modeling and the 

mobility simulation in MATSim are be described in the following. 

2.1.1 Agent-based modeling 

From the formulated objective of holistically optimizing mobility systems, it can be deduced that the 

mobility behavior of individuals must be considered in detail. The focus on individual mobility behav-

iors determines which forms of mobility are used in particular, to what extend and with which vehicles. 

The need for analyzing individuals leads to the application of agent based mobility simulation. Agent-

based models can represent complex systems and interactions within the system. In contrary to the 

agent-based approach, aggregated four-step models are used traditionally to evaluate new policies or 

infrastructure investments in the modeling of transportation. The four-step process for traffic mod-

eling consists of the trip generation, the trip distribution, the modal split and the route assignment. 

This approach is based on matrices, which include time-dependent route information [Ortúzar et al. 

2011]. While this approach is suitable for applications in for example city planning, there are certain 

restrictions compared to agent-based modeling. Here a traffic flow analysis summarizes the target 

variables such as travel distance and mean velocity of the mobility simulation for a region, so that no 

statements can be made at individuals level. Thus, four-step models fail to capture the interactions 

between individual persons, their decisions and behavior. These interactions are especially important, 

when it comes to find such as the right powertrain technologies, vehicles or mobility concepts. In 

addition, new mobility solutions such as ridesharing, ride pooling or micro-mobility as well as their 

operational challenges cannot be modeled suitably [Hörl et al. 2020]. Furthermore, modeling larger 

mobility systems with a larger person group leads to a larger number of different activities, transport 

modes as well as different times of the day. Using the four-step approach, this results in a large number 

of matrices and unfeasible computation times.  

Contrary to this approach, agent-based models enable to analyze the mobility system on the individual 

level including their mobility behavior, decisions and interaction. Thus it becomes possible to analyze 

new mobility concepts. Agent-based modeling can be more efficient in large or suburban context, 

because the large number of matrices with only a handful of trips is replaced by a list of individual 

agents. Furthermore agent-based modeling helps to maintain physical constraints, because every event 
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happens in an ordered time-flow [Horni et al. 2016]. Therefore agent-based modeling for traffic sim-

ulation is applied in this thesis and is described in detail in the following chapters. 

2.1.2 Fundamentals of mobility simulation in MATSim 

For the agent-based simulation part of the methodological approach, MATSim (Multi-Agent-

Transport-Simulation) is chosen. The input data for generating the scenarios in the mobility simulation 

is typically derived from different sources. These sources are, for example, census data for modeling 

the population in the form of synthetic agents, mobility surveys for modeling the activity plans of the 

agents, and OpenStreetMap data for modeling the region including road infrastructure, charging in-

frastructure, and points of interest. In MATSim, a co-evolutionary algorithm is used. Here, the agents' 

predetermined plans are optimized throughout the day in terms of activities, travel times, or routes. 

Each agent tries to optimize its own plan until an equilibrium on system level is reached, where the 

agents cannot optimize their plans any further. The idea of this equilibrium is based on the Nash 

equilibrium. The Nash equilibrium defines the solution of a non-cooperative game involving two or 

more players. Here, it is assumed that each player knows the equilibrium strategies of the other players, 

and each player can only change their own strategy [Osborne et al. 1994]. The Nash equilibrium is 

reached when no player can increase their own expected payoff by changing their strategy while the 

other players keep theirs unchanged as well as each player has chosen a plan. In MATSim it is possible 

to consider different travel modes such as cars, public transport, bicycles or also new mobility con-

cepts such as robotaxis and analyze how individuals use these travel modes on a daily basis. The mode 

choice depends on scoring functions, which is explained in the next chapters. After performing a 

mobility simulation, a realistic mobility behavior of the region under consideration can be generated 

and stored for further analysis and the design and evaluation of the mobility system. The process of 

the agent-based mobility simulation in generating the realistic mobility behavior is shown in Figure 1. 
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Figure 1:  Sequence of the agent-based mobility simulation in MATSim 

2.1.3 Level of modeling 

Traditionally, meso and macro simulations are used in transportation planning due to the data availa-

ble, such as road traffic counts or commuter matrices, and the lack of computing power. This has 

changed over time with continuously increasing computing time. With this development, the issues 

and data basis in traffic planning have become more complex and detailed, such as the use of GPS 

technology for detailed analysis of the behavior of individual road users [Wolf et al. 2004]. Currently, 

microsimulation of traffic demand is becoming more and more important. The main reasons for this 

are the more varied output options, from aggregate statistical analysis to detailed information about 

individuals in a scenario, as well as explicitly modeling the decision-making process of each individual. 

This is important because mobility is generated by individuals, not vehicles [Balmer et al. 2008]. 

For daily planning, a real person has to make many different decisions. The person has for example 

to decide where to perform a certain activity, which transport mode or combination of modes to use 

to get from one place to the next, in which order and at what time to perform activities and with 

whom to plan certain activities together. In addition, there are numerous of other decisions to be 

made. Some of these are spontaneous and short-term and typically arise due to unforeseen circum-

stances. Other decisions require a long lead time and careful planning. Another important factor is 

that many decisions induce other decision-making processes. Therefore, it is extremely important to 

consider the entire planning horizon of a person to model transportation behavior and to implement 

this in a simulation model. These decisions lead to an interaction between individuals, which has an 

effect on the decision making of the individuals itself [Balmer et al. 2008]. In MATSim, exactly this is 

implemented and described in the following. 
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2.1.4 Event based modeling 

The mobility simulation in MATSim creates events as a form of documentation. Each event contains 

the time, type and variable additional attributes. There are different types of events such as agent starts 

or ends of an activity. During the mobility simulation millions of events occur. Subsequently the events 

can be analyzed. The event sequences depend on the used transport mode. These are described in 

appendix A.1 in detail. 

While events are the output of the mobility simulation, plans are needed as an input to perform a 

mobility simulation. Plans include the activity chain of an agent during the day, such as going to work 

at 8 am, then going to the gym at 4 pm. Events and plans often do not match, due to assumptions for 

example for the travel times in the plans that might be wrong and not achievable as well as unforeseen 

interactions between agents. Furthermore, the same plan can create different events when executed 

multiple times, because the activities of other agents can change and this results in different interac-

tions between agents [Rieser 2019]. Events are processed by an event manager in MATSim, which 

distributes the events for further processing to different handlers depending on their type. The event 

reader reads all the events from an output file created during the mobility simulation and passes the 

data one after another to the events manager. Here, all handlers are tracked and all events distributed 

accordingly. For example, one handler could count the number of vehicles passing a link over the day 

[Horni et al. 2016]. 

2.1.5 Queue model 

Networks in MATSim, such as the road network, consist of nodes and connecting links. The links are 

modeled as queues. Interactions only happen at the start or the end of the queue. In MATSim the 

mobility simulation “QSim” is implemented [Horni et al. 2016]. In QSim all interactions take place at 

the end of the link. With that, cars can only depart or arrive at the end of a link as well as that public 

transport stops can only be served when the busses or trains are at the end of a link. The links are 

unidirectional. To model a bidirectional road two links are needed. This can lead to u-turns, that ve-

hicles need to make to reach a certain link [Rieser 2019]. 

Figure 2 shows the flow capacity of the links. By default the inflow-capacity of the links is infinite. 

The output-capacity is defined and acts as the link’s capacity. The reason for this approach is that a 

defined inflow capacity can lead to traffic jams up too far downstream, which is not realistic. There 

are options to enable kinematic waves to mitigate the missing inflow capacity. The links have different 

attributes such as free speed in meters per second, length in meters, capacity in vehicles per hour and 

the transport mode allowed on them such as cars. MATSim has integrated tools to convert Open-

StreetMap data to network data including the needed capacity factors and attributes for all links [Horni 

et al. 2018]. 
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Figure 2:  Flow capacity of the links based on [Rieser 2019] 

The nodes in the network represent intersections, but with no extent. QSim moves vehicles from the 

upstream link to the down-stream link for each incoming link if the two following criteria are fulfilled. 

There needs to be a vehicle in the upstream link that can leave the link and there needs to be free 

capacity in the downstream link. The order in which links are simulated in each time frame is random-

ized but weighted with a function in dependence of the link’s flow capacity. A higher flow capacity 

leads to a higher probability for having their vehicles moved before vehicles from lower capacity links 

move [Rieser 2019]. 

2.1.6 MATSim Algorithm – MobSim, Scoring and Replanning 

MobSim 

Here the MATSim’s co-evolutionary algorithm is explained. Figure 3 shows the general design of the 

“MATSim” simulation system. The first step of the simulation is to read the initial demand. The initial 

demand includes the description of the infrastructure as well as agents and the configuration of the 

simulation. The data of the infrastructure is stored in the network and transit data. The data of the 

agents is stored in the plans file. The configuration of the simulation is stored in the config file. The 

minimal required data for performing a mobility simulation are the network, plans and the config file. 

Additional data sets to improve the data quality can be for example public transport data, facility data, 

road pricings or data about signals and traffic lights. The second step is the execution of the mobility 

simulation, in which the agents travel and execute their plans. Hereby the different events are created. 
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Figure 3:  General design of MATSim loop based on [Horni et al. 2016] 

Scoring 

The evaluation of the executed plans is performed on hands of scoring functions. This happens in the 

third step of the simulation. The “Charypar-Nagel Utility Function” is implemented in MATSim and 

is described in the following. The scoring function is divided in different utilities, which all have dif-

ferent impacts on the score. Performing activities have a positive utility, whereas travelling, monetary 

costs as well as arriving late or leaving early have negative utilities. The score for the plan is the sum 

of all utilities over a day [Horni et al. 2016]. 

In equation 1 the scoring function 𝑆𝑝𝑙𝑎𝑛 and all the used parameters are explained. The scoring func-

tion is calculated by the sum of all activity utilities plus the sum of all travel utilities. The last activity 

is merged with the first activity to produce an equal number of trips and activities [Horni et al. 2016]:  

𝑆𝑝𝑙𝑎𝑛 = ∑ 𝑆𝑎𝑐𝑡,𝑖
𝑁−1
𝑖=0 + ∑ 𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒,𝑖

𝑁−1
𝑖=0    (eq. 1) 

- 𝑁: Number of activities 

- 𝑖: Trip i is the trip that follows activity i 

The activity utilities 𝑆𝑎𝑐𝑡,𝑖  of an activity i are calculated as shown in equation 2: 

𝑆𝑎𝑐𝑡,𝑖 = Sdur,i + 𝑆𝑤𝑎𝑖𝑡,𝑖 + 𝑆𝑙𝑎𝑡𝑒,𝑎𝑟,𝑖 + 𝑆𝑒𝑎𝑟𝑙𝑦,𝑑𝑝,𝑖 + 𝑆𝑠ℎ𝑜𝑟𝑡,𝑑𝑢𝑟,𝑖      (eq. 2) 

- 𝑆𝑑𝑢𝑟,𝑖: Describes the duration spent at an activity. The higher the duration, the higher the 

score becomes. 

- 𝑆𝑤𝑎𝑖𝑡,𝑖: Describes the time the agent has to wait until an activity starts, for example if the 

stores are still closed. The longer the agent needs to wait, the lower the score becomes, 

therefore this is actually a negative utility. 

- 𝑆𝑙𝑎𝑡𝑒,𝑎𝑟,𝑖: Describes the time the agent arrived late for example to work. The later the agent 

arrives, the lower the score becomes. This utility function is also negative. 

- 𝑆𝑒𝑎𝑟𝑙𝑦,𝑑𝑝,𝑖: Is a penalty for not staying long enough, e.g., if the agent leaves work too early. 

This is often zero, because good quality of data to measure this penalty is hard to find. 

- 𝑆𝑠ℎ𝑜𝑟𝑡,𝑑𝑢𝑟,𝑖: Describes a penalty for a too short activity, whereas the shortest possible activity 

time needs to be defined. Because this data is also hard to quantify, this utility is recom-

mended to be zero. 
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The negative travel utilities for a leg q is shown in equation 3: 

𝑆𝑡𝑟𝑎𝑣,𝑖 = Cmode,i + Strave,mode,i + 𝑆𝑡𝑟𝑎𝑣,𝑒𝑓𝑓𝑜𝑟𝑡,𝑚𝑜𝑑𝑒,𝑖 + 𝑆𝑚𝑎𝑟𝑔,𝑚𝑜𝑛𝑒𝑦,𝑖 + 𝑆𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑖 (eq. 3) 

- 𝐶𝑚𝑜𝑑𝑒,𝑖: Describes a mode-specific constant. This can help to quickly change the modal split 

in favor of a specific transport mode. 

- 𝑆𝑡𝑟𝑎𝑣𝑒,𝑚𝑜𝑑𝑒,𝑖: Is the direct marginal utility of time spent traveling. 

- 𝑆𝑡𝑟𝑎𝑣,𝑒𝑓𝑓𝑜𝑟𝑡,𝑚𝑜𝑑𝑒,𝑖: Is the marginal utility of distance. This describes the effort the agents has 

to make to travel. For example, traveling by car can be more comfortable than traveling by 

bike. 

- 𝑆𝑚𝑎𝑟𝑔,𝑚𝑜𝑛𝑒𝑦,𝑖: Describes the cost for the mobility. 

- 𝑆𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑖: Are penalties for transfers in public transport.  

For further details on how to calculate the different utilities see [Horni et al. 2016]. 

Replanning 

In the fourth step, agents can change their plans or create new ones to achieve a higher score. There 

are different types of replanning strategies. The agents can change their route choice, the departure 

time and the transport mode. For the transport mode it is possible to change it for the whole plan or 

for single trips, creating an intermodal mobility. Furthermore, the plan selection method can also be 

adapted to create a different output. The implemented methods are for example one to pick the plan 

with the best score, another one to randomly pick a plan or one, which implements a weighted func-

tion for the selection and is recommended to use [Horni et al. 2016]. 

The “ReRoute” strategy calculates a route for each trip in dependence of the transport mode and plan. 

The different considered transport modes are for example car on network, public transport on a sep-

arate network or teleportation. For cars on network a time-dependent least-cost-path algorithm such 

as the Dijkstra algorithm is used. In newer versions of MATSim an alternative faster routing algorithm 

called SpeedyALT is used. For public transport routing a variant of Dijkstra’s shortest-path algorithm 

is used. In the newer versions of MATSim the algorithm called “SwissRailRaptor” is used as the de-

fault transit router. The travel for teleportation mode is calculated either by using the bee-line distance 

factor and average speed or by using a scaled freespeed factor [Horni et al. 2016].  

The “TimeAllocationMutator” strategy randomly changes the activity end time and can be configured 

in the config file. The “ModeChoiceMutator” includes three different strategies. The first strategy 

changes the mode of a single trip in the plan. The second strategy changes the modes of all trips, 

although different modes for different trips are possible. The last strategy analyses the plan for sub-

tours and assigns modes to all legs in each sub-tour. This allows to create an intermodal mode choice, 

if it scores well in the agent’s plan. Some strategies such as the “TimeAllocationMutator” perform a 

random mutation while other strategies such as “ReRoute” apply a best-response mutation. Best-

response mutations can find good plans faster; however they do not create many variation. In contrast, 
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random mutation can force agents to perform bad plan variations and require more iterations to find 

good plans. To avoid fluctuations, not every agent should perform replanning in each iteration. To 

reach an equilibrium at the end, replanning strategies and also the innovation of new plans should be 

disabled after a certain iteration. Otherwise, this could also lead to agents trying bad plans and creating 

errors in the simulation [Horni et al. 2016]. 

These three steps are carried out iteratively, so that each agent can try to optimize its day. This is based 

on an evolutionary algorithm, where agents have a set of plans, which is by default five. Through 

replanning, new plans can be added while plans with a low score are removed. In MATSim this algo-

rithm is enhanced by a co-evolutionary algorithm, because the score of the plan depends also on the 

score of other agents and their interactions. A global optimum is therefore hard to achieve and not 

realistic. That’s why a Nash equilibrium is aimed, where each agent tries to optimize its plan, like in 

the real world. At the end of the simulation, the events are analyzed. Typical output data are for 

example the traffic volumes, average speeds, utility changes, emissions and accessibility [Horni et al. 

2016]. 

 Powertrain design 

In the field of powertrain simulation, a large number of sources exists that deal with the subject area. 

Therefore, the scientific literature overview given here is limited to sources with direct reference to 

this work. With the help of longitudinal dynamic simulation, it is possible to design vehicles and their 

powertrain for a given requirement profile. The simulation approach in this thesis is based on a meth-

odology for identifying optimal component characteristics of a wide range of higher electrified power-

train architectures, described in [Weiß 2018]. The simulation models used in the methodology focus 

on computational speed under retention of result quality, allowing the optimization of a large number 

of parameters. Furthermore, an operational strategy applicable for all considered powertrain architec-

tures is developed for the comparison of different component properties. In addition to the criteria 

and boundary conditions regarding vehicles with internal combustion engines, other properties that 

are particularly relevant for electrified powertrains, such as the electric range, are taken into account. 

Here a quasi-static, map-based approach is used for the powertrain simulation. However, here no 

forecasts are derived for these properties. In [Schneider 2022] a methodology for analyzing the future 

technological potentials of vehicle powertrain concepts is presented. This method is based on a data-

base for technology forecasts of powertrain components, which can be integrated in a longitudinal 

dynamics simulation tool such as in [Weiß 2018]. With the approach of [Schneider 2022] forecasts can 

be used to generate and scale future maps for powertrain components. In the following the funda-

mentals of powertrain design is presented. 
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2.2.1 Fundamentals of powertrain design 

This chapter focuses on the fundamentals of the powertrain design. In the first step, the considered 

powertrain types and powertrain components are described. In the next step the differences between 

static and dynamic simulation are presented, before describing the simulation framework from [Weiß 

2018]. In this work, the four powertrain types Internal Combustion Engine Vehicle (ICEV), Plug-In 

Hybrid Electric Vehicle (PHEV), Battery Electric Vehicle (BEV), and Fuel Cell Electric Vehicle 

(FCEV) are considered. For a detailed description of the powertrain types, please refer to the sources 

[Eckstein 2015], [Blasinski 2008], [Guzella et al. 2013] and [Reif et al. 2012]. The powertrains comprise 

different components in a specific combination. These can be divided into the three categories of 

energy storage, energy converters, and energy transformers. Energy storage systems include the bat-

tery, hydrogen tank systems, and tanks for liquid and gaseous fuels including e-fuels and biofuels. For 

a detailed description of the components, please refer to the sources [Reif et al. 2012], [Hofmann 

2014], [Birke et al. 2013], [Friedrich et al. 2011], [Fink et al. 2015], [Cluzel et al. 2012], [Huss et al. 

2013], [Töpler et al. 2017], and [Kunze et al. 2012]. Energy converters include the internal combustion 

engine, fuel cell systems, and e-motors. A detailed description of the components is given in the 

sources [Pischinger 2016], [Reif 2011], [Hofmann 2014], [Eckstein 2015], [Töpler et al. 2017], and 

[Reif et al. 2012]. Power converters include power electronics (DC/DC converter and pulse inverter) 

as well as gearboxes. For a detailed description of the components, please refer to the sources [Hof-

mann 2014], [Reif et al. 2012] and [Steinhilper et al. 2012]. 

2.2.2 Variants of powertrain simulation 

Quasi-static and dynamic simulation 

In the context of powertrain simulations, a distinction is made between quasi-static and dynamic ap-

proaches. The quasi-static approach is characterized by the fact that the output variable only depends 

on the input variable at the same time [Lunze 2012]. In quasi-static powertrain simulations, the com-

ponent losses are determined in discrete time steps. This is often done by interpolation in simulated 

or measured maps such as in the consumption calculation of vehicles with combustion engines. This 

approach is characterized by a relatively fast calculation time and is particularly suitable for consump-

tion calculations and optimization of energy management [Guzella et al. 2013].  

In dynamic systems, on the other hand, the output variable depends not only on the current value, 

but on the previous course of the input variable and the system’s current state. These systems are 

often described by differential equations. For example, the battery represents a dynamic system, since 

its state of charge (SOC) depends on the entire course of the delivered and absorbed power as well as 

start value [Lunze 2012]. The dynamic powertrain simulations additionally considers high-frequency 

dynamic and transient processes in the powertrain. This can include, for example dynamic clutch and 

gearshift processes or the charging behavior of compressors in the combustion engine or in the air 
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path of a fuel cell system. These models can represent the real dynamic behavior of a powertrain much 

more accurately than the quasi-static models when it comes to for example mechanical or electrical 

vibrations. Many of these dynamic processes are not relevant for calculating fuel consumption, but 

they bring a high modeling and calculation effort. This manifests itself in significantly longer simula-

tion times compared to the quasi-static powertrain simulations [Weiß 2018]. 

Forward and backwards simulation 

In the literature, the powertrain simulation approaches are also characterized by the direction of the 

simulation [Guzella et al. 2013], [Fröberg 2008]. In Figure 4 both approaches are shown with the 

example of an ICEV. In the forward simulation, the driver is taken into account as a control element 

for controlling the driving speed to match driving profiles such as the WLTP. The driver model de-

termines the operating point of for example the combustion engine based on the temporal load profile. 

The driver in this case is a controller with the speed as controlled variable and the pedals and if nec-

essary, gear selection as manipulated variables. The dynamic engine model passes on the effective 

output torque to the wheels via the torque converter, transmission and differential. Finally, the driving 

speed is set there. By changing the virtual throttle and brake pedal position, the actual driving speed 

is approximated in time to the specified driving curve. Mapping the real signal flows with the forward-

based approach allows for development of ECU code, among other things. Another advantage of this 

approach is the consideration of component limits, since performance limitations have a direct effect 

on the vehicle acceleration and speed [Weiß 2018].  

The backwards simulation is a quasi-static simulation. The calculation is performed backwards, start-

ing from the driving profile such as WLTP. From the load profile, vehicle speed and acceleration as 

well as drive torque and wheel speed are calculated. In case of the ICEV, via the differential, trans-

mission, torque converter and/or clutch modules, the required (effective) output torque and speed of 

the combustion engine are obtained. All discrete-time output torques and the corresponding speeds 

determine the operating points of the internal combustion engine and enable the estimation of fuel 

consumption and other engine-specific variables. The limits of the available system power can be 

shown but has no influence on the vehicle speed. The backwards simulation offers overall advantages 

in terms of calculation time, in particular because no controller is required as a driver model [Weiß 

2018]. 
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Figure 4:  Sequence of forward and backward powertrain simulation with the example of the ICEV based on [Weiß 2018] 

2.2.3 Powertrain simulation framework 

In this thesis, the modular simulation framework from [Weiß 2018] is used and enhanced to fulfill the 

formulated goals. The applied simulation framework realizes a quasi-static approach and is able to 

determine the consumption for given driving profiles as well as the driving performance of all con-

sidered powertrain types. The approach comprises, a vehicle and a powertrain model are needed. 

While the vehicle model allows to calculate the driving resistances, the powertrain model incorporates 

the losses of the powertrain components and the overall efficiency. 

Vehicle model 

In the following, the vehicle model and the driving resistances needed for the consumption calculation 

are described. In the powertrain simulation, the vehicle model is used to convert a velocity and accel-

eration input and acceleration specifications into the required wheel parameters. These are independ-

ent of the rest of the powertrain and can therefore be calculated in a generally valid manner for all 

architectures if the total weight, the rotating masses and gear ratio is known. Figure 5 shows the indi-

vidual driving resistances, which consist of rolling resistance, air resistance, climbing resistance and 

acceleration resistance. 

 

Figure 5:  Driving resistance on the vehicle based on [Guzella et al. 2013] 
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Rolling resistance is a frictional force that occurs when a wheel rolls and contributes to the overall 

driving resistance. The causes are the friction of the outer surface of the wheel with the ground, such 

as a road surface. In addition, frictional losses can occur within a tire, which is deformed by the contact 

pressure. Typically, rolling resistance is considerably higher for wheels that are easily deformed, such 

as those with rubber tires, than for hard wheels such as steel wheels on railroads. A soft or uneven 

surface can also significantly increase friction. If, for example, a tire sinks significantly into the subsoil, 

substantial friction also occurs within the subsoil. The calculation of the total rolling resistance is 

performed by using the following equation. The rolling resistance coefficient 𝑓𝑅 can be assumed to be 

constant at low speeds but increases significantly at higher speeds. Here in the vehicle model, the 

coefficient is therefore stored as a speed-dependent characteristic curve [Guzella et al. 2013]. 

  𝐹𝑅 = 𝑓𝑅 ∗ 𝑚𝑣𝑒ℎ ∗ 𝑔 ∗ 𝑐𝑜𝑠(𝛼)                                       (eq. 4) 

- 𝐹𝑅: Rolling resistance 

- 𝑓𝑅: Rolling resistance coefficient 

- 𝑚𝑣𝑒ℎ: Vehicle mass 

- 𝑔: Gravity 

- 𝛼: Climbing gradient 

The climbing resistance occurs when the vehicle must overcome a gradient with an angle of 𝛼. The 

climbing resistance is calculated with the following formula [Guzella et al. 2013]: 

𝐹𝐶𝑙 = 𝑚𝑣𝑒ℎ ∗ 𝑔 ∗ 𝑠𝑖𝑛(𝛼)                                       (eq. 5) 

- 𝐹𝐶𝑙 : Climbing resistance 

- 𝑚𝑣𝑒ℎ: Vehicle mass 

- 𝑔: Gravity 

- 𝛼: Climbing gradient 

When a vehicle is moved through the air, air resistance occurs. The reason is that air is partially en-

trained by the vehicle and set in motion, with turbulent flows also occurring at higher speeds. This 

results in a loss of energy that is related to the frictional force that is created. The energy loss is equal 

to the frictional force multiplied by the distance over which the body is moved. This type of friction 

is called drag. For a moving vehicle, these aerodynamic forces mean that correspondingly more pro-

pulsive power must be applied to maintain speed. In vehicles and other motor vehicles, air resistance 

is the dominant part of the total driving resistance as long as the driving speed is not too low, e.g., 

below 30 km/h. At very low speeds rolling resistance dominates.  
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The air resistance is calculated with the following formula [Paschotta 2020]: 

𝐹𝐿 = 𝑐𝑊 ∗ 𝐴 ∗
𝜌𝐿

2
∗ 𝑣2                                       (eq. 6) 

- 𝐹𝐶𝑙 : Air resistance 

- 𝑐𝑊: Drag coefficient 

- 𝜌𝐿: Air density 

- 𝐴: Cross-sectional area 

- 𝑣: Relative velocity between vehicle and ambient air 

The acceleration resistance indicates the force required to accelerate the vehicle against the mass iner-

tia. It consists of translational and rotational components as shown in the following equation. The 

translator component results from the product of the vehicle acceleration and the vehicle mass and 

can therefore be calculated directly for a given cycle. The conversion of the total rotatory component 

into a reduced moment of inertia at the wheel would involve mass inertias of all rotating parts in the 

powertrain. Because this would prevent the separation of vehicle and powertrain model, only the 

rotational part of the wheels at this point is considered. The mass moments of inertia of the wheels 

on front and rear include the inertias of the tires, rims, brakes, cardan shafts and all other rotating 

components up to the axle differential or wheel. All other of the total mass moment of inertia are 

considered within the calculation of the specific powertrain [Guzella et al. 2013]: 

𝐹𝐴 = 𝐹𝐴,𝑡𝑟 + 𝐹𝐴,𝑟𝑜𝑡                                              (eq. 7) 

- 𝐹𝐴: Acceleration resistance 

- 𝐹𝐴,𝑡𝑟: Translational part of acceleration resistance 

- 𝐹𝐴,𝑟𝑜𝑡: Rotational part of acceleration resistance 

The required torque on the wheel to overcome the total driving resistance is calculated with the fol-

lowing equation: 

𝑀𝑤ℎ𝑒𝑒𝑙 = (𝐹𝑅 + 𝐹𝐶𝑙 + 𝐹𝐿 + 𝐹𝐴) ∗ rwheel                              (eq. 8) 

- 𝑀𝑤ℎ𝑒𝑒𝑙: Required Torque 

- 𝑟𝑤ℎ𝑒𝑒𝑙: Dynamic wheel radius 

The wheel speed can be derived from the given velocity with the following formula: 

𝑛𝑤ℎ𝑒𝑒𝑙 =
𝑣

2∗𝜋∗𝑟𝑤ℎ𝑒𝑒𝑙
                                                     (eq. 9) 

- 𝑛𝑤ℎ𝑒𝑒𝑙: Wheel speed 

- 𝑣: Vehicle speed 
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Driving cycles 

For the cycle as a speed progression a driving cycle is used. A driving cycle is an elementary component 

of vehicle simulation, since it specifies the speed profile including slope to be driven and thus defines 

wheel torque and speed. Accordingly, the efficiencies and thus the overall consumption are also 

strongly influenced by the cycle. Within this methodological framework different driving cycles such 

as the WLTC are analyzed, and further cycles can be implemented. Since the WLTC is mainly used 

here, it is described in the following [DieselNet 2022]. 

With the WLTC, the UNECE World Forum for Harmonization of Vehicle Regulations introduced a 

global standard for measuring emissions, fuel and electric consumption which replaces the regional 

and national regulations. The Worldwide Harmonized Light Vehicles Test Cycle (WLTC) shows a 

dynamic behavior and provides for a uniform distribution of speeds, with higher speeds up to the 

maximum speed of 131 km/h. This is shown in Figure 6. The distribution of accelerations and decel-

erations is almost symmetrical. The total distance of the profile is more than twice as long as that of 

the New European Driving Cycle (NEDC), at over 23 km, while the average speed is about 13 km/h 

higher. 

 

Figure 6:  The WLTC drive cycle for Class 3b [DieselNet 2022] 
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Powertrain model 

With the powertrain model, the overall efficiency and all powertrain losses of the powertrain can be 

calculated. Each powertrain component is implemented as a submodel with defined interfaces. By 

coupling the mechanical and electrical signals, all required powertrains can thus be implemented with-

out having to create a completely new overall model as shown in Figure 7 with the example of a BEV. 

For a detailed description of the modeling of the components, please refer to [Weiß 2018]. The control 

is done by the operation strategy and includes the shift strategy for gear selection as well as the energy 

management for sensible power or torque sharing and the control of the battery state of charge. Po-

tential consumption savings can be achieved with the right energy management. The operation strat-

egy is applicable to all considered architectures and their dimensions and enables objective compara-

bility. For a detailed description of the implementation of the operating strategy, reference is also 

made to [Weiß 2018]. 

Because most dynamic processes have a subordinate influence on the consumption, they are ne-

glected. The neglected processes include, for example, rotational speed oscillations due to elasticity, 

synchronization processes or the opening and closing of switching elements. Contrary to the dynamic 

effects, temperature depended processes have a major influence on energy consumption. Neverthe-

less, these are neglected as well, because a valid consideration requires a huge parameter set and a 

forward simulation approach. Such a forward simulation is carried out for full-load accelerations con-

sidering also the temporal decrease in tractive force because of switching operations, due to the direct 

influence on the acceleration time [Weiß 2018]. Moreover, a backward-based approach is used, i.e. 

starting from a speed specification and without a driver model. Here the signal flows in the real vehicle 

do not need to be modeled and it enables the shortest possible computation time. However, when 

simulating an acceleration process, the velocity is not known, but represents the result of the maximum 

acceleration. This results from the maximum system power of the powertrain and can therefore only 

be calculated forward, i.e. starting from the power sources up to the wheel. Accordingly, the simulation 

environment offers both options. The backward-based approach is used for the calculation of the 

consumption for predefined cycles and the forward-based approach for the special case of the full 

load acceleration. Both approaches are included in the presented simulation framework [Weiß 2018]. 

Figure 7 shows an example of the architecture of a BEV created from the powertrain component 

modules. The BEV is designed as a single-shaft vehicle. In the backwards simulation, the wheel status 

variables from the vehicle model are transferred to the transmission model. First, the appropriate gear 

is selected in the shift strategy if there is more than one gear, and then the resulting gear ratio is used 

to calculate the transmission input variables. These are transferred to the e-motor model, which takes 

over the required torque in accordance with the operating strategy. The electrical power of the e-

motor and the power requirement of the auxiliary consumer result in the required battery power. 

Finally, the energy demand of the battery including losses and the charging efficiency can be calculated.  
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Figure 7:  Modular approach of the powertrain design and simulation with an example of a BEV based on [Weiß 2018] 

Besides the energy demand, vehicle performance indicators are calculated, including acceleration time 

and elasticity as well as the achievable maximum speed and climbing ability. These are needed for the 

design and scaling of the powertrain components. The acceleration time is the minimum time in which 

the vehicle can accelerate from standstill to a defined speed, for example 100 km/h. The elasticity 

differs in that, that the acceleration time is specified from a positive starting speed. This is intended 

to evaluate the power development at higher speeds. The vehicle acceleration is calculated by the serial 

forward simulation of all components starting with the sources and ending with the wheel. An energy 

management system to control a driver model is not required for this, as the maximum available torque 

is required. The influence of a decreasing SOC is taken into account, because this can lead to perfor-

mance restrictions of the electrical system. One aspect that is additionally modeled in comparison to 

the backward-based consumption simulation is the contact from the wheel to the road at the limit. 

Thus, during an acceleration under full load, the maximum force that can be transmitted by friction 

can be exceeded. In order to prevent this, the maximum transmissible force due to the dynamic axle 

load displacement is determined and, if it is exceeded, analogously to the traction control, the wheel 

torque is reduced iteratively until the limit value is reached. For a more detailed description of the 

vehicle acceleration please refer to [Weiß 2018]. 

The maximum speed is reached, when the force provided by the powertrain at the wheel is equal to 

the sum of the air, rolling, and climbing resistance. Accordingly, no further acceleration takes place. It 

may happen that the maximum speed of a powertrain component is reached before this condition is 

fulfilled. In this case, the maximum speed is determined by the maximum speed of the powertrain 
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component. Since it is not known in advance in which gear the maximum speed is reached, the calcu-

lation must be carried out for different gears. Depending on the powertrain architecture, the power-

train components relevant for the continuous top speed differ. The decisive factors are always the 

components that permanently provide the power in the respective architecture. In the case of the 

parallel PHEVs this is due to the limited battery energy content of the battery. In the case of the 

FCEV, the continuous power of the e-motor and fuel cell limits the mechanical and electrical power 

available for top speed, and in the case of the BEV, this is the continuous power of the e-motor and 

the traction battery. The tractive power available is determined by simulating the powertrain from the 

previously described continuous power-relevant components to the wheel, including all losses. The 

maximum available torque is always provided by the powertrain components, taking into account the 

source power [Weiß 2018]. 

The continuous climbing ability indicates the gradient that a vehicle can climb continuously at a given 

speed. The calculation of the gradient is based on the driving resistance with the assumption that the 

acceleration resistance is zero and a defined vehicle speed. To determine the available tractive force at 

the wheel, the components are considered analogously to the maximum speed, which permanently 

provide the power in the respective powertrain architecture. In addition, a short-term available climb-

ing ability can be determined with the total released system power [Weiß 2018]. 

2.2.4 Design and scaling of powertrain components 

In this powertrain simulation framework it is possible to scale powertrain components through di-

mensioning to fulfill requirements placed on the system. The dimensioning describes a certain char-

acteristic of a component. This is made possible by scaling approaches, with which the component 

properties, e.g. torque-speed curve, mass moment of inertia and power loss map are derived from 

known reference components of the component library according to the desired dimensioning.  

Component modeling can basically be realized in different ways such as map-based or based on sim-

plified analytical relationships. The used modeling approach in this framework is based on the use of 

characteristic maps. For such a simulation, the quasi-static losses are stored in a map as a function of 

various input variables and the losses are then calculated by interpolation. Because any stationary ef-

fects can be taken into account in the map, the quality of the results is higher compared to the simpli-

fied analytical relationships. However, the necessary interpolations also increase the computational 

effort. Compared to detailed FEM and equivalent circuit models, however, the level of detail is lower. 

One advantage of the map-based approach is the possibility of presenting the results of these models 

in the form of characteristic maps. Further advantages of map-based simulation are the possibility to 

use the measurement results of real components as well as any technology variants without model 

adaptations and only by replacing the characteristic maps. A challenge is the required scaling of the 
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maps, as it is not practical to store a separate map for each possible dimensioning. Due to the ad-

vantages mentioned above, the map-based component modeling is used for the component modeling 

in the used simulation framework. The maps and curves can represent power losses as well as com-

ponent boundaries and other properties. For a detailed description of the physical models as well as 

the associated scaling, please refer to [Weiß 2018]. 

Powertrain component forecasts 

Another important requirement for the holistic methodology is the derivation of forecasts to evaluate 

mobility systems of the future. In the field of powertrain simulation, [Schneider 2022] has developed 

a method for the prediction of the development of powertrain component attributes and integration 

in the powertrain design. The output coincides with the map-based approach of [Weiß 2018] and can 

therefore be integrated into the presented powertrain simulation framework. The predicted powertrain 

component attributes depend on the considered component itself, such as the energy density for the 

battery. Attributes having an essential impact on the results at the vehicle level are focused. Two dif-

ferent main sources are used for the determination of forecasts. The first source is based on a database 

with internal corporate forecasts. This data comes from experts of different automotive disciplines. 

The second source is based on literature research of publicly available data such as from scientific 

publications or feasibility studies ordered by governments. This data is weighted in dependence of 

actuality of the publication and the used forecast approach in the considered source. Subsequently 

data fusion methods are used to combine this data. To achieve a consistent technological reference 

and similar boundary conditions for all used data sources, the data sources are filtered within the 

database. The sources are filtered with regard to the source type, the time period of the forecasts, the 

considered technology as well as the system design. Furthermore, the derived forecasts are integrated 

in the used simulation models to analyze future vehicle concepts [Schneider 2022]. A similar forecast 

approach is shown in chapter 7 to derive forecasts for CO2eq emissions. 

Exemplary scaling of an e-motor 

Here a fictional, exemplary scaling of an e-motor is performed to show the processes with the goal to 

design a new e-motor with a higher power output. In the first step a reference e-motor with known 

values regarding power, torque, mass and efficiency as well as a characteristic map containing torque 

over speed with the corresponding efficiencies for the production year of 2020 is taken, as shown in 

Figure 8 on the left side.  

Now an e-motor with a power output of 200 kW in the year 2030 needs to be designed. The power is 

scaled via the length scaling of the e-motor. The map is scaled using the derived predictions for the 

year 2030 for the power density and the efficiency at the best point and under full load of the e-motor 

under consideration. With the help of the new map, the e-motor can be designed with the new power 

output. In addition to the power, the resulting mass, torque and efficiency of the e-motor is calculated 

as shown in Figure 8 on the right side. These characteristics are used for the powertrain simulation. 
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Figure 8:  Exemplary scaling of an e-motor including forecasts 

 Life-Cycle-Assessment (LCA) 

LCA according to DIN ISO 14040/14044 [ISO 14044 2006] is often used in the automotive sector 

to assess and compare individual vehicles with different powertrain architectures. The clear guidelines 

of DIN ISO for LCA ensure the comparability of products on the one hand and allow the certification 

of values for external communication on the other. For example, various automotive-related studies 

focus on the comparison of battery electric vehicles against conventional vehicles with combustion 

engines, such as in [Castellani et al. 2017], [Francesco et al. 2018], [Burchart-Korol et al. 2019], [Girardi 

et al. 2015], [Hawkins et al. 2013]. Due to the high CO2eq emissions impact of traction batteries in 

electric vehicles, many studies concentrate on the batteries and analyze them in detail, such as [Dai et 

al. 2019], [Dunn et al. 2014], [Peters et al. 2017]. Specific studies on the recycling phase can be found 

in [Dunn et al. 2012], [Raugei et al. 2018], [Unterreiner et al. 2016]. In addition, the impacts of the 

deployment of electric vehicle fleets are investigated in [Lajunen et al. 2020], [Dér et al. 2018] or ride 

sharing concepts in [Ding et al. 2019]. The environmental impact of measures during and beyond the 

vehicle use phase is analyzed in the following sources. [Ahmadi et al. 2014], [Bobba et al. 2018], [Faria 

et al. 2014] and [Reid et al. 2016] analyze the impact of second-life applications. In [Zhao et al. 2015] 

the impact of vehicle-to-grid applications is evaluated. In [Dér et al. 2018], agent-based mobility sim-

ulation is coupled with LCA as a novel approach to evaluate large-scale mobility-related interventions 

such as electric vehicles. 

All sources nominated so far rely on the ISO standard for lifecycle-assessment, which can be regarded 

representative for the current state-of-the-art. However different problem statements need new meth-

odological approaches to evaluate the impact. For example, in the field of carbon capturing, in 

[Brandão et al. 2013] six different options for the assessment of temporary carbon storage for a 100-

year time horizon are compared. Hereby literature research is performed to find different approaches 
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to calculate the positive impact. In [Steubing et al. 2016] a modular LCA approach is presented, which 

enables an efficient modeling and comparison of various product life cycles. Here different combina-

tions of life cycle inventories can be analyzed and optimized in the context of scenario analysis. This 

modular approach is based on interconnected and exchangeable modules, as shown in Figure 9. These 

modules are user-defined life cycle stages with product input and outputs. For these modules Ecoin-

vent processes as well as processes modeled by the practitioner can be used. The Ecoinvent database 

contains processes, that are used to model the vehicles and infrastructure, which include the respective 

material and energy inputs for production. With this approach, modules have to be carefully combined 

to avoid double counting and user-defined cutoffs need to be introduced. These studies already show 

the need of an enhanced LCA approach in order to evaluate new measures to reduce the impact of 

mobility in terms of emissions. To derive requirements for the enhanced LCA the fundamentals of 

LCA need to be analyzed. Therefore, in the next chapter the fundamentals of LCA as well as the 

differentiation of attributional and consequential LCA is described. 

 

Figure 9:  Representation of alternative pathways to produce a product 

2.3.1 Fundamentals of life-cycle-assessment 

The importance of environmental protection and the possible impacts associated with the manufac-

tured and used products such as vehicles led to the development of methods to better understand and 

evaluate these impacts. One of the developed methods is the life-cycle-assessment (LCA). The LCA 

is an internationally standardized and comprehensive method. In this method all relevant emissions, 
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related environmental and health impacts and resource consumption that are associated with any 

products or services are quantified. Here LCA can support to [ISO 14044 2006]: 

• Identify opportunities to optimize products regarding their environmental impact at various 

points in their life cycle 

• Make decisions for strategic planning, priority setting or designing of products and process-

es 

• Select relevant environmental impact indicators including measurement techniques 

• Marketing with certification and ecolabeling 

In a so-called cradle-to-grave balance, shown in Figure 10, the full life cycle of a product or service is 

taken into account in the life-cycle-assessment. The different considered life cycle phases are the ex-

traction of resources, production, use, end-of-life including recycling and the disposal of remaining 

waste. Considering single life cycle phases separately can solve problems in the considered life cycle 

phase while creating further emissions in the other life cycle phases. Here the LCA helps to avoid this 

scenario. For example, a battery electric vehicle as solution for the transport sector can reduce emis-

sions in the use-phase, however the emissions in the production phase can increase. Therefore, LCA 

is a powerful decision support tool helping to make the products and services more sustainable [Eu-

ropean Commission 2010]. 

 

Figure 10:  Overview of life cycle phases in cradle-to-grave based on [Schmuck et al. 2010] based on [VDA-Datenerhebungsformat 
für Ökobilanzen 2003] 

The LCA framework is defined in the ISO 14040 and 14044 [ISO 14044 2006] and is described in the 

following. There are 4 phases in the LCA study, as shown in Figure 11. The first phase is the definition 

of the goal and scope including the system boundary. Here the level of detail can vary and depends 

on the subject and the planned use of the study. The following points need to be clearly defined and 

consistent with the intended application [ISO 14044 2006]: 

• The reason for carrying out the study 

• The intended audience, which is addressed 

• The functions of the product system 

• The functional unit 
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• The system boundary 

• The used allocation procedures 

• The used life cycle impact assessment (LCIA) methodology and impact factors 

• The used interpretation methods, data requirements and quality of data which includes  

o age of data, geographical coverage, technology coverage, precision, completeness, 

representativeness, consistency, reproducibility, sources of the data, uncertainty of 

the information, missing data, all assumptions that are made, value choices and op-

tional elements, limitations, type of critical review as well as  

• The reference product and system for the comparison 

The second phase is the analysis of the life cycle inventory (LCI). This phase includes an inventory of 

input and output data describing the product. Following steps need to be included in the LCI. The 

necessary data needs to be collected and the collection process needs to be described. The sources of 

the data need to be referenced and evaluated regarding their quality. Data for energy, raw material, 

ancillary and other physical inputs is needed. All calculation procedures including all assumptions need 

to be documented. The same procedure should be used throughout the study. A sensitivity analysis 

should be performed to show that life cycle stages, processes or input and output can be excluded due 

to lack of significance or should be included due to high significance. Allocation should be avoided. 

If not possible, the allocation should be based on physical relationships. If this is also not possible 

allocation should be in a way that reflects other relationships between them such as monetary value. 

It should be clearly described [ISO 14044 2006]. 

 

Figure 11:  Four phases of the LCA framework based on [Schmuck et al. 2010] based on [VDA-Datenerhebungsformat für 
Ökobilanzen 2003] 
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The third phase is the life cycle impact assessment (LCIA). Here the environmental impact indicators 

are defined, calculated and assessed. The best known assessment methods are CML2001 or ReCiPe. 

The choice of the method depends on the product and service which is analyzed. The fourth and last 

phase is the interpretation phase. The results are discussed and used as basis for conclusions, recom-

mendations and decision-making in accordance with the first phase goal and scope definition. Then 

significant issues are identified. Afterwards an evaluation is performed that considers completeness, 

sensitivity and consistency checks. In the end conclusions, limitations and recommendations are de-

scribed [ISO 14044 2006]. 

2.3.2 Attributional and Consequential LCA 

There are two types of LCA described in literature. The attributional LCA and the consequential LCA. 

The attributional LCA (ALCA) considers products or services at a certain point of time for a given 

amount of the functional unit and describes the environmentally relevant physical flows to and from 

its life cycle system. The ALCA is suited for cases where steady state assumptions apply and the system 

can be described by average data, because the existing market remains unaffected by the studied LCA. 

The results scale linearly with the functional unit. The ALCA fails, if the LCA is supposed to inform 

on the consequences of a change in demand for the functional unit underlying a decision process 

[Baustert et al. 2017]. 

To overcome these limitations, the consequential LCA (CLCA) was derived. This approach includes 

the impacts generated by all the systems affected by the change in demand of the functional unit. 

Additionally, processes affected through market relationships and not through physical ones are also 

included. The CLCA includes a bigger scope of the system boundary which leads to analyzing the 

impact of indirect effects, as shown in Figure 12. For example more energy is needed for a product, 

which leads to additional energy plants and this leads to an increase of the indirect impact [Baustert et 

al. 2017]. 
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Figure 12:  System boundaries of ALCA and CLCA based on [Brander et al. 2009] 

Instead of average data, marginal data for the relevant technology is used. Results are no longer linearly 

dependent on the functional unit due to the expansion of the system, which takes into account indirect 

effects that occur outside of the attributional LCA of the product made of physical relationships be-

tween unit processes. The CLCA is also better suited to evaluate the environmental consequences of 

decisions [Baustert et al. 2017]. To further enhance the CLCA, it can be coupled with agent-based 

modeling for a more adequate representation of the complex mobility system. This approach was 

implemented in the following exemplary studies [Baustert et al. 2017], [Baustert et al. 2019], [Syré et 

al. 2020], [Querini et al. 2017] and [Göhlich et al. 2020].  

The goal of consequential models is to identify the consequences of changes and how activities influ-

ence each other and their environment. These models are steady-state, linear, homogeneous models, 

with each unit process fixed at a specific point in time. It does not include dynamic feedbacks as well 

as activities far into the future, if the changes take place now [Consequential-LCA 2015]. The CLCA 

is a suitable approach for the new enhanced LCA described in chapter 7. 

 Holistic analysis of mobility systems 

In accordance with the previously formulated objective of a holistic analysis of mobility systems, a 

methodology is developed in [Syré et al. 2020] that combines an agent-based traffic simulation and 

downstream LCA in one framework. This methodology, in contrast to conventional LCA of single 

vehicles, allows to analyze potential future strategies at the level of transport systems, such as the 

comparison of autonomous on-demand mobility and conventional personalized mobility. The ap-

proach is adaptable with respect to different input data, LCA databases, simulation data, choice of 
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system boundaries and impact categories. Synthetic vehicles are analyzed in the MATSim "Open Ber-

lin Scenario" and road-specific consumption is calculated. In addition, the base case is compared with 

three different new scenarios that include measures to reduce environmental impacts. For the LCA, 

data from the Ecoinvent database is used. Here, processes such as "glider production, passenger car" 

are taken as a basis and adapted for the new vehicles under investigation.  

In [Göhlich et al. 2020] this approach is extended by a longitudinal dynamic simulation to design and 

evaluate different vehicles and powertrains. Here, a new method for deriving and analyzing strategies 

for a fully decarbonized urban transportation system is presented, combining a conceptual vehicle 

design, an agent-based traffic simulation, an operating cost analysis, and a life cycle assessment for a 

complete urban region. The holistic approach evaluates the technical feasibility, system cost, energy 

demand, transportation time, and sustainability-related impacts of different decarbonization and 

charging strategies. In contrast to previous work, the consequences of a transformation to fully decar-

bonized transportation system scenarios are quantified across all transportation segments, taking into 

account procurement, operation, and disposal. Vehicle types with different powertrains such as battery 

electric vehicles (BEV) and fuel cell electric vehicles (FCEV) are compared with internal combustion 

engine vehicles (ICEV). The vehicle and powertrain design is applied to receive realistic component 

sizing and consumption data for different applications and traffic segments that are considered in 

future scenarios. The methodology can be applied to any region and any transport system. The met-

ropolitan region of Berlin is chosen as a demonstration case. MATSim is used as a tool for the agent-

based mobility simulation. Ecoinvent is used to perform the LCA, where this step is done in the post-

process. Furthermore, a method for estimating the required charging infrastructure for electric vehi-

cles is presented. These two approaches show the feasibility of combining different methodologies in 

order to model and evaluate holistic mobility systems, which is a goal in this thesis. 

 Evaluation of the state of the art 

In Figure 13 the most important sources from the literature review are summarized. The relevant 

disciplines for the method that is derived in this thesis are presented. Here it is examined whether the 

sub-disciplines have already been addressed by the sources and to what degree. Derived from the state 

of the art, a target picture for the method is developed. With regard to the state of the art, the four 

disciplines of agent-based mobility simulation, powertrain simulation, life-cycle assessment, and the 

combination of the individual disciplines are examined.  

In the area of mobility simulation, it is investigated to what extend mobility demand modeling and 

mobility simulation take place. In [Querini et al. 2014], [Bishoff et al. 2019], [Hört et al. 2020], [Dér et 

al. 2018], [Syré et al. 2020] and [Göhlich et al. 2020] these topics are addressed, whereas in [Querini et 

al. 2014] no mobility simulation is performed. Similar to these studies, MATSim is used and integrated 
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into the new methodology here as well. Here, the whole chain of mobility demand modeling up to the 

evaluation is considered similar to the sources.  

In the area of powertrain simulation, requirement analysis and powertrain design, powertrain simula-

tion and powertrain technology forecast are investigated. Powertrain simulation or a simplified char-

acteristic based approach is used in [Querini et al. 2014] and [Dér et al. 2018]. In [Bishoff et al. 2019], 

a powertrain simulation is performed. In [Göhlich et al. 2020], powertrains are designed and simulated. 

Especially the powertrain design and simulation of [Weiß 2018] and [Schneider 2022] play a major 

role for this work, as the tool chain is integrated and extended in the new methodology.   

In the area of life-cycle-assessment, the detailed LCA is investigated first. This is used in [Querini et 

al. 2014], [Dér et al. 2018], [Steubing et al. 2016], [Syré et al. 2020] and [Göhlich et al. 2020] to evaluate 

sustainability criteria for different products and scenarios. Here, [Steubing et al. 2016] extends the 

approach to achieve modularity in order to evaluate arbitrary products with one life-cycle inventory. 

With regard to a holistic evaluation of the mobility system with an integrated optimization, the detailed 

LCA is not suitable. Therefore, new approaches are pursued for the new method, which are modular 

and a key-value based approach. This enables the possibility to derive forecast values, which are 

needed to be able to evaluate future mobility systems.  

In the last point, the combination of methods is considered. Here, the first sources show initial ap-

proaches, such as [Dér et al. 2018] or [Syré et al. 2020], where an agent-based mobility simulation is 

combined with a LCA. [Göhlich et al. 2020] extends the approach with a powertrain simulation. In 

this work, a method is to be developed that combines an agent-based mobility simulation with a 

powertrain simulation as well as an integrated LCA and additionally offers the option of an optimiza-

tion. Thus, a degree of novelty is achieved in these research areas.  

The following target picture for the methodology is derived from these considerations. For the agent-

based mobility simulation, MATSim is to be used in a similar way to the aforementioned sources. 

MATSim is suitable here because it is an open source tool associated with a large and active commu-

nity. For the powertrain simulation, the simulation environment of [Weiß 2018] as well as the tech-

nology forecasts of [Schneider 2022] will be integrated into the methodology. For the new LCA ap-

proach, instead of the detailed LCA, a new key-value oriented approach based on detailed LCAs will 

be developed. This key-value based approach shall be modular and dynamic and shall allow the deri-

vation of forecasts. The individual methods are to be combined into an overall methodology and, in 

addition, optimization is to be possible. 
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Figure 13:  Comparison of the considered scientific approaches and classification of the present work  
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3 Derived need for action 

The goal of this thesis is to derive a method to design and evaluate holistically sustainable mobility 

systems. As indicated, this purpose requires a combination of an agent-based mobility simulation with 

the results of a powertrain simulation, a life cycle analysis and a cost model in a multi-disciplinary 

approach. With regard to these disciplines, that state of the art is integrated where possible and en-

hanced (or modified) where needed. For the agent-based mobility simulation, MATSim is a suitable 

tool to describe individual mobility behavior and the overall performance of mobility systems. It is 

well-known in science and research and the open-source character allows customized, purpose-fitted 

code. Therefore, MATSim is used here and customized to fit the requirements of the overall method. 

In the field of powertrain simulations [Weiß 2018] and [Schneider 2022] describe methods that allow 

powertrain simulations within an optimization environment and predict the properties of future 

powertrain technologies with reduced computing time. These methods are integrated here and ex-

tended concerning the objectives of this work. This includes the overall system design, the component 

optimization, the operation strategy optimization as well as forecasts for different powertrain compo-

nents described in [Schneider 2022]. With the help of the method, not only specific vehicles can be 

optimized, but future vehicles can be designed for different applications, taking into account different 

types of transport.  

As discussed above, the LCA strictly based on the ISO standard 14040/14044 gives a standardized 

procedure enabling comparability and traceability of the results and certification of published values. 

However, the standardized procedure restricts the calculation of holistic CO2eq emissions to a static 

level and dynamic changes within the analyzed system are not taken into account. The required de-

tailed description of processes within the balance envelope also limits the application to the current 

or a nearby point in time with well-known technology, material and energy flows. Thus an approach 

needs to be developed, which enables the consideration of dynamic systems including the predictabil-

ity of a (far) future. 

Furthermore, while LCA is commonly used to describe single products, this thesis aims to determine 

the cumulative environmental impacts of future mobility systems. This includes not only private and 

public vehicles and their energy requirements, but also the different transport modes as well as the 

required infrastructure for all transport sectors. A novel approach of a mobility system LCA is shown 

in [Syré et al. 2020] and [Göhlich et al. 2020] using Ecoinvent datasets and software. This enables a 

comprehensive analysis of sustainability criteria. However, due to the data-intensive LCA models as 

well as the increased computation time, this analysis is performed in post-process, as presented in 

[Göhlich et al. 2020]. Thus, an automatic optimization is not applied. With this thesis an approach is 

pursued, that allows the integration of the LCA into optimization procedures. 
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In the following the most important target goals are summed up: 

Sub-Target 1:  Development of a modular method framework to evaluate and 

optimize holistic mobility systems 

 

Sub-Target 2:  Integration of MATSim 

 

Sub-Target 3:  Integration of powertrain simulation 

 

Sub-Target 4:  Development of a new and enhanced LCA 

 

Sub-Target 5:  Combination of individual methods and integration of a fitting 

optimization approach 

 

Sub-Target 6:  Performing a sensitivity analysis 

 

Sub-Target 7:  Validation of the method 

The procedure for achieving the sub-targets is briefly described below.  

Sub-Target 1: Development of a modular method framework to evaluate and optimize holistic 

mobility systems 

In order to develop a modular method framework to evaluate and optimize holistic mobility systems 

the methods of agent-based mobility simulation, powertrain simulation, LCA and cost models need 

to be analyzed and combined into one single method. Therefore, the single methods are analyzed and 

interfaces between them are defined.  

Sub-Target 2: Integration of MATSim 

Integration of MATSim, an agent-based mobility simulation tool into the method framework. Agent-

based modeling is needed to evaluate the impact of different measures at person level. For this, an 

agent-based mobility simulation is used, considering the whole chain from mobility demand modeling 

to evaluation. The total mobility demand should be taken into account. This means that in addition 

to private cars, other forms of mobility such as public transport, bicycles or completely new forms of 

mobility should also be modeled. MATSim is chosen as a tool to corporate the agent-based mobility 

simulation into the new derived method framework. 

Sub-Target 3: Integration of powertrain simulation 

Integration of the powertrain simulation into the method framework. Powertrain simulation and tech-

nology prediction based on [Weiß 2018] and [Schneider 2022] are integrated into the method. With 

the help of this method, it is possible to generate and evaluate vehicle portfolios for different scenarios. 
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These vehicle portfolios include the requirement analysis as well as powertrain design to calculate 

vehicle and component masses as well as consumptions, that are needed to evaluate the target criteria 

of the mobility system.  

Sub-Target 4: Development of a new and enhanced LCA 

A new LCA approach is to be developed and integrated into the method framework. The novel LCA-

approach shall fulfill the following requirements: 

• Dynamic balance and envelope 

• Holistic mobility systems analysis 

• Predictability of future scenarios 

• Integrability into an optimization loop 

In order to achieve this sub-target a modular, key-value based LCA approach is developed. The key-

values are researched via a meta-study as well as modelled in detailed LCA-Software such as GaBi, 

where key-values are derived. This data is then used in combination with data-fusion approaches to 

prognose future trends of these values to model and evaluate future scenarios. 

Sub-Target 5: Combination of individual methods and integration of a fitting optimization 

approach 

The individual methods are to be combined into an overall methodology. A fitting optimization 

method needs to be integrated into the method framework. Therefore, different optimization ap-

proaches are analyzed and a fitting approach is chosen. The method enables the evaluation and opti-

mization of mobility systems holistically with regard to their CO2eq emissions, costs and energy re-

quirements. To make the optimization feasible computation time reduction under retention of simu-

lation quality to allow optimization loops is needed. 

Sub-Target 6: Performing a sensitivity analysis 

Performing a sensitivity analysis to show correlations between influencing variables and result varia-

bles. Here, especially the influence of sample sizes of the region as well as the influence of key-values 

are analyzed. 

Sub-Target 7: Validation of the method 

Validation of the method on the basis of a case study. In this thesis the region of Berlin is chosen as 

an application example. Needed input data for modeling the region of Berlin is researched. Simulation 

results are compared with researched data. Different optimization scenarios are performed and ana-

lyzed. 
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Summary 

The overall process for the design and evaluation of holistically sustainable mobility systems of the 

formulated sub-targets is shown in Figure 14. The logical sequence consists of seven sub-steps, start-

ing with the development of a modular framework (1), integrating the agent-based mobility simulation 

in MATSim (2), integration of the powertrain simulation (3), developing and integrating of a new and 

enhanced LCA approach (4), combining the individual methods (5), performing a sensitivity analysis 

(6) and validating of the method (7). 

 

Figure 14:  Classification of the formulated sub-target (circles 1-7) in the overall process for the design and evaluation of holistic 
sustainable mobility systems 
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4 Methodological approach – Holistic mobility system 

analysis  

For the evaluation of ecologically, economically and sociologically reasonable decarbonization strate-

gies, mobility systems must be considered holistically. Therefore, in the first step the system bounda-

ries need to be defined. Within these system boundaries, the mobility behavior of the population, the 

different forms of mobility, the different vehicle and powertrain options as well as energy sources and 

the infrastructure including the charging infrastructure are considered. Subsequently, the entire mo-

bility system is evaluated regarding the target variables. 

 Definition of the mobility system 

To model a mobility system from a simulation perspective, it is important to define the mobility system 

in the first step. The mobility system in this work consists of three pillars, describing the mobility 

demand including person transport, the different travel modes as well as the specific region itself. The 

mobility demand includes data on mobility behavior, lifestyle, requirements and specific needs of the 

population. In the travel modes pillar, different forms of private owned and shared mobility as well as 

public transport and further new travel modes such as micro mobility are modeled. These are then 

evaluated in terms of emissions, costs and energy demand. These calculations are made in dependence 

of each agent and their individual behavior. The third pillar of the mobility system is the specific region 

itself. This pillar includes the mobility specific infrastructure and interfaces to e.g. the energy sector. 

This incorporates the traffic network where agents and vehicles move as well as charging infrastructure 

and the region specific energy pathways. The definition of the mobility system is shown in Figure 15. 

For the holistic approach it is important to consider all these pillars in one methodological framework 

to design and evaluate different scenarios, which are a compilation of the different use cases of all the 

participants in the mobility system. This holistic approach is described in the following. 
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Figure 15:  Definition of the mobility system 

 Holistic approach 

To fulfill the stated requirements, a holistic approach is needed, which consists of a combination of 

an agent-based mobility simulation with a powertrain simulation as well as LCA and cost models, 

where the LCA is integrated in the overall methodology. In the beginning of the method the initial 

mobility system configuration needs to be defined and the parameters need to be set. This includes 

the input data for the modeling of the considered region as well as the measures for reducing the 

impact regarding CO2eq emissions. Subsequently the design and evaluation of the mobility system 

starts. In Figure 16, a process scheme of the pursued holistic method approach is shown. The process 

to achieve this goal consists of five blocks. In the first block the parameter settings such as the mobility 

system configuration and input values such as CO2eq key-values are read. In the second block, the 

simulation of the mobility system takes place. Here, the mobility simulation as well as the simulation 

and evaluation of the different travel modes is carried out. Subsequently, the analysis takes place in 

the next block. Here the target variables CO2eq emissions, costs as well as the energy demand are to 

be analyzed. The fourth block describes the optimization loop, that reconfigures the simulation based 

on the results. The optimal parameter settings with regard to the defined target criteria are sought. In 

the last block the results are shown and visualized. 
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Figure 16:  Overview of the method 

 Structure of the methodical approach 

The simulation is divided in the following steps. As first step, the agent-based mobility simulation is 

performed. Here the dynamic mobility behavior of the considered region is simulated and evaluated. 

This is described in detail in chapter 5. In the next step, the different travel modes are evaluated 

regarding their simulated mobility patterns. For private owned and shared cars, a longitudinal power-

train simulation is performed, which is described in chapter 6. In addition, further travel modes are 

modeled and analyzed. Here the energy demand calculation is performed. The holistic mobility system 

is evaluated then regarding sustainability criteria. The enhanced LCA approach, developed for this 

purpose is described in chapter 7. Additionally, the costs from the customer’s perspective are calcu-

lated. The cost models are described in chapter 8. Furthermore, the method is extended by an opti-

mizer. Here an optimization of the holistically mobility system can be performed. The optimization 

method is described in chapter 9. After developing the method, a sensitivity analysis is performed to 

analyze the influence of different parameters of the mobility systems in Chapter 10. In the next step 

the method is applied on the region of Berlin. Two optimization scenarios are performed. The results 

are shown in chapter 11. To quantify the influence of different measures a comparison analysis is 

performed, in which a referenced scenario is build and compared with different future scenarios. In 

chapter 12 the critical discussion of this new methodological approach is described.   
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5 Agent-based modeling and mobility simulation 

In this chapter the use of agent-based modeling as well as the integration in the whole method is 

presented. In the first step the generation of input data for the mobility simulation including the net-

work, facilities and plan for agents is described. In addition, a method for the estimation of the needed 

infrastructure as well as the evaluation of the mobility system is shown. Subsequently, each step of the 

process plan for modeling the mobility system in MATSim is run through. This is done using the 

Berlin region as an example. The Berlin region is particularly well suited, since a good publicly acces-

sible data basis is available and thus the results can be better plausibilized and validated. For this 

purpose, input data for the modeling of the agents including their plans, the different mobility forms 

as well as region data for Berlin are researched. Finally, exemplary mobility simulations are carried out 

with the generated region.  

 Generation of input data for the mobility simulation 

In the following chapters the generation of needed input data for the mobility simulation in MATSim 

is described. These include the network and facilities of the region as well as the daily travel- and 

activity-plans of the synthetic agents. Additionally, the evaluation of the mobility simulation results is 

described. The methodological approach is described step by step and exemplary applied on the region 

of Berlin. Nevertheless, the aim of this work is to derive a generally applicable method that can be 

applied to any region. For this purpose, the method is deliberately designed in a modular way. In the 

following the single aspects of the methodological approach are described. 

5.1.1 Generation of the network 

The network in MATSim describes the infrastructure of the considered region including roads for 

cars, public transport or also pedestrians, facilities and charging infrastructure such as gas stations or 

charging stations for battery electric vehicles. For the modeling of the network OpenStreetMap (OSM) 

data is used here. This data can be extracted for example from https://extract.bbbike.org/, 

https://planet.openstreetmap.org/ or https://download.geofabrik.de/. In the next step the raw OSM 

data needs to be converted into a MATSim readable format, e.g. by MATSim internal methods. The 

conversion includes cutting the focus area, selection of needed road types and assigning of MATSim 

attributes such as link speed and length with road specific defaults. MATSim also expects coordinates 

to be transformed into an Euclidean coordinate system with meter as unit to calculate distances. In 

the next step the network is cleaned to remove unconnected parts where agents might get stuck. For 

a detailed description of the network class please refer to the [MATSim Javadoc 2022]. 

https://extract.bbbike.org/
https://planet.openstreetmap.org/
https://download.geofabrik.de/
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5.1.2 Generation of the facilities 

Activity facilities in MATSim describe the locations of performed agent activities such as homes, work 

spaces, leisure or errand places on the network. Facility data can also be extracted from OSM data. As 

there is no MATSim internal method available, custom methods are developed here. In the first step 

the raw OSM data is searched for all buildings. For all buildings the attributes and coordinates from 

the corresponding nodes are extracted. Additionally, a coordinate transformation takes place so that 

the coordinates of the buildings match those of the network. Then the facilities are clustered into the 

categories home, work, errand and leisure if one of the keywords shown in Table 1 is found in the 

building’s OSM data attributes.  

Table 1:  Attributes for clustering buildings 

Home buildings "apartments", "bungalow", "cabin", "detached", "dormitory", "farm", 

"ger", "hotel", "house", "houseboat", "residential", “semide-

tached_house", "static_caravan", "terrace", "hut", "shed", "bunker", 

"building" 

 

Work buildings "commercial", "industrial", "kiosk", "office", "warehouse", "civic", 

"fire_station", "government", "hospital", "public_buildings", "public", 

"university", "barn", "cowshed", "farm_auxiliary", "greenhouse", "sty", 

"hanger", "digester", "service", "transformer_tower", "water_tower", 

"construction", "retail", "supermarket", "bakehouse", "kindergarten", 

"school”, "library", "museum", "theatre", "cinema", "restaurant" 

 

Errand buildings "retail", "supermarket", "bakehouse", "kindergarten", "school", "toilets", 

"mall" 

 

Leisure buildings "cathedral", "chapel", "church", "mosque", "religious", "shrine", "syna-

gogue", "temple", "conservatory", "stable", "grandstand", "pavilion", 

"riding_hall", "sports_hall", "stadium", "bridge", "ruins", "library", "mu-

seum", "theatre", "cinema", "restaurant" 

 

 

Here it is important to distinguish that for certain agents a place can be work. For example, a bakery, 

if an agent is a baker, this agent can go to work, whereas the other agents go there to shop. When 
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generating the activity plans and assigning the locations, this needs to be considered. In this thesis the 

network and facilities are generated for the region of Berlin. In Figure 17 the raw OSM Map is shown 

and is converted into a MATSim readable format. 

 

Figure 17:  OSM raw data of Berlin extracted from https://extract.bbbike.org/ 

In Figure 18 the converted map is shown. Here, the roads of the considered region as well as the 

different facilities can be seen. 

 

Figure 18:  Network, Facilities and Infrastructure of Berlin and surroundings 

https://extract.bbbike.org/
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5.1.3 Generation of additional infrastructure 

The infrastructure data, such as charging stations and gas stations can also be extracted from the OSM 

data similar to the facilities, but the quality of results depends on the considered region. For European 

regions the charging infrastructure coverage is high, whereas other regions such as the USA have lower 

coverages. Here it is possible to use other data sources, such as Google. The additional data can then 

be added here to a complete infrastructure map. In the core MATSim software, ICEVs are considered 

as default cars. Therefore, battery electric vehicles including their state of charge of the battery and 

subsequently charging events are not considered in the mobility simulation. However the goal of this 

thesis is to optimize holistic mobility systems and electrified mobility is one way to achieve goals in 

terms of sustainable criteria. Thus a simplified approach for estimating the charging infrastructure is 

developed to calculate the impact of the needed charging infrastructure in dependence of the consid-

ered powertrain portfolio and enable a holistic evaluation. In addition, the simplified approach helps 

to reduce computation time and enables the analysis of various scenarios with different powertrain 

portfolios. Here the charging infrastructure has no effect on the simulation and is not taken into 

account. Since no charging events are simulated, the location and density of charging stations, for 

example, is irrelevant. In reality, there are certainly influences, e.g. on the installation costs. However, 

the goal of the simplified method is to estimate the impact the needed infrastructure has on the mo-

bility system in terms of CO2eq emissions and costs. This approach is described in the following. 

Calculation of necessary charging infrastructure 

The minimum necessary number of charging stations is calculated in dependence of the needed energy 

demand for mobility per day as well as the average provided energy by the charging stations.  

𝑁𝑚𝑖𝑛 = 𝐸𝑛𝑒𝑒𝑑𝑒𝑑/𝐸𝑎𝑣𝑔,𝑐ℎ𝑎𝑟𝑔𝑆𝑡                                              (eq. 10) 

- 𝑁𝑚𝑖𝑛: Minimum needed number of charging stations 

- 𝐸𝑛𝑒𝑒𝑑𝑒𝑑: Needed energy demand for mobility per day 

- 𝐸𝑎𝑣𝑔,𝑐ℎ𝑎𝑟𝑔𝑆𝑡: Average provided energy by a charging station 

To estimate the needed energy demand per day the driving profile of each agent as well as the con-

sumption of the used vehicles is needed. The driving profile from each individual agent is a result 

from the mobility simulation including driven distances and mean velocity on a daily basis over the 

year. To calculate the consumptions, an internally developed longitudinal dynamic simulation is used 

to design the vehicles. Here each agent is assigned a vehicle based on statistical data describing the 

current vehicle portfolio. This simulation is described in chapter 6. For the calculation of the minimum 

necessary number of charging stations it is important to know the share of agents charging at home 

as well as the share of agents charging publicly. In [Sperka 2022] it is assumed that today around 90% 

of electric charging events take place at home and around 10% of electric charging events take place 

at publicly available charging stations. Here the electric vehicles include BEV and PHEV. For the 
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future it is estimated that around 70% of electric charging events take place at home and 30% of 

electric charging events take place at public available charging stations. Since in this work new scenar-

ios in the future are analyzed, for the calculation of the necessary charging station, it is assumed that 

70% of electric vehicle users charge at home and 30% charge at public available charging stations. The 

needed energy demand for mobility per day is calculated with the following equation: 

𝐸𝑛𝑒𝑒𝑑𝑒𝑑 = 𝑠ℎ𝑎𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐 ∗ 𝐸𝑑𝑎𝑦,𝑡𝑜𝑡𝑎𝑙                                               (eq. 11) 

- 𝐸𝑛𝑒𝑒𝑑𝑒𝑑: Needed energy demand for mobility per day 

- 𝑠ℎ𝑎𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐: Share of agents charging at public chargers 

- 𝐸𝑑𝑎𝑦,𝑡𝑜𝑡𝑎𝑙 : Total energy demand per day 

In the next step the average provided energy by the charging stations needs to be calculated. The 

average provided energy depends on the utilization rate of the charging station describing how long 

the charging station is used over the day as well as the power output of the charging station. In [Sperka 

2022] a utilization rate of 0.9h up to 2h for a day for slow chargers below 22kW power output is stated. 

For fast chargers a utilization rate of 1.5h up to 4.22h is given. In this work the utilization rate coming 

from the expectation of the charging industry is used. The expected values lie at 1.72h for slow 

chargers and 4.22h for fast chargers [Sperka 2022]. Furthermore, in [Sperka 2022] it is assumed that 

57% of publicly available chargers are slow chargers with an average power output of 7.7 kW and 43% 

are fast chargers with an average power output of 130 kW. The same assumption is also made in this 

work. The average provided energy by the charging stations can be calculated with the following equa-

tion. With the assumed values an average energy output of 88 kWh per charger per day is calculated: 

𝐸𝑎𝑣𝑔,𝑐ℎ𝑆𝑡 = 𝑠ℎ𝑎𝑟𝑒𝑠𝑙𝑜𝑤 ∗ 𝑢𝑡𝑖𝑙𝑠𝑙𝑜𝑤 ∗ 𝑃𝑠𝑙𝑜𝑤 + 𝑠ℎ𝑎𝑟𝑒𝑓𝑎𝑠𝑡 ∗ 𝑢𝑡𝑖𝑙𝑓𝑎𝑠𝑡 ∗ 𝑃𝑓𝑎𝑠𝑡                (eq. 12) 

- 𝐸𝑎𝑣𝑔,𝑐ℎ𝑎𝑟𝑔𝑆𝑡: Average provided energy by a charging station 

- 𝑠ℎ𝑎𝑟𝑒𝑠𝑙𝑜𝑤,𝑓𝑎𝑠𝑡: Share of slow/fast chargers 

- 𝑢𝑡𝑖𝑙𝑠𝑙𝑜𝑤,𝑓𝑎𝑠𝑡: Utilization rate of slow/fast chargers 

- 𝑃𝑠𝑙𝑜𝑤,𝑓𝑎𝑠𝑡: Power output of average slow/fast chargers 

In the following example the minimum necessary number of charging stations for Berlin with an 

assumed 100% BEV scenario is calculated. In Berlin there are around 1.2 million vehicles registered 

[Steinmeyer et al. 2017]. It is assumed that each agent uses a BEV. The vehicle types and segments are 

assumed equal to the current distributions that are described in [Kraftfahrt-Bundesamt 2022]. With 

the assumption of 30% of the agents charging at publicly available charging stations, this leads to a 

needed energy demand of around 3.2 GWh per day. With the calculated average energy output of 88 

kWh per charger per day, this leads to around 36500 necessary publicly available charging stations. 

Overall, with this approach the minimum necessary number of charging stations in dependence of the 

analyzed powertrain portfolio and calculated energy demand can be calculated. 
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5.1.4 Generation of a synthetic population 

After the region itself including the network, facilities and infrastructure is determined, the regional 

population can be synthetized. In this work, statistical distributions of the considered attributes are 

derived from publicly available data, such as OSM data, census data, and mobility surveys. This data 

is used in an automated process to generate the population and plans. For example, the distribution 

of the type of mobility used and the age distribution are considered here. The following data of the 

considered region is collected to model the agents. For each attribute, a statistical distribution is de-

rived. The attributes for the region of Berlin are shown in the appendix A.2:  

• Number of inhabitants 

• Employment status 

• Gender, age and income 

• Number of children 

• Activity plans of individuals including activity chains and times 

• Driven distances 

• Modal split for calibration and validation of mobility simulation 

• Share of homeowners 

• Vehicle requirements such as range, costs, maximal velocity or vehicle type 

Generation of activity plans for each agent 

In the following the process for the full generation of activity plans of each synthetic agent is described 

and the data each agent subsequently contains is shown in Figure 19. Here the overview of the stored 

data of each synthetic agent is shown. Each agent stores information about the following attributes 

such as employment status, gender, age, income, number of children as well as home ownership. The 

employment status has an effect on the agent, if he drives to work. The number of children has an 

effect on the probability if the agent needs to drive the children to the school or kindergarten. Fur-

thermore, for the generation of activity plans data with regard to the number of activities, the per-

formed activity types, starting locations, destinations, which are also defined by the activity types, 

starting and end times, driven distances as well as used travel mode is stored. This data is assigned to 

each agent, so that the statistical distributions and assumption fit. 



44  

 

Figure 19:  Data model of synthetic agents 

The generated facilities indicate the network coordinates, at which agents perform certain activities 

such as living or working. In addition, the typical distances between two activities are given by the 

distributions, derived from the collected data of the region. With this information and the agents’ 

activity chains, the individual best fitting distribution of visited locations can be determined. To dis-

tribute the agents home locations, the capacity of the facilities is needed to know how many agents fit 

in one home facility. However, for the estimation of the capacity the z-coordinate of the facilities is 

needed, but these are missing in the OSM data. In order to ensure a realistic distribution of agents, 

the population density for the region districts are used. Based on the population density the agents are 

assigned home locations. Each agent starts at his respective home. In reality, there are also people 

who do not start the day at home since for example they can work in a nightshift. To reduce com-

plexity, they are neglected here. Subsequently further activities are assigned to each agent depending 

on probabilities and random functions, which define if this activity is executed, as well as the statistical 

distributions, as shown in Figure 20 for the region of Berlin. For example, an employed agent will 

drive to work on work days and an agent with children has a higher probability to drive children to 

their schools. The number of specific activity trips is limited by the statistical distribution. 
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Figure 20:  Statistical distribution of activity location over all trips in Berlin [Gerike et al. 2019] 

The number of activities in the activity chain are based on statistical distributions, as shown in Figure 

21. Here it can be seen that people under 15 years perform in average 3 trips per day. People between 

the age of 15 and 65 perform in average 3.6 trips per day and people over 65 years perform in average 

3.3 trips per day [Gerike et al. 2019]. 

 

Figure 21:  Average number of trips in dependence of the age [Gerike et al. 2019] 

The start and end times of the activities are set with a random tolerance time window within defined 

boundaries. The time frames are detailed in the next steps. Agents start their day depending on the 

employment status in the morning and usually come back in the evening. The activity plan is based 

on a modular method, so it is possible to add activities.  

 

Work
21%

Errand
28%Leisure

28%

Education
17%

Other
6%

0

0.5

1

1.5

2

2.5

3

3.5

4

0-15 15-65 >65

A
ve

ra
g
e 

N
u
m

b
er

 o
f 

T
ri

p
s

Age



46  

This procedure leads to a full activity chain for each agent, which for example looks like in the follow-

ing for an employed agent, as shown in Figure 22:  

• Agent departs from home (H) and drives to work location (W) at 8 am. 

• Agent works for 8 hours and leaves work (W) to go shopping (E) for 1 hour. 

• After shopping (E) the agent goes to the gym (L) for 1 hour. 

• After the gym (L) the agent drives back home (H) and ends the day. 

• Therefore, the activity chain for this agent looks like this: H → W → E → L → H 

• It is assumed that each agent returns home at the end of the day. 

• There can also be agents, who do single trips like H → W → H and agents, who do not 

leave the house H, due to home office for example. 

• The same is done for students and the rest of the population. For the rest of the population 

it is assumed, that the probability that these agents stay at home is higher. 

 

Figure 22:  Full activity chain for one exemplary agent 
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Finding fitting locations to perform activities 

In the next step, fitting locations for the activity chain of each agent need to be found. Here the 

building type must fit the activity of the activity chain of the considered agent and the resulting driven 

distances must correspond to the average of the driven distances derived from the statistical data. To 

calculate the driven distances the number of activities is considered. Here the return to the home is 

also considered. In the first step the daily driven distance of each agent is calculated based on the 

statistical distribution. Then the average daily driven distances per trip are calculated for each agent. 

In Figure 23 the average distances per activity type for the region of Berlin is shown. 

 

Figure 23:  Average driven distances per activity type [Gerike et al. 2019] 

Now it is known where the agent lives and how long each trip is in average. Buildings, which fit the 

activity of the activity chain of each agent can be assigned with premise that these buildings lay in the 

average driven distance. Different combinations of possible destinations are analyzed and the dis-

tances are calculated. The distances can be calculated with the coordinates data coming from OSM. 

Subsequently the best combination of building locations, which fit the activity chain and the daily 

driven distances derived from statistical data is assigned to the agent. In Figure 23 the approach is 

shown by an example. Here an exemplary home location of one agent and the trip distance the agent 

has to drive to reach the work location is shown. The circle represents the coverage of the trip distance, 

where a work location can lie. In the next step different work locations are analyzed and the distances 

are calculated and compared to the coverage. Here it can be seen that work location 2 fits the best and 

is therefore assigned as the location for the activity in the activity chain. 
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Figure 24:  Assigning locations to the activities of the activity chain 

Assignment of initial transport modes 

Agents choose their transport modes based on the scoring and replanning during the mobility simu-

lation. However, an initial transport mode needs to be assigned to the single trips of each agent. For 

a sensible initial transport mode distribution, the following approach is chosen. A fitting transport 

mode is chosen based on driven distance and a random probability of the agent. The longer the aver-

age distance of the agent is, the higher the probability, that this agent will choose a car or public 

transport. On the other side, the shorter the average distance is the higher the probability that this 

agent will choose to walk or ride a bicycle. 

Calculation of travel and corresponding end times 

For the activity plans of the agents, the desired starting and end time is needed. As described before, 

the starting time lies in a defined time slot depending on the employment status of the agent as well 

as a random function. Here it is assumed that most agents start their day at 7 am with a standard 

deviation of 2h, as shown in Figure 25. The travel time is calculated in dependence of the driving 

distance and the average mean velocity of the assigned travel modes. The assumed values are shown 

in appendix A.3. With this approach, an estimated arriving time can be calculated, so that during the 

simulation the agents will realistically reach their destination in the given time. The end times of ac-

tivities are the sum of the starting times as well as the corresponding travel times. 



5 Agent-based modeling and mobility simulation 49 

 

Figure 25:  Assumed distribution of starting times 

5.1.5 Public transport in MATSim 

Public transport summarizes schedule-based traffic modes that move in separate or in the car network, 

such as subway, train or bus. Public transport can be modeled in different ways in MATSim. In terms 

of computation time, the fastest approach is to use the so-called teleport mode and define an average 

speed for the public transport from point to point. This approach neglects access and egress to stations 

and connectivity between lines with the typical stellar structure. The more detailed approach is to 

create own networks, transit schedules and transit vehicles to model public transport and its infra-

structure. To create these by MATSim internal methods the GTFS data for the region, as well as the 

OSM file of the region for the network is needed. The General Transit Feed Specification (GTFS) 

defines a digital interchange format for public transit schedules and associated geographic information 

such as stop locations. In this thesis, a combination of both approaches is used. The MATSim internal 

methods are used to create the public transport stations on the network and transit vehicles. Here 

agents walk to the stations to access the public transport. When entering the public transport, the 

actual movement is a teleport mode to reduce computation times. In appendix A.1 the event se-

quences of public transport are shown. In this thesis public transport is considered as a teleport mode. 

5.1.6 Modeling of a realistic market behavior 

In order to incorporate customer choices in the evaluation of CO2eq emissions and derive an annual 

CO2eq development for future scenarios that is as realistic as possible, a private vehicle market model 

is additionally implemented in the holistic methodological approach. Without considering the custom-

ers market behavior, the initially assigned vehicles are used for the entire duration considered. Real 

market behavior as understood here means, that vehicles are exchanged after a certain time and with 

a certain probability, or travel modes are changed. For this purpose, the vehicle age of the used vehicles 
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is modeled in the first step. Statistical data can be used to model the vehicle age of the respective 

region under consideration. For Germany, for example, the data from the KBA [Kraftfahrt-Bun-

desamt 2021] are available. Based on this statistical data, vehicle ages can be assigned to the vehicles. 

Subsequently, the mobility system is evaluated annually. Here, the agents have the opportunity to 

decide annually for new vehicles or new travel modes. The decision tree is shown in Figure 26. Here, 

the following steps are considered. First, it is checked if the agent owns a vehicle at the time under 

consideration. If the agent owns a vehicle, a probability for either keeping or selling the vehicle is 

calculated depending on a random seed as well as the current vehicle age and the usage time of this 

vehicle. If the agent keeps his vehicle, it is used for another year. After another year, the probability is 

recalculated. With increasing usage time, vehicle age and income of the agent, the probability that the 

agent sells or disposes his vehicle increases.  

If the agent sells or disposes his vehicle, two paths are formed. One is from the vehicle's perspective. 

The older the vehicle is, the more likely it is disposed. Otherwise, the vehicle moves to the used 

market. Here it is assumed that at the beginning of the simulation the used market is empty and 

includes only the considered region to avoid allocation. The longer the vehicle is on the used market 

and thus gets older, the more likely it is to be disposed. Second, from the agent's point of view, it is 

checked, if the agent needs a vehicle. The greater the distance traveled per trip by the agent, the more 

likely that he needs a vehicle. Otherwise, the agent has the option to change its mobility mode, such 

as to public transport. If the agent needs a vehicle, he has the option to buy a new vehicle or one from 

the used market. Here, a probability is determined as a function of income. The higher the agent's 

income, the more likely he is to buy a new vehicle. Otherwise, a suitable vehicle is fetched from the 

used market. For all newly added vehicles, whether new or used, a vehicle is assigned analogous to the 

vehicle assignment shown in chapter 6.3. If there is no suitable vehicle on the used market, a new 

vehicle is assigned. This process is performed annually for each agent. The realistic market behavior 

can be enhanced by integrating market predictions about new car sales. These predictions are often 

made for bigger market segments and regions and can be used to derive predictions for the considered 

smaller region. However, deriving predictions for smaller regions creates a big uncertainty and leads 

to allocation, which should be avoided, as described in chapter 2.3. This is not implemented in this 

thesis. 
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Figure 26:  Yearly decision tree of an agent 

In the next step, the number of new vehicle registrations is examined. From [Kraftfahrt-Bundesamt 

2020], historical data from 2011 up to 2020 are known, as shown in Figure 27. From 2021, the number 

of new registrations is shown based on the simulation. Overall, it can be seen that the historical data 

is about 80,000 newly registered passenger cars in Berlin each year. The drop from 2020 onwards can 

be explained by the pandemic situation. The simulated results are in a similar range with fluctuations 

from 55000 to 106000 newly registered passenger cars. This is because agents keep younger vehicles 

with a higher probability and replace older vehicles with a higher probability. This then implies that 

either younger vehicles or older vehicles predominate in the vehicle portfolio at these points in time. 
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Overall, it can be seen that the results are within a realistic range and thus a realistic market behavior 

is sufficiently represented. 

 

Figure 27:  New Car Registration in Berlin based on [Kraftfahrt-Bundesamt 2020] 

 Evaluation of the mobility behavior 

The results of the mobility simulation in MATSim are saved in a so called events file, that contains all 

the events that happen during the simulation. These events describe each trip takeoff of the agents. 

To analyze the event file of MATSim a method is derived with which any event file from the MATSim 

simulation can be evaluated and translated into trip tables. This enables a modular approach to easily 

change the considered region and scenario. Each event is then assigned to the corresponding agent. 

The distances can be calculated with lengths, which are stored in the links in the network. 

For the translation of the events, sequences of the considered travel modes need to be defined. In 

general each travel mode can be analyzed as long as the event sequence is described. In the following 

the typical MATSim travel modes car, public transport and teleported travel modes are described. For 

private owned vehicles the event sequences for the agent start with the end of the current activity, for 

example leaving its home. Then the agent enters his vehicle. In the next event the vehicle enters the 

corresponding link. While driving, the vehicle leaves the current link and enters the next link until the 

destination is reached. Another considered travel mode is the public transport. Here the agent ends 

his current activity and departs from his current location. Then the agent walks to the public transport 

stop. When arrived, the agent waits for the public transport. Meanwhile the public transport arrives at 

the stop. The agent interacts with the public transport and enters the vehicle. Afterwards the vehicle 

departs and drives to the next stop. When the agent reaches his destination, the agent leaves the vehicle 
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and walks to the activity location to perform his activity. Meanwhile the public transport departs for 

the next stop. If the events of a certain travel mode are not defined, it is possible to model them as 

teleported travel modes. This is a simplified approach, where the travel mode is mostly defined by its 

average speed and beeline distance factor, which estimates the actually traveled distances. In the fol-

lowing the event sequence for teleported modes is described. At the beginning the agent ends his 

current activity, departs and disappears from the network. Then the travel time is estimated with the 

average speed of the travel mode as well as the distance from the starting location to the destination. 

As soon as the travel time has been reached, the agent will reappear at his destination and start his 

activity. These travel modes and further travel modes such as demand responsive transport (DRT) for 

mobility on demand concepts are described in detail in appendix A.1. 

The generated trip tables represent the mobility behavior of the considered region. These trip tables 

are used as an input for the evaluation of the mobility system. Each agent is analyzed and their mobility 

behavior is holistically evaluated regarding CO2eq emissions, costs and energy demand. The trip table 

contains the following data for each agent: 

• Agent Id,  

• Trip number, distance and time  

• Mean velocity  

• Transport mode and total waiting time for public transport for the day 

• Vehicle Id and type 

• Starting location and purpose of trip  

• As well as following attributes of the agents:  

o target group, employment status, age, gender, income, homeowner 

 

Calculation of the yearly driven distances of the agents 

In MATSim the mobility simulation calculates the daily driven distances of each agent. In [Syré et al. 

2020] it is assumed that one MATSim day equals a regular work day and that 0.82 MATSim days equal 

a weekend day. This value is derived from mobility data. This assumption is also used here to calculate 

the yearly driven distances for each agent for passenger cars. For all the other travel modes it is as-

sumed that one MATSim day is representative for all days in the week. 

  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑦𝑒𝑎𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑎𝑖𝑙𝑦 ∗ (5 + 2 ∗ 0.82) 𝑑𝑎𝑦𝑠 ∗ 52 𝑤𝑒𝑒𝑘𝑠          (eq. 13) 

- 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑦𝑒𝑎𝑟: Extrapolated yearly driven distance 

- 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑎𝑦: Daily driven distance in MATSim 
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 Critical discussion on the mobility simulation approach 

In this work, the goal is to build models with which the mobility system of a given region can be 

analyzed holistically and new solution approaches can be implemented, analyzed and optimized. For 

the mobility simulation within the developed method, it is important that the results reach a sufficient 

quality, are reproducible and that the computation time can be reduced to enable the simulation of 

many scenarios and optimization. 

In this thesis MATSim is used as a tool for the mobility simulation, since it represents the state of the 

art in mobility simulations and fulfills the stated requirements. The mobility simulation in MATSim is 

based on statistical data obtained for individual regions or entire countries. Here it is assumed that 

based on this data representative statements on mobility behavior in the region under consideration 

can be made. As described in the beginning, the aim of the work is not to realize a 1:1 representation, 

but to model a realistic representative mobility system of the considered region according to the sta-

tistical distributions. With the help of open, statistical data, the population and its mobility behavior 

can be modeled with sufficient accuracy. By using more detailed simulation approaches such as micro 

simulations, the overall level of detail can be increased. However, the additional knowledge gained is 

not commensurate with the huge additional effort required. Furthermore, it is assumed that prefer-

ences as well as decision criteria for a travel mode are very similar for nearby regions. For example, if 

certain data are not available for the Berlin region, these data can be substituted with data for Ger-

many. The region itself can also be modeled sufficiently accurately with, for example, OSM data in 

MATSim. MATSim enables the modeling of various travel modes as well as their usage. Based on this, 

comprehensible decisions of the agents can be represented and realistic modal splits can be derived. 

Subsequently, it becomes possible to make well-founded statements and perform analyses. In addition, 

the simulations are reproducible by using the same random seed and the computation time can be 

reduced by for example downsizing the sample size of the considered population. This and further 

approaches to reduce computation time is discussed in detail in chapter 9. Overall, it can be seen that 

the requirements are met. Thus it can be said, that with open data realistic scenarios can be created 

and sufficient and representative statements can be made. In the next step the different travel modes 

used by the agents need to be designed and evaluated.  
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6 Transport mode simulation 

In this chapter, simulation and evaluation approaches for the different transport modes are described. 

Since private owned vehicles have a high impact in today’s mobility behavior and most policies such 

as taxes on emissions address private owned mobility, the focus in this work lies on private owned 

vehicles. Therefore, cars are analyzed with a detailed powertrain simulation. The fundamentals of 

powertrain design including the simulation approaches, vehicle model, powertrain model, scaling of 

different components as well as the deriving of forecast data is described in chapter 2.2. Here the 

powertrain simulation is used to design a vehicle portfolio in dependence of predefined requirement 

classes. In addition, the key-value based approach and evaluation of further travel modes for a holistic 

evaluation of the mobility system is shown. In the last step the methodological approach of the as-

signment of vehicles to each agent is described. 

 Design of the vehicle portfolio 

As described before, the simulation environment developed by [Weiß 2018] including the methods by 

[Schneider 2022] are used here as a basis for the powertrain simulation and extended with regard to 

the objective of this thesis, such as calculating the CO2eq emissions as well as costs, which are de-

scribed in the next chapters. The mobility simulation indicates the usage of the different mobility 

forms and their assignment to the individual agents. In the mobility simulation itself, simplified travel 

mode models are used. For example, the default vehicles are a medium sized 4 seaters. Accordingly, 

the vehicle proportions are known, which are needed for the travel flow simulation. In order to eval-

uate the different travel modes in more detail, a post process simulation with the described powertrain 

simulation framework is performed. 

An overriding goal of the holistic method is to enable optimization of the holistic mobility system. 

Here, the computation time plays a decisive role. An integration of the detailed design and evaluation 

of the travel modes leads to the fact that the entire chain of simulation methods must be run through 

when considering different scenarios and thus the computation time increases immensely. Separating 

the methods into individual modules has the advantage that calculations only have to be performed 

when changes occur. For example, if the powertrain portfolio is to be optimized for a region under 

consideration, the mobility behavior can be kept constant in this case, i.e. the mobility simulation only 

has to be run once, and within the overall methodology only the powertrain simulation is called up. It 

is also possible to temporarily store results and load them at a suitable point. For example, the power-

train portfolio can be designed and saved so that the powertrain simulation does not need to be called 

again within the overall methodology. For these reasons, the detailed design and evaluation of the 

mobility modes within the mobility simulation is not integrated, but deliberately decoupled to allow a 
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modular design and parallelization of the independent calculations in the holistic method approach to 

reduce computation time. In terms of energy demand, the approach neglects the simulated driving 

profiles of the vehicles. 

In the next step the approach for the design and evaluation of the considered travel modes is de-

scribed. The powertrain simulation consists of three steps. In the first step the vehicle configuration 

is read. Values such as production year, vehicle type, powertrain type, and vehicles parameterization 

are defined here. The complete vehicle parameter list is shown in Table 2. Depending on the config-

uration, the different powertrain component maps are taken into account and the respective compo-

nents are scaled. Then the longitudinal dynamics simulation is performed and e.g. the consumptions 

are calculated. Here it is possible to store the calculated vehicles in a "vehicle portfolio". These calcu-

lations can be performed in a pre-process in order to generate and store a vehicle portfolio. The 

optimizer can then select various vehicles from the vehicle portfolio in the optimization process and 

assign them to the agents, who use a car as the travel mode, with the aim of optimizing the mobility 

system regarding the defined target criteria. Here it is assumed that agents who own a vehicle also use 

their vehicles. Vehicles that are possibly owned but not used are neglected here. 

The powertrain simulation incorporates scalable physical models of the different powertrain compo-

nents. This makes it possible to calculate and evaluate existing vehicles and to design new vehicle 

concepts. In addition, the technology database from [Schneider 2022] described before, is integrated, 

with which it is possible to design and analyze future vehicle concepts. To represent a realistic market, 

72 vehicles are designed, analyzed and temporarily stored in a vehicle portfolio. The structure of the 

vehicle portfolio is shown in Figure 28. The vehicle portfolio is divided into the following points: 

• Powertrain types: Internal Combustion Engine Vehicle (ICEV), Plug-In Hybrid Electric Ve-

hicle (PHEV), Battery Electric Vehicle (BEV), and Fuel Cell Electric Vehicle (FCEV) 

• Vehicle segments: Small (A00 and A0), Compact (A and B), Large (C and D).  

• Vehicle types: Flat and SUV  

• Requirement classes: Low, Medium and High in terms of electric range, max. speed and ac-

celeration times. A detailed description of the requirement classes can be found in the Ap-

pendix A.5.  



6 Transport mode simulation 57 

 

Figure 28:  Overview of the vehicle portfolio 

With the help of the described portfolio, vehicles are designed for different use cases so that a realistic 

vehicle fleet can be modeled based on statistical data. This approach leads to a suited compromise 

between considering the effects of different vehicles in the market and the computational effort during 

the runtime. Each vehicle is defined by a parameter set. This parameter set is shown in appendix A.6. 

For an initial parameterization, reference vehicles fitting to the categorized vehicles are researched and 

assigned. For the compact, flat ICEV a Golf 8 is a representative vehicle. Here the values from the 

Golf 8 for the shown parameters are researched and assigned to the categorized vehicles. During the 

simulation, the parameters change in accordance with the requirements and the derived scaled power-

train components fulfilling these requirements. Once the vehicle portfolio is derived, the CO2eq emis-

sions, costs and energy demand in dependence of the considered scenario can be calculated. However, 

in terms of energy demand, the approach neglects the simulated mobility profiles of the vehicles and 

uses driving cycles such as the WLTP. This approach is described in detail in the following chapters. 
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6.1.1 Fit for purpose powertrain components 

Once the initial configuration of the vehicles is done, the scaling of the powertrain components starts 

with regard to defined requirements. For each powertrain type and vehicle segment as well as vehicle 

type, the following requirements are considered: 

• The maximum velocity,  

• the maximum electrical velocity of PHEV,  

• the acceleration time and  

• emission free range 

In Appendix A.5, the requirements are described in detail. To fulfill these requirements, the powertrain 

components are scaled in an iterative process. Here the changing masses of the newly scaled power-

train components are considered in the vehicle model and subsequently in the simulation as well. The 

system here is overdetermined, leading to the possibility of overreaching certain requirements. For 

example, the minimal maximum velocity can be overreached to achieve the required maximal acceler-

ation time. While some components are scaled continuously, the battery for example is built from 

single cells and allows only discrete combinations also regarding the voltage level. Abortion criteria 

ensure the iteration process to finish in case of oscillations or if no exact matches for the requirement 

is achieved. For the scaling of the powertrain components to fulfill the requirements, each vehicle in 

each category needs to be defined. From the configuration it is known what types of powertrain com-

ponents such as the battery type or e-motor type is used. In the following the rightsizing algorithm 

for the relevant powertrain components of the considered powertrain types is described.  

Battery Electric Vehicle 

For battery electric vehicles (BEV) the maximum velocity is achieved through the scaling of the axle 

transmission ratio, which is calculated with the equation below, whereas a safety factor of 5 km/h is 

considered to fulfill this requirement. For the e-motor power, the initial parameter settings are used: 

  𝑖𝑎𝑥𝑙𝑒 =
𝑛𝐸𝑀

(𝑣𝑚𝑎𝑥+5
𝑘𝑚
ℎ

)

3.6∗2∗𝜋∗𝑟𝑑𝑦𝑛
∗60

                                                                (eq. 14) 

- 𝑖𝑎𝑥𝑙𝑒: Axle transmission ratio 

- 𝑛𝐸𝑀: Maximum revolution speed 

- 𝑣𝑚𝑎𝑥 : Maximum velocity 

- 𝑟𝑑𝑦𝑛: Dynamic wheel radius 

Once the maximum velocity with newly scaled axle transmission ratio and the initial e-motor power 

is reached, the e-motor power is scaled to achieve the required acceleration time. This is an iterative 

process, in which the e-motor is scaled until the requirements are fulfilled. The battery power then 

needs to be scaled as well to provide the needed e-motor power. The range is achieved through battery 
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capacity. This is also an iterative process. In case of all wheel drive (AWD) the rear e-motor, which is 

considered to be the main e-motor in this simulation, is adjusted to achieve the required maximum 

velocity coming from continuous power. The front e-motor is adjusted to achieve the acceleration 

time. 

Fuel Cell Electric Vehicle 

For the e-drive of the fuel cell electric vehicles (FCEV) the same approach as for BEVs is used. The 

maximum velocity is achieved through the axle transmission ratio, which is calculated with equation 

14. For the e-motor power the initial parameter settings are used again. The acceleration time is 

achieved through the power of the e-motor in an iterative process. After fulfilling these requirements, 

the electric source system consisting of the fuel cell, DCDC converter as well as the battery needs to 

be adapted in dependence of the newly scaled e-motor. Here the following equations are used to scale 

the fuel cell system, whereas a safety factor of 2 kW is considered to fulfill this requirement: 

𝑃𝐹𝐶 = 𝑃𝐸𝑀,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠                                                             (eq. 15) 

𝑃𝐷𝐶𝐷𝐶 = 𝑃𝐹𝐶 + 2 𝑘𝑊                                                             (eq. 16) 

𝑃𝐵𝐴𝑇𝑇 =
𝑃𝐸𝑀,𝑚𝑒𝑐ℎ 

𝜂
+ 2 𝑘𝑊 − 𝑃𝐹𝐶                                                      (eq. 17) 

- 𝑃𝐹𝐶 : Power of fuel cell 

- 𝑃𝐸𝑀,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠: Continuous power of e-motor 

- 𝑃𝐸𝑀,𝑚𝑒𝑐ℎ: Power of e-motor 

- 𝑃𝐷𝐶𝐷𝐶 : Power of DCDC converter 

- 𝑃𝐵𝐴𝑇𝑇: Power of battery 

- 𝜂: Battery efficiency 

The required range is achieved through quantity of hydrogen, which is scaled in an iterative process. 

In case of AWD the rear e-motor, which is considered here the main e-motor, is adjusted to achieve 

the required maximum velocity coming from continuous power. The front e-motor is adjusted to 

achieve the acceleration time. For the battery power the adjusted equation 18 is used, considering the 

two e-motors: 

𝑃𝐵𝐴𝑇𝑇 =
𝑃𝐸𝑀,𝑚𝑒𝑐ℎ,1+𝑃𝐸𝑀,𝑚𝑒𝑐ℎ,2

𝜂
+ 2 𝑘𝑊 − 𝑃𝐹𝐶                                     (eq. 18) 

- 𝑃𝐸𝑀,𝑚𝑒𝑐ℎ,1: Power of e-motor 1 

- 𝑃𝐸𝑀,𝑚𝑒𝑐ℎ,2: Power of e-motor 2 
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Plug-In Hybrid Electric Vehicle 

The scaling algorithm for plug-in hybrid electric vehicles (PHEV) is described in the following. The 

axle transmission ratio is assumed to be constant and defined by the initial parameterization. The 

maximum velocity is achieved through the engine power in an iterative scaling process. The maximum 

electrical velocity is achieved through the e-motor in an iterative scaling process. With the engine 

defined from the maximum velocity, the acceleration time will also be achieved through the power of 

the e-motor in an iterative scaling process. This makes the system overdetermined and may cause one 

of the requirements to be exceeded. The emission free, electric range is achieved through the battery 

capacity in an iterative scaling process. In case of an AWD, a mechanic AWD is assumed and that the 

powertrain components are scaled the same as for a one-wheel drive. The power in the front axle is 

then defined by the engine power. The power in the rear axle is defined by the e-motor. 

Internal Combustion Engine Vehicle 

For internal combustion engine vehicles (ICEV) the scaling algorithm is described in the following. It 

is assumed that the axle transmission ratio is constant and defined by the initial parameterization. The 

maximum velocity is achieved through the engine power in an iterative scaling process. The accelera-

tion time is achieved through the power of the combustion engine as well. This makes the system 

overdetermined and may cause one of the requirements to be exceeded. Same as for the PHEV in 

case of an AWD it is assumed that the same process as for one wheel drive can be applied, whereby 

the power of the combustion engine is split on both axles. 

6.1.2 Charging behavior 

One characteristic feature of a PHEV is the possibility to drive purely electrically as well as purely with 

an internal combustion engine. Thus, the operating strategy of the PHEV has a major influence on 

the results. Due to the lower CO2eq emissions in production compared to the BEV and the theoreti-

cally possible low emissions in the use phase due to electric operation, there are theoretical CO2eq 

advantages for a PHEV. Therefore, it is particularly important here to define the recharging behavior 

precisely and to map it as realistically as possible. In this method, a distinction is made between optimal 

PHEV operation and realistic PHEV operation. In the optimal PHEV operation, the consumption 

values determined in the WLTP cycle are used. In the realistic PHEV operation, the procedure is as 

follows. Every agent with an electric vehicle is assigned a random SOC (state of charge) for the day. 

The distribution of the SOC is shown in Figure 29. It is assumed that the focus of the distribution is 

at 50% SOC. Depending on the assigned SOC, the daily driven distances as well as the consumption 

of the vehicle the actual electric driven distances and subsequently the realistic combined consumption 

of the PHEV can be calculated. This approach can be further enhanced but is sufficient in the context 

of this work. 



6 Transport mode simulation 61 

 

Figure 29:  Distribution of average SOC 

 Evaluation of further travel modes 

For the evaluation of further travel modes such as public transport, bicycles, walking or micro mobil-

ity, key-value based models are implemented. These models contain data regarding the maximum 

velocity, range, number of seats, trunk volume, CO2eq emissions in the production phase as well as 

use phase, costs per person kilometer and month, investment costs needed for the additional infra-

structure and the energy demand. These attributes are presented in Table 2. The required key-values 

are determined by means of a literature search. Subsequently the total CO2eq emissions, costs as well 

as energy demand in dependence of the considered scenario can be calculated. In Appendix A.4 the 

values for the considered additional travel modes are shown. 

Table 2:  Attributes of further travel modes 

Attributes Unit 

Max. Velocity km/h 

Range (electric / fossil) km 

Number of seats - 

Trunk volume l 

CO2eq emissions in the production phase kgCO2eq 

CO2eq emissions in the use phase kgCO2eq 

CO2eq emissions in total kgCO2eq 

Costs (per month and pkm) €/month and €/pkm 

Total costs € 

Investment costs for development of pt, 

charging infrastructure, … 

€/component 

Energy demand (electric / fossil) kWh/km 
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 Initial assignment of vehicles to agents 

The initial assignment of vehicles is based on statistical data and the attributes of the agents such as 

income. In the first step the base scenario is built deploying statistical data, accessed for example from 

the KBA (Kraftfahrtbundesamt) in the case of Germany [Kraftfahrt-Bundesamt 2022]. For the as-

signment of specific vehicles, the following assumptions are made. If the agent is driving a car, the 

agent is assigned a SUV, if the share of SUVs is not exceeded and the income of the agent is higher 

than 40.000 € per year. Otherwise, the agent is assigned a compact class vehicle, if the share of compact 

class vehicles is not exceeded and the income of the agents is higher than 20.000 € per year. If none 

of this is applicable the agent is assigned a small vehicle. This approach leads to a distribution of 

vehicles best fitting the statistical data and agent attributes. The decision tree of assigning vehicles is 

shown in Figure 30. 

 

Figure 30:  Decision tree of assigning vehicle types 

For the optimization it is assumed that the agents most likely take a similar vehicle they had in the 

base scenario with the changes coming from the optimizer such as a new powertrain. For example, 

the powertrain portfolio is optimized. Agent 1 is driving a SUV ICEV, which fulfills the requirements 

of the high requirement class in the base scenario. In the new scenario this agent is assigned a similar 

vehicle with a different and more CO2eq-, cost- or energy-efficient powertrain. Here the vehicles with 

the lowest emissions, costs or energy demand are picked from the pre-calculated vehicle portfolio 

which also fits this agent. In this example it could be a SUV BEV, which fulfills the requirements of 

the high requirement class and is then assigned to the agent. Alternatively, it is also possible to manu-

ally define the share of powertrain types in the powertrain portfolio of the region and to analyze 
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defined scenarios. In the next step the mobility system needs to be evaluated regarding ecological and 

economic criteria, which is described in the following chapters 7 and 8. 

 Analysis of the energy demand 

Energy demand for mobility is an important target variable in the mobility system when it comes to 

optimization. Since renewable energies will not be available in abundance in the foreseeable future, it 

is important to use them as efficiently as possible and to minimize the energy demand holistically. 

Therefore, the energy demand for mobility is examined and described in more detail below. 

The required energy demand for mobility is calculated using the determined driven distance from the 

mobility simulation as well as the determined consumptions of the different travel modes of each 

agent. The focus in this work lies on the energy demand for mobility. The energy demand is presented 

in kWh, where e.g. fossil fuel consumptions in liter are included and converted into kWh to achieve 

comparability. For electricity generation, losses during transport and charging are also taken into ac-

count. In the following formula the calculation of the total energy demand is shown: 

𝐸𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = ∑ ∑ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖,𝑗 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗
𝑁𝑡𝑟𝑖𝑝𝑠,𝑖

𝑗=1

𝑁𝑎𝑔𝑒𝑛𝑡𝑠

𝑖=1
                          (eq. 19) 

- 𝐸𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦: Total energy demand for the mobility of people 

- 𝑁𝑎𝑔𝑒𝑛𝑡𝑠: Number of considered agents 

- 𝑁𝑡𝑟𝑖𝑝𝑠,𝑖: Number of trips of considered agents 

- 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖,𝑗: Consumption of the used transport mode including losses in kWh/km 

- 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 : Driven distance of considered agents with the used transport mode 

The consumption is solely calculated in dependence of the used vehicle and powertrain type. How-

ever, the resulting emissions depend on the used energy carriers. The following energy carriers are 

considered in this work: 

• Gasoline and eGasoline produced with renewable energy 

• Diesel and eDiesel produced with renewable energy 

• CNG and eCNG produced with renewable energy 

• Biofuels 

• Hydrogen and eHydrogen produced with renewable energy 

• Electricity mixes for different regions such as Germany 

In the next step the analysis of the CO2eq emissions with the help of the derived enhanced LCA 

approach is described. 
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7 Enhanced LCA 

In chapter 2.3 the fundamentals as well the differentiation between attributional and consequential 

LCA is shown. Based on that, in this chapter the suitability of the standardized LCA is investigated 

regarding the holistic methodological approach. Subsequently, requirements for the LCA are derived. 

Here it is shown that the standard approach is not suitable. To fill the gaps, in the next step, an 

enhanced LCA is developed and described. 

 Requirements for the LCA 

LCA based on ISO 14040/14044 [ISO 14044 2006] is a standardized method, that gives clear guide-

lines to calculate the environmental impact of very different products or processes. This ensures for 

example the comparability and the evaluation of improvement measures. However, when it comes to 

dynamically developing systems, or virtual evaluation of a possible, and therefore uncertain future, 

LCA is limited. The ISO-based LCA assumes that all premises and assumptions are made at the be-

ginning and remain constant throughout the life of the product under study. However, some input 

parameters may change over time, such as the electricity mix. One possible approach to model these 

changes may be to take the average value over the lifetime. This leads to average impacts over the 

lifetime and the actual impacts in each year cannot be represented. Therefore, dynamic input param-

eters that can change over time are needed to represent the impacts in each year. In addition, in the 

LCA based on ISO, the system boundary including the system products must be defined at the begin-

ning. Therefore, the analyzed system and product must be known and defined at the beginning. How-

ever, in complex mobility systems, the system-relevant components such as vehicles or infrastructure 

can change over time, and so can the energy required. This makes it difficult to evaluate future vehicle 

and mobility concepts, new measures such as vehicle-to-grid (V2G) as well as different scenarios by 

standardized LCA. Therefore, a dynamic system boundary approach is required for the assessment of 

the dynamic behavior in mobility systems. Furthermore, random events can occur in mobility systems 

based on random factors as well as decisions of individual agents which subsequently influence each 

other. In addition to that, as described in chapter 5, a realistic market behavior is included in which 

individual agents can change their vehicles each year and therefore generate new emissions. The oc-

currence of this event is based on a probability function including a random factor. However, for a 

LCA based on ISO, the analysis must be comprehensible and reproducible.  
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The first step is to investigate what scope the standardized ISO according to 14040 offers to meet 

these requirements. In [Consequential-LCA 2015] it is described which methodological freedom in 

the ISO 14040 exists to perform new approaches within a LCA. Here, it is considered whether the 

Consequential LCA (CLCA) is compatible with the ISO 14040 collection. In [Consequential-LCA 

2015], it is mentioned that requirements for a CLCA are already described, even if it is not clearly 

separated from an Attributional LCA (ALCA). The ISO 14040 series is part of the general ISO 14000 

series, that includes a commitment to continuous improvement as a basic requirement. This also ap-

plies to ISO 14040 and is also clear from the introduction to ISO 14040:2006, which states improve-

ment in all listed applications of LCA. It points out, that LCA should help to identify opportunities 

to improve the environmental performance of products at different points in their life cycle and in-

form decision makers, e.g. for the purpose of strategic planning in terms of priority setting, product 

or process design or redesign, selection of relevant environmental performance indicators, or market-

ing [ISO 14044 2006]. It is also mentioned that decisions in a LCA should preferably be based on 

natural science. Allocation should be avoided in LCA and scientific principles such as mass balances 

should generally be used. In addition, it is described that the Life Cycle Inventory is based on material 

balances between input and output. Allocation procedures should therefore approximate such input-

output relationships [ISO 14044 2006]. This is a clear indication that consistent modeling is the only 

way to keep mass and other balances intact during inventory calculation [Consequential LCA 2015]. 

In addition, ISO 14040 includes a reference to ISO 14049, which describes a very precise description 

of a CLCA. In summary, the ISO 14040 series supports a CLCA. 

From this consideration of the CLCA it can be concluded that further, scientifically based enhance-

ments of the LCA are possible. It was mentioned at the beginning that a holistic mobility system 

should be evaluated regarding sustainability criteria and that this system should also be optimized 

concerning these criteria. Therefore, in the following, an enhanced LCA approach is described, which 

is tailored to the problem in this work. The following requirements are placed on the method to be 

able to evaluate mobility systems with regard to CO2eq emissions: 

• The method should be based on the ISO 14040/14044, more specifically on the CLCA, to 

make it possible to analyze a dynamic system behavior with time-dependent variables, which 

need to be added to the CLCA approach. In addition to the direct emissions, the indirect ef-

fects should also be taken into account here.  

• Furthermore, this approach should be backwards compatible and can be used to perform a 

standardized LCA according to the ISO mentioned above by deactivating the dynamic part 

of the method. 

• The LCA should be comprehensible and reproducible. 

• It should be a modular approach to be able to map as many scenarios as possible and thus 

also enable optimization of the holistic system. 
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• This method needs to be integrated in the holistic approach and the LCA needs to be part of 

the optimization loop. 

• It should be possible to make predictions to also design and analyze future mobility systems. 

Here a database needs to be built and integrated in the process to fulfill this requirement. 

• The focus in this work with respect to sustainability lies on CO2eq emissions but should be 

extendable to any other parameter. 

 Methodological approach 

The aim of the extended method is to allow the estimation of the overall and time wise CO2eq emis-

sions in diverse and dynamic systems. More precise, this approach enables the consideration and eval-

uation of the mobility behavior of the considered region as well as future vehicles and mobility con-

cepts and new measures such as smart charging including forecasts regarding CO2eq emissions. In 

order to be able to integrate the LCA approach into the holistic evaluation and optimization of mo-

bility systems, a simplified approach is needed without too many compromises in the results quality. 

Therefore, suitable approaches are analyzed in the following, whereby a key-value based approach 

including a CO2eq database turns out to be suitable. In addition, the key-value based approach can be 

built modularly, analogue to the holistic approach, so that key-values for each life cycle stage of each 

emission source can be derived. This enables the possibility to model any number of scenarios and 

thus optimize mobility systems. 

The derived LCA approach is based on the CLCA according to ISO 14040/14044, which enables the 

analysis of a dynamic system behavior as described in the mobility simulation. Furthermore, with this 

approach implemented, it is possible to analyze the system for a given time frame at discrete time 

points, whereas time-dependent variables are included. By keeping the variables constant and disable 

dynamic changes in the mobility system it is possible to perform a standardized LCA according to the 

ISO, making this approach backwards compatible. In order to reconcile the randomness of the mo-

bility simulation, which makes it possible to generate and investigate entirely new scenarios, with the 

comprehensibility and reproducibility of the LCA, the randomness is defined by a random seed, which 

allows to comprehend and reproduce the scenarios. To enable the key-value based approach, dynamic 

time-dependent variables and also derived predictions of future emissions, a CO2eq-database is built. 

This database is based on the work in [Schneider 2022] and [Can 2019]. For all relevant components 

of the mobility system, key-values are determined through literature research as well as proprietary 

LCA models in GaBi. These key-values are then stored in a database. The CO2eq database including 

the prediction methods is described in the following. Additionally, the different possibilities of the 

calculation of CO2eq emissions are examined and compared in this chapter. 
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7.2.1 Key-value based LCA approach 

In this chapter two approaches to perform a LCA are analyzed. One approach is the detailed LCA 

approach and the second approach is the key-value based LCA approach. Building a detailed LCA 

model requires a high effort due to the need of data for the input / output modelling of the considered 

system. Modeling entire mobility systems strictly on this level is especially difficult since all transport 

modes, energy paths and infrastructure elements in combination with a dynamic system behavior need 

to be considered. As described in the literature review, entire mobility systems are often modeled using 

pre-built processes, e.g. one process for manufacturing a BEV, where these are then scaled by their 

market volume. To differ between vehicles, the processes can be scaled by their weight. These datasets 

often use older vehicles as a reference, where the products and processes are well known. The ad-

vantage of using detailed processes in LCA software is that a holistic analysis regarding environment 

criteria can be carried out. 

However, the goal of this thesis is to derive a method to optimize holistic mobility systems in terms 

of economic and ecological criteria. Since detailed LCA models are data and computation time intense, 

they do not enable optimization. Therefore, the evaluation approach must be simplified to be able to 

perform optimizations. Another challenge is to get all data at a similar level of quality and detail. In 

this work, a key-value based approach is chosen instead of the detailed LCA approach that enables 

the possibility to carry out investigations on component level and to calculate overall CO2eq emissions 

for different transport modes and vehicle models. The advantages of a key-value based approach are 

the following: 

• Key-value based approaches are simplified approaches. This leads to lower computation 

times, which enables the integration of the LCA in the optimization loop of holistic mobility 

systems. 

• It is possible to analyze any number of scenarios with different variations such as the impact 

of different powertrain components on the mobility system. 

• The key-values are determined by a literature search and stored in a database. These key-val-

ues are often derived from detailed and well understood LCA models. In addition, it is easy 

to add new data and thus new components of the mobility system as well as other new or 

proprietary data sources. 

• It is possible to make predictions based on statistical data and the usage of regression mod-

els. Here a database is built and integrated into the process. 

• Missing data can be derived by many means such as literature research, expert knowledge or 

proprietary LCA models. 

• Assumptions and results as well as how the two are related to each other are easier to under-

stand. 
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But there are also disadvantages of a key-value based approach that need to be noted here: 

• In order to simplify the approach and handle the effort of researching key-values and build-

ing a sufficient database, the focus is set on a limited set of indicators such as CO2eq emis-

sions. It is assumed though, that the CO2eq emissions are a good first indicator for the opti-

mization of mobility systems regarding ecological criteria. 

• Inaccuracies can occur due to the assumption of linear scaling of the key-values. 

In the following, the quality of the results is examined using the example of a Volkswagen ID.3. Here, 

the calculated values with the derived key-value approach are compared with the results from 

[Volkswagen AG 2021]. The 2020 ID.3 model with 150 kW and a 62 kWh battery capacity is consid-

ered. A lifetime mileage of 200.000 km is assumed. Figure 31 shows the CO2eq emissions for the 

production, use phase and total emissions. It is noticeable that the calculated emissions are smaller 

overall. This is mainly due to the fact that the emissions in the production phase are calculated in more 

detail in the report. Processes are taken into account in detail that are not considered in this work, 

such as the maintenance of individual components or the emissions of many small parts. For the use 

phase, the electricity mix from the GaBi software, a commercial available LCA software, is chosen. 

The emissions of this electricity mix amounts to 420 gCO2eq/kWh and is used as a key-value for the 

use-phase. In the report, a consumption of 15.85 kWh/100km is given. In this case a consumption of 

16.4 kWh/100km is calculated with the presented powertrain simulation using maps. As a result, the 

emissions in the use phase are higher in the simulation. 

 

Figure 31:  Detailed analysis of global warming potential of the ID.3 

The production emissions are examined in detail in Figure 32. This shows that the emissions of the 

main components, e-motor and battery, almost equal the emissions from the report. However, differ-

ences arise when looking at the body and the rest of the vehicle. Here, the calculated emissions are 

lower than the emissions reported [Volkswagen AG 2021]. This is mainly due to the fact that the rest 
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of the vehicle is considered in more detail in the report. In addition to the body, many small parts are 

taken into account, which are neglected in this work. 

 

Figure 32:  Detailed analysis of global warming potential of the ID.3 of the production phase 

Overall, a very good quality of results can be achieved with the key-value based approach. Despite the 

known disadvantages the key-value approach is the right decision in order to fulfill the requirements 

in objective of this thesis. Especially because in the optimization generic vehicles are designed that 

represent a market average. The considered key-values are described in the following chapters. 

7.2.2 Modularity 

In the standardized LCA, the life cycle inventory data is needed for each product for each scenario. 

Therefore, each alternative scenario needs to be modeled including all the needed processes for the 

LCA, which leads to a high effort. Instead of modeling all alternatives, it is more efficient to first 

calculate the LCA results of the individual life cycle stages of a product. The individual life cycle stages 

can be combined to model and calculate the corresponding scenario. Within the scope of this thesis, 

a modular CLCA approach is developed to evaluate the dynamic system behavior of a mobility system. 

To meet the requirements of the goal of this thesis, further adaptations and extensions have to be 

carried out. Analyzing different scenarios of the mobility system in an automated process leads to the 

necessity of a modular approach. Due to the complexity of mobility systems with many variables, such 

as used travel modes, agent behavior, energy chains or infrastructure, the considered modules for the 

individual emission carriers have to be simplified.  

Therefore, the described key-value based approach is considered in this work. I.e. instead of modeling 

processes for individual modules, these are calculated using CO2eq key-values. This allows to save a 

lot of computational time, to predict future emissions, to integrate the LCA into the overall method-

ology and thus to take it into account during the optimization. In addition, forecasts can be derived 

0

1

2

3

4

5

6

7

8

Body + Rest Engine and
Gearbox

Power
Electronics

Battery

C
O

2
eq

E
m

is
si

o
n

s 
in

 t
 C

O
2
eq

Detailed Analysis of  Global Warming Potential

ID3 Report Calculated Values



70  

using the collected key-values. By using individual key-values for the respective life cycle phases of the 

individual products, the input and output variables as well as the associated system boundaries are 

clearly defined. In combination with the CLCA approach, allocation is avoided and it can be ensured 

that there is no double counting of CO2eq emissions. With this approach, emissions are tracked at the 

point where they occur. A modular CLCA approach with key-values for the modules of each life cycle 

of each emission source of the mobility system considerably reduces the effort in comparing different 

scenarios with different improvement measures implemented in the mobility system. In Figure 33 the 

modular approach to create any number of scenarios is shown. A scenario describes a complete con-

figuration of the mobility system. Here the optimizer can change parameters and add modules within 

the mobility system to create new scenarios. For example, it is possible to further develop the public 

transport or change the powertrain portfolio of the considered region. 

 

Figure 33:  Modular LCA approach 

7.2.3 Database for CO2eq key-values 

For the chosen LCA approach, key-values for the CO2eq emissions of all emission sources of the 

mobility system are required. For this purpose, a database is being set up based on the insights in 

[Schneider 2022] and [Can 2019]. Here the same structure of the database and methodological fore-

casts approaches are implemented. These are described in the next chapters. To ensure a good quality 

of results, a large focus is placed on data procurement, preparation as well as derivation of forecasts. 
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This database is filled with values and insights of publicly available studies, which perform a LCA on 

the different emission sources of the mobility systems. Additionally, data coming from surveys with 

experts as well as self-generated key-values with the GaBi LCA software are added into the database. 

The key-values are presented as a function of the functional unit. For example, the key-value for a 

battery system per cell chemistry is presented in the form of gram CO2eq per kWh.  

The database is subdivided into the categories of cars, other forms of mobility, energy sources and 

infrastructure. For passenger cars, a further distinction is made between the various powertrain com-

ponents and the body. For the other forms of mobility, CO2eq values are determined for the produc-

tion and use phases as a whole and are not analyzed in detail. Here, a distinction is made between 

public transport, more precisely bus, as well as rail, bicycle and micro mobility. For the energy sources, 

the electricity mix of the respective regions, the different fossil energy sources as well as hydrogen 

from different production processes are considered. These include the production emissions as well 

as the emissions of fossil energy including biofuels sources that occur in the use phase (W2W). In the 

area of infrastructure, the production emissions of various charging stations as well as hydrogen and 

gas stations, PV and stationary storage are mapped. In the context of this work, the impact of small 

parts in cars is neglected. For the necessary road infrastructure it is assumed that this already exists 

and does not have to be produced, so there are no emissions here either. The structure of the database 

is shown in Figure 34. The database can modularly be extended with new data as well as new technol-

ogies and mobility concepts. For the extension, key-values need to be derived and added in the data-

base. This enables a simple analysis of the impact of new technologies and concepts on the mobility 

system. In Appendix A.7 the CO2eq-database and all its subcomponents are listed in detail. In addition, 

the necessary input variables for the calculation of the CO2eq emissions for each emission source of 

the mobility system are shown in Table 28 in Appendix A.7. 
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Figure 34:  Structure of the CO2eq database 

In the following chapters the approach to derive forecasts based on literature research is described. 

Here, the combination of predictions is explained. Subsequently, meta-analysis is presented as a 

method for the combination of researched forecasts data. In the next step the identification and eval-

uation of the forecast data is presented. This includes the research procedure as well as the data anal-

ysis. At the end of the chapter results of the research and data analysis are presented. Here data fusion 

methods are compared, evaluated and suitable methods are then selected.  

7.2.4 Forecasts based on literature research 

In the context of this work, the goal is to identify, evaluate and then combine forecasts on the defined 

set of key-values based on literature research. Therefore, findings on predictions based on secondary 

research are presented below in the form of a combination of predictions and statistical data. The 

combination of data corresponds to an averaging of independent predictions, e.g. based on different 

data sources or prediction methods. In this case, the simple average is usually chosen due to repro-

ducibility [Armstrong 2001]. Predictions are affected by a variety of influencing factors. By combining 

the predictions and data, the error due to wrong assumptions, inappropriate methods or faulty data 

can be reduced. In [Armstrong 2001], these issues are considered in more detail. It is shown that for 

30 studies, on average, a 12.5% lower mean absolute error is achieved compared to the best stand-

alone prediction method. Additionally, in [Lawrence et al. 2006], the combination of different sources 

of information is cited as a justification for the error reduction. In particular, combining expert opin-

ions with statistical methods provides better results than relying on a single source. On the one hand, 
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expert opinions are complementary information that cannot be modeled, and on the other hand, sta-

tistical methods help to identify systematic errors or biases in expert opinions by providing purely 

objective predictions based on data [Lawrence et al. 2006].  

For the increase of the prediction quality the following rules are recommended by [Armstrong 2001]. 

The data should be as independent of each other as possible. This can be achieved with data from 

different prediction methods and a different database. This data should also include already combined 

forecasts, which lead to more accurate forecasts compared to single forecasts. Filtering out outliers 

improves the prediction accuracy [Armstrong 2001]. Combining predictions is particularly advised if 

there is uncertainty about the accuracy of the individual methods. In addition, the combining approach 

is suitable for predictions over long periods of time, because as time increases, the prediction error 

increases and so does the deviation between prediction methods [Armstrong 2001]. 

In order to make the resulting prediction data more accurate, a weighting of the data can be carried 

out. One possible criterion for weighting the predictions is the actuality, allowing to favor new insights. 

It is recommended to limit prediction data to recent data to avoid errors from older data. However, if 

only a few predictions are available for a certain time period, it is recommended to include older data 

in order to be able to perform a combination of predictions. Therefore, a compromise is usually sought 

between the most recent data possible and a sufficient number of data [Brown 1991]. Due to the 

exponentially increasing number of scientific publications over the years, a systematic search proce-

dure for finding suitable predictions is required. Therefore, efficient search strategies are required to 

find as many sources as possible on the searched topic. This has the advantage that the number of 

sources and thus the number of data increases and inconsistencies in the individual studies can be 

detected more easily [Ressing et al. 2009].  

In the following chapters the methodological approach is described in detail. In the first step, a search 

strategy is developed to locate a comprehensive and appropriate selection of scientific publications on 

the topic sought. The search strategy is described by a search string specifying the database and search 

engine used. The next step is to establish inclusion criteria to filter out unsuitable sources. Once the 

sources are available, the data are uniformly recorded according to an extraction template. In this 

process, forecast data are identified according to a uniform measure. In addition to the forecast data, 

source information and the method used to determine the forecast are documented [Randolph 2009]. 

The data are then analyzed and compared.  

For the representation of the results bubble charts are used [Can 2019]. Figure 35 shows an example 

of a bubble chart, being able to catch the exact values as well as often used confidence intervals. This 

confidence interval can also be used as a criterion for weighting the forecast data. The larger the 

confidence interval, the higher the uncertainty of the available forecast and the lower the influence in 

the combined mean. The weighting is represented by the size of the bubbles [Randolph 2009]. For 
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the bubble charts used in this thesis, the individual forecast values of a source are represented uni-

formly by bubbles of different colors.  

 

Figure 35:  Bubble diagram as a form of representation of the determined forecasts based on [Nykvist et al. 2015] 

7.2.5 Determination and evaluation of forecast data 

This chapter describes the applied determination and evaluation of the forecast data according to 

[Hennings 2017]. First, the search procedure for determining the forecast data is described. The search 

procedure includes the search process and the data collection. In the search procedure, the search 

string is explained. During data acquisition, the extraction template used is described first, followed 

by the method used to compare the data, and finally the plausibility check of the forecast data. In the 

next step, the evaluation of the forecast data for a subsequent weighting of the data is described. For 

this purpose, a point system with evaluation criteria is extended. Finally, exemplary results of the 

search are shown in the form of bubble charts. 

Search process 

The goal of the search is to determine a large number of suitable sources for the sought topic as 

efficiently as possible. To achieve this goal, a search string is used to narrow down the search area. 

Here, the search string is composed of three aspects: time, methodology, and application [Hennings 

2017]. With the time aspect, the given time range of the predictions in the sources is described. In this 

context, qualitative search terms such as "future" are used in addition to exact years, such as from 

2020 to 2050. The methodology aspect restricts to sources where the methods of prediction are used, 

such as extrapolation.  

The application aspect narrows the search scope, such as sources that deal with LCA in the field of 

vehicle technology in this case. Figure 36 shows the three aspects with their respective search terms. 
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English search terms are used to identify as many sources as possible, as German sources usually use 

English keywords as well. The individual search terms are linked by the OR operators. With the AND 

operators the three aspects are linked and bundled to a search string. In addition, the AND NOT 

operator is used to filter out sources that deal with topics that are not relevant to the search. In this 

way, all sources are covered by the search string that have at least one term from each of the three 

aspects and do not include a term from the exclusion criteria [McDowall et al. 2006]. 

 

Figure 36:  Structure of the search string based on [Hennings 2017] 

The next step is to use the search string in a search engine. One possible search engine is, for example, 

the Hannover Technical Information Library (www.tib.eu), which supports the logical operators in 

the search string. The terms of the search string are matched with the title, abstract and listed keywords 

of the sources during the search. Other possible search engines are Google Scholar or Google itself.  

Data acquisition 

Data collection is based on an extraction template following [McDowall 2006]. The following infor-

mation is manually extracted from the sources considered [Hennings 2017]: 

• Title 

• Date of publication 

• Client / Author 

• Number of citations (data from Google Scholar) 

• Publishing journal with h5 index (data from Google Scholar). 

• Country of origin 

• Description of the prediction method used 

• Indication of maturity level (research or production status) 

• Consideration of uncertainty, value ranges or scenarios 
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In addition to these details, the following supplementary characteristics or framework conditions are 

also recorded, which is used to determine the prediction [Hennings 2017]: 

• Technological implementation (for example, lithium-ion or lithium-air battery). 

• Assumed number of units / market shares 

• Scenario (pessimistic, realistic, optimistic). 

• System limits (for example, are ancillary components of the component also considered) 

• Component dimensioning (for example, power rating, battery capacity) 

• Powertrain topology 

• Unit and reference year (for costs, the reference year is considered to account for inflation). 

A separate column is created for each of these specifications and characteristics. Then, the respective 

data for the forecast under consideration is entered into these columns. This has the advantage that 

the data can be filtered and thus better compared for subsequent analysis. Table 3 shows an example 

of a section of such an extraction table. Here, for example, the data can be filtered by title, year of 

publication, author or technological implementation. 

Table 3:  Example of the extraction table 

Title Publication Year Client / Author 
Technological implementa-

tion 

Source 1 2018 Author 1 Li-Ion Battery 

Source 1 2018 Author 1 Fuel Cell System (SOFC) 

Source 2 2017 Author 2 Cryotank 

 

The respective forecast values are only included if the associated forecast years have also been speci-

fied. In case the forecast values are given in value ranges, the mean values are entered. To ensure 

comparability of the values, the values are stored in the form of gCO2eq per functional unit. For 

example, the functional unit for a battery is kWh. The costs are converted into US dollars at the given 

reference year. The averaged conversion rates for the respective year are used for the conversion 

[Federal Reserve Bank of St. Louis 2022]. In addition, an inflationary adjustment is also taken into 

account. Here, costs are converted to 2021 using the "Implicit Price Deflator for gross Domestic 

Product." This value is a factor proportional to gross domestic product (GDP). If no reference year 

is provided, the publication year can be used as the reference year [Environmental Protection Agency 

2016]. Table 4 shows an example of an extract of the conversion factors for the last ten years. The use 

of the extraction template and conversion of units ensures reproducibility as well as comparability of 

the forecast data. 
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Table 4:  Excerpt from Inflation Adjustment Conversion Factor Table, Source: [Federal Reserve Bank of St. Louis 2022] 

Year 2014 2015 2016 2017 2018 2019 2020 2021 

Implicit Price 

Deflator for 

GDP 

100.0

0 

105.15 106.72 108.82 110.65 112.98 114.44 121.14 

Factor for 

conversion to 

$2021 

1.211 1.152 1.135 1.113 1.095 1.072 1.059 1.000 

 

Current LCA data and costs are used to check the plausibility of the forecast data. When comparing 

the forecast data with current LCA data, statements can be made via the difference in values as to 

whether the forecast values are too optimistic or too pessimistic. Further comparative values are pro-

vided by government targets. Governments define target values for certain properties of emission 

limits, for example, to meet climate protection goals. By comparing the target values with the forecast 

data, it can be determined whether the government targets represent a suitable upper limit for certain 

emissions of the respective components. In addition to the two plausibility data mentioned above, 

technological upper limits can be used. A technological upper limit is a natural (physical or chemical) 

limit that cannot be exceeded, such as the Carnot efficiency in the internal combustion engine. The 

plausibility check of the forecast data ensures that strong outliers and incorrect forecast data are not 

considered [Can 2019]. 

Weighting criteria 

For the evaluation and weighting of the sources, criteria must first be defined. The actuality of the 

source and the evaluation of the prediction method used in the source are suitable for this purpose. 

The actuality of the source can be determined based on the publication date. Due to the lower number 

of historical data, the prediction accuracy decreases with increasing age of the source. The higher the 

prediction accuracy of a source, the narrower the confidence interval. Figure 37 shows an example of 

the influence of actuality on prediction accuracy and confidence interval.  



78  

 

Figure 37:  Influence of source actuality on prediction accuracy and confidence interval based on [Hennings 2017] 

The evaluation of actuality is based on a linear system. With a linear evaluation, a compromise is made 

between as much data as possible and the sole focus on current sources [Can 2019]. A degressive 

evaluation has the disadvantage that the focus would be too much on the most current sources and 

thus the amount of data is reduced. In linear scoring, sources from 2022 are given ten points and 

sources from 2013 are given one point. As the year increases, the number of points increases. Sources 

from the last ten years are considered. The mathematical relationship for calculating the evaluation 

points of timeliness is presented in the following formula. In it, 𝑏𝑎𝑘𝑡 is the evaluation point of the 

actuality and 𝑥𝑣𝑒𝑟  is the publication year of the source: 

𝑏𝑎𝑘𝑡 = 𝑥𝑣𝑒𝑟 − 2012                                                                         (eq. 20) 

Another weighting criteria is the evaluation of the used forecast method in the sources. These are 

evaluated based on the procedure for determining the forecast values. In addition to the description 

of the forecast method used, it is examined whether different methods have been combined or com-

pared with each other. The use, respectively the comparison of different methods, leads to a larger 

amount of data and thus to a higher prediction accuracy. As already described in [Armstrong 2001], 

the combination of predictions has a positive influence on the prediction accuracy.  
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In [Hennings 2017] a five-point system is developed to evaluate the forecasting method, which is used 

here as well. However, the evaluation holds some uncertainty, because often the methodological pro-

cedure for determining the forecast values is not documented in literature. This occurs especially with 

forecasts from consulting firms. The consulting firms work with OEMs and suppliers and accordingly 

use data from these firms. For reasons of confidentiality, these data are not released, but only the 

forecasts derived from them are published. In addition, the procedure for determining the forecast 

represents the expertise of the consulting firms, which is also not released. Nevertheless, this forecast 

data is important, because it incorporates technical know-how from the companies as well as concrete 

technological roadmaps. In order to continue to consider these types of sources, they are given a three-

point rating and are used as a reference for other sources. Sources that perform a combination of 

multiple prediction methods are awarded an additional point. Furthermore, one point is awarded if a 

critical review of the own results is performed, and the own results are compared with external results. 

Sources that only conduct a literature search on forecast data and do not extend the forecasts with 

their own determined forecasts will have one point deducted. Additionally, one point is deducted if 

no external comparison of results is performed. This evaluation scheme results in a small evaluation 

difference between the forecasts. However, this approach has the advantage that the important fore-

cast values of the consulting firms are evaluated neutrally and forecasts with a comprehensive or in-

sufficient approach are highlighted [Hennings 2017]. Table 5 shows the evaluation scheme for the 

criterion of the forecast method used. 

Table 5:  Evaluation scheme for the criterion of the prediction method used based on [Hennings 2017] 

Points 1 2 3 4 5 

Applied Fore-

cast Method 

No inde-

pendent pre-

diction 

method 

AND 

No external 

reconcilia-

tion of re-

sults  

No independ-

ent prediction 

methodology 

OR 

No external 

reconciliation 

of results 

Reference 

methodology 

evaluation 

(sources from 

consulting 

firms) 

Combination 

of several 

forecasting 

methods 

OR 

External rec-

onciliation of 

the results 

Combination 

of several fore-

casting meth-

ods 

AND 

External recon-

ciliation of the 

results 

 

Weighting of the forecast data 

The weighting of the forecast data is done with the help of the two evaluation criteria mentioned 

above. For better comparability between the criteria, the evaluation scheme of the forecast method 
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used is normalized to a ten-point system. The weighting represents the ratio of the sum of the evalu-

ation points of a source to all considered sources. The number of considered sources varies depending 

on the filtering of the data. The mathematical relationship of the weighting is shown in the following 

formula [Can 2019]: 

𝑤𝑖 =
𝑎𝑖+𝑏𝑖

∑ 𝑎𝑗
𝑛
𝑗=1 +∑ 𝑏𝑗

𝑛
𝑗=1

                                                                           (eq. 21) 

In it, 𝑤𝑖 is the weighting factor of source i, 𝑎𝑖 is the weighting value of the timeliness of source i, and 

𝑏𝑖 is the weighting value of the forecast method used for source i. In addition to determining the 

weighting, weighted averages of all forecasts for the respective year under consideration are also 

formed. Here, forecast data from the years 2010 to 2050 are considered, and the results are presented 

in a five-year cycle (2010, 2015, 2020, ...). In case no forecast data is available for these points in time, 

the values are interpolated if the forecast horizon extends beyond the respective points in time. For 

example, if forecast data is available for 2018 and 2022, the value for 2020 is interpolated. The 

weighted average is formed from the ratio of the weighted forecast data to the sum of the weights of 

all forecast data. The weighted averages help to make the forecast data more plausible, as the progres-

sion is shown. The forecasts consider the technological performance of various components, so de-

clining trajectories are implausible except for the cost and emission data. In this way, implausible 

forecast data can be determined. However, no technology leaps can be represented here, such as a 

strong improvement with the help of a new technology. These new technologies are considered sep-

arately and represent a new component. With the help of the following formula and Table 6, the 

calculation of the weighted mean values is illustrated by means of an example: 

𝑦̅2020 =
𝑤𝐴∗𝑦𝐴,2020+𝑤𝐵∗𝑦𝐵,2020 

𝑤𝐴+𝑤𝐵
=

11

45
∗180+

15

45
∗200

11

45
+

15

45

≈ 192                               (eq. 22) 

In this, 𝑦̅2020 is the weighted average for the year 2020, 𝑤𝐴/𝐵 is the weighting factor of source A/B, 

and 𝑦𝐴/𝐵 is the forecast value of source A/B. 

Table 6:  Example values for the calculation of weighted averages 

 Actua-

lity 

Forecast 

Method 
Weighting Source Component 2015 2020 2025 

5 6 11/45 A Battery 160 180 205 

7 8 15/45 B Battery 180 200 210 

10 9 19/45 C Battery 170   

Sum 22 23 1 
Weighted Average 

Value 
171 192 208 
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Presentation of the forecast data 

In this chapter, exemplary results of the research are presented. In total, the forecast database contains 

over 100 sources with associated data series for the emission sources of the mobility system. The 

bubble chart form is chosen as the presentation format. Here, the emissions are shown over the fore-

casted years. The data series of a source is represented by a color. The size of the bubbles is determined 

by the weighting factors. In contrast to the individual data series, the weighted averages are highlighted 

by bubbles with a black border. Figure 38 shows the degression of production emissions of the lith-

ium-ion battery with a NMC cell chemistry over the years. The data represents expected values without 

using optimistic or pessimistic assumptions at the system level. In addition, it is clear that predomi-

nantly current and historical data is used, as no forecasts are derived in the area of LCA. In the next 

step a trend curve needs to be derived. The determination of this trend curve is described in the 

following chapters. 

 

Figure 38:  Example results of the research for the lithium-ion battery (NMC) 

The cost database is set up in an analogous manner, and in chapter 8 the costs key-values and forecasts 

are discussed in more detail. 

7.2.6 Analysis of suitable methods for data fusion 

Since the future course of CO2eq emissions is unknown, various types of curves are analyzed below. 

Typical curve types for the derivation of trend curves are "growth curves", "learning curves" and 

"polynomial regression". Therefore, in this chapter, these three curve approaches are examined for 
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suitability for determining trend curves of the CO2eq emission forecast data. Evaluation criteria are 

established for this purpose. Based on these criteria, the curve approaches are compared with each 

other. Once suitable methods for the CO2eq emissions are found, the curve fitting to the forecast data 

is described. In the next step, the methods are compared and evaluated so that a selection can be made 

afterwards. For the evaluation of the curve approaches, the following criteria are considered based on 

[Can 2019]: 

• Minimization of error squares: the curve must be as close as possible to the collected data. 

Here the CO2eq emissions for the production of the lithium-ion battery are exemplary ana-

lyzed.  

• Course of the curve: the CO2eq emissions represent a special case. In order to reduce the im-

pact of climate change the goal should be to reduce the emissions in the future, as described 

in different policies and statements of OEMs. Therefore, the course of the curve needs to 

decrease over the forecast years. 

The mathematical description of the curve fitting to the forecast data for the three curve approaches 

growth curves, learning curves and polynomial regression is developed in [Can 2019] and described in 

appendix A.8. 

7.2.7 Selection of suitable methods for data fusion 

In this chapter, the three curve approaches are examined regarding the evaluation criteria and com-

pared with each other. Suitable methods are then selected. 

Analysis of the minimization of the error squares 

In the case of the fitting quality of the curve, the sum of the squares of errors is considered. Table 7 

shows the mean square error of the three curve approaches for the consideration of the CO2eq pro-

duction emissions of lithium-ion battery with a NMC cell chemistry. Due to the analytical determina-

tion of the coefficients, the polynomial regression shows low errors. Regarding the CO2eq emissions, 

the polynomial regression has the lowest error. The growth curve has low fitting quality when consid-

ering CO2eq emissions. The quality of the learning curve is suitable for the CO2eq emissions. Based 

on these values, it can be stated here that growth curves are unsuitable when considering CO2eq emis-

sions. This is also obvious, since the goal is that emissions decrease. However, this must always be 

checked for plausibility as there may be cases in the future where CO2eq emissions rise again. For 

example, in the case of energy shortage, where fossil fuels need to be used. 

Due to the analytical determination of the coefficients and variation of the degree of the polynomial, 

curves can be fitted well to the forecast data using polynomial regression. However, the danger of 

overfitting i.e. an overfitting of the curve to the forecast data must be considered. This results in the 

curve corresponding too closely to a particular data set. Accordingly, further data sets may not be well 

represented, and future observations may not be reliably predicted [Leinweber 2007]. 
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Table 7:  Fitting quality of the different curve approaches 

 
Polynomial Regres-

sion 
Growth Curve Learning Curve 

Mean Square Error regard-

ing CO2eq Production 

Emissions of lithium-ion 

battery with a NMC cell 

chemistry 

  80.8 407.2 396.9  

 

Figure 39 shows the CO2eq emissions of the lithium-ion battery with NMC chemistry at the system 

level including the three curve fitting approaches. Here it is clear that the polynomial regression and 

learning curves run closest to the data. This is also reflected in the good fitting quality. In contrast, the 

growth curve is steadily increasing and therefore it does not match the data well. The best fitting curve 

coming from the polynomial regression is a linear curve. This would mean, that the emission decrease 

to zero and below in a short amount of time, which is not realistic. The learning curve shows the 

expected degression of the CO2eq emissions over the years. 

 

Figure 39:  Curve approaches when considering lithium-ion battery CO2eq emissions at the system level 
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Selection of suitable methods 

In addition to the quality, the curves course must also be taken into account. In polynomial regression, 

the curve is fitted as closely as possible to the forecast data. However, if the forecast data is too spread 

out, the curve may fall off or oscillation at a higher degree of polynomial can occur. In polynomial 

regression, no limit value is defined, so that the curve theoretically rises or falls steadily. The growth 

curve has a continuously rising course instead. In addition, a limit value is implemented for the growth 

curve. 

The course of the CO2eq emissions represents a special case. The goal is to reduce the CO2eq emis-

sions of a component over the years. This course is also reflected in the forecast data. Therefore, a 

decreasing course of the curve is necessary for the consideration of the CO2eq emissions. Here the 

growth curves with their constantly rising course are unsuitable. The polynomial regression can be 

adapted to the forecast data in such a way that it has a decreasing course. However, it can happen that 

the curve becomes negative or rises again. The learning curves represent the course of CO2eq emis-

sions very well. In case of the CO2eq emissions it should be noted here that most of the data comes 

from current LCA and that there are not many forecast data available. This can lead to errors due to 

missing data. The analysis of the existing data shows that the learning curve seems to be the most 

suitable approach to derive the trend curves of CO2eq emissions. This also makes sense since econo-

mies of scale can be used analogously to costs and the goal is to reduce CO2eq emissions. 

Given the summary of the curve approaches in Table 8, the following can be stated. The polynomial 

regression exhibits low errors, which are reflected in the good fit of the curve to the forecast data. 

However, no limit values are considered. This has the consequence that the curve can rise or fall 

arbitrarily and results in negative emissions, for example, which should not be possible, since technol-

ogy evolutions are considered in the forecast and not revolutions. In addition, in polynomial regres-

sion, the curve parameters are calculated on a mathematical level. Other influencing factors are not 

included in the calculation of the curve parameters. This eliminates the learning effects over the years. 

For these reasons, polynomial regression is unsuitable as a trend curve for forecast data. The growth 

curve has low errors for technological properties such as gravimetric energy density as shown in [Can 

2019]. In contrast, the curve approach is unsuitable for CO2eq emissions, due to the steady rising of 

the curve.  
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The learning curve has low errors when considering CO2eq emissions. The course of the learning 

curve corresponds to the expected course of the CO2eq emissions over the years. The goal of the 

companies and policy makers is to reduce the CO2eq emissions to be competitive and reduce the 

impact of climate change. This downward progression is very well represented by the learning curve. 

In addition, various influencing factors in the form of scale and non-scale effects are also taken into 

account in the learning curves. For these reasons, the learning curve is used as a trend curve for the 

consideration of CO2eq emissions in the context of this work. This shows that the goal of zero CO2eq 

emissions can only be achieved with the support of negative emission technologies. 

Table 8:  Summary of the evaluation of the curve approaches 

 Polynomial Regression Growth Curve Learning Curve 

CO2eq emissions CO2eq emissions CO2eq emissions 

Minimization 

of the error 

squares 

++ - + 

Course of the 

curve 

- - ++ 

 

++ : very well suitable 

+ : well suitable 

- : unsuitable 

 Investigation of the different ways of calculating CO2eq emissions 

With the help of the derived approach, there are different possibilities to calculate the CO2eq emissions 

of the mobility system. In the following, four cases are described and compared to show the influence 

of the different approaches on the resulting total emissions. In the first case, the standardized LCA is 

considered when calculating the CO2eq emissions. Here, a static system is evaluated, where the bound-

ary conditions and the scenario are defined at the beginning and kept constant. This means, that the 

initial configuration of the mobility system including the mobility behavior and used transport modes 

of the agents do not change over time. Additionally, CO2eq key-values, such as the electricity mix or 

emissions for the production of components are defined for the initial year and remain constant. In 

the second case, compared to the first case, time-dependent variables, such as a changing electricity 

mix, are introduced. Here for example the CO2eq key-values for the electricity mix change over the 

years according to the derived predictions. In the third case, the derived enhanced LCA is applied. 

This includes the time-dependent variables as well as a dynamic system behavior, in which  agents can 
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change their vehicles or travel mode. Furthermore, the realistic market behavior is considered. In the 

fourth case, an additional condition to the enhanced LCA is introduced, that existing components of 

the mobility system do not generate production emissions because they have already been produced 

in the past.  

The region under consideration is the Berlin scenario derived in Chapter 5. The network, the infra-

structure and a synthetic population including plans are therefore available here. The mobility behavior 

is determined with the help of the mobility simulation. With the approach presented in Chapter 6 for 

evaluating the used travel modes, the next step is to evaluate the mobility system concerning CO2eq 

emissions. Here, the four cases are configured and calculated. In addition to the four cases, two sce-

narios are calculated. In the first scenario the actual state of the mobility system is modeled based on 

statistical data. This is the reference scenario and compared to the second scenario, which is a 100% 

BEV scenario. For all four cases the calculated driven distances in MATSim are used. For the electric-

ity mix the German electricity mix is considered. The starting year is 2021. A period of 14 years is 

considered. The reason is that in standardized and public studies on LCAs of vehicles, a typical mileage 

of 200,000 km as well as 15,000 km per year is given, which results in the 13-14 years.  

The results are shown in Figure 40. Here it can be seen that the calculated emissions for the two 

scenarios vary depending on the way CO2eq emissions are calculated. In case one, the standardized 

LCA is applied. A static consideration of the system leads to no further production emissions over 

the considered time frame since no changes occur and all production emissions occur at the beginning 

of the calculation. The impact of the use-phase increases with the progression of the considered time 

frame. Therefore, here the use-phase has a higher impact overall. This can also be seen in the results. 

In scenario one, the highest CO2eq emissions are calculated. This is due to the fact, that in the current 

state of the mobility system mainly ICEVs are used in the private owned sector. Since the use-phase 

has a high impact, this leads to overall high emissions. In scenario two the CO2eq emissions are 32% 

lower compared to scenario one, since only BEVs are deployed here. BEVs are overall more energy 

efficient and with the considered German electricity mix the impact is lower. In case two, time-de-

pendent variables are applied. Here the used CO2eq key-values change over time. Comparing the re-

sults of case one and two, it can be seen that time-dependent variables have only a small influence 

with regard to the overall system. This is especially evident in the second scenario. Due to the steadily 

decreasing emissions in the electricity mix, the emissions in the use-phase also decrease slightly in 

100% BEV scenario. In scenario one the changes are negligible. 

The calculation of CO2eq emissions with the developed enhanced LCA approach in case three has a 

much larger impact. The dynamic consideration of the mobility behavior as well as the change of 

vehicles results in overall higher CO2eq emissions in the first and second scenario. The consideration 

of the vehicle change in the enhanced LCA approach also leads to the fact, that new vehicles must be 

produced and thus further production emissions are considered in the course of time. This gives the 
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production phase of the vehicles a higher weighting and has a greater influence on the result. This 

leads to much higher production emissions in the second scenario, where only BEVs are deployed, 

which have higher production emissions compared to other powertrains such as ICEVs or PHEVs.  

In the fourth case, emissions decrease compared to the enhanced LCA approach in case three. This 

is because the emissions of the components of the mobility system that have already been produced 

are not taken into account. The approach on how CO2eq emissions are calculated has a large impact, 

when it comes to optimizing mobility systems. One example can be the optimization of the powertrain 

portfolio. The impact on the optimization is discussed in more detail in chapter 9. Here it can be 

summarized that the developed enhanced LCA approach offers the possibility to calculate CO2eq 

emissions in different ways, whereas more realistic emissions of future mobility systems can be ana-

lyzed and evaluated. 

 

Figure 40:  CO2eq emission for the four cases and two scenarios  
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8 Cost analysis 

The costs in perspective of this work are differentiated between the costs for mobility from the cus-

tomer's point of view and investment costs such as the development of the infrastructure or public 

transport, as shown in Figure 41. In this thesis the focus lies on the cost from the customer’s point of 

view and is described in detail. The cost parameters, required for all developed models, are collected 

and treated with the described database and forecast approach based on [Schneider 2022] and [Can 

2019]. In the following, the individual cost models are described. 

 

Figure 41:  Structure of cost database 

 TCO model for private owned vehicle 

A TCO model based on [Propfe 2016] is implemented to estimate the total costs of ownership for 

passenger cars. Figure 42 shows the cost structure. The total costs result from the operating costs and 

the loss in value that occurs over the years. The operating costs result from costs for the maintenance 

of the vehicle, vehicle taxes, insurance, subsidies as well as the costs for the energy sources depending 

on the consumption. The value loss represents the difference between the list price and the resale 

value. The resale value depends on the list price, the vehicle type, the powertrain type and the mileage 

driven. The list price is derived from the manufacturing costs, which can be calculated with the help 

of the powertrain simulation, the profit margin, which is added on, the value-added tax and a factor 

for premium vehicles. The TCO per month as well as per km can be calculated depending on the 

usage time and the resulting annual mileage of each agent. However, an uncertainty arises when using 

cost parameters, such as the maintenance costs in € per km, which are determined for a fixed annual 

mileage. In this case, it is an average value of different driving profiles reaching from 1.000 to 60.000 

km [Propfe 2016]. Varying mileage can lead to distorting the calculated maintenance costs. Therefore, 

in this work, for each agent when calculating the TCO a usage time of 5 years with 15.000 km driven 

distances per year are assumed to achieve consistency and comparability. Once this is proven, these 

assumed premises do not apply in the application of the method. Here the TCO cost factor per month 
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and km are derived for each individual agent in dependence of their actual mobility behavior and used 

vehicle, which are calculated in the mobility simulation as well as powertrain simulation. 

 

Figure 42:  TCO Model for private owned vehicles based on [Propfe 2016] 

As described, the operating costs consist of maintenance of the vehicle, vehicle taxes, insurance, sub-

sidies as well as the costs for the energy sources depending on the consumption. The maintenance 

costs are analyzed in detail in [Propfe 2016]. Here, the maintenance costs per km for the considered 

component groups are derived for different powertrain types and vehicle segments. In Figure 43, the 

maintenance cost values are presented. In dependence on the driven distances, the total maintenance 

costs can be calculated. The driven distances result from the mobility simulation for each agent and 

can be used to calculate the total maintenance costs. In Figure 43 the maintenance costs according to 

the defined premise of 5 years with 15.000 km driven each year are calculated. 

𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝑐𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                                             (eq. 23) 

- 𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 : Total costs for maintenance 

- 𝑐𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒: Maintenance cost value 

- 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: Driven distance 

 

Figure 43:  Maintenance costs for the considered vehicle segments and powertrain types for a mileage of 75.000 km based on 
[Propfe 2016] 
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In the next step, the taxes for the designed vehicle are calculated. Since the focus of this work is on 

the Berlin region, the taxes from Germany are used. However, it is possible to extend the model as 

needed and consider other countries. Electric vehicles remain tax-exempt for 10 years from initial 

registration or until 2030 at the most [Bundesregierung 2020]. After the tax exemption, the following 

formula applies according to [Uhlig 2021]: 

𝑘𝑡𝑎𝑥 = 0,5 ∗ (11,25 € ∗ 𝑐𝑒𝑖𝑙 (
𝑚𝑖𝑛(𝑚𝑐𝑎𝑟,   2000𝑘𝑔)

200 𝑘𝑔
) + 12,02 € ∗ 𝑐𝑒𝑖𝑙 (𝑚𝑎𝑥(

(𝑚𝑖𝑛(𝑚𝑐𝑎𝑟,   3000𝑘𝑔)−2000 𝑘𝑔)

200 𝑘𝑔
, 0)) +

12,78 € ∗ 𝑐𝑒𝑖𝑙 (𝑚𝑎𝑥(
(𝑚𝑐𝑎𝑟−3000 𝑘𝑔)

200 𝑘𝑔
, 0))) ∗ 𝑡𝑦𝑒𝑎𝑟𝑠                                (eq. 24) 

The taxes of ICEVs and PHEVs are calculated as follows [FinanceScout24 2022]: 

𝑘𝑡𝑎𝑥 = (2 ∗ (𝐶𝑂2,𝑇2𝑊 − 95) + 𝑉𝐻,𝐼𝐶𝐸𝑉 ∗ 𝑥𝐺𝑎𝑠𝑜𝑙𝑖𝑛,𝐷𝑖𝑒𝑠𝑒𝑙) ∗ 𝑡𝑦𝑒𝑎𝑟𝑠             (eq. 25) 

- 𝑘𝑡𝑎𝑥 : Total taxes 

- 𝑚𝑐𝑎𝑟: Vehicle weight 

- 𝐶𝑂2,𝑇2𝑊: CO2eq emissions from tank to wheel 

- 𝑉𝐻,𝐼𝐶𝐸𝑉: Engine displacement 

- 𝑥𝐺𝑎𝑠𝑜𝑙𝑖𝑛: Factor of 20 € per liter engine displacement 

- 𝑥𝐷𝑖𝑒𝑠𝑒𝑙: Factor of 95 € per liter engine displacement 

For insurance costs, mean values are derived for the respective vehicle segments using the data from 

[ADAC 2021a]. In addition, subsidies for e-cars are taken into account. E-cars up to a list price of 

40,000€ can be subsidized with 9,000€. E-cars up to a list price of 65,000€ can be subsidized with 

7,500€. For PHEVs, a subsidy of 6750€ applies up to a list price of 40,000€ and a subsidy of 5625€ 

applies up to a list price of 65,000€. These subsidies are expected to be valid until 2025 and reduce 

the overall list price by these amounts [Kroher et al. 2022].  

In the last step of the operating cost calculation, the costs for the consumed energy carriers are calcu-

lated. Depending on the powertrain type, these are gasoline or diesel fuel, hydrogen or electricity. The 

costs for the consumed energy result from the costs for the energy carriers that are stored in the cost 

database as well as the consumption of the vehicle and the distance traveled. The consumptions are 

calculated with the described powertrain simulation (see chapter 6), in which the WLTC is assumed 

for the drive cycle. For hybrid vehicles both energy carrier need to be considered separately and 

summed up. The norm values are assumed: 

𝑘𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 ∗ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                                       (eq. 26) 

- 𝑘𝑒𝑛𝑒𝑟𝑔𝑦: Total energy costs 

- 𝑐𝑒𝑛𝑒𝑟𝑔𝑦: Key-value for costs of energy carrier 

- 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: Consumption of vehicle 

- 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: Driven distance 
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The total cost of ownership results from the sum of the individual costs: 

𝑘𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 + 𝑘𝑡𝑎𝑥 + 𝑘𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 − 𝑘𝑠𝑢𝑏𝑠𝑖𝑑𝑖𝑒𝑠 + 𝑘𝑒𝑛𝑒𝑟𝑔𝑦           (eq. 27) 

- 𝑘𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Operation costs 

- 𝑘𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 : Total costs for maintenance 

- 𝑘𝑡𝑎𝑥 : Total taxes 

- 𝑘𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒: Total insurance costs 

- 𝑘𝑠𝑢𝑏𝑠𝑖𝑑𝑖𝑒𝑠: Total subsidies 

- 𝑘𝑒𝑛𝑒𝑟𝑔𝑦: Total energy costs 

The value loss is calculated with the difference between the list price and the resale value. The calcu-

lation of the list price is shown in the following. Here the production costs for each component in-

cluding chassis of each designed vehicle are calculated with the help of the derived cost database based 

on [Schneider 2022] and [Can 2019].  For every relevant powertrain component of ICEVs, PHEVs, 

BEVs and FCEVs, key-values for the production costs including forecasts are available in the cost 

database. This is illustrated using the example of a PEM fuel cell in Figure 44. In [Can 2019] it is 

shown, that learning curves are suitable for the derivation of the trend curve of cost values. The reason 

for this is that the increasing technological maturity as well as the expansion of mass production reduce 

the manufacturing costs. Such learning effects, which take place over the years, are usually represented 

by learning curves. This curve is also shown by the weighted mean values. It is noticeable that the 

confidence interval becomes narrower as the forecast year increases. This is mainly due to the defined 

target values of the governments. These target values are defined by the various sources as limits for 

the learning curves. In Figure 44 the researched cost values including forecast are shown as well as the 

derived trend curve in form of a learn curve. The forecast values are expected values without using 

optimistic or pessimistic assumptions at the system level. The time-based key-values for the cost pa-

rameters are taken from the derived trend curve.  
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Figure 44:  Cost key-values and trend curve for the PEM fuel cell [Can 2019] 

In equation 28 the calculation of the production cost for the considered component in the considered 

year is shown: 

𝑘𝑝𝑟𝑜𝑑,𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥𝑡𝑖𝑚𝑒) = 𝑐𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥𝑡𝑖𝑚𝑒) ∗ 𝑥𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡                       (eq. 28) 

- 𝑘𝑝𝑟𝑜𝑑,𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥𝑡𝑖𝑚𝑒): Production cost for considered component in the considered year 

- 𝑐𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡: Key-value for costs per functional unit for considered component. For example, 

the key-value for the battery is given in € per kWh. 

- 𝑥𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡: Functional unit of component coming from powertrain simulation. For exam-

ple, the functional unit of the battery is the capacity in kWh. 

- 𝑥𝑡𝑖𝑚𝑒: Considered year, in which the vehicle is produced 

In the next step the list price can be calculated. The list price contains the production costs as well as 

the profit margin, the value-added tax and a factor for premium vehicles. Assumptions are made for 

the profit margin in dependence of the vehicle segment based on [Bay 2019]. The factor for premium 

vehicles is also considered in the profit margin.  
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The mathematical relationship is shown in the following: 

𝑘𝑙𝑖𝑠𝑡(𝑥𝑡𝑖𝑚𝑒) = 𝑘𝑝𝑟𝑜𝑑,𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥𝑡𝑖𝑚𝑒) ∗ 𝑐𝑝𝑟𝑜𝑓𝑖𝑡 ∗ 𝑐𝑣𝑎𝑙𝑢𝑒𝑇𝑎𝑥                       (eq. 29) 

- 𝑘𝑙𝑖𝑠𝑡(𝑥𝑡𝑖𝑚𝑒): List price in the considered year 

- 𝑘𝑝𝑟𝑜𝑑,𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥𝑡𝑖𝑚𝑒): Production cost for considered component in the considered year 

- 𝑐𝑝𝑟𝑜𝑓𝑖𝑡: Profit margin in dependence of vehicle segment 

- 𝑐𝑣𝑎𝑙𝑢𝑒𝑇𝑎𝑥: Value added tax for Germany 

The value loss is described by the difference between the list price and the resale value:  

𝑘𝑣𝑎𝑙𝑢𝑒𝐿𝑜𝑠𝑠 = 𝑘𝑙𝑖𝑠𝑡(𝑥𝑡𝑖𝑚𝑒) − 𝑘𝑟𝑒𝑠𝑎𝑙𝑒𝑉𝑎𝑙𝑢𝑒                                   (eq. 30) 

- 𝑘𝑣𝑎𝑙𝑢𝑒𝐿𝑜𝑠𝑠: Value loss 

- 𝑘𝑙𝑖𝑠𝑡(𝑥𝑡𝑖𝑚𝑒): List price in the considered year 

- 𝑘𝑟𝑒𝑠𝑎𝑙𝑒𝑉𝑎𝑙𝑢𝑒: Resale value 

The resale value depends on the list price, the vehicle type, the powertrain type and the mileage driven. 

In [Propfe 2016] regression curves are derived for different vehicle types of the ICEV to calculate the 

resale value based on historical data on resell platforms. These regression curves are then also applied 

to other powertrain types. In addition to the regression curves it is assumed that the resale value of 

PHEVs is 10 % higher than of ICEVs and the resale value of BEVs is 20 % lower than of ICEVs 

[Propfe 2016]. These regression curves and assumption are also used here to calculate the resale value 

of each vehicle. With the known value loss the TCO can be calculated with the following formula: 

𝑘𝑇𝐶𝑂(𝑥𝑡𝑖𝑚𝑒) = 𝑘𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑘𝑣𝑎𝑙𝑢𝑒𝐿𝑜𝑠𝑠                                   (eq. 31) 

- 𝑘𝑇𝐶𝑂(𝑥𝑡𝑖𝑚𝑒): Total cost of ownership 

- 𝑘𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛: Operation costs 

- 𝑘𝑣𝑎𝑙𝑢𝑒𝐿𝑜𝑠𝑠: Value loss 

In the following, exemplary calculations of the total cost of ownership of agents with a BEV, ICEV 

and PHEV in the year 2021 is performed and compared to the results of [ADAC 2021a] for the VW 

ID.4 Performance with 150 kW, VW Polo with 70 kW and VW Golf GTE with 180 kW. To enable a 

comparability the same premises as in [ADAC 2021a] are assumed. Here a usage time of 5 years and 

15.000 km driven distance per year are assumed. In the first step the VW ID.4 is compared. With the 

help of the powertrain simulation a consumption of 19 kWh/100km is calculated with an average cost 

for electricity of 19 ct€/kWh. In [ADAC 2021b] monthly costs of 838 € and 67 ct€/km are calculated. 

It is not stated if subsidies are considered in the TCO calculation. With the described TCO model the 

following costs are calculated for a 5 year time frame and 15.000 km driven distance per year, as shown 

in Table 9. As a result a TCO per month of 770 € and 61 ct€/km is calculated.  
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Compared to the results of [ADAC 2021b] these values are lower. One reason could be the consider-

ation of subsidies in the amount of 9000 €. Without subsidies the TCO per month results in 830 € 

and 66 ct€/km, which almost equals to the values of [ADAC 2021b]. If the TCO calculation is applied 

in the context of this work, the real driven distances as well as usage time of the vehicle are considered. 

Therefore, the calculation is performed again for an exemplary agent who owns an ID.4 and uses it 

for almost 14 years and 200,000 km. This results in a TCO per month of 377 € and 32 ct€/km includ-

ing subsidies, which corresponds to the typical mileage allowance. 

Table 9:  Cost calculation for the VW ID.4 

Cost Description Costs Values 

Maintenance 5850 € 

Insurance 5500 € 

Tax 0 € 

Subsidies -7500 € 

Operation Costs 2700 € 

List Price 61580 € 

Resell Value 20800 € 

Value Lost 31780 € 

TCO per Month 770 €/month 

TCO per Kilometer 61 ct€/km 

 

In the second example the VW Polo with 70 kW is compared. With the help of the powertrain simu-

lation a consumption of 4.8 l/100km is calculated with an average cost for gasoline of 1.53 €/l. In 

[ADAC 2021a] monthly costs of 499 € and 39.9 ct€/km are calculated. With the described TCO model 

the following costs are calculated for a 5 year time frame and 15.000 km driven distance per year, as 

shown in Table 10. Here a TCO per month of 490 € and 39 ct€/km is calculated. Here the calculated 

values are overall similar to the reported values in [ADAC 2021a]. For an agent who owns a VW Polo 

and uses it for almost 14 years and 200,000 km, this results in a TCO per month of 274 € and 24 

ct€/km. 
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Table 10:  Cost calculation for the VW Polo 

Cost Description Costs Values 

Maintenance 4725 € 

Insurance 3400 € 

Tax 342 € 

Subsidies 0 € 

Operation Costs 5300 € 

List Price 21850 € 

Resell Value 6300 € 

Value Lost 15550 € 

TCO per Month 490 €/month 

TCO per Kilometer 39 ct€/km 

 

In the third example the VW Golf GTE with 180 kW is compared. With the help of the powertrain 

simulation a combined consumption of 1.0 l/100km is calculated with an average cost for gasoline of 

1.53 €/l and an average cost for electricity of 19 ct€/kWh. In [ADAC 2021a] monthly costs of 664 € 

and 53.1 ct€/km are calculated. In this report high value losses are calculated. With the described 

TCO model the following costs are calculated for a 5 year time frame and 15.000 km driven distance 

per year, as shown in Table 11. Here a TCO per month of 409 € and 33 ct€/km is calculated. The 

difference is mainly due to the fact, that subsidies of 6750 € as well as higher resell values are assumed 

in the presented TCO model. Without subsidies and an assumption of 10% lower resale values com-

pared to ICEVs, a new TCO per month of 590 € and 48 ct€/km is calculated, which comes nearer to 

the reported values in [ADAC 2021a]. In addition, the calculated list price is lower compared to the 

41940 € list price used in [ADAC 2021a]. Considering the difference in list price adds up to a calculated 

TCO per month of 649 € and 52.7 ct€/km. For an agent who owns a VW Golf GTE and uses it for 

almost 14 years and 200,000 km, this results in a TCO per month of 225 € and 20 ct€/km including 

subsidies and the assumption of higher resell values. Due to the assumed combined consumption of 

the PHEV, the operation cost is low compared to e.g. an ICEV. Considering longer usage times, this 

leads to overall lower TCO per month and km. 
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Table 11:  Cost calculation for the VW Golf GTE 

Cost Description Costs Values 

Maintenance 5100 € 

Insurance 4000 € 

Tax 150 € 

Subsidies -6750 € 

Operation Costs 2815 € 

List Price 38414 € 

Resell Value 21460 € 

Value Lost 10204 € 

TCO per Month 409 €/month 

TCO per Kilometer 33 ct€/km 

 

Overall, these examples show, that the calculated TCO for private owned vehicles with the shown 

approach reaches a sufficient quality. In addition, it is possible to predict future costs by including 

forecasts and to analyze future mobility systems with this approach. 
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 Cost analysis of additional transport modes 

Key-value based models are implemented to calculate the mobility costs of additional transport modes 

such as public transport or micro-mobility. The required key-values are determined with the help of a 

literature research and stored in the cost database. The key-value based model consists of characteristic 

values that are represented in the form of costs per passenger kilometer. Depending on the distance 

traveled, the costs incurred are calculated, as shown in the following formula: 

 𝑘𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 𝑐𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                                               (eq. 32) 

- 𝑘𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡: Total costs for considered transport modes 

- 𝑐𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡: Cost key-value per person kilometer for the considered transport mode 

- 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: Driven distance 

In the context of this work the public transport, bicycle, walking and micro mobility are considered 

as additional transport modes in the mobility system, whereas walking generates no costs. In Table 12 

the cost key-values for Germany are shown. It is assumed that these costs are valid for all regions in 

Germany and therefore are also used in the Berlin scenario. 

Table 12:  Cost key-values for additional transport modes 

Transport Mode Cost Values 

Public Transport 1.5 € + 25 ct€/km [Kowalewsky 2021] 

Micro Mobility 1€ + 20 ct€/km [Imhof et al. 2021] 

Bicycle 6 to 10 ct€/km [Hamburger Verkehrsverbund 

2019], [Dambeck 2011] 
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9 Optimization methods 

After introducing the metrics for the target values CO2eq emissions, costs and energy demand, the 

goal is to enable the mobility system to be optimized with respect to these target criteria. One challenge 

in determining optimal mobility systems including optimal powertrains and agent behavior is the huge 

number of parameters that need to be defined and lead to a significant number of possible configura-

tions. In addition, trade-offs between target criteria need to be made such as finding solutions in which 

emissions are reduced, but the costs for the customer are not increasing that much. Because these 

cannot all be examined with regard to the target variables, a random or well understood and known 

start selection must be made over the entire search space. To carry out this selection in a targeted 

manner and thus reduce the overall required computational effort, an optimization algorithm is used 

in this thesis. One task of the algorithm is to control the selection of the configurations to be examined 

in the optimization process in such a way that in its course an improvement of the target variables 

takes place. The following approach to find a fitting optimization method is based on [Weiß 2018]. 

In chapter 9.1 the basics of optimization are presented. Subsequently, the requirements for the opti-

mizer are presented in chapter 9.2. Chapter 9.3 analyzes the different optimization approaches. The 

focus here lies on meta models and the genetic algorithm. In Chapter 9.4 the possibilities to reduce 

computation times are analyzed. 

 Basics of optimization 

In the field of optimization, a distinction can be made between static and dynamic optimization. The 

dynamic optimization differs from the static optimization, that instead of optimal input variables a 

time-dependent function is sought which minimizes an objective function. For a detailed description 

of the dynamic optimization, please refer to [Papageorigou 2012]. The objective of the optimization 

corresponds to a typical static optimization problem. According to [Koziel et al. 2011], a static global 

optimization is characterized by a function which is to be minimized. The input variables of this func-

tion can be continuous as well as discrete or mixed values. The search space is constrained by the 

lower and upper bounds and includes the range of values for the input variables, in which the optimal 

parameter set is searched [Weiß 2018]. The following definition of terms is used: 

• Search Space: Multi-dimensional space defined by the possible parameter sets and limited 

by lower and upper boundaries 

• Optimization Parameter: Input parameter set of the objective function  

• Objective Function: Function describing the target criteria depending on the input parame-

ters, that needs to be minimized 
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The goal of the optimization is to find a global optimum. A fundamental goal of global optimization 

algorithms is the balance between exploration and convergence behavior. The convergence behavior 

describes the speed with which possible optima can be identified. These can be suboptimal, local 

optima or the global optimum. It is controlled by the ability of algorithms to use known solutions, i.e. 

to combine and improve them. Exploratory behavior refers to the ability to find previously unknown 

regions of the search space. This should leave the local optimum and determine the global optimum 

[Chiong 2009]. 

Multi-dimensional problems can be optimized by minimizing several functions describing different 

target criteria [Koziel et al. 2011]. Due to conflicting objectives, it is usually not possible to find an 

optimal input parameter set which minimizes all objective functions. For this reason, Pareto optimal 

solutions are sought for multi-objective optimization problems. All solutions together result in the 

Pareto optimal solution shown in Figure 45, which represents a boundary or an edge region of the 

solution space and is therefore called the Pareto front [Weiß 2018]. In this thesis, a multi-objective 

optimization is performed, whereas cost over benefit is optimized, as shown in Figure 45. However, 

because optimization algorithms always minimize the objective variables, the axis with the benefit, 

which needs to be maximized, must be transformed according to [Siebertz et al. 2010]. Costs and 

benefits are obtained by normalizing and weighting the optimization parameters, which include, for 

example, the powertrain portfolio and powertrain design. The methods for modeling and calculating 

these criteria thus represent parts of the objective functions. Furthermore, the search space is limited 

by minimum requirements for the mobility system as well as the possibilities the considered region 

offers. The optimal input parameter sets identified with the help of an optimization algorithm thus 

result in the characteristics of the optimal mobility systems. In the next chapter, the requirements 

toward the optimization algorithm are described. 

 

Figure 45:  General representation of a pareto front based on [Weiß 2018] 
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 Requirements towards the optimization algorithm 

The requirements for the optimization algorithm to be selected are essentially derived from the prop-

erties of the optimization problem. In the context of this work, different approaches are investigated 

to determine a suitable optimization method for the given problem. Due to the very large data space 

caused by the combination of individual data-intensive models, such as mobility simulation and LCA, 

the computation time plays a very important role to enable optimization. In addition to computation 

time, the problems to be investigated with the methodology are static optimization problems, since 

mobility systems are analyzed in discrete time points and therefore no time-dependent optimal input 

parameters are sought, but optimal input parameters at discrete time points. Furthermore, the charac-

teristic of the resulting solution space is not known in advance and can have both local and global 

extrema comparable to Figure 46. The goal is always to find the global optimum of each target variable, 

but since the system is very complex it is possible that only local optima are found. Since several target 

variables are to be optimized, the algorithm must allow for multi-objective optimization. Following 

requirements need to be considered: 

• Various constraints have to be considered, such as customer requirements and constraints in 

terms of renewable energy, resources, cost and comfort to limit the search space. 

• Continuous input parameters such as varying characteristics of powertrain components or 

plans of agents and discrete input parameters such as transport modes, powertrain types or 

component types should be considered. 

• Numerical map-based simulations are used to calculate the target parameters. Therefore, a 

derivation-free algorithm is needed since a direct calculation of derivatives is not possible. 

• The ability to compute in parallel is also considered a prerequisite. However due to the com-

plexity of the system, the exploration and evolution need to be limited and this can lead to a 

local optimum instead of a global optimum. 

• The objective of the optimization corresponds to a typical static optimization problem. 

• Multi-objective optimization considering CO2eq emissions, costs and energy demand is per-

formed. 
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Figure 46:  Presentation of local and global optima in an exemplary search space based on [Weiß 2018] 

 Investigation of different optimization approaches 

A large number of optimization algorithms are described in the literature, each suitable for a specific 

application area. Some of these create good results for a variety of different problems, while other 

highly specialized algorithms are only suitable for specific problems but are significantly faster and 

more efficient. This also means, that there is no general algorithm that is better and more efficient 

than all the other existing algorithms [Weise 2009]. In this thesis, different objective functions are to 

be optimized. These differ with respect to the number of input parameters, which in turn can be varied 

discretely or continuously. 

Optimization algorithms can be classified by distinguishing between static and dynamic problems and 

the methods that can be used in each case. Algorithms for solving static optimization problems are 

divided into derivative-based and derivative-free methods. A typical algorithm that uses the first de-

rivative of the objective function is the Gauss-Newton method, while for example the Nelder-Mead 

method only uses the function value. According to Figure 47, the optimization methods can be further 

classified into deterministic and stochastic processes. Deterministic means that the optimization pro-

cess is based on strict non-random rules. Therefore, under the same starting conditions, these algo-

rithms always provide the same solution. On the other hand, stochastic methods use random compo-

nents, which means that the optimization process and possible outcomes are different for each run. 

The simplest random part can involve choosing a random starting point. Another possibility is to 

implement random parts in various components of the algorithm [Koziel et al. 2011]. 
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Figure 47:  Classification of optimization algorithms based on [Weiß 2018] based on [Weise 2009] 

Another aspect of classifying optimization algorithms is the ability to search for global optima. Local 

optimization methods fundamentally lack the ability to further explore once a local minimum is 

reached, as they are usually based on deterministic rules. The basic global optimization capability is 

achieved through a random component. Therefore, local optimization methods can be extended to 

global optimization methods by adding random starting points, but may not be efficient and successful 

[Koziel et al. 2011].  

An optimization run can require many thousands of calls to the objective functions, which means that 

the computation time for the entire optimization can be long despite the short computation time of a 

single call. One way to solve this problem is to use a metamodel. With such a model, complex simu-

lation models are approximated by simplified models with significantly reduced computation time 

[Siebertz et al. 2010]. This can be achieved by, for example, ignoring physical relationships of a com-

plex model. Here the simplified model only describes direct dependencies between input parameters 

and target variables. As shown in Figure 48, the objective function is first reduced to a metamodel and 

then used for optimization to determine the target value. Compared to the original objective function, 
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the number of input parameters of the metamodel is reduced, whereas the rest of the input parameters 

remain constant during the optimization [Weiß 2018]. 

 

Figure 48:  Optimizing with metamodels [Weiß 2018] 

A big disadvantage of the metamodels approach is the uncertainty regarding the approximation error 

with the resulting reduction of the result quality. Another problem with metamodel generation is the 

loss of information. For example, the generation of simplifications of the mobility simulation leads to 

information loss because information is summarized, such as traffic flows, and thus no optimizations 

can be performed at the agent level, which is again a requirement for the optimizer. Therefore, the 

metamodel approach is not suitable for the optimization of the holistic mobility system.  

To optimize such large and complex mobility systems a simplification is needed at some point such 

as to downscale the population shown in the following chapters. In order to do that, DoE is used to 

derive metamodels describing recommended scaling factors. To maintain a good model quality and to 

reduce computation time, additional methods are applied. The optimization time can be reduced by 

restricting the search space, by parallelizing computations and unacceptable areas can be identified 

and avoided. The parallelization of the calculation is a programming-technical aspect for the reduction 

of the calculation time. Thereby calculations independent of each other are executed in parallel. Thus, 

the entire computing capacity is better used and the computation time is reduced. The extent to which 

processes and algorithms can be parallelized depends to a large extent on the optimization algorithm 

and is therefore taken into account in the selection of an algorithm suitable for the use case shown 

here analogue to [Weiß 2018]. Based on the requirements for the optimization algorithm the simulated 
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cooling, genetic algorithms as well as the particle swarm optimization are fitting. Therefore, in the 

following chapter these are analyzed and a suitable optimization approach is chosen. 

9.3.1 Genetic algorithm 

Due to the formulated requirements on the optimization algorithm, only derivative-free methods can 

be considered and due to the complexity of the holistic mobility system, stochastic methods are best 

suited to identify the global optimum. [Weiß 2018] describes that according to this categorization for 

the optimization algorithm, three variants have prevailed in the context of powertrain optimization. 

These are the simulated cooling, the genetic algorithms as well as the particle swarm optimization, as 

shown in Figure 47. The genetic algorithms (GA) and the particle swarm optimization are particularly 

well suited for parallelization because they are population-based algorithms in which independent 

computations are performed in each generation. In [Moses 2014], [Jain et al. 2009] and [Desai et al. 

2010], a variant of the genetic algorithm, NSGA-II was found to be particularly suitable for the multi-

objective optimizations. This is selected as method and adapted for the powertrain optimization prob-

lem there. Due to the very similar requirements for the optimization algorithm, the genetic algorithm 

with the NSGA-II variant is also chosen in this work, extended and applied for the considered opti-

mization problem, namely the optimization of a holistic mobility system. In the following, the basics 

as well as the application of the genetic algorithm developed in [Weiß 2018], based on the work in 

[Moses 2014], are described. 

9.3.2 Basics of genetic algorithm 

Genetic algorithms were first introduced in the early 1960s by John Holland and his collaborators at 

the University of Michigan [Holland 1975] and have been further developed over time by various 

authors for different applications. They are based on insights from biological genetics and abstract 

Darwin's evolution of biological systems. The genetic algorithm enables the following points: 

• Possibility to optimize complex problems 

• Parallelizability 

• Adaptability for special application areas 

In Figure 49 the generalized flow of a typical genetic algorithm is shown. First, a starting population 

with a defined number of individuals, each with different characteristics, is selected. Using the objec-

tive functions as well as further procedures, a fit value is assigned to the individuals, on the basis of 

which a particularly fit parent generation is selected from the original population. The reproduction 

takes place by recombination (or crossing) of different parent pairs, whereby the characteristics of the 

parents pass directly into the characteristics of the children. Besides crossbreeding, mutation takes 

place with a certain probability. Thereby individual characteristics are modified independently of the 

parents. This ensures that the entire search space can be investigated and that the algorithm does not 
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remain in a local minimum. Subsequently, a new generation is formed from parents and children and 

the entire process starts again. This is done until a maximum number of iterations or a tolerance limit 

regarding the change of the optimum is reached [Siebertz et al. 2010]. 

 

Figure 49:  Generalized flow of genetic algorithm based on [Weiß 2018] 

The basic terms of GA originate from evolutionary biology and thus differ from the typical terms of 

optimization. These include the individual, gene, allele, genotype, phenotype, population, and fitness 

and are described in the following [Weiß 2018]: 

Individual: An individual in the biological sense is a living organism whose genetic information is 

stored in a set of chromosomes. In the context of genetic algorithms, however, the terms individual 

and chromosome are usually equated. It describes a possible solution or point in the search space of 

the problem to be optimized. It is defined by a certain number of genes and represents a mobility 

system in the context of the developed methodology. 

Gene: A particular site or sequence of a chromosome is referred to as a gene. Genes store the input 

parameters of an individual. This is normally done in an encoded fashion. For example, an input 

parameter that can only take two values is encoded by the binary form 0 and 1. There are however 

also procedures, which make the coding by floating-point numbers possible, in order not to limit the 

search area. A single input parameter does not necessarily have to be represented by one gene, since 

it is possible to combine input parameters as well as to encode one input parameter by several genes. 

The genes represent the variation parameters of the mobility system optimization. 

Allele: The specific expression of a gene is called an allele. If the gene is understood as a variable, the 

allele is the value of the variable. In the binary case these are the values 0 and 1.  

Genotype: The genotype is the encoded vector of the input parameters. It generally determines which 

coding method is chosen. 

Phenotype: The phenotype is the decoded vector of the input parameters. Its expression depends on 

the genotype and the chosen decoding method. 
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Population: A set of structurally similar individuals of a certain genus is called a population. When 

new creatures of this genus are born or others die, the size of the population inevitably changes. If 

one considers the populations of a genus over several points in time, one speaks of generations of the 

living beings. By the population concept the search space is examined at several places at the same 

time and the probability of finding the global optimum is increased. 

Fitness: The fitness describes the quality of an individual and thus the probability of being repro-

duced. It is calculated from the results of the objective function and is the decisive criterion for the 

selection of the parent generation. 

9.3.3 Application of the genetic algorithm 

In the following, the flow of the genetic algorithm for the optimization of holistic mobility systems is 

described. The flow of the optimization is shown in Figure 50: 

 

Figure 50:  Sequence of the genetic algorithm based on [Weiß 2018] 

Before the initialization takes place in the first step, the target criteria, premises, variables and optimi-

zation settings must be defined. Then, the initialization starts and a starting population and genes are 

generated randomly distributed in the search space. By using a random seed it is possible to reproduce 

an optimization process. If prior knowledge exists or similar optimizations have been performed, this 

knowledge can be incorporated into the selection of the start population. The closer these are already 

to the optimum, the faster the optimization algorithm is able to identify the Pareto front. Subsequently 

it needs to be checked, if the start population and genes fulfill all premises. 

In the next step, the different variants of the mobility system are calculated. Then the fitness calcula-

tion and selection is performed according to the NSGA-II approach [Deb et al. 2002]. According to 

[Weiß 2018], [Moses 2014], [Jain et al. 2009] and [Desai et al. 2010] the NSGA-II has been shown to 

be particularly suitable for multi-objective optimization and is therefore selected in this thesis as well. 
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It describes the rules by which the best individuals of a population are selected for the parent genera-

tion. Unlike single-objective optimizations, it is not possible here to rank individuals based on the 

calculated objective, since two or more objectives have to be weighed against each other. Nevertheless, 

in order to obtain a meaningful ranking of the individuals and thus be able to make a comparison, the 

NSGA-II determines the rank and crowding distance (CDT) for each individual. The rank results 

from the classification of all individuals into non-dominated fronts. Accordingly, the first rank in-

cludes all individuals that lie on the Pareto front of the current generation, since these are not domi-

nated by any others, for example there is no individual in the current population that performs better 

in all target variables. In the next step, the individuals of rank one are removed, resulting in a new 

Pareto front to which rank two is assigned. This is continued until all individuals are assigned a rank 

as shown in Figure 51 [Deb et al. 2002]. 

A comparison of all individuals based solely on their rank is not possible, as any number of individuals 

can be assigned a rank and thus cannot be compared with each other. Therefore, the CDT is calculated 

to further rank individuals of the same rank. It indicates the distance between an individual and his 

immediate neighbors on the same front. The aim here is to identify a front that is as wide and evenly 

distributed as possible and avoids dense accumulations. To this end, the two outer individuals are 

assigned the highest CDT value, while a value proportional to the sum of the distances of the two 

neighbors applies to all other individuals. With the help of these two metrics, an almost unambiguous 

assignment of ranking and fitness is possible. This is primarily based on ranking, and secondarily on 

CDT. Tournament selection is used to select the parent. It involves running several tournaments 

among a few individuals chosen at random from the population. The winners, i.e. the ones with the 

best fitness are selected. For each parent individual, a defined number, which is the tournament size, 

of random individuals are selected and the one with the best fitness is used as parent individual. The 

larger the tournament size, the higher the selection pressure and the less likely it is that individuals 

with a low fitness will also be reproduced. However, this is sometimes necessary in order to reach new 

regions of the search space. This increases the probability of identifying the global optimum. In 

NSGA-II, binary tournament selection with two individuals to compare is recommended [Weiß 2018]. 
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Figure 51:  Determination of the rank and crowding distance (CDT) of single individuals of a population according to the NSGA-
II based on [Weiß 2018] 

In order to consider constraints, which is a requirement for the optimization algorithm, an adaptation 

of the tournament selection is applied. Variants of solutions that do not meet specific requirements 

can be excluded from further analysis. Here the constraints are considered in the selection of the 

parent individuals. If two individuals are compared, one of which violates a constraint, the other one 

always wins, independent of the other criteria. However, if both violate one or more constraints, the 

individual that violates the constraints less is selected. For this purpose, the absolute violations within 

the current population are normalized with respect to the maximum value for each constraint and 

multiplied for each individual. This results in a measure for the total violation of all constraints [Moses 

2014]. 

In the next step offspring are produced from one pair of parents or from more than two parents by 

recombination. This is done to some degree of probability by shuffling the genes or by simply copying 

the parent pairs. The goal here is to reach unknown regions of the search space without losing already 

identified targetable traits. For recombination of real numbers, the BLX-α according to [Eshelman et 

al. 1993] is used in this work analogue to [Weiß 2018]. Here, the alleles of a gene from two parents are 

used to generate a child whose allele lies in a range around the expressions of the parent genes defined 

according to equation 33, where the adjustment parameter α specifies the size of this range. A random 

value in this range is used as shown in Figure 52. The whole procedure is repeated until the desired 

number of offspring has been generated [Weiß 2018]. 

[𝑚𝑖𝑛(𝐴1, 𝐴2) − 𝛼|𝐴1 − 𝐴2|, max(𝐴1, 𝐴2) + 𝛼|𝐴1 − 𝐴2|]                       (eq. 33) 
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Figure 52:  Permissible range of children in the recombination of a parent pair according to the BLX- α method based on [Weiß 
2018] based on [Siebertz et al. 2010] 

After recombination, a mutation is carried out with a certain probability. With this mutation probabil-

ity, which should be significantly lower than the recombination probability and is applied to each gene 

individually, a random variation of the respective value takes place. This can produce offspring that 

cannot result from recombination of the parental genes, improve the exploration behavior and allow 

leaving local minima once reached. Mutation can occur by choosing a purely random value from the 

entire definition range as well as by using a probability function, in which a value in the same definition 

range is calculated [Siebertz et al. 2010]. In the last step of the optimization cycle, a new population is 

generated. For this purpose, all individuals of the last generation are again compared with the offspring 

on the basis of fitness, i.e. rank and CDT. The best individuals from this set form the new generation. 

This procedure ensures that already identified very fitting individuals are not lost in the next generation 

[Weiß 2018]. 

9.3.4 Settings of the genetic algorithm 

For the performance of the optimization algorithm, it is important to choose the appropriate settings 

of the genetic operators for the problem. Since mobility systems are to be optimized with varying 

numbers and types of input parameters, a compromise must be found for all applications considered. 

The approach to identify the right settings is described in [Weiß 2018] and performed here. For the 

evaluation of the settings an optimization of the powertrain portfolio of the considered mobility sys-

tem in Berlin is performed. To get as close as possible to the complexity of the target application 

various parameters are chosen. Here the five parameters, which are the shares of the ICEVs with 

gasoline and diesel, PHEVs, FCEVs, and BEVs and one discrete parameter, which is a measure to 

reduce the CO2eq emissions by smart charging electric vehicles are varied. As a boundary condition 

the sum of all shares is defined as 1. In Table 13 the identified right optimization settings based on 

[Weiß 2018] are listed. The parameter settings are derived one time and it is assumed that these settings 

are valid for all regions as well as all mobility system configurations. 
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Table 13:  Identified settings of genetic operators based on [Weiß 2018] 

Tournament Size 10 

Mutation Probability 20 % 

Recombination probability 85 % 

 Complexity reduction of the mobility system 

As described in the previous chapter, the properties of the genetic algorithm have proven to fit the 

formulated requirements for the objective in this thesis. Due to the complexity of the overall system 

and the variety of parameters in the simulation as well as in the analysis, as shown in Figure 53, the 

computation effort of one variant is very high. Therefore, a simplification of the system must be 

carried out to enable optimization in a reasonable timeframe. To reduce the computation time, the 

holistic model is considered first and the computation times of the individual submodels are deter-

mined. As shown in Figure 16 (“Overall overview of the method”) of the objective function of the 

optimization includes the entire design and evaluation of the mobility system, including mobility sim-

ulation, powertrain simulation and the analysis of the target variables. Here, especially the mobility 

simulation has a large share in the computation time, since a certain number of iterations have to be 

performed for a converged result and, depending on the size of the considered system, the mobility 

behavior consists of a large number of single events. 

For the Berlin use case scenario, a 10% sample size of the population with over 300.000 agents with 

a modern CPU (see appendix A.9) results in a computation time of about 6.5 hours for the mobility 

simulation with 200 iterations and around one day for the subsequent evaluation of the travel modes 

and analysis of the target variables. Here, only one mobility system configuration is considered. Several 

hundred configurations are calculated for the optimization. To reduce the computation time, the fol-

lowing considerations are made. On the one hand, the scaling of the population size is considered, 

with the goal of generating a down-scaled system similar to the reference system based on a sample 

size of 10 %. A reduced sample size leads to a reduced number of calculations that need to be per-

formed and therefore to reduced computation times. Second, the number of iterations in the mobility 

simulation necessary to produce a converged result is investigated. Subsequently, the findings are in-

tegrated and implemented in the holistic method including optimization. 
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Figure 53:  Representation of the system as a data model with the parameter variety 
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9.4.1 Reduction of sample size of the population 

One way to reduce the computation time is to downscale the sample size of the population. With a 

reduced sample size, the calculation effort is also reduced. However, side effects of scaling have to be 

taken into account, because scaling affects the mobility behavior of the agents and therefore the results 

regarding average driven distances, travel times and average speed change. To achieve similar results, 

the storage and flow capacity of the network needs to be scaled down. The scaling of networks in 

MATSim is controlled by the flow capacity factor and the storage capacity factor. The flow capacity 

factor describes how many vehicles can exit the link per hour and the storage capacity factor describes 

how many vehicles can be stored at the same time in the considered link. With the flow capacity factor, 

the gap between consecutive vehicles can be increased and with the storage capacity factor the number 

of stored vehicles can be decreased. The goal of this scaling approach is to achieve a similar mobility 

behavior with the reduced sample size compared to the reference sample size [Horni et al. 2016]. Here 

it is assumed that a constant mobility behavior can be achieved with a constant modal split. A similar 

modal split leads to similar relative amounts of used travel modes and therefore to a similar mobility 

behavior. This enables an extrapolation of results regarding CO2eq emissions, costs and energy de-

mand. In chapter 10 these effects of scaling on the target criteria are analyzed in detail. 

Most studies focus on sample sizes between 1% and 100% such as in [Rieser 2019] and [Llorca et al. 

2019]. In [Rieser 2019], recommended values for the factors depending on the sample size in the range 

of 10% to 50% are suggested. Figure 54 shows the recommended factors. The storage capacity factor 

is deliberately chosen to be larger. This is because, if the size of the links is decreased too much, it 

may happen that no vehicles fit on the links. However, an extrapolation of the factors for sample sizes 

smaller than 1% are not allowed. 

 

Figure 54:  Recommended factors based on [Rieser 2019] 
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Therefore fitting storage capacity factors and flow capacity factors need to be found to achieve the 

same mobility behavior of the considered reference scenario. The goal is to find factors with which 

the modal split of the mobility system remains constant for all considered sample sizes. A constant 

modal split leads to the same relative usage of the respective transport modes and this leads to a similar 

mobility behavior of the agents. This approach though can have side effects on the travel times, dis-

tances as well as the target criteria CO2eq emissions, costs and energy demand since for example taken 

routes can change. These side effects need to be analyzed afterwards.  

In the following, sample sizes below 1 % are considered and suitable factors are derived for this pur-

pose, in which the mobility behavior of the different sample sizes remains constant. To achieve this 

goal the design of experiments (DoE) approach is used to find significant factors and derive meta 

models for the calculation of factors in dependence of the sample size. For the theoretical basis of a 

statistical experimental design, please refer to [Siebertz et al. 2010]. Subsequently, the target variables 

in MATSim, the mean distances, travel times and mean speeds for the different sample sizes are ex-

amined. The influence of the scaling on the target variables are shown. The whole process is carried 

out using the Berlin scenario as an example. In addition, it is assumed that the reduction of the sample 

size is distributed equally over the considered region. An equal distribution can be seen as a clustering 

of agents and therefore the assumption can be made, that the mobility behavior remains constant. In 

Figure 55 the distribution of the trip distance for each travel mode is shown for the 0.1% sample size 

on the left and 10% sample size on the right. Here it can be seen that an equally distribution of the 

agents on the region has a very small impact on the distances and is therefore a valid assumption. 

 

Figure 55:  Trip distance distribution for each travel mode in Berlin for a 0.1% and 10% sample size 

The DoE is used to identify significant effects of factors in the scaling of the population, and then 

derive appropriate factors to scale down the system to save computation time. Here, the resulting 

modal split of the 10% population with a storage capacity factor of 0.3 and flow capacity factor of 0.1 

is taken as a reference. The considered travel modes are cars as well as teleported public transport, 

bike and walk. The factors investigated in the DoE are the sample size (A) with the values 1% as well 

as 0.1%, the storage capacity factor (B) with the values 0.0005 as well as 0.01 and the flow capacity 
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factor (C) with the values 0.0005 as well as 0.01. In Figure 56 it can be seen that for this experimental 

design the flow capacity factor has a significant influence and the other factors each have only a slight 

influence. Here, the effects of the respective travel modes are considered individually. 

 

Figure 56:  Effects of factors sample size (A), storage capacity factor (B) and flow capacity factor (C) on the modal split of the 

different transport modes 

In the next step, the individual factors are examined in more detail. For this purpose, the storage 

capacity factor is varied for different sample sizes of 0.1%, 0.5%, 1% and 10% and the change in the 

modal split compared to the baseline scenario with a sample size of 10%. The flow capacity factor is 

kept constant and equals the corresponding sample size. For small sample sizes, the storage capacity 

factor has a very small impact on the modal split. This is because the storage capacity factor must have 

a minimum value so that at least one vehicle fits on a link. This is done internally by MATSim. For 

larger sample sizes such as 10% the storage capacity factor has a higher impact on the modal split. 

Figure 57 shows the results. On the y-axis the modal split is shown and on the x-axis the number of 

the calculation with the corresponding changed storage capacity factor. 
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Figure 57:  Effect of the storage capacity factor with a constant flow capacity factor on the modal split of different sample sizes 

Subsequently the flow capacity factor is varied. Here, the storage capacity factor is kept constant and 

set equal to the sample size. Figure 58 shows the differences of the respective modal split of the 

considered travel modes of the 0.1% sample size compared to the modal split of the considered travel 

modes of the reference scenario, which is the 10% sample size. Here it can be seen that for smaller 

sample sizes the flow capacity factor has a higher impact on the modal split, as already expected from 

the DoE, and the modal split changes linear to the increasing of the flow capacity factor. This shows 

that the modal split of the new scenario can be fitted to the modal split of the reference scenario via 

the flow capacity factor for sample sizes below 1%. 

 

Figure 58:  Effect of the flow capacity factor with a constant storage capacity factor on the modal split of the 0.1% sample size 

-200%

-150%

-100%

-50%

0%

50%

100%

0.0005 0.0010 0.0020 0.0030

D
ev

ia
ti

o
n

 o
f 

re
sp

ec
ti

ve
 M

o
d
al

 
S
p

li
t

FlowCapacityFactor

Constant StorageCapacityFactor for 0.1Pct Sample Size

car pt bike walk



116  

This was repeated for further sample sizes up to 1% and the following recommended key-values for 

the factors were derived as a function of the sample size, as shown in Figure 59. Here, each travel 

mode is considered individually and the slope of the linear curve is determined. Additionally, a 

weighting of the respective travel modes is considered. The cars are analyzed in more detail in the 

mobility simulation since it is a network mode, i.e. a travel mode that actually moves on the network. 

Therefore, this mobility mode has a greater impact on the physical effects of the system. To better 

match the system to the reference scenario, this mobility mode is weighted higher. Then, the values 

are combined to form a recommended factor. As shown before the storage capacity factor has little 

impact on the modal split. Therefore, it is set to equal the considered sample size. Equation 34 and 35 

show the mathematical relationship of the calculation of the factors. With the help of these factors, it 

is possible to adjust the downscaled system to the reference scenario of 10% in such a way that a 

constant mobility behavior exists. This is done for sample sizes in the range 0.1% and 1%. 

𝐹𝑓𝑙𝑜𝑤𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = ∑ 𝑤𝑖 ∗ (
𝑦𝑟𝑒𝑓,𝑖−𝑦0,𝑖

𝑚𝑖

𝑁𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑀𝑜𝑑𝑒𝑠

𝑖=1
∗ 𝐹𝑓𝑙𝑜𝑤𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦,0)               (eq. 34) 

𝐹𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒                                                                            (eq. 35) 

- 𝐹𝑓𝑙𝑜𝑤𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: Calculated recommended flow capacity factor for the considered sample size 

- 𝑁𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑀𝑜𝑑𝑒𝑠: Number of transport modes 

- 𝑤𝑖: Weighting of transport modes. Here the following weights are assumed: 

- 𝑤𝑐𝑎𝑟𝑠 = 80% 

- 𝑤𝑝𝑡 = 10% 

- 𝑤𝑏𝑖𝑘𝑒 = 5%  

-  𝑤𝑤𝑎𝑙𝑘 = 5%  

- 𝑦𝑟𝑒𝑓: Modal split of the reference scenario for the considered transport mode, which needs to 

be achieved 

- 𝑦0,𝑖: Modal split of the considered sample size for the point of 0 for the considered transport 

modes 

- 𝑚𝑖: Slope for the considered transport mode 

- 𝐹𝑓𝑙𝑜𝑤𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦,0: Flow capacity factor of the considered sample size for the point of 0 

- 𝐹𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: Calculated recommended storage capacity factor for the considered sample 

size 

- 𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒: Considered sample size 
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Figure 59:  Recommended factors to match the modal split of the reference scenario of 10% sample size 

In the next step, the target values are calculated with the recommended factors for the respective 

sample sizes between 0.1% and 1% and compared with the reference scenario of 10% sample size. 

For each sample size an own plan with the respective sample size is created and a mobility simulation 

is performed. First, the modal split is considered as shown in Figure 60. The modal split is very well 

matched overall. Here it can be seen that the largest deviations for the travel mode car are at just under 

3% at the sample size of 0.1%. All other sample sizes are very well matched and the deviation is just 

under ±1%. The situation is similar for public transport. Here, the largest deviation is just under -2% for 

a sample size of 0.1%, whereas the deviations for the other sample sizes are less than ±1%. In the 

case of bike, there are larger deviations in the range of -5% for the 0.1% sample size. This is mainly 

due to the fact that this travel mode has a smaller share in the modal split. Small absolute changes in 

the modal split can lead to larger relative changes. In the case of walk, it is similar to bike. The devia-

tions across all sample sizes are in the range of -9% and 4%. Again, due to the fact that this travel 

mode has a smaller share in the modal split. Here it can be seen that with smaller sample sizes the 

deviations increase. This is plausible since with smaller sample sizes less individual agents are consid-

ered and smaller changes in the system have a higher influence on the mobility behavior. Overall, it 

can be stated that the modal split of the reference scenario can be met very well with smaller sample 

sizes and thus the assumption that the mobility behavior remains constant is fulfilled. This also makes 

sense, since the factors are derived in dependence of the modal split. 
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Figure 60:  Simulated modal split with derived recommended factors for the sample sizes between 0.1% and 0.5% 

In the following, the mean distances, speeds and travel times for sample sizes in the range of 0.1% 

and 1% are considered and compared with the reference scenario. Figure 61 shows the deviations of 

the mean distances of the respective travel modes for the respective sample sizes compared to the 

reference scenario. Here, the larger deviations are noticeable for the travel mode bike in the amount 

of up to 12% and walk in the amount of -9%. This is again due to the fact that the share of bike and 

walk in the modal split as well as mean distance driven with the bike or walk is low compared to the 

other travel modes. Scaling thus has a greater influence on the results, since small absolute changes 

lead to large relative deviations. In this specific case, it can happen that when scaling down, mainly 

bicyclists or walking agents with a larger or smaller distance are taken into account, and it therefore 

also affects the average distances. For cars, the deviations are quite small. Here, the deviations are in 

the range of under 2%. For public transport, the deviations are in the range of -8% to -1%. Overall it 

can be seen that the deviation increases with smaller sample sizes. 
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Figure 61:  Difference of mean distance between considered sample size and reference scenario 

Figure 62 shows the deviations of the average speed for the different travel modes of the respective 

sample sizes compared to the reference scenario. The mean velocity shows larger deviations for car 

with decreasing sample sizes compared to the reference scenario. This is due to the selected flow 

capacity factor. Compared to the reference scenario, the flow capacity factor is set relatively higher for 

smaller sample sizes in order to achieve a constant modal split. An increase of the flow capacity factor 

means that more vehicles can leave a link in a certain time. This leads to an increase in the average 

speed compared to the reference scenario of up to 8% in the 0.1% sample size. This linear relationship 

of the selected factors is also reflected in a linear increase of the mean speeds. The other travel modes 

show hardly any deviations from the reference scenario. The largest deviation occurs for walking which 

lies in a range of ±2%. This is due to the fact that this form of mobility uses teleported modes and 

therefore the average speed is predefined. 
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Figure 62:  Difference of mean velocity between considered sample size and reference scenario 

Figure 63 shows the deviations of the average travel times for the considered travel modes of the 

respective sample sizes compared to the reference scenario. The average travel times result from the 

average distance and average speed. This is also reflected in the results. Due to the higher average 

speed for cars and the slightly higher average distance, travel time savings of up to -5% result for 0.1% 

sample size. Analogously, it can be seen that for the other travel modes, the change in mean distance 

is basically equal to the change in mean travel time, since the mean speed remains almost constant. 

 

Figure 63:  Difference of mean travel times between considered sample size and reference scenario 
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Figure 64 shows the reduction in computation time compared to the reference scenario. The results 

show that downscaling the sample size leads to computation time savings of up to 95% at 0.1% sample 

size compared to the reference scenario. The more the sample size is scaled down, the greater the 

savings in computing time. 

 

Figure 64:  Difference of computation time between considered sample size and reference scenario 

Overall, it can be summarized that the modal split can be kept almost constant with small deviations 

when scaling down the sample size. However, the consideration of the target variables show that the 

deviations and thus the side effects of the scaling become larger with increasingly smaller sample sizes, 

as shown in Figure 60. Considering these deviations, it can nevertheless be stated that a downscaling 

of the sample size generates comparable scenarios with a similar mobility behavior and thus reduces 

the computation time immensely. Since the goal of the downscaling is to calculate similar CO2eq emis-

sions, costs and energy demand and not the optimization of traffic flows, this approach is valid. In 

Figure 65 the total CO2eq emission including production emissions for all travel modes per individual 

agent per year for the two scenarios is shown for the sample sizes of 0.1% and 10%. In the first 

scenario the current status of the mobility system in Berlin with mainly ICEVs is considered. In the 

second scenario a 100% BEV setup is considered. Here it can be seen that scaling has a little impact 

on the emissions for both scenarios. Further analyses are performed in chapter 10. 
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Figure 65:  Total CO2eq emissions per individual agent 

In addition, it is possible to match the target variables via the freespeed of the links even better. Here, 

for example, a reduction of the freespeed of all links by 15% with a sample size of 0.1% with the same 

simulation settings and factors leads to a similar modal split. In addition, the deviation in the average 

speed of cars is reduced to 4% instead of the 8% as shown in Figure 62. This shows that by iteratively 

adjusting the freespeed of the links, not only the modal split of the reference scenario with 10% sample 

size, but also the relevant target variables can be reproduced. However, this approach will not be 

pursued further in the following since physical changes in the system can generate unintended side 

effects.   

The downscaled mobility system helps to calculate, understand as well as it enables an optimization 

with regard to the considered target criteria. In this thesis a compromise between results quality and 

computation time is chosen. Therefore, in the application of the optimization, the converged 0.5% 

sample size is taken to find optimal parameter settings for the mobility system since the computation 

time is reduced drastically and all target criteria of the mobility simulation of the 0.5% sample size 

including the modal split are similar to the reference scenario. Nevertheless, it is important to state 

that these factors are derived with the scenario, in which cars as network modes and public transport, 

bike and walk as teleported modes are considered. If new scenarios are analyzed, for example with 

new travel modes, it needs to be checked if these derived factors are still valid. It is also important to 

make sure, that these new travel modes are scaled accordingly. 

 

0

500

1000

1500

2000

2500

Current Status of Berlin 100% BEV

C
O

2
eq

E
m

is
si

o
n

 i
n

 k
gC

O
2
eq

Total CO2eq Emission per Individual Agent per 
Year (incl. Production)

Sample Size of 0.1% Sample Size of 10%



9 Optimization methods 123 

9.4.2 Reduction of number of iterations 

In this section, the number of iterations is examined in more detail to see whether it can be reduced. 

Figure 66 shows the modal split determined for the respective iteration under consideration. This 

shows that a reduction in the number of iterations does not make sense, due to the change of the 

modal split over the different iterations. Due to the co-evolutionary approach in MATSim, a certain 

number of iterations must be calculated until the results settle and converge. However, not only the 

modal split needs to converge, but also the routing of the vehicles becomes stable only after many 

iterations. Experience during this thesis has shown that this is achieved after about 200 iterations. 

 

Figure 66:  Share of travel modes for all iterations 

Another possibility that exists is the generation of an iterated scenario that can subsequently be used 

as a baseline plan. For this purpose, a converged plan with 200 iterations is generated in a pre-process 

as a base plan for the optimization. Subsequently, further iterations are calculated with this base plan. 

Figure 67 shows the results of the modal split of the further iterations. The results show that the modal 

split remains almost constant for a converged plan. Thus, the assumption can be made that a con-

verged plan leads to a representative mobility behavior and that only a few iterations are sufficient. A 

reduction in the number of iterations within the optimization loop can be achieved under certain 

premises such as the same mobility system configuration. This includes the transport mode offer as 

well as the calibration of the transport modes and activities in the configuration. 
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Figure 67:  Share of travel modes for additional 100 iterations 

However, if changes are made in the mobility system such as adding new travel modes, it needs to be 

checked, if these assumptions are still valid. For this consideration, the following calculations are per-

formed. A converged plan is taken as the base plan for further calculations. Subsequently, micro mo-

bility is offered as another mobility type. Here, the number of iterations per mobility simulation is 

increased. The same calculated storage and flow capacity factor in dependence of the sample size is 

used. The results are shown in Figure 68. Looking at the overall mobility system it can be seen that 

the influence of the new travel mode, in this case micro mobility, has no large impact on the overall 

modal split.  

 

Figure 68:  Share of travel modes for additional 100 iterations 
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In Figure 69 the share of micro mobility is shown over the different number of iterations considered 

in the mobility simulation. Here it can be seen that the assumption made previously, that for additional 

iterations the mobility behavior remains constant, no longer applies, since the share of micro mobility 

increases steadily with the number of iterations up to a share of 1.8%, while other travel modes such 

as cars or public transport decrease. This shows that the agents' plans have not yet converged with a 

lower number of iterations. In order to evaluate new mobility concepts and their predicted impact on 

the future mobility system a converged plan is needed. These results show, that if big changes are 

made in the mobility system, such as adding new travel modes, a new base plan needs to be calculated. 

In this case, before evaluating the new system with micro mobility, a new base plan with 200 Iterations 

including micro mobility should be calculated. Then the number of iterations within the optimization 

loop can be reduced again. In addition, it can be seen that the calculated storage and flow capacity 

factor are still valid. The mobility behavior remains constant for different sample sizes with the rec-

ommended factors compared to the 10% reference scenario with included micro mobility. 

 

Figure 69:  Share of micro mobility for different number of iterations 

From this analysis, it can be deduced that due to the software design of MATSim, agents innovate 

their plans, if changes are made. Therefore, changes in the system require a minimum number of 

iterations for saturated market penetration of the considered travel modes. In this work, the minimum 

number of iterations is 200 runs, since here a converged plan in terms of modal split and routing can 

be achieved as shown in Figure 69. However, with the help of converged plans, it is possible to use 

them as base plans in the optimization loop and reduce the number of iterations there, since converged 

plans hardly change and the mobility behavior remains almost constant. Therefore it is recommended 

to always use converged and routed plans as an inertial plan for the mobility simulation. These findings 

as well as the insights from the downscaling of the population are implemented in the holistic optimi-

zation method in the following. 
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9.4.3 Holistic optimization approach 

The following section describes the holistic optimization approach (Figure 70) with the findings of 

the previous chapters. In the first step, the reference scenario is defined. In this case, a 10% sample 

size scenario of the considered Berlin scenario is considered. Subsequently, a comparable downscaled 

system with a sample size of 0.5% is generated with the premise of a constant mobility behavior. In 

the next step, the first mobility simulation takes place. The simulation is run until the agents' plans 

converge. This converged plan describes the actual state and serves as the basis for the optimization 

as well as the base scenario for the later comparison. 

Then the optimization starts. For this, the parameters are first set in the system. In the first optimiza-

tion loop, these are random start values. If settings in the mobility system are changed that can have 

a major impact on mobility behavior, such as adding a new travel mode, a new converged plan must 

first be generated. Here it is assumed that the changes with a 0.5% sample size are representative for 

the reference sample size of 10%. This assumption is validated at the end of the optimization when 

the optimal settings are applied to the 10% sample size scenario. Otherwise, this step is skipped. Then, 

it is checked if a valid scenario is generated. In the following the mobility system is designed and 

evaluated. This includes the powertrain simulation, evaluation of the other travel modes as well as the 

evaluation of the infrastructure with respect to the target variables CO2eq emissions, costs and energy 

demand. Via the genetic algorithm, new parameter settings are determined until the optimal variables 

are found with respect to the defined optimization target. The deliberate separation of the individual 

simulation blocks has the additional advantage here that calculations are only performed when they 

are necessary to save further computation time. In the powertrain simulation, there is also the option 

of loading a vehicle portfolio from a pre-process to further reduce the computation time. Once the 

optimization is done and optimal parameter settings are derived, they are applied on the actual refer-

ence scenario with the 10% sample size and the results are compared to the base scenario to quantify 

the impact of the optimization of the mobility system. 
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Figure 70:  Overview of the holistic optimization process 

Overall, it could be shown that the reduction of the sample size is valid for the considered use case 

and fulfills all requirements regarding similar mobility behavior as well as target values of the mobility 

simulation. However, it has to be taken into account that for other use cases, e.g. including sharing 

concepts, new effects may occur that need to be analyzed separately. 

9.4.4 Example of powertrain optimization 

In the following example the holistic optimization approach is applied on the mobility system of Berlin 

as described in chapter 5. Here, a multidimensional optimization is carried out in which the powertrain 

portfolio for the considered region of Berlin is optimized regarding emission and cost reduction. Ini-

tially, the actual state of the powertrain portfolio is analyzed based on the statistical data of the 

Kraftfahrt-Bundesamt [Kraftfahrt-Bundesamt 2022]. Here, the powertrain portfolio consists of 94% 

ICEVs, 1% BEVs and 5% (P)HEVs. The optimization is performed with a 0.5% sample size of the 

population. For PHEVs, a realistic charging behavior is assumed as described in Chapter 6. The opti-

mizer varies the proportions of the powertrain types until the objective is achieved. In total, 5 gener-

ations with 200 variants each are considered. One variant represents a holistic mobility system. The 

results of the last generation with all its variants are shown in Figure 71. The consideration of total 

emissions over costs shows that a Pareto front emerges. A conflict of objectives thus arises in the 

determination of the optimum powertrain portfolio. 
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Figure 71:  Calculated solutions of powertrain optimization 

Since the solutions are determined by means of optimization with a 0.5% sample size, it needs to be 

shown that these settings also apply to larger sample sizes. In order to show that the optimal settings 

also apply to larger sample sizes, a parameter set is then selected from the solutions and applied to the 

two sample sizes of 0.5% and the reference sample size of 10%. For the selected parameter set, shown 

as a light grey triangle in Figure 71, the powertrain portfolio consists of 33% ICEVs, 37% BEVs, 27% 

PHEVs and 2% FCEVs. This parameter set is a solution that represents a compromise of cost as well 

as emission reduction. Figure 72 shows the results of the target parameters of total CO2eq emissions, 

costs as well as energy demand per agent as well as per year. Compared to the results of the current 

state of Berlin shown in Figure 65, it can be seen that the emission decreased and that the optimizer 

has found a valid solution. The results show that with the determined optimal setting of the powertrain 

portfolio for the 0.5% sample size, similar results are calculated for the 10% sample size as well. This 

example outlines that optimal settings for larger sample sizes can be determined with a reduced sample 

size. In the next chapter a sensitivity analysis is performed to examine the influence of different vari-

ables in the overall system. 

 

Figure 72:  Comparison of results of 0.5% and 10% sample size  
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10 Sensitivity analysis 

In this chapter, the results of a sensitivity analysis are given. For the sensitivity analysis, the described 

example scenario for Berlin is analyzed. Here, the sample sizes of 0.1% and 10% are considered. The 

time period set is 14 years. Two scenarios are simulated. In the base scenario, the actual state of the 

mobility system under consideration is presented. The powertrain portfolio consists mainly of ICEVs: 

94% of vehicles are ICEVs, 4.0% are hybrid vehicles, 1.0% are PHEVs and 1.0% are BEVs. Other 

types of powertrains are neglected here, since their share is very small [Kraftfahrt-Bundesamt 2022]. 

For a comparison a new single scenario is defined. Here, the same mobility behavior and a 100% BEV 

scenario is assumed for the powertrain portfolio. In both scenarios, the total CO2eq emissions, costs 

from the customer's point of view, and the energy demand of the mobility system are calculated for 

the two sample sizes of 0.1% and 10% and then compared to investigate the influence. 

The goal of the sensitivity analysis is to examine the influences of the scaling of the population as well 

as the influences of the input key-values. Since it must be ensured that the scaling does not have a 

major influence on the results and thus delivers good result quality with reduced computing power, 

this will be investigated in detail. In addition, the influence of selected parameters on the target values 

CO2eq emissions, costs and energy demand will be investigated. The CO2eq key-values for the pro-

duction of the battery, the internal combustion engine as well as the electricity mix and the tank-to-

wheel emissions of the fossil fuels will be analyzed when considering the CO2eq emissions. The tank-

to-wheel emissions can be reduced by using renewable energy. Since ICEVs dominate the powertrain 

portfolio in the first scenario, the focus here is on the internal combustion engine as well as the re-

spective fuel. In the second 100% BEV scenario, the batteries have a large impact during the produc-

tion phase and here the impact in the holistic system will be investigated. In the use phase, the elec-

tricity mix as the main energy source has a large impact when considering BEVs and is therefore 

examined in more detail. When considering costs, the production costs of the battery and the internal 

combustion engine as well as electricity and fuel costs are varied. For the energy demand, the charging 

efficiency of the BEVs is analyzed to estimate the impact of charging losses on the energy demand in 

the overall system.  

 Influence of sample size 

In the first step, the influence of the sample size on the target variables is investigated. Figure 73 - 

Figure 75 show the results of the analysis. Here the deviations between the sample sizes are quantified. 

For this purpose, the results of the target values of the sample sizes between 0.1% and 1% are com-

pared with the results of the sample size of 10%, taking into account the scaling factor. All the results 

are extrapolated to 100% sample sizes to achieve a better comparability between the values. Figure 73 
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shows the CO2eq Emissions per agent per year for cars. The largest deviations in the base scenario 

are found for the 1% sample size and lie in a range of 2%. The deviations in the new 100% BEV 

scenario are similar. Here it can be seen that again at the sample size of 1% the biggest deviation with 

2% occurs, which is relatively small. 

 

Figure 73:  CO2eq emissions per agent per year for cars of considered sample size compared to the results of the 10% sample size 

In Figure 74 the deviations for the costs are shown. It can be seen that the largest deviations are found 

for the 0.2% sample size in the base and new scenario and lie in a range of 2% as well. Overall, the 

deviations are relatively small. It is evident that with decreasing sample size, the deviations increase, 

since less individual agents with different paths and user behavior are considered. Nevertheless, these 

deviations are within a reasonable range. 

 

Figure 74:  TCO per agent per year for cars of considered sample size compared to the results of the 10% sample size 
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In Figure 75 the deviations for the energy demand are shown. Here it can be seen that the largest 

deviations are found for the 0.8% sample size in the base and new scenario and lie in a range of 4%. 

Overall, the deviations in the base scenario are larger, but still relatively small. In this example it can 

be seen that the influence of the sample size on the target variables is very small. The ratios are almost 

equal to the scaling factor. For example, from 0.1% to 0.2% sample size corresponds to a doubling of 

the population size. This is also reflected in the target variables, i.e. a doubling of emissions, costs as 

well as energy demand with very little deviation in a range between 1-4% for the different target cri-

teria. This is also true for both scenarios. 

 

Figure 75:  Energy demand per agent per year for cars of considered sample size compared to the results of the 10% sample size 
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smaller sample sizes similar exploration behaviors in the search space can be achieved and thus suitable 

results for the reference scenario can be determined.  

 

Figure 76:  Pareto-Front of optimization results for different sample sizes 

 Influence of key-values on CO2eq emissions 
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Table 14:  Parameter settings for the sensitivity analysis of the CO2eq emissions 

Parameter set-

tings number 

CO2eq key-val-

ues for batteries 

in 

[kgCO2eq/kWh] 

CO2eq key-values 

for electricity mix 

in [kgCO2eq/kWh] 

CO2eq key-val-

ues for com-

bustion en-

gine in 

[kgCO2eq/kW] 

Well-to-Tank 

emissions in 

[gCO2eq/kWh] 

Reference values 75 0.331 3.05 58 

1 60 0.331 3.05 58 

2 90 0.331 3.05 58 

3 75 0.300 3.05 58 

4 75 0.360 3.05 58 

5 75 0.331 2.7 58 

6 75 0.331 3.4 58 

7 75 0.331 3.05 52 

8 75 0.331 3.05 64 

 

The two scenarios are analyzed separately here. In the first scenario, the current state of the powertrain 

portfolio in Berlin is described. The powertrain portfolio consists of >94% ICEVs, ~5% (P)HEVs 

and 1% BEVs [Kraftfahrt-Bundesamt 2022]. In the first four parameter settings, the emission param-

eters for the production of the battery as well as the electricity mix and the resulting emissions are 

varied. Due to the very high proportion of ICEVs in this scenario, the variation of these parameters 

has hardly any influence and can therefore be neglected with regard to the overall system, as can be 

seen in Figure 77. In the other parameter settings 5-8, the emission key-values for the production of 

the combustion engine and the well-to-tank emissions of fossil fuels, in this case gasoline, are varied. 

For these boundaries, the influence of the parameter variation in the range of +-10% is also small and 

the results vary in the range of +-0.2% to +-0.5% compared to the reference parameter settings, as 

can be seen in Figure 77. Overall, it can be stated that the potential for ICEVs seems to have been 

exhausted with regard to these variables and improvements can only be achieved with great effort. 
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Figure 77:  Influence of various parameter settings on total CO2eq emissions of cars in scenario 1 

In the second scenario a 100% BEV scenario is assumed and calculated. Overall, there is greater po-

tential here, as can be seen in Figure 78 when considering the first four parameter settings. The battery 

production emissions are varied between 60 and 90 kgCO2eq/kWh and this leads to a change in CO2eq 

emissions in the overall system of ±3.5% compared to the reference parameter settings. It can also be 

stated, that the battery emissions have a high influence on the overall emissions of the mobility sys-

tems. This also shows the high impact of the production emissions in the mobility system. The influ-

ence of the electricity mix is high as well. In the simulation with the reference values, the stored elec-

tricity mix curve is considered, which decreases dynamically over the years. The average value over 

the 14 years is 331 gCO2eq/kWh. For the sensitivity analysis these values are increased and decreased 

by 10%. With that, the average electricity mixes with an emission value of 300 gCO2eq/kWh and 360 

gCO2eq/kWh are now assumed here. Reducing the average electricity mix to 300 gCO2eq/kWh leads 

to a 3.5% reduction in total emissions and increasing emissions to 360gCO2eq/kWh leads to a 3.5% 

increase in emissions compared to the reference parameter settings. It can be seen that the electricity 

mix has a big influence, if it comes to emission reduction in the overall mobility system. In this exam-

ple, only changes in emissions in the electricity mix in the range ±10% are considered. However, there 

are solutions that enable far greater savings, such as charging with green electricity with almost zero 

emissions. Overall, this shows that very high reductions in emissions during the use phase of electrified 

vehicles can be achieved with simple means, which also have a very large impact on overall emissions. 

A change in the production emissions of combustion engines and fossil fuels have no impact on 

BEVs, as can be seen in parameter Settings 5-8, as shown in Figure 78. The results show that the 
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BEVs seem to have a very large potential that can be achieved with relatively little effort compared to 

the first scenario. 

 

Figure 78:  Influence of various parameter settings on total CO2eq emissions of cars in scenario 2 

In the following, the influence of the key-values on the individual forms of mobility and thus on the 

overall system is examined for scenario 1. Figure 79 shows the emissions of the various forms of 

mobility. The production emissions of passenger cars, public transport, bicycles, the required infra-

structure for ICEVs and the emissions in the use phase of passenger cars and public transport are 

shown. The emissions of the public transport are determined with the help of key-values depending 

on the passenger kilometers. Here, a value of 37 gCO2eq/km is assumed for the production emissions 

and a value of 62 gCO2eq/km for the emissions in the use phase based on [Merchan et al. 2017]. 

Electrically powered public transport vehicles are assumed for the operation of the public transport. 

This leads to the fact that a change in the electricity mix also has an impact on the emissions in the 

use phase. It is assumed that the emissions in the use phase change proportionally to the changes in 

the electricity mix. In the first scenario, a similar pattern as in Figure 77 emerges. Since there are hardly 

any BEVs in the powertrain portfolio in the first scenario, a change in production emissions of bat-

teries has no effect. In this scenario, a change in the electricity mix has an impact on emissions in the 

use phase of public transport. Here, it can be seen that a ±10% change in electricity mix results in a 

±1% change in total emissions. Furthermore, it can be seen in Figure 79 that a change in the produc-

tion emissions of the internal combustion engines has hardly any impact in the holistic system. 

Whereas a ±10% change in well-to-tank emissions cause a ±0.4% change of the emissions in the 

overall system. This is mainly due to the fact that the use phase of passenger cars, especially ICEVs 

has the largest impact on the total emissions in the mobility system. 
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Figure 79:  Influence of various parameter settings on total CO2eq emissions of the mobility system in scenario 1 

In Figure 80 the influence of the key-values on the individual forms of mobility and thus on the overall 

system is examined for scenario 2. Again, it can be concluded that vehicles have the largest impact on 

CO2eq emissions in the mobility system. A ±10% change in vehicle battery production emissions 

results in a ±3% change in emissions across the system, as seen in parameter settings 1 and 2. This 

shows the large impact of the passenger cars and in this case specifically the large impact of the pro-

duction emissions of BEVs. In parameter Setting 3 and 4, the emissions in the electricity mix are 

varied by ±10% and this leads to a ±4% in the emissions in the whole system. Again, this shows the 

large influence of the electricity mix in an electrified mobility system including BEVs and electrically 

powered public transport. Emissions in the use phase account for almost 40% of the total emissions 

in the mobility system, as can be seen in Figure 80, which can be saved by means of renewable energy. 

Since there are no ICEVs in the second scenario a change in the production emissions of the com-

bustion engine as well as the well-to-tank emissions of fossil fuels have no influence on the emissions 

of the overall mobility system, as can be seen for the parameter setting 5 to 8. 
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Figure 80:  Influence of various parameter settings on total CO2eq emissions of the mobility system in scenario 2 

 Influence of key-values on costs 

When considering the costs, the cost parameters for the battery and combustion engine production 

as well as the electricity and fossil fuel costs are varied. The parameter settings of the sensitivity analysis 

are shown in Table 15. The values in the first row are the reference values. The results of the further 

tests are compared with the reference values. 
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Table 15:  Parameter settings for the sensitivity analysis of the costs 

Parameter set-

tings number 

Production costs 

of batteries in 

€/kWh 

Electricity 

costs in 

ct€/kWh 

Production costs 

of combustion en-

gine in €/kW 

Fossil fuel 

costs in €/l 

Reference values 268 22 72 1.5 

1 230 22 72 1.5 

2 300 22 72 1.5 

3 268 20 72 1.5 

4 268 24 72 1.5 

5 268 22 65 1.5 

6 268 22 79 1.5 

7 268 22 72 1 

8 268 22 72 2 

 

The two scenarios are analyzed separately. In Figure 81 the mobility costs for the first scenario for the 

used travel modes is shown. In the first four parameter settings the production costs key-values for 

the battery and the electricity costs are varied. Since the first scenario mainly consists of ICEVs, this 

has a very little impact on the overall system. In the parameter setting 5-8 the productions of the 

combustion engine as well as the fossil fuel costs, in this case gasoline, are varied. Here it can be seen 

that a variation of the production costs of the combustion engine in a range of ±10% lead to a change 

in the mobility costs in the overall mobility system of ±0.4%. The variation of the fossil fuel costs 

from 1.5 €/l to 1 €/l as well as 2€/l lead to overall change of the mobility costs in the mobility system 

of ±2%. The operation costs have a higher influence on the mobility costs than the single production 

costs. 
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Figure 81:  Influence of various parameter settings on mobility costs per travel mode in scenario 1 

In Figure 82 the mobility costs for the second scenario are shown. In the first two parameter settings 

the production costs of batteries are decreased to 230 €/kWh as well as increased to 300 €/kWh. This 

leads to a total increase of the mobility costs in the mobility system of ±2%. In the parameter setting 

3 and 4 the electricity costs for charging are decreased to 20 ct€/kWh and increased to 24 ct€/kWh. 

In this case it is assumed that these costs apply to every form of charging. These changes lead to an 

overall change of the mobility costs in the mobility system in a range of ±0.3%. The variation of the 

production costs of combustion engines as well as fossil fuel costs have no effect on the 100% BEV 

scenario, as shown in Figure 82. Here it can be seen that the production costs of batteries have a 

higher impact on the total mobility costs. This reflects the greater leverage of the production phase 

with regard to costs due to the dynamic system behavior and relatively frequent change of vehicles of 

the agents over the years. 
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Figure 82:  Influence of various parameter settings on mobility costs per travel mode in scenario 2 

 Influence of key-values on energy demand 

When considering the energy demand, the charging efficiency of the charging station is varied. The 

parameter settings of the sensitivity analysis are shown in Table 16. The values in the first row are the 

reference values. The results of the further tests are compared with the reference values. 

Table 16:  Parameter settings for the sensitivity analysis of the energy demand 

Parameter settings number Efficiency of charging station 

Reference values 0.89 

1 0.83 

2 0.95 

 

Figure 83 shows the relative changes in the calculated energy demand due to the change in the charging 

efficiencies for both scenarios. In the first parameter setting, the charging efficiency is lowered to 0.83. 

In the first scenario, this again has a very small impact due to the very high proportion of ICEVs in 

the powertrain portfolio, as shown in Figure 83 on the left side. In the second scenario, a deterioration 

of the efficiency leads to an increase of the energy demand by 1%, as shown in Figure 83 on the right 

side. In the second parameter setting, the charging efficiency is raised to 0.95. Again, this has hardly 

any impact on the first scenario and in the new scenario it leads to a reduction of the energy demand 

by 1%, as depicted in Figure 83 on the right side. 
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Figure 83:  Influence of various parameter settings on energy demand of cars in scenario 1 and 2 

Overall, the results show that the individual parameters have a relatively small influence on the costs 

and energy demand. From this, it can be concluded that the uncertainty of the results is low and thus, 

overall, a sufficient quality of results is achieved, which was initially defined as a requirement for the 

methodology. With regard to emissions, it can be seen that especially for BEVs there are potentials in 

order to reduce the overall CO2eq emissions with relatively small effort, such as by producing green 

batteries or using clean energy for driving. 
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11 Application of the method 

In this chapter, the method is applied exemplarily for the region of Berlin for different use cases in 

order to validate the methodology. In the first step, the scenario analysis is described. Subsequently, 

the actual state of the Berlin region is presented based on statistical data and this represents the refer-

ence scenario. In the next step, two use cases are calculated. On the one hand, a powertrain optimiza-

tion of the vehicle portfolio with respect to CO2eq emissions is performed for the mobility system. 

Then, a multidimensional powertrain optimization of the vehicle portfolio with respect to CO2eq 

emissions and costs is performed for the mobility system. 

 Scenario analysis 

A comparative analysis is used to quantify the influences of the decarbonization strategies on the target 

values. In the first step, a reference scenario is defined. This can be, for example, the actual state of 

the region under consideration based on statistical data such as census data and traffic data that area. 

A new scenario is then designed, evaluated and optimized. By comparing it to the reference scenario, 

the impact of the changes in the new scenario can be quantified. This is exactly what is described in 

this chapter. 

The comparison of the two scenarios is done on different levels. Starting at the agent level, the agent 

under consideration is compared in the two scenarios with respect to the target criteria, CO2eq emis-

sions, costs and energy demand. On the next level, the results are summarized on the respective life 

stage and compared with each other. Then the results are summarized per used travel modes. At the 

highest level, the mobility system is considered holistically and the target variables are compared with 

each other. The different levels are shown in Figure 84. 



11 Application of the method 143 

 

Figure 84:  Comparison of scenarios on different levels 

 Reference scenario 

In the following application example, the Berlin region is considered based on statistical and map data 

and used as the reference scenario. Figure 85 shows a section of the road network. The scenario is 

parameterized using fully automatable processes. For this purpose, a section of the Berlin region is 

extracted from OpenStreetMap and converted into a network for MATSim. Subsequently, relevant 

locations are extracted from the same OSM dataset and classified into different categories. In the next 

step, a synthetic population is generated based on statistical data, such as [Statistik Berlin-Brandenburg 

2021]. Here, a sample size of 10% is chosen. In total, four mobility types are available to the agents. 

These are private cars, public transport, bicycles and walking. The subsequent analysis is carried out 

over a period of 14 years, which is based on typical observation horizons of LCAs. 
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Figure 85:  Considered area of Berlin for the mobility simulation 

In this section, the results of the mobility simulation are compared with available public data on the 

Berlin region to validate the mobility behavior and results in the reference scenario. 

Modal split 

Figure 86 shows the resulting modal split by person-kilometers per day for the region of Berlin. The 

simulation results are compared to the statistical data of [Gerike et al. 2019]. Here it can be seen that 

the resulting person-kilometers per day for public transport and bike fits very well to the data of 

[Gerike et al. 2019]. For cars it can be seen that the resulting person-kilometers per day are higher 

than the values of [Gerike et al. 2019]. This could be related to the fact that a larger area around Berlin 

is considered in this simulation compared to [Gerike et al. 2019] and thus longer distances are taken 

into account in the simulation. In connection with this, fewer pedestrians or pedestrians with shorter 

distances are considered here. Therefore the simulated person-kilometers per day for walking is lower. 

Overall, it can be seen that the simulation results match the statistical data very well and therefore 

represent the current state of the modal split in Berlin. 
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Figure 86:  Resulting modal split compared with publicly available data 

Number of trips 

Figure 87 shows the resulting number of trips per age group per day for the region of Berlin. Here it 

can be seen that the simulated values fit very well to the statistical data. This is due to the fact that the 

statistical data is used as an input value to determine the number of activities of each agent. It can be 

concluded that these statistical distributions are still valid for the simulated scenario. 

 

Figure 87:  Resulting number of trips compared with publicly available data 
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Distribution by distance classes 

Figure 88 shows the distribution by distance class and travel mode as a dotted curve compared to 

publicly available data [Gerike et al. 2019]. In general, it can be stated that the distribution of distance 

classes by travel mode fits well. The focus for walk and bike is on shorter distances, whereas for car 

and public transport the focus is on longer distances for the simulation as well as the collected data. 

For public transport the share of smaller trips is a little bit higher and for cars the share of longer 

distances is higher. The reason could be the considered area of Berlin in the simulation compared to 

the area of [Gerike et al. 2019]. Depending on the analyzed area as well as the available public transport 

in the considered area the distances can vary. However, as mentioned before, the distributions repre-

sent the collected data very well. The distribution of the trip purpose shown in Figure 20 for Berlin is 

an input value. 

 

Figure 88:  Resulting distribution by distance class and travel mode compared to publicly available data 

Vehicle fleet 

The distribution of the vehicle fleet of the current state in Berlin is an input value. In Figure 89 the 

distribution of powertrain types in Berlin based on [Kraftfahrt-Bundesamt 2022] is shown. In 2021 

the powertrain portfolio in Berlin consists of 94% ICEVs, 4% HEVs, 1% PHEVs and 1% BEVs. 
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Figure 89:  Distribution of powertrain types in Berlin based on [Kraftfahrt-Bundesamt 2022] 

In Figure 90 the distribution of vehicle segments in Berlin based on [Kraftfahrt-Bundesamt 2022] is 

represented. In 2021 the vehicle fleet in Berlin consists of 20% small vehicles, 38% compact vehicles 

and 42% large vehicles. The resulting assigned simulated vehicle portfolio for the reference scenario 

in Berlin is shown in Appendix A.10. For each vehicle in the vehicle portfolio a similar reference 

vehicle is chosen and adapted to the different requirement classes as described in chapter 6. An equal 

distribution of the three requirement classes is assumed. This approach enables the possibility to 

model a realistic vehicle fleet of the current state of the considered region. 

 

Figure 90:  Distribution of vehicle segments in Berlin based on [Kraftfahrt-Bundesamt 2022] 
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CO2eq emission 

In the next step, the emissions for mobility in Berlin are examined. First, the total mobility including 

vehicles, public transport, bike and walk is considered in the actual state. In the simulation, just under 

1.98 tCO2eq per person per year is calculated for this case. According to [VCÖ 2021], 2 tCO2eq are 

generated per person for mobility in Germany. Here, the results of the simulation and the collected 

data match very well. If the emissions for cars per person and kilometer are considered separately, the 

simulation results in just under 156 gCO2eq/km. According to [Umweltbundesamt 2021], passenger 

cars in Germany emit in the use phase just under 152 gCO2eq/km. The emissions in the simulation 

are slightly higher overall. This is due to the setup of the vehicle fleet in Berlin compared to the fleet 

in Germany. Compared to Germany, in Berlin there is a larger share of SUVs and compact vehicles 

compared to small vehicles. This then leads to higher total emissions. Overall, the simulation results 

appear plausible. 

Costs 

The second analyzed target values are the costs for mobility from the customers perspective. The 

TCO analysis and validation for cars as well as the costs analysis of public transport and bike is shown 

in chapter 8. In chapter 8 the used cost factors are described. Therefore, reference is made to chap-

ter 8. 

Energy demand 

In the last step of the analysis of the reference scenario in Berlin, the energy demand is examined in 

more detail. Here, the focus lies on cars, since a constant value of 12 kWh/100km per person [Mitusch 

2019] is assumed for public transport and the energy demand for bike and walk is neglected. In 

[Schmidt 2018], the energy demand for an assumed 100% BEV scenario in Germany is investigated. 

Here, an energy demand of just under 129 TWh is calculated for 46.5 million cars with an average 

consumption of 20 kWh/100km and an annual mileage of 13,922 km. In order to generate comparable 

results, a 100% BEV scenario is also simulated in this case. Here, comparable BEV vehicles are as-

signed to all agents in the simulation. The vehicle stock in Berlin with 1.24 million vehicles represents 

just under 2.7% of the total vehicle fleet in Germany [Kraftfahrt-Bundesamt 2022]. Therefore, the 

calculated energy demand is scaled up and an energy demand of 142 TWh follows. Due to the assumed 

vehicle portfolio based on the current state, there is a high share of SUVs and compact vehicles and 

the average consumption here is 22 kWh/100km. The resulting annual mileage per agent is just under 

13,200 km. Overall, the simulation results show that valid values are calculated. 
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 Use-cases 

For the validation of the method, two use cases are considered in the following. Since the focus of 

the work is on cars, in the first use case a powertrain optimization is performed about minimizing the 

emissions of the Berlin scenario considered. In addition, a second optimization for a future scenario 

in 2030 is performed to also analyze the impact of the technology forecasts included in the method. 

In the second use case, a multidimensional powertrain optimization with respect to emissions and 

costs is performed to additionally consider the influence of costs. With the help of the two use cases, 

the entire methodology is applied and the results can thus be validated. Using the agent-based mobility 

simulation, a realistic mobility behavior of the considered region Berlin is generated. The integrated 

powertrain simulation allows to evaluate the agents' vehicles in detail. Subsequently, the emissions, the 

energy demand as well as the costs for mobility are evaluated using the developed and implemented 

methods. The determination of the optimal powertrain portfolio is then determined with the inte-

grated optimizer. By applying these use cases, the developed methodology can be applied step by step 

and thus validated. 

11.3.1 Powertrain optimization regarding emissions 

The application example shown here illustrates the influence of a technology forecast in 2030 com-

pared to the current status for four different scenarios of the powertrain portfolio. For the two periods 

considered, the electricity mix of the respective years is assumed and changes dynamically over the 

years. Here, the CO2eq emissions for the electricity mix starting in 2021 show an average value of 331 

gCO2eq/kWh [Bundesministerium für Umwelt 2021] and starting in 2030 an average value of 96 

gCO2eq/kWh [IEA 2019]. In addition, the mobility behavior is kept constant across the different 

scenarios in order to evaluate the impact of the powertrain type. That is, changes in the system do not 

affect the mode choice. An agent who uses a passenger car in the reference scenario will accordingly 

also use a passenger car in the new scenarios. The only manipulated variable in this application exam-

ple is the powertrain portfolio of the region under consideration with the goal of minimizing CO2eq 

emissions. Analogous to the reference scenario, a 10% sample size of the population is again consid-

ered. For the mileage of the mobility type used, the realistic mileage resulting from the mobility sim-

ulation is taken. For cars, for example, the average mileage is just under 13,200 km per year. In addi-

tion, a dynamic system with realistic market behavior including vehicle changes is considered in the 

LCA calculation. As a result, the influence of production emissions increases and thus has a stronger 

impact on the powertrain portfolio selection. 
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Powertrain portfolio optimization 

The results are described below. Figure 91 as well as Figure 92 show the normalized influence of the 

technology forecasts on CO2eq emissions and mobility costs from the customer's perspective starting 

in 2021 as well as 2030. Four scenarios are shown for both cases. The first scenario is the reference 

scenario, which is based on statistical data and described in chapter 11.2. Here, the powertrain port-

folio consists of just under 94% ICEVs and 5% (P)HEVs and 1% BEVs. All other scenarios are 

compared to Scenario 1 from the respective production year, as shown in Figure 91 and Figure 92. 

Scenario 2 represents a 100% BEV scenario. In Scenario 3 and 4, optimization is performed. The 

optimizer varies the powertrain portfolio with the goal of minimizing CO2eq emissions. The difference 

between Scenario 3 and 4 lies in the assumption of how PHEVs are charged. In scenario 3, an optimal 

PHEV charging behavior is assumed. This leads to a higher share of electric trips when an agent is 

assigned a PHEV, which in turn leads to a higher share of PHEVs in the powertrain portfolio, as 

shown in Figure 93. This is mainly due to the fact that PHEVs produce comparatively low CO2eq 

emissions in production compared to BEVs, while at the same time producing low emissions due to 

optimal charging behavior in the use phase. This leads to lower emissions overall, as shown in Figure 

91 and Figure 92. In Scenario 4, on the other hand, a more realistic charging behavior depending on 

a random energy content of the battery is assumed, which leads to a lower share of electric trips. This 

increases emissions in the use phase, which in turn leads to a decrease in the share of PHEVs in the 

powertrain portfolio, as shown in Figure 93. 

Figure 91 shows the results for the case starting in 2021. It can be seen that a 100 % BEV scenario 

reduces total emissions by 20 %. By means of the optimization in scenario 3, it is shown that there is 

still further potential under the given boundary conditions. In scenario 3, for example, emissions are 

reduced by 34%. In scenario 3, as described, there is a high proportion of PHEVs. The assumed 

optimal operation of the PHEVs in combination with the low production emissions lead to higher 

potential savings in emissions. In scenario 4, the more realistic operation of PHEVs leads to a 100% 

BEV scenario. The decreasing shares of electric driving lead to higher emissions in the use phase, so 

that BEVs again represent the lower CO2eq powertrain types, resulting in a pure BEV powertrain 

portfolio again. Here, it can additionally be seen that an electrification of the vehicle fleet slightly 

increases the costs from the customer's point of view. 
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Figure 91:  CO2eq emissions for the whole mobility system for the four scenarios in 2021 

Compared to the case starting in 2021, the case starting in 2030 shows that the overall savings are 

greater. This is mainly due to the positive development of technological powertrain components in 

the mobility system and the lower projected CO2eq emissions in the electricity mix and in the produc-

tion of the components. Here, the savings in scenarios 2 and 4 are 37.5%. In scenario 4, a 100% BEV 

scenario is analyzed. In scenario 3, the powertrain portfolio was optimized to such an extent that a 

saving of 45% is achieved. In contrast to the first case, the costs for electrified mobility decrease, as 

can be seen in the 100% BEV scenario in scenario 2 and 4. In scenario 3, PHEVs dominate the 

powertrain portfolio again and here the cost savings are lower. 
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Figure 92:  CO2eq emissions for the whole mobility system for the four scenarios in 2030 

Figure 93 visualizes the resulting powertrain portfolios for the case starting in 2021. It shows on the 

y-axis the shares of the respective powertrain types for the four scenarios considered. In scenario 1 as 

well as scenario 2, the powertrain portfolio is an input variable. In Scenario 3 and 4, the powertrain 

portfolio results from optimization. In scenario 1, the powertrain portfolio consists of 94% ICEVs, 

5% (P)HEVs, and 1% BEVs. In scenario 2, the powertrain portfolio consists of 100% BEVs. For the 

case starting in 2021 in scenario 3, the powertrain portfolio consists of 75% PHEVs and 25% BEVs. 

This result is due to the low CO2eq emissions of the PHEVs compared to BEVs in the production 

phase and the low emissions in the use phase due to the optimal charging behavior, which leads to a 

high share of electric driving. Since all agents are considered individually, there are many agents which 

achieve lower CO2eq emissions with BEVs than even an optimal charged PHEV. Scenario 4 results 

in a 100% BEV scenario referring to the more realistic consideration of the PHEV. Due to the in-

creased emissions in the use phase, the BEV is best in terms of emission reductions. 
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Figure 93:  Shares of the powertrain types in the powertrain portfolio across the four scenarios for the case starting from 2021 

Figure 94 shows the resulting powertrain portfolios for the case starting in 2030. The figure indicates 

on the y-axis the shares of the respective powertrain types for the four scenarios considered. For the 

case starting in 2030, Scenario 1 and 2 look the same as the case starting in 2021 because the power-

train portfolio is an input variable. In scenario 3 and 4, the powertrain portfolio results from optimi-

zation. Analogous to the case starting from 2021, there is a large share of PHEVs in scenario 3. How-

ever, the share has decreased and the share of BEVs has increased. This is mainly due to the positive 

development of the powertrain components as well as the lower CO2eq emissions in the use phase, 

which are included in the calculation here. For scenario 4, the results are similar for both cases. Here, 

there is also a 100% BEV scenario, since due to the realistic charging behavior, the emissions in the 

use phase increase due to the lower electric driving share. This leads to BEVs being the lower CO2eq 

powertrain types overall. 
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Figure 94:  Shares of the powertrain types in the powertrain portfolio across the four scenarios for the case starting from 2030 

Similar to CO2eq emissions, the same considerations are made for the energy demand. Here, it can be 

seen that electrification of the vehicle fleet leads to more energy-efficient mobility systems. Further-

more, Figure 95 shows that the 100% BEV scenario represents the most energy efficient mobility 

system. This is also plausible, since the BEV is the most energy-efficient powertrain system among 

the powertrain systems considered here. For the case starting in 2021, the energy demand is reduced 

by 56% in scenarios 2 and 4 and by 50% in scenario 3. 

 

Figure 95:  Energy demand for the four scenarios for the case starting from 2021 
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Compared to the case starting in 2021, the energy demand for the case starting in 2030 is further 

reduced due to the efficiency increase considered in the forecasts for the powertrain components. For 

the case starting in 2030, the energy demand in scenario 1 reduces by 1% compared to the first scenario 

starting in 2021 due to efficiency improvements in ICEVs. In scenarios 2 and 4, the energy demand 

is reduced by 57% and in scenario 3 by 51%. In Figure 96 the results are shown. 

 

Figure 96:  Energy demand for the four scenarios for the case starting from 2030 

11.3.2 Powertrain optimization regarding emissions and costs 

The application example shown here illustrates the influence of a multidimensional optimization of 

the powertrain portfolio regarding emissions and costs for the same four scenarios as in the applica-

tion in 11.3.1. The electricity mix of the respective year is assumed and it changes dynamically over 

the years. Here, the CO2eq emissions for the electricity mix starting in 2021 shows an average value 

of 331 gCO2eq/kWh [Bundesministerium für Umwelt 2021]. In addition, the mobility behavior is kept 

constant across the different scenarios in order to evaluate the impact of the powertrain type. Again, 

changes in the system do not affect the mode choice. An agent who uses a passenger car in the refer-

ence scenario will accordingly also use a passenger car in the new scenarios. The only manipulated 

variable in this application example is the powertrain portfolio of the region under consideration with 

the goal of minimizing CO2eq emissions and costs. Analogous to the reference scenario, a 10% sample 

size of the population is again considered. For the mileage of the mobility type used, the realistic 

mileage resulting from the mobility simulation is taken. For cars, for example, the average mileage is 

just under 13,200 km per year. In addition, a dynamic system with realistic market behavior including 

vehicle changes is considered in the LCA and costs calculation. As a result, the influence of production 

emissions and costs becomes greater and thus has a stronger impact on the powertrain portfolio se-

lection. 
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Powertrain portfolio optimization 

In Figure 97 the different variant solutions of the optimization of scenario 3 and 4 are shown. Each 

variant represents a different powertrain portfolio. All four scenarios are also depicted here. The 

powertrain portfolio of scenario 1 is shown as a big square. The first scenario is the reference scenario, 

which is based on statistical data and described in chapter 11.2. Here, the powertrain portfolio consists 

of just under 94% ICEVs and 5% (P)HEVs and 1% BEVs. The second 100% BEV scenario is shown 

as a big triangle. The optimization results of scenario 3 are visualized as grey bubbles and of scenario 

4 are shown as black bubbles.  

 

Figure 97:  Variants of powertrain portfolios for the four scenarios 

Figure 98 shows the normalized influence of the multidimensional optimization of the powertrain 

portfolio on CO2eq emissions and mobility costs from the customer's perspective starting in 2021. 

Four scenarios are shown here. All other scenarios are compared to Scenario 1 from the respective 

production year, as shown in Figure 98. Here the results differ more than for the first use case. Sce-

nario 2 represents a 100% BEV scenario. The results are equal to the first use case. A 100% BEV 

powertrain portfolio reduces the CO2eq emissions by around 20% but the costs from the customers 

perspective increase slightly for the case starting from 2021. In Scenario 3 and 4, a multidimensional 

optimization is performed. The optimizer varies the powertrain portfolio with the goal of minimizing 

CO2eq emissions and costs from the customers perspective, since costs are a main driver for the 

buying decision of customers. Here again, the difference between scenario 3 and 4 lies in the assump-

tion of how PHEVs are charged. In scenario 3, an optimal PHEV charging behavior is assumed. This 

leads to a higher share of electric trips when an agent is assigned a PHEV. In scenario 4, on the other 

hand, a more realistic charging behavior depending on a random energy content of the battery is 
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assumed, which leads to a lower share of electric trips. The optimal powertrain portfolio in scenario 

3 chosen by the optimizer consists of 80% PHEVs, 17% BEVs and 3% FCEVs. This is mainly due 

to the fact, that optimal charged PHEVs produce overall low CO2eq emission compared to other 

powertrain types and are also slightly more cheap than comparable ICEVs. FCEVs are also taken into 

account here, as they bring cost advantages, especially for large vehicles, and emissions are not much 

higher than for comparable vehicles. Overall, in scenario 3 an emission reduction by 8% and a cost 

reduction by 1.5% can be achieved. The optimal powertrain portfolio in scenario 4 chosen by the 

optimizer consists of 33% ICEVs, 12% PHEVs, 47% BEVs and 8% FCEVs. The realistic charging 

behavior leads to higher emissions in the use phase, which then leads to a higher share of ICEVs in 

the powertrain portfolio due to the higher potential of cost reductions. The emissions increase by 1% 

and the costs are reduced by nearly 10%. With the help of the optimization results for the different 

cases, it is now possible to determine optimal powertrain portfolios regarding cost reduction, emission 

reduction or a compromise of both target variables. 

 

Figure 98:  CO2eq emissions for the whole mobility system for the four scenarios in 2021 
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Figure 99 shows the resulting powertrain portfolios for the case starting in 2021. The figure shows on 

the y-axis the shares of the respective powertrain types for the four scenarios considered. In scenario 

1 as well as scenario 2, the powertrain portfolio is an input variable. In Scenario 3 and 4, the powertrain 

portfolio results from the multidimensional optimization. In scenario 1, the powertrain portfolio con-

sists of 94% ICEVs, 5% (P)HEVs, and 1% BEVs. In scenario 2, the powertrain portfolio consists of 

100% BEVs. For the case starting in 2021 in scenario 3, the powertrain portfolio consists of 80% 

PHEVs, 17% BEVs and 3% FCEVs. This result is due to the low CO2eq emissions of the PHEVs 

compared to BEVs in the production phase and the low emissions in the use phase due to the optimal 

charging behavior, which leads to a high share of electric driving. Combined with similar costs com-

pared to ICEVs, there is a high share of PHEVs here. Since all agents are considered individually, 

there are many agents which achieve even lower CO2eq emission with BEVs than an optimal charged 

PHEV, whereas the costs are not much higher. Therefore, there is still a big share of BEVs. In scenario 

4 the powertrain portfolio consists of 33% ICEVs, 12% PHEVs, 47% BEVs and 8% FCEVs. As a 

more realistic PHEV charging behavior is assumed, ICEVs are preferred by the optimizer due to cost 

reduction. Thus, the share of PHEVs is lower and the share of ICEVs is higher. Larger FCEVs can 

be cheaper than comparable vehicles and the overall emissions are just slightly higher than those of 

BEVs, which is why there is also a higher share of FCEVs. The shown powertrain portfolios for 

scenario 3 and 4 are just one example of the pareto front of the different variants, which can be chosen 

from depending on the weighting of the target variables. 

 

Figure 99:  Shares of the powertrain types in the powertrain portfolio across the four scenarios for the case starting from 2021 with 

the multidimensional optimization 
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In Figure 100 the energy demand for mobility for the four scenarios is shown. Here, it can be seen 

that electrification of the vehicle fleet leads to more energy-efficient mobility systems, as shown in 

scenario 2. Furthermore, Figure 100 shows that the 100% BEV scenario represents the most energy 

efficient mobility system. This is also plausible, since the BEV is the most energy-efficient powertrain 

system among the powertrain systems considered here. With the optimal powertrain portfolios deter-

mined for scenario 3 and 4, the energy demand for mobility is also reduced. In scenario 3, the energy 

demand is reduced by 52% and in scenario 4 by 13%. Here it can be seen that if costs are also con-

sidered in the determination of the optimal powertrain portfolio there can be differences and that 

solutions such as subsidies are needed to promote energy efficient and low emission solutions such as 

BEV. In the next chapter a critical discussion of the overall method is performed and analyzed if the 

set goals are achieved 

 

Figure 100:  Energy demand for the four scenarios for the case starting from 2021 
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12 Critical discussion of the overall method  

The following chapter is divided into the following subchapters according to the sub-targets devel-

oped: 12.1 Development of a modular method framework to evaluate and optimize holistic mobility 

systems, 12.2 Integration of MATSim, 12.3 Integration of powertrain simulation, 12.4 Development 

of a new and enhanced LCA, 12.5 Combination of individual methods and integrating optimization 

approach, 12.6 Performing a sensitivity analysis, 12.7 Validation of the method. For each subchapter 

the derived problem is briefly outlined and the achieved results are presented. The limitations of the 

investigations and possible improvements are outlined in detail. 

 Development of a modular method framework to evaluate and optimize 

holistic mobility systems 

In order to be able to evaluate mobility systems holistically and thus make more precise statements 

about the impact of decarbonization measures, a method is needed that takes more into account than 

conventional LCA do. For this purpose, a modular method framework is created in this sub-target, 

which enables a holistic view of the mobility system. For the modeling of the region as well as the 

mobility behavior that takes place there, an agent-based mobility simulation is implemented. Here 

MATSim is used as a tool. In the next step, the mobility forms are modeled and evaluated with respect 

to the target criteria. In this work, the focus is placed on passenger cars, since they currently have the 

greatest impact in terms of CO2eq emissions. Therefore, passenger cars are considered in detail with 

a powertrain simulation, while other forms of mobility are considered in a simplified, key-value based 

manner. For the evaluation of the target criteria CO2eq emissions, costs as well as energy demand, 

analysis methods are integrated into the method framework. For the calculation of CO2eq emissions, 

a new extended LCA approach is developed and integrated. This is described again in sub-target 4. 

For the calculation of costs, a TCO approach is integrated. The energy demand is calculated with the 

help of the determined consumptions as well as the mobility behavior of the individual agents. In the 

first step, a simulation environment with the respective interfaces is created, whereby the individual 

methods can be integrated. This sub-target is fully achieved and a modular method framework is 

developed which integrates an agent-based mobility simulation, a powertrain simulation as well as 

LCA and cost models. 
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 Integration of MATSim 

An agent-based mobility simulation is needed to investigate the influences on the person level and 

their mobility behavior. For the generation of the mobility behavior, a region has to be modeled so 

that a mobility simulation can be performed afterwards. Here, publicly available data are used. In this 

work, the Berlin region is chosen as an example region, since a good data basis is available. For mean-

ingful results, the data basis plays an important role. The more data is available on the population, 

mobility behavior and the region itself, the more accurately the region can be mapped and analyzed. 

However, it must be taken into account that the larger the sample size of the population considered, 

the longer the calculation times will be, making a scenario analysis with many different scenarios more 

difficult. In this case, it is possible to limit the analysis to the relevant areas of the mobility system. A 

smaller sample size can be chosen or non-relevant mobility forms can be teleported instead of being 

simulated in detail. For the modeling of the Berlin region, census data, mobility surveys and map data 

from e.g. Open-Street-Map are used in this work. The tool deployed here is MATSim, which is open-

source and is further advanced by an active community. In addition, it is possible to look at different 

forms of mobility, as defined in the sub-target. MATSim already contains mobility forms such as cars, 

public transport, bicycles and walking, but also new mobility forms such as DRTs. Completely new 

mobility forms or concepts can be programmed. For this, the events associated with the new mobility 

form must be defined. For example, reservation, ride or pick-up events in the case of robo-taxis. With 

the help of agent-based mobility simulation, customer behavior and their mobility behavior can be 

modeled and analyzed in detail. Additionally, it can be analyzed why agents choose certain mobility 

forms based on the stored scoring function. Furthermore, it can be analyzed how the respective mo-

bility forms are used by the respective agents in detail. This enables the optimization of the holistic 

mobility behavior, but also the optimization of the operation of the respective mobility forms. For 

example, it can be determined how many vehicles are needed in a mobility fleet. By integrating 

MATSim into the simulation framework the goals of this sub-target are achieved. 

 Integration of powertrain simulation 

Now that the mobility behavior of the region under consideration is known, the next step is to evaluate 

the forms of mobility. The focus in this work is on individual transport, since it has the largest share 

in the generated CO2eq emissions in road transport. For this reason, the powertrain simulation of 

[Weiß 2018] as well as the technology forecasts for the design and evaluation of future powertrains of 

[Schneider 2022] are integrated into the method. With the help of this approach, optimal powertrain 

portfolios of the considered region are to be determined. Other forms of mobility, such as public 

transport or bicycles, are modeled using a key-value based approach. 
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With the integrated approach it is possible to model vehicle portfolios in detail. In this work, a vehicle 

portfolio with 72 vehicles is modeled, which makes it possible to model an entire market. This offers 

the possibility to determine optimal portfolios with respect to target criteria such as CO2eq emissions 

or costs from the customers perspective. In addition, customer preferences can be taken into account 

when designing the portfolios in order to achieve more realistic savings in emissions, since an opti-

mum in theory often does not correspond to the optimum in reality. For example, an optimization of 

the powertrain portfolio in terms of CO2eq emissions could determine a portfolio with predominantly 

small vehicles and a BEV powertrain. In reality, however, the distribution looks different, as many 

customers prefer SUVs in particular. 

The integrated approach is also extended with the modeling of a realistic market behavior. Here, the 

status quo based on statistical data is taken as a starting point and the preferences of customers are 

determined. Based on these preferences, agents are assigned suitable vehicles accordingly in the 

powertrain portfolio optimization. In addition, a longer period of time is considered, whereby agents 

can dynamically change their vehicles and, for example, also buy used cars. The switching is based on 

probabilities. The consideration of realistic market behavior is limited to the considered region, since 

otherwise uncertainties arise and allocation takes place at larger system boundaries, which should be 

avoided. This sub-target is partially achieved. The powertrain simulation enables the detail analysis of 

vehicles, however other forms of mobility such as public transport cannot be modeled and simplified 

key-value based models are used. Since the focus of this thesis is on passenger cars, this simplified 

approach can be carried out. 

 Development of a new and enhanced LCA 

With standardized LCAs as well as known detailed LCA software, the analysis and assessment of 

holistic mobility systems is more difficult and is better suited for a detailed assessment of individual 

vehicles. Therefore, a new and extended LCA is needed that allows the assessment of whole vehicle 

fleets, new decarbonization measures that would be possible with an electrified fleet, and the consid-

eration of the mobility behavior of each individual in the mobility system under consideration. In this 

work, a new method is developed that includes the following points: 

• Dynamic balance and envelope 

• Holistic mobility systems analysis 

• Predictability of future scenarios 

• Integrability into an optimization loop 

In order to implement these points, a key-value based approach is taken here, which is also modular. 

The key-value based approach is a simplified approach and in this work the focus lies on CO2eq 

emissions. This approach allows a dynamic assessment of the mobility system with changes over time. 
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It allows the assessment of holistic mobility systems and the integration of LCA into the overall meth-

odology, so that optimizations with respect to CO2eq emissions can also be performed. The key-values 

for all relevant components of the mobility system are determined with the help of a literature research 

on LCA studies as well as self-modeled LCA models in the LCA software "GaBi". These key-values 

are collected in a forecast database and trend curves are derived. Learning curves are suitable for this 

purpose, which can be used to derive forecasts for the individual components of the mobility system. 

A lot of data is needed to perform the LCA and depending on where the key-values come from, 

uncertainties may arise. However, it is shown in this work that good results can be obtained with the 

key-value based approach. Here, a comparison of the results from the key-value based approach for 

an ID.3 with published values from a detailed LCA for the ID.3 is carried out, where the differences 

are minor. In this sub-target, a modular and dynamic LCA approach is developed. This is fully 

achieved with the key value-based approach, which also enables the derivation of forecast data. 

 Combination of individual methods and integration of a fitting optimization 

approach 

A coherent combined methodology is needed to holistically evaluate and optimize mobility systems. 

Here, a suitable optimization algorithm must be found, and the analysis shows that the genetic algo-

rithm is suitable. In order to evaluate mobility systems holistically, the individual methods are com-

bined into a single methodology. However, since the programming languages differ as well as the 

programming effort for this work is very high, this work proceeds as follows. The agent-based mobility 

simulation MATSim is written in Java. The powertrain simulation as well as the evaluation of CO2eq 

emissions using the new extended LCA, costs as well as energy demand is written in MATLAB, due 

to the continuation of the tool chain of [Weiß 2018] and [Schneider 2022]. To nevertheless connect 

the tools interfaces are defined. For example, the agent-based mobility simulation automatically gen-

erates an evaluated table containing the mobility behavior of the considered region for each agent. 

This serves as input for the further tools and the further evaluations are performed automatically. In 

addition, a call script is written in Java within the scope of this work, which automatically calls all 

individual tools in the correct order and forwards the necessary data. This also enables a holistic opti-

mization of the entire chain. Since the combined methodology is a very large method and requires a 

lot of computing time, investigations are carried out to reduce the computing time while maintaining 

the same quality of results. For this purpose, for example, the sample size as well as the number of 

iterations in the mobility simulation are considered in more detail. In addition, the modular structure 

of the simulation environment offers the option of keeping certain modules constant. For example, if 

the powertrain portfolio is optimized, the mobility behavior can initially be assumed to be constant 

and thus no mobility simulation is performed during the optimization saving computation time. This 
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sub-target is partially achieved. Since the different toolchains such as MATSim or the powertrain sim-

ulation are complex and written in different programming languages interfaces are developed to com-

bine them. However, for future work, it is be more beneficial to develop the entire tool chain in the 

same programming language and integrate it into an overall tool, so that the interaction between the 

methods can take place more easily. 

 Performing a sensitivity analysis 

The combined methodology is a very large and data-intensive method that also requires a lot of com-

puting time. In order to make holistic evaluations and optimizations of considered regions feasible, 

simplifications have to be made, such as the reduction of the sample size and the use of a key-value 

based approach for the evaluation of the target variables. The sensitivity analysis is used to analyze 

their influence. It shows that in the context of this work the influence of the sample size is relatively 

small and therefore small scenarios can be considered in order to determine optimal parameters for 

the original scenarios. When considering specific parameters of vehicles such as production emissions 

of batteries of combustion engines or values for the electricity mix, it can be seen that depending on 

the scenarios, certain parameters have a greater influence, such as battery parameters for an electrified 

fleet. However, these are expected influences and therefore do not represent uncertainties. This sub-

target is achieved and the sensitivity analysis shows the great potential of electric fleet if it comes to 

reduction of emissions in mobility systems. 

 Validation of the method 

In the last step, the method must be validated. For this purpose, the region of Berlin is taken. The 

region is modeled and the actual state is depicted. For this purpose, the simulated actual state is com-

pared with the respective known, public data. The results show that good results are achieved. With 

the help of this method it is possible to model, evaluate and optimize the mobility behavior of a 

considered region. During optimization, different decarbonization strategies can be modeled and an-

alyzed. In addition to CO2eq emissions, the costs from the customer's point of view as well as the 

energy demand for mobility can be considered in detail. Overall, it can be shown that the defined goals 

could be implemented to a certain extent. The biggest limitation in this work is the computation time 

due to the very large computational models and the large data requirements. Nevertheless, the goal of 

designing and evaluating holistic sustainable mobility systems can be fulfilled and statements can be 

made about the modeled regions and measures.  
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13 Summary and outlook  

A method for the design, analysis and optimization of sustainable mobility systems is presented. With 

the objective of a holistic approach including system dynamic effects and the predictability of a more 

distant future, this method combines an agent-based mobility simulation with a powertrain simulation 

as well as LCA and cost models and supplements them with an optimization algorithm. The agent-

based mobility simulation is used to model the population in the form of agents, the various forms of 

mobility, and the region itself, i.e. infrastructure and charging infrastructure, and thus describes mo-

bility behavior. The powertrain simulation provides insights into energy consumption and vehicle-

specific CO2eq emissions. For the subsequent analysis with regard to the target criteria, an LCA 

method is developed that extends the guidelines of ISO 14040/14044 to include dynamic considera-

tions. With a view on predictability and system optimization using genetic algorithms, indicator-based 

models are developed. The same applies to mobility and infrastructure costs. A modular structure of 

the methodology guarantees the extensibility by further submodels, the integration of a new state of 

the art as well as the connectivity to detailed methods. With the combined methodology, it is possible 

to optimize different parameters of the mobility system in a theoretical analysis, such as the powertrain 

portfolio. The observations show that this approach can be used to optimize various parameters of 

the mobility system and to identify potentials. In the examples considered here, the powertrain port-

folio of the Berlin region is first optimized in terms of emissions and then multidimensionally in terms 

of emissions and costs. In the first example, CO2eq savings of 34% starting in 2021 and 45% starting 

in 2030 compared to the base scenario in 2021 can be achieved for the underlying premises by opti-

mizing the powertrain portfolio. At the same time, it is shown that the energy demand can be reduced 

by 57%. In the second example, the influence of the costs for mobility from the customer's point of 

view is also taken into account in the optimization. Here, new compositions of the powertrain port-

folio result, in which savings can still be achieved, but these are no longer as significant, since in part 

emission-reduced mobility is more expensive. Depending on the selected variant from the Pareto 

solution space, savings in CO2eq emissions of 1.5 - 8% result here. Cost savings of 1.5 - 10% can be 

achieved and at the same time, it is shown that the energy demand can be reduced by 13 - 52%. 

Outlook 

The holistic view of mobility systems presented makes it possible to map new decarbonization strat-

egies in the transport sector and to evaluate the interplay of measures with regard to ecological, eco-

nomic and social targets. The evaluation of measures is not limited to vehicle-specific scopes but 

extends to the diverse components of the entire mobility system. As an obvious step after a broad 

electrification, for example, an intelligent and, if necessary, bidirectional charging of electric vehicles 

can be analyzed and optimized regarding the influences on the target variables. In addition, the mod-

ular structure of the method enables further studies on new data, vehicle concepts, mobility concepts 
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and services. This concerns, for example, driving bans or autonomous cab services, which are being 

discussed in many places. In addition, the influence of the expansion of public transport could be 

investigated and evaluated. Overall, the method thus makes an important contribution to the deriva-

tion of target-oriented, cross-sector decarbonization strategies and the understanding of interactions 

of ecological, economic and social target criteria. In this thesis the region Berlin is used to apply and 

validate this approach. However, this method can be applied to other regions as well as. For further 

studies, the following research points are conceivable. In this work, a powertrain optimization with 

respect to emission reduction as well as a multidimensional optimization of cost and emission reduc-

tion is performed. Further optimizations of the mobility system could be, for example, benefits over 

costs, where surveys and expert interviews have to be conducted to weight the benefits. Additionally, 

benefits need to be defined. For example, emission reduction can be considered in addition to comfort 

and travel time. Also, the mode choice can be analyzed further. It would be possible to extend the 

mode choice of the agents by further criteria, such as the influence of environmental criteria. For this, 

value studies and surveys have to be conducted in order to be able to weight these new criteria in the 

decision-making process. Analogous to the detailed consideration of passenger cars, it is possible to 

add detailed models of other forms of mobility to perform an interpretation in a holistic context. In 

this paper, the focus is on passenger transport. Besides passenger transport, it is also possible to look 

at freight transport in detail and evaluate it with respect to different criteria. To show the influence of 

market behavior even more realistically, it is possible to add detailed market models to the overall 

methodology. To avoid allocation, a simplified model is used in this work. However, with allocation 

it would be possible to model a realistic second-hand market for Germany or also the surrounding 

markets, so that vehicles leave the system under consideration and vehicles outside the system can be 

included in the system boundaries. Additionally, the mode-choice behavior of the agents can be ex-

tended, since used cars represent low-cost forms of mobility and thus can influence the mobility be-

havior of the agents. In this thesis, the focus is on the cost of mobility from the customer's perspective. 

For further considerations, investment costs as well as costs from the operator's point of view can be 

added. The costs for the mobility forms are already deposited. The further considerations enable the 

evaluation of business cases and can show potentials. The scaling methods and factors shown are 

determined for the example shown here. For new scenarios that include sharing concepts, for example, 

the methods must be performed again and the factors determined anew. In addition, it is necessary to 

see if the methods are valid for these new scenarios. As an alternative to scaling, other approaches can 

be taken. For example, availability constraints can be neglected for sharing concepts and it can be 

assumed that shared vehicles are always available, even if this is not realistic. However, this can answer 

questions such as the impact of the use of shared vehicles on CO2eq emissions. But other questions 

cannot be answered, such as factors for availability or how the sharing fleet should best be operated 

or located. Furthermore, dynamic changes of the mobility offer as well as the mobility choice by the 

agents can be implemented by adding new vehicle services over time and analyzing their impact. 
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Appendix 

 Event sequences in MATSim  

For the translation of the events, sequences of the considered travel modes need to be defined. In 

general each travel mode can be analyzed as long as the event sequence is described. In the following 

the typical MATSim travel modes car, public transport and teleported travel modes are described. For 

private owned vehicles the event sequences for the agents starts with the end of the current activity, 

for example leaving its home. Then the agents starts to depart and enters the vehicle. In the next event 

the vehicle enters the corresponding link. While driving, the vehicle leaves the current link and enters 

the next link until the destination is reached. At the destination the vehicle leaves the traffic. The agent 

leaves the car and arrives at the activity location where the activity starts. This sequence is shown in 

Figure 101. 

 

Figure 101:  Event sequence for private owned vehicles based on [Rieser 2019] 

Another considered travel mode is the public transport. Here the agent ends his current activity and 

departs from his current location. Then the agent walks to the public transport stop. When arrived, 

the agent waits to interact with the public transport. Meanwhile the public transport arrives at the 

stop. The agent interacts with the public transport and enters the vehicle. Afterwards the vehicle de-

parts and drives to the next stop. When the agent reaches his destination, the agent leaves the car. 

Then the agent walks to the activity location to perform his activity. Meanwhile the public transport 

departs for the next stop. This sequence is shown in Figure 102. 
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Figure 102:  Event sequence for public transport based on [Rieser 2019] 

If the events of a certain travel mode is not defined, it is possible to model them as teleported travel 

modes. This is a simplified approach, where the travel mode is mostly defined by its average speed 

and beeline distance factor, which estimates the actually traveled distances. In the following the event 

sequence for teleported modes is described. At the beginning the agent ends his current activity, de-

parts and disappears from the network. Then the travel time is estimated with the average speed of 

the travel mode as well as the distance from the starting location to the destination. As soon as the 

travel time has been reached, the agent will reappear at his destination and start his activity. This 

sequence is shown in Figure 103. 

 

Figure 103:  Event sequence for teleported modes based on [Rieser 2019] 

Furthermore the event sequence of demand response transport (DRT) for mobility on demand con-

cepts is added and can be analyzed. The event sequence is described in the following. The agent ends 

his current activity and departs from the current activity location. Then the agent requests a DRT. The 

passengers request is scheduled. A DRT, which is nearby and reaches the agents as fast as possible is 

assigned to this agent. The vehicle drives to the agent. The agent waits until the vehicle arrives and 

enters the vehicle once the vehicle has arrived. The vehicle drives to the destination and the agent 
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leaves the vehicle once the destination has been reached. Afterwards the agents starts his activity. 

Meanwhile the vehicle is assigned to new customers. In Figure 104 the event sequence is shown. For 

the DRTs a separate trip table is generated to also evaluate the impact of the DRTs. To avoid double 

counting, the impact is assigned to the DRTs and not to the agents. 

 

Figure 104:  Event sequence for demand response transport 
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 Berlin parameterization  

Table 17:  Attributes for the region of Berlin 

Variable Unit Region 

Id - 1 

Region - Berlin 

Population - 3644826 

Population density Residents/km² 4090 

Average disposable income € 20330 

Share of male residents - 0.492 

Share of female residents - 0.508 

Share of professionals in the total popula-
tion - 0.46 

Share of unemployed persons of working 
age - 0.091 

Share of pupils and students - 0.232 

Share of small cars - 0.267 

Share of compact cars - 0.397 

Share of small SUV - 0.34 

Share gasoline - 0.991 

Share diesel - 0 

Share HEV - 0 

Share PHEV - 0.0086 

Share BEV - 0.002 

Share FCEV - 0 

Share public transport (W) - 0.15 

Share private car (W) - 0.677 

Share motorbike (W) - 0 

Share bike (W) - 0.090 

Share walking (W) - 0.082 

Share micro mobility (W) - 0 

Share of distance under 5 km (W) - 0.279 

Share of distance 5 to 10 km (W) - 0.199 

Share of distance 10 to 25 km (W) - 0.2750 

Share of distance 25 to 50 km (W) - 0.1310 

Share of distance more than 50 km (W) - 0.077 

Share of Home Office (W) - 0.039 

Homeowner (W) - 0.391 

Share public transport (Edu) - 0.474 

Share private car (Edu) - 0.178 

Share motorbike (Edu) - 0 
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Share bike (Edu) - 0.135 

Share walking (Edu) - 0.212 

Share micro mobility (Edu) - 0 

Share of distance under 5 km (Edu) - 0.4950 

Share of distance 5 to 10 km (Edu) - 0.209 

Share of distance 10 to 25 km (Edu) - 0.181 

Share of distance 25 to 50 km (Edu) - 0.072 

Share of distance more than 50 km (Edu) - 0.041 

Share public transport (Other) - 0.474 

Share private car (Other) - 0.178 

Share motorbike (Other) - 0 

Share bike (Other) - 0.135 

Share walking (Other) - 0.212 

Share micro mobility (Other) - 0 

Share of distance under 5 km (Other) - 0.4950 

Share of distance 5 to 10 km (Other) - 0.209 

Share of distance 10 to 25 km (Other) - 0.181 

Share of distance 25 to 50 km (Other) - 0.072 

Share of distance more than 50 km (Other) - 0.041 
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 Assumption for mean velocity of used travel modes  

Table 18:  Assumed mean velocity of used travel modes 

Variable Value in km/h 

Car 90 (for distance over 10 km), 40 (for rest) 

Public transport 30 

Bike 15 

Walk 3 

Micro mobility 20 
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 Attributes of additional travel modes  

Table 19:  Attributes of bicycle 

Attributes Unit 

Max. Velocity 30 km/h 

Range (electric / fossil) - km 

Number of seats 1 

Trunk volume 0 – 50 l 

CO2eq emissions in the production phase 8 gCO2eq/km 

CO2eq emissions in the use phase 0 

CO2eq emissions in total 8 gCO2eq/km * distance 

Costs (per month and pkm) 0.1 €/pkm 

Total costs 0.1 €/pkm * distance 

Investment costs for development of pt, charging infrastructure, … - 

Energy demand (electric / fossil) 0 

 

Table 20:  Attributes of walking 

Attributes Unit 

Max. Velocity 10 km/h 

Range (electric / fossil) - km 

Number of seats - 

Trunk volume - 

CO2eq emissions in the production phase 0  

CO2eq emissions in the use phase 0 

CO2eq emissions in total 0 

Costs (per month and pkm) 0 

Total costs 0 

Investment costs for development of pt, charging infrastructure, … - 

Energy demand (electric / fossil) 0 
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Table 21:  Attributes of public transport (train) 

Attributes Unit 

Max. Velocity 35 km/h 

Range (electric / fossil) - km 

Number of seats 200 

Trunk volume 0 – 50 l 

CO2eq emissions in the production phase 37 gCO2eq/km 

CO2eq emissions in the use phase 64 gCO2eq/km 

CO2eq emissions in total (37 + 64) gCO2eq/km * distance 

Costs (per month and pkm) 0.25 €/pkm + 1.5 €/trip 

Total costs 0.25 €/pkm * distance + 1.5€/trip * number_of_trips 

Investment costs for development of pt, 

charging infrastructure, … 

0.4 €/pkm 

Energy demand (electric / fossil) 12.1 kWh/100pkm (electric) 

Table 22:  Attributes of public transport (bus) 

Attributes Unit 

Max. Velocity 50 km/h 

Range (electric / fossil) - km 

Number of seats 50 

Trunk volume 0 – 50 l 

CO2eq emissions in the production phase 9 gCO2eq/km 

CO2eq emissions in the use phase 85 gCO2eq/km 

CO2eq emissions in total (9 + 85) gCO2eq/km * distance 

Costs (per month and pkm) 0.25 €/pkm + 1.5 €/trip 

Total costs 0.25 €/pkm * distance + 1.5€/trip * number_of_trips 

Investment costs for development of pt, 

charging infrastructure, … 

0.17 €/pkm 

Energy demand (electric / fossil) 12.1 kWh/100pkm (electric) 
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Table 23:  Attributes of micro mobility 

Attributes Unit 

Max. Velocity 20 km/h 

Range (electric / fossil) 30 km 

Number of seats - 

Trunk volume - 

CO2eq emissions in the production phase - 

CO2eq emissions in the use phase - 

CO2eq emissions in total 119 gCO2eq/km * distance 

Costs (per month and pkm) 0.2 €/pkm + 1 €/trip 

Total costs 0.2 €/pkm * distance + 1€/trip * number_of_trips 

Investment costs for development of pt, charging 

infrastructure, … 

- 

Energy demand (electric / fossil) 1.5 kWh/100km (electric) 
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 Requirement classes  

In the following the assumption for the requirement classes for each powertrain type, vehicle type 

and vehicle segment is described in detail in Table 24, Table 25 and Table 26.  

Table 24:  Requirement Class Definition for Small Cars (A00 and A0 Segment – One Wheel Drive) 

 

Table 25:  Requirement Class Definition for Compact Cars (A and B Segment – One Wheel Drive) 

 

Table 26:  Requirement Class Definition for Large Cars (C and D Segment – AWD) 
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 Parameter set for vehicle simulation  

Table 27:  Parameter set for vehicles 

Parameter Settings 

Vehicle ID 

Vehicle Name 

Production Year 

Vehicle Type 

Powertrain Type 

Requirement Class 

Premium Vehicle 

Drag Coefficient 

Cross-Sectional Area 

Rolling Resistance Coefficient 

Dynamic Wheel Radius 

Weight Share Front Axle 

On-Board Power Supply (Electric Vehicle) 

On-Board Power Supply (Hybrid Vehicle) 

Empty Mass 

Base Mass 

Maximum Payload 

Wheelbase 

Vehicle Width 

Vehicle Height 

Center of Gravity Height 

Number of Seats 

Trunk Volume 

Coefficient of Friction 

Type of HV-Drive 

Cooling Type 

Heating Type 

PTC Power 

Charger 

Climate Reference 

Driving Profile 

Driving Cycles 

Motor type 

Engine Power 

Engine Displacement 

Transmission Type 

Transmission Axle Ratio 

E-Motor Type 

E-Motor Power 

E-Motor Type (Generator) 

E-Motor Power (Generator) 

Battery Type 

Cell Chemistry 

Battery Power 

Battery Energy 

Fuel Cell Type 

Fuel Cell Power 

Type of DC/DC 

Total DC/DC Power 

Fuel Type 

Fuel Volume Conventional Tank 

Specific Fuel Mass Conventional Tank 

Specific Fuel Volume Conventional Tank 

System Mass Conventional Tank 

Type of Hydrogen Tank 

Fuel Mass of Hydrogen 

Hydrogen Tank Mass 

Specific Fuel Mass Hydrogen Tank 

Specific Fuel Volume Hydrogen Tank 

Type of CNG Tank 

Fuel Mass CNG 

CNG Tank Mass 

Specific Fuel Mass CNG Tank 

Specific Fuel Volume CNG Tank 
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 CO2eq database 

Structure of CO2eq database 

 

Figure 105:  Structure of CO2eq database 
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Calculation of CO2eq emissions and the necessary input values 

Table 28:  Calculation of CO2eq emissions and the necessary input values 

Component Source of Input Variable Input Variable Key-Value Comment 

Chassis Powertrain Simulation Chassis Weight kgCO2eq/kg Differentiation between 

vehicle segment and 

powertrain type 

Drivetrain Mobility Simula-

tion/Powertrain Simulation 

Powertrain Type kgCO2eq Differentiation between 

powertrain type 

Battery Powertrain Simulation Battery Size kgCO2eq/kWh Differentiation between 

cell chemistry 

E-Motor Powertrain Simulation E-Motor Power kgCO2eq/kW Differentiation between 

e-motor type 

Power Electron-

ics 

Powertrain Simulation Power Electronics 

Weight 

kgCO2eq/kg  

Fuel Cell Powertrain Simulation Fuel Cell Weight kgCO2eq/kg  

Internal Combus-

tion Engine 

(ICE) 

Powertrain Simulation ICE Power kgCO2eq/kW  

Transmission Powertrain Simulation Transmission 

Torque 

kgCO2eq/Nm  

Tank Powertrain Simulation Tank Content kgCO2eq/kg 

Fuel 

Differentiation between 

fossil fuels, CNG and Hy-

drogen 

Production of en-

ergy carrier 

(W2T) 

Powertrain Simulation Driven Distance 

and Consumption 

gCO2eq/km or 

gCO2eq/kWh 

(electricity) 

Differentiation between 

Gasoline, e-Gasoline, 

CNG, e-CNG, Hydrogen 

(CA, US, German elec-

tricity mix), green Hydro-

gen, Hydrogen based on 

Natural Gas, Diesel, e-

Diesel, Biodiesel, E85, 

E85 based on Biomass, 

Ethanol, Electricity mix 

(depending on region) 
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 Curve fitting to the forecast data  

Curve fitting to the forecast data 

One criterion considered is the minimization of the error squares. Before the quality of a curve is 

determined using the sum of the error squares, the curve under consideration must first be approxi-

mated to the forecast data. This means that the parameters of the curve must be selected in such a 

way that the curve runs as close as possible to the forecast data. Therefore, the respective methods 

for fitting the different curve approaches are described below. 

Curve fitting of polynomial regression 

In polynomial regression, systems of linear equations are solved so that the coefficients 𝛽𝑖 of the initial 

function can be determined analytically using the method of least squares. First, the residual is formed. 

The residual 𝑟𝑖 is the difference between the observed point yi and the calculated point 𝑓(𝑥𝑖)  at time 

𝑥𝑖 [James et al. 2015]: 

𝑟𝑖(𝑥𝑖) = yi − 𝑓(𝑥𝑖)                                                             (eq. 36) 

Hereby the following formula applies depending on the degree of the polynomial [James et al. 2015]: 

𝑓(𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + ⋯+ 𝛽𝑚𝑥𝑖

𝑚                                        (eq. 37) 

Here 𝛽𝑖 are the coefficients of the curve function and m is the degree of the polynomial. The goal is 

to minimize the sum of the residuals, analogous to the least squares method. Here, the sum of the 

squares of the errors is considered [James et al. 2015]: 

𝑟(𝑥) = ∑ 𝑟𝑖(𝑥𝑖)
𝑛
𝑖=0

2
= ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑛
𝑖=0                                            (eq. 38) 

𝑟(𝑥) is the sum of the residuals and n is the number of forecast years. To determine the minimum, 

the first derivative is set equal to zero. The partial derivatives must be determined for all coefficients 

[James et al. 2015]: 

𝜕𝑟

𝜕𝛽0
= 0; 

𝜕𝑟

𝜕𝛽1
= 0; … ; 

𝜕𝑟

𝜕𝛽𝑚
= 0                                                       (eq. 39) 

After deriving and ordering the equations, the following system of linear equations can be set up 

[James et al. 2015]: 

[
 
 
 
 
 

𝑛 ∑ 𝑥𝑖
𝑛
𝑖=0 ∑ 𝑥𝑖²

𝑛
𝑖=0 ⋯ ∑ 𝑥𝑖

𝑚𝑛
𝑖=0

∑ 𝑥𝑖
𝑛
𝑖=0 ∑ 𝑥𝑖²

𝑛
𝑖=0 ∑ 𝑥𝑖³

𝑛
𝑖=0 ⋯ ∑ 𝑥𝑖

𝑚+1𝑛
𝑖=0

∑ 𝑥𝑖²
𝑛
𝑖=0 ∑ 𝑥𝑖³

𝑛
𝑖=0 ∑ 𝑥𝑖

4𝑛
𝑖=0 ⋯ ∑ 𝑥𝑖

𝑚+2𝑛
𝑖=0

⋮ ⋮ ⋮ ⋱ ⋮
∑ 𝑥𝑖

𝑚𝑛
𝑖=0 ∑ 𝑥𝑖

𝑚+1𝑛
𝑖=0 ∑ 𝑥𝑖

𝑚+2𝑛
𝑖=0 ⋯ ∑ 𝑥𝑖

2𝑚𝑛
𝑖=0 ]

 
 
 
 
 

[
 
 
 
 
𝛽0

𝛽1

𝛽2

⋮
𝛽𝑚]

 
 
 
 

=

[
 
 
 
 

∑ 𝑦𝑖
𝑛
𝑖=0

∑ 𝑥𝑖 ∗ 𝑦𝑖
𝑛
𝑖=0

∑ 𝑥𝑖² ∗ 𝑦𝑖
𝑛
𝑖=0

⋮
∑ 𝑥𝑖

𝑚 ∗ 𝑦𝑖
𝑛
𝑖=0 ]

 
 
 
 

    (eq. 40) 

In the context of this work, weighting factors are considered for the forecasts. The linear equation 

system can be extended by these factors [James et al. 2015]: 
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[
 
 
 
 
 

𝑤𝑖 ∗ 𝑛 ∑ 𝑤𝑖 ∗ 𝑥𝑖
𝑛
𝑖=0 ∑ 𝑤𝑖 ∗ 𝑥𝑖²

𝑛
𝑖=0 ⋯ ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚𝑛
𝑖=0

∑ 𝑤𝑖 ∗ 𝑥𝑖
𝑛
𝑖=0 ∑ 𝑤𝑖 ∗ 𝑥𝑖²

𝑛
𝑖=0 ∑ 𝑤𝑖 ∗ 𝑥𝑖³

𝑛
𝑖=0 ⋯ ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚+1𝑛
𝑖=0

∑ 𝑤𝑖 ∗ 𝑥𝑖²
𝑛
𝑖=0 ∑ 𝑤𝑖 ∗ 𝑥𝑖³

𝑛
𝑖=0 ∑ 𝑤𝑖 ∗ 𝑥𝑖

4𝑛
𝑖=0 ⋯ ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚+2𝑛
𝑖=0

⋮ ⋮ ⋮ ⋱ ⋮
∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚𝑛
𝑖=0 ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚+1𝑛
𝑖=0 ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚+2𝑛
𝑖=0 ⋯ ∑ 𝑤𝑖 ∗ 𝑥𝑖

2𝑚𝑛
𝑖=0 ]

 
 
 
 
 

[
 
 
 
 
𝛽0

𝛽1

𝛽2

⋮
𝛽𝑚]

 
 
 
 

=

[
 
 
 
 
 

∑ 𝑤𝑖 ∗ 𝑦𝑖
𝑛
𝑖=0

∑ 𝑤𝑖 ∗ 𝑥𝑖 ∗ 𝑦𝑖
𝑛
𝑖=0

∑ 𝑤𝑖 ∗ 𝑥𝑖² ∗ 𝑦𝑖
𝑛
𝑖=0

⋮
∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑚 ∗ 𝑦𝑖
𝑛
𝑖=0 ]

 
 
 
 
 

    (eq. 41) 

𝑤𝑖 are the weighting factors. This system of equations is of the form: 

𝐴 ∗ 𝑥 = 𝑏                                                                               (eq. 42) 

The matrix A and the vector b are known, so that the system of equations can be solved via the inverse 

of the matrix A. Here x represents the solution with the searched coefficients: 

𝑥 = 𝐴−1 ∗ 𝑏                                                                               (eq. 43) 

For the minimization of the error squares the degree of the polynomial is varied. 

Curve fitting of the growth and learning curve 

In contrast to polynomial regression, no analytical solution approaches exist for the growth curves 

and learning curves. Optimization methods must be used here to calculate the variables. In this chap-

ter, the bisection method is used to describe an optimization method for determining the curve pa-

rameters. The bisection method is used because it is a simple and computationally efficient optimiza-

tion method for determining the curve parameters. In the bisection method, also called interval bisec-

tion method, the considered search space is bisected or divided into n-size pieces. The search space is 

the area spanned by the parameter support points [Can 2019]. 

In the context of this work, modified forms of the growth and learning curve are considered. The 

following applies to the growth curve: 

𝑦(𝑥) =
𝑏𝑔𝑟𝑜𝑤𝑡ℎ∗𝐺

𝑏𝑔𝑟𝑜𝑤𝑡ℎ+(𝐺−𝑏𝑔𝑟𝑜𝑤𝑡ℎ)∗𝑒
−𝑎𝑔𝑟𝑜𝑤𝑡ℎ(𝑥−𝑥0)                                         (eq. 44) 

Here 𝐺 is the upper limit, 𝑎𝑔𝑟𝑜𝑤𝑡ℎ is the slope of the curve, 𝑏𝑔𝑟𝑜𝑤𝑡ℎ is a constant parameter, 𝑥 is the 

run variable time (forecast year) and 𝑥0 is the time of the inflection point. The additional parameter 

𝑏𝑔𝑟𝑜𝑤𝑡ℎ allows the curve to better fit the forecast data. The bisection procedure is used to optimize 

the variables 𝐺, 𝑎𝑔𝑟𝑜𝑤𝑡ℎ, 𝑏𝑔𝑟𝑜𝑤𝑡ℎ and 𝑥0. In case the values are known, it is possible to specify the 

upper limit value 𝐺 and the time of the inflection point 𝑥0. Otherwise, these values are derived from 

the historical data. 

For the modified form of the learning curve applies: 

𝑦(𝑥) = 𝑎𝑙𝑒𝑎𝑟𝑛 + 𝑏𝑙𝑒𝑎𝑟𝑛 ∗ (𝑥 − 𝑥0,𝑙𝑒𝑎𝑟𝑛)−𝑞                                         (eq. 45) 
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Here, 𝑎𝑙𝑒𝑎𝑟𝑛is the lower limit, 𝑏𝑙𝑒𝑎𝑟𝑛 is a constant parameter, 𝑥 is the run variable time (forecast year), 

𝑥0,𝑙𝑒𝑎𝑟𝑛 is the start time of the technology and 𝑞 is the learning rate. When considering the learning 

curve, in contrast to the classical approach, the running variable 𝑥 is not the cumulative production 

quantity, but the respective forecast year. In addition, the variable 𝑥0,𝑙𝑒𝑎𝑟𝑛 is used to determine the 

start time of the technology. Since the forecast data only start from the year 2010, this is necessary for 

a meaningful progression of the learning curve. The variables 𝑎𝑙𝑒𝑎𝑟𝑛, 𝑏𝑙𝑒𝑎𝑟𝑛, 𝑥0,𝑙𝑒𝑎𝑟𝑛 and 𝑞 are opti-

mized with the bisection procedure. Analogous to the growth curve, the lower limit value 𝑎𝑙𝑒𝑎𝑟𝑛 as 

well as the starting time 𝑥0,𝑙𝑒𝑎𝑟𝑛 can be specified. 
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 Computer configuration  

Laptop: 

• Windows 10 

• Processor: Intel i5 8365U 1.6 GHz (4 Cores, 8 Threads) 

• RAM: 8 GB 

Workstation: 

• Linux 

• Processer: 2x Intel Xeon 6234 3.3 GHz (8 Cores, 16 Threads each) 

• RAM: 384 GB 
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 Vehicle fleet of current state of Berlin  

 

Figure 106:  Vehicle fleet of current state of Berlin 
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Lebenslauf 
 

Aus Datenschutzgründen ist der Lebenslauf in der elektronischen Version nicht enthalten. 






