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Chapter 1
Introduction

Machine learning and so-called artificial intelligence (AI) are becoming more and
more well-known and widespread these days, as can be seen as it triggers hot
debates ([118], [88]).

But the idea of artificial intelligence is not new: One of the most important
developments in the field of machine learning are neural networks, which date back
to 1958 [103]. Inspired by the functioning of the brain, connections of artificial
neurons were created that jointly form a multilayer perceptron - the first type of
an artificial neural network. In the following, this type of networks was constantly
developed further and new types of network architectures such as convolutional
neural networks [68], residual structures in neural network architectures [50] or
recurrent neural networks for the prediction of time-dependent correlations [78]
were invented. Another development that has increased the utility of neural
networks has been the introduction of deep neural networks [5]. Here, layers of
neurons are stacked so that the number of weight parameters within the network
increases significantly, which also positively affects in the prediction quality of the
model.

The use of such technology not only offers new possibilities in the private sec-
tor, but companies also benefit from these developments. However, since not all
companies have the know-how about machine learning to immediately integrate
it into their processes, expert knowledge is often needed to handle the flood of ad-
justable hyperparameters [23]. This is often difficult to obtain and, in particular,
expensive as the underlying data and problems are always of a different nature.

One way to simplify and accelerate such access to the technology of machine
learning is ”automated machine learning” (AutoML) [51]. In this process, hyper-
parameters of these technologies are automatically adapted to the user’s problems
and data sets and a good model is designed. Although there are many ways in
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1 Introduction

which AutoML can help in the development of a good predictive method, one
important part of AutoML is the network architecture search (NAS) [33], which
searches for suitable neural network architectures that provide high accuracy for
a predefined computational cost.

Similarly, it is important to be aware of the choice of optimization algorithms
available, which are behind the training of the machine learning models and how
to look at how these algorithms work in order to obtain a functioning data science
method. This helps in assessing problems that can arise in machine learning and
out of this, techniques can be developed on how to eliminate these problems.

Furthermore, it is important to see that not only tasks like image recognition [107],
natural language processing [83], object detection [98], image segmentation [91]
and many more topics are suitable for machine learning applications, but there
are also medical approaches that help in giving more certain medical prognosis
suggestions [30].

In this thesis, the problem of the availability of machine learning technology
is addressed by developing the well performing NAS-approach ResBuilder [18],
which is able to search for architectures in depth as well as in width. To achieve
this, it constructs ResNet-style [50] architectures from scratch or modifies a given
architecture in order to achieve high accuracy on classification problems while
achieving nearly state-of-the-art performance on many academic datasets for a
set of default hyperparameter settings and also holds for an industrial use case
application. For this purpose, different regularization terms are combined during
the training of the neural network so that computing capacities can be optimally
distributed within the entire architecture. This means that even companies with
only a limited amount of computing capacity can build and use methods with
residual architecture structures that are easy to use, since the number of comput-
ing operations can be set in advance.

Since the neural network optimization problem also strongly depends on the un-
derlying optimization method, the port-Hamiltonian approach of an optimizer
[17] provides a new instructive view on the stochastic gradient descent method.
Here, the progression for the position of the optimization method in the loss land-
scape is considered as a heavy ball with friction, which rolls over local minima
and can be seen as a physical application of the often used momentum strat-
egy. It therefore can find better minima during training which results in a better
overall accuracy. Furthermore, the method has been further developed in such a
way that it can interrupt the training process in a goal-oriented manner, whereby
minima are exploited in the best possible way, which has also proven to be a
countermeasure to the overfitting problem.

Another problem besides overfitting that often arises in the evaluation of methods
with neural networks is the challenge of the domain gap. This means that if the
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data comes from only one source (such as images from a particular scanner in
this example), it can happen that images from another source (another scanner)
are predicted significantly worse or are not comparable with the predictions from
the data from the first source. We address this problem in an use case where
a method was developed together with NeraCare to determine a survival score
for scans of malignant melanoma slides [16]. This is done by combining Cox’s
proportional hazards model with neural networks.

This thesis is therefore structured as follows:

First, there is a general introduction to the topic of machine learning and the
basics of neural networks in Chapter 2, where the use of neural networks is math-
ematically substantiated. Then, Chapter 3 focuses on the explanation of the
port-Hamiltonian approach to optimization problems, where our approach to the
development of a physically motivated optimization algorithm is described and
evaluated. Chapter 4 then provides an overview of meta-learning algorithms,
laying the foundations for our NAS approach. Our ResBuilder method is also
motivated and defined there. Since the ResBuilder is based on MorphNet, an
AutoML method developed by Google, numerical results of our experiments with
this method are provided in Chapter 5, before the results of the entire ResBuilder
method are presented in Chapter 6. Subsequently, Chapter 7 will show the use
case of neural networks in the field of survival analysis, where the problem of
the domain gap will also be highlighted and addressed by suitable regularization
techniques. Finally, Chapter 8 will provide a summarizing overview of the results
discussed in this thesis.
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Chapter 2
Basics of machine learning and neural
networks

This chapter provides a short overview of the basics in machine learning because
these insights are essential to understand further topics like Googles MorphNet
([42]) oder meta learning algorithms in general. Therefore we start giving some
information on the theory of machine learning in Sec. 2.1 where we explain its
concept. Then we take a look at the basic definitions of neural networks and their
components in Sec. 2.2. Sec. 2.3 concludes with an overview of the datasets used
in this work and their characteristics.

2.1 Machine Learning in general

Machine learning describes the computational way to generate knowledge from
experience data. Widely known is the more abstract definition of Mitchell: “A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T , as measured
by P , improves with experience E.” [80].

Like in [41], we will have a look on each of these mentioned parts of Mitchells
quote:

2.1.1 The Task T

The usecases of machine learning technology are widely spread:
Besides tasks like computer vision tasks [61] or language processing [24], machine
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2 Basics of machine learning and neural networks

learning is also used for autonomous driving [36], predicting medical information
[34] and much more. Although there are much more possible abstract categories
for use cases of machine learning technologies (see chapter 5.1.1 in [41]), we focus
on classification tasks in this work but we will also have a look on survival
analysis in Chapter 7:

Classification Classification is the task to assign a category y ∈ Y to an input
vector x ∈ Rn. Therefore the program to solve this task can be seen as function
f : Rn → Y . For simplyfication reasons we assign each category to a numerical
index, such that we can set Y = {1, . . . , k} for k as the number of categories.

An example for such a classification task gives the Fashion-MNIST dataset[126]
which consists of 70,000 pictures of fashion products. There are 10 different
categories of these clothing pieces like sandals, dresses or T-shirts (see 2.3.2 for
further information). Each picture consists of 28 × 28 gray scaled pixels and so
x is a vector of size 784 and the outcome categories are the 10 different types of
fashion product. So the classification task is to find a function f : R784 → Y with
Y = {1, . . . , 10}.

Survival Analysis Survival analysis covers predicting the probability of absence
of an event (e.g. the death of a patient) until time t using the parameters β of a
suitable model [47]. One of the most widely used methods is Cox’s Proportional
Hazards Model which we will focus on in Chapter 7 [16].

2.1.2 The Experience E

In general, our experience E can be understood as a dataset, on which the ma-
chine learning algorithm is trained and later evaluated. While machine learning
algorithms can be separated in supervised and unsupervised learning meth-
ods, in this work we focus on supervised learning which means that all of our
datasets have labels. In supervised learning, it is important to divide the avail-
able database, consisting of input data x that has to be learned and associated
labels y, into at least two disjoint partial data sets (training and test data). Of-
ten, an additional validation set is also used, especially if, for example, the test
data is only provided without a label for the time of developing and evaluating
the method.
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2.2 Feed-Forward Neural Nets

2.1.3 The Performance Measure P

In order to evaluate the performance of a machine learning model we are having
a look on the rate of correct predictions in a validation dataset, we introduce the
well known confusion matrix as shown in Table 2.1.

Actual Positive Actual Negative
Predicted Positive true positives (TP) false positives (FP)
Predicted Negative false negatives (FN) true negatives (TN)

Table 2.1: Confusion Matrix.

The Confusion Matrix provides various suitable measures that can be used to
evaluate the quality of machine learning methods. The most common measures
are:

� Accuracy: TP+TN
TP+TN+FP+FN

� Precision: TP
TP+FP

� Recall: TP
TP+FN

� Specificity: TN
TN+FP

In order to be able to realise a performance measure for a machine learning
method, a machine understandable solution has to be found, which is called the
loss function, where we will have a closer look on in Sec. 2.2.3.

However, it is often not only performance measures derived from the number of
correctly classified data points that are of interest. Especially in the field of au-
tomated machine learning (AutoML), a measure such as the computing capacity
used by the model at hand is also interesting, which is why it also has an influence
on the loss function described in Sec. 2.2.3.

More information about the performance measure can also be read in chapter
5.1.2 of [41].

2.2 Feed-Forward Neural Nets

Neural networks are playing an increasingly important role in machine learning.
Inspired by the layout of the human brain, these structures are constructed in
layers and can solve complex non-linear problems like image classification, natural
language processing or providing medical diagnoses.

The notation of the following definitions is mostly based on [41] or [110].

7



2 Basics of machine learning and neural networks

A general, simple neural network consists of one input layer l1, one output layer lk
and an arbitrary number of so-called hidden layers l2, . . . , lk−1 in between. Each
layer li consists of a number of neurons which are connected to the neurons the
following layer by a weighted edge ω

(li)
a,b , with a the index of a neuron in li and

b the index of a neuron in li+1. Let |F | denote the depth of the network which
is defined as the total number of layers without taking the input layer l1 into
consideration. The width |li| of a fully connected layer li is defined as the number
of neurons within this layer including the bias neuron, which are neurons that do
not have an incoming edge from the previous layer but have an outgoing edge to
every neuron in the following layer.

Figure 2.1: An example for a simple neural net.

In Fig. 2.1 an example of such a simple net with a depth of |F | = 2 and a
maximum width of |l2| = 5 is given. Between the orange input-layer and the
green output layer there is one violet hidden layer. The red neurons represent
bias neurons.

To infer data through this net, an input vector x0 ∈ R|l1|−1 is given to the first
layer and the value of the output layer can be calculated by a concatenation of
the different layers:

F (x0, ω) = (f (l|F |) ◦ f (l|F |−1) ◦ . . . ◦ f (l1))(x0, ω) (2.1)

The function f : R|li| → R|li+1| between the layers li and li+1 is defined as:

8



2.2 Feed-Forward Neural Nets

Figure 2.2: Influence of a bias neuron on the rectified linear unit activation function.

xi+1 = f (li+1)(xi) = Φ(i+1)(W (i+1)xi + b(i+1))∀i = 1, . . . |F | − 1 (2.2)

where xi is the output of layer li and so the input of layer li+1, Φ the activation
function which will be described further in Sec. 2.2.1, W (i) ∈ R|li|×|li−1| the matrix
of all weights ω(i) between the layers li−1 and li and b(i) a bias neuron which is
added to the layer li and ensures that the activation function is applied in the
right place. This allows the activation function (Sec. 2.2.1) to be used much more
flexibly, as can be seen in Fig. 2.2.

2.2.1 Activation functions

In order to fulfill the universal approximation theorem (Subsec. 2.2.2) it is neces-
sary that at least one layer contains a non-polynomial function. This is usually
realized with the implementation of an activation function for every neuron. Dif-
ferent types of non-linear functions are possible, where it is generally reasonable
to choose a function which is differentiable in order to train the network properly.1

� The sigmoid function is defined by

sig(x) =
1

1 + e−x
and so its derivative is sig′(x) =

e−x

(1 + e−x)2
. (2.3)

� As it can be seen for example in Fig. 2.3 the hyperbolic tangent is closely
related to the sigmoid function.

tanh(x) =
e2x − 1

e2x + 1
with tanh′(x) = 1− tanh(x)2 (2.4)

1For example for using SGD. See Sec. 2.2.4 for more information.
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2 Basics of machine learning and neural networks

Figure 2.3: Overview of different activation functions.

� One solution which is often used in image classification is the Rectified
Linear Unit (ReLU):

ReLU(x) = max{0, x} (2.5)

Although it is not differentiable in zero, this problem is not relevant in
practical use.

� The Softmax function σ : R|Y| → (0, 1)|Y| is a special type of activation
function as it is usually used for the last layer of a neural network to deter-
mine an interpretable probability from the features of the neural network
output:

σ(x)i =
ezi∑|Y|
j=1 e

zj
∀i = 1, . . . , |Y| (2.6)

with zi the activation of the neurons in the last layer l|F |. In further notation
we denote ŷi = σ(F (xi)), which is the predicted label of xi.

2.2.2 Universal Approximation Theorem

Whether machine learning algorithms in the form of a neural network can solve
a given problem at all (and if so, how accurately) is answered by the universal
approximation theorem: Let F (x, ω) be the function obtained from the neural
network before softmax, which is continuous and bounded and should approx-
imate F ∗ : Rn → R. With a given input data set X and the associated la-
bels Y , we assume that there is a labelling function F ∗ that exactly satisfies
σ(F ∗(x)) = y, x ∈ X , y ∈ Y with σ the softmax activation. The universal ap-
proximation theorem now states that no matter what the optimal function F ∗

10



2.2 Feed-Forward Neural Nets

looks like, a sufficiently large “multilayer perceptron” (i.e., a neural network with
simple, dense layers) can represent it arbitrarily well as long as it has at least
one hidden layer with a “squashing” activation function (e.g., the logistic sigmoid
activation function) [41]. This was originally proven in [56] and in a more recent
work [72] it was proven that this theorem also holds for other activation functions
like the nowadays often used ReLU activation function.

2.2.3 Lossfunction

As already mentioned in Subsec. 2.1.3 choosing a suitable lossfunction is very
important to guarantee the learning success of the neural network.

For this purpose, we first define the concept of empirical risk minimization in
analogy to [110]. Let S ⊂ (X ,Y) be a randomly drawn training set from the
population of a data set that follows a distribution D and has been labelled by
an objective function F ∗. The algorithm for minimizing empirical risk (in the
following referred to as ERM learner) should now find an optimal assignment
FS : X → Y that minimizes the error with respect to the unknowns D and F ∗.
For this purpose, the training error is defined as follows:

LS(F ) =
|{i ∈ {1, . . . , |X |} : ŷi ̸= yi}|

|X |
(2.7)

with ŷi is the by F predicted class label of xi.

Cross-Entropy loss A slightly more advanced idea for the loss function is the
so-called cross-entropy. It was motivated in [105] in 1997 and adapted for
the discrete case in 1999 [104]. For two probability distributions P,Q the cross-
entropy H(P,Q) is defined as

H(P,Q) = −EX∼P logQ(x) (2.8)

for what it is similar to the well known Kullback-Leibler-Divergence DKL(P ||Q)
[66]: H(P,Q) = H(P ) +DKL(P ||Q).

In the use case of a loss function in order to train a neural network we then receive
the following term:

LCE = −
|S|∑
i=1

yi logF (xi) (2.9)
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Figure 2.4: Schematically shown loss landscape with a local and global minimum and
a saddlepoint.

for a given training set S, yi the true label of the input data xi, (xi, yi) ∈ S and
F (xi) the output (before softmax) of the considered neural net.

2.2.4 Gradient based Optimization

In order to minimize the loss function L, various methods have been developed
that adjust the weights ω of a neural network F (ω, x) in such a way that the value
of the loss function successively decreases. The task now is to find an as good as
possible local minimum of L, at best even the global minimum.

As it can be seen in [41], the idea for a gradient based method is that the value
of a function F becomes smaller in the direction of its negative derivative ∇F ,
at least for an ϵ-sized step: F (x− ϵ sign(∇F (x))) < F (x),∇F (x) ̸= 0 for a small
enough ϵ as it can be seen in Fig. 2.4. In the case of F ′(x) = 0, this equation
does not provide any information on how to proceed to minimize the loss, but it
does tell us that we are in a stationary point. This can either be a local or global
minimum or maximum, or a saddle point. This idea goes back to 1847[20].

Fig. 2.4 also shows at which point we would like the algorithm to converge: While
for the example shown, the worst case would be for the optimization algorithm
to converge at the saddle point on the left, convergence at the local minimum on
the right would be better. Optimally, the algorithm finds the global minimum in
the middle. For this, however, it would have to overcome the maximum between
the two minima in case of a randomly selected starting point on the right side
(e.g. x > 4), which could be problematic for naive algorithms.
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2.2 Feed-Forward Neural Nets

2.2.4.1 Stochastic Gradient Descent (SGD)

A widely used approach to make adjustments to weights goes back to 1951, where
Stochastic Gradient Descent finds its roots [101].

In the application, ϵ is often referred to as the learning rate α, as this indicates the
step size with which the weight updates are completed. For every training step t
each weight of ω experiences an update due to the stochastic gradient descent:

ωt+1 = ωt − α∇ωtL (2.10)

with ∇ωL the gradient of the lossfunction as defined in (2.11).

Optimally, one would perform the gradient descent on all data from the complete
data set. However, this is impractical in practice, as

� With large amounts of data and high-dimensional data, there are problems
with the size of the random access memory of the underlying system.

� (2.11) converges with the law of large numbers [7, 29]. However, if L is
already sufficiently converged, the investment of additional computational
resources in (2.11) is not profitable.

� In strongly non-convex optimization problems, stochasticity can help in the
selection of mini batches to overcome local minima.

This is why stochastic gradient descent performs batchwise weight updates re-
sulting in the following term for the gradient of the loss function:

∇ωL =
1

m

m∑
i=1

∇ωL(ŷi, yi) (2.11)

SGD with momentum An extension of the original SGD algorithm is to apply
a momentum to the changes due to the gradients, which makes it possible to “roll
over” bad local minima in the optimization process. For this purpose, equation
(2.10) is updated accordingly:

vt = λmomvt−1 + (1− λmom)∇ωtL (2.12)

ωt+1 = ωt − vt (2.13)

for a given momentum strength λmom.
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2 Basics of machine learning and neural networks

PHS-based Optimization We provide another interpretation of the SGD with
momentum in [17], where we imagine the optimization model in the hilly loss
landscape as a heavy ball with friction. The updates of the weights (as described
for SGD in (2.10)) then work as follows:

ωi+1 = ωi + α
1

m
pi with (2.14)

pi = pi−1 − α
ρ

m
pi−1 − α∇ωL (2.15)

with a friction coefficient ρ and a predetermined mass m which is why one could
interpret pi as impulse in step i.

2.2.4.2 Further Optimizers

Like [41], we also have a short look at other developments that have emerged from
the SGD:

AdaGrad In addition to stochastic gradient descent, there are other gradient-
based optimization methods such as AdaGrad [32], which is based on SGD but
has an individual learning rate αi for each weight omegai depending on the value
of its partial derivative ∇ωi

in relation to the average value of all partially derived
weights.

RMSProp One weakness of the AdaGrad method is that if it takes too long
to converge, the algorithm may settle into a local minimum along the way. By
implementing an erasing memory, the RMSProp algorithm [119] eliminates this
weakness, as it allows more big steps to happen a few iterations later, even if
there is a big step at the beginning.

Adam The Adam optimiser[62], which is the short name of adaptive moment
estimation, is based on the RMSProp method but applies a clever kind of momen-
tum to it, making it the standard optimizer for most deep learning applications
nowadays.
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2.2 Feed-Forward Neural Nets

Figure 2.5: Backpropagation running through a neuron.

2.2.5 Backpropagation

This section on backpropagation [106] summarizes the whole process of weight
adjustments and explains how the updates of the weights are done or how the
partial derivatives for each of the several thousand weights can be determined.

To explain the process of backpropagation, we assume that we consider only one
data point x at a time, even though in practical use mini-batches of data points
are usually used. Furthermore, we assume that the neural net only consists of
fully connected layers li and its weights ω(i) are already initialized (with random
values). The backpropagation process consists of 3 parts:

1. First, the data point x is propagated forward through the network.

2. Then, the loss function for the current state of the network regarding its
weights ω and the currently considered data point x is calculated.

3. Finally, we look at the actual process of backpropagation, where we dis-
tribute the loss to the individual weights using the chain rule and partial
derivatives.
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2 Basics of machine learning and neural networks

Forward Propagation Since the neural network consists of several layers li, the
input x is first propagated through the individual layers, whereby we denote the
input of each layer with xi in the following. The calculation of the output of each
neuron is performed according to Fig. 2.5 while the calculation rule of f is stated
in (2.2). From this we obtain the final output of the network F (xi).

Error calculation After we have received the output of the net, we can determine
the value of our loss function L according to (2.9), since we also know the true
value y of our training sample x.

Backpropagation In the last step, the gradient of the loss function ∇L is calcu-
lated and passed on to the individual weights ω

(li)
j using the chain rule. What is

meant here is the chain rule according to calculus and not that of the probability
calculation:

∂z

∂x
=

∂z

∂y
· ∂y
∂x

(2.16)

This chain rule must now be applied to all intermediate calculations (such as an
activation function or the summation part of a neuron) that lie between the output
of the neural network and the weight under consideration. For ease of notation,
let’s combine the individual computations that happen inside a neuron into one,
which we will call z. Further, assume that for each weight ω we have recorded the
neurons that are passed during the forward propagation to the output value of the
network in a list zω = (z1, . . . , zm), which must now be processed in sequence in
order to carry out the backpropagation from the loss function back to the weight.

∂L

∂ω
(li)
j

=
∂L

∂z1
· ∂z1
∂z2

· ∂z2
∂z3

· . . . · ∂zm−1

∂zm
· ∂zm

∂ω
(li)
j

= (. . . ((
∂L

∂z1
· ∂z1
∂z2

) · ∂z2
∂z3

) · . . . · ∂zm−1

∂zm
) · ∂zm

∂ω
(li)
j

(2.17)

It is worth to notice that the partial derivatives can be calculated stepwise, as
indicated in the second line of (2.17). This means that only one vector at a time
has to be stored temporarily and not the entire Jacobian matrix. In each neuron,
backpropagation is applied as shown in Fig. 2.5 in red.

It has to be considered that we must pay attention to the fact that the individual
functions used must be differentiable within the structure of a neural network.
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2.2 Feed-Forward Neural Nets

Figure 2.6: Under- and Overfitting a binary classification problem.

2.2.6 Overfitting

The idea of minimizing the empirical loss L on the training data set S is not
a bad idea in the first place, but often leads to problems in application, as the
algorithm can over adapt on S, causing it to perform poorly on data that was not
part of the training. It only learns the labels YS of the training data by “heart”
and does not generalize to unseen data. This problem is also called overfitting,
which is the opposite of underfitting, which occurs, for example, when a method
is trained for too short a time or the neural network lacks capacity.

The comparison of these two extremes is illustrated in Fig. 2.6 where a binary
classification problem is schematically shown. The aim of the black line should
be to separate the violet dots from the yellow dots. The very left plot shows the
problem of underfitting as the line poorly separates the two classes. The plot in
the middle the shows a good classification. Although some of the points near the
boarder are classified to the wrong class, the pattern has been recognized what
would lead to a good generalizability. The outer right plot shows the problem
of overfitting: Even though every single point is categorized to the correct class
label, this line would not perform good in the task of generalizability.

So just by observing the training progress in reducing the loss function, one cannot
tell if it is affected by overfitting. Therefore, one should always pay attention to
whether the accuracies of training and test (or validation) data differ too much.

Fig. 2.7 schematically shows a loss and accuracy curve as it could occur during
the training of a neural network. At about epoch 150, the loss or accuracy on
the validation data increases, which indicates that the method is now beginning
to overfit. Precautions against such overfitting would be, for example, an early
stopping of the training process or the regularization technique explained in Sub-
sec. 2.2.6.2.
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Figure 2.7: Indication of an overfitting problem while training.

2.2.6.1 Early stopping

One approach to reduce overfitting problems is the early stopping of the training
process. If we consider Fig. 2.7 again, we could stop the training at about epoch
145 and have a better generalized model than if we would continue to train the
model beyond that epoch. This had been shown in [82] where the problem of
overparametrization is addressed.

2.2.6.2 Regularization

Another technique often used in machine learning methods is regularization.
When regularizing, we penalize high values of the net’s weights mainly in or-
der to reduce overfitting. In this work, we also use regularization to artificially
pull weights down, that the sum of weights in a specific filter/layer is below a
given threshold to eliminate groups of neurons. See Sec. 5.1.1 for more informa-
tion on this and Subsec. 6.1.1.2 for more information on the parameter settings
that are used therefore.

To implement regularization we add a term of the form λstr ·G(ω) to the lossfunc-
tion L for every kind of used regularization. For the case of a typical cross-entropy
lossfunction ((2.8)) we achieve:

L = LCE + λstr · G(ω) (2.18)

whereas λstr is the choosable regularization strength and G is a function on the
weights ω that corresponds with the values of each individual weight ωlk

i,j. Most
often used regularization techniques are L1− or L2-regularization:
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L1-regularization:

G(ω) =
|F |∑
k=1

lk−1∑
i=1

lk∑
j=1

|ω(lk)
i,j | (2.19)

L2-regularization (also called weight decay [46]):

G(ω) = 1

2

|F |∑
k=1

lk−1∑
i=1

lk∑
j=1

|ω(lk)
i,j |2 (2.20)

for a network F consisting of |F | layers whereas each layer lk has |lk| neurons and
l0 are the input neurons.

2.2.6.3 Input augmentation

Besides regularization (see Subsec. 2.2.6.2) or early stopping the training pro-
cess (2.2.6.1) there is also the input augmentation technique [112, 124] to reduce
overfitting:

Therefore, the input data can be augmented randomly by several options: In case
of image data as input one can do many things as zoom in the image, crop the
image, shift it horizontally or vertically, flip or rotate it along its axis and many
more. This also helps the training process to generalize.

2.2.6.4 Dropout

The authors of [117] have made another suggestion on how to avoid overfitting:
Dropout. This means that one sets the output value of a certain percentage of
the neurons in fully connected layers to 0. In this way, the neural network cannot
rely on a few specific, important edges/weights in the network, but learns “more
intensively”. This has also been successfully tested for convolutional layers (which
we will introduce in Subsec. 2.2.7.1).

2.2.7 Types of layers

A very common variant of layers in a neural network are the fully connected
layers, as already described above. Here, each neuron of layer li has an incoming
connection of each neuron from layer li−1 and an outgoing connection to each
neuron of layer li+1. To reduce the number of weighted edges and make the best
use of regional information, several other types of layers have been developed,
which are discussed below:
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0 5 5 0 0 3 0
0 5 5 0 0 3 0
0 5 5 0 0 3 0
0 5 5 0 0 3 0
0 5 5 0 0 3 0
0 5 5 0 0 3 0
0 5 5 0 0 3 0

∗
-1 0 1
-1 0 1
-1 0 1

=

15 -15 -15 9 0
15 -15 -15 9 0
15 -15 -15 9 0
15 -15 -15 9 0
15 -15 -15 9 0

Table 2.2: Example of a two-dimensional convolution.

2.2.7.1 Convolutional Layer

Especially for image recognition tasks the Convolutional layers [13] are of enor-
mous importance. In order to be able to apply a convolution within a neural
network to two-dimensional input data (such as an image) I, we define a filter
(also called a kernel) K, which is pushed pixel by pixel over I. In the process,
pixels can also be skipped periodically, which determines the stride of the convo-
lution. In relation to the image size Ix (width of the input data) and Iy (height
of the input data), the kernel dimensions Kx (width of the filter) and Ky (height
of the filter) are usually significantly smaller: Kx ≪ Ix, Ky ≪ Iy. Since the entire
input I is not considered at the same time, the part of the input regarded by
the filter is referred to as the “receptive field” of a filter. Mathematically, the
convolution operation (I ∗K) for a given position (i, j) in the image can be seen
as follows:

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.21)

However, most machine learning libraries tend to use the very similar cross-
correlation, which is also called convolution in the machine learning field:

(I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.22)

Table 2.2 shows a simple example of a convolution of a 7 × 7 input image with
a 3× 3 kernel. The term of (2.22) would look like this for i = 0, j = 0 (the blue
colored cells):

(I ∗K)(1, 1) =
2∑

m=0

2∑
n=0

I(1 +m, 1 + n)K(m,n)
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(I ∗K)(1, 1) = (0 · (−1) + 5 · 0 + 5 · 1) · 3 = 5 · 3 = 15

The result of the convolution is called a feature map in the context of machine
learning. As can be seen here, the convolution reduces the dimension by (filter size
−1) in each image dimension. This could be avoided by using a so-called padding.
This allows the filter to be pushed beyond the edge of the input as long as the
center of the filter remains within the input data. With padding, non-existent
pixels are simulated. The most common methods of assigning a value to this
non-existent pixel is either to select the same value from the next existing pixel
within the image, or to always use the value 0. While in the examples considered
up to here only one color channel was considered at a time (as would be the case,
for example, in a grey-scaled image), the procedure is of course also suitable for
images with more channels (e.g. RGB images with 3 channels or ELA images
with 6 channels). For this, the formula is adapted as follows:

(I ∗K)(i, j) =
∑
m

∑
n

∑
d

I(i+m, j + n, d)K(m,n, d) (2.23)

Even though only images as input data were mentioned here, the procedure for
feature maps as input remains the same. Here, too, the dimension must be
adjusted according to the depth of the previous feature map.

2.2.7.2 PoolingLayer

Another technique that is often used in convolutional neural networks is the pool-
ing layer. These reduce the dimension of the feature maps in height and width
and thus allow to find larger components of context within an image that would
go beyond the receptive field of a single filter. Even though there are various
other intuitions regarding pooling, such as (weighted) average pooling or using
an L2-norm on the neighborhood of the region under consideration, max pooling
[129] has established itself.

To apply Max Pooling, we determine a region size Kx, Ky (analogous to the
kernel size for convolutional layers) on which pooling should be applied. Often
Kx = Ky = 2 is chosen, which halves the height and width of the feature map.
Now the image is divided into subsections of size Kx ×Ky and for each of these
subsections the maximum is determined, which gives the value in the output
feature map, as can be seen in Table 2.3.
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0.25 0.51 0.52 0.11
0.34 0.24 0.73 0.02
0.31 0.65 0.37 0.76
0.69 0.42 0.17 0.23

→ 0.51 0.73
0.69 0.76

Table 2.3: Example of a MaxPooling operation.
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Figure 2.8: Residual block in a convolutional neural network.

2.2.7.3 Residual Layerblock

Even though it is not a layer species per se, we also consider residual structural el-
ements here, as they are an important structural element of modern deep learning
architectures. The problem with modern network architectures is often that they
have many layers, which means that the gradient due to backpropagation hardly
reaches the actual weights, which is called a vanishing gradient. As a result, the
accuracy in deep networks decreases significantly. [49] To counteract this, residual
structures were introduced that incorporate a skip connection across several lay-
ers, which means that the output of one (e.g. convolutional) layer is copied at an
outgoing skip connection and added to the output of a succeeding (convolutional)
layer [50]. This identity mapping makes the gradient in backpropagation vanish
noticeably slower.

Fig. 2.8 shows such a residual block (green) in a small convolutional neural net-
work.

When inserting such a structure, it is important to pay attention to the respective
dimensions of the layers. E.g. the size of the feature map should be the same.
If one wants to set up a cross-dimensional skip connection, one must again use
some kind of padding. One idea in [50] is that these padded values could also
be learned using 1x1 convolutions. With the ResNets, they also give examples in
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different scales of how such residual blocks can be used in network architectures.
These types of architectures have redefined many state-of-the-art benchmarks.

2.2.7.4 Other types of layers

In the context of convolutional nets, there are other types of layers, such as
unpooling [128] or deconvolution [99] layers, which are often found in nets such as
the U-Net [102]. However, these are not considered in more detail in the context
of this work.

2.3 Academic Benchmark Datasets

In this work we evaluate our approaches to automated machine learning algo-
rithms on different datasets. Most of them are academic datasets due to more
comparable benchmark reasons. We used different sources for our dataset, which
mainly have been keras [22] and the tensorflow-datasets package [3].

2.3.1 MNIST

MNIST, the modified version of the NIST dataset defined in [69], contains 60,000
training pictures of handwritten digits, as well as 10,000 pictures in a test dataset.
All pictures have size 28×28 pixels and each pixel has a gray value. This dataset is
commonly used for first experiences in machine learning as it provides good results
quickly without much effort. We therefore also conducted our first experiments
on this data set (see Chapter 6 for more information on the experiments of our
ResBuilder method.) For this work we used the version available from the keras
datasets [22].

Figure 2.9: Four random images from the MNIST dataset.
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2.3.2 FashionMNIST

As MNIST (2.3.1), FashionMNIST [126] is also one of the most often used
benchmark datasets. In FashionMNIST we also have 70,000 gray-scaled pictures
of the size 28×28, separated in 60,000 training and 10,000 test images. In contrast
to MNIST the pictures of this dataset contain 10 different types of clothing which
have to be classified. These types of clothing are: T-shirt/top, trouser, pullover,
dress, coat, sandal, shirt, sneaker, bag and ankle boot. Because this dataset is also
easy to learn but a slightly more challenging task for neural nets than MNIST, it
supplies a great opportunity to test new technologies implemented in the method.
Some example images can be seen in Fig. 2.10. For this work we used the version
available from the keras datasets [22].

Figure 2.10: Four random images from the FashionMNIST dataset.

2.3.3 EMNIST

Another commonly used, MNIST-like dataset is EMNIST [25]. Here we also
have grayscaled images of size 28× 28 pixels, but in extension to MNIST (2.3.1)
this dataset also contains handwritten letters, which also expands the number of
classes from 10 to 62, where the first 10 classes represent the digits from 0 to
9, classes 11 to 36 the capital letters and the last classes from 37 to 62 stand
for the lowercase letters. Like the original EMNIST data, images provided by
the used tensorflow dataset [3] are inverted horizontally and rotated 90 degree
anti-clockwise as we can see in Fig. 2.11. Overall there are 814,255 images in the
dataset but in this case, the images are not equally distributed among the classes.
Most images (44,704) are in class 1(digit “1”) and least number of images is 2,213
for class 45 (which equals the lowercase character “i”). The dataset is split into
697,932 training images and 116,323 test images.
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Figure 2.11: Four random images from the EMNIST dataset which are already flipped
horizontally and rotated 90 degree anti-clockwise.

2.3.4 CIFAR10

The first colored image dataset in this work is the CIFAR10 dataset [64] with
which most of the experiments with the training pipeline have been performed. It
contains 60,000 pictures (split in 50,000 training images and 10,000 test images)
equally distributed in ten different categories, which are: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck. All pictures have size 32 × 32
pixels where each pixel has a 3-channeled color codex.

A special feature concerning the CIFAR10 dataset is that it has been normalized
before use, since this is often done [114], it not only increases the prediction quality
of the networks, but at the same time generates a better comparability with other
works. In Fig. 2.12 four random pictures of the CIFAR10 dataset are shown and
Fig. 2.12(a) shows them before and Fig. 2.12(b) after the normalization process.
For this work we use the version available from the keras datasets [22].
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((a)) Raw versions of the images from the CIFAR10 dataset.

((b)) Images after the normalization process.

Figure 2.12: Four random images from the CIFAR10 dataset.

2.3.5 CIFAR100

The CIFAR100 dataset [64] is similar to the CIFAR10 dataset (described in
2.3.4), it is just extended to 100 classes, but the number of pictures per category
decreased from 6,000 images to 600 images, such that the total number of images
in the dataset is still 60,000. For a full list of the classes have a look in [64]. The
100 classes are also grouped in 20 subclasses which are not used in this work. Like
in CIFAR10 the pictures of this dataset have size 32× 32 and a 3-channeled color
codex. An example of pictures is displayed in Fig. 2.13.

Figure 2.13: Four random images from the CIFAR100 dataset.
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2.3.6 Small NORB dataset

The Small NORB dataset [70] contains 97,200 96 × 96 pictures of five different
categories of 50 different toys whereas the categories are airplanes, cars, four-
legged animals, human figures and trucks. Each of the 50 toys is photographed
under 6 different lightning conditions, 9 elevations (30 to 70 degrees, every 5
degrees) and 18 azimuths (0 to 340 every 20 degrees). In Fig. 2.14 we can see
four random pictures from this dataset.

Figure 2.14: Four random images from the smallNORB dataset.

2.3.7 Animals10

The Animals10 [1] dataset contains 26,189 different images of animals acquired
through Google Image Search and manually reviewed by a human. The images
are divided into 10 different classes: dog, cat, horse, spider, butterfly, chicken,
sheep, cow, squirrel, elephant. The images are not equally distributed among the
classes, but each class contains between 2000 and 5000 images. In Fig. 2.15 there
are shown four random example images. As we can see, the pictures do not all
have the same size or ratio. Therefore, they are resized to the size 300×300 pixels
for our purposes.

((a)) Cane/Dog ((b)) Cavello/Horse ((c)) Elefante/Elephant ((d)) Gatto/Cat

Figure 2.15: Four random images from the Animals10 dataset.
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2.3.8 Overview of all datasets

Table 2.4 gives an overview of the datasets used in this work.:

Name Content Size (px) Classes
Animals10 [1] Animals 300 10
CIFAR10 [64] Misc. 32 10
CIFAR100 [64] Misc. 32 100
MNIST [69] Digits 28 10

FashionMNIST [126] Clothing 28 10
EMNIST [25] Letters 28 62

SmallNORB [70] Toys 96 50

Table 2.4: Overview of datasets used.
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Chapter 3
Port-Hamiltonian Optimizer

As shortly mentioned in 2.2.4.1 it is worth to have a closer look on the optimizers
which are used in neural networks. In this chapter, we will take a physical view
of the optimisers by looking at the heavy ball with friction, whereas this chapter
fully relies on [17]:

3.1 Motivation

The success of deep neural networks (DNN) significantly depends on the cheap
computation of gradients using back-propagation enabling gradient based mini-
mization of the loss functions. As the parameter count of DNN ranges between
several tens of thousand in small classification networks to several billion in large
scale generative models, there seems to be no alternative to the use of gradients.
However, gradient based optimization is beset with the problem of local minima
(as we have seen in Sec. 2.2.4), of which the energy landscape of DNN offers
plenty. Exploitation of a local minimum with gradient descent comes with guar-
antees for progress relative to previous optimization steps, but does not guarantee
a decent level of performance. In order to go more global, momentum methods
have therefore been introduced to overcome local minima.

As compared to gradient descent, momentum based methods have more parame-
ters to adjust. Besides the strength of the inertial forces controlled by the ’mass’
parameter, a ’friction’ parameter has to be determined, which is responsible for
slowing down the search motion and bringing it to rest, ultimately. Finally, the
learning rate needs to be controlled throughout the progress of the optimization
process, like in gradient descent.
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The complexity in setting and controlling the aforementioned hyperparameters
can be alleviated by an interpretation of the optimization process in physical
terms as already indicated by the physical connotations of ’mass’ and ’friction’.
It has been recently proposed to cast the optimization process in a port Hamil-
tonian framework, which makes the convergence of the optimization process to a
stationary point transparent via energy based considerations, where loss is con-
nected to potential and momentum to kinetic energy, whereas ’friction’ accounts
for energy dissipation and interdicts motion at high pace for unlimited time. It
is clear that the friction / energy dissipation parameter is essential for the (non)
locality of the optimization process: if high, friction essentially damps out all
momentum and the procedure essentially ’just flows down the hill’ as for gradient
descent, resulting in low exploration and high exploitation. If low, the motion will
go on essentially un-damped and not rest and thereby explore all of the accessible
parameter space. Exploration is high, and exploitation is low in this setting.

Then, parameter settings can be modified over time or controlled adaptively as
a part of the optimization algorithm is a familiar thought. The physics based
intuition of port Hamiltonian systems can be helpful in the design of such adaptive
strategies. Here we suggest a simple, event based adaptive parameter selection
strategy that starts the optimization in an exploratory phase with low friction and
turns over to exploitation by ’heavy breaking’, once the potential energy (i.e. the
loss function) is sufficiently reduced. Sufficiency is pre-defined as the minimum
reduction goal of the optimization, which can be set, e.g., as the reduction of the
loss obtained in previous trials.

In this paper, we show that the proposed strategy actually works for some classical
examples in deep learning and improves the optimization loss and also the test
accuracy for a standard, Le-Net-5 [68] based architecture on two well known
academic classification tasks solved by deep learning, namely the CIFAR10 [64]
and the FashionMNIST [126] data-sets.

In order to focus on the optimization only, we do not employ data augmentation or
pre-training and thereby do not achieve SOTA performance in our experiments.
We however consistently achieve an advantage over the widely used stochastic
gradient descent as a benchmark. We also observe consistent gains in performance
after ’heavy breaking’ is finally triggered.

3.2 Related Work

The fact that neural networks with parameter counts ranging from some tenth of
thousands to several hundreds of billions can actually be trained, largely depends
on the cheap computation of gradients, see [69, 123] for original work and [41] for
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a recent reference. Gradient based optimization itself has been studied since the
days of Newton, see e.g. [9, 125]. In the context of deep learning, the formation
of randomly sub-sampled mini-batches is necessary as big data often exceeds the
working memory available [74]. One has therefore to pass over to the stochastic
gradient descent method (SGD) [108, 110].

One of the problems in neural network training is the complex, non-convex struc-
ture of the energy landscapes [10]. This makes it necessary to avoid local minima,
which is mostly done by the momentum method [39, 84, 96]. From a theoretical
side, momentum can be understood as a discretized version of a second order ordi-
nary differential equation, which also provides theoretical insight to convergence
to critical points [6, 8, 93], see also [85, 86, 87] for recent extensions.

The momentum method has recently been cast in a modern port Hamiltonian
language [63, 79, 92]. Port Hamiltonian systems [120] are particularly suited to
understand the long time behavior and hence convergence properties of momen-
tum based methods.

For a long time, the control of hyperparameters in the training of neural networks
has been a topic of interest in the deep learning community [11]. While learning
rate schedules [27, 28] determine the setting for one specific parameter upfront, it
has also been proposed to modify the dissipation parameter in momentum based
optimization [8, 19, 21]. Other strategies, like the often used ADAM algorithm,
rely on adaptive parameter control [12, 62].

One specific adaptive strategy however much less considered is the goal oriented
search, where one pre-defines the target value to achieve during optimization, see
e.g. [115].

In this chapter, we thus make the following contributions:

� For the first time, we use the port Hamiltonian language in the training of
reasonably deep neural networks in contrast to [79, 92] where networks are
shallow.

� We also introduce an adaptive, goal oriented strategy for the control of the
friction constant, which goes in the opposite direction as [8, 19, 21] but is
well-motivated in terms of combining exploration and exploitation in one
algorithm.

� We show experimentally for standard deep learning problems in image recog-
nition that this strategy consistently produces improvements over fixed-
parameter strategies. We also provide a considerable amount of ablation
studies related to our parameter settings.
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3 Port-Hamiltonian Optimizer

3.3 The Goal Oriented PHS Method

The simple gradient descent algorithm to minimize a differentiable loss function
L(ω), namely ωk+1 = ω−α∇ωL(ω) can be seen as a first order Euler discretization
of the gradient flow

ω̇(t) = −∇ωL(ω), ω(0) = ω0. (3.1)

It is well known that under adequate conditions on L(ω), the flow ω(t) converges
for t → ∞ to a critical point ω∗ with ∇ωL(ω∗) = 0, see e.g. [79, 92]. Likewise,
the gradient descent algorithm converges for k → ∞ to a critical point, provided
the step length α is suitably controlled, confer [6, 8].

As mentioned in the introduction, the problem with gradient descent in the con-
text of highly non-convex loss functions L(ω), as especially in the context of the
training of deep neural networks [41], lies in the fact that gradient flows and
gradient descent algorithms get stuck in local minima.

To overcome the strict locality of gradient flow and gradient descent, momentum
based methods have been introduced. The update rule of gradient descent is
changed to

ωk+1 = ωk + α
1

m
pk

pk+1 = pk − α
γ

m
pk − α∇ωL(ω)

(3.2)

where m, γ > 0 are parameters called mass and friction coefficient. pk is the so-
called momentum at iteration k. In fact, (3.2) can be understood as the discretized
version of the following Hamiltonian set of equations

ω̇(t) =
1

m
p(t)

ṗ(t) = − γ

m
p(t)−∇ωL(ω)

(3.3)

with initial conditions ω(0) = ω0 and p(0) = p0.

To understand the global properties of the Hamiltonian dynamics, it is convenient

to define a state variable x(t) =
(

ω(t)
p(t)

)
and the Hamiltonial functionH(x) = ∥p∥2

2m
+

L(ω) and the symplectic matrix J =

(
0 −1
1 0

)
as well as a symmetric, positive

resistive matrix J =

(
0 0
0 γ

m

)
so that we can rewrite (3.3) in the compact,

port-Hamiltonian form

ẋ(t) = (J −R)∇xH(x). (3.4)
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3.3 The Goal Oriented PHS Method

Using the chain-rule, (3.4) and∇xH(x(τ))⊤J∇xH(x(τ)) = 0 by the skew-symmetry
of J , it is now easy to see that the following inequality holds for the dissipated

total ’energy’ measured by H(x), where ∥p∥2
2m

takes the role of kinetic energy and
the loss L(ω) the role of potential energy

H(x(t))−H(x(0)) = −
∫ t

0

∇xH(x(τ))⊤R∇xH(x(τ)) dτ. (3.5)

From this exposition it is intuitive, and in fact can be proven mathematically [6, 8],
that due to dissipation the state x(t) ultimately has to come to a rest, if L(ω)
is bounded from below. Thus, if the stationary points x∗ with ∇xH(x∗) = 0 of
the system are isolated, x(t) will asymptotically converge to a stationary point.

Furthermore, for x∗ =
(

ω∗

p∗

)
, we find p∗ = 0 and ∇ωL(ω∗) = 0, hence the ω-

component of stationary points are in one to one correspondence to the critical
points of the original optimization problem.

Energy dissipation (3.5) thus is the key component that determines how fast
x(t) comes to rest, which conceptually is corresponding to convergence of the
optimization algorithm. Apparently, the matrix R and thus the friction coefficient
γ controls dissipation.

In fact, if γ ≈ 0, essentially no energy is lost and the dynamics x(t) will either
move on for a very long time, or, in very rare cases, get to rest on a local maximum
or saddle point. This perpetual motion through the accessible part of the ’phase
space’ can be seen as an exploitative strategy.

In contrast, if γ gets large, the friction essentially disperses energy and momentum
and the motion of x(t) behaves highly viscous, i.e. determined by the equality

− γ

m
p(t)−∇ωL(ω) ≈ 0 ⇔ ω̇(t) ≈ −1

γ
∇ωL(ω), (3.6)

from which we see that in this high viscosity regime the port Hamiltonian flow
essentially behaves like gradient descent (with a modified step length). Despite
working with momentum, we are thus back in the exploitation phase of local
minima.

The idea of this article is to use this physics based intuition to efficiently control
the behavior of our port Hamiltonian optimization strategy in a goal oriented
search. We thus propose to ’keep on moving’ as long as we have not yet reached
a predefined reduction of the initial loss function L(ω0). In many cases, it is
known that L(ω) is lower bounded by zero, and we can thus demand a 90%, 95%
. . . reduction in L(x(t)), before we, upon reaching this target, instantaneously in-
crease the value of γ in order to switch over from the low-viscous exploration phase
to high-viscous exploitation. In this sense, our proposed optimization algorithm
resembles the ’chicken game’: who breaks too early, looses.
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3 Port-Hamiltonian Optimizer

Before we come to the implementation and numerical tests of this strategy in deep
learning, we discuss some peculiarities of the loss function in this case. We would
like to learn a conditional probability density p(y|x, ω) from data independently
sampled from the same distribution {(yi, xi)}ni=1, where xi is some input and yi
takes values in some prescribed label space C = {c1, . . . , cq}. In applications in
image recognition, p(y|x, ω) often consists of several stacked convolutional and
fully connected layers and an ultimate softmax layer, cf. [41]. The ’cross en-
tropy’/negative log likelihood loss is given by

L(ω) = − 1

n

n∑
i=1

log p(yi|xi, ω). (3.7)

The numerical problem to implement (3.7) directly lies in the memory constraints
that do not permit to load the entire data set {(yi, xi)}ni=1 in the memory. There-
fore, mini batches Bj, i.e. small random subsets of {1, . . . , n} are drawn and an
update step of the parameters ωk and the associated momentum is executed for
a loss LBj

(ω) with the original data set replaced by {(yi, xi)}i∈Bj
. Nevertheless,

as in image classification oftentimes the batch |Bj| is quite large (⪆ 10), LBj
(ω)

and L(ω) tend do behave similar by the law of large numbers. In our numerical
experiments, we therefore observe the behavior of the algorithm in accordance
with intuition.

3.4 Experiments and results

For our experiments, we use a Convolutional Neural Net (CNN) similar to the
Le-Net-5 [68] which consists of two convolutional, one pooling and two fully con-
nected layers as it is shown in figure Fig. 3.2 and has a total of 44,426 weights.
For implementation, we are using the PyTorch framework [89]. This network is
chosen as it is a widely used standard architecture, although it is not eligible to
compete with more sophisticated ResNet [50] or Transformer [121] architectures.
Furthermore, in order to focus on training exclusively, the networks are trained
from scratch on the data sets and we use neither pre-training nor augmentation.
The training is performed with respect to the usual cross-entropy loss without
regularization.

On the hardware-side, we use a workstation with an Intel(R) Core(TM) i7-6850K
3.6GHz and two Nvidia TITAN Xp graphic units with 12GB VRAM each for our
experiments.

For a comparison with SGD and PHS, i.e. the traditional momentum method, we
test our goal oriented PHS search on the two data sets CIFAR10 and FashionM-
NIST introduced above. We furthermore run trainings for a number of different
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Figure 3.1: Selecting hyperparameters of learning rate (here: α = 0.1), mass and friction
based on the accuracy on the Fashion-MNIST dataset.
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Figure 3.2: Neural Net architecture which is similar to Le-Net-5. Orange are convolu-
tional layers with a filter size of 5, red is the pooling layer and fully connected layers
are violet.
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Figure 3.3: History of the accuracies over the epochs depending on the choosable hyper-
parameters learning rate α, friction and mass. PHS in orange, Goal-oriented approach
in blue.

learning rates α and for several settings for the mass and baseline friction pa-
rameter. To establish which parameter settings are rewarding, we consider the
accuracies of the PHS for different learning rates (0.0001 ≤ α ≤ 0.1), that can
be achieved when mass and friction are included. This is shown in Fig. 3.1 for
the example of α = 0.1 on the Fashion-MNIST dataset. As one can already see,
the trainings for many parameter settings work significantly worse or not at all.
Therefore, only experiments that lie in a parameter range leading to reasonable
results are included in our result tables. Concerning goal orientation, we aim
at a reduction of the initial loss of 65% to 90% and then increase the friction
significantly by a factor between 5 and 99. The results are given in Table 3.1 for
CIFAR10 and Table 3.2 for FashionMNIST.

As can be seen in Fig. 3.3(a), the accuracy of the method is consistently improved
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α Optimizer Fric Mass Acc
0.1 SGD / / 64.82%
0.1 PHS 0.1 100 66.45%
0.1 Goal-Oriented (breaking at 0.65

with factor 49)
0.1 100 67.1%

0.1 PHS 0.01 100 63.52%
0.1 Goal-Oriented (breaking at 0.9

with factor 99)
0.01 100 65.52%

0.01 SGD / / 63.53%
0.01 PHS 0.1 25 66.01%
0.01 Goal-Oriented (breaking at 0.7

with factor 10)
0.1 25 66.49%

0.01 PHS 0.01 25 62.98%
0.01 Goal-Oriented (breaking at 0.7

with factor 50)
0.01 25 63.44%

0.001 SGD / / 65.05 %
0.001 PHS 1 0.25 66.0 %
0.001 Goal-Oriented (breaking at 0.7

with factor 20)
1 0.25 66.37%

0.001 PHS 0.1 0.25 62.93%
0.001 Goal-Oriented (breaking at 0.85

with factor 50)
0.1 0.25 63.54%

0.0001 SGD / / 64.43%
0.0001 PHS 10 0.001 65.76%
0.0001 Goal-Oriented (breaking at 0.68

with factor 5)
10 0.001 66.39%

0.0001 PHS 1 0.001 62.24%
0.0001 Goal-Oriented (breaking at 0.8

with factor 100)
1 0.001 63.56%

Table 3.1: Comparison of training results with SGD, PHS and Goal-Oriented approaches
for the CIFAR-10 dataset.
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3 Port-Hamiltonian Optimizer

α Optimizer Fric Mass Acc
0.1 SGD / / 90.04%
0.1 PHS 0.1 10 90.36%
0.1 Goal-Oriented (breaking at 0.15

with factor 50)
0.1 10 91.02%

0.1 PHS 0.01 10 83.31%
0.1 Goal-Oriented (breaking at 0.55

with factor 20)
0.01 10 87.19%

0.01 SGD / / 90.26%
0.01 PHS 1 0.1 90.49%
0.01 Goal-Oriented (breaking at 0.2

with factor 10)
1 0.1 90.98%

0.01 PHS 0.1 0.1 83.28%
0.01 Goal-Oriented (breaking at 0.5

with factor 5)
0.1 0.1 86.47%

0.001 SGD / / 89.61%
0.001 PHS 10 0.01 90.34%
0.001 Goal-Oriented (breaking at 0.15

with factor 5)
10 0.01 90.8%

0.001 PHS 1 0.01 90.13%
0.001 Goal-Oriented (breaking at 0.17

with factor 50)
1 0.01 90.77%

0.0001 SGD / / 88.86%
0.0001 PHS 10 0.001 90.17%
0.0001 Goal-Oriented (breaking at 0.2

with factor 100)
10 0.001 90.54%

0.0001 PHS 1 0.001 89.6%
0.0001 Goal-Oriented (breaking at 0.185

with factor 100)
1 0.001 90.12%

Table 3.2: Comparison of training results with SGD, PHS and Goal-Oriented approaches
for the FashionMNIST dataset.
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3.5 Discussion and Outlook

by breaking after reaching the goal, and the subsequent occurrence of overfitting
(as happens with the PHS) is avoided. The increase in test accuracy lies around
and in many cases above 0.5% throughout parameter settings and the two data
sets employed, as documented in Table 3.1 for CIFAR10 and Table Table 3.2 for
FashionMNIST.

The history of the test accuracy over the iteration count of the optimization
procedure is shown in Fig. 3.3 for two example configurations of each dataset.
As we observe, the sudden ’breaking’ exploits a local minimum better and avoids
overfitting (as it can be especially seen in Fig. 3.3(a)), i.e. the decrease of the
ordinary PHS method in the further pursuit of the optimization. Interestingly,
this hints that overfitting rather is a ’global’ phenomenon associated with ongoing
exploration, whereas exploitation of the local minimum seems less beset from
overfitting issues. This is consistent with our observation that the training loss
after ’breaking’ quickly converges, whereas the training loss for SGD or PHS is
further reduced. This suggests that the onset of overfitting could thus also be
a useful triggering event for ’breaking’ instead of goal orientation, as employed
here.

3.5 Discussion and Outlook

In this work, we have introduced a new goal oriented strategy for the training of
deep neural networks. By the physics-motivated interpretation of momentum in a
port Hamiltonian framework, we explained how different settings for the friction
/ dissipation correspond to an exploration or exploitation phase in the progress
of optimization. By switching from exploration to exploitation when a certain
minimal reduction of the loss function of a deep neural network is achieved, we
obtain improved classification accuracy of image classification networks as com-
pared with simple stochastic gradient descent or a momentum based optimization
with fixed friction.

The outlined strategy can be extended in several ways. First, for the case where
the minimal reduction is never achieved for a long time, the exploitation phase
could be executed nevertheless starting from the best parameter setting found so
far, or the target could be adjusted. This will robustify our algorithm. Second,
after a first exploitation phase, a re-acceleration could be executed, e.g. by an
external force or ’port’, so that multiple promising local minima can be visited.
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Chapter 4
Meta-Learning-Algorithms

4.1 Definitions

What are Meta Learning Algorithms?

There are two types of algorithms that can be seen as Meta-Learning-Algorithms:
The first possibility is that not only the weights of the network are optimized with
regard to a specific data set, but also that some hyperparameters themselves are
trained. If we now consider the network architecture itself as a hyperparameter
that can be optimized, we find ourselves in the field of Neural Architecture Search
(NAS). A second possibility to define a meta-learning algorithm would be to com-
bine predictions that already result from machine learning methods with another
machine learning method to form an overall prediction. In this case we focus on
the first case, especially on neural architecture search in a specific searchspace.

4.2 Relevance of Meta Learning

At present, machine learning is a key technology for data-driven automation that
achieved tremendous success in many applications, such as image recognition [107]
and natural language processing [83].

However, the application of machine learning to ever new fields requires data sci-
entists who in turn need to acquire the respective domain knowledge. In particular
when working with deep learning [41], the question of how to choose hyperparam-
eters and network architectures typically requires expert knowledge and a lot of
engineering work. Automated Machine Learning (AutoML) [23, 51] is a research
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area that aims at performing hyperparameter optimization [127] as well as neural
architecture search (NAS) [33].

Many of the existing methods in the field of NAS modify existing network ar-
chitectures [51]. This is due to the fact that the application of deep learning to
new domains is not the only focus of this research area. For instance, runtime
optimization of neural networks is a motivation for many of the works in the
field of NAS [57]. Another field closely related to NAS is the task of network
pruning [52, 97] where an existing network is made sparser in order to reduce the
computational burden. More drastically, complete layers are removed in [76, 116].

4.3 Related work

AutoML is an active field of research.

While the survey [33] approaches NAS focussing on its different structural aspects,
the survey [51] provides an overview of NAS approaches, providing a general
and comprehensive view on the field of AutoML. The presented methods are
classified into different categories, such as reinforcement learning, evolution-based
algorithms, as well as gradient descent, random search and surrogate model-based
optimization. Regarding NAS and its performance on image classification tasks,
they compare the different methods especially with respect to their accuracy on
the CIFAR10 and ImageNet datasets.

NAS and Reinforcement Learning. The authors of [131] present an approach
where they use reinforcement learning in order to predict hyperparameters like
the number of filters, filter height/width and stride for every layer up to a chosen
maximum of layers using a recurrent neural network as meta model. Another
reinforcement learning approach for NAS is introduced in [132] where the authors
develop the NASNet search space, in which for a given problem (here CIFAR10
and ImageNet) a certain number of pooling layers are given, between which any
number of feature map size-preserving blocks can be inserted. This search space
is then iterated using a controller recurrent neural network to design a problem-
specific architecture, while our search strategy on the ResBuilder is simpler and
based on a penalization approach.

Penalization-based NAS. Our ResBuilder approach is also very related to
MorphNet [42] which optimizes the number of channels of convolutional layers.
A group Lasso regularization term penalizes the weights, such that channels with
weights below a chosen threshold are removed. The threshold and the penalization
are chosen such that the computational cost is below a given budget. In an
iterative fashion, this step alternates with an expansion step wherein remaining
computational budget is re-distributed proportionally to the different layers of
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4.4 ResBuilder

the network. Since MorphNet has an important part in the ResBuilder method,
we will take a closer look at it in Sec. 4.4.2.1.

Similar to the regularization terms of BatchNormalization in MorphNet, gate-
keeper variables are introduced in [122] that are multiplied by the output of each
channel of each layer. The peculiarity here is that the actual weights are not
trained during the process of finding the gatekeeper variables, but are still in the
state of their random initialization, whereby the importance of the layers is cal-
culated before the actual training of the weights starts. To keep the gatekeeper
variables low, an additional regularization term is introduced depending on the
cost of the layer and the status of the gatekeeper variables.

Another penalization-based approach regarding NAS can be seen in [31] where
the authors present their Transformable Architecture Search (TAS). Instead of
the approach of alternating training and pruning of a network architecture, the
authors consider the possibility of training a large network with an excessive
number of weights and then transferring the knowledge learned to another network
for which the depth and width have been determined independently of the first
network. The loss function also contains a penalty term that penalizes the size of
the resulting network.

NAS and ResNets. ResBuilder works on the search space of ResNet architec-
tures [50]. In [4], the authors also focus on ResNets, in particular the links between
the different residual blocks, and define masks such that (in case of ResNet) the
input of each residual block can take the outputs of every previous residual block.

The authors of [37] have a similar idea of a modular architecture search space with
residual structures as we do, but develop an active-learning approach “incremen-
tal neural architecture search (iNAS)”, which can be combined with any query
strategy. They then interpret their search space as a directed acyclic graph in
which they start with the smallest possible architecture in order to find a suitable,
problem-specific residual architecture.

4.4 ResBuilder

4.4.1 Motivation

In this section we introduce our method ResBuilder [18] that tackles the problem
of constructing ResNet [50] architectures from scratch. The goal is to find a
ResNet architecture in an automated way that achieves high accuracy for a given
problem while not exceeding a predefined computational budget.

43



4 Meta-Learning-Algorithms

More precisely, we utilize MorphNet [42] as a baseline which performs channel
pruning as well as layer removal during training. We introduce a method to add
and remove layers during training, dynamically controlling the network’s capacity
while balancing test accuracy and computational expense.

To achieve this, we focus on ResNet blocks that support layer insertion and re-
moval during training in a natural way. Due to the skip connection, layers with
weights close to zero almost act as identity layers. Such layers can thus be inserted
during training without undoing the previous training progress. Similarly, layers
with weights small in magnitude can be seamlessly removed during training with
undoing previous progress. During architecture search, we utilize a layer LASSO
approach in order to identify unnecessary layers of the parameters.

We demonstrate the efficiency of ResBuilder on six datasets, namely Animals10
[1], CIFAR10 [64], CIFAR100 [64], MNIST [69], FashionMNIST [126], EMNIST
[25] (as they are also introduced in Sec. 2.3), and study its hyperparameters in-
depth.

It turns out that ResBuilder easily builds ResNet architectures achieving close
to state-of-the-art performance (without pre-training) on a variety of image clas-
sification benchmarks while saving computational cost compared to off-the-shelf
ResNets.

4.4.2 Method

ResBuilder operates on the search space of ResNet architectures[50]. It modulates
a given ResNet by optimally dropping layers while randomly inserting layers. At
the same time, it is able to shrink and expand the number of filters per layer. For
the latter, we utilize MorphNet which relies on a group Lasso regularization term,
where the groups refer to weights corresponding to a given channel, as outlined
in the previous section. We now introduce the MorphNet algorithm [42] and
afterwards wrap our architecture search method around it. Our notation is also
inspired by [42].

For a given image of size H × W , let F : RH·W → R1, H,W ∈ N be a network
that assigns class labels to Images:

F = SM ◦ FC ◦ f ◦ CL

for CL a convolutional, FC a fully connected and SM a softmax layer as well as
a backbone f : Rd1 → Rd2L , d1, d2L ∈ N, L ∈ N, which consists of ℓ = 1, . . . , L
ResNet blocks Bℓ, i.e.,

f = BL ◦BL−1 ◦ . . . ◦B1

44



4.4 ResBuilder

It should be noted that also pooling layers can be part of the architecture, which
are positioned in between of two residual blocks of convolutional layers. However,
these are omitted from the notation for the sake of better readability.

Although our method, in principle is able to handle residual blocks of other sizes,
as long as not stated otherwise we use residual blocks in our method that contain
two convolutional layers, as they are used in smaller types of residual networks
(e.g. ResNet18, ResNet34[50]) and are shown as the green block of layers in
Fig. 4.1(b). Because of this we consider that each Bℓ : Rd2ℓ−2 → Rdℓ is composed of
two convolutional layers with weight tensors ωj, j ∈ {2ℓ−1, 2ℓ}. For xℓ−1 ∈ Rdℓ−1 ,
the operations of these layers can be described as

xℓ = xℓ−1 + σ(BN(ω2ℓ · σ(BN(ω2ℓ−1 · xℓ−1)))) (4.1)

where σ is the ReLU activation σ(t) = max{0, t} and BN is the batch normal-
ization process:

BN(zi,j,·) = (
zi,j,· −mℓ(z)

sℓ(z)
)γℓ + βℓ, z ∈ Ruℓ×vℓ×cℓ

∀i ∈ {1, . . . , uℓ},∀j ∈ {1, . . . , vℓ}∀ℓ = 1, . . . , 2L

with γℓ, βℓ ∈ Rcl and the mean (standard deviation) mℓ(z) (sℓ(z)) of the tensor
z alongside its channels cℓ. When BN is applied to the tensor z, it is done by
applying it to each zi,j,·∀i, j separately.

Any of the j = 1, . . . , 2L convolutions maps from Rdj to Rdj+1, where the dimen-
sion is the product dj = ujvjcj of the spatial extents uj, vj and the number of
channels cj. The application of the jth convolution requires

Cj = 2sjujvjcjcj+1

floating point operations, where sj = size(ωj)/(cjcj+1) denotes the filter size of
the convolution’s kernel.

4.4.2.1 Googles MorphNet

The MorphNet regularization term GM(j) for a given layer j is defined as:

GM(ω, j) = Cj

cj−1∑
p=1

|γj−1,p|
cj∑
k=1

1O
{γj,·>τM}+

Cj

cj∑
p=1

1I
{γj−1>τM}

cj−1∑
k=1

|γj,p|
(4.2)
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with 1I (1O) the indicator function for a given statement on the input (output)
channels. For further information on how the MorphNet regularization term is
calculated have a look in [42]. The overall MorphNet regularization term GM is
then defined by:

GM =
2L∑
ℓ=1

GM(ω, ℓ) (4.3)

The MorphNet algorithm (presented in [42]) can then be stated as we can see in
Script 4.1, where c′ℓ denotes the channel width of Layer ℓ, F is in our case the
number of FLOPs the net currently uses and ζ the maximum capacity of FLOPs
the net should have.

Script 4.1: The MorphNet algorithm

Train the network to find1

ω∗ = argmin
ω

{L(ω) + λMGM(ω)}

for suitable λM .
Find the new widths c′1:2L induced by ω∗.2

Find the largest κ, such that F(κ · c′1:2L) ≤ ζ.3

Repeat from Step 1 for as many times as desired, setting c01:2L = κ · c′1:2L.4

4.4.2.2 LayerLasso Basics

Our LayerLasso method uses a L1-regularization term GΛ, but it is based on
regularization of the weights ω itself:

GΛ =
2L∑
ℓ=1

∥ωℓ∥1 (4.4)

It should be noted that this regularization term is only applied to layers in the
residual blocks and does not penalize the weights of the initial layer or the fully
connected layers.

Besides the regularization terms our loss function also consists of a cross entropy

loss LCE as defined in (2.9) (LCE = −
q∑
i

yi logFi(x)).
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4.4 ResBuilder
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((a)) An empty start net with only one con-
volutional layer.
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((b)) The net from 4.1(a) after inserting a
block of two convolutional layers (green).
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((c)) The net from Fig. 4.1(b) after one
MorphNet iteration.

Figure 4.1: Example of structural changes the ResBuilder method uses.

4.4.2.3 Complete ResBuilder

In summary, our ResBuilder loss function consists of three different parts:

� The weight-optimizing part LCE including a default L2-regularization term

� The MorphNet-L1-regularization GM multiplied by the MorphNet regular-
ization strength λM

� The LayerLasso-L1-regularization GΛ multiplied by the MorphNet regular-
ization strength λΛ

The complete loss term L can then be defined as:

L = LCE + λΛGΛ + λMGM (4.5)
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Figure 4.2: Effect of weight initialization of an inserted layer block to a network on
the CIFAR10 dataset. The green line indicates the benchmark of the startnet trained
normally without a new block of layers inserted. Red indicates the accuracy after adding
one of these blocks to our startnet but without further training while purple shows the
accuracy after further training with the new layerblock inserted.
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4.4 ResBuilder

4.4.3 Inserting ResNet blocks

Due to the construction of ResNet blocks, in particular their identity given by
the addition of x(Bi), it is natural to initialize ω(Bi,j), j = 1, 2, close to zero
(but randomly) in order to enable a rational continuation of training from the
current state of the network. Initialization close to zero implies x(Bi+1) ≈ x(Bi).
Randomness is required to avoid symmetries in the weights that occur in case of
constant initialization.

In order to obtain the most effective tradeoff between an initialization close to
0 and the avoidance of undesired symmetries in the network’s weights, we show
in Fig. 4.2 how much the accuracy of the network suffers from the insertion of
residual blocks with different initial weights, but also how strong the constraints
of unbroken symmetries would be when continuing to train.

Therefore, to insert a layer block Bk behind a given block Bi into our network
f according to our insertion strategy (see Subsec. 4.4.5) as it can be seen in
Fig. 4.1. We choose its initial weights such that the full potential of the new
block can be exploited but the damage to the current knowledge of the network
remains minimal. In our example, we therefore initialize the weights with an
average initial weight of the order of ωinit = 10−2. From this we get the new
network architecture f ′ = Bn ◦ . . . ◦Bi+1 ◦Bk ◦Bi ◦ . . . ◦B1.

4.4.4 Layer removal by LayerLasso

In order to also have the possibility to delete residual blocks of layers from posi-
tions where the net does not use its capacity efficiently, we introduce the Layer-
Lasso: After a certain number of epochs of training every block Bi that includes
at least one layer whose sum of weights

∑
ωm∈ωBi,j ∥ωm∥1, j = 1, 2 lays under the

set threshold for layer deleting τΛ will be erased from the net:

f ′ = Bn ◦ . . . ◦Bi+1 ◦Bi−1 ◦ . . . ◦B1

∀Bi∃j :
∑

ωm∈ωBi,j

∥ωm∥1 < τΛ. (4.6)

Because of the residual architecture, a layer with small weights resembles the
identity, so we continue training after the removal of blocks from the resulting
architecture with the weights for the remaining blocks equal to the values before
the removal step.
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4 Meta-Learning-Algorithms

4.4.5 Strategy of inserting and removing

In order to optimize the resulting network architecture we used a “random in
- greedy out” optimization strategy: We insert residual blocks of convolutional
layers at random positions in the net with the only constraints that the new block
can not be inserted before the first convolutional layer or after the flattening of the
feature maps. In order to evenly spread the blocks across the entire architecture
we choose the pooling stage randomly and then a random block Bi from this stage
after which a new residual block is inserted (this might also be directly behind
the pooling layer).

4.4.6 Structure of the method

Our method can be defined as follows:

Fig. 4.3 shows a visualization of our training pipeline. We do nΛ insertion steps
before we start the MorphNet subroutine. Besides the training with all regular-
ization terms active

ωreg := argmin {LCE(ω) + λMGM + λΛGΛ}

that determines which A′ ⊂ A of the architecture search space A are considered,
we also train the actual network architecture without regularization ωnoReg :=
argmin {LCE} in order to achieve the best accuracy for the given net.
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4.4 ResBuilder

morphed 
net

retrain  
from 

scratch

yes: shrink and  
expand layers

no: insert layers

remove layers trained 
net training

extended netshrinked net

remove layers

trained net
training

initial net

#layers  
inserted  

>n

M
or

ph
N

et
La

ye
rL

as
so

Figure 4.3: Overview of the method.
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Chapter 5
Numerical results on MorphNet

In this chapter we have a look on some experiments which are executed solely
with the MorphNet framework. Especially we have a closer look on how the
regularization strength λ effects the tradeoff between accuracy and computation
intensity. Furthermore, we are interested in whether the MorphNet algorithm is
robust to bad initial layer widths.

5.1 Tradeoff between Accuracy and FLOPs

This section deals with the effect of varying the regularization strength λ and
the consequences for the net performance. Therefore, we have a look on the
Paretofront between the accuracy the net achieves and the corresponding cal-
culation intensity in form of floating point operations (FLOPs). All trainings
have started with nets of architecture existing of one Convolutional layer with 32
channels and a second Convolutional Layer with 64 channels.

5.1.1 One single MorphNet Iteration

At first we have a closer look on performing one single MorphNet Iteration and
then evaluate the suggested nets regarding the achieved accuracy and the used
calculation intensity:

In Fig. 5.1(a) we can see some runs with different regularization strengths λ on
the MNIST dataset. Red points represent a high regularization strength with
its maximum value of λmax = 9e−6. Blue dots show quiet small regularization
strengths with dark blue dots with a minimum of λmin = 1e−9.
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5 Numerical results on MorphNet

((a)) Behavior of model loss (inclusive regularization) and FLOPs during training

((b)) Paretofront of the test error in relation
to the architecture size

((c)) Paretofront of model loss (exclusive
regularization loss) and FLOPs

Figure 5.1: Single MorphNet iteration with different regularization strengths
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5.1 Tradeoff between Accuracy and FLOPs

Fig. 5.1(a) shows the model loss (inclusive the regularization loss) in relation to
the used FLOPs while training. As we can see, during the training the model loss
decreases and the number of flops depends heavily on the regularization strength.
To see how the regularization strength effects the relation between the test error
and the calculation intensity at the end of such a training, we can have a look on
the Paretofront shown in Fig. 5.1(b). Obviously trainings with a high regulariza-
tion penalty have a higher test error but in terms of MorphNets calculation cost,
these nets perform much better than runs with a low regularization term. This
result is strengthened by Fig. 5.1(c) where we can see the models’ loss (exclusive
the regularization term) of the final net. Also here the performance of nets trained
with a weak regularization strength is in general better than nets which suffered
from a high value of λ.

The “problem” of these results is the fact that they have been done on only
one single MorphNet shrinkage step and the resulting nets are partly hard to
retrain from scratch as the MorphNet algorithm suggests after the expanding
routine. For example, the suggested net architecture of the highest regularization
run (λmax = 9e−6) has been reduced from 32 channels in the first layer and 64
channels in the second layer to a size of 1/41 channels in the first/second layer,
while the run with the lowest regularization strength (λmin = 1e−9) did not shrink
the suggested net at all. So we now do multiple MorphNet steps, to see how these
suggested nets behave when expanded and retrained from scratch:

5.1.2 Multiple MorphNet Iterations

In this subsection, we run the MorphNet routine twice for different regularization
strengths λ, and end each of these experimental runs by training the architec-
ture suggested by MorphNet without a regularization term to achieve the best
performance.

In Fig. 5.2 we have an overview of runs with different regularization strengths
regarding its test error in Fig. 5.2(a) and its computational costs in Fig. 5.2(b).
As in Fig. 5.1 the red markers identify runs with a high regularization strength
(λmax = 9e−6) and the blue markers show runs with a low regularization strength
(λmin = 1e−9). Here and in the following figures the squared markers tag values
of the training while the first training with MorphNet, the triangles denote the
second training with MorphNet and the circles indicate the final training without
any regularization. After each of the two MorphNet trainings, the shrinkage and
expanding routines are both performed and the new net is trained from scratch.

As we can see in Fig. 5.2(a), many runs with a high regularization strength are
terminated after the first training. This happens because at least one layer of the
suggested net has been broken down to zero Channels while training the second
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5 Numerical results on MorphNet

((a)) Testerror while training.

((b)) FLOPs while training.

Figure 5.2: Overview of trainings with different regularization strengths.

56



5.2 MorphNet’s robustness to bad initial architectures

((a)) Paretofront of model loss and FLOPs
after the first MorphNet iteration

((b)) Paretofront of model loss and FLOPs
after final training

Figure 5.3: Two Paretofronts during the trainings-procedure

MorphNet iteration. So an evaluation of such a net would not be useful, because
of what these runs do not show up on this and the following figures. For example
the suggested net in the second MorphNet iteration with the maximum regular-
ization strength λmax = 9e−6 went down from 3/116 channels in the first/second
convolutional layer 1 to 0/116 channels within 100 trainings steps.

Also here it is interesting to see how the Paretofront of the model loss and the
FLOPs changes over the different MorphNet iterations as shown in Fig. 5.3.

Fig. 5.4 shows the example run with the regularization strength λ = 2e−8. In
Fig. 5.4(a) we can see the classification error on the testdata while training.
Fig. 5.4(c) shows the by MorphNet suggested architectures every 100 steps and
in Fig. 5.4(b) we can see the corresponding FLOP costs of the suggested nets.

5.2 MorphNet’s robustness to bad initial
architectures

This section is about the question if the initial number of channels given in the
startnet file has a longterm impact on the architecture suggestions of MorphNet.
Therefore, we tested to train a startnet with two convolutional layers once with a
large and once with a small number of channels per layer on the MNIST dataset,
to see if both trainings will result in a similar result net.

1The final layer sizes after the first MorphNet shrinkage have been 1/41 which have been blown
up to 3/116 in the expanding step.
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5 Numerical results on MorphNet

((a)) Testerror while training ((b)) FLOPs needed for suggested architec-
ture while training

((c)) Suggested sizes of layers while training

Figure 5.4: Two MorphNet iterations with λ = 2e−8 and a final training without regu-
larization

As we can see in Fig. 5.5 the large architecture (red markers) instantly converges
to the long term used architecture while the small architecture slowly expands
in the expanding steps of the MorphNet algorithm but also has a very similar
outcome architecture. In the Figure the crosses indent the first layer while the
squares identify the second layer.

Therefore, for the small case where we train a two layer convolutional neural net-
work on MNIST, we can say that the training converges to the same architecture
after a sufficient number (about 20) of MorphNet iterations.
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5.2 MorphNet’s robustness to bad initial architectures

Figure 5.5: History of suggested MorphNet architectures initialized with bad architec-
tures
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Chapter 6
Numerical results on ResBuilder method

6.1 Experimental setup

We have shown the basics of our ResBuilder method in Chapter 4, and provided
an overview of how it operates in Fig. 4.3. We also saw more detailed experiments
on the topic of the MorphNet regularization strength λM in Sec. 5.1.1. Therefore,
in this section we will start introducing and discussing the other adjustments like
hyperparameters of the ResBuilder method.

After that we will have a look on some techniques mentioned in Chapter 2 applied
to our ResBuilder approach.

Finally, we will present and discuss our main achievements with the ResBuilder
approach.

6.1.1 Hyperparameter settings

6.1.1.1 Initial architectures

In our experiments, we apply our ResBuilder method to the different data sets.
In one set of experiments, a ResNet18 (shown for a 32×32 pixel sized image in
Fig. 6.2) is used as the initial network (RB-R18), and in the second set, a minimal
network (RB-0Net), as shown in Fig. 6.1.
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6 Numerical results on ResBuilder method
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Figure 6.1: Minimal startnet with only one convolutional layer. Initial architecture for
(RB-0Net).
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Figure 6.2: ResNet-18. Initial architecture for (RB-R18). In this case, the first pooling
layer (red) is a max pooling layer and the second one is an average pooling layer like it
is defined in [50].

6.1.1.2 Default parameters

Unless further specified, we use the default values given here for the hyperparam-
eters:

� nΛ = 4 number of insertion steps before MorphNet step.

� nM = 7 maximum number of MorphNet steps.

� Set ΘLL = True to activate LayerLasso-Momentum for only removing layer
blocks if there was no improving by inserting new layers the last time.

� τLL = 0.015 the threshold how much improvement there has to be in order
to activate the LayerLasso-Momentum

� λM = 10−7 the MorphNet regularization strength

� IM = 1 = 100% intensity of using the MorphNet suggestions: The new
channel widths after a MorphNet routine are then calculated as follows:
c∗i = (1 − IM) · ci + IM · c′i with ci the old layer width of layer i and c′i the
MorphNet suggested layer width.

� ζ = 100,000,000 the aimed for FLOP costs, except for Animals10, for
which ten times the amount of arithmetic operations was allowed (ζ =
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6.1 Experimental setup

1,000,000,000), as the images in this dataset also have significantly higher
resolution.

� λΛ = 10−8 the LayerLasso regularization strength

� τΛ = 10−3 the threshold of our LayerLasso method which sets when a layer
(block) is deleted (see Subsec. 4.4.4)

� λ0 = 10−5 the additional L2-regularization strength.

� Adam is used as optimizer.

� Data augmentation is active with 10% shifts in horizontal and vertical po-
sition as well as a possible horizontal flip.

6.1.2 Training types

The experiments we conduct contain three training types of each neural network
architecture that is considered:

� Training Variant With Reg : With all possible regularization terms.

� Training Variant No Reg RI : Without additional regularization terms, start-
ing from scratch, i.e. a random initialization of the weights.

� Training Variant No Reg WI : Without additional regularization terms,
starting from the checkpoint induced by training With Reg.

The expression “without additional regularization terms” used here means that
the training takes place without additional regularization by MorphNet or the
LayerLasso, i.e. λM = λΛ = 0. An additional L2-regularization term λ0, which is
intended to reduce overfitting, is nevertheless applied to the training.

6.1.3 Explanations of evaluation figures

In this chapter there will be many figures like Fig. 6.3. As long as not stated
otherwise, the individual components of the visualizations are as they are briefly
described in this subsection:

The different architectures, the ResBuilder considers are traversed on the x-axis,
whereas each unit of the x-axis represents one single architecture different from all
the others, as we check while our insertion routine, that this particular architec-
ture has not been trained in an earlier stage of the algorithm. The y-axis on the
left side represents the accuracies of the different trainings for the plotted points,
while the right y-axis indicates the size of the current architecture by the blue
line and the plus signs (crosses) indicate at which depth of the neural network
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6 Numerical results on ResBuilder method

((a)) LayerLasso Momentum on CIFAR10 ((b)) LayerLasso Momentum on FashionM-
NIST

Figure 6.3: Demonstration of LayerLasso Momentum for two examples on different
datasets.

architecture layers are added (eliminated). The vertical blue lines represent the
respective MorphNet stages after which the nets were re-trained from scratch.
The numbers next to the MorphNet lines show the maximum layer width of the
first pooling stage of the architecture as an indicator for the width of the whole
architecture.

6.1.4 LayerLasso Momentum

In order to ensure an efficient procedure when traversing the search space of archi-
tectures, we have built a momentum into the ResBuilder during the exploration,
which causes the deletion routine of the ResBuilder to be skipped if an improve-
ment of the achieved accuracy by a threshold value τLL has been achieved after
the insertion of a layer block. This means that layers cannot be removed from the
network even if they would actually be under the deleting threshold τΛ. This ex-
pands the search space of architectures before the optimization of the architecture
by removing layers begins.

That can be seen in the two examples of Fig. 6.3, where we firstly tested this Lay-
erLasso momentum. How to understand the figures is described in Subsec. 6.1.3.
As can be seen, in both cases the accuracy continues to increase over the first
MorphNet routine up to architecture 5, which is why in these cases no (blocks
of) layers are deleted from the architecture. Only as soon as the accuracy stag-
nates (as here with architecture 6) it is possible for the ResBuilder algorithm to
remove layers, whereby in both cases two blocks with two layers each are directly
eliminated from the architecture.
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6.2 Numerical results

6.1.5 Pre-processing the data

For the Animals10 and CIFAR10 datasets, we apply a normalization process to
the data, which calculates for each pixel the difference between the current pixel
value and the mean of all pixel values of all images in the current color channel,
and then divides it by the standard deviation. MNIST and FashionMNIST pixel
values are simply scaled from 0 to 1 and not pre-processed. We do also use data
augmentation for our trainings, where we allow a shift of 10% in both dimensions
and also horizontal flips.

6.1.6 Used Resources

We used different packages like Tensorflow-GPU (version 1.14.0) [3], Keras (ver-
sion 2.2.4.) [22] or MorphNet (0.2.1) [42]. The visualization of neural nets like
Fig. 6.1 is based on the repository of [58]. For a full list of used packages see the
requirements.txt in our git repository.

For the calculations, we used a Dell Precision 7920 workstation with a Dual Intel
Xeon Gold 6248R 3.0GHz and three Nvidia Quadro P 6000 graphic units with
24GB VRAM each.

6.2 Numerical results

6.2.1 Benchmarks

Dataset Res18 MorphNet RB-R18 RB-0Net
Animals10 92.10% 92.02%∗ 92.73%∗ 88.72%∗

CIFAR10 85.50% 88.17% 88.32% 89.92%
CIFAR100 53.80% 59.78% 57.69% 62.36%
MNIST 99.14% 99.11% 99.17% 99.34%

FashionMNIST 92.81% 92.97% 93.55% 93.71%
EMNIST 86.48% 86.70% 86.86% 86.95%

Table 6.1: Overview of achieved accuracies

In one of our experimental setups, we ran the ResBuilder method with the same
hyperparameters (described in Sec. 6.1.1) for all our datasets under consideration
and summarize these results in Table 6.1. The column with the results of the
run “RB-0Net” gives the accuracies we achieve for the test series starting with
a minimal network architecture as shown in Fig. 6.1, without regularization (No
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Figure 6.4: Progress of network architecture on CIFAR10 with ResNet18 as initial ar-
chitecture - first morphing routine
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Figure 6.5: Progress of network architecture on CIFAR10 with ResNet18 as initial ar-
chitecture - second morphing routine
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Figure 6.6: Progress of network architecture on CIFAR10 with ResNet18 as initial ar-
chitecture - third morphing routine
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Figure 6.7: Progress of network architecture on CIFAR10 with the minimal network as
initial architecture - first morphing routine
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Figure 6.8: Progress of network architecture on CIFAR10 with the minimal network as
initial architecture - second morphing routine

70



6.2 Numerical results

76

32

25 76

32

+

1 76

16

+

44 76

16

+

77 76

8

+

10
00 10 1

Output

76

32

25 76

32

+

76 76

32

+

1 76

16

+

44 76

16

+

77 76

8

+

10
00 10 1

Output

76

32

25 76

32

+

76 76

32

+

1 76

16
+

44 76

16

+

77 76

8

+

10
00 10 1

Output

76

32

25 76

32

+

76 76

32

+

1 76

16

+

44 76

16

+

77 76

8

+

76 76

8

+

10
00 10 1

Output

76

32

25 76

32

+

76 76

32

+

1 76

16

+

44 76

16

+

77 76

8

+

76 76

8

+

10
00 10 1

Output

76

32

25 76

32

+

76 76

32

+

1 76

16

+

44 76

16

+

77 76

8

+

76 76

8

+

76 76

8

+

10
00 10 1

Output

76

32

25 76

32

+

76 76

32

+

1 76

16

+

44 76

16

+

77 76

8

+

76 76

8

+

76 76

8

+

10
00 10 1

Output

77

32

13 77

32

+

1 77

16

+

44 77

16

+

78 77

8

+

10
00 10 1

Output

Figure 6.9: Progress of network architecture on CIFAR10 with the minimal network as
initial architecture - third morphing routine

71



6 Numerical results on ResBuilder method

77

32

13 77

32

+

1 77

16

+

44 77

16

+

78 77

8

+

10
00 10 1

Output

77

32

13 77

32

+

1 77

16

+

77 77

16

+

44 77

16

+

78 77

8

+

10
00 10 1

Output

77

32

13 77

32

+

1 77

16

+

77 77

16

+

44 77

16

+

78 77

8

+

10
00 10 1

Output

77

32

13 77

32

+

1 77

16

+

77 77

16

+

77 77

16

+

44 77

16

+

78 77

8

+

10
00 10 1

Output

77

32

13 77

32

+

1 77

16

+

77 77

16

+

77 77

16

+

44 77

16

+

78 77

8

+

10
00 10 1

Output

77

32

13 77

32

+

1 77

16

+

77 77

16

+

77 77

16

+

44 77

16

+

77 77

8

+

78 77

8

+

10
00 10 1

Output

77

32

13 77

32

+

1 77

16

+

77 77

16

+

77 77

16

+

44 77

16

+

77 77

8

+

78 77

8

+

10
00 10 1

Output

89

32

11 89

32

+

1 89

16

+

51 89

16

+

90 89

8

+

10
00 10 1

Output

Figure 6.10: Progress of network architecture on CIFAR10 with the minimal network
as initial architecture - fourth morphing routine
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Figure 6.11: Progress of network architecture on CIFAR10 with the minimal network
as initial architecture - fifth morphing routine
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Figure 6.12: Progress of network architecture on CIFAR10 with the minimal network
as initial architecture - sixth morphing routine
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Figure 6.13: Progress of network architecture on CIFAR10 with the minimal network
as initial architecture - seventh morphing routine
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Reg RI and No Reg WI ), as this would be the later use case. The results in “RB-
R18” were generated analogously to the results of “RB-0Net”, with the exception
that a ResNet18 [50] was used as the initial architecture. We benchmark our
method against the accuracy we achieve by training a ResNet18 on the specific
dataset. The column “Res18” therefore gives the accuracy when it is trained with
the variant “No Reg RI” which would be the typical way to go in order to train
this architecture from scratch. The “MorphNet”-column shows an ablation study
where we omit our additional LayerLasso routine from the architecture search
process wherefore we use a ResNet18 and perform the single MorphNet routine
for the given number of nM . The training that is used for that, follows the variant
“No Reg RI”, as our Res18 benchmark also does.

As can be seen in Table 6.1, our ResBuilder method performs better on all datasets
than both the standard ResNet18 architecture and the MorphNet approach with-
out our depth-first search.

Fig. 6.4, Fig. 6.5 and Fig. 6.6 exemplify a complete history of the architectures
during a run of the ResBuilder method, starting from ResNet18 on the CIFAR10
dataset. There we can follow the individual insertion/elimination and MorphNet
steps, whereby newly inserted convolutional layers are always marked green and
the widths of the individual convolutional layers can be seen in their number
underneath each yellow block. Since the architecture broke down after three
MorphNet iterations due to the high regularization and the loss function was
thus only determined by the regularization loss term, no further architectures
were considered in this run. In Fig. 6.7 to Fig. 6.13, however, the run went
through all seven planned MorphNet iterations: Here, the CIFAR10 data set was
also considered, but starting from our minimal start architecture. It is interesting
to see that the architecture in this case at the end of each MorphNet step (the
lowest architecture in the figures above) again has a similar appearance, which
includes one additional block in the first pooling stage, one or two blocks in the
second pooling stage and one block in the last pooling stage. Even though the
blocks in this case were not eliminated from the architecture by our LayerLasso,
but by the implementation of MorphNet, it can be seen that these layers of the
network have no significant influence on the result, which is why the architecture
converges in this way using the ResBuilder.

In Fig. 6.14 we can see in the lower panel how the accuracy for the three different
training types over the iterations of architectures in the search space (shown on the
x-axis) develops. Here we start searching from the minimal initial architecture
(Fig. 6.1) on the CIFAR100 dataset. Meanwhile, the upper part of the figure
shows how the depth of the network architecture while our ResBuilder method
progresses, which is represented by the purple dashed line. Vertical red lines
within the figure indicate MorphNet channel width optimization steps and the
numbers next to the line in the upper part of the display the maximum channel size
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Figure 6.14: Accuracies of different architectures on CIFAR100 started with an empty
net (see Fig. 6.1) as initial net.
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Figure 6.15: Best architecture (pipeline step 12) from Fig. 6.14.

in the first pooling block in order to get a feeling for the width of the layer. Since
this figure shows an experiment that started with a minimal initial architecture,
the orange line shows the benchmark that was achieved by training a ResNet18.
It should be noted that even at a fairly early stage of the ResBuilder, accuracies
above this benchmark could be achieved. In this experiment, the best accuracy
was achieved with the twelfth architecture, which is therefore shown in Fig. 6.15.
Furthermore, one can see that both the accuracy achieved and the depth and
width of the network have converged very quickly in this example.

Another example is given in Fig. 6.16, which is similar to Fig. 6.14 except for
the orange benchmark line, which is here the accuracy of the best MorphNet
run as this run already started at the ResNet18 as initial architecture and so
this benchmark can be seen from the first “column” (x = 1) of the figure. One
other difference is the used dataset which is FashionMNIST in this case. Here
it is nice to see that the size of the network in terms of both depth and width
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Figure 6.16: Accuracies of different architectures on FashionMNIST started with a
ResNet18 architecture as initial net.
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Figure 6.17: Best architecture (pipeline step 6) from Fig. 6.16.

can be steadily reduced without losing accuracy, thus saving computing resources
compared to ResNet18. The best performing architecture is also shown for this
example in Fig. 6.17. This may be in part due to the fact that FashionMNIST, like
many of the MNIST datasets, can also be predicted well by small or cost-effective
networks.

6.2.2 Removal positions

In Fig. 6.18, we show at which positions of the network our method eliminates
blocks of layers. The positions between input and output are always to be seen
relative to the current network size. In particular, it can be observed that for
CIFAR100, which has a relatively large number of classes (100), more layers tend
to be thrown out of the front part of the mesh, which could result in a focus on
the classification into the individual classes instead of optimizing encoding. The
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Animals10 CIFAR10 CIFAR100 EMNISTFashionMNIST MNIST
Input

Output

Figure 6.18: Position of removed layerblocks relative to the network size. For each
dataset the left plot shows the removed positions proceeding from the minimal initial
architecture and the right one proceeding from the ResNet18 architecture.

rather higher resolution of the Animals10 dataset, on the other hand, tends to
throw out layer blocks at the back end of the architecture, which speaks for the
importance of the front blocks for extracting information from the high resolution
images.

6.2.3 Regularization parameter study

Fig. 6.19 shows the accuracies of training different architectures with various
regularization strengths. To ensure better visualization, only the experiments
with λM = λΛ are considered in the figure. The shown accuracies all refer to the
training variant With Reg without additional L2-regularization (λ0 = 0). One
can see that there is an accuracy trade-off between low FLOPs induced by a
high regularization term and high FLOPs with a low regularization strength. For
λM = λΛ = 10−7 it can be also mentioned that the architecture broke down due
to too high penalization applied.

6.2.4 Image manipulation detection in an industrial context

To challenge the approach in an industrial context, the ResBuilder method has
been applied to generate an optimized model architecture, detecting manipulated
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Figure 6.19: Different regularization strengths for training on CIFAR10 data.

images during insurance processes. In those processes, currently AI models pre-
dict if an image is manipulated or trustworthy, leading to according business
decisions. Parts of the underlying data from these models, consisting of ma-
nipulated and authentic images from ControlExpert, have been used to test the
ResBuilder method. Since the model in production solves additional tasks, and is
not trained on classification data only, a fair comparison is not possible. There-
fore, it has been tested how the developed approach performs compared to the
training of well-established architectures (e.g. EfficientNet-b0, EfficientNet-b4,
ResNet18) on these real-world data. Overall, the ResBuilder method achieves an
improved accuracy (+1.2%), compared to the best performing model, that is an
EfficientNet-b0, while having a smaller number of parameters.

The results show that the ResBuilder method can be used to derive efficient ar-
chitectures with respect to computational cost and accuracy. Another advantage
of the ResBuilder method is the automatic search for efficient architectures and
the minimization of the manual effort to develop an efficient model, which is an
important factor in an industrial context.

6.2.5 Parameter study on long time runs

In addition to the experiments with the standard parameters as given in Sub-
sec. 6.1.1.2, we manually adjusted hyperparameters of our ResBuilder method for
the CIFAR10 dataset to obtain an accuracy value as good as possible. For this
purpose, the following settings are used in the runs from Fig. 6.20:
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((a)) Long run with λM = 10−9, λΛ = 10−10, λ0 =
10−9

((b)) Long run with λM = 10−10, λΛ = 10−10, λ0 =
10−9

((c)) Long run with λM = 10−10, λΛ = 10−10, λ0 =
10−10

Figure 6.20: Testing many different architectures with less MorphNet impact in Res-
Builder method on CIFAR10 data.
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� The number of MorphNet steps is set to nM = 25.

� The L2-regularization strength is λ0 = 10−10 and so significant lower than
in our default parameter settings.

� The other two regularization strengths are also lowered to 10−10 ≤ λΛ, λM ≤
10−9 according to the captions in Fig. 6.20.

� The targeted FLOPs are increased by the factor of 10: ζ = 1,000,000,000

� The intensity of the MorphNet is reduced to IM = 0.1.

Fig. 6.20 has to be read like described in Subsec. 6.1.3.

As can be seen from Fig. 6.20(c), the architectures tend to become deeper and nar-
rower at a low regularization strength, whereas at higher regularization strengths,
as in Fig. 6.20(a), wide architectures tend to be searched, provided that sufficiently
large computing capacities are made available, as it is the case here.

6.2.6 Study on MorphNet intensity IM on SmallNORB dataset
with small initial architecture

Figure 6.21: Initializing ResBuilder with default minimal initial architecture on Small-
NORB dataset.

In this section, we first conducted the standard minimal architecture (as given
in Fig. 6.1) on the SmallNORB dataset, which is shown in Fig. 6.21. Further-
more, we have run the ResBuilder for an even smaller architecture, whose one
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Figure 6.22: Fast depth growing architectures on SmallNORB dataset.

convolutional layer consists of only 16 channels instead of 64. The aim was to
check whether ResBuilder-built networks tend to become deeper when they re-
quire fewer resources per layer. To do this, we reduced the MorphNet intensity
IM in the experiments. We benchmarked against the above test, in which we
selected a MorphNet intensity of IM = 0.5, providing a best accuracy of 94.23%.
The two experiments with the reduced minimal architecture were also performed
once with an intensity of IM = 0.5 (fast-growing) and once with a lower intensity
of IM = 0.1 (slow-growing). In the fast-growing approach, which is shown in
Fig. 6.22, it can be seen that the architectures develop quickly in width, which
makes it difficult to develop in depth. After running the ResBuilder, a maximum
depth of 13 layers and an accuracy of 93.72% was measured. In the slow-growing
experiment, the architectures became deeper with 17 layers, but the pounding of
the width development had a negative effect on the maximum accuracy, which
was only 93.59%, as seen in Fig. 6.23. Thus, it can be stated for this case that it is
worthwhile to start the ResBuilder with a sufficiently wide starting architecture.

6.3 Outline

In this chapter, we introduced the ResBuilder method, which provides a NAS
algorithm that can generate neural networks from scratch or from existing ar-
chitectures using suitable regularization techniques. On many datasets (mainly
academic, but also industrial), results close to state-of-the-art (without pretrain-
ing) are achieved. To this end, ablation studies related to the omission of our
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Figure 6.23: Slow depth growing architectures on SmallNORB dataset.

LayerLasso method were conducted and a parameter study on the regularization
strength was performed.
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Chapter 7
Neural Networks in Survival Analysis

As announced in Chapter 2, we test the applicability of machine learning not only
in classification problems but also in experiments with survival analysis. In this
section, we first look at the basics of survival analysis (Sec. 7.2) and related work
(Sec. 7.3). After this we give details about the implementation (Sec. 7.4). The
numerical results are then discussed in Sec. 7.5. This chapter is mainly based on
[16].

7.1 Motivation

Clinical and pathological staging of melanoma patients only relies on tumor size
(Breslow thickness), ulceration and lymph node involvement [38]. However, the
patient group with the thinnest melanomas in Tumor Stage T1 and with the most
favorable prognosis resulted in the most melanoma deaths in absolute numbers
[67]. Additionally, patients from T3b onwards can be now offered potent adjuvant
therapy [2, 77]. To identify patients with small tumors but high risk of relapse or
to spare patients in advanced disease but with low mortality or recurrence risk,
there is a current need for biomarkers and better prognostication [100]. The use
of digitalized histological images like H&E scans, that help pathologists to better
interpret the information provided by the tissue sample under the microscope,
has been widely tried to use for improving diagnosis and prognosis in many tu-
mors [43]. 3D high-resolution volumetric imaging of tissue architecture from large
tissue and molecular structures at nanometer resolution are new techniques for
improving early cancer detection, personalized risk assessment and potentially
identifying the best treatment strategies [75]. Deep learning has been shown to
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read out additional information of these stains. These models have shown to de-
liver independent prognostic information[26, 95] and could also predict the results
of molecular biomarkers [71].

In melanoma, convolutional neural networks were shown to reach a concordance
level above 80% for diagnosis compared to human pathologists[54], could outper-
form histopathologists in classification[55], and the result of the sentinel lymph
node status [15].

Prognostication and predicting the risk of tumor recurrence could be shown for
combining digital analysis with the detection of tumor-infiltrating lymphocytes
by achieving a negative predicting value (NPV) of about 85% [81]. Another CNN
approach for predicting disease specific survival in melanoma resulted in mixed
results achieving area under the curve (AUROC) values of 90% and 88% but only
NPVs of 95% and 65%, respectively, in two validation cohorts [65].

Such problems of the domain gap often arises in image recognition [41], i.e. a
method that has been optimized on a data set from a certain source, but on data
from a different source it provides unsatisfactory results. To address this problem,
we first standardize the predictions for each dataset or data source, which already
improves the accuracy. In a second approach, we use an additional regularization
term directly to the neural network so that the results are in the same range.
This also improves the accuracy of the predictions.

7.2 Definitions

Survival analysis is about predicting the probability of absence of an event (e.g.
the death of a patient) until time t using the parameters β of a suitable model
[47].

7.2.1 Cox’s Proportional Hazards Model

One of the most widely used methods is Cox’s Proportional Hazards Model, which
predicts the hazard function h(t|x) on the basis of an input vector x, see e.g., [65],
[130] or [94]:

h(t|x) = h0(t) · exp(βTx) ⇔ log
h(t|x)
h0(t)

= βTx (7.1)

The baseline hazard function h0(t) indicates how large the hazard rate would be
without the influence of other parameters (like β) and is therefore only dependent
on the time t, which means that for our case it is eliminated from the calculation
of the loss function and therefore does not need to be calculated [94].
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To estimate the parameters β of the linear model the negative log partial likelihood
function can be minimized:

l(β) = −
n∑

i=1

δi(β
Txi − log

∑
j∈Ri

exp(βTxj)) (7.2)

where δ is the delta-function which determines whether the data is censored or
not, n the total number of data points and Ri = {j|yj ≥ yi} is the risk set which
describes the data-subset of patients which do not have an event before timestamp
yi of the i-th event.

An adaption of linear models to non-linear models like (deep) neural nets was
introduced by [35] in 1995 and applications can be found for example in [130] or
[94]. The risk function βTx is replaced by the output of the neural net ĥω(x) and
we achieve the following loss function for each mini batch B:

L(ω) = −
∑
i∈B

δi(ĥω(xi)− log
∑
j∈Ri

eĥω(xj)) (7.3)

7.2.2 Concordance index

For validation purposes of our methods we use Harrel’s concordance index (CI)
[48]. The CI is defined as the ratio between correctly ordered pairs and all possible
rankable pairs [109]:

CI =
#concordant pairs

#comparable pairs
(7.4)

A pair of observations i, j with its survival times fulfill Ti > Tj, is concordant if

ĥω(xj) > ĥω(xi). Also a pair i, j is not comparable if the smaller survival time is
censored (i.e. Ti > Tj ∧∆j = 0). Otherwise, this pair is comparable. Thus,

CI =

∑
i,j 1(Ti > Tj) · 1(ĥω(xj) > ĥω(xi)) ·∆j∑

i,j 1(Ti > Tj) ·∆j

(7.5)

The CI estimates the probability of concordance P (ĥω(xj) > ĥω(xi)|Ti > Tj) for
two independent observations/predictions. It can also be interpreted as a measure
of the area under a time-dependent receiver operator curve [44, 53, 109]. A value
of CI = 1 means that all observations are correctly sequenced, CI = 0.5 means
that the method applied is no better than guessing.

87



7 Neural Networks in Survival Analysis

7.2.3 Area Under the Receiver Operating Characteristic

In the evaluation of the results our methods generate, an important measurement
value is the area under the receiver operating characteristic (AUROC)[45]. For a
data point with a = P (Fp) the probability of the data point being a false positive
prediction and b − 1 = P (Tp) the negative probability of the data point being a
true positive prediction in a dataset D, [14] defines the AUROC as follows:

AUROC =
∑
i∈D

{(1− bi ·∆a) +
1

2
[∆(1− b) ·∆a]}

with
∆(1− b) = (1− bi)− (1− bi−1)

and
∆a = ai − ai−1

7.3 Related Work

There exists abundant work on using deep neural networks for the interpretation
of medical images. In this section, we focus on works with the scope of AI based
prediction of survival for patients with a melanoma diagnosis.

In prior research on this topic [65] the authors use a two stage pipeline to pre-
dict risk on the basis of primary melanoma tumor images. Within this pipeline,
they first use a segmentation to classify detect and crop tumor areas in the im-
age. These small but detailed crops of 500× 500px are then fed to a network of
convolutional, recurrent and fully connected layers in order to predict the risk.

[60] describes the approach to use a multivariable classifier that contains, besides
clinical data, a score of a deep neural net, in order to predict the immunotherapy
response of patients with advanced melanoma. Also here, clinical data is used for
the model and a separation of segmentation and response classifier takes place.

The authors of [55] describe an experiment where a trained ResNet50 model
outperforms 11 pathologists in classifying labeled histopathological images what
shows that neural nets in general have high potential to improve correct melanoma
diagnoses.

Similar to our approach, the authors of [73] used a VGG-based neural network
architecture to detect cutaneous melanoma, although they use a binary classifica-
tion for dead/alive patients instead of a survival analysis method. They evaluated
their method on a dataset provided by The Cancer Imaging Archive of 53 patients
with a given survival status.
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In [111] the authors on the one hand locate molecular biomarkers in immunohis-
tochemistry images using convolutional neural networks which can help enabling
new cancer screenings. On the other hand they also classify the found biomarkers
along their type.

However, there are not only machine learning approaches to melanoma classifi-
cation based on H&E scans, but also based on topics such as dermoscopic image
data [90] where the authors use a quiet small 5-layers CNN to classify the im-
ages to the corresponding tumor stage with applying the Adam optimizer on the
Similarity Measure for Text Processing as loss function. This work is also based
on [59] where the authors predict the melanomas thickness using a pretrained
VGG-19 model on 400× 400px preprocessed dermoscopic images.

In [130] the authors also use deep convolutional neural networks in combination
with survival analysis in order to find good predictions on pathological images -
here in context of lung cancer. They annotated the regions of interest of the images
with help of pathologists and sampled small random high resolution crops of these
regions to use in the networks whereas we used down-sampled low resolution
images in our approach.

In contrast to this, in our work we extract information directly from the original
image data using a VGG16-like neural network, so we don’t use an additional pre-
segmentation, which might be error-prone by itself. In this way we also avoid la-
beling of the regions of interest by humans annotators, which is a time-consuming
process and requires highly trained annotators.

7.4 Implementation

7.4.1 Datasets

In this section of survival analysis we consider two main sets of data:

� Dataset A: This dataset contains 767 images of 176 patients of the American
Joint Committee on Cancer (AJCC) set stages IA to IIID from four different
locations in Bern (Switzerland), Bochum, Bonn and Kiel, Germany. All
images have been recorded with the H&E coloring and were created by the
same scanner Hamatasu NanoZoomer S210, NDP Version 2.4.

In order to obtain a data set of the highest possible quality, the data were
first manually checked by medical experts and a total of 23 data points were
removed from the data set, e.g. due to broken slides. This clean-up took
place before we split the data into training, validation and test data:
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Characteristic Dataset A Dataset B
Training Validation Test Test

N(Scans) 313 36 38 242
N(Patients) 104 36 36 242

Alive / Censored 89 (86%) 31 (86%) 31 (86%) 212 (88%)
Dead / Event 15 (14%) 5 (14%) 5 (14%) 30 (12%)

MSS time (months) Mean 70.12 80.03 78.37 50
MSS time (months) Median 70 73 73 41

Relapse Free Survival
Recurrence

21 (20%) 8 (22%) 7 (19%) 75 (31%)

Relapse Free Survival
Non-recurrence

83 (80%) 28 (78%) 29 (81%) 167 (69%)

RFS time Mean 67 76.67 75 42
RFS time Median 70 68 73 30

Table 7.1: Important features of our survival analysis datasets [16].

The patients are assigned to train (104 patients), test (36 patients) and
validation (36 patients) what results in 591 train-, 74 validation- and 102
test images. The split was chosen so that the distribution of high/low
risk patients in each subset (training, validation, test) corresponds to the
distribution of the full dataset A, see also Table 7.1, under the constraint
that multiple images of one patient remain in the same subset.

� Dataset B : The second dataset contains 242 images of 242 patients with
AJCC stages IIA to IIC from the Central Malignant Melanoma Registry
(CMMR) in Tübingen, Germany, where the H&E-colored images have partly
different coloring than the images of Dataset A, probably caused by another
scanner type Hamatasu Nanozoomer 2.0 HAT, NDP Version 2.5 and the
scans are mostly disturbed by a marker pen on the slide. To see how our
algorithm performs on images with a domain gap dataset B is only used as
a separate test dataset.

For more (clinical) information on the survival analysis dataset we use, have a
look in [16].

7.4.2 Clinical description

The images used represent hematoxylin-eosin (HE) stained melanoma sections.
HE is a staining technique from histology that is used to better predict the disease
prognosis of a melanoma patient, among other things, the mitosis rate can be
determined (S3 Leitlinie Melanom).
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Overall survival of dataset A (86%) is similar to dataset B (88%). However,
the MSS time for dataset B with a median of 41 months was considerably lower
compared to 70/ 73 months of dataset A. Relapse free survival differed as well
with around 78% and 69% for dataset A and dataset B, respectively.

7.4.2.1 Technical Description

Both datasets contain a total of 1009 images of different sizes (up to a resolution
of 158720× 115456 pixels) and various format ratios. Therefore, the images have
to be pre-processed as neural nets on commercially available hardware are not yet
able to handle images of this size at the time of writing. See section Subsec. 7.4.3
for more information on the pre-processing task. The total size of the dataset is
570,3 GB in .ndpi file format.

For every patient i, we have at least one image xi and the information δi =
1, indicating the death of the patient at time Ti. If the patient survived the
observation period of this study, we set δi = 0 and Ti is the time the patient has
been observed.

7.4.3 Preprocessing the Data

When pre-processed, the images are reduced from their original format by a factor
of 64 in dataset A and 128 in dataset B in each dimension. The resulting image
is centered in a 2500 × 2000 pixel frame which is filled with white color outside
the image. Images of patients with multiple images are seen as independent
information in the training data.

7.4.4 Methods

Convolutional neural networks (CNN) represent the state of the art in image
recognition as we have seen in Chapter 2. As neural network model, we use a
modified version of a VGG16 net [113] in our experiments. Figure Fig. 7.1 gives
an overview of the network architecture. Each convolutional layer has kernel sizes
of 3× 3 and each pooling layer is a maximum pooling with pooling size 2× 2 like
described in Subsec. 2.2.7.2.

As mentioned in section Sec. 7.3, we use the loss function supplied in [94] which
implements a variant of the Cox’s Proportional Hazards Model. In order to
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Figure 7.1: Design of used neural network. Orange are convolutional layers, red are
pooling layers and purple indices dense layers.

achieve a higher generalizability and reduce the domain gap between dataset A
and dataset B, we expanded our loss function in (7.3) by a regularization term:

L(ω) = −
∑
i∈B

δi(ĥω(xi)− log
∑
j∈Ri

eĥω(xj)) + λ(
1

|B|
(
∑
j∈B

ĥω(xj))
2) (7.6)

where λ is the chosen regularization strength. See sec Sec. 7.5.1 for further infor-
mation why we use this additional regularization term.

In training, we employ the Adam optimizer over 50 epochs with a learning rate
of α = 0.001 and a batch size of 5.

For the implementation we use Openslide (version 1.1.2) [40] for importing the
images, the GitHub repository of Sebp [94] and Tensorflow (version 2.6.1) [3]
along with Keras (version 2.6.0) [22].

7.5 Numerical results

For the calculations and so our now presented numerical results, we used a work-
station with a Dual Intel Xeon Gold 6248R 3.0GHz and three Nvidia Quadro
RTX 8000 graphic units with 48GB VRAM each, whereas the different GPUs are
only used for different trainings.

An overview of all the concordance indices and AUROC values of our experiments
is provided in table Table 7.2.
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Without regularization With regularization
Isolated Merged Isolated Merged

A (test) B Naive Std A (test) B Naive Std
C-Index 0.677 0.612 0.569 0.644 0.795 0.615 0.646 0.676
AUROC 0.615 0.635 0.544 0.614 0.789 0.578 0.601 0.642

Table 7.2: Evaluation of receiver operator curve and Harrel’s C-Index with and without
regularization on different testsets (Std = standardized).

7.5.1 Results of model without regularization

In our first set of experiments, we use the loss function supplied in equation
((7.3)). Although we achieve an AUROC value of 61.5% on the test subset of
dataset A and also an AUROC value of 63.5% on the separated dataset B, we
observe that the domains in which our predictions ĥω(xi) lay differ significantly
from dataset A to dataset B.

This results in a bad overall AUROC value of 54.4% if one mixes these predictions
naively together as it would be a complete dataset from only one datasource before
evaluating the whole set. One potential reason is that the net learns features that
are relevant for the task, but it also is sensitive to further properties of the image
like the pixel’s brightness (or in general the pixel’s color distribution). While
such image features do not encode meaningful medical information, they can still
disturb the outcome of the network, especially if the hazards predicted on the
second data set are in a different numerical range as compared with the original
training data. This in particular happens by deviation from the neutral direction
ĥω(xj) → ĥω(xj) + z which merely leads to a redefinition of the baseline hazard
function h0(t) but is not sensed in the Cox loss function. So one can imagine the
predictions ĥω(xi) shifted away from the total diagonal like schematically shown
in figure Fig. 7.2.

In our case, dataset B has a slightly other color scheme (mainly because of the use
of another scanner - see section Subsec. 7.4.1) and so our predictions evaluating
the model trained on dataset A on this dataset leads to a significant drop in
performance.

A first approach to reduce the sensitivity towards different hazards is to re-center
the predicted hazards. We thus standardize (we subtract the mean and divide
the result by the standard deviation) the predictions of each dataset and merge
them afterwards. We display the resulting improvement in the rightest column of
each approach in table Table 7.2.

The downside of this approach is that a certain set of images for each source of
images/scanner, that is used to predict survival probabilities, has to be available.

93



7 Neural Networks in Survival Analysis

Figure 7.2: Domain shift in predicting on different datasets.

7.5.2 Results of model with regularization

To interdict shifting of hazard functions altogether, we add a L2-regularization-
term, see equation ((7.6)), to shift all predictions ĥω(xi) in the same domain range.
This does not only lead to a higher AUROC value in evaluation on the mixed data
set (60.1% instead of 54.4%), but we can improve even more when combining the
regularization with the above-mentioned normalization process (64.2% instead of
61.4%)

Besides, we also achieve a significantly higher ROC value on the testdata of
dataset A throughout this regularization technique. Unfortunately the overall
generalizability on the isolated dataset B suffered (57.8% instead of 63.5%) from
that approach.

7.5.3 Conclusion

We have shown that it is possible to make survival predictions based on simplified
image information using Cox’s Proportional Hazard Models on neural networks
and that our domain adaptation techniques succeed in merging the predictions
into one range. Compared to [73] where the authors achieved an AUROC value of
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76.9% our approach with regularization slightly outperforms it with an AUROC
value of 79.5%.

In future work, we will have a more detailed evaluation and we have a closer
look on levels of significance and correlations to clinical variables like the Breslow
depth or genetic information and demographic variables such as age or gender to
evaluate and improve the clinical utility of our predictions.
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Chapter 8
Conclusion

In this thesis, the newly developed NAS method ResBuilder [18] was presented
in Chapter 4, which can be used to create convolutional neural network archi-
tectures for classification problems from scratch or to optimize already existing
architectures with regard to their accuracy or a better effectiveness of computing
capacities for prediction quality.

The ResBuilder method works in such a way that in an insertion routine, residual
blocks are first inserted randomly into the existing architecture without affecting
the training too much, which means that in this case one does not have to retrain
the architecture, but can continue training from the current state, which is a
clear advantage compared to other NAS approaches. To enable the most efficient
structure possible, however, it is just as necessary to remove unneeded structural
elements from the network. This is done by using different types of regularization,
which keeps the weights of the neural network artificially small. If the weights
of a layer within the neural network are pushed below a predefined threshold,
the entire residual block in which this layer lies is removed from the current
architecture, as it can be assumed that it does not contribute much added value
to the prediction quality of the network.

For this purpose, the computing capacity available can be determined in advance,
which means that for example small companies can also build their own adapted
architectures into their processes and thus have an easier entry into the topic of
Deep Learning or artificial intelligence in general. That the method works well was
shown in Chapter 6, where near state-of-the-art accuracies (without pre-training)
were achieved for preset standard parameters on academic data sets.

The method was also convincing in practice, as seen in Subsec. 6.2.4. Since
regularization techniques play a major role in the ResBuilder, several parameter
studies were carried out on different regularization strengths and their influence
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on each other was tested. Ablation studies were performed for the method, where
our introduced sub-method LayerLasso was omitted for experiments and only the
MorphNet [42] part of the ResBuilder method was applied as seen in Subsec. 6.2.1.
Because MorphNet is also an important part of the ResBuilder, we also did some
numerical experiments on the MorphNet routine in Chapter 5 for example to see
how it handles with a bad initial architecture in Sec. 5.2.

In future experiments, it would be nice to see how well this method can be applied
to other types of problems, such as object detection, semantic segmentation or
similar, where convolutional networks are also used.

In addition, we have seen a physically motivated approach in Chapter 3 with the
PHS optimization method [17], which is a variation of the stochastic gradient de-
scent method with momentum. We have evaluated this by numerous experiments
and further improved it by incorporating a goal-oriented braking of the heavy ball
with friction. As can be seen in the numerical results in Sec. 3.4, this method
outperforms the simple stochastic gradient descent algorithm as well as a momen-
tum based optimization with fixed friction. This approach makes it possible to
switch from exploration to an exploitation procedure by suddenly braking as soon
as a certain point of potential energy has been reached, whereby the minimum
in which the optimization algorithm then finds itself can be optimally exploited,
through even overfitting is additionally avoided.

There could be, some kind of re-acceleration taking place in future experiments,
allowing multiple minima to be visited within one training run. This would be
possible in this perspective through the introduction of an external force/“port”.

Finally, an application of machine learning in the field of survival analysis [16] was
shown in Chapter 7. Here, the Cox’s Proportional Hazard Model Subsec. 7.2.1
was adapted to the data of the cooperation partner NeraCare by using a neural
network [94] in such a way that it determined survival scores well for predictive
images. The problem of the domain gap arose because the method was evaluated
on images from another data source/scanner and compared with the scores from
the images from the first scanner, which were in different ranks. This problem was
solved by a suitably chosen regularization technique, which significantly improved
the prediction quality, at least for the two scanners. Further experiments could
now determine whether this technique is also successful on other data sets, or
whether, for example, it is necessary to fall back on the procedure for calibrating
new scanners also presented in Subsec. 7.4.4.
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List of Notations

Throughout this thesis, the following abbreviations and notations are used across
all chapters:

x Input data (mostly an image)
y Label of x
X Set of input data
Y Set of possible labels y
S Sampled trainings set
F Neural Network function
F (xi) Output before Softmax of the neural net F for an input xi

ŷi Predicted label of a neural network F for an input xi

f Function of a part of the neural network F
li Layer at position i within a neural network
B Block of layers within a neural network

ω
(li)
a,b Weight of the edge from neuron a in layer li to neuron b in layer li+1

α Learning rate
v Momentum (e.g. in SGD)
L Lossfunction
B Mini-Batch
nΛ ResBuilder: Number of insertion steps before MorphNet step
nM ResBuilder: Maximum number of MorphNet steps
ΘLL ResBuilder: Status of LayerLasso-Momentum
τLL ResBuilder: Threshold to activate LayerLasso-Momentum
λM ResBuilder: MorphNet regularization strength
IM ResBuilder: Intensity of MorphNet suggestions
ζ MorphNet and ResBuilder: Aimed for FLOP costs
λΛ ResBuilder: LayerLasso regularization strength
τΛ ResBuilder: LayerLasso threshold
λ0 ResBuilder: L2-regularization strength
h(t|x) Hazard function
h0(t) baseline hazard function
CI Concordance index
AUROC Area under the receiver operating characteristic

105



Bibliography

[1] Animals10 dataset. https://www.kaggle.com/datasets/

alessiocorrado99/animals10. Accessed: 2022-05-30.

[2] Bristol myers squibb announces adjuvant treatment with opdivo (nivolumab)
demonstrated statistically significant and clinically meaningful improvement
in recurrence-free survival (rfs) in patients with stage iib/c melanoma in the
checkmate -76k trial. https://bit.ly/3dfAO8B. Accessed: September 16,
2022.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
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