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Teil 1

Einleitung






Kapitel 1

Projektion und Perspektive

1.1 Ziele dieser Arbeit

Die Perspektive ist ein Teilgebiet der Kunst und findet in der Schule normalerweise
nur Anwendung im Zeichenunterricht. Die Schiilerinnen und Schiiler lernen hier die
Konstruktion von Gebaduden und H&userreihen mithilfe von einem oder zwei Flucht-
punkten. Dass die Perspektive neben der Kunst und den Entwiirfen von Gebauden
oder Bauteilen auch in der Mathematik ein interessantes Teilgebiet der Darstellenden
Geometrie einnimmt, ist ein Aspekt, welcher in der Schule wenig Beachtung findet.
Als Perspektive bezeichnen wir hierbei die Suggestion von R&umlichkeit auf einer
ebenen Bildflache. Dazu existieren verschiedene Moglichkeiten, u.a. durch Verkleine-
rung der Objekte, Verinderung der Farbe bzw. der Schirfe (Farbperspektive) oder
der Verwendung von Tiefenlinien, d.h. parallele Geraden im Raum, welche sich im
Bild in einem Fluchtpunkt schneiden. Die untere Abbildung zeigt einfache Beispiele
dieser genannten Methoden.

Letztere entspricht der Zentralperspektive, deren Bilder unter der Verwendung der
Zentralprojektion konstruiert werden. Allgemein wird unter einer Projektion die Ab-

bildung eines Objektes im Raum auf eine zweidimensionale Ebene beschrieben.

Verkleinerung Farbverdanderung Tiefenlinien

Abb. 1.1.1 Methoden zur Suggestion von Raum und Tiefe
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Abb. 1.1.2 Ubersicht der Inhalte dieser Arbeit

Als perspektivische Abbildung liefert die Zentralprojektion eine Vielzahl an Erkun-
dungsmoglichkeiten nicht nur fiir Schiilerinnen und Schiiler. Abb. 1.1.2 stellt eine
Ubersicht der verschiedenen Themenbereiche dar, welche in dieser Arbeit behandelt
werden. Ausgehend von der Konstruktion des Bildpunktes (orange) betrachten wir
die Projektion als geometrische Abbildung und stellen ihre Invarianten vor (violetter
Bereich). Wir werden feststellen, dass der euklidische Raum nicht ausreicht, damit je-
der Punkt der Bildebene einem Urbildpunkt im Raum zugeordnet werden kann. Wir
fiigen daher dem euklidischen Raum Fernpunkte hinzu und streifen damit ein wei-
teres Teilgebiet der Mathematik, die projektive Geometrie. Mit den Fluchtpunkten
leiten wir zum Kunstunterricht iiber. In den dort gelehrten Konstruktionsmethoden
zur Zentralperspektive werden u.a. auch solche Fluchtpunkte verwendet (hellblauer
Bereich).

Da in der Sekundarstufe I analytische Geometrie unterrichtet wird, verwenden wir
ihre Methodik, um Bildpunkte zu berechnen statt zu konstruieren (griiner Bereich).
Vom Mathematikunterricht leiten wir dann tiber in den Informatikunterricht, lassen
unter Einsatz von Programmiersprachen den Computer die Bildpunkte berechnen
und streifen damit letztendlich die Computergrafik.

Das dritte Themengebiet (gelber Bereich) befasst sich mit einem Sonderfall der Zen-
tralprojektion. Da wir auch Fernpunkte betrachten, verschieben wir das Projekti-
onszentrum gedanklich unendlich weit weg von der Bildebene, sodass das Zentrum

zum Fernpunkt wird. Die Projektionsstrahlen sind nun parallel, sodass wir von einer
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Parallelprojektion sprechen. Ihre Bilder werden als Schragbilder im Unterricht zur

Darstellung von Quader, Wiirfel oder anderen Prismen verwendet.

Diese Ubersicht zeigt, dass sich die Zentralprojektion in den Unterrichtsfiachern
Mathematik, Kunst und Informatik integrieren ldsst und eine Moglichkeit fiir

facheriibergreifenden Unterricht bietet.

Die Zentralprojektion ist eine Abbildungsmethode, welche den Raum auf eine Ebene
projiziert. Die Abbildung selbst wird dabei durch einen festen Punkt, welcher Projek-
tionszentrum genannt wird, und der Bildebene definiert. Das Bild eines Punktes im
Raum, welcher nicht gleich dem Projektionszentrum ist, entspricht dem Durchstofs-
punkt der Projektionsgeraden mit der Bildebene. Die Projektionsgerade ist dabei die
Verbindungsgerade des Punktes im Raum und des Projektionszentrums. Demnach
haben alle Projektionsstrahlen das Projektionszentrum gemeinsam.

Ausgehend von dieser Konstruktion werden wir durch logische Schlussfolgerungen
u.a. zeigen, dass der Fluchtpunkt das Bild eines Fernpunktes ist, welcher die Rich-
tung paralleler Geraden beschreibt, wihrend der Horizont das Bild einer Ferngeraden
ist. Die Arbeit stiitzt sich auf die Axiome der euklidischen Geometrie, wobei wir die
Fernpunkte- und geraden aus der projektiven Geometrie hinzunehmen werden. Da-
bei schneiden sich parallele Geraden in einem Fernpunkt, da sie dieselbe Richtung

aufweisen.

Wir werden Begriffe wie Fluchtpunkt und Horizont bzgl. der Zentralprojektion
einordnen und Konstruktionsmethoden aus dem Kunstunterricht (Fluchtpunkt-
perspektive, Ubereck-Perspektive) mathematisch erlautern. Wir werden zeigen,

weshalb diese Methoden funktionieren und wirklichkeitsnahe Bilder erzeugen.

Die vorliegenden Arbeit wurde in drei Teile verfasst. Nach dieser Einleitung folgt im
zweiten Teil die Behandlung der Projektion vom mathematischen Standpunkt aus.
Im dritten Teil betrachten wir die Projektion aus der Sicht der Schule, d.h. was geben
die Lehrplane vor, welche geometrischen Themen werden momentan behandelt und
wie ldsst sich hier die Projektion einordnen. In beiden Teilen werden Aufgabenbei-
spiele vorgestellt, welche exemplarisch eine mogliche Behandlung im Schulunterricht
aufzeigen werden. Wir werden daher in beiden Teilen fachwissenschaftliche und di-
daktische Aspekte ansprechen. Nur der Schwerpunkt ist in beiden Teilen ein anderer.

Im Folgenden werden die einzelnen Kapitel vorgestellt.



Im Kapitel zu den Grundlagen steht der Abbildungsbegriff und eine Auswahl an
Invarianten im Vordergrund. Die Drehung um einen fixen Punkt und einen Winkel
oder die Achsenspiegelung an einer festen Gerade sind in der Regel noch aus der
Schule bekannte Abbildungen. Sie zéhlen zu den Kongruenzabbildungen, da sie vor
allem Streckenldngen und Winkel unverdndert lassen. Die zentrische Streckung ist ein
Beispiel einer Ahnlichkeitsabbildung. Hierbei bleiben die Winkel noch erhalten, aber
Streckenléngen &ndern sich. Allerdings bleibt das Verhéltnis zwischen zwei Strecken
fest, weshalb die Objekte zwar vergrofert oder verkleinert, aber nicht verzerrt, er-
scheinen. Die zentrische Streckung wird im Mathematikunterricht der neunten Klasse
thematisiert. Einer der zentralen Sétze ist dabei der Strahlensatz, welcher in einem
eigenen Abschnitt behandelt wird, aufgrund der mehrfachen Anwendung in der vor-
liegenden Arbeit.

Nach den Grundlagen folgt die Definition der Projektion als punktweise Abbildung
des Raumes auf eine Ebene. Je nach Lage von Objekt- zur Bildebene und Zentral-

oder Parallelprojektion kommen Invarianten hinzu oder fallen weg.

Die Invarianten finden auch Verwendung in den Konstruktionsmethoden. Vor
allem die Axonometrie, d.h. die Parallelprojektion von Objekten mit dem Ko-

ordinatensystem, ware ohne die Teilverhéaltnistreue nicht moéglich.

Die nachfolgenden Kapitel 4 und 5 behandeln Zentral- und Parallelprojektion ge-
trennt voneinander. In beiden Féllen werden Bildpunkte konstruiert oder mithilfe

von Vektoren berechnet.

Konstruktionsverfahren sollten nicht nur erlernt werden, um sie auszufiihren.
Stattdessen sollten Schiilerinnen und Schiiler auch dazu motiviert werden, diese
zu hinterfragen und die Zusammenhénge zur Zentralprojektion als geometrische
Abbildung zu verstehen. Die Auseinandersetzung erfolgt sowohl synthetisch als

auch analytisch.

Am Ende erfolgt eine kurze Einfilhrung in die projektive Geometrie. Schiilerinnen
und Schiiler sollen hierbei das Konzept von Fern- und Fluchtpunkten iiber die zentral-
projektive Abbildung zwischen zwei Geraden verstehen. Darauf aufbauend werden
die homogenen Koordinaten eingefiihrt.

Homogene Koordinaten finden auch Verwendung in der Computergrafik. Mithilfe des
Koordinatensystems kann die Position der Bildpunkte berechnet werden. Es wird sich
herausstellen, dass die Zentralprojektion keine lineare Abbildung ist und somit nicht,
wie eine Drehung um den Koordinatenursprung, durch eine Matrix beschrieben wer-

den kann. Mithilfe homogener Koordinaten wird dies moglich.
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Digitale Medien gehoren heutzutage zum Alltag der Schiilerinnen und Schiiler.
Zum einen lassen sich mit dem Handy schnell zentralprojektive Bilder erzeu-
gen, sodass die Schiilerinnen und Schiiler an eigenen Beispielen die Anzahl und
die Lage von Fluchtpunkten erkunden koénnen. Zum anderen wollen wir den
Computer zur Erstellung zentralprojektiver Bilder verwenden und thematisie-
ren dabei die Computergrafik, wie sie auch in Computerspielen Verwendung
findet.

Nach der Parallelprojektion und einem kurzen Uberblick iiber die Axonometrie, folgt
der dritte Hauptteil mit dem Bezug zur Schule als Schwerpunkt. Wie hoch ist der
Anteil an Geometrie im Unterricht an Gymnasien und Gesamtschulen in NRW im
Vergleich zu Algebra, Funktionen und Stochastik? Welche Themen aus der Geome-
trie werden im Mathematikunterricht besprochen? Zur Beantwortung dieser Fragen
wurden vom Schulministerium zugelassene Schulbiicher gesichtet. Dabei wurden ei-
nige Schulaufgaben zur Zentral- und Parallelprojektion gefunden, welche in einem

eigenem Kapitel vorgestellt und besprochen werden.

Wie hoch ist der Stellenwert der Zentralprojektion im heutigen Mathematik-
unterricht? Es wurden nur wenige Aufgaben zu diesem Thema gefunden. Die
Sichtung der Schulbiicher hat generell gezeigt, dass den geometrischen Abbil-
dungen eher eine geringe Gewichtung zugeschrieben wird. Es geht mehr um die
Bilder an sich, z.B. in Bezug auf Symmetrien, also um ihre Entstehung durch

Konstruktion mit dem Geodreieck.

Kapitel 7 greift die Zentralprojektion in der Computergrafik wieder auf, vor allem in
Hinsicht auf die Nutzbarkeit im Schulunterricht. Es wird der Prototyp eines Quellco-
des besprochen, welcher sowohl Zentral- als auch Parallelprojektionen von einfachen,
geometrischen Korpern erzeugt. Aus Einheitskorpern, wie Wiirfel und Pyramide,
konnen Schiilerinnen und Schiiler durch Skalierung, Drehung und Verschiebung ein-
fache Szenen erstellen und diese entweder unter einer Parallel- oder Zentralprojektion
abbilden. Somit lassen sich auch bewegte Rot-Griin Bilder erzeugen. Werden diese
mit einer Rot-Griin Brille betrachtet, erscheinen sie tatséachlich dreidimensional. Fiir
Schiilerinnen und Schiiler sollte dies eine spannende Erfahrung sein, wenn sie die Re-
sultate ihrer Berechnungen sogar sehen und selbst beurteilen kénnen. Vor allem die
Moglichkeit, mit dem Quellcode auch bewegte Bilder zu erzeugen, soll dieses Erlebnis

positiv verstéirken.



Der Bezug zur Computergrafik erfiillt zwei Ziele. Zum einen die sinnvolle Nut-
zung digitaler Medien durch Auseinandersetzung mit einer Programmiersprache
und einem Quellcode, der einseh- und verdnderbar ist. Hier geht es um mehr als
die algorithmische Berechnung von Bildpunkten. Das andere Ziel ist die Vali-
dierung von Lésungen. Schiilerinnen und Schiiler sollen die Mdéglichkeit haben,

zu iiberpriifen, wie gut die dreidimensonale Wirkung der Rot-Griin Bilder sind.

Neben dem Programmcode wurden auch haptische Materialien fiir die Verwendung
im Schulunterricht entworfen. Diese werden im letzten Kapitel vorgestellt. Inspiriert
von historischen Schriften wurden Materialien zur Zentral- und Dreitafelprojektion
zuerst am Computer mithilfe eines CAD Programmes konstruiert und mit Pappkar-
ton umgesetzt. Danach wurden erste Prototypen aus Holz, Acrylglas und Kunststof-

fen gebaut und konkrete Aufgaben hierzu entwickelt.

Fiir das Verstédndnis der Projektion ist eine gute Raumvorstellung notig. An-
dererseits liefert sie auch die Moglichkeit, diese zu trainieren. Die entwickelten
Materialien sollen die Schiilerinnen und Schiiler bei diesem Prozess unterstiit-

zen.

Grundsétzlich war das Ziel dieser Arbeit die mathematische Auseinandersetzung mit
der Zentralprojektion sowie die Erarbeitung von Moglichkeiten, dieses Thema fir
den Schulunterricht nutzbar zu machen. Es erfolgte keine empirische Untersuchung
der entwickelten Aufgaben und Materialien. Im Vordergrund stand die Verkniipfung
zu anderen Unterrichtsfachern, damit Schiilerinnen und Schiiler Mathematik als ein
Werkzeug verstehen, welches auch auferhalb des Mathematikunterrichtes Verwen-
dung findet. So konnten vor allem Beziige zur Kunst und Informatik erstellt werden.
Zentralprojektion gibt es auch in der Physik, wenn es um Optik geht, denn der
menschliche Sehvorgang entspricht einer Projektion mit zwei Zentren, unseren Au-
gen. Da diese Arbeit aufgrund ihres Umfanges eingegrenzt werden musste, wurde
dieser Aspekt nicht mehr beriicksichtigt.

Die Aufgabenbeispiele und Materialien wurden mit dem Ziel konzipiert, die Schiiler-
innen und Schiiler zu logischen Denkweisen anzuregen. Es sollte im Mathematik-
unterricht nicht primér um Inhalte gehen, denn diese werden von den Schiilerinnen
und Schiiler sicherlich vergessen, wenn sie nach der Schule Berufe wihlen, welche nur
wenig Mathematik bendtigen. Was bleibt sind Kompetenzen, wie bspw. Aneignung
von neuem Wissen oder Erstellung von Zusammenhéngen, Umgang mit Problemen,
Wechsel von Sichtweisen usw.

Was gibt die Aufgabenstellung vor? Lassen sich mehrere Losungswege finden oder

sogar auch verschiedene Losungen? Wie gelangt man schrittweise zu einer Losung
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durch logischen Schlussfolgerungen statt auszuprobieren?

Diese Arbeit soll aufzeigen, welche Moglichkeiten hierzu die Zentralprojektion
als Thema zur Aneignung dieser Kompetenzen bietet, sie stellt sich aber nicht

auf den Standpunkt, dass nicht auch andere Themen hierzu geeignet waren.

Der Mathematikunterricht sollte nicht nur daraus bestehen, Rechnungen in den Ta-
schenrechner einzugeben oder gar vorgezeigte Algorithmen nachzuahmen. Viel mehr
sollen Schiilerinnen und Schiiler dazu ermutigt werden, durch logischen Schlussfolge-
rungen solche Algorithmen oder Losungsmethoden selbst zu entwickeln. Zur besseren
Erkldarung wird im folgenden Abschnitt eine Beispielaufgabe aus einem Schulbuch

vorgestellt.
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1.2 Losung einer Schulbuchaufgabe

Die folgende Aufgabe ist aus dem Schulbuch mathe live 8 zum Thema Schragbilder

und Dreitafelprojektion [27, S. 17]. Wir stellen die Aufgabe vor und zeigen dann

eine Herangehensweise, welche schrittweise zur Losung fiihrt und sogar zeigt, dass es

mehrere Losungen gibt.

Wiirfel, Quader, quadratische
Pyramide, Zylinder, gekipptes

Prisma

Kugel, Kegel, Zylinder

Pyramide, Kegel, Prisma

Abb. 1.2.1 Beispiel einer Aufgabe in
Klasse 8 [27, S. 17]

Gegeben ist ein Quadrat, ein Kreis und ein
Dreieck. Sie stellen jeweils eine Ansicht ei-
nes unbekannten Korpers dar, d.h. sie ent-
sprechen einem Rissbild in einer Dreitafel-
projektion (Abs. 3.3, S. 59).

Die Schiilerinnen und Schiiler sollen mindes-
tens drei passende Korper finden. Eine Her-
angehensweise ist nun, einfach alle bekann-
ten Korper auszuprobieren, da ihre Anzahl
in der Schule relativ iibersichtlich ist. In der
nebenstehenden Abbildung steht unterhalb
der Ansichten einige Lésungsvorschlége.
Eine andere Herangehensweise ist, sich der
Losung durch logische Schlussfolgerungen
anzundhern. Was ist die Ausgangssituati-
on in der Aufgabenstellung und welche An-
forderungen muss die Losung erfiillen? Was
bleibt variabel, welche Eckpunkte oder Kan-
ten der Objekten lassen sich verdndern, so-
dass die Voraussetzungen dennoch erfiillt
bleiben?

Die Schiilerinnen und Schiiler kénnen bspw. mit einer dynamischen Geometriesoft-

ware wie GeoGebra die Ausgangssituation nachbauen und die o.g. einzelnen Fragen

durchgehen. Wir besprechen dazu den ersten Teil der Aufgabe mit dem Quadrat als

Seitenriss. Hierbei sind in den Abbildungen abhéngige Punkte, wie Schnittpunkte,

schwarz markiert und die verschiebbaren in blau. Fiir die Losung dieser Aufgabe

ist kein Koordinatensystem nétig. Da wir als visuelle Unterstiitzung aber GeoGebra

verwenden, miissen wir hier eine Bildebene festlegen, in unserem Fall die xz-Ebene.
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1. Schritt: Wir o6ffnen in GeoGebra
die 3D sowie die Algebra Ansicht. Mit
dem Werkzeug zur Erstellung von Ebe-
nen markieren wir die rote x- sowie die
blaue z-Achse und erhalten die Bildebe-
ne. Mit dem Werkzeug zur Fliachenerstel-
lung zeichnen wir ein Quadrat, wie es
in der Aufgabenstellung vorgegeben wird.
Die Kantenldnge und Lage in der Bildebe-
ne kann dabei beliebig gewahlt werden.

2. Schritt: Da das Quadrat das Bild ei-
ner Dreitafelprojektion ist, ist dies das Er-
gebnis einer orthogonalen Projektion ei-
nes noch unbekannten Korpers auf die Bil-
debene. Wir ergénzen daher die Projek-
tionsstrahlen, welche senkrecht zur Bilde-
bene stehen und durch die Eckpunkte des

Quadrates verlaufen.

3. Schritt: Wir wissen, dass die Eckpunk-
te des gesuchten Korpers auf den Pro-
jektionsstrahlen liegen miissen. Schiiler-
innen und Schiiler kénnen daher auf die
Idee kommen, einfach vier Punkte auf den
Strahlen zu setzen und zu einem Viereck
zu verbinden. Markieren wir die ersten drei
Punkte, so wird von dem Programm noch
eine Flidche gezeichnet. Sobald der vierte
hinzukommt, wird die Flache i. d. R. ver-
schwinden und der Inhalt der Flache in der
Algebra Ansicht als 7 ausgegeben.

Schiilerinnen und Schiiler sind nun in der
Situation, sich zu fiberlegen, wie viele

Punkte eine Ebene festlegen.
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3. Schritt, neuer Versuch: Drei nicht
kollineare Punkte legen eine Ebene fest
(vgl. Axiom (E1) in Kapitel 2.2, S. 25).
Wir verwenden in GeoGebra das Tool, ei-
ne Ebene aus den ersten drei Punkten auf
den Strahlen zu bilden. Diese wird die vier-
te Gerade in einem Punkt schneiden. Mar-
kieren wir nun diese vier Punkte, so bildet
sich eine Fldche und das Fragezeichen ver-
schwindet aus der Objektliste. Somit blei-
ben fiir die erste Fldche nur drei der vier

Eckpunkte variabel.

4. Schritt: Wir verfahren genauso mit der
gegeniiberliegenden Fléche und rekonstru-

ieren so schrittweise den Korper.

1. Losung: Wir ergénzen die fehlen-
den Kanten und haben eine erste Losung
konstruiert. Nun koénnen die Schiiler-
innen und Schiiler {iberlegen, welche
Moglichkeiten sie haben, um den Kor-
per zu verdndern, ohne dass sich der
Seitenriss dndert. Beide Flachen werden
durch jeweils drei Punkte festgelegt. Sie
konnen also insgesamt sechs Punkte auf
den Geraden verschieben. Wie miissen
die Punkte bspw. liegen, damit die ihnen
bekannten geometrischen Korper entste-
hen?

Wir richten die Flachen parallel zuein-

ander aus. Es entsteht ein Quader (Abb. 1.2.2). Sind die vier verbleibenden Kanten
gleich lang, so entsteht als Sonderfall der Wiirfel. Verkippen wir die Fliachen derart,

dass sie zwar noch parallel sind, aber nicht mehr parallel zur Bildebene, so liegen

die vier letzten Kanten nicht mehr senkrecht auf den Seitenflachen. Es entsteht ein



1.2. Loésung einer Schulbuchaufgabe 13

Parallelepiped, wobei dieser Korper im Unterricht wohl eher selten besprochen wird.

Als vierte Moglichkeit ergibt sich ein verkipptes Prisma mit dreieckiger Grundflache.

qa N

Abb. 1.2.2  Geometrische Kérper anhand der ersten Losung

2. Losung: In der ersten Losung wurde
die Situation mit vier Projektionsstrah-
len untersucht. Schiilerinnen und Schiiler
konnte auffallen, dass wir zwar so Wiir-
fel und Quader finden konnten, aber ei-
ne quadratische Pyramide erfiillt ebenfalls
diesen Seitenriss. Was miissen wir also &n-
dern, damit auch diese Losung auftaucht?
Gehen wir davon aus, dass der Korper
nicht durchsichtig ist, so kénnen wir zwi-
schen den vier Geraden weitere Projek-
tionsgeraden hinzufiigen. So entsteht die
quadratische Pyramide (Abb. 1.2.3) oder

auch ein Pyramidenstumpf.

3. Losung: Nun fehlt noch der Zylinder.
Hierbei ist der Seitenriss eine Schnittfliche
des Korpers mit einer zur Bildebene par-
allelen Ebene. Daher lasst sich auch ein
Prisma mit dreieckiger oder trapezformi-
ger Grundfliche finden. Eine Ubersicht der
weiteren Losungen zeigt Abb. 1.2.3.
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Abb. 1.2.3 Geometrische Kérper anhand der zweiten und dritten Loésung

Die Aufgabenstellung des Schulbuches ermdglicht eine intensive Auseinandersetzung
mit der Dreitafelprojektion, sofern diese auch als orthogonale Parallelprojektion im
Unterricht besprochen wurde. Andernfalls fehlt den Schiilerinnen und Schiiler die
Kenntnisse, welche fiir den schrittweisen Losungsweg nétig sind. Wir werden leider
bei der Besprechung weiterer Schulbuchaufgaben zum Thema Dreitafelprojektion
feststellen, dass oft der Zusammenhang zur Parallelprojektion nicht aufgezeigt wird
und somit Schiilerinnen und Schiiler nur noch die Moglichkeit bleibt, bekannt Kérper
einfach auszuprobieren. Dies starkt aber weder logische Denkweisen noch die Raum-

vorstellung.

Mit der Aufgabe sollte der didaktische Anspruch bzw. die Ausrichtung dieser Arbeit
nun geklart sein. Bevor wir den ersten Hauptteil zur mathematischen Auseinander-
setzung der Zentralprojektion beginnen, liefert der folgende Abschnitt eine kurze
Ubersicht der historischen Entwicklung, von der Antike bis zur Renaissance, welche

als Geburtsstunde der Zentralperspektive gewertet wird.
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1.3 Historischer Uberblick zur Entwicklung der Perspek-

tive

Schon zu fritheren Zeiten gab es das
Bestreben, durch Zeichnungen auf ebe- P

ner Flache einen rdumlichen Eindruck

zu erwecken. So finden sich Wandma-

lereien mit Fenstern bzw. Sidulengin-
gen mit Ausblick auf imaginire Land-
schaften oder Scheinarchitekturen aus
der Antike. Vermutlich aus der Beob-

achtung heraus wurden die Tiefenlinien

schriag gezeichnet, sodass sie zusammen-

laufen, je tiefer sie in die Bildebene hin- ApL. 1.3.1 Skizze einer antiken Wand-
einragten. Auffillig jedoch ist, dass die- malerei mit Scheinarchitektur als Bei-
se sich nicht in einem zentralen Flucht- spiel der Teilungskonstruktion

punkt schneiden, sondern in mehreren,

welche vertikal {ibereinander liegen.

Abb. 1.3.1 zeigt eine Skizze einer Wandmalerei im Haus des Augustus auf dem Pala-
tin in Rom, welche dem 2. Stil der réomischen Wandmalerei zugeordnet wird. Dieser
Stil ist von 80 bis 20 v. Chr. datiert. Die Verwendung der schrag verlaufenden Tiefen-
linien suggeriert eine raumliche Tiefe, auch wenn die Scheinarchitektur noch verzerrt
und flach wirkt. Nach dem Deutschen G. J. Kern wird diese Art der Darstellung als
Teilungskonstruktion bezeichnet [20], welche noch bis ins 5. Jh. n. Chr. nachgewiesen
werden kann.

In der Zeit danach kommt die Weiterentwicklung der perspektivischen Darstellung
zum Erliegen, denn im Mittelalter erlischt das Bestreben nach raumlicher Illusion in
Europa. Die Ikonenmalerei trat verstarkt in den Vordergrund, die weniger Wert auf
die perfekte Suggestion von Raumtiefe als auf die symbolhafte Darstellung biblischer
Ereignisse legte. Erst zur Zeit der Renaissance erlebte die Perspektive einen neuen
Aufschwung in Italien und Deutschland. Daher wird in der Literatur oftmals die
Renaissance als die Geburtsstunde der Zentralperspektive genannt, da zu dieser Zeit
mit Brunelleschi, Pietro della Francesca und Albrecht Diirer Abhandlungen iiber
konkrete Konstruktionsprinzipien zu finden sind. Abb. 1.3.2 zeigt eine Ubersicht der
historischen Entwicklung der Perspektive in der Mathematik und Kunst. Zur Zeit der
Antike sind einige Beispiele zur Erzeugung von Raumillusionen genannt, wihrend fiir
die Renaissance bedeutende Personen gelistet sind. Die Léange der grau unterlegten
Boxen richtet sich nach der Zeitspanne, in welcher sie lebten. Daneben sind ihre Rol-
len bei der Etablierung der Perspektivkonstruktion sowie wichtige literarische Werke

genannt.
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Es wird deutlich, dass nach dem Mittelalter in der Renaissance die Perspektive wieder
in den Fokus der Wissenschaftler und Kiinstler riickte. So findet sich in italienischen
Wandmalereien die Teilungskonstruktion in Decken- und Bodendarstellungen wieder
[19, S. 42], bspw. in Ugolino da Siena - Geifelung Christi, Barna da Siena - Abend-
mahl oder Lorenzo di Bicci - Enthauptung des Apostels Jakobus d. A., um nur einige

Beispiele aus dem zitierten Werk von G. J. Kern zu nennen.

Der Bildhauer und Architekt Brunelleschi war im 15. Jahrhundert in Florenz be-
kannt fiir seine Bauwerke und gilt noch heute als Erfinder der Zentralperspektive
[41, S. 20|, welcher seine Konstruktionsmethoden an seinen Schiiler Masaccio wei-
tergab. Ein beriihmtes Experiment Brunelleschis bestand darin, dass er ein Abbild
des Baptisterium in Florenz zentralprojektiv auf einer Tafel abbildete [8]. An die
Stelle des Fluchtpunktes wurde ein Loch gebohrt. Der Betrachter sollte nun vor dem
Baptisterium stehend durch die Riickseite des Loches schauen. Dort sah er dann
auf einen Spiegel, welcher das konstruierte Abbild des Gebdudes auf der Vordersei-
te zeigt. Den Aufzeichnungen Manettis, dem Biographen Brunelleschis und einzige
Quelle aus dieser Zeit, zufolge, glaubte der Betrachter, er sehe tatséchlich durch das
Loch das echte Bauwerk und nicht nur eine Zeichnung dessen. Die Tafel mit dem
Abbild des Bauwerkes ist nicht erhalten geblieben und es gibt ebenso keine zeitge-
nossische Aufzeichnung dariiber, wie genau Brunelleschi die Projektion konstruiert
hat [41, S. 24].

Eine der ersten Beschreibungen der neuen Darstellungsmethode findet sich in den
Schriften von Leon Battista Alberti, welcher 1435 im Werk De pictura zwei Varianten
beschreibt [41, S. 20], |7, S. 136]. Die erste dhnelt der Fluchtpunktkonstruktion, wel-
che Abb. 1.3.3 zeigt. Auf der rechteckigen Bildfliche wird die Grofte eines Menschen
festgelegt und auf dessen Hohe der Horizont gezeichnet. Nach Alberti ist der Mensch
drei braccia, einem damals verwendeten Langenmafs, grofs. Die untere Bildseite wird
daher in ein Drittel der festgelegten Grofse des Menschens unterteilt. Auf dem Hori-
zont wird der Fluchtpunkt festgelegt. Da in diesem Fall der Zentralstrahl, d.h. der
Sehstrahl durch das Zentrum, welcher senkrecht auf die Bildebene fallt, in diesem
Punkt die Bildebene durchstofst, wird jener auch als Hauptpunkt H bezeichnet. Nun
werden alle unteren Abschnitte mit H verbunden, um die Tiefenlinien zu erhalten.
Diese sind im Raum die Parallelen zum Zentralstrahl und liegen ebenfalls orthogonal
zur Bildebene.

Um eine regelméfige Unterteilung des Bodens in Quadrate zu erreichen, fehlen noch
die Transversalen, d.h. die horizontalen Linien, welche parallel zur Bildebene verlau-
fen. Wir werden spéter noch zeigen, dass der Abstand der Transversalen abhéngig
von der Distanz des Betrachters zur Bildebene ist (vgl. Abb. 6.4.16, S. 253). Albertis
Losung besteht darin, die Lage von Betrachter und Bildebene in einer Seitenansicht

zu skizzieren. Wir zeichnen neben dem Rechteck eine Linie auf Hohe der Grundlinie.
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Horizont H H

Abstand

Bildebene

Abb. 1.3.3 Die Costruzione legittima nach Leon Battista Alberti [8, S. 82]

Da die Transversalen ebenfalls den Abstand von einem braccia haben sollen, wird die
Linie mit diesem Maf unterteilt. Aufgrund der Seitenansicht wird die Bildebene zur
Linie, welche die Objektebene u.a. im grau markierten Punkt schneidet. Nun muss
das Zentrum Z der Projektion festlegt werden. Die Lage des Horizontes bestimmt die
Hohe von Z. Der Abstand zur Bildebene kann dagegen frei gewahlt werden. Anschlie-
flend werden die Seh- bzw. Projektionsstrahlen eingezeichnet, welche die Bildebene
auf Hohe der projizierten Transversalen schneidet. Diese werden auf das linke Recht-
eck tibertragen, sodass letztendlich ein Schachbrettmuster entsteht. Zur Kontrolle
sollten sich die Diagonalen in einem anderen Fluchtpunkt schneiden, da diese im
Raum ebenfalls parallel sind, allerdings in eine andere Richtung zeigen, als die Tie-
fenlinien [8, S. 81|, [51, S. 58]. Damit ldsst sich die Projektion eines Raumes in gleiche

Abschnitte unterteilen, sodass sich Objekte im projizierten Raum platzieren lassen.

Die zweite Methode erinnert an einen Kupferstich in Diirers Underweysung der Mes-
sung, in welcher die Szene durch ein Gitter betrachtet wird. Die Bildebene ist eben-
falls in ein Gitter unterteilt, sodass nun der Kiinstler die gesehene Szene in die
einzelnen Felder iibertragen kann. Diese Methode orientiert sich an der Vorstellung,
dass das gesehene Bild einem Schnitt durch die Sehstrahlpyramide aus der Optik ent-
spricht [41, S. 21]. Wir werden bei der Besprechung der Invarianten der Projektion
feststellen, dass die Zentralprojektion eine Ahnlichkeitsabbildung ist, wenn Objekt
und Bildebene zueinander parallel sind. Demnach miissen lediglich die Streckenver-
héltnisse des Gitters auf dem Schleier und der Bildebene iibereinstimmen. Nachteil
der zweiten Methode ist allerdings, dass nur real existierende Objekte abgebildet

werden konnen. Hier steht im Vordergrund die Abbildung der Wirklichkeit auf eine
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zweidimensionale Bildflache und nicht die Konstruktion eines fiktiven Raumes mit-
hilfe von Horizont und Fluchtpunkten |7, 136f].

Die Bilder einer Zentralprojektion sind abhédngig vom Standort und Hohe des Be-
trachters relativ zur Bildebene. Damit die Raumwirkung perfekt ist, muss der Be-
trachter einen bestimmten Standpunkt vor dem Bild einnehmen. Der Fluchtpunkt
bekommt eine besondere Bedeutung mit dem Werk von Piero della Francesca. Nach
der damaligen Theorie zur Optik gingen Sehstrahlen vom Auge aus und trafen auf die
Objekte. Dabei bildet sich die sog. Sehstrahlpyramide, dessen Spitze im Auge liegt.
Wie bei der Konstruktion von Alberti schon erwahnt wurde, entspricht die Hohe dem
zentralen Sehstrahl, welcher die Bildebene orthogonal durchstéfst. Der Lotfuipunkt
wird Hauptpunkt genannt und befindet sich auf dem Horizont. Der Fluchtpunkt al-
ler Tiefenlinien, welche senkrecht zur Bildebene stehen, fallt mit dem Hauptpunkt
zusammen (vgl. Konstruktionsmethode 4.3.2, S. 110). Da die Projektion der Tie-
fenlinien in einem Punkt zusammenlaufen, nutzten Maler diese zur Blickfithrung des
Betrachters. Ein bekanntes Beispiel ist das Abendmahl von Leonardo, wo der zentrale
Fluchtpunkt auf das Haupt Christi weist |7, S. 145].

Neben der Entwicklung der Perspektive in der Kunst und Architektur gab es auch
eine in den mathematischen Wissenschaften, wo die Perspektive zur Begriindung der
Projektiven und Darstellenden Geometrie fiihrte. Der Mathematiker G. Ubaldi kon-
struierte in seinem Werk Perspectiva den Fluchtpunkt der Tiefenlinien, d.h. Geraden,
welche nicht parallel zur Bildebene verlaufen, iiber die Parallele zur Tiefenlinie durch
das Projektionszentrum [2, S. 17| (Vgl. Satz 3.1.3, S. 49). Der Schweizer Mathema-
tiker und Physiker J. H. Lambert schrieb 1759 Die freye Perspektive, in welcher er
auch seinen Perspektographen vorstellte. Dieser wurde im Rahmen der Arbeit nach-
gebaut. Der Entwurf sowie seine Funktionsweise werden im Abschnitt 8.1, S. 312,
erldutert.

Die Darstellende Geometrie sowie die Projektive Geometrie sind eng verkniipft mit
der Zentralprojektion und ihrer Deutung als mathematische Raumtheorie, derer sich
vor allem der Mathematiker Girard Désargues annahm. Somit begann die Ausein-
andersetzung mit der Perspektive in der Malerei und Architektur und setzte ihren

Weg in der mathematischen Wissenschaft fort.
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Kapitel 2
Grundlagen

Die Zentralprojektion ist eine geometrische Abbildung, welche Punkte im Raum den
Punkten einer festgelegten Ebene zuordnet. In den folgenden Abschnitten wollen wir
einige grundlegende Begriffe einfithren, welche fiir die Behandlung der Projektion
notig sind. Wir verwenden dabei den euklidischen Raum mitsamt seiner Metrik, da
wir auch Abstdnde und Winkel behandeln werden. Zusétzlich werden wir die Fern-
elemente der projektiven Geometrie hinzunehmen. Dies hat zur Folge, dass nun zwei
verschiedene Geraden sich immer schneiden werden. In dem Sonderfall, dass sie par-
allel sind bzw. dieselbe Richtung aufweisen, schneiden sich diese in einem Fernpunkt.
Die Hinzunahme von Fernelementen fiihrt dazu, dass die Projektion eine surjektive
Abbildung wird, d.h. zu jedem Punkt der Ebene existiert mindestens ein Urbildpunkt

im Raum.

Das Besondere an geometrischen Abbildungen sind ihre Invarianten, d.h. Eigenschaf-
ten von Objekten, welche durch das Abbilden nicht verdndert werden. So bleiben bei
Kongruenzabbildungen Winkel und Streckenléingen erhalten, wihrend Ahnlichkeits-
abbildungen zwar winkel- aber nicht langentreu sind. In der neunten Klasse wird
im Mathematikunterricht an Gesamtschulen und Gymnasien in NRW die zentrische
Streckung besprochen und mit ihr das Streckenverhéltnis. Weil die Projektion u.a.
das Teil- und Doppelverhéltnis invariant lasst, diese aber im Unterricht in der Regel
nicht thematisiert werden, wird in einem Abschnitt gesondert darauf eingegangen.

Bzgl. der zentrischen Streckung erlernen Schiilerinnen und Schiiler den Strahlensatz.
Da dieser bei Herleitungen von Formeln und Beweisfithrungen zur Zentralprojektion

ofters angewendet wird, wird der erste und zweite Strahlensatz kurz wiederholt.
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2.1 Die Objekte

Zur Behandlung geometrischer Problemstellungen werden im schulischen Unterricht
die Objekte Punkt, Gerade und Ebene verwendet. Dabei soll der betrachtete An-
schauungsraum im euklidischen Sinne aus unendlich vielen Punkten bestehen. Die
Objekte werden wie folgt bezeichnet [12, S. 2|:

Definition 2.1.1: Punkt, Gerade, Ebene

i) Der Raum bestehe aus unendlich vielen Punkten, welche mit Grofsbuch-
staben A, B, C, ... bezeichnet werden.

ii) Eine Gerade sei eine eindimensionale Menge von Punkten, wobei jene mit
Kleinbuchstaben a, b, ¢, ... bezeichnet werden. Gilt A € g, so bedeutet dies
in der Anschauung, dass der Punkt A auf der Geraden g liegt.

iii) Eine Ebene sei eine zweidimensionale Menge von Punkten, wobei jene mit
griechischen Grofsbuchstaben E,II, Y, ... bezeichnet werden. Gilt A € II
bzw. g C 11, so bedeutet dies, dass der Punkt A bzw. die Gerade ¢ in der
Ebene II liegt.

In der obigen Definition liegt eine Inzidenzrelation zwischen Punkte und Geraden
bzw. Ebenen vor. Liegen alle Punkte einer Geraden g auch auf einer Geraden h, so
sind diese identisch, d.h. g = h. Gibt es dagegen nur einen gemeinsamen Punkt, so
wird dieser Schnittpunkt genannt. Wir werden spéter anhand der zugrunde gelegten
Axiome zeigen, dass zwei verschiedene Geraden nicht mehr als einen Schnittpunkt
gemeinsam haben konnen. Liegen beide Geraden in einer Ebene und haben keinen
Punkt gemeinsam, so wird dies als echt parallel bezeichnet.

Da die Zentralprojektion eine Abbildung ist, welche parallele Geraden, bis auf Aus-
nahmen, auf sich schneidende abbildet, wiirde dies zu folgendem Problem fiihren: die
Abbildung ist nicht surjektiv, denn nicht alle Punkte der Bildebene besitzen min-
destens ein Urbild im Raum. Der Schnittpunkt der Bildgeraden, dem Fluchtpunkt,
kann kein gewohnlicher Punkt als Urbild zugeordnet werden, denn parallele Geraden
schneiden sich im euklidischen Sinne nicht. Es wird daher im néchsten Abschnitt
axiomatisch gefordert, dass zwei verschiedene Geraden immer einen gemeinsamen
Punkt besitzen. Fiir den Parallelfall wird der euklidische Raum daher um sog. Fern-
punkte aus der Projektiven Geometrie erweitert. Um gewohnliche Punkte von den
Fernpunkten zu unterscheiden, werden jene mit x gekennzeichnet. Ist S ein gemein-
samer Punkt zweier verschiedener Geraden g und h in einer Ebene, so schneiden sie
sich in einem gewohnlichen Punkt. In Abb. 2.1.1 ist der gemeinsame Punkt von g
und h der Fernpunkt S*, sodass g und h echt parallel sind. Die Richtung der Geraden
wird in der Abbildung iiber die Pfeildarstellung bei S* angegeben. So sind in Abb.
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Abb. 2.1.1 Parallele Ge-
raden und ihre Fernpunk-
te, wie auch parallele Ebe-
nen mit einer Ferngeraden

2.1.1 die Geraden d und e parallel, allerdings ist ihre Richtung eine andere als die
von g und h. Sie schneiden sich demnach in einem anderen Fernpunkt R*.

Im Raum schneiden sich zwei verschiedene Ebenen II und ¥ in einer Schnittgera-
den s. Auch hier ldsst sich das Prinzip der Fernelemente anwenden. So schneiden
sich in Abb. 2.1.1 die parallelen Ebenen II und ¥ in einer Ferngeraden s*, welche
die Fernpunkte S* und R* enthélt. Wir werden spéter zeigen, dass der Horizont die

Projektion einer Ferngeraden ist.

2.2 Die Axiome

Die Arbeit ist schulnah ausgerichtet. Daher wird der euklidische Raum mit den ent-
sprechenden Axiomen Zugrunde gelegt, wie auch seine Metrik fiir Strecken und Win-
kel. Im Sinne einer projektiven Erweiterung werden folgende Axiome verdndert [12,
S. 3J:

Axiome 2.2.1

(G1) Zwei verschiedene Punkte legen genau eine Gerade fest. Dabei heifit die
Gerade, welche durch die Punkte A und B festgelegt wird, die Verbin-
dungsgerade AB.

(G2) Zwei verschiedene Geraden, welche in einer Ebene liegen, schneiden sich

in einem Punkt.
(E1) Folgende Kombinationen legen genau eine Ebene fest:

a) drei verschiedene nicht-kollineare Punkte
b) zwei verschiedene Geraden, welche sich schneiden

c¢) eine Gerade und ein Punkt, welcher nicht auf jener liegt

(E2) Zwei verschiedene Ebenen schneiden sich in einer Schnittgeraden.
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Wiéhrend in (G1) und (E1) nicht nur die Existenz sondern auch die Eindeutigkeit der
Objekte gefordert wird, kann die fehlende Eindeutigkeit in (G2) und (E2) mithilfe

der anderen Axiome wie folgt indirekt bewiesen werden.

Satz 2.2.2

Der Schnittpunkt S zweier verschiedener Geraden a und b ist eindeutig, ebenso

die Schnittgerade s zweier verschiedener Ebenen E und II.

Beweis.

Annahme: Es sei P # S ein zweiter Schnittpunkt von a,b sowie p # s eine zweite
Schnittgerade der Ebenen. Dann gilt anb = {S, P}. Wegen (G1) ist SP die eindeutige
Verbindungsgerade, d.h. a = SP = b. Dies steht im Widerspruch dazu, dass a und
b zwei verschiedene Geraden sind. Analog fiihrt auch (E1) bzgl. der Ebenen zum

Widerspruch.
0

Da zwei verschiedene Punkte genau eine Gerade festlegen, kann die Verbindungsge-
rade von A und B als AB oder BA bezeichnet werden. Durch das Hinzufiigen von
Fernelementen ist auch das Parallelenaxiom durch die o.g. Axiome beriicksichtigt,

wie folgender Satz zeigt:

Satz 2.2.3

Zu einer Geraden g und einem Punkt P existiert genau eine Gerade h mit:

Pehundh|g

Beweis.
Jede Gerade hat eine Richtung, d.h. g inzidiert mit einem Fernpunkt G*. Nach (G1)
legen zwei Punkte genau eine Gerade fest. Sei h die Gerade, welche mit P und G*

inzidiert. Da g und h sich in demselben Fernpunkt schneiden, sind sie parallel.

0
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2.3 Das Teil- und Doppelverhaltnis

Werden verschiedene Abbildungen auf ihre Eigenschaften untersucht, so stellt sich
auch die Frage, ob es Eigenschaften gibt, welche sich durch die Abbildung nicht &n-
dern, d.h. invariant sind. Liegt beispielsweise eine Kongruenzabbildung vor, welche
folglich eine Figur auf eine deckungsgleiche Figur abbildet, so bleiben u.a. Strecklan-
gen und Winkelgrofen erhalten. Wird ein Rechteck durch eine zentrische Streckung
vergrofert, so bleiben die Winkel erhalten, aber die Seitenldngen verdndern sich, al-
lerdings nicht beliebig, sondern um einen festen Faktor. Somit bleibt das Verhéaltnis
zwischen dem Bild und der urspriinglichen Strecke erhalten, d.h. die zentrische Stre-

ckung ist streckenverhéltnistreu.

Da im Abschnitt 2.4.2 einige Invarianten von Abbildungen besprochen werden, wer-
den im Folgenden die Begriffe Teilverhéltnis und Doppelverhéltnis erlautert. Diese
werden im Mathematikunterricht an Gesamtschulen und Gymnasien in NRW in der
Regel nicht besprochen, da sie im Lehrplan nicht vorausgesetzt werden, im Gegen-
satz zu langen- und winkeltreu, da sie Invarianten von Kongruenzabbildungen sind.
Einige Invarianten der Projektion werden bei der Konstruktion von Bildern verwen-
det. Schiilerinnen und Schiiler sollten sich daher auch mit diesen beiden Begriffen im
Unterricht auseinandersetzen, wenn spéter Konstruktionsverfahren aus dem Kunst-
unterricht mathematisch begriindet werden sollen. Zur Vereinfachung wird sowohl
die Strecke als Objekt mit AB bezeichnet wie auch ihre Linge, d.h. d(4, B) = AB.

Es ist daher dem Kontext zu entnehmen, welche der beiden Bedeutungen gemeint ist.

Wir besprechen im Folgenden das

Teilverhéltnis mit Aufgabenbeispielen. (1) (2)

Wird der Mittelpunkt einer Strecke auf B B=C
den Mittelpunkt der Bildstrecke abge- / . D /\
bildet, so ist die Abbildung teilverhilt- A A D
nistreu. Wir betrachten also Verhalt- (3)

nisse von Streckenldngen. Nun kénnten
Schiilerinnen und Schiiler meinen, dies

ware dasselbe wie streckenverhéaltnis-

treu, eine Eigenschaft von Ahnlichkeits-

abbildungen. Tatsichlich gibt es aber Abb.2.3.1 (1) und (2) sind Strecken mit
dem Streckenverhéaltnis AB : CD,
wahrend (3) sich auf das Teilverhalt-
nis TV (A, B,T) bezieht.

einen Unterschied zwischen den beiden
Begriffen. Bei der Streckenverhéltnis-
treue betrachten wir zwei verschiedene
Strecken AB und CD. In ihrer Lage sind sie nicht abhiingig von einander, d.h.

Anfangs- und Endpunkte kénnen verschieden sein oder auch nicht. Im anderen
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Fall betrachten wir eine Strecke AB, welche von einem Punkt T geteilt wird, d.h.
Anfangs-, End-, und Teilungspunkt sind kollinear. Abb. 2.3.1 zeigt den Unterschied.

Wir kommen nun zur Definition des Teilverhaltnisses einer Strecke:

Definition 2.3.1: Teilverhaltnis

Gegeben seien drei Punkte A, B, C einer Geraden. Das Teilverhdaltnis TV (A, B, C)
ist dann das Verhiltnis der Streckenlingen AC : BC. (|47], S. 52)

C ist dabei der Teilungspunkt von AB.

In der folgenden Abbildung ist ein Beispiel zur o.g. Definition gegeben. Dabei ergeben
sich folgende Teilverhiltnisse auf der Strecke AB und dem Teilungspunkt C bzw. D.

AC:BC=2LE : 6LE=1:3
AD:BD =41E : 12LE=1:3

D A C B
4 LE 2 LE 6 LE

Abb. 2.3.2 C und D sind Teilungspunkte der Strecke AB

Es ergibt sich dasselbe Verhéltnis, obwohl sich die Lage der Teilungspunkte C' und
D bzgl. der Strecke AB qualitativ unterscheidet: C' liegt auf dem Streckenabschnitt
AB, D dagegen nicht.

Zur Unterscheidung, ob der Teilungspunkt zwischen den Punkten A und B liegt, oder
auferhalb der Strecke AB, wird der Geraden ein Richtungssinn zugeordnet, sodass
Streckenlingen AB und BA durch ein negatives Vorzeichen unterschieden werden.
Negative Strecken wiirden aber in der Schule zum Konflikt fiihren. Ebenso auch der
weiter gefasste Begriff des Streckenverhéltnisses, wo rein intuitiv davon ausgegangen
wird, dass der Teilungspunkt innerhalb der betrachteten Strecke liegt und nicht au-
fserhalb. Aus didaktischen Griinden verzichten wir daher auf den Richtungssinn einer

Geraden und auf negative Streckenléngen.

Zum FEinstieg konnen Schiilerinnen und Schiiler verschiedene Teilverhéltnisse wie in
der obigen Abb. 2.3.2 berechnen. Doch was passiert, wenn wir zu einer gegebenen
Strecke ein Teilverhéltnis vorgeben. Ist dann der gesuchte Teilungspunkt eindeutig?
Folgt aus TV (A, B,C) =TV (A, B, D) stets C = D?
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Wir betrachten drei kollineare Punkte A, B und C', wobei wieder C der Teilungspunkt
der Strecke AB ist. Sei D nun ein zweiter Punkt der Geraden, welcher die Strecke

im selben Teilverhéltnis teilt wie C'. Dann gilt:

v B,y =28 _AD _qpya ppy AB-BC_AB-BD
BC BD BC DB
AB AB
= = = =
BC DB
~ BC=TBD mit AB #£0
=C=D

Der Teilungspunkt ist demnach eindeutig.

Im Unterricht konnen die Schiilerinnen und Schiiler die Lage des Teilungspunktes bei

gegebenem Teilverhéltnis wie folgt untersuchen:
Aufgabenbeispiel 2.3.1

a) Zeichne jeweils eine Strecke mit 4, 6 und 10 cm und markiere den Anfangs-
und Endpunkt mit A und B. Bestimme die Teilverhéltnisse TV (A, B, C),
wenn C' immer der Mittelpunkt der Strecke ist. Was fallt dir auf?

b) Zeichne eine Strecke von 12cm und markiere wieder den Anfangs- und
Endpunkt mit A bzw. B. Wo liegt der Punkt C, wenn das Teilverhéltnis
2 ist? Wo liegt C, wenn TV (A, B,C) = % ist?

c¢) Wiederhole Teil b) mit 3 und 1 bzw. mit 5 und £. Was féllt dir auf?

Im Aufgabenteil a) sollte den Schiilerinnen und Schiiler auffallen, dass das Teilver-
héltnis immer 1 ergibt, wenn der Teilungspunkt der Mittelpunkt der Strecke ist. Dies
ist leicht zu erkldren, da der Mittelpunkt nach Definition eine Strecke in zwei gleich-
grofke Abschnitte teilt. Demnach ist AC = BC.

Fiir Teil b) lassen sich folgende Gleichungen aufstellen, da das Teilverhéltnis bekannt
ist:

TV(A,B,O):2:£;»E:2-JTC
BC

12=AB=AC+BC=3BC = BC =4
Auch ohne Gleichungen lasst sich auf die Losung schlieffen, da die Lénge der Strecke

bewusst so gewdhlt wurde, damit die Losung ganzzahlig wird. Aufgrund des Teilver-

hiltnisses muss die Strecke AC doppelt so grof sein wie BC. Da beide zusammen



30

12 ergeben miissen, hat die erste Strecke die Lange 12 - % Der Abstand von C' zu A
ist daher 8 cm.

Was passiert nun, wenn wir %, also den Kehrwert von 2 betrachten? Dann ist die
Strecke BC doppelt so grof wie AC, d.h. C liegt nun 8 cm vom Punkt B entfernt.
Mit Aufgabenteil ¢) sollen die Schiilerinnen und Schiiler die Systematik aus b) er-
kennen. Da auch 4 und 6 Teiler von 12 sind, sind die Ergebnisse, welche in folgender

Tabelle gelistet sind, wieder ganzzahlig:

TV (A,B,C) 3 31+ 5 1
AC 4 9 3 10 2
BC 8 3 9 2 10

Bei der Lage der Punkte sollte den Schiilerinnen und Schiilern auffallen, dass der
Kehrwert des Teilverhéltnisses eine Spiegelung am Mittelpunkt M der Strecke be-
wirkt. Demnach ist Teil a) ein Sonderfall, denn der Kehrwert von 1 ist wieder 1,
sodass sich derselbe Punkt ergibt. Der einzige Punkt, welcher bei einer Punktspiege-
lung an M an sich selbst abgebildet wird, ist M.

Wir kommen nun zur Definition des Doppelverhéltnisses, welcher dem Verhéltnis
von zwei Teilverhaltnissen entspricht. Zu dem ersten Teilungspunkt kommt nun ein

zwelter hinzu.

Definition 2.3.2: Doppelverhéltnis

Gegeben sind vier verschiedene kollineare Punkte A, B, C, D. Dann entspricht
das Verhéltnis der Teilverhéltnisse dem Doppelverhdltnis [47, S. 53|:

DV(A,B,C,D)=TV(A,B,C) : TV(A,B,D) = — . ==

In Abb. 2.3.2, S. 28, ist das Doppelverhéltnis DV (A, B,C, D) = —1, d.h. die Teilver-
héltnisse sind bis auf ihr Vorzeichen gleich. Fiir den Schulunterricht nehmen wir wie-
der dieselbe Vereinfachung wie bei dem Teilverhéltnis vor. Wir vernachléssigen den
Richtungssinn von Geraden, d.h. die Teilverhéltnisse TV (A, B,C) und TV (A, B, D)
miissen positiv sind. Dies fiihrt dazu, dass die Teilungspunkte C' und D zwischen A
und B liegen miissen. Wir wollen nun untersuchen, wie sich die Lage der Teilungs-
punkte C' und D auf das Doppelverhéltnis auswirkt und formulieren dazu folgendes

Aufgabenbeispiel:
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Aufgabenbeispiel 2.3.2

Zeichne fiir jeden Aufgabenteil eine Strecke von 12 cm und markiere den Anfangs-
und Endpunkt mit A und B.

a) Der Punkt C ist der Mittelpunkt der Strecke und das Doppelverhéltnis ist
1. Bestimme den Punkt D. Findest du auch eine zweite Losung? Wo liegt
D, wenn C 4cm von A entfernt liegt und das Doppelverhédltnis immer
noch 1 betragt?

b) Wie in a) sei wieder C' der Mittelpunkt der Strecke, aber das Doppelver-
héltnis ist 2. Bestimme die Lage von D. Wo liegt D, wenn C 8 cm von A
entfernt liegt?

c¢) Das Doppelverhéltnis ist wieder 2. Kannst du eine allgemeine Formel her-
leiten, um AD = y zu bestimmen, wenn der Abstand AC = z bekannt
ist?

Hier lasst sich die Losung rein mit Gleichungen oder durch Schlussfolgerungen finden.

In Bezug auf a) gilt
DV(A,B,C,D) =1 = TV(A, B,C) = TV(A, B, D).

Da C der Mittelpunkt der Strecke AB ist, muss nach dem vorherigen Aufgaben-
beispiel TV (A, B,C) = 1 sein. Dann ist aber auch TV (A, B, D) = 1 und somit D
der Mittelpunkt der Strecke. Also ist C' = D die einzige Losung. Wird die Lage von
C verdndert, so dndert sich das Teilverhéltnis TV (A, B, C). Mit der Angabe in der
Aufgabenstellung gilt dann:

AC 4

VAB O =55=5-1" 2"

Da das Doppelverhéltnis immer noch 1 betragt, ist auch

TV (A, B,D) = %

Unter der Voraussetzung, dass die Teilungspunkte zwischen Anfangs- und Endpunkt
der Strecke liegen miissen, gilt aufgrund der zuvor gezeigten Eindeutigkeit der Tei-
lungspunkte wieder C' = D. Das Ergebnis ist somit unabhéngig von der Lage von C.
In Teil b) wird nun das Doppelverhéltnis verdndert. Da C' der Mittelpunkt ist, gilt

wieder:

TV(A,B,C) =1.
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Mit dem Doppelverhéltnis kennen wir dann auch die Lage von D:

2 = DV(A,B,C,D) =TV (A,B,C) : TV(A,B,D) = 1:TV(A, B, D)

1
= TV(A,B.D)= .

Dies kennen wir schon aus a), d.h. D liegt 4cm von A entfernt. Fiir AC = 8 ergibt
sich AD = 6. Was lésst sich aus den zwei Beispielen vermuten? Anscheinend liegt der
Punkt D immer vor C bzw. ndher an A. Woran das liegt, wird nach der Besprechung
der Losung des Aufgabenbeispiels erklért.

Teil c) ist eine Verallgemeinerung von b). Der Losungsweg ist derselbe, erfordert

allerdings einige Termumformungen:

AC x Yy
TV(A,B,C) = ~__ = TV(A,B,D) =
V(4,B,C) 12—-AC 12—z V(4,B,D) 12—y
2=DV(A,B,C,D)=TV(A,B,C) : TV (A, B, D)
_TV(A,B,C) =z
= TV(A,B,D) = 5 = 51 oa
Yy

X
= 24y —2zy = 122 —zy = (24 —x)y =12
oy 210 = W2 r—zy = (24—z)y x

N 12x
= AD:y:24_x.

Wir iiberpriifen unsere Formel mit den Beispielen aus b):

o 126 12-6
A0 — _ _ =0y
C=6=v=0"6"1
128 12-8
AC—8:>y—24_8 6 =6

Die Formel liefert fiir beide Zahlenbeispiele das richtige Ergebnis. Die folgende Ab-
bildung zeigt die Lage der Teilungspunkt aus b).

A D C B
A B

O O

Abb. 2.3.3 Die Losung von Teil b) des Aufgabenbeispiels 2.3.2

Was in dem Bild auffillt, ist der unverénderte Abstand von C und D. Dies ist ein
Sonderfall, da im ersten Beispiel C' der Mittelpunkt ist und im zweiten D. Bei der
Untersuchung des Teilverhéltnisses hatte sich gezeigt, dass 0 < TV (A,B,C) < 1
gilt, wenn der Teilungspunkt links vom Mittelpunkt liegt und andernfalls grofer als
1 ist. Im ersten Fall ist TV (A, B, D) = %, im zweiten dagegen der Kehrwert, sodass
die beiden Ergebnisse eine Punktspiegelung verbindet. Demnach sind die Abstdnde

von C und D in beiden Fallen identisch.
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Wie sich die Absténde der beiden Teilungspunkte verdndern und welche Auswirkung
das Doppelverhéltnis sowie die Lange der Strecke hat, wird im Folgenden untersucht.
Sei [ die Lange der Strecke und d das Doppelverhéltnis. Statt den Termumformungen

aus Teil ¢) verwenden wir hier einen alternativen Weg;:

AC AD - BC - BD
C J lic:d-li

_— = .7:>
BC BD BC BD
[ .
:::—1+d:i;
BC BD
l+(d—-1)BC d-l
= — = ==
BC BD
_pp-_1L-BC_
I+ (d—1)BC

Damit lasst sich folgender Satz formulieren:

Satz 2.3.3

Sei | die Linge der Strecke AB und d das Doppelverhiltnis DV (4, B, C, D).
Ist die Lage des ersten Teilungspunktes C' bekannt, so ldsst sich die Lage von

D wie folgt berechnen:

Q

d-1-B
I+ (d—1)BC

S
T
I

Wir wollen nun berechnen, an welcher Position einer gegebenen Strecke AB sich die
Teilungspunkte befinden miissen, um ein gegebenes Doppelverhéltnis von d = 2 zu
erfiillen. Aufgrund der vielen Berechnungen wurde der Computer zur Hilfe genom-
men, indem die Formel im zuvor genannten Satz in der Programmiersprache Julia
implementiert wurde. Mit dieser Sprache wurde auch die Lage der Teilungspunkte
grafisch dargestellt. In Abb. 2.3.4 entsprechend die Linien der Strecke AB. Den rech-
ten Punkten der farbig hervorgehobenen Strecken entspricht C, welcher jeweils um
1 weiter von A weg verschoben wurde. Die unterste Linie entspricht einer Skala mit
den Abstéinden einer Léngeneinheit. Uber den berechneten Abstand BD wurde die
Lage des zweiten Teilungspunktes D, dem jeweils linken Punkt in der Abb. 2.3.4 be-
stimmt. Die Abbildung zeigt die Lage der Punkte bei einer Streckenldnge von [ = 8
und [ = 12. Die beiden Beispiele zeigen, dass der Abstand DC der Teilungspunkte
variiert.

Wir vertiefen daher die Aufgabe und tragen den Abstand DC gegen AC auf und

verwenden als Parameter die Streckenléinge | = AB mit Doppelverhiltnis d = 2 bzw.
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—0-0
—0—0
—O0—0
0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8 9 10 11 12

Abb. 2.3.4 Variation des Abstandes AC bei DV (A, B,C, D) = 2. Links: AB = 8,
rechts: AB = 12

das Doppelverhéltnis d mit fester Streckenldnge | = 12. Die Ergebnisse zeigt Abb.
2.3.5. Es ist erkennbar, dass der maximale Abstand der Teilungspunkte vorliegt, wenn
AC etwa 60 % der Strecke ausmacht. Weiterhin ist die Differenz AC — AD immer
positiv, was bedeutet, dass der zweite Teilungspunkt vor dem ersten liegt (vgl. Abb.
2.3.3). Die rechte Grafik von Abb. 2.3.5 zeigt den Einfluss des Doppelverhéltnisses. So
andert sich die Reihenfolge der Teilungspunkte, wenn das Doppelverhéltnis zwischen
0 und 1 liegt. Die entsprechenden Graphen verbindet eine Punktspiegelung an (6, 0).
Da eine Strecke von 12 LE vorlag, wird die obige Aussage gestiitzt, dass die Bildung
des Kehrwertes eine Punktspiegelung der Teilungspunkte am Mittelpunkt bewirkt.

®
=

Doppelverhaltnis
— 01

o

Lange AB
—

Abstand DC

Abstand DC
IS

° ~

, :
/////

S

) 10 20 30 40 50 0 2 4

6 8 10 12
Abstand AC Abstand AC

Abb. 2.3.5 Auswirkungen des Abstandes der Teilungspunkte bei Variation der Stre-

ckenldnge (links mit DV (A, B,C, D) = 2) und des Doppelverhéltnisses (rechts mit
AB =12

Anhand der Graphen lassen sich einige vorherige Vermutungen stiitzen, allerdings
entstehen hier Kurven, welche auch fiir die Schiilerinnen und Schiiler der Oberstufe
unbekannt sind, da es sich weder um Polynom- noch um Exponentialfunktionen
handelt, die nach dem Lehrplan NRW besprochen werden. Dies ist auch anhand der
Formel im obigen Satz 2.3.3 erkennbar. Die Behandlung im Unterricht sollte daher

auf einem beispielhaften Niveau erfolgen, wie im vorgestellten Aufgabenbeispiel 2.3.2.
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2.4 Geometrische Abbildungen

Die Projektion gehort zu den geometrischen Abbildungen wie auch Kongruenzab-
bildungen, welche im Schulunterricht behandelt werden. Kongruenzabbildungen, wie
Drehung, Verschiebung oder Spiegelung, zeichnen sich dadurch aus, dass sie nur Ori-
entierung und Lage des Objektes verdndern, ihre Form und Grofse aber erhalten
bleibt, da sich Streckenldngen und die Winkelgréfsen nicht &ndern. Hieraus resultiert
auch, dass der Mittelpunkt einer Strecke auf den Mittelpunkt der Bildstrecke abge-
bildet. Kongruenzabbildungen weisen somit eine groffe Anzahl an Invarianten auf.
Mit der zentrischen Streckung wird eine weitere Gruppe von Abbildungen im Un-
terricht behandelt: die Ahnlichkeitsabbildungen. Die zentrische Streckung vergrofert
oder verkleinert Objekte, sodass zwar die Winkel erhalten bleiben, die Langen dage-
gen nicht. Dennoch wird auch hier der Mittelpunkt einer Strecke dem Mittelpunkt
der Bildstrecke zugeordnet. Es féllt somit nur ein Teil der Invarianten der Kongru-
enzabbildung weg, wenn wir eine Ahnlichkeitsabbildung betrachten.

Die folgenden Abschnitte erlautern zuerst die Abbildung allgemein, um abschliefend

eine Auswahl an Invarianten im metrischen Raum vorzustellen.

2.4.1 Die Abbildung

Die Projektion wird hier als eine Abbildung im euklidischen Raum unter der Zunah-
me von Fernpunkten und -geraden behandelt. Wir definieren daher im allgemeinen

eine Abbildung als eine Zuordnung zwischen zwei Punktmengen A und B.

Definition 2.4.1: Geometrische Abbildung

Eine geometrische Abbildung ¢ : A — B ordnet jedem Punkt P € A genau
einen Punkt ¢(P) € B zu [1, S. 224].

i) Die Abbildung ist injektiv, wenn es zu einem Bildpunkt @) € B maximal
ein Urbild P € A gibt.

ii) Die Abbildung ist surjektiv, wenn es zu jedem Bildpunkt @) € B mindes-
tens ein Urbild P € A gibt.

iii) Die Abbildung ist bijektiv, wenn i) und ii) erfiillt sind, d.h. wenn zu je-
dem Bildpunkt genau ein Urbild existiert. Die Abbildung ist dann auch
umkehrbar, d.h. es existiert o= : B — A.

Zur Vereinfachung kann der Bildpunkt mit P’ statt ¢(P) bezeichnet werden, wenn
aus dem Kontext hervorgeht, um welche Abbildung es sich handelt. Kongruenzabbil-

dungen in der Ebene sind bijektiv, d.h. die Zuordnung von Punkt und Bildpunkt ist
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eindeutig bzw. es existiert eine Umkehrabbildung, welche einem Bildpunkt sein Urbild
zuordnet. FKin ebenes Objekt, welches um den Punkt P um den Winkel 0° < o < 360°
gedreht wurde, kann entweder um —a ,zuriickgedreht werden oder um 360° — o un-
ter Einbehaltung der Drehrichtung. Die zentrische Streckung ist ebenfalls bijektiv,
sofern der Streckfaktor von null verschieden ist. Wird ein Objekt um den Faktor k
vergrofert, so kann das urspriingliche Bild mit % erhalten werden.

Wir werden im Abschnitt 3.1 (Die Zentralprojektion, S. 46) zeigen, dass die Projekti-
on nicht injektiv ist, denn alle Punkte einer Projektionsgeraden werden auf denselben
Bildpunkt projiziert. Sie ist somit nicht bijektiv, d.h. aus einem zentralprojektiven
Bild kann nicht ohne Weiteres das urspriingliche Objekt im Raum eindeutig rekon-
struiert werden. Damit die Projektion surjektiv wird, fiigen wir dem euklidischen
Raum die Fernpunkte und -geraden hinzu. Damit kann dem Fluchtpunkt ein Fern-

punkt als Urbild zugeordnet werden.

Bei einer geometrischen Abbildung gibt es auch Punkte oder Geraden, welche auf
sich selbst abgebildet werden. Diese werden Fixpunkt bzw. Fizgeraden genannt. Bei
einer Punktspiegelung an einem Punkt P ist dieser auch ein Fixpunkt, wihrend Ge-
raden, die P enthalten, Fixgeraden sind. Wir werden spéter zeigen, dass bei einer

Projektion alle Punkte, welche in der Bildebene liegen, Fixpunkte sind.

2.4.2 Eine Auswahl an Invarianten

Wie in der Einfithrung erwéhnt, gibt es im metrischen Raum eine Vielzahl an Inva-
rianten, welche charakteristisch fiir einige Abbildungen sind. Zuvor wurde zur Ver-
einfachung auch der Abstand mit AB bezeichnet. Im Folgenden sei AB wieder die
Strecke zwischen den Punkten A und B und d(A, B) der Abstand.

Definition 2.4.2

Es seien g und h Geraden sowie P, A, B, ... Punkte. Eine Abbildung ¢ : A — B
heifst

i) punkttreue, wenn gilt: Jeder Punkt wird auf einen Punkt abgebildet.
ii) geradentreu, wenn gilt: Jede Gerade wird auf eine Gerade abgebildet.
iii) inzidenztreu, wenn gilt: P € g = ¢(P) € ¢(g)

iv) parallelentreu, wenn gilt: g || h = ¢(g) || ¢(h)

v) streckentreu, wenn gilt: Jede Strecke wird auf eine Strecke abgebildet, z.B.
AB+— A'B’
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vi) ldngentreu, wenn gilt: Jede Strecke wird auf eine Strecke derselben Lange
abgebildet, d.h. d(A, B) = d(A’, B')

vii) winkeltreu, wenn gilt: Alle Winkel werden auf Winkel derselben Grofe
abgebildet.

viil) streckenverhdltnistreu, wenn gilt: Das Streckenverhéltnis zweier Strecken
bliebt immer erhalten, d.h. d(4, B) : d(C,D) = d(A’,B’) : d(C", D")

ix) teilverhdiltnistreu, wenn gilt: TV (A, B,C) = TV (A, B',C’) fiir alle kolli-
nearen Punkte A, B,C bzw. A', B, C".

x) doppelverhdltnistreu, wenn gilt: DV (A, B,C,D) = DV (A', B',C', D’) fiir

alle Kombinationen aus vier kollinearen Punkten.

Da wir nur Zuordnungen zwischen zwei Mengen von Punkten betrachten, ist 7) im-
mer erfillt. Der zweite Punkt trifft bei vielen geometrischen Abbildungen zu, so
auch bei Kongruenz- und Ahnlichkeitsabbildungen. Bei Projektionen existiert eine
Ausnahme: enthélt die abzubildende Gerade das Projektionszentrum, so ist das Bild
der Geraden ein Punkt. Ein Wiirfel kann derart fotografiert werden, dass Kanten
verschwinden und mit den Ecken zusammenfallen.

Ist eine Abbildung inzidenztreu, so miissen zwei Bildgeraden einen Schnittpunkt
besitzen, wenn sich ihre Urbilder schneiden. Die Schnittpunkte werden dabei auf-
einander abgebildet. Aus der Inzidenztreue folgt allerdings nicht die Parallelentreue.
Sind zwei Geraden parallel, so ist ihr Schnittpunkt ein Fernpunkt. Der gemeinsame
Punkt der Bildgeraden kann aber auch ein gewohnlicher Punkt sein, wie es bspw.

bei der Zentralprojektion der Fall ist.

Von allen nachfolgenden Punkte vi) - x) ist nur das Doppelverhéltnis eine Invariante
jeder Zentralprojektion. Die anderen Punkte werden von Sonderfillen der Projektion
erfiillt. Bevor wir auf diese eingehen, wollen wir einige Abhéngigkeiten zwischen den

Invarianten besprechen.

Satz 2.4.3

Sei ¢ : A — B eine injektive Abbildung, welche punkt- und inzidenztreu ist.

Dann ist ¢ auch geradentreu.
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Beweis.
Sei g eine Gerade mit den Punkten A und B, A # B. Da ¢ injektiv ist, ist ¢(A) #
©(B). Wegen (G1) (Axiome, S. 25) legen die Bildpunkte genau eine Gerade fest,

welche wegen der Inzidenztreue die Bildgerade von g sein muss.
O

Mit der Eigenschaft lingentreu erfiillt eine Abbildung weitere Invarianten, wie fol-
gender Satz zeigen wird. Langentreue Abbildungen sind Kongruenzabbildungen wie

Drehung, Spiegelung oder Verschiebung.

Satz 2.4.4

Sei « eine Abbildung. Es gilt:

1
« ist langentreu % « ist streckenverhéaltnistreu

2
% o 1st teilverhaltnistreu

3
% « ist doppelverhéltnistreu

Beweis.
Zu (1):
Wegen der Langentreue ist d(A, B) = d(A’, B’) und d(C, D) = d(C’",D’). Also gilt

auch
d(A,B) : d(C,D) = d(A’,B’) : d(C’,D’)

Zu (2):
Nach Def. 2.3.1 ist TV (A, B,C) = d(A,C) : d(B,C) mit den Punkten A, B,C,

welche auf einer Geraden liegen. Wegen der Streckenverhéltnistreue gilt dann auch
TV(A,B,C) =d(A,C) :d(B,C) =d(A",C") :d(B',C") =TV (A", B, C")

Zu (3):
Nach Def. 2.3.2 und der Teilverhéltnistreue gilt fiir vier beliebige Punkte einer Ge-

raden
DV(A,B,C,D)=TV(A,B,C):TV(A,B,D)

=TV(A,B,C"): TV(A;B,D)
= DV (4, B',C',D')
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Abb. 2.4.1 Gegenbeispiele zu Satz 2.4.4

0

Die Umkehrungen der Implikationen (1) bis (3) gilt nicht. So liegen in der Abb. 2.4.1
im ersten Beispiel Punkt und Bildpunkt auf parallelen Geraden. Das Bild M des
Mittelpunktes M; der Strecke AC' muss wegen der Inzidenztreue auf der Strecke
A’C" liegen. Dieser Punkt ist der Mittelpunkt der Bildstrecke. Gleiches gilt auch fiir
den Punkt My der Strecke BC. Dies sind somit zwei Beispiele fiir den Erhalt des
Teilverhéltnisses. Dass fiir alle Kombinationen von drei kollinearen Punkte und ih-
ren Bildpunkten das Teilverhéltnis erhalten bleibt, kann mithilfe des Strahlensatzes,
welcher erst im Kap. 2.5 besprochen wird, bewiesen werden. Es ist aber erkennbar,

dass die Streckenverhéltnistreue nicht erfiillt ist, denn
d(A,B) : d(A,C) #d(A',B) : d(A', C"),
da AC auf eine kiirzere Strecke, dagegen AB auf sich selbst abgebildet wird.

Auf der rechten Seite der Abbildung 2.4.1 sind die Geraden kopunktal statt parallel
bzw. der gemeinsame Punkt ist jetzt kein Fernpunkt mehr. Die Zuordnung ist nicht
mehr teilverhiltnistreu, denn der Mittelpunkt M; der Strecke AC wird nicht auf den
markierten Mittelpunkt der Strecke A’C” abgebildet. Dasselbe gilt auch fiir Ms. Die
rechte Projektion in der Ebene ist allerdings doppelverhéltnistreu. Der Beweis wird
im Abschnitt 3.1.1 (Die Invarianten der Zentralprojektion, S. 50) gefiihrt.
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2.5 Der Strahlensatz

Da die Strahlensdtze mehrfach fiir Beweise bzgl. der Zentralprojektion verwendet
werden, wird hier kurz darauf eingegangen. Wie die Ubersicht in Abb. 6.3.1 (S.
237) zeigt, ist die zentrische Streckung und die mit ihr verbundenen Strahlensétze
Teil des Unterrichts der 9. Klasse an Gymnasien und Gesamtschulen in NRW. Zur

Vereinfachung, wenn nicht anders angegeben, ist mit AB die Streckenldnge gemeint.

Definition 2.5.1

Die zentrische Streckung ist eine Abbildung ¥z, : £ — II in einer Ebene oder
zwischen zwei Ebenen im Raum mit Streckzentrum Z und Streckfaktor k € R,
k # 0. Dabei gilt:

i) Z, Punkt P und Bildpunkt P’ sind kollinear.
ii) Bildpunkt P’ liegt k-mal soweit von Z entfernt, wie P, d.h. ZP' = k-ZP
(Vgl. 3, S. 52|, [1, S. 226]).

Die Linge der Strecke ZP #dndert sich demnach um den Faktor k, welcher im

folgenden auf die positiven reellen Zahlen beschrankt sei.

Die Abb. 2.5.1 zeigt ein Beispiel einer zentrischen Streckung mit Streckzentrum Z
und Streckfaktor k =1, 5.

........

AT

Abb. 2.5.1 Zentrische Streckung an Z mit Faktor £ = 1,5
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Aufgrund der obigen Definition gilt:

ZA=1,5-ZA

ZA_ZB _7C _,
ZA 7B 7o

ZB=1,5-ZB =

ZC =1,5-2C"

Die zentrische Streckung ist u.a. winkel-, parallelen- und streckenverhéltnistreu, was
dazu fiithrt, dass die vergroferten oder verkleinerten Figuren nicht verzerrt wirken.
Das Original und ihr Bild sind dhnlich zueinander. Diese Ahnlichkeitsabbildung wird
in der Schule als Vorstufe der Strahlenséitze behandelt, welche im Lambacher Schwei-

zer der neunten Klasse wie folgt formuliert werden [3, S. 58|:

Satz 2.5.2: Strahlensatze

Werden von einem Punkt Z ausgehende Strahlen von zwei Parallelen g und h

geschnitten, dann gilt:

1. Strahlensatz:
Die Abschnitte auf einem Strahl verhalten sich zueinander wie die entsprechen-
den Abschnitte auf dem anderen Strahl, d.h.
7i_70
AB CD
2. Strahlensatz:

Die Abschnitte auf den Parallelen verhalten sich zueinander wie die von Z aus

gemessenen entsprechenden Abschnitte auf einem Strahl, d.h.

AC 7ZA ZC

BD ZB ZD
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Beweis.

Aufgrund der parallelen Geraden sind die farbig hervorgehobenen Stufenwinkel gleich
grof. Somit stimmen die Dreiecke AZAC und AZBD in ihren Winkeln {iberein
und sind folglich zueinander &hnlich. Demnach kann AZAC auf AZBD durch eine
zentrische Streckung an Z abgebildet werden. Dann gilt:

ZB=k-ZA ZD=k-ZC

ZB ZD
= ::k::
ZA zC
_ ZA+AB ZB+ BD
ZA ZB
ZA ZC
= = = =
AB CD

Der zweite Strahlensatz folgt direkt ohne weitere Umformungen aus der Ahnlichkeit
der Dreiecke. OJ

Wahrend der erste Strahlensatz umkehrbar ist, gilt dies fiir den zweiten nicht, sofern
nur zwei der drei Verhaltnisse gegeben sind. Dann muss es keine entsprechende zen-
trische Streckung geben bzw. die Geraden AB und A’B’ sind nicht zwingend parallel,

wie folgendes Gegenbeispiel zeigt:

Abb. 2.5.2 Die Umkehrung des 2. Strahlensatzes ist nicht immer giiltig.

Es ist % =1,b= %. Doch ist erkennbar, dass es keine zentrische Streckung an
Z gibt, welche A auf A’ und B auf B’ abbildet, obwohl das Streckenverhéltnis gleich
ist, denn der Kreis um A’ mit dem Radius 1,5 - AB schneidet die Gerade ZB in
zwei Punkten. Nur fiir den zweiten Schnittpunkt ist auch ZiB, = 1,5. Erst dann gilt

ZB]
AB || A'B].

Wir hatten im vorherigen Abschnitt in Abb. 2.4.1 eine Zuordnung gezeigt, welche in
der Ebene Punkte durch parallele Strahlen einander zuordnet. Dabei war es offen-

sichtlich, dass diese Zuordnung nicht streckenverhéltnistreu ist. Sie ist aber teilver-
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héltnistreu. So werden Mittelpunkte der Strecke und Bildstrecke aufeinander abge-
bildet. Wir wollen nun mithilfe der Strahlensétze zeigen, dass diese Figenschaft auch

fiir jedes andere Verhéltnis vorhanden ist.

Satz 2.5.3

Bei der parallelen Projektion innerhalb der Ebene (vgl. Abb. 2.4.1, S. 39) bleibt

das Teilverhaltnis invariant. Wir betrachten hier zu zwei verschiedene Falle:

Beweis.
Zu (1) :
Aufgrund der parallelen Strahlen kénnen wir den ersten Strahlensatz auf das Dreieck
APBC und APB'C’ anwenden. Beide Dreiecke haben die Seite PB gemeinsam,
sodass wir folgende Gleichung aufstellen konnen:

or PQ T

TV(C,B,T) = =— = —% = —— =TV(C',B',T") .
TB QB TD

Zu (2):
Der Endpunkt der Strecke ist nun kein Fixpunkt mehr. Die Beweisfiihrung funk-
tioniert dennoch analog zum ersten Fall, denn die Hilfsstrecke PB und RB’ sind
parallel, sodass die Teilstrecken PQ und RS gleich lang sind, wie auch QB und SB’.
Dann gilt:

T PQ RS _OT _

TV(C,B,T)= = = —~ =2 = ——_ —TV(C',B.,T).
TB QB SB T'B

O

Mit dem Strahlensatz und den vorherigen Abschnitten iiber geometrische Abbildun-
gen und das Doppel- und Teilverhéltnis haben wir nun alle Grundlagen vorgestellt,

die fiir die Projektion notig sind. Wir wollen nun im folgenden Kapitel diese Abbil-
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dung definieren und einige Eigenschaften nennen, welche sowohl von der Zentralpro-

jektion wie auch von ihrem Sonderfall, der Parallelprojektion, erfiillt werden.



Kapitel 3
Die Projektion

Hinter der Projektion verbirgt sich ein Verfahren, welches es ermoglicht, dreidimen-
sionale Objekte eines Raumes auf eine zweidimensionale Ebene abzubilden. Dies ist
vergleichbar mit der Fotografie oder auch dem natiirlichen Sehprozess. In der Kunst
gab es nicht zuletzt seit der Renaissance das Bestreben, auf der Bildflache einen
rdumlichen Eindruck zu erschaffen, d.h. den natiirlichen Sehprozess derart nach-
zuahmen, dass die Illusion eines Raumes auf der Bildflache entsteht. Mathematisch
betrachtet verbirgt sich hinter dieser Abbildung die Zentralprojektion. Aus dieser
lassen sich einige Konstruktionen ableiten, welche auch im Kunstunterricht fiir das
perspektivische Zeichnen verwendet werden. Ein Sonderfall der Zentralprojektion ist
die Parallelprojektion. Thre Bilder sind weniger realistisch. Dagegen ist sie parallelen-
treu. Unter einer bestimmten Lage von Objekt- und Bildebene belieben Winkel und
Strecken sogar erhalten. Die Konstruktionsmethoden, welche sich von der Parallelpro-
jektion ableiten lassen, werden daher primér beim technischen Zeichnen verwendet.
Dieses Kapitel stellt nach der Definition der Zentralprojektion ihre Invarianten vor.
Danach wird die Parallelprojektion als Sonderfall vorgestellt. Der letzte Teil zeigt
auf, wie sich die Invarianten bei der Abbildung ebener Figuren &ndern, wenn ne-
ben der Projektion auch die rdumliche Lage zwischen Objekt- und Bildebene ver-
andert wird. Hierbei konnen vier verschiedene Abbildungen wiedergefunden werden:
die Kongruenz- und Ahnlichkeitsabbildung, welche auch im Mathematikunterricht
behandelt werden, sowie die perspektive Affinitdt und Perspektivitit.
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3.1 Die Zentralprojektion
Wir definieren die Zentralprojektion wie folgt:

Definition 3.1.1

Die Zentralprojektion ist eine punktweise, inzidenztreue Abbildung des Raumes
auf eine Ebene, der Bildebene, welche im Folgenden mit I bezeichnet wird. Ein
Punkt P wird dabei durch folgende Konstruktion eindeutig einem Punkt P’ in
der Bildebene zugeordnet [38, S. 3|:

i) Es wird ein fester Punkt Z im Raum auferhalb der Bildebene festgelegt.

Dieser wird Projektionszentrum genannt.

ii) Durch einen von Z verschiedenen Punkt P wird eine Gerade gelegt, welche

ebenfalls durch Z verlduft. Dies ist die Projektionsgerade g, von P.

iii) Der Schnittpunkt der Projektionsgerade mit der Bildebene II ergibt den
Bildpunkt P’

Die Zentralprojektion wird mit ¢, gekennzeichnet.

Die Abb. 3.1.1 zeigt ein Beispiel. Hier

werden zwel verschiedene Punkte P und

Q@ sowie die Verbindungsgerade P(Q) auf 9o 9p
die Bildebene II projiziert. Nach De-
finition 2.4.1 der geometrischen Abbil- i 7
dung (S. 35) muss die Zuordnung zwei
Bedingungen erfiillen: jeder Punkt aus @
dem Definitionsbereich besitzt ein Bild P

-7 Q - @z(Q)

und dieses ist eindeutig. Wir priifen da- -
her nun verschiedene Falle und beginnen
mit der Eindeutigkeit des Bildpunktes.

Abb. 3.1.1 Die Zentralprojektion mit
Zentrum 7

Der Schnittpunkt der Projektionsgeraden mit der Bildebene ist eindeutig, sofern die
Gerade nicht in jener liegt. Dieser Fall ist ausgeschlossen, da nach Definition das
Projektionszentrum aufserhalb der Bildebene liegen muss. Im anderen Fall kann die
Projektionsgerade parallel zur Bildebene sein. Dann ist der Schnittpunkt ein Fern-

punkt. Da wir diese Fernelemente in unserer Betrachtung des euklidischen Raumes
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berticksichtigen, existiert auch in diesem Fall ein Bildpunkt. Er lésst sich allerdings
nicht zeichnen. Dies betrifft alle Punkte, welche in der parallelen Ebene zur Bildebene
durch Z liegen. Diese Ebene wird daher auch als Verschwindungsebene bezeichnet.
Insgesamt ist die Zuordnung eindeutig.

Wir kommen nun zur Existenz. Nach Definition muss jeder Punkt im Raum ein Bild-
punkt besitzen. Das Projektionszentrum Z kann daher nicht abgebildet werden, da
keine Projektionsgerade existiert. Wir miissen daher diesen Punkt aus dem Defini-
tionsbereich ausschliefsen. Punkte der Bildebene werden auf sich selbst abgebildet.
Die Projektionsgeraden von Fernpunkten verlaufen durch Z und sind parallel zu der
Richtung ausgerichtet, die der Fernpunkt repréasentiert. Fernpunkte lassen sich somit

auch auf die Bildebene projizieren.

Die Zentralprojektion weist folgende Eigenschaften auf:

i) Sind die Punkte P, @, Z kollinear, so besitzen P und @ denselben Projektionss-
trahl und werden demnach auf denselben Bildpunkt projiziert. Die Projektion

ist daher nicht injektiv und somit auch nicht umkehrbar.
ii) Die Projektion ist surjektiv.

iii) Liegen P und @ auf einer Geraden g, welche nicht das Projektionszentrum
enthéalt, so werden die Bildpunkte P’ und @' auf die Bildgerade ¢’ projiziert.
Die Abbildung ist in diesem Fall geradentreu.

In dem folgendem Foto eines Flures werden einige Eigenschaften der Zentralprojek-
tion exemplarisch dargestellt, denn ein Fotoapparat oder das menschliche Auge bil-
den die Wirklichkeit im Sinne der Zentralprojektion ab. D.h. ein Foto ist das Resultat

einer zentralprojektiven Abbildung.
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Abb. 3.1.2 Fotografien von langen Fluren eignen sich besonders gut, um Eigenschaf-
ten der Zentralprojektion zu untersuchen.

1) Die Fliesen des Fubodens, die Sdulen sowie die horizontalen Kanten der Fens-
ter verlaufen in Wirklichkeit parallel. Auf dem Foto werden parallele Geraden,
bis auf die Ausnahme in 2) und 3), auf sich schneidenden Geraden abgebildet.

Sie schneiden sich in einem gemeinsamen Punkt, dem Fluchtpunkt.

2) Geraden, welche parallel zur Bildebene verlaufen, werden auf ebenfalls paral-
lele Geraden abgebildet. Die Sdulen haben in Wirklichkeit denselben Abstand
zueinander. In der Abbildung verkiirzt sich dieser in Richtung des Fluchtpunk-

tes.

3) Vertikale Geraden, welche parallel zur Bildebene verlaufen, werden auf vertikale
Geraden abgebildet. Da Decke und Boden denselben Abstand haben, sind die
Séulen in Wirklichkeit gleich hoch. In der Abbildung verkleinert sich dieser in
Richtung des Fluchtpunktes.

Die Punkte 2) und 3) lieken sich noch zusammenfassen: Geraden, welche in einer
Ebene parallel zur Bildebene enthalten sind, werden auf parallele Geraden abgebildet.
Selbiges gilt somit auch fiir Ebenen. Nach dem anschaulichen Beispiel kommen wir

nun zu einigen Eigenschaften bzw. Invarianten der Zentralprojektion.
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Satz 3.1.2

Sei @, eine Zentralprojektion mit Zentrum Z auf die Ebene II und g ¢ II
eine Gerade, wobei Z ¢ g. Dann schneiden sich Gerade und Bildgerade in dem
Fixpunkt S.

Beweis.
Der Schnittpunkt S existiert, da g und ¢,(g)

in einer Ebene liegen, welche von ¢ und Z auf-
gespannt wird. Diese Projektionsebene ist in
der nebenstehenden Abbildung blau markiert.
Der Schnitt dieser Ebene mit der Bildebene IT
entspricht der Bildgeraden ¢,(g).

gNe:(9) ={St= S€p.(g) = Sell

Nach Definition der Projektionsstrahlen gilt

auch: S € g,. Also ist p,(5) = S.
O

Falls g parallel zur Bildebene liegt, so schneiden sich g und ¢’ in einem Fernpunkt

S*. Da dieser ein Fixpunkt ist, weisen g und ¢’ dieselbe Richtung auf, d.h. g || ¢

Wie bereits erwahnt, lésst sich beobachten, dass parallele Geraden in der Regel auf
sich schneidende Geraden projiziert werden, d.h. g || h, aber ¢,(g) }k ¢.(h). Die
Zentralprojektion ist somit nicht parallelentreu. Der Schnittpunkt der Bilder der
Geraden des Parallelenbiischels wird Fluchtpunkt genannt und ist dadurch hervor-
gehoben, dass dieser das Bild des Fernpunktes ist, welcher die Richtung der Geraden
g und h symbolisiert [33, S. 227]. Wegen der Inzidenztreue gilt nun Folgendes:

Satz 3.1.3

Der Fluchtpunkt F' ist das Bild eines Fernpunktes F™* unter einer Zentralpro-
jektion @,.

Beweis.
Seien g und h zwei parallele Geraden, welche sich in F™* schneiden. Der Schnittpunkt

der Bildgeraden sei F'. Dann gilt:
gllh = FreghF eh = @(F") € p.(9) Np=(F") € pz(h) = @z(F") = F

O
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Konstruktiv lédsst sich der Fluchtpunkt eines Parallelbiischels mit Fernpunkt G* und
einer Geraden g wie folgt bestimmen:

Um das Bild des Fernpunktes zu erhalten, muss nach der Konstruktionsvorschrift G*
mit Z verbunden werden. Wir miissen also die Parallele zu g durch Z zeichnen, um
die Projektionsgerade von G* zu erhalten. Ihr Schnitt mit der Bildebene entspricht
dem Fluchtpunkt F' mit ¢,(G*) = F. Weiterhin ist G* € g, sodass aufgrund der

Inzidenztreue auch F' € ¢’ gelten muss.

Der folgende Abschnitt stellt die Invarianten der Projektion vor. Das Projektionszen-
trum kann sowohl ein gewohnlicher Punkt als auch ein Fernpunkt sein. Im ersten Fall
handelt es sich um die Zentralprojektion, im zweiten Fall um die Parallelprojektion,
da alle Projektionsstrahlen einen gemeinsamen Fernpunkt besitzen und demnach

paarweise parallel sind.

3.1.1 Die Invarianten der Zentralprojektion

Die Zentralprojektion enthélt wenige Invarianten, u.a. die Doppelverhéaltnistreue.
Dazu folgender Beweis [38, S. 6].

Wir wollen zeigen, dass
DV(A,B,C,D)=DV(A,B',C' D)

gilt. Da die Punkte nach Definition des
Doppelverhéltnisses kollinear sein miis-
sen, seien diese Teil einer Geraden g,
welche iiber das Projektionszentrum 2
auf die Bildebene projiziert wird. Die

Geraden ¢ und ¢.(g) = ¢ spannen

die Projektionsebene auf und ihr Schnitt
mit der Bildebene ist das Bild von g,
wie die nebenstehende Abbildung zeigt.
S ist der Schnittpunkt der Geraden mit der Bildgeraden und F' der Fluchtpunkt
von g. Der Beweis zur Doppelverhéltnistreue wird in der blauen Projektionsebene
gefiihrt, welche Abb. 3.1.3 mit den vier Punkten A, B, C, D auf g zeigt. Wir werden
nun unter Verwendung der Strahlensétze zeigen, dass das Doppelverhéltnis dieser

vier beliebigen Punkte auf g mit dem der Bildpunkte auf ¢’ iibereinstimmt.
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>
o)

B
A D C B\g’ g

Abb. 3.1.3 Beweisfigur zur Doppelverhéltnistreue der Zentralprojektion

Beweis.

Nach vorheriger Erklarung gilt:

ZF | g

Die Bildpunkte A’ bis D’ ergeben sich durch den Schnitt der Verbindungsgeraden der
Urbildpunkte und Z mit ¢’. Wir erganzen zusétzlich die Gerade g mit der Bedingung:

C'egund gl g.

In Abb. 3.1.3 betrachteten wir nun mehrere Strahlensatzfiguren, welche die drei par-
allelen Geraden g, ¢ und § enthalten. Zur besseren Unterscheidung werden jeweils
das Streckzentrum und die beiden #ukeren Strahlen genannt. AB ist dabei der Ab-
stand von A und B.

(1) Z mit ZA und ZB:

AC zC BC  AC AcC

ic’ 20 Bo | BC o

(2) A’ mit ZA und FC’:

AT ACT . A
AC_ A or_ AY T
AF ZF A'C!
(3) B’ mit B'F und B'Z:
BIAT  pev B
B'c :@:ﬁz BC B'F

BF ZF BC
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Aus (2) und (3) folgt:

Yall DY A AT pRIR
AC TF — BC BF - zilC :AC _BF
A B'C’ Bcr  B'C AR

Mit (1) erhalten wir:

AC AT BF
BC BC AT

Analog werden die Schritte (1) bis (3) mit D durchgefiihrt, indem wir eine weitere

parallele Hilfsgerade durch D’ legen. Wir erhalten:

AD A'D B'F
BD BD AF

Mit beiden Gleichungen ldsst sich nun folgern, dass das Doppelverhéltnis erhalten
bleibt:
AC AD AT AD

DV(A,B,C,D) = — : == = . =DV (A, B,C',D")
BC BD B'C’ B'D

0

Damit haben wir gezeigt, dass die Zentralprojektion doppelverhéltnistreu ist. Sie ist
allerdings nicht teilverhéltnistreu. Ein gutes Gegenbeispiel ist dabei die Projektion
des Mittelpunktes einer Quaderfliche wie in Abbildung 4.2.2, S. 95. Nach Satz 2.4.4,

S. 38, kann die Projektion somit auch nicht streckenverhéltnis- oder ldngentreu sein.
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3.1.2 Die Invarianten der Parallelprojektion

9q
9p

Abb. 3.1.4 Die Parallelprojektion ist ein Sonderfall, wenn das Projektionszentrum
Z* ein Fernpunkt ist.

Wir kommen zu einem Sonderfall der Zentralprojektion. Ist das Projektionszentrum
ein Fernpunkt, so sind die Projektionsstrahlen nicht mehr kopunktal, sondern paral-
lel. Dies bewirkt u.a., dass einige Invarianten hinzukommen, welche in den folgenden
Sétzen genannt und bewiesen werden. Um die Parallelprojektion von der Zentralpro-

jektion zu unterscheiden, wird jene mit ¢, gekennzeichnet.

Satz 3.1.4

Sind die Geraden g und h parallel, aber selbst keine Projektionsgeraden, dann
sind auch ihre Bilder ¢,(g) und ¢,(h) parallel zueinander.

Die Parallelprojektion ist somit parallelentreu.

Beweis.

Hierzu konnen verschiedene Betrachtungsweisen herangezogen werden. Die Projek-
tionsebenen sind jeweils definiert durch die Ursprungsgerade und dem Projektions-
zentrum. Da dieses ein Fernpunkt ist, sind die Projektionsebenen parallel. Dann sind
auch ihre Schnittgeraden mit der Bildebene parallel zueinander. Ware dies nicht der
Fall, so wiirden sich die Projektionsebenen schneiden.

Die alternative Argumentation beruht darauf, dass sich die Bilder paralleler Geraden
im Fluchtpunkt schneiden. Um diesen zu konstruieren, wurde bei der Zentralprojek-
tion eine parallele Gerade durch das Zentrum gezeichnet und ihr Schnitt mit der

Bildebene ergab den gesuchten Schnittpunkt der Bildgeraden. Es wurde also der
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Fernpunkt der parallelen Geraden mit dem Projektionszentrum verbunden. Uber-
tragen auf die Parallelprojektion miissen wir die Verbindungsgerade von S* und Z*
bilden. Diese ist eine Ferngerade. Da alle Punkte einer Ferngeraden Fernpunkte sind,
muss auch der Schnittpunkt mit der Bildebene ein Fernpunkt sein. Die Bildgeraden
sind demnach parallel.

O

Abb. 3.1.5 zeigt zwei Beispiele fiir die Projektion paralleler Geraden mit den entspre-
chenden Projektionsebenen. Bei der Zentralprojektion haben die Projektionsebenen
Z als gemeinsamen Punkt, d.h. sie miissen sich schneiden. Wird eine dritte Gerade
parallel zu den anderen hinzugefiigt, so ergeben die Projektionsebenen ein Ebenenbii-
schel mit der Verbindungsgerade ZF als Tragergerade (d.h. alle Ebenen des Biischels

schneiden sich in der Triagergeraden).

Abb. 3.1.5 Die Parallelprojektion (links) ist parallelentreu, die Zentralprojektion
(rechts) dagegen nicht.
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Satz 3.1.5

Gegeben seien drei Punkte A, B, C einer nichtprojizierenden Geraden. Dann ist
das Teilverhdltnis TV (A, B, C) gleich dem Teilverhéltnis TV (A’, B',C") ihrer
Bilder [31, S. 7] [38, S. 7].

Die Parallelprojektion ist somit teilverhdltnistreu.

Beweis.
Da die Projektionsstrahlen parallel sind, lédsst sich der erste Strahlensatz anwenden.

Daraus folgt direkt die Teilverhaltnistreue.

AC TS BC
AC’ C'S B
= TV(A,B,C) = 4C : BC = AC" : B'C’

=TV (A, B, C"

Abb. 3.1.6 Beweisfigur zur Teilverhalt-
nistreue der Parallelprojektion

0

Die Parallelprojektion ist nach dem Satz parallelen- und teilverhéltnistreu und folg-
lich nach Satz 2.4.4, S. 38, ebenso doppelverhéltnistreu. Aufgrund der Teilverhélt-
nistreue werden insbesondere Mittelpunkte auf Mittelpunkte abgebildet (vgl. Abb.
4.2.2, S. 95).
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3.2 Vier verschiedene Arten einer Projektion

Wir haben im vorherigen Abschnitt gezeigt, dass die Parallelprojektion zusétzliche
Invarianten gegeniiber der Zentralprojektion aufweist. Wird zusétzlich die Projektion
auf eine Ebene, welche nicht das Projektionszentrum enthélt, beschrénkt, so wird die
Abbildung bijektiv. Neben der Punkt- und Inzidenztreue sind weitere Invarianten zu
finden [12] |38, S. 10] |31, S. 3 - 4], wie die folgende Abb. 3.2.1 zeigt.

Zentralprojektion doppelverhéltnistreu

Objektebene = Perspektivitat
nicht parallel
zur Bildebene Parallelprojektion parallelentreu

teilverhéltnistreu

= perspektive Affinitdt

Abb. 3.2.1 Die Invarianten verschiedener Fille der Projektion

Die Zentralprojektion mit einer nicht parallelen Objektebene hat von den in der Ab-
bildung genannten Invarianten nur das Doppelverhéltnis. Solche Abbildungen werden
Perspektivitdt genannt. Sind die Projektionsstrahlen parallel zueinander, so kommt
zu der Doppelverhaltnistreue auch Parallelen- und Teilverhaltnistreue hinzu. Die Ab-
bildung gehort dann zur Gruppe der perspektiven Affinitdten. Weitere Invarianten

kommen hinzu, wenn die Objektebene parallel zur Bildebene ausgerichtet wird.

In den nachfolgenden Abbildungen 3.2.2 bis 3.2.5 sind Beispiele fiir die vier ge-
nannten Fille gegeben. Dreieck bzw. Rechteck liegen dabei in der entsprechenden
Objektebene.
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Im ersten Beispiel ist die ebene Figur nicht
parallel zur Bildebene ausgerichtet und das
Projektionszentrum ein gewohnlicher Punkt.
Hier bleibt das Doppelverhéltnis die einzi-

ge vorgestellte Invariante. Am Rechteck ist

deutlich erkennbar, dass die rechten Win-
kel im Bild nicht erhalten bleiben. Auch
die parallelen Geraden AD und BC wer-

den auf sich schneidende Geraden abgebil-

o7
. . . B
det, auchnwenn die Blldstrec.ken verlangert IbC
werden miissen, um den Schnittpunkt zu er- D
kennen. Es gibt allerdings auch Ausnahmen,

denn die parallelen Strecken AB und C'D

werden tatsdchlich auf ein paralleles Gera-

denpaar projiziert. Dies liegt daran, dass die-

se Strecken parallel zur Bildebene ausgerich-

tet sind. Wir kommen daher zum néchsten

Fall, indem die ebenen Figuren parallel zur Abb. 3.2.2 Zentralprojektion mit
Bildebene zentralprojektiv abgebildet wer- nicht paralleler Objektebene

den.

Es entsteht eine Pyramide mit dem Pro-
jektionszentrum Z als Spitze und der Fi-
gur als Grundebene. Aufgrund der paralle-
len Ausrichtung der Ebenen bleiben die Win-
kel erhalten und iiber den Strahlensatz lésst

sich die Streckenverhéltnistreue begriinden.

Je nachdem, ob die Figur vor oder hinter
der Bildebene ist, entspricht die Projektion
einer Vergroferung oder Verkleinerung. Es
handelt sich daher um eine zentrische Stre- 7

ckung mit Zentrum Z.

Abb. 3.2.3 Zentralprojektion mit
paralleler Objektebene
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In den letzten beiden Abbildungen ist das
Projektionszentrum ein Fernpunkt, d.h. wir
betrachten eine Parallelprojektion mit Rich-
tung Z*. Das Rechteck senkrecht zur Bilde-
bene wird dabei auf ein Parallelogramm ab-
gebildet, d.h. die Projektion ist u.a. paralle-

lentreu.

Im letzten Beispiel sind Dreieck und Recht-
eck parallel zur Bildebene ausgerichtet. Die
Abbildung wird nun auch langentreu, sodass
der Korper statt einer Pyramide ein Pris-
ma bildet. Die Projektion wird dabei zu ei-
ner Verschiebung entlang der Projektions-
richtung [31, S. 8].

Diese Beispiele sollen zeigen, dass die Pro-
jektion sich mit weiteren Abbildungen, wel-
che Teil des Lehrplans sind (vgl. Abb. 6.3.1,
S. 237), vernetzen lassen, sodass die Schiiler-
innen und Schiiler die Moglichkeit haben,
diese selbst zu entdecken. Experimentell las-
sen sich solche Abbildungen im Unterricht
in Form von Schattenbildern auf der Wand
leicht nachstellen. Dabei kénnen die ebenen
Figuren aus Pappe ausgeschnitten werden.
Der Schattenwurf wird dann mithilfe einer
Lampe als punktférmige Lichtquelle erzeugt
bzw. fiir die Parallelprojektion mithilfe der
Sonne [31, S. 3 bzw. §|.

Z*

Abb. 3.2.4 Parallelprojektion  mit
nicht paralleler Objektebene

. Z
.
.
.
.
.
.
.
. e
. e
,
.
4 .

Z*

Abb. 3.2.5 Parallelprojektion ~ mit
paralleler Objektebene

Wir wollen in einem Kapitel zur Zentralprojektion eine Konstruktionsmethoden vor-

stellen, welche sog. Risse zur eindeutigen Darstellung von Objektion verwendet. Diese

entstehen durch eine Dreitafelprojektion. Hierbei wird durch die orthogonale Paral-

lelprojektion ein Objekt auf drei verschiedene Bildebenen abgebildet. Das Ergebnis

sind drei Ansichten eines Korpers, welche als Risse bezeichnet werden.
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3.3 Dreitafelprojektion

Bei der Dreitafelprojektion handelt es

sich um eine orthogonale Parallelprojek-
tion, d.h. die Projektionsstrahlen sind
parallel und stehen senkrecht zur Bil-

debene. Die drei Tafeln schneiden sich

dhnlich einer Raumecke ebenfalls ortho- !

gonal [2]. In Abb. 3.3.1 stellen wir ein

Haus in diese Raumecke und fiihren je-

weils eine senkrechte Parallelprojektion

auf die Wande aus. Das Haus ist zu- pp), 3.3.1 Das Haus in der Raumecke
sammengesetzt aus einem Quader und

einem Prisma mit dreieckiger Grundfiéche. Damit die Risse unterschiedliche werden
bzw. weniger Sonderfélle auftreten, wurde das Haus gedreht, sodass keine der Sei-
tenwénde parallel zu den Bildebenen liegt. Zur Reduktion von Symmetrien liegt der
Dachfirst bzgl. der Mitte versetzt.

Die Bilder der Projektion werden als Grund-, Seiten- und Aufriss bezeichnet. Ausge-
hend von diesen Rissen lassen sich andere Projektionen konstruieren, welche in den

Abschnitten 4.3 Konstruktionsmethoden und 5.2 Azonometrie vorgestellt werden.

Die Dreitafelprojektion ist nicht nur ein Hilfsmittel zur Konstruktion zentralpro-
jektiver Bilder, sondern dient auch der eindeutigen Darstellung eines Objektes, da
die Projektion im Allgemeinen nicht bijektiv ist. Zwei Punkte auf demselben Pro-
jektionsstrahl werden auf denselben Bildpunkt projiziert. Die Projektion ist somit
nicht umkehrbar, d.h. aus einem Foto lasst sich ein Objekt nicht exakt im Raum re-
konstruieren. Es sei denn, es gibt mehrere Fotos aus verschiedenen Richtungen. Die
Dreitafelprojektion zeigt ein Objekt in drei unterschiedlichen Ansichten. Anders als
eine Fotografie wird hier eine Parallelprojektion verwendet. Sie weist mehr Invarian-
ten auf, selbst wenn die Objektebene nicht parallel zur Bildebene liegt. Es bleiben
somit mehr Eigenschaften eines Objektes erhalten. Fallen die Projektionsstrahlen
jeweils senkrecht auf die Ebenen, so bleiben auch rechte Winkel erhalten, sofern ein
Schenkel parallel zur Bildebene liegt [5, S. 12|, wie die folgende Abbildung zeigt.
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Abb. 3.3.2 Sonderfall der orthogonalen Parallelprojektion, welche den rechten Win-
kel unverdndert l&sst.

Wir wollen nun anhand eines Beispiels zeigen, wie systematisch unter Verwendung
der Invarianten in Abb. 3.2.1, S. 56, Grund-, Seiten- und Aufriss des Hauses in der

Ebene konstruiert werden konnen.

Aufgabenbeispiel 3.3.1

Ein Haus bestehe aus einem Quader mit dem Mafen 6 x 4 x 2 LE und einem
Prisma mit der Hohe 2 LE. Der Lotfufipunkt der Spitze teile die Kante des Qua-
ders im Verhéltnis 1 : 3. Eine Seite des Quaders ist im Grundriss vorgegeben.

Zur Vereinfachung entspricht 1 LE = 1cm.

Aufriss

4
=

Seitenriss

Grundriss
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Losung:

Fiir den Grundriss werden die kurzen
Seiten von 4 LE eingezeichnet, sodass sich
ein Rechteck ergibt. Alle Kanten, welche
orthogonal zur Bildebene sind, fallen
mit den Projektionsgeraden zusammen
und werden zu einem Punkt. Aufgrund
der Teilverhéltnistreue liegen die oberen
Ecken der Dachkante 3 LE von den Ecken

entfernt.

Fiir den Seitenriss werden ausgehend von
den Ecken des Rechtecks senkrecht zur
Schnittgerade von Seiten- und Grundriss
die Projektionsstrahlen skizziert. Da das
Haus auf dem Grundriss steht, entspricht
der Schnittpunkt der Projektionsstrah-
len mit der Schnittgeraden den unteren
Eckpunkten des Hauses.

Die Hohe des Quaders betrigt 2 LE
und wird unverzerrt dargestellt, da diese
Kanten parallel zum Seitenriss liegen

(Kongruenzabbildung).

Seitenriss

Aufriss

Grundriss

Fiir das Dach werden die Projektionsstrahlen ausgehend von den Spitzen im Grund-

riss gezeichnet. Dabei ist das Dach insgesamt 4 LE {iber dem Boden. Zur besseren

Anschauung werden verdeckte Kanten gestrichelt dargestellt.

Die obere Fliche des Quaders schneidet die seitliche Bildebene orthogonal, d.h. sie

ist parallel zu den Projektionsstrahlen ausgerichtet. Genauso, wie Kanten, die mit

den Projektionsstrahlen zusammenfallen, zu Punkten werden, so werden Ebenen in

vergleichbarer Lage auf Geraden projiziert. Weiterhin erhalten wir als Resultat, dass

Kanten, welche nicht parallel zur Bildebene liegen, verzerrt abgebildet werden. Der

Teilungspunkt der Dachspitze liegt dagegen weiter auf 1/4 der unteren Kante, was

wiederum ein Beispiel fiir die Teilverhéltnistreue ist.

Auf dieselbe Weise wird auch der Aufriss ausgehend vom Grundriss konstruiert.
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Die Projektionsstrahlen werden nun

ausgehend von den Eckpunkte des Qua- AN

ders im Grundriss senkrecht nach oben

gezeichnet. Thr Schnittpunkt mit der

unteren Kante der Aufrissebene ist der

Lotfuftpunkt der senkrechten Kanten des

Quaders. Da diese wieder parallel zur Bil-
debene sind, werden die oberen Ecken des

Quaders 2 LE dariiber projiziert. Genauso -

wird mit dem Dach verfahren.

Die Léngen im Seitenriss kénnen auch mithilfe einer Winkelhalbierenden auf den
Aufriss iibertragen werden, wie es in Abb. 3.3.3 angedeutet ist. Die Abbildung fasst

noch einmal alle Besonderheiten der Risse aufgrund der Invarianten zusammen.

e Geraden parallel zur Bildebene .
werden auf kongruente Geraden
projiziert. |

e Parallelprojektion ist immer
parallelentreu.

Lotfupunkt der Dachspitze teilt
die Kante ebenfalls im Verhéaltnis

1 : 3, auch wenn die Seiten selbst -

verzerrt projiziert werden. “— ¢

Abb. 3.3.3 Dreitafelprojektion des Hauses in Abb. 3.3.1

Aufgrund der genannten Invarianten ist die Konstruktion von Bildern einer Par-
allelprojektion einfacher als jene einer Zentralprojektion. Gerade der Wegfall der
Teilungsverhéltnisstreue erfordert einige Tricks, um z.B. ein regelméafiges Muster,
wie einen gefliesten Boden, zu konstruieren. Hier wird stattdessen die Inzidenztreue
zur Hilfe genommen. Bspw. lasst sich der Mittelpunkt einer rechteckigen Fléache iiber

den Schnittpunkt der Diagonalen finden. Gleiches gilt dann auch in der Projektion.
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3.3.1 Aufgabenbeispiele

Wir wollen zwei verschiedene Aufgabentypen vorstellen. Zum einen geht es um die
Lage eines Objektes im Raum, welche iiber die gegebenen Risse rekonstruiert wird.
Zum anderen um die Rekonstruktion von Langen aus den Rissen, wenn die abgebil-
dete Strecke nicht parallel zur Bildebene ist.

Bei einer Lageaufgabe geht es darum, sich ein Objekt im Raum vorzustellen, wenn
nur der Grund- und Aufriss bekannt ist. In dem folgenden Aufgabenbeispiel 3.3.2
sind drei Punkte in den entsprechenden Rissen gegeben. Das Dreieck zeigt dabei mit
der Ecke B in Richtung der Bildebene, wie dem Grundriss entnommen werden kann.
Nach dem Aufriss ist die Spitze B gekippt nach unten. Die Schiilerinnen und Schiiler
sollen nun einen Punkt D in den Rissen ergénzen, sodass das resultierende Viereck
ABCD eben ist. Da drei Punkte genau eine Ebene festlegen, kann der Punkt D nicht
beliebig gewéhlt werden. Im zweiten Teil soll das Viereck ein Parallelogramm werden.
Da die Parallelprojektion aber parallelentreu ist, kann Aufgabe b) sogar einfacher
als der erste Teil gelost werden. Die Reihenfolge der beiden Teilaufgaben orientiert

sich nicht am Schwierigkeitsgrad, sondern an dem Lésungsweg.
Aufgabenbeispiel 3.3.2

Das Bild zeigt den Grund- und Aufriss dreier Punkte A, B und C' im Raum.

a) Ergianze im Grund- und Aufriss D’ und D” derart, dass ABC'D ein ebenes

Viereck im Raum ergibt.

b) Andere das obige Verfahren derart ab, sodass ABC'D zu einem Parallelo-

gramm wird.

Aufriss

A// C//

NI

B//

B/

ST

A/

Grundriss
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Fir die Losung werden die Diagona-
len eines Vierecks verwendet. Im Aufriss
verbinden wir A” mit C” und oberhalb
der Strecke setzten wir D" derart, dass
das Viereck A” B”C" D" konvex ist. Nun
gilt es, den entsprechenden Punkt D’ im
Grundriss zu finden. Wir féllen das Lot
auf die Schnittgerade der Grund- und
Aufrissebene, der sog. Risskante, durch
D”. Diese wird als Ordner bezeichnet,
da sie die Punkte in den entsprechenden
Rissen einander zuordnet.

Nun stellt sich die Frage, wo auf dieser
Senkrechten sich der Punkt D’ befinden
muss, damit im Raum ein ebenes Vier-
eck entstehen kann. Wir verbinden dazu
B” mit D" und markieren den Schnitt-

punkt M"” der Diagonalen. Auch hier

Aufriss

Grundriss

Abb. 3.3.4 Losung des
spiels 3.3.2 a)

Aufgabenbei-

zeichnen wird den entsprechenden Ordner ein. Diese schneidet die Strecke A’C’ in

M’ sodass wir die Diagonale durch B’ im Grundriss zeichnen konnen. Diese schneidet

den Ordner von D" im gesuchten Punkt D’.

Teil b) lasst sich auf dieselbe Weise 16-
sen, wobei hier M" als Mittelpunkt der
Strecke A”C" gewihlt werden muss, da
sich die Diagonalen in einem Paralle-
logramm gegenseitig halbieren. Da die
Parallelprojektion teilverhaltnistreu ist
und M der Mittelpunkt des Parallelo-
grammes im Raum ist, miissen auch M’
und M"” Mittelpunkte der Diagonalen
sein. Diese Invariante wird nun zur Lo-
sung des Problems verwendet, d.h. der
Abstand zwischen B” und M” wird auf
dem Strahl B”M" abgetragen, um D"
zu erhalten. Dann wird D’ analog zu a)
ermittelt.

Eine andere Moglichkeit ist die Verwen-
dung der Parallelentreue. Die Seite AB
des Parallelogrammes im Raum ist par-

allel zu C'D. Aufgrund der genannten In-

DN

A//

Aufriss

C//

Grundriss

Abb. 3.3.5 Losung des
spiels 3.3.2 b)

Aufgabenbei-
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variante gilt auch A”B” || C" D" sowie B"C" || A”D". Wir ziehen also die entspre-
chenden Parallelen durch A” und C”, welche sich in D” schneiden werden. Dann
kann D’ wieder iiber den Ordner und den Strahl B’ M’ gefunden werden oder eben-
falls iiber den Schnittpunkt der Parallelen durch A’ und C'.

Anhand des Aufgabenbeispiels lassen
sich weitere Varianten entwickeln. So
existiert bspw. die Frage, ob das Par-
allelogramm ABC D sogar ein Rechteck
sein kann. Hier liegt der Fokus auf den
Winkeln. Nach Abb. 3.2.1, S. 56 gilt
im Allgemeinen nicht die Winkeltreue,
d.h. es ist nicht auszuschliefsen, dass das
Parallelogramm ABCD in der vorheri-
gen Aufgabe kein Rechteck ist. Schiiler-
innen und Schiiler kénnen die entspre-
chenden Risse in GeoGebra nachzeich-
nen und dann das Parallelogramm im
Raum rekonstruieren. Hierbei ist es hilf-
reich, den Ursprung des Koordinaten-
systems links der Risskante zu wéahlen.
Dann hat P”(z,y) im Aufriss die Ko-
ordinaten (0,x,y) in der yz-Ebene und
P'(z,y) entsprechend (—z,y,0) in der
xy-Ebene. Abb. 3.3.6 zeigt die {ibertra-
genen Risse.

Da es sich bei der Drei- bzw. Zweitafel-

projektion um eine senkrechte Parallel-

projektion handelt, kann das urspriingli- -t
che Parallelogramm im Raum durch den Abb. 3.3.6 Die Risse aus Abb. 3.3.5
Schnittpunkt der entsprechenden Nor- libertragen in GeoGebra

malen auf die Rissebenen rekonstruiert
werden. Es stellt sich heraus, dass es sich hierbei weder um ein Rechteck noch um

eine Raute handelt, denn es gibt weder rechte Winkel noch sind alle Seiten gleich lang.

Falls sich die Schiilerinnen und Schiiler fragen, ob der Winkel im Riss auch recht-
winklig sein muss, kénnen sie zur Untersuchung dieser Frage die Seite B”C" parallel
zur Seite A”D" verschieben, bis sich im blauen Parallelogramm ein rechter Winkel
bildet, wie Abb. 3.3.7 zeigt. Es stellt sich heraus, dass aufgrund der Schraglage des

blauen Rechtecks die Risse selbst nicht rechtwinklig sein miissen, denn die Paral-
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e

Abb. 3.3.7 Risse eines Rechtecks, welches durch Paralleverschiebung aus einem Par-
allelogramm entstanden ist.

lelprojektion wird erst winkeltreu, wenn Objekt- und Bildebene parallel zueinander
sind. Eine Ausnahme gilt bei rechten Winkeln. Diese werden, wie das Beispiel in
Abb. 3.3.2 zeigte, auf rechte Winkel projiziert, wenn einer der Schenkel parallel zur
Bildebene liegt. Aus den Rissen kénnen wir entnehmen, dass dies nicht der Fall ist,

da keine Seite parallel zu den Risskanten liegt.

Stellen wir uns nun vor, wir drehen das blaue Rechteck derart, dass es zur Grundris-
sebene parallel wird, so wird die Parallelprojektion zur Kongruenzabbildung, sodass
sich sowohl Winkel als auch Léngen im Grundriss ablesen lassen. Wir kommen zum
zweiten Aufgabentyp, in welcher wir durch geeignete Drehungen die wahren Make
von Objekten iiber ihre Risse ermitteln konnen. Wie diese Paralleldrehung durchge-

fiihrt wird, soll anhand des folgenden Konstruktionsbeispiels gezeigt werden.
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Konstruktionsbeispiel 3.3.1

Gegeben ist der Grund- und Aufriss einer Strecke AB. Es soll nun durch Dre-

hung von AB im Raum die wahre Linge der Strecke ermittelt werden.

Aufriss

A//

A/
\ B/

Grundriss

Die Strecke kann im Raum derart gedreht werden, dass sie parallel zu einer der Ris-
sebenen wird. Wir werden sie im folgenden parallel zum Grundriss drehen. Nach dem
Aufriss liegt der Punkt A tiefer als B. Durch diesen soll die Rotationsachse r gehen,
welche zudem parallel zum Grundriss sein soll. Dann ist A ein Fixpunkt, sodass sich
auch A’ nach der Drehung nicht dndern wird. Dies sind die Voraussetzungen fiir fol-

gende Konstruktionsschritte:

. Ziehe Parallele durch A” zur Risskante. = r’
2. Félle Lot durch B” auf Risskante und markiere den Schnitt- = S”
punkt mit 7”.
3. Zeichne Senkrechte durch B’ zu r'.
Trage den Abstand d(B”,S”) auf dem Lot aus Schritt 3 ab. = B
5. Die Strecke A’B, ist kongruent zur Strecke AB im Raum.
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Nun stellt sich die Frage, warum die
o.g. Konstruktion funktioniert und wel-
che Invarianten der orthogonalen Paral-
lelprojektion verwendet werden.

Abb. 3.3.9 zeigt die Risse der Strecke
AB sowie ihre Drehung im Raum. Nach
Voraussetzung verlauft die Rotations-
achse r durch A und ist parallel zu A’B’.
Somit ist die Rotationsachse auch paral-
lel zur Grundrissebene, sodass der Auf-
riss 7" parallel zur Risskante wird. Dies
erkldrt den ersten Konstruktionsschritt.
Eine Drehung im Raum erfolgt auf ei-
nem Kreis, welcher in einer Ebene ortho-
gonal zur Drehachse liegt. Wir zeichnen
daher in Schritt 3 eine Senkrechte zu r’
durch B’. Es fehlt noch der Radius des

Kreises. Fallen wir das Lot durch B auf

Aufriss

A ”
B/ — SI

Grundriss

Abb. 3.3.8 Paralleldrehung nach Kon-
struktionsbsp. 3.3.1

die Grundrissebene, schneidet diese die Drehachse in S bzw. S’, welcher auch B’ ist,

da r und AB nach Konstruktion denselben Grundriss besitzen. Der Radius des Krei-
ses entspricht dem Abstand d(B, S). Da die Gerade BS nach Konstruktion senkrecht

zur Grundrissebene ist, ist diese parallel zur Aufrissebene.

Aufgrund der orthogonalen Parallelpro-
jektion ist das Viereck BSS”B” ein
Rechteck. Wir erhalten also den Ra-
dius des Kreises, indem wir den Ord-
ner von B” zeichnen (Schritt 2). Dann
gilt d(B,S) = d(B",S"”). Da die Dre-
hung eine Kongruenzabbildung ist, miis-
sen wir nur noch den Abstand auf das
Lot durch B’ abtragen und wir erhalten
B,.. Mit derselben Begriindung ist dann
auch d(4, B) = d(A', B,).

Wir sehen in Abb. 3.3.9, dass der Dreh-
winkel 90° betragt und durch die Kon-
struktion wird das Dreieck AB.S parallel
zur Grundrissebene gedreht haben. So-

mit wird die Parallelprojektion zu einer

Abb. 3.3.9 Paralleldrehung zur Bestim-
mung von realen Mafsen

Verschiebung, sodass wir damit die unverzerrte Strecke AB rekonstruieren konnten.
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Wir erweitern die vorherige Aufgabe und betrachten nun ein Dreieck ABC' im Raum.
Wieder sind im Konstruktionsbeispiel 3.3.2 Grund- und Aufriss gegeben und wir wol-
len nun das gesamte Dreieck derart drehen, dass es wieder parallel zum Grundriss
zum Liegen kommt. Hierbei ist das Finden der Rotationsachse nun komplizierter,
da durch die Drehung alle drei Seiten parallel zum Grundriss gedreht werden miis-
sen. Wir zeigen daher zwei verschiedene Methoden. Die erste verwendet, wie zuvor
beschrieben, eine Rotationsachse, um das Dreieck im Raum parallel zum Grundriss
zu drehen. Wir rekonstruieren daher nicht nur die Mafse des Dreiecks, sondern das
Dreieck an sich. Die zweite Methode kniipft an die vorherige Konstruktion an, d.h.
wir rekonstruieren unabhingig voneinander die Seiten AB, BC und AC. Es wer-
den dabei drei verschiedene Rotationsachsen verwendet, sodass das Endergebnis im
Allgemeinen kein Dreieck mehr sein wird, denn die Seiten erscheinen in beliebiger
Richtung in der Grundrissebene. Zur Rekonstruktion des Dreiecks miissen die einzel-
nen Seiten wieder zu einem zusammengefiigt werden. Fiir Schiilerinnen und Schiiler
kann diese Alternative aber einfacher nachvollziehbar sein, da sie an die vorherige

Konstruktionsaufgabe ankniipft.

Konstruktionsbeispiel 3.3.2

Gegeben ist der Grund- und Aufriss eines Dreiecks ABC' im Raum. Es sollen

die Seitenldngen des Dreiecks rekonstruiert werden.

Aufriss

B//

Grundriss
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Zuerst miissen wir die Drehachse finden. Der Trick besteht darin, dass wir das Drei-
eck ABC' in die Grundrissebene drehen, statt nur parallel dazu. Die Rotationsachse
muss daher in der Grundrissebene liegen. Wir verldngern die Seiten in den Rissen
entsprechend folgender Konstruktionsschritte (Abb. 3.3.10, links):

Erster Teil

1. Verlangere die Seiten A”C” und B”C", bis sie die Risskante = R’ 5"
schneiden.
Zeichne die Ordner von R” und S” ein.
Verlingere die Seiten A’C’” und C"B’, bis sie die Ordner aus 2. = RS

schneiden.

Da die Rotationsachse im Grundriss liegt, gilt auch R = R und §’ = S. Abb. 3.3.11
zeigt die Drehung im Raum. Hierbei wird das Dreieck R'C'S” in die Grundrissebene
geklappt. Die Seite R'S’ bleibt als Fixpunktgerade erhalten, der Punkt C dreht sich
auf einem Kreis senkrecht zur Rotationsachse. Betrachten wir das Lot h von C auf
die Gerade R'S’. Wenn wir die Linge dieser Seite mithilfe der Risse rekonstruieren
konnen, so kénnen wir A senkrecht zu 7' in der Grundrissebene abtragen und erhalten
das gedrehte, grofe Dreieck, dessen Spitze das gesuchte Bild ist. Die Rekonstruktion
von h ist daher der zweite Teil der Konstruktion (Abb. 3.3.10, rechts):

Zweiter Teil

Zeichne das Lot von C” auf die Risskante. = d
2. Zeichne eine Parallele zu RS durch C’ und trage die Lange von = H
d auf ihr ab.
3. Zeichne die Senkrechte zu RS durch C'. = T
Verbinde die Punkte 7" und H. Ihr Abstand ist die Linge von = C

h, welche auf der Senkrechten aus 3. abgetragen wird.

Verbinde C' mit R und S.

Zeichne die Senkrechte durch A’ und B’ auf RS ein. Markiere = A B
die Schnittpunkte mit CR und C'S.
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Aufriss

C//

4
Al
,

N,
N,
\
\,
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\.
N "
N
. S
’

CI/

Aufriss

A
bmmmme e
«Q

Grundriss

Grundriss

Abb. 3.3.10 Paralleldrehung eines Dreiecks im Raum. Erster Teil der Konstruktion

ist links dargestellt, der zweite Teil rechts.

(a) Erster Teil

(b) Zweiter Teil

Abb. 3.3.11 Paralleldrehung des Dreiecks in GeoGebra, zur Erklarung der Kon-

struktionsidee
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Nun stellt sich die Frage, warum d parallel zur Rotationsachse durch C” abgetragen
werden muss, damit sich h ergibt. Hierzu betrachten wir die raumliche Darstellung
der Situation in Abb. 3.3.11 (b).

Betrachten wir das Dreieck CC'T und drehen es 90° um C’T in die Grundrissebene,
so erhalten wir das Dreieck HC'T'. Die Strecke CC” steht danach senkrecht auf C'T
durch C’. Dies erklart die Parallele in Schritt 2. Den Abstand von C zu C’ konnen
wir dem Aufriss entnehmen. Die Gerade CC” steht als Projektionsstrahl nach Defi-
nition senkrecht zur Aufrissebene, ebenso die Gerade CC’. Daher ist die Strecke CC’
genauso lang wie d.

Die Ecken A und B in der Grundrissebene sind leichter zu finden, denn auch diese
werden um einen Kreis orthogonal zu RS gedreht. Wir zeichnen daher wieder die
Senkrechten zu RS durch A’ und B’ ein. Da nun aber C' bekannt ist, konnen hier

die Schnittpunkte mit den beiden Dreiecksseiten verwendet werden.

Wir kommen abschlieffend zur alternativen Losung in Abb. 3.3.12, welche die vorhe-
rige Konstruktion verwendet. Statt genau einer Rotationsachse wird fiir jede Drei-
ecksseite eine eigene bestimmt. r{ ist die Parallele durch B” zur Risskante. Dann
wird von A” aus das Lot geféllt und die in der Abbildung blau markierte Strecke im
Grundriss senkrecht an A’ abgetragen werden, um A, zu erhalten. Diese verbunden
mit B’ ergibt die wahre Strecke der Dreiecksseite AB. Mit den zwei anderen Seiten
wird genauso verfahren. Da nun die einzelnen Seiten im Grundriss kein Dreieck bil-
den, konnen die Schiilerinnen und Schiiler diese mit dem Zirkel abmessen und eine

Kopie erstellen.

Aufriss

B’ B

C/

Grundriss

Abb. 3.3.12 Paralleldrehung eines Dreiecks im Raum, alternative Lésung
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Wir haben die Dreitafelprojektion besprochen, da sich zentral- und parallelprojektive
Bilder aus den Rissen konstruieren lassen. Wir wollen zum Abschluss dieses Kapitels
den Satz von Desargues besprechen, welcher der projektiven Geometrie zuzuordnen
ist, ein Teilgebiet der Mathematik, dessen grundlegenden Axiome wir am Anfang
dieser Arbeit vorgestellt hatten (Abs. 2.2, S. 25). Aus diesem Teilgebiet entstammen

auch die Fernpunkte und -geraden.

3.4 Der Satz von Desargues

Ein bekannter Satz der projektiven Geometrie ist der von Desargues, welcher sich

aus unterschiedlichen Blickwinkeln interpretieren und untersuchen l&sst.

Satz 3.4.1: Satz von Desargues

Gegeben sei ein Punkt Z in der Ebene und ein Dreieck AABC'. Ein weiteres
Dreieck AA’B’'C’ hat seine Eckpunkte auf den Strahlen ZA, ZB und ZC.
Genau dann gilt:

Die Schnittpunkte U,V und W mit

ABNA'B = {U} BCNB'C' ={V} ACNA'C = {W}

sind kollinear auf der Geraden a.

Abb. 3.4.1 Der Satz von Desargues
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In der Literatur finden sich unterschiedliche Formulierungen und Beweise [37, 34,
47]. Wird der Satz im Sinne einer zentralprojektiven Abbildung von einer Ebene in
eine andere betrachtet, so ist die Gerade a die Schnittgerade dieser beiden Ebenen.
Da sich Gerade und Bildgerade schneiden, ist der Schnittpunkt nach Satz 3.1.2, S.
49, ein Fixpunkt und alle Fixpunkte befinden sich auf dieser Schnittgeraden.

Aus Sicht der projektiven Geometrie sind die Dreiecke AABC und AA’'B'C’ zentral-
perspektiv, da die Verbindungsgeraden AA’, BB’ und C'C’ nach der o.g. Vorausset-
zung sich in dem Punkt Z schneiden. Die Verbindungsgeraden AB, AC, BC' und
A'B',A'C', B'C" sind azial-perspektiv, da ihre Schnittpunkte auf einer Geraden lie-
gen [47, S. 38|. Dies war die Zielaussage in der obigen Formulierung.

Die Umkehrung des Satzes gilt ebenso. Wir konstruieren zwei Dreiecke, deren Ver-
lingerungen der Kanten sich in kollinearen Punkten schneiden. Dazu formulieren wir

folgendes Aufgabenbeispiel:
Aufgabenbeispiel 3.4.1

Zeichne eine Gerade und markiere darauf drei Punkte mit U,V und W in belie-
biger Reihenfolge. Nun konstruiere zwei Dreiecke AABC und AA’'B’C’ derart,
dass U der Schnittpunkt der Geraden AB und A’B’ ist, sowie V von BC und
B'C’ bzw. W von AC und A'C’ ist.

Zeichen dann die Geraden AA’, BB’ und C'C’. Was stellst du fest?

Losung:

1. Schritt: Wir beginnen mit der Vorga-
be und zeichnen die Gerade a mit den
Punkte U, V und W, wobei nach Aufga-
benstellung die Reihenfolge der Punkte
auf der Geraden beliebig ist. Wir zeich-
nen nun drei Geraden durch die Punkte,
die nicht kollinear sein diirfen, damit ih-

re Schnittpunkte ein Dreieck ergeben.

!Sie werden in der projektiven Geometrie Dreiseit genannt und ihre Schnittpunkte bilden das
Dreieck AABC [47, S. 38]
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2. Schritt: Nun miissen wir iiber die Be-
zeichnung der Punkte auf der Gerade die
Eckpunkte des Dreiecks benennen. Nach
der Aufgabenstellung schneiden sich die

Geraden wie folgt:

UNWw = {A}
UNv = {B}
VAW ={C}

3. Schritt: Wir wiederholen die ers-
ten beiden Schritte, um das zwei-
te Dreieck AA'B'C' zu konstruie-

ren.

4. Schritt: Nun verbinden wir die Punkte A mit A’, B mit B’ und C mit C’. Wir
werden feststellen, dass sich die Geraden in einem Punkt schneiden. Dies ist nach

dem vorherigen Satz Z.

Eine andere Reihenfolge der Benennung der Punkte auf der Affinitétsachse (orange)
hat keine Auswirkung auf die Konstruktion. Es dndert sich nur die Benennung der

Eckpunkte des Dreiecks. Thre Verbindungsgeraden dagegen bleiben gleich:
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Abb. 3.4.2 Links: Anderung der Lage der Punkte auf der Affinititsachse (orange).
Rechts: Anderung der Rolle von Geraden und Punkten

Verdndern wir dagegen die Lage der Punkte auf der Affinitdtsachse (orange), so
andern sich auch die Dreiecke und die Lage von Z. Abb. 3.4.2 (links) zeigt daher ein
anderes Ergebnis.

Die Figur im Satz von Desargues weist einige Besonderheiten auf. Sie besteht aus
zehn Punkten und zehn Geraden, wobei durch jeden Punkt genau drei Geraden
verlaufen und jede Gerade drei Punkte enthélt. Wir kobnnen sogar in derselben Figur
die Rolle der Punkte und Geraden verdndern, sodass zwei neue Dreiecke entstehen
(Abb. 3.4.2, rechts) [47, S. 40].

Zur Anderung der Rolle wurde als neues Zentrum U gewihlt und in Z umbenannt.
Die Geraden durch Z sind die Strahlen, welche die Eckpunkte der beiden Dreiecke
enthalten miissen. B wurde nicht verdndert. Dann muss der dritte Punkte auf der
Geraden B’ sein. B und A miissen auf einer Geraden liegen. Somit muss V in A um-
benannt werden. Der dritte Punkte auf der Geraden AB muss dann U sein. Damit
haben wir auch die Affinitdtsachse gefunden, welche U enthélt.

Wir stellen also fest, dass die Wahl von Z gleichzeitig auch die Affinitéatsachse festlegt.
Dies ldsst sich allerdings einfach erklaren: Die Affinitétsachse enhélt drei Punkte, die
nicht zu den Dreiecken gehéren. Damit fallen die drei Geraden durch Z weg wie
auch die sechs Geraden, welche die Dreiecke bilden. Da die Figur aus insgesamt zehn

Geraden besteht, bleibt nur noch eine iiber, welche die gesuchte Affinitidtsachse ist.

Wir wollen eine weiteres Aufgabenbeispiel zeigen, welcher den Satz von Desargues
zur Losung nutzt. Stellen wir uns vor, wir haben ein rechteckiges Blatt Papier und
zwei Geraden, welche sich schneiden. Allerdings liegt der Schnittpunkt S aufserhalb
unseres Blattes. Nun wollen wir eine dritte Gerade konstruieren, welche durch S

verlauft.
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Aufgabenbeispiel 3.4.2

Gegeben ist ein Blatt Papier mit zwei nicht parallelen Geraden. Wéhle einen
Punkt A aufserhalb der Geraden und konstruiere mithilfe des Satzes von De-
sargues eine dritte Gerade, welche durch A und den Schnittpunkt der anderen

beiden Geraden verlauft.

Losung:

Die Schwierigkeit der Aufgabe besteht

darin, zu entscheiden, welche Rolle die

gegebenen Objekte in der Figur zum \

Satz von Desargues einnehmen. Als Hil-

fe wurde daher der erste Punkte A ge- Ae /

nannt. Durch A verlaufen genau drei Ge-

raden, d.h. der Schnittpunkt ist entwe-
der Z,U oder W. Wir entscheiden uns
fir Z. Das Ziel ist also, den Punkte A’

zu konstruieren.

1. Schritt: Wir miissen jeweils zwei

Punkte auf den gegebenen Geraden C
wahlen, da jede Gerade genau drei
Punkte enthdlt und Z schon gesetzt
ist. Damit ist ein Dreieck festgelegt.
BC und B'C’ schneiden sich in V.
Wir wahlen die Punkte also derart,
dass der Schnittpunkt V' auf dem Blatt
liegt.

2. Schritt: Wir zeichnen die Verbin-
dungsgerade AC und die Affinitéits-

achse durch V derart, dass sie die

erste Gerade auf dem Blatt schnei-
det. Damit ist W festgelegt. Eben-
so ergibt sich U durch die Gerade
AB.




78

3. Schritt: Wir zeichnen die Gerade
WC" und UB’, welche sich in dem
gesuchten Punkt A’ schneiden. Damit
ist auch das zweite Dreiecke gefun-

den.

Zur Kontrolle zeichnen wir die Gerade

iber das Blatt hinaus. Im Unterricht

konnen die Schiilerinnen und Schiiler Li-
neale oder Papierstreifen verwenden, um —

ihr Ergebnis zu tiberpriifen.

Der Satz von Desargues lisst sich mit den Axiomen der projektiven Geometrie? in
der Ebene nicht beweisen bzw. es gibt Ebenen®, welche zwar die Axiome erfiillen,
aber der Satz von Desargues nicht erfiillt ist [47, S. 41]. Analog verhilt es sich mit
dem Parallelenaxiom der euklidischen Geometrie. Er kann aus dem Axiomensystem
nicht gefolgert werden und muss explizit dem System hinzugefiigt werden. Die sog.
nicht-euklidischen Geometrien zeichnen sich dadurch aus, dass alle Axiome aufier das

Parallelenaxiom giiltig sind.

Wir betrachten nun die euklidische Ebene mit einem kartesischen Koordinatensystem
und wollen eine Richtung des Satzes von Desargues beweisen. Wir verwenden dazu
die Methoden aus der analytischen Geometrie im Mathematikunterricht der Oberstu-
fe an Gymnasien und Gesamtschulen. Zum besseren Verstdndnis soll die Beweisidee
erst auf ein Zahlenbeispiel angewendet werden, d.h. Schiilerinnen und Schiiler entwi-
ckeln anhand einer konkreten Situation einen Rechenweg und iibertragen diese dann
im néchsten Schritt ins Allgemeine. Es wird sich zeigen, dass der zweite Schritt etwas

miihselig ist, da einige Umformungen nétig sind.

?Das sind die Indzidenzaxiome (G1) und (G2) aus Abs. 2.2, S. 25, und zur Reichhaltigkeit, d.h.
jede Gerade inzidiert mit mindestens drei Punkten und es gibt mindestens drei nicht kollineare
Punkte. Da wir in der Arbeit aber unendlich viele Punkte und Geraden betrachten, wurden diese
Axiome im genannten Abschnitt nicht erwahnt.

3sog. Moulton Ebenen, in welcher Geraden auch einen , Knick“ haben kénnen.



3.4. Der Satz von Desargues 79

Aufgabenbeispiel 3.4.3

Gegeben sei der Punkt Z(5/7) und zwei Dreiecke mit den Eckpunkten A(4/6),
B(5.75/1), C(4/4.5) und A’(-2/0), B'(6/ — 1), C"(3/2).

a) Zeigen Sie jeweils, dass die Punkte Z, A, A’ sowie Z, B, B’ und Z,C,C’

kollinear sind.

b) Bestimmen Sie jeweils die Schnittpunkte U, V, W der Geraden AB mit
A’B’, BC mit B'C’ und AC mit A'C".

c) Zeigen Sie, dass U,V und W ebenfalls kollinear sind.

Der Schwierigkeitsgrad dieser Aufgabe ldsst sich erhohen, wenn die drei Teilschritte
entfernt werden, sodass die Schiilerinnen und Schiiler sich selbst iiberlegen miissen,

wie sie die Kollinearitéit der Schnittpunkte durch Berechnungen zeigen kénnen.

Losung:
Fiir Aufgabe a) gibt es zwei verschiedene Losungswege. Im Sinne einer Punktprobe
kann die Geradengleichung von ZA in Parameterform erstellt werden und iiber ein

lineares Gleichungssystem der Parameter A € R fiir A’ bestimmt werden:

oo ()-()-

Eine andere Moglichkeit ist die Aufstellung der Parametergleichung der Geraden
ZA und ZA'. Sind die Richtungsvektoren 7 linear abhéangig, so miissen die Geraden

identisch sein, da sie den Punkt Z gemeinsam haben:

. -1 . =7 S .
TzA = (_1> , Tzar = <_7> = Tzar =T-TzA

Analog ergibt sich die Kollinearitét fiir die beiden anderen Punktreihen.

Fiir b) werden die entsprechenden Geraden gleichgesetzt, das lineare Gleichungssys-

tem gelost und mit dem sich ergebenen Parametern der Schnittpunkt bestimmt:

Y A T A B
Gag " T =G p * _5 12 1 - _6

:A—% _ 18
BETARSET

= U(6.47/ — 1.06)
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Analog ergeben sich V(7.5/ —2.5) und W (4/2.4). Dass diese drei Schnittpunkte auf

einer Geraden liegen, kann wie in Teil a) iiberpriift werden:

6.47 1.03 4
Jov <—1.06> <—1.44> (2.4)

Wir wollen nun algebraisch beweisen, dass die Kollinearitat von U,V und W unab-
héngig von der Wahl des Dreiecks AABC und dessen Bild AA'B'C’ ist. Sei Z der
Ortsvektor vom Zentrum Z, @ jener von A usw. Dann kénnen die Strahlen durch

folgende Geradengleichungen beschrieben werden:

Gps T=7Z4M(@—2)
Gy =7+ Aa(b—7)
Gpo i B=7+N(E—72)

Die Parameter A1, A2 und A3 seien nun fest gewéhlt, um die Bildpunkte zu erhalten.
Hierbei sei zunéchst vorausgesetzt, dass diese paarweise verschieden sind, d.h. Ay #
Ao # A3. Somit gilt:

a =7+ M@-2)
V=74 \(b—2)
d =74 X\3(¢—2)

Wir stellen nun die entsprechende Verbindungsgeraden auf und berechnen den Schnitt-
punkt U. Da sich die Geraden nur durch die Wahl des Parameters und des Richtungs-
vektors unterscheiden, reicht die Berechnung eines Schnittpunktes aus, um analog die

anderen folgern zu konnen.

—[L=M+ N =) 2+ — )M a+ A b

Wie im Rechenbeispiel setzen wir beide Geradengleichungen gleich und sortieren

nach links alle Terme mit p und p':

-, -,

p@—>b)+ @ [(M—X)Z—Ma+Xb=01-X\)Z+N —-1)a

Nun fithren wir einen Koeflizientenvergleich durch, eine Methode, welche im Unter-
richt wohl eher unbekannt sein diirfte. Hierzu werden die Koeffizienten der Vektoren

a, b und Z von der linken und rechten Seite verglichen:
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(=W M) a4+ (—p+ g A) b+ M —A)Z=1=A)Z+ (N —1)a@ (3.4.1)

Koeffizientenvergleich:
o= =M -1
R =0

,u/()\g—)\l) :)\1—1

Aus den Koeffizienten der ersten beiden Vektoren lasst sich fiir die Parameter p und

w1 folgern:
, 1-X\
S VW
Mk
N AL — Ao

Wird der Koeffizient vor Z’durch den oberen Parameter p ersetzt, so ergibt sich jener
der rechten Seite in Gl. (3.4.1), sodass die Probe erfolgreich ist. Der Schnittpunkt
U ergibt sich somit durch Einsetzen des Parameters p in die Geradengleichung von
9.5- Anhand des sich ergebenen Musters konnen die anderen Schnittpunkte direkt

gefolgert werden.

AMA2—A2 = At A — A1
b— a

0 = 4.2
RS VI N — o (34.2)
LA A3=A3 ., MA3— A

= — b 4.
RS VNS VS VA (343)
w:)\3>\1_>\15—)\3>\1_>\35 (3’4‘4)

)\3—)\1 )\3—)\1

Fiir den letzten Schritt wird eine Gerade durch die ersten beiden Schnittpunkte

gelegt und iiberpriift, ob der dritte Schnittpunkt Bestandteil jener Punktmenge ist.

Jyy =0+ a(d—7)

deda =g
A2 — A3
/\1)\2—)\2 )\2)\3_)\2 7
1— _
+(1=a) VIS VO R VA WA
A Ao — A

(3.4.5)
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Zur Bestimmung von a wird der Koeffizient in Gl. (3.4.4) von ¢ mit jenem in
Gl. (3.4.5) gleichgesetzt. Hierbei kann mit A3 # 0 gekiirzt werden:

(A3 = A2)(A1 — 1)
(A3 — A1) (A2 — 1)

Zuletzt wird dieser Parameter in Gl. (3.4.5) fiir die anderen beiden Vektoren einge-

setzt:

A3 —=A)(A2—1) = (A3 — A2) (A1 — 1)
(A3 —A1)(A2 — 1)

A3 A+ AL A3 A — A

=AM -1

CoA3(A2 = A1) AL A

(s Aa)(e—1)

(A2 = A1)(A3 — 1)

(A3 = A1) (A2 — 1)

l-a=

Koeffizient von a:

MAz—A e—ADOs—1) Ai(Az— 1)

—(l—e) 5y T T s e —1) A=
M (Ms—1)
(=)

Ein Vergleich mit dem Punkt W in Gl. (3.4.4) zeigt, dass die Koeffizienten von @
iibereinstimmen. Analog wiirden wir fiir den Koeffizienten von b vorgehen. Da dies
wieder nur iiber Umformungen erfolgt, wird dieser Teil ausgelassen. Somit haben wir
algebraisch gezeigt, dass der Satz von Desargues bis auf wenige Ausnahmen giiltig

ist. Diese wollen wir nun diskutieren.

In den Ortsvektoren der Schnittpunkte nach Gl. (3.4.3) - (3.4.4) wird jeweils durch
die Differenz der Parameter dividiert, weshalb vorausgesetzt wurde, dass diese Werte
paarweise verschieden sind. Wir wollen nun untersuchen, wie sich Abb. 3.4.1 &ndert,
wenn bspw. A\; = Ag gilt. Betrachten wir Gl. (3.4.1) und setzen entsprechend ein, so

erhalten wir:
(=g M) @+ (—p+p M)b=(1- ) Z+ (N —1)a

Da der Koeffizient fiir 2’ null ist, kann die rechte Seite durch keine Wahl von g und
p erfiillt werden. Wir nehmen dazu das Aufgabenbeispiel her und berechnen die
Punkte A" und B’ neu, wobei wir Ay = Ay = 2 setzen und folgende Koordinaten

erhalten:
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Abb. 3.4.3 zeigt, dass sich eine zentrischen Streckung an Z mit Streckfaktor A\; = 2
ergibt. Dies konnen Schiilerinnen und Schiiler anhand des Rechenbeispiels nachvoll-

ziehen, in dem sie die Richtungsvektoren miteinander vergleichen:

3.5 1.75
Tap = =2 =27
(B () i
-3.5 —-1.75
TRICr = =2 =27
o () 2 (27) oo
0 0
Tacr = =2 =27
SN )

Bl

Abb. 3.4.3 Sonderfall des Satzes von Desargues mit Ay = Ao ist.
Links: A\; = 2, rechts: Ay = 0.5
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Fiir A\; = A2 = 0.5 ergibt sich eine andere Situation. Hier sind zwar die Richtungs-
vektoren 74p und 74/ linear abhéngig, die beiden anderen Geradenpaare dagegen
schneiden sich. Schauen wir uns dies wieder allgemein an und berechnen die Rich-

tungsvektoren 74p und 74/ g fiir Ay = Ao:

d=7Z+M@—2)und ¥ =7+ A (b—2)
\

Fap=b—aund Fap =M\ (b—Z—d+72) =\ (b—a)

Damit ist ebenfalls gezeigt, dass die Geraden g, und g,,,, parallel sind, ihr Schnitt-
punkt ist daher der Fernpunkt U*. Wir sehen in der Abb. 3.4.3 (rechts) sogar, dass
auch dieser Fernpunkt auf der Geraden a liegt, da diese parallel zu AB verlduft.
Wegen ZC" = 2 ZC liegt fiir A\; = Ay = 2 in Abb. 3.4.3 (links) sogar eine zentri-
sche Streckung vor, sodass die Dreiecksseiten jeweils zu ihrem Bild parallel sind. Die
Schnittpunkte sind allesamt Fernpunkte, sodass die Gerade zur Ferngeraden a* wird.
Ein letzter Sonderfall bleibt fiir A; = 1, d.h. wenn eine der Dreiecksecken ein Fix-
punkt ist. Sei bspw. A\ = 1, sodass A = A’ gilt. Fiir A\; = Ao wire die obige
Gleichung (3.4.1), S. 81, zur Berechnung von p und p' wieder 1osbar, da somit auch
der Term 1— \; wegfillt. Die Geraden AB und A’ B’ schneiden sich dann in A, sodass
A = U gilt. Dann schneiden sich auch AC und A’C’ in A, sodass insgesamt sogar
A=A =U =W vorliegt.

Kommen wir zuriick zu dem Beweis des Satzes von Desargues. Wir haben gese-
hen, dass der algebraische Beweis fiir den Unterricht aufgrund der komplizierten
Umformungen nicht sinnvoll ist. Hier ist von den Schiilerinnen und Schiiler weniger
Versténdnis gefragt als Konzentrationsfahigkeit und Umformungsgeschick. Eine al-
ternative Beweisidee wird von Liebscher bzw. Stolzenburg genannt [34, S. 19] [47,
S. 37].

Wir interpretieren dazu das Dreieck AABC als Grundfldche einer Pyramide mit der
Spitze Z (Abb. 3.4.4). Das zweite Dreieck AA’B’C” ergibt sich als Schnitt einer weite-
ren Ebene mit der Pyramide. Im Sinne einer Zentralprojektion liegt die Grundfliache
in der Objektebene (griin) und geschnitten wird mit der Bildebene (blau). Beide
Ebenen schneiden sich in der Geraden a. Sind jene parallel, so wird der Schnitt zur
Ferngeraden. Da diese Gerade sowohl in der Objekt- als auch in der Bildebene liegt,

ist jeder Punkt von a ein Fixpunkt.
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Abb. 3.4.4 Der Satz von Desargues interpretiert als Zentralprojektion

Die Gerade AB liegt in der Objektebene, die Gerade A’B’ in der Bildebene und
nach Satz 3.1.2, S. 49, schneiden sie sich in einem Fixpunkt. Demnach muss dieser
auf a liegen, sodass alle Schnittpunkte der entsprechenden Geraden durch die Eck-
punkte der Dreiecke auf dieser Fixpunktgeraden liegen miissen. Die Figur zum Satz
von Desargues entsteht durch Projektion dieser Pyramide in eine Ebene. Da diese

inzidenztreu ist, bleiben die Schnittpunkte zwischen den Geraden erhalten.

Wir kommen nun zu weiteren Aufgaben, welche fiir den Einsatz im Unterricht ge-

eignet erscheinen und mithilfe des Satzes von Desargues gelost werden kénnen.

Aufgabenbeispiel 3.4.4

Gegeben ist der Punkt Z, die Gerade
a und das Dreieck AABC. Konstruiere ?
das Bilddreieck AA’ B’C’ unter Verwen-
dung des Satzes von Desargues. Gibt es

nur eine Losung? 2
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Losung:

Wir wissen, dass die Bildpunkte auf
den jeweiligen Strahlen durch die Eck-
punkte liegen. Weiterhin wissen wir,
dass nach dem Satz von Desargues
die Geraden durch die Dreiecksseiten
die Gerade a in den Punkten U, V,W
schneidet. Wir fligen daher entsprechen-
de Geraden (schwarz) in die Zeichnung

ein.

Wir fragen uns nun, ob die Abbildung
durch Z und a eindeutig definiert ist
und fiigen einen beliebigen Bildpunkt A’
(blau) auf der Geraden ZA ein. Folg-
lich kénnen wir B’ finden, indem wir ei-
ne Gerade durch A" und U legen. Der

. ¢
g W

Abb. 3.4.5 Erster Losungsschritt von
Aufgabenbsp. 3.4.4

Schnittpunkt mit ZB ist B’. Genauso finden wir auch C’ mithilfe von V. Wir stellen
fest, dass auch die Geraden AC und A’C’ sich in W schneiden. Kann das Zufall sein?

Z

Abb. 3.4.6 Mogliche Losungen von Aufgabenbsp. 3.4.4

Wir zeichnen die Figur erneut und fiigen den Punkt A’ an einer anderen Stelle auf

dem Strahl Z A ein. Wir erhalten ein ganz anderes Bilddreieck, die Bedingungen blei-

ben aber erfiillt. Demnach fiihrt die Angabe von Z und a nicht zu einer eindeutigen

Abbildung. Wir haben im Beweis schon erwidhnt, dass die Beweisfigur als eine Pro-

jektion einer Zentralprojektion in eine Ebene angesehen werden kann. Hierbei fallen

Objekt- und Bildebene zusammen. D.h. die beiden Beispiele sind Zentralprojektionen
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mit demselben Zentrum und derselben Objektebene. Sie unterscheiden sich aber in
der Wahl der Bildebene bzw. der Schnittebene der schiefen Pyramide in Abb. 3.4.4.
Einzige Bedingung ist, dass die Bildebene die Gerade a enthélt. Die verschiedenen
Bilddreiecke A’ B'C" entstehen daher, wenn in der Abbildung die blaue Bildebene um
die Achse a gedreht wird.

Aufgabenbeispiel 3.4.5

Gegeben ist der Punkt Z, die Gerade a

und das Dreieck AABC sowie der Bild- z
punkt A’. Konstruiere das Bilddreieck

AA'B'C’ unter Verwendung des Satzes

von Desargues. Achte dabei auf die be- 2
sondere Lage des Dreiecks zur Gera- B
den. Findest du einen Punkt A’, sodass

AABC und AA'B’C’ dhnlich zueinan-

der sind?

Al

Losung:

Der Hinweis ist in der Aufgabenstel-
lung schon gegeben. Die Dreiecksseite
AB liegt parallel zur Geraden a, sodass
der Schnittpunkt U ein Fernpunkt ist.
Wir miissen daher durch A’ eine Paral-
lele zu a ziehen. Die anderen Dreieckssei-
ten erhalten wir wie zuvor. Fiir den zwei-
ten Teil miissen sich die Schiilerinnen
und Schiiler {iberlegen, woran sie erken-
nen konnen, dass zwei Dreiecke dhnlich

zueinander sind oder sich an die Win-

keltreue der zentrischen Streckung er-

innern. Dies hat zur Folge, dass auch

BC | B'C' und AC || A'C’ gilt. Ih- Abb. 3.4.7 Lésungen zu
re Schnittpunkte werden zu Fernpunk- Aufgabenbsp. 3.4.5

te und die Gerade a verschwindet und
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wird zur Ferngeraden. Da laut Aufgabenstellung aber a eine gewShnliche Gerade ist,
existiert kein Punkt A’ auf ZA, sodass beide Dreiecke zueinander dhnlich werden.
Was ebenfalls von den Schiilerinnen und Schiiler beobachtet werden kann, ist, dass
sich die Orientierung des Bilddreiecks umkehrt, wenn A’ auf der anderen Halbebene,

welche durch a entsteht, liegt als A.

Aufgabenbeispiel 3.4.6

Wir haben gesehen, dass eine Dreiecksseite parallel zur Geraden a sein kann.

Ist es auch moglich, dass genau zwei Seiten parallel zu a sind?

Losung:

Hier kénnen die Schiilerinnen und Schiiler verschieden argumentieren. Ist 0.B.d.A.
AB || a sowie a || BC, dann ist aufgrund der Transitivitdt der Parallel-Relation
auch AB || BC. Demnach ist ABC kein Dreieck mit gewohnlichen Punkten. Eine
andere Moglichkeit ist die Argumentation iiber Fernpunkte. Ist AB || a, dann ist der
Schnittpunkt U*. Ebenso existiert VV*. Da nach den Axiomen der projektiven Ebene
zwei Punkte genau eine Gerade festlegen, wird a zur Ferngeraden a*. Dann muss

auch der dritte Punkte ein Fernpunkt sein, sodass auch AC || a gilt.

Aufgabenbeispiel 3.4.7

Gegeben ist der Punkt Z, die Gerade

a und das Dreieck AABC sowie C'. Z
Wo liegt A’? Konstruiere das Bilddrei-

eck AA'B'C'.
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Losung:

Da nun A € a gilt, schneiden sich
die Geraden AB und a auch in die-
sem Punkt. Dann ist auch AB N
A'B" = {A} und demnach A =
A" = U. Da sowohl A als auch
U zusammenfallen, muss ein weite-
re Bildpunkt gegeben sein, damit das
Bilddreieck eindeutig konstruiert wer-
den kann. Mit BC' ldsst sich V auf
a finden und damit auch B’. Wir
konnen weiter feststellen, dass auch
AC n A'C" = {A} gelten muss.
Somit ist A auch der Schnittpunkt
W.

Abb. 3.4.8 Losungen zu
Aufgabenbsp. 3.4.7

Insgesamt wurde in den vorgestellten Aufgaben verschiedene Lagen von a und den

Punkten auf dieser untersucht. Wir haben festgestellt, dass die Festlegung von Z und

a nicht ausreicht, um eine eindeutige Abbildung festzulegen, sondern ein Bildpunkt

vorgegeben sein muss, um auch die entsprechende Bildebene im Sinne einer Zentral-

projektion im Raum festzulegen. Wir wollen im folgenden auf die Zentralprojektion

als Abbildung vom Raum auf eine Ebene eingehen. Welche Eigenschaften weisen die

Bilder auf? Wo finden wir solche Projektion in der Umwelt? Und wie werden die-

se Bilder im Kunstunterricht erstellt? Interessant ist hierbei, die Gegeniiberstellung

der Konstruktionsmethoden mit den Eigenschaften, welche iiber die mathematische

Betrachtung hergeleitet wurden.






Kapitel 4
Die Zentralprojektion

Wir haben in den vorherigen Kapiteln einige Grundlagen zur Projektion besprochen
und wollen dieses Wissen nun nutzen, um die Methoden zur Konstruktion zentral-
projektiver Bilder mathematisch zu hinterfragen, d.h. wir legen nun fest, dass das
Projektionszentrum ein gewohnlicher Punkt und kein Fernpunkt ist.

Im ersten Abschnitt gehen wir der Frage nach, wo uns die Zentralprojektion in der
Umwelt bzw. im Alltag begegnet und wie sich in Fotos einige ihrer Besonderheiten
wiederfinden lassen. Dies ist vor allem fiir Schiilerinnen und Schiiler spannend, da sie
zum einen sich mit Mathematik in der Umwelt befassen kénnen und zum anderen
digitale Medien zum fotografieren passender Beispiele nutzen kénnen.

Nach einer Erlauterung der Vor- und Nachteile der Bilder einer Zentralprojektion
wird auf verschiedene Konstruktionsmethoden eingegangen und dabei erldutert, wel-
che Invarianten bzw. Eigenschaften der Abbildung verwendet werden.

Da die Zentralprojektion nicht nur mit analytischen Methoden aus der Oberstufe
an Gymnasien und Gesamtschulen dargestellt werden soll, wird im Anschluss die
Theorie aus der Sicht der projektiven Geometrie betrachtet. Hierzu wird als Einstieg
die Projektion zwischen zwei Geraden untersucht und einige Aufgabenbeispiele fiir
den Unterricht gegeben. Darauf aufbauend wird die Zentralprojektion vom Raum in
die Ebene mithilfe homogener Koordinaten motiviert, welche u.a. in der Computer-
grafik verwendet werden. Als Anwendung dazu wurde in der Programmiersprache
Processing Funktionen geschrieben, welche es ermoglichen, Anaglyphenbilder von
einfachen Objekten wie Wiirfel, Quader oder Pyramiden zu erstellen. Dies soll ei-
nerseits eine Moglichkeit bieten, fachiibergreifend zu unterrichten und andererseits
den Schiilerinnen und Schiilern in Zeiten der Digitalisierung einen Einblick in eine

Programmiersprache ermdoglichen.
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4.1 Zentralprojektion in der Umwelt

In den aktuellen Kernlehrpldnen zum Mathematikunterricht werden die drei Grunder-
fahrungen nach H. Winter (1996) genannt. So steht im Abschnitt Aufgaben und Ziele
des Mathematikunterrichts im Kernlehrplan zur Sekundarstufe I NRW (KMK, 2007)

geschrieben:

Schiilerinnen und Schiiler sollen im Mathematikunterricht der Sekundar-
stufe I

e Erscheinungen aus Natur, Gesellschaft und Kultur mithilfe der Ma-

thematik wahrnehmen und verstehen (Mathematik als Anwendung),

Die Beschéiftigung mit der Zentralpro-
jektion folgt diesem Ansatz, denn der
Sehvorgang an sich entspricht dieser Ab-
bildung. Die nebenstehenden Fotografi-
en zeigen Situationen, in welcher die be-
sonderen Eigenschaften der Zentral- und
Parallelprojektion hervortreten, mogli-
cherweise aber nicht jedem bewusst
sind, da sie der Normalitdt angehoren.
Wir wissen, dass in der Realitdt ein
Zaun immer dieselbe Hohe hat und nicht
in der Ferne schmaler wird, obwohl un-
ser Auge dies so wahrnimmt. Dass ge-
rade Objekte wie Gleise, Zaunkanten
oder Fahrzeugspuren im aufgeweichten
Erdboden einem Fluchtpunkt entgegen
streben und sich scheinbar am Horizont
schneiden, scheint auf den ersten Blick
nicht verwunderlich. Wir wissen aber
auch gleichzeitig, dass es sich um Par-
allelen handelt, d.h. diese Geraden ha-

ben in der Realitdt immer denselben Ab-
stand. Dennoch wundert sich niemand Abb. 4.1.1 Mit einer Kamera lassen sich
zentralprojektive Bilder erzeugen.

iiber diesen scheinbaren Widerspruch.
Moglicherweise aufgrund der gleichzeiti-
gen Raumerfahrung, denn wir schauen in der Ferne nicht auf eine Wand oder ein

Foto. Allerdings ist eine Fotografie gleichfalls eine Zentralprojektion des Raumes in
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eine Ebene. Der Tiefeneindruck geht dabei verloren, denn die Projektion erfolgt an-
hand eines Zentrums, unsere Sicht auf die Welt dagegen iiber zwei. Obwohl die Augen
relativ nahe beieinander stehen, ist die Projektion des uns umgebenden Raumes auf
die Netzhaut leicht verschieden. Unser Gehirn vermag diese Bilder derart {ibereinan-
der zu legen, dass wir einen Eindruck von Tiefe erfahren. Mit einigen Tricks lassen
sich die Augen téduschen, sodass auch ein flaches Bild rdumlich wirkt, wie bei dem
Rot-Griin-Verfahren, welches im Abschnitt 7.1 n&her erldutert wird. Die Projektio-
nen beider Augen sind auf einem Bild gegeben, allerdings das eine rot, das andere
griin. Mit einer Rot-Griin-Brille in umgekehrter Reihenfolge lasst sich jeweils ein Bild
herausfiltern, wihrend das andere durch die Uberlagerung der Komplementérfarben
schwarz wird. Die Augen sehen somit ihr passendes Bild und unser Gehirn sorgt wie-
der fiir den rdumlichen Eindruck. Nachteil dieser Methode ist, dass die resultierenden

Bilder in Graustufen vorliegen.

Im Kunstunterricht wird die FEin-
Fluchtpunkt- bzw. Ubereck-Perspektive
gelehrt (Lehrplan NRW Gym, Jgst. 7 -
9, 2011 sowie Ges 7 - 10, 2012). Oft-
mals werden Hé&userreihen gezeichnet
oder Gebdude mit Tilirmen und Trep-
pen. Bei Letzteren gibt es eine Beson-
derheit bzgl. der Lage des Fluchtpunk-
tes. Dieser wird normalerweise auf den
Horizont gezeichnet. Ist die Ebene aber
gekippt und nicht mehr parallel zum Bo-
den, wie es bei Treppen der Fall ist,
so verschiebt sich der Fluchtpunkt senk-
recht nach oben oder unten. Abb. 4.1.2

zeigt ein Foto zweier Treppen, wo die  App 412 Treppe mit vertikal verscho-
griinen Linien sich in Fluchtpunkten au- benen Fluchtpunkten

ferhalb des Fotos schneiden. Die oran-

gen Linien sind Bilder von Geraden, welche parallel zum Boden verlaufen. Ihr Flucht-
punkt liegt daher auf dem Horizont. Die Fluchtpunkte der Treppen liegen ober- und
unterhalb dieser blauen Geraden.

Die Konstruktionsmethoden werden im Abschnitt 4.3, S. 96, vorgestellt und aus Sicht
der Mathematik erlautert. Im Kunstunterricht werden solche Methoden gelehrt und

angewendet. Allerdings ohne die Begriindung, weshalb sie funktionieren.
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L

Abb.4.1.3 Die Schatten sind bei einer Lampe zentralprojektiv (links), bei der Sonne
dagegen parallelprojektiv (rechts).

Auch in Form von Schattenbildern begegnet uns die Projektion im Alltag [31, S. 4].
So sind die Schatten der Zaunpfosten auf dem mittleren Foto in Abb. 4.1.1 ebenfalls
parallel, obwohl das Sonnenlicht von der Seite kommt. Wiirden wir die Sonne durch
eine Laterne seitlich neben dem Zaun ersetzen, so wéren die Schatten der Pfosten
nicht mehr parallel. Sie wiirden strahlenférmig von der Lichtquelle davon streben. Da
eine Laterne eine punktférmige Lichtquelle darstellt, handelt es sich bei den Schatten
um das Bild einer Zentralprojektion mit der Lichtquelle als Zentrum und dem Boden
als Bildebene. Die Sonne ist ebenfalls punktférmig, allerdings kénnen die Strahlen
aufgrund der extremen Entfernung zur Erde als parallel angesehen werden, sodass
der Spezialfall der Parallelprojektion eintritt, welche in Kap. 5 besprochen wird. Ein
weiteres Beispiel zeigt Abb. 4.1.3. Wéhrend bei Sonnenlicht der Schattenwurf der
vertikalen Streben des Miilleimers parallel bleiben, streben sie links im Schein der
Lampe auseinander. Der Fluchtpunkt liegt dabei senkrecht unterhalb der Lampe,

denn sie ist das Projektionszentrum und der Boden die Bildebene.

4.2 Eigenschaften der Bilder

Da die Zentralprojektion dem natiirlichen Sehprozess nahe kommt, wirken die Bilder
realitdtsnah [31, S. 4]. Abb. 4.2.1 zeigt ein Haus mit einem Prisma als Dach, links ab-
gebildet durch die Parallelprojektion, rechts durch die Zentralprojektion. Da erstere
parallelentreu (s. Abb. 3.2.1, S. 56) ist, ist sofort erkennbar, dass das Haus aus einem
Quader und einem Prisma aufgebaut ist. Die Zentralprojektion ist im Fall von Gera-
den parallel zur Bildebene parallelentreu. Dies ist daher nur bei den Hohenlinien der
Fall. Alle anderen Geraden eines Parallelbiischels schneiden sich im Fluchtpunkt.
Aufgrund des abnehmenden Abstandes entsteht der Eindruck von Tiefe, weshalb
zentralprojektive Bilder realistischer wirken. Dagegen werden Léngen und Winkel

verzerrt. So sind gegeniiberliegende Kanten des Quaders gleich lang. Wahrend links
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Abb. 4.2.1 Ein Haus, links in Parallelprojektion und rechts in Zentralprojektion

Abb. 4.2.2 Aufgrund der Teilverhaltnistreue ist das Finden von Mittelpunkte bei
parallelprojektiven Bildern einfacher als bei zentralprojektiven.

im Bild zwar die Langen sich dndern, diese aber dennoch untereinander gleich sind,

so ist im rechten Bild die obere Kante des Quaders kiirzer als die untere.

Aufgrund der Parallelen- und Teilverhéltnistreue lassen sich parallelprojektive Bil-
der leichter konstruieren. Die Orthogonale durch die Dachspitze des Prismas teilt die
Kanten des Quaders im Verhéltnis 1:3, welches im linken Bild von Abb. 4.2.1 trotz
verinderter Kantenléngen erhalten bleibt. Im rechten zentralprojektiven Bild ist dies
nicht mehr der Fall.

Abb. 4.2.2 zeigt die Konstruktion des Mittelpunktes auf der Seitenfliche des Qua-
ders. In beiden Fallen ldsst sich der Mittelpunkt iiber den Schnittpunkt der beiden
Diagonalen (blau) finden, da diese sich in einem Rechteck dort schneiden. Hier gilt
die Inzidenztreue. Dagegen lasst sich im linken Bild der Mittelpunkt zuséatzlich iiber
den Schnittpunkt der Mittellinien (orange) finden. Dies ist rechts nicht mehr mog-
lich, denn das Bild der Mittellinie ist in Richtung des Fluchtpunktes verschoben.
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4.3 Konstruktionsmethoden

Mithilfe von Fotoapparaten lassen sich zentralprojektive Bilder leicht erzeugen, so-
dass Schiilerinnen und Schiiler selbst einige interessante Eigenschaften anhand von

Fotografien entdecken kénnen. Eine Aufgabe dazu kann wie folgt aussehen:
Aufgabenbeispiel 4.3.1

Mache mit deiner Handykamera oder mit einem Fotoapparat Fotos vom Schul-
flur, dem Treppenhaus oder anderen Orten nahe des Klassenzimmers, welche
Objekte mit parallelen Kanten enthalten, wie die Treppenstufen, Saulen, Flie-
sen usw. Nachdem deine Fotos gedruckt wurden, nehme Lineal und Bleistift

und mache folgendes:

a) Was fallt dir auf, wenn du dir die Treppenstufen anschaust oder alle an-

deren Kanten, welche urspriinglich parallel waren?

b) Verldngere die besonderen Kanten aus a) im Bild. Was fallt dir auf?

Mit den eigenen Fotos sollen die Schiilerinnen und Schiiler anhand der Leitfragen
entdecken, dass sich die urspriinglich parallelen Kanten im Foto schneiden, wenn sie
verlangert werden, und insbesondere kopunktal sind. Im Falle der Treppen finden
sich auch parallele Geradenbiischel, welche sich nicht in einem Punkt des Horizontes
schneiden, da die Ebene nicht parallel zum Boden verlauft. Diese Untersuchung bietet
zwei Moglichkeiten der Weiterfilhrung. Zum einen lassen sich diese Beobachtungen
mathematisch iiber die Zentralprojektion begriinden, entweder iiber die Konstruktion
der Sehstrahlen mithilfe von GeoGebra oder mit Mitteln der analytischen Geometrie
aus der Sekundarstufe II, welche in einem nachfolgenden Abschnitt erldutert wird.
Andererseits bietet dies auch eine Motivation sich mit Konstruktionsmethoden aus

dem Kunstunterricht auseinanderzusetzen.

In Abb. 4.3.1 sind einige Fotografien, in denen besonders gut Eigenschaften der Zen-
tralprojektion von den Schiilerinnen und Schiiler untersucht werden kénnen. Lange
Flure fliichten besonders extrem im Fluchtpunkt, wie die blauen Linien in den Fotos
zeigen. Wir wissen, dass der Flur iiberall gleich breit ist, d.h. sowohl die Kanten im
Boden als auch an der Decke sind parallel zueinander. Doch auf den Fotos schneiden
sie sich im Fluchtpunkt. Auch die Oberkanten der Tiiren sind parallel zum Boden
ausgerichtet, denn niemand wiirde schrége Tiiren erwarten. Im Bild schneiden sich
die Verbindungsgeraden im selben Fluchtpunkt. Dagegen sind die orange markierten
Lampen parallel zur Bildebene ausgerichtet. Ihre Projektionen schneiden sich nicht

in einem gewo6hnlichen Punkt, sie werden ebenfalls auf parallele Geraden abgebildet.
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Abb. 4.3.1 Bahnsteige und lange Flure bieten besonders gute Motive, um sich mit
der Zentralprojektion auseinander zu setzen.

Kommen wir zu den Fotografien vom Bahnsteig und der Wendeltreppe. Am Bahn-
steig ist wieder der Fluchtpunkt aufgrund der langen Strecken deutlich hervorge-
hoben. Der Abstand und die Héhe der Lampenmasten werden in der Projektion
kleiner, je weiter weg sie sich von dem Betrachter befinden. Die weifsen Markierun-
gen am Bahnsteigrand sind ebenfalls parallel, sie haben aber eine andere Ausrichtung
als die Gleise. Ihre Bilder schneiden sich daher in einem anderen Fluchtpunkt, wie
die griinen Markierungen zeigen. Die Verbindungsgerade der Fluchtpunkte ist der
Horizont. Halt der Betrachter die Kamera parallel zum Boden, sollte der Horizont
auch parallel zum unteren Bildrand verlaufen.

Dies ist bei der Wendeltreppe im dritten Foto nicht der Fall, wie an der griinen
gestrichelten Markierung erkennbar ist. Die Wendeltreppe weist parallele Geraden
in verschiedenen Richtungen auf, sodass wir mit den Fluchtpunkten des blauen und
orangen Parallelbiischels den Horizont finden kénnen. Die griinen Linien sind parallel

zum Betrachter ausgerichtet, daher liegen sie auch parallel zum Horizont.
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Nun haben wir die Lage der Geraden besprochen, aber was passiert mit metrischen
Grofsen wie Langen und Winkeln? Die Tiiren des Flurs in Abb. 4.3.2 sind in Wirk-
lichkeit rechtwinklig, in der Projektion dagegen nicht. Die Winkel werden also durch
die Abbildung verzerrt. Wir wiirden erwarten, dass die Tiren allesamt gleich grof
sein sollten. Im Bild werden sie kleiner, je weiter weg sie sich vom Betrachter befin-
den. Somit werden auch Léngen veréndert.

Mithilfe eines Lineals kénnen Schiilerinnen und Schiiler erkunden, wie sich Abstdnde
durch die Projektion verédndern. Hierfiir wurde mit dem frei verfiigharen Programm
ImageJ Langen innerhalb der Bilder bzgl. einer frei definierten Skala bestimmt. Wir
markieren eine beliebige Strecke und ordnen dieser die Lange 10 zu. Das Programm
kennt die zugehorige Anzahl an Pixeln dieser Strecke, sodass hierdurch eine Skala
festgelegt wird. Dann wurden weitere Strecken markiert und von dem Programm
anhand dieser Skala gemessen.

Mit dem Lineal lasst sich zeigen, dass bei paralleler Lage des Lineals zum Fotoappa-
rat die Abstdnde dquidistant bleiben. Ordnen wir dem Abstand zwischen drei bzw.
zwei Zentimeter Markierungen die Lénge 10 zu, so ergibt sich nahezu derselbe Wert
an einer anderen Stelle auf dem Lineal. Demnach ist das Streckenverhéltnis zwischen
der wahren Strecke und der auf dem Foto gleich geblieben. Dieses Beispiel hat somit
erfolgreich gezeigt, dass die Projektion bei paralleler Ausrichtung der Strecke zur

Bildebene streckenverhaltnistreu ist.

Wird das Lineal schrig zum Fotoapparat gelegt, verkleinern sich die Abstdnde der
Markierungen fiir 1 cm, je weiter sie nach hinten liegen. Wir kénnen dagegen zeigen,
dass das Doppelverhiltnis giiltig ist. Wir legen wieder mit ImageJ eine willkiirliche
Skala fest, indem wir der Bildstrecke zwischen den Markierungen fiir 0 und 4 cm die
Lénge 10 zuordnen. Nach der Definition des Doppelverhéltnisses (Def. 2.3.2, S. 30)
bendtigen wir eine Strecke AB sowie zwei Teilungspunkte C' und D. Wir legen A
an die Markierung fiir 0 cm sowie B an 9, C' an 4 und D an 6. Somit ergeben sich

folgende Lénge fiir Strecke und Bildstrecke:

d(A,C)=4cm  d(C,B)=5cm | TV(A,B,C)=0,80

U

A.CY =10 d(C',B')=10,32 | TV(A',B',C") ~ 0,97

d

( (@, (
( (' (
(A,D) =6cm d(D,B) = TV(A,B,D) =
d(A',D') = 14,36 d(D' (A

,B)=5,96 | TV(A, B\ D)~ 2,41

Aus den Teilverhéltnissen ergeben sich dann folgende Doppelverhéltnisse:

DV(A,B,C,D) ~ 0,82 DV(A',B',C',D') ~ 0,83 .
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Abb. 4.3.2 Mit einem Lineal kénnen Schiilerinnen und Schiiler erkunden, wie sich
Léngen durch das Fotografieren verdndern.
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Das Doppelverhéltnis ist fiir die Strecke und ihre Bildstrecke bis auf einen Rundungs-
fehler identisch. Wir betrachten noch einmal den Flur in Abb. 4.3.2. Da auf dem Foto

kein Lineal zum Messen der urspriinglichen Strecken abgebildet wurde, nehmen wir

als Beispiel die Deckenleuchten. Wir miissen nicht den exakten Abstand zwischen den

Leuchten kennen, da wir fiir das Doppelverhéltnis zuvor das Teilverhéltnis bestim-

men miissen. Wir gehen davon aus, dass die Leuchten in dem offentlichen Gebédude

entlang des Flures im gleichen Abstand a angebracht wurden:

d(A,C) =a d

ACy=10  d

C,B) =2a TV(A,B

C)=0,5

d

( (
( (
(4,D) = 2a d(D, B) =
( (

d(A',D'") = 14,37 d(D',B

(
C',B') = 6.76 TV(A’,B C') ~ 1,48
(

B') =2.39

TV (A, B,D) =

TV(A',B',D') ~ 6,01

= DV(A,B,C,D) = 0,25

DV(A',B',C',D') ~ 0,25

Es wurden noch die Bildstrecken der Leuchten am Ende des Flurs vermessen, um

zu zeigen, dass das Doppelverhéltnis auch an anderen Stellen in Abb. 4.3.2 erhalten

bleibt:
d(A,C) =a d(C,B)=2a | TV(A,B,C)=0,5
d(A',C") =2,58 d(C',B')=2.79 | TV(A',B',C") ~ 0,92
d(A,D)=2a  d(D,B)= TV(A,B,D) =2
d(A',D')=4,17 d(D',B')=1.20 | TV(A’, B, D') ~ 3,48

= DV(A,B,C,D)=0,25

Das letzte Foto zeigt quadratische Blo6-
cke als Sitzgelegenheiten auf einem
Vorplatz (Abb. 4.3.4).

schen Kacheln des Bodens bieten eben-

Die quadrati-

falls Moglichkeiten, das Doppelverhalt-
nis zwischen realem Raum und der Pro-
jektion zu untersuchen. Es dient &hnlich
eines Koordinatensystems auch zur Ori-
entierung. So sind alle drei Blocke Qua-

der mit quadratischer Grundflache und

DV(A',B',C'",D') ~ 0,26

Abb. 4.3.3 Quader auf einem Vorplatz

parallel zum Fotoapparat orientiert. Die Tiefenlinien fliichten im Fluchtpunkt auf

dem Horizont.
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FP1

Abb. 4.3.4 Konstruktion der Zwei-Punkt-Perspektive bzw. Ubereck-Perspektive

Unterschiedlich orientierte Wiirfel sind Beispiele, wie sie auch in Zeichenbiichern vor-
kommen. Abb. 4.3.4 zeigt eine solche Szene. Bis auf eine Ausnahme sind alle Wiirfel
um 45° gedreht, denn eine der Diagonalen ist parallel zum Horizont ausgerichtet.
Aber woran lésst sich erkennen, dass hier Wiirfel abgebildet sind? Die Fluchtpunkte
FP1 und FP2 sind gleich weit vom Hauptpunkt entfernt, welcher hier mit FP3
zusammen fallt. Demnach ist die Grundflache der Quader quadratisch. Ob auch die
Hohe gleich ist, ldsst sich aus dem Abbild nicht sagen, da der Abstand des Beob-
achters zur Bildflache nicht gegeben ist. Die Objekte lassen sich somit nicht in die
Bildebene entlang der Tiefenlinien verschieben, wo Léngen auf sich selbst abgebildet

werden.

Im Kunstunterricht werden Szenen oftmals nicht aus Objekten mit gegebenen Ma-
fen konstruiert. Stattdessen wird erst die Lage des Horizontes festgelegt und dann
ein oder zwei Fluchtpunkte, um bspw. eine Hauserreihe zu konstruieren. Die Maise
der Hauser ist dabei nicht nétig. Wir werden in folgenden Konstruktionsverfahren
vorstellen, welche Objekte anhand des Grund- bzw. Aufrisses auf eine Bildebene pro-
jizieren, deren Abstand zum Betrachter bekannt ist. Zuvor soll aber noch an einigen
Fotografien gezeigt werden, welche Auswirkungen die Lage des Horizontes bzw. die
Anzahl der Fluchtpunkte auf das Bild der Szene hat.
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4.3.1 Fluchtpunktperspektive und Horizontlage

Im Kunstunterricht wird die Konstruktion von Gebau-

den oder H&userreihen mithilfe der Fluchtpunktperspek-
tive gelehrt, welches direkt in der Bildebene ausgefiihrt

wird. Zuerst wird die Lage des Horizontes mit einer Li-
nie parallel zum Blattrand festgelegt, dann ein oder zwei

Fluchtpunkte hierauf markiert und mithilfe von Quadern

und Prismen die Szene konstruiert. Wir wollen im folgen-

den einige Beispiele anschauen, welche Auswirkungen die

Anzahl der Fluchtpunkte sowie die Lage des Horizontes

auf die entstehenden Bilder haben.

Als Beispiel betrachten wir den obigen Wiirfel, welcher hier zur besseren Darstellung
der Mafe in Parallelprojektion abgebildet ist. Zu jedem Beispiel gibt es ein Foto von
demselben Gebaude, welcher mit entsprechender Ausrichtung der Kamera erzeugt

wurde.

Ein Fluchtpunkt: Die vordere Seite
des Wiirfels ist parallel zur Bildebene

ausgerichtet und der Boden liegt auf
der Objektebene. Somit liegen nur die

nach hinten fliichtenden Kanten nicht

parallel zur Bildebene, sodass diese sich

in einem Fluchtpunkt schneiden, wel-

cher auf dem Horizont liegt. Dieser war
auf halber Hohe des Wiirfels ausgerich-
tet.

Schiilerinnen und Schiiler konnen diese
Situation z.B. mit einer Handykamera
nachstellen, wie das Beispiel eines Kir-

cheneinganges zeigt. Die Kamera ist par-

allel zu den Stufen sowie senkrecht zum
Boden ausgerichtet. Der Fluchtpunkt liegt in der Bildmitte, in der Zeichnung dagegen

ist er seitlich nach rechts verschoben.
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Zwei Fluchtpunkte: Der Wiirfel ist
nun um die senkrechte Mittelach-
se verdreht, sodass die Vordersei-
te nicht mehr parallel zur Bilde-
bene ausgerichtet ist. Somit fliich-
tet eine weitere Schar paralleler Ge-
raden in einem zweiten Fluchtpunkt
auf der anderen Seite des Hauptpunk-
tes. Der Horizont liegt weiterhin mit-
tig.

Im Realbeispiel ist die Ecke der Kir-
che fotografiert, wobei die Kamera nun
auch verdreht ist. Da wir die Kirche
als Objekt nicht verdrehen kénnen, wird
stattdessen die Bildebene bewegt. An-
hand der Fensterreihe sind die bei-
den verschiedenen Fluchtpunkte erkenn-

bar.

Drei Fluchtpunkte: Nun wird der
Wiirfel noch gegeniiber des Bodens ver-
kippt, indem bspw. die vordere Ecke
nach unten gedreht wird. Fiir eine besse-
re Ansicht liegt der Horizont nun ober-
halb des Wiirfels. Nun ist auch die dritte
Kantenschar nicht mehr parallel, sodass
wir nun die maximale Anzahl an Flucht-
punkten erreicht haben. Dieser liegt al-
lerdings nicht mehr auf dem Horizont,
da die vertikalen Kanten nicht in dersel-
ben oder parallelen Ebene liegen, wie die
ersten beiden Scharen von Kanten.

Ausgehend von der vorherigen Ausrich-
tung der Kamera auf die Ecke des Kirch-
turmes drehen wir nun die Kamera nach
oben. Der Horizont verschiebt sich nach
unten, da wir nun zum Turm aufschau-

e1.
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Wie in den vorherigen Fotos schon angespro-

chen, bestimmt die Lage des Horizontes die Ho-

he des Zentrums iiber der Objektebene, bspw.

die Augenhohe des Betrachters. Die neben-

stehenden Beispiele zeigen wieder den Wiir-

fel, die graue Flache entspricht der Riicksei-
te.

Im ersten Beispiel schauen wir auf den Boden

aber unter die Decke, d.h. der Horizont liegt mit-

tig vom Wiirfel. Wir bezeichnen dies als Normal-

perspektive.

Beim mittleren Wiirfel sehen wir nun die
obere Seite der Deckenflache. Die Positi-

on des Betrachters hat sich erhoht, so-
dass der Horizont nun oberhalb des Wiirfels

liegt. Dies wird als Vogelperspektive bezeich-

net.
Beim letzten Wiirfel sehen wir wieder die Un-

terseite der Decke, aber ebenso auch die Un-

terseite des Bodens. Der Horizont liegt nun

viel tiefer als bei der Normalansicht, sodass

wir hier von einer Froschperspektive spre-

,,,,,,,,,,,,,,,,,,, chen.

Abb. 4.3.5 Ein Wiirfel aus ver-
schiedenen Ansichten

Der Vorteil der Fluchtpunktkonstruktionen ist, dass die Schiilerinnen und Schiiler im
Kunstunterricht nur die Lage des Horizontes auf der Bildflache und die Anzahl der
Fluchtpunkte festlegen miissen, um eine Szene aus einfachen geometrischen Kérpern
zu zeichnen.! Nachteil dieser Methode ist, dass keine genauen Make von Objekten
verwendet werden. Der zuvor dargestellte Wiirfel erscheint aufgrund der Verzerrung
durch die Projektion wie ein Quader, sodass das urspriingliche Objekt auch ein Qua-
der hétte sein konnen. Die Zentralprojektion wird somit im Kunstunterricht rein

als kiinstlerisches Bildmittel verwendet, um rdumliche Situationen moglichst reali-

'In den Kernlehrplinen fiir Gymnasium und Gesamtschulen in NRW wird die Perspektive nur
vage angesprochen. So wird fiir die Sekundarstufe I die Beschéftigung mit der Linearperspektive
festgelegt [23, S. 22] wihrend in der Oberstufe nur noch von raumillusiondren Bildmitteln gesprochen
wird [26, S. 19]. Nur im Lehrplan zur Sekundarstufe I am Gymnasium finden sich noch Begriffe wie
Ein-Fluchtpunkt- Perspektive und Uber-Eck-Perspektive [21, S. 23], mit welcher die Verwendung von
zwei Fluchtpunkten gemeint ist.
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tatsnah auf dem Blatt darstellen zu konnen. Es geht weniger um den theoretischen
Hintergrund oder zur Abbildung von konkreten Objekten mit vorgegebenen Mafen.
Demnach werden Fluchtpunkte von Schiilerinnen und Schiiler eher intuitiv verwen-
det, die Lage von zwei Fluchtpunkten auf dem Horizont wird nach Gefiihl gesetzt,

sodass die Ecken von Hausern nicht zu flach und nicht zu spitz erscheinen.

Wir wollen im folgenden Abschnitt eine Konstruktionsmethode vorstellen, bei wel-
cher die Mafse und Lage von Objekten zur Bildebene im Grundriss sowie ihre Hohe im
Aufriss vorgegeben werden. Mithilfe der Invarianten und der Fluchtpunkte als Bild

von Fernpunkten wird dann die Projektion sukzessive in der Bildebene aufgebaut.
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4.3.2 Konstruktionsmethoden mit Grund- und Aufriss

Wir kommen nun zu einigen Methoden, wie sich zentralprojektive Bilder von ein-
fachen Objekten, wie Wiirfel, Quader oder Pyramide, konstruieren lassen [43]. Wir
bendtigen dafiir den Grundriss der Objekte. Fiir die Hohe wird eine Linie im Aufriss
gezeigt. Diese Information kann aber auch in den Aufgabentext geschrieben werden,
ebenso die Lage des Horizontes bzgl. der Risskante, welche auch als Bildspur bezeich-
net wird.

Wir werden die Strecke AB in folgender Lage abbilden:

i) im Grundriss, in beliebiger Richtung liegend
ii) senkrecht zur Bildebene, in beliebiger Hohe
iii) parallel zur Bildebene, in beliebiger Hohe
iv) senkrecht zum Grundriss, auf ihr stehend mit angegebener Hohe

und in Bezug auf die Eigenschaften der zentralprojektiven Abbildung erldutern.

Abb. 4.3.6 zeigt die Konstruktion der Strecke AB im Grundriss. Z ist dabei das Pro-
jektionszentrum, Z’ befindet sich senkrecht dazu in der Grundrissebene. H ist der
Hauptpunkt und liegt ebenfalls senkrecht zum Zentrum, allerdings in der Bildebene,
welche die Grundrissebene nach Vereinbarung orthogonal schneiden soll. Demnach
liegt der Hauptpunkt auf dem Horizont. H im Grundriss ist H’, welcher sich auf der
Schnittgeraden, der Bildspur, von Bild- und Grundrissebene befindet.

\\é,

Grundrissebene

Abb. 4.3.6 Konstruktion des zentralprojektiven Bild einer Strecke im Grundriss
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Der Projektionsstrahl von A schneidet die Bildebene in ¢,(A), dem Bild von A. Neh-
men wir neben dem Projektionsstrahl auch die Verbindungslinie von A und Z’ hinzu,
so ergibt sich ein rechtwinkliges Dreieck, welches in der Abbildung orange markiert
ist. Dabei schneidet AZ’, der Projektionsstrahl im Grundriss, die Bildspur in A,,
welche senkrecht unterhalb von ¢, (A) liegt.

Es gibt nun verschiedene Moglichkeiten, dass Bild von A ohne die 3D Darstellung zu
konstruieren. Wir stellen uns vor, dass die Bildebene nach links in die Grundrissebe-
ne geklappt wird, sodass wir nun innerhalb einer Ebene konstruieren kénnen. Die
erste Moglichkeit liegt darin, das orange markierte Dreieck seitlich iiber AZ’ in die
Grundrissebene zu drehen. Dann liefert die Verbindungslinie ZA’ den Schnittpunkt
A,, iber welchen dann senkrecht der Abstand d(A4,, ¢.(A)) abgetragen werden muss.
Dieser Abstand ergibt sich iiber den Schnittpunkt ZA mit der Bildspur. Dies ist un-
terhalb der linken Abbildung skizziert. Dies entspricht auch der Funktionsweise des
Perspektographen von J. H. Lambert, welcher im Abschnitt 8.1 vorgestellt wird.

Rechts in der Abb. 4.3.6 liegt die Konstruktion in der 3D Darstellung vor, welche fiir
i) nachfolgend erlautert wird. Dies entspricht der zweiten Moglichkeit, das Bild von
A zu konstruieren. Hierbei muss die Strecke Z’Z nicht in die Grundrissebene gedreht
werden. Die Strecke AB wird erweitert, bis sie die Bildspur in Sap schneidet. Dann
wird ihr Fluchtpunkt F4p ermittelt und mit Sap verbunden, sodass das Bild der
Geraden AB entsteht. Nun wird A mit Z’ verbunden und in dem Schnittpunkt A,
mit der Bildspur die Senkrechte auf dieser errichtet. Diese schneidet die Bildgerade in
¢-(A). Die Konstruktion verschiedener Lagen der Strecke AB wird nun schrittweise

erlautert.
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Konstruktionsmethode 4.3.1

Gegeben ist eine Strecke AB im Grundriss in allgemeiner Lage und der Fuk-

punkt Z’ des Projektionszentrums Z. Es soll das zentralprojektive Bild der

Strecke konstruiert werden, wobei der Hauptpunkt H 5cm iiber der Grundris-

sebene liegt.

Grundriss

Bildspur

Zuerst wird die Bildgerade durch die Punkte ¢,(A) und ¢, (B) konstruiert und dann

anschlieffend die Bildstrecke. Wir gehen dabei in Abb. 4.3.7 wie folgt vor:

1. Verldngere im Grundriss die Strecke iiber B hinaus, bis sie
die Bildspur schneidet.

2. Zeichne die Parallele durch Z’ zu AB, bis sie die Bildspur
schneidet

3. Verbinde Z’ jeweils mit A und B und markiere die Schnitt-
punkte mit der Bildspur.

4. Messe die Abstinde der o.g. Schnittpunkte zu H' und iiber-
trage diese in der Bildebene auf die Bildspur. Ausgenom-
men sei F’, welcher auf den Horizont {ibertragen wird.

5. Verbinde in der Bildebene Ssp mit F' und erhalte so die
Bildgerade. Félle jeweils durch A, und B, das Lot auf die
Bildspur und markiere die Schnittpunkte mit der Bildgera-

den

=

SaB
FI
Ap, By

F

Um die Bildgerade zu konstruieren, nutzen wir aus, dass nach Satz 3.1.2, S. 49, jeder

Schnittpunkt eines Objektes mit der Bildebene zu einem Fixpunkt fiithrt. Daher ist

auch Sap ein Fixpunkt, sodass wir einen Punkt der Bildgerade konstruieren kénnen.
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Fiir den zweiten Punkt nutzen wir den Fluchtpunkt von AB aus, welcher nach
Satz 3.1.3, S. 49, dem Bild des Fernpunktes entspricht, welcher die Richtung der
Geraden AB bestimmt. Wir kénnen den Fernpunkt selbst nicht zeichnen, wir wissen
aber, dass alle Gerade parallel zu AB diesen Fernpunkt gemeinsam haben. Die Par-
allele durch Z ist auch eine Parallele durch Z’, sodass wir hier den LotfuBpunkt F’
von F' konstruieren kénnen. Damit haben wir das Bild von AB. Aufgrund der Inzi-
denztreue liegen die Bilder von A und B auf der Bildgeraden. Um die entsprechenden
Ordner zu finden, zeichnen wir in den Grundriss die Risse der Projektionsstrahlen,
indem wir Z’ mit den Urbildpunkten verbinden und iibertragen diese auf die Kopie
der Bildspur im unteren Teil der Abb. 4.3.7.

Grundriss
F \‘\ H ,/'/

Ay = Sap Bildspur

Bildebene
a H
Horizont
¢:(A):
3 v.(B)
A, H B, Sap

Abb. 4.3.7 Losung zur Konstruktionsmethode 4.3.1
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Wir kommen zum Fall i7), d.h. die Strecke durchstfst nun senkrecht die Bildebene.
Konstruktionsmethode 4.3.2

Gegeben ist eine Strecke AB, welche senkrecht zur Bildebene ist. Ihr Grundriss
ist A’B’, der Fukpunkt des Projektionszentrum ist Z’. Es soll das zentralprojek-
tive Bild der Strecke konstruiert werden, wobei der Hauptpunkt H 5cm iiber

der Grundrissebene liegt.

Grundriss

A/

H/

Bildspur

B/

Die Konstruktion folgt nach denselben Schritten wir im Fall 7). Der Sonderfall hier
zeichnet sich dadurch aus, dass die Parallele durch Z’ zu A’ B’ die Bildspur im Grund-
riss H' des Hauptpunktes schneidet, wie Abb. 4.3.8 zeigt. D.h. der zweite Schritt
entfillt, da wir in diesem Fall den Fluchtpunkt schon kennen. Es entfillt auch der
erste Schritt, da die Strecke A’B’ die Bildspur schneidet.

Wir wissen, dass die Richtung der urspriinglichen Geraden den Fluchtpunkt be-
stimmt. Falls diese senkrecht zur Bildebene verlduft, so ist der Hauptpunkt H der

Fluchtpunkt. Nun betrachten wir einen zur Bildebene parallele Strecke.
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Abb. 4.3.8 Losung zur Konstruktionsmethode 4.3.2
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Konstruktionsmethode 4.3.3

Gegeben ist eine Strecke AB, welche parallel zur Bildebene ist. IThr Grundriss
ist A’B’, der Fukpunkt des Projektionszentrums ist Z’. Es soll das zentralpro-
jektive Bild der Strecke konstruiert werden, wobei der Hauptpunkt H 5 cm iiber

der Grundrissebene liegt.

Grundriss

H/

Bildspur

7

Wiirden wir eine Parallele durch Z’ zu A’B’ ziehen, so ist diese auch parallel zur
Bildspur. Der Schnittpunkt ist nun derselbe Fernpunkt wie von A’B’. Demnach ist
auch die Bildgerade parallel zur Bildebene. Wir wissen allerdings nicht, in welcher
Hohe sich diese iiber der Grundrissebene befindet und nutzen daher eine Hilfsstrecke
h. Abb. 4.3.9 zeigt die Losung nach folgenden Schritten:

1. Fille das Lot durch B’ auf die Bildspur und markiere den = h, By,
Schnittpunkt mit ihr.

2. Verbinde Z’ jeweils mit A und B und markiere die Schnitt- = Ap, By
punkte mit der Bildspur.

3. Messe die Abstéande der o.g. Schnittpunkte zu H' und iiber-
trage diese in der Bildebene auf die Bildspur.

4. Verbinde in der Bildebene Bj mit H und erhalte so die = HBy,
Bildgerade von h.

5. Félle das Lot durch By, und markiere den Schnittpunkt mit = v:(B)
HBjy,

6. Zeichne die Parallele durch ¢,(B) zum Horizont sowie das = ¢ (A)
Lot durch A, auf die Bildspur
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Abb. 4.3.9 Losung zur Konstruktionsmethode 4.3.3

Mithilfe der vorherigen Methoden lédsst sich die senkrechte Strecke h konstruieren und
von A und B finden.

iiber die Projektionsstrahlen von A’ und B’ lassen sich die Endpunkte der Bildstrecke
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Konstruktionsmethode 4.3.4

Gegeben ist eine Strecke AB, welche senkrecht zur Objektebene ist. Ihr Grund-
riss ist daher ein Punkt mit A’ = B’. Die Hohe der Strecke muss daher dem
Aufriss entnommen werden. Der Fukpunkt des Projektionszentrums ist Z’. Es
soll das zentralprojektive Bild der Strecke konstruiert werden, wobei der Haupt-

punkt H 5cm iiber der Grundrissebene liegt.

Grundriss

<A =B

Bildspur Aufriss

7

Wir kommen zur letzten Grundkonstruktion, wo die Strecke nun senkrecht zur Grund-
riss- bzw. Objektebene steht. Somit befindet sie sich in einer zur Bildebene parallelen
Ebene. Hier tritt der Sonderfall bei der Auflistung der Invarianten in Abb. 3.2.1, S. 56,
ein. Die Zentralprojektion wird zur Ahnlichkeitsabbildung, d.h. Gerade und Bildge-
rade sind zueinander parallel. Abb. 4.3.10 zeigt die Lésung nach folgenden Schritten:

1. Fille das Lot durch A’ auf die Bildspur und markiere den = h, Ay,
Schnittpunkt mit ihr.

2. Verbinde Z’ mit A’ und markiere die Schnittpunkte mit der = A,
Bildspur.

3. Messe die Abstande der o.g. Schnittpunkte zu H' und iiber-
trage diese in der Bildebene auf die Bildspur.

4. Verbinde in der Bildebene Aj; mit H und erhalte so die = HA,;
Bildgerade von h.

5. Félle das Lot durch Ay und tragen die Linge a im Aufriss
ab. Verbinde den oberen Endpunkt von a mit H.

6. Félle das Lot durch A,,. Diese schneidet die Strecken aus 4. = ©v:(A),
und 5. in den Endpunkten der Bildstrecke v:(B)
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Abb. 4.3.10 Loésung zur Konstruktionsmethode 4.3.4

Wir wissen, dass jedes Objekt in der Bildebene sich nicht verdndert, d.h. a wird
an Ay in wahrer Grofe abgebildet. Je weiter weg sich das Objekt von der Bildebene
befindet, umso kleiner wird es. Das Dreieck mit der Spitze H und der Grundseite a ist
Teil des Bildes einer Ebene, welche a enthélt und senkrecht die Bildebene schneidet.
Wir ziehen gedanklich die Strecke a soweit nach ,hinten zum Horizont, bis sie iiber
A, steht, da dieser Punkt die Position der Bildstrecke angibt.
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Dies waren die vier Grundkonstruktionen, mit welchen sich einfache, mathematische
Grundkorper iiber den Grundriss und die Hohe darstellen lassen. Z’ bestimmt dabei
den Fufpunkt des Projektionszentrums und stellt die Position des Beobachters dar.
Der Abstand der Bildspur zum Horizont entspricht der Hohe des Augenpunktes iiber
der Objektebene. Wir zeigen im folgenden ein Beispiel eines gedrehten Wiirfels und
eines parallel zur Bildebene ausgerichteten Quaders. Mit dieser Anordnung kommen

alle zuvor genannten Methoden zum Einsatz.

Konstruktionsbeispiel 4.3.1

Gegeben ist ein Wiirfel und ein Quader im Grundriss, sowie der Fufipunkt Z’
des Projektionszentrums. Die Hohen der Objekte kénnen der Skizze entnom-
men werden. Mithilfe der Grundkonstruktionen soll das zentralprojektive Bild
der beiden Korper erstellt werden. Das Projektionszentrum liegt dabei wieder
5cm oberhalb der Objektebene.

Grundriss

\/ H Bildspur Objekthohen

7

Wir konstruieren die Projektionen der Korper in mehreren Schritten:
1. Boden des Wiirfels
2. Vervollstandigung des Wiirfels
3. Boden des Quaders

4. Vervollstandigung des Quaders
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Abb. 4.3.11 - 4.3.14 zeigt die einzelnen Ergebnisse der o.g. Schritte. Wir beginnen
jeweils mit den Grundflichen und konstruieren dann die Deckflichen mithilfe der
Senkrechten durch die Eckpunkte der Grundflichen. Da der Wiirfel um die senk-
rechte Achse gedreht ist, existieren zwei Fluchtpunkte, welche iiber die Parallelen
durch Z’ zu den entsprechenden Seitenkanten ermittelt werden. Wir bendtigen nun
nicht alle Fixpunkte S bzw. Schnittpunkte der Projektionsstrahlen. Spo und Scp
liefert uns schon der Grundriss, S4p muss ergdnzt werden. Wir verbinden F4p mit
Sap und Scp sowie Fup mit Sgo. Diese schneidet die ersten beiden Strahlen in
¢-(B) und ¢,(C). Mit A, erhalten wir das Bild von A und kénnen den fehlenden
Strahl durch Fyp ergénzen, womit wir ¢, (D) finden. Damit kennen wir die Grund-
flache des Wiirfels.

Wir tragen im zweiten Schritt die Hohe a an Spc und S¢op ab. Wie zuvor zur Kon-
struktionsmethode 4.3.4 beschrieben, wird a genau dann auf sich selbst abgebildet,
wenn sie in der Bildebene liegt. Liegt sie auf der zum Projektionszentrum abgewand-
ten Seite der Bildebene, so ist das Bild von a kleiner, im anderen Fall wird es grofer.
Dabher ist die Kante iiber ¢.(C) ldnger als tiber ¢, (B) (vgl. Abb. 4.3.15). Wir verbin-
den die Fluchtpunkte mit den Endpunkten der eingetragenen Hohen. Die Strahlen
schneiden sich in ¢, (G). Dann zeichnen wir die Seitenkanten iiber ¢, (B) und ¢, (D)
an, deren Endpunkte @, (F) bzw. ¢, (H) auf den Strecken Fapp.(G) bzw. Fapp.(G)
liegen. Ergénzen wir die zweiten, oberen Strahlen durch die Fluchtpunkte, so schnei-
den diese sich in ¢, (E). Damit ist das Bild des Wiirfel konstruiert.

Wir kommen zum Boden des Quaders. Der Fluchtpunkt der Geraden UR und T'S
ist der Hauptpunkt H, wihrend die Geraden UT und RS auf Parallelen projiziert
werden. Auch hier gibt es wieder verschiedene Wege, denn nicht alle Schnittpunk-
te der Projektionsstrahlen mit der Bildebene bzw. Fixpunkte werden bendtigt. Mit
R,, S, und h wird die Kante durch ¢, (R) und ¢, (5) nach der Konstruktionsmethode
4.3.9 erstellt und die Endpunkte mit H verbunden. Mit U, lésst sich ¢, (U) finden,
durch welche die zweite Parallele gezogen wird, um ¢, (7") zu erhalten. Damit ist die
Bodenflache fertig.

Im letzten Schritt wird die Deckfliche ergénzt. Wir tragen an Spg die Hohe b aus
der Aufgabenstellung ab und verbinden den Endpunkt wieder mit H. Wir ziehen an
0. (S)bzw. ¢,(T) die Kante hoch und erhalten ¢,(W) bzw. ¢,(X). Wir ziehen die
Parallele zur Bildspur durch ¢.(W) und ¢,(X) und ziehen an ¢,(R) und ¢.(U) die
Kanten hoch. Die Geraden schneiden sich dann in ¢,(V) und ¢,(Y"), sodass wir alle
oberen Eckpunkte erhalten haben. Abb. 4.3.15 zeigt das Endergebnis mit angedeu-

teter Bildspur und Horizontlinie.
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Abb. 4.3.11 Loésung des Konstruktionsbeispiels 4.3.1, 1. Schritt
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Abb. 4.3.12 Losung des Konstruktionsbeispiels 4.3.1, 2. Schritt
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Abb. 4.3.13 Loésung des Konstruktionsbeispiels 4.3.1, 3. Schritt
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Abb. 4.3.14 Loésung des Konstruktionsbeispiels 4.3.1, 4. Schritt
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Abb. 4.3.15 Projektion von Wiirfel und Quader im Konstruktionsbeispiel 4.3.1
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Wir kommen nun zu weiteren Aufgabenbeispielen, aus denen sich neue Fragestel-
lungen fiir den Unterricht ergeben kénnen. Zum einen haben wir in den Lésungen
gesehen, dass es verschiedene Wege geben kann, einen Quader bzw. Wiirfel zu kon-
struieren, denn nicht alle Schnittpunkte der Projektionsstrahlen mit der Bildspur
wurden benétigt oder nicht alle Seiten mussten im Grundriss bis zur Bildspur ver-
langert werden. Je nach Lage der Objekte im Grundriss kann ein Fluchtpunkt nicht
mehr gezeichnet werden, da der Schnittpunkt der Parallelen durch Z’ mit der Bild-
spur auferhalb des Blattes liegt. Dann miissen andere Alternativen genutzt wer-
den. Im folgenden Beispiel besteht das Objekt aus einem Quader mit quadratischer
Grundflache, auf welchem eine Pyramide steht. Fiir die Konstruktion nutzen wir die

Diagonalen im Quadrat.
Konstruktionsbeispiel 4.3.2

Gegeben ist ein Quader, auf welcher eine quadratische Pyramide aufliegt, im
Grundriss, sowie der Fukpunkt Z’ des Projektionszentrums. Der Quader hat
die Hohe a und der Abstand vom Boden zur Spitze S betrégt b. Mithilfe der
Grundkonstruktionen soll das zentralprojektive Bild erstellt werden. Das Pro-

jektionszentrum liegt dabei wieder 5 cm oberhalb der Objektebene.

Grundriss

Bildspur Objekthohe

7

Wir konstruieren zuerst die quadratische Grundfliche des Quaders. Je nach Lage
der Objekte zur Bildebene kann es passieren, dass die Parallele zu einer Kante durch
das Projektionszentrum Z’ die Bildspur weit entfernt vom Hauptpunkt H’ schnei-
det, sodass der Schnittpunkt nicht mehr auf dem Zeichenblatt liegt. Als Alternative
nutzen wir den Fluchtpunkt der Geraden I F'. Sie verlauft deutlich steiler, sodass der
Fluchtpunkt Fj, nahe bei H' liegt.
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Abb. 4.3.16 Konstruktion der Grundfliche des Wiirfels im Beispiel 4.3.2
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Die restliche Konstruktion in Abb. 4.3.16 orientiert sich an den vorher besprochenen
Methoden 4.3.1 - 4.3.4. Im zweiten Schritt nutzen wir die Objekthéhe a, um den
Quader zu vervollstdndigen. In Abb. 4.3.17 entsprechen die blauen Linien der Stre-

cke a.

Bildebene
F/ rH FU(
// Horizont
p-(X)
0:(U) Q p.(W)
. (V)

Abb. 4.3.17 Der fertige Quaders des Beispiels 4.3.2

Als dritten Schritt verbinden wir in Abb. 4.3.18 die Bilder von I und F bzw. E
und G, denn senkrecht iiber dem Schnittpunkt muss das Bild der Pyramidenspitze
liegen. Wir nutzen also hier wieder die Inzidenztreue der Projektion aus. Die Hohe
der Spitze finden wir mithilfe der Objekthéhe . Damit haben wir das gesamte Bild
konstruiert, welche in Abb. 4.3.19 dargestellt ist. Hierbei entspricht die obere Linie

dem Horizont und die untere der Bildspur.

Betrachten wir einmal die Losung in Abb. 4.3.19. Es fallt auf, dass die vordere Spitze
stark verzerrt wirkt. Das projektive Bild wird beeinflusst durch die Lage des Projek-
tionszentrums und der Bildebene, welche weiterhin senkrecht zur Objektebene liegen
soll. Denn diese bestimmen die Lage der Fluchtpunkte bzw. des Horizontes, wie wir
im Abschnitt 4.3.1 schon untersucht hatten. Wie kdnnen wir daher vorhersagen, ob
das Endergebnis verzerrt wirkt? Warum entsteht iiberhaupt dieser Eindruck, wenn
doch die Zentralprojektive wirklichkeitsnahe Bilder ermoglichen soll? Die Zentralpro-
jektion ist ein vereinfachtes Modell des menschlichen Sehens. Die erste Vereinfachung
ist die Reduktion von zwei auf ein Projektionszentrum. Dadurch verringert sich der
dreidimensionale Eindruck. Die Verzerrung entsteht durch breite Blickwinkel, denn

das Bildfeld des menschlichen Auges ist begrenzt.

Wir benétigen daher ein Hilfsmittel als Orientierung, ob die Lage von Bildspur und
Zentrum geeignete Bilder erzeugt. In der Literatur finden wir hierzu den sog. Distanz-

kreis, welcher im folgenden Abschnitt vorgestellt wird.
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Abb. 4.3.18 Konstruktion des Bildes der Spitze S des Beispiels 4.3.2

N

Abb. 4.3.19 Das zentralprojektive des Quaders und der Pyramide des Beispiels 4.3.2
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4.3.3 Distanzkreis

Wir betrachten einmal den Quader im letzten Beispiel 4.3.2. Abb. 4.3.20 zeigt das
Bild und den entsprechenden Distanzkreis, dessen Mittelpunkt der Hauptpunkt H
ist. Der Radius entspricht der Entfernung des Betrachters zur Bildebene, d.h. dem
Abstand von Z’ zu H'.

Objekte innerhalb des Distanzkreises werden perspektivisch unverzerrt dargestellt.
Die Ecke des Quaders liegt auferhalb. Wir iiberlegen daher im Folgenden, welche
Moglichkeiten es gibt, den Distanzkreis zu verandern, in dem der Mittelpunkt ver-

schoben oder der Radius des Kreises vergrofiert wird.

D
Grundriss
C
A
a
BﬂdSpU.I‘ S‘\/) H’ \/ S/;(' S("/)
B
AR
."\.\\Distanzkreis
Fap | H Ipo
Scp

¢.(B)

Abb. 4.3.20 Die Projektion des Quaders liegt teilweise auflerhalb des Distanzkreises
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Wir stellen uns vor, der Betrachter wiirde sich auf den Boden setzen, d.h. sein Ab-
stand zur Bildebene bleibt gleich, allerdings verschiebt sich der Horizont nach unten,
da nun das Projektionszentrum néher an der Objektebene liegt. Der Radius des
Distanzkreises bleibt gleich, aber der Mittelpunkt verschiebt sich in Richtung der
Bildspur. Abb. 4.3.21 zeigt nun, dass der Wiirfel innerhalb des Kreises liegt und die

vordere Spitze nicht mehr verzerrt wirkt.

Bildebene
T Distanzkreis
Fup ': H Fpe Horizont
L eA) Gl
bw H' \V Scp
2.(B)

Abb. 4.3.21 Verringerung des Abstandes von Projektionszentrum und Objektebene

Gehen wir zuriick zur Ausgangssituation, d.h. unser Betrachter steht wieder. Wir
andern nun die Lage der Bildebene bzw. drehen den Quader senkrecht zur Objek-
tebene. Nun verschieben sich die Fluchtpunkte entlang des Horizontes. Wir sehen in
Abb. 4.3.22, dass dadurch das Bild des Wiirfels wieder in den Distanzkreis riickt und

der Eindruck der Verzerrung vermindert wird.

Als dritte Moglichkeit entfernen wir in Abb. 4.3.23 den Betrachter von der Bildebene.
Hierdurch vergrofert sich der Distanzkreis und die Fluchtpunkte entfernen sich vom
Hauptpunkt. Der Winkel in der vorderen Spitze vergrofert sich dadurch. Betrachten
wir einmal die markierten Winkel bei Z’ im Grundriss. Dieser ergibt sich, wenn wir
die aufersten Punkte im Grundriss mit Z’ verbinden. Je kleiner dieser Winkel, umso
eher liegt auch das Bild im Distanzkreis. Nach der Literatur sollte dieser kleiner
als 40° sein [2|. Somit lésst sich vor der Konstruktion abschétzen, ob das Bild im

Distanzkreis liegt und somit unverzerrt dargestellt wird.
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Abb. 4.3.22 Drehung des Quaders bzw. Anderung der Lage der Bildebene
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Abb. 4.3.23 Entfernung des Betrachters von der Bildebene fiihrt zu einem gréfieren

Distanzkreis
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4.3.4 Messpunktverfahren

Wir kommen nun zu einem alternativen Verfahren, um das Bild einer Strecke AB
im Grundriss zu erstellen. Mithilfe des sog. Messpunktverfahrens [43, S. 43| lassen
sich Strecken auf der Grundlinie bzw. dem Bildriss perspektivisch richtig verzerrt auf
eine andere Gerade abbilden. Nach der Erlauterung der Methode konstruieren wir
als Beispiel das Bild einer Treppe.

Die nebenstehende Abbildung zeigt zwei kongru-

ente Strecken A1B7 und AsBs, welche um den
Punkt S gedreht sind. Sie liegen daher auf Ge-
raden mit verschiedenen Fernpunkten. A,, und
B,, werden Messpunkte genannt und entstehen
durch die Abtragung der Streckenendpunkte auf
die Bildspur. Aufgrund der Radien gilt

SA,, =SA, , SB,, =SB,

Abb. 4.3.24 Das Messpunktver- godass die Dreiecke AS B1B,, und ASA{A,
fahren dhnlich zueinander sind. Demnach sind die griin
markierten Geraden A A, und By B,,, parallel zueinander. Analog lasst sich die Par-
allelitat von AsA,,, und By B,, beweisen.

Durch die Drehung der Strecke éndert sich die
Richtung der parallelen Geradenpaare bzw. ihr
Fluchtpunkt. Die Projektionen der Strecken las-
sen sich somit iiber Schnittpunkte der Gera-
den durch S, A,,, B,, und den entsprechenden
Fluchtpunkten ermitteln, wie Abb. 4.3.25 zeigt.

Die Risse aller Fluchtpunkte ergeben sich wieder

als Schnitt der Bildspur mit der entsprechenden
Parallelen durch Z’. Diese werden auf den Ho-
rizont im unteren Bild {ibertragen. Die Schnitt-
punkte der Urbilder mit der Bildspur sind S und
die Messpunkte. Damit kénnen die vier Bildgera-

den konstruiert werden. Die Schnittpunkte ent-

sprechen den Bildern von Ay, By, As und Bs.

Dies zeigt noch keinen Vorteil gegeniiber dem
vorherigen Verfahren (Konstruktionsmethode
4.3.7, S. 108). Statt dem Lot durch A; und

By werden andere Geraden verwendet, dessen

Fluchtpunkte noch ermittelt werden miissen,

welches eher einen Nachteil bedeutet.
Abb. 4.3.25 Konstruktion mit
dem Messpunkteverfahren
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Das Messpunktverfahren ist vor allem dann vorteilhaft, wenn auf einer Geraden
dquidistante Abschnitte projiziert werden sollen, wie es bspw. bei Treppenstufen
oder einem gefliesten Boden der Fall ist. Dann miissen die Endpunkte der Strecken
wie A; oder By nicht mit dem Zirkel abgetragen werden. Stattdessen kann ab dem
Schnittpunkt der Urbildgeraden mit der Bildspur der feste Abstand fortlaufend an-

gezeichnet werden.

Grundriss s

F', ; Bildspur

Abb. 4.3.26 Das Dreieck AZ'F', 5 F}, ist gleichschenklig.

Die obige Abbildung zeigt den Grundriss der Strecke A’B’. Sap ergibt sich durch
die Verldngerung der Strecke bis zur Bildspur und der Messpunkt A,, durch das

Abtragen des Abstandes von Sy zu A’. Somit liegt wegen SapA,, = SapA’ ein
gleichschenkliges Dreieck vor und die Basiswinkel o und S sind gleich grofs. Wir
wollen zeigen, dass dies fiir alle in der Abbildung eingezeichneten Winkel gilt, ins-
besondere € = ¢, da somit das Dreieck AZ'F’, 5 F), gleichschenklig ist und sich F},
durch die Abtragung der Strecke W ergibt.

Wegen Z'F), || A'C gilt fiir die Wechselwinkel § = e. Da auch SapA’ | Z'C gilt

analog a = & = (. Die Basiswinkel ¢ und ¢ sind somit gleich grofs und damit ist

auch FyzF! = F,zZ'. Die Parallele durch Z’ von A’A,, muss somit nicht mehr

konstruiert werden.

Das Messpunktverfahren wird im folgenden fiir die Konstruktion des Bildes einer

Treppe verwendet.
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Konstruktionsbeispiel 4.3.3

Gegeben ist der Grundriss einer Treppe, deren Stufenhéhe 0,8 cm betragt. Mit-

hilfe des Messpunktverfahren soll das zentralprojektive Bild erstellt werden. Der
Horizont liegt 4 cm oberhalb der Objektebene.

1. Schritt: Die Messpunkte werden auf
die Bildspur tibertragen. Es ist Ay = My
und die Stufentiefe ist konstant, sodass
von My aus der Abstand d(A;, Az) an
M5 in beide Richtungen auf der Bildspur
abgetragen werden kann, um die Mess-
punkte M7 bis M5 zu erhalten. Der Riss
des Fluchtpunktes F4 ergibt sich wie-
der aus der Parallelen zur Stufenkante
Ay A5 durch Z'. Fiir F!, wird mit dem
Zirkel ein Kreis um F’; mit dem Radius
d(Fy, Z") gezeichnet, bis dieser die Bild-
spur schneidet. Um die Breite der Stufe
zu erhalten wird By mit Z’ verbunden,
sodass wir das Abbild der Projektions-
geraden durch B; im Grundriss erhal-
ten. Den Schnitt mit der Bildspur nen-
nen wir daher By,

Wir verbinden nach Ubertragung der
beiden Fluchtpunkte auf den Horizont

die Messpunkte entsprechend mit jenen
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und erhalten die Projektion der vorderen Stufenkanten sowie der seitlichen Kante
A1 As. Der Schnittpunkt beider Kanten entspricht ¢,(A7). Im zweiten Schritt wird
die Hohe der Stufen ermittelt.

2. Schritt: Wir ziehen das Lot zur Bild-
Fy spur durch Bj, und erhalten ¢,(By).

Fiir den Fluchtpunkt Fap legen wir die
- Gerade durch ¢,(A1) und ¢.(B;1). Von
My = ¢.(Az) aus wird die doppelte

Stufenhohe senkrecht abgetragen, da die
Strecke in der Bildebene liegt und da-
her auf sich selbst abgebildet wird. Wir
markieren die Mitte, legen durch diesen
Punkt und Fy eine Gerade, welche die Senkrechte auf der Bildspur iiber ¢, (A7)

schneidet, sodass wir die vordere, obere Ecke der ersten Stufe gefunden haben. Wir

verbinden diesen mit F4p, welche das Lot durch ¢,(B;) schneidet, sodass wir auch
die hintere, obere Ecke konstruiert haben. So lasst sich schrittweise jede Stufe kon-
struieren. Das Ergebnis zeigt die folgende Abbildung. Da die Treppenstufen dieselbe

Tiefe aufweisen, konnten die Messpunkte leicht auf der Bildspur abgetragen werden.

FAB /"/// H [‘il

Horizont

Pz (Bl>

\l/ M, M; Ms; Bildspur

GDZ<A1)
Abb. 4.3.27 Das zentralprojektive Bild der Treppe

Mit dem Messpunkteverfahren kénnen dquidistante Strecken projiziert werden. So-
mit lésst sich auch ein Koordinatensystem konstruieren, welches zentralprojektiv
abgebildet wird, mit dessen Hilfe sich Projektionen einfacher Korper direkt zeich-
nen lassen. Die folgende Abb. 4.3.28 zeigt ein Beispiel. In der oberen linken Ecke
liegt die xy-Ebene vor, wobei die Bilder von Y7, Ys, ..., Ys mithilfe der Messpunkte
My, Ms, ..., M5 konstruiert wurden. Die Bildebene liegt parallel zur yz-Ebene, d.h.
H ist der Fluchtpunkt. Das Lot {iber S auf der Bildspur liegt in der Bildebene, die
Abstédnde werden durch die Projektion somit nicht veréndert, sodass sich das Gitter

in der yz-Ebene durch die Verbindung mit H leicht konstruieren l&sst.
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Die Projektion eines regelméfigen Gitters ldsst sich auch iiber den Schnittpunkt
einer Diagonalen mit den Tiefenlinien erzeugen, denn fiir jede Projektion gilt die
Inzidenztreue. So reichen zwei Messpunkte aus, um die Projektion der Diagonalen
zu konstruieren, mit welcher sich das Gitter in der xy-Ebene abbilden léasst. Diese

Alternative zeigt die folgende Abbildung.



136

Y5
Y
S M, M, H'
o7/
F, m H
e
A
"
I‘ /!
7
// 7 == =
/ e
/o prd
Y; /7 =7
2 , / // /
/!
/
Y V.
/ /
/
7 /
S A\[ 1 A\[ 2 H !

Abb. 4.3.29 Konstruktion des regelméfigen Gitters iiber die Diagonale, welche mit
einem Messpunkt konstruiert wurde.
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Das letzte Beispiel in Abb. 4.3.30 zeigt ein gedrehtes Koordinatensystem. Nun fallt
der Fluchtpunkt nicht mit dem Hauptpunkt zusammen, da die Parallelen zur y-Achse
nicht mehr senkrecht auf der Bildebene stehen. Es kommt ein zweiter Fluchtpunkt
hinzu. Die Fluchtpunkte beider Hauptachsen werden iiber die Parallele durch Z’
ermittelt. Der Schnittpunkt der Bilder ergibt den ersten Bildpunkt der blauen Dia-
gonalen. Die Punkte X7, Xo,... auf der griinen Achse werden um S5 auf die Bildspur
gedreht, sodass die Messpunkte My, Mo, ... entstehen. Mit ihnen lassen sich im Sin-
ne des Messpunktverfahrens die Tiefenlinien konstruieren. Die horizontalen Linien,
also die Bilder der Parallelen zur z-Achse, entstehen {iber die blaue Diagonale. Hier-
bei ist S7 ein Fixpunkt. Wir verbinden diesen mit F, und erhalten ein Bild einer
der Horizontalen. Diese schneidet die Tiefenlinie zu ¢,(X3) auf der blauen Diagona-
len. Aufgrund der Inzidenztreue ist ein zweiter Bildpunkt der Diagonalen gefunden,
sodass diese vollstdndig gezeichnet werden kann. Sie schneidet alle anderen Tiefen-
linien, sodass auch die Horizontalen iiber die Verbindung mit Fy erginzt werden
konnen. Damit ist die Projektion der zy-Ebene fertig.

Die z-Achse sei weiterhin parallel zur Bildebene. Das Lot auf die Bildspur in Sy ist
eine Fixgerade, d.h. die Einheitsabschnitte auf der Achse kénnen iibernommen wer-
den. Werden diese mit Fy verbunden, entsteht ein Teil des Gitters der yz-Ebene.
Die fehlenden Geraden sind die Lote iiber ¢,(Y1),¢.(Y2),..., denn ihre Urbilder
sind parallel zur Bildebene, d.h. der dritte Fluchtpunkt ist weiterhin ein Fernpunkt.

Mit dem Gitter lassen sich nun wieder Objekte wie in einem Koordinatensystem
einzeichnen, um direkt das zentralprojektive Bild zu erhalten. Dieses Vorgehen ist
ahnlich zur Axonometrie im Abschnitt 5.2, S. 210. Hier reichte es allerdings aus, das
Dreibein als Verbildlichung der Basis des dreidimensionalen Raumes, parallelprojek-
tiv abzubilden. Alle weiteren Linien des Gitters ergaben sich aus der Parallelen- bzw.
Teilverhéltnistreue. Diese Invarianten gelten nicht bei der Zentralprojektion, sodass
hier das Gitter mithilfe der Fluchtpunkte vollstdndig gezeichnet werden muss. Wir
wollen daher zum Abschluss der Konstruktionen ein weiteres Verfahren, welches zur

Zeit der Renaissance entwickelt wurde, vorstellen.
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Fx
S \ Sy H' Bildspur
2
X1
VA
Fy Fox H Fy

Abb. 4.3.30 Zentralprojektion eines um die z-Achse gedrehtes Koordinatensystems
mit dem Messpunktverfahren
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4.3.5 Einschneideverfahren nach P. della Francesca

Die zuvor vorgestellten Konstruktionsmethoden benétigen nur den Grundriss eines
Objektes so wie einige Hohenangaben. Fin &lteres Verfahren, welches auf P. della
Francesca (1416 - 1492) zuriickzufiihren ist [13, S. 172| und in verschiedenen Biichern
zur Konstruktion zentralprojektiver Bilder zu finden ist (|48, S. 17|, [33, S. 228], |30,
S. 21]), benotigt neben dem Grundriss auch den Aufriss. Sie wird teilweise auch als
Durchstofsmethode bezeichnet, da wir den Durchstofspunkt des Projektionsstrahls
mit der Bildebene aus den Rissen konstruieren. Wir betrachten nochmal die Skiz-
ze in Abb. 4.3.6, S. 106. Die Gerade Z’A schneidet die Bildspur in A,. Die Idee
des Koordinatensystems kam erst nach der Renaissance, sodass P. della Francesca
keins benutzen konnte und stattdessen den Abstand von A, zu einem festen Punkt
auf der Risskante messen und in die Bildebene iibertragen musste. In der heutigen
Zeit konnen wir dagegen in der Schule ein zweidimensionales Koordinatensystem
nutzen, wobei der Ursprung beliebig auf der Risskante liegt. So entspricht A, der

z-Koordinate. Analog erhalten wir {iber den Aufriss die y-Koordinate.

Abb. 4.3.31 FEin schrig im Raum liegendes Dreieck wird auch die zz-Ebene proji-
ziert. Das Projektionszentrum ist der Punkt Z. Die unteren Bilder zeigen den Grund-
riss (links) und Aufriss (rechts).
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Schiilerinnen und Schiiler kénnen dies mithilfe der 3D Ansicht von GeoGebra leicht
einsehen. Wir zeichnen ein ebenes Dreieck, dessen eine Kante auf der xy-Ebene steht,
die Spitze dagegen versetzt, sodass es gegeniiber der Bildebene, welche der xz-Ebene
entspricht, verkippt ist. Dies hat zur Folge, dass der Grundriss ebenfalls ein Dreieck
ergibt und keine Linie. Wir zeichnen nun die Strahlen von Z zu den Ecken des
Dreiecks und markieren die Schnittpunkte mit der Bildebene, um das Bilddreieck
zu erhalten. Betrachten wir den Punkt P und sein Bildpunkt P’, von welchem wir
aus parallele Geraden zu der roten bzw. blauen Achse ziehen und die Schnittpunkte
mit P; und P, bezeichnen. Dies sind die Koordinaten von P’, wenn wir die rote und
blaue Achse als 2D Koordinatensystem der Bildebene interpretieren. Schauen wir
nun von oben entgegengesetzt zur blauen z-Achse auf die Szene, so ergibt sich P; als
Schnittpunkt vom Grundriss des Projektionsstrahls mit der roten Achse. Schauen
wir von der Seite auf die Szene entgegengesetzt zur roten x-Achse. Hier ergibt sich
P als Schnittpunkt des Projektionsstrahls im Aufriss mit der blauen Achse. Somit
lassen sich beide Koordinaten der Bildpunkte ermitteln.

Wir iibertragen die Szene in die Ebene, wie die untere Abbildung zeigt. Da wir die
dreidimensionalen Koordinaten des Dreiecks kennen, lassen sich die entsprechenden
Risse hieraus ableiten. Wir legen dazu die blaue z-Achse auf die positive Halbge-
rade der ygp-Achse der Ebene sowie die rote x-Achse auf die negative. Die griine

y-Achse liegt auf der zp-Achse der Ebene. Ist P(z,y,z) der Punkt im Raum, so

Aufriss o 7" Bildebene

C(C1, (o)

Az(Ar, Ag)

y=uap B.(Bi, Bs)

Y

Grundriss

Yo =—yp

Abb. 4.3.32 Konstruktion der Projektion des Dreiecks in der Ebene mithilfe der
Risse.
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ergibt sich P'(y, —z) fir den Grundriss und P”(y, z) fiir den Aufriss. Wir ergénzen
in den Rissen die Projektionsstrahlen, markieren die entsprechenden Schnittpunkte,
iibertragen diese in das Koordinatensystem der Bildebene und erhalten das Bilddrei-

eck.

Diese Konstruktionsmethode kann im Unterricht als Einstieg genutzt werden, da im
dreidimensionalen Modell leicht einsehbar ist, warum diese Methode funktioniert.
Aufler dem Versténdnis fiir Koordinatensysteme ist hierbei kein weiteres Vorwissen
notig. Sie ist allerdings auch etwas aufwéndig, da fiir jeden Bildpunkt zwei Schnitt-
punkte konstruiert werden miissen und sie nutzt keine der besonderen Eigenschaften
einer Zentralprojektion wie bspw. Fluchtpunkte im Gegensatz zu den vorherigen Me-
thoden.

Wir kommen nun zu einer Moglichkeit, wie die Zentralprojektion in der Oberstufe
behandelt werden kann, in dem wir ein rdumliches, kartesisches Koordinatensystem
verwenden, um Geraden und Punkte nun analytisch zu beschreiben. Statt Bildpunkte

zu konstruieren, wollen wir nun Formeln herleiten, um diese zu berechnen.

4.4 Analytische Betrachtung der Zentralprojektion

In der Sekundarstufe II ist im Lehrplan (NRW, Sekundarstufe II, Stand 2014) ein
vorgesehener Themenbereich die analytische Geometrie. Hierbei werden Punkte, Ge-
raden und Ebenen im Raum unter Verwendung des kartesischen Koordinatensystems
algebraisch beschrieben und mithilfe von Vektoren im R3 Berechnungen mit diesen
durchgefiihrt. So ist u.a. die Beschreibung von Ebenen E und Geraden g mithilfe

von Parametergleichungen der Form

-

+A-b
TH+M-G+A -7 MAL A2 ER

8
Il
Q

g:
E

8
I

bzw. bei Ersterem auch mit Koordinatengleichungen der Form
E:nixi+noxs+nsx3==%k

Teil des Lehrplans. Dabei ist @ ein Ortsvektor auf den Punkt A, welcher Teil der
Geraden ist, sowie b ein Vektor, welcher die Richtung der Geraden beschreibt. Im
Falle der Ebene existieren zwei Richtungsvektoren ¢ und 7, welche linear unabhéngig
sein miissen. Ist dies nicht erfiillt, beschreibt die Parametergleichung stattdessen
eine Gerade. Der Vektor pist ein Ortsvektor mit Endpunkt P, welcher in der Ebene
E liegt. In der Koordinatengleichung sind die reellen Zahlen z; die Eintrage im

Ortsvektor &, welcher Teil der Ebene FE ist. Die reellen Zahlen n; sind die Eintrége
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des Normalenvektors 77, welcher senkrecht zur Ebene liegt. Das Skalarprodukt von &
und 7 ist k. Da P = (p1 / p2 / p3) in E liegt, so muss p’- 7t = k gelten.

Neben der Beschreibung von Geraden und Ebenen durch Gleichungen ist auch die
Berechnung des Schnittpunktes einer Geraden g mit einer Ebene E, sofern g }f E
ist, im Lehrplan vorgegeben. Somit sind alle Voraussetzungen fiir eine vektorielle
Betrachtung der Zentralprojektion in der Oberstufe erfillt, wie wir nachfolgend an
einem Beispiel zeigen werden. Die Achsen des Koordinatensystems seien mit x1, o
und x3 bezeichnet. Zur Vereinfachung sei festgelegt, dass die Bildebene II der zjxs-

Ebene entspricht, d.h. ihre Koordinatenform ist
II:29=0 & H:{(xl,xg,x3)€R3 | $2=0}.

Wir werden spéter noch zeigen (Abb. 4.4.6, S. 155), warum trotz festgelegter Bil-
debene allgemeine Aussagen zur Zentralprojektion moglich sind. D.h. es reicht aus,
Eigenschaften der Zentralprojektion fiir beliebige Geraden und Punkte unter beliebi-
gen Projektionszentren Z mit der o.g. Bildebene zu beweisen. Die folgenden Beispiele
sind schulnah ausgearbeitet, sodass diese auch im Unterricht verwendet werden kon-
nen. Als Einstieg berechnen wir den Bildpunkt eines konkreten Punktes anhand einer

gegebenen Zentralprojektion.

Aufgabenbeispiel 4.4.1

Gegeben sei eine Zentralprojektion mit Projektionszentrum Z (3 /4 /5) und
der Bildebene II : x5 = 0. Berechnen Sie die Koordinaten des Bildpunktes P’,
auf welchen der Punkt P (4 /2 /4) projiziert wird.

Losung:

(1) Aufstellung der Geradengleichung g mit Z, P € g:

3 4 3 3 1
gp =4l +x|2|-4a]||=[4]+2]|-2
5 4 5 5 ~1

(2) Bestimmung des Schnittpunktes P’ mit der Bildebene II:
l’2:4—2)\:0 = \A=2.

A in g, eingesetzt ergibt dann die Koordinaten des Bildpunktes: P’ (5 /0 / 3).
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Als visuelle Unterstiitzung kénnen die
Schiilerinnen und Schiiler die Situation
(z.B. mit GeoGebra) im Koordinaten-
system darstellen. Abb. 4.4.1 zeigt ne-
ben der Projektion von P auf P’ auch
die eines zweiten Punktes (). Der Re-
chenweg zur Ermittelung des Bildpunk-
tes lédsst sich in zwei Schritten glie-
dern. Zuerst wird die Parameterglei-
chung der Projektionsgeraden durch den
Punkt und das Projektionszentrum auf-
gestellt. Wir verwenden dabei Z fiir den
Ortsvektor. Die Differenz der Ortsvekto-
ren von Z und P ergibt den Richtungs-

vektor. Im zweiten Schritt setzen wir g,

x3

T2

I

Abb. 4.4.1 Die Zentralprojektion von P
und Q.

in die Koordinatengleichung der Bildebene ein und erhalten A. Wir wollen folgende

Eigenschaften der Zentralprojektion nachpriifen:

Satz 4.4.1

Die Zentralprojektion hat folgende Eigenschaften (vgl. [47, S. 191]):

i) Die Zentralprojektion ist inzidenztreu, d.h. alle Punkte P einer Geraden

i)

iii)

g werden auf Bildpunkte P’ € ¢’ abgebildet, wobei ¢’ die Bildgerade
von ¢ ist. Schneiden sich zwei Geraden g und A in einem Punkt S, dann
schneiden sich ¢’ und A’ in dem Punkt S’.

Parallele Geraden, welche nicht parallel zur Bildebene verlaufen, werden
auf Geraden abgebildet, welche sich in einem gewdhnlichen Punkt, dem
Fluchtpunkt schneiden. Da sich alle Parallelbiischel in einem Fernpunkt
schneiden, ist wegen der Inzidenztreue der entsprechende Fluchtpunkt das
Bild des Fernpunktes (Abb. 4.4.7, S. 156).

Die Bilder von Parallelbiischel unterschiedlicher Richtungen schneiden
sich in unterschiedlichen Fluchtpunkten. Liegen alle Parallelbiischel in ei-
ner bzw. in paarweise parallelen Ebenen, so liegen alle Fluchtpunkte auf
einer Geraden (Abb. 4.4.8, S. 159).
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Wir wollen zunéchst die Eigenschaften (7) - (é77) erst mithilfe von Beispielen untersu-
chen und dann fiir beliebige Geraden zeigen. Das Zentrum und die Projektionsebene
selen mit Z (3 /4 /5) und II : 29 = 0 festgelegt.

4.4.1 (i) Inzidenztreue der Projektion

Die Projektion einer Geraden erfolgt nach der Definition der Zentralprojektion punkt-
weise (Def. 3.1.1, S. 46). Da nach den Axiomen in Kap. 2.2, S. 25, eine Gerade durch
zwei Punkte festgelegt wird, lasst sich die Bildgerade ¢’ iiber die Bilder zweier ver-
schiedener Punkte P € g und @ € g bestimmen. Als Beispiel der Inzidenztreue wird
das Bild eines dritten Punktes R € g bestimmt und gepriift, ob ebenfalls R’ € ¢’ gilt.

Aufgabenbeispiel 4.4.2

Betrachten Sie die Zentralprojektion mit Z (3 / 4 / 5) auf die Bildebene IT : 2 = 0.

Gegeben seien folgende Punkte, welcher auf der Geraden g liegen:

P(1/1/5) Q(2/2/4) R(2,5/2,5/3,5).

Bestimmen Sie die Bildpunkte P/, Q’, R’ und zeigen Sie, dass diese ebenfalls auf

einer Geraden liegen.

Losung:
Die Bildpunkte werden wie im vorherigen Aufgabenbeispiel 4.4.1 ermittelt. Das Er-

gebnis ist
P’<;/0/5> Q' (1/0/3) R’<§/O/1>.

Mit den ersten beiden Bildpunkten bestimmen wir nun die Parametergleichung der

Verbindungsgeraden g, o

1 2

3 3
gP/Q/ :f: O +/’L O

) -2

Wir setzen den Ortsvektor von R’ in die Geradengleichung ein, und zeigen, dass ein

Wert fiir p existiert:

5 1 2
3 3 3
o]l=fo|+2-|o
1 5 —2
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3
P’ P
<7
) Q
Q R
R’ o
Abb. 4.4.2 Das Bild einer Geraden wird
punktweise bestimmt, da die Zentralpro-
T jektion inzidenztreu ist.

Demnach sind die Bildpunkte kollinear und wir nennen die Verbindungsgerade g, o
die Bildgerade ¢’. Abb. 4.4.2 veranschaulicht das Ergebnis. Wir fiihren eine erste
Verallgemeinerung ein, indem wir den dritten Punkt R variabel halten und zeigen,
dass fiir jeden Punkt R € g auch R’ € ¢’ gilt:

Damit R ein Punkt von g ist, muss dieser von der Form
R(1I+A/14X/5—X) mit \eR

sein. Wir bestimmen davon wieder den Bildpunkt iiber den Schnitt der Projektions-

geraden und der Bildebene:

(1) Aufstellung der Geradengleichung p mit Z, R € p:

3 14+ A 3 3 A—2
p:Z= (4| +p||1+X|—-1]4 = 4| +plA=-3 ,uweER
5 5—A 5 5 —-A

2) Bestimmung des Schnittpunktes R’ mit der Bildebene II:
(2) g D

4
=4 A=3)=0=p=——.
T2 + ( ) P=3_3
Fiir A = 3 existiert kein Schnittpunkt, da in diesem Fall die Projektionsgerade
parallel zur Bildebene liegt. Wir setzen daher im folgenden A # 3 voraus. p in

p eingesetzt ergibt dann die Koordinaten des Bildpunktes R':

3 A —2 33—\ +4(\—2) A+1
5 ) 5(3—A) — 4\ 15— 9\
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Wir zeigen nun, dass die Bildpunkte R’ in Abhéngigkeit von A in ¢’ liegen:

1 2 2 1
3 3 . A+1 3 ) A+1-3B-2N)
5 -2 15— 9\ -2 15—9X =53 —=))
4
A 3
"3
—4
2
2 S g 2
IERRY “T3

Wir konnen fiir jeden Wert von A # 3 den Parameter a bestimmen. Somit lie-
gen alle Bildpunkte R’ auf der Geraden ¢’. Im Fall A = 3 wird der Punkt R auf
einen Fernpunkt abgebildet, da die Projektionsgerade parallel zur Bildebene wird.
Aus euklidischer Sicht hat R dann keinen Bildpunkt, da die Projektionsgerade die
Bildebene in keinem gewoOhnlichen Punkt schneidet. Man spricht daher auch von
einer Verschwindungsebene, welche durch Z parallel zur Bildebene liegt. Die Pro-
jektionsgeraden aller Punkte dieser Ebene liegen parallel zur Bildebene, sodass ihre

Bildpunkte ,yerschwinden‘.

Die Herangehensweise der ersten Verallgemeinerung entspricht der Punktprobe im
Zahlenbeispiel. Eine andere Betrachtungsweise wire, die Bildpunkte R’ als Gerade in
Parameterform darzustellen, um zu zeigen, dass diese mit der Bildgeraden ¢’ identisch

ist:

. A+1 . TB=XN)+3A
hi=s=xl 0 T34 0
15 — 9\ 5(3— ) — 4\
1 2
I 0 2
B 3—A
5 -2

Das Beispiel zeigt, dass das Bild der Geraden
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Il
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durch die Projektion zweier beliebiger Punkte dieser Geraden ermittelt werden konn-
te. Wir verallgemeinern nun weiter und zeigen, dass dies mit jeder beliebigen Geraden

moglich ist. Sei nun
g:T=0+A-7T AeR

mit Ortsvektor 6 und Richtungsvektor 7. Das Projektionszentrum ist wieder Z (3 /4 / 5)
und die Bildebene II : x5 = 0. Jeder Punkt auf g hat nun folgende Form:

Peg <& P(01 +)\7’1/02+)\7’2/03+>\T3). (4.4.1)

Wir bestimmen wieder das Bild von P’ mithilfe der Projektionsgeraden durch Z als
Schnittpunkt mit der Bildebene:

(1) Projektionsgerade:

3 o1 +Ar;—3
p:Z=|4|4+plog+rry—4 AER (4.4.2)
5 03+Arg—>5

Anmerkung: Hier liegt eine Geradenschar vor, welche eine Ebene bildet, die Z
und g enthélt, sofern Z ¢ g, da sonst 7 und ¢ — 2 linear abhéngig wiren. Auf

diese Projektionsebene wird spéter noch eingegangen.

(2) Schnittpunkt

4
ro=0=>pu=———— 4.4.3
2 H 4 — (02 + A TQ) ( )
Durch Einsetzen von y in p erhalten wir folgende Bildpunkte:
P’ 4(01 + A T‘l) — 3(02 + A 7"2) /0 / 4(03 + A ’r‘3) — 5(02 + A 7“2) (444)
4 — (02 + Ar9) 4 — (02 + Arg)

Nun ergibt sich die Frage, ob sich P’ mit dem Parameter \ als Geradengleichung um-
schreiben ldsst, um somit zu zeigen, dass alle Bildpunkte auf einer Geraden liegen.
Hierfiir konnen im Schulunterricht dynamische Geometrieprogramme wie GeoGebra
fiir erste Untersuchungen herangezogen werden, da sie es ermdglichen, die hergelei-

teten algebraischen Ausdriicke zu veranschaulichen.
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Abb. 4.4.3 Mithilfe GeoGebra koénnen Schiilerinnen und Schiiler sehen, dass die
Punkte P’ G1.(4.4.4) auf einer Geraden liegen, und die Punkte P, P’ und Z ebenfalls
kollinear sind.

Die Abb. 4.4.3 zeigen, dass die Punkte P’ kollinear sind. Hierfiir wurde fiir den Pa-
rameter A in GeoGebra ein Schieberegler definiert. Mit den Punkten O und P wurde
eine beliebige Gerade aufgestellt und die entsprechenden Koordinaten o1, 02, 03 und
r1,72,7r3 in die Gl. (4.4.4) eingesetzt. Wir bewegen nun den Schieberegler und lassen
uns von GeoGebra die Spur von P’ zeigen. Dieses Experiment konnen Schiilerinnen
und Schiiler mit anderen Geraden durchfiihren, indem sie die Lage der Punkte P

und O verandern.

Wie koénnen wir nun aus Gl.(4.4.4) die Bildgerade in Parameterform gewinnen? Zwei
Werte fiir den Parameter A einsetzen und dann aus den beiden Punkten die Gleichung
iiber Orts- und Richtungsvektor zu bestimmen, wiirde zu unhandlichen Termen fiih-
ren.

Wir gehen stattdessen einen Schritt zurtick und formen GI.(4.4.3) nach g - A um und
setzen diese in Gl.(4.4.2) der Projektionsgeraden p ein. Dies hat den Vorteil, dass
der Parameter sich dann leichter separieren ldsst, um Orts- und Richtungsvektor zu

erhalten:

4
S — 4—09) — ATy =4
4_(02+M2)@u( 02) — LA T2
p(4 —o02) —4

T2

H:

S pA =
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3 01—3 1
p:f: 41 +plog—4 —|—,U')\ T2
5 03—5 T3
3 01—3 T1
a p(4—o0y) —4
= h: =4 +pulo—4 —l—T 79
b 03—5 T3
4
3—%21 01—3—|—(4—02)%
= 0 +p 0
5—% 03—5—|—(4—02)%

Wir wollen dieses Ergebnis mit dem ersten Zahlenbeispiel kontrollieren. Wir haben

berechnet, dass die Gerade

1 1
g: =111+ 1

5 -1

auf die Bildgerade

1 2

3 3
g:Z=(o|+p| 0

5 -2

projiziert wird. Zur Kontrolle setzen wir nun die Koordinaten des Orts- und Rich-

tungsvektors von g in die hergeleitete Formel fiir die Bildgerade h ein:

34 1-34+(4-1)1
h:2= 0 + u 0
5 — L) 55+ (4—1)F
-1 1
= O |+ul| O
9 -3

Wir iiberpriifen, ob h und ¢’ identisch sind:

(1) Lineare Abhéngigkeit der Richtungsvektoren:

1
3
=5 0 | = Geraden sind parallel
-2 -3

O Wi



150

(2) Punktprobe mithilfe der Ortsvektoren:

-1

2
8 = o0 |= (-1/0/9) €

ol O =
|
)

-2

Da die Geraden parallel sind und einen Punkt gemeinsam haben, sind h und ¢’

identisch. Zusammenfassend haben wir nun folgendes gezeigt:

01 r1 3-4 01— 3+ (4—0y)1
g:T= o | +X|rm|=d: 7= 0 + u 0 (4.4.5)
03 T3 5—4ﬂ 03—5+(4—02)T3

T2 T2

Dies geschah durch punktweise Abbildung der Geraden g und der Inzidenztreue, d.h.
Peg= P eg.

Mithilfe von GeoGebra konnen Schiilerinnen und Schiiler aber auch zwei Sonderfalle
beobachten, welche in Abb. 4.4.4 dargestellt sind:

(1) Fiir ro = 0 kann ¢’ nach Gl. (4.4.5) nicht berechnet werden. Dennoch existiert

die Gerade, welche sogar parallel zu g ist.

(2) Jede Gerade, welche das Projektionszentrum Z enthélt, aber nicht parallel zur
Bildebene ist, wird auf einen Punkt abgebildet.

T3 T3

Q 8

xT9 -7 T2

x x1

Abb. 4.4.4 Beispiele fiir die beiden Sonderfélle, welche bei der Zentralprojektion
von Geraden auftreten kénnen.

Fiir den Fall, dass ro = 0 ist, kann G1.(4.4.3), S. 147, nicht auf Ay umgeformt werden.
Stattdessen setzen wir den Wert in die allgemeine Gleichung (4.4.4) der Bildpunkte
ein und zeigen wieder, dass alle Bildpunkte auf einer Geraden liegen, welche sogar

parallel zur Urbildgeraden ist, da ihre Richtungsvektoren iibereinstimmen.
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4(01 + A1) — 309 4(03 + A1r3) — 509
= P’
T2 0= < 1—0, /0/ 1= o
401 — 30 T
1 2 N A 01 o
= T
4—02 4—02 g
403—502 T3
=glld

Wir kommen zum zweiten Sonderfall, bei der die Gerade mit ihrer Projektionsgera-
de zusammenfillt, dadurch, dass das Projektionszentrum in ihr enthalten ist. Was
anschaulich leicht einzusehen ist, sollte auch durch die allgemeine Formel der Bild-

punkte herzuleiten sein.

Damit (3 /4/5) € g erfiillt ist, ist es am einfachsten, iber Z den Ortsvektor der

Geraden zu bestimmen, d.h. o; = 3, 0o = 4 und o3 = 5. Dann gilt fiir P’ folgendes:

P’ 4(3+)\7"1)*3(4+)\T2)/0/4(5+)\7’3)*5(4+>\T2)
4—(4+Aro) 4—(4+Arg)
4)\7‘1 —3)\7'2 4/\7’3—5/\7"2
P’ 0
= ( —)\'1“2 / / —)\7"2 )

4 4
:>P,<3—T1/0/5—’r'3>
T2 T2

P’ enthélt keinen Parameter mehr und jeder Punkt der Geraden wird auf diesen
projiziert. Dasselbe Resultat ergibt sich wenn die entsprechenden Werte in die allge-
meine Geradengleichung (4.4.5) eingesetzt werden. Der Richtungsvektor wird dann

identisch zum Nullvektor.

Wir verallgemeinern weiter, indem zusétzlich zur Geraden g nun auch das Projekti-

onszentrum Z variabel ist. Wir haben somit folgende Situation:

Gegeben:

X=0+A7 AeR
Z(z1 /22 ) 23) mit Z ¢ g
II: 29=0

g

Hier kann genauso wie zuvor verfahren werden, wobei die Zahlen 3, 4 und 5 durch

z1, 2z und z3 ersetzt werden.



152

4.4.2 Formeln fiir die Bilder einer Zentralprojektion

Die Untersuchung der Inzidentreue fiihrte zu einer allgemeinen Formel fiir die Bilder
von Punkten bzw. Geraden unter einer Zentralprojektion mit Zentrum Z und der
Bildebene II : 5 = 0. Zur Bestimmung der Bildgeraden ¢’ nutzen wir die Projekti-
onsebene II;. Alle Projektionsgeraden, die entstehen, wenn Punkte der Geraden mit
dem Projektionszentrum verbunden werden, liegen in einer Ebene II;, welche durch
Z und g eindeutig festgelegt wird. Der Schnitt dieser Ebene mit der Bildebene ergibt
die Bildgerade ¢’, wie Abb. 4.4.5 zeigt.

T3

T2

Z1

Abb. 4.4.5 Bestimmung der Bildgeraden iiber den Schnitt zweier Ebenen.

Mit den o.g. Informationen lasst sich die Parametergleichung der Ebene I, aufstellen
und der Schnitt mit der Bildebene II bestimmen:

Hy: & =24+ A7+ p(o—2), A ER
Schnittgerade:

zZ9 — O —Z
x2222+)\T2+M(02—22)=0:> )\:M(ZTQ)Q
2
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21 ( ) T1 01 — 21
Hlz2 —02) — 22
zo| +—————— | ro| + | 02— 2
T2
z3 T3 03 — 23
zZ1—ar bri+o01— =
/ —
= g :¥= 0 +u 0
Z3—ars brs+ o3 — z3
. z2 Z9 — 02
mit a = —,b =
T2 ()

Auch hier bietet sich wieder die Moglichkeit fiir Schiilerinnen und Schiiler, das Zah-
lenbeispiel aus den vorherigen Aufgaben zur Uberpriifung einzusetzen. Gleichfalls
lasst sich auch eine allgemeine Formel fiir die Bilder eines Punktes P(p;/p2/ps) mit

P2 # z9 herleiten:

21 pP1— =
(1) Projektionsgerade: p: &= | zo | + 1 | po — 20 ,uweER
z3 p3 — =3
(2) Schnitt mit der Bildebene:
Z2
Ty =20+ pu(p2—22)=0=p= P
21 pP1— =
z 29p1 — %2 293 — %
2 _2 P2 — 2 :>P/<2P1_ 1P2/0/ 2173_ 3P2>
z2 — P2 22 — P2 22 — P2
23 D3 — 23

Die Formel entspricht der Gl. (4.4.4), S. 147, mit z; = 3,22 = 4,23 = 5 und
Pi =0i + A-ri.

Abschlieftend fassen wir die Formeln im folgenden Satz noch einmal zusammen, da
sie fir die Untersuchung weiterer Eigenschaften der Zentralprojektion noch benétigt

werden.
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Satz 4.4.2: Abbildungsgleichungen

Sei IT : 9 = 0 die Bildebene und Z(z1/22/23) ¢ II das Projektionszentrum.
Dann gelten folgende Formeln fiir die Bilder von Punkten bzw. Geraden einer

Zentralprojektion:

i) P(p1/p2/p3) mit pa # 22

Z2 P1 — 21 P2 22 P3 — 23 P2
ea(P) Ny, )
22 — P2 22 — P2

Ist po = 29, so ist die Projektionsgerade parallel zur Bildebene und das
Bild von P ist ein Fernpunkt, dessen Koordinaten erstmal nicht berechnet

werden konnen.

i) gfllmit Z¢ gund g: =3+ A7

Z1—ar bri+o1—2=
p(9) 1 &= 0 + 0
z

23— ars brs+ 03— 23
z9 — 02
mit a = —,b =
T2 T2
i) g |11, Z ¢ g
29 01 — 21 02 ™
. 1 Z2
©2(9): T = 0 + 1 0
z9 — 02 z2 — 02
22 03 — 23 02 3

iv) gmit Z € g

Die Gerade wird zu einer Projektionsgeraden, wodurch 6—2 der Nullvektor
wird. Das Bild der Geraden ist der Schnittpunkt S der Geraden mit der

Bildebene bzw. der Ortsvektor von ¢’ aus (ii):
22

@z(S) (21 —aT‘l/O/Z’g —(ZT3) mit a = o
2
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Nun stellt sich die Frage, warum es ausreicht, die Bildebene festzulegen und nur
das Projektionszentrum zu variieren, um dennoch allgemeine Aussagen fiir beliebige
Bildebenen mit Z ¢ II treffen zu kénnen. Durch eine Transformation, d.h. eine
bijektive Abbildung im Raum lé&sst sich jede beliebige Bildebene auf II : xo = 0
abbilden. Wir verschieben den Schnittpunkt der Bildebene mit der x1- oder x3-Achse
in den Ursprung und drehen dann mithilfe von Rotationsmatrizen geeignet um die
entsprechenden Hauptachsen. Existiert kein Schnittpunkt mit den genannten Achsen,
so ist die Ebene parallel zur gewiinschten Bildebene und es reicht eine Translation
aus.

In beiden Fallen handelt es sich um bijektive Abbildungen bzw. ihre Verkettungen,
sodass die Komposition wieder bijektiv ist. Ein Beispiel zeigt die Abb. 4.4.6.

(6,0 7)(IT)

~(IT)

e

7)(i1) =11

Abb. 4.4.6  Wir verschieben um den Gegenvektor des Ortsvektors des Schnittpunk-
tes S mit der roten z1-Achse und erhalten die Ebene 7(II). Dann wird der Winkel zu
der blauen x3-Achse berechnet und die Ebene entsprechend um die x1-Achse gedreht.
Genauso wird anschlieffend bei der Drehung um die z3-Achse vorgegangen, sodass

als Ergebnis die Bildebene II : 2 = 0 erhalten wird.
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4.4.3 (ii) Parallele Geraden und Fluchtpunkte

In Satz 3.1.3 auf Seite 49 wurde mit-
hilfe der Inzidenztreue gezeigt, dass der
Fluchtpunkt das Bild eines Fernpunktes
ist. Wir wollen nun eine Formel zur Be-
rechnung der Koordinaten herleiten. Die
Abb. 4.4.7 zeigt, dass lediglich die Rich-
tung der parallelen Geraden fiir die La-
ge des Fluchtpunktes entscheidend ist,
nicht aber die Ebene, zu welcher die Ge-
rade gehort.

Fiir den Einsatz im Schulunterricht wol-
len wir zuerst mit einem Zahlenbeispiel
das Problem erkunden. Wir betrachten
dazu drei parallele Geradenpaare, wel-
che in Abb. 4.4.7 dargestellt sind. Dabei
ist F' der Fluchtpunkt auf der Geraden

h, dem Horizont. In der folgenden Aufgabenstellung entsprechen g; und go den grii-

nen Geraden in der unteren Ebene, wihrend hi, hs in schwarz und ki, ko in blau

dargestellt sind.

Aufgabenbeispiel 4.4.3

Fluchtpunkt.

Abb. 4.4.7 Die Bilder von Geraden glei-

schneiden

Gegeben sind folgenden Geraden, welche untereinander parallel sind.

6 -1
q:r=1-3|+A

0

6 -1
hltf: =31+

2

4 2
ki:d=|-1|+X| -4

2 0

Bestimmen Sie die Bilder der Geraden unter der Zentralprojektion mit Zentrum
Z(3/4/5) auf die Ebene II : 5 = 0 und zeigen Sie, dass alle Bilder denselben

Schnittpunkt besitzen.

+ A

+A

+A

-1

0

T2
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Losung:

Wir erhalten mit der Formel in Satz 4.4.2 folgende Bildgeraden:

—0.5

+ 1 0 SOZ(QZ) 1T =
-5

P(q1) 1 T = + 1
—0.5
tul 0 pz(ho) : T =
-3
~1.5
+u| 0 po(ke) : T =
-3

+

+p

RS

n

—

>

=

SN—

8

Il
o O Ot ot ©O Ot ot O Ot
g O ot ot O ot ot O Ot

-3

Der Schnittpunkt der Geraden ist leicht zu finden. Der Fluchtpunkt ist F'(5/0/5).

Dass alle Geraden denselben Ortsvektor besitzen, erscheint zunéchst ungewthnlich.

Dies liegt allerdings nicht an dem Zahlenbeispiel. Nach der Formel in Satz 4.4.2

ist der Ortsvektor der Bildgeraden abhéngig von den Koordinaten des Zentrums

und dem Richtungsvektor der Geraden. Das Ergebnis &ndert sich daher nicht, wenn

die parallelen Geraden identische Richtungsvektoren besitzen. In dem Beispiel tre-

ten allerdings auch Richtungsvektoren auf, welche geméf der linearen Abhéngigkeit

Vielfache voneinander sind und dennoch ergibt sich derselbe Ortsvektor. Dies lasst

sich jedoch leicht erkléren:

21*;72 k‘?”l 21 — .=

T2 T2

gllh = FkeR\{0}:7y =k 7= 0 = 0
23— 5 ks z3— 2

Der Faktor k # 0 verschwindet, sodass beide Geraden g und h denselben Ortsvektor

besitzen. Wir haben somit auch allgemein bewiesen, dass der Fluchtpunkt sich wie

folgt bestimmen ldsst:

Satz 4.4.3: Der Fluchtpunkt

Sei Z das Projektionszentrum. Ein Parallelenbiischel habe Richtungsvektoren,

welche linear abhéngig zu einem Vektor 7 sind. Dann schneiden sich die Bild-

geraden mit ro # 0 in einem gewOhnlichen Punkt F' mit

F(zi—a-r1/0/z3—a-r3) mit a = 22
T2
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Es gibt einen Sonderfall: der Fluchtpunkt ist selbst wieder ein Fernpunkt. Dies ist
der Fall, wenn ro = 0 ist und a nicht berechnet werden kann. Dann ist das Geraden-
biischel parallel zur Bildebene sowie zu ihren Bildgeraden, wie in Satz 4.4.2 schon

thematisiert wurde. Demnach gilt
p:(R") = R*

Der Fernpunkt R* des Parallenbiischels ist also ein Fixpunkt, was mit der Aussage
iibereinstimmt, das sich Gerade und Bildgerade immer in einem Fixpunkt schneiden
(Satz 3.1.2, S. 49).

Wir haben die Koordinaten des Fluchtpunktes damit begriindet, dass der Ortsvektor
in der Formel fiir die Bildgerade nach Satz 4.4.2 nur abhingig vom Richtungsvektor
der urspriinglichen Geraden g ist und demnach alle Bildgeraden eines Parallelbiischels
diesen Punkt gemeinsam haben. Es muss sich daher um den Fluchpunkt handeln.
Es gibt noch einen weiteren Ansatz. Wir wissen nach Satz 3.1.3, dass sich der Fluch-
punkt als Schnittpunkt der Parallelen zur Geraden g durch das Projektionszentrum
mit der Bildebene ergibt. Sei also wieder ¥ = (r1,72,73)" der Richtungsvektor des
Parallelbiischels und Z(z1, 22, z3) die Koordinaten des Projektionszentrums. Dann

ergibt sich folgender Bildpunkt:

21 1
(1) Projektionsgerade: p: &= |z | + p | 72 peR
23 T3
(2) Schnitt mit der Bildebene:
w2222+ur2:O:>u:_—Z2::—a
2
<1 1
| —alr| =F(zi—a-r/0/z3—a-r3)
<3 r3

Wir erhalten dieselbe Formel aus dem o.g. Satz 4.4.3.
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4.4.4 (iii) Fluchtpunkte liegen auf dem Horizont

Auch hier kénnen wieder zum Einstieg
Zahlenbeispiele im Unterricht verwen-
det werden, worauf nun aber verzichtet
und stattdessen das Beispiel in der Ab-
bildung 4.4.8 herangezogen wird. Dar-
gestellt sind parallele Geradenpaare un-
terschiedlicher Richtungen, welche nicht
Z enthalten, damit ihre Bilder wieder
Geraden sind. Da die Lage der Fern-
punkte vom Richtungsvektor der Ge-
raden bestimmt wird, ergeben unter-
schiedliche Richtungen auch verschiede-
ne Fluchtpunkte, welche sogar kollinear
sind, wenn die Geradenbiischel in paral-
lelen Ebenen liegen. Diesen Fall wollen

wir nun untersuchen.

Zum Einsteig bilden wir die Situation
in GeoGebra ab. In der nebenstehen-
den Abbildung ist blau die Ebene, wel-
che die schwarzen Geraden enthilt. Die
Richtung der Geraden lasst sich durch
Verschiebung des Punktes auf dem Kreis
dndern, wie auch der Abstand zwischen
den beiden Geraden. Zur blauen Ebene
senkrecht liegt die graue Bildebene, wel-
che die Bildgeraden enthélt. IThr Schnitt-
punkt ist der orange Punkt F', welcher
den Fluchtpunkt darstellt.

Die Bildgerade ldsst sich auf zwei Ar-
ten konstruieren. Entweder wir wéhlen
zwei verschiedene Punkte auf der Gera-
den, bestimmen iiber die Projektionss-
trahlen die Bilder und verbinden diese.
Hier dagegen wurde die Projektionsebe-
ne verwendet, welche durch Z und die
Gerade ¢ definiert wird. Die Schnittge-
rade ist das Bild von g.

> I9

I

Abb. 4.4.8 Fluchtpunkte von Geraden in
parallelen Ebenen sind kollinear.
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In diesem GeoGebra Arbeitsblatt konnen sich Schiilerinnen und Schiiler davon iiber-
zeugen, dass nur die Richtung der Gerade einen Einfluss auf die Lage des Fluchtpunk-
tes hat. Wird nur der Abstand veréndert, so &ndert sich auch eine der Bildgeraden,

aber ihr Schnittpunkt bleibt gleich, wie die obigen Beispiele zeigen.

Wir dndern nun die Richtung der Gera-
den und lassen uns die Spur des Flucht-
punktes anzeigen. Es zeigt sich, dass
der Fluchtpunkt auf einer Geraden liegt,
welche parallel zur blauen Objektebene

liegt.

Dies lasst sich leicht einsehen, wenn be-
kannt ist, wie der Fluchtpunkt konstru-
iert wird, ohne den Schnittpunkt der
Bildgeraden zu verwenden. Wir haben
zuvor schon erlautert, dass der Flucht-
punkt das Bild des Fernpunktes des par-
allelen Geradenbiischels ist. Die Projek-
tionsgerade ist also die Parallele durch
Z, welche die Bildebene im Fluchtpunkt
F durchstofst. Diese Parallele liegt in der
Ebene, welche parallel zur blauen Ebene
ist und durch Z verlauft. F' liegt auf der
Schnittgeraden.
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Wir wollen nun mithilfe der hergeleiteten Formel einige Besonderheiten des Flucht-
punktes untersuchen. Die Gerade mit dem Richtungsvektor 7 = (O,TQ,O)T steht
senkrecht zur Bildebene. Dann ist der Fluchtpunkt nach der Formel in Satz 4.4.3

H(Zl/O/Zg).

Dieser Punkt wird auch Hauptpunkt H genannt, da dieser der Lotfufipunkt des Pro-
jektionszentrum ist. Wir betrachten nun ein weiteres Geradenbiischel, welche in einer
Ebene liegt, die die Bildebene senkrecht schneidet. Fiir die Richtungsvektoren gilt

dann 7 = (ry, 79, O)T, was wir wieder in die Formel fiir den Fluchtpunkt einsetzen:

_ .
z1— 22 ot Z1 v 1
0 =10]|-— 0
T2
z3 Z3 0

Es ergibt sich eine Geradengleichung mit dem Parameter % und dem Richtungs-
vektor (1,0,0)T. Dies war die horizontale Gerade in dem vorherigen Beispiel, auf
welcher F' lag. Sie verlduft auch parallel zur xixo-Ebene, wie auch die urspriingli-
chen Geraden. Was passiert nun, wenn wir die Ebene, in welcher die Geraden liegen,
verkippen?

Die Abbildung 4.4.9 zeigt, dass der Horizont die Schnittgerade der Bildebene mit
derjenigen Ebene ist, welche das Projektionszentrum enthélt und parallel zu den

Ebenen ist, welche die Geradenbiischel enthalten.

X3 23

Abb. 4.4.9 Der Horizont ergibt sich aus dem Schnitt der zur Objektebene parallelen
Ebene durch Z mit der Bildebene.
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Wir haben nun in den vorherigen drei Abschnitten die Eigenschaften der Zentral-
projektion aus Satz 4.4.1, S. 143, mithilfe der Methoden bzw. den Kenntnissen un-
tersucht und bewiesen, welche im Mathematikunterricht der Sekundarstufe II an
Gymnasien und Gesamtschulen in NRW laut Lehrplan von 2014 obligatorisch sind.
Unter Verwendung von GeoGebra und Zahlenbeispielen konnen Schiilerinnen und
Schiiler anhand von konkreten Situationen selbststéindig Eigenschaften untersuchen
und Vermutungen aufstellen, welche sie dann mit ihren Kenntnissen zur analytischen

Geometrie aus dem Unterricht begriinden kénnen.

Wir verlassen nun den Bereich der analytischen Geometrie und betrachten die Zen-

tralprojektion aus Sicht der projektiven Geometrie.
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4.5 Perspektive Abbildungen

Die projektive Geometrie ist uns schon bei der Einfiihrung der Fernpunkte sowie im
Satz von Desargues begegnet. Wie im Abschnitt 2.2 erldutert, schneiden sich zwei
verschiedene Geraden ohne Ausnahme. Parallele Geraden schneiden sich dann in ei-
nem unendlich weit entfernten Punkt, dem Fernpunkt. Wir haben in den vorherigen
Abschnitten gezeigt, dass sich Bildpunkte mit Methoden der analytischen Geometrie
berechnen lassen, sofern die urspriinglichen Punkte des Objektes sich mit Koordina-
ten beschreiben lassen. Aber was ist nun mit den Koordinaten der Fernpunkte? Wir
haben gezeigt, dass der Fluchtpunkt das Bild eines Fernpunktes ist und die Bilder
einer Folge von dquidistanten Punkten auf einer Geraden zum Fluchtpunkt der Bild-
geraden konvergieren. Zur Vereinfachung isolieren wir nun Gerade und Bildgerade,
d.h. wir betrachten eine Projektion zwischen zwei Geraden, welche in der projektive

Geometrie als perspektive Abbildungen bezeichnet werden [47, S. 59].

In Abb. 4.5.1 sind die Punkte auf der Urbildgeraden P_; bis P; dquidistant. Ihre
Bilder dagegen sind es nicht. Wie zuvor analytisch gezeigt, ist der Fluchtpunkt F'
das Bild des Fernpunktes der parallelen Geraden in der blauen Ebene. Dieser scheint
ein Haufungspunkt der Folge der Bildpunkte P! zu sein. P, hat keinen gewohnlichen
Punkt als Bild, da die zugehorige Projektionsgerade in der griin hervorgehobenen
Ebene liegt, welche parallel zur Bildebene verlauft. P, liegt in der Verschwindungs-
ebene. Gehen wir iiber diesen Punkt hinaus, so erscheinen die Bildpunkte nun ober-

halb des Fluchtpunktes und néhern sich auf der linken Halbgeraden an F' an.

I

Abb. 4.5.1 Punktfolge auf einer Geraden
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Wir wollen im folgenden diskutieren, wie die Projektion zwischen zwei Geraden im
Schulunterricht umgesetzt werden kann. Dieses Thema kann auch anschliefsend zu
den Fotografien in den Abschnitten 4.1 bis 4.3 im Unterricht behandelt werden, denn
es ist einfacher die Zentralprojektion zwischen zwei Geraden auf ihre Eigenschaften
zu untersuchen als vom Raum in die Ebene, da im ersten Fall alle Zeichnungen
zweidimensional sind. Dies sollte die Veranschaulichung und Vorstellung seitens der

Schiilerinnen und Schiiler erleichtern.

4.5.1 Projektion zwischen zwei Geraden

Wir betrachten nun eine Zentralprojektion zwischen zwei Geraden g und h, welche
sich schneiden, und legen das Projektionszentrum Z fest. Auf ¢ markieren wir einen
Punkt P. Um das Bild zu konstruieren, zeichnen wir die Verbindungsgerade PZ,
welche die Gerade h schneiden wird, sofern sie nicht parallel zu dieser ist. Diesen
Sonderfall betrachten wir spiter. Der Schnittpunkt ist der Bildpunkt P’. Fiir erste
Beobachtungen kénnen Schiilerinnen und Schiiler folgende Aufgabe bearbeiten. Nach
dem ersten Beispiel kénnen sie dann andere Geraden verwenden, um zu iiberpriifen,
dass die festgestellten Eigenschaften tatsdchlich unabhéngig von der Lage der Gera-

den sind.

Aufgabenbeispiel 4.5.1

Fiihre folgende Konstruktion durch und beantworte die anschlieffenden Fragen.

h

Y
<

1. Nenne den Schnittpunkt der beiden Geraden Py und zeichne davon ausge-
hend auf g alle 1 cm eine Markierung und bezeichne diese mit P;, Ps, Ps, ...

Usw.

2. Zeichne nun jeweils Geraden durch Z und den Punkten auf g. Wenn es
einen Schnittpunkt mit der Geraden h gibt, dann markiere diesen mit P’

und der entsprechenden Nummer des Punktes auf g.



4.5. Perspektive Abbildungen 165

3. Durch diese Konstruktion bilden sich Paare von Punkten zwischen den
Geraden. Wir sagen nun, dass den Punkten auf g entsprechende Punkte

auf h zugeordnet werden.

Schaue dir die gebildeten Paare von Punkten an. Findest du auf die Fragen eine
Antwort?

a) Du hast die Punkte auf g jeweils im gleichen Abstand gezeichnet. Was
fallt dir bei den Punkten auf h auf? Beschreibe ihre Lage.

b) Es gibt einen Punkt auf g, welcher keinem Punkt auf h zugeordnet wer-
den kann. Kannst du ihn finden? Welche besondere Eigenschaft hat die
entsprechende Verbindungsgerade durch Z7

¢) Findest du Punkte auf h, welche keinem Punkt auf g zugeordnet werden

kénnen?

d) Du hast die Punkte auf g durchnummeriert. Vergleiche nun mit der Num-

merierung der Punkte auf h. Was fillt dir auf?

Abb. 4.5.2 zeigt das Ergeb-
nis nach der Konstruktion in
drei Schritten. Mit Abb. 4.5.3
wollen wir die Aufgabenteile
a) — d) erldutern. Den Schiiler-
innen und Schiiler sollte auf-
fallen, dass die Abstdnde be-
nachbarter Punkte unterschied-
lich sind, obwohl die Urbild-
punkte dquidistant sind. Néhe-

re Betrachtungen sollten erge-

ben, dass die Punkte in einem
Bereich immer naher zusammen
Abb. 4.5.2 Das Ergebnis der Aufgabe 4.5.1 riicken.

Die Fragen b) und c) thematisieren Verschwindungs- und Fluchtpunkt. Hier wére
folgender logischer Schluss seitens der Schiilerinnen und Schiiler wiinschenswert:
Damit es keinen Punkt auf h gibt, darf die Verbindungsgerade durch Z die Gerade
h nicht schneiden. Demnach handelt es sich um eine Parallele zu h durch Z. Thr
Schnittpunkt mit g ergibt den gesuchten Punkt P, (im Beispiel P;). Gleiches gilt
umgekehrt fiir g, wodurch sich der Fluchtpunkt F' finden l&sst.
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Abb. 4.5.3 Besonderheiten der Punktfolge in Aufgabe 4.5.1

a=0.5

Abb. 4.5.4 Projektion zwischen zwei Geraden in GeoGebra

Zusammen mit der Beobachtung aus a) lasst sich nun vermuten, dass die Punktfolge
auf h sich F' anndhert. Hierzu kann wieder GeoGebra verwendet werden (Abb. 4.5.4).
Mithilfe des Schiebereglers lésst sich der Punkt P dquidistant auf g verschieben.
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Im Aufgabenteil d) geht es um die Reihenfolge der Punkte. Wie der Fluchtpunkt hat
auch der Verschwindungspunkt P, eine besondere Bedeutung. Durch die Nummerie-
rung bekommen die Geraden eine Richtung zugewiesen. Die Bildpunkte aller Punkte
nach dem Verschwindungspunkt (in Abb. 4.5.3 orange markiert) liegen oberhalb von
F. Gehen wir von P, = P; nach P, P3 usw., wird der Abstand zwischen den zu-
geordneten Punkten P|, Pj, Pj usw. immer kleiner, wihrend sie sich dem Punkt F
néhern. Betrachtet man dagegen die Punkte auf g vor P, erscheinen die Bildpunkte
unterhalb von F' (im Bild blau markiert).

Im néchsten Beispiel variieren wir die Position von Z, denn in der ersten Aufgabe

lag dieser im spitzen Winkelfeld der Geraden g und h.

Aufgabenbeispiel 4.5.2

Verschiebe nun den Punkt Z auf die andere Seite von h, sodass der Punkt in

dem groferen Feld zwischen den Geraden g und h liegt.

1. Konstruiere erst die beiden Punkte F' und P,, welche keinen zugeordneten

Punkt besitzen.

2. Markiere nun in gleichen Absténden Punkte auf g welche vor und nach

P, liegen und konstruiere die jeweils zugeordneten Punkte auf hA.

3. Vergleiche nun mit deiner Konstruktion aus Aufgabe 4.5.1. Gibt es Un-

terschiede? Wenn ja, kannst du diese beschreiben?

Wie in Abb. 4.5.5 erkennbar, fithrte die Verschiebung von Z qualitativ zu einer Ver-
tauschung der Punktfolgen auf A. Nun wird die untere Halbgerade bzgl. F' von den
orangen Punkten besetzt, statt wie zuvor die obere. Alle anderen Eigenschaften blei-

ben erhalten.

Wir wollen nun im n#chsten Schritt die Punkte nicht mehr durch Konstruktion fin-
den, sondern berechnen konnen. Hierfiir erhalten die beiden Geraden, wie die Ach-
sen eines Koordinatensystems, eine Richtung und eine identische Skala, z.B. kann
als Léngeneinheit 1cm gewahlt werden. Der Schnittpunkt der Geraden Py ist der
Ursprung. Wir wollen nun den Ort von P’, dem Bildpunkt von P, finden, in dem wir
den Abstand y = d(Pp, P’) berechnen. Den Abstand von P zum Ursprung nennen
wir = (Abb. 4.5.6).
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Abb. 4.5.5 Besonderheiten der Punktfolge in Beispiel 4.5.2, wenn die Reihenfolge
von h und Z vertauscht wird.

Abb. 4.5.6 Die Dreiecke sind &hnlich zueinander, sodass der Strahlensatz verwendet
werden kann, um gy in Abhéngigkeit von x zu berechnen.

Wir wollen auch die Position des Projektionszentrums Z unter der Angabe von Ab-
stdnden definieren. Hierzu ziehen wir durch Z die Parallelen zu h und g, welche die
Geraden in den Punkten F' und P, schneiden. Den Abstand von F' zum Ursprung
bezeichnen wir mit f und den von P, mit v. Nun wollen wir den Abstand y mit den
bekannten Léngen f,v und x berechnen.

Die Dreiecke APyPP’, AP,PZ sowie AFZP' in Abb. 4.5.6 sind dhnlich zueinander,

da wir zeigen konnen, dass sie in allen drei Winkeln {ibereinstimmen:
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Die Geraden Z P, und h sind nach Konstruktion parallel zueinander. Demnach han-
delt es sich bei den Winkeln bei Py und P, um gleich grofse Stufenwinkel. Gleiches
gilt auch fiir die Stufenwinkel bei P’ und Z. Somit sind die beiden groferen Dreiecke
zueinander dhnlich, da sie beide den Winkel bei P besitzen. Mit derselben Argumen-
tation ist auch das kleinste Dreieck zum grofsten dhnlich, da g nach Konstruktion
parallel zur Geraden ZF ist.

Mithilfe des ersten Strahlensatzes (Satz 2.5.2, S. 41) lasst sich folgende Gleichung

zwischen x und y herleiten:

y=f_ v . fv

f T —v T —v T —v

Wir kénnen somit folgenden Satz formulieren (4], S. 5-9):

Satz 4.5.1

Gegeben seien zwei Geraden g und h, mit Schnittpunkt O und einer festgelegten
Orientierung, sodass sie ein Koordinatensystem bilden. Weiterhin sei ein Punkt
Z ¢ h, g gewahlt (s. Abb. 4.5.6). Hat der Punkt P € g die Koordinate x, so hat

sein zugeordneter Punkt P’ € h die Koordinate y mit:

X

y=1r-

r—v

Dabei ergeben sich die Langen f und v aus der Lage von Z.

Mithilfe der Gleichung lassen sich nun auch die o.g. Eigenschaften der Punktfolge P/
untersuchen.

Wir wollen aber zuvor noch zwei besondere Lagen von Z besprechen. Im o.g. Satz
wurde unterbunden, dass Z auf h liegt, da sonst v = 0 wére, Z = F' und das blaue
Dreieck nicht existent. Wenn Z € h, so wiirde jeder Punkt P € g auf Z abgebildet
werden, da nach Konstruktion jede Verbindungsgerade Z enthélt und der Schnitt-
punkt mit A immer Z ist. Gleiches zeigt auch die Formel. Fiir v = 0 ist y = f fiir
alle x # 0. Fiir x = 0 ist die Gleichung nicht definiert. In Abb. 4.5.6 ist erkennbar,
dass in diesem Fall ZPy = h wére, d.h. das Bild von P, ist eine Gerade.

Liegt dagegen Z auf g, so ist f = 0, Z = P, und das orange Dreieck verschwindet.
Dann fallen alle Verbindungsgerade Z P mit g zusammen, sodass alle Punkte auf den
Schnittpunkt Py projiziert wiirden. Ebenso wére y = 0 fiir alle x # v. Fiir x = v ist

die Gleichung nicht definiert. Es gébe wegen Z = P, keine Verbindungsgerade.
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Wir legen daher fest, dass Z auferhalb der Geraden liegt und untersuchen nun die

Punktfolge der Bilder auf h, falls |z| gegen unendlich strebt:

. X .
lim - f= lim
z—too r — v z—+oo 1 —

SRS

Ohne den Grenzwert direkt zu verwenden, wire im Unterricht auch folgende Argu-
mentation moglich: Wenn x eine sehr grofte Zahl ist, also x >> v, dannist t —v ~ =
und demnach —%- =~ 1, wodurch auch gezeigt ist, dass y gegen f strebt und die
Punktfolge gegen F'. Diese Argumentation ist dabei unabhéngig vom Vorzeichen, da

sie auch fir |z| gilt.

Wir haben weiterhin in den vorherigen Abbildungen gesehen, dass die Absténde
benachbarter Punkte abnahmen, je grofer x wurde, zumindest fiir z € N. Seien

daher P, und P, 1 zwei solcher Punkte mit einer natiirlichen Zahl n. Dann gilt:

n n+1
P, - P, = —
[P ] n—vf n—i—l—vf‘
v
Cl(n—v)(n+1—-0) 1l
v
Cn24n—2un—v 1]
oz
- _ - lim |— 2 |,
lim [P, — Py J;lgloH%_% £
0
‘1+0—0"‘f|
=0

Selbige Argumentation gilt auch fiir die andere Halbgerade, d.h. fiir alle Punkte
welche entgegen der Orientierung sich von Py entfernen und negative Werte fiir x

aufweisen. Hier gilt ebenso
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4.5.2 Perspektive Abbildungen

Die Konstruktion im vorherigen Kapitel ergibt eine punktweise Abbildung zwischen
zwei sich schneidende Geraden. Wir wollen daher diskutieren, unter welchen Bedin-
gungen die Gleichung aus Satz 4.5.1 eine wohldefinierte Abbildung ergibt, welche
Invarianten existieren und wie sie mithilfe von homogenen Koordinaten in eine linea-
re Abbildung {iberfiihrt werden kann, um auch Fernpunkten Koordinaten zuweisen

zu konnen.

Definition 4.5.2: Perspektive Abbildung

Zwischen zwei sich schneidende Strahlen g und h existiert eine Abbildung
0, g\ {Pv} = h\ {F}, mit dem Punkt Z ¢ g, h als Projektionszentrum. Die
Geraden bilden ein Koordinatensystem, wobei die Lage der Punkte P € g {iber
die Koordinate x definiert wird, wie auch die Lage von @ € h {iber die Koordi-
nate y.

Es liegt eine perspektive Abbildung vor, wenn fiir ¢, (P) = @ gilt:

_x‘f

r—0

Die Parameter f und v ergeben sich aus der Lage von Z.

Der Punkt P, muss ausgeschlossen werden, da die Verbindungsgerade mit Z keinen
Schnittpunkt mit A hat. Dem Punkt kann daher kein gew6hnlicher Punkt auf A zu-
geordnet werden. Aufgrund der Definition einer Abbildung (Def. 2.4.1, S. 35) muss
er in der Definitionsmenge ausgeschlossen werden. Soll zusétzlich erreicht werden,
dass die perspektive Abbildung surjektiv ist, so muss der Punkt F' aus der Zielmen-
ge entfernt werden, da auch hier die Verbindungsgerade mit Z die Gerade g nicht

schneidet. F' hat daher keinen gewohnlichen Punkt als Urbild. Hier folgt nun eine
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weitere Erklarung unter Beachtung der Koordinaten x und y [4, S. 17]:

Der Punkt P, hat die Koordinaten x = v, was eine Division durch 0 zur Folge hat. Die
Koordinate y kann daher nicht berechnet werden. Zur Uberpriifung der Surjektivitiit,
wird die Gleichung in Def. 4.5.2 nach  umgestellt:

T v
! syr—yv=zcf= x= Y

xr—v y—f

Yy = (4.5.1)

Da der Punkt F' die Koordinate y = f hat, wiirde sich wieder eine Division durch 0
ergeben. Warum Z nicht auf den Strahlen liegen darf, ldsst sich damit erkldren, dass
die Zuordnung der Punkte aufgrund der Wohldefiniertheit eindeutig sein muss, d.h.
es darf kein Paar von Punkten geben, welches dieselben Bilder hat. Es muss daher
ausgeschlossen werden, dass in der Koordinatengleichung der Zahler ein Vielfaches
des Nenners fiir alle x € R\ {v} ist. Angenommen dies ist der Fall mit A # 0. Dann
folgt mithilfe des Koeffizientenvergleichs:

Mr—v)=zf=2Ar—-Av=fz
=A=fAX-v=0
= f-v=0
= f=0vev=0
=Ze€gVZeh

Die Negation der obigen Folgerung ergibt, dass Z nicht auf den Geraden g und h

liegen darf
Z¢ghnZgh= ANER: Nz —v)=2zf Vz eR\ {v}

Mitv =0oder f = 0ist Z = F bzw. Z = P,. Im ersten Fall wiirden alle Punkte von g
(aufser der Ursprung) auf F' abgebildet werden, im anderen Fall auf den Schnittpunkt
der Geraden. Denn es gilt Vo € R\ {v}:

T f 7:5750
v=0=>y=—=
x unbestimmt , z =0
0
f=0=y= —0
x—v

Mit den genannten Einschrénkungen hat die Abbildung folgende Eigenschaften:
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Satz 4.5.3

Fiir die Abbildung ¢, : g \ {P,} = h\ {F} mit Z ¢ g, h gilt:

i) Sie ist bijektiv mit der Umkehrabbildung ¢;!: h\ {F} — g\ {P,}. Nach
Gl. (4.5.1) konnen die Koordinaten der Punkte wie folgt bestimmt werden:

ii) Sie ist invariant bzgl. des Doppel- aber nicht des Teilverhéltnisses.

iii) Sie ist nicht linear.

i) wurde schon bewiesen. Beim i) geht

es um die Invarianten der geometrischen
Abbildung. Wir betrachten hierzu drei
beliebige Punkte auf g und das entspre-

chende Teilverhéltnis der Strecken nach

der Def. 2.3.1, S. 28. Der Punkt P ist
Teilungspunkt der Strecke AB in der

> g Abb. 4.5.7. Der Abstand zwischen A und
P betrigt 2 LE bzw. 1 LE fiir P und B.

Also ist TV (A,B,P) = 2 = 2. Misst

Abb. 4.5.7 Das Teilverhiltnis bleibt man dagegen die Léngen der Bildstre-
nicht erhalten. cken, so ist TV(A', B/, P') ~ 289 =79,

~ 0,24
also nicht invariant. Dies hat u.a. zur

Folge, dass Mittelpunkte von Strecken nach der Projektion keine mehr sein miissen,
was die Konstruktion zentralprojektiver Bilder erschwert. Dies ist einer der Unter-

schiede zwischen Zentral- und Parallelprojektion.

Wir zeigen nun allgemein, dass das Teilverhéltnis nicht erhalten bleibt [4, S. 11]. Sei
xp der Abstand des Punktes P vom Schnittpunkt der beiden Geraden. Dann gilt:

Tp—TA

TV(A,B,P) = P —

Mithilfe der Abbildungsgleichung in Def. 4.5.2 kénnen nun die Strecken der Bilder

bestimmt werden:

_xaf rxpf  fv xp—14

Yyar —yp = - =
TA—V XTp—UV Tp—V TA—U
rp f g f fv xp—xp

yp —yp = - =

Irp —v rp — v Irp—UV B — U
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Der Vorfaktor ist bei beiden Differenzen derselbe, sodass dieser im Teilverhéltnis

verschwindet:

rp—TA ITB—Xp rp—v ITp—TA rp — v
) = : = : = TV (A, B, P)
rpA— 0 rp — v rpA—vV T —ITp rpA—

= TV(A,B,P):TV(A,B,P)

TV (A, B, P

rB — U

TA— 0

Hier ist nun einsehbar, dass die Teilverhéltnisse sich um einen Faktor unterscheiden,
welcher allerdings nur von den Endpunkten A und B abhéngig ist.

Wiirden wir also einen zweiten Teilungspunkt @ zwischen den beiden Endpunkten
hinzufiigen, und das Verhéltnis der Teilverhéltnisse bilden, so wiirde sich auch dieser
Faktor heraus kiirzen. Dies ist das Doppelverhéltnis DV (A, B, P, Q) nach Def. 2.3.2,
S. 30. Allgemein gilt also in Abb. 4.5.8:

_ TV(A,B,P) TV(A',B,P)
 TV(A,B,Q) TV(A, B.Q)
_ TV(A,B,P) TV(A,B,Q)
T TV(A,B,P) TV(A B,Q)
TpA—V XxB—U

DV(A,B,P,Q): DV(A',B',P.Q)

=1

- IB—V Tpg—0
= DV(A,B,P,Q)= DV (A", B P, Q"

Somit wurde gezeigt, dass das Doppelverhéltnis eine Invariante der projektiven Ab-

bildung bzgl. der Langen von Strecken ist.

Abb. 4.5.8 Das Doppelverhéltnis bleibt erhalten.
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Abb. 4.5.9 Alternativer Beweis des Doppelverhéltnisses

Es gibt einen alternativen Beweis von Haack (1969) [18, S. 55]. Dieser nutzt den
Strahlensatz und kommt ohne die Abbildungsgleichung aus. Es werden durch die
Punkte A, B, A" und B’ parallele Geraden mit beliebiger Richtung gezeichnet. Die
Projektionsstrahlen von P und ) werden soweit verldngert, dass sie die Parallelen
schneiden (Abb. 4.5.9). Dabei ist Ap der Schnittpunkt der Parallelen durch A mit
dem Projektionsstrahl durch P. Die anderen siecben Punkte werden analog benannt.
Aufgrund der Parallelen entstehen Strahlensatzfiguren. Auf der linken Seite der Ab-
bildung sind diese mit Streckzentrum P und @) hervorgehoben. Zwei weitere existieren

mit den Zentren P’ und @', welche zur besseren Ubersicht nicht dargestellt sind.

Nach dem ersten Strahlensatz in 2.5.2, S. 41, gilt:

Adp _ £ =TV (A, B, P) ﬁ = A:Q =TV (A, B,Q)
BBp BP BBg BQ
ATA AT DI A’ A 7aYi

p_ AP TV(A',B', P il - A TV (A, B, Q")
B'B, B'P B'B, B

Wir wollen zeigen, dass das Doppelverhaltnis unverdndert bleibt und unser Zwischen-

ergebnis ist:

AAp - BBg

AAqg - BBp

B A'AY, - B Bb
A A’Q -B'B,

DV(A,B,P,Q) =TV(A,B,P) : TV(A,B,Q) =

DV(A B, P,Q)=TV(A,B,P):TV(A,B,Q)
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Die Faktoren im Nenner wurden absichtlich vertauscht, denn wir wenden wieder den

Strahlensatz an, um zu zeigen, dass

AAp A4, (45.4)
Adg  AA o
BBg _ D'l (4.5.5)
BBp BB h

Wir benétigen dafiir die markierten Strahlensatzfiguren in Abb. 4.5.9, rechte Seite.
Es gilt:

Ad, ZA A4,

(4.5.6)

AA, ZA A4,

Analog gilt dies auch fiir die Strecken, welche durch die Parallelen durch B und B’
entstehen. Der besseren Ubersicht wurden diese in der Abbildung vernachlissigt, wie
auch die entsprechende Strahlensatzfigur mit Zentrum Z. Durch Umformung von
Gl. (4.5.6) erhalten wir Gl. (4.5.4) und somit auch das unverédnderte Doppelverhalt-
nis in Gl. (4.5.2).

4.5.3 Homogene Koordinaten

Es bleibt noch die Einfithrung von homogenen Koordinaten zu motivieren. Hierfiir
zeigen wir den letzten Punkt im Satz 4.5.3 aus dem vorherigen Abschnitt. Die Ab-
bildung ist nicht linear, denn sie erfiillt nicht die Bedingung bzgl. der Multiplikation
mit einem Skalar. Sei a € R beliebig. Dann gilt:

ax f

palarw) = oaxr—v 7ga;5_fv = ea(@)

Ausnahmen sind « € {0, 1}, da der Ursprung ein Fixpunkt ist, d.h. ¢,(0) = 0. Linea-
re Abbildungen haben den Vorteil, dass die Bildpunkte durch eine Matrix-Vektor-
Multiplikation berechnet werden kénnen. Weiterhin ist noch das Problem, dass die
Fernpunkte durch die jetzigen Koordinaten nicht erfasst werden kénnen. Das Bild
von P, ist ein Fernpunkt wie auch das Urbild von F. Daher mussten v und f in der

perspektiven Abbildung zur Erhaltung der Bijektivitdt ausgeschlossen werden.

Mithilfe von sog. homogenen Koordinaten lassen sich auch die Fernpunkte angeben.

Wir ersetzen den Abstand z bzw. y vom Schnittpunkt der Geraden durch die Ver-

Th
Zo

héltnisse x = 22 bzw. y = Z—’g, wobei g, yo # 0 ist. Die Abbildungsgleichung &ndert
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sich dann wie folgt:

Tp
y:ﬂrf yh_ﬁ'f_ zp - f
T — Yo %—v Ty — V- To

=Ly (4.5.7)

Durch diese Umformung werden aus einer Abbildungsgleichung zwei Verhéltnisse,
welche p entsprechen. Bild und Urbild miissen daher folgendes Gleichungssystem

erfiillen, welches sich nun als Matrix-Vektorprodukt schreiben lasst:

wnf o o=pynl (F 0 fxn) _ (ryn (45.8)
Tp —VxO = QLYo I —v xo H Yo .

Durch die Ersetzung von reellen Zahlen durch geeignete Vektoren (s. Abb. 4.5.10)
erhalten wir eine lineare Abbildung, allerdings ist noch unklar, wie p bestimmt wer-
den kann.

Da y dem Verhaltnis von yp, zu yo entspricht, ist es nicht nétig, den gemeinsamen
Faktor u # 0 zu kennen. Bei g = 0 muss nach Gl. (4.5.7) xp = 0 und wegen xg # 0
dann auch z = 0 sein. Dies ist der Schnittpunkt der beiden Geraden, d.h. ein Fix-
punkt, welcher spéter noch besprochen wird. Wir kénnen daher die Gl. (4.5.8) wie

(O e

folgt vereinfachen:

Abb. 4.5.10 Den Absténden x der Punkte auf g zum Schnittpunkt entsprechen nun
Vektoren in der xg, x,-Ebene.
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Wie muss zg bestimmt werden, damit der richtige Vektor sich als Bild ergibt? Wir
betrachten dazu folgendes Beispiel mit zy = 2 und bestimmen ¢, (3). Nach Def. 4.5.2
gilt:

Mithilfe der linearen Abbildungsgleichung erhalten wir folgenden Vektor:

;oo (32\_(6r\_ _ 65 _ 3¢
1 —v 9o ) " l6-20) 7YV 620 3-v

Es ergibt sich tatsdchlich das richtige Bild. Fiir zy # 0 erhalten wir immer das

entsprechende Bild, denn:

f 0 T-x0\ xox f Ly roxrf  xf
1 —v g Lo — Lo Y ToT—ToV T —U

Letztendlich steckt hier die Gl. (4.5.7) mit xp = = - ¢ dahinter. Was ist nun mit den

Fernpunkten? & = v hat als Bild einen Fernpunkt, dessen homogene Koordinaten

nun bestimmt werden konnen:

() ()= ()

Mit yo = 0 wird der Fernpunkt der Geraden h erfasst, dabei ist die erste Koordinate
beliebig, sofern sie nicht null entspricht. Dies ldsst vermuten, dass mit xg = 0 der
Fernpunkt von g erfasst wird. Dieser ist das Urbild des Fluchtpunktes F', was nun

iiberpriift wird, wobei die erste Koordinate beliebig mit a # 0 sein darf:

() Q)=

Es bleibt noch der Fall x = 0, da hieraus g = 0 folgt. Auch dies stellt in der linearen
Abbildung kein Problem dar:

() (2)-

Wie erwartet, liegt hier ein Fixpunkt vor.
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Wir kénnen nun abschlieffend folgenden Satz formulieren:

Satz 4.5.4

Zwischen zwei sich schneidenden Strahlen g und h existiert eine lineare Abbil-

dung ¢, : Ezozn, — El/myh mit

)= G- () ()

Das Projektionszentrum Z wird dabei mit f und v wie im Satz 4.5.2 festgelegt.
Ist die zweite Koordinate von null verschieden, so entspricht dies gewohnlichen

Punkten auf g bzw. h. In anderem Fall sind es die Fernpunkte der Geraden.

4.6 Zentralprojektion in der Computergrafik

Das vorherige Kapitel beschrieb eine Einfiihrung der homogenen Koordinaten. Die
Motivation bestand darin, die Abbildungsgleichung in eine lineare zu iiberfiihren
bzw. um Fernpunkten Koordinaten zuzuordnen. Eine Frage bleibt allerdings offen:
worin liegt der Vorteil, die Zentralprojektion zu einer linearen Abbildung umschrei-
ben? Der Satz 4.4.2, S. 154, lieferte schon Formeln, um die Bilder von Punkten und
Geraden berechnen zu kénnen. Also warum daher die Miihe machen, homogene Ko-
ordinaten zu verwenden?

Homogene Koordinaten und Zentralprojektionen werden beispielsweise in der Com-
putergrafik (vgl. [36], Kap. 7, S. 202ff) verwendet, wenn es darum geht, naturge-
treue, dreidimensionale Bilder auf dem zweidimensionalen Bildschirm zu generieren.
Das Auge des Betrachters oder die virtuelle Kamera liegt im Projektionszentrum.
Die gedachte Kamera muss sich nun durch eine virtuell erschaffene Szene bewegen.
Dadurch dndern sich das Projektionszentrum sowie die Bildebene in relativ kurzer
Zeit, wenn man sich bspw. vorstellt, die Person wiirde in einem Spiel durch einen
moblierten Raum laufen. Die Projektionen miissen daher schnell erzeugt werden, um
flieflende Bewegungen zu ermoglichen [36, S. 2].

Hierbei ist es praktisch, wenn die Verkettung mehrerer Abbildungen, wie Verschie-
bung oder Drehung, einfach berechnet werden konnen. Lineare Abbildungen haben
nun den Vorteil, dass sie als Matrix-Vektor-Produkt geschrieben werden kénnen und
ihre Verkettung fithrt zu einer Multiplikation ihrer Matrizen. D.h. statt jede Ab-
bildung nacheinander auszufiihren, reicht die Multiplikation aller Koordinaten der
Objekte in einer Szene mit nur einer Matrix aus. Die heutigen Grafikkarten sind auf

Vektor- und Matrizenoperationen optimiert [36, S. 7].
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Im Folgenden werden lineare Abbildungen erst allgemein besprochen, dann geht es
um Drehung und Verschiebungen und zum Schluss um die Generierung zentralpro-
jektiver Abbildungen. Dies ist auch ein denkbar gut zugénglicher Ablauf fir den
Mathematikunterricht in der Oberstufe. Mit der Computergrafik als Einstieg konnen
Schiilerinnen und Schiiler an das Thema lineare Abbildungen herangefiihrt werden
und diese sogar mittels leicht zugénglichen und kostenlosen Programmiersprachen
wie Python oder Processing an einfachen Objekten ausprobieren. Konkrete Beispiele

mit Processing werden in Kapitel 7 thematisiert.
4.6.1 Lineare Abbildungen

Definition 4.6.1

Eine Abbildung f : R™ — R" (n € N) heifst linear, wenn fiir alle a,b € R™ und
A € R gilt [10, S. 256];

i) fla+b) = f(a)+ f(b)
i) f(A-a) =X f(a)

Die Definition ist hier spezieller gefasst, da der reelle Vektorraum, wie er auch in
der Schule verwendet wird, im Fokus liegt. Wie wirkt sich nun diese Definition auf

geometrische Abbildungen im Raum bzw. in der Ebene aus?

Zum einen wird der Nullpunkt 0 € R™ immer aus sich selbst abgebildet, denn:
fla) = fla+0) = f(a) + f(0) = fla) = fa) = f(0) = 0= f(0) Va € R"
Zum anderen bleibt das Teilungsverhéltnis invariant, denn:

Sei pr = A - pp mit p1,ps ER"WAER = f(p1) = f(A-p2) =X f(p2)

|p2| B

Nur falls der Nullpunkt in der Bildebene liegt, ist er bei der Zentralprojektion ein
Fixpunkt. Demnach ist die erste Bedingung bei beliebigen Bildebenen nicht immer
erfiillt und ebenso wurde zuvor schon gezeigt, dass das Teilungsverhéltnis keine In-
variante ist. Demnach ist es nicht notwendig im Unterricht die allgemeine Definition
linearer Abbildungen zu verwenden. Die geometrische Interpretation ist fiir Schiiler-
innen und Schiiler leichter zugénglich.

Die Rechengesetze der Matrizenmultiplikation sind derart definiert, dass sich jede li-
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neare Abbildung mit einer Abbildungsmatrix M € R™*™ ausdriicken lasst [10, S. 257]:
z— fle) =M -x

Der Vorteil linearer Abbildungen liegt nun darin, dass die Verkettung mehrerer sol-

cher ebenfalls wieder eine lineare Abbildung ist:
Sei f(x)=A-zund g(x) =B-z= (gof)(x)=B-(A-z)=(A-B)«x

Um die Zentralprojektion eines Quaders an einer bestimmten Stelle im Raum zu
erzeugen, gehen wir von einem Einheitswiirfel aus und fithren folgende Operationen
durch:

1. Skalierung des Einheitswiirfels auf die Grofe des Quaders
2. Drehen und Verschieben des Quaders an die gewiinschte Position

3. Projektion der Szene

Die ersten beiden Schritte zeigt Abb. 4.6.1. Wir multiplizieren die Matrizen aller
drei Abbildungen und fiihren erst dann die Matrix-Vektor-Multiplikation mit allen
Eckpunkten des Quaders aus.

Im folgenden Abschnitt werden zwei lineare Transformationen besprochen und ge-
zeigt, dass die Linearitdt auch mit homogenen Koordinaten erhalten bleibt. Dann

zeigen wir, wie die Translation durch homogene Koordinaten linear wird.

T3

Z2

Abb. 4.6.1 Skalierung, Drehung und Verschiebung eines Quaders ausgehend von
dem Einheitswiirfel
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4.6.2 Skalierung, Drehung und Translationen

Wie in dem vorherigen Beispiel soll es darum gehen, eine Szene aus Grundbausteinen
zu generieren. Aus dem Wiirfel entsteht durch Skalierung ein Quader und mithilfe
des Prismas oder der Pyramide einfache H&user wie in Abb. 4.6.3. In Abb. 4.6.2
stehen beide Korper auf einer quadratischen Flache mit Kantenldnge 1. In der Fla-
chenmitte liegt der Ursprung. Die Spitzen sind mittig und haben ebenfalls eine Hohe
von 1. Der Wiirfel mit Kantenldnge 1 ist anders als in Abb. 4.6.1 um 0.5 nach oben
verschoben, sodass der Mittelpunkt des Bodens im Ursprung liegt. Dies erleichtert
die Vorstellung, wenn Objekte verschoben werden, da nun alle Grundbausteine auf
der x1 — zo-Ebene liegen, was den Boden der Szene darstellen soll. Im Folgenden
wird nun besprochen, wie mithilfe von Skalierung, Drehung und Verschiebung die

Hauserszene in Abb. 4.6.3 entstanden ist.

Mithilfe der Skalierungsmatrix werden die drei Einheitsvektoren

0
ea =11 e3 =

0

€] —

o O =
= o O

welche den Grundkorper aufspannen und somit die Lénge, Breite und Hohe defi-
nieren, verkiirzt oder verldngert (Abb. 4.6.4). Es ist leicht nachvollziehbar, dass der
Nullpunkt auf sich selbst abgebildet wird. Ebenso verbirgt sich hinter der Skalierung
eine zentrische Streckung, d.h. auch das Teilverhéltnis bleibt invariant. Wir kénnen
daher von einer linearen Abbildung ausgehen. Wir suchen also eine Matrix, welche
die o.g. Vektoren wie folgt abbildet:

1 a 0 0 0 0
M, scale* [0 =10 M, scale * | 1 =1|b M, scale* 0] =10
0 0 0 0 1 c
Z3
| e
Io \

/ e 7T

Abb. 4.6.2 Grundbausteine: Wiirfel, Prisma und Pyramide mit Kantenldnge bzw.
Korperhohe 1

I
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Abb. 4.6.3 Eine aus den Grundelementen aufgebaute Szene von Gebduden.

Mit den drei Bildern der Basisvektoren des R? ist die Abbildungsmatrix festgelegt.
Wir nutzen dazu die Eigenschaften einer linearen Abbildung in Def. 4.6.1. Sei p’ € R3
beliebig. Dieser lasst sich dann als Linearkombination der Basisvektoren schreiben,

sodass sich folgendes Bild ergibt:

T3
1 0 0
D =D (0 +p2 | 1] +p3 |0
0 0 1
63A
= f(p) =p1 fler) +p2 fle2) +ps3 fles) — o
a 0 0 Y
=pi (0 +p2|b|+p3]|0 o
0 0 c
a 00 (‘“
=10 b 0| -p=Meuep |
0 0 c 7%’

Abb. 4.6.4 Skalierung
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In Abb. 4.6.3 wurde das linke Haus um 30° im Uhrzeigersinn bzgl. der x3-Achse

gedreht, bevor es verschoben wurde. Wir betrachten zunéchst die Drehung in der

Ebene um den Ursprung und gehen dann auf die Rotation im Raum bzgl. der drei

Koordinatenachsen ein. Um die Abbildungsmatrix wie oben herzuleiten, bendtigen
wir die Bilder der Basisvektoren des R?. Gemiif der Abb. 4.6.5 ergibt sich iiber die

Bilder folgende Abbildungsmatrix:

Mo, - <1> _ ( CcOoS « )
0 —sin«
0 sin o
1 CcOS &

cosa —sinao
:>Mrot — ( )

sina  cos«

Bei der Drehung im Raum um den Ur-
sprung wird in der Ebene gedreht, zu
welcher die Koordinatenachse die Nor-
male ist. Die Achse selbst ist dabei eine
Fixpunktgerade, d.h. bei einer Drehung
um die x3-Achse bleibt der Basisvektor
es erhalten (Abb. 4.6.6). So ergeben sich

folgende Matrizen:

1 0 0
Mrot,azl =10 cosa —sina
0 sina cos«
cosa 0 sina
Mrot,acg = 0 1 0

—sina 0 cosa

cosa —sina 0
Mot zy = | sinae  cosa 0
0 0 1

Der Drehsinn ist dabei entgegen des Uhr-

zeigersinns.

L2

€2

—t—>> T
€1

e

N~

Abb. 4.6.5 Drehung

Abb. 4.6.6 Drehung um die z3-Achse



4.6. Zentralprojektion in der Computergrafik 185

Zum Abschluss thematisieren wir die Translation um den Verschiebungsvektor v:

T 1+ U1
o | = | xo + V2

3 3 + U3

Es ist offensichtlich, dass dies keine lineare Abbildung ist, da der Koordinatenur-
sprung ebenfalls verschoben wird. Hier miissen nun homogene Koordinaten verwen-
det werden, d.h. wir fiigen noch eine vierte Koordinate hinzu, wobei ¢t £ 0 fiir ge-
wohnliche Punkte gilt:

t'$1
o t~x2
2 t'l'g
I3 ‘

Zur besseren Unterscheidung werden homogene Koordinaten in eckige Klammern

gesetzt. Die Matrix

1 0 0 V1

01 0 v
Mtrans = 00 1 Uj,

00 0 1

ergibt die Verschiebung um den Vektor v, denn:

1 0 0 v tx txy +tv
T+ v
01 0 vy t xo txo +1 v .
. — = | xg+vg | flirt#£0
0 0 1 uvs txs txs+tus +
X U,
000 1 t t T
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Wir haben nun alle drei Abbildungsmatrizen Mgcale, Myot und Mipang vorgestellt,
mit welcher die Hauserszene in Abb. 4.6.3 aus den Grundobjekten erstellt wurde.
Statt nacheinander mit den jeweiligen Matrizen die Eckpunkte abzubilden, soll die
verkettete Abbildung mit nur einer Matrix ausgefithrt werden. Wir miissen daher
auch die beiden vorherigen Matrizen um eine Dimension erweitern, damit wir diese
miteinander multiplizieren konnen. Um den linken gedrehten Quader in Abb. 4.6.3

zu erhalten, wird folgende Matrix auf die Eckpunkte des Einheitswiirfels angewendet:

(1 0 0 3] [cos(—30) —sin(—30) 0 0] [2 0 0 O
0 1 0 05| [sin(—=30) cos(—=30) 0 0| |0 3 0 0
001 0] 0 0 1ol o010
000 1 0 0 01| 0001
(1732 15 0 3

| -1 2598 0 05

1o 0 1 0
0 0 0 1

Die Abbildungen erfolgen von rechts nach links, d.h. zuerst wird der Wiirfel zum Qua-
der skaliert, dann im Uhrzeigersinn 30° um die x3-Achse gedreht und zum Schluss
verschoben, sodass der Mittelpunkt des Bodens bei (3 /0.5 /0) ist. Wir kénnen zu-

sammenfassend Folgendes festhalten:

Satz 4.6.2

Lineare Abbildungen im Raum sind durch folgende Matrizen in homogenen
Koordinaten moglich:

Skalierung mit a, b, c:

a 0 0 O
0 b 0O
Mscare = 00 ¢ 0
0 0 0 1
Drehung um « im Raum:
0 0
cosa —sina

Mrot,:pl = .
SN &« COS

0 0

o O O
= o O O
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cosa 0 sina O cosa —sina 0 O
0 1 0 0 sinae cosa 0 O
MI‘ = MI‘ =
onr2 —sina 0 cosa 0 ons 0 0 10
0 0 0 1 0 0 01
Translation um Vektor v:
1 00 V1
01 0 v
M
trans 00 1 vs
00 0 1

Die homogenen Koordinaten wurden in diesem Kapitel rein algebraisch verwendet.
Wir wollen im néchsten Abschnitt nun geometrisch interpretieren, was beim Teilen
durch die letzte Koordinate passiert. Fiir die Veranschaulichung miissen wird die
Dimension um 1 reduzieren, d.h. wir betrachten im Folgenden Punkte (x / y) einer

Ebene und interpretieren ihre homogene Darstellung [zt / yt / t].

4.6.3 Das homogene Koordinatensystem

Wir wollen nun den Bezug zur Informatik herstellen und zeigen, wie homogene Koor-
dinaten in der Computergrafik verwendet werden, um zentralprojektive Bilder mit-
hilfe der Matrix-Vektor-Multiplikation berechnen zu kénnen. In Kapitel 7 im dritten
Teil dieser Arbeit wird dazu eigens entwickelter Quellcode in der Programmierspra-

che Processing fiir die Verwendung im Schulunterricht vorgestellt.

Wir benennen die Achsen im Folgenden in z,y

und z um und drehen das Koordinatensys-

tem, sodass die y-Achse senkrecht steht. Sei Y
Py (z, [ yn / zp) mit 2z, # 0 ein Punkt in einer P,
Ebene parallel zur xzy-Ebene durch (0/0/ z)
(Abb. 4.6.7). In der Computergrafik befindet sich
das Projektionszentrum im Ursprung und der

Bildschirm entspricht der grauen Ebene. Daher

wurde das Koordinatensystem gedreht, damit die zp z

xy-Ebene senkrecht steht.

Abb. 4.6.7 Ursprungsgerade
durch P
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Die Ursprungsgerade durch den Punkt P, in Abb. 4.6.7 hat folgende Parameterglei-

chung:

Dadurch wird Pj, zum Schnittpunkt der Ebene F : z = z;, und der Ursprungsgeraden
g. Stellen wir uns nun vor, die Ebene E enthielte ein eigenes, zweidimensionales
Koordinatensystem, dessen Achsen parallel zu denen des Raumes sind. Und sein
Ursprung liege in dem Schnittpunkt der Ebene E mit der z-Achse, also in [0/ 0 / 2]
In Abb. 4.6.8 sind zwei solcher Ebenen bei z;, = 1 und z;, = 3 markiert. Beide werden

von der Ursprungsgeraden g durchstofsen. Fiir z;, = 3 sei P}, der Durchstofspunkt.

Wir wollen nun, dass jeder Schnittpunkt der Ursprungsgeraden P, dieselben Koordi-
naten im entsprechenden blauen Koordinatensystem hat, unabhéngig davon, welchen
Wert z;, annimmt. Wir skalieren daher die Basisvektoren der blauen Koordinaten-
systeme in Abb. 4.6.8 mit z;. Wir betrachten dazu den Punkt P, in der Abbildung,
welcher die Koordinaten [3 / 1.5 / 3] hat. Die entsprechende Ursprungsgerade schnei-
det die Ebene durch z = 1 in den Koordinaten [1 /0.5 /1]. Schauen wir uns das

orange markierte Einheitsquadrat in den entsprechenden Ebenen an, so stellen wir

zn =1 zn =3 z

Abb. 4.6.8 Die blauen Koordinatensysteme skalieren nun je nach Lage von zp un-
terschiedlich.
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fest, dass sich die beiden Punkte in Bezug auf das blaue Koordinatensystem am glei-
chen Ort befinden. Die Koordinaten beziiglich der blauen Systeme sind in beiden

Féllen (1 /0.5). Wir verallgemeinern dies:

Th

Th , Yn

— /= 4.6.1
| = (27 2) (46.)
Zh

Die Punkte in der Ebene entsprechend daher Ursprungsgeraden im Raum, d.h. die
homogenen Koordinaten eines gewohnlichen Punktes sind nicht eindeutig. Da sie
aber auf Ursprungsgeraden liegen miissen, dndert sich das Verhéltnis zwischen den
Koordinaten nicht.

Wir kénnen also jedem Punkt im euklidischen Raum eine Gerade im vierdimensio-
nalen Raum zuordnen. Je weiter die graue Ebene zum Ursprung verschoben wird,
um kleiner wird das in Abb. 4.6.8 orange markierte Einheitsquadrat. Fir z;, = 0
existieren keine Basisvektoren bzw. anschaulich betrachtet, werden alle Punkte im
Raum dem Ursprung zugeordnet, da sich alle Geraden hier schneiden. Folglich ist
die Berechnung des Verhéltnisses im Falle z;, = 0 sowohl arithmetisch wie auch an-
schaulich nicht moéglich.

Wir kénnen durch jeden Punkt im euklidischen Raum aufserhalb des Ursprungs ei-
ne Ursprungsgerade zeichnen. Fiir die Zentralprojektion reicht aber der euklidische
Raum nicht aus, denn wir haben gezeigt, dass dann jeder Fluchtpunkt keinen Ur-
bildpunkt mehr hat. Um die Liicke zu schlieken, wurden die Fernpunkte aus der
projektiven Geometrie dem euklidischen Raum hinzugefiigt. Wir wollen nun erldu-
tert, warum homogene Koordinaten mit z; = 0 Fernpunkte beschreiben.
Schiilerinnen und Schiiler kénnten nun sagen, wenn wir durch Werte nahe Null tei-
len, so wird der Quotient grofer, d.h. der entsprechende Punkt ist unendlich weit
entfernt vom Ursprung. Eine solche Erklarung findet sich auch in der Literatur zur
Computergrafik [36, S. 207|. Ist dies aber eine sinnvolle Erklarung? Es ist richtig,
dass die Koordinaten eines Punktes, welcher auf einer Geraden dem Fernpunkt ent-
gegen strebt, grofere Werte annehmen muss, da auch der Abstand zum Ursprung
divergiert. Was allerdings mit diesem Argument verloren geht, ist die Information,
dass ein Fernpunkt die Richtung einer Geraden beschreibt. Unabhéngig von xp # 0
und yp, # 0 divergiert ihr Quotient mit z; = 0. Unendlich ist zwar keine Zahl, konnte
bei Schiilerinnen und Schiiler dennoch zu der Fehlvorstellung fiihren, dass es dann

nur einen Fernpunkt gibt.

-
Betrachten wir die Situation einmal mit Vektoren. Fiir z; # 0 ist (“T—h @) der Orts-

zZn? Zh

vektor des gewohnlichen Punktes (i—: / y—h) Die Richtung einer Geraden wird durch

Zh
den Richtungsvektor beschrieben. Wir wollen anschaulich zeigen, dass fiir z;, = 0 der
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Vektor (z4,y5)" die Richtung beschreibt, fiir welche auch der Fernpunkt [y, / 5 / 0]
steht.

Abb. 4.6.9 zeigt eine Gerade, welche von den Punkten
A:[al/ag/zl] undB:[bl/bg/zl]

definiert wird, und in der zu zy parallelen Ebene mit z = z; liegt. Die Richtung der

Geraden kann durch ihre Steigung bestimmt werden oder vektoriell mit

bl—al
O?—O—)‘l: bQ—CLQ =F*.
0

Aufgrund der Differenz hebt sich die letzte Koordinate immer auf, sodass das Ergeb-
nis auch als Punkt in der xy-Ebene interpretiert werden kann. Zeichnen wir durch
F* die Ursprungsgerade, so ist diese parallel zur Geraden AB, d.h. sie schneiden
sich in demselben Fernpunkt. Mit z; = 0 die Fernpunkte zu definieren, ist daher ei-
ne konsistente Erweiterung der homogenen Koordinaten von gewohnlichen Punkten.
Wir stellen aber auch fest, dass die homogenen Koordinaten eines Fernpunktes nicht

eindeutig sind. Analog zu den Vektoren gilt:

d1 —C1 bl — a1
dz —C2| — A bQ —as| . (462)
0 0

Abb. 4.6.9 Der Fernpunkt einer Geraden liegt in der blauen Ebene
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Wir zeichnen dazu in Abb. 4.6.9 die Ursprungsgeraden durch die Punkte A und B

und schneiden diese mit der Ebene z = z9. Wir erhalten die Gerade C'D mit
C:[Cl/CQ/ZQ] undD:[dl/dg/Zg] s

welche ebenfalls parallel zu AB aufgrund der besonderen Lage der Ebenen ist. Den

Beweis liefert der Strahlensatz. Aufgrund der Ursprungsgeraden gilt:

C1 ai dl bl
co| =X |ag| A |do =u | by :>)\Z1222:,uzl

29 21 29 Z1

:>(21750))\=,U,

Die Strecke C'D ist somit das Bild von AB bei einer zentrischen Streckung mit

Zentrum O und dem Faktor A. Dann gilt auch
dl—Cl :)\bl—)\alz)\(bl—al),

sodass wir Gl. (4.6.2) daraus folgern konnen. Der Fernpunkt F™* liegt daher auf einer

Ursprungsgeraden in der xy-Ebene.

Zum Abschluss des Kapitels werden einige Aufgabenbeispiele fiir den Einsatz im
Unterricht besprochen. Als Einstieg soll im ersten Beispiel die Transformation von
dem homogenen Koordinatensystem in die euklidische Ebene nach Gl. (4.6.1) geiibt

werden.
Aufgabenbeispiel 4.6.1

Bestimme wie im Beispiel zu den folgenden homogenen Koordinaten den ent-

sprechenden gewohnlichen Punkt in der euklidischen Ebene.

a) b) c) d)

homogen [3/4/2] [3/6/3] [2/2/05] [3/4/1]

euklidisch (1.5 /2)

Die Losung ist (1/2),(4/4) und (3 /4), da wir nur durch die letzte Koordinate

teilen miissen.
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Im zweiten Beispiel geht es um die Verkniipfung der algebraischen Darstellung mit
der visuellen Bedeutung. Die Schiilerinnen und Schiiler sollen sich an die verdnder-
te Orientierung des Koordinatensystems gewOhnen und ihnen sollte dabei bewusst
werden, dass jeder Punkt der euklidischen Ebene durch verschiedene Punkte im ho-

mogenen Koordinatensystem reprasentiert werden.

Aufgabenbeispiel 4.6.2

a) Zeichne die folgenden Punkte in das abgebildete 3D Koordinatensystem
ein. Die markierten Ebenen dienen dabei als Hilfe. Entscheide anhand des
Bildes, welche homogenen Punkte denselben Punkt in der euklidischen

Ebene représentieren.

A=[05/1/1] B=[15/15/3 C=[15/3/3] D=[25/25/5

b) Die Punkte A bis D entsprechen zwei verschiedenen Punkten in der eu-
klidischen Ebene. Finde jeweils zwei weitere Darstellungen im homogenen

Koordinatensystem. Wie kannst du die Losung im Bild ablesen?

Fiir die Losung der Aufgabe sollen die Schiilerinnen und Schiiler die Ursprungsge-
raden einzeichnen (Abb. 4.6.10). Liegen die Punkt auf derselben Geraden, so be-
schreiben sie denselben Punkt in der euklidischen Ebene. Uber die Schnittpunkte
mit den anderen Ebenen lassen sich weitere Darstellungen finden, um damit Teil
b) zu erfiillen. Die Koordinaten lassen sich allerdings nicht ohne Einschréankungen
vom Bild ablesen, sodass die Schiilerinnen und Schiiler auch auf das konstante Ver-
héltnis der Koordinaten zuriickgreifen sollten. Die Losung ist £ = [0.5 /0.5 / 1] und
F=1[25/5/5].
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Abb. 4.6.10 Losung des Aufgabenbeispiels 4.6.2

In der kommenden Aufgabe soll wieder aus den homogenen Koordinaten der ent-

sprechende Punkt abgelesen werden. Hinzu kommen nun die Fernpunkte.

Aufgabenbeispiel 4.6.3

a) Die homogenen Koordinaten beschreiben verschiedene Punkte in der eu-
klidischen Ebene. Gebe fiir einen gewohnlichen Punkt die Koordinaten in
der Form (z /y) an. Handelt es sich um einen Fernpunkt, dann gibt die

Richtung als vollstandig gekiirzten Vektor <x> an.
Yy

A B C D E F
[4/2/2] [2/2/0] [5/2/1] [3/2/0] [45/1.5/3] [3/2/0.5]

(2/1) (l>
1

b) Welche der homogenen Koordinaten in der Liste beschreiben denselben

Punkt wie in a)? Gebe den entsprechenden Punkt mit A bis F' an.

[25/1/05] [0,3/0,3/0] [1.5/1/0.25 [2/1/1]
C
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In a) sind B und D Fernpunkte, da die letzte Koordinate 0 ist. Hinter D verbirgt
sich der Vektor (3 /2)" und die anderen Punkte sind C (5/2),E (1.5/0.5) sowie
F (6 /4). Die Losung zu b) ist

[25/1/05 [0.3/0.3/0] [1.5/1/0.25 [2/1/1]

C B F A

Wir kommen zum Abschluss nun zu einer Aufgabe, welche die Translation in der Ebe-
ne thematisiert. Mithilfe von Beispielen und Beobachtungen sollen die Schiilerinnen
und Schiiler an die Translationsmatrix im homogenen Koordinatensystem herange-

fiihrt werden.

Aufgabenbeispiel 4.6.4

0.5
a) Gegeben ist der Punkt (0.5 /0), welcher um den Vektor ' = L) Ve

schoben werden soll. Welche Koordinaten hat der verschobene Punkt?
Welche homogenen Koordinaten ergeben sich jeweils fiir beide Punkte
mit z = 1,z = 3 und z = 57 Um welchen Vektor wurden die Punkte im

homogenen Koordinatensystem jeweils verschoben?

b) Zeichne die Punkte sowie die Verschiebungsvektoren aus a) in folgendes
Bild ein. Was fallt dir auf?

c) Wir wollen nun deine Vermutungen aus b) mit einem anderen Zahlenbei-

spiel priifen. Gegeben ist der Punkt (4 / 3) und der Verschiebungsvektor
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1
U= 5] Bestimme wieder den verschobenen Punkt in der euklidischen

Ebene sowie die homogenen Koordinaten mit z =1,z = 3 und z = 5 mit
den entsprechenden Verschiebungsvektoren. Bestétigen sich deine Vermu-

tungen aus b)?

d) Wir verallgemeinern nun die Ergebnisse. Gegeben ist der Punkt (z /y)

v
und der Verschiebungsvektor ¢ = "), Was sind die homogenen Koor-
V2

dinaten des Punktes vor und nach der Verschiebung fiir z = 1 und z = 37
Kannst du eine 3 x 3 Matrix erstellen, welche mit dem homogenen Punkt
multipliziert den verschobenen Punkt ergibt? Liegt fiir z = 1 und z = 3
dieselbe Matrix vor? Was passiert, wenn wir eine beliebige Ebene mit

z =1t,t # 0 verwenden?

Die folgende Tabelle zeigt die Losung von a).

Urbild 05/0)|[05/0/1  [1.5/0/3] 2.5/0/5]
0.5 0.5 1.5 0.5 2.5 0.5
Verschiebungs- < 1 ) 1 31=3-11 51 =5-]1
vektor 0 0 0 0
Bild (/1) | [1/1/1] 3/3/3 [5/5/5]

Es sollte auffallen, das die letzte Koordinate des Verschiebungsvektors 0 ist. Die
Richtung ist dabei dieselbe, denn das Verhéltnis zwischen der ersten und zweiten
Koordinate bleibt gleich. Die letzte homogene Koordinate des Urbildpunktes be-
stimmt dabei den Faktor, um welcher der Verschiebungsvektor verlingert wird. Was
die Schiilerinnen und Schiiler hier anhand der Zahlen beobachten kénnen, soll in
Teil b) geometrisch veranschaulicht werden. Das Zahlenbeispiel in a) wurde dabei so
gewahlt, dass die Schiilerinnen und Schiiler das beigefiigte Koordinatensystem ver-
wenden kénnen. Die Abb. 4.6.11 zeigt das Ergebnis:

Der Punkt P wird nach P’ verschoben. Wegen 2 = 1 entspricht die markierte Ebene
auch der euklidischen. Je weiter weg sich die graue Ebene vom Ursprung befindet,
um so langer wird der Verschiebungsvektor, allerdings bleibt die Richtung erhalten.
Zeichnen wir durch die Bildpunkte eine Parallele zur Ursprungsgeraden von P, so

schneidet diese die zy-Ebene in den blau markierten Punkten. Diese entsprechen den
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Abb. 4.6.11 Die Losung von Aufgabenbeispiel 4.6.4, Teil b)

Verschiebungsvektoren, wenn wir sie als homogene Punkte betrachten, welche in der

euklidischen Ebene denselben Fernpunkt beschreiben.

Teil c) soll ein weiteres Zahlenbeispiel liefern, anhand Schiilerinnen und Schiiler ihre

Vermutungen aus b) bestétigen konnen. Die folgende Tabelle liefert die Losung.

Urbild (4/3)|[4/3/1] [12 /9 /3] [20 / 15 / 5]
) 3 5
Verschiebungs- ( ) 9 =3- 1|3 15| =5
3
vektor 0 0 0
Bild (5/6) | [5/6/1] [15 /18 / 3] [25 /30 / 5]

Wir erhalten dasselbe Muster wie in a), sodass nun der Schritt der Verallgemeine-
rung erfolgen kann. Hierbei sollen die Schiilerinnen und Schiiler schrittweise an die
Verschiebungsmatrix herangefiihrt werden. Wir kommen also zur Lésung von d) und

verwenden dieselbe tabellarische Darstellung wie zuvor:
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Urbild (z/y) [z /y /1] 3z /3y / 3]
U1 31 U1
Verschiebung- (Ul> V9 3va| =3 |vg
svektor 2 0 0 0
Bild (x4+v1/y+wve) | [x+v/y+ve /1] [Bx+wv1)/3(y+wv)/3
Fir

existiert keine reelle Matrix M, sodass

v (5)=(0)

ist. Die Zahlen v; und v miissen Elemente der Matrix M sein, aber sie wiirden
aufgrund der Matrixmultiplikation mit = bzw. y multipliziert statt addiert werden.
Der Trick ist nun, den Wert v1 als 1 - v zu sehen. Erweitern wir den Ortsvektor um

eine dritte Koordinate mit 1, so ergibt sich folgende Matrix:

V1 x T+ v
v Y| = |yt o2
1 1 1

Dieselbe Matrix ergibt sich auch fiir z = 3 oder allgemein z = t,¢ # 0, wie die

Schiilerinnen und Schiiler leicht nachrechnen konnen.

Wir konnen festhalten, dass Abbildungen, welche aufgrund einer additiven Kompo-
nente nicht linear sind, linear werden, wenn wir eine weitere Dimension hinzufiigen,
die Matrix-Vektor-Multiplikation durchfiihren und dann jene wieder reduzieren, in
dem wir die anderen Komponenten durch die letzte Koordinate teilen. Im letzten

Abschnitt wollen wir dieses Vorgehen auf die Zentralprojektion anwenden.
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4.6.4 Die Zentralprojektion mit homogenen Koordinaten

Der vorherige Abschnitt hat auf unterschiedliche Art und Weise die Eigenschaften
von homogenen Koordinaten vorgestellt. Es wurde gezeigt, wie Fernpunkte durch
Koordinaten definiert werden, wie homogene Koordinaten geometrisch interpretiert
werden kénnen und wie sie Verschiebungen zu linearen Abbildungen transformieren
lassen. Schiilerinnen und Schiiler kénnen nun argumentieren, dass fiir Rechnungen auf
Papier, die sie selber durchfiihren, die Addition von zwei Vektoren deutlich einfacher
ist, um eine Verschiebung durchzufiihren, als homogene Koordinaten und Matrizen
zu verwenden. In der Computergrafik ist die Hardware, also die Grafikkarte, darauf
optimiert, Matrizenmultiplikationen effizient und schnell durchzufithren [40, S. 84|,
[36, S. 208], [29, S. 29|. Wie dies elektrotechnisch umgesetzt wird, soll hierbei nicht
die Frage sein. Es geht lediglich um die Moglichkeiten, welche die Mathematik bietet,

nicht lineare Abbildungen dennoch mithilfe einer Matrix durchzufiihren.

Schauen wir uns hierzu die Abbildungsgleichung der Zentralprojektion eines Punktes
(p1 / p2 / p3) mit Zentrum (21 / z2 / z3) an. Analog zum Satz 4.4.2, S. 154, gilt fiir eine
Projektion auf die xzy-Ebene (y-Achse zeigt weiterhin nach oben im rechtshindigen

Koordinatensystem):

Z -z
1 3P1 1DP3

0.(P) = 23 P2 — %2 P3 (4.6.3)
23 — D3 0

Hier ist das Problem keine additiven Komponente wie bei der Verschiebung, sondern
der Vorfaktor, welcher allerdings wegen ps vom Urbild abhéngig ist. Ohne diesen

Faktor konnten wir folgende Matrix verwenden:

zz3 0 —2z D1 23 P1 — 21 P3
0 23 —22|:|p2|=|23p2—22p3
0O O 0 P3 0

Um den Faktor miteinzubeziehen, nutzen wir wieder die homogenen Koordinaten.
Der euklidische Punkt entsteht durch Teilung der letzten Koordinate, also erweitern

wir um den Nenner dieses Faktors, um eine geeignete Matrix aufstellen zu kénnen:

23 p1 — 21 P3 z3 0 —2z1 0 D1
P2~ 22P3| _ 0 23 —2z2 0] |p2 (4.6.4)
0 00 0 O D3 o

zZ3 — P3 0 0 -1 z3 1
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Wir {iberpriifen unser Ergebnis anhand eines Beispiels und betrachten einen Quader

mit den Koordinaten

(3/0/4),(0/0/8),(4/0/11),(7/0/7),
(3/2/4),(0/2/8),(4/2/11),(7/2/7)
und projizieren diese auf die xzy-Ebene ausgehend vom Zentrum (3 /5 /50). Den

Quader und dessen Projektion zeigt Abb. 4.6.12. Die homogene Abbildungsmatrix
nach Gl. (4.6.4) ist dann

50 0 —3 0
o 50 -5 0
7 1lo 0o 0 0

0 0 —1 50

Wir fiigen den Urbildpunkten eine vierte Koordinate mit dem Wert 1 hinzu und mul-

tiplizieren sie jeweils mit M ,. Das Ergebnis sind folgende homogenen Koordinaten:

(138 / —20/0/46],[-24/ —40/0/42],[167/ —55/0/39],[329 / — 35/ 0/ 43]
(138 / 80/0/46],[-24/ 60/0/42],[167/ 45/0/39],[329/ 65/0/43] .

Nun wird wieder durch die letzte Koordinate geteilt, um die Bildpunkt in der Ebene

zu erhalten:

(3/ —0.43),(—0.57/ —0.95),(4.28 / —1.41),(7.65 / —0.81),
(3/ 1.74),(-057/ 1.43),(428/ 1.15),(7.65/ 1.51).

Welche Moglichkeiten haben nun Schiilerinnen und Schiiler das Ergebnis zu priifen?
Sie konnen wie in Abb. 4.6.12 ihre Losung in einem zweidimensionalen Koordina-
tensystem zeichnen. Die vertikalen Kanten liegen in Ebenen parallel zur Bildebene,
d.h. ihre Bildgeraden miissen ebenfalls parallel sein. Dies ist auch anhand der Ko-
ordinaten erkennbar, da der urspriingliche Quader plan auf der Grundebene liegt.
Die anderen gegeniiberliegenden Kanten des Bodens und der Decke miissen sich bei
Verlangerung in zwei Fluchtpunkten schneiden. Rein rechnerisch kénnen die Schiiler-
innen und Schiiler das Bild einer Ecke ,, zu Fuft “ berechnen, in dem sie die Gleichung
der Projektionsgeraden durch das Zentrum und die Ecke aufstellen und den Schnitt-

punkt mit der zy-Ebene bestimmen.
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Abb. 4.6.12 Zentralprojektion eines Quaders
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In der Computergrafik wird eine andere Projektionsmatrix verwendet, da das Pro-
jektionszentrum in den Koordinatenursprung gelegt wird. Die Bildebene ist bzgl. der
xy-Ebene parallel verschoben und verlduft durch (0/0/d) mit d € R\ {0} [29,
S. 143, |50, S. 390]. Projektionen mit anderen Zentren lassen sich durch Translation
des Koordinatensystems bewerkstelligen. Dies wird in Kapitel 7.6 iiber das Kamera-

koordinatensystem erlautert.

Wir betrachten in Abb. 4.6.13 die Zentralprojektion eines Punktes P (x), / yp / zp)
auf die graue Bildebene, welche die z-Achse bei d schneidet. Der Bildpunkt P’ habe
die Koordinaten (:np/ /Yy / d). Die Seitenflachen der Sehpyramide enthalten Strah-

lensatzfiguren, sodass sich folgende Verhéltnisse aufstellen lassen:

.Tp/ d Cl

= — = Ty = —Tp
Lp Zp Zp
Yp! d d
_— = — = ypl = — - yp .
Yp Zp Zp

Somit ldsst sich der Bildpunkt wie folgt berechnen:

d
xp’ I‘p Zp d .’L’p
_ d _

Yo'l =Yz, | =2 | %
P Zp

Zp! d Zp

Yy
7/
Ve
7/
Z
P
P I
Al - I
b I
A7 1 Yp
o7 \
e
e LYy
-7 \ \
e | |
e | |
s | z |
74 d | P
iz | z
P T

|

Abb. 4.6.13 Zentralprojektion vom Ursprung aus
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Auch hier erhalten wir einen Faktor, welcher von der dritten Koordinate des Punktes
P bestimmt wird. Wir nutzen wieder denselben Trick und verwenden den Kehrwert
des Faktors als vierte Koordinate im homogenen System. Damit ldsst sich wieder

eine Matrix aufstellen:

Tp 10 00 Tp

Yn | _ 01 0O Yp

2p 0 010 Zp
1

2 00 5 0 1

Die Matrix sieht einfacher aus als in unserem ersten Beispiel mit einem Zentrum Z
aulierhalb des Ursprungs. Wir wollen die Ergebnisse vergleichen und nehmen wie-
der den Quader. Wir verschieben das Projektionszentrum in den Ursprung, d.h. wir
subtrahieren den Ortsvektor von Z (3 /5 /50) von jedem Eckpunkt. Die neuen Ko-

ordinaten unseres Quaders sind dann:

(0/ -5/ -46),(-3/ =5/ —42),(1/ =5/ =39),(4/ =5/ —43),
0/ =3/ —46),(=3/ =3/ —42),(1/ =3/ =39),(4/ =3/ —43)
Im ersten Beispiel wurde der Quader auf die xy-Ebene projiziert. Die neue Bildebene

schneidet die z-Achse nun in d = —50. Wir fiigen den Eckpunkten wieder 1 als vierte

Koordinate hinzu, multiplizieren diese mit der Matrix

10 0 0
01 0 0
00 1 0
00 —5 0

und teilen wieder durch die vierte Koordinate. Somit ergeben sich folgende Punkte:

(0/ —5.43/ —50),(-3.57/ —5.95/ —50),(1.28/ —6.41 ) — 50),
(4.65/ —5.81/ —50),(0/ —3.26/ —50),(—3.57/ —3.57 ) — 50),
(128 /) —3.85/ —50),(4.65/ —3.49/ —50) .

Nun miissen wir die Verschiebung wieder riickgéngig machen, um das urspriingli-
che Koordinatensystem zu erhalten, d.h. wir addieren (3 /5 /50) und kommen auf
dasselbe Ergebnis. Die Abbildungsmatrix ist also einfacher, allerdings muss vor und
nach der Projektion eine Verschiebung durchgefiihrt werden. Da wir Translationen
auch als Matrix darstellen kénnen, miissen wir die erste Projektionsmatrix aus der

vereinfachten Projektionsmatrix berechnen koénnen.
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Dabei gilt es zu beachten, dass d = —z3 ist:
1 00 z 10 0 O 1 00 —z zz 0 —z O
0 1 0 2 0 1 0 01 0 —2z| 1]0 z3 —22 0
0 0 1 =z 00 0 0 0 1 —=z3 zz|[0 0 0 O
00 0 1 00 —L 0 00 0 1 0 0 -1 =z

z3

Wir erhalten bis auf einen Faktor dieselbe Matrix wie in Gl. (4.6.4), S. 198. Da der
euklidische Punkt durch Teilung mit der letzten Koordinate berechnet wird, spielt

ein konstanter Vorfaktor keine Rolle, denn es gilt:

Th azxp Th

at t

a Yn o fam | = | m
> at t

h azp Zn

t at t

In der Computergrafik liegt das Projektionszentrum im Ursprung und die Bildebene
parallel zur zy-Ebene. Allerdings hat die oben hergeleitete Projektionsmatrix den
Nachteil, dass die z-Koordinate bei allen Bildpunkten dieselbe ist, sodass bei einer
komplexen Szenerie nicht mehr unterschieden werden kann, ob ein Objekt vor oder
hinter einem anderen liegt. Da wir hier nur Kantenmodelle betrachtet haben, gab es
diesen Nachteil nicht. Die dritte Zeile der Matrix wird daher wie folgt abgeéndert
[50, S. 391]:

n, f € R\ {0}

o O O =
= e I )
3
3\~:‘+
&H

n und f sind die Schnittpunkte zwei-

er Ebenen mit der z-Achse. n steht fiir Y
die sog. near plane und f fir far plane.. /
Die Idee ist, dass nur Objekte zwischen /
beiden Ebenen auf die near plane abge-

bildet werden kénnen, d.h. Objekte hin- 7 f

ter der far plane sind so weit weg, dass AN

sie auf dem Bildschirm nicht mehr ange- N \

zeigt werden. Abb. 4.6.14 zeigt den Py- \

ramidenstumpf zwischen der near und

far plane. Jedes Objekt innerhalb des

markierten Bereichs wird auf die near app, 4.6.14  Alle Objekte innerhalb des

plane projiziert. Pyramidenstumpfes werden auf den
Bildschirm projiziert.
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Fiir die Abbildungsmatrix bedeutet dies Folgendes: Die ersten beiden Zeilen und
die letzte in der Matrix bestimmen die z und y Koordinaten des Bildpunktes. Die
dritte Zeile kann somit beliebig ohne Auswirkungen auf das Bild abgedndert werden.
Diese Zeile wird so bestimmt, dass die dritte Koordinate der Urbildpunkte inner-
halb der near und far plane unveréndert bleibt. Dies soll hier allerdings nicht weiter
ausgefiihrt werden, denn das Ziel im Mathematikunterricht sollte sein, den Schiiler-
innen und Schiiler einen Einblick in die Anwendung homogener Koordinaten bzgl.
der Zentralprojektion zu geben. Fiir ndhere Informationen zur Computergrafik sei
auf folgende Literatur verwiesen: [50, 11, 36, 40, 29].



Kapitel 5
Die Parallelprojektion

Die Parallelprojektion ist ein Sonderfall der Zentralprojektion, welcher eintritt, wenn
das Projektionszentrum ein Fernpunkt ist. Geméf der Definition des Fernpunktes
und der Axiome aus Kap. 2.2 werden die Projektionsstrahlen zu einem Parallelbii-
schel, wie die untere Abbildung zeigt. Dies fiihrte zu weiteren Invarianten, welche
im Abschnitt 3.1.2 erldutert wurden. Im Vergleich zur Zentralprojektion d&ndern sich
somit die Eigenschaften der Bilder. Wir wollen diese Anderung wieder mit Metho-
den der analytischen Geometrie und einigen Aufgabenbeispielen fiir den Schulunter-
richt vorstellen. Danach erfolgen Konstruktionsmethoden, wie sie u.a. im technischen
Zeichnen verwendet werden. Hierbei wird besonders auf die Axonometrie eingegan-
gen, da sie eine Methode darstellt, wie aus der Parallelprojektion eine eineindeutige

Abbildung wird.

p

-
Z /Q/
“1 -
- -

-

Abb. 5.0.1 Der Bildpunkt P’ von P unter einer Parallelprojektion ergibt sich als
Schnitt einer Geraden g durch P und Z* mit der Bildebene II. Die Projektionsstrah-
len sind nun parallel zueinander.
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5.1 Analytische Betrachtung der Parallelprojektion

Wie auch bei der Zentralprojektion konnen einige Eigenschaften der Parallelpro-
jektion von Schiilerinnen und Schiiler mithilfe der Methoden aus der analytischen
Geometrie untersucht werden. Da die Parallelprojektion ein Sonderfall der Zentral-
projektion ist, vererben sich alle Eigenschaften, welche in Kap. 4.4 besprochen wur-
den, auch wenn sich bei der zweiten Eigenschaft ein scheinbarer Widerspruch ergibt.
Parallele Geraden werden auch auf sich schneidende Geraden abgebildet, allerdings
ist ihr Schnittpunkt ein Fernpunkt, sodass die Parallelprojektion im Gegensatz zur
Zentralprojektion nun parallelentreu wird. Vorerst aber ein Beispiel, wie die Schiiler-

innen und Schiiler einige Eigenschaften selbststdndig untersuchen kénnen.

Aufgabenbeispiel 5.1.1
Gegeben sei eine Parallelprojektion
Pz R? — II
mit der Richtung z = (2, —1,—1)T auf die Bildebene II : 23 = 0.
a) Bestimmen Sie den Bildpunkt von (2 /4 /5).

b) Bestimmen Sie das Bild der Geraden g mit Ortsvektor (2,4,5)" und Rich-
tungsvektor (1, —1,1)T. Betrachten Sie dazu g als eine Punktreihe mit dem
Parameter A.

Ist das Bild dieser Punktreihe wieder eine Gerade?

c) Fihren Sie dieselben Berechnungen mit der Geraden k durch wie in b),
wobei der Richtungsvektor durch (2, —1,—1)T ersetzt wird. Uberpriifen

Sie wieder, ob das Bild der Punktreihe eine Gerade ist.

d) Sei h die zu g parallele Gerade durch den Punkt (4 /1 /2). Bestimmen
Sie wieder die Bildgerade und untersuchen Sie die gegenseitige Lage von
g und I'.

Die Aufgabe ist so gestaltet, dass Themen aus dem Unterricht wiederholt werden.
So muss bekannt sein, wie die Parametergleichung einer Geraden aufgestellt wird,
wie die Lage von einer Geraden zu einer anderen untersucht werden kann bzw. wie
Schiilerinnen und Schiiler anhand der Richtungsvektoren beurteilen kénnen, ob diese
parallel sind.

Der erste Teil lasst sich analog zur Zentralprojektion bearbeiten. Zuerst wird die Pro-

jektionsgerade aufgestellt und dann der Schnittpunkt mit der Bildebenen bestimmt.



5.1. Analytische Betrachtung der Parallelprojektion 207

2 2
(1) Projektionsgerade: p: &= |4 | +p | —1
) -1

(2) Schnitt mit der Bildebene:

4—p=0=>p=14

2 2
41 +4]|-1|=P(10/0/1)
5 -1

Fiir b) existieren zwei Losungswege. Da nach den Axiomen zwei verschiedene Punkte
eine Gerade festlegen, konnte hier der Bildpunkt eines anderen Punktes auf der
Geraden g bestimmt werden. Dies setzt aber voraus, dass das Bild von g wieder eine
Gerade ist. Daher sollen die Schiilerinnen und Schiiler die Gerade als eine Menge von

Punkten auffassen und diese punktweise abbilden.

(1) Punktreihe aufstellen:

2 1
g:Z= 4| +X|-1|= P 2+N4-X/5+]))
) 1
24+ A 2
(2) Projektionsgeraden: p:Z=|4—-X|+p| -1
5+ A -1

(3) Schnitt mit der Bildebene:

4—-A—pu=0=>pu=4-X

24+ 2
A-A|+@-N[-1]=P@a0-r0/1+2)
54 A -1
10 -1
=4:Z=[0|+X| 0
1 2

Das Bild von g ist tatsichlich wieder eine Gerade. Die Vorgehensweise fiir Teil ¢) ist
analog, allerdings tritt hier der Sonderfall auf, dass sich alle Terme mit A aufheben,
d.h. das Bild der Geraden k ist der Punkt (10/0/1). Wie auch bei der Zentralprojek-

tion wird die Gerade auf einen Punkt projiziert, wenn sie mit einem Projektionsstrahl
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zusammenfallt, d.h. das Projektionszentrum enthalt. Bei der Parallelprojektion muss
die Gerade daher den Fernpunkt Z* enthalten, d.h. parallel zur Projektionsrichtung

sein. Dies war bei k der Fall, da ihr Richtungsvektor 2z’ war.

In der letzten Aufgabe d) sollen die Schiilerinnen und Schiiler untersuchen, ob die
Parallelprojektion parallelentreu ist. Wir haben gezeigt, dass Geraden parallel zur
Bildebene bei der Zentralprojektion wieder auf parallele Geraden projiziert werden,
andere dagegen nicht. Daher wurde in dem Zahlenbeispiel ebenfalls eine Gerade

gewihlt, welche nicht parallel zur Bildebene ist. Das Bild von h ist

6 -1

Da die Richtungsvektoren iibereinstimmen, sind beide parallel, aber verschieden, da

6/0/1)¢4d"

Die Aufgabe ist als Einstieg gedacht, damit Schiilerinnen und Schiiler anhand einiger
Zahlenbeispiele die Parallelprojektion erkunden kénnen. Es folgt nun eine allgemeine
Betrachtung. Wir beginnen mit der Herleitung der Abbildungsgleichung unter der

Projektionsrichtung Z = (21, 22, 23)T. Sei wieder die Bildebene gegeben durch
II:20=0.

Sei P (p1 / p2 / p3) ein beliebiger Punkt im Raum, welcher als Ortsvektor der Pro-

jektionsgeraden verwendet wird.

Y41 21
(1) Projektionsgerade: p: &= | py | +p | 20

b3 z3
(2) Schnitt mit der Bildebene:
—DP2
Ta=pat -z =0=p= 2
22
b “ z -z z -z
s b2 . :>P,(2p1 12?2/0/ 2P3 3272)
Z9 Z9 Z9
b3 Z3

Wir erhalten keinen gew6hnlichen Bildpunkt falls zo = 0 ist. Dies ist der Fall, wenn
die Projektionsstrahlen parallel zur Bildebene verlaufen. Anders als in der Abbil-
dungsgleichung der Zentralprojektion in Satz 4.4.2, S. 154, ist der Nenner nun un-
abhéngig vom Urbildpunkt P, sodass sich eine lineare Abbildung ergibt, wenn die
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Bildebene II : z5 = 0 ist.

) z9 —z1 0 D1 ) 22 P1 — 21 P2
A(P) = — _*
90,2( ) Z 0 0 0 D2 7 0
0 —23 2 D3 29 P3 — Z3 P2
::;M

Aufgrund der Linearitit kann das Bild einer Geraden {iber die separate Multiplikation

von Orts- und Richtungsvektor mit der Projektionsmatrix ermittelt werden:
p=(g) = PM - (6+ A7) = PMG+ A\PMT .

Zusammenfassend lésst sich folgender Satz formulieren:

Satz 5.1.1: Abbildungsgleichung

Sei II : 2o = 0 die Bildebene und z = (21, 22, 23)7 mit 2z # 0 das Projek-
tionszentrum. Dann gelten folgende Formeln fiir die Bilder von Punkten bzw.
Geraden mit Ortsvektor (py,pa, p3) T und Richtungsvektor (ry,72,73)T unter der
Parallelprojektion ¢z : R? — II:

i) P(p1/p2/ps3)

. D2
0z(P)(p1 —az1/0/p3—az) mltazz—2
ii) g f IT mit 7 nZ, n € Ry
p1—azx r —bz
p:(g9): T = 0 + A 0
p3 —az3 r3 —bzs
mlta:@,b_r—2
Z9 Z9

iii) ¢ || II, d.h. ro = 0, mit 7" # nZ, n € Ry

p1—azxn 1
vz(g) : &= 0 +A10
p3 —az3 T3

P2

mit a =
zZ2
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iv) g mit ¥=nZ, n € Ry
Die Gerade wird zu einer Projektionsgeraden mit b = n, sodass der Rich-
tungsvektor zum Nullvektor wird. Es bleibt der Ortsvektor von ¢’ als
Bildpunkt:
P2

¢z(¢") (P —az/0/ps—az) mit a= W

Wie auch in dem Zahlenbeispiel wird Gerade k, welche mit der Projektionsgeraden
zusammenfillt, auf das Bild ihres Ortsvektors projiziert, sodass die Gleichung in (i)
mit der in (iv) tibereinstimmt, da P als Ortsvektor der Geraden g verwendet wurde.
In (iii) gilt wegen ro = 0 auch b = 0. Der Richtungsvektor bleibt unveréndert, sodass
in diesem Fall die Bildgerade parallel zu ihrem Urbild ist. Mithilfe von (ii) kann
begriindet werden, warum die Parallelprojektion parallelentreu ist. Hat g bzw. h den
Richtungsvektor RV (g) = 7 bzw. RV (h) = n7" mit n € Ry, dann gilt:

2 2

bg:Z—Q: bh:ngznbg
nrl—bhzl 7’1—ng1
RV (b)) = 0 =n 0 =nRV(J)
TL?“g—th3 7’3—692’3

Die Bilder der Richtungsvektoren bleiben linear abhingig.

5.2 Axonometrie

Azonometrie ist die Parallelprojektion eines Objektes zusammen mit dem zugehori-
gen Koordinatensystem [33, S. 71|. Aufgrund der Eigenschaft der Parallelprojektion,
unabhingig von der Lage der Bildebene sowohl parallelen- als auch teilverhaltnistreu
zu sein (vgl. 3.2.1, S. 56 ), konnen die Bilder iiber das Bild des Koordinatensystems
konstruiert werden.

Eine andere Methode ist das Einschneideverfahren. Hierbei wird mithilfe von zwei
Rissen des Objektes (Grund-, Auf- oder Seitenriss) konstruiert. Mit diesem Verfahren
kann das Bild ohne Kenntnisse der Koordinaten iiber Schnittpunkte von Parallelen

direkt aus Punkten in den beiden Rissen konstruiert werden.

Die Langenverhaltnisse und die Lage der projizierten Einheitsvektoren kann beliebig
gewahlt werden, sofern maximal zwei der drei Vektoren linear abhéngig sind. Dies
besagt der Satz von Pohlke, ein wichtiger Satz der Axonometrie, welcher 1853 von
Karl Wilhelm Pohlke formuliert und in einem Lehrbuch zur Darstellenden Geometrie
1860 von ihm verdéffentlicht wurde. Ein vollstdndiger Beweis folgte 1864 von Hermann

A. Schwarz, welcher den Satz wie folgt formuliert hat:
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Satz 5.2.1: Satz von Pohlke

,Hat man im Raume und in einer Ebene je drei von einem Punkte

ausgehende Strecken, von denen die ersten drei nicht in einer Ebene,

die zweiten drei nicht in einer Geraden liegen, so kann man jedesmal

das Gebilde im Raume auf eine Ebene parallel projicieren, dass die

Projection dem zweiten Gebilde dhnlich wird.“ [44]

Der o.g. Satz ist allgemein formuliert. Wir betrachten stattdessen den Spezial-

fall, dass das Dreibein orthogonal ist:

,Drei in der Bildebene von einem Punkt O ausgehende Strecken
OX:; OY; OZ kann man stets betrachten als die Parallelprojektionen
von drei durch einen Punkt O gehenden Wiirfelkanten; dabei ist

vorausgesetzt, daff hochstens drei der Punkte O; X; Y; Z in einer

Geraden liegen.“ [18§]

Die rechte Abbildung zeigt als Beispiel eine
Wiirfelecke, welche durch eine schiefe Par-
allelprojektion auf die graue Bildebene ab-
gebildet wird. Die Wiirfelecke sei nun durch
die Einheitsvektoren beschrieben. In beiden
Formulierungen des Satzes wird eine Ahn-
lichkeitsabbildung erwahnt. In der ersten soll
die Projektion des Dreibeins dem vorgegebe-
nen Gebilde in der Ebene dhnlich sein, also
dem Bild. In der zweiten Variante ist es das
Urbild, zu welchem die Wiirfelecke @hnlich
sein soll.

Im Sinne eines Koordinatensystems setzen
wir nun voraus, dass der Wiirfel die Kan-
tenlange 1 LE hat und ersetzen die Kan-
ten durch Vektoren in die drei verschiedenen
Raumrichtungen. Das Beispiel in Abb. 5.2.1
zeigt, dass durch die Parallelprojektion so-
wohl Richtung als auch Lange der Vektoren
verdandert werden. Wahrend der blaue Vek-
tor weiterhin die Lénge 1 LE hat, hat sich

der rote verlangert und der griine verkiirzt.

Abb. 5.2.1 Die schiefe Parallelpro-
jektion eines orthonormalen Drei-
beins fiihrt zu einer Verdnderung
der Winkel und Léngen.
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Nach dem Satz von Pohlke konnen Langenverhéltnisse und Richtungen der Vektoren
weitgehend beliebig gewahlt werden und es wird immer eine Position des orthonor-
malen Dreibeins im Raum geben, sodass eine Parallelprojektion mit anschliefender
zentrischen Streckung dieses auf das Bild projiziert. Fiir den Beweis sei auf der in
dem Satz zitierten Literatur verwiesen. Wir wollen stattdessen einige Beispiele lie-
fern, wie dieser Satz im Unterricht behandelt werden kann.

Wenn der Satz von Pohlke sicherstellt, dass es zu jedem vorgegebenen Bild ein or-
thonormales Dreibein als Urbild geben muss, so sollte es Schiilerinnen und Schiiler
unter bestimmten Voraussetzungen gelingen, dieses zu rekonstruieren. Wir verwen-
den hierzu die dynamische Geometriesoftware GeoGebra . Aus didaktischen Griinden
wurden andere Bezeichnungen fiir die Punkte bzw. Bildpunkte verwendet, als in dem

zuvor zitierten Satz von Pohlke.

Aufgabenbeispiel 5.2.1

Gegeben ist die Parallelprojektion eines ortho-

normalen Dreibeins mit den Strecken OX, OY ;

und OZ sowie ein Projektionsstrahl. Konstruie- __ & L
re das urspriingliche Dreibein. Verwende dabei |

alle Eigenschaften einer Parallelprojektion.

Ziel dieser Aufgabe ist es, dass Schiilerinnen und Schiiler die Eigenschaften einer
Parallelprojektion verwenden, um schrittweise das orthonormale Dreibein rekonstru-
ieren zu konnen. Die vorgegebene Projektion wurde dabei mit einem orthonormalen
Dreibein konstruiert und dann das Urbild in GeoGebra ausgeblendet. Die zentri-
sche Streckung entfillt und das Ergebnis lasst sich danach vergleichen. Der folgende

Losungsweg wurde mit GeoGebra erstellt.

1. Schritt: In der Aufgabe ist die Rich-
tung der Parallelprojektion bekannt. Wir
zeichnen daher die Parallelen hierzu durch
die Bildpunkte O’, X', Y’ und Z’. Die Ur-
bildpunkte O, X, Y und Z miissen auf die-

sen Geraden liegen.
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2. Schritt: Wird ein Objekt entlang der
Projektionsgeraden verschoben, so dndert
sich das Urbild nicht, denn wie zuvor er-
wahnt, werden alle Punkte auf den Gera-
den auf dasselbe Bild projiziert. Wir kon-
nen somit den Ursprung O beliebig auf der
entsprechenden Geraden platzieren. Die
Losung dieser Aufgabe ist somit nicht ein-

deutig.

3. Schritt: Wir wissen, dass die Strecken
OX, OY und OZ 1 LE lang sind. Wir
zeichnen daher eine Kugel um O mit dem
genannten Abstand. Die Projektionsgera-
den schneiden die Kugel in mindestens ei-

nem Punkt.

4. Schritt: Von den grauen Schnittpunk-
ten werden nun drei so gewéahlt, dass ein
rechtsorientiertes, orthonormales Koordi-

natensystem entsteht.
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Losungsvergleich: Nach der Kon-

struktion konnen wir in GeoGebra das

urspringliche Dreibein O1X1Y17; ein-

blenden und werden feststellen, dass es

;\_ bis auf die Verschiebung wie die Re-
&%’ konstruktion orientiert ist. Jede andere
Kombination der Schnittpunkte fiihrt

nicht zu rechten Winkeln oder das Koor-

dinatensystem ist anders orientiert.

Warum kénnen wir uns aber sicher sein, dass die Kugel im dritten Schritt tatsdchlich
alle Geraden mindestens einmal schneidet? Wir konnen nach dem Satz von Pohlke
die Langen beliebig wihlen. Stellen wir uns also vor, die Strecke O’X” sei derart ver-
langert, dass die Einheitskugel die Projektionsgerade durch X’ nicht schneidet. Die
Giiltigkeit des Satzes wird nun dadurch gesichert, dass wir durch eine Ahnlichkeitsab-
bildung die Bildstrecken verkiirzen konnen oder im Sinne der zweiten Formulierung,
die Kantenldnge des Urbildes verldngern, d.h. wir vergrofern die Kugel soweit, bis
sie alle Projektionsgeraden wieder schneidet. Um zu gewéahrleisten, dass dieser Fall
im ersten Aufgabenbeispiel nicht eintritt, wurde das Dreibein zuerst abgebildet und
dann in GeoGebra verborgen, statt die Punkte O', X', Y’ und Z’ beliebig in die Bil-
debene zu setzen.

Im zweiten Beispiel wenden wir auf die Projektion eine zentrische Streckung an, wel-
che die Strecken O'X’, O'Y’" und O'Z’ zwar verliangert, aber das Streckenverhéaltnis

erhalten bleibt. Somit sollte nach der Rekonstruktion wieder das Dreibein aus dem

ersten Beispiel entstehen.

Aufgabenbeispiel 5.2.2

Gegeben ist die Parallelprojektion eines
orthonormalen Dreibeins mit den Stre-
cken OX, OY und OZ sowie ein Pro-
jektionsstrahl. Die projizierten Strecken
sind nun deutlich ldnger als 1 LE. Kon-
struiere das urspriingliche Dreibein, wo-
bei die Strecken OX, OY und OZ nun

nicht mehr 1 LE lang sein miissen. Sie

sollen nur gleich lang sein. Verwende da-
bei alle Eigenschaften einer Parallelpro-

jektion.
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Nach der ersten Aufgabe kénnen Schiilerinnen und Schiiler zum Einstieg denselben

Losungsweg versuchen.

1. u. 2. Schritt: Analog zur ersten Auf-
gabe erginzen wir die Projektionsgeraden
durch die anderen Bildpunkte (diese wur-
den wegen der zentrischen Streckung nun
mit X” usw. bezeichnet) und zeichnen O

beliebig auf der Geraden ein.

3. Schritt: Die Kugel um O mit Radius 1
— LE wird nicht alle Geraden schneiden. Wir
___—vergrofern daher die Kugel auf 3 LE und

------ markieren die Schnittpunkte.

Radius: 3 LE Wir wahlen die Punk-
te so, dass ein rechtsorientiertes Koordi-
natensystem entsteht und markieren uns
zwei der drei Winkel. Aufgrund der Kugel
sind die Kanten gleich lang. Das System ist
aber nicht rechtwinklig. Was passiert nun

mit den Winkeln, wenn der Radius verklei-

nert wird?
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Radius: 2.8 LE Schiilerinnen und Schii-
ler kénnen beobachten, dass bei Verklei-
nerung der Kugel sich beide Winkel 90°
annahern und das Dreibein leicht gedreht

wird.

Radius: 2.7 LE Die Aufgabe ldsst es in
diesem Fall sogar zu, dass der rechte Win-
kel bei 2.7 LE exakt getroffen wird, denn
die zentrische Streckung des Dreibeins in
der Bildebene wurde mit genau diesem
Faktor durchgefiihrt, was die Schiilerinnen
und Schiiler allerdings nicht wissen, da sie
in der Aufgabe nur das Bild nach der Stre-

ckung bekommen. D.h. Schiilerinnen und

Schiiler ermitteln diesen Faktor durch rei-

nes Ausprobieren.

Radius: 2.6 LE: Wird der Radius weiter
verkleinert, so vergrofsern sich die Winkel
weiter iiber 90° hinaus. Schiilerinnen und
Schiiler sollten aus der Beobachtung der
Winkel daher folgern, dass sie den Radius

wieder vergréfiern miissen.
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Losung: Mit 2.7 LE werden die Winkel
zu 90° und sind gleich lang. Damit ist
die Aufgabe gelost. Um ein orthonorma-
les Koordinatensystem zu erhalten, miis-
sen die Schiilerinnen und Schiiler nur noch
die Einheitskugel um O zeichnen und die
Schnittpunkte der Wiirfelkanten mit die-

ser markieren.

Sind die Kantenlangen des Dreibeins auf 1 LE verkiirzt, so konnen die Bilder X', Y’

und Z’ konstruiert werden. Verbinden wir X” mit Z” sowie X’ mit Z’, so sind die

Geraden parallel. Dasselbe Ergebnis erhalten wir mit den anderen Punkten. Die Drei-
ecke X"Y"Z" und X'Y'Z' sind somit einander dhnlich mit O” als Streckzentrum.

Wir haben den passenden Radius der Kugel durch ausprobieren gefunden. Dies stellt

keine exakte Konstruktion im Sinne der Mathematik dar, sondern ist vergleichbar mit

dem Einschieben eines rechten Winkels mit dem Geodreieck statt der exakten Kon-

struktion mithilfe des Satzes von Thales. Im Folgenden wird ein zweiter Losungsweg

vorgestellt, welche andere Eigenschaften der Parallelprojektion verwendet.

3. Schritt: Die ersten beiden Schritte sind
analog zum ersten Losungsweg, d.h. wir er-
ganzen die Projektionsgeraden und wéah-
len den Punkt O. Nun zeichnen wir die
Einheitskugel um O ein. Wir wissen, dass
Z nicht beliebig auf der Oberflache dieser
Kugel liegen kann, denn der Projektions-
strahl muss die Bildebene auf der Gera-
den O"Z" schneiden, sonst ist die Ahn-
lichkeit nicht mehr gegeben. Wir ergénzen
daher die Projektionsebene von O”Z”, in-
dem wir eine Ebene durch O”, Z” und O
legen. Auf dem blauen Schnittkreis mit der

Kugel muss Z liegen.
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4. Schritt: Analog gehen wird mit X
vor, d.h. wir zeichnen die Projektionsebe-
ne durch O”, X” und O und erhalten den
rot markierten Schnittkreis. Nun muss die
Gerade OX auch die Gerade OZ ortho-
gonal schneiden, also in der Normalenebe-
ne von OZ liegen. Wir zeichnen diese ein
und markieren den Schnittpunkt mit dem
roten Kreis. Bewegen wir nun Z auf dem
blauen Kreis, so bewegt sich auch X auf
dem roten Kreis und steht dabei immer
senkrecht zu OZ.

5. Schritt: Wir wenden den vierten
Schritt auch auf Y an, d.h. wir bestimmten
zuerst die Projektionsebene durch O”,Y”
und O und erhalten den griinen Kreis.
Nun schneiden wir die Normalenebene von
OZ durch O mit diesem und erhalten
Y. Nun schneiden alle Projektionsgerade
durch X,Y und Z die Bildgeraden O” X"
O"Y"” und O”Z" und es gibt zwei rechte
Winkel. Wir werden aber feststellen, dass
der Winkel zwischen X und Y bei beliebi-
ger Lage auf dem blauen Kreis nicht 90°

betréagt.

6. Schritt: Wir wissen, dass das Drei-
eck X"Y"Z" &hnlich zum gesuchten Drei-
eck X'Y'Z' ist. Wir zeichnen die Paralle-
le durch Z’ zu X”Z" und markieren den
Schnittpunkt (schwarz im Bild). Analog
erhalten wird den schwarzen Punkt auf der
Geraden O"Y”. Nun bewegen wir Z auf
dem blauen Kreis, bis dX’ und Y’ mit den

schwarzen Punkten iiberein stimmen.
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7. Schritt: Der Winkel zwischen X und Y

betrégt nahezu 90°, sodass wir das Drei-

90.39° . .
Y bein rekonstruieren konnten.

Dieser Losungsweg setzt mithilfe von Projektions- und Normalenebenen die Lage
von X und Y in die direkte Abhéngigkeit von Z, da sich der Punkt statt auf der
Kugeloberfliche auf einen Kreis bewegt. Aber am Ende wird trotzdem wieder einge-

schoben, bis der dritte Winkel passt bzw. die Dreiecke dhnlich zueinander werden.

Dieser Abschnitt beschéftigte sich mit der Parallelprojektion des rdumlichen Koor-
dinatensystems. Wir wollen im Folgenden einige Verfahren zeigen, um die Bilder von

Objekten unter einer Parallelprojektion direkt in der Ebene konstruieren zu kénnen.
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5.2.1 Das Einschneideverfahren

Wir wollen nun ein Verfahren vorstellen, mit welcher sich aus dem Grund- und Auf-
riss eines Objektes ein parallelprojektives Bild erzeugen ldsst. Die Lage der Risse
wird dabei mit den Winkeln w, ¢ und 1) festgelegt [5, S. 51].

1. Schritt: Die blaue z-Achse wird vertikal ge-
zeichnet und die rote z-Achse im Schnittpunkt O,
welcher dem Ursprung des projizierten Dreibeins
entspricht. Die Geraden schneiden sich dabei in

dem vorgegebenen Winkel w.

2. Schritt: Wir markieren auf der blauen Geraden
den Grundriss O’ von O an einer beliebigen Stelle
unterhalb von O,. Hier entsteht der Grundriss
des urspriinglichen Dreibeins im Raum, in dem
der vorgegebene Winkel ¢ an der blauen Geraden
abgetragen wird. Wir zeichnen einen Kreis um
O’ mit Radius 1 LE. Damit erhalten wir X', d.h.
die Lage von X im Grundriss. Mit dem Lot auf
O’ X’ durch O’ ergibt sich Y’. Analog wird der
Aufriss auf der roten Geraden rekonstruiert mit

dem vorgegebenen Winkel .




5.2. Axonometrie 221

3. Schritt: Um das Bild des orthonormalen
Dreibeins im Raum zu erhalten, zeichnen wir
eine Parallele zur blauen Geraden durch X’. Sie
wird die rote Gerade in X,,, der Projektion von
X, schneiden. Analog wird mit der Parallelen
zur roten Geraden durch Z” die Projektion Z,
erhalten. Damit sind zwei Bilder der drei Achsen

des Dreibeins gefunden.

~

4. Schritt: Um die Projektion Y, von Y zu
konstruieren, zeichnen wir jeweils eine Parallele zu
den Achsen durch Y’ und Y”. Sie schneiden sich
in dem gesuchten Punkt. Damit ist die Projektion
des Dreibeins vollstédndig. Je nach Wahl der orange
markierten Winkel w, ¢ und 1 dndern sich Rich-
tung und Léange des Dreibeins in der Bildebene.
Sind die Koordinaten des urspriinglichen Objektes
bekannt, so lassen sich diese in das projizierte
Koordinatensystem abtragen, um die Projektion
zu erhalten. Das folgende Beispiel zeigt eine an-
dere Moglichkeit, Objekte mithilfe der Risse zu

projizieren.
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Beispiel 1: Grund- und Aufriss zeigt einen
Wiirfel. Wir konstruieren mit dem sog. Finschnei-
deverfahren die Projektion des Wiirfels. Dafiir
zeichnen wir durch die Eckpunkte in den Rissen
die entsprechenden Parallelen. Diese schneiden
sich in den gesuchten Bildpunkten. Die Projektion
des Wiirfels erinnert an einen Quader. Die Wahl

der Winkel w, ¢ und %) ist daher eher ungiinstig.

Beispiel 2: Grund- und Aufriss zeigen ein Haus
mit unsymmetrischer Lage des Dachfirstes. Wieder
wird die Projektion mithilfe der Parallelen zu den
Bildachsen durch die Eckpunkte in den Rissen
konstruiert. Die Wahl der orange markierten
Winkel bestimmt das Bild. So entsteht in diesem

Beispiel eine Ansicht schriag von oben.



5.2. Axonometrie 223

8°ﬁ 97°

30°

L~ 30°

Vg = Uy = v, =1

Abb. 5.2.2 Verschiedene Parallelprojektionen eines Wiirfels: Kavalierperspektive

(oben), Militdr- oder Vogelperspektive (mitte), Isometrie (unten links), Dimetrie
(unten rechts)
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Die Axonometrie findet vor allem Anwendung in den Ingenieurswissenschaften zur
Konstruktion von Bauteilen. Statt der Winkel w, ¢ und % wird die Projektion des
Dreibeins durch Angabe der Winkel o und S sowie den Langenverhéltnissen v, :
vy : v, der Kanten vorgegeben. Hierbei liegt o zwischen der projizierten z- und z-
Achse sowie [ zwischen der Projektion von y- und z-Achse. Damit die Abbildung
moglichst unverzerrt wirkt, haben sich bestimmte Kombinationen von Winkel und
Langenverhiltnisse in der Anwendung etabliert. Abb. 5.2.2 zeigt eine Ubersicht mit

Projektionen eines Wiirfels.

Da die Parallelprojektion im Allgemeinen teilverhéltnis- und parallelentreu ist, kon-
nen wir mithilfe des projizierten Dreibeins direkt das Bild aus den urspriinglichen
Koordinaten erzeugen. Als Beispiel betrachten wir ein Haus mit Walmdach. Abb.
5.2.3 zeigt das Haus im rdumlichen Koordinatensystem sowie den Grund- und Auf-

riss zur tibersichtlicheren Darstellung der Koordinaten.

(1.75/ 3) (3.75/ 3)

/2

(0/4)

(1.75 / 3.75)

(3.25 / 1.75)

( (3/0)
z

(5/1.5)

Abb. 5.2.3 Ein Haus mit Walmdach sowie seine Koordinaten im Grund- und Aufriss
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1. Schritt: Wir beginnen damit, dass Bild
des Dreibeins unter den gegebenen Parame-
tern zu zeichnen. Wir nehmen die Dimetrie,
d.h. o = 138°, 8 = 97° und v, = 0.5 sowie
vy = v, = 1. Mit den Winkeln kennen wir die
Achsen und als neue Einheitsldnge verwen-
den wir 0.5 LE fiir die x,-Achse sowie 1 LE
fiir die anderen beiden. Eine Fcke liegt auf
der roten x,-Achse um drei Einheiten ver-

schoben, d.h. wir tragen vom Ursprung aus

auf der Achse den Abstand 3-0.5 LE = 1.5 LE ab. Ebenso verfahren wir mit der
griinen y,-Achse und tragen 4 LE ab. Wir verbinden die beiden Punkte und haben

die erste Kante des Hauses konstruiert.

2. Schritt: Nun kénnte man auf die Idee
kommen, jeweils ein Lot zur Verbindungsli-
nie durch die Eckpunkte zu féllen, um die
néchsten Kanten zu konstruieren. Die Par-
allelprojektion bildet im Allgemeinen rechte
Winkel nicht unverdndert ab, d.h. wir miis-
sen die Koordinaten verwenden. Wir tragen
also 2.5 LE auf der roten Achse ab und zie-
hen die Parallele zur griinen. Dann tragen
wir auf der griinen Achse 1.5 LE ab und zie-
hen die Parallele zur roten Achse. Aufgrund

der Parallelentreue der Projektion schneiden

jene sich im Punkt mit den urspriinglichen Koordinaten (5 /1.5 /0).

3. Schritt: Wir verfahren mit dem vier-
ten Punkt im Grundriss wie im zweiten
Schritt. Damit ist der Boden des Hau-
ses fertig. Wir ziehen durch zwei Ecken
die Parallele zur blauen Achse und tra-
gen auf dieser 2 LE ab. Dann ziehen
wir die Parallelen zu den anderen bei-
den Achsen. Die Verbindung der Schnitt-
punkt ergibt eine weitere Kante des Qua-

ders.
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4. Schritt: Statt den Parallelen kon-
nen wir auf denen durch die Ecken di-
rekt 2 LE abtragen und die Punkte

verbinden. Damit ist der Quader fer-

tig.

5. Schritt: Zum Schluss tragen wir die Ko-
ordinaten des Walmdaches auf den Achsen
ab und erhalten durch den Schnittpunkt der
entsprechenden Parallelen die Eckpunkte.

Abb. 5.2.4 Das Haus in zwei verschiedenen Parallelprojektionen. Links in Kavalier-
perspektive, rechts als Dimetrie.

Vergleichen wir die beiden Projektion des Hauses, so wirkt das Haus links etwas
zu lang. Die geringe Drehung der Raumecke in der Dimetrie bewirkt, dass das Haus
nicht in die Lange gezogen erscheint. Dagegen liegt links der Aufriss unveréandert vor,
was die sog. Kavalierperspektive ausmacht. Diese ist eine von zwei Perspektiven, bei
welcher ein Riss unveréndert bleibt. Abb. 5.2.2, S. 223, zeigt oben zwei Beispiele jener
Perspektive. Damit der Aufriss unveréndert bleibt, muss 8 = 90° und vy = v, =1
sein. Der Winkel zwischen Grund- und Tiefenlinie betrégt meist 45°, sodass a = 135°
ist, kann aber wie auch v, beliebige Werte annehmen, wobei dann auch verzerrte
Bilder entstehen konnen.

Bei der sog. Militdrperspektive bleibt der Grundriss erhalten, d.h. a + g = 270°
und v, = v, = 1. Die o.g. Abbildung zeigt zwei Beispiele mit unterschiedlichen
Werten fiir « und v,. Da der Grundriss unverdndert bleibt, entsteht eine Ansicht von
oben herab auf das Objekt. In der Literatur findet sich daher auch die Bezeichnung
Vogelperspektive, welche im Kunstunterricht allerdings fiir die Zentralprojektion von
einem erhohten Standpunkt aus verwendet wird.

Damit wollen wir den mathematischen Teil dieser Arbeit abschliefen und im néchsten

verstiarkt Bezug auf den Schulunterricht nehmen.
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Kapitel 6

Der Unterricht an Schulen in
NRW

Nachdem einige theoretische Aspekte und Konstruktionsmethoden der Projektion
vorgestellt wurden, wird in diesem Teil der Schwerpunkt auf den Mathematikunter-
richt an Gymnasien und Gesamtschulen gelegt. Zum Einstieg werden einige fiir den
Unterricht in NRW zugelassene Schulbiicher vorgestellt. Es geht um die Frage, wie
hoch der Geometrieanteil im Unterricht ist. Hierzu wurde der prozentuale Seiten-
anteil zu geometrischen Themen in den Biichern ermittelt. Im Zuge dessen wurden
auch die Inhalte erfasst und u.a. der Klassenstufe zugeordnet. Diese Methode wurde
deshalb gewéhlt, da Schulbiicher priméres Unterrichtsmaterial sind und hiermit die
Unterrichtsthemen auch quantitativ abgebildet werden kénnen, als alleine durch die
Vorgaben im Lehrplan. Es wurde davon ausgegangen, dass der Stellenwert eines The-
mas sich nach der Anzahl der Seiten, die fiir Erklarungen, Beispiele und Aufgaben
verwendet wurden, richtet. Gleichzeitig wurden auch aktuelle Aufgaben zur Zentral-
und Parallelprojektion in den Schulbiichern erfasst, um einen aktuellen Stand zu er-
halten.

Daran ankniipfend folgen zwei weitere Abschnitte, welche eigene Unterrichtsideen
vorstellen. Im ersten Kapitel geht es um die Berechnung von Anaglyphenbildern
unter Einsatz des Computers. Dies ist ein Beispiel, wie die Zentralprojektion facher-
iibergreifend thematisiert werden kann. Die Koordinaten der Bildpunkte kénnen iiber
eine Formel berechnet werden. Die Berechnung erfolgt dann mit Programmcode, den
die Schiilerinnen und Schiiler unter Anleitung selbst verwenden und verédndern kén-
nen. Somit lasst sich der Bezug zum Informatikunterricht herstellen.

Das letzte Kapitel stellt einige selbst entwickelte Materialien fiir den Unterricht vor,
welche von der Geschichte inspiriert wurden. In der Vergangenheit erfanden eini-
ge Mathematiker und Physiker Instrumente zur Erstellung von zentralprojektiven
Bildern. Einer davon war J. H. Lambert, in dessen Schriften der Perspektographen

vorstellt wird. Wahrend mit einem Stift eine ebene Figur abgefahren wird, bewegt
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sich ein zweiter Stift, welcher das entsprechende Bild zeichnet. Es wurde versucht,
einen solchen Perspektographen aus lasergeschnittenem Kunststoff nachzubauen. Zu-

sdtzlich wurden zwei Materialien zur Erkundung der Dreitafelprojektion entwickelt.

Wir haben in den vorherigen Kapiteln gezeigt, wie sich ein zentralprojektives Bild
anhand von Grund- und Aufriss konstruieren ldsst. Solche Konstruktionen sind auch
teil des Kunstunterrichtes. Wie dieses Thema in Kunst behandelt wird und welche
Vorgaben im Lehrplan fiir beide Schulformen in NRW stehen, wird im folgenden
Abschnitt erldutert.

6.1 Perspektive im Kunstunterricht

Die Zentralprojektion ist ein Thema
im Kunstunterricht. Im Lehrplan zur
Gesamtschule und Gymnasium finden
sich Begriffe wie Linearperspektive, Fin-
Fluchtpunkt- oder Ubereck-Perspektive.
Tab. 6.1.1 zitiert einige Punkte aus den
Lehrplanen der Sekundarstufe I, welche
in Bezug zur Perspektive und Darstel-
lungsmitteln zur Erzeugung von Raum-
illusionen stehen.

Aber wie wird die Perspektive im Unter-
richt behandelt? Leider existieren zum
Kunstunterricht keine vom Schulminis-

terium zugelassenen Schulbiicher, denn

die Suche auf deren Internetseite ergab

§

keine Ergebnisse. Daher wurde auf den o o o
Abb. 6.1.1 Beispiele von zentralperspek-

Internetseiten bekannter Schulbuchver- tiven Bildern (eigene Malereien)

lage, wie Cornelsen, Klett und Wester-
mann Schroedel, nach Lehrwerken zum Kunstunterricht an Gesamtschulen und Gym-

nasien in NRW recherchiert.

Die Tabelle zeigt, dass das iiber die Jahrgangstufen verteilte Thema Raumdarstellung
immer wieder aufgegriffen wird. In den unteren Stufen werden Mittel wie Uberde-
ckung oder Verblassung verwendet, wiahrend spéter die Konstruktionen erfolgen. Im
Lehrplan des Gymnasiums wird explizit erwédhnt, dass die Bilder sowohl mit einem
wie auch mit zwei Fluchtpunkten konstruiert werden. In der Gesamtschule fallt nur
der Begriff Linearperspektive, die Anzahl der Fluchtpunkte wird nicht festgelegt. Die

Formulierungen im Lehrplan der Oberstufe fallen ebenso vage aus.
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Tab. 6.1.1 Ausziige aus den Anforderungen des Kernlehrplans Kunst an Schulen in

NRW [23, 21, 26]

Jgst. Gymnasium

5-6 entwerfen durch die Verwendung elementarer Mittel der Raum-
darstellung (Uberschneidung, Staffelung, Verkleinerung, Ver-
blassung, Hohenlage/Fliachenorganisation) Raumlichkeit sugge-
rierende Bildlésungen

7-9 entwerfen  raumillusionierende  Bildkonstruktionen  (Ein-
Fluchtpunkt-Perspektive, Uber-Eck-Perspektive)

Jgst. Gesamtschule

7-10 mit verschiedenen Raum schaffenden Bildmitteln (u. a. Linear-
perspektiven) dreidimensionale Objekte und Réume zeichne-
risch darstellen

Raumillusionen durch die Verwendung elementarer Mittel wie
Uberschneidung, Staffelung, Verkleinerung und Farbperspekti-
ve schaffen

Oberstufe Gymnasien und Gesamtschulen
erproben und beurteilen Ausdrucksqualitdten zweidimensiona-
ler Bildgestaltungen unter Anwendung linearer, flichenhafter
und raumillusionérer Bildmittel

realisieren Bildwirkungen unter Anwendung linearer, farbiger,
flichenhafter und raumillusionédrer Mittel der Bildgestaltung

Wir wollen im Folgenden drei Schulbiicher fiir den Kunstunterricht vorstellen, in wel-
chen Abschnitte zur Perspektive gefunden wurden: Kunst Arbeitsbuch 2 von Klett,
Kunst entdecken 2 aus dem Cornelsen Verlag sowie Kunst Grundkurs 1 von Schro-
edel fiir die Oberstufe.

In der Einleitung des ersten Buches wird keine Einordnung in eine Klassenstufe ge-
nannt. Da es der zweite Band dieser Reihe ist, wird von der Stufe sieben und acht
ausgegangen. Als Einstieg wird ein zentralperspektives Bild eines Bauprojektes ge-
zeigt, welches am Computer erstellt wurde. Danach folgen einige Kommentare zu
diesem Bild, wie auf- und absteigende Linien, je nachdem, ob sie sich unter oder
iiber der Augenhohe befinden. Der Fluchtpunkt auf der Horizontlinie wird ebenfalls
erwahnt, allerdings werden in diesem Abschnitt nur Eigenschaften der Bilder bespro-
chen [46, S. 38].

Erst spéater werden solche Bilder auch konstruiert. Das Bild eines Wiirfels auf dem

Tisch soll mithilfe einer Plexiglasscheibe skizziert werden. Dabei wird angeregt, die
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Lage der Scheibe oder auch den Standpunkt zu verdndern. Anschlieftend werden ei-
nige Eigenschaften der Bilder genannt. So bleiben senkrechte Kanten des Wiirfels
im Bild parallel, wihrend die waagerechten sich in der Ferne annéhern [46, S. 142].
Anschliefsend werden im Buch die Konstruktionsschritte gelistet. Zuerst wird der Ho-
rizont auf dem Zeichenblatt festgelegt, dann die Fluchtpunkte und mit ihnen iiber
die Tiefenlinien ein Quader konstruiert. Damit des Objekt plastisch wirkt, wurden
zum Schluss noch Schatten eingefiigt [46, S. 143].

Das zweite Buch ist laut Einband fiir die Klassen ab sieben geeignet. Hier werden
verschiedene Werke aus der Kunst vorgestellt und an ihnen entsprechende Inhalte des
Kunstunterrichtes. So wird die Perspektivkonstruktion an Sandro Botticellis Werk
Verkiindigung an Maria vorgestellt. Es folgen weitere Bilder aus der Renaissance
zu demselben biblischen Thema. Viele von ihnen weisen Sdulenginge oder andere
Bauwerke im Hintergrund auf. Zum Schluss werden einige Arten der Perspektive
aufgelistet [17, S. 27]:

e Die Paralleperspektive wird mit einem Wiirfel, dessen Tiefenlinien um 45° ge-
neigt und verkiirzt sind, gezeigt. Weitere Beispiele der Axonometrie werden

nicht genannt.

e Die Farbperspektive, welche sich durch warme Farben im Vorder- und kalte im

Hintergrund auszeichnet.

e Die Luftperspektive, die Objekte in Richtung des Hintergrundes verblassen

lasst.

Die Konstruktion der Linearperspektive wird wie folgt beschrieben: Zuerst wird der
Fluchtpunkt gezeichnet und dann ein Schachbrettmuster konstruiert, welches dann
als Orientierung dient, um darauf verschiedene Objekte zu platzieren [17, S. 28|.
Zusatzlich wird die Lage des Horizontes an drei Skizzen thematisiert, wobei der Be-
obachter auf einer Treppe, auf dem Boden und sitzend dargestellt wird, wihrend
dazu das Bild des Schachbrettes skizziert ist. Es wird erwéhnt, dass der Horizont die
Augenhdhe beschreibt und somit das Bild von dem Standpunkt des Betrachters ab-
héngig ist. Allerdings findet sich, auch wie in dem vorherigen Buch, keine Darstellung
der Zentralprojektion im Raum mit den Projektionsstrahlen auf die Bildebene. In

beiden Schulbiichern werden alle Erklarungen anhand des projizierten Bildes gefiihrt.

Anders sieht es in dem Buch zur Oberstufe aus. Am Ende befindet sich ein Glossar, in
welcher die Perspektive und der Sehvorgang in der rdumlichen Darstellung skizziert
werden: Ein Betrachter steht vor der Bildebene, dahinter befindet sich ein Schach-

brettmuster. Von dem Kopf treffen die Sehstrahlen auf den Boden, wodurch sich
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die Projektion auf der Bildebene ergibt. Horizont und Sehkegel sind ebenfalls ein-
gezeichnet. Neben dieser Darstellung befindet sich die Projektion des Schachbrettes
zusammen mit einer Hauptdiagonalen und dem Hinweis, dass die Tiefenlinien sich
im Fluchtpunkt, welcher auf dem Horizont liegt, schneiden und das Schachbrett auch
iiber die Diagonale erzeugt werden kann. Die Konstruktion mit einem Fluchtpunkt
wird Frontal- oder Einpunktperspektive genannt, jene mit zwei Fluchtpunkten als
Ubereckperspektive. Die Lage des Horizontes wird wie in den vorherigen Biichern
beschrieben |28, S. 200].

6.2 Geometrieanteil im Mathematikunterricht

Welchen Stellenwert hat die Geometrie im Mathematikunterricht an Gesamtschulen
und Gymnasien in NRW? Welche Themen zur Geometrie werden besprochen? Um
diesen Fragen nachzugehen wurde eine Auswahl an Mathematikbiichern, welche vom
Schulministerium NRW zugelassen wurden, untersucht. Die Biicher sind in Tab. 6.2.1
gelistet. Da teilweise nicht alle Biicher einer Reihe fiir jede Jahrgangsstufe zugelassen
wurden, sind in der Tabelle die entsprechenden mit einem ,x“ markiert.

Fiir der Anteil der Geometrie im Unterricht wurden alle Biicher, welche 2019 fir
jede Jahrgangsstufe zugelassen wurden (mit Ausnahme des Lambacher Schweizer),
verwendet. Uber das Inhaltsverzeichnis konnte ermittelt werden, welche Themen in
den einzelnen Jahrgangsstufen behandelt werden. Diese wurden dann den vier in-
haltlichen Kompetenzfelder Geometrie, Arithmetik/Algebra, Funktionen und Daten
und Zufall zugeordnet und die Anzahl der Seiten zu den Themen ermittelt. Die

Abbildungen 6.2.1 und 6.2.2 zeigen den prozentualen Anteil der Seiten.

Tab. 6.2.1 Ubersicht der zugelassenen Schulbiicher in NRW fiir Gymnasium (G8)
(oben) und Gesamtschulen (unten) (Stand: 08.2019)

Name, Verlag Jahrgangsstufe
5 6 7 8 9
Elemente der Mathematik, Schroedel X X X X X
Neue Wege, Schroedel X X X X X
MatheNetz, Westermann X X X
mathe.delta, C.C. Buchner X
Fundamente der Mathematik, Cornelsen | x X X X X
Fokus Mathematik, Cornelsen X X X
Duden Mathematik, Cornelsen (Duden) X X
Lambacher Schweizer, Ernst Klett X X X X
X X

Das Mathematikbuch, Ernst Klett X
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Name, Verlag Jahrgangsstufe

5 6 7 8 9 10
Mathematik heute, Schroedel X X X X X X
Sekundo (plus), Schroedel X X X X X X
Mathematik, Westermann X X X X X X
mathewerkstatt, Cornelsen X X X X X X
Zahlen und Grofsen, Cornelsen X X X X X X
Mathe live, Ernst Klett X X X X X X
Schnittpunkt Mathematik, Ernst Klett | x X X X X X

Insgesamt betridgt der Anteil der Geometrie in beiden Schulformen etwas weniger
als ein Drittel und steht damit an zweiter Stelle nach Arithmetik und Algebra. Es
fallt auf, dass im Gymnasium die Geometrie in der 9. Klasse fast die Hélfte der
Schulbuchseiten einnimmt, wéhrend in den Jahrgangsstufen davor der Anteil meist
weniger als ein Viertel betrug. Dies liegt daran, dass in der 9. Klasse die grofen
Themen wie Satzgruppe des Pythagoras, Ahnlichkeit und Strahlensitze sowie Tri-
gonometrie durchgenommen werden. Eine Ubersicht aller Themen liefert die Abb.
6.3.1, S. 237. Nach dem Spiralprinzip werden ebene Figuren und Korper schrittweise
eingefiihrt:

In den unteren Stufen 5 und 6 werden vor allem Vierecke definiert und auf ihre Ei-
genschaften untersucht. Als Kérper werden Wiirfel und Quader thematisiert. In den
Stufen 7 und 8 stehen Dreiecke im Vordergrund. So werden die Winkelsumme und
die Kongruenzsitze an Dreiecken eingefiithrt. Als Korper werden Prismen bespro-
chen. In den Klassen 9 und 10 wird als ebene Figur der Kreis thematisiert und als
Korper passend Kegel und Zylinder. Als Weiterfiihrung der Dreiecke kommen dann
Satzgruppe des Pythagoras, Strahlensitze sowie Trigonometrie.

In der Gesamtschule sind die Unterschiede zwischen den Biichern innerhalb einer
Jahrgangsstufe deutlich grofier, insgesamt jedoch sind die Anteile gleich. Wie auch
beim Gymnasium nimmt die Geometrie etwas weniger als ein Drittel der Seiten ein
und steht wieder an zweiter Stelle nach Arithmetik und Algebra. Bspw. betragt der
Anteil in Mathematik heute in Klasse 10 etwa ein Drittel, dagegen in Mathematik
weniger als ein Viertel. Dies liegt daran, dass einige Themen der 9. und 10. Jahr-
gangsstufen unterschiedlich auf die Jahrgénge verteilt sind. So wird in Mathematik
das Thema Volumen und Oberfliache von verschiedenen Koérpern wie Prisma, Pyrami-
de, Kegel und Zylinder in die 9. Klasse vorgezogen, in den anderen Biichern dagegen
erst ein Jahr spéter behandelt. Gleiches ist auch in Klasse 7 und 8 zu beobachten. So
werden in Jgst. 7 in Schnittpunkt Mathematik nur Dreiecke, Kongruenzsatze sowie
In- und Umkreis thematisiert, dagegen in Sekundo auch Flacheninhalt von Rechteck
und Dreieck sowie Volumen von Quader und zusammengesetzter Korper besprochen,

welche im erstgenannten Buch Themen der 8. Klasse sind.
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Jgst. 5 Jgst. 6 Jgst. 7 Jgst. 8 Jgst. 9 Gesamt

Fundamente
der Mathematik

Q9IS ¢ &
Elemente
der Mathematik
Lambacher
Schweizer

[ Geometrie I Arithmetik/Algebra [0 Funktionen Il Daten und Zufall

Abb. 6.2.1 Anteile der inhaltsbezogenen Kompetenzfelder in Schulbiichern an Gym-
nasien in NRW

Jgst. 5 Jgst. 6 Jgst. 7 Jgst. 8 Jgst. 9 Jgst. 10 Gesamt

2920228~
‘ ‘ ‘ ‘ ‘ ‘ ‘ Mathematik heute
‘ ‘ ‘ ' ‘ ‘ ‘ Mathematik
292000 ——

[0 Geometrie I Arithmetik/Algebra [ Funktionen I Daten und Zufall

Abb. 6.2.2 Anteile der inhaltsbezogenen Kompetenzfelder in Schulbiichern an Ge-
samtschulen in NRW
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6.3 Der Geometrieunterricht an Gymnasien und Gesamt-

schulen

Welche Themen sind notwendig, um sich mit Zentral- und Parallelprojektion beschéf-
tigen zu kénnen? Die Beantwortung dieser Frage ist notwendig, um eine Einordnung
in den Lehrplan zu erméglichen. Die nachfolgende Abbildung 6.3.1 stellt eine Uber-
sicht beider Schulformen dar. Sie beinhaltet ebenso Anmerkungen zu bestimmten
Schulbiichern, in denen Aufgaben zum Thema Projektion gefunden wurden, welche
spater noch im Einzelnen vorgestellt werden.

Die Ubersicht entstand durch Sichtung verschiedener in NRW vom Schulministerium
2019 zugelassener Biicher fiir den Mathematikunterricht. Fir die Unterteilung der
Klassen wurde sich am Kernlehrplan orientiert, da hier ebenfalls die Lernziele am
Ende der 6. bzw. 8. und 10. Klasse! formuliert sind. Die Spalten stehen fiir verschie-
dene Themenbereiche des Geometrieunterrichts und die Zeilen fiir die Klassenstufen.
In diesem Raster wurden die Geometriethemen eingeordnet.

Wie erwartet zeigt die Ubersicht, dass in der 5. und 6. Jahrgangsstufe der Schwer-
punkt auf das Erlernen von Definitionen und Grundbegriffen liegt wéhrend in der
7. und 8. Jahrgangsstufe mathematische Sdtze erkundet werden. Die Sétze beziehen
sich vor allem auf Dreiecke.

Mit weifs und gestrichelten Umrissen sind Themen zur Zentral- bzw. Parallelprojek-
tion markiert. Die Ubersicht zeigt deutlich, dass die Aufgabenbeispiele hauptséchlich
in der 8. und 9. Jahrgangsstufe gefunden wurden.

In zweiten Hauptteil dieser Arbeit wurde héufig der Strahlensatz verwendet, welcher
ebenfalls in der 9. Klasse gelehrt wird. Die Untersuchung von Invarianten von Abbil-
dungen sind in der Ubersicht selten zu finden, denn auch das Thema geometrische
Abbildungen ist kaum bis gar nicht vorhanden. Es stellt sich daher die Frage, wie
iiberhaupt mit geometrischen Abbildungen im Unterricht umgegangen wird. Hierfiir

wurden vier verschiedene Schulbuchreihen gesichtet:

Tab. 6.3.1 Untersuchte Schulbiicher

Reihe Jahrgangsstufe
Mathe live 6, 8 9
MatheNetz 8

Lambacher Schweizer 9
Elemente der Mathematik | 5, 6, 8, 9

! Dies gilt fiir Gesamtschulen und Gymnasien mit dem G9 Modell. Fiir Gymnasien mit G8 Modell
sind die Kompetenzerwartungen an Ende der 9. Klasse formuliert.
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Nach den Biichern werden zuerst Symmetrien von Figuren in den Klassen 5 bzw.
6 untersucht. Danach folgt die Konstruktion eines Bildpunktes unter Achsen- und
Punktspiegelung mit dem Geodreieck. Dies wurde in allen vier Reihen gefunden.
Die Verschiebung wurde nur im MatheNetz 8 sowie in Flemente der Mathematik 6
thematisiert. Im MatheNetz 8 gibt es zudem eine gute Ubersicht zu den vier Kon-
gruenzabbildungen Achsenspiegelung, Drehung und Verschiebung sowie Punktspie-
gelung als Halbdrehung. Hier werden die Abbildungen mit ihren Symmetrien genannt
sowie alle Parameter, welche die Abbildung erst festlegen. Bspw. definiert sich eine
Achsenspiegelung iiber die Spiegelgerade und fiir eine Drehung muss ein Drehzen-
trum und der Drehwinkel festgelegt werden. Weiterhin werden auch Fixpunkte und
-geraden gelistet. In einigen Biichern der vier Reihen wird auf Besonderheiten der
Abbildungen hingewiesen. So steht in FElemente der Mathematik 6, dass bei einer
Punktspiegelung Punkt, Bildpunkt und das Zentrum auf einer Geraden liegen, und
in Mathe live 6, dass bei einer Punktspiegelung Punkt und Bildpunkt von dem Zen-
trum denselben Abstand aufweisen.

In Klasse 9 wird die Ahnlichkeit von Figuren iiber gleiche Winkel und gleiche Stre-
ckenverhéltnisse definiert und danach zur zentrischen Streckung iibergeleitet. Die
Vorgehensweise ist also dieselbe wie zuvor. Denn bei der Achsenspiegelung werden
ebenfalls zuerst achsensymmetrische Figuren thematisiert, bevor mithilfe der Spiege-
lung solche Bilder konstruiert werden. Der Fokus liegt weniger auf der geometrischen
Abbildung an sich, denn die Spiegelung wird nicht verwendet, um ein beliebiges
Objekt zu spiegeln, sondern um eine Figur zu einer achsensymmetrischen zu vervoll-
stdndigen. Abb. 6.3.2 zeigt hierzu ein Beispiel.

Die Vermutung liegt nahe, dass geometrische Abbildungen im Schulunterricht an
sich nicht von grofser Relevanz sind. Eine sinnvolle Behandlung der Projektion ist
daher schwierig. Folglich werden auch Invarianten von geometrischen Abbildungen
im Unterricht nur wenig besprochen. Im Lambacher Schweizer 9 wird die zentrische
Streckung als winkel- und streckenverhéltnistreue Abbildung beschrieben. Bild und

Urbild einer zentrischen Streckung sind dhnlich zueinander, d.h. die Winkel veran-

Abb. 6.3.2 Links ergeben Bild und Urbild zusammen eine achsensymmetrische Fi-
gur, wahrend rechts die Achsenspiegelung als Abbildung im Fokus steht.
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dern sich nicht und das Langenverhéltnis zwischen Bild und Urbildstrecke bleibt
gleich. Weitere Invarianten wie parallelentreu oder teilverhéltnistreu wurden in den
0.g. Biichern nicht gefunden. Vor allem das Teilverhéltnis oder das Doppelverhéaltnis
sind keine obligatorischen Themen im Mathematikunterricht.

Dagegen werden neben den Strahlensidtzen auch die Kongruenzsitze an Dreiecken
thematisiert. Die Kongruenzséitze lassen sich mithilfe von Kongruenzabbildungen
beweisen, d.h. durch die Verkettung von Verschiebung, Drehung und Spiegelung
kénnen zwei kongruente Dreiecke aufeinander abgebildet werden. In den gesichte-
ten Schulbiichern dagegen werden diese entweder gar nicht bewiesen oder nur durch
Konstruktionen. Die Schiilerinnen und Schiiler untersuchen hierzu, mit welcher Kom-
bination von Winkel- und Langenangaben ein Dreieck sich bis auf seine Lage oder
Orientierung eindeutig konstruieren lasst.

Unter diesen Voraussetzungen bzw. Vorkenntnissen der Schiilerinnen und Schiiler ist
es schwierig, das Thema Projektion zu behandeln. Die Aufgaben zu den Themen
Zentralprojektion, Schriagbilder und Dreitafelprojektion in den gesichteten Schul-
biichern waren gering. Vor allem die Zentralprojektion wurde meist als optionale
Projektarbeit behandelt. Demzufolge hat die Projektion seitens des Lehrplans eher
eine geringe Prioritat. Die nachfolgenden Abschnitte stellen einige Aufgaben zu den
drei genannten Bereichen vor, welche in den verfiigharen Schulbticher (Tab. 6.3.1)

gefunden wurden.

6.4 Schulbuchaufgaben zur Projektion

Zur Untersuchung des momentanen Stands der Projektion im aktuellen Mathematik-
unterricht wurden Schulbiicher verschiedener Reihen und Jahrgangsstufen gesichtet
und einige Aufgaben zu den Themen Schréigbilder, Dreitafelprojektion und Zentral-
projektion herausgesucht, welche im Folgenden vorgestellt werden.

Wie werden die Begriffe eingefiihrt? Wir werden feststellen, dass die Dreitafelpro-
jektion ohne Erwéhnung der Parallelprojektion vorgestellt wird, ebenso auch die
Konstruktion der Schréigbilder. Oft wird hierbei die Kavalierperspektive verwendet,
wobei die Tiefenlinien unter einem Winkel von 45° gezeichnet werden. Fiir die Ver-
kiirzung entspricht eine Késtchendiagonale einem Zentimeter, d.h. % ist der Faktor.
Die Zentralprojektion war von den drei Bereichen am wenigsten prasent. Meist wird
sie als Projekt auf einer Seite kurz vorgestellt, wobei nur auf die Konstruktion mit
einem oder zwei Fluchtpunkten eingegangen wird, aber bspw. nicht darauf, woher
der Fluchtpunkt kommt oder bei welcher Lage sich die Projektionen paralleler Ge-
raden in einem Punkt schneiden.

Neben den Einfiihrungs- und Konstruktionsbeispielen wird auch auf die zugehori-
gen Aufgaben eingegangen. Welche Lernziele konnen mit diesen Aufgaben erreicht

werden? Wie sinnvoll sind diese im Umgang mit dem Thema?
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6.4.1 Schrigbilddarstellung

In einer Vielzahl der zugelassenen Schulbiicher wird nur die Schrégbilddarstellung
in Kavalierperspektive mit einem Verzerrungswinkel von 45° thematisiert. Die Tie-
fenlinien werden bei Wiirfeln und Quadern derart verkiirzt, dass 1cm einer Kést-
chendiagonalen entspricht. Da die Késtchenldange in Schulheften 0,5cm ist, ist der
Verkiirzungsfaktor % Diese Konvention hat den Vorteil, dass die Schiilerinnen und
Schiiler sich an dem géngigen Gitter der Schulhefte orientieren kénnen, was gerade
fiir die 5. Klasse sinnvoll erscheint, da das Geodreieck und der allgemeine Winkel-
begriff erst in der 6. Klasse eingefiihrt wird, wie die Ubersicht in Abb. 6.3.1, S. 237
zeigt. In Elemente der Mathematik 5 (kurz: EAM) wird als Beispiel ein Quader in drei
Schritten gezeichnet (Abb. 6.4.1). Zuerst wird die Vorderseite des Quaders unverén-
dert iibernommen. Im zweiten Schritt werden die Tiefenlinien auf den Késtchendia-
gonalen iibertragen, wobei eine Diagonale einem Zentimeter entsprechen soll. Zur
Steigerung des rdumlichen Eindrucks werden verdeckte Linien gestrichelt gezeichnet.
Zuletzt werden die Endpunkte der Tiefenlinien verbunden, sodass die hintere Fliache
des Quaders entsteht.

In Klasse 8 werden Prismen gezeichnet. Hierfiir wird ebenfalls ein Winkel von 45°
verwendet. Fiir den Verkiirzungsfaktor wird nun % angegeben, womoglich, weil durch
die Verwendung des Geodreiecks nun eine Orientierung am Gitter nicht mehr notig ist
bzw. eine Lange zu halbieren fiir die Schiilerinnen und Schiiler einfacher zu berechnen
ist als die Multiplikation mit dem Faktor —=.

V2
Abb. 6.4.2 zeigt die im Buch beschriebenen Schritte. Im Text wird die Hohe als

1. Schritt 2. Schritt 3. Schritt

Abb. 6.4.1 EdM 5, S. 172, Konstruktion eines Schragbildes [14]

,\"2150 ________________ \
1. Schritt 2. Schritt 3. Schritt

Abb. 6.4.2 EdM 8, S. 231, Schrigbild eines Prismas [15]
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geeignete Hilfslinie bezeichnet, da es sich hierbei um eine , Tiefenstrecke handelt,
welche ,orthogonal zur Vorderkante* [15, S. 231] verlaufen. Es wird nicht explizit
gesagt, dass diese Hilfslinie bendtigt wird, da sich der Verzerrungswinkel von 45°
nur auch die zur Bildebene orthogonalen Tiefenlinien bezieht. Im ersten Schritt wird
die Hohe und die Lage des Lotfupunktes gemessen und im zweiten Schritt auf der
unverdnderten Grundseite des Bilddreiecks {ibertragen. Die Hohe wird mit 45° und
mit halber Lénge ergénzt. Somit ist die Spitze des Dreiecks gefunden. Im letzten
Schritt werden die Hohen des Prismas in wahrer Grofe iibernommen und mit der
oberen Dreiecksflache das Schrigbild des Prismas vervollstandigt.

In demselben Buch wird auch thematisiert, dass die Wahl von Verzerrungswinkel
und Verkiirzungsfaktor zu ungilinstigen Bildern fiihren kann. Die Abbildung im Buch
zeigt dabei ein Schriagbild mit verdeckten Kanten (Abb. 6.4.3, oben). Schiilerinnen
und Schiiler werden dazu motiviert, Verzerrungswinkel und Verkiirzungsfaktor zu
verandern und die entstehenden Schrégbilder auf ihre Wirkung zu beurteilen. Drei
Wertepaare sollen sie mit einem Wiirfel von 4 cm ausprobieren. Die Lsung zeigt
Abb. 6.4.3 unten.

In allen drei Beispielen sind keine Kanten verdeckt. Dies ist verwirrend, da aufgrund
des Negativbeispiels in der Aufgabe ein Variante mit verdeckten Kanten zu erwarten
ware. Es wird auch nicht naher erlautert, nach welchen Kriterien die Beurteilung

erfolgen soll. Im Aufgabentext heifit es:

In der Einfithrung wurde 45° als Verzerrungswinkel und % als Verkiir-
zungsfaktor gewdhlt. Dabei erhélt man oft, aber nicht in jedem Fall, ein
informatives Schriagbild (siche linker Quader). [15, S. 32]

’ ’l.--
Beispiel: . o
o 1 o 1
45°, 5 30°, 3
)
Jom————— -
. H /I
. Jmmmmmm L ———
Losung: b /,
45°, 3 30°, § 60°,

Abb. 6.4.3 EdM, S.232 : Variation von Verzerrungswinkel und Verkiirzungsfaktor
[15]
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Was ist also ein informatives Schrig-
bild? Die verdeckten Kanten scheinen nur
ein mogliches Problem zu sein. Schiiler-
innen und Schiiler koénnten die Blick-
richtung beurteilen oder ob die Pro-
jektion einen Wiirfel suggeriert. Letzte-
res trifft auf alle drei Schrigbilder zu
und fiir hohere Verzerrungswinkel scheint
der Blick weiter nach wunten zu ge-
hen bzw. sich die Position des Be-
trachters nach oben zu verschieben, da
von 30° bis 60° immer mehr von der
Decken- bzw. Bodenfliche zu sehen ist.
Es fallt auf, dass Winkel und Faktor
sind nicht beliebig gewahlt wurden. Bei
allen drei Paaren betrdgt das Verhiltnis
von Verzerrungswinkel zu Verkiirzungsfak-
tor 90°.

Das Problem in dieser Aufgabe ist, dass
zwar Winkel und Faktor variiert werden,
aber der Zusammenhang zwischen Schrég-
bild und Parallelprojektion fehlt. So kann
diese Aufgabe nicht mehr vermitteln, als,
dass 45° und % nur eine Konventi-
on ist und andere Wertepaare zu un-
terschiedlichen Schragbildern fithren. Oh-
ne die Kenntnis von Projektionsrichtung
und Bildebene koénnen Verzerrungswinkel
und Verkiirzungsfaktor nicht néher thema-
tisiert werden. Es bleibt daher bei einer
oberflachlichen Betrachtung der Axonome-

trie.

Im Schulbuch Mathe live 8 werden ebenfalls

Militarperspektive

« L‘ 90° —
a beliebig, hier 30°,

alle Kanten unverkiirzt

Isometrische Darstellung

30° 30°

alle Kanten unverkiirzt

Dimetrische Darstellung

Tiefenlinien werden halbiert,
alle anderen bleiben unver-

kiirzt

Abb. 6.4.4 Schrigbilddarstellung in
Mathe live 8 [27], S. 11

Winkel und Faktor variiert. Positiv ist hier zu erwdhnen, dass es nicht bei der Kava-

lierperspektive bleibt, sondern sogar die Militarperspektive (unverzerrte Projektion

des Grundrisses), isometrische und dimetrische Darstellung vorgestellt werden (Abb.

6.4.4). Dies liegt womdglich daran, dass das Schulbuch fiir die Gesamtschule ausge-

legt ist, sodass Beziige zu benétigten Kenntnissen im Handwerk {iblich sind. So gibt

es im Schulbuch der 8. Klasse einen Exkurs zum technischen Zeichnen mit Aufgaben
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zur Darstellung von Bauteilen u.a. auch mit der Dreitafelprojektion ([27], S. 19f).
Beim Zeichnen des Schriaghbildes einer geraden Pyramide wird der Schnittpunkt der
Diagonalen in der Projektion der rechteckigen Grundflache verwendet, um den Mit-
telpunkt zu finden. Es wird allerdings nicht erklart, warum so der Mittelpunkt in der
Projektion gefunden werden kann. Da der Bezug zur Parallelprojektion fehlt, fehlen
auch die Invarianten. Daher kann die Mittelpunktsfindung nicht durch die Inzidenz-
oder Teilverhéltnistreue begriindet werden.

In einer alteren Ausgabe von MatheNetz 8 fiir das Gymnasium wurde noch die
Militar- und Kavalierperspektive (im Buch mit Horizontal- und Frontalprojektion
bezeichnet) thematisiert ([9], S. 89). In den neueren zugelassenen Schulbiichern die-
ser Reihe ist dieses Thema génzlich verschwunden. In der Zusammenfassung des
Buches zum Thema Schrigbilddarstellung, welche die Abb. 6.4.5 zeigt, wird durch
die Assoziation mit den Handlungen ,Bauen* und ,Ziehen“ indirekt gesagt, dass bei
der Militarperspektive (links) der Grundriss erhalten bleibt, dagegen bei der Kava-
lierperspektive (rechts) der Aufriss. Die Konstruktion der Tiefenlinien bei der Kava-
lierperspektive wird durch die Angabe des 45° Winkels angedeutet. Die Verkiirzung
der Tiefenlinien wird nicht genannt, ebenso die Winkel, die zur gekippten Position
in der Militarperspektive fiihren. Es bleibt dem Betrachter iiberlassen, anhand der
Darstellung die Konstruktionsschritte zu erkennen. Ebenso fehlt die Grundlinie im
zweiten Bild der Reihe links, sodass nicht erkennbar ist, dass die ergianzten Kanten

iiber dem Grundriss orthogonal zu dieser Linie sind.

Aufriss Seitenriss
]
}
L}
|
|
|
|
|
|
|
’
e
Frontalprojektion
Grundriss Horizontalprojektion

Abb. 6.4.5 Schrégbildarstellung in MatheNetz 8 [9, S. 89] (&ltere Ausgabe)
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Der Bezug zur Parallelprojektion fehlt ebenfalls.
Dagegen wird in dem Buch sogar ein raumliches
Koordinatensystem vorgestellt, welches nicht wie
das tibliche, dreidimensionale kartesische System
gezeichnet wird. Wie fiir die Konstruktion von
Axonometrien wird in der nebenstehenden Ab-

bildung ein Koordinatensystem mit anderen Ver-

zerrungswinkeln und Verkiirzungsfaktoren ange-
deutet. Es bleibt allerdings bei einer Andeutung,
denn das raumliche Koordinatensystem wird hier  A1v 6 46 Die  Pro jektion ei-
nicht naher thematisiert. Moglicherweise weil das nes riaumlichen Koordinaten-
Buch fiir die 8. Jahrgangsstufe konzipiert wur- system in Mathe Netz 8 (&l
de und das riaumliche Koordinatensystem erst in tere Ausgabe) [9, S. 89]
der Oberstufe fiir die analytische Geometrie ein-

gefiihrt wird.

Zusammenfassend benutzen alle gesichteten Schulbiicher fiir die Konstruktion von
Schrigbildern die Kavalierperspektive mit einem Verzerrungswinkel von 45° und ei-
nem Verkiirzungsfaktor von % (Kéastchendiagonale) bzw. % Erste Schragbilddarstel-
lungen finden sich in der 6. Klasse fiir Quader und Wiirfel. In manchen der Biicher
wurde das Thema in der 8. Klasse wieder aufgegriffen und weiter vertieft, in dem
auch Prismen oder Zylinder gezeichnet oder Winkel und Faktor verandert wurden.
Nur in zwei der gesichteten Biicher wurden auch andere Darstellung als die Kavalier-
perspektive gefunden. In allen Biichern konnte kein erwdhnter Zusammenhang zur
Parallelperspektive festgestellt werden. Stattdessen wurden Begriffe, wie verdanderter
Standpunkt oder andere Blickrichtung, verwendet. Mit Letzterem kann der Einfall
der parallelen Projektionsstrahlen auf die Bildebene assoziiert werden. Dagegen ist
der Begriff eines verédnderten Standpunktes eher irrefiihrend, da die Richtung der
Projektionsstrahlen iiberall gleich ist. Dieser Begriff passt eher zur Zentralprojek-
tion, da die Position des Zentrums bzw. des Betrachters relativ zur Bildebene sich

auch auf das Bild auswirkt.

6.4.2 Dreitafelprojektion

Die Dreitafelprojektion wurde in den Biichern Mathe live 8 und Elemente der Ma-
thematik 9 gefunden. In beiden wird ein dreidimensionaler Kérper in einer Raumecke
dargestellt. Senkrechte Linien gehen von den Eckpunkten des Korpers auf die drei
verschiedenen Ebenen, um die Risse zu ergeben. In beiden Biichern wird auch das

Aufklappen der Raumecke gezeigt, sodass diese in einer Ebene zum liegen kommen.
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Motiviert wird das Thema durch verschiedene Ansichten eines Koérpers zur Verbesse-
rung des rdumlichen Vorstellungsvermdgens. Wihrend im ersten Buch die Dreitafel-
projektion ein eigener Abschnitt ist, findet es im zweiten nur als optionale Vertiefung

am Ende des Abschnittes Pyramide, Kegel, Kugel Erwahnung.

In Mathelive 8§ wird ein angeschnittener und ein

vollstédndiger Quader als Beispiel verwendet. Die

Risse werden mit Seitenansicht und Grundriss oo

bezeichnet. Es wird nicht unterschieden zwischen

Seiten- und Aufriss. Die Aufgaben dazu erstre-

cken sich {iber vier Seiten inklusive einem Bezug S
zum technischen Zeichnen in der Holzverarbei-

tung. Es sollen die Ansichten zu verschiedenen ;
Korpern wie Kegel, Zylinder oder Pyramide ge-

zeichnet werden, wie auch die Risse von einem

Abb. 6.4.8 Beispiel einer Dreita-
felprojektion in Mathe live 8
[27, S. 7]

Quader, dessen Seitenflichen nicht parallel zu
den Rissebenen ausgerichtet sind. Mit dem The-
ma technisches Zeichnen wird die Dreitafelpro-

jektion in Zusammenhang mit Schrigbildern gebracht.

Im zweiten Buch EdM 9 wird die Dreitafelprojektion durch Grundrisszeichnungen
aus der Architektur motiviert. Abb. 6.4.7 zeigt das Einfiihrungsbeispiel, welches deut-
lich komplexer ist, als der Quader im vorherigen Buch. Es wird eine Kirche zusam-
mengesetzt aus Quadern, Prisma und Pyramide verwendet sowie ein Punkt in allen
drei Rissen markiert. Mit Hilfslinien wird der Zusammenhang zwischen allen drei
Rissen gekennzeichnet. Fiir verdeckte Kanten werden gestrichelte Linien verwendet.

Der Punkt P wird mit P’ im Grundriss gekennzeichnet. Dies entspricht auch der Be-

\ ~
~

~
~

~

~

~

S~

El P/____

Abb. 6.4.7 In Elemente der Mathematik 9 (kurz: EAM 9) wird ein Modell einer
Kirche bestehend aus Quadern, Prisma und Pyramide als Beispiel einer Dreitafel-
projektion verwendet [16, S. 232].
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zeichnung in der Literatur. In den Seitenansichten wird zwischen Seiten- und Aufriss
unterschieden.

Im Gegensatz zum ersten Buch gibt es allerdings nur vier Aufgaben zu dem Thema.
In der ersten sollen die Risse von verschiedenen zusammengesetzten Korpern kon-
struiert, in der néchsten zu zwei Rissen der dritte rekonstruiert werden. Die néchste
Aufgabe zeigt, dass zwei Risse nicht eindeutig auf den Korper schlieffen lassen. Als
Beispiel wird ein Quader und ein Zylinder gezeigt. Sie liegen derart in der Raumecke,
dass Grund- und Aufriss dieselben Rechtecke zeigen. Die Schiilerinnen und Schiiler

sollen nun weitere Beispiele finden.

In der letzten Aufgabe sind alle drei Risse eines unbe-
kannten Korpers, wie in der nebenstehenden Abbil-
dung, gezeigt: Im Grundriss ein Dreieck, im Aufriss

ein Quadrat und im Seitenriss ein Kreis. Allerdings

sind keine Langenangaben gegeben, was die Aufgabe

sehr erschwert. Damit der Korper existiert, muss z.B.
der Kreis die Seiten des Quadrates beriihren, d.h. ein
Innkreis sein. Das Dreieck sieht in der Zeichnung wie
ein gleichseitiges aus. Beim Versuch, diese Aufgabe
mithilfe von GeoGebra zu 16sen, wurde festgestellt,

dass es sich um ein gleichschenkliges Dreieck handeln

muss, wobei Grundseite und Hohe einer Quadratseite
entsprechen. Dies zeigt die ergénzte, obere Darstel-
lung, bei welcher alle drei Risse ineinander gezeichnet

wurden.

Wie Schiilerinnen und Schiiler die Lésung der Aufga-
be finden? Wir nehmen zwei Risse und iiberlegen uns,
welcher Korper hierdurch beschrieben werden kann. Abb. 6.4.9 Die  Dreitafel-
projektion eines gesuch-

ten Korper im Buch
EdM 9 [16, S. 232]

Ein Zylinder, dessen Durchmesser mit der Hohe iiber-
einstimmt, hat als Riss einen Kreis und ein Quadrat,
wéahrend ein Prisma mit dreieckiger Grundflache sich
aus Quadrat und Dreieck ergibt. Die Idee ist nun, sich den Schnitt beider Kérper
anzuschauen. Hierzu iibertragen wir die Risse in GeoGebra und konstruieren den
Zylinder (Abb. 6.4.10). Im zweiten Schritt entsteht das Prisma und wir markieren
die Schnitte der seitlichen Prismaflachen mit dem Zylinder (blau). Der Schnittkérper
liefert allerdings nicht das richtige Ergebnis, da der Aufriss kein Quadrat mehr ist,
wie die folgende Abbildung zeigt.
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(a) Zylinder (b) Schnitt von Zylinder und Prisma

A

N

(c) Der Schnitt beider Kérper (blau)... (d) ...erfiillt nicht das Quadrat im Aufriss.

Abb. 6.4.10 Gesucht ist ein Korper, welcher ein Dreieck, ein Quadrat und einen
Kreis als Riss besitzt. Der erste Versuch (markierte Grundseite des Dreiecks ist par-
allel zum Aufriss) fithrte nicht zum richtigen Ergebnis.

In einem zweiten Versuch drehen wir das Dreieck um 90°, sodass die Grundseite
nun zum Kreis zeigt. In Abb. 6.4.11 sind wieder die einzelnen Schritte dargestellt.
Das Prisma ist nun um 90° gedreht, sodass beim Schnitt die quadratische Flache im
Léangsschnitt des Zylinders enthalten bleibt. Es hat sich also herausgestellt, dass die
Lage der Risse in der Aufgabestellung irrefiihrend ist.



248

Ex 3

(a) Die Grundseite des Dreiecks ist parallel  (b) Schnitt von Zylinder und Prisma...
zum Seitenriss.

. :

(c) ...fuhrt nun zum richtigen Ergebnis. (d) Der Aufriss ergibt nun ein Quadrat.

Abb. 6.4.11 Im zweiten Versuch wurde das Dreieck im Grundriss um 90° gedreht.
Somit konnte der gesuchte Korper rekonstruiert werden.

Sowohl die Schragbilddarstellung als auch die Dreitafelprojektion stehen in Zusam-
menhang mit der Parallelprojektion. Im ersten Fall sind es die Bilder, wobei Ver-
zerrungswinkel und Verkiirzungsfaktor von dem Einfall der Projektionsstrahlen auf
die Bildebene bestimmt werden, und im zweiten Fall entstehen die Risse durch eine
orthogonale Projektion auf die Flichen der Raumecke. In allen gesichteten Schulbii-
chern wird die Parallelprojektion nicht genannt oder thematisiert. Bei den Beispielen
zur Dreitafelprojektion werden die senkrechten Projektionsstrahlen nur angedeutet.
Es bleibt oft bei einer impliziten Andeutung, wenn von verschiedenen Blickrichtun-

gen, oder bei den Rissen auch von Korperansichten, gesprochen wird.
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6.4.3 Zentralprojektion

In der &lteren Ausgabe von MatheNetz 8 gibt es eine Seite mit Projektideen zum
Thema Zentralprojektion und kiinstliche Welten [9, S. 92|. In der Kunst auf Gemaél-
den oder im Bereich der Computerspiele werden reale oder ausgedachte, raumliche
Szenen auf einer Ebene dargestellt. Damit diese besonders realistisch erscheinen, wird
die Zentralprojektion verwendet. Passend zur Entdeckung der Perspektive wird in
dem Schulbuch ein Gemailde des Kiinstlers Paolo Ucello von 1467, der Renaissance,
gezeigt sowie ein Ausschnitt aus einem bekannten Computerspiel. Beide Bilder ent-
halten einen gekachelten Boden, welcher an ein Schachbrett erinnert, als gdngiges
Beispiel einer Zentralprojektion. Darunter ist eine Skizze, wo eine Person auf einen
Turm und einen Baum schaut (Abb. 6.4.12). Von dem Auge der Person gehen ,Seh-
strahlen“ aus, welche die Bildebene vor dem Betrachter schneiden, um die Entstehung
der projizierten Bilder zu skizzieren. Direkt unterhalb dieser Szene ist anhand eines
Quaders die Konstruktion des zentralprojektiven Bildes mit einem bzw. mit zwei
Fluchtpunkten gezeigt. Nachteil dieser Kombination der Abbildungen ist, dass sie
suggeriert, die Sehstrahlen stimmen mit den Tiefenlinien zur Konstruktion des Qua-
ders iiberein, wie auch das Projektionszentrum in der oberen Abbildung mit dem
Fluchtpunkten in der unteren. Der Zusammenhang zur Fluchtpunktkonstruktion,
wie sie Schiilerinnen und Schiiler aus dem Kunstunterricht kennen sollten, wird nicht
deutlich in der rdumlichen Skizze von Objekt, Bild, Betrachter und Bildebene.

~ -

-~
L}
1
1 t

- == :t:j ==

Abb. 6.4.12 Zentralprojektion als Projektidee in MatheNetz 8 (&éltere Ausgabe) |9,
S. 92]
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(a) Projektion eines Quaders (b) Unterschied zwischen Sehstrahlen und
den Hilfslinien der Konstruktion mit dem

Fluchtpunkt

Abb. 6.4.13 Mit GeoGebra kénnen Schiilerinnen und Schiiler einen Quader auf die

Bildebene projizieren.

GeoGebra ermoglicht die Konstruktion im Raum, sodass
Schiilerinnen und Schiiler die Projektion eines Quaders
mit den Sehstrahlen nachbauen konnen. Abb. 6.4.13 (a)
zeigt ein Arbeitsblatt. Mithilfe der Schieberegler lassen
sich Lange r und Winkel o der Diagonalen der Grund-
fliche des Quaders variieren. Mit h wird die Hohe ein-
gestellt. Mit dem Punkt M kann der Quader verschoben
und mit A gedreht werden. Zur besseren Orientierung
sind parallele Kanten farbig markiert. Schiilerinnen und
Schiiler konnen mit diesem Arbeitsblatt nun beobachten,
wie sich die Lage der Fluchtpunkte bei Anderung von
Grofse und Position des Quaders verédndert. Ebenso wird
das Bild iiber die Schnittpunkte der Sehstrahlen mit der
Bildebene ausgehend von dem urspriinglichen Objekt er-
zeugt. Die Fluchtpunkte entstehen dabei. Im Kunstun-
terricht dagegen orientiert sich die Projektion nicht an
das Objekt mit seiner Lage und seinen Maften. Es wird
eher wie folgt vorgegangen (Abb. 6.4.14): Mit der Lage
des Horizontes wird iiber Frosch-, Normal- oder Vogelper-
spektive entschieden, d.h. wie hoch der Betrachter relativ
zum Objekt steht. Dann werden links und rechts von der
Bildmitte die Fluchtpunkte auf die Horizontlinie gesetzt.
Anschliefsend wird tiber die Tiefenlinien der Quader kon-

struiert.

Vogelperspektive

Normalperspektive

Froschperspektive

Ry Fy

Abb. 6.4.14 Konstruk-
tion eines Quaders
wie im Kunstunter-
richt
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Die Wahl von zwei Fluchtpunkten zeigt, dass der Quader nicht parallel zur Bildebene
ausgerichtet ist. Wie weit dieser aber gedreht ist, wird durch die Lage der Flucht-
punkte bestimmt. Da diese aber beliebig gesetzt werden, ist der Winkel wie auch die
konkreten Mafe des Quaders unbekannt, ebenso der Standort des Betrachters relativ
zur Bildebene. Es ist bspw. anhand der Projektion nicht erkennbar, ob es sich um
einen allgemeinen Quader oder um einen Wiirfel handelt. Vorteil dieser Methode ist
dagegen, dass sehr einfach Projektionen direkt auf der Bildebene konstruiert werden
kénnen, ohne einen Grund- oder Aufriss zu benétigen. Daher erscheint die Vorge-
hensweise fiir den Kunstunterricht geeignet. Im Mathematikunterricht sollte dagegen
der Fokus weniger auf das fertige Bild als auf seine Entstehung liegen. Hier sollte das
Lernziel, die Projektion als geometrische Abbildung zu verstehen, sein. Und dies lasst
sich mit einer oberflichlichen Darstellung, wie in den gesichteten Schulbiichern, nicht
erreichen.

Dieses GeoGebra Arbeitsblatt macht zudem deutlich, dass die Hilfslinien, welche bei
der direkten Konstruktion iiber die Fluchtpunkte genutzt werden, nicht die Projek-
tionsstrahlen sind, wie die Abb. 6.4.13 (b) zeigt.

Nach der kurzen Erkldrung der Zentralprojektion in der &lteren Ausgabe von Ma-
theNetz 8 folgen drei Aufgaben, u.a. das Bild eines Schachbrettes bzw. eines Wiirfels
zu konstruieren. Da wie schon erlautert, die Fluchtpunktkonstruktion nicht von dem
Objekt selbst ausgeht, ist es schwierig, ein Feld bestehend aus Quadraten oder einen
Wiirfel zu konstruieren. Zumindest wenn der Anspruch besteht, dass Schiilerinnen
und Schiiler die Zentralprojektion ganzheitlich verstehen lernen, denn tatséchlich
konnen wir zeigen, dass jede Konstruktion eines Schachbrettes nach folgendem Sche-

ma, auch ohne Grundriss, zum richtigen Ergebnis fiihrt.

7=
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Abb. 6.4.15 Wie muss der Abstand der ersten horizontalen Linie gewéhlt werden,
damit die Projektion ein Schachbrett darstellt?

Wir gehen davon aus, dass das Schachbrett parallel zur Bildebene ausgerichtet ist.
Dann stehen die Tiefenlinien senkrecht auf jener, sodass wir nur einen Fluchtpunkt
bendtigen, wie Abb. 6.4.15 zeigt. Wir setzen F' auf die Horizontlinie. Unterhalb dieser
zeichnen wir eine parallele Strecke, welche in der Bildebene liegt. Demnach bleiben

Léngen auf dieser Strecke nach der Projektion unverzerrt, d.h. wir konnen diese in
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gleich grofte Abschnitte unterteilen. In der Abbildung sind es vier. Wir verbinden die
Endpunkte dieser Abschnitte mit F', sodass die Tiefenlinien entstehen. Nun miissen
wir entscheiden, in welchen Abstand zur vorderen Strecke wir die néchste horizontale
Linie des Schachbrettes einzeichnen. Danach kénnen wir mithilfe der Diagonalen alle
weiteren Horizontallinien ergénzen. Hierbei nutzen wir aus, dass die Projektion nach
Definition inzidenztreu ist.

Aber wo befindet sich die gesuchte Hohe, damit dies die Projektion eines Schachbret-
tes mit quadratischen Feldern wird? Die Antwort ist, dass die Hohe beliebig gewahlt
werden kann, da nach der Aufgabe der Standort des Betrachters nicht vorgegeben
wird. Abb. 6.4.16 zeigt, wie sich der Standort aus dem konstruierten Bild rekon-
struieren ldsst. Die linke Seite der Abbildung zeigt das Bild aus Abb. 6.4.15. Wir
ergdnzen darunter den Grundriss. Nach Vorgabe liegt das Schachbrett an der Bilde-
bene, d.h. die Verldngerung der unteren Linie ergibt die Risskante, wo sich Objekt-
und Bildebene schneiden (vgl. Abb.4.3.6, S. 106). Wir féllen durch F' das Lot auf die
Risskante und erhalten F’. Analog ergibt sich M’ aus dem Fluchtpunkt der Diago-
nalen. Da die Tiefenlinien senkrecht zur Bildebene liegen, féllt der Fluchtpunkt mit
dem Hauptpunkt H zusammen, d.h. im Grundriss liegt das Projektionszentrum 2’
auf ihr. Wir zeichnen die Hauptdiagonale im Grundriss des Schachbrettes ein. Da
wir jeden Fluchtpunkt durch die Parallele durch das Zentrum erhalten, zeichnen wir
nun die Parallele zur Hauptdiagonalen durch M’. Der Schnitt mit dem Lot durch F
entspricht somit Z’.

Zeichnen wir die zweite Horizontale in der Projektion weiter weg von der unteren
Kante, so liegt M naher F'. Dabei verringert sich auch der des Betrachters von der
Bildebene, wie die rechte Seite der Abb. 6.4.16 zeigt.

Demnach ist die Aufgabe in dem Schulbuch MatheNetz 8 mit der nur grob vorge-
stellten Zentralprojektion l6sbar, allerdings erfiillt sie kaum ein sinnvolles Lernziel.
Statt den Zusammenhang zwischen Bild und Lage der Bildebene bzgl. des Betrach-
ters zu thematisieren, wird in dieser Aufgabe ausgenutzt, dass jede Entscheidung des
Lernenden, wo die horizontale Begrenzung der ersten Quadratreihe zu setzen ist, zu
einem korrekten Ergebnis fithrt. Falls der Lernende die Kantenldnge der Quadrate
als Hohe verwendet, weil in einem Quadrat alle Seiten gleich lang sind, kann dies zu
einem Fehlkonzept fithren. Vor allem, wenn die néachste Reihe ebenfalls in der Hohe
der Quadrate abgetragen wird, d.h. jede Reihe dquidistant zu ihrem Vorgénger wird.
Denn in den Abbildung des Buches gibt es keinen Hinweis, dass die Diagonale als
Hilfslinie verwendet werden kann. Erst damit kénnen Schiilerinnen und Schiiler die

néchsten drei Reihen mit den richtigen Abstédnden ergénzen.
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Abb. 6.4.17 Die Diagonalen in einem Schachbrett sind parallel zueinander, d.h. in
der Projektion schneiden sich alle Diagonalen im Fluchtpunkt M.

Aber wie lassen sich weitere Reihen konstruieren? Wir wissen, dass alle Geraden mit
gleicher Richtung sich in einem Fluchtpunkt auf der Horizontlinie schneiden werden.
Da auch die Diagonalen parallel zueinander sind, muss M dieser gesuchte Punkt sein.
Wir verbinden daher die linke obere Ecke der letzten Kachel auf der linken Seite mit
M, welche wieder die Tiefenlinien an der richtigen Héhe der quadratischen Felder
schneiden wird (Abb. 6.4.17). Auch hierfiir liefert das Buch keinen Hinweis.

Wir kommen mit Mathe live 9 (fiir Grundkurs in Gesamtschulen von NRW) zum
zweiten Buch, welches Aufgaben zur Zentralprojektion enthielt. Nach dem Kapitel
zur Ahnlichkeit von Figuren und der daran anschliefenden zentrischen Streckung,
wird mit zwei Seiten zur Zentralperspektive der Abschnitt abgeschlossen. Wieder
wird mit einem Kunstbild das Thema motiviert. Das Werk Kartenspieler in einem
sonnendurchfluteten Raum von Pieter de Hooch (1629 - 1684) zeigt einen Raum, auf
dessen Riickseite eine Tir nach draufsen gedffnet ist. Der Boden ist mit schwarzen
und weiften Kacheln gefliest und wirkt wie ein Schachbrett, welches die Raumwirkung
verstiarkt. In der Mitte des Raumes befindet sich ein Tisch, an dem drei Personen
sitzen, wihrend eine vierte daneben steht. In dem Bild sind einige Tiefenlinien mar-
kiert, welche zeigen, dass sich der Horizont etwas oberhalb der Bildmitte befindet.
Es gibt genau einen Fluchtpunkt, welcher auf den Kopf eines der Sitzenden gerichtet
ist und bzgl. der Bildmitte nur leicht nach links versetzt ist. Neben dieser Abbildung
wird aufgelistet, wodurch die Zentralperspektive bzw. Zentralprojektion bestimmt

wird:

durch (die Augenhohe) den Horizont und die Fluchtpunkte zur Festlegung
der Sehstrahlen. [6, S. 29|

Somit findet sich wie in MatheNetz 8 eine irrefithrende Gleichsetzung der Tiefenlini-

en, welche sich im Fluchtpunkt schneiden, mit den Seh- bzw. Projektionsstrahlen.
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In Mathe live 9 wird auf
den Standpunkt des Betrach-

ters eingegangen, aber nicht auf  [F

die Lage eines Objektes relativ
zur Bildebene, da auf Grund-
und Aufriss in der Konstruk-
tion verzichtet wird. Die Abb.

6.4.18 zeigt ein Beispiel aus dem
Buch zur Erklarung der Hori-

zontlage und Standpunktes des
Betrachters. Nach dem Buch

kommt es im mittleren Fall zu

zwei Fluchtpunkten, weil der
Betrachter auf die Ecke des

Hauses schaut. Diese Beschrei-
Abb. 6.4.18 Die Auswirkung der Horizontlage

bung ist fehlerhaft, da es bei der und Position des Betrachters auf die Projek-
Anzahl der Fluchtpunkte nicht tion [6, S. 29]

auf den Standort des Betrach-

ters ankommt, sondern auf die Lage der Bildebene relativ zum Haus. Ebenso proble-

matisch ist die Beschreibung im Buch zum ersten Fall, wonach es zu einem Flucht-
punkt kommen soll, wenn der Betrachter auf die Seitenfliche des Hauses schaut.
Daher ist dieser im oberen Teil der Abbildung im Buch seitlich verschoben darge-
stellt. Falls die Urheber dieses Abschnittes implizit davon ausgegangen sind, dass die
Bildebene immer senkrecht zur Blickrichtung des Betrachters ausgerichtet ist, dann
stimmt der erste Fall nicht. Die Bildebene wére dann parallel zur Seitenflache. Folg-

lich ware der Seitenriss unverzerrt und nicht die Vorderseite des Hauses im Aufriss.

Abb. 6.4.19 zeigt die Konstruktion mithilfe von Grund- und Aufriss des Hauses nach
der Methoden im Abschnitt 4.3.2, S. 106. Der Vergleich mit der Abbildung aus dem
Schulbuch zeigt, dass diese auch in der Position des Betrachters fehlerhaft ist. Der
Aufriss des Hauses ist unverzerrt, also muss die Vorderseite parallel zur Bildebe-
ne ausgerichtet sein. Dann liegen die Tiefenlinien senkrecht zur Ebene, sodass der
Fluchtpunkt mit dem Hauptpunkt zusammenféllt. Demnach muss die Person unter-

halb von F' gezeichnet werden, was in der Abbildung im Schulbuch nicht der Fall ist.
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Abb. 6.4.19 Konstruktion des Hauses im ersten Fall von Abb. 6.4.18 mithilfe von

Grund- und Aufriss.

Im zweiten Beispiel steht die Person vor der Hausecke. Nach der Erklarung entstehen
zwei Fluchtpunkte, weil die Person nun auf die Ecke schaut. Auch das beschreibt
die Situation nicht vollstdndig, denn wie in Abb. 6.4.20 dargestellt, entstehen zwei
Fluchtpunkte, wenn das Haus nicht mehr parallel zur Bildebene ausgerichtet ist. Die

Person muss dabei nicht zwingend vor der Hausecke stehen.
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Abb. 6.4.20 Konstruktion des zweiten Falls von Abb. 6.4.18
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Die zweite Seite im Schulbuch Mathe live 9 zum Thema Zentralperspektive enthélt ei-
ne Reihe von Aufgaben. Neben Konstruktionsaufgaben (Quader mit einem bzw. zwei
Fluchtpunkten oder einem Haus in Vogelperspektive) gibt es auch Anregungen, die
Zentral- und Kavalierperpektive zu vergleichen und Unterschiede bzw. Gemeinsam-
keiten aufzulisten. Da keine Invarianten geometrischer Abbildungen im Unterricht
besprochen werden, fallt die Liste vermutlich kurz aus. Ein offensichtlicher Unter-
schied ist die Parallelentreue, welche nur bei der Parallelprojektion fiir alle parallelen
Kanten eines Korpers gilt. In beiden Projektionsarten verkiirzen sich die Tiefenlini-
en. Allerdings kénnen Schiilerinnen und Schiiler die Verkiirzung nicht weiter unter-
scheiden, da Teil- und Doppelverhéltnis nach Lehrplan im Mathematikunterricht an
Schulen in NRW nicht unterrichtet wird [24, 22|. Das Streckenverhéltnis dagegen
sollte Schiilerinnen und Schiiler bekannt sein, da sie im Unterricht in Zusammen-
hang mit den Strahlensétzen bzw. der zentrischen Streckung besprochen werden. Da
die Projektion aber nicht als geometrische Abbildung im Schulbuch definiert wird,
sondern allein iiber die Konstruktion, ist der Begriff Streckenverhdltnistreue nicht
bekannt. Demnach kénnen Schiilerinnen und Schiiler nicht mehr Unterschiede oder

Gemeinsamkeiten zwischen Zentral- und Kavalierperspektive nennen.

In der nebenstehenden Abbildung wird

eine weitere Aufgabe aus dem Schul-

' buch zitiert. Hier sind sechs Projek-

| tionen eines Wiirfels dargestellt und

L - N die Schiilerinnen und Schiiler sollen
- \/ zuerst entscheiden, welche im Sinne

— der Zentralperspektive gezeichnet sind

und danach die anderen Darstellungs-

/, < [~== arten. nennen. Diese Wurden. in Ma-
the live 8 zum Thema Dreitafelpro-
jektion wvorgestellt. Dabei handelt es

I sich um Kavalier- und Militarperspekti-
ve sowie Iso- und Dimetrie. Es ist da-
her positiv zu erwahnen, dass hier ein
Bezug zu vorherigen Themen erstellt
wird.

Abb. 6.4.21 Aufgabe aus Mathe live 9
zum Vergleich von Zentral- und Ka-
valierperspektive [6, S. 30| Beide Schulbiicher behandeln die Zen-

tralprojektion als Projekt oder als zu-
sitzliche Information auf wenigen Seiten und nicht als eigenes Kapitel. Dies zeigt
den geringen Stellenwert des Themas. So wird in beiden Fiéllen die Projektion iiber

die Konstruktion mithilfe von Horizont und Fluchtpunkt definiert und nicht als geo-
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metrische Abbildung. Teilweise konnten sogar Unstimmigkeiten bis hin zu Fehlern
aufgezeigt werden. Ebenso behandeln die zugehorigen Aufgaben das Thema eher
oberflachlich.

6.4.4 Projektion in der Oberstufe

Die vorherigen Aufgaben entstammen alle aus Schulbiichern der Sekundarstufe I. Wir
wollen in diesem Abschnitt einige Aufgaben aus dem Buch Neue Wege der Sekundar-
stufe II zeigen, welche den Teilbereich Lineare Algebra und Analytische Geometrie
abdeckt.

Wir finden die Parallel- und Zentralprojektion im Abschnitt fiir Geraden im Raum
und der Berechnung von Spurpunkten, d.h. den Schnittpunkten einer Gerade mit den
drei Koordinatenebenen. In einem Aufgabenbeispiel mit Losung wird ein Dreieck im
Raum, dessen Koordinaten bekannt sind, entlang eines Vektors auf die x1x9-Ebene
projiziert. Im Fall der Zentralprojektion wird dasselbe Dreieck auf die xz1x3-Ebene
abgebildet, wobei das Zentrum wieder vorgegeben wird [42, S. 59].

Einige Seiten spéter wird dieses Thema fiir die Berechnung von Schattenbildern wie-
der aufgegriffen. Als Anregung dienen Lichteffekte in der Computergrafik, denn durch
die Schatten der Objekte wirkt eine Szene realer. Eine Abbildung zeigt nach der Er-
klarung die Schatten eines Objektes bei einer Parallel- bzw. einer Zentralprojektion.

Als mogliche Lichtquellen werden die Sonne bzw. eine Lampe genannt.
Nach einigen Aufgaben wird die Zentralperspektive als Projektthema vorgestellt. Als

Einfiihrung dient ein bekannter Kupferstich von A. Diirer, in welcher der Kiinstler

iiber einen Faden und einer klappbaren Leinwand das Bild einer Laute punktweise

T3 L3
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Abb. 6.4.22 Der Schattenwurf bei Sonnenlicht (links) und einer Lampe (rechts)
(vgl. [42, S. 69])
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konstruiert. Danach wird der Fluchtpunkt anhand eines Fotos von Gleisen vorgestellt,
mit der Aussage, dass parallele Kanten in den Bildern nicht mehr parallel sind. Dass
es auch Geraden gibt, welche wieder auf parallele Geraden abgebildet werden, wird
nicht erwahnt.

Die Schiilerinnen und Schiiler sollen die Zentralprojektion eines Wiirfels berechnen.
Aufgrund der gedrehten Lage des Wiirfels hat das Bild zwei Fluchtpunkte. Anhand
der Bildkoordinaten sollen die Schiilerinnen und Schiiler nun zeigen, dass sich die
Bildkanten des Wiirfels in diesen Punkten schneiden. Danach folgt die Aufgabenrei-
he zur Erzeugung eines Rot-Griin-Bildes des Wiirfels. Damit endet das Projektthema.

In einem spéteren Kapitel iiber Matrizen und geometrischen Abbildungen wird das
Thema Projektion wieder aufgegriffen [42, S. 184]|. In einem Aufgabenbeispiel ist
der Schatten eines Wiirfels mit einer aufgesetzten Pyramide auf einer schiefen Ebe-
ne gezeigt. An einem Beispiel wird ein Bildpunkt unter einer Parallelprojektion mit
vorgegebener Richtung berechnet. Die Schiilerinnen und Schiiler sollen danach zwei
weitere Bildpunkte bestimmen. Im letzten Aufgabenteil wird die Matrix gesucht,
welche multipliziert mit den Ortsvektoren der Punkte die Bildpunkte ergibt.

Es folgt ein Teil iiber die Verwendung linearer Abbildungen in der Computergrafik
und zum Schluss gibt es einige Projektseiten zur Axonometrie [42, S. 197|. Hier wer-
den verschiedene Koordinatensysteme passend zur Kavalier- und Militdrprojektion

sowie Isometrie und Dimetrie gezeigt.

Als zweites Buch wurde der Lambacher Schweizer fir die Oberstufe untersucht. Auch
hier werden zum Thema Geometrische Objekte und Situationen im Raum Schatten
durch Sonnenlicht entlang eines gegebenen Vektors auf die Koordinatenebenen be-
stimmt. Es findet auch der Bezug zur Zentralprojektion mit einem Scheinwerfer als
Lichtquelle statt. Eine Weiterfithrung tiber die Schattenbilder hinaus, wie im ersten
Buch, findet nicht statt.

Damit endet die Vorstellung bestehender Aufgaben zur Projektion in aktuellen Schul-
biichern. Das folgende Kapitel greift die o.g. Aufgabe zur Erzeugung eines Rot-Griin-
Bildes wieder auf. Die Berechnung der Bildkoordinaten erfolgt dabei computerge-
stilitzt mit einer dafiir geeigneten Programmiersprache. Wir greifen dafiir auf Inhalte
in den Abschnitten Analytische Betrachtung der Zentralprojektion sowie die homo-

genen Koordinaten wieder auf.






Kapitel 7

Erzeugung einfacher Projektionen

am Computer

Im zweiten Hauptteil dieser Arbeit wurde die Zentralprojektion aus rein mathema-
tischer Sicht vorgestellt und weniger in Bezug auf Schule und Unterricht. Wir wollen
nun an Kapitel 4.6, Zentralprojektion in der Computergrafik, ankniipfen. Wir haben
gezeigt, dass sich einfache Szenen aus den drei Einheitskorpern Wiirfel, Prisma und
Pyramide erstellen lassen, indem die Korper entsprechend skaliert, gedreht und ver-
schoben wurden. Mit einem Koordinatensystem lassen sich die Eckpunkte der Kérper
definieren. In Folge dessen werden die geometrischen Abbildungen Skalierung, Dre-
hung und Verschiebung mithilfe von Matrizen berechnet, sofern es sich um lineare
Abbildungen handelt. Wir haben in dem o.g. Kapitel gezeigt, dass dies bei der Ver-
schiebung nicht der Fall ist, da bspw. der Ursprung nicht auf sich selbst abgebildet
wird. Mit diesem Problem wurde die Verwendung von sog. homogenen Koordinaten
motiviert, welche durch Anhebung des Raumes in die vierte Dimension eine Ver-
schiebung linearisierte.

Wir wollen nun lineare Abbildungen und homogene Koordinaten verwenden, um
mithilfe des Computers aus den drei Einheitskorpern Wiirfel, Pyramide und Pris-
ma (Abb. 4.6.2, S. 182) Szenen von Gebauden zu erstellen und diese sowohl parallel-
als auch zentralprojektiv abzubilden. Dabei wird die Programmiersprache Processing
verwendet, welche neben grafischen Darstellungen auch einfache Animationen ermdog-
licht. Nach dem Kernlehrplan der Oberstufe an Gymnasien und Gesamtschulen in
NRW ist eine Auseinandersetzung mit objektorientierten Programmiersprachen im
Informatikunterricht vorgesehen, allerdings wird die Sprache nicht vorgegeben. In
Schulbiichern giangiger Verlage wie Cornelsen und Westermann wird Java verwen-
det. Processing basiert auf Java. Weiterhin ist Processing und der bendtigte Editor
(Processing Development Environment, Version 3.5.4) zum Schreiben und Ausfiih-
ren von Skripten kostenlos erhéltlich. Da Matrizen- und Vektorrechnung nétig ist,

richten sich die Aufgabenvorschlige an den Unterricht der Sekundarstufe IT an Ge-
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samtschulen und Gymnasien. Fiir ndhere Informationen und Programmbeispielen zu
Processing sei auf das Buch [45] von D. Shiffmann hingewiesen, welcher auf seinem
YouTube Kanal The Coding Train einige Videotutorials zur Verwendung der Sprache
zur Verfiigung stellt.

Bevor wir auf die Programmiersprache selbst eingehen, ein paar allgemeine Erkla-
rungen zur Programmierung. Generell besteht ein Quellcode aus einer Reihe von
Anweisungen, die der Computer auf Objekten bzw. Variablen anwendet, um eine
definierte Zustandsdnderung zu erbringen. Dazu folgendes Beispiel: zuerst wird eine
Objekt mit dem Name a initialisiert und dann der Wert 5 zugeordnet. Somit gilt

a = 5 und der Zustand
,,a existiert ohne Wert"
wird durch die Anweisung = 5 in den Zustand
»a hat den Wert 5¢

gedndert. Genauso lassen sich auch eigene Funktionen definieren, indem Anweisun-
gen auf ein Funktionsargument zusammengefasst werden und nacheinander, Zeile
fiir Zeile, ausgefiihrt werden. Als Beispiel definieren wir eine Funktion, welche ein

gegebenes Argument verdoppelt:

Funktion Verdoppel(Zahl) :
Ergebnis = 2 * Zahl
Return(Ergebnis)

Die Funktion hat den Namen ,Verdoppel® und nimmt als Argument ein Objekt mit
dem Namen ,Zahl“ entgegen. Dieses wird in der zweiten Zeile verdoppelt und das
Produkt in der Variablen Ergebnis gespeichert, welche dann im dritten Schritt durch
die Anweisung Return von der Funktion ausgegeben wird. Damit lasst sich die Funk-
tion mit verschiedenen Argumenten aufrufen, bspw. Verdoppel(4) gibt als Wert 8
zuriick, welcher dann in einer weiteren Variablen mit dem Namen Ergebnis! gespei-

chert werden kann. Weitere Beispiele sind:

Ergebnis2 = Verdoppel(50)
Ergebnis3 = Verdoppel(5.5)
Ergebnisj = Verdoppel(—10)

Damit wird Ergebnis2 der Wert 100 zugeordnet, Ergebnis3 11 und zuletzt Ergebnis4
der Wert -20.
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In der Entwicklung von Programmiersprachen existieren zwei Hauptstrome: prozedu-
ral oder objektorientiert. Die ersten Sprachen wie Fortran (50er Jahre) oder C (70er
Jahre) sind Ersterem zuzuordnen. In prozeduralen Sprachen gibt es allerdings keine
Verkniipfung zwischen Anweisung und dem Objekt selbst. Dies ist charakteristisch
flir den zweiten Hauptstrom der Programmiersprachen, welche objektorientiert ge-
nannt werden. Hier konnen eigene Objekttypen definiert werden, welche bestimmte
Eigenschaften enthalten. Ein Objekttyp ,Quadrat® wird {iber eine Kantenlénge defi-
niert und kann zusétzlich noch Informationen iiber Linien- oder Fiillfarbe enthalten.
Damit ist ein Quadrat definiert, aber wenn der Benutzer dies auch in einem Fens-
ter auf dem Bildschirm zeichnen mochte, braucht es eine Anweisung, bspw. Zeich-
ne(Quadrat). Diese Anweisung macht aber fiir eine Zahl als Argument keinen Sinn,
d.h. wir haben eine Anweisung, welche mit einem bestimmten Objekttyp verkniipft
wird. Dies ist der grofse Unterschied zwischen prozeduralen und objektorientierten
Sprachen. Daher werden Anweisungen in ersteren Sprachen als ,,Funktionen* und in
zweiteren als ,Methoden“ bezeichnet. Ein Objekttyp und seine Methoden werden
dann in sog. Klassen zusammengefasst. Da die hier verwendete Sprache Processing
objektorientiert ist und fiir die Projektion eigene Klassen definiert wurden, wird in

Abschnitt 7.3 ein einfaches Beispiel mit Kreisen als Objekttyp vorgestellt.

Szenen konnen mithilfe von Einheitskorpern erstellt werden. Daher wurde eine Klas-
se von Einheitskorpern in Processing definiert, welche als Unterklassen die Kérper
Wiirfel, Pyramide und Prisma hat. Diese Objekte werden iiber ihre Eckpunkte im
dreidimensionalen Koordinatensystem definiert und kénnen mithilfe von Abbildungs-
matrizen skaliert, gedreht und verschoben werden, sodass bspw. aus einem Wiirfel
ein Quader wird. Fiir die Darstellung auf dem Bildschirm werden die Eckpunk-
te anschliefsend mit Projektionsmatrizen abgebildet. Zur Verwendung der Zentral-
projektion werden homogene Koordinaten genutzt und als Anwendungsbeispiel sog.
Anaglyphenbilder erzeugt, welche die Schiilerinnen und Schiiler ausdrucken und ihre
Wirkung mithilfe von Rot-Griin-Brillen iiberpriifen kénnen. Wir wollen daher zuerst
das Anaglyphenverfahren und dann die Entwicklerumgebung von Processing vorstel-
len. Zum Abschluss werden einige Aufgabenbeispiele zur Anwendung des Quellcodes

besprochen.
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7.1 Das Anaglyphenverfahren

Die Idee, Rot-Griin-Bilder am Rechner zu erstellen, wurde angeregt durch eine Auf-
gabe aus dem Schulbuch Neue Wege (2011) fir die Oberstufe zu den Themen Lineare
Algebra und Analytische Geometrie [42, S. 91 - 92]. Gegeben sind folgende vier Eck-

punkte eines Wiirfels
A(0/3/0),B(4/0/0),D(3/7/0),E(0/3/5)

sowie der Ort einer Lampe mit L; (12 /3 / 3). Diese beleuchtet den Wiirfel und die
Schiilerinnen und Schiiler sollen nun die fehlenden Eckpunkte bestimmen sowie die
Bildpunkte auf der zox3-Ebene.

In einer daran anschliefenden Aufgabe sollen die Schiilerinnen und Schiiler den pro-
jizierten Wiirfel griin zeichnen und das Bild wiederholt bestimmen, wenn der Wiirfel
von einer zweiten Lampe mit Ly (12 /4 / 3) beleuchtet wird. Das zweite Bild sollen
sie rot zeichnen. Den Wiirfel und die Lampen zeigen die Abbildungen 7.1.1 und 7.1.2.
Die Farben der Lampen sowie ihre Position lassen auf das sog. Anaglyphenverfahren
schlieften, welches auf derselben Seite im Schulbuch auch kurz vorgestellt wird. Die
Lampen befinden sich auf derselben Hohe und sind seitlich um 1 LE verschoben.
Wir ersetzen nun die Lampen durch ein Augenpaar, welches auf den Wiirfel schaut.
Die Augen nehmen jeweils ein leicht verédndertes Bild des Wiirfels wahr, was Schiiler-
innen und Schiiler daran erkennen konnen, das sich das Gesehene verdndert, wenn
sie abwechselnd die Augen schlieffen. Unser Gehirn baut aus beiden Bildern das
rdumliche Bild zusammen. Dieser Eindruck wird mithilfe des Anaglyphenverfahrens
kiinstlich erzeugt, d.h. der Betrachter nimmt ein rdumliches Bild war, obwohl er auf

eine Ebene schaut.

x3
E
<] -
A 2

/B ’
C

Abb. 7.1.1 Wiirfel der vorgestellten Schulbuchaufgabe

T
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Abb. 7.1.2 Der Wiirfel und die beiden Lampen in Grund- und Seitenansicht

Abb. 7.1.3 zeigt das Verfahren mit den
Farben Rot und Griin. Es handelt sich

hierbei um sog. Komplementdrfarben,

d.h. die Uberlagerung beider Farben er- &
gibt schwarz. Mithilfe der Rot-Griin-
Brille sehen die Augen dasjenige Bild

des Wiirfels, welches durch Projektion

mit dem Auge als Zentrum entstanden
ist. Die Wiirfelprojektion vom linken
Auge wird griin gezeichnet. Das Glas ist
aber rot gefarbt, d.h. das griine Bild er- Abb. 7.1.3 - Das Anaglyphenverfahren
scheint schwarz, wahrend gleichzeitig die
rote Wiirfelprojektion ausgeblendet wird. Beide Augen sehen somit nur das fiir sie
bestimmte Bild. Das Gehirn kann wieder den rdumlichen Eindruck erzeugen, sofern

der Betrachter auch den passenden Abstand zur Bildebene einnimmt.

Die Zentral- und Parallelprojektion wird in dem Schulbuch zum Thema ,,Spurpunk-
ten von Geraden kurz angesprochen. Als Spurpunkte werden die Schnittpunkte der
Geraden mit den Koordinatenebenen bezeichnet. Das Buch liefert ein Rechenbei-
spiel. Hier wird die Parametergleichung der Geraden verwendet und der Parameter
durch Nullsetzen der entsprechenden Koordinate bestimmt. Dies ist auch die Vorge-
hensweise fiir die Berechnung der Bildpunkte einer Projektion auf eine der Koordi-
natenebenen, wie sie im Aufgabenbeispiel 4.4.1, S. 142, schon durchgefiihrt wurde.

Die Aufgabenstellung in dem Buch bzgl. des Wiirfels lasst allerdings offen, ob die
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Abb. 7.1.4 Ergebnis der Schulbuchaufgabe

Schiilerinnen und Schiiler diese Rechnung nun 16 mal durchfiihren sollen. Da der Re-
chenweg fiir jeden Punkt derselbe ist, ist es sinnvoller, diesen einmalig mit dem Punkt
P (p1/p2/ps) und dem Zentrum L (I /lz /l3) durchzufiihren. Wir gehen genauso
vor wie in Kapitel 4.4.2, S. 152. Da in dieser Aufgabe F : z1 = 0 die Bildebene ist,
miissen wir die erste Koordinate in der Parametergleichung der Projektionsgeraden

null setzen. Fiir die Bildpunkte erhalten wir somit folgende Formel:

P’ (O/ lips —lapr / lip3 —13 pl) ‘ (7.1.1)

L —p i —p

Wir setzen nun fiir jedes Zentrum die Eckpunkte des Wiirfels ein. In Abb. 7.1.4 ist
links das Ergebnis zu sehen. Im rechten Bild ist derselbe Wiirfel als geschlossener
Korper abgebildet. Mit einer Rot-Griin-Brille kénnen die Schiilerinnen und Schiiler
sich dann selbst davon iiberzeugen, dass der 3D Effekt funktioniert, wenn sie den

richtigen Abstand zum Bild einnehmen.

Mit der Gl. (7.1.1) ist es nun auch moglich, den Computer fiir die Berechnung und
Darstellung der Bildpunkte zu verwenden, in dem wir Quellcode in einer geeigneten
Programmiersprache schreiben. Denn der Rechenweg ist immer derselbe. Der An-
wender gibt das Zentrum sowie eine Liste von Punkten vor. Der Computer soll dann
diese Liste durchgehen, jeden Punkt in die o.g. Formel einsetzen und eine Liste mit
den Bildpunkten herausgeben. Geben wir auch noch vor, welche Punkte der Liste
miteinander durch eine Linie verbunden werden, so kann der Computer das Ergebnis
zeichnen. Nicht jede Programmiersprache ist fiir jede Anwendung geeignet. Die Wahl
fiel auf Processing, denn hier ist es einfach, Linien durch Angabe des Anfangs- und
Endpunktes zu zeichnen oder Animationen zu erzeugen. Sie ist ebenfalls objektori-
entiert und erfiillt damit eine Vorgabe des Lehrplans fiir den Informatikunterricht
der Oberstufe.
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7.2 Die Entwicklerumgebung von Processing

Bevor wir den Quellcode vorstellen, wird in diesem Abschnitt die Oberfliche des
verwendeten Editors sowie einige Eigenschaften der Programmiersprache erlautert.
Die Abb. 7.2.1 zeigt ein Beispiel fiir die Erzeugung von Quader und Prisma, welche
zu einem Haus zusammengefiigt wurden. Nach Ausfithrung des Programmes entsteht

das weike Kantenmodell auf schwarzem Hintergrund.

Der Quellcode ist in verschiedene Bereiche aufgeteilt, am linken Rand befindet sich
die Zeilennummerierung. Fiir die Projektion wurden eigene Funktionen und Objekte
definiert, welche unter den obigen Reitern Matrics und Shape zu finden sind. Die
Ausfithrung der Methoden erfolgt zeilenweise. Jede Zeile, welche Befehle enthélt,

muss mit einem Semikolon beendet werden.

Java v

//Deklaration der verwendeten Objekte und Variablen
pY float unit; // Einheit des Koordinatensystems in Pixeln

28 Cube c;
g Prism p;

Toat[1[] Projz = {{1,0,0},
{0,1,-0.5}};

Bl // statischer Bereich
void setup(){

s7ze(400,300); // Groesse des Bildes in Pixeln
unit = 50;

3 1

i1 // dynamischer Bereich
£} void draw(){

background(0); // Hintergrundfarbe es Bildes ist schwarz.
translate(width/2,height/2); // Ursprung wird auf den Mittelpunkt des Bildes verschoben.

PRy // Initialisierung der oben deklarierten Objekte
Cube ¢ = new Cube(unit, color(255),2,1,4,45,0,0,0);
Prism p = new Prism(unit, color(255),2,1,4,45,0,-1,0);

PEY // Projektion der Objekte mit anschliessender Darstellung im Bild
projection(Projz, c);

projection(Projz, p);

c.drawVertex(c);
p.drawVertex(p);

nolLoop(); // Bild wird einmal erzeugt, keine Schleife

d };

Abb. 7.2.1 Der Editor von Processing

In Zeile 1 wird mit // ein Kommentar eingefiigt. Nach dieser Zeichenfolge wird
alles nachfolgende in der Zeile bei der Ausfithrung iibersprungen. In Zeile 2 wird mit
float die erste Variable mit der Kennzeichnung unit erzeugt und die Zeile mit
einem ; beendet. Die Sprache Processing verlangt fiir jede Variable neben einem

eindeutigen Namen eine Zuordnung zu einer Klasse, wie Cube oder Prism in Zeile 4
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und 5, oder zu einer Zahlenmenge. Mit int werden Zahlen vom Typ Integer erzeugt,
welche ganzzahlig sind, wie z.B. 1 oder -5. Mit float werden Fliefkkommazahlen
erzeugt, wie 1.5 oder -0.3333. Zu den Flielskommazahlen gehoren aber auch die ganzen
Zahlen, sodass in Zeile 14 der Variable unit der Wert 50 zugeordnet werden kann.
Jede Zahl vom Typ integer ist auch vom Typ float, aber nicht umgekehrt. Bspw.

wiirde

int unit ;

unit = 3.1 ;

zu einer Fehlermeldung fiihren. In Zeile 4 wird ein Objekt der Klasse Cube mit dem
Namen c erzeugt. Da es sich hier um eine eigene definierte Klasse handelt, dessen
Parameter unter dem Reiter Shape zu finden sind, wird die Typbezeichnung nicht
farblich hervorgehoben.

Die Koordinaten der projizierten Eckpunkte der Kérper werden iiber eine Matrix-
Vektor-Multiplikation berechnet, sodass vorab eine Matrix initialisiert wird. Die Ein-
trage konnen auch Flielskommazahlen sein, wodurch die Matrix mit der Bezeichnung
ProjZ in Zeile 7 durch float [] [] definiert wird. Die beiden Klammern stehen fiir
eine Liste von Listen, denn die Zeile einer Matrix wird von der Sprache als eine Liste
von Zahlen interpretiert und die ganze Matrix wiederum als eine Liste von Listen.

Die verwendetet Projektionsmatrix ist daher

10 0
01 —05/

Anders als bei unit wird bei der Initialisierung der Matrix direkt auch ein Wert
zugeordnet. Beide Vorgehensweisen sind in Processing erlaubt. Da aber die Einheit
im zugrunde gelegten Koordinatensystem abhéngig ist von der Grofe des Bildes in
Zeile 13, wird der Wert erst in Zeile 14 zugeordnet. Die Projektionsmatrix dagegen
ist unabhéngig und kann direkt mit ihren Werten erzeugt werden. Durch diese Auf-
teilung wird der Quellcode besser lesbar. Damit ist der Abschnitt der Deklaration
aller verwendeter Objekte und Variablen vollstéandig.

Anschliefsend wird in Processing in zwei Bereiche unterschieden. Der statische Be-

reich wird mit

void setup () {

}

gekennzeichnet. setup () ist eine Funktion, welche aufgrund der leeren, runden
Klammern keine Argumente benétigt. Mit void wird signalisiert, dass die Funk-
tion nach ihrer Ausfiihrung kein Objekt zuriickgibt. Mit { } wird eine Umgebung

erzeugt, in welcher der Benutzer einige Parameter, wie die Grofe des Fensters mit
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size (Breite, HShe) in Pixeln, festlegen kann. Um die Koérper zu erzeugen, wer-
den die Eckpunkte mithilfe von Koordinaten beschrieben, sodass es hierfiir nétig ist,
eine benutzerdefinierte Einheit anzugeben, um die Objekte je nach Fenstergrofie ska-
lieren zu kénnen.

Die letzte Umgebung ist der dynamische Bereich und wird mit

void draw () {

}

gekennzeichnet. Hier werden die im Fenster grafisch erzeugten Elemente definiert.
Diese Umgebung wird von Processing standardméfig mehrfach in einer Schleife aus-
gefiihrt, weshalb dieser Bereich als dynamisch bezeichnet wird. Dies hat den Vorteil,
dass sich Objekte im Fenster bewegen konnen. Bspw. kann ein Objekt sich drehen,

wenn bei der Rotation der Winkel nach jedem Durchlauf um 1° erhoht wird.

Die Hintergrundfarbe soll schwarz sein, weshalb die Funktion background () das
Argument 0 erhélt. Die Codierung von Farben wird in einem spéiteren Abschnitt
erlautert. In Zeile 22 wird der Ursprung des Koordinatensystems, welcher sich stan-
dardméfkig in der oberen linken Ecke befindet, zum Mittelpunkt des Fensters ver-
schoben. In Zeile 25 und 26 werden die Parameter des Wiirfels und des Prismas
definiert, sodass das Kantenmodell des Hauses entsteht. Ndheres zu den Parametern
wird im anschliefenden Unterkapitel erlautert. Die Eckpunkte des Hauses befinden
sich noch in der dritten Dimension, weshalb beide Korper in Zeile 29 und 30 mithilfe
der Matrix-Vektor-Multiplikation auf die Bildebene projiziert werden. Diese ist im-
plizit in der Projektionsmatrix ProjZ hinterlegt.

Zum Schluss wird das Kantenmodell beider Korper gezeichnet. Da es sich hierbei um

ein statisches Bild handeln soll, wird mit noLoop () die Schleife unterbrochen.

7.3 Die Einheitskorper als Klassen

Processing ist eine objektorientierte Programmiersprache, in welcher Objekte mit
gleichen Parametern zu sog. Klassen zusammengefasst werden. Dies ermoglicht den
Aufbau einer hierachischen Struktur, welches u.a. zu einer iibersichtlichen, struktu-
rierten Gestaltung des Quellcodes fithrt. Zur Erklarung, was unter Objektorientie-
rung zu Verstehen ist, wird der Begriff der Klasse anhand eines Beispiels erldutert.!
Wir stellen uns vor, wir wollen ein Bild mit vielen verschiedenen Kreisen erzeugen.
Den Quellcode zeigt Abb. 7.3.1. Wir konstruieren zu Beginn einen Kreis, welcher

iiber folgende Parameter erzeugt wird:

!Das Beispiel ist angelehnt an einem Videotutorial von D. Shiffman von seinem YouTube Kanal
The Coding Train.
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stroke (0) Farbe der Umrandung ist schwarz.
£111(200) Farbe der Fiillung ist ein Grauton.

ellipse(100,200,100,100) Zeichnet eine Ellipse,
mit Mittelpunkt (100, 200)
und der Breite 100 sowie der Hohe 100.

Das zugrunde gelegte Koordinatensystem hat ihren Ursprung in der linken oberen
Ecke. Die x-Achse weist nach rechts, die y-Achse nach unten, sodass es sich um ein
linkshéndiges Koordinatensystem handelt. Im Mathematikunterricht wird dagegen
ein rechtshidndiges System verwendet. Damit die Ellipse zum Kreis wird, miissen
Breite und Hohe denselben Wert erhalten. Um weitere Kreise unterschiedlicher Gro-
e und Farbe zu zeichnen, miissen die letzten beiden Befehle mehrfach kopiert werden
(Abb. 7.3.1 Mitte). Wir fassen nun alle Kreise mit den Attributen Durchmesser, Far-
be und Ort zu einer Klasse zusammen und nennen diese BubbleClass. Der Quellcode
zu dieser Klasse wird in einem neuen Reiter geschrieben. Wir werden ihn spéter noch
erlautern. Der Vorteil ist nun, dass jeder Kreis mit seinen Attributen in einer eigenen
Variablen by, by, bs und by vom Typ Bubble gespeichert wird (Abb. 7.3.1, unten).

Mit bl.display () wird eine Methode aufgerufen, welche in der BubbleClass defi-
niert wurde und nur von Objekten dieser Klasse aufgerufen werden kann. Wir erhal-
ten also eine Verkniipfung von Attributen und Methoden zu einem Objekt. Nehmen
wir ein weiteres Beispiel fiir ein Klassenkonstrukt. Fine Auto kann die Attribute Far-
be, Hersteller, gefahrene Kilometer und Tankfillung sowie die Methode fahren oder
tanken haben. Sind diese Methoden innerhalb der Klasse definiert, kann ein Objekt
auferhalb davon sie nicht aufrufen. So kann ein Kreis nicht die Methode fahren aus-
fiihren. Ein weiterer Vorteil zeigt Abb. 7.3.2. Hier werden mithilfe einer for-Schleife
50 Kreise in Zeile 13 zufillig erzeugt und gezeichnet. Ohne die Klasse miissten die
Methoden £111 () und ellipse () filinfzig mal hintereinander kopiert werden, was
miihselig ist und den Quellcode uniibersichtlich macht.

Wie eine Klasse definiert wird, zeigt Abb. 7.3.2 (unten). Jede Klasse muss einen ein-
deutigen Namen besitzen. Danach werden die Attribute definiert, d.h. die Position
des Mittelpunktes mit x, vy, der Durchmesser mit diameter sowie die Farbe mit
bubcol. Mit Bubble () wird ein sog. Konstruktor aufgerufen, in welcher der An-
wender den Attributen Werte zuordnet. Zum Abschluss steht in Zeile 14 die Methode

display (), welche den Kreis in das Programmfenster zeichnet.
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BubbleSkript

void setup(){
si1ze(400,300);
background(255);
}

void draw(){

stroke(0);

fil1(200);

//ellipse(x, y, x_diameter, y_diameter)
ellipse(100,200,100,100);

noLoop();

void draw() {

stroke(0);

fi11(200);
ellipse(100,200,100,100);

fi11(255,0,0);
ellipse(100,250,50,50);

fi11(0,200,200);
ellipse(200,150,75,75);

fi11(100,50,150) ;
ellipse(50,100,115,115);
noLoop();

[ ) BubbleSkript

[ ) BubbleSkript

BubbleSkript BubbleClass | v

Bubble b1l;
Bubble b2;
Bubble b3;
Bubble b4;

void setup(){

size(400,300);
background(255);

void draw(){

Bubble bl = new Bubble(100, 100, 200, color(200));
bl.display();

// Bubble(diameter, x, y, color)
// Zeichne Kreis

Bubble b2 = new Bubble(50, 100, 250, color(255,0,0));

b2.display();

Bubble b3 = new Bubble(75, 200, 150, color(0,200,200));

b3.display();

Bubble b4 = new Bubble(115, 50, 100, color(100,50,150));

b4.display();

noLoop();

Abb. 7.3.1 Das Zeichnen von Kreisen kann mithilfe einer Klassenstruktur verein-
facht werden.
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BubbleSkript BubbleClass

Bubble b;

float x;

float y;

float d; [ ] BubbleSkript

int bubbleColor;

void setup(){
si1ze(400,300);
background(255) ;

void draw() {
for (int 4=0; i < 50; i++){
x = random(10,390); // random() generiert Zufallswerte
y = random(10,290);
d = random(10,75);
bubbleColor = (int)random(0,255); // float wird zu int

Bubble b = new Bubble(d, x, y, color(bubbleColor));
b.display();
}

noLoop();

}

BubbleSkript BubbleClass

il class Bubble {

2 float x;

3 float y;

4 float diameter;
5 color bubcol;

Bubble(float tempD, float tempX, float tempY, color tempcol){
8 X = tempX;

9 y = tempY;

10 diameter = tempD;
11 bubcol = tempcol;
12 }

13

14 void display(){
15 stroke(0);

16 fill(bubcol);
17 ellipse(x,y,diameter,diameter);
18 }

19 g

Abb. 7.3.2 Generierung von 50 zufélligen Kreisen und der Quellcode zur Definition
der Kreisklasse Bubbles.
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Klassen lassen sich auch ineinander schachteln. Wir konnen eine Oberklasse Ebene
Figur definieren, welche wiederum die Unterklassen Dreieck, Viereck und Fiinfeck
enthélt. Sie besitzen alle die Attribute Ecken und Kanten, allerdings ist die Anzahl
der Ecken unterschiedlich sowie die Verkniipfung dieser mit den Kanten, sodass dies
wiederum in einer Unterklasse spezifiziert wird.

Ahnlich verfahren wird mit den dreidimensionalen Kérpern, welche fiir die Projektion
verwendet werden. Die Oberklasse besteht aus dreidimensionalen Kérpern mit Ecken
und Kanten, welche wiederum in Unterklassen unterteilt sind. Der Wiirfel besteht
aus acht Eckpunkten, welche iiber zwolf Kanten verbunden sind. Ihre Lange sei nicht
festgelegt, wohl aber ihre Lage zueinander. So sollen die Kanten in jedem Eckpunkt
senkrecht aufeinander stehen. Diese Eigenschaft erfiillt auch ein Quader, sodass bei-
de Objekte zu einer Subklasse zusammenfasst wurden. Hingegen erfiillt ein schiefes
Prisma nicht jede Anforderung. Sie bilden daher eine neue Unterklasse. Hierbei wur-
de sich allerdings auf ein gerades Prisma mit der Grundflache eines gleichschenkligen
Dreiecks beschréankt. Die dritte und letzte Unterklasse umfasst Pyramiden mit recht-
eckiger Grundfliache, dessen Spitze sich iiber dem Mittelpunkt befindet. Abb. 7.3.3
zeigt eine grobe Ubersicht der Klassenstruktur, sowie eine Parallelprojektion vierer
Korper als Beispiel. Mithilfe der Methoden scale, rotate und shift werden die Kan-
tenldngen bzw. die Lage der Korper im Raum bzw. zur zy-Ebene angepasst und
diese zum Schluss mithilfe einer Matrix projiziert. Je nach Projektionsmatrix ist das
Ergebnis eine Parallel- oder Zentralprojektion.

Jede Unterklasse enthilt die Koordinaten der Eckpunkte von Wiirfel, Prisma und
Pyramide, wie sie im Abschnitt 4.6.2, S. 182, eingefiihrt wurden. Die Oberklasse
hat die Methode transform (), welche den Einheitskorper skaliert, rotiert und
verschiebt. Dies erfolgt iiber eine Matrix-Vektor-Multiplikation aller Eckpunkte des
Korpers. Die entsprechenden Matrizen sind in den Methoden scale (), rotate()
und shift () hinterlegt. Mithilfe von homogenen Koordinaten werden alle drei
Abbildungen linear, sodass ihre Verkettung das Produkt dreier Matrizen ist. Mit
transform() wird diese Produktmatrix bestimmt und diese mit den Eckpunkten
multipliziert. Die neue Liste an Koordinaten der Ecken wird dann in der Variablen
des Objektes, z.B. Cube c¢ gespeichert. Zum Schluss wird die in der Oberklasse
definierte Methode projection () aufgerufen, welche eine erneute Matrix-Vektor-
Multiplikation mit der vom Anwender definierten Projektionsmatrix ausfiihrt, sodass

am Ende das zweidimensionale Bild im Fenster entsteht.
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class Shapes

Cube Prism Pyramid

transform(points)

scale(a, b, c)
rotate(a)
shift(x,y, z)

projection(matrix, shape)

v
Pyramid
1.5 scale(1,1.5,1)
shift(3,-3,-0.5)

Prism
scale(3,1,2)
rotate(-30°)
shift(0.5,1,-3)

Cube
3 scale(l,3,1)
shift(3,0,-0.5)

Abb. 7.3.3 Die Klasse Shape wird unterteilt in die Subklassen Cube, Prism und

Pyramid. Das Bild ergibt sich nach Anwendung der Funktionen transform und pro-
jection.
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7.4 Processing im Unterricht

Nach dem kurzen Uberblick zur Entwicklerumgebung von Processing wird nun ei-
ne Aufgabenreihe vorgestellt, die im Mathematik- oder Informatikunterricht den
Schiilerinnen und Schiiler eine sinnvolle Auseinandersetzung mit dem Programm er-
moglichen soll. Wir gehen dabei von dem Quellcode aus, welcher in Abb. 7.2.1, S.
267, dargestellt ist. Die Schiilerinnen und Schiiler sollen einige Anderungen durch-

fiihren und beobachten, wie sich diese auf das Ergebnis auswirken.

Aufgabenbeispiel 7.4.1

Wir wollen zunéchst einige Farben des Bildes éndern. Beachte dabei nur die
Zeilen 21, 25 und 26.

a) Betrachten wir einmal die Farbe des Hintergrundes und der Kanten. Die
Zahl 0 bedeutet schwarz, die Zahl 255 dagegen weif. Andere den Quellcode

so ab, dass der Hintergrund weifs und die Kanten schwarz werden.

b) Statt 0 oder 255 sind auch alle ganzzahligen Werte dazwischen erlaubt.

Waihle nun andere Zahlen und beobachte, wie sich das Bild verdndert.

¢) Wir wollen nun mehr Farbe einbringen. Jede Farbe ldsst sich durch eine
Kombination von drei Zahlen, welche ebenfalls zwischen 0 und 255 liegen,
definieren. Ahnlich wie in einem Koordinatensystem werden sie in der
Form (r,g,b) angegeben. Dabei steht r fiir Rot, g fiir Griin und b fiir Blau.
Wir geben also mit den Zahlen den Anteil an Rot, Griin und Blau an.
(255,0,0) ergibt bspw. ein sattes Rot. Farbe den Hintergrund blau, die

Kanten des Quaders rot und die des Daches griin.

d) Experimentiere nun ein wenig mit den Farben.
Welche Farbe ergibt (100,0,0)? Oder die Kombination aus rot und griin
durch (255,255,0)7 Probiere weitere Kombinationen aus!

Fiir den Einstieg werden die Zeilen, in denen Anderungen vorzunehmen sind, ge-
nannt, um den Schiilerinnen und Schiiler eine bessere Orientierung zu bieten. In a)
miissen lediglich die Zahlen 0 und 255 vertauscht werden (Abb. 7.4.1), fiir ¢) und d)

werden die Parameter auf drei Zahlen erweitert.
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[ ] Projection

a)

// dynamischer Bereich
void draw(){

background(255);
translate(width/2,height/2);

// Initialisierung der oben deklarierten Objekte
Cube ¢ = new Cube(unit, color(e),2,1,4,45,0,0,0);
Prism p = new Prism(unit, color(0),2,1,4,45,0,-1,0);

( ] Projection

b)

background(125);
translate(width/2,height/2);

// Initialisierung der oben deklarierten Objekte

Cube ¢ = new Cube(unit, color(10),2,1,4,45,0,0,0);
Prism p = new Prism(unit, color(50),2,1,4,45,0,-1,0);

[ ] Projection

c)

background(0,0,255);
translate(width/2,height/2);

// Initialisierung der oben deklarierten Objekte
Cube ¢ = new Cube(unit, color(255,0,0),2,1,4,45,0,0,0);
Prism p = new Prism(unit, color(0,255,0),2,1,4,45,0,-1,0);

Abb. 7.4.1 Losung der Aufgabe 7.4.1.
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,

Blau

Grin

Rot,

Abb. 7.4.2 Der RGB-Farbraum wird mit
Achsen fiir Rot, Griin und Blau aufge-
spannt.

Farben werden in der Computergrafik
in einem Farbraum dargestellt, d.h. ei-
nem Punkt im Raum wird eine Far-
be zugeordnet. Im sog. RG B-Farbraum
steht die erste Koordinate fiir den An-
teil an Rot, die zweite fiir Griin und die
letzte fiir Blau (Abb. 7.4.2). Der Raum
wird auf einen Wiirfel der Kantenldn-
ge 255 beschrankt, sodass Werte von 0
bis 255 verwendet werden konnen. Die
Achsen sind diskretisiert, sodass die Ko-
ordinaten natiirliche Zahlen sein miis-
sen. Auf der Raumdiagonalen liegen al-
le Grautone, wobei (0,0,0) schwarz und
(255, 255, 255) weifs ist. Da fiir die Grau-

stufen alle drei Koordinaten denselben

Wert erhalten, kénnen in Processing diese mit einer Zahl aufgerufen werden, d.h.

color (10) ist dquivalent zu color (10,10,10).

Durch Verdnderung der Anteile an Rot, Griin und Blau kénnen alle Farben dargestellt

werden. Abb. 7.4.3 zeigt eine Auswahl, welche sich auf den Seitenfléchen des Wiirfels
befinden. Links zeigt den Boden, die hintere Fliche und die linke Seite, rechts die

drei anderen Wiirfelflachen.

Abb. 7.4.3 Die Farben auf den Seitenflachen des Wiirfels
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Aufgabenbeispiel 7.4.2

Wir wollen nun Bewegung ins Bild bekommen. Stelle dafiir die Hintergrundfarbe

zuriick auf weiff und die Kanten auf schwarz. Wir wollen jetzt den Drehwinkel

von Quader und Prisma in Zeile 25 und 26 dndern.

a)

b)

Im zweiten Aufgabenteil soll nun das Haus gedreht werden. Teil a) arbeitet noch
statisch mit dem Ziel, dass die Schiilerinnen und Schiiler sich mit den Parametern
der Objekte in Zeile 25 und 26 auseinandersetzen. Bei der Erzeugung des Quaders
und des Prismas ist die Reihenfolge der Parameter wichtig, damit die eingegebenen
Werte den Attributen der Unterklassen richtig zugeordnet werden. Die Parameter
sind: Einheit des Koordinatensystems, d.h. wie viele Pixel 1 LE sind, die Farbe der

Kanten, die Mafse des Kérpers, der Drehwinkel um die senkrechte Koordinatenachse,

Verandere den Winkel auf 0°, 20° und 55°. In welchem Uhrzeigersinn wird
das Haus gedreht?

Wir wollen jetzt, dass sich das Haus kontinuierlich dreht. Erstelle nach
Zeile 9 unterhalb von der Projektionsmatrix ProjZ eine neue Variable mit
dem Namen angle vom Typ integer und dem Wert 55. Ersetze dann bei
Quader und Prisma den Winkel durch die Variable. Fiihre das Programm
aus. Hat sich das Bild gedndert?

Das Haus dreht sich noch nicht, da das Bild nur einmal erzeugt wird und
sich auch der Wert von angle nicht &ndert. Entferne den Befehl noLoop ()
mitsamt des Kommentars. Schreibe stattdessen angle = angle +1.

Beende die Zeile mit einem Semikolon. Das Bild sollte sich jetzt drehen.

Wir wollen nun, dass sich das Haus langsamer dreht. Uberlege dir, warum
wir dies erreichen konnen, wenn wir in der letzten Zeile +1 durch +0.5
ersetzen. Andere dann die Zeile ab. Fiihre das Programm aus. Was ist nun

passiert?

Andere im oberen Abschnitt die Typenbezeichnung vor der Variablen an-

gle zu float. Warum funktioniert das Programm jetzt?

Im dynamischen Bereich findest du den Befehl background (255) . Ver-
schiebe ihn in den statischen Bereich, sodass er sich innerhalb der ge-
schweiften Klammern befindet. Fiihre das Programm aus. Was ist nun

passiert? Hast du eine Erklarung?

die Verschiebung bzgl. des Ursprungs:
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Cube ( 1LE, 55 px Die Veranderung des Drehwinkels an der
Farbe, schwarz richtigen Stelle ist daher als Einstieg fiir
Breite, 9 diesen Aufgabenteil konzipiert. Die Lo-
Hohe, 1 sung zeigt Abb. 7.4.4. Fiir 0° sind auch
Tiefe, 4 die Angaben der Mafe 2, 1, 4 einfa-
Drehwinkel, 0° cher zuzuordnen. Die Werte sind in der
Verschiebung in x, Reihenfolge x, y, z definiert. Da aber
y, das Koordinatensystem anders als in der
z) 0 Schule gedreht ist, erscheint die Reihen-

folge Breite, Hohe, Tiefe erstmal unge-
wohnlich gewahlt zu sein. Anhand der drei Bilder ist leicht ersichtlich, dass das Haus

mit dem Uhrzeigersinn um die senkrechte Mittelachse des Hauses rotiert.

b) und c) ist eine schrittweise Erzeugung der Animation. Nach jedem Durchgang der
Schleife soll sich der Drehwinkel um 1° erhéhen. Wir brauchen daher eine Variable,
welche im oberen Abschnitt zunédchst als Integer deklariert wird, da der Startwin-
kel und die Erhohung ganzzahlig sind. Zudem muss der Befehl noLoop () entfernt
werden. Die letzte Zeile mit angle = angle + 1 erscheint zunéichst ungewohn-
lich. Aufgrund des Gleichheitszeichens kénnten Schiilerinnen und Schiiler hier auch
eine Gleichung mit der Unbekannten angle vermuten, welche allerdings keine Lésung
hat. Dies ist aber eine mathematische Interpretation des Zeichens =. Im Sinne der
Programmiersprache bedeutet = eine Zuordnung, welche von links nach rechts gele-
sen werden muss. Der Variablen angle wird der Wert angle + 1 zugeordnet. Im
Programmablauf passiert daher Folgendes: der urspriingliche Wert von angle, z.B.
55, wird um 1 erhoht und die Summe wieder der Variablen angle zugeteilt. D.h.
das Programm {iiberschreibt den urspriinglichen Wert mit 56. Die Schleife beginnt

ab background (255) erneut, sodass nun das Haus um 56° gedreht gezeichnet wird.

Im néchsten Teil sollen die Schiilerinnen und Schiiler sich mit den Typen integer und
float sowie einer Fehlermeldung auseinander setzen. Damit sich das Haus langsamer
dreht, muss der Winkel nach jedem Durchgang um weniger als 1° erhoht werden, d.h.
der Summand muss durch eine Flieltkommazahl ersetzt werden, was dann direkt zu
einer Fehlermeldung fiihrt (Abb. 7.4.4, Teil d)). Da der Winkel bei der Deklaration
als Integer angegeben wurde, stimmt der Wert mit jenem nicht mehr iiberein. Die
Schiilerinnen und Schiiler miissen daher den Typ zu float &ndern, womit auch die

Fehlermeldung verschwindet.

Der letzte Punkt f) soll zeigen, warum es wichtig ist, dass background (255) im
dynamischen Bereich, d.h. innerhalb der Schleife liegen muss. Intuitiver wére es,

die Hintergrundfarbe im statischen Bereich zu definieren, direkt nach der Grofse des
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Fensters. Wird die Angabe verschoben, entsteht keine Fehlermeldung, aber es passiert
dennoch etwas Merkwiirdiges, wie in Abb. 7.4.4 zu erkennen ist. Bei der Drehung
hinterlasst das Haus eine schwarze Spur, sodass das Objekt nach einer Umdrehung
nicht mehr erkennbar ist. Die Animation besteht aus einer Vielzahl von Bildern,
welche vom Programm in einem bestimmten Zeittakt gezeichnet werden, sodass es
fiir das Auge wie eine bewegte Szene erscheint. Nun ist zu beachten, dass nach jedem
Durchgang der Schleife, das Bild des Hauses gelscht werden muss, bevor das neue
gezeichnet wird. Daher muss am Anfang der Schleife das Fenster wieder auf weifs

zuriickgesetzt werden.
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a ) [ ] Projection

00
20°

b) + c)

float[][] ProjZ = {{1,0,0},
{0,1,-0.53};

int angle = 55; //Drehwinkel

// statischer Bereich
void setup(){

size(400,300);
unit = 50;

};

// dynamischer Bereich
void draw(){

background(255) ;
translate(width/2,height/2);

// Initialisierung der oben deklarierten Objekte
Cube ¢ = new Cube(unit, color(0),2,1,4,angle,0,0,0);
Prism p = new Prism(unit, color(e),2,1,4,angle,0,-1,0);

// Projektion der Objekte mit anschliessender Darstellung im Bild
projection(Projz, c);
projection(Projz, p);

c.drawVertex(c);
p.drawVertex(p); (j)
angle = angle + 1;

s

[ ] Projection

O Projection

55°

float angle = 55; //Drehwinkel

// Projektion der Objekte mit anschliessender Darstellung im Bild
projection(Projz, c);
projection(Projz, p);

c.drawVertex(c);
p.drawVertex(p);

angle = angle + 0.5;
}

f) L
// statischer Bereich
void setup(){

s1ze(400,300);
unit = 50;

background(255) ;
};

// dynamischer Bereich
void draw(){

translate(width/2,height/2);

Projection

"

Abb. 7.4.4 Losung der Aufgabe 7.4.2.
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Aufgabenbeispiel 7.4.3

Wir wollen nun die Mafse des Hauses dndern und einen Turm hinzufiigen. Ent-

ferne daher die Variable angle, verschiebe background (255) wieder in den

dynamischen Bereich, entferne die Zeile angle = angle + 0.5 (es entsteht

eine Fehlermeldung, welche wir erst einmal ignorieren werden) und schreibe

stattdessen noLoop (). Schliefse die Zeile wieder mit einem Semikolon ab.

a) Andere die Parameter des Quaders und des Prismas so ab, dass das Haus
3 LE tief und um 120° gedreht ist. Die Fehlermeldung sollte verschwinden,

sodass du das Programm wieder ausfiihren kannst.

b) Wir wollen nun neben dem Haus den Turm zeichnen. Dazu miissen wir

zwei neue Objekte zuerst deklarieren und dann im dynamischen Bereich

initialisieren und zeichnen.

(1)

Deklariere oberhalb des statischen Bereiches zwei neue Variablen mit
Cube turm und Pyramid spitze. Orientiere dich dabei an der
Deklaration der Objekte des Hauses.

Gehe nun in den dynamischen Bereich und kopiere den Abschnitt ab
Cube c bis p.drawVertex (p) und fiige ihn unterhalb
p.drawVertex (p) und oberhalb noLoop () ein.

Passe nun die Namen der Variablen an die beiden neuen Objekte aus
(1) an. Die Parameter kannst du erstmal iibernehmen. Beachte, dass

sich der Typ von Prim auf Pyramid gedndert hat.

Fiihre das Programm aus. Das Haus und der Turm sollten nun inein-
ander gezeichnet sein. Du kannst dem Turm auch ein andere Farbe

geben.

¢) Wir wollen nun den Turm neben das Haus verschieben.

(1)

Der Turm soll nun aus einem Quader mit einer quadratischen Grund-
fliche von 1.5 LE sowie einer Hohe von 2 LE und einer Spitzenho-
he von 1 LE bestehen. Andere die Parameter fiir Cube turm und
Pyramid spitze entsprechend ab. Denke daran, dass die Pyrami-

de passend nach oben geschoben werden muss.

Verschiebe nun den gesamten Turm rechts neben das Haus. Zwischen

beiden Objekten soll keine Liicke sein.
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Cube c;
Prism p;

b) (1)
Cube turm;

Pyramid spitze;

float[][] Projz = {{1,0,0},
{0,1,-0.5}};

// statischer Bereich
void setup(){

s1ze(400,300);
unit = 50,

15

// dynamischer Bereich
void draw(){

background(255) ;
translate(width/2,height/2); a)

// Initialisierung der oben deklarierten Objekte
Cube ¢ = new Cube(unit, color(0),2,1,3,120,0,0,0);
Prism p = new Prism(unit, color(e0),2,1,3,120,0,-1,0);

// Projektion der Objekte mit anschliessender Darstellung im Bild
projection(Projz, c);
projection(Projz, p);

c.drawVertex(c);
p.drawVertex(p); b)

//Turm
Cube turm = new Cube(unit, color(e,0,255),2,1,3,120,0,0,0);
Pyramid spitze = new Pyramid(unit, color(e,0,255),2,1,3,120,0,-1,0);

projection(Projz, turm);
projection(Projz, spitze);

turm.drawVertex (turm);
spitze.drawVertex(spitze);

noLoop() ;

ki c) (1)

//Turm v
Cube turm = new Cube(unit, color(e,e,255),1.5,2,1.5,120,0,0,0); .
Pyramid spitze = new Pyramid(unit, color(e,0,255),1.5,1,1.5,120,0,-2,0);

c)(2)

//Turm
Cube turm = new Cube(unit, color(e,0,255),1.5,2,1.5,120,0,0,2.25);

Pyramid spitze = new Pyramid(unit, color(e,e,255),1.5,1,1.5,120,0,-2,2.25);

Abb. 7.4.5 Losung der Aufgabe 7.4.3.

[ ] Projection
a) \i\
O Projection

b)

o

c) (1)

Projection

&P

c)(2)

Projection

“
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In der letzten Aufgabe sollen die Schiilerinnen und Schiiler sich mit den restlichen Pa-
rametern der Objekte auseinandersetzen und zudem zwei weitere hinzufiigen. Es wird
ein statisches Bild erzeugt, sodass einige Einstellungen aus den vorherigen Aufgaben
iibernommen werden. Die Schiilerinnen und Schiiler miissen sich daran gewohnen,
dass das Koordinatensystem in der Computergrafik anders ausgerichtet ist, als sie es
vom Schulunterricht kennen.

Die Tiefe entspricht der Richtung der
z-Achse, d.h. die 4 im urspriing-
lichen Quellcode muss durch eine
3 ersetzt werden. Dann wird das
Haus um 120° gedreht. Hierbei ist
zu beachten, dass auch das Koordi-
natensystem mit rotiert (Abb. 7.4.6
), was bei der spéteren Verschie-
bung des Turmes vom Vorteil sein

wird.

In b) wird nun der Turm hinzugefiigt.
Abb. 7.4.6 Das zugrunde liegende Koor-

dinatensystem, welches noch um 120°
gedreht wurde.

Da dieser aus einem Quader und ei-
ner Pyramide besteht, miissen zwei neue
Objekte im oberen Abschnitt des Quell-
codes deklariert werden (Abb. 7.4.3). Mit der Pyramide wird ein neuer Objekttyp
Pyramid eingefiihrt. Die Attribute dieser Unterklasse sind dieselben wie beim Pris-
ma, sodass die Schiilerinnen und Schiiler nichts Neues erlernen miissen. Nach der
Deklaration werden im dynamischen Bereich beide Objekte mit den Mafen und dem
Ort initialisiert, sowie die Methoden zur Projektion und zum Zeichnen aufgerufen.
Da auch die Pyramide ein Objekt derselben Klassen wie Quader und Prisma ist,
kénnen die Schiilerinnen und Schiiler den bestehenden Abschnitt kopieren und miis-
sen nur die Variablennamen anpassen. Dabei kénnen sie sich an den bestehenden
Quellcode orientieren. Dann werden die neuen Make des Turmes iibernommen. Die
Schiilerinnen und Schiiler miissen dabei beachten, dass die Pyramide um -2 Einheiten

auf der y-Achse verschoben werden muss, damit sie auf dem Quader liegt.

Im letzten Teil von ¢) wird die Pyramide verschoben, sodass sie am Haus anschlieft.
Hier ist nun der Vorteil, dass auch das Koordinatensystem mit dem Uhrzeigersinn
um 120° um die y-Achse gedreht wird, sodass die Schiilerinnen und Schiiler den Turm
entlang der z-Achse verschieben konnen (Abb. 7.4.6). Die Lange, um die verschoben
wird, miissen die Schiilerinnen und Schiiler sich selbst anhand der Korper iiberlegen.
In Abb. 7.4.3, ¢) (1) ist erkennbar, dass die Mittelpunkte der Bodenfldche von Haus
und Turm tibereinstimmen. Die Tiefe des Hauses betragt 3 LE, beim Turm 2.5 LE,
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d.h. es muss um die Hélfte ihrer Summe verschoben werden.

Nach diesem Aufgaben sollten die wichtigsten Bestandteile des Quellcodes verstan-
den sein, sodass im kommenden Abschnitt die Projektion behandelt wird. In Kap.
5.1, S. 206, wurde gezeigt, wie mithilfe einer Matrix die Parallelprojektion eines drei-
dimensionalen Koérpers auf die Ebene 29 = 0 berechnet werden kann. Im folgenden
Abschnitt wird dies auf die Projektion der zy-Ebene iibertragen und gezeigt, wie
Schiilerinnen und Schiiler den Richtungsvektor bzw. die Projektionsmatrix in Pro-

cessing dndern konnen.

7.5 Parallelprojektion mit Processing

Wie im Abschnitt 7.2, S. 267, zuvor erwahnt, ist

1 0 0
ProjZ =
01 —-0.5

die Projektionsmatrix, welche in den vorherigen Aufgaben verwendet wurde, um eine
Parallelprojektion auf die zy-Ebene zu erzeugen. Proj steht fiir Projektion und Z
fiir die Richtung entlang der z-Achse, d.h. der Betrachter schaut auf die zy-Ebene.
Nachdem der Fokus auf die Erzeugung von den Objekten Quader, Prisma und Py-
ramide lag, wollen wir uns nun der Parallelprojektion zuwenden. Die Schiilerinnen
und Schiiler beginnen wieder mit einem fertigen Programm (Abb. 7.5.2) und &dndern

diesen an bestimmten Stellen der Aufgabe entsprechend ab.

Aufgabenbeispiel 7.5.1

Nachdem wir gelernt haben, ein Haus zu erzeugen, wollen wir uns jetzt mit der

Parallelprojektion auf die zy-Ebene, unserem Bildschirm, beschéftigen.

a) i) Sei p; = (z1,29,23)" die Richtung der Parallelprojektion und ¢ =
(g1, q2, q3)T ein beliebiger Punkt im Raum. Bestimme das Bild bei

der Projektion auf die zy-Ebene und zeige, dass

1 0 —Z1
1
— 10 1 —2
Z3

0 0 O

die Projektionsmatrix ist.
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ii) Schaue dir nun in Zeile 14 ProjZ an und berechne die Richtung der
Parallelprojektion. Fiihre dann das Programm aus. Ist das Bild so,
wie du es erwartet hast? Du kannst dich an dem Koordinatenachsen

orientieren, welche in Zeile 28 erzeugt werden.

b) Wir wollen nun wieder eine Animation erstellen, in dem wir die Richtung
der Parallelprojektion entlang der Achsen dndern. Fiihre in Zeile 2 eine
neue Variable t mit dem Wert O ein. Die Richtung soll (¢,0.5,1) sein.
Verdndere ProjZ entsprechend und ersetze zudem Zeile 30 durch
t =t + 0.005;
if(t > 1.5){
noLoop () ;

}

c¢) Bestimme die Projektionsmatrix Projz fiir die Richtung (0,0.5,t). Wie
andert sich nun die Richtung der Projektionsstrahlen? Setze den Anfangs-
wert von ¢t auf 1.0 und in Zeile 30 den Endwert 1.5 auf 2. Fiihre das

Programm aus. Andert sich das Bild so wie du es erwartet hast?

Wir haben in Kap. 5.1 gezeigt, dass die Parallelprojektion eine lineare Abbildung ist
und durch eine Matrix beschrieben werden kann. Zur Herleitung stellen wir zuerst

die Gleichung der Projektionsgeraden durch ¢ auf:

—

p:X=q+p-z

Nun bestimmen wir den Schnittpunkt mit der xy-Ebene und daraus die Matrix:

Gp-=0= p=-2
z3
q1 " 21 (h*%'%
e R a2 — 2 g3
q3 23 0

10 —2» q1

1
:>‘:0p((7):;3 01 —2|]ae
00 0 a3

Angewendet auf Zeile 14 in Abb. 7.5.2 ergibt sich als Projektionsrichtung
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Wird das Programm ausgefiihrt, so ergibt sich das linke Bild in Abb. 7.5.2. Anders
als in den vorherigen Aufgaben konnen sich die Schiilerinnen und Schiiler an den
Koordinatenachsen orientieren, welche durch die Funktion wor1dKOS () in Zeile 28

mit den Objekten projiziert werden.

Da die erste Komponente null ist, gehen die
Projektionsstrahlen nicht zur Seite. Die zwei-
te und dritte Komponente gibt die verti-
kale Richtung an. Da die Achse nach un-
ten zeigt und der Wert positiv ist, ver-
laufen die Strahlen von oben nach un-
ten. Wir sehen daher im Bild das Dach

des Hauses. Wir werden spéter im Teil c)

noch zeigen, dass sich das Haus verklei-
2N nern wird, wenn der letzte Eintrag erhoht

AN wird. In der nebenstehenden Abbildung sind
die Projektionsstrahlen skizziert. Es handelt
sich hierbei um eine schiefe Parallelprojekti-

on.

In Teilaufgabe b) und c¢) wird mithilfe der Ani-

mationsschleife der Projektionsvektor systema-

Abb. 7.5.1 Projektionsstrahlen  tisch verédndert. Wie sich die Verdnderungen auf
aus a) der Aufgabe 7.5.1. das Haus auswirken, ist in Abb. 7.5.2 und 7.5.3
dargestellt. Das Haus befindet sich im Ursprung,

d.h. in der Mitte des Bildschirms. Es ist nicht gedreht, sodass die Ansicht auf die
Vorderseite bezogen ist. Wird nun im Teil b) der Strahl seitlich entlang der z-Achse
gekippt, so wird die Seite des Hauses sichtbar. Je grofer die erste Komponente in 2
wird, um so verzerrter wirkt die Projektion. Dies ist vergleichbar mit der Verldnge-
rung des Schattens, wenn sich die Sonne gen Horizont bewegt. Wird dagegen nur die
letzte Komponente in 2" verdndert, so bewirkt dies eine Verkleinerung des Hauses.
Dies ist anhand der Projektionsmatrix erkennbar, wenn wir uns die Teilmatrix mit

den Eintrdgen anschauen, welche nur z3 enthalten:

1
1
0 =

Dies entspricht einer Skalierung in der zy-Ebene, wobei beide Achsen um denselben
Faktor verkleinert werden, wenn z3 vergrofert wird. Die Projektionsstrahlen treffen
dabei flacher auf die Bildebene.
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Projection Matrics Shape

1
2 >

float unit = 50;

float t = 0y

// statischer Bereich

void setup(){
size(400,300);

15

I E) BN

o ~

// dynamischer Bereich
void draw() {

e
) = @ O

background(255);
translate(width/2,height/2);

=
N

N b
float[10] Projz = {{1,0,03, _ ° [ 1) projz = {{1,0,-t3,
{0,1,-0.5}};

{0,1,-0.5}};

// Haus
Cube ¢ = new Cube(unit, color(e), 2,1,3, 0, 0,0,0);
Prism p = new Prism(unit, color(e), 2,1,3, 0, 0,-1,0);

projection(Projz, c);
projection(Projz, p);

c.drawVertex(c);
p.drawVertex(p);

// Dreibein des Koordinatensystems
worldKOS (unit, Projz, 2);

b) t = t+0.005;
noLoop(); =

} iF(t > 1.5)f
noLoop();
}

[ ] Projection

a) @® Projection

b)

® Projection

t=0.7

Abb. 7.5.2 Losung des Aufgabenbeispiels 7.5.1, a) und b). Je nach Richtung der
Projektionsstrahlen wirkt das Bild verzerrt.
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@ Projection
o Projection
[ ] Projection
|
—
1
A
1
—
t=1
t=1.5
t=2

Abb. 7.5.3 Losung des Aufgabenbeispiels 7.5.1, ¢)

Die letzte Aufgabe hat gezeigt, dass beim Festhalten der xy-Ebene als Bildebene die
schiefe Parallelprojektion auch extrem verzerrte Bilder erzeugt. Die orthogonale Par-
allelprojektion liefert besseres Ergebnisse (Abb. 7.5.4), allerdings muss dafiir auch

die Bildebene verandert werden, sodass die Projektionsmatrix komplizierter wird.

Wir stellen daher im folgenden Kapitel eine Transformation des Koordinatensystems
vor, welche trotz verdnderter Blickrichtung eine orthogonale Projektion ermdoglicht,
die Projektionsmatrix in ihrer Form wie aus den vorherigen Aufgaben aber erhalten
bleibt.

@® Projection @® PProjection_homogen

Abb. 7.5.4 Vergleich der schiefen Parallelprojektion (links) mit der orthogonalen

(rechts) fiir die Blickrichtung z = (3,3,1)T.
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7.6 Das Kamerakoordinatensystem

Das bisherige Koordinatensystem mit
den Achsen x,y und z bezeichnen wir
ab jetzt als das Weltkoordinatensystem,
in welches die Objekte gesetzt werden.
< Nun setzen wir den Beobachter in die

T Szene, welcher mit einem Auge oder mit

einer Kamera die Projektion ausfiihrt.

Wir stellen uns nun vor, dass die Ka-

mera ein eigenes Koordinatensystem mit

Y den Achsen wu,v und w hat. Ihr Ur-

sprung ist das Projektionszentrum und

Abb. 7.6.1 ihre Blickrichtung die w-Achse. Die Ka-

Die Achsen u,v und w bilden das Ka- mera befindet sich nicht nur an einem

merakoordinatensystem fiir die ortho- beliebigen Punkt in der Szene, sie kann
gonale Parallelprojektion. auch gekippt werden (Abb. 7.6.2).

Wir suchen nun eine bijektive Abbil-
dung zwischen dem Welt- und Kamerakoordinatensystem, wobei der Ursprung um
den Vektor ¢ verschoben wird (Abb. 7.6.1). Die Projektion erfolgt dann auf die uv-
Ebene des Kamerakoordinatensystems. Anhand eines Beispiels wird nun erklart, wie
bei einer gegebenen Blickrichtung @ die Drehung der Kamera ausgehend vom Welt-
koordinatensystem bestimmt werden kann. Der Translationsvektor ¢ ldsst sich aus
den Ursprungspunkten der Koordinatensysteme bestimmen. Mithilfe von homogenen
Koordinaten kann dann durch Multiplikation der entsprechenden Dreh- und Transla-
tionsmatrizen die gesuchte Transformationsmatrix berechnet werden. Wir betrachten
dazu das Beispiel 1 in Abb. 7.6.3, wo beide Systeme in ihren Urspriingen iiberein-
stimmen und somit die Translation entféllt. Wir suchen nun Drehmatrizen, welche
durch Verkettung den Vektor w des Kamerakoordinatensystems auf die z-Achse des

Weltkoordinatensystems abbilden.

Abb. 7.6.2 Drehung und Verschiebung der Kamera
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Abb. 7.6.3 @ soll durch Drehung um die y- und x-Achse auf die blaue z-Achse
abgebildet werden.

Beispiel 1:

0.5 0.408
w=[05]=10.408
1 0.816

Der gegebene Richtungsvektor wurde zuerst normiert. Abb. 7.6.3 zeigt die normierten
Richtungsvektoren wu, v, w des Kamerakoordinatensystems. Ausgehend von  lassen
sich iiber das Kreuzprodukt auch die anderen beiden Vektoren @ und ¢ bestimmen.
In Beispiel 1 wollen wir zuerst zeigen, wie durch Drehung um die y- und x-Achse der
Vektor w auf 2z’ abgebildet wird.

Wir rotieren den Vektor  zuerst um die
y-Achse. Die nebenstehende Abbildung
zeigt die Sicht entgegengesetzt zu dieser
Achse. Der Winkel ldsst sich {iber den
Tangens bestimmen, da bei der senk-

rechten Projektion von w auf die xz-

26.56° Ebene, diese Koordinaten erhalten blei-
- . 1 ———t ben:
x 0.408
tan ™! <*> =tan~' [ ~— ) = 26,56°
e a1 0.816

Die positive Drehrichtung ist in dieser Ansicht entgegengesetzt des Uhrzeigersinns.
Dies kénnen Schiilerinnen und Schiiler anhand der ,,Rechten-Hand-Regel“ leicht nach-

vollziehen. Der Daumen der rechten Hand zeigt in Richtung der y-Achse - in diesem
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Fall aus der Ebene heraus. Die restlichen Finger kriimmen sich dann in Richtung des
positiven Drehsinnes, wie er auch den Rotationsmatrizen zugrunde gelegt wurde. o

muss also um —26,56° gedreht werden, damit er in der yz-Ebene zum Liegen kommt.

Wir drehen nun die Ansicht entgegenge-
setzt zur x-Achse, sodass wir auf die yz-
Ebene schauen. Da der Vektor normiert
wurde, hat die Hypothenuse die Lange
1. Aufgrund der ersten Drehung bleibt
die y-Koordinate von o erhalten, da die
y-Achse auf sich selbst abgebildet wird.

Wir konnen somit den Winkel iiber den

- 24.09° Sinus bestimmen:

-1 (YN L 1 _ o
sin <1>—tan (0.408) = 24,09

Der positive Drehsinn um die z-Achse ist hier ebenfalls entgegen des Uhrzeigersinns,
sodass hier um 24,09° rotiert werden muss. Wir fassen nun beide Ergebnisse in einer

Abbildungsmatrix zusammen:

€ = (My24.09 - My —26.56) - W

=TM
10 0 cos(—26.56) 0 sin(—26.56)
TM =10 cos24.09 —sin24.09 | - 0 1 0
0 sin24.09 cos24.09 —sin(—26.56) 0 cos(—26.56)

0.89 0 —0.45
=|-0.18 091 -0.37
0.41 041 0.82

Zur Kontrolle konnen Schiilerinnen und Schiiler iiberpriifen, ob mit TM der Vektor
w auf den Einheitsvektor der z-Achse abgebildet wird:

0.408 0
TM- 10408 =10
0.816 1

Die Transformationsmatrix 7'M tberfihrt die Koordinaten von dem Welt- ins Ka-

merakoordinatensystem. Denn im Weltkoordinatensystem zur Basis {€;, €;, €.} hat
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w folgende Eintrage:

1 0 0
0.408- | 0| +0.408- |1 +0.816- |0
0 0

Im Kamerakoordinatensystem zur Basis {#, ¢, @} gilt:
0-u+0-0+1-uw

Wir suchen daher genau diese Matrix T'M, um die Weltkoordinaten der Objekte so
zu transformieren, dass es zu einer orthogonalen Projektion entlang des Vektors
auf die neue Bildebene kommt. Wir wollen iiberpriifen, ob die beiden anderen Basis-
vektoren @ und ¢ ebenfalls durch T'M auf €; und €, abgebildet werden, wobei jene

ermittelt werden miissen.

Beispiel 2:
Gegeben ist der normierte Vektor w = (0.408,0.408,0.816)T. Wir wollen nun die
beiden fehlenden Richtungsvektoren # und ¢ bestimmen, sodass sich wieder eine

orthonormale Basis fiir den dreidimensionalen Raum ergibt.

Wir suchen eine Ebene, welche @ enthélt und senkrecht zu @ steht. Damit wir un-
terscheiden kénnen, ob die Kamera im Quer- oder Hochformat steht, bendtigen wir
eine ungefihre Richtung, wo im Raum unten ist?. Soll die Kamera im Querformat
bleiben, so kann hierfiir €; verwendet werden.
Der Normalenvektor der Ebene, die von
€, und @ aufgespannt wird, wird iiber
/ ihr Vektorprodukt bestimmen.Dabei ist
i die Reihenfolge der Vektoren im Pro-
h dukt wichtig, damit wir weiterhin ein
l" rechtshandiges Koordinatensystem er-
# halten. Hierzu zeigt der Daumen der
I.' rechten Hand in Richtung des ersten
. Vektors im Produkt, der Zeigefinger in
b die des zweiten. Der Mittelfinger weist
dann in die Richtung des Vektorproduk-
tes. Anschliefsend wird das Ergebnis wie-

der normiert.

2Oftmals ist das Weltkoordinatensystem in der Literatur ([36, 11, 50]) mit der y-Achse nach
oben und die Blickrichtung zur negativen z-Achse ausgerichtet. Dann gibt €; die Raumrichtung
nach oben an. Da Processing eine andere Ausrichtung des Koordinatensystems nutzt, wurde dies
als Raumrichtung nach unten angepasst.
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0 0.408 0.816 0.895
U=eyxw=[1]x|0.408] = 0 = 0
0 0.816 —0.408 —0.447

Der dritte Vektor ¥ wird analog iiber das
Vektorprodukt von @ und «w bestimmt.
) Auch hier wird mit der Rechten-Hand-
Regel die Reihenfolge im Produkt be-
stimmt. Die anschliefsende Normierung
entfallt, da beide Vektoren im Produkt

die Lange 1 haben und orthogonal zu-

einander stehen:

Wir iiberpriifen abschliefend, ob die neuen Basisvektoren mithilfe der Transforma-

tionsmatrix T'M auf €; und €, abgebildet werden:

0.89 0 —045 0.895 1
TM-u=|-0.18 091 -0.37] - 0 =10
0.41 041 0.82 —0.447 0

—0.812 0

TM-] 0913 | =11

—0.365 0

Schauen wir genau hin, so ist das Ergebnis nicht iiberraschend. Die Zeilenvektoren
von T'M stimmen mit den neuen Basisvektoren iiberein, d.h. bei der Matrix-Vektor-
Multiplikation entsteht der Eintrag 1 aufgrund der normierten Vektoren und 0 wegen
ihrer Orthogonalitit. Alle drei Rechnungen zusammengefasst zeigen folgende Eigen-
schaft:

0 |
ol= o v w|=TM"=TM"!
1 |

o 10
T™ - |u v W|=]0 1
o 00
Wird die Transformationsmatrix T'M transponiert, so erhalten wir auch ihre Inver-

se, da es sich um eine orthonormale Matrix handelt. Diese Eigenschaft ermoglicht
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folgenden Vorteil: anstatt die Drehwinkel der Kamera zu bestimmen, kénnen auch
die Basisvektoren des Kamerakoordinatensystems berechnet werden, welche als Zei-

lenvektoren die gesuchte Transformationsmatrix ergeben.

Die Kamera soll sich aber nicht nur drehen sondern auch verschiebbar sein. Bei einer
Parallelprojektion hat dies zwar nur Auswirkungen auf den gezeigten Bildausschnitt,
da die Projektion allein von der Richtung bestimmt wird. Wir werden spéter aber
sehen, dass die Koordinatentransformation auch fiir die Zentralprojektion genutzt
wird. Um die Translation als lineare Abbildung nutzen zu kénnen, miissen wir nun
homogene Koordinaten verwenden. Das folgende Beispiel wird zuerst in der Ebene

durchgefiihrt und dann auf den dreidimensionalen Raum iibertragen.

Beispiel 3:

Abb. 7.6.4 zeigt ein Welt- und Kamerakoordinatensystems (grau und blau) in der
Ebene. Das Weltkoordinatensystem mit der Basis {€;,€;} wurde um den Vektor
t'=(2,3)T verschoben und um —20° gedreht. Wir betrachten den Punkt P, welcher
im Weltkoordinatensystem den Ortsvektor p hat. Wir wollen nun einige Zusammen-
héange herleiten, welche es ermoglichen, die Koordinaten von P im Kamerakoordina-

tensystem anzugeben.

D,
Yarav
/g

\a| AL/

NE

Abb. 7.6.4 Die Kamera wurde um —20° um den Ursprung gedreht und dann nach
(2,3) verschoben.

Wir berechnen zuerst die Vektoren i, ¥ in Weltkoordinaten. Entweder ist der Dreh-

winkel oder die Blickrichtung ¢ bekannt. Im ersten Fall kennen wir die Drehmatrix:
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(@)

w0

Q

. 0s(—20) —sin(—20) 1 0.94
u = . prd
in(—20)  cos(—20) 0 —0.34
. 0s(—20) —sin(—20) 0 0.34
v = . =
sin(—20)  cos(—20) 1 0.94
Im zweiten Fall kénnen wir iiber das Skalarprodukt und dem bekannten Vektor

auch ¢ berechnen, da sie senkrecht zueinander stehen miissen. Der Punkt P hat nun

folgende Koordinaten bzgl. der verschiedenen Basen:

1 0
Basis {e;,€,} : 5 - +3.
(@) <O> <1>
94 34 94 0.34
Basis{ﬁ,{;’}: 5 =a- 09 +b 03 _ 09 03 . a
3 —0.34 0.94 ~0.34 0.94 b

Die Matrix ist orthogonal, d.h. ihre Inverse ist die Transponierte:
0.34
0.94

94 —0.34 04
a) _ (094 0343 5 ~ 368 [ ") Las2
b 034 0.94 3 —0.34

In Abb. 7.6.4 ist leicht zu sehen, dass P nicht die Koordinaten (3.68 /4.52) im
Kamerakoordinatensystem hat. Abb. 7.6.5 zeigt dagegen, dass ohne die Translation

die neuen Koordinaten richtig wéren.

/
g

va
Ay

w

1?27(

W\

Abb. 7.6.5 Die Kamera wurde um —20° gedreht, aber nicht verschoben.
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Uber das Gitter in Abb. 7.6.4 lisst sich ¢ ~ (2.8,1)T abschiitzen. Der Grund liegt
darin, dass wir nur die Drehung der Basisvektoren betrachtet haben, aber nicht die
Translation des Ursprungs. Ziehen wir nachtréglich den Translationsvektor £ = (2,3)T
ab, so erhalten wir (1.68 / 1.52). Dies entspricht auch nicht ¢. Transformieren wir da-

gegen auch ¢ wie oben ins andere System, erhalten wir:
2 0.94 0.34
=0.86 - + 3.50 -
3 —0.34 0.94
3.68 0.86) [2.82
4.52 3.50 1.02
Dies kommt der Abschitzung fiir ¢’ recht nahe. Ziel ist es nun, die Berechnung mit-

hilfe von Matrizen zu ermoglichen. Betrachten wir nun das Dreieck, welches die

Ortsvektoren und der Translationsvektor bildet:

P=q+t

¢ habe nun die Eintrige a,b im Kamerakoordinatensystem. Dann gilt:

P=a-d+b-0+1-1

I
—~
]
<y
T+
~
S

094 034 2 a
=1-0.34 094 3 -|b
0 0 1 1

Wir haben in der ersten Zeile eine Summe, deren Summanden aus Vektoren multipli-
ziert mit einem Skalar bestehen. Dies lasst sich zu einer Matrix-Vektor-Multiplikation
umformen. Hier erfolgt der Ubergang in die homogenen Koordinaten, weshalb die
Matrix um die letzte Zeile erweitert wurde. Um a, b zu erhalten, bendtigen wir die
inverse Matrix. Das diese algorithmisch umsténdlich zu berechnen sind, verwenden
wir wieder einen Trick. Wir wissen aus der Anschauung heraus, dass diese Matrix eine
Verkettung von Drehung und Translation ist. Da wir bereits die homogene Transla-
tionsmatrix kennen, konnen wir die gesuchte Matrix als Produkt von zwei Matrizen

ermitteln. Dabei ist die Reihenfolge wichtig:
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10 2 094 034 0] [a

P=10 1 3|-|-034 094 0|-|b

0 0 1 0 0o 1| |1
a 094 034 0] 10 2] [m
= |b| =1{-034 094 0| -|0 1 3| -|po
1 0 0 1 00 1 1

Da Drehmatrizen orthogonal sind, ist ihre Transponierte die gesuchte Inverse. Gegen-

spieler der Translation ist —i. Wir erhalten somit folgende Transformationsmatrix:

a (094 —0.34 0 1 0 —2] [pi]
bl =1034 094 0| -|0 1 =3|-|ps
1 |0 0o 1| |0 0 1 1|
[0.94 —0.34 —0.86] [5 2.82]

= 1034 094 —350|-(3|=[1.02
|0 0 1 1 1|

Wir erhalten dasselbe Ergebnis. Die beiden Teilschritte im ersten Rechenweg lassen

sich wie folgt zusammenfassen:
a\ 0.94 —-0.34 5 B 094 —-0.34 2
b) 034 094 3 0.34 0.94 3
B 0.94 -0.34 5—2 B 2.82
034 094 3-3)  \1.02

Interpretieren wir die obige Rechnung anschaulich, bedeutet dies, wir verschieben das
Kamerakoordinatensystem zuriick zum Ursprung des Weltkoordinatensystems und
drehen dann um 20°. Wir wollen hier noch einmal verdeutlichen, warum es sinnvoll
ist, homogene Koordinaten zu verwenden. Sei Py eine Ecke eines Einheitswiirfels im
Weltkoordinatensystems. Um einen Quader mit beliebigen Mafen zu erstellen, muss
Py mit Mg, skaliert werden. Zuséatzlich wird der Koérper mit M,o gedreht und an
einem beliebigen Ort o in der Welt platziert:

p_i =0+ Mrot ’ Msca 'p_é
—_—
=My

Die Kamera sei um den Winkel @ gedreht und um # verschoben. Wir erhalten dann

folgendes Ergebnis in Kamerakoordinaten:
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S T - T 7
p2 = Mrot,a "P1— Mrot,a -t
=M, - G+MY, - My-py— MY

rot,a ot,a rot,a

T - T -
= Mrot,a ’ (0 - t—> + Mrot,a - Mo - po

—

-t

Wir benétigen hier zwei verschiedene Matrizen und den zusitzlichen Vektor & — t.

Mit homogenen Koordinaten lésst sich eine Matrix bestimmen, sodass gilt:
p2=M-pj
Wir iibertragen die Erkenntnisse aus den Beispielen nun in den Raum und fassen

alles in folgendem Satz zusammen:

Satz 7.6.1

Sei {€;, €, ¢} die Basis des Weltkoordinatensystems und ¢ der Ortsvektor der
Kamera mit normierter Blickrichtung . Fiir eine Projektion im Querformat
(y-Richtung ist fiir die Kamera ,unten*) lésst sich die Transformationsmatrix
von Welt- ins Kamerakoordinatensystem zur Basis {u, 7, W} wie folgt bestim-

men:

(1) Basisvektoren:

. €y X W

U= 75"35
leg - |2

T=4wWxUu

(2) Von Welt- ins Kamerakoordinatensystem:

up us ug 0 1 0 0 —t
TM — U1 (%] V3 0 01 0 —t2
w1 W2 W3 0 0 01 —t3
0 0 0 1 0 0 0 1
a Y41
b
—TM - b2
c b3
1 1

(p1, P2, pg)T ist dabei der Ortsvektor eines Punktes P in Weltkoordinaten,

ﬁ:
(a,b,¢)T in Kamerakoordinaten.
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7.7 Orthogonale Parallelprojektion in Processing

Nachdem wir die Transformation vom Welt- ins Kamerakoordinatensystem vorge-
stellt haben, wollen wir uns nun die Implementierung in Processing anschauen. Im
Quellcode wurden die Koordinaten der Einheitskorper durch homogene ersetzt, d.h.
an vierter Stelle eine 1 eingefiigt.

Abb. 7.7.1 zeigt den Editor. Da wir nun eine Kamera verwenden, existiert der neue
Reiter ,Camera”“ mit allen Operationen, um von Welt- in Kamerakoordinaten zu
transformieren. Die Abbildung zeigt als Beispiel wieder ein Haus. Mit der Variablen
o sind die Koordinaten des Augpunktes bzw. der Kamera gegeben. Der Ursprung
des Kamerakoordinatensystems muss daher an diese Stelle verschoben werden. Die
Person schaut zu dem Punkt, dessen Koordinaten in lookAt gespeichert sind. Die
Blickrichtung ergibt sich somit aus der Differenz von Kameraposition und jenem
Punkt. Die Differenz wird mit der Anweisung lookAtVector in Zeile 15 berechnet.
Der Vektor y in Zeile 1 gibt an, in welcher Richtung ,unten“ fiir die Kamera ist.
Die Transformationsmatrix 7'M léasst sich nach Satz 7.6.1 iber die Vektoren u, v,
w und o berechnen. Die benétigten Vektoren werden in Zeile 17 bis 20 ermittelt. w
ist der normierte Vektor der Blickrichtung und u das normierte Vektorprodukt aus
jenem mit y. v ist das Vektorprodukt aus w und u. Da diese Vektoren schon normiert

sind, ist das Vektorprodukt v ebenfalls normiert.

PProjection_homogen Camera Matrics Shape Transformation v

float[] y = {0,1,0};
pA float[] lookAt = {0,0,0}; (] PProjection_homogen

Y float unit = 50;

[ void setup(){
7 size(400,300);
8 Y

¢l void draw(){
background(255) ;
translate(width/2,height/2);

float[] o = {-1.5,-0.5,-1};
float[] blickrichtung = lookAtVector(o, lookAt);

float[] w = normVec(blickrichtung);
float[] u = vectorProduct(y, w);
u = normVec(u);
float[] v = vectorProduct(w,u);
float[J[] TM = worldToCameraMatrix(u,v,w,0);

// Initialisierung der Objekte
Cube ¢ = new Cube(unit, color(e), 2,1,3, 0, 0,0,0);
Prism p = new Prism(unit, color(0), 2,1,3, 0, 0,-1,0);

projection(TM, c);
projection(TM, p);

c.drawVertex(c);
p.drawVertex(p);

worldKOS(unit, TM, 2);
noLoop();

Abb. 7.7.1 Der erweiterte Quellcode fiir die orthogonale Parallelprojektion mit ho-
mogenen Koordinaten
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Die Anweisung worldToCameraMatrix berechnet dann nach o.g. Satz das Matrix-
produkt. Mit dieser wird in Zeile 28 und 29 die Parallelprojektion auf die xy-Ebene
des Kamerakoordinatensystems fiir beide Korper erzeugt und die Bildpunkte in Zei-
le 31 und 32 gezeichnet. Fiir eine bessere Orientierung wurde abschlieiend in Zeile
34 die Achsen des Weltkoordinatensystems eingefiigt. Da das Haus nicht verschoben
wurde, liegt der Mittelpunkt der Bodenflache im Ursprung.

Im Reiter Transformation befinden sich die 4 x 4 - Matrizen fiir Skalierung, Dre-
hung um alle drei Raumachsen sowie Translation der Objekte. Abb. 7.7.3 zeigt einen
Ausschnitt dieser homogenen Matrizen, wie auch die Berechnung der Transforma-
tionsmatrix vom Welt- ins Kamerakoordinatensystem sowie der Blickrichtung im
Reiter Camera.

Motiviert wurde das vorherige Kapitel iiber das Kamerakoordinatensystem, S. 290,
mit der Abb. 7.5.4, wo die Richtung der Strahlen der Parallelprojektion bzgl. der
x-Achse verschoben wurde, wihrend das Bild weiterhin auf der zy-Ebene entstand.
Je schiefer die Projektionsstrahlen auf diese Ebene trafen, um so verzerrter wurde
das Bild des Hauses. Damit bei Positionsveranderung des Betrachters die Bilder un-
verzerrt bleiben, wurde in dem nachfolgenden Kapitel ein Verfahren gezeigt, welches
das Koordinatensystem derart verschiebt und dreht, sodass die Bildebene senkrecht
zur Blickrichtung des Betrachters steht. Die Projektion ist somit immer orthogonal

und die Schragbilder weniger verzerrt.

Zum Vergleich nehmen wir nun wieder das Haus bestehend aus Quader und Prisma
und verschieben den Betrachter entlang der z-Achse. Dann vergleichen wir die Bilder

mit und ohne Transformation des Weltkoordinatensystems, wobei bei letzterem der

[ ) Projection Projection Projection

: %%

[ ] PProjection_homogen PProjection_homogen PProjection_homogen

I

Abb. 7.7.2  Vergleich der schiefen (oben) und orthogonalen (unten) Parallelprojek-
tion bei Verschiebung des Betrachters entlang der x-Achse.




302

Betrachter immer auf den Ursprung des Weltkoordinatensystems schauen soll. Abb.
7.7.2 zeigt das Ergebnis. Die ersten beiden Bilder sind dhnlich, da die Projektions-
richtung (0 / — 0.5/ —1)" liegt, d.h. um eine Einheit weg von der Bildebene und
um 0.5 Einheiten nach oben verschoben, allerdings nicht zur Seite. Aufgrund der
Verschiebung nach oben, fallen die Strahlen nicht senkrecht auf die Bildebene (Vgl.
Abb. 7.5.1, S. 287). Im ersten Bild der Vergleichsreihe ist das Dach etwas hoher als

in der unteren orthogonalen Projektion.

Mit dem Beispiel haben wir gezeigt, welchen Vorteil die Transformation in Kame-
rakoordinatensystem bietet und weshalb homogene Koordinaten dies vereinfachen,
da wir am Ende nur eine Matrix benttigen, mit welcher jeder Eckpunkt der Kérper
multipliziert wird.

Das néchste Kapitel verwendet Processing zur Erzeugung von Rot-Griin-Bildern.
Wie im Abschnitt 7.1 Das Anaglyphenverfahren, S. 264, schon erwdhnt, wurde die-
ses Thema durch eine Aufgabe in einem Schulbuch der Oberstufe motiviert, wo ein
Wiirfel anhand zwei nahe beieinander liegender Zentren auf eine Bildebene proji-
ziert wird, wobei ein Bild rot und das andere in griin gezeichnet wird. Mit einer

Rot-Griin-Brille und dem passenden Abstand erscheint der Wiirfel dreidimensional.
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PProjection_homogen Camera Matrics S ET Transformation

//Transformationsmatrizen
float[][] MScale(float sca, float scb, float scc){

float[][] M = {{sca, 0, 0, 0,},
{0’ SCb’ O) 0}’
{0, o, scc, o},
{0, 0, 0, 1}};
return M;

}
float[][] MRotate(float angle, char axis){
float alpha = PI * angle/180; //Deg to Rad

if(axis == 'x'){
float[I[1 M = {{1, 0, 0, 0,},
{0, cos(alpha), -sin(alpha), 0},
{0, sin(alpha), cos(alpha), 0},
{0, 0, 0, 13}};

return M;

b

if(axis == "'y'){

float[][] M = {{cos(alpha), 0, sin(alpha), 0},
{0, 1, o, 0},
{-sin(alpha), 0, cos(alpha), 0},
{0, 0, 0, 13}};

return M;

PProjection_homogen Camera Matrics Shape Transformation v

9 float[]J[] worldToCameraMatrix(float[] u, float[] v, float[] w, float[] CameraPosition){

float[]1[] rotMatrix = {{u[®],u[1],u[2],6},
{vlel,v[1],v[2],0},
{wfe],w[1],w[2],0},
{ o, o, 0,1}};

float[][] transMatrix = {{1,0,0,-CameraPosition[0]},
{0,1,0,-CameraPosition[1]},
{0,0,1,-CameraPosition[2]},
{0,0,0, 1135

float[][] result = matmul(rotMatrix, transMatrix) ;

0 return result;

}
e float[] lookAtVector (float[] CameraPosition, float[] lookPoint){

int n = CameraPosition.length;
float[] blickrichtung = new float[n];

for(int i=0; 1d<n; i++){
blickrichtung[i] = lookPoint[i] - CameraPosition[i];
}

return blickrichtung;

Abb. 7.7.3 homogene Matrizen zur Skalierung und Drehung der Einheitskorper so-
wie die Ermittlung der Transformationsmatrix vom Welt- ins Kamerakoordinaten-
system
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7.8 Erzeugung von Anaglyphenbildern

Wir wollen nun in Processing eine Zentralprojektion durchfithren, um Anaglyphen-
bilder zu erzeugen. Als Grundlage dienen wieder die drei Klassen Wiirfel, Prisma
und Pyramide. Fiir die Skalierung, Drehung und Verschiebung verwenden wir die
4 x 4 -Matrizen aus dem vorherigen Kapitel. Da die Zentralprojektion ebenfalls keine
lineare Abbildung ist, sind auch hier homogene Koordinaten sinnvoll. Wir wollen
aber zum Einstieg die Gleichung 7.1.1, S. 266, verwenden. Abb. 7.8.1 zeigt die ent-
sprechende Implementierung in Processing mit einem Haus als Beispiel. Das Haus
besteht aus einem Wiirfel mit quadratischer Grundflache (Kantenlédnge: 3 Einheiten,
2 Einheiten hoch) sowie einem Prisma (1.5 Einheiten hoch). Der Mittelpunkt des

Hauses, welches um 40° gedreht wurde, befindet sich im Ursprung.

ZProjection_ohneHK Matrics Shape Transformation | v

) float[] L1
float[] L2

= {3*unit,-3*unit,-8*unit};
= {3.5%xunit,-3*unit,-8*unit};
g void setup(){
size(400,400);
8 B
0} void draw(){
background(255);
translate(width/2,height/2);

// Initialisierung der Objekte

new Cube(unit, color(e,255,0), 3,2,3, 40, 0,0,0); // Wirfel in Grin
new Cube(unit, color(255,0,0), 3,2,3, 40, 0,0,0); // Wirfel in Rot

Cube c_g =
Cube c_r =
new Prism(unit, color(e,255,0), 3,1.5,3, 40, 0,-2,0); // Dach
new Prism(unit, color(255,0,0), 3,1.5,3, 40, 0,-2,0);

Prism p_g
Prism p_r

PEY // Zentralprojektion auf die xy Ebene
® ZProjection_ohneHK
CentralProjection(Ll, c_g);
CentralProjection(L2, c_r);

CentralProjection(Ll, p_g);
CentralProjection(L2, p_r);

strokeWeight(2);

c_r.drawVertex(c_r);
c_g.drawVertex(c_g);

p_r.drawVertex(p_r);
p_g.drawVertex(p_g);

noLoop();

Abb. 7.8.1 Die Zentralprojektion des Hauses

Im Reiter , Transformation“ der Abb. 7.8.2 ist die Zentralprojektion definiert. Als
Argument benétigt CentralProjection das Projektionszentrum und den Korper.

Zur besseren Lesbarkeit werden die Koordinaten des Zentrums in den Variablen /1,
[2 und [3 iibertragen. Ebenso wird innerhalb der Schleife (ab Zeile 70) verfahren,
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welche die Punktliste durchlauft, die jeder Korper aufgrund seiner Klasse beinhaltet.
Hier werden die Koordinaten in pl, p2 und p3 temporar abgelegt. Die Werte werden
dann fiir jeden Eckpunkt des Korpers in die Formel eingesetzt und die in der Liste
jeder Punkt durch seinen Bildpunkt ersetzt (Zeile 78 bis 80).

ZProjection_ohneHK Matrics Shape ‘ Transformation &4

// Projektion auf xy Ebene ohne homogene Koordinaten

void CentralProjection(float[] zentrum, Shapes shape){
float[]J[] pointlist = shape.points;
int n = pointlist.length;

float 11 = zentrum[0];
float 12 = zentrum[1];
float 13 = zentrum[2];

for(int i=0; 1 < n; i++){

float pl = pointlist[i][0];
float p2 = pointlist[i][1];
float p3 = pointlist[i][2];

float vorfaktor = 1 / (13- p3);

pointlist[i][0]
pointlist[i][1]
pointlist[i][2]

vorfaktor * (13 * pl - 11 x p3);
vorfaktor x (13 * p2 - 12 * p3);
03

Abb. 7.8.2 Implementierung der Formel zur Berechnung der Bildkoordinaten bei
zentraler Projektion auf die zy-Ebene

Nun ersetzen wir die Formel in der Funktion CentralProjektion durch eine ho-
mogene Matrix nach Gl. (4.6.4), wie sie auf Seite 198 hergeleitet wurde. Es wurden
weitere Verdnderungen vorgenommen, wie Abb. 7.8.3 zeigt. In Abb. 7.8.1 wurden
die Projektionszentren L1 und L2 (Zeile 3 und 4) mit der Einheit angegeben. Diese
Skalierung wurde nun in die Projektionsfunktion (Zeile 5 bis 7) iibernommen. Zur
Verdeutlichung wurde diese Anderung in der Abb. 7.8.3 mit einem Pfeil markiert.
Der Vergleich beider Abbildungen zeigt, dass wir dasselbe Anaglyphenbild erhalten.
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ZProjection Camera Matrics Shape Transformation

// Matrix fir Zentralprojektion mit homogenen Koordinaten
void CentralProjection(float[] zentrum, Shapes shape){

float unit = shape.e;

float z1 = zentrum[@] * unit ;
float z2 = zentrum[1] * unit ;
float z3 = zentrum[2] * unit ;

float[J[] M = {{z3, 0, -z1, 0},
{0, z3, -z2, 0},
{O’ O} 0’ o}}
{05 0, -1, 23}};

float[]J[] pointlist = shape.points;
int n = pointlist.length;

for(int i=0; i < nj i++){
pointlist[i] = MatDotPoint(M, pointlist[i]);
float t = pointlist[i][3];
pointlist[i][0] = pointlist[i][0] /t
pointlist[i][1] = pointlist[i][1] /t
pointlist[i][2] = pointlist[i][2] /t

pointlist[i][3] = 1 ;
};

ZProjection Camera Matrics Shape Transformation

il float unit = 40.0;

2 ZProjection
g float[] L1 = {3, -3, -8};

Y float[] L2 = {3.5, -3, -8};

5

[ void setup(){

7 size(500,400);

8 B

[+}

Abb. 7.8.3 Die Zentralprojektion erfolgt nun mit einer Matrix und liefert dasselbe
Bild wie in Abb. 7.8.1
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Wir wollen nun zum Abschluss auch die Transformation ins Kamerakoordinatensys-
tem in unseren Quellcode einbauen. Da diese Umrechnung ins andere Koordinaten-
system unabhéngig von der Projektion ist, konnen wir die Funktionen worldTo-
CameraMatrix und lookAtVector aus dem Abschnitt zur orthogonalen Paral-
lelprojektion iibernechmen. Abb. 7.8.4 zeigt das Ergebnis, wenn wir dasselbe Haus
sowie die Projektionszentren aus dem vorherigen Beispiel iibernehmen. Da wir nun
zwel Zentren haben, nehmen wir fiir den Ort der Kamera (Variable o, Zeile 17)
den Mittelpunkt zwischen diesen entlang der z-Achse. Damit die Bildebene parallel
zum Haus liegt (Ubereck-Perspektive), soll die Kamera wegen der erhdhten Position
(y = —3) nicht nach unten schauen. Daher gilt lookAt = {0,—3,0} (Zeile 4). Die
Blickrichtung entspricht dem Hauptstrahl der Zentralprojektion, d.h. die Bildebene

liegt hierzu senkrecht.

ZProjection Camera Matrics Shape Transformation

il float unit = 40.0; ° ZProjection

e} float[] y = {0,1,0} ;
Pl float[] lookAt = {0,-3,0} ;

5 | ]§
. . (] \
[} void setup(){ | i

7 size(500,400); | I <l
g 1; {

9 } e
i) void draw(){ | :

11 background(255) ; f"’/—///'

12 translate(width/2,height/2);

14 float[] L1
15 float[] L2

{3, -3, -8};
{3.5, -3, -8};

i  loat[] o = {3.25,-3,-8};
18 float[] blickrichtung = lookAtVector(o, lookAt);

20 float[] w = normVec(blickrichtung);

21 float[] u = vectorProduct(y, w);

22 u = normVec(u);

23 float[] v = vectorProduct(w,u);

24

25 float[]J[] TM = worldToCameraMatrix(u,v,w,0);

26

P // Initialisierung der Objekte

28

29 Cube c_g = new Cube(unit, color(e,255,0), 3,2,3, 40, 0,0,0); // Wirfel in Grin
30 Cube c_r = new Cube(unit, color(255,0,0), 3,2,3, 40, 0,0,0); // Wirfel in Rot

Prism p_g = new Prism(unit, color(0,255,0), 3,1.5,3, 40, 0,-2,0); // Dach
Prism p_r = new Prism(unit, color(255,0,0), 3,1.5,3, 40, 0,-2,0);

35 projection(TM, c_g);
projection(TM, c_r);

projection(TM, p_g);
) projection(TM, p_r);

EBN // Zentralprojektion auf die xy Ebene

Abb. 7.8.4 Zentralprojektion des Hauses mit Transformation ins Kamerakoordina-
tensystem



308

Durch die Anpassung der Bildebene lassen sich Verzerrungen vermeiden. Dazu ma-
chen wir ein analoges Beispiel, wie schon im Abschnitt zur Parallelprojektion. Statt
einem Anaglyphenbild projizieren wir das Haus nur einmal und zeichnen es schwarz.
Wir verschieben die Kamera wieder entlang der xz-Achse. Abb. 7.8.5 stellt die Pro-
jektionen ohne und mit Transformation gegeniiber. Je weiter weg sich die Kamera
seitlich vom Ursprung, bei gleicher Hohe und gleichem Abstand zur Bildebene, ent-
fernt, umso verzerrter wird die Projektion, wenn die Bildebene nicht mitgefiihrt wird.
Allerdings bleibt es nicht aus, dass die Kanten des Hauses mit quadratischer Grund-
fliche bei x = —10 auch mit Kamerakoordinaten derart verzerrt werden, dass es

nicht mehr quadratisch wirkt.

° ZProjection ) ZProjection ° ZProjection

° ZProjection ° ZProjection ° ZProjection

Abb. 7.8.5 Verschiebung des Projektionszentrum entlang der x-Achse ohne Trans-
formation ins Kamerakoordinatensystem (oben) und mit (unten)

Zur besseren Frkldrung, was die Transformation ins Kamerakoordinatensystem be-
wirkt, zeigt Abb. 7.8.6 das Haus und die Bildebene im dreidimensionalen Koordina-
tensystem, wobei die y-Achse nach unten zeigt und die z-Achse nach hinten, wie es
auch im Quellcode.

Grau sind die urspriingliche zy-Ebene und die Objektebene dargestellt. H bezeich-
net den Hauptpunkt, auf welchen die Kamera schaut (lookAt = {0,—3,0}). Der
Betrachter (Z;) bewegt sich parallel zur x-Achse und schaut dabei immer auf H.
Damit dreht sich durch die Transformation ins Kamerakoordinatensystem die Bilde-

bene derart, dass die Gerade Z; H immer orthogonal zur neuen Bildebene steht.
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Abb. 7.8.6 Durch Transformation ins Kamerakoordinatensystem ist die neue xy-
Ebene gedreht, sodass der Hauptstrahl diese senkrecht trifft. Unten zeigt den Grund-
riss der obigen Szene mit den entsprechenden Bildebenen.
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Damit endet dieses Kapitel iiber Processing und den entworfenen Quellcode zur Er-
stellung von Bildern. Wir haben gezeigt, wie sich ausgehend von den Einheitskérpern
Wiirfel, Prisma und Pyramide eine Szene aufbauen lasst, indem durch Matrizenmul-
tiplikation die Eckpunkte skaliert, gedreht und verschoben werden kénnen. Dabei
haben wir gezeigt, dass alle drei Transformationen mit einer Matrix moglich sind,
wenn wir homogene Koordinaten verwenden. Es wurde erldutert, wie dies im Quell-
code durch eine Klassenstruktur erfasst wird.

Danach haben wir uns mit der Parallelprojektion dieser Szenen befasst und gezeigt,
dass durch orthogonale Projektionen Verzerrungen vermieden werden. Ein Beispiel
motivierte die Transformation in ein Kamerakoordinatensystem.

Zum Abschluss erzeugten wir Anaglyphenbilder mit der Zentralprojektion, wobei
wir auch hier homogene Koordinaten verwendeten, da jene Projektion keine lineare
Abbildung ist. Zum Schluss wurde wieder an einem Beispiel gezeigt, dass auch hier
vor der Projektion die Transformation ins Kamerakoordinatensystem bessere Bilder

lieferte.



Kapitel 8

Materialien und

Anwendungsbeispiele

Wir haben uns in den vorherigen Kapiteln dem Thema Zentral- und Parallelprojek-
tion auf ganz unterschiedliche Arten genéhert: rein mathematisch unter Verwendung
von Koordinaten und Vektoren im Sinne der analytischen Geometrie im Mathematik-
unterricht, Konstruktion der Bilder mit Grund- und Aufriss ohne Berechnungen, wie
sie auch im Kunstunterricht durchfithrbar ware oder fachiibergreifend die Berechnung
der Bilder mithilfe einer objektorientierten Programmiersprache im Informatikunter-
richt. Dies hat gezeigt, wie vielseitig dieses Thema in der Schule Anwendung finden
kann. Wir wollen nun in eine weitere Richtung gehen und Materialien vorstellen,
welche im Mathematikunterricht zur Unterstiitzung von Lernprozessen verwendet

werden konnen.

Inspiriert von historischen Schriften wurde der Perspektograph von Lambert nach-
gebaut und auf seine Funktion und Tauglichkeit gepriift. Ebenso angeregt durch die
vorhandenen Aufgaben in Schulbiichern zur Dreitafelprojektion wurden zwei Versio-
nen einer Raumecke entwickelt und Aufgabenbeispiele zu ihrer Verwendung entwor-

fen.
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8.1 Der Perspektograph

Johann Heinrich Lambert beschrieb
1752 in seinen Schriften zur Perspek-
tive [32] den Entwurf eines Perspek-
tographen, welcher es ermdoglicht, aus
einer ebenen Figur in der Objektebe-
ne das Bild unter einer Zentralprojek-
tion zu zeichnen, sofern sich Objekt-
und Bildebene orthogonal schneiden.
Die nebenstehende Abbildung zeigt den
Perspektographen nach Lamberts Ent-
wurfzeichnungen, erstellt mit dem Pro-
gramm FreeCAD, einer kostenlose Soft-
ware zur Zeichnung von Objektmodellen

(computer-aided design).

Um die Funktionsweise des Perspek-
tographen zu erkléren, betrachten wir
Abb. 8.1.2: Das in der Objektebene lie-
gende Rechteck wird als Zentralprojek-
tion in die Bildebene iibertragen, wo-
bei das Projektionszentrum Z nicht Teil
dieser Ebene sein darf. Die Objektebe-
ne schneidet die Bildebene orthogonal.
Die Schnittgerade ist die Bildspur a. Um
den Bildpunkt von A zu konstruieren,
zeichnen wir den Projektionsstrahl Z A,
welcher die Bildebene in ¢,(A) schnei-
det. Wir hatten im Abschnitt 4.3.2
Konstruktionsmethoden mit Grund- und
Aufriss schon erldutert, wie sich der

Bildpunkt in der Ebene konstruieren

.

Abb. 8.1.1 Mit einem CAD Programm
nachkonstruierter Perspektograph
nach Lambert

A

l.__

Objektebene

Abb. 8.1.2 Konstruktion des Bildpunk-
tes unter einer Zentralprojektion

lasst. Wir wissen, dass der Bildpunkt auf der Lotgeraden zu a durch A, liegt. Denn:
7 7' schneidet die Objektebene senkrecht. Da die Bildebene ebenfalls orthogonal zur

jener Ebene liegt, muss jede Gerade in der Bildebene parallel oder windschief zu ZZ’

sein. Da aber Ap¢.(A) auch in der Projektionsebene AZ’Z liegt, bleibt nur noch

der erste Fall. Somit ist A,p.(A) parallel zu ZZ' und somit auch orthogonal zur

Objektebene. Damit ldsst sich auch der Strahlensatz anwenden. Es gilt:
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d(A;m Pz (A)) =

Fiir den Einsatz im Unterricht wur-
de folgendes Material entwickelt, dessen
Aufbau an Abb. 8.1.2 orientiert ist. Das
CAD Modell und die Umsetzung zeigt
Abb. 8.1.3.

Die Objektebene ist eine Platte aus be-
schichtetem Holz und die Bildebene ei-
ne durchsichtige Scheibe aus Acrylglas,
welche auf die Platte aufgesteckt wer-
den kann. Auf einer Seite der Objektebe-
ne sind verschiedene Locher gebohrt, in
die ein Stab senkrecht gesteckt werden
kann. Oben am Stab befindet sich ei-
ne gelochte Platte. Sie stellt den Aug-
punkt Z dar. Zur Variation von Z wur-
den zwei verschiedene Rundhélzer mit
unterschiedlichen Hohen gefertigt, wel-
che in die beiden Locher auf der Platte
gesteckt werden konnen. Somit sind vier
verschiedene Lagen von Z moglich.

Der Winkel aus Holz hat auf der senk-
rechten Leiste ein Zentimetermaf und
kann verwendet werden, um die berech-

neten Abstdnde zwischen Objektébene

d(A, A,) - d(Z,2)

(8.1.1)

(A, Z')

Abb. 8.1.3 Material fiir die Projektion

einer ebenen Figur

und Bildpunkt ¢,(A) iiber den Schnittpunkt A, abzutragen. Um A, zu markieren

bzw. die anderen beiden Absténde in Gl. (8.1.1) zu messen, kann ein Lineal unter

die Acrylglasplatte geschoben werden.

Wir wollen die Anwendung an einem Beispiel demonstrieren und verwenden ein blau-

es Rechteck, welches auf der anderen Seite der Acrylglasplatte mit Klebeband fixiert

wird. Zur besseren Orientierung beschriften wir die Ecke mit einem wasserléslichen

Stift. Fiur das Zentrum nehmen wir den kleineren der beiden Rundholzer und ste-

cken es in das hintere Loch. Damit haben wir das Projektionszentrum festgelegt.

Nun wollen wir die Bildpunkte berechnen.
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Schritt 1:
Wir messen die Hohe von der Platte bis ungefihr zur Mitte des Guckloches und

erhalten d(Z, Z') = 14 cm.

Abb. 8.1.4 Schritt 1: Das Objekt wird fixiert und der Abstand des Zentrums zum
Boden ausgemessen.

Schritt 2:

Mit einem Lineal wird der Abstand zwischen den Urbildpunkten und dem Stand-
punkt Z’ bzw. zum Schnittpunkt mit der Bildspur gemessen, indem das Lineal durch
die Offnung in der Acrylglasplatte geschoben wird. Zusitzlich markieren wir diese
Schnittpunkte.

Abb. 8.1.5 Schritt 2: Messen der Abstdnde und Markierung der Schnittpunkte

Wir schreiben die Werte (in cm) in eine Tabelle und berechnen tiber den Strahlensatz
nach Gl. (8.1.1) die Hohe der Bildpunkte:
Das Rechteck liegt mit den Strecken

X | dX,X,) d(X,Z") | d(Xp, (X)) | AB und CD parallel zur Bildebe-
A 7,9 25,2 4.4 ne. In diesem Fall wird ihr Flucht-
B 6,5 20,7 4.4 punkt zum Fernpunkt, sodass auch
C 13,5 27,8 6,8 die Bildstrecken parallel sind. Dies
D 15,2 31,2 6,8 zeigt sich in den Ergebnissen, da die

Endpunkte der Bildstrecken auf der-
selben Hohe liegen. Schiilerinnen und Schiiler haben somit die Moglichkeit, ihre Er-

gebnisse auf Plausibilitdt zu tiberpriifen.
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Schritt 3:

Mit den Léngenangaben und der obigen Formel (8.1.1) lassen sich die Langen von
Xp bis zu den Bildpunkten ¢,(X) berechnen und auf der Acrylplatte abtragen.
Hierzu kénnen wir, wie in der vorherigen Abbildung, die Platte an die schwarz mar-
kierte Bildspur legen. Wegen den Halterungen auf beiden Seiten kann die Platte
nicht ganz an die Bildspur gelegt werden. Der Abstand betrigt 3 mm und muss zu
d(Xp, ¢-(X)) hinzu addiert werden. Vorteil ist dagegen, dass ein Geodreieck direkt
an die Schnittpunkte A, B,, ... angelegt werden kann, um senkrecht die ermittelte
Lange abzutragen. Wir markieren die Bildpunkte mit einem wasserldslichen Stift.

Eine Alternative zeigt das erste Bild der folgenden Abbildung:

Abb. 8.1.6 Schritt 3: Abtragen der berechneten Léngen auf die Acrylglasplatte

Der Winkel wird bis an den Schnittpunkt mit der Bildspur geschoben und der Bild-
punkt auf der stehenden Acrylglasplatte an der berechneten Hohe markiert. Hierbei
miissen die 3mm nicht beriicksichtigt werden. Mit allen weiteren Eckpunkten der
Figur wird so verfahren. Die Acrylgasscheibe kann nun herausgenommen werden,

um die Bildpunkte mit dem wasserloslichen Folienstift miteinander zu verbinden.

Schritt 4:

Zur Kontrolle haben Schiilerinnen und Schiiler nun die
Moglichkeit, die Platte wieder aufzustecken und durch
das Loch oberhalb des Stabes zu sehen. Wurde richtig ge-
rechnet, sollte das gesehene Rechteck auf der Objektebe-
ne mit dem konstruierten Bild auf der Acrylglasscheibe
iibereinstimmen. Der Blick sollte dabei durch das Loch
senkrecht auf die Bildebene fallen, damit die Sehebene
des Auges parallel zur Bildebene ausgerichtet ist. Wird

Abb. 8.1.7 Validierung

stattdessen zum seitlich versetzten Rechteck geschaut, des Ergebnisses

stimmen die Bilder nicht iiberein. Die Richtung, in welche
die Person schaut, liegt orthogonal zur Sehebene des Auges. Wird nicht senkrecht
durch das Loch geschaut, so stimmen Seh- und Bildebene nicht mehr iiberein. Dies

war der Grund fiir die Einfithrung des Kamerakoordinatensystems aus dem vorheri-
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gen Kapitel mit Processing. Einfacher léasst sich das Ergebnis iiberpriifen, wenn statt
dem eigenen Auge eine Handykamera verwendet wird. Dabei muss das Handy auch
parallel zur Bildebene ausgerichtet werden. So ist die vorherige Abbildung entstan-

den.

Nach diesem Beispiel sind weitere Fragestellungen moglich. So kénnen auf der Acryl-
glasplatte die Bildstrecken AD und BC derart verlingert werden, dass sie sich in
den Fluchtpunkt F' schneiden. Wir stellen die Platte wieder in die Halterung und
schauen durch das Loch. Wir sehen direkt auf F', da sich der Punkt auf derselben
Hohe befindet. Dies stimmt auch mit der Theorie iiberein, denn in Kapitel 3.1 Die
Zentralprojektion, S. 46, wurde gezeigt, dass der Fluchtpunkt das Bild des Fern-
punktes ist, welches die Richtung der Geraden AD und BC beschreibt. Nach den
Konstruktionsverfahren im Abschnitt 4.3.2 lasst sich der Fluchtpunkt konstruieren,
indem wir durch Z eine Parallele zu AD ziehen, welche die Bildebene in F' schneidet.
Da das Rechteck parallel zur Bildebene liegt, ist AD orthogonal zu dieser. Demnach

fallt F' mit dem Hauptpunkt zusammen.

Abb. 8.1.8 Die Ansicht von oben und von der Seite zeigen, dass sich der Fluchtpunkt
orthogonal vor dem Loch befindet.

Wir wollen in einem zweiten Beispiel die Lage von Fluchtpunkten untersuchen. Hierzu
nehmen wir eine Raute und legen sie neben das Rechteck auf die Objektebene. Wir
konstruieren die Bildpunkte wieder mithilfe der Formel, iibertragen diese auf die
Acrylglasplatte und schauen danach durch das Loch, um das Ergebnis zu iiberpriifen.
Das mittlere Foto in Abb. 8.1.9 zeigt die Ubereinstimmung zwischen Bild und Urbild.
Nun nehmen wir wieder die Platte heraus und verldngern alle Seiten der Raute,
sodass wir die beiden Fluchtpunkte F} und F5 erhalten. Weiterhin zeichnen wir
auf die Objektebene die Parallele zu EF und EH durch Z’. Thr Schnittpunkt mit
der Bildspur sollte F{ und Fj sein, d.h. Fy und F5 im Grundriss. Wir stecken die
Acrylglasplatte zuriick in die Halterung. Das dritte Foto in Abb. 8.1.9 zeigt, dass die

Fluchtpunkte unter Beriicksichtigung einiger Ungenauigkeiten durch das Zeichnen
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Abb. 8.1.9 Im zweiten Beispiel wird eine Raute abgebildet und die Fluchtpunkte
gezeichnet.

senkrecht iiber Fy und F liegen.

Beide Fluchtpunkte liegen auf einer Geraden, welche parallel zur Objektebene liegt.
Dies ist der Horizont, welcher alle Fluchtpunkte enthélt, sofern die entsprechenden
Parallelbiischel in parallelen Ebenen bzgl. der Objektebene liegen. Hier zeigt sich
im rechten Foto der Abb. 8.1.9 eine Unstimmigkeit, denn F, F; und F5 liegen auf
keiner gemeinsamen Geraden. F' befindet sich etwas oberhalb der Verbindungsgera-
den FiF5. Dies liegt an Ungenauigkeiten im Zeichnen und kann durch die Projektion
von groferen ebenen Figuren verringert werden. Die Bildkanten der Raute waren
anscheinend zu kurz, um die Bildgeraden durch die vier Eckpunkte genau zeichnen
zu konnen. Geringe Abweichungen kénnen schon zu einer grofseren Lageverschiebung
der Fluchtpunkte fiihren.

Das Material bietet noch weitere Moglichkeiten, als die Untersuchung von Flucht-
punkten. Wir kénnen auch die Bilder mithilfe der Konstruktionsmethode in Ab-
schnitt 4.3.2 erstellen, diese auf die Acrylglasplatte iibertragen und mithilfe des
Guckloches das Ergebnis iiberpriifen. So bekommen Schiilerinnen und Schiiler die
Chance, ihre Ergebnisse zu validieren. Dies wird hier allerdings nicht weiter ausge-
fiihrt.
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J. H. Lambert hat die vorherige Methode weiterentwickelt, mit dem Ziel, den Ab-

stand d(X,, ¢.(X)) in der Objektebene zu konstruieren statt zu berechnen. In seinem

Perspektographen entsteht das Bild mechanisch durch Abfahren des Grundrisses mit

einem Stift. Dafiir wurde folgender Trick verwendet, wie die neben stehenden Abbil-

dungen zeigen:

Wir iibertragen den Abstand
d(ap, p.(A)) auf die Bildspur
a und erhalten den Punkt M.
Analog verfahren wir mit Z, in-
dem wir d(Z,Z') auf die Par-
allele zu a durch Z’ abtragen.
Damit haben wir den Punkt
O. Wenn wir nun O mit A
verbinden, so liegt M auf die-
ser Strecke. Denn: beide Drei-
ecke haben die Kante AZ’ mit
dem Teilungspunkt A, gemein-
sam. Aufgrund des Strahlensat-

zes ist das Streckenverhaltnis

Abb. 8.1.10 Drehung in die Ebene um 90°

d(A,A,) : d(A,Z") gleich zum Verhéltnis d(y.(A), Ap) : d(Z,Z’). Dies gilt auch
im Dreieck AAZ’O, da beide Dreiecke die Kante AZ’ mit dem Teilungspunkt A,
gemeinsam haben. Da ist auch das Verhéltnis d(M, Ap) : d(Z', O) gleich den vorhe-
rigen Verhiltnissen. Somit ist M ein Teilungspunkt der Strecke AO.

Eine andere Sichtweise
zeigt Abb. 8.1.11. Die
Dreiecke A, (A)A,M
und AZ Z'O sind recht-
winklig und gleichschenk-
lig. Folglich sind sie
dhnlich zueinander. Das
eine Dreieck ldsst sich
iiber eine Zentralpro-
jektion ¢, mit A als
Zentrum auf das an-
dere abbilden. Dabei
ist AO ein Projektions-
strahl und somit M das

Abb. 8.1.11 Zentralprojektion des Dreiecks

Bild von O. Demnach muss M auf AO liegen.



8.1. Der Perspektograph 319

7!

Bildebene

Objektebene

Abb. 8.1.12 Ansicht von oben

Statt d(Ap, ¢.(A)) mithilfe des 2. Strahlensatzes zu berechnen, lésst sich die Strecke
konstruieren, indem O mit A verbunden wird, um den Punkt M zu erhalten. Somit
ist auch die Funktionsweise des Perspektographen geklart, welche die Abb. 8.1.12
zeigt.

Auf der oberen Leiste lassen sich die Punkte Z’ und O einstellen. Z’ legt dabei fest,
wo der Betrachter steht, und der Abstand d(Z’,0) = h, wie weit der Augpunkt
iiber der Ebene liegt. Wie weit der Betrachter von der Bildebene entfernt steht, wird
dabei durch den Abstand d der beiden grauen Leisten festgelegt. In dem Nachbau
sind diese Leisten in einem festen Abstand von 17 cm montiert.

Nun werden die violetten Leisten iber dem Urbildpunkt A gekreuzt. Der Schnitt-
punkt der Leiste beginnend bei Z’ bzw. bei O mit der mittleren Leiste a stellt den
Punkt A, bzw. M dar. A" ergibt sich nun, wenn der Abstand d(A,, M) senkrecht
iiber A, abgetragen wird. Dies wird im Perspektographen iiber das gleichschenklige
Dreieck erreicht, d.h. der Schnittpunkt der beiden griinen Leisten ist A’. Abb. 8.1.14
zeigt den Nachbau des Perspektographen.

|Ol TO

1
I
T
EX o] ¢
[ 26000 mm |

s A
(0
\ i O
[ 198,76 mm

15000 mm

| 450,00 . |

Abb. 8.1.13 Die einzelnen Bauteile des Perspektographens
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(a) Ubersichtsaufnahme (c) Die horizontalen Leisten befinden sich in un-
terschiedlichen Hohen.

Abb. 8.1.14 Der Nachbau des Perspektographen

Die einzelnen Teile des Nachbaus wurden anhand von Zeichnungen in Lamberts
Schriften [32] mit dem Programm FreeCAD entworfen. Abb. 8.1.13 zeigt die Teile
mit ihren Mafen in mm. Mit Sculpteo wurde eine Firma gefunden, welche Einzel-
auftrige fiir das Laserschneiden annahm. Als Material wurde der Kunststoff POM
(Polyoxymethylen) gewihlt, da es neben hoher Festigkeit auch sehr diinn sein muss-
te, da an zwei Stellen im Perspektographen drei Teile iibereinander gelegt werden
mussten und der somit entstehende Hohenunterschied so gering wie moglich sein
sollte. Neben dem Kunststoff bot die Firma auch MDF Holzplatten an, allerdings
war die Dicke der Platten Anfang 2019 noch gréfer als 2mm und die Oberfliche
rau, was ein Gleiten der Leisten iiber die horizontalen Tréger erschweren wiirde. Im
Nachhinein stellte sich heraus, dass der Kunststoff zwar eine sehr glatte Oberfliche

hatte, allerdings die Festigkeit nicht fiir eine volle Funktionsfahigkeit ausreichte.

Bevor wir die Nachteile im Nachbau aufzeigen, zeigt Abb. 8.1.14 einige Detailaufnah-
men. Als Unterlage wurde ein weifes Regalbrett verwendet (a). Mit Schrauben wur-
den die horizontalen Tréger in einem Abstand von 17 cm auf das Brett angebracht.
Als Abstandshalter dienten Muttern. Die Leisten, welche {iber dem Urbildpunkt ge-
kreuzt werden, wurden am oberen Tréger mit weiteren Schrauben befestigt. Am
unteren Tréger liegt dazwischen jeweils ein weiteres Bauteil, um das gleichschenklige
Dreieck zu bilden. Damit entsteht ein Hohenunterschied zwischen dem Auflagepunkt

der langen Leisten am oberen und unteren Trager. Dieser wurde ausgeglichen, indem
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jene durch die Muttern auf unterschiedliche Hohen gestellt wurden, damit die Trager

gerade bleiben (¢). Um Z’ und O einzustellen, wurde in weifser Schrift ein Zentime-

\J

Abb. 8.1.15 Die Leisten
springen {iber Un-
Bewegen die Fiihrung verlieren und iiber die Unterleg- terlegscheibe

termaft an der oberen Leiste tibertragen (b).

Wir kommen nun zu den Nachteilen des Materials und
der Befestigung mit den Schrauben. POM ist ein har-
ter Kunststoff, allerdings sind die Leisten nicht stabil.
Die Breite betrdgt bei allen Bauteilen 15mm und der

Ausschnitt in der Mitte hat eine Breite von 5mm. Da-

mit ist zu wenig Material vorhanden, um auf einer Lénge
von 45 cm nicht durchzubiegen. Hinzu kommt, dass trotz

der Unterlegscheiben an den Schrauben die Leisten beim

scheiben springen, wie in der Abbildung durch einen Pfeil
markiert wurde.

Wie stark sich die Leisten dehnen lassen, zeigt die néchs-
te Abbildung. Ohne viel Kraft konnen die Leisten mit
dem Finger gedehnt werden. Somit ist ein reibungslo-
ses Gleiten der Leisten iiber die Halterung kaum mog-
lich. Ebenso lasst sich kein Stift in den Kreuzungspunk-
ten der Leisten, weder zum Abfahren das Grundrisses
noch zum Zeichnen des Bildes, einsetzen. Zudem biegen

sich die Leisten aufgrund der Lénge durch. Trotz des

Abb. 8.1.16 Zu diinne
Leisten

geringeren Gewichtes der weifen Plastikschrauben und
der Bauteile biegt sich die mittlere Leiste in der Mitte
durch.

Des Weiteren ist der Bereich, in dem sich die Leisten
bewegen lassen, eingeschrénkt. Die Ubereckleiste, welche \J
das rechtwinklige Dreieck bildet, lduft mit einem Schenkel
auf der mittleren Halteleiste, damit der andere Schenkel

immer orthogonal zur jener Leiste liegt. Diese ist aller-

dings auch 15 cm lang und kann nicht iiber die Halterung
der mittleren Leiste hinausgehen, wie die nebenstehende
Abbildung zeigt, da hier der Kopf der Schraube im Wege Abb. 8.1.17  Einge-

toht schrinkte  Beweg-
steht- lichkeit der Eckleiste
Ein geeignetes Material, welches diinn und formstabil ist,

ist Metall. Allerdings konnte Anfang 2019 keine Firma

gefunden werden, welche private Auftrige fiir das Laserschneiden von Metallen an-

nahm. Daher wurde der Nachbau des Perspektographen an dieser Stelle beendet.
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8.2 Die Raumecke - Materialien zur Dreitafelprojektion

Wir kommen nun zu zwei Hilfsmitteln, welche fiir die Auseinandersetzung mit der
Dreitafelprojektion entworfen wurden. Auch hier gab es Anregungen aus der Litera-
tur fiir das erste Modell. Es ist an die raumliche Ecke von A. Lipsmeier, 1971 (35,
S. 290] und dem sog. Omnibus von T. Olivier, 1852 39, S. 76] angelehnt.

Die Abb. 8.2.1 zeigt den Entwurf einer Raumecke mit einem Anwendungsbeispiel.
Fiir die Konstruktion wurde wieder FreeCAD verwendet. Die Raumecke sollte aus
leicht zugénglichen Materialien gebaut werden und dessen Wande in die Ebene klapp-
bar sein. Daher befinden sich am Boden jeweils zwei Scharniere. Die Seitenflachen
bestehen aus Acrylglas, damit sowohl mit einem Folienstift darauf gezeichnet, sowie
hindurch gesehen werden kann. Fiir einige Anwendungsbeispiele wurden Bauteile ei-
nes Soma Wiirfels verwendet und eine Szene in der Raumecke gebaut. Abb. 8.2.1 (g)

- (i) zeigen drei Ansichten der Szene.

(a)  Zeichnung (b) CAD Modell der (c)  Anordnungsbeispiel
nach Lipsmeier Raumecke von Koérpern

(e) Seitenriss (f) Aufriss

e
% . L. “&
e e -

(g) Grundriss (h) Seitenriss (i) Aufriss

Abb. 82.1 Entwurf der Raumecke mit FreeCAD und erste Versuche mit Teilen
eines Soma Wiirfels
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(a) Folienzeichnung des Risses (b) Skizze stimmt nicht iiberein  (c¢) Mégliche Lésung

Abb. 8.2.2 Problem beim Zeichnen der Risse

Als Anwendungsbeispiel konnen Schiilerinnen und Schiiler mit den Teilen des Soma
Wiirfels unterschiedliche Anordnungen ausprobieren und die entsprechenden Risse
durch die transparenten Scheiben betrachten. Die Idee ist, dass sie mithilfe von was-
serloslichen Folienstiften die entsprechenden Risse auf die Scheiben iibertragen und
dann diese auseinander klappen, um die Risse vergleichen zu kénnen. Abb. 8.2.2
zeigt, welche Probleme sich dabei ergaben:

Da das eigene Sehen zentralprojektiv ist, lassen sich die Risse mithilfe des Folien-
stiftes nicht auf die Scheiben {ibertragen, selbst wenn senkrecht auf die Bildebene
geschaut wird. Die Zeichnung ist das Bild einer Zentralprojektion und stimmt nicht
anndhernd mit dem einer orthogonalen Parallelprojektion iiberein, wie das zweite
Bild in der Reihe zeigt. Beholfen wurde sich, in dem die Objekte orthogonal zur
Bildebene verschoben und dann abgezeichnet wurden, wie im dritten Bild der Reihe

zu sehen.

Weiterhin waren die ersten Skizzen ein-
farbig, was die Zuordnung der einzel- e e
nen Objekte in den Rissen erschwerte. ﬁE

In der nebenstehenden Abbildung wur- e )
de sich mit Symbolen geholfen. Auch IE | v(

das Zeichnen von geraden Kanten an der b |
senkrechten Acrylglasplatte war schwer. - ‘

Nachdem alle Objekte auf der Platte \

iibertragen waren, wurden die Risse her- 1 E
unter geklappt und einige Hilfslinien ge- :
strichelt erginzt. Aufgrund der Unge- ¥ st,f i"
nauigkeiten beim Abzeichnen, schneiden
die Hilfslinien die Schnittgeraden der
Ebenen nicht orthogonal. Zudem dauert )
Abb. 8.2.3 Die Risse im Uberblick

das Zeichnen sehr lange, vor allem, wenn

die Bauten zur Acrylglasplatte verscho-
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ben werden miissen, um die Risse zu zeichnen. Fiir eine einfachere Zuordnung kénnen
statt Symbole anders farbige Folienstifte verwendet werden. Diese Probleme wurden
im Nachhinein gelst. Aber bevor wir die Verbesserungen vorstellen, folgt eine Dis-

kussion zu moglichen Aufgabenstellungen zu dem Beispiel in Abb. 8.2.3:

Wie lésst sich entscheiden, ob ein Objekt auf, vor, neben oder hinter einem
anderen Objekt ist?

Wie lésst sich entscheiden, ob ein Objekt mehrere Stufen hat?

Welche Kanten kommen in mehreren Rissen vor?

Wird jede Kante auf eine Kante abgebildet?

Gibt es Kanten, welche auf dieselbe Kante projiziert werden?

Fiir diese ersten Erkundungen wurden zwei Bauteilen des Soma Wiirfels verwendet
und so gelegt, dass sie sich nicht verdecken und alle Kanten parallel zu den Ebenen
liegen. So lassen sich zwei verschiedene Beispiele gleichzeitig bearbeiten, sodass die
Schiilerinnen und Schiiler ihre Vermutungen an beiden Objekten priifen konnen. Die
folgende Bilderreihe stellt Aufgaben sowie mdogliche Losungen vor. Da die Verbesse-
rungen erst nach dieser Bildreihe entwickelt wurden, wurde hier noch die Teile an

die Acrylglasplatte verschoben und die Kanten mit einem Folienstift nachgezeichnet.

Aufgabenbeispiel 8.2.1

Um die Risse zu auf die Acrylglasplatte zu zeichnen, mussten die Objekte ver-

schoben werden. Entlang welcher Linien wurde dies getan? Zeichne diese ein.

Die Objekte wurden entlang der blau-

Aufriss en Linien verschoben. Sie liegen ortho-
[L_l gonal zu der Aufriss- und Seitenrissebe-
! e und entsprechen den Projektionsrich-

. S‘.l ‘ ne und entspr n den Projektionsri
Grundriss| ‘ : Seitenriss tungen der Dreitafelprojektion. Aus den
i‘i E-L in rot gezeichneten Rissen lassen sich die

| | \ MafRe der verwendeten Bauteile des So-

) ma Wiirfels abmessen.

£

Abb. 8.2.4 Es wurde entlang der Hilfsli-
nien verschoben.
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Aufgabenbeispiel 8.2.2

Markiere eine Kante im Grundriss. Findest du diese Kante auch im Auf- oder

Seitenriss wieder? Verfahre so mit weiteren Kanten im Grundriss und vergleiche

die Ergebnisse.

g

Ua

AE s

2@ |
B

Abb. 8.2.5 Farbige Zuord-

nung der Kanten in den

einzelnen Rissbildern

Da der Grundriss zwischen beiden anderen Ebenen
liegt, ist es einfacher anfangs eine Kante im Grund-
riss in den anderen Rissen zu suchen, da hierbei die
Markierungslinien aus Aufgabe 1 helfen konnen. Wel-
che Zusammenhénge lassen sich nun feststellen?

Die Zuordnung erfolgt durch gleiche Farben. Die
orange markierte Kante erscheint nicht im Aufriss,
dagegen mit gleicher Lange im Seitenriss. Alle Kan-
ten, welche senkrecht zur Ebene stehen, erscheinen
nicht im Rissbild, wahrend alle, die parallel zu ihr
liegen, unverandert abgebildet werden. Dann gibt es
noch Kanten (eine griine im unteren Objekt), welche

zwar parallel zur Aufrissebene liegen, dennoch nicht

im Rissbild erscheinen. Hier ist nur eine griin markiert. Die zweite griine Kante wird

verdeckt und konnte bspw. gestrichelt ergdnzt werden.

Aufgabenbeispiel 8.2.3

Finde Kanten, welche in zwei unterschiedlichen Rissen vorkommen und markiere

diese in derselben Farbe. Gibt es Kanten, welche in allen drei Rissen oder genau

einem Riss abgebildet werden?

BB

i

£

Dies ist eine Erweiterung der vorherigen Aufgabe.
Wir haben da schon Kanten gefunden, welche im
Grund- und Aufriss vorkommen, aber nicht im Sei-
tenriss. Der Grund, weshalb Kanten verschwinden,
war entweder, weil sie senkrecht zur Bildebene stan-
den oder verdeckt wurden. Aber was ist die Antwort
auf die zweite Frage? Es gibt in diesem Beispiel keine
Kanten, welche in allen drei oder genau einem Riss
abgebildet werden. Dies liegt an der Art der Aufstel-

Abb. 8.2.6 Gleiche Kanten lung: die Objekte sind parallel zu einer der Ebenen

in unterschiedlichen Ris-

sen

ausgerichtet.
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Dadurch gibt es Kanten, welche senkrecht zur Bildebene stehen und bei einer ortho-
gonalen Parallelprojektion mit dem Projektionsstrahl zusammenfallen. Sie werden

dadurch auf einen Punkt abgebildet. Dies wird in der letzten Aufgabe thematisiert.

Aufgabenbeispiel 8.2.4

Finde Kanten, welche auf einen Punkt abgebildet werden. Wie liegen diese im
Vergleich zu den anderen Kanten? Markiere im Grundriss eine Ecke und die
anliegenden Kanten in drei Farben. Zeichne die zugehorigen Kanten im Auf-

und Seitenriss in derselben Farbe. Was fallt dir auf?

Da die Korper parallel zu allen drei Rissen ausrich-
tet sind, gibt es Kanten, welche parallel zu den Pro-

-_Jl_[ e jektionsstrahlen sind und somit auf einen Punkt ab-

gebildet werden. Alle Kanten, welche senkrecht zum

2 P entsprechenden Riss liegen, ergeben einen Punkt.
‘ Mithilfe der Farben ist erkennbar, dass immer zwei
Kanten parallel zur Bildebene liegen, wihrend die
dritte dazu senkrecht steht. Mit drei Farben lassen
E sich somit genau drei Kombinationen bilden, wel-
Abb. 8.2.7 Es gibt Kanten, che aus zwei Kanten und einem Punkt bestehen. So-
welche auf Punkte proji- mit kommt jede Farbe in den Kombinationen genau
ziert werden. zweimal als Kante vor und daher auch in den Ris-

SEll.

Wir kommen nun zur Verbesserung der
Raumecke, nachdem mit der vorheri-
gen Aufgabenreihe erste Versuche mit g W;H " ‘
dem Material unternommen wurden. h ‘ ‘ r ‘
Statt mit dem Folienstift die Risse auf
der Acrylplatte nachzuzeichnen, wur- vl E L L
de Fensterfolie verwendet, da diese oh- I \ I 1 ‘

ne Kleber auf der Acrylglasplatte haf-

tet, aber ebenso leicht wieder abgezogen  App, 828 Die drei Risse der verwende-
werden kann, ohne Spuren zu hinterlas- ten Teile eines Somawiirfels

se. Hierflir wurden alle drei Risse einiger

Bauteile des Soma Wiirfels aus farbiger Fensterfolie geschnitten (Abb. 8.2.8). So ist
es moglich, dass die Risse jeder Anordnung der Bauteile auf die Scheiben aufgeklebt
werden konnen, sofern diese parallel zu einer der Ebenen ausgerichtet sind. Zusam-

menfassend liefert die Fensterfolie folgende Vorteile:
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- Die einzelnen Bauteile sind aufgrund der Farbe besser zu unterscheiden.

- Da die Folien transparent sind, sind auch verdeckte Bereiche in den Rissen

erkennbar.

- Es muss kein Folienstift entfernt werden, sodass die Platten linger sauber blei-

ben.

- Die Folien haften aufgrund von Oberflaicheneffekte, d.h. ein Kleber ist nicht

notig und die Folien sind wiederverwendbar.

Die Abb. 8.2.9 zeigt ein Beispiel unter Einsatz

der Fensterfolie. Ein Nachteil lésst sich damit

dennoch nicht losen: die Anordnung muss im- T —

mer noch bis zur Acrylglasplatte verschoben wer-

den, um den Riss mit der Folie kleben zu kénnen. ” & . ..
Ebenso war es bei den obigen Aufgaben sinnvoll, |
Markierungen mit dem Folienstift zu zeichnen, 1
um bspw. gleiche Kanten zu finden. Die Raume- &

cke wurde daher weiterentwickelt.

Die Platten erhielten nachtrdaglich ein Raster ‘
passend zu den Bauteilen des Somawtirfels, denn

diese bestehen selbst aus gleichgrofsen Wiirfeln. . h -

Die Kantenlinge dieser Wiirfel entspricht dem -

Raster auf den Ebenen, wie die ersten beiden Bil-

der in Abb. 8.2.10 zeigen. So kénnen sich Schiiler- r

innen und Schiiler beim Ankleben der Risse dar-

an orientieren und miissen die Teile nicht mehr

verschieben. Zum anderen ist dann folgende Auf-

gabenstellung moglich:

Die Risse einer unbekannten Anordnung der |Aufriss

Teile des Somawtiirfels ist vorgegeben und die

Schiilerinnen und Schiiler sollen diese nachbauen. |

Ein Beispiel zeigt das dritte Bild in der nebenste-

henden Abbildung. Hierfiir kénnen sie als Hilfe

die Risse auf den Acrylplatten mithilfe des Ras- [

ters nachkleben, die Platten aufstellen und dann

den Nachbau mit den farbig passenden Teilen des ' Grundriss —— Seitenriss

Soma Wiirfels beginnen. So haben sie die Mog-
lichkeit sich anhand der Risse zu kontrollieren. Abb. 8.2.9 Dreitafelprojektion
Je nachdem wie gut die Raumvorstellung entwi- mit Fensterfolie

ckelt ist, stellt dies gerade fiir den Anfang eine
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Abb. 8.2.10 Die Raumecke wurde ergénzt durch ein geeignetes Raster

gute Hilfe dar. Die verdeckten Kanten in dem Bild zur Aufgabe werden durch gestri-
chelten Linien angedeutet. Somit kénnen auch konkave Objekte eindeutig dargestellt

werden. Der Schwierigkeitsgrad liefse sich durch komplexere Anordnungen erhéhen.

Der Einsatz der Fensterfolie hat allerdings noch den Nachteil, dass einerseits die
Bauteile des Soma Wiirfels nétig sind und ebenso die parallele Ausrichtung zu den
Rissebenen. Wir wollen zum Abschluss eine zweite Variante der Raumecke vorstellen,
indem es um die Frage geht, ob Korper zu bestimmten Kombinationen an Rissen exis-
tieren. Die erste Raumecke wurde verwendet, um aus einer bestehenden Anordnung
die Risse zu erstellen. Nun wollen wir aus Kombinationen von Rissen verschiedene
Korper ableiten, d.h. in dem neuen Material sind die Ebenen nicht nur faltbar sonder

konnen auch ausgetauscht werden.
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8.3 Die zweite Variante der Raumecke

Die zuvor vorgestellte Raumecke war
fiir Aufgaben entwickelt worden, wo die
Korper und ihre Anordnung festgelegt
und die entsprechenden Risse gezeich-
net wurden. Das folgende Material ist
fiir Aufgaben gedacht, wo dies umge-
kehrt wird: die Risse werden vorgege-
ben und die Schiilerinnen und Schii-
ler sollten passende Korper dazu fin-

den.

Die Raumecke in Abb. 8.3.1 wird aus
drei Teilen gebildet, welche ineinander
gesteckt werden konnen. Hierzu gab es
keine Vorlage. Es wurde ein Gestell ent-
wickelt, welches einerseits Acrylglasplat-
ten halten kann, aber sich auch aus-
einander klappen lasst. Die Verwendung
kleinerer Scharniere wurde verworfen,
da sie zu Erhebungen fiihren, sodass die
Platten nicht ebenen auf dem Gestell
angebracht werden kénnen. Daher wur-
de auf ein Stecksystem zuriickgegriffen,
welches mit FreeCAD konstruiert wur-
de. Das erste Modell war aus Pappe.
Da das Stecksystem funktionierte, wur-
de die Firma Sculpteo beauftragt, zwei
dieser Gestelle aus Holz mit einer Starke
von 5 mm mittels eines Lasers zu schnei-
den.

Das Gestell dient zur Halterung von
drei Platten aus Acrylglas in den Ma-
flen 140 x 140 x 2 mm. Hierzu wur-
den zwei verschiedene Befestigungsarten
probiert, welche die Abb. 8.3.2 zeigt: das
linke Holzmodell hat Klettpunkte, das
rechte aufgeklebte Metallleisten.

(a) CAD Modell

5,00 mm

20,00 mm

150,00 mm

(b) Entwurf mit Mafen

(c) Pappmodell und Holzmodelle

Abb. 8.3.1 Entwicklung der Raumecke
als Puzzel aus drei Teilen
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(a) Zwei verschiedene Halterungssysteme (b) Die Ebenen in der Anordnung
der Dreitafelprojektion

Abb. 8.3.2 Das Holzgestell mit Acrylglasplatten

Nach der urspriinglichen Idee sollten die Acrylglasplatten mithilfe von kleinen Mag-
neten befestigt werden. Die ersten Magnete waren allerdings nicht stark genug, um
die Platten zu halten, weshalb auf stérkere Neodym-Magnete mit einem Durchmesser
von 10 mm zuriickgegriffen wurde. Die Verwendung dieser ist nach der Verpackung
erst ab 16 Jahren erlaubt und wére daher fiir den Einsatz in der Mittelstufe unprak-
tisch gewesen. Zudem zogen sich die runden Magnete gegenseitig stiarker an als auf
der Metallleiste haften zu bleiben. Daher wurde die Idee mit den Magneten verwor-
fen und stattdessen der Einsatz von Klettpunkten versucht.

Hierzu wurden runde Kreise halbiert und an drei Stellen auf das Holz geklebt. Analog
wurde mit den Platten verfahren. Nachteil dieses Systems war, dass die Scheiben er-
hohter als geplant auf dem Holz lagen und nicht einfach entfernt werden konnten, da
die Haftung teilweise so stark war, dass das Gestell auseinander genommen werden
musste, um die Platten abziehen zu kénnen.

Die Idee mit den Magneten wurde daher wieder aufgegrif-
fen. Diese sind 1 mm dick, die Platten mit 2 mm doppelt
so stark, sodass diese angebohrt wurden, um die Magne-
te darin zu versenken. Dies lieferte zwei Vorteile: zum
einen wurden die Magnete fixiert, sodass die Anziehung
untereinander verhindert wurde, zum anderen kénnen die

Schiilerinnen und Schiiler diese nicht mehr entfernen. Die

Verwendung dieser starken Magnete sollte somit fiir unter
16 Jahrige unbedenklich sein. Der verringerte Abstand
zum Metallband sorgte ebenfalls fiir eine stérkere Haf-

tung. Die Platten fielen nicht ab und konnten dennoch

leicht durch wegziehen entfernt werden.

Da die Leisten nur ineinander gesteckt sind, konnen die-

se leicht auseinander geklappt werden, um eine vergleich-
bare Anordnung der Risse mit der Raumecke aus dem App 833 Die Risse er-

vorherigen Abschnitt zu ergeben (Abb. 8.3.3). geben einen Quader.
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l Abb. 8.3.4 Ebene Figuren als Risse fiir
einfache Korper. Hierfiir wurde gelb fiir
4 e IR ® Quadrate, griin fir Rechtecke und rot fiir

Kreise verwendet.

Die Scheiben wurden mit Fensterfolie beklebt. Die Risse entsprechen verschieden
grofte Rechtecke, Quadrate und Kreise. Die Figuren wurden so geklebt, dass ihre
Mittelpunkte mit denen der quadratischen Acrylglasplatten iibereinstimmten. Die
Abb. 8.3.4 stellt einige Beispiele dar. Die Farbe richtet sich nach der Form der Figur.
Rechtecke sind griin, Quadrate gelb und Kreise rot.

Die Abbildung 8.3.5 zeigt Losungen von zwei Aufgaben. Die erste befasst sich mit
der Eindeutigkeit von Korpern. Zwei Risse sind vorgegeben und die Schiilerinnen
und Schiiler sollen nun iiberlegen, welche dritte Platte sie ergénzen kénnen, damit
sich ein Korper ergibt. So zeigt Abb. 8.3.5 ein Beispiel, wo der Auf- und Seitenriss
durch ein Rechteck vorgegeben ist. Diese Kombination erfiillt sowohl ein Quader
mit quadratischer Grundfliche sowie ein Zylinder. Die zweite Aufgabe fragt nach
der Existenz von Koérpern, denn nicht jede beliebige Zusammenstellung von Rissen
beschreibt einen Korper. In dem Gegenbeispiel ist eine gemeinsame Kante in Grund-

und Aufriss unterschiedlich lang.

(a) Quader (b) Zylinder (c) Diese Risse passen nicht
zusammen

Abb. 8.3.5 Aufgabenbeispiele zur Eindeutigkeit und Existenz von Koérpern
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Ziel dieser Arbeit war es, die Zentral- und Parallelprojektion zum einen aus rein ma-
thematischer Sicht zu untersuchen und zum anderen Einsatzmoglichkeiten fiir den
Unterricht an Gesamtschulen und Gymnasien zu erarbeiten.

Wir haben gezeigt, dass die Projektion nicht nur in der Kunst ein Thema ist, sondern
auch in der Mathematik im Bereich der Darstellenden und Projektiven Geometrie.
In Hinblick auf facheriibergreifendes Unterrichten wurden Aufgaben entwickelt, wel-
che u.a. die Konstruktionen der Fluchtpunktperspektive aus dem Kunstunterricht
mit Methoden aus dem Mathematikunterricht untersuchen und zeigen, warum die-
se zu einem zentralprojektiven Bild fiithren. Den Bezug zum Informatikunterricht
haben wir durch die Verwendung einer Programmiersprache erreicht. Mit Kenntnis-
sen aus der analytischen Geometrie im Mathematikunterricht der Oberstufe wurden
Formeln zur Berechnung von Bildpunkten unter einer Zentralprojektion hergeleitet,
welche dann in der Sprache Processing eingepflegt wurden, um Animationen von
Rot-Griin-Bildern zu erzeugen. Mit einer entsprechenden Brille lasst sich dann das

Ergebnis tiberpriifen.

Die Validierung von Resultaten war gleichfalls ein Bestreben in dieser Arbeit. Eine
Aufgabe sollte fiir Schiilerinnen und Schiiler nicht beendet sein, wenn sie ein Ergebnis
erzielt haben, sondern sie sollten auch die Moglichkeit erhalten, dieses zu iiberpriifen.
Hierfiir wurden Materialien im Unterricht entwickelt. U.a. ldsst sich auf einer Plexi-
glasplatte ein zentralprojektives Bild konstruieren, welches dann in eine Halterung
gesteckt wird. Durch eine Lochscheibe, welches sich an der Position des Zentrums
befindet, ldsst sich iiberpriifen, ob Original und Konstruktion iibereinstimmen, denn

der Sehvorgang ist ebenfalls zentralprojektiv.

Zusatzlich sollte eine Vernetzung von verschiedenen Inhalten aus dem Mathema-
tikunterricht ermdglicht werden. Bei der Besprechung der Schulbuchaufgaben durch
Schrigbilddarstellung und Dreitafelprojektion fiel auf, dass der Bezug zur Parallel-
projektion fehlte. Generell scheinen geometrische Abbildungen aus den Schulbiichern
in NRW zu verschwinden, denn auch Kongruenz- und Ahnlichkeitsabbildungen wer-
den nur noch indirekt benannt. Stattdessen liegt der Fokus auf den Bildern und ihren
Eigenschaften, z.B der Symmetrie. Dieser Aspekt erschwert vor allem die Behand-
lung von Invarianten geometrischer Abbildung, wenn die Grundidee einer Abbildung
als Zuordnung von Punkten oder iiberhaupt die Konstruktionsmethoden fehlen. Eine
Person kann die Achsensymmetrie einer Figur untersuchen ohne Kenntnisse iiber die
Achsenspiegelung an sich zu besitzen. Damit wird allerdings kein vernetztes Wis-
sen gefordert, wenn solche Zusammenhénge nicht mehr geliefert werden. Ohne die
Grundkenntnisse einer geometrischen Abbildung wird die sinnvolle Beschéftigung
mit Invarianten erschwert. Kongruenzsitze an Dreiecken werden in den Schulbii-

chern besprochen, ohne den Bezug zur Kongruenzabbildung zu verwenden. Denn
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die Deckungsgleichheit der Dreiecke wird iiber die, bis auf Lage und Orientierung,
eindeutige Konstruktion erklért. Der Satz, dass zwei Dreiecke kongruent zueinander
sind, weil es eine Verkettung von Drehung, Spiegelung und Verschiebung gibt, wel-
che das eine auf das andere abbildet, fehlte in den untersuchten Schulbiichern. Ein
Aspekt, der nicht verwundert, wenn schon bei den Symmetrien die Abbildungen nur
indirekt erwdhnt werden.

Die Verwendung der beschriebenen Aufgaben in der Oberstufe wird &dhnlich er-
schwert. Geradengleichungen aufzustellen und den Durchstoffpunkt mit einer Ebene
zu bestimmen, sind Vorgaben des Lehrplans. Aber die Weiterfiihrung iiber lineare
Abbildungsmatrizen zu homogenen Koordinaten ist nicht mehr moglich. Nach dem
Lehrplan 2014 fiir den Mathematikunterricht der Oberstufe sind Matrizen nur noch
Teil der Stochastik, um Ubergangsprozesse zu beschreiben [25|. Lineare Abbildungen
sind dagegen im Inhaltsfeld der analytischen Geometrie verschwunden. Es war daher
iiberraschend gewesen, dass geometrische Abbildungen und Projektionsmatrizen in

einem Buch der Oberstufe als eigenes Kapitel gefunden wurden.

Wie liefse sich diese Arbeit nun weiter fortfithren? In der Einleitung wurde schon
erwahnt, dass die entwickelten Aufgaben im Sinne einer empirischen Studie nicht
untersucht wurden. Da aber schon die inhaltlichen Grundlagen fiir die Beschéfti-
gung mit der Zentralprojektion weitestgehend fehlen bzw. im Lehrplan nicht bertick-
sichtigt werden, miisste der Unterricht neu ausgerichtet werden, um solche Aufga-
ben an Schiilerinnen und Schiiler erproben zu kénnen. Grund- und Aufriss kennen
sie von der Dreitafelprojektion. Somit konnen die Konstruktionsbeispiele im Unter-
richt besprochen werden. Aber fiir ihre Begriindung bendtigten wir Invarianten wie
Parallelen- oder Teilverhéltnistreue. Und da beginnt wieder das Problem mit dem
fehlenden Kenntnissen {iber geometrische Abbildungen, da der Mathematikunter-
richt laut Lehrplan und Schulmaterial darauf nicht ausgelegt ist.

Schragbilder von Wiirfel und Quader sind nach Lehrplan in der Gesamtschule Teil
der Kompetenzerwartungen nach der sechsten Klasse und nach der zehnten kommen
noch Schrigbilder von Pyramiden, Zylinder und Kegel hinzu. Auffillig ist jedoch,
dass Kongruenzabbildungen, wie Drehung oder Achsenspiegelung, nicht explizit ge-
nannt werden. Hier wird nur das Erkennen von Symmetrien in einer ebenen Figur in
den Kompetenzerwartungen am Ende der sechsten Klasse vorgegeben (24, 22|. Daher
ist es nicht iberraschend, dass sowohl Schrigbilder als auch die Dreitafelprojektion
ohne den Bezug zur Parallelprojektion in den untersuchten Schulbiichern themati-
siert wurden. Hier liegt der Fokus auf der Konstruktion von Rissen und Schragbildern
rein nach Anleitung, ohne diese zu Begriinden oder in einen groferen Zusammenhang
mit der Projektion zu stellen.

Dieser Aspekt wirft folgende Fragen auf: Wie hat sich der Mathematikunterricht im
Laufe der Zeit gedndert? Wurde frither mehr Abbildungsgeometrie betrieben und

hat sich der Fokus auf andere Inhalte wie Arithmetik oder Funktionen verschoben?
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Welche Griinde gab es dafiir?

Der Umgang mit Materialien zur Unterstiitzung der Raumvorstellung war ebenfalls
ein wichtiger Teil dieser Arbeit. Hierfiir wurden drei verschiedene Hilfsmittel ent-
wickelt, welche als reine Prototypen zu werten sind, da sie noch verbesserungsfihig
sind. Die Umsetzung des Perspektographen von Lambert war nicht erfolgreich, da
das verwendete Material nicht geeignet war. Der Kunststoff war nicht stabil genug,
als Material wire Holz oder Metall vielversprechender gewesen. Der Perspektograph
konnte somit nicht verwendet werden. Es blieb bei einer theoretischen Erkldrung,
warum er aus einer ebenen Figur in der Objektebene ein zentralrprojektives Bild
erzeugen kann.

Auch diese Materialien oder auch der Programmcode zur Erstellung von Anagly-
phenbildern wurden von Schiilerinnen und Schiiler nicht getestet, da jene noch ganz
am Anfang ihrer Entwicklung stehen, sowie in Umfang und Zeit dieses Dissertati-

onsprojektes eine Studie dariiber nicht eingeplant war.
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