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Teil I

Einleitung





Kapitel 1

Projektion und Perspektive

1.1 Ziele dieser Arbeit

Die Perspektive ist ein Teilgebiet der Kunst und findet in der Schule normalerweise
nur Anwendung im Zeichenunterricht. Die Schülerinnen und Schüler lernen hier die
Konstruktion von Gebäuden und Häuserreihen mithilfe von einem oder zwei Flucht-
punkten. Dass die Perspektive neben der Kunst und den Entwürfen von Gebäuden
oder Bauteilen auch in der Mathematik ein interessantes Teilgebiet der Darstellenden
Geometrie einnimmt, ist ein Aspekt, welcher in der Schule wenig Beachtung findet.
Als Perspektive bezeichnen wir hierbei die Suggestion von Räumlichkeit auf einer
ebenen Bildfläche. Dazu existieren verschiedene Möglichkeiten, u.a. durch Verkleine-
rung der Objekte, Veränderung der Farbe bzw. der Schärfe (Farbperspektive) oder
der Verwendung von Tiefenlinien, d.h. parallele Geraden im Raum, welche sich im
Bild in einem Fluchtpunkt schneiden. Die untere Abbildung zeigt einfache Beispiele
dieser genannten Methoden.
Letztere entspricht der Zentralperspektive, deren Bilder unter der Verwendung der
Zentralprojektion konstruiert werden. Allgemein wird unter einer Projektion die Ab-
bildung eines Objektes im Raum auf eine zweidimensionale Ebene beschrieben.

Verkleinerung Farbveränderung Tiefenlinien

Abb. 1.1.1 Methoden zur Suggestion von Raum und Tiefe
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Abb. 1.1.2 Übersicht der Inhalte dieser Arbeit

Als perspektivische Abbildung liefert die Zentralprojektion eine Vielzahl an Erkun-
dungsmöglichkeiten nicht nur für Schülerinnen und Schüler. Abb. 1.1.2 stellt eine
Übersicht der verschiedenen Themenbereiche dar, welche in dieser Arbeit behandelt
werden. Ausgehend von der Konstruktion des Bildpunktes (orange) betrachten wir
die Projektion als geometrische Abbildung und stellen ihre Invarianten vor (violetter
Bereich). Wir werden feststellen, dass der euklidische Raum nicht ausreicht, damit je-
der Punkt der Bildebene einem Urbildpunkt im Raum zugeordnet werden kann. Wir
fügen daher dem euklidischen Raum Fernpunkte hinzu und streifen damit ein wei-
teres Teilgebiet der Mathematik, die projektive Geometrie. Mit den Fluchtpunkten
leiten wir zum Kunstunterricht über. In den dort gelehrten Konstruktionsmethoden
zur Zentralperspektive werden u.a. auch solche Fluchtpunkte verwendet (hellblauer
Bereich).
Da in der Sekundarstufe II analytische Geometrie unterrichtet wird, verwenden wir
ihre Methodik, um Bildpunkte zu berechnen statt zu konstruieren (grüner Bereich).
Vom Mathematikunterricht leiten wir dann über in den Informatikunterricht, lassen
unter Einsatz von Programmiersprachen den Computer die Bildpunkte berechnen
und streifen damit letztendlich die Computergrafik.
Das dritte Themengebiet (gelber Bereich) befasst sich mit einem Sonderfall der Zen-
tralprojektion. Da wir auch Fernpunkte betrachten, verschieben wir das Projekti-
onszentrum gedanklich unendlich weit weg von der Bildebene, sodass das Zentrum
zum Fernpunkt wird. Die Projektionsstrahlen sind nun parallel, sodass wir von einer
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Parallelprojektion sprechen. Ihre Bilder werden als Schrägbilder im Unterricht zur
Darstellung von Quader, Würfel oder anderen Prismen verwendet.

Diese Übersicht zeigt, dass sich die Zentralprojektion in den Unterrichtsfächern
Mathematik, Kunst und Informatik integrieren lässt und eine Möglichkeit für
fächerübergreifenden Unterricht bietet.

Die Zentralprojektion ist eine Abbildungsmethode, welche den Raum auf eine Ebene
projiziert. Die Abbildung selbst wird dabei durch einen festen Punkt, welcher Projek-
tionszentrum genannt wird, und der Bildebene definiert. Das Bild eines Punktes im
Raum, welcher nicht gleich dem Projektionszentrum ist, entspricht dem Durchstoß-
punkt der Projektionsgeraden mit der Bildebene. Die Projektionsgerade ist dabei die
Verbindungsgerade des Punktes im Raum und des Projektionszentrums. Demnach
haben alle Projektionsstrahlen das Projektionszentrum gemeinsam.
Ausgehend von dieser Konstruktion werden wir durch logische Schlussfolgerungen
u.a. zeigen, dass der Fluchtpunkt das Bild eines Fernpunktes ist, welcher die Rich-
tung paralleler Geraden beschreibt, während der Horizont das Bild einer Ferngeraden
ist. Die Arbeit stützt sich auf die Axiome der euklidischen Geometrie, wobei wir die
Fernpunkte- und geraden aus der projektiven Geometrie hinzunehmen werden. Da-
bei schneiden sich parallele Geraden in einem Fernpunkt, da sie dieselbe Richtung
aufweisen.

Wir werden Begriffe wie Fluchtpunkt und Horizont bzgl. der Zentralprojektion
einordnen und Konstruktionsmethoden aus dem Kunstunterricht (Fluchtpunkt-
perspektive, Übereck-Perspektive) mathematisch erläutern. Wir werden zeigen,
weshalb diese Methoden funktionieren und wirklichkeitsnahe Bilder erzeugen.

Die vorliegenden Arbeit wurde in drei Teile verfasst. Nach dieser Einleitung folgt im
zweiten Teil die Behandlung der Projektion vom mathematischen Standpunkt aus.
Im dritten Teil betrachten wir die Projektion aus der Sicht der Schule, d.h. was geben
die Lehrpläne vor, welche geometrischen Themen werden momentan behandelt und
wie lässt sich hier die Projektion einordnen. In beiden Teilen werden Aufgabenbei-
spiele vorgestellt, welche exemplarisch eine mögliche Behandlung im Schulunterricht
aufzeigen werden. Wir werden daher in beiden Teilen fachwissenschaftliche und di-
daktische Aspekte ansprechen. Nur der Schwerpunkt ist in beiden Teilen ein anderer.
Im Folgenden werden die einzelnen Kapitel vorgestellt.
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Im Kapitel zu den Grundlagen steht der Abbildungsbegriff und eine Auswahl an
Invarianten im Vordergrund. Die Drehung um einen fixen Punkt und einen Winkel
oder die Achsenspiegelung an einer festen Gerade sind in der Regel noch aus der
Schule bekannte Abbildungen. Sie zählen zu den Kongruenzabbildungen, da sie vor
allem Streckenlängen und Winkel unverändert lassen. Die zentrische Streckung ist ein
Beispiel einer Ähnlichkeitsabbildung. Hierbei bleiben die Winkel noch erhalten, aber
Streckenlängen ändern sich. Allerdings bleibt das Verhältnis zwischen zwei Strecken
fest, weshalb die Objekte zwar vergrößert oder verkleinert, aber nicht verzerrt, er-
scheinen. Die zentrische Streckung wird im Mathematikunterricht der neunten Klasse
thematisiert. Einer der zentralen Sätze ist dabei der Strahlensatz, welcher in einem
eigenen Abschnitt behandelt wird, aufgrund der mehrfachen Anwendung in der vor-
liegenden Arbeit.
Nach den Grundlagen folgt die Definition der Projektion als punktweise Abbildung
des Raumes auf eine Ebene. Je nach Lage von Objekt- zur Bildebene und Zentral-
oder Parallelprojektion kommen Invarianten hinzu oder fallen weg.

Die Invarianten finden auch Verwendung in den Konstruktionsmethoden. Vor
allem die Axonometrie, d.h. die Parallelprojektion von Objekten mit dem Ko-
ordinatensystem, wäre ohne die Teilverhältnistreue nicht möglich.

Die nachfolgenden Kapitel 4 und 5 behandeln Zentral- und Parallelprojektion ge-
trennt voneinander. In beiden Fällen werden Bildpunkte konstruiert oder mithilfe
von Vektoren berechnet.

Konstruktionsverfahren sollten nicht nur erlernt werden, um sie auszuführen.
Stattdessen sollten Schülerinnen und Schüler auch dazu motiviert werden, diese
zu hinterfragen und die Zusammenhänge zur Zentralprojektion als geometrische
Abbildung zu verstehen. Die Auseinandersetzung erfolgt sowohl synthetisch als
auch analytisch.

Am Ende erfolgt eine kurze Einführung in die projektive Geometrie. Schülerinnen
und Schüler sollen hierbei das Konzept von Fern- und Fluchtpunkten über die zentral-
projektive Abbildung zwischen zwei Geraden verstehen. Darauf aufbauend werden
die homogenen Koordinaten eingeführt.
Homogene Koordinaten finden auch Verwendung in der Computergrafik. Mithilfe des
Koordinatensystems kann die Position der Bildpunkte berechnet werden. Es wird sich
herausstellen, dass die Zentralprojektion keine lineare Abbildung ist und somit nicht,
wie eine Drehung um den Koordinatenursprung, durch eine Matrix beschrieben wer-
den kann. Mithilfe homogener Koordinaten wird dies möglich.
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Digitale Medien gehören heutzutage zum Alltag der Schülerinnen und Schüler.
Zum einen lassen sich mit dem Handy schnell zentralprojektive Bilder erzeu-
gen, sodass die Schülerinnen und Schüler an eigenen Beispielen die Anzahl und
die Lage von Fluchtpunkten erkunden können. Zum anderen wollen wir den
Computer zur Erstellung zentralprojektiver Bilder verwenden und thematisie-
ren dabei die Computergrafik, wie sie auch in Computerspielen Verwendung
findet.

Nach der Parallelprojektion und einem kurzen Überblick über die Axonometrie, folgt
der dritte Hauptteil mit dem Bezug zur Schule als Schwerpunkt. Wie hoch ist der
Anteil an Geometrie im Unterricht an Gymnasien und Gesamtschulen in NRW im
Vergleich zu Algebra, Funktionen und Stochastik? Welche Themen aus der Geome-
trie werden im Mathematikunterricht besprochen? Zur Beantwortung dieser Fragen
wurden vom Schulministerium zugelassene Schulbücher gesichtet. Dabei wurden ei-
nige Schulaufgaben zur Zentral- und Parallelprojektion gefunden, welche in einem
eigenem Kapitel vorgestellt und besprochen werden.

Wie hoch ist der Stellenwert der Zentralprojektion im heutigen Mathematik-
unterricht? Es wurden nur wenige Aufgaben zu diesem Thema gefunden. Die
Sichtung der Schulbücher hat generell gezeigt, dass den geometrischen Abbil-
dungen eher eine geringe Gewichtung zugeschrieben wird. Es geht mehr um die
Bilder an sich, z.B. in Bezug auf Symmetrien, also um ihre Entstehung durch
Konstruktion mit dem Geodreieck.

Kapitel 7 greift die Zentralprojektion in der Computergrafik wieder auf, vor allem in
Hinsicht auf die Nutzbarkeit im Schulunterricht. Es wird der Prototyp eines Quellco-
des besprochen, welcher sowohl Zentral- als auch Parallelprojektionen von einfachen,
geometrischen Körpern erzeugt. Aus Einheitskörpern, wie Würfel und Pyramide,
können Schülerinnen und Schüler durch Skalierung, Drehung und Verschiebung ein-
fache Szenen erstellen und diese entweder unter einer Parallel- oder Zentralprojektion
abbilden. Somit lassen sich auch bewegte Rot-Grün Bilder erzeugen. Werden diese
mit einer Rot-Grün Brille betrachtet, erscheinen sie tatsächlich dreidimensional. Für
Schülerinnen und Schüler sollte dies eine spannende Erfahrung sein, wenn sie die Re-
sultate ihrer Berechnungen sogar sehen und selbst beurteilen können. Vor allem die
Möglichkeit, mit dem Quellcode auch bewegte Bilder zu erzeugen, soll dieses Erlebnis
positiv verstärken.
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Der Bezug zur Computergrafik erfüllt zwei Ziele. Zum einen die sinnvolle Nut-
zung digitaler Medien durch Auseinandersetzung mit einer Programmiersprache
und einem Quellcode, der einseh- und veränderbar ist. Hier geht es um mehr als
die algorithmische Berechnung von Bildpunkten. Das andere Ziel ist die Vali-
dierung von Lösungen. Schülerinnen und Schüler sollen die Möglichkeit haben,
zu überprüfen, wie gut die dreidimensonale Wirkung der Rot-Grün Bilder sind.

Neben dem Programmcode wurden auch haptische Materialien für die Verwendung
im Schulunterricht entworfen. Diese werden im letzten Kapitel vorgestellt. Inspiriert
von historischen Schriften wurden Materialien zur Zentral- und Dreitafelprojektion
zuerst am Computer mithilfe eines CAD Programmes konstruiert und mit Pappkar-
ton umgesetzt. Danach wurden erste Prototypen aus Holz, Acrylglas und Kunststof-
fen gebaut und konkrete Aufgaben hierzu entwickelt.

Für das Verständnis der Projektion ist eine gute Raumvorstellung nötig. An-
dererseits liefert sie auch die Möglichkeit, diese zu trainieren. Die entwickelten
Materialien sollen die Schülerinnen und Schüler bei diesem Prozess unterstüt-
zen.

Grundsätzlich war das Ziel dieser Arbeit die mathematische Auseinandersetzung mit
der Zentralprojektion sowie die Erarbeitung von Möglichkeiten, dieses Thema für
den Schulunterricht nutzbar zu machen. Es erfolgte keine empirische Untersuchung
der entwickelten Aufgaben und Materialien. Im Vordergrund stand die Verknüpfung
zu anderen Unterrichtsfächern, damit Schülerinnen und Schüler Mathematik als ein
Werkzeug verstehen, welches auch außerhalb des Mathematikunterrichtes Verwen-
dung findet. So konnten vor allem Bezüge zur Kunst und Informatik erstellt werden.
Zentralprojektion gibt es auch in der Physik, wenn es um Optik geht, denn der
menschliche Sehvorgang entspricht einer Projektion mit zwei Zentren, unseren Au-
gen. Da diese Arbeit aufgrund ihres Umfanges eingegrenzt werden musste, wurde
dieser Aspekt nicht mehr berücksichtigt.
Die Aufgabenbeispiele und Materialien wurden mit dem Ziel konzipiert, die Schüler-
innen und Schüler zu logischen Denkweisen anzuregen. Es sollte im Mathematik-
unterricht nicht primär um Inhalte gehen, denn diese werden von den Schülerinnen
und Schüler sicherlich vergessen, wenn sie nach der Schule Berufe wählen, welche nur
wenig Mathematik benötigen. Was bleibt sind Kompetenzen, wie bspw. Aneignung
von neuem Wissen oder Erstellung von Zusammenhängen, Umgang mit Problemen,
Wechsel von Sichtweisen usw.
Was gibt die Aufgabenstellung vor? Lassen sich mehrere Lösungswege finden oder
sogar auch verschiedene Lösungen? Wie gelangt man schrittweise zu einer Lösung
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durch logischen Schlussfolgerungen statt auszuprobieren?

Diese Arbeit soll aufzeigen, welche Möglichkeiten hierzu die Zentralprojektion
als Thema zur Aneignung dieser Kompetenzen bietet, sie stellt sich aber nicht
auf den Standpunkt, dass nicht auch andere Themen hierzu geeignet wären.

Der Mathematikunterricht sollte nicht nur daraus bestehen, Rechnungen in den Ta-
schenrechner einzugeben oder gar vorgezeigte Algorithmen nachzuahmen. Viel mehr
sollen Schülerinnen und Schüler dazu ermutigt werden, durch logischen Schlussfolge-
rungen solche Algorithmen oder Lösungsmethoden selbst zu entwickeln. Zur besseren
Erklärung wird im folgenden Abschnitt eine Beispielaufgabe aus einem Schulbuch
vorgestellt.
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1.2 Lösung einer Schulbuchaufgabe

Die folgende Aufgabe ist aus dem Schulbuch mathe live 8 zum Thema Schrägbilder
und Dreitafelprojektion [27, S. 17]. Wir stellen die Aufgabe vor und zeigen dann
eine Herangehensweise, welche schrittweise zur Lösung führt und sogar zeigt, dass es
mehrere Lösungen gibt.

Würfel, Quader, quadratische
Pyramide, Zylinder, gekipptes
Prisma

Kugel, Kegel, Zylinder

Pyramide, Kegel, Prisma

Abb. 1.2.1 Beispiel einer Aufgabe in
Klasse 8 [27, S. 17]

Gegeben ist ein Quadrat, ein Kreis und ein
Dreieck. Sie stellen jeweils eine Ansicht ei-
nes unbekannten Körpers dar, d.h. sie ent-
sprechen einem Rissbild in einer Dreitafel-
projektion (Abs. 3.3, S. 59).
Die Schülerinnen und Schüler sollen mindes-
tens drei passende Körper finden. Eine Her-
angehensweise ist nun, einfach alle bekann-
ten Körper auszuprobieren, da ihre Anzahl
in der Schule relativ übersichtlich ist. In der
nebenstehenden Abbildung steht unterhalb
der Ansichten einige Lösungsvorschläge.
Eine andere Herangehensweise ist, sich der
Lösung durch logische Schlussfolgerungen
anzunähern. Was ist die Ausgangssituati-
on in der Aufgabenstellung und welche An-
forderungen muss die Lösung erfüllen? Was
bleibt variabel, welche Eckpunkte oder Kan-
ten der Objekten lassen sich verändern, so-
dass die Voraussetzungen dennoch erfüllt
bleiben?

Die Schülerinnen und Schüler können bspw. mit einer dynamischen Geometriesoft-
ware wie GeoGebra die Ausgangssituation nachbauen und die o.g. einzelnen Fragen
durchgehen. Wir besprechen dazu den ersten Teil der Aufgabe mit dem Quadrat als
Seitenriss. Hierbei sind in den Abbildungen abhängige Punkte, wie Schnittpunkte,
schwarz markiert und die verschiebbaren in blau. Für die Lösung dieser Aufgabe
ist kein Koordinatensystem nötig. Da wir als visuelle Unterstützung aber GeoGebra
verwenden, müssen wir hier eine Bildebene festlegen, in unserem Fall die xz-Ebene.
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1. Schritt: Wir öffnen in GeoGebra
die 3D sowie die Algebra Ansicht. Mit
dem Werkzeug zur Erstellung von Ebe-
nen markieren wir die rote x- sowie die
blaue z-Achse und erhalten die Bildebe-
ne. Mit dem Werkzeug zur Flächenerstel-
lung zeichnen wir ein Quadrat, wie es
in der Aufgabenstellung vorgegeben wird.
Die Kantenlänge und Lage in der Bildebe-
ne kann dabei beliebig gewählt werden.

2. Schritt: Da das Quadrat das Bild ei-
ner Dreitafelprojektion ist, ist dies das Er-
gebnis einer orthogonalen Projektion ei-
nes noch unbekannten Körpers auf die Bil-
debene. Wir ergänzen daher die Projek-
tionsstrahlen, welche senkrecht zur Bilde-
bene stehen und durch die Eckpunkte des
Quadrates verlaufen.

3. Schritt:Wir wissen, dass die Eckpunk-
te des gesuchten Körpers auf den Pro-
jektionsstrahlen liegen müssen. Schüler-
innen und Schüler können daher auf die
Idee kommen, einfach vier Punkte auf den
Strahlen zu setzen und zu einem Viereck
zu verbinden. Markieren wir die ersten drei
Punkte, so wird von dem Programm noch
eine Fläche gezeichnet. Sobald der vierte
hinzukommt, wird die Fläche i. d. R. ver-
schwinden und der Inhalt der Fläche in der
Algebra Ansicht als ? ausgegeben.
Schülerinnen und Schüler sind nun in der
Situation, sich zu überlegen, wie viele
Punkte eine Ebene festlegen.
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3. Schritt, neuer Versuch: Drei nicht
kollineare Punkte legen eine Ebene fest
(vgl. Axiom (E1) in Kapitel 2.2, S. 25).
Wir verwenden in GeoGebra das Tool, ei-
ne Ebene aus den ersten drei Punkten auf
den Strahlen zu bilden. Diese wird die vier-
te Gerade in einem Punkt schneiden. Mar-
kieren wir nun diese vier Punkte, so bildet
sich eine Fläche und das Fragezeichen ver-
schwindet aus der Objektliste. Somit blei-
ben für die erste Fläche nur drei der vier
Eckpunkte variabel.

4. Schritt:Wir verfahren genauso mit der
gegenüberliegenden Fläche und rekonstru-
ieren so schrittweise den Körper.

1. Lösung: Wir ergänzen die fehlen-
den Kanten und haben eine erste Lösung
konstruiert. Nun können die Schüler-
innen und Schüler überlegen, welche
Möglichkeiten sie haben, um den Kör-
per zu verändern, ohne dass sich der
Seitenriss ändert. Beide Flächen werden
durch jeweils drei Punkte festgelegt. Sie
können also insgesamt sechs Punkte auf
den Geraden verschieben. Wie müssen
die Punkte bspw. liegen, damit die ihnen
bekannten geometrischen Körper entste-
hen?
Wir richten die Flächen parallel zuein-

ander aus. Es entsteht ein Quader (Abb. 1.2.2). Sind die vier verbleibenden Kanten
gleich lang, so entsteht als Sonderfall der Würfel. Verkippen wir die Flächen derart,
dass sie zwar noch parallel sind, aber nicht mehr parallel zur Bildebene, so liegen
die vier letzten Kanten nicht mehr senkrecht auf den Seitenflächen. Es entsteht ein
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Parallelepiped, wobei dieser Körper im Unterricht wohl eher selten besprochen wird.
Als vierte Möglichkeit ergibt sich ein verkipptes Prisma mit dreieckiger Grundfläche.

Abb. 1.2.2 Geometrische Körper anhand der ersten Lösung

2. Lösung: In der ersten Lösung wurde
die Situation mit vier Projektionsstrah-
len untersucht. Schülerinnen und Schüler
könnte auffallen, dass wir zwar so Wür-
fel und Quader finden konnten, aber ei-
ne quadratische Pyramide erfüllt ebenfalls
diesen Seitenriss. Was müssen wir also än-
dern, damit auch diese Lösung auftaucht?
Gehen wir davon aus, dass der Körper
nicht durchsichtig ist, so können wir zwi-
schen den vier Geraden weitere Projek-
tionsgeraden hinzufügen. So entsteht die
quadratische Pyramide (Abb. 1.2.3) oder
auch ein Pyramidenstumpf.

3. Lösung: Nun fehlt noch der Zylinder.
Hierbei ist der Seitenriss eine Schnittfläche
des Körpers mit einer zur Bildebene par-
allelen Ebene. Daher lässt sich auch ein
Prisma mit dreieckiger oder trapezförmi-
ger Grundfläche finden. Eine Übersicht der
weiteren Lösungen zeigt Abb. 1.2.3.
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Abb. 1.2.3 Geometrische Körper anhand der zweiten und dritten Lösung

Die Aufgabenstellung des Schulbuches ermöglicht eine intensive Auseinandersetzung
mit der Dreitafelprojektion, sofern diese auch als orthogonale Parallelprojektion im
Unterricht besprochen wurde. Andernfalls fehlt den Schülerinnen und Schüler die
Kenntnisse, welche für den schrittweisen Lösungsweg nötig sind. Wir werden leider
bei der Besprechung weiterer Schulbuchaufgaben zum Thema Dreitafelprojektion
feststellen, dass oft der Zusammenhang zur Parallelprojektion nicht aufgezeigt wird
und somit Schülerinnen und Schüler nur noch die Möglichkeit bleibt, bekannt Körper
einfach auszuprobieren. Dies stärkt aber weder logische Denkweisen noch die Raum-
vorstellung.

Mit der Aufgabe sollte der didaktische Anspruch bzw. die Ausrichtung dieser Arbeit
nun geklärt sein. Bevor wir den ersten Hauptteil zur mathematischen Auseinander-
setzung der Zentralprojektion beginnen, liefert der folgende Abschnitt eine kurze
Übersicht der historischen Entwicklung, von der Antike bis zur Renaissance, welche
als Geburtsstunde der Zentralperspektive gewertet wird.
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1.3 Historischer Überblick zur Entwicklung der Perspek-
tive

Abb. 1.3.1 Skizze einer antiken Wand-
malerei mit Scheinarchitektur als Bei-
spiel der Teilungskonstruktion

Schon zu früheren Zeiten gab es das
Bestreben, durch Zeichnungen auf ebe-
ner Fläche einen räumlichen Eindruck
zu erwecken. So finden sich Wandma-
lereien mit Fenstern bzw. Säulengän-
gen mit Ausblick auf imaginäre Land-
schaften oder Scheinarchitekturen aus
der Antike. Vermutlich aus der Beob-
achtung heraus wurden die Tiefenlinien
schräg gezeichnet, sodass sie zusammen-
laufen, je tiefer sie in die Bildebene hin-
einragten. Auffällig jedoch ist, dass die-
se sich nicht in einem zentralen Flucht-
punkt schneiden, sondern in mehreren,
welche vertikal übereinander liegen.
Abb. 1.3.1 zeigt eine Skizze einer Wandmalerei im Haus des Augustus auf dem Pala-
tin in Rom, welche dem 2. Stil der römischen Wandmalerei zugeordnet wird. Dieser
Stil ist von 80 bis 20 v. Chr. datiert. Die Verwendung der schräg verlaufenden Tiefen-
linien suggeriert eine räumliche Tiefe, auch wenn die Scheinarchitektur noch verzerrt
und flach wirkt. Nach dem Deutschen G. J. Kern wird diese Art der Darstellung als
Teilungskonstruktion bezeichnet [20], welche noch bis ins 5. Jh. n. Chr. nachgewiesen
werden kann.
In der Zeit danach kommt die Weiterentwicklung der perspektivischen Darstellung
zum Erliegen, denn im Mittelalter erlischt das Bestreben nach räumlicher Illusion in
Europa. Die Ikonenmalerei trat verstärkt in den Vordergrund, die weniger Wert auf
die perfekte Suggestion von Raumtiefe als auf die symbolhafte Darstellung biblischer
Ereignisse legte. Erst zur Zeit der Renaissance erlebte die Perspektive einen neuen
Aufschwung in Italien und Deutschland. Daher wird in der Literatur oftmals die
Renaissance als die Geburtsstunde der Zentralperspektive genannt, da zu dieser Zeit
mit Brunelleschi , Pietro della Francesca und Albrecht Dürer Abhandlungen über
konkrete Konstruktionsprinzipien zu finden sind. Abb. 1.3.2 zeigt eine Übersicht der
historischen Entwicklung der Perspektive in der Mathematik und Kunst. Zur Zeit der
Antike sind einige Beispiele zur Erzeugung von Raumillusionen genannt, während für
die Renaissance bedeutende Personen gelistet sind. Die Länge der grau unterlegten
Boxen richtet sich nach der Zeitspanne, in welcher sie lebten. Daneben sind ihre Rol-
len bei der Etablierung der Perspektivkonstruktion sowie wichtige literarische Werke
genannt.
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Es wird deutlich, dass nach demMittelalter in der Renaissance die Perspektive wieder
in den Fokus der Wissenschaftler und Künstler rückte. So findet sich in italienischen
Wandmalereien die Teilungskonstruktion in Decken- und Bodendarstellungen wieder
[19, S. 42], bspw. in Ugolino da Siena - Geißelung Christi, Barna da Siena - Abend-
mahl oder Lorenzo di Bicci - Enthauptung des Apostels Jakobus d. Ä., um nur einige
Beispiele aus dem zitierten Werk von G. J. Kern zu nennen.

Der Bildhauer und Architekt Brunelleschi war im 15. Jahrhundert in Florenz be-
kannt für seine Bauwerke und gilt noch heute als Erfinder der Zentralperspektive
[41, S. 20], welcher seine Konstruktionsmethoden an seinen Schüler Masaccio wei-
tergab. Ein berühmtes Experiment Brunelleschis bestand darin, dass er ein Abbild
des Baptisterium in Florenz zentralprojektiv auf einer Tafel abbildete [8]. An die
Stelle des Fluchtpunktes wurde ein Loch gebohrt. Der Betrachter sollte nun vor dem
Baptisterium stehend durch die Rückseite des Loches schauen. Dort sah er dann
auf einen Spiegel, welcher das konstruierte Abbild des Gebäudes auf der Vordersei-
te zeigt. Den Aufzeichnungen Manettis, dem Biographen Brunelleschis und einzige
Quelle aus dieser Zeit, zufolge, glaubte der Betrachter, er sehe tatsächlich durch das
Loch das echte Bauwerk und nicht nur eine Zeichnung dessen. Die Tafel mit dem
Abbild des Bauwerkes ist nicht erhalten geblieben und es gibt ebenso keine zeitge-
nössische Aufzeichnung darüber, wie genau Brunelleschi die Projektion konstruiert
hat [41, S. 24].
Eine der ersten Beschreibungen der neuen Darstellungsmethode findet sich in den
Schriften von Leon Battista Alberti , welcher 1435 im Werk De pictura zwei Varianten
beschreibt [41, S. 20], [7, S. 136]. Die erste ähnelt der Fluchtpunktkonstruktion, wel-
che Abb. 1.3.3 zeigt. Auf der rechteckigen Bildfläche wird die Größe eines Menschen
festgelegt und auf dessen Höhe der Horizont gezeichnet. Nach Alberti ist der Mensch
drei braccia, einem damals verwendeten Längenmaß, groß. Die untere Bildseite wird
daher in ein Drittel der festgelegten Größe des Menschens unterteilt. Auf dem Hori-
zont wird der Fluchtpunkt festgelegt. Da in diesem Fall der Zentralstrahl, d.h. der
Sehstrahl durch das Zentrum, welcher senkrecht auf die Bildebene fällt, in diesem
Punkt die Bildebene durchstößt, wird jener auch als Hauptpunkt H bezeichnet. Nun
werden alle unteren Abschnitte mit H verbunden, um die Tiefenlinien zu erhalten.
Diese sind im Raum die Parallelen zum Zentralstrahl und liegen ebenfalls orthogonal
zur Bildebene.
Um eine regelmäßige Unterteilung des Bodens in Quadrate zu erreichen, fehlen noch
die Transversalen, d.h. die horizontalen Linien, welche parallel zur Bildebene verlau-
fen. Wir werden später noch zeigen, dass der Abstand der Transversalen abhängig
von der Distanz des Betrachters zur Bildebene ist (vgl. Abb. 6.4.16, S. 253). Albertis
Lösung besteht darin, die Lage von Betrachter und Bildebene in einer Seitenansicht
zu skizzieren. Wir zeichnen neben dem Rechteck eine Linie auf Höhe der Grundlinie.
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Abb. 1.3.3 Die Costruzione legittima nach Leon Battista Alberti [8, S. 82]

Da die Transversalen ebenfalls den Abstand von einem braccia haben sollen, wird die
Linie mit diesem Maß unterteilt. Aufgrund der Seitenansicht wird die Bildebene zur
Linie, welche die Objektebene u.a. im grau markierten Punkt schneidet. Nun muss
das Zentrum Z der Projektion festlegt werden. Die Lage des Horizontes bestimmt die
Höhe von Z. Der Abstand zur Bildebene kann dagegen frei gewählt werden. Anschlie-
ßend werden die Seh- bzw. Projektionsstrahlen eingezeichnet, welche die Bildebene
auf Höhe der projizierten Transversalen schneidet. Diese werden auf das linke Recht-
eck übertragen, sodass letztendlich ein Schachbrettmuster entsteht. Zur Kontrolle
sollten sich die Diagonalen in einem anderen Fluchtpunkt schneiden, da diese im
Raum ebenfalls parallel sind, allerdings in eine andere Richtung zeigen, als die Tie-
fenlinien [8, S. 81], [51, S. 58]. Damit lässt sich die Projektion eines Raumes in gleiche
Abschnitte unterteilen, sodass sich Objekte im projizierten Raum platzieren lassen.

Die zweite Methode erinnert an einen Kupferstich in Dürers Underweysung der Mes-
sung, in welcher die Szene durch ein Gitter betrachtet wird. Die Bildebene ist eben-
falls in ein Gitter unterteilt, sodass nun der Künstler die gesehene Szene in die
einzelnen Felder übertragen kann. Diese Methode orientiert sich an der Vorstellung,
dass das gesehene Bild einem Schnitt durch die Sehstrahlpyramide aus der Optik ent-
spricht [41, S. 21]. Wir werden bei der Besprechung der Invarianten der Projektion
feststellen, dass die Zentralprojektion eine Ähnlichkeitsabbildung ist, wenn Objekt
und Bildebene zueinander parallel sind. Demnach müssen lediglich die Streckenver-
hältnisse des Gitters auf dem Schleier und der Bildebene übereinstimmen. Nachteil
der zweiten Methode ist allerdings, dass nur real existierende Objekte abgebildet
werden können. Hier steht im Vordergrund die Abbildung der Wirklichkeit auf eine
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zweidimensionale Bildfläche und nicht die Konstruktion eines fiktiven Raumes mit-
hilfe von Horizont und Fluchtpunkten [7, 136f].
Die Bilder einer Zentralprojektion sind abhängig vom Standort und Höhe des Be-
trachters relativ zur Bildebene. Damit die Raumwirkung perfekt ist, muss der Be-
trachter einen bestimmten Standpunkt vor dem Bild einnehmen. Der Fluchtpunkt
bekommt eine besondere Bedeutung mit dem Werk von Piero della Francesca. Nach
der damaligen Theorie zur Optik gingen Sehstrahlen vom Auge aus und trafen auf die
Objekte. Dabei bildet sich die sog. Sehstrahlpyramide, dessen Spitze im Auge liegt.
Wie bei der Konstruktion von Alberti schon erwähnt wurde, entspricht die Höhe dem
zentralen Sehstrahl, welcher die Bildebene orthogonal durchstößt. Der Lotfußpunkt
wird Hauptpunkt genannt und befindet sich auf dem Horizont. Der Fluchtpunkt al-
ler Tiefenlinien, welche senkrecht zur Bildebene stehen, fällt mit dem Hauptpunkt
zusammen (vgl. Konstruktionsmethode 4.3.2, S. 110). Da die Projektion der Tie-
fenlinien in einem Punkt zusammenlaufen, nutzten Maler diese zur Blickführung des
Betrachters. Ein bekanntes Beispiel ist das Abendmahl von Leonardo, wo der zentrale
Fluchtpunkt auf das Haupt Christi weist [7, S. 145].

Neben der Entwicklung der Perspektive in der Kunst und Architektur gab es auch
eine in den mathematischen Wissenschaften, wo die Perspektive zur Begründung der
Projektiven und Darstellenden Geometrie führte. Der Mathematiker G. Ubaldi kon-
struierte in seinemWerk Perspectiva den Fluchtpunkt der Tiefenlinien, d.h. Geraden,
welche nicht parallel zur Bildebene verlaufen, über die Parallele zur Tiefenlinie durch
das Projektionszentrum [2, S. 17] (Vgl. Satz 3.1.3, S. 49). Der Schweizer Mathema-
tiker und Physiker J. H. Lambert schrieb 1759 Die freye Perspektive, in welcher er
auch seinen Perspektographen vorstellte. Dieser wurde im Rahmen der Arbeit nach-
gebaut. Der Entwurf sowie seine Funktionsweise werden im Abschnitt 8.1, S. 312,
erläutert.
Die Darstellende Geometrie sowie die Projektive Geometrie sind eng verknüpft mit
der Zentralprojektion und ihrer Deutung als mathematische Raumtheorie, derer sich
vor allem der Mathematiker Girard Désargues annahm. Somit begann die Ausein-
andersetzung mit der Perspektive in der Malerei und Architektur und setzte ihren
Weg in der mathematischen Wissenschaft fort.
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Kapitel 2

Grundlagen

Die Zentralprojektion ist eine geometrische Abbildung, welche Punkte im Raum den
Punkten einer festgelegten Ebene zuordnet. In den folgenden Abschnitten wollen wir
einige grundlegende Begriffe einführen, welche für die Behandlung der Projektion
nötig sind. Wir verwenden dabei den euklidischen Raum mitsamt seiner Metrik, da
wir auch Abstände und Winkel behandeln werden. Zusätzlich werden wir die Fern-
elemente der projektiven Geometrie hinzunehmen. Dies hat zur Folge, dass nun zwei
verschiedene Geraden sich immer schneiden werden. In dem Sonderfall, dass sie par-
allel sind bzw. dieselbe Richtung aufweisen, schneiden sich diese in einem Fernpunkt.
Die Hinzunahme von Fernelementen führt dazu, dass die Projektion eine surjektive
Abbildung wird, d.h. zu jedem Punkt der Ebene existiert mindestens ein Urbildpunkt
im Raum.

Das Besondere an geometrischen Abbildungen sind ihre Invarianten, d.h. Eigenschaf-
ten von Objekten, welche durch das Abbilden nicht verändert werden. So bleiben bei
Kongruenzabbildungen Winkel und Streckenlängen erhalten, während Ähnlichkeits-
abbildungen zwar winkel- aber nicht längentreu sind. In der neunten Klasse wird
im Mathematikunterricht an Gesamtschulen und Gymnasien in NRW die zentrische
Streckung besprochen und mit ihr das Streckenverhältnis. Weil die Projektion u.a.
das Teil- und Doppelverhältnis invariant lässt, diese aber im Unterricht in der Regel
nicht thematisiert werden, wird in einem Abschnitt gesondert darauf eingegangen.
Bzgl. der zentrischen Streckung erlernen Schülerinnen und Schüler den Strahlensatz.
Da dieser bei Herleitungen von Formeln und Beweisführungen zur Zentralprojektion
öfters angewendet wird, wird der erste und zweite Strahlensatz kurz wiederholt.
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2.1 Die Objekte

Zur Behandlung geometrischer Problemstellungen werden im schulischen Unterricht
die Objekte Punkt, Gerade und Ebene verwendet. Dabei soll der betrachtete An-
schauungsraum im euklidischen Sinne aus unendlich vielen Punkten bestehen. Die
Objekte werden wie folgt bezeichnet [12, S. 2]:

Definition 2.1.1: Punkt, Gerade, Ebene

i) Der Raum bestehe aus unendlich vielen Punkten, welche mit Großbuch-
staben A,B,C, ... bezeichnet werden.

ii) Eine Gerade sei eine eindimensionale Menge von Punkten, wobei jene mit
Kleinbuchstaben a, b, c, ... bezeichnet werden. Gilt A ∈ g, so bedeutet dies
in der Anschauung, dass der Punkt A auf der Geraden g liegt.

iii) Eine Ebene sei eine zweidimensionale Menge von Punkten, wobei jene mit
griechischen Großbuchstaben E,Π,Σ, ... bezeichnet werden. Gilt A ∈ Π

bzw. g ⊂ Π, so bedeutet dies, dass der Punkt A bzw. die Gerade g in der
Ebene Π liegt.

In der obigen Definition liegt eine Inzidenzrelation zwischen Punkte und Geraden
bzw. Ebenen vor. Liegen alle Punkte einer Geraden g auch auf einer Geraden h, so
sind diese identisch, d.h. g = h. Gibt es dagegen nur einen gemeinsamen Punkt, so
wird dieser Schnittpunkt genannt. Wir werden später anhand der zugrunde gelegten
Axiome zeigen, dass zwei verschiedene Geraden nicht mehr als einen Schnittpunkt
gemeinsam haben können. Liegen beide Geraden in einer Ebene und haben keinen
Punkt gemeinsam, so wird dies als echt parallel bezeichnet.
Da die Zentralprojektion eine Abbildung ist, welche parallele Geraden, bis auf Aus-
nahmen, auf sich schneidende abbildet, würde dies zu folgendem Problem führen: die
Abbildung ist nicht surjektiv, denn nicht alle Punkte der Bildebene besitzen min-
destens ein Urbild im Raum. Der Schnittpunkt der Bildgeraden, dem Fluchtpunkt,
kann kein gewöhnlicher Punkt als Urbild zugeordnet werden, denn parallele Geraden
schneiden sich im euklidischen Sinne nicht. Es wird daher im nächsten Abschnitt
axiomatisch gefordert, dass zwei verschiedene Geraden immer einen gemeinsamen
Punkt besitzen. Für den Parallelfall wird der euklidische Raum daher um sog. Fern-
punkte aus der Projektiven Geometrie erweitert. Um gewöhnliche Punkte von den
Fernpunkten zu unterscheiden, werden jene mit ? gekennzeichnet. Ist S ein gemein-
samer Punkt zweier verschiedener Geraden g und h in einer Ebene, so schneiden sie
sich in einem gewöhnlichen Punkt. In Abb. 2.1.1 ist der gemeinsame Punkt von g

und h der Fernpunkt S?, sodass g und h echt parallel sind. Die Richtung der Geraden
wird in der Abbildung über die Pfeildarstellung bei S? angegeben. So sind in Abb.
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Σ

Π
R?

S?

s?

hg

d

e
Abb. 2.1.1 Parallele Ge-
raden und ihre Fernpunk-
te, wie auch parallele Ebe-
nen mit einer Ferngeraden

2.1.1 die Geraden d und e parallel, allerdings ist ihre Richtung eine andere als die
von g und h. Sie schneiden sich demnach in einem anderen Fernpunkt R?.
Im Raum schneiden sich zwei verschiedene Ebenen Π und Σ in einer Schnittgera-
den s. Auch hier lässt sich das Prinzip der Fernelemente anwenden. So schneiden
sich in Abb. 2.1.1 die parallelen Ebenen Π und Σ in einer Ferngeraden s?, welche
die Fernpunkte S? und R? enthält. Wir werden später zeigen, dass der Horizont die
Projektion einer Ferngeraden ist.

2.2 Die Axiome

Die Arbeit ist schulnah ausgerichtet. Daher wird der euklidische Raum mit den ent-
sprechenden Axiomen Zugrunde gelegt, wie auch seine Metrik für Strecken und Win-
kel. Im Sinne einer projektiven Erweiterung werden folgende Axiome verändert [12,
S. 3]:

Axiome 2.2.1

(G1) Zwei verschiedene Punkte legen genau eine Gerade fest. Dabei heißt die
Gerade, welche durch die Punkte A und B festgelegt wird, die Verbin-
dungsgerade AB.

(G2) Zwei verschiedene Geraden, welche in einer Ebene liegen, schneiden sich
in einem Punkt.

(E1) Folgende Kombinationen legen genau eine Ebene fest:

a) drei verschiedene nicht-kollineare Punkte

b) zwei verschiedene Geraden, welche sich schneiden

c) eine Gerade und ein Punkt, welcher nicht auf jener liegt

(E2) Zwei verschiedene Ebenen schneiden sich in einer Schnittgeraden.
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Während in (G1) und (E1) nicht nur die Existenz sondern auch die Eindeutigkeit der
Objekte gefordert wird, kann die fehlende Eindeutigkeit in (G2) und (E2) mithilfe
der anderen Axiome wie folgt indirekt bewiesen werden.

Satz 2.2.2

Der Schnittpunkt S zweier verschiedener Geraden a und b ist eindeutig, ebenso
die Schnittgerade s zweier verschiedener Ebenen E und Π.

Beweis.
Annahme: Es sei P 6= S ein zweiter Schnittpunkt von a, b sowie p 6= s eine zweite
Schnittgerade der Ebenen. Dann gilt a∩b = {S, P}. Wegen (G1) ist SP die eindeutige
Verbindungsgerade, d.h. a = SP = b. Dies steht im Widerspruch dazu, dass a und
b zwei verschiedene Geraden sind. Analog führt auch (E1) bzgl. der Ebenen zum
Widerspruch.

�

Da zwei verschiedene Punkte genau eine Gerade festlegen, kann die Verbindungsge-
rade von A und B als AB oder BA bezeichnet werden. Durch das Hinzufügen von
Fernelementen ist auch das Parallelenaxiom durch die o.g. Axiome berücksichtigt,
wie folgender Satz zeigt:

Satz 2.2.3

Zu einer Geraden g und einem Punkt P existiert genau eine Gerade h mit:

P ∈ h und h ‖ g

Beweis.
Jede Gerade hat eine Richtung, d.h. g inzidiert mit einem Fernpunkt G?. Nach (G1)
legen zwei Punkte genau eine Gerade fest. Sei h die Gerade, welche mit P und G?

inzidiert. Da g und h sich in demselben Fernpunkt schneiden, sind sie parallel.
�
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2.3 Das Teil- und Doppelverhältnis

Werden verschiedene Abbildungen auf ihre Eigenschaften untersucht, so stellt sich
auch die Frage, ob es Eigenschaften gibt, welche sich durch die Abbildung nicht än-
dern, d.h. invariant sind. Liegt beispielsweise eine Kongruenzabbildung vor, welche
folglich eine Figur auf eine deckungsgleiche Figur abbildet, so bleiben u.a. Strecklän-
gen und Winkelgrößen erhalten. Wird ein Rechteck durch eine zentrische Streckung
vergrößert, so bleiben die Winkel erhalten, aber die Seitenlängen verändern sich, al-
lerdings nicht beliebig, sondern um einen festen Faktor. Somit bleibt das Verhältnis
zwischen dem Bild und der ursprünglichen Strecke erhalten, d.h. die zentrische Stre-
ckung ist streckenverhältnistreu.

Da im Abschnitt 2.4.2 einige Invarianten von Abbildungen besprochen werden, wer-
den im Folgenden die Begriffe Teilverhältnis und Doppelverhältnis erläutert. Diese
werden im Mathematikunterricht an Gesamtschulen und Gymnasien in NRW in der
Regel nicht besprochen, da sie im Lehrplan nicht vorausgesetzt werden, im Gegen-
satz zu längen- und winkeltreu, da sie Invarianten von Kongruenzabbildungen sind.
Einige Invarianten der Projektion werden bei der Konstruktion von Bildern verwen-
det. Schülerinnen und Schüler sollten sich daher auch mit diesen beiden Begriffen im
Unterricht auseinandersetzen, wenn später Konstruktionsverfahren aus dem Kunst-
unterricht mathematisch begründet werden sollen. Zur Vereinfachung wird sowohl
die Strecke als Objekt mit AB bezeichnet wie auch ihre Länge, d.h. d(A,B) = AB.
Es ist daher dem Kontext zu entnehmen, welche der beiden Bedeutungen gemeint ist.

(1)

A

B

C D

(2)

A

B = C

D

(3)

A BT

Abb. 2.3.1 (1) und (2) sind Strecken mit
dem Streckenverhältnis AB : CD,
während (3) sich auf das Teilverhält-
nis TV (A,B, T ) bezieht.

Wir besprechen im Folgenden das
Teilverhältnis mit Aufgabenbeispielen.
Wird der Mittelpunkt einer Strecke auf
den Mittelpunkt der Bildstrecke abge-
bildet, so ist die Abbildung teilverhält-
nistreu. Wir betrachten also Verhält-
nisse von Streckenlängen. Nun könnten
Schülerinnen und Schüler meinen, dies
wäre dasselbe wie streckenverhältnis-
treu, eine Eigenschaft von Ähnlichkeits-
abbildungen. Tatsächlich gibt es aber
einen Unterschied zwischen den beiden
Begriffen. Bei der Streckenverhältnis-
treue betrachten wir zwei verschiedene
Strecken AB und CD. In ihrer Lage sind sie nicht abhängig von einander, d.h.
Anfangs- und Endpunkte können verschieden sein oder auch nicht. Im anderen
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Fall betrachten wir eine Strecke AB, welche von einem Punkt T geteilt wird, d.h.
Anfangs-, End-, und Teilungspunkt sind kollinear. Abb. 2.3.1 zeigt den Unterschied.
Wir kommen nun zur Definition des Teilverhältnisses einer Strecke:

Definition 2.3.1: Teilverhältnis

Gegeben seien drei PunkteA,B,C einer Geraden. Das Teilverhältnis TV (A,B,C)

ist dann das Verhältnis der Streckenlängen AC : BC. ([47], S. 52)

C ist dabei der Teilungspunkt von AB.

In der folgenden Abbildung ist ein Beispiel zur o.g. Definition gegeben. Dabei ergeben
sich folgende Teilverhältnisse auf der Strecke AB und dem Teilungspunkt C bzw. D.

AC : BC = 2 LE : 6 LE = 1 : 3

AD : BD = 4 LE : 12 LE = 1 : 3

6 LE4 LE 2 LE
A BCD

Abb. 2.3.2 C und D sind Teilungspunkte der Strecke AB

Es ergibt sich dasselbe Verhältnis, obwohl sich die Lage der Teilungspunkte C und
D bzgl. der Strecke AB qualitativ unterscheidet: C liegt auf dem Streckenabschnitt
AB, D dagegen nicht.
Zur Unterscheidung, ob der Teilungspunkt zwischen den Punkten A und B liegt, oder
außerhalb der Strecke AB, wird der Geraden ein Richtungssinn zugeordnet, sodass
Streckenlängen AB und BA durch ein negatives Vorzeichen unterschieden werden.
Negative Strecken würden aber in der Schule zum Konflikt führen. Ebenso auch der
weiter gefasste Begriff des Streckenverhältnisses, wo rein intuitiv davon ausgegangen
wird, dass der Teilungspunkt innerhalb der betrachteten Strecke liegt und nicht au-
ßerhalb. Aus didaktischen Gründen verzichten wir daher auf den Richtungssinn einer
Geraden und auf negative Streckenlängen.

Zum Einstieg können Schülerinnen und Schüler verschiedene Teilverhältnisse wie in
der obigen Abb. 2.3.2 berechnen. Doch was passiert, wenn wir zu einer gegebenen
Strecke ein Teilverhältnis vorgeben. Ist dann der gesuchte Teilungspunkt eindeutig?
Folgt aus TV (A,B,C) = TV (A,B,D) stets C = D?
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Wir betrachten drei kollineare Punkte A,B und C, wobei wieder C der Teilungspunkt
der Strecke AB ist. Sei D nun ein zweiter Punkt der Geraden, welcher die Strecke
im selben Teilverhältnis teilt wie C. Dann gilt:

TV (A,B,C) =
AC

BC
=
AD

BD
= TV (A,B,D)⇒ AB −BC

BC
=
AB −BD

DB

⇒ AB

BC
=
AB

DB

⇒ BC = BD mit AB 6= 0

⇒ C = D

Der Teilungspunkt ist demnach eindeutig.

Im Unterricht können die Schülerinnen und Schüler die Lage des Teilungspunktes bei
gegebenem Teilverhältnis wie folgt untersuchen:

Aufgabenbeispiel 2.3.1

a) Zeichne jeweils eine Strecke mit 4, 6 und 10 cm und markiere den Anfangs-
und Endpunkt mit A und B. Bestimme die Teilverhältnisse TV (A,B,C),
wenn C immer der Mittelpunkt der Strecke ist. Was fällt dir auf?

b) Zeichne eine Strecke von 12 cm und markiere wieder den Anfangs- und
Endpunkt mit A bzw. B. Wo liegt der Punkt C, wenn das Teilverhältnis
2 ist? Wo liegt C, wenn TV (A,B,C) = 1

2 ist?

c) Wiederhole Teil b) mit 3 und 1
3 bzw. mit 5 und 1

5 . Was fällt dir auf?

Im Aufgabenteil a) sollte den Schülerinnen und Schüler auffallen, dass das Teilver-
hältnis immer 1 ergibt, wenn der Teilungspunkt der Mittelpunkt der Strecke ist. Dies
ist leicht zu erklären, da der Mittelpunkt nach Definition eine Strecke in zwei gleich-
große Abschnitte teilt. Demnach ist AC = BC.
Für Teil b) lassen sich folgende Gleichungen aufstellen, da das Teilverhältnis bekannt
ist:

TV (A,B,C) = 2 =
AC

BC
⇒ AC = 2 ·BC

12 = AB = AC +BC = 3BC ⇒ BC = 4

Auch ohne Gleichungen lässt sich auf die Lösung schließen, da die Länge der Strecke
bewusst so gewählt wurde, damit die Lösung ganzzahlig wird. Aufgrund des Teilver-
hältnisses muss die Strecke AC doppelt so groß sein wie BC. Da beide zusammen



30

12 ergeben müssen, hat die erste Strecke die Länge 12 · 23 . Der Abstand von C zu A
ist daher 8 cm.
Was passiert nun, wenn wir 1

2 , also den Kehrwert von 2 betrachten? Dann ist die
Strecke BC doppelt so groß wie AC, d.h. C liegt nun 8 cm vom Punkt B entfernt.
Mit Aufgabenteil c) sollen die Schülerinnen und Schüler die Systematik aus b) er-
kennen. Da auch 4 und 6 Teiler von 12 sind, sind die Ergebnisse, welche in folgender
Tabelle gelistet sind, wieder ganzzahlig:

TV (A,B,C) 2 1
2 3 1

3 5 1
5

AC 8 4 9 3 10 2
BC 4 8 3 9 2 10

Bei der Lage der Punkte sollte den Schülerinnen und Schülern auffallen, dass der
Kehrwert des Teilverhältnisses eine Spiegelung am Mittelpunkt M der Strecke be-
wirkt. Demnach ist Teil a) ein Sonderfall, denn der Kehrwert von 1 ist wieder 1,
sodass sich derselbe Punkt ergibt. Der einzige Punkt, welcher bei einer Punktspiege-
lung an M an sich selbst abgebildet wird, ist M .

Wir kommen nun zur Definition des Doppelverhältnisses, welcher dem Verhältnis
von zwei Teilverhältnissen entspricht. Zu dem ersten Teilungspunkt kommt nun ein
zweiter hinzu.

Definition 2.3.2: Doppelverhältnis

Gegeben sind vier verschiedene kollineare Punkte A,B,C,D. Dann entspricht
das Verhältnis der Teilverhältnisse dem Doppelverhältnis [47, S. 53]:

DV (A,B,C,D) = TV (A,B,C) : TV (A,B,D) =
AC

BC
· BD
AD

In Abb. 2.3.2, S. 28, ist das Doppelverhältnis DV (A,B,C,D) = −1, d.h. die Teilver-
hältnisse sind bis auf ihr Vorzeichen gleich. Für den Schulunterricht nehmen wir wie-
der dieselbe Vereinfachung wie bei dem Teilverhältnis vor. Wir vernachlässigen den
Richtungssinn von Geraden, d.h. die Teilverhältnisse TV (A,B,C) und TV (A,B,D)

müssen positiv sind. Dies führt dazu, dass die Teilungspunkte C und D zwischen A
und B liegen müssen. Wir wollen nun untersuchen, wie sich die Lage der Teilungs-
punkte C und D auf das Doppelverhältnis auswirkt und formulieren dazu folgendes
Aufgabenbeispiel:
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Aufgabenbeispiel 2.3.2

Zeichne für jeden Aufgabenteil eine Strecke von 12 cm und markiere den Anfangs-
und Endpunkt mit A und B.

a) Der Punkt C ist der Mittelpunkt der Strecke und das Doppelverhältnis ist
1. Bestimme den Punkt D. Findest du auch eine zweite Lösung? Wo liegt
D, wenn C 4 cm von A entfernt liegt und das Doppelverhältnis immer
noch 1 beträgt?

b) Wie in a) sei wieder C der Mittelpunkt der Strecke, aber das Doppelver-
hältnis ist 2. Bestimme die Lage von D. Wo liegt D, wenn C 8 cm von A
entfernt liegt?

c) Das Doppelverhältnis ist wieder 2. Kannst du eine allgemeine Formel her-
leiten, um AD = y zu bestimmen, wenn der Abstand AC = x bekannt
ist?

Hier lässt sich die Lösung rein mit Gleichungen oder durch Schlussfolgerungen finden.
In Bezug auf a) gilt

DV (A,B,C,D) = 1 ⇒ TV (A,B,C) = TV (A,B,D) .

Da C der Mittelpunkt der Strecke AB ist, muss nach dem vorherigen Aufgaben-
beispiel TV (A,B,C) = 1 sein. Dann ist aber auch TV (A,B,D) = 1 und somit D
der Mittelpunkt der Strecke. Also ist C = D die einzige Lösung. Wird die Lage von
C verändert, so ändert sich das Teilverhältnis TV (A,B,C). Mit der Angabe in der
Aufgabenstellung gilt dann:

TV (A,B,C) =
AC

BC
=

4

12− 4
=

1

2
.

Da das Doppelverhältnis immer noch 1 beträgt, ist auch

TV (A,B,D) =
1

2
.

Unter der Voraussetzung, dass die Teilungspunkte zwischen Anfangs- und Endpunkt
der Strecke liegen müssen, gilt aufgrund der zuvor gezeigten Eindeutigkeit der Tei-
lungspunkte wieder C = D. Das Ergebnis ist somit unabhängig von der Lage von C.
In Teil b) wird nun das Doppelverhältnis verändert. Da C der Mittelpunkt ist, gilt
wieder:

TV (A,B,C) = 1 .
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Mit dem Doppelverhältnis kennen wir dann auch die Lage von D:

2 = DV (A,B,C,D) = TV (A,B,C) : TV (A,B,D) = 1 : TV (A,B,D)

⇒ TV (A,B,D) =
1

2
.

Dies kennen wir schon aus a), d.h. D liegt 4 cm von A entfernt. Für AC = 8 ergibt
sich AD = 6. Was lässt sich aus den zwei Beispielen vermuten? Anscheinend liegt der
Punkt D immer vor C bzw. näher an A. Woran das liegt, wird nach der Besprechung
der Lösung des Aufgabenbeispiels erklärt.
Teil c) ist eine Verallgemeinerung von b). Der Lösungsweg ist derselbe, erfordert
allerdings einige Termumformungen:

TV (A,B,C) =
AC

12−AC =
x

12− x TV (A,B,D) =
y

12− y
2 = DV (A,B,C,D) = TV (A,B,C) : TV (A,B,D)

⇒ TV (A,B,D) =
TV (A,B,C)

2
=

x

24− 2x
y

12− y =
x

24− 2x
⇒ 24y − 2xy = 12x− xy ⇒ (24− x)y = 12x

⇒ AD = y =
12x

24− x .

Wir überprüfen unsere Formel mit den Beispielen aus b):

AC = 6 ⇒ y =
12 · 6
24− 6

=
12 · 6

18
= 4

AC = 8 ⇒ y =
12 · 8
24− 8

=
12 · 8

16
= 6

Die Formel liefert für beide Zahlenbeispiele das richtige Ergebnis. Die folgende Ab-
bildung zeigt die Lage der Teilungspunkt aus b).

A BCD

A BCD

Abb. 2.3.3 Die Lösung von Teil b) des Aufgabenbeispiels 2.3.2

Was in dem Bild auffällt, ist der unveränderte Abstand von C und D. Dies ist ein
Sonderfall, da im ersten Beispiel C der Mittelpunkt ist und im zweiten D. Bei der
Untersuchung des Teilverhältnisses hatte sich gezeigt, dass 0 < TV (A,B,C) < 1

gilt, wenn der Teilungspunkt links vom Mittelpunkt liegt und andernfalls größer als
1 ist. Im ersten Fall ist TV (A,B,D) = 1

2 , im zweiten dagegen der Kehrwert, sodass
die beiden Ergebnisse eine Punktspiegelung verbindet. Demnach sind die Abstände
von C und D in beiden Fällen identisch.
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Wie sich die Abstände der beiden Teilungspunkte verändern und welche Auswirkung
das Doppelverhältnis sowie die Länge der Strecke hat, wird im Folgenden untersucht.
Sei l die Länge der Strecke und d das Doppelverhältnis. Statt den Termumformungen
aus Teil c) verwenden wir hier einen alternativen Weg:

AC

BC
= d · AD

BD
⇒ l −BC

BC
= d · l −BD

BD

⇒ l

BC
− 1 + d =

d · l
BD

⇒ l + (d− 1)BC

BC
=
d · l
BD

⇒ BD =
d · l ·BC

l + (d− 1)BC

Damit lässt sich folgender Satz formulieren:

Satz 2.3.3

Sei l die Länge der Strecke AB und d das Doppelverhältnis DV (A,B,C,D).
Ist die Lage des ersten Teilungspunktes C bekannt, so lässt sich die Lage von
D wie folgt berechnen:

BD =
d · l ·BC

l + (d− 1)BC

Wir wollen nun berechnen, an welcher Position einer gegebenen Strecke AB sich die
Teilungspunkte befinden müssen, um ein gegebenes Doppelverhältnis von d = 2 zu
erfüllen. Aufgrund der vielen Berechnungen wurde der Computer zur Hilfe genom-
men, indem die Formel im zuvor genannten Satz in der Programmiersprache Julia
implementiert wurde. Mit dieser Sprache wurde auch die Lage der Teilungspunkte
grafisch dargestellt. In Abb. 2.3.4 entsprechend die Linien der Strecke AB. Den rech-
ten Punkten der farbig hervorgehobenen Strecken entspricht C, welcher jeweils um
1 weiter von A weg verschoben wurde. Die unterste Linie entspricht einer Skala mit
den Abständen einer Längeneinheit. Über den berechneten Abstand BD wurde die
Lage des zweiten Teilungspunktes D, dem jeweils linken Punkt in der Abb. 2.3.4 be-
stimmt. Die Abbildung zeigt die Lage der Punkte bei einer Streckenlänge von l = 8

und l = 12. Die beiden Beispiele zeigen, dass der Abstand DC der Teilungspunkte
variiert.
Wir vertiefen daher die Aufgabe und tragen den Abstand DC gegen AC auf und
verwenden als Parameter die Streckenlänge l = AB mit Doppelverhältnis d = 2 bzw.
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0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 11 12

Abb. 2.3.4 Variation des Abstandes AC bei DV (A,B,C,D) = 2. Links: AB = 8,
rechts: AB = 12

das Doppelverhältnis d mit fester Streckenlänge l = 12. Die Ergebnisse zeigt Abb.
2.3.5. Es ist erkennbar, dass der maximale Abstand der Teilungspunkte vorliegt, wenn
AC etwa 60 % der Strecke ausmacht. Weiterhin ist die Differenz AC − AD immer
positiv, was bedeutet, dass der zweite Teilungspunkt vor dem ersten liegt (vgl. Abb.
2.3.3). Die rechte Grafik von Abb. 2.3.5 zeigt den Einfluss des Doppelverhältnisses. So
ändert sich die Reihenfolge der Teilungspunkte, wenn das Doppelverhältnis zwischen
0 und 1 liegt. Die entsprechenden Graphen verbindet eine Punktspiegelung an (6, 0).
Da eine Strecke von 12 LE vorlag, wird die obige Aussage gestützt, dass die Bildung
des Kehrwertes eine Punktspiegelung der Teilungspunkte am Mittelpunkt bewirkt.

Abb. 2.3.5 Auswirkungen des Abstandes der Teilungspunkte bei Variation der Stre-
ckenlänge (links mit DV (A,B,C,D) = 2) und des Doppelverhältnisses (rechts mit
AB = 12

Anhand der Graphen lassen sich einige vorherige Vermutungen stützen, allerdings
entstehen hier Kurven, welche auch für die Schülerinnen und Schüler der Oberstufe
unbekannt sind, da es sich weder um Polynom- noch um Exponentialfunktionen
handelt, die nach dem Lehrplan NRW besprochen werden. Dies ist auch anhand der
Formel im obigen Satz 2.3.3 erkennbar. Die Behandlung im Unterricht sollte daher
auf einem beispielhaften Niveau erfolgen, wie im vorgestellten Aufgabenbeispiel 2.3.2.
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2.4 Geometrische Abbildungen

Die Projektion gehört zu den geometrischen Abbildungen wie auch Kongruenzab-
bildungen, welche im Schulunterricht behandelt werden. Kongruenzabbildungen, wie
Drehung, Verschiebung oder Spiegelung, zeichnen sich dadurch aus, dass sie nur Ori-
entierung und Lage des Objektes verändern, ihre Form und Größe aber erhalten
bleibt, da sich Streckenlängen und die Winkelgrößen nicht ändern. Hieraus resultiert
auch, dass der Mittelpunkt einer Strecke auf den Mittelpunkt der Bildstrecke abge-
bildet. Kongruenzabbildungen weisen somit eine große Anzahl an Invarianten auf.
Mit der zentrischen Streckung wird eine weitere Gruppe von Abbildungen im Un-
terricht behandelt: die Ähnlichkeitsabbildungen. Die zentrische Streckung vergrößert
oder verkleinert Objekte, sodass zwar die Winkel erhalten bleiben, die Längen dage-
gen nicht. Dennoch wird auch hier der Mittelpunkt einer Strecke dem Mittelpunkt
der Bildstrecke zugeordnet. Es fällt somit nur ein Teil der Invarianten der Kongru-
enzabbildung weg, wenn wir eine Ähnlichkeitsabbildung betrachten.
Die folgenden Abschnitte erläutern zuerst die Abbildung allgemein, um abschließend
eine Auswahl an Invarianten im metrischen Raum vorzustellen.

2.4.1 Die Abbildung

Die Projektion wird hier als eine Abbildung im euklidischen Raum unter der Zunah-
me von Fernpunkten und -geraden behandelt. Wir definieren daher im allgemeinen
eine Abbildung als eine Zuordnung zwischen zwei Punktmengen A und B.

Definition 2.4.1: Geometrische Abbildung

Eine geometrische Abbildung ϕ : A → B ordnet jedem Punkt P ∈ A genau
einen Punkt ϕ(P ) ∈ B zu [1, S. 224].

i) Die Abbildung ist injektiv , wenn es zu einem Bildpunkt Q ∈ B maximal
ein Urbild P ∈ A gibt.

ii) Die Abbildung ist surjektiv , wenn es zu jedem Bildpunkt Q ∈ B mindes-
tens ein Urbild P ∈ A gibt.

iii) Die Abbildung ist bijektiv , wenn i) und ii) erfüllt sind, d.h. wenn zu je-
dem Bildpunkt genau ein Urbild existiert. Die Abbildung ist dann auch
umkehrbar, d.h. es existiert ϕ−1 : B→ A.

Zur Vereinfachung kann der Bildpunkt mit P ′ statt ϕ(P ) bezeichnet werden, wenn
aus dem Kontext hervorgeht, um welche Abbildung es sich handelt. Kongruenzabbil-
dungen in der Ebene sind bijektiv, d.h. die Zuordnung von Punkt und Bildpunkt ist
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eindeutig bzw. es existiert eine Umkehrabbildung , welche einem Bildpunkt sein Urbild
zuordnet. Ein ebenes Objekt, welches um den Punkt P um den Winkel 0◦ ≤ α ≤ 360◦

gedreht wurde, kann entweder um −α „zurückgedreht“ werden oder um 360◦−α un-
ter Einbehaltung der Drehrichtung. Die zentrische Streckung ist ebenfalls bijektiv,
sofern der Streckfaktor von null verschieden ist. Wird ein Objekt um den Faktor k
vergrößert, so kann das ursprüngliche Bild mit 1

k erhalten werden.
Wir werden im Abschnitt 3.1 (Die Zentralprojektion, S. 46) zeigen, dass die Projekti-
on nicht injektiv ist, denn alle Punkte einer Projektionsgeraden werden auf denselben
Bildpunkt projiziert. Sie ist somit nicht bijektiv, d.h. aus einem zentralprojektiven
Bild kann nicht ohne Weiteres das ursprüngliche Objekt im Raum eindeutig rekon-
struiert werden. Damit die Projektion surjektiv wird, fügen wir dem euklidischen
Raum die Fernpunkte und -geraden hinzu. Damit kann dem Fluchtpunkt ein Fern-
punkt als Urbild zugeordnet werden.

Bei einer geometrischen Abbildung gibt es auch Punkte oder Geraden, welche auf
sich selbst abgebildet werden. Diese werden Fixpunkt bzw. Fixgeraden genannt. Bei
einer Punktspiegelung an einem Punkt P ist dieser auch ein Fixpunkt, während Ge-
raden, die P enthalten, Fixgeraden sind. Wir werden später zeigen, dass bei einer
Projektion alle Punkte, welche in der Bildebene liegen, Fixpunkte sind.

2.4.2 Eine Auswahl an Invarianten

Wie in der Einführung erwähnt, gibt es im metrischen Raum eine Vielzahl an Inva-
rianten, welche charakteristisch für einige Abbildungen sind. Zuvor wurde zur Ver-
einfachung auch der Abstand mit AB bezeichnet. Im Folgenden sei AB wieder die
Strecke zwischen den Punkten A und B und d(A,B) der Abstand.

Definition 2.4.2

Es seien g und h Geraden sowie P,A,B, . . . Punkte. Eine Abbildung ϕ : A→ B
heißt

i) punkttreue, wenn gilt: Jeder Punkt wird auf einen Punkt abgebildet.

ii) geradentreu, wenn gilt: Jede Gerade wird auf eine Gerade abgebildet.

iii) inzidenztreu, wenn gilt: P ∈ g ⇒ ϕ(P ) ∈ ϕ(g)

iv) parallelentreu, wenn gilt: g ‖ h⇒ ϕ(g) ‖ ϕ(h)

v) streckentreu, wenn gilt: Jede Strecke wird auf eine Strecke abgebildet, z.B.
AB 7→ A′B′
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vi) längentreu, wenn gilt: Jede Strecke wird auf eine Strecke derselben Länge
abgebildet, d.h. d(A,B) = d(A′, B′)

vii) winkeltreu, wenn gilt: Alle Winkel werden auf Winkel derselben Größe
abgebildet.

viii) streckenverhältnistreu, wenn gilt: Das Streckenverhältnis zweier Strecken
bliebt immer erhalten, d.h. d(A,B) : d(C,D) = d(A′, B′) : d(C ′, D′)

ix) teilverhältnistreu, wenn gilt: TV (A,B,C) = TV (A′, B′, C ′) für alle kolli-
nearen Punkte A,B,C bzw. A′, B′, C ′.

x) doppelverhältnistreu, wenn gilt: DV (A,B,C,D) = DV (A′, B′, C ′, D′) für
alle Kombinationen aus vier kollinearen Punkten.

Da wir nur Zuordnungen zwischen zwei Mengen von Punkten betrachten, ist i) im-
mer erfüllt. Der zweite Punkt trifft bei vielen geometrischen Abbildungen zu, so
auch bei Kongruenz- und Ähnlichkeitsabbildungen. Bei Projektionen existiert eine
Ausnahme: enthält die abzubildende Gerade das Projektionszentrum, so ist das Bild
der Geraden ein Punkt. Ein Würfel kann derart fotografiert werden, dass Kanten
verschwinden und mit den Ecken zusammenfallen.
Ist eine Abbildung inzidenztreu, so müssen zwei Bildgeraden einen Schnittpunkt
besitzen, wenn sich ihre Urbilder schneiden. Die Schnittpunkte werden dabei auf-
einander abgebildet. Aus der Inzidenztreue folgt allerdings nicht die Parallelentreue.
Sind zwei Geraden parallel, so ist ihr Schnittpunkt ein Fernpunkt. Der gemeinsame
Punkt der Bildgeraden kann aber auch ein gewöhnlicher Punkt sein, wie es bspw.
bei der Zentralprojektion der Fall ist.

Von allen nachfolgenden Punkte vi) - x) ist nur das Doppelverhältnis eine Invariante
jeder Zentralprojektion. Die anderen Punkte werden von Sonderfällen der Projektion
erfüllt. Bevor wir auf diese eingehen, wollen wir einige Abhängigkeiten zwischen den
Invarianten besprechen.

Satz 2.4.3

Sei ϕ : A → B eine injektive Abbildung, welche punkt- und inzidenztreu ist.
Dann ist ϕ auch geradentreu.
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Beweis.
Sei g eine Gerade mit den Punkten A und B, A 6= B. Da ϕ injektiv ist, ist ϕ(A) 6=
ϕ(B). Wegen (G1) (Axiome, S. 25) legen die Bildpunkte genau eine Gerade fest,
welche wegen der Inzidenztreue die Bildgerade von g sein muss.

�

Mit der Eigenschaft längentreu erfüllt eine Abbildung weitere Invarianten, wie fol-
gender Satz zeigen wird. Längentreue Abbildungen sind Kongruenzabbildungen wie
Drehung, Spiegelung oder Verschiebung.

Satz 2.4.4

Sei α eine Abbildung. Es gilt:

α ist längentreu
(1)

==⇒ α ist streckenverhältnistreu
(2)

==⇒ α ist teilverhältnistreu
(3)

==⇒ α ist doppelverhältnistreu

Beweis.
Zu (1):
Wegen der Längentreue ist d(A,B) = d(A′, B′) und d(C,D) = d(C ′, D′). Also gilt
auch

d(A,B) : d(C,D) = d(A′, B′) : d(C ′, D′)

Zu (2):
Nach Def. 2.3.1 ist TV (A,B,C) = d(A,C) : d(B,C) mit den Punkten A,B,C,
welche auf einer Geraden liegen. Wegen der Streckenverhältnistreue gilt dann auch

TV (A,B,C) = d(A,C) : d(B,C) = d(A′, C ′) : d(B′, C ′) = TV (A′, B′, C ′)

Zu (3):
Nach Def. 2.3.2 und der Teilverhältnistreue gilt für vier beliebige Punkte einer Ge-
raden

DV (A,B,C,D) = TV (A,B,C) : TV (A,B,D)

= TV (A′, B′, C ′) : TV (A′;B′, D′)

= DV (A′, B′, C ′, D′)
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B = B′

A = A′ C ′

C

Ma

M ′a

M ′b

Mb

Z?
Z

A

B
C

C ′

M1

M ′1

M2

M ′2

Abb. 2.4.1 Gegenbeispiele zu Satz 2.4.4

�

Die Umkehrungen der Implikationen (1) bis (3) gilt nicht. So liegen in der Abb. 2.4.1
im ersten Beispiel Punkt und Bildpunkt auf parallelen Geraden. Das Bild M ′1 des
Mittelpunktes M1 der Strecke AC muss wegen der Inzidenztreue auf der Strecke
A′C ′ liegen. Dieser Punkt ist der Mittelpunkt der Bildstrecke. Gleiches gilt auch für
den Punkt M2 der Strecke BC. Dies sind somit zwei Beispiele für den Erhalt des
Teilverhältnisses. Dass für alle Kombinationen von drei kollinearen Punkte und ih-
ren Bildpunkten das Teilverhältnis erhalten bleibt, kann mithilfe des Strahlensatzes,
welcher erst im Kap. 2.5 besprochen wird, bewiesen werden. Es ist aber erkennbar,
dass die Streckenverhältnistreue nicht erfüllt ist, denn

d(A,B) : d(A,C) 6= d(A′, B′) : d(A′, C ′),

da AC auf eine kürzere Strecke, dagegen AB auf sich selbst abgebildet wird.

Auf der rechten Seite der Abbildung 2.4.1 sind die Geraden kopunktal statt parallel
bzw. der gemeinsame Punkt ist jetzt kein Fernpunkt mehr. Die Zuordnung ist nicht
mehr teilverhältnistreu, denn der MittelpunktM1 der Strecke AC wird nicht auf den
markierten Mittelpunkt der Strecke A′C ′ abgebildet. Dasselbe gilt auch für M2. Die
rechte Projektion in der Ebene ist allerdings doppelverhältnistreu. Der Beweis wird
im Abschnitt 3.1.1 (Die Invarianten der Zentralprojektion, S. 50) geführt.
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2.5 Der Strahlensatz

Da die Strahlensätze mehrfach für Beweise bzgl. der Zentralprojektion verwendet
werden, wird hier kurz darauf eingegangen. Wie die Übersicht in Abb. 6.3.1 (S.
237) zeigt, ist die zentrische Streckung und die mit ihr verbundenen Strahlensätze
Teil des Unterrichts der 9. Klasse an Gymnasien und Gesamtschulen in NRW. Zur
Vereinfachung, wenn nicht anders angegeben, ist mit AB die Streckenlänge gemeint.

Definition 2.5.1

Die zentrische Streckung ist eine Abbildung ϑZ,k : E → Π in einer Ebene oder
zwischen zwei Ebenen im Raum mit Streckzentrum Z und Streckfaktor k ∈ R,
k 6= 0. Dabei gilt:

i) Z, Punkt P und Bildpunkt P ′ sind kollinear.

ii) Bildpunkt P ′ liegt k-mal soweit von Z entfernt, wie P , d.h. ZP ′ = k ·ZP

(Vgl. [3, S. 52], [1, S. 226]).

Die Länge der Strecke ZP ändert sich demnach um den Faktor k, welcher im
folgenden auf die positiven reellen Zahlen beschränkt sei.

Die Abb. 2.5.1 zeigt ein Beispiel einer zentrischen Streckung mit Streckzentrum Z

und Streckfaktor k = 1, 5.

C

B

A

Z

C ′

B′

A′

Abb. 2.5.1 Zentrische Streckung an Z mit Faktor k = 1, 5
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Aufgrund der obigen Definition gilt:

ZA = 1, 5 · ZA′

ZB = 1, 5 · ZB′ ⇒ ZA

ZA′
=
ZB

ZB′
=
ZC

ZC ′
= 1, 5

ZC = 1, 5 · ZC ′

Die zentrische Streckung ist u.a. winkel-, parallelen- und streckenverhältnistreu, was
dazu führt, dass die vergrößerten oder verkleinerten Figuren nicht verzerrt wirken.
Das Original und ihr Bild sind ähnlich zueinander. Diese Ähnlichkeitsabbildung wird
in der Schule als Vorstufe der Strahlensätze behandelt, welche im Lambacher Schwei-
zer der neunten Klasse wie folgt formuliert werden [3, S. 58]:

Satz 2.5.2: Strahlensätze

Werden von einem Punkt Z ausgehende Strahlen von zwei Parallelen g und h
geschnitten, dann gilt:

1. Strahlensatz :
Die Abschnitte auf einem Strahl verhalten sich zueinander wie die entsprechen-
den Abschnitte auf dem anderen Strahl, d.h.

ZA

AB
=
ZC

CD

2. Strahlensatz:
Die Abschnitte auf den Parallelen verhalten sich zueinander wie die von Z aus
gemessenen entsprechenden Abschnitte auf einem Strahl, d.h.

AC

BD
=
ZA

ZB
=
ZC

ZD
g

h

Z
B

C

D

A
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Beweis.
Aufgrund der parallelen Geraden sind die farbig hervorgehobenen Stufenwinkel gleich
groß. Somit stimmen die Dreiecke ∆ZAC und ∆ZBD in ihren Winkeln überein
und sind folglich zueinander ähnlich. Demnach kann ∆ZAC auf ∆ZBD durch eine
zentrische Streckung an Z abgebildet werden. Dann gilt:

ZB = k · ZA ZD = k · ZC

⇒ ZB

ZA
= k =

ZD

ZC

⇒ ZA+AB

ZA
=
ZB +BD

ZB

⇒ ZA

AB
=
ZC

CD

Der zweite Strahlensatz folgt direkt ohne weitere Umformungen aus der Ähnlichkeit
der Dreiecke. �

Während der erste Strahlensatz umkehrbar ist, gilt dies für den zweiten nicht, sofern
nur zwei der drei Verhältnisse gegeben sind. Dann muss es keine entsprechende zen-
trische Streckung geben bzw. die Geraden AB und A′B′ sind nicht zwingend parallel,
wie folgendes Gegenbeispiel zeigt:

Z

B

A
A′

B′1

B′

Abb. 2.5.2 Die Umkehrung des 2. Strahlensatzes ist nicht immer gültig.

Es ist ZA′

ZA
= 1, 5 = A′B′

AB
. Doch ist erkennbar, dass es keine zentrische Streckung an

Z gibt, welche A auf A′ und B auf B′ abbildet, obwohl das Streckenverhältnis gleich
ist, denn der Kreis um A′ mit dem Radius 1, 5 · AB schneidet die Gerade ZB in
zwei Punkten. Nur für den zweiten Schnittpunkt ist auch ZB

ZB′
1

= 1, 5. Erst dann gilt

AB ‖ A′B′1.

Wir hatten im vorherigen Abschnitt in Abb. 2.4.1 eine Zuordnung gezeigt, welche in
der Ebene Punkte durch parallele Strahlen einander zuordnet. Dabei war es offen-
sichtlich, dass diese Zuordnung nicht streckenverhältnistreu ist. Sie ist aber teilver-
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hältnistreu. So werden Mittelpunkte der Strecke und Bildstrecke aufeinander abge-
bildet. Wir wollen nun mithilfe der Strahlensätze zeigen, dass diese Eigenschaft auch
für jedes andere Verhältnis vorhanden ist.

Satz 2.5.3

Bei der parallelen Projektion innerhalb der Ebene (vgl. Abb. 2.4.1, S. 39) bleibt
das Teilverhältnis invariant. Wir betrachten hier zu zwei verschiedene Fälle:

(1)

B = B′

C ′

C

T ′

T

P

Q

(2)

B

B′

C ′

C T

T ′

SP

Q

R

Beweis.
Zu (1) :
Aufgrund der parallelen Strahlen können wir den ersten Strahlensatz auf das Dreieck
∆PBC und ∆PB′C ′ anwenden. Beide Dreiecke haben die Seite PB gemeinsam,
sodass wir folgende Gleichung aufstellen können:

TV (C,B, T ) =
CT

TB
=
PQ

QB
=
C ′T ′

T ′B′
= TV (C ′, B′, T ′) .

Zu (2):
Der Endpunkt der Strecke ist nun kein Fixpunkt mehr. Die Beweisführung funk-
tioniert dennoch analog zum ersten Fall, denn die Hilfsstrecke PB und RB′ sind
parallel, sodass die Teilstrecken PQ und RS gleich lang sind, wie auch QB und SB′.
Dann gilt:

TV (C,B, T ) =
CT

TB
=
PQ

QB
=

RS

SB′
=
C ′T ′

T ′B′
= TV (C ′, B′, T ′) .

�

Mit dem Strahlensatz und den vorherigen Abschnitten über geometrische Abbildun-
gen und das Doppel- und Teilverhältnis haben wir nun alle Grundlagen vorgestellt,
die für die Projektion nötig sind. Wir wollen nun im folgenden Kapitel diese Abbil-
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dung definieren und einige Eigenschaften nennen, welche sowohl von der Zentralpro-
jektion wie auch von ihrem Sonderfall, der Parallelprojektion, erfüllt werden.



Kapitel 3

Die Projektion

Hinter der Projektion verbirgt sich ein Verfahren, welches es ermöglicht, dreidimen-
sionale Objekte eines Raumes auf eine zweidimensionale Ebene abzubilden. Dies ist
vergleichbar mit der Fotografie oder auch dem natürlichen Sehprozess. In der Kunst
gab es nicht zuletzt seit der Renaissance das Bestreben, auf der Bildfläche einen
räumlichen Eindruck zu erschaffen, d.h. den natürlichen Sehprozess derart nach-
zuahmen, dass die Illusion eines Raumes auf der Bildfläche entsteht. Mathematisch
betrachtet verbirgt sich hinter dieser Abbildung die Zentralprojektion. Aus dieser
lassen sich einige Konstruktionen ableiten, welche auch im Kunstunterricht für das
perspektivische Zeichnen verwendet werden. Ein Sonderfall der Zentralprojektion ist
die Parallelprojektion. Ihre Bilder sind weniger realistisch. Dagegen ist sie parallelen-
treu. Unter einer bestimmten Lage von Objekt- und Bildebene belieben Winkel und
Strecken sogar erhalten. Die Konstruktionsmethoden, welche sich von der Parallelpro-
jektion ableiten lassen, werden daher primär beim technischen Zeichnen verwendet.
Dieses Kapitel stellt nach der Definition der Zentralprojektion ihre Invarianten vor.
Danach wird die Parallelprojektion als Sonderfall vorgestellt. Der letzte Teil zeigt
auf, wie sich die Invarianten bei der Abbildung ebener Figuren ändern, wenn ne-
ben der Projektion auch die räumliche Lage zwischen Objekt- und Bildebene ver-
ändert wird. Hierbei können vier verschiedene Abbildungen wiedergefunden werden:
die Kongruenz- und Ähnlichkeitsabbildung, welche auch im Mathematikunterricht
behandelt werden, sowie die perspektive Affinität und Perspektivität.
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3.1 Die Zentralprojektion

Wir definieren die Zentralprojektion wie folgt:

Definition 3.1.1

Die Zentralprojektion ist eine punktweise, inzidenztreue Abbildung des Raumes
auf eine Ebene, der Bildebene, welche im Folgenden mit Π bezeichnet wird. Ein
Punkt P wird dabei durch folgende Konstruktion eindeutig einem Punkt P ′ in
der Bildebene zugeordnet [38, S. 3]:

i) Es wird ein fester Punkt Z im Raum außerhalb der Bildebene festgelegt.
Dieser wird Projektionszentrum genannt.

ii) Durch einen von Z verschiedenen Punkt P wird eine Gerade gelegt, welche
ebenfalls durch Z verläuft. Dies ist die Projektionsgerade gP von P .

iii) Der Schnittpunkt der Projektionsgerade mit der Bildebene Π ergibt den
Bildpunkt P ′.

Die Zentralprojektion wird mit ϕz gekennzeichnet.

Π Z

P ′

P

Q′ = ϕz(Q)

Q

gPgQ

Abb. 3.1.1 Die Zentralprojektion mit
Zentrum Z

Die Abb. 3.1.1 zeigt ein Beispiel. Hier
werden zwei verschiedene Punkte P und
Q sowie die Verbindungsgerade PQ auf
die Bildebene Π projiziert. Nach De-
finition 2.4.1 der geometrischen Abbil-
dung (S. 35) muss die Zuordnung zwei
Bedingungen erfüllen: jeder Punkt aus
dem Definitionsbereich besitzt ein Bild
und dieses ist eindeutig. Wir prüfen da-
her nun verschiedene Fälle und beginnen
mit der Eindeutigkeit des Bildpunktes.

Der Schnittpunkt der Projektionsgeraden mit der Bildebene ist eindeutig, sofern die
Gerade nicht in jener liegt. Dieser Fall ist ausgeschlossen, da nach Definition das
Projektionszentrum außerhalb der Bildebene liegen muss. Im anderen Fall kann die
Projektionsgerade parallel zur Bildebene sein. Dann ist der Schnittpunkt ein Fern-
punkt. Da wir diese Fernelemente in unserer Betrachtung des euklidischen Raumes
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berücksichtigen, existiert auch in diesem Fall ein Bildpunkt. Er lässt sich allerdings
nicht zeichnen. Dies betrifft alle Punkte, welche in der parallelen Ebene zur Bildebene
durch Z liegen. Diese Ebene wird daher auch als Verschwindungsebene bezeichnet.
Insgesamt ist die Zuordnung eindeutig.
Wir kommen nun zur Existenz. Nach Definition muss jeder Punkt im Raum ein Bild-
punkt besitzen. Das Projektionszentrum Z kann daher nicht abgebildet werden, da
keine Projektionsgerade existiert. Wir müssen daher diesen Punkt aus dem Defini-
tionsbereich ausschließen. Punkte der Bildebene werden auf sich selbst abgebildet.
Die Projektionsgeraden von Fernpunkten verlaufen durch Z und sind parallel zu der
Richtung ausgerichtet, die der Fernpunkt repräsentiert. Fernpunkte lassen sich somit
auch auf die Bildebene projizieren.

Die Zentralprojektion weist folgende Eigenschaften auf:

i) Sind die Punkte P,Q,Z kollinear, so besitzen P und Q denselben Projektionss-
trahl und werden demnach auf denselben Bildpunkt projiziert. Die Projektion
ist daher nicht injektiv und somit auch nicht umkehrbar.

ii) Die Projektion ist surjektiv.

iii) Liegen P und Q auf einer Geraden g, welche nicht das Projektionszentrum
enthält, so werden die Bildpunkte P ′ und Q′ auf die Bildgerade g′ projiziert.
Die Abbildung ist in diesem Fall geradentreu.

In dem folgendem Foto eines Flures werden einige Eigenschaften der Zentralprojek-
tion exemplarisch dargestellt, denn ein Fotoapparat oder das menschliche Auge bil-
den die Wirklichkeit im Sinne der Zentralprojektion ab. D.h. ein Foto ist das Resultat
einer zentralprojektiven Abbildung.
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Abb. 3.1.2 Fotografien von langen Fluren eignen sich besonders gut, um Eigenschaf-
ten der Zentralprojektion zu untersuchen.

1) Die Fliesen des Fußbodens, die Säulen sowie die horizontalen Kanten der Fens-
ter verlaufen in Wirklichkeit parallel. Auf dem Foto werden parallele Geraden,
bis auf die Ausnahme in 2) und 3), auf sich schneidenden Geraden abgebildet.
Sie schneiden sich in einem gemeinsamen Punkt, dem Fluchtpunkt.

2) Geraden, welche parallel zur Bildebene verlaufen, werden auf ebenfalls paral-
lele Geraden abgebildet. Die Säulen haben in Wirklichkeit denselben Abstand
zueinander. In der Abbildung verkürzt sich dieser in Richtung des Fluchtpunk-
tes.

3) Vertikale Geraden, welche parallel zur Bildebene verlaufen, werden auf vertikale
Geraden abgebildet. Da Decke und Boden denselben Abstand haben, sind die
Säulen in Wirklichkeit gleich hoch. In der Abbildung verkleinert sich dieser in
Richtung des Fluchtpunktes.

Die Punkte 2) und 3) ließen sich noch zusammenfassen: Geraden, welche in einer
Ebene parallel zur Bildebene enthalten sind, werden auf parallele Geraden abgebildet.
Selbiges gilt somit auch für Ebenen. Nach dem anschaulichen Beispiel kommen wir
nun zu einigen Eigenschaften bzw. Invarianten der Zentralprojektion.
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Satz 3.1.2

Sei ϕz eine Zentralprojektion mit Zentrum Z auf die Ebene Π und g /∈ Π

eine Gerade, wobei Z /∈ g. Dann schneiden sich Gerade und Bildgerade in dem
Fixpunkt S.

Beweis.

Z

S
g

g′ gS

Π

Der Schnittpunkt S existiert, da g und ϕz(g)

in einer Ebene liegen, welche von g und Z auf-
gespannt wird. Diese Projektionsebene ist in
der nebenstehenden Abbildung blau markiert.
Der Schnitt dieser Ebene mit der Bildebene Π

entspricht der Bildgeraden ϕz(g).

g ∩ ϕz(g) = {S} ⇒ S ∈ ϕz(g)⇒ S ∈ Π

Nach Definition der Projektionsstrahlen gilt
auch: S ∈ gS . Also ist ϕz(S) = S.

�

Falls g parallel zur Bildebene liegt, so schneiden sich g und g′ in einem Fernpunkt
S?. Da dieser ein Fixpunkt ist, weisen g und g′ dieselbe Richtung auf, d.h. g ‖ g′.

Wie bereits erwähnt, lässt sich beobachten, dass parallele Geraden in der Regel auf
sich schneidende Geraden projiziert werden, d.h. g ‖ h, aber ϕz(g) ∦ ϕz(h). Die
Zentralprojektion ist somit nicht parallelentreu. Der Schnittpunkt der Bilder der
Geraden des Parallelenbüschels wird Fluchtpunkt genannt und ist dadurch hervor-
gehoben, dass dieser das Bild des Fernpunktes ist, welcher die Richtung der Geraden
g und h symbolisiert [33, S. 227]. Wegen der Inzidenztreue gilt nun Folgendes:

Satz 3.1.3

Der Fluchtpunkt F ist das Bild eines Fernpunktes F ? unter einer Zentralpro-
jektion ϕz.

Beweis.
Seien g und h zwei parallele Geraden, welche sich in F ? schneiden. Der Schnittpunkt
der Bildgeraden sei F . Dann gilt:

g ‖ h ⇒ F ? ∈ g ∧ F ? ∈ h ⇒ ϕz(F
?) ∈ ϕz(g) ∧ ϕz(F ?) ∈ ϕz(h) ⇒ ϕz(F

?) = F

�
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Konstruktiv lässt sich der Fluchtpunkt eines Parallelbüschels mit Fernpunkt G? und
einer Geraden g wie folgt bestimmen:
Um das Bild des Fernpunktes zu erhalten, muss nach der Konstruktionsvorschrift G?

mit Z verbunden werden. Wir müssen also die Parallele zu g durch Z zeichnen, um
die Projektionsgerade von G? zu erhalten. Ihr Schnitt mit der Bildebene entspricht
dem Fluchtpunkt F mit ϕz(G?) = F . Weiterhin ist G? ∈ g, sodass aufgrund der
Inzidenztreue auch F ∈ g′ gelten muss.

Der folgende Abschnitt stellt die Invarianten der Projektion vor. Das Projektionszen-
trum kann sowohl ein gewöhnlicher Punkt als auch ein Fernpunkt sein. Im ersten Fall
handelt es sich um die Zentralprojektion, im zweiten Fall um die Parallelprojektion,
da alle Projektionsstrahlen einen gemeinsamen Fernpunkt besitzen und demnach
paarweise parallel sind.

3.1.1 Die Invarianten der Zentralprojektion

Die Zentralprojektion enthält wenige Invarianten, u.a. die Doppelverhältnistreue.
Dazu folgender Beweis [38, S. 6].

Z
F

S
g

g′

Wir wollen zeigen, dass

DV (A,B,C,D) = DV (A′, B′, C ′, D′)

gilt. Da die Punkte nach Definition des
Doppelverhältnisses kollinear sein müs-
sen, seien diese Teil einer Geraden g,
welche über das Projektionszentrum Z

auf die Bildebene projiziert wird. Die
Geraden g und ϕz(g) = g′ spannen
die Projektionsebene auf und ihr Schnitt
mit der Bildebene ist das Bild von g,
wie die nebenstehende Abbildung zeigt.

S ist der Schnittpunkt der Geraden mit der Bildgeraden und F der Fluchtpunkt
von g. Der Beweis zur Doppelverhältnistreue wird in der blauen Projektionsebene
geführt, welche Abb. 3.1.3 mit den vier Punkten A,B,C,D auf g zeigt. Wir werden
nun unter Verwendung der Strahlensätze zeigen, dass das Doppelverhältnis dieser
vier beliebigen Punkte auf g mit dem der Bildpunkte auf g′ übereinstimmt.
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F Z

g

A′

A

D′

D

C ′

C
B′

B g′

g̃

Ã B̃

Abb. 3.1.3 Beweisfigur zur Doppelverhältnistreue der Zentralprojektion

Beweis.
Nach vorheriger Erklärung gilt:

ZF ‖ g

Die Bildpunkte A′ bis D′ ergeben sich durch den Schnitt der Verbindungsgeraden der
Urbildpunkte und Z mit g′. Wir ergänzen zusätzlich die Gerade g̃ mit der Bedingung:

C ′ ∈ g̃ und g̃ ‖ g .

In Abb. 3.1.3 betrachteten wir nun mehrere Strahlensatzfiguren, welche die drei par-
allelen Geraden g, g′ und g̃ enthalten. Zur besseren Unterscheidung werden jeweils
das Streckzentrum und die beiden äußeren Strahlen genannt. AB ist dabei der Ab-
stand von A und B.

(1) Z mit ZA und ZB:

AC

ÃC ′
=
ZC

ZC ′
=
BC

B̃C ′
⇒ AC

BC
=
ÃC ′

B̃C ′

(2) A′ mit ZÃ und FC ′:

A′C ′

A′F
=
ÃC ′

ZF
⇒ ZF =

ÃC ′

A′C ′
·A′F

(3) B′ mit B′F und B′Z:

B′C ′

B′F
=
B̃C ′

ZF
⇒ ZF =

B̃C ′

B′C ′
·B′F
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Aus (2) und (3) folgt:

ÃC ′

A′C ′
·A′F =

B̃C ′

B′C ′
·B′F ⇒ ÃC ′

B̃C ′
=
A′C ′

B′C ′
· B
′F

A′F

Mit (1) erhalten wir:

AC

BC
=
A′C ′

B′C ′
· B
′F

A′F

Analog werden die Schritte (1) bis (3) mit D durchgeführt, indem wir eine weitere
parallele Hilfsgerade durch D′ legen. Wir erhalten:

AD

BD
=
A′D′

B′D′
· B
′F

A′F

Mit beiden Gleichungen lässt sich nun folgern, dass das Doppelverhältnis erhalten
bleibt:

DV (A,B,C,D) =
AC

BC
:
AD

BD
=
A′C ′

B′C ′
:
A′D′

B′D′
= DV (A′, B′, C ′, D′)

�

Damit haben wir gezeigt, dass die Zentralprojektion doppelverhältnistreu ist. Sie ist
allerdings nicht teilverhältnistreu. Ein gutes Gegenbeispiel ist dabei die Projektion
des Mittelpunktes einer Quaderfläche wie in Abbildung 4.2.2, S. 95. Nach Satz 2.4.4,
S. 38, kann die Projektion somit auch nicht streckenverhältnis- oder längentreu sein.
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3.1.2 Die Invarianten der Parallelprojektion

Z?

P ′

P

Q′ = ϕp(Q)

Q

gQ
gP

Π

Abb. 3.1.4 Die Parallelprojektion ist ein Sonderfall, wenn das Projektionszentrum
Z? ein Fernpunkt ist.

Wir kommen zu einem Sonderfall der Zentralprojektion. Ist das Projektionszentrum
ein Fernpunkt, so sind die Projektionsstrahlen nicht mehr kopunktal, sondern paral-
lel. Dies bewirkt u.a., dass einige Invarianten hinzukommen, welche in den folgenden
Sätzen genannt und bewiesen werden. Um die Parallelprojektion von der Zentralpro-
jektion zu unterscheiden, wird jene mit ϕp gekennzeichnet.

Satz 3.1.4

Sind die Geraden g und h parallel, aber selbst keine Projektionsgeraden, dann
sind auch ihre Bilder ϕp(g) und ϕp(h) parallel zueinander.
Die Parallelprojektion ist somit parallelentreu.

Beweis.
Hierzu können verschiedene Betrachtungsweisen herangezogen werden. Die Projek-
tionsebenen sind jeweils definiert durch die Ursprungsgerade und dem Projektions-
zentrum. Da dieses ein Fernpunkt ist, sind die Projektionsebenen parallel. Dann sind
auch ihre Schnittgeraden mit der Bildebene parallel zueinander. Wäre dies nicht der
Fall, so würden sich die Projektionsebenen schneiden.
Die alternative Argumentation beruht darauf, dass sich die Bilder paralleler Geraden
im Fluchtpunkt schneiden. Um diesen zu konstruieren, wurde bei der Zentralprojek-
tion eine parallele Gerade durch das Zentrum gezeichnet und ihr Schnitt mit der
Bildebene ergab den gesuchten Schnittpunkt der Bildgeraden. Es wurde also der
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Fernpunkt der parallelen Geraden mit dem Projektionszentrum verbunden. Über-
tragen auf die Parallelprojektion müssen wir die Verbindungsgerade von S? und Z?

bilden. Diese ist eine Ferngerade. Da alle Punkte einer Ferngeraden Fernpunkte sind,
muss auch der Schnittpunkt mit der Bildebene ein Fernpunkt sein. Die Bildgeraden
sind demnach parallel.

�

Abb. 3.1.5 zeigt zwei Beispiele für die Projektion paralleler Geraden mit den entspre-
chenden Projektionsebenen. Bei der Zentralprojektion haben die Projektionsebenen
Z als gemeinsamen Punkt, d.h. sie müssen sich schneiden. Wird eine dritte Gerade
parallel zu den anderen hinzugefügt, so ergeben die Projektionsebenen ein Ebenenbü-
schel mit der Verbindungsgerade ZF als Trägergerade (d.h. alle Ebenen des Büschels
schneiden sich in der Trägergeraden).

Z?
Π S? ZΠ

F

S?

Abb. 3.1.5 Die Parallelprojektion (links) ist parallelentreu, die Zentralprojektion
(rechts) dagegen nicht.
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Satz 3.1.5

Gegeben seien drei Punkte A,B,C einer nichtprojizierenden Geraden. Dann ist
das Teilverhältnis TV (A,B,C) gleich dem Teilverhältnis TV (A′, B′, C ′) ihrer
Bilder [31, S. 7] [38, S. 7].
Die Parallelprojektion ist somit teilverhältnistreu.

Beweis.
Da die Projektionsstrahlen parallel sind, lässt sich der erste Strahlensatz anwenden.
Daraus folgt direkt die Teilverhältnistreue.

Z?

Π

S

A′

C ′

B′

B

C

A

Abb. 3.1.6 Beweisfigur zur Teilverhält-
nistreue der Parallelprojektion

AC

A′C ′
=
CS

C ′S
=

BC

B′C ′

⇒ TV (A,B,C) = AC : BC = A′C ′ : B′C ′

= TV (A′, B′, C ′)

�

Die Parallelprojektion ist nach dem Satz parallelen- und teilverhältnistreu und folg-
lich nach Satz 2.4.4, S. 38, ebenso doppelverhältnistreu. Aufgrund der Teilverhält-
nistreue werden insbesondere Mittelpunkte auf Mittelpunkte abgebildet (vgl. Abb.
4.2.2, S. 95).
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3.2 Vier verschiedene Arten einer Projektion

Wir haben im vorherigen Abschnitt gezeigt, dass die Parallelprojektion zusätzliche
Invarianten gegenüber der Zentralprojektion aufweist. Wird zusätzlich die Projektion
auf eine Ebene, welche nicht das Projektionszentrum enthält, beschränkt, so wird die
Abbildung bijektiv. Neben der Punkt- und Inzidenztreue sind weitere Invarianten zu
finden [12] [38, S. 10] [31, S. 3 - 4], wie die folgende Abb. 3.2.1 zeigt.

Objektebene
parallel zur
Bildebene

Zentralprojektion streckenverhältnistreu
winkeltreu

⇒ Ähnlichkeitsabbildung

Parallelprojektion längentreu

⇒ Kongruenzabbildung

Objektebene
nicht parallel
zur Bildebene

Zentralprojektion doppelverhältnistreu

⇒ Perspektivität

Parallelprojektion parallelentreu
teilverhältnistreu

⇒ perspektive Affinität

Abb. 3.2.1 Die Invarianten verschiedener Fälle der Projektion

Die Zentralprojektion mit einer nicht parallelen Objektebene hat von den in der Ab-
bildung genannten Invarianten nur das Doppelverhältnis. Solche Abbildungen werden
Perspektivität genannt. Sind die Projektionsstrahlen parallel zueinander, so kommt
zu der Doppelverhältnistreue auch Parallelen- und Teilverhältnistreue hinzu. Die Ab-
bildung gehört dann zur Gruppe der perspektiven Affinitäten. Weitere Invarianten
kommen hinzu, wenn die Objektebene parallel zur Bildebene ausgerichtet wird.

In den nachfolgenden Abbildungen 3.2.2 bis 3.2.5 sind Beispiele für die vier ge-
nannten Fälle gegeben. Dreieck bzw. Rechteck liegen dabei in der entsprechenden
Objektebene.
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Z

A

B

C

Z
A
B

C
D

Abb. 3.2.2 Zentralprojektion mit
nicht paralleler Objektebene

Im ersten Beispiel ist die ebene Figur nicht
parallel zur Bildebene ausgerichtet und das
Projektionszentrum ein gewöhnlicher Punkt.
Hier bleibt das Doppelverhältnis die einzi-
ge vorgestellte Invariante. Am Rechteck ist
deutlich erkennbar, dass die rechten Win-
kel im Bild nicht erhalten bleiben. Auch
die parallelen Geraden AD und BC wer-
den auf sich schneidende Geraden abgebil-
det, auch wenn die Bildstrecken verlängert
werden müssen, um den Schnittpunkt zu er-
kennen. Es gibt allerdings auch Ausnahmen,
denn die parallelen Strecken AB und CD

werden tatsächlich auf ein paralleles Gera-
denpaar projiziert. Dies liegt daran, dass die-
se Strecken parallel zur Bildebene ausgerich-
tet sind. Wir kommen daher zum nächsten
Fall, indem die ebenen Figuren parallel zur
Bildebene zentralprojektiv abgebildet wer-
den.

Z

Z

Abb. 3.2.3 Zentralprojektion mit
paralleler Objektebene

Es entsteht eine Pyramide mit dem Pro-
jektionszentrum Z als Spitze und der Fi-
gur als Grundebene. Aufgrund der paralle-
len Ausrichtung der Ebenen bleiben die Win-
kel erhalten und über den Strahlensatz lässt
sich die Streckenverhältnistreue begründen.
Je nachdem, ob die Figur vor oder hinter
der Bildebene ist, entspricht die Projektion
einer Vergrößerung oder Verkleinerung. Es
handelt sich daher um eine zentrische Stre-
ckung mit Zentrum Z.
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Z?

A′
B′

A
B

Abb. 3.2.4 Parallelprojektion mit
nicht paralleler Objektebene

In den letzten beiden Abbildungen ist das
Projektionszentrum ein Fernpunkt, d.h. wir
betrachten eine Parallelprojektion mit Rich-
tung Z?. Das Rechteck senkrecht zur Bilde-
bene wird dabei auf ein Parallelogramm ab-
gebildet, d.h. die Projektion ist u.a. paralle-
lentreu.

Z?

Z?

Abb. 3.2.5 Parallelprojektion mit
paralleler Objektebene

Im letzten Beispiel sind Dreieck und Recht-
eck parallel zur Bildebene ausgerichtet. Die
Abbildung wird nun auch längentreu, sodass
der Körper statt einer Pyramide ein Pris-
ma bildet. Die Projektion wird dabei zu ei-
ner Verschiebung entlang der Projektions-
richtung [31, S. 8].
Diese Beispiele sollen zeigen, dass die Pro-
jektion sich mit weiteren Abbildungen, wel-
che Teil des Lehrplans sind (vgl. Abb. 6.3.1,
S. 237), vernetzen lassen, sodass die Schüler-
innen und Schüler die Möglichkeit haben,
diese selbst zu entdecken. Experimentell las-
sen sich solche Abbildungen im Unterricht
in Form von Schattenbildern auf der Wand
leicht nachstellen. Dabei können die ebenen
Figuren aus Pappe ausgeschnitten werden.
Der Schattenwurf wird dann mithilfe einer
Lampe als punktförmige Lichtquelle erzeugt
bzw. für die Parallelprojektion mithilfe der
Sonne [31, S. 3 bzw. 8].

Wir wollen in einem Kapitel zur Zentralprojektion eine Konstruktionsmethoden vor-
stellen, welche sog. Risse zur eindeutigen Darstellung von Objektion verwendet. Diese
entstehen durch eine Dreitafelprojektion. Hierbei wird durch die orthogonale Paral-
lelprojektion ein Objekt auf drei verschiedene Bildebenen abgebildet. Das Ergebnis
sind drei Ansichten eines Körpers, welche als Risse bezeichnet werden.
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3.3 Dreitafelprojektion

Abb. 3.3.1 Das Haus in der Raumecke

Bei der Dreitafelprojektion handelt es
sich um eine orthogonale Parallelprojek-
tion, d.h. die Projektionsstrahlen sind
parallel und stehen senkrecht zur Bil-
debene. Die drei Tafeln schneiden sich
ähnlich einer Raumecke ebenfalls ortho-
gonal [2]. In Abb. 3.3.1 stellen wir ein
Haus in diese Raumecke und führen je-
weils eine senkrechte Parallelprojektion
auf die Wände aus. Das Haus ist zu-
sammengesetzt aus einem Quader und
einem Prisma mit dreieckiger Grundfläche. Damit die Risse unterschiedliche werden
bzw. weniger Sonderfälle auftreten, wurde das Haus gedreht, sodass keine der Sei-
tenwände parallel zu den Bildebenen liegt. Zur Reduktion von Symmetrien liegt der
Dachfirst bzgl. der Mitte versetzt.

Die Bilder der Projektion werden als Grund-, Seiten- und Aufriss bezeichnet. Ausge-
hend von diesen Rissen lassen sich andere Projektionen konstruieren, welche in den
Abschnitten 4.3 Konstruktionsmethoden und 5.2 Axonometrie vorgestellt werden.

Die Dreitafelprojektion ist nicht nur ein Hilfsmittel zur Konstruktion zentralpro-
jektiver Bilder, sondern dient auch der eindeutigen Darstellung eines Objektes, da
die Projektion im Allgemeinen nicht bijektiv ist. Zwei Punkte auf demselben Pro-
jektionsstrahl werden auf denselben Bildpunkt projiziert. Die Projektion ist somit
nicht umkehrbar, d.h. aus einem Foto lässt sich ein Objekt nicht exakt im Raum re-
konstruieren. Es sei denn, es gibt mehrere Fotos aus verschiedenen Richtungen. Die
Dreitafelprojektion zeigt ein Objekt in drei unterschiedlichen Ansichten. Anders als
eine Fotografie wird hier eine Parallelprojektion verwendet. Sie weist mehr Invarian-
ten auf, selbst wenn die Objektebene nicht parallel zur Bildebene liegt. Es bleiben
somit mehr Eigenschaften eines Objektes erhalten. Fallen die Projektionsstrahlen
jeweils senkrecht auf die Ebenen, so bleiben auch rechte Winkel erhalten, sofern ein
Schenkel parallel zur Bildebene liegt [5, S. 12], wie die folgende Abbildung zeigt.
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Abb. 3.3.2 Sonderfall der orthogonalen Parallelprojektion, welche den rechten Win-
kel unverändert lässt.

Wir wollen nun anhand eines Beispiels zeigen, wie systematisch unter Verwendung
der Invarianten in Abb. 3.2.1, S. 56, Grund-, Seiten- und Aufriss des Hauses in der
Ebene konstruiert werden können.

Aufgabenbeispiel 3.3.1

Ein Haus bestehe aus einem Quader mit dem Maßen 6 x 4 x 2 LE und einem
Prisma mit der Höhe 2 LE. Der Lotfußpunkt der Spitze teile die Kante des Qua-
ders im Verhältnis 1 : 3. Eine Seite des Quaders ist im Grundriss vorgegeben.
Zur Vereinfachung entspricht 1 LE = 1 cm.

Aufriss

Grundriss

Se
it

en
ri

ss
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Lösung:

Aufriss

Grundriss

Se
it
en
ri
ss

Für den Grundriss werden die kurzen
Seiten von 4 LE eingezeichnet, sodass sich
ein Rechteck ergibt. Alle Kanten, welche
orthogonal zur Bildebene sind, fallen
mit den Projektionsgeraden zusammen
und werden zu einem Punkt. Aufgrund
der Teilverhältnistreue liegen die oberen
Ecken der Dachkante 3 LE von den Ecken
entfernt.

Für den Seitenriss werden ausgehend von
den Ecken des Rechtecks senkrecht zur
Schnittgerade von Seiten- und Grundriss
die Projektionsstrahlen skizziert. Da das
Haus auf dem Grundriss steht, entspricht
der Schnittpunkt der Projektionsstrah-
len mit der Schnittgeraden den unteren
Eckpunkten des Hauses.
Die Höhe des Quaders beträgt 2 LE
und wird unverzerrt dargestellt, da diese
Kanten parallel zum Seitenriss liegen
(Kongruenzabbildung).

Für das Dach werden die Projektionsstrahlen ausgehend von den Spitzen im Grund-
riss gezeichnet. Dabei ist das Dach insgesamt 4 LE über dem Boden. Zur besseren
Anschauung werden verdeckte Kanten gestrichelt dargestellt.
Die obere Fläche des Quaders schneidet die seitliche Bildebene orthogonal, d.h. sie
ist parallel zu den Projektionsstrahlen ausgerichtet. Genauso, wie Kanten, die mit
den Projektionsstrahlen zusammenfallen, zu Punkten werden, so werden Ebenen in
vergleichbarer Lage auf Geraden projiziert. Weiterhin erhalten wir als Resultat, dass
Kanten, welche nicht parallel zur Bildebene liegen, verzerrt abgebildet werden. Der
Teilungspunkt der Dachspitze liegt dagegen weiter auf 1/4 der unteren Kante, was
wiederum ein Beispiel für die Teilverhältnistreue ist.
Auf dieselbe Weise wird auch der Aufriss ausgehend vom Grundriss konstruiert.
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Die Projektionsstrahlen werden nun
ausgehend von den Eckpunkte des Qua-
ders im Grundriss senkrecht nach oben
gezeichnet. Ihr Schnittpunkt mit der
unteren Kante der Aufrissebene ist der
Lotfußpunkt der senkrechten Kanten des
Quaders. Da diese wieder parallel zur Bil-
debene sind, werden die oberen Ecken des
Quaders 2 LE darüber projiziert. Genauso
wird mit dem Dach verfahren.

Die Längen im Seitenriss können auch mithilfe einer Winkelhalbierenden auf den
Aufriss übertragen werden, wie es in Abb. 3.3.3 angedeutet ist. Die Abbildung fasst
noch einmal alle Besonderheiten der Risse aufgrund der Invarianten zusammen.

• Geraden parallel zur Bildebene
werden auf kongruente Geraden
projiziert.

• Parallelprojektion ist immer
parallelentreu.

• Lotfußpunkt der Dachspitze teilt
die Kante ebenfalls im Verhältnis
1 : 3, auch wenn die Seiten selbst
verzerrt projiziert werden.

Abb. 3.3.3 Dreitafelprojektion des Hauses in Abb. 3.3.1

Aufgrund der genannten Invarianten ist die Konstruktion von Bildern einer Par-
allelprojektion einfacher als jene einer Zentralprojektion. Gerade der Wegfall der
Teilungsverhältnisstreue erfordert einige Tricks, um z.B. ein regelmäßiges Muster,
wie einen gefliesten Boden, zu konstruieren. Hier wird stattdessen die Inzidenztreue
zur Hilfe genommen. Bspw. lässt sich der Mittelpunkt einer rechteckigen Fläche über
den Schnittpunkt der Diagonalen finden. Gleiches gilt dann auch in der Projektion.
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3.3.1 Aufgabenbeispiele

Wir wollen zwei verschiedene Aufgabentypen vorstellen. Zum einen geht es um die
Lage eines Objektes im Raum, welche über die gegebenen Risse rekonstruiert wird.
Zum anderen um die Rekonstruktion von Längen aus den Rissen, wenn die abgebil-
dete Strecke nicht parallel zur Bildebene ist.
Bei einer Lageaufgabe geht es darum, sich ein Objekt im Raum vorzustellen, wenn
nur der Grund- und Aufriss bekannt ist. In dem folgenden Aufgabenbeispiel 3.3.2
sind drei Punkte in den entsprechenden Rissen gegeben. Das Dreieck zeigt dabei mit
der Ecke B in Richtung der Bildebene, wie dem Grundriss entnommen werden kann.
Nach dem Aufriss ist die Spitze B gekippt nach unten. Die Schülerinnen und Schüler
sollen nun einen Punkt D in den Rissen ergänzen, sodass das resultierende Viereck
ABCD eben ist. Da drei Punkte genau eine Ebene festlegen, kann der Punkt D nicht
beliebig gewählt werden. Im zweiten Teil soll das Viereck ein Parallelogramm werden.
Da die Parallelprojektion aber parallelentreu ist, kann Aufgabe b) sogar einfacher
als der erste Teil gelöst werden. Die Reihenfolge der beiden Teilaufgaben orientiert
sich nicht am Schwierigkeitsgrad, sondern an dem Lösungsweg.

Aufgabenbeispiel 3.3.2

Das Bild zeigt den Grund- und Aufriss dreier Punkte A,B und C im Raum.

a) Ergänze im Grund- und Aufriss D′ und D′′ derart, dass ABCD ein ebenes
Viereck im Raum ergibt.

b) Ändere das obige Verfahren derart ab, sodass ABCD zu einem Parallelo-
gramm wird.

Aufriss

Grundriss

A′′

B′′

C ′′

A′

B′

C ′
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Aufriss

Grundriss

A′′

B′′

C ′′

A′

B′

C ′

M ′′

D′′

M ′
D′

Abb. 3.3.4 Lösung des Aufgabenbei-
spiels 3.3.2 a)

Für die Lösung werden die Diagona-
len eines Vierecks verwendet. Im Aufriss
verbinden wir A′′ mit C ′′ und oberhalb
der Strecke setzten wir D′′ derart, dass
das Viereck A′′B′′C ′′D′′ konvex ist. Nun
gilt es, den entsprechenden Punkt D′ im
Grundriss zu finden. Wir fällen das Lot
auf die Schnittgerade der Grund- und
Aufrissebene, der sog. Risskante, durch
D′′. Diese wird als Ordner bezeichnet,
da sie die Punkte in den entsprechenden
Rissen einander zuordnet.
Nun stellt sich die Frage, wo auf dieser
Senkrechten sich der Punkt D′ befinden
muss, damit im Raum ein ebenes Vier-
eck entstehen kann. Wir verbinden dazu
B′′ mit D′′ und markieren den Schnitt-
punkt M ′′ der Diagonalen. Auch hier
zeichnen wird den entsprechenden Ordner ein. Diese schneidet die Strecke A′C ′ in
M ′, sodass wir die Diagonale durch B′ im Grundriss zeichnen können. Diese schneidet
den Ordner von D′′ im gesuchten Punkt D′.

Aufriss

Grundriss

A′′

B′′

C ′′

A′

B′

C ′

M ′′

M ′

D′′

D′

Abb. 3.3.5 Lösung des Aufgabenbei-
spiels 3.3.2 b)

Teil b) lässt sich auf dieselbe Weise lö-
sen, wobei hier M ′′ als Mittelpunkt der
Strecke A′′C ′′ gewählt werden muss, da
sich die Diagonalen in einem Paralle-
logramm gegenseitig halbieren. Da die
Parallelprojektion teilverhältnistreu ist
und M der Mittelpunkt des Parallelo-
grammes im Raum ist, müssen auch M ′

und M ′′ Mittelpunkte der Diagonalen
sein. Diese Invariante wird nun zur Lö-
sung des Problems verwendet, d.h. der
Abstand zwischen B′′ und M ′′ wird auf
dem Strahl B′′M ′′ abgetragen, um D′′

zu erhalten. Dann wird D′ analog zu a)
ermittelt.
Eine andere Möglichkeit ist die Verwen-
dung der Parallelentreue. Die Seite AB
des Parallelogrammes im Raum ist par-
allel zu CD. Aufgrund der genannten In-
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variante gilt auch A′′B′′ ‖ C ′′D′′ sowie B′′C ′′ ‖ A′′D′′′. Wir ziehen also die entspre-
chenden Parallelen durch A′′ und C ′′, welche sich in D′′ schneiden werden. Dann
kann D′ wieder über den Ordner und den Strahl B′M ′ gefunden werden oder eben-
falls über den Schnittpunkt der Parallelen durch A′ und C ′.

Abb. 3.3.6 Die Risse aus Abb. 3.3.5
übertragen in GeoGebra

Anhand des Aufgabenbeispiels lassen
sich weitere Varianten entwickeln. So
existiert bspw. die Frage, ob das Par-
allelogramm ABCD sogar ein Rechteck
sein kann. Hier liegt der Fokus auf den
Winkeln. Nach Abb. 3.2.1, S. 56 gilt
im Allgemeinen nicht die Winkeltreue,
d.h. es ist nicht auszuschließen, dass das
Parallelogramm ABCD in der vorheri-
gen Aufgabe kein Rechteck ist. Schüler-
innen und Schüler können die entspre-
chenden Risse in GeoGebra nachzeich-
nen und dann das Parallelogramm im
Raum rekonstruieren. Hierbei ist es hilf-
reich, den Ursprung des Koordinaten-
systems links der Risskante zu wählen.
Dann hat P ′′(x, y) im Aufriss die Ko-
ordinaten (0, x, y) in der yz-Ebene und
P ′(x, y) entsprechend (−x, y, 0) in der
xy-Ebene. Abb. 3.3.6 zeigt die übertra-
genen Risse.
Da es sich bei der Drei- bzw. Zweitafel-
projektion um eine senkrechte Parallel-
projektion handelt, kann das ursprüngli-
che Parallelogramm im Raum durch den
Schnittpunkt der entsprechenden Nor-
malen auf die Rissebenen rekonstruiert
werden. Es stellt sich heraus, dass es sich hierbei weder um ein Rechteck noch um
eine Raute handelt, denn es gibt weder rechte Winkel noch sind alle Seiten gleich lang.

Falls sich die Schülerinnen und Schüler fragen, ob der Winkel im Riss auch recht-
winklig sein muss, können sie zur Untersuchung dieser Frage die Seite B′′C ′′ parallel
zur Seite A′′D′′ verschieben, bis sich im blauen Parallelogramm ein rechter Winkel
bildet, wie Abb. 3.3.7 zeigt. Es stellt sich heraus, dass aufgrund der Schräglage des
blauen Rechtecks die Risse selbst nicht rechtwinklig sein müssen, denn die Paral-
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Abb. 3.3.7 Risse eines Rechtecks, welches durch Paralleverschiebung aus einem Par-
allelogramm entstanden ist.

lelprojektion wird erst winkeltreu, wenn Objekt- und Bildebene parallel zueinander
sind. Eine Ausnahme gilt bei rechten Winkeln. Diese werden, wie das Beispiel in
Abb. 3.3.2 zeigte, auf rechte Winkel projiziert, wenn einer der Schenkel parallel zur
Bildebene liegt. Aus den Rissen können wir entnehmen, dass dies nicht der Fall ist,
da keine Seite parallel zu den Risskanten liegt.

Stellen wir uns nun vor, wir drehen das blaue Rechteck derart, dass es zur Grundris-
sebene parallel wird, so wird die Parallelprojektion zur Kongruenzabbildung, sodass
sich sowohl Winkel als auch Längen im Grundriss ablesen lassen. Wir kommen zum
zweiten Aufgabentyp, in welcher wir durch geeignete Drehungen die wahren Maße
von Objekten über ihre Risse ermitteln können. Wie diese Paralleldrehung durchge-
führt wird, soll anhand des folgenden Konstruktionsbeispiels gezeigt werden.
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Konstruktionsbeispiel 3.3.1

Gegeben ist der Grund- und Aufriss einer Strecke AB. Es soll nun durch Dre-
hung von AB im Raum die wahre Länge der Strecke ermittelt werden.

Aufriss

Grundriss

A′′

B′′

A′

B′

Die Strecke kann im Raum derart gedreht werden, dass sie parallel zu einer der Ris-
sebenen wird. Wir werden sie im folgenden parallel zum Grundriss drehen. Nach dem
Aufriss liegt der Punkt A tiefer als B. Durch diesen soll die Rotationsachse r gehen,
welche zudem parallel zum Grundriss sein soll. Dann ist A ein Fixpunkt, sodass sich
auch A′ nach der Drehung nicht ändern wird. Dies sind die Voraussetzungen für fol-
gende Konstruktionsschritte:

1. Ziehe Parallele durch A′′ zur Risskante. ⇒ r′′

2. Fälle Lot durch B′′ auf Risskante und markiere den Schnitt-
punkt mit r′′.

⇒ S′′

3. Zeichne Senkrechte durch B′ zu r′.
4. Trage den Abstand d(B′′, S′′) auf dem Lot aus Schritt 3 ab. ⇒ Br

5. Die Strecke A′Br ist kongruent zur Strecke AB im Raum.
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Aufriss

Grundriss

A′′

B′′

A′

B′ = S ′
r′

r′′ S ′′

Br

Abb. 3.3.8 Paralleldrehung nach Kon-
struktionsbsp. 3.3.1

Nun stellt sich die Frage, warum die
o.g. Konstruktion funktioniert und wel-
che Invarianten der orthogonalen Paral-
lelprojektion verwendet werden.
Abb. 3.3.9 zeigt die Risse der Strecke
AB sowie ihre Drehung im Raum. Nach
Voraussetzung verläuft die Rotations-
achse r durch A und ist parallel zu A′B′.
Somit ist die Rotationsachse auch paral-
lel zur Grundrissebene, sodass der Auf-
riss r′′ parallel zur Risskante wird. Dies
erklärt den ersten Konstruktionsschritt.
Eine Drehung im Raum erfolgt auf ei-
nem Kreis, welcher in einer Ebene ortho-
gonal zur Drehachse liegt. Wir zeichnen
daher in Schritt 3 eine Senkrechte zu r′

durch B′. Es fehlt noch der Radius des
Kreises. Fällen wir das Lot durch B auf
die Grundrissebene, schneidet diese die Drehachse in S bzw. S′, welcher auch B′ ist,
da r und AB nach Konstruktion denselben Grundriss besitzen. Der Radius des Krei-
ses entspricht dem Abstand d(B,S). Da die Gerade BS nach Konstruktion senkrecht
zur Grundrissebene ist, ist diese parallel zur Aufrissebene.

Abb. 3.3.9 Paralleldrehung zur Bestim-
mung von realen Maßen

Aufgrund der orthogonalen Parallelpro-
jektion ist das Viereck BSS′′B′′ ein
Rechteck. Wir erhalten also den Ra-
dius des Kreises, indem wir den Ord-
ner von B′′ zeichnen (Schritt 2). Dann
gilt d(B,S) = d(B′′, S′′). Da die Dre-
hung eine Kongruenzabbildung ist, müs-
sen wir nur noch den Abstand auf das
Lot durch B′ abtragen und wir erhalten
Br. Mit derselben Begründung ist dann
auch d(A,B) = d(A′, Br).
Wir sehen in Abb. 3.3.9, dass der Dreh-
winkel 90◦ beträgt und durch die Kon-
struktion wird das Dreieck ABS parallel
zur Grundrissebene gedreht haben. So-
mit wird die Parallelprojektion zu einer
Verschiebung, sodass wir damit die unverzerrte Strecke AB rekonstruieren konnten.
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Wir erweitern die vorherige Aufgabe und betrachten nun ein Dreieck ABC im Raum.
Wieder sind im Konstruktionsbeispiel 3.3.2 Grund- und Aufriss gegeben und wir wol-
len nun das gesamte Dreieck derart drehen, dass es wieder parallel zum Grundriss
zum Liegen kommt. Hierbei ist das Finden der Rotationsachse nun komplizierter,
da durch die Drehung alle drei Seiten parallel zum Grundriss gedreht werden müs-
sen. Wir zeigen daher zwei verschiedene Methoden. Die erste verwendet, wie zuvor
beschrieben, eine Rotationsachse, um das Dreieck im Raum parallel zum Grundriss
zu drehen. Wir rekonstruieren daher nicht nur die Maße des Dreiecks, sondern das
Dreieck an sich. Die zweite Methode knüpft an die vorherige Konstruktion an, d.h.
wir rekonstruieren unabhängig voneinander die Seiten AB,BC und AC. Es wer-
den dabei drei verschiedene Rotationsachsen verwendet, sodass das Endergebnis im
Allgemeinen kein Dreieck mehr sein wird, denn die Seiten erscheinen in beliebiger
Richtung in der Grundrissebene. Zur Rekonstruktion des Dreiecks müssen die einzel-
nen Seiten wieder zu einem zusammengefügt werden. Für Schülerinnen und Schüler
kann diese Alternative aber einfacher nachvollziehbar sein, da sie an die vorherige
Konstruktionsaufgabe anknüpft.

Konstruktionsbeispiel 3.3.2

Gegeben ist der Grund- und Aufriss eines Dreiecks ABC im Raum. Es sollen
die Seitenlängen des Dreiecks rekonstruiert werden.

Aufriss

Grundriss

A′′

B′′

B′

A′

C ′′

C ′
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Zuerst müssen wir die Drehachse finden. Der Trick besteht darin, dass wir das Drei-
eck ABC in die Grundrissebene drehen, statt nur parallel dazu. Die Rotationsachse
muss daher in der Grundrissebene liegen. Wir verlängern die Seiten in den Rissen
entsprechend folgender Konstruktionsschritte (Abb. 3.3.10, links):

Erster Teil

1. Verlängere die Seiten A′′C ′′ und B′′C ′′, bis sie die Risskante
schneiden.

⇒ R′′, S′′

2. Zeichne die Ordner von R′′ und S′′ ein.
3. Verlängere die Seiten A′C ′ und C ′B′, bis sie die Ordner aus 2.

schneiden.
⇒ R′, S′

Da die Rotationsachse im Grundriss liegt, gilt auch R′ = R und S′ = S. Abb. 3.3.11
zeigt die Drehung im Raum. Hierbei wird das Dreieck R′CS′ in die Grundrissebene
geklappt. Die Seite R′S′ bleibt als Fixpunktgerade erhalten, der Punkt C dreht sich
auf einem Kreis senkrecht zur Rotationsachse. Betrachten wir das Lot h von C auf
die Gerade R′S′. Wenn wir die Länge dieser Seite mithilfe der Risse rekonstruieren
können, so können wir h senkrecht zu T in der Grundrissebene abtragen und erhalten
das gedrehte, große Dreieck, dessen Spitze das gesuchte Bild ist. Die Rekonstruktion
von h ist daher der zweite Teil der Konstruktion (Abb. 3.3.10, rechts):

Zweiter Teil

1. Zeichne das Lot von C ′′ auf die Risskante. ⇒ d

2. Zeichne eine Parallele zu RS durch C ′ und trage die Länge von
d auf ihr ab.

⇒ H

3. Zeichne die Senkrechte zu RS durch C ′. ⇒ T

4. Verbinde die Punkte T und H. Ihr Abstand ist die Länge von
h, welche auf der Senkrechten aus 3. abgetragen wird.

⇒ C

5. Verbinde C mit R und S.
6. Zeichne die Senkrechte durch A′ und B′ auf RS ein. Markiere

die Schnittpunkte mit CR und CS.
⇒ A,B
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Aufriss

Grundriss

A′′

B′′

B′

A′

C ′′

C ′

R′′
S ′′

R′

S ′

Aufriss

Grundriss

A′′

B′′

B′

A′

C ′′

C ′

R

S

d

T

H

C

hA

B

Abb. 3.3.10 Paralleldrehung eines Dreiecks im Raum. Erster Teil der Konstruktion
ist links dargestellt, der zweite Teil rechts.

(a) Erster Teil (b) Zweiter Teil

Abb. 3.3.11 Paralleldrehung des Dreiecks in GeoGebra, zur Erklärung der Kon-
struktionsidee
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Nun stellt sich die Frage, warum d parallel zur Rotationsachse durch C ′ abgetragen
werden muss, damit sich h ergibt. Hierzu betrachten wir die räumliche Darstellung
der Situation in Abb. 3.3.11 (b).
Betrachten wir das Dreieck CC ′T und drehen es 90◦ um C ′T in die Grundrissebene,
so erhalten wir das Dreieck HC ′T . Die Strecke CC ′ steht danach senkrecht auf C ′T
durch C ′. Dies erklärt die Parallele in Schritt 2. Den Abstand von C zu C ′ können
wir dem Aufriss entnehmen. Die Gerade CC ′′ steht als Projektionsstrahl nach Defi-
nition senkrecht zur Aufrissebene, ebenso die Gerade CC ′. Daher ist die Strecke CC ′

genauso lang wie d.
Die Ecken A und B in der Grundrissebene sind leichter zu finden, denn auch diese
werden um einen Kreis orthogonal zu RS gedreht. Wir zeichnen daher wieder die
Senkrechten zu RS durch A′ und B′ ein. Da nun aber C bekannt ist, können hier
die Schnittpunkte mit den beiden Dreiecksseiten verwendet werden.

Wir kommen abschließend zur alternativen Lösung in Abb. 3.3.12, welche die vorhe-
rige Konstruktion verwendet. Statt genau einer Rotationsachse wird für jede Drei-
ecksseite eine eigene bestimmt. r′′1 ist die Parallele durch B′′ zur Risskante. Dann
wird von A′′ aus das Lot gefällt und die in der Abbildung blau markierte Strecke im
Grundriss senkrecht an A′ abgetragen werden, um Ar1 zu erhalten. Diese verbunden
mit B′ ergibt die wahre Strecke der Dreiecksseite AB. Mit den zwei anderen Seiten
wird genauso verfahren. Da nun die einzelnen Seiten im Grundriss kein Dreieck bil-
den, können die Schülerinnen und Schüler diese mit dem Zirkel abmessen und eine
Kopie erstellen.

Aufriss

Grundriss

A′′

B′′

B′

A′

C ′′

C ′

r′′1
Ar1

r′′2

Cr2

r′′3

Cr3

C

A

B

Abb. 3.3.12 Paralleldrehung eines Dreiecks im Raum, alternative Lösung
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Wir haben die Dreitafelprojektion besprochen, da sich zentral- und parallelprojektive
Bilder aus den Rissen konstruieren lassen. Wir wollen zum Abschluss dieses Kapitels
den Satz von Desargues besprechen, welcher der projektiven Geometrie zuzuordnen
ist, ein Teilgebiet der Mathematik, dessen grundlegenden Axiome wir am Anfang
dieser Arbeit vorgestellt hatten (Abs. 2.2, S. 25). Aus diesem Teilgebiet entstammen
auch die Fernpunkte und -geraden.

3.4 Der Satz von Desargues

Ein bekannter Satz der projektiven Geometrie ist der von Desargues, welcher sich
aus unterschiedlichen Blickwinkeln interpretieren und untersuchen lässt.

Satz 3.4.1: Satz von Desargues

Gegeben sei ein Punkt Z in der Ebene und ein Dreieck ∆ABC. Ein weiteres
Dreieck ∆A′B′C ′ hat seine Eckpunkte auf den Strahlen ZA, ZB und ZC.
Genau dann gilt:
Die Schnittpunkte U, V und W mit

AB ∩A′B′ = {U} BC ∩B′C ′ = {V } AC ∩A′C ′ = {W}

sind kollinear auf der Geraden a.

Z

A′

B′

C ′

A

B

C

a

U

V

W

Abb. 3.4.1 Der Satz von Desargues
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In der Literatur finden sich unterschiedliche Formulierungen und Beweise [37, 34,
47]. Wird der Satz im Sinne einer zentralprojektiven Abbildung von einer Ebene in
eine andere betrachtet, so ist die Gerade a die Schnittgerade dieser beiden Ebenen.
Da sich Gerade und Bildgerade schneiden, ist der Schnittpunkt nach Satz 3.1.2, S.
49, ein Fixpunkt und alle Fixpunkte befinden sich auf dieser Schnittgeraden.
Aus Sicht der projektiven Geometrie sind die Dreiecke ∆ABC und ∆A′B′C ′ zentral-
perspektiv , da die Verbindungsgeraden AA′, BB′ und CC ′ nach der o.g. Vorausset-
zung sich in dem Punkt Z schneiden. Die Verbindungsgeraden AB,AC,BC1 und
A′B′, A′C ′, B′C ′ sind axial-perspektiv , da ihre Schnittpunkte auf einer Geraden lie-
gen [47, S. 38]. Dies war die Zielaussage in der obigen Formulierung.
Die Umkehrung des Satzes gilt ebenso. Wir konstruieren zwei Dreiecke, deren Ver-
längerungen der Kanten sich in kollinearen Punkten schneiden. Dazu formulieren wir
folgendes Aufgabenbeispiel:

Aufgabenbeispiel 3.4.1

Zeichne eine Gerade und markiere darauf drei Punkte mit U, V und W in belie-
biger Reihenfolge. Nun konstruiere zwei Dreiecke ∆ABC und ∆A′B′C ′ derart,
dass U der Schnittpunkt der Geraden AB und A′B′ ist, sowie V von BC und
B′C ′ bzw. W von AC und A′C ′ ist.

Zeichen dann die Geraden AA′, BB′ und CC ′. Was stellst du fest?

Lösung:

U

V

W

1. Schritt: Wir beginnen mit der Vorga-
be und zeichnen die Gerade a mit den
Punkte U, V und W , wobei nach Aufga-
benstellung die Reihenfolge der Punkte
auf der Geraden beliebig ist. Wir zeich-
nen nun drei Geraden durch die Punkte,
die nicht kollinear sein dürfen, damit ih-
re Schnittpunkte ein Dreieck ergeben.

1Sie werden in der projektiven Geometrie Dreiseit genannt und ihre Schnittpunkte bilden das
Dreieck ∆ABC [47, S. 38]
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U

V

W

B

A C

2. Schritt: Nun müssen wir über die Be-
zeichnung der Punkte auf der Gerade die
Eckpunkte des Dreiecks benennen. Nach
der Aufgabenstellung schneiden sich die
Geraden wie folgt:

U ∩W = {A}
U ∩ V = {B}
V ∩W = {C}

U

V

W

B

A C
B′

A′

C ′

3. Schritt: Wir wiederholen die ers-
ten beiden Schritte, um das zwei-
te Dreieck ∆A′B′C ′ zu konstruie-
ren.

4. Schritt: Nun verbinden wir die Punkte A mit A′, B mit B′ und C mit C ′. Wir
werden feststellen, dass sich die Geraden in einem Punkt schneiden. Dies ist nach
dem vorherigen Satz Z.

Eine andere Reihenfolge der Benennung der Punkte auf der Affinitätsachse (orange)
hat keine Auswirkung auf die Konstruktion. Es ändert sich nur die Benennung der
Eckpunkte des Dreiecks. Ihre Verbindungsgeraden dagegen bleiben gleich:

U

V

W

B

A

C
B′

A′

C ′

Z

V

U

W

B

C

A
B′

C ′

A′

Z
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U
V

W

B

C

A

B′ A′

C ′

Z

Z
A

A′

B

U

B′ C C ′

W

V

Abb. 3.4.2 Links: Änderung der Lage der Punkte auf der Affinitätsachse (orange).
Rechts: Änderung der Rolle von Geraden und Punkten

Verändern wir dagegen die Lage der Punkte auf der Affinitätsachse (orange), so
ändern sich auch die Dreiecke und die Lage von Z. Abb. 3.4.2 (links) zeigt daher ein
anderes Ergebnis.
Die Figur im Satz von Desargues weist einige Besonderheiten auf. Sie besteht aus
zehn Punkten und zehn Geraden, wobei durch jeden Punkt genau drei Geraden
verlaufen und jede Gerade drei Punkte enthält. Wir können sogar in derselben Figur
die Rolle der Punkte und Geraden verändern, sodass zwei neue Dreiecke entstehen
(Abb. 3.4.2, rechts) [47, S. 40].
Zur Änderung der Rolle wurde als neues Zentrum U gewählt und in Z umbenannt.
Die Geraden durch Z sind die Strahlen, welche die Eckpunkte der beiden Dreiecke
enthalten müssen. B wurde nicht verändert. Dann muss der dritte Punkte auf der
Geraden B′ sein. B und A müssen auf einer Geraden liegen. Somit muss V in A um-
benannt werden. Der dritte Punkte auf der Geraden AB muss dann U sein. Damit
haben wir auch die Affinitätsachse gefunden, welche U enthält.
Wir stellen also fest, dass die Wahl von Z gleichzeitig auch die Affinitätsachse festlegt.
Dies lässt sich allerdings einfach erklären: Die Affinitätsachse enhält drei Punkte, die
nicht zu den Dreiecken gehören. Damit fallen die drei Geraden durch Z weg wie
auch die sechs Geraden, welche die Dreiecke bilden. Da die Figur aus insgesamt zehn
Geraden besteht, bleibt nur noch eine über, welche die gesuchte Affinitätsachse ist.

Wir wollen eine weiteres Aufgabenbeispiel zeigen, welcher den Satz von Desargues
zur Lösung nutzt. Stellen wir uns vor, wir haben ein rechteckiges Blatt Papier und
zwei Geraden, welche sich schneiden. Allerdings liegt der Schnittpunkt S außerhalb
unseres Blattes. Nun wollen wir eine dritte Gerade konstruieren, welche durch S

verläuft.
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Aufgabenbeispiel 3.4.2

Gegeben ist ein Blatt Papier mit zwei nicht parallelen Geraden. Wähle einen
Punkt A außerhalb der Geraden und konstruiere mithilfe des Satzes von De-
sargues eine dritte Gerade, welche durch A und den Schnittpunkt der anderen
beiden Geraden verläuft.

Lösung:

A

Die Schwierigkeit der Aufgabe besteht
darin, zu entscheiden, welche Rolle die
gegebenen Objekte in der Figur zum
Satz von Desargues einnehmen. Als Hil-
fe wurde daher der erste Punkte A ge-
nannt. Durch A verlaufen genau drei Ge-
raden, d.h. der Schnittpunkt ist entwe-
der Z,U oder W . Wir entscheiden uns
für Z. Das Ziel ist also, den Punkte A′

zu konstruieren.

A

B

C

V

B′

C ′

1. Schritt: Wir müssen jeweils zwei
Punkte auf den gegebenen Geraden
wählen, da jede Gerade genau drei
Punkte enthält und Z schon gesetzt
ist. Damit ist ein Dreieck festgelegt.
BC und B′C ′ schneiden sich in V .
Wir wählen die Punkte also derart,
dass der Schnittpunkt V auf dem Blatt
liegt.

A

B

C

V

B′

C ′

W U

2. Schritt: Wir zeichnen die Verbin-
dungsgerade AC und die Affinitäts-
achse durch V derart, dass sie die
erste Gerade auf dem Blatt schnei-
det. Damit ist W festgelegt. Eben-
so ergibt sich U durch die Gerade
AB.
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A

B

C

V

C ′

W U

A′

3. Schritt: Wir zeichnen die Gerade
WC ′ und UB′, welche sich in dem
gesuchten Punkt A′ schneiden. Damit
ist auch das zweite Dreiecke gefun-
den.

A
Z

Zur Kontrolle zeichnen wir die Gerade
über das Blatt hinaus. Im Unterricht
können die Schülerinnen und Schüler Li-
neale oder Papierstreifen verwenden, um
ihr Ergebnis zu überprüfen.

Der Satz von Desargues lässt sich mit den Axiomen der projektiven Geometrie2 in
der Ebene nicht beweisen bzw. es gibt Ebenen3, welche zwar die Axiome erfüllen,
aber der Satz von Desargues nicht erfüllt ist [47, S. 41]. Analog verhält es sich mit
dem Parallelenaxiom der euklidischen Geometrie. Er kann aus dem Axiomensystem
nicht gefolgert werden und muss explizit dem System hinzugefügt werden. Die sog.
nicht-euklidischen Geometrien zeichnen sich dadurch aus, dass alle Axiome außer das
Parallelenaxiom gültig sind.

Wir betrachten nun die euklidische Ebene mit einem kartesischen Koordinatensystem
und wollen eine Richtung des Satzes von Desargues beweisen. Wir verwenden dazu
die Methoden aus der analytischen Geometrie im Mathematikunterricht der Oberstu-
fe an Gymnasien und Gesamtschulen. Zum besseren Verständnis soll die Beweisidee
erst auf ein Zahlenbeispiel angewendet werden, d.h. Schülerinnen und Schüler entwi-
ckeln anhand einer konkreten Situation einen Rechenweg und übertragen diese dann
im nächsten Schritt ins Allgemeine. Es wird sich zeigen, dass der zweite Schritt etwas
mühselig ist, da einige Umformungen nötig sind.

2Das sind die Indzidenzaxiome (G1) und (G2) aus Abs. 2.2, S. 25, und zur Reichhaltigkeit, d.h.
jede Gerade inzidiert mit mindestens drei Punkten und es gibt mindestens drei nicht kollineare
Punkte. Da wir in der Arbeit aber unendlich viele Punkte und Geraden betrachten, wurden diese
Axiome im genannten Abschnitt nicht erwähnt.

3sog. Moulton Ebenen, in welcher Geraden auch einen „Knick“ haben können.
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Aufgabenbeispiel 3.4.3

Gegeben sei der Punkt Z(5/7) und zwei Dreiecke mit den Eckpunkten A(4/6),
B(5.75/1), C(4/4.5) und A′(−2/0), B′(6/− 1), C ′(3/2).

a) Zeigen Sie jeweils, dass die Punkte Z,A,A′ sowie Z,B,B′ und Z,C,C ′

kollinear sind.

b) Bestimmen Sie jeweils die Schnittpunkte U, V,W der Geraden AB mit
A′B′, BC mit B′C ′ und AC mit A′C ′.

c) Zeigen Sie, dass U, V und W ebenfalls kollinear sind.

Der Schwierigkeitsgrad dieser Aufgabe lässt sich erhöhen, wenn die drei Teilschritte
entfernt werden, sodass die Schülerinnen und Schüler sich selbst überlegen müssen,
wie sie die Kollinearität der Schnittpunkte durch Berechnungen zeigen können.

Lösung:
Für Aufgabe a) gibt es zwei verschiedene Lösungswege. Im Sinne einer Punktprobe
kann die Geradengleichung von ZA in Parameterform erstellt werden und über ein
lineares Gleichungssystem der Parameter λ ∈ R für A′ bestimmt werden:

gZA : ~x =

(
5

7

)
+ λ

(
−1

−1

)
=

(
−2

0

)
⇒ λ = 7

Eine andere Möglichkeit ist die Aufstellung der Parametergleichung der Geraden
ZA und ZA′. Sind die Richtungsvektoren ~r linear abhängig, so müssen die Geraden
identisch sein, da sie den Punkt Z gemeinsam haben:

~rZA =

(
−1

−1

)
, ~rZA′ =

(
−7

−7

)
⇒ ~rZA′ = 7 · ~rZA

Analog ergibt sich die Kollinearität für die beiden anderen Punktreihen.

Für b) werden die entsprechenden Geraden gleichgesetzt, das lineare Gleichungssys-
tem gelöst und mit dem sich ergebenen Parametern der Schnittpunkt bestimmt:

gAB : ~x = g
A′B′ : ~x ⇒ λ

(
1.75

−5

)
+ µ

(
−8

1

)
=

(
−6

−6

)
⇒ λ =

24

17
, µ =

18

17

⇒ U(6.47/− 1.06)
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Analog ergeben sich V (7.5/− 2.5) und W (4/2.4). Dass diese drei Schnittpunkte auf
einer Geraden liegen, kann wie in Teil a) überprüft werden:

gUV : ~x =

(
6.47

−1.06

)
+ λ

(
1.03

−1.44

)
=

(
4

2.4

)
⇒ λ = −2.4

Wir wollen nun algebraisch beweisen, dass die Kollinearität von U, V und W unab-
hängig von der Wahl des Dreiecks ∆ABC und dessen Bild ∆A′B′C ′ ist. Sei ~z der
Ortsvektor vom Zentrum Z, ~a jener von A usw. Dann können die Strahlen durch
folgende Geradengleichungen beschrieben werden:

gZA : ~x = ~z + λ1(~a− ~z)
gZB : ~x = ~z + λ2(~b− ~z)
gZC : ~x = ~z + λ3(~c− ~z)

Die Parameter λ1, λ2 und λ3 seien nun fest gewählt, um die Bildpunkte zu erhalten.
Hierbei sei zunächst vorausgesetzt, dass diese paarweise verschieden sind, d.h. λ1 6=
λ2 6= λ3. Somit gilt:

~a′ = ~z + λ1(~a− ~z)
~b′ = ~z + λ2(~b− ~z)
~c′ = ~z + λ3(~c− ~z)

Wir stellen nun die entsprechende Verbindungsgeraden auf und berechnen den Schnitt-
punkt U . Da sich die Geraden nur durch die Wahl des Parameters und des Richtungs-
vektors unterscheiden, reicht die Berechnung eines Schnittpunktes aus, um analog die
anderen folgern zu können.

gAB : ~x = ~a+ µ(~b− ~a)

g
A′B′ : ~x = ~a′ + µ′(~b′ − ~a′)

= [1− λ1 + (λ1 − λ2)µ′] ~z + (1− µ′)λ1 ~a+ µ′λ2 ~b

Wie im Rechenbeispiel setzen wir beide Geradengleichungen gleich und sortieren
nach links alle Terme mit µ und µ′:

µ(~a−~b) + µ′[(λ1 − λ2) ~z − λ1 ~a+ λ2 ~b] = (1− λ1) ~z + (λ1 − 1) ~a

Nun führen wir einen Koeffizientenvergleich durch, eine Methode, welche im Unter-
richt wohl eher unbekannt sein dürfte. Hierzu werden die Koeffizienten der Vektoren
~a,~b und ~z von der linken und rechten Seite verglichen:
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(µ− µ′ λ1) ~a+ (−µ+ µ′ λ2)~b+ µ′ (λ1 − λ2) ~z = (1− λ1) ~z + (λ1 − 1) ~a (3.4.1)

Koeffizientenvergleich:
µ − µ′ λ1 = λ1 − 1

− µ + µ′ λ2 = 0

µ′ (λ2 − λ1) = λ1 − 1

Aus den Koeffizienten der ersten beiden Vektoren lässt sich für die Parameter µ und
µ′ folgern:

µ′ =
1− λ1
λ1 − λ2

µ = −λ1 λ2 − λ2
λ1 − λ2

Wird der Koeffizient vor ~z durch den oberen Parameter µ ersetzt, so ergibt sich jener
der rechten Seite in Gl. (3.4.1), sodass die Probe erfolgreich ist. Der Schnittpunkt
U ergibt sich somit durch Einsetzen des Parameters µ in die Geradengleichung von
gAB . Anhand des sich ergebenen Musters können die anderen Schnittpunkte direkt
gefolgert werden.

~u =
λ1 λ2 − λ2
λ1 − λ2

~b− λ1 λ2 − λ1
λ1 − λ2

~a (3.4.2)

~v =
λ2 λ3 − λ3
λ2 − λ3

~c− λ2 λ3 − λ2
λ2 − λ3

~b (3.4.3)

~w =
λ3 λ1 − λ1
λ3 − λ1

~a− λ3 λ1 − λ3
λ3 − λ1

~c (3.4.4)

Für den letzten Schritt wird eine Gerade durch die ersten beiden Schnittpunkte
gelegt und überprüft, ob der dritte Schnittpunkt Bestandteil jener Punktmenge ist.

gUV : ~x = ~u+ α (~u− ~v)

= α
λ2 λ3 − λ3
λ2 − λ3

~c

+

[
(1− α)

λ1 λ2 − λ2
λ1 − λ2

− α λ2 λ3 − λ2
λ2 − λ3

]
~b

− (1− α)
λ1 λ2 − λ1
λ1 − λ2

~a (3.4.5)
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Zur Bestimmung von α wird der Koeffizient in Gl. (3.4.4) von ~c mit jenem in
Gl. (3.4.5) gleichgesetzt. Hierbei kann mit λ3 6= 0 gekürzt werden:

α =
(λ3 − λ2)(λ1 − 1)

(λ3 − λ1)(λ2 − 1)

Zuletzt wird dieser Parameter in Gl. (3.4.5) für die anderen beiden Vektoren einge-
setzt:

1− α =
(λ3 − λ1)(λ2 − 1)− (λ3 − λ2)(λ1 − 1)

(λ3 − λ1)(λ2 − 1)

=
λ3 λ2 + λ1 − λ3 λ1 − λ2

(λ3 − λ1)(λ2 − 1)

=
λ3(λ2 − λ1) + λ1 − λ2

(λ3 − λ1)(λ2 − 1)

=
(λ2 − λ1)(λ3 − 1)

(λ3 − λ1)(λ2 − 1)

Koeffizient von ~a:

−(1− α)
λ1 λ2 − λ1
λ1 − λ2

= −(λ2 − λ1)(λ3 − 1)

(λ3 − λ1)(λ2 − 1)

λ1(λ2 − 1)

λ1 − λ2
=
λ1 (λ3 − 1)

(λ3 − λ1)

Ein Vergleich mit dem Punkt W in Gl. (3.4.4) zeigt, dass die Koeffizienten von ~a
übereinstimmen. Analog würden wir für den Koeffizienten von ~b vorgehen. Da dies
wieder nur über Umformungen erfolgt, wird dieser Teil ausgelassen. Somit haben wir
algebraisch gezeigt, dass der Satz von Desargues bis auf wenige Ausnahmen gültig
ist. Diese wollen wir nun diskutieren.

In den Ortsvektoren der Schnittpunkte nach Gl. (3.4.3) - (3.4.4) wird jeweils durch
die Differenz der Parameter dividiert, weshalb vorausgesetzt wurde, dass diese Werte
paarweise verschieden sind. Wir wollen nun untersuchen, wie sich Abb. 3.4.1 ändert,
wenn bspw. λ1 = λ2 gilt. Betrachten wir Gl. (3.4.1) und setzen entsprechend ein, so
erhalten wir:

(µ− µ′ λ1) ~a+ (−µ+ µ′ λ1)~b = (1− λ1) ~z + (λ1 − 1) ~a

Da der Koeffizient für ~z null ist, kann die rechte Seite durch keine Wahl von µ und
µ′ erfüllt werden. Wir nehmen dazu das Aufgabenbeispiel her und berechnen die
Punkte A′ und B′ neu, wobei wir λ1 = λ2 = 2 setzen und folgende Koordinaten
erhalten:
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~a′ =

(
5

7

)
+ 2

(
−1

−1

)
=

(
3

5

)

~b′ =

(
5

7

)
+ 2

(
0.75

−6

)
=

(
6.5

−5

)

Abb. 3.4.3 zeigt, dass sich eine zentrischen Streckung an Z mit Streckfaktor λ1 = 2

ergibt. Dies können Schülerinnen und Schüler anhand des Rechenbeispiels nachvoll-
ziehen, in dem sie die Richtungsvektoren miteinander vergleichen:

~rA′B′ =

(
3.5

−10

)
= 2

(
1.75

−5

)
= 2 ~rAB

~rB′C′ =

(
−3.5

7

)
= 2

(
−1.75

3.5

)
= 2 ~rBC

~rA′C′ =

(
0

−3

)
= 2

(
0

−1.5

)
= 2 ~rAC

Z

A′

B′

C ′

A

B

C

U?

V ?

W ?

Z

A′

B′

C ′

A

B

C

a

V

W

U?

Abb. 3.4.3 Sonderfall des Satzes von Desargues mit λ1 = λ2 ist.
Links: λ1 = 2, rechts: λ1 = 0.5
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Für λ1 = λ2 = 0.5 ergibt sich eine andere Situation. Hier sind zwar die Richtungs-
vektoren ~rAB und ~rA′B′ linear abhängig, die beiden anderen Geradenpaare dagegen
schneiden sich. Schauen wir uns dies wieder allgemein an und berechnen die Rich-
tungsvektoren ~rAB und ~rA′B′ für λ1 = λ2:

~a′ = ~z + λ1 (~a− ~z) und ~b′ = ~z + λ1 (~b− ~z)
⇓

~rAB = ~b− ~a und ~rA′B′ = λ1 (~b− ~z − ~a+ ~z) = λ1 (~b− ~a)

Damit ist ebenfalls gezeigt, dass die Geraden gAB und g
A′B′ parallel sind, ihr Schnitt-

punkt ist daher der Fernpunkt U?. Wir sehen in der Abb. 3.4.3 (rechts) sogar, dass
auch dieser Fernpunkt auf der Geraden a liegt, da diese parallel zu AB verläuft.
Wegen ZC ′ = 2 ZC liegt für λ1 = λ2 = 2 in Abb. 3.4.3 (links) sogar eine zentri-
sche Streckung vor, sodass die Dreiecksseiten jeweils zu ihrem Bild parallel sind. Die
Schnittpunkte sind allesamt Fernpunkte, sodass die Gerade zur Ferngeraden a? wird.
Ein letzter Sonderfall bleibt für λi = 1, d.h. wenn eine der Dreiecksecken ein Fix-
punkt ist. Sei bspw. λ1 = 1, sodass A = A′ gilt. Für λ1 = λ2 wäre die obige
Gleichung (3.4.1), S. 81, zur Berechnung von µ und µ′ wieder lösbar, da somit auch
der Term 1−λ1 wegfällt. Die Geraden AB und A′B′ schneiden sich dann in A, sodass
A = U gilt. Dann schneiden sich auch AC und A′C ′ in A, sodass insgesamt sogar
A = A′ = U = W vorliegt.

Kommen wir zurück zu dem Beweis des Satzes von Desargues. Wir haben gese-
hen, dass der algebraische Beweis für den Unterricht aufgrund der komplizierten
Umformungen nicht sinnvoll ist. Hier ist von den Schülerinnen und Schüler weniger
Verständnis gefragt als Konzentrationsfähigkeit und Umformungsgeschick. Eine al-
ternative Beweisidee wird von Liebscher bzw. Stolzenburg genannt [34, S. 19] [47,
S. 37].
Wir interpretieren dazu das Dreieck ∆ABC als Grundfläche einer Pyramide mit der
Spitze Z (Abb. 3.4.4). Das zweite Dreieck ∆A′B′C ′ ergibt sich als Schnitt einer weite-
ren Ebene mit der Pyramide. Im Sinne einer Zentralprojektion liegt die Grundfläche
in der Objektebene (grün) und geschnitten wird mit der Bildebene (blau). Beide
Ebenen schneiden sich in der Geraden a. Sind jene parallel, so wird der Schnitt zur
Ferngeraden. Da diese Gerade sowohl in der Objekt- als auch in der Bildebene liegt,
ist jeder Punkt von a ein Fixpunkt.
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Z

A

B

C

A′

B′

C ′

a

Abb. 3.4.4 Der Satz von Desargues interpretiert als Zentralprojektion

Die Gerade AB liegt in der Objektebene, die Gerade A′B′ in der Bildebene und
nach Satz 3.1.2, S. 49, schneiden sie sich in einem Fixpunkt. Demnach muss dieser
auf a liegen, sodass alle Schnittpunkte der entsprechenden Geraden durch die Eck-
punkte der Dreiecke auf dieser Fixpunktgeraden liegen müssen. Die Figur zum Satz
von Desargues entsteht durch Projektion dieser Pyramide in eine Ebene. Da diese
inzidenztreu ist, bleiben die Schnittpunkte zwischen den Geraden erhalten.

Wir kommen nun zu weiteren Aufgaben, welche für den Einsatz im Unterricht ge-
eignet erscheinen und mithilfe des Satzes von Desargues gelöst werden können.

Aufgabenbeispiel 3.4.4

Gegeben ist der Punkt Z, die Gerade
a und das Dreieck ∆ABC. Konstruiere
das Bilddreieck ∆A′B′C ′ unter Verwen-
dung des Satzes von Desargues. Gibt es
nur eine Lösung?

a

Z

A

B

C
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Lösung:

a

Z

A

B

C

U

V

W

Abb. 3.4.5 Erster Lösungsschritt von
Aufgabenbsp. 3.4.4

Wir wissen, dass die Bildpunkte auf
den jeweiligen Strahlen durch die Eck-
punkte liegen. Weiterhin wissen wir,
dass nach dem Satz von Desargues
die Geraden durch die Dreiecksseiten
die Gerade a in den Punkten U, V,W

schneidet. Wir fügen daher entsprechen-
de Geraden (schwarz) in die Zeichnung
ein.

Wir fragen uns nun, ob die Abbildung
durch Z und a eindeutig definiert ist
und fügen einen beliebigen Bildpunkt A′

(blau) auf der Geraden ZA ein. Folg-
lich können wir B′ finden, indem wir ei-
ne Gerade durch A′ und U legen. Der
Schnittpunkt mit ZB ist B′. Genauso finden wir auch C ′ mithilfe von V . Wir stellen
fest, dass auch die Geraden AC und A′C ′ sich inW schneiden. Kann das Zufall sein?

a

Z

A

B

C

U

V

W

A′

B′

C ′

a

Z

A

B

C

U

V

W

A′

B′

C ′

Abb. 3.4.6 Mögliche Lösungen von Aufgabenbsp. 3.4.4

Wir zeichnen die Figur erneut und fügen den Punkt A′ an einer anderen Stelle auf
dem Strahl ZA ein. Wir erhalten ein ganz anderes Bilddreieck, die Bedingungen blei-
ben aber erfüllt. Demnach führt die Angabe von Z und a nicht zu einer eindeutigen
Abbildung. Wir haben im Beweis schon erwähnt, dass die Beweisfigur als eine Pro-
jektion einer Zentralprojektion in eine Ebene angesehen werden kann. Hierbei fallen
Objekt- und Bildebene zusammen. D.h. die beiden Beispiele sind Zentralprojektionen
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mit demselben Zentrum und derselben Objektebene. Sie unterscheiden sich aber in
der Wahl der Bildebene bzw. der Schnittebene der schiefen Pyramide in Abb. 3.4.4.
Einzige Bedingung ist, dass die Bildebene die Gerade a enthält. Die verschiedenen
Bilddreiecke A′B′C ′ entstehen daher, wenn in der Abbildung die blaue Bildebene um
die Achse a gedreht wird.

Aufgabenbeispiel 3.4.5

Gegeben ist der Punkt Z, die Gerade a
und das Dreieck ∆ABC sowie der Bild-
punkt A′. Konstruiere das Bilddreieck
∆A′B′C ′ unter Verwendung des Satzes
von Desargues. Achte dabei auf die be-
sondere Lage des Dreiecks zur Gera-
den. Findest du einen Punkt A′, sodass
∆ABC und ∆A′B′C ′ ähnlich zueinan-
der sind?

a

Z

A

B

C

A′

a

Z

A

B

C

U?
V

W
A′

B′

C ′

Abb. 3.4.7 Lösungen zu
Aufgabenbsp. 3.4.5

Lösung:
Der Hinweis ist in der Aufgabenstel-
lung schon gegeben. Die Dreiecksseite
AB liegt parallel zur Geraden a, sodass
der Schnittpunkt U ein Fernpunkt ist.
Wir müssen daher durch A′ eine Paral-
lele zu a ziehen. Die anderen Dreieckssei-
ten erhalten wir wie zuvor. Für den zwei-
ten Teil müssen sich die Schülerinnen
und Schüler überlegen, woran sie erken-
nen können, dass zwei Dreiecke ähnlich
zueinander sind oder sich an die Win-
keltreue der zentrischen Streckung er-
innern. Dies hat zur Folge, dass auch
BC ‖ B′C ′ und AC ‖ A′C ′ gilt. Ih-
re Schnittpunkte werden zu Fernpunk-
te und die Gerade a verschwindet und



88

wird zur Ferngeraden. Da laut Aufgabenstellung aber a eine gewöhnliche Gerade ist,
existiert kein Punkt A′ auf ZA, sodass beide Dreiecke zueinander ähnlich werden.
Was ebenfalls von den Schülerinnen und Schüler beobachtet werden kann, ist, dass
sich die Orientierung des Bilddreiecks umkehrt, wenn A′ auf der anderen Halbebene,
welche durch a entsteht, liegt als A.

Aufgabenbeispiel 3.4.6

Wir haben gesehen, dass eine Dreiecksseite parallel zur Geraden a sein kann.
Ist es auch möglich, dass genau zwei Seiten parallel zu a sind?

Lösung:
Hier können die Schülerinnen und Schüler verschieden argumentieren. Ist o.B.d.A.
AB ‖ a sowie a ‖ BC, dann ist aufgrund der Transitivität der Parallel-Relation
auch AB ‖ BC. Demnach ist ABC kein Dreieck mit gewöhnlichen Punkten. Eine
andere Möglichkeit ist die Argumentation über Fernpunkte. Ist AB ‖ a, dann ist der
Schnittpunkt U?. Ebenso existiert V ?. Da nach den Axiomen der projektiven Ebene
zwei Punkte genau eine Gerade festlegen, wird a zur Ferngeraden a?. Dann muss
auch der dritte Punkte ein Fernpunkt sein, sodass auch AC ‖ a gilt.

Aufgabenbeispiel 3.4.7

Gegeben ist der Punkt Z, die Gerade
a und das Dreieck ∆ABC sowie C ′.
Wo liegt A′? Konstruiere das Bilddrei-
eck ∆A′B′C ′.

a

Z

A

B

C

C ′
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a

Z

A = A′ = U = W

B

C

V

B′

C ′

Abb. 3.4.8 Lösungen zu
Aufgabenbsp. 3.4.7

Lösung:
Da nun A ∈ a gilt, schneiden sich
die Geraden AB und a auch in die-
sem Punkt. Dann ist auch AB ∩
A′B′ = {A} und demnach A =

A′ = U . Da sowohl A als auch
U zusammenfallen, muss ein weite-
re Bildpunkt gegeben sein, damit das
Bilddreieck eindeutig konstruiert wer-
den kann. Mit BC lässt sich V auf
a finden und damit auch B′. Wir
können weiter feststellen, dass auch
AC ∩ A′C ′ = {A} gelten muss.
Somit ist A auch der Schnittpunkt
W .

Insgesamt wurde in den vorgestellten Aufgaben verschiedene Lagen von a und den
Punkten auf dieser untersucht. Wir haben festgestellt, dass die Festlegung von Z und
a nicht ausreicht, um eine eindeutige Abbildung festzulegen, sondern ein Bildpunkt
vorgegeben sein muss, um auch die entsprechende Bildebene im Sinne einer Zentral-
projektion im Raum festzulegen. Wir wollen im folgenden auf die Zentralprojektion
als Abbildung vom Raum auf eine Ebene eingehen. Welche Eigenschaften weisen die
Bilder auf? Wo finden wir solche Projektion in der Umwelt? Und wie werden die-
se Bilder im Kunstunterricht erstellt? Interessant ist hierbei, die Gegenüberstellung
der Konstruktionsmethoden mit den Eigenschaften, welche über die mathematische
Betrachtung hergeleitet wurden.





Kapitel 4

Die Zentralprojektion

Wir haben in den vorherigen Kapiteln einige Grundlagen zur Projektion besprochen
und wollen dieses Wissen nun nutzen, um die Methoden zur Konstruktion zentral-
projektiver Bilder mathematisch zu hinterfragen, d.h. wir legen nun fest, dass das
Projektionszentrum ein gewöhnlicher Punkt und kein Fernpunkt ist.
Im ersten Abschnitt gehen wir der Frage nach, wo uns die Zentralprojektion in der
Umwelt bzw. im Alltag begegnet und wie sich in Fotos einige ihrer Besonderheiten
wiederfinden lassen. Dies ist vor allem für Schülerinnen und Schüler spannend, da sie
zum einen sich mit Mathematik in der Umwelt befassen können und zum anderen
digitale Medien zum fotografieren passender Beispiele nutzen können.
Nach einer Erläuterung der Vor- und Nachteile der Bilder einer Zentralprojektion
wird auf verschiedene Konstruktionsmethoden eingegangen und dabei erläutert, wel-
che Invarianten bzw. Eigenschaften der Abbildung verwendet werden.
Da die Zentralprojektion nicht nur mit analytischen Methoden aus der Oberstufe
an Gymnasien und Gesamtschulen dargestellt werden soll, wird im Anschluss die
Theorie aus der Sicht der projektiven Geometrie betrachtet. Hierzu wird als Einstieg
die Projektion zwischen zwei Geraden untersucht und einige Aufgabenbeispiele für
den Unterricht gegeben. Darauf aufbauend wird die Zentralprojektion vom Raum in
die Ebene mithilfe homogener Koordinaten motiviert, welche u.a. in der Computer-
grafik verwendet werden. Als Anwendung dazu wurde in der Programmiersprache
Processing Funktionen geschrieben, welche es ermöglichen, Anaglyphenbilder von
einfachen Objekten wie Würfel, Quader oder Pyramiden zu erstellen. Dies soll ei-
nerseits eine Möglichkeit bieten, fachübergreifend zu unterrichten und andererseits
den Schülerinnen und Schülern in Zeiten der Digitalisierung einen Einblick in eine
Programmiersprache ermöglichen.
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4.1 Zentralprojektion in der Umwelt

In den aktuellen Kernlehrplänen zumMathematikunterricht werden die drei Grunder-
fahrungen nach H. Winter (1996) genannt. So steht im Abschnitt Aufgaben und Ziele
des Mathematikunterrichts im Kernlehrplan zur Sekundarstufe I NRW (KMK, 2007)
geschrieben:

Schülerinnen und Schüler sollen im Mathematikunterricht der Sekundar-
stufe I

• Erscheinungen aus Natur, Gesellschaft und Kultur mithilfe der Ma-
thematik wahrnehmen und verstehen (Mathematik als Anwendung),

• [. . . ]

Abb. 4.1.1 Mit einer Kamera lassen sich
zentralprojektive Bilder erzeugen.

Die Beschäftigung mit der Zentralpro-
jektion folgt diesem Ansatz, denn der
Sehvorgang an sich entspricht dieser Ab-
bildung. Die nebenstehenden Fotografi-
en zeigen Situationen, in welcher die be-
sonderen Eigenschaften der Zentral- und
Parallelprojektion hervortreten, mögli-
cherweise aber nicht jedem bewusst
sind, da sie der Normalität angehören.
Wir wissen, dass in der Realität ein
Zaun immer dieselbe Höhe hat und nicht
in der Ferne schmaler wird, obwohl un-
ser Auge dies so wahrnimmt. Dass ge-
rade Objekte wie Gleise, Zaunkanten
oder Fahrzeugspuren im aufgeweichten
Erdboden einem Fluchtpunkt entgegen
streben und sich scheinbar am Horizont
schneiden, scheint auf den ersten Blick
nicht verwunderlich. Wir wissen aber
auch gleichzeitig, dass es sich um Par-
allelen handelt, d.h. diese Geraden ha-
ben in der Realität immer denselben Ab-
stand. Dennoch wundert sich niemand
über diesen scheinbaren Widerspruch.
Möglicherweise aufgrund der gleichzeiti-
gen Raumerfahrung, denn wir schauen in der Ferne nicht auf eine Wand oder ein
Foto. Allerdings ist eine Fotografie gleichfalls eine Zentralprojektion des Raumes in
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eine Ebene. Der Tiefeneindruck geht dabei verloren, denn die Projektion erfolgt an-
hand eines Zentrums, unsere Sicht auf die Welt dagegen über zwei. Obwohl die Augen
relativ nahe beieinander stehen, ist die Projektion des uns umgebenden Raumes auf
die Netzhaut leicht verschieden. Unser Gehirn vermag diese Bilder derart übereinan-
der zu legen, dass wir einen Eindruck von Tiefe erfahren. Mit einigen Tricks lassen
sich die Augen täuschen, sodass auch ein flaches Bild räumlich wirkt, wie bei dem
Rot-Grün-Verfahren, welches im Abschnitt 7.1 näher erläutert wird. Die Projektio-
nen beider Augen sind auf einem Bild gegeben, allerdings das eine rot, das andere
grün. Mit einer Rot-Grün-Brille in umgekehrter Reihenfolge lässt sich jeweils ein Bild
herausfiltern, während das andere durch die Überlagerung der Komplementärfarben
schwarz wird. Die Augen sehen somit ihr passendes Bild und unser Gehirn sorgt wie-
der für den räumlichen Eindruck. Nachteil dieser Methode ist, dass die resultierenden
Bilder in Graustufen vorliegen.

Abb. 4.1.2 Treppe mit vertikal verscho-
benen Fluchtpunkten

Im Kunstunterricht wird die Ein-
Fluchtpunkt- bzw. Übereck-Perspektive
gelehrt (Lehrplan NRW Gym, Jgst. 7 -
9, 2011 sowie Ges 7 - 10, 2012). Oft-
mals werden Häuserreihen gezeichnet
oder Gebäude mit Türmen und Trep-
pen. Bei Letzteren gibt es eine Beson-
derheit bzgl. der Lage des Fluchtpunk-
tes. Dieser wird normalerweise auf den
Horizont gezeichnet. Ist die Ebene aber
gekippt und nicht mehr parallel zum Bo-
den, wie es bei Treppen der Fall ist,
so verschiebt sich der Fluchtpunkt senk-
recht nach oben oder unten. Abb. 4.1.2
zeigt ein Foto zweier Treppen, wo die
grünen Linien sich in Fluchtpunkten au-
ßerhalb des Fotos schneiden. Die oran-
gen Linien sind Bilder von Geraden, welche parallel zum Boden verlaufen. Ihr Flucht-
punkt liegt daher auf dem Horizont. Die Fluchtpunkte der Treppen liegen ober- und
unterhalb dieser blauen Geraden.
Die Konstruktionsmethoden werden im Abschnitt 4.3, S. 96, vorgestellt und aus Sicht
der Mathematik erläutert. Im Kunstunterricht werden solche Methoden gelehrt und
angewendet. Allerdings ohne die Begründung, weshalb sie funktionieren.
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Abb. 4.1.3 Die Schatten sind bei einer Lampe zentralprojektiv (links), bei der Sonne
dagegen parallelprojektiv (rechts).

Auch in Form von Schattenbildern begegnet uns die Projektion im Alltag [31, S. 4].
So sind die Schatten der Zaunpfosten auf dem mittleren Foto in Abb. 4.1.1 ebenfalls
parallel, obwohl das Sonnenlicht von der Seite kommt. Würden wir die Sonne durch
eine Laterne seitlich neben dem Zaun ersetzen, so wären die Schatten der Pfosten
nicht mehr parallel. Sie würden strahlenförmig von der Lichtquelle davon streben. Da
eine Laterne eine punktförmige Lichtquelle darstellt, handelt es sich bei den Schatten
um das Bild einer Zentralprojektion mit der Lichtquelle als Zentrum und dem Boden
als Bildebene. Die Sonne ist ebenfalls punktförmig, allerdings können die Strahlen
aufgrund der extremen Entfernung zur Erde als parallel angesehen werden, sodass
der Spezialfall der Parallelprojektion eintritt, welche in Kap. 5 besprochen wird. Ein
weiteres Beispiel zeigt Abb. 4.1.3. Während bei Sonnenlicht der Schattenwurf der
vertikalen Streben des Mülleimers parallel bleiben, streben sie links im Schein der
Lampe auseinander. Der Fluchtpunkt liegt dabei senkrecht unterhalb der Lampe,
denn sie ist das Projektionszentrum und der Boden die Bildebene.

4.2 Eigenschaften der Bilder

Da die Zentralprojektion dem natürlichen Sehprozess nahe kommt, wirken die Bilder
realitätsnah [31, S. 4]. Abb. 4.2.1 zeigt ein Haus mit einem Prisma als Dach, links ab-
gebildet durch die Parallelprojektion, rechts durch die Zentralprojektion. Da erstere
parallelentreu (s. Abb. 3.2.1, S. 56) ist, ist sofort erkennbar, dass das Haus aus einem
Quader und einem Prisma aufgebaut ist. Die Zentralprojektion ist im Fall von Gera-
den parallel zur Bildebene parallelentreu. Dies ist daher nur bei den Höhenlinien der
Fall. Alle anderen Geraden eines Parallelbüschels schneiden sich im Fluchtpunkt.
Aufgrund des abnehmenden Abstandes entsteht der Eindruck von Tiefe, weshalb
zentralprojektive Bilder realistischer wirken. Dagegen werden Längen und Winkel
verzerrt. So sind gegenüberliegende Kanten des Quaders gleich lang. Während links
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Abb. 4.2.1 Ein Haus, links in Parallelprojektion und rechts in Zentralprojektion

Abb. 4.2.2 Aufgrund der Teilverhältnistreue ist das Finden von Mittelpunkte bei
parallelprojektiven Bildern einfacher als bei zentralprojektiven.

im Bild zwar die Längen sich ändern, diese aber dennoch untereinander gleich sind,
so ist im rechten Bild die obere Kante des Quaders kürzer als die untere.

Aufgrund der Parallelen- und Teilverhältnistreue lassen sich parallelprojektive Bil-
der leichter konstruieren. Die Orthogonale durch die Dachspitze des Prismas teilt die
Kanten des Quaders im Verhältnis 1:3, welches im linken Bild von Abb. 4.2.1 trotz
veränderter Kantenlängen erhalten bleibt. Im rechten zentralprojektiven Bild ist dies
nicht mehr der Fall.
Abb. 4.2.2 zeigt die Konstruktion des Mittelpunktes auf der Seitenfläche des Qua-
ders. In beiden Fällen lässt sich der Mittelpunkt über den Schnittpunkt der beiden
Diagonalen (blau) finden, da diese sich in einem Rechteck dort schneiden. Hier gilt
die Inzidenztreue. Dagegen lässt sich im linken Bild der Mittelpunkt zusätzlich über
den Schnittpunkt der Mittellinien (orange) finden. Dies ist rechts nicht mehr mög-
lich, denn das Bild der Mittellinie ist in Richtung des Fluchtpunktes verschoben.
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4.3 Konstruktionsmethoden

Mithilfe von Fotoapparaten lassen sich zentralprojektive Bilder leicht erzeugen, so-
dass Schülerinnen und Schüler selbst einige interessante Eigenschaften anhand von
Fotografien entdecken können. Eine Aufgabe dazu kann wie folgt aussehen:

Aufgabenbeispiel 4.3.1

Mache mit deiner Handykamera oder mit einem Fotoapparat Fotos vom Schul-
flur, dem Treppenhaus oder anderen Orten nahe des Klassenzimmers, welche
Objekte mit parallelen Kanten enthalten, wie die Treppenstufen, Säulen, Flie-
sen usw. Nachdem deine Fotos gedruckt wurden, nehme Lineal und Bleistift
und mache folgendes:

a) Was fällt dir auf, wenn du dir die Treppenstufen anschaust oder alle an-
deren Kanten, welche ursprünglich parallel waren?

b) Verlängere die besonderen Kanten aus a) im Bild. Was fällt dir auf?

Mit den eigenen Fotos sollen die Schülerinnen und Schüler anhand der Leitfragen
entdecken, dass sich die ursprünglich parallelen Kanten im Foto schneiden, wenn sie
verlängert werden, und insbesondere kopunktal sind. Im Falle der Treppen finden
sich auch parallele Geradenbüschel, welche sich nicht in einem Punkt des Horizontes
schneiden, da die Ebene nicht parallel zum Boden verläuft. Diese Untersuchung bietet
zwei Möglichkeiten der Weiterführung. Zum einen lassen sich diese Beobachtungen
mathematisch über die Zentralprojektion begründen, entweder über die Konstruktion
der Sehstrahlen mithilfe von GeoGebra oder mit Mitteln der analytischen Geometrie
aus der Sekundarstufe II, welche in einem nachfolgenden Abschnitt erläutert wird.
Andererseits bietet dies auch eine Motivation sich mit Konstruktionsmethoden aus
dem Kunstunterricht auseinanderzusetzen.

In Abb. 4.3.1 sind einige Fotografien, in denen besonders gut Eigenschaften der Zen-
tralprojektion von den Schülerinnen und Schüler untersucht werden können. Lange
Flure flüchten besonders extrem im Fluchtpunkt, wie die blauen Linien in den Fotos
zeigen. Wir wissen, dass der Flur überall gleich breit ist, d.h. sowohl die Kanten im
Boden als auch an der Decke sind parallel zueinander. Doch auf den Fotos schneiden
sie sich im Fluchtpunkt. Auch die Oberkanten der Türen sind parallel zum Boden
ausgerichtet, denn niemand würde schräge Türen erwarten. Im Bild schneiden sich
die Verbindungsgeraden im selben Fluchtpunkt. Dagegen sind die orange markierten
Lampen parallel zur Bildebene ausgerichtet. Ihre Projektionen schneiden sich nicht
in einem gewöhnlichen Punkt, sie werden ebenfalls auf parallele Geraden abgebildet.
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Abb. 4.3.1 Bahnsteige und lange Flure bieten besonders gute Motive, um sich mit
der Zentralprojektion auseinander zu setzen.

Kommen wir zu den Fotografien vom Bahnsteig und der Wendeltreppe. Am Bahn-
steig ist wieder der Fluchtpunkt aufgrund der langen Strecken deutlich hervorge-
hoben. Der Abstand und die Höhe der Lampenmasten werden in der Projektion
kleiner, je weiter weg sie sich von dem Betrachter befinden. Die weißen Markierun-
gen am Bahnsteigrand sind ebenfalls parallel, sie haben aber eine andere Ausrichtung
als die Gleise. Ihre Bilder schneiden sich daher in einem anderen Fluchtpunkt, wie
die grünen Markierungen zeigen. Die Verbindungsgerade der Fluchtpunkte ist der
Horizont. Hält der Betrachter die Kamera parallel zum Boden, sollte der Horizont
auch parallel zum unteren Bildrand verlaufen.
Dies ist bei der Wendeltreppe im dritten Foto nicht der Fall, wie an der grünen
gestrichelten Markierung erkennbar ist. Die Wendeltreppe weist parallele Geraden
in verschiedenen Richtungen auf, sodass wir mit den Fluchtpunkten des blauen und
orangen Parallelbüschels den Horizont finden können. Die grünen Linien sind parallel
zum Betrachter ausgerichtet, daher liegen sie auch parallel zum Horizont.
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Nun haben wir die Lage der Geraden besprochen, aber was passiert mit metrischen
Größen wie Längen und Winkeln? Die Türen des Flurs in Abb. 4.3.2 sind in Wirk-
lichkeit rechtwinklig, in der Projektion dagegen nicht. Die Winkel werden also durch
die Abbildung verzerrt. Wir würden erwarten, dass die Türen allesamt gleich groß
sein sollten. Im Bild werden sie kleiner, je weiter weg sie sich vom Betrachter befin-
den. Somit werden auch Längen verändert.
Mithilfe eines Lineals können Schülerinnen und Schüler erkunden, wie sich Abstände
durch die Projektion verändern. Hierfür wurde mit dem frei verfügbaren Programm
ImageJ Längen innerhalb der Bilder bzgl. einer frei definierten Skala bestimmt. Wir
markieren eine beliebige Strecke und ordnen dieser die Länge 10 zu. Das Programm
kennt die zugehörige Anzahl an Pixeln dieser Strecke, sodass hierdurch eine Skala
festgelegt wird. Dann wurden weitere Strecken markiert und von dem Programm
anhand dieser Skala gemessen.
Mit dem Lineal lässt sich zeigen, dass bei paralleler Lage des Lineals zum Fotoappa-
rat die Abstände äquidistant bleiben. Ordnen wir dem Abstand zwischen drei bzw.
zwei Zentimeter Markierungen die Länge 10 zu, so ergibt sich nahezu derselbe Wert
an einer anderen Stelle auf dem Lineal. Demnach ist das Streckenverhältnis zwischen
der wahren Strecke und der auf dem Foto gleich geblieben. Dieses Beispiel hat somit
erfolgreich gezeigt, dass die Projektion bei paralleler Ausrichtung der Strecke zur
Bildebene streckenverhältnistreu ist.

Wird das Lineal schräg zum Fotoapparat gelegt, verkleinern sich die Abstände der
Markierungen für 1 cm, je weiter sie nach hinten liegen. Wir können dagegen zeigen,
dass das Doppelverhältnis gültig ist. Wir legen wieder mit ImageJ eine willkürliche
Skala fest, indem wir der Bildstrecke zwischen den Markierungen für 0 und 4 cm die
Länge 10 zuordnen. Nach der Definition des Doppelverhältnisses (Def. 2.3.2, S. 30)
benötigen wir eine Strecke AB sowie zwei Teilungspunkte C und D. Wir legen A

an die Markierung für 0 cm sowie B an 9, C an 4 und D an 6. Somit ergeben sich
folgende Länge für Strecke und Bildstrecke:

d(A,C) = 4 cm d(C,B) = 5 cm TV (A,B,C) = 0, 80

d(A′, C ′) = 10 d(C ′, B′) = 10, 32 TV (A′, B′, C ′) ≈ 0, 97

d(A,D) = 6 cm d(D,B) = 3 TV (A,B,D) = 2

d(A′, D′) = 14, 36 d(D′, B′) = 5, 96 TV (A′, B′, D′) ≈ 2, 41

Aus den Teilverhältnissen ergeben sich dann folgende Doppelverhältnisse:

DV (A,B,C,D) ≈ 0, 82 DV (A′, B′, C ′, D′) ≈ 0, 83 .
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Abb. 4.3.2 Mit einem Lineal können Schülerinnen und Schüler erkunden, wie sich
Längen durch das Fotografieren verändern.
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Das Doppelverhältnis ist für die Strecke und ihre Bildstrecke bis auf einen Rundungs-
fehler identisch. Wir betrachten noch einmal den Flur in Abb. 4.3.2. Da auf dem Foto
kein Lineal zum Messen der ursprünglichen Strecken abgebildet wurde, nehmen wir
als Beispiel die Deckenleuchten. Wir müssen nicht den exakten Abstand zwischen den
Leuchten kennen, da wir für das Doppelverhältnis zuvor das Teilverhältnis bestim-
men müssen. Wir gehen davon aus, dass die Leuchten in dem öffentlichen Gebäude
entlang des Flures im gleichen Abstand a angebracht wurden:

d(A,C) = a d(C,B) = 2a TV (A,B,C) = 0, 5

d(A′, C ′) = 10 d(C ′, B′) = 6.76 TV (A′, B′, C ′) ≈ 1, 48

d(A,D) = 2a d(D,B) = a TV (A,B,D) = 2

d(A′, D′) = 14, 37 d(D′, B′) = 2.39 TV (A′, B′, D′) ≈ 6, 01

⇒ DV (A,B,C,D) = 0, 25 DV (A′, B′, C ′, D′) ≈ 0, 25

Es wurden noch die Bildstrecken der Leuchten am Ende des Flurs vermessen, um
zu zeigen, dass das Doppelverhältnis auch an anderen Stellen in Abb. 4.3.2 erhalten
bleibt:

d(A,C) = a d(C,B) = 2a TV (A,B,C) = 0, 5

d(A′, C ′) = 2, 58 d(C ′, B′) = 2.79 TV (A′, B′, C ′) ≈ 0, 92

d(A,D) = 2a d(D,B) = a TV (A,B,D) = 2

d(A′, D′) = 4, 17 d(D′, B′) = 1.20 TV (A′, B′, D′) ≈ 3, 48

⇒ DV (A,B,C,D) = 0, 25 DV (A′, B′, C ′, D′) ≈ 0, 26

Abb. 4.3.3 Quader auf einem Vorplatz

Das letzte Foto zeigt quadratische Blö-
cke als Sitzgelegenheiten auf einem
Vorplatz (Abb. 4.3.4). Die quadrati-
schen Kacheln des Bodens bieten eben-
falls Möglichkeiten, das Doppelverhält-
nis zwischen realem Raum und der Pro-
jektion zu untersuchen. Es dient ähnlich
eines Koordinatensystems auch zur Ori-
entierung. So sind alle drei Blöcke Qua-
der mit quadratischer Grundfläche und
parallel zum Fotoapparat orientiert. Die Tiefenlinien flüchten im Fluchtpunkt auf
dem Horizont.
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FP1 FP2FP3

Abb. 4.3.4 Konstruktion der Zwei-Punkt-Perspektive bzw. Übereck-Perspektive

Unterschiedlich orientierte Würfel sind Beispiele, wie sie auch in Zeichenbüchern vor-
kommen. Abb. 4.3.4 zeigt eine solche Szene. Bis auf eine Ausnahme sind alle Würfel
um 45◦ gedreht, denn eine der Diagonalen ist parallel zum Horizont ausgerichtet.
Aber woran lässt sich erkennen, dass hier Würfel abgebildet sind? Die Fluchtpunkte
FP1 und FP2 sind gleich weit vom Hauptpunkt entfernt, welcher hier mit FP3

zusammen fällt. Demnach ist die Grundfläche der Quader quadratisch. Ob auch die
Höhe gleich ist, lässt sich aus dem Abbild nicht sagen, da der Abstand des Beob-
achters zur Bildfläche nicht gegeben ist. Die Objekte lassen sich somit nicht in die
Bildebene entlang der Tiefenlinien verschieben, wo Längen auf sich selbst abgebildet
werden.

Im Kunstunterricht werden Szenen oftmals nicht aus Objekten mit gegebenen Ma-
ßen konstruiert. Stattdessen wird erst die Lage des Horizontes festgelegt und dann
ein oder zwei Fluchtpunkte, um bspw. eine Häuserreihe zu konstruieren. Die Maße
der Häuser ist dabei nicht nötig. Wir werden in folgenden Konstruktionsverfahren
vorstellen, welche Objekte anhand des Grund- bzw. Aufrisses auf eine Bildebene pro-
jizieren, deren Abstand zum Betrachter bekannt ist. Zuvor soll aber noch an einigen
Fotografien gezeigt werden, welche Auswirkungen die Lage des Horizontes bzw. die
Anzahl der Fluchtpunkte auf das Bild der Szene hat.
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4.3.1 Fluchtpunktperspektive und Horizontlage

Im Kunstunterricht wird die Konstruktion von Gebäu-
den oder Häuserreihen mithilfe der Fluchtpunktperspek-
tive gelehrt, welches direkt in der Bildebene ausgeführt
wird. Zuerst wird die Lage des Horizontes mit einer Li-
nie parallel zum Blattrand festgelegt, dann ein oder zwei
Fluchtpunkte hierauf markiert und mithilfe von Quadern
und Prismen die Szene konstruiert. Wir wollen im folgen-
den einige Beispiele anschauen, welche Auswirkungen die
Anzahl der Fluchtpunkte sowie die Lage des Horizontes
auf die entstehenden Bilder haben.

Als Beispiel betrachten wir den obigen Würfel, welcher hier zur besseren Darstellung
der Maße in Parallelprojektion abgebildet ist. Zu jedem Beispiel gibt es ein Foto von
demselben Gebäude, welcher mit entsprechender Ausrichtung der Kamera erzeugt
wurde.

Ein Fluchtpunkt: Die vordere Seite
des Würfels ist parallel zur Bildebene
ausgerichtet und der Boden liegt auf
der Objektebene. Somit liegen nur die
nach hinten flüchtenden Kanten nicht
parallel zur Bildebene, sodass diese sich
in einem Fluchtpunkt schneiden, wel-
cher auf dem Horizont liegt. Dieser war
auf halber Höhe des Würfels ausgerich-
tet.
Schülerinnen und Schüler können diese
Situation z.B. mit einer Handykamera
nachstellen, wie das Beispiel eines Kir-
cheneinganges zeigt. Die Kamera ist par-
allel zu den Stufen sowie senkrecht zum

Boden ausgerichtet. Der Fluchtpunkt liegt in der Bildmitte, in der Zeichnung dagegen
ist er seitlich nach rechts verschoben.
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Zwei Fluchtpunkte: Der Würfel ist
nun um die senkrechte Mittelach-
se verdreht, sodass die Vordersei-
te nicht mehr parallel zur Bilde-
bene ausgerichtet ist. Somit flüch-
tet eine weitere Schar paralleler Ge-
raden in einem zweiten Fluchtpunkt
auf der anderen Seite des Hauptpunk-
tes. Der Horizont liegt weiterhin mit-
tig.
Im Realbeispiel ist die Ecke der Kir-
che fotografiert, wobei die Kamera nun
auch verdreht ist. Da wir die Kirche
als Objekt nicht verdrehen können, wird
stattdessen die Bildebene bewegt. An-
hand der Fensterreihe sind die bei-
den verschiedenen Fluchtpunkte erkenn-
bar.

Drei Fluchtpunkte: Nun wird der
Würfel noch gegenüber des Bodens ver-
kippt, indem bspw. die vordere Ecke
nach unten gedreht wird. Für eine besse-
re Ansicht liegt der Horizont nun ober-
halb des Würfels. Nun ist auch die dritte
Kantenschar nicht mehr parallel, sodass
wir nun die maximale Anzahl an Flucht-
punkten erreicht haben. Dieser liegt al-
lerdings nicht mehr auf dem Horizont,
da die vertikalen Kanten nicht in dersel-
ben oder parallelen Ebene liegen, wie die
ersten beiden Scharen von Kanten.
Ausgehend von der vorherigen Ausrich-
tung der Kamera auf die Ecke des Kirch-
turmes drehen wir nun die Kamera nach
oben. Der Horizont verschiebt sich nach
unten, da wir nun zum Turm aufschau-
en.
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Abb. 4.3.5 Ein Würfel aus ver-
schiedenen Ansichten

Wie in den vorherigen Fotos schon angespro-
chen, bestimmt die Lage des Horizontes die Hö-
he des Zentrums über der Objektebene, bspw.
die Augenhöhe des Betrachters. Die neben-
stehenden Beispiele zeigen wieder den Wür-
fel, die graue Fläche entspricht der Rücksei-
te.
Im ersten Beispiel schauen wir auf den Boden
aber unter die Decke, d.h. der Horizont liegt mit-
tig vom Würfel. Wir bezeichnen dies als Normal-
perspektive.
Beim mittleren Würfel sehen wir nun die
obere Seite der Deckenfläche. Die Positi-
on des Betrachters hat sich erhöht, so-
dass der Horizont nun oberhalb des Würfels
liegt. Dies wird als Vogelperspektive bezeich-
net.
Beim letzten Würfel sehen wir wieder die Un-
terseite der Decke, aber ebenso auch die Un-
terseite des Bodens. Der Horizont liegt nun
viel tiefer als bei der Normalansicht, sodass
wir hier von einer Froschperspektive spre-
chen.

Der Vorteil der Fluchtpunktkonstruktionen ist, dass die Schülerinnen und Schüler im
Kunstunterricht nur die Lage des Horizontes auf der Bildfläche und die Anzahl der
Fluchtpunkte festlegen müssen, um eine Szene aus einfachen geometrischen Körpern
zu zeichnen.1 Nachteil dieser Methode ist, dass keine genauen Maße von Objekten
verwendet werden. Der zuvor dargestellte Würfel erscheint aufgrund der Verzerrung
durch die Projektion wie ein Quader, sodass das ursprüngliche Objekt auch ein Qua-
der hätte sein können. Die Zentralprojektion wird somit im Kunstunterricht rein
als künstlerisches Bildmittel verwendet, um räumliche Situationen möglichst reali-

1In den Kernlehrplänen für Gymnasium und Gesamtschulen in NRW wird die Perspektive nur
vage angesprochen. So wird für die Sekundarstufe I die Beschäftigung mit der Linearperspektive
festgelegt [23, S. 22] während in der Oberstufe nur noch von raumillusionären Bildmitteln gesprochen
wird [26, S. 19]. Nur im Lehrplan zur Sekundarstufe I am Gymnasium finden sich noch Begriffe wie
Ein-Fluchtpunkt-Perspektive und Über-Eck-Perspektive [21, S. 23], mit welcher die Verwendung von
zwei Fluchtpunkten gemeint ist.
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tätsnah auf dem Blatt darstellen zu können. Es geht weniger um den theoretischen
Hintergrund oder zur Abbildung von konkreten Objekten mit vorgegebenen Maßen.
Demnach werden Fluchtpunkte von Schülerinnen und Schüler eher intuitiv verwen-
det, die Lage von zwei Fluchtpunkten auf dem Horizont wird nach Gefühl gesetzt,
sodass die Ecken von Häusern nicht zu flach und nicht zu spitz erscheinen.

Wir wollen im folgenden Abschnitt eine Konstruktionsmethode vorstellen, bei wel-
cher die Maße und Lage von Objekten zur Bildebene im Grundriss sowie ihre Höhe im
Aufriss vorgegeben werden. Mithilfe der Invarianten und der Fluchtpunkte als Bild
von Fernpunkten wird dann die Projektion sukzessive in der Bildebene aufgebaut.
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4.3.2 Konstruktionsmethoden mit Grund- und Aufriss

Wir kommen nun zu einigen Methoden, wie sich zentralprojektive Bilder von ein-
fachen Objekten, wie Würfel, Quader oder Pyramide, konstruieren lassen [43]. Wir
benötigen dafür den Grundriss der Objekte. Für die Höhe wird eine Linie im Aufriss
gezeigt. Diese Information kann aber auch in den Aufgabentext geschrieben werden,
ebenso die Lage des Horizontes bzgl. der Risskante, welche auch als Bildspur bezeich-
net wird.
Wir werden die Strecke AB in folgender Lage abbilden:

i) im Grundriss, in beliebiger Richtung liegend

ii) senkrecht zur Bildebene, in beliebiger Höhe

iii) parallel zur Bildebene, in beliebiger Höhe

iv) senkrecht zum Grundriss, auf ihr stehend mit angegebener Höhe

und in Bezug auf die Eigenschaften der zentralprojektiven Abbildung erläutern.

Abb. 4.3.6 zeigt die Konstruktion der Strecke AB im Grundriss. Z ist dabei das Pro-
jektionszentrum, Z ′ befindet sich senkrecht dazu in der Grundrissebene. H ist der
Hauptpunkt und liegt ebenfalls senkrecht zum Zentrum, allerdings in der Bildebene,
welche die Grundrissebene nach Vereinbarung orthogonal schneiden soll. Demnach
liegt der Hauptpunkt auf dem Horizont. H im Grundriss ist H ′, welcher sich auf der
Schnittgeraden, der Bildspur, von Bild- und Grundrissebene befindet.

Bilds
pur

Grundrissebene

Bilde
ben

e

A

B Z ′H ′

ZH

Ap

ϕz(A)

A

Z ′

Z

ApH ϕz(A)

A

B Z ′H ′

ZH

SAB

F ′AB

FAB

Ap

ϕz(A)

Abb. 4.3.6 Konstruktion des zentralprojektiven Bild einer Strecke im Grundriss



4.3. Konstruktionsmethoden 107

Der Projektionsstrahl von A schneidet die Bildebene in ϕz(A), dem Bild von A. Neh-
men wir neben dem Projektionsstrahl auch die Verbindungslinie von A und Z ′ hinzu,
so ergibt sich ein rechtwinkliges Dreieck, welches in der Abbildung orange markiert
ist. Dabei schneidet AZ ′, der Projektionsstrahl im Grundriss, die Bildspur in Ap,
welche senkrecht unterhalb von ϕz(A) liegt.

Es gibt nun verschiedene Möglichkeiten, dass Bild von A ohne die 3D Darstellung zu
konstruieren. Wir stellen uns vor, dass die Bildebene nach links in die Grundrissebe-
ne geklappt wird, sodass wir nun innerhalb einer Ebene konstruieren können. Die
erste Möglichkeit liegt darin, das orange markierte Dreieck seitlich über AZ ′ in die
Grundrissebene zu drehen. Dann liefert die Verbindungslinie ZA′ den Schnittpunkt
Ap, über welchen dann senkrecht der Abstand d(Ap, ϕz(A)) abgetragen werden muss.
Dieser Abstand ergibt sich über den Schnittpunkt ZA mit der Bildspur. Dies ist un-
terhalb der linken Abbildung skizziert. Dies entspricht auch der Funktionsweise des
Perspektographen von J. H. Lambert , welcher im Abschnitt 8.1 vorgestellt wird.

Rechts in der Abb. 4.3.6 liegt die Konstruktion in der 3D Darstellung vor, welche für
i) nachfolgend erläutert wird. Dies entspricht der zweiten Möglichkeit, das Bild von
A zu konstruieren. Hierbei muss die Strecke Z ′Z nicht in die Grundrissebene gedreht
werden. Die Strecke AB wird erweitert, bis sie die Bildspur in SAB schneidet. Dann
wird ihr Fluchtpunkt FAB ermittelt und mit SAB verbunden, sodass das Bild der
Geraden AB entsteht. Nun wird A mit Z ′ verbunden und in dem Schnittpunkt Ap
mit der Bildspur die Senkrechte auf dieser errichtet. Diese schneidet die Bildgerade in
ϕz(A). Die Konstruktion verschiedener Lagen der Strecke AB wird nun schrittweise
erläutert.
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Konstruktionsmethode 4.3.1

Gegeben ist eine Strecke AB im Grundriss in allgemeiner Lage und der Fuß-
punkt Z ′ des Projektionszentrums Z. Es soll das zentralprojektive Bild der
Strecke konstruiert werden, wobei der Hauptpunkt H 5 cm über der Grundris-
sebene liegt.

Grundriss

Bildspur

A

B

Z ′

H ′

Zuerst wird die Bildgerade durch die Punkte ϕz(A) und ϕz(B) konstruiert und dann
anschließend die Bildstrecke. Wir gehen dabei in Abb. 4.3.7 wie folgt vor:

1. Verlängere im Grundriss die Strecke über B hinaus, bis sie
die Bildspur schneidet.

⇒ SAB

2. Zeichne die Parallele durch Z ′ zu AB, bis sie die Bildspur
schneidet

⇒ F ′

3. Verbinde Z ′ jeweils mit A und B und markiere die Schnitt-
punkte mit der Bildspur.

⇒ Ap, Bp

4. Messe die Abstände der o.g. Schnittpunkte zu H ′ und über-
trage diese in der Bildebene auf die Bildspur. Ausgenom-
men sei F ′, welcher auf den Horizont übertragen wird.

⇒ F

5. Verbinde in der Bildebene SAB mit F und erhalte so die
Bildgerade. Fälle jeweils durch Ap und Bp das Lot auf die
Bildspur und markiere die Schnittpunkte mit der Bildgera-
den

⇒ ϕz(A),
ϕz(B)

Um die Bildgerade zu konstruieren, nutzen wir aus, dass nach Satz 3.1.2, S. 49, jeder
Schnittpunkt eines Objektes mit der Bildebene zu einem Fixpunkt führt. Daher ist
auch SAB ein Fixpunkt, sodass wir einen Punkt der Bildgerade konstruieren können.
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Für den zweiten Punkt nutzen wir den Fluchtpunkt von AB aus, welcher nach
Satz 3.1.3, S. 49, dem Bild des Fernpunktes entspricht, welcher die Richtung der
Geraden AB bestimmt. Wir können den Fernpunkt selbst nicht zeichnen, wir wissen
aber, dass alle Gerade parallel zu AB diesen Fernpunkt gemeinsam haben. Die Par-
allele durch Z ist auch eine Parallele durch Z ′, sodass wir hier den Lotfußpunkt F ′

von F konstruieren können. Damit haben wir das Bild von AB. Aufgrund der Inzi-
denztreue liegen die Bilder von A und B auf der Bildgeraden. Um die entsprechenden
Ordner zu finden, zeichnen wir in den Grundriss die Risse der Projektionsstrahlen,
indem wir Z ′ mit den Urbildpunkten verbinden und übertragen diese auf die Kopie
der Bildspur im unteren Teil der Abb. 4.3.7.

Grundriss

Bildebene

Horizont

Bildspur

A

B

Z ′

H ′

H

H ′

Ap Bp

F ′

SAB

F

SABAp Bp

ϕz(A)
ϕz(B)

Abb. 4.3.7 Lösung zur Konstruktionsmethode 4.3.1
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Wir kommen zum Fall ii), d.h. die Strecke durchstößt nun senkrecht die Bildebene.

Konstruktionsmethode 4.3.2

Gegeben ist eine Strecke AB, welche senkrecht zur Bildebene ist. Ihr Grundriss
ist A′B′, der Fußpunkt des Projektionszentrum ist Z ′. Es soll das zentralprojek-
tive Bild der Strecke konstruiert werden, wobei der Hauptpunkt H 5 cm über
der Grundrissebene liegt.

Grundriss

Bildspur

A′

Z ′

H ′

B′

Die Konstruktion folgt nach denselben Schritten wir im Fall i). Der Sonderfall hier
zeichnet sich dadurch aus, dass die Parallele durch Z ′ zu A′B′ die Bildspur im Grund-
riss H ′ des Hauptpunktes schneidet, wie Abb. 4.3.8 zeigt. D.h. der zweite Schritt
entfällt, da wir in diesem Fall den Fluchtpunkt schon kennen. Es entfällt auch der
erste Schritt, da die Strecke A′B′ die Bildspur schneidet.

Wir wissen, dass die Richtung der ursprünglichen Geraden den Fluchtpunkt be-
stimmt. Falls diese senkrecht zur Bildebene verläuft, so ist der Hauptpunkt H der
Fluchtpunkt. Nun betrachten wir einen zur Bildebene parallele Strecke.
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Grundriss

Horizont

Bildspur

Bildebene

A′

Z ′

H ′

H

H ′

B′

SA′B′

SA′B′

B′p A′p

B′p A′p

ϕz(A)

ϕz(B)

Abb. 4.3.8 Lösung zur Konstruktionsmethode 4.3.2
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Konstruktionsmethode 4.3.3

Gegeben ist eine Strecke AB, welche parallel zur Bildebene ist. Ihr Grundriss
ist A′B′, der Fußpunkt des Projektionszentrums ist Z ′. Es soll das zentralpro-
jektive Bild der Strecke konstruiert werden, wobei der Hauptpunkt H 5 cm über
der Grundrissebene liegt.

Grundriss

Bildspur

A′

Z ′

H ′

B′

Würden wir eine Parallele durch Z ′ zu A′B′ ziehen, so ist diese auch parallel zur
Bildspur. Der Schnittpunkt ist nun derselbe Fernpunkt wie von A′B′. Demnach ist
auch die Bildgerade parallel zur Bildebene. Wir wissen allerdings nicht, in welcher
Höhe sich diese über der Grundrissebene befindet und nutzen daher eine Hilfsstrecke
h. Abb. 4.3.9 zeigt die Lösung nach folgenden Schritten:

1. Fälle das Lot durch B′ auf die Bildspur und markiere den
Schnittpunkt mit ihr.

⇒ h,Bh

2. Verbinde Z ′ jeweils mit A und B und markiere die Schnitt-
punkte mit der Bildspur.

⇒ Ap, Bp

3. Messe die Abstände der o.g. Schnittpunkte zu H ′ und über-
trage diese in der Bildebene auf die Bildspur.

4. Verbinde in der Bildebene Bh mit H und erhalte so die
Bildgerade von h.

⇒ HBh

5. Fälle das Lot durch Bh und markiere den Schnittpunkt mit
HBh

⇒ ϕz(B)

6. Zeichne die Parallele durch ϕz(B) zum Horizont sowie das
Lot durch Ap auf die Bildspur

⇒ ϕz(A)
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ϕz(h)

Grundriss

Horizont

Bildspur

Bildebene

A′

Z ′

H ′

H

H ′

B′

Ap Bp

Ap Bp

Bh

h

Bh

ϕz(B)ϕz(A)

Abb. 4.3.9 Lösung zur Konstruktionsmethode 4.3.3

Mithilfe der vorherigen Methoden lässt sich die senkrechte Strecke h konstruieren und
über die Projektionsstrahlen von A′ und B′ lassen sich die Endpunkte der Bildstrecke
von A und B finden.
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Konstruktionsmethode 4.3.4

Gegeben ist eine Strecke AB, welche senkrecht zur Objektebene ist. Ihr Grund-
riss ist daher ein Punkt mit A′ = B′. Die Höhe der Strecke muss daher dem
Aufriss entnommen werden. Der Fußpunkt des Projektionszentrums ist Z ′. Es
soll das zentralprojektive Bild der Strecke konstruiert werden, wobei der Haupt-
punkt H 5 cm über der Grundrissebene liegt.

Aufriss

Grundriss

Bildspur

A′ = B′

Z ′

H ′

a

Wir kommen zur letzten Grundkonstruktion, wo die Strecke nun senkrecht zur Grund-
riss- bzw. Objektebene steht. Somit befindet sie sich in einer zur Bildebene parallelen
Ebene. Hier tritt der Sonderfall bei der Auflistung der Invarianten in Abb. 3.2.1, S. 56,
ein. Die Zentralprojektion wird zur Ähnlichkeitsabbildung, d.h. Gerade und Bildge-
rade sind zueinander parallel. Abb. 4.3.10 zeigt die Lösung nach folgenden Schritten:

1. Fälle das Lot durch A′ auf die Bildspur und markiere den
Schnittpunkt mit ihr.

⇒ h,Ah

2. Verbinde Z ′ mit A′ und markiere die Schnittpunkte mit der
Bildspur.

⇒ Ap

3. Messe die Abstände der o.g. Schnittpunkte zu H ′ und über-
trage diese in der Bildebene auf die Bildspur.

4. Verbinde in der Bildebene Ah mit H und erhalte so die
Bildgerade von h.

⇒ HAh

5. Fälle das Lot durch Ah und tragen die Länge a im Aufriss
ab. Verbinde den oberen Endpunkt von a mit H.

6. Fälle das Lot durch Ap. Diese schneidet die Strecken aus 4.
und 5. in den Endpunkten der Bildstrecke

⇒ ϕz(A),
ϕz(B)
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Grundriss

Horizont

Bildspur

Bildebene

Aufriss

A′

Z ′

H ′

H

H ′

a

ApAh

h

ApAh

ϕz(h)
a

ϕz(A)
ϕz(a)

Abb. 4.3.10 Lösung zur Konstruktionsmethode 4.3.4

Wir wissen, dass jedes Objekt in der Bildebene sich nicht verändert, d.h. a wird
an Ah in wahrer Größe abgebildet. Je weiter weg sich das Objekt von der Bildebene
befindet, umso kleiner wird es. Das Dreieck mit der SpitzeH und der Grundseite a ist
Teil des Bildes einer Ebene, welche a enthält und senkrecht die Bildebene schneidet.
Wir ziehen gedanklich die Strecke a soweit nach „hinten“ zum Horizont, bis sie über
Ap steht, da dieser Punkt die Position der Bildstrecke angibt.
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Dies waren die vier Grundkonstruktionen, mit welchen sich einfache, mathematische
Grundkörper über den Grundriss und die Höhe darstellen lassen. Z ′ bestimmt dabei
den Fußpunkt des Projektionszentrums und stellt die Position des Beobachters dar.
Der Abstand der Bildspur zum Horizont entspricht der Höhe des Augenpunktes über
der Objektebene. Wir zeigen im folgenden ein Beispiel eines gedrehten Würfels und
eines parallel zur Bildebene ausgerichteten Quaders. Mit dieser Anordnung kommen
alle zuvor genannten Methoden zum Einsatz.

Konstruktionsbeispiel 4.3.1

Gegeben ist ein Würfel und ein Quader im Grundriss, sowie der Fußpunkt Z ′

des Projektionszentrums. Die Höhen der Objekte können der Skizze entnom-
men werden. Mithilfe der Grundkonstruktionen soll das zentralprojektive Bild
der beiden Körper erstellt werden. Das Projektionszentrum liegt dabei wieder
5 cm oberhalb der Objektebene.

Objekthöhen

Grundriss

Bildspur

A

Z ′

H ′

a
B

C

D

b

U T

R S

Wir konstruieren die Projektionen der Körper in mehreren Schritten:

1. Boden des Würfels

2. Vervollständigung des Würfels

3. Boden des Quaders

4. Vervollständigung des Quaders
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Abb. 4.3.11 - 4.3.14 zeigt die einzelnen Ergebnisse der o.g. Schritte. Wir beginnen
jeweils mit den Grundflächen und konstruieren dann die Deckflächen mithilfe der
Senkrechten durch die Eckpunkte der Grundflächen. Da der Würfel um die senk-
rechte Achse gedreht ist, existieren zwei Fluchtpunkte, welche über die Parallelen
durch Z ′ zu den entsprechenden Seitenkanten ermittelt werden. Wir benötigen nun
nicht alle Fixpunkte S bzw. Schnittpunkte der Projektionsstrahlen. SBC und SCD

liefert uns schon der Grundriss, SAB muss ergänzt werden. Wir verbinden FAB mit
SAB und SCD sowie FAD mit SBC . Diese schneidet die ersten beiden Strahlen in
ϕz(B) und ϕz(C). Mit Ap erhalten wir das Bild von A und können den fehlenden
Strahl durch FAD ergänzen, womit wir ϕz(D) finden. Damit kennen wir die Grund-
fläche des Würfels.

Wir tragen im zweiten Schritt die Höhe a an SBC und SCD ab. Wie zuvor zur Kon-
struktionsmethode 4.3.4 beschrieben, wird a genau dann auf sich selbst abgebildet,
wenn sie in der Bildebene liegt. Liegt sie auf der zum Projektionszentrum abgewand-
ten Seite der Bildebene, so ist das Bild von a kleiner, im anderen Fall wird es größer.
Daher ist die Kante über ϕz(C) länger als über ϕz(B) (vgl. Abb. 4.3.15). Wir verbin-
den die Fluchtpunkte mit den Endpunkten der eingetragenen Höhen. Die Strahlen
schneiden sich in ϕz(G). Dann zeichnen wir die Seitenkanten über ϕz(B) und ϕz(D)

an, deren Endpunkte ϕz(F ) bzw. ϕz(H) auf den Strecken FADϕz(G) bzw. FABϕz(G)

liegen. Ergänzen wir die zweiten, oberen Strahlen durch die Fluchtpunkte, so schnei-
den diese sich in ϕz(E). Damit ist das Bild des Würfel konstruiert.

Wir kommen zum Boden des Quaders. Der Fluchtpunkt der Geraden UR und TS
ist der Hauptpunkt H, während die Geraden UT und RS auf Parallelen projiziert
werden. Auch hier gibt es wieder verschiedene Wege, denn nicht alle Schnittpunk-
te der Projektionsstrahlen mit der Bildebene bzw. Fixpunkte werden benötigt. Mit
Rp, Sp und h wird die Kante durch ϕz(R) und ϕz(S) nach der Konstruktionsmethode
4.3.9 erstellt und die Endpunkte mit H verbunden. Mit Up lässt sich ϕz(U) finden,
durch welche die zweite Parallele gezogen wird, um ϕz(T ) zu erhalten. Damit ist die
Bodenfläche fertig.
Im letzten Schritt wird die Deckfläche ergänzt. Wir tragen an STS die Höhe b aus
der Aufgabenstellung ab und verbinden den Endpunkt wieder mit H. Wir ziehen an
ϕz(S)bzw. ϕz(T ) die Kante hoch und erhalten ϕz(W ) bzw. ϕz(X). Wir ziehen die
Parallele zur Bildspur durch ϕz(W ) und ϕz(X) und ziehen an ϕz(R) und ϕz(U) die
Kanten hoch. Die Geraden schneiden sich dann in ϕz(V ) und ϕz(Y ), sodass wir alle
oberen Eckpunkte erhalten haben. Abb. 4.3.15 zeigt das Endergebnis mit angedeu-
teter Bildspur und Horizontlinie.
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Objekthöhen

Grundriss

Horizont

Bildspur

Bildebene

A

Z ′

H ′

H

H ′

a

B

C

D

b

U T

R S

F ′AD F ′AB

FABFAD

SBC SCD

SCDSBC

ϕz(C)

SAB

SAB

ϕz(B)

Ap

Ap

ϕz(A)

ϕz(D)

Abb. 4.3.11 Lösung des Konstruktionsbeispiels 4.3.1, 1. Schritt
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Grundriss

Horizont

Bildspur

Bildebene

Objekthöhen

A

Z ′

H ′

H

H ′

a

B

C

D

b

U T

R S

F ′AD F ′AB

FABFAD

SBC SCD

SCDSBC

ϕz(C)

ϕz(B) ϕz(D)

ϕz(G)

ϕz(F ) ϕz(H)

ϕz(E)

Abb. 4.3.12 Lösung des Konstruktionsbeispiels 4.3.1, 2. Schritt
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Grundriss

Horizont

Bildspur

Bildebene

Objekthöhen

A

Z ′

H ′

H

H ′

a

B

C

D

b

U T

R S

STS

h

SpRp

STS

ϕz(h)

Sp

ϕz(S)

Rp

ϕz(R)

Up

Up

ϕz(U) ϕz(T )

Abb. 4.3.13 Lösung des Konstruktionsbeispiels 4.3.1, 3. Schritt
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Grundriss

Horizont

Bildspur

Bildebene

Objekthöhen

A

Z ′

H ′

H

H ′

a

B

C

D

b

U T

R S

STS

STS

ϕz(S)ϕz(R)

ϕz(U) ϕz(T )

b

ϕz(W )

ϕz(X)ϕz(Y )

ϕz(V )

Abb. 4.3.14 Lösung des Konstruktionsbeispiels 4.3.1, 4. Schritt

Abb. 4.3.15 Projektion von Würfel und Quader im Konstruktionsbeispiel 4.3.1
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Wir kommen nun zu weiteren Aufgabenbeispielen, aus denen sich neue Fragestel-
lungen für den Unterricht ergeben können. Zum einen haben wir in den Lösungen
gesehen, dass es verschiedene Wege geben kann, einen Quader bzw. Würfel zu kon-
struieren, denn nicht alle Schnittpunkte der Projektionsstrahlen mit der Bildspur
wurden benötigt oder nicht alle Seiten mussten im Grundriss bis zur Bildspur ver-
längert werden. Je nach Lage der Objekte im Grundriss kann ein Fluchtpunkt nicht
mehr gezeichnet werden, da der Schnittpunkt der Parallelen durch Z ′ mit der Bild-
spur außerhalb des Blattes liegt. Dann müssen andere Alternativen genutzt wer-
den. Im folgenden Beispiel besteht das Objekt aus einem Quader mit quadratischer
Grundfläche, auf welchem eine Pyramide steht. Für die Konstruktion nutzen wir die
Diagonalen im Quadrat.

Konstruktionsbeispiel 4.3.2

Gegeben ist ein Quader, auf welcher eine quadratische Pyramide aufliegt, im
Grundriss, sowie der Fußpunkt Z ′ des Projektionszentrums. Der Quader hat
die Höhe a und der Abstand vom Boden zur Spitze S beträgt b. Mithilfe der
Grundkonstruktionen soll das zentralprojektive Bild erstellt werden. Das Pro-
jektionszentrum liegt dabei wieder 5 cm oberhalb der Objektebene.

Grundriss

Bildspur Objekthöhe

Z ′

B

A

C

D

G

F

E

I

S

H ′

a

b

Wir konstruieren zuerst die quadratische Grundfläche des Quaders. Je nach Lage
der Objekte zur Bildebene kann es passieren, dass die Parallele zu einer Kante durch
das Projektionszentrum Z ′ die Bildspur weit entfernt vom Hauptpunkt H ′ schnei-
det, sodass der Schnittpunkt nicht mehr auf dem Zeichenblatt liegt. Als Alternative
nutzen wir den Fluchtpunkt der Geraden IF . Sie verläuft deutlich steiler, sodass der
Fluchtpunkt F ′IF nahe bei H ′ liegt.
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Objekthöhen

Horizont

Bildebene

Grundriss

Bildspur

H ′

F

B

Z ′

H ′

A

C

D

G
E

I

S

H

a

b

SAB

F ′BC

FBC

SAB SBC

F ′IF

FIF

SIF

ϕz(B)

Ap

Ap

ϕz(A)

ϕz(D)

Sp

ϕz(C)ϕz(S)

Abb. 4.3.16 Konstruktion der Grundfläche des Würfels im Beispiel 4.3.2
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Die restliche Konstruktion in Abb. 4.3.16 orientiert sich an den vorher besprochenen
Methoden 4.3.1 - 4.3.4. Im zweiten Schritt nutzen wir die Objekthöhe a, um den
Quader zu vervollständigen. In Abb. 4.3.17 entsprechen die blauen Linien der Stre-
cke a.

Horizont

Bildebene

H ′

H FBCFIF

ϕz(W )

ϕz(V )

ϕz(X)

ϕz(U)

Abb. 4.3.17 Der fertige Quaders des Beispiels 4.3.2

Als dritten Schritt verbinden wir in Abb. 4.3.18 die Bilder von I und F bzw. E
und G, denn senkrecht über dem Schnittpunkt muss das Bild der Pyramidenspitze
liegen. Wir nutzen also hier wieder die Inzidenztreue der Projektion aus. Die Höhe
der Spitze finden wir mithilfe der Objekthöhe b. Damit haben wir das gesamte Bild
konstruiert, welche in Abb. 4.3.19 dargestellt ist. Hierbei entspricht die obere Linie
dem Horizont und die untere der Bildspur.

Betrachten wir einmal die Lösung in Abb. 4.3.19. Es fällt auf, dass die vordere Spitze
stark verzerrt wirkt. Das projektive Bild wird beeinflusst durch die Lage des Projek-
tionszentrums und der Bildebene, welche weiterhin senkrecht zur Objektebene liegen
soll. Denn diese bestimmen die Lage der Fluchtpunkte bzw. des Horizontes, wie wir
im Abschnitt 4.3.1 schon untersucht hatten. Wie können wir daher vorhersagen, ob
das Endergebnis verzerrt wirkt? Warum entsteht überhaupt dieser Eindruck, wenn
doch die Zentralprojektive wirklichkeitsnahe Bilder ermöglichen soll? Die Zentralpro-
jektion ist ein vereinfachtes Modell des menschlichen Sehens. Die erste Vereinfachung
ist die Reduktion von zwei auf ein Projektionszentrum. Dadurch verringert sich der
dreidimensionale Eindruck. Die Verzerrung entsteht durch breite Blickwinkel, denn
das Bildfeld des menschlichen Auges ist begrenzt.

Wir benötigen daher ein Hilfsmittel als Orientierung, ob die Lage von Bildspur und
Zentrum geeignete Bilder erzeugt. In der Literatur finden wir hierzu den sog. Distanz-
kreis, welcher im folgenden Abschnitt vorgestellt wird.
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Objekthöhen

Horizont

Bildebene

Grundriss

Bildspur

H ′

F

B

Z ′

H ′

A

C

D

G
E

I

S

H

a

b

FBCFIF

S

SIF

SIF

Fp

Fp

ϕz(F )

ϕz(G)

Ip

Ip

ϕz(I)

ϕz(E)

Abb. 4.3.18 Konstruktion des Bildes der Spitze S des Beispiels 4.3.2

Abb. 4.3.19 Das zentralprojektive des Quaders und der Pyramide des Beispiels 4.3.2
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4.3.3 Distanzkreis

Wir betrachten einmal den Quader im letzten Beispiel 4.3.2. Abb. 4.3.20 zeigt das
Bild und den entsprechenden Distanzkreis, dessen Mittelpunkt der Hauptpunkt H
ist. Der Radius entspricht der Entfernung des Betrachters zur Bildebene, d.h. dem
Abstand von Z ′ zu H ′.
Objekte innerhalb des Distanzkreises werden perspektivisch unverzerrt dargestellt.
Die Ecke des Quaders liegt außerhalb. Wir überlegen daher im Folgenden, welche
Möglichkeiten es gibt, den Distanzkreis zu verändern, in dem der Mittelpunkt ver-
schoben oder der Radius des Kreises vergrößert wird.

Grundriss

Bildspur

Distanzkreis

C

a

D

B

A

Z ′

H ′

H ′

HFAB FBC

SBC

SBC

ϕz(B)

SAD

SAD

ϕz(A)

SCD

SCD

ϕz(C)

Abb. 4.3.20 Die Projektion des Quaders liegt teilweise außerhalb des Distanzkreises
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Wir stellen uns vor, der Betrachter würde sich auf den Boden setzen, d.h. sein Ab-
stand zur Bildebene bleibt gleich, allerdings verschiebt sich der Horizont nach unten,
da nun das Projektionszentrum näher an der Objektebene liegt. Der Radius des
Distanzkreises bleibt gleich, aber der Mittelpunkt verschiebt sich in Richtung der
Bildspur. Abb. 4.3.21 zeigt nun, dass der Würfel innerhalb des Kreises liegt und die
vordere Spitze nicht mehr verzerrt wirkt.

Bildebene

Horizont

Distanzkreis

H ′

HFAB FBC

ϕz(B)

SAD

ϕz(A)

SCD

ϕz(C)

Abb. 4.3.21 Verringerung des Abstandes von Projektionszentrum und Objektebene

Gehen wir zurück zur Ausgangssituation, d.h. unser Betrachter steht wieder. Wir
ändern nun die Lage der Bildebene bzw. drehen den Quader senkrecht zur Objek-
tebene. Nun verschieben sich die Fluchtpunkte entlang des Horizontes. Wir sehen in
Abb. 4.3.22, dass dadurch das Bild des Würfels wieder in den Distanzkreis rückt und
der Eindruck der Verzerrung vermindert wird.

Als dritte Möglichkeit entfernen wir in Abb. 4.3.23 den Betrachter von der Bildebene.
Hierdurch vergrößert sich der Distanzkreis und die Fluchtpunkte entfernen sich vom
Hauptpunkt. Der Winkel in der vorderen Spitze vergrößert sich dadurch. Betrachten
wir einmal die markierten Winkel bei Z ′ im Grundriss. Dieser ergibt sich, wenn wir
die äußersten Punkte im Grundriss mit Z ′ verbinden. Je kleiner dieser Winkel, umso
eher liegt auch das Bild im Distanzkreis. Nach der Literatur sollte dieser kleiner
als 40◦ sein [2]. Somit lässt sich vor der Konstruktion abschätzen, ob das Bild im
Distanzkreis liegt und somit unverzerrt dargestellt wird.
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Grundriss

Bildebene

C
a

D

B

A

Z ′

H ′

HFAB

SBC

ϕz(B)

FAB

ϕz(A)

SCD

ϕz(C)

Abb. 4.3.22 Drehung des Quaders bzw. Änderung der Lage der Bildebene
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C

a

D

B

A

Z ′

H ′

H ′

HFAB FBC

ϕz(B)

SAD

SAD

ϕz(A)

SCD

SCD

ϕz(C)

49,23◦

38,85◦

Abb. 4.3.23 Entfernung des Betrachters von der Bildebene führt zu einem größeren
Distanzkreis
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4.3.4 Messpunktverfahren

Wir kommen nun zu einem alternativen Verfahren, um das Bild einer Strecke AB
im Grundriss zu erstellen. Mithilfe des sog. Messpunktverfahrens [43, S. 43] lassen
sich Strecken auf der Grundlinie bzw. dem Bildriss perspektivisch richtig verzerrt auf
eine andere Gerade abbilden. Nach der Erläuterung der Methode konstruieren wir
als Beispiel das Bild einer Treppe.

S

B1

A1

B2

A2

BmAm

Abb. 4.3.24 Das Messpunktver-
fahren

Die nebenstehende Abbildung zeigt zwei kongru-
ente Strecken A1B1 und A2B2, welche um den
Punkt S gedreht sind. Sie liegen daher auf Ge-
raden mit verschiedenen Fernpunkten. Am und
Bm werden Messpunkte genannt und entstehen
durch die Abtragung der Streckenendpunkte auf
die Bildspur. Aufgrund der Radien gilt

SAm = SA1 , SBm = SB1,

sodass die Dreiecke ∆SB1Bm und ∆SA1Am

ähnlich zueinander sind. Demnach sind die grün
markierten Geraden A1Am und B1Bm parallel zueinander. Analog lässt sich die Par-
allelität von A2Am und B2Bm beweisen.

S

B1

A1

B2

A2

BmAm

Z ′

H ′ F ′1 F ′2

H

H ′

F1 F2

Am Bm S

FA1B1
FA2B2

ϕz(A2)

ϕz(B2)

ϕz(A1)

ϕz(B1)

Abb. 4.3.25 Konstruktion mit
dem Messpunkteverfahren

Durch die Drehung der Strecke ändert sich die
Richtung der parallelen Geradenpaare bzw. ihr
Fluchtpunkt. Die Projektionen der Strecken las-
sen sich somit über Schnittpunkte der Gera-
den durch S,Am, Bm und den entsprechenden
Fluchtpunkten ermitteln, wie Abb. 4.3.25 zeigt.
Die Risse aller Fluchtpunkte ergeben sich wieder
als Schnitt der Bildspur mit der entsprechenden
Parallelen durch Z ′. Diese werden auf den Ho-
rizont im unteren Bild übertragen. Die Schnitt-
punkte der Urbilder mit der Bildspur sind S und
die Messpunkte. Damit können die vier Bildgera-
den konstruiert werden. Die Schnittpunkte ent-
sprechen den Bildern von A1, B1, A2 und B2.
Dies zeigt noch keinen Vorteil gegenüber dem
vorherigen Verfahren (Konstruktionsmethode
4.3.7, S. 108). Statt dem Lot durch A1 und
B1 werden andere Geraden verwendet, dessen
Fluchtpunkte noch ermittelt werden müssen,
welches eher einen Nachteil bedeutet.
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Das Messpunktverfahren ist vor allem dann vorteilhaft, wenn auf einer Geraden
äquidistante Abschnitte projiziert werden sollen, wie es bspw. bei Treppenstufen
oder einem gefliesten Boden der Fall ist. Dann müssen die Endpunkte der Strecken
wie A1 oder B1 nicht mit dem Zirkel abgetragen werden. Stattdessen kann ab dem
Schnittpunkt der Urbildgeraden mit der Bildspur der feste Abstand fortlaufend an-
gezeichnet werden.

Bildspur

Grundriss

SAB

A′

B′

Z ′

F ′AB

Am

α

β

C
δ

F ′m
ε

ζ

Abb. 4.3.26 Das Dreieck ∆Z ′F ′ABF
′
m ist gleichschenklig.

Die obige Abbildung zeigt den Grundriss der Strecke A′B′. SAB ergibt sich durch
die Verlängerung der Strecke bis zur Bildspur und der Messpunkt Am durch das
Abtragen des Abstandes von SAB zu A′. Somit liegt wegen SABAm = SABA′ ein
gleichschenkliges Dreieck vor und die Basiswinkel α und β sind gleich groß. Wir
wollen zeigen, dass dies für alle in der Abbildung eingezeichneten Winkel gilt, ins-
besondere ε = ζ, da somit das Dreieck ∆Z ′F ′ABF

′
m gleichschenklig ist und sich F ′m

durch die Abtragung der Strecke F ′ABZ ′ ergibt.
Wegen Z ′F ′m ‖ A′C gilt für die Wechselwinkel β = ε. Da auch SABA

′ ‖ Z ′C gilt
analog α = δ = ζ. Die Basiswinkel ε und ζ sind somit gleich groß und damit ist
auch F ′ABF

′
m = F ′ABZ

′. Die Parallele durch Z ′ von A′Am muss somit nicht mehr
konstruiert werden.

Das Messpunktverfahren wird im folgenden für die Konstruktion des Bildes einer
Treppe verwendet.
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Konstruktionsbeispiel 4.3.3

Gegeben ist der Grundriss einer Treppe, deren Stufenhöhe 0,8 cm beträgt. Mit-
hilfe des Messpunktverfahren soll das zentralprojektive Bild erstellt werden. Der
Horizont liegt 4 cm oberhalb der Objektebene.

A1

A5

A2

A3

A4

Z ′

H ′

A1

A5

B1

A2

A3

A4

Z ′

H ′

H

M2M1 M3 M4 M5

F ′A

FA

F ′m

Fm

ϕz(A1)

B1p

1. Schritt: Die Messpunkte werden auf
die Bildspur übertragen. Es ist A2 = M2

und die Stufentiefe ist konstant, sodass
von M2 aus der Abstand d(A1, A2) an
M2 in beide Richtungen auf der Bildspur
abgetragen werden kann, um die Mess-
punkte M1 bis M5 zu erhalten. Der Riss
des Fluchtpunktes FA ergibt sich wie-
der aus der Parallelen zur Stufenkante
A1A5 durch Z ′. Für F ′m wird mit dem
Zirkel ein Kreis um F ′A mit dem Radius
d(F ′A, Z

′) gezeichnet, bis dieser die Bild-
spur schneidet. Um die Breite der Stufe
zu erhalten wird B1 mit Z ′ verbunden,
sodass wir das Abbild der Projektions-
geraden durch B1 im Grundriss erhal-
ten. Den Schnitt mit der Bildspur nen-
nen wir daher B1p.
Wir verbinden nach Übertragung der
beiden Fluchtpunkte auf den Horizont
die Messpunkte entsprechend mit jenen



4.3. Konstruktionsmethoden 133

und erhalten die Projektion der vorderen Stufenkanten sowie der seitlichen Kante
A1A5. Der Schnittpunkt beider Kanten entspricht ϕz(A1). Im zweiten Schritt wird
die Höhe der Stufen ermittelt.

H

ϕz(A2)

FAFAB Fm

ϕz(A1)

ϕz(B1)

2. Schritt:Wir ziehen das Lot zur Bild-
spur durch B1p und erhalten ϕz(B1).
Für den Fluchtpunkt FAB legen wir die
Gerade durch ϕz(A1) und ϕz(B1). Von
M2 = ϕz(A2) aus wird die doppelte
Stufenhöhe senkrecht abgetragen, da die
Strecke in der Bildebene liegt und da-
her auf sich selbst abgebildet wird. Wir
markieren die Mitte, legen durch diesen

Punkt und FA eine Gerade, welche die Senkrechte auf der Bildspur über ϕz(A1)

schneidet, sodass wir die vordere, obere Ecke der ersten Stufe gefunden haben. Wir
verbinden diesen mit FAB, welche das Lot durch ϕz(B1) schneidet, sodass wir auch
die hintere, obere Ecke konstruiert haben. So lässt sich schrittweise jede Stufe kon-
struieren. Das Ergebnis zeigt die folgende Abbildung. Da die Treppenstufen dieselbe
Tiefe aufweisen, konnten die Messpunkte leicht auf der Bildspur abgetragen werden.

Horizont

Bildspur

H FAFAB Fm

ϕz(A1)

ϕz(B1)

M4 M3 M5

Abb. 4.3.27 Das zentralprojektive Bild der Treppe

Mit dem Messpunkteverfahren können äquidistante Strecken projiziert werden. So-
mit lässt sich auch ein Koordinatensystem konstruieren, welches zentralprojektiv
abgebildet wird, mit dessen Hilfe sich Projektionen einfacher Körper direkt zeich-
nen lassen. Die folgende Abb. 4.3.28 zeigt ein Beispiel. In der oberen linken Ecke
liegt die xy-Ebene vor, wobei die Bilder von Y1, Y2, . . . , Y5 mithilfe der Messpunkte
M1,M2, . . . ,M5 konstruiert wurden. Die Bildebene liegt parallel zur yz-Ebene, d.h.
H ist der Fluchtpunkt. Das Lot über S auf der Bildspur liegt in der Bildebene, die
Abstände werden durch die Projektion somit nicht verändert, sodass sich das Gitter
in der yz-Ebene durch die Verbindung mit H leicht konstruieren lässt.
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Die Projektion eines regelmäßigen Gitters lässt sich auch über den Schnittpunkt
einer Diagonalen mit den Tiefenlinien erzeugen, denn für jede Projektion gilt die
Inzidenztreue. So reichen zwei Messpunkte aus, um die Projektion der Diagonalen
zu konstruieren, mit welcher sich das Gitter in der xy-Ebene abbilden lässt. Diese
Alternative zeigt die folgende Abbildung.
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S

Y1

Y2

M1 M2

Z ′

H ′

S H ′

H

M1 M2

Fm

Y1

Y2

Abb. 4.3.29 Konstruktion des regelmäßigen Gitters über die Diagonale, welche mit
einem Messpunkt konstruiert wurde.
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Das letzte Beispiel in Abb. 4.3.30 zeigt ein gedrehtes Koordinatensystem. Nun fällt
der Fluchtpunkt nicht mit dem Hauptpunkt zusammen, da die Parallelen zur y-Achse
nicht mehr senkrecht auf der Bildebene stehen. Es kommt ein zweiter Fluchtpunkt
hinzu. Die Fluchtpunkte beider Hauptachsen werden über die Parallele durch Z ′

ermittelt. Der Schnittpunkt der Bilder ergibt den ersten Bildpunkt der blauen Dia-
gonalen. Die Punkte X1, X2, . . . auf der grünen Achse werden um S2 auf die Bildspur
gedreht, sodass die Messpunkte M1,M2, . . . entstehen. Mit ihnen lassen sich im Sin-
ne des Messpunktverfahrens die Tiefenlinien konstruieren. Die horizontalen Linien,
also die Bilder der Parallelen zur x-Achse, entstehen über die blaue Diagonale. Hier-
bei ist S1 ein Fixpunkt. Wir verbinden diesen mit Fx und erhalten ein Bild einer
der Horizontalen. Diese schneidet die Tiefenlinie zu ϕz(X3) auf der blauen Diagona-
len. Aufgrund der Inzidenztreue ist ein zweiter Bildpunkt der Diagonalen gefunden,
sodass diese vollständig gezeichnet werden kann. Sie schneidet alle anderen Tiefen-
linien, sodass auch die Horizontalen über die Verbindung mit FY ergänzt werden
können. Damit ist die Projektion der xy-Ebene fertig.
Die z-Achse sei weiterhin parallel zur Bildebene. Das Lot auf die Bildspur in S1 ist
eine Fixgerade, d.h. die Einheitsabschnitte auf der Achse können übernommen wer-
den. Werden diese mit FY verbunden, entsteht ein Teil des Gitters der yz-Ebene.
Die fehlenden Geraden sind die Lote über ϕz(Y1), ϕz(Y2), . . . , denn ihre Urbilder
sind parallel zur Bildebene, d.h. der dritte Fluchtpunkt ist weiterhin ein Fernpunkt.

Mit dem Gitter lassen sich nun wieder Objekte wie in einem Koordinatensystem
einzeichnen, um direkt das zentralprojektive Bild zu erhalten. Dieses Vorgehen ist
ähnlich zur Axonometrie im Abschnitt 5.2, S. 210. Hier reichte es allerdings aus, das
Dreibein als Verbildlichung der Basis des dreidimensionalen Raumes, parallelprojek-
tiv abzubilden. Alle weiteren Linien des Gitters ergaben sich aus der Parallelen- bzw.
Teilverhältnistreue. Diese Invarianten gelten nicht bei der Zentralprojektion, sodass
hier das Gitter mithilfe der Fluchtpunkte vollständig gezeichnet werden muss. Wir
wollen daher zum Abschluss der Konstruktionen ein weiteres Verfahren, welches zur
Zeit der Renaissance entwickelt wurde, vorstellen.
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BildspurS1

Z ′
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H ′

S2S1

FY

M1 M2 M3

F ′X

FX

X2

S2

FmX

ϕz(X1)
ϕz(X2)

X1

H ′

HFY FX

Abb. 4.3.30 Zentralprojektion eines um die z-Achse gedrehtes Koordinatensystems
mit dem Messpunktverfahren
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4.3.5 Einschneideverfahren nach P. della Francesca

Die zuvor vorgestellten Konstruktionsmethoden benötigen nur den Grundriss eines
Objektes so wie einige Höhenangaben. Ein älteres Verfahren, welches auf P. della
Francesca (1416 - 1492) zurückzuführen ist [13, S. 172] und in verschiedenen Büchern
zur Konstruktion zentralprojektiver Bilder zu finden ist ([48, S. 17], [33, S. 228], [30,
S. 21]), benötigt neben dem Grundriss auch den Aufriss. Sie wird teilweise auch als
Durchstoßmethode bezeichnet, da wir den Durchstoßpunkt des Projektionsstrahls
mit der Bildebene aus den Rissen konstruieren. Wir betrachten nochmal die Skiz-
ze in Abb. 4.3.6, S. 106. Die Gerade Z ′A schneidet die Bildspur in Ap. Die Idee
des Koordinatensystems kam erst nach der Renaissance, sodass P. della Francesca
keins benutzen konnte und stattdessen den Abstand von Ap zu einem festen Punkt
auf der Risskante messen und in die Bildebene übertragen musste. In der heutigen
Zeit können wir dagegen in der Schule ein zweidimensionales Koordinatensystem
nutzen, wobei der Ursprung beliebig auf der Risskante liegt. So entspricht Ap der
x-Koordinate. Analog erhalten wir über den Aufriss die y-Koordinate.

Abb. 4.3.31 Ein schräg im Raum liegendes Dreieck wird auch die xz-Ebene proji-
ziert. Das Projektionszentrum ist der Punkt Z. Die unteren Bilder zeigen den Grund-
riss (links) und Aufriss (rechts).
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Schülerinnen und Schüler können dies mithilfe der 3D Ansicht von GeoGebra leicht
einsehen. Wir zeichnen ein ebenes Dreieck, dessen eine Kante auf der xy-Ebene steht,
die Spitze dagegen versetzt, sodass es gegenüber der Bildebene, welche der xz-Ebene
entspricht, verkippt ist. Dies hat zur Folge, dass der Grundriss ebenfalls ein Dreieck
ergibt und keine Linie. Wir zeichnen nun die Strahlen von Z zu den Ecken des
Dreiecks und markieren die Schnittpunkte mit der Bildebene, um das Bilddreieck
zu erhalten. Betrachten wir den Punkt P und sein Bildpunkt P ′, von welchem wir
aus parallele Geraden zu der roten bzw. blauen Achse ziehen und die Schnittpunkte
mit P1 und P2 bezeichnen. Dies sind die Koordinaten von P ′, wenn wir die rote und
blaue Achse als 2D Koordinatensystem der Bildebene interpretieren. Schauen wir
nun von oben entgegengesetzt zur blauen z-Achse auf die Szene, so ergibt sich P1 als
Schnittpunkt vom Grundriss des Projektionsstrahls mit der roten Achse. Schauen
wir von der Seite auf die Szene entgegengesetzt zur roten x-Achse. Hier ergibt sich
P2 als Schnittpunkt des Projektionsstrahls im Aufriss mit der blauen Achse. Somit
lassen sich beide Koordinaten der Bildpunkte ermitteln.

Wir übertragen die Szene in die Ebene, wie die untere Abbildung zeigt. Da wir die
dreidimensionalen Koordinaten des Dreiecks kennen, lassen sich die entsprechenden
Risse hieraus ableiten. Wir legen dazu die blaue z-Achse auf die positive Halbge-
rade der yE-Achse der Ebene sowie die rote x-Achse auf die negative. Die grüne
y-Achse liegt auf der xE-Achse der Ebene. Ist P (x, y, z) der Punkt im Raum, so

x = −yE

y = xE

z = yE

Aufriss

Grundriss

Bildebene

C ′

A′

B′

Z ′C1

B1

A1

OA′′ B′′

C ′′

Z ′′

C2

A2

B2

Az(A1, A2)

Bz(B1, B2)

Cz(C1, C2)

Abb. 4.3.32 Konstruktion der Projektion des Dreiecks in der Ebene mithilfe der
Risse.
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ergibt sich P ′(y,−x) für den Grundriss und P ′′(y, z) für den Aufriss. Wir ergänzen
in den Rissen die Projektionsstrahlen, markieren die entsprechenden Schnittpunkte,
übertragen diese in das Koordinatensystem der Bildebene und erhalten das Bilddrei-
eck.

Diese Konstruktionsmethode kann im Unterricht als Einstieg genutzt werden, da im
dreidimensionalen Modell leicht einsehbar ist, warum diese Methode funktioniert.
Außer dem Verständnis für Koordinatensysteme ist hierbei kein weiteres Vorwissen
nötig. Sie ist allerdings auch etwas aufwändig, da für jeden Bildpunkt zwei Schnitt-
punkte konstruiert werden müssen und sie nutzt keine der besonderen Eigenschaften
einer Zentralprojektion wie bspw. Fluchtpunkte im Gegensatz zu den vorherigen Me-
thoden.
Wir kommen nun zu einer Möglichkeit, wie die Zentralprojektion in der Oberstufe
behandelt werden kann, in dem wir ein räumliches, kartesisches Koordinatensystem
verwenden, um Geraden und Punkte nun analytisch zu beschreiben. Statt Bildpunkte
zu konstruieren, wollen wir nun Formeln herleiten, um diese zu berechnen.

4.4 Analytische Betrachtung der Zentralprojektion

In der Sekundarstufe II ist im Lehrplan (NRW, Sekundarstufe II, Stand 2014) ein
vorgesehener Themenbereich die analytische Geometrie. Hierbei werden Punkte, Ge-
raden und Ebenen im Raum unter Verwendung des kartesischen Koordinatensystems
algebraisch beschrieben und mithilfe von Vektoren im R3 Berechnungen mit diesen
durchgeführt. So ist u.a. die Beschreibung von Ebenen E und Geraden g mithilfe
von Parametergleichungen der Form

g : ~x = ~a+ λ ·~b
E : ~x = ~p+ λ1 · ~q + λ2 · ~r λ, λ1, λ2 ∈ R

bzw. bei Ersterem auch mit Koordinatengleichungen der Form

E : n1 x1 + n2 x2 + n3 x3 = k

Teil des Lehrplans. Dabei ist ~a ein Ortsvektor auf den Punkt A, welcher Teil der
Geraden ist, sowie ~b ein Vektor, welcher die Richtung der Geraden beschreibt. Im
Falle der Ebene existieren zwei Richtungsvektoren ~q und ~r, welche linear unabhängig
sein müssen. Ist dies nicht erfüllt, beschreibt die Parametergleichung stattdessen
eine Gerade. Der Vektor ~p ist ein Ortsvektor mit Endpunkt P , welcher in der Ebene
E liegt. In der Koordinatengleichung sind die reellen Zahlen xi die Einträge im
Ortsvektor ~x, welcher Teil der Ebene E ist. Die reellen Zahlen ni sind die Einträge
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des Normalenvektors ~n, welcher senkrecht zur Ebene liegt. Das Skalarprodukt von ~x
und ~n ist k. Da P = (p1 / p2 / p3) in E liegt, so muss ~p · ~n = k gelten.
Neben der Beschreibung von Geraden und Ebenen durch Gleichungen ist auch die
Berechnung des Schnittpunktes einer Geraden g mit einer Ebene E, sofern g ∦ E
ist, im Lehrplan vorgegeben. Somit sind alle Voraussetzungen für eine vektorielle
Betrachtung der Zentralprojektion in der Oberstufe erfüllt, wie wir nachfolgend an
einem Beispiel zeigen werden. Die Achsen des Koordinatensystems seien mit x1, x2
und x3 bezeichnet. Zur Vereinfachung sei festgelegt, dass die Bildebene Π der x1x3-
Ebene entspricht, d.h. ihre Koordinatenform ist

Π : x2 = 0 ⇔ Π = {(x1, x2, x3) ∈ R3 | x2 = 0} .

Wir werden später noch zeigen (Abb. 4.4.6, S. 155), warum trotz festgelegter Bil-
debene allgemeine Aussagen zur Zentralprojektion möglich sind. D.h. es reicht aus,
Eigenschaften der Zentralprojektion für beliebige Geraden und Punkte unter beliebi-
gen Projektionszentren Z mit der o.g. Bildebene zu beweisen. Die folgenden Beispiele
sind schulnah ausgearbeitet, sodass diese auch im Unterricht verwendet werden kön-
nen. Als Einstieg berechnen wir den Bildpunkt eines konkreten Punktes anhand einer
gegebenen Zentralprojektion.

Aufgabenbeispiel 4.4.1

Gegeben sei eine Zentralprojektion mit Projektionszentrum Z (3 / 4 / 5) und
der Bildebene Π : x2 = 0. Berechnen Sie die Koordinaten des Bildpunktes P ′,
auf welchen der Punkt P (4 / 2 / 4) projiziert wird.

Lösung:

(1) Aufstellung der Geradengleichung g mit Z,P ∈ g:

gP : ~x =

3

4

5

+ λ


4

2

4

−
3

4

5


 =

3

4

5

+ λ

 1

−2

−1

 .

(2) Bestimmung des Schnittpunktes P ′ mit der Bildebene Π:

x2 = 4− 2λ = 0 ⇒ λ = 2 .

λ in gP eingesetzt ergibt dann die Koordinaten des Bildpunktes: P ′ (5 / 0 / 3).
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x2

x3

x1

Z

P ′

P

Q′

Q

gPgQ

Π

Abb. 4.4.1 Die Zentralprojektion von P
und Q.

Als visuelle Unterstützung können die
Schülerinnen und Schüler die Situation
(z.B. mit GeoGebra) im Koordinaten-
system darstellen. Abb. 4.4.1 zeigt ne-
ben der Projektion von P auf P ′ auch
die eines zweiten Punktes Q. Der Re-
chenweg zur Ermittelung des Bildpunk-
tes lässt sich in zwei Schritten glie-
dern. Zuerst wird die Parameterglei-
chung der Projektionsgeraden durch den
Punkt und das Projektionszentrum auf-
gestellt. Wir verwenden dabei Z für den
Ortsvektor. Die Differenz der Ortsvekto-
ren von Z und P ergibt den Richtungs-
vektor. Im zweiten Schritt setzen wir gP
in die Koordinatengleichung der Bildebene ein und erhalten λ. Wir wollen folgende
Eigenschaften der Zentralprojektion nachprüfen:

Satz 4.4.1

Die Zentralprojektion hat folgende Eigenschaften (vgl. [47, S. 191]):

i) Die Zentralprojektion ist inzidenztreu, d.h. alle Punkte P einer Geraden
g werden auf Bildpunkte P ′ ∈ g′ abgebildet, wobei g′ die Bildgerade
von g ist. Schneiden sich zwei Geraden g und h in einem Punkt S, dann
schneiden sich g′ und h′ in dem Punkt S′.

ii) Parallele Geraden, welche nicht parallel zur Bildebene verlaufen, werden
auf Geraden abgebildet, welche sich in einem gewöhnlichen Punkt, dem
Fluchtpunkt schneiden. Da sich alle Parallelbüschel in einem Fernpunkt
schneiden, ist wegen der Inzidenztreue der entsprechende Fluchtpunkt das
Bild des Fernpunktes (Abb. 4.4.7, S. 156).

iii) Die Bilder von Parallelbüschel unterschiedlicher Richtungen schneiden
sich in unterschiedlichen Fluchtpunkten. Liegen alle Parallelbüschel in ei-
ner bzw. in paarweise parallelen Ebenen, so liegen alle Fluchtpunkte auf
einer Geraden (Abb. 4.4.8, S. 159).
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Wir wollen zunächst die Eigenschaften (i) - (iii) erst mithilfe von Beispielen untersu-
chen und dann für beliebige Geraden zeigen. Das Zentrum und die Projektionsebene
seien mit Z (3 / 4 / 5) und Π : x2 = 0 festgelegt.

4.4.1 (i) Inzidenztreue der Projektion

Die Projektion einer Geraden erfolgt nach der Definition der Zentralprojektion punkt-
weise (Def. 3.1.1, S. 46). Da nach den Axiomen in Kap. 2.2, S. 25, eine Gerade durch
zwei Punkte festgelegt wird, lässt sich die Bildgerade g′ über die Bilder zweier ver-
schiedener Punkte P ∈ g und Q ∈ g bestimmen. Als Beispiel der Inzidenztreue wird
das Bild eines dritten Punktes R ∈ g bestimmt und geprüft, ob ebenfalls R′ ∈ g′ gilt.

Aufgabenbeispiel 4.4.2

Betrachten Sie die Zentralprojektion mit Z (3 / 4 / 5) auf die Bildebene Π : x2 = 0.
Gegeben seien folgende Punkte, welcher auf der Geraden g liegen:

P (1 / 1 / 5) Q (2 / 2 / 4) R (2, 5 / 2, 5 / 3, 5) .

Bestimmen Sie die Bildpunkte P ′, Q′, R′ und zeigen Sie, dass diese ebenfalls auf
einer Geraden liegen.

Lösung:
Die Bildpunkte werden wie im vorherigen Aufgabenbeispiel 4.4.1 ermittelt. Das Er-
gebnis ist

P ′
(

1

3
/ 0 / 5

)
Q′ (1 / 0 / 3) R′

(
5

3
/ 0 / 1

)
.

Mit den ersten beiden Bildpunkten bestimmen wir nun die Parametergleichung der
Verbindungsgeraden g

P ′Q′ :

g
P ′Q′ : ~x =


1
3

0

5

+ µ


2
3

0

−2

 .

Wir setzen den Ortsvektor von R′ in die Geradengleichung ein, und zeigen, dass ein
Wert für µ existiert: 

5
3

0

1

 =


1
3

0

5

+ 2 ·


2
3

0

−2

 .
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Q′
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Abb. 4.4.2 Das Bild einer Geraden wird
punktweise bestimmt, da die Zentralpro-
jektion inzidenztreu ist.

Demnach sind die Bildpunkte kollinear und wir nennen die Verbindungsgerade g
P ′Q′

die Bildgerade g′. Abb. 4.4.2 veranschaulicht das Ergebnis. Wir führen eine erste
Verallgemeinerung ein, indem wir den dritten Punkt R variabel halten und zeigen,
dass für jeden Punkt R ∈ g auch R′ ∈ g′ gilt:

Damit R ein Punkt von g ist, muss dieser von der Form

R (1 + λ / 1 + λ / 5− λ) mit λ ∈ R

sein. Wir bestimmen davon wieder den Bildpunkt über den Schnitt der Projektions-
geraden und der Bildebene:

(1) Aufstellung der Geradengleichung p mit Z,R ∈ p:

p : ~x =

3

4

5

+ µ


1 + λ

1 + λ

5− λ

−
3

4

5


 =

3

4

5

+ µ

λ− 2

λ− 3

−λ

 , µ ∈ R

(2) Bestimmung des Schnittpunktes R′ mit der Bildebene Π:

x2 = 4 + µ(λ− 3) = 0 ⇒ µ =
4

3− λ .

Für λ = 3 existiert kein Schnittpunkt, da in diesem Fall die Projektionsgerade
parallel zur Bildebene liegt. Wir setzen daher im folgenden λ 6= 3 voraus. µ in
p eingesetzt ergibt dann die Koordinaten des Bildpunktes R′:3

4

5

+
4

3− λ

λ− 2

λ− 3

−λ

 =
1

3− λ

3(3− λ) + 4(λ− 2)

4(3− λ) + 4(λ− 3)

5(3− λ)− 4λ

 =
1

3− λ

 λ+ 1

0

15− 9λ


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Wir zeigen nun, dass die Bildpunkte R′ in Abhängigkeit von λ in g′ liegen:


1
3

0

5

+ α ·


2
3

0

−2

 =
1

3− λ

 λ+ 1

0

15− 9λ

⇔ α ·


2
3

0

−2

 =
1

3− λ

 λ+ 1− 1
3(3− λ)

0

15− 9λ− 5(3− λ)



=
λ

3− λ


4
3

0

−4



=
2λ

3− λ


2
3

0

−2

⇔ α =
2λ

3− λ

Wir können für jeden Wert von λ 6= 3 den Parameter α bestimmen. Somit lie-
gen alle Bildpunkte R′ auf der Geraden g′. Im Fall λ = 3 wird der Punkt R auf
einen Fernpunkt abgebildet, da die Projektionsgerade parallel zur Bildebene wird.
Aus euklidischer Sicht hat R dann keinen Bildpunkt, da die Projektionsgerade die
Bildebene in keinem gewöhnlichen Punkt schneidet. Man spricht daher auch von
einer Verschwindungsebene, welche durch Z parallel zur Bildebene liegt. Die Pro-
jektionsgeraden aller Punkte dieser Ebene liegen parallel zur Bildebene, sodass ihre
Bildpunkte „verschwinden“.

Die Herangehensweise der ersten Verallgemeinerung entspricht der Punktprobe im
Zahlenbeispiel. Eine andere Betrachtungsweise wäre, die Bildpunkte R′ als Gerade in
Parameterform darzustellen, um zu zeigen, dass diese mit der Bildgeraden g′ identisch
ist:

h : ~x =
1

3− λ

 λ+ 1

0

15− 9λ

 =
1

3− λ


1
3(3− λ) + 4

3λ

0

5(3− λ)− 4λ



=


1
3

0

5

+
2λ

3− λ


2
3

0

−2


= g′ : ~x mit µ =

2λ

3− λ

Das Beispiel zeigt, dass das Bild der Geraden
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g : ~x =

1

1

5

+ λ

 1

1

−1


durch die Projektion zweier beliebiger Punkte dieser Geraden ermittelt werden konn-
te. Wir verallgemeinern nun weiter und zeigen, dass dies mit jeder beliebigen Geraden
möglich ist. Sei nun

g : ~x = ~o+ λ · ~r λ ∈ R

mit Ortsvektor ~o und Richtungsvektor ~r. Das Projektionszentrum ist wieder Z (3 / 4 / 5)

und die Bildebene Π : x2 = 0. Jeder Punkt auf g hat nun folgende Form:

P ∈ g ⇔ P (o1 + λ r1/o2 + λ r2/o3 + λ r3) . (4.4.1)

Wir bestimmen wieder das Bild von P ′ mithilfe der Projektionsgeraden durch Z als
Schnittpunkt mit der Bildebene:

(1) Projektionsgerade:

p : ~x =

3

4

5

+ µ

o1 + λ r1 − 3

o2 + λ r2 − 4

o3 + λ r3 − 5

 λ ∈ R (4.4.2)

Anmerkung: Hier liegt eine Geradenschar vor, welche eine Ebene bildet, die Z
und g enthält, sofern Z /∈ g, da sonst ~r und ~o − ~z linear abhängig wären. Auf
diese Projektionsebene wird später noch eingegangen.

(2) Schnittpunkt

x2 = 0⇒ µ =
4

4− (o2 + λ r2)
(4.4.3)

Durch Einsetzen von µ in p erhalten wir folgende Bildpunkte:

P ′
(

4(o1 + λ r1)− 3(o2 + λ r2)

4− (o2 + λ r2)
/ 0 /

4(o3 + λ r3)− 5(o2 + λ r2)

4− (o2 + λ r2)

)
(4.4.4)

Nun ergibt sich die Frage, ob sich P ′ mit dem Parameter λ als Geradengleichung um-
schreiben lässt, um somit zu zeigen, dass alle Bildpunkte auf einer Geraden liegen.
Hierfür können im Schulunterricht dynamische Geometrieprogramme wie GeoGebra
für erste Untersuchungen herangezogen werden, da sie es ermöglichen, die hergelei-
teten algebraischen Ausdrücke zu veranschaulichen.
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Abb. 4.4.3 Mithilfe GeoGebra können Schülerinnen und Schüler sehen, dass die
Punkte P ′ Gl.(4.4.4) auf einer Geraden liegen, und die Punkte P, P ′ und Z ebenfalls
kollinear sind.

Die Abb. 4.4.3 zeigen, dass die Punkte P ′ kollinear sind. Hierfür wurde für den Pa-
rameter λ in GeoGebra ein Schieberegler definiert. Mit den Punkten O und P wurde
eine beliebige Gerade aufgestellt und die entsprechenden Koordinaten o1, o2, o3 und
r1, r2, r3 in die Gl. (4.4.4) eingesetzt. Wir bewegen nun den Schieberegler und lassen
uns von GeoGebra die Spur von P ′ zeigen. Dieses Experiment können Schülerinnen
und Schüler mit anderen Geraden durchführen, indem sie die Lage der Punkte P
und O verändern.

Wie können wir nun aus Gl.(4.4.4) die Bildgerade in Parameterform gewinnen? Zwei
Werte für den Parameter λ einsetzen und dann aus den beiden Punkten die Gleichung
über Orts- und Richtungsvektor zu bestimmen, würde zu unhandlichen Termen füh-
ren.
Wir gehen stattdessen einen Schritt zurück und formen Gl.(4.4.3) nach µ ·λ um und
setzen diese in Gl.(4.4.2) der Projektionsgeraden p ein. Dies hat den Vorteil, dass
der Parameter sich dann leichter separieren lässt, um Orts- und Richtungsvektor zu
erhalten:

µ =
4

4− (o2 + λ r2)
⇔ µ(4− o2)− µλ r2 = 4

⇔ µλ =
µ(4− o2)− 4

r2
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p : ~x =

3

4

5

+ µ

o1 − 3

o2 − 4

o3 − 5

+ µ · λ

r1r2
r3



⇒ h : ~x =

3

4

5

+ µ

o1 − 3

o2 − 4

o3 − 5

+
µ(4− o2)− 4

r2

r1r2
r3



=

3− 4r1
r2

0

5− 4r3
r2

+ µ

o1 − 3 + (4− o2) r1r2
0

o3 − 5 + (4− o2) r3r2


Wir wollen dieses Ergebnis mit dem ersten Zahlenbeispiel kontrollieren. Wir haben
berechnet, dass die Gerade

g : ~x =

1

1

5

+ λ

 1

1

−1


auf die Bildgerade

g′ : ~x =


1
3

0

5

+ µ


2
3

0

−2


projiziert wird. Zur Kontrolle setzen wir nun die Koordinaten des Orts- und Rich-
tungsvektors von g in die hergeleitete Formel für die Bildgerade h ein:

h : ~x =

 3− 4·1
1

0

5− 4·(−1)
1

+ µ

 1− 3 + (4− 1)11
0

5− 5 + (4− 1)−11



=

−1

0

9

+ µ

 1

0

−3


Wir überprüfen, ob h und g′ identisch sind:

(1) Lineare Abhängigkeit der Richtungsvektoren:
2
3

0

−2

 =
3

2

 1

0

−3

⇒ Geraden sind parallel
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(2) Punktprobe mithilfe der Ortsvektoren:
1
3

0

5

− 2


2
3

0

−2

 =

−1

0

9

⇒ (−1/0/9) ∈ g′

Da die Geraden parallel sind und einen Punkt gemeinsam haben, sind h und g′

identisch. Zusammenfassend haben wir nun folgendes gezeigt:

g : ~x =

o1o2
o3

+ λ

r1r2
r3

⇒ g′ : ~x =

3− 4r1
r2

0

5− 4r3
r2

+ µ

o1 − 3 + (4− o2) r1r2
0

o3 − 5 + (4− o2) r3r2

 (4.4.5)

Dies geschah durch punktweise Abbildung der Geraden g und der Inzidenztreue, d.h.
P ∈ g ⇒ P ′ ∈ g′.

Mithilfe von GeoGebra können Schülerinnen und Schüler aber auch zwei Sonderfälle
beobachten, welche in Abb. 4.4.4 dargestellt sind:

(1) Für r2 = 0 kann g′ nach Gl. (4.4.5) nicht berechnet werden. Dennoch existiert
die Gerade, welche sogar parallel zu g ist.

(2) Jede Gerade, welche das Projektionszentrum Z enthält, aber nicht parallel zur
Bildebene ist, wird auf einen Punkt abgebildet.

x2

x3

x1

Z

P ′

Q′

P

Q

x2

x3

x1

Z

P ′ = Q′

P

Q

Abb. 4.4.4 Beispiele für die beiden Sonderfälle, welche bei der Zentralprojektion
von Geraden auftreten können.

Für den Fall, dass r2 = 0 ist, kann Gl.(4.4.3), S. 147, nicht auf λµ umgeformt werden.
Stattdessen setzen wir den Wert in die allgemeine Gleichung (4.4.4) der Bildpunkte
ein und zeigen wieder, dass alle Bildpunkte auf einer Geraden liegen, welche sogar
parallel zur Urbildgeraden ist, da ihre Richtungsvektoren übereinstimmen.
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r2 = 0⇒ P ′
(

4(o1 + λ r1)− 3o2
4− o2

/ 0 /
4(o3 + λ r3)− 5 o2

4− o2

)

⇒ 1

4− o2

4o1 − 3o2

0

4o3 − 5o2

+
4λ

4− o2

r10
r3

 = g′ : ~x

⇒ g ‖ g′

Wir kommen zum zweiten Sonderfall, bei der die Gerade mit ihrer Projektionsgera-
de zusammenfällt, dadurch, dass das Projektionszentrum in ihr enthalten ist. Was
anschaulich leicht einzusehen ist, sollte auch durch die allgemeine Formel der Bild-
punkte herzuleiten sein.

Damit (3 / 4 / 5) ∈ g erfüllt ist, ist es am einfachsten, über Z den Ortsvektor der
Geraden zu bestimmen, d.h. o1 = 3, o2 = 4 und o3 = 5. Dann gilt für P ′ folgendes:

P ′
(

4(3 + λ r1)− 3(4 + λ r2)

4− (4 + λ r2)
/ 0 /

4(5 + λ r3)− 5(4 + λ r2)

4− (4 + λ r2)

)
⇒ P ′

(
4λ r1 − 3λ r2
−λ r2

/ 0 /
4λ r3 − 5λ r2
−λ r2

)
⇒ P ′

(
3− 4

r2
r1 / 0 / 5− 4

r2
r3

)
P ′ enthält keinen Parameter mehr und jeder Punkt der Geraden wird auf diesen
projiziert. Dasselbe Resultat ergibt sich wenn die entsprechenden Werte in die allge-
meine Geradengleichung (4.4.5) eingesetzt werden. Der Richtungsvektor wird dann
identisch zum Nullvektor.

Wir verallgemeinern weiter, indem zusätzlich zur Geraden g nun auch das Projekti-
onszentrum Z variabel ist. Wir haben somit folgende Situation:

Gegeben:

g : ~x = ~o+ λ ~r , λ ∈ R

Z(z1 / z2 / z3) mit Z /∈ g
Π : x2 = 0

Hier kann genauso wie zuvor verfahren werden, wobei die Zahlen 3, 4 und 5 durch
z1, z2 und z3 ersetzt werden.
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4.4.2 Formeln für die Bilder einer Zentralprojektion

Die Untersuchung der Inzidentreue führte zu einer allgemeinen Formel für die Bilder
von Punkten bzw. Geraden unter einer Zentralprojektion mit Zentrum Z und der
Bildebene Π : x2 = 0. Zur Bestimmung der Bildgeraden g′ nutzen wir die Projekti-
onsebene Πg. Alle Projektionsgeraden, die entstehen, wenn Punkte der Geraden mit
dem Projektionszentrum verbunden werden, liegen in einer Ebene Πg, welche durch
Z und g eindeutig festgelegt wird. Der Schnitt dieser Ebene mit der Bildebene ergibt
die Bildgerade g′, wie Abb. 4.4.5 zeigt.

x2

x3

x1

Z

g′

g

Πg

Abb. 4.4.5 Bestimmung der Bildgeraden über den Schnitt zweier Ebenen.

Mit den o.g. Informationen lässt sich die Parametergleichung der Ebene Πg aufstellen
und der Schnitt mit der Bildebene Π bestimmen:

Πg : ~x = ~z + λ ~r + µ(~o− ~z), , µ, λ ∈ R

Schnittgerade:

x2 = z2 + λr2 + µ(o2 − z2) = 0⇒ λ =
µ(z2 − o2)− z2

r2
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z1z2
z3

+
µ(z2 − o2)− z2

r2

r1r2
r3

+ µ

o1 − z1o2 − z2
o3 − z3



⇒ g′ : ~x =

z1 − a r10

z3 − a r3

+ µ

b r1 + o1 − z1
0

b r3 + o3 − z3


mit a =

z2
r2
, b =

z2 − o2
r2

Auch hier bietet sich wieder die Möglichkeit für Schülerinnen und Schüler, das Zah-
lenbeispiel aus den vorherigen Aufgaben zur Überprüfung einzusetzen. Gleichfalls
lässt sich auch eine allgemeine Formel für die Bilder eines Punktes P (p1/p2/p3) mit
p2 6= z2 herleiten:

(1) Projektionsgerade: p : ~x =

z1z2
z3

+ µ

p1 − z1p2 − z2
p3 − z3

 , µ ∈ R

(2) Schnitt mit der Bildebene:

x2 = z2 + µ(p2 − z2) = 0⇒ µ =
z2

z2 − p2z1z2
z3

+
z2

z2 − p2

p1 − z1p2 − z2
p3 − z3

⇒ P ′
(
z2 p1 − z1 p2
z2 − p2

/ 0 /
z2 p3 − z3 p2
z2 − p2

)

Die Formel entspricht der Gl. (4.4.4), S. 147, mit z1 = 3, z2 = 4, z3 = 5 und
pi = oi + λ · ri.

Abschließend fassen wir die Formeln im folgenden Satz noch einmal zusammen, da
sie für die Untersuchung weiterer Eigenschaften der Zentralprojektion noch benötigt
werden.
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Satz 4.4.2: Abbildungsgleichungen

Sei Π : x2 = 0 die Bildebene und Z(z1/z2/z3) /∈ Π das Projektionszentrum.
Dann gelten folgende Formeln für die Bilder von Punkten bzw. Geraden einer
Zentralprojektion:

i) P (p1/p2/p3) mit p2 6= z2

ϕz(P )

(
z2 p1 − z1 p2
z2 − p2

/ 0 /
z2 p3 − z3 p2
z2 − p2

)
Ist p2 = z2, so ist die Projektionsgerade parallel zur Bildebene und das
Bild von P ist ein Fernpunkt, dessen Koordinaten erstmal nicht berechnet
werden können.

ii) g ∦ Π mit Z /∈ g und g : ~x = ~o+ λ ~r

ϕz(g) : ~x =

z1 − a r10

z3 − a r3

+ µ

b r1 + o1 − z1
0

b r3 + o3 − z3


mit a =

z2
r2
, b =

z2 − o2
r2

iii) g ‖ Π, Z /∈ g

ϕz(g) : ~x =
1

z2 − o2

z2 o1 − z1 o20

z2 o3 − z3 o2

+ µ
z2

z2 − o2

r10
r3


iv) g mit Z ∈ g

Die Gerade wird zu einer Projektionsgeraden, wodurch ~o−~z der Nullvektor
wird. Das Bild der Geraden ist der Schnittpunkt S der Geraden mit der
Bildebene bzw. der Ortsvektor von g′ aus (ii):

ϕz(S) (z1 − a r1/ 0 /z3 − a r3) mit a =
z2
r2
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Nun stellt sich die Frage, warum es ausreicht, die Bildebene festzulegen und nur
das Projektionszentrum zu variieren, um dennoch allgemeine Aussagen für beliebige
Bildebenen mit Z /∈ Π treffen zu können. Durch eine Transformation, d.h. eine
bijektive Abbildung im Raum lässt sich jede beliebige Bildebene auf Π : x2 = 0

abbilden. Wir verschieben den Schnittpunkt der Bildebene mit der x1- oder x3-Achse
in den Ursprung und drehen dann mithilfe von Rotationsmatrizen geeignet um die
entsprechenden Hauptachsen. Existiert kein Schnittpunkt mit den genannten Achsen,
so ist die Ebene parallel zur gewünschten Bildebene und es reicht eine Translation
aus.
In beiden Fällen handelt es sich um bijektive Abbildungen bzw. ihre Verkettungen,
sodass die Komposition wieder bijektiv ist. Ein Beispiel zeigt die Abb. 4.4.6.

Abb. 4.4.6 Wir verschieben um den Gegenvektor des Ortsvektors des Schnittpunk-
tes S mit der roten x1-Achse und erhalten die Ebene τ(Π̃). Dann wird der Winkel zu
der blauen x3-Achse berechnet und die Ebene entsprechend um die x1-Achse gedreht.
Genauso wird anschließend bei der Drehung um die x3-Achse vorgegangen, sodass
als Ergebnis die Bildebene Π : x2 = 0 erhalten wird.
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4.4.3 (ii) Parallele Geraden und Fluchtpunkte

x2

x3

x1

Z

h

F

Abb. 4.4.7 Die Bilder von Geraden glei-
cher Richtung schneiden sich im
Fluchtpunkt.

In Satz 3.1.3 auf Seite 49 wurde mit-
hilfe der Inzidenztreue gezeigt, dass der
Fluchtpunkt das Bild eines Fernpunktes
ist. Wir wollen nun eine Formel zur Be-
rechnung der Koordinaten herleiten. Die
Abb. 4.4.7 zeigt, dass lediglich die Rich-
tung der parallelen Geraden für die La-
ge des Fluchtpunktes entscheidend ist,
nicht aber die Ebene, zu welcher die Ge-
rade gehört.
Für den Einsatz im Schulunterricht wol-
len wir zuerst mit einem Zahlenbeispiel
das Problem erkunden. Wir betrachten
dazu drei parallele Geradenpaare, wel-
che in Abb. 4.4.7 dargestellt sind. Dabei
ist F der Fluchtpunkt auf der Geraden
h, dem Horizont. In der folgenden Aufgabenstellung entsprechen g1 und g2 den grü-
nen Geraden in der unteren Ebene, während h1, h2 in schwarz und k1, k2 in blau
dargestellt sind.

Aufgabenbeispiel 4.4.3

Gegeben sind folgenden Geraden, welche untereinander parallel sind.

g1 : ~x =

 6

−3

0

+ λ

−1

2

0

 g2 : ~x =

 4

−2

0

+ λ

−1

2

0



h1 : ~x =

 6

−3

2

+ λ

−1

2

0

 h2 : ~x =

 4

−2

2

+ λ

−2

4

0



k1 : ~x =

 4

−1

2

+ λ

 2

−4

0

 k2 : ~x =

 6

−2

2

+ λ

−3

6

0


Bestimmen Sie die Bilder der Geraden unter der Zentralprojektion mit Zentrum
Z(3/4/5) auf die Ebene Π : x2 = 0 und zeigen Sie, dass alle Bilder denselben
Schnittpunkt besitzen.
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Lösung:
Wir erhalten mit der Formel in Satz 4.4.2 folgende Bildgeraden:

ϕz(g1) : ~x =

5

0

5

+ µ

−0.5

0

−5

 ϕz(g2) : ~x =

5

0

5

+ µ

−2

0

−5



ϕz(h1) : ~x =

5

0

5

+ µ

−0.5

0

−3

 ϕz(h2) : ~x =

5

0

5

+ µ

−2

0

−3



ϕz(k1) : ~x =

5

0

5

+ µ

−1.5

0

−3

 ϕz(k2) : ~x =

5

0

5

+ µ

 0

0

−3


Der Schnittpunkt der Geraden ist leicht zu finden. Der Fluchtpunkt ist F (5/0/5).
Dass alle Geraden denselben Ortsvektor besitzen, erscheint zunächst ungewöhnlich.
Dies liegt allerdings nicht an dem Zahlenbeispiel. Nach der Formel in Satz 4.4.2
ist der Ortsvektor der Bildgeraden abhängig von den Koordinaten des Zentrums
und dem Richtungsvektor der Geraden. Das Ergebnis ändert sich daher nicht, wenn
die parallelen Geraden identische Richtungsvektoren besitzen. In dem Beispiel tre-
ten allerdings auch Richtungsvektoren auf, welche gemäß der linearen Abhängigkeit
Vielfache voneinander sind und dennoch ergibt sich derselbe Ortsvektor. Dies lässt
sich jedoch leicht erklären:

g ‖ h ⇒ ∃ k ∈ R \ {0} : ~rg = k · ~rh ⇒

z1 −
z2
k r2
· k r1

0

z3 − z2
k r2
· k r3

 =

z1 −
z2
r2
· r1

0

z3 − z2
r2
· r3


Der Faktor k 6= 0 verschwindet, sodass beide Geraden g und h denselben Ortsvektor
besitzen. Wir haben somit auch allgemein bewiesen, dass der Fluchtpunkt sich wie
folgt bestimmen lässt:

Satz 4.4.3: Der Fluchtpunkt

Sei Z das Projektionszentrum. Ein Parallelenbüschel habe Richtungsvektoren,
welche linear abhängig zu einem Vektor ~r sind. Dann schneiden sich die Bild-
geraden mit r2 6= 0 in einem gewöhnlichen Punkt F mit

F (z1 − a · r1 / 0 / z3 − a · r3) mit a =
z2
r2
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Es gibt einen Sonderfall: der Fluchtpunkt ist selbst wieder ein Fernpunkt. Dies ist
der Fall, wenn r2 = 0 ist und a nicht berechnet werden kann. Dann ist das Geraden-
büschel parallel zur Bildebene sowie zu ihren Bildgeraden, wie in Satz 4.4.2 schon
thematisiert wurde. Demnach gilt

ϕz(R
?) = R?

Der Fernpunkt R? des Parallenbüschels ist also ein Fixpunkt, was mit der Aussage
übereinstimmt, das sich Gerade und Bildgerade immer in einem Fixpunkt schneiden
(Satz 3.1.2, S. 49).

Wir haben die Koordinaten des Fluchtpunktes damit begründet, dass der Ortsvektor
in der Formel für die Bildgerade nach Satz 4.4.2 nur abhängig vom Richtungsvektor
der ursprünglichen Geraden g ist und demnach alle Bildgeraden eines Parallelbüschels
diesen Punkt gemeinsam haben. Es muss sich daher um den Fluchpunkt handeln.
Es gibt noch einen weiteren Ansatz. Wir wissen nach Satz 3.1.3, dass sich der Fluch-
punkt als Schnittpunkt der Parallelen zur Geraden g durch das Projektionszentrum
mit der Bildebene ergibt. Sei also wieder ~r = (r1, r2, r3)

T der Richtungsvektor des
Parallelbüschels und Z(z1, z2, z3) die Koordinaten des Projektionszentrums. Dann
ergibt sich folgender Bildpunkt:

(1) Projektionsgerade: p : ~x =

z1z2
z3

+ µ

r1r2
r3

 µ ∈ R

(2) Schnitt mit der Bildebene:

x2 = z2 + µ r2 = 0⇒ µ =
−z2
r2

:= −az1z2
z3

− a
r1r2
r3

⇒ F (z1 − a · r1/ 0 /z3 − a · r3)

Wir erhalten dieselbe Formel aus dem o.g. Satz 4.4.3.
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4.4.4 (iii) Fluchtpunkte liegen auf dem Horizont

x2

x3

x1

Z

h

F1

F2

F3

Abb. 4.4.8 Fluchtpunkte von Geraden in
parallelen Ebenen sind kollinear.

Auch hier können wieder zum Einstieg
Zahlenbeispiele im Unterricht verwen-
det werden, worauf nun aber verzichtet
und stattdessen das Beispiel in der Ab-
bildung 4.4.8 herangezogen wird. Dar-
gestellt sind parallele Geradenpaare un-
terschiedlicher Richtungen, welche nicht
Z enthalten, damit ihre Bilder wieder
Geraden sind. Da die Lage der Fern-
punkte vom Richtungsvektor der Ge-
raden bestimmt wird, ergeben unter-
schiedliche Richtungen auch verschiede-
ne Fluchtpunkte, welche sogar kollinear
sind, wenn die Geradenbüschel in paral-
lelen Ebenen liegen. Diesen Fall wollen
wir nun untersuchen.

Zum Einsteig bilden wir die Situation
in GeoGebra ab. In der nebenstehen-
den Abbildung ist blau die Ebene, wel-
che die schwarzen Geraden enthält. Die
Richtung der Geraden lässt sich durch
Verschiebung des Punktes auf dem Kreis
ändern, wie auch der Abstand zwischen
den beiden Geraden. Zur blauen Ebene
senkrecht liegt die graue Bildebene, wel-
che die Bildgeraden enthält. Ihr Schnitt-
punkt ist der orange Punkt F , welcher
den Fluchtpunkt darstellt.
Die Bildgerade lässt sich auf zwei Ar-
ten konstruieren. Entweder wir wählen
zwei verschiedene Punkte auf der Gera-
den, bestimmen über die Projektionss-
trahlen die Bilder und verbinden diese.
Hier dagegen wurde die Projektionsebe-
ne verwendet, welche durch Z und die
Gerade g definiert wird. Die Schnittge-
rade ist das Bild von g.
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In diesem GeoGebra Arbeitsblatt können sich Schülerinnen und Schüler davon über-
zeugen, dass nur die Richtung der Gerade einen Einfluss auf die Lage des Fluchtpunk-
tes hat. Wird nur der Abstand verändert, so ändert sich auch eine der Bildgeraden,
aber ihr Schnittpunkt bleibt gleich, wie die obigen Beispiele zeigen.

Wir ändern nun die Richtung der Gera-
den und lassen uns die Spur des Flucht-
punktes anzeigen. Es zeigt sich, dass
der Fluchtpunkt auf einer Geraden liegt,
welche parallel zur blauen Objektebene
liegt.

Dies lässt sich leicht einsehen, wenn be-
kannt ist, wie der Fluchtpunkt konstru-
iert wird, ohne den Schnittpunkt der
Bildgeraden zu verwenden. Wir haben
zuvor schon erläutert, dass der Flucht-
punkt das Bild des Fernpunktes des par-
allelen Geradenbüschels ist. Die Projek-
tionsgerade ist also die Parallele durch
Z, welche die Bildebene im Fluchtpunkt
F durchstößt. Diese Parallele liegt in der
Ebene, welche parallel zur blauen Ebene
ist und durch Z verläuft. F liegt auf der
Schnittgeraden.
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Wir wollen nun mithilfe der hergeleiteten Formel einige Besonderheiten des Flucht-
punktes untersuchen. Die Gerade mit dem Richtungsvektor ~r = (0, r2, 0)T steht
senkrecht zur Bildebene. Dann ist der Fluchtpunkt nach der Formel in Satz 4.4.3

H (z1 / 0 / z3) .

Dieser Punkt wird auch Hauptpunkt H genannt, da dieser der Lotfußpunkt des Pro-
jektionszentrum ist. Wir betrachten nun ein weiteres Geradenbüschel, welche in einer
Ebene liegt, die die Bildebene senkrecht schneidet. Für die Richtungsvektoren gilt
dann ~r = (r1, r2, 0)T, was wir wieder in die Formel für den Fluchtpunkt einsetzen:z1 − z2 ·

r1
r2

0

z3

 =

z10
z3

− r1 · z2
r2

1

0

0

 .

Es ergibt sich eine Geradengleichung mit dem Parameter r1·z2
r2

und dem Richtungs-
vektor (1, 0, 0)T. Dies war die horizontale Gerade in dem vorherigen Beispiel, auf
welcher F lag. Sie verläuft auch parallel zur x1x2-Ebene, wie auch die ursprüngli-
chen Geraden. Was passiert nun, wenn wir die Ebene, in welcher die Geraden liegen,
verkippen?
Die Abbildung 4.4.9 zeigt, dass der Horizont die Schnittgerade der Bildebene mit
derjenigen Ebene ist, welche das Projektionszentrum enthält und parallel zu den
Ebenen ist, welche die Geradenbüschel enthalten.

x2

x3

x1

Z

f

g
x2

x3

x1

Z

f

g

Abb. 4.4.9 Der Horizont ergibt sich aus dem Schnitt der zur Objektebene parallelen
Ebene durch Z mit der Bildebene.
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Wir haben nun in den vorherigen drei Abschnitten die Eigenschaften der Zentral-
projektion aus Satz 4.4.1, S. 143, mithilfe der Methoden bzw. den Kenntnissen un-
tersucht und bewiesen, welche im Mathematikunterricht der Sekundarstufe II an
Gymnasien und Gesamtschulen in NRW laut Lehrplan von 2014 obligatorisch sind.
Unter Verwendung von GeoGebra und Zahlenbeispielen können Schülerinnen und
Schüler anhand von konkreten Situationen selbstständig Eigenschaften untersuchen
und Vermutungen aufstellen, welche sie dann mit ihren Kenntnissen zur analytischen
Geometrie aus dem Unterricht begründen können.

Wir verlassen nun den Bereich der analytischen Geometrie und betrachten die Zen-
tralprojektion aus Sicht der projektiven Geometrie.
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4.5 Perspektive Abbildungen

Die projektive Geometrie ist uns schon bei der Einführung der Fernpunkte sowie im
Satz von Desargues begegnet. Wie im Abschnitt 2.2 erläutert, schneiden sich zwei
verschiedene Geraden ohne Ausnahme. Parallele Geraden schneiden sich dann in ei-
nem unendlich weit entfernten Punkt, dem Fernpunkt . Wir haben in den vorherigen
Abschnitten gezeigt, dass sich Bildpunkte mit Methoden der analytischen Geometrie
berechnen lassen, sofern die ursprünglichen Punkte des Objektes sich mit Koordina-
ten beschreiben lassen. Aber was ist nun mit den Koordinaten der Fernpunkte? Wir
haben gezeigt, dass der Fluchtpunkt das Bild eines Fernpunktes ist und die Bilder
einer Folge von äquidistanten Punkten auf einer Geraden zum Fluchtpunkt der Bild-
geraden konvergieren. Zur Vereinfachung isolieren wir nun Gerade und Bildgerade,
d.h. wir betrachten eine Projektion zwischen zwei Geraden, welche in der projektive
Geometrie als perspektive Abbildungen bezeichnet werden [47, S. 59].

In Abb. 4.5.1 sind die Punkte auf der Urbildgeraden P−1 bis P4 äquidistant. Ihre
Bilder dagegen sind es nicht. Wie zuvor analytisch gezeigt, ist der Fluchtpunkt F
das Bild des Fernpunktes der parallelen Geraden in der blauen Ebene. Dieser scheint
ein Häufungspunkt der Folge der Bildpunkte P ′i zu sein. Pv hat keinen gewöhnlichen
Punkt als Bild, da die zugehörige Projektionsgerade in der grün hervorgehobenen
Ebene liegt, welche parallel zur Bildebene verläuft. Pv liegt in der Verschwindungs-
ebene. Gehen wir über diesen Punkt hinaus, so erscheinen die Bildpunkte nun ober-
halb des Fluchtpunktes und nähern sich auf der linken Halbgeraden an F an.

x2

x3

x1

Z

h

F

P4

P ′4

P3

P2

P ′1
P−1

P ′−1

Pv
P−2

P ′−2

P ′−3
P ′−5

Abb. 4.5.1 Punktfolge auf einer Geraden
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Wir wollen im folgenden diskutieren, wie die Projektion zwischen zwei Geraden im
Schulunterricht umgesetzt werden kann. Dieses Thema kann auch anschließend zu
den Fotografien in den Abschnitten 4.1 bis 4.3 im Unterricht behandelt werden, denn
es ist einfacher die Zentralprojektion zwischen zwei Geraden auf ihre Eigenschaften
zu untersuchen als vom Raum in die Ebene, da im ersten Fall alle Zeichnungen
zweidimensional sind. Dies sollte die Veranschaulichung und Vorstellung seitens der
Schülerinnen und Schüler erleichtern.

4.5.1 Projektion zwischen zwei Geraden

Wir betrachten nun eine Zentralprojektion zwischen zwei Geraden g und h, welche
sich schneiden, und legen das Projektionszentrum Z fest. Auf g markieren wir einen
Punkt P . Um das Bild zu konstruieren, zeichnen wir die Verbindungsgerade PZ,
welche die Gerade h schneiden wird, sofern sie nicht parallel zu dieser ist. Diesen
Sonderfall betrachten wir später. Der Schnittpunkt ist der Bildpunkt P ′. Für erste
Beobachtungen können Schülerinnen und Schüler folgende Aufgabe bearbeiten. Nach
dem ersten Beispiel können sie dann andere Geraden verwenden, um zu überprüfen,
dass die festgestellten Eigenschaften tatsächlich unabhängig von der Lage der Gera-
den sind.

Aufgabenbeispiel 4.5.1

Führe folgende Konstruktion durch und beantworte die anschließenden Fragen.

g

h

Z

1. Nenne den Schnittpunkt der beiden Geraden P0 und zeichne davon ausge-
hend auf g alle 1 cm eine Markierung und bezeichne diese mit P1, P2, P3, ...

usw.

2. Zeichne nun jeweils Geraden durch Z und den Punkten auf g. Wenn es
einen Schnittpunkt mit der Geraden h gibt, dann markiere diesen mit P ′

und der entsprechenden Nummer des Punktes auf g.
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3. Durch diese Konstruktion bilden sich Paare von Punkten zwischen den
Geraden. Wir sagen nun, dass den Punkten auf g entsprechende Punkte
auf h zugeordnet werden.

Schaue dir die gebildeten Paare von Punkten an. Findest du auf die Fragen eine
Antwort?

a) Du hast die Punkte auf g jeweils im gleichen Abstand gezeichnet. Was
fällt dir bei den Punkten auf h auf? Beschreibe ihre Lage.

b) Es gibt einen Punkt auf g, welcher keinem Punkt auf h zugeordnet wer-
den kann. Kannst du ihn finden? Welche besondere Eigenschaft hat die
entsprechende Verbindungsgerade durch Z?

c) Findest du Punkte auf h, welche keinem Punkt auf g zugeordnet werden
können?

d) Du hast die Punkte auf g durchnummeriert. Vergleiche nun mit der Num-
merierung der Punkte auf h. Was fällt dir auf?

g

h

Z

P−2 P−1 P0

P ′0

P2 P3 P4 P5P1

P ′−1

P ′−3

P ′2

P ′3
P ′5

Abb. 4.5.2 Das Ergebnis der Aufgabe 4.5.1

Abb. 4.5.2 zeigt das Ergeb-
nis nach der Konstruktion in
drei Schritten. Mit Abb. 4.5.3
wollen wir die Aufgabenteile
a) − d) erläutern. Den Schüler-
innen und Schüler sollte auf-
fallen, dass die Abstände be-
nachbarter Punkte unterschied-
lich sind, obwohl die Urbild-
punkte äquidistant sind. Nähe-
re Betrachtungen sollten erge-
ben, dass die Punkte in einem
Bereich immer näher zusammen
rücken.

Die Fragen b) und c) thematisieren Verschwindungs- und Fluchtpunkt. Hier wäre
folgender logischer Schluss seitens der Schülerinnen und Schüler wünschenswert:
Damit es keinen Punkt auf h gibt, darf die Verbindungsgerade durch Z die Gerade
h nicht schneiden. Demnach handelt es sich um eine Parallele zu h durch Z. Ihr
Schnittpunkt mit g ergibt den gesuchten Punkt Pv (im Beispiel P1). Gleiches gilt
umgekehrt für g, wodurch sich der Fluchtpunkt F finden lässt.
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g

h

Z

P−2 P−1 P0

P ′0

P2 P3 P4 P5 P6 P7P1

P ′−1

P ′−3

F

P ′2

P ′3
P ′5

P ′1.5

P ′0.5

Abb. 4.5.3 Besonderheiten der Punktfolge in Aufgabe 4.5.1

Abb. 4.5.4 Projektion zwischen zwei Geraden in GeoGebra

Zusammen mit der Beobachtung aus a) lässt sich nun vermuten, dass die Punktfolge
auf h sich F annähert. Hierzu kann wieder GeoGebra verwendet werden (Abb. 4.5.4).
Mithilfe des Schiebereglers lässt sich der Punkt P äquidistant auf g verschieben.
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Im Aufgabenteil d) geht es um die Reihenfolge der Punkte. Wie der Fluchtpunkt hat
auch der Verschwindungspunkt Pv eine besondere Bedeutung. Durch die Nummerie-
rung bekommen die Geraden eine Richtung zugewiesen. Die Bildpunkte aller Punkte
nach dem Verschwindungspunkt (in Abb. 4.5.3 orange markiert) liegen oberhalb von
F . Gehen wir von Pv = P1 nach P2, P3 usw., wird der Abstand zwischen den zu-
geordneten Punkten P ′1, P ′2, P ′3 usw. immer kleiner, während sie sich dem Punkt F
nähern. Betrachtet man dagegen die Punkte auf g vor Pv erscheinen die Bildpunkte
unterhalb von F (im Bild blau markiert).

Im nächsten Beispiel variieren wir die Position von Z, denn in der ersten Aufgabe
lag dieser im spitzen Winkelfeld der Geraden g und h.

Aufgabenbeispiel 4.5.2

Verschiebe nun den Punkt Z auf die andere Seite von h, sodass der Punkt in
dem größeren Feld zwischen den Geraden g und h liegt.

1. Konstruiere erst die beiden Punkte F und Pv, welche keinen zugeordneten
Punkt besitzen.

2. Markiere nun in gleichen Abständen Punkte auf g welche vor und nach
Pv liegen und konstruiere die jeweils zugeordneten Punkte auf h.

3. Vergleiche nun mit deiner Konstruktion aus Aufgabe 4.5.1. Gibt es Un-
terschiede? Wenn ja, kannst du diese beschreiben?

Wie in Abb. 4.5.5 erkennbar, führte die Verschiebung von Z qualitativ zu einer Ver-
tauschung der Punktfolgen auf h. Nun wird die untere Halbgerade bzgl. F von den
orangen Punkten besetzt, statt wie zuvor die obere. Alle anderen Eigenschaften blei-
ben erhalten.

Wir wollen nun im nächsten Schritt die Punkte nicht mehr durch Konstruktion fin-
den, sondern berechnen können. Hierfür erhalten die beiden Geraden, wie die Ach-
sen eines Koordinatensystems, eine Richtung und eine identische Skala, z.B. kann
als Längeneinheit 1 cm gewählt werden. Der Schnittpunkt der Geraden P0 ist der
Ursprung. Wir wollen nun den Ort von P ′, dem Bildpunkt von P , finden, in dem wir
den Abstand y = d(P0, P

′) berechnen. Den Abstand von P zum Ursprung nennen
wir x (Abb. 4.5.6).
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g

h

Z

P−3 P−2

P ′0

P0 P1 P2 P3 P4 P5 P6 P7Pv

P ′−5
P ′−4

P ′−3

P ′−2

P ′1

P ′2
P ′3

F

Abb. 4.5.5 Besonderheiten der Punktfolge in Beispiel 4.5.2, wenn die Reihenfolge
von h und Z vertauscht wird.

g

h

Z

P0 P

x

y P ′

v

f

Pv

F

Abb. 4.5.6 Die Dreiecke sind ähnlich zueinander, sodass der Strahlensatz verwendet
werden kann, um y in Abhängigkeit von x zu berechnen.

Wir wollen auch die Position des Projektionszentrums Z unter der Angabe von Ab-
ständen definieren. Hierzu ziehen wir durch Z die Parallelen zu h und g, welche die
Geraden in den Punkten F und Pv schneiden. Den Abstand von F zum Ursprung
bezeichnen wir mit f und den von Pv mit v. Nun wollen wir den Abstand y mit den
bekannten Längen f, v und x berechnen.
Die Dreiecke 4P0PP

′, 4PvPZ sowie 4FZP ′ in Abb. 4.5.6 sind ähnlich zueinander,
da wir zeigen können, dass sie in allen drei Winkeln übereinstimmen:
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Die Geraden ZPv und h sind nach Konstruktion parallel zueinander. Demnach han-
delt es sich bei den Winkeln bei P0 und Pv um gleich große Stufenwinkel. Gleiches
gilt auch für die Stufenwinkel bei P ′ und Z. Somit sind die beiden größeren Dreiecke
zueinander ähnlich, da sie beide den Winkel bei P besitzen. Mit derselben Argumen-
tation ist auch das kleinste Dreieck zum größten ähnlich, da g nach Konstruktion
parallel zur Geraden ZF ist.
Mithilfe des ersten Strahlensatzes (Satz 2.5.2, S. 41) lässt sich folgende Gleichung
zwischen x und y herleiten:

y − f
f

=
v

x− v ⇔ y =
f v

x− v + f =
f x

x− v

Wir können somit folgenden Satz formulieren ([4], S. 5-9):

Satz 4.5.1

Gegeben seien zwei Geraden g und h, mit Schnittpunkt O und einer festgelegten
Orientierung, sodass sie ein Koordinatensystem bilden. Weiterhin sei ein Punkt
Z /∈ h, g gewählt (s. Abb. 4.5.6). Hat der Punkt P ∈ g die Koordinate x, so hat
sein zugeordneter Punkt P ′ ∈ h die Koordinate y mit:

y = f · x

x− v

Dabei ergeben sich die Längen f und v aus der Lage von Z.

Mithilfe der Gleichung lassen sich nun auch die o.g. Eigenschaften der Punktfolge P ′i
untersuchen.
Wir wollen aber zuvor noch zwei besondere Lagen von Z besprechen. Im o.g. Satz
wurde unterbunden, dass Z auf h liegt, da sonst v = 0 wäre, Z = F und das blaue
Dreieck nicht existent. Wenn Z ∈ h, so würde jeder Punkt P ∈ g auf Z abgebildet
werden, da nach Konstruktion jede Verbindungsgerade Z enthält und der Schnitt-
punkt mit h immer Z ist. Gleiches zeigt auch die Formel. Für v = 0 ist y = f für
alle x 6= 0. Für x = 0 ist die Gleichung nicht definiert. In Abb. 4.5.6 ist erkennbar,
dass in diesem Fall ZP0 = h wäre, d.h. das Bild von P0 ist eine Gerade.
Liegt dagegen Z auf g, so ist f = 0, Z = Pv und das orange Dreieck verschwindet.
Dann fallen alle Verbindungsgerade ZP mit g zusammen, sodass alle Punkte auf den
Schnittpunkt P0 projiziert würden. Ebenso wäre y = 0 für alle x 6= v. Für x = v ist
die Gleichung nicht definiert. Es gäbe wegen Z = Pv keine Verbindungsgerade.
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Wir legen daher fest, dass Z außerhalb der Geraden liegt und untersuchen nun die
Punktfolge der Bilder auf h, falls |x| gegen unendlich strebt:

lim
x→±∞

x

x− v · f = lim
x→±∞

1

1− v
x

· f =
1

1− 0
· f = f

Ohne den Grenzwert direkt zu verwenden, wäre im Unterricht auch folgende Argu-
mentation möglich: Wenn x eine sehr große Zahl ist, also x >> v, dann ist x− v ≈ x
und demnach x

x−v ≈ 1, wodurch auch gezeigt ist, dass y gegen f strebt und die
Punktfolge gegen F . Diese Argumentation ist dabei unabhängig vom Vorzeichen, da
sie auch für |x| gilt.

Wir haben weiterhin in den vorherigen Abbildungen gesehen, dass die Abstände
benachbarter Punkte abnahmen, je größer x wurde, zumindest für x ∈ N. Seien
daher Pn und Pn+1 zwei solcher Punkte mit einer natürlichen Zahl n. Dann gilt:

|Pn − Pn+1| =
∣∣∣∣ n

n− vf −
n+ 1

n+ 1− vf
∣∣∣∣

=

∣∣∣∣ v

(n− v)(n+ 1− v)

∣∣∣∣ · |f |
=

∣∣∣∣ v

n2 + n− 2vn− v

∣∣∣∣ · |f |
lim
n→∞

|Pn − Pn+1| = lim
n→∞

∣∣∣∣∣ v
n2

1 + 1−2v
n − v

n2

∣∣∣∣∣ · |f |
=

∣∣∣∣ 0

1 + 0− 0

∣∣∣∣ · |f |
= 0

Selbige Argumentation gilt auch für die andere Halbgerade, d.h. für alle Punkte
welche entgegen der Orientierung sich von P0 entfernen und negative Werte für x
aufweisen. Hier gilt ebenso

lim
n→−∞

|Pn − Pn+1| = 0 .
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4.5.2 Perspektive Abbildungen

Die Konstruktion im vorherigen Kapitel ergibt eine punktweise Abbildung zwischen
zwei sich schneidende Geraden. Wir wollen daher diskutieren, unter welchen Bedin-
gungen die Gleichung aus Satz 4.5.1 eine wohldefinierte Abbildung ergibt, welche
Invarianten existieren und wie sie mithilfe von homogenen Koordinaten in eine linea-
re Abbildung überführt werden kann, um auch Fernpunkten Koordinaten zuweisen
zu können.

Definition 4.5.2: Perspektive Abbildung

Zwischen zwei sich schneidende Strahlen g und h existiert eine Abbildung
ϕz : g \ {Pv} → h \ {F} , mit dem Punkt Z /∈ g, h als Projektionszentrum. Die
Geraden bilden ein Koordinatensystem, wobei die Lage der Punkte P ∈ g über
die Koordinate x definiert wird, wie auch die Lage von Q ∈ h über die Koordi-
nate y.
Es liegt eine perspektive Abbildung vor, wenn für ϕz(P ) = Q gilt:

y =
x · f
x− v

Die Parameter f und v ergeben sich aus der Lage von Z.

g

h

Zv

f

P

Q

x

y

Pv

F

Der Punkt Pv muss ausgeschlossen werden, da die Verbindungsgerade mit Z keinen
Schnittpunkt mit h hat. Dem Punkt kann daher kein gewöhnlicher Punkt auf h zu-
geordnet werden. Aufgrund der Definition einer Abbildung (Def. 2.4.1, S. 35) muss
er in der Definitionsmenge ausgeschlossen werden. Soll zusätzlich erreicht werden,
dass die perspektive Abbildung surjektiv ist, so muss der Punkt F aus der Zielmen-
ge entfernt werden, da auch hier die Verbindungsgerade mit Z die Gerade g nicht
schneidet. F hat daher keinen gewöhnlichen Punkt als Urbild. Hier folgt nun eine
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weitere Erklärung unter Beachtung der Koordinaten x und y [4, S. 17]:
Der Punkt Pv hat die Koordinaten x = v, was eine Division durch 0 zur Folge hat. Die
Koordinate y kann daher nicht berechnet werden. Zur Überprüfung der Surjektivität,
wird die Gleichung in Def. 4.5.2 nach x umgestellt:

y =
x f

x− v ⇒ y x− y v = x f ⇒ x =
y v

y − f (4.5.1)

Da der Punkt F die Koordinate y = f hat, würde sich wieder eine Division durch 0

ergeben. Warum Z nicht auf den Strahlen liegen darf, lässt sich damit erklären, dass
die Zuordnung der Punkte aufgrund der Wohldefiniertheit eindeutig sein muss, d.h.
es darf kein Paar von Punkten geben, welches dieselben Bilder hat. Es muss daher
ausgeschlossen werden, dass in der Koordinatengleichung der Zähler ein Vielfaches
des Nenners für alle x ∈ R \ {v} ist. Angenommen dies ist der Fall mit λ 6= 0. Dann
folgt mithilfe des Koeffizientenvergleichs:

λ(x− v) = x f ⇒ λ x− λ v = f x

⇒ λ = f ∧ λ · v = 0

⇒ f · v = 0

⇒ f = 0 ∨ v = 0

⇒ Z ∈ g ∨ Z ∈ h

Die Negation der obigen Folgerung ergibt, dass Z nicht auf den Geraden g und h

liegen darf

Z /∈ g ∧ Z /∈ h⇒ @ λ ∈ R : λ(x− v) = x f ∀x ∈ R \ {v}

Mit v = 0 oder f = 0 ist Z = F bzw. Z = Pv. Im ersten Fall würden alle Punkte von g
(außer der Ursprung) auf F abgebildet werden, im anderen Fall auf den Schnittpunkt
der Geraden. Denn es gilt ∀x ∈ R \ {v}:

v = 0⇒ y =
x f

x
=

f , x 6= 0

unbestimmt , x = 0

f = 0⇒ y =
0

x− v = 0

Mit den genannten Einschränkungen hat die Abbildung folgende Eigenschaften:
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Satz 4.5.3

Für die Abbildung ϕz : g \ {Pv} → h \ {F} mit Z /∈ g, h gilt:

i) Sie ist bijektiv mit der Umkehrabbildung ϕ−1z : h \ {F} → g \ {Pv}. Nach
Gl. (4.5.1) können die Koordinaten der Punkte wie folgt bestimmt werden:

x =
y · v
y − f

ii) Sie ist invariant bzgl. des Doppel- aber nicht des Teilverhältnisses.

iii) Sie ist nicht linear.

g

h

Z

A

A′

B

B′

P

P ′

Abb. 4.5.7 Das Teilverhältnis bleibt
nicht erhalten.

i) wurde schon bewiesen. Beim ii) geht
es um die Invarianten der geometrischen
Abbildung. Wir betrachten hierzu drei
beliebige Punkte auf g und das entspre-
chende Teilverhältnis der Strecken nach
der Def. 2.3.1, S. 28. Der Punkt P ist
Teilungspunkt der Strecke AB in der
Abb. 4.5.7. Der Abstand zwischen A und
P beträgt 2 LE bzw. 1 LE für P und B.
Also ist TV (A,B, P ) = 2

1 = 2. Misst
man dagegen die Längen der Bildstre-
cken, so ist TV (A′, B′, P ′) ≈ 1,89

0,24 = 7, 9,
also nicht invariant. Dies hat u.a. zur

Folge, dass Mittelpunkte von Strecken nach der Projektion keine mehr sein müssen,
was die Konstruktion zentralprojektiver Bilder erschwert. Dies ist einer der Unter-
schiede zwischen Zentral- und Parallelprojektion.

Wir zeigen nun allgemein, dass das Teilverhältnis nicht erhalten bleibt [4, S. 11]. Sei
xP der Abstand des Punktes P vom Schnittpunkt der beiden Geraden. Dann gilt:

TV (A,B, P ) =
xP − xA
xB − xP

Mithilfe der Abbildungsgleichung in Def. 4.5.2 können nun die Strecken der Bilder
bestimmt werden:

yA′ − yP ′ =
xA f

xA − v
− xP f

xP − v
=

f v

xP − v
xP − xA
xA − v

yP ′ − yB′ =
xP f

xP − v
− xB f

xB − v
=

f v

xP − v
xB − xP
xB − v
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Der Vorfaktor ist bei beiden Differenzen derselbe, sodass dieser im Teilverhältnis
verschwindet:

TV (A′, B′, P ′) =
xP − xA
xA − v

:
xB − xP
xB − v

=
xB − v
xA − v

· xP − xA
xB − xP

=
xB − v
xA − v

· TV (A,B, P )

⇒ TV (A′, B′, P ′) : TV (A,B, P ) =
xB − v
xA − v

Hier ist nun einsehbar, dass die Teilverhältnisse sich um einen Faktor unterscheiden,
welcher allerdings nur von den Endpunkten A und B abhängig ist.
Würden wir also einen zweiten Teilungspunkt Q zwischen den beiden Endpunkten
hinzufügen, und das Verhältnis der Teilverhältnisse bilden, so würde sich auch dieser
Faktor heraus kürzen. Dies ist das Doppelverhältnis DV (A,B, P,Q) nach Def. 2.3.2,
S. 30. Allgemein gilt also in Abb. 4.5.8:

DV (A,B, P,Q) : DV (A′, B′, P ′, Q′) =
TV (A,B, P )

TV (A,B,Q)
:
TV (A′, B′, P ′)

TV (A′, B′, Q′)

=
TV (A,B, P )

TV (A′, B′, P ′)
· TV (A′, B′, Q′)

TV (A,B,Q)

=
xA − v
xB − v

· xB − v
xA − v

= 1

⇒ DV (A,B, P,Q) = DV (A′, B′, P ′, Q′)

Somit wurde gezeigt, dass das Doppelverhältnis eine Invariante der projektiven Ab-
bildung bzgl. der Längen von Strecken ist.

g

h

Z

A

A′

B

B′

P

P ′

Q

Q′

Abb. 4.5.8 Das Doppelverhältnis bleibt erhalten.
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g

h

Z

A

A′

B

B′

P

P ′

Q

Q′

AP

BP

AQ

BQ

g

h

Z

A

A′

B

B′

AP

A′P

AQ

A′Q

Abb. 4.5.9 Alternativer Beweis des Doppelverhältnisses

Es gibt einen alternativen Beweis von Haack (1969) [18, S. 55]. Dieser nutzt den
Strahlensatz und kommt ohne die Abbildungsgleichung aus. Es werden durch die
Punkte A,B,A′ und B′ parallele Geraden mit beliebiger Richtung gezeichnet. Die
Projektionsstrahlen von P und Q werden soweit verlängert, dass sie die Parallelen
schneiden (Abb. 4.5.9). Dabei ist AP der Schnittpunkt der Parallelen durch A mit
dem Projektionsstrahl durch P . Die anderen sieben Punkte werden analog benannt.
Aufgrund der Parallelen entstehen Strahlensatzfiguren. Auf der linken Seite der Ab-
bildung sind diese mit Streckzentrum P undQ hervorgehoben. Zwei weitere existieren
mit den Zentren P ′ und Q′, welche zur besseren Übersicht nicht dargestellt sind.

Nach dem ersten Strahlensatz in 2.5.2, S. 41, gilt:

AAP

BBP
=
AP

BP
= TV (A,B, P )

AAQ

BBQ
=
AQ

BQ
= TV (A,B,Q)

A′A′P
B′B′P

=
A′P ′

B′P ′
= TV (A′, B′, P ′)

A′A′Q

B′B′Q
=
A′Q′

B′Q′
= TV (A′, B′, Q′)

Wir wollen zeigen, dass das Doppelverhältnis unverändert bleibt und unser Zwischen-
ergebnis ist:

DV (A,B, P,Q) = TV (A,B, P ) : TV (A,B,Q) =
AAP ·BBQ
AAQ ·BBP

(4.5.2)

DV (A′, B′, P ′, Q′) = TV (A′, B′, P ′) : TV (A′, B′, Q′) =
A′A′P ·B′B′Q
A′A′Q ·B′B′P

(4.5.3)
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Die Faktoren im Nenner wurden absichtlich vertauscht, denn wir wenden wieder den
Strahlensatz an, um zu zeigen, dass

AAP

AAQ
=
A′A′P
A′A′Q

(4.5.4)

BBQ

BBP
=
B′B′Q

B′B′P
(4.5.5)

Wir benötigen dafür die markierten Strahlensatzfiguren in Abb. 4.5.9, rechte Seite.
Es gilt:

AAP

A′A′P
=
ZA

ZA′
=
AAQ

A′A′Q
(4.5.6)

Analog gilt dies auch für die Strecken, welche durch die Parallelen durch B und B′

entstehen. Der besseren Übersicht wurden diese in der Abbildung vernachlässigt, wie
auch die entsprechende Strahlensatzfigur mit Zentrum Z. Durch Umformung von
Gl. (4.5.6) erhalten wir Gl. (4.5.4) und somit auch das unveränderte Doppelverhält-
nis in Gl. (4.5.2).

4.5.3 Homogene Koordinaten

Es bleibt noch die Einführung von homogenen Koordinaten zu motivieren. Hierfür
zeigen wir den letzten Punkt im Satz 4.5.3 aus dem vorherigen Abschnitt. Die Ab-
bildung ist nicht linear, denn sie erfüllt nicht die Bedingung bzgl. der Multiplikation
mit einem Skalar. Sei α ∈ R beliebig. Dann gilt:

ϕz(α · x) =
α x f

α x− v 6= α
x f

x− v = α · ϕz(x)

Ausnahmen sind α ∈ {0, 1}, da der Ursprung ein Fixpunkt ist, d.h. ϕz(0) = 0. Linea-
re Abbildungen haben den Vorteil, dass die Bildpunkte durch eine Matrix-Vektor-
Multiplikation berechnet werden können. Weiterhin ist noch das Problem, dass die
Fernpunkte durch die jetzigen Koordinaten nicht erfasst werden können. Das Bild
von Pv ist ein Fernpunkt wie auch das Urbild von F . Daher mussten v und f in der
perspektiven Abbildung zur Erhaltung der Bijektivität ausgeschlossen werden.

Mithilfe von sog. homogenen Koordinaten lassen sich auch die Fernpunkte angeben.
Wir ersetzen den Abstand x bzw. y vom Schnittpunkt der Geraden durch die Ver-
hältnisse x = xh

x0
bzw. y = yh

y0
, wobei x0, y0 6= 0 ist. Die Abbildungsgleichung ändert



4.5. Perspektive Abbildungen 177

sich dann wie folgt:

y =
x · f
x− v ⇒

yh
y0

=

xh
x0
· f

xh
x0
− v =

xh · f
xh − v · x0

⇒ xh − v · x0
y0

=
xh · f
yh

:= µ (4.5.7)

Durch diese Umformung werden aus einer Abbildungsgleichung zwei Verhältnisse,
welche µ entsprechen. Bild und Urbild müssen daher folgendes Gleichungssystem
erfüllen, welches sich nun als Matrix-Vektorprodukt schreiben lässt:{

xh f = µ yh

xh − v x0 = µ y0

}
⇒
(
f 0

1 −v

)
·
(
xh

x0

)
=

(
µ yh

µ y0

)
(4.5.8)

Durch die Ersetzung von reellen Zahlen durch geeignete Vektoren (s. Abb. 4.5.10)
erhalten wir eine lineare Abbildung, allerdings ist noch unklar, wie µ bestimmt wer-
den kann.
Da y dem Verhältnis von yh zu y0 entspricht, ist es nicht nötig, den gemeinsamen
Faktor µ 6= 0 zu kennen. Bei µ = 0 muss nach Gl. (4.5.7) xh = 0 und wegen x0 6= 0

dann auch x = 0 sein. Dies ist der Schnittpunkt der beiden Geraden, d.h. ein Fix-
punkt, welcher später noch besprochen wird. Wir können daher die Gl. (4.5.8) wie
folgt vereinfachen: (

f 0

1 −v

)
·
(
xh

x0

)
=

(
yh

y0

)
(4.5.9)

g

h

Z

Px

x0

xh

(
x · x0
x0

)

Abb. 4.5.10 Den Abständen x der Punkte auf g zum Schnittpunkt entsprechen nun
Vektoren in der x0, xh-Ebene.
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Wie muss x0 bestimmt werden, damit der richtige Vektor sich als Bild ergibt? Wir
betrachten dazu folgendes Beispiel mit x0 = 2 und bestimmen ϕz(3). Nach Def. 4.5.2
gilt:

ϕz(3) =
3 f

3− v

Mithilfe der linearen Abbildungsgleichung erhalten wir folgenden Vektor:(
f 0

1 −v

)
·
(

3 · 2
2

)
=

(
6 f

6− 2 v

)
⇒ y =

6 f

6− 2 v
=

3 f

3− v

Es ergibt sich tatsächlich das richtige Bild. Für x0 6= 0 erhalten wir immer das
entsprechende Bild, denn:(

f 0

1 −v

)
·
(
x · x0
x0

)
=

(
x0 x f

x0 x− x0 v

)
⇒ y =

x0 x f

x0 x− x0 v
=

x f

x− v

Letztendlich steckt hier die Gl. (4.5.7) mit xh = x ·x0 dahinter. Was ist nun mit den
Fernpunkten? x = v hat als Bild einen Fernpunkt, dessen homogene Koordinaten
nun bestimmt werden können:(

f 0

1 −v

)
·
(
v · x0
x0

)
=

(
x0 v f

0

)

Mit y0 = 0 wird der Fernpunkt der Geraden h erfasst, dabei ist die erste Koordinate
beliebig, sofern sie nicht null entspricht. Dies lässt vermuten, dass mit x0 = 0 der
Fernpunkt von g erfasst wird. Dieser ist das Urbild des Fluchtpunktes F , was nun
überprüft wird, wobei die erste Koordinate beliebig mit a 6= 0 sein darf:(

f 0

1 −v

)
·
(
a

0

)
=

(
a f

a

)
⇒ y =

a f

a
= f

Es bleibt noch der Fall x = 0, da hieraus µ = 0 folgt. Auch dies stellt in der linearen
Abbildung kein Problem dar:(

f 0

1 −v

)
·
(

0

x0

)
=

(
0

−x0 v

)
⇒ y = 0

Wie erwartet, liegt hier ein Fixpunkt vor.
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Wir können nun abschließend folgenden Satz formulieren:

Satz 4.5.4

Zwischen zwei sich schneidenden Strahlen g und h existiert eine lineare Abbil-
dung ϕz : Ex0,xh → Ey0,yh mit(

xh

x0

)
7→
(
yh

y0

)
=

(
f 0

1 −v

)
·
(
xh

x0

)

Das Projektionszentrum Z wird dabei mit f und v wie im Satz 4.5.2 festgelegt.
Ist die zweite Koordinate von null verschieden, so entspricht dies gewöhnlichen
Punkten auf g bzw. h. In anderem Fall sind es die Fernpunkte der Geraden.

4.6 Zentralprojektion in der Computergrafik

Das vorherige Kapitel beschrieb eine Einführung der homogenen Koordinaten. Die
Motivation bestand darin, die Abbildungsgleichung in eine lineare zu überführen
bzw. um Fernpunkten Koordinaten zuzuordnen. Eine Frage bleibt allerdings offen:
worin liegt der Vorteil, die Zentralprojektion zu einer linearen Abbildung umschrei-
ben? Der Satz 4.4.2, S. 154, lieferte schon Formeln, um die Bilder von Punkten und
Geraden berechnen zu können. Also warum daher die Mühe machen, homogene Ko-
ordinaten zu verwenden?
Homogene Koordinaten und Zentralprojektionen werden beispielsweise in der Com-
putergrafik (vgl. [36], Kap. 7, S. 202ff) verwendet, wenn es darum geht, naturge-
treue, dreidimensionale Bilder auf dem zweidimensionalen Bildschirm zu generieren.
Das Auge des Betrachters oder die virtuelle Kamera liegt im Projektionszentrum.
Die gedachte Kamera muss sich nun durch eine virtuell erschaffene Szene bewegen.
Dadurch ändern sich das Projektionszentrum sowie die Bildebene in relativ kurzer
Zeit, wenn man sich bspw. vorstellt, die Person würde in einem Spiel durch einen
möblierten Raum laufen. Die Projektionen müssen daher schnell erzeugt werden, um
fließende Bewegungen zu ermöglichen [36, S. 2].
Hierbei ist es praktisch, wenn die Verkettung mehrerer Abbildungen, wie Verschie-
bung oder Drehung, einfach berechnet werden können. Lineare Abbildungen haben
nun den Vorteil, dass sie als Matrix-Vektor-Produkt geschrieben werden können und
ihre Verkettung führt zu einer Multiplikation ihrer Matrizen. D.h. statt jede Ab-
bildung nacheinander auszuführen, reicht die Multiplikation aller Koordinaten der
Objekte in einer Szene mit nur einer Matrix aus. Die heutigen Grafikkarten sind auf
Vektor- und Matrizenoperationen optimiert [36, S. 7].
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Im Folgenden werden lineare Abbildungen erst allgemein besprochen, dann geht es
um Drehung und Verschiebungen und zum Schluss um die Generierung zentralpro-
jektiver Abbildungen. Dies ist auch ein denkbar gut zugänglicher Ablauf für den
Mathematikunterricht in der Oberstufe. Mit der Computergrafik als Einstieg können
Schülerinnen und Schüler an das Thema lineare Abbildungen herangeführt werden
und diese sogar mittels leicht zugänglichen und kostenlosen Programmiersprachen
wie Python oder Processing an einfachen Objekten ausprobieren. Konkrete Beispiele
mit Processing werden in Kapitel 7 thematisiert.

4.6.1 Lineare Abbildungen

Definition 4.6.1

Eine Abbildung f : Rn → Rn (n ∈ N) heißt linear , wenn für alle a, b ∈ Rn und
λ ∈ R gilt [10, S. 256]:

i) f(a+ b) = f(a) + f(b)

ii) f(λ · a) = λ · f(a)

Die Definition ist hier spezieller gefasst, da der reelle Vektorraum, wie er auch in
der Schule verwendet wird, im Fokus liegt. Wie wirkt sich nun diese Definition auf
geometrische Abbildungen im Raum bzw. in der Ebene aus?

Zum einen wird der Nullpunkt 0 ∈ Rn immer aus sich selbst abgebildet, denn:

f(a) = f(a+ 0) = f(a) + f(0)⇒ f(a)− f(a) = f(0)⇒ 0 = f(0) ∀a ∈ Rn

Zum anderen bleibt das Teilungsverhältnis invariant, denn:

Sei p1 = λ · p2 mit p1, p2 ∈ Rn, λ ∈ R⇒ f(p1) = f(λ · p2) = λ · f(p2)

⇒ |p1||p2|
= |λ| = |f(p1)|

|f(p2)|

Nur falls der Nullpunkt in der Bildebene liegt, ist er bei der Zentralprojektion ein
Fixpunkt. Demnach ist die erste Bedingung bei beliebigen Bildebenen nicht immer
erfüllt und ebenso wurde zuvor schon gezeigt, dass das Teilungsverhältnis keine In-
variante ist. Demnach ist es nicht notwendig im Unterricht die allgemeine Definition
linearer Abbildungen zu verwenden. Die geometrische Interpretation ist für Schüler-
innen und Schüler leichter zugänglich.
Die Rechengesetze der Matrizenmultiplikation sind derart definiert, dass sich jede li-
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neare Abbildung mit einer AbbildungsmatrixM ∈ Rn×n ausdrücken lässt [10, S. 257]:

x 7→ f(x) = M · x

Der Vorteil linearer Abbildungen liegt nun darin, dass die Verkettung mehrerer sol-
cher ebenfalls wieder eine lineare Abbildung ist:

Sei f(x) = A · x und g(x) = B · x⇒ (g ◦ f)(x) = B · (A · x) = (A ·B) x

Um die Zentralprojektion eines Quaders an einer bestimmten Stelle im Raum zu
erzeugen, gehen wir von einem Einheitswürfel aus und führen folgende Operationen
durch:

1. Skalierung des Einheitswürfels auf die Größe des Quaders

2. Drehen und Verschieben des Quaders an die gewünschte Position

3. Projektion der Szene

Die ersten beiden Schritte zeigt Abb. 4.6.1. Wir multiplizieren die Matrizen aller
drei Abbildungen und führen erst dann die Matrix-Vektor-Multiplikation mit allen
Eckpunkten des Quaders aus.

Im folgenden Abschnitt werden zwei lineare Transformationen besprochen und ge-
zeigt, dass die Linearität auch mit homogenen Koordinaten erhalten bleibt. Dann
zeigen wir, wie die Translation durch homogene Koordinaten linear wird.

x2

x3

x1

Abb. 4.6.1 Skalierung, Drehung und Verschiebung eines Quaders ausgehend von
dem Einheitswürfel
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4.6.2 Skalierung, Drehung und Translationen

Wie in dem vorherigen Beispiel soll es darum gehen, eine Szene aus Grundbausteinen
zu generieren. Aus dem Würfel entsteht durch Skalierung ein Quader und mithilfe
des Prismas oder der Pyramide einfache Häuser wie in Abb. 4.6.3. In Abb. 4.6.2
stehen beide Körper auf einer quadratischen Fläche mit Kantenlänge 1. In der Flä-
chenmitte liegt der Ursprung. Die Spitzen sind mittig und haben ebenfalls eine Höhe
von 1. Der Würfel mit Kantenlänge 1 ist anders als in Abb. 4.6.1 um 0.5 nach oben
verschoben, sodass der Mittelpunkt des Bodens im Ursprung liegt. Dies erleichtert
die Vorstellung, wenn Objekte verschoben werden, da nun alle Grundbausteine auf
der x1 − x2-Ebene liegen, was den Boden der Szene darstellen soll. Im Folgenden
wird nun besprochen, wie mithilfe von Skalierung, Drehung und Verschiebung die
Häuserszene in Abb. 4.6.3 entstanden ist.

Mithilfe der Skalierungsmatrix werden die drei Einheitsvektoren

e1 =

1

0

0

 e2 =

0

1

0

 e3 =

0

0

1

 ,

welche den Grundkörper aufspannen und somit die Länge, Breite und Höhe defi-
nieren, verkürzt oder verlängert (Abb. 4.6.4). Es ist leicht nachvollziehbar, dass der
Nullpunkt auf sich selbst abgebildet wird. Ebenso verbirgt sich hinter der Skalierung
eine zentrische Streckung, d.h. auch das Teilverhältnis bleibt invariant. Wir können
daher von einer linearen Abbildung ausgehen. Wir suchen also eine Matrix, welche
die o.g. Vektoren wie folgt abbildet:

Mscale ·

1

0

0

 =

a0
0

 Mscale ·

0

1

0

 =

0

b

0

 Mscale ·

0

0

1

 =

0

0

c



x2

x3

x1

Abb. 4.6.2 Grundbausteine: Würfel, Prisma und Pyramide mit Kantenlänge bzw.
Körperhöhe 1
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x2

x3

x1

Abb. 4.6.3 Eine aus den Grundelementen aufgebaute Szene von Gebäuden.

Mit den drei Bildern der Basisvektoren des R3 ist die Abbildungsmatrix festgelegt.
Wir nutzen dazu die Eigenschaften einer linearen Abbildung in Def. 4.6.1. Sei ~p ∈ R3

beliebig. Dieser lässt sich dann als Linearkombination der Basisvektoren schreiben,
sodass sich folgendes Bild ergibt:

x2

x3

x1

e2

e3

e1

b

c

a

Abb. 4.6.4 Skalierung

p = p1

1

0

0

+ p2

0

1

0

+ p3

0

0

1


⇒ f(p) = p1 f(e1) + p2 f(e2) + p3 f(e3)

= p1

a0
0

+ p2

0

b

0

+ p3

0

0

c



=

a 0 0

0 b 0

0 0 c

 · p = Mscale · p
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In Abb. 4.6.3 wurde das linke Haus um 30◦ im Uhrzeigersinn bzgl. der x3-Achse
gedreht, bevor es verschoben wurde. Wir betrachten zunächst die Drehung in der
Ebene um den Ursprung und gehen dann auf die Rotation im Raum bzgl. der drei
Koordinatenachsen ein. Um die Abbildungsmatrix wie oben herzuleiten, benötigen
wir die Bilder der Basisvektoren des R2. Gemäß der Abb. 4.6.5 ergibt sich über die
Bilder folgende Abbildungsmatrix:

x1

x2

e1

e2

e′1

e′2

Abb. 4.6.5 Drehung

Mrot ·
(

1

0

)
=

(
cosα

− sinα

)

Mrot ·
(

0

1

)
=

(
sinα

cosα

)

⇒Mrot =

(
cosα − sinα

sinα cosα

)

Bei der Drehung im Raum um den Ur-
sprung wird in der Ebene gedreht, zu
welcher die Koordinatenachse die Nor-
male ist. Die Achse selbst ist dabei eine
Fixpunktgerade, d.h. bei einer Drehung
um die x3-Achse bleibt der Basisvektor
e3 erhalten (Abb. 4.6.6). So ergeben sich
folgende Matrizen:

Abb. 4.6.6 Drehung um die x3-Achse

Mrot,x1 =

1 0 0

0 cosα − sinα

0 sinα cosα



Mrot,x2 =

 cosα 0 sinα

0 1 0

− sinα 0 cosα



Mrot,x3 =

cosα − sinα 0

sinα cosα 0

0 0 1



Der Drehsinn ist dabei entgegen des Uhr-
zeigersinns.
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Zum Abschluss thematisieren wir die Translation um den Verschiebungsvektor v:x1x2
x3

 7→
x1 + v1

x2 + v2

x3 + v3

 .

Es ist offensichtlich, dass dies keine lineare Abbildung ist, da der Koordinatenur-
sprung ebenfalls verschoben wird. Hier müssen nun homogene Koordinaten verwen-
det werden, d.h. wir fügen noch eine vierte Koordinate hinzu, wobei t 6= 0 für ge-
wöhnliche Punkte gilt:

x1x2
x3

 7→

t · x1
t · x2
t · x3
t

 .

Zur besseren Unterscheidung werden homogene Koordinaten in eckige Klammern
gesetzt. Die Matrix

Mtrans =


1 0 0 v1

0 1 0 v2

0 0 1 v3

0 0 0 1


ergibt die Verschiebung um den Vektor v, denn:

1 0 0 v1

0 1 0 v2

0 0 1 v3

0 0 0 1

 ·

t x1

t x2

t x3

t

 =


t x1 + t v1

t x2 + t v2

t x3 + t v3

t

 7→
x1 + v1

x2 + v2

x3 + v3

 für t 6= 0



186

Wir haben nun alle drei Abbildungsmatrizen Mscale,Mrot und Mtrans vorgestellt,
mit welcher die Häuserszene in Abb. 4.6.3 aus den Grundobjekten erstellt wurde.
Statt nacheinander mit den jeweiligen Matrizen die Eckpunkte abzubilden, soll die
verkettete Abbildung mit nur einer Matrix ausgeführt werden. Wir müssen daher
auch die beiden vorherigen Matrizen um eine Dimension erweitern, damit wir diese
miteinander multiplizieren können. Um den linken gedrehten Quader in Abb. 4.6.3
zu erhalten, wird folgende Matrix auf die Eckpunkte des Einheitswürfels angewendet:

1 0 0 3

0 1 0 0.5

0 0 1 0

0 0 0 1

 ·


cos(−30) − sin(−30) 0 0

sin(−30) cos(−30) 0 0

0 0 1 0

0 0 0 1

 ·


2 0 0 0

0 3 0 0

0 0 1 0

0 0 0 1



=


1.732 1.5 0 3

−1 2.598 0 0.5

0 0 1 0

0 0 0 1


Die Abbildungen erfolgen von rechts nach links, d.h. zuerst wird der Würfel zum Qua-
der skaliert, dann im Uhrzeigersinn 30◦ um die x3-Achse gedreht und zum Schluss
verschoben, sodass der Mittelpunkt des Bodens bei (3 / 0.5 / 0) ist. Wir können zu-
sammenfassend Folgendes festhalten:

Satz 4.6.2

Lineare Abbildungen im Raum sind durch folgende Matrizen in homogenen
Koordinaten möglich:
Skalierung mit a, b, c:

Mscale =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 1


Drehung um α im Raum:

Mrot,x1 =


1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1


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Mrot,x2 =


cosα 0 sinα 0

0 1 0 0

− sinα 0 cosα 0

0 0 0 1

 Mrot,x3 =


cosα − sinα 0 0

sinα cosα 0 0

0 0 1 0

0 0 0 1


Translation um Vektor ~v:

Mtrans =


1 0 0 v1

0 1 0 v2

0 0 1 v3

0 0 0 1


Die homogenen Koordinaten wurden in diesem Kapitel rein algebraisch verwendet.
Wir wollen im nächsten Abschnitt nun geometrisch interpretieren, was beim Teilen
durch die letzte Koordinate passiert. Für die Veranschaulichung müssen wird die
Dimension um 1 reduzieren, d.h. wir betrachten im Folgenden Punkte (x / y) einer
Ebene und interpretieren ihre homogene Darstellung [xt / yt / t].

4.6.3 Das homogene Koordinatensystem

Wir wollen nun den Bezug zur Informatik herstellen und zeigen, wie homogene Koor-
dinaten in der Computergrafik verwendet werden, um zentralprojektive Bilder mit-
hilfe der Matrix-Vektor-Multiplikation berechnen zu können. In Kapitel 7 im dritten
Teil dieser Arbeit wird dazu eigens entwickelter Quellcode in der Programmierspra-
che Processing für die Verwendung im Schulunterricht vorgestellt.

x

y

z

Ph

zh

Abb. 4.6.7 Ursprungsgerade
durch Ph

Wir benennen die Achsen im Folgenden in x, y

und z um und drehen das Koordinatensys-
tem, sodass die y-Achse senkrecht steht. Sei
Ph (xh / yh / zh) mit zh 6= 0 ein Punkt in einer
Ebene parallel zur xy-Ebene durch (0 / 0 / zh)

(Abb. 4.6.7). In der Computergrafik befindet sich
das Projektionszentrum im Ursprung und der
Bildschirm entspricht der grauen Ebene. Daher
wurde das Koordinatensystem gedreht, damit die
xy-Ebene senkrecht steht.
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Die Ursprungsgerade durch den Punkt Ph in Abb. 4.6.7 hat folgende Parameterglei-
chung:

g : ~x = λ

xhyh
zh

 .

Dadurch wird Ph zum Schnittpunkt der Ebene E : z = zh und der Ursprungsgeraden
g. Stellen wir uns nun vor, die Ebene E enthielte ein eigenes, zweidimensionales
Koordinatensystem, dessen Achsen parallel zu denen des Raumes sind. Und sein
Ursprung liege in dem Schnittpunkt der Ebene E mit der z-Achse, also in [0 / 0 / zh].
In Abb. 4.6.8 sind zwei solcher Ebenen bei zh = 1 und zh = 3 markiert. Beide werden
von der Ursprungsgeraden g durchstoßen. Für zh = 3 sei Ph der Durchstoßpunkt.

Wir wollen nun, dass jeder Schnittpunkt der Ursprungsgeraden Ph dieselben Koordi-
naten im entsprechenden blauen Koordinatensystem hat, unabhängig davon, welchen
Wert zh annimmt. Wir skalieren daher die Basisvektoren der blauen Koordinaten-
systeme in Abb. 4.6.8 mit zh. Wir betrachten dazu den Punkt Ph in der Abbildung,
welcher die Koordinaten [3 / 1.5 / 3] hat. Die entsprechende Ursprungsgerade schnei-
det die Ebene durch z = 1 in den Koordinaten [1 / 0.5 / 1]. Schauen wir uns das
orange markierte Einheitsquadrat in den entsprechenden Ebenen an, so stellen wir

x

y

zzh = 1

Ph

zh = 3

Abb. 4.6.8 Die blauen Koordinatensysteme skalieren nun je nach Lage von zh un-
terschiedlich.
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fest, dass sich die beiden Punkte in Bezug auf das blaue Koordinatensystem am glei-
chen Ort befinden. Die Koordinaten bezüglich der blauen Systeme sind in beiden
Fällen (1 / 0.5). Wir verallgemeinern dies:xhyh

zh

 7→ (
xh
zh

/
yh
zh

)
. (4.6.1)

Die Punkte in der Ebene entsprechend daher Ursprungsgeraden im Raum, d.h. die
homogenen Koordinaten eines gewöhnlichen Punktes sind nicht eindeutig. Da sie
aber auf Ursprungsgeraden liegen müssen, ändert sich das Verhältnis zwischen den
Koordinaten nicht.
Wir können also jedem Punkt im euklidischen Raum eine Gerade im vierdimensio-
nalen Raum zuordnen. Je weiter die graue Ebene zum Ursprung verschoben wird,
um kleiner wird das in Abb. 4.6.8 orange markierte Einheitsquadrat. Für zh = 0

existieren keine Basisvektoren bzw. anschaulich betrachtet, werden alle Punkte im
Raum dem Ursprung zugeordnet, da sich alle Geraden hier schneiden. Folglich ist
die Berechnung des Verhältnisses im Falle zh = 0 sowohl arithmetisch wie auch an-
schaulich nicht möglich.
Wir können durch jeden Punkt im euklidischen Raum außerhalb des Ursprungs ei-
ne Ursprungsgerade zeichnen. Für die Zentralprojektion reicht aber der euklidische
Raum nicht aus, denn wir haben gezeigt, dass dann jeder Fluchtpunkt keinen Ur-
bildpunkt mehr hat. Um die Lücke zu schließen, wurden die Fernpunkte aus der
projektiven Geometrie dem euklidischen Raum hinzugefügt. Wir wollen nun erläu-
tert, warum homogene Koordinaten mit zh = 0 Fernpunkte beschreiben.
Schülerinnen und Schüler könnten nun sagen, wenn wir durch Werte nahe Null tei-
len, so wird der Quotient größer, d.h. der entsprechende Punkt ist unendlich weit
entfernt vom Ursprung. Eine solche Erklärung findet sich auch in der Literatur zur
Computergrafik [36, S. 207]. Ist dies aber eine sinnvolle Erklärung? Es ist richtig,
dass die Koordinaten eines Punktes, welcher auf einer Geraden dem Fernpunkt ent-
gegen strebt, größere Werte annehmen muss, da auch der Abstand zum Ursprung
divergiert. Was allerdings mit diesem Argument verloren geht, ist die Information,
dass ein Fernpunkt die Richtung einer Geraden beschreibt. Unabhängig von xh 6= 0

und yh 6= 0 divergiert ihr Quotient mit zh = 0. Unendlich ist zwar keine Zahl, könnte
bei Schülerinnen und Schüler dennoch zu der Fehlvorstellung führen, dass es dann
nur einen Fernpunkt gibt.

Betrachten wir die Situation einmal mit Vektoren. Für zh 6= 0 ist
(
xh
zh
, yhzh

)T
der Orts-

vektor des gewöhnlichen Punktes
(
xh
zh
/ yh
zh

)
. Die Richtung einer Geraden wird durch

den Richtungsvektor beschrieben. Wir wollen anschaulich zeigen, dass für zh = 0 der
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Vektor (xh, yh)T die Richtung beschreibt, für welche auch der Fernpunkt [xh / yh / 0]

steht.

Abb. 4.6.9 zeigt eine Gerade, welche von den Punkten

A = [a1 / a2 / z1] und B = [b1 / b2 / z1]

definiert wird, und in der zu xy parallelen Ebene mit z = z1 liegt. Die Richtung der
Geraden kann durch ihre Steigung bestimmt werden oder vektoriell mit

−−→
OB −−→OA =

b1 − a1b2 − a2
0

 = F ? .

Aufgrund der Differenz hebt sich die letzte Koordinate immer auf, sodass das Ergeb-
nis auch als Punkt in der xy-Ebene interpretiert werden kann. Zeichnen wir durch
F ? die Ursprungsgerade, so ist diese parallel zur Geraden AB, d.h. sie schneiden
sich in demselben Fernpunkt. Mit zh = 0 die Fernpunkte zu definieren, ist daher ei-
ne konsistente Erweiterung der homogenen Koordinaten von gewöhnlichen Punkten.
Wir stellen aber auch fest, dass die homogenen Koordinaten eines Fernpunktes nicht
eindeutig sind. Analog zu den Vektoren gilt:d1 − c1d2 − c2

0

 = λ ·

b1 − a1b2 − a2
0

 . (4.6.2)

zh = 0

O

x

y

zz1 z2

A

B

C

D

F ?

Abb. 4.6.9 Der Fernpunkt einer Geraden liegt in der blauen Ebene
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Wir zeichnen dazu in Abb. 4.6.9 die Ursprungsgeraden durch die Punkte A und B
und schneiden diese mit der Ebene z = z2. Wir erhalten die Gerade CD mit

C = [c1 / c2 / z2] und D = [d1 / d2 / z2] ,

welche ebenfalls parallel zu AB aufgrund der besonderen Lage der Ebenen ist. Den
Beweis liefert der Strahlensatz. Aufgrund der Ursprungsgeraden gilt:c1c2

z2

 = λ

a1a2
z1

 ∧
d1d2
z2

 = µ

b1b2
z1

 ⇒ λ z1 = z2 = µ z1

⇒ (z1 6= 0) λ = µ

Die Strecke CD ist somit das Bild von AB bei einer zentrischen Streckung mit
Zentrum O und dem Faktor λ. Dann gilt auch

d1 − c1 = λ b1 − λ a1 = λ (b1 − a1) ,

sodass wir Gl. (4.6.2) daraus folgern können. Der Fernpunkt F ? liegt daher auf einer
Ursprungsgeraden in der xy-Ebene.

Zum Abschluss des Kapitels werden einige Aufgabenbeispiele für den Einsatz im
Unterricht besprochen. Als Einstieg soll im ersten Beispiel die Transformation von
dem homogenen Koordinatensystem in die euklidische Ebene nach Gl. (4.6.1) geübt
werden.

Aufgabenbeispiel 4.6.1

Bestimme wie im Beispiel zu den folgenden homogenen Koordinaten den ent-
sprechenden gewöhnlichen Punkt in der euklidischen Ebene.

a) b) c) d)

homogen [3 / 4 / 2] [3 / 6 / 3] [2 / 2 / 0.5] [3 / 4 / 1]

euklidisch (1.5 / 2)

Die Lösung ist (1 / 2) , (4 / 4) und (3 / 4), da wir nur durch die letzte Koordinate
teilen müssen.
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Im zweiten Beispiel geht es um die Verknüpfung der algebraischen Darstellung mit
der visuellen Bedeutung. Die Schülerinnen und Schüler sollen sich an die veränder-
te Orientierung des Koordinatensystems gewöhnen und ihnen sollte dabei bewusst
werden, dass jeder Punkt der euklidischen Ebene durch verschiedene Punkte im ho-
mogenen Koordinatensystem repräsentiert werden.

Aufgabenbeispiel 4.6.2

a) Zeichne die folgenden Punkte in das abgebildete 3D Koordinatensystem
ein. Die markierten Ebenen dienen dabei als Hilfe. Entscheide anhand des
Bildes, welche homogenen Punkte denselben Punkt in der euklidischen
Ebene repräsentieren.

A = [0.5 / 1 / 1] B = [1.5 / 1.5 / 3] C = [1.5 / 3 / 3] D = [2.5 / 2.5 / 5]

x

y

z

1

2

3

4

5

1 3 5

b) Die Punkte A bis D entsprechen zwei verschiedenen Punkten in der eu-
klidischen Ebene. Finde jeweils zwei weitere Darstellungen im homogenen
Koordinatensystem. Wie kannst du die Lösung im Bild ablesen?

Für die Lösung der Aufgabe sollen die Schülerinnen und Schüler die Ursprungsge-
raden einzeichnen (Abb. 4.6.10). Liegen die Punkt auf derselben Geraden, so be-
schreiben sie denselben Punkt in der euklidischen Ebene. Über die Schnittpunkte
mit den anderen Ebenen lassen sich weitere Darstellungen finden, um damit Teil
b) zu erfüllen. Die Koordinaten lassen sich allerdings nicht ohne Einschränkungen
vom Bild ablesen, sodass die Schülerinnen und Schüler auch auf das konstante Ver-
hältnis der Koordinaten zurückgreifen sollten. Die Lösung ist E = [0.5 / 0.5 / 1] und
F = [2.5 / 5 / 5].



4.6. Zentralprojektion in der Computergrafik 193

y

z

1

2

3

4

5

1 3 5

A B

C D

E

F

Abb. 4.6.10 Lösung des Aufgabenbeispiels 4.6.2

In der kommenden Aufgabe soll wieder aus den homogenen Koordinaten der ent-
sprechende Punkt abgelesen werden. Hinzu kommen nun die Fernpunkte.

Aufgabenbeispiel 4.6.3

a) Die homogenen Koordinaten beschreiben verschiedene Punkte in der eu-
klidischen Ebene. Gebe für einen gewöhnlichen Punkt die Koordinaten in
der Form (x / y) an. Handelt es sich um einen Fernpunkt, dann gibt die

Richtung als vollständig gekürzten Vektor
(
x

y

)
an.

A B C D E F

[4 / 2 / 2] [2 / 2 / 0] [5 / 2 / 1] [3 / 2 / 0] [4.5 / 1.5 / 3] [3 / 2 / 0.5]

(2 / 1)

1

1



b) Welche der homogenen Koordinaten in der Liste beschreiben denselben
Punkt wie in a)? Gebe den entsprechenden Punkt mit A bis F an.

[2.5 / 1 / 0.5] [0, 3 / 0, 3 / 0] [1.5 / 1 / 0.25] [2 / 1 / 1]

C
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In a) sind B und D Fernpunkte, da die letzte Koordinate 0 ist. Hinter D verbirgt
sich der Vektor (3 / 2)T und die anderen Punkte sind C (5 / 2) , E (1.5 / 0.5) sowie
F (6 / 4). Die Lösung zu b) ist

[2.5 / 1 / 0.5] [0.3 / 0.3 / 0] [1.5 / 1 / 0.25] [2 / 1 / 1]

C B F A

Wir kommen zum Abschluss nun zu einer Aufgabe, welche die Translation in der Ebe-
ne thematisiert. Mithilfe von Beispielen und Beobachtungen sollen die Schülerinnen
und Schüler an die Translationsmatrix im homogenen Koordinatensystem herange-
führt werden.

Aufgabenbeispiel 4.6.4

a) Gegeben ist der Punkt (0.5 / 0), welcher um den Vektor ~v =

(
0.5

1

)
ver-

schoben werden soll. Welche Koordinaten hat der verschobene Punkt?
Welche homogenen Koordinaten ergeben sich jeweils für beide Punkte
mit z = 1, z = 3 und z = 5? Um welchen Vektor wurden die Punkte im
homogenen Koordinatensystem jeweils verschoben?

b) Zeichne die Punkte sowie die Verschiebungsvektoren aus a) in folgendes
Bild ein. Was fällt dir auf?

x

y

z

1

2

3

4

5

1 3 5

c) Wir wollen nun deine Vermutungen aus b) mit einem anderen Zahlenbei-
spiel prüfen. Gegeben ist der Punkt (4 / 3) und der Verschiebungsvektor
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~v =

(
1

3

)
. Bestimme wieder den verschobenen Punkt in der euklidischen

Ebene sowie die homogenen Koordinaten mit z = 1, z = 3 und z = 5 mit
den entsprechenden Verschiebungsvektoren. Bestätigen sich deine Vermu-
tungen aus b)?

d) Wir verallgemeinern nun die Ergebnisse. Gegeben ist der Punkt (x / y)

und der Verschiebungsvektor ~v =

(
v1

v2

)
. Was sind die homogenen Koor-

dinaten des Punktes vor und nach der Verschiebung für z = 1 und z = 3?
Kannst du eine 3× 3 Matrix erstellen, welche mit dem homogenen Punkt
multipliziert den verschobenen Punkt ergibt? Liegt für z = 1 und z = 3

dieselbe Matrix vor? Was passiert, wenn wir eine beliebige Ebene mit
z = t, t 6= 0 verwenden?

Die folgende Tabelle zeigt die Lösung von a).

Urbild (0.5 / 0) [0.5 / 0 / 1] [1.5 / 0 / 3] [2.5 / 0 / 5]

Verschiebungs-
vektor

(
0.5

1

) 0.5

1

0


1.5

3

0

 = 3 ·

0.5

1

0


2.5

5

0

 = 5 ·

0.5

1

0


Bild (1 / 1) [1 / 1 / 1] [3 / 3 / 3] [5 / 5 / 5]

Es sollte auffallen, das die letzte Koordinate des Verschiebungsvektors 0 ist. Die
Richtung ist dabei dieselbe, denn das Verhältnis zwischen der ersten und zweiten
Koordinate bleibt gleich. Die letzte homogene Koordinate des Urbildpunktes be-
stimmt dabei den Faktor, um welcher der Verschiebungsvektor verlängert wird. Was
die Schülerinnen und Schüler hier anhand der Zahlen beobachten können, soll in
Teil b) geometrisch veranschaulicht werden. Das Zahlenbeispiel in a) wurde dabei so
gewählt, dass die Schülerinnen und Schüler das beigefügte Koordinatensystem ver-
wenden können. Die Abb. 4.6.11 zeigt das Ergebnis:

Der Punkt P wird nach P ′ verschoben. Wegen z = 1 entspricht die markierte Ebene
auch der euklidischen. Je weiter weg sich die graue Ebene vom Ursprung befindet,
um so länger wird der Verschiebungsvektor, allerdings bleibt die Richtung erhalten.
Zeichnen wir durch die Bildpunkte eine Parallele zur Ursprungsgeraden von P , so
schneidet diese die xy-Ebene in den blau markierten Punkten. Diese entsprechen den
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x

y

z

1

2

3

4

5

1 3 5

P ′

P

Abb. 4.6.11 Die Lösung von Aufgabenbeispiel 4.6.4, Teil b)

Verschiebungsvektoren, wenn wir sie als homogene Punkte betrachten, welche in der
euklidischen Ebene denselben Fernpunkt beschreiben.

Teil c) soll ein weiteres Zahlenbeispiel liefern, anhand Schülerinnen und Schüler ihre
Vermutungen aus b) bestätigen können. Die folgende Tabelle liefert die Lösung.

Urbild (4 / 3) [4 / 3 / 1] [12 / 9 / 3] [20 / 15 / 5]

Verschiebungs-
vektor

(
1

3

) 1

3

0


3

9

0

 = 3 ·

1

3

0


 5

15

0

 = 5 ·

1

3

0


Bild (5 / 6) [5 / 6 / 1] [15 / 18 / 3] [25 / 30 / 5]

Wir erhalten dasselbe Muster wie in a), sodass nun der Schritt der Verallgemeine-
rung erfolgen kann. Hierbei sollen die Schülerinnen und Schüler schrittweise an die
Verschiebungsmatrix herangeführt werden. Wir kommen also zur Lösung von d) und
verwenden dieselbe tabellarische Darstellung wie zuvor:
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Urbild (x / y) [x / y / 1] [3x / 3y / 3]

Verschiebung-
svektor

(
v1

v2

) v1v2
0


3v1

3v2

0

 = 3 ·

v1v2
0


Bild (x+ v1 / y + v2) [x+ v1 / y + v2 / 1] [3 (x+ v1) / 3 (y + v2) / 3]

Für (
x

y

)
+

(
v1

v2

)

existiert keine reelle Matrix M , sodass

M ·
(
x

y

)
=

(
x+ v1

y + v2

)

ist. Die Zahlen v1 und v2 müssen Elemente der Matrix M sein, aber sie würden
aufgrund der Matrixmultiplikation mit x bzw. y multipliziert statt addiert werden.
Der Trick ist nun, den Wert v1 als 1 · v1 zu sehen. Erweitern wir den Ortsvektor um
eine dritte Koordinate mit 1, so ergibt sich folgende Matrix:1 0 v1

0 1 v2

0 0 1

 ·
xy

1

 =

x+ v1

y + v2

1


Dieselbe Matrix ergibt sich auch für z = 3 oder allgemein z = t, t 6= 0, wie die
Schülerinnen und Schüler leicht nachrechnen können.

Wir können festhalten, dass Abbildungen, welche aufgrund einer additiven Kompo-
nente nicht linear sind, linear werden, wenn wir eine weitere Dimension hinzufügen,
die Matrix-Vektor-Multiplikation durchführen und dann jene wieder reduzieren, in
dem wir die anderen Komponenten durch die letzte Koordinate teilen. Im letzten
Abschnitt wollen wir dieses Vorgehen auf die Zentralprojektion anwenden.
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4.6.4 Die Zentralprojektion mit homogenen Koordinaten

Der vorherige Abschnitt hat auf unterschiedliche Art und Weise die Eigenschaften
von homogenen Koordinaten vorgestellt. Es wurde gezeigt, wie Fernpunkte durch
Koordinaten definiert werden, wie homogene Koordinaten geometrisch interpretiert
werden können und wie sie Verschiebungen zu linearen Abbildungen transformieren
lassen. Schülerinnen und Schüler können nun argumentieren, dass für Rechnungen auf
Papier, die sie selber durchführen, die Addition von zwei Vektoren deutlich einfacher
ist, um eine Verschiebung durchzuführen, als homogene Koordinaten und Matrizen
zu verwenden. In der Computergrafik ist die Hardware, also die Grafikkarte, darauf
optimiert, Matrizenmultiplikationen effizient und schnell durchzuführen [40, S. 84],
[36, S. 208], [29, S. 29]. Wie dies elektrotechnisch umgesetzt wird, soll hierbei nicht
die Frage sein. Es geht lediglich um die Möglichkeiten, welche die Mathematik bietet,
nicht lineare Abbildungen dennoch mithilfe einer Matrix durchzuführen.

Schauen wir uns hierzu die Abbildungsgleichung der Zentralprojektion eines Punktes
(p1 / p2 / p3) mit Zentrum (z1 / z2 / z3) an. Analog zum Satz 4.4.2, S. 154, gilt für eine
Projektion auf die xy-Ebene (y-Achse zeigt weiterhin nach oben im rechtshändigen
Koordinatensystem):

ϕz(P ) =
1

z3 − p3

z3 p1 − z1 p3z3 p2 − z2 p3
0

 (4.6.3)

Hier ist das Problem keine additiven Komponente wie bei der Verschiebung, sondern
der Vorfaktor, welcher allerdings wegen p3 vom Urbild abhängig ist. Ohne diesen
Faktor könnten wir folgende Matrix verwenden:z3 0 −z1

0 z3 −z2
0 0 0

 ·
p1p2
p3

 =

z3 p1 − z1 p3z3 p2 − z2 p3
0


Um den Faktor miteinzubeziehen, nutzen wir wieder die homogenen Koordinaten.
Der euklidische Punkt entsteht durch Teilung der letzten Koordinate, also erweitern
wir um den Nenner dieses Faktors, um eine geeignete Matrix aufstellen zu können:

z3 p1 − z1 p3
z3 p2 − z2 p3

0

z3 − p3

 =


z3 0 −z1 0

0 z3 −z2 0

0 0 0 0

0 0 −1 z3

 ·

p1

p2

p3

1

 (4.6.4)
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Wir überprüfen unser Ergebnis anhand eines Beispiels und betrachten einen Quader
mit den Koordinaten

(3 / 0 / 4) , (0 / 0 / 8) , (4 / 0 / 11) , (7 / 0 / 7) ,

(3 / 2 / 4) , (0 / 2 / 8) , (4 / 2 / 11) , (7 / 2 / 7)

und projizieren diese auf die xy-Ebene ausgehend vom Zentrum (3 / 5 / 50). Den
Quader und dessen Projektion zeigt Abb. 4.6.12. Die homogene Abbildungsmatrix
nach Gl. (4.6.4) ist dann

MZ =


50 0 −3 0

0 50 −5 0

0 0 0 0

0 0 −1 50

 .

Wir fügen den Urbildpunkten eine vierte Koordinate mit dem Wert 1 hinzu und mul-
tiplizieren sie jeweils mit MZ . Das Ergebnis sind folgende homogenen Koordinaten:

[138 / − 20 / 0 / 46] , [−24 / − 40 / 0 / 42] , [167 / − 55 / 0 / 39] , [329 / − 35 / 0 / 43]

[138 / 80 / 0 / 46] , [−24 / 60 / 0 / 42] , [167 / 45 / 0 / 39] , [329 / 65 / 0 / 43] .

Nun wird wieder durch die letzte Koordinate geteilt, um die Bildpunkt in der Ebene
zu erhalten:

(3 / − 0.43) , (−0.57 / − 0.95) , (4.28 / − 1.41) , (7.65 / − 0.81) ,

(3 / 1.74) , (−0.57 / 1.43) , (4.28 / 1.15) , (7.65 / 1.51) .

Welche Möglichkeiten haben nun Schülerinnen und Schüler das Ergebnis zu prüfen?
Sie können wie in Abb. 4.6.12 ihre Lösung in einem zweidimensionalen Koordina-
tensystem zeichnen. Die vertikalen Kanten liegen in Ebenen parallel zur Bildebene,
d.h. ihre Bildgeraden müssen ebenfalls parallel sein. Dies ist auch anhand der Ko-
ordinaten erkennbar, da der ursprüngliche Quader plan auf der Grundebene liegt.
Die anderen gegenüberliegenden Kanten des Bodens und der Decke müssen sich bei
Verlängerung in zwei Fluchtpunkten schneiden. Rein rechnerisch können die Schüler-
innen und Schüler das Bild einer Ecke „ zu Fuß “ berechnen, in dem sie die Gleichung
der Projektionsgeraden durch das Zentrum und die Ecke aufstellen und den Schnitt-
punkt mit der xy-Ebene bestimmen.
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Abb. 4.6.12 Zentralprojektion eines Quaders
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In der Computergrafik wird eine andere Projektionsmatrix verwendet, da das Pro-
jektionszentrum in den Koordinatenursprung gelegt wird. Die Bildebene ist bzgl. der
xy-Ebene parallel verschoben und verläuft durch (0 / 0 / d) mit d ∈ R \ {0} [29,
S. 143], [50, S. 390]. Projektionen mit anderen Zentren lassen sich durch Translation
des Koordinatensystems bewerkstelligen. Dies wird in Kapitel 7.6 über das Kamera-
koordinatensystem erläutert.

Wir betrachten in Abb. 4.6.13 die Zentralprojektion eines Punktes P (xp / yp / zp)

auf die graue Bildebene, welche die z-Achse bei d schneidet. Der Bildpunkt P ′ habe
die Koordinaten

(
xp′ / yp′ / d

)
. Die Seitenflächen der Sehpyramide enthalten Strah-

lensatzfiguren, sodass sich folgende Verhältnisse aufstellen lassen:

xp′

xp
=

d

zp
⇒ xp′ =

d

zp
· xp

yp′

yp
=

d

zp
⇒ yp′ =

d

zp
· yp .

Somit lässt sich der Bildpunkt wie folgt berechnen:xp′yp′

zp′

 =


xp · dzp
yp · dzp
d

 =
d

zp

xpyp
zp

 .

y

x

zxpxp′

yp

yp′

P

P ′

zpd

Abb. 4.6.13 Zentralprojektion vom Ursprung aus
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Auch hier erhalten wir einen Faktor, welcher von der dritten Koordinate des Punktes
P bestimmt wird. Wir nutzen wieder denselben Trick und verwenden den Kehrwert
des Faktors als vierte Koordinate im homogenen System. Damit lässt sich wieder
eine Matrix aufstellen: 

xp

yp

zp
zp
d

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
d 0

 ·

xp

yp

zp

1

 .

Die Matrix sieht einfacher aus als in unserem ersten Beispiel mit einem Zentrum Z

außerhalb des Ursprungs. Wir wollen die Ergebnisse vergleichen und nehmen wie-
der den Quader. Wir verschieben das Projektionszentrum in den Ursprung, d.h. wir
subtrahieren den Ortsvektor von Z (3 / 5 / 50) von jedem Eckpunkt. Die neuen Ko-
ordinaten unseres Quaders sind dann:

(0 / − 5 / − 46) , (−3 / − 5 / − 42) , (1 / − 5 / − 39) , (4 / − 5 / − 43) ,

(0 / − 3 / − 46) , (−3 / − 3 / − 42) , (1 / − 3 / − 39) , (4 / − 3 / − 43)

Im ersten Beispiel wurde der Quader auf die xy-Ebene projiziert. Die neue Bildebene
schneidet die z-Achse nun in d = −50. Wir fügen den Eckpunkten wieder 1 als vierte
Koordinate hinzu, multiplizieren diese mit der Matrix

1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 1
50 0


und teilen wieder durch die vierte Koordinate. Somit ergeben sich folgende Punkte:

(0 / − 5.43 / − 50) , (−3.57 / − 5.95 / − 50) , (1.28 / − 6.41 / − 50) ,

(4.65 / − 5.81 / − 50) , (0 / − 3.26 / − 50) , (−3.57 / − 3.57 / − 50) ,

(1.28 / − 3.85 / − 50) , (4.65 / − 3.49 / − 50) .

Nun müssen wir die Verschiebung wieder rückgängig machen, um das ursprüngli-
che Koordinatensystem zu erhalten, d.h. wir addieren (3 / 5 / 50) und kommen auf
dasselbe Ergebnis. Die Abbildungsmatrix ist also einfacher, allerdings muss vor und
nach der Projektion eine Verschiebung durchgeführt werden. Da wir Translationen
auch als Matrix darstellen können, müssen wir die erste Projektionsmatrix aus der
vereinfachten Projektionsmatrix berechnen können.



4.6. Zentralprojektion in der Computergrafik 203

Dabei gilt es zu beachten, dass d = −z3 ist:
1 0 0 z1

0 1 0 z2

0 0 1 z3

0 0 0 1

 ·


1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 1
z3

0

 ·


1 0 0 −z1
0 1 0 −z2
0 0 1 −z3
0 0 0 1

 =
1

z3


z3 0 −z1 0

0 z3 −z2 0

0 0 0 0

0 0 −1 z3


Wir erhalten bis auf einen Faktor dieselbe Matrix wie in Gl. (4.6.4), S. 198. Da der
euklidische Punkt durch Teilung mit der letzten Koordinate berechnet wird, spielt
ein konstanter Vorfaktor keine Rolle, denn es gilt:

a ·


xh

yh

zh

t

 7→

a xh
a t
a yh
a t
a zh
a t

 =


xh
t
yh
t
zh
t



In der Computergrafik liegt das Projektionszentrum im Ursprung und die Bildebene
parallel zur xy-Ebene. Allerdings hat die oben hergeleitete Projektionsmatrix den
Nachteil, dass die z-Koordinate bei allen Bildpunkten dieselbe ist, sodass bei einer
komplexen Szenerie nicht mehr unterschieden werden kann, ob ein Objekt vor oder
hinter einem anderen liegt. Da wir hier nur Kantenmodelle betrachtet haben, gab es
diesen Nachteil nicht. Die dritte Zeile der Matrix wird daher wie folgt abgeändert
[50, S. 391]: 

1 0 0 0

0 1 0 0

0 0 n+f
n −f

0 0 1
n 0

 n, f ∈ R \ {0}

y

x

z

fn

Abb. 4.6.14 Alle Objekte innerhalb des
Pyramidenstumpfes werden auf den
Bildschirm projiziert.

n und f sind die Schnittpunkte zwei-
er Ebenen mit der z-Achse. n steht für
die sog. near plane und f für far plane..
Die Idee ist, dass nur Objekte zwischen
beiden Ebenen auf die near plane abge-
bildet werden können, d.h. Objekte hin-
ter der far plane sind so weit weg, dass
sie auf dem Bildschirm nicht mehr ange-
zeigt werden. Abb. 4.6.14 zeigt den Py-
ramidenstumpf zwischen der near und
far plane. Jedes Objekt innerhalb des
markierten Bereichs wird auf die near
plane projiziert.
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Für die Abbildungsmatrix bedeutet dies Folgendes: Die ersten beiden Zeilen und
die letzte in der Matrix bestimmen die x und y Koordinaten des Bildpunktes. Die
dritte Zeile kann somit beliebig ohne Auswirkungen auf das Bild abgeändert werden.
Diese Zeile wird so bestimmt, dass die dritte Koordinate der Urbildpunkte inner-
halb der near und far plane unverändert bleibt. Dies soll hier allerdings nicht weiter
ausgeführt werden, denn das Ziel im Mathematikunterricht sollte sein, den Schüler-
innen und Schüler einen Einblick in die Anwendung homogener Koordinaten bzgl.
der Zentralprojektion zu geben. Für nähere Informationen zur Computergrafik sei
auf folgende Literatur verwiesen: [50, 11, 36, 40, 29].



Kapitel 5

Die Parallelprojektion

Die Parallelprojektion ist ein Sonderfall der Zentralprojektion, welcher eintritt, wenn
das Projektionszentrum ein Fernpunkt ist. Gemäß der Definition des Fernpunktes
und der Axiome aus Kap. 2.2 werden die Projektionsstrahlen zu einem Parallelbü-
schel, wie die untere Abbildung zeigt. Dies führte zu weiteren Invarianten, welche
im Abschnitt 3.1.2 erläutert wurden. Im Vergleich zur Zentralprojektion ändern sich
somit die Eigenschaften der Bilder. Wir wollen diese Änderung wieder mit Metho-
den der analytischen Geometrie und einigen Aufgabenbeispielen für den Schulunter-
richt vorstellen. Danach erfolgen Konstruktionsmethoden, wie sie u.a. im technischen
Zeichnen verwendet werden. Hierbei wird besonders auf die Axonometrie eingegan-
gen, da sie eine Methode darstellt, wie aus der Parallelprojektion eine eineindeutige
Abbildung wird.

Z?

P ′

P

Q′

Q

h
g

Π

Abb. 5.0.1 Der Bildpunkt P ′ von P unter einer Parallelprojektion ergibt sich als
Schnitt einer Geraden g durch P und Z? mit der Bildebene Π. Die Projektionsstrah-
len sind nun parallel zueinander.
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5.1 Analytische Betrachtung der Parallelprojektion

Wie auch bei der Zentralprojektion können einige Eigenschaften der Parallelpro-
jektion von Schülerinnen und Schüler mithilfe der Methoden aus der analytischen
Geometrie untersucht werden. Da die Parallelprojektion ein Sonderfall der Zentral-
projektion ist, vererben sich alle Eigenschaften, welche in Kap. 4.4 besprochen wur-
den, auch wenn sich bei der zweiten Eigenschaft ein scheinbarer Widerspruch ergibt.
Parallele Geraden werden auch auf sich schneidende Geraden abgebildet, allerdings
ist ihr Schnittpunkt ein Fernpunkt, sodass die Parallelprojektion im Gegensatz zur
Zentralprojektion nun parallelentreu wird. Vorerst aber ein Beispiel, wie die Schüler-
innen und Schüler einige Eigenschaften selbstständig untersuchen können.

Aufgabenbeispiel 5.1.1

Gegeben sei eine Parallelprojektion

ϕ~z : R3 → Π

mit der Richtung ~z = (2,−1,−1)T auf die Bildebene Π : x2 = 0.

a) Bestimmen Sie den Bildpunkt von (2 / 4 / 5).

b) Bestimmen Sie das Bild der Geraden g mit Ortsvektor (2, 4, 5)T und Rich-
tungsvektor (1,−1, 1)T. Betrachten Sie dazu g als eine Punktreihe mit dem
Parameter λ.
Ist das Bild dieser Punktreihe wieder eine Gerade?

c) Führen Sie dieselben Berechnungen mit der Geraden k durch wie in b),
wobei der Richtungsvektor durch (2,−1,−1)T ersetzt wird. Überprüfen
Sie wieder, ob das Bild der Punktreihe eine Gerade ist.

d) Sei h die zu g parallele Gerade durch den Punkt (4 / 1 / 2). Bestimmen
Sie wieder die Bildgerade und untersuchen Sie die gegenseitige Lage von
g′ und h′.

Die Aufgabe ist so gestaltet, dass Themen aus dem Unterricht wiederholt werden.
So muss bekannt sein, wie die Parametergleichung einer Geraden aufgestellt wird,
wie die Lage von einer Geraden zu einer anderen untersucht werden kann bzw. wie
Schülerinnen und Schüler anhand der Richtungsvektoren beurteilen können, ob diese
parallel sind.
Der erste Teil lässt sich analog zur Zentralprojektion bearbeiten. Zuerst wird die Pro-
jektionsgerade aufgestellt und dann der Schnittpunkt mit der Bildebenen bestimmt.



5.1. Analytische Betrachtung der Parallelprojektion 207

(1) Projektionsgerade: p : ~x =

2

4

5

+ µ

 2

−1

−1


(2) Schnitt mit der Bildebene:

4− µ = 0⇒ µ = 42

4

5

+ 4

 2

−1

−1

⇒ P ′ (10/ 0 /1)

Für b) existieren zwei Lösungswege. Da nach den Axiomen zwei verschiedene Punkte
eine Gerade festlegen, könnte hier der Bildpunkt eines anderen Punktes auf der
Geraden g bestimmt werden. Dies setzt aber voraus, dass das Bild von g wieder eine
Gerade ist. Daher sollen die Schülerinnen und Schüler die Gerade als eine Menge von
Punkten auffassen und diese punktweise abbilden.

(1) Punktreihe aufstellen:

g : ~x =

2

4

5

+ λ

 1

−1

1

⇒ Pg (2 + λ/ 4− λ /5 + λ)

(2) Projektionsgeraden: p : ~x =

2 + λ

4− λ
5 + λ

+ µ

 2

−1

−1


(3) Schnitt mit der Bildebene:

4− λ− µ = 0⇒ µ = 4− λ2 + λ

4− λ
5 + λ

+ (4− λ)

 2

−1

−1

⇒ P ′g (10− λ/ 0 /1 + 2λ)

⇒ g′ : ~x =

10

0

1

+ λ

−1

0

2


Das Bild von g ist tatsächlich wieder eine Gerade. Die Vorgehensweise für Teil c) ist
analog, allerdings tritt hier der Sonderfall auf, dass sich alle Terme mit λ aufheben,
d.h. das Bild der Geraden k ist der Punkt (10/0/1). Wie auch bei der Zentralprojek-
tion wird die Gerade auf einen Punkt projiziert, wenn sie mit einem Projektionsstrahl
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zusammenfällt, d.h. das Projektionszentrum enthält. Bei der Parallelprojektion muss
die Gerade daher den Fernpunkt Z? enthalten, d.h. parallel zur Projektionsrichtung
sein. Dies war bei k der Fall, da ihr Richtungsvektor ~z war.

In der letzten Aufgabe d) sollen die Schülerinnen und Schüler untersuchen, ob die
Parallelprojektion parallelentreu ist. Wir haben gezeigt, dass Geraden parallel zur
Bildebene bei der Zentralprojektion wieder auf parallele Geraden projiziert werden,
andere dagegen nicht. Daher wurde in dem Zahlenbeispiel ebenfalls eine Gerade
gewählt, welche nicht parallel zur Bildebene ist. Das Bild von h ist

h′ : ~x =

6

0

1

+ λ

−1

0

2

 .

Da die Richtungsvektoren übereinstimmen, sind beide parallel, aber verschieden, da
(6 / 0 / 1) /∈ g′.

Die Aufgabe ist als Einstieg gedacht, damit Schülerinnen und Schüler anhand einiger
Zahlenbeispiele die Parallelprojektion erkunden können. Es folgt nun eine allgemeine
Betrachtung. Wir beginnen mit der Herleitung der Abbildungsgleichung unter der
Projektionsrichtung ~z = (z1, z2, z3)

T. Sei wieder die Bildebene gegeben durch

Π : x2 = 0 .

Sei P (p1 / p2 / p3) ein beliebiger Punkt im Raum, welcher als Ortsvektor der Pro-
jektionsgeraden verwendet wird.

(1) Projektionsgerade: p : ~x =

p1p2
p3

+ µ

z1z2
z3


(2) Schnitt mit der Bildebene:

x2 = p2 + µ · z2 = 0⇒ µ =
−p2
z2p1p2

p3

− p2
z2

z1z2
z3

⇒ P ′
(
z2 p1 − z1 p2

z2
/ 0 /

z2 p3 − z3 p2
z2

)

Wir erhalten keinen gewöhnlichen Bildpunkt falls z2 = 0 ist. Dies ist der Fall, wenn
die Projektionsstrahlen parallel zur Bildebene verlaufen. Anders als in der Abbil-
dungsgleichung der Zentralprojektion in Satz 4.4.2, S. 154, ist der Nenner nun un-
abhängig vom Urbildpunkt P , sodass sich eine lineare Abbildung ergibt, wenn die
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Bildebene Π : x2 = 0 ist.

ϕ~z(P ) =
1

z2

z2 −z1 0

0 0 0

0 −z3 z2


︸ ︷︷ ︸

:=PM

p1p2
p3

 =
1

z2

z2 p1 − z1 p20

z2 p3 − z3 p2



Aufgrund der Linearität kann das Bild einer Geraden über die separate Multiplikation
von Orts- und Richtungsvektor mit der Projektionsmatrix ermittelt werden:

ϕ~z(g) = PM · (~o+ λ~r) = PM~o+ λPM~r .

Zusammenfassend lässt sich folgender Satz formulieren:

Satz 5.1.1: Abbildungsgleichung

Sei Π : x2 = 0 die Bildebene und ~z = (z1, z2, z3)
T mit z2 6= 0 das Projek-

tionszentrum. Dann gelten folgende Formeln für die Bilder von Punkten bzw.
Geraden mit Ortsvektor (p1, p2, p3)

T und Richtungsvektor (r1, r2, r3)
T unter der

Parallelprojektion ϕ~z : R3 → Π:

i) P (p1/p2/p3)

ϕ~z(P ) (p1 − a z1/ 0 /p3 − a z3) mit a =
p2
z2

ii) g ∦ Π mit ~r 6= n~z, n ∈ R 6=0

ϕ~z(g) : ~x =

p1 − a z10

p3 − a z3

+ λ

r1 − b z10

r3 − b z3


mit a =

p2
z2
, b =

r2
z2

iii) g ‖ Π, d.h. r2 = 0, mit ~r 6= n~z, n ∈ R 6=0

ϕ~z(g) : ~x =

p1 − a z10

p3 − a z3

+ λ

r10
r3


mit a =

p2
z2
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iv) g mit ~r = n~z, n ∈ R 6=0

Die Gerade wird zu einer Projektionsgeraden mit b = n, sodass der Rich-
tungsvektor zum Nullvektor wird. Es bleibt der Ortsvektor von g′ als
Bildpunkt:

ϕ~z(g
′) (p1 − a z1/ 0 /p3 − a z3) mit a =

p2
z2

Wie auch in dem Zahlenbeispiel wird Gerade k, welche mit der Projektionsgeraden
zusammenfällt, auf das Bild ihres Ortsvektors projiziert, sodass die Gleichung in (i)
mit der in (iv) übereinstimmt, da P als Ortsvektor der Geraden g verwendet wurde.
In (iii) gilt wegen r2 = 0 auch b = 0. Der Richtungsvektor bleibt unverändert, sodass
in diesem Fall die Bildgerade parallel zu ihrem Urbild ist. Mithilfe von (ii) kann
begründet werden, warum die Parallelprojektion parallelentreu ist. Hat g bzw. h den
Richtungsvektor RV (g) = ~r bzw. RV (h) = n~r mit n ∈ R 6=0, dann gilt:

bg =
r2
z2
⇒ bh = n

r2
z2

= n bg

RV (h′) =

n r1 − bh z10

n r3 − bh z3

 = n

r1 − bg z10

r3 − bg z3

 = n RV (g′)

Die Bilder der Richtungsvektoren bleiben linear abhängig.

5.2 Axonometrie

Axonometrie ist die Parallelprojektion eines Objektes zusammen mit dem zugehöri-
gen Koordinatensystem [33, S. 71]. Aufgrund der Eigenschaft der Parallelprojektion,
unabhängig von der Lage der Bildebene sowohl parallelen- als auch teilverhältnistreu
zu sein (vgl. 3.2.1, S. 56 ), können die Bilder über das Bild des Koordinatensystems
konstruiert werden.
Eine andere Methode ist das Einschneideverfahren. Hierbei wird mithilfe von zwei
Rissen des Objektes (Grund-, Auf- oder Seitenriss) konstruiert. Mit diesem Verfahren
kann das Bild ohne Kenntnisse der Koordinaten über Schnittpunkte von Parallelen
direkt aus Punkten in den beiden Rissen konstruiert werden.

Die Längenverhältnisse und die Lage der projizierten Einheitsvektoren kann beliebig
gewählt werden, sofern maximal zwei der drei Vektoren linear abhängig sind. Dies
besagt der Satz von Pohlke, ein wichtiger Satz der Axonometrie, welcher 1853 von
Karl Wilhelm Pohlke formuliert und in einem Lehrbuch zur Darstellenden Geometrie
1860 von ihm veröffentlicht wurde. Ein vollständiger Beweis folgte 1864 von Hermann
A. Schwarz, welcher den Satz wie folgt formuliert hat:
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Satz 5.2.1: Satz von Pohlke

„Hat man im Raume und in einer Ebene je drei von einem Punkte
ausgehende Strecken, von denen die ersten drei nicht in einer Ebene,
die zweiten drei nicht in einer Geraden liegen, so kann man jedesmal
das Gebilde im Raume auf eine Ebene parallel projicieren, dass die
Projection dem zweiten Gebilde ähnlich wird.“ [44]

Der o.g. Satz ist allgemein formuliert. Wir betrachten stattdessen den Spezial-
fall, dass das Dreibein orthogonal ist:

„Drei in der Bildebene von einem Punkt Ō ausgehende Strecken
ŌX; ŌY ; ŌZ kann man stets betrachten als die Parallelprojektionen
von drei durch einen Punkt O gehenden Würfelkanten; dabei ist
vorausgesetzt, daß höchstens drei der Punkte Ō; X; Y ; Z in einer
Geraden liegen.“ [18]

X

Y

Z
O

Ō

1.2
0.58

1

Abb. 5.2.1 Die schiefe Parallelpro-
jektion eines orthonormalen Drei-
beins führt zu einer Veränderung
der Winkel und Längen.

Die rechte Abbildung zeigt als Beispiel eine
Würfelecke, welche durch eine schiefe Par-
allelprojektion auf die graue Bildebene ab-
gebildet wird. Die Würfelecke sei nun durch
die Einheitsvektoren beschrieben. In beiden
Formulierungen des Satzes wird eine Ähn-
lichkeitsabbildung erwähnt. In der ersten soll
die Projektion des Dreibeins dem vorgegebe-
nen Gebilde in der Ebene ähnlich sein, also
dem Bild. In der zweiten Variante ist es das
Urbild, zu welchem die Würfelecke ähnlich
sein soll.
Im Sinne eines Koordinatensystems setzen
wir nun voraus, dass der Würfel die Kan-
tenlänge 1 LE hat und ersetzen die Kan-
ten durch Vektoren in die drei verschiedenen
Raumrichtungen. Das Beispiel in Abb. 5.2.1
zeigt, dass durch die Parallelprojektion so-
wohl Richtung als auch Länge der Vektoren
verändert werden. Während der blaue Vek-
tor weiterhin die Länge 1 LE hat, hat sich
der rote verlängert und der grüne verkürzt.
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Nach dem Satz von Pohlke können Längenverhältnisse und Richtungen der Vektoren
weitgehend beliebig gewählt werden und es wird immer eine Position des orthonor-
malen Dreibeins im Raum geben, sodass eine Parallelprojektion mit anschließender
zentrischen Streckung dieses auf das Bild projiziert. Für den Beweis sei auf der in
dem Satz zitierten Literatur verwiesen. Wir wollen stattdessen einige Beispiele lie-
fern, wie dieser Satz im Unterricht behandelt werden kann.
Wenn der Satz von Pohlke sicherstellt, dass es zu jedem vorgegebenen Bild ein or-
thonormales Dreibein als Urbild geben muss, so sollte es Schülerinnen und Schüler
unter bestimmten Voraussetzungen gelingen, dieses zu rekonstruieren. Wir verwen-
den hierzu die dynamische Geometriesoftware GeoGebra . Aus didaktischen Gründen
wurden andere Bezeichnungen für die Punkte bzw. Bildpunkte verwendet, als in dem
zuvor zitierten Satz von Pohlke.

Aufgabenbeispiel 5.2.1

Gegeben ist die Parallelprojektion eines ortho-
normalen Dreibeins mit den Strecken OX, OY
und OZ sowie ein Projektionsstrahl. Konstruie-
re das ursprüngliche Dreibein. Verwende dabei
alle Eigenschaften einer Parallelprojektion.

Ziel dieser Aufgabe ist es, dass Schülerinnen und Schüler die Eigenschaften einer
Parallelprojektion verwenden, um schrittweise das orthonormale Dreibein rekonstru-
ieren zu können. Die vorgegebene Projektion wurde dabei mit einem orthonormalen
Dreibein konstruiert und dann das Urbild in GeoGebra ausgeblendet. Die zentri-
sche Streckung entfällt und das Ergebnis lässt sich danach vergleichen. Der folgende
Lösungsweg wurde mit GeoGebra erstellt.

1. Schritt: In der Aufgabe ist die Rich-
tung der Parallelprojektion bekannt. Wir
zeichnen daher die Parallelen hierzu durch
die Bildpunkte O′, X ′, Y ′ und Z ′. Die Ur-
bildpunkte O,X, Y und Z müssen auf die-
sen Geraden liegen.
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2. Schritt: Wird ein Objekt entlang der
Projektionsgeraden verschoben, so ändert
sich das Urbild nicht, denn wie zuvor er-
wähnt, werden alle Punkte auf den Gera-
den auf dasselbe Bild projiziert. Wir kön-
nen somit den Ursprung O beliebig auf der
entsprechenden Geraden platzieren. Die
Lösung dieser Aufgabe ist somit nicht ein-
deutig.

3. Schritt: Wir wissen, dass die Strecken
OX, OY und OZ 1 LE lang sind. Wir
zeichnen daher eine Kugel um O mit dem
genannten Abstand. Die Projektionsgera-
den schneiden die Kugel in mindestens ei-
nem Punkt.

4. Schritt: Von den grauen Schnittpunk-
ten werden nun drei so gewählt, dass ein
rechtsorientiertes, orthonormales Koordi-
natensystem entsteht.
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Lösungsvergleich: Nach der Kon-
struktion können wir in GeoGebra das
ursprüngliche Dreibein O1X1Y1Z1 ein-
blenden und werden feststellen, dass es
bis auf die Verschiebung wie die Re-
konstruktion orientiert ist. Jede andere
Kombination der Schnittpunkte führt
nicht zu rechten Winkeln oder das Koor-
dinatensystem ist anders orientiert.

Warum können wir uns aber sicher sein, dass die Kugel im dritten Schritt tatsächlich
alle Geraden mindestens einmal schneidet? Wir können nach dem Satz von Pohlke
die Längen beliebig wählen. Stellen wir uns also vor, die Strecke O′X ′ sei derart ver-
längert, dass die Einheitskugel die Projektionsgerade durch X ′ nicht schneidet. Die
Gültigkeit des Satzes wird nun dadurch gesichert, dass wir durch eine Ähnlichkeitsab-
bildung die Bildstrecken verkürzen können oder im Sinne der zweiten Formulierung,
die Kantenlänge des Urbildes verlängern, d.h. wir vergrößern die Kugel soweit, bis
sie alle Projektionsgeraden wieder schneidet. Um zu gewährleisten, dass dieser Fall
im ersten Aufgabenbeispiel nicht eintritt, wurde das Dreibein zuerst abgebildet und
dann in GeoGebra verborgen, statt die Punkte O′, X ′, Y ′ und Z ′ beliebig in die Bil-
debene zu setzen.
Im zweiten Beispiel wenden wir auf die Projektion eine zentrische Streckung an, wel-
che die Strecken O′X ′, O′Y ′ und O′Z ′ zwar verlängert, aber das Streckenverhältnis
erhalten bleibt. Somit sollte nach der Rekonstruktion wieder das Dreibein aus dem
ersten Beispiel entstehen.

Aufgabenbeispiel 5.2.2

Gegeben ist die Parallelprojektion eines
orthonormalen Dreibeins mit den Stre-
cken OX, OY und OZ sowie ein Pro-
jektionsstrahl. Die projizierten Strecken
sind nun deutlich länger als 1 LE. Kon-
struiere das ursprüngliche Dreibein, wo-
bei die Strecken OX, OY und OZ nun
nicht mehr 1 LE lang sein müssen. Sie
sollen nur gleich lang sein. Verwende da-
bei alle Eigenschaften einer Parallelpro-
jektion.
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Nach der ersten Aufgabe können Schülerinnen und Schüler zum Einstieg denselben
Lösungsweg versuchen.

1. u. 2. Schritt: Analog zur ersten Auf-
gabe ergänzen wir die Projektionsgeraden
durch die anderen Bildpunkte (diese wur-
den wegen der zentrischen Streckung nun
mit X ′′ usw. bezeichnet) und zeichnen O

beliebig auf der Geraden ein.

3. Schritt: Die Kugel um O mit Radius 1
LE wird nicht alle Geraden schneiden. Wir
vergrößern daher die Kugel auf 3 LE und
markieren die Schnittpunkte.

Radius: 3 LE Wir wählen die Punk-
te so, dass ein rechtsorientiertes Koordi-
natensystem entsteht und markieren uns
zwei der drei Winkel. Aufgrund der Kugel
sind die Kanten gleich lang. Das System ist
aber nicht rechtwinklig. Was passiert nun
mit den Winkeln, wenn der Radius verklei-
nert wird?
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Radius: 2.8 LE Schülerinnen und Schü-
ler können beobachten, dass bei Verklei-
nerung der Kugel sich beide Winkel 90◦

annähern und das Dreibein leicht gedreht
wird.

Radius: 2.7 LE Die Aufgabe lässt es in
diesem Fall sogar zu, dass der rechte Win-
kel bei 2.7 LE exakt getroffen wird, denn
die zentrische Streckung des Dreibeins in
der Bildebene wurde mit genau diesem
Faktor durchgeführt, was die Schülerinnen
und Schüler allerdings nicht wissen, da sie
in der Aufgabe nur das Bild nach der Stre-
ckung bekommen. D.h. Schülerinnen und
Schüler ermitteln diesen Faktor durch rei-
nes Ausprobieren.

Radius: 2.6 LE: Wird der Radius weiter
verkleinert, so vergrößern sich die Winkel
weiter über 90◦ hinaus. Schülerinnen und
Schüler sollten aus der Beobachtung der
Winkel daher folgern, dass sie den Radius
wieder vergrößern müssen.
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Lösung: Mit 2.7 LE werden die Winkel
zu 90◦ und sind gleich lang. Damit ist
die Aufgabe gelöst. Um ein orthonorma-
les Koordinatensystem zu erhalten, müs-
sen die Schülerinnen und Schüler nur noch
die Einheitskugel um O zeichnen und die
Schnittpunkte der Würfelkanten mit die-
ser markieren.

Sind die Kantenlängen des Dreibeins auf 1 LE verkürzt, so können die Bilder X ′, Y ′

und Z ′ konstruiert werden. Verbinden wir X ′′ mit Z ′′ sowie X ′ mit Z ′, so sind die
Geraden parallel. Dasselbe Ergebnis erhalten wir mit den anderen Punkten. Die Drei-
ecke X ′′Y ′′Z ′′ und X ′Y ′Z ′ sind somit einander ähnlich mit O′′ als Streckzentrum.
Wir haben den passenden Radius der Kugel durch ausprobieren gefunden. Dies stellt
keine exakte Konstruktion im Sinne der Mathematik dar, sondern ist vergleichbar mit
dem Einschieben eines rechten Winkels mit dem Geodreieck statt der exakten Kon-
struktion mithilfe des Satzes von Thales. Im Folgenden wird ein zweiter Lösungsweg
vorgestellt, welche andere Eigenschaften der Parallelprojektion verwendet.

3. Schritt: Die ersten beiden Schritte sind
analog zum ersten Lösungsweg, d.h. wir er-
gänzen die Projektionsgeraden und wäh-
len den Punkt O. Nun zeichnen wir die
Einheitskugel um O ein. Wir wissen, dass
Z nicht beliebig auf der Oberfläche dieser
Kugel liegen kann, denn der Projektions-
strahl muss die Bildebene auf der Gera-
den O′′Z ′′ schneiden, sonst ist die Ähn-
lichkeit nicht mehr gegeben. Wir ergänzen
daher die Projektionsebene von O′′Z ′′, in-
dem wir eine Ebene durch O′′, Z ′′ und O

legen. Auf dem blauen Schnittkreis mit der
Kugel muss Z liegen.
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4. Schritt: Analog gehen wird mit X

vor, d.h. wir zeichnen die Projektionsebe-
ne durch O′′, X ′′ und O und erhalten den
rot markierten Schnittkreis. Nun muss die
Gerade OX auch die Gerade OZ ortho-
gonal schneiden, also in der Normalenebe-
ne von OZ liegen. Wir zeichnen diese ein
und markieren den Schnittpunkt mit dem
roten Kreis. Bewegen wir nun Z auf dem
blauen Kreis, so bewegt sich auch X auf
dem roten Kreis und steht dabei immer
senkrecht zu OZ.

5. Schritt: Wir wenden den vierten
Schritt auch auf Y an, d.h. wir bestimmten
zuerst die Projektionsebene durch O′′, Y ′′

und O und erhalten den grünen Kreis.
Nun schneiden wir die Normalenebene von
OZ durch O mit diesem und erhalten
Y . Nun schneiden alle Projektionsgerade
durch X,Y und Z die Bildgeraden O′′X ′′,
O′′Y ′′ und O′′Z ′′ und es gibt zwei rechte
Winkel. Wir werden aber feststellen, dass
der Winkel zwischen X und Y bei beliebi-
ger Lage auf dem blauen Kreis nicht 90◦

beträgt.

6. Schritt: Wir wissen, dass das Drei-
eck X ′′Y ′′Z ′′ ähnlich zum gesuchten Drei-
eck X ′Y ′Z ′ ist. Wir zeichnen die Paralle-
le durch Z ′ zu X ′′Z ′′ und markieren den
Schnittpunkt (schwarz im Bild). Analog
erhalten wird den schwarzen Punkt auf der
Geraden O′′Y ′′. Nun bewegen wir Z auf
dem blauen Kreis, bis dX ′ und Y ′ mit den
schwarzen Punkten überein stimmen.
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7. Schritt: Der Winkel zwischenX und Y
beträgt nahezu 90◦, sodass wir das Drei-
bein rekonstruieren konnten.

Dieser Lösungsweg setzt mithilfe von Projektions- und Normalenebenen die Lage
von X und Y in die direkte Abhängigkeit von Z, da sich der Punkt statt auf der
Kugeloberfläche auf einen Kreis bewegt. Aber am Ende wird trotzdem wieder einge-
schoben, bis der dritte Winkel passt bzw. die Dreiecke ähnlich zueinander werden.

Dieser Abschnitt beschäftigte sich mit der Parallelprojektion des räumlichen Koor-
dinatensystems. Wir wollen im Folgenden einige Verfahren zeigen, um die Bilder von
Objekten unter einer Parallelprojektion direkt in der Ebene konstruieren zu können.
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5.2.1 Das Einschneideverfahren

Wir wollen nun ein Verfahren vorstellen, mit welcher sich aus dem Grund- und Auf-
riss eines Objektes ein parallelprojektives Bild erzeugen lässt. Die Lage der Risse
wird dabei mit den Winkeln ω, ϕ und ψ festgelegt [5, S. 51].

Op

ω

1. Schritt: Die blaue z-Achse wird vertikal ge-
zeichnet und die rote x-Achse im Schnittpunkt Op,
welcher dem Ursprung des projizierten Dreibeins
entspricht. Die Geraden schneiden sich dabei in
dem vorgegebenen Winkel ω.

Op

ω

O′

X ′

Y ′
ϕ

O′′

Z ′′

ψ

Y ′′

2. Schritt:Wir markieren auf der blauen Geraden
den Grundriss O′ von O an einer beliebigen Stelle
unterhalb von Op. Hier entsteht der Grundriss
des ursprünglichen Dreibeins im Raum, in dem
der vorgegebene Winkel ϕ an der blauen Geraden
abgetragen wird. Wir zeichnen einen Kreis um
O′ mit Radius 1 LE. Damit erhalten wir X ′, d.h.
die Lage von X im Grundriss. Mit dem Lot auf
O′X ′ durch O′ ergibt sich Y ′. Analog wird der
Aufriss auf der roten Geraden rekonstruiert mit
dem vorgegebenen Winkel ψ.
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Op

Zp

Xp

O′

X ′

Y ′

O′′

Z ′′

Y ′′

3. Schritt: Um das Bild des orthonormalen
Dreibeins im Raum zu erhalten, zeichnen wir
eine Parallele zur blauen Geraden durch X ′. Sie
wird die rote Gerade in Xp, der Projektion von
X, schneiden. Analog wird mit der Parallelen
zur roten Geraden durch Z ′′ die Projektion Zp

erhalten. Damit sind zwei Bilder der drei Achsen
des Dreibeins gefunden.

Zp

Xp
Yp

X ′

Y ′

Z ′′

Y ′′

4. Schritt: Um die Projektion Yp von Y zu
konstruieren, zeichnen wir jeweils eine Parallele zu
den Achsen durch Y ′ und Y ′′. Sie schneiden sich
in dem gesuchten Punkt. Damit ist die Projektion
des Dreibeins vollständig. Je nach Wahl der orange
markierten Winkel ω, ϕ und ψ ändern sich Rich-
tung und Länge des Dreibeins in der Bildebene.
Sind die Koordinaten des ursprünglichen Objektes
bekannt, so lassen sich diese in das projizierte
Koordinatensystem abtragen, um die Projektion
zu erhalten. Das folgende Beispiel zeigt eine an-
dere Möglichkeit, Objekte mithilfe der Risse zu
projizieren.
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X ′

Y ′

Z ′′

Y ′′

Beispiel 1: Grund- und Aufriss zeigt einen
Würfel. Wir konstruieren mit dem sog. Einschnei-
deverfahren die Projektion des Würfels. Dafür
zeichnen wir durch die Eckpunkte in den Rissen
die entsprechenden Parallelen. Diese schneiden
sich in den gesuchten Bildpunkten. Die Projektion
des Würfels erinnert an einen Quader. Die Wahl
der Winkel ω, ϕ und ψ ist daher eher ungünstig.

O′

O′′

Beispiel 2: Grund- und Aufriss zeigen ein Haus
mit unsymmetrischer Lage des Dachfirstes. Wieder
wird die Projektion mithilfe der Parallelen zu den
Bildachsen durch die Eckpunkte in den Rissen
konstruiert. Die Wahl der orange markierten
Winkel bestimmt das Bild. So entsteht in diesem
Beispiel eine Ansicht schräg von oben.
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135◦ 90◦

45◦

vx = 1
2 , vy = vz = 1

135◦ 90◦

vx = 2
3 , vy = vz = 1

150◦ 120◦

30◦ 60◦

vx = vy = 1, vz = 1
2

130◦ 140◦

50◦ 40◦

vx = vy = vz = 1

120◦ 120◦

30◦ 30◦

vx = vy = vz = 1

138◦ 97◦

7◦ 42◦

vx = 1
2 , vy = vz = 1

Abb. 5.2.2 Verschiedene Parallelprojektionen eines Würfels: Kavalierperspektive
(oben), Militär- oder Vogelperspektive (mitte), Isometrie (unten links), Dimetrie
(unten rechts)
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Die Axonometrie findet vor allem Anwendung in den Ingenieurswissenschaften zur
Konstruktion von Bauteilen. Statt der Winkel ω, ϕ und ψ wird die Projektion des
Dreibeins durch Angabe der Winkel α und β sowie den Längenverhältnissen vx :

vy : vz der Kanten vorgegeben. Hierbei liegt α zwischen der projizierten x- und z-
Achse sowie β zwischen der Projektion von y- und z-Achse. Damit die Abbildung
möglichst unverzerrt wirkt, haben sich bestimmte Kombinationen von Winkel und
Längenverhältnisse in der Anwendung etabliert. Abb. 5.2.2 zeigt eine Übersicht mit
Projektionen eines Würfels.

Da die Parallelprojektion im Allgemeinen teilverhältnis- und parallelentreu ist, kön-
nen wir mithilfe des projizierten Dreibeins direkt das Bild aus den ursprünglichen
Koordinaten erzeugen. Als Beispiel betrachten wir ein Haus mit Walmdach. Abb.
5.2.3 zeigt das Haus im räumlichen Koordinatensystem sowie den Grund- und Auf-
riss zur übersichtlicheren Darstellung der Koordinaten.

(3 / 0)

(5 / 1.5)

(2 / 5.5)

(0 / 4)

(3.25 / 1.75)

(1.75 / 3.75)

(1.75 / 3) (3.75 / 3)

(4 / 2)

Abb. 5.2.3 Ein Haus mit Walmdach sowie seine Koordinaten im Grund- und Aufriss
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3

4

1. Schritt: Wir beginnen damit, dass Bild
des Dreibeins unter den gegebenen Parame-
tern zu zeichnen. Wir nehmen die Dimetrie,
d.h. α = 138◦, β = 97◦ und vx = 0.5 sowie
vy = vz = 1. Mit denWinkeln kennen wir die
Achsen und als neue Einheitslänge verwen-
den wir 0.5 LE für die xp-Achse sowie 1 LE
für die anderen beiden. Eine Ecke liegt auf
der roten xp-Achse um drei Einheiten ver-
schoben, d.h. wir tragen vom Ursprung aus
auf der Achse den Abstand 3 · 0.5 LE = 1.5 LE ab. Ebenso verfahren wir mit der
grünen yp-Achse und tragen 4 LE ab. Wir verbinden die beiden Punkte und haben
die erste Kante des Hauses konstruiert.

3

4

1,5

5

2. Schritt: Nun könnte man auf die Idee
kommen, jeweils ein Lot zur Verbindungsli-
nie durch die Eckpunkte zu fällen, um die
nächsten Kanten zu konstruieren. Die Par-
allelprojektion bildet im Allgemeinen rechte
Winkel nicht unverändert ab, d.h. wir müs-
sen die Koordinaten verwenden. Wir tragen
also 2.5 LE auf der roten Achse ab und zie-
hen die Parallele zur grünen. Dann tragen
wir auf der grünen Achse 1.5 LE ab und zie-
hen die Parallele zur roten Achse. Aufgrund
der Parallelentreue der Projektion schneiden
jene sich im Punkt mit den ursprünglichen Koordinaten (5 / 1.5 / 0).

3. Schritt: Wir verfahren mit dem vier-
ten Punkt im Grundriss wie im zweiten
Schritt. Damit ist der Boden des Hau-
ses fertig. Wir ziehen durch zwei Ecken
die Parallele zur blauen Achse und tra-
gen auf dieser 2 LE ab. Dann ziehen
wir die Parallelen zu den anderen bei-
den Achsen. Die Verbindung der Schnitt-
punkt ergibt eine weitere Kante des Qua-
ders.
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4. Schritt: Statt den Parallelen kön-
nen wir auf denen durch die Ecken di-
rekt 2 LE abtragen und die Punkte
verbinden. Damit ist der Quader fer-
tig.

5. Schritt: Zum Schluss tragen wir die Ko-
ordinaten des Walmdaches auf den Achsen
ab und erhalten durch den Schnittpunkt der
entsprechenden Parallelen die Eckpunkte.

Abb. 5.2.4 Das Haus in zwei verschiedenen Parallelprojektionen. Links in Kavalier-
perspektive, rechts als Dimetrie.

Vergleichen wir die beiden Projektion des Hauses, so wirkt das Haus links etwas
zu lang. Die geringe Drehung der Raumecke in der Dimetrie bewirkt, dass das Haus
nicht in die Länge gezogen erscheint. Dagegen liegt links der Aufriss unverändert vor,
was die sog. Kavalierperspektive ausmacht. Diese ist eine von zwei Perspektiven, bei
welcher ein Riss unverändert bleibt. Abb. 5.2.2, S. 223, zeigt oben zwei Beispiele jener
Perspektive. Damit der Aufriss unverändert bleibt, muss β = 90◦ und vy = vz = 1

sein. Der Winkel zwischen Grund- und Tiefenlinie beträgt meist 45◦, sodass α = 135◦

ist, kann aber wie auch vx beliebige Werte annehmen, wobei dann auch verzerrte
Bilder entstehen können.
Bei der sog. Militärperspektive bleibt der Grundriss erhalten, d.h. α + β = 270◦

und vx = vy = 1. Die o.g. Abbildung zeigt zwei Beispiele mit unterschiedlichen
Werten für α und vz. Da der Grundriss unverändert bleibt, entsteht eine Ansicht von
oben herab auf das Objekt. In der Literatur findet sich daher auch die Bezeichnung
Vogelperspektive, welche im Kunstunterricht allerdings für die Zentralprojektion von
einem erhöhten Standpunkt aus verwendet wird.
Damit wollen wir den mathematischen Teil dieser Arbeit abschließen und im nächsten
verstärkt Bezug auf den Schulunterricht nehmen.
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Kapitel 6

Der Unterricht an Schulen in
NRW

Nachdem einige theoretische Aspekte und Konstruktionsmethoden der Projektion
vorgestellt wurden, wird in diesem Teil der Schwerpunkt auf den Mathematikunter-
richt an Gymnasien und Gesamtschulen gelegt. Zum Einstieg werden einige für den
Unterricht in NRW zugelassene Schulbücher vorgestellt. Es geht um die Frage, wie
hoch der Geometrieanteil im Unterricht ist. Hierzu wurde der prozentuale Seiten-
anteil zu geometrischen Themen in den Büchern ermittelt. Im Zuge dessen wurden
auch die Inhalte erfasst und u.a. der Klassenstufe zugeordnet. Diese Methode wurde
deshalb gewählt, da Schulbücher primäres Unterrichtsmaterial sind und hiermit die
Unterrichtsthemen auch quantitativ abgebildet werden können, als alleine durch die
Vorgaben im Lehrplan. Es wurde davon ausgegangen, dass der Stellenwert eines The-
mas sich nach der Anzahl der Seiten, die für Erklärungen, Beispiele und Aufgaben
verwendet wurden, richtet. Gleichzeitig wurden auch aktuelle Aufgaben zur Zentral-
und Parallelprojektion in den Schulbüchern erfasst, um einen aktuellen Stand zu er-
halten.
Daran anknüpfend folgen zwei weitere Abschnitte, welche eigene Unterrichtsideen
vorstellen. Im ersten Kapitel geht es um die Berechnung von Anaglyphenbildern
unter Einsatz des Computers. Dies ist ein Beispiel, wie die Zentralprojektion fächer-
übergreifend thematisiert werden kann. Die Koordinaten der Bildpunkte können über
eine Formel berechnet werden. Die Berechnung erfolgt dann mit Programmcode, den
die Schülerinnen und Schüler unter Anleitung selbst verwenden und verändern kön-
nen. Somit lässt sich der Bezug zum Informatikunterricht herstellen.
Das letzte Kapitel stellt einige selbst entwickelte Materialien für den Unterricht vor,
welche von der Geschichte inspiriert wurden. In der Vergangenheit erfanden eini-
ge Mathematiker und Physiker Instrumente zur Erstellung von zentralprojektiven
Bildern. Einer davon war J. H. Lambert, in dessen Schriften der Perspektographen
vorstellt wird. Während mit einem Stift eine ebene Figur abgefahren wird, bewegt
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sich ein zweiter Stift, welcher das entsprechende Bild zeichnet. Es wurde versucht,
einen solchen Perspektographen aus lasergeschnittenem Kunststoff nachzubauen. Zu-
sätzlich wurden zwei Materialien zur Erkundung der Dreitafelprojektion entwickelt.

Wir haben in den vorherigen Kapiteln gezeigt, wie sich ein zentralprojektives Bild
anhand von Grund- und Aufriss konstruieren lässt. Solche Konstruktionen sind auch
teil des Kunstunterrichtes. Wie dieses Thema in Kunst behandelt wird und welche
Vorgaben im Lehrplan für beide Schulformen in NRW stehen, wird im folgenden
Abschnitt erläutert.

6.1 Perspektive im Kunstunterricht

Abb. 6.1.1 Beispiele von zentralperspek-
tiven Bildern (eigene Malereien)

Die Zentralprojektion ist ein Thema
im Kunstunterricht. Im Lehrplan zur
Gesamtschule und Gymnasium finden
sich Begriffe wie Linearperspektive, Ein-
Fluchtpunkt- oder Übereck-Perspektive.
Tab. 6.1.1 zitiert einige Punkte aus den
Lehrplänen der Sekundarstufe I, welche
in Bezug zur Perspektive und Darstel-
lungsmitteln zur Erzeugung von Raum-
illusionen stehen.
Aber wie wird die Perspektive im Unter-
richt behandelt? Leider existieren zum
Kunstunterricht keine vom Schulminis-
terium zugelassenen Schulbücher, denn
die Suche auf deren Internetseite ergab
keine Ergebnisse. Daher wurde auf den
Internetseiten bekannter Schulbuchver-
lage, wie Cornelsen, Klett und Wester-
mann Schroedel, nach Lehrwerken zum Kunstunterricht an Gesamtschulen und Gym-
nasien in NRW recherchiert.

Die Tabelle zeigt, dass das über die Jahrgangstufen verteilte Thema Raumdarstellung
immer wieder aufgegriffen wird. In den unteren Stufen werden Mittel wie Überde-
ckung oder Verblassung verwendet, während später die Konstruktionen erfolgen. Im
Lehrplan des Gymnasiums wird explizit erwähnt, dass die Bilder sowohl mit einem
wie auch mit zwei Fluchtpunkten konstruiert werden. In der Gesamtschule fällt nur
der Begriff Linearperspektive, die Anzahl der Fluchtpunkte wird nicht festgelegt. Die
Formulierungen im Lehrplan der Oberstufe fallen ebenso vage aus.
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Tab. 6.1.1 Auszüge aus den Anforderungen des Kernlehrplans Kunst an Schulen in
NRW [23, 21, 26]

Jgst. Gymnasium
5 - 6 entwerfen durch die Verwendung elementarer Mittel der Raum-

darstellung (Überschneidung, Staffelung, Verkleinerung, Ver-
blassung, Höhenlage/Flächenorganisation) Räumlichkeit sugge-
rierende Bildlösungen

7 - 9 entwerfen raumillusionierende Bildkonstruktionen (Ein-
Fluchtpunkt-Perspektive, Über-Eck-Perspektive)

Jgst. Gesamtschule
7 - 10 mit verschiedenen Raum schaffenden Bildmitteln (u. a. Linear-

perspektiven) dreidimensionale Objekte und Räume zeichne-
risch darstellen

Raumillusionen durch die Verwendung elementarer Mittel wie
Überschneidung, Staffelung, Verkleinerung und Farbperspekti-
ve schaffen

Oberstufe Gymnasien und Gesamtschulen
erproben und beurteilen Ausdrucksqualitäten zweidimensiona-
ler Bildgestaltungen unter Anwendung linearer, flächenhafter
und raumillusionärer Bildmittel

realisieren Bildwirkungen unter Anwendung linearer, farbiger,
flächenhafter und raumillusionärer Mittel der Bildgestaltung

Wir wollen im Folgenden drei Schulbücher für den Kunstunterricht vorstellen, in wel-
chen Abschnitte zur Perspektive gefunden wurden: Kunst Arbeitsbuch 2 von Klett,
Kunst entdecken 2 aus dem Cornelsen Verlag sowie Kunst Grundkurs 1 von Schro-
edel für die Oberstufe.

In der Einleitung des ersten Buches wird keine Einordnung in eine Klassenstufe ge-
nannt. Da es der zweite Band dieser Reihe ist, wird von der Stufe sieben und acht
ausgegangen. Als Einstieg wird ein zentralperspektives Bild eines Bauprojektes ge-
zeigt, welches am Computer erstellt wurde. Danach folgen einige Kommentare zu
diesem Bild, wie auf- und absteigende Linien, je nachdem, ob sie sich unter oder
über der Augenhöhe befinden. Der Fluchtpunkt auf der Horizontlinie wird ebenfalls
erwähnt, allerdings werden in diesem Abschnitt nur Eigenschaften der Bilder bespro-
chen [46, S. 38].
Erst später werden solche Bilder auch konstruiert. Das Bild eines Würfels auf dem
Tisch soll mithilfe einer Plexiglasscheibe skizziert werden. Dabei wird angeregt, die



232

Lage der Scheibe oder auch den Standpunkt zu verändern. Anschließend werden ei-
nige Eigenschaften der Bilder genannt. So bleiben senkrechte Kanten des Würfels
im Bild parallel, während die waagerechten sich in der Ferne annähern [46, S. 142].
Anschließend werden im Buch die Konstruktionsschritte gelistet. Zuerst wird der Ho-
rizont auf dem Zeichenblatt festgelegt, dann die Fluchtpunkte und mit ihnen über
die Tiefenlinien ein Quader konstruiert. Damit des Objekt plastisch wirkt, wurden
zum Schluss noch Schatten eingefügt [46, S. 143].

Das zweite Buch ist laut Einband für die Klassen ab sieben geeignet. Hier werden
verschiedene Werke aus der Kunst vorgestellt und an ihnen entsprechende Inhalte des
Kunstunterrichtes. So wird die Perspektivkonstruktion an Sandro Botticellis Werk
Verkündigung an Maria vorgestellt. Es folgen weitere Bilder aus der Renaissance
zu demselben biblischen Thema. Viele von ihnen weisen Säulengänge oder andere
Bauwerke im Hintergrund auf. Zum Schluss werden einige Arten der Perspektive
aufgelistet [17, S. 27]:

• Die Paralleperspektive wird mit einem Würfel, dessen Tiefenlinien um 45◦ ge-
neigt und verkürzt sind, gezeigt. Weitere Beispiele der Axonometrie werden
nicht genannt.

• Die Farbperspektive, welche sich durch warme Farben im Vorder- und kalte im
Hintergrund auszeichnet.

• Die Luftperspektive, die Objekte in Richtung des Hintergrundes verblassen
lässt.

Die Konstruktion der Linearperspektive wird wie folgt beschrieben: Zuerst wird der
Fluchtpunkt gezeichnet und dann ein Schachbrettmuster konstruiert, welches dann
als Orientierung dient, um darauf verschiedene Objekte zu platzieren [17, S. 28].
Zusätzlich wird die Lage des Horizontes an drei Skizzen thematisiert, wobei der Be-
obachter auf einer Treppe, auf dem Boden und sitzend dargestellt wird, während
dazu das Bild des Schachbrettes skizziert ist. Es wird erwähnt, dass der Horizont die
Augenhöhe beschreibt und somit das Bild von dem Standpunkt des Betrachters ab-
hängig ist. Allerdings findet sich, auch wie in dem vorherigen Buch, keine Darstellung
der Zentralprojektion im Raum mit den Projektionsstrahlen auf die Bildebene. In
beiden Schulbüchern werden alle Erklärungen anhand des projizierten Bildes geführt.

Anders sieht es in dem Buch zur Oberstufe aus. Am Ende befindet sich ein Glossar, in
welcher die Perspektive und der Sehvorgang in der räumlichen Darstellung skizziert
werden: Ein Betrachter steht vor der Bildebene, dahinter befindet sich ein Schach-
brettmuster. Von dem Kopf treffen die Sehstrahlen auf den Boden, wodurch sich
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die Projektion auf der Bildebene ergibt. Horizont und Sehkegel sind ebenfalls ein-
gezeichnet. Neben dieser Darstellung befindet sich die Projektion des Schachbrettes
zusammen mit einer Hauptdiagonalen und dem Hinweis, dass die Tiefenlinien sich
im Fluchtpunkt, welcher auf dem Horizont liegt, schneiden und das Schachbrett auch
über die Diagonale erzeugt werden kann. Die Konstruktion mit einem Fluchtpunkt
wird Frontal- oder Einpunktperspektive genannt, jene mit zwei Fluchtpunkten als
Übereckperspektive. Die Lage des Horizontes wird wie in den vorherigen Büchern
beschrieben [28, S. 200].

6.2 Geometrieanteil im Mathematikunterricht

Welchen Stellenwert hat die Geometrie im Mathematikunterricht an Gesamtschulen
und Gymnasien in NRW? Welche Themen zur Geometrie werden besprochen? Um
diesen Fragen nachzugehen wurde eine Auswahl an Mathematikbüchern, welche vom
Schulministerium NRW zugelassen wurden, untersucht. Die Bücher sind in Tab. 6.2.1
gelistet. Da teilweise nicht alle Bücher einer Reihe für jede Jahrgangsstufe zugelassen
wurden, sind in der Tabelle die entsprechenden mit einem „x“ markiert.
Für der Anteil der Geometrie im Unterricht wurden alle Bücher, welche 2019 für
jede Jahrgangsstufe zugelassen wurden (mit Ausnahme des Lambacher Schweizer),
verwendet. Über das Inhaltsverzeichnis konnte ermittelt werden, welche Themen in
den einzelnen Jahrgangsstufen behandelt werden. Diese wurden dann den vier in-
haltlichen Kompetenzfelder Geometrie, Arithmetik/Algebra, Funktionen und Daten
und Zufall zugeordnet und die Anzahl der Seiten zu den Themen ermittelt. Die
Abbildungen 6.2.1 und 6.2.2 zeigen den prozentualen Anteil der Seiten.

Tab. 6.2.1 Übersicht der zugelassenen Schulbücher in NRW für Gymnasium (G8)
(oben) und Gesamtschulen (unten) (Stand: 08.2019)

Name, Verlag Jahrgangsstufe
5 6 7 8 9

Elemente der Mathematik, Schroedel x x x x x
Neue Wege, Schroedel x x x x x
MatheNetz, Westermann x x x
mathe.delta, C.C. Buchner x
Fundamente der Mathematik, Cornelsen x x x x x
Fokus Mathematik, Cornelsen x x x
Duden Mathematik, Cornelsen (Duden) x x
Lambacher Schweizer, Ernst Klett x x x x
Das Mathematikbuch, Ernst Klett x x x
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Name, Verlag Jahrgangsstufe
5 6 7 8 9 10

Mathematik heute, Schroedel x x x x x x
Sekundo (plus), Schroedel x x x x x x
Mathematik, Westermann x x x x x x
mathewerkstatt, Cornelsen x x x x x x
Zahlen und Größen, Cornelsen x x x x x x
Mathe live, Ernst Klett x x x x x x
Schnittpunkt Mathematik, Ernst Klett x x x x x x

Insgesamt beträgt der Anteil der Geometrie in beiden Schulformen etwas weniger
als ein Drittel und steht damit an zweiter Stelle nach Arithmetik und Algebra. Es
fällt auf, dass im Gymnasium die Geometrie in der 9. Klasse fast die Hälfte der
Schulbuchseiten einnimmt, während in den Jahrgangsstufen davor der Anteil meist
weniger als ein Viertel betrug. Dies liegt daran, dass in der 9. Klasse die großen
Themen wie Satzgruppe des Pythagoras, Ähnlichkeit und Strahlensätze sowie Tri-
gonometrie durchgenommen werden. Eine Übersicht aller Themen liefert die Abb.
6.3.1, S. 237. Nach dem Spiralprinzip werden ebene Figuren und Körper schrittweise
eingeführt:
In den unteren Stufen 5 und 6 werden vor allem Vierecke definiert und auf ihre Ei-
genschaften untersucht. Als Körper werden Würfel und Quader thematisiert. In den
Stufen 7 und 8 stehen Dreiecke im Vordergrund. So werden die Winkelsumme und
die Kongruenzsätze an Dreiecken eingeführt. Als Körper werden Prismen bespro-
chen. In den Klassen 9 und 10 wird als ebene Figur der Kreis thematisiert und als
Körper passend Kegel und Zylinder. Als Weiterführung der Dreiecke kommen dann
Satzgruppe des Pythagoras, Strahlensätze sowie Trigonometrie.
In der Gesamtschule sind die Unterschiede zwischen den Büchern innerhalb einer
Jahrgangsstufe deutlich größer, insgesamt jedoch sind die Anteile gleich. Wie auch
beim Gymnasium nimmt die Geometrie etwas weniger als ein Drittel der Seiten ein
und steht wieder an zweiter Stelle nach Arithmetik und Algebra. Bspw. beträgt der
Anteil in Mathematik heute in Klasse 10 etwa ein Drittel, dagegen in Mathematik
weniger als ein Viertel. Dies liegt daran, dass einige Themen der 9. und 10. Jahr-
gangsstufen unterschiedlich auf die Jahrgänge verteilt sind. So wird in Mathematik
das Thema Volumen und Oberfläche von verschiedenen Körpern wie Prisma, Pyrami-
de, Kegel und Zylinder in die 9. Klasse vorgezogen, in den anderen Büchern dagegen
erst ein Jahr später behandelt. Gleiches ist auch in Klasse 7 und 8 zu beobachten. So
werden in Jgst. 7 in Schnittpunkt Mathematik nur Dreiecke, Kongruenzsätze sowie
In- und Umkreis thematisiert, dagegen in Sekundo auch Flächeninhalt von Rechteck
und Dreieck sowie Volumen von Quader und zusammengesetzter Körper besprochen,
welche im erstgenannten Buch Themen der 8. Klasse sind.
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Jgst. 5

Geometrie Arithmetik/Algebra Funktionen Daten und Zufall

Jgst. 6 Jgst. 7 Jgst. 8 Jgst. 9 Gesamt

Fundamente
der Mathematik

Fokus Mathematik

Elemente
der Mathematik

Neue Wege

Lambacher
Schweizer

Abb. 6.2.1 Anteile der inhaltsbezogenen Kompetenzfelder in Schulbüchern an Gym-
nasien in NRW

Jgst. 5

Geometrie Arithmetik/Algebra Funktionen Daten und Zufall

Jgst. 6 Jgst. 7 Jgst. 8 Jgst. 9 Jgst. 10 Gesamt

Sekundo

Mathematik heute

Mathematik

Schnittpunkt Mathematik

Abb. 6.2.2 Anteile der inhaltsbezogenen Kompetenzfelder in Schulbüchern an Ge-
samtschulen in NRW
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6.3 Der Geometrieunterricht an Gymnasien und Gesamt-
schulen

Welche Themen sind notwendig, um sich mit Zentral- und Parallelprojektion beschäf-
tigen zu können? Die Beantwortung dieser Frage ist notwendig, um eine Einordnung
in den Lehrplan zu ermöglichen. Die nachfolgende Abbildung 6.3.1 stellt eine Über-
sicht beider Schulformen dar. Sie beinhaltet ebenso Anmerkungen zu bestimmten
Schulbüchern, in denen Aufgaben zum Thema Projektion gefunden wurden, welche
später noch im Einzelnen vorgestellt werden.
Die Übersicht entstand durch Sichtung verschiedener in NRW vom Schulministerium
2019 zugelassener Bücher für den Mathematikunterricht. Für die Unterteilung der
Klassen wurde sich am Kernlehrplan orientiert, da hier ebenfalls die Lernziele am
Ende der 6. bzw. 8. und 10. Klasse1 formuliert sind. Die Spalten stehen für verschie-
dene Themenbereiche des Geometrieunterrichts und die Zeilen für die Klassenstufen.
In diesem Raster wurden die Geometriethemen eingeordnet.
Wie erwartet zeigt die Übersicht, dass in der 5. und 6. Jahrgangsstufe der Schwer-
punkt auf das Erlernen von Definitionen und Grundbegriffen liegt während in der
7. und 8. Jahrgangsstufe mathematische Sätze erkundet werden. Die Sätze beziehen
sich vor allem auf Dreiecke.
Mit weiß und gestrichelten Umrissen sind Themen zur Zentral- bzw. Parallelprojek-
tion markiert. Die Übersicht zeigt deutlich, dass die Aufgabenbeispiele hauptsächlich
in der 8. und 9. Jahrgangsstufe gefunden wurden.
In zweiten Hauptteil dieser Arbeit wurde häufig der Strahlensatz verwendet, welcher
ebenfalls in der 9. Klasse gelehrt wird. Die Untersuchung von Invarianten von Abbil-
dungen sind in der Übersicht selten zu finden, denn auch das Thema geometrische
Abbildungen ist kaum bis gar nicht vorhanden. Es stellt sich daher die Frage, wie
überhaupt mit geometrischen Abbildungen im Unterricht umgegangen wird. Hierfür
wurden vier verschiedene Schulbuchreihen gesichtet:

Tab. 6.3.1 Untersuchte Schulbücher

Reihe Jahrgangsstufe
Mathe live 6, 8, 9
MatheNetz 8
Lambacher Schweizer 9
Elemente der Mathematik 5, 6, 8, 9

1Dies gilt für Gesamtschulen und Gymnasien mit dem G9 Modell. Für Gymnasien mit G8 Modell
sind die Kompetenzerwartungen an Ende der 9. Klasse formuliert.
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Nach den Büchern werden zuerst Symmetrien von Figuren in den Klassen 5 bzw.
6 untersucht. Danach folgt die Konstruktion eines Bildpunktes unter Achsen- und
Punktspiegelung mit dem Geodreieck. Dies wurde in allen vier Reihen gefunden.
Die Verschiebung wurde nur im MatheNetz 8 sowie in Elemente der Mathematik 6
thematisiert. Im MatheNetz 8 gibt es zudem eine gute Übersicht zu den vier Kon-
gruenzabbildungen Achsenspiegelung, Drehung und Verschiebung sowie Punktspie-
gelung als Halbdrehung. Hier werden die Abbildungen mit ihren Symmetrien genannt
sowie alle Parameter, welche die Abbildung erst festlegen. Bspw. definiert sich eine
Achsenspiegelung über die Spiegelgerade und für eine Drehung muss ein Drehzen-
trum und der Drehwinkel festgelegt werden. Weiterhin werden auch Fixpunkte und
-geraden gelistet. In einigen Büchern der vier Reihen wird auf Besonderheiten der
Abbildungen hingewiesen. So steht in Elemente der Mathematik 6, dass bei einer
Punktspiegelung Punkt, Bildpunkt und das Zentrum auf einer Geraden liegen, und
in Mathe live 6, dass bei einer Punktspiegelung Punkt und Bildpunkt von dem Zen-
trum denselben Abstand aufweisen.
In Klasse 9 wird die Ähnlichkeit von Figuren über gleiche Winkel und gleiche Stre-
ckenverhältnisse definiert und danach zur zentrischen Streckung übergeleitet. Die
Vorgehensweise ist also dieselbe wie zuvor. Denn bei der Achsenspiegelung werden
ebenfalls zuerst achsensymmetrische Figuren thematisiert, bevor mithilfe der Spiege-
lung solche Bilder konstruiert werden. Der Fokus liegt weniger auf der geometrischen
Abbildung an sich, denn die Spiegelung wird nicht verwendet, um ein beliebiges
Objekt zu spiegeln, sondern um eine Figur zu einer achsensymmetrischen zu vervoll-
ständigen. Abb. 6.3.2 zeigt hierzu ein Beispiel.
Die Vermutung liegt nahe, dass geometrische Abbildungen im Schulunterricht an
sich nicht von großer Relevanz sind. Eine sinnvolle Behandlung der Projektion ist
daher schwierig. Folglich werden auch Invarianten von geometrischen Abbildungen
im Unterricht nur wenig besprochen. Im Lambacher Schweizer 9 wird die zentrische
Streckung als winkel- und streckenverhältnistreue Abbildung beschrieben. Bild und
Urbild einer zentrischen Streckung sind ähnlich zueinander, d.h. die Winkel verän-

Abb. 6.3.2 Links ergeben Bild und Urbild zusammen eine achsensymmetrische Fi-
gur, während rechts die Achsenspiegelung als Abbildung im Fokus steht.
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dern sich nicht und das Längenverhältnis zwischen Bild und Urbildstrecke bleibt
gleich. Weitere Invarianten wie parallelentreu oder teilverhältnistreu wurden in den
o.g. Büchern nicht gefunden. Vor allem das Teilverhältnis oder das Doppelverhältnis
sind keine obligatorischen Themen im Mathematikunterricht.
Dagegen werden neben den Strahlensätzen auch die Kongruenzsätze an Dreiecken
thematisiert. Die Kongruenzsätze lassen sich mithilfe von Kongruenzabbildungen
beweisen, d.h. durch die Verkettung von Verschiebung, Drehung und Spiegelung
können zwei kongruente Dreiecke aufeinander abgebildet werden. In den gesichte-
ten Schulbüchern dagegen werden diese entweder gar nicht bewiesen oder nur durch
Konstruktionen. Die Schülerinnen und Schüler untersuchen hierzu, mit welcher Kom-
bination von Winkel- und Längenangaben ein Dreieck sich bis auf seine Lage oder
Orientierung eindeutig konstruieren lässt.
Unter diesen Voraussetzungen bzw. Vorkenntnissen der Schülerinnen und Schüler ist
es schwierig, das Thema Projektion zu behandeln. Die Aufgaben zu den Themen
Zentralprojektion, Schrägbilder und Dreitafelprojektion in den gesichteten Schul-
büchern waren gering. Vor allem die Zentralprojektion wurde meist als optionale
Projektarbeit behandelt. Demzufolge hat die Projektion seitens des Lehrplans eher
eine geringe Priorität. Die nachfolgenden Abschnitte stellen einige Aufgaben zu den
drei genannten Bereichen vor, welche in den verfügbaren Schulbücher (Tab. 6.3.1)
gefunden wurden.

6.4 Schulbuchaufgaben zur Projektion

Zur Untersuchung des momentanen Stands der Projektion im aktuellen Mathematik-
unterricht wurden Schulbücher verschiedener Reihen und Jahrgangsstufen gesichtet
und einige Aufgaben zu den Themen Schrägbilder, Dreitafelprojektion und Zentral-
projektion herausgesucht, welche im Folgenden vorgestellt werden.
Wie werden die Begriffe eingeführt? Wir werden feststellen, dass die Dreitafelpro-
jektion ohne Erwähnung der Parallelprojektion vorgestellt wird, ebenso auch die
Konstruktion der Schrägbilder. Oft wird hierbei die Kavalierperspektive verwendet,
wobei die Tiefenlinien unter einem Winkel von 45◦ gezeichnet werden. Für die Ver-
kürzung entspricht eine Kästchendiagonale einem Zentimeter, d.h. 1√

2
ist der Faktor.

Die Zentralprojektion war von den drei Bereichen am wenigsten präsent. Meist wird
sie als Projekt auf einer Seite kurz vorgestellt, wobei nur auf die Konstruktion mit
einem oder zwei Fluchtpunkten eingegangen wird, aber bspw. nicht darauf, woher
der Fluchtpunkt kommt oder bei welcher Lage sich die Projektionen paralleler Ge-
raden in einem Punkt schneiden.
Neben den Einführungs- und Konstruktionsbeispielen wird auch auf die zugehöri-
gen Aufgaben eingegangen. Welche Lernziele können mit diesen Aufgaben erreicht
werden? Wie sinnvoll sind diese im Umgang mit dem Thema?
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6.4.1 Schrägbilddarstellung

In einer Vielzahl der zugelassenen Schulbücher wird nur die Schrägbilddarstellung
in Kavalierperspektive mit einem Verzerrungswinkel von 45◦ thematisiert. Die Tie-
fenlinien werden bei Würfeln und Quadern derart verkürzt, dass 1 cm einer Käst-
chendiagonalen entspricht. Da die Kästchenlänge in Schulheften 0,5 cm ist, ist der
Verkürzungsfaktor 1√

2
. Diese Konvention hat den Vorteil, dass die Schülerinnen und

Schüler sich an dem gängigen Gitter der Schulhefte orientieren können, was gerade
für die 5. Klasse sinnvoll erscheint, da das Geodreieck und der allgemeine Winkel-
begriff erst in der 6. Klasse eingeführt wird, wie die Übersicht in Abb. 6.3.1, S. 237
zeigt. In Elemente der Mathematik 5 (kurz: EdM) wird als Beispiel ein Quader in drei
Schritten gezeichnet (Abb. 6.4.1). Zuerst wird die Vorderseite des Quaders unverän-
dert übernommen. Im zweiten Schritt werden die Tiefenlinien auf den Kästchendia-
gonalen übertragen, wobei eine Diagonale einem Zentimeter entsprechen soll. Zur
Steigerung des räumlichen Eindrucks werden verdeckte Linien gestrichelt gezeichnet.
Zuletzt werden die Endpunkte der Tiefenlinien verbunden, sodass die hintere Fläche
des Quaders entsteht.

In Klasse 8 werden Prismen gezeichnet. Hierfür wird ebenfalls ein Winkel von 45◦

verwendet. Für den Verkürzungsfaktor wird nun 1
2 angegeben, womöglich, weil durch

die Verwendung des Geodreiecks nun eine Orientierung am Gitter nicht mehr nötig ist
bzw. eine Länge zu halbieren für die Schülerinnen und Schüler einfacher zu berechnen
ist als die Multiplikation mit dem Faktor 1√

2
.

Abb. 6.4.2 zeigt die im Buch beschriebenen Schritte. Im Text wird die Höhe als

1. Schritt 2. Schritt 3. Schritt

Abb. 6.4.1 EdM 5, S. 172, Konstruktion eines Schrägbildes [14]

1. Schritt

45◦

2. Schritt 3. Schritt

Abb. 6.4.2 EdM 8, S. 231, Schrägbild eines Prismas [15]
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geeignete Hilfslinie bezeichnet, da es sich hierbei um eine „Tiefenstrecke“ handelt,
welche „orthogonal zur Vorderkante“ [15, S. 231] verlaufen. Es wird nicht explizit
gesagt, dass diese Hilfslinie benötigt wird, da sich der Verzerrungswinkel von 45◦

nur auch die zur Bildebene orthogonalen Tiefenlinien bezieht. Im ersten Schritt wird
die Höhe und die Lage des Lotfußpunktes gemessen und im zweiten Schritt auf der
unveränderten Grundseite des Bilddreiecks übertragen. Die Höhe wird mit 45◦ und
mit halber Länge ergänzt. Somit ist die Spitze des Dreiecks gefunden. Im letzten
Schritt werden die Höhen des Prismas in wahrer Größe übernommen und mit der
oberen Dreiecksfläche das Schrägbild des Prismas vervollständigt.
In demselben Buch wird auch thematisiert, dass die Wahl von Verzerrungswinkel
und Verkürzungsfaktor zu ungünstigen Bildern führen kann. Die Abbildung im Buch
zeigt dabei ein Schrägbild mit verdeckten Kanten (Abb. 6.4.3, oben). Schülerinnen
und Schüler werden dazu motiviert, Verzerrungswinkel und Verkürzungsfaktor zu
verändern und die entstehenden Schrägbilder auf ihre Wirkung zu beurteilen. Drei
Wertepaare sollen sie mit einem Würfel von 4 cm ausprobieren. Die Lösung zeigt
Abb. 6.4.3 unten.
In allen drei Beispielen sind keine Kanten verdeckt. Dies ist verwirrend, da aufgrund
des Negativbeispiels in der Aufgabe ein Variante mit verdeckten Kanten zu erwarten
wäre. Es wird auch nicht näher erläutert, nach welchen Kriterien die Beurteilung
erfolgen soll. Im Aufgabentext heißt es:

In der Einführung wurde 45◦ als Verzerrungswinkel und 1
2 als Verkür-

zungsfaktor gewählt. Dabei erhält man oft, aber nicht in jedem Fall, ein
informatives Schrägbild (siehe linker Quader). [15, S. 32]

45◦, 1
2

Beispiel:
30◦, 1

3

45◦, 1
2

Lösung:

30◦, 1
3 60◦, 2

3

Abb. 6.4.3 EdM, S.232 : Variation von Verzerrungswinkel und Verkürzungsfaktor
[15]
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α 90◦ − α

α beliebig, hier 30◦,
alle Kanten unverkürzt

Militärperspektive

30◦ 30◦

alle Kanten unverkürzt

Isometrische Darstellung

7◦ 42◦

Tiefenlinien werden halbiert,
alle anderen bleiben unver-
kürzt

Dimetrische Darstellung

Abb. 6.4.4 Schrägbilddarstellung in
Mathe live 8 [27], S. 11

Was ist also ein informatives Schräg-
bild? Die verdeckten Kanten scheinen nur
ein mögliches Problem zu sein. Schüler-
innen und Schüler könnten die Blick-
richtung beurteilen oder ob die Pro-
jektion einen Würfel suggeriert. Letzte-
res trifft auf alle drei Schrägbilder zu
und für höhere Verzerrungswinkel scheint
der Blick weiter nach unten zu ge-
hen bzw. sich die Position des Be-
trachters nach oben zu verschieben, da
von 30◦ bis 60◦ immer mehr von der
Decken- bzw. Bodenfläche zu sehen ist.
Es fällt auf, dass Winkel und Faktor
sind nicht beliebig gewählt wurden. Bei
allen drei Paaren beträgt das Verhältnis
von Verzerrungswinkel zu Verkürzungsfak-
tor 90◦.
Das Problem in dieser Aufgabe ist, dass
zwar Winkel und Faktor variiert werden,
aber der Zusammenhang zwischen Schräg-
bild und Parallelprojektion fehlt. So kann
diese Aufgabe nicht mehr vermitteln, als,
dass 45◦ und 1√

2
nur eine Konventi-

on ist und andere Wertepaare zu un-
terschiedlichen Schrägbildern führen. Oh-
ne die Kenntnis von Projektionsrichtung
und Bildebene können Verzerrungswinkel
und Verkürzungsfaktor nicht näher thema-
tisiert werden. Es bleibt daher bei einer
oberflächlichen Betrachtung der Axonome-
trie.

Im Schulbuch Mathe live 8 werden ebenfalls
Winkel und Faktor variiert. Positiv ist hier zu erwähnen, dass es nicht bei der Kava-
lierperspektive bleibt, sondern sogar die Militärperspektive (unverzerrte Projektion
des Grundrisses), isometrische und dimetrische Darstellung vorgestellt werden (Abb.
6.4.4). Dies liegt womöglich daran, dass das Schulbuch für die Gesamtschule ausge-
legt ist, sodass Bezüge zu benötigten Kenntnissen im Handwerk üblich sind. So gibt
es im Schulbuch der 8. Klasse einen Exkurs zum technischen Zeichnen mit Aufgaben
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zur Darstellung von Bauteilen u.a. auch mit der Dreitafelprojektion ([27], S. 19f).
Beim Zeichnen des Schrägbildes einer geraden Pyramide wird der Schnittpunkt der
Diagonalen in der Projektion der rechteckigen Grundfläche verwendet, um den Mit-
telpunkt zu finden. Es wird allerdings nicht erklärt, warum so der Mittelpunkt in der
Projektion gefunden werden kann. Da der Bezug zur Parallelprojektion fehlt, fehlen
auch die Invarianten. Daher kann die Mittelpunktsfindung nicht durch die Inzidenz-
oder Teilverhältnistreue begründet werden.
In einer älteren Ausgabe von MatheNetz 8 für das Gymnasium wurde noch die
Militär- und Kavalierperspektive (im Buch mit Horizontal- und Frontalprojektion
bezeichnet) thematisiert ([9], S. 89). In den neueren zugelassenen Schulbüchern die-
ser Reihe ist dieses Thema gänzlich verschwunden. In der Zusammenfassung des
Buches zum Thema Schrägbilddarstellung, welche die Abb. 6.4.5 zeigt, wird durch
die Assoziation mit den Handlungen „Bauen“ und „Ziehen“ indirekt gesagt, dass bei
der Militärperspektive (links) der Grundriss erhalten bleibt, dagegen bei der Kava-
lierperspektive (rechts) der Aufriss. Die Konstruktion der Tiefenlinien bei der Kava-
lierperspektive wird durch die Angabe des 45◦ Winkels angedeutet. Die Verkürzung
der Tiefenlinien wird nicht genannt, ebenso die Winkel, die zur gekippten Position
in der Militärperspektive führen. Es bleibt dem Betrachter überlassen, anhand der
Darstellung die Konstruktionsschritte zu erkennen. Ebenso fehlt die Grundlinie im
zweiten Bild der Reihe links, sodass nicht erkennbar ist, dass die ergänzten Kanten
über dem Grundriss orthogonal zu dieser Linie sind.

Aufriss

Grundriss

Seitenriss

Horizontalprojektion

Frontalprojektion

45°

Abb. 6.4.5 Schrägbildarstellung in MatheNetz 8 [9, S. 89] (ältere Ausgabe)
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x y

z

1
2

3
4

1

1

2

2

3

3

Abb. 6.4.6 Die Projektion ei-
nes räumlichen Koordinaten-
system in Mathe Netz 8 (äl-
tere Ausgabe) [9, S. 89]

Der Bezug zur Parallelprojektion fehlt ebenfalls.
Dagegen wird in dem Buch sogar ein räumliches
Koordinatensystem vorgestellt, welches nicht wie
das übliche, dreidimensionale kartesische System
gezeichnet wird. Wie für die Konstruktion von
Axonometrien wird in der nebenstehenden Ab-
bildung ein Koordinatensystem mit anderen Ver-
zerrungswinkeln und Verkürzungsfaktoren ange-
deutet. Es bleibt allerdings bei einer Andeutung,
denn das räumliche Koordinatensystem wird hier
nicht näher thematisiert. Möglicherweise weil das
Buch für die 8. Jahrgangsstufe konzipiert wur-
de und das räumliche Koordinatensystem erst in
der Oberstufe für die analytische Geometrie ein-
geführt wird.

Zusammenfassend benutzen alle gesichteten Schulbücher für die Konstruktion von
Schrägbildern die Kavalierperspektive mit einem Verzerrungswinkel von 45◦ und ei-
nem Verkürzungsfaktor von 1√

2
(Kästchendiagonale) bzw. 1

2 . Erste Schrägbilddarstel-
lungen finden sich in der 6. Klasse für Quader und Würfel. In manchen der Bücher
wurde das Thema in der 8. Klasse wieder aufgegriffen und weiter vertieft, in dem
auch Prismen oder Zylinder gezeichnet oder Winkel und Faktor verändert wurden.
Nur in zwei der gesichteten Bücher wurden auch andere Darstellung als die Kavalier-
perspektive gefunden. In allen Büchern konnte kein erwähnter Zusammenhang zur
Parallelperspektive festgestellt werden. Stattdessen wurden Begriffe, wie veränderter
Standpunkt oder andere Blickrichtung, verwendet. Mit Letzterem kann der Einfall
der parallelen Projektionsstrahlen auf die Bildebene assoziiert werden. Dagegen ist
der Begriff eines veränderten Standpunktes eher irreführend, da die Richtung der
Projektionsstrahlen überall gleich ist. Dieser Begriff passt eher zur Zentralprojek-
tion, da die Position des Zentrums bzw. des Betrachters relativ zur Bildebene sich
auch auf das Bild auswirkt.

6.4.2 Dreitafelprojektion

Die Dreitafelprojektion wurde in den Büchern Mathe live 8 und Elemente der Ma-
thematik 9 gefunden. In beiden wird ein dreidimensionaler Körper in einer Raumecke
dargestellt. Senkrechte Linien gehen von den Eckpunkten des Körpers auf die drei
verschiedenen Ebenen, um die Risse zu ergeben. In beiden Büchern wird auch das
Aufklappen der Raumecke gezeigt, sodass diese in einer Ebene zum liegen kommen.



6.4. Schulbuchaufgaben zur Projektion 245

Motiviert wird das Thema durch verschiedene Ansichten eines Körpers zur Verbesse-
rung des räumlichen Vorstellungsvermögens. Während im ersten Buch die Dreitafel-
projektion ein eigener Abschnitt ist, findet es im zweiten nur als optionale Vertiefung
am Ende des Abschnittes Pyramide, Kegel, Kugel Erwähnung.

Abb. 6.4.8 Beispiel einer Dreita-
felprojektion in Mathe live 8
[27, S. 7]

In Mathelive 8 wird ein angeschnittener und ein
vollständiger Quader als Beispiel verwendet. Die
Risse werden mit Seitenansicht und Grundriss
bezeichnet. Es wird nicht unterschieden zwischen
Seiten- und Aufriss. Die Aufgaben dazu erstre-
cken sich über vier Seiten inklusive einem Bezug
zum technischen Zeichnen in der Holzverarbei-
tung. Es sollen die Ansichten zu verschiedenen
Körpern wie Kegel, Zylinder oder Pyramide ge-
zeichnet werden, wie auch die Risse von einem
Quader, dessen Seitenflächen nicht parallel zu
den Rissebenen ausgerichtet sind. Mit dem The-
ma technisches Zeichnen wird die Dreitafelpro-
jektion in Zusammenhang mit Schrägbildern gebracht.

Im zweiten Buch EdM 9 wird die Dreitafelprojektion durch Grundrisszeichnungen
aus der Architektur motiviert. Abb. 6.4.7 zeigt das Einführungsbeispiel, welches deut-
lich komplexer ist, als der Quader im vorherigen Buch. Es wird eine Kirche zusam-
mengesetzt aus Quadern, Prisma und Pyramide verwendet sowie ein Punkt in allen
drei Rissen markiert. Mit Hilfslinien wird der Zusammenhang zwischen allen drei
Rissen gekennzeichnet. Für verdeckte Kanten werden gestrichelte Linien verwendet.
Der Punkt P wird mit P ′ im Grundriss gekennzeichnet. Dies entspricht auch der Be-

E1

E2 E3 E2

E1

E3

P ′′′P ′′P ′′

P ′

P ′′′

P ′′′

P ′

Abb. 6.4.7 In Elemente der Mathematik 9 (kurz: EdM 9) wird ein Modell einer
Kirche bestehend aus Quadern, Prisma und Pyramide als Beispiel einer Dreitafel-
projektion verwendet [16, S. 232].
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zeichnung in der Literatur. In den Seitenansichten wird zwischen Seiten- und Aufriss
unterschieden.
Im Gegensatz zum ersten Buch gibt es allerdings nur vier Aufgaben zu dem Thema.
In der ersten sollen die Risse von verschiedenen zusammengesetzten Körpern kon-
struiert, in der nächsten zu zwei Rissen der dritte rekonstruiert werden. Die nächste
Aufgabe zeigt, dass zwei Risse nicht eindeutig auf den Körper schließen lassen. Als
Beispiel wird ein Quader und ein Zylinder gezeigt. Sie liegen derart in der Raumecke,
dass Grund- und Aufriss dieselben Rechtecke zeigen. Die Schülerinnen und Schüler
sollen nun weitere Beispiele finden.

Abb. 6.4.9 Die Dreitafel-
projektion eines gesuch-
ten Körper im Buch
EdM 9 [16, S. 232]

In der letzten Aufgabe sind alle drei Risse eines unbe-
kannten Körpers, wie in der nebenstehenden Abbil-
dung, gezeigt: Im Grundriss ein Dreieck, im Aufriss
ein Quadrat und im Seitenriss ein Kreis. Allerdings
sind keine Längenangaben gegeben, was die Aufgabe
sehr erschwert. Damit der Körper existiert, muss z.B.
der Kreis die Seiten des Quadrates berühren, d.h. ein
Innkreis sein. Das Dreieck sieht in der Zeichnung wie
ein gleichseitiges aus. Beim Versuch, diese Aufgabe
mithilfe von GeoGebra zu lösen, wurde festgestellt,
dass es sich um ein gleichschenkliges Dreieck handeln
muss, wobei Grundseite und Höhe einer Quadratseite
entsprechen. Dies zeigt die ergänzte, obere Darstel-
lung, bei welcher alle drei Risse ineinander gezeichnet
wurden.
Wie Schülerinnen und Schüler die Lösung der Aufga-
be finden? Wir nehmen zwei Risse und überlegen uns,
welcher Körper hierdurch beschrieben werden kann.
Ein Zylinder, dessen Durchmesser mit der Höhe über-
einstimmt, hat als Riss einen Kreis und ein Quadrat,
während ein Prisma mit dreieckiger Grundfläche sich
aus Quadrat und Dreieck ergibt. Die Idee ist nun, sich den Schnitt beider Körper
anzuschauen. Hierzu übertragen wir die Risse in GeoGebra und konstruieren den
Zylinder (Abb. 6.4.10). Im zweiten Schritt entsteht das Prisma und wir markieren
die Schnitte der seitlichen Prismaflächen mit dem Zylinder (blau). Der Schnittkörper
liefert allerdings nicht das richtige Ergebnis, da der Aufriss kein Quadrat mehr ist,
wie die folgende Abbildung zeigt.
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(a) Zylinder (b) Schnitt von Zylinder und Prisma

(c) Der Schnitt beider Körper (blau)... (d) ...erfüllt nicht das Quadrat im Aufriss.

Abb. 6.4.10 Gesucht ist ein Körper, welcher ein Dreieck, ein Quadrat und einen
Kreis als Riss besitzt. Der erste Versuch (markierte Grundseite des Dreiecks ist par-
allel zum Aufriss) führte nicht zum richtigen Ergebnis.

In einem zweiten Versuch drehen wir das Dreieck um 90◦, sodass die Grundseite
nun zum Kreis zeigt. In Abb. 6.4.11 sind wieder die einzelnen Schritte dargestellt.
Das Prisma ist nun um 90◦ gedreht, sodass beim Schnitt die quadratische Fläche im
Längsschnitt des Zylinders enthalten bleibt. Es hat sich also herausgestellt, dass die
Lage der Risse in der Aufgabestellung irreführend ist.
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(a) Die Grundseite des Dreiecks ist parallel
zum Seitenriss.

(b) Schnitt von Zylinder und Prisma...

(c) ...führt nun zum richtigen Ergebnis. (d) Der Aufriss ergibt nun ein Quadrat.

Abb. 6.4.11 Im zweiten Versuch wurde das Dreieck im Grundriss um 90◦ gedreht.
Somit konnte der gesuchte Körper rekonstruiert werden.

Sowohl die Schrägbilddarstellung als auch die Dreitafelprojektion stehen in Zusam-
menhang mit der Parallelprojektion. Im ersten Fall sind es die Bilder, wobei Ver-
zerrungswinkel und Verkürzungsfaktor von dem Einfall der Projektionsstrahlen auf
die Bildebene bestimmt werden, und im zweiten Fall entstehen die Risse durch eine
orthogonale Projektion auf die Flächen der Raumecke. In allen gesichteten Schulbü-
chern wird die Parallelprojektion nicht genannt oder thematisiert. Bei den Beispielen
zur Dreitafelprojektion werden die senkrechten Projektionsstrahlen nur angedeutet.
Es bleibt oft bei einer impliziten Andeutung, wenn von verschiedenen Blickrichtun-
gen, oder bei den Rissen auch von Körperansichten, gesprochen wird.
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6.4.3 Zentralprojektion

In der älteren Ausgabe von MatheNetz 8 gibt es eine Seite mit Projektideen zum
Thema Zentralprojektion und künstliche Welten [9, S. 92]. In der Kunst auf Gemäl-
den oder im Bereich der Computerspiele werden reale oder ausgedachte, räumliche
Szenen auf einer Ebene dargestellt. Damit diese besonders realistisch erscheinen, wird
die Zentralprojektion verwendet. Passend zur Entdeckung der Perspektive wird in
dem Schulbuch ein Gemälde des Künstlers Paolo Ucello von 1467, der Renaissance,
gezeigt sowie ein Ausschnitt aus einem bekannten Computerspiel. Beide Bilder ent-
halten einen gekachelten Boden, welcher an ein Schachbrett erinnert, als gängiges
Beispiel einer Zentralprojektion. Darunter ist eine Skizze, wo eine Person auf einen
Turm und einen Baum schaut (Abb. 6.4.12). Von dem Auge der Person gehen „Seh-
strahlen“ aus, welche die Bildebene vor dem Betrachter schneiden, um die Entstehung
der projizierten Bilder zu skizzieren. Direkt unterhalb dieser Szene ist anhand eines
Quaders die Konstruktion des zentralprojektiven Bildes mit einem bzw. mit zwei
Fluchtpunkten gezeigt. Nachteil dieser Kombination der Abbildungen ist, dass sie
suggeriert, die Sehstrahlen stimmen mit den Tiefenlinien zur Konstruktion des Qua-
ders überein, wie auch das Projektionszentrum in der oberen Abbildung mit dem
Fluchtpunkten in der unteren. Der Zusammenhang zur Fluchtpunktkonstruktion,
wie sie Schülerinnen und Schüler aus dem Kunstunterricht kennen sollten, wird nicht
deutlich in der räumlichen Skizze von Objekt, Bild, Betrachter und Bildebene.

Abb. 6.4.12 Zentralprojektion als Projektidee in MatheNetz 8 (ältere Ausgabe) [9,
S. 92]



250

(a) Projektion eines Quaders (b) Unterschied zwischen Sehstrahlen und
den Hilfslinien der Konstruktion mit dem
Fluchtpunkt

Abb. 6.4.13 Mit GeoGebra können Schülerinnen und Schüler einen Quader auf die
Bildebene projizieren.

Vogelperspektive

Normalperspektive

Froschperspektive

F1 F2

F1 F2

Abb. 6.4.14 Konstruk-
tion eines Quaders
wie im Kunstunter-
richt

GeoGebra ermöglicht die Konstruktion im Raum, sodass
Schülerinnen und Schüler die Projektion eines Quaders
mit den Sehstrahlen nachbauen können. Abb. 6.4.13 (a)
zeigt ein Arbeitsblatt. Mithilfe der Schieberegler lassen
sich Länge r und Winkel α der Diagonalen der Grund-
fläche des Quaders variieren. Mit h wird die Höhe ein-
gestellt. Mit dem Punkt M kann der Quader verschoben
und mit A gedreht werden. Zur besseren Orientierung
sind parallele Kanten farbig markiert. Schülerinnen und
Schüler können mit diesem Arbeitsblatt nun beobachten,
wie sich die Lage der Fluchtpunkte bei Änderung von
Größe und Position des Quaders verändert. Ebenso wird
das Bild über die Schnittpunkte der Sehstrahlen mit der
Bildebene ausgehend von dem ursprünglichen Objekt er-
zeugt. Die Fluchtpunkte entstehen dabei. Im Kunstun-
terricht dagegen orientiert sich die Projektion nicht an
das Objekt mit seiner Lage und seinen Maßen. Es wird
eher wie folgt vorgegangen (Abb. 6.4.14): Mit der Lage
des Horizontes wird über Frosch-, Normal- oder Vogelper-
spektive entschieden, d.h. wie hoch der Betrachter relativ
zum Objekt steht. Dann werden links und rechts von der
Bildmitte die Fluchtpunkte auf die Horizontlinie gesetzt.
Anschließend wird über die Tiefenlinien der Quader kon-
struiert.
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Die Wahl von zwei Fluchtpunkten zeigt, dass der Quader nicht parallel zur Bildebene
ausgerichtet ist. Wie weit dieser aber gedreht ist, wird durch die Lage der Flucht-
punkte bestimmt. Da diese aber beliebig gesetzt werden, ist der Winkel wie auch die
konkreten Maße des Quaders unbekannt, ebenso der Standort des Betrachters relativ
zur Bildebene. Es ist bspw. anhand der Projektion nicht erkennbar, ob es sich um
einen allgemeinen Quader oder um einen Würfel handelt. Vorteil dieser Methode ist
dagegen, dass sehr einfach Projektionen direkt auf der Bildebene konstruiert werden
können, ohne einen Grund- oder Aufriss zu benötigen. Daher erscheint die Vorge-
hensweise für den Kunstunterricht geeignet. Im Mathematikunterricht sollte dagegen
der Fokus weniger auf das fertige Bild als auf seine Entstehung liegen. Hier sollte das
Lernziel, die Projektion als geometrische Abbildung zu verstehen, sein. Und dies lässt
sich mit einer oberflächlichen Darstellung, wie in den gesichteten Schulbüchern, nicht
erreichen.
Dieses GeoGebra Arbeitsblatt macht zudem deutlich, dass die Hilfslinien, welche bei
der direkten Konstruktion über die Fluchtpunkte genutzt werden, nicht die Projek-
tionsstrahlen sind, wie die Abb. 6.4.13 (b) zeigt.
Nach der kurzen Erklärung der Zentralprojektion in der älteren Ausgabe von Ma-
theNetz 8 folgen drei Aufgaben, u.a. das Bild eines Schachbrettes bzw. eines Würfels
zu konstruieren. Da wie schon erläutert, die Fluchtpunktkonstruktion nicht von dem
Objekt selbst ausgeht, ist es schwierig, ein Feld bestehend aus Quadraten oder einen
Würfel zu konstruieren. Zumindest wenn der Anspruch besteht, dass Schülerinnen
und Schüler die Zentralprojektion ganzheitlich verstehen lernen, denn tatsächlich
können wir zeigen, dass jede Konstruktion eines Schachbrettes nach folgendem Sche-
ma, auch ohne Grundriss, zum richtigen Ergebnis führt.

?

F M

Abb. 6.4.15 Wie muss der Abstand der ersten horizontalen Linie gewählt werden,
damit die Projektion ein Schachbrett darstellt?

Wir gehen davon aus, dass das Schachbrett parallel zur Bildebene ausgerichtet ist.
Dann stehen die Tiefenlinien senkrecht auf jener, sodass wir nur einen Fluchtpunkt
benötigen, wie Abb. 6.4.15 zeigt. Wir setzen F auf die Horizontlinie. Unterhalb dieser
zeichnen wir eine parallele Strecke, welche in der Bildebene liegt. Demnach bleiben
Längen auf dieser Strecke nach der Projektion unverzerrt, d.h. wir können diese in



252

gleich große Abschnitte unterteilen. In der Abbildung sind es vier. Wir verbinden die
Endpunkte dieser Abschnitte mit F , sodass die Tiefenlinien entstehen. Nun müssen
wir entscheiden, in welchen Abstand zur vorderen Strecke wir die nächste horizontale
Linie des Schachbrettes einzeichnen. Danach können wir mithilfe der Diagonalen alle
weiteren Horizontallinien ergänzen. Hierbei nutzen wir aus, dass die Projektion nach
Definition inzidenztreu ist.
Aber wo befindet sich die gesuchte Höhe, damit dies die Projektion eines Schachbret-
tes mit quadratischen Feldern wird? Die Antwort ist, dass die Höhe beliebig gewählt
werden kann, da nach der Aufgabe der Standort des Betrachters nicht vorgegeben
wird. Abb. 6.4.16 zeigt, wie sich der Standort aus dem konstruierten Bild rekon-
struieren lässt. Die linke Seite der Abbildung zeigt das Bild aus Abb. 6.4.15. Wir
ergänzen darunter den Grundriss. Nach Vorgabe liegt das Schachbrett an der Bilde-
bene, d.h. die Verlängerung der unteren Linie ergibt die Risskante, wo sich Objekt-
und Bildebene schneiden (vgl. Abb.4.3.6, S. 106). Wir fällen durch F das Lot auf die
Risskante und erhalten F ′. Analog ergibt sich M ′ aus dem Fluchtpunkt der Diago-
nalen. Da die Tiefenlinien senkrecht zur Bildebene liegen, fällt der Fluchtpunkt mit
dem Hauptpunkt H zusammen, d.h. im Grundriss liegt das Projektionszentrum Z ′

auf ihr. Wir zeichnen die Hauptdiagonale im Grundriss des Schachbrettes ein. Da
wir jeden Fluchtpunkt durch die Parallele durch das Zentrum erhalten, zeichnen wir
nun die Parallele zur Hauptdiagonalen durch M ′. Der Schnitt mit dem Lot durch F
entspricht somit Z ′.
Zeichnen wir die zweite Horizontale in der Projektion weiter weg von der unteren
Kante, so liegt M näher F . Dabei verringert sich auch der des Betrachters von der
Bildebene, wie die rechte Seite der Abb. 6.4.16 zeigt.
Demnach ist die Aufgabe in dem Schulbuch MatheNetz 8 mit der nur grob vorge-
stellten Zentralprojektion lösbar, allerdings erfüllt sie kaum ein sinnvolles Lernziel.
Statt den Zusammenhang zwischen Bild und Lage der Bildebene bzgl. des Betrach-
ters zu thematisieren, wird in dieser Aufgabe ausgenutzt, dass jede Entscheidung des
Lernenden, wo die horizontale Begrenzung der ersten Quadratreihe zu setzen ist, zu
einem korrekten Ergebnis führt. Falls der Lernende die Kantenlänge der Quadrate
als Höhe verwendet, weil in einem Quadrat alle Seiten gleich lang sind, kann dies zu
einem Fehlkonzept führen. Vor allem, wenn die nächste Reihe ebenfalls in der Höhe
der Quadrate abgetragen wird, d.h. jede Reihe äquidistant zu ihrem Vorgänger wird.
Denn in den Abbildung des Buches gibt es keinen Hinweis, dass die Diagonale als
Hilfslinie verwendet werden kann. Erst damit können Schülerinnen und Schüler die
nächsten drei Reihen mit den richtigen Abständen ergänzen.
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F M

Abb. 6.4.17 Die Diagonalen in einem Schachbrett sind parallel zueinander, d.h. in
der Projektion schneiden sich alle Diagonalen im Fluchtpunkt M .

Aber wie lassen sich weitere Reihen konstruieren? Wir wissen, dass alle Geraden mit
gleicher Richtung sich in einem Fluchtpunkt auf der Horizontlinie schneiden werden.
Da auch die Diagonalen parallel zueinander sind, mussM dieser gesuchte Punkt sein.
Wir verbinden daher die linke obere Ecke der letzten Kachel auf der linken Seite mit
M , welche wieder die Tiefenlinien an der richtigen Höhe der quadratischen Felder
schneiden wird (Abb. 6.4.17). Auch hierfür liefert das Buch keinen Hinweis.

Wir kommen mit Mathe live 9 (für Grundkurs in Gesamtschulen von NRW) zum
zweiten Buch, welches Aufgaben zur Zentralprojektion enthielt. Nach dem Kapitel
zur Ähnlichkeit von Figuren und der daran anschließenden zentrischen Streckung,
wird mit zwei Seiten zur Zentralperspektive der Abschnitt abgeschlossen. Wieder
wird mit einem Kunstbild das Thema motiviert. Das Werk Kartenspieler in einem
sonnendurchfluteten Raum von Pieter de Hooch (1629 - 1684) zeigt einen Raum, auf
dessen Rückseite eine Tür nach draußen geöffnet ist. Der Boden ist mit schwarzen
und weißen Kacheln gefliest und wirkt wie ein Schachbrett, welches die Raumwirkung
verstärkt. In der Mitte des Raumes befindet sich ein Tisch, an dem drei Personen
sitzen, während eine vierte daneben steht. In dem Bild sind einige Tiefenlinien mar-
kiert, welche zeigen, dass sich der Horizont etwas oberhalb der Bildmitte befindet.
Es gibt genau einen Fluchtpunkt, welcher auf den Kopf eines der Sitzenden gerichtet
ist und bzgl. der Bildmitte nur leicht nach links versetzt ist. Neben dieser Abbildung
wird aufgelistet, wodurch die Zentralperspektive bzw. Zentralprojektion bestimmt
wird:

durch (die Augenhöhe) den Horizont und die Fluchtpunkte zur Festlegung
der Sehstrahlen. [6, S. 29]

Somit findet sich wie in MatheNetz 8 eine irreführende Gleichsetzung der Tiefenlini-
en, welche sich im Fluchtpunkt schneiden, mit den Seh- bzw. Projektionsstrahlen.



6.4. Schulbuchaufgaben zur Projektion 255

F

F1

F1

F2

F2

Abb. 6.4.18 Die Auswirkung der Horizontlage
und Position des Betrachters auf die Projek-
tion [6, S. 29]

In Mathe live 9 wird auf
den Standpunkt des Betrach-
ters eingegangen, aber nicht auf
die Lage eines Objektes relativ
zur Bildebene, da auf Grund-
und Aufriss in der Konstruk-
tion verzichtet wird. Die Abb.
6.4.18 zeigt ein Beispiel aus dem
Buch zur Erklärung der Hori-
zontlage und Standpunktes des
Betrachters. Nach dem Buch
kommt es im mittleren Fall zu
zwei Fluchtpunkten, weil der
Betrachter auf die Ecke des
Hauses schaut. Diese Beschrei-
bung ist fehlerhaft, da es bei der
Anzahl der Fluchtpunkte nicht
auf den Standort des Betrach-
ters ankommt, sondern auf die Lage der Bildebene relativ zum Haus. Ebenso proble-
matisch ist die Beschreibung im Buch zum ersten Fall, wonach es zu einem Flucht-
punkt kommen soll, wenn der Betrachter auf die Seitenfläche des Hauses schaut.
Daher ist dieser im oberen Teil der Abbildung im Buch seitlich verschoben darge-
stellt. Falls die Urheber dieses Abschnittes implizit davon ausgegangen sind, dass die
Bildebene immer senkrecht zur Blickrichtung des Betrachters ausgerichtet ist, dann
stimmt der erste Fall nicht. Die Bildebene wäre dann parallel zur Seitenfläche. Folg-
lich wäre der Seitenriss unverzerrt und nicht die Vorderseite des Hauses im Aufriss.

Abb. 6.4.19 zeigt die Konstruktion mithilfe von Grund- und Aufriss des Hauses nach
der Methoden im Abschnitt 4.3.2, S. 106. Der Vergleich mit der Abbildung aus dem
Schulbuch zeigt, dass diese auch in der Position des Betrachters fehlerhaft ist. Der
Aufriss des Hauses ist unverzerrt, also muss die Vorderseite parallel zur Bildebe-
ne ausgerichtet sein. Dann liegen die Tiefenlinien senkrecht zur Ebene, sodass der
Fluchtpunkt mit dem Hauptpunkt zusammenfällt. Demnach muss die Person unter-
halb von F gezeichnet werden, was in der Abbildung im Schulbuch nicht der Fall ist.
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Abb. 6.4.19 Konstruktion des Hauses im ersten Fall von Abb. 6.4.18 mithilfe von
Grund- und Aufriss.

Im zweiten Beispiel steht die Person vor der Hausecke. Nach der Erklärung entstehen
zwei Fluchtpunkte, weil die Person nun auf die Ecke schaut. Auch das beschreibt
die Situation nicht vollständig, denn wie in Abb. 6.4.20 dargestellt, entstehen zwei
Fluchtpunkte, wenn das Haus nicht mehr parallel zur Bildebene ausgerichtet ist. Die
Person muss dabei nicht zwingend vor der Hausecke stehen.
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Abb. 6.4.20 Konstruktion des zweiten Falls von Abb. 6.4.18
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Die zweite Seite im SchulbuchMathe live 9 zum Thema Zentralperspektive enthält ei-
ne Reihe von Aufgaben. Neben Konstruktionsaufgaben (Quader mit einem bzw. zwei
Fluchtpunkten oder einem Haus in Vogelperspektive) gibt es auch Anregungen, die
Zentral- und Kavalierperpektive zu vergleichen und Unterschiede bzw. Gemeinsam-
keiten aufzulisten. Da keine Invarianten geometrischer Abbildungen im Unterricht
besprochen werden, fällt die Liste vermutlich kurz aus. Ein offensichtlicher Unter-
schied ist die Parallelentreue, welche nur bei der Parallelprojektion für alle parallelen
Kanten eines Körpers gilt. In beiden Projektionsarten verkürzen sich die Tiefenlini-
en. Allerdings können Schülerinnen und Schüler die Verkürzung nicht weiter unter-
scheiden, da Teil- und Doppelverhältnis nach Lehrplan im Mathematikunterricht an
Schulen in NRW nicht unterrichtet wird [24, 22]. Das Streckenverhältnis dagegen
sollte Schülerinnen und Schüler bekannt sein, da sie im Unterricht in Zusammen-
hang mit den Strahlensätzen bzw. der zentrischen Streckung besprochen werden. Da
die Projektion aber nicht als geometrische Abbildung im Schulbuch definiert wird,
sondern allein über die Konstruktion, ist der Begriff Streckenverhältnistreue nicht
bekannt. Demnach können Schülerinnen und Schüler nicht mehr Unterschiede oder
Gemeinsamkeiten zwischen Zentral- und Kavalierperspektive nennen.

Abb. 6.4.21 Aufgabe aus Mathe live 9
zum Vergleich von Zentral- und Ka-
valierperspektive [6, S. 30]

In der nebenstehenden Abbildung wird
eine weitere Aufgabe aus dem Schul-
buch zitiert. Hier sind sechs Projek-
tionen eines Würfels dargestellt und
die Schülerinnen und Schüler sollen
zuerst entscheiden, welche im Sinne
der Zentralperspektive gezeichnet sind
und danach die anderen Darstellungs-
arten nennen. Diese wurden in Ma-
the live 8 zum Thema Dreitafelpro-
jektion vorgestellt. Dabei handelt es
sich um Kavalier- und Militärperspekti-
ve sowie Iso- und Dimetrie. Es ist da-
her positiv zu erwähnen, dass hier ein
Bezug zu vorherigen Themen erstellt
wird.

Beide Schulbücher behandeln die Zen-
tralprojektion als Projekt oder als zu-

sätzliche Information auf wenigen Seiten und nicht als eigenes Kapitel. Dies zeigt
den geringen Stellenwert des Themas. So wird in beiden Fällen die Projektion über
die Konstruktion mithilfe von Horizont und Fluchtpunkt definiert und nicht als geo-
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metrische Abbildung. Teilweise konnten sogar Unstimmigkeiten bis hin zu Fehlern
aufgezeigt werden. Ebenso behandeln die zugehörigen Aufgaben das Thema eher
oberflächlich.

6.4.4 Projektion in der Oberstufe

Die vorherigen Aufgaben entstammen alle aus Schulbüchern der Sekundarstufe I. Wir
wollen in diesem Abschnitt einige Aufgaben aus dem Buch Neue Wege der Sekundar-
stufe II zeigen, welche den Teilbereich Lineare Algebra und Analytische Geometrie
abdeckt.

Wir finden die Parallel- und Zentralprojektion im Abschnitt für Geraden im Raum
und der Berechnung von Spurpunkten, d.h. den Schnittpunkten einer Gerade mit den
drei Koordinatenebenen. In einem Aufgabenbeispiel mit Lösung wird ein Dreieck im
Raum, dessen Koordinaten bekannt sind, entlang eines Vektors auf die x1x2-Ebene
projiziert. Im Fall der Zentralprojektion wird dasselbe Dreieck auf die x1x3-Ebene
abgebildet, wobei das Zentrum wieder vorgegeben wird [42, S. 59].
Einige Seiten später wird dieses Thema für die Berechnung von Schattenbildern wie-
der aufgegriffen. Als Anregung dienen Lichteffekte in der Computergrafik, denn durch
die Schatten der Objekte wirkt eine Szene realer. Eine Abbildung zeigt nach der Er-
klärung die Schatten eines Objektes bei einer Parallel- bzw. einer Zentralprojektion.
Als mögliche Lichtquellen werden die Sonne bzw. eine Lampe genannt.

Nach einigen Aufgaben wird die Zentralperspektive als Projektthema vorgestellt. Als
Einführung dient ein bekannter Kupferstich von A. Dürer, in welcher der Künstler
über einen Faden und einer klappbaren Leinwand das Bild einer Laute punktweise

x1

x2

x3

x1

x2

x3

Abb. 6.4.22 Der Schattenwurf bei Sonnenlicht (links) und einer Lampe (rechts)
(vgl. [42, S. 69])
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konstruiert. Danach wird der Fluchtpunkt anhand eines Fotos von Gleisen vorgestellt,
mit der Aussage, dass parallele Kanten in den Bildern nicht mehr parallel sind. Dass
es auch Geraden gibt, welche wieder auf parallele Geraden abgebildet werden, wird
nicht erwähnt.
Die Schülerinnen und Schüler sollen die Zentralprojektion eines Würfels berechnen.
Aufgrund der gedrehten Lage des Würfels hat das Bild zwei Fluchtpunkte. Anhand
der Bildkoordinaten sollen die Schülerinnen und Schüler nun zeigen, dass sich die
Bildkanten des Würfels in diesen Punkten schneiden. Danach folgt die Aufgabenrei-
he zur Erzeugung eines Rot-Grün-Bildes des Würfels. Damit endet das Projektthema.

In einem späteren Kapitel über Matrizen und geometrischen Abbildungen wird das
Thema Projektion wieder aufgegriffen [42, S. 184]. In einem Aufgabenbeispiel ist
der Schatten eines Würfels mit einer aufgesetzten Pyramide auf einer schiefen Ebe-
ne gezeigt. An einem Beispiel wird ein Bildpunkt unter einer Parallelprojektion mit
vorgegebener Richtung berechnet. Die Schülerinnen und Schüler sollen danach zwei
weitere Bildpunkte bestimmen. Im letzten Aufgabenteil wird die Matrix gesucht,
welche multipliziert mit den Ortsvektoren der Punkte die Bildpunkte ergibt.
Es folgt ein Teil über die Verwendung linearer Abbildungen in der Computergrafik
und zum Schluss gibt es einige Projektseiten zur Axonometrie [42, S. 197]. Hier wer-
den verschiedene Koordinatensysteme passend zur Kavalier- und Militärprojektion
sowie Isometrie und Dimetrie gezeigt.

Als zweites Buch wurde der Lambacher Schweizer für die Oberstufe untersucht. Auch
hier werden zum Thema Geometrische Objekte und Situationen im Raum Schatten
durch Sonnenlicht entlang eines gegebenen Vektors auf die Koordinatenebenen be-
stimmt. Es findet auch der Bezug zur Zentralprojektion mit einem Scheinwerfer als
Lichtquelle statt. Eine Weiterführung über die Schattenbilder hinaus, wie im ersten
Buch, findet nicht statt.

Damit endet die Vorstellung bestehender Aufgaben zur Projektion in aktuellen Schul-
büchern. Das folgende Kapitel greift die o.g. Aufgabe zur Erzeugung eines Rot-Grün-
Bildes wieder auf. Die Berechnung der Bildkoordinaten erfolgt dabei computerge-
stützt mit einer dafür geeigneten Programmiersprache. Wir greifen dafür auf Inhalte
in den Abschnitten Analytische Betrachtung der Zentralprojektion sowie die homo-
genen Koordinaten wieder auf.





Kapitel 7

Erzeugung einfacher Projektionen
am Computer

Im zweiten Hauptteil dieser Arbeit wurde die Zentralprojektion aus rein mathema-
tischer Sicht vorgestellt und weniger in Bezug auf Schule und Unterricht. Wir wollen
nun an Kapitel 4.6, Zentralprojektion in der Computergrafik, anknüpfen. Wir haben
gezeigt, dass sich einfache Szenen aus den drei Einheitskörpern Würfel, Prisma und
Pyramide erstellen lassen, indem die Körper entsprechend skaliert, gedreht und ver-
schoben wurden. Mit einem Koordinatensystem lassen sich die Eckpunkte der Körper
definieren. In Folge dessen werden die geometrischen Abbildungen Skalierung, Dre-
hung und Verschiebung mithilfe von Matrizen berechnet, sofern es sich um lineare
Abbildungen handelt. Wir haben in dem o.g. Kapitel gezeigt, dass dies bei der Ver-
schiebung nicht der Fall ist, da bspw. der Ursprung nicht auf sich selbst abgebildet
wird. Mit diesem Problem wurde die Verwendung von sog. homogenen Koordinaten
motiviert, welche durch Anhebung des Raumes in die vierte Dimension eine Ver-
schiebung linearisierte.
Wir wollen nun lineare Abbildungen und homogene Koordinaten verwenden, um
mithilfe des Computers aus den drei Einheitskörpern Würfel, Pyramide und Pris-
ma (Abb. 4.6.2, S. 182) Szenen von Gebäuden zu erstellen und diese sowohl parallel-
als auch zentralprojektiv abzubilden. Dabei wird die Programmiersprache Processing
verwendet, welche neben grafischen Darstellungen auch einfache Animationen ermög-
licht. Nach dem Kernlehrplan der Oberstufe an Gymnasien und Gesamtschulen in
NRW ist eine Auseinandersetzung mit objektorientierten Programmiersprachen im
Informatikunterricht vorgesehen, allerdings wird die Sprache nicht vorgegeben. In
Schulbüchern gängiger Verlage wie Cornelsen und Westermann wird Java verwen-
det. Processing basiert auf Java. Weiterhin ist Processing und der benötigte Editor
(Processing Development Environment, Version 3.5.4) zum Schreiben und Ausfüh-
ren von Skripten kostenlos erhältlich. Da Matrizen- und Vektorrechnung nötig ist,
richten sich die Aufgabenvorschläge an den Unterricht der Sekundarstufe II an Ge-
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samtschulen und Gymnasien. Für nähere Informationen und Programmbeispielen zu
Processing sei auf das Buch [45] von D. Shiffmann hingewiesen, welcher auf seinem
YouTube Kanal The Coding Train einige Videotutorials zur Verwendung der Sprache
zur Verfügung stellt.

Bevor wir auf die Programmiersprache selbst eingehen, ein paar allgemeine Erklä-
rungen zur Programmierung. Generell besteht ein Quellcode aus einer Reihe von
Anweisungen, die der Computer auf Objekten bzw. Variablen anwendet, um eine
definierte Zustandsänderung zu erbringen. Dazu folgendes Beispiel: zuerst wird eine
Objekt mit dem Name a initialisiert und dann der Wert 5 zugeordnet. Somit gilt
a = 5 und der Zustand

„a existiert ohne Wert“

wird durch die Anweisung = 5 in den Zustand

„a hat den Wert 5“

geändert. Genauso lassen sich auch eigene Funktionen definieren, indem Anweisun-
gen auf ein Funktionsargument zusammengefasst werden und nacheinander, Zeile
für Zeile, ausgeführt werden. Als Beispiel definieren wir eine Funktion, welche ein
gegebenes Argument verdoppelt:

Funktion Verdoppel(Zahl) :
Ergebnis = 2 * Zahl
Return(Ergebnis)

Die Funktion hat den Namen „Verdoppel“ und nimmt als Argument ein Objekt mit
dem Namen „Zahl“ entgegen. Dieses wird in der zweiten Zeile verdoppelt und das
Produkt in der Variablen Ergebnis gespeichert, welche dann im dritten Schritt durch
die AnweisungReturn von der Funktion ausgegeben wird. Damit lässt sich die Funk-
tion mit verschiedenen Argumenten aufrufen, bspw. Verdoppel(4) gibt als Wert 8
zurück, welcher dann in einer weiteren Variablen mit dem Namen Ergebnis1 gespei-
chert werden kann. Weitere Beispiele sind:

Ergebnis2 = Verdoppel(50)
Ergebnis3 = Verdoppel(5.5)
Ergebnis4 = Verdoppel(−10)

Damit wird Ergebnis2 der Wert 100 zugeordnet, Ergebnis3 11 und zuletzt Ergebnis4
der Wert -20.
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In der Entwicklung von Programmiersprachen existieren zwei Hauptströme: prozedu-
ral oder objektorientiert. Die ersten Sprachen wie Fortran (50er Jahre) oder C (70er
Jahre) sind Ersterem zuzuordnen. In prozeduralen Sprachen gibt es allerdings keine
Verknüpfung zwischen Anweisung und dem Objekt selbst. Dies ist charakteristisch
für den zweiten Hauptstrom der Programmiersprachen, welche objektorientiert ge-
nannt werden. Hier können eigene Objekttypen definiert werden, welche bestimmte
Eigenschaften enthalten. Ein Objekttyp „Quadrat“ wird über eine Kantenlänge defi-
niert und kann zusätzlich noch Informationen über Linien- oder Füllfarbe enthalten.
Damit ist ein Quadrat definiert, aber wenn der Benutzer dies auch in einem Fens-
ter auf dem Bildschirm zeichnen möchte, braucht es eine Anweisung, bspw. Zeich-
ne(Quadrat). Diese Anweisung macht aber für eine Zahl als Argument keinen Sinn,
d.h. wir haben eine Anweisung, welche mit einem bestimmten Objekttyp verknüpft
wird. Dies ist der große Unterschied zwischen prozeduralen und objektorientierten
Sprachen. Daher werden Anweisungen in ersteren Sprachen als „Funktionen“ und in
zweiteren als „Methoden“ bezeichnet. Ein Objekttyp und seine Methoden werden
dann in sog. Klassen zusammengefasst. Da die hier verwendete Sprache Processing
objektorientiert ist und für die Projektion eigene Klassen definiert wurden, wird in
Abschnitt 7.3 ein einfaches Beispiel mit Kreisen als Objekttyp vorgestellt.

Szenen können mithilfe von Einheitskörpern erstellt werden. Daher wurde eine Klas-
se von Einheitskörpern in Processing definiert, welche als Unterklassen die Körper
Würfel, Pyramide und Prisma hat. Diese Objekte werden über ihre Eckpunkte im
dreidimensionalen Koordinatensystem definiert und können mithilfe von Abbildungs-
matrizen skaliert, gedreht und verschoben werden, sodass bspw. aus einem Würfel
ein Quader wird. Für die Darstellung auf dem Bildschirm werden die Eckpunk-
te anschließend mit Projektionsmatrizen abgebildet. Zur Verwendung der Zentral-
projektion werden homogene Koordinaten genutzt und als Anwendungsbeispiel sog.
Anaglyphenbilder erzeugt, welche die Schülerinnen und Schüler ausdrucken und ihre
Wirkung mithilfe von Rot-Grün-Brillen überprüfen können. Wir wollen daher zuerst
das Anaglyphenverfahren und dann die Entwicklerumgebung von Processing vorstel-
len. Zum Abschluss werden einige Aufgabenbeispiele zur Anwendung des Quellcodes
besprochen.
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7.1 Das Anaglyphenverfahren

Die Idee, Rot-Grün-Bilder am Rechner zu erstellen, wurde angeregt durch eine Auf-
gabe aus dem Schulbuch Neue Wege (2011) für die Oberstufe zu den Themen Lineare
Algebra und Analytische Geometrie [42, S. 91 - 92]. Gegeben sind folgende vier Eck-
punkte eines Würfels

A (0 / 3 / 0) , B (4 / 0 / 0) , D (3 / 7 / 0) , E (0 / 3 / 5)

sowie der Ort einer Lampe mit L1 (12 / 3 / 3). Diese beleuchtet den Würfel und die
Schülerinnen und Schüler sollen nun die fehlenden Eckpunkte bestimmen sowie die
Bildpunkte auf der x2x3-Ebene.
In einer daran anschließenden Aufgabe sollen die Schülerinnen und Schüler den pro-
jizierten Würfel grün zeichnen und das Bild wiederholt bestimmen, wenn der Würfel
von einer zweiten Lampe mit L2 (12 / 4 / 3) beleuchtet wird. Das zweite Bild sollen
sie rot zeichnen. Den Würfel und die Lampen zeigen die Abbildungen 7.1.1 und 7.1.2.
Die Farben der Lampen sowie ihre Position lassen auf das sog. Anaglyphenverfahren
schließen, welches auf derselben Seite im Schulbuch auch kurz vorgestellt wird. Die
Lampen befinden sich auf derselben Höhe und sind seitlich um 1 LE verschoben.
Wir ersetzen nun die Lampen durch ein Augenpaar, welches auf den Würfel schaut.
Die Augen nehmen jeweils ein leicht verändertes Bild des Würfels wahr, was Schüler-
innen und Schüler daran erkennen können, das sich das Gesehene verändert, wenn
sie abwechselnd die Augen schließen. Unser Gehirn baut aus beiden Bildern das
räumliche Bild zusammen. Dieser Eindruck wird mithilfe des Anaglyphenverfahrens
künstlich erzeugt, d.h. der Betrachter nimmt ein räumliches Bild war, obwohl er auf
eine Ebene schaut.

x2

x3

x1

A

B

C

D

E

F

G

H

Abb. 7.1.1 Würfel der vorgestellten Schulbuchaufgabe
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Abb. 7.1.2 Der Würfel und die beiden Lampen in Grund- und Seitenansicht

Abb. 7.1.3 Das Anaglyphenverfahren

Abb. 7.1.3 zeigt das Verfahren mit den
Farben Rot und Grün. Es handelt sich
hierbei um sog. Komplementärfarben,
d.h. die Überlagerung beider Farben er-
gibt schwarz. Mithilfe der Rot-Grün-
Brille sehen die Augen dasjenige Bild
des Würfels, welches durch Projektion
mit dem Auge als Zentrum entstanden
ist. Die Würfelprojektion vom linken
Auge wird grün gezeichnet. Das Glas ist
aber rot gefärbt, d.h. das grüne Bild er-
scheint schwarz, während gleichzeitig die
rote Würfelprojektion ausgeblendet wird. Beide Augen sehen somit nur das für sie
bestimmte Bild. Das Gehirn kann wieder den räumlichen Eindruck erzeugen, sofern
der Betrachter auch den passenden Abstand zur Bildebene einnimmt.

Die Zentral- und Parallelprojektion wird in dem Schulbuch zum Thema „Spurpunk-
ten“ von Geraden kurz angesprochen. Als Spurpunkte werden die Schnittpunkte der
Geraden mit den Koordinatenebenen bezeichnet. Das Buch liefert ein Rechenbei-
spiel. Hier wird die Parametergleichung der Geraden verwendet und der Parameter
durch Nullsetzen der entsprechenden Koordinate bestimmt. Dies ist auch die Vorge-
hensweise für die Berechnung der Bildpunkte einer Projektion auf eine der Koordi-
natenebenen, wie sie im Aufgabenbeispiel 4.4.1, S. 142, schon durchgeführt wurde.
Die Aufgabenstellung in dem Buch bzgl. des Würfels lässt allerdings offen, ob die
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Abb. 7.1.4 Ergebnis der Schulbuchaufgabe

Schülerinnen und Schüler diese Rechnung nun 16 mal durchführen sollen. Da der Re-
chenweg für jeden Punkt derselbe ist, ist es sinnvoller, diesen einmalig mit dem Punkt
P (p1 / p2 / p3) und dem Zentrum L (l1 / l2 / l3) durchzuführen. Wir gehen genauso
vor wie in Kapitel 4.4.2, S. 152. Da in dieser Aufgabe E : x1 = 0 die Bildebene ist,
müssen wir die erste Koordinate in der Parametergleichung der Projektionsgeraden
null setzen. Für die Bildpunkte erhalten wir somit folgende Formel:

P ′
(

0 /
l1 p2 − l2 p1
l1 − p1

/
l1 p3 − l3 p1
l1 − p1

)
. (7.1.1)

Wir setzen nun für jedes Zentrum die Eckpunkte des Würfels ein. In Abb. 7.1.4 ist
links das Ergebnis zu sehen. Im rechten Bild ist derselbe Würfel als geschlossener
Körper abgebildet. Mit einer Rot-Grün-Brille können die Schülerinnen und Schüler
sich dann selbst davon überzeugen, dass der 3D Effekt funktioniert, wenn sie den
richtigen Abstand zum Bild einnehmen.

Mit der Gl. (7.1.1) ist es nun auch möglich, den Computer für die Berechnung und
Darstellung der Bildpunkte zu verwenden, in dem wir Quellcode in einer geeigneten
Programmiersprache schreiben. Denn der Rechenweg ist immer derselbe. Der An-
wender gibt das Zentrum sowie eine Liste von Punkten vor. Der Computer soll dann
diese Liste durchgehen, jeden Punkt in die o.g. Formel einsetzen und eine Liste mit
den Bildpunkten herausgeben. Geben wir auch noch vor, welche Punkte der Liste
miteinander durch eine Linie verbunden werden, so kann der Computer das Ergebnis
zeichnen. Nicht jede Programmiersprache ist für jede Anwendung geeignet. Die Wahl
fiel auf Processing, denn hier ist es einfach, Linien durch Angabe des Anfangs- und
Endpunktes zu zeichnen oder Animationen zu erzeugen. Sie ist ebenfalls objektori-
entiert und erfüllt damit eine Vorgabe des Lehrplans für den Informatikunterricht
der Oberstufe.
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7.2 Die Entwicklerumgebung von Processing

Bevor wir den Quellcode vorstellen, wird in diesem Abschnitt die Oberfläche des
verwendeten Editors sowie einige Eigenschaften der Programmiersprache erläutert.
Die Abb. 7.2.1 zeigt ein Beispiel für die Erzeugung von Quader und Prisma, welche
zu einem Haus zusammengefügt wurden. Nach Ausführung des Programmes entsteht
das weiße Kantenmodell auf schwarzem Hintergrund.

Der Quellcode ist in verschiedene Bereiche aufgeteilt, am linken Rand befindet sich
die Zeilennummerierung. Für die Projektion wurden eigene Funktionen und Objekte
definiert, welche unter den obigen Reitern Matrics und Shape zu finden sind. Die
Ausführung der Methoden erfolgt zeilenweise. Jede Zeile, welche Befehle enthält,
muss mit einem Semikolon beendet werden.

Abb. 7.2.1 Der Editor von Processing

In Zeile 1 wird mit // ein Kommentar eingefügt. Nach dieser Zeichenfolge wird
alles nachfolgende in der Zeile bei der Ausführung übersprungen. In Zeile 2 wird mit
float die erste Variable mit der Kennzeichnung unit erzeugt und die Zeile mit
einem ; beendet. Die Sprache Processing verlangt für jede Variable neben einem
eindeutigen Namen eine Zuordnung zu einer Klasse, wie Cube oder Prism in Zeile 4
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und 5, oder zu einer Zahlenmenge. Mit int werden Zahlen vom Typ Integer erzeugt,
welche ganzzahlig sind, wie z.B. 1 oder -5. Mit float werden Fließkommazahlen
erzeugt, wie 1.5 oder -0.3333. Zu den Fließkommazahlen gehören aber auch die ganzen
Zahlen, sodass in Zeile 14 der Variable unit der Wert 50 zugeordnet werden kann.
Jede Zahl vom Typ integer ist auch vom Typ float, aber nicht umgekehrt. Bspw.
würde

int unit ;

unit = 3.1 ;

zu einer Fehlermeldung führen. In Zeile 4 wird ein Objekt der Klasse Cube mit dem
Namen c erzeugt. Da es sich hier um eine eigene definierte Klasse handelt, dessen
Parameter unter dem Reiter Shape zu finden sind, wird die Typbezeichnung nicht
farblich hervorgehoben.
Die Koordinaten der projizierten Eckpunkte der Körper werden über eine Matrix-
Vektor-Multiplikation berechnet, sodass vorab eine Matrix initialisiert wird. Die Ein-
träge können auch Fließkommazahlen sein, wodurch die Matrix mit der Bezeichnung
ProjZ in Zeile 7 durch float[][] definiert wird. Die beiden Klammern stehen für
eine Liste von Listen, denn die Zeile einer Matrix wird von der Sprache als eine Liste
von Zahlen interpretiert und die ganze Matrix wiederum als eine Liste von Listen.
Die verwendetet Projektionsmatrix ist daher(

1 0 0

0 1 −0.5

)
.

Anders als bei unit wird bei der Initialisierung der Matrix direkt auch ein Wert
zugeordnet. Beide Vorgehensweisen sind in Processing erlaubt. Da aber die Einheit
im zugrunde gelegten Koordinatensystem abhängig ist von der Größe des Bildes in
Zeile 13, wird der Wert erst in Zeile 14 zugeordnet. Die Projektionsmatrix dagegen
ist unabhängig und kann direkt mit ihren Werten erzeugt werden. Durch diese Auf-
teilung wird der Quellcode besser lesbar. Damit ist der Abschnitt der Deklaration
aller verwendeter Objekte und Variablen vollständig.
Anschließend wird in Processing in zwei Bereiche unterschieden. Der statische Be-
reich wird mit

void setup(){

...
}

gekennzeichnet. setup() ist eine Funktion, welche aufgrund der leeren, runden
Klammern keine Argumente benötigt. Mit void wird signalisiert, dass die Funk-
tion nach ihrer Ausführung kein Objekt zurückgibt. Mit { } wird eine Umgebung
erzeugt, in welcher der Benutzer einige Parameter, wie die Größe des Fensters mit
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size(Breite,Höhe) in Pixeln, festlegen kann. Um die Körper zu erzeugen, wer-
den die Eckpunkte mithilfe von Koordinaten beschrieben, sodass es hierfür nötig ist,
eine benutzerdefinierte Einheit anzugeben, um die Objekte je nach Fenstergröße ska-
lieren zu können.
Die letzte Umgebung ist der dynamische Bereich und wird mit

void draw(){

...
}

gekennzeichnet. Hier werden die im Fenster grafisch erzeugten Elemente definiert.
Diese Umgebung wird von Processing standardmäßig mehrfach in einer Schleife aus-
geführt, weshalb dieser Bereich als dynamisch bezeichnet wird. Dies hat den Vorteil,
dass sich Objekte im Fenster bewegen können. Bspw. kann ein Objekt sich drehen,
wenn bei der Rotation der Winkel nach jedem Durchlauf um 1◦ erhöht wird.

Die Hintergrundfarbe soll schwarz sein, weshalb die Funktion background() das
Argument 0 erhält. Die Codierung von Farben wird in einem späteren Abschnitt
erläutert. In Zeile 22 wird der Ursprung des Koordinatensystems, welcher sich stan-
dardmäßig in der oberen linken Ecke befindet, zum Mittelpunkt des Fensters ver-
schoben. In Zeile 25 und 26 werden die Parameter des Würfels und des Prismas
definiert, sodass das Kantenmodell des Hauses entsteht. Näheres zu den Parametern
wird im anschließenden Unterkapitel erläutert. Die Eckpunkte des Hauses befinden
sich noch in der dritten Dimension, weshalb beide Körper in Zeile 29 und 30 mithilfe
der Matrix-Vektor-Multiplikation auf die Bildebene projiziert werden. Diese ist im-
plizit in der Projektionsmatrix ProjZ hinterlegt.
Zum Schluss wird das Kantenmodell beider Körper gezeichnet. Da es sich hierbei um
ein statisches Bild handeln soll, wird mit noLoop() die Schleife unterbrochen.

7.3 Die Einheitskörper als Klassen

Processing ist eine objektorientierte Programmiersprache, in welcher Objekte mit
gleichen Parametern zu sog. Klassen zusammengefasst werden. Dies ermöglicht den
Aufbau einer hierachischen Struktur, welches u.a. zu einer übersichtlichen, struktu-
rierten Gestaltung des Quellcodes führt. Zur Erklärung, was unter Objektorientie-
rung zu Verstehen ist, wird der Begriff der Klasse anhand eines Beispiels erläutert.1

Wir stellen uns vor, wir wollen ein Bild mit vielen verschiedenen Kreisen erzeugen.
Den Quellcode zeigt Abb. 7.3.1. Wir konstruieren zu Beginn einen Kreis, welcher
über folgende Parameter erzeugt wird:

1Das Beispiel ist angelehnt an einem Videotutorial von D. Shiffman von seinem YouTube Kanal
The Coding Train.
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stroke(0) Farbe der Umrandung ist schwarz.

fill(200) Farbe der Füllung ist ein Grauton.

ellipse(100,200,100,100) Zeichnet eine Ellipse,
mit Mittelpunkt (100, 200)
und der Breite 100 sowie der Höhe 100.

Das zugrunde gelegte Koordinatensystem hat ihren Ursprung in der linken oberen
Ecke. Die x-Achse weist nach rechts, die y-Achse nach unten, sodass es sich um ein
linkshändiges Koordinatensystem handelt. Im Mathematikunterricht wird dagegen
ein rechtshändiges System verwendet. Damit die Ellipse zum Kreis wird, müssen
Breite und Höhe denselben Wert erhalten. Um weitere Kreise unterschiedlicher Grö-
ße und Farbe zu zeichnen, müssen die letzten beiden Befehle mehrfach kopiert werden
(Abb. 7.3.1 Mitte). Wir fassen nun alle Kreise mit den Attributen Durchmesser, Far-
be und Ort zu einer Klasse zusammen und nennen diese BubbleClass. Der Quellcode
zu dieser Klasse wird in einem neuen Reiter geschrieben. Wir werden ihn später noch
erläutern. Der Vorteil ist nun, dass jeder Kreis mit seinen Attributen in einer eigenen
Variablen b1, b2, b3 und b4 vom Typ Bubble gespeichert wird (Abb. 7.3.1, unten).

Mit b1.display() wird eine Methode aufgerufen, welche in der BubbleClass defi-
niert wurde und nur von Objekten dieser Klasse aufgerufen werden kann. Wir erhal-
ten also eine Verknüpfung von Attributen und Methoden zu einem Objekt. Nehmen
wir ein weiteres Beispiel für ein Klassenkonstrukt. Eine Auto kann die Attribute Far-
be, Hersteller, gefahrene Kilometer und Tankfüllung sowie die Methode fahren oder
tanken haben. Sind diese Methoden innerhalb der Klasse definiert, kann ein Objekt
außerhalb davon sie nicht aufrufen. So kann ein Kreis nicht die Methode fahren aus-
führen. Ein weiterer Vorteil zeigt Abb. 7.3.2. Hier werden mithilfe einer for-Schleife
50 Kreise in Zeile 13 zufällig erzeugt und gezeichnet. Ohne die Klasse müssten die
Methoden fill() und ellipse() fünfzig mal hintereinander kopiert werden, was
mühselig ist und den Quellcode unübersichtlich macht.
Wie eine Klasse definiert wird, zeigt Abb. 7.3.2 (unten). Jede Klasse muss einen ein-
deutigen Namen besitzen. Danach werden die Attribute definiert, d.h. die Position
des Mittelpunktes mit x, y, der Durchmesser mit diameter sowie die Farbe mit
bubcol. Mit Bubble() wird ein sog. Konstruktor aufgerufen, in welcher der An-
wender den Attributen Werte zuordnet. Zum Abschluss steht in Zeile 14 die Methode
display(), welche den Kreis in das Programmfenster zeichnet.
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Abb. 7.3.1 Das Zeichnen von Kreisen kann mithilfe einer Klassenstruktur verein-
facht werden.
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Abb. 7.3.2 Generierung von 50 zufälligen Kreisen und der Quellcode zur Definition
der Kreisklasse Bubbles.
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Klassen lassen sich auch ineinander schachteln. Wir können eine Oberklasse Ebene
Figur definieren, welche wiederum die Unterklassen Dreieck, Viereck und Fünfeck
enthält. Sie besitzen alle die Attribute Ecken und Kanten, allerdings ist die Anzahl
der Ecken unterschiedlich sowie die Verknüpfung dieser mit den Kanten, sodass dies
wiederum in einer Unterklasse spezifiziert wird.
Ähnlich verfahren wird mit den dreidimensionalen Körpern, welche für die Projektion
verwendet werden. Die Oberklasse besteht aus dreidimensionalen Körpern mit Ecken
und Kanten, welche wiederum in Unterklassen unterteilt sind. Der Würfel besteht
aus acht Eckpunkten, welche über zwölf Kanten verbunden sind. Ihre Länge sei nicht
festgelegt, wohl aber ihre Lage zueinander. So sollen die Kanten in jedem Eckpunkt
senkrecht aufeinander stehen. Diese Eigenschaft erfüllt auch ein Quader, sodass bei-
de Objekte zu einer Subklasse zusammenfasst wurden. Hingegen erfüllt ein schiefes
Prisma nicht jede Anforderung. Sie bilden daher eine neue Unterklasse. Hierbei wur-
de sich allerdings auf ein gerades Prisma mit der Grundfläche eines gleichschenkligen
Dreiecks beschränkt. Die dritte und letzte Unterklasse umfasst Pyramiden mit recht-
eckiger Grundfläche, dessen Spitze sich über dem Mittelpunkt befindet. Abb. 7.3.3
zeigt eine grobe Übersicht der Klassenstruktur, sowie eine Parallelprojektion vierer
Körper als Beispiel. Mithilfe der Methoden scale, rotate und shift werden die Kan-
tenlängen bzw. die Lage der Körper im Raum bzw. zur xy-Ebene angepasst und
diese zum Schluss mithilfe einer Matrix projiziert. Je nach Projektionsmatrix ist das
Ergebnis eine Parallel- oder Zentralprojektion.
Jede Unterklasse enthält die Koordinaten der Eckpunkte von Würfel, Prisma und
Pyramide, wie sie im Abschnitt 4.6.2, S. 182, eingeführt wurden. Die Oberklasse
hat die Methode transform(), welche den Einheitskörper skaliert, rotiert und
verschiebt. Dies erfolgt über eine Matrix-Vektor-Multiplikation aller Eckpunkte des
Körpers. Die entsprechenden Matrizen sind in den Methoden scale(), rotate()

und shift() hinterlegt. Mithilfe von homogenen Koordinaten werden alle drei
Abbildungen linear, sodass ihre Verkettung das Produkt dreier Matrizen ist. Mit
transform() wird diese Produktmatrix bestimmt und diese mit den Eckpunkten
multipliziert. Die neue Liste an Koordinaten der Ecken wird dann in der Variablen
des Objektes, z.B. Cube c gespeichert. Zum Schluss wird die in der Oberklasse
definierte Methode projection() aufgerufen, welche eine erneute Matrix-Vektor-
Multiplikation mit der vom Anwender definierten Projektionsmatrix ausführt, sodass
am Ende das zweidimensionale Bild im Fenster entsteht.
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class Shapes

Cube Prism Pyramid
3.7. Erzeugung einfacher Projektionen am Computer
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1
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Prisma mit der Grundfläche eines gleichschenkligen Dreiecks beschränkt. Die dritte
und letzte Subklasse umfasst Pyramiden mit rechteckiger Grundfläche, dessen Spitze
sich über dem Mittelpunkt befindet.

3.7.2 Parallelprojektion und einfache Häuserszenen

3.7.3 Zentralprojektion und Erzeugung von Anaglyphenbildern

98

transform(points) 
scale(a, b, c) 
rotate( ) 
shift(x, y, z)

α

projection(matrix, shape)
3.7. Erzeugung einfacher Projektionen am Computer

x

y

Prisma mit der Grundfläche eines gleichschenkligen Dreiecks beschränkt. Die dritte
und letzte Subklasse umfasst Pyramiden mit rechteckiger Grundfläche, dessen Spitze
sich über dem Mittelpunkt befindet.

3.7.2 Parallelprojektion und einfache Häuserszenen

3.7.3 Zentralprojektion und Erzeugung von Anaglyphenbildern

98

1.5 

1 

3 2 
1 1 1 

3 Cube 
scale(1, 3, 1) 
shift(3, 0, -0.5)

Pyramid 
scale(1, 1.5, 1) 
shift(3, -3, -0.5)

Prism 
scale(3, 1, 2) 
rotate(-30°) 
shift(0.5, 1, -3)

Abb. 7.3.3 Die Klasse Shape wird unterteilt in die Subklassen Cube, Prism und
Pyramid. Das Bild ergibt sich nach Anwendung der Funktionen transform und pro-
jection.
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7.4 Processing im Unterricht

Nach dem kurzen Überblick zur Entwicklerumgebung von Processing wird nun ei-
ne Aufgabenreihe vorgestellt, die im Mathematik- oder Informatikunterricht den
Schülerinnen und Schüler eine sinnvolle Auseinandersetzung mit dem Programm er-
möglichen soll. Wir gehen dabei von dem Quellcode aus, welcher in Abb. 7.2.1, S.
267, dargestellt ist. Die Schülerinnen und Schüler sollen einige Änderungen durch-
führen und beobachten, wie sich diese auf das Ergebnis auswirken.

Aufgabenbeispiel 7.4.1

Wir wollen zunächst einige Farben des Bildes ändern. Beachte dabei nur die
Zeilen 21, 25 und 26.

a) Betrachten wir einmal die Farbe des Hintergrundes und der Kanten. Die
Zahl 0 bedeutet schwarz, die Zahl 255 dagegen weiß. Ändere den Quellcode
so ab, dass der Hintergrund weiß und die Kanten schwarz werden.

b) Statt 0 oder 255 sind auch alle ganzzahligen Werte dazwischen erlaubt.
Wähle nun andere Zahlen und beobachte, wie sich das Bild verändert.

c) Wir wollen nun mehr Farbe einbringen. Jede Farbe lässt sich durch eine
Kombination von drei Zahlen, welche ebenfalls zwischen 0 und 255 liegen,
definieren. Ähnlich wie in einem Koordinatensystem werden sie in der
Form (r,g,b) angegeben. Dabei steht r für Rot, g für Grün und b für Blau.
Wir geben also mit den Zahlen den Anteil an Rot, Grün und Blau an.
(255,0,0) ergibt bspw. ein sattes Rot. Färbe den Hintergrund blau, die
Kanten des Quaders rot und die des Daches grün.

d) Experimentiere nun ein wenig mit den Farben.
Welche Farbe ergibt (100,0,0)? Oder die Kombination aus rot und grün
durch (255,255,0)? Probiere weitere Kombinationen aus!

Für den Einstieg werden die Zeilen, in denen Änderungen vorzunehmen sind, ge-
nannt, um den Schülerinnen und Schüler eine bessere Orientierung zu bieten. In a)
müssen lediglich die Zahlen 0 und 255 vertauscht werden (Abb. 7.4.1), für c) und d)
werden die Parameter auf drei Zahlen erweitert.



276

a)

b)

c)

Abb. 7.4.1 Lösung der Aufgabe 7.4.1.
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Rot

Grün

Blau

Abb. 7.4.2 Der RGB-Farbraum wird mit
Achsen für Rot, Grün und Blau aufge-
spannt.

Farben werden in der Computergrafik
in einem Farbraum dargestellt, d.h. ei-
nem Punkt im Raum wird eine Far-
be zugeordnet. Im sog. RGB-Farbraum
steht die erste Koordinate für den An-
teil an Rot, die zweite für Grün und die
letzte für Blau (Abb. 7.4.2). Der Raum
wird auf einen Würfel der Kantenlän-
ge 255 beschränkt, sodass Werte von 0
bis 255 verwendet werden können. Die
Achsen sind diskretisiert, sodass die Ko-
ordinaten natürliche Zahlen sein müs-
sen. Auf der Raumdiagonalen liegen al-
le Grautöne, wobei (0, 0, 0) schwarz und
(255, 255, 255) weiß ist. Da für die Grau-
stufen alle drei Koordinaten denselben

Wert erhalten, können in Processing diese mit einer Zahl aufgerufen werden, d.h.
color(10) ist äquivalent zu color(10,10,10).

Durch Veränderung der Anteile an Rot, Grün und Blau können alle Farben dargestellt
werden. Abb. 7.4.3 zeigt eine Auswahl, welche sich auf den Seitenflächen des Würfels
befinden. Links zeigt den Boden, die hintere Fläche und die linke Seite, rechts die
drei anderen Würfelflächen.

Abb. 7.4.3 Die Farben auf den Seitenflächen des Würfels
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Aufgabenbeispiel 7.4.2

Wir wollen nun Bewegung ins Bild bekommen. Stelle dafür die Hintergrundfarbe
zurück auf weiß und die Kanten auf schwarz. Wir wollen jetzt den Drehwinkel
von Quader und Prisma in Zeile 25 und 26 ändern.

a) Verändere den Winkel auf 0◦, 20◦ und 55◦. In welchem Uhrzeigersinn wird
das Haus gedreht?

b) Wir wollen jetzt, dass sich das Haus kontinuierlich dreht. Erstelle nach
Zeile 9 unterhalb von der Projektionsmatrix ProjZ eine neue Variable mit
dem Namen angle vom Typ integer und dem Wert 55. Ersetze dann bei
Quader und Prisma den Winkel durch die Variable. Führe das Programm
aus. Hat sich das Bild geändert?

c) Das Haus dreht sich noch nicht, da das Bild nur einmal erzeugt wird und
sich auch der Wert von angle nicht ändert. Entferne den Befehl noLoop()
mitsamt des Kommentars. Schreibe stattdessen angle = angle +1.

Beende die Zeile mit einem Semikolon. Das Bild sollte sich jetzt drehen.

d) Wir wollen nun, dass sich das Haus langsamer dreht. Überlege dir, warum
wir dies erreichen können, wenn wir in der letzten Zeile +1 durch +0.5
ersetzen. Ändere dann die Zeile ab. Führe das Programm aus. Was ist nun
passiert?

e) Ändere im oberen Abschnitt die Typenbezeichnung vor der Variablen an-
gle zu float. Warum funktioniert das Programm jetzt?

f) Im dynamischen Bereich findest du den Befehl background(255). Ver-
schiebe ihn in den statischen Bereich, sodass er sich innerhalb der ge-
schweiften Klammern befindet. Führe das Programm aus. Was ist nun
passiert? Hast du eine Erklärung?

Im zweiten Aufgabenteil soll nun das Haus gedreht werden. Teil a) arbeitet noch
statisch mit dem Ziel, dass die Schülerinnen und Schüler sich mit den Parametern
der Objekte in Zeile 25 und 26 auseinandersetzen. Bei der Erzeugung des Quaders
und des Prismas ist die Reihenfolge der Parameter wichtig, damit die eingegebenen
Werte den Attributen der Unterklassen richtig zugeordnet werden. Die Parameter
sind: Einheit des Koordinatensystems, d.h. wie viele Pixel 1 LE sind, die Farbe der
Kanten, die Maße des Körpers, der Drehwinkel um die senkrechte Koordinatenachse,
die Verschiebung bzgl. des Ursprungs:
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Cube( 1 LE, 55 px
Farbe, schwarz
Breite, 2
Höhe, 1
Tiefe, 4
Drehwinkel, 0◦

Verschiebung in x, 0
y, 0
z ) 0

Die Veränderung des Drehwinkels an der
richtigen Stelle ist daher als Einstieg für
diesen Aufgabenteil konzipiert. Die Lö-
sung zeigt Abb. 7.4.4. Für 0◦ sind auch
die Angaben der Maße 2, 1, 4 einfa-
cher zuzuordnen. Die Werte sind in der
Reihenfolge x, y, z definiert. Da aber
das Koordinatensystem anders als in der
Schule gedreht ist, erscheint die Reihen-
folge Breite, Höhe, Tiefe erstmal unge-

wöhnlich gewählt zu sein. Anhand der drei Bilder ist leicht ersichtlich, dass das Haus
mit dem Uhrzeigersinn um die senkrechte Mittelachse des Hauses rotiert.

b) und c) ist eine schrittweise Erzeugung der Animation. Nach jedem Durchgang der
Schleife soll sich der Drehwinkel um 1◦ erhöhen. Wir brauchen daher eine Variable,
welche im oberen Abschnitt zunächst als Integer deklariert wird, da der Startwin-
kel und die Erhöhung ganzzahlig sind. Zudem muss der Befehl noLoop() entfernt
werden. Die letzte Zeile mit angle = angle + 1 erscheint zunächst ungewöhn-
lich. Aufgrund des Gleichheitszeichens könnten Schülerinnen und Schüler hier auch
eine Gleichung mit der Unbekannten angle vermuten, welche allerdings keine Lösung
hat. Dies ist aber eine mathematische Interpretation des Zeichens =. Im Sinne der
Programmiersprache bedeutet = eine Zuordnung, welche von links nach rechts gele-
sen werden muss. Der Variablen angle wird der Wert angle + 1 zugeordnet. Im
Programmablauf passiert daher Folgendes: der ursprüngliche Wert von angle, z.B.
55, wird um 1 erhöht und die Summe wieder der Variablen angle zugeteilt. D.h.
das Programm überschreibt den ursprünglichen Wert mit 56. Die Schleife beginnt
ab background(255) erneut, sodass nun das Haus um 56◦ gedreht gezeichnet wird.

Im nächsten Teil sollen die Schülerinnen und Schüler sich mit den Typen integer und
float sowie einer Fehlermeldung auseinander setzen. Damit sich das Haus langsamer
dreht, muss der Winkel nach jedem Durchgang um weniger als 1◦ erhöht werden, d.h.
der Summand muss durch eine Fließkommazahl ersetzt werden, was dann direkt zu
einer Fehlermeldung führt (Abb. 7.4.4, Teil d)). Da der Winkel bei der Deklaration
als Integer angegeben wurde, stimmt der Wert mit jenem nicht mehr überein. Die
Schülerinnen und Schüler müssen daher den Typ zu float ändern, womit auch die
Fehlermeldung verschwindet.

Der letzte Punkt f) soll zeigen, warum es wichtig ist, dass background(255) im
dynamischen Bereich, d.h. innerhalb der Schleife liegen muss. Intuitiver wäre es,
die Hintergrundfarbe im statischen Bereich zu definieren, direkt nach der Größe des
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Fensters. Wird die Angabe verschoben, entsteht keine Fehlermeldung, aber es passiert
dennoch etwas Merkwürdiges, wie in Abb. 7.4.4 zu erkennen ist. Bei der Drehung
hinterlässt das Haus eine schwarze Spur, sodass das Objekt nach einer Umdrehung
nicht mehr erkennbar ist. Die Animation besteht aus einer Vielzahl von Bildern,
welche vom Programm in einem bestimmten Zeittakt gezeichnet werden, sodass es
für das Auge wie eine bewegte Szene erscheint. Nun ist zu beachten, dass nach jedem
Durchgang der Schleife, das Bild des Hauses gelöscht werden muss, bevor das neue
gezeichnet wird. Daher muss am Anfang der Schleife das Fenster wieder auf weiß
zurückgesetzt werden.
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0°

20°

55°

a)

b) + c)

d)

e)

f)

Abb. 7.4.4 Lösung der Aufgabe 7.4.2.
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Aufgabenbeispiel 7.4.3

Wir wollen nun die Maße des Hauses ändern und einen Turm hinzufügen. Ent-
ferne daher die Variable angle, verschiebe background(255) wieder in den
dynamischen Bereich, entferne die Zeile angle = angle + 0.5 (es entsteht
eine Fehlermeldung, welche wir erst einmal ignorieren werden) und schreibe
stattdessen noLoop(). Schließe die Zeile wieder mit einem Semikolon ab.

a) Ändere die Parameter des Quaders und des Prismas so ab, dass das Haus
3 LE tief und um 120◦ gedreht ist. Die Fehlermeldung sollte verschwinden,
sodass du das Programm wieder ausführen kannst.

b) Wir wollen nun neben dem Haus den Turm zeichnen. Dazu müssen wir
zwei neue Objekte zuerst deklarieren und dann im dynamischen Bereich
initialisieren und zeichnen.

(1) Deklariere oberhalb des statischen Bereiches zwei neue Variablen mit
Cube turm und Pyramid spitze. Orientiere dich dabei an der
Deklaration der Objekte des Hauses.

(2) Gehe nun in den dynamischen Bereich und kopiere den Abschnitt ab
Cube c bis p.drawVertex(p) und füge ihn unterhalb
p.drawVertex(p) und oberhalb noLoop() ein.

(3) Passe nun die Namen der Variablen an die beiden neuen Objekte aus
(1) an. Die Parameter kannst du erstmal übernehmen. Beachte, dass
sich der Typ von Prim auf Pyramid geändert hat.

(4) Führe das Programm aus. Das Haus und der Turm sollten nun inein-
ander gezeichnet sein. Du kannst dem Turm auch ein andere Farbe
geben.

c) Wir wollen nun den Turm neben das Haus verschieben.

(1) Der Turm soll nun aus einem Quader mit einer quadratischen Grund-
fläche von 1.5 LE sowie einer Höhe von 2 LE und einer Spitzenhö-
he von 1 LE bestehen. Ändere die Parameter für Cube turm und
Pyramid spitze entsprechend ab. Denke daran, dass die Pyrami-
de passend nach oben geschoben werden muss.

(2) Verschiebe nun den gesamten Turm rechts neben das Haus. Zwischen
beiden Objekten soll keine Lücke sein.
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a)

a)

b)

b)

c) (1)

c) (2)

c) (1)

c) (2)

b) (1)

Abb. 7.4.5 Lösung der Aufgabe 7.4.3.
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In der letzten Aufgabe sollen die Schülerinnen und Schüler sich mit den restlichen Pa-
rametern der Objekte auseinandersetzen und zudem zwei weitere hinzufügen. Es wird
ein statisches Bild erzeugt, sodass einige Einstellungen aus den vorherigen Aufgaben
übernommen werden. Die Schülerinnen und Schüler müssen sich daran gewöhnen,
dass das Koordinatensystem in der Computergrafik anders ausgerichtet ist, als sie es
vom Schulunterricht kennen.

Abb. 7.4.6 Das zugrunde liegende Koor-
dinatensystem, welches noch um 120◦

gedreht wurde.

Die Tiefe entspricht der Richtung der
z-Achse, d.h. die 4 im ursprüng-
lichen Quellcode muss durch eine
3 ersetzt werden. Dann wird das
Haus um 120◦ gedreht. Hierbei ist
zu beachten, dass auch das Koordi-
natensystem mit rotiert (Abb. 7.4.6
), was bei der späteren Verschie-
bung des Turmes vom Vorteil sein
wird.

In b) wird nun der Turm hinzugefügt.
Da dieser aus einem Quader und ei-
ner Pyramide besteht, müssen zwei neue
Objekte im oberen Abschnitt des Quell-
codes deklariert werden (Abb. 7.4.3). Mit der Pyramide wird ein neuer Objekttyp
Pyramid eingeführt. Die Attribute dieser Unterklasse sind dieselben wie beim Pris-
ma, sodass die Schülerinnen und Schüler nichts Neues erlernen müssen. Nach der
Deklaration werden im dynamischen Bereich beide Objekte mit den Maßen und dem
Ort initialisiert, sowie die Methoden zur Projektion und zum Zeichnen aufgerufen.
Da auch die Pyramide ein Objekt derselben Klassen wie Quader und Prisma ist,
können die Schülerinnen und Schüler den bestehenden Abschnitt kopieren und müs-
sen nur die Variablennamen anpassen. Dabei können sie sich an den bestehenden
Quellcode orientieren. Dann werden die neuen Maße des Turmes übernommen. Die
Schülerinnen und Schüler müssen dabei beachten, dass die Pyramide um -2 Einheiten
auf der y-Achse verschoben werden muss, damit sie auf dem Quader liegt.

Im letzten Teil von c) wird die Pyramide verschoben, sodass sie am Haus anschließt.
Hier ist nun der Vorteil, dass auch das Koordinatensystem mit dem Uhrzeigersinn
um 120◦ um die y-Achse gedreht wird, sodass die Schülerinnen und Schüler den Turm
entlang der z-Achse verschieben können (Abb. 7.4.6). Die Länge, um die verschoben
wird, müssen die Schülerinnen und Schüler sich selbst anhand der Körper überlegen.
In Abb. 7.4.3, c) (1) ist erkennbar, dass die Mittelpunkte der Bodenfläche von Haus
und Turm übereinstimmen. Die Tiefe des Hauses beträgt 3 LE, beim Turm 2.5 LE,
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d.h. es muss um die Hälfte ihrer Summe verschoben werden.

Nach diesem Aufgaben sollten die wichtigsten Bestandteile des Quellcodes verstan-
den sein, sodass im kommenden Abschnitt die Projektion behandelt wird. In Kap.
5.1, S. 206, wurde gezeigt, wie mithilfe einer Matrix die Parallelprojektion eines drei-
dimensionalen Körpers auf die Ebene x2 = 0 berechnet werden kann. Im folgenden
Abschnitt wird dies auf die Projektion der xy-Ebene übertragen und gezeigt, wie
Schülerinnen und Schüler den Richtungsvektor bzw. die Projektionsmatrix in Pro-
cessing ändern können.

7.5 Parallelprojektion mit Processing

Wie im Abschnitt 7.2, S. 267, zuvor erwähnt, ist

ProjZ =

(
1 0 0

0 1 −0.5

)

die Projektionsmatrix, welche in den vorherigen Aufgaben verwendet wurde, um eine
Parallelprojektion auf die xy-Ebene zu erzeugen. Proj steht für Projektion und Z

für die Richtung entlang der z-Achse, d.h. der Betrachter schaut auf die xy-Ebene.
Nachdem der Fokus auf die Erzeugung von den Objekten Quader, Prisma und Py-
ramide lag, wollen wir uns nun der Parallelprojektion zuwenden. Die Schülerinnen
und Schüler beginnen wieder mit einem fertigen Programm (Abb. 7.5.2) und ändern
diesen an bestimmten Stellen der Aufgabe entsprechend ab.

Aufgabenbeispiel 7.5.1

Nachdem wir gelernt haben, ein Haus zu erzeugen, wollen wir uns jetzt mit der
Parallelprojektion auf die xy-Ebene, unserem Bildschirm, beschäftigen.

a) i) Sei ~pz = (z1, z2, z3)
T die Richtung der Parallelprojektion und ~q =

(q1, q2, q3)
T ein beliebiger Punkt im Raum. Bestimme das Bild bei

der Projektion auf die xy-Ebene und zeige, dass

1

z3

1 0 −z1
0 1 −z2
0 0 0


die Projektionsmatrix ist.
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ii) Schaue dir nun in Zeile 14 ProjZ an und berechne die Richtung der
Parallelprojektion. Führe dann das Programm aus. Ist das Bild so,
wie du es erwartet hast? Du kannst dich an dem Koordinatenachsen
orientieren, welche in Zeile 28 erzeugt werden.

b) Wir wollen nun wieder eine Animation erstellen, in dem wir die Richtung
der Parallelprojektion entlang der Achsen ändern. Führe in Zeile 2 eine
neue Variable t mit dem Wert 0 ein. Die Richtung soll (t, 0.5, 1) sein.
Verändere ProjZ entsprechend und ersetze zudem Zeile 30 durch
t = t + 0.005;

if(t > 1.5){

noLoop();

}

c) Bestimme die Projektionsmatrix ProjZ für die Richtung (0, 0.5, t). Wie
ändert sich nun die Richtung der Projektionsstrahlen? Setze den Anfangs-
wert von t auf 1.0 und in Zeile 30 den Endwert 1.5 auf 2. Führe das
Programm aus. Ändert sich das Bild so wie du es erwartet hast?

Wir haben in Kap. 5.1 gezeigt, dass die Parallelprojektion eine lineare Abbildung ist
und durch eine Matrix beschrieben werden kann. Zur Herleitung stellen wir zuerst
die Gleichung der Projektionsgeraden durch ~q auf:

p : ~x = ~q + µ · ~z

Nun bestimmen wir den Schnittpunkt mit der xy-Ebene und daraus die Matrix:

q3 + µ · z3 = 0⇒ µ = −q3
z3q1q2

q3

− q3
z3

z1z2
z3

 =

q1 −
z1
z3
· q3

q2 − z2
z3
· q3

0



⇒ ϕp(~q) =
1

z3

1 0 −z1
0 1 −z2
0 0 0

 ·
q1q2
q3


Angewendet auf Zeile 14 in Abb. 7.5.2 ergibt sich als Projektionsrichtung

~z =

 0

0.5

1

 .
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Wird das Programm ausgeführt, so ergibt sich das linke Bild in Abb. 7.5.2. Anders
als in den vorherigen Aufgaben können sich die Schülerinnen und Schüler an den
Koordinatenachsen orientieren, welche durch die Funktion worldKOS() in Zeile 28
mit den Objekten projiziert werden.

y
x

z

~z = (0, 0.5, 1)T

Abb. 7.5.1 Projektionsstrahlen
aus a) der Aufgabe 7.5.1.

Da die erste Komponente null ist, gehen die
Projektionsstrahlen nicht zur Seite. Die zwei-
te und dritte Komponente gibt die verti-
kale Richtung an. Da die Achse nach un-
ten zeigt und der Wert positiv ist, ver-
laufen die Strahlen von oben nach un-
ten. Wir sehen daher im Bild das Dach
des Hauses. Wir werden später im Teil c)
noch zeigen, dass sich das Haus verklei-
nern wird, wenn der letzte Eintrag erhöht
wird. In der nebenstehenden Abbildung sind
die Projektionsstrahlen skizziert. Es handelt
sich hierbei um eine schiefe Parallelprojekti-
on.

In Teilaufgabe b) und c) wird mithilfe der Ani-
mationsschleife der Projektionsvektor systema-
tisch verändert. Wie sich die Veränderungen auf
das Haus auswirken, ist in Abb. 7.5.2 und 7.5.3
dargestellt. Das Haus befindet sich im Ursprung,

d.h. in der Mitte des Bildschirms. Es ist nicht gedreht, sodass die Ansicht auf die
Vorderseite bezogen ist. Wird nun im Teil b) der Strahl seitlich entlang der x-Achse
gekippt, so wird die Seite des Hauses sichtbar. Je größer die erste Komponente in ~z
wird, um so verzerrter wirkt die Projektion. Dies ist vergleichbar mit der Verlänge-
rung des Schattens, wenn sich die Sonne gen Horizont bewegt. Wird dagegen nur die
letzte Komponente in ~z verändert, so bewirkt dies eine Verkleinerung des Hauses.
Dies ist anhand der Projektionsmatrix erkennbar, wenn wir uns die Teilmatrix mit
den Einträgen anschauen, welche nur z3 enthalten:(

1
z3

0

0 1
z3

)

Dies entspricht einer Skalierung in der xy-Ebene, wobei beide Achsen um denselben
Faktor verkleinert werden, wenn z3 vergrößert wird. Die Projektionsstrahlen treffen
dabei flacher auf die Bildebene.
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t = 0
t = 0.7

t = 1.5

a)

b)

b)

b)

b)

Abb. 7.5.2 Lösung des Aufgabenbeispiels 7.5.1, a) und b). Je nach Richtung der
Projektionsstrahlen wirkt das Bild verzerrt.
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t = 1

t = 1.5

t = 2

Abb. 7.5.3 Lösung des Aufgabenbeispiels 7.5.1, c)

Die letzte Aufgabe hat gezeigt, dass beim Festhalten der xy-Ebene als Bildebene die
schiefe Parallelprojektion auch extrem verzerrte Bilder erzeugt. Die orthogonale Par-
allelprojektion liefert besseres Ergebnisse (Abb. 7.5.4), allerdings muss dafür auch
die Bildebene verändert werden, sodass die Projektionsmatrix komplizierter wird.

Wir stellen daher im folgenden Kapitel eine Transformation des Koordinatensystems
vor, welche trotz veränderter Blickrichtung eine orthogonale Projektion ermöglicht,
die Projektionsmatrix in ihrer Form wie aus den vorherigen Aufgaben aber erhalten
bleibt.

Abb. 7.5.4 Vergleich der schiefen Parallelprojektion (links) mit der orthogonalen
(rechts) für die Blickrichtung ~z = (32 ,

1
2 , 1)T.
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7.6 Das Kamerakoordinatensystem

z

x

y

w

u

v

~t

Abb. 7.6.1
Die Achsen u, v und w bilden das Ka-
merakoordinatensystem für die ortho-
gonale Parallelprojektion.

Das bisherige Koordinatensystem mit
den Achsen x, y und z bezeichnen wir
ab jetzt als das Weltkoordinatensystem,
in welches die Objekte gesetzt werden.
Nun setzen wir den Beobachter in die
Szene, welcher mit einem Auge oder mit
einer Kamera die Projektion ausführt.
Wir stellen uns nun vor, dass die Ka-
mera ein eigenes Koordinatensystem mit
den Achsen u, v und w hat. Ihr Ur-
sprung ist das Projektionszentrum und
ihre Blickrichtung die w-Achse. Die Ka-
mera befindet sich nicht nur an einem
beliebigen Punkt in der Szene, sie kann
auch gekippt werden (Abb. 7.6.2).
Wir suchen nun eine bijektive Abbil-

dung zwischen dem Welt- und Kamerakoordinatensystem, wobei der Ursprung um
den Vektor ~t verschoben wird (Abb. 7.6.1). Die Projektion erfolgt dann auf die uv-
Ebene des Kamerakoordinatensystems. Anhand eines Beispiels wird nun erklärt, wie
bei einer gegebenen Blickrichtung ~w die Drehung der Kamera ausgehend vom Welt-
koordinatensystem bestimmt werden kann. Der Translationsvektor ~t lässt sich aus
den Ursprungspunkten der Koordinatensysteme bestimmen. Mithilfe von homogenen
Koordinaten kann dann durch Multiplikation der entsprechenden Dreh- und Transla-
tionsmatrizen die gesuchte Transformationsmatrix berechnet werden. Wir betrachten
dazu das Beispiel 1 in Abb. 7.6.3, wo beide Systeme in ihren Ursprüngen überein-
stimmen und somit die Translation entfällt. Wir suchen nun Drehmatrizen, welche
durch Verkettung den Vektor ~w des Kamerakoordinatensystems auf die z-Achse des
Weltkoordinatensystems abbilden.

z

x = x′ = u

y

z′ = w

y′ = v

z

x

y

w

v

u

Abb. 7.6.2 Drehung und Verschiebung der Kamera
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Abb. 7.6.3 ~w soll durch Drehung um die y- und x-Achse auf die blaue z-Achse
abgebildet werden.

Beispiel 1:

~w =

0.5

0.5

1

 =

0.408

0.408

0.816


Der gegebene Richtungsvektor wurde zuerst normiert. Abb. 7.6.3 zeigt die normierten
Richtungsvektoren u, v, w des Kamerakoordinatensystems. Ausgehend von ~w lassen
sich über das Kreuzprodukt auch die anderen beiden Vektoren ~u und ~v bestimmen.
In Beispiel 1 wollen wir zuerst zeigen, wie durch Drehung um die y- und x-Achse der
Vektor ~w auf ~z abgebildet wird.

Wir rotieren den Vektor ~w zuerst um die
y-Achse. Die nebenstehende Abbildung
zeigt die Sicht entgegengesetzt zu dieser
Achse. Der Winkel lässt sich über den
Tangens bestimmen, da bei der senk-
rechten Projektion von ~w auf die xz-
Ebene, diese Koordinaten erhalten blei-
ben:

tan−1
(x
z

)
= tan−1

(
0.408

0.816

)
= 26,56◦

Die positive Drehrichtung ist in dieser Ansicht entgegengesetzt des Uhrzeigersinns.
Dies können Schülerinnen und Schüler anhand der „Rechten-Hand-Regel“ leicht nach-
vollziehen. Der Daumen der rechten Hand zeigt in Richtung der y-Achse - in diesem
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Fall aus der Ebene heraus. Die restlichen Finger krümmen sich dann in Richtung des
positiven Drehsinnes, wie er auch den Rotationsmatrizen zugrunde gelegt wurde. ~w
muss also um −26,56◦ gedreht werden, damit er in der yz-Ebene zum Liegen kommt.

Wir drehen nun die Ansicht entgegenge-
setzt zur x-Achse, sodass wir auf die yz-
Ebene schauen. Da der Vektor normiert
wurde, hat die Hypothenuse die Länge
1. Aufgrund der ersten Drehung bleibt
die y-Koordinate von ~w erhalten, da die
y-Achse auf sich selbst abgebildet wird.
Wir können somit den Winkel über den
Sinus bestimmen:

sin−1
(y

1

)
= tan−1 (0.408) = 24,09◦

Der positive Drehsinn um die x-Achse ist hier ebenfalls entgegen des Uhrzeigersinns,
sodass hier um 24,09◦ rotiert werden muss. Wir fassen nun beide Ergebnisse in einer
Abbildungsmatrix zusammen:

~ez = (Mx,24.09 ·My,−26.56︸ ︷︷ ︸
:=TM

) · ~w

TM =

1 0 0

0 cos 24.09 − sin 24.09

0 sin 24.09 cos 24.09

 ·
 cos(−26.56) 0 sin(−26.56)

0 1 0

− sin(−26.56) 0 cos(−26.56)



=

 0.89 0 −0.45

−0.18 0.91 −0.37

0.41 0.41 0.82


Zur Kontrolle können Schülerinnen und Schüler überprüfen, ob mit TM der Vektor
~w auf den Einheitsvektor der z-Achse abgebildet wird:

TM ·

0.408

0.408

0.816

 =

0

0

1


Die Transformationsmatrix TM überführt die Koordinaten von dem Welt- ins Ka-
merakoordinatensystem. Denn im Weltkoordinatensystem zur Basis {~ex, ~ey, ~ez} hat
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~w folgende Einträge:

0.408 ·

1

0

0

+ 0.408 ·

0

1

0

+ 0.816 ·

0

0

1


Im Kamerakoordinatensystem zur Basis {~u,~v, ~w} gilt:

0 · ~u+ 0 · ~v + 1 · ~w

Wir suchen daher genau diese Matrix TM , um die Weltkoordinaten der Objekte so
zu transformieren, dass es zu einer orthogonalen Projektion entlang des Vektors ~w
auf die neue Bildebene kommt. Wir wollen überprüfen, ob die beiden anderen Basis-
vektoren ~u und ~v ebenfalls durch TM auf ~ex und ~ey abgebildet werden, wobei jene
ermittelt werden müssen.

Beispiel 2:
Gegeben ist der normierte Vektor ~w = (0.408, 0.408, 0.816)T. Wir wollen nun die
beiden fehlenden Richtungsvektoren ~u und ~v bestimmen, sodass sich wieder eine
orthonormale Basis für den dreidimensionalen Raum ergibt.

Wir suchen eine Ebene, welche ~w enthält und senkrecht zu ~u steht. Damit wir un-
terscheiden können, ob die Kamera im Quer- oder Hochformat steht, benötigen wir
eine ungefähre Richtung, wo im Raum unten ist2. Soll die Kamera im Querformat
bleiben, so kann hierfür ~ey verwendet werden.

Der Normalenvektor der Ebene, die von
~ey und ~w aufgespannt wird, wird über
ihr Vektorprodukt bestimmen.Dabei ist
die Reihenfolge der Vektoren im Pro-
dukt wichtig, damit wir weiterhin ein
rechtshändiges Koordinatensystem er-
halten. Hierzu zeigt der Daumen der
rechten Hand in Richtung des ersten
Vektors im Produkt, der Zeigefinger in
die des zweiten. Der Mittelfinger weist
dann in die Richtung des Vektorproduk-
tes. Anschließend wird das Ergebnis wie-
der normiert.

2Oftmals ist das Weltkoordinatensystem in der Literatur ([36, 11, 50]) mit der y-Achse nach
oben und die Blickrichtung zur negativen z-Achse ausgerichtet. Dann gibt ~ey die Raumrichtung
nach oben an. Da Processing eine andere Ausrichtung des Koordinatensystems nutzt, wurde dies
als Raumrichtung nach unten angepasst.
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~u = ~ey × ~w =

0

1

0

×
0.408

0.408

0.816

 =

 0.816

0

−0.408

 =

 0.895

0

−0.447


Der dritte Vektor ~v wird analog über das
Vektorprodukt von ~u und ~w bestimmt.
Auch hier wird mit der Rechten-Hand-
Regel die Reihenfolge im Produkt be-
stimmt. Die anschließende Normierung
entfällt, da beide Vektoren im Produkt
die Länge 1 haben und orthogonal zu-
einander stehen:

~v = ~w × ~u =

−0.812

0.913

−0.365


Wir überprüfen abschließend, ob die neuen Basisvektoren mithilfe der Transforma-
tionsmatrix TM auf ~ex und ~ey abgebildet werden:

TM · ~u =

 0.89 0 −0.45

−0.18 0.91 −0.37

0.41 0.41 0.82

 ·
 0.895

0

−0.447

 =

1

0

0



TM ·

−0.812

0.913

−0.365

 =

0

1

0


Schauen wir genau hin, so ist das Ergebnis nicht überraschend. Die Zeilenvektoren
von TM stimmen mit den neuen Basisvektoren überein, d.h. bei der Matrix-Vektor-
Multiplikation entsteht der Eintrag 1 aufgrund der normierten Vektoren und 0 wegen
ihrer Orthogonalität. Alle drei Rechnungen zusammengefasst zeigen folgende Eigen-
schaft:

TM ·

 | | |
~u ~v ~w

| | |

 =

1 0 0

0 1 0

0 0 1

⇒
 | | |
~u ~v ~w

| | |

 = TMT = TM−1

Wird die Transformationsmatrix TM transponiert, so erhalten wir auch ihre Inver-
se, da es sich um eine orthonormale Matrix handelt. Diese Eigenschaft ermöglicht
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folgenden Vorteil: anstatt die Drehwinkel der Kamera zu bestimmen, können auch
die Basisvektoren des Kamerakoordinatensystems berechnet werden, welche als Zei-
lenvektoren die gesuchte Transformationsmatrix ergeben.

Die Kamera soll sich aber nicht nur drehen sondern auch verschiebbar sein. Bei einer
Parallelprojektion hat dies zwar nur Auswirkungen auf den gezeigten Bildausschnitt,
da die Projektion allein von der Richtung bestimmt wird. Wir werden später aber
sehen, dass die Koordinatentransformation auch für die Zentralprojektion genutzt
wird. Um die Translation als lineare Abbildung nutzen zu können, müssen wir nun
homogene Koordinaten verwenden. Das folgende Beispiel wird zuerst in der Ebene
durchgeführt und dann auf den dreidimensionalen Raum übertragen.

Beispiel 3:
Abb. 7.6.4 zeigt ein Welt- und Kamerakoordinatensystems (grau und blau) in der
Ebene. Das Weltkoordinatensystem mit der Basis {~ex, ~ey} wurde um den Vektor
~t = (2, 3)T verschoben und um −20◦ gedreht. Wir betrachten den Punkt P , welcher
im Weltkoordinatensystem den Ortsvektor ~p hat. Wir wollen nun einige Zusammen-
hänge herleiten, welche es ermöglichen, die Koordinaten von P im Kamerakoordina-
tensystem anzugeben.

~ey

~ex

~v

~u
P

~p
~t

~q

Abb. 7.6.4 Die Kamera wurde um −20◦ um den Ursprung gedreht und dann nach
(2, 3) verschoben.

Wir berechnen zuerst die Vektoren ~u,~v in Weltkoordinaten. Entweder ist der Dreh-
winkel oder die Blickrichtung ~v bekannt. Im ersten Fall kennen wir die Drehmatrix:
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~u =

(
cos(−20) − sin(−20)

sin(−20) cos(−20)

)
·
(

1

0

)
=

(
0.94

−0.34

)

~v =

(
cos(−20) − sin(−20)

sin(−20) cos(−20)

)
·
(

0

1

)
=

(
0.34

0.94

)

Im zweiten Fall können wir über das Skalarprodukt und dem bekannten Vektor ~u
auch ~v berechnen, da sie senkrecht zueinander stehen müssen. Der Punkt P hat nun
folgende Koordinaten bzgl. der verschiedenen Basen:

Basis {~ex, ~ey} : 5 ·
(

1

0

)
+ 3 ·

(
0

1

)

Basis {~u,~v} :
(

5

3

)
= a ·

(
0.94

−0.34

)
+ b ·

(
0.34

0.94

)
=

(
0.94 0.34

−0.34 0.94

)
·
(
a

b

)

Die Matrix ist orthogonal, d.h. ihre Inverse ist die Transponierte:(
a

b

)
=

(
0.94 −0.34

0.34 0.94

)
·
(

5

3

)
⇒ 3.68 ·

(
0.94

−0.34

)
+ 4.52 ·

(
0.34

0.94

)

In Abb. 7.6.4 ist leicht zu sehen, dass P nicht die Koordinaten (3.68 / 4.52) im
Kamerakoordinatensystem hat. Abb. 7.6.5 zeigt dagegen, dass ohne die Translation
die neuen Koordinaten richtig wären.

~v

~u

P

Abb. 7.6.5 Die Kamera wurde um −20◦ gedreht, aber nicht verschoben.
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Über das Gitter in Abb. 7.6.4 lässt sich ~q ≈ (2.8, 1)T abschätzen. Der Grund liegt
darin, dass wir nur die Drehung der Basisvektoren betrachtet haben, aber nicht die
Translation des Ursprungs. Ziehen wir nachträglich den Translationsvektor ~t = (2, 3)T

ab, so erhalten wir (1.68 / 1.52). Dies entspricht auch nicht ~q. Transformieren wir da-
gegen auch ~t wie oben ins andere System, erhalten wir:(

2

3

)
= 0.86 ·

(
0.94

−0.34

)
+ 3.50 ·

(
0.34

0.94

)
(

3.68

4.52

)
−
(

0.86

3.50

)
=

(
2.82

1.02

)

Dies kommt der Abschätzung für ~q recht nahe. Ziel ist es nun, die Berechnung mit-
hilfe von Matrizen zu ermöglichen. Betrachten wir nun das Dreieck, welches die
Ortsvektoren und der Translationsvektor bildet:

~p = ~q + ~t

~q habe nun die Einträge a, b im Kamerakoordinatensystem. Dann gilt:

~p = a · ~u+ b · ~v + 1 · ~t

=
(
~u ~v ~t

)
·

ab
1



=

 0.94 0.34 2

−0.34 0.94 3

0 0 1

 ·
ab

1


Wir haben in der ersten Zeile eine Summe, deren Summanden aus Vektoren multipli-
ziert mit einem Skalar bestehen. Dies lässt sich zu einer Matrix-Vektor-Multiplikation
umformen. Hier erfolgt der Übergang in die homogenen Koordinaten, weshalb die
Matrix um die letzte Zeile erweitert wurde. Um a, b zu erhalten, benötigen wir die
inverse Matrix. Das diese algorithmisch umständlich zu berechnen sind, verwenden
wir wieder einen Trick. Wir wissen aus der Anschauung heraus, dass diese Matrix eine
Verkettung von Drehung und Translation ist. Da wir bereits die homogene Transla-
tionsmatrix kennen, können wir die gesuchte Matrix als Produkt von zwei Matrizen
ermitteln. Dabei ist die Reihenfolge wichtig:
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~p =

1 0 2

0 1 3

0 0 1

 ·
 0.94 0.34 0

−0.34 0.94 0

0 0 1

 ·
ab

1



⇒

ab
1

 =

 0.94 0.34 0

−0.34 0.94 0

0 0 1


−1

·

1 0 2

0 1 3

0 0 1


−1

·

p1p2
1


Da Drehmatrizen orthogonal sind, ist ihre Transponierte die gesuchte Inverse. Gegen-
spieler der Translation ist −~t. Wir erhalten somit folgende Transformationsmatrix:ab

1

 =

0.94 −0.34 0

0.34 0.94 0

0 0 1

 ·
1 0 −2

0 1 −3

0 0 1

 ·
p1p2

1



=

0.94 −0.34 −0.86

0.34 0.94 −3.50

0 0 1

 ·
5

3

1

 =

2.82

1.02

1


Wir erhalten dasselbe Ergebnis. Die beiden Teilschritte im ersten Rechenweg lassen
sich wie folgt zusammenfassen:(

a

b

)
=

(
0.94 −0.34

0.34 0.94

)
·
(

5

3

)
−
(

0.94 −0.34

0.34 0.94

)
·
(

2

3

)

=

(
0.94 −0.34

0.34 0.94

)
·
(

5− 2

3− 3

)
=

(
2.82

1.02

)

Interpretieren wir die obige Rechnung anschaulich, bedeutet dies, wir verschieben das
Kamerakoordinatensystem zurück zum Ursprung des Weltkoordinatensystems und
drehen dann um 20◦. Wir wollen hier noch einmal verdeutlichen, warum es sinnvoll
ist, homogene Koordinaten zu verwenden. Sei P0 eine Ecke eines Einheitswürfels im
Weltkoordinatensystems. Um einen Quader mit beliebigen Maßen zu erstellen, muss
P0 mit Msca skaliert werden. Zusätzlich wird der Körper mit Mrot gedreht und an
einem beliebigen Ort o in der Welt platziert:

~p1 = ~o+Mrot ·Msca︸ ︷︷ ︸
:=M0

·~p0

Die Kamera sei um den Winkel α gedreht und um ~t verschoben. Wir erhalten dann
folgendes Ergebnis in Kamerakoordinaten:
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~p2 = MT
rot,α · ~p1 −MT

rot,α · ~t
= MT

rot,α · ~o+MT
rot,α ·M0 · ~p0 −MT

rot,α · ~t
= MT

rot,α · (~o− ~t) +MT
rot,α ·M0 · ~p0

Wir benötigen hier zwei verschiedene Matrizen und den zusätzlichen Vektor ~o − ~t.
Mit homogenen Koordinaten lässt sich eine Matrix bestimmen, sodass gilt:

~p2 = M · ~p0

Wir übertragen die Erkenntnisse aus den Beispielen nun in den Raum und fassen
alles in folgendem Satz zusammen:

Satz 7.6.1

Sei {~ex, ~ey, ~ez} die Basis des Weltkoordinatensystems und ~t der Ortsvektor der
Kamera mit normierter Blickrichtung ~w. Für eine Projektion im Querformat
(y-Richtung ist für die Kamera „unten“) lässt sich die Transformationsmatrix
von Welt- ins Kamerakoordinatensystem zur Basis {~u,~v, ~w} wie folgt bestim-
men:

(1) Basisvektoren:

~u =
~ey × ~w

||~ey · ~w||2
~v = ~w × ~u

(2) Von Welt- ins Kamerakoordinatensystem:

TM =


u1 u2 u3 0

v1 v2 v3 0

w1 w2 w3 0

0 0 0 1

 ·


1 0 0 −t1
0 1 0 −t2
0 0 1 −t3
0 0 0 1



a

b

c

1

 = TM ·


p1

p2

p3

1


~p = (p1, p2, p3)

T ist dabei der Ortsvektor eines Punktes P in Weltkoordinaten,
(a, b, c)T in Kamerakoordinaten.
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7.7 Orthogonale Parallelprojektion in Processing

Nachdem wir die Transformation vom Welt- ins Kamerakoordinatensystem vorge-
stellt haben, wollen wir uns nun die Implementierung in Processing anschauen. Im
Quellcode wurden die Koordinaten der Einheitskörper durch homogene ersetzt, d.h.
an vierter Stelle eine 1 eingefügt.
Abb. 7.7.1 zeigt den Editor. Da wir nun eine Kamera verwenden, existiert der neue
Reiter „Camera“ mit allen Operationen, um von Welt- in Kamerakoordinaten zu
transformieren. Die Abbildung zeigt als Beispiel wieder ein Haus. Mit der Variablen
o sind die Koordinaten des Augpunktes bzw. der Kamera gegeben. Der Ursprung
des Kamerakoordinatensystems muss daher an diese Stelle verschoben werden. Die
Person schaut zu dem Punkt, dessen Koordinaten in lookAt gespeichert sind. Die
Blickrichtung ergibt sich somit aus der Differenz von Kameraposition und jenem
Punkt. Die Differenz wird mit der Anweisung lookAtVector in Zeile 15 berechnet.
Der Vektor y in Zeile 1 gibt an, in welcher Richtung „unten“ für die Kamera ist.
Die Transformationsmatrix TM lässt sich nach Satz 7.6.1 über die Vektoren u, v,
w und o berechnen. Die benötigten Vektoren werden in Zeile 17 bis 20 ermittelt. w
ist der normierte Vektor der Blickrichtung und u das normierte Vektorprodukt aus
jenem mit y. v ist das Vektorprodukt aus w und u. Da diese Vektoren schon normiert
sind, ist das Vektorprodukt v ebenfalls normiert.

Abb. 7.7.1 Der erweiterte Quellcode für die orthogonale Parallelprojektion mit ho-
mogenen Koordinaten
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Die Anweisung worldToCameraMatrix berechnet dann nach o.g. Satz das Matrix-
produkt. Mit dieser wird in Zeile 28 und 29 die Parallelprojektion auf die xy-Ebene
des Kamerakoordinatensystems für beide Körper erzeugt und die Bildpunkte in Zei-
le 31 und 32 gezeichnet. Für eine bessere Orientierung wurde abschließend in Zeile
34 die Achsen des Weltkoordinatensystems eingefügt. Da das Haus nicht verschoben
wurde, liegt der Mittelpunkt der Bodenfläche im Ursprung.
Im Reiter Transformation befinden sich die 4 × 4 - Matrizen für Skalierung, Dre-
hung um alle drei Raumachsen sowie Translation der Objekte. Abb. 7.7.3 zeigt einen
Ausschnitt dieser homogenen Matrizen, wie auch die Berechnung der Transforma-
tionsmatrix vom Welt- ins Kamerakoordinatensystem sowie der Blickrichtung im
Reiter Camera.
Motiviert wurde das vorherige Kapitel über das Kamerakoordinatensystem, S. 290,
mit der Abb. 7.5.4, wo die Richtung der Strahlen der Parallelprojektion bzgl. der
x-Achse verschoben wurde, während das Bild weiterhin auf der xy-Ebene entstand.
Je schiefer die Projektionsstrahlen auf diese Ebene trafen, um so verzerrter wurde
das Bild des Hauses. Damit bei Positionsveränderung des Betrachters die Bilder un-
verzerrt bleiben, wurde in dem nachfolgenden Kapitel ein Verfahren gezeigt, welches
das Koordinatensystem derart verschiebt und dreht, sodass die Bildebene senkrecht
zur Blickrichtung des Betrachters steht. Die Projektion ist somit immer orthogonal
und die Schrägbilder weniger verzerrt.

Zum Vergleich nehmen wir nun wieder das Haus bestehend aus Quader und Prisma
und verschieben den Betrachter entlang der x-Achse. Dann vergleichen wir die Bilder
mit und ohne Transformation des Weltkoordinatensystems, wobei bei letzterem der

Abb. 7.7.2 Vergleich der schiefen (oben) und orthogonalen (unten) Parallelprojek-
tion bei Verschiebung des Betrachters entlang der x-Achse.
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Betrachter immer auf den Ursprung des Weltkoordinatensystems schauen soll. Abb.
7.7.2 zeigt das Ergebnis. Die ersten beiden Bilder sind ähnlich, da die Projektions-
richtung (0 / − 0.5 / − 1)T liegt, d.h. um eine Einheit weg von der Bildebene und
um 0.5 Einheiten nach oben verschoben, allerdings nicht zur Seite. Aufgrund der
Verschiebung nach oben, fallen die Strahlen nicht senkrecht auf die Bildebene (Vgl.
Abb. 7.5.1, S. 287). Im ersten Bild der Vergleichsreihe ist das Dach etwas höher als
in der unteren orthogonalen Projektion.

Mit dem Beispiel haben wir gezeigt, welchen Vorteil die Transformation in Kame-
rakoordinatensystem bietet und weshalb homogene Koordinaten dies vereinfachen,
da wir am Ende nur eine Matrix benötigen, mit welcher jeder Eckpunkt der Körper
multipliziert wird.
Das nächste Kapitel verwendet Processing zur Erzeugung von Rot-Grün-Bildern.
Wie im Abschnitt 7.1 Das Anaglyphenverfahren, S. 264, schon erwähnt, wurde die-
ses Thema durch eine Aufgabe in einem Schulbuch der Oberstufe motiviert, wo ein
Würfel anhand zwei nahe beieinander liegender Zentren auf eine Bildebene proji-
ziert wird, wobei ein Bild rot und das andere in grün gezeichnet wird. Mit einer
Rot-Grün-Brille und dem passenden Abstand erscheint der Würfel dreidimensional.
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…

Abb. 7.7.3 homogene Matrizen zur Skalierung und Drehung der Einheitskörper so-
wie die Ermittlung der Transformationsmatrix vom Welt- ins Kamerakoordinaten-
system
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7.8 Erzeugung von Anaglyphenbildern

Wir wollen nun in Processing eine Zentralprojektion durchführen, um Anaglyphen-
bilder zu erzeugen. Als Grundlage dienen wieder die drei Klassen Würfel, Prisma
und Pyramide. Für die Skalierung, Drehung und Verschiebung verwenden wir die
4×4 -Matrizen aus dem vorherigen Kapitel. Da die Zentralprojektion ebenfalls keine
lineare Abbildung ist, sind auch hier homogene Koordinaten sinnvoll. Wir wollen
aber zum Einstieg die Gleichung 7.1.1, S. 266, verwenden. Abb. 7.8.1 zeigt die ent-
sprechende Implementierung in Processing mit einem Haus als Beispiel. Das Haus
besteht aus einem Würfel mit quadratischer Grundfläche (Kantenlänge: 3 Einheiten,
2 Einheiten hoch) sowie einem Prisma (1.5 Einheiten hoch). Der Mittelpunkt des
Hauses, welches um 40◦ gedreht wurde, befindet sich im Ursprung.

Abb. 7.8.1 Die Zentralprojektion des Hauses

Im Reiter „Transformation“ der Abb. 7.8.2 ist die Zentralprojektion definiert. Als
Argument benötigt CentralProjection das Projektionszentrum und den Körper.
Zur besseren Lesbarkeit werden die Koordinaten des Zentrums in den Variablen l1,
l2 und l3 übertragen. Ebenso wird innerhalb der Schleife (ab Zeile 70) verfahren,
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welche die Punktliste durchläuft, die jeder Körper aufgrund seiner Klasse beinhaltet.
Hier werden die Koordinaten in p1, p2 und p3 temporär abgelegt. Die Werte werden
dann für jeden Eckpunkt des Körpers in die Formel eingesetzt und die in der Liste
jeder Punkt durch seinen Bildpunkt ersetzt (Zeile 78 bis 80).

…

Abb. 7.8.2 Implementierung der Formel zur Berechnung der Bildkoordinaten bei
zentraler Projektion auf die xy-Ebene

Nun ersetzen wir die Formel in der Funktion CentralProjektion durch eine ho-
mogene Matrix nach Gl. (4.6.4), wie sie auf Seite 198 hergeleitet wurde. Es wurden
weitere Veränderungen vorgenommen, wie Abb. 7.8.3 zeigt. In Abb. 7.8.1 wurden
die Projektionszentren L1 und L2 (Zeile 3 und 4) mit der Einheit angegeben. Diese
Skalierung wurde nun in die Projektionsfunktion (Zeile 5 bis 7) übernommen. Zur
Verdeutlichung wurde diese Änderung in der Abb. 7.8.3 mit einem Pfeil markiert.
Der Vergleich beider Abbildungen zeigt, dass wir dasselbe Anaglyphenbild erhalten.
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…
…

Abb. 7.8.3 Die Zentralprojektion erfolgt nun mit einer Matrix und liefert dasselbe
Bild wie in Abb. 7.8.1
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Wir wollen nun zum Abschluss auch die Transformation ins Kamerakoordinatensys-
tem in unseren Quellcode einbauen. Da diese Umrechnung ins andere Koordinaten-
system unabhängig von der Projektion ist, können wir die Funktionen worldTo-
CameraMatrix und lookAtVector aus dem Abschnitt zur orthogonalen Paral-
lelprojektion übernehmen. Abb. 7.8.4 zeigt das Ergebnis, wenn wir dasselbe Haus
sowie die Projektionszentren aus dem vorherigen Beispiel übernehmen. Da wir nun
zwei Zentren haben, nehmen wir für den Ort der Kamera (Variable o, Zeile 17)
den Mittelpunkt zwischen diesen entlang der x-Achse. Damit die Bildebene parallel
zum Haus liegt (Übereck-Perspektive), soll die Kamera wegen der erhöhten Position
(y = −3) nicht nach unten schauen. Daher gilt lookAt = {0,−3, 0} (Zeile 4). Die
Blickrichtung entspricht dem Hauptstrahl der Zentralprojektion, d.h. die Bildebene
liegt hierzu senkrecht.

…

Abb. 7.8.4 Zentralprojektion des Hauses mit Transformation ins Kamerakoordina-
tensystem
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Durch die Anpassung der Bildebene lassen sich Verzerrungen vermeiden. Dazu ma-
chen wir ein analoges Beispiel, wie schon im Abschnitt zur Parallelprojektion. Statt
einem Anaglyphenbild projizieren wir das Haus nur einmal und zeichnen es schwarz.
Wir verschieben die Kamera wieder entlang der x-Achse. Abb. 7.8.5 stellt die Pro-
jektionen ohne und mit Transformation gegenüber. Je weiter weg sich die Kamera
seitlich vom Ursprung, bei gleicher Höhe und gleichem Abstand zur Bildebene, ent-
fernt, umso verzerrter wird die Projektion, wenn die Bildebene nicht mitgeführt wird.
Allerdings bleibt es nicht aus, dass die Kanten des Hauses mit quadratischer Grund-
fläche bei x = −10 auch mit Kamerakoordinaten derart verzerrt werden, dass es
nicht mehr quadratisch wirkt.

<latexit sha1_base64="UVYNcaOGHU5OdhPijWoLKDkaeYc="></latexit>

x = �1
<latexit sha1_base64="fwzigZL/X1m5X26Ur+k2v5kKgH0="></latexit>

x = �5
<latexit sha1_base64="DcBOPN1EDF54uESXUBL3YFRpG6c="></latexit>

x = �10

Abb. 7.8.5 Verschiebung des Projektionszentrum entlang der x-Achse ohne Trans-
formation ins Kamerakoordinatensystem (oben) und mit (unten)

Zur besseren Erklärung, was die Transformation ins Kamerakoordinatensystem be-
wirkt, zeigt Abb. 7.8.6 das Haus und die Bildebene im dreidimensionalen Koordina-
tensystem, wobei die y-Achse nach unten zeigt und die z-Achse nach hinten, wie es
auch im Quellcode.
Grau sind die ursprüngliche xy-Ebene und die Objektebene dargestellt. H bezeich-
net den Hauptpunkt, auf welchen die Kamera schaut (lookAt = {0,−3, 0}). Der
Betrachter (Zi) bewegt sich parallel zur x-Achse und schaut dabei immer auf H.
Damit dreht sich durch die Transformation ins Kamerakoordinatensystem die Bilde-
bene derart, dass die Gerade ZiH immer orthogonal zur neuen Bildebene steht.
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Abb. 7.8.6 Durch Transformation ins Kamerakoordinatensystem ist die neue xy-
Ebene gedreht, sodass der Hauptstrahl diese senkrecht trifft. Unten zeigt den Grund-
riss der obigen Szene mit den entsprechenden Bildebenen.
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Damit endet dieses Kapitel über Processing und den entworfenen Quellcode zur Er-
stellung von Bildern. Wir haben gezeigt, wie sich ausgehend von den Einheitskörpern
Würfel, Prisma und Pyramide eine Szene aufbauen lässt, indem durch Matrizenmul-
tiplikation die Eckpunkte skaliert, gedreht und verschoben werden können. Dabei
haben wir gezeigt, dass alle drei Transformationen mit einer Matrix möglich sind,
wenn wir homogene Koordinaten verwenden. Es wurde erläutert, wie dies im Quell-
code durch eine Klassenstruktur erfasst wird.
Danach haben wir uns mit der Parallelprojektion dieser Szenen befasst und gezeigt,
dass durch orthogonale Projektionen Verzerrungen vermieden werden. Ein Beispiel
motivierte die Transformation in ein Kamerakoordinatensystem.
Zum Abschluss erzeugten wir Anaglyphenbilder mit der Zentralprojektion, wobei
wir auch hier homogene Koordinaten verwendeten, da jene Projektion keine lineare
Abbildung ist. Zum Schluss wurde wieder an einem Beispiel gezeigt, dass auch hier
vor der Projektion die Transformation ins Kamerakoordinatensystem bessere Bilder
lieferte.



Kapitel 8

Materialien und
Anwendungsbeispiele

Wir haben uns in den vorherigen Kapiteln dem Thema Zentral- und Parallelprojek-
tion auf ganz unterschiedliche Arten genähert: rein mathematisch unter Verwendung
von Koordinaten und Vektoren im Sinne der analytischen Geometrie im Mathematik-
unterricht, Konstruktion der Bilder mit Grund- und Aufriss ohne Berechnungen, wie
sie auch im Kunstunterricht durchführbar wäre oder fachübergreifend die Berechnung
der Bilder mithilfe einer objektorientierten Programmiersprache im Informatikunter-
richt. Dies hat gezeigt, wie vielseitig dieses Thema in der Schule Anwendung finden
kann. Wir wollen nun in eine weitere Richtung gehen und Materialien vorstellen,
welche im Mathematikunterricht zur Unterstützung von Lernprozessen verwendet
werden können.

Inspiriert von historischen Schriften wurde der Perspektograph von Lambert nach-
gebaut und auf seine Funktion und Tauglichkeit geprüft. Ebenso angeregt durch die
vorhandenen Aufgaben in Schulbüchern zur Dreitafelprojektion wurden zwei Versio-
nen einer Raumecke entwickelt und Aufgabenbeispiele zu ihrer Verwendung entwor-
fen.
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8.1 Der Perspektograph

Abb. 8.1.1 Mit einem CAD Programm
nachkonstruierter Perspektograph
nach Lambert

Johann Heinrich Lambert beschrieb
1752 in seinen Schriften zur Perspek-
tive [32] den Entwurf eines Perspek-
tographen, welcher es ermöglicht, aus
einer ebenen Figur in der Objektebe-
ne das Bild unter einer Zentralprojek-
tion zu zeichnen, sofern sich Objekt-
und Bildebene orthogonal schneiden.
Die nebenstehende Abbildung zeigt den
Perspektographen nach Lamberts Ent-
wurfzeichnungen, erstellt mit dem Pro-
gramm FreeCAD, einer kostenlose Soft-
ware zur Zeichnung von Objektmodellen
(computer-aided design).

d

m

Bildspur a

Objektebene

Bilde
ben

e

Ap

Z

Z′

ϕz(A)

A

Abb. 8.1.2 Konstruktion des Bildpunk-
tes unter einer Zentralprojektion

Um die Funktionsweise des Perspek-
tographen zu erklären, betrachten wir
Abb. 8.1.2: Das in der Objektebene lie-
gende Rechteck wird als Zentralprojek-
tion in die Bildebene übertragen, wo-
bei das Projektionszentrum Z nicht Teil
dieser Ebene sein darf. Die Objektebe-
ne schneidet die Bildebene orthogonal.
Die Schnittgerade ist die Bildspur a. Um
den Bildpunkt von A zu konstruieren,
zeichnen wir den Projektionsstrahl ZA,
welcher die Bildebene in ϕz(A) schnei-
det. Wir hatten im Abschnitt 4.3.2
Konstruktionsmethoden mit Grund- und
Aufriss schon erläutert, wie sich der
Bildpunkt in der Ebene konstruieren
lässt. Wir wissen, dass der Bildpunkt auf der Lotgeraden zu a durch Ap liegt. Denn:
ZZ ′ schneidet die Objektebene senkrecht. Da die Bildebene ebenfalls orthogonal zur
jener Ebene liegt, muss jede Gerade in der Bildebene parallel oder windschief zu ZZ ′

sein. Da aber Apϕz(A) auch in der Projektionsebene AZ ′Z liegt, bleibt nur noch
der erste Fall. Somit ist Apϕz(A) parallel zu ZZ ′ und somit auch orthogonal zur
Objektebene. Damit lässt sich auch der Strahlensatz anwenden. Es gilt:
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d(Ap, ϕz(A)) =
d(A,Ap) · d(Z,Z ′)

d(A,Z ′)
(8.1.1)

Abb. 8.1.3 Material für die Projektion
einer ebenen Figur

Für den Einsatz im Unterricht wur-
de folgendes Material entwickelt, dessen
Aufbau an Abb. 8.1.2 orientiert ist. Das
CAD Modell und die Umsetzung zeigt
Abb. 8.1.3.
Die Objektebene ist eine Platte aus be-
schichtetem Holz und die Bildebene ei-
ne durchsichtige Scheibe aus Acrylglas,
welche auf die Platte aufgesteckt wer-
den kann. Auf einer Seite der Objektebe-
ne sind verschiedene Löcher gebohrt, in
die ein Stab senkrecht gesteckt werden
kann. Oben am Stab befindet sich ei-
ne gelochte Platte. Sie stellt den Aug-
punkt Z dar. Zur Variation von Z wur-
den zwei verschiedene Rundhölzer mit
unterschiedlichen Höhen gefertigt, wel-
che in die beiden Löcher auf der Platte
gesteckt werden können. Somit sind vier
verschiedene Lagen von Z möglich.
Der Winkel aus Holz hat auf der senk-
rechten Leiste ein Zentimetermaß und
kann verwendet werden, um die berech-
neten Abstände zwischen Objektėbene
und Bildpunkt ϕz(A) über den Schnittpunkt Ap abzutragen. Um Ap zu markieren
bzw. die anderen beiden Abstände in Gl. (8.1.1) zu messen, kann ein Lineal unter
die Acrylglasplatte geschoben werden.

Wir wollen die Anwendung an einem Beispiel demonstrieren und verwenden ein blau-
es Rechteck, welches auf der anderen Seite der Acrylglasplatte mit Klebeband fixiert
wird. Zur besseren Orientierung beschriften wir die Ecke mit einem wasserlöslichen
Stift. Für das Zentrum nehmen wir den kleineren der beiden Rundhölzer und ste-
cken es in das hintere Loch. Damit haben wir das Projektionszentrum festgelegt.
Nun wollen wir die Bildpunkte berechnen.
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Schritt 1:
Wir messen die Höhe von der Platte bis ungefähr zur Mitte des Guckloches und
erhalten d(Z,Z ′) = 14 cm.

Abb. 8.1.4 Schritt 1: Das Objekt wird fixiert und der Abstand des Zentrums zum
Boden ausgemessen.

Schritt 2:
Mit einem Lineal wird der Abstand zwischen den Urbildpunkten und dem Stand-
punkt Z ′ bzw. zum Schnittpunkt mit der Bildspur gemessen, indem das Lineal durch
die Öffnung in der Acrylglasplatte geschoben wird. Zusätzlich markieren wir diese
Schnittpunkte.

Abb. 8.1.5 Schritt 2: Messen der Abstände und Markierung der Schnittpunkte

Wir schreiben die Werte (in cm) in eine Tabelle und berechnen über den Strahlensatz
nach Gl. (8.1.1) die Höhe der Bildpunkte:

X d(X,Xp) d(X,Z ′) d(Xp, ϕz(X))

A 7,9 25,2 4,4
B 6,5 20,7 4,4
C 13,5 27,8 6,8
D 15,2 31,2 6,8

Das Rechteck liegt mit den Strecken
AB und CD parallel zur Bildebe-
ne. In diesem Fall wird ihr Flucht-
punkt zum Fernpunkt, sodass auch
die Bildstrecken parallel sind. Dies
zeigt sich in den Ergebnissen, da die
Endpunkte der Bildstrecken auf der-

selben Höhe liegen. Schülerinnen und Schüler haben somit die Möglichkeit, ihre Er-
gebnisse auf Plausibilität zu überprüfen.
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Schritt 3:
Mit den Längenangaben und der obigen Formel (8.1.1) lassen sich die Längen von
XP bis zu den Bildpunkten ϕz(X) berechnen und auf der Acrylplatte abtragen.
Hierzu können wir, wie in der vorherigen Abbildung, die Platte an die schwarz mar-
kierte Bildspur legen. Wegen den Halterungen auf beiden Seiten kann die Platte
nicht ganz an die Bildspur gelegt werden. Der Abstand beträgt 3 mm und muss zu
d(Xp, ϕz(X)) hinzu addiert werden. Vorteil ist dagegen, dass ein Geodreieck direkt
an die Schnittpunkte Ap, Bp, ... angelegt werden kann, um senkrecht die ermittelte
Länge abzutragen. Wir markieren die Bildpunkte mit einem wasserlöslichen Stift.
Eine Alternative zeigt das erste Bild der folgenden Abbildung:

Abb. 8.1.6 Schritt 3: Abtragen der berechneten Längen auf die Acrylglasplatte

Der Winkel wird bis an den Schnittpunkt mit der Bildspur geschoben und der Bild-
punkt auf der stehenden Acrylglasplatte an der berechneten Höhe markiert. Hierbei
müssen die 3 mm nicht berücksichtigt werden. Mit allen weiteren Eckpunkten der
Figur wird so verfahren. Die Acrylgasscheibe kann nun herausgenommen werden,
um die Bildpunkte mit dem wasserlöslichen Folienstift miteinander zu verbinden.

Abb. 8.1.7 Validierung
des Ergebnisses

Schritt 4:
Zur Kontrolle haben Schülerinnen und Schüler nun die
Möglichkeit, die Platte wieder aufzustecken und durch
das Loch oberhalb des Stabes zu sehen. Wurde richtig ge-
rechnet, sollte das gesehene Rechteck auf der Objektebe-
ne mit dem konstruierten Bild auf der Acrylglasscheibe
übereinstimmen. Der Blick sollte dabei durch das Loch
senkrecht auf die Bildebene fallen, damit die Sehebene
des Auges parallel zur Bildebene ausgerichtet ist. Wird
stattdessen zum seitlich versetzten Rechteck geschaut,
stimmen die Bilder nicht überein. Die Richtung, in welche
die Person schaut, liegt orthogonal zur Sehebene des Auges. Wird nicht senkrecht
durch das Loch geschaut, so stimmen Seh- und Bildebene nicht mehr überein. Dies
war der Grund für die Einführung des Kamerakoordinatensystems aus dem vorheri-
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gen Kapitel mit Processing. Einfacher lässt sich das Ergebnis überprüfen, wenn statt
dem eigenen Auge eine Handykamera verwendet wird. Dabei muss das Handy auch
parallel zur Bildebene ausgerichtet werden. So ist die vorherige Abbildung entstan-
den.

Nach diesem Beispiel sind weitere Fragestellungen möglich. So können auf der Acryl-
glasplatte die Bildstrecken AD und BC derart verlängert werden, dass sie sich in
den Fluchtpunkt F schneiden. Wir stellen die Platte wieder in die Halterung und
schauen durch das Loch. Wir sehen direkt auf F , da sich der Punkt auf derselben
Höhe befindet. Dies stimmt auch mit der Theorie überein, denn in Kapitel 3.1 Die
Zentralprojektion, S. 46, wurde gezeigt, dass der Fluchtpunkt das Bild des Fern-
punktes ist, welches die Richtung der Geraden AD und BC beschreibt. Nach den
Konstruktionsverfahren im Abschnitt 4.3.2 lässt sich der Fluchtpunkt konstruieren,
indem wir durch Z eine Parallele zu AD ziehen, welche die Bildebene in F schneidet.
Da das Rechteck parallel zur Bildebene liegt, ist AD orthogonal zu dieser. Demnach
fällt F mit dem Hauptpunkt zusammen.

Abb. 8.1.8 Die Ansicht von oben und von der Seite zeigen, dass sich der Fluchtpunkt
orthogonal vor dem Loch befindet.

Wir wollen in einem zweiten Beispiel die Lage von Fluchtpunkten untersuchen. Hierzu
nehmen wir eine Raute und legen sie neben das Rechteck auf die Objektebene. Wir
konstruieren die Bildpunkte wieder mithilfe der Formel, übertragen diese auf die
Acrylglasplatte und schauen danach durch das Loch, um das Ergebnis zu überprüfen.
Das mittlere Foto in Abb. 8.1.9 zeigt die Übereinstimmung zwischen Bild und Urbild.
Nun nehmen wir wieder die Platte heraus und verlängern alle Seiten der Raute,
sodass wir die beiden Fluchtpunkte F1 und F2 erhalten. Weiterhin zeichnen wir
auf die Objektebene die Parallele zu EF und EH durch Z ′. Ihr Schnittpunkt mit
der Bildspur sollte F ′1 und F ′2 sein, d.h. F1 und F2 im Grundriss. Wir stecken die
Acrylglasplatte zurück in die Halterung. Das dritte Foto in Abb. 8.1.9 zeigt, dass die
Fluchtpunkte unter Berücksichtigung einiger Ungenauigkeiten durch das Zeichnen
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Abb. 8.1.9 Im zweiten Beispiel wird eine Raute abgebildet und die Fluchtpunkte
gezeichnet.

senkrecht über F ′1 und F ′2 liegen.
Beide Fluchtpunkte liegen auf einer Geraden, welche parallel zur Objektebene liegt.
Dies ist der Horizont, welcher alle Fluchtpunkte enthält, sofern die entsprechenden
Parallelbüschel in parallelen Ebenen bzgl. der Objektebene liegen. Hier zeigt sich
im rechten Foto der Abb. 8.1.9 eine Unstimmigkeit, denn F, F1 und F2 liegen auf
keiner gemeinsamen Geraden. F befindet sich etwas oberhalb der Verbindungsgera-
den F1F2. Dies liegt an Ungenauigkeiten im Zeichnen und kann durch die Projektion
von größeren ebenen Figuren verringert werden. Die Bildkanten der Raute waren
anscheinend zu kurz, um die Bildgeraden durch die vier Eckpunkte genau zeichnen
zu können. Geringe Abweichungen können schon zu einer größeren Lageverschiebung
der Fluchtpunkte führen.

Das Material bietet noch weitere Möglichkeiten, als die Untersuchung von Flucht-
punkten. Wir können auch die Bilder mithilfe der Konstruktionsmethode in Ab-
schnitt 4.3.2 erstellen, diese auf die Acrylglasplatte übertragen und mithilfe des
Guckloches das Ergebnis überprüfen. So bekommen Schülerinnen und Schüler die
Chance, ihre Ergebnisse zu validieren. Dies wird hier allerdings nicht weiter ausge-
führt.
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J. H. Lambert hat die vorherige Methode weiterentwickelt, mit dem Ziel, den Ab-
stand d(Xp, ϕz(X)) in der Objektebene zu konstruieren statt zu berechnen. In seinem
Perspektographen entsteht das Bild mechanisch durch Abfahren des Grundrisses mit
einem Stift. Dafür wurde folgender Trick verwendet, wie die neben stehenden Abbil-
dungen zeigen:

Z

Z′

ϕz(A)

M

Ap
A

O

Abb. 8.1.10 Drehung in die Ebene um 90◦

Wir übertragen den Abstand
d(ap, ϕz(A)) auf die Bildspur
a und erhalten den Punkt M .
Analog verfahren wir mit Z, in-
dem wir d(Z,Z ′) auf die Par-
allele zu a durch Z ′ abtragen.
Damit haben wir den Punkt
O. Wenn wir nun O mit A

verbinden, so liegt M auf die-
ser Strecke. Denn: beide Drei-
ecke haben die Kante AZ ′ mit
dem Teilungspunkt Ap gemein-
sam. Aufgrund des Strahlensat-
zes ist das Streckenverhältnis
d(A,Ap) : d(A,Z ′) gleich zum Verhältnis d(ϕz(A), Ap) : d(Z,Z ′). Dies gilt auch
im Dreieck ∆AZ ′O, da beide Dreiecke die Kante AZ ′ mit dem Teilungspunkt Ap
gemeinsam haben. Da ist auch das Verhältnis d(M,Ap) : d(Z ′, O) gleich den vorhe-
rigen Verhältnissen. Somit ist M ein Teilungspunkt der Strecke AO.

Abb. 8.1.11 Zentralprojektion des Dreiecks

Eine andere Sichtweise
zeigt Abb. 8.1.11. Die
Dreiecke ∆ϕz(A)ApM

und ∆ZZ ′O sind recht-
winklig und gleichschenk-
lig. Folglich sind sie
ähnlich zueinander. Das
eine Dreieck lässt sich
über eine Zentralpro-
jektion ϕz mit A als
Zentrum auf das an-
dere abbilden. Dabei
ist AO ein Projektions-
strahl und somitM das
Bild von O. Demnach muss M auf AO liegen.
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Abb. 8.1.12 Ansicht von oben

Statt d(Ap, ϕz(A)) mithilfe des 2. Strahlensatzes zu berechnen, lässt sich die Strecke
konstruieren, indem O mit A verbunden wird, um den Punkt M zu erhalten. Somit
ist auch die Funktionsweise des Perspektographen geklärt, welche die Abb. 8.1.12
zeigt.
Auf der oberen Leiste lassen sich die Punkte Z ′ und O einstellen. Z ′ legt dabei fest,
wo der Betrachter steht, und der Abstand d(Z ′, O) = h, wie weit der Augpunkt
über der Ebene liegt. Wie weit der Betrachter von der Bildebene entfernt steht, wird
dabei durch den Abstand d der beiden grauen Leisten festgelegt. In dem Nachbau
sind diese Leisten in einem festen Abstand von 17 cm montiert.
Nun werden die violetten Leisten über dem Urbildpunkt A gekreuzt. Der Schnitt-
punkt der Leiste beginnend bei Z ′ bzw. bei O mit der mittleren Leiste a stellt den
Punkt Ap bzw. M dar. A′ ergibt sich nun, wenn der Abstand d(Ap,M) senkrecht
über Ap abgetragen wird. Dies wird im Perspektographen über das gleichschenklige
Dreieck erreicht, d.h. der Schnittpunkt der beiden grünen Leisten ist A′. Abb. 8.1.14
zeigt den Nachbau des Perspektographen.
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Abb. 8.1.13 Die einzelnen Bauteile des Perspektographens
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(a) Übersichtsaufnahme

(b) Auf der oberen Leisten steht in weißer
Schrift der Abstand zum Mittelpunkt.

(c) Die horizontalen Leisten befinden sich in un-
terschiedlichen Höhen.

Abb. 8.1.14 Der Nachbau des Perspektographen

Die einzelnen Teile des Nachbaus wurden anhand von Zeichnungen in Lamberts
Schriften [32] mit dem Programm FreeCAD entworfen. Abb. 8.1.13 zeigt die Teile
mit ihren Maßen in mm. Mit Sculpteo wurde eine Firma gefunden, welche Einzel-
aufträge für das Laserschneiden annahm. Als Material wurde der Kunststoff POM
(Polyoxymethylen) gewählt, da es neben hoher Festigkeit auch sehr dünn sein muss-
te, da an zwei Stellen im Perspektographen drei Teile übereinander gelegt werden
mussten und der somit entstehende Höhenunterschied so gering wie möglich sein
sollte. Neben dem Kunststoff bot die Firma auch MDF Holzplatten an, allerdings
war die Dicke der Platten Anfang 2019 noch größer als 2 mm und die Oberfläche
rau, was ein Gleiten der Leisten über die horizontalen Träger erschweren würde. Im
Nachhinein stellte sich heraus, dass der Kunststoff zwar eine sehr glatte Oberfläche
hatte, allerdings die Festigkeit nicht für eine volle Funktionsfähigkeit ausreichte.

Bevor wir die Nachteile im Nachbau aufzeigen, zeigt Abb. 8.1.14 einige Detailaufnah-
men. Als Unterlage wurde ein weißes Regalbrett verwendet (a). Mit Schrauben wur-
den die horizontalen Träger in einem Abstand von 17 cm auf das Brett angebracht.
Als Abstandshalter dienten Muttern. Die Leisten, welche über dem Urbildpunkt ge-
kreuzt werden, wurden am oberen Träger mit weiteren Schrauben befestigt. Am
unteren Träger liegt dazwischen jeweils ein weiteres Bauteil, um das gleichschenklige
Dreieck zu bilden. Damit entsteht ein Höhenunterschied zwischen dem Auflagepunkt
der langen Leisten am oberen und unteren Träger. Dieser wurde ausgeglichen, indem
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jene durch die Muttern auf unterschiedliche Höhen gestellt wurden, damit die Träger
gerade bleiben (c). Um Z ′ und O einzustellen, wurde in weißer Schrift ein Zentime-
termaß an der oberen Leiste übertragen (b).

Abb. 8.1.15 Die Leisten
springen über Un-
terlegscheibe

Wir kommen nun zu den Nachteilen des Materials und
der Befestigung mit den Schrauben. POM ist ein har-
ter Kunststoff, allerdings sind die Leisten nicht stabil.
Die Breite beträgt bei allen Bauteilen 15 mm und der
Ausschnitt in der Mitte hat eine Breite von 5 mm. Da-
mit ist zu wenig Material vorhanden, um auf einer Länge
von 45 cm nicht durchzubiegen. Hinzu kommt, dass trotz
der Unterlegscheiben an den Schrauben die Leisten beim
Bewegen die Führung verlieren und über die Unterleg-
scheiben springen, wie in der Abbildung durch einen Pfeil
markiert wurde.

Abb. 8.1.16 Zu dünne
Leisten

Wie stark sich die Leisten dehnen lassen, zeigt die nächs-
te Abbildung. Ohne viel Kraft können die Leisten mit
dem Finger gedehnt werden. Somit ist ein reibungslo-
ses Gleiten der Leisten über die Halterung kaum mög-
lich. Ebenso lässt sich kein Stift in den Kreuzungspunk-
ten der Leisten, weder zum Abfahren das Grundrisses
noch zum Zeichnen des Bildes, einsetzen. Zudem biegen
sich die Leisten aufgrund der Länge durch. Trotz des
geringeren Gewichtes der weißen Plastikschrauben und
der Bauteile biegt sich die mittlere Leiste in der Mitte
durch.

Abb. 8.1.17 Einge-
schränkte Beweg-
lichkeit der Eckleiste

Des Weiteren ist der Bereich, in dem sich die Leisten
bewegen lassen, eingeschränkt. Die Übereckleiste, welche
das rechtwinklige Dreieck bildet, läuft mit einem Schenkel
auf der mittleren Halteleiste, damit der andere Schenkel
immer orthogonal zur jener Leiste liegt. Diese ist aller-
dings auch 15 cm lang und kann nicht über die Halterung
der mittleren Leiste hinausgehen, wie die nebenstehende
Abbildung zeigt, da hier der Kopf der Schraube im Wege
steht.
Ein geeignetes Material, welches dünn und formstabil ist,
ist Metall. Allerdings konnte Anfang 2019 keine Firma
gefunden werden, welche private Aufträge für das Laserschneiden von Metallen an-
nahm. Daher wurde der Nachbau des Perspektographen an dieser Stelle beendet.
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8.2 Die Raumecke - Materialien zur Dreitafelprojektion

Wir kommen nun zu zwei Hilfsmitteln, welche für die Auseinandersetzung mit der
Dreitafelprojektion entworfen wurden. Auch hier gab es Anregungen aus der Litera-
tur für das erste Modell. Es ist an die räumliche Ecke von A. Lipsmeier, 1971 [35,
S. 290] und dem sog. Omnibus von T. Olivier, 1852 [39, S. 76] angelehnt.
Die Abb. 8.2.1 zeigt den Entwurf einer Raumecke mit einem Anwendungsbeispiel.
Für die Konstruktion wurde wieder FreeCAD verwendet. Die Raumecke sollte aus
leicht zugänglichen Materialien gebaut werden und dessen Wände in die Ebene klapp-
bar sein. Daher befinden sich am Boden jeweils zwei Scharniere. Die Seitenflächen
bestehen aus Acrylglas, damit sowohl mit einem Folienstift darauf gezeichnet, sowie
hindurch gesehen werden kann. Für einige Anwendungsbeispiele wurden Bauteile ei-
nes Soma Würfels verwendet und eine Szene in der Raumecke gebaut. Abb. 8.2.1 (g)
- (i) zeigen drei Ansichten der Szene.

 

(a) Zeichnung
nach Lipsmeier

(b) CAD Modell der
Raumecke

(c) Anordnungsbeispiel
von Körpern

(d) Grundriss (e) Seitenriss (f) Aufriss

(g) Grundriss (h) Seitenriss (i) Aufriss

Abb. 8.2.1 Entwurf der Raumecke mit FreeCAD und erste Versuche mit Teilen
eines Soma Würfels
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(a) Folienzeichnung des Risses (b) Skizze stimmt nicht überein (c) Mögliche Lösung

Abb. 8.2.2 Problem beim Zeichnen der Risse

Als Anwendungsbeispiel können Schülerinnen und Schüler mit den Teilen des Soma
Würfels unterschiedliche Anordnungen ausprobieren und die entsprechenden Risse
durch die transparenten Scheiben betrachten. Die Idee ist, dass sie mithilfe von was-
serlöslichen Folienstiften die entsprechenden Risse auf die Scheiben übertragen und
dann diese auseinander klappen, um die Risse vergleichen zu können. Abb. 8.2.2
zeigt, welche Probleme sich dabei ergaben:
Da das eigene Sehen zentralprojektiv ist, lassen sich die Risse mithilfe des Folien-
stiftes nicht auf die Scheiben übertragen, selbst wenn senkrecht auf die Bildebene
geschaut wird. Die Zeichnung ist das Bild einer Zentralprojektion und stimmt nicht
annähernd mit dem einer orthogonalen Parallelprojektion überein, wie das zweite
Bild in der Reihe zeigt. Beholfen wurde sich, in dem die Objekte orthogonal zur
Bildebene verschoben und dann abgezeichnet wurden, wie im dritten Bild der Reihe
zu sehen.

Abb. 8.2.3 Die Risse im Überblick

Weiterhin waren die ersten Skizzen ein-
farbig, was die Zuordnung der einzel-
nen Objekte in den Rissen erschwerte.
In der nebenstehenden Abbildung wur-
de sich mit Symbolen geholfen. Auch
das Zeichnen von geraden Kanten an der
senkrechten Acrylglasplatte war schwer.
Nachdem alle Objekte auf der Platte
übertragen waren, wurden die Risse her-
unter geklappt und einige Hilfslinien ge-
strichelt ergänzt. Aufgrund der Unge-
nauigkeiten beim Abzeichnen, schneiden
die Hilfslinien die Schnittgeraden der
Ebenen nicht orthogonal. Zudem dauert
das Zeichnen sehr lange, vor allem, wenn
die Bauten zur Acrylglasplatte verscho-
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ben werden müssen, um die Risse zu zeichnen. Für eine einfachere Zuordnung können
statt Symbole anders farbige Folienstifte verwendet werden. Diese Probleme wurden
im Nachhinein gelöst. Aber bevor wir die Verbesserungen vorstellen, folgt eine Dis-
kussion zu möglichen Aufgabenstellungen zu dem Beispiel in Abb. 8.2.3:

- Wie lässt sich entscheiden, ob ein Objekt auf, vor, neben oder hinter einem
anderen Objekt ist?

- Wie lässt sich entscheiden, ob ein Objekt mehrere Stufen hat?

- Welche Kanten kommen in mehreren Rissen vor?

- Wird jede Kante auf eine Kante abgebildet?

- Gibt es Kanten, welche auf dieselbe Kante projiziert werden?

Für diese ersten Erkundungen wurden zwei Bauteilen des Soma Würfels verwendet
und so gelegt, dass sie sich nicht verdecken und alle Kanten parallel zu den Ebenen
liegen. So lassen sich zwei verschiedene Beispiele gleichzeitig bearbeiten, sodass die
Schülerinnen und Schüler ihre Vermutungen an beiden Objekten prüfen können. Die
folgende Bilderreihe stellt Aufgaben sowie mögliche Lösungen vor. Da die Verbesse-
rungen erst nach dieser Bildreihe entwickelt wurden, wurde hier noch die Teile an
die Acrylglasplatte verschoben und die Kanten mit einem Folienstift nachgezeichnet.

Aufgabenbeispiel 8.2.1

Um die Risse zu auf die Acrylglasplatte zu zeichnen, mussten die Objekte ver-
schoben werden. Entlang welcher Linien wurde dies getan? Zeichne diese ein.

Abb. 8.2.4 Es wurde entlang der Hilfsli-
nien verschoben.

Die Objekte wurden entlang der blau-
en Linien verschoben. Sie liegen ortho-
gonal zu der Aufriss- und Seitenrissebe-
ne und entsprechen den Projektionsrich-
tungen der Dreitafelprojektion. Aus den
in rot gezeichneten Rissen lassen sich die
Maße der verwendeten Bauteile des So-
ma Würfels abmessen.
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Aufgabenbeispiel 8.2.2

Markiere eine Kante im Grundriss. Findest du diese Kante auch im Auf- oder
Seitenriss wieder? Verfahre so mit weiteren Kanten im Grundriss und vergleiche
die Ergebnisse.

Abb. 8.2.5 Farbige Zuord-
nung der Kanten in den
einzelnen Rissbildern

Da der Grundriss zwischen beiden anderen Ebenen
liegt, ist es einfacher anfangs eine Kante im Grund-
riss in den anderen Rissen zu suchen, da hierbei die
Markierungslinien aus Aufgabe 1 helfen können. Wel-
che Zusammenhänge lassen sich nun feststellen?
Die Zuordnung erfolgt durch gleiche Farben. Die
orange markierte Kante erscheint nicht im Aufriss,
dagegen mit gleicher Länge im Seitenriss. Alle Kan-
ten, welche senkrecht zur Ebene stehen, erscheinen
nicht im Rissbild, während alle, die parallel zu ihr
liegen, unverändert abgebildet werden. Dann gibt es
noch Kanten (eine grüne im unteren Objekt), welche
zwar parallel zur Aufrissebene liegen, dennoch nicht

im Rissbild erscheinen. Hier ist nur eine grün markiert. Die zweite grüne Kante wird
verdeckt und könnte bspw. gestrichelt ergänzt werden.

Aufgabenbeispiel 8.2.3

Finde Kanten, welche in zwei unterschiedlichen Rissen vorkommen und markiere
diese in derselben Farbe. Gibt es Kanten, welche in allen drei Rissen oder genau
einem Riss abgebildet werden?

Abb. 8.2.6 Gleiche Kanten
in unterschiedlichen Ris-
sen

Dies ist eine Erweiterung der vorherigen Aufgabe.
Wir haben da schon Kanten gefunden, welche im
Grund- und Aufriss vorkommen, aber nicht im Sei-
tenriss. Der Grund, weshalb Kanten verschwinden,
war entweder, weil sie senkrecht zur Bildebene stan-
den oder verdeckt wurden. Aber was ist die Antwort
auf die zweite Frage? Es gibt in diesem Beispiel keine
Kanten, welche in allen drei oder genau einem Riss
abgebildet werden. Dies liegt an der Art der Aufstel-
lung: die Objekte sind parallel zu einer der Ebenen
ausgerichtet.



326

Dadurch gibt es Kanten, welche senkrecht zur Bildebene stehen und bei einer ortho-
gonalen Parallelprojektion mit dem Projektionsstrahl zusammenfallen. Sie werden
dadurch auf einen Punkt abgebildet. Dies wird in der letzten Aufgabe thematisiert.

Aufgabenbeispiel 8.2.4

Finde Kanten, welche auf einen Punkt abgebildet werden. Wie liegen diese im
Vergleich zu den anderen Kanten? Markiere im Grundriss eine Ecke und die
anliegenden Kanten in drei Farben. Zeichne die zugehörigen Kanten im Auf-
und Seitenriss in derselben Farbe. Was fällt dir auf?

Abb. 8.2.7 Es gibt Kanten,
welche auf Punkte proji-
ziert werden.

Da die Körper parallel zu allen drei Rissen ausrich-
tet sind, gibt es Kanten, welche parallel zu den Pro-
jektionsstrahlen sind und somit auf einen Punkt ab-
gebildet werden. Alle Kanten, welche senkrecht zum
entsprechenden Riss liegen, ergeben einen Punkt.
Mithilfe der Farben ist erkennbar, dass immer zwei
Kanten parallel zur Bildebene liegen, während die
dritte dazu senkrecht steht. Mit drei Farben lassen
sich somit genau drei Kombinationen bilden, wel-
che aus zwei Kanten und einem Punkt bestehen. So-
mit kommt jede Farbe in den Kombinationen genau
zweimal als Kante vor und daher auch in den Ris-
sen.

Abb. 8.2.8 Die drei Risse der verwende-
ten Teile eines Somawürfels

Wir kommen nun zur Verbesserung der
Raumecke, nachdem mit der vorheri-
gen Aufgabenreihe erste Versuche mit
dem Material unternommen wurden.
Statt mit dem Folienstift die Risse auf
der Acrylplatte nachzuzeichnen, wur-
de Fensterfolie verwendet, da diese oh-
ne Kleber auf der Acrylglasplatte haf-
tet, aber ebenso leicht wieder abgezogen
werden kann, ohne Spuren zu hinterlas-
se. Hierfür wurden alle drei Risse einiger
Bauteile des Soma Würfels aus farbiger Fensterfolie geschnitten (Abb. 8.2.8). So ist
es möglich, dass die Risse jeder Anordnung der Bauteile auf die Scheiben aufgeklebt
werden können, sofern diese parallel zu einer der Ebenen ausgerichtet sind. Zusam-
menfassend liefert die Fensterfolie folgende Vorteile:
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- Die einzelnen Bauteile sind aufgrund der Farbe besser zu unterscheiden.

- Da die Folien transparent sind, sind auch verdeckte Bereiche in den Rissen
erkennbar.

- Es muss kein Folienstift entfernt werden, sodass die Platten länger sauber blei-
ben.

- Die Folien haften aufgrund von Oberflächeneffekte, d.h. ein Kleber ist nicht
nötig und die Folien sind wiederverwendbar.

Aufriss

Grundriss Seitenriss

Lösung

Abb. 8.2.9 Dreitafelprojektion
mit Fensterfolie

Die Abb. 8.2.9 zeigt ein Beispiel unter Einsatz
der Fensterfolie. Ein Nachteil lässt sich damit
dennoch nicht lösen: die Anordnung muss im-
mer noch bis zur Acrylglasplatte verschoben wer-
den, um den Riss mit der Folie kleben zu können.
Ebenso war es bei den obigen Aufgaben sinnvoll,
Markierungen mit dem Folienstift zu zeichnen,
um bspw. gleiche Kanten zu finden. Die Raume-
cke wurde daher weiterentwickelt.
Die Platten erhielten nachträglich ein Raster
passend zu den Bauteilen des Somawürfels, denn
diese bestehen selbst aus gleichgroßen Würfeln.
Die Kantenlänge dieser Würfel entspricht dem
Raster auf den Ebenen, wie die ersten beiden Bil-
der in Abb. 8.2.10 zeigen. So können sich Schüler-
innen und Schüler beim Ankleben der Risse dar-
an orientieren und müssen die Teile nicht mehr
verschieben. Zum anderen ist dann folgende Auf-
gabenstellung möglich:
Die Risse einer unbekannten Anordnung der
Teile des Somawürfels ist vorgegeben und die
Schülerinnen und Schüler sollen diese nachbauen.
Ein Beispiel zeigt das dritte Bild in der nebenste-
henden Abbildung. Hierfür können sie als Hilfe
die Risse auf den Acrylplatten mithilfe des Ras-
ters nachkleben, die Platten aufstellen und dann
den Nachbau mit den farbig passenden Teilen des
Soma Würfels beginnen. So haben sie die Mög-
lichkeit sich anhand der Risse zu kontrollieren.
Je nachdem wie gut die Raumvorstellung entwi-
ckelt ist, stellt dies gerade für den Anfang eine
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Abb. 8.2.10 Die Raumecke wurde ergänzt durch ein geeignetes Raster

gute Hilfe dar. Die verdeckten Kanten in dem Bild zur Aufgabe werden durch gestri-
chelten Linien angedeutet. Somit können auch konkave Objekte eindeutig dargestellt
werden. Der Schwierigkeitsgrad ließe sich durch komplexere Anordnungen erhöhen.

Der Einsatz der Fensterfolie hat allerdings noch den Nachteil, dass einerseits die
Bauteile des Soma Würfels nötig sind und ebenso die parallele Ausrichtung zu den
Rissebenen. Wir wollen zum Abschluss eine zweite Variante der Raumecke vorstellen,
indem es um die Frage geht, ob Körper zu bestimmten Kombinationen an Rissen exis-
tieren. Die erste Raumecke wurde verwendet, um aus einer bestehenden Anordnung
die Risse zu erstellen. Nun wollen wir aus Kombinationen von Rissen verschiedene
Körper ableiten, d.h. in dem neuen Material sind die Ebenen nicht nur faltbar sonder
können auch ausgetauscht werden.
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8.3 Die zweite Variante der Raumecke

(a) CAD Modell
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(b) Entwurf mit Maßen

(c) Pappmodell und Holzmodelle

Abb. 8.3.1 Entwicklung der Raumecke
als Puzzel aus drei Teilen

Die zuvor vorgestellte Raumecke war
für Aufgaben entwickelt worden, wo die
Körper und ihre Anordnung festgelegt
und die entsprechenden Risse gezeich-
net wurden. Das folgende Material ist
für Aufgaben gedacht, wo dies umge-
kehrt wird: die Risse werden vorgege-
ben und die Schülerinnen und Schü-
ler sollten passende Körper dazu fin-
den.

Die Raumecke in Abb. 8.3.1 wird aus
drei Teilen gebildet, welche ineinander
gesteckt werden können. Hierzu gab es
keine Vorlage. Es wurde ein Gestell ent-
wickelt, welches einerseits Acrylglasplat-
ten halten kann, aber sich auch aus-
einander klappen lässt. Die Verwendung
kleinerer Scharniere wurde verworfen,
da sie zu Erhebungen führen, sodass die
Platten nicht ebenen auf dem Gestell
angebracht werden können. Daher wur-
de auf ein Stecksystem zurückgegriffen,
welches mit FreeCAD konstruiert wur-
de. Das erste Modell war aus Pappe.
Da das Stecksystem funktionierte, wur-
de die Firma Sculpteo beauftragt, zwei
dieser Gestelle aus Holz mit einer Stärke
von 5 mm mittels eines Lasers zu schnei-
den.
Das Gestell dient zur Halterung von
drei Platten aus Acrylglas in den Ma-
ßen 140 × 140 × 2 mm. Hierzu wur-
den zwei verschiedene Befestigungsarten
probiert, welche die Abb. 8.3.2 zeigt: das
linke Holzmodell hat Klettpunkte, das
rechte aufgeklebte Metallleisten.
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(a) Zwei verschiedene Halterungssysteme (b) Die Ebenen in der Anordnung
der Dreitafelprojektion

Abb. 8.3.2 Das Holzgestell mit Acrylglasplatten

Nach der ursprünglichen Idee sollten die Acrylglasplatten mithilfe von kleinen Mag-
neten befestigt werden. Die ersten Magnete waren allerdings nicht stark genug, um
die Platten zu halten, weshalb auf stärkere Neodym-Magnete mit einem Durchmesser
von 10 mm zurückgegriffen wurde. Die Verwendung dieser ist nach der Verpackung
erst ab 16 Jahren erlaubt und wäre daher für den Einsatz in der Mittelstufe unprak-
tisch gewesen. Zudem zogen sich die runden Magnete gegenseitig stärker an als auf
der Metallleiste haften zu bleiben. Daher wurde die Idee mit den Magneten verwor-
fen und stattdessen der Einsatz von Klettpunkten versucht.
Hierzu wurden runde Kreise halbiert und an drei Stellen auf das Holz geklebt. Analog
wurde mit den Platten verfahren. Nachteil dieses Systems war, dass die Scheiben er-
höhter als geplant auf dem Holz lagen und nicht einfach entfernt werden konnten, da
die Haftung teilweise so stark war, dass das Gestell auseinander genommen werden
musste, um die Platten abziehen zu können.

Abb. 8.3.3 Die Risse er-
geben einen Quader.

Die Idee mit den Magneten wurde daher wieder aufgegrif-
fen. Diese sind 1 mm dick, die Platten mit 2 mm doppelt
so stark, sodass diese angebohrt wurden, um die Magne-
te darin zu versenken. Dies lieferte zwei Vorteile: zum
einen wurden die Magnete fixiert, sodass die Anziehung
untereinander verhindert wurde, zum anderen können die
Schülerinnen und Schüler diese nicht mehr entfernen. Die
Verwendung dieser starken Magnete sollte somit für unter
16 Jährige unbedenklich sein. Der verringerte Abstand
zum Metallband sorgte ebenfalls für eine stärkere Haf-
tung. Die Platten fielen nicht ab und konnten dennoch
leicht durch wegziehen entfernt werden.
Da die Leisten nur ineinander gesteckt sind, können die-
se leicht auseinander geklappt werden, um eine vergleich-
bare Anordnung der Risse mit der Raumecke aus dem
vorherigen Abschnitt zu ergeben (Abb. 8.3.3).
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Abb. 8.3.4 Ebene Figuren als Risse für
einfache Körper. Hierfür wurde gelb für
Quadrate, grün für Rechtecke und rot für
Kreise verwendet.

Die Scheiben wurden mit Fensterfolie beklebt. Die Risse entsprechen verschieden
große Rechtecke, Quadrate und Kreise. Die Figuren wurden so geklebt, dass ihre
Mittelpunkte mit denen der quadratischen Acrylglasplatten übereinstimmten. Die
Abb. 8.3.4 stellt einige Beispiele dar. Die Farbe richtet sich nach der Form der Figur.
Rechtecke sind grün, Quadrate gelb und Kreise rot.
Die Abbildung 8.3.5 zeigt Lösungen von zwei Aufgaben. Die erste befasst sich mit
der Eindeutigkeit von Körpern. Zwei Risse sind vorgegeben und die Schülerinnen
und Schüler sollen nun überlegen, welche dritte Platte sie ergänzen können, damit
sich ein Körper ergibt. So zeigt Abb. 8.3.5 ein Beispiel, wo der Auf- und Seitenriss
durch ein Rechteck vorgegeben ist. Diese Kombination erfüllt sowohl ein Quader
mit quadratischer Grundfläche sowie ein Zylinder. Die zweite Aufgabe fragt nach
der Existenz von Körpern, denn nicht jede beliebige Zusammenstellung von Rissen
beschreibt einen Körper. In dem Gegenbeispiel ist eine gemeinsame Kante in Grund-
und Aufriss unterschiedlich lang.

(a) Quader (b) Zylinder (c) Diese Risse passen nicht
zusammen

Abb. 8.3.5 Aufgabenbeispiele zur Eindeutigkeit und Existenz von Körpern
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Ziel dieser Arbeit war es, die Zentral- und Parallelprojektion zum einen aus rein ma-
thematischer Sicht zu untersuchen und zum anderen Einsatzmöglichkeiten für den
Unterricht an Gesamtschulen und Gymnasien zu erarbeiten.
Wir haben gezeigt, dass die Projektion nicht nur in der Kunst ein Thema ist, sondern
auch in der Mathematik im Bereich der Darstellenden und Projektiven Geometrie.
In Hinblick auf fächerübergreifendes Unterrichten wurden Aufgaben entwickelt, wel-
che u.a. die Konstruktionen der Fluchtpunktperspektive aus dem Kunstunterricht
mit Methoden aus dem Mathematikunterricht untersuchen und zeigen, warum die-
se zu einem zentralprojektiven Bild führen. Den Bezug zum Informatikunterricht
haben wir durch die Verwendung einer Programmiersprache erreicht. Mit Kenntnis-
sen aus der analytischen Geometrie im Mathematikunterricht der Oberstufe wurden
Formeln zur Berechnung von Bildpunkten unter einer Zentralprojektion hergeleitet,
welche dann in der Sprache Processing eingepflegt wurden, um Animationen von
Rot-Grün-Bildern zu erzeugen. Mit einer entsprechenden Brille lässt sich dann das
Ergebnis überprüfen.

Die Validierung von Resultaten war gleichfalls ein Bestreben in dieser Arbeit. Eine
Aufgabe sollte für Schülerinnen und Schüler nicht beendet sein, wenn sie ein Ergebnis
erzielt haben, sondern sie sollten auch die Möglichkeit erhalten, dieses zu überprüfen.
Hierfür wurden Materialien im Unterricht entwickelt. U.a. lässt sich auf einer Plexi-
glasplatte ein zentralprojektives Bild konstruieren, welches dann in eine Halterung
gesteckt wird. Durch eine Lochscheibe, welches sich an der Position des Zentrums
befindet, lässt sich überprüfen, ob Original und Konstruktion übereinstimmen, denn
der Sehvorgang ist ebenfalls zentralprojektiv.

Zusätzlich sollte eine Vernetzung von verschiedenen Inhalten aus dem Mathema-
tikunterricht ermöglicht werden. Bei der Besprechung der Schulbuchaufgaben durch
Schrägbilddarstellung und Dreitafelprojektion fiel auf, dass der Bezug zur Parallel-
projektion fehlte. Generell scheinen geometrische Abbildungen aus den Schulbüchern
in NRW zu verschwinden, denn auch Kongruenz- und Ähnlichkeitsabbildungen wer-
den nur noch indirekt benannt. Stattdessen liegt der Fokus auf den Bildern und ihren
Eigenschaften, z.B der Symmetrie. Dieser Aspekt erschwert vor allem die Behand-
lung von Invarianten geometrischer Abbildung, wenn die Grundidee einer Abbildung
als Zuordnung von Punkten oder überhaupt die Konstruktionsmethoden fehlen. Eine
Person kann die Achsensymmetrie einer Figur untersuchen ohne Kenntnisse über die
Achsenspiegelung an sich zu besitzen. Damit wird allerdings kein vernetztes Wis-
sen gefördert, wenn solche Zusammenhänge nicht mehr geliefert werden. Ohne die
Grundkenntnisse einer geometrischen Abbildung wird die sinnvolle Beschäftigung
mit Invarianten erschwert. Kongruenzsätze an Dreiecken werden in den Schulbü-
chern besprochen, ohne den Bezug zur Kongruenzabbildung zu verwenden. Denn
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die Deckungsgleichheit der Dreiecke wird über die, bis auf Lage und Orientierung,
eindeutige Konstruktion erklärt. Der Satz, dass zwei Dreiecke kongruent zueinander
sind, weil es eine Verkettung von Drehung, Spiegelung und Verschiebung gibt, wel-
che das eine auf das andere abbildet, fehlte in den untersuchten Schulbüchern. Ein
Aspekt, der nicht verwundert, wenn schon bei den Symmetrien die Abbildungen nur
indirekt erwähnt werden.
Die Verwendung der beschriebenen Aufgaben in der Oberstufe wird ähnlich er-
schwert. Geradengleichungen aufzustellen und den Durchstoßpunkt mit einer Ebene
zu bestimmen, sind Vorgaben des Lehrplans. Aber die Weiterführung über lineare
Abbildungsmatrizen zu homogenen Koordinaten ist nicht mehr möglich. Nach dem
Lehrplan 2014 für den Mathematikunterricht der Oberstufe sind Matrizen nur noch
Teil der Stochastik, um Übergangsprozesse zu beschreiben [25]. Lineare Abbildungen
sind dagegen im Inhaltsfeld der analytischen Geometrie verschwunden. Es war daher
überraschend gewesen, dass geometrische Abbildungen und Projektionsmatrizen in
einem Buch der Oberstufe als eigenes Kapitel gefunden wurden.

Wie ließe sich diese Arbeit nun weiter fortführen? In der Einleitung wurde schon
erwähnt, dass die entwickelten Aufgaben im Sinne einer empirischen Studie nicht
untersucht wurden. Da aber schon die inhaltlichen Grundlagen für die Beschäfti-
gung mit der Zentralprojektion weitestgehend fehlen bzw. im Lehrplan nicht berück-
sichtigt werden, müsste der Unterricht neu ausgerichtet werden, um solche Aufga-
ben an Schülerinnen und Schüler erproben zu können. Grund- und Aufriss kennen
sie von der Dreitafelprojektion. Somit können die Konstruktionsbeispiele im Unter-
richt besprochen werden. Aber für ihre Begründung benötigten wir Invarianten wie
Parallelen- oder Teilverhältnistreue. Und da beginnt wieder das Problem mit dem
fehlenden Kenntnissen über geometrische Abbildungen, da der Mathematikunter-
richt laut Lehrplan und Schulmaterial darauf nicht ausgelegt ist.
Schrägbilder von Würfel und Quader sind nach Lehrplan in der Gesamtschule Teil
der Kompetenzerwartungen nach der sechsten Klasse und nach der zehnten kommen
noch Schrägbilder von Pyramiden, Zylinder und Kegel hinzu. Auffällig ist jedoch,
dass Kongruenzabbildungen, wie Drehung oder Achsenspiegelung, nicht explizit ge-
nannt werden. Hier wird nur das Erkennen von Symmetrien in einer ebenen Figur in
den Kompetenzerwartungen am Ende der sechsten Klasse vorgegeben [24, 22]. Daher
ist es nicht überraschend, dass sowohl Schrägbilder als auch die Dreitafelprojektion
ohne den Bezug zur Parallelprojektion in den untersuchten Schulbüchern themati-
siert wurden. Hier liegt der Fokus auf der Konstruktion von Rissen und Schrägbildern
rein nach Anleitung, ohne diese zu Begründen oder in einen größeren Zusammenhang
mit der Projektion zu stellen.
Dieser Aspekt wirft folgende Fragen auf: Wie hat sich der Mathematikunterricht im
Laufe der Zeit geändert? Wurde früher mehr Abbildungsgeometrie betrieben und
hat sich der Fokus auf andere Inhalte wie Arithmetik oder Funktionen verschoben?
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Welche Gründe gab es dafür?

Der Umgang mit Materialien zur Unterstützung der Raumvorstellung war ebenfalls
ein wichtiger Teil dieser Arbeit. Hierfür wurden drei verschiedene Hilfsmittel ent-
wickelt, welche als reine Prototypen zu werten sind, da sie noch verbesserungsfähig
sind. Die Umsetzung des Perspektographen von Lambert war nicht erfolgreich, da
das verwendete Material nicht geeignet war. Der Kunststoff war nicht stabil genug,
als Material wäre Holz oder Metall vielversprechender gewesen. Der Perspektograph
konnte somit nicht verwendet werden. Es blieb bei einer theoretischen Erklärung,
warum er aus einer ebenen Figur in der Objektebene ein zentralrprojektives Bild
erzeugen kann.
Auch diese Materialien oder auch der Programmcode zur Erstellung von Anagly-
phenbildern wurden von Schülerinnen und Schüler nicht getestet, da jene noch ganz
am Anfang ihrer Entwicklung stehen, sowie in Umfang und Zeit dieses Dissertati-
onsprojektes eine Studie darüber nicht eingeplant war.
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