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1 Introduction

Randomness and future uncertainty can be observed in a multitude of different
problems and situations in all areas of science and daily life; be it theoretical and
abstract areas such as quantum mechanics, random genetic mutations observed
in biology or regarding the simple question of how the weather will be tomorrow.
One area that is particularly dependent on future uncertainty is the behaviour
of financial markets. Consider for example the prices of a single stock; it can
be observed that these prices are heavily fluctuating and it is not clear how the
price may look like tomorrow. Will it continue to rise moderately or will there be a
sudden drop? This uncertainty induces a risk for the participants of these markets.
To be able to assess and manage these risks, it is vital to make these uncertainties
tangible. The means to achieve this is provided using stochastic modelling.

The foundations of stochastic modelling began with observations regarding particle
movements in pollen provided in Brown [1828]. These observations gave rise to the
construction of Brownian motions, which became one of the fundamental means to
describe random movements from a mathematical perspective, see Einstein [1905],
Wiener [1924]. This evolved further into stochastic differential equations becom-
ing the standard tool to model dynamics governed by randomness, Itô [1944]. Not
surprisingly, this approach also found its way into the world of finance, Bachelier
[1900], Samuelson [1965], Black and Scholes [1973], where the Nobel prize winning
work of Black and Scholes [1973] used geometric Brownian motions to model the
price evolution of a stock. Following this approach a multitude of different tech-
niques to model financial quantities and markets were developed, see Andersen
and Piterbarg [2010a,b,c] for a non-exhaustive list.

All these models were created with the purpose of capturing certain observable
patterns. These may be jumps in the stock prices or observable randomness in
the intensity of the fluctuations. However, the more properties that are explicitly
modelled, the higher the complexity of the model and from a practical perspec-
tive it can become infeasible to work with a model. Thus, stochastic volatility
models became one prominent choice to model financial quantities, such as stock
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prices or interest rates. For this class of models the desired quantity as well as its
volatility are governed by stochastic dynamics where both can be correlated with
each other. This allows one to capture the uncertainty of the volatility observ-
able in the markets, while still providing the mathematically simplest modelling
approach available to achieve this. Nevertheless, even for these models the un-
derlying stochastic differential equation can become quite complex and, again, it
may be infeasible to compute anything meaningful in an adequate time span. We
want to highlight that the computation time and complexity of a model are often
a crucial factor in the process of model selection. While it may be possible to
use Monte Carlo methods to simulate the modelled quantities, from a practical
perspective it may be problematic to simulate e.g. one million paths in order to
evaluate the price of a simple product. Instead, a simple valuation formula would
be preferable.

The focus of this work is to provide a computational framework which is appli-
cable to a large class of generalized stochastic volatility models (GSVM). This
allows one to choose the model with regard to suitability and not due to the ease
of implementation. The underlying idea of our approach is inspired by the work
of Hagan et al. [2002, 2014, 2015, 2016] and follows the principle of using singu-
lar perturbation techniques to study the probability distribution induced by the
GSVM. This is achieved by accurately approximating the marginal probability
density function using a one-dimensional partial differential equation, called the
effective PDE. This approximation can be used either to directly determine the
induced probability distribution, or to project the original GSVM onto another,
simpler, model where various computational benefits, such as explicit formulas,
may exist. Here the effective PDE is constructed in such a way, that the com-
puted marginal probability density function stays positive and therefore ensures
that the computed quantities remain arbitrage-free. Intuitively, this means that it
is not possible to earn money in the model without taking any risk in return and
in turn avoid the possibility of exploitations.

This thesis is based on the articles Felpel et al. [2021, 2022a,b], which are my work
in collaboration with Dr. Jörg Kienitz and Dr. Thomas A. McWalter during their
joint supervision of my PhD studies. The three articles build the heart of this
thesis and show a consecutive development of techniques.

Starting in Felpel et al. [2021] we begin to establish the foundation for our general-
ized arbitrage-free computational framework. We focus on parametric GSVM used
to model an asset for a certain fixed time horizon, e.g. the stock price observed five
years ahead in the future. This is done in a risk-neutral environment, which guar-
antees that the considered asset has no drift. Our chosen model framework unifies
a large class of heterogeneous models, allowing to easily exchange the underlying
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model in a practical application. We derive the effective PDE for a class of GSVM
and derive closed form approximation formulas for the implied volatility. The im-
plied volatility can intuitively be seen as a quotation standard for a European call
option on the asset, which in turn is a certain type of financial product frequently
traded at the markets. This methodology also allows us to consider new types of
models and we introduce new models such as the mean-reverting ZABR model or
the free ZABR model. Furthermore, the availability of explicit pricing formulas
allows a very fast and simple implementation, extending one of the most valued
properties only available to certain selected models to the whole class of GSVM.

Continuing to further develop our generalized model framework, we slightly shift
our focus and study the pricing properties of our framework when considering
more involved financial products. Having a practical application in mind, we aim
to evaluate a whole portfolio of assets and therefore concentrate on prominent fi-
nancial products depending on multiple quantities, called baskets or spreads. This
is the focus of Felpel et al. [2022a] and we demonstrate how it is possible to price
basket options using explicit closed form approximation formulas where each indi-
vidual quantity is modelled using a GSVM. This is achieved by introducing a new
technique called Effective Markovian Projection (EMP), which aims to project
one GSVM onto another using the effective PDE in the projection procedure.
The EMP also allows us to establish another projection technique by deriving ex-
plicit approximation formulas for the first moments of the induced distribution
and matching those with a certain class of distributions allowing for explicit ap-
proximation formulas of the underlying probability density function. This extends
our generalized model framework into a multidimensional set-up and provides ad-
ditional explicit pricing formulas for a practical application.

Finally, we extend the methodology even further and consider GSVM containing
a non-parametric component and introducing time dependencies in most of the
coefficients. This is done in the work of Felpel et al. [2022b]. This set-up includes
stochastic local volatility (SLV) models, which are characterized through an addi-
tional component, called leverage function, and allow the modelling of a complete
surface. The leverage function aims to perfectly fit the model to observed market
data. This is important since using simpler products to replicate a more involved
financial derivative can lead to mispricing if the market data for the underlying
products is not perfectly matched. The process of determining the correct leverage
function is called calibration. We focus on the calibration problem of the lever-
age function and provide a fast and explicit calibration algorithm to match the
leverage function to observable market data. This allows to transform all previ-
ously studied stochastic volatility models onto a SLV variant, making it possible
to choose the dynamics in accordance to the desired model properties while still
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achieving a perfect fit using the leverage function.

All three articles include explicit examples considering specific models as well as
numerical results to demonstrate the applicability. The rest of this thesis is struc-
tured as follows:

In Chapter 2 we start by establishing the foundations necessary for this work. This
spans the preliminary results governing stochastic differential equations in Section
2.1, an introduction to mathematical finance in Section 2.2 as well as an overview
of prominent models falling into the category of GSVM in Section 2.3. We then
dive deeper into the techniques necessary for our approximation methodology by
considering singular perturbation techniques in Section 2.4. We finish the founda-
tion chapter by considering numerical aspects providing the fundamentals for an
actual practical implementation of our techniques in Section 2.5. In particular, we
also introduce the actual numerical scheme in Section 2.5.3, which is used for our
numerical experiments.

Having established the necessary foundation, we begin our research by present-
ing the results of Felpel et al. [2021] in Chapter 3. In Section 3.2 we introduce
the methodology and derive the effective PDE for the general framework. The
whole derivation— including all details—can be found in Appendix 3.5. In Sub-
section 3.2.2 we consider the approximating formula and then provide more detail
on concrete models in Subsection 3.2.3. In Subsection 3.2.3.1 we use the method
to analyse the smile dynamics of the ZABR model, while in Subsection 3.2.3.2
we investigate the extended ZABR models. The approach taken to demonstrate
numerical examples in Section 3.3 is based on one-dimensional PDE solvers. We
use numerical methods to compare the resulting stochastic volatility modelling
approaches in Subsection 3.3.1 and the calibration behaviour in Subsection 3.3.2.
Finally, Subsection 3.3.3 compares our approach to a classical Monte Carlo ap-
proach of Lord and Farebrother [2014]. Section 3.4 concludes with a summary of
the chapter.

Following this path, Chapter 4 continues by presenting the results of Felpel et al.
[2022a]. Section 4.2 provides the main theoretical results. After briefly sum-
marizing the theoretical background of Markovian projection Gyöngy [1986], we
introduce Effective Markovian Projection, which is based on effective probabil-
ity theory Felpel et al. [2021], Hagan et al. [2014]. The numerical methods used
for computing the projection are also introduced, in particular ATM-Matching,
Minimal Point Matching and N -Point Matching. A brief analysis of the approxi-
mation quality is given. We also describe an Effective Markovian Projection based
on moment matching for the case of the normal SABR model. Moment match-
ing is applied to both NIG distributions and the family of Johnson distributions.
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Section 4.3 focuses on examples from interest rate derivatives. Fixing notation
and definitions, we consider constant maturity swap (CMS) spread and mid-curve
options as our main examples. With the underlying definitions at hand we con-
sider a ZABR-type model as our base model and the normal SABR model as our
reference model in Section 4.4, where we derive the corresponding projection and
basket dynamics. Here we also specifically address numéraire issues. The resulting
model amalgamates all the features of the base model and parametrizes the implied
volatility surface in terms of a normal SABR model for each maturity, enabling
the pricing of CMS spread and mid-curve options. Section 4.5 provides numerical
illustrations of all the methods considered in the previous sections. In particular,
we demonstrate the additional flexibility in modelling and calibrating underlying
rates in a multi-rate framework when considering base models of the ZABR type.
We also illustrate the effects of changing model parameters. Section 4.6 concludes
by summarizing the results presented in this chapter.

Building on these results, we arrive at Chapter 5 presenting the results of Felpel
et al. [2022b]. Section 5.2 lays the theoretical groundings by extending results
from Felpel et al. [2021]. In particular, we prove that the results hold true for
separable time-dependent diffusion coefficients. Given the theoretical grounding,
Section 5.3 provides the details of the chosen approach for calibrating the general
local stochastic volatility model. With the results from Sections 5.2 and 5.3 we
propose the implementation based on solving a one-dimensional PDE in Section
5.4, state the discretization scheme and shortly place our results into the known
model setting in 5.4.3. In particular, we consider the approaches Bang [2019] and
Muguruza [2019]. We apply our methods to several models described in Section 5.5
and give numerical examples that show the performance of our results in Section
5.6. We conclude by summarizing our results of this chapter until this point in 5.7.
Extending the scope considered in Felpel et al. [2022b], we also provide additional
analysis related to Felpel et al. [2022b]. These results are given in Section 5.9.

In Chapter 6 we conclude by summarizing all results and outlining prospects for
future research.
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2 Foundations

We start our work by establishing and recalling the underlying foundations nec-
essary for our research. This chapter does not aim to establish new results and
instead provides a condensed summary to introduce the relevant areas of research
we are considering. This includes topics related to analysis, stochastics, numerics
as well as finance. Providing an extensive summary of all these topics would be
far above the scope of this work. Therefore, even though we establish the notation
and recall the definitions and results for many preliminary structures, a general
familiarity of the areas presented is assumed. In particular, in this chapter we
are also exclusively interested in the definitions and results and will not consider
the proofs for all of these theorems. For the proofs as well as further details, we
instead refer to the literature discussed in the individual sections.

2.1 Stochastic Differential Equations

In this section, we outline the general underlying mathematical concepts to allow
the study of stochastic differential equations (SDEs) and hence give a meaning to
expressions of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt.

The goal of this section is to introduce our mathematical set-up, clarify the no-
tation and present the main results and techniques to which we resort to in our
research starting from Chapter 3 onwards. We establish results from stochastic
analysis and show important connections between SDEs and partial differential
equations (PDEs) using Kolmogorov equations. Again, we want to highlight that
this section provides a collection of standard literature related to these topics and
the results presented are a condensed summary of the work presented in Durrett
[2010], Andersen and Piterbarg [2010a], Øksendal [2003], Karatzas and Shreve
[1991]. For further details we refer to the respective literature.
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2.1.1 Probability Theory and Brownian Motions

We begin by considering a general filtered probability space of the form(
Ω,F , {Ft}t≤T ,P

)
(2.1.1)

with a finite time horizon T . Here Ω denotes the sampling space, F the σ-algebra,
{Ft}t≤T the filtration and P the probability measure. Since our focus is on financial
applications, a finite time horizon is sufficient for our considerations. We do assume
that the concepts of probability spaces and measurability are familiar to the reader
and do not recall all underlying background. For an overview of these concepts
we refer to standard literature on probability theory such as Durrett [2010] or
Øksendal [2003, Chapter 2.1], where an appealing summary of these preliminaries
is presented. For a more thorough study which different concepts of measurability
are relevant in the area of stochastic analysis, we also refer to Karatzas and Shreve
[1991]. In particular, a proper definition of the probability space can be found in
e.g. Øksendal [2003, Definition 2.1.1].

The probability space of (2.1.1) provides a very general framework for our applica-
tions. Again, since we are interested in applications to finance in the spirit of An-
dersen and Piterbarg [2010a], we essentially only want to consider a p-dimensional
vector-valued process Xt. This allows us to specify the sampling space as Rp,
consider a corresponding σ-algebra on Rp, e.g. the Borell σ-algebra B(Rp), see
Durrett [2010], and use a filtration generated by a d-dimensional Brownian motion
Wt of the form

Ft = σ {Wu|u ≤ t} ,

augmented to be complete and right-continuous to satisfy the usual conditions.
The construction of this filtration can be found in e.g. Karatzas and Shreve [1991,
Chapter 2.7]. Due to its importance in all applications regarding stochastics, we
do, however, want to recall the definition of the Brownian motionWt. We consider
the definition given by Durrett [2010, Chapter 7.1].

Definition 2.1.1. A one-dimensional Brownian motion is a real-valued process
Wt that has the following properties:

i) Independent increments: If t0 < t1 < . . . < tn, then the increments
Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are independent.

ii) Normal distributed increments: If s, t ≥ 0 then

P
(
Ws+t −Ws ∈ A

)
=

∫
A

1√
2πt

e−
x2

2t dx.

8



iii) Almost sure continuous paths: With probability one, t→ Wt is contin-
uous.

We define a d-dimensional Brownian motion as a vector-valued process where each
coordinate process is given by an independent one-dimensional Brownian motion.

The definition provided by Definition 2.1.1 is only one possible way to define a
Brownian motion, also often denoted as a Wiener process. There are many other
ways, e.g. using the Levy characterization Karatzas and Shreve [1991, Theorem
3.3.16] or through the Wiener measure Karatzas and Shreve [1991, Chapter 2.4],
to define a Brownian motion and each one has its own advantages to determine
whether a process is a Brownian motion or not. For further details about Brow-
nian motions regarding important properties or the construction of corresponding
processes, we refer to Karatzas and Shreve [1991], Øksendal [2003].

This set-up provides us with the underlying probabilistic framework on which
we will be working throughout this work. In the next section, we continue to
formalize the p-dimensional vector-valued processes Xt which we want to study
and thereafter continue to establish the important connections towards other areas
such as PDEs necessary in our work.

2.1.2 Itô Processes

To properly characterize the desired stochastic processes Xt, we use a character-
ization in terms of an d-dimensional Itô process in accordance to Andersen and
Piterbarg [2010a, Chapter 1.6].

Definition 2.1.2. We define the d-dimensional Itô process X : [0, T ] × Ω → Rd,
denoted as Xt, as the solution to the SDE given by

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt (2.1.2)

with initial condition X0. Here the functions µ : [0, T ] × Rp → Rp and σ :
[0, T ]×Rp → Rp×d are time- and state-dependent, adapted to the filtration {Ft}t≤T
and satisfy the condition ∫ T

0

|µ(s, x)|ds <∞ a.s.,∫ T

0

|σ(s, x)|2ds <∞ a.s.

The differential notation provides a very useful abbreviation which is commonly
used to express SDEs. To make the expression mathematically correct, it should
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however always be understood in terms of stochastic integrals and abbreviates the
expression

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs.

To provide some intuition about the stochastic integral represented in the last
term, it can be formally seen as the limiting process of a discrete sum over a
partition with step size h = T

n
as∫ t

0

σ(s,Xs) dWs = lim
n→∞

n∑
i=1

σ(h(i− 1), Xh(i−1))
[
Wih −Wh(i−1)

]
.

Note that we do not use this expression as the rigorous mathematical definition,
since the construction of these integrals is more involved. This expression can only
be used as a definition for a certain class of elementary functions and the general
integral is constructed based on an approximation of the original integrand in terms
of elementary functions. Hence, this formula should only provide some intuition
and for the rigorous construction of stochastic integrals we refer to Karatzas and
Shreve [1991], Øksendal [2003].

Given that the Itô process is defined as a solution to the SDE (2.1.2) we need to
specify some regularity conditions, which guarantee the existence and uniqueness
of such solutions. Such results are provided in e.g. Karatzas and Shreve [1991,
Theorem 5.2.9], Øksendal [2003, Theorem 5.2.1] or Andersen and Piterbarg [2010a,
Theorem 1.6.1]. To provide a framework consistent with Definition 2.1.2, we refer
to the formulation of Andersen and Piterbarg [2010a, Theorem 1.6.1].

Theorem 2.1.3. Assume that there exists a constant K > 0 such that for all
t ∈ [0, T ] and all x, y ∈ Rp the following conditions hold:

i) Lipschitz condition:

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|,

ii) Growth condition:

|µ(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + |x|2).

Then there exists a unique strong solution to (2.1.2).

This existence and uniqueness result provides us with a very strong tool when
considering SDEs and can establish the mathematical foundation of our consider-
ations. We therefore wish to point out some important remarks related to Theorem
2.1.3.
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i) Strong and weak solutions: When considering solutions to SDEs one usu-
ally distinguishes between a solution is a strong solution or a weak solution.
When considering strong solutions, the Brownian motion is given in advance
and the resulting solution Xt has to be adapted to the given filtration. Weak
solutions on the other hand are constructed while also allowing to construct
the corresponding Brownian motion, satisfying the same SDEs but possibly
with regard to a different filtration. For more details, we refer to e.g. Øk-
sendal [2003, Chapter 5.3]. As explained in e.g. Andersen and Piterbarg
[2010a, Chapter 1.6], in a financial application often only the distribution of
the process is of relevance and weak solutions are sufficient. To formalize
our set-up, we are working with strong solutions throughout this thesis and,
following the approach of Andersen and Piterbarg [2010a], do not explicitly
refer to the type of the solution.

ii) Non-Lipschitz coefficients: Given how strong the existence and unique-
ness results of Theorem 2.1.3 are, the theorem also imposes some consider-
able restrictions on the coefficients. For certain choices of coefficients, other
means may be found to deduce the existence results, see e.g. Suresh Kumar
[2013], Chuni [2020]. In general, it may however be possible that we consider
a financial model for which no explicit existence or uniqueness result was
proven. Paraphrasing Taylor [2010], one then operates under the typical,
but possibly dangerous, assumption that a unique solution exists and per-
forms the computation anyway, treating the results with a healthy dose of
scepticism.

iii) Itô diffusions: In the case where the coefficients of (2.1.2) only depend
on the state variable Xt and not on the time t, the process is called an Itô
diffusion instead. Itô diffusions can simplyfy the considerations in some as-
pects and admit a multitude of nice properties as presented in e.g. Øksendal
[2003, Chapter 7]. In our set-up, this can not always be guaranteed and we
consider general Itô processes instead. However, we do use an Itô diffusion
for illustration in the next section.

In summary, we assume that we are working with an Itô process Xt given as the
unique solution to (2.1.2). Working in the setting of Itô processes gives us access
to the famous ‘Itô’s Lemma’, allowing us to study functionals of Itô processes. We
refer to the version provided in Andersen and Piterbarg [2010a, Theorem 1.1.5].

Theorem 2.1.4. Let f(t, x), x = (x1, . . . , xp)
>, denote a continuous function f :

[0, T ] × Rp → R, with continuous partial derivatives ∂tf, ∂xf, ∂xixjf . Let Xt be
given by the Itô process (2.1.2) and define a scalar process Yt = f(t,Xt). Then Yt

11



is an Itô process with stochastic differential

dYt =

[
∂tf(t,Xt) + ∂xf(t,Xt)µ(t,Xt)

]
dt+ ∂xf(t,Xt)σ(t,Xt)dWt

+
1

2

∑
1≤i,j≤p

∂xixjf(t,Xt)(σ(t,Xt)σ(t,Xt)
>)i,jdt.

2.1.3 Kolmogorov Equations

Next, we establish the connection between our Itô processes Xt from (2.1.2) and
non-stochastic differential equations. For this we consider Kolmogorov equations.
Before introducing the equations, we first construct a differential operator which
aims to capture all relevant information induced by Xt. We use the second-order
differential operator At in accordance with Karatzas and Shreve [1991, Equation
5.4.1].

Definition 2.1.5. For a function f ∈ C2([0,∞),Rp), i.e. a twice differentiable
function f : [0,∞) → Rp with continuous derivatives, we define the second-order
differential operator At, denoted as the generator of Xt, as

(
Atf

)
(t, x) =

p∑
i=1

µi(t, x)∂xif(t, x) +
1

2

p∑
i,j=1

Σi,j(t, x)∂xixjf(t, x)

with
Σi,j(t, x) =

(
σ(t, x)σ(t, x)>

)
i,j
.

To provide some explanation as to why we denote this operator as the generator,
let us consider the simpler case of Itô diffusions instead of Itô processes, see Section
2.1.2. As depicted in Øksendal [2003, Theorem 7.3.3], in this case Definition 2.1.5
corresponds to the infinitesimal generator of the Itô diffusion given by Øksendal
[2003, Definition 7.3.1]:

Definition 2.1.6. Let Xt be an Itô diffusion in Rp. The infinitesimal generator
A of Xt is defined as

Af(x) = lim
t↓0

1

t

(
EP
[
f(Xt)|X0 = x

]
− f(x)

)
.

The set of functions f for which the limit exists for all x ∈ Rp is the domain of
the generator.
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The infinitesimal generator, defined as in Definition 2.1.6 can be extended to a
very general framework regarding Markov semigroups and the equality between
Definition 2.1.5 and Definition 2.1.6 is not true for the general case. This can
be seen when taking for example a Poisson process as demonstrated in John and
Wu [2021]. This framework yields an interesting connection between stochastic
processes and differential geometry and for more information on this topic we
refer to e.g. Kac [1966], Bourgade and Croissant [2005], Henry-Labordère [2005].
When studying infinitesimal generators, it is important to always consider the
generator together with its domain. For our purpose, however, Definition 2.1.5 is
sufficient and we do not delve deeper into the technical details regarding generators.
Instead, we state the following result of Andersen and Piterbarg [2010a, Theorem
1.8.1] based on Karatzas and Shreve [1991, Theorem 5.7.6].

Theorem 2.1.7. Let the process Xt be given by the Itô process (2.1.2) where the
coefficients µ(·, ·) and σ(·, ·) are continuous in x and satisfy the Lipschitz and
growth conditions of Theorem 2.1.3. Consider a continuous function g(·) that is
either non-negative or satisfies a polynomial growth condition, meaning that for
some positive constants K and q and all x ∈ Rp we have

g(x) ≤ K(1 + |x|q).

If u(t, x) solves the Kolmogorov backward equation with terminal condition g(·)
given by {

∂tu(t, x) +Atu(t, x) = 0

u(T, x) = g(x)
(2.1.3)

and in addition, u(t, x) satisfies a polynomial growth condition in x, then for
t ∈ [0, T ] we have

u(t, x) = EP
[
g(XT )|Xt = x

]
.

This result provides a very powerful connection between the stochastic point of
view expressed through the conditional expectation and the area of differential
equations provided by the Kolmogorov backward equation. Using for example a
terminal condition of the form

g(x) = eiy
>x

with y ∈ Rp, this allows to deduce the characteristic function conditioned on x by
solving the corresponding Kolmogorov backward equation.

To solve Equation (2.1.3), let us for the moment neglect the boundary condition
and only consider the differential equation. Following Karatzas and Shreve [1991,
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Definition 5.7.9] we define the fundamental solution, also denoted as the Green’s
function, as follows.

Definition 2.1.8. A fundamental solution to the the second-order partial differ-
ential equation

∂tu(t, x) +Atu(t, x) = 0

is a non negative function p(t, x; s, y) for 0 ≤ t ≤ s ≤ T and x, y ∈ Rp such that
for every f ∈ C0(Rp), i.e. continuous functions vanishing at infinity, and s ∈ (0, T ]
the function

u(t, x) =

∫
Rp
f(y)p(t, x; s, y) dy

is bounded, of class C1,2 and satisfies for all x ∈ Rp the condition

lim
t→s

u(t, x) = f(x).

In particular, when comparing Definiton 2.1.8 with the results of Theorem 2.1.7,
the fundamental solution can also be interpreted as the transition density for the
process Xt defined through the equation

P
(
Xs ∈ A|Xt = x

)
=

∫
A

p(t, x; s, y) dy

for each A ∈ B(Rp). To denote this connection, we also use the notation

p(t, x; s, y) dy = P
(
Xs ∈ [y, y + dy]|Xt = x

)
.

As presented in Karatzas and Shreve [1991], when imposing a suitable set of reg-
ularity conditions on the coefficients of the SDE, the existence and regularity of
a fundamental solution can be guaranteed. Fixing the variables (s, y), the func-
tion p(t, x) = p(t, x; s, y) then satisfies the Kolmogorov backward equation in the
backward variables (t, x). These regularity condition have to do with bounded-
ness, Hölder-continuity and ellipticity and we refer to Karatzas and Shreve [1991]
for more details. In particular, when also imposing regularity conditions on the
derivatives of the coefficients of the SDE, the fundamental solution can also be
used to create a solution to the Kolmogorov forward equation. The Kolmogorov
forward equation is hereby given through the following definition.
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Definition 2.1.9.

i) We define the operator A∗t for a function f ∈ C2([0,∞),Rp) as

A∗tf(s, y) = −
p∑
i=1

∂yi [µi(s, y)f(s, y)] +
1

2

p∑
i,j=1

∂yiyj
[
Σi,j(s, y)f(s, y)

]
.

The operator A∗t can be viewed as the L2-adjoint to At.

ii) The Kolmogorov forward equation for a pair (t, x) ∈ [0,∞]×Rp, also known
as Fokker-Planck equation, is defined as{

− ∂su(s, y) +A∗u(s, y) = 0

u(t, y) = δ(x− y).

Considering the fundamental solution p(t, x; s, y) under the suitable regularity con-
ditions of Karatzas and Shreve [1991], the function p(t, x; s, y) with fixed variables
(t, x) then also satisfies the Kolmogorov forward equation of Definition 2.1.9. This
connection between SDEs and the solutions of PDEs, established through the Kol-
mogorov equations, provides a vital step in our further studies when analysing the
transition density functions corresponding to certain Itô processes. We use both
the Kolmogorov backward and forward equation to characterize these transition
densities and consider approximations of the associated PDEs.

Remark 2.1.10. Note that the presented version of Theorem 2.1.7 can in fact be
further extended to provide an analogue to the Feyman-Kac theorem. We refer to
Karatzas and Shreve [1991, Theorem 5.7.6] for the details.

2.2 Application to Finance

Having established the underlying mathematical concepts of SDEs in Section 2.1,
this section outlines the application in a financial context. In a similar manner
to Section 2.1 this section should be seen as a condensed summary of standard
literature on interest rate modelling. We use Andersen and Piterbarg [2010a],
Brigo and Mercurio [2006], Musiela and Rutkowski [2005] as our primary refer-
ences. We focus on the application towards interest rates, explaining the selection
of the corresponding literature. Many of the models presented in the referenced
literature, can, however, also be used to model other types of asset classes such as
equities. Further literature can be found in the references therein and an appli-
cation towards finance is also often included in the standard literature concerning
stochastic analysis such as Øksendal [2003] or Karatzas and Shreve [1991].
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2.2.1 Arbitrage

We begin by establishing a rigorous mathematical interpretation of the concept of
arbitrage. As already mentioned in the introduction, arbitrage can be informally
seen as the possibility to gain money without taking any risk, making arbitrage one
of the fundamental concepts in mathematical finance. We consider a p-dimensional
Itô process Xt given by the SDE (2.1.2). Here each coordinate process Xt,i with
1 ≤ i ≤ p models an asset and the entirety of the p assets yields our model
framework. Notice that not each asset has to be physically tradable and can for
example also represent a volatility process. To create a plausible model framework
based on these assets, we need to avoid the existence of arbitrage. Putting this
into a rigorous mathematical context, we summarize the concepts of Andersen and
Piterbarg [2010a, Chapter 1.2] in the following definition.

Definition 2.2.1.

i) Trading strategy: A trading strategy φ : [0, T ]× Ω→ Rp is a predictable
and adapted process. Each component of a trading strategy can be inter-
preted as the holdings at time t in the i-th asset.

ii) Value: The value π : [0, T ]× Ω→ R of a trading strategy φ is given by

πt = π(t, ω) = φ(t, ω)>Xt(ω) =

p∑
i=1

φi(t, ω)>Xt,i(ω).

iii) Trading gains: The trading gain G : [0, T ]× Ω → R of a trading strategy
φ is given by

Gt = G(t, ω) =

∫ t

0

φ(u, ω)>dXu(ω).

iv) Self-financing: A trading strategy φ is called self-financing, if for every
t ∈ [0, T ] we have

πt − π0 = Gt.

v) Arbitrage opportunity: An arbitrage opportunity is a self-financing trad-
ing strategy φ for which π0 = 0 and there exists a t ∈ [0, T ] such that

πt ≥ 0 a.s., and P(πt > 0) > 0.

Definition 2.2.1 provides a very intuitive way to provide a mathematical defini-
tion of arbitrage using arbitrage opportunities. As depicted in e.g. Musiela and
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Rutkowski [2005] this definition is adequate for discrete-time models. When con-
sidering continuous-time models, however, the definition is not sufficient to rule
out arbitrage. Hence, to rigorously enforce the no-arbitrage property in the model
framework, we introduce the concept of equivalent martingale measures provided
by Brigo and Mercurio [2006, Definition 2.1.2].

Definition 2.2.2. An equivalent martingale measure QD is a probability measure
on the space (Ω,F) that satisfies the following properties:

i) Equivalence: The measures QD and P are equivalent, that is for all A ∈ F :

QD(A) = 0⇐⇒ P(A) = 0.

ii) Radon-Nikodym derivative: The Radon-Nikodym derivative

R =
dQD

dP

is square integrable with regard to the measure P.

iii) Discounted assets: The normalized asset process

XD
t :=

Xt

Dt

with regard to a strictly positive Itô process Dt, called numéraire, is a mar-
tingale with respect to QD. This means, XD

t is an adapted process with
EQD

[
|XD

t |
]
< ∞ for all t ∈ [0, T ] and satisfies for all s, t ∈ [0, T ] with t ≤ s

the equation
EQD[XD

s |Ft
]

= XD
t a.s.

This definition is constructed in dependence on the numéraire Dt and therefore
moves the considerations from the original price process Xt to the relative price
process XD

t . Thus, we also extend the definitions related to trading strategies to
incorporate the relative price process. We use a slight abbreviation of Musiela and
Rutkowski [2005, Definition 8.1.4] to bring the notation more in line with Andersen
and Piterbarg [2010a].

Definition 2.2.3. A self-financing trading strategy φ is called permissible if the
relative gain process

GD
t = GD(t, ω) =

∫ t

0

φ(u, ω)>dXD
u (ω)

is a martingale with respect to QD.
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With this we have established the necessary preliminaries to formulate a first
characterization to avoid arbitrage. The result is based on Andersen and Piterbarg
[2010a, Theorem 1.3.2] and can also be found in Musiela and Rutkowski [2005,
Proposition 8.1.1] including the full proof of the theorem.

Theorem 2.2.4. Restrict attention to permissible trading strategies. If there is a
numéraire D such that the normalized asset price process allows for an equivalent
martingale measure, then there are no arbitrage opportunities.

At this point we want to highlight that Theorem 2.2.4 only provides a sufficient
condition for no-arbitrage and the inverse direction is not true in this formulation.
It is possible to establish a equivalence between the existence of equivalent martin-
gale measures and the concept of no-arbitrage and this result is known as the first
fundamental theorem of asset pricing. The derivation of this result is however very
technical and requires a different definition of no-arbitrage than the one provided
in Definition 2.2.1. Hence we refer to Musiela and Rutkowski [2005, Section 8.1.5]
and the therein mentioned work of Delbaen and Schachermayer [1994a,b, 1998]
for further details. For our purposes the results of Theorem 2.2.4 are sufficient
since they allow to guarantee the absence of arbitrage opportunities when pricing
derivatives under a martingale measure. We will further concretize this in the next
section.

2.2.2 Pricing of Contingent Claims

Having established the mathematical foundation to guarantee the no–arbitrage
condition in our model framework, we continue to analyse the pricing of certain
derivatives. We present concrete examples how these derivatives may look like
in Section 2.2.4. For the moment, however, we will keep the notation general
and consider contingent claims in accordance to Andersen and Piterbarg [2010a,
Section 1.4].

Definition 2.2.5.

i) A T -maturity contingent claim is an FT -measurable random variable VT with
finite variance which makes no payments before time T .

ii) The contingent claim VT is called attainable or replicatable if there exists a
permissible trading strategy φ with value π such that

VT = πT a.s.

This leads us to a second very important property which we impose on our model
set-up, the completeness of the market.

18



Definition 2.2.6. The market is called complete if all finite-variance FT -measurable
random variables can be replicated.

In essence, this means that we can span all considered contingent claims using our
pricing process and a corresponding trading strategy. To impose this property, we
can again consider the equivalent martingale measures of Definition 2.2.2. This
connection is known as the second fundamental theorem of asset pricing and can
be summarized as done in Andersen and Piterbarg [2010a, Theorem 1.4.1].

Theorem 2.2.7. In the absence of arbitrage, a market is complete if and only if
there exists a numéraire inducing a unique martingale measure.

The focus of this theorem is placed on the uniqueness of the induced martingale
measure. As stated in Musiela and Rutkowski [2005, Proposition 8.1.1] this also
induces a unique replicating strategy for the contingent claim, which in turn also
allows to deduce a unique price for all finite-variance FT -measurable random vari-
ables.

In summary, using a model set-up where it is possible to construct a unique equiv-
alent martingale measure provides us with the desired model properties. We will
now use this set-up to subsequently compute the unique price for a T -maturity
contingent claim VT . The underlying pricing formula for this is provided by e.g.
Brigo and Mercurio [2006, Proposition 2.1.2].

Proposition 2.2.8. Assume there exists an equivalent martingale measure QD

induced by the numéraire Dt and let VT be an attainable contingent claim. Then,
for each time t, 0 ≤ t ≤ T , there exists a unique price πt associated with VT , i.e.,

Vt = πt = DtEQD
[
VT
DT

∣∣Ft].
Proposition 2.2.8 basically states that under the measure QD the discounted con-
tingent claim VT

DT
becomes a martingale. The formula then follows from the mar-

tingale property. For a practical application it now remains to evaluate this con-
ditional expectation. This evaluation is heavily dependent on the chosen measure
QD, respectively its underlying numéraire. Thus, we continue to present some use-
ful tools to allow a change of the underlying measure with the aim of simplifying
the evaluation of the conditional expectation.

2.2.3 Change of Measures

The first step to deduce the desired toolkit is to connect the measures induced
by two different numéraires with each other. This result is given in Brigo and
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Mercurio [2006, Proposition 2.2.1] or equivalently Andersen and Piterbarg [2010a,
Theorem 1.4.2].

Theorem 2.2.9. Consider two numéraires Nt and Mt, inducing equivalent mar-
tingale measures QN and QM , respectively. If the market is complete, then the
Radon-Nykodym derivative relating the two measures is uniquely given by

EQN
t

[
dQM

dQN

]
=
M(t)N(0)

N(t)M(0)
.

Theorem 2.2.9 allows us to perform a change of measures, by changing the un-
derlying numéraire. Let us denote the Radon-Nykodym density process by ζt and
consider the pricing formula of Proposition 2.2.8 to get

Vt = NtEQN
[
VT
NT

∣∣∣∣Ft] = NtEQM
[
VT
NT

ζt
ζT

∣∣∣∣Ft] = MtEQM
[
VT
MT

∣∣∣∣Ft].
This shows, that the computed price of the contingent claim is independent of
the chosen numéraire. Hence, we can freely chose the numéraire to simplify the
evaluation of the conditional expectation as much as possible. These results can
also be found in Brigo and Mercurio [2006, Section 2.3] providing a nice summary
of practical applicable tools.

To motivate the next step, let us for the moment assume that the relative contin-
gent claim V D

T = VT
DT

is expressible in terms of an SDE of the form

dV D
t = µt dt+ dWt.

Considering the initial price at time 0 provided by the pricing formula of Propo-
sition 2.2.8, the computation reduces to an evaluation of the expected drift term.
Depending on the function µt this problem can still become quite challenging and
we prefer to chose a numéraire that avoids this computation. To select a suitable
numéraire, or more precisely a suitable new measure, we present a very useful
result known as ‘Girsanov’s Theorem’. We refer to the version stated in Karatzas
and Shreve [1991, Theorem 3.5.1] and adjust the notation to be more in line with
Andersen and Piterbarg [2010a].

Theorem 2.2.10. Let θt be a d-dimensional measurable, adapted process satisfying
∀i ≤ d, 0 ≤ t <∞ ∫ t

0

θ2
s,i ds <∞ a.s.

and define the density process ζθt as its Dolean exponential given by

ζθt = e
∫ t
0 θ
>
s dWs− 1

2

∫ t
0 θ
>
s θs ds.
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Suppose that ζθt is a martingale under the measure P. Define a new process W θ
t

for 0 ≤ t <∞ as

W θ
t = Wt −

∫ t

0

θs ds.

Then for each fixed T ∈ [0,∞) the process {W θ
t , t ≤ T} is a d-dimensional Brow-

nian motion under the measure Pθ defined through the density process ζθt as

Pθ

P
= ζθ.

To conclude this section, we provide a series of remarks to clarify the statements
and implications of Theorem 2.2.10.

Remark 2.2.11. The density process ζθt of Theorem 2.2.10 can be characterized as
the solution to the SDE

dζθt = ζθt θ
>
t dWt.

This provides us with a representation of the measure change in terms of an SDE.
This characterization is determined by the coefficient θt which provides the ap-
proach to steer the change of measures.

Remark 2.2.12. Girsanovs’s Theorem assumes the density process to be a true
martingale. This condition is not trivial and can be quite difficult to enforce. One
of the most prominent assumptions to guarantee this is the ‘Novikov Condition’,
see e.g. Andersen and Piterbarg [2010a], requiring that

EP
[
e

1
2

∫ t
0 θ
>
s θs ds

]
<∞.

The Novikov condition guarantees that ζθt is a true martingale.

Remark 2.2.13. Considering the new Brownian motion W θ
t , Girsanov’s Theorem

provides a handy way so simplify the drift term in an SDE. Considering e.g. an
SDE under the measure P of the form

dVt = −σtθt dt+ σt dWt

with θt satisfying the conditions of Theorem 2.2.10, we can perform a change of
measure and consider the equivalent SDE under the measure Pθ given by

dVt = σt dWt.

Remark 2.2.14. Based on the example in Remark 2.2.13, this approach also pro-
vides a useful tool to check for the existence of equivalent martingale measures,
see Andersen and Piterbarg [2010a, Corollary 1.5.2]. More precisely, if the drift
term of the Itô process in (2.1.2) allows a decomposition as in Remark 2.2.13, an
equivalent martingale measure exists.
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2.2.4 Fixed Income Instruments

Having discussed the general mathematical set-up to characterize our financial
market model, we provide more intuition on the practical applicability of this
framework. For this we focus on fixed income markets, introduce some of the most
prominent market instruments available and show how these can be embedded in
our financial market model. The definition of these instruments can be found in
all standard literature concerning interest rate models such as Brigo and Mercurio
[2006], Musiela and Rutkowski [2005], Andersen and Piterbarg [2010a]. Due to the
highest correspondence of notation towards our current financial market set-up,
we use Andersen and Piterbarg [2010a] throughout this section for all relevant
definitions.

2.2.4.1 Zero-coupon Bond

We start with one of the simplest fixed income instruments, a certificate of deposit.
As the name suggests, the instrument is created by investing a unit of money for a
certain time interval. At the end of this interval the investor receives the investment
back in addition with some interest payment. We formalize this with the following
definition.

Definition 2.2.15. (Based on Andersen and Piterbarg [2010a, Section 5.2])
A certificate of deposit is a deposit of money at a time T for a pre-specified term τ
and at a pre-specified simple interest rate L(T, T + τ). The value of an investment
of 1 unit of money at time T yields to a value of

V CD
T+τ = 1 + τL(T, T + τ)

at time T + τ .

In Definition 2.2.15 the value is expressed based on a unit investment at time T and
the value represents a projection of the current time value to the future time T +τ .
For most applications, however, it is more convenient to have a projection along
the other direction and be able to deduce the current value of future payments at
time T + τ . For this we define the zero-coupon bond.

Definition 2.2.16. (Based on Andersen and Piterbarg [2010a, Section 4.1.1])
A T -maturity zero-coupon bond, also known as discount bond, is a contract that
guarantees its holder the payment of 1 unit of currency at time T , with no inter-
mediate payments. The contract value at time t ≤ T is denoted by DF (t, T ).

Combining these two definitions, we see that investing a value of DF (T, T + τ)
into a certificate of deposit has to yield a value of 1 at time T +τ . If this is not the
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case, arbitrage opportunities would arise. Thus, we can conclude the relationship

DF (T, T + τ)
(
1 + τL(T, T + τ)

)
= 1. (2.2.1)

We use this expression to characterize interest rates in a future looking set-up.

Definition 2.2.17. (Based on Andersen and Piterbarg [2010a, Section 4.1.1])

i) Forward bonds: The time t forward price DF (t, T, T + τ) when deciding
at time t to purchase at some time T a zero-coupon bond maturing at time
T + τ is defined as

DF (t, T, T + τ) =
DF (t, T + τ)

DF (t, T )
.

The bond is called a forward bond with expiry T , maturity T + τ and tenor
τ .

ii) Simple forward rate: We define the simple forward rate L(t, T, T + τ) in
analogy to Equation (2.2.1) as

L(t, T, T + τ) =
1− DF (t, T, T + τ)

τDF (t, T, T + τ)
=

DF (t, T )− DF (t, T + τ)

τDF (t, T + τ)
.

In the case where t = T the forward rates are instead called spot rates and
correspond to L(T, T + τ).

We now have established the necessary variables to consider a first instrument to
which we can apply our results from section 2.2.2 and 2.2.3.

Definition 2.2.18. (Based on Andersen and Piterbarg [2010a, Section 5.3])
A forward rate agreement (FRA) for the period [T, T +τ ] is a contract to exchange
a fixed rate payment given by the rate k against the payment of the time T spot
rate with tenor τ . All payments are exchanged at time T and are expressed in
time T + τ units. The value at time T of the FRA is given by

V FRA
T = DF (T, T + τ)τ

(
L(T, T, T + τ)− k

)
.

From the definition of the FRA, we can observe that the contract is formulated
in a manner to specify the payments at a certain time. This is often the case for
many instruments and allows the embedding into our financial model set-up. In
the case of the FRA, the value at time T is explicitly specified. Assuming that
the discount factor, and in turn also the spot rate, is governed by a stochastic
behaviour, the value V FRA

T becomes an FT -measurable random variable and we
can apply the results of Section 2.2.2.
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Lemma 2.2.19. The time t value of the FRA is given by

V FRA
t = DF (t, T + τ)τ

(
L(t, T, T + τ)− k

)
.

In particular, the forward rate L(t, T, T +τ) can be characterized as the rate k that
makes the FRA a fair contract, i.e. lets the time t value equal 0.

Proof. Assuming that we have an equivalent martingale measure induced by a
numéraire Nt, we can express the time t value as

V FRA
t = NtEQN

t

[
V FRA
T

NT

]
= NtEQN

t

[
DF (T, T + τ)τ

(
L(T, T, T + τ)− k

)
NT

]
.

Using the traded asset DF (t, T + τ) as our numéraire Nt, we can simplify the
conditional expectation and deduce

V FRA
t = DF (t, T + τ)τ

(
EQDF(·,T+τ)

t

[
L(T, T, T + τ)

]
− k
)
.

Considering the definition of the forward rate L(t, T, T + τ) provided in Definition
2.2.17 we see that L(t, T, T + τ) is given as the sum of traded assets divided by
DF (·, T + τ). Therefore, under the measure QDF (·,T+τ) also L(·, T, T + τ) is a
martingale and we can conclude

EQDF(·,T+τ)

t

[
L(T, T, T + τ)

]
= L(t, T, T + τ).

2.2.4.2 Swap Rates, Swaps and CMS Swaps

In the next step, we increase the complexity of the instruments considered. We
start with a first natural extension and introduce coupon payments into our con-
siderations. For these we need to refine our time-line and include multiple payment
dates. Throughout this section we work on a tenor structure of the form

T1 = t0 < t1 < . . . < tn ≤ T2 (2.2.2)

where T1 denotes the starting date, T2 the end date and ti the payment dates of
the instrument. We denote the timespan between payments as δi = ti − ti−1 for
i ≥ 1.
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Definition 2.2.20. (Based on Andersen and Piterbarg [2010a, Section 4.1.3])

i) Coupon-bearing bond: A t-maturity coupon-bearing bond with coupon
c is a contract that guarantees its holder the payment of 1 unit of currency
at time T2 and in addition provides intermediate payments of cδi at time ti
for all i ≥ 1 in the time period [T1, T2]. The contract value at time t ≤ T1 is
given by

V CB
t =

∑
T1<ti≤T2

cδiDF (t, ti) + DF (t, T2).

ii) Annuity factor: We define the annuity factor A(t, T1, T2) as the value
generated only by the coupon payments of a coupon-bearing bond with a
coupon of c = 1, i.e.

A(t, T1, T2) =
∑

T1<ti≤T2

δiDF (t, ti).

This simplifies the value of the coupon-bearing bond with coupon c at time
t to

V CB
t = cA(t, T1, T2) + DF (t, T2).

iii) Swap rate: We define the time t forward swap rate R(t, T1, T2), also denoted
as par rate, as

R(t, T1, T2) =
DF (t, T1)− DF (t, T2)

A(t, T1, T2)
.

To motivate the definition of the swap rate, we consider another instrument, the
plain vanilla fixed-for-floating interest rate swap or in short simply swap.

Definition 2.2.21. (Based on Andersen and Piterbarg [2010a, Section 5.5])
A swap, is an exchange between one stream of payments, called leg, paying fixed
rate payments with rates k and another leg with payments based on floating for-
ward rates. Both legs are defined on the tenor structure of (2.2.2) and are ex-
changed at the end of an interval. Here the floating rates for the time interval
[ti, ti+1] are given by the time ti spot rate L(ti, ti, ti+1) for i ≥ 1.

Lemma 2.2.22. The time t value of a swap is given by

V swap
t = A(t, T1, T2)

(
R(t, T1, T2)− k

)
with A(t, T1, T2) denoting the annuity factor and R(t, T1, T2) the swap rate. In
particular, the swap rate R(t, T1, T2) can be characterized as the rate k that makes
the swap a fair contract, i.e. lets the time t value equal 0.
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Proof. We start by analysing the floating leg. We know that for each time interval
[ti, ti+1] the interest rate is provided by the spot rate L(ti, ti, ti+1) and paid at time
ti+1. Hence, the time ti value of the payment coming from the interval [ti, ti+1] is
given by

V
[ti,ti+1]
ti = DF (ti, ti+1)δi+1L(ti, ti, ti+1).

Therefore, we can follow the proof of Lemma 2.2.19 and by choosing the numéraire
DF (t, ti+1) deduce the time t value of the payment coming from the interval [ti, ti+1]
as

V
[ti,ti+1]
t = DF (t, ti+1)δi+1L(t, ti, ti+1).

Recalling Definition 2.2.17, this can further be simplified to

V
[ti,ti+1]
t = DF (t, ti)− DF (t, ti+1).

Thus, we can conclude that the value of the floating leg at time t is given by

V float
t =

∑
T1<ti≤T2

V
[ti−1,ti]
t = DF (t, T2)− DF (t, T1).

On the other hand, the fixed leg consists only of the coupon value of a coupon-
bearing bond with coupon k and according to Definition 2.2.20 is given by

V fix
t = kA(t, T1, T2).

Combining these legs we get

V swap
t = V float

t − V fix
t = DF (t, T2)− DF (t, T1)− kA(t, T1, T2)

= A(t, T1, T2)
(
R(t, T1, T2)− k

)
.

Swaps belong to the most frequently traded instruments and therefore the swap
marked is very liquid. This allows to consider instruments based on swaps as the
underlying. One example are the constant maturity swaps (CMS) which follow
the swap structure provided in Definition 2.2.21 with the slight adjustment that
the floating rate is not based on a forward rate and instead on a swap rate.

Definition 2.2.23. (Based on Andersen and Piterbarg [2010a, Section 5.11])
A constant maturity swap is an exchange between one stream of payments, called
leg, paying fixed rate payments with rates k and another leg with payments based
on a swap rate with fixed maturity. The rate k that makes this contract fair for
both sides is called the CMS rate.
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In our considerations, both the swap as well as the CMS are defined contain-
ing a fixed payment leg. Both constructions can however be defined in a much
greater generality allowing e.g. the exchange of variable rates on both payment
legs (floating for floating), different payment dates or the averaging of rates. For
a more detailed study of the various possibilities we refer to Andersen and Piter-
barg [2010a], Brigo and Mercurio [2006]. For our purpose we will mainly consider
European options on swaps and CMS, and the presented definitions are sufficient.
We continue by discussing European options in the next section.

2.2.4.3 European Options

Regarding the contracts discussed until now, there is always an obligation included
to execute the contract. From a practical perspective it is however not always
desirable to be forced to perform the exchange. This motivates us to include
optionality into the contract yielding so-called options. We consider optionality
of the European-style, where the option can only be exercised at a pre-specified
exercise date. The standard European-style options are called calls and puts. We
use the characterization given in Musiela and Rutkowski [2005].

Definition 2.2.24. Let St denote the value of an underlying at time t. This can
e.g. be a stock price or a forward rate. We define the following European-styled
options.

i) Call: A (European) call option with strike k and maturity T is the right,
but not the obligation, to buy the underlying St at the maturity time T for
a price k.

ii) Put: A (European) put option with strike k and maturity T is the right,
but not the obligation, to sell the underlying St at the maturity time T for
a price k.

Since options are one of the most frequently traded financial instruments, they
often build the underlying foundation to adequately calibrate a financial market
model to an observable market. This means, the parameters available in the model
are specified in such a way, that the option values observed in the market are
reproduced in the model. Thus, it is important to be able to properly price these
options. We now introduce some of the most prominent European-style options
based on interest rates.

Definition 2.2.25. (Based on Andersen and Piterbarg [2010a, Section 5.8])

i) Caplet: A caplet is a scaled call option with strike k and maturity T on the
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forward rate L(t, T, T + τ) such that the value at time T + τ is given by

V caplet
T+τ = τ

(
L(T, T, T + τ)− k

)+
.

In particular, the caplet can be seen as the right, but not the obligation, to
pay the fixed rate of the FRA for the period [T, T + τ ] of Definition 2.2.18.

ii) Floorlet: A floorlet is a scaled put option with strike k and maturity T on
the forward rate L(t, T, T + τ) such that the value at time T + τ is given by

V floorlet
T+τ = τ

(
k − L(T, T, T + τ)

)+
.

In particular, the floorlet can be seen as the right, but not the obligation,
to pay the floating rate of the FRA for the period [T, T + τ ] of Definition
2.2.18.

iii) Caps/Floors: A cap/floor is a strip of caplets/floorlets on successive for-
ward rates spanning the tenor structure of (2.2.2).

In a similar fashion we can define the right to enter into a swap or a CMS.

Definition 2.2.26. (Based on Andersen and Piterbarg [2010a, Section 5.10/5.11])

i) Swaptions: A European payer swaption, or simply swaption, is an option
to pay the fixed leg of a fixed-for-floating swap. The value of the swaption
with strike k at the time of the expiry T1, which is the time when the swap
starts, is given by

V swaption
T1

=
(
A(T1, T1, T2)

(
R(T1, T1, T2)− k

))+

.

In a similar fashion, a receiver swaption can be defined as the right to pay
the floating leg in a swap.

ii) CMS options: A CMS cap is an option to pay the fixed leg of a CMS. A
CMS floor is an option to pay the floating leg of a CMS.

Considering the payoff functions available for these types of derivatives, we can
observe that it is not possible to derive a valuation formula for some earlier time
t without further knowledge of the dynamics of the underlying interest rate. Con-
sidering for example the case of a swaption, we can apply the results of Proposition
2.2.8 to conclude

V swaption
t = A(t, T1, T2)EQA(·,T1,T2)

t

[(
R(T1, T1, T2)− k

)+
]
.

Since
(
R(T1, T1, T2) − k

)+ is not a martingale under the measure QA(·,T1,T2), the
evaluation has to depend on the underlying dynamics of the swap rate. This in
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turn is heavily dependent on the chosen financial market model and we will show
in Section 2.3 how this can be done for specific models.

Finally, we are also interested in the pricing of options on baskets, meaning a
dependence on multiple rates. Our main example for this is the CMS spread
option. For this we refer to Brigo and Mercurio [2006, Section 13.16.2].

Definition 2.2.27. A CMS spread caplet with strike k is an option on the spread
between two different swap rates with tenors α and β such that the payoff at a
paydate T is given by(

R(T, T1, T1 + β)−R(T, T1, T1 + α)− k
)+
.

We will dive deeper into the pricing of these derivatives in Chapter 4 where we
derive pricing formulas for these type of instruments under our chosen model set-
up.

2.3 Prominent Financial Market Models

As seen in the explicit example of Section 2.2.4.3, we arrive at an expression where
we have to solve a conditional expectation which is not trivial. Section 2.2.3
provides some tools to ease this computation, everything is however dependent on
the explicit model dynamics chosen to determine the relevant price processes of
(2.1.2). Thus, to continue our studies in this area we have to make the general set-
up more explicit and introduce more structure onto the coefficients of (2.1.2). In
this section we provide some overview of commonly used financial market models
to explicitly specify these coefficients. We outline some important properties and
the restrictions of those choices. Some of these models, such as the Heston model,
Heston [1993], or the stochastic alpha beta rho (SABR) model, Hagan et al. [2002],
have been intensively studied and this section should again be understood as a
general summary to provide an overview of possible choices.

2.3.1 The Black-Scholes-Merton Model

We start by considering one of the most famous financial market models as an in-
troductory example, the Black-Scholes-Merton model of Black and Scholes [1973],
Merton [1973]. In the Black-Scholes-Merton model, often also only denoted as
Black-Scholes model, the full price process Xt = (St, βt)

> is characterized by the
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two-dimensional Itô process

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt

with coefficients

µ(t,Xt) =

(
µSt
rβt

)
and σ(t,Xt) =

(
σSt 0
0 0

)
and the initial value

X0 =

(
S0

1

)
.

In the original model the process St denotes a stock process and the process βt
the continuously compounded risk-free interest. Considering the definition of the
process βt, no stochastic behaviour is included and therefore the focus is placed on
the risky stock process St. As demonstrated in Section 2.2.1 instead of considering
the price process directly, we can consider the relative price process with regard to
a numéraire. Choosing the process βt as a numéraire, we define the relative stock
process Sβt as

Sβt =
St
βt
.

In particular, the dynamics of Sβt are now given by the one-dimensional equation

dSβt = (µ− r)Sβt dt+ σSβt dWt. (2.3.1)

This equation is also known as the characterization of a geometric Brownian mo-
tion and we can now demonstrate how the change of measures of Section 2.2.3 is
applicable in practice. Following Theorem 2.2.10 we define the θ-function as

θt ≡
r − µ
σ

and introduce a new Brownian motion

W β
t = Wt −

r − µ
σ

t

under the measure Qβ = Qθ. Considering (2.3.1) under this new measure, the
dynamics can be simplified and lead to

dSβt = σSβt dW
β
t .
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Hence, the measure Qβ is an equivalent martingale measure and no arbitrage
opportunities exist in the model. Furthermore, the SDE can now be explicitly
solved. The solution can then be transformed back in terms of the original stock
process St yielding an expression of the form

St = S0e
(r− 1

2
σ2)t+σ(Wβ

t −W
β
0 )

for all t ≥ 0. Being able to explicitly solve the underlying dynamics of the stock
process provides an advantage in further calculations. Considering for example a
call option on the process St, we can deduce a closed form expression for the price
which is captured in the famous Black-Scholes pricing formula.

Theorem 2.3.1. (Andersen and Piterbarg [2010a, Theorem 1.9.1]) Consider a
call option on the process St with strike K and maturity T . Then the arbitrage
free time t price is given by

V call
t = StΦ(d+)−Ke−r(T−t)Φ(d−),

with

d± =
ln
(
St
K

)
+ (r ± 1

2
σ2)(T − t)

σ
√
T − t

and Φ(·) denoting the Gaussian cumulative distribution function.

We observe that the model possesses many desirable features. This includes ex-
plicit formulas for the process and the call price or an explicitly known distri-
bution of the underlying process. On the other hand, the model is also rather
simple. Considering the volatility σ of the underlying price process, a constant
value is too simplistic to match the actual observed market behaviour. Here for
each strike K and maturity T a different value of σ would be required to repro-
duce the prices. This market behaviour often results in shapes for σ which are
heavily skewed or exhibit a smile behaviour. There are a lot of further extensions
to the Black-Scholes-Merton model including additional time dependence, a divi-
dend process or a multi-dimensional set-up. We refer to Andersen and Piterbarg
[2010a, Chapter 1.9] and the references therein for a continuation of this example
introducing various extensions. We continue to focus further on the replicability
of the observable market prices, leading to local volatility models.

2.3.2 Local Volatility Models

Given a call option with strike K, maturity T , the risk-free rate r as well as the
initial value S0, the only remaining variable in the formula of Theorem 2.3.1 is
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the volatility σ. To highlight the dependence on the model we denote it as σB.
This means, given a fixed call price, we can find a volatility σB which reproduces
this price under the Black-Scholes-Merton model. Since the volatility is implied
through the call price this is called the implied Black volatility. Using observable
option prices and considering the dependence of the implied Black volatility onto
the strike value K, often a skew or a smile shaped curve is observable. To capture
this variety of possible shapes, local volatility models can be used. We consider
two types of local volatility models, Dupire local volatility models in accordance
to Dupire [1994], Derman and Kani [1994] and Bachelier local volatility models in
accordance to Costeanu and Pirjol [2011].

2.3.2.1 Dupire Local Volatility Model

The Dupire local volatility model due to Dupire [1994], Derman and Kani [1994] is
characterized by the one-dimensional Itô process Xt given through the expression

dXt = ϑDupire(t,Xt)Xt dWt (2.3.2)

with initial value X0. For our considerations we choose a definition without a drift
term. For a general formulation including a drift term, we refer to Dupire [1994],
Derman and Kani [1994]. As demonstrated in Dupire [1994] this framework allows
to compute the price of call options C(T,K) with strike K and maturity T using
an equation of the form ∂tC(t,K) =

1

2
ϑDupire(t,K)2K2∂KKC(t,K)

C(0, K) = (X0 −K)+.
(2.3.3)

The additional flexibility through the state-dependent local volatility function
ϑDupire(·, ·) allows to perfectly reproduce the observed market smiles using (2.3.3).
This can be achieved since the price C(t,K) of a call option only depends on the
values of the volatility function ϑDupire(s,K) where s ≤ t and therefore allows for
an iterative approach to match the volatility function to a discrete set of market
points. The Dupire local volatility model is the natural model choice of a local
volatility model when implied Black volatilities are considered. Due to the explicit
inclusion of the term Xt in (2.3.2), the process stays positive as is the case in
the Black-Scholes-Merton model. This implies a distribution of the process which
is closer related to a log-normal distribution than a normal distribution, further
strengthening the connection towards the Black-Scholes-Merton model. When con-
sidering process which can become negative, this representation is, however, not
the most intuitive one and we continue by presenting the Bachelier local volatility
model as an alternative to overcome this problem.
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2.3.2.2 Bachelier Local Volatility Model

The Bachelier local volatility model in accordance to Costeanu and Pirjol [2011] is
characterized by the one-dimensional Itô process Xt given through the expression

dXt = ϑ(t,Xt) dWt (2.3.4)

with initial value X0. Similar to the Dupire local volatility model, the Bache-
lier local volatility model allows to price call options C(T,K) with strike K and
maturity T using the following equation, see Costeanu and Pirjol [2011], ∂tC(t,K) =

1

2
ϑ(t,K)2∂KKC(t,K)

C(0, K) = (X0 −K)+.
(2.3.5)

Since the Dupire local volatility model can be recovered from the Bachelier local
volatility model using a parametrization of the form

ϑ(t,Xt) = ϑDupire(t,Xt)Xt, (2.3.6)

the properties from the Dupire local volatility model are transferred to the Bache-
lier local volatility model. From a practical perspective, the Bachelier local volatil-
ity model does however allow for a more natural consideration of negative processes
and distributions which are more related to a normal distribution than a log-normal
distribution. This is a common feature when considering interest rates and there-
fore also the market prices are often quoted in terms of normal implied volatilities
and not implied Black volatilities. Here the normal implied volatility σn is the
parameter which enables the Bachelier model to reproduce the observed market
price using a Bachelier pricing formula of the form

Cφ(T,K) = (X0 −K) Φ(dn) + σn
√
Tφ(dn)

with

dn =
X0 −K
σn
√
T − t0

,

and functions Φ(·) and φ(·) denoting the normal CDF and PDF respectively. Here
Cφ(T,K) denotes the call price with strike K and maturity T under the Bachelier
model. As demonstrated in Costeanu and Pirjol [2011] it is then also possible to
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express (2.3.5) in terms of implied normal volatilities, enabling a direct calibration
of the local volatility function using market data and an expression of the form

ϑ(t,K) =
σ2
n(t, y) + t∂tσ

2
n(t, y)(

1− y
σn(t,y)

∂yσn(t, y)
)2

+ tσn(t, y)∂yyσn(t, y)
. (2.3.7)

Since our focus lies in the modelling of interest rates, we use the Bachelier local
volatility model when referring to local volatility models. Due to the close associa-
tion between the expression ‘local volatility’ and the Dupire local volatility model,
we also denote the local volatility function of the Bachelier local volatility model
as the projected volatility function.

While local volatility models are able to perfectly replicate the observed market
implied volatility smiles, they fall short when considering the dynamics implied by
the models. In addition also the inter- and extrapolation qualities for strikes out-
side the discrete set of market points are not optimal. Since these forward implied
volatilities are vital for more exotic assets, a better modelling of the dynamics is
desired. Therefore, local volatility models are a common way to reference market
data instead of modelling a fully dynamical behaviour. During our work we follow
this practice and use the Bachelier local volatility model as a mean to characterize
market data. To further investigate the modelling of financial markets, we con-
tinue with stochastic volatility models providing a first compromise between the
fit to market smiles as well as the dynamics of the forward implied volatilities.

2.3.3 Stochastic Volatility Models

Stochastic volatility models arise when moving from a one-dimensional set-up to
a framework where two-dimensions are modelled. In this framework the volatility
is modelled using its own stochastic dynamics. This allows to better capture the
observed changes in volatilities and model observed market smile dynamics. While
a general consideration of two dimensional Itô process is possible, using e.g. the
Kolmogorov equations of Section 2.1.3, stochastic volatility models exhibit a large
heterogeneity in their design, practical applicability and available properties. To
demonstrate this behaviour and the resulting advantages and challenges, we focus
in this section on explicit parametrizations for the stochastic volatility models.
This results in famous models such as the Heston model, the SABR model or the
ZABR model. We come back to the general framework in Chapter 3 where we
discuss a general unifying approach to model stochastic volatility models. To start
this section, we begin with the Heston model of Heston [1993].
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2.3.3.1 The Heston Model

The Heston model due to Heston [1993] can be seen as a natural extension of the
Black-Scholes-Merton model into a stochastic volatility framework, respectively a
stochastic variance framework. In the original Heston model we consider a price
process Xt = (St, vt)

> characterized by the two-dimensional Itô process

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt

with coefficients

µ(t,Xt) =

(
µSt

κ(θ − vt)

)
and σ(t,Xt) =

(√
vtSt 0

ρν
√
vt

√
1− ρ2ν

√
vt

)
and initial valueX0 = (S0, α)>. We simplify the notation for these two-dimensional
Itô processes and equivalently denote these dynamics through the expression

dSt = µSt dt+
√
vtSt dW

(1)
t , S0 = S0,

dvt = κ(θ − vt) dt+ ν
√
vt dW

(2)
t , v0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(2.3.8)

Note that this expression is formulated under the original measure Q where St
models the price process and vt the variance. In comparison to the Black-Scholes-
Merton model, no additional risk-free process βt is modelled, allowing an applica-
tion towards interest rates. As seen in (2.3.1), the inclusion of a process βt can be
performed through an adjustment of the drift coefficient µ. Having an application
towards interest rates in mind, we will use this convention for all remaining mod-
els in this thesis and do not include any deterministic risk-free processes into our
financial market models.

In comparison to the Black-Scholes-Merton model, under these dynamics it is not
possible to explicitly deduce an expression for the price process. As demonstrated
in Heston [1993] it is however possible to use the Kolmogorov equations, see Section
2.1.3, to deduce a solvable PDE for the characteristic function of the logarithm of
the price process. With this, the value of a call option with strike K and maturity
T can still be expressed in a semi-analytical formula of the form

V call
t = StP1(ln(St), vt, t; ln(K))−Ke−µ(T−t)P2(ln(St), vt, t; ln(K))

with

Pj(x, v, T ; ln(K)) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iu ln(K)fj(x, v, T ;u)

iu

]
du
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and the characteristic functions

fj(x, v, T ;u) = eiux+Cj(T−t;u)+Dj(T−t;u)v

given by

Cj(τ ;u) = µuiτ +
κθ

ν2

(
(bj − ρνui + dj)τ − 2 ln

(1− gjedjτ

1− gj

))
,

Dj(τ ;u) =
bj − ρνui + dj

ν2

( 1− edjτ

1− gjedjτ
)
,

gj =
bj − ρνui + dj
bj − ρνui− dj

,

dj =
√

(ρνui− bj)2 − ν2(2ajui− u2),

aj = 1{j=1}
1

2
− 1{j=2}

1

2
,

bj = κ− 1{j=1}ρν.

We observe that the valuation of call options is much more advanced compared
to Section 2.3.1. It is however still possible to derive a semi-analytical expression.
Considering the complex integration necessary to evaluate the integrals, additional
challenges in a practical numerical implementation may appear, see Albrecher et al.
[2006]. The more realistic modelling of the volatility through its own dynamics still
out-weighs these drawbacks and being able to deduce semi-analytical expressions
has to be seen as an advantage compared to other approaches. Therefore, the
Heston model has become one of the most prominent financial market models and
a lot of research has been done to improve and extend this model. This includes the
numerical implementation using various methods to evaluate the complex integral,
Lord and Kahl [2010], solving the underlying PDEs directly, In ’t Hout and Foulon
[2010], or the simulation of paths, Staunton [2007], Chan and Joshi [2010]. For
further references, different approaches and possible numerical implementations
we also refer to the book of Rouah [2013], where an extensive study of the Heston
model is performed. Furthermore, based on the Heston model, various model
extensions have been researched. To mention a few extensions include stochastic
interest rates, Fang and Janssens [2007], Grzelak and Oosterlee [2011], Kammeyer
and Kienitz [2012a,b,c], or additional jump processes resulting in the Bates model,
Bates [1996]. We do not dive deeper into the various model extensions and instead
introduce a model often used as a reference model throughout our further studies.
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2.3.3.2 The SABR Model

The SABR model of Hagan et al. [2002] is defined through the two-dimensional
Itô process given by the dynamics

dFt = vtF
β
t dW

(1)
t , F0 = f,

dvt = νvt dW
(2)
t , v0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(2.3.9)

The model belongs to the class of stochastic volatility models and, in comparison
to the Heston model, the SABR model is often used as a reference model when
considering interest rates such as forward or swap rates, under a measure where the
rate is a local martingale. Thus, no drift term is included in the forward process Ft
of (2.3.9). One of the reasons why the SABR model became famous are its implied
volatility formulas, see Hagan et al. [2002], allowing to directly approximate the
implied Black volatilities as

σB(t,K) ≈ α

(
(fK)

1−β
2

(
1 +

(1− β)2

24
ln
( f
K

)2

+
(1− β)4

1920
ln
( f
K

)4))−1
z

x(z)

∗
(

1 +
((1− β)2

24

α2

(fK)1−β +
1

4

ρβνα

(fK)
1−β
2

+
2− 3ρ2

24
ν2
)
T

)
with

z =
ν

α
(fK)

1−β
2 ln

( f
K

)
x(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

This provides a fast and easy to implement methodology to price call options in
the SABR model while at the same time having modelled an underlying stochastic
behaviour of the volatility. One of the drawbacks of the original implied volatility
formula was the possibility of arbitrage opportunities, visible through a negative
probability density function implied through the implied volatility formula. This
has been addressed by Hagan et al. [2014] and various adjustments to this formula
have been applied. As in the case of the Heston model, the SABR model has
been extensively studied and further developed. Including possible negative rates
in Antonov et al. [2015b,a] or different approaches for evaluation and the numer-
ical implementation, see Balland and Tran [2013], Le Floc’h and Kennedy [2017],
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Kienitz et al. [2017], McGhee [2021]. In particular, the methodology applied in Ha-
gan et al. [2014] was also applied to certain extensions of the SABR model as well
as the Heston model, see Hagan et al. [2018a, 2020b]. These extensions motivate
us to derive similar results regarding the implied volatility formulas for a general
framework of financial market models, allowing more flexibility when choosing the
model. One class of models we are particularly interested in, are models of the
ZABR-type.

2.3.3.3 The ZABR Model

The ZABR model is an extension of the SABR model introduced by Andreasen
and Huge [2011b] and allows for more flexibility in the volatility dynamics by
introducing an additional parameter γ. The dynamics of the ZABR model are
given through the SDE


dFt = vtF

β
t dW

(1)
t , F0 = f,

dvt = νvγt dW
(2)
t , v0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(2.3.10)

As demonstrated in Andreasen and Huge [2011b] it is possible to derive a local
volatility function ϑ defining a local volatility model in accordance to Section
2.3.2 to approximate the ZABR model. This in turn allows the pricing of call
options C(T,K) with strike K and maturity T using the methodologies described
in Section 2.3.2

In comparison to the SABR model this provides an advantage when calibrating
the model parameters to observed market data and therefore allowing a better
pricing of more advanced products such as CMS spreads. On the other hand, the
additional flexibility also makes the model set-up more advanced and there are no
explicit formulas available as in the case of the SABR model. This will be one of
the driving factors motivating our research and we demonstrate in Chapter 3 how
it is possible to derive implied volatility formulas similar to that of Section 2.3.3.2.
Furthermore, in Chapter 3 we introduce new model variants closely related to the
ZABR model. Therefore, we do not dive deeper into the existing model specifica-
tions at this point and instead move on to introduce a model class combining the
properties of local volatility and stochastic volatility models.
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2.3.4 Stochastic Local Volatility Models

Considering the previous model examples we have introduced two different classes
of models providing their own advantages and properties. Local volatility mod-
els provide the means to perfectly replicate the observed market implied volatility
smiles, do however fall short in modelling the dynamics of forward implied volatili-
ties. On the other hand, stochastic volatility models provide an adequate approach
to model these dynamics, are however, due to their parametric form, not able to
capture the observed market implied volatilities perfectly. To provide a model
approach which satisfies both properties, stochastic local volatility models are of-
ten the selected choice. The idea behind this class of models is to combine both
approaches and use the parametric stochastic volatility model to drive the dy-
namics and include a non-parametric local volatility function to perfectly replicate
the observed market implied volatility smiles. The non-parametric component
is captured in a leverage function σslv(·, ·) which is introduced into the equation
characterizing the stock or forward process. Taking for example the Heston model
of Section 2.3.3.1 without a drift term, the extension towards a stochastic local
volatility model would yield a model of the form

dSt = σslv(t, St)
√
vtSt dW

(1)
t , S0 = S0,

dvt = κ(θ − vt) dt+ ν
√
vt dW

(2)
t , v0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(2.3.11)

Due to the additional dependencies on the process St, introduced in the leverage
function, the pricing formulas of Section 2.3.3.1 are not applicable any more and
more computational demanding methodologies have to be applied. Such methods
are based on PDE or Monte Carlo methods, see Section 2.5. In particular, one of
the major challenges when working with stochastic local volatility models is the
calibration of the leverage function. While in a classical local volatility model, the
local volatility function may be derived directly from market data, as seen in e.g.
(2.3.7), this is not applicable any more when the additional stochastic component
is included. Hence, the computation of prices and the calibration of the lever-
age function are very often intervened and performed simultaneously. Using PDE
or Monte Carlo methods this results in an approach where in each computation
step a price computation is performed and the leverage function is then specified
to fit the prices to the observed market data. These techniques can be found in
Ren et al. [2007], Saporito et al. [2019], Van der Stoep et al. [2014], Guyon and
Henry-Labordère [2012] or Muguruza [2019]. We dive deeper into the theory of
stochastic local volatility models in Chapter 5 where we derive a new model ap-
proach allowing to separate the calibration procedure from the price computation.
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This approach builds and extends the results derived in Chapters 3 and 4, follow-
ing the natural model extensions presented in this section. This separation of the
calibration algorithm then allows to ease the computational demand coming from
a simultaneous procedure. While our work is concerned with models which fit
into the general context of stochastic local volatility models, including stochastic
volatility models as a special case, there are also other possibilities available. To
conclude this section, we provide a short outline of possible alternatives which are
commonly found in practice.

2.3.5 Alternative Model Types

To provide a general overview we shortly outline a few alternative approaches.
This list is non exhaustive and should only provide a general idea how alternatives
may look like. We cover jump-diffusion models, rough volatility models as well as
market models.

2.3.5.1 Jump-Diffusion Models

Jump-diffusion models provide a natural extension when the observed trajectories
include discontinuities. Instead of Itô processes as in Definition 2.1.2, processes
with additional jump components are considered. The jumps are modelled through
a compound Poisson process. The results are stochastic paths including disconti-
nuities. For the general theory regarding these types of models we refer to Kou
[2002], Matsuda [2004], Tankov and Voltchkova [2009], Wang [2013]. For an ex-
plicit example we also refer to the Bates model of Bates [1996] which allows to
extend the Heston model of Section 2.3.3.1 to the class of jump-diffusion models
while still allowing the semi-analytical pricing using characteristic functions.

2.3.5.2 Rough Volatility Models

The second class of models we want to mention are rough volatility models,
Gatheral et al. [2018], which have recently gained a lot of popularity. Instead of
Brownian motions being the main source of randomness in the underlying stochas-
tic behaviour, fractional Brownian motions are considered. This introduces trajec-
tories which exhibit a smaller degree of continuity compared to the trajectories of
Brownian motions, see Decreusefond and Üstünel [1999], Alòs et al. [2000]. These
new trajectories look in some sense ‘rougher’, explaining the name of this model
class. These rougher trajectories are able to better explain the observed behaviour
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for the volatility and therefore allow to construct models which are capable to si-
multaneously fit options on the stock price as well as options on the volatility, see
Gatheral et al. [2020]. On the other hand, however, a fractional Brownian motion
is not Markovian any more and many classical computational techniques are not
applicable. Therefore, rough volatility models are being extensively studied and
we refer to Guerreiro and Guerra [2021], Gatheral [2021] for further details.

2.3.5.3 Market Models

Finally, we also want to mention the class of market models. While these types
of models do not directly use different mathematical foundations compared to e.g.
stochastic volatility models, the perspective in modelling differs. In market models
a multitude of different rates or processes are modelled simultaneously. While each
individual process may be modelled using a stochastic volatility model, additional
challenges appear when considering a multitude of different processes simultaneous,
which may all be correlated with each other. Due to the large amount of available
degrees of freedom, these type of models are very flexible and accurate. On the
other hand however, the calibration and parametrization is also more demanding,
since much more data is necessary to determine all relevant parameters. For an
extensive discussion of these models we refer to Brace et al. [1997], Brigo and
Mercurio [2006], Andersen and Piterbarg [2010b]. This concludes our summary of
prominent financial market models at this point and we continue by introducing
the techniques used in our analysis.

2.4 Perturbation Theory

In this section, we provide an introduction into singular perturbation techniques
and outline the applicability to our research. Since a full discussion of this topic
is far beyond the scope of this thesis, we refer to Kevorkian and Cole [1996],
Hunter [2004], Verhulst [2005], Holmes [2013], for a more thorough discussion.
To illustrate the relevant principles, we focus on explicit examples and restrict
the general framework to the one-dimensional real space. We start by discussing
general perturbation theory, consider singular perturbation theory afterwards and
conclude by outlining the application to our work.
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2.4.1 General Perturbation Problems

As described in Hunter [2004] perturbation problems can be very generally char-
acterized as problems of the form

P ε(x) = 0 (2.4.1)

which depend on a small, real-valued parameter ε. This parameter ε can be seen
as a perturbation of the unperturbated problem where ε = 0. The unperturbated
problem usually provides a simplified version of the original problem (2.4.1) and
may even be explicitly solvable. As summarized in Hunter [2004] ‘the aim of
perturbation theory is to determine the behaviour of the solution x = xε as ε→ 0’.
To achieve this goal, we derive a solution which solves the problem up to a small
error where the accuracy is dependent on the parameter ε. To properly define
this solution, called the asymptotic solution, we recall the fundamental definitions
necessary for the consideration. We are referring to the definitions provided in
Hunter [2004, Chapter 2].

Definition 2.4.1.

i) Order symbols: Let f, g : R\0→ R be real valued functions. We say that
f = O(g) as ε→ 0 if there exist constants C > 0 and r > 0 such that for all
0 < ε < r we have

|f(ε)| ≤ C|g(ε)|.

Furthermore, we say that f = o(g) as ε → 0 if for every δ > 0 there is an
ε0 > 0 such that for all 0 < ε ≤ ε0 we have

|f(ε)| ≤ δ|g(ε)|.

ii) Asymptotic sequence: A sequence of functions {ϕn}n≥0 : R\0→ R is an
asymptotic sequence as ε→ 0 if for each n we have

ϕn+1 = o(ϕn) as ε→ 0.

iii) Asymptotic expansion: If f : R\0 → R is a function, {an}n≥0 a real-
valued sequence of coefficients and {ϕn}n≥0 an asymptotic sequence we call

∞∑
n=0

anϕn
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the asymptotic expansion of f with respect to {ϕn}n≥0 as ε → 0 if for all
N ≥ 0 we have

f(ε)−
N∑
n=0

anϕn(ε) = o(ϕN) as ε→ 0.

Given these definitions, we can come back to the problem (2.4.1) and slightly
modify it to derive an approximating problem of the form

P ε(xεN) = O(εN+1)

with N ∈ N. This new problem is an approximation of the original problem up
to a small error and provides us with an asymptotic solution which may be more
accessible to derive. If we can further show that this asymptotic solution xεN is
close to the original solution xε of (2.4.1), in the sense that

xε = xεN +O(εN+1),

we can use the asymptotic solution as an admissible approximation to the original
problem.

These kind of perturbation problems can be observed in a multitude of different
mathematical and practical areas. These may be algebraic equations, approxima-
tions of integral functions, or the application towards differential equations. We
refer to Kevorkian and Cole [1996], Hunter [2004], Verhulst [2005], Holmes [2013]
for a detailed discussion of these examples and the various techniques applicable
in these areas. As nicely summarized by Verhulst [2005], perturbation theory can
be seen as ‘the theory of approximating solutions of mathematical problems’. For
our work we are mainly interested in an application towards differential equations
in the category of singular perturbation problems.

2.4.2 Singular Perturbation Problems

In our framework we consider the behaviour when ε → 0. Roughly speaking, we
can now differentiate our problem by considering the unperturbated problem where
ε = 0. As stated in Hunter [2004] a ‘regular perturbation problem is one for which
the perturbed problem for small, non-zero values of ε is qualitatively the same as
the unperturbed problem for ε = 0’. This provides a rather imprecise distinction
between regular and singular perturbation problems, but should already provide
some intuition on the differences. To make the distinction precise, let us consider
the definition of regular given in Verhulst [2005, Chapter 4.1].
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Definition 2.4.2. Consider a function φε(·) defined on D ⊂ R; an asymptotic
expansion for φε(·) will be called regular if it takes the form

φε(x) =
m∑
n=0

φn(x)δn(ε) +O(δm+1)

with {δn(ε)}n≥0 being an asymptotic sequence and {φn(x)}n≥0 some coefficient
functions on D.

We will call a problem singular, if it is not regular. To demonstrate from where
this definition originates, we illustrate two examples from Verhulst [2005]. The
following examples correspond to Example 1.2 and Example 1.4 of Verhulst [2005].

Example 2.4.3. For our first example, we consider a function φε(·) on [0, 1] which
is given as the solution to the initial value problem{

∂xφ(x) + εφ(x) = cos(x)

φ(0) = 0
(2.4.2)

To solve this problem, we start with the unperturbated problem when ε = 0. In
this case the differential equation can be explicitly solved and we arrive at the
solution

φ0(x) = sin(x).

To consider the case where ε > 0, let us assume that the solution is given by a
formal asymptotic expansion, see Definition 2.4.1, of the form

φε(x) =
∞∑
n=0

φn(x)εn.

Substituting this expansion into the differential equation (2.4.2), we can set up
differential equations for the individual terms. In the case of n = 1, we can again
explicitly solve the equation to derive an expression of the form

φε(x) = sin(x) + ε(cos(x)− 1) +O(ε2).

This provides us with an asymptotic solution to order O(ε2) which is constructed
as the solution of the unperturbated problem including higher order correction
terms to take the existing perturbation into account. This asymptotic expansion
satisfies the conditions of Definition 2.4.2 and is therefore an example for a regular
perturbation problem.

44



Example 2.4.4. For the next example, let us slightly modify the differential equa-
tion of (2.4.2) and move the ε dependence to the other term. In this case we
consider a function φε(·) on [0, 1] which is given as the solution to the initial value
problem {

ε∂xφ(x) + φ(x) = cos(x)

φ(0) = 0
(2.4.3)

Even though these problems look similar at first glance, they are governed by gen-
erally different behaviours. To demonstrate this, let us again start by considering
the unperturbated problem where ε = 0. This reduces the problem to{

φ0(x) = cos(x)

φ0(0) = 0.
(2.4.4)

As we can observe, this problem does not permit a solution since the initial value
of φ0(0) = 0 is not compatible with the function φ0(x) = cos(x). In the informal
definition of regular perturbation problems, this would provide a qualitatively
different behaviour and gives the first impression that this problem is not regular
anymore. Therefore, let us proceed and again consider a formal expansion of the
form

φε(x) =
∞∑
n=0

φn(x)εn.

Inserting this into the problem yields

φ0(x)− cos(x) +
∞∑
n=1

εn
(
φn(x) + ∂xφn−1(x)

)
= 0,

which gives an asymptotic expression of the form

φε(x) = cos(x) + ε sin(x)− ε2 cos(x) +O(ε3).

Here we observe that this asymptotic expansion is again given by the solution of
the unperturbated problem, corrected through higher order terms. However, as in
the case of the unperturbated problem, this solution is again not able to satisfy the
initial condition. The problem in this example is that the order of the unpertur-
bated problem is reduced by one in comparison to the original problem. Therefore,
it is not able to capture the initial condition and properly approximate the solu-
tion in a neighbourhood of x = 0, where the desired solution is quickly varying
to satisfy the initial condition. This provides, in some sense, a singularity at this
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point which is not captured by the formal expansion. Outside the neighbourhood
of x = 0 the formal expansion does, however, provide a valid approximation. As
shown in Verhulst [2005] to deduce a proper asymptotic solution, we would need
to consider an expansion of the form

φε(x) =
∞∑
n=0

φn(x, ε)δn(ε).

Therefore, this problem does not satisfy the conditions of Definition 2.4.2 and falls
into the category of singular perturbation problems.

2.4.3 Singular Perturbation Techniques

As demonstrated in Example (2.4.3), an ansatz using a regular formal expansion
is not sufficient in all situations. Therefore, we have to consider how it is possible
to derive asymptotic solutions to perturbation problems which are singular. Many
different techniques to derive such solutions were developed, including matched
asymptotic expansions or multiple scales to mention a few prominent techniques.
Again a discussion of these approaches is far above the scope of this work and
we refer to the literature provided by Kevorkian and Cole [1996], Hunter [2004],
Verhulst [2005], Holmes [2013] for an in-depth discussion in full detail.

Instead, we provide a general understanding of how it is possible to handle the
singularity using local analysis and derive an asymptotic solution in the domain
of this singularity. For this we introduce the concept of distinguished limits, also
called significant degenerations. For the purpose of illustration, we restrict our
definition to the one-dimensional case provided in Verhulst [2005, Chapter 4.3]
and regard a boundary layer point x = x0 as the area of interest. We are well
aware that this definition may be too simple in some cases, it is however sufficient
to present the general concept.

Definition 2.4.5. Consider an operator Lε expressed in the variable x, near the
boundary layer point x0 and the operator L∗ε resulting from expressing Lε in terms
of local variables of the form

ξ =
x− x0

δ(ε)

near x0 translated through a function δ(·). L∗0 is called a significant degeneration
of Lε if, by taking the formal limit as ε→ 0 of L∗ε, the resulting operator contains
the formal limits for all other choices of local variables. Put in a different way,
a significant degeneration implies a choice of the local variable ξ such that the
corresponding operator contains as much information as possible when ε→ 0.
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This definition is quite abstract and we will provide explicit examples in this section
to make it tangible. For this let us consider the local variable ξ a little bit closer.
Suppose that near the point x0 the boundary area is characterized in size by an
order function δ(ε) characterizing the area of interest. In the limit when ε → 0
this area becomes smaller and smaller. Therefore we ‘stretch’ the variable x by a
rescaling to the local variable ξ. To continue the local analysis, we can now proceed
and apply a regular expansion in terms of the new variable to deduce an analytic
solution valid in the neighbourhood of x0. To better illustrate this approach, we
consider the example presented in Holmes [2013, Section 2.2].

Example 2.4.6. Let us consider a function φε(·) on [0, 1] which is given as the
solution to the initial value problem

ε∂xxφ(x) + 2∂xφ(x) + 2φ(x) = 0

φ(0) = 0

φ(1) = 1.

(2.4.5)

This induces an operator of the form

Lε(y(x)) =

(
ε∂xx + 2∂x + 2

)
y(x)

to characterize the problem. Applying a regular expansion of the form

φε(x) =
∞∑
n=0

φn(x)εn,

we can deduce that the term φ0(x) has to solve
∂xφ0(x) + φ0(x) = 0

φ0(0) = 0

φ0(1) = 1.

A general solution valid in the inner domain can be characterized as

φ0(x) = ae−x (2.4.6)

with some general constant a. We observe that this solution is not capable of
fitting both initial conditions as the boundary value at 0 would impose a trivial
solution. Thus, the problem falls into the category of singular perturbation prob-
lems. Therefore, to adequately approximate the behaviour at the boundary layer
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placed around x0 = 0, we require a different modelling approach. For this let us
consider the local variable

ξ =
x

δ(ε)
=

x

εα
,

where the constant α > 0 still has to be determined. This changes the operator
Lε in terms of the variable x into the operator L∗ε in terms of the variable ξ given
by

L∗ε(φ
∗(ξ)) =

(
1

ε2α−1
∂ξξ + 2

1

εα
∂ξ + 2

)
φ∗(ξ).

Depending on the value of α we have the following formal limits when ε→ 0:

i) For α < 1 we have L∗0(φ∗(ξ)) = 2∂ξφ
∗(ξ).

ii) For α = 1 we have L∗0(φ∗(ξ)) = ∂ξξφ
∗(ξ) + 2∂ξφ

∗(ξ).

iii) For α > 1 we have L∗0(φ∗(ξ)) = ∂ξξφ
∗(ξ).

To achieve the significant degeneration this yields to the choice of α = 1. Fixing
this value of α = 1, we can proceed and apply a regular extension in the new local
variable ξ of the form

φ∗ε(ξ) =
∞∑
n=0

φ∗n(ξ)εn,

and deduce that the term φ∗0(·) has to solve{
∂ξξφ

∗
0(ξ) + 2∂ξφ

∗
0(ξ) = 0

φ∗0(0) = 0.

A general solution valid in the inner domain can now be characterized as

φ∗0(ξ) = A(1− e−2ξ) (2.4.7)

with some general constant A. This provides us with a second asymptotic solution
which is valid in the neighbourhood of x = 0. In the language of Holmes [2013]
this is called the inner solution. In contrast to the outer solution (2.4.6), this
solution does not claim to be a good approximation outside the neighbourhood of
x = 0. To derive an asymptotic solution which is valid over the whole domain,
it is possible to match both solutions as further demonstrated in Holmes [2013].
For our purpose the derivation of the inner solution using the distinguished limit
is sufficient at this point.
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2.4.4 Application to our Research

Having established a general foundation of singular perturbation theory, we provide
an outline of its application to our work. In our set-up we investigate stochastic
volatility models such as the SABR or ZABR models, see section 2.3.3.2 and
2.3.3.3. From a practical perspective we observe that the volatility as well as
the volatility of volatility are in most applications rather small, consider e.g. the
numerical applications presented in Andreasen and Huge [2011b] or In ’t Hout and
Foulon [2010]. Therefore, it is reasonable to introduce the parameter ε into the
equations, capturing the small volatility regime and deduce an asymptotic solution
in this domain. For this we use the tools of singular perturbation theory presented
in Section 2.4.3. This includes various non-trivial changes of variables to analyse
a distinguished limit. Expressed in these new variables we can consider a formal
expansion and perform a leading order analysis to arrive at an explicit solution for
the first term of the expansion, a similar approach is performed in the example
of (2.4.5). Even though this explicit solution is not our desired approximation,
it allows us to deduce further information about the other coefficients and in the
end allows us to simplify our original differential equation. The details of these
derivations are presented in the sections 3.5 and 5.8.

2.5 Numerical Schemes

Having established all theoretical background, we now focus on practical applica-
bility and study how these concepts can be implemented using numerical schemes.
To motivate our approach, let us consider a one dimension local volatility model
characterized by its projected volatility function ϑ(·, ·) of the form{

dFt = ϑ(t, Ft) dWt, F0 = f. (2.5.1)

As outlined in the previous sections, one of the most important features for our
financial market models is the capacity to price instruments. Let us denote the
price of a European call option with maturity T and strike K by C(T,K). Using
the results of Section 2.1.3 we can directly derive the following partial differential
equations to compute model prices.

(i) Kolmogorov backward equation: Using the classical Kolmogorov back-
ward equation, see Section 2.1.3, we can deduce a natural representation of
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the price through a PDE of the form ∂tC(t, F) = −1

2
ϑ(t, F)2∂FFC(t, F)

C(T, F) = (F −K)+
(2.5.2)

The terminal condition is often found to be placed at time 0 and instead of
the time itself, the time to maturity is considered then. The corresponding
PDE formulation is given by ∂tC(t, F) =

1

2
ϑ(t, F)2∂FFC(t, F)

C(0, F) = (F −K)+
(2.5.3)

(ii) Kolmogorov forward equation: Using the Kolmogorov forward equation,
see Section 2.1.3, we arrive at another natural representation of the SDE
through a PDE. In contrast to the backward equation this approach does not
solve the price of the instrument directly, but instead evolves the underlying
probability density function Q(t, F) forward in time. This yields a PDE of
the form  ∂tQ(t, F) =

1

2
∂FF

[
ϑ(t, F)2Q(t, F)

]
Q(0, F) = δ(F − f)

(2.5.4)

While these two differential equations differ a lot on the first glance, they do fall
into a common model set-up, allowing for a generalized characterization of the
form

∂tU(t, F) = LU(t, F), (2.5.5)

where Ut denotes the function, e.g. the call price or the density function, and L
denotes the corresponding operator, e.g. L = 1

2
ϑ(t, F)2∂FF in the case of (2.5.3).

To solve such a PDE, finite difference methods are a commonly used strategy.
Again there is a multitude of different literature available on this topic and this
section should provide a condensed summary of the topic to introduced the relevant
numerical schemes used for our computations. We use Thomas [1995], Evans et al.
[2000], Duffy [2006], Andersen and Piterbarg [2010a] as the underlying literature
and start by considering the one-dimensional set-up with a special focus on certain
forms for the projected volatility function ϑ(·, ·). These techniques will be the
favoured approach for our studies. To allow a comparison to other techniques, we
also briefly introduce the concept of two-dimensional finite difference methods as
well as Monte Carlo techniques.
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2.5.1 One-Dimensional Finite Difference Schemes

The core idea behind finite difference schemes is to approximate the derivatives
using simpler differences on a finite numerical grid. In a practical application
there may be many possible approximations which can be made to achieve this
goal, and to derive the best possible results, the numerical set-up should always
consider the underlying problem at hand. To demonstrate the general principle
we rely on Andersen and Piterbarg [2010a, Chapter 2] in this section and we start
by considering a second-order operator of the form

LU(t, x) = µ(t, x)∂xU(t, x) +
1

2
σ2(t, x)∂xxU(t, x). (2.5.6)

This operator represents a special case of the convection-diffusion equation con-
sidered in Duffy [2006, Chapter 8] and fits into our considerations by providing a
natural connection towards the Kolmogorov backward equation through the oper-
ator given in Definition 2.1.5.

Furthermore, we now define a numerical grid {ti}0≤i≤n × {xj}0≤j≤m+1 as a dis-
cretization for a domain [0, T ]× [Fmin, Fmax]. The choice of this grid has a major
impact on the quality of the scheme and has to be carefully chosen and possibly
tailored to the problem at hand. In particular, the truncation of the domain, i.e.
an adequate choice of the bounds Fmin and Fmax, as well as the construction of the
grid points has to be taken into account. For simplicity, let us assume a uniform
grid in both dimensions with a spacing given by hx respectively ht. For a general
theory based on more advanced grids we refer to Andersen and Piterbarg [2010a,
Chapter 2.4] and the literature therein. We do not discuss the truncation of the
domain in general at this point, an explicit example of how a possible truncation is
applied is however provided in the numerical algorithm presented in Section 2.5.3.
Having defined the underlying grid, we now proceed to approximate the deriva-
tives appearing in (2.5.6) using finite differences. We use the definitions provided
in Duffy [2006].

Definition 2.5.1. Given a grid {xj}0≤j≤m+1 we define the following finite differ-
ences δx and δxx on the inner grid points {xj}1≤j≤m as approximations for the
derivatives of a function f : {xj}0≤j≤m+1 → R.

i) Centred differences:

δxf(xj) =
1

2hx

(
f(xj+1)− f(xj−1)

)
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ii) Forward differences:

δxf(xj) =
1

hx

(
f(xj+1)− f(xj)

)
iii) Backward differences:

δxf(xj) =
1

hx

(
f(xj)− f(xj−1)

)
iv) Centred second-order differences:

δxxf(xj) =
1

h2
x

(
f(xj+1)− 2f(xj) + f(xj−1)

)
Again, we observe that multiple approximations are possible and the choice of
the right definition can yield to a major improvement in performance. Using a
Taylor expansion, it is possible to show that the centred differences are second-
order approximations while the other two are only of first-order, see Duffy [2006]
or Andersen and Piterbarg [2010a, Lemma 2.2]. The better convergence property
would suggest to only use centred differences. Depending on the regularity of
the underlying function it may however be better to use other variants or even
apply different variants in different domains using e.g. upwinding techniques, see
Andersen and Piterbarg [2010a, Chapter 2.6.1], In ’t Hout and Foulon [2010],
Andreasen and Huge [2011a]. Using centred finite differences, this allows us to
construct the following second-order approximation of the operator L, see e.g.
Andersen and Piterbarg [2010a].

Definition 2.5.2. Given an operator L as in (2.5.6) as well as a discretization
grid {xj}0≤j≤m+1, we define a tri-diagonal matrix At with 1 ≤ i, j ≤ m as

(
At
)
i,j

=


li(t) if j = i− 1

ci(t) if j = i

ui(t) if j = i+ 1

0 otherwise

,

with diagonal functions

li(t) = − 1

2hx
µ(t, xi) +

1

2h2
x

σ2(t, xi)

ci(t) = − 1

h2
x

σ2(t, xi)

ui(t) =
1

2hx
µ(t, xi) +

1

2h2
x

σ2(t, xi).
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The matrix At provides a second-order approximation for the operator L in the
sense that, restricted to the inner grid {xj}1≤j≤m, we have

LU(t, xj) = AtU(t, xj) +O(h2
x).

The outer points x0 and xm+1 represent the boundaries and are governed by bound-
ary conditions captured in an additional term Ωt. These conditions can be explic-
itly given through the underlying problem in the form of a payoff function, or
can be derived from the inner grid using additional modelling assumptions. As
demonstrated in e.g. Andersen and Piterbarg [2010a, Chapter 2.2.2] using the
assumption that the function is linear in x at the boundary, the value at the point
xm+1 can be deduced as

U(t, xm+1) = 2U(t, xm)− U(t, xm−1).

In particular, it is then possible to incorporate the boundary conditions into the
matrix At by extending it adequately to be valid on the whole grid {xj}0≤j≤m+1.
We do not go into further details on boundary conditions at this point, we do,
however, stress that proper boundary conditions are crucial for a good numerical
scheme and we refer to Thomas [1995], Evans et al. [2000], Duffy [2006], Andersen
and Piterbarg [2010a]. Restricted to the full grid {xj}0≤j≤m+1, this yields an
approximation of the operator L of the form

LU(t, x) ≈ AtU(t, x) + Ωt. (2.5.7)

In our considerations, we mostly integrate the boundary conditions into the matrix
At resulting in Ωt = 0. Including a time discretization, again using finite differ-
ences, we can now state a full finite difference scheme. One of the most prominent
finite difference schemes is the θ-scheme. We present the version given in Andersen
and Piterbarg [2010a, Proposition 2.2.2].

Proposition 2.5.3. On the grid {xj}0≤j≤m+1 the solution U(ti) respectively U(ti+1)
of (2.5.5) at time ti and ti+1 is characterized through the equation

(1+ θhtAti+1
i (θ))U(ti) + θhtΩti = (1− (1− θ)htAti+1

i
)U(ti+1)− (1− θ)htΩti+1

+ ei+1
i

with time
ti+1
i (θ) = (1− θ)ti+1 + θti

and error term
ei+1
i = htO(h2

x) + 1θ 6= 1
2
O(h2

t ) +O(h3
t ).
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This scheme allows us to deduce the values of the function U(·, ·) at time ti+1

based on the values at time ti. Given an initial condition, this allows to solve the
PDE iteratively and in turn solve the corresponding initial value problem.

The scheme provides an additional degree of freedom through the parameter θ.
Some of the most prominent choices are the fully implicit scheme with θ = 1, the
fully explicit scheme with θ = 0 or the Crank-Nicolson scheme with θ = 1

2
. To

conclude this excursion on the basics of finite difference schemes, we address which
properties can be used to analyse the quality of the numerical scheme. We focus
on consistency, convergence and stability as defined in Thomas [1995].

2.5.1.1 Consistency

The first property we discuss is the consistency of the numerical scheme. This
can be seen as a property to describe if the chosen discretization is consistent
with the original problem. Considering e.g. the θ-scheme of Proposition 2.5.3, we
observe that the scheme includes some truncation error ei+1

i . This error appears
when discretizing the derivatives to apply a single time step. We call the numerical
scheme consistent, if this truncation error vanishes as the grid sizes become smaller.
This ensures that applying our discretization to the true solution of the underlying
problem is consistent with the PDE formulation and the truncation error is only
induced by the chosen discretization and not through a structural discrepancy.

2.5.1.2 Convergence

Convergence captures one of the key properties desired in a numerical scheme,
namely that the scheme is in fact approximating the true solution of the problem.
Using Thomas [1995, Definition 2.2.2] as the underlying reference, consider a time
t at which we want to deduce a solution to the underlying initial value problem.
We deduce by An,mt U(t, ·)n,m the scheme approximating LU(t, ·) on a grid with n
time steps and m+ 1 space steps. The scheme is called convergent at time t if

‖U(t, ·)n,m − U(t, ·)‖ → 0

as hx → 0 and ht → 0 for some norm ‖·‖ and a grid spacing such that (n +
1)ht → t. This states that if our approximating grid-spacing becomes smaller, the
approximating solution in fact converges to the correct solution. In comparison to
consistency, convergence considers the evolution of the solution along the time grid
and the corresponding iterative application of a single time step as described e.g.
in Proposition 2.5.3. Furthermore, it is also possible to capture the speed at which
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the scheme converges. Considering the θ-scheme as an example Andersen and
Piterbarg [2010a, Proposition 2.2.3] states that the error of the scheme compared
to the exact solution is of order

O(h2
x) + 1θ 6= 1

2
O(ht) +O(h2

t ).

This error can be computed based on the truncation error available at each time
step and the corresponding iterative accumulation along the time evolution. Hence,
we can observe that all θ-schemes are second-order convergent in space and at least
first order-order convergent in time. In the special case of the Crank-Nicolson
scheme even second-order time convergence is achieved.

2.5.1.3 Stability

Lastly, we also consider the stability of the numerical scheme. For illustration,
stability can be seen as a way to control the errors along the progression of time.
Again, considering the θ-scheme as an example, we express a single time step from
time ti+1 to ti, starting from a terminal condition, as

U(ti) = Bi+1
i U(ti+1).

Iterating this multiple times, we arrive at an expression of the form

U(tk) = Bn
kU(tn)

to evolve a solution at time tn to tk. Here Bn
k denotes the composition of the

functions available in each individual time step. We call the numerical scheme
stable if the initial respectively terminal condition is bounded and there exists a
constant C > 0 such that for all 0 ≤ k < n we have

‖Bn
k ‖ ≤ C.

In most cases, this condition is not easy to prove and other techniques have to be
used to derive equivalent results. One prominent approach is the von Neumann
analysis based on Fourier series. For further details we refer to Thomas [1995],
Evans et al. [2000], Duffy [2006], Andersen and Piterbarg [2010a]. Using these
techniques as done in e.g. Andersen and Piterbarg [2010a], it is possible to show
that the θ-scheme is always stable if θ ∈ [1

2
, 1]. This includes the implicit as well

as the Crank-Nicolson scheme. The explicit scheme, however, is only conditionally
stable, meaning that we need to impose additional conditions to guarantee the
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stability. This may impose some severe restriction on the grid size, enforcing
unnecessary large grids and increasing the computational time.

To conclude, we present a powerful result connecting all these properties with each
other. The result is called the Lax equivalence theorem and we refer to the the
version of Thomas [1995, Theorem 2.5.1]. The statement is formulated for well-
posed problems, meaning that the PDE has a unique solution that is continuously
dependent on the input data.

Theorem 2.5.4. A consistent, two level difference scheme for a well-posed linear
initial-value problem is convergent if and only if it is stable.

2.5.2 Special Local Volatility Models

Having established the foundation to the numerics behind the one-dimensional
finite difference schemes, we come back to the initial example considered in Section
2.5. As we will see in our studies performed in chapters 3-5 , it is often possible to
reduce the underlying problems we study to a form as in (2.5.1). Here the function
ϑ(·, ·) is governed by a specific underlying structure of the form

ϑ(t, F) = D(F)E(t, F). (2.5.8)

Hence, we continue by analysing the corresponding differential equations derived
for the models of Section 2.3 and establish the necessary expressions to apply a
one-dimensional finite difference scheme. Considering the SABR model of Section
2.3.3.2 it was shown in Hagan et al. [2014] that it is possible to characterize the
model using an approximation through (2.5.8) with an explicit representation of
the form

D(F) =
√
α2C(F)2

(
1 + 2bz(F) + cz(F)2

)
E(t, F) =

√
eG(t)

where the coefficients are given by

b = ρνα−1, c = ν2α−2, z(F) =

∫ F

f

1

C(u)
du,

and the function
G(t) = tρναC ′(f).
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The representation of the projected volatility function through an expression of
the form (2.5.8) has the advantage that a separation between the major part of
the space-dependence and the time-dependence is performed. In this set-up it is
rather natural to consider a transformation of the form

y(F) =

∫ F

f

1

D(u)
du (2.5.9)

to create a more space-independent variable. From a numerical perspective, this
makes it easier to generate an adequate grid in the space dimension. As demon-
strated in Hagan [2015] in the case of the SABR model, the transformation between
the variables y(·) and z(·) can be explicitly performed through the functions 1

YSABR(z) =
1

ν
log

(√
1− ρ2 + (ρ+ νzα−1)2 + ρ+ νzα−1

1 + ρ

)
(2.5.10)

ZSABR(y) =
α

ν
(sinh(νy) + ρ (cosh(νy)− 1)) . (2.5.11)

Remark 2.5.5. Notice that the characterization of the SABR model is derived as
an approximation and therefore other parametrizations of the form (2.5.8) are
possible. Considering e.g. the ZABR model of 2.3.3.3 as an example, it was shown
in Andreasen and Huge [2011b] that it is possible to characterize the ZABR model
using an approximation of the form (2.5.8) where the function E(·, ·) equals 1. In
the special case of the SABR model the representation can then again be explicitly
given by

D(F) =
√
α2C(F)2

(
1 + 2bz(F) + cz(F)2

)
.

This characterization is in line with the one of Balland and Tran [2013], but loses
accuracy due to the missing time dependencies caused by the vanishing function
G(·).

2.5.3 Efficient One-Dimensional SABR Scheme

To conclude our discussion of one-dimensional finite differences schemes, we pro-
vide the complete numerical scheme which we use when solving the SABR model
using partial differential equations. As will be demonstrated in Chapter 3, it is pos-
sible to adequately approximate a multitude of different models using the SABR
model and hence an accurate solution to the SABR model is fundamental. We
apply the numerical scheme provided in Hagan [2015] using an implementation in
accordance to Le Floc’h and Kennedy [2017] presented in the following.

1To align the notation to the rest of this thesis, the notation for the functions is switched
compared to the original notation in Hagan [2015].
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2.5.3.1 PDE Formulation

We consider solving the forward equation (2.5.4) to compute the underlying prob-
ability density function Q(t, F) of the SABR model. Here the function ϑ(·, ·)
appearing in (2.5.4) is characterized by (2.5.8) and the explicit functions of Sec-
tion 2.5.2. As suggested by Hagan [2015], it is more advantageous to not directly
solve (2.5.4) and instead consider the transformation (2.5.9) and express the PDE
in terms of the variable y. We define the new density function θ(·, ·) in the variable
y as

θ(t, y) =
1

h
Q(t, FSABR(y))D(FSABR(y)),

with FSABR(·) denoting the inverse transformation from y back to the original
variable F. We then arrive at the transformed PDE ∂tθ(t, y) =

1

2
∂y

[
1

D(FSABR(y))
∂y

[
ϑ(t, FSABR(y))θ(t, y)

]]
θ(0, y) = δ(y).

(2.5.12)

This is the initial value problem to which we apply the one-dimensional finite
difference scheme.

2.5.3.2 Grid Construction

The first step in the application of a finite difference scheme, lies in the construction
of a discretization grid which allows to adequately capture the important features of
the initial value problem. Considering the discretization along the time dimension,
this can usually be achieved using an equidistant grid starting at the initial time
and running to the largest time of interest. Using this methodology, we generate
the corresponding equidistant time grid {ti}0≤i≤n as a discretization of the domain
[0, T ].

For the space domain, our grid construction becomes slightly more advanced. Con-
sidering the initial variable F of (2.5.4), the choice of an adequate domain to dis-
cretize can become difficult since the domain can heavily depend on the underlying
model parameters. Therefore, we construct our grid on the transformed variable y
which is much more space-independent then the original variable F. We construct
an equidistant grid where the boundaries of the domain are derived using a given
number of standard deviations. We apply some adjustments to this methodology
to incorporate specified model barriers and extend the domain depending on the
considered strikes. Further, the grid is constructed in a way that the initial forward
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value f is included as the middle point between two grid points. Following the
approach of Hagan [2015] we continue to work with the middle points of the grid
to conserve the first moments of the distribution. The details of the algorithm are
presented in Algorithm 1 and follow the implementation of Le Floc’h and Kennedy
[2017]. In particular, the grid construction in the variable y also has the advan-
tage, that the transformed grid in the variable F is not equidistant any more and
includes more points in the areas of interest where more accuracy is needed. The
result of this construction is the original grid {ỹj}1≤j≤M , the grid {yj}1≤j≤M de-
noting the middle points and the transformed grid middle points {Fj}1≤j≤M in the
original variable F.

Algorithm 1: Adapted grid generation in accordance to Le Floc’h and Kennedy
[2017].
Data: Strikes {Ki}1≤i≤M̃ , Barrier d, Maturity T , Number of standard deviations

nstd
Result: Space grid {Fj}1≤j≤M
Set ymin = −nstd

√
T , ymax = −ymin ; // Initial domain

Adapt ymin = min{ymin, YSABR(z(−d))} ; // Adapt domain to the barrier
Adapt ymax = max{ymax, YSABR(z(maxi≤M̃ Ki))} ; // Adapt domain to the
strikes
Set h0 = 1

M−2
(ymax − ymin) ; // Initial grid spacing

Set j0 =
⌊
−ymin(M−2)
ymax−ymin

⌋
; // Grid index related to the initial forward f

Set h = −ymin
j0− 1

2

; // Grid spacing to place f in the middle of the

interval
Generate {yj}1≤j≤M ; // Equidistant grid from ymin with step size h
Adapt yj = yj − 1

2
h ; // Shift the grid to consider the middle points

Transform {Fj}1≤j≤M ; // Transform to original variable
Adapt F1 = 2FSABR(ymin)− F2, FM = 2FSABR(ymax)− FM−1 ; // Adapt
boundaries

2.5.3.3 Space Discretization

Following the moment preserving scheme of Hagan [2015], we define the densities
in an interval [ỹj, ỹj+1] of the original grid as

θj+1(t) =
1

h

∫ ỹj+1

ỹj

θ(t, y) dy.

59



Furthermore, we define a tri-diagonal coefficient matrix At similar to that of Def-
inition 2.5.2 through its diagonal functions given by

li(t) =
1

2h

1

Fi − Fi−1

ϑ(t, Fi−1),

ci(t) = − 1

2h

(
1

Fi+1 − Fi
+

1

Fi − Fi−1

)
ϑ(t, Fi),

ui(t) =
1

2h

1

Fi+1 − Fi
ϑ(t, Fi+1).

Using this coefficient matrix evaluated on the grid {Fj}1≤j≤M along with the in-
terval densities θ(t) = {θj(t)}1≤j≤M , we arrive at a space discretization, see Hagan
[2015], Le Floc’h and Kennedy [2017], of the form

∂tθ(t) = Atθ(t). (2.5.13)

2.5.3.4 Time Discretization

Given the space discretization of (2.5.13) only a time discretization is missing to
establish a full finite difference scheme. For this we apply the Lawson-Swayne
scheme of Lawson and Swayne [1977]. The scheme uses two fully implicit dis-
cretization steps and an additional extrapolation of those. This makes the scheme
second order and unconditionally stable. The algorithm for a single time step at
a fixed grid point is provided in Algorithm 2. For possible alternatives as well
as a discussion of the advantages and disadvantages, we refer to Le Floc’h and
Kennedy [2017].

Algorithm 2: Lawson Swayne scheme in accordance to Lawson and Swayne
[1977], Le Floc’h and Kennedy [2017].
Data: Initial value θj(tn, yj), step size δ, space discretization matrix At,j for the

grid point yj
Result: Value θj(tn+1, yj) at time tn+1

Set b = 1−
√

2
2

; // Scheme specific coefficient
Set δb = δb ; // Step size for the impicit steps
Set θj(tn + δb) =

(
1− δbAtn+δb,j

)−1
θj(tn) ; // First implicit step

Set θj(tn + 2δb) =
(
1− δbAtn+2δb,j

)−1
θj(tn + δb) ; // Second implicit step

Set θj(tn+1) = (
√

2 + 1)θj(tn + 2δb)−
√

2θj(tn + δb) ; // Extrapolation step
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2.5.3.5 Boundaries

Given the results above, we have established a one-dimensional finite difference
scheme for the interior of the domain. What is missing is the behaviour at the
boundaries. The initial condition is given, hence we focus on the boundaries in-
duced by the space domain. Following Hagan [2015], we consider accumulating
boundaries with a focus on the conservation of the total mass. This has the ad-
vantage that, together with the accumulated boundaries, the computed probability
density function always equals 1 over the selected domain. The characterization
of these accumulated probabilities, denoted by QL and QR, is given by

∂tQ
L(t) = lim

F↓Fmin
∂F

[
1

2
ϑ(t, F)2Q(t, F)

]
, QL(0) = 0

and

∂tQ
R(t) = − lim

F↑Fmax
∂F

[
1

2
ϑ(t, F)2Q(t, F)

]
, QR(0) = 0.

Placing the boundaries at the grid points y1 and yM we impose the condition that
the probability density function approaches 0 when it approaches the boundary.
Hence following Hagan [2015], Le Floc’h and Kennedy [2017] we arrive at the
boundary conditions

ϑ(t, F1)θ1(t) = −ϑ(t, F2)θ2(t),

ϑ(t, FM)θM(t) = −ϑ(t, FM−1)θM−1(t),

∂tQ
L(t) =

1

F2 − F1

ϑ(t, F2)θ2(t),

∂tQ
R(t) =

1

FM − FM−1

ϑ(t, FM−1)θM−1(t).

Saving the values of QL(t) and QR(t) alongside those of θ(t), the matrix At can
be adjusted to incorporate all boundary conditions. The time discretization using
the Lawson-Swayne scheme can then be performed as before.

2.5.3.6 Call Prices

Using the outlined scheme, we can compute the values QL(T ), QR(T ) and θ(T )
to describe our probability distribution for a given time T . We highlight that the
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values θ(T ) correspond to a kind of average probability density observed on the
intervals and to derive the whole distribution, the different interval sizes have to
be considered as well. To conclude this section, we briefly discuss how we can use
these computed values to evaluate option prices such as a European call option
with maturity T and strike K. Denoting by k the index such that

ymin +

(
k − 1− 1

2

)
h < y(K) ≤ ymin +

(
k − 1

2

)
h

the value of the call is given by

Vcall =

∫ ymin+(k− 1
2

)h

y(K)

(
FSABR(y)−K

)+
θ(T, y) dy

+
M−1∑
j=k+1

(
FSABR(ymin + jh− 1

2
h)−K

)+

hθj(T )

+
(
FSABR(ymax)−K

)+
QR(T ).

The first term needs some additional approximation to evaluate the distribution
within a grid interval. This can be done in various ways and we choose the sub-
gridscale model given in Hagan [2015, Section 2.4.1].

2.5.4 Other Numerical Methods

While we mostly aim to derive an approximating PDE formulation which can be
solved using a one-dimensional finite difference scheme, there are a multitude of
other numerical methods available to consider the models of Section 2.3. In partic-
ular, Monte Carlo methods are a flexible and commonly used technique to evaluate
SDEs. We use these techniques to put our results into context by generating a
benchmark using a Monte Carlo approach. Before introducing the general concept
of these techniques, we provide further insight on more advanced numerical PDE
methods.

2.5.4.1 Two-Dimensional Finite Difference Schemes

Considering the models of Section 2.3, most are two-dimensional. Hence, applying
the Kolmogorov equations of Section 2.1.3 yields a two-dimensional PDE. This
two-dimensional PDE can also be solved directly using two-dimensional finite dif-
ference schemes. To introduce the general idea we consider a finite difference
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approximation similar to that of (2.5.7) of the form

LU(t, x) ≈ AtU(t, x)

where the operator L consists of derivatives based on two variables and their
mixed terms. Assuming no mixed terms for the moment, which corresponds to a
correlation of 0 in the models of Section 2.3, the so called Alternating Direction
Implicit (ADI) method can be used to solve the problem. Using Andersen and
Piterbarg [2010a] as the underlying reference the idea behind the technique is
to split the original operator into two separate operators depending only on one
variable each. For the matrix At this yields a decomposition of the form

At = A
(1)
t + A

(2)
t ,

where the matrices A(i)
t only depend on a single variable. Considering a Crank-

Nicolson scheme this then yields to an approximation step of the form(
1− 1

2
ht

(
A

(1)
t + A

(2)
t

))
≈
(
1− 1

2
htA

(1)
t

)(
1− 1

2
htA

(2)
t

)
.

Since the variables are now applied successively, each single application can be
handled as in the one-dimensional case. In the case where mixed terms are avail-
able, such a simple decomposition is not possible any more and advanced ADI
schemes have to be applied. For further details we refer to In ’t Hout and Foulon
[2010] where an extensive study of ADI schemes is performed in the context of the
Heston model.

2.5.4.2 Monte Carlo Methods

While the finite difference schemes produce valid and accurate results, they are
also governed by some restrictions. First of all, starting with an SDE, we have to
derive a suitable PDE to be able to apply the proposed finite difference schemes.
Secondly, as demonstrated in e.g. Andersen and Piterbarg [2010a] the computa-
tional complexity of an ADI scheme is exponentially increasing depending on the
dimension of the underlying problem. To overcome these restrictions, Monte Carlo
methods provide a possible solution. In this section we provide a general intuition
how the techniques work and introduce one of the simplest numerical Monte Carlo
schemes available, the Euler scheme. For an extensive discussion we refer to Jäckel
[2002], Glasserman [2004], Andersen and Piterbarg [2010a].
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The principle behind Monte Carlo methods, is to combine the strong law of large
numbers, see e.g. Durrett [2010, Theorem 2.4.1], with a discretization procedure
to sample variables from the underlying distribution based on the underlying SDE.
To formalize this principle, we consider a general Itô processXt given by an SDE as
defined in Definition 2.1.2. Considering the application in a financial framework,
Proposition 2.2.8 provides us with the pricing formula for contingent claims. Here
the price is expressed as the expectation of the discounted contingent claim, which
is dependent on the underlying Itô process, and we can use the strong law of large
numbers to approximate the expectation as

EQD
[
VT
DT

∣∣Ft] ≈ 1

M

M∑
i=1

VT,i
DT,i

.

Here M denotes the number of paths used for the approximation. By the strong
law of large numbers we know that the right side of the equation converges to the
left side and with a suitable large M , the approximation error becomes as small as
desired. The challenges of the technique now lie in an adequate generation of the
samples VT,i

DT,i
under the measure QD conditioned on Ft. Without loss of generality

we can assume that these samples are given through a functional form depending
on XT . This transforms the problem to generate samples of XT . In some cases the
distribution may be explicitly computable and a direct sampling approach can be
considered. In the general formulation however, we only have the underlying SDE
as a source of information to estimate the process behaviour. To generate these
random samples, we apply the Euler scheme. The idea of the scheme is to consider
the SDE of (2.1.2) for a small time step from time ti to ti+ δ and approximate the
coefficients using the time ti values. This yields to an approximation of the form

Xti+δ = Xti +

∫ ti+δ

ti

µ(s,Xs) ds+

∫ ti+δ

ti

σ(s,Xs) dWs

≈ Xti + µ(ti, Xti)δ + σ(ti, Xti)(Wti+δ −Wti).

The last term can now be explicitly sampled using Gaussian random variables.
For the sampling of random numbers we refer to Glasserman [2004, Chapter 2]
where a detailed exposition is provided. Given a time discretization, the scheme
allows to sample the steps until time T and in turn provides the sample values for
XT . Since the scheme is one of the simplest possible Monte Carlo approximation
schemes, there are many other possibilities and improvements available. We refer
to Jäckel [2002], Glasserman [2004], Andersen and Piterbarg [2010a] for a complete
exposition.

This concludes our summary of the necessary foundations and we continue with
our research on generalized stochastic volatility models in the next chapter.
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3 Effective Stochastic Volatility

In this chapter we study generalized stochastic volatility models and derive a
one-dimensional arbitrage free approximation technique which yields to implied
volatility formulas in correspondence to the results presented in Section 2.3.3.2.

To provide some insight into our motivation, let us reconsider the financial market
model from a practical perspective. As outlined in Section 2.3.3.2, the implied
Black volatility provides a standard way to quote prices of European call op-
tions observed on the market. Hence, if we would chose the Black-Scholes-Merton
model of Section 2.3.1 as our underlying financial market model, we would ob-
serve a constant implied volatility independent of strike or maturity. Looking at
actual observable market quotes, however, we can observe that the implied volatil-
ity exhibits much more involved structures resulting in various smile and skew
behaviours. This discrepancy shows, that more involved financial market models
have to be used to adequately capture the observed market behaviour, motivat-
ing the introduction of the stochastic volatility (SV) models presented in sections
2.3.3.1-2.3.3.3.

Indeed, we can observe that through the explicit stochastic modelling of the volatil-
ity process, also the implied volatility under SV models can take a variety of differ-
ent shapes allowing to capture the desired smile and skew behaviour. This explains
the popularity of SV models in practice. Considering the available possibilities for
SV models, a large heterogeneity is present. This can already be observed for the
three presented models in Section 2.3. Using an SABR model, we can directly use
an explicit implied volatility formula resulting in a very easy implementation from
a practical side. When calibrating the model to market data, we would, however,
prefer as much control as possible to increase the accuracy of our model. Hence,
the ZABR model is preferred, resulting in a numerical PDE evaluation to com-
pute the desired prices. Thus, to switch from an SABR to a ZABR model, we also
have to consider a completely different implementation. Taking the Heston model
into the consideration, we get another additional implementation through Fourier
methods.
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Therefore, our motivation for this piece of research is twofold. First, we aim to
provide a generalized, arbitrage free, computational framework applicable to a
large class of SV models, covering the presented examples. To achieve this, we
work with a generalized stochastic volatility model to deduce our approximation
techniques. Second, we aim to derive explicit approximation formulas for this
generalized framework which are similar to that in Section 2.3.3.2. This allows
to easily exchange the desired financial market model. In addition this frame-
work also provides the possibility to actively choose between accuracy and ease of
implementation due to the availability of explicit approximation formulas.

The approximation technique is set up to cover a large class of stochastic volatility
models which, in particular, also includes the ZABR model, providing a reference
example throughout this research. This extends the results of Section 2.3.3.3 by
establishing an explicit approximation formula for the implied volatility and in turn
allowing a very easy way to implement the model. Due to the generality in which
the technique is derived, this also gives rise to new types of stochastic volatility
models such as the free-ZABR model or the mean-reverting ZABR model. The
technique is based on results of Hagan et al. [2002, 2014, 2015, 2016] and uses
singular perturbation techniques to analyse the induced Kolmogorov equations.
The core idea behind this analysis can be summarized through the following steps.

1) Assuming a small volatility regime expressed through small model parameter
values, we introduce a perturbation parameter ε and aim to approximate the
system up to order O(ε2).

2) To achieve this, we analyse certain Kolmogorov backward equations using
singular perturbation techniques involving the following steps.

i) We apply various variable transformations to simplify the equation in
order to make the leading order term emerge.

ii) We perform a leading order analysis which yields to an explicitly solv-
able heat equation.

iii) Using the additional information from the leading order analysis, we can
approximate the system by dropping terms of order O(ε3) and higher.

3) Considering the Kolmogorov forward equation together with the already de-
rived approximations gives rise to a one-dimensional differential equation to
characterize the marginal probability density induced by the model under
consideration.

Using this approximating equation for the marginal probability density function
to characterize the generalized stochastic volatility model, the model can further
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be projected to an SABR model preserving the approximation order of O(ε2). The
projected SABR model can then be solved using the algorithm presented in Section
2.5.3 or using the various implied volatility formulas available for the model.

The rest of this chapter presents the publication Felpel et al. [2021] starting from
its introduction. This is an Accepted/Original Manuscript of an article published
by Taylor & Francis Group in Quantitative Finance on 23.10.2020, available online:
https://wwww.tandfonline.com/doi/abs/10.1080/14697688.2020.1814396.

Before starting with the presentation of Felpel et al. [2021], we provide some ad-
ditional remarks to embed the results into the context of this thesis.

Remark 3.0.1. The publication is slightly modified to fit into a unified presentation
in the context of this thesis. The content remains unchanged, the format and the
notation are, however, slightly adjusted. Most notably, the notation of the forward
process is changed compared to Felpel et al. [2021]. In Felpel et al. [2021] we denote
the forward process as F̃t whereas here, we use the notation Ft. This adjustment
is performed to provide a consistent notation towards the models presented in
chapters 4 and 5.

Remark 3.0.2. In the context of the paper Felpel et al. [2021], we sometimes refer to
the local volatility function, see e.g Section 3.2. To stay as close as possible to the
original publication, we keep this notation. In the context of this thesis, however,
this should be understood as the projected volatility function. A local volatility
function suggests a local volatility setting in accordance to Dupire [1994], whereas
we use a local volatility function for a Bachelier model as depicted in Section 2.3.2.

Remark 3.0.3. In Figure 3.1 as well as Figure 3.6, we present computed distribu-
tions. For a better understanding, we want to highlight, that these graphs have
to be understood in terms of the scheme presented in Section 2.5.3 depicting the
transformed average densities observed on the corresponding intervals.

3.1 Introduction

This paper is concerned with modelling the implied volatility surface for an un-
derlying asset. In our exposition, we consider the dynamics of the forward rate,
which simplifies the SDEs considered by ensuring that the asset has no drift. The
implied volatility surface is defined in relation to a reference valuation model with
an analytic solution for vanilla European call and put options. For the underlying
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asset, F , strike value, K, and maturity time, T , the contract pays

VT = max(FT −K, 0) for a call, and
VT = max(K − FT , 0) for a put.

Given the maturity, strike and current (time-t0) price of the underlying, f , the
reference formula used to compute the current price, Vt0 , must have only one
additional degree of freedom, the implied volatility, which is specified in order to
match the quoted market price, VMarket. The standard reference models used are
the Black and Bachelier models. Since we shall only consider examples for interest
rates, we use the Bachelier model, also known as the Gauss or normal model.

The Bachelier pricing formulas for calls and puts are

Cφ(T,K, σ) = (f −K) Φ(d) + σ
√
Tφ(d) and

Pφ(T,K, σ) = (K − f) Φ(−d) + σ
√
Tφ(d)

with

d =
f −K

σ
√
T − t0

,

where Φ(·) and φ(·) are the normal CDF and PDF respectively. Here, σ is called
the Bachelier, normal or bp implied volatility. The choice of the reference model
depends on the given market. For instance the Bachelier model can be applied to
negative asset values (applicable to interest rates) and does not require the values
to be bounded.

Often we are not only interested in a single option price, but require prices for
a set of maturities and strikes. Consider a set T := {T1, T2, . . . , TN} of option
maturities and let K := {K1,K2, . . . ,KN}, Ki := {Ki,1, Ki,2, . . . , Ki,Mi

} be sets of
strike values indexed by the number of maturities considered. Usually Ki = Kj for
all 1 ≤ i, j ≤ N . Now, consider the implied volatility for each quoted option with
respect to Ti ∈ T , Kj ∈ K:

Σd : T × K → R+

(T,K) 7→ σd.

The map Σd is called the discrete implied volatility surface. From this set, val-
ues for strikes K /∈ K may be inferred by interpolation and extrapolation. The
latter techniques must respect arbitrage relationships, requiring practitioners to
use interpolation methods consistent with an arbitrage-free model. Furthermore,
starting with the current levels of volatility as an input, it is relevant to consider
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the dynamics of the implied volatilities in order to manage exotic options. Such
options may, for instance, include payoffs that strongly depend on the forward
volatility. Examples include forward-starting options and cliquet options. Practi-
tioners refer to the implied volatility surface as the skew or smile. These names
originate from the shapes that the surfaces exhibit in typical market environments.

While there are many approaches for modelling the dynamics of instantaneous
volatility, including Levy and jump-diffusion models, see, e.g., Merton [1976],
Madan and Seneta [1990], Madan et al. [1998] and Schoutens [2003] for a non-
exhaustive list, practitioners most often use stochastic volatility models to manage
this type of risk. Selecting a stochastic volatility model determines the continuous
implied volatility surface. The process of matching to the observed discrete implied
volatility surface is called calibration, and, once a model is calibrated, the contin-
uous implied volatility surface may be used for interpolation and extrapolation.
We consider the continuous implied volatility surface given by the map

Σc,0 : [0, T ]× [Kl, Ku]→ R+

(T,K) 7→ σc

and its dynamics, Σc,t(T,K), t ∈ R+. By choosing a stochastic volatility model
these dynamics are implicitly determined by the model. In particular, we consider
the coupled SDEs given by

dFt = C(Ft)vt dW
(1)
t , Ft0 = f,

dvt = µ(vt) dt+ ν(vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(3.1.1)

The choice of the model and parameters should ensure the best fit to the current
(discrete) market implied volatility surface and that the dynamics are suitable for
risk management and hedging of exotic contracts. Often ease of implementation
determines the choice of the model, rather than model suitability. We provide a
general modelling approach with a tractable computational framework that does
not require this compromise.

To achieve numerical tractability, we use singular perturbation methods to derive
an approximate PDE, called the effective PDE, for the marginal probability density
of the asset. Here, this probability density should be understood as

P [F < Ft < F + dF |Ft0 = f, vt0 = α] .

This technique was originally introduced by Hagan et al. [2002, 2014, 2015, 2016]
for SABR models. Our general framework provides an extension to this approach
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and covers most well-known stochastic volatility models, including these and other
SABR models, as well as the Stein and Stein [1991], and Schöbel and Zhu [1999]
models. Having derived the general effective equation, we use it to analyse all the
SABR and ZABR model variants.

The parameters of the classic SABR model have a well-known interpretation. The
CEV coefficient, β, specified in the backbone of the implied volatility, C(Ft) = F β

t ,
blends between two extreme cases, being the Gaussian (β = 0) and lognormal
(β = 1) stochastic volatility models. The initial value of the volatility is determined
by the level of the initial at-the-money volatility, vatm, the initial forward rate, f ,
and β using α = f 1−βvatm. The volatility has no drift, i.e., µ(vt) = 0, and the
volatility of volatility, ν(vt) = νvt, controls the level of convexity in the smile
through the constant ν. The correlation parameter ρ controls the influence of the
stochastic volatility component. For ρ = 0 this influence is high, while for values
of |ρ| close to 1 we essentially recover local volatility dynamics, with the stochastic
behaviour resulting mostly from the Brownian motion driving the forward value.

Since its introduction, a critique of the classic SABR model has been that it
cannot model mean reversion of the volatility process and that it only has limited
control over the wings of the implied volatility smile. These features are especially
important given the prevailing regimes in interest rate markets, with negative rates
and very high prices for caps and swaptions. Further modelling flexibility is also
necessary when pricing instruments that are sensitive to the shape of the implied
volatility smile, such as constant maturity products or cash-settled swaptions.

To model negative rates, two approaches are used. The first is to augment the
backbone volatility function of the classic SABR model with a displacement pa-
rameter d, in which case C(Ft) = (Ft + d)β. Although strictly speaking this is
a displaced SABR model, we shall refer to it as the SABR model. The second
approach is to use free boundary models. These models have a volatility function
given by C(Ft) = |Ft|β, and were introduced by Antonov et al. [2015b].

To provide more control of the smile, in particular the wings, we shall consider
two further extensions. The first is the ZABR model, originally introduced by
Andreasen and Huge [2013]. This model specifies the volatility as a CEV process,
using ν(vt) = νvγt , in terms of the CEV coefficient γ. We further propose a
second extension by allowing the drift of the volatility to be mean reverting using
µ(vt) = κ(θ − vt), specified in terms of mean-reversion level θ and mean-reversion
speed κ. These two methods may be used separately or in conjunction with one
another.

While we shall focus almost exclusively on the extensions of the ZABR model,
we emphasize that other modelling choices for the implied volatility backbone
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are possible, corresponding to different choices of the function C(·). We consider
the displaced ZABR, free boundary ZABR (fZABR) and mean-reverting ZABR
(mrZABR) models. As with the SABR model, we refer to the displaced ZABR
model as just the ZABR model. For these cases, we consider the stylized effect
of the parameters on the implied volatility smile and how they may be set with
regard to given market data. In particular, these models incorporate desired model
dynamics and observable market behaviour, allowing the volatility to remain range-
bound and enabling better flexibility for controlling the wings of the volatility
surface, all while achieving the same at-the-money calibration quality as the SABR
model.

Our methodology relies on efficiently solving the one-dimensional effective PDE.
The alternative would be to solve the corresponding two-dimensional problem.
From a numerical perspective, a non-zero correlation between the asset and the
volatility driver makes it impossible to apply alternating direction implicit (ADI)
methods directly. For an approach that uses transforms and an application to the
Heston model, see In ’t Hout and Foulon [2010]. Transformations may be prob-
lematic when it comes to boundary conditions. The boundaries of the transformed
dynamics may be more complicated than the original ones. Another approach is to
handle the terms involving both quantities FT and vT by an explicit step, but this
requires small time steps in order to avoid numerical instability. When considering
examples to illustrate the new models, we use the numerical methods described
in Hagan [2015], Le Floc’h and Kennedy [2017], and Kienitz et al. [2017]. Rather
than delving into the intricacies of two-dimensional finite difference techniques,
we provide evidence of numerical accuracy by comparing our method with Monte
Carlo simulation.

In summary, we present a methodology useful for the analysis and application of
a variety of stochastic volatility models. Our approach is to derive a deterministic
one-dimensional local volatility model for implementation using standard numer-
ical techniques. The new methodology allows us to consider several parametrisa-
tions and generalizations of the classic SABR model, thus incorporating stylized
features of the implied volatility smile observed in the market. In particular, the
approach enables the incorporation of instruments other than vanilla European
call and put options when performing calibrations. The added flexibility is essen-
tial, for instance, when accurately pricing constant maturity swaps. Furthermore,
such models may be useful in a combined local stochastic volatility setting where
stochastic volatility dynamics are enhanced by a leverage function computed using
a local volatility model.

The rest of the paper proceeds as follows: in Section 3.2 we introduce the methodol-
ogy and derive the effective PDE for the general framework. The whole derivation—
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including all details—can be found in Appendix 3.5. In Section 3.2.2 we consider
the approximating formula and then provide more detail on concrete models in
Section 3.2.3. In Section 3.2.3.1 we use the method to analyse the smile dynamics
of the ZABR model, while in Section 3.2.3.2 we investigate the extended ZABR
models.

The approach taken to demonstrate numerical examples in Section 3.3 is based on
one-dimensional PDE solvers. We use numerical methods to compare the result-
ing stochastic volatility modelling approaches in Section 3.3.1 and the calibration
behaviour in Section 3.3.2. Finally, Section 3.3.3 compares our approach to a clas-
sical Monte Carlo approach of Lord and Farebrother [2014]. Section 3.4 concludes
with a summary, draws conclusions and outlines directions for future research.

3.2 Main Results

To provide a tractable way to compute solutions for the general two-dimensional
SDE in (3.1.1), our main goal is to approximate the dynamics by a suitable one-
dimensional local version. For this we consider the marginal probability density
of the asset, also called the reduced density or effective probability, as our main
object of interest. The reduced density Q of F at time t, starting from time t0, is
defined as

Q(t, F ) dF = P
[
F < Ft < F + dF

∣∣∣Ft0 = f, vt0 = α
]
. (3.2.1)

Given the reduced density for a specified exercise time T , we can then recover the
corresponding call and put prices for all strikes by an evaluation of

CQ(T,K) =

∫ ∞
K

(F −K)Q(T, F ) dF and

PQ(T,K) =

∫ K

−∞
(K − F )Q(T, F ) dF.

To compute the reduced density, we derive a PDE of the form

∂tQ(t, F ) = ∂FF [D(t, F )Q(t, F )] , Q(t0, f) = δ(F − f), (3.2.2)

whereD(·, ·) is a function that involves the model parameters and depends on t and
the asset value F . This PDE describes the pricing equation in the local volatility
setting, originally due to Dupire [1994]. More precisely, the local volatility function
corresponds to

√
2D(·, ·).
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To derive this PDE, we use singular perturbation methods to systematically anal-
yse the system 

dFt = εC(Ft)vt dW
(1)
t , Ft0 = f,

dvt = µ(vt) dt+ εν(vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(3.2.3)

Once the result is derived we set ε back to 1.

The effective PDE, also called the effective forward equation, is accurate to order
O(ε2). To ensure a stable and efficient numerical implementation for solving this
PDE, we must specify the boundary behaviour. We consider two PDEs for ac-
cumulating probability. The lower boundary bl is either explicitly specified when
the model under consideration is not admissible for values below bl, or artificially
when setting up a grid for numerical computation. The upper boundary is set
by specifying the highest level bu to be considered. The corresponding values of
the probability densities are denoted by QL and QR. In our setting the PDEs are
given by

∂tQ
L(t) = lim

F↓bl
∂F [D(t, F )Q(t, F )] , QL(t0) = 0

and ∂tQ
R(t) = − lim

F↑bu
∂F [D(t, F )Q(t, F )] , QR(t0) = 0.

For the SABR model the derivation can be found in Hagan [2015], and Le Floc’h
and Kennedy [2017], while the fSABR model is considered in Kienitz et al. [2017].

Next, we derive the effective equation for the general setting (3.1.1), then we
restrict ourselves to a special class of dynamics, called the ZABR class. This
includes the standard ZABR model of Andreasen and Huge [2013], and also the
free boundary version of ZABR, which generalizes the results from Antonov et al.
[2015b], and the mean-reverting ZABR.

Remark 3.2.1. To put our result in a broader context, we mention a result by
Gyöngy [1986], which applies to the general stochastic process satisfying

dYt = α(t, Yt) dt+ β(t, Yt) dWt,

where α and β are bounded1 adapted stochastic processes. He shows that there
exists an SDE

dxt = a(t, xt), dt+ b(t, xt) dWt,

1This assumption is not a severe constraint. When working with a stochastic volatility func-
tion that may not be bounded, it is always possible to bound it at a large enough level that the
probability of reaching that level is tiny and of no concern.
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in terms of non-random coefficients, with solution xt having the same one-dimensional
probability distribution as Yt. The coefficients a and b satisfy

a(t, x) = E[α(t, Yt)|Yt = x] and b(t, x)2 = E[β2(t, Yt)|Yt = x].

In particular this holds true if β is a stochastic volatility process, which may be
dependent on Yt and another Brownian motion correlated with Wt. This existence
result makes it possible to price European options by considering a one-dimensional
local volatility model [Derman and Kani, 1994, Dupire, 1994]. Using the results
and notation of the latter reference and considering an SDE of a forward, i.e.,
αt = 0, the result states that

σ2
local(x, t) = E[β(t, Yt)

2|Yt = x].

Crucially, if the local volatility function remains positive it implies that the one-
dimensional model is arbitrage-free. Furthermore, it is possible to discretize the
corresponding Fokker-Planck equation in an arbitrage-free way. This is essentially
what we achieve with our method. We derive a one-dimensional deterministic
representation of the local volatility from a stochastic volatility model by singular
perturbation methods. For our numerical results we apply Hagan [2015], which
directly solves the PDE for the probability density. Another method, introduced
by Andreasen and Huge [2011a], starts by considering the backward equation with
corresponding boundary conditions. Within a discrete time and space setting, the
backward equation is discretized and multiplied by the transpose of the probability
to obtain adjoint equations, with the solution yielding the probability vector. This
approach overcomes the necessity of specifying and handling boundary conditions
for the forward equation, and leads to an arbitrage-free discrete density (positive
and summing to one).

3.2.1 The Effective PDE

To derive the effective PDE we make the following assumptions related to (3.1.1):

Assumption I. The drift term, µ(·), is differentiable, with derivative µ′(·), and a
solution Y (t, t0, α) to the following PDE exists:

∂tY (t, t0, α) = µ(Y (t, t0, α))

Y (t, t, α) = α

Y (t0, t0, α) = α.

Assumption II. The function Y is differentiable and has an inverse function
y(t0, t, a) such that

Y (t, t0, α) = a ⇔ α = y(t0, t, a).
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Remark 3.2.2. Functions µ(·) allowing a closed-form solution include

(i) for µ(x) = µ the solution is Y (t, t0, α) = α + µ(t− t0);

(ii) for µ(x) = κ(θ − x) the solution is Y (t, t0, α) = αe−κ(t−t0) + θ(1− e−κ(t−t0)).

Assumption III. The functions

X(t, t0, α) = ∂αY (t, t0, α), Z(t, u) = Z(t, u, t0, α) = y(u, t, Y (t, t0, α)),

z(F ) =

∫ F

f

1

C(u)
du, s(t) = S(t0, t, α) =

∫ t

t0

Z(t, u, t0, α)2 du

and

ψ(t, u, Z) = ν
(
Z(t, u)

)
Z(t, u)X

(
t, u, Z(t, u)

)
are well defined2, X

(
t, u, Z(t, u)

)−1 exists, and the following integral functions are
defined:

I1(t) = ρ

∫ t

t0

ψ(t, u, Z) du,

I2(t) = 2

∫ t

t0

ν
(
Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I3(t) = ρ

∫ t

t0

ψ(t, u, Z)

∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I4(t) = ρ2

∫ t

t0

ψ(t, u, Z)

∫ t

u

∂Z

(
ψ(t, v, Z)

)
X
(
t, v, Z(t, v)

)−1
dv du,

I5(t) =

∫ t

t0

ν
(
Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
du.

Assumption IV. The function C(·) is differentiable at f , with derivative denoted
by C ′(·).

Theorem 3.2.3. Given that the general stochastic volatility model (3.1.1) obeys
Assumptions I–IV, an effective PDE for the effective probability (3.2.1), of the
form (3.2.2), can be derived, with function D given by

D(t, F ) =
1

2
a(t)2C(F )2eG(t)

(
1 + 2b(t)z(F ) + c(t)z(F )2

)
,

2Note that this definition of z(F ) differs by a factor of 1
ε compared to the definition in (3.5.4).
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where the coefficients are specified as

a(t) = Y (t, t0, α), c(t) = b(t)2 +
1

a(t)s(t)2
I2(t)− 6b(t)

s(t)2
I3(t) +

2

a(t)s(t)2
I4(t),

b(t) =
1

a(t)s(t)
I1(t), G(t) = −s(t)c(t)− s(t)b(t)Γ0 +

1

a2
I5(t)

and

Γ0 = −C ′(f).

Proof. In Appendix 3.5 we show that the effective PDE of order O(ε2) is given by ∂tQ(t, F ) =
1

2
ε2a(t)2∂FF

[
C(F )2Q(t, F )eε

2G(t)
(
1 + 2εb(t)z(F ) + ε2c(t)z(F )2

)]
Q(t, F )→ δ(F − f) as t→ t+0 .

(3.2.4)
This comes from combining (3.5.3), (3.5.5), (3.5.10) and (3.5.1). Setting ε to 1
yields the desired form.

Remark 3.2.4. The class of models is not restricted to the above choices of the
function Γ0. Choosing a different form could in turn impose a new version of
Assumption IV.

Remark 3.2.5. The derivation of the effective PDE, as shown in Appendix 3.5, may
be extended to include time dependent parameters. The proof stays the same—
only the functions specified in Assumptions I–III must be adjusted to incorporate
the extra dependency.

Figure 3.1 shows the output obtained by numerically solving the effective PDE. It
is the density of the asset at maturity and depends on all the input parameters.

3.2.2 Implied Volatility Formula

As seen in Theorem 3.2.3, the effective PDE of the general model is of the same
form as the classical or mean-reverting SABR Hagan et al. [2014, 2020b]. In
particular, both these models fit into the same framework, which allows for a direct
approximation of the implied normal or Black volatility [Hagan et al., 2016].

To show that our model also fits into this framework, we use Effective Media theory
[Hagan et al., 2018b] to approximate the effective PDE of Equation (3.2.4) by a
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Figure 3.1: Numerical solution of the effective PDE for the SABR, ZABR,
mrSABR and mrZABR models, with parameters β = 0.5, ν = 0.3, ρ = −0.8,
f = 0.005, T = 5, d = 0.001, γ = 0.8, κ = 0.2, with α = f 1−βvatm and vatm = 0.3
representing the initial at-the-money implied volatility.

suitable SABR effective PDE. To facilitate this we consider a fixed maturity T and
set the initial time t0 = 0, from now on. We start by defining time-independent
parameters b̄, c̄ and Ḡ, which allow for an approximation of Equation (3.2.4) to
order O(ε2), at time T . These parameters are generally given by Hagan et al.
[2018b, Equation 2.4]:

b̄ =
2

T 2

∫ T

0

ub(u) du

c̄ =
3

T 3

∫ T

0

u2c(u) du+
18

T 3

∫ T

0

b(u)

∫ u

0

vb(v) dv du− 3b̄2

Ḡ =
1

T

∫ T

0

G(u) du+
1

T

∫ T

0

u(c(u)− c̄) du.

Note that before using these equations, the functions b and c of Theorem 3.2.3
must be modified to fit into the setting of Hagan et al. [2018b, Equation 2.2].

With the constant effective parameters we can define the so called effective SABR
parameters:

νeff =
√
c̄, ρeff =

b̄√
c̄
, αeff = α

(
1 +

1

2
Ḡ+

1

4
αb̄Γ0T

)
. (3.2.5)
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These allow us to approximate our model to order O(ε2) with an SABR model,
and in turn provide us with various available implied volatility formulae. One
prominent example would be the formula provided in Hagan et al. [2016]:

σ(T,K) = ε
νeff(K − f)

R(ζ)

{
1 + ε2Θ(ζ)T if Θ ≥ 0

1
1−ε2Θ(ζ)T

if Θ < 0,

with

R(ζ) = log

(
ρeff + ζ + E(ζ)

1 + ρeff

)
,

Θ(ζ) =
ν2

eff

24

(
3
ρeff + ζ − ρeffE(ζ)

R(ζ)E(ζ)
− 1

)
+

∆0α
2
new

6

(
1− ρ2

eff +
(ρeff + ζ)E(ζ)− ρeff

R(ζ)

)
,

where

ζ =
νeff

αnew

∫ K

f

1

C(u)
du, E(ζ) =

√
1 + 2ρζ + ζ2,

αnew = αeff

(
1− 1

4
ρeffνeffαeffΓ0T

)
, ∆0 =

1

4
C(f)C ′′(f)− 1

8
C ′(f)2.

In the next section we consider special cases to illustrate the applicability of our
approach.

3.2.3 ZABR-type Models

We now illustrate our approximation by considering various extensions to the
ZABR model. In particular, we provide a flexible framework that incorporates
several novel parametrisations allowing control of features of the implied volatility
smile, like the outer wings. We compare these extensions to existing approaches
and mention how various other parametrisations of the local volatility backbone
of the stochastic volatility model may be handled.

Consider SABR and ZABR-type stochastic volatility models of the form (3.2.3),
where the functions C(·), µ(·) and ν(·) are given in Table 3.1. The SABR-type
models were considered by Hagan et al. [2002, 2014], Antonov et al. [2015b], and
Kienitz et al. [2017] and the ZABR model, without displacement (d = 0), was
introduced by Andreasen and Huge [2013]. We consider the displaced ZABR, free
ZABR and mean-reverting ZABR models. It should be noted that the mrZABR
model generalizes all the other models except the free-boundary models.
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C(Ft) µ(vt) ν(vt) Model
(Ft + d)β 0 νvt SABR

1 0 νvt Normal SABR (nSABR)
|Ft|β 0 νvt Free SABR (fSABR)

(Ft + d)β κ(θ − vt) νvt Mean reverting SABR (mrSABR)
(Ft + d)β 0 νvγt ZABR
|Ft|β 0 νvγt Free ZABR (fZABR)

(Ft + d)β κ(θ − vt) νvγt Mean reverting ZABR (mrZABR)

Table 3.1: Parametrizations of the SABR and ZABR-type models, in terms of
constants β, d, κ, θ, ν, and γ.

Remark 3.2.6. Note that the modulus function appearing in C(·) for fSABR and
fZABR models is not differentiable at the point 0 and thus does not strictly satisfy
Assumption IV. Consequently it does not fit into the framework of Theorem 3.2.3.
To overcome this problem we follow the setting of the original free SABR model
[Antonov et al., 2015b] and only consider the case where f 6= 0.

The models presented in Table 3.1 are a non-exhaustive list, with many other
choices possible. As mentioned previously, the models of Stein and Stein [1991],
and Schöbel and Zhu [1999] may be accommodated. Other examples include the
models of Jäckel and Kahl [2008], Karlsmark [2013] or Balland and Tran [2013],
which suggest non-CEV forms of the function C(·) including:

(i) C(Ft) = F
β(Ft)
t , where β(Ft) = β0 + (β∞ − β0)

(
1− e−

Ft
Fmax

)
with Fmax � Ft0 ,

(ii) a double-beta backbone C(Ft) = F β
t

(
Ft
F1

)β1
+ 1(

Ft
F2

)β2
+ 1

, or

(iii) a hyperbolic backbone

C(Ft) =
fβ

β

(1− β + β2)
Ft
f

+ (β − 1)

√(Ft
f

)2

+ β2

(
1− Ft

f

)2

− β

 .
While our method may be used directly on (ii) and (iii), since the integral ∫ C(u)−1 du

can be computed in closed form, the corresponding integral for (i) must be evalu-
ated numerically leading to possible performance issues. It should be noted that
the closed-form solution of (ii) involves hypergeometric functions, which may not
be numerically stable.
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3.2.3.1 Effective PDE for ZABR

Consider the ZABR model as specified in Table 3.1. The corresponding coefficients
for the effective PDE in (3.2.4) may be greatly simplified.

First of all, the function Y has an explicit form that equals the initial value:

Y (t, t0, α) = α.

The evaluation of the coefficients needed for the effective PDE yields

b = ρναγ−2,

c = ν2α2(γ−2)(1 + (γ − 1)ρ2),

G(t) = −ρ2ν2α2(γ−1)(t− t0)(γ − 1)− (t− t0)ρναγΓ0

(3.2.6)

and gives the ZABR effective PDE characterized by the function

D(t, F ) =
1

2
α2C(F )2(1 + 2bz(F ) + cz(F )2)eG(t).

For the numerical implementation of the ZABR model, we use the effective SABR
parameters presented in Section 3.2.2. Given the explicit form of the coefficients
in (3.2.6), the effective SABR parameters are given by

νeff = ναγ−1
√

1 + (γ − 1)ρ2,

ρeff =
ρ√

1 + (γ − 1)ρ2
,

αeff = α

(
1 +

1

4
ρ2ν2α2(γ−1)(1− γ)T

)
.

(3.2.7)

Note that these are the coefficients used for the actual implementation. In par-
ticular, we have already set ε = 1 and approximated the original exponential
function. To guarantee that the term

√
D(t, F ) remains real, we further impose

the condition
γ > 1 +

ρ2 − 1

ρ2
.

Furthermore, we emphasize that our local volatility approximation is of higher
order than those provided by Andreasen and Huge [2013] or Balland and Tran
[2013]. The difference is an exponential term that incorporates time dependence,
i.e. the term eG(t) from Theorem 3.2.3. To illustrate the differences stemming
from the different approximations of local volatility we consider the local volatility
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function of the SABR model approximated by the methods in Andreasen and
Huge [2013] or Balland and Tran [2013] compared to our approach, which recovers
the form derived by Hagan et al. [2014]. The results are depicted in Figure 3.2
and demonstrate the additional dependence of the approximation on the maturity
under consideration.
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Figure 3.2: Illustrating the difference in the local volatility approximation in the
SABR Model for different maturities and given model parameters β = 0.5, ν = 0.3,
ρ = −0.8, f = 0.005, T ∈ {1, 5, 10}, d = 0.001, with α = f 1−β

0 vatm and vatm = 0.3
representing the initial at-the-money implied volatility.

3.2.3.2 Effective PDE for Free ZABR and Mean-Reverting ZABR

Having examined the ZABR model, we can now consider the natural extensions
of the fZABR and mrZABR models.

For the fZABR model, the effective SABR parameters are the same as those for
the ZABR model and are given in (3.2.7). The difference between the models lies
exclusively in the function C(F ), as was the case in the extension of the SABR to
the fSABR model, see Kienitz et al. [2017].

Considering the mrZABR model with a reversion back to the initial state, i.e. with
θ = α, as specified in Table 3.1, the corresponding parameters for the effective
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forward equation change and are given by

b(t) =
ρναγ−2

κ(t− t0)

(
1− e−κ(t−t0)

)
,

c(t) =
(1 + ρ2)ν2α2(γ−2)

κ2(t− t0)2

(
1− e−κ(t−t0)

)2

+
6ρ2ν2α2(γ−2)

κ3(t− t0)3

(
1− e−κ(t−t0)

)(
1− κ(t− t0)− e−κ(t−t0)

)
+(1 + γ)

2ρ2ν2α2(γ−2)

κ2(t− t0)2

(
1− (1 + κ(t− t0))e−κ(t−t0)

)
,

G(t) = −α2(t− t0)c− ρναγ

κ

(
1− e−κ(t−t0)

)
Γ0 +

ν2α2(γ−1)

2κ

(
1− e−2κ(t−t0)

)
.

Fixing a specified maturity T , the corresponding constant effective parameters of
Section 3.2.2 are given by

b̄ =
2ρναγ−1

κ2T 2

(
κT − 1 + e−κT

)
,

c̄ =
3(1 + ρ2)ν2α2(γ−1)

2(κT )3

(
2κT + 4e−κT − 3− e−2κT

)
+6(1 + γ)

ρ2ν2α2(γ−1)

(κT )3

(
κT + 2e−κT − 2 + κTe−κT

)
−12ρ2ν2α2(γ−1)

(
κT − 1 + e−κT

(κT )2

)
Ḡ =

ν2α2(γ−1)

4κ2T

(
2κT + e−2κT − 1

)
− 1

2
c̄T − ρναγ

κ2T

(
κT − 1 + e−κT

)
Γ0.

Here we can now use (3.2.5) to derive the effective SABR parameters. Since we are
using an SABR model to approximate the ZABR type models, it is not surprising
that we observe similar behaviour of the models. For example, if we shift the
underlying forward rate f , as shown in Figure 3.3, we see that in both cases the
implied volatility moves in the same direction as the forward.

3.2.3.3 Stylized Features of Stochastic Volatility Models

In the introduction we described the effect of the parameters on the SABR model.
We now provide some stylized features of the parameters for the extended models.

First, consider the CEV parameter, γ, in the ZABR model, which introduces
different dynamics for the volatility, as opposed to the classical SABR model. The
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Figure 3.3: Free ZABR and mean reverting ZABR implied volatility with param-
eters β = 0.5, ν = 0.3, ρ = −0.8, f = 0.005, T = 5, d = 0.001, γ = 0.8, κ = 0.2,
with α = f 1−βvatm and vatm = 0.3 representing the initial at-the-money implied
volatility.

action of this parameter was analysed by Andreasen and Huge [2013], where it is
shown that it affects the wing of the implied volatility smile. Figure 3.4 illustrates
this feature.

Second, consider the parameter κ, which is the speed of mean reversion of the
volatility process in the mrSABR and mrZABR models. This parameter controls
the speed at which the stochastic volatility reverts to its long-term mean, given
by θ. This results in a mechanism used to control the effect of the volatility of
volatility. The phrase ‘κ kills the skew’ describes this effect. We expect a subtle
interplay between the parameters governing the volatility of volatility and the
mean-reversion speed. Thus calibration and estimation of these parameters may
be difficult in practice. The effect of the mean reversion in the mrZABR model,
keeping all the other parameters constant, is shown in Figure 3.5.

Third, we consider different backbones of the implied volatility by changing the
functional form of C(·). This function can either be chosen beforehand by the
modeller, taking into account historical market data as suggested by Hagan et al.
[2002], or with the intention of modelling certain features of the underlying as-
set. We consider two functions, being the displaced CEV function and the free
boundary CEV function, which involves a modulus function. As mentioned pre-
viously, both methods allow the modelling of negative rates, but the left tails are
qualitatively different, as seen in Figure 3.3.
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Using a model with a rich parameter set may make it more difficult to perform
a successful calibration. To ease this process, we suggest either choosing some of
the parameters upfront before calibrating to European call and put option prices
or including other financial instruments. If other instruments are available, it is
preferable to use those that are directly affected by features controlled by the
parameters introduced. For instance, if one introduces a parameter that controls
the wings of the implied volatility smile then one should include instruments that
depend on that part of the smile. As mentioned previously, when considering
interest rates, constant maturity products are ideal for this purpose.

3.3 Numerical Examples

For our numerical implementation we use the effective SABR parameters derived
for each model and the methods described in Hagan [2015], Le Floc’h and Kennedy
[2017] and Kienitz et al. [2017] adapted to our setting. If not otherwise specified,
we use β = 0.5, ν = 0.3, ρ = −0.8, f = 0.005, T = 5, d = 0.001, γ = 0.8 and
κ = 0.2 as our standard set of parameters. Here α = f 1−βvatm with vatm = 0.3
representing the initial at-the-money implied volatility.

3.3.1 Comparison of SABR and ZABR-type Models

To see the impact of our new models, we compare the implied volatilities generated
by each model. For this we modify the values of the new parameters γ and κ and
compute the implied volatility curve. The results are shown in Figure 3.4 and
Figure 3.5. As we can see, the change from an SABR to a ZABR model heavily
influences the smile. In particular the OTM end shows much steeper behaviour.
The inclusion of mean reversion again works in the contrary direction and brings
the model closer to the SABR case.

In Figure 3.6 we considered the density of the ZABR model. Here we can see
that the model exhibits a much higher and steeper peak in the density function,
compared with the SABR model.

Finally, Figure 3.7 shows that the implied volatility formulas yield a good approx-
imation to the models for moderate to high strikes. As in the case of the SABR
model, the approximation becomes worse for very low strikes.
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Figure 3.4: Implied volatility for the ZABR model when γ changes.
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Figure 3.5: Implied volatility for the mean reversion ZABR when κ changes.

3.3.2 Calibration

One crucial aspect of a model is its ability to fit real market data. One common
way to calibrate a model is to consider a set of implied volatilities and try to
adjust the model parameters to minimize the error between market and model
volatilities. For our numerical experiment, we calibrated the models on a set of
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Figure 3.6: Density for the ZABR model when γ changes.

normal swaption volatilities with maturity and tenor of 5 years. The volatility
data is for the EUR currency and corresponds to the dates 2 Sept 2019 and 1 Nov
2019.

For our first example, we consider the calibration of the SABR, ZABR and mrZ-
ABR models to the volatility data. For all three models, the forward was taken
from the market data and the displacement was set at d = 2%. For the ZABR and
mrZABR models, we also fixed two additional parameters, γ = 0.9 and κ = 0.3,
in advance. The remaining parameters were calibrated to the swaption data. Ta-
ble 3.2 shows the quality of the SABR fit, which deviates very little from the
market data. For the strikes shown and to the stated precision, the ZABR and
mrZABR calibration gave the same fit as the SABR model, so we have not re-
peated the numbers. Overall, we observe a very good fit of the models to the
market data.

Since the quality of the calibration for the ZABR and mrZABR models is so
similar to that of the SABR model, one may ask: why not just use the SABR
model? Here it is relevant to mention that in most applications, it is not enough
merely to match current market data. It is also necessary to provide scenarios for
future prices and obligations with more complicated, and even path-dependent,
dynamics. In Antonov et al. [2015a], it is shown that models with the same cal-
ibration quality may reveal their flexibility only when pricing exotic derivatives.
For instance, CMS index-related derivatives illustrate this. Furthermore, from a
regulatory perspective financial institutions are required to perform a prudent val-
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Figure 3.7: Comparison of implied Bachelier volatility functions for the ZABR and
mrZABR models.

uation. To satisfy this requirement they often use models that include parameters
that allow control of features that cannot be modelled by their production model,
and then quantify the difference.

To illustrate this behaviour, consider a reduced set of swaption volatilities, where
only the data in the region of the ATM strike is given. This restriction allows for
more flexibility in modelling the wings of the smile. In our case, we consider the
strike values between −0.36% and 0.64% in Table 3.2 for 1 Nov 2019, and calibrate
the models to this reduced data set. Figure 3.8 shows the resulting curves. As can
be seen, we achieve good control over the wings, while at the same time keeping
the same order of accuracy for the swaption prices.

This increased control over the wings allows for better fits when pricing more ex-
otic products. Consider, for example, CMS index products. We use the results
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2 Sept 2019 1 Nov 2019
Strike Market Vol SABR Vol Strike Market Vol SABR Vol
−1.24 0.498 0.482 −0.86 0.473 0.465
−0.74 0.501 0.500 −0.36 0.468 0.468
−0.49 0.505 0.506 −0.11 0.469 0.470
−0.24 0.511 0.511 0.14 0.474 0.474
0.01 0.519 0.516 0.39 0.482 0.480
0.26 0.527 0.523 0.64 0.491 0.488
0.76 0.546 0.539 1.14 0.515 0.510
1.26 0.569 0.561 1.64 0.544 0.540
1.76 0.594 0.589 2.14 0.577 0.577
2.76 0.648 0.656 3.14 0.651 0.656

Table 3.2: Swaption market data for 2 Sept 2019 and 1 Nov 2019. All strikes and
implied volatilities are quoted as percentages. The ATM strikes are −0.24% and
0.14%, respectively.
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Figure 3.8: The ZABR type models with different values of γ and κ calibrated to
swaption data from the 1 Nov 2019.

of Hagan et al. [2020a] to directly approximate CMS swap prices using the pa-
rameters of the SABR model. Using the effective SABR parameters derived in
Section 3.2.3, these approximations are also valid for the ZABR models. We com-
pute the quadratic swap volatility as given in Hagan et al. [2020a] for each curve
of Figure 3.8. The results of the calibration and the quadratic swap volatilities are
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Strike
(%)

SABR ZABR
(0.9)

ZABR
(0.8)

mrZABR
(0.9; 0.3)

mrZABR
(0.9; 0.5)

mrZABR
(0.8; 0.3)

mrZABR
(0.8; 0.5)

mrZABR
(0.8; 0.8)

-0.36 0.06 0.03 0.10 0.05 0.12 0.03 0.17 0.02
-0.11 0.07 0.06 0.11 0.07 0.05 0.09 0.03 0.05
0.14 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01
0.39 0.08 0.07 0.02 0.06 0.10 0.07 0.06 0.02
0.64 0.02 0.06 0.21 0.04 0.08 0.08 0.01 0.20
Swap 7.3321 7.3825 7.4854 7.3598 7.2870 7.4435 7.4108 7.2888

Table 3.3: Absolute errors and quadratic swap volatilities in basis points for all
calibrated models.

given in Table 3.3. In particular, the quadratic swap volatilities show a variety of
different, evenly spaced values, allowing one to choose the most suitable model to
fit the desired volatility.

Aside from CMS products, this approach would be suitable for more computation-
ally demanding products. In theory, we could reproduce the experiments using an
SABR model; in practice, however, the desired control is much harder to achieve.

3.3.3 Comparison to MC

For the comparison with a Monte Carlo experiment, we chose the same parameter
set as above and simulated 1 million paths and 240 time steps for all the models,
except for the free SABR and ZABR models where we used 10 million paths
and 480 time steps. Table 3.4 shows the observed Bachelier implied volatility. The
results using both approaches are very similar. Here we observe an average relative
error of about 5%, with the most significant contribution in the tails. Figure 3.9
shows the relative error as a function of strike for all the models considered.
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Strike SABR SABR(MC) ZABR ZABR(MC) fSABR fSABR(MC) fZABR fZABR(MC) mrSABR mrSABR(MC) mrZABR mrZABR(MC)
0.00 0.1086 0.1084 0.1175 0.1042 0.1147 0.1180 0.1461 0.1631 0.1049 0.0929 0.1272 0.1180
0.10 0.1189 0.1179 0.1301 0.1218 0.1222 0.1220 0.1499 0.1626 0.1145 0.1136 0.1389 0.1363
0.20 0.1253 0.1239 0.1380 0.1310 0.1274 0.1262 0.1529 0.1628 0.1205 0.1217 0.1462 0.1454
0.30 0.1299 0.1282 0.1436 0.1371 0.1313 0.1296 0.1554 0.1630 0.1248 0.1269 0.1513 0.1514
0.40 0.1333 0.1315 0.1478 0.1415 0.1343 0.1324 0.1573 0.1633 0.1281 0.1308 0.1551 0.1557
0.42 0.1360 0.1341 0.1509 0.1447 0.1367 0.1347 0.1587 0.1634 0.1308 0.1337 0.1580 0.1590
0.44 0.1381 0.1361 0.1533 0.1471 0.1386 0.1366 0.1598 0.1634 0.1329 0.1362 0.1603 0.1615
0.46 0.1398 0.1378 0.1551 0.1489 0.1402 0.1382 0.1605 0.1632 0.1347 0.1381 0.1621 0.1633
0.48 0.1411 0.1391 0.1563 0.1501 0.1414 0.1395 0.1609 0.1628 0.1362 0.1398 0.1634 0.1648
0.50 0.1421 0.1402 0.1571 0.1509 0.1424 0.1406 0.1610 0.1623 0.1375 0.1412 0.1644 0.1658
0.52 0.1430 0.1410 0.1576 0.1514 0.1431 0.1414 0.1608 0.1616 0.1386 0.1424 0.1651 0.1665
0.54 0.1436 0.1416 0.1577 0.1515 0.1437 0.1421 0.1605 0.1608 0.1395 0.1434 0.1656 0.1669
0.56 0.1440 0.1421 0.1575 0.1513 0.1441 0.1426 0.1599 0.1598 0.1403 0.1443 0.1658 0.1671
0.58 0.1443 0.1424 0.1571 0.1509 0.1444 0.1429 0.1591 0.1586 0.1409 0.1450 0.1659 0.1670
0.60 0.1445 0.1426 0.1564 0.1502 0.1445 0.1432 0.1581 0.1574 0.1415 0.1456 0.1658 0.1668
0.70 0.1445 0.1427 0.1556 0.1494 0.1446 0.1433 0.1570 0.1560 0.1419 0.1461 0.1655 0.1664
0.80 0.1445 0.1427 0.1545 0.1483 0.1445 0.1433 0.1557 0.1544 0.1423 0.1466 0.1651 0.1659
0.90 0.1443 0.1426 0.1532 0.1470 0.1444 0.1433 0.1542 0.1527 0.1426 0.1469 0.1646 0.1652
1.00 0.1441 0.1424 0.1518 0.1456 0.1441 0.1431 0.1526 0.1509 0.1428 0.1472 0.1640 0.1644
1.20 0.1438 0.1421 0.1502 0.1440 0.1438 0.1429 0.1509 0.1490 0.1429 0.1474 0.1633 0.1634
1.40 0.1434 0.1418 0.1485 0.1422 0.1434 0.1426 0.1490 0.1470 0.1430 0.1476 0.1625 0.1624
1.60 0.1430 0.1414 0.1466 0.1404 0.1430 0.1422 0.1471 0.1448 0.1431 0.1477 0.1616 0.1613
1.80 0.1425 0.1410 0.1446 0.1383 0.1425 0.1418 0.1450 0.1426 0.1431 0.1478 0.1607 0.1601

Table 3.4: Implied Bachelier volatility computed from the call option prices obtained from the effective equation
and Monte Carlo simulation for the SABR, ZABR, fSABR, fZABR, mrSABR and mrZABR models. All strikes and
volatilities are quoted as percentages.
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Figure 3.9: Relative error for the implied Bachelier volatility computed from the
call option prices obtained from the effective equation and Monte Carlo simulation
for the SABR, ZABR, fSABR, fZABR, mrSABR and mrZABR models.

3.4 Conclusion and Summary

We have outlined an approach applicable to a large class of stochastic volatility
models. The approach is based on an effective PDE associated with the stochas-
tic volatility model. In particular we derived a (one-dimensional) local volatility
representation of the (two-dimensional) model. Then, we applied accurate and
efficient numerical schemes to calculate option prices. General conditions for ap-
plicability were derived. We extended the modelling to include the ZABR model
and introduced the free ZABR and mean-reverting ZABR models. The flexibility
of the new models was explored and a numerical comparison with existing methods
was given.

To derive our results we applied singular perturbation theory. There are, however,
other techniques that may be used to derive a local volatility model associated with
a stochastic volatility model, for instance the method of Markovian Projection, see,
e.g. Piterbarg [2006], Antonov et al. [2008], and Antonov and Misirpashaev [2009],
which is based on the result of Gyöngy [1986]. Further comparison and investi-
gation of the applicability of these methods and application to other models is
envisaged. From a numerical methods perspective, we applied the method con-
sidered by Hagan [2015], Le Floc’h and Kennedy [2017], and Kienitz et al. [2017].
While we have included a basic comparison to Monte Carlo simulation results,
further comparison using numerical schemes for a two-dimensional PDE, as in
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Sheppard [2007], as well as to the existing numerical scheme for the ZABR model,
provided by Andreasen and Huge [2013], is possible. The generalization of the
numerical scheme derived in the context of analysing the Heston model seems to
be a good starting point for further analysing the quality of our approximation
using effective equations.

3.5 Appendix: Derivations

3.5.1 Deriving the Effective Forward Equation

As described in Section 3.2, we analyse a stochastic volatility model of the form
dFt = εC(Ft)vt dW

(1)
t , Ft0 = f,

dvt = µ(vt) dt+ εν(vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

Following Hagan et al. [2014, 2020b, 2018a], we define the probability density
p(t0, f, α, t, F,A) that Ft = F and vt = A at time t, given that Ft0 = f and vt0 = α
at time t0. Furthermore, we define the moments

Q(k)(t0, f, α, t, F ) =

∫ ∞
0

Akp(t0, f, α, t, F,A) dA

and set
Q(t, F ) = Q(0)(t0, f, α, t, F ) (3.5.1)

to be the reduced probability density of the model given t0, f and α.

3.5.2 Volatility Drift

Before analysing the corresponding PDE equations, let us first take a look at the
drift term of the volatility function. For this, we consider the following PDE given
by the drift term 

∂tY (t, t0, α) = µ(Y (t, t0, α))

Y (t, t, α) = α

Y (t0, t0, α) = α.

(3.5.2)

92



By Assumptions I and II we know that there exists a solution Y (t, t0, α) and an
inverse function y(t0, t, a), such that

Y (t, t0, α) = a ⇔ α = y(t0, t, a).

Considering the integrated form of the PDE (3.5.2), the derivatives of Y (t, t0, α)
satisfy

∂t0Y (t, t0, α) = −µ(α) +

∫ t

t0

µ′(Y (s, t0, α))∂t0Y (s, t0, α) ds

and ∂αY (t, t0, α) = 1 +

∫ t

t0

µ′(Y (s, t0, α))∂αY (s, t0, α) ds.

This, in turn, implies that

∂t0Y (t, t0, α) = −µ(α)∂αY (t, t0, α).

Remark 3.5.1. Note that in both cases of Remark 3.2.2 we have that Y coincides
with the expected volatility:

Y (t, t0, α) = E
[
vt | vt0 = α

]
.

If µ is a non-linear function, this would not be true any more, since we would have
to exchange the expectation with the function µ, which in general cannot be done.

3.5.3 The Forward Equation

Now, we start by considering the Kolmogorov forward equation to get

∂tp(t, F, A) = −∂A
[
µ(A)p(t, F, A)

]
+

1

2
ε2∂FF

[
C(F )2A2p(t, F, A)

]
+ε2ρ∂FA

[
C(F )Aν(A)p(t, F, A)

]
+

1

2
ε2∂AA

[
ν(A)2p(t, F, A)

]
,

where we have abbreviated p(t0, f, α, t, F,A) as p(t, F, A). Integrating over A and
considering reflecting boundary conditions to conserve the probability, as done for
example in Hagan et al. [2014], we get∫ ∞

0

∂A

[
µ(A)p(t, F, A)

]
dA =

[
µ(A)p(t, F, A)

]∣∣∣∞
0

= 0∫ ∞
0

∂FA

[
C(F )Aν(A)p(t, F, A)

]
dA = ∂F

[
C(F )Aν(A)p(t, F, A)

]∣∣∣∞
0

= 0∫ ∞
0

∂AA

[
ν(A)2p(t, F, A)

]
dA = ∂A

[
ν(A)2p(t, F, A)

]∣∣∣∞
0

= 0.
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With this, we get the forward equation ∂tQ
(0)(t, F ) =

1

2
ε2∂FF

[
C(F )2Q(2)(t, F )

]
Q(0)(t, F )→ δ(F − f) as t→ t+0 ,

(3.5.3)

for t > t0

3.5.4 The Backward Equation

Next, let us consider the Kolmogorov backward equation for Q(k) given by
−∂t0Q(k) = µ(α)∂αQ

(k) +
1

2
ε2α2

[
C(f)2∂ffQ

(k) + 2ρ
ν(α)

α
C(f)∂fαQ

(k)

+

(
ν(α)

α

)2

∂ααQ
(k)

]
Q(k) → αkδ(F − f) as t0 → t−,

where we have abbreviated Q(k)(t0, f, α, t, F ) as Q(k). To cancel the drift term, we
change variables from α to a = Y (t, t0, α). As seen in Section 3.5.2 the change of
variables is provided by

∂α → ∂αY (t, t0, α)∂a = X(t, t0, y(t0, t, a))∂a,

∂t0 → ∂t0 − µ(α)∂αY (t, t0, α)∂a = ∂t0 − µ(y(t0, t, a))X(t, t0, y(t0, t, a))∂a.

Here, we use the function X as an abbreviation of ∂αY (t, t0, α). With this the
drift term vanishes and we get

−∂t0Q(k) =
1

2
ε2y(t0, t, a)2

[
C(f)2∂ffQ

(k) + 2ρν̃C(f)∂fαQ
(k)

+ν̃2∂ααQ
(k)
]

Q(k) → akδ(F − f) as t0 → t−,

where we have abbreviated Q(k)(t0, f, a, t, F ) as Q(k), and

ν̃ = ν̃(t0, t, a) =
ν(y(t0, t, a))

y(t0, t, a)
X(t, t0, y(t0, t, a)).

Note that this equation corresponds to the one in Hagan et al. [2020b, A.19]. The
only difference is the form of ν̃(t0, t, a) where we have an additional dependence on
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y(t0, t, a). Thus, until we reach the point where the explicit form of ν̃ is needed, our
reasoning is the same as that used by Hagan et al. [2018a, 2020b]. Nevertheless,
for completeness, we briefly present the main steps.

We start by changing the variable f to

z =
1

ε

∫ F

f

1

C(u)
du (3.5.4)

and re-scale Q(k) to be

Q(k)(t0, f, a, t, F ) =
ak

εB(0)
Q̃(k)(t0, z, a, t, F ) (3.5.5)

with variables

B(εz) = C(f) and Γ(εz) =
B′(εz)

B(εz)
.

This yields the equation



−∂t0Q̃(k) = y(t0, t, a)2

[
1

2
∂zzQ̃

(k) − 1

2
εΓ(εz)∂zQ̃

(k) − εkρν̃
a
∂zQ̃

(k)

+
1

2
ε2k(k − 1)

ν̃2

a2
Q̃(k) − ερν̃∂zaQ̃(k)

+ ε2k
ν̃2

a
∂aQ̃

(k) +
1

2
ε2ν̃2∂aaQ̃

(k)

]
Q̃(k) → δ(z) as t0 → t−,

where we have abbreviated Q̃(k)(t0, z, a, t, F ) as Q̃(k).

Now, to cancel the a dependent term y(t0, t, a)2 in front of every term, we change
the time scaling from t0 to s given by

s = S(t0, t, a) =

∫ t

t0

y(u, t, a)2 du.

Again, we consider the inverse denoted by t̃0 such that t0 = t̃0(s, t, a), where
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s = S(t0, t, a). Then we get the new PDE

∂sQ̃
(k) =

1

2
∂zzQ̃

(k) − 1

2
εΓ(εz)∂zQ̃

(k) − ερν̃
(
∂as ∂zsQ̃

(k) + ∂zaQ̃
(k)
)

+
1

2
ε2ν̃2

(
∂as

2 ∂ssQ̃
(k) + ∂aas ∂sQ̃

(k)
)
− εkρν̃

a
∂zQ̃

(k)

+ε2k
ν̃2

a
∂as ∂sQ̃

(k) +
1

2
ε2k(k − 1)

ν̃2

a2
Q̃(k)

+ε2k
ν̃2

a
∂aQ̃

(k) +
1

2
ε2ν̃2

(
2∂as ∂saQ̃

(k) + ∂aaQ̃
(k)
)

Q̃(k) → δ(z) as s→ 0+,

(3.5.6)

where we have abbreviated Q̃(k)(s, z, a, t, F ) as Q̃(k). Note that this equation cor-
responds to the ones in, for example, Hagan et al. [2020b, A.29] or Hagan et al.
[2018a, A.28]. Now, we argue that to leading order we only have the heat equation ∂sQ̃

(k) =
1

2
∂zzQ̃

(k)

Q̃(k) → δ(z) as s→ 0+.
(3.5.7)

Thus if we expand Q̃(k) = Q̃
(k)
0 + εQ̃

(k)
1 + ε2Q̃

(k)
2 + · · · we can conclude that the

first term Q̃
(k)
0 is given by the solution of (3.5.7) as

Q̃
(k)
0 (s, z, a) = Q̃

(k)
0 (s, z) =

1√
2πs

e−
z2

2s .

In particular, Q̃(k)
0 does not depend on a and thus ∂aQ̃(k) is actually of order O(ε)

and the last two terms of (3.5.6) are of order O(ε3) and can be neglected.

3.5.5 Computing Q̃(2)

With (3.5.6) we can set up the two PDEs for Q̃(0) and Q̃(2). Without explicitly
writing them down, we can still see that for k = 2 the PDE contains all the terms
of k = 0 and the additional terms of the last lines. Since our goal is to express
Q̃(2) in terms of Q̃(0) and to insert this back into the forward equation, we use the
ansatz

Q̃(2)(s, z, a, t, F ) = H(s, z, a, t, F )e2εb(s,a)z+ε2c̃(s,a)z2+ε2G(s,α)

and determine the coefficients in such a way that the PDE for H corresponds to
the one of Q̃(0).
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This yields the PDE given by

∂sH =
1

2
∂zzH −

1

2
εΓ(εz)∂zH − ερν̃

(
∂as ∂zsH + ∂zaH

)
+

1

2
ε2ν̃2

(
∂as

2 ∂ssH + ∂aas ∂sH
)
−
(
s∂sb+ b− ρν̃

a

)
2εz

s
H

−
(
s∂sc̃+ 2c̃− 2ρν̃

(
∂ab+ ∂sb ∂as

))ε2z2

s
H

+

(
− ∂sG+ c̃+ 2b2 − 4

ρν̃

a
b+

ν̃2

a2
− bΓ0 − 2ρν̃

(
∂ab+ ∂sb ∂as

))
ε2H

+2

(
b− ρν̃

a

)
ε

(
∂zH +

z

s
H

)
− 2

(
ρν̃b− ν̃2

a

)
ε2∂as ∂sH,

(3.5.8)

where we have abbreviated H(s, z, a, t, F ) as H. Here Γ0 = Γ(0) is a suitable
approximation of Γ(εz) with order O(ε2). To bring the equation of H closer to
the one for Q̃(0) we set b such that

s∂sb+ b− ρν̃

a
= 0,

in which case b has the form

b(s, a) =
1

as
I1(s, t, a)

with I1 = I1(s, t, a) = ρ

∫ s

0

ν̃
(
t̃0(x, t, a), t, a

)
dx.

Switching the integration variable from x to u = t̃0(x, t, a), I1(s, t, a) may be
written as

I1(s, t, a) = ρ

∫ t

t̃0(s,t,a)

ν̃
(
u, t, a

)
y2(u, t, a) du

= ρ

∫ t

t̃0(s,t,a)

ν
(
y(u, t, a)

)
y(u, t, a)X(t, u, y(u, t, a)) du.

Note that here the only s dependence of the integral I1 comes from the boundary
t̃0(s, t, a). To handle the term containing ε(∂zH + z

s
H) we recall that

H0(s, z) =
1√
2πs

e−
z2

2s

and that ∂zH0(s, z) + z
s
H0(s, z) = 0. With this the PDE of order O(ε) is

∂sH =
1

2
∂zzH −

1

2
εΓ0∂zH − ερν̃∂as ∂zsH.
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As in Hagan et al. [2020b] we can show through the concrete form of H0 that H1

has the form

H1(s, z) = −1

2
sΓ0∂zH

0 − I3(s, t, a)∂zzzH
0

with I3 = I3(s, t, a) =
1

2
ρ

∫ s

0

ν̃(t̃0(x, t, a), t, a)∂aS(t̃0(x, t, a), t, a) dx.

Using our new form of ν̃ and the explicit form of ∂aS(t̃0(x, t, a), t, a) given by

∂aS(t̃0, t, a) = 2

∫ t

t̃0

y(u, t, a)∂ay(u, t, a) du

= 2

∫ t

t̃0

y(u, t, a)X(t, u, y(u, t, a))−1 du,

we get

I3(s, t, a) = ρ

∫ t

t̃0(s,t,a)

ν(y(u, t, a))y(u, t, a)X(t, u, y(u, t, a))

×
∫ t

u

y(v, t, a)X(t, v, y(v, t, a))−1 dv du.

Moreover, we can conclude as in Hagan et al. [2020b] that

ε

(
∂zH +

z

s
H

)
=

3I3

s2

ε2z2

s
H −

(
3I3

s2
− 1

2
Γ0

)
ε2H +O(ε3).

Before determining the parameters c̃ and G in (3.5.8) we rewrite the last term in
terms of H. For this note that to order O(ε2) we have

ε2∂sH =
1

2
ε2s∂zzH =

1

2
ε2

(
z2

s2
− 1

s

)
H.
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With this, the PDE in (3.5.8) simplifies to

∂sH =
1

2
∂zzH −

1

2
εΓ(εz)∂zH − ερν̃

(
∂as ∂zsH + ∂zaH

)
+

1

2
ε2ν̃2

(
∂as

2 ∂ssH + ∂aas ∂sH

)
−
[
s∂sc̃+ 2c̃− 2ρν̃∂ab+ 6

I3

s
∂sb

−
(

2ρν̃s∂sb− ρν̃b+
ν̃2

a

)
∂as

s

]
ε2z2

s
H

+

[
− ∂sG+ c̃+ 2b2 − 4

ρν̃

a
b+

ν̃2

a2
− ρν̃

a
Γ0 − 2ρν̃∂ab

+ 6
I3

s
∂sb−

(
2ρν̃s∂sb− ρν̃b+

ν̃2

a

)
∂as

s

]
ε2H.

3.5.5.1 Computing c̃

From the above equation it is clear that we should choose c̃ in order to cancel the
ε2z2

s
H term. This means we set

s∂sc̃+ 2c̃− 2ρν̃∂ab+ 6
I3

s
∂sb−

(
2ρν̃s∂sb− ρν̃b+

ν̃2

a

)
∂as

s
= 0.

Multiplying by s and summarizing the terms yields

∂s
(
s2c̃
)

+ 6I3∂sb = 2sρν̃∂ab+ ∂as
ν̃2

a
+
(

2ρν̃s∂sb− ρν̃b
)
∂as

= 2sρν̃∂ab+ ∂as
ν̃2

a
+
(

2ρν̃∂s
(
sb
)
− 3ρν̃b

)
∂as.

Taking into consideration that I3 was chosen to satisfy

∂sI3 =
1

2
ρν̃∂as,

we can conclude that c must solve

∂s
(
s2c̃
)

= −6∂s
(
I3b
)

+
ν̃2

a
∂as+ 2ρν̃

(
∂s
(
sb
)
∂as+ s∂ab

)
.

To explicitly solve this, let us first consider the last term of this equation. We get

∂s
(
sb
)
∂as+ s∂ab = ∂s

(
1

a
I1

)
∂as+ ∂a

(
1

a
I1

)
=

1

a
∂aS∂sI1 −

1

a2
I1 +

1

a
∂aI1. (3.5.9)
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Recall that I1(s, t, a) is defined as

I1(s, t, a) = ρ

∫ t

t̃0(s,t,a)

ν
(
y(u, t, a)

)
y(u, t, a)X(t, u, y(u, t, a)) du.

In particular, this means for the a-derivative that we have

∂aI1(s, t, a) = −∂at̃0(s, t, a)ρν̃(t̃0(s, t, a), t, a)y2(t̃0(s, t, a), t, a)

+ρ

∫ t

t̃0(s,t,a)

∂a

(
ν(y(u, t, a))y(u, t, a)X(t, u, y(u, t, a))

)
du.

Following Hagan et al. [2020b] we can see that we have

∂aS(t̃0(s, t, a), t, a) = y2(t̃0(s, t, a), t, a)∂at̃0(s, t, a).

Thus (3.5.9) reduces to

∂s
(
sb
)
∂as+ s∂ab

= − 1

a2
I1(s, t, a) +

1

a
ρ

∫ t

t̃0(s,t,a)

∂a

(
ν(y(u, t, a))y(u, t, a)X(t, u, y(u, t, a))

)
du

= −1

a
sb+

1

a
ρ

∫ t

t̃0(s,t,a)

∂a

(
ν(y(u, t, a))y(u, t, a)X(t, u, y(u, t, a))

)
du,

and yields

2ρν̃
[
∂s
(
sb
)
∂as+ s∂ab

]
=

− ∂s
(
s2b2

)
+

2ρν̃

a
ρ

∫ t

t̃0(s,t,a)

∂a

(
ν(y(u, t, a))y(u, t, a)X(t, u, y(u, t, a))

)
du.

Switching from c̃ to c = c̃+ 2b2 we finally get

∂s
(
s2c
)

= −6∂s
(
I3b
)

+
ν̃2

a
∂as+ ∂s

(
s2b2

)
+

2ρν̃

a
ρ

∫ t

t̃0(s,t,a)

∂a

(
ν(y(u, t, a))y(u, t, a)X(t, u, y(u, t, a))

)
du.

Now, we only need to integrate over s to conclude that

s2c(s, a) = s2b2 +
1

a
I2(s, t, a)− 6I3(s, t, a)b+

2

a
I4(s, t, a).
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Here the integral functions are given by

I2(s, t, a)

=

∫ s

0

∂aS
(
t̃0(x), t, a

)
ν̃
(
t̃0(x), t, a

)2
dx

=

∫ t

t̃0(s,t,a)

∂aS
(
u, t, a

)
ν(y(u, t, a))2X(t, u, y(u, t, a))2 du

= 2

∫ t

t̃0(s,t,a)

ν(y(u, t, a))2X(t, u, y(u, t, a))2

∫ t

u

y(v, t, a)∂ay(v, t, a) dv du

= 2

∫ t

t̃0(s,t,a)

ν(y(u, t, a))2X(t, u, y(u, t, a))2

∫ t

u

y(v, t, a)X(t, v, y(v, t, a))−1 dv du

and

I4(s, t, a)

=

∫ s

0

ρν̃(t̃0(x, t, a), t, a)ρ

∫ t

t̃0(x,t,a)

∂a

(
ν(y(v, t, a))y(v, t, a)X(t, v, y(v, t, a))

)
dv dx

= ρ2

∫ t

t̃0(s,t,a)

ψ(u, t, a)

∫ t

u

∂aψ(v, t, a) dv du.

Here the function ψ is defined as

ψ(u, t, a) = ν(y(u, t, a))y(u, t, a)X(t, u, y(u, t, a)).

3.5.5.2 Computing G

Analogously to determining c̃, we set G to cancel the remaining ε2H term. This
means

∂sG = c̃+ 2b2 − 4
ρν̃b

a
+
ν̃2

a2
− ρν̃

a
Γ0 − 2ρν̃∂ab+ 6

I3

s
∂sb

−
(

2ρν̃s∂sb− ρν̃b+
ν̃2

a

)
∂as

s

= c̃+ 2b2 − 4
ρν̃b

a
+
ν̃2

a2
− ρν̃

a
Γ0 − s∂sc̃− 2c̃

= −∂s(sc)− ∂s(sb)Γ0 +
ν̃2

a2
.

Now we can integrate over s and conclude that

G(s, a) = −sc− sbΓ0 +
I5(s, t, a)

a2
,
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with

I5(s, t, a) =

∫ s

0

ν̃(t̃0(x, t, a), t, a)2 dx =

∫ t

t̃0(s,t,a)

ν(y(v, t, a))2X(t, u, y(u, t, a))2 du.

3.5.6 The Effective Forward Equation

With these choices we have found the following PDE for H:
∂sH =

1

2
∂zzH −

1

2
εΓ(εz)∂zH − ερν̃

(
∂as ∂zsH + ∂zaH

)
+

1

2
ε2ν̃2

(
∂as

2 ∂ssH + ∂aas ∂sH
)

H → δ(z) as s→ 0+,

where we have abbreviated H(s, z, a, t, F ) as H. Since this is the same equation
as for Q̃(0)(s, z, a, t, F ), we can identify H(s, z, a, t, F ) as Q̃(0)(s, z, a, t, F ) to order
O(ε2). So, we have

H(s, z, a, t, F ) = Q̃(0)(s, z, a, t, F ).

Thus we have shown that

Q̃(2)(s, z, a, t, F ) = Q̃(0)(s, z, a, t, F )e2εb(s,a)z+ε2c̃(s,a)z2+ε2G(s,a),

and by further approximating the exponential function we can conclude that

Q̃(2)(s, z, a, t, F ) = Q̃(0)(s, z, a, t, F )eε
2G(s,a)(1 + 2εb(s, a)z+ ε2c(s, a)2z2). (3.5.10)

Now, to express this in terms of the original variables α and t0, simply recall our
previous changes of variable

a = Y (t, t0, α)

and s =

∫ t

t0

y(u, t, a)2 du.

Furthermore, recall that y was defined as the inverse of Y . Thus, we can express
y(u, t, a) as

y(u, t, a) = y(u, t, Y (t, t0, α)) = Z(t, u, t0, α).

With this we can express s in terms of α as

s =

∫ t

t0

Z(t, u, t0, α)2 du.

Making these changes in the integral functions I1–I5 yields those found in Assump-
tion III.

102



4 Effective Markovian Projection

Building on the results of Chapter 3, this chapter aims to further deepen our under-
standing of the possible applications which may be derived using the approximation
techniques outlined in Chapter 3. Special focus is placed on the pricing of bas-
ket options, which are derivatives depending on multiple rates. This extends the
applicability of our techniques by allowing the consideration of multidimensional
financial derivatives.

To motivate our research, we recall the current set-up resulting from Chapter
3. We deduced a general arbitrage free computational framework which allows
explicit pricing formulas for European call options. Using these European call
options, we calibrate our model to observable market data. This provides us with
a fully parametrized financial market model. From a practical perspective we now
progress and apply this model to evaluate an existing portfolio of assets. Even
though explicit formulas are available in the case of European call options, this
does not guarantee that the valuation of other financial instruments can be done
with ease. One class of instruments which are very common in practice are options
on baskets respectively the spread of individual rates. The motivation behind this
is very intuitive since an option on the difference between two interest rates allows
to control the risk coming from varying interest rate term structures.

From a practical perspective, the pricing of derivatives depending on baskets is
not trivial. Having a financial market model available for each individual rate,
it is in general not clear which dynamics govern the basket. For special types of
models such as Black baskets, see Antonov [2020] or the basket of nSABR models,
see Hagan et al. [2021a,b] it is possible to show that the baskets are governed by
the same model structure as the individual rates which in turn allows for explicit
pricing formulas for basket options.

Therefore, our motivation for this piece of research is to extend our existing com-
putational framework to a multidimensional set-up where each individual rate is
governed by a financial market model in accordance to Chapter 3. As observed in
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Section 3.3.2, the possibility to model a single rate with a ZABR model compared
to an SABR model provides more control in the calibration procedure and can be
used to achieve a better fit to these more advanced products such as CMS spreads.
We analyse these calibration advantages in more detail and show how it is possible
to exploit these in a multidimensional set-up, applying explicit pricing formulas
for basket products.

Our work is inspired by the work of Hagan et al. [2021a,b] where explicit formulas
for CMS spread options are derived using normal SABR models for the individual
rates. The core idea behind this work is to consider the basket of individual rates
and perform an approximation using singular perturbation techniques of the basket
to characterize it through a suitable model. The techniques presented therein are,
however, not directly applicable to other stochastic volatility (SV) models using
e.g. ZABR models for the individual rates. The reason behind this are additional
drift terms. In Chapter 3 the model is formulated using a martingale measure.
When considering a single rate, this is no restriction and can be achieved using a
change of measure. When multiple rates are involved, however, in most cases it
becomes impossible to find a measure which becomes a martingale measure for all
considered rates at the same time. Hence, additional drift terms appear and the
model does not satisfy the conditions for the techniques in Chapter 3 any more.

To overcome this problem, we do not consider a direct approximation of the basket
itself, and instead focus on the individual rates. For this we project the models
individually to another SV model. In Chapter 3 we already derived the projection
to certain types of SABR models and we extend this projection to any desired SV
model. For our application we have a projection onto a normal SABR in mind. To
achieve this, we combine the techniques outlined in Chapter 3 with the Markovian
projection technique. We call the resulting technique the Effective Markovian
Projection (EMP). We present multiple algorithms to implement the EMP. This
allows a fast and accurate approximation from one SV model onto another and,
using the results based on baskets of normal SABR models, we can explicitly
price basket options. We demonstrate this using CMS spread options as well as
call options on mid-curves. In addition we present explicit numerical results to
show how the additional flexibility in the calibration of the individual rates can be
transferred to a better control on the prices of basket options. The projection to
other SV models also provides other benefits depending on the chosen model and
we use this to derive explicit approximation formulas for the probability density
function of a model using the Johnson’s SU distribution and a moment matching
algorithm.

The rest of this chapter presents the publication Felpel et al. [2022a] starting from
its introduction. This is an Accepted/Original Manuscript of an article published
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by Taylor & Francis Group in Quantitative Finance on 18.03.2022, available online:
https://doi.org/10.1080/14697688.2022.2043558.

4.1 Introduction

Markovian projection was introduced to the area of quantitative finance by Piter-
barg [2006], and Andersen and Piterbarg [2010a], where it was originally applied to
produce closed-form approximations for European option prices on basket models
for stocks, multi-factor interest rate models and hybrid interest rate/FX models.
Since then the method has been extended and refined. The Heston stochastic
volatility model has been considered by Antonov et al. [2008] under the assump-
tion of zero correlation between the Brownian motions driving the asset and the
volatility processes. The displaced diffusion model [Antonov and Misirpashaev,
2009] and the SABR-LIBOR model [Tsuchiya, 2015] have also been investigated.
Other works on the standard SABR model include Karlsmark [2013], and Kienitz
and Wetterau [2013].

In the present paper we use results from our recent work on general stochastic
volatility models [Felpel et al., 2021] to extend the scope of application for Marko-
vian projection.

In particular, our novel approach allows pricing (and calibration) of multi-asset
options using a large range of time-homogeneous stochastic volatility models with
asset dynamics specified by

dFt = vtC(Ft) dW
(1)
t , Ft0 = f,

dvt = µ(vt) dt+ ν(vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(4.1.1)

This class of stochastic differential equations (SDEs) covers all of the standard
stochastic volatility models widely applied in practice. The model and parameters,
as specified by the functions C(·), µ(·) and ν(·), are chosen to ensure the best fit to
the current (discrete) market implied volatility surface and provide dynamics that
are suitable for risk management and hedging of exotic contracts. The generality
of the specification allows the flexibility and control necessary to ensure good
calibration under varying market conditions. In our applications, we focus on
multi-rate interest rate derivatives and consider constant maturity swap (CMS)
spread and mid-curve options as primary examples.
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In summary, our research objectives are threefold: We provide a new Markovian
projection technique, showcase applications on interest rate derivatives with mul-
tiple underlying rates and provide new results on moment-matching techniques
outlining their application on general stochastic volatility models.

Our approach, to which we give the name Effective Markovian Projection, allows
the projection of any general stochastic volatility model onto another model within
the class specified by (4.1.1). This entails identifying the stochastic volatility model
that, in a sense yet to be specified, best approximates the original dynamics. In
Felpel et al. [2021] we derived an effective partial differential equation (PDE) for
the dynamics specified by (4.1.1). This PDE may be interpreted in terms of a
parametric (Bachelier) local volatility model [Dupire, 1994] using Markovian pro-
jection [Gyöngy, 1986]. Owing to a common underlying structure of the effective
PDE, it is possible to find parametrizations for specific stochastic volatility models
that provide good approximations to the general model.

When considering the application of Markovian projection to multi-factor baskets,
we shall choose the reference model in such a way that it allows the effective
modelling of general basket dynamics. To this end, we focus on the normal SABR
model as our reference model since it can be shown that under a suitable numéraire
the basket dynamics of normal SABR models is again a normal SABR model
[Hagan et al., 2021b,a]. Having specified how to proceed in terms of the projection
and the choice of the reference model, we provide numerical recipes for applying
the method.

The remainder of the paper consists of five sections. Section 4.2 provides the
main theoretical results. After briefly summarizing the theoretical background
of Markovian projection [Gyöngy, 1986], we introduce Effective Markovian Pro-
jection, which is based on effective probability theory [Felpel et al., 2021, Hagan
et al., 2014]. The numerical methods used for computing the projection are also
introduced, in particular ATM-Matching, Minimal Point Matching and N -Point
Matching. It should be emphasized that Effective Markovian Projection is directly
applicable in the full general stochastic volatility setting. This is in contrast to
classical Markovian projection, which must be tailored to the specific process, as
seen for the general SABR model. It is known that this may produce approxi-
mations for volatility dynamics that are crude for long-dated instruments [Kienitz
and Wetterau, 2013]. A brief analysis of the approximation quality is given. We
also describe an Effective Markovian Projection based on moment matching for the
case of the normal SABR model. Moment matching is applied to both NIG dis-
tributions and the family of Johnson distributions. The former approach has been
considered previously by Charvet and Ticot [2011], and Eriksson et al. [2009], and
we show that there are some limitations in its application. The approach based
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on Johnson distributions provides a more stable and accurate result. The close
connection of certain Johnson distributions to distributions arising from a SABR
model has previously been recognized by Choi et al. [2019]. Section 4.3, focuses
on examples from interest rate derivatives. Fixing notation and definitions, we
consider CMS spread and mid-curve options as our main examples. With the un-
derlying definitions at hand we consider a ZABR-type model as our base model
and the normal SABR model as our reference model in Section 4.4, where we derive
the corresponding projection and basket (spread) dynamics. Here we also specifi-
cally address numéraire issues. The resulting model amalgamates all the features
of the base model and parametrizes the implied volatility surface in terms of a
normal SABR model for each maturity, enabling the pricing of CMS spread and
mid-curve options. Section 4.5 provides numerical illustrations of all the methods
considered in the previous sections. In particular, we demonstrate the additional
flexibility in modelling and calibrating underlying rates in a multi-rate framework
when considering base models of the ZABR type. We also illustrate the effects
of changing model parameters. Section 4.6 concludes by summarizing the results
and giving prospects for future research.

4.2 Effective Markovian Projection

In this section we present our main result and introduce a new technique called
Effective Markovian Projection (EMP). The idea underlying this technique is to
combine the results of singular perturbation techniques (see e.g. Felpel et al. [2021],
Hagan et al. [2018a]) with the technique of Markovian projection (see e.g. Gyöngy
[1986], Andersen and Piterbarg [2010c]). To begin with we present the underlying
mathematical framework necessary to apply the technique.

4.2.1 Mathematical Framework

Since our focus in this paper is on applications related to interest rate derivatives,
we specify our modelling framework in a manner consistent with standard litera-
ture in the area, such as Andersen and Piterbarg [2010a]. Consider the abstract
probability space (Ω,F ,P) together with an augmented filtration {Ft} over a fi-
nite time horizon [0, T ].1 For our applications we consider the n-dimensional real
space Rn as our sample space, Ω, and assume the filtration to be generated by a

1Here T may be interpreted as the maturity of a claim. If several maturities are considered,
T is set to the maximum of these times.
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d-dimensional Brownian motion Wt, i.e., of the form

Ft = σ {Wu|u ≤ t} ,

augmented to be complete and right-continuous.

On this probability space we consider general Itô processes, Xt, specified by a
system of SDEs of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt. (4.2.1)

with adapted functions µ : [0, T ]×Rn → Rn and σ : [0, T ]×Rn → Rn×d such that∫ T

0

|µ(s, x)| ds <∞,∫ T

0

|σ(s, x)|2 ds <∞ a.s.

Furthermore, we assume that there exists a unique strong solution in the sense of
Øksendal [2003] to this SDE.

Remark 4.2.1. The topic of existence and uniqueness of solutions to SDE is of
vast complexity and can heavily depend on the specific coefficients included in
the equations. There are some general results available, e.g., assuming that the
coefficients are Lipschitz and follow a growth condition of the form

|µ(t, x)|+ |σ(t, x)| ≤ K(1 + |x|)
|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|,

for some constants constants K, L > 0. Then (4.2.1), with X0 = x0, admits
a unique and almost sure continuous solution such that Xt is Ft-adapted, see
Øksendal [2003, Theorem 5.2.1].

Remark 4.2.2. In most cases one makes the assumptions of Remark 4.2.1 to guar-
antee the existence and uniqueness of the SDEs. This is, however, not universally
applicable to all stochastic volatility models. For instance, in the SABR model,
where the function C(·) of (4.1.1) is given by C(x) = xβ for β ∈ (0, 1), it is appar-
ent that the global Lipschitz condition is not satisfied. The SABR model is closely
related to the CEV process, for which exact distributions are available, see Lindsay
and Brecher [2012], which allows consideration of the SABR model, see Horvath
and Reichmann [2018]. Given the broad range of SDEs used as financial mod-
els, see e.g., Andersen and Piterbarg [2010a,b,c], there are cases that may not be
covered by these considerations. The area of degenerate SDEs with non-Lipschitz
coefficients is being actively researched, see Suresh Kumar [2013], Chuni [2020].
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There is, however, the possibility that none of these results is applicable to a chosen
model. Then, of course, one should use the techniques we explore in this paper
with caution. Paraphrasing Taylor [2010], one then operates under the typical,
but possibly dangerous, assumption that a unique solution exists and performs
the computation anyway, treating the results with a healthy dose of scepticism.

4.2.2 Effective Markovian Projection for Generalized Stochas-
tic Volatility

Before introducing EMP, let us first recall classical Markovian projection, which
is based on the results in Gyöngy [1986], and Andersen and Piterbarg [2010c]. We
consider a one-dimensional process Yt on a probability space equipped with a fil-
tration constructed in accordance with Section 4.2.1 where the process is governed
by the SDE

dYt = β(t, ω)> dWt. (4.2.2)

Here β(·, ·) is a very general d-dimensional Ft-adapted process (hence the depen-
dence on ω ∈ Ω) whose norm is uniformly bounded away from 0 and (4.2.2) admits
a unique and strong solution. Then by Andersen and Piterbarg [2010c, Corollary
A.1.3] there exists an SDE

dxt = b(t, xt) dW̃t,

in terms of a one-dimensional Brownian motion W̃t, and non-random coefficient
b(·, ·) satisfying

b(t, x)2 = E[β(t, ω)>β(t, ω)|Yt = x],

such that xt admits a weak solution having the same one-dimensional probability
distribution as Yt. This mapping of one model onto another is known as Markovian
projection.

Putting this result in the context of financial applications, the existence of the weak
solution makes it possible to price European options. We shall call the function,
b(t, x), the projected volatility. In a certain sense it is the local volatility function
for a Bachelier model in analogue to the results of Dupire [1994], and Derman and
Kani [1994], who define the local volatility function in the context of a log-normal
model. Throughout the remainder of the text, we define the projected volatility
as

σproj(t, x) := b(t, x), (4.2.3)

and, when referring to the squared quantity, call it the projected variance.
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The main challenge for practical applications then lies in the proper evaluation of
the conditional expectation. Possible approaches are based on Gaussian or least-
square approximations, see Andersen and Piterbarg [2010c]. We call the approach
using these approximation techniques classical Markovian projection (CMP). Here
we propose an alternative approach based on effective probability theory, see
e.g. Felpel et al. [2021], Hagan et al. [2014], which allows fast and accurate approx-
imation. To motivate our new technique, we consider general time-homogeneous
stochastic volatility models of the form

dFt = vtC(Ft) dW
(1)
t , Ft0 = f,

dvt = µ(vt) dt+ ν(vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt,

(4.2.4)

which satisfy the assumptions of Section 4.2.1 and, in addition, the constraints
imposed by Theorem 1 of Felpel et al. [2021]. For convenience these assumptions
can be found in Appendix 4.7.1. With this setup, we provide the central result of
effective Markovian projection.

Proposition 4.2.3. Given a general stochastic volatility model (4.2.4), satisfying
the assumptions of Theorem 1 of Felpel et al. [2021], the square of the projected
volatility function (4.2.3) is approximated as

σ2
proj(t, x) ≈ C(x)2a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
, (4.2.5)

where the coefficients a, b, c, z and G are specified in Appendix 4.7.1.

We call this projection from a general stochastic volatility model onto a (Bachelier)
local volatility model the Effective Markovian Projection (EMP).

Proof. Let p(t0, f, α, t, F,A) be the probability density function that Ft = F and
vt = A at time t, given that Ft0 = f and vt0 = α at time t0. With this we can
describe the conditional probability

σ2
proj(t, x) = C(x)2E

[
v2
t

∣∣Ft = x
]

= C(x)2E
[
v2
t I{Ft=x}

]
E
[
I{Ft=x}

]
= C(x)2

∫∞
0
A2p(t0, f, α, t, x, A) dA∫∞

0
p(t0, f, α, t, x, A) dA

= C(x)2Q
(2)(t0, f, α, t, x)

Q(0)(t0, f, α, t, x)
,

where the function Q(k) is defined by

Q(k)(t0, f, α, t, F ) :=

∫ ∞
0

Akp(t0, f, α, t, F,A) dA.
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Applying Theorem 1 of Felpel et al. [2021] we have

Q(2)(t0, f, α, t, x) ≈ P (t, x)Q(0)(t0, f, α, t, x),

with
P (t, x) = a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
, (4.2.6)

where the coefficients a, b, c, z and G are specified in Felpel et al. [2021] and
provided in Appendix 4.7.1.

In the context of singular perturbation theory, this approximation has a truncation
error of O(ε2), which is the same order of accuracy provided by the SABR implied
volatility formula (see Hagan et al. [2014]). To conclude this section, we provide
further remarks on the applicability of the technique.

Remark 4.2.4. Although we have formulated EMP in terms of a stochastic volatility
model, it may also be applied to a stochastic variance model (e.g. the Heston
model). In this case the projected variance is expressed as

σ2
proj(t, x) = C(x)2Q

(1)(t0, f, α, t, x)

Q(0)(t0, f, α, t, x)
.

As shown by Hagan et al. [2018a], in this setting an analogous representation of

Q(1) = P (t, x)Q(0)(t0, f, α, t, x)

is applicable, yielding the representation of the projected volatility function as in
Proposition 4.2.3.

Remark 4.2.5. We stress that the function C(·) need not be restricted to be a
parametric function. Choosing a non-parametric function allows the applica-
tion of EMP to stochastic local volatility models (see Alexander and Nogueira
[2008], Göttker-Schnetmann and Spanderen [2015], Saporito et al. [2019] for a
non-exhaustive list).

Remark 4.2.6. To guarantee that the resulting model is arbitrage-free, it is enough
to ensure that the projected volatility function remains positive. Assuming that
C(·) > 0, one then requires the additional constraint that P (·, ·) > 0. The function
C(·) determines the movement of the at-the-money volatility point when the for-
ward moves, this is the case for all models used in practical applications. Market
practitioners call this function the backbone.

111



4.2.3 Projection onto another Model

Using EMP we wish to project one model, which we call the base model, onto
another which we call the projection model. This is useful because some models
are more tractable than others, e.g., possessing analytical solutions for various
contingent claims, or because modelling becomes simpler, e.g., in the case of basket
options using Gaussian models.

The idea is to consider matching the corresponding projected volatility functions
of both models. To this end, let us consider two projected variances σ2

proj and σ̃2
proj

of the form (4.2.5)

σ2
proj(t, x) = C(x)2a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
(4.2.7)

σ̃2
proj(t, x) = C̃(x)2ã(t)2eG̃(t)

(
1 + 2b̃(t)z̃(x) + c̃(t)z̃(x)2

)
, (4.2.8)

where the relationship between the coefficients in the underlying mathematical
models is to be determined using EMP. In most applications, the projection model,
specified by σ̃2

proj(·, ·), will, in some sense, allow simplification of the original (base)
problem, specified by σ2

proj(·, ·).

We shall explore the case where the projection model is the displaced SABR
(dSABR) model, which has the form

dFt = vt(Ft + d)β dW
(1)
t , Ft0 = f,

dvt = νvt dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

(4.2.9)

We assume that the parameters for the function C̃(·), i.e., d and β, are specified
prior to projection. Later, most of our applications will use normal SABR (nS-
ABR) as the projection model, which is just the special case of the above system
of SDEs where β = 0 and d is irrelevant.

At this stage of the analysis, the coefficients and parameters of the base model,
with projected variance given by (4.2.7), are left unspecified. Our goal is to find
values for the remaining three parameters of the dSABR model (ν, α and ρ) in
such a way that the resulting variance in (4.2.8), matches (4.2.7) as closely as
possible. This may be achieved by proceeding in two steps:

1) We start by determining the relationships between the coefficient functions
of the volatility function in (4.2.8) and those specifying (4.2.7), so as to
ensure the best possible fit between the two models. For reasons that will
become apparent when we implement step two, we do not work directly on
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the expression (4.2.8) but instead use a slightly modified specification of the
variance given by

σ̃2
proj(t, x) = C̃(x)2â(t)2

(
1 + 2b̃(t)z̃(x) + c̃(t)z̃(x)2

)
. (4.2.10)

Since we have assumed that C̃(·) is pre-specified, z̃(·) is also known, and
we need only match the remaining coefficient functions â(·), b̃(·) and c̃(·).
We describe three methods for specifying these coefficient functions. The
first two methods consider the well posed problem of solving for the three
parameters by specifying three simultaneous equations. The third approach
is a numerical fit, which minimizes the error between the projected variances.

2) In the second step we consider the problem of determining the underlying
model parameters based on the relationships of the coefficients â(·), b̃(·) and
c̃(·) found in step 1.

In what follows we present three different methodologies that may be used to match
the projected variances in accordance with Step 1. Thereafter, in Section 4.2.3.4,
we explore the problem of determining the parameters in Step 2.

4.2.3.1 ATM Matching

To match the three coefficients â(·), b̃(·) and c̃(·) of (4.2.10), we need at least
three distinct equations for the problem to be well posed. There is some freedom
in choosing these equations and the choice may be individually tailored to the
corresponding problem at hand. The first approach we present is based exclusively
on matching the at-the-money (ATM) initial point, x = f . Considering only this
one point we choose to match the value of the volatility functions in addition to
the value of the first two derivatives at x. This corresponds to

σ2
proj(t, f) = σ̃2

proj(t, f)

∂xσ
2
proj(t, f) = ∂xσ̃

2
proj(t, f)

∂xxσ
2
proj(t, f) = ∂xxσ̃

2
proj(t, f).

(4.2.11)

Evaluating the first equation and noting that z(f) = z̃(f) = 0 we deduce that

â(t)2 =
C(f)2

C̃(f)2
a(t)2eG(t). (4.2.12)
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Evaluating the derivatives at x = f then yields

∂xσ
2
proj(t, f) = 2σ2

proj(t, f)

[
C ′(f)

C(f)
+ b(t)z′(f)

]
∂xxσ

2
proj(t, f) = 2σ2

proj(t, f)

[
C ′(f)2

C(f)2
+
C ′′(f)

C(f)
+ 4

C ′(f)

C(f)
b(t)z′(f)

+ b(t)z′′(f) + c(t)z′(f)2

]
.

Taking into account that z′(x) = 1
C(x)

we further simplify this to

∂xσ
2
proj(t, f) = 2σ2

proj(t, f)

[
1

C(f)

(
C ′(f) + b(t)

)]
∂xxσ

2
proj(t, f) = 2σ2

proj(t, f)

[
1

C(f)2

(
C ′(f)2 + C ′′(f)C(f) + 3C ′(f)b(t) + c(t)

)]
.

(4.2.13)

Thus, matching (4.2.11) with the derivatives provided in (4.2.13), requires a match-
ing of the bracketed terms. In addition to (4.2.12), we then have

b̃(t) =
C̃(f)

C(f)
(C ′(f) + b(t))− C̃ ′(f)

c̃(t) =
C̃(f)2

C(f)2

(
C ′(f)2 + C ′′(f)C(f) + 3C ′(f)b(t) + c(t)

)
− C̃ ′(f)2 − C̃ ′′(f)C̃(f)− 3C̃ ′(f)b̃(t).

We shall refer to this algorithm as EMP-ATM matching.

4.2.3.2 Minimal Point Matching

The second matching approach we propose is the minimal point (EMP-MP) match-
ing algorithm and is based on matching the projected variances of the two models
at three distinct points. These three points are the minimal requirement for a well-
posed specification for deducing the three coefficients â(·), b̃(·) and c̃(·) of (4.2.10).
When including in-the-money (ITM) and/or out-the-money (OTM) values, the
method allows better fitting of the wings. As one of the matching points we take
the ATM value, x = f , corresponding to the condition (4.2.12) of the form

â(t)2 =
C(f)2

C̃(f)2
a(t)2eG(t).
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Inserting this into the expressions for the variances, for each x we get the condition

2b̃(t)z̃(x) + c̃(t)z̃(x)2 =
C(x)2C̃(f)2

C̃(x)2C(f)2

(
1 + 2b(t)z(x) + c(t)z(x)2

)
− 1.

By selecting two additional points (x1 and x2) these equations allow an explicit
solution where the new coefficients are given by

b̃(t) =
1

2

r(t, x1)z̃(x2)2 − r(t, x2)z̃(x1)2

z̃(x1)z̃(x2)2 − z̃(x1)2z̃(x2)
,

c̃(t) =
r(t, x2)z̃(x1)− r(t, x1)z̃(x2)

z̃(x1)z̃(x2)2 − z̃(x1)2z̃(x2)
,

with

r(t, x) =
C(x)2C̃(f)2

C̃(x)2C(f)2

(
1 + 2b(t)z(x) + c(t)z(x)2

)
− 1.

4.2.3.3 N-Point Matching

The last matching algorithm we propose is based on numerical minimization. Spec-
ifying a set of more than three points, it is always possible to minimize an error
function that quantifies the difference between the projected variances evaluated
at these points. To mention a few possibilities, this includes functions based on the
absolute error, relative error or mean squared error. This procedure may yield a
better fit along the entire curve, but comes at the cost of requiring a minimization
problem to be solved, since the coefficients are no longer explicit. Compared to
a direct calibration of the underlying models, based, for example, on the implied
volatility curve, this approach will still provide computational advantages owing to
the simpler form of the volatility functions. We denote this approach the EMP-NP
matching algorithm.

This method is the most general in its application since it is possible to formulate
the numerical minimization problem for any model considered. In particular, when
the underlying model parameters are the objective variables in the minimization,
steps one and two are performed simultaneously. However, to guarantee realistic
and stable parameters, additional constraints may be required while performing
the minimization.

4.2.3.4 Parameters of the Projection Model

Applying one of the two matching algorithms presented in Section 4.2.3.1 or Sec-
tion 4.2.3.2, we derived functions â, b̃ and c̃, which characterize the variance
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(4.2.10). We now consider the problem of deducing the underlying model pa-
rameters in the dSABR projection model.

From Felpel et al. [2021], the corresponding coefficients for the dSABR model are
given by

ã(t) = α, b̃(t) =
ρν

α
, c̃(t) =

ν2

α2
, and

G̃(t) = ρναβ(f + d)β−1t = b̃(t)α2β(f + d)β−1t, (4.2.14)

with the transformed variable given by

z̃(x) =
1

1− β
(
(x+ d)1−β − (f + d)1−β) ,

for β < 1. To determine the underlying model parameters we follow a recipe
that relies on the projection model being the dSABR model. It may, however, be
possible to generalize this approach for more complicated models. Given that f ,
β and d are known, our goal is to determine the parameters ρ, ν and α.

i) Start by specifying an appropriate fitting maturity t. Using C̃(x) = (x+ d)β

and the coefficient specification of the original problem (C(x), a(t), b(t), c(t)
and G(t)), compute values for â(t)2, b̃(t) and c̃(t) using the equations in
Section 4.2.3.1 or Section 4.2.3.2.

ii) Using the definition of α̂(t)2, and (4.2.14) we can now solve for α. In terms
of the quantities found in Step i), find α2 as the zero of the equation

0 = α2eb̃(t)α
2β(f+d)β−1t − â(t)2. (4.2.15)

A good initial guess for α2 is just the first order Taylor series approximation
of the expression, and it may even be possible to provide a solution using the
Lambert W function [Lambert, 1758]. Here we see why â(·) was identified
for the analysis—it allows the inversion of a single equation, given in terms
of α and constants (using coefficient values of the base model).

iii) Finally, determine ρ and ν as

ρ =
b̃(t)√
c̃(t)

and ν2 = c̃(t)α2.

Following this approach we observe that determination of the parameters is quite
straightforward, but may require imposing the restrictions that c̃(t) > 0 and
|b̃(t)/

√
c̃(t)| ≤ 1.
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Notice that in the case of the nSABR model where β = 0 the expression (4.2.15)
simplifies to

α2 = â(t)2,

which leads to

σ̃2
proj(t, x) = α2

(
1 + 2

ρν

α
z̃(x) +

ν2

α2
z̃(x)2

)
with z̃(x) = x− f . This allows for fast and accurate solutions.

4.2.4 Approximation Quality

We now briefly consider the quality of approximation made by our method. In
essence our technique consists of three steps. The first step uses singular perturba-
tion techniques to derive an expression of the form (4.2.7), which has a truncation
error of order O(ε2)—see Felpel et al. [2021] for full justification. For other papers
with approximations of this order of accuracy see Hagan et al. [2014, 2018a, 2021a].

The second and third steps correspond to the recipe described in Section 4.2.3,
i.e., when matching (4.2.7) with (4.2.8), and determining the underlying model
parameters. As seen, for example in Felpel et al. [2021] and in the flexibility of
(4.2.7), even simple SV models can produce volatility functions with complicated
shapes. Since, these coefficients may be very general and have a varying number of
underlying parameters (see (4.1.1)), we are not able to provide explicit theoretical
error bounds for these approximation steps. We can, however, provide convincing
numerical evidence showing that the approximation error is not egregious when
one projects onto a model with enough flexibility.

To this end we conduct four types of numerical experiment. In the first, given in
Section 4.5.1, we explore the error associated with the volatility when projecting
the base model onto a projection model using a large range of realistic model
parameters appropriate for the model. This shows, in the specific case of projecting
dZABR onto nSABR, that there is enough modelling flexibility in the projection
model to produce good results. In using other model combinations similar analyses
would need to be conducted to ensure that there is not an egregious loss of fidelity.

Given the promising results from the first set of numerical experiments, we further
look at the impact of approximation on the implied volatility in Section 4.5.2. This
shows that results are accurate and realistic, with the ability to control left and
right tail dynamics. In the third (Section 4.5.3), we consider the pricing of various
derivative instruments using the projection techniques, again with favourable re-
sults around the at-the-money levels. Finally, we consider the explicit densities of
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the reference and projection models in Section 4.5.4. The latter results are based
on the approach of moment matching.

4.2.5 Moment Matching

We now explore a second application of EMP in which we derive explicit approxi-
mating formulas for the density and characteristic functions of a general stochastic
volatility model. In this case we produce an explicit projection of the base model
onto an nSABR model. Thereafter we use techniques based on a moment matching
algorithm.

Concentrating on the nSABR for the moment, we fix a maturity and use explicit
formulas for the first four moments available. As was demonstrated by Charvet
and Ticot [2011] or Choi et al. [2019], these moments can be characterized in their
standardized forms, i.e., by the meanM, variance V , skew S and excess kurtosis
K as

M = E
[
Ft
]

= f

V = µ2 =
α2

ν2
(x− 1)

S =
µ3

µ
3/2
2

= ρ(x+ 2)
√
x− 1

K =
µ4

µ2
2

− 3 = (x− 1)

(
1 + 4ρ2

5
(x3 + 3x2 + 6x+ 5) + 1

)
,

where
µi = E

[
(Ft − f)i

]
and x = eν

2t.

Having these moments available, we proceed in the spirit of Charvet and Ticot
[2011] and Tavin [2012], and consider an approximation of this distribution using
a parametric distribution of a specific form. Charvet and Ticot [2011] demon-
strated this in the case where the approximating parametric distribution was the
normal-inverse Gaussian (NIG) distribution. This distribution has four underlying
parameters and explicit formulas for its moments. It is, therefore, possible to set
up a well posed system of equations to determine the underlying parameters by
matching the moments of the distributions. Corresponding algorithms to deter-
mine the parameters of the NIG distribution based on the nSABR moments can
be found in Charvet and Ticot [2011] or Eriksson et al. [2009].

Instead of considering the NIG distribution, we use the Johnson’s-SU distribution
(see Johnson [1949]). Johnson’s-SU distribution defines a random variable, X,
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through a transformation of a standard normal random variable, Z, given by

X = ξ + λ sinh

(
Z − γ
δ

)
.

The probability density function of this random variable, φS, is specified in terms
of the standard normal density function, φN , as

φS(x) =
δ

λ
√(

x−ξ
λ

)2
+ 1

φN

(
γ + δ sinh−1

(
x− ξ
λ

))
.

As outlined by Choi et al. [2019], both the distributions generated by the nSABR
model, as well as Johnson’s-SU distribution can be seen as special cases of the
hyperbolic normal stochastic volatility model. This underscores the similarity of
the distributions and motivates our choice. As in the case of the NIG distribution,
the Johnson’s-SU distribution has four underlying parameters and explicit formulas
for the first four moments, see, e.g., Choi et al. [2019] or Tuenter [2001]. This allows
the use of the matching algorithm proposed by Tuenter [2001] to determine the
underlying parameters of the distribution. An outline of the algorithm is given in
Algorithm 3, for all technical details we refer to the original paper.

Algorithm 3: Matching algorithm proposed by Tuenter [2001].
Data: MomentsM, V , S, K
Result: Johnson’s-SU distribution parameters δ, γ, λ, ξ
set β1 = S2 and β2 = K + 3;

define m(ω) = −2 +
√

4 + 2(ω2 − β2+3
ω2+2ω+3

);
define f(ω) = (ω − 1−m(ω))(ω + 2 + 0.5m(ω))2;
compute boundaries (ω1, ω2) using procedure in Tuenter [2001];
if f(ω1) ≤ β1 then

break;
end
solve for ω∗ s.t. f(ω∗) = β1;

set m = m(ω∗) and Ω = −sgn(S) sinh−1

(√
ω∗+1
2ω∗

(
ω∗−1
m
− 1
))

;

set δ = 1
log(ω∗)

, γ = Ω
log(ω∗)

, λ =
√
V

ω∗−1

√
2m
ω∗+1

and

ξ =M− sgn(S)
√
V

ω∗−1

√
ω∗ − 1−m;

Having determined the underlying parameters, we now have a completely specified
probability distribution with explicit formulas for the density function. In the case
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of the NIG distribution, explicit formulas for the characteristic function are also
available and allow the application of popular computation techniques using the
fast Fourier transform (FFT) [Carr and Madan, 1999].

To extend these results to more complex base models the following steps may be
used:

i) Using EMP, project the base model onto the nSABR model.

ii) Using the moment matching algorithm, fit a Johnson’s-SU or NIG distribu-
tion to the nSABR model.

iii) Using the Johnson’s-SU or NIG distribution, explicit formulas for the density
function and/or the characteristic function are available.

This procedure allows us to describe the distribution of the base model at a fixed
maturity by an explicit analytical formula.

4.3 Interest Rate Derivatives

Having derived the general methodology we now demonstrate the applicability
of the new approach by considering the pricing of interest rate products, where
the underlying swap rates are governed by more complex models of the ZABR
type. We consider the displaced diffusion ZABR model (dZABR) as our primary
example in this setting. The dZABR is specified by the following system of SDEs:

dFt = vt(Ft + d)β dW
(1)
t , Ft0 = f,

dvt = νvγt dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

We focus our attention on options on constant maturity swap (CMS) spreads and
mid-curves. Constant maturity swaps are interest rate swaps where one party pays
a money market rate, e.g., the 3M Libor rate every quarter and the other party
pays a swap rate, e.g., the 10y swap rate on an annual basis. For this type of swap,
a corresponding fair constant maturity swap rate can be determined, and it turns
out that it is different from the swap rate of liquid fixed-for-floating interest rate
swaps, see Andersen and Piterbarg [2010c]. The reason for this is that the CMS
can be equivalently described by a replicating portfolio of cash-settled swaptions
over the full strike range. This replicating portfolio depends on the full implied
swaption volatility surface. The CMS spread is now the difference of two such
CMS rates, e.g., the 10y and 2y rates.
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The other instrument we consider is the mid-curve swaption. This instrument is
a swaption for which the underlying swap starting date is not at the expiry date
but later. An example of such a swaption is one that expires in 1 year on a swap
starting in 2 years after expiry of the trade and maturing 3 years later, thus in 5
years after expiry of the option. In the special case where the underlying rates are
modelled using nSABR, options on CMS spreads have been extensively studied
(see e.g. Hagan et al. [2021b]). When the rates are governed by Black basket
dynamics the pricing of options on CMS spreads and mid-curves can be found in
Antonov [2020]. With our new approach we extend these pricing techniques to
allow a general stochastic volatility model as the underlying model for the single
rates. We demonstrate this in the case where each rate follows dZABR dynamics
under its own measure.

We start by introducing some notation for the interest rate derivatives and payoffs
that we consider in the remainder of the paper.

4.3.1 Interest Rate Notation

To introduce the previously mentioned pricing techniques, let us first specify the
setting and corresponding notation. For the general tenor structure we consider
the starting date T1 and the end date T2. The payment dates in between are
denoted by T1 < t1, . . . , tn ≤ T2. Furthermore, the exercise date is denoted T and
we assume that payment happens at time T0. We use the notation DF (T, T0) to
denote the discount factor from the payment date to the exercise date and define
the annuity factor A(t, T1, T2) and the forward level L(t, T0, T1, T2) by

A(t, T1, T2) =
∑

T1<tn≤T2

δnDF (t, tn) and

L(t, T0, T1, T2) =
∑

T1<tn≤T2

δnDF (t, T0, tn) =
A(t, T1, T2)

DF (t, T0)
,

respectively. Here δn = tn− tn−1 denotes the day count fraction. Finally, the swap
rates R(t, T1, T2) are defined as

R(t, T1, T2) =
DF (t, T1)− DF (t, T2)

A(t, T1, T2)
. (4.3.1)

Notice that the definition of the swap rates can be further generalized as in Hagan
et al. [2021b]. For our situation, however, this generalization is not necessary and
we retain the notation used in Antonov [2020].

121



4.3.2 Options on CMS Spreads

The first interest rate derivatives we consider are options on CMS spreads. To this
end, we provide a short summary of the results of Hagan et al. [2021b], where the
goal is the evaluation of caplets, floorlets or swaplets on CMS spreads. We denote
by (Ri(t))i=1,2 the two swap rates R(t, T0, Ti). Moreover, we define the spread,
S(t), on the two rates as

S(t) = R2(t)−R1(t)

with initial value s = r2 − r1. Using a caplet as an example, the payoff function
at the expiry date T is given by

Vspread(T ;T,K) = DF (T, T0)(S(T )−K)+.

In turn, the value of the caplet at an earlier date is given as the conditional
expectation under a suitable martingale measure. Under the forward measure,
i.e., with the discount factor DF (·, T0) as the numéraire, the value is expressed as

Vspread(t;T,K) = DF (t, T0)ET0
[
(S(T )−K)+

∣∣t].
Without loss of generality we consider the value at the initial time, t = 0. To
evaluate this expression, Hagan et al. introduced a suitable measure, H, under
which the spread process becomes a martingale2. By further analysing the con-
vexity correction the value of the caplet can be evaluated as (see e.g. Hagan et al.
[2021b], Equation 3.22)

Vspread(0;T,K) = DF (0, T0)
(
(1−(s−K)λs)C

S(0;T,K)+λsQ
S
C(0;T,K)

)
. (4.3.2)

Here the expressions CS and QS
C denote the vanilla and quadratic calls of the

spread under the martingale measure H, i.e.,

CS(t;T,K) = EH
[
(S(T )−K)+

∣∣t]
QS
C(t;T,K) = EH

[(
(S(T )−K)+

)2∣∣t].
The coefficient λs denotes the convexity coefficient which, following the suggestion
of Hagan et al. [2021b], is set in a manner consistent with the underlying swap
rates as

λs =
λ2Q

2
S(0;T, r2)− λ1Q

1
S(0;T, r1)

QS
S(0;T, s)

.

2In the following applications the explicit form of the measure H is not of importance—only
the dynamics of the spread measure expressed in this measure is relevant.
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Here the functions QS
S and Qi

S express the quadratic swaps

QS
S(t;T,K) = EH

[
(S(T )−K)2

∣∣t]
Qi
S(t;T,K) = Ei

[
(Ri(T )−K)2

∣∣t],
and the coefficients λi are the convexity coefficients of the underlying rates deter-
mined by

L(0, T0, T0, Ti)

L(T, T0, T0, Ti)
=
Li(0)

Li(T )
= 1 + λi(Ri(T )−Ri(0)) + · · · . (4.3.3)

Given the convexity coefficients and the explicit values of the vanilla and quadratic
calls this provides a closed form pricing formula.

By construction, see Hagan et al. [2021b], these formulae satisfy put-call parity.

4.3.3 Options on Mid-curves

Another popular semi-vanilla product is the mid-curve call option. This option
provides the holder with the right to enter into a swap with starting time T1 and
maturity T2 at some exercise date T . As shown by Antonov [2020], and Feldman
[2020], the value of the mid-curve call option can be expressed as a call option on
the mid-curve rate, Rmc(T ) = R(T, T1, T2), under the annuity measure, which uses
numéraire Amc(T ) = A(T, T1, T2). At time 0, this yields the value

Vmc(0, T,K) = Amc(0)EAmc

[
(Rmc(T )−K)+

]
. (4.3.4)

Note that by definition the mid-curve rate, Rmc(T ), is a martingale under the cho-
sen annuity measure. To evaluate the expectation we do not assume an additional
model for the mid-curve rate, but instead focus on the choice of the underlying
swap rates. Therefore, in the rest of this section, we follow the approach presented
by Antonov [2020] and express the mid-curve rate as a weighted spread on swap
rates. We start by considering the rates Ri(T ) and deduce that

Rmc(T ) = R2(T )
A2(T )

Amc(T )
−R1(T )

A1(T )

Amc(T )
.

Defining new modified rates R̂i(T ) as

R̂i(T ) =
Ri(T )

M̂i(T )
=

Ri(T )
Amc(T )Ai(0)
Ai(T )Amc(0)

,
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the mid-curve rate becomes

Rmc(T ) = R̂2(T )
A2(0)

Amc(0)
− R̂1(T )

A1(0)

Amc(0)
.

At this point we highlight an important structural difference in comparison to the
CMS spread options presented previously in Section 4.3.2, namely that under the
chosen annuity measure the mid-curve rate, Rmc(T ), as well as the rates, R̂i(T ),
are martingales at the same time. To evaluate the CMS spread options we work
under a measure where only the spread is a martingale, with the result that the
weighted spread and all the single rates are simultaneously martingales.

To characterize these new modified rates, R̂i(T ), we assume that the martingales
M̂i(T ) are approximated by

M̂i(T ) =
Amc(T )Ai(0)

Ai(T )Amc(0)
≈ 1 + λ̂i(Ri(T )−Ri(0)) + · · · ,

and, as demonstrated by Antonov [2020], this allows us to recover the distributions
of the modified rates from the original ones by considering approximate option
prices using the relation

EAmc

[
(R̂i(T )−K)+

]
≈ EAi

[(
Ri(T )(1− λ̂iK)−K(1− λ̂iri)

)+
]
. (4.3.5)

4.4 Projection of ZABR-type Models

In this section we choose the base model to be displaced ZABR (dZABR). To
enable the efficient application of EMP, we first provide explicit expressions for
the coefficient functions. Given that dZABR is specified as (4.1.1) with C(Ft) =
(Ft + d)β, µ(vt) = 0 and ν(vt) = νvγt , the coefficients are

a(t) = α, b(t) = ρναγ−2, c(t) = ν2α2(γ−2)
(
1 + (γ − 1)ρ2

)
, and

G(t) = −ρ2ν2α2(γ−1)(γ − 1)t+ ρναγβ(f + d)β−1t, (4.4.1)

with the transformed variable given by

z(x) =
1

1− β
(
(x+ d)1−β − (f + d)1−β) ,

for β < 1.
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Note that we have chosen the dZABR base model as our primary example to en-
sure that notation remains relatively simple. More complicated examples such as
the mean-reverting ZABR or Heston models may be considered using the corre-
sponding coefficients given, for example, in Felpel et al. [2021] and Hagan et al.
[2018a].

As our initial applications of EMP, we project the dZABR model onto the dSABR
and nSABR models. These examples illustrate how the method works with more
extensive numerical analyses performed in Section 4.5.

Having described the general framework for pricing interest rate derivatives in the
previous section, we next show how to apply EMP to a general stochastic volatility
model for the underlying swap rates, with applications to the aforementioned CMS
spreads and mid-curves.

4.4.1 Projection onto Displaced SABR and Normal SABR
Models

As our first example, we illustrate the projection of dZABR onto dSABR at time
T = 1. Parameters for the base model are given in column one of Table 4.1. In
column two we list the parameters for the projection onto a dSABR model. Since
this model uses the same C(·) function as the base model, which leads to the
same z(·) functions, the projection volatility functions for the base and projection
models take the identical functional form in terms of x. Thus the three projection
constants are uniquely determined by any of the EMP-ATM, EMP-MP or EMP-
NP approaches. This exact fit is shown in the top left panel of Figure 4.1.

To show an example where there is not an exact fit, we change the displacement
and β parameters in the projection model, thus ensuring that the C(·) functions
are no longer identical. Columns three, four and five show the fits for the three
approaches, while the three remaining panels of Figure 4.1 show the results graph-
ically, with the corresponding points used for matching represented by crosses.

As a second example, we now project the same dZABR base model onto the nSABR
model. Columns two to five of Table 4.2 show the projection parameters obtained
using the three approaches. The corresponding graphs are shown in the four panels
of Figure 4.2. As can be seen, even though the projection model has three less
degrees of freedom (d, β, and γ), the projection model still yields relatively good
results in each case. Larger deviations are observed in the wings, when compared
to the projections obtained using the dSABR projection model.
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dZABR dSABR dSABR dSABR dSABR
base EMP (any) EMP-ATM EMP-MP EMP-NP

f 0.005 0.005 0.005 0.005 0.005
d 0.002 0.002 0.003 0.003 0.003
α 0.012488 0.01254811 0.00730453 0.00731934 0.00717598
β 0.4 0.4 0.3 0.3 0.3
ν 0.3 0.71771391 0.69462229 0.75552662 0.72011663
ρ −0.3 −0.30273701 −0.26276722 −0.32425693 −0.22915447
γ 0.8 - - - -

Table 4.1: Parameters used for the dZABR base model (column one). The other
columns display the parameters for the dSABR projection models that best match
the base dZABR projected volatility for the various projection methods used.
The right three columns used a projection model with a different displacement
parameter, d, so that C̃(·) is not identical to the base model.
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Figure 4.1: Projected variance, σ2
proj(T, ·), for the parameter sets given in Table 4.1.

Green crosses indicate matching points used.
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dZABR nSABR nSABR nSABR nSABR
base EMP-ATM EMP-MP EMP-MP EMP-NP

f 0.005 0.005 0.005 0.005 0.005
d 0.002 - - - -
α 0.012488 0.00170596 0.00170596 0.00170596 0.001644852
β 0.4 - - - -
ν 0.3 0.66074529 0.84698470 0.69725701 0.73344524
ρ −0.3 −0.17780185 −0.41495911 −0.01811182 −0.073130682
γ 0.8 - - - -

Table 4.2: Parameters used for the dZABR base model. The right four columns
display the parameters for the nSABR projection models that best match the base
dZABR projected variance. We applied direct matching using all EMP matching
approaches with two different sets of matching points for the EMP-MP approach.
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Figure 4.2: Projected variance, σ2
proj(T, ·), for the parameter sets given in Table 4.2.

Green crosses indicate matching points used.
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4.4.2 Options on CMS Spreads

Given the pricing formula for options on CMS spreads in (4.3.2), we now consider
valuation of vanilla and quadratic calls on the spread and swap rates. This depends
heavily on the model chosen for the single rates. Assuming that each swap rate is
modelled using dZABR, the call options can be valued using the methods described
by Andreasen and Huge [2011b], and Felpel et al. [2021]. However, it is not clear
how to value options on the spread process since the underlying model is not
known. Therefore, in the explicit case, where each rate follows an nSABR model
under its respective measure, Hagan et al. [2021b,a] showed that it is possible to
approximate the dynamics of the spread using an nSABR model.3 To achieve
this, singular perturbation techniques were used and the resulting approximation
has the same order of accuracy as the classical SABR implied volatility formulas.
Applying these results and the following steps, we can evaluate CMS spread options
using dZABR models for each of the rates:

i) Given that each swap rate Ri(t) is modelled using a dZABR model, we use
EMP to deduce approximate rates R̃i(t) characterized in terms of nSABR
models.

ii) We approximate the spread, S(t), on the swap rates as

S(t) ≈ S̃(t) = R̃2(t)− R̃1(t).

Using the results in Hagan et al. [2021b,a] this allows for an approximation
of the spread in terms of an nSABR model.

iii) We evaluate the corresponding vanilla and quadratic calls using the explicit
formulas presented in Hagan et al. [2021b] and can, in turn, evaluate the
price of the option on the CMS spread.

This approach can be extended to the general SV models of (4.2.4). We do, how-
ever, stress that this approach introduces multiple approximations at various steps,
making it numerically very challenging to provide proper error estimation. For the
case where the swap rates are modelled using a dZABR model, as assumed above,
our numerical examples look very promising, see Section 4.5. This suggests that
the new technique has the potential to provide a valid computational framework
for a vast class of stochastic volatility models.

3This actually also holds true when we replace the spread by a basket of nSABR models
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4.4.3 Options on Mid-Curves

To deduce the price of a call option on a mid-curve, we proceed in a fashion
similar to that as above. In Section 4.3.3 it was shown that the underlying mid-
curve rate can be expressed as a weighted spread of two modified rates, R̂i(T ).
From an analytical perspective we cannot deduce a general dynamic of the rates
R̂i(T ). We can, however, resort to numerical means in the spirit of Antonov
[2020]. Given that the underlying rates Ri(T ) follow a dZABR model under their
own measure, we assume that the modified rates R̂i(T ) are governed by a dZABR
model under the annuity measure Amc. Using the parameters of the rates Ri(T )
we can then calibrate the model parameters of the rates R̂i(T ) using (4.3.5). Since
we know that the rates R̂i(T ) are martingales we approximate them using EMP
onto corresponding nSABR models. Given that the original weighted sum of the
rates, R̂i(T ), is also a martingale under the Amc-measure, we can use the more
general basket result of Hagan et al. [2021b,a] to deduce that the mid-curve rate,
Rmc(T ), is approximated by an nSABR model. This reduces the evaluation of the
option on mid-curves to a vanilla call option under an nSABR model.

4.5 Numerical Results

In order to evaluate the quality of our new approximation technique we perform
a series of numerical experiments. We start by considering the various matching
algorithms described in Section 4.2.3 and investigate their ability to fit the pro-
jected volatility function. Thereafter, we explore the implications on the implied
volatility surface and demonstrate the flexibility obtained when pricing various in-
terest rate derivatives. We conclude by analysing the accuracy of the distribution
matching approach proposed in Section 4.2.5.

For most of our examples we shall consider dZABR models specified using the
parameter sets listed in Table 4.3. In the case where γ = 1 these models reduce
to dSABR models. In this simpler setting, the main difference, when compared
with the nSABR model, is the additional parameter β. We, therefore, highlight
the dependence on this parameter and consider various values for it.

For most of our examples we desire time independent parameter values of the
projected nSABR model. We select a universal fitting maturity of T = 1. To
provide some intuition behind this choice, consider the dZABR coefficients given
in Section 4.4. We observe that only G(·) has dependence on the maturity time.
Considering, for example, the EMP-MP approach in Section 4.2.3, this dependence
is translated into a scaling of the initial volatility. Thus, the fitting maturity T = 1
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Parameter Set 1 Set 2 Set 3 Set 4

f 0.005 0.005 0.005 0.005
α 0.3f 1−β 0.3f 1−β 0.3f 1−β 0.3f 1−β

d 0.002 0.002 0.002 0.002
ν 0.3 0.3 0.3 0.5
ρ −0.3 −0.7 0 −0.3
T 5 5 10 1
γ 0.8 0.9 0.8 0.9

Table 4.3: Parameter values for dZABR models used in numerical experiments.

provides a compromise between capturing the initial behaviour and the dynamical
behaviour of the G(·) coefficient. If not mentioned otherwise, we apply EMP using
this fitting maturity.

4.5.1 Approximation Quality of the dZABR

For our first numerical experiment, we analyse the approximation quality of our
technique. As discussed in Section 4.2.4, an exact derivation of the approximation
error is not viable, we therefore consider an illustrative numerical experiment using
the dZABR model.

4.5.1.1 Projected Volatility

To apply the different matching algorithms described in Section 4.2.3 we require
additional parameters to be specified. In particular, other than the at-the-money
value, two additional matching points are required to implement the EMP-MP
algorithm. To demonstrate the influence of these points on the projection, we
evaluate the projection volatility function for the dZABR model using parameter
set 1 with β = 0.2 and β = 0.8, and generate the curve using the EMP-MP
algorithm for different values of the matching points. The errors observed between
the original model and the approximating curves are presented in Tables 4.4 and
4.5.

For this example we observe a reasonably good fit in all cases. Here the match
including the point x1 = 0.5f provides the best fit for the left wing, whereas the
match including the additional points x1 = 2f and x2 = 3f provides an excellent
fit for the longer right wing. The latter also provides a reasonably good fit for the
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x dZABR x1=0.5f
x2=2f

x1=0.5f
x2=3f

x1=2f
x2=3f

0.5f 8.48e−6 0 0 3.08e−6

0.75f 4.57e−6 −2.45e−7 −3.48e−7 1.04e−6

f 2.58e−6 0 0 0
1.5f 5.73e−6 5.92e−7 1.41e−6 −4.36e−7

2f 1.97e−5 0 2.47e−6 0
3f 8.37e−5 −8.22e−6 0 0
4f 1.99e−4 −2.90e−5 −1.17e−5 −4.32e−6

Table 4.4: Values of the projected variance, σ2
proj(T, ·), for the dZABR model using

parameter set 1 with β = 0.2, and the error in the EMP-MP projection variance
for different values of the matching points, x1 and x2.

x dZABR x1=0.5f
x2=2f

x1=0.5f
x2=3f

x1=2f
x2=3f

0.5f 3.56e−6 0 0 4.10e−6

0.75f 3.55e−6 −2.18e−7 −3.55e−7 1.49e−6

f 3.75e−6 0 0 0
1.5f 5.85e−6 6.35e−7 1.73e−6 −7.33e−7

2f 1.18e−5 0 3.28e−6 0
3f 4.09e−5 −1.09e−5 0 0
4f 1.01e−4 −4.24e−5 −1.94e−5 −9.58e−6

Table 4.5: Values of the projected variance, σ2
proj(T, ·), for the dZABR model using

parameter set 1 with β = 0.8, and the error in the EMP-MP projection variance
for different values of the matching points, x1 and x2.

left wing. Thus, from now on, when we refer to the EMP-MP algorithm we shall
use the additional points x1 = 2f and x2 = 3f .

In Figure 4.3 we graph the projected variance generated by the original dZABR
model in comparison with the projected variance generated by the EMP-MP, EMP-
ATM and EMP-NP algorithms. When implementing the EMP-NP algorithm we
minimized the relative mean squared error evaluated at equally spaced grid points
from 0.5f to 3f , using steps of length 0.5f . It is observed that the EMP-MP and
EMP-NP approaches seem to outperform the EMP-ATM matching procedure.
With our choice of x1 = 2f and x2 = 3f as the additional matching points in
the EMP-MP algorithm, we observe a better fit along the right wing, whereas the
EMP-NP algorithm provides better results along the left wing.
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Figure 4.3: Projected variance, σ2
proj(T, ·), for the different EMP algorithms using

parameter set 1.

In conclusion we observe good fits for the projected dZABR model using EMP.
Comparing the matching algorithms, the multiple point algorithms seem to out-
perform the ATM matching algorithm in terms of stability and quality of approx-
imation.

4.5.1.2 Error Distribution

To further illustrate approximation quality, in particular when using the EMP-
ATM and EMP-MP approaches, we consider projections using a broad range of
parameters, which cover a large selection of values. We consider market-realistic
strikes in the range [0.7f, 1.3f ], and compute the mean absolute error using the two
methods, where the error is computed as the difference between projected variance
of the base and projected models sampled at 50 equal intervals over this range.
Error statistics are provided for 100 000 scenarios; ensuring that eG(t) < 150 and
c(t) < 10000. Correspondingly, the first factor of the projected variance, (4.2.7),
is given by (Ft + d)2βα2eG(t). If the values of G(·), given in (4.4.1), are too large
(in our case bigger than 5) this leads to unreasonably large values of the projected
volatility. The range of parameters, displayed in Table 4.6, are chosen to prevent
this. Here, as previously mentioned, we fixed T = 1. Since time only appears as
a factor in G(·), changing maturity will require changes to the parameter bounds
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parameter
f ∈ [0, 0.05]
d ∈ [0, 0.01]

α ∈ [0.0001, 0.1]
β ∈ [0.001, 0.95]
ν ∈ [0.01, 0.51]
ρ ∈ [−0.99, 0]
γ ∈ [0.05, 0.95]

T = 1

Table 4.6: Parameter ranges used for sampling.

to maintain realistic volatility ranges.

To present results, consider the following error levels c0 = 0, ci = 10−i, i = 1, . . . , 7.
Using these levels, we produce a discrete distribution of the mean absolute error
(less than the levels) and its corresponding cumulative distribution. These are
graphed in Figure 4.4.

Figure 4.5 shows the scenario that had the largest mean absolute error. In this
figure we also show the fit produced by the N -point matching approach with
N = 6.

Even in the worst scenario the approximation quality is not entirely egregious, with
the EMP-MPmethod performing reasonably well around the ATM price. However,
owing to the restriction of the parabolic shape of the projected variance curve,
which results from using the nSABR as the projection model, it is not possible to
accurately recover the shape of the left wing. This numerical experiment suggests
that the results lead to reasonable approximations over a wide parameter range,
representing a large range of realistic modelling cases, covering realistic intervals
of the forward f . While this analysis has been restricted to the case of projecting
dZABR onto nSABR, a similar exercise may be carried out for other projections.

4.5.2 Implied Volatility

The above results for the projected variance are promising. From a practical
perspective it is, however, not clear how differences in these projected variance
curves translate into pricing differences. We, therefore, generate implied volatility
curves for call prices using each algorithm. To generate the curves, we use the
numerical PDE framework described by Felpel et al. [2021] and Hagan [2015] to
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Figure 4.4: Histogram of the mean absolute differences for the projected variances
of the base and projected models for the EMP-ATM (left) and EMP-MP matching
methods (right).
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Figure 4.5: Worst case scenario corresponding to the nSABR projection parameter
values (rounded to 4 places) of f = 0.0089, d = 0.0096, α = 0.0020, β = 0.5697,
ρ = −0.0526, ν = 0.5092 and γ = 0.2678.

evaluate the corresponding probability density functions. Using the EMP-MP and
EMP-NP algorithms, and again projecting the dZABR model onto nSABR, this
results in a PDE characterized by{

∂tQ(t, F ) = ∂FF
[

1
2
σ2
nSABR(t, F )Q(t, F )

]
Q(t, F )→ δ(F − f) as t→ t−0 .

To solve this PDE, we must specify appropriate boundary conditions. Using EMP
we have two valid options available:
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i) The first approach is to solve the PDE for the density function in the setting
of an nSABR model. This implies a probability distribution on the whole
space and yields the boundary conditions

{
Q(t, F )→ 0 as F → −∞
Q(t, F )→ 0 as F →∞.

ii) The second approach is to solve the PDE in the setting of the original model,
using EMP to only approximate the projected volatility function. In the case
of the dZABR model, this approach respects the limits imposed on the model
at the displacement d, providing a probability distribution on the restricted
space. This is expressed using the boundary conditions

{
Q(t, F )→ 0 as F → −d−

Q(t, F )→ 0 as F →∞.

To provide some intuition on the choice of the boundary condition, the first ap-
proach yields a more consistent setup when considering the pricing of baskets,
whereas the latter allows for a more accurate approximation and maintains the
imposed restrictions on the domain of the model. In Figures 4.6 and 4.7 the nor-
mal implied volatility curves for the original model, using the framework described
by Felpel et al. [2021] and Hagan [2015], are compared with the curves generated by
the nSABR model using the EMP-MP and EMP-NP algorithms, under the same
framework and parameters under both boundary conditions described above. The
curves are computed using parameter set one. In Figures 4.8 and 4.9 a similar
comparison is provided using parameter set two. We observe a good fit of the im-
plied volatility curves for both approaches. In particular, the right wing is nearly
perfectly matched in most cases. The greatest difference is observed on the left
wing and for the largest value of β = 0.8. Similar results are observed in Tables 4.7
and 4.8, which show implied volatilities for parameter sets 3 and 4 computed under
the boundary condition (ii). Once again, the largest deviation in values is observed
in the left wing, which is still reasonable given that we are using an arbitrage free
approximation.

Note that the matching algorithms do not necessarily guarantee that the resulting
value of ρ is bounded by −1 and 1. To ensure that the nSABR models are arbitrage
free we imposed an additional bound of 0.999 on the absolute value of ρ.
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Figure 4.6: Normal implied volatility curves in bp computed using parameter set 1
and the full nSABR PDE.
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Figure 4.7: Normal implied volatility curves in bp computed using parameter set 1
with the PDE considering the barrier.
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Figure 4.8: Normal implied volatility curves in bp computed using parameter set 2
and the full nSABR PDE.

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
strike

14

16

18

20

22

24

im
pl

ie
d 

vo
la

til
ity

Beta 0.2
Original
EMP-MP
EMP-NP

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
strike

14

16

18

20

22

24

im
pl

ie
d 

vo
la

til
ity

Beta 0.4
Original
EMP-MP
EMP-NP

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
strike

16

18

20

22

24

im
pl

ie
d 

vo
la

til
ity

Beta 0.6
Original
EMP-MP
EMP-NP

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
strike

18

20

22

24

26

im
pl

ie
d 

vo
la

til
ity

Beta 0.8
Original
EMP-MP
EMP-NP

Figure 4.9: Normal implied volatility curves in bp computed using parameter set 2
with the PDE considering the barrier.

137



β = 0.2 β = 0.8

x dZABR EMP-MP EMP-NP dZABR EMP-MP EMP-NP
0.5f 21.14 21.94 21.13 19.14 22.95 19.56
0.75f 21.49 22.24 21.45 20.37 23.61 20.42
f 22.19 22.71 22.17 21.85 24.38 21.76

1.5f 25.98 26.20 26.05 25.57 27.21 25.46
2f 30.96 31.13 30.95 29.83 31.12 29.53
3f 40.90 40.97 40.64 38.62 39.44 37.56
4f 50.30 50.27 49.77 47.23 47.52 45.19

Table 4.7: Normal implied volatility in bp for the dZABR model computed using
parameter set 3 in comparison with the normal implied volatilities generated by
EMP.

β = 0.2 β = 0.8

x dZABR EMP-MP EMP-NP dZABR EMP-MP EMP-NP
0.5f 21.20 22.95 21.37 20.28 25.70 20.03
0.75f 18.69 19.65 18.75 19.89 22.69 19.56
f 16.83 16.87 17.03 19.91 20.17 20.05

1.5f 18.37 17.55 18.99 22.10 19.95 23.25
2f 23.33 22.48 23.94 26.34 24.13 27.53
3f 33.80 32.85 34.15 36.28 33.92 36.29
4f 43.80 42.66 43.80 46.35 43.42 44.66

Table 4.8: Normal implied volatility in bp for the dZABR model computed using
parameter set 4 in comparison with the normal implied volatilities generated by
EMP.

4.5.3 Pricing of Interest Rate Derivatives

Having shown that the approximation techniques yield satisfactory results, we go
a step further and demonstrate the possible benefits for interest rate derivative
pricing. To demonstrate the advantages consider the following toy model:

4.5.3.1 Setup

For our concrete application we shall consider the 1y2y- and the 1y5y-swap rates
as underlying rates and model them using dZABR models. We assume that the
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payment date corresponds to the exercise date T = 1. To show the additional
flexibility of using dZABR models in comparison to, for example, nSABR models,
we construct some sample data around the ATM values for each of the swap rates.
These sample points were constructed using the nSABR model with the parameters
presented in Table 4.9.

1y2y 1y5y

f 0.003 0.005
α 0.0009 0.0015
ν 0.3 0.3
ρ −0.5 −0.7

Table 4.9: Parameters of the nSABR models used to generate sample data for
swap rates.

Next, we specify a few variations of the dZABR model for consideration. The
values for the additional parameters in each of the versions are presented in Ta-
ble 4.10. For each rate and each version the parameters α, ν and ρ are calibrated
using the ATM samples. To be more precise we use sample points from 70%-ATM
to 130%-ATM in steps of 5%. In Figure 4.10 and Figure 4.11 we graph the corre-
sponding implied volatility curves for the rates. Call prices are computed using the
explicit formulas presented in Hagan et al. [2021b]. In these figures the additional
flexibility available for controlling the wings is clearly visible.

V1 V2 V3
β 0.4 0.4 0.5
γ 0.8 0.9 0.8
d 0.002 0.002 0.002

Table 4.10: Additional parameters for three versions of the dZABR model.

To price the interest rate derivatives presented in Section 4.3 we must specify
the correlation structure between swap rates. Here we assume a single driving
Brownian motion for the stochastic volatility and impose a correlation structure
between the rates of the form 1 ω ρ1y2y

ω 1 ρ1y5y

ρ1y2y ρ1y5y 1

 .
139



0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
strike

8

10

12

14

16

18

20

22

im
pl

ie
d 

vo
la

til
ity

1y2y Swap Rate
Samples
dZABR V1
dZABR V2
dZABR V3

Figure 4.10: Normal implied volatility curves in bp for the dZABR models cali-
brated to the 1y2y swap rate.
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Figure 4.11: Normal implied volatility curves in bp for the dZABR models cali-
brated to the 1y5y swap rate.

Using the results described in Section 4.4, we evaluate vanilla and quadratic call
options on a basket of nSABR models. To determine the dynamics of the spread
we use the results of Hagan et al. [2021b] to express the spread, S(T ), of two
nSABR models with parameters (f1, α1, ν1, ρ1) and (f2, α2, ν2, ρ2) as an nSABR
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model with parameters given by

fs = f2 − f1,

αs =
√
α2

2 − 2ωα1α2 + α2
1,

νs =
1

α2
s

(α2
2ν2 − ωα1α2(ν1 + ν2) + α2

1ν1),

ρs =
1

αs
(α2ρ2 − α1ρ1).

These parameters are derived under the measure H at the exercise time T .

We note that these parameters are a rough approximation. For a more precise
approximation the additional terms Γ and κ of Hagan et al. [2021b] must be con-
sidered. Moreover, similar parameters may be computed for the weighted spread.
For both generalizations we refer to Hagan et al. [2021b].

4.5.3.2 CMS Spreads

Using the method described in Section 4.4, we can price call options on the CMS
spread if we correctly specify the convexity coefficient. To determine the convexity
coefficient we follow the approach of Antonov [2020] and assume a flat yield curve.
The convexity coefficients are then given by

λi =
Ti − T

2
,

with a complete derivation of this expression provided in Appendix 4.7.3.

Having defined all necessary terms we use the parametrization presented in Ta-
ble 4.9 to compute the implied volatility of a call on a 5y − 2y spread with a
maturity of 1 year. The correlation parameter ω was set to 0.5, and, in order to
evaluate the expectations, we used the explicit formulas of Hagan et al. [2021b].
In Figure 4.12 the implied volatility curves for all possible combinations of the dZ-
ABR rates are presented. The additional correlation parameter ω was calibrated
to match the area from 90%-ATM to 110%-ATM with steps of size 2%. Here, we
clearly see how the additional control of the wing of the swap rates allows good
control of the wing of the CMS spread. In particular, this is useful when the qual-
ity of the data in the wings is questionable but the entire curve is required for risk
management.
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Figure 4.12: Normal implied volatility curves in bp for a caplet on the CMS
spread. All possible combinations of the dZABR models specified in Table 4.10
are presented.

4.5.3.3 Mid-Curves

In a manner similar to that used above we approximate the convexity coefficients
as

λ̂i =
T + Ti − T1 − T2

2
.

Using the approach described in Section 4.4.3 we evaluate the call prices on mid-
curves. For the annuity factors we use further approximations and set the initial
values to be

Amc(0) ≈ T2 − T1

A1(0) ≈ T1 − T
A2(0) ≈ T2 − T.

In Table 4.11 implied volatilities are shown for selected combinations of the dZABR
models. Again, better control of the right wing is achieved. To visualize the effects,
we computed the implied volatility of the expectation of (4.3.4), i.e., without the
additional factor coming from Amc(0). The results are shown in Figure 4.13.
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Strikes dZABR V1 V1 dZABR V2 V2 dZABR V3 V3
20 231.0 230.8 230.7
40 121.8 121.7 121.6
60 48.0 48.1 48.2
80 23.4 23.3 23.2
100 18.6 18.2 17.6
150 19.3 18.1 16.6
190 22.0 20.4 18.4

Table 4.11: Normal implied volatility of a call on the mid-curve for selected com-
binations of the dZABR models. All values are in bp.
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Figure 4.13: Normal implied volatility curves in bp for the caplet on the mid-curve
without scaling.

4.5.4 Explicit Probability Density Functions

For our last numerical demonstration we investigate the accuracy of various ap-
proximating distributions using the methodology described in Section 4.2.5. To be
more precise, we compute the grid according to the framework described in Ha-
gan [2015] and Felpel et al. [2021] and deduce an average probability density over
these intervals. In the notation of Hagan [2015] this corresponds to the function
(θj)j. For Johnson’s-SU distribution and the NIG distribution we evaluated the
corresponding mass over the interval. The parameters of Johnson’s-SU distribu-
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Figure 4.14: Probability over grid intervals for parameter set 2 and maturity T = 1.

tion were computed using the algorithm described in Section 4.2.5, and the NIG
parameters were determined using the method provided by Eriksson et al. [2009].
In Figure 4.14 the corresponding averaged probabilities are shown in comparison
with the original dZABR distribution and the approximated nSABR distribution
using the EMP-MP algorithm. The figures were generated using parameter set 2
of Table 4.9 with a slight modification of the maturity, which was set to T = 1.

As can be seen the approximation yields very good results and manages to cap-
ture the shape of the original distribution. In particular, both approximating
distributions produce a nearly perfect fit to the nSABR model. The quality of
dZABR approximation is of the same order as the EMP nSABR approximation of
dZABR. From a practical perspective, however, this approach must be carefully
applied when considering larger maturities. In Figures 4.15 and 4.16 the results
of the approximations are shown for maturities T = 5 and T = 7, with all other
parameters remaining the same.

Here, we observe that the Johnson distribution provides a better fit to the original
distribution than the NIG distribution. For larger maturities this approximation
is far from perfect—the corresponding moments are, however, perfectly matched.
This behaviour can only be explained if the underling distributions cannot be
characterized completely using only four moments. In particular, this implies
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Figure 4.15: Probability over grid intervals for parameter set 2 and maturity T = 5.
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Figure 4.16: Probability over grid intervals for parameter set 2 and maturity T = 7.
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one of two possibilities. The first possibility is that the higher moments of the
distribution, which are not matched, become more important and should be taken
into account when matching the parameters. The other possibility is that the
underlying distribution may fall foul of the ‘moment problem’. To provide some
intuition, consider the first example provided in Durrett [2010, Chapter 3.3.5]
concerning the standard log-normal distribution, of a random variable X, which
has probability density function

φlogN (x) =
1√
2πx

e−
log(x)2

2 for x ≥ 0.

It was shown that the standard lognormal distribution, as well as its modified
versions given by

φa(x) = φlogN (x)(1 + a sin(2π log(x)))

with a ∈ [−1, 1], all share the same moments, for all k, given by

E[Xk] = e
k2

2 .

The problem is that the moments of the log-normal distribution grow too quickly,
see Durrett [2010, Theorem 3.3.25], where a sufficient condition for good behaviour
is given by

lim sup
k

E[X2k]
1
2k

2k
= r <∞. (4.5.1)

Considering the leading order of the first four moments of the nSABR model,
provided in Section 4.2.5, we assume the moments are of the form

E[Xk] = O(x
(k−1)k

2 ) = O(eν̃
2t

(k−1)k
2 ),

which does not obey the condition in (4.5.1). In particular, the growth of the
moments increases with increasing maturity, influencing the speed of divergence.
This may be translated into the quality of the matching algorithm, explaining the
good fit for small maturities and the increasing discrepancies for larger maturities.

In conclusion, this suggests that our approach may not be universally applicable.
In particular, when considering larger maturities the results must be analysed
carefully, requiring a possible change of the matching algorithm to ensure the
best fit. For small maturities, however, this approach yields very good results,
which allows for closed-form formulas describing the distribution and characteristic
functions.
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4.6 Conclusion

In this paper we have considered the setting of general stochastic volatility models
as introduced by Felpel et al. [2021]. We have extended this work to allow pricing
and calibration of multi-rate interest rate derivatives. Effective Markovian Pro-
jection was used with the normal SABR model acting as a reference model. This
enabled us to apply the general setting to CMS spread and mid-curve options.
Using a moment matching method based on Johnson distributions we were also
able to make use of closed form solutions for pricing.

Future research will entail applying the Effective Markovian Projection method to
non-parametric stochastic local volatility models with further application of these
techniques for pricing derivatives.

4.7 Appendix

4.7.1 Coefficients for General Stochastic Volatility Models

Here we recall the necessary assumptions that apply to Theorem 1 of Felpel et al.
[2021].

Assumption V. The drift term, µ(·), is differentiable, with derivative µ′(·), and
a solution Y (t, t0, α) to the following PDE exists:

∂tY (t, t0, α) = µ(Y (t, t0, α))

Y (t, t, α) = α

Y (t0, t0, α) = α.

Assumption VI. The function Y is differentiable and has an inverse function
y(t0, t, a) such that

Y (t, t0, α) = a ⇔ α = y(t0, t, a).

Assumption VII. The functions

X(t, t0, α) = ∂αY (t, t0, α), Z(t, u) = Z(t, u, t0, α) = y(u, t, Y (t, t0, α)),

z(F ) =

∫ F

f

1

C(u)
du, s(t) = S(t0, t, α) =

∫ t

t0

Z(t, u, t0, α)2 du
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and

ψ(t, u, Z) = ν
(
Z(t, u)

)
Z(t, u)X

(
t, u, Z(t, u)

)
are well defined, X

(
t, u, Z(t, u)

)−1 exists, and the following integral functions are
defined:

I1(t) = ρ

∫ t

t0

ψ(t, u, Z) du,

I2(t) = 2

∫ t

t0

ν
(
Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I3(t) = ρ

∫ t

t0

ψ(t, u, Z)

∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I4(t) = ρ2

∫ t

t0

ψ(t, u, Z)

∫ t

u

∂Z

(
ψ(t, v, Z)

)
X
(
t, v, Z(t, v)

)−1
dv du,

I5(t) =

∫ t

t0

ν
(
Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
du.

Assumption VIII. The function C(·) is differentiable at f , with derivative de-
noted by C ′(·).

Given these assumptions the coefficients of Equation (4.2.6) are given by

a(t) = Y (t, t0, α), c(t) = b(t)2 +
1

a(t)s(t)2
I2(t)− 6b(t)

s(t)2
I3(t) +

2

a(t)s(t)2
I4(t),

b(t) =
1

a(t)s(t)
I1(t), G(t) = −s(t)c(t)− s(t)b(t)Γ0 +

1

a2
I5(t)

and

Γ0 = −C ′(f).

4.7.2 Basket Dynamics under suitable Numéraire

Let us consider the dynamics of the forward rate Ft given by a general SABR
model 

dFt = utC(Ft) dWt, Ft0 = f,

dut = νut dZt, ut0 = 1,

with d〈Wt, Zt〉t = γ dt.
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Let θ denote the corresponding model parameters, for instance after calibrating
the model to given market data. When we consider forward swap rates we must
determine each convexity-adjusted forward swap rate F̃t. Given payment date Tp
in the future, the convexity adjusted rate at Tp is determined by the conditional
expectation of Ft with regard to the Tp-forward measure, thus,

F̃t = ETp [Ft].

The forward rate Ft is not a martingale with respect to the Tp-forward measure
but the convexity adjusted rate F̃t is. Thus, given a parametrized model for
Ft with model parameters θ we calibrate the respective model for F̃t and get
model parameters θ̃. This is similar to the method applied for the consideration
in Section 4.3.3

Now, if we consider basket options we can consider each forward rate Fi,t to be
the convexity adjusted forward rate F̃i,t and safely assume that the corresponding
dynamics are martingale, i.e., driftless with regard to the Tp-forward measure.
Then, we proceed to price options on the basket by considering the basket for the
driftless rates F̃i,t.

4.7.3 Convexity Coefficients

To apply the pricing formulas of Section 4.3 we need to deduce the interdependence
between the rates and the annuity expressed in terms of the convexity coefficients.
Due to the currently low interest regime, for our examples we do this by imposing
the simplest form of a flat yield curve structure as in Antonov [2020], i.e.,

DF (t, T ) = e−(T−t)x(t).

Furthermore, we assume linear dependence of the functions on the factor x, which
means that

DF (t, T ) ≈ 1− (T − t)x(t) +O(x2).

Using the continuous representation of the annuity A(t, T1, T2) we can approximate

A(t, T1, T2) ≈
∫ T2

T1

DF (t, u) du ≈
∫ T2

T1

1− (u− t)x(t) +O(x2) du

= (T2 − T1)− x(t)

∫ T2

T1

(u− t) du+O(x2),
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and can further deduce the linear dependence of the swap rates R(t, T1, T2) on the
factor x as

R(t, T1, T2) =
x(t)(T2 − T1)

(T2 − T1)− x(t)
∫ T2
T1

(u− t) du
+O(x2) = x(t) +O(x2). (4.7.1)

With this we can express the dependence of the annuity on the rates as

A(t, T1, T2) ≈ (T2 − T1)−R(t, T1, T2)

∫ T2

T1

(u− t) du+O(x2).

To evaluate the convexity coefficients let us note that the desired terms are gen-
erally given by the form

M(x(t), x(s)) =
(a+ b(t)x(t))(c+ d(s)x(s))

(c+ d(t)x(t))(a+ b(s)x(s))

≈ 1 +
cb(t)− ad(t)

ac
x(t) +

ad(s)− cb(s)
ac

x(s) +O(x2).

(4.7.2)

For our concrete application this yields

Mi(x(T ), x(t)) =
Li(t)

Li(T )
=
Ai(t)DF (T, T0)

Ai(T )DF (t, T0)

≈
(1− (T0 − T )x(T ))((Ti − T0)− x(t)

∫ Ti
T0

(u− t) du)

((Ti − T0)− x(T )
∫ Ti
T0

(u− T ) du)(1− (T0 − t)x(t))

≈ 1 +
−τi(T0 − T ) +

∫ Ti
T0

(u− T ) du

τi
x(T )

+
−
∫ Ti
T0

(u− t) du+ τi(T0 − t)
τi

x(t)

≈ 1 +

∫ Ti
T0
u du− τiT0

τi
(x(T )− x(t)).

where we set τi = Ti−T0. This means we can approximate the convexity coefficients
by

λi =
1

τi

∫ Ti

T0

u du− T0.
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For the mid-curve options the convexity coefficient becomes

M̂ i
T (x(T ), x(0)) =

Amc(T )Ai(0)

Ai(T )Amc(0)

≈
((T2 − T1)− x(T )

∫ T2
T1

(u− T ) du)((Ti − T0)− x(0)
∫ Ti
T0
u du)

((Ti − T0)− x(T )
∫ Ti
T0

(u− T ) du)((T2 − T1)− x(0)
∫ T2
T1
u du)

≈ 1 +
τ21

∫ Ti
T0
u du− τi

∫ T2
T1
u du

τ21τi
(x(T )− x(0)).

This means we have

λ̂i =
τ21

∫ Ti
T0
u du− τi

∫ T2
T1
u du

τ21τi
.
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5 Effective Stochastic Local Volatil-
ity Models

Considering the results of Chapter 3 and Chapter 4 we have established approxi-
mation techniques to allow the explicit pricing of call options in a one- as well as
multidimensional financial market framework. The pricing and modelling in these
chapters is mostly performed with regard to a fixed maturity. In this chapter we
further increase the scope of our methodology and consider the modelling of a
full time and space dependent surface. To achieve this we focus our research on
stochastic local volatility (SLV) models in this chapter.

Recalling our initial motivation in Chapter 3 to adequately model the smile and
skew behaviour in the implied volatility curve, we considered generalized stochas-
tic volatility models (SV). While this class of models allows to generate various
different curve structures, our examples are all governed by a parametric model.
Having only a finite number of model parameters, it is not always possible to
perfectly reproduce all observed market values in the calibration. In practice this
is not optimal when a replication of more involved financial instruments is done
using these vanilla options. Here the small inaccuracy in the pricing of call options
can yield to a mispricing of the desired instrument. To overcome this problem,
SLV models are introduced as a mixture between SV models and local volatility
models.

The mixture is performed by taking the dynamics of the SV model and introducing
an additional non-parametric component into the model. This non-parametric
component is concentrated in a leverage function and provides additional degrees
of freedom in the model. This allows to perfectly match the prices of all observed
vanilla options using the SLV model. To derive approximation results similar to
that in Chapter 3, we consider leverage functions which can be decomposed into
a non-parametric time-dependent component, used to model the ATM evolution
in time, and a non-parametric space-dependent component to perfectly match the
state at a fixed maturity. Under this assumption we prove that an analysis using
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singular perturbation techniques is possible and derive an extension of Theorem
3.2.3 which covers these types of SLV models. This allows to transform all models
covered in Chapter 3 into a corresponding SLV model.

Having established the mathematical foundation to consider SLV models using our
existing framework, we discuss the practical applicability. Special consideration
is placed on the calibration of the leverage function. We demonstrate how it is
possible to derive an explicit and fast algorithm to calibrate the leverage function
to a given market surface. Due to our explicit model approximations this can be
performed independently of the model simulation and evaluation of prices. Fur-
thermore, having established the model characterization as well as the calibration
procedure, we also reconsider the model implementation. Recalling Chapter 3, we
have a general model framework in mind which can be applied to a large class of
heterogeneous generalized stochastic volatility models. Thus, we demonstrate how
it is possible to incorporate our results in the computational framework already
available in Chapter 3 and Chapter 4. To achieve this we show how it is possible to
modify the algorithm presented in Section 2.5.3 to fit into the new model set-up.

The rest of this chapter presents the preprint Felpel et al. [2022a] starting from its
introduction. In addition, some additional, unpublished material is presented to
provide more insight into selected topics. This content is presented in Section 5.9.

5.1 Introduction

When pricing options there is often the need to exactly fit observed implied volatil-
ities for market quoted prices. For instance, using the technique of static repli-
cation in terms of vanilla instruments to price and hedge exotic options results
in mispricing if some of the vanillas are mispriced to start with. It is possible to
exactly calibrate to the observed implied volatility surface using a local volatility
model Dupire [1994], Derman and Kani [1994]. This approach is, however, non-
parametric, and while, in principle, it has infinite degrees of freedom for fitting,
it has the drawback that it does not provide suitable dynamics for the forward
implied volatility surface. This means that such a model generates flattening for-
ward implied volatility surfaces, with the result that it is not possible to model
smile dynamics with significant convexity. This makes it unsuitable for modelling
financial instruments that are sensitive to a forward implied volatility smile. For-
ward starting options are an example of such instruments, requiring techniques
such as the sticky skew approach, based on forward volatilities as observed today,
to be used to project the skew/smile for future dates. Stochastic volatility models
provide better forward implied volatility surface dynamics. But, owing to their
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parsimonious parametrization, they are unable to price calibration instruments
exactly, making it impossible to fit the quoted option implied volatilities exactly.

Combining the best features of both of the aforementioned approaches leads to
the class of local stochastic volatility models. We shall consider local stochastic
volatility models given by

dFt = σslv(t, Ft)C(Ft, vt) dW
(1)
t , Ft0 = f,

dvt = µ(t, vt) dt+ ν(t, vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

The function σslv(·, ·) is called the leverage and C(·) the stochastic volatility back-
bone. Thus, such models are essentially a mix of a stochastic and a local volatility
component. In most cases the leverage will not only depend on the process Ft
but also on its law. From a mathematical perspective the model then falls into
the category of a McKean SDE and the discussion of the existence of solutions
becomes very challenging and is for most cases still an open issue. For our analysis
we progress assuming the existence of a solution and refer to Guyon and Henry-
Labordère [2011], Jourdain and Zhou [2020] for further details on this topic.

In the Markovian projection literature the Heston Heston [1993], with backbone
C(s, v) =

√
vs, as well as the SABR Hagan et al. [2002], with backbone C(s, v) =

vsβ, stochastic volatility models have been considered, see, e.g., Henry-Labordère
[2009], Guyon and Henry-Labordère [2012], Van der Stoep et al. [2014], Ren et al.
[2007]. More recently, Muguruza [2019] extended the framework to cover rough
stochastic volatility models. The main difficulty in calibration is the derivation
of the leverage function, σslv(·, ·). Considering a given local volatility function
σmkt(·, ·) characterizing the underlying market, it is possible to apply the Markovian
projection technique Gyöngy [1986], Andersen and Piterbarg [2010c] and project
the stochastic local volatility model onto a local volatility model resulting in an
expression of the form

σ2
mkt(t, x) = σslv(t, x)2Eslv

[
C(x, vt)

2|Ft = x
]
. (5.1.1)

Hence, considering the Heston and the SABR stochastic local volatility models, the
calibration of the leverage function can be performed if the conditional expectation
of the variance (resp. volatility), given an asset price for the chosen model can
be evaluated. The valuation of the conditional expectation is one of the main
challenges when considering stochastic local volatility models and there have been
many approaches suggested using, for example, a binning approach to estimate
the conditional expectation during a Monte Carlo simulation Van der Stoep et al.
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[2014], particle methods Guyon and Henry-Labordère [2012], Muguruza [2019] or
direct PDE solutions Ren et al. [2007], Saporito et al. [2019].

In this paper we shall extend the class of general stochastic volatility models ex-
plored by Felpel et al Felpel et al. [2021], to incorporate a local volatility compo-
nent and demonstrate that it is possible to efficiently calibrate to observed option
prices using a direct approximation of the above conditional expectation through
an explicit formula. This widens the scope of applicable models beyond the Heston
or SABR models and can enrich the dynamics for modelling the evolution of the
implied volatility surface. We focus on the calibration of the leverage function
using a direct approximation of the conditional expectation under the stochastic
local volatility model. Our proposed calibration methodology does not rely on
solving a two dimensional PDE solution or a time consuming Monte Carlo ap-
proach, see Henry-Labordère [2009], Guyon and Henry-Labordère [2012], Van der
Stoep et al. [2014], Ren et al. [2007]. For the direct approximation of the stochastic
local volatility model, we instead propose a simplified version of the general frame-
work used in Felpel et al. [2021], approximating σslv(t, Ft) by a piecewise constant
function that is separable, i.e., σslv(t, Ft) = σ(t)L(Ft). While at first glance this
separability may seem restrictive, we show that in practice this assumption is not
egregious and that it allows fast and robust calibration.

In summary, our contributions in this paper are as follows. We start by extending
Theorem 1 of Felpel et al. [2021] to include the general separable SLV model
with σslv(t, Ft) = σ(t)L(Ft). This allows fast explicit calibration. To enable this,
we let σ(·) and L(·) be piecewise constant functions. We then calibrate σ(·) to
the at-the-money (ATM) values along a maturity grid and L(·) along the strike
grid for a fixed maturity T . The base parameters of the model are calibrated to
additional points to provide a good fit to the whole volatility surface or directly
to market implied volatilities. To ensure computational efficiency we extend the
one-dimensional PDE considered in Felpel et al. [2021], Kienitz et al. [2017], Hagan
[2013] to our setting. To demonstrate the approach, we consider many examples
using the SABR, Heston and ZABR models.

The paper is structured as follows. Section 5.2 lays the theoretical groundwork
by extending results from Felpel et al. [2021]. In particular we prove that these
results hold true for separable time-dependent diffusion coefficients. Given these
preliminaries, Section 5.3 provides the details of the chosen approach for calibrat-
ing the general local stochastic volatility model. With the results from Sections 5.2
and 5.3 we propose an implementation based on solving a one-dimensional PDE
in Section 5.4, state the discretization scheme and briefly contrast our approach
to other known methods. In particular we consider the approaches Bang [2019]
and Muguruza [2019]. We apply our methods to several models described in Sec-
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tion 5.5 and give numerical examples that show the performance of our results in
Section 5.6. We conclude with a summary of our results and consider topics for
future research in Section 5.7.

5.2 Theoretical Foundation

In this section we extend Theorem 1 of Felpel et al. [2021] to allow additional time
dependence of the coefficients of the underlying SDE. This allows the application
of an effective partial differential equation to the more general class of stochastic
local volatility models. To be precise, we shall consider general time-dependent
stochastic volatility models of the form

dFt = σ(t)C(Ft)vt dW
(1)
t , Ft0 = f,

dvt = µ(t, vt) dt+ ν(t, vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

In comparison with the theorem as stated in Felpel et al. [2021], this set-up intro-
duces time dependence for the functions µ(·, ·) and ν(·, ·), as well as the freedom
of an additional function σ(·). The latter provides an additional time dependence
for the forward dynamics. To apply our methodology we impose some regularity
assumptions on the model. In particular, the following assumptions are required:

Assumption IX. The function σ(·) 6= 0, and the function

ζ(t) =

∫ t

t0

σ(u)2 du

is well defined. Furthermore, the inverse function t̃(ζ) exists such that

ζ(t) = ζ ⇔ t = t̃(ζ).

Assumption X. The drift term, µ(·, ·), is differentiable with regard to its second
argument and a solution Y (t, t0, α) to the following PDE exists:

∂tY (t, t0, α) = µ(t, Y (t, t0, α)),

Y (t, t, α) = α,

Y (t0, t0, α) = α.

Assumption XI. The function Y is differentiable and has an inverse function
y(t0, t, a) such that

Y (t, t0, α) = a ⇔ α = y(t0, t, a).
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Assumption XII. The functions

X(t, t0, α) = ∂αY (t, t0, α), Z(t, u) = Z(t, u, t0, α) = y(u, t, Y (t, t0, α)),

z(F ) =

∫ F

f

1

C(u)
du, s(t) = S(t0, t, α) =

∫ t

t0

σ(u)2Z(t, u)2 du

and

ψ(t, u, Z) = ν
(
u, Z(t, u)

)
Z(t, u)X

(
t, u, Z(t, u)

)
are well defined, X

(
t, u, Z(t, u)

)−1 exists, and the following integral functions are
defined:

I1(t) = ρ

∫ t

t0

σ(x)ψ(t, x, Z) dx,

I2(t) = 2

∫ t

t0

ν
(
x, Z(t, x)

)2
X
(
t, x, Z(t, x)

)2
∫ t

x

σ(w)2Z(t, w)X
(
t, w, Z(t, w)

)−1
dw dx,

I3(t) = ρ

∫ t

t0

σ(x)ψ(t, x, Z)

∫ t

x

σ(w)2Z(t, w)X
(
t, w, Z(t, w)

)−1
dw dx,

I4(t) = ρ2

∫ t

t0

σ(x)ψ(t, x, Z)

∫ t

x

σ(w)∂Z

(
ψ(t, w, Z)

)
X
(
t, w, Z(t, w)

)−1
dw dx,

I5(t) =

∫ t

t0

ν
(
x, Z(t, x)

)2
X
(
t, x, Z(t, x)

)2
dx.

Assumption XIII. The function C(·) is differentiable at f , with its derivative
denoted by C ′(·).

With these assumptions we now provide a theorem for general time-dependent
stochastic volatility models.

Theorem 5.2.1. Given that the general time dependent stochastic volatility model
(5.2) obeys Assumptions IX–XIII, an effective PDE for the effective probability,
Q(·, ·), of the form {

∂tQ(t, F ) = ∂FF
[
D(t, F )Q(t, F )

]
,

Q(t, F )→ δ(F − f) as t→ t−0 ,

can be derived, characterized by the function D(·, ·) given by

D(t, F ) =
1

2
σ(t)2C(F )2a(t)2eG(t)

(
1 + 2b(t)z(F ) + c(t)z(F )2

)
,
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where the coefficients are specified as

a(t) = Y (t, t0, α), c(t) = b(t)2 +
1

a(t)s(t)2
I2(t)− 6b(t)

s(t)2
I3(t) +

2

a(t)s(t)2
I4(t),

b(t) =
1

a(t)s(t)
I1(t), G(t) = −s(t)c(t)− s(t)b(t)Γ0 +

1

a(t)2
I5(t)

and

Γ0 = −C ′(f).

In terms of the effective Markovian Projection (EMP), Felpel et al. [2022a], this
result is expressed through a projected variance of the form

σ2
proj(t, F ) = σ(t)2C(F )2a(t)2eG(t)

(
1 + 2b(t)z(F ) + c(t)z(F )2

)
.

Proof. An outline of the proof is provided here, with complete detail given in
Appendix 5.8. We start with a time change from t to ζ(t). This moves the
dependence on the function σ(·) from the forward dynamics to the dynamics of the
volatility. This enables us to deduce a simpler extension with only time-dependent
functions µ(·, ·) and ν(·, ·). Given these results we perform a change of variables
from ζ(t) back to t, allowing all results to be expressed in terms of t.

Remark 5.2.2. To put this in the context of Equation (5.1.1), the result provides
us with an approximation of the form

Eslv
[
v2
t |Ft = x

]
≈ a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
.

In particular, we highlight that the dependence of the leverage function on Ft is
included in the transformed variable z(x).

5.3 Calibration Algorithm

Having laid the mathematical foundations in Theorem 5.2.1, we apply the results
to a general stochastic local volatility model (SLV) of the form

dFt = σslv(t, Ft)C(Ft)vt dW
(1)
t , Ft0 = f,

dvt = µ(t, vt) dt+ ν(t, vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.
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When the leverage function σslv(·, ·) is correctly specified, this allows a perfect
match to the observed market surface. Note that this definition of an SLV model
is formulated in a general framework in the style of Cui et al. [2018] and does not
assume a Dupire local volatility term in accordance with Dupire [1994], Derman
and Kani [1994], which can be found, for example, in Ren et al. [2007], Muguruza
[2019].

To apply Theorem 5.2.1 to this class of models, we impose the assumption that
the leverage function be separable:

Assumption XIV. The function σslv(·, ·) is separable and may be expressed as

σslv(t, Ft) = σ(t)L(Ft).

We construct a fast and accurate scheme to calibrate the leverage function to a
given market surface. We assume a full characterization in terms of a reference
local volatility model, where the market prices can be reconstructed using a model
of the form

dFt = σmkt(t, Ft) dW
(1)
t , Ft0 = f. (5.3.1)

This means that for each maturity, T , and strike, K, there exists a projected
market variance, σ2

mkt(T,K). In practice, the market is usually characterized in
terms of an implied volatility surface. To deduce the corresponding local volatility
surface, a calibration is required. We assume a representation in terms of (5.3.1)
and not, as is also commonly observed, in terms of a Dupire local volatility, Dupire
[1994], Derman and Kani [1994]. This allows us to capture negative values for
the forward, and in the case where the forward stays positive the transformation
from the projected volatility to the local volatility, σDupire(t, Ft), is provided by the
expression

σmkt(t, Ft) = FtσDupire(t, Ft).

In practice, this curve is usually not given in functional form but is available as a
set of discrete values on a specific grid. We assume that such a grid exists with
maturities T = {t0, . . . , tM} and strikes, K = {K0, . . . , KN}. For this grid the
market local volatility function is defined. We also assume that the ATM value is
always included in the grid of strikes and denote its corresponding index by i, i.e.,
Ki = f . One of the maturities, denoted by T ∈ T , is selected to be the foundation
of the calibration. The specific value or index of T is chosen by the modeller
and tailored to the problem at hand. In particular, this allows calibration of the
leverage function without any previous evaluation of certain model components.
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5.3.1 Specifications of the Leverage Function

To calibrate the leverage function to market data, two components, the leverage
L(·) and the time leverage σ(·), must be calibrated. To accomplish this we apply
the EMP formulation of Theorem 5.2.1 and deduce an expression of the form

σ2
mkt(t, x) = σ(t)2L(x)2C(x)2a(t)2eG(t)

(
1 + 2b(t)z(x) + c(t)z(x)2

)
, (5.3.2)

where the coefficients a, b, c and G are specified in Theorem 5.2.1 and the function
z is given by

z(x) =

∫ x

f

1

L(u)C(u)
du.

In order to apply Theorem 5.2.1, we need the condition that Cslv(·) := L(·)C(·) is
differentiable at the point f . To incorporate this condition together with the initial
market data being defined only on a discrete set of strikes, we assume that the
leverage L(·) as well as the time leverage σ(·) are piecewise constant. To be more
precise, let us define the following interval system In depending on the ATM-index
i and the underlying discrete market grid:

In =



(−∞, K0] if n = 0,

(Kn−1, Kn] if 1 ≤ n < i,

(Ki−1, Ki+1) if n = i,

[Kn, Kn+1) if i < n ≤ N − 1,

[KN ,∞) if n = N.

On this system of intervals we define the leverage L(·) as

L(u) = ln if u ∈ In.

For the time leverage σ(·), the corresponding discrete grid is defined as

Jm =

[tm, tm+1) if 0 ≤ m ≤M − 1,

[tM ,∞) if m = M,

with
σ(u) = σm if u ∈ Jm.

The assumption of a piecewise constant leverage function is common in practice,
see, e.g., Muguruza [2019], and the leverage function is typically defined on a
discrete space structure.
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5.3.2 Calibration Procedure

To calibrate the leverage function, we first assume that the underlying parameters
of the base model are already determined, i.e., C(·), µ(·, ·), ν(·, ·) and ρ are fully
specified. Given this set of parameters, we demonstrate how to calibrate the
leverage function explicitly. In a second step, the underlying parameters of the
base model themselves can be calibrated. Since the calibration of the leverage
function, given a set of parameters, is explicit, it can be performed in each step
of the calibration procedure to deduce the base parameters. For our calibration
scheme we apply the following two step procedure to deduce the leverage function,
given a set of base parameters:

i) In the first step we calibrate the time leverage σ(·) to the ATM value f = Ki

along all maturities of the market surface. This ensures a perfect fit to the
values σ2

mkt(tm, f) for all m.

ii) Given σ(·), we calibrate the leverage function, L(·), to all strike values for
the pre-specified fitting maturity T . This ensures a perfect fit to the values
σ2
mkt(T,Kn) for all n.

5.3.2.1 Calibrating σ(·)

To calibrate the time leverage to the ATM value f = Ki along the maturity grid,
we use (5.3.2) which is further simplified in the ATM case to

σ2
mkt(t, f) = σ(t)2L(f)2C(f)2a(t)2eG(t).

Notice that in our scheme, σ2
mkt(T, f) is characterized by the function σ(T ) as well

as L(f). We therefore decide to assign the whole dependence to σ(T ) and set

L(f) = L(Ki) = li = 1. (5.3.3)

With this we may evaluate the value of σ(tm)2 for each m as

σ(tm)2 =
σ2
mkt(tm, f)

C(f)2a(tm)2eG(tm)
. (5.3.4)

5.3.2.2 Calibrating L(·)

Having specified the function σ(tm)2 for each m in (5.3.4), the value for σ(T )2 is
known since T is assumed to be included in the time grid. Considering (5.3.2) at
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time T and inserting expression (5.3.4), yields

L(x)2 =
σ2
mkt(T, x)

σ(T )2C(x)2a(T )2eG(T )
(
1 + 2b(T )z(x) + c(T )z(x)2

)
=

σ̃2
mkt(T, x)

C̃(x)2
(
1 + 2b(T )z(x) + c(T )z(x)2

) ,
where

σ̃2
mkt(T, x) =

σ2
mkt(T, x)

σ2
mkt(T, f)

and C̃(x) =
C(x)

C(f)
.

Considering the interval system In, the value of the function L(·) on this interval,
ln, may be characterized as

l2n = L(Kn)2 =
σ̃2
mkt(T,Kn)

C̃(Kn)2
(
1 + 2b(T )z(Kn) + c(T )z(Kn)2

) .
Thus, only the evaluation of the function z(Kn) is necessary. This is performed
recursively for the starting value Ki, yielding

zn = z(Kn) =


zn+1 − 1

ln+1

∫ Kn+1

Kn
1

C(u)
du if n < i,

0 if n = i,

zn−1 + 1
ln−1

∫ Kn
Kn−1

1
C(u)

du if n > i.

(5.3.5)

In particular we already know the value of li in (5.3.3). Since the value of zn, for
n > i, only depends on the values up to ln−1, we successively evaluate all functions
and compute the values ln. Respectively, the value of zn, for n < i, only depends
on the values from ln+1 and, thus, we can evaluate all values ln recursively.

Remark 5.3.1. Notice that the values of ln are positive by definition. This is
important to guarantee an arbitrage free model.

5.3.2.3 Calibrating additional parameters

Considering stochastic local volatility models, calibration is achieved in two dis-
tinct phases. The underlying base model is calibrated to market data in order
to provide its parameters. Based on these parameters, the leverage function is
then calibrated to further improve the fit of the model. Since our approach al-
lows fast calibration of the leverage function without the need to directly solve the
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full model, a combined calibration of the base model and the leverage function is
possible. For example, to calibrate the underlying base parameters we specify an
additional maturity T̃ ∈ T and determine these parameters to further increase the
fit along this maturity by minimizing the mean squared error

mse =
∑
n≥0

(
σ2
mkt(T̃ , Kn)− σ2

loc(T̃ , Kn)

)2

.

Alternatively, we directly consider the implied volatility function and calibrate
the underlying base parameters to minimize the differences between the implied
volatilities. Here, the calibration of the leverage function can be performed de-
pending on the changing base parameters to provide the optimal fit of the complete
stochastic local volatility model to the market data.

5.4 PDE Implementation

Having calibrated the leverage functions as described in Section 5.3, all necessary
functions for the evaluation of the projected variance function required by The-
orem 5.2.1 are given. We proceed to compute the effective probability density
function, Q(·, ·), by solving the effective PDE ∂tQ(t, F ) = ∂FF

[
1

2
σ(t)2L(F )2C(F )2a(t)2eG(t)

(
1 + 2b(t)z(F ) + c(t)z(F )2

)
Q(t, F )

]
,

Q(t, F )→ δ(F − f) as t→ t−0 .

This partial differential equation can be solved using a classical PDE method
such as Duffy [2006], Tavella and Randall [2000], Smith [1985]. For our further
studies, however, we wish to embed the stochastic local volatility models into the
same numerical framework used in Felpel et al. [2021, 2022a]. More precisely, this
means that we apply the conservative one-dimensional PDE scheme introduced by
Hagan [2015] to solve the effective PDE. To apply this scheme, the effective PDE
should be expressed in the form ∂tQ(t, F ) = ∂FF

[
1

2
D(F )2E(t)Q(t, F )

]
,

Q(t, F )→ δ(F − f) as t→ t−0 .

Since the coefficients a(·), b(·) and c(·) are truly time dependent, the term D(·)2

becomes trivial and the PDE scheme is not applicable in full strength. To overcome
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this problem, we apply an additional approximation to the projected variance
function and approximate the coefficients a(·), b(·) and c(·) by piecewise constant
functions. This is achieved by freezing the coefficients over each increment of
the underlying discrete time grid, so that on the time interval Ji = [ti, ti+1) the
projected variance function is given by

σ2
proj(t, F ) = σ(ti)

2L(F )2C(F )2a(ti)
2eG(t)

(
1 + 2b(ti)z(F ) + c(ti)z(F )2

)
.

Given this form, the function D(·) on the interval Ji is given by

D(F ) = Di(F ) := σ(ti)L(F )C(F )a(ti)
√

1 + 2b(ti)z(F ) + c(ti)z(F )2,

and we apply the conservative one-dimensional PDE scheme to evolve the effective
density function from ti to ti+1. We further demonstrate how the necessary trans-
formations embedded in the scheme are applicable to our new set-up and how to
transition between time intervals Ji and Ji+1.

Remark 5.4.1. The freezing of the coefficients is applied at the initial time of
each interval. The only exception to this rule is at the initial time t0. Here the
coefficients are instead taken as the right limit when t→ t−0 .

5.4.1 Functions for the Conservative PDE Scheme

For the application of the conservative one-dimensional PDE scheme, the under-
lying PDE is reformulated by the space transformation through the Lamperti
transform

yslv(F ) =

∫ F

f

1

D(zslv(u))
du,

where

zslv(F ) =

∫ F

f

1

Cslv(u)
du

and Cslv(u) = L(u)C(u) = L(u)Cbase(u). To apply the scheme, we evaluate these
functions as well as their inverse functions, Fslv(·) and Zslv(·). This is achieved by
expressing these functions in terms of the corresponding functions of the underlying
base models. In the following we assume that we are working on the time interval
Ji.

165



5.4.1.1 The Function zslv(·)

To evaluate the function zslv(·) in terms of the base function zbase(·), we recall that

zslv(F ) =

∫ F

f

1

Cslv(u)
du =

∫ F

f

1

L(u)Cbase(u)
du.

Considering the interval system In, we identify in which interval the value of F is
contained. Consequently, we define the index nF such that F ∈ InF . This allows
three possible outcomes: nF = i, nF > i or nF < i. Evaluating each case, leads to
the expression

zslv(F ) =
1

lnF
zbase(F ) +M(nF ), (5.4.1)

where the function M(·) is dependent on the index nF given by

M(nF ) =


∑i−1

j=nF

(
1

lj+1
− 1

lj

)
zbase(Kj) if nF < i,

0 if nF = i,∑nF
j=i+1

(
1

lj−1
− 1

lj

)
zbase(Kj) if nF > i.

5.4.1.2 The Function Fslv(·)

We investigate the inverse function Fslv(·) of zslv(·) and begin with a transformation
of the intervals In using the zslv variable and define the transformed system of
intervals Izn by

Izn =



(−∞, zslv(K0)] if n = 0,

(zslv(Kn−1), zslv(Kn)] if 1 ≤ n < i,

(zslv(Ki−1), zslv(Ki+1)) if n = i,

[zslv(Kn), zslv(Kn+1)) if i < n ≤ N − 1,

[zslv(KN),∞) if n = N.

By construction, we know that the values of ln are positive as well as Cslv(·), the
function zslv(·) is increasing and, for F2 > F1, we have

zslv(F2)− zslv(F1) =

∫ F2

F1

1

L(u)Cbase(u)
du > 0.

166



This implies a bijection between intervals In and Izn, and we have the equivalence
relation

nF = m ⇐⇒ F ∈ Im ⇐⇒ zslv(F ) ∈ Izm ⇐⇒ nz = m.

In other words, this allows us to replace the index nF , associated with F , with
index nz, associated with zslv(F ). This yields

z = zslv(F ) =
1

lnF
zbase(F ) +M(nF ) =

1

lnz
zbase(F ) +M(nz),

and for the inverse function

Fslv(z) = Fslv(lnz(z −M(nz))). (5.4.2)

5.4.1.3 The Function yslv(·)

To evaluate yslv(·) we note that D(·) is expressed as

D(u) = Cslv(u)hslv(zslv(u)),

with
hslv(u) = σ(ti)a(ti)

√
1 + 2b(ti)u+ c(ti)u2.

To compute the Lamperti transform we note that the derivatives with respect to
F are given by

∂F
[
zslv(F )

]
=

1

Cslv(F )
,

∂F
[
yslv(F )

]
= ∂F

[
zslv(F )

]
h−1(zslv(F )).

In particular, a solution of the last equation is expressed as yslv(F ) = Hslv(zslv(F )),
provided that Hslv solves

H ′slv(x) = h−1
slv (x).

With the given form for hslv the function Hslv is given by

Hslv(x) =
1

σ(ti)a(ti)
√
c(ti)

log


√

1− b(ti)2

c(ti)
+M(x)2 +M(x)

1 + b(ti)√
c(ti)

,
with M(x) =

√
c(ti)x + b(ti)√

c(ti)
. In particular, an alternative formulation of the

function Hslv is provided by

Hslv(x) =
−1

σ(ti)a(ti)
√
c(ti)

log


√

1− b(ti)2

c(ti)
+M(x)2 −M(x)

1− b(ti)√
c(ti)

.
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5.4.1.4 The Function Zslv(·)

To deduce the inverse function of yslv(·) we consider the inverse function, Zslv(·),
of Hslv(·). For this function we know that

Z ′slv(y) = hslv(Zslv(y)) = σ(ti)a(ti)
√

1 + 2b(ti)Zslv(y) + c(ti)Zslv(y)2.

This leads to

Z ′′slv(y) = (σ(ti)a(ti))
2b(ti) + (σ(ti)a(ti))

2c(ti)Zslv(y).

To solve the last equation we use the ansatz:

Zslv(y) = A sinh(σ(ti)a(ti)
√
c(ti)y) +B cosh(σ(ti)a(ti)

√
c(ti)y)− C.

Differentiating twice we have that C = b(ti)
c(ti)

. Since Zslv(0) = 0, we conclude that
B = b(ti)

c(ti)
. Finally, inserting Hslv(z) into Zslv yields zslv, and we have A = 1√

c(ti)
.

Combining the latter, this leads to the function

Zslv(y) =
1√
c(ti)

sinh(σ(ti)a(ti)
√
c(ti)y) +

b(ti)

c(ti)
(cosh(σ(ti)a(ti)

√
c(ti)y)− 1).

5.4.2 Switching Time Regimes

Given the functions in Section 5.4.1, we have established the necessary frame-
work to apply the conservative one-dimensional PDE scheme to the time inter-
val Ji = [ti, ti+1). We apply the same procedure to any other interval, e.g.,
Ji+1 = [ti+1, ti+2). It remains to show how the output generated on the inter-
val Ji is used to construct the initial state for the interval Ji+1. To accomplish
this, we recall the approach used in the PDE scheme of Hagan [2015]. First, the
Lamperti transform yslv(·) is used to transform the space. For the new variable,
denoted by y, a uniform grid with step size h is constructed, and in each grid
interval the average probability density is computed as

θj =
1

h

∫ F (yj)

F (yj−1)

Q(t, F ) dF.

The term F (yj−1) denotes the abbreviation of Fslv(Zslv(yj−1)). For these values of
θj a PDE scheme is constructed in the new space. Applying this procedure to the
time interval Ji yields the following variables at time ti+1:
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i) A grid (yij)j with boundaries yi0 and yiN as well as the step size hi.

ii) The inner grid values θij(ti+1) at the time ti+1 corresponding to the grid (yij)j.

iii) The accumulating boundary values θi0(ti+1) and θiN(ti+1) at time ti+1.

For the next time interval, Ji+1, the values θij(ti+1), expressed on the grid yi, must
be transformed to values θi+1

j (ti+1), which are expressed in the grid yi+1 induced
by the interval Ji+1. For this, we approximate the density function Q(t, F ) using
a piecewise constant approximation based on the average probability functions of
the grid yi as

Q(t, F ) ≈
N−1∑
n=1

hiθin(t)

F i(yin)− F i(yin−1)
1[F i(yin−1),F i(yin))(F ).

With the above, the values θi+1
j (ti+1) on the space yi+1 are given by

θi+1
j (ti+1)

=
1

hi+1

∫ F i+1(yi+1
j )

F i+1(yi+1
j−1)

Q(ti+1, F ) dF

≈ 1

hi+1

N−1∑
n=1

hiθin(ti+1)

F i(yin)− F i(yin−1)

∫ F i+1(yi+1
j )

F i+1(yi+1
j−1)

1[F i(yin−1),F i(yin))(F ) dF

=
hi

hi+1

N−1∑
n=1

θin(ti+1)

(
min(F i+1(yi+1

j ), F i(yin))−max(F i+1(yi+1
j−1), F i(yin−1))

)+

F i(yin)− F i(yin−1)
.

To allow accumulation of probability in the boundaries, we consider a grid config-
uration where the boundary values of the F -grids do not change when switching
between time intervals. In this set-up the accumulated probability is transferred
to the new boundary values yi+1

0 and yi+1
N . For our numerical implementation we

take the F -boundaries generated on the first time interval as the corresponding
boundaries for all other time intervals.

Remark 5.4.2. Notice that the transformation from grid (yij)j to (yi+1
j )j is consis-

tent in the sense that, if the underlying grids are the same, no modification to the
density values is performed.

5.4.3 Embedding into Existing Methods

To place our approach into the existing frameworks for calibrating and comput-
ing stochastic local volatility models, we differentiate between three different ap-
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proaches. These approaches are based on the use of PDE methods, Monte Carlo
methods, and analytical approximations.

5.4.3.1 PDE based methods

In essence, our method clearly falls into the category of PDE-based methods. There
are, however, some structural differences compared to the standard approaches
provided by, e.g., Ren et al. [2007], Saporito et al. [2019]. In these approaches,
a general leverage function of the form σslv(t, x) is assumed with no additional
separability property. On the one hand, this provides more degrees of freedom and
the possibility of a better fit to the complete surface. On the other hand, however,
this makes the calibration procedure much more complicated, since the conditional
expectation necessary to determine σslv(·, ·) may not be as easily computed (c.f.
Saporito et al. [2019]). Consequently, the calibration of the leverage function, and
in turn the evaluation of the conditional expectation, is performed while solving
the PDE equation for the probability density function. This results in an iterative
procedure of the following form to update the leverage function based on the results
available at time tn:

i) Update the density function using an approximation depending only on
σslv(tn, ·). This yields the new density function ptn+1 .

ii) Using the density ptn+1 update the leverage function L(tn+1, ·).

Thus, in comparison, our approach allows the separation of calibration and PDE
evaluation. This results in a much faster calibration scheme and allows one to
combine the calibration of the underlying base model and the leverage function
into one optimization step. This, however, comes at the cost of fewer degrees of
freedom, since the leverage function has the additional constraint of separability.

5.4.3.2 Monte Carlo based methods

The second category are methods based on Monte Carlo. Since these follow a
completely different numerical approach, it would be inappropriate to provide a
detailed exposition. We do, however, use the approach provided by Muguruza
[2019] as a benchmark for validating our results in the numerical examples of Sec-
tion 5.6.3. Hence, we provide the general idea of some prominent methodologies
such as Van der Stoep et al. [2014], Guyon and Henry-Labordère [2012], Mugu-
ruza [2019]. For this let us consider a framework where we have simulated M
Monte Carlo paths (Ftm,u, vtm,u)u≤M at some time tm under the chosen stochastic
local volatility model. To proceed to the next time step tm+1 the corresponding
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leverage function σslv(tm, Ft) needs to be calibrated. Assuming, for illustration, a
specification of the form

C(Ft, vt) =
√
vtFt

the calibration boils down to an evaluation of the conditional expectation Eslv
[
vtm |

Ftm = x
]
. Prominent methods to do this are the following:

i) Following Van der Stoep et al. [2014] a binning methodology can be used to
estimate the conditional expectation. Extending the condition from Ftm = x
to a condition of the form Ftm ∈ B whereB is some chosen interval containing
x, multiple paths become valid to compute the expression.

ii) Another prominent method is the particle method of Guyon and Henry-
Labordère [2012]. Here the conditional expectation is estimated using a
Nadaraya-Watson kernel Kh with a bandwidth h resulting in an expression
of the form

Eslv
[
vtm|Ftm = x

]
≈

M∑
i=1

vtm,uKh(Ftm,u − x).

iii) Instead of using a general Nadaraya-Watson kernel, a direct estimation of the
conditional distribution can be performed as done in Muguruza [2019]. This
allows the computation of the conditional expectation using the sampled
paths and distribution estimation along these paths.

At this point we also highlight that in our comparison we are assuming a setting
where both approaches, i.e., our methodology and the one of Muguruza [2019], are
applicable. Since many approaches, including Muguruza [2019], consider stochastic
local volatility models with regard to a Dupire local volatility, this imposes the
restriction that the forward stays positive. Therefore a direct application is not
available when considering models which admit negative forward values. These
models can be considered using our approach. On the contrary, the approach of
Muguruza [2019] allows the inclusion of drift terms into the forward dynamics,
which in turn is not included in our considerations.

5.4.3.3 Analytical expressions

The last category includes methods based on analytical expressions. One promi-
nent example is the approach of Bang [2019]. This method provides accurate
approximation of stochastic volatility models using closed form expressions. The
main difference when compared with our approach is the underlying class of appli-
cable models and the purpose of the approximation. Bang only focuses on pricing
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options for a fixed maturity. This means that the leverage function only has depen-
dence on the rate considered and no additional time dependence. Consequently,
each relevant maturity may have a different parametrization. In comparison, our
approach models dynamical behaviour and incorporates time dependence in the
leverage function, allowing all relevant maturities to be modelled using a single
parametrization.

5.5 Model Examples

To demonstrate the applicability of our new approach, we consider stochastic local
volatility models of the ZABR-type and the Heston-type as our primary examples.

5.5.1 The dZABR Model

For our first example we consider the displaced ZABR, dZABR, model of An-
dreasen and Huge [2011b] as the underlying base model. The slv-dZABR model
is specified by the system of SDEs

dFt = σslv(t, Ft)(Ft + d)βvt dW
(1)
t , Ft0 = f,

dvt = νvγt dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

Special cases are provided by the slv-dSABR model where γ = 1 and the slv-
nSABR, slv-normal-SABR, model where γ = 1 and β = 0. For the slv-dZABR
model the coefficients of Theorem 5.2.1 are given by

a(t) ≡ α,

b(t) = ρναγ−2 θ1(t0, t)

θ2(t0, t)
,

c(t) = 2ν2α2(γ−2) Ω0,2(t0, t)

θ2(t0, t)2

+ ρ2ν2α2(γ−2)

[
θ1(t0, t)

2

θ2(t0, t)2
− 6

θ1(t0, t)Ω1,2(t0, t)

θ2(t0, t)3
+ 2(γ + 1)

Ω1,1(t0, t)

θ2(t0, t)2

]
,

G(t) = −α2θ2(t0, t)c(t) + ρναγβ(f + d)β−1θ1(t0, t) + ν2α2(γ−1)θ0(t0, t),
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where the additional time dependent functions are defined as

θi(x, t) =

∫ t

x

σ(u)i du,

Ωi,j(t0, t) =

∫ t

t0

σ(x)iθj(x, t) dx.

Following the setting of Section 5.3 and Section 5.4, these functions are explicitly
evaluated along the discrete-time grid of maturities, yielding

θi(t0, tj) =


∑j−1

m=0 σ
i
mδm for j ≥ 1,

θi(t0, t1) for j = 0,

and

Ωi,k(t0, tj) =


1
2

∑j−1
n=0 σ

i+k
n δ2

n +
∑j−1

n=0

∑j−1
m=n+1 σ

k
mσ

i
nδmδn for j ≥ 2,

1
2

∑j−1
n=0 σ

i+k
n δ2

n for j = 1,

Ωi,k(t0, t1) for j = 0,

where δn = tn+1 − tn. This in turn allows the evaluation of the coefficients along
the time grid and an application of the numerical scheme presented in Section 5.4.

5.5.2 The Heston Model

A well known and popular model among practitioners in stochastic local volatility
models is the Heston model, Van der Stoep et al. [2014], Muguruza [2019], Saporito
et al. [2019]. Although our setting focuses on the application to stochastic volatil-
ity and not stochastic variance models we nevertheless demonstrate an application
using the Heston model being the base model. In this special case, the correspond-
ing approximations can be found in Hagan et al. [2018a]. For general stochastic
variance models, the proof of Theorem 5.2.1 must be modified to incorporate the
square root function of the volatility in the forward dynamics. This is possible,
however, since we only focus on the Heston model, we refer to the special case
that was demonstrated in Hagan et al. [2018a]. In particular, once the coefficients
of Theorem 5.2.1 are derived, the procedure to solve the PDE and compute prices
for a stochastic variance model is the same as the approach used for stochastic
volatility models. For the slv-Heston model with a mean reversion back to initial
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volatility, the corresponding coefficients are given by

a(t) ≡
√
α,

b(t) =
ρν

2α

ϕ1(t0, t)

θ2(t0, t)
,

c(t) =
ν2

2α2

Σ0,2,2(t0, t)

θ2(t0, t)2
− 3ρ2ν2

2α2

ϕ1(t0, t)Σ1,1,2(t0, t)

θ2(t0, t)3
+
ρ2ν2

α2

Ω1,1,1(t0, t)

θ2(t0, t)2
,

G(t) = −αθ2(t0, t)(c(t)− b(t)),
where the additional time dependent functions are defined as

θi(x, t) =

∫ t

x

σ(u)i du,

ϕi(t0, t) =

∫ t

t0

σ(u)ie−κ(t−u) du,

ϕ̃i(t0, t) =

∫ t

t0

σ(u)ieκ(t−u) du,

Σi,j,k(t0, t) =

∫ t

t0

σ(u)ie−jκ(t−u)ϕ̃k(u, t) du,

Ωi,j,k(t0, t) =

∫ t

t0

σ(u)ie−jκ(t−u)θk(u, t) du.

In the setting of Section 5.3 and Section 5.4, these function are evaluated along
the discrete time grid of maturities as

θi(t0, t) =

j∑
n=0

σinδn for j ≥ 1,

ϕi(t0, tj) =
1

κ
e−κtj

j−1∑
n=0

σinδ̃n(κ) for j ≥ 1,

Σi,l,k(t0, tj) =



−
e
(1−l)κtj

lκ2

j−1∑
n=0

σ
i+k
n e

−κtn+1 δ̃n(lκ) +
e
(1−l)κtj

(l− 1)κ2

j−1∑
n=0

σ
i+k
n δ̃n((l− 1)κ)

−
e
(1−l)κtj

lκ2

j−1∑
n=0

j−1∑
m=n+1

σ
i
nσ

i
mδ̃n(lκ)δ̃m(−κ)

for j ≥ 2, l 6= 1,

−
e
(1−l)κtj

lκ2

j−1∑
n=0

σ
i+k
n e

−κtn+1 δ̃n(lκ) +
e
(1−l)κtj

κ

j−1∑
n=0

σ
i+k
n δn

−
e
(1−l)κtj

lκ2

j−1∑
n=0

j−1∑
m=n+1

σ
i
nσ

i
mδ̃n(lκ)δ̃m(−κ)

for j ≥ 2, l = 1,

−
e
(1−l)κtj

lκ2

j−1∑
n=0

σ
i+k
n e

−κtn+1 δ̃n(lκ) +
e
(1−l)κtj

(l− 1)κ2

j−1∑
n=0

σ
i+k
n δ̃n((l− 1)κ) for j = 1, l 6= 1,

−
e
(1−l)κtj

lκ2

j−1∑
n=0

σ
i+k
n e

−κtn+1 δ̃n(lκ) +
e
(1−l)κtj

κ

j−1∑
n=0

σ
i+k
n δn for j = 1, l = 1,
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and

Ωi,l,k(t0, tj) =


−
e
−lκtj

lκ

j−1∑
n=0

σ
i+k
n e

lκtnδn +
e
−lκtj

l2κ2

j−1∑
n=0

σ
i+k
n δ̃n(lκ)

e
−lκtj

lκ

j−1∑
n=0

j−1∑
m=n+1

σ
i
nσ

i
mδ̃n(lκ)δm

for j ≥ 2,

−
e
−lκtj

lκ

j−1∑
n=0

σ
i+k
n e

lκtnδn +
e
−lκtj

l2κ2

j−1∑
n=0

σ
i+k
n δ̃n(lκ) for j = 1.

For all cases, we approximate the value for j = 0 with the value for j = 1.

5.6 Numerics

Having established the necessary framework to calibrate stochastic local volatility
models and evaluate the relevant density functions, we now perform a series of
numerical experiments to demonstrate the functionality.

5.6.1 The slv-nSABR Model

We start by considering the slv-nSABR. We simulate a reference set of market
projected variances using a dZABR model with the parameters in Table 5.1 and
the EMP of Felpel et al. [2022a].

Parameter dZABR nSABR1 nSABR2 nSABR3

f 50 bp 50 bp 50 bp 50 bp
β 0.4 0 0 0
γ 0.9 1 1 1
α 0.3f 1−β 200 bp 200 bp 200 bp
ν 0.3 0.2 0.4 0.1
ρ -0.7 -0.5 -0.7 -0.5
d 11 bp 11 bp 11 bp 11 bp

Table 5.1: Parametrization for the first example.

The “market data” is generated on a strike grid from −10bp to 200bp with step
size of 2bp. The time grid starts at time zero and ends at a maturity of ten years
with quarterly intervals. On these grids the leverage functions σ(·) and L(·) are
calibrated as described in Section 5.3 with a fitting maturity of Tfit = 1.
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Figure 5.1 shows the resulting projected variance surfaces evaluated on the calibra-
tion grid using the slv-nSABR model where the base model is parametrized using
the nSABR1 parametrization of Table 5.1. Using a finer grid for evaluation, the
piecewise constant structure of the leverage functions becomes visible. Figure 5.2
shows the projected variance and the implied volatility for the fitting maturity
and the largest maturity on the grid for the three different parametrizations of
Table 5.1. We observe an excellent fit. In particular, for the fitting maturity it is
shown that the leverage function L(·) is calibrated to exactly match the projected
variance along the calibration grid.

It is observed that the underlying base parameters provide some additional control
over the model behaviour. The different parametrizations yield different projected
and implied volatility curves. In particular, this becomes visible for the large
maturities. Considering the fitting maturity, the different parametrizations only
impact the behaviour in between the calibration grid. On the calibration grid, all
curves are the same. It is observed that the nSABR2 parametrization provides
the best fit to the implied volatility curve, providing an almost perfect match. At
first glance this is surprising, since the other parametrizations yield a better fit
along the projected variance curve for the same maturity. This can be explained
by the fact that a much larger strike range is necessary to solve the PDEs for
large maturities. Consequently, the projected variance function follows the un-
derlying base model once the last valid calibration grid point is reached. Since
the nSABR3 parametrization has a rather flat extrapolation, the results of the
nSABR2 parametrization are better, with smaller error in the area beyond the
calibration grid.

Remark 5.6.1. All the variants of the nSABR model with parameters given in
Table 5.1 include a displacement parameter d. Owing to the specification β = 0,
this value has no direct impact on the characterization of the stochastic differential
equation. In the implementation of the PDE scheme of Section 5.4 this parameter
is, however, used to characterize the boundary where the accumulation of the
density takes place.

5.6.2 Error Distribution

To further illustrate calibration quality, we use a broad range of parameters, which
cover a large selection of possible values. For this we randomly sample the param-
eters of a dZABR model from the range of parameters displayed in Table 5.2.
These parameters are used to generate a reference set of market projected vari-
ances using the EMP of Felpel et al. [2022a] as done in Section 5.6.1. The “market
data” is generated on a time grid from time zero to a maturity of ten years with
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Figure 5.1: Projected variance surface on the grid points.
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(c) Implied volatility for maturity 1.
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(d) Implied volatility for maturity 10.

Figure 5.2: Projected variance and implied volatility functions for different model
parametrizations.
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yearly intervals. The strike grid is set in dependence on the sampled parameters
and starts at a value of −0.99d and spans a total of 40 grid points where the grid
size is determined in such a way that the sampled forward value is the tenth grid
point.

parameter
f ∈ [0, 0.05]
d ∈ [0, 0.01]

α ∈ [0.0001, 0.1]
β ∈ [0.001, 0.95]
ν ∈ [0.01, 0.51]
ρ ∈ [−0.99, 0]
γ ∈ [0.05, 0.95]

Table 5.2: Parameter ranges used for sampling.

We sample a total of 15 000 different parameter sets and consider the paths where
the projected variance for the full surface stays within a reasonable range, defined
as [0, 10100]. For each of these admissible paths we calibrate the slv-nSABR model
to the corresponding surface. The calibration is performed over the three param-
eters αnSABR ∈ [10−6, 0.1], νnSABR ∈ [0.01, 1] and ρnSABR ∈ [−0.9999, 0.9999] with an
initial parametrization provided in Table 5.3. Here in each calibration step the
leverage function is calibrated as described in Section 5.3 with a fitting maturity
of Tfit = 1. The minimization is performed using a relative mean squared error
function of the form

mse =
∑

T∈{1,5,10}

1

3

(∑
n≥0

(
σ2
mkt(T̃ , Kn)− σ2

slv-nSABR(T̃ , Kn)

σ2
slv-nSABR(T̃ , Kn)

)2)
.

To present results, consider the following error levels c0 = 0, ci = 10−i, i =
1, . . . , 12. Using these levels, we produce a discrete distribution of the relative mean
absolute and squared error (less than the levels) which are graphed in Figure 5.3.
All errors larger than 10−1 are accumulated into a single bucket.

5.6.3 The Heston Model

We demonstrate the applicability of our approach to the slv-Heston model. Before
considering the calibration of the leverage function, we provide some intuition
on the accuracy of the approximation. This is demonstrated by considering the
original Heston model Heston [1993] parametrized as in Table 5.4.
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Parameter slv-nSABR
fnSABR fmkt

βnSABR 0
γnSABR 1
αnSABR 0.02
νnSABR 0.2
ρnSABR -0.5
dnSABR dmkt

Table 5.3: Parametrization for the initial slv-nSABR model.
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Figure 5.3: Histogram for the calibration error.

We compare the accuracy by computing the call prices under the Heston model
using the classical semi-analytical formulas with a Black Scholes control variate,
Andersen and Piterbarg [2010a], and using an slv-Heston model where the leverage
functions are constant and set to one. For the slv-Heston model the time grid starts
at zero and ends at two years with a step size of 1/48 years. The strike grid starts
at zero and moves to a strike of 200 with a step size of ten. Using this model we
compute the prices with our new approach and a PDE grid size of 1280 points.
To provide a comparison we simulate the prices using a classical Euler Monte
Carlo scheme with one million sample paths. Figure 5.4 depicts the resulting
implied volatilities. Here the shaded area represents the three-standard-deviation
area induced by the central limit theorem Durrett [2010]. As observed, our new
method yields very good results and for almost all observed points lies well inside
the error bounds of the reference curve.
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Parameter Heston
f 100
α 0.06
ν 0.3
ρ -0.5
d 0
κ 1

Table 5.4: Parametrization for the first Heston example.
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(b) Implied volatility for maturity 2.

Figure 5.4: Implied volatility functions for the Heston model in comparison to
Monte Carlo samples and the slv-Heston model.

5.6.4 The slv-Heston Model

In a manner similar to Section 5.6.1, we use a dZABR model to simulate a market
projected variance surface and calibrate the corresponding slv-Heston model to
this surface. The parametrization of the underlying base models is provided in
Table 5.5.

The “market data” is generated on a strike grid from 10bp to 200bp in steps of
2bp. The time grid starts at zero and increases to a maturity of ten years on a
quarterly basis. Using this parametrization, we calibrate the slv-Heston model
to the projected variance surface using our new approach and the Monte Carlo
scheme from Section 5.4.3.2. For our PDE scheme we use 640 space steps. For the
Monte Carlo approach we considered a curve generated using 100 000 sample paths
and time spacing of 24 steps per year. The corresponding implied volatilities are
shown in Figure 5.5. Both approaches yield a very good fit to the market curves.
For the smaller maturity, the sampling curve does not reproduce the observed
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Parameter ZABR Heston
f 50 bp 50 bp
β 0.9 /
γ 0.9 /
α 0.3f 1−β 0.08
ν 0.3 0.1
ρ -0.7 -0.5
d 0 0
κ / 0.01

Table 5.5: Parametrization of the simulated market curves and the underlying
base models.

market values for the deep ITM and deep OTM area. This is a common sampling
problem and can be addressed by increasing the time spacing and considering
additional sampling techniques such as importance sampling Glasserman [2004],
Jäckel [2002]. Since our focus is, however, on demonstrating our new approach,
we do not delve deeper into such sampling techniques and consider the generated
curve as satisfactory to provide a benchmark for the ATM area and for larger
maturities. This shows that our new approach yields a stable methodology for
generating prices for small maturities and strikes far from the ATM value.
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Figure 5.5: Implied volatility functions for the slv-Heston model in comparison to
a Monte Carlo approach.
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5.7 Conclusion

In this paper we have considered the setting of general stochastic local volatil-
ity models and have extended the work of Felpel et al. [2021] to incorporate this
new class of models. Under the assumption of a piecewise constant and separable
leverage function we have derived a fast and robust calibration scheme for the
leverage function allowing the calibration and computation to be performed sepa-
rately. A numerical PDE scheme was presented to allow the pricing of stochastic
local volatility models in our setting. Future research will entail analyzing a re-
laxation of the assumptions on the leverage function with further application of
these techniques for pricing derivatives.

5.8 Appendix

5.8.1 Intermediate Theorem

The goal of this section is to derive a simpler version of Theorem 5.2.1 where the
time dependence in the forward dynamics is constant and set to σ(·) ≡ 1. This
yields a system of the form

dFt = C(Ft)vt dW
(1)
t , Ft0 = f,

dvt = µ(t, vt) dt+ ν(t, vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

The corresponding assumptions and the resulting theorem are provided as follows:

Assumption XV. The drift term, µ(·, ·), is differentiable with regard to its second
argument and a solution Y (t, t0, α) to the following PDE exists:

∂tY (t, t0, α) = µ(t, Y (t, t0, α))

Y (t, t, α) = α

Y (t0, t0, α) = α.

Assumption XVI. The function Y is differentiable and has an inverse function
y(t0, t, a) such that

Y (t, t0, α) = a ⇔ α = y(t0, t, a).

182



Assumption XVII. The functions

X(t, t0, α) = ∂αY (t, t0, α), Z(t, u) = Z(t, u, t0, α) = y(u, t, Y (t, t0, α)),

z(F ) =

∫ F

f

1

C(u)
du, s(t) = S(t0, t, α) =

∫ t

t0

Z(t, u, t0, α)2 du

and

ψ(t, u, Z) = ν
(
u, Z(t, u)

)
Z(t, u)X

(
t, u, Z(t, u)

)
are well defined, X

(
t, u, Z(t, u)

)−1 exists, and the following integral functions are
defined:

I1(t) = ρ

∫ t

t0

ψ(t, u, Z) du,

I2(t) = 2

∫ t

t0

ν
(
u, Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I3(t) = ρ

∫ t

t0

ψ(t, u, Z)

∫ t

u

Z(t, v)X
(
t, v, Z(t, v)

)−1
dv du,

I4(t) = ρ2

∫ t

t0

ψ(t, u, Z)

∫ t

u

∂Z

(
ψ(t, v, Z)

)
X
(
t, v, Z(t, v)

)−1
dv du,

I5(t) =

∫ t

t0

ν
(
u, Z(t, u)

)2
X
(
t, u, Z(t, u)

)2
du.

Assumption XVIII. The function C(·) is differentiable at f , with derivative de-
noted by C ′(·).

Theorem 5.8.1. Given that the general stochastic volatility model (5.8.1) obeys
Assumptions XV–XVIII, an effective PDE for the effective probability, Q(·, ·), of
the form {

∂tQ(t, F ) = ∂FF
[
D(t, F )Q(t, F )

]
Q(t, F )→ δ(F − f) as t→ t−0 ,

can be derived, characterized by the function D(·, ·) given by

D(t, F ) =
1

2
a(t)2C(F )2eG(t)

(
1 + 2b(t)z(F ) + c(t)z(F )2

)
,

where the coefficients are specified as

a(t) = Y (t, t0, α), c(t) = b(t)2 +
1

a(t)s(t)2
I2(t)− 6b(t)

s(t)2
I3(t) +

2

a(t)s(t)2
I4(t),

b(t) =
1

a(t)s(t)
I1(t), G(t) = −s(t)c(t)− s(t)b(t)Γ0 +

1

a2
I5(t)
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and

Γ0 = −C ′(f).

Below, the proof of this intermediate theorem is presented in five stages.

5.8.1.1 Deriving the Effective Forward Equation

To prove the intermediate theorem, we perform the known singular perturbation
techniques of Felpel et al. [2021], Hagan et al. [2014, 2020b, 2018a] to analyze the
system 

dFt = εC(Ft)vt dW
(1)
t , Ft0 = f,

dvt = µ(t, vt) dt+ εν(t, vt) dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

Following Felpel et al. [2021], Hagan et al. [2014, 2020b, 2018a], we define the
probability density p(t0, f, α, t, F,A) that Ft = F and vt = A at time t, given that
Ft0 = f and vt0 = α at time t0. Furthermore, we define the moments

Q(k)(t0, f, α, t, F ) =

∫ ∞
0

Akp(t0, f, α, t, F,A) dA

and set
Q(t, F ) = Q(0)(t0, f, α, t, F ) (5.8.1)

to be the reduced probability density of the model given t0, f and α.

5.8.1.2 Volatility Drift

Before analysing the corresponding PDE equations, let us first take a look at the
drift term of the volatility function. For this, we consider the PDE induced by the
drift term 

∂tY (t, t0, α) = µ(t, Y (t, t0, α))

Y (t, t, α) = α

Y (t0, t0, α) = α.

(5.8.2)

By Assumptions XV and XVI we know that there exists a solution Y (t, t0, α) and
an inverse function y(t0, t, a), such that

Y (t, t0, α) = a ⇔ α = y(t0, t, a).
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Considering the integrated form of the PDE (5.8.2), the derivatives of Y (t, t0, α)
satisfy

∂t0Y (t, t0, α) = −µ(t0, α) +

∫ t

t0

∂Y µ(s, Y (s, t0, α))∂t0Y (s, t0, α) ds

and ∂αY (t, t0, α) = 1 +

∫ t

t0

∂Y µ(s, Y (s, t0, α))∂αY (s, t0, α) ds.

This, in turn, implies that

∂t0Y (t, t0, α) = −µ(t, α)∂αY (t, t0, α).

Remark 5.8.2. In integrated form the PDE corresponds to the integral equation

Y (t, t0, α) = α +

∫ t

t0

µ(s, Y (s, t0, α)) ds.

5.8.1.3 The Forward Equation

Now, we start by considering the Kolmogorov forward equation to get

∂tp(t, F, A) = −∂A
[
µ(t, A)p(t, F, A)

]
+

1

2
ε2∂FF

[
C(F )2A2p(t, F, A)

]
+ε2ρ∂FA

[
C(F )Aν(t, A)p(t, F, A)

]
+

1

2
ε2∂AA

[
ν(t, A)2p(t, F, A)

]
,

where we have abbreviated p(t0, f, α, t, F,A) as p(t, F, A). Integrating over A and
considering reflecting boundary conditions to conserve the probability, as done for
example in Hagan et al. [2014], we get∫ ∞

0

∂A

[
µ(t, A)p(t, F, A)

]
dA =

[
µ(t, A)p(t, F, A)

]∣∣∣∞
0

= 0∫ ∞
0

∂FA

[
C(F )Aν(t, A)p(t, F, A)

]
dA = ∂F

[
C(F )Aν(t, A)p(t, F, A)

]∣∣∣∞
0

= 0∫ ∞
0

∂AA

[
ν(t, A)2p(t, F, A)

]
dA = ∂A

[
ν(t, A)2p(t, F, A)

]∣∣∣∞
0

= 0.

With this, we get the forward equation ∂tQ
(0)(t, F ) =

1

2
ε2∂FF

[
C(F )2Q(2)(t, F )

]
Q(0)(t, F )→ δ(F − f) as t→ t+0 ,

(5.8.3)

for t > t0. Next we want to express Q(2)(t, F ) in terms of Q(0)(t, F ). This is done
by considering the Kolmogorov backward equation.
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5.8.1.4 The Backward Equation

We consider the Kolmogorov backward equation for Q(k) given by
−∂t0Q(k) = µ(t0, α)∂αQ

(k) +
1

2
ε2α2

[
C(f)2∂ffQ

(k) + 2ρ
ν(t0, α)

α
C(f)∂fαQ

(k)

+

(
ν(t0, α)

α

)2

∂ααQ
(k)

]
Q(k) → αkδ(F − f) as t0 → t−,

where we have abbreviated Q(k)(t0, f, α, t, F ) as Q(k). To cancel the drift term, we
change variables from α to a = Y (t, t0, α). As seen in Section 5.8.1.2 the change
of variables is provided by

∂α → ∂αY (t, t0, α)∂a = X(t, t0, y(t0, t, a))∂a,

∂t0 → ∂t0 − µ(t0, α)∂αY (t, t0, α)∂a = ∂t0 − µ(t0, y(t0, t, a))X(t, t0, y(t0, t, a))∂a.

Here, we use the function X as an abbreviation of ∂αY (t, t0, α). With this the
drift term vanishes and we get −∂t0Q(k) =

1

2
ε2y(t0, t, a)2

[
C(f)2∂ffQ

(k) + 2ρν̃C(f)∂fαQ
(k) + ν̃2∂ααQ

(k)
]

Q(k) → akδ(F − f) as t0 → t−,

where we have abbreviated Q(k)(t0, f, a, t, F ) as Q(k), and

ν̃ = ν̃(t0, t, a) =
ν(t0, y(t0, t, a))

y(t0, t, a)
X(t, t0, y(t0, t, a)).

Note that this equation is the same one as in the proof of Felpel et al. [2021,
Theorem 1]. The only difference is the form of ν̃(t0, t, a). Thus, until we reach the
point where the explicit form of ν̃ is needed, our reasoning is the same as before
and we refer to Felpel et al. [2021] for all the remaining details until then.

5.8.1.5 New Integral Expressions

To complete the proof, the explicit form of ν̃ is first needed in the representation
of the integral terms. We demonstrate these steps only for the first expression
I1, the other expressions follow in an analogous manner based on the proof Felpel
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et al. [2021]. For the integral expression I1 we arrive at the representation

I1(s, t, a) = ρ

∫ t

t̃0(s,t,a)

ν̃
(
u, t, a

)
y2(u, t, a) du

= ρ

∫ t

t̃0(s,t,a)

ν
(
u, y(u, t, a)

)
y(u, t, a)X(t, u, y(u, t, a)) du.

Here the variable t̃0(s, t, a) comes from an additional change of variables which can
be found in the proof of Felpel et al. [2021]. Expressing this term in the original
variables, we arrive exactly at the expression provided in Assumption XVII. In a
similar manner we can derive all the integral expressions of Assumption XVII and
the proof can be concluded following the remaining steps of the proof in Felpel
et al. [2021].

5.8.2 Proof of Theorem 1

Given the results for the intermediate Theorem, we are now ready to prove Theo-
rem 5.2.1.

5.8.2.1 Time Change

The key step to prove Theorem 5.2.1 is a time change to allow the application of
Theorem 5.8.1. For this, we start by considering the Kolmogorov forward equation
to deduce that

∂tp(t, F, A) = −∂A
[
µ(t, A)p(t, F, A)

]
+

1

2
ε2σ(t)2∂FF

[
C(F )2A2p(t, F, A)

]
+ε2ρσ(t)∂FA

[
C(F )Aν(t, A)p(t, F, A)

]
+

1

2
ε2∂AA

[
ν(t, A)2p(t, F, A)

]
,

where again we have abbreviated the density function p(t0, f, α, t, F,A) as p(t, F, A).
By Assumption IX we can define a time change from t to ζ = ζ(t) defined by

ζ(t) =

∫ t

t0

σ(u)2du.

Under this time change the forward equation becomes

∂ζp(ζ, F,A) = −∂A
[
µ̃(ζ, A)p(ζ, F,A)

]
+

1

2
ε2∂FF

[
C(F )2A2p(ζ, F,A)

]
+ε2ρ∂FA

[
C(F )Aν̃(ζ, A)p(ζ, F,A)

]
+

1

2
ε2∂AA

[
ν̃(ζ, A)2p(ζ, F,A)

]
,
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where

µ̃(ζ, A) =
µ(t̃(ζ), A)

σ(t̃(ζ))2
, ν̃(ζ, A) =

ν(t̃(ζ), A)

σ(t̃(ζ))
,

and p(ζ, F,A) denotes the abbreviated density function p(ζ0, f, α, ζ, F, A) with
ζ0 = ζ(t0). This essentially allows us to deduce an equivalent system of stochastic
differential equations as seem under the new time space induced by ζ(·) given by

dFζ = C(Fζ)vζ dW
(1)
ζ , Fζ0 = f,

dvζ = µ̃(ζ, vζ) dζ + ν̃(ζ, vζ) dW
(2)
ζ , vζ0 = α,

with d〈W (1),W (2)〉ζ = ρ dζ.

(5.8.4)

5.8.2.2 Theorem under the time space ζ

Given the system (5.8.4) we can apply the intermediate theorem version presented
in Section 5.8.1. To do this we must impose the following assumptions on the
system (5.8.4):

Assumption XIX. The drift term, µ̃(·, ·), is differentiable with regard to its
second argument and a solution Ỹ (ζ, ζ0, α) to the following PDE exists:

∂ζ Ỹ (ζ, ζ0, α) = µ̃(ζ, Ỹ (ζ, ζ0, α))

Ỹ (ζ, ζ, α) = α

Ỹ (ζ0, ζ0, α) = α.

Assumption XX. The function Ỹ is differentiable and has an inverse function
ỹ(ζ0, ζ, a) such that

Ỹ (ζ, ζ0, α) = a ⇔ α = ỹ(ζ0, ζ, a).

Assumption XXI. The functions

X̃(ζ, ζ0, α) = ∂αỸ (ζ, ζ0, α), Z̃(ζ, u) = Z̃(ζ, u, ζ0, α) = ỹ(u, ζ, Ỹ (ζ, ζ0, α)),

z(F ) =

∫ F

f

1

C(u)
du, s̃(ζ) = S̃(ζ0, ζ, α) =

∫ ζ

ζ0

Z̃(ζ, u, ζ0, α)2 du

and

ψ̃(ζ, u, Z̃) = ν̃
(
u, Z̃(ζ, u)

)
Z̃(ζ, u)X̃

(
ζ, u, Z̃(ζ, u)

)
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are well defined, X̃
(
ζ, u, Z̃(ζ, u)

)−1 exists, and the following integral functions are
defined:

Ĩ1(ζ) = ρ

∫ ζ

ζ0

ψ̃(ζ, u, Z̃) du,

Ĩ2(ζ) = 2

∫ ζ

ζ0

ν̃
(
u, Z̃(ζ, u)

)2
X̃
(
ζ, u, Z̃(ζ, u)

)2
∫ ζ

u

Z̃(ζ, v)X̃
(
ζ, v, Z̃(ζ, v)

)−1
dv du,

Ĩ3(ζ) = ρ

∫ ζ

ζ0

ψ̃(ζ, u, Z̃)

∫ ζ

u

Z̃(ζ, v)X̃
(
ζ, v, Z̃(ζ, v)

)−1
dv du,

Ĩ4(ζ) = ρ2

∫ ζ

ζ0

ψ̃(ζ, u, Z̃)

∫ ζ

u

∂Z̃

(
ψ̃(ζ, v, Z̃)

)
X̃
(
ζ, v, Z̃(ζ, v)

)−1
dv du,

Ĩ5(ζ) =

∫ ζ

ζ0

ν̃
(
u, Z̃(ζ, u)

)2
X̃
(
ζ, u, Z̃(ζ, u)

)2
du.

Assumption XXII. The function C(·) is differentiable at f , with derivative de-
noted by C ′(·).

Given these assumptions, we can finally apply Theorem 5.8.1 and deduce an effec-
tive PDE in the time space ζ given by{

∂ζQ̃(ζ, F ) = ∂FF
[
D̃(ζ, F )Q̃(ζ, F )

]
Q̃(ζ, F )→ δ(F − f) as ζ → ζ−0 ,

characterized by the function

D̃(ζ, F ) =
1

2
ã(ζ)2C(F )2eG̃(ζ)

(
1 + 2b̃(ζ)z(F ) + c̃(ζ)z(F )2

)
, (5.8.5)

where the coefficients are specified as

ã(ζ) = Ỹ (ζ, ζ0, α), c̃(ζ) = b̃(ζ)2 +
1

ã(ζ)s̃(ζ)2
Ĩ2(ζ)− 6b̃(ζ)

s̃(ζ)2
Ĩ3(ζ) +

2

ã(ζ)s̃(ζ)2
Ĩ4(ζ),

b̃(ζ) =
1

ã(ζ)s̃(ζ)
Ĩ1(ζ), G̃(ζ) = −s̃(ζ)c̃(ζ)− s̃(ζ)b̃(ζ)Γ0 +

1

ã(ζ)2
Ĩ5(ζ)

and

Γ0 = −C ′(f).

5.8.2.3 Reverse Time Change

Given the results expressed in the time space ζ it remains to express these results
in the original variables and show that the Assumptions XIX–XXII are induced by
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the Assumptions IX–XIII. Now, applying the reverse time change from ζ(t) back
to time t, the effective PDE becomes{

∂tQ(t, F ) = ∂FF
[
σ(t)2D̃(ζ(t), F )Q(t, F )

]
Q(t, F )→ δ(F − f) as t→ t−0 ,

where we have used the abbreviation Q(t, F ) = Q̃(ζ(t), F ). This expression yields
the characterization

D(t, F ) = σ(t)2D̃(ζ(t), F )

=
1

2
σ(t)2C(F )2ã(ζ(t))2eG̃(ζ(t))

(
1 + 2b̃(ζ(t))z(F ) + c̃(ζ(t))z(F )2

)
.

Similar to the notation of Q(·, ·), we define the coefficients

a(t) = ã
(
ζ(t)

)
, b(t) = b̃

(
ζ(t)

)
, c(t) = c̃

(
ζ(t)

)
, G(t) = G̃

(
ζ(t)

)
,

to get the desired expression

D(t, F ) =
1

2
σ(t)2C(F )2a(t)2eG(t)

(
1 + 2b(t)z(F ) + c(t)z(F )2

)
.

5.8.2.3.1 Coefficient a

Considering the definition of a(t) as

a(t) = ã
(
ζ(t)

)
= Ỹ (ζ(t), ζ(t0), α),

we use the last expression to define a new function

Ŷ (t, t0, α) = Ỹ (ζ(t), ζ(t0), α).

Knowing that Assumption XIX is satisfied, we can deduce that Ŷ in turn has to
be a solution to
∂tŶ (t, t0, α) = σ(t̃(ζ))2∂ζ Ỹ (ζ, ζ(t0), α) = µ(t, Ỹ (ζ(t), ζ(t0), α)) = µ(t, Ŷ (t, t0, α))

Ŷ (t, t, α) = α

Ŷ (t0, t0, α) = α.

By Assumption X this in turn implies that Ŷ is exactly the desired function Y
and we have

Y (t, t0, α) = Ŷ (t, t0, α) = Ỹ (ζ(t), ζ(t0), α).
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This leads to
a(t) = Y (t, t0, α)

and shows that

Assumption X ⇒ Assumption XIX
Assumption XI ⇒ Assumption XX.

5.8.2.3.2 Remaining coefficients

Similar to the case of a(t) it remains to show that the remaining coefficients can
be expressed exactly by the formulas of Assumption XII. For this, we demonstrate
the necessary steps for the coefficient s(t). In this case we have

s(t) = s̃(ζ(t)) =

∫ ζ(t)

ζ(t0)

Z̃(ζ(t), u, ζ(t0), α)2 du

=

∫ ζ(t)

ζ(t0)

ỹ(u, ζ(t), Ỹ (ζ(t), ζ(t0), α))2 du

=

∫ ζ(t)

ζ(t0)

ỹ(u, ζ(t), Y (t, t0, α))2 du.

Proceeding with a change of variables from u to x = t̃(u) we get

s(t) =

∫ t

t0

σ(x)2ỹ(ζ(x), ζ(t), Y (t, t0, α))2 dx

=

∫ t

t0

σ(x)2y(x, t, Y (t, t0, α))2 dx

=

∫ t

t0

σ(x)2Z(t, x)2 dx,

where we have used the inverse function

y(t0, t, a) = ỹ(ζ(t0), ζ(t), a).

Since all the transformations are done while keeping the equality, the expression
s̃(ζ(t)) is well defined by Assumption XII. Similar transformations are made to
evaluate all the integral terms I1 to I5, which allows us to compute the remaining
coefficients. This provides us with exactly the terms defined in Assumption XII
and we can deduce that

Assumption XII ⇒ Assumption XXI.

This completes the proof.
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5.9 Extended Research

This section is not part of the original publication Felpel et al. [2022b] and aims to
provide additional insight by outlining model properties in more detail, providing
further numerical analysis and explicitly presenting the derivation of the model
coefficients.

5.9.1 User Guide for Model Construction

We start by providing a very helpful guide for the derivation of model coefficients
induced by Theorem 5.2.1. This guide aims to outline all necessary steps to eval-
uate the induced model coefficients. To provide a better visualization we take the
slv-dZABR model as an example to present the application of the individual steps.
This results in the coefficients given in Section 5.5. For completeness we recall that
the slv-dZABR model is characterized as

dFt = σ(t)L(Ft)(Ft + d)βvt dW
(1)
t , Ft0 = f,

dvt = νvγt dW
(2)
t , vt0 = α,

with d〈W (1),W (2)〉t = ρ dt.

To evaluate the model coefficients induced by Theorem 5.2.1, the following steps
are applied with an application towards the slv-ZABR presented in the examples.

1. Solve for Y: Solve the PDE for the function Y (t, t0, α).
Example: The PDE becomes trivial and we can conclude Y (t, t0, α) ≡ α.

2. Compute X: Compute the derivative of Y (t, t0, α) w.r.t. the variable α.
Example: We compute X(t, t0, α) ≡ 1.

3. Compute Z: Compute the inverse function of Y (t, t0, α).
Example: We compute Z(t, u) ≡ α.

4. Specify functions: Specify all relevant model functions necessary for the
integral equations.
Example: We define

ν(t, x) = νxγ, ψ(t, u, x) = νxγ+1, θi(x, t) =

∫ t

x

σ(u)i du

and Ωi,j(t0, t) =

∫ t

t0

σ(x)iθj(x, t) dx.
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5. Evaluate s: Evaluate the integral function s(t).
Example: We evaluate

s(t) =

∫ t

t0

σ(u)2Z(t, u)2 du = α2

∫ t

t0

σ(u)2 du = α2θ2(t0, t).

6. Evaluate I1: Evaluate the integral function I1(t).
Example: We evaluate

I1(t) = ρ

∫ t

t0

σ(x)ψ(t, x, Z) dx = ρναγ+1

∫ t

t0

σ(x) dx = ρναγ+1θ1(t0, t).

7. Evaluate I2: Evaluate the integral function I2(t).
Example: We evaluate

I2(t) = 2

∫ t

t0

ν
(
x, Z(t, x)

)2
X
(
t, x, Z(t, x)

)2

×
∫ t

x

σ(w)2Z(t, w)X
(
t, w, Z(t, w)

)−1
dw dx

= 2

∫ t

t0

ν2α2γ

∫ t

x

σ(w)2α dw dx = 2ν2α2γ+1

∫ t

t0

θ2(x, t) dx

= 2ν2α2γ+1Ω0,2(t0, t).

8. Evaluate I3: Evaluate the integral function I3(t).
Example: We evaluate

I3(t) = ρ

∫ t

t0

σ(x)ψ(t, x, Z)

∫ t

x

σ(w)2Z(t, w)X
(
t, w, Z(t, w)

)−1
dw dx

= ρ

∫ t

t0

σ(x)ναγ+1

∫ t

x

σ(w)2α dw dx = ρναγ+2

∫ t

t0

σ(x)θ2(x, t) dx

= ρναγ+2Ω1,2(t0, t).

9. Evaluate I4: Evaluate the integral function I4(t).
Example: We evaluate

I4(t) = ρ2

∫ t

t0

σ(x)ψ(t, x, Z)

∫ t

x

σ(w)∂Z

(
ψ(t, w, Z)

)
X
(
t, w, Z(t, w)

)−1
dw dx

= ρ2

∫ t

t0

σ(x)ναγ+1

∫ t

x

σ(w)∂Z

(
νZγ+1

)
dw dx

= ρ2ν2α2γ+1(γ + 1)

∫ t

t0

σ(x)θ1(x, t) dx

= (γ + 1)ρ2ν2α2γ+1Ω1,1(t0, t).
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10. Evaluate I5: Evaluate the integral function I5(t).
Example: We evaluate

I5(t) =

∫ t

t0

ν
(
x, Z(t, x)

)2
X
(
t, x, Z(t, x)

)2
dx

=

∫ t

t0

ν2α2γ dx = ν2α2γ(t− t0)

= ν2α2γθ0(t0, t).

11. Compute the coefficient Gamma: Compute the derivative of C(·) eval-
uated at the point f .
Example: We compute

Γ0 = −β(f + d)β−1.

12. Compute the coefficient a: Compute the coefficient using the previously
computed expressions.
Example: We compute

a(t) ≡ α.

13. Compute the coefficient b: Compute the coefficient using the previously
computed expressions.
Example: We compute

b(t) =
1

a(t)s(t)
I1(t) =

1

αα2θ2(t0, t)
ρναγ+1θ1(t0, t) = ρναγ−2 θ1(t0, t)

θ2(t0, t)
.

14. Compute the coefficient c: Compute the coefficient using the previously
computed expressions.
Example: We compute

c(t) = b(t)2 +
1

a(t)s(t)2
I2(t)− 6b(t)

s(t)2
I3(t) +

2

a(t)s(t)2
I4(t)

= ρ2ν2α2(γ−2) θ1(t0, t)
2

θ2(t0, t)2
+ 2ν2α2(γ−2) Ω0,2(t0, t)

θ2(t0, t)2

−6ρ2ν2α2(γ−2) θ1(t0, t)Ω1,2(t0, t)

θ2(t0, t)3
+ 2(γ + 1)ρ2ν2α2(γ−2) Ω1,1(t0, t)

θ2(t0, t)2

= 2ν2α2(γ−2) Ω0,2(t0, t)

θ2(t0, t)2

+ρ2ν2α2(γ−2)

[
θ1(t0, t)

2

θ2(t0, t)2
− 6

θ1(t0, t)Ω1,2(t0, t)

θ2(t0, t)3
+ 2(γ + 1)

Ω1,1(t0, t)

θ2(t0, t)2

]
.
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15. Compute the coefficient G: Compute the coefficient using the previously
computed expressions.
Example: We compute

G(t) = −s(t)c(t)− s(t)b(t)Γ0 +
1

a(t)2
I5(t)

= −α2θ2(t0, t)c(t) + ρναγβ(f + d)β−1θ1(t0, t) + ν2α2(γ−1)θ0(t0, t).

Following this guide, we have demonstrated how the coefficients of Section 5.5
are derived. A similar computation is performed to derive the coefficients of the
slv-Heston model.

5.9.2 Parameter Dependence

Considering the numerical examples in Section 5.6, we put the focus therein on
the calibration algorithm. In this section we provide additional insight on the
general model behaviour. In particular, we focus on the dependencies of the model
towards the underlying parameters and demonstrate the impact of each individual
parameter. We work with the slv-Heston model as done in Section 5.6.4 and
again use the parametrization provided in Table 5.5 to generate a market curve
and establish a first reference curve for the slv-Heston model. Starting from this
reference parametrization, we modify the underlying parameters one by one and
compare the resulting projected volatility curves. Here the parameters are modified
in accordance to Table 5.6. In each case we apply two shocks in the upward as
well as the downward direction. The resulting projected volatility functions, when
calibrating the slv-Heston model to the market curve as described in Section 5.6.4,
are presented in Figure 5.6.

Parameter Base + ++ − −−
α 0.08 0.1 0.12 0.06 0.04
ν 0.1 0.2 0.4 0.05 0.025
ρ −0.5 0 0.5 −0.7 −0.9
κ 0.01 0.1 0.5 0.005 0.001

Table 5.6: Parameters of the slv-Heston model resulting from a shock applied to
the individual parameter.

Considering, for the moment, a maturity of 1 year, the calibration algorithm be-
comes clearly visible. Along the specified calibration points, all computed curves
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(a) Year 1 when α changes.
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(b) Year 10 when α changes.
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(c) Year 1 when ν changes.
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(d) Year 10 when ν changes.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Moneyness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
oj

ec
te

d 
va

ria
nc

e

Projected variance for a maturity of 1 year in bp
Market
Base
+
+ +
-
- -

(e) Year 1 when ρ changes.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Moneyness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
oj

ec
te

d 
va

ria
nc

e

Projected variance for a maturity of 10 years in bp
Market
Base
+
+ +
-
- -

(f) Year 10 when ρ changes.
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(g) Year 1 when κ changes.
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(h) Year 10 when κ changes.

Figure 5.6: Projected volatility function with changing parameters.
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are indistinguishable due to the calibrated leverage function. Hence, the impact
due to the changing parameters can only be observed on the points in between
these calibration points. For the parameters α and κ the differences are only min-
imal. Changing the parameters ν and ρ, we can already observe some changes
in the projected volatility curve. In particular, considering the case of ρ = −0.9
we can observe that the projected volatility curve induced by the underlying base
model exhibits a different behaviour than our market curve. This in turn induces
a divergence of the curves for larger values of moneyness. The observed differences
are in some sense controlled by the grid size of the calibration grid, do however also
show the importance, to tailor the underlying base model to the observed market
behaviour.

These observations are only enhanced when considering the larger maturity of 10
years. Considering the larger values of moneyness starting from around 2, we can
observe an impact of all modified parameters on the projected volatility curve.
For the parameters α and κ, we observe a moderate fluctuation around the market
behaviour. In the case of the parameter ρ where we already observed a divergence
in year 1, this behaviour is further increased and the difference between the curves
is vastly increasing depending on the moneyness. For the parameter ν we can
observe a large sensitivity towards changes. Here it also possible to change the
shape of the curve, suggesting ν to be one of the main handles in controlling the
model behaviour.

These insights can be translated towards the implied volatility curve. In our
algorithm, we use the projected volatility function in a PDE algorithm. For this
algorithm a space grid is derived and the projected volatility function has to be
evaluated along these grid points. These grid points do not have to correspond to
the calibration grid points and may be placed in between those or far above the
largest calibration point. This results in inter- and extrapolation which is driven
by the underlying base model and follows the behaviour shown in Figure 5.6. This
suggests two efficient handles to control the behaviour of the projected volatility
function and in turn also the implied volatility function. The first possibility is
to use the underlying base parameters to control and steer the behaviour. As
demonstrated, this approach provides much more flexibility for larger maturities
compared to fitting maturity placed at 1 year. The second option, is to control the
differences through the calibration grid. As presented in Figure 5.6 this enables to
greatly reduce the differences for the fitting maturity, is however not the optimal
solution to control the impact on larger maturities.

To demonstrate how we can apply this knowledge, let us reconsider the example
in Section 5.6.4. We assume that for a maturity of 10 years, the implied volatility
curve is not satisfactory enough, e.g. induced by a questionable data quality of the
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input data, and we would rather like to observe a curve which is not as steep as
the current one. Therefore, we proceed and tune the underlying base parameters
to our new requirements. Taking Figure 5.6 into account, we see that an increase
of the parameter ν results in much smaller projected volatilities, translating in
turn into smaller implied volatilities. Hence, we increase the parameter from a
value of 0.1 to 0.2. The results are presented in Figure 5.7 and indeed show the
desired improvements. For a maturity of 10 years and a moneyness greater then
2, the steepness is reduced while in all other areas of the curve, the quality of
the approximation is still comparable to the original results deduced using the
Monte Carlo scheme from Section 5.4.3.2. This demonstrates the control over the
model behaviour through its parameters and provides an intuitive way to adjust
the model to the desired requirements.
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(a) Implied volatility for maturity 1.
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(b) Implied volatility for maturity 10.

Figure 5.7: Implied volatility functions for the slv-Heston model in comparison to
a Monte Carlo approach.

198



6 Conclusion and Future Research

Providing a suitable foundation for practical application, our techniques also ex-
hibit enough possibilities for further improvements, investigations and future re-
search. The direction in which further investigations may progress are manifold
and before concluding this thesis we desire to outline a few possibilities.

6.1 Future Research

First of all, further research can be done to increase the class of viable models to
which our techniques are applicable. Considering for example SLV models as done
in Section 5.3, it can be analysed if it is possible to relax some of the assumptions
imposed on the model. In particular, it would be quite useful to be able to avoid
Assumption XIV since this would further increase the accuracy when modelling
time dependencies. From a mathematical perspective this is very interesting since
the full space and time dependence of the leverage function introduces additional
terms into the perturbation analysis. Hence, it would be interesting to see if it is
possible to derive results similar to that of Theorem 5.2.1 and if the leading order
analysis is still applicable as before using a heat equation or if a different equation
has to be found to allow the analysis. In turn, this could also affect the structure
of the final approximation formula which would further yield to a generalization
in the EMP algorithms of Chapter 4.

Second, the class of applicability can also be increased by adding additional compo-
nents. For example, the inclusion of a drift term into the dynamics of the forward
process can be considered. While we have shown that it is possible to price e.g.
the spreads of two rates, where at least one rate has a drift term in a common
measure, it would still be advantageous to be able to directly approximate a model
formulated with a drift term in the forward process. In particular, when consider-
ing stocks instead of interest rates this provides additional flexibility in a practical
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application. As before, the modification would induce additional terms into the
perturbation analysis which have to be analysed carefully.

Alternatively, it can also be analysed if similar methods may be applicable to other
types of models. Instead of considering stochastic volatility models, jump-diffusion
models or even rough volatility models, see Section 2.3.5, could be analysed. This
could open a new perspective to approach these type of models.

While these suggestions all aim to increase the scope of applicability, further inves-
tigations may also progress to deduce additional analysis on the presented method-
ology. This could include areas such as approximation quality or possible model
limitations. Considering e.g. the results for the ZABR model in Section 3.2.3.1,
our technique induced a parameter bound to enforce reasonable results. Here it
would be interesting to see if such a bound is also reasonable when considering the
model from a purely theoretical perspective and if it is possible to enforce gen-
eral conditions to guarantee satisfying numerical results. Such analysis could also
be extended with the goal to assess the approximation quality in terms of error
bounds. Using the EMP-techniques of Chapter 4 as an example, we derived the
approximation order for the singular perturbation approximation. The matching
algorithms to project one model onto another do, however, not have such an ex-
plicit result. Here it would be interesting to see if it is possible to derive suitable
bounds. These could have a theoretical or numerical nature and will possibly allow
to deduce explicit conditions in which cases the techniques perform well and where
special care has to be taken. In turn, this could also yield to possible improvements
in the matching algorithms.

Finally, as a last suggestion for future research, we consider the numerical im-
plementation of our presented techniques. While we have mainly used a one-
dimensional finite difference scheme in accordance to Section 2.5.3, it can be anal-
ysed if the performance may be increased using different numerical implementa-
tions. This could yield to an increased stability when considering full time depen-
dent coefficients or provide a measure of accuracy when comparing the results to
a direct two-dimensional PDE solution using ADI methodologies. Moreover, new
numerical techniques could be derived. Considering e.g. the proof of Theorem
3.2.3, a variety of transformations are used to reformulate the PDE in a way that
is in some sense easier to analyse. A similar approach could also be used to e.g.
transform the original stochastic volatility model into a formulation where the cor-
relation between the two components vanishes. This would yield an orthogonal
projection scheme and could allow a direct application of classical ADI schemes
without the need to incorporate adjustments due to the correlation.

200



6.2 Conclusion

In summary, we have established a variety of techniques applicable to a large
class of generalized stochastic volatility models. This includes classical stochas-
tic volatility models as well as certain types of stochastic local volatility models.
Our methods use singular perturbation techniques to analyse the model induced
Kolmogorov equations for the probability density. Using a variety of transforma-
tion functions, we can perform a leading order analysis to accurately approximate
these equations to a given order. This allows an accurate approximation of the
generalized stochastic volatility model using one-dimensional differential equations
which can correspondingly be seen as one-dimensional local volatility models. This
approach provides a unified computational framework and yields to a multitude of
explicit computation formulas. In particular, we derived explicit pricing formulas
for vanilla options in terms on implied volatilities, demonstrated the pricing of
basket options such as CMS spreads and analysed the calibration procedure for
stochastic volatility as well as stochastic local volatility models. Explicit applica-
tions in form of numerical studies are provided for all derived techniques and show
that these results may already be used in a practical application. This provides a
solid foundation for future extensions and we are looking forward to observe which
extension may arise and how our methods are applied in practice.
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