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Abstract

Muscles are contractile organs referring to their ability to alternate between contracting and re-

laxing. This interplay of contraction and relaxation enables both the consciously controlled move-

ments and the functions that take place unconsciously inside the body. However, only skeletal

muscles can be controlled consciously.

Skeletal muscles are fiber-matrix-composites with a complex hierarchical microstructure, i.e.

nested structures exist on different length scales. The components in hierarchically structured

materials match together perfectly allowing for an optimal interaction of the individual compo-

nents with each other resulting in a combination of exceptional properties. Skeletal muscles

exhibit a very high elasticity, a high tensile strength as well as a high damage tolerance. The

fields of interest for making use of these unique properties range from medicine for body-like

prostheses to even advanced robotics. In order to gain a better understanding of the interaction

between the components on different hierarchical levels and how individual components impact

the overall behavior of the skeletal muscle as a whole, the muscle needs to be studied at different

length scales.

In order to enable the analysis of how the muscle works at different length scales, Python

codes are created in this dissertation which generate computer models in Abaqus FEA on each

of the five hierarchical levels of a skeletal muscle (see Chapter 2).

Some of the created models are used to analyze the hierarchical levels “muscle fiber” and

“fascicle” in the chapters 3-5 in more detail by developing constitutive models on these levels

and using the finite element method to predict the material behavior in multiphysics simulations.

The fascicle models are considered as two-phase composites consisting of muscle fibers em-

bedded in the connective tissue endomysium. Hyperelastic material models are developed to

describe the material behavior of both components. The material behavior of the muscle fiber

is subdivided into a passive and an active part, since the electrical activation of muscle fibers

to initiate contraction results in strongly different material behavior compared to the one of pas-

sive relaxed muscle fibers. The models intend to provide detailed information on the material

behavior of the entire fascicle as well as on its components, muscle fiber and endomysium.

In Chapter 3, a chemo-electro-mechanical model with a representative volume element (RVE)

for fascicles is introduced. By considering the activation process of muscle fibers, which consists

of strongly coupled chemical, electrical and mechanical processes, the impact of the temporal

and spatial change of the activation level in fibers on the stress development in the muscle fiber

and in the endomysium is examined. Furthermore, a real loading case of fascicles is considered

and the influence of the pennation angle on the lifting force and lifting height of unipennate

muscles is investigated. For the same loading case, the local minimum and maximum strains

and stresses in the muscle fiber and endomysium are analyzed with increasing macroscopic

strain to identify areas with high risk of damage.

Chapter 4 examines the damage behavior during eccentric contraction on muscle fiber and

fascicle level on which the most common serious muscle injuries occur. Two differently sized
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Abstract

two-phase fascicle RVEs with electrically activated muscle fibers are used to model the crack

propagation and damage evolution in a pre-damaged muscle fiber and to investigate the inter-

action between muscle fiber and endomysium. The used multiscale continuum model allows to

study the influence of the giant molecule titin of the lowest hierarchical level on the mechanical

behavior in pre-damaged fascicles. In addition, endomysium’s protective properties for neigh-

boring undamaged muscle fibers in a case of a highly pre-damaged fiber are examined.

Chapter 5 studies the thermomechanical behavior of muscle fibers and endomysium in fasci-

cles. Detailed information is provided on the mechanisms of heat and cold treatment in trigger

points (hyperirritable spots in tensed muscle fibers) to relieve muscle tension. For this purpose,

a complete two-phase cylindrical fascicle model is generated and a trigger point is induced in

the central muscle fiber. The effect of short-term and long-term heat and cold treatment of the

entire fascicle on the strains and stresses along the tensed central muscle fiber is simulated.

The aim of the study is to investigate how the different thermomechanical behavior of the trigger

point and the neighboring fiber regions impacts the thermal treatment of trigger points.
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Zusammenfassung

Muskeln sind kontraktile Organe, d.h. sie sind in der Lage sich zusammenzuziehen und wieder

zu entspannen. Dieses Wechselspiel von Anspannung und Entspannung ermöglicht sowohl die

bewusst gesteuerten Bewegungen als auch die unbewusst ablaufenden Funktionen im Körper,

allerdings kann nur die Skelettmuskulatur bewusst angesteuert werden.

Skelettmuskeln sind Faser-Matrix-Komposite mit einer komplexen hierarchischen Mikrostruk-

tur, d.h. ein verschachtelter Aufbau auf verschiedenen Längenskalen existiert. Die Komponen-

ten von hierarchisch aufgebauten Materialien sind perfekt aufeinander abgestimmt, sodass ein

optimales Zusammenspiel der einzelnen Komponenten erreicht wird. Daraus resultieren heraus-

ragende Eigenschaften, was sich beim Skelettmuskel durch eine hohe Elastizität, Zugfestigkeit

und Schädigungstoleranz bemerkbar macht. Aufgrund der einzigartigen Eigenschaften herrscht

auf vielen Gebieten großes Interesse am Einsatz von skelettmuskelähnlichen, künstlichen Mate-

rialien, z.B. für körperähnliche Prothesen in der Medizin oder für humanoide Roboter, vor allem

für Soft Robots, in der Technik. Um ein besseres Verständnis über das Zusammenspiel der

Komponenten auf verschiedenen Hierarchieebenen und den Einfluss einzelner Komponenten

auf das Gesamtverhalten des Skelettmuskels zu erlangen, muss der Skelettmuskel auf unter-

schiedlichen Längenskalen untersucht werden.

Um die Arbeit auf verschiedenen Längenskalen des Skelettmuskels zu ermöglichen, werden

in der vorliegenden Dissertation vorerst Python Codes zur Generierung von Computermodellen

in Abaqus FEA auf jeder der fünf Hierarchieebenen des Skelettmuskels erstellt (siehe Kapitel 2).

Ein paar der erstellten Modelle werden verwendet, um in den Kapiteln 3-5 die Hierarchieebe-

nen „Muskelfaser“ und „Muskelfaserbündel“ genauer zu untersuchen. Hierfür werden konstitu-

tive Modelle aufgebaut und multiphysikalische Simulationen mit der Finiten Elemente Methode

durchgeführt, um Vorhersagen über das Materialverhalten treffen zu können. Das Muskelfaser-

bündel wird als zweiphasiges Modell, bestehend aus Muskelfasern, welche in das Bindegewebe

Endomysium eingebettet sind, erstellt. Zur Beschreibung des Materialverhaltens werden für

beide Komponenten hyperelastische Materialmodelle verwendet. Dabei wird im Materialmod-

ell der Muskelfaser zwischen passiven und aktiven Eigenschaften unterschieden, da die elek-

trische Aktivierung zur Bewegungsansteuerung von Muskelfasern im Vergleich zur passiven,

entspannten Faser zu stark unterschiedlichem Materialverhalten führt. Anhand der Modelle

sollen sowohl gezielte Aussagen über das Materialverhalten des gesamten Muskelfaserbündels

als auch über dessen Komponenten Muskelfaser und Endomysium getroffen werden.

In Kapitel 3 wird ein chemo-elektro-mechanisches Modell mit einem repräsentativen Vol-

umenelement (RVE) für Muskelfaserbündel erstellt. Durch die Berücksichtigung des Aktivie-

rungsprozesses von Muskelfasern, der eine starke Kopplung aus chemischen, elektrischen

und mechanischen Prozessen darstellt, wird der Einfluss des zeitlich und räumlich veränder-

lichen Aktivierungsgrads der Muskelfaser auf den Spannungsverlauf in der Muskelfaser und im

Endomysium genauer untersucht. Des Weiteren wird ein möglichst realer Belastungsfall von

Muskelfaserbündeln betrachtet und der Einfluss des Fiederungswinkels auf die Hubkraft und
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Hubhöhe von einfach gefiederten Muskeln untersucht. Für den gleichen Belastungsfall werden

zudem die lokalen, minimalen und maximalen Dehnungen und Spannungen in der Muskelfaser

und dem Endomysium mit zunehmender makroskopischer Dehnung analysiert, um unter an-

derem Bereiche mit erhöhter Schädigungsgefahr lokalisieren zu können.

In Kapitel 4 wird das Schädigungsverhalten bei exzentrischer Kontraktion auf Muskelfaser- und

Muskelfaserbündelebene untersucht, auf denen die meisten schwerwiegenden Muskelverlet-

zungen auftreten. Mit zwei unterschiedlich großen, zweiphasigen Muskelfaserbündel RVEs wird

die Rissausbreitung und Schadensentwicklung in einer vorgeschädigten Muskelfaser, die sich

innerhalb eines aktivierten Muskelfaserbündels befindet, simuliert und das Zusammenspiel von

Muskelfaser und Endomysium untersucht. Das erstellte Multiskalenmodell ermöglicht den Ein-

fluss des Makromoleküls Titin, das sich auf der untersten Hierarchieebene des Muskels befindet,

auf das mechanische Verhalten in vorgeschädigten Muskelfaserbündeln zu analysieren. Zudem

wird die Schutzfunktion des Endomysiums für benachbarte, ungeschädigte Fasern vor der Ris-

sausbreitung in der geschädigten Faser genauer betrachtet.

In Kapitel 5 wird das thermomechanische Verhalten von Muskelfasern und Endomysium in

Muskelfaserbündeln untersucht. Es werden detaillierte Informationen über die Mechanismen

von Wärme- und Kältebehandlung von Triggerpunkten (lokale Muskelverhärtungen) in Muskel-

fasern zur Reduzierung der Muskelverhärtung bereitgestellt. Dafür wird ein komplettes zweipha-

siges, zylindrisches Muskelfaserbündelmodell erstellt und ein Triggerpunkt in die mittlere Muskel-

faser induziert. Der Einfluss von unterschiedlich langer Wärme- und Kältebehandlung des

gesamten Bündels auf die Dehnungen und Spannungen entlang der verspannten Muskelfaser

wird simuliert. Ziel der Studie ist die Auswirkung des unterschiedlichen thermomechanischen

Verhaltens im Triggerpunkt und in den benachbarten Faserbereichen auf die thermische Be-

handlung von Triggerpunkten zu analysieren.

v



List of Papers

This thesis consists of an introduction and four papers about computational modeling of skeletal

muscles on microstructure level. The introduction in Chapter 1 provides an overview of the state-

of-the-art in skeletal muscle modeling, describes the studied research topics, sums up the main

conclusions from the papers and presents an outlook for future research in this field. All papers

are published in international scientific peer-reviewed journals. The following four papers are

included in the thesis:

Chapter 2 [120]: J. Lamsfuss and S. Bargmann. Python codes to generate skeletal muscle

models on each hierarchical level. Software Impacts, 14:100437, 2022.

Chapter 3 [118]: J. Lamsfuss and S. Bargmann. Skeletal muscle: Modeling the mechanical

behavior by taking the hierarchical microstructure into account. Journal of the

Mechanical Behavior of Biomedical Materials, 122:104670, 2021.

Chapter 4 [119]: J. Lamsfuss and S. Bargmann. Computational modeling of damage in the hier-

archical microstructure of skeletal muscles. Journal of the Mechanical Behavior

of Biomedical Materials, 134:105386, 2022.

Chapter 5 [121]: J. Lamsfuss and S. Bargmann. Mechanisms of thermal treatments in trigger

points of the skeletal muscle: computational microstructural modeling. Euro-

pean Journal of Mechanics - A/Solids, 99:104906, 2023.

vi



Contents

1 Introduction 1

1.1 State-of-the-art in skeletal muscle modeling . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research topics of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Article 1:

Python codes to generate skeletal muscle models on each hierarchical level 10

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Code metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Code description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Design and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Article 2:

Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical

micro-structure into account 18

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Micromechanical behavior of skeletal muscles . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Mechanical behavior on levels 1 (sarcomere) and 2 (myofibril) . . . . . . . 20

3.3.2 Mechanical behavior on level 3 (muscle fiber) . . . . . . . . . . . . . . . . 22

3.3.3 Mechanical behavior on level 4 (fascicle) . . . . . . . . . . . . . . . . . . 23

3.3.4 Mechanical behavior on level 5 (entire muscle) . . . . . . . . . . . . . . . 23

3.4 Micromechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Muscle fiber (level 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Connective tissue endomysium . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Material Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 3D Computational Model of Fascicle . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.1 Mechanical behavior of fascicles, muscle fibers and endomysium: Loading

in fiber direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



Contents

3.6.2 Mechanical behavior of fascicles and its components in uni-pennate mus-

cles under real loading conditions . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Article 3:

Computational modeling of damage in the hierarchical microstructure of skeletal

muscles 44

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Micromechanical damage model . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Muscle fiber (level 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Connective tissue endomysium . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 3D computational models of fascicles . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Results: Computational modeling of damage in fascicles . . . . . . . . . . . . . . 54

4.5.1 Damage behavior and injury of previously fully intact muscle fibers on the

fascicle level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.2 Damage behavior and injury with pre-damaged muscle fibers on the fasci-

cle level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Article 4:

Mechanisms of thermal treatments in trigger points of the skeletal muscle: com-

putational microstructural modeling 63

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Micro-thermomechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Endomysium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Muscle fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 3D computational model of fascicle . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Results: Computational modeling of thermomechanical behavior on the fascicle

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Appendix of article 1 80

B Appendix of article 2 81

B.1 Chemoelectrical part of muscle fiber material model . . . . . . . . . . . . . . . . 81

B.2 Further simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.2.1 Influence of the activation parameter γ̄ on the stress-strain curve of fascicles 83

viii



Contents

B.2.2 Interaction of chemoelectrical processes and mechanical processes during

fiber activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.2.3 Total fascicle RVE force in fascicles with varying states of stretch and com-

pression depending on the speed of contraction . . . . . . . . . . . . . . . 85

C Appendix of article 3 87

C.1 Material Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.1.1 Muscle fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.1.2 Connective tissue endomysium . . . . . . . . . . . . . . . . . . . . . . . . 89

C.2 Further simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C.2.1 Damage behavior and injury of muscle fibers loaded in fiber direction . . . 89

C.2.2 Local strains in a 90 % pre-damaged muscle fiber at fascicle level in a

realistic loading case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D Supplementary Material of article 3 93

D.1 Validation of titin’s and endomysium’s observed behavior in pre-damaged fascicles 93

D.1.1 Comparison between different fiber-endomysium-Young’s

modulus ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D.1.2 Comparison between different fiber shapes and fiber volume fractions . . . 93

D.2 Initiation of fiber rupture in RVEs with different arranged polygonal muscle fibers . 97

E Appendix of article 4 99

E.1 Material Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

E.1.1 Endomysium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

E.1.2 Muscle fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

E.2 Influence of temperature on active muscle fiber force . . . . . . . . . . . . . . . . 102

E.3 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

F Supplementary Material of article 4 108

F.1 Validation of the observed influence of thermal treatment on muscle fibers with

trigger points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 112

ix





1 | Introduction

Skeletal muscles are hierarchically structured fiber-matrix-composites, so nested structures exist

on different length scales. The interaction of the different hierarchy levels results in a combina-

tion of a variety of exceptional properties. What makes the skeletal muscle so unique is the

combination of high elasticity, high tensile strength and high damage tolerance. Due to these

properties, synthetic skeletal muscles with similar characteristics are in high demand for different

fields, e.g. for body-like prostheses in medicine or for humanoid robots in technology. In partic-

ular, the use of artificial muscles is regarded as a crucial element for “soft robots” which consist

of flexible, organic structures and rely on the imitation of movement sequences found in nature.

Therefore, powerful, flexible and light muscles will allow the replacement of heavy motors in the

field of technology. Understanding the mechanics of skeletal muscles enables to look beyond

the field of technology and apply the gained knowledge when analyzing the prevention of sports

injuries and rehabilitation. Due to the wide range of applications and the unique properties of

skeletal muscles, worldwide interest has arisen in order to examine this biological material in

more detail.

The complex structure of skeletal muscles consisting of connective tissue, blood vessels,

nerves and contractile material is subdivided into five hierarchical levels [99, 124, 155, 190],

where, visually speaking, level 5 corresponds to the most macroscopic layer: skeletal muscle

(hierarchical level 5) - fascicle (hierarchical level 4) - muscle fiber (hierarchical level 3) - myofibril

(hierarchical level 2) - sarcomere (hierarchical level 1) (Fig. 4.1 in Chapter 4 shows the complex

structure of skeletal muscles on all levels). Fascicles and muscle fibers are both embedded in

a connective tissue matrix. On the lower levels, myofibrils consist of parallel aligned contracting

units, called sarcomeres. Sarcomeres contain multiple protein filaments which are responsible

for the entire muscle movement.

In the past, vast numbers of experimental investigations have been performed on skeletal mus-

cles. As experimental sample sizes and mechanical loading rates are restricted, experiments are

limited by length and time scales. Furthermore, detailed examinations of the microstructure often

cause major challenges for experiments, which is why computational modeling of solid materials

based on the theory of continuum mechanics provides us with a high potential alternative, as it is

not constricted by length and time scales. For computational modeling, the structure of materials

can be modeled on a macroscopic and microscopic level and material models can be developed

which describe the physical properties of either the entire structure or specific components via

1



1 Introduction

constitutive equations. Constitutive equations describe the material response to external stimuli

by relating two physical quantities to each other, as e.g. stresses to strains.

In many continuum mechanical muscle models, the constitutive equations for muscles have

been divided into a passive and an active part. The active part contains the active properties of

muscle fibers, which are stimulated by electrical impulses from the brain to induce the shortening

or lengthening of the muscle fiber.

When a muscle is compressed or stretched, the muscle exerts passive forces, which are

mainly generated by the connective tissues. Thus, the passive part is mainly represented by the

properties of the connective tissues.

1.1 State-of-the-art in skeletal muscle modeling

Computational models can be used to study the skeletal muscle on different length scales, i.e.

on different hierarchical levels, to predict the mechanical behavior of different components and

their interaction with each other. In the past, most mechanical models examined the skeletal

muscle on the highest hierarchical level, which means that the models were generated for the

entire skeletal muscle.

Hill [93] was the first who created a mechanical muscle model describing the muscle force

in a one-dimensional, three-parameter model. Since then, Hill’s model has been expanded

in many different one-dimensional mathematical models, e.g. in [83, 217, 221]. Other works

[20, 108, 152] have shown, that three-dimensional finite element models are able to capture the

functional and structural properties of skeletal muscles more precisely than the developed one-

dimensional models. Johansson et al. [108] determined the mechanical properties in all three

dimensions of the skeletal muscle, Oomens et al. [152] integrated the sliding-filament theory

from [98] to develop a continuum model for contracting skeletal muscles and Blemker et al. [20]

determined the influence of different geometrical arrangements of fascicles on their nonuniform

shortening behavior. Some finite element models [35, 215] even involved the tendon in their

muscle model to analyze the mechanical behavior of the muscle-tendon complex during different

contractions [215] and to describe the lengthening and shortening properties of the aponeuroses

[35].

However, these macroscopic models do not involve detailed information from smaller scales,

which is why micromechanical models were formulated to e.g. describe the influence of muscle

fiber distribution on the contraction behavior [21] or depict the activation properties of different

fiber types and their influence on contraction and force production [52]. Other models considered

the activation process on cellular level [60, 90, 181] by introducing multiphysics muscle models.

This allows the connection of the mechanical response of muscles to the electro-physiological

mechanisms during muscle fiber activation. In order to cause contraction the tetanic stimulus has

to be transferred from the central nervous system to the skeletal muscle fibers, i.e. the complex

multiphysical processes take place on multiple scales of the muscle and on multiple parts of the

muscoloskeletal system.

2



1.1 State-of-the-art in skeletal muscle modeling

Röhrle et al. [181] introduced a chemo-electro-mechanical muscle model to combine the ex-

tensive electro-physiological cell model for skeletal muscle fibers from [199] with a continuum-

based model of muscle mechanics. Shorten et al. [199] described the subcellular processes

from electrical excitation to contraction and force generation for different fiber types via a large

set of ordinary differential equations. Heidlauf and Röhrle [87, 88] extended the model from

[181] by integrating a permanent interaction between the cellular behavior and the continuum-

based mechanical model for getting more realistic results during the contraction process. Both,

the temporal development of muscle fiber activation and the spatial propagation of the electrical

activation impulses are considered in their models which impact the stress development along a

muscle fiber. However, the model is based on the approach, that the entire muscle consists of

one-dimensional muscle fibers to solve the electro-physiological cell model which are embedded

in a three-dimensional structure for the mechanical model. Thus, interactions between muscle

fibers and connective tissue cannot be captured.

In order to gain essential insight of muscle structures, a more realistic consideration of the

muscle structure on different length scales is necessary. Thus, some muscle models [115,

203, 238] used a more realistic muscle shape by modeling the skeletal muscle as a fiber-matrix

composite consisting of three-dimensional muscle fibers and connective tissue. Spyrou et al.

[202, 203] used homogenization techniques for the three-dimensional muscle composite to study

the active and passive homogenized muscle response at finite strains.

The damage behavior of entire skeletal muscles has not yet been analyzed extensively in

mechanical models. Ito et al. [103] considered anisotropic damage in their constitutive mus-

cle model based on the framework of continuum damage mechanics to predict the breaking

points at high strains. Computational models mainly studied the thermomechanical properties

of artificial muscles, e.g. [111, 163, 196]. Only Bielak et al. [17] included thermomechanical

reactions in a continuum model for the gastrocnemius muscle and Fahmy [59] captured the

bio-thermomechanical behavior of anisotropic soft tissues in general.

All previously mentioned works focused on the overall behavior of the entire muscle (hierarchi-

cal level 5), thus lacking on investigating the remaining four hierarchy levels. Most mechanical

models have insufficiently investigated the muscle’s microstructure, although knowledge about

the intrinsic microstructure of the hierarchically structured muscle is required in order to obtain

more information about the mechanical properties of lower level components. Therefore, a few

models were developed on specific hierarchical levels and included details about the structure

and the material properties on these levels, for instance, [69, 133, 195, 208, 219] generated

models on fascicle level (hierarchical level 4), [70, 175, 237] on muscle fiber level (hierarchical

level 3) and [33, 154, 173, 205] on myofibril (hierarchical level 2) and sarcomere level (hierarchi-

cal level 1).

On hierarchical level 4, Sharafi et al. [195] varied fiber and fascicle shapes, Teklemariam et

al. [208] redistributed activated muscle fibers belonging to one motor unit and Marcucci et al.

[133] used different muscle fiber types to determine their influence on the mechanical properties

on this level. Other works [69, 219] investigated the damage behavior on fascicle level. Gao et
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1 Introduction

al. [69] studied the lateral force transmission between an injured and a healthy muscle fiber and

Virgilio et al. [219] examined disease-related changes in fascicles.

On hierarchical level 3, Rehorn et al. [175] developed a mathematical model of muscle fiber

viscoelasticity for different lengthening rates. Zhang and Gao [237] generated a 2D finite element

model of a muscle fiber to investigate the mechanisms of lateral force transmission between the

muscle fiber and the endomysium. The damage behavior was also studied on muscle fiber level.

Here, Gao et al. [70] analyzed the susceptibility to damage during lengthening contraction.

The mathematical models for myofibrils (hierarchical level 2) [205] and for sarcomeres (hier-

archical level 1) [33, 154, 173] incorporated the cross-bridge dynamics to provide more detailed

insights into muscle mechanics on the lower hierarchical levels. The cross-bridge dynamics de-

scribes the cycle of attachment and detachment of the proteins actin and myosin in sarcomeres

through cross-bridges. The rotating cross-bridges ensure the movement of the proteins and are

therefore directly responsible for the contraction of the entire muscle fiber.

These mentioned microstructure models were able to describe the mechanical behavior on

specific hierarchical levels. However, further details about the properties of microstructure com-

ponents lack, as well as more information about the interaction of the components and their

impact on the overall skeletal muscle behavior.

1.2 Research topics of the dissertation

The objective of this dissertation is the generation and investigation of microstructure muscle

models utilizing the finite element method in order to obtain a more detailed understanding of

lower level muscle component properties.

To this end, Chapter 2 introduces Python codes to create computer models for each of the five

hierarchical skeletal muscle levels. A selected number of these models are used as the basis of

the investigation in the articles shown in the following chapters and the codes are also available

for future works on microstructure level. The skeletal muscle is extensively examined on muscle

fiber level (hierarchical level 3) and on fascicle level (hierarchical level 4) in Chapter 3-5, which

means an in depth analysis of the fascicles, muscle fibers and the endomysium within this dis-

sertation. On these levels, the influence of complex multiphysical processes in the muscle on

the properties of the muscle’s components are investigated as well as the damage behavior of

these components. Especially the damage behavior is of interest as the most common serious

muscle injuries occur on these levels. The individual components that represent the muscle ge-

ometry on the hierarchical levels are considered in the models and constitutive material models

are formulated separately for each component.

During muscle fiber activation, strongly coupled chemical, electrical as well as mechanical

processes result in contraction of the entire muscle fiber. These complex multiphysical processes

can be captured in models on hierarchical levels 3 and 4.

In the model developed in Chapter 3, the complex activation process in a muscle fiber is

integrated by using the extensive cellular model from [199], as done in [88]. The model of [88]
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1.2 Research topics of the dissertation

is then extended to the three-dimensional case in order to capture the interaction between the

muscle fiber and the surrounding tissue endomysium during fiber activation. The stress evolution

along a muscle fiber during activation is investigated to study the expected inhomogeneous

stress distribution along fibers and the resulting impact on the endomysium. The endomysium is

expected to compensate for the stress differences along the muscle fiber.

Most mechanical models mentioned in Sect. 1.1 focus in their analysis on a muscle under

uniaxial loading, although, real muscle loading is usually more complex. Especially pennate

muscles experience multiaxial loading consisting of combined tensile and shear loading which is

examined more closely in Chapter 3 of this dissertation. If unipennate muscles are stretched in

tendon direction and are thus exposed to multiaxial loading, the pennation angle (i.e. the angle

between fibers and the tendon) reduces (see Fig. 3.10). As muscle fibers generate forces in fiber

direction, the changed pennation angle influences the lifting force, which is the generated force

transferred in tendon direction. Furthermore, the pennation angle affects the lifting height of

unipennate muscles. It is well known that unipennate muscles with larger pennation angles can

exert higher lifting forces while smaller pennation angles result in higher lifting heights. In this

dissertation, fully activated fascicles of unipennate muscles are subjected to real loading and the

simulations give new insights into the development of lifting forces and lifting heights for different

pennation angles during the loading process. As the multiaxial loading results in nonuniform

stresses and strains in the activated muscle fiber and in the endomysium, this study, specifically

for unipennate muscles, helps to determine regions at higher risk of damage resulting from those

higher stresses and strains.

Furthermore, a micromechanical damage model is developed in Chapter 4 to further inves-

tigate the high-risk regions for damage of multiaxially loaded unipennate muscles identified in

Chapter 3. So far, the damage behavior of the skeletal muscle, especially on different hierar-

chical levels, has not been fully studied. It is mandatory to gain a detailed understanding of

the damage behavior in order to improve in many fields, e.g. the prevention and appropriate

treatment of muscle injuries in sports and the development of equivalent synthetic counterparts

in biomimetics. Only a few mechanical models developed so far have investigated the damage

behavior of skeletal muscles. However, computational models are essential to study the damage

behavior of lower level components as experiments can only provide limited information on mi-

crostructure level. Therefore, this dissertation examines damage on level 3 and 4 in the muscle

belly by means of a damage model for fascicles (see Chapter 4). The same multiaxial loading

of unipennate muscles, as studied in Chapter 3, is applied to capture the higher-risk regions for

damage in a muscle fiber. It is expected that the simulations confirm the results from Chapter 3.

Furthermore, the damage evolution in muscle fibers until total fiber rupture is analyzed for pre-

damaged fibers by taking into account the influence of components on the lowest hierarchical

level, especially of the giant protein titin. Here, an eccentric contraction of fascicles is observed,

which generally leads to a high risk of injury. In the last few decades, titin has played a major

role in the field of muscle research due to its outstanding properties. Because of titin’s strongly

nonlinear stress-strain relation, it is expected to strongly affect the damage evolution in highly
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stretched fascicles.

Moreover, endomysium’s role in pre-damaged fascicles is analyzed, specifically, whether or

not endomysium impacts the propagation of muscle fiber damage to neighboring undamaged

fibers.

Changes in temperature have an unique impact on the mechanical properties of the skeletal

muscle’s microstructure. Until now, no mechanical models have studied the temperature depen-

dent muscle behavior on the microstructure, thus, less information about the thermomechanical

properties of lower level muscle components exist which makes investigations in this field quite

interesting. This is why in Chapter 5 a thermomechanical fascicle model considering a tensed

muscle fiber is generated to analyze the impact of heat and cold treatment on the muscle fiber

tension. Here, a myofascial trigger point, which is a hyperirritable spot in a tensed muscle fiber,

is integrated in the fascicle model. Trigger points in human muscles, which often induce tension

headaches, can be treated by thermotherapy or cryotherapy to relieve muscle pain. The thermo-

mechanical fascicle model aims to investigate the mechanisms of heat and cold treatments to

reduce muscle tension in trigger points, just as in human muscles, by observing the stress and

strain development along the entire tensed muscle fiber during thermal treatment. The results

will help to understand why applying heat or cold has a positive impact on trigger points. The

thermal expansion coefficient of materials indicates whether heating or cooling causes expan-

sion or contraction in the material resulting either in compressive or tensile stresses. Materials

usually show contrary behavior in terms of expansion and contraction if heat or cold is applied.

Therefore, it needs to be studied why both treatments apparently reduce the tension in the trigger

point of human muscles.

1.3 Conclusions and Outlook

In the dissertation, multiscale continuum models on the skeletal muscle’s microstructure were

developed to study the multiphysical and damage behavior on muscle fiber and fascicle level

(see Chapters 3-5). Compared to existing works in the field of muscle modeling, this dissertation

investigated in detail the properties of the muscle’s microstructure in the fields of damage and

thermomechanics. As the properties of muscles are particularly unique in these fields, the gained

knowledge provides helpful insights for a better understanding of the muscle’s properties on

microstructure level.

Several three-dimensional two-phase fascicle structures were generated, including different

sized representative volume elements and entire fascicle models which consist of muscle fibers

with circular or polygonal cross-section embedded in the connective tissue endomysium. Some

of these structures were generated by the Python codes introduced in Chapter 2. The material

behavior of the components muscle fiber and endomysium were captured separately in material

models for each component.
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1.3 Conclusions and Outlook

Chemo-electro-mechanical model

In Chapter 3, the chemo-electro-mechanical processes during muscle fiber activation were cap-

tured in a fascicle RVE and the stress development in the fiber and the endomysium during

activation was studied. The results confirmed the expected outcome that endomysium compen-

sates for the stress differences along the muscle fiber during fiber activation. Due to the slightly

inhomogeneous stress distribution along the fiber and the endomysium, the stress differences

during activation can be neglected for further investigations and, consequently, the stresses

along the fiber and the endomysium can be considered as constant.

Additionally, a real loading of unipennate muscles consisting of tensile and shear loading was

considered and the influence of the pennation angle of different unipennate muscles on the

mechanical behavior was studied. Fur this purpose, the fascicle model used to study the impact

of the activation process was subjected to real loading. The detailed observation of the lifting

forces and lifting heights with increasing macroscopic strain enabled conclusions regarding the

optimal functionality of unipennate muscles:

Optimal fiber arrangements in fascicles are obtained with either very small or very large pen-

nation angles. Small angle changes at small pennation angles have a significant impact on the

lifting height while neglectable impact on the lifting force is observed. In contrast, when analyz-

ing small angle changes at large pennation angles, a significant impact on the lifting force can

be seen while the lifting height remains almost constant.

Nonuniform stresses and strains exist in the fiber and the endomysium during real loading

of unipennate muscles (as expected in Sect. 1.2) and in case of the muscle fiber, the location

of the maximum and minimum stresses changes with increasing macroscopic strain (for more

information, see Fig. 3.14 in Chapter 3). The analysis of local stresses and strains showed that

regions of thin endomysium as well as the fiber edges, i.e. the sarcolemma membrane, are at

high risk of being damaged.

Damage model

In Chapter 4, a continuum mechanical damage model for fascicles was introduced and two

differently sized fascicle RVEs were subjected to a realistic loading case of unipennate muscles.

The model confirmed the findings in Chapter 3 that the susceptibility to muscle damage is highest

at the fiber boundary.

The role of titin and endomysium in pre-damaged muscle fibers was investigated for an ec-

centric contraction. The expectations from Sect. 1.2 have been proven that the giant molecule

titin on the lowest hierarchical level has a huge impact on the further progression of damage

in muscle fibers. The significantly increasing stiffness of titin results in a strong protection of

damaged fiber regions from large strains and therefore provides important protective properties

for pre-damaged muscle fibers. This results in the fact that titin prevents more serious injuries

even for strongly pre-damaged muscle fibers and enables similar macroscopic strains until fiber

rupture as in undamaged fibers. Furthermore, the developed model captured the impact of
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endomysium on damage propagation to neighboring undamaged fibers. Endomysium protects

undamaged muscle fibers from the high strains in the pre-damaged ones thus inhibiting damage

of neighboring fibers.

Thermomechanical model

In Chapter 5, a continuum thermomechanical model for fascicles was generated to study the

influence of thermotherapy and cryotherapy on a tensed muscle fiber. Here, an entire fascicle

with circular cross-section was modeled and a trigger point was induced in the central muscle

fiber.

The application of heat or cold yielded the result, that short-term heating supports the relief

of muscle tension while short-term cooling shows the opposite behavior as it causes increas-

ing compressive stresses and strains. In conclusion for short-term treatment with an assumed

constant electromyography (EMG) activity in the trigger point, the results showed a contrary be-

havior for heating and cooling as expected for standard materials. Specifically for the case of

heat treatment, the sign combination of the different thermal expansion coefficients along the

tensed muscle fiber (the thermal expansion coefficient of the trigger point has a positive value

while the thermal expansion coefficient of the neighboring fiber regions in the same muscle fiber

has a negative value) causes maximum relief of muscle tension (for more information, see Fig.

5.8 in Chapter 5).

The additional reduction of EMG activity in the trigger point during long-term thermal treatment

results in a stiffness reduction in the trigger point. This softening strongly influences the behavior

along the entire tensed fiber which leads to a significant decrease of the stresses and strains

during heating as well as during cooling. The entire fiber contributes to reduced muscle tension

for both treatments despite the disadvantageous thermal expansion coefficient combination for

cooling. For this reason, both, thermotherapy and cryotherapy, can be used to treat trigger points,

as already mentioned in Sect. 1.2. As there is no risk in choosing the right thermal treatment nor

does the application of these treatments need professional assistance, thermal treatment has a

considerable benefit compared to alternative methods.

Outlook

The research presented in this dissertation facilitated predictions about the mechanical proper-

ties on the hierarchical levels 3 (muscle fiber) and 4 (fascicle). For future studies, the Python

codes introduced in Chapter 2 can be used to create computer models on all hierarchical levels

to provide more details about the components and their interaction with each other on different

levels.

The introduced damage model in Chapter 4 could be extended to more complex damage

models in order to be able to analyze different muscle injuries. According to the results published

in Chapter 3 and 4 of this dissertation, the muscle fiber-endomysium interface in the muscle belly

is at highest risk of injury, therefore, more detailed investigations about the damage behavior in

and closely around these areas should be of future interest. Since connective tissues are also
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1.3 Conclusions and Outlook

commonly affected by muscle injuries, damage models should be developed for connective

tissues as well to study their damage behavior in upcoming works. Scar tissue forms during the

healing of injured connective tissue and as the properties of this tissue differ from the original

connective tissue, the implementation of those properties into mechanical models are of future

interest as well. These mechanical models can analyze the mechanical behavior of the scar

tissue and its impact on the entire muscle, e.g. the susceptibility to injury of the scar tissue or its

effects on other muscle components.

In addition to further investigations of the muscle’s damage behavior by mechanical models,

the thermomechanical model introduced in Chapter 5 of this dissertation should be used to gain

insights on the thermal treatment of differently tensed skeletal muscles. The model can readily

be applied to more complex examples of tensed muscles, e.g. to muscles with more trigger

points.

Moreover, the injury susceptibility of skeletal muscles and the location of crack initiation for

different muscle temperatures can be examined. Here, micromechanical models can provide

more details about the mechanisms influencing the injury susceptibility for different muscle tem-

peratures, as it is well known that skeletal muscles need to be warmed up to reduce the risk of

damage during sports activity. Therefore as a next step, the temperature dependence of the stiff-

ness should be included in the model, as higher temperatures result in softer muscle behavior

thus influencing the outcome. Moreover, the outstanding maximum isometric stress-temperature

curve of skeletal muscles needs to be considered which is already integrated in the model shown

in Chapter 5. As this behavior strongly differs from standard materials, it turns the human muscle

into a unique complex system and, therefore, its influence on the mechanical properties should

be investigated in more detail during future studies.
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2 | Article 1:

Python codes to generate skeletal muscle

models on each hierarchical level

2.1 Abstract

Python codes are provided for generating computer models of the skeletal muscle on all five

hierarchical levels. All scripts are parametrized to generate a large variation of muscle structures.

On hierarchical levels 3 (muscle fiber), 4 (fascicle) and 5 (muscle), we use Voronoi tessellation

in combination with the sunflower seed arrangement to obtain fiber-matrix-composite models

with similar-sized fibers having polygonal cross-sections. The muscle and its microstructure can

be studied at a given length scale or in multiscale analysis. The codes provide the basis for a

large variety of possible FEM simulations of different phenomena due to full parametrization and

flexibility.

2.2 Code metadata

Current code version V1
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts

/SIMPAC-2022-217
Permanent link to reproducible capsule
Legal code license MIT License
Code versioning system used git
Software code languages, tools and services used Python
Compilation requirements, operating environments and Python 3 with the libraries matplotlib,
dependencies numpy, scipy and shapely; Abaqus

FEA to generate the CAD models
If available, link to developer documentation/manual
Support email for questions bargmann@uni-wuppertal.de

Table 2.1: Code metadata
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2.3 Code description

2.3 Code description

The skeletal muscle consists of five hierarchical levels [99, 124]: sarcomere (level 1), myofibril

(level 2), muscle fiber (level 3), fascicle (level 4) and the muscle (level 5). Our parametrized

Python codes allow to generate1 a large variation of models for each hierarchical level of the

skeletal muscle as presented in Fig. 2.1. For the entire muscle, the generated geometry is rep-

resentative for parallel muscles. The fascicle, muscle fiber and myofibril models can additionally

be used to model pennate muscles and the sarcomere is representative for all skeletal muscle

shapes. The scripts generate CAD models in Abaqus FEA and can be read into or adapted to

directly interface other simulation software.

Figure 2.1: Models of the microstructure of skeletal muscles. All five hierarchical levels are shown. Models were
generated by the scripts provided in this work. On all levels, the Python codes are able to generate a
large variation of the models shown exemplarily.

For each hierarchical level, two python codes are provided. The first one requires only Python

to be run and defines the basic geometry of the models. The second script is automatically

started after the first code and generates the final models in Abaqus. The scripts enable to create

multiple models: The user enters the required number of models and the minimum and maximum

values of the parameter to be varied. Then, models are generated in which the parameter is

equidistantly distributed in the desired range.

1see [10] for a review on the generation of representative volume elements
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2 Python codes to generate skeletal muscle models on each hierarchical level

Sarcomere (level 1)

In a myofibril, the region between two z-discs is called a sarcomere. It can be represented by

a unit cell (Fig. 2.1) due to its periodic arrangement. The scripts sarcomere1.py and sarcom-

ere2.py create such a unit cell. Six actin filaments are attached to a thin z-disc with a hexagonal

cross-section on both ends of the sarcomere cell. One cylindrical myosin filament is in the cen-

ter of the model. Crossbridges connect the myosin filament with the actin filaments running

perpendicularly. Along the myosin filament, crossbridges always occur in pairs, located opposite

to each other. The circular space between two neighboring crossbridge pairs along the myosin

filament is 60◦ [101]. The longitudinal distance between neighboring crossbridges is equidistant

and depends on the chosen number of crossbridges as well as the length of the actin-myosin

overlap. The latter depends on the lengths of the sarcomere and the myosin and actin filaments

– both of which are input parameters and, thus, can be varied in the script.

The z-discs are connected to myosin via six titin filaments. Each titin filament is also connected

to one actin filament [67] (see Fig. 2.2). The model is symmetric with respect to the mid-cross-

section and the centerline.

Sarcomere cells can be created with a hexagonal cross-section as well as with a circular

cross-section (see Fig. 2.2). The circular shape includes entire actin filaments and is used if a

complete sarcomere cell is modeled. A hexagonal cross-section allows for periodic arrangement

of the unit cell.

Figure 2.2: Different cross-sections of sarcomere cells can be generated by the scripts. For multiscale modeling
purposes, the unit cell with hexagonal cross-section has twelve cut actin filaments and z-discs with half
thickness.

The input parameters for the sarcomere model are the length of the sarcomere (“l_sarcomere”),

the radius (“r_myosin”) and the length (“l_myosin”) of the myosin filament, the radius (“r_actin”)

and the length (“l_actin”) of the actin filaments, the thickness of the z-discs (“thickness_z_disc”)

and the length (“l_crossbridge”) and the number (“number_crossbridges”) of the crossbridges.

The requested value for the input parameter “number_crossbridges” is reduced automatically

if the requirements for crossbridge arrangement cannot be satisfied. The sarcomere length

(“l_sarcomere”) is the length of the entire model including the z-discs. Additionally, users have

to enter “hex” (for hexagonal) or “cir” (for circular) for the input parameter “cross_section”, which

defines the shape of the sarcomere cell’s cross-section (see Fig. 2.2).
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Myofibril (level 2)

The scripts myofibril1.py and myofibril2.py generate a myofibril model composed of aligned

sarcomeres which consist of equally sized unit cells represented by homogeneous fibers with a

hexagonal cross-section (see Fig. 2.3).

Figure 2.3: The homogeneous unit cells in a myofibril are generated with a hexagonal cross-section. The inner unit
cells are completely surrounded circumferentially by further unit cells.

The input parameters of the myofibril model are the length (“l_sarcomere”) and the num-

ber (“number_sarcomeres”) of the sarcomeres, the number of unit cells per sarcomere (“num-

ber_unit_cells_per_sarcomere”) and the circumradius of the hexagonal cross-section of the unit

cells (“r_unit_cell”). The requested number for the input parameter “number_unit_cells_per_sar-

comere” is reduced automatically if it is not sufficient to completely surround inner unit cells.

Muscle fiber (level 3)

The muscle fiber model, which is generated by two scripts musclefiber1.py and muscle-

fiber2.py, consists of parallel aligned myofibrils surrounded by sarcoplasmic reticulum and the

membrane sarcolemma which covers the entire structure. The myofibrils possess a polygonal

cross-section and vary in shape. Thus, the sarcoplasmic reticulum between the myofibrils is

of nonuniform thickness. Sarcolemma is modeled as a cylindrical hull of constant thickness.

By extrusion, a constant muscle fiber cross-section is obtained. The first script musclefiber1.py

generates the coordinates of the myofibril polygons by Voronoi tessellation and the second script

musclefiber2.py uses them to create the 3D model of a muscle fiber (see Fig. 2.4).

The input parameters to generate different muscle fibers are the length (“l_muscle_fiber”) and

the radius (“r_muscle_fiber”) of the muscle fiber, the volume fraction (“vf_myofibril”) and the

number (“number_myofibrils”) of myofibrils, the volume fraction of the sarcoplasmic reticulum

(“vf_sarcoplasmic_reticulum”) and the volume fraction of the sarcolemma (“vf_sarcolemma”).

Fascicle (level 4)

The two scripts fascicle1.py and fascicle2.py generate a fascicle model consisting of parallel

aligned muscle fibers embedded in endomysium. The script fascicle1.py generates and subse-
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2 Python codes to generate skeletal muscle models on each hierarchical level

script musclefiber2.py 

script musclefiber1.py 

sarcolemma myofibril

sarcoplasmic
reticulum

Figure 2.4: Generation of a muscle fiber.
Top left: Script musclefiber1.py generates polygons via Voronoi tessellation.
Top right: Subsequently the polygons are shrinked according to the specified myofibril volume fraction.
The resulting gaps will later be used to insert sarcoplasmic reticulum between the myofibrils.
Bottom left: Script musclefiber2.py first extends the polygons to 3d in Abaqus FEA, i.e. creating myofibril
models.
Bottom right: Then, the space (= the sarcoplasmic reticulum) between the myofibrils is filled and a cylinder
is cut from the model. As a last step, first a circumferential layer of sarcoplasmic reticulum and, second, a
circumferential layer of membrane sarcolemma with constant thickness are added.

quently shrinks polygons by Voronoi tessellation. Those are used in script fascicle2.py as cross-

sections of the muscle fibers which vary in size and shape. Thus, the endomysium between the

fibers is of nonuniform thickness. The cross-section of the fascicle is constant in longitudinal

direction. The generation procedure is similar to that for muscle fibers which is illustrated in Fig.

2.4.

The input parameters of the fascicle model are the length (“l_fascicle”) and the radius (“r_fasci-

cle”) of the fascicle, the muscle fiber volume fraction (“vf_muscle_fiber”) and the number of

muscle fibers (“number_muscle_fibers”).
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Muscle (level 5)

The computer model of the entire muscle is constructed in a way similar to the fascicle and

the muscle fiber in the scripts muscle1.py and muscle2.py. Parallel aligned fascicles with polyg-

onal cross-section are embedded in perimysium and covered by two thin-walled structures with

constant thickness, the epimysium and the fascia. The fascicle’s shape and the thickness of

the perimysium vary. Similar to the process illustrated in Fig. 2.4, the script muscle1.py utilizes

Voronoi tessellation to generate the coordinates of the fascicles’ cross-sections and muscle2.py

uses these coordinates to generate the muscle geometry with constant cross-section in longitu-

dinal direction.

Figure 2.5: The input parameters allow to generate a large number of variations of the skeletal muscle model. The
depicted muscle geometries also indicate possible variations on hierarchical levels 3 (muscle fiber) and 4
(fascicle).

The input parameters are the length (“l_muscle”) and the radius (“r_muscle”) of the muscle, the

volume fraction (“vf_fascicle”) and the number (“number_fascicles”) of fascicles and the volume

fractions of the perimysium (“vf_perimysium”), the epimysium (“vf_epimysium”) and the fascia

(“vf_fascia”). In Fig. 2.5, various muscle models are depicted to demonstrate the variability of

muscle models which can be obtained with the scripts. As the models of levels 3 and 4 are

similar to level 5, comparable variations as depicted in Fig. 2.5 are possible on these levels as

well.
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2.4 Design and methods

For the first script of the hierarchical levels 1-2 (namely, sarcomere1.py and myofibril1.py), the

Python library numpy is required. To run the first script of the hierarchical levels 3-5 (namely,

musclefiber1.py, fascicle1.py and muscle1.py), the following Python libraries need to be in-

stalled: matplotlib, numpy, scipy and shapely. These can be downloaded for free. We rec-

ommend to work with Python 3 to run the first scripts. For the other scripts, Abaqus FEA and

Python are needed without additional Python libraries.

On hierarchical levels 3 (muscle fiber), 4 (fascicle), and 5 (muscle), Voronoi tessellation is

used (in musclefiber1.py, fascicle1.py and muscle1.py) to generate polygons formed by radial

growth from distributed seed points in the assumed circular cross-sections of the structures.

This is done using the sunflower seed arrangement [220] because it allows to create similar-

sized polygons (see Fig. 2.4). However, it leads to a rather uniform distribution within the circular

area. An additional parameter α yields a more arbitrary distribution of sunflower seeds at the

boundary.

Subsequently, all polygons are shrinked according to the specified volume fraction of the poly-

gons. The resulting space between the polygons will later become the connective tissue. The

scaling of the slightly differently sized and shaped polygons leads to non-uniform wall thick-

nesses of the connective tissue, which corresponds to natural tissue variability. The new coor-

dinates of the polygons are saved in a text file and are used as input data in the second script

(musclefiber2.py, fascicle2.py and muscle2.py) to create the computer models in Abaqus FEA.

In the first scripts of hierarchical level 1 and 2 (sarcomere1.py and myofibril1.py), only the

input values for all models are saved in text files for the second scripts (sarcomere2.py and

myofibril2.py).

All first codes check the input parameters and indicate incorrect input via an error message.

The second scripts of all hierarchical levels can be adapted for usage in any finite element

analysis software.

Detailed comments and explanations about the structure generation for each hierarchical level

are provided in all scripts.

2.5 Impact

The python codes can be used by researchers in the field of biomechanics, medicine, biology,

computational modeling and homogenization, see e.g. [17, 21, 29, 87, 118, 133, 152, 195, 202,

227]. Time-consuming model generation is avoided by providing muscle geometries which can

be used readily to perform numerical simulations. The parametrization of the Python codes al-

lows a fast and variable generation of many different skeletal muscle models of various species

and, thus, provides the basis for a large variety of FEM simulations. The codes generate muscle

structures on each hierarchical level, thus, they can be used independently to study the muscle

at a given length scale or together to perform multiscale simulations. The geometries gener-
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ated are directly usable in Abaqus FEA and the Python codes for each hierarchical level can

straightforwardly be adapted for other finite element analysis software.

Example: Modeling Muscle Damage

Different material models can be used for the models on each hierarchical level generated by

the Python codes to model different physical processes on the microstructure, e.g. the chemo-

electromechanical behavior during muscle fiber activation [118] or the damage behavior of mus-

cle fibers [119].

Muscular injuries, for instance, occur on different hierarchical levels. Muscle soreness re-

sults from damaged z-discs on the lowest hierarchical level (sarcomere), while a completely torn

muscle occurs on the highest level (muscle). Using the present generation codes on each hi-

erarchical level, muscle injuries can be modeled on different levels and their influence on the

mechanical behavior of the entire skeletal muscle can be investigated.

Multiscale modeling enables consideration of the mechanical properties of lower level com-

ponents. Via homogenization, the effective properties of damaged lower level models can be

determined and used in the modeling of higher hierarchical levels. Thus, information about

muscular injuries with different degrees of damage can be obtained, e.g. the effects of muscle

soreness (damage on level 1) and torn muscle fibers (injury on levels 3 and 4) on overall muscle

behavior or functionality (level 5) can be studied.
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3 | Article 2:

Skeletal muscle: Modeling the mechanical

behavior by taking the hierarchical micro-

structure into account

3.1 Abstract

Skeletal muscles ensure the mobility of mammals and are complex natural fiber-matrix-compos-

ites with a hierarchical microstructure. In this work, we analyze the muscle’s mechanical behavior

on the level of fascicles and muscle fibers. We introduce continuum mechanics hyperelastic

material models for the connective tissue endomysium and the embedded muscle fibers. The

coupled electrical, chemical and mechanical processes taking place in activated contracting

muscle fibers are captured including the temporal change of the activation level and the spatial

propagation of the activation potential in fibers. In our model, we investigate the material behavior

of fascicle, fiber and endomysium in the fiber direction and examine interactions between muscle

fiber and endomysium by considering the temporal and spatial change of muscle fiber activation.

In addition, a loading case of normal and shear forces is applied to analyze the fiber lifting

force and the lifting height of unipennate muscles with different pennation angles. Moreover,

the development of local stresses and strains in fibers and endomysium for different strains

are studied. The simulation results allow to identify regions in high risk of damage. Optimal

arrangements of unipennate muscle microstructure are found for either very small or very large

pennation angles.

3.2 Introduction

The interaction of the different hierarchy levels empowers hierarchical materials (i.e., materials

with a nested structure on different length scales) to combine a variety of exceptional properties

[62, 107, 192, 226, 231]. To this day, natural hierarchical materials outperform their synthetic

counterparts. Skeletal muscles stand out due to a very high elasticity as well as a high tensile

strength. In addition, they possess a high damage tolerance caused by their high toughness,
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3.2 Introduction

which allows them to withstand cracks of millimeter length while almost maintaining their strength

[207].

Understanding the mechanics of skeletal muscles is not only of interest in the prevention of

sports injuries and rehabilitation, but also in the field of biomimetics. The unique properties

of the hierarchically structured skeletal muscle led to researching synthetic counterparts with

similar characteristics in different scientific disciplines. For example, light, flexible and powerful

synthetic muscles can replace heavy motors in humanoid robots and, therefore, represent a

crucial element in soft robots [30, 212]. In medicine, the production of prostheses with material

properties similar to skeletal muscle would constitute a major improvement for humans with

amputations [218, 225].

The complex structure of skeletal muscles consists of connective tissue, blood vessels, nerves

and contractile material and is divided into five hierarchical levels [99, 124, 155, 190]. The en-

tire skeletal muscle (level 5) contains fascicles embedded in the connective tissue perimysium

and covered by the connective tissues epimysium and fascia. The fascicles (level 4) are made

of muscle fibers surrounded by the connective tissue endomysium. Muscle fibers (level 3) are

encompassed by the cell membrane sarcolemma. The myofibrils (level 2) in the muscle fibers

consist of aligned functional units called sarcomere. In the sarcomere (level 1), electrical im-

pulses activate small protein filaments and initialize the contraction of the muscle [99].

Skeletal muscle functionality can be divided into active and passive behavior [108, 133, 204,

229], with the sarcomere being the active component. Electrical impulses from the brain stim-

ulate the muscle fiber, trigger the shortening of the sarcomeres and, therefore, lead to active

forces in the muscle. If the muscle is actively stretched, the muscle additionally exerts passive

forces which are mainly generated by the connective tissues connecting the muscle fibers. Con-

nective tissues allow for sliding processes in the muscle and contribute to a homogeneous force

distribution [23]. In injured and diseased states, the adapt by changing the muscle’s function

[75].

In the past, most mechanical models studied the muscle microstructure in rudimentary form

only. The first mechanical model was developed by Hill [93] presenting a one-dimensional,

three-parameter model for describing the existing muscle force. Hill’s model and extended dis-

crete model formulations [83, 217] were not able to capture the functional and structural proper-

ties in detail, such as complex fiber architectures, motor unit fiber distributions or interaction of

muscle with the surrounding tissue. Three-dimensional finite element models of skeletal mus-

cles based on continuum mechanics, e.g. [20, 152], yield a better understanding of muscle force

distributions. These macroscopic models lacked information about finer scales, e.g. electrophys-

iological processes on cellular level. Existing electromechanical and chemomechanical models

[60, 90, 181, 204] connected the mechanical response of muscles to electro-physiological pro-

cesses taking place in muscle fibers. These studies considered information from smaller scales,

but did not explicitly consider the muscle’s hierarchical structure as a composite and instead

focused on the overall behavior of the entire muscle (level 5). The influence of the shape of

microstructure components has been investigated on different hierarchical levels. Some authors
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[115, 202, 203, 238] consider the entire muscle geometry and investigate its mechanical be-

havior by taking lower level properties into account. Marcucci et al. [133] studied the influence

of different muscle fiber types (fast and slow twitch muscle fibers) on the force-velocity prop-

erties of the entire bundle. Sharafi et al. [195] analyzed fascicle structure variation (fiber and

fascicle shapes) and its influence on the macroscopic muscle behavior, e.g. on the along-fiber

shear modulus. Virgilio et al. [219] investigated the influence of disease-related changes on the

mechanical properties by variation of fascicle geometries.

In this work, we propose a 3D electro-mechanical, multiscale continuum model for fascicles

(hierarchy level 4) to examine and predict their characteristics and those of their components,

muscle fiber (hierarchy level 3) and endomysium. We use a unit cell similar to [202] and develop

a two-phase finite element model for fascicles in which its individual components muscle fiber

and endomysium are modelled separately, as also done by [195]. For the muscle fibers, the

electro-mechanically coupled tissue behavior is modelled in the framework of nonlinear contin-

uum mechanics. With this two-phase electro-mechanical, multiscale model, we determine local

stresses and strains within the fascicle cross-section and along fiber direction in each compo-

nent, i.e., muscle fiber and endomysium. We consider the realistic loading case of an extensor

digitorum longus (EDL) muscle and study the temporal and spatial variation of the activation

degree of the muscle fibers. Regarding the real loading of EDL muscles, we study the influ-

ence of different pennation angles on the lifting forces of muscle fibers and the resulting lifting

heights. In contrast to Kuthe et al. [116], we investigate how the pennation angle affects the

active properties of the fibers rather than the passive properties of the entire skeletal muscle.

Using existing experimental data of EDL muscle behavior and the mechanical properties of

lower levels, our physics-based model takes into account the electrical, chemical and mechan-

ical processes in muscle fibers (level 3) during fiber activation. The chemo-electro-mechanical

coupling is modelled based on the one-dimensional model by Heidlauf et al. [88] which we ex-

tend to the three-dimensional case. This extension makes it possible to consider the muscle

fiber’s interaction with the surrounding connective tissue endomysium. Therefore, a more realis-

tic description of the entire fascicle including load transfer mechanisms is established.

3.3 Micromechanical behavior of skeletal muscles

In this section, the micromechanical behavior of the skeletal muscle is briefly reviewed. For more

detailed information, the reader is referred to e.g. [61, 91, 94, 188].

3.3.1 Mechanical behavior on levels 1 (sarcomere) and 2 (myofibril)

Skeletal muscles exhibit a characteristic force-length relationship between the exerted active

force during an electrical activation process and the sarcomere length. Muscles generate max-

imal forces around the sarcomere’s resting length (≈ 2.0 µm) [78]: An activation of sarcomeres

shorter or longer than this length leads to a reduced active force (Fig. 3.1).
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Figure 3.1: Force-length relation: The force generation of a sarcomere strongly depends on its length. The number
of myosin heads adhering to actin determines the amount of active force in a sarcomere. Connections by
crossbridges only exist if the muscle is electrically activated, otherwise the active force is zero. The more
crossbridges connect myosin to actin, the higher the force during electrical activation. In the range of the
resting length (≈ 2.0 µm), the number of crossbridges is maximal. At lower and higher sarcomere lengths,
fewer connections can be formed via crossbridges, thus the force decreases. If there is no crossbridge
connection between myosin and actin, the active force is zero.

Electrical impulses from the brain stimulate the muscle fiber and trigger its shortening. The

contraction of the fiber is due to the length change of many sarcomeres, resulting from the

protein filaments myosin and actin sliding past each other [102]. As multiple sarcomeres act in

row, length changes of the individual sarcomeres in the micrometer range lead to shortening of

the muscle fiber of several centimeters.

If the muscle is electrically activated, crossbridges connect the myosin to the actin and, thus,

generate active forces. Ca. 600 myosin heads per filament attach, rotate around the actin and

detach about five times per second [106]. At any given moment, some myosin heads produce

force and rotate while the other myosin heads are currently not attached to actin [106]. The num-

ber of crossbridge connections is maximal around the resting length (≈ 2.0 µm) of a sarcomere.

Thus, if the muscle is activated at the resting length of a sarcomere, almost the highest active

force is generated although the muscle is undeformed (Fig. 3.1).

The active forces in sarcomeres lead to so-called active stresses. In addition to the active

stress, the sarcomere experiences passive tensile stresses. The giant molecule titin acts as

a nonlinear spring during a stretching process [81] and, therefore, contributes to the passive

forces. In eccentric contraction, i.e., activated muscle fibers are stretched, titin generates addi-

tional passive forces, called force enhancement. Two mechanisms can increase titin’s stiffness

resulting in force enhancement: 1) changing the material property due to the rise of intracellu-

lar calcium [117], or 2) reducing titin’s free molecular spring length through attachments to the

actin filaments (titin-actin interaction) [161]. Moreover, titin acts like a viscoelastic material due
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3 Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account

to stress relaxation after stretching and force hysteresis during a stretch-release cycle [140].

This viscoelastic behavior is assumed to result in the viscoelastic response found for an entire

myofibril [11, 140].

3.3.2 Mechanical behavior on level 3 (muscle fiber)

The activation mechanism which causes the contraction of the muscle fibers consists of electri-

cal, chemical and mechanical processes which are strongly coupled. During activation, a motor

neuron innervates several muscle fibers. A system of motor neuron and associated muscle fibers

is called motor unit. Muscle fibers belonging to one motor unit can be distributed throughout the

muscle and are activated simultaneously. These fibers are coupled mechanically to all other

fibers in the muscle, but are electrically insulated from neighboring fibers.

active force

contraction velocity

vmax

Fiso

concentric contractioneccentric contraction

stretching velocity shortening velocity

1

Figure 3.2: Force-velocity relation of skeletal muscle fibers (level 3). In an eccentric contraction, the maximum force
is exerted at a high stretching velocity. On the contrary, if the shortening velocity is maximal, the force in
muscle fibers is close to zero. In the case that the contraction velocity is zero, the activated muscle fiber
is kept at a constant length (isometric contraction).

Muscle fibers behave viscoelastically [51, 175] which can be described by a force-velocity

relation as shown in Fig. 3.2, illustrating the dependence of the muscle fiber active force on

the velocity of the contraction. The greater the stretching rate of the skeletal muscle fiber, the

higher the force [8]. On the contrary, for maximum shortening velocity, the muscle fiber force is

approximately zero [93]. This behavior is also observed for the entire muscle [8, 93], but even in

these cases it is attributed to the muscle fibers [51, 82].

As mentioned above, there exist active and passive stresses in sarcomeres of stretched and

activated muscle fibers. The passive properties of fibers are affected by the lengthening velocity

[175]. If the lengthening velocity increases, the passive stress in the muscle fiber increases as

well and follows a similar relationship as the active forces shown in Fig. 3.2. This viscoelastic

passive behavior during tensile loading is due to the properties of titin rather than those of the

crossbridges [11]. The passive stress-strain curve of muscle fibers is linear in the non-activated

state, see Fig. 3.3a [224].
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Figure 3.3: Passive mechanical properties of muscle fibers and fascicles in a non-activated state. a) Individual muscle
fibers show linear passive stress–sarcomere length relationship. Fascicles, i.e. bundles of muscle fibers
and connective tissue, exhibit nonlinear behavior. b) The quadratic modulus describes the curvature of
the passive stress–sarcomere length curve for individual muscle fibers, muscle fiber groups and fascicles.
It therefore characterizes the nonlinearity of these curves. Muscle fiber groups consist of several muscle
fibers without connective tissue. Figure created based on data taken from [138], experiments performed
on the 5th toe of the EDL muscle in mice.

3.3.3 Mechanical behavior on level 4 (fascicle)

Fascicles exhibit a strong nonlinear passive stress–sarcomere length behavior. This nonlinearity

depends on the additional connective tissue endomysium [138], in particular on the existing

collagen fibrils in endomysium changing their orientation if a muscle is stretched [166]. During the

stretching process, circumferentially oriented collagen fibers are reoriented in loading direction

which results in increased stiffness.

The longitudinal tensile stiffness of endomysium near the resting length of a sarcomere is

quite low [166]. As a consequence, endomysium is not capable of transmitting tensile forces

of muscle fibers at the sarcomere’s resting length. However, it transmits the contractile force

between adjacent muscle fibers by trans-laminar shear through the thickness of the connective

tissue [213, 214].

3.3.4 Mechanical behavior on level 5 (entire muscle)

Skeletal muscles (level 5) exhibit a high tensile strength in the fiber direction and sustain strains

of more than 150 % without damage [176]. The mechanical behavior of skeletal muscles is

velocity-dependent which is commonly explained by the viscoelastic behavior of the muscle

fibers (Fig. 3.2).

The stress-strain behavior of the skeletal muscle is illustrated in Fig. 3.4 (solid curve). It results

from the superposition of the passive (dashed curve) and the active stress-strain responses

(dotted curve). For concentric contraction, the active stress is dominant. The highly nonlinear
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passive stress-strain relation (dashed curve) becomes relevant in eccentric contraction.
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Figure 3.4: Stress-strain behavior of skeletal muscles. For concentric contraction (fiber stretch < 1.0), the active
stress-strain curve dominates the total stress-strain relation. For an eccentric contraction (fiber stretch >
1.0), the superposition of the active and passive behavior determines the total stress-strain curve.

The mechanical properties of perimysium and epimysium have hardly been studied and their

influence on muscle behavior is still poorly understood.

Perimysium is much thicker than endomysium and has a well-ordered structure [153] con-

sisting of flat perimysial layers with two or more cross plies of wavy collagen fibers. At resting

length the tensile stiffness of perimysium is low, but for large muscle stretches, the stiffness

strongly increases [123]. The abruptly increasing stiffness at large sarcomere lengths prevents

over-stretching of the muscles [165]. Perimysium behaves similar to endomysium because it’s

originally wavy collagen fibers are stretched and aligned in muscle fiber direction at high exten-

sions which results in increasing tensile stiffness. Due to its low stiffness over a large range of

strains, perimysium can only bear large forces at high tensile deformations far beyond the range

of working lengths in skeletal muscles [187].

Perimysium is viscoelastic [167]. The reorientation of the collagen fibers does not seem to

be responsible for this, but rather the relaxation processes within the collagen fibers or at the

interface between fibers and matrix.

Epimysium is the outermost layer of the skeletal muscle and surrounds the entire muscle

for protection. Regarding the tensile properties, epimysium shows a similar nonlinear stress-

strain behavior to endomysium and perimysium [68] due to the orientation of collagen fibers in

loading direction [165, 166]. Experiments on the tibialis anterior muscle of rats show that the

tensile stiffness of epimysium increases with age [68]. Furthermore, the mechanical properties

of epimysium can be exploited in suturing of injured muscles and help the repaired tissue to bear

higher forces [114].
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3.4 Micromechanical model

Most existing models (e.g. [93, 152, 181]) focus on the overall behavior of skeletal muscle (level

5). In this work, we analyze the mechanical behavior at lower levels, in particular levels 3 and 4.

Due to large strains in fascicles, the continuum mechanical model is formulated based on the

finite strain theory. The quasi-static balance of linear momentum

0 = DivS, (3.1)

is used because the forces generated in fascicles are much higher than inertia and body forces.

S = F−1·P denotes the second Piola-Kirchhoff stress tensor, where F is the deformation gradient

and P the first Piola-Kirchhoff stress tensor.

The fascicles (level 4) are modeled as a fiber-matrix composite. The muscle fibers are aligned

parallel and surrounded by the connective tissue endomysium. Contrary to single-scale ap-

proaches [87, 227, 239], we capture the material properties for the components individually and

introduce two material models which take into account the different mechanical behavior of mus-

cle fibers and endomysium.

3.4.1 Muscle fiber (level 3)

The strain energy density function for muscle fibers Ψfiber is decomposed into a passive and an

active part

Ψfiber = Ψfiberpas + Ψfiberact . (3.2)

Similarly to a mechanical spring, muscle fibers provide passive resistance once the fiber is

stretched (Fig. 3.3a). This is characterized by the passive part of the strain energy density

function Ψfiberpas . The active part Ψfiberact describes the ability of muscle fibers to generate force

in fiber direction (Fig. 3.1) through electrical activation.

The split of the strain energy density function into a passive and an active part leads to a split

of the second Piola-Kirchhoff stress tensor

Sfiber = 2
∂Ψfiberpas

∂C
+ 2

∂Ψfiberact

∂C
= Sfiberpas + Sfiberact , (3.3)

where C is the right Cauchy-Green tensor and Sfiberpas and Sfiberact are the passive and active

components of the second Piola-Kirchhoff stress tensor, respectively.

3.4.1.1 Passive behavior

We use a decoupled representation of the passive strain energy density function Ψfiberpas and

define a distortional Ψ̂fiberpas and a volumetric energy component Ψvol,fiberpas . The influence of

fiber anisotropy is negligible for our load cases and, therefore, for simplicity, an isotropic material
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law is used. The distortional strain energy density function is represented by

Ψ̂fiberpas =
1

2
µfiber[trĈ− 3], (3.4)

with the shear modulus µfiber and trace of the distortional part of the right Cauchy-Green tensor

Ĉ = J−2/3C. The volumetric part of the strain energy density function Ψvol,fiberpas reads

Ψvol,fiberpas =
1

2
κfiber [J − 1]2 , (3.5)

where the Jacobian determinant J = detF is the determinant of the deformation gradient F and

κfiber is the bulk modulus.

Thus, by making use of Eq. (3.3), the passive second Piola-Kirchhoff stress tensor Sfiberpas is

Sfiberpas = µfiberJ
−2/3[I− 1

3
tr(C)C−1] + κfiber[J − 1]JC−1, (3.6)

with the second order identity tensor I.

3.4.1.2 Active behavior

The active behavior is modeled based on an active stress function

∂Ψfiberact

∂λfiber
= Pact = γ̄(t, fs, l̇s)f(λfiber)Pmax, (3.7)

as introduced in [87], consisting of a normalized force-length relation f , the maximum isometric

active stress in the muscle fibers Pmax and a chemoelectrical function γ̄ describing the activation

of the muscle fiber during electrical stimulation (see also Sect. 3.4.1.2.2). Further, t denotes the

time, fs the stimulation frequency used to activate the muscle fiber and l̇s the contraction ve-

locity of the sarcomere. In the Appendix, the inclusion of the stretch rate in the chemoelectrical

function is shown (see Eqs. B.3a and B.3b) and the force-velocity relation obtained for differ-

ent fiber lengths is plotted in Fig. B.3. l̇s can be determined from the change of fiber stretch

λfiber =
√

tr(C · [a0 ⊗ a0]) over time, where the unit vector a0 is the fiber direction in the refer-

ence configuration.

The active stress function Pact (Eq. (3.7)) enters the active component of the second Piola-

Kirchhoff stress tensor [87]

Sfiberact = γ̄(t, fs, l̇s)f(λfiber)
1

λfiber
Pmaxa0 ⊗ a0. (3.8)
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3.4.1.2.1 Sarcomere force-length-relationship

A mean sarcomere length-force relationship obtained for rat extensor digitorum longus and gas-

trocnemius medialis muscle fiber bundles [240] is used for the force-length relation f :

f(λfiber) =max(0.0015

[
λfiberls0
lnorm

]4

+ 0.018

[
λfiberls0
lnorm

]3

− 0.935

[
λfiberls0
lnorm

]2

+ 4.078
λfiberls0
lnorm

− 3.715; 0) (3.9)

with lnorm = 1.0 µm used to normalize the function. ls0 is the resting length of sarcomeres. The

current sarcomere length ls is calculated via ls = λfiberls0 .

3.4.1.2.2 Chemoelectrical processes on cellular level

The contraction mechanism in skeletal muscles involves strongly coupled electrical, chemical

and mechanical processes. The central nervous system emits electrical impulses to motor neu-

rons which transmit them centrally to the muscle fibers. The electrical impulses propagate along

the muscle fibers.

The activation of muscle fibers is described by the chemoelectrical function γ̄(t, fs, l̇s) taking

values between 0 and 1. The one-dimensional but highly detailed model by Heidlauf et al. [88]

describes the processes by about 60 differential equations. We extend Heidlauf’s approach to a

three-dimensional setting. Details on the 3d extension of the chemoelectrical function γ̄(t, fs, l̇s)

are found in the Appendix.

3.4.2 Connective tissue endomysium

The strongly nonlinear passive stress-strain behavior of the connective tissue endomysium (see

Fig. 3.3) can be described by the isotropic hyperelastic first order Ogden model. For our load

cases we can neglect the influence of the anisotropy of endomysium due to the collagen fibers.

Thus, for simplicity, isotropic material behavior is assumed. As a result no precise information

can be obtained regarding the mechanical properties transverse to the muscle fiber or the colla-

gen fiber direction.

The strain energy density function Ψendo is additively split into a distortional part Ψ̂endo and a

volumetric part Uendo:

Ψendo = Ψ̂endo + Uendo (3.10)

=
2µendo

α2
1

[
λ̂α1

1 + λ̂α1
2 + λ̂α1

3 − 3
]

+
1

2
κendo [J − 1]2 (3.11)

with the shear modulus µendo, the bulk modulus κendo and the constant α1. λ̂i = J−1/3λi are

the distortional parts of the principal stretches λi.
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From the strain energy density function Ψendo, the second Piola-Kirchhoff stress tensor is

calculated:

Sendo = 2
∂Ψendo

∂C
(3.12)

=
2µendoJ

−1/3α1

α1

3∑
i=1

λα1
i

[
λ−2
i ei ⊗ ei −

1

3
C−1

]
+κendo [J − 1] JC−1. (3.13)

In this work we neglect the passive stresses of endomysium and muscle fiber during compres-

sion. In [22], small passive stresses in compression tests are identified, but only for the entire

fascicle. A clear identification of the passive stresses in the components is missing.

3.4.3 Material Data

Muscle fiber

The shear modulus µfiber and the bulk modulus κfiber of the muscle fiber are determined based

on the experimentally determined Young’s modulus Efiber = 0.0465 N/mm2 for the EDL muscle

fibers of mice [110] and a Poisson’s ratio νfiber = 0.4999 assuming muscle fibers to be nearly

incompressible. Thus, we obtain µfiber = 0.016 N/mm2 and κfiber = 77.5 N/mm2. The resting

length of sarcomeres is set to ls0 = 2.0 µm.

We calculate the maximum isometric active stress in muscle fibers by dividing the experimen-

tally determined median of the maximum muscle fiber forces by the median of the cross sectional

area of the tested muscle fibers. For the latter two properties, several values are found in the

literature. However, some of these were measured on mutant mice. We use data for wild-type

mice [189] to obtain Pmax = 0.107 N/mm2.

Connective tissue endomysium

The Young’s modulus of endomysium Eendo = 0.2415 N/mm2 is determined by

Eendo =
Efascicle − Efiber[1− ϕendo]

ϕendo
(3.14)

with the volume fraction of endomysium ϕendo = 0.1 (see Sect. 3.5) and a Young’s modulus of

fascicleEfascicle = 0.066 N/mm2 [85]. Assuming nearly incompressible behavior of endomysium

with a Poisson’s ratio of νendo = 0.4999, the shear modulus µendo = 0.08 N/mm2 and the bulk

modulus κendo = 402.5 N/mm2 are obtained. The constant of the Ogden model α1 = 7.95 was

determined based on a parameter fitting simulation with validation against experimental data

[138], see also Fig. 3.7.
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κfiber 77.5 N/mm2 fiber bulk modulus
Pmax 0.107 N/mm2 [189] fiber maximum isometric

stress
ls0 2.0 µm resting sarcomere length
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Eendo 0.2415 N/mm2 endomysium Young’s modulus
µendo 0.08 N/mm2 endomysium shear modulus
νendo 0.4999 endomysium Poisson’s ratio
κendo 402.5 N/mm2 endomysium bulk modulus
α1 7.95 constant of the Ogden model

used for endomysium
ϕendo 0.1 endomysium volume fraction

Figure 3.5: Material and geometrical data of the fascicle RVE. Left: Finite element model. Linear fully integrated
hexahedral elements are used. The cross-section consists of 366 elements. The length of the RVE
and the number of elements along the fiber direction were adjusted in simulations based on the problem
studied to reduce computational cost. Right: Table of the material and geometry parameters used.

3.5 3D Computational Model of Fascicle

We generate a three-dimensional microstructure of a fascicle (hierarchy level 4) as a compos-

ite of idealized cylindrical parallel aligned muscle fibers and the surrounding connective tissue

endomysium. To reduce the computational cost and to be able to conduct homogenization we

assume periodically arranged muscle fibers and treat the volume element shown in Fig. 3.5 as

a representative volume element (RVE) [10]. Compared to the RVE structure with hexagonal

muscle fibers used in [202], the circular fibers avoid artificial stress peaks that may arise at cor-

ners and edges. Furthermore, our RVE includes variable endomysium thicknesses between the

fibers which agrees with the natural variability of the tissue.

In general, any type of skeletal muscle from various species could be modelled with the pro-

posed model. As the EDL of mice and rats has been studied in various experiments, see e.g.

[110, 138, 179, 189], we model the EDL muscle of mice in the numerical simulation. The fiber

diameter is dfiber = 47.5 µm taken from the median of the measured diameters of EDL muscle

fibers of wild-type mice [189] and the volume fraction of muscle fibers is 90 % 2. All material and

geometrical data used in our model is summarized in the table of Fig. 3.5.

The length of the RVE depends on the simulation. If the results are constant along the fiber

direction due to constant electrical activation, a small RVE depth is selected to reduce the com-

putational time. If the electrical activation varies temporally and spatially in fiber direction, a

long RVE is used. The two components, muscle fiber and endomysium, are perfectly bonded by

2Only little data is available for volume fractions, none with respect to the chosen muscle at levels 3 and 4. In
general, fiber volume fractions of 95 % ± 8.8 % have been determined for the entire muscle [129].
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3 Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account

sharing nodes at the interface. Consistent with the reduced examination of the fascicle geometry

by using representative volume elements, periodic boundary conditions are applied.

3.6 Results and Discussion

We investigate the mechanical properties at different hierarchical levels of the EDL muscle

(Fig. 3.6). Using a multiscale approach, level 4 (fascicle) as well as the behavior of its com-

ponents, i.e., the muscle fiber (level 3) and the connective tissue endomysium are studied in

different loading and activation scenarios.

a) b)

1.1

1.2

2

3

1.1

2

3

4

5

6

1

Figure 3.6: Representations of the human lower leg musculature. a) Frontal view of the human calf musculature and
illustration of the individual muscles. b) Illustration of the side view of the lower leg musculature with
highlighted extensor digitorum longus muscle, which is modeled in this contribution. 1.1: Musculus gas-
trocnemius Caput laterale, 1.2: Musculus gastrocnemius Caput mediale, 2: Musculus soleus, 3: Tendo
calcaneus, 4: Musculus fibularis longus, 5: Musculus tibialis, 6: Musculus extensor digitorum longus.

Fascicles loaded in fiber direction are modelled to determine the force and stress development

in the structure for fully activated muscle fibers, in which we consider the degree of activation to

be constant along the fiber. The temporal evolution of the degree of activation and the spatial

propagation of the activation potential in muscle fibers are modelled to examine local stresses

along the fiber direction.

Further, we investigate the mechanical properties in a real loading case for an EDL fascicle

where the fascicle is exposed to tensile and shear forces. In this case, the alignment of the

muscle fibers (i.e., the pennation angle) plays an important role in the resulting lifting forces and

lifting heights. Different pennation angles are considered and the effects on lifting forces and

lifting heights are examined and compared. Finally, local stresses and strains in the muscle fiber

and endomysium for different fiber strains are discussed.
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3.6 Results and Discussion

3.6.1 Mechanical behavior of fascicles, muscle fibers and endomy-

sium: Loading in fiber direction

3.6.1.1 Passive and active stress-strain responses of fascicles (level 4), muscle

fibers (level 3) and the connective tissue endomysium

First, we examine the passive behavior of the fascicle as well as that of muscle fibers and

endomysium. For this purpose, we set γ̄ = 0 for the activation parameter to artificially eliminate

the active stresses in muscle fibers.

A uniaxial tensile test up to 100 % strain is performed in fiber direction. The passive stress-

strain curve of the fascicle resulting from a parameter fitting simulation is in good agreement with

the experimental results [138] (see Fig. 3.7).
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Figure 3.7: Passive behavior of fascicle stretched in fiber direction; 1. Piola-Kirchhoff stress vs. strain. The passive
stress is zero at the resting length of the sarcomere and increases with increasing strain. The simulations
are in good agreement with experimental results [138].

For fully electrically activated muscle fibers (i.e., γ̄ = 1.0 in Eq. (3.8)), the stress–fiber stretch

response for uniaxial tension as well as compression is depicted for the fascicle (level 4), the

muscle fiber (level 3) and the connective tissue endomysium in Fig. 3.8a3. The fascicle stresses

are the averaged stresses of the RVE resulting from the fiber and endomysium stresses. All

sarcomeres have an initial length corresponding to the resting length ls0 = 2.0 µm. The stresses

in compressed fascicles (λfiber < 1.0) are solely generated within the activated muscle fibers

because passive forces in the compressed endomysium and the compressed muscle fiber are

neglected. Thus, stresses in endomysium occur only during tension (λfiber > 1.0), with a mild

increase for small tensile strains and a drastic increase for strains larger than 50 %. At 30 %

tensile strain, a switch in the load transfer behavior within the fascicle is clearly visible. The

3In the case of fully activated muscle fibers, the generated stress is maximal. Different stages of activation (i.e.,
0 < γ̄ ≤ 1) are presented in the Appendix (Fig. B.1).
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3 Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account

fiber carries the load for 0.635 ≤ λfiber < 1.3 and, thus, mainly in the physiological range of

motion of EDL muscles which ends at approximately λfiber = 1.35 [5]. After the intersection

point λfiber ≈ 1.3, the passive stresses in endomysium dominate the fascicle’s stress response.

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

1.3

0.635 ≤ λfiber < 1.3

1.3 < λfiber ≤ 2.0

a)
fiber stretch λfiber

1.
Pi

ol
a-

K
ir

ch
ho
ff

st
re

ss
P

33
[N
/m

m
2 ]

fascicle
muscle fibers
endomysium

0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

maximum load
capacity

b)
fiber stretch λfiber

fo
rc

e
F

33
[m

N
]

fascicle
muscle fibers
endomysium

1

Figure 3.8: a) Stress–fiber stretch relationship for muscle fibers (level 3), endomysium and fascicles (level 4) in a fully
electrically activated state (γ̄ = 1) demonstrating the strongly increasing stresses in endomysium during
stretching. For λfiber < 1.3, the stresses in muscle fibers are higher compared to the ones in endomy-
sium. At λfiber ≈ 1.3, the 1. Piola-Kirchhoff stress–fiber stretch curves of muscle fibers and endomysium
intersect. When stretched further, the passive stresses in endomysium dominate the fascicle’s response.
The inset graphics show that the phase carrying the maximum stress changes at this point (red: maximum
stress, blue: minimum stress). b) The corresponding force–fiber stretch relationships. The maximum load
capacity of the muscle fiber occurs at a fiber stretch of about λfiber ≈ 1.25. At this stretch level, the force
in the fascicle is higher than in the fiber due to the contribution of the endomysium.

The strongly nonlinear behavior of endomysium and the decreasing stress–fiber stretch curve

of muscle fibers for higher strains show that for large strains endomysium provides the most

important contribution to strain resistance (Fig. 3.8). The endomysium carries the majority of

the load, resulting in stress concentrations that are almost 10 times higher than the averaged

stress in the fascicle. Due to the passive forces in fibers during stretching, the overall stress

is non-zero at fiber lengths where they can no longer be activated, i.e., for sarcomere lengths

ls ≥ 3.6 µm (compare Fig. 3.1). This is visible in the slight increase of the muscle fiber stress for

fiber stretches λfiber > 1.78.

In Fig. 3.8b, the variation of force with fiber stretch is plotted for muscle fibers (level 3) and

endomyisum, as well as for the fascicle (level 4). The fascicle force here is the force within the

RVE only and, thus, a fraction of the force generated in an entire fascicle. Fig. 3.8b gives insight

into the interaction of muscle fiber and connective tissue in generating the fascicle force. The

maximum force generated by the muscle fibers, i.e., the maximum load capacity, in the RVE is

F33 ≈ 0.4 mN and is mainly determined by the active force. Each muscle fiber in the fascicle

generates about F33 ≈ 0.2 mN, which agrees well with the muscle fiber force measured in the

EDL of mice, which ranges from 0.14 mN to 0.25 mN [179]. At this stretch level, the passive
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3.6 Results and Discussion

force in endomysium already contributes markedly to the fascicle force.

The stress-strain curve for fascicles obtained here is qualitatively similar to the stress-strain

behavior of an entire muscle with the same fiber volume fraction in [202]. On the fascicle level,

however, larger strains are required before exponential increase in stresses occurs. This differ-

ence is due to the stronger nonlinearity of the connective tissue in the entire muscle, which is

composed of endomysium, epimysium and perimysium. In contrast, on the fascicle level consid-

ered here, only endomysium is present.

3.6.1.2 Local stresses in fibers and endomysium due to temporal change of ac-

tivation degree and propagation of the activation impulse along the mus-

cle fiber

In reality, complete activation (γ̄ = 1) is not achieved at the beginning of the innervation of the

muscle fibers, but shortly afterwards. Thus, both the evolution of the degree of activation over

time and the propagation of the activation impulse along the muscle fiber affect the fascicle’s

mechanical behavior. The contractile response due to electrochemical processes is studied by

varying γ̄ with time and position along the fiber (see Appendix for the set of equations). The

electrical impulses, so called action potentials, are applied in the middle of the muscle fiber

with a frequency of 100 Hz and propagate to the ends of the fiber. Due to the high emission

rate of 100 Hz, the twitches overlap and the muscle fiber force increases continuously. This

phenomenon is called tetanic contraction [41].

We assume all muscle fibers to be innervated by the same motor neuron so that all fibers

are activated simultaneously. Our model captures both, fast and slow twitch muscle fibers. As

the EDL muscle consists almost exclusively of fast twitch fibers, these are modelled here (see

Appendix for details).

To consider the activation process, a passive pre-stretch is exerted before an isometric con-

traction4 is applied. This corresponds to the daily life situation of keeping a slightly pressed gas

pedal in a car at a fixed position. In this scenario, the EDL is tensed at a constant length in a

stretched position.

In the following simulations, the fascicle is pre-stretched to λ = 1.25 so that the fibers can

generate the maximum force (compare Fig. 3.8b). Afterwards it is kept at this length by fixing the

surfaces in z-direction (periodic boundary conditions are maintained in x- and y-direction) and,

subsequently, the muscle fibers are electrically activated.

Figure 3.9a shows the stress evolution over an activation cycle. The stresses propagate due to

the wave-like propagation of the membrane potential Vm. As the electrical impulse is initiated in

the middle of the muscle fiber, the stresses initially increase strongly in the middle and propagate

outwards. The frequency of the applied electrical impulses is 100 Hz, so that new impulses are

generated every 10 ms. The mechanical reaction to the electrical impulse is delayed by about

2 ms (Fig. B.2). Further information on the development of the membrane potential Vm due to

4In isometric contraction, the activated muscle is held at a constant length.
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Figure 3.9: The influence of chemoelectrical processes in electrically activated fascicles and the associated temporal
and spatial changes in the activation level of muscle fibers on the stress development in both components.
a) Stress distributions for one cycle of electrically activated muscle fibers in the fascicle. The action
potential initiated in the middle of the muscle fiber propagates along the muscle fiber which is reflected
in the propagation of stresses. b) 1. Piola-Kirchhoff stress in the muscle fiber and the connective tissue
endomysium at activation time t = 250 ms. Tetanic stimulation for a EDL fascicle pre-stretched with
λfiber = 1.25 from the resting length of mouse EDL muscle fibers of 0.544 cm [26] to a length of 0.68 cm.
Stresses for muscle fiber and endomysium are evaluated in fiber direction and exhibit inverse behavior.
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the electrical impulses and the resulting delayed increase of the activation parameter γ̄ which

describes the coupling of the electrochemical processes and the mechanical processes are

given in the Appendix.

To compare the influence of the electrical stimulation on the stress development in the muscle

fiber and the connective tissue endomysium, their 1. Piola-Kirchhoff stresses are evaluated at

activation time t = 250 ms (Fig. 3.9b) when the activation of fast twitch muscle fibers reaches

its maximum (i.e., γ̄ = 1, Fig. B.2b). Initially, the stresses in the muscle fiber and the connective

tissue endomysium are constant along z-direction due to passive pre-stretching. The activation

of the muscle fiber results in a stress increase in the entire fiber that is maximal in the middle of

the fiber and minimal at the ends of the fiber (Fig. 3.9b).

The stresses in the endomysium follow an inverse trend compared to those in the muscle fiber.

The increased stresses in the middle of the fiber relieve the endomysium, so that the passive

stresses in the endomysium decrease in the middle. Similarly, the reduced stresses in muscle

fibers towards their ends cause the passive stresses in the endomysium to increase.

As seen in Fig. 3.9b, the local variation of stresses along the fiber direction is small in both

components in the fully activated case. Therefore, we neglect these differences along the fiber

in the following.

3.6.2 Mechanical behavior of fascicles and its components in uni-

pennate muscles under real loading conditions

3.6.2.1 Influence of the pennation angle on fiber lifting forces and lifting heights

Muscles vary with respect to the external shape as well as the internal structure. In unipennate

muscles such as the extensor digitorum longus, all muscle fibers are aligned parallel, at a certain

(non-zero) angle to the tendon/line of action of the muscle.

In the following, we study the active force development in unipennate muscles and compare

it to parallel muscles, which have muscle fibers oriented parallel to the tendon on the fascicle

level. In Fig. 3.10, the EDL is depicted in the initial and a stretched position. The stretched

position demonstrates that the fascicle is loaded by normal and shear forces and the muscle

fibers reorient themselves more in tendon direction during stretching. Thus, the pennation angle

α (i.e., the angle between fibers and the tendon) changes. Consequently, the unit vector a0 in

Eq. (3.8) which is aligned in fiber direction has to be updated during the simulations.

First, we plot the force–fiber stretch curves of a parallel muscle and a unipennate EDL muscle

with an initial pennation angle of about 10◦ [223]. We compare the fiber lifting force of both mus-

cle types, which is the active force exerted by one fully activated muscle fiber and transferred in

tendon direction. To determine the active lifting force, we run simulations for non-activated mus-

cle fibers (only passive properties) and for fully activated fibers (passive and active properties).

The active forces are the difference between these results.

Unipennate muscles have a larger physiological cross-section (i.e., the cross-section perpen-
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Figure 3.10: Extensor digitorum longus muscle: initial and stretched position. Stretching the muscle in tendon direc-
tion results in normal and shear forces in fascicles. Therefore, the muscle fiber direction changes during
stretching such that the pennation angle reduces.

dicular to the aligned fibers) than parallel muscles. With the same fiber volume fraction in both

muscle types, the absolute amount of fibers in the physiological cross-section is larger than in

the anatomical cross-section, which is measured perpendicular to the longitudinal axis of the

muscle. Therefore, the muscle can exert more force in direction of the fibers. However, due to

the fact that the fibers in the unipennate muscle are not aligned in the direction of the tendon,

the fiber force cannot be completely transferred to the tendon.

The interaction of these two effects results in an overall increase in lifting force in unipennate

muscles with increasing fiber stretch as can be seen in Fig. 3.11 in which a realistic EDL fascicle

is compared to a fictional EDL fascicle with muscle fibers which are aligned parallel to the tendon

(parallel muscle). The fictional EDL fascicle has a smaller physiological cross-section which is

equal to the anatomical cross-section in this case. The two curves confirm that unipennate

muscles exert higher lifting forces than parallel muscles. The comparison of the cross-sections

shows a constant increase in force over the entire stretching range for the physiological cross-

section (inset graph in Fig. 3.11), see also Lieber et al. [127]. Further, it is evident that the

advantage in lifting force 0◦ fibers have over 10◦ fibers becomes smaller with increased stretching

(see inset graph in Fig. 3.11) because the pennation angle is reduced during stretching. In

total, for small strains, the two effects balance each other out, however, with increasing strain,
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Figure 3.11: Fiber lifting force–fiber stretch curve for a real EDL fascicle with a pennation angle of α = 10◦ compared
to a fictional EDL fascicle with a pennation angle of α = 0◦. Unipennate muscles exert higher lifting
forces than parallel muscles. The larger physiological cross-section of the unipennate muscle results in
an increase in lifting force that for low degrees of fiber stretch counterbalances the reduction of lifting
force due to the pennation angle α as seen in the inset graph. With increased stretching, the fibers
reorient themselves in the tendon direction resulting in an overall increase in lifting force compared to
the parallel muscle. On the right-hand side, the physiological and anatomical cross-sections for EDL
muscles are shown. The pennation angle of α = 10◦ results in an enlarged physiological cross-section
compared to the anatomical cross-section.

the influence of the larger physiological cross-section on the lifting force becomes dominant.

Unipennate muscles can therefore exert higher lifting forces over the entire stretch range of the

muscle fibers.

In Fig. 3.12, different pennation angles in unipennate muscles are compared. For upper and

lower limb muscles, the pennation angle ranges from 0◦ to about 30◦ [66, 125, 128]. Therefore,

we investigate unipennate muscles with α = 10◦, α = 20◦ and α = 30◦. We use the same

fascicle RVE with a pennation angle of 10◦ as before and adjust the physiological cross-section

for unipennate muscles with α = 20◦ and α = 30◦.

In Figs. 3.12a and b, the lifting force of the different unipennate muscles is plotted over the

corresponding fiber stretch and muscle strain: With increasing initial pennation angle, the lifting

forces increase even more over the total range of fiber stretch.

The muscle strains in b) are the strains in tendon direction. For a muscle with a pennation

angle of 10◦, a muscle length of 1.2 cm for an EDL muscle of young mice can be determined from

[26]. Here, the same muscle length is assumed for all three considered muscles and the fiber

length in muscles with larger pennation angles is determined from geometrical considerations

(compare Fig. 3.13).
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Figure 3.12: Influence of pennation angle α on lifting forces, stresses and strains in muscles. a) Fiber lifting force–
fiber stretch curves. With increasing initial pennation angle, the lifting force of muscle fibers increases
over the whole fiber stretch range. The physiological range that represents the stretch range of EDL
muscle fibers (α = 10◦) extends to λfiber = 1.35. b) Fiber lifting force plotted over the total EDL
muscle strain. An increasing initial pennation angle leads to a strong reduction of EDL muscle strain.
A fiber stretch of λfiber = 1.35 translates to a physiological stretch limit for EDL muscles of about
εmuscle = 0.16. In unipennate muscles with larger pennation angles, the achieved muscle strains for a
fiber stretch of λfiber = 1.35 (marked with colored dots) are significantly lower. c) Active 1. Piola-Kirchhoff
stress in a muscle fiber vs. updated pennation angle during simulation; fiber stretch λfiber ≈ 1.5. The
active stresses in muscle fibers remain the same for different unipennate muscles because the higher
lifting forces in unipennate muscles with larger pennation angles result from larger physiological cross-
sections. Furthermore, in these muscles the pennation angle is reduced more for the same fiber stretch
due to increased shear forces.

38



3.6 Results and Discussion

The graphs in Fig. 3.12b indicate that muscle strain decreases strongly with increased initial

pennation angle for the same fiber stretch. The physiological range of the total EDL muscle

strain shown results from the muscle fiber stretch of λfiber = 1.35 (see a)). The muscle strains

for α = 20◦ and α = 30◦ unipennate muscles are drastically reduced for a fiber stretch of

λfiber = 1.35.

The active 1. Piola-Kirchhoff stress in fibers is plotted in Fig. 3.12c over the pennation angle for

the three muscles with the same fiber stretch. The parabolic curves widen as the initial pennation

angle of the muscles increases.

The general increase in lifting forces at larger pennation angles (see Figs. 3.12a and b) is due

to the larger physiological cross-sections. The reorientation of muscle fibers in tendon direction

is faster for larger pennation angles (Fig. 3.12c) due to higher shear forces which results in an

increase in lifting forces with increasing fiber stretch. However, the active stresses in muscle

fibers remain the same for different unipennate muscles as the active forces result from their

physiological cross-sections (see c)).
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Figure 3.13: Lifting height for unipennate muscles with different initial muscle fiber lengths and pennation angles.
The muscles are stretched in tendon direction. The pennation angle reduces and the initial muscle
fiber lengths l01 , l02 and l03 increase to l1, l2 and l3. The muscle fiber stretch is the same in all three
muscles. a) A real EDL muscle with a pennation angle of 10◦ is stretched, resulting in lifting height h1. b)
Stretching a fictional EDL muscle with a larger pennation angle of 30◦ and the same initial muscle fiber
length results in increased lifting height h2. c) Fictional EDL muscle with the same muscle width as a)
and the same pennation angle as b). The initial muscle fiber length is reduced. Although the pennation
angle is larger than in a), the total lifting height h3 is smaller because of the shorter muscle fibers.

Fig. 3.13 illustrates three unipennate muscles with shapes similar to the EDL muscle. Each

muscle is shown in initial and stretched position in which all muscle fibers have the same fiber
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3 Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account

stretch. In a real EDL muscle (a)), the given muscle fiber stretch results in a lifting height h1. The

lifting height increases for unipennate muscles with larger pennation angle if the initial muscle

fiber length is the same (Fig. 3.13b). In c), a fictional EDL muscle with the same muscle width

as in a) but with shorter muscle fibers is shown. Despite the increased pennation angle, the

lifting height h3 is lower than h1. Therefore, muscle strains are significantly reduced for larger

pennation angles in muscles of the same size as seen in Fig. 3.12b.

The physiological stretch limit of EDL muscles reaches approximately εmuscle = 0.16 (Fig. 3.12b).

Doubling the pennation angle from 10◦ to 20◦ leads to a small increase of 2.2 % in the maximum

force, however, the lifting height for the same fiber stretch of λfiber = 1.35 is reduced by about

50 %. Compared to a muscle strain of 16.0 % for a 10◦ unipennate EDL muscle, a strain of only

7.9 % is reached with a pennation angle of 20◦. If the initial pennation angle is increased further

(e.g. to 30◦), the impact is not as substantial. Despite the stronger increase in lifting force, the

lifting height is reduced to a lesser extent. To achieve the same lifting height in unipennate mus-

cles with larger pennation angles, the fiber stretch has to be much higher. Consequently, the

active force becomes small or no more active force can be exerted (compare to Fig. 3.1).

Our FEM simulations confirm that unipennate muscles can exert higher lifting forces [79] at the

cost of reduced lifting height [158, 209, 210, 232]. Pennate muscles with larger pennation angles

are used as power muscles in the body, while pennate muscles with lower pennation angles or

parallel muscles are located in body regions where large movements or fast movements are

required [40].

Our results reveal that optimal functionality is provided by either very small pennation angles

or very large pennation angles: If deformation is the main factor, the pennation angle must be

small, as the lifting height strongly increases for small angle changes (Fig. 3.12b), but the lifting

forces are reduced only slightly (Fig. 3.12a). For large lifting forces, however, pennation angles

must be large, as the increase in force is significant (Fig. 3.12a) for even small angle changes

while the lifting height is reduced to a lesser extent (Fig. 3.12b).

3.6.2.2 Local stresses and strains in fibers and endomysium for different fiber

stretches

In this section, we analyze the local stresses and strains in the muscle fiber and the endomysium

of the tensile- and shear-loaded EDL fascicle (pennation angle α = 10◦). All muscle fibers are

stimulated simultaneously and we assume fully activated fibers with γ̄ = 1.0 through the entire

muscle fiber length. The results are summarized in Fig. 3.14.

The strain distributions in the fiber and the endomysium at the end of the deformation (λfiber =

1.5) (Fig. 3.14a) are depicted here as representative for the entire deformation process. For the

muscle fiber, maximum strain values are located at the interfaces to the thinnest endomysium

points and minimum strain values are close to where the endomysium is the thickest. The same

applies to the endomysium: Maximum strains are found in the thin parts of the endomysium and

minimum strains in the thick parts. For a better representation of the deformation along the fiber,
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Figure 3.14: Local maximum principal stresses σ1 and logarithmic strains ε1 in muscle fiber and endomysium under
a realistic loading case consisting of normal and shear forces. In the muscle fibers, the maximum and
minimum stresses and strains arise at the interfaces. a) Local maximum principal logarithmic strains in
fibers and endomysium; λfiber = 1.5. Over the complete strain range, the strains are maximal in the
area of thin connective tissue and minimal in the area of thicker connective tissue. Additionally, the side
views of the strain for the middle muscle fiber of the fascicle RVE and the endomysium at λfiber = 1.5
are shown which demonstrate the high shear strains existing in the areas of the maximum strains. b)
Maximum principal stresses for both components at fiber stretches λfiber = 1.1 and λfiber = 1.5. For
low strains, the stresses at the muscle fiber are maximal in regions where the endomysium is thinnest.
In contrast, the stresses are minimal in regions where the endomysium is thickest. At large strains, this
pattern is reversed. In the endomysium, the stresses and strains are maximal at the thinnest points over
the entire strain range and minimal at the thickest points.

the side view is also shown for both components.

In Fig. 3.14b, the maximum principal stresses are depicted for the beginning of the deformation

(λfiber = 1.1) and the end of the deformation (λfiber = 1.5). For the muscle fiber, the stresses are

maximal in the area of the thinnest points and minimal at the thickest points of the endomysium

for λfiber = 1.1. During the simulation, the points of maximum and minimum stresses at the

muscle fiber switch positions, so in the end, maximum stress values are found at the interfaces

to regions of thick connective tissue and minimum stresses at the interfaces to thin endomysium.

The stress distribution in endomysium is similar to the strain distribution and maximum and

minimum stresses are located at the same positions as for strains. The distribution remains the

same for the entire deformation process.

In Fig. 3.14a, the side view shows the differently shaped ends of muscle fiber and endomy-

sium, which is expected due to the shear force on the composite material. The maximum princi-

pal logarithmic strains are largest at the thinnest points of the endomysium, because the shear
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3 Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account

strain is maximal at these points. The increased shear strains influence the muscle fiber edge,

such that at the same areas the shear strains on the muscle fiber are maximal over the entire

stretching process. Conversely, for the thickest parts of the endomysium, the shear strains are

minimal and, thus, they are also minimal in the same area on the muscle fiber.

In Fig. 3.14b, the maximum stresses in the endomysium result from the maximum shear strains

that occur at the same positions. In the same way, lower stress values are obtained due to

lower shear strains. As the strain distribution in the endomysium remains the same for the entire

deformation, the stress distribution does not change either. Up to about λfiber = 1.3, the stresses

in the muscle fiber are higher than in the endomysium (see Fig. 3.8a). As the shear strains are

maximal/minimal at the interface to the thin/thick connective tissue areas, the stresses are also

maximal/minimal there. From λfiber = 1.3 there is a transition of maximum stresses from fiber

to endomysium evident in Fig. 3.14b. This is also illustrated in Fig. 3.8. The stresses rapidly

increase in the endomysium, most strongly in the thinnest regions. The muscle fiber is relieved

at that point such that the stresses in the fiber follow an inverse trend: The previous maximum

stresses in the fiber become the minimum stresses and vice versa.

The stress distribution in the muscle fiber shows that the sarcolemma, the cell membrane of

the muscle fiber, is exposed to the highest stresses. The high shear stresses occurring at the

sarcolemma due to the high shear strains are assumed to be responsible for the injury of the

membrane [70]. Furthermore, the stress distribution in the endomysium shows that the thinnest

areas are exposed to the maximum stresses due to the existing shear strains, thus, these areas

are at high risk of being damaged.

3.7 Conclusion

In this work, we developed a continuum mechanical model for the chemo-electro-mechanical

behavior of skeletal muscle fascicles. The model describes the fascicle as a two-phase com-

posite consisting of muscle fibers and endomysium. The individual properties of each phase are

modelled as well as their interaction.

We considered a real loading case of EDL fascicles and studied the influence of pinnation, as

well as the influence of the pennation angle of different unipennate muscles on the mechanical

behavior. Our simulations are in good agreement with experimental results. We predict the

increasing lifting force [79] of pennated muscles and the simultaneous reduction of the potential

stretch range of the entire muscle [232], showing that muscle fibers with large pennation angles

can only exert lifting forces in very small muscle strain ranges.

Additionally, our simulation results highlight that optimal arrangements of the microstructure

are obtained with either very small or very large pennation angles. On the one hand, small angle

changes at very small pennation angles can result in a significant increase in lifting height with a

small reduction in lifting force. On the other hand, small angle changes at very large pennation

angles can lead to a high increase in lifting force and a small reduction in lifting height.

The local strains and stresses for a real loading case of the EDL fascicle show that regions of
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thin endomysium are at risk of damage, as they are exposed to large shear strains and therefore

to the highest stresses. In the muscle fiber, the maximum strains and stresses are located at

the edges resulting in risk of sarcolemma membrane damage during muscle contractions [156].

For a more detailed study of the high-risk locations for muscle damage, interface characteristics

between muscle fiber and endomysium have to be considered. Generally, the model focuses on

describing the behavior of fascicles in fiber direction, so precise information perpendicular to the

fiber direction cannot be obtained.

Our model predicts that maximum strains occurr in the same regions in muscle fibers and

endomysium. However, this does not imply that the stresses are also maximal in these regions.

Only at the beginning of the deformation process, the highest stresses are located at the same

points as the highest strains in the fiber. Strains higher than the physiological range of motion re-

sult in a full reversal of the behavior, because the strongly increasing stresses in the endomysium

relieve the fiber at these points.
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4 | Article 3:

Computational modeling of damage in the

hierarchical microstructure of skeletal mus-

cles

4.1 Abstract

One of the skeletal muscle’s exceptional properties is its high damage tolerance in terms of its

high toughness, which allows the muscle to withstand cracks of millimeter length while maintain-

ing most of its strength [207]. In skeletal muscles, damage occurs on different hierarchical levels

of the microstructure. We analyze the damage behavior on hierarchy levels 3 (muscle fiber) and

4 (fascicle) on which the most common serious muscle injuries occur. Our model captures dam-

age initiation and rupture of activated muscle fibers resulting from eccentric contractions. We

consider the interaction between muscle fibers and endomysium and investigate the influence

of the components titin and endomysium on the mechanical behavior in pre-damaged fascicles.

Endomysium generally transmits contractile forces. Our results show that high strains in pre-

damaged fiber regions are not transferred by the endomysium and, thus, adjacent undamaged

fibers are well protected. Moreover, the results show titin’s extraordinary stabilization properties

of pre-damaged muscle fibers, so that macroscopic strains of fascicles are hardly reduced in

case of strongly pre-damaged fibers and intact titin.

4.2 Introduction

Humans hardly suffer from any other sports injury as often as a muscle injury. In 23 soccer teams

observed over a period of seven consecutive seasons, 35 % of all injuries affected the muscles

[53]. Prevention and appropriate treatment of muscle injuries, thus, are important topics in sports

research. This requires a detailed understanding of the mechanical properties of skeletal muscle,

specifically in terms of damage initiation and total rupture of muscle fibers, fascicles or the entire

muscle. Studying the damage behavior of muscles is not only a major topic in sports but also in

biomimetics to produce equivalent synthetic counterparts of skeletal muscles [30, 212, 218, 225].
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4.2 Introduction

The most frequently occurring muscle injuries are indirect injuries which occur without any

external force, i.e. they are the result of the muscle contraction itself. Direct muscle injuries, e.g.

bruises, are caused by impacts or hits and account for less than 15 % of all muscle injuries [216].

epimysium perimysium endomysium sarcolemma

sarcomere (level 1)

actin and myosin filaments

fascia

muscle fascicle muscle fiber myofibril
(level 2)(level 3)(level 4)(level 5)

Figure 4.1: Hierarchical structure of skeletal muscle. Skeletal muscles (level 5) consist of 10-40 fascicles (level 4)
surrounded by the connective tissues perimysium, epimysium and fascia. Each fascicle contains 10
until several hundred muscle fibers (level 3) which are embedded in the connective tissue endomysium.
Myofibrils (level 2) have a diameter of ca. 1 µm and are covered by the cell membrane sarcolemma,
forming the muscle fiber. Each myofibril consists of 1000 - 2 000 000 sarcomeres (level 1) which have
a length of ca. 2.5 µm. The sarcomeres themselves consist of multiple protein filaments arranged in a
highly organized array. The protein filaments are responsible for muscle movement.

We distinguish between the terms “damage" and “injury": “Damage" to muscles refers to dis-

ruption of myofibrils [64, 136], whereas “injury" starts with a rupture of a whole muscle fiber

[136, 146]. While muscle soreness is micro damage on the lowest hierarchical level (sarcom-

ere), see Fig. 4.1, torn muscle fibers occur on the third (muscle fiber) and the fourth hierarchical

level (fascicle) as they can involve rupture of multiple fibers. A torn fascicle (Fig. 4.2, MRI scan

of the injured adductor longus muscle) occurs on hierarchy level 4 (fascicle) and a complete torn

muscle on level 5 (muscle). The term muscle strain includes any type of damage and injury due

to overstretching and can lead to both minor damage on the lowest level of the hierarchy and

major injuries and ruptures at higher levels of the hierarchy.

Indirect muscle injuries are typically caused by eccentric overload, e.g. due to kicking, sprinting

or a forceful slippage [3, 105, 150], while isometric or concentric muscle contractions seldom

lead to muscle damages [4, 135, 145].

Experiments can only partly investigate the damage behavior of skeletal muscles on different

hierarchy levels. On hierarchy level 3 (muscle fiber), the passive and active behaviors until

rupture were investigated for non-activated muscle fibers [193, 230] as well as for activated

fibers [36, 211]. Experiments also exist at higher levels [72, 116, 159, 186], however, they only

provide limited insight into the interaction between components and the influence of individual

components on the total damage behavior. Therefore, simulations are essential for a detailed

understanding of the individual components and their interaction.
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a) b)
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fascicle rupture
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Figure 4.2: a) Front view, b) side view and c) bottom view of an MRI scan of an adductor longus fascicle rupture with
accompanying edema and hemorrhage.

In the past, mechanical models investigated damage mechanics and injury susceptibility of the

skeletal muscle on different hierarchical levels. For the entire skeletal muscle (hierarchy level 5),

Ito et al. [103] formulated a constitutive model that considers anisotropic damage by using a sec-

ond order damage tensor to represent the mechanical behavior at high strains and to predict the

breaking points. Gao et al. [70] analyzed muscle damage during lengthening contraction on the

third hierarchy level (muscle fiber), showing that muscles without dystrophin are more suscepti-

ble to damage. Some micromechanical finite element models [194, 219] examined damage and

injury susceptibility on hierarchical level 4 (fascicle). Virgilio et al. [219] considered the effects of

muscular dystrophy and shape variations of passive loaded fascicles on their mechanical prop-

erties and susceptibility to membrane damage. Sharafi et al. [194] studied the structure and the

mechanics of the myotendinous junction on microscopic level by investigating its effect on local

fiber strains to predict the likelihood of injury. Gao et al. [69] used a two-dimensional shear lag

model on the fascicle level and analyzed the lateral force transmission between an injured and

a healthy muscle fiber which protects the injured one from further damage. These mechanical

models on hierarchical level 4 ignore damage evolution in fascicles which would provide infor-

mation on the prevention of damage propagation in hierarchically structured skeletal muscles.

To this end, we introduce a 3D micromechanical continuum model for hierarchy level 4 (fas-
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cicle) capable of modeling damage initiation and evolution until total muscle fiber rupture. We

focus on indirect muscular injuries, specifically muscle strain, in the muscle belly and visual-

ize the problem of eccentric motion in a simulation model. Our two-phase 3D fascicle RVE

consisting of muscle fibers and endomysium allows to study the mechanical behavior of both

components in a pre-damaged case more precisely than it is done in the 2D model in [69]. Since

properties of lower hierarchical levels are taken into account, we can investigate the influence of

the giant molecule titin in the muscle fiber on pre-damaged fascicles. For our model, we use the

geometrical and material data of the extensor digitorum longus muscle (EDL), as this muscle is

susceptible to muscle strain in its physiological range of motion [84].

4.3 Micromechanical damage model

The fascicles are modeled as a fiber-matrix composite with parallel oriented muscle fibers em-

bedded in the connective tissue endomysium which captures the material properties of the com-

ponents muscle fiber and endomysium separately. The elastic material models for the muscle

fiber and the endomysium are introduced in our previous work [118]. These are extended here

(see Sect. 4.3.1.1.3) to include titin’s force enhancement in the elastic fiber material model as

we focus on eccentric contractions.

The irreversible deformation of sarcomeres and the formation of microcracks are described

by a Johnson-Cook model and a continuum mechanical damage model describes the collective

failure of myofibrils until complete fiber rupture.

Several studies found that the strain is the major contributing factor to the failure of the muscle

fiber [64, 73, 126]. In addition, it has been demonstrated that higher stresses at the same

strains, e.g. when comparing passive loads, isometric and eccentric contractions of muscle

fibers, result in greater damage [130]. Thus, in our model, damage evolution until total failure of

fibers depends on stress and strain: The stress defines the initiation of microcracks (see Sect.

4.3.1.2); the strain determines the beginning of collective failure of myofibrils until complete fiber

rupture (see Sect. 4.3.1.3).

Our model captures damaged muscle fibers, as they are disrupted first, whereas endomysium

is damaged at higher strains [84], mainly in the case of an increased number of torn muscle

fibers [56, 184]. Delamination between muscle fiber and endomysium normally occurs after

tearing of the muscle fiber [230] and, thus, ensues from the rupture. Therefore, delamination as

well as damage in endomysium is not considered.

4.3.1 Muscle fiber (level 3)

4.3.1.1 Muscle fiber: elastic behavior

Total stresses in muscle fibers can be split into a passive and an active part because the fiber

exerts passive forces during stretching and generates active forces if the fiber is electrically acti-
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Figure 4.3: Detail of an array of sarcomeres in muscle fibers. The sarcomere is the smallest functional unit of the
skeletal muscle and causes the active contraction. a) Relaxed state of the sarcomeres. Each sarcomere
consists of a myosin protein that is surrounded by six actin proteins on each side (only four visible in
sectional view). Actin and myosin are connected by the heads of the myosin molecules, forming cross-
bridges. The actin filaments are connected with the z-disk which itself is connected to the myosin by the
giant molecule titin. The distance between the z-disks determines the length of a sarcomere. b) Electrical
activation of a muscle fiber causes a rotation of the crossbridges which pulls the actin filaments into the
center when the muscle shortens [100].

vated. The active forces in muscle fibers are generated by small, aligned functional units, called

sarcomeres, which shorten in a concentric contraction (see Fig. 4.3). In the case of an eccentric

contraction, which means that the fiber is activated and then stretched, titin generates additional

forces in the stretched sarcomeres. This so called force enhancement by titin increases the

stresses. Therefore, we introduce an additional stress σfibertitin
in the elastic material model of

Lamsfuss and Bargmann [118]. Consequently, the total Cauchy stress in a single muscle fiber

is described as

σfiber = σfiberpas + σfiberact + σfibertitin
. (4.1)

σfiberpas and σfiberact are the passive and active components of the Cauchy stress tensor and

σfibertitin
denotes the additional stress in eccentric contractions due to titin. In an isometric

contraction or if the muscle fiber is only passively stretched, the titin stress σfibertitin
vanishes.

4.3.1.1.1 Passive elastic behavior

The passive Cauchy stress of muscle fibers reads

σfiberpas =
2

J
F ·

∂Ψfiberpas

∂C
· FT , (4.2)

where C is the right Cauchy-Green tensor, F the deformation gradient and FT the transpose

of F. J = detF is the determinant of the deformation gradient, the Jacobian determinant. An
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isotropic5 Neo-Hookean passive strain energy density function Ψfiberpas is used for muscle fibers

in two-phase muscle models, see also [19, 203]. The passive strain energy density function

Ψfiberpas is split into a distortional strain energy density function Ψ̂fiberpas and a volumetric strain

energy density function Ψvol,fiberpas

Ψfiberpas = Ψ̂fiberpas + Ψvol,fiberpas

=
1

2
µfiber[trĈ− 3] +

1

2
κfiber [J − 1]2 , (4.3)

with the shear modulus µfiber, the distortional part of the right Cauchy-Green tensor Ĉ = J−2/3C

and the bulk modulus κfiber. Thus, the Cauchy stress tensor σfiberpas (Eq. (4.2)) becomes

σfiberpas =
µfiber

J

[
B̂− 1

3
tr(B̂)I

]
+ κfiber[J − 1]I, (4.4)

where I denotes the second order identity tensor, B̂ the distortional part of the left Cauchy-Green

tensor B with B̂ = J−2/3B and tr(B̂) the trace of B̂.

4.3.1.1.2 Active elastic behavior

The active stress function Pact [87]

∂Ψfiberact

∂λfiber
= Pact = γ̄f(λfiber)Pmax, (4.5)

consists of the activation parameter γ̄, the maximum isometric active stress Pmax and the normal-

ized force-length relation f , which depends on the fiber stretch λfiber. This function determines

the active component of the second Piola-Kirchhoff stress tensor [87]

Sfiberact = γ̄f(λfiber)
1

λfiber
Pmaxa0 ⊗ a0 (4.6)

with the unit vector a0 aligned in fiber direction in the reference configuration. Eq. (4.6) describes

the active behavior of electrically activated muscle fibers with the active stress acting along the

fiber direction. The fiber stretch λfiber is calculated by λfiber =
√

tr(C · [a0 ⊗ a0]).

The activation parameter γ̄ ∈ [0, 1] indicates the degree of activation of the fiber. We assume

that the degree of activation along the fiber is approximately equal so that a constant activa-

tion parameter γ̄ is used along the muscle fiber. The normalized force-length relation f(λfiber)

describes the force generation of a sarcomere which strongly depends on its length and is for-

5We consider the material to be isotropic because the fiber anisotropy hardly influences the behavior in the load
cases considered in this work.
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mulated as a function of the fiber stretch λfiber, following [240],

f(λfiber) =max(0.0015

[
λfiberls0
lnorm

]4

+ 0.018

[
λfiberls0
lnorm

]3

− 0.935

[
λfiberls0
lnorm

]2

+ 4.078
λfiberls0
lnorm

− 3.715; 0). (4.7)

ls0 denotes the resting sarcomere length and lnorm = 1.0 µm normalizes the function. The prod-

uct of the sarcomere resting length ls0 and the fiber stretch λfiber yields the current sarcomere

length ls.

The active component of the Cauchy stress reads

σfiberact =
1

J
F · Sfiberact · FT

=
Pmax

Jλfiber
γ̄f(λfiber)a⊗ a. (4.8)

The current fiber direction a = F · a0 in the deformed state is updated during the simulation, if

the pennation angle changes.

4.3.1.1.3 Titin’s force enhancement

Two factors influence titin’s force enhancement in eccentric contractions: (i) the rise of intracellu-

lar calcium that increases the stiffness with sarcomere length [117] and (ii) the reduction of titin’s

free molecular spring length by attaching to the actin filaments (titin-actin interaction) [161]. The

resulting additional stresses by titin in eccentric contractions can be described by the following

stress equation [34] acting in the current fiber direction

σfibertitin
= [h1[[λfiber − 1] + εshift]

3 + h2[[λfiber − 1] + εshift]
2

+ h3[[λfiber − 1] + εshift]]Pmaxa⊗ a (4.9)

with the constants h1 = 3.2, h2 = 4.6, h3 = −0.5 and εshift = 0.11.

Both, calcium-sensitive tension and titin-actin interaction, are taken into account. Eq. (4.9)

only describes the additional stresses of titin during active stretching and not the entire passive

stresses. Therefore, the constants are adjusted based on a parameter fitting simulation with

validation against experimental data for the fiber force–fiber stretch behavior in eccentric con-

tractions [211]. The high influence of titin for eccentric contractions resulting in increasing fiber

stresses is visible in Fig. 4.4.

Eq. (4.9) describes titin’s additional stresses for the case that the eccentric contraction starts

at the point of maximum active force in the force-length relation, which can be generated close

to the sarcomere’s resting length. However, no significant differences exist in the development

of the titin stresses around the resting length [86, 147, 180]. Therefore, we set the resting

sarcomere length ls0 = 2.0 µm as the initial length for an eccentric contraction.
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Figure 4.4: The active stress σ33,fiberact (Eq. (4.8)) and the sum of the active and titin stress σ33,fiberact +σ33,fibertitin

(Eq. (4.8) + Eq. (4.9)) are shown in fiber direction. Titin’s strongly nonlinear stress-strain curve ensures
an increase in the stress-strain curve when an activated fiber is lengthened.

4.3.1.2 Plastic behavior

If the muscle fiber is stretched beyond its yield point the slack sarcomere length is increased and

the stiffness is reduced due to structural changes [142, 222]. Furthermore, high deformations

result in initial damage, e.g. during eccentric contractions, which can occur at the fiber mem-

brane [4, 49, 142] (e.g. sarcolemma disruption), within the fiber at myofibril level [65, 145] (e.g.

misalignment of myofibrils), or at sarcomere level [63, 65] (e.g. z-disk dissolution). Irreversible

deformation and microcracks in the muscle fiber are described by the Johnson-Cook model6.

The Johnson-Cook flow stress behavior of materials reads

σeq =
[
A+Bεneq,p

] [
1 + Cln(ε̇∗p)

] [
1− T ∗m

]
, (4.10)

with the equivalent von Mises flow stress σeq, the equivalent plastic strain εeq,p, the dimension-

less plastic strain rate ε̇∗p and the homologous temperature T ∗
m

. A denotes the fiber yield stress,

B the strain hardening constant, n the strain hardening coefficient, C the strain rate strengthen-

ing coefficient and m the thermal softening coefficient.

The equivalent von Mises flow stress reduces to

σeq = A+Bεneq,p (4.11)

for deformations at room temperature and at a strain velocity close to zero, which we assume

henceforth.

6The Johnson-Cook model is widely used to model plastic deformation of metallic materials, however, applications
also exist in the field of biomechanics [1, 16, 71, 178].
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4 Computational modeling of damage in the hierarchical microstructure of skeletal muscles

4.3.1.3 Damage model

At higher strains, myofibrillar failure occurs, causing myofibrils to fail in small bundles [142],

which results in the immediate failure of the entire muscle fiber. Similar to [31] for biological soft

tissues, we apply an anisotropic damage model. Here, it is assumed that the damage function

gD,fiber is independent of the damage variable, so that the distortional part of the total Cauchy

stress tensor σ̂D,fiber for damaged fibers is expressed as

σ̂D,fiber = gD,fiber(λfiber)σ̂fiber (4.12)

with the total distortional Cauchy stress σ̂fiber [200]. The damage function gD,fiber depends on

the fiber stretch λfiber

gD,fiber(λfiber) =



1 for λfiber < λfiber,min

1−eβ[λfiber−λfiber,max]

1−eβ[λfiber,min−λfiber,max]
for λfiber ≥ λfiber,min

and λfiber ≤ λfiber,max

0 for λfiber > λfiber,max

(4.13)

where β is the exponential damage parameter. For stretches λfiber < λfiber,min, the Johnson-

Cook model captures the existing microcracks and, therefore, the value of the function is gD,fiber =

1. If the stretch exceeds λfiber,min, myofibrils fail, usually in small bundles. The resulting sharp

drop in the stress-strain curve is described by the function gD,fiber. Exceeding the stretch

λfiber,max results in failure of the entire muscle fiber and, thus, gD,fiber is equal to zero.

4.3.2 Connective tissue endomysium

The isotropic hyperelastic first order Ogden model is used to depict the highly nonlinear pas-

sive stress–strain behavior of the connective tissue endomysium, compare also [118]. Isotropic

material behavior is assumed as the influence of the anisotropy of endomysium due to the col-

lagen fibers can be neglected for the considered load cases. The strain energy density function

Ψendo is expressed in terms of the principal stretches and is split into a distortional Ψ̂endo and a

volumetric strain energy density function Uendo

Ψendo = Ψ̂endo + Uendo

=
2µendo

α2
1

[
λ̂α1

1 + λ̂α1
2 + λ̂α1

3 − 3
]

+
1

2
κendo [J − 1]2 . (4.14)

α1 is a dimensionless constant, µendo the shear modulus, κendo the bulk modulus and λ̂i =

J−1/3λi are the distortional parts of the principal stretches λi.
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The second Piola-Kirchhoff stress tensor Sendo is calculated via

Sendo =2
∂Ψendo

∂C
(4.15)

=
2µendoJ

− 1
3
α1

α1

3∑
i=1

λα1
i

[
λ−2
i ei ⊗ ei −

1

3
C−1

]
+ κendo [J − 1] JC−1. (4.16)

Thus, the Cauchy stress can be determined:

σendo =
1

J
F · Sendo · FT (4.17)

=
2µendoJ

− 1
3
α1−1

α1

3∑
i=1

λα1
i

[
λ−2
i F · [ei ⊗ ei] · FT −

1

3
I

]
+ κendo [J − 1] I. (4.18)

4.4 3D computational models of fascicles

The representative volume element (RVE) [10] of the fascicle consists of round and parallel

aligned muscle fibers which are periodically arranged and embedded in the matrix endomysium.

The muscle fibers and endomysium are perfectly bonded by sharing nodes at the interface.

Periodic boundary conditions are applied.

muscle
fascicle

small RVE large RVE

muscle fiber

endomysium

1

Figure 4.5: The fascicle is modeled using two differently sized 3D representative volume elements. The elements are
periodic, so the large RVE is a multiple of the smaller one. Both RVEs are discretized with linear fully
integrated hexahedral elements. For the small RVE, one element in fiber direction is used, which reduces
the computational cost. In total, the small RVE is discretized in 552 elements. The larger RVE consists
of 33120 elements and allows to consider small defects along the fiber as it is fully discretized along that
direction.

We model two fascicle RVEs (Fig. 4.5) for the EDL muscle of mice with a fiber volume fraction
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4 Computational modeling of damage in the hierarchical microstructure of skeletal muscles

of 90 %7 and a fiber diameter of dfiber = 47.5 µm which corresponds to the median of the

measured EDL fiber diameters of wild-type mice [189]. As the degree of activation is constant

along the fiber direction, both RVE depths do not correspond to the real muscle fiber length,

which reduces the computational cost. The smaller RVE consists of fewer fibers and is used to

obtain general information about the damage behavior in fascicles (see Sect. 4.5.1). The larger

RVE is used to analyze the influence of pre-damaged fibers in fascicles (see Sect. 4.5.2).

The material and geometrical data is summarized in the appendix. To verify the general va-

lidity of the model, the results of additional simulations with varying fiber-endomysium-Young’s

modulus ratios, different fiber shapes and higher fiber volume fractions are presented in the sup-

plementary material. These results show no differences to the curves presented in the following

section.

4.5 Results: Computational modeling of damage in fas-

cicles

This work studies the mechanical behavior of titin and endomysium in the case of pre-damaged

muscle fibers in the muscle belly on the fascicle level. Stretching due to eccentric contraction

is modeled until complete muscle fiber rupture. This load case grants novel insights into the

development of indirect muscle injuries. We consider low strain rates and, thus, do not take

viscoelastic effects into account.

A realistic loading case is modeled for EDL fascicles, which includes combined tensile and

shear loading. First (see Sect. 4.5.1), we examine the damage behavior of previously intact

muscle fibers embedded by endomysium at fascicle level. Then (see Sect. 4.5.2), at the same

level, we consider various pre-damaged fibers with different amounts of damage and study the

influence of titin and endomysium on the damage process in the entire fascicle, i.e., in the pre-

damaged fiber and the adjacent, initially undamaged fibers.

Fig. C.1 in the appendix verifies the accuracy and implementation of the model as our simula-

tion results perfectly match the experiments for actively stretched (eccentric contraction) muscle

fibers.

4.5.1 Damage behavior and injury of previously fully intact muscle

fibers on the fascicle level

In the unipennate EDL muscle, the pennation angle of the fibers is 10◦ [223]. Lengthening the

muscle in tendon direction, therefore, results in tensile and shear stresses. This realistic loading

of EDL fascicles is simulated for previously fully intact muscle fibers8. In Fig. 4.6, the forces in

tendon direction until total fiber rupture are plotted against the muscle fiber stretch for passively

7The entire muscle has a fiber volume fraction of 95 % ± 8.8 % [129].
8The pennation angle changes for this loading case. Thus, a has to be updated during the simulation.
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4.5 Results: Computational modeling of damage in fascicles

and actively stretched fascicles. Here, the fascicle force is the force within the small RVE (Fig.

4.5) and, thus, only a fraction of the force generated in an entire fascicle.
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Figure 4.6: Fascicle force–fiber stretch relationships are depicted until total fiber rupture for the passively and actively
stretched (eccentric contraction) small fascicle RVE. In both cases, the fascicle forces increase nonlinearly
due to the strongly raising passive forces in the endomysium. This is in contrast to the approximately linear
force–fiber stretch behavior of isolated muscle fibers. Due to titin’s force enhancement, the RVE force in
eccentric contraction is much higher than in a passively stretched fascicle. Right: Damage most likely
occurs near the boundary of the fiber.

The force-stretch curves of passively and actively stretched muscle fibers are approximately

linear ([138] for passively stretched and [86, 180] and the appendix for actively stretched). In

fascicles, the curves are nonlinear due to the properties of endomysium (Fig. 4.6). Over the

complete strain range, the force-stretch curve in eccentric contraction increases stronger than

for passive loading. This is due to titin’s force enhancement (examined and discussed in the

appendix in more detail) which stables contractions on the descending limb of the force-length

relation (Fig. 4.4). The force in actively stretched fascicles reaches more than twice the force in

passively stretched fascicles before fiber rupture.

As described in Sect. 4.3.1.3, the fiber strain is responsible for the entire fiber rupture. In the

simulations, fascicles tear at strains of 75 % (see Fig. 4.6) - corresponding well to the rupture

strain in fiber direction of 66.4 ± 27.6 % in the experiments of tensile loaded human quadriceps

femoris muscles [186]. Tearing of muscle fibers for λfiber > 1.75 results in a reduction of fiber

forces and, thus, in decreased fascicle forces. Since endomysium is not damaged and is able to

carry the load, the simulated force is non-zero after total fiber rupture.
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4 Computational modeling of damage in the hierarchical microstructure of skeletal muscles

4.5.2 Damage behavior and injury with pre-damaged muscle fibers

on the fascicle level

We investigate pre-damaged muscle fibers and their influence on neighboring fibers and the

macroscopic strain of the entire fascicle. A large fascicle RVE (Fig. 4.5) is used to study the

interaction with multiple neighboring fibers in the model. As in Sect. 4.5.1, the same realistic

loading case of EDL fascicles is modeled and an actively stretched fascicle is examined.

The fiber in the RVE’s center is predamaged (Fig. 4.7). This is modeled by reducing the

passive fiber Young’s modulus in the cross-section. For the active behavior and titin’s force en-

hancement, the total active stress (Eq. (4.8)) and titin’s additional stress (Eq. (4.9)) are reduced

by the amount of pre-damage.
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Figure 4.7: Left: pre-damaged central muscle fiber. Right: The active fiber yield stress for an eccentric contraction
is calculated for nine different degrees of pre-damage. Furthermore, we differentiate between equally
pre-damaged titin (“damaged titin") and undamaged titin (“intact titin").

Two different kinds of pre-damaged fibers are investigated: one with and one without pre-

damaged titin. For every case of pre-damage, the active fiber yield stress Aact is determined

(Fig. 4.7). The yield stress corresponds to the stress at a fiber stretch of λfiber = 1.1457 which

is the stretch at which damage is initiated under eccentric contraction [84]. The Johnson-Cook

strain hardening constant B = 0.385 and coefficient n = 0.739 are the same for each pre-

damaged muscle fiber.

4.5.2.1 Titin’s mechanical behavior

The macroscopic fiber stretch λfiber of the fascicle RVE and the maximum principal logarithmic

strain ε1 in the pre-damaged fiber area depend on the degree of pre-damage (Fig. 4.8). We

investigate titin’s influence in pre-damaged fibers by the cases where titin is equally pre-damaged

or completely intact.

For an undamaged fascicle, a macroscopic fiber stretch of λfiber = 1.75 is reached before

fiber rupture (Fig. 4.6). For a pre-damaged fascicle with pre-damaged titin, the macroscopic fiber

stretch of the fascicle reached until fiber rupture of the pre-damaged area is reduced strongly
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Figure 4.8: Influence of titin on the damage behavior in pre-damaged fascicles: the central muscle fiber of the large
fascicle RVE is pre-damaged in one cross-section. a) The macroscopic fiber stretch of the fascicle
reached before fiber rupture rapidly decreases for higher pre-damage if titin is equally pre-damaged.
If titin is intact, the macroscopic fiber stretch remains nearly the same as in an undamaged fascicle
(λfiber = 1.75, Fig. 4.6), even for a very high degree of pre-damage. b) For pre-damaged titin, the local
strain in the pre-damaged fiber cross-section increases more strongly with higher pre-damage. c) For
intact titin, the stronger increase of local strain in the pre-damaged fiber area with larger pre-damage is
slowed down above a certain strain. This strain approaches the local strain in the neighboring undamaged
fiber. On the left, the strain distributions in the RVE with 90 % pre-damage are shown for two macroscopic
fiber stretches. The RVEs visualize that local strains in the pre-damaged fiber (εpd1 ) approach those in
the undamaged fiber (εud1 ) for higher macroscopic fiber stretches. While at a stretch of λfiber = 1.27 the
maximum principal strains in the pre-damaged fiber are 1.66 time larger than in the undamaged fiber, it is
only a factor of 1.11 at a macroscopic stretch of λfiber = 1.69.
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4 Computational modeling of damage in the hierarchical microstructure of skeletal muscles

with increasing pre-damage, so that only a macroscopic fiber stretch of λfiber ≈ 1.26 is obtained

for 90 % pre-damage (Fig. 4.8a). In the case of a pre-damaged fascicle with undamaged titin,

the macroscopic fiber stretch is hardly reduced, so that a total fiber stretch of λfiber ≈ 1.7 is still

achieved for 90 % pre-damage. In Fig. 4.8b and c, the maximum principal logarithmic strain ε1

in the pre-damaged fiber cross-section and in a neighboring undamaged fiber is plotted over the

macroscopic fiber stretch λfiber of the fascicle. The curve of the undamaged muscle fiber in b)

and c) is represented by the one for 10 % pre-damage, as it coincides with the curves for higher

pre-damage and only differs in the achieved macroscopic fiber stretch. In the pre-damaged part,

the strains increase more strongly with higher pre-damage. For additionally pre-damaged titin

(Fig. 4.8b), the macroscopic fiber stretch before fiber rupture is markedly reduced with increasing

pre-damage, i.e., the fiber ruptures much faster. However, if titin is intact, the initially strongly in-

creasing curves for higher pre-damage flatten above a certain strain. Independent of the amount

of pre-damage, they converge to the behavior of the undamaged neighboring fiber (Fig. 4.8c).

Therefore, the macroscopic fiber stretch of the fascicle is hardly reduced (Fig. 4.8a). On the

left side of c), the strains in case of 90 % pre-damage are shown at two different macroscopic

fiber stretches. The RVEs visualize that the strain level in the pre-damaged fiber approaches the

strain level in the undamaged fiber for increasing macroscopic fiber stretches. As a result, large

macroscopic strains can also be achieved with substantial fiber pre-damage.
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Figure 4.9: Titin’s influence on the damage behavior in fascicles. Left: Shear strains at the point of maximum principal
strains for the pre-damaged fiber cross-section and the undamaged adjacent fiber. Shear strains in the
undamaged muscle fiber are quite low compared to the ones in the pre-damaged fiber area. In the pre-
damaged area, the shear strains increase sharply, however, if titin is intact, the slope is reduced for higher
macroscopic stretches so that the shear strain decreases even for λfiber > 1.45. Right: Despite the high
degree of pre-damage, the stresses in the pre-damaged fiber area and in the adjacent undamaged fiber
are nearly the same, both with pre-damaged titin and with intact titin.

The distribution of normal and shear strains is further elucidated in the appendix in Fig. C.3

where it is evident that the shear strains are the cause for the large maximum principal strains
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4.5 Results: Computational modeling of damage in fascicles

in the pre-damaged fiber and, thus, the earlier fiber rupture. In Fig. 4.9, the logarithmic shear

strains for 90 % pre-damage are plotted at the point of maximum principal strains in the pre-

damaged and undamaged fiber for equally pre-damaged and intact titin.

In the undamaged fiber, the shear strains are quite small. If titin is intact, the shear strain

increases linearly until fiber rupture. If titin is pre-damaged, too, the curve progression is the

same, however, the macroscopic fiber stretch reached before fiber rupture is with λfiber ≈ 1.26

much lower.

In the pre-damaged fiber cross-section, the shear strains increase sharply and nonlinearly

with the fiber stretch. Is the titin pre-damaged, the curve increases exponentially until fiber

rupture. If titin is intact, however, the curve of the shear strain flattens and even drops for

higher macroscopic fiber stretches. This decrease in shear strain is the reason for the flattening

of the maximum principal strains seen in Fig. 4.8c (more detailed information is provided in

the appendix). The maximum principal strains in pre-damaged and undamaged fiber approach

similar levels. Therefore, the pre-damaged fascicle reaches almost the same macroscopic strain

as in the completely undamaged case (λfiber ≈ 1.75, Fig. 4.6).

In Fig. 4.9b, the maximum principal stresses in the 90 % pre-damaged fiber part and the

adjacent undamaged fiber are plotted over the macroscopic fiber stretch for equally pre-damaged

and undamaged titin. Independent of titin, the stresses in the pre-damaged and undamaged fiber

are approximately equal over the complete strain range.

4.5.2.2 Endomysium’s mechanical behavior

To investigate the significant difference in the strain development between pre-damaged and

undamaged fibers (Sect. 4.5.2.1), the strains in endomysium are examined more closely.

Fig. 4.10 shows the maximum principal logarithmic strains in the endomysium in the region

of the 90 % pre-damaged muscle fiber with equally pre-damaged titin. The strains in the area

connected to the pre-damaged region are compared to the strains connected to the adjacent

previously undamaged fiber. Both curves increase linearly, however, even stronger next to the

pre-damaged fiber than next to the undamaged fiber. Therefore, the strain reduction increases

with the macroscopic fiber stretch. Despite its extremely thin thickness, the endomysium strongly

reduces the strains from the pre-damaged fiber to the adjacent undamaged fiber. This results

in the large difference of the maximum principal strains between the damaged and undamaged

fiber and in the coincidence of the strain curves of the undamaged fibers, independent of the

amount of pre-damage (Fig. 4.8b and c).

The rupture of the entire central muscle fiber at λfiber = 1.26 leads to a strong shear strain

increase at the interface and, thus, both strain curves increase sharply. The crack propagates

after fiber rupture which is shown in the two half RVEs in Fig. 4.10.
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Figure 4.10: Endomysium’s protection properties for adjacent undamaged muscle fibers in the case of a 90 % pre-
damaged muscle fiber (titin is equally pre-damaged): The maximum principal logarithmic strains in the
endomysium are examined where endomysium is thinnest next to the pre-damaged cross-section of the
central muscle fiber. In the maximum principal log. strain–fiber stretch plot, the strain next to the pre-
damaged fiber increases more strongly than the strain next to the undamaged fiber. The resulting strain
difference is very large despite the thin endomysium. For a macroscopic fiber stretch of λfiber = 1.23, a
detail of endomysium in the area of the 90 % pre-damaged muscle fiber shows a decrease of strain from
ε1 = 0.24 to ε1 = 0.207, equivalent to a reduction of almost 14 %. After fiber rupture (λfiber > 1.26),
both strain curves increase strongly due to the high shear strains at the interface. The two half fascicle
RVEs present the crack propagation in the central muscle fiber after fiber rupture.
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4.6 Discussion

We studied the initiation of cracks in muscle fibers of an unipennate muscle, in particular the

EDL muscle. For an undamaged fascicle, the muscle fiber boundaries, i.e. the sarcolemma, are

at risk to fail first (Fig. 4.6). In these areas, the shear strains are largest which is the case in

pennate muscles subjected to multiaxial loading. In tensile loaded parallel muscles, no shear

occurs, and, thus, the sarcolemma is at lower risk to fail as the strain is distributed over the entire

fiber.

One of titin’s important tasks is force regulation, which increases stability of sarcomeres on

the descending limb and, therefore, protects against overstretching and the resulting damage [2,

80, 81, 92, 131]. We investigated titin’s behavior in a pre-damaged muscle fiber and gained new

insights into its protective properties. Even with extensive pre-damage, titin provides additional

stiffness that allows the muscle to withstand macroscopic strains that are almost as large as

those in the undamaged muscle fiber.

As titin’s stiffness increases exponentially with strain, the stresses in the entire muscle fiber

increase exponentially (Fig. C.2 in the Appendix). Thus, titin stabilizes sarcomeres on the de-

scending limb of the force-length curve (see also Fig. 4.4). Titin’s high material stiffness allows

to compensate high pre-damage and to maintain equal maximum principal stresses in the pre-

damaged and adjacent undamaged fiber at the cost of locally extremely large shear strains in

the pre-damaged fiber (Fig. 4.9). At the point of maximum shear strain for the case of 90 %

pre-damage (and intact titin), the shear strain in the pre-damaged fiber is almost 8 times higher

than in an undamaged fiber. If the titin remains intact, its stiffness increase results in a global

stiffening of the muscle fiber. This increases the resistance against further shearing and causes

a transition to more tensile loading that, at high macroscopic fiber stretches, results in shear

strain reduction. Thus, even strongly pre-damaged fibers only break slightly earlier than initially

undamaged ones (Fig. 4.8). If titin is equally pre-damaged, this stiffening cannot be provided

and the pre-damaged fibers fail at significantly lower macroscopic strains.

Recent studies indicate that the connective tissue endomysium transmits the contractile fiber

force to adjacent fibers via trans-laminar shear rather than via in-plane tension [166, 214]. It has

been found that this stress transfer and endomysium’s stabilizing behavior protect injured areas

and contribute to their repair [132, 206].

Our results show that endomysium also protects undamaged muscle fibers from the large

strains in adjacent pre-damaged fibers. Endomysium prevents damage to travel into the undam-

aged muscle fibers by accommodating and relieving the high strains. The strains are drastically

reduced over the endomysium, even if its thickness is very small (Fig. 4.10). Furthermore, we

showed that the amount of pre-damage in a muscle fiber does not affect the deformation behav-

ior of the adjacent, undamaged fibers. Thus, findings of [132, 206] that endomysium protects

damaged fiber areas, can be extended to that it also protects adjacent undamaged fibers from

pre-damaged ones.
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4.7 Conclusion

We developed a continuum mechanical model for the damage behavior of fascicles, which in-

corporates damage initiation as well as its evolution until total muscle fiber rupture. The fascicle

itself is modeled using an RVE of EDL fascicle of mice that is subjected to a realistic loading case

consisting of normal and shear forces. We analyzed the location of crack initiation in fascicles

and confirmed the findings of [118] that the boundary of the muscle fiber in unipennate muscles,

i.e. the sarcolemma, is at high risk for crack initiation. Furthermore, our results give new insights

into the mechanical behavior of lower level components, especially of the giant molecule titin and

the connective tissue endomysium, in damaged skeletal muscles. Here, we considered injuries

in the muscle belly and not at the musculotendinous junction.

Our simulations show that titin serves an important protective function in pre-damaged muscle

fibers and stabilizes even strongly pre-damaged fibers. Thus, titin not only provides stability on

the descending limb of the generated active stress in undamaged sarcomeres, it also protects

damaged fiber regions from large strains. The additional stiffening provided by titin reduces the

shear strains in the muscle fiber which would lead to early rupture and facilitates macroscopic

strains of a similar magnitude as in an undamaged fascicle. Thus, even strongly pre-damaged

fibers are protected from more serious injuries. If titin is also damaged, muscle fibers are at

higher risk of tearing earlier, even at only minor degrees of pre-damage.

Furthermore, the results indicate that endomysium not only protects pre-damaged fibers as

mentioned in [132, 206], but additionally protects adjacent undamaged fibers from the high

strains in the pre-damaged ones. Endomysium almost fully prevents the transfer of these strains

which avoids damage propagation to neighboring fibers and stabilizes the skeletal muscle.
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5 | Article 4:

Mechanisms of thermal treatments in trig-

ger points of the skeletal muscle: compu-

tational microstructural modeling

5.1 Abstract

Thermal treatment of trigger points in muscle fibers is easily applied without professional assis-

tance and, thus, popular. In this work, we study the influence of thermotherapy and cryotherapy

on trigger points in a fascicle by means of a microstructural model. Details about the mech-

anisms of different thermal treatments to relieve muscle tension in tensed muscle fibers are

provided. We consider short-term as well as long-term temperature treatment. For the former,

the electromyography activity in the trigger point is assumed to remain constant. This results

in reduced muscle tension after heating, as the compressive strains and compressive passive

stresses in the trigger point are reduced, however, cooling causes the opposite behavior and

enhances muscle tension. The different thermal expansion coefficients along the tensed mus-

cle fiber provide maximum relaxation during heating, as the fiber regions next to the trigger point

contribute to relaxation. Long-term treatment reduces the electromyography activity in the trigger

point as in in vivo muscles and electromyography activity reduction strongly effects the behavior

along the entire tensed fiber, thus, relief of muscle tension in trigger points is not only obtained

during heating but also during cooling.

5.2 Introduction

Muscle tension can be caused by a variety of circumstances: not only due to sports, but also

due to e.g. computer work or daily stress. The most frequently mentioned physical complaints of

adults are headaches [235] and about 40 % of the victims suffer from tension headaches [112].

Tension headaches are often induced by muscle tension, especially by myofascial trigger points

[201]. Trigger points are tender spots in taut bands of a tensed muscle and cause local and re-

ferred pain [25]. They consist of about 100 permanently contracted (i.e. shortened) sarcomeres
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Figure 5.1: Muscle trigger points: Sarcomeres of muscle fibers can be permanently contracted even when they are
no longer activated. These regions occur as thicker knots along the fibers and are called trigger points.
These result in shorter sarcomeres in the trigger points (length ls,trigger) and stretched sarcomeres (length
ls,stretched) close to the trigger points in the same muscle fiber [187]. The length of a sarcomere without
trigger points is called resting length ls0 .

within a fascicle without any nerve stimulus input [197] and form a contraction knot (Fig. 5.1)

with an increased stiffness and diameter. The crossbridges between actin and myosin remain

interconnected in the trigger point although the muscle fiber is not activated. In the extreme case

of rigor muscle fibers, almost all crossbridges are permanently attached [38] and, thus, the entire

fiber does not participate in biochemical reactions.

One application to reduce muscle tension is thermal treatment. Thermo- and cryotherapy have

specific physiological effects and are applied for different muscular injuries. Both, heat and cold

treatment, relieve pain and muscle spasms, however, inflammation, edema, tissue metabolism,

connective tissue extensibility and blood flow are increased by thermotherapy and decreased by

cryotherapy [144]. Specifically for trigger points, studies of different heat treatments showed re-

duced pain [157] and decreased stiffness [48], even stronger in combination with electrotherapy

[122]. Cold treatment reduces the degree of activation in the trigger point, even stronger than

heat treatment [162]. Besides heat and cold applications, trigger points can be treated in differ-

ent ways, for example by ischemic compression, dry needling, transcutaneous electrical nerve

stimulation, medication, etc. Nevertheless, temperature treatments are of high interest because

they do not require professional assistance and can be performed easily at home.

For artificial muscles, the temperature dependent behavior has been studied using compu-

tational modeling, e.g. [111, 163, 196]. For soft tissues, [59] introduced a boundary element

fractional model to describe the bio-thermomechanical properties of anisotropic soft tissues.

Thermoelastic modeling of the skin layer was done by e.g. [134, 198, 236]. For biological mus-

cles, a continuum model which includes thermomechanical reactions in the muscle was used

in [17] to model the gastrocnemius muscle. However, no model investigates the temperature

propagation in the muscle and describes its thermomechanical behavior on microstructure level.
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5.3 Micro-thermomechanical model

Microstructural muscle models are essential to understand the mechanisms of heat and cold

treatment of muscle tension and muscle injuries to reduce the pain.

To this end, we introduce a 3D thermomechanical multiscale continuum model for fascicles

to study the influence of temperature propagation on the stress and strain development along

a muscle fiber with a trigger point. Our two-phase fascicle model consisting of muscle fibers

surrounded by endomysium allows to precisely investigate the mechanisms of heat and cold

treatments in a tensed muscle fiber. Details regarding the influences of the trigger point and the

neighboring fiber region to the relaxation of the entire fiber due heat and cold treatments are

provided. A detailed understanding of the temperature influence on the mechanical response

in tensed muscle fibers particularly provides information about its impact on relieving muscle

tension and consequently on promoting the healing process.

5.3 Micro-thermomechanical model

An entire fascicle for a rat extensor digitorum longus (EDL) muscle is modeled with parallel

oriented muscle fibers surrounded by the connective tissue endomysium (Fig. 5.2). The coupled

thermomechanical analysis solves the heat equation

ρ0cpṪ = −DivQ+ ρ0r + T
∂
[
Jσ · F−T

]
∂T

: Ḟ, (5.1)

and the balance of linear momentum

ρ0ü = Div
(
Jσ · F−T

)
+ ρ0b, (5.2)

simultaneously as the thermal behavior depends on the mechanical response and vice-versa.

Here, ρ0 denotes the material’s density (in the reference configuration), cp the specific heat

capacity, T the temperature, t the time, Q the heat flux vector, r the heat source, J = detF the

determinant of the deformation gradient F, F−T the inverse of the transpose of the deformation

gradient F and σ the Cauchy stress tensor.

The thermoelastic coupling term T
∂[Jσ·F−T ]

∂T : Ḟ describes structural heating through elastic

deformation. We neglect inelastic strains due to low strain rates and, thus, no self-heating

is induced by plastic dissipation. The heat source r is zero because heat production in the

fascicle, e.g. through electrochemical reactions during fiber activation, is negligible. Heating and

cooling is applied via boundary conditions. The equation is discretized in time by the backward-

difference method.

In the balance of linear momentum ü is the acceleration vector and b the specific body force

vector. Inertia forces and body forces are neglected because they are much lower than the

existing forces in fascicles9, thus, the balance of linear momentum reduces to its quasi-static

9Rough estimation reveals that the inertial force ρü in the trigger point of the muscle fiber is about 1010 times smaller
than Div

(
Jσ · F−T ).
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trigger point

sectional view of the muscle fiber:

z PT
PnT

fascicle model

cross-section mesh

Figure 5.2: Computer model of a fascicle: 19 muscle fibers surrounded by endomysium. The central muscle fiber is
permanently contracted in a thin region along the fiber which results in a compressed region forming a
trigger point. Along the z-direction, the stress and strain values are evaluated in the central muscle fiber,
for instance in the points PT (trigger point) and PnT (near the trigger point). The model is discretized with
141 960 linear reduced integrated hexahedral elements. The FE mesh of the cross-section is extruded
along the fiber direction, with local mesh refinement ensuring good mesh quality in trigger points.

form

0 = Div
(
Jσ · F−T

)
. (5.3)

The finite strain theory is applied because fascicles are subjected to large strains. In the follow-

ing, we extend the elastic material models of our previous work [118] by including the thermo-

mechanical behavior of muscle fibers and endomysium.

5.3.1 Endomysium

5.3.1.1 Endomysium: thermal constitutive equations

At resting muscle length, the collagen fibrils in the endomysium are randomly oriented and, thus,

their distribution is assumed to be isotropic [23, 182, 214]. Thus, Fourier’s law of heat conduction

reads

Qendo = −kendo∇T, (5.4)

where kendo represents the thermal conductivity, Qendo the heat flux density of the endomysium

and ∇T the temperature gradient with respect to the material coordinates.

5.3.1.2 Endomysium: thermomechancial constitutive equations

The strain energy density function of endomysium Ψendo consists of a mechanical, thermome-

chanical and a thermal contribution:

Ψendo =Ψendomech
+ Ψendothermomech

+ Ψendotherm
. (5.5)
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5.3 Micro-thermomechanical model

The endomysium’s highly nonlinear stress-strain behavior is described by the isotropic hypere-

lastic first order Ogden model10[45]

Ψendomech
=

2µendo

α2
1

[
λ̂α1

1 + λ̂α1
2 + λ̂α1

3 − 3
]

+
1

2

[
λendo +

2µendo

3

]
[J − 1]2 . (5.6)

The thermomechanical and thermal parts are given by

Ψendothermomech
=− 3

[
λendo +

2µendo

3

]
αendo[T − T0][J − 1], (5.7)

Ψendotherm
=cpendo

[
T − T0 − T ln

T

T0

]
. (5.8)

λi are the principal stretches and λ̂i = J−1/3λi their distortional parts. λendo describes the first

Lamé parameter, µendo the second Lamé parameter (i.e., the shear modulus) of endomysium

and α1 is a dimensionless constant of the Ogden model. αendo denotes the thermal expansion

coefficient and cpendo
the specific heat capacity of endomysium.

The Cauchy stress is derived from

σendo =
2

J
F · ∂Ψendo

∂C
· FT

=
2µendoJ

− 1
3
α1−1

α1

3∑
i=1

λα1
i

[
λ−2
i F · [ei ⊗ ei] · FT −

1

3
I

]
+

[
λendo +

2µendo

3

]
[J − 1] I

− 3

[
λendo +

2µendo

3

]
αendo[T − T0]I, (5.9)

where C = FT · F denotes the right Cauchy-Green tensor, FT the transpose of the deformation

gradient F and I the second order identity tensor.

10Even at larger strains, there is still a substantial proportion of curvilinear collagen fibrils [214], thus, we assume an
isotropic material behavior in our work.
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5.3.2 Muscle fiber

5.3.2.1 Muscle fiber: thermal constitutive equations

Muscle fibers are assumed to be transversely isotropic. Thus, Fourier’s law of heat conduction

reads

Qfiber =

−kx,fiber 0 0

0 −ky,fiber 0

0 0 −kz,fiber

 · ∇T, (5.10)

where k•,fiber are the thermal conductivities measured along x-, y- and z-direction, where the

z-axis is parallel to the muscle fiber. Qfiber is the heat flux density of the muscle fiber.

5.3.2.2 Muscle fiber: thermomechanical constitutive equations

A stretched and compressed muscle fiber exerts passive forces. If muscle fibers are electrically

activated, the small contractile units, called sarcomeres, generate active forces by crossbridge

cycling. The total Cauchy stress in muscle fibers is, thus, split into a passive and an active part

[21, 87]

σfiber = σfiberpas + σfiberact . (5.11)

5.3.2.2.1 Passive behavior

The passive strain energy density function Ψfiberpas is split into a mechanical part Ψfibermech
, a

thermomechanical coupling Ψfiberthermomech
and a thermal part Ψfibertherm

:

Ψfiberpas =Ψfibermech
+ Ψfiberthermomech

+ Ψfibertherm
, (5.12)

Ψfibermech
=

1

2
µfiber[trĈ− 3]

+
1

2

[
λfiber,Lamé +

2µfiber

3

]
[J − 1]2 , (5.13)

Ψfiberthermomech
=− 3

[
λfiber,Lamé +

2µfiber

3

]
αfiber[T − T0][J − 1], (5.14)

Ψfibertherm
=cpfiber

[
T − T0 − T ln

T

T0

]
. (5.15)

The nearly-linear mechanical response of the muscle fiber observed by [138] in their experimen-

tal results is captured by the isotropic Neo-Hookean material model, which is used for muscle

fibers in two-phase muscle models, see also [19, 203]. This hyperelastic model is characterized

by the first Lamé parameter λfiber,Lamé and the second Lamé parameter µfiber, respectively the

fiber shear modulus. Ĉ = J−2/3C is the distortional part of the right Cauchy-Green tensor. In

the thermomechanical part, αfiber denotes the thermal expansion coefficient of the fiber, cpfiber

its specific heat capacity and T0 the reference temperature.
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5.3 Micro-thermomechanical model

Thus, the passive Cauchy stress tensor σfiberpas yields

σfiberpas =
2

J
F ·

∂Ψfiberpas

∂C
· FT

=
µfiber

J

[
B̂− 1

3
tr(B̂)I

]
+

[
λfiber,Lamé +

2µfiber

3

]
[J − 1]I

− 3

[
λfiber,Lamé +

2µfiber

3

]
αfiber[T − T0]I, (5.16)

where B = F ·FT is the left Cauchy-Green tensor, B̂ = J−2/3B its distortional part and tr(B̂) the

trace of B̂.

5.3.2.2.2 Active behavior

If muscle fibers are electrically activated, active stresses are generated in fiber direction. To

account for this, the active part of the Cauchy stress tensor is extended (based on [119])

σfiberact =
Pmax35Pmax35,norm(T )

Jλfiber
γ̄f(λfiber)a⊗ a. (5.17)

γ̄ represents the activation parameter, f the normalized force-length relation, which depends

on the fiber stretch λfiber. Pmax35 is the maximum isometric stress at 35◦C [24], with 35◦C be-

ing the reference temperature of rat muscles, and Pmax35,norm(T ) is the temperature dependent

maximum isometric stress normalized at 35◦C. The current fiber direction in the deformed state

is calculated via a = F · a0, where a0 is the unit vector aligned in fiber direction in the reference

configuration. The fiber stretch λfiber is determined by λfiber =
√

tr(C · [a0 ⊗ a0]).

A fiber activation γ̄ = 1 indicates maximum activation and γ̄ = 0 a non-activated fiber. In this

work, we assume a homogeneous degree of activation along the muscle fiber. The force-length

relation characterizes the relationship between the sarcomere length and the generated force

of a skeletal muscle fiber. Fibers exert maximum forces in the vicinity of the resting sarcomere

length. The normalized force-length relation f(λfiber) from [240] describes this relationship and

is formulated as a function of the fiber stretch λfiber

f(λfiber) =max

(
0.0015

[
λfiberls0
lnorm

]4

+ 0.018

[
λfiberls0
lnorm

]3

−0.935

[
λfiberls0
lnorm

]2

+ 4.078
λfiberls0
lnorm

− 3.715; 0

)
, (5.18)

where the normalized length lnorm = 1.0 µm creates consistent units and ls0 denotes the resting

sarcomere length. The current sarcomere length ls is determined by the product of fiber stretch

λfiber and the resting sarcomere length ls0 .

The generated force of muscle fibers increases for higher temperatures. As opposed to stan-
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dard materials, skeletal muscles have an outstanding maximum isometric stress-temperature

curve (Fig. E.1). The unique maximum isometric stress-temperature dependence is described

in Sect. E.2 (see also Fig. E.2). The force-producing crossbridge cycling is endothermic [233],

thus, the generated force increases for higher muscle temperatures without increasing the num-

ber of attached crossbridges. The isometric stress-temperature-relationship can be fitted by the

s-shaped sigmoidal curve, which is shown in [170],

Pmax(T ) = 1− 1

1 + e
−∆H

R

[
1
T
− 1
T0.5

] , (5.19)

where ∆H denotes the change in enthalpy between the non-force-producing and force-producing

crossbridge states, R = 8.314 J/[K mol] the molar gas constant and T0.5 the absolute temper-

ature at 50 % maximum isometric stress. The sigmoidal curve, which fits experimentally deter-

mined isometric stress-temperature values for the rat EDL muscle fiber from [172], is presented

in Fig. E.1. As the maximum isometric stress at each temperature only scales the force-length

relation [39, 55] (more information is provided in the Appendix and in Fig. E.2b), Pmax35,norm(T )

is used as a factor in the active Cauchy stress tensor σfiberact (Eq. (5.17)).

The curves in Figs. E.1 - E.6 demonstrate the thermomechanical behavior of the entire fascicle

model and its components. The material and geometrical data are summarized in the appendix.

5.4 3D computational model of fascicle

We generate11 a computer model of a fascicle with a circular cross-section for a rat EDL mus-

cle (Fig. 5.2) by using the Python codes from [120]. The model of the fascicle consists of 19

parallel aligned muscle fibers with polygonal cross-section embedded in the connective tissue

endomysium, in line with experimental data [44]. By using Voronoi tessellation, fibers with irreg-

ular polygonal cross-section are generated. Our model includes randomly varying endomysium

thicknesses between fibers to capture the variations of natural tissue.

The fiber volume fraction is chosen as 90 %12. Voronoi tessellation leads to slightly varying

muscle fiber sizes with an average diameter of about 65 µm, in accordance with data for rat EDL

muscles [177].

To minimize computational costs, we study a part of the entire fascicle and apply periodic

boundary conditions in longitudinal direction. The influence of the surrounding connective tissue

perimysium on the fascicle is neglected, since the mechanical behavior inside the fascicle is

investigated. For the finite element simulations, the fascicle model is discretized with linear

reduced integrated hexahedral elements with eight nodes per element. The muscle fibers and

the endomysium share nodes at the interface and, thus, are perfectly bonded.

This work studies the mechanical influence of temperature on tensed muscle fibers on the

fascicle level and focuses on the mechanisms of heat and cold treatment in trigger points. For

11see [10] for a review on the generation of representative structures
12The volume fraction of 90 % falls within the range identified in [129] for the entire muscle.
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5.5 Results: Computational modeling of thermomechanical behavior on the fascicle level

this purpose, the fascicle is heated or cooled on its surface, simulating the thermal treatment of

trigger points by e.g. hot pack, sauna session, cold water immersion or cold pack.

To simulate a trigger point in the central muscle fiber, we assume a thin part of the fiber along

the z-axis is permanently activated (activation γ̄ = 1, see Sect. 5.3.2.2.2) and to generate the

same tension as in a tetanic contraction while the rest of the fiber is in a non-activated, passive

state (γ̄ = 0). Thus, the fiber is compressed in the central region (Fig. 5.2) and stretched near

the ends since the boundary conditions enforce a constant fascicle length.

With a reference temperature T0 = 35◦C [24] for the entire rat fascicle, the fascicle’s surface

is heated to T = 38.8◦C as hot packs increase the fascicle’s temperature by 3.8◦C [47]. For

cooled muscles, cold water immersion can result in muscle temperatures of approximately 30◦C

[174], thus, the fascicle’s surface temperature is T = 30◦C in this case. We assume that the

observed fascicle temperatures after heating and cooling immediately appear on the fascicle

surface at the beginning of the thermal treatment.

We distinguish between short-term (0.15 s) and long-term (20 min.) temperature treatment.

For a short temperature treatment, we assume that temperature only influences the passive

mechanical properties and does not affect the active behavior in the permanently contracted

trigger points. Thus, the active stress in the contracted region remains constant. For a long-term

treatment, the active tension in the trigger point decreases in the heated and cooled fascicles,

which corresponds to in vivo behavior (Sect. 5.2). In this case, the muscle fiber model considers

an electromyography (EMG) activity reduction of 15 % after 20 min. heat treatment and 23 % after

20 min. cold treatment, which is observed in injured muscles [162]. Therefore, the activation

parameter in Eq. (5.17) is γ̄ = 0.85 after heating and γ̄ = 0.77 after cooling for the trigger point.

The thermal expansion coefficient of passive muscle fibers differs in active and rigor fibers.

While passive fibers have a negative thermal expansion coefficient, the thermal expansion coef-

ficient of active and rigor fibers is positive (see Sect. E.1.2 and Table E.2). For the trigger point,

we use the same thermal expansion coefficient as for rigor fibers, since trigger points are also

permanently contracted without nerve stimulation.

To verify the general validity of the model, the results of additional simulations with higher

fiber volume fractions are presented in the supplementary material. These results show no

differences to the ones presented in the following section.

5.5 Results: Computational modeling of thermomechan-

ical behavior on the fascicle level

Heating or cooling the outer surface causes a heterogeneous temperature distribution in the fas-

cicle. The heat/coldness propagates rapidly: most regions of the fascicle have already reached

the applied surface temperature after 0.03 s (Fig. 5.3). After about 0.1 s, equilibrium temperature

is reached in the fascicle (Fig. 5.3b and c). At the trigger point region, there are hardly any

differences in the temperature-time curves, thus, a homogeneous temperature progression is
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observed along the fascicle.
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Figure 5.3: The fascicle has a reference temperature of 35◦ C and its outer surface is heated to 38.8◦ C or cooled to
30◦ C. a) The temperature distribution in the fascicle is depicted at different times. A fast relaxation is seen
in both cases. b) and c): Temperature-time curves are exemplarily shown for two points in the muscle
fibers (P1 and P2) as well as the endomysium (P3 and P4). The temperature equilibrates quickly. The
fiber as well as the endomysium achieve the externally applied temperature after approximately t = 0.1 s.

In Fig. 5.4, the temperature influence on the mechanical behavior in the tensed central muscle

fiber of the fascicle is investigated until t = 0.15 s (short-term treatment), thus, the active behavior

in the trigger point is not affected by the temperature. The fiber contraction in the trigger point

PT before thermal treatment results in compressive strains and tensile stresses in this region.

The total fiber tensile stress in the trigger point is due to the extremely high active tensile stress

which is not fully compensated for by the passive compressive stress. Thus, the total stress
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Figure 5.4: The progression of strains (a) and stresses (b) over time in the trigger point PT and next to the trigger point
PnT are shown for fascicles heated to 38.8◦ C and fascicles cooled to 30◦ C. The strain and stress at
t = 0 s (before thermal treatment) represent the values at reference temperature T0 = 35◦ C. a) The log.
normal strain ε33,fiber in fiber direction increases for heating and decreases for cooling in the trigger point
PT and show the opposite behavior in the region PnT next to the trigger point. b) Similar to the strains, the
Cauchy stress σ33,fiber increases with higher temperature in the trigger point and decreases with lower
temperature. The stresses next to the trigger point PT exhibit the same behavior.

as the sum of the active and passive stresses results in a small tensile stress. In the passive

adjacent fiber region, the Poisson’s effect causes compression along the fiber direction despite

the tensile stress.

Heating a tensed muscle fiber does not change the strains initially, as it takes time for the

heat to reach the central muscle fiber. However, the stresses decrease because both regions

are relieved by the increasing stresses in the warm surrounding fiber region. After t = 0.01 s,

the temperature in the central muscle fiber increases, resulting in a reduction of the compressive

strains in the trigger point but an increase of the compressive strains close to the trigger point

(passive fiber region), as the thermal expansion coefficient is positive in rigor fibers and negative

in passive fibers. The different absolute values of the thermal expansion coefficients of the two

regions lead to thermal tensile stresses with temperature increase and, therefore, to an increase

of the total stresses. When the temperature reaches its equilibrium value (t = 0.1 s), the strains

and stresses remain constant. During cooling, the strains and stresses in both points show the

inverse behavior compared to those during heating.

The strains and stresses in fiber direction before and after short-term (without EMG activity

reduction) and long-term (EMG activity reduction is considered) thermal treatment are plotted

along the center of the muscle fiber in Figs. 5.5 and 5.6, respectively. Figs. 5.5a and c show the

strains in heated and cooled fascicles and Fig. 5.5b and d illustrate the strain difference which

describes the subtraction between the strain at the end and the strain at the beginning of heat
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and cold treatment.
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Figure 1Figure 5.5: The strains along a tensed muscle fiber with a centrally located trigger point are depicted before and
after heat and cold treatment of fascicles with constant and additionally reduced EMG activity. a) and c)
show the log. normal strains in the fiber direction for heating and cooling and b) and d) present the strain
difference (i.e., the difference between the strain at the end and the strain at the beginning of thermal
treatment.) The region of the trigger point is illustrated by the gray region. a) and b): The high compressive
strains in the trigger point are reduced in heated fascicles, even more if EMG activity reduction is also
considered. The region near the trigger point is further compressed but relaxes if decreasing EMG activity
is considered. c) and d): EMG activity reduction in cooled fascicles even reduces the compression in
the trigger point, although further compression is observed for constant EMG activity. Furthermore, the
compressed regions next to the trigger point relax more with decreasing than with constant EMG activity.

For a short-term treatment (constant EMG activity), heating/cooling results in reduction/increase

of the compressive strain in the trigger point and compressive strain increase/reduction next to

the trigger point, as already observed in Fig. 5.4. The tensile strains towards both fiber ends,
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which compensate the compressive strains around the trigger point, are not affected by the tem-

perature variations (Fig. 5.5b and d) since the boundary conditions reduce the effects at the fiber

ends of the model.

For a long-term treatment (EMG activity reduction is considered), the compressive strains in

the trigger point strongly decrease in heated fascicles. EMG activity strongly influences the

region next to the trigger point causing its compressive strains to decrease as well, instead of in-

creasing further. In cooled fascicles, EMG activity reduction also results in reduced compression

in the trigger point although it shows the opposite behavior in the case of constant EMG activity.

The strains next to the trigger point decrease even more than in the trigger point. Despite the

stronger EMG activity reduction in the cooled case (23 % after cooling compared to 15 % after

heating), the compressed region in the trigger point is more relaxed in the heated case. Outside

the central region, the initially stretched fiber region is now affected by heat and cold treatment

as the tensile strains are slightly reduced to compensate the strongly decreasing compression in

and close to the trigger point.
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Figure 5.6: The Cauchy stresses in fiber direction are plotted along the tensed muscle fiber before and after heat and
cold treatment without and with additionally considered EMG activity reduction. The gray area represents
the region of the trigger point. For constant EMG activity, the low stresses along the fiber increase in
heated fascicles and exhibit reverse behavior in cooled fascicles. Additional EMG activity reduction in
heated fascicles results in a smaller stress increase than for constant EMG activity. For cooling, the
stresses reduce even stronger with EMG activity reduction.

In a short-term treatment (constant EMG activity), the total Cauchy stresses increase along

the entire fiber in heated fascicles (Fig. 5.6a), however, they drop in cooled fascicles (Fig. 5.6b).

This is caused by the passive compressive stresses, which decrease with heating and increase

with cooling (Fig. 5.7). In a long-term treatment (EMG activity reduction is considered), the

passive compressive stress is reduced more during heating (Fig. 5.7). Since the active tensile

stress decreases by EMG activity reduction, the total stress in the trigger point of heated fasci-
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5 Mechanisms of thermal treatments in trigger points of the skeletal muscle: computational microstructural modeling

cles is lower than for short-term treatment (Fig. 5.6a). In cooled fascicles, EMG activity reduction

causes further total stress drop in the tensed fiber (b). Despite the increase in passive compres-

sive stress with constant EMG activity, the passive compressive stress strongly decreases with

reduced EMG activity (Fig. 5.7). Since the active tensile stress is reduced for long-term cold

treatment, compared to short-term treatment, the overall stress drops more in the trigger point.

The strongest passive stress reduction occurs in long-term cooling, however, a stronger EMG

activity reduction is assumed for cooling than for heating (Fig. 5.7).

heat 1 heat 2 cool 1 cool 2
−0.11

−0.10

−0.09

−0.08

initial passive stress

thermal treatment

pa
s.

C
au

ch
y

st
re

ss
σ

33
,fi

be
r,p

as
[N
/m

m
2 ]

Figure 5.7: The passive Cauchy stress in fiber direction in the trigger point PT after different thermal treatments is
compared to the initial passive stress before treatment. After heat treatments, the passive Cauchy stress
is reduced, however, after cooling, it is only reduced for decreasing EMG activity. Heat 1: short-term
heating with constant EMG activity, heat 2: long-term heating with reduced EMG activity, cool 1: short-
term cooling with constant EMG activity, cool 2: long-term cooling with reduced EMG activity.

5.6 Discussion

Short-term heating with constant EMG activity reduces the compressive strains in the trigger

point. The adjacent fiber region supports the reduction of strains in the trigger points by further

compression (Figs. 5.4a and 5.5b). The sign combination −/+ for the thermal expansion coeffi-

cients of the passive fiber region/rigor fiber region (trigger point) results in a maximum reduction

of the strains in the trigger point (Fig. 5.8) because it leads to an expansion in the trigger point

and a contraction in the passive adjacent fiber region - this optimal combination is exactly what

is observed in tensed in vivo muscles.

Different thermal expansion coefficients result in thermal stresses that, in this case, lead to

a reduction of passive stresses in the trigger point during heating (Fig. 5.7). This reduction is

maximal for a αfiberpas/αfiberrigor
−combination of −/+ and −/− (Fig. 5.8). The total tensile

stress before heating is composed of strong passive compressive stresses due to contraction

(≈ −0.1056 N/mm2) and slightly larger active tensile stresses (≈ 0.1067 N/mm2). Due to the

larger absolute value of the thermal expansion coefficient in the passive adjacent fiber region,
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Figure 5.8: Log. normal strain difference and Cauchy stress difference in the trigger point PT between the ini-
tial state (t = 0) and the state after short-term heating to 38.8◦ C are presented for various
αfiberpas/αfiberrigor−relations. The absolute value of the thermal expansion coefficients remain the same
(as given in Table E.2) and only the sign varies. A negative passive thermal expansion coefficient αfiberpas

results in a compressive strain reduction with a slightly larger difference for a positive αfiberrigor−value,
however, the increase in tensile stress is nearly the same for a positive and negative αfiberrigor−value.
A positive passive thermal expansion coefficient αfiberpas shows the opposite behavior with increasing
compressive strains and reduced tensile stresses.

the compressive strains in the trigger point decrease stronger during heating which results in

thermal tensile stresses in the trigger point (Fig. 5.8). They reduce the strong passive compres-

sive stresses (Fig. 5.7) and, thus, relieve the muscle tension, which, however, results in slightly

increased total tensile stresses due to the active tensile stresses (Figs. 5.4b and 5.6a).

In the passive adjacent fiber region, total tensile stresses occur before heating, however, the

Poisson’s effect causes a strong compression in fiber direction. Heating also slightly increases

these stresses (Fig. 5.4b), since the adjacent passive fiber region is prevented from higher con-

tractions due to the lower absolute value of the thermal expansion coefficient in the trigger point.

Short-term cooling with constant EMG activity does not reduce muscle tension. On the con-

trary, the compressive strains increase in the trigger point and are additionally supported by the

adjacent expanding fiber regions (Figs. 5.4a and 5.5d). Thermal compressive stresses are gen-

erated in the adjacent fiber regions and in the trigger point, resulting in further increase of the

passive compressive stresses in the trigger point (Fig. 5.7). This, however, leads to lower total

tensile stresses (Figs. 5.4b and 5.6b).

Complete relaxation of the tensed muscle fiber is only achieved by reducing both passive and

active stresses. The additional reduction of EMG activity during long-term thermal treatments

strongly influences the relaxation of trigger points, which is supported by the entire muscle fiber.

Reduced EMG activity softens the material in the trigger point. This relieves muscle tension

during both heat and cold treatments.

The compressive strain reduction in the trigger point during heating is enhanced and during

cooling, a reversed behavior is observed compared to a short-term treatment (constant EMG
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activity), resulting in decreased compressive strains instead of further increased compressive

strains (Fig. 5.5b and d). Although cooling causes a stronger reduction in EMG activity, the

overall decrease in compressive strains in the trigger point is larger with heating (Fig. 5.5b and

d). The stiffness reduction in the trigger point influences the behavior along the entire fiber,

since, for long-term thermal treatments, the muscle fiber behaves similarly during heating and

cooling (Fig. 5.5b and d). For both, the strongly varying strains along the fiber are reversed

after treatment (Fig. 5.5a and c). Close to the trigger point, the compressive strains are strongly

reduced, although for heating, an opposite behavior is expected due to the negative thermal

expansion coefficient. This reduction of compressive strains in the trigger point and the adjacent

region is compensated by a reduction of tensile strains in the rest fiber region. Thus, in the case

of cooling, this region resists the expected expansion due to the negative thermal expansion

coefficient.

Additional EMG activity reduction in long-term treatments not only decreases the active tensile

stresses in the trigger point but also strongly reduces the passive compressive stresses after

heating (Fig. 5.7). As the total stresses in the trigger point after treatment are higher compared

to the initial state at t = 0 (Fig. 5.6a), the passive compressive stresses are more reduced than

the active tensile stresses. Cooling also ensures a strong reduction of the passive compressive

stresses in the trigger point, although for short-term treatments (constant EMG activity), the

passive compressive stresses are even slightly increased (Fig. 5.7). Since, for cooling, the total

stresses in the trigger point are significantly lower than in the initial state, the active tensile

stresses are decreased stronger than the passive compressive stresses (Fig. 5.6b).

5.7 Conclusion

We developed a continuum thermomechanical model for EDL fascicles in which the thermome-

chanical behaviors of the muscle fiber and the endomysium are described in a two-phase model.

A trigger point in the central muscle fiber and the influences of thermotherapy and cryotherapy

on the tensed fiber are investigated.

Our results give new insights into the stress and strain development in the trigger point and

in the adjacent fiber region during thermal treatments and the resulting relief of muscle tension

in the fiber. We study short- and long-term heating and cooling and, therefore, EMG activity

reduction in the trigger point.

In tensed fascicles, the thermomechanical muscle behavior facilitates the treatment of trig-

ger points by short-term heating as the strong compressive strains and passive compressive

stresses are reduced. For short-term cooling, on the other hand, compressive stresses and

passive strains in the trigger point become worse. The sign combination −/+ of the thermal ex-

pansion coefficients αfiberpas/αfiberrigor
in tensed in vivo muscle fibers is in fact optimally suited

for thermotherapy of trigger points, as it results in maximum relief of muscle tension and, thus,

accelerates the healing process.

With the additional drop in EMG activity for long-term thermal treatment, the resulting reduction
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in active stress and stiffness in the trigger point causes a significant decrease in compressive

strains and passive compressive stresses in the trigger point, both during heating and cooling.

EMG activity strongly influences the behavior in the trigger point but also along the entire fiber,

therefore, the entire fiber facilitates the release of trigger points. Thus, trigger points can be

treated by thermotherapy (which is in agreement with [183]), e.g. with hot packs or sauna ses-

sions, but also by cryotherapy, e.g. with cold water immersion, despite the disadvantageous

thermal expansion coefficient combination for cooling purposes.

This research underlines the immense benefit of thermal treatment: in addition to its simple

application without professional assistance, no risk is related to the choice between thermother-

apy and cryotherapy of trigger points.
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A set of representative output-files (.jnl) for each hierarchical level is included in the codes.

These can directly be used in Abaqus. The following input values were used to obtain these

output-files:

Level 1 (hexagonal sarcomere cross-section) - sarcomere_hex.jnl:

cross_section = “hex”, r_myosin = 0.006 [µm], l_myosin = 1.6 [µm], r_actin = 0.003 [µm], l_actin

= 1.0 [µm], thickness_z_disc = 0.05 [µm], l_sarcomere = 2.5 [µm], l_crossbridge = 0.02 [µm],

number_crossbridges = 600

Level 1 (circular sarcomere cross-section) - sarcomere_cir.jnl:

cross_section = “cir”, r_myosin = 0.006 [µm], l_myosin = 1.6 [µm], r_actin = 0.003 [µm], l_actin

= 1.0 [µm], thickness_z_disc = 0.05 [µm], l_sarcomere = 2.5 [µm], l_crossbridge = 0.02 [µm],

number_crossbridges = 600

Level 2 - myofibril.jnl:

l_sarcomere = 2.5 [µm], number_sarcomeres = 10, r_unit_cell = 0.03 [µm], number_unit_cells_

per_sarcomere = 1000

Level 3 - musclefiber.jnl:

number_myofibrils = 100, vf_myofibril = 80 [%], vf_sarcoplasmic_reticulum = 15 [%], vf_sar-

colemma = 5 [%], r_muscle_fiber = 30 [µm], l_muscle_fiber = 60 [µm]

Level 4 - fascicle.jnl:

number_muscle_fibers = 60, vf_muscle_fiber = 90 [%], r_fascicle = 250 [µm], l_fascicle = 500

[µm]

Level 5 - muscle.jnl:

number_fascicles = 20, vf_fascicle = 80 [%], vf_perimysium = 10 [%], vf_epimysium = 5 [%],

vf_fascia = 5 [%], r_muscle = 2000 [µm], l_muscle = 4000 [µm]
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B.1 Chemoelectrical part of muscle fiber material model

The activation parameter γ(t, fs, l̇s) along the fiber is calculated via

γ(t, fs, l̇s) =
Fhs(t, fs, l̇s)− Fhs(t, 0, 0)

Fhsmax(t, fsmax , 0)− Fhs(t, 0, 0)
, (B.1)

based on [88]. Here, Fhs is the generated force of a half-sarcomere in different states. Fhs(t, 0, 0)

denotes the half-sarcomere force at zero activation and for an isometric contraction.

Fhsmax(t, fsmax , 0) indicates the force for a maximum stimulation in the same isometric state. A

maximum stimulation called tetanic stimulation is reached for a stimulation frequency of fsmax =

100 Hz. In this case, a motor unit is maximally stimulated by its motor neuron such that action

potentials are emitted at a very high rate.

The half-sarcomere force Fhs at a given position and time t is calculated by

Fhs(t, fs, l̇s) = ηA1(t, fs)x1(t, fs, l̇s) + ηA2(t, fs)x2(t, fs, l̇s), (B.2)

following [173]. Eq. (B.2) describes the force resulting from the crossbridge dynamics in a con-

traction process. A1 indicates the number of crossbridges in the pre-power stroke state in which

the crossbridges only attach to actin. The number of crossbridges in the post-power stroke state

A2 represents the state after force generation resulting in rotation of the crossbridges. Consider-

ing a non-isometric contraction, x1 describes the average distortion on the crossbridges in state

A1 and x2 specifies the average distortion in the A2 state. η = 4 · 10−4 − 7 · 10−4 N/m is the

elastic stiffness coefficient of a single crossbridge [32].

The distortions x1 and x2 caused by filament sliding of actin and myosin [32] are obtained

from

∂x1

∂t
= −

[
f0
D2

A1
+ h′

A2

A1

]
x1 + h′

A2

A1
[x2 − x0] +

l̇s
2
, (B.3a)

∂x2

∂t
= −h0

A1

A2
[x2 − [x1 + x0]] +

l̇s
2
. (B.3b)

In an isometric contraction, x0 is the average distortion in the post-power stroke state A2. The
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values for the constants h′ = 0.18 and h0 = 0.24 are taken from [199]. The differential equations

for calculating the number of crossbridges in the attached states A1, A2 and detached state D2

are listed in Shorten et al. [199] as well as the function f0.

We apply the one-dimensional approach of [88] to a three-dimensional setting in the follow-

ing way: The activation parameter γ(t, fs, l̇s) is first determined for any position along a one-

dimensional muscle fiber. Subsequently, γ(t, fs, l̇s) at each node of the one-dimensional mesh

is transferred by linear interpolation to the nodes of a three-dimensional extended mesh to obtain

γ̄(t, fs, l̇s).

Electrophysiological properties of biological tissues are generally described by the three-

dimensional bidomain equations representing reaction-diffusion equations [164]. As there is

no electrical activation from fibers to adjacent ones, we can reduce these equations to the one-

dimensional monodomain equation [87]

∂

∂s

[
σc
∂Vm
∂s

]
= Am

[
Cm

∂Vm
∂t

+ Iion

]
. (B.4)

Furthermore, the electrical conductivity of the muscle parallel to the fiber direction is about ten

times higher than transverse to the fiber direction [57]. The spatial variable s describes the

position along the fiber, σc the conductivity, Vm the membrane voltage, Am the ratio of mem-

brane surface to volume and Cm represents the capacity of the cell membrane per unit area.

Furthermore, Iion denotes a nonlinear function for the transmembrane ionic current. To solve

this equation, the first order accurate Godunov-type splitting technique [76] is applied, which

separates the nonlinear reaction term from the diffusion term [87]:

V ?
m − V k

m

∆t
= − 1

Cm
Iion(V k

m) (reaction term), (B.5a)

V k+1
m − V ?

m

∆t
=

1

AmCm

∂

∂s

[
σc
∂V k+1

m

∂s

]
(diffusion term), (B.5b)

where k denotes the old time step, ? the intermediate value and k + 1 the current time step. To

calculate the membrane voltage V ?
m in Eq. (B.5a) for each time increment ∆t at a given point

of the fiber, the extensive half-sarcomere model of Shorten et al. [199] is used which describes

the force development in different muscle fibers using mathematical descriptions of the complex

electrophysiological, subcellular processes taking place between excitation and contraction of

the fiber. The model is divided into several parts including membrane electrophysiology, calcium

release from sarcoplasmatic reticulum, calcium and crossbridge dynamics and fatigue based

on phosphate dynamics. The model employs parameters for slow-twitch (type-I) and fast-twitch

(type-II) fibers of the mouse soleus and the extensor digitorum longus muscle to show the differ-

ence in their activation process. This model uses multiple ordinary differential equations which

are solved numerically by the explicit Runge-Kutta-Fehlberg method to calculate the membrane

voltage V ?
m during electrical stimulation.

An electrical activation results in an action potential in the middle of the muscle fiber spreading
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along the fiber. This propagation is described by the diffusion equation (B.5b). The diffusion term

is solved with the finite element method in space and the implicit backward Euler method in time.

The reaction and diffusion terms interact with each other so that the temporal as well as the

spatial change of the membrane voltage is considered. First, the reaction term is solved to

obtain the intermediate result V ?
m and second, its value is used to calculate V k+1

m in the diffusion

term which represents the membrane voltage for the next time step. To determine the unknown

quantities from Eqs. (B.3a) and (B.3b) which depend on the calculated value for the membrane

voltage further differential equations of the extensive half-sarcomere model [199] are used. For

a more detailed description how to solve the extensive package of differential equations and how

they interact during simulation, see Heidlauf et al. [87] and Shorten et al. [199].

B.2 Further simulation results

B.2.1 Influence of the activation parameter γ̄ on the stress-strain

curve of fascicles

To determine the 1. Piola-Kirchhoff stress–fiber stretch relationship for fascicles for different

electrically activated muscle fibers, the activation parameter γ̄ is varied and the entire fascicle

curve is determined by compression and tensile tests, see Fig. B.1. The results show that the

stress–fiber stretch behavior continuously flattens for smaller γ̄-values. This is due to the fact

that the active stresses in the fibers decrease and, thus, the influence of the passive properties

of muscle fiber and endomysium on the entire behavior increases.
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Figure B.1: 1. Piola-Kirchhoff stress–fiber stretch relationship for fascicle with various activation levels γ̄ for muscle
fibers.
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Figure B.2: Chemoelectrical processes in electrically activated fascicles and the associated temporal changes in the
activation level of muscle fibers. a) The applied current density with an excitation frequency of 100 Hz
as well as the membrane potential in the middle of the fiber are plotted over time. Activation causes an
immediate short-term increase in the membrane potential that gradually decreases over a cycle. In b) the
value of the activation parameter is plotted over the entire activation time of 500 ms and over a shorter
time period where a delayed response to an activation impulse is observed.

B.2.2 Interaction of chemoelectrical processes and mechanical pro-

cesses during fiber activation

The chemoelectrical processes in electrically activated muscle fibers lead to the stress distri-

butions in an activation cycle (Fig. 3.9a). An activation with an electrical current density of 150

µA/cm2 and a frequency of 100 Hz causes an immediate short-term increase in the membrane

potential Vm in the middle of the muscle fibers (see Fig. B.2a). Furthermore, the maximum mem-

brane potential Vm decreases over time (Fig. B.2a). The membrane potential Vm initiated in the

middle of the fiber propagates along the muscle fiber and influences the degree of activation γ̄ in

the middle of the fiber (see Fig. B.2b) as well as along the fiber. This is also demonstrated by the

stress distributions for an activation cycle in Fig. 3.9a. Due to the transport and binding of Ca2+

as well as the activation of the crossbridges for rotation, the force generation in sarcomeres is
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delayed [199]. This delay also affects the higher levels of hierarchy and is well captured by our

model: in the contractile response a delay of about ∆tdelay = 2 ms is visible.

B.2.3 Total fascicle RVE force in fascicles with varying states of

stretch and compression depending on the speed of con-

traction

The generated muscle fiber force depends on the sarcomere length as well as the speed of

contraction due to the viscoelastic properties of skeletal muscle fibers (Fig. 3.2). The electro-

chemical model can map the latter, i.e., the force-velocity relation of muscle fibers [88]. We study

its influence on the total forces, including passive and active force components. Therefore, we

correlate points on the force-velocity curve with the resulting total forces at different lengths.

Fascicles with varied stretch (λfiber = 0.75, λfiber = 1.0, λfiber = 1.25) are isometrically

contracted (fascicles are tensed) until they generate the maximum force (t = 250 ms). At t =

250 ms, concentric and eccentric contractions of different velocities are performed and the total
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Figure B.3: Force vs. relative velocity in fully activated fascicle RVEs of the EDL muscle (λfiber = 0.75, λfiber =
1.0 and λfiber = 1.25). Additionally, the normalized force-velocity relationship of EDL muscle fibers is
presented to demonstrate the influence of the velocity on the generated maximum force in muscle fibers
normalized by the maximum value for an isometric contraction.
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forces in the fascicle are determined directly for maximally stimulated muscle fibers (γ̄ = 1) at

t = 250 ms. In Fig. B.3, the fascicle forces are plotted over the relative velocity, that is the velocity

normalized by the maximum compression speed. The results for different velocities are marked

by dots in Fig. B.3. In the inset graph, the forces of EDL muscle fibers for different contraction

speeds are normalized by the force that can be generated in an isometric contraction. In our

simulations, the normalized force-velocity curve only affects the active part of the muscle fibers.

The maximum normalized force value of 1.8 predicted for high eccentric contractions is in

agreement with experimental studies in [8, 9, 51] which have measured maximum normalized

force values close to 1.8. The trend of the force-velocity relation (inset graph) can also be

observed in the three force-velocity curves of the fascicles with the S-shape becoming more

pronounced for longer fascicles.

Generally, due to the force-length relation, the generated force and stress is maximal at

λfiber = 1.25. As the forces are determined for maximally activated muscle fibers at t = 250 ms,

the forces at contraction velocity v = 0 correspond to the values in Fig. 3.8b. With increasing

concentric contraction speed, the generated force is significantly reduced. For maximum short-

ening velocity, the generated force in muscle fibers is approximately zero. The difference in the

force values at this point is only caused by the passive forces in fascicles. In contrast, the ex-

erted force in fibers increases for higher stretching velocities. The stretching speed generating

the maximum force results in a multiplication of the force generated in isometric contractions by

approximately 1.8 for fascicles stretched by λfiber = 0.75 and λfiber = 1.0. For λfiber = 1.25

passive forces are involved, but they are not influenced by the force-velocity relation, so that the

factor is lower than 1.8.

The high forces and stresses resulting in fast eccentric movements lead to higher injury risk

in skeletal muscles. For this reason, eccentric contractions during strength training need to be

performed slowly and controlledly.
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C.1 Material Data

Tables C.1 and C.2 summarize the material and geometrical data used in the model. In the

following, more detail on the choices and material modeling is given for each component.

C.1.1 Muscle fiber

C.1.1.1 Elastic parameters

The EDL fiber Young’s modulus of 0.175 N/mm2 is taken from experimental results [139]. Since

the fiber’s behavior is nearly incompressible, a Poisson’s ratio of νfiber = 0.4999 is chosen.

Based on these values, the shear modulus µfiber and the bulk modulus κfiber can be calculated

to be µfiber = 0.058 N/mm2 and κfiber = 291.7 N/mm2.

The maximum isometric active stress in EDL muscle fibers Pmax = 0.107 N/mm2 is obtained

from the experimental data on wild-type mice [189]. Here, the median of the maximum muscle

fiber forces is divided by the median of the cross sectional area of the fibers. For the activated

state, we assume fully activated muscle fibers with a constant activation level of γ̄ = 1.0 along

the entire fiber length.

C.1.1.2 Johnson-Cook model parameters for passive loading

Several studies [6, 27, 139] find reversible material behavior of a passively loaded muscle fiber

for strains up to approximately 50 %. Therefore, a simulation with a tensile loaded muscle fiber is

performed using the Neo-Hookean material model of the fiber (see Sect. 4.3.1.1.1) to determine

the passive yield stress Apas = 0.0924 N/mm2 as the stress at a deformation of λfiber = 1.5.

Since detailed information about the stress-strain behavior for large deformations are miss-

ing for passive EDL muscle fibers, we use the tensile stress–strain behavior of raw porcine

Iongissimus thoracis muscle fibers to failure [142] as reference. With a passive yield stress of

Apas(λfiber = 1.5) = 0.0924 N/mm2 and passive rupture stress of σr,pas = 0.13 N/mm2 [189] at

a fiber stretch of about λfiber = 1.75 [189, 193] 13 for EDL muscle fibers, the curve of [142] was

fitted with the Johnson-Cook model. The parameters are determined, as described in [141], and

13Information from a private communication with the authors of [189].
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Parameter Value Definition

Efiber 0.175 N/mm2 [139] fiber Young’s modulus
µfiber 0.058 N/mm2 fiber shear modulus
νfiber 0.4999 fiber Poisson’s ratio
κfiber 291.7 N/mm2 fiber bulk modulus
Pmax 0.107 N/mm2 [189] fiber maximum isometric

stress
γ̄ 1.0 fiber activation parameter
ls0 2.0 µm resting sarcomere length
lnorm 1.0 µm quantity to normalize the

force-length relation
dfiber 47.5 µm [189] fiber diameter
ϕfiber 0.9 fiber volume fraction
h1 3.2 constant for additional

titin stress
h2 4.6 constant for additional

titin stress
h3 −0.5 constant for additional

titin stress
εshift 0.11 [34] shift coefficient for

additional titin stress
Apas 0.0924 N/mm2 passive fiber yield stress
Aact 0.1698 N/mm2 active fiber yield stress
B 0.385 Johnson Cook strain hardening

constant
n 0.739 Johnson Cook strain hardening

coefficient
β 100 exponential damage parameter
λfibermin

1.75 fiber stretch leads to myofibrillar
failure

λfibermax 1.8 fiber stretch leads to final rupture

Table C.1: Material and geometrical data of the EDL muscle fiber

we obtain B = 0.385 for the strain hardening constant and n = 0.739 for the strain hardening

coefficient.

C.1.1.3 Johnson-Cook model parameters for active loading

In active muscle fibers, fiber damage occurs already at lower strains. If the muscle fiber is ac-

tively stretched (eccentric contraction) damage is first initiated at a fiber stretch of λfiber = 1.1457

[84]. The Johnson-Cook model is used starting from this fiber stretch. For an actively stretched

fiber, the active yield stress Aact = 0.1698 N/mm2 is determined from an initial simulation at

a fiber stretch of λfiber = 1.1457. Due to lack of information about the damage behavior of

activated EDL muscle fibers, we assume the same Johnson-Cook parameters B = 0.385 and

n = 0.739 as for the passive loading case.
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C.1.1.4 Damage model parameters

Activated and nonactivated muscle fibers achieve the same fiber stretch until total fiber rupture

although fiber damage starts earlier in activated fibers [28, 73]. Therefore, we choose the same

fiber stretches for myofibrillar failure λfiber,min and for total fiber rupture λfiber,max as well as the

same exponential damage parameter β for passive and active muscle fibers.

The fiber fails at a fiber stretch of λfiber = 1.75. We assume the maximum fiber stress to occur

at this fiber stretch. Thus, this value is chosen as the starting point for the collective failure of

myofibrils λfiber,min. For the immediate total failure, we select an exponential damage parameter

of β = 100 and a fiber stretch at complete fiber rupture of λfiber,max = 1.8.

C.1.2 Connective tissue endomysium

The Young’s modulus of endomysium is Eendo = 0.2415 N/mm2 [118]. With a Poisson’s ra-

tio of νendo = 0.4999 for nearly incompressible material behavior, a bulk modulus of κendo =

402.5 N/mm2 and a shear modulus of µendo = 0.08 N/mm2 are calculated and the constant

α1 = 7.95 is used in the Ogden model [118].

Parameter Value Definition

Eendo 0.2415 N/mm2 endomysium Young’s modulus
µendo 0.08 N/mm2 endomysium shear modulus
νendo 0.4999 endomysium Poisson’s ratio
κendo 402.5 N/mm2 endomysium bulk modulus
α1 7.95 constant of the Ogden model

used for endomysium
ϕendo 0.1 endomysium volume fraction

Table C.2: Material and geometrical data of the endomysium

C.2 Further simulation results

C.2.1 Damage behavior and injury of muscle fibers loaded in fiber

direction

Tensile tests are modeled on an isolated EDL muscle fiber in fiber direction to predict its material

behavior until total fiber rupture for the activated (eccentric contraction) and non-activated (pas-

sive) state. Compared to the passive state, the active Cauchy stress (Eq. (4.8)) resulting from

electrically activated fibers has to be considered for an eccentric contraction as well as the force

enhancement by titin (Eq. (4.9)).

The force–fiber stretch curve of the EDL muscle fiber model in fiber direction for eccentric

contractions is compared to experimental results of rat EDL muscle fibers [211] in Fig. C.1. The

forces are normalized to the maximum isometric force generated in fully activated muscle fibers.
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Figure C.1: Eccentric contraction. Our simulation results are in excellent agreement with the experimental results of
a rat EDL muscle fiber [211]. Both fiber force–fiber stretch curves, normalized to the maximum isometric
force for fully activated muscle fibers, show an almost linear increase in force, see also the results of
[86, 180]. Based on further experimental data [211], we extrapolate linearly for higher strains until bundles
of myofibrils rupture. Then, the force quickly drops to zero due to an immediate failure of the fiber. The
maximum force value before fiber rupture is more than three times the force at the starting point of active
strain.

In the experiment, the muscle fiber is actively stretched at an initial sarcomere length close to

2.0 µm, which corresponds to the initial sarcomere length used in the simulation. The simulation

results correlate well with the experimental results. The total forces in both curves increase

almost linearly, also in agreement with [86, 180]. Titin causes the force enhancement, as its

strongly nonlinear increasing force resists the decreasing active force of the contracting units

for higher strains. According to additional results [211], the progression is proceeded linearly,

resulting in a force increase by more than three times from the beginning of active strain until

rupture. The force drops sharply to zero above a fiber stretch of λfiber = 1.75, because ruptured

bundles of myofibrils result in the sudden failure of the entire muscle fiber.

In Fig. C.2, the stress-strain curves for the fiber are depicted in the passive state and for an

eccentric contraction in fiber direction. Due to titin’s force enhancement, the stresses increase

strongly during eccentric contraction. The rupture stress in an eccentric contraction is slightly

more than four times higher than in a passively loaded fiber at the same strain. This is mainly

attributed to the high stresses in titin, because the active stresses are almost zero at this fiber

stretch.

These simulation results agree with the findings [73] that activated fibers have a higher tensile

strength and can absorb considerably more energy than non-activated fibers, which protects ac-

tivated fibers from injury. Furthermore, the damage range for activated fibers is much larger than

for non-activated fibers. This can be explained by the activation capability being first declined by

damage, especially, and only later the tensile properties are affected [148].
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Figure C.2: Stress–fiber stretch relationship for muscle fibers (level 3) until total fiber fracture for the nonactivated,
passive state and for an eccentric contraction. The blue dots mark the starting point for microcrack
formation and the red dots denote the beginning of myofibrillar failure. The rupture of bundles of myofibrils
immediately afterwards leads to total fiber failure, so that the stresses drop to zero. The gray curve
sections after the blue dots indicate the course of the passive and eccentric curves without damage. Due
to the high stresses, damage occurs earlier in activated fibers. However, the complete fiber fails at the
same strain in both cases. As a result, activated fibers can absorb significantly more energy [73] than
non-activated fibers.

C.2.2 Local strains in a 90 % pre-damaged muscle fiber at fascicle

level in a realistic loading case

For an averaged 90 % pre-damage in the cross-section of the central fiber (intact titin), as studied

in Sect. 4.5.2, the local strains in the muscle fibers of the large fascicle RVE are shown for a

macroscopic fiber stretch of λfiber = 1.4 (Fig. C.3). This figure is a sectional view to visualize the

strains in the pre-damaged fiber area and in the adjacent previously undamaged fibers.

In the pre-damaged fiber, the normal strain is maximal at the boundary of the fiber and minimal

within the fiber, whereas the shear strain shows an inverse distribution. The maximum shear

strains are more than two times larger than the maximum normal strains (Fig. C.3). Despite

the lower normal strain within the pre-damaged fiber compared to the previously undamaged

fibers, the maximum principal strains are larger in the pre-damaged one (Fig. 4.8) due to the

immense shear strain differences (Figs. 4.9 and C.3) in the fascicle. For higher macroscopic

strains (λfiber > 1.4), the normal strains in the pre-damaged fiber increase and approach the

normal strains in the undamaged fiber. Therefore, the flattening of the maximum principal strains

in the pre-damaged fiber (Fig. 4.8c) results from the decreasing shear strains (Fig. 4.9).

In general, to prevent early failure, it is necessary to reduce these high shear strains, which
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increase sharply with higher pre-damage.

ε33, log. normal
strain

ε23, log. shear
strain
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Figure C.3: Sectional views of the large fascicle RVE with a 90 % pre-damaged central muscle fiber (intact titin) at
fiber stretch λfiber = 1.4. The normal strains (left) and the shear strains (right) are presented in the cross-
section of the fascicle, where the pre-damaged fiber part is located. The normal strains are maximal in
the cross-section of the pre-damaged fiber area where the shear strains are minimal and vice versa. For
a macroscopic fiber stretch of λfiber = 1.4, the maximum logarithmic shear strain is more than two times
larger than the maximum logarithmic normal strain.
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D.1 Validation of titin’s and endomysium’s observed be-

havior in pre-damaged fascicles

We investigate the general validity of the elaborated characteristics of titin and endomysium in

pre-damaged fascicles by additional simulations with the large RVE (see Fig. 4.5) for varying

fiber-endomysium-Young’s modulus ratios, different muscle fiber shapes and larger fiber volume

fractions. A realistic loading of the fascicle RVE consisting of normal and shear forces is modeled

for a 90 % pre-damaged central muscle fiber (see Fig. 4.7) in the case of an eccentric contraction.

D.1.1 Comparison between different fiber-endomysium-Young’s

modulus ratios

Fiber-endomysium-Young’s modulus ratios smaller than 1.0 are used as the endomysium is gen-

erally stiffer than the muscle fiber in different muscles and species [75]. A pre-damaged muscle

fiber with equally pre-damaged titin and intact titin is investigated for stiffness ratios larger and

smaller than 0.725, which is the value used in the main part of the paper (results shown in Fig.

4.8b and c and Fig. 4.9). The maximum principal logarithmic strains in the 90 % pre-damaged

and neighboring undamaged fiber and the logarithmic shear strains at the same points (see Fig.

D.1) show that stiffness ratios larger and smaller than 0.725 do not affect the results.

The strains in the thinnest endomysium area next to the 90 % pre-damaged cross-section

of the central muscle fiber (titin is equally pre-damaged) are also examined for stiffness ratios

larger and smaller than 0.725 (see Fig. D.2). The strain curves next to the pre-damaged and

undamaged fiber are independent of different stiffness ratios.

D.1.2 Comparison between different fiber shapes and fiber volume

fractions

We compare muscle fibers with circular and polygonal cross-sections and varying fiber volume

fractions (90 %, 92.5 % and 95 %) for the case of muscle fibers with polygonal cross-section (see

Fig. D.3). For all cases, the maximum principal logarithmic strains and the shear strains at the
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Figure D.1: Influence of titin on the damage behavior in pre-damaged fascicles with different fiber-endomysium-
Young’s modulus ratios: As done in the main part, the central muscle fiber of the large fascicle RVE
is pre-damaged in one cross-section. The results for the maximum principal logarithmic strains (a) and
b)) and logarithmic shear strains at the same points (c) and d)) in the pre-damaged and undamaged fiber
for the case of equally pre-damaged and undamaged titin show that the stiffness ratio between muscle
fiber and endomysium has no influence on the results. The curves for a stiffness ratio of 0.725 represent
the results which are already shown in Figs. 4.8b and c and 4.9.

same points are investigated in a 90 % pre-damaged muscle fiber with equally pre-damaged titin

as well as intact titin and in a neighboring undamaged fiber for both cases (see Fig. D.4). The

results for an RVE with fibers with a circular cross-section and a fiber volume fraction of 90 %

are already shown in the main part (see Fig. 4.8b and c and Fig. 4.9). The curves in Fig. D.4

demonstrate that both fiber shape and fiber volume fraction have no influence on the results and,
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Figure D.2: Endomysium’s protection properties for adjacent undamaged muscle fibers in the case of a 90 % pre-
damaged muscle fiber (titin is equally pre-damaged) for different fiber-endomysium-Young’s modulus ra-
tios: The maximum principal logarithmic strains in the endomysium are examined where endomysium is
thinnest next to the pre-damaged cross-section of the central muscle fiber. The curves indicate that the
stiffness ratio has no effect on the results.
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Figure D.3: RVEs with different muscle fiber shapes (circular and polygonal cross-section) and varying fiber volume
fractions (90 %, 92.5 % and 95 %) are used to examine their influence on the damage behavior in fasci-
cles. The arrangement of the polygonal muscle fibers results in equal endomysium thickness in the entire
RVE.

thus, they underline titin’s observed behavior in pre-damaged fascicles.

For all cases, the maximum principal logarithmic strains in endomysium next to the 90 % pre-

damaged cross-section of the central muscle fiber (titin is equally pre-damaged) are investigated
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Figure D.4: Influence of titin on the damage behavior in pre-damaged fascicle RVEs with different muscle fiber cross-
sections (circular and polygonal) and different fiber volume fractions (90 %, 92.5 % and 95 %): As done
in the main part, the central muscle fiber of the large fascicle RVE is pre-damaged in one cross-section.
The results for the maximum principal logarithmic strains (a) and b)) and logarithmic shear strains at the
same points (c) and d)) in the pre-damaged and undamaged fiber for the case of equally pre-damaged
and undamaged titin show that different muscle fiber shapes and larger fiber volume fractions than 90 %
do not affect the mechanical behavior. An RVE with 90 % fiber volume fraction and muscle fibers with
circular cross-section is used in the main part and its results are presented in Figs. 4.8b and c and 4.9.

at the same area where, for fibers with circular cross-section, the endomysium is thinnest (Fig.

D.5). Both the cross-section of the fiber and larger fiber volume fractions hardly affect the strain

curves next to the pre-damaged and next to the neighboring undamaged fiber.
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Figure D.5: Endomysium’s protection properties for adjacent undamaged muscle fibers in the case of a 90 % pre-
damaged muscle fiber (titin is equally pre-damaged) for different muscle fiber shapes (circular and polyg-
onal) and different fiber volume fractions (90 %, 92.5 % and 95 %): The maximum principal logarithmic
strains in the endomysium are examined next to the pre-damaged cross-section of the central muscle
fiber in the same area for all cases which for muscle fibers with circular cross-sections is the thinnest
endomysium area. Different cross-section shapes and larger fiber volume fractions than 90 % have no
significant impact on the results and, therefore, they confirm the concluded behavior of endomysium in
pre-damaged fascicles based on the results of circular fibers in RVEs with 90 % fiber volume fraction (see
also Fig. 4.10).

D.2 Initiation of fiber rupture in RVEs with different ar-

ranged polygonal muscle fibers

In Fig. 4.6, the tensile- and shear-loaded small RVE consisting of muscle fibers with circular

cross-sections demonstrates the highest risk for damage at the fiber boundary. The results are

compared to equally loaded small RVEs with polygonal muscle fibers, one with a symmetrical

arrangement and the other with an asymmetrical arrangement of the fibers (see Fig. D.6), in the

case of an eccentric contraction. All have the same fiber volume fraction of 90 %. The damaged

polygonal RVEs confirm the conclusion in the main text that damage occurs first at the fiber

boundary.
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Figure D.6: Two small RVEs with polygonal muscle fibers, one with symmetrically arranged and the other with asym-
metrically arranged fibers, are loaded and constraint in the same way as the small RVE with circular fibers
(results are shown in Fig. 4.6) in the main part. The RVEs with polygonal muscle fibers confirm the results
that the fiber boundary is at high risk for crack initiation.
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E.1 Material Data

The material and geometrical data for endomysium and muscle fibers are summarized in Tables

E.1 and E.2.

E.1.1 Endomysium

The second Lamé parameter for endomysium µendo = 0.08 N/mm2 is determined based on the

elastic material parameters in Lamsfuss and Bargmann [118] and a Poisson’s ratio of νendo =

0.49 which is assumed to model nearly incompressible material behavior. This results in a first

Lamé parameter of λendo = 3.971 N/mm2. The constant of the Ogden model α1 = 7.95 re-

sults from parameter fitting with validation against experimental data, done in Lamsfuss and

Bargmann [118].

Parameter Value Definition

λendo 3.971 N/mm2 first Lamé parameter
µendo 0.08 N/mm2 [118] second Lamé parameter
νendo 0.49 Poisson’s ratio
ρendo 1174 kg/m3 [58] density
α1 7.95 [118] constant of the Ogden

model for endomysium
αendo 10−4 1/K [151] thermal expansion coefficient
kendo 0.435 W/[mK] [228] thermal conductivity
T0 308.15 K = 35◦C [24] reference temperature
cpendo

3364 J/[kgK] [137] specific heat capacity
ϕendo 0.1 volume fraction

Table E.1: Material and geometrical data of endomysium

We assume a linear isotropic thermal expansion coefficient of αendo = 10−4 1/K obtained

from a steer Achilles tendon and from gelatin [151]. The density ρendo = 1174 kg/m3 is an

average value for tendons and ligaments [58] and is here used for the endomysium. kendo =

0.435 W/[mK] is the average value for the thermal conductivity of connective tissue from [228].

For the specific heat capacity of endomysium, the calculated value cpendo
= 3364 J/[kgK] [137]

for ligaments and tendon is used.
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E.1.2 Muscle fiber

The second Lamé parameter of the muscle fiber µfiber = 0.044 N/mm2 is calculated from rat

EDL experimental data [143] and a fiber Poisson’s ratio of 0.49 for nearly incompressible material

behavior. Thus, the first Lamé parameter of the muscle fiber λfiber,Lamé = 2.154 N/mm2 is

obtained. For both, tensile and compressive behavior, the same Lamé parameters are assumed.

Parameter Value Definition

λfiber,Lamé 2.154 N/mm2 first Lamé parameter
µfiber 0.044 N/mm2 [143] second Lamé parameter
νfiber 0.49 Poisson’s ratio
ρfiber 1095 kg/m3 density
Pmax35 0.175 N/mm2 [191] maximum isometric

stress at 35◦C
γ̄ 1.0 fiber activation parameter
αfiberpas −0.001 1/K [169] passive linear isotropic

thermal expansion coefficient
αfiberrigor

3.2 · 10−5 1/K [15] rigor linear isotropic
thermal expansion coefficient

αfiberact 3.2 · 10−5 1/K active linear isotropic
thermal expansion coefficient

∆H 82 kJ/mol enthalpy change
R 8.314 J/[K mol] molar gas constant
T0.5 280.15 K temperature at 50 %

maximum isometric stress
kx,fiber, ky,fiber 0.543 W/[mK] thermal conductivity

(across fibers)
kz,fiber 0.491 W/[mK] thermal conductivity

(along fibers)
T0 308.15 K = 35◦C [24] reference temperature
cpfiber

3317 J/[kgK] specific heat capacity
ls0 2.0 µm resting sarcomere length
lnorm 1.0 µm quantity to normalize the

force-length relation
dfiber 65 µm [177] diameter
ϕfiber 0.9 volume fraction

Table E.2: Material and geometrical data of rat EDL muscle fiber

The muscle fibers are assumed to be maximally activated with a constant activation parameter

of γ̄ = 1.0 along the entire fiber. Pmax35 = 0.175 N/mm2 is the average value of the measured

maximum isometric stresses at 35◦C in a rat EDL muscle fiber [191]. The parameters for the

sigmoidal function Pmax(T ) in Eq. (5.19) used to describe the temperature dependent maximum

isometric stress are calculated via the van’t Hoff equation. We plot ln(Pmaxexp/(Pmax−Pmaxexp))

versus 1/T , as done in [170]. Pmaxexp is the temperature dependent maximum isometric stress

from experiments with a rat EDL muscle fiber [172] and Pmax is the total maximum isometric

stress. We obtain an approximately linear curve, thus, with the linear form of the van’t Hoff
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equation given in the form

ln
(
Pmaxexp/

[
Pmax − Pmaxexp

])
= −∆H

RT
+

∆S

R
(E.1)

the temperature independent change in enthalpy ∆H ≈ 82000 J/mol and the change in entropy

∆S ≈ 293 J/[K mol] are determined. The absolute temperature at 50 % maximum isometric

stress T0.5 indicates the temperature for ln(Pmaxexp/[Pmax − Pmaxexp ]) = 0, which results in

T0.5 ≈ 7◦C = 280.15 K. Our sigmoidal curve for the temperature dependent maximum isometric

stress (Eq. (5.19)) is in excellent agreement with the experimental results of a rat EDL muscle

fiber [172] (Fig. E.1).
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Figure E.1: The maximum isometric stress-temperature dependence of muscle fibers represented by a sigmoid func-
tion: The model reproduces the experimental behavior of the rat EDL muscle fiber very well.

The linear isotropic thermal expansion coefficient of the fiber αfiber differs between passive,

active and rigor muscle fibers. Therefore, αfiber in Eqs. (5.14) and (5.16) needs to be replaced by

αfiberpas in the passive state, by αfiberact in the active state and by αfiberrigor
in case of a rigor fiber.

In the passive state, the thermal expansion coefficient of muscle fibers αfiberpas = −0.001 1/K

(taken from [169]) is negative (see also [95] for the entire passive muscle), however, in active

and rigor fibers, the linear isotropic thermal expansion coefficient is positive. Since the abrupt

tension decrease with temperature increase is similar in active contraction and in rigor, see

[77], the same thermal expansion coefficient is assumed for both cases. We set αfiberrigor
=

αfiberact = 3.2 ·10−5 1/K [15] which agrees with the measured thermal expansion coefficient and

thermoelastic heat in rigor [14, 74, 113] and in tetanic contraction [234]. Over time, the stress

increases with increasing temperature in active muscle fibers (see [77]) due to the isometric

stress-temperature dependence. This is in contrast to rigor fibers which are not able to generate

more active force as a result of rigidity. Thus, the isometric stress is assumed to be constant

over temperature in rigor muscle fibers. We assume constant thermal expansion coefficients

independent of the sarcomere length as similar thermal expansion coefficients are observed
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for shorter and longer sarcomeres [77]. The difference in the stress-temperature behavior for

passive, active and rigor fibers as well as for endomysium is compared in Figs. E.3 and E.4.

The rule of mixture is used to calculate the density, heat capacity and thermal conductivity

parallel and perpendicular to fiber direction for fiber matrix composites:

ρmuscle = ρfiberϕfiber + ρendoϕendo, (E.2)

cpmuscle
= cpfiber

ϕfiber + cpendo
ϕendo, (E.3)

kz,muscle = kz,fiberϕfiber + kendoϕendo, (E.4)

1

kx,muscle
=

ϕfiber

kx,fiber
+
ϕendo

kendo
. (E.5)

With the muscle density ρmuscle = 1103 kg/m3 (average value from [37, 58, 97, 160]), the fiber

volume fraction ϕfiber = 0.9, the endomysium volume fraction ϕendo = 0.1, the muscle specific

heat capacity cpmuscle
= 3322 J/[kgK] (average value from [50, 54, 89]) and the muscle thermal

conductivity kz,muscle = 0.485 W/[mK] [96] along and kx,muscle = ky,muscle = 0.53 W/[mK] [96]

across the muscle fibers, we obtain the values given in Table E.2.

E.2 Influence of temperature on active muscle fiber force

In muscle fibers, temperature not only influences the passive material properties but also the

active ones. For small physiological temperatures, the tetanic fiber force varies strongly and

increases with temperature until the maximum value is reached. At higher physiological tem-

peratures, studies [13, 42, 171] even observed a low fall in tetanic fiber force. Compared to the

twitch tension, only the absolute tetanic force value is affected by temperature while its temporal

course of fiber activation is temperature-independent [13, 46].

The crossbridges between actin and myosin in sarcomeres, which provide the basis for force

generation, are influenced by temperature. Raising temperatures increase (i) the probability for

crossbridge formation [43] and (ii) the generated force per crossbridge [168] which in total leads

to higher tetanic fiber force.

In different species and muscles, the normalized tetanic fiber force-temperature relationships

show varying thermal dependences (see [168]) with the maximum tetanic fiber force occurring at

different temperatures (Fig. E.2a). Tetanic force-temperature dependences are described by the

Q10−value [13]: smallQ10−values represent a small thermal dependence and highQ10−values

a strong influence of temperature on the generated fiber force.

The adaptability to different living conditions such as the common ambient temperature could

explain the varying Q10−values. Compared to approximately constant body temperatures in

homeotherms, poikilothermic animals change their body temperature with ambient temperature,

thus, their muscles are exposed to large temperature ranges. This can be a reason for the gen-

erally lower tetanic force-temperature dependences (lower Q10−value) in poikilothermic animals

such as amphibians [13] and reptiles (see also the lizard and frog muscles in Fig. E.2a) than in
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Figure E.2: a) Temperature dependence of the generated active forces for muscle fibers of various species obtained
from experiments. The tetanic forces are normalized by the maximum tetanic force of the respective
muscle fiber. In all cases, the fiber force increases with temperature over long ranges. However, the
strength of force increase and the position of maximum fiber force varies for different species. b) Influence
of temperature on the force-length-relation of the rat EDL muscle. The force length-relation is only scaled
for different temperatures, thus, the maximum force is generated at the same sarcomere length.

homeotherms as mammals [39, 55, 171] (see also the human and mouse muscles in Fig. E.2a).

However, further studies are required here as homeotherms can have similarly small tetanic

force-temperature dependences as poikilothermic animals [13, 104] (compare the results of rat

EDL muscle with the lizard and frog muscles in Fig. E.2a). Living conditions of the species also

influences the temperature at which maximum tetanic tension is generated. The maximum fiber

force is normally reached at physiological temperatures to which living organisms are mainly ex-

posed [12, 168]. For example, the myotomal muscles of the Antarctic fish bullrout, whose body

temperature varies between 2◦C and 17◦C [109], generate maximum tetanic tension around

15◦C, whereby human muscle temperature can range between 20◦C and 40◦C [185] and the

maximum tetanic tension of the human first dorsal interosseous muscle is reached at ca. 30◦C

[171]. Maximum tetanic tensions occur similar temperatures in humans, mice and rats, however,

they occur at different temperatures in lizards and frogs (Fig. E.2a). In accordance with rather

cold environmental temperatures, the analyzed frog muscle fibers generate maximum forces

around 20◦C. Since the lizard Dipsosaurus dorsalis lives in hot desert regions [13], their muscle

fibers can generate maximum forces at much higher temperatures.

In Fig. E.2b, the temperature dependence of the force-length-relation normalized at a temper-

ature of 35◦C is shown for the rat EDL muscle (normalized stress-temperature data from [172]).

Changing the muscle temperature only results in a scaled force-length curve while the maximum

force is always reached at the same sarcomere length [39, 55].
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E.3 Further results

Figs. E.3 - E.5 illustrate the general thermomechanical behavior of the entire fascicle and its

components muscle fiber and endomysium. The fascicle is homogeneously heated to 40◦C

and cooled to 30◦C and the fascicle length remains constant. The stresses during heating

are comparable to those during an induced heating of muscle fibers by sport activities, since

activated fibers heat up very slowly over several minutes [7, 18] and due to the fast temperature

propagation within the fascicle (e.g. Fig. 5.3a), almost a homogeneous temperature increase

can be assumed.

For passive muscle fibers, the negative thermal expansion coefficient results in tensile stresses

during heating and compressive stresses during cooling which increase with temperature (Fig.

E.3a).
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Figure E.3: Thermal stresses in the fiber for heated and cooled fascicles. a) Tensile stresses are generated in heated
passive muscle fibers and compressive stresses in cooled fibers. b) The positive thermal expansion
of rigor muscle fibers slightly reduces the tensile stress during heating and increases the stress during
cooling. Isometrically contracted fibers exhibit the same thermal expansion behavior. However, the fiber
responds differently due to the isometric stress–temperature dependence resulting in tensile stresses that
increase with heating and decrease with cooling.

In rigor muscle fibers, which are permanently contracted, we assume a constant active stress

over temperature. Starting from the active tensile stress at resting sarcomere length ls0 and

reference temperature T0, the thermomechanical behavior of rigor muscle fibers exhibits inverse

behavior compared to passive fibers (Fig. E.3b). The low positive thermal expansion coeffi-

cient leads to slightly decreasing tensile stresses during heating and slightly increasing tensile

stresses during cooling. The same thermal expansion coefficient is assumed for isometrically

contracted muscle fibers, however, heating generates thermal tensile stresses and cooling ther-

mal compressive stresses in this case. The generated active forces varying with temperature

(Fig. E.1) strongly influence the total stress response over temperature in contrast to the small

positive thermal expansion coefficient. Thus, the isometric curve in Fig. E.3b adopts a similar
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shape as in Fig. E.1.

In a passive fascicle, endomysium is subjected to compressive stresses during heating and

to tensile stresses during cooling due to the positive sign of the thermal expansion coefficient

(Fig. E.4). In fascicles with rigor muscle fibers or isometrically contracted fibers, heating/cooling

results in compressive/tensile stresses in endomysium which are about 85 % lower than those in

passive fascicles. This is caused by the high active tensions in the muscle fibers relieving the

endomysium.
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Figure E.4: Thermal stresses in endomysium. The positive thermal expansion coefficient results in compressive
stresses during heating and tensile stresses during cooling. If the endomysium is surrounded by rigor or
activated muscle fibers, the absolute value of the thermal stresses in endomysium is smaller compared
to purely passive fiber behavior.

We only consider the thermal expansion and neglect the temperature dependence of the stiff-

ness, which would result in stiffer muscle behavior at lower temperatures [149]. The passive

muscle fiber shows an approximately linear increase of stress (Fig. E.5). In isometric contrac-

tion, the behavior is dominated by the force-length relation until, at very large strains, no active

force can be generated anymore and only passive forces exist in the fiber. The endomysium

exhibits a strongly nonlinear stress-strain behavior. The curves for 20◦C and 40◦C (Fig. E.5a)

match well with the results in Figs. E.3 and E.4 as thermal tensile stresses are generated in

heated passive and active fibers and small thermal compressive stresses in heated endomy-

sium. The overall stress-strain curves for fascicle in an isometric contraction as well as in the

passive state (Fig. E.5b) indicate that thermal stresses in the muscle fiber are dominant due to

the higher volume fraction, as the total stresses are larger at higher temperatures.

A short-term thermal treatment of a cramped fascicle is examined. The muscle fibers in

cramped fascicles are involuntarily and permanently contracted as the connection between actin

and myosin via crossbridges cannot be detached due to ATP deficit. We assume the fibers to

generate the same tension as in a tetanic contraction and to be fully activated with an activation

parameter γ̄ = 1. The EMG activation is hardly affected by a short temperature treatment and,

105



E Appendix of article 4

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

a)

endomysium:
heated: 40 °C
cooled: 20 °C

muscle fiber - passive:
heated: 40 °C
cooled: 20 °C

muscle fiber - isometric:
heated: 40 °C
cooled: 20 °C

fiber stretch λfiber

C
au

ch
y

st
re

ss
σ

33
[N
/m

m
2 ]

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

b)

fascicle - passive:
heated: 40 °C
cooled: 20 °C

fascicle - isometric:
heated: 40 °C
cooled: 20 °C

fiber stretch λfiber

C
au

ch
y

st
re

ss
σ

33
[N
/m

m
2 ]

Figure E.5: Stress-strain curve at 20◦ C and 40◦ C for muscle fiber, endomysium and fascicle. a) The negative thermal
expansion coefficient of passive muscle fibers results in higher stresses with increasing temperature. The
same holds true for an isometric contraction despite the positive thermal expansion coefficient, as the
isometric stress–temperature dependence dominates the behavior. The small positive thermal expansion
coefficient of endomysium leads to slightly smaller stresses at higher temperatures. b) The thermal
stresses in the muscle fiber dominate the overall stress-strain response of the fascicle during temperature
variation, thus, higher temperatures cause higher stresses.

thus, γ̄ remains constant. Since rigor represents a type of muscle cramp, the same properties

as in the rigor case are assumed for the fibers, therefore, the isometric stress is assumed to be

constant over temperature.

The fascicle is heated to 38.8◦C and cooled to 30◦C at the outer surface (Fig. 5.3) and the

Cauchy stresses in fiber direction at points P1−P4 (Fig. E.6) are evaluated over temperature. The

fascicle length remains constant. For the muscle fiber and the endomysium heating causes a

short stress increase rather than an immediate stress reduction (Figs. E.3b and E.4) and cooling

exhibits the opposite behavior. This behavior is more pronounced in the inner point. Due to the

heterogeneous temperature distribution, the outer fibers and the outer endomysium are affected

earlier by a temperature change (Fig. 5.3) and, thus, a stress variation. To compensate the

increase/decrease in stress in the outer region, the inner point experiences slightly lower/higher

stresses. Thus, at equal temperatures, different stress values are obtained in different regions,

which are, however, nearly identical when a homogeneous temperature distribution is achieved

in the entire fascicle (Fig. E.6).
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Figure E.6: Temperature influence on the Cauchy stress in muscle fibers and endomysium in a cramped fascicle for
a short-term temperature treatment: The outer surface of the fascicle is heated to 38.8◦ C and cooled to
30◦ C and the development of Cauchy stresses at different points (Fig. 5.3) are investigated. Consistent
with the positive thermal expansion coefficients, heating leads to compressive stresses in the endomysium
and reduced tensile stresses in the muscle fiber and cooling causes reverse behavior. However, at a
temperature of 35◦ C, first, a stress increase is observed in heated fascicles and a stress decrease in
cooled fascicles, which is more pronounced in the inner points. Thus, different stresses occur in inner
and outer muscle fibers and in inner and outer endomysium despite equal temperature values.
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F.1 Validation of the observed influence of thermal treat-

ment on muscle fibers with trigger points - Variation

of the fiber volume fraction

We investigate the general validity of the observed influence of thermotherapy and cryotherapy

on muscle fibers with trigger points by varying the fiber volume fraction (Fig. F.1). As in the main

part of this work, the fascicle has a reference temperature of T = 35 ◦C and its surface is heated

to T = 38.8 ◦C or cooled to T = 30 ◦C.

ϕfiber = 0.925 ϕfiber = 0.95

Figure F.1: Fascicle models with fiber volume fractions of 92.5 % (left) and 95 % (right).

We compare the strains and stresses in fiber direction along the center of the tensed muscle

fiber in fascicles with 90 %, 92.5 % and 95 % fiber volume fraction (Figs. F.2 - F.4)14. Higher fiber

volume fractions have no influence on the development of strains and stresses after short-term

(without EMG activity reduction) and long-term (EMG activity reduction is considered) heat and

cold treatment. Thus, they confirm the observed impact of thermotherapy and cryotherapy on a

tensed muscle fiber.

14The results for a fascicle with 90 % fiber volume fraction are already shown in the main part (see Fig. 5.5a and c
and Fig. 5.6).
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Figure 1Figure F.2: Influence of short-term and long-term heating (a) and b)) and cooling (c) and d)) on the strains in a tensed
muscle fiber for fascicles with different fiber volume fractions (90 %, 92.5 % and 95 %): The grey bar
represents the region of the trigger point. The plotted strains in fiber direction show that fiber volume
fractions larger than 90 % do not affect the influence of thermotherapy and cryotherapy. The fascicle
model with 90 % fiber volume fraction is used in the main part of the paper and its strain results are
presented in Fig. 5.5a and c.
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Figure 1Figure F.3: Influence of short-term (a) and long-term (b) heating on the Cauchy stresses in a tensed muscle fiber for
fascicles with different fiber volume fractions (90 %, 92.5 % and 95 %): The grey bar represents the region
of the trigger point. The plotted stresses in fiber direction show that fiber volume fractions larger than 90 %
do not influence the impact of thermotherapy observed in the main part. The curves for 90 % fiber volume
fraction represent the results which are already shown in the main part of the paper in Fig. 5.6a.
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Figure 1Figure F.4: Influence of short-term (a) and long-term (b) cooling on the Cauchy stresses in a tensed muscle fiber
for fascicles with different fiber volume fractions (90 %, 92.5 % and 95 %): The grey bar represents the
region of the trigger point. The plotted stresses in fiber direction show that the observed influence of cold
treatment in the main part does not change for fascicles with fiber volume fractions larger than 90 %. The
curves for 90 % fiber volume fraction are already shown in the main part of the paper in Fig. 5.6b.
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