
Methods and Applications of
Uncertainty Quantification for Object

Recognition

Dissertation

University of Wuppertal
Faculty 4 — Mathematics and Computer Science

submitted by Tobias Riedlinger, M. Sc.
for the degree of Doctor of Natural Sciences (Dr. rer. nat.)

Supervisor Prof. Dr. Hanno Gottschalk
Co-Supervisor PD Dr. Matthias Rottmann

Wuppertal, September 4, 2023

Acknowledgements

While working on the projects presented in this thesis and in the course of compiling all
the contents into the form it has today, I have received invaluable support which I would
like to express my deep gratitude for. First and foremost, I would like to thank both of
my supervisors Prof. Dr. Hanno Gottschalk and Dr. Matthias Rottmann for giving me
the opportunity of working with them on the projects which form the basis of this thesis.
Their frequent support and guidance have taught me much over the last couple of years,
all while making work and scientific discourse highly enjoyable.

Further, I would like to especially thank my co-authors Marius Schubert, Karsten Kahl,
Kira Maag, Sinǐsa Šegvić, Sarina Penquitt and Pascal Colling for the pleasant and close
collaboration on some of the projects. This gratitude extends to the entire “BUW-KI”
team under Hanno Gottschalk and Matthias Rottmann which was always a pleasure to be
a part of. I am looking back to the great time and fun moments we shared and will keep
fond memories of my time as a doctoral candidate. Special thanks go to Annika Mütze,
Pascal Colling and Patrick Krüger for proofreading vital parts of this manuscript and for
unceasing mental support throughout the process.

Finally, I thank my parents and close relatives as well as my close friends for their enduring
support and belief in me.

I

Foreword

In the present thesis, the plural first person writing style has been chosen as the standard
of formulation as it is the usual style in mathematics and computer science research. The
contents of chapters 3 to 7 are in large parts taken word-by-word from the publications
listed below. Redundancies have been replaced by references to the first appearance in
the text which clarify notation or deliver the necessary background information. Notation
has been adjusted in an effort for consistency from the theoretical foundation described
in chapter 2 through to chapter 7. The following list of publications includes a short
description of the contributions made to each work.

(I) T. Riedlinger, M. Rottmann, M. Schubert, and H. Gottschalk, Gradient-
Based Quantification of Epistemic Uncertainty for Deep Object Detectors, in 2023
IEEE/ CVF Winter Conference on Applications of Computer Vision (WACV), Wai-
koloa, HI, USA, Jan. 2023, IEEE, pp. 3910–3920

(Independently carried out with the exception of the implementation of the MetaDe-
tect baseline which we gratefully thank Marius Schubert for)

(II) K. Maag and T. Riedlinger, Pixel-wise gradient uncertainty for convolutional
neural networks applied to out-of-distribution segmentation, arXiv preprint arXiv:
2303.06920, (2023)

(Theoretical consideration and motivation, development and implementation of the
gradient computation methodology resulting in efficiency)

(III) T. Riedlinger, M. Schubert, K. Kahl, H. Gottschalk, and M. Rottmann,
Towards rapid prototyping and comparability in active learning for deep object de-
tection, arXiv preprint arXiv:2212.10836, (2022)

(Design and generation of datasets, experiment logistics and management, statistical
evaluation of generalization results and runtime experiments)

III

Foreword

(IV) M. Schubert, T. Riedlinger, K. Kahl, D. Kröll, S. Schoenen, S. Šegvić,
and M. Rottmann, Identifying label errors in object detection datasets by loss
inspection, arXiv preprint arXiv:2303.06999, (2023)

(Formulation of theoretical considerations on the method’s viability, proofs for sta-
tistical loss separation in classification case)

(V) T. Riedlinger, M. Schubert, S. Penquitt, J. Kezmann, P. Colling, K.
Kahl, L. Roese-Koerner, M. Arnold, U. Zimmermann, and M. Rottmann,
LMD: Light-weight Prediction Quality Estimation for Object Detection in Lidar
Point Clouds, June 2023

(joint co-supervision of the original Master’s thesis, introduction, related work,
methodlogy description, coordination and review)

An additional article which is closely related to and in parts redundant with (I) has
been published over the course of the project “KI-Absicherung — Safe AI for Automated
Driving”:

T. Riedlinger, M. Schubert, K. Kahl, and M. Rottmann, Uncertainty quantifica-
tion for object detection: Output-and gradient-based approaches, in Deep Neural Networks
and Data for Automated Driving, Springer, Cham, 2022, pp. 251–275

The publication-based chapters 3 to 7 have published supplementary material merged with
the main parts of the respective papers and rearranged with the aim to read more like a
book chapter than a research paper. To this aim, results from the supplementary materials
which extend main results are often moved to subsections or paragraphs marked by the
symbol “⋔” indicating text that contains additional or deeper insights that are not vital
parts of the contributions.

IV

Contents

Acknowledgements I

Foreword III

1 Introduction 1

2 Foundations 7
2.1 Statistical Learning Theory . 7

2.1.1 Supervised vs. Unsupervised Learning 8
2.1.1.1 Supervised Learning . 8
2.1.1.2 Unsupervised Learning . 9
2.1.1.3 Probabilistic Supervised Learning 10

2.1.2 PAC Learning . 11
2.1.3 ERM Learning . 12

2.1.3.1 Error Decomposition . 12
2.1.3.2 Maximum-Likelihood Estimation 13

2.2 Deep Learning . 16
2.2.1 Architectures . 16

2.2.1.1 Perceptrons . 16
2.2.1.2 Convolutional Neural Networks 20
2.2.1.3 Transformers . 25

2.2.2 Training Neural Networks . 29
2.2.2.1 Stochastic Gradient Descent 30
2.2.2.2 Backpropagation . 31

VII

Contents

2.2.3 Universal Approximation . 32

2.2.3.1 Single-Layer Perceptrons 33

2.2.3.2 Perceptrons with ReLU Activation 34

2.2.3.3 Convolutional Neural Networks 35

2.2.3.4 Transformer Neural Networks 36

2.2.4 Uncertainty Quantification . 37

2.2.4.1 Sources of Uncertainty . 37

2.2.4.2 Estimating Uncertainty . 39

2.3 Advanced Computer Vision Tasks . 43

2.3.1 Image Classification . 43

2.3.1.1 Loss Functions . 43

2.3.1.2 Evaluation Metrics . 44

2.3.1.3 Example Architectures . 47

2.3.2 Object Detection . 49

2.3.2.1 Loss Functions . 53

2.3.2.2 Evaluation Metrics . 57

2.3.2.3 Example Architectures . 57

2.3.3 Semantic Segmentation . 61

2.3.3.1 Loss Functions . 63

2.3.3.2 Evaluation Metrics . 63

2.3.3.3 Example Architectures . 64

3 Gradient Uncertainty for Deep Object Detectors 67

3.1 Introduction . 67

3.2 Related Work . 70

3.3 Method . 71

3.3.1 Gradient-Based Uncertainty . 71

3.3.1.1 Classification Setting . 71

3.3.1.2 Theoretical Link . 72

3.3.1.3 Extension to Object Detectors 74

3.3.1.4 Computational Complexity 75

3.3.2 Meta Classification and Meta Regression 80

3.4 Experiments . 83

3.4.1 Implementation Details . 84

3.4.2 Comparison with Output-based Uncertainty 92

3.4.3 Generalization over Architectures . 94

3.4.4 Calibration . 97

3.4.5 Pedestrian Detection . 98

3.4.6 MetaFusion . 99

3.4.7 Runtime . 100

3.5 Conclusion . 100

4 Gradient Uncertainty in Semantic Segmentation 101

4.1 Introduction . 101

4.2 Related Work . 103

VIII

Contents

4.3 Methods . 104

4.3.1 Efficient Computation . 105

4.3.2 Gradient Uncertainty Scores . 109

4.4 Experiments . 110

4.4.1 Implementation Details . 110

4.4.1.1 MetaSeg Feature Construction 111

4.4.2 Pixel-wise Uncertainty Quantification 112

4.4.3 Segment-wise Uncertainty Quantification 114

4.4.4 Out-of-Distribution Segmentation . 116

4.4.5 Runtime . 122

4.5 Conclusion . 123

5 Rapid Prototyping of Active Learning for Object Detection 125

5.1 Introduction . 125

5.2 Related Work . 127

5.3 Methods . 128

5.3.1 Active Learning . 128

5.3.2 Sandbox Datasets . 128

5.3.3 Sandbox Models . 129

5.3.4 AL Methods in Object Detection . 130

5.3.5 Evaluation Methods . 131

5.4 Experiments . 132

5.4.1 Implementation Details . 133

5.4.2 Benchmark Results . 137

5.4.3 Generalization of Sandbox Results 141

5.4.4 Image-Aggregation Methods . 144

5.4.5 Runtime . 146

5.5 Conclusion . 146

6 Label Error Identification For Object Detection Datasets 149

6.1 Introduction . 149

6.2 Related Work . 150

6.3 Methods . 153

6.3.1 Benchmarking . 153

6.3.2 Instance-wise Loss Values . 154

6.3.2.1 Theoretical Justification . 155

6.3.3 Evaluation Metrics . 158

6.4 Experiments . 159

6.4.1 Implementation Details . 159

6.4.1.1 Baseline Methods . 161

6.4.2 Benchmark Results . 162

6.4.3 Real Label Errors . 167

6.5 Conclusion . 170

IX

Contents

7 Prediction Quality Estimation for Lidar Object Detection 171
7.1 Introduction . 171
7.2 Related Work . 173
7.3 Methods . 174

7.3.1 LMD Features . 174
7.3.2 Post-Processing . 175

7.4 Experiments . 177
7.4.1 Implementation Details . 177
7.4.2 Correlation of Features and IoUBEV 178
7.4.3 Meta Classification Models . 179
7.4.4 Generalization over Datasets and Networks 182
7.4.5 Feature Selection . 184
7.4.6 Confidence Calibration . 185
7.4.7 Label Error Detection . 186

7.5 Conclusion . 189

8 Conclusion and Outlook 193

List of Notations 203

X

1
Introduction

Deep learning applications and research have experienced overwhelming growth over the
last few decades. During the earliest considerations of computational models resembling
biological neural connections [81,117,150], hardware computations were generally limited.
Over time, when hardware slowly caught up to the mathematical models [91, 216], un-
til recently, when acceleration via graphics processing units have made statistical research
possible on a larger scale, machine learning research has come a long way. Nowadays, appli-
cations of machine learning and deep learning already permeate everyday life in countless
areas [71,127,133,135,184] and applications become increasingly common. Whenever tasks
can be automated or interpolation from recorded data is possible, deep learning approaches
are not far such as in diagnosis, monitoring and surveillance tasks. Such applications are
often closely related to perception and visual recognition tasks.

Deep learning models designed for a specific application frequently surpass human per-
formance due to being able to recognize patterns in data which are hard to perceive for
humans [193]. Deep neural networks (DNNs) are oftentimes called “black boxes” due to
their obscure decision-making process which is difficult to explain and interpret for hu-
mans. The measured performance of DNNs is, however, hard to deny. Given their use,
particularly in safety-critical applications [41,42,200], creates the need for understanding
possible failure modes and developing methods to prevent errors. Making perception al-
gorithms ready for medical and transportation applications as well as robotics requires
focusing on perception errors to prevent potentially fatal consequences [140,197]. Misclas-
sifications, false detections and overlooked instances are crucial scenarios which need to be
under control. One approach to identify possible shortcomings of DNNs is the integration
of prediction uncertainty estimation components. This way, credibility measures can be
assigned to each prediction. Forms of such measures can be variance measures, confidence
estimation measures or estimates of the prediction accuracy or quality, e.g., for regression
tasks. So-called Bayesian neural networks (BNNs [115], see also section 2.2.4.2) give a the-
oretical foundation for treating model uncertainty in DNNs by regarding parameters as
random variables. Their application to state-of-the-art DNN models is presently, however,

1

1 Introduction

unfeasible due to computation and runtime concerns. The fitting of BNNs is computation-
ally highly costly. Moreover, in order to compute prediction uncertainty measures, weights
in the network need to be sampled, and several forward passes performed. This procedure
is unfeasible for applications where runtime is of importance such as automotive appli-
cations. Approximations to BNNs have been developed for feed-forward neural networks
in the form of Monte-Carlo dropout [45,169] and deep ensembles [88,179] which alleviate
some burden of BNNs, particularly the training aspect (see section 2.2.4.2). However,
these methods still suffer from the shortcoming of having high inference times albeit that
their application can be regarded as somewhat universal for feed-forward DNNs.

Uncertainty Quantification in Object Detection. In contrast, uncertainty quan-
tification (UQ) methods which are strictly tailored to a task at hand, like object detection
of semantic segmentation, might be able to circumvent the runtime concerns. Moreover,
similar or even superior prevention of prediction errors may be achieved by such methods.
In object detection, foreground instances from a particular set of semantic categories are
supposed to be found and localized on the input. The input for such an algorithm might be
a camera image or a point cloud with three-dimensional localization. Perhaps the simplest
practically used UQ method for object detectors is the intrinsic confidence rating standard
object detectors [101, 106, 142, 144] produce for each potential detection. Possible error
modes of object detectors are false positives, i.e., hallucinated objects which are not there
in reality, and false negatives, i.e., overlooked instances. A correctly detected instance
with incorrectly assigned category may be regarded as either of the previous errors. All
these failures can have detrimental consequences in a safety-critical environment such as
traffic and could be in principle prevented. Conditioned on the input, each image region is
assigned a quantity indicating the estimated probability of the existence of an object. This
quantity is often referred-to as “confidence score”. Thresholding based on the confidence
score at some fixed value determines foreground instances and what will remain as a pre-
diction. Regions falling below this threshold will be ignored and regarded as background
which does not contain objects of interest. By assigning improved confidence scores to the
right regions prevents false positives by suppressing the respective predictions and false
negatives by moving regions to the foreground. Adjustment of the confidence assignment
to different image regions can, therefore, make predictions statistically more reliable. The
first more sophisticated methods for object detection were adaptations of Monte-Carlo
dropout [120, 121] and slightly later of deep ensembles [109], focusing on sampling-based
methods approximating BNNs. Another branch of UQ methods is based on estimating
prediction uncertainty as additional output variables [80] of the DNN [41, 57, 85, 90] by
altering the loss function. Yet other approaches to UQ estimate the instance-wise local-
ization accuracy, either by also modifying the loss function [76], or via post-processing of
the object detector output [161].

A novel approach to UQ in object detection is investigated in the work reported in chapter 3
based on [145]. The method is inspired by the way object detectors are trained, where
parameters receive iterative updates which are larger the less accurate the prediction is.
In utilizing this idea, ground truth feedback used to compute gradients is replaced by
the network’s own prediction. Assuming a pre-trained model, the resulting instance-wise

2

self-learning gradients contain uncertainty information. The computed gradient quantities
are used in a post-processing manner to assign alternative confidence scores. The results
suggest that the alternative confidence assignment is statistically able to better separate
true from false predictions while being less susceptible to the choice of decision threshold.
Moreover, the alternative confidence assignments show improved statistical reliability, i.e.,
calibration, and the confidence estimation yields better object detection performance, i.e.,
a reduction in prediction errors.

Uncertainty Quantification in Semantic Segmentation. In semantic segmenta-
tion, concepts like Monte-Carlo dropout have already been investigated [64, 94, 188] on
the pixel-level in addition to the maximum softmax probability and softmax entropy [4].
Post-processing models using output information to assess prediction quality estimation
on the segment level have been previously developed and applied to considerable suc-
cess [16, 113, 152, 153] Contrasted with object detection, semantic segmentation usually
does not have a background option. Instead, models determine a discrete probability
distribution over the semantic classes for each pixel. Being forced to make one class pre-
diction, the most likely class under the predicted distribution is chosen. This forces the
model to decide on one of the predefined semantic classes. In the example of street scenes
this can lead to errors whenever a previously not encountered object is present, e.g., a gi-
raffe in a European street scene. Such scenarios are unusual for European streets, meaning
that they are outside the data distribution used for training, hence, such scenes or objects
are called out-of-distribution (OoD). Such objects are often mis-classified at high predicted
pixel-wise confidence making them hard to detect by simple pixel-wise uncertainty meth-
ods like softmax entropy. It is, therefore, imperative that semantic segmentation models
employed in complex and safety-critical environments must involve some mechanism warn-
ing about OoD objects. Such a mechanism can act as a reject-option indicating when a
segmentation model is unable to confidently determine one of the given semantic classes.
Simple models based on Monte-Carlo dropout [1, 4, 124] have been investigated in early
stages of the development of OoD segmentation. Other simple methods such as softmax
uncertainty [4] have also been under consideration as canonical UQ methods. More recent
work oftentimes relies on the usage of additional training data [3, 5, 15, 54], alterations of
the training scheme [15,53,105] of a segmentation model, significant increases in inference
time [5, 53,99] or combinations thereof.

In order to achieve a less constrained OoD segmentation method, we propose an alterna-
tive method in chapter 4 based on [112]. Similarly to the method described in chapter 3, it
is based on pixel-wise self-learning gradients. For semantic segmentation, however, these
can be computed with minimal computational overhead without alteration of the given
segmentation model. The only requirement is that pixel-wise segmentation is based on
convolutional layers. The latter requirement is a light restriction since, at the time of writ-
ing, segmentation models are primarily convolution-based with few exceptions. We show
that anomaly segmentation based on the proposed gradient scores achieves performance
close to that of state-of-the-art methods which demand additional training data, influence
the segmentation quality or employ models of significantly increased complexity.

3

1 Introduction

Uncertainty Quantification Applied in Active Learning for Object Detection.
In addition to correcting the prediction of a neural network or abstaining from predictions
on the basis of uncertainty, there are other applications of UQ in deep learning. One such
application is active learning [164] (AL). Here, the predictive uncertainty of a model for
samples of unlabeled data are utilized in order to decide which to include in training data.
Industrially, this scheme is interesting due to the high cost of annotating data [9, 212].
Restricting annotation costs only to the most important data or prioritizing data can
accelerate the performance evolution of deep learning algorithms. Deciding on the impor-
tance of data can be done on the basis of uncertainty [30, 96, 98, 159, 165], although this
is not strictly necessary [25,163,168]. The effectiveness of “querying” data for annotation
by a human following a specific selection strategy is compared with other methods, e.g.,
random selection of data, by repeatedly fitting models with increasing amounts of data.
Each time, the DNN needs to be trained to convergence in order for the selection strat-
egy to be based on a converged model. In order to account for stochastic fluctuations,
experiments are repeated under different random seeds resulting in severe computational
cost in research and development of AL strategies. Likely due to this and related cir-
cumstances, development of AL methods for object detection has not received a lot of
attention in the literature over the years. Early approaches utilized predictive UQ based
on class probability distributions [8,156] or committee-like strategies [156]. A task agnos-
tic method based on loss estimation [206] has been applied to object detection as well.
More recently, uncertainty measures derived from Monte-Carlo dropout [58] have been
further investigated. Such measures are comparable with committee selection strategies.
Learned uncertainty measures [23, 210] generate uncertainty estimation by modifying the
object detection architecture.

Reaching meaningful results in AL for object detection frequently involves manual hy-
perparameter tuning. Training for different hyperparameter configurations slows down re-
search considerably and leads to inconsistent use of AL hyperparameters between different
methods. In chapter 5, a quickly converging and controllable development environment for
AL strategies of deep object detectors is introduced based on the work [146]. The sandbox
environment involves two non-trivial object detection datasets and down-scaled versions
of standard object detection architectures. Experiments of common uncertainty-based AL
strategies suggest that results in terms of which method performs better than another
generalize to some capacity between datasets. More precisely, we regard the similarity of
performance rankings of different methods between two datasets. We find that the simi-
larity between sandbox results and results on public benchmark datasets are numerically
comparable to the similarity of results on two different benchmark datasets. Quantitative
results on the sandbox environment, however, can be generated at a fraction of the time
consumed for development and experiment execution.

Uncertainty Quantification Applied in Label Error Detection. Another applica-
tion of uncertainty is the detection faulty annotations in public benchmark datasets [130,
154]. While being time-consuming endeavors, annotating datasets is also an exhausting
occupation, so human workers are naturally error-prone leading to incorrect annotations.
The latter oftentimes go unnoticed in training and testing data due to automation in

4

the implementation. Testing results on faulty annotations are taken at face value since
performance metrics of models are computed utilizing the “ground truth” in the data,
not further questioning the “truth” contained in the data. Regarding false predictions of
high-performing models sometimes reveals that the model actually generalized correctly
for some samples. Disagreements with the ground truth occur due to the latter being incor-
rect. While automated label error detection is not a completely new idea [35], it has only
recently started receiving attention in the context of image data [130,154]. Work in image
classification [130,131] using prediction uncertainty has shown that even the MNIST classi-
fication dataset [92] contains label errors. Object detection label errors were first detected
based on box-wise classification uncertainty [67]. Recently, label error detection methods
based on post-processing UQ have been developed in semantic segmentation [154].

Label error detection for lidar data has not been addressed before in the literature. In
chapter 7 (based on [148]), an UQ method similar to the one described in chapter 3,
however, based only on the DNN output, is introduced for three-dimensional object de-
tection in Lidar point clouds. This method, producing advanced confidence assignments,
is then utilized to detect annotation errors in Lidar point cloud datasets. Such datasets
are especially complex to review and annotate due to the rich three-dimensional scene
geometry.

Another short-coming of previous label error detection methods for object detection and
semantic segmentation is their use of the ground truth. Ground truth information has
previously only been used to identify faulty predictions, leaving a large amount of infor-
mation unused. An alternative approach for camera images is taken in chapter 6 which
is based on [162]. Here, the instance-wise learning loss using the given, potentially faulty,
ground truth is employed to generate bounding box proposals of high interest. Regarding
the error decomposition studied in empirical risk minimization, such regions with high loss
are intimately connected with sources of uncertainty. However, the computed loss using
the ground truth is not exactly an expression of uncertainty concerning the prediction of
the DNN. It can, instead, be regarded as an uncertainty in the combination of network
prediction and annotation given the respective DNN input.

Structure. The remainder of the present thesis is structured as follows. We intro-
duce the theoretical foundations and necessary notation in chapter 2. Foundations for
the publication-based chapters 3 to 7 involve probabilistic foundations of machine learn-
ing (section 2.1), neural network building blocks and associated theory (section 2.2) and
specialized machine learning tasks from computer vision (section 2.3). The following chap-
ters 3 to 7 are structured in the classical format

Introduction — Related Work — Method — Experiments — Conclusion.

Starting with chapter 3, we introduce a novel method to quantify uncertainty in deep
object detectors based on gradient quantities. In chapter 4, a related method to compute
uncertainty gradient scores per pixel in semantic segmentation is presented and applied to
OoD detection. Chapter 5 introduces an environment for rapidly producing and testing
prototype implementations of AL strategies in deep object detection. We mainly focus

5

1 Introduction

on uncertainty-based selection mechanisms. Another application of UQ is investigated in
chapter 6 where annotation errors in object detection datasets are automatically identified.
The novel method introduced is based on instance-wise loss values. The last publication
treated in chapter 7 introduces a post-processing UQ method for three-dimensional object
detection based on lidar point clouds. Annotation error identification is also treated as a
direct application of the presented method. Finally, we close in chapter 8 by putting the
different publications into a common context, comparing them and defining unanswered
questions and research areas for future work.

6

2
Foundations

Chapters 3 to 7 are based on work in applied deep learning. Here in chapter 2, we lay
the theoretical foundations and notation which underlies all the following, starting with
the mathematical basis of statistical learning theory in section 2.1. Dealing with learning
models in a general sense, statistical learning theory makes probabilistic statements about
when learning from data succeeds and what that means. Afterwards in section 2.2, we
explain deep neural network architectures, the center stones of deep leaning and which
components they contain. Specificities needed for the particular computer vision applica-
tions of object detection and semantic segmentation are explained in section 2.3, the final
section of this chapter.

2.1 Statistical Learning Theory: Probabilistic Foundation

The field of statistical learning is the mathematical formulation of the tasks of machine
learning and generally investigates the task of understanding structure in data and recog-
nizing patterns on the basis of data. This section draws from [51,166] and has a survey-like
character.

The setting of statistical learning theory is concerned with a set or space of data X .
Oftentimes, we will have X ⊆ Rd like, e.g., in the case of RGB images1. Data points
are further modeled as random variables X : (Ω,A ,Pr) → X over the probability space
(Ω,A ,Pr) following some distribution2 µX := X∗ Pr over X . We write X ∼ µX . Based
on the task at hand, we usually aim at one of two things. In supervised learning such as
classification or regression tasks, we want to assign a target quantity y to each realized

1RGB images can be encoded as data points x ∈ X = [0, 1]3×H×W represented by 3 color channels per
pixel, where H ×W is the spatial resolution of the image. We elaborate on data and target spaces for
computer vision in section 2.3.

2Strictly speaking, the push-forward measure µX of Pr along the measurable function X is a probability
measure over X equipped with the Borel-σ-algebra respective to some topology given on X .

7

2 Foundations

data point x ∈ X . This mapping is often accomplished by learning or fitting some model3

to an available sample of coupled data-target pairs. This amounts to the search of some
predictor function f : x 7→ y. In unsupervised learning such as density estimation or
clustering, we are usually interested in learning or estimating the distribution µX directly
from a sample drawn from µX . We will briefly describe both settings in some more detail,
introducing the necessary notation that is used in the language of statistical learning
theory.

2.1.1 Supervised vs. Unsupervised Learning

Learning tasks can be roughly separated into three categories: supervised learning, un-
supervised learning and reinforcement learning. The first two are related to each other
and can be mostly distinguished by the structure of the data which is obtainable. Rein-
forcement learning deals with decision-making of an “agent” in some environment to some
modelled aim. We shall not deal with reinforcement learning in this thesis.

2.1.1.1 Supervised Learning: Recognizing Targets

Supervised learning deals with the assignment of target values y ∈ Y in some target space
Y to data points x ∈ X . Targets can live in a continuous space (regression) like Y = Rs or
in a discrete space (classification) Y = {1, 2, . . . , C} =: [C] for some C ∈ N. Available data
then comes in coupled pairs (x, y) ∈ X ×Y where x is a realization of the random variable
X which follows some distribution µX . In a slightly simplified setting, one assumes the
existence of a labeling function f : X → Y assigning exactly one value y := f(x) ∈ Y to
each x ∈ X . A more general case will be treated in section 2.1.1.3. Given a sample

χn := ((x1, y1), . . . , (xn, yn)) (2.1)

of realizations4 the aim is to find a predictive function f̂ : X → Y which is close to
the labeling function f in a suitable sense. To this end, f̂ oftentimes is assumed as a
parametric model which undergoes some fitting procedure given χn. In our applications,
f̂ tends to be a linear model, a tree model or a neural network (see section 2.2) which
is optimized by least squares regression, some related optimization procedure or by some
flavor of stochastic gradient descent (see section 2.2.2.1).

Given some metric5 d(·∥·) : Y × Y → R+ on Y, the theoretical or distributional error of a
model f̂ compared with f can be expressed as

LµX (f̂ , f) := EX∼µX

[
d
(
f̂(X)

∥∥∥ f(X)
)]
. (2.2)

3Often, the models used in practice are parametric models. In sections 2.2 and 2.3 we focus on deep
neural networks as models.

4The individual realizations x1, . . . ,xn are usually assumed to be drawn from the same distribution.
Later, χn = {X1, . . . ,Xn} ∼ µnX will be modelled as a set of identically and independently distributed
(short i.i.d.) random variables.

5This metric can originate from a norm in case Y = Rs or be discrete, e.g., d(a∥b) := δab with the
Kronecker symbol δab if Y is a discrete space. Strictly speaking, d need not be symmetric or fulfill a
triangle inequality as long as d(a∥b) ≥ 0, d(a∥a) ≤ d(a∥b) for any a, b ∈ Y and d(a∥b) = 0 if and only
if a = b. We will continue to assume a metric structure, however.

8

2.1 Statistical Learning Theory

However, this quantity is in practice not accessible since the entire distribution µX is not
known. In order to assess the quality of a model, one therefore approximates LµX on a
finite test sample D = {(x1, y1), . . . , (x|D|, y|D|)} ⊂ X ×Y. This test sample is assumed to
originate from the same distribution as χn and one computes the empirical error

LD(f̂ , f) :=
1

|D|
∑

(x,y)∈D

d
(
f̂(x)

∥∥∥ y) . (2.3)

Note that y = f(x). Under additional assumptions6, the law of large numbers then
guarantees that LD(f̂ , f) → LµX (f̂ , f) as the sample size grows (|D| → ∞).

2.1.1.2 Unsupervised Learning: Finding Structure

In unsupervised learning, given data χn := (x1, . . . ,xn), the goal is to find an estimate
µ̂n = µ̂n(χn) of µX based on χn. For example, a parametric model can be used to estimate
the data density of µX , that is if µX = pX · dx where dx denotes the Lebesgue measure
over (X ,BX) (assuming X ⊆ Rd and BX the Borel-σ-algebra over X), we may aim at
estimating a probability density p̂n : X → R+ such that

LµX (µ̂n, µX) := EX∼µX [d (p̂n(X)∥ p(X))] (2.4)

measures the true theoretical or distributional quality of the estimation µ̂n given some
metric d on R+. However, since the true value of p(x) is again not known, we cannot test
the quality of µ̂n := p̂n · dx. Instead of the expectation in eq. (2.4), more general distance
measures d can be defined directly on the space of probability measures M1(X ,BX) =:
M1(X):

d(·∥·) : M1(X)× M1(X) → R+. (2.5)

Such distance measures are called risk or loss functionals and in some cases these can be
approximated on a finite set of test data D = {x1, . . . ,x|D|}. For estimates µ̂n that are
absolutely continuous w.r.t. µX , one important example of such a distance measure is the
Kullback-Leibler (KL) divergence d = DKL

DKL(µX∥µ̂n) =EX∼µX

[
− log

(
dµ̂n
dµX

)]
= −

∫
X
log

(
dµ̂n
dµX

)
dµX

= −
∫
X
log

(
p̂n(x)

pX(x)

)
pX(x) dx.

(2.6)

Here, dµ̂n
dµX

denotes the Radon-Nikodym derivative. In the case of the KL divergence, an
approximation of DKL(µX∥µ̂n) can be computed which we will re-visit in the context of
empirical risk minimization in section 2.1.3.

6In the language of probably approximately correct learning (see section 2.1.2) this is captured by the
notion of ε-representativity [166, Def. 4.1] of the sample D. This convergence property plays a large
role in empirical risk minimization (see section 2.1.3) where probably approximately correct learning
is guaranteed by ε-representativity. The latter can then be reframed as a requirement for the hypoth-
esis space H which must satisfy the probabilistic requirement of having the “uniform convergence”
property [166, Def. 4.3].

9

2 Foundations

2.1.1.3 Probabilistic Supervised Learning: Dealing with Aleatoric
Uncertainty

In supervised learning, the existence of the labeling function f oftentimes is not given in
practice. This is due to data (x, y) ∈ X ×Y being noisy in nature, which is naturally the
case in regression problems, but also often the case in classification tasks. We then assume
that the data point z := (x, y) was drawn from a probability distribution µZ over the space
X×Y. The fact that for fixed x ∈ X , the associated label y follows a conditional probability
distribution µ|X=x = Y∗ Pr |X=x ∈ M1(Y) is called aleatoric uncertainty, i.e., a kind of
uncertainty in the data which is inherent to the data generating distribution or process.
Since both components of (x, y) are probabilistic in nature, it is useful to understand both
of them in terms of random variables Z = (X, Y) : (Ω,A ,Pr) → X ×Y. Here, X follows
the marginal distribution µX of the initial µZ and Y follows the conditional distribution
µ|X=(·). Statements in statistical learning theory will be probabilistic over the choice of
χn.

Given a sample χn = (Z1, . . . , Zn) ∼ µnZ , supervised learning can then be framed as
unsupervised learning that aims to estimate the conditional distribution µX=(·). The
latter is formally captured by the notion of a Markov kernel7. A predictor on a test sample
x ∈ X as in section 2.1.1.1 can be recovered from an estimation µ̂n|X=(·) by computing8

f̂(x) := argmax
y∈Y

µ̂n|X=x({y}). (2.7)

That is, the value y ∈ Y which maximizes the predictive probability distribution µ̂n|X=x

of x over Y. Measuring the accuracy of the estimated µ̂n|X=(·) from the true µX=(·) can
then be accomplished in the same way as in unsupervised learning by means of distance
measures

D(·∥·) : K (X ; (Y,AY))× K (X ; (Y,AY)) → R+. (2.8)

Distance measures for Markov kernels can also be generated from distance measures d on
M1(Y,AY) by integrating over X . In particular, let µ|X=(·), ν|X=(·) ∈ K (X ; (Y,AY)),
then

Dd(µ|X=(·)∥ν∥X=(·)) := EΞ∼X∗Pr

[
d
(
µ|X=Ξ

∥∥ ν|X=Ξ

)]
. (2.9)

In the following, we will often use the notation of unsupervised learning for brevity. Anal-
ogous definitions or notions can usually be given in the language of Markov kernels and
integrated distance measures Dd by expansion of notation which we will omit. Statements
on when supervised learning w.r.t. D or unsupervised learning w.r.t. d succeeds can be
framed in the language of probably approximately correct (PAC) learning.

7Given a σ-algebra AY over Y, a Markov kernel K is a map K(·) : (X ,BX) 7→ M1(Y,AY) such that
K(·)(A) is measurable for any A ∈ AY . For fixed x ∈ X , Kx is, therefore, a probability measure over
(Y,AY). Markov kernels build on the notion of conditional expectation, see e.g., [82, Chapter 8.3]. We
denote the set of Markov kernels in this setting by K (X ; (Y,AY)).

8Note, that we assume uniqueness of argmaxy∈Y µ̂n|X=x({y}) here. While this is numerically often true,
uniqueness is not guaranteed in general.

10

2.1 Statistical Learning Theory

2.1.2 PAC Learning: Stochastic Guarantees on Learning

In practice, we do not know the true data-generating distribution µ, so knowing how close
any estimated distribution µ̂n is to µ is not possible. However, probabilistic statements
about the deviation of µ̂n from µ with respect to some distance measure d can be formu-
lated in the language of PAC learning. Such statements relate the sample size n and the
amount of error we allow with the kind of model we use for learning. If we understand
the estimated model µ̂n as depending on the sample χn of training data, we require µ̂n to
be a measurable map

µ̂n : (X n,BXn) → (M1(X),Bd) (2.10)

where Bd is the Borel-σ-algebra generated by the distance measure d on M1(X). If there
is such a map for any n ∈ N, we call {µ̂n}n∈N a learning algorithm9 and Hn := Img(µ̂n)
the hypothesis space of the learning algorithm for sample size n. In case Img(µ̂n) is not
dependent on n, we call H := Hn simply the hypothesis space of the learning algorithm
which is assumed in the following.

Given a sample χn = (X1, . . . ,Xn) ∼ µnX , the composition µ̂n ◦ χn can be regarded as a
M1(X)-valued random variable for which probabilistic statements about learning can be
formulated. Particularly, a measure µX ∈ M1(X) is called d-learnable by µ̂n for χn ∼ µnX
if

d (µX ∥µ̂n ◦ χn) → 0 (n→ ∞) (2.11)

in probability w.r.t. the fundamental probability measure Pr. Some subset T ⊆ M1(X) is
called d-learnable by µ̂n if each element µ ∈ T is d-learnable. T is called d-PAC-learnable
if there is n = n(ε, δ) ∈ N for any ε > 0 and δ ∈ (0, 1) such that for all µ ∈ T

Pr (d (µX ∥µ̂n ◦ χn) > ε) ≤ δ ∀n ≥ n(ε, δ). (2.12)

This means that we fix ε, the precision which the learning algorithm µ̂n is required to
have with respect to the measure µX and 1 − δ, the confidence which the probabilistic
statement needs to hold with. Then we can give a minimum required number n(ε, δ) of
sampled data points χn the learning algorithm must obtain.

In case a given measure µX /∈ H , there is a minimal model error made in (PAC-) learning
due to mis-specification of the hypothesis class of learning models

εmodel(µX) := inf
ν∈H

d(µX∥ν). (2.13)

The concepts of learnability and PAC learnability can be relaxed to so-called agnostic
(PAC-) learnability which requires d(µX∥µ̂n ◦ χn) → εmodel or

Pr (d (µX ∥µ̂n ◦ χn) > εmodel + ε) ≤ δ ∀n ≥ n(ε, δ), (2.14)

respectively. Since the quality of estimation of µX depends explicitly on the distance
measure d, learning can be understood as an optimization problem. In this optimization,

9We shall abbreviate notation of the family {µ̂n}n∈N to simply µ̂n

11

2 Foundations

we want to minimize d(µX∥µ̂n) with respect to µ̂n. However, since µX is in practice un-
known, we can only utilize the samplesX1, . . . ,Xn drawn for the learning algorithm. This
can be accomplished by means of empirical risk functions and empirical risk minimization
(ERM).

2.1.3 ERM Learning: Implementing Optimization Objectives

Empirical risk minimization allows for the definition of an optimization problem without
knowing the true distribution µX which generated the training sample χn. Let H be the
hypothesis space of some learning algorithm µ̂n, an empirical risk function R = {Rn}n∈N
for a distance measure d over a target space T is a sequence of measurable functions
Rn : (H ×X n,Bd|H ⊗BXn) → (R,B(R)) such that there is a sequence {cn}n∈N, cn > 0
and a sequence of functions {hn}n∈N with hn : T ×X n → R such that for all ν ∈ H and
all µX ∈ T

cn ·Rn(ν, χn) + hn(µX , χn) → d(µX∥ν), (n→ ∞) (2.15)

in probability. This property allows for the definition of an optimization problem by
separating the hypothesis ν from the unknown distribution µX . In particular, a learning
algorithm is an ERM-learner if it returns

µ̂n(χn) ∈ argmin
ν∈H

Rn(ν, χn). (2.16)

Practically, this optimization task is still difficult to solve and only approximate solutions ν
to local minima of the function Rn(ν, χn) can be found. Oftentimes, this takes the shape
of optimizing the parameters of a parametric model µ̂θn (see section 2.2) where θ ∈ Θ
over some parameter space Θ. A class of parametric models also defines a parametric
hypothesis space in which minima can sometimes be determined analytically, such as in
simple least squares regression. However, when it comes to deep learning, it is usually
not feasible to find analytic minima, so one also has to resort to approximate solutions.
Such an approximate solution can be accomplished, for instance, by means of stochastic
gradient descent or related methods (see section 2.2.2.1).

2.1.3.1 Error Decomposition: Trade-Offs in Learning

Given an empirical risk function R for d over T , the distance d(µX∥µ̂n) is bounded by
the following error decomposition10:

d(µX∥µ̂n) ≤ εmodel + εlearn,n + 2 · εsample,n. (2.17)

Here, the three terms have the following meaning

• The model error (or model mis-specification error) is the same as mentioned in
section 2.1.2, i.e.,

εmodel = inf
ν∈H

d(µX∥ν). (2.18)

10In statistics, this is also sometimes called oracle inequality.

12

2.1 Statistical Learning Theory

This is the minimal error accomplishable by the learning algorithm which has H as
its hypothesis space. In the case of deep learning, the question of the size of H is
linked to the concept of the universal approximation property of certain classes of
statistical models (see section 2.2.3).

• The optimization error is given by

εlearn,n = cn

(
Rn(µ̂n(χn), χn)− inf

ν∈H
Rn(ν, χn)

)
. (2.19)

This term is due to approximation errors (by only finding local instead of global
minima) in the learning algorithm like in stochastic gradient descent. It is the
difference to the value that a true ERM ν ∈ H will obtain. In principle, this term
can be made arbitrarily small by performing some exhaustive search on H given
some approximation accuracy of the ERM.

• The statistical error (or sampling error)

εsample,n = sup
ν∈H

|d(µX∥ν)− (cnRn(ν, χn) + hn(µX))| (2.20)

describes the approximation accuracy of the empirical risk function to the true dis-
tance measure d. If H satisfies the uniform convergence property (see [166, Def. 4.3])
this error can be made arbitrarily small in probability by increasing the amount of
training data (increasing n). When the empirical risk becomes smaller even though
the term d(µX∥µ̂n)− (cnRn(µ̂n) + hn(µX)) increases, the model over-adapts to the
sample of training data χn and starts diverging from µX . This phenomenon is called
“overfitting” and tends to play a large role in many areas of machine learning and
in particular deep learning.

When increasing the size of H , i.e., the number of possible models or capacity of the
model class to represent certain classes of functions, we also increase εsample,n. This is
because a larger amount of data is necessary to rule out some additional hypotheses. This
demonstrates the interaction between εmodel and εsample,n which is also sometimes called
the bias-variance trade-off11.

2.1.3.2 Maximum-Likelihood Estimation: Frequentist Risk Functions

Maximum likelihood estimation can be regarded as one special case of empirical risk
minimization, namely when we choose the KL divergence as the distance measure. Given
the sample χn = (X1, . . . ,Xn) drawn i.i.d. from µX and given a measure ν over X , the
likelihood L (χn|ν) is given by

L (χn|ν) =
n∏
j=1

ν({Xj}) (2.21)

11The initial choice of H involves assumptions on the distribution µX we aim to learn. This assumption
and the corresponding choice of H is called inductive bias. There is a set of mathematical statements
and theorems which assert that there is no hypothesis space H by which arbitrary distributions µX

can be learned. These statements are oftentimes referred-to as No-Free-Lunch theorems.

13

2 Foundations

in the case that ν is a discrete distribution. Respectively, if ν is continuous, and it has a
Lebesgue density ν = ρν · dx, we define the likelihood by

L (χn|ν) :=
n∏
j=1

ρν(Xj). (2.22)

By choosing the ν ∈ H which maximizes the likelihood of observing the i.i.d. chosen
X1, . . . ,Xn, we obtain some

µ̂n(χn) ∈ argmax
ν∈H

L (χn|ν) (2.23)

which is called a maximum likelihood learner or in the parametric case a maximum likeli-
hood estimator.

Assuming integrability of log(ρν) in the continuous case, the negative log-likelihood given
by Rn(ν, χn) = − logL (χn|ν) is an unbiased empirical risk function for the KL divergence
with cn := 1

n and the entropy hn(µ) := EX∼µX [log(L (X|µX))]. This fact is particularly
interesting for the case of supervised learning where we are learning a model µ̂n|X=(·) and
our sample consists of (X1, Y1), . . . , (Xn, Yn). If Y is a discrete space as for a classification
task over, say, C classes, the negative log-likelihood

− logL
(
χn|µ̂n|X=(·)

)
= −

n∑
j=1

log µ̂n|X=Xj
({Yj}) = −

n∑
j=1

C∑
c=1

δcYj · log
(
µ̂n|X=Xj

({c})
)

(2.24)

is also called cross entropy and is frequently used as a risk or loss function in deep learning
tasks, see section 2.3.

In a regression task, if we similarly assume that our model learns normally distributed
residuals, the distribution of residuals can be described by two predictive functions ς̂n :
X → R+ and m̂n : X → R which represent µ̂n|X=(·) by

µ̂n|X=x =
1√

2πς̂2n(x)
exp

(
− 1

2ς̂2n(x)
(m̂n(x)− y)2

)
· dy. (2.25)

Then, the negative log-likelihood

− logL
(
χn|µ̂n|X=(·)

)
= −

n∑
j=1

log

(
1√

2πς̂2n(Xj)
e
− 1

2ς̂2n(Xj)
(m̂n(Xj)−Yj)2

)

=

n∑
j=1

log
(√

2πς̂2n(Xj)
)
+

1

2ς̂2n(Xj)
(m̂n(Xj)− Yj)

2

(2.26)

consists of two terms. If our model is non-probabilistic, i.e., the variance parameter ς̂n
is not estimated jointly with the mean parameter m̂n, the first term does not affect the
optimization goal posed by the negative log-likelihood. A model whose variance is not

14

2.1 Statistical Learning Theory

dependent on the input is also called homoscedastic. In contrast to models which return
input-dependent uncertainty which are called heteroscedastic. Similarly, the pre-factor of
the second term only involves ς̂n and yields a constant re-scaling of the squared difference
(m̂n(Xj)− Yj)

2 which is known as the mean squared error, one of the standard choices of
loss functions for regression tasks, see section 2.3.2.

15

2 Foundations

2.2 Deep Learning and Deep Neural Networks

2.2.1 Neural Network Architectures: Building Blocks

In various areas of science and engineering, machine learning algorithms, particularly deep
neural networks, define the current state of the art when it comes to performance. While
they have countless areas of applications, here we focus only on aspects that are relevant
to image recognition and computer vision tasks. We, therefore, focus on feed-forward
neural networks involving fully connected (section 2.2.1.1), convolutional (section 2.2.1.2)
and self-attention layers (section 2.2.1.3) which have become standard components in deep
learning. Parts of this section and some notation is inspired by [125].

2.2.1.1 Perceptrons and Fully Connected Layers: Origins and Basic
Concepts

Multilayer Perceptron. Artifical neural networks (in the following just neural net-
works for brevity) are parametric statistical models taking on a schematic form loosely
inspired by biological neural networks [117, 150]. Typically, the functional form is visual-
ized by a graph structure arranged in layers which resembles biological neural connections.
One layer maps inputs or “activations” x = (x1, . . . , xd0) ∈ Rd0 to the pre-activation12

y = y(x) =Wx+ b ∈ Rd1 , yk =

d1∑
j=1

wkjxj + bk, k ∈ [d1]. (2.27)

Here, W ∈ Rd1×d0 and b ∈ Rd1 are parameters of the layer. This basic affine map is the
transformation taking place in a so-called fully connected layer, since the relation of input
x and output y can be visualized by a graph in which each in-going node xj is connected
to each out-going node yk by an edge carrying the weight wjk, see fig. 2.1 on the left. A
multilayer perceptron is a sequence of L ∈ N fully connected layers, however, since the
composition of affine linear maps stays affine linear, the expressivity of such a model is
highly limited. Therefore, non-linearities α : Rd1 → Rd1 are introduced, called activation
functions. Activation functions are typically application of some function R → R to each
element of y. The entire feed-forward layer fℓ = fℓ(·|θℓ, αℓ) then has learnable parameters
θℓ = (Wℓ, bℓ) and an activation function αℓ and maps

Rdℓ−1 ∋ x 7→ fℓ(x|θℓ, αℓ) = αℓ(Wℓx+ bℓ) ∈ Rdℓ (2.28)

for all ℓ ∈ [L]. The multilayer perceptron function MLP : Rd0 → RdL is a composition

MLP(x|θ) = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1(x) (2.29)

of feed-forward layers where we have suppressed the dependence of fℓ on θℓ and αℓ. The
multilayer perceptron has learnable parameters θ = (θ1, . . . ,θL). Moreover, the target
space dimension of each so-called intermediate or hidden layer ℓ = 2, . . . , L − 1 depends
on the parameter dimensionality and can be adjusted to each new problem alongside the

12Throughout this thesis we will use the notation [n] := {1, . . . , n}.

16

2.2 Deep Learning

x

1

W

b

f(x|θ, α) x

f1(x|θ1, α1) f2(x1|θ2, α2)

f3(x2|θ3, α3)

Figure 2.1: Left : Schematic illustration of a fully connected layer mapping an input (light blue)
Rd ∋ x 7→ f(x|θ, α) ∈ Rn to the layer output (purple) involving a matrix W ∈ Rn×d of weights
along the blue edges and a vector b ∈ Rd along the orange edges. Here, d = 6 and n = 5. Each
input component xi, i ∈ [d] can be visualized as a node in a graph, and so can the n components of
f(x|θ, α). The bias variables are visualized as edges connecting to a bias node carrying the constant
activation 1. Right : Schematic illustration of the architecture of an MLP with two hidden layers
of width 5 and two output neurons.

number of layers. See fig. 2.1 to the right for a graphical depiction of an MLP with two
hidden layers and d0 = 6, d1 = 5 = d2, d3 = 2 and L = 3. We denote fℓ(x

ℓ−1|θℓ, αℓ) =: xℓ

and x0 := x as the input. The spaces in which activations of hidden layers live are called
latent spaces and the corresponding activation of some fixed input x is called a latent
representation of x.

Activation Functions. There is a set of popular choices for activation functions which
are frequently considered and implemented in neural networks. Of typical interest are
functions that are particularly simple or functions which have desirable properties.

• Identity : The identity mapping x 7→ x is the simplest possible activation and leads to
an affine linear model. Depending on the concrete problem at hand, the utilization of
this activation boils down to logistic or linear regression. For its lack of expressivity,
this activation function is usually not used in deep learning.

• Heaviside or step function: The Heaviside function

Θ : R → R, x 7→ Θ(x) = χR+(x) (2.30)

with the indicator function χ was one of the early activation functions considered and
solved the so-called XOR problem wherein the logical XOR operation was originally
not representable with one-layer perceptrons. The Heaviside function is not differen-
tiable at zero and yields zero derivative everywhere else which makes it unpractical
for gradient-based parameter optimization, such as SGD.

• Sigmoid or logistic function: The sigmoid or logistic function

σ : R → R, x 7→ σ(x) =
1

1 + e−x
(2.31)

constrains activations to (0, 1) and has a linear regime around 0. While being ev-
erywhere differentiable, the saturation property of the sigmoid activation function

17

2 Foundations

lead to the so-called vanishing gradient problem in the saturation regime where the
derivatives are close to zero. Although this is no hard obstruction to the use of gra-
dient optimization methods, this fact can lead to practical difficulties in the fitting
procedure. The same rationale applies to the hyperbolic tangent activation function

tanh : R → R, x 7→ tanh(x) =
ex − e−x

ex + e−x
(2.32)

which shows a similar saturation behavior as the sigmoid function. However, it
constrains activations to (−1, 1). Note, that in contrast to the previous activations
or the following ReLU activation function, here the evaluation of exponential func-
tions is required. This leads in increased computational cost, e.g., by evaluating a
truncated series.

• Rectified Linear Unity (ReLU) function: The ReLU function

ReLU : R → R, x 7→ ReLU(x) = max{0, x} (2.33)

is a simple activation function which disposes with the vanishing gradient problem
by having a non-saturating positive regime while still having non-zero gradients for
the positive half axis. Neural networks with ReLU activations have a universal ap-
proximation property (see section 2.2.3.1) which makes them suitable candidates for
neural network activation functions. However, whenever considering second deriva-
tives, the same argument applies to ReLU which already applied to the Heaviside
function. ReLU has no meaningful second derivative and, therefore, does not give
rise to a meaningful concept of curvature.

• Rectified Quadratic Unity (ReQU) function: The ReQU activation function

ReQU : R → R, x 7→ ReQU(x) = (max{0, x})2 (2.34)

is an adaptation of the ReLU activation which preserves universal approximation
while allowing for curvature in the approximated function.

• Gaussian Error Linear Unity (GELU) function: The GELU activation function

GELU : R → R, x 7→ GELU(x) = x · Φ(x), (2.35)

where Φ is the cumulative distribution function of the standard normal distribution
is a smooth activation function which is frequently used in vision transformer models
(see section 2.2.1.3).

Another activation which is usually used to convert non-normalized feature activations
y = (y1, . . . , yd) ∈ Rd to a probability distribution is the so-called softmax function Σ :
Rd → (0, 1)d defined by

Σj(y) :=
eyj∑
i∈[d] e

yj
. (2.36)

The softmax function clearly returns a vector which encodes a probability distribution13.

13This means that
∑d
j=1Σj(y) = 1 and all entries are non-negative. Here, in particular, all entries are

strictly positive.

18

2.2 Deep Learning

Apart from fully connected layers in feed-forward networks, additional structures have
emerged from deep learning applications in computer vision and in natural language pro-
cessing. In some sense, these represent constraints or special cases of fully connected layers
which have their merits in specific applications.

Normalization Layers. During training and testing it is desirable for deep neural
networks to control the distribution of activations. Otherwise, extreme depth of neural
networks can lead to instable training and either vanishing or diverging gradients. Com-
mon approaches to control the distribution is to insert normalization layers in the network
which adds parameters to the model. These parameters are responsible for ensuring that
the resulting distribution will be standardized, having zero mean and unit standard de-
viation. We will see that this can also be understood as a constrained fully connected
layer.

Batch normalization (BN [73]) is oftentimes utilized in discriminative neural networks,
e.g., in classification. The batched activations y ∈ RB×n in some layer serves as the input
of the BN layer which introduces new parameters γ, β ∈ Rn. The forward pass through
the BN layer takes on the form

ỹ = BN(y|γ, β) = y − µy√
σ2y + ε

⊙ γ + β. (2.37)

Here, ⊙ denotes entry-wise (Hadamard) multiplication, ε is some small regularization
parameter (e.g., 10−5) and

µy =
1

B

B∑
i=1

yi ∈ Rn, σ2y =
1

B

B∑
i=1

(yi − µy)
2 ∈ Rn (2.38)

are the expectation and (biased) variance estimators of the features across the batch
[B]. In case the batch is already standardized, we would obtain (up to the regularization
parameter ε)

γ = σy, β = µy. (2.39)

In the case of convolutional neural networks (see section 2.2.1.2), the parameters γ and
β are applied channel-wise over the entire feature map and carry as many parameters as
there are channels in the input y. Since (2.37) defines an affine linear transformation of
y, it can be represented as a fully connected layer under constraints.

Batch normalization works well in many applications and seems to smoothen the loss
landscape allowing for more stable optimization [158]. However, parameter estimation in
BN runs into complications when the utilized batches are small. Whenever this is the
case, other normalization techniques may be utilized, e.g., in the case of multidimensional
inputs such as feature maps in computer vision. Then, a batched input ψ ∈ RB×C×Hψ×Wψ

has a channel (C), height (Hψ) and width (Wψ) dimension in addition to the batch dimen-
sion (B) which may be small. The layer norm (LN, [2]) does not standardize along the

19

2 Foundations

batch dimension. Instead, across all other dimensions are standardized, i.e., LN introduces
parameters γ, β ∈ RB which are applied by

ψ̃ = LN(ψ|γ, β) =
ψ − µLNψ√
(σLNψ)

2
+ ε

· γ + β (2.40)

where

µLNψ =
1

CHψWψ

C−1∑
c=0

Hψ−1∑
i=0

Wψ−1∑
j=0

ψcij ∈ RB,

(σLNψ)
2
=

1

CHψWψ

C−1∑
c=0

Hψ−1∑
i=0

Wψ−1∑
j=0

(ψcij − µLNψ)
2 ∈ RB.

(2.41)

Addition and Multiplication in (2.40) is applied along the batch dimension and constant
across other dimensions of ψ. In principle, normalization can also be applied only for cer-
tain sub-dimensions of ψ, e.g., standardizing across width and height but not the channel
dimension leading to parameters γ, β ∈ RB×C , so-called instance normalization [178].

Dropout Layers. In early investigations into neural networks, Srivastava et al. [169]
found that the activations which certain neurons receive leads to a fixation of the entire
model. Only a small amount of neuronal passages are used in the architecture. Mean-
while, other neurons barely play a role in the computations. It was found that this is
connected to overfitting phenomena. There are a couple of methods which can be used
in order to regularize this kind of behavior such that training becomes more stable and
less overfitting occurs. One such method is the inclusion of so-called dropout layers which
non-deterministically “turn off” neurons by setting their weights to zero during training.
Thereby, a training sample which gives a large activation to one certain neuron will with
a certain probability pdrop ∈ (0, 1) not be able to do so which leads to a “spreading” of
the training signal during backpropagation (see section 2.2.2.2). Alternatively, the same
regularizing effect can be accomplished by not masking the activation but instead masking
columns of the weight matrix Wℓ of a fully connected layer. Therefore, dropout layers can
also be regarded as a special case of a fully connected layer. Already in [169] it was pro-
posed to utilize dropout during the forward pass to obtain stochastic sampling of weights,
an idea which was later refined and called Monte-Carlo dropout, see section 2.2.4.2.

2.2.1.2 Convolutions: Parameter-Efficient Pattern Recognition

Recognition tasks in sequential, one-dimensional data or in computer vision (e.g., on RGB
camera images which is data in R3×W×H) are oftentimes invariant with respect to the
concrete pixel position. For example, the optical features of a cat will be the same whether
it is represented on the left half of an RGB image or on the right half. This invariance
property can be exploited in order to reduce the number of necessary parameters in a neural
network, as well as to specialize the functional form of layers to the task at hand. This
exploit resulted in the development of convolutional neural networks which incorporate
the discrete convolution operation in their forward pass.

20

2.2 Deep Learning

1 2 3 4 5 6 7 8 7 10 13 16 19 22

1 0 2

ψ

K

K ∗ ψ

Figure 2.2: Illustration of the one-dimensional cross-correlation operation of a filterK on a sequence
ψ.

Convolution and Cross Correlation. The convolution operation between two func-
tions ϕ, ψ : Rd → R is defined as the function14

[ϕ ⋆ ψ](x) =

∫
Rd
ϕ(y)ψ(x− y) dy. (2.42)

The discretization of this operation has found heavy use in signal processing in the past
where the functions can be represented by finite-dimensional vectors

ϕ = (ϕ0, . . . , ϕn−1) ∈ Rn, ψ = (ψ0, . . . , ψm−1) ∈ Rm. (2.43)

In principle, infinitely many function evaluations are possible leading to the notion of
convolution between sequences. However, the convolutions in deep learning practice are
always finite. The integral then becomes the finite sum

[ϕ ⋆ ψ]i =

n−1∑
k=0

ϕkψi−k, i ∈ [n− 1 : m− n] (2.44)

representing the components of the vector [ϕ ⋆ ψ] ∈ Rm−2n+1. In deep learning, ψ is
considered the input signal to the convolutional layer while ϕ contains the learnable weights
denoted by K in the following. K is also called the kernel or filter of the convolution in
reference to the integral kernel above. Implementations of convolutional layers oftentimes
utilize the equivalent cross-correlation operation (see fig. 2.2) instead of the convolution:

[K ∗ ψ]i =
n−1∑
k=0

Kkψi+k =
0∑

j=1−n
K−jψi−j , i ∈ [0 : m− n+ 1]. (2.45)

This is equivalent to the convolution operation for deep learning purposes since it is con-
volution with a flipped kernel up to re-indexing. Cross-correlation is more convenient
with respect to the index arithmetic than the convolution. For simplicity, we shall write
convolution instead of cross-correlation in the following whenever this equivalence holds.

14Here, we assume convergence of the integral in some suitable sense.

21

2 Foundations

ψ

K ∗ ψ

K

1 2 3

9 10 11 13 15

17 18 19 21 22 23

29 30 31

33 34 35

41 42 43

49 50 51

1

1

0

0

1

0

0

1

0

40

168

88

14

Figure 2.3: Illustration of the two-dimensional cross-correlation of a filter K over a two-dimensional
feature map ψ.

Two-Dimensional Convolutions. The straight-forward two-dimensional extension of
the one-dimensional convolution uses a kernel K ∈ RHK×WK and an activation signal
ψ ∈ RHψ×Wψ both of which are two-dimensional, see fig. 2.3. The resulting so-called
feature map is of the form

[K ∗ ψ]ij =
HK−1∑
k=0

WK−1∑
l=0

Kklψi+k,j+l, (2.46)

where15 i ∈ [0 : Hψ −HK + 1] and j ∈ [0 : Wψ −WK + 1]. Since the entries of this map
are linear in the input ψ, convolution with K can be represented as matrix multiplication.
The matrix representation acts on the flattened vector ψ ∈ RHψ ·Wψ of the form

ψ =

ψ:,0

ψ:,1
...

ψ:,Wψ−1

 (2.47)

corresponding to the two-dimensional ψ under the correspondence16 ψ
i·Hψ+j

= ψi,j for

i ∈ [0 : Hψ − 1] and j ∈ [0 : Wψ − 1]. Here, ψ:i = [ψ1,i, . . . , ψWψ−1,i]
⊤ ∈ RHψ denotes the

15Here, we employ the notation [n : m] := {n, n+ 1, . . . ,m− 1,m}.
16This correspondence is ambiguous, as components of ψ could also first be gathered row-wise and after-

wards column-wise. We will keep with the “flattening rule” defined here.

22

2.2 Deep Learning

i-th column of ψ. We denote the matrix representation of the convolution with the kernel
K by Mat[K] ∈ R(Hψ−HK+1)(Wψ−WK+1)×HψWψ , that is

(Mat[K] ·ψ)
i·(Hψ−HK+1)+j

= [K ∗ ψ]ij (2.48)

with i ∈ [0 : Hψ −HK + 1] and j ∈ [0 :Wψ −WK + 1]. This leads to the representation

Mat[K] =

C(K0,:) · · · C(KHK−1,:) 0 · · · · · · · · · 0

0 C(K0,:) · · · C(KHK−1,:) 0 · · · · · · 0
0 0 C(K0,:) · · · C(KHK−1,:) 0 · · · 0
...

...
. . .

. . .
. . .

. . . · · · ...
0 · · · · · · · · · 0 C(K0,:) · · · C(KHK−1,:)

(2.49)

where we have used the one-dimensional convolution representation

C(Kj,:) =

K⊤
:,j 0 · · · · · · · · · 0

0 K⊤
:,j 0 · · · · · · 0

0 0 K⊤
:,j 0 · · · 0

...
...

. . .
. . .

. . .
...

0 · · · · · · 0 K⊤
:,j

...

0 · · · · · · · · · 0 K⊤
:,j

∈ R(Hψ−HK+1)×Hψ (2.50)

of the j-th column of K over a vector of length Hψ (i.e., the column length of ψ). Note,
that in the entry (i, j) of the convolution [K ∗ ψ], the HK ·WK filter weights only couple
to as many (i.e., HK ·WK) values of the feature map ψ and, therefore, ψ. The “fully
connected” matrix representation Mat[K] is, therefore, a sparse matrix since all other
couplings per row are zero. In this way, convolutions can be regarded as a constrained
fully connected layer drastically reducing the number of parameters used.

Moreover, we have Mat[K] ∈ R(Hψ−HK+1)(Wψ−WK+1)×HψWψ which is a reflection of the
fact, that convolutions typically reduce the size of the feature map. This can be cir-
cumvented by introducing an artificial padding with zeros around the input boundary,
so-called zero-padding. There are also other ways of padding the input boundary which
are linked to other boundary conditions for the convolution. When adding Hpad rows of
zero padding symmetrically to both top and bottom and Wpad left and right we obtain an
input feature map pad[ψ;Hpad,Wpad] ∈ R(Hψ+2Hpad)×(Wψ+2Wpad). We obtain an output of
the same shape as the input by setting 2Hpad = HK − 1 and 2Wpad = WK − 1 which is
also called “same-padding”.

Strided Two-Dimensional Convolutions. For each fixed output pixel [K ∗ ψ]ij we

call the patch17 {ψkl}l∈[j:j+WK]
k∈[i:i+HK] , whichK couples to, the receptive field ofK at the position

(i, j). Neighboring output pixels can have a large overlap in input space and might,
therefore, be similar in value introducing redundancy in the result. This redundancy
can be reduced and computation accelerated by introducing a skip in the receptive field

17We denote [a : b] := {a, a+ 1, . . . , b}.

23

2 Foundations

ψ1

K1
1

K2
1

K1
2

K2
2

K1
3

K2
3

[K ∗ ψ]1

[K ∗ ψ]2

ψ2

ψ3

b1

b2

Figure 2.4: Illustration of the multichannel convolution layer mapping C = 3 in-going feature maps
(ψ1, ψ2, ψ3) to D = 2 out-going feature maps ([K ∗ ψ]1, [K ∗ ψ]2). The 6 filters have dimensions
HK = WK = 3 is this case. In reminiscence of fully connected layers, we indicate a bias neuron
(orange) adding output-wise biases that are constant over the spatial extent of each out-going
feature map.

between neighboring outputs. This is called a strided convolution where the strides Hstr

and Wstr determine how many input pixels the kernel is moved over in vertical (Hstr) and
horizontal (Wstr) direction. A convolution with Hstr > 1 and/or Wstr > 1 can be regarded
as a learned form of pooling since it will reduce the output size by a fixed factor and
performs as weighted linear transformation to each input patch. The resulting feature
map size after a strided convolution which also involves padding is⌊

Hψ + 2Hpad −HK +Hstr

Hstr

⌋
×
⌊
Wψ + 2Wpad −WK +Wstr

Wstr

⌋
. (2.51)

Multi-Channel Convolutions. The above description of the convolution map applies
to single-channel, i.e., gray scale inputs ψ ∈ RHψ×Wψ . In many tasks of computer vision,
the input image is represented in terms of three color channels corresponding to RGB
values in which case ψ lives in R3×Hψ×Wψ . Drawing from the neural network structure
again, the convolution map can be generalized to inputs having C channels and D output
channels. In that case, the result can be given with regard to a third channel index

[ConvK,b(ψ)]
d
ij = [K ∗ ψ]dij + bd =

C−1∑
c=0

(
HK−1∑
k=0

WK−1∑
l=0

(Kd
c)klψ

c
i+k,j+l

)
+ bd, (2.52)

where d ∈ [0 : D − 1], so we obtain the convolution result as the sum of single-channel
convolutions. This utilizes one filter per combination of input and output channel. Per
output, we add a bias variable bd which is constant across the spatial extent of the output
feature map [K ∗ ψ]d. The introduction of multiple output channels is beneficial to the

24

2.2 Deep Learning

goal of detecting multiple kinds of features in the input and also introduces additional
parameters in the kernel K ∈ RC×D×HK×WK to the model leading to increased capacity.

Most convolutional layers in neural networks for computer vision tasks are multichannel.
One special case which is especially important in semantic segmentation (see section 2.3.3)
are (1×1)-convolutions, i.e., convolutions against K ∈ RC×D×1×1. From eq. (2.52) we see
that this reduces to a weighted combination of features at each pixel while changing the
feature map dimension from C to D. Formally, this is equivalent to the application of a
single layer MLP to the features of each pixel.

In addition to strided convolutions, the dimensionality of feature maps can be reduced (and
information thereby compressed) by aggregating feature map values over small rectangular
patches within channels. This operation is called pooling, where the entries within patches
of each feature map are mapped to one single scalar value in the respective position in
the output feature map. Usually the applied maps are either taking the maximum value
over each patch (max pooling) or averaging the obtained values (average pooling). In
classification or extraction of latent variable representations, one often utilizes so-called
global average pooling where the average pooling patch extends to the entire feature map.
This maps RD×Hψ×Wψ → RD×1×1 which can then either be fed into an MLP for image
classification or used for determining lower-dimensional distances between samples. The
latter is often infeasible for the full dimension D ×Hψ ×Wψ.

ResNet Blocks and Skip Connections. Modern convolutional or transformer (see
section 2.2.1.3) neural networks utilize so-called skip connections around blocks F ℓ : Rd →
Rd within the network [61]. Such a block F ℓ may be a combination of weight layers like
convolutions, normalization layers or activations. The skip connection then adds the input
xℓ ∈ Rd to the output value of Fℓ, i.e.,

Res[Fℓ](x
ℓ) := xℓ + Fℓ(x

ℓ). (2.53)

The motivation for this kind of structure is that the parameters within Fℓ need to only
be used to learn the residuals between a desired output yℓ and the respective input xℓ.
This is a simpler task, given that the neural network is sufficiently deep. The standard
ResNet block has the specific structure involving two convolutional layers given in fig. 2.5.
ResNet blocks in particular are often part of backbone architectures for computer vision
tasks, see sections 2.3.1.3, 2.3.2.3 and 2.3.3.3.

2.2.1.3 Transformer Neural Networks: Attention as a Deep Learning
Concept

Originally designed in the context of natural language processing [182], transformer mod-
els have since reached outstanding performance also in computer vision tasks [108]. In
this section, we describe the functional principles of transformer layers and will narrow
down to vision transformers in particular, which play an important role especially in com-
puter vision backbones. The background of natural language processing has lead to the
introduction of the term “token” which are originally encodings of text fragments which
a given text is divided into by some specific “tokenization rule”. Such tokens undergo an

25

2 Foundations

(3× 3)-Conv

(3× 3)-Conv

xℓ

Fℓ

+

BN

BN

ReLU

ReLU

Figure 2.5: Convolutional ResNet block with skip connection as initially introduced by He et al. [61].

embedding into some t-dimensional space. Given embeddings X ∈ Rt×n of n tokens, the
so-called attention mechanism then learns a (t× n)-dimensional output by weighting dif-
ferent learned outputs by a similarity measure between the embeddings of different tokens.
This section draws from the notation of [125] and [211].

Attention Mechanism. Learned attention between t-dimensional embeddings

X = (x1, . . . ,xn) ∈ Rt×n (2.54)

of n tokens is based on three weight matrices WV ∈ Rd×t, WQ ∈ Rdq×t and WK ∈ Rdq×t.
Hereby, convex combinations of the value output

V :=WV X = (WV x1, . . . ,WV xn) ∈ Rd×n (2.55)

are generated from the attention between different tokens which is defined by some simi-
larity measure between the query (WQX ∈ Rdq×n) and key (WKX ∈ Rdq×n) values of the
tokens. The latent dimension dq ∈ N in which query and key live can be viewed as a
hyperparameter of the attention mechanism. One computationally efficient way of com-
puting similarity measures is by computing the mutual scalar products between the query
and key representations. Frequently, in order to stabilize training, the scalar products
are normalized through division by the square root of the latent dimension dq. In order
to obtain normalized weights, the softmax function Σ (see eq. (2.36)) may be applied

26

2.2 Deep Learning

FC(WQ, 0) FC(WK , 0) FC(WV , 0)

X

matrix mult.

matrix mult.

scaling (
√
dq)

Softmax Σ
α

Att

X

Att Att Att

FC(W 1
O, 0) FC(W 2

O, 0) FC(W h
O, 0)

MHSA

+

+

Figure 2.6: Left : Schematic depiction of an attention “block” involving the scaled dot-product
attention α defined in eq. (2.57). Right : Illustration of the multi-head self attention mechanism
from eq. (2.58).

column-wise18,

α(X;WQ,Wk) =Σ

(
(WQX)

⊤WKX√
dq

)

=

[
Σ

(
(WQX)⊤WKx1√

dq

)
· · · Σ

(
(WQX)⊤WKxn√

dq

)]
∈ Rn×n.

(2.56)

Note that by introducing different matricesWQ andWK , attention between tokens is non-
symmetric, i.e., α(X;WQ,WK)i,j ̸= α(X;WQ,WK)j,i for i, ̸= j in general. The attention
output is then given by applying these normalized weights to the value vectors

Att(X;WQ,WK ,WV) := V · α(X;WQ,WK)

=

[∑n
j=1WV xj ·Σj

(
(WQX)⊤WKx1√

dq

)
· · · ∑n

j=1WV xj ·Σj

(
(WQX)⊤WKxn√

dq

)]
∈ Rd×n

(2.57)

yielding attention-weighted convex combinations of the learned values. An illustration of
the neural network architecture defined by such an attention block can be found in fig. 2.6
on the left.

Multi-Head Self-Attention and Transformer Layer. A straight generalization of
the attention layer eq. (2.57) and a more expressive model is given by learning h ∈ N
query-key-value triples {(W k

Q,W
k
K ,W

k
V)}k∈[h] jointly in parallel. This is known as multi-

head attention where each k ∈ [h] denotes one of the “attention heads”. Then, the value

18We denote this by Σ applied to a matrix with slight abuse of notation.

27

2 Foundations

X

MHSA

FC(W2, b2)

FC(W1, b1)

+

ReLU

Transf

Figure 2.7: Schematic depiction of the transformer block described in eq. (2.59).

matrices W k
V ∈ Rdq×n are oftentimes defined to map to the same dq-dimensional latent

space as W k
Q and W k

K . This way, all matrix multiplications can be computed in parallel.

Additionally, an output matrix W k
O ∈ Rt×dq for each head is defined, mapping to the

output dimension t. The output of the multi-head self-attention (MHSA) layer is then
given by introduction of an additional skip to the input X by

MHSA(X) := X+
h∑
k=1

W k
OAtt(X;W

k
Q,W

k
K ,W

k
V) ∈ Rt×n. (2.58)

Figure 2.6 shows an illustration of the MHSA block on the right. In the transformer
layer, an additional skip connection is introduced, after MHSA is computed and two fully
connected layers with weight matrices W1 ∈ Rr×t and W2 ∈ Rt×r, biases b1 ∈ Rr and
b2 ∈ Rt and ReLU activation are applied:

Th,dq ,r(X) = MHSA(X) +W2 · ReLU (W1 ·MHSA(X) + b1) + b2 ∈ Rd×n. (2.59)

Here, the bias variables are constant across the token dimension n. An illustration of the
transformer block defined by eq. (2.59) can be found in fig. 2.7.

Transformers for Computer Vision: ViT and Swin. One of the first significant
steps towards applying transformer architectures to computer vision problems was taken
by transforming image patches directly to token embeddings [36]. The image is first
divided up into a fixed number (16 × 16) of square patches, see fig. 2.8 on the left. The
two-dimensional image patches are further flattened to n one-dimensional vectors acting
as the n tokens and transformed by a linear learnable map to an embedding X. Further,
position embeddings help to preserve localization information of each patch. In ViT [36]
vision transformers, also layer normalization was introduced before the MHSA and the
final MLP block and the MLP was equipped with GELU activation functions instead of
ReLU activations.

While good performance for image classification tasks was achieved by the ViT transformer
models, scaling to more complex computer vision tasks like object detection and semantic

28

2.2 Deep Learning

input image

extracted

patches

positional

embedding

li
n
ea
r
em

b
ed

d
in
g

x0

x1

x2

x3

x4

X
1

1

3 3

2 2

4

4

shifting window

Figure 2.8: Left : Illustration of the image token embedding mechanism introduced in [36]. The
linear embedding gives rise to token embeddings X. Right : Illustration of the shifting window
mechanism from [108]. Self-attention is computed between token embeddings within each window.
Cross-window interaction is achieved by cyclical window shifting between consecutive transformer
layers.

segmentation was still unfeasible. The central reason was that computing self-attention
between tokens scales quadratically with the number of tokens, i.e., with the number of
patches the image is divided into (this is called “global self-attention”). Therefore, dense
predictions like semantic segmentation and large input resolutions were an obstacle for
the ViT transformer. A way of resolution was presented with the introduction of the Swin
transformer [108] (short for “shifted window”) which introduced a tiling of the input image
into windows first (“local self-attention”). Within each window, again, a fixed number
of patches is extracted and self-attention computed between the token embeddings of all
patches, see fig. 2.8 on the right. However, no attention is computed to patches from other
windows. This reduces the computational complexity of the self-attention by which it is
merely quadratic in the window size. No self-attention is then computed between different
windows leading to a loss of local interaction. In order to re-introduce interaction between
windows, the windows tiling is cyclically shifted between consecutive transformer layers
in the Swin transformer architecture.

2.2.2 Training Neural Networks: Parameter Estimation

In this section we cover stochastic gradient descent (SGD), the widely used optimization
algorithm utilized in the training of deep neural networks. The setting for utilizing SGD
involves a parametric model µ̂θn where θ ∈ Θ for some parameter space19 Θ. From ob-
serving a set of training data χn, the aim is to minimize some empirical risk function (see

19E.g., Θ ⊆ Rq. In some of our applications, we consider the weights in the layers of neural networks
which is a space isomorphic to some Rq.

29

2 Foundations

section 2.1.3) which we call “loss” in the following.

L(θ) = L
(
µ̂θn, χn

)
(2.60)

with respect to θ. In the supervised setting, χn = ((x1, y1), . . . , (xn, yn)) and µ̂θn =
µ̂θn|X=(·) is a supervised learning model20 like a deep neural network. Then, the loss

can usually be interpreted as a comparison of the model’s prediction µ̂θn|X=xi
and the

corresponding target yi over the dataset χn, i.e.,

L(θ) = 1

n

n∑
i=1

L
(
µ̂θn|X=xi

|yi
)
. (2.61)

The following section on SGD is loosely based on [166].

2.2.2.1 Stochastic Gradient Descent: Optimizing Loss Functions with
Respect to Parameters

Gradient descent optimization is concerned with a parametric model µ̂n(θ) and a loss
function L(θ) which depends on the model parameters. The parameters are optimized
by iteratively computing L(θ) at the current point θ ∈ Θ and taking a step in Θ in
the direction of the steepest descent of the function L. For this, the model µ̂θn will be
initialized21 at some parameter θ0 ∈ Θ. Gradient steps are then taken by first computing
the value of the loss function L(θ)|θ=θ0 at the current point in Θ and “updating” the
model weights by the following iterative prescription

θt = θt−1 − η ·
[
∇θL(µ̂θn, χn)

]∣∣∣
θ=θt−1

for t = 1, 2, . . . (2.62)

Here, η > 0 is a scalar parameter called the learning rate which controls the scaling of the
step size taken. Oftentimes, the gradient ∇θL(µ̂θn, χn) is first normalized before scaling
with η such that ∥θt − θt−1∥ = η. While η may be a simple constant, and often is in
implementations, it can also be variable η = ηt over the step time t. This procedure can
be shown to converge to a minimizer of L(θ) in the case of a strictly convex Lipschitz
optimization problem [166, Cor. 14.2]. However, more often than not, the loss functions
optimized in deep learning are highly non-convex. In such a case guarantees of convergence
can only be given for local minima of L(θ) which may, however, be far from optimal. Not
only is the loss surface ({(θ,L(θ)) ∈ Θ×R|θ ∈ Θ}) non-convex, but it also oftentimes has
steep regions and sharp cliffs which further complicate the optimization procedure. Reg-
ularization techniques can help remedy this phenomenon, e.g., by introducing additional
terms to the loss function. So-called weight decay regularization is essentially proportional
to ∥θ∥2. Alternatively, µ̂θn can be altered such that the resulting loss L(θ) is smoother.

20In section 2.1.1.1, we defined what a supervised learning algorithm {µ̂n}n∈N is. Here, a “supervised
learning model” is the parametric representation of the hypothesis space H . For deep neural networks,
this hypothesis space is defined by the network architecture. Together with a specification of how the
model processes data χn, a model defines a supervised learning algorithm.

21Usually, this initialization is done by randomly sampling values, e.g., from a standard normal distribution
or from a uniform distribution over some predefined range of values.

30

2.2 Deep Learning

This may be accomplished by, for example, including normalization layers which coun-
teract distributional drift between hidden layers or dropout layers which stochastically
regularize the dependency of L(θ) on individual neurons and, therefore, the gradient.

Training data χn may be composed of several tens of thousands of data points. In su-
pervised learning, the computation of L(θ) requires the computation of µ̂θn|X=xi

for each
individual sample once before even one gradient step is performed. In practice, one then
instead uses so-called mini batches which are randomly selected subsamples

χB{(xi, yi) ∈ χn|i ∈ Bt} ⊂ χn (2.63)

for some index set Bt ⊂ [n] randomly selected at step time t. Computing the mini batch
loss LBt(θ) := 1

|Bt|
∑

i∈Bt L(µ̂θn|X=xi
|yi) only on this subsample yields an estimate of the

“true” gradient which would be computed from all samples.

Technically, stochastic gradient descent is the gradient descent update rule

θt = θt−1 − ηtVt (2.64)

with any random vector Vt ∈ Θ such that E[V] is a sub-gradient22 of L(θ). Taking
gradients of mini batch losses LBt(θ) is an easily implementable and efficient method to
obtain unbiased estimators of the training gradient over the entire dataset. In particular,
we obtain an unbiased estimator of a subgradient. Again, this procedure can be shown to
converge to a minimizer in case of convex optimization problem.

2.2.2.2 Backpropagation: Efficient Gradient Computation for Feed-Forward
Neural Networks

In order to apply the SGD algorithm to deep neural networks, we need to be able to
compute the gradient

∇θL(µ̂θn|X=xi
|yi) (2.65)

on a sample (xi, yi). This object can first be separated into two contributions by the chain
rule, namely

∇θL(µ̂θn|X=xi
|yi) = DfL(f |yi)|f=µ̂n|X=xi

(θ) ·Dθµ̂
θ
n|X=xi

. (2.66)

The first contribution can be explicitly computed from the forward pass through the
network and by knowing the explicit functional form of the loss function L. The second
term contributes the derivative of the parameter gradients stemming from the model
itself. Its computation requires the derivative of the model’s prediction with respect to
the parameters θ. Since deep neural networks generally have the structure

f(·|θ) = fθLL ◦ fθL−1

L−1 ◦ · · · ◦ fθ22 ◦ fθ11 (·), (2.67)

22Here, we follow [166] and call a vector v ∈ Θ a “sub-gradient” of the function L at θ, iff ∀u ∈ Θ, we
have L(u) ≥ L(θ) + ⟨u − θ,v⟩. To prevent ambiguity, the set of sub-gradients of L at θ is called the
“differential set” which is also sometimes called the “sub-gradient” of L at θ in the literature.

31

2 Foundations

where each fθℓℓ (xℓ−1) = αℓ(Wℓx
ℓ−1 + bℓ) is a network layer such as a fully connected

layer with an activation function αℓ and parameters23 θℓ = (Wℓ, bℓ). In this notation,
xℓ = fθℓℓ (xℓ−1) ∈ Rdℓ . In a sequential model like this, earlier parameters such as θ1
influence the activation of later layers like fθLL (xL−1).

Due to the chain rule for such functions at some fixed point θ ∈ Θ we have

Dθℓf(·|θ)|θ = DxL−1fθLL |xL−1(θL)
· · ·Dxℓf

θℓ+1

ℓ+1 |xℓ(θℓ+1)
·Dθℓf

θℓ
1 |θℓ . (2.68)

In order to obtain the full gradient Dθf(·|θ), the components technically need to be
collected via the chain rule over all layers ℓ. However, by starting from the last layer
L and iteratively moving to preceding layers, parts of the computation can be re-used
due to the associativity of matrix multiplication, namely the derivatives with respect to
the activations xℓ. This iterative computation of gradients earlier in the network from
later activation values is called backpropagation. Backpropagation is an effective method
of reducing the computational load and memory consumption required to compute the
gradient. The derivatives of a fully connected layer are given by

Dxℓ−1f
θℓ
ℓ (xℓ−1) =

∂αℓ(y)

∂y

∣∣∣∣
y=Wℓxℓ−1+bℓ

· ∇xℓ−1Wℓx
ℓ−1 = α′

ℓ(Wℓx
ℓ−1 + bℓ) ·W⊤

ℓ

DWℓ
fθℓℓ (xℓ−1) =

∂αℓ(y)

∂y

∣∣∣∣
y=Wℓxℓ−1+bℓ

· ∇Wℓ
Wℓx

ℓ−1 = α′
ℓ(Wℓx

ℓ−1 + bℓ) · (xℓ−1)
⊤
,

Dbℓf
θℓ
ℓ (xℓ−1) =

∂αℓ(y)

∂y

∣∣∣∣
y=Wℓxℓ−1+bℓ

· ∇bℓbℓ = α′
ℓ(Wℓx

ℓ−1 + bℓ).

(2.69)

Here, αℓ : R → R is applied element-wise and Wℓ ∈ Rdℓ×dℓ+1 , bℓ ∈ Rdℓ+1 . The dyadic
product in eq. (2.69) comes about as follows. The Jacobi tensor of the matrix-vector
multiplication has components

∂[Wℓx
ℓ−1 + bℓ]k

∂[Wℓ]ij
=

∂

∂[Wℓ]ij

dℓ∑
m=0

[Wℓ]km[x
ℓ−1]m = δik[x

ℓ−1]j (2.70)

with k ∈ [dℓ+1], i, j ∈ [dℓ]. By re-assembling vectorized structures, in particular Wℓ and
xℓ−1, we find the first form of eq. (2.69). Backpropagation finally yields the full gradient
of the neural network by combining eq. (2.66), eq. (2.68) and eq. (2.69).

2.2.3 Universal Approximation: Hypothesis Space Size of DNN
Architectures

Whether a statistical learning model µ̂n like a deep neural network can sufficiently ap-
proximate a given target set24 of functions or distributions T from which training data

23We have seen that also convolution layers, batch norm layers, dropout layers identified as fully connected
layers under certain constraints.

24This could be a function space as in the following sections or M1(X) as discussed in section 2.1.

32

2.2 Deep Learning

χn is sampled is investigated in an area of research called universal approximation. This
question is often not concerned with how complex it is to find the best or an arbitrarily
good model µ̂∗n ∈ Hn = Img(µ̂n) which would be the desired object. Rather, guarantees
about the existence of such a model are given under certain circumstances and require-
ments on model classes derived under which such a best model exists. However, there
are also constructive approaches which try to answer exactly that question in a specified
setting.

A learning algorithm µ̂n is called a universal approximator of a metric space (T , d), if
Hn ∩T is d-dense in T . That is, for any µX ∈ T , let ε > 0. Then, there exists µ̂∗n ∈ Hn

such that d(µX∥µ̂∗n) < ε. Therefore, a candidate from the hypothesis space Hn is always
arbitrarily close to a given data-generating distribution µX .

2.2.3.1 Learning Continuous Functions via Infinitely Wide Single-Layer
Perceptrons

The following result by Cybenko [29] asserts that by allowing for shallow (i.e., one-hidden-
layer) but infinitely wide neural networks, continuous functions on the d-dimensional unit
interval Id := [0, 1]d can be approximated in the following sense.

Let α : R → R be an arbitrary continuous function that is “sigmoidal”, i.e.,

lim
t→−∞

α(t) = 0, lim
t→∞

α(t) = 1. (2.71)

Then, the set of single-layer perceptronsS : Id → R

∣∣∣∣∣∣S(x) =
N∑
j=1

λj · α(w⊤
j x+ bj), N ∈ N,λ, b ∈ RN ,wj ∈ Rd

 (2.72)

is ∥ · ∥∞-dense in the set of continuous functions C(Id). This means that given a function
g ∈ C(Id), there is a single layer perceptron of width N ∈ N with

• a weight matrix W = (w1, . . . ,wN) ∈ Rd×n,
• a bias vector b ∈ RN and
• a vector λ ∈ RN of output weights connecting the N hidden neurons to the one
output neuron

which is ε-close to g in the supremum norm. The proof of this statement makes use of
the Riesz representation theorem as well as the Hahn-Banach theorem. Due to the usage
of the Riesz representation theorem, this proof is explicitly non-constructive. Actually,
a more general statement than the one stated above applies. For obtaining denseness, it
is sufficient for α to be “discriminatory”, meaning that given a signed regular measure
µ ∈ M (Id), ∫

Id

α(w⊤x+ b) dµ(x) = 0 ∀w ∈ Rd, b ∈ R =⇒ µ = 0. (2.73)

It is shown that any bounded and measurable sigmoidal function is discriminatory, in
particular continuous sigmoidal functions.

33

2 Foundations

Further, a result by Pinkus [138] asserts approximation of continuous functions on com-
pact sets by single-layer perceptrons when the activation α is any non-polynomial smooth
function.

2.2.3.2 Learning Essentially Bounded Sobolev Functions via Arbitrary-Depth
ReLU Networks

This recent result by Yarotzky [203] allows for the approximation of functions in the unit
ball of the Sobolev space25 Wn,∞(Id) with respect to the Sobolev norm

∥f∥n,∞ = max
n∈Nd:|n|<n

ess sup
x∈Id

|∂nf(x)|. (2.74)

This can be achieved by finite-width ReLU multi-layer perceptrons, however, the approxi-
mation is constructive. One consequence of this fact is that explicit bounds on the depth,
width and number of parameters can be given for fixed error ε ∈ (0, 1). ReLU networks

are concatenations fWL,bL
L ◦ · · · ◦ fW1,b1

1 of fully-connected ReLU layers of the form

fWℓ,bℓ
ℓ (x) = ReLU (Wℓx+ bℓ) , ℓ ∈ [L], (2.75)

where x ∈ Rdi , Wℓ ∈ Rdℓ×dℓ−1 , bℓ ∈ Rdℓ are the weight matrix and bias vector of layer ℓ
and dℓ is the number of output neurons of layer ℓ.

The first central result concerns the unit ball

Fn,d := {g ∈Wn,∞(Id) : ∥g∥n,∞ ≤ 1} (2.76)

and asserts that given d, n ∈ N and ε ∈ (0, 1), there is a ReLU network architecture
capable of expressing any function g ∈ Fn,d with ∥ · ∥∞-error of at most ε. Moreover, such
an architecture has depth of at most c · (ln(1/ε) + 1) and at most cε−d/n · (ln(1/ε) + 1)
weights and neurons, where c = c(d, n) is constant.

The approach taken in order to obtain these bounds first constructs an approximation of
the square function x 7→ x2 via ReLU networks. This also allows for approximation of the
multiplication function via

a · b = 1

2

(
(a+ b)2 − a2 − b2

)
, a, b ∈ R. (2.77)

It is then possible to construct an approximation of d-dimensional piece-wise linear parti-
tions of unity. While this alone is technically enough for universal approximation, bounds
can be derived from this constructive approach. Given such a partition of unity over Id,
the local degree-(n− 1) Taylor polynomial of g ∈ Fn,d can be approximated also from the
multiplication approximation on each individual partition factor. The approximation then
takes the form of a sum (over all partition factors) over products (of partition functions
times local Taylor polynomials) which can be represented by a deep ReLU network.

25That is, Lebesgue-essentially bounded functions L∞(Id) with essentially bounded distributional deriva-
tive up to order n. We denote the magnitude of a multi-index n ∈ Nd by |n| :=

∑d
j=1 nj .

34

2.2 Deep Learning

2.2.3.3 Learning Group-Equivariant Maps via Convolutional Neural Network

In another work by Yarotzky [204], group-equivariant maps are treated. In the case of
classical convolutional neural networks, the symmetry group is the group Γ = ZHψ ⊗ZWψ

of translations across the input feature map. Under these translations, the convolution
map

[ConvK,b(ψ)]
d
ij :=

C∑
c=1

HK∑
k=1

WK∑
l=1

(Kd
c)klψ

c
i+k,j+l + bd (2.78)

from V := RC×Hψ×Wψ to U := RD×Hψ×Wψ is equivariant with respect to representations
RV and RU of Γ. Such representations act on V and U , respectively by

[RV (a⊗ b)ψ]cij = ψci+amodHψ ,j+bmodWψ
, [RU (a⊗ b)ψ]dij = ψdi+amodHψ ,j+bmodHψ

.
(2.79)

That is, by shifting the feature map cyclically by the numbers (a, b) ∈ Γ of pixels. RV -
RU -equivariance of a map f : V → U means that

f(RV (γ)ψ) = RU (γ)f(ψ), ∀γ ∈ Γ, (2.80)

i.e., mapping a γ-shifted feature map is equivalent to first mapping with f and γ-shifting
the result f(ψ). That the convolution map (with cyclic padding) is equivariant under the
representations defined in eq. (2.79) can easily be seen.

Feature maps ψ ∈ RC×Hψ×Wψ can also be regarded as functions ψc : Γ → R, i.e., ψc ∈ RΓ

for any c = 1, . . . , C. Since Γ is finite in this case, we can express ψc by a vector ψc

which has components {ψcγ |γ ∈ Γ}. An entire feature map can, therefore, be expressed as
a vector

ψ =
C∑
c=1

∑
γ∈Γ

ψcγ · ec ⊗ eγ ∈ RC ⊗ RΓ (2.81)

in the module Vin = RC ⊗ RΓ carrying the representation R of Γ on the second factor.
This representation then acts by

R(γ)v ⊗ eθ = v ⊗ eθ+γ , ∀v ∈ RC , γ, θ ∈ Γ. (2.82)

Similarly, there is a representation Rout on Vout := RD⊗RΓ. In [204] it is established that
with some continuous function α : R → R that is not a polynomial, any continuous Rin-
Rout-equivariant map g : Vin → Vout can be ∥·∥∞-approximated by one-layer convolutional
neural networks. That is, by equivariant maps S : Vin → Vout of the form

SD,K,b,λγ (ψ) =
D∑
d=1

λd α

(
C∑
c=1

∑
θ∈Γ

(
Kd
c

)
θ
ψcγ+θ + bd

)
. (2.83)

Here, D is the number of “out-going channels” which are added in the output layer, K is
the RC×D ⊗ RΓ-valued kernel tensor. This kernel tensor holds the learnable coefficients
and b ∈ RD is the bias vector. The vector λ ∈ RD holds the weights which connect to the
output layer. The argument of α is a convolution layer with bias applied to the feature

35

2 Foundations

map representation ψ. Note that here, the kernel K is allowed to have the full, same
spatial size as ψ. This “non-locality” of the convolution used is necessary for a single-
layer convolutional network since otherwise the receptive field of the kernel constrains the
functions which can be approximated.

Any compact set Kin ⊂ Vin is symmetrized under the continuous group action to a Γ-
invariant compact set Ksym =

⋃
γ∈ΓRin(γ)Kin. On Ksym, the previously stated result

by Pinkus guarantees an approximating single-layer perceptron function f1 : Vin → R
with supx∈Ksym

|g(x) − f1(x)| < ε. This leads to Γ-equivariant ε-approximation by the
equivariant function

f̂(x) :=

∫
Γ

N∑
j=1

R(γ)−1λjα
(
w⊤
j R(γ)x+ bj

)
dH(γ). (2.84)

Here, H is the Haar measure on Γ and λj ,wj ∈ Vout and bj ∈ RN are parameters. The
action of a linear functional w⊤

j on a vector Vout ∋ ϕ 7→ w⊤
j ϕ can be re-written in

components as

w⊤
j ϕ =

∑
γ∈Γ

D∑
d=1

(wj)
γ
dϕ

d
γ . (2.85)

Plugging this and λj =
∑D

d=1

∑
θ∈Γ (λj)

d
θed ⊗ eθ into eq. (2.84) reveals the form in

eq. (2.83).

2.2.3.4 Learning Permutation-Equivariant Sequence-to-Sequence Maps via
Transformer Neural Networks

Yun et al. [211] showed that transformer neural networks

ftransf = TLh,dq ,r ◦ . . . ◦ T1
h,dq ,r (2.86)

consisting of consecutive transformer blocks Tℓh,dq ,r (see eq. (2.59)) are universal Lp-
approximators of continuous permutation-equivariant sequence-to-sequence functions g :
Rt×n → Rt×n. Permutation equivariance here means equivariance with respect to per-
mutation of the token embeddings. This means that permutation matrices P act from
the right and equivariance of a function g holds if and only if g(XP) = g(X)P for all
X ∈ Rt×n. This connection arises from the fact that transformer neural networks as de-
fined in eq. (2.59) define permutation-equivariant maps. Note that bias addition is, in
fact, permutation-invariant.

Given any 1 ≤ p < ∞, ε > 0 and any continuous permutation-equivariant function
g : Rt×n → Rt×n with compact support, there is a transformer network f of the form
eq. (2.86) with h = 2, m = 1 and r = 4 such that

∥g − ftransf∥Lp(Rt×n;Rt×n) < ε. (2.87)

Firstly, continuity of g on its compact support implies uniform continuity, from which g
can be approximated to ε/3 by a piece-wise constant function g over a grid with stride δ

36

2.2 Deep Learning

determined by ε. Since g is permutation-equivariant, g inherits permutation-equivariance
due to being constant over hypercubes in the determined grid. Further, piece-wise con-
stant functions that are permutation-equivariant can be approximated by “modified trans-
former” models. Modified transformers have the softmax function replaced by the argmax
function and allow for general activation functions that are piece-wise linear with at most
three pieces and at least one constant piece. It is shown that g can be approximated by
a modified transformer fmod with h = 2, m = 1 and r = 1 with ∥g − fmod∥Lp = O(δd/p).
Finally, since the softmax function Σ approaches the argmax Σi(λx) → δi,argmaxc=1,...,t xc

for λ→ ∞ and piece-wise linear functions can be approximated by ReLU functions, fmod

can be ε/3-approximated by a transformer ftransf with h,m, r as stated above. Finally,

∥g − ftransf∥Lp ≤ ∥g − g∥Lp +
∥∥g − fmod

∥∥
Lp

+
∥∥fmod − ftransf

∥∥
Lp
<

2ε

3
+O(δd/p) (2.88)

allows for ε-approximation of g with δ chosen small enough.

Further, Yun et al. show that incorporating learnable positional encodings which are
added to the input X removes the restriction of permutation-equivariance. Therefore,
positional encodings allow for ε-approximation of arbitrary continuous functions defined
on a compactum in Rt×n by transformer models with h, dq, r as above in the permutation-
equivariant case.

2.2.4 Prediction Uncertainty Quantification for Deep Neural
Networks

Learning from i.i.d. data χn as described in section 2.1 which leads to a predictive model
µ̂n|X=(·) involves a series of approximation steps. These may lead to propagation of errors
and initial uncertainty. Approximations during training, lack of data, mis-specification of
the hypothesis space H or theoretical assumptions that do not usually hold in practice26

may lead to prediction error of the model. If uncertainty in the data distribution or
the model fitting process is completely or partially ignored, and a point prediction is
enforced given a previously unseen example x ∈ X , statistical models may fail in their
predictions. This can lead to erroneous predictions such as the one shown in fig. 2.9 where
an object detection model correctly identified the localization of the “cat” foreground
object. However, the predicted class is incorrect. In down-stream tasks of a machine
learning algorithm, such as trajectory planning in automated driving, this behavior may
lead to further errors. Such errors can then have catastrophic consequences when the
model is applied in safety-relevant domains such as automated driving or surgery. In this
section, drawing from [70], we describe some sources of uncertainty in statistical models.
We are particularly interested in neural networks and methods for estimating predictive
uncertainty.

2.2.4.1 Sources of Uncertainty in Trained Deep Neural Networks

First, the data-generating distribution typically carries inherent uncertainty. This is es-
pecially noticeable in supervised learning, where the data-generating distribution µ|X=(·)

26Such as independent and identical distribution of data samples.

37

2 Foundations

Figure 2.9: Prediction error of an object detection model (YOLOv3 [39]) on a previously unseen test
sample of the Pascal VOC [38] dataset. While the localization of the predicted box is only slightly
off, the predicted class is “bird” instead of “cat”. The number 0.889 in parentheses indicates the
objectness score of the prediction, i.e., the overall confidence of the bounding box containing an
object.

is conditional. The distribution does not uniquely identify an outcome y for an input
x. Therefore, learning from data samples (x, y) drawn from µ|X=(·) intrinsically leads to
so-called aleatoric uncertainty (see section 2.1.1.3) of point estimates. Even under full
knowledge of the distribution, the pointwise Bayes predictor f∗ with respect to a distance
measure Dd given by

f∗(x) ∈ argmin
y∗∈Y

∫
Y
Dd

(
µ|X=x∥δy=y∗

)
dµ|X=x(y) (2.89)

may disagree with a test sample (x, y) drawn from µ|X=(·).

Moreover, due to mis-specification of the hypothesis space H , there may be further a
discrepancy between f∗(x) and a best possible model

ν∗|X=x ∈ argmin
ν|X=(·)∈H

Dd(µX=x∥ν|X=x) (2.90)

in H . This discrepancy is called model uncertainty and related with the model error term
εmodel in the ERM error decomposition. Similarly, there is approximation uncertainty
due to the estimation process in ERM learning and sampling of the data27. These latter
types of uncertainty are oftentimes collected under the umbrella term of epistemic uncer-
tainty [70]. In contrast to aleatoric uncertainty which is oftentimes seen as intrinsic to the
data-generating distribution, epistemic uncertainty is regarded to be reducible. This can
be achieved by increasing model capacity (appealing to universal approximation), such
that model uncertainty is decreased. Alternatively, more elaborate optimization and sam-
pling of sufficient amounts of data would be a way of reducing approximation uncertainty.

27These types of uncertainty are related to the optimization error εlearn,n and the statistical error εsample,n,
respectively.

38

2.2 Deep Learning

Note, that broadly in the literature this separation of aleatoric and epistemic uncertainty
is not always as strictly adopted and in practice both types are also not always as clearly
distinguishable.

Aleatoric uncertainty given a previously unseen x ∈ X is hard to quantify from the
predictive distribution µ̂n|X=x if nothing is known about the epistemic uncertainty of the
model on x. Combined uncertainty measures of the predictive distribution such as the
variance or the Shannon entropy [167]

H(µ̂n|X=x) = −EY∼µ̂n|X=x

[
log
(
µ̂n|X=x({Y })

)]
(2.91)

give a joint estimation of epistemic and aleatoric uncertainty. The closer µ̂n|X=(·) is to
28

µX=(·), the closer the predictive entropy in eq. (2.91) will be to the entropy of the data-
generating distribution and, therefore, aleatoric uncertainty.

2.2.4.2 Methods to Estimate Uncertainty for Deep Neural Networks

The output variables of a neural network can be modeled such that they represent a
predictive probability distribution, such as in classification tasks. Here, typically a final
softmax activation yields a discrete probability distribution over possible outcomes y ∈ Y
conditioned on x ∈ X . For regression problems, a parametric continuous output distribu-
tion can be modeled by, e.g., modeling normally distributed outputs. In both cases, it is
possible to estimate aleatoric uncertainty via some uncertainty measure of the predictive
distribution µ̂n|X=(·).

The architecture and hence, the parametric form of the neural network specifies and fixes
the hypothesis space H explored during training. Therefore, epistemic uncertainty in the
context of neural networks is usually understood as uncertainty concerning the parameters
θ ∈ Θ. Such a consideration addresses approximation uncertainty and can be captured
by a Bayesian adaptation of neural networks called Bayesian neural networks.

Bayesian Neural Networks. In Bayesian neural networks, the parameters θ ∈ Θ are
modeled as random variables themselves. That is, they follow some posterior probability
distribution θ ∼ ν|χn conditional on the training samples χn via Bayesian inference. If
the posterior ν|χn is known, a prediction on a new, previously unseen example is obtained
from Bayesian model averaging

p̂|X=x(y|χn) =
∫
Θ
µ̂n|X=x(y|θ) dν|χn(θ). (2.92)

Again, this prediction is inherently probabilistic over y ∈ Y and uncertainty may be
quantified via its entropy or variance. However, the posterior is practically intractable,
so approximate variational techniques can be applied in some cases. Such approximations
can take the form of modeling a parametric distribution ν̂ζ over Θ with parameters in
some parameter space ζ ∈ Z ⊆ Rdζ with fixed dimensionality dζ ∈ N. One then seeks to
minimize the distance

DKL

(
ν̂ζ∥ ν|χn

)
(2.93)

28That is, the smaller the epistemic error of the model.

39

2 Foundations

with respect to ζ during training by sampling from the posterior. This is also only tractable
for rather small neural networks. In more complex applications of neural networks such
as object detection or semantic segmentation of high-resolution images, Bayesian neural
networks cannot be utilized in this way. Rather, one seeks empirical approximations or
estimations of the posterior ν|χn . Monte-Carlo dropout and deep ensembles are two such
approaches which have been applied widely in the deep learning literature.

Monte-Carlo Dropout. Srivastava et al. [169] originally introduced dropout as a me-
thod for regularizing training of deep neural networks, however, reasoned empirically that
dropout can be used during inference for weight averaging. This method is known as
Monte-Carlo dropout. Gal and Ghahramani [45] showed that neural networks with dropout
used in each weight layer is equivalent to Bayesian approximation via a Gaussian process
over the parameters. To this end, fully connected neural networks trained with some task
objective Ltask is optimized with weight decay, i.e., L2-regularization over the weights and
biases and with dropout on each layer. Application of dropout to the DNN’s parameters θ
leads to a projection θ of a random subset of the parameters to the parameter hyperplanes
by being set to zero. Performing NDO forward passes under dropout can be viewed as
sampling weights from a parameter distribution obtained from θ by random projections
{θj}j∈[NDO]

ν̂DO =
1

NDO

NDO∑
j=1

δζ=θj
. (2.94)

Obtaining a predictive distribution over y ∈ Y on a previously unseen sample x ∈ X then
boils down to averaging the predictions under active dropout

p̂|X=x(y|χn) =
∫
Θ
µ̂n|X=x(y|ζ) dν̂DO(ζ) =

1

NDO

NDO∑
j=1

µ̂n|X=x(y|θj). (2.95)

One possible way of quantifying the uncertainty of this prediction is to compute the
standard deviation

ς̂|X=x(y|χn) =

√√√√ 1

NDO − 1

NDO∑
j=1

(
µ̂n|X=x(y|θj)− p̂|X=x(y|χn)

)2
(2.96)

or the variance of the predictions. Note, that ν̂DO is dependent on the parameter vector
θ obtained from training under dropout. In practice, it has been found that Monte-Carlo
dropout can be effectively used by applying dropout only on part of the neural network.
Specifically, in order to reduce inference time, dropout is often used only on the last
couple of DNN layers. This way, forward pass result up until then can be re-used for all
dropout samples. Major advantages of MC dropout are its simplicity of implementation
and universality in application to different prediction tasks such as object detection and
semantic segmentation.

40

2.2 Deep Learning

Deep Ensembles. Similarly to MC dropout, Lakhshminarayanan et al. [88] propose
a different way of sampling from a distribution over the DNN parameters. Instead of
taking one pre-trained parameter vector θ and modifying it in order to obtain samples, an
ensemble of models, i.e., parameter vectors {θj}NDE

j=1 is obtained by training from scratch.
It is argued that in contrast to classical boosting and bagging models, no subsampling
of the training data is necessary. Rather, random initialization of the parameters before
training and the stochastic batch sampling during training introduce enough stochasticity
into the ensemble. In fact, it is argued that sub-sampling might negatively influence
ensemble performance since deep neural networks inherently need large amounts of data
due to having comparably many parameters. Moreover, choosing a “proper scoring rule”
L between the model µ̂n|X=(·)(·|θ) and the data-generating distribution µX=(·) is used
during training. Minimization of the negative log-likelihood is identified as providing such
a proper scoring rule. Furthermore, it is proposed to use adversarial training in order to
“smoothen” the predictive distributions. Predictions are then obtained, analogously to
MC dropout via model averaging over ν̂DE = 1/NDE

∑NDE
j=1 δζ=θj . In practice, adversarial

training is not necessarily performed for convenience of application. For more complex
computer vision tasks such as object detection and semantic segmentation, adversarial
attacks are also far more complicated than in simple classification tasks. Deep ensembles
have proven to perform well without adversarial training.

Applications of Predictive Uncertainty. In safety-critical applications of deep learn-
ing, estimation of prediction uncertainty is crucial for down-stream tasks. Uncertainty
quantification allows for the definition of protocols for how to deal reliably and conser-
vatively with different failure modes of the neural network. Beyond such down-stream
tasks, there are more immediate applications of uncertainty quantification, which will be
explored and studied in later chapters (see chapters 5 to 7). First, some uncertainty esti-
mation methods allow for the computation of more reliable confidence estimates. Basing
predictions on such advanced “confidence scores” can lead to a performance increase, e.g.,
in object detection (chapter 3). Further, one crucial failure mode of neural networks is the
confrontation with so-called out-of-distribution (OoD) objects in their input. Since neural
networks for classification, object detection or semantic segmentation are usually trained
on a fixed set [C] = {1, . . . , C} of classes, confrontation with something that is not part
of this semantic space leads to prediction errors. Classifiers are usually forced to commit
to one of the C classes for each prediction. In case of presentation with an OoD object,
the model should ideally have a mechanism to refuse the prediction since it cannot give
a correct answer. Uncertainty quantification methods can give rise to such mechanisms
(chapter 4), particularly, OoD detection is closely related with epistemic uncertainty. On
the side of model uncertainty, active learning utilizes information from a trained model in
order to select unseen samples based on informativeness to add to the training dataset.
Such informativeness measures oftentimes involve uncertainty estimates (chapter 5) which
can be computed based on the input without the annotation. The motivation for active
learning is that not all available and recorded data points x can be annotated with a target
y since this annotation process is expensive and time-consuming. Moreover, it involves
human annotators which are fallible. As a consequence, already obtained annotations in
training and test data are error-prone. Annotation errors occur not only on industrial

41

2 Foundations

datasets which may have an experimental character, but also on large-scale public bench-
mark datasets. Uncertainty quantification methods for deep learning models can be used
to produce proposals for annotation errors in present data in an automated way (chapter 6
and chapter 7).

42

2.3 Advanced Computer Vision Tasks

2.3 Advanced Computer Vision Tasks: The Need for
Machine Learning

Perception tasks on different kinds of data can have various forms. While one of the
simplest forms is input classification, more complex, multimodal tasks can give richer
information about the semantic and geometric content of information present. In this
section we describe the central primary computer vision tasks on which the presented
work builds upon and what their specificities are.

2.3.1 Image Classification: Recognition of Categories

In image classification, one of a predefined list Y = [C] of C ∈ N categories is assigned to
a given input image29 x ∈ X = [0, 1]3×H×W where H,W ∈ N. For future reference, we
denote the set of image pixel locations

I := {(i, j) : i ∈ [H], j ∈ [W]} . (2.97)

Training data, therefore, consists of tuples {(x1, y1), . . . , (xn, yn)} ⊂ X × Y. Classifi-
cation models are oftentimes probabilistic which means that they predict a conditional
probability distribution µ̂n|X=(·) over Y. This distribution is usually the result of a soft-
max activation applied to the C-dimensional logit output of the model. We denote this
conditional probability distribution by a [0, 1]C-valued function

f̂(·|θ) : X → [0, 1]C , f̂c(x|θ) = µ̂n|X=x({c}), ∀c ∈ Y. (2.98)

The argmax of this function yields the maximum a posteriori estimate of the predicted
class ĉ(x|θ). The corresponding maximal probability

ŝ(x|θ) = f̂ĉ(x|θ)(x|θ) = max
c∈Y

f̂c(x|θ) (2.99)

yields the confidence with which the prediction ĉ(x|θ) is given. This quantity is also
sometimes called the maximum softmax score or simply score.

2.3.1.1 Loss Functions in Classification: Differences in Probability
Distributions

The so-called 0-1-loss which only punishes misclassifications with loss 1 was used very
early in the study of neural networks. While it is useful in statistical learning theory for
the study of classification function estimators, it is not very useful in modern classification
problems. The reason for this is, that it is not even continuous and, therefore, unpractical
for gradient optimization algorithms. An early adoption from least-squares regression is
the mean squared error which can be applied in the classification setting

LMSE

(
f̂(x|θ)

∣∣∣ y) =
1

C

C∑
c=1

(
f̂c(x|θ)− δyc

)2
. (2.100)

29We can easily regard grayscale images as the one-dimensional diagonal in [0, 1]3.

43

2 Foundations

More often, however, the cross entropy loss from section 2.1.3.2

LCE

(
f̂(x|θ)

∣∣∣ y) = − log
(
f̂y(x|θ)

)
= −

C∑
c=1

δyc log
(
f̂c(x|θ)

)
(2.101)

is used. This function is identical to the negative log-likelihood loss in classification. The
cross entropy loss has the advantage of not having small gradients where δyc ≈ f̂c(x|θ).

2.3.1.2 Evaluation Metrics in Classification: Accuracy and Area Under
Curve

Given a test dataset

D = {(x1, y1), . . . , (x|D|, y|D|)} ⊂ X × Y (2.102)

of annotated samples which is disjoint from the training sample χn, a classifier f̂ can
be assigned several performance metrics. These indicate how accurately it predicts the
labels yi from the input xi. Depending on the type of classification task (binary versus
multi-class), different metrics can be computed. While the computed loss is in principle
a valid metric for a single model, it does not easily allow for an interpretable value which
relates directly to the test samples in D.

Accuracy. The accuracy is a performance measure which is applicable to binary as well
as to multi-class classification problems. Accuracy denotes simply the fraction of correctly
classified samples by the prediction ĉ(·|θ) of f̂ :

Acc
(
f̂ ;D

)
:=

1

|D|

|D|∑
i=1

δĉ(xi|θ),yi ∈ [0, 1]. (2.103)

Therefore, higher values mean more precise predictions. In the multi-class setting, this
can be generalized to the top-k accuracy, which is the fraction of samples where yi is
among the k classes with the highest predicted probability of f̂ . The number k ∈ N can
be regarded as a hyperparameter of this metric.

Area under Precision-Recall Curve. In binary classification, i.e., Y = {0, 1}, out-
comes are often denoted as “positive” (1) or “negative” (0)

P :={(x, y) ∈ D : y = 1},
N :={(x, y) ∈ D : y = 0}, (2.104)

and so can the predictions be denoted as predicted positives and predicted negatives. Of-
tentimes, what is a positive prediction is determined by a threshold τ ∈ [0, 1] and x ∈ X
is predicted as a positive sample, if f̂1(x|θ) > τ and as a negative sample otherwise. Over
D, one then defines the sets of predicted positives (PP) and predicted negatives (PN)

PP(τ) :={(x, y) ∈ D : f̂1(x|θ) > τ},
PN(τ) :={(x, y) ∈ D : f̂1(x|θ) ≤ τ},

(2.105)

44

2.3 Advanced Computer Vision Tasks

Rec(τ)

P
re
c(
τ
)

0
0

1

1

first FP

last TP

highest prob.

P
re
c(
τ 2
)

Rec(τ2)− Rec(τ1)

Figure 2.10: Precision-recall curve with prediction samples indicated by crosses along the curve.
Upper bound areas of the average-precision area are shown with the remainder area in light blue
(top right). This curve corresponds to an average precision of 0.904.

such that D = PP(τ)∪PN(τ). Predictions can then be true or false depending on whether
they agree with the labels given by D or not. The sets of true positives (TP) and true
negatives (TN) and, respectively, false positives (FP) and false negatives (FN) are given
by

TP(τ) := P ∩ PP(τ), TN(τ) := N ∩ PN(τ), (2.106)

FP(τ) := N ∩ PP(τ), FN(τ) := P ∩ PN(τ). (2.107)

One then defines the threshold-dependent fraction quantities of precision (Prec) and recall
(Rec)

Prec(τ) :=
|TP(τ)|
|PP(τ)| ∈ [0, 1], Rec(τ) :=

|TP(τ)|
|P| ∈ [0, 1]. (2.108)

That is, the precision (or “positive predictive value”, PPV) is the fraction of correctly
classified samples out of all samples that were predicted as positives. This can also be
seen as the model’s accuracy conditioned on PP(τ). Recall (or “true positive rate”) is the
fraction of correctly identified ground truth positive samples.

For τ = 1, precision is not defined, however, a well-performing model will give high class-
1-probability f̂1 to samples that tend to be true. Ordering samples in D in descending
order with respect to f̂1 will tend to have TP samples high up in the ordering and TN
samples far down the ordering. Sweeping τ from high to low values yields a sequence of
(Rec(τ),Prec(τ))-tuples which can be drawn graphically as a precision over recall curve,
see fig. 2.10. The first point of the curve is the sample obtaining the highest probability
f̂1 starting in the top left of the curve. Up until the first FP is found, recall increases
at constant precision. Precision drops with every FP found at constant recall. Another
found TP after the first FP increases both, precision (compared with the previous point)
and recall (overall) leading to a saw tooth pattern of the curve. Finally, with small enough

45

2 Foundations

threshold τ , all positive samples will be predicted as positive, leading to points with recall
1. Further positive predictions will be FPs since only negative samples remain, leading to
drops in precision. Based on precision-recall curves, the area under precision-recall curve
(AuPRC) is given as the Stieltjes integral

AuPRC =

∫ 1

0
Prec(τ) dRec(τ) ∈ [0, 1]. (2.109)

As an approximation, the average precision (AP) with descending thresholds τ1, . . . , τ|TP|
before each new TP prediction,

AP =

|TP|∑
j=2

(Rec(τj)− Rec(τj − 1)) · Prec(τj) ∈ [0, 1] (2.110)

is usually computed. Both metrics are equal to 1 for a perfectly separating classifier. This
means that in descending probability order, first only correct predictions are made until
Rec = 1 and then only FPs follow. Average precision is an upper bound of the AuPRC
which is often used in practice and given by the area shown in fig. 2.10 consisting of
rectangles.

F1-Score. The F1-score is a combined performance measure of the precision and recall
and, therefore, threshold-dependent. In particular, the F1-score is the harmonic mean

F1(τ) =
2

1
Prec(τ) +

1
Rec(τ)

(2.111)

of precision and recall. The F1-score a special case of the Fβ-score which is a weighted
average

Fβ(τ) = (1 + β2)
Prec(τ) · Rec(τ)

β2 · Prec(τ) + Rec(τ)
, (2.112)

where β > 0 determines how much weight precision has relative to recall. As these
metrics are weighted means between precision and recall, higher values also indicate better
classification.

Area under the ROC Curve. The receiver operating characteristic (ROC) curve is,
similarly to precision-recall, a curve obtained by sweeping a threshold τ . Here, recall, i.e.,
true positive rate, is drawn in dependence of the false positive rate

FPR(τ) =
|FP(τ)|
|N| . (2.113)

See fig. 2.11 for an illustration. With predictions sorted again with descending positive
class probability, the curve starts with a recall of 0 and also an FPR of 0. The recall value
increases with the high-probability predictions being TPs until the first FP prediction.
This increases the FPR and leaves the recall constant. Therefore, steps of the curve are
parallel to the axes. Similarly to precision-recall, the curve remains at constant recall of

46

2.3 Advanced Computer Vision Tasks

0
0

1

1

FPR(τ)

R
ec
(τ
)

highest prob.

first FP

last TP

Figure 2.11: ROC curve of a binary classifier with prediction samples indicated as crosses along
the curves. The area under the curve is shown with the remainder in dark blue at the top left.
This curve corresponds to an AuROC of 0.909.

1 after the last TP prediction, from where the FPR increases to 1. The area under ROC
curve (AuROC)

AuROC =

∫ 1

0
Rec(τ) dFPR(τ) ∈ [0, 1] (2.114)

is a common performance measure of binary classifiers30. A perfect classifier has AuROC =
1 whereas a classifier always giving the wrong answer will have AuROC = 0. A random de-
cision will show a ROC curve close to the diagonal between (0, 0) and (1, 1) and, therefore,
have an AuROC of around 0.5.

2.3.1.3 Example Architectures for Image Classification

Model architectures for image classification, object detection and semantic segmentation
tend to roughly follow typical templates for each individual task. In image classification
specifically, architectures usually consist of a backbone and a classification head. The
backbone is designed to extract features from the input x ∈ [0, 1]3×H×W . To this end,
convolutional or transformer layers (see section 2.2.1.2, respectively section 2.2.1.3) have
proven especially useful. Typically, the spatial resolution of the feature maps is reduced
(and, therefore, the overall number of activation values is also reduced) iteratively with
the depth of the network. This leads to information compression during the forward pass
through the backbone. The output of the backbone consists of a number of feature maps
which are either flattened to a one-dimensional vector or some global31 pooling operation
is performed over each channel.

30Note, that in the multi-class setting, sorting by probability is ambiguous. Hence, AP and AuROC can
only ever be defined in terms of class-wise binary one-versus-all classification.

31This means that the entire spatial extent of the feature map is the receptive field. This leads to a single
output number per channel.

47

2 Foundations

(multi-purpose) backbone classifier head

ReLU

ReLU

BN

BN

(1× 1)-Conv (128)

BN

(3× 3)-Conv (128)

(1× 1)-Conv (512)

+

ReLU

ReLU

BN

BN

(1× 1)-Conv (256)

BN

(3× 3)-Conv (256)

(1× 1)-Conv (1024)

+

ReLU

ReLU

BN

BN

(1× 1)-Conv (512)

BN

(3× 3)-Conv (512)

(1× 1)-Conv (2048)

+
(7×

7
)-C

on
v
(64

)
(/

2)

F
u
lly

C
o
n
n
ected

+
S
oftm

ax

(3×
3
)-m

ax
P
o
ol

(/
2)

G
lob

a
l
av
g
.
P
o
ol

3×
R
esN

et
B
lo
ck

(/
2)

4×
R
esN

et
B
lo
ck

(/
2
)

6×
R
esN

et
B
lo
ck

(/
2)

3×
R
esN

et
B
lo
ck

(/
2)

BN

ReLU

BN

(1× 1)-Conv (64)

BN

(3× 3)-Conv (64)

(1× 1)-Conv (256)

+

ReLU

Figure 2.12: Illustration of the ResNet50 architecture [61]. The model is composed of a backbone
network which can also serve as a feature extractor for an object detection or semantic segmentation
model and a classifier head. In the classifier, feature maps are compressed to a one-dimensional
vector on which a fully connected layer acts as a classifier. The different repeating ResNet blocks
are depicted below the ResNet architecture and “(/ 2)” indicates a reduction of the feature map
size by a factor of 2 in width and height.

48

2.3 Advanced Computer Vision Tasks

Figure 2.13: Object detection ground truth annotation (left) and prediction (right). The base
image is taken from the Pascal VOC [38] 2007 test dataset. The prediction was produced by the
YOLOv3 model with Darknet53 backbone used in the investigations in chapter 3. The ground
truth consists of bounding box localization and category. Meanwhile, the final prediction has
localization, assigned category and confidence score assigned. Usually, the category is determined
from a predicted probability distribution.

Several popular architectures follow this scheme like the LeNet [92] family of architec-
tures, AlexNet [86], ResNet [61] but also Swin transformer [108] models. In fig. 2.12, the
ResNet50 model is illustrated. The backbone consists of a convolution layer with a large
(7 × 7)-filter and a max pooling layer. Afterwards, groups of consecutive ResNet blocks
(recall section 2.2.1.2) with varying number of out-going channels, denoted in parentheses,
are stacked until the global average pooling. The latter is the first layer belonging to the
classification head. A single fully connected layer takes care of the input classification and
yields a softmax probability distribution f̂(·|θ). Here, θ are the fully-connected weights,
filter weights, biases and batch norm parameters in the architecture.

2.3.2 Object Detection in Camera Images: Recognizing Foreground
Instances

In object detection, the goal is to detect foreground instances of one of a predefined list of
categories [C] on a given input image x ∈ X = [0, 1]3×H×W . Detection is done by defining
axis-aligned bounding boxes around each object tightly enclosing all pixels belonging to that
object. Throughout the course of previous research, object detection has been a subject
which progressed strongly due to deep learning engineering advancements. One of the
consequences is that formulations in the literature [39,47,101,142,144] differ substantially.
This makes it challenging to treat the object detection task in a manner reflecting how
it fits into the theoretical framework presented in section 2.1.1. Another reason for this
difficulty may be the task itself which deals with variable numbers of predicted instances.
This makes the definition of the target space Y and of targets in datasets somewhat

49

2 Foundations

ambiguous and conceals how they relate with implementations. The following sections are
an attempt to unify the different approaches which were presented throughout the years.
The goal is to have a common notation while staying close to the concepts in section 2.1.1 as
well as actual implementations. Hence, the following sections have a survey-like character.

For simplicity, we assume here, that the center point of each object to be detected must
be contained in the image. The target space can be defined to be

Y :=
(
R2 × [C]× {0, 1}

)H×W
. (2.115)

We allow for each pixel to define the center point of exactly one object. The factor R2

then defines the spatial extent of the bounding box, i.e., the total width and height where
the center is defined by the pixel position. The last factor {0, 1} defines whether there is
a bounding box to be detected with center point at pixel (i, j) ∈ I or not. Annotations
in object detection are often represented as a list y = {b1, . . . ,bN} of bounding boxes

bn = (xn, yn,wn,hn, κn), n ∈ [N]. (2.116)

Existent foreground instances are encoded by their center pixel (xn, yn) ∈ I, spatial extent
is given by wn and hn and their category given by κn. The corresponding target y has

yyn,xn = (wn, hn, κn, 1) (2.117)

for n ∈ [N] and yi,j = (∗, ∗, ∗, 0). Otherwise, it may have arbitrary entries for R2 × [C]
since only the information about the absence of any object is relevant to the learning task.
We denote the localization component of any ground truth box by ξn := (xn, yn,wn, hn),
i.e., with slight abuse of notation bn = (ξn, κn).

An object detection model f̂(·|θ) usually makes bounding box predictions on a coarsened
space Ŷ where the image resolution is down-scaled by some fixed stride ς

f̂(·|θ) : X →
(
R4 × [0, 1]C × [0, 1]

)Nanch×⌈Hς ⌉×⌈Wς ⌉
=: Ŷ. (2.118)

The stride32 ς introduces cells arranged in a grid I/ς2 := [⌈H/ς⌉]×[⌈W/ς⌉] over I on which
localization coordinates ξ̂ = (x̂, ŷ, ŵ, ĥ) ∈ R4 are predicted. See fig. 2.14 for an illustration.
Here, (x̂, ŷ) is the center point of the bounding box which obtains two additional regression
variables to counteract the coarsened resolution of the prediction. A class probability
distribution π̂ = (π̂1, . . . , π̂C) ∈ [0, 1]C is predicted alongside a confidence or objectness
score ŝ ∈ [0, 1] which indicates the probability of the box defined by ξ̂ containing an
object. In order to allow for more than one prediction per cell, Nanch ∈ N bounding

32This stride is a hyperparameter of the model and, therefore, necessary to define f̂ . Similarly, the number
NAnch is a hyperparameter of the model.

50

2.3 Advanced Computer Vision Tasks

ς

ς

f̂14,4

f̂NAnch
4,4

...

Figure 2.14: Quadratic prediction grid of size (5× 5) over a gray-padded input image from the MS
COCO [102] 2017 validation dataset.

boxes33 are predicted for each cell. A model f̂(·|θ) then defines predictions

f̂ni,j(x|θ) :=
(
ξ̂ni,j(x|θ), π̂ni,j(x|θ), ŝni,j(x|θ)

)
,

ξ̂ni,j(x|θ) :=
(
x̂ni,j(x|θ), ŷni,j(x|θ), ŵni,j(x|θ), ĥni,j(x|θ)

)
,

π̂ni,j(x|θ) :=
(
(π̂1)

n
i,j(x|θ), . . . , (π̂C)ni,j(x|θ)

)
.

(2.119)

This leads to Nanch × ⌈H/ς⌉ × ⌈W/ς⌉ possible predictions per input x ∈ X which we call
“proposal boxes” from which only a small amount is desired as the model prediction in the
end in order to assess quality. Therefore, two crucial filter mechanisms are in place, both
of which depend on a threshold hyperparameter. Proposal boxes with a confidence score
ŝ < τs for a confidence threshold τs ∈ [0, 1] are not considered for the final prediction. In
practice, this leads to leftover clusters of boxes which tend to concentrate around objects
that are found by the detector. A widely-established algorithm called non-maximum
suppression reduces such clusters to individual bounding boxes based on a measure of
localization accuracy. The measure usually employed to this end is called the Jaccard
index [74] or “Intersection over Union” which is defined in the following paragraph.

Intersection over Union. The intersection over union (IoU, or Jaccard index) is a
convenient metric to measure how close two bounding boxes ξ1 and ξ2 are to each other.
We identify a bounding box ξ = (x, y,w, h) with the set of points in R2 contained in the

33Predicted bounding boxes are in practice often defined via offsets of so-called “anchor boxes”, see sec-
tions 2.3.2.1 and 2.3.2.3. Anchor boxes are priors either obtained via pre-processing or by an attempt
to cover different possible aspect ratios of bounding boxes.

51

2 Foundations

intersection = 99

/

union = 181

IoU = 0.547

IoU = 0.201
IoU = 0.677

Figure 2.15: Illustration of the intersection over union localization quality estimate.

bounding box

set(ξ) :=
{
(x, y) ∈ R2 : x ∈ [x− w

2 , x +
w
2], y ∈ [y − h

2 , y +
h
2]
}
. (2.120)

Then, the IoU is the fraction of area of intersection and the area of union between the two
bounding boxes

IoU(ξ1, ξ2) :=
dx (set(ξ1) ∩ set(ξ2))

dx (set(ξ1) ∪ set(ξ2))
∈ [0, 1]. (2.121)

See fig. 2.15 for a graphical illustration of the IoU between different combinations of
bounding boxes. This definition of the IoU in fact generalizes to arbitrary measurable sets
of R2. In particular, IoU is applicable to segments obtained in semantic segmentation34.
The IoU is a localization quality metric taking on its maximum 1 for matching (up to sets
of measure 0) subsets of R2. Therefore, the IoU also quantifies how close two bounding
boxes are to each other and allows to identify clusters of bounding boxes.

A predicted bounding box ξ̂ is counted as a TP prediction, if and only if it has maximal
IoU with any ground truth instance above some threshold τTP

IoU, i.e., if and only if

max
ξ:(ξ,κ)∈ y

IoU
(
ξ̂, ξ
)
> τTP

IoU. (2.122)

Otherwise, ξ̂ is counted as a FP. A typical value of τTP
IoU is 0.5. A ground truth box

(ξ, κ) ∈ y is called a FN, iff there is no TP ξ̂ with IoU(ξ, ξ̂) > τTP
IoU. That is, no predicted

box is sufficiently closely located to ξ. One does not speak of TNs in object detection
since the prediction of the absence of a foreground object is ambiguous.

Non-Maximum Suppression. Non-maximum suppression (NMS) is a reduction me-
chanism for localization predictions. This algorithm has long been used in computer
vision before deep learning became the state-of-the-art and is now a common step in

34Technically, segments are discretized on pixel-level and are, therefore, made up of rectangles.

52

2.3 Advanced Computer Vision Tasks

object detection post-processing [151]. Given a set B := {(ξ1, s1), . . . , (ξn, sn)} of tuples
consisting of n bounding boxes ξi and some scores35 si ordered descendingly by si, i.e.,
the first tuple (ξ1, s1) has the highest score. NMS filters the set B iteratively. Namely,
the first sample (ξ1, s1) with the highest score will “suppress” any other (ξi, si) ∈ B with
IoU(ξ1, ξi) > τNMS

IoU for some IoU-threshold τNMS
IoU ∈ [0, 1]. This means that any such box

is removed from B. The remaining ordered set

B(ξ1) = {(ξ(1)1 , s
(1)
1), . . . , (ξ(1)n1

, s(1)n1
)} ⊂ B (2.123)

only contains samples (ξ
(1)
i , s

(1)
i) ∈ B which have not been suppressed by (ξ1, s1) and,

therefore, have lower or equal IoU with it. The NMS algorithm applies the same filtering

in the next iteration with B(ξ1) with respect to the bounding box (ξ
(1)
1 , s

(1)
1) having the

highest score in B(ξ1). Again, boxes in B(ξ1) are suppressed which in turn constructs a

set B(ξ1, ξ
(1)
1) ⊂ B(ξ1). Bounding boxes in B(ξ1, ξ

(1)
1) now have low IoU with both, ξ1 and

ξ
(1)
1 . This algorithm continues iteratively like so and stops as soon as

B(ξ1, ξ
(1)
1 , . . . , ξ

(k)
1) = ∅, (2.124)

i.e., when no further boxes are available. We then define the NMS result on B by

NMS(B) = {(ξ1, s1), (ξ(1)1 , s
(1)
1), . . . , (ξ

(k)
1 , s

(k)
1)}. (2.125)

In some cases, it is also desirable to regard triples ξi, κi, si where κi is a class in [C]. One
then sets IoU(ξ1, ξi) = 0 if the class κ1 ̸= κi disagree. This is done in order to prevent
predicted bounding boxes with similar localization but different predicted class to suppress
each other. Typical values of τNMS

IoU are 0.5 and 0.7.

2.3.2.1 Loss Functions in Object Detection: Semantics, Localization and
Objectness

In order to efficiently compute losses from the prediction f̂(x|θ) (see eq. (2.118)) and a
given ground truth y, foreground instances in y are “assigned” to a subset of the Nanch

anchor boxes. The anchor boxes themselves are independent of the neural network weights
and also of the input x and define fixed bounding boxes

Anch
(
f̂
)
=
{
ãni,j =

(
x̃ni,j , ỹ

n
i,j , w̃

n
i,j , h̃

n
i,j

)}n∈[NAnch]

(i,j)∈I/ς2
(2.126)

distributed over I/ς2. Anchor boxes can be understood as being part of the model archi-
tecture. The assignment can then be understood as a function from indices, encoding the
anchor position and shape, to an extended ground truth

Asgn
f̂ ,y

(·) : (I/ς2)× [NAnch] → y ∪ {∅,BG}. (2.127)

This assignment specifies how the activations for an anchor receive training feedback from
the ground truth y. Here, ∅ means that no assignment is made, neither foreground nor

35This does not necessarily have to be the objectness score of an object detector, although that is the most
important case of application for us. We will, therefore, stick with the notation.

53

2 Foundations

background. Anchors with ∅ assigned usually receive no training feedback from y. BG
means that the anchor receives “background” feedback during training, i.e., should have
low objectness activations. The assignment depends explicitly on the entire ground truth
y since it is usually constructed algorithmically by the following steps:

1. By default, anchors first point to background, i.e., Asgn
f̂ ,y

(i, j, n) = BG for all

(i, j, n) ∈ (I/ς2)× [NAnch].

2. Iteratively over b ∈ y, all anchors with sufficient IoU > τAsgn,∅
IoU are assigned neutrally,

i.e., ∅. Here, τAsgn,∅
IoU ∈ [0, 1] is a threshold which typically has values 0.5 or 0.7, i.e.,

IoU
(
ãni,j , b

)
> τAsgn,∅

IoU =⇒ Asgn
f̂ ,y

(i, j, n) = ∅. (2.128)

3. Again, iterating over b ∈ y, all anchors with sufficient IoU > τAsgn,y
IoU with b ∈ y will

be assigned b. That is,

IoU
(
ãni,j , b

)
> τAsgn,y

IoU =⇒ Asgn
f̂ ,y

(i, j, n) = b (2.129)

for all (i, j, n) ∈ (I/ς2)× [NAnch] where assignment is iteratively over some ordering

of b ∈ y. Here, τAsgn,y
IoU ≥ τAsgn,∅

IoU is again a threshold in [0, 1]. This enforces closer
localization for assigning to b.

4. Lastly, with the goal of obtaining an assignment of at least one anchor to each b ∈ y,
an anchor with maximal IoU with b is assigned to each b. That is,

(i, j, n) ∈ argmax
(i,j,n)∈(I/ς2)×[NAnch]

IoU(ãni,j ,b) =⇒ Asgn
f̂ ,y

(i, j, n) = b. (2.130)

The precise mapping defined by the assignment depends on an ordering imposed on y and
does not necessarily guarantee that there is at least one anchor assigned to each ground
truth box36 b ∈ y. However, such cases are rare and pose no obstruction in applications.

Loss functions in object detection can be divided into roughly three categories which are
responsible for the estimations π̂, ξ̂ and ŝ, respectively.

Classification Losses. In order to estimate a probability distribution π̂ = (π̂1, . . . , π̂C)
over all possible classes, usually the standard cross entropy loss (cf. eq. (2.101)) is used
between ground truth boxes (ξ, κ) and prediction generated from assigned anchors. That
is,

LAsgn
CE

(
f̂(x|θ)

∣∣∣ y) :=
∑

(ξ,κ)∈y

∑
(i,j,n)∈Asgn−1

f̂ ,y
({ξ})

LCE

(
π̂ni,j(x|θ)

∣∣κ) . (2.131)

An adaptation of this loss function involves a (C + 1)-st class probability π̂0. The latter
indicates the probability of a prediction f̂ni,j belonging to the background class. This
adaptation plays a role when the detector does not have a separate objectness score ŝ.

36This can happen by having simply two ground truth boxes with equal localization but different categorical
label. Moreover, assignments in step 4 can overwrite earlier assignments from steps 3 and 4.

54

2.3 Advanced Computer Vision Tasks

In that case, the assignment of ground truth instances still works the same, however, an
additional term is responsible for learning background feedback:

LAsgn
CE,C+1

(
f̂(x|θ)

∣∣∣ y) := LAsgn
CE

(
f̂(x|θ)

∣∣∣ y)− ∑
(i,j,n)∈Asgn−1

f̂ ,y
({BG})

log
(
(π̂0)

n
i,j(x|θ)

)
.

(2.132)
The second term is the negative log-likelihood of the background class prediction and
applies to all BG-assigned anchors. Alternatively, sometimes classification is learned in
a one-vs-all fashion with class-wise sigmoid activation instead of π̂ being the result of a
softmax activation. In such a case, π̂ is generally no longer a probability distribution
due to lack of normalization. The loss function then involves the class-wise binary cross
entropy:

LAsgn
BCE

(
f̂(x|θ)

∣∣∣ y) :=
∑

(ξ,κ)∈y

∑
(i,j,n)∈Asgn−1

f̂ ,y
({ξ})

LBCE

(
π̂ni,j(x|θ)

∣∣κ) , (2.133)

where

LBCE (π̂(x|θ)|κ) := −
C∑
c=1

δκc log(π̂c) + (1− δyc) log(1− π̂c) (2.134)

is the sum of class-wise binary cross entropy values.

Bounding Box Regression Losses. For the estimation of bounding box localization
ξ̂, classical regression losses such as the MSE loss for regression variables in d dimensions
can be applied. Such a loss

LMSE

(
ξ̂(x|θ)

∣∣∣ ξ) :=
1

d

d∑
l=1

(
ξ̂l(x|θ)− ξl

)2
(2.135)

is applied to foreground-assigned anchors in which case d = 4:

LAsgn
MSE

(
f̂(x|θ)

∣∣∣ y) :=
∑

(ξ,κ)∈y

∑
(i,j,n)∈Asgn−1

f̂ ,y
({ξ})

LMSE

(
ξ̂ni,j(x|θ)

∣∣∣ ξ) . (2.136)

For large deviations, the quadratic increase of the L2-loss leads to linearly increasing
gradients. This can lead to overstepping local minima during gradient descent. Instead of
an L2-loss, the L1-loss

LAsgn
L1

(
f̂(x|θ)

∣∣∣ y) :=
∑

(ξ,κ)∈y

∑
(i,j,n)∈Asgn−1

f̂ ,y
({ξ})

1

d

4∑
l=1

∣∣∣(ξ̂ni,j)
l
(x|θ)− ξl

∣∣∣ (2.137)

can be applied leading to constant gradient steps. However, this has the downside of not
being continuously differentiable everywhere. A compromise between the two which comes
at the expense of a hyperparameter can be found in the so-called “smooth L1 distance”

L1
sm,β

(
ξ̂
∣∣∣ ξ) :=

 1
2β

(
ξ̂ − ξ

)2 ∣∣ξ̂ − ξ
∣∣ < β∣∣∣ξ̂ − ξ

∣∣∣− β
2

∣∣ξ̂ − ξ
∣∣ ≥ β

. (2.138)

55

2 Foundations

−1.5 −1 −0.5 0 0.5 1 1.5

0

1

2

x

|x|
x2

L1
sm,0.25(x|0)
L1
sm,1(x|0)

L1
sm,1.5(x|0)

Figure 2.16: Comparison of the L1 and L2 distance with the smooth L1 distance L1
sm,β for different

values of β.

Figure 2.16 shows plots of the smooth L1 distance for different values of β. Here, β > 0
determines the point of transition from the parabola to the linear function. This function
is continuously differentiable everywhere and has constant gradients for large differences∣∣ξ̂ − ξ

∣∣. The respective object detection loss for foreground instances then is

LAsgn
L1
sm,β

(
f̂(x|θ)

∣∣∣ y) :=
∑

(ξ,κ)∈y

∑
(i,j,n)∈Asgn−1

f̂ ,y
({ξ})

1

d

4∑
l=1

L1
sm,β

((
ξ̂ni,j

)
l
(x|θ)

∣∣∣ ξl) . (2.139)

Objectness Losses. The distinction between foreground and background instances via
the objectness score ŝ is oftentimes learned as a binary classification problem over {0, 1}
for each anchor. Therefore, the binary cross entropy loss is given by

LAsgn
BCE,s

(
f̂(x|θ)

∣∣∣ y) :=
∑

(ξ,κ)∈ y

∑
(i,j,n)∈Asgn−1

f̂ ,y
({ξ})

LBCE

(
ŝni,j(x|θ)

∣∣ 1)
+

∑
(i,j,n)∈Asgn−1

f̂ ,y
({BG})

LBCE

(
ŝni,j(x|θ)

∣∣ 0) . (2.140)

This is one of the standard choices of loss functions where the foreground label 1 is learned
on all positive assignments and the background label 0 is learned for all background
assignments. Since instances in most applications of object detection tend to be sparsely
distributed, there are magnitudes more anchors assigned to the background class than to
foreground instances. This can lead to far stronger background feedback than foreground
feedback during training. In order to counteract this phenomenon, different approaches
have been taken. In the BCE loss, random subsampling can be applied to obtain a fixed
number of anchors in Asgn−1

f̂ ,y
({BG}) for the loss computation. Another approach is taken

in the RetinaNet architecture [101] where the focal loss for object detection was introduced.
Here, both terms of the BCE loss are dynamically weighted by a power of the objectness

56

2.3 Advanced Computer Vision Tasks

score

LAsgn
Foc

(
f̂(x|θ)

∣∣∣ y) := −
∑

(ξ,κ)∈ y

∑
(i,j,n)∈Asgn−1

f̂ ,y
({ξ})

(
1− ŝni,j

)γFoc log (ŝni,j) (2.141)

−
∑

(i,j,n)∈Asgn−1

f̂ ,y
({BG})

(
ŝni,j
)γFoc log (1− ŝni,j

)
. (2.142)

The parameter γFoc ≥ 0 is a hyperparameter of the loss function and typically takes the
value 2 which has worked well in a range of applications. The pre-factors (1− ŝni,j)

γFoc

leads to a dynamic up-weighting if the respective anchor prediction ŝni,j was incorrect (close
to 0 in the case of foreground assignments). Similarly, for correctly assigned objectness
to background-assigned samples, the term (ŝni,j)

γFoc leads to a dynamic down-weighting of
the background loss.

2.3.2.2 Evaluation Metrics in Object Detection: Mean Average Precision

Object detection performance is usually assessed by comparing the prediction of an object
detector after objectness score thresholding and NMS. The performance, therefore, inher-
ently depends on two thresholds τs and τ

NMS
IoU . Typically, since TP, FP and FN are defined

in object detection, one computes the average precision metric AP in object detection.37

Usually, the dependency of the AP on the confidence threshold τs is not explicitly stated.
Smaller τs usually only increases AP, see [39] for a discussion of the influence of additional
FPs to the AP metric. Average precision AP

(
c; τNMS

IoU

)
is computed for each class c ∈ [C]

separately and averaged afterwards. This metric is called the mean average precision

mAP
(
τNMS
IoU

)
:=

1

C

C∑
c=1

AP
(
c; τNMS

IoU

)
(2.143)

which is dependent on the IoU threshold. As part of the MS COCO evaluation bench-
mark [102], the metrics

AP50 := mAP (0.5) , AP75 := mAP (0.75) , AP[0.5:0.95] :=
1

10

9∑
j=0

mAP(0.5 + 0.05 · j)

(2.144)

have been established where in AP[0.5:0.95] mean average precision values are averaged over
10 IoU thresholds between 0.5 and 0.95.

2.3.2.3 Example Architectures for Object Detection

Object detection architectures also broadly follow the scheme explained in section 2.3.1.3,
and consist of a backbone which extracts characteristic features from the input and a

37While the AP is itself not threshold-dependent and predictions with arbitrarily small objectness scores
may be included, predictions with ŝ < 0.1 oftentimes have little influence on the AP. This is so because
the area gain at already small precision (due to an abundance of FPs) is proportionally small.

57

2 Foundations

detection head. There is a rough division of architectures into two types of object detectors:
single-stage and two-stage object detectors. In single-stage detectors, the detection head
directly produces feature map activations for each anchor box which also involve a class
probability distribution and an objectness score. The YOLO family of object detectors [39,
142], RetinaNet [101] and SSD [106] are standard examples of single-stage detectors. We
will have a closer look at YOLOv3 [39] and RetinaNet in the next paragraph. Two-stage
detectors produce activations for so-called region-proposal anchors which first only specify
via an objectness score and a bounding box regression a set of boxes which likely contain
an object with unspecified class. This box, together with the feature map activations, is
fed through a second stage of the network. In the second stage, bounding box localizations
are refined and classified by estimating a class probability distribution. The R-CNN family
of object detectors [47,48,144] are standard examples of two-stage detectors, out of which
we will focus on Faster R-CNN [144].

Single-Stage Detectors: YOLOv3 and RetinaNet. In single-stage object detec-
tors, the last feature activations generated from an input x ∈ X of the neural network
directly give rise to the proposal boxes f̂(x|θ) ∈ Ŷ by undergoing simple post-processing
transformations. If we denote the activation of anchor ã = (x̃, ỹ, w̃, h̃) ∈ Anch(f̂) (recall
section 2.3.2.1) by

ϕ̂x, ϕ̂y, ϕ̂w, ϕ̂h, ϕ̂π1 , . . . , ϕ̂πC , ϕ̂s, (2.145)

the proposal predictions for the YOLOv3 detector are given by

x̂ := ς · σ
(
ϕ̂x

)
+ x̃, ŷ := ς · σ

(
ϕ̂y

)
+ ỹ, ŵ := eϕ̂w · w̃, ĥ := eϕ̂h · h̃,

π̂c :=σ
(
ϕ̂πc

)
∀c ∈ [C], ŝ := σ

(
ϕ̂s

)
.

(2.146)

Here, σ denotes the sigmoid function. In fact, the YOLOv3 architecture makes predictions
on three anchor grids with different strides ς1 = 2ς2 = 4ς3. The architecture leading to
the feature map activations on these three resolutions is depicted in fig. 2.17. From the
Darknet53 backbone which is the standard backbone of the YOLOv3 architecture, three
routes are fed into a feature pyramid network (FPN [100]) structure. The FPN structure is
designed to allow for predictions on different resolution feature maps, taking into account
features from coarser resolutions. At each “concatenate” block, the coarser feature maps
are bi-linearly interpolated to the desired resolution and concatenated along the channel
dimension to the incoming route features which have the finer resolution. Activations on
the three grids are obtained as the output of the three “Detection” blocks. Typically,
NAnch = 3 anchors are used for each grid cell where the original paper used 9 different
fixed aspect ratios of w̃/h̃. Ratios were obtained from a k-means cluster algorithm over
MS COCO [102] ground truth bounding boxes.

Prediction proposals f̂(x|θ) are gathered from all three grids and NMS is performed on all
proposals during the forward pass. During training, anchor matching is performed on each
grid separately, leading also to grid-wise loss computation for localization, classification
and objectness. The original implementation with input resolution H ×W = 608 × 608
uses strides ς1 = 32. This leads to 3 · (192 + 382 + 762) = 22.743 proposal boxes in
total where a separate objectness score is learned for each anchor. This moderate number

58

2.3 Advanced Computer Vision Tasks

(3×
3)-C

on
v
m
o
d
.
(32)

(1×
1)-C

on
v
m
o
d
.
(3·(5

+
C
))

(1×
1)-C

on
v
m
o
d
.
(3·

(5
+
C
))

(3×
3)-C

on
v
m
o
d
.
(512)

(3×
3)-C

on
v
m
o
d
.
(3·

(5
+
C
))

(3×
3)-C

on
v
m
o
d
.
(256)

(3×
3)-C

on
v
m
o
d
.
(32)

(/2)

(s× s)-Convmod. (k)

(3×
3)-C

on
v
(k
)

B
N

leak
y
R
eL

U

+

(1×
1)-C

o
n
v
m
o
d
.
(ℓ)

(3×
3)-C

on
v
m
o
d
.
(k
)

(3×
3)-C

on
v
m
o
d
.
(k
)
(/2)

Residual (ℓ, k)

R
esid

u
a
l
(32

,64)

2×
R
esid

u
al

(64
,128)

8×
R
esid

u
al

(128
,256)

8×
R
esid

u
al

(256
,512)

4×
R
esid

u
al

(512
,1024)

(1×
1)-C

on
v
m
o
d
.
(k
)

(3×
3)-C

on
v
m
o
d
.
(2
k
)

(1×
1)-C

on
v
m
o
d
.
(k
)

(3×
3)-C

on
v
m
o
d
.
(2
k
)

(1×
1)-C

on
v
m
o
d
.
(k
)

Detection (k)

D
etection

(128)

Darknet53 backbone

YOLOv3 detection head

FPN structure

con
caten

ate

(1×
1)-C

on
v
m
o
d
.
(256)

(1×
1)-C

on
v
m
o
d
.
(128)

con
caten

ate

(3×
3)-C

on
v
m
o
d
.
(1024)

D
etection

(512)

D
etection

(256)

Figure 2.17: Illustration of the YOLOv3 architecture. The Darknet53 backbone consists of a
sequence of simple residual blocks which reduce feature resolution (indicated by “(/2)”). Features
are extracted at three different output routes and successively concatenated (FPN structure) to
obtain detection results at different resolutions in the detection head.

59

2 Foundations

of proposal boxes allows for an implementation with no special background sampling or
weighting strategy during training as opposed to the RetinaNet detector.

The RetinaNet [101] detector follows a similar architectural design as YOLOv3 where a
ResNet serves as backbone. An FPN extending the last three feature maps of different res-
olutions of the ResNet backbone to five feature resolutions via up-sampling. Two shared
fully convolutional subnetworks consisting of five convolutional modules (see “Convmod.”
in fig. 2.17) take care of bounding box regression and classification for each of the cumula-
tive ≈ 100.000 anchor boxes. Due to the inherent immense imbalance between foreground
and background assignments during training, Lin et al. proposed to utilize the focal loss on
each classification prediction π̂1, . . . , π̂C individually instead of defining a separate object-
ness score for each anchor. Therefore, the classifier subnetwork takes care of classification
and foreground-background discrimination at the same time.

Two-Stage Detectors: Faster R-CNN. Two-stage detectors first produce a region
proposal detection f̂RPN(x|θ) which is a class-agnostic single-stage object detection where
only foreground instances are detected. Training of the region proposal network (RPN)
follows the same procedure as a single-stage object detector where often, τAsgn

IoU = 0.3 and

τAsgn
IoU = 0.7. After objectness thresholding and NMS on the RPN proposals, a list of
RPN detection remains for processing in the second stage. Based on extracted backbone
features, the RPN detections are classified, and the localization is refined in the so-called
region of interest (RoI) head. Assignment of the RoI output f̂RoI(x|θ) to ground truth
boxes follows the same procedure as in section 2.3.2.1 with Anch(f̂) replaced by the NMS
output of f̂RPN(x|θ).

A large amount of implementation of the Faster R-CNN architecture use a ResNet back-
bone with FPN as described in the last paragraph, also with five feature map resolutions.
The RPN uses a single (3× 3) convolution layer with ReLU activation. This generates a
feature map with a fixed number of channels (oftentimes 256) which are fed through two
“sibling” [144] convolution layers. The first convolution layer returns regression activa-
tions (ϕ̂RPN

x , ϕ̂RPN
y , ϕ̂RPN

w , ϕ̂RPN
h) for all RPN anchors. The second convolution layer gives

an objectness score activation ϕ̂RPN
s for each anchor on the basis of which NMS can be per-

formed. This entire convolutional RPN structure is used on each feature map resolution
scale. Each RPN box ξ̂RPN = (x̂RPN, ŷRPN, ŵRPN, ĥRPN) is utilized to extract a small fea-
ture map patches of fixed size (oftentimes (7×7)) from the FPN feature map, see fig. 2.18.
Such feature map patches are obtained from coarsened pooling (quantizing the alignment
of the feature map pixels and ξ̂RPN: RoI pooling) or a weighted pooling (weighting the
alignment of the feature map pixels with ξ̂RPN according to coverage: RoI alignment).
The resulting pooled feature map values are flattened and fed through two fully connected
layers with ReLU activations. From there, one fully connected layer outputs classification
activations ϕ̂RoI

0 , . . . , ϕ̂RoI
C where 0 indicates the background class. Another fully connected

layer yields C bounding box refinements ϕ̂RoI
1 , . . . ϕ̂RoI

C (each being four-dimensional) for

each RPN box. The ground truth box that is matched to ξ̂RPN determines which class-
dependent bounding box refinement contributes to the loss function. The region proposal

60

2.3 Advanced Computer Vision Tasks

RPN proposal backbone / FPN features RoI features RoI pool / align

Figure 2.18: Feature extraction based on a RPN proposal box in the RoI head. Pooling or aligning
of features results in a feature map. On the basis of flattened features, classification and bounding
box regression for the RPN box is performed with fully connected layers. The image on the left is
taken from the MS COCO dataset [102].

transformation based on the respective anchor box is

x̂RPN := w̃ · ϕ̂RPN
x + x̃, ŷRPN := h̃ · ϕ̂RPN

y + ỹ, ŵRPN := eϕ̂
RPN
w · w̃, ĥRPN := eϕ̂

RPN
h · h̃
(2.147)

as well as ŝRPN :=, σ
(
ϕ̂RPN
s

)
. Further, the RoI refinement acts as further offsets to the

RPN box:

(x̂RoI)c := ŵRPN · (ϕ̂x)
RoI

c + x̂RPN, (ŷRoI)c := ĥRPN · (ϕ̂y)
RoI

c + ŷRPN,

ŵRoI
c := e(ϕ̂

RoI
w)c · ŵRPN, ĥRoI

c := e(ϕ̂
RoI
h)

c · ĥRPN,

π̂RoI
c =Σc

(
ϕ̂RoI
0 , . . . , ϕ̂RoI

C

)
.

(2.148)

This yields the refined box ξ̂RoI
c = (x̂RoI

c , ŷRoI
c , ŵRoI

c , ĥRoI
c).

2.3.3 Semantic Segmentation of Camera Images: Pixel-wise
Classification

In semantic segmentation, each pixel of a given input image x ∈ X = [0, 1]3×H×W is
assigned to one of a predefined list of categories [C] = {1, . . . , C}. Therefore, the target
space in semantic segmentation is

Y := [C]H×W . (2.149)

While pixel-level classification is a technologically far more complex task than image clas-
sification, it can be theoretically treated in a very similar way. Ground truth annotations
are given as a segmentation mask y ∈ [C]H×W which serves as labels for the pixel-wise
classification. We obtain a probability distribution per pixel and, therefore, a function

f̂(·|θ) : X → [0, 1]C×H×W , f̂ i,j(x|θ) : X → [0, 1]C . (2.150)

61

2 Foundations

Figure 2.19: Data for semantic segmentation (taken from the Cityscapes [28] validation dataset)
including the original RGB image (top), colorized pixel-wise category annotations (center) and
predicted segmentation (bottom). The prediction was produced by the DeepLabv3+ model with
SEResNeXt backbone used in the investigations in chapter 4.

62

2.3 Advanced Computer Vision Tasks

Here, f̂ i,j(·|θ) denotes the probability distribution over pixel (i, j). Again, this function
is accompanied by an argmax function ĉ(x|θ) with

ĉi,j(x|θ) = argmax
c∈{1,...,C}

f̂ i,jc (x|θ) (2.151)

as well, as a softmax score function

ŝi,j(x|θ) = max
c∈{1,...,C}

f̂ i,jc (x|θ). (2.152)

The pixel-wise class prediction ĉ(x|θ) gives rise to connected components in the image
which are assigned the same predicted class, so-called segments. A segment is, therefore,
a set of pixels

S := {(i, j) : ∃(a, b) ∈ {(i± 1, j ± 1)} with ĉa,b(x|θ) = ĉi,j(x|θ)} ⊂ I (2.153)

such that at least one of the eight neighboring pixels is assigned the same class.

2.3.3.1 Loss Functions in Semantic Segmentation

Since semantic segmentation is primarily a classification task on pixel-level, usually the
pixel-wise cross entropy loss

LH×W
CE

(
f̂(x|θ)

∣∣∣ y) :=
1

HW

∑
(i,j)∈I

LCE

(
f̂ i,j(x|θ)

∣∣∣ yi,j) (2.154)

is used for training, where pixel-wise losses are averaged over the entire image. This way,
learning feedback from all pixel predictions is generated and weighted equally across the
image. In some cases, a class-weighting based on y may be beneficial in order to simplify
the learning of minority classes.

2.3.3.2 Evaluation Metrics in Semantic Segmentation: Mean Intersection
Over Union

As discussed in section 2.3.2, the intersection over union can be generalized to arbitrary
measurable subsets of R2. This plays a role in assessing how accurately the semantic
segmentation prediction by a model f̂ covers the actual ground truth mask y. To this
end, for the ground truth class c ∈ [C] fixed, we consider the IoU between predictions
and ground truth pixels of class c. On a test dataset D = {(x1, y1), . . . , (x|D|, y|D|)} we
compute the overall IoU

IoU
f̂
(c;D) :=

1

|D|

|D|∑
l=1

IoU
(
1{ĉ(xl|θ)=c}, 1{yl=c}

)
(2.155)

of class c. On a fixed-class basis, each pixel can be categorized as a TP (ĉi,j = c = yi,j), FP
(ĉi,j = c ̸= yi,j) or a FN (ĉi,j ̸= c = yi,j). With this categorization, the IoU in eq. (2.155)
can also be written as

IoU
(
1{ĉ(xl|θ)=c}, 1{yl=c}

)
=

|TPĉ(xl|θ),y(c)|
|TPĉ(xl|θ),y(c)|+ |FPĉ(xl|θ),y(c)|+ |FNĉ(xl|θ),y(c)|

. (2.156)

63

2 Foundations

U
p
sa
m
p
le

U
p
sa
m
p
le

ASPP

Encoder

Decoder

x

B
ack

b
on

e

(1×
1-C

on
v

(1×
1-C

o
n
v

(1×
1
-C

on
v

(3×
3)-C

o
n
v
D

=
6

(3×
3)-C

on
v
D

=
12

(3×
3)-C

on
v
D

=
18

P
o
olin

g

con
caten

ate

con
ca
ten

ate

Figure 2.20: Schematic illustration of the DeepLabv3+ encoder-decoder architecture [20] involving
an ASPP structure.

A common performance measure of semantic segmentation is then the mean IoU where
an average over classes

mIoU
f̂
(D) :=

1

C

∑
c∈[C]

IoU
f̂
(c;D) (2.157)

is computed.

2.3.3.3 Example Architectures in Semantic Segmentation

Modern architectures in semantic segmentation are mostly fully convolutional [19,20,149].
However, the recent advances of vision transformers (section 2.2.1.3) have also given rise to
powerful and highly expressive backbone networks which also achieve state-of-the-art per-
formance. Typical architectures follow a similar template as classification and object de-
tection networks and consist of a backbone network which extracts features and a segmen-
tation head. The latter produces a pixel-wise activation feature map ϕ̂(x|θ) ∈ RC×H×W

of the same resolution as the input x ∈ X . f̂ i,j(x|θ) = Σ(ϕ̂i,j(x|θ)) is obtained via
the softmax function applied pixel-wise. As an example architecture we focus on the
DeepLabv3+ [20] architecture in this section. It combines some important components
which have lead to the success of convolutional neural networks in semantic segmentation.
From the input to the final backbone layer, the resolution is typically iteratively reduced
up to a factor of 16 at which point relevant information in the feature maps has been sig-
nificantly compressed. The original DeepLabv3+ implementation utilized a Xception [24]
backbone, whereas other implementations are built on the basis of ResNet variants. In
both cases, the replacement of pooling by strided depth-wise convolution layers has proven

64

2.3 Advanced Computer Vision Tasks

beneficial. A novelty introduced in the original DeepLabv3 [19] architecture was the usage
of spatial pyramid pooling via dilated (“atrous”) convolutions (so-called “atrous spatial
pyramid pooling” or short, ASPP) illustrated in fig. 2.20. The final feature map obtained
from the backbone is fed in parallel through a (1×1) convolution, dilated (3×3) convolu-
tions with dilations 6, 12, 18 and a global average pooling layer. The resulting five feature
maps are concatenated and fed through another (1× 1) convolution to obtain activations
which served as logits that were up-sampled in DeepLabv3. In the DeepLabv3+ architec-
ture, this part without final up-sampling acts as an encoder network which is supplemented
with a decoder network. In the decoder, feature maps from the backbone with 4× reduced
resolution are fed through a (1 × 1) convolution in order to reduce the amount of chan-
nels. The result is concatenated with the up-sampled encoder output and fed through two
(3×3) convolutions with batch normalization and ReLU activation before the final (1×1)
convolution. The output of the decoder is again bi-linearly up-sampled by a factor of 4
yielding the final logit activations of the DeepLabv3+ architecture.

65

3
Gradient Uncertainty for Deep Object
Detectors

In this chapter we introduce a novel uncertainty quantification method for deep object
detectors based on a version of the self-learning gradient on instance level. The presented
contents are in large parts taken word-for-word from [145].

3.1 Introduction: Confidence Assignment in Deep Object
Detection and Uncertainty Quantification

Deep artificial neural networks (DNNs) designed for tasks such as object detection or
semantic segmentation provide a probabilistic prediction on given feature data such as
camera images. Modern deep object detection architectures [12, 39, 101, 106, 144] predict
bounding boxes for instances of a set of learned classes on an input image. The so-called
objectness or confidence score indicates the probability of the existence of an object for
each predicted bounding box, see section 2.3.2. Throughout this chapter, we will refer to
this quantity which the DNN learns by the term score. For applications of deep object
detectors such as automated surgery or driving, the reliability of this component is crucial.
See, for example the detection in the top panel of fig. 3.1 where each box is colored from
red (low score) to green (high score). Apart from the accurate, green boxes, boxes with a
score below 0.3 are indicated with dashed lines. These contain true and false predictions
which cannot be reliably separated in terms of their score. In addition, it is well-known
that DNNs tend to give mis-calibrated scores [50,55,174] that are oftentimes over-confident
and may also lead to unreliable predictions. Over-confident predictions might render an
autonomous driving system inoperable by perceiving non-existent, FP instances. Perhaps
even more detrimental, under-confidence may lead to overlooked, FN predictions possibly
endangering humans outside autonomous vehicles like pedestrians and cyclists, as well as
the passengers.

67

3 Gradient Uncertainty for Deep Object Detectors

Figure 3.1: Object detection in a street scene. Top: DNN Score ŝ. Bottom: Meta classification
confidence τ̂ involving gradient features. Dashed boxes here indicate the discarding at any confi-
dence threshold in [0.3, 0.85]. The top image contains FNs which are not separable from correctly
discarded boxes based on the score (lower threshold would lead to FPs). In the bottom image,
those ŝ-FNs are assigned higher confidences and there is a large range of thresholds with no FPs.

68

3.1 Introduction

Apart from modifying and improving the detection architecture or the loss function, there
exist methods to estimate prediction confidence which are more involved than the score
in order to remedy these issues [109, 121, 161]. We use the term confidence more broadly
than score to refer to quantities which represent the estimated probability of a detection
being correct. Such a quantity should reflect the model’s overall level of competency
when confronted with a given input and is intimately linked to prediction uncertainty.
Uncertainty for statistical models, in particular DNNs, can broadly be divided into two
types [70] depending on their primary source [80, 202], see also section 2.2.4. Whereas
aleatoric uncertainty is mainly founded in the stochastic nature of the data generating
process, epistemic uncertainty stems from the probabilistic nature of sampling data for
training, as well, as the choice of model and the training algorithm.

Due to the instance-based nature of deep object detection, modern ways of capturing epis-
temic uncertainty are mainly based on the instance-wise DNN output. From a theoretical
point of view, Bayesian DNNs [31, 115] represent an attractive framework for capturing
epistemic uncertainty for DNNs by modeling their weights as random variables. Prac-
tically, this approach introduces a large computational overhead making its application
infeasible for object detection. Therefore, in variational inference approaches, weights are
sampled from predefined distributions to address this. These famously include methods
like Monte-Carlo (MC) dropout [45, 169] generating prediction variance by performing
several forward passes under active dropout. The same idea underlies deep ensemble sam-
pling [88] where separately trained models with the same architecture produce variational
forward passes. Other methods based on the classification output can also be applied to
object detection such as softmax entropy or energy methods.

A number of other, strong uncertainty quantification methods that do not only rely
on the classification output have also been developed for image classification architec-
tures [27, 116, 132, 141]. However, the transfer of such methods to object detection frame-
works can pose serious challenges, if at all possible, due to architectural restrictions. For
example, the usage of a learning gradient evaluated at the network’s own prediction was
proposed [132] to contain epistemic uncertainty information. This approach has been
investigated for the detection of out-of-distribution (OoD) data in image classification.
The method has also been applied natural language understanding [181] where gradient
features and deep ensemble uncertainty were aggregated. The resulting confidence mea-
sures were well-calibrated. The epistemic content of gradient uncertainty has further been
explored in [69] in the classification setting by observing shifts in the data distribution.

In this chapter, we propose a way to compute gradient features for the prediction of deep
object detectors. We show that they perform on par with state-of-the-art uncertainty
quantification methods and that they contain information that cannot be obtained from
output- or sampling-based methods. In particular, we summarize the main contributions
as follows:

• We introduce a way of generating gradient-based uncertainty features for modern
object detection architectures in section 3.3.1, allowing to generate uncertainty in-
formation from hidden network layers.

69

3 Gradient Uncertainty for Deep Object Detectors

• We investigate the performance of gradient features in terms of meta classification
(FP detection, see section 3.3), calibration and meta regression (prediction of inter-
section over union IoU with the ground truth) in section 3.4. They are compared
to other means to quantify or approximate epistemic uncertainty and investigate
mutual redundancy as well as detection performance through gradient uncertainty.

• We explicitly investigate the tradeoff between FP and FN predictions for pedestrian
detection based on the score and meta classifiers.

• A theoretical treatment of the computational complexity of gradient features is pro-
vided. The focus of this treatment is a comparison with MC dropout and deep
ensembles where we show that their FLOP count is similar at worst. Explicit run-
time measurements are performed for verification.

An implementation of our method is publicly available38. A video illustration of our
method is publicly available at https://youtu.be/L4oVNQAGiBc.

3.2 Related Work: Uncertainty Quantification in Object
Detection and Meta Classification

Epistemic Uncertainty for Deep Object Detection. Sampling-based uncertainty
quantification such as MC dropout and deep ensembles have been investigated in the
context of object detection by several authors in the past. They are straight-forward to
implement into any architecture and yield output variance for all bounding box features.
Harakeh et al. [57] employed MC dropout and Bayesian inference as a replacement of NMS
to get a joint estimation of epistemic and aleatoric uncertainty. Similarly, epistemic un-
certainty measures were obtained by Kraus and Dietmayer [85] from MC dropout. Miller
et al. [121] investigated MC dropout as a means to improve object detection performance
in open-set conditions. Different merging strategies for samples from MC dropout were
investigated by Miller et al. [120] and compared with the influence of merging boxes in
deep ensembles [122]. Lyu et al. [109] aggregated deep ensemble samples as if produced
from a single detector to obtain improved detection performance. A variety of uncertainty
measures generated from proposal box variance pre-NMS called MetaDetect was investi-
gated by Schubert et al. [161]. In generating advanced scores and IoU estimates, it was
reported that the obtained information is largely redundant with MC dropout uncertainty
features. All the methods above are based on the network output and generate variance
by aggregating prediction proposals in some manner. Moreover, a large amount of un-
certainty quantification methods based on classification outputs can be directly applied
to object detection [62, 107]. Little is known about other methods developed for image
classification that are not directly transferable to object detection due to architectural
constraints (e.g., activation-based [27] or gradient-based [132] uncertainty). The central
difficulty lies in the fact that different predicted instances depend on shared latent features
or DNN weights such that the base method can only estimate uncertainty for the entire
prediction, i.e., for all instances, instead of individual estimates per instance. We show

38https://github.com/tobiasriedlinger/gradient-metrics-od

70

https://youtu.be/L4oVNQAGiBc
https://github.com/tobiasriedlinger/gradient-metrics-od

3.3 Method

that gradient uncertainty information can be extracted from hidden layers in object de-
tectors. We seek to determine how they compare to output-based methods and show that
they contain orthogonal information.

Meta Classification and Meta Regression. The term meta classification refers to
the discrimination of TPs from FPs on the basis of uncertainty features which was first
explored by Hendrycks and Gimpel [62] to detect OoD samples based on the maximum
softmax probability. Since then, the approach has been applied to natural language
processing [181], semantic segmentation [16, 113, 152, 153, 155], instance segmentation in
videos [114] and object detection [84,161] to detect FP predictions on the basis of uncer-
tainty features accessible during inference. Moreover, meta regression, the estimation of
IoU based on uncertainty in the same manner, was also investigated [113,114,153,155,161]
showing large correlations between estimates and the true localization quality. Chan et al.
[16] have shown that meta classification can be used to improve network accuracy, an idea
that so-far has not been achieved for object detection. Previous studies have overlooked
class-restricted meta classification performance, e.g., when restricting to safety-relevant
instance classes. Moreover, in order to base downstream applications on meta classifica-
tion outputs, resulting confidences need to be statistically reliable, i.e., calibrated which
has also escaped previous research.

3.3 Methods: Computing Instance-wise Loss Gradients in
Object Detection

3.3.1 Gradient-Based Epistemic Uncertainty

In instance-based recognition tasks, such as object detection or instance segmentation, the
prediction

ŷ = NMS
(
f̂(x|θ)

)
=:
(
ŷ1, . . . , ŷNx

)
(3.1)

consists of a list of instances like bounding boxes, section 2.3.2 for notation. The length
of ŷ usually depends on the corresponding input x ∈ X = [0, 1]3×H×W and on hyperpa-
rameters like confidence or overlap thresholds τs, τ

NMS
IoU . Uncertainty information which

is not generated directly from instance-wise data such as activation- or gradient-based
information can at best yield statements about the entirety of ŷ. However, uncertainty is
not immediately given for any individual instance ŷj . This issue is especially apparent for
uncertainty generated from deep features which potentially all contribute to an instance
ŷj where j ∈ [Nx]. Here, we introduce an approach to generate gradient-based uncertainty
features for the instance-based setting. To this end, we sketch how gradient uncertainty
is generated for classification tasks.

3.3.1.1 Gradient Uncertainty in the Classification Setting: Uncertainty via
Learning Stress

Generically, given an input x, a classification network predicts a class distribution

f̂(x|θ) ∈ [0, 1]C (3.2)

71

3 Gradient Uncertainty for Deep Object Detectors

of fixed length C given a set of weights θ (recall section 2.3.1). During training, the latter is
compared to the ground truth label y belonging to x by means of some loss function L(·|·)
(see section 2.3.1.1), which is minimized by optimizing θ, e.g., by standard stochastic gra-
dient descent (see section 2.2.2.1). The θ-step is proportional to the gradient g(x,θ, y) :=
∇θL(f̂(x|,θ)|y) which can also be regarded as a measure of learning stress imposed upon
θ. Gradient uncertainty features are generated by substituting the non-accessible ground
truth y with the network’s class prediction ĉ(x|θ) := argmaxc {f̂c(x|θ)}c∈[C]. Here, we

disregard the dependence of the latter on θ39, denoted ĉ(x). Scalar values are obtained
by computing some magnitude of

g(x,θ, ĉ(x)) = ∇θL
(
f̂(x|θ)

∣∣∣ ĉ(x)) . (3.3)

To this end, in our experiments we employ the maps

{min(·),max(·),mean(·), std(·), ∥ · ∥1, ∥ · ∥2}. (3.4)

We discuss the latter choice in section 3.4 and first illuminate some points about eq. (3.3).

Intuition and Discussion of (3.3). First, eq. (3.3) can be regarded as the self-learning
gradient of the network. It, therefore, expresses the learning stress on θ under the condition
that the class prediction ĉ(x) were given as the ground truth label. The collapse of the
predicted distribution f̂(x|θ) to ĉ(x) implies that eq. (3.3) does not generally vanish in
the classification setting. However, this consideration poses a problem for (bounding box)
regression which we will address in the next paragraph. We also note that it is possible to
generate fine-grained features by restricting θ in eq. (3.3) to subsets of weights θℓ. These
could be individual layers, convolutional filters or singular weights where we then compute
partial gradients of L.
Using eq. (3.3) as a measure of uncertainty may be understood by regarding true and
false predictions. A well-performing neural network which has ĉ(x) already close to the
true label y tends to experience little stress when trained on (x, y) with the usual learning
gradient. This reflects confidence in the prediction ĉ(x) and the difference between eq. (3.3)
and the true gradient is then small. In the case of false predictions ĉ(x) ̸= y, the true
learning gradient enforces large adjustments in θ. The self-learning gradient eq. (3.3)
behaves differently in that it is large for non-peaked or uncertain (high entropy) predictions
f̂(x|θ) and small for highly peaked distributions.

In the following, we explain how empirical findings support the hypothesis that gradient
uncertainty as explained above contains empirical uncertainty.

3.3.1.2 Theoretical Link with Empirical Findings

Assuming that we draw data z = (x, y) (recall section 2.1.1.3) from a fixed distribution
µZ , we regard g(x) := g(x,θ, ĉ(x)) for a parametric classification model:

f̂(·|θ) : x 7→ f̂(x|θ). (3.5)

39Due to the application of the argmax operator, ĉ can be regarded as being piece-wise constant with
respect to θ.

72

3.3 Method

This model estimates µ|X=x (see section 2.1.1). The labels y and the model’s class pre-
diction ĉ are categorical over a class space Y = [C]. For a loss function L = L(f(x|θ)|y),
we compute the gradient

g(x) = g(x,θ, ĉ) = ∇θL(f̂(x|θ)|ĉ) (3.6)

where we neglect the implicit θ-dependency in ĉ(x) since ĉ(x) is locally constant with
discontinuity on decision boundaries of f̂ . This self-learning gradient coincides with the
ordinary learning gradient g(x,θ, y) with frequency Pr(y = ĉ(x)), that is, the accuracy of
the model.

We can investigate whether g(x) is large in the sense of some metric M , like M(g) = ∥g∥ρ
for ρ ∈ [1,∞], statistically whenever the prediction ĉ(x) is uncertain or prone to error.
Thus, we compare conditional distributions over M(g(x)) conditioned to incorrect predic-
tions ĉ(x) ̸= y versus correct predictions ĉ = y. The application of different risk functionals
to the distributions can then relate the statistical magnitudes of M(g) conditional to ĉ.
Investigating the expected value as a simple risk functional, we search conditions for

E(X,Y)∼µZ [M(g(X))|ĉ(X) = Y] < E(X,Y)∼µZ [M(g(X))|ĉ(X) ̸= Y]. (3.7)

We first call ε(x) the conditional error rate and ε the total error rate of the model f̂ under
the distribution µZ with

ε(x) =
∑
c̸=ĉ(x)

p(c|x), ε = EX∼µX [ε(X)]. (3.8)

The conditional expectations then yield

E(X,Y)∼µZ [M(g(X))|ĉ(X) ̸= Y] =

∫ ∑
y ̸=ĉ(X)M(g(X)) dµZ(X, y)

Pr(ĉ(X) ̸= Y)

=
1

ε
EX∼µX [ε(X)M(g(X))]

= EX∼µX [M(g(X))] +
Cov(ε(X),M(g(X)))

ε

(3.9)

E(X,Y)∼µZ [M(g(X))|ĉ(X) = Y] =

∫
(1− ε(X))M(g(X)) dµX(X)

Pr(ĉ(X) = Y)

=
1

1− ε
EX∼µX [(1− ε(X))M(X)]

= EX∼µX [M(g(X))] +
Cov(ε(X),M(g(X)))

ε− 1
.

(3.10)

Therefore, EX∼µX [M(g(X))] and the total error rate ε drop out of eq. (3.7), which is
finally equivalent to

Cov(ε(X),M(g(X))) > 0. (3.11)

For accurate models f̂ , the self-learning gradient g(x) will be close to the real gradient
g(x,θ, y). Therefore, the above covariance will be close to Cov(ε(X),M(g(X,θ, y))). The

73

3 Gradient Uncertainty for Deep Object Detectors

positivity of the latter has a clear interpretation in terms of epistemic uncertainty, in that
learning steps are larger whenever the model performance is poor, i.e., ε(x) is large. In
such regions, the model still attempts to adapt strongly to new instances, whereas little
adaptation is given for instances where the model performance is already good, i.e., ε(x)
is small. That such local improvements are in fact possible is an easy consequence of the
universal approximation property of deep neural networks.

That the condition for the self-learning gradient in eq. (3.11) holds can be seen in the
classification experiments conducted and shown in [132, Fig. 2] and [170, Fig. 2]. There,
the distributions of M(g(X)) are explicitly conditioned to true and false predictions.

3.3.1.3 Extension to Object Detectors: Instance-wise Self-Learning
Gradients

We first clarify the aforementioned complications in generating uncertainty information for
object detection. Generally, the prediction eq. (3.1) is the filtering result of a larger, often
fixed number N̂out := NAnch · ⌈H/ς⌉ · ⌈W/ς⌉ (recall section 2.3.2) of proposal bounding
boxes f̂(x|θ). Given a ground truth list y of bounding boxes, the loss function usually
has the form

L = L
(
f̂(x|θ)

∣∣∣ y) , (3.12)

such that all N̂out proposal bounding boxes potentially contribute to g(x,θ, y). Again,
when filtering f̂(x|θ) to a smaller number of predicted boxes ŷ and converting them to
ground truth format b̂ = (b̂1, . . . , b̂Nx) with

b̂j :=

(
ξ̂j , argmax

c∈[C]
π̂jc

)
, ∀j ∈ [Nx], (3.13)

where ŷj = (ξ̂j , π̂j , ŝj), we can compute the self-learning gradient g(x,θ, b̂). This quan-
tity, however, does not refer to any individual prediction ŷj , but rather to all boxes in
ŷ simultaneously. We take two steps to obtain meaningful gradient information for one
particular box ŷj from this approach.

First, we restrict the ground truth slot to only contain the length-one list {b̂j}, regarding
it as the hypothetical label. This alone is insufficient since other, correctly predicted
instances in f̂(x|θ) would lead to a penalization and “overcorrecting” gradient g(x,θ, {b̂}),
given b̂j as label. This gradient’s optimization goal is, figuratively speaking, to forget to
predict everything but ŷj when presented with x. Note that we cannot simply compute
∇θL(ŷj(x,θ)|b̂j) for regression losses, such as for bounding box regression. Such losses
are frequently norm-based, like Lp-losses (see section 2.3.2.1) such that the respective loss
and gradient would both vanish. Therefore, we secondly mask f̂(x|θ) such that the result
is likely to only contain proposal boxes meaning to predict the same instance as b̂j . Our
conditions for this mask are sufficient score, sufficient overlap with b̂j and same indicated
class as b̂j , i.e., the predictions which would be suppressed by b̂j in NMS. We call the
subset of f̂(x|θ) that satisfies these conditions candidate boxes for b̂j , denoted cand[ŷj].

74

3.3 Method

We, thus, propose the candidate-restriced self-learning gradient

gcand(x,θ, ŷj) := ∇θL
(
cand[ŷj](x,θ)

∣∣∣b̂j) (3.14)

of ŷj for computing instance-wise uncertainty. This approach is in line with the motivation
for the classification setting and extends it when computing eq. (3.14) for multi-criterial
loss functions in object detection.

3.3.1.4 Computational Complexity

Sampling-based epistemic uncertainty quantification methods such as MC dropout and
deep ensembles tend to generate a significant computational overhead as several forward
passes are required. Here, we provide a theoretical result on the count of floating point
operations (FLOP) of gradient uncertainty features which is supported with a proof and
additional detail in the following paragraphs. In our experiments, we use the gradients
computed over the last one, respectively, two layers of each network architecture of different
architectural branches, as well, if applicable, see section 2.3.2.3. For layer ℓ, we assume
stride-1, (2sℓ + 1) × (2sℓ + 1)-convolutional layers acting on feature maps of spatial size
Hℓ×Wℓ. These assumptions hold for all architectures in our experiments. We denote the
number of input channels by kℓ−1 and of output channels by kℓ.

Theorem 1. The number of FLOP required to compute the last layer (ℓ = L) gradient
∇KLL(µjϕL(KL), ϕ

j) is O(kLHLWL + kLkL−1(2sL + 1)4). Similarly, for earlier layers
ℓ ∈ [L− 1], i.e., ∇KℓL(µjϕL(Kℓ), ϕ

j), we have O(kℓ+1kℓ + kℓkℓ−1), provided that we have
previously computed the gradient for the consecutive layer ℓ + 1. Performing variational
inference only on the last layer, i.e., ϕL−1 requires O(kLkL−1HL,WL) FLOP per sample.

Theorem 1 provides that even for MC dropout only before the last layer, or the use of effi-
cient deep sub-ensembles [179] sharing the entire architecture but the last layer, gradient
features require fewer or at worst similar FLOP counts. Earlier sampling, especially entire
deep ensembles, have even higher FLOP counts than these variants. Note, that comput-
ing gradient features have somewhat larger computational latency since the full forward
pass needs to be computed before gradients can be computed. Moreover, while sampling
strategies can in principle be implemented to run all sample forward passes in parallel, the
computation of gradients can run in parallel for predicted boxes per image. We compare
explicit time measurements for different methods in section 3.4 and provide a proof of
theorem 1 and the notation setting in the following.

⋔ Setting. As in [166, Chapter 20.6], we regard a (convolutional) neural network as a
graph of feature maps with vertices V =

⊔L
ℓ=0 Vℓ arranged in layers Vℓ. For our consider-

ation it will suffice to regard them as sequentially ordered. Each layer Vℓ contains a set
number kℓ := |Vℓ| of feature map channels ϕcℓ ∈ RHℓ×Wℓ , c ∈ [kℓ]. We denote the activation

of Vℓ by ϕℓ = (ϕ1ℓ , . . . , ϕ
kℓ
ℓ). The activation ϕℓ+1 ∈ (RHℓ+1×Wℓ+1)

kℓ+1 is obtained from ϕℓ
by convolutions. We have kℓ × kℓ+1 quadratic filter matrices

(Kℓ+1)
d
c ∈ R(2sℓ+1)×(2sℓ+1), c ∈ [kℓ]; d ∈ [kℓ+1]. (3.15)

75

3 Gradient Uncertainty for Deep Object Detectors

Here, sℓ is a (usually small) natural number, the spatial extent of the filter to either side.
Also, we have respectively kℓ+1 biases bdℓ+1 ∈ R, d ∈ [kℓ+1]. We denote the convolution of

K ∈ R(2s+1)×(2s+1) and ϕ ∈ RH×W as

(K ∗ ϕ)ab :=
s∑

m,n=−s
Ks+1+p,s+1+qϕa+p,b+q, (3.16)

where a ∈ [H] and b ∈ [W], cf. section 2.2.1.2. This is, strictly speaking, only correct for
convolutions with stride 1, although a closed form can be given for the more general case
(see [60]). For our goals, we will use stride 1 to upper bound the FLOPs which comes
with the simplification that the feature maps’ sizes are conserved. We then define

ψdℓ+1 =

kℓ∑
c=1

(Kℓ+1)
d
c ∗ ϕcℓ + bdℓ+11Hℓ×Wℓ

, d ∈ [kℓ+1]. (3.17)

Finally, we apply activation functions αℓ : R → R to each entry to obtain ϕℓ+1 =
αℓ+1(ψℓ+1). In practice, αℓ is usually a ReLU activation (recall section 2.2.1.1) or some
modification like leaky ReLU. We will treat the computational complexity of this opera-
tion later. We can then determine the computational expense of computing ψℓ+1 from ϕℓ.
In the following, we will be interested in the linear convolution action (see section 2.2.1.2)

Mat[Kℓ] : Rkℓ−1×hℓ−1×wℓ−1 → Rkℓ×Hℓ×Wℓ , (Mat[Kℓ]ϕℓ−1)
d
ab :=

(
kℓ∑
c=1

(Kℓ)
d
c ∗ ϕcℓ

)
ab

,

(3.18)

where d ∈ [kℓ], a ∈ [Hℓ] and b ∈ [Wℓ]. Note that Mat[Kℓ] is also linear in Kℓ. On the last
layer feature map ϕL = ϕ̂ we define the loss function L : (ϕ̂, ϕ) 7→ L(ϕ̂|ϕ) ∈ R. Here, ϕ
stands for the ground truth40 transformed to feature map size RHL×WL×kL . In order to
make dependencies explicit, define the loss of the subnet starting at layer ℓ by Lℓ, i.e.,

LL(ϕL) := L(ϕ̂, ϕ), Lℓ−1(ϕℓ−1) := Lℓ(αℓ(ψℓ)). (3.19)

Straight-forward calculations yield

∇KLL =∇KL (LL ◦ αL ◦ ψL(KL)) = D1L|ϕL ·DαL|ψL · ∇KLψL (3.20)

∇KL−1
L =∇KL−1

(LL ◦ αL ◦ ψL ◦ αL−1 ◦ ψL−1(KL−1))

=D1L|ϕL ·DαL|ψL ·Mat[KL] ·DαL−1|ψL−1
· ∇KL−1

ψL−1.
(3.21)

Here, D denotes the total derivative (D1 for the first variable, respectively) and we have
used the linearity of Mat[KL]. Note, that in section 3.3.2, we omitted the terms DαL|ψL
and DαL−1|ψL−1

. We will come back to them later in the discussion. For the gradient
features we present in this chapter, each ŷj for which we compute gradients receives a
binary mask µj such that µj · ϕL are the feature map representations of candidate boxes
for ŷj . The scalar loss function then becomes L(µjϕL|ϕj) for the purposes of computing

gradient uncertainty. Here, ϕj is b̂j in feature map representation, see eq. (3.13). We
address next, how this masking influences eq. (3.20), eq. (3.21) and the FLOP count of
our method.
40The transformations are listed in section 2.3.2 for the entries of ϕ̂.

76

3.3 Method

Table 3.1: Upper bounds on FLOP and elementary function evaluations performed during the
computation of DLj (all contributions) and post-processing for sampling-based uncertainty quan-
tification (sampling pp) for Nsamp inference samples.

YOLOv3 Faster/Cascade R-CNN RetinaNet

FLOP DLj (9 + C)Nout 10NRPN
out + (2 + 2C)Nout (18 + 11C)Nout

FLOP sampling pp 8NoutNsamp (9 + 2C)NoutNsamp 8NoutNsamp

evaluations DLj 0 0 2(1 + C)Nout

evaluations sampling pp (5 + C)NoutNsamp (3 + C)NoutNsamp (3 + C)NoutNsamp

⋔Computing the mask. The complexity of determining µj (i.e., finding cand[ŷj]) is
the complexity of computing all mutual IoU values between ŷj and the nL := HL ·WL ·kL
other predicted boxes. Computing the IoU (recall section 2.3.2) of a box ξ1 and ξ2 can be
done in a few steps with an efficient method exploiting the fact that:

U =A1 +A2 − I, IoU = I/U, (3.22)

where the computation of the intersection area I and the individual areas A1 and A2 can
each be done in 3 FLOP, resulting in 12 FLOP per pair of boxes. Note that different
localization constellations of ξ1 and ξ2 may result in slightly varying formulas for the
computation of I. However, the constellation can be easily determined by binary checks
which we ignore computationally. Also, the additional check for the class and sufficient
score will be ignored, so we have 12nL FLOP per mask µj . Inserting the binary mask41

µj in eq. (3.20) and eq. (3.21) leads to the replacement of D1L|ϕL · DαL|ψL by DLj :=
D1L(·, γj)|µjϕL · µj ·DαL|ψL for each relevant box ŷj .

In table 3.1 we have listed upper bounds on the number of FLOP and elementary function
evaluations performed for the computation of DLj for the investigated loss functions. The
numbers were obtained from the explicit partial derivatives computed in section 3.4.1. In
principle, those formulas allow for every possible choice of b ∈ [Nout] which is why all counts
are proportional to it. Practically, however, at most the |µj | candidate boxes are relevant
which need to be identified additionally as foreground or background for ŷj . This happens
in a separate step involving a IoU computation between ŷj and the respective anchor.
The total count of candidate boxes in practice is on average not larger than ∼ 30. When
evaluating the formulas from section 3.4.1 note, that there is only one ground truth box
per gradient, and we assume here, that one full forward pass has already been performed
such that the majority of the appearing evaluations of elementary functions like sigmoids
or exponentials, have been computed beforehand. This is not the case for the RetinaNet
classification loss eq. (3.53). In table 3.1 we also list the additional post-processing cost
for the output transformations (see sections 2.3.2 and 3.4.1) required for sampling-based
uncertainty quantification like MC dropout or deep ensemble samples (“sampling pp”).
The latter are also proportional to Nout, but also to the number Nsamp of samples.

⋔Proof of Theorem 1. Our implementations exclusively use stride 1 convolutions for
the layers indicated in section 3.4, so WL = WL−1 = WL−2 =: W , resp. HL = HL−1 =

41See section 3.3.2. The mask µj selects the feature map representation of cand[ŷj] out of ϕL.

77

3 Gradient Uncertainty for Deep Object Detectors

HL−2 =: H. As before, we denote nℓ := HWkℓ, and regard DLj as a 1 × nL matrix.
Next, regard the matrix-vector multiplication to be performed in eq. (3.20). Since for all
ℓ ∈ [L] we have that ψℓ is linear in Kℓ, we regard ∇Kℓψℓ as a matrix acting on the filter

space Rkℓ−1×kℓ×(2sℓ+1)2 . For d ∈ [kℓ], ψ
d
ℓ only depends on Kd

ℓ (see eq. (3.17)), so ∇Kℓψℓ
only has at most kℓ−1 · (2sℓ + 1)2 · nℓ non-vanishing entries. Therefore, regard it as a
(nℓ× (kℓ−1(2sℓ + 1)2))-matrix. We will now show that this matrix has kℓ(2sℓ + 1)2-sparse
columns.

Let c ∈ [kℓ], d ∈ [kℓ−1], p, q ∈ {−sℓ, . . . , sℓ}, a ∈ [Hℓ] and b ∈ [Wℓ]. One easily sees from
eqs. (3.16) and (3.17) that

∂

∂((Kℓ)
d
c)pq

(ψℓ)
d
ab = (ϕℓ−1)

c
a+p−sℓ−1,b+q−sℓ−1, (3.23)

where ϕcℓ−1 is considered to vanish for a + p − sℓ − 1 /∈ [Hℓ] and b + q − sℓ − 1 /∈ [Wℓ].
Consistency with the definition of p and q requires that both the conditions

1 < a ≤ 2sℓ + 2, 1 < b ≤ 2sℓ + 2 (3.24)

are satisfied, which means that (∇Kℓψℓ)d can only have kℓ(2sℓ + 1)2 non-zero entries.
Appealing to sparsity ∇KLψL in eq. (3.20) is then, effectively, a (kL−1 · (2sL + 1)2)× (kL ·
(2sL + 1)2)-matrix, resulting in a FLOP count of

[2 · kL(2sL + 1)2 − 1] · [kL−1 · (2sL + 1)2] (3.25)

for the multiplication DLj · ∇KLψL giving the claimed complexity considering that the
computation of µj is O(kLHW).

Next, we investigate the multiplication in eq. (3.21), in particular the multiplication DLj ·
Mat[KL] as the same sparsity argument applies to ∇KL−1

ψL−1. First, for ℓ ∈ [L], regard
Mat[Kℓ] as a (nℓ × nℓ−1)-matrix acting on a feature map ϕ ∈ Rnℓ−1 from the left via

(Mat[Kℓ]ϕ)
d
ab =

kℓ−1∑
c=1

[
(Kℓ)

d
c ∗ ϕc

]
ab

=

kℓ−1∑
c=1

sℓ∑
m,n=−sℓ

[(Kℓ)
d
c]sℓ+1+m,sℓ+1+n(ϕ

c)a+m,b+n,

(3.26)

where d ∈ [kℓ], b ∈ [Wℓ] and a ∈ [Hℓ] indicate one particular row in the matrix representa-
tion of Mat[Kℓ] (recall eq. (2.49)). From this, we see the sparsity of Mat[Kℓ], namely the
multiplication result of row (d, a, b) acts on at most kℓ−1 · (2sℓ + 1)2 components of ϕℓ−1.
That is, we have kℓ−1(2sℓ + 1)2-sparsity of the rows. Conversely, we also see that at most
kℓ · (2sℓ + 1)2 convolution products (Mat[Kℓ]ϕ)

d
ab have a dependency on one particular

feature map pixel (ϕc)ãb̃ (i.e., kℓ(2sℓ + 1)2-sparsity of the columns). Now, let ℓ ∈ [L− 1]
and assume that we have already computed the gradient

∇Kℓ+1
L =∇Kℓ+1

ℓℓ+1(ϕℓ+1(Kℓ+1)) = Dℓℓ+1|ϕℓ+1
· αℓ+1|ψℓ+1

· ∇Kℓ+1
ψℓ+1, (3.27)

78

3.3 Method

then by backpropagation, i.e., eq. (3.19), we obtain

∇KℓL =∇Kℓ [ℓℓ+1 ◦ αℓ+1 ◦ ψℓ+1(ϕℓ(Kℓ))]

=Dℓℓ+1|ϕℓ+1
· αℓ+1|ψℓ+1

·Mat[Kℓ+1] ·Dαℓ|ψℓ · ∇Kℓψℓ.
(3.28)

Here, the first two factors have already been computed, hence we obtain a FLOP count
for subsequently computing ∇KℓL of

[2 · kℓ+1(2sℓ+1 + 1)2 − 1] · [kℓ(2sℓ + 1)2] + [2 · kℓ(2sℓ + 1)2 − 1] · [kℓ−1(2sℓ + 1)2] (3.29)

via the backpropagation step from ∇Kℓ+1
L. The claim in theorem 1 addressing eq. (3.21),

follows for ℓ = L− 1 in eq. (3.29).

Finally, we address the computational complexity for sampling-based uncertainty quan-
tification methods with sampling on ϕL−1. This is applicable, e.g., for dropout on the
last layer (as in our experiments) or a deep sub-ensemble [179] sharing the forward pass
up to the last layer. Note, that we do not use sub-ensembles in our experiments, but
regular deep ensembles. Earlier sampling leads to far higher FLOP counts. Again, we
ignore the cost of dropout itself as it is random binary masking together with a respective
up-scaling/multiplication of the non-masked entries by a constant. The cost stated in
theorem 1 results from the residual forward pass ϕL−1 7→ ϕL = αL(Mat[KL] · ϕL−1 + bL)
where we now apply previous results. Obtaining all nL entries in the resulting sample
feature map requires a total FLOP count of

2nLkL−1(2sL + 1)2 − 1 + nL (3.30)

as claimed, where we have considered the sparsity of Mat[KL]. The last term results from
the bias addition.

⋔Discussion. A large part of the FLOP required to compute gradient features results
from the computation of the masks µj and the term DLj for each relevant predicted box.
In table 3.1 we have treated the latter separately and found that, although the counts
listed for DLj apply to each separate box, sampling post-processing comes with consider-
able computational complexity as well. In that regard, we have similar costs for gradient
features and sampling over the last network layer. Note in particular, that computing
DLj requires no new evaluation of elementary functions, as opposed to sampling. Once
DLj is computed for ŷj , the last layer gradient can be computed in O(kLkL−1) and every
further gradient for layer Vℓ in O(kℓ+1kℓ + kℓkℓ−1). Each sample results in O(nLkL−1)
with sampling on ϕL−1. Sampling any earlier results in additional full convolution forward
passes which also come with considerable computational costs. We note that sampling-
based epistemic uncertainty can be computed in parallel with all Nsamp forward passes
being performed simultaneously. Gradient uncertainty features, in contrast, require one
full forward pass for the individual gradients ∇KℓL(µjϕL(Kℓ), ϕ

j) to be computed. There-
fore, gradient uncertainty features experience a slight computational latency as compared
to sampling methods. We argue that in principle, all following steps (computation of µj

and ∇KℓL(µjϕL(Kℓ), ϕ
j)) can be implemented to run in parallel as no sequential order

of computations is required. We have not addressed the computations of mapping the

79

3 Gradient Uncertainty for Deep Object Detectors

Input Image x

Object
Detector (θ)

{φ1, . . . ,φNx}

Features φi

e.g., softmax/MC dropout std of ŷi,
∥gcand(x,θ, ŷj)∥2 or others (cf. table 3.8)

Detection {ŷ1, . . . , ŷNx}

Meta Regression
{ι̂1, . . . , ι̂Nx}

(predicted IoU)

Meta Classification
{τ̂1, . . . , τ̂Nx}

(TP confidence)

f̂Dtrain
ι

f̂Dtrain
τ

Figure 3.2: Meta classification and meta regression pipeline for object detection: An uncertainty
feature vector φj is assigned to each detected box ŷj . During training, we fit f̂Dtrain

τ and f̂Dtrain
ι

to map φj to τ j (TP/FP) and max. IoU ιj of ŷj , resp. At inference, f̂Dtrain
τ and f̂Dtrain

ι yield
confidence and IoU estimates τ̂ j and ι̂j for ŷj based on φj . Image taken from the Pascal VOC [38]
dataset.

gradients to scalars from eq. (3.4) which are roughly comparable to the cost of computing
the sample std for sampling-based methods, especially once the sparsity of DLj has been
determined in the computation of ∇KLL. The latter also brings a significant reduction in
FLOP (from nL to |µj |) which cannot be estimated more sharply, however. Since DLj
is sparse, multiplication from the right with DαL|ψL in eqs. (3.20) and (3.21) for a leaky
ReLU activation only leads to lower-order terms. The same terms were also omitted before
in determining the computational complexity of sampling uncertainty methods. Also, for
this consideration, we regard the fully connected layers used for bounding box regression
and classification in the Faster/Cascade R-CNN RoI head as (1× 1)-convolutions to stay
in the setting presented here.

3.3.2 Meta Classification and Meta Regression: Prediction Quality
Estimation in Post-Processing

We evaluate the efficacy of gradient scores in terms of meta classification and meta regres-
sion. These two approaches allow for the aggregation of potentially large feature vectors
to obtain uncertainty estimates for a respective prediction like a bounding box. However,
meta classification and meta regression can also be applied to connected components in
semantic segmentation. The aim of meta classification is to detect FP predictions by gen-
erating confidence estimates for the prediction being a TP. Recall that for bounding box
predictions, this usually means that the prediction has a IoU with at least one ground
truth of more than 0.5. In segmentation, a TP is usually defined as a segment that has
a IoU with the ground truth greater than 0, i.e., having at least one pixel class overlap
with the ground truth. Meanwhile, meta regression directly estimates the prediction qual-
ity, usually in terms of IoU which is non-ambiguous for both semantic segmentation and
object detection. Meta classification and meta regression allow for the unified compari-
son of different uncertainty quantification methods and combinations thereof by regarding
post-processing models based on different features. Moreover, we are able to investigate

80

3.3 Method

the degree of mutual redundancy of different sources of uncertainty. In the following, we
summarize this method for bounding box detection and illustrate the scheme in fig. 3.2.

We regard an object detector generating a list of Nx detections along with a vector φj for
each predicted bounding box ŷj . This vector φj ∈ Rn of n “features” may contain gradient
scores, but also, e.g., bounding box features, MC dropout or deep ensemble features or
combinations thereof (e.g., by concatenation of dropout and ensemble feature vectors). On
training data42 Dtrain, we compute boxes ŷ and corresponding features φ = (φ1, . . . ,φNx).
We evaluate each predicted instance ŷj corresponding to the features φj in terms of their
maximal IoU, denoted ιj ∈ [0, 1] with the respective ground truth and determine FP/TP
labels τ j ∈ {0, 1}. A meta classifier is a lightweight classification model f̂τ : Rn → (0, 1)
giving probabilities for the classification of φj (vicariously for the uncertainty of ŷj) as
TP which we fit on Dtrain. Similarly, a meta regression model f̂ι : Rn → R is fit to the
maximum IoU ιj of ŷj with the ground truth of x. The models f̂Dtrain

τ and f̂Dtrain
ι can be

regarded as post-processing modules which generate confidence measures given an input
to an object detector leading to features φj . At inference time, we then obtain box-wise
classification probabilities τ̂ j = f̂Dtrain

τ (φj) and IoU predictions ι̂j = f̂Dtrain
ι (φj). We then

determine the predictive power of f̂Dtrain
τ and f̂Dtrain

ι in terms of their AuROC, (recall
section 2.3.1) or AP metrics and the determination coefficient R2, respectively.

Similarly, meta classification and meta regression act in semantic segmentation on feature
vectors φj for each predicted segment Ŝj which contains uncertainty features specific to
Ŝj like the features computed in the MetaSeg framework [152], see also section 4.4.1.1.
Again, a meta classifier is a post-processing model f̂Dtrain

τ estimating the probability for
Ŝj having a IoU greater than 0 with the ground truth. A meta regression model f̂Dtrain

ι

estimates the IoU of Ŝj with the ground truth based on φj .

MetaFusion: Object Detection Post-Processing. As a direct application of uncer-
tainty quantification, we investigate an approach inspired by [16]. We implement meta
classification into the object detection pipeline by assigning each output box in f̂(x|θ)
its meta classification probability τ̂ as prediction confidence as shown in fig. 3.1. State-
of-the-art object detectors use score thresholding in addition to NMS which we compare
with confidence filtering based on meta classification. For most competitive uncertainty
baselines in our experiments, computation for the entirety of the network proposals f̂(x|θ)
is expensive. Hence, we implement a small score threshold which still allows for a large
amount of predicted boxes of ∼ 150 bounding boxes per image. This way, well-performing
meta classifiers which accurately detect FPs, together with an increase in detection sensi-
tivity offer a way to “trade” uncertainty information for detection performance. In most
object detection pipelines, score thresholding is carried out before NMS. We choose to
interchange them here as they commute for the baseline approach. The resulting predic-
tions are compared for a range of confidence thresholds in terms of mean Average Preci-
sion (see section 2.3.2). Figure 3.3 shows a sketch of the resulting MetaFusion pipeline,
where the usual object detection pipeline is shown in blue. The standard object detection

42Note, that this is training data for the meta classifier, respectively meta regression model. In practice,
this is oftentimes disjoint from the training data of the base deep learning model which φ is computed
with.

81

3 Gradient Uncertainty for Deep Object Detectors

Detector
Bboxes

Score

Uncertainty
Metrics

Meta
Classification

Baseline

MetaFusion

NMS Threshold

Figure 3.3: Schematic sketch of the baseline detection pipeline and the alternative MetaFusion
pipeline for an object detector.

pipeline relies on filtering out false positive output boxes on the basis of their score, see
also fig. 3.1. An altered confidence estimation like meta classification can improve the
threshold-dependent detection quality of the object detection pipeline. This way, boxes
which are falsely assigned a low score can survive the thresholding step. Similarly, FPs
with a high score may be suppressed by proper predictive confidence estimation methods.
This approach is not limited to meta classification, however, our experiments show that
meta classification constitutes such a method.

Calibration: Reliability of Confidence Assignments. Generally, calibration meth-
ods aim at rectifying scores as confidences in the sense of section 3.1 such that the cal-
ibrated scores reflect the conditional frequency of true predictions. For example, out of
100 predictions with a confidence of 0.3, around 30 should be correct, say, TP. In formal
terms, this means that

Pr
(
TP(ŷj(X)|Y)

∣∣ ŝj(X) = p
)
= p ∀p ∈ [0, 1], (3.31)

where we denote by TP(ŷj(X)|Y) the logical statement of the prediction ŷj(X) being a
TP prediction when regarding the ground truth Y . Also, ŝj(X) stands representative for
any confidence estimation assigned to the prediction ŷj which may be an object detector’s
objectness score or the confidence given by a meta classifier. Calibration can be defined
in semantic segmentation analogously on segment level by what a TP is logically. Here,
ŝj can again be seen as the confidence of a meta classifier for the respectively predicted
segment Ŝj . Moreover, pixel-wise evaluation is possible in semantic segmentation, where ŝj

represents some pixel-wise confidence value. Such confidence values could be the maximum
softmax probability of the segmentation network or some pixel-wise gradient score, see
chapter 4. Since the statement in eq. (3.31) is a continuous statement, discretized variants
are usually investigated in experiments where a finite dataset is employed. One resorts
to a fixed partition of the range p ∈ [0, 1] into usually equally-sized bins β1, . . . , βB and
computes the frequency of TP predictions (accuracy) and average confidence for each bin.
In our experiments, we sort the examples into bins of fixed width 0.1 according to their
confidence, see fig. 3.4. For each bin βi, we compute

acci =
TPi
|βi|

, confi =
1

|βi|

|βi|∑
j=1

ŝi (3.32)

where |βi| denotes the number of examples in βi and ŝi is the respective confidence, i.e.,
the network’s score or a meta classification probability. TPi denotes the number of cor-
rectly classified in βi. In standard classification tasks, this boils down to the classification

82

3.4 Experiments

0.0 0.5 1.0
0.0

0.5
C

on
d

.
P

re
ci

si
on

ECE = 0.040
ACE = 0.114

0.0 0.5 1.0
Confidence

ECE = 0.003± 0.000
ACE = 0.012± 0.001

0.0 0.5 1.0

ECE = 0.005± 0.000
ACE = 0.020± 0.003

Figure 3.4: Reliability plots of the Score (left) and meta classifiers for MD (center) and GSfull
(right) on the VOC dataset (YOLOv3) with calibration errors (mean ± std). The gray diagonal
shows optimal calibration.

accuracy, whereas in the object detection setting, this is the detector’s precision on the
bin βi. A meta classifier performs a binary classification on detector positives, so we keep
with the notation used for classifiers. Calibration metrics are usually defined as functions
of the bin-wise differences between acci and confi in the manner described below. One of
the definition given is specialized for object detection.

Confidence calibration methods have been previously applied to object detection in [128]
where temperature scaling was found to improve calibration. In addition to considering
the expected calibration error (ECE) and the maximum calibration error (MCE) [126],
the authors of [128] argue that in object detection, it is important that confidences are
calibrated irrespective of how many examples fall into a bin. Therefore, they introduced
the average calibration error (ACE) as a new calibration metric which is insensitive to
the bin counts. In section 3.4, we evaluate the calibration of meta classifiers in terms of
the expected, maximum and average calibration error metrics:

MCE = max
i∈[B]

|acci − confi|, ACE =
1

B

∑
i∈[B]

|acci − confi|, ECE =
∑
i∈[B]

1

|βi|
|acci − confi|.

(3.33)

The main difference between ECE and ACE is that the expected calibration error scales
the calibration errors according to the population of each bin. This means that calibration
errors of heavily populated bins will be scaled down proportionally. In object detection
where it is common that confidences of foreground and background, instances strongly
populate the outer bins, calibration errors are down-weighted due to the mass of instances
per bin. The ACE metric treats all bins equally, irrespective of their population.

3.4 Experiments: Meta Classification, Meta Regression
and Runtime

In this section, we report our numerical methods and experimental findings. We investigate
meta classification and meta regression on three object detection datasets, namely Pascal
VOC [38], MS COCO [102] and KITTI [46]. We investigate gradient-based meta classifi-
cation and meta regression for only 2-norm scalars, denoted GS∥·∥2 (refer to section 3.3.1)

83

3 Gradient Uncertainty for Deep Object Detectors

Table 3.2: Number of layers and losses utilized and resulting numbers of gradients per box. Multipli-
cation in # layers denotes parallel output strands of the respective DNN (no additional gradients).

Architecture # layers # Losses # gradients

YOLOv3 2× 3 3 6
Faster R-CNN 2× 4 4 8
RetinaNet 2× 2 2 4
Cascade R-CNN 2× 8 8 16

Table 3.3: Dataset splits used for training and evaluation of object detectors. Note, that we train
meta classifiers and meta regressors on a validation part of the evaluation split and evaluate it on
the complementary split.

Dataset training evaluation # eval images

VOC 2007+2012 trainval 2007 test 4952
COCO train2017 val2017 5000

KITTI
random part
of training

complement part
of training

2000

as well as the larger model for all maps listed in eq. (3.4), denoted GSfull. GSfull is always
computed for the last two network layers (unless specified otherwise) of each architectural
branch and for each contribution to the loss function L separately, i.e., for classification,
bounding box regression and, if applicable, objectness score (see section 2.3.2). We list
the resulting counts and number of gradients per investigated architecture in table 3.2.
As meta classifiers and meta regressors, we use gradient boosting models which have been
shown [114,161,181] to perform well as such. Whenever we indicate means and standard
deviations, we obtained those by 10-fold image-wise cross validation (short: “cv”) for the
training split Dtrain of the meta classifier or meta regression model. Evaluation is done on
the complement of Dtrain.

3.4.1 ⋔ Implementation Details

Here, we state details of the implementations of our framework to different architectures,
and on different datasets.

Datasets. In order to show a wide range of applications, we investigate our method on
the following object detection datasets, see table 3.3 for the splits used. Meta classification
and meta regression models are as post-processing modules fitted on a validation sample
of the evaluation dataset. Their performance is evaluated on the complementary sample
of the evaluation dataset in cross-validation.

The Pascal VOC 2007+2012 [38] dataset is an object detection benchmark of everyday
images involving 20 different object categories. We train on the 2007 and 2012 “trainval”
splits, amounting to 16.550 train images, and we evaluate on the 2007 test split of 4.952
images. For training, we include labels marked as difficult in the original annotations.

The MS COCO 2017 [102] dataset constitutes a second vision benchmark involving 2D
bounding box detection annotations for everyday images with 80 object categories. We

84

3.4 Experiments

train on the “train2017” split of 118.287 images and evaluate on the 5.000 images of the
“val2017” split.

The KITTI [46] vision benchmark contains 21 real world street scenes annotated with
2D bounding boxes. We randomly divide the 7.481 labeled images into a training split of
5.481 images and use the complement of 2.000 images for evaluation.

Detectors. For our experiments, we employ three common object detection architec-
tures, namely YOLOv3 with Darknet53 backbone [39], Faster R-CNN [144] and Reti-
naNet [101], each with a ResNet50 [61] backbone. Moreover, we investigate a state-of-the-
art detector in Cascade R-CNN [12] with a large ResNeSt200 [215] backbone. We started
from PyTorch [136] reimplementations, added dropout layers and trained from scratch on
the datasets in table 3.3. We list some detector-specific details.

The basis of our YOLOv3 implementation is a publicly available GitHub repository [189].
We position dropout layers with p = 0.5 before the last convolutional layers of each
detection head. Gradient features are computed over the last two layers in each of the
three detection heads as the final network layers have been found to be most informative
in the classification setting [132]. Since each output box is the result of exactly one of the
three heads, we only have two layers for gradients per box resulting in 2× 3 gradients per
box (2 layers per 3 losses) as indicated in table 3.2. We train an ensemble of 5 detectors
for each dataset from scratch.

Based on the official Torchvision implementation, our Faster R-CNNmodel uses dropout
(p = 0.5) before the last fully connected layer of the architecture, i.e., classification and
bounding box prediction in the Fast R-CNN head. We compute gradient features for
the last two fully connected layers of the Fast R-CNN head as well as for the last two
convolutional layers of the RPN per box, i.e., objectness and localization. This leads to
4 × 2 gradients per box: 2 + 2 for localization, 2 for classification and 2 for proposal
objectness.

We also employ RetinaNet as implemented in Torchvision with (p = 0.5)-dropout before
the last convolutional layers for bounding box regression and classification. Gradients are
computed for the last two convolutional layers for bounding box regression and classifica-
tion resulting in 2× 2 gradients per prediction.

For the Cascade R-CNN detector, we use the Detectron2 [190]-supported implementa-
tion of ResNeSt provided by the ResNeSt authors Zhang et al. [215] and the pre-trained
weights on the MS COCO dataset. We train from scratch on Pascal VOC and KITTI.
Since this model is primarily interesting for investigation due to its naturally strong score
baseline based on cascaded regression, we do not report MC dropout results for it. Gradi-
ent uncertainty features are computed for the last two fully connected layers, i.e., bounding
box regression and classification, of each of the three cascades. The loss of later cascade
stages depends in principle on the weights of previous cascade stages. However, we only
compute the gradients with respect to the weights in the current stage resulting in 2× 6
(3 stages for bounding box regression and classification) gradients for the Cascade R-CNN
head. Furthermore, we have the 2× 2 RPN gradients as in Faster R-CNN.

85

3 Gradient Uncertainty for Deep Object Detectors

Implemented Loss Functions. Here, we give a short account of the loss functions
implemented in our experiments.

The loss function we used to train YOLOv3 operates on the pre-transformation activa-
tions defined in eq. (2.146) to which the bounding box features b = (x, y,w,h, κ) of the
ground truth annotations relate respectively. The latter are first transformed to pseudo
activations ϕx, ϕy, ϕw, ϕh in the respective manner following eq. (2.146). The objectness
loss utilized is the binary cross entropy loss defined in eq. (2.140) and classification follows
the one-versus-all classification loss in eq. (2.133). Since the transformations defined in
eq. (2.146) assume sigmoid activations in order to compute x̂ and ŷ, they can be learned
also via a binary cross entropy loss which is implemented in our framework. Since we will
be interested in the number of FLOPs required to compute the loss derivatives later, we
will adapt a notation here which is closer to the implementation.

LYv3
ξ (ŷ, y) =2

Nout∑
a=1

Nx∑
t=1

1
obj
at

[
LMSE

((
ϕ̂aw
ϕ̂ah

)∣∣∣∣∣
(
ϕtw
ϕth

))
+ LBCE

(
σ

(
ϕ̂ax
ϕ̂ay

)∣∣∣∣∣σ
(
ϕtx
ϕty

))]
, (3.34)

LYv3
s (ŷ, y) =

Nout∑
a=1

Nx∑
t=1

[
1
obj
at LBCE

(
σ(ϕ̂as)

∣∣∣1Nout

)
+ 1

noobj
at LBCE

(
σ(ϕ̂as)

∣∣∣0Nout

)]
, (3.35)

LYv3
p (ŷ, y) =

Nout∑
a=1

Nx∑
t=1

1
obj
at LBCE

(
σ(ϕ̂ap)

∣∣∣σ(ϕtp)) . (3.36)

Here, the first sum ranges over all Nout anchors43 a and the second sum over the total
number Ngt of ground truth instances in y. Note, that for the regression objective, the
binary cross entropy LBCE must allow for non-onehot targets, i.e.,

BCE(p|q) = −
∑
i∈[d]

qi log(pi) + (1− qi) log(1− pi), (3.37)

where p, q ∈ (0, 1)d for some fixed length d ∈ N. Using binary cross entropy for classifica-
tion amounts to learning C binary classifiers, in particular the probabilities are in general
not normalized. Note also, that each summand in eq. (3.35) only has one contribution due
to the binary ground truth 1Nout , resp. 0Nout . The binary cross entropy is also sometimes
used for the center location of anchor boxes when the position within each cell is scaled
to (0, 1), see LYOLOv3

ξ .

Since Faster R-CNN [144] and Cascade R-CNN [12] are two-stage architectures, there
are separate loss contributions for the Region Proposal Network (RPN) and the Region
of Interest (RoI) head, the latter of which produces the actual proposals, cf. section 2.3.2.
Formally, writing ϕRPN

ξ := (ϕRPN
x , ϕRPN

y , ϕRPN
w , ϕRPN

h) for the respectively transformed

ground truth localization, similarly ϕ̂RPN
ξ for the RPN outputs ξ̂RPN and ϕ̂RPN

s the proposal

score output (where ŝa = σ((ϕ̂RPN
s)

a
) is the proposal score):

43These translate directly to indices (i, j, n) as described in section 2.3.2. The tensors 1obj and 1
noobj

translate to assignments to foreground boxes and the background class, respectively.

86

3.4 Experiments

LRPN
ξ (ϕ̂RPN|y) = 1

|I+|

NRPN
out∑
a=1

Nx∑
t=1

I+a 1
obj
at L

1
sm

(
(ϕ̂RPN
ξ)

a
∣∣∣ (ϕRPN

ξ)
t
)
, (3.38)

LRPN
s (ϕ̂RPN|y) =

NRPN
out∑
a=1

Nx∑
t=1

[
1
obj
at LBCE

(
σ(ϕ̂RPN

s)
a
∣∣∣1NRPN

out

)
+ I−a 1

noobj
at LBCE

(
σ(ϕ̂RPN

s)
a
∣∣∣0NRPN

out

)]
.

(3.39)

Predictions are randomly sampled to contribute to the loss function by the tensors I+ and
I−, which can be regarded as random variables. The constant batch size B of predictions
to enter the RPN loss is a hyperparameter set to 256 in our implementation. We randomly
sample n+ := min{|1̃obj|, B/2} of the |1̃obj| positive anchors (constituting the mask I+)
and n− := min{|1̃noobj|, B − n+} negative anchors (I−). The summation of a ranges
over the NRPN

out outputs of the RPN (in our case, 1.000). For the smooth L1 loss, we use
the default parameter choice β = 1

9 . Denoting with ϕξ := (ϕx, ϕy, ϕw, ϕh) ground truth
localization transformed relatively to the respective proposal:

LRoI
ξ (ϕ̂RoI, y) =

1

|1obj|

Nout∑
a=1

Nx∑
t=1

1
obj
at smLβ

(
(ϕ̂RoI
ξ)

a
∣∣∣ϕtξ) , (3.40)

LRoI
p (ϕ̂RoI, y) =

Nout∑
a=1

Nx∑
t=1

[
1
obj
at LCE(Σ((ϕ̂RoI

p)
a
)|pt) + 1

noobj
at LCE(Σ((ϕ̂RoI

p0)
a
)|1)
]
. (3.41)

The cascaded bounding box regression of Cascade R-CNN implements the smooth L1 loss
at each of three cascade stages, where bounding box offsets and scaling are computed from
the previous bounding box regression results as proposals.

In the RetinaNet [101] architecture, score assignment is part of the classification.

LRet
ξ (ϕ̂, y) =

1

|1obj|

Nout∑
a=1

Nx∑
t=1

1
obj
at

1

4

∥∥∥ϕ̂aξ − ϕtξ

∥∥∥
L1
, (3.42)

LRet
p (ϕ̂, y) =

1

|1obj|

Nout∑
a=1

Nx∑
t=1

[
1
obj
at

C∑
j=1

α(1− σ(ϕ̂aj))
γFoc · LBCE

(
σ(ϕ̂aj)|δj,κt

)
+ 1

noobj
at (1− α)σ(ϕ̂a0)

γFoc · LBCE

(
σ(ϕ̂a0)|0

)]
.

(3.43)

The classification loss is a version of the well-known focal loss with α = 0.25 and γF = 2.
Bounding box transformation follows the maps of the RPN transformations in eq. (2.147).

Theoretical Loss Derivatives. Here, we symbolically compute the loss gradients with
respect to the network outputs as obtained from our accounts of the loss functions in the
previous paragraphs. We do so in order to determine the computational complexity for

87

3 Gradient Uncertainty for Deep Object Detectors

DfL(f |y)|f=µ̂n|X=x
, see eq. (2.66) in section 3.3.1.4. Note, that for all derivatives of the

cross entropy, we can use

d

dϕ
[−y log(σ(ϕ))− (1− y) log(1− σ(ϕ))] = σ(ϕ)− y. (3.44)

We then find for b = 1, . . . , Nout and features r ∈ {x, y,w, h, s} ∪ [C]

∂

∂ϕ̂br
LYv3
ξ =2

Nx∑
t=1

1
obj
bt

ϕ̂br − ϕtr r ∈ {w, h}
σ(ϕ̂br)− σ(ϕtr) r ∈ {x, y}
0 otherwise.

, (3.45)

∂

∂ϕ̂br
LYv3
s = δrs

Nx∑
t=1

[
1
obj
bt (ϕ̂bs − 1) + 1

noobj
bt ϕ̂bs

]
, (3.46)

∂

∂ϕ̂br
LYv3
p =

Nx∑
t=1

1
obj
bt

C∑
i=1

δr,i(σ(ϕ̂
b
i)− σ(ϕti)), (3.47)

where δij is the Kronecker symbol, i.e., δij = 1 if i = j and 0 otherwise. Further, with
analogous notation for the output variables of RPN and RoI

∂LRPN
ξ

∂(ϕ̂RPN
r)b

=
1

|I+|

Nx∑
t=1

I+b 1̃
obj
bt

(ϕ̂RPN
r)b − (ϕRPN

r)t
|(ϕ̂RPN

r)b − (ϕRPN
r)t| < β,

r ∈ {x, y,w, h}
sgn((ϕ̂RPN

r)b − (ϕRPN
r)t)

|(ϕ̂RPN
r)b − (ϕRPN

r)t| ≥ β,
r ∈ {x, y,w, h}

0 otherwise

(3.48)

∂LRPN
s

∂(ϕ̂RPN
r)b

= δrs

[
I+b 1̃

obj
bt (ŝb − 1) + I−b 1̃

noobj
bt ŝb

]
. (3.49)

Here, sgn denotes the sign function, which is the derivative of | · | except for the origin.
Similarly,

∂

∂ϕ̂br
LRoI
ξ =

1

|1obj|

Nx∑
t=1

1
obj
bt ·

ϕ̂br − ϕtr

|ϕ̂br − ϕtr| < β and
r ∈ {x, y,w,h}

sgn(ϕ̂br − ϕtr)
|ϕ̂br − ϕtr| ≥ β and
r ∈ {x, y,w,h}

0 otherwise

, (3.50)

∂

∂ϕ̂br
LRoI
p = −

Nx∑
t=1

1objbt

C∑
j=1

ptj

(
δj,r −

C∑
k=0

δpkrΣ
k(ϕ̂bπ)

)
+1noobjbt

(
δ0,r −

C∑
k=0

δk,rΣ
k(ϕ̂bπ)

)]
.

(3.51)

88

3.4 Experiments

Table 3.4: Ablation on the temperature parameter T for the energy score in terms of meta classi-
fication (AuROC and AP) and meta regression (R2).

AuROC AP R2

T = 1 92.52± 0.03 91.86± 0.04 62.12± 0.09
T = 10 78.42± 0.13 81.75± 0.08 32.92± 0.20
T = 100 95.66± 0.02 95.33± 0.03 71.79± 0.06
T = 1.000 95.62± 0.03 95.33± 0.04 71.78± 0.05

Score 96.53± 0.05 96.87± 0.03 78.86± 0.05
MD 98.23± 0.02 98.06± 0.02 85.88± 0.10
GSfull 98.04± 0.03 97.81± 0.06 85.40± 0.11

Note that the inner sum over j only has at most one term due to δj,r. With σ′(ϕ) =
σ(ϕ)(1− σ(ϕ)), we finally find for RetinaNet

∂

∂ϕ̂br
LRet
ξ =

1

|1obj|

Nx∑
t=1

1
obj
bt ·

{
sgn(ϕ̂br − ϕtr) r ∈ {x, y,w, h}
0 otherwise

, (3.52)

∂

∂ϕ̂br
LRet
p =

1

|1obj|

Nx∑
t=1

[
1
obj
bt

C∑
j=1

δj,rα(1− σ(ϕ̂bj))
γFoc ·

· [−γFσ(ϕ̂bj)LBCE(σ((ϕ̂
b
π)j), κ

t) + σ(ϕ̂bj)− 1]

+ 1
noobj
bt δ0,r(1− α)σ(ϕ̂b0)

γFoc · [−γFoc(1− σ(ϕ̂b0)) log(1− σ(ϕ̂b0)) + σ(ϕ̂b0)]

]
.

(3.53)

Uncertainty Baselines. We give a short account of the baselines implemented and
investigated in our experiments.

By the Score, we mean the box-wise objectness score for YOLOv3 and the maximum
softmax probability for Faster R-CNN, RetinaNet and Cascade R-CNN. As standard ob-
ject detection pipelines discard output bounding boxes based on a score threshold, this
quantity is the baseline for discriminating true against false outputs.

The Entropy is a common hand-crafted uncertainty measure based on the classification
output π̂ ∈ [0, 1]C (softmax or category-wise sigmoid) and given by

H(π̂) = −
C∑
c=1

π̂c log(π̂c), (3.54)

which is simply eq. (2.91) with adjusted notation.

As an alternative to the maximum softmax probability and the entropy, Liu et al. proposed
an Energy score depending on a temperature parameter T given by

E
(
ϕ̂
)
= −T log

C∑
c=1

eϕ̂c/T (3.55)

89

3 Gradient Uncertainty for Deep Object Detectors

Table 3.5: Ablation on the sample count size NDO for MC dropout in terms of meta classification
(AuROC and AP) and meta regression (R2). Results obtained from the sample standard deviation.

AuROC AP R2

NDO = 10 97.40± 0.04 96.91± 0.06 80.85± 0.10
NDO = 15 97.50± 0.03 97.08± 0.07 81.28± 0.09
NDO = 20 97.69± 0.03 97.28± 0.05 82.11± 0.09
NDO = 25 97.64± 0.03 97.20± 0.04 81.94± 0.12
NDO = 30 97.60± 0.07 97.17± 0.10 82.10± 0.11
NDO = 35 97.71± 0.03 97.29± 0.05 82.17± 0.13
NDO = 40 97.69± 0.04 97.29± 0.06 82.12± 0.13

Score 96.53± 0.05 96.87± 0.03 78.86± 0.05
MD 98.23± 0.02 98.06± 0.02 85.88± 0.10
GSfull 98.04± 0.03 97.81± 0.06 85.40± 0.11

Table 3.6: Ablation on the ensemble size NDE for deep ensembles in terms of meta classification
(AuROC and AP) and meta regression (R2). Results obtained from the sample standard deviation.

AuROC AP R2

NDE = 3 97.53± 0.03 97.17± 0.05 82.63± 0.13
NDE = 4 97.79± 0.04 97.48± 0.06 83.62± 0.12
NDE = 5 97.92± 0.04 97.63± 0.05 84.18± 0.12
NDE = 6 98.04± 0.03 97.75± 0.04 84.64± 0.16
NDE = 7 98.06± 0.03 97.80± 0.05 84.78± 0.11
NDE = 8 98.08± 0.02 97.80± 0.03 84.91± 0.10

Score 96.53± 0.05 96.87± 0.03 78.86± 0.05
MD 98.23± 0.02 98.06± 0.02 85.88± 0.10
GSfull 98.04± 0.03 97.81± 0.06 85.40± 0.11

based on the probability logits (ϕ̂1, . . . , ϕ̂C). We found that T = 100 delivers the strongest
results, see table 3.4 where we compared different values of T (like in [107]) for YOLOv3
on the KITTI dataset in terms of meta classification and meta regression performance.

We investigate an enveloping model (“Full softmax”) of all classification-based uncer-
tainty features by involving all probabilities (π̂1, . . . , π̂C) directly as co-variables in the
meta classifier or meta regression model. It outperforms all purely classification-based
models, which is expected due to the amount of information available.

As another common baseline, we investigate MC dropout uncertainty (MC), cf. sec-
tion 2.2.4.2. Since we are explicitly interested in the uncertainty content of MC dropout, we
only include anchor-wise standard deviations of the entire network output f̂(x|θ) obtained
from 30 dropout samples. We found that computing more samples does not significantly
improve predictive uncertainty content as seen in the ablation study on the MC sample
count NDO in table 3.5 for YOLOv3 on the KITTI dataset. Meta classification perfor-
mance can be further improved by involving dropout means of f̂(x|θ). However, MC
dropout means do not carry an intrinsic meaning of uncertainty as opposed to standard
deviations, so we do not include them in our main experiments but only in our extended
results.

90

3.4 Experiments

Table 3.7: Ablation on the number of network layers used in terms of meta classification (AuROC
and AP) and meta regression (R2). Gradient features per layer are accumulated to those of later
layers starting from the last layer of the DNN.

Layers
Metric Score 1 2 3 4 5

AuROC 96.53± 0.05 98.04± 0.03 98.06± 0.02 98.18± 0.03 98.18± 0.03 98.19± 0.02
AP 96.87± 0.03 97.81± 0.06 97.83± 0.04 97.98± 0.05 98.00± 0.04 98.04± 0.04
R2 78.89± 0.05 84.35± 0.05 85.40± 0.11 86.04± 0.11 86.18± 0.07 86.24± 0.09

As another common, sampling-based baseline, we investigate deep ensemble (E, cf. sec-
tion 2.2.4.2) uncertainty obtained from ensembles of size 5. We find that larger ensembles
do not significantly improve meta classification performance. For reference, we show an
ablation on the ensemble size NDE for YOLOv3 on the KITTI dataset in table 3.6 in terms
of meta classification and meta regression. By the same motivation as for MC dropout,
we only include anchor-wise standard deviations over forward passes from the ensemble
and add means in the extended results.

The output-based MetaDetect framework (MD) computes uncertainty features for
use in meta classification and meta regression from pre-NMS variance in anchor-based
object detection. In our implementation, we compute the 46 + C MetaDetect features
[161] which include the entire network output f̂ j(x|θ). Additionally, the MetaDetect
framework computes also the number of proposal boxes suppressed by ξ̂j , i.e., |cand[ξ̂j]|
and uses the bounding box statistics given by the candidates to compute quantities like
minimum, maximum, mean and standard deviations of bounding box features and IoU
values between proposals. The MetaDetect framework is, therefore, an enveloping model
to any uncertainty features based on the object detection output (in particular to any
classification-based uncertainty) which we also find in our experiments. We include it in
order to cover all such baselines.

In our experiments, we investigate two gradient-based uncertainty (GS) models. While
GS∥·∥2 is based on the two-norms of box-wise gradients, GSfull is utilizes all the six maps
in eq. (3.4). While the two norms ∥ · ∥1 and ∥ · ∥2 directly compute the magnitude of
a vector, the maps mean(·) and std(·) do not immediately capture a concept of length.
However, they have been found in [132] to yield decent separation capabilities. Similarly,
the component-wise min(·) and max(·) contain relevant predictive information. Note, that
the latter two are related to the sup-norm ∥ · ∥∞ but together contain more information.
While the last layer gradients themselves are highly informative, we allow for gradients
of the last two layers in our main experiments. In table 3.7 we show meta classification
and meta regression performance of gradient-based models with features obtained from
different numbers of network layers of the YOLOv3 model on the KITTI dataset. Starting
with the last layer gradient only (# layers is 1), the gradient features from the two last
layers and so on. We see that meta classification performance quickly saturates, and no
significant benefit can be seen from using more than 3 layers. However, meta regression
can still be improved slightly by using up to 5 network layers.

91

3 Gradient Uncertainty for Deep Object Detectors

Table 3.8: Meta classification performance in terms of AuROC and AP per meta classifier input
over 10-fold cv. Model: YOLOv3 with Darknet53 backbone.

YOLOv3 Pascal VOC COCO KITTI

AuROC AP AuROC AP AuROC AP

Score 90.68± 0.06 69.56± 0.12 82.97± 0.04 62.31± 0.05 96.53± 0.05 96.87± 0.03
Entropy 91.30± 0.02 61.94± 0.06 76.52± 0.02 42.52± 0.04 94.79± 0.06 94.83± 0.05
Energy Score [107] 92.59± 0.02 64.65± 0.06 75.39± 0.02 39.72± 0.06 95.66± 0.02 95.33± 0.03
Full Softmax 93.81± 0.06 72.08± 0.15 82.91± 0.06 58.65± 0.10 97.07± 0.03 96.85± 0.03
MC Dropout [169] (MC, NMC = 30) 96.72± 0.02 78.15± 0.09 89.04± 0.02 64.94± 0.11 97.60± 0.07 97.17± 0.10
Ensemble [88] (E, Nens = 5) 96.87± 0.02 77.86± 0.11 88.97± 0.02 64.05± 0.12 97.98± 0.03 97.69± 0.04
MetaDetect [161] (MD) 95.78± 0.05 78.64± 0.08 87.16± 0.04 69.41± 0.07 98.23± 0.02 98.06± 0.02
Grad. Score∥·∥2 (GS∥·∥2 ; ours) 94.76± 0.03 74.86± 0.10 86.05± 0.04 64.25± 0.06 97.31± 0.05 96.86± 0.10

Grad. Scorefull (GSfull; ours) 95.80± 0.04 78.57± 0.11 88.07± 0.03 69.62± 0.07 98.04± 0.03 97.81± 0.06

MC+E+MD 97.66± 0.02 85.13± 0.12 91.14± 0.02 73.82± 0.05 98.56± 0.03 98.45± 0.03
GSfull+MC+E+MD 97.95± 0.02 86.69± 0.09 91.65± 0.03 74.88± 0.07 98.74± 0.02 98.62± 0.01

In some of our experiments, we compute gradients via the PyTorch autograd framework,
iteratively for each bounding box. While this alleviates significant implementation effort,
this procedure is computationally far less efficient than directly computing the gradients
from the formulas in section 3.4.1 as is done in our runtime measurements.

In order to save on computational effort, we compute gradient features not for all pre-
dicted bounding boxes. We use a small score threshold of 10−4 (KITTI, Pascal VOC),
resp. 10−2 (MS COCO) as a pre-filter. On average, this produces ∼ 150 predictions per
image. These settings lead to a highly dis-balanced TP/FP ratio post NMS on which
meta classification and meta regression models are fitted. On YOLOv3, for example,
these ratios are for Pascal VOC: 0.099, MS COCO: 0.158 and for KITTI: 0.464, so our
models fit on significantly more FPs than TPs. However, our meta classification and meta
regression models (see section 3.3.2) are gradient boosting models which tend to reflect
well-calibrated confidences / regressions on the domain of training data. Our results (e.g.,
table 3.8) obtained from cross-validation confirm that this ratio does not constitute an
obstacle for obtaining well-performing models on data not used to fit the model. For gra-
dient boosting models, we employ the XGBoost library [22] with 30 estimators (otherwise
standard hyperparameters).

3.4.2 Comparison with Output-based Uncertainty

We compare gradient-based uncertainty with various uncertainty baselines in terms of
meta classification (table 3.8) and meta regression (table 3.9) for a YOLOv3 model with
standard Darknet53 backbone [39]. As class probability baselines, we consider objectness
score, softmax entropy, energy score [107] and the full softmax distribution per box. Since
the full softmax baseline fits a model directly to all class probabilities (as opposed to
relying on hand-crafted functions), it can be considered an enveloping model to both,
entropy and energy score. Moreover, we consider other output baselines in MC dropout
(MC), deep ensembles (E) and MetaDetect (MD). Since MetaDetect involves the entire
network output of a bounding box, it leads to meta classifiers fitted on more variables than
class probability baselines. It is, thus, an enveloping model of the full softmax baseline
and, therefore, all classification baselines. The results in table 3.8 indicate that GSfull is

92

3.4 Experiments

Table 3.9: Meta regression performance in terms of R2 per meta classifier input over 10-fold cv.
Model: YOLOv3 with Darknet53 backbone.

YOLOv3 Pascal VOC COCO KITTI

Score 48.29± 0.04 32.60± 0.02 78.86± 0.05
Entropy 43.24± 0.03 21.10± 0.04 69.33± 0.04
Energy Score 47.18± 0.03 17.94± 0.02 71.53± 0.10
Full Softmax 53.86± 0.11 36.95± 0.13 78.92± 0.11
MC 61.63± 0.15 43.85± 0.09 82.10± 0.11
E 61.48± 0.07 43.53± 0.13 84.18± 0.12
MD 60.36± 0.14 44.22± 0.11 85.88± 0.10
GS∥·∥2 (ours) 58.05± 0.13 38.77± 0.04 81.21± 0.05

GSfull (ours) 62.50± 0.11 44.90± 0.09 85.40± 0.11

MC+E+MD 69.38± 0.11 54.07± 0.08 87.78± 0.11
GSfull+MC+E+MD 72.26± 0.08 56.14± 0.11 88.80± 0.07

TP FP

0.0

0.2

0.4

0.6

0.8

1.0

co
n

fid
en

ce

TP FP TP FP

Figure 3.5: Confidence violin plots divided into TP and FP for Score (left), GSfull (center) and
GSfull+MC+E+MD (right). Model: YOLOv3, dataset: Pascal VOC evaluation split.

roughly in the same AuROC range as sampling-based uncertainty methods, while being
consistently among the two best methods in terms of AP. The smaller gradient-based
model GS∥·∥2 is consistently better than the full softmax baseline, by up to 3.14 AuROC
percentage points (ppts) and up to 5.60 AP ppts. We also find that GSfull tends to rank
lower in terms of AuROC. Note also, that MetaDetect is roughly on par with the sampling
approaches MC and E throughout. While the latter methods aim at capturing epistemic
uncertainty they constitute approximations and are, not necessarily mutually redundant.

In addition, we compare the largest output-based model MC+E+MD and add the gradient
features GSfull to find out about the degree of redundancy between the approximated
epistemic uncertainty in MC+E+MD and our method. We note significant boosts to
the already well-performing model MC+E+MD across all metrics. Table 3.9 suggests
that gradient uncertainty is especially informative for meta regression with GSfull being
consistently among the best two models and achieving R2 scores of up to 85.4 on the
KITTI dataset. Adding GSfull to MC+E+MD always leads to a gain of more than one
R2 ppt indicating non-redundancy of gradient- and sampling-based features.

Figure 3.5 shows the confidence violin plots of the score (left), GSfull (center) and the

93

3 Gradient Uncertainty for Deep Object Detectors

Figure 3.6: Scatter plots for samples of Score and meta regression based on MC dropout, a deep
ensemble, Meta Detect, gradient features GSfull and the combination model MC+E+MD+GSfull.
We draw the optimal diagonal for reference. Model: YOLOv3, dataset: KITTI evaluation split.

composite model GSfull+MC+E+MD (right) conditioned on TP and FP predictions. The
violin widths are normalized for increased width contrast. The score TP-violin shows
especially large density at low confidences as opposed to the TP-violin plots of GSfull and
GSfull+MC+E+MD which are less concentrated around the confidence τ̂ = 0. Instead,
they have mass shifted towards the medium confidence range, i.e., the “neck” of the violin.

⋔Extended Results: Meta Regression. We underline the meta regression results by
showing samples of predicted IoU values over their true IoU in fig. 3.6. The samples are
the results of one cross-validation split from table 3.9, and we indicate the diagonal of
optimal regression with a dashed line in each panel. Note that the x-axis shows the true
IoU values, and we indicate the uncertainty quantification method below each panel plot
at a label. The y-axis shows the predicted IoU for each method. We find a large cluster
for the score with low score but medium to high true IoU (from 0.1 to 0.8), the right-
most part of which (predicted IoU ≥ 0.5) are false negative predictions. In this regard,
we refer again to fig. 3.1 where FNs such as these become very apparent. Moreover, the
score indicates very little correlation with the true IoU for true IoU ≥ 0.6 where there are
numerous samples with a score between 0.4 and 0.6.

In contrast, the meta regression models show striking amounts of FPs (true IoU equal to 0
and, e.g., prediction ι ≥ 0.3). This phenomenon seems especially apparent for Monte Carlo
dropout uncertainty. The meta regression models MD, GSfull and GSfull+MC+E+MD
show fits that are comparatively close to the optimal diagonal which is in line with the
determined regression performance R2 between 0.81 and 0.89 in table 3.9.

3.4.3 Generalization over Object Detection Architectures

We investigate the applicability and viability of gradient uncertainty for a variety of dif-
ferent architectures. In addition to the YOLOv3 model, we investigate two more stan-
dard object detectors in Faster R-CNN [144] and RetinaNet [101] both with a ResNet50
backbone [61]. Refer also to section 2.3.2 for additional detail on these architectures.
Moreover, we investigate a stronger object detector in Cascade R-CNN [12] with a large
ResNeSt200 [215] backbone which at the time of writing was ranked among the top 10
on the official MS COCO Detection Leaderboard. With an MS COCO detection AP of
49.03, this is in the state-of-the-art range for pure, non-hybrid-task object detectors. In ta-
ble 3.10, we list meta classification AuROC and meta regression R2 for the score, MetaDe-

94

https://cocodataset.org/#detection-leaderboard

3.4 Experiments

Table 3.10: Meta classification and meta regression performance in terms of AuROC and R2,
respectively, for different object detection architectures. Results obtained from 10-fold cv as above.

Pascal VOC COCO KITTI

AuROC R2 AuROC R2 AuROC R2

Faster R-CNN

Score 89.77± 0.05 39.94± 0.02 83.82± 0.03 40.50± 0.01 96.53± 0.05 72.29± 0.02
MD 94.43± 0.02 47.92± 0.09 91.31± 0.02 44.41± 0.04 98.86± 0.02 79.92± 0.04
GSfull 95.88± 0.05 59.40± 0.03 91.38± 0.03 50.44± 0.04 99.20± 0.01 86.31± 0.07
GSfull + MD 96.77± 0.05 63.64± 0.08 92.30± 0.02 52.30± 0.04 99.37± 0.02 87.46± 0.05

RetinaNet

Score 87.53± 0.03 40.43± 0.01 84.95± 0.02 39.88± 0.02 95.91± 0.02 73.44± 0.02
MD 89.57± 0.04 50.27± 0.10 85.09± 0.01 42.45± 0.12 96.19± 0.02 77.53± 0.08
GSfull 91.58± 0.04 57.23± 0.07 85.59± 0.02 47.74± 0.06 97.26± 0.03 84.47± 0.04
GSfull + MD 92.99± 0.03 64.32± 0.07 87.15± 0.05 51.07± 0.09 97.61± 0.02 85.73± 0.09

Cascade R-CNN

Score 95.70± 0.04 57.90± 0.09 94.11± 0.01 56.31± 0.01 98.67± 0.02 83.31± 0.03
MD 96.32± 0.05 63.62± 0.12 94.10± 0.02 58.74± 0.08 99.18± 0.01 86.22± 0.08
GSfull 96.66± 0.05 63.94± 0.13 93.97± 0.01 57.80± 0.08 99.34± 0.01 87.39± 0.08
GSfull + MD 97.24± 0.05 69.78± 0.13 94.78± 0.02 62.13± 0.06 99.48± 0.01 89.59± 0.04

tect (representing output-based methods), GSfull and the combined model GSfull+MD. We
see GSfull again being on par with MD, in the majority of cases even surpassing it by up
to 2.01 AuROC ppts and up to 11.52 R2 ppts. When added to MD, we find again boosts
in both performance metrics, especially in R2. On the MS COCO dataset, the high per-
formance model Cascade R-CNN delivers a remarkably strong Score baseline completely
redundant with MD and surpassing GSfull on its own. However, here we also find an
improvement of 0.68 ppts by adding gradient information.

⋔Extended Results: Non-Redundancy. Gradient features show significant improve-
ments when combined with output- or sampling-based uncertainty quantification methods
(see table 3.8 and table 3.9). We show additional meta classification and meta regres-
sion results in table 3.11 and in table 3.12 to further illustrate this finding. First, in
table 3.11 we find that adding GSfull to the raw object detection output features f̂(x|θ)
performs similarly as the combination GSfull+MD. In fact, when directly comparing MD
with f̂(x|θ), we see consistently better results on f̂(x|θ), even though MD contains f̂(x|θ)
as co-variables. We attribute this finding to overfitting of the gradient boosting classifier
and regression on MD. This suggests that the information in MD is mostly redundant
with the network output features. Also, for combinations of one output-based uncertainty
source (i.e., one of MC, E and MD) we gain strong boosts, especially in meta regression
(R2). Note, that GSfull+Estd is almost always the second-best model, even out-performing
the purely output-based model MCstd+Estd+MD. We show meta classification and meta
regression performance of the sampling-based epistemic uncertainty methods MC and E
when we include sampling averages of all features in addition to standard deviations which
also leads to significant boosts. Finally, we show an additional subset of GSfull consisting
of one- and two-norms ({∥ ·∥1, ∥ ·∥2}) of all gradients which we abbreviate by GS∥·∥1,2 . We
notice significant gain of the latter to GS∥·∥2 , which shows that the one-norms ∥ · ∥1 con-

95

3 Gradient Uncertainty for Deep Object Detectors

Table 3.11: Extended meta classification (AuROC and AP) and meta regression

(R2) performance results of baseline methods , variants of gradient metrics and

different combinations of output-based uncertainty quantification methods with gradient

metrics (mean± std). We also show the results of using the entire network output f̂(x|θ) for meta
classification and regression, as well, as adding sampling means to standard deviation features for
MC and E.

Pascal VOC COCO KITTI

YOLOv3 AuROC AP R2 AuROC AP R2 AuROC AP R2

Score 90.68± 0.06 69.56± 0.12 48.29± 0.04 82.97± 0.04 62.31± 0.05 32.60± 0.02 96.55± 0.04 96.87± 0.03 78.83± 0.05
Entropy 91.30± 0.02 61.94± 0.06 43.24± 0.03 76.52± 0.02 42.52± 0.04 21.10± 0.04 94.78± 0.03 94.82± 0.05 69.33± 0.08
Energy 92.59± 0.02 64.65± 0.06 47.18± 0.03 75.39± 0.02 39.72± 0.06 17.94± 0.02 95.46± 0.05 94.63± 0.08 70.39± 0.10
Full Softmax 93.81± 0.06 72.08± 0.15 53.86± 0.11 82.91± 0.06 58.65± 0.10 36.95± 0.13 97.10± 0.02 96.90± 0.04 78.79± 0.12

Full output f̂(x|θ) 95.84± 0.04 78.84± 0.10 60.67± 0.18 86.31± 0.05 67.46± 0.07 44.32± 0.11 98.35± 0.02 98.21± 0.04 86.34± 0.07
MCstd 96.72± 0.02 78.15± 0.09 61.63± 0.15 89.04± 0.02 64.94± 0.11 43.85± 0.09 95.43± 0.04 94.11± 0.12 75.09± 0.13
MCstd+mean 97.42± 0.02 84.18± 0.09 68.33± 0.16 90.40± 0.03 72.63± 0.07 52.38± 0.07 98.43± 0.03 98.28± 0.04 86.86± 0.09
Estd 96.87± 0.02 77.86± 0.11 61.48± 0.07 88.97± 0.02 64.05± 0.12 43.53± 0.13 97.98± 0.03 97.69± 0.04 84.29± 0.12
Estd+mean 97.62± 0.02 84.87± 0.14 68.88± 0.09 90.75± 0.03 73.15± 0.06 53.09± 0.09 98.61± 0.02 98.49± 0.03 88.00± 0.08
MCstd+mean+Estd+mean 97.69± 0.02 85.30± 0.11 69.60± 0.13 91.15± 0.03 73.85± 0.05 54.12± 0.09 98.61± 0.01 98.49± 0.02 87.95± 0.10
MD 95.78± 0.05 78.64± 0.08 60.36± 0.14 86.23± 0.05 67.37± 0.08 44.22± 0.11 98.23± 0.03 98.07± 0.03 85.97± 0.09
GS∥·∥2 94.76± 0.03 74.86± 0.10 58.05± 0.13 84.90± 0.02 61.49± 0.08 38.77± 0.04 97.30± 0.05 96.82± 0.10 81.11± 0.14

GS∥·∥1,2 95.03± 0.03 76.04± 0.10 59.83± 0.10 86.21± 0.04 63.32± 0.13 41.36± 0.09 97.65± 0.04 97.21± 0.07 83.27± 0.09

GSfull 95.80± 0.04 78.57± 0.11 62.50± 0.11 86.94± 0.04 66.96± 0.06 44.90± 0.09 98.04± 0.02 97.81± 0.04 85.28± 0.07

GSfull+f̂(x|θ) 96.51± 0.018 81.20± 0.09 65.24± 0.16 87.54± 0.04 69.05± 0.07 47.67± 0.09 98.57± 0.03 98.47± 0.04 87.83± 0.08
GSfull+MCstd 97.65± 0.01 85.12± 0.06 70.30± 0.08 90.76± 0.02 72.50± 0.08 52.71± 0.07 98.35± 0.04 98.16± 0.04 86.48± 0.11
GSfull+Estd 97.85± 0.02 85.90± 0.15 71.22± 0.07 91.27± 0.03 73.44± 0.06 54.17± 0.06 98.64± 0.02 98.49± 0.03 88.34± 0.10
GSfull+MD 96.46± 0.04 81.00± 0.16 65.08± 0.14 87.51± 0.02 68.98± 0.08 47.63± 0.10 98.53± 0.03 98.42± 0.04 87.69± 0.06

MCstd+Estd+MD 97.66± 0.02 85.13± 0.12 69.38± 0.11 91.14± 0.02 73.82± 0.05 54.07± 0.08 98.56± 0.03 98.45± 0.03 87.78± 0.11
GSfull+MCstd+Estd+MD 97.95± 0.02 86.69± 0.09 72.26± 0.08 91.65± 0.03 74.88± 0.07 56.14± 0.11 98.74± 0.02 98.62± 0.01 88.80± 0.07

Table 3.12: Extended meta classification (AuROC and AP) and meta regression

(R2) performance results of baseline methods , variants of gradient metrics and

combinations of output- and gradient-based metrics for different object detection architec-
tures.

Pascal VOC COCO KITTI

AuROC AP R2 AuROC AP R2 AuROC AP R2

Faster R-CNN

Score 89.77± 0.05 67.71± 0.03 39.94± 0.02 83.82± 0.03 64.14± 0.03 40.50± 0.01 96.53± 0.05 93.29± 0.02 72.29± 0.02
MC 89.99± 0.06 44.22± 0.26 23.70± 0.17 85.80± 0.03 40.48± 0.12 23.56± 0.09 93.39± 0.07 67.82± 0.24 40.09± 0.17
MD 94.43± 0.02 71.18± 0.06 47.92± 0.09 91.31± 0.02 64.73± 0.05 44.41± 0.04 98.86± 0.03 94.31± 0.05 79.92± 0.04
GS∥·∥2 91.04± 0.07 61.66± 0.15 44.88± 0.05 89.80± 0.03 61.16± 0.06 44.93± 0.04 98.75± 0.02 93.01± 0.05 81.54± 0.05

GS∥·∥1,2 94.91± 0.04 67.73± 0.10 56.70± 0.06 90.64± 0.03 62.53± 0.07 48.27± 0.03 98.97± 0.03 93.89± 0.07 84.04± 0.04

GSfull 95.88± 0.05 68.74± 0.13 59.40± 0.03 91.38± 0.03 63.31± 0.07 50.44± 0.04 99.20± 0.01 94.60± 0.07 86.31± 0.07

GSfull+MC 96.59± 0.03 71.31± 0.08 60.74± 0.07 92.09± 0.02 64.59± 0.06 51.09± 0.04 99.34± 0.02 95.24± 0.05 86.85± 0.04
GSfull+MD 96.77± 0.05 73.60± 0.07 63.64± 0.08 92.30± 0.02 65.67± 0.05 52.30± 0.04 99.37± 0.02 95.38± 0.05 87.46± 0.05
GSfull+MC+MD 96.72± 0.04 73.51± 0.10 63.02± 0.03 92.30± 0.01 65.77± 0.06 52.21± 0.04 99.35± 0.02 95.37± 0.03 86.99± 0.07

RetinaNet

Score 87.53± 0.03 66.30± 0.05 40.43± 0.01 84.95± 0.04 68.58± 0.01 39.88± 0.02 95.91± 0.02 89.93± 0.02 73.44± 0.02
MC 72.90± 0.08 27.39± 0.11 14.17± 0.12 76.96± 0.04 43.54± 0.06 19.46± 0.06 88.13± 0.06 71.19± 0.10 50.51± 0.12
MD 89.57± 0.04 68.43± 0.08 50.27± 0.10 85.09± 0.01 68.32± 0.06 42.45± 0.12 96.19± 0.03 90.13± 0.04 77.53± 0.08
GS∥·∥2 87.86± 0.04 64.35± 0.06 46.19± 0.05 81.62± 0.04 63.95± 0.03 38.01± 0.04 95.93± 0.03 90.03± 0.05 79.17± 0.04

GS∥·∥1,2 88.77± 0.06 65.40± 0.05 49.64± 0.06 83.53± 0.05 65.88± 0.07 41.96± 0.05 96.47± 0.04 90.50± 0.03 81.35± 0.05

GSfull 91.58± 0.04 68.32± 0.06 57.23± 0.07 85.59± 0.02 67.93± 0.04 47.74± 0.06 97.26± 0.03 91.51± 0.07 84.47± 0.04
GSfull+MC 92.54± 0.03 70.65± 0.06 61.73± 0.04 86.87± 0.03 69.42± 0.03 50.63± 0.07 97.52± 0.02 91.98± 0.06 85.08± 0.04
GSfull+MD 92.99± 0.03 72.30± 0.08 64.32± 0.07 87.15± 0.05 70.16± 0.07 51.07± 0.09 97.61± 0.02 92.26± 0.05 85.73± 0.09
GSfull+MC+MD 92.95± 0.03 72.33± 0.07 63.44± 0.06 87.20± 0.04 70.21± 0.03 51.38± 0.09 97.63± 0.01 92.30± 0.03 85.64± 0.08

Cascade R-CNN

Score 95.70± 0.04 79.62± 0.10 57.90± 0.09 94.11± 0.01 81.36± 0.02 56.32± 0.02 98.67± 0.02 95.81± 0.04 83.31± 0.03
MD 96.32± 0.05 82.11± 0.12 63.62± 0.12 94.12± 0.03 81.60± 0.05 58.84± 0.04 99.18± 0.01 96.60± 0.05 86.22± 0.08
GS∥·∥2 96.46± 0.05 76.94± 0.19 61.56± 0.12 93.30± 0.02 76.40± 0.06 54.13± 0.06 99.19± 0.01 95.83± 0.06 85.80± 0.06

GS∥·∥1,2 96.54± 0.06 78.19± 0.22 62.82± 0.15 93.63± 0.02 77.95± 0.06 56.24± 0.05 99.23± 0.01 96.07± 0.05 86.33± 0.06

GSfull 96.66± 0.05 78.97± 0.19 63.94± 0.13 93.97± 0.02 79.17± 0.09 57.86± 0.05 99.34± 0.01 96.48± 0.04 87.39± 0.08
GSfull+MD 97.24± 0.05 84.11± 0.13 69.78± 0.13 94.78± 0.02 82.53± 0.05 62.13± 0.05 99.48± 0.01 97.27± 0.04 89.59± 0.04

96

3.4 Experiments

0.0 0.5 1.0
Score

0.0

0.5

1.0

C
on

d
.

P
re

ci
si

on

ECE = 0.040
ACE = 0.114

0.0 0.5 1.0
MC

ECE = 0.004± 0.000
ACE = 0.003± 0.000

0.0 0.5 1.0
E

ECE = 0.014± 0.002
ACE = 0.010± 0.002

0.0 0.5 1.0
MD

ECE = 0.003± 0.000
ACE = 0.012± 0.001

0.0 0.5 1.0
GSfull

ECE = 0.005± 0.000
ACE = 0.020± 0.003

0.0 0.5 1.0
MC+E+MD+GSfull

ECE = 0.005± 0.000
ACE = 0.024± 0.003

Confidence

Figure 3.7: Reliability diagrams for the Score and meta classifiers based on different epistemic un-
certainty features of the YOLOv3 architecture on the KITTI dataset. See table 3.13 for calibration
errors of all meta classification models investigated in section 3.4.

tains important predictive information. Moreover, GSfull is still significantly stronger than
GS∥·∥1,2 , showing that the other uncertainty features in eq. (3.4) lead to large performance
boosts. Note that in almost all cases, combining MC dropout and deep ensemble features
shows improvement over the single models even though both are epistemic (model) un-
certainty. The two methods, therefore, do not contain the exact same information but
still complement each other to some degree and are rather different approximations of
epistemic uncertainty.

For further illustration of our method, table 3.12 shows additional meta classification
and meta regression results for the architectures from table 3.10. We find similar ten-
dencies for the purely norm-based gradient model GS∥·∥1,2 and see a significant degree of
non-redundancy between gradient-based uncertainty and output-based uncertainty quan-
tification methods. Note in particular, that MC stays roughly on par with the score
baseline in terms of AuROC. We see significantly worse performance in terms of AP and
meta regression (R2). We attribute this to the anchor-based dropout sampling method
which was also employed for the present architectures. In the case of Faster R-CNN, the
aggregation approach is region proposal-based.

3.4.4 Calibration of Meta Classifiers

We evaluate the meta classifier confidences obtained above in terms of their calibration
errors when divided into 10 confidence bins. Reliability plots are shown in fig. 3.7 for
the Score, MC, E, MD, GSfull and MC+E+MDGSfull together with corresponding ex-
pected (ECE [126]) and average (ACE [128]) calibration errors. The Score is clearly
over-confident in the upper confidence range and both meta classifiers are well-calibrated.
Both calibration errors of the latter are about one order of magnitude smaller than for the
Score.

For sake of completeness, we list in table 3.13 the calibration metrics ECE , MCE and ACE
defined in section 3.3.2 for score and meta classifiers for all object detectors on all three
datasets. The ECE metric is comparatively small for all meta classifiers and, therefore,
insensitive and harder to interpret than MCE and ACE . As was argued in [128], the
former is also less informative as bin-wise accuracy is weighted with the bin counts. In
table 3.13 we can see a weakly increasing trend of calibration errors in the meta classifiers
likely due to overfitting on the increasing number of co-variables. All meta classifiers

97

3 Gradient Uncertainty for Deep Object Detectors

Table 3.13: Expected (ECE , [126]), maximum (MCE , [126]) and average (ACE , [128]) calibration
errors per confidence model over 10-fold cv.

Pascal VOC COCO KITTI

YOLOv3 ECE MCE ACE ECE MCE ACE ECE MCE ACE

Score 0.040 0.252 0.114 0.0327 0.050 0.034 0.068 0.348 0.227
Entropy 0.002± 0.001 0.021± 0.010 0.007± 0.003 0.002± 0.001 0.028± 0.020 0.007± 0.003 0.005± 0.001 0.033± 0.010 0.011± 0.003
Energy Score 0.001± 0.001 0.015± 0.007 0.005± 0.002 0.002± 0.001 0.021± 0.003 0.008± 0.001 0.006± 0.002 0.034± 0.010 0.013± 0.005
Full Softmax 0.003± 0.000 0.028± 0.006 0.010± 0.002 0.003± 0.001 0.018± 0.003 0.007± 0.001 0.008± 0.001 0.048± 0.010 0.018± 0.002
MC 0.004± 0.000 0.033± 0.006 0.014± 0.002 0.004± 0.001 0.025± 0.003 0.010± 0.001 0.011± 0.001 0.036± 0.010 0.013± 0.002
E 0.003± 0.000 0.025± 0.005 0.010± 0.002 0.004± 0.001 0.022± 0.003 0.010± 0.001 0.013± 0.001 0.062± 0.010 0.028± 0.004
MD 0.003± 0.000 0.040± 0.009 0.012± 0.001 0.005± 0.001 0.033± 0.005 0.014± 0.001 0.012± 0.001 0.074± 0.020 0.028± 0.005
GS∥·∥2 0.003± 0.000 0.036± 0.007 0.014± 0.001 0.002± 0.000 0.013± 0.004 0.005± 0.001 0.008± 0.001 0.054± 0.010 0.022± 0.003

GSfull 0.005± 0.000 0.055± 0.002 0.021± 0.003 0.005± 0.001 0.039± 0.003 0.015± 0.001 0.012± 0.001 0.078± 0.020 0.034± 0.006

MC+E+MD 0.005± 0.001 0.049± 0.010 0.020± 0.003 0.005± 0.000 0.031± 0.006 0.014± 0.001 0.014± 0.001 0.076± 0.010 0.034± 0.005
MC+E+MD+GSfull 0.005± 0.000 0.061± 0.010 0.024± 0.003 0.006± 0.000 0.042± 0.004 0.018± 0.001 0.015± 0.001 0.106± 0.020 0.043± 0.006

Faster R-CNN

Score 0.050 0.427 0.232 0.075 0.212 0.138 0.036 0.283 0.114
MD 0.003± 0.000 0.039± 0.007 0.013± 0.002 0.004± 0.000 0.020± 0.003 0.009± 0.001 0.009± 0.001 0.079± 0.020 0.029± 0.004
GSfull 0.004± 0.000 0.027± 0.007 0.011± 0.001 0.004± 0.001 0.024± 0.003 0.009± 0.001 0.010± 0.001 0.084± 0.020 0.035± 0.004
MD+GSfull 0.005± 0.000 0.044± 0.007 0.018± 0.002 0.006± 0.001 0.029± 0.006 0.012± 0.001 0.011± 0.001 0.088± 0.010 0.037± 0.004

RetinaNet

Score 0.068 0.212 0.123 0.089 0.192 0.106 0.027 0.097 0.043
MD 0.003± 0.000 0.031± 0.008 0.011± 0.002 0.005± 0.001 0.022± 0.004 0.009± 0.001 0.003± 0.000 0.044± 0.006 0.016± 0.002
GSfull 0.003± 0.000 0.044± 0.009 0.014± 0.001 0.005± 0.000 0.031± 0.006 0.012± 0.001 0.005± 0.001 0.060± 0.010 0.022± 0.004
MD+GSfull 0.005± 0.000 0.064± 0.008 0.024± 0.002 0.007± 0.001 0.032± 0.004 0.015± 0.001 0.006± 0.000 0.070± 0.010 0.028± 0.003

Cascade R-CNN

Score 0.020 0.219 0.090 0.029 0.082 0.042 0.013 0.188 0.078
MD 0.003± 0.000 0.021± 0.006 0.007± 0.002 0.003± 0.000 0.019± 0.007 0.006± 0.001 0.002± 0.000 0.038± 0.010 0.016± 0.005
GSfull 0.005± 0.000 0.032± 0.010 0.012± 0.002 0.003± 0.000 0.017± 0.003 0.007± 0.001 0.003± 0.000 0.052± 0.010 0.020± 0.004
MD+GSfull 0.005± 0.000 0.034± 0.008 0.014± 0.002 0.004± 0.000 0.025± 0.004 0.010± 0.001 0.003± 0.000 0.046± 0.009 0.019± 0.003

are well-calibrated across the board. Table 3.13 also shows the expected (ECE , [126])
calibration error which was argued in [128] to be biased toward bins with large amounts
of examples. ECE is, thus, less informative for safety-critical investigations.

3.4.5 Pedestrian Detection: Conditioning Meta Classification Results
to a Specific Class

The statistical improvement seen in table 3.8 may not hold for non-majority classes within
a dataset which are regularly safety-relevant. We investigate meta classification of the
“Pedestrian” class in KITTI and explicitly study the FP/FN trade-off. This can be accom-
plished by sweeping the confidence threshold between 0 and 1 and counting the resulting
FPs and FNs. We choose increments of 10−2 for meta classifiers and 10−4 for the scores as
to not interpolate too roughly in the range of very small score values where a significant
number of predictions cluster. The resulting curves are depicted in fig. 3.8. For appli-
cations in safety-critical environments, not all errors need to be equally important. We
may, for example, demand a good trade-off at a given FN count which is usually desired
to be especially small. Our present evaluation split contains a total of 1.152 pedestrian
instances. Assume that we allowed for a detector to miss around 100 pedestrians (∼ 10%),
we see a reduction in FPs for some meta classifiers. MD and GSfull are very roughly on
par, leading to a reduction of close to 100 FPs. The ensemble E turns out to be about
as effective as the entire output-based model MC+E+MD, only falling behind above 150
FNs. This further indicates some degree of redundancy between output-based methods.
Adding GSfull to MC+E+MD, however, reduces the number of FPs again by about 100
leading to an FP difference of about 250 as compared to the Score baseline. Observing the
trend, the improvements become even more effective for smaller numbers of FNs (small

98

3.4 Experiments

250 500 750 1000
False Positives

0

50

100

150

200

250

M
et

a
F

al
se

N
eg

at
iv

es

Score

MC

E

MD

GSfull

MC+E+MD

GSfull+MC+E+MD

Figure 3.8: Meta classification for the class Pedestrian. Curves obtained by sweeping the threshold
on score / meta classification probability. Note the FP gaps for ≤ 100 FNs.

0.0 0.2 0.4 0.6 0.8 1.0
Decision Threshold

60

70

80

90

m
A

P

Score

MC

E

MD

GSfull

MC+E+MD

GSfull+MC+E+MD

Figure 3.9: Score baseline and MetaFusion mAP. Error bands we draw around meta classifiers
indicate cv-std.

thresholds) but diminish for larger numbers of above 200 FNs.

3.4.6 MetaFusion: Using Improved Confidences for Object Detection
Performance

In regarding fig. 3.2, meta classifiers naturally fit as post-processing modules on top of
object detection pipelines. Doing so does not generate new bounding boxes, but modifies
the confidence ranking as shown in fig. 3.1 and may also lead to calibrated confidences.
Therefore, the score baseline and meta classifiers are not comparable for fixed decision
thresholds. We obtain a comparison of the resulting object detection performance by
sweeping the decision threshold with a step size of 0.05 (resp. 0.025 for Score). The mAP
curves are shown in fig. 3.9. We draw error bands showing cv-std for GSfull, MC+E+MD
and GSfull+MC+E+MD. Meta classification-based decision rules are either on par (MC)
with the score threshold or consistently allow for a mAP improvement of at least 1 to 2

99

3 Gradient Uncertainty for Deep Object Detectors

Table 3.14: Computation timing of different methods at τs = 10−4.

Method Parameters AuROC AP R2 FPS

Score — 96.53 96.53 78.86 43.48
MC N = 30, par. 97.60 97.17 82.10 31.45
E N = 5, seq. 97.98 97.69 84.18 9.17
GSfull 1 layer 98.04 97.81 84.35 34.77

mAP ppts. In particular, MD performs well, gaining around 2 ppts in the maximum mAP.
When comparing the addition of GSfull to MC+E+MD, we still find slim improvements
for thresholds ≥ 0.75. The score curve shows a kink at a threshold of 0.05 and ends at
the same maximum mAP as GSfull while the confidence ranking is clearly improved for
MC+E+MD and GSfull+MC+E+MD. Note that meta classification based on GSfull is less
sensitive to the choice of threshold than the score in the medium range. At a threshold of
0.3 we have a mAP gap of about 1.4 ppts which widens to 5.2 ppts at 0.6.

3.4.7 Computational Runtime

We compare the runtime of our method with MC dropout and deep ensembles for YOLOv3
running on an Nvidia Quadro P6000 GPU at batch size 1. Table 3.14 shows the average
performance on the KITTI dataset and throughput in frames per second (FPS). MC is
batch-parallelized within dropout layers, while E runs sequentially. GSfull is parallelized
over the predicted boxes and backpropagation performed explicitly by convolution (see
section 3.3.2). We see that at slightly better meta classification, last layer gradient scores
achieve around 3 additional FPS over MC which is in line with theorem 1. This is pos-
sible due to the initial score threshold τs on the prediction. Computing deeper gradients
amounts to performing one more transposed convolution per layer which does not obstruct
parallelism.

3.5 Conclusion: Gradient-based Uncertainty
Quantification for Deep Object Detection

Applications of modern DNNs in safety-critical environments demand high performance on
the one hand, but also reliable confidence estimation indicating where a model is not com-
petent. We have proposed and investigated a way of implementing gradient-based uncer-
tainty quantification for deep object detection which complements output-based methods
well and is on par with established epistemic uncertainty quantification methods. Exper-
iments involving a number of different architectures suggest that our method can be ap-
plied to significant benefit across architectures, even for high performance state-of-the-art
models. We showed that meta classification performance carries over to object detection
performance when employed as post-processing and that meta classification naturally leads
to well-calibrated gradient confidences improving probabilistic reliability. Equation (3.14)
can in principle be augmented to fit any DNN inferring and learning on an instance-based
logic like 3D bounding box detection or instance segmentation.

100

4
Gradient Uncertainty in Semantic
Segmentation

In this chapter we introduce a method to compute pixel-wise uncertainty scores based
on self-learning gradients for semantic segmentation networks ending on a convolutional
layer. The presented contents are in large parts taken word-for-word from [112].

4.1 Introduction: Gradient-based Uncertainty and
Out-of-Distribution Segmentation

Semantic segmentation decomposes the pixels of an input image into segments which are
assigned to a fixed and predefined set of semantic classes (see section 2.3.3). In recent
years, DNNs have performed excellently in this task [20, 185], providing comprehensive
and precise information about the given scene. However, in safety-relevant applications
like automated driving where semantic segmentation is used in open world scenarios,
DNNs often fail to function properly on unseen objects for which the network has not
been trained, see for example the bobby car in fig. 4.1 (left). These objects from outside
the network’s semantic space are called of out-of-distribution (OoD) objects. It is of
the highest interest that the DNN identifies these objects and abstains from deciding
on the semantic class for those pixels covered by the OoD object. Another case are OoD
objects which might belong to a known class, however, appearing differently to substantial
significance from other objects of the same class seen during training. Consequently,
the respective predictions are prone to error. For these objects, as for classical OoD
objects, marking them as OoD is preferable to the likely case of misclassification which
may happen with high confidence. Furthermore, this additional classification task should
not substantially degrade the semantic segmentation performance itself outside the OoD
region. The computer vision tasks of identifying and segmenting those objects is captured
by the notion of OoD segmentation [14, 111].

101

4 Gradient Uncertainty in Semantic Segmentation

Figure 4.1: Left : Semantic segmentation by a state-of-the-art deep neural network. Right : Gradient
uncertainty heatmap obtained by our method.

The recent contributions to the emerging field of OoD segmentation are mostly focused
on OoD training, i.e., the incorporation of additional training data (not necessarily from
the real world), sometimes obtained by large reconstruction models [34,105]. Another line
of research is the use of uncertainty quantification methods such as Bayesian models [124]
or maximum softmax probability [62]. Gradient-based uncertainties are considered for
OoD detection in the classification task by [132], [69] and [93] and up to now, have not
been applied to OoD segmentation. [52] show that gradient norms perform well in dis-
criminating between in- and out-of-distribution. Moreover, gradient-based features are
studied by [145] for object detection to estimate the prediction quality. Loss gradients
with respect to feature activations in monocular depth estimation are investigated in [65]
and show correlations of gradient magnitude with depth estimation accuracy.

In this chapter, we introduce a new method for uncertainty quantification in semantic
segmentation and OoD segmentation based on gradient information. Magnitude features
of gradients can be computed at inference time and provide information about the uncer-
tainty propagated in the corresponding forward pass. These features represent pixel-wise
uncertainty scores applicable to prediction quality estimation and OoD segmentation. An
exemplary gradient uncertainty heatmap can be found in fig. 4.1 (right). Such uncertainty
scores have shown improved performance for the quality estimation task in image classifi-
cation compared to uncertainties contained in the softmax output of DNNs [132]. In addi-
tion, instance-wise gradient uncertainty outperforms sampling methods like Monte-Carlo
(MC) Dropout [45] and Ensembles [88] in object detection [145]. Calculating gradient
uncertainty scores does not require any re-training of the DNN or computationally ex-
pensive sampling. Instead, only one backpropagation step for the gradients with respect
to the final convolutional network layer is performed per inference to produce gradient
scores which can be done in a highly efficient way as we show. Note, that more than one
backpropagation step can be performed if deeper gradients need to be computed and other
parameters of the model are considered. An overview of our approach is shown in fig. 4.2.

An application to dense predictions such as semantic segmentation has escaped previous
research. Single backpropagation steps per pixel on high-resolution input images quickly
become infeasible given that 106 gradients have to be calculated. To overcome this issue,
we present a new approach to exactly compute the pixel-wise gradient scores in a batched
and parallel manner applicable to a large class of segmentation architectures. We use
these gradient scores to estimate the model uncertainty on pixel-level and also the pre-

102

4.2 Related Work

diction quality on segment-level. Segments are connected components of pixels belonging
to the same class predicted by the semantic segmentation network. Moreover, the gradi-
ent uncertainty heatmaps are investigated for OoD segmentation where high uncertainties
indicate possible OoD objects. Finally, we demonstrate the efficiency of our method in
explicit runtime measurements and show that the computational overhead introduced is
marginal compared with the standard forward pass.

We only assume a pre-trained semantic segmentation network as our method is applicable
to a wide range of architectures. In our tests, we employ a state-of-the-art segmentation
network [20] trained on Cityscapes [28] evaluating in-distribution uncertainty estimation
and demonstrate OoD detection performance on four OoD segmentation datasets, namely
LostAndFound [137], Fishyscapes [4], RoadAnomaly21 and RoadObstacle21 [14]. The
source code of our method is publicly available44. Our contributions are summarized as
follows:

• We introduce a new method for uncertainty quantification in semantic segmenta-
tion. Our gradient-based approach is applicable to a wide range of segmentation
architectures.

• For the first time, we show an efficient way of computing gradients in semantic
segmentation on the pixel-level. Our approach runs in a parallel manner making
our method less computationally expensive than sampling-based methods which is
demonstrated in explicit time measurements.

• For the first time, we demonstrate the robustness of gradient-based uncertainty
quantification with respect to predictive error detection and OoD segmentation. In
the OoD segmentation task, we achieve area under precision-recall curve values of
up to 69.3% on the LostAndFound benchmark outperforming a variety of methods.

4.2 Related Work: Uncertainty Quantification in
Semantic Segmentation and OoD Segmentation

Uncertainty Quantification. Bayesian approaches [115] are widely used to estimate
model uncertainty. The well-known approximation, MC Dropout [45], has proven to be
practically efficient in uncertainty estimation and is also applied to semantic segmentation
by Lee et al. [94]. In addition, this method is considered to filter out predictions with
low reliability by Wickstrøm et al. [188]. Pixel-wise uncertainty estimation methods
based on Bayesian models or the network’s softmax output have been benchmarked by
Blum et al. [4]. Hoebel et al. [64] extracted uncertainty information on pixel-level by
using the maximum softmax probability and MC Dropout. Prediction quality evaluation
approaches are introduced by DeVries and Taylor [33] as well as Huang et al. [68] working
on single objects per image. These methods are based on additional CNNs acting as post-
processing mechanism. Rottmann et al. [152] present the concepts of meta classification
(FP detection) and meta regression (localization quality estimation) on segment-level using
features as input extracted from the segmentation network’s softmax output. This line

44https://github.com/tobiasriedlinger/uncertainty-gradients-seg

103

https://github.com/tobiasriedlinger/uncertainty-gradients-seg

4 Gradient Uncertainty in Semantic Segmentation

of research has been extended by a temporal component [113] and transferred to object
detection [145,161] as well as to instance segmentation [110,114].

While MC Dropout as a sampling approach is computationally expensive to create pixel-
wise uncertainties, our method computes only the gradients of the last layer during a single
inference run. Moreover, this method can be applied to a wide range of semantic segmenta-
tion networks without architectural changes. Compared with the work by Rottmann et al.
[152], our gradient information can extend the features extracted from the segmentation
network’s softmax output to enhance the segment-wise quality estimation.

OoD Segmentation. Uncertainty quantification methods demonstrate high uncertainty
for erroneous predictions, so they can intuitively serve for OoD detection as well. For
instance, this can be accomplished via maximum softmax (probability) [62], Monte-Carlo
Dropout [124] or ensembles [88] (see also section 2.2.4.2) which capture model uncertainty
by averaging predictions over multiple sets of parameters. Another line of research is OoD
detection training, relying on the exploitation of additional training data, not necessarily
from the real world, but disjoint from the original training data [3, 5, 15, 54, 176]. In this
regard, an external reconstruction model followed by a discrepancy network is considered
by [34], [105], [104] and [183] and normalizing flows are leveraged by [5] and [53]. [99]
and [95] perform small adversarial perturbations on the input images to improve the
separation of in- and out-of-distribution samples.

Specialized training approaches for OoD detection are based on different kinds of re-
training with additional data and often require generative models. Meanwhile, our method
does not require OoD data, re-training or complex auxiliary models. Moreover, we do not
run a full backward pass as it is required for the computation of adversarial samples.
In fact, we found that it is often sufficient to only compute the gradients of the last
convolutional layer. Our method is more related to classical uncertainty quantification
approaches like maximum softmax, MC Dropout and ensembles. Note that the latter two
are based on sampling and thus, much more computationally expensive compared to single
inference.

4.3 Methods: Gradient-based Uncertainty in Semantic
Segmentation and Out-of-Distribution Scores

In the following, we consider a neural network with parameters θ yielding classification
probabilities f̂(x|θ) = (f̂1, . . . , f̂C) over C semantic categories (see section 2.3.1) when
presented with an input x. During training on paired data (x, y), where y ∈ [C] is the
semantic label given to x, such a model is commonly trained by minimizing some kind of
loss function L between y and the predicted probability distribution f̂(x|θ) using gradient
descent on θ. The gradient step

∇θL
(
f̂(x|θ)

∥∥∥ y) (4.1)

104

4.3 Methods

then indicates the direction and strength of training feedback obtained by (x, y). Asymp-
totically (in the amount of data and training steps taken), the expectation

E(X,Y)∼µZ

[
∇θL

(
f̂(X|θ)

∥∥∥Y)] (4.2)

of the gradient with respect to the data generating distribution µZ will vanish since θ sits
at a local minimum of L. We assume, that strong models which achieve high test accuracy
can be seen as an approximation of such a parameter configuration θ. Such a model has
small gradients on in-distribution data which is close to samples (x, y) in the training
data. Samples that differ from training data may receive larger feedback. Likewise, it is
plausible to obtain large training gradients from OoD samples that are far away from the
effective support of µZ .

In order to quantify uncertainty about the prediction f̂(x|θ), we replace the label y from
above by some fixed auxiliary label for which we make two concrete choices in our method.
On the one hand, we replace y by the class prediction one-hot vector yohk = δkĉ with

ĉ = ĉ(x) = argmaxk=1,...,C f̂k(x|θ) and the Kronecker symbol δij . The same applies to
the dependency of ĉ on θ as in chapter 3. This quantity correlates strongly with training
labels y on in-distribution data. On the other hand, we regard a constant uniform, all-
warm label yunik = 1/C for k ∈ [C] as a replacement for y. To motivate the latter choice, we
consider that classification models are oftentimes trained on the categorical cross entropy
loss

LCE

(
f̂(x|θ)

∥∥∥ y) = −
C∑
k=1

yk log
(
f̂k(x|θ)

)
(4.3)

where we allow in principle for non-onehot labels y ∈ [0, 1]C . Since the gradient of this loss
function is linear in the label y, a uniform choice yuni will return the average gradient per
class. This average gradient is expected to be large on OoD data where all possible labels
are similarly unlikely. The magnitude of ∇θL(f̂ |y) serves as uncertainty / OoD score. In
the following, we explain how to compute such scores for pixel-wise classification models.

4.3.1 Efficient Computation in Semantic Segmentation

We regard a generic segmentation architecture utilizing a final convolution as the pixel-
wise classification mechanism. In the following, we also assume that the segmentation
model is trained via the commonly-used pixel-wise cross entropy loss

L
(
f̂ i,j(x|θ)

∥∥∥ yi,j) = −
C∑
k=1

yi,jk log
(
f̂ i,jk (x|θ)

)
. (4.4)

(cf. eq. (4.3) and section 2.3.3) over each pixel (i, j) ∈ I. Pixel-wise probabilities are

obtained by applying the softmax function Σ to each output pixel, i.e., f̂ i,j = Σ
(
ϕ̂ij(θ)

)
.

With eq. (4.3), we find for the loss gradient

∇θL
(
Σ
(
ϕ̂ij(θ)

)∥∥∥ yi,j) =

C∑
k=1

Σk

(
ϕ̂i,j

)
·
(
1− yi,jk

)
· ∇θϕ̂

k
ij(θ). (4.5)

105

4 Gradient Uncertainty in Semantic Segmentation

SegNet

ψ K

(1
× 1

)-
co
nv

ϕ Σ

softmax probs

aux. label y

L(Σ(ϕ)|y)

gradient heatmap ∥∇KL∥
eqs. (4.8),(4.9)

Figure 4.2: Schematic illustration of the computation of pixel-wise gradient norms for a semantic
segmentation network with a final convolution layer. Auxiliary labels may be derived from the
softmax prediction or supplied in any other way like as a uniform all-warm label. We circumvent
back propagation via autograd for each pixel by utilizing eqs. (4.8) and (4.9).

Here, θ is any set of parameters within the neural network. Here, ϕ̂ is the convolution
result of a pre-convolution feature map ψ (see fig. 4.2) against a filter bank K which
assumes the role of θ. We postpone the derivation of eq. (4.5) and further formulas to
the following paragraph. K has parameters (Kh

e)fg where e and h indicate in- and out-

going channels respectively and f and g index the spatial filter position. The features ϕ̂
are linear in both, K and ψ, and depend on bias parameters β in the form known from
section 2.2.1.2

ϕ̂dij = (K ∗ ψ)dij + βd =

κin∑
l=1

s∑
p,q=−s

(Kd
l)pqψ

l
i+p,j+q + βd. (4.6)

We denote by κin the total number of in-going channels and s is the spatial extent to
either side of the filter Kd

l which has total size (2s+ 1)× (2s+ 1). Explicitly for the last
layer gradients we find

∂ϕ̂dij
∂(Kh

e)fg
= δdhψei+f,j+g. (4.7)

Together with eq. (4.5), we obtain an explicit formula for computing the correct backpropa-
gation gradients of the loss on pixel-level for our choices of auxiliary labels which we state
in the following paragraph. The computation of the loss gradient can be traced in fig. 4.2.

If we take the predicted class ĉ as a one-hot label per pixel as auxiliary labels, i.e., yoh ,
we obtain for the last layer gradients

∂L
(
Σ(ϕ̂ij)

∣∣∣ yohij)
∂Kh

e

= Σh

(
ϕ̂ij

)
· (1− δhĉ) · ψeij (4.8)

which depends on quantities that are easily accessible during a forward pass through the
network. Note, that the filter bank K for the special case of (1× 1)-convolutions does not

106

4.3 Methods

require spatial indices which is a common situation in segmentation networks, albeit, not
necessary for our method to be applied. Similarly, we find for the uniform label yunij = 1/C

∂L
(
Σ(ϕ̂ij)

∣∣∣ yuniij

)
∂Kh

e

=
C − 1

C
Σh

(
ϕ̂ij

)
ψeij . (4.9)

Therefore, pixel-wise gradient norms are simple to implement and particularly efficient to
compute for the last layer of the segmentation model. We cover formulas for the more
general case of deeper gradients from the second-to-last layer in a separate paragraph.

⋔Derivation of Equations (4.5) and (4.7) to (4.9). We assume that the final
activation in the segmentation network is given by a softmax activation (see eq. (2.36)) of
logit features ϕ̂ in the last layer. Here, ϕ̂ = ϕ̂(θ) is dependent on a set of parameters θ.
In order to compute the gradients of the categorical cross entropy at pixel (i, j) ∈ I given
any auxiliary label y

L
(
ϕ̂ij(θ)

∣∣∣ y) = −
C∑
k=1

ykij log
(
Σk

(
ϕ̂ij(θ)

))
, (4.10)

we require the derivative of the softmax function where we drop the pixel indices in our
notation

∇θΣj

(
ϕ̂(θ)

)
=

eϕ̂
j∇θϕ̂

j∑C
i=1 e

ϕ̂i
− eϕ̂

j∑C
k=1 e

ϕ̂k∇θϕ̂
k(∑C

i=1 e
ϕ̂i
)2

=Σj

(
ϕ̂
)
· ∇θϕ̂

j
C∑
k=1

Σk

(
ϕ̂
)
−Σj

(
ϕ̂
) C∑
k=1

Σk

(
ϕ̂
)
· ∇θϕ̂

k

=Σj

(
ϕ̂
)(C∑

k=1

Σk

(
ϕ̂
)
· ∇θϕ̂

j −Σk∇θϕ̂
k

)

=Σj

(
ϕ̂
) C∑
k=1

Σk

(
ϕ̂
)
(δkj − 1)∇θϕ̂

k.

(4.11)

Note, that the auxiliary label y ∈ [0, 1]C may be anything, e.g., actual ground truth
information about pixel (i, j), the predicted probability distribution at that location, the
one-hot encoded prediction or a uniform class distribution. In the following, we regard y
to be independent of ϕ̂, i.e., in particular from θ. The gradient of the cross entropy loss

107

4 Gradient Uncertainty in Semantic Segmentation

as stated in eq. (4.5) is

∇θL
(
ϕ̂ij(θ)

∣∣∣ y) =−
C∑
k=1

ykij
1

Σk

(
ϕ̂ij

)∇θΣk

(
ϕ̂ij

)

=
C∑
k=1

C∑
l=1

(
ykijΣl

(
ϕ̂ij

)
− ykΣl

(
ϕ̂ij

)
δlk

)
· ∇θϕ̂

l
ij(θ)

=

C∑
k=1

Σk

(
ϕ̂ij

)
(1− yk) · ∇θϕ̂

k
ij(θ).

(4.12)

The feature maps are the result of convolution against a filter bank

K ∈ Rκin×κout×(2s+1)×(2s+1) (4.13)

and addition of a bias vector β ∈ Rκout . Here, κin and κout denote the number of in-
and out-going channels, respectively. Taking explicit derivatives of this expression with
respect to one of the parameters in K yields eq. (4.7)

∂(K ∗ ψ)dij
∂(Kh

e)fg
=

κin∑
c=1

s∑
q,r=−s

∂(Kd
c)qr

∂(Kh
e)fg

ψci+q,j+r =

κin∑
c=1

s∑
q,r=−s

δdhδceδpfδqgψ
c
i+q,j+r = δdhψei+f,j+g.

(4.14)

When utilizing the predicted one-hot vector, i.e., yohk = δkĉ and using the fact that the
last-layer convolution is (1× 1), we obtain eq. (4.8)

∂

∂Kh
e

L
(
Σ
(
ϕ̂ij

)∣∣∣ yohij) =

C∑
k=1

Σk

(
ϕ̂ij

)
(1− δkĉ)

∂ϕ̂kij
∂Kh

e

= Σh
(
ϕ̂ij

)
(1− δfĉ)ψ

e
ij (4.15)

while the uniform categorical label yunik = 1
C yields eq. (4.9)

∂

∂Kh
e

L
(
Σ
(
ϕ̂ij

)∣∣∣ yuniij

)
=

C∑
k=1

Σk

(
ϕ̂ij

)(
1− 1

C

)
·
∂ϕ̂kij
∂Kh

e

=
C − 1

C
Σh

(
ϕ̂ij

)
ψeij . (4.16)

⋔Computing Gradients for the Second-to-Last Layer. While for the last-layer
gradients the computation from above simplifies significantly due to the fact that pixel-
wise gradients only depend on the feature map values at the same pixel-location. Deeper
layers are usually not (1× 1), so the forward pass couples feature map values over a larger
receptive field, e.g., (3 × 3). However, gradients for the second-to-last layer can still be
computed with comparably small effort by extracting feature map patches via the unfold
function. Here, we consider a DeepLabv3+ implementation1 [217] for which the feature

1https://github.com/NVIDIA/semantic-segmentation/tree/sdcnet

108

https://github.com/NVIDIA/semantic-segmentation/tree/sdcnet

4.3 Methods

maps depend in the following way on the weights of the second-to-last layer L− 1 where
L indicates the last layer:

ϕ̂(KL−1) = CKL,βL ◦ ReLU ◦ BNL ◦ CKL−1,βL−1
(ψL−1), (4.17)

where BNL is a batch normalization layer and ψL−1 are the features prior to the convolution
with KL−1 and βL−1. With fully expanded indices, this amounts to

ϕ̂dij=
∑
kL

Kd
kL
ReLU

BNL

∑
kL−1

∑
q,r

(
(KL−1)

kL
kL−1

)
qr
(ψL−1)

kL−1

i+q,j+r + βkLL−1

+βdL (4.18)

with kL, kL−1 indexing the respective amount of channels and q, r indexing the filter
coordinates of KL−1. Note, that we still assume here that the last convolutional layer has
spatial extent 0 into both directions, so KL ∈ Rκin×C×1×1. The chain rule for this forward
pass is then

∂ϕ̂dij

∂((KT−1)
f
e)gh

=
∑
kL

Kd
kL
ReLU′(·)·BN′

L ·

∑
kL−1

∑
q,r

∂((KL−1)
kL
kL−1

)
qr

∂((KL−1)
f
e)gh

(ψL−1)
kL−1

i+q,j+r

=
∑
kL

Kd
kL
ReLU′(·) · BN′

L ·
∑
kL−1

∑
q,r

δkLfδkL−1eδgpδhq(ψL−1)
kL−1

i+q,j+r

=Kd
f (ReLU

′)fij · (BN′
L)
f
ij · (ψL−1)

e
i+g,j+h.

(4.19)

The term with the derivative of the ReLU activation is simply the Heaviside function
evaluated at the features pre-activation which have been computed in the forward pass
previously. The discontinuity at zero has vanishing probability of an evaluation. The
derivative of the batch normalization layer is multiplication by the linear batch norm
parameter which is applied channel-wise. The running indices g and h only apply to the
last factor which can be computationally treated by extracting (3× 3)-patches from ψT−1

using the unfold operation. In computing the norm of ∇KT−1
ϕ̂dij with respect to the indices

e, f , g and h, we note that the expression in eq. (4.19) is a product of two tensors Sf ·ψegh
for each pixel (i, j).

4.3.2 Gradient Uncertainty Scores

We obtain pixel-wise scores, i.e., still depending on i and j, by computing the partial
norm ∥∇KL∥p of this tensor over the indices e and h for some fixed value of p. This can
again be done in a memory efficient way by the natural decomposition of the norm of
∂L/∂Kh

e = Sh · ψe. Lp-norms of such tensors Tab = Saψb factorize which makes their
computation feasible:

∥T∥p =

∑
a,b

|Tab|p
 1

p

=

∑
a,b

|Sa|p|ψb|p
 1

p

=

(∑
a

[
|Sa|p

∑
b

|ψb|p
]) 1

p

= ∥S∥p∥ψ∥p.

(4.20)

109

4 Gradient Uncertainty in Semantic Segmentation

Note that the index b in this computation stands as a compound index for the triple
(e, g, h). In addition to their use in error detection, these scores can be used in order to
detect OoD objects in the input, i.e., instances of categories not present in the training
distribution of the segmentation network. We identify OoD regions with pixels that have
a gradient score higher than some threshold and find connected components like the one
shown in Figure 4.1 (right). Different values of p are studied in section 4.4. We also
consider values 0 < p < 1 in addition to positive integer values. Note, that such choices
do not strictly define the geometry of a vector space norm, however, ∥ · ∥p may still serve
as a notion of magnitude and generates a partial ordering. The tensorized multiplications
required in eqs. (4.8) and (4.9) are far less computationally expensive than a forward pass
through the DNN. This means that computationally, this method is preferable over meth-
ods which sample predictions like MC Dropout or ensembles. We abbreviate our method
using the pixel-wise gradient norms obtained from eqs. (4.8) and (4.9) by PGNoh and
PGNuni, respectively. The particular value of p is denoted by superscript, e.g., PGNp=0.3

oh

for the (p = 0.3)-seminorm of gradients obtained from yoh .

4.4 Experiments: Uncertainty Quantification on Pixel-
and Segment-Level, OoD Segmentation and Runtime

In this section, we present the experimental setting first and then evaluate the uncertainty
estimation quality of our method on pixel and segment level. Last, we apply our gradient-
based method to OoD segmentation and show some visual results.

4.4.1 ⋔ Implementation Details

Datasets. We perform our tests on the Cityscapes [28] dataset for semantic segmenta-
tion in street scenes and on four OoD segmentation datasets, namely LostAndFound [137],
Fishyscapes [4], RoadAnomaly21 and RoadObstacle21 [14]1.

The Cityscapes dataset consists of 2,975 training and 500 validation images of dense ur-
ban traffic in 18 and 3 different German towns, respectively. The LostAndFound dataset
contains 1,203 validation images with annotations for the road surface and the OoD ob-
jects, i.e., small obstacles on German roads in front of the ego-car.

In [14] this dataset is filtered (LostAndFound test-NoKnown) as children and bicycles
are considered as OoD objects, although they are included in the Cityscapes training set.

The Fishyscapes LostAndFound dataset is based on the LostAndFound dataset and
refines the pixel-wise annotations, i.e., it is distinguished between OoD objects, background
(Cityscapes classes) and void (anything else). Moreover, frames that do not contain OoD
objects as well as sequences with children and bikes are removed resulting in 100 validation
images and 275 non-public test images.

1Benchmark: (http://segmentmeifyoucan.com/)

110

http://segmentmeifyoucan.com/

4.4 Experiments

The RoadObstacle21 dataset (412 test images) is comparable to the LostAndFound
dataset as all obstacles appear on the road. However, the RoadObstacle21 dataset con-
tains more diversity in the OoD objects as well as in the situations (night, snowy conditions
and dirty roads) compared to the LostAndFound dataset where all sequences are recorded
under good weather conditions. In the RoadAnomaly21 dataset the objects (anomalies)
appear anywhere on the image which makes it comparable to the Fishyscapes LostAnd-
Found dataset.

While the latter dataset consists of frames extracted from a small number of different
scenes, every image of the RoadAnomaly21 dataset (100 test images) shows a unique
scene and a wider variety of anomalous objects.

Segmentation Networks. We consider a state-of-the-art DeepLabv3+ network [20]
for two backbones, WideResNet38 [192] and SEResNeXt50 [66]. The network with each
respective backbone is trained on Cityscapes achieving a mean IoU value of 90.58% for the
WideResNet38 backbone and 80.76% for the SEResNeXt50 on the Cityscapes validation
set. We use one and the same model trained exclusively on the Cityscapes dataset for
both tasks, the uncertainty estimation and the OoD segmentation, as our method does not
need to be re-trained on OoD data. Therefore, our method leaves the entire segmentation
performance of the base model completely intact.

4.4.1.1 Details on the Feature Construction for Segment-wise Prediction
Quality Estimation

The tasks of meta classification (false positive detection) and meta regression (prediction
quality estimation) based on uncertainty measures extracted from the network’s softmax
output were introduced in [152]. Recall section 3.3.2 for the notions of meta classification
and meta regression. The neural network provides for each pixel (i, j) ∈ I given an input
image x a probability distribution f̂i,j(x|θ) over a label space Y = [C], cf. section 2.3.3.

The degree of randomness in the semantic segmentation prediction f̂ i,j(x|θ) is quantified
by pixel-wise dispersion measures, like entropy (cf. eq. (2.91)) Hi,j(x) and probability
margin

Mi,j(x) = 1− ŝi,j(x|θ) + max
c∈Y\{ĉi,j(x|θ)}

f i,jc (x|θ) (4.21)

where we refer to section 2.3.3 for notation. To obtain segment-wise features from these
dispersion measures which characterize uncertainty, they are aggregated over segments S
(see section 2.3.3) via average pooling obtaining mean dispersion measures

µH :=
1

|S|
∑

(i,j)∈S

Hi,j(x), µM :=
1

|S|
∑

(i,j)∈S

Mi,j(x). (4.22)

As erroneous or poor predictions oftentimes have fractal segment shapes, it is distinguished
between the inner of the segment S◦ (consisting of all pixels whose eight neighboring pixels
are also elements of this segment) and the boundary ∂S. This results in segment size |S|
and mean dispersion features per segment also for the inner (µ◦H and µ◦M) and the boundary
(µ∂H and µ∂M). Furthermore, relative segment sizes S̃ = |S|/|∂S| and S̃◦ = |S◦|/|∂S| as well

111

4 Gradient Uncertainty in Semantic Segmentation

as relative mean dispersion measures µ̃D := S̃ · µD and µ̃◦D := S̃◦ · µ◦D where D ∈ {H,M}
are defined. Moreover, the mean class probabilities

µP (c) :=
1

|S|
∑

(i,j)∈S

f̂ i,jc (x|θ) (4.23)

for each class c ∈ [C] are added resulting in the vector of hand-crafted features consisting
of {|S|, |S◦|, |∂S|, S̃, S̃◦} as well as

{µD, µ◦D, µ∂D, µ̃D, µ̃∂D : D ∈ {H,M}} ∪ {µP (c) : c ∈ [C]} . (4.24)

These features serve as a baseline in our tests.

The computed gradients in section 4.3 with applied p-norm, p ∈ {0.1, 0.3, 0.5, 1, 2}, are
denoted by Gi,jp=#(x), # ∈ {0.1, 0.3, 0.5, 1, 2}, for input x. Similar to the dispersion mea-
sures, we compute the mean and additionally the variance of these pixel-wise values of a
given segment to obtain

µGp=#
:=

1

|S|
∑

(i,j)∈S

Gi,jp=#(x), vGp=#
:=

1

|S| − 1

∑
(i,j)∈S

(
Gi,jp=#(x)− µGp=#

)2
, (4.25)

respectively. Since the gradient uncertainties may be higher on the boundary of a segment,
the mean and variance features per segment are considered also for the inner (µ◦Gp=#

and

v◦Gp=#
) and the boundary (µ∂Gp=#

and v∂Gp=#
). Furthermore, we define relative mean and

variance features µ̃Gp=#
, µ̃◦Gp=#

, ṽGp=#
, ṽ◦Gp=#

to quantify the degree of fractality. This
results in the following gradient features⋃
#∈{0.1,0.3,0.5,1,2}

{µGp=#
, µ◦Gp=#

, µ∂Gp=#
, µ̃Gp=#

, µ̃◦Gp=#
, vGp=#

, v◦Gp=#
, v∂Gp=#

, ṽGp=#
, ṽ◦Gp=#

}

(4.26)

for each predicted segment. Note, these features can be computed for the gradient scores
obtained from the predictive one-hot (PGNoh) and the uniform label (PGNuni) as well as
for gradients of deeper layers (see section 4.3.1).

In our experiments, we apply different p-norms, p ∈ {0.1, 0.3, 0.5, 1, 2}, to our calculated
gradients, see section 4.3.2. We provide only a selection of results in the next sections,
followed by ablation studies on different values for p and further results where the gradients
of deeper layers are computed.

4.4.2 Pixel-wise Uncertainty Quantification

In order to assess the correlation of uncertainty and prediction errors on the pixel-level, we
resort to the commonly used sparsification graphs [72]. Sparsification graphs normalized
with respect to the optimal oracle (“sparsification error”) can be compared in terms of
the so-called area under the sparsification error curve (AuSE). The closer the uncertainty
estimation is to the oracle in terms of Brier score evaluation, i.e., the smaller the AuSE,

112

4.4 Experiments

Table 4.1: Pixel-wise uncertainty evaluation results for both backbone architectures and the
Cityscapes dataset in terms of ECE and AuSE.

WideResNet SEResNeXt

ECE AuSE ECE AuSE

Ensemble 0.0173 0.4543 0.0279 0.0482
MC Dropout 0.0444 0.7056 0.0091 0.5867

Maximum Softmax 0.0017 0.0277 0.0032 0.0327

Entropy 0.0063 0.0642 0.0066 0.0623

PGNp=2
oh (ours) 0.0019 0.0268 0.0039 0.0365

PGNp=0.1
uni (ours) 0.0186 0.0784 0.0346 0.0427

the better the uncertainty eliminates false predictions by the model. The AuSE metric
is capable of grading the uncertainty ranking, however, does not address the statistics in
terms of given confidence. Therefore, we resort to an evaluation of calibration in terms
of expected calibration error (ECE , see section 3.3.2 and [55]) to assess the statistical
reliability of the uncertainty measure.

As baseline methods we consider the typically used uncertainty estimation measures, i.e.,
mutual information computed via the sampling approaches ensembles and MC Dropout.
For an ensemble of N predictive probability distributions π̂1, . . . , π̂N where each π̂i =
(π̂i1, . . . , π̂

i
C), the mutual information for prediction sampling is given by (see [70])

I
(
π̂1, . . . , π̂N

)
= H

 1

N

∑
i∈[N]

π̂i

− 1

N

∑
i∈[N]

H
(
π̂i
)
. (4.27)

Moreover, we consider the uncertainty ranking provided by the maximum softmax prob-
abilities native to the segmentation model and the softmax entropy. An evaluation of
calibration errors requires normalized scores, so we normalize our gradient scores accord-
ing to the highest value obtained on the test data for the computation of ECE .

The resulting metrics are compiled in table 4.1 for both architectures evaluated on the City-
scapes val split. We see that the calibration of PGNoh is roughly on par with the stronger
maximum softmax baseline (which was trained to exactly that aim via the negative log-
likelihood loss) and outperforms the other three baselines. Note, that there is no immediate
reason for PGNoh to be calibrated in any way. Generally, we see the trend that PGNuni has
higher calibration error by one order of magnitude and higher sparsification errors of up
to 5.2 percentage points (pp) which may indicate that this kind of score is less indicative
of in-distribution errors.

⋔Ablations on Values of p and Deeper Gradients. In table 4.2 the results for
the different p-norms in terms of these two metrics are given. We observe improved
performance for the gradient scores obtained from the predictive one-hot label with respect

Formally, this is the mutual information between the parameters θ of the model and the resulting pre-
diction π̂ both regarded as random variables. Refer to [125] for the definition of the mutual information
between random variables.

113

4 Gradient Uncertainty in Semantic Segmentation

Table 4.2: Pixel-wise uncertainty evaluation results for both backbone architectures and the
Cityscapes’ dataset as well as for different p-norms and layers in terms of ECE and AuSE.

last layer second-to-last layer

p ECE ↓ AuSE ↓ ECE ↓ AuSE ↓
0.1 0.0187 0.0500 0.0186 0.0235

Wide- 0.3 0.0183 0.0712 0.0125 0.0286
ResNet 0.5 0.0163 0.0508 0.0059 0.0280
(one-hot) 1 0.0025 0.0307 0.0027 0.0271

2 0.0019 0.0268 0.0021 0.0265

0.1 0.0186 0.0784 0.0096 0.3347
Wide- 0.3 0.0163 0.3426 0.1846 0.6746
ResNet 0.5 0.0241 0.5857 0.3385 0.7520
(uniform) 1 0.3762 0.7424 0.4345 0.8028

2 0.3868 0.8104 0.3989 0.8253

0.1 0.0347 0.0201 0.0344 0.0060
SERes- 0.3 0.0336 0.0386 0.0290 0.0353
NeXt 0.5 0.0305 0.0399 0.0214 0.0379
(one-hot) 1 0.0078 0.0383 0.0079 0.0377

2 0.0039 0.0365 0.0068 0.0365

0.1 0.0346 0.0427 0.0295 0.1823
SERes- 0.3 0.0313 0.2484 0.1916 0.4878
NeXt 0.5 0.0076 0.5617 0.3000 0.6198
(uniform) 1 0.3744 0.7694 0.4075 0.7413

2 0.4030 0.8187 0.4003 0.8116

to both metrics. These scores are better calibrated for greater values of p, whereas there is
no clear trend for the AuSE metric. In contrast, for the gradient scores obtained from the
uniform label the calibration ability as well as the sparsification error enhance mostly for
decreasing values of p. We also find results for both layers in table 4.2. For the gradient
scores obtained from the predictive one-hot, the evaluation metrics are mainly similar
showing only small performance gaps. The results differ for the uniform labels, although
there is no trend to which layer achieves the higher ones.

4.4.3 Segment-wise Uncertainty Quantification

To reduce the number of FP predictions and to estimate the prediction quality, we use
meta classification and meta regression. As input for the post-processing models, the
quantities described in section 4.4.1.1 are utilized. The degree of randomness in semantic
segmentation prediction is quantified by pixel-wise quantities, like entropy and probability
margin. To obtain segment-wise features from these quantities, they are aggregated over
segments via average pooling. These features used in [152] serve as a baseline in our
tests (called MetaSeg). Similarly, we construct segment-wise features from our pixel-wise
gradient p-norms for p ∈ {0.1, 0.3, 0.5, 1, 2}, recall section 4.4.1.1. These hand-crafted
quantities form a structured dataset where the columns correspond to features and the
rows to predicted segments which serve as input to the post-processing models.

We determine the prediction accuracy of semantic segmentation networks with respect to

114

4.4 Experiments

(a) Meta Classification (b) Meta Regression

Figure 4.3: Segment-wise uncertainty evaluation results for both backbone architectures and the
Cityscapes dataset in terms of (a) meta classification AuROC and (b) meta regression R2 values.
From left to right: ensemble, MC Dropout, maximum softmax, mean entropy, MetaSeg (MS)
approach, gradient features obtained by predictive one-hot and uniform labels (PGN), MetaSeg in
combination with PGN.

(a) Cityscapes (b) RoadAnomaly21

Figure 4.4: Semantic segmentation prediction and PGNp=0.5
uni heatmap for (a) the Cityscapes dataset

and (b) the RoadAnomaly21 dataset for the WideResNet backbone.

the ground truth via the segment-wise intersection over union (IoU, [74]). We use linear
models as meta classifiers and meta regression models.

For the evaluation, we use AuROC for meta classification and determination coefficient
R2 for meta regression. As baselines, we employ a deep ensemble, MC Dropout, maximum
softmax probability, entropy and the MetaSeg framework. A comparison of these meth-
ods and our approach for the Cityscapes dataset is given in fig. 4.3. The gradient scores
outperform all baselines with the only exception of meta classification for the SEResNeXt
backbone where MetaSeg achieves a marginal 0.41 pp higher AuROC value than ours.
Such a post-processing model captures all the information which is contained in the net-
work’s output. Therefore, matching the MetaSeg performance by a gradient heatmap is a
substantial achievement for a predictive uncertainty method. Moreover, we enhance the
MetaSeg performance for both networks and both tasks combining the MetaSeg features
with PGN by up to 1.02 pp for meta classification and up to 3.98 pp for meta regression.
This indicates that gradient features contain information which is orthogonal to the infor-
mation contained in the softmax output. Especially, the highest AuROC value of 93.31%
achieved for the WideResNet backbone, shows the capability of our approach to estimate

115

4 Gradient Uncertainty in Semantic Segmentation

Table 4.3: OoD segmentation benchmark results for the LostAndFound and the RoadObstacle21
dataset.

LostAndFound test-NoKnown RoadObstacle21

AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
Ensemble 2.9 82.0 6.7 7.6 2.7 1.1 77.2 8.6 4.7 1.3

MC Dropout 36.8 35.6 17.4 34.7 13.0 4.9 50.3 5.5 5.8 1.1

Maximum Softmax 30.1 33.2 14.2 62.2 10.3 15.7 16.6 19.7 15.9 6.3
Entropy 52.0 30.0 40.4 53.8 42.4 20.6 16.3 21.4 19.5 10.4

PGNp=0.5
oh 64.9 18.4 48.3 50.0 46.9 18.8 14.8 22.1 16.5 9.2

PGNp=0.5
uni 69.3 9.8 50.0 44.8 45.4 16.5 19.7 19.5 14.8 7.4

Table 4.4: OoD segmentation benchmark results for the Fishyscapes LostAndFound and the Road-
Anomaly21 dataset.

Fishyscapes LostAndFound RoadAnomaly21

AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
Ensemble 0.3 90.4 3.1 1.1 0.4 17.7 91.1 16.4 20.8 3.4

MC Dropout 14.4 47.8 4.8 18.1 4.3 28.9 69.5 20.5 17.3 4.3

Maximum Softmax 5.6 40.5 3.5 9.5 1.8 28.0 72.1 15.5 15.3 5.4
Entropy 14.0 39.3 8.0 17.5 7.7 31.6 71.9 15.7 18.4 4.2

PGNp=0.5
oh 22.8 35.5 12.1 27.3 14.1 39.3 66.5 23.1 21.5 7.8

PGNp=0.5
uni 26.9 36.6 14.8 29.6 16.5 42.8 56.4 25.8 21.8 9.7

the prediction quality and filter out FP predictions on the segment-level for in-distribution
data.

⋔Ablations on Values of p and Deeper Gradients. The gradient features which
are computed for each value of p, also separated for predictive one-hot and uniform labels,
serve as input for the metamodels. The results are given in table 4.5 and visualized in
fig. 4.5. The WideResNet backbone outperforms the SEResNeXt for meta classification
and regression. Moreover, higher AuROC and R2 performances are achieved for greater
values of p independent of the architecture or the label (predictive one-hot or uniform)
used for gradient scores computation. We observe the same behavior for the second-to-
last layer evaluation as for the last one. Namely, that as p increases, performance improves
for both metrics. Furthermore, the performance is almost equal for the second-to-last and
the last layer for the 1- and the 2-norm independent of the backbone and labels to obtain
the gradient scores.

4.4.4 Out-of-Distribution Segmentation

Our results in OoD segmentation are based on the evaluation protocol of the official
SegmentMeIfYouCan benchmark [14]. Evaluation on the pixel-level involves the threshold-
independent area under precision-recall curve (AuPRC) and the false positive rate at the
point of 0.95 true positive rate (FPR95). The latter constitutes an interpretable choice
of operating point for each method where a minimum true positive fraction is dictated.
On segment-level, an adjusted version of the mean intersection over union (sIoU) which

116

4.4 Experiments

Table 4.5: Segment-wise uncertainty evaluation results for both backbone architectures and the
Cityscapes dataset as well as for the different p-norms and layers in terms of classification AuROC
and regression R2.

last layer second-to-last layer

p AuROC ↑ R2 ↑ AuROC ↑ R2 ↑
0.1 87.66 19.40 88.40 29.45

Wide- 0.3 89.02 38.03 90.28 48.23
ResNet 0.5 90.06 46.82 90.52 49.63
(one-hot) 1 91.97 50.82 91.04 50.28

2 91.90 50.72 91.54 50.54

0.1 87.97 22.65 89.67 27.99
Wide- 0.3 89.84 43.72 90.84 45.96
ResNet 0.5 90.66 48.71 91.08 48.66
(uniform) 1 91.18 50.26 91.36 50.48

2 91.77 51.48 91.54 51.37

0.1 81.65 12.81 81.48 2.29
SERes- 0.3 82.91 25.73 84.80 32.56
NeXt 0.5 84.24 33.43 85.28 36.21
(one-hot) 1 85.68 38.57 86.01 38.03

2 87.70 39.08 87.82 39.00

0.1 81.90 14.41 78.49 6.06
SERes- 0.3 83.91 30.44 85.14 28.28
NeXt 0.5 85.51 35.40 85.62 33.40
(uniform) 1 86.46 37.61 86.38 38.05

2 87.30 40.54 87.31 40.38

represents the accuracy of the segmentation obtained by thresholding at a particular point,
positive predictive value (PPV) playing the role of binary instance-wise accuracy and the
F1-score. The latter segment-wise metrics are averaged over thresholds between 0.25 and
0.75 with a step size of 0.05 leading to the quantities sIoU, PPV and F1.

In contrast to the previous evaluations on predictive errors, we do not report here results
for both of our models, rather we compare gradient scores as an OoD score as such against
other methods on the benchmark and report the best result obtained for both, PGNoh and
PGNuni. Results are based on evaluation files submitted to the public benchmark and are,
therefore, deterministic. As baselines, we include the same methods as for error detection
before since these constitute a reasonable comparison. Note, that the standard entropy
baseline is not featured in the official leaderboard, so we report our own results obtained by
the softmax entropy with the WideResNet backbone which performed better. We include
a full table of methods in the next paragraph and find that our method is in several cases
competitive with some of the stronger methods utilizing adversarial examples, auxiliary
data or significant alterations of the model architecture.

The results verified by the official benchmark are compiled in table 4.3 and table 4.4.
Across the board, PGN shows strong performance, almost exclusively delivering the best or
second-best results with few exceptions. The only prominent exception is in the segment-
based PPV metric on LostAndFound test-NoKnown where both, PGNoh and PGNuni

come in behind the maximum softmax and entropy baseline. Meanwhile, the segmenta-

117

4 Gradient Uncertainty in Semantic Segmentation

Figure 4.5: AuROC and R2 values for both backbone architectures applied to the Cityscapes
dataset and the different p-norms.

tion accuracy in terms of sIoU, as well as the F1 score which is the harmonic mean of
recall and precision are far superior to these two baselines. This indicates still better OoD
segmentation quality and in particular better recall achieved by PGN. Gradient scores
perform perhaps the least convincingly on the RoadObstacle21 benchmark, where in three
cases only the second-best performance is achieved. Overall however, we conclude strong
performance of our method in terms of out-of-distribution segmentation across different
datasets. We find a slight trend of PGNoh performing better in the Obstacle track which
can be seen to be closer to in-distribution data in semantic segmentation for autonomous
driving. This connection would be consistent with our finding in actual in-distribution
errors, while PGNuni performs better on the Anomaly track which is more clearly out-
of-distribution for street scene recognition. In several cases, our method even beats some
stronger OoD segmentation methods utilizing, for example on RoadAnomaly21, adver-
sarial samples (ODIN/Mahalanobis by over 9 pp in AuPRC), OoD data (Void Classifier
by over 6 pp AuPRC) or generative models (JSRNet/Embedding Density by over 5 pp
AuPRC and Image Resynthesis by over 10 pp in PPV).

Figure 4.4 shows segmentation predictions of the pre-trained DeepLabv3+ network with
the WideResNet38 backbone together with its PGNp=0.5

uni -heatmap. The two panels on
the left show an in-distribution prediction on Cityscapes where uncertainty is mainly

118

4.4 Experiments

Table 4.6: OoD segmentation results for the LostAndFound and the RoadObstacle21 dataset.

LostAndFound test-NoKnown RoadObstacle21

AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
Void Classifier 4.8 47.0 1.8 35.1 1.9 10.4 41.5 6.3 20.3 5.4
SynBoost 81.7 4.6 36.8 72.3 48.7 71.3 3.2 44.3 41.8 37.6
Maximized Entropy 77.9 9.7 45.9 63.1 49.9 85.1 0.8 47.9 62.6 48.5
PEBAL − − − − − 5.0 12.7 29.9 7.6 5.5
DenseHybrid 78.7 2.1 46.9 52.1 52.3 87.1 0.2 45.7 50.1 50.7

Image Resynthesis 57.1 8.8 27.2 30.7 19.2 37.7 4.7 16.6 20.5 8.4
Road Inpainting 82.9 35.8 49.2 60.7 52.3 54.1 47.1 57.6 39.5 36.0
Embedding Density 61.7 10.4 37.8 35.2 27.6 0.8 46.4 35.6 2.9 2.3
NFlowJS 89.3 0.7 54.6 59.7 61.8 85.6 0.4 45.5 49.5 50.4
JSRNet 74.2 6.6 34.3 45.9 36.0 28.1 28.9 18.6 24.5 11.0

ODIN 52.9 30.0 39.8 49.3 34.5 22.1 15.3 21.6 18.5 9.4
Mahalanobis 55.0 12.9 33.8 31.7 22.1 20.9 13.1 13.5 21.8 4.7

PGNp=0.5
oh 64.9 18.4 48.3 50.0 46.9 18.8 14.8 22.1 16.5 9.2

PGNp=0.5
uni 69.3 9.8 50.0 44.8 45.4 16.5 19.7 19.5 14.8 7.4

concentrated around segmentation boundaries which are always subject to high prediction
uncertainty. Moreover, we see some false predictions in the far distance around the street
crossing which can be found as a region of high gradient norm in the heatmap. In the
two panels to the right, we see an OoD prediction from the RoadAnomaly21 dataset of
a sloth crossing the street which is classified as part vegetation, terrain and person. The
outline of the segmented sloth can be seen brightly in the gradient norm heatmap to the
right indicating clear separation.

⋔Additional Comparisons with the SegmentMeIfYouCan Leaderboard. Above,
we have compared our approach with uncertainty estimation methods such as entropy and
maximum softmax. Moreover, we considered two sampling approaches, MC Dropout and
deep ensembles, as baselines all of which are not explicitly designed towards OoD segmen-
tation. In table 4.6 and table 4.7, we provide the comparison of our method with more
methods from the benchmark. In detail, the first block consists of approaches using OoD
data, i.e., Void Classifier [4], SynBoost [34], Maximized Entropy [15], PEBAL [176] and
DenseHybrid [54]. The methods of the second block use complex auxiliary or generative
models, namely Image Resynthesis [105], Road Inpainting [104], Embedding Density [4],
NFlowJS [53], JSRNet [183] and ObsNet [3]. The ODIN [99] and Mahalanobis [95] base-
lines (in the third block) perform adversarial attacks on the input images and thus, require
a full and expensive backward pass. Per block, we indicate the best method for each of
the considered metrics.

Our method outperforms the two latter baselines ODIN and Mahalanobis for the LostAnd-
Found as well as the RoadAnomaly21 dataset. In particular, we obtain AuPRC values
up to 22.8 pp higher on segment-level and F1 values up to 24.8 pp higher on pixel-level.
For the other two datasets we achieve similar results. Furthermore, we beat the Void
Classifier method, that uses OoD data during training, in most cases. We improve the
AuPRC metric by up to 64.5 pp and the sIoU metric by up to 48.2 pp, both for the
LostAndFound dataset. In addition, our gradient norms outperform in most cases the

119

4 Gradient Uncertainty in Semantic Segmentation

Table 4.7: OoD segmentation results for the Fishyscapes LostAndFound and the RoadAnomaly21
dataset.

Fishyscapes LostAndFound RoadAnomaly21

AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
Void Classifier 11.7 15.3 9.2 39.1 14.9 36.6 63.5 21.1 22.1 6.5
SynBoost 64.9 30.9 27.9 48.6 38.0 56.4 61.9 34.7 17.8 10.0
Maximized Entropy 44.3 37.7 21.1 48.6 30.0 85.5 15.0 49.2 39.5 28.7
PEBAL − − − − − 49.1 40.8 38.9 27.2 14.5
DenseHybrid − − − − − 78.0 9.8 54.2 24.1 31.1

Image Resynthesis 5.1 29.8 5.1 12.6 4.1 52.3 25.9 39.7 11.0 12.5
Embedding Density 8.9 42.2 5.9 10.8 4.9 37.5 70.8 33.9 20.5 7.9
NFlowJS − − − − − 56.9 34.7 36.9 18.0 14.9
JSRNet − − − − − 33.6 43.9 20.2 29.3 13.7
ObsNet − − − − − 75.4 26.7 44.2 52.6 45.1

ODIN 15.5 38.4 9.9 21.9 9.7 33.1 71.7 19.5 17.9 5.2
Mahalanobis 32.9 8.7 19.6 29.4 19.2 20.0 87.0 14.8 10.2 2.7

PGNp=0.5
oh 22.8 35.5 12.1 27.3 14.1 39.3 66.5 23.1 21.5 7.8

PGNp=0.5
uni 26.9 36.6 14.8 29.6 16.5 42.8 56.4 25.8 21.8 9.7

Embedding Density approach which is based on normalizing flows. Summing up, we have
shown superior OoD segmentation performance in comparison to the other uncertainty
based methods (see section 4.4) and we outperform some of the more complex approaches
using OoD data, adversarial samples or generative models.

⋔Ablations on Values of p and Deeper Gradients. Our approach provides pixel-
wise uncertainty scores obtained by computing the partial norm. In fig. 4.6 the pixel-wise
heatmaps for both backbones, different p-norms and the predictive one-hot as well as the
uniform label are shown. We observe that for higher p values the number of uncertain
pixels increases, the gradients are more sensitive to unconfident predictions. For a p
value of 0.1 only a few pixels of OoD object have high uncertainty while the background is
completely certain. For values of p = 1 and p = 2, in particular using the uniform label, the
gradient scores show higher uncertainties in more sectors. To identify out-of-distribution
regions, we perform thresholding per pixel on our gradient scores, i.e., high uncertainty
corresponds to out-of-distribution. Here, the OoD objects are mostly covered (and not as
many background pixels) for p values of 0.3 and 0.5. These observations are reflected in
the OoD segmentation results, given in table 4.8 and table 4.9. For the LostAndFound
dataset and the Fishyscapes LostAndFound dataset, the best results are achieved for the
0.3 and 0.5 p-norms. For the RoadAnomaly21 dataset, also for higher p values strong
(in one case even the best) results are obtained. Across these three datasets, there is no
favorability which backbone architecture or label (predictive one-hot or uniform) performs
better. In comparison with the RoadObstacle21 dataset, the WideResNet backbone with
gradient scores obtained from the predictive one-hot performs best. There seems to be no
clear tendency which p-norm outperforms the others for the different tasks of pixel- and
segment-wise uncertainty estimation as well as for OoD segmentation. However, there is
a strong trend towards p ∈ {0.3, 0.5} performing especially strongly.

In table 4.10 the OoD segmentation results for gradients from the second-to-last layer

120

4.4 Experiments

RoadAnomaly21 LostAndFound

ground truth prediction ground truth prediction

0.1

0.3

0.5

1

2

one-hot uniform one-hot uniform

Figure 4.6: Ground truth (labeled OoD object), semantic segmentation prediction and PGN
heatmaps for different p-norms as well as for the predictive one-hot and the uniform label, re-
spectively.

121

4 Gradient Uncertainty in Semantic Segmentation

Table 4.8: OoD segmentation results for the LostAndFound and the RoadObstacle21 dataset for
different p-norms.

LostAndFound RoadObstacle21

p AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
0.1 49.5 21.2 39.5 29.6 25.1 8.0 23.3 14.2 7.5 2.9

Wide- 0.3 64.9 15.9 48.5 47.6 45.8 16.3 15.4 20.8 14.4 7.5
ResNet 0.5 64.9 18.4 48.3 50.0 46.9 18.8 14.8 22.1 16.5 9.2
(one-hot) 1 44.3 25.1 25.8 40.8 21.6 17.8 15.5 17.1 16.9 6.1

2 11.5 30.6 26.9 26.1 16.3 12.8 16.7 19.2 13.9 5.5

0.1 47.1 21.8 38.4 27.2 22.3 7.2 25.4 13.6 6.9 2.5
Wide- 0.3 64.8 13.5 48.4 44.1 43.2 14.4 17.2 18.0 13.0 6.4
ResNet 0.5 69.3 9.8 50.0 44.8 45.4 16.5 19.7 19.5 14.8 7.4
(uniform) 1 57.7 10.1 33.7 35.2 27.4 8.0 62.6 5.7 8.8 1.2

2 8.1 100.0 7.5 19.2 4.1 3.4 99.9 1.7 14.0 0.3

0.1 66.6 5.2 43.8 35.0 34.0 3.5 39.1 5.3 6.7 1.1
SERes- 0.3 75.1 4.2 46.2 44.2 43.8 6.7 26.8 5.3 9.7 2.5
NeXt 0.5 70.3 7.8 43.4 44.6 41.7 8.1 24.5 5.8 10.1 3.2
(one-hot) 1 45.1 14.5 22.6 36.5 18.5 8.5 24.7 4.2 11.8 1.8

2 15.1 18.7 22.8 21.9 12.8 5.6 26.2 9.0 11.3 3.1

0.1 64.7 6.1 42.8 34.9 32.4 3.2 41.3 5.7 6.1 1.0
SERes- 0.3 75.0 3.9 46.4 43.8 43.3 6.1 29.0 5.2 9.0 2.1
NeXt 0.5 73.8 6.9 45.1 44.8 42.3 7.4 28.7 5.7 10.3 2.7
(uniform) 1 42.0 49.5 17.1 33.8 11.7 11.2 79.2 5.1 12.0 1.8

2 5.8 100.0 3.3 15.7 1.4 9.2 99.8 1.7 15.5 1.7

are given. In comparison to the performance of the gradient scores of the last layer (see
table 4.8 and table 4.9), the performance of the second-to-last layer is poor. Particularly,
the results for all evaluation metrics are worse than these of the last layer. In some cases,
there is no detection capability at all for the gradient scores obtained from the uniform
label. To summarize, the gradients of the second-to-last layer improve neither the uncer-
tainty estimation at pixel- and segment-level nor the OoD segmentation quality, rather
they perform worse in some cases. The finding that deeper layer gradients contain less in-
formation than the final layer has been observed before outside the semantic segmentation
setting by [69] and [145].

4.4.5 Computational Runtime

Lastly, we demonstrate the computational efficiency of our method and show runtime
measurements for the network forward pass (“Softmax”), MC dropout (25 samples) and
computing both of PGNoh and PGNuni. While sampling MC dropout requires over twice
the time per frame for both backbone networks, the computation of PGNoh+PGNuni only
leads to a marginal computational overhead of around 1% due to consisting only of tensor
multiplications. The time measurements were each made on a single Nvidia Quadro P6000
GPU.

122

4.5 Conclusion

Table 4.9: OoD segmentation results for the Fishyscapes LostAndFound and the RoadAnomaly21
dataset for different p-norms.

Fishyscapes LostAndFound RoadAnomaly21

p AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
0.1 23.9 22.0 13.9 29.5 15.6 28.2 75.4 18.2 14.8 4.2

Wide- 0.3 26.9 31.2 16.2 30.0 18.1 33.8 70.5 20.9 18.4 6.0
ResNet 0.5 22.8 35.5 12.1 27.3 14.1 34.5 69.5 19.4 19.3 5.5
(one-hot) 1 10.1 39.1 4.0 14.6 3.3 32.5 69.5 16.1 17.0 5.8

2 1.5 41.7 11.5 2.7 1.7 25.7 70.2 15.5 15.1 5.8

0.1 23.0 21.7 13.6 27.6 14.7 27.6 75.9 17.8 14.6 4.1
Wide- 0.3 28.3 29.2 15.7 32.1 18.4 33.7 69.7 20.8 17.1 5.8
ResNet 0.5 26.9 36.6 14.8 29.6 16.5 36.7 61.4 21.6 17.8 6.2
(uniform) 1 0.8 66.4 6.2 2.5 2.0 45.2 60.7 24.8 26.2 9.5

2 0.2 99.8 0.2 0.3 0.0 29.2 97.7 21.1 29.0 6.1

0.1 21.0 15.6 10.4 21.2 8.3 36.2 65.7 21.9 16.9 5.7
SERes- 0.3 23.7 23.7 10.1 26.8 11.6 40.5 64.9 24.5 19.5 8.7
NeXt 0.5 20.8 29.8 8.1 23.9 9.4 39.3 66.5 23.1 21.5 7.8
(one-hot) 1 8.8 36.3 4.6 12.4 3.4 33.3 69.4 17.2 16.2 8.1

2 1.2 39.4 11.5 2.2 1.6 27.1 71.0 16.2 14.0 7.4

0.1 20.6 15.6 8.1 21.6 6.6 35.6 66.2 21.3 17.0 5.3
SERes- 0.3 24.1 21.8 10.5 26.3 11.9 41.1 62.7 24.9 20.0 8.5
NeXt 0.5 22.6 32.0 8.6 32.3 11.0 42.8 56.4 25.8 21.8 9.7
(uniform) 1 0.6 83.3 1.8 2.3 0.6 47.4 67.3 23.7 24.9 9.0

2 0.2 99.8 0.2 0.3 0.0 35.0 98.1 22.3 30.7 8.3

4.5 Conclusion: Gradient-based Uncertainty
Quantification in Semantic Segmentation

In this work, we presented an efficient method of computing gradient uncertainty scores for
a wide class of deep semantic segmentation models. Moreover, we appreciate a low com-
putational cost associated with them. Our experiments show that large gradient norms
obtained by our method statistically correspond to erroneous predictions already on the
pixel-level and can be normalized such that they yield similarly calibrated confidence mea-
sures as the maximum softmax score of the model. On a segment-level our method shows
considerable improvement in terms of error detection. Gradient scores can be utilized
to segment out-of-distribution objects significantly better than sampling- or any other
output-based method on the SegmentMeIfYouCan benchmark and has competitive re-
sults with a variety of methods, in several cases clearly outperforming all of them while
coming at negligible computational overhead.

123

4 Gradient Uncertainty in Semantic Segmentation

Table 4.10: OoD segmentation results for the LostAndFound and the Fishyscapes LostAndFound
dataset for different p-norms and the second-to-last layer.

LostAndFound Fishyscapes LostAndFound

p AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AuPRC ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
0.1 10.3 40.0 12.6 15.8 4.0 2.0 36.8 1.6 3.0 0.6

Wide- 0.3 10.9 32.9 23.1 23.0 11.3 1.7 39.4 2.3 2.2 0.5
ResNet 0.5 10.5 32.4 26.9 25.5 15.3 1.5 40.3 9.6 2.3 1.3
(one-hot) 1 10.0 32.2 28.9 26.1 17.3 1.4 41.1 12.2 2.5 1.9

2 9.7 32.1 30.0 25.7 18.3 1.3 41.5 13.6 2.8 2.4

0.1 0.7 98.8 0.5 0.8 0.0 0.3 96.0 0.8 0.7 0.0
Wide- 0.3 0.5 99.8 0.5 0.8 0.0 0.2 98.9 0.2 0.3 0.0
ResNet 0.5 0.5 99.9 0.5 0.8 0.0 0.2 99.5 0.2 0.3 0.0
(uniform) 1 0.5 100.0 0.5 0.8 0.0 0.2 99.7 0.2 0.3 0.0

2 0.5 100.0 0.5 0.8 0.0 0.2 99.8 0.2 0.3 0.0

0.1 3.0 66.2 4.9 7.3 1.4 1.9 41.1 5.8 5.2 1.8
SERes- 0.3 6.8 27.1 15.4 12.9 6.1 1.9 36.0 5.2 5.0 1.6
NeXt 0.5 8.1 23.9 19.5 15.2 8.6 1.7 36.8 4.1 4.3 1.0
(one-hot) 1 9.3 21.7 22.6 17.8 11.1 1.4 37.6 7.0 2.1 0.9

2 10.4 20.4 24.1 18.4 12.7 1.2 38.3 11.5 2.3 1.7

0.1 0.4 99.9 0.5 0.8 0.0 0.2 88.9 0.3 0.0 0.0
SERes- 0.3 0.4 99.9 0.5 0.8 0.0 0.2 93.2 0.2 0.0 0.0
NeXt 0.5 0.4 100.0 0.5 0.8 0.0 0.2 96.1 0.2 0.3 0.0
(uniform) 1 0.4 100.0 0.5 0.8 0.0 0.2 99.2 0.2 0.3 0.0

2 0.5 100.0 0.5 0.8 0.0 0.2 99.7 0.2 0.3 0.0

Table 4.11: Runtime measurements in seconds per frame for each method; standard deviations
taken over samples in the Cityscapes validation dataset.

sec. per frame WideResNet SEResNeXt

Softmax 3.02± 0.18 1.08± 0.04
MC Dropout 7.52± 0.35 2.31± 0.10
PGNoh + PGNuni 3.05± 0.16 1.09± 0.05

124

5
Rapid Prototyping of Active Learning
for Object Detection

In this chapter we introduce and investigate a sandbox environment for developing and
testing active learning strategies for deep object detection. The presented contents are in
large parts taken word-for-word from [146].

5.1 Introduction: Active Learning for Deep Object
Detectors

Deep learning requires large amounts of data, typically annotated by vast amounts of
human labor [9, 98, 212]. In particular in complex computer vision tasks such as object
detection (OD), the amount of labor per image can lead to substantial costs for data
labeling. Therefore, it is desirable to avoid unnecessary labeling effort and to have a rather
large variability of the database. Active learning (AL) [164] is one of the key methodologies
that aims at labeling the data that matters for learning. AL alternates model training and
data labeling as illustrated in fig. 5.1. At the core of each AL method is a query strategy
that decides after each model training which unlabeled data to query for labeling. The
computation cost of AL is in general at least an order of magnitude higher than ordinary
model training and so is its development [98,177], which comprises several AL experiments
involving T query steps with different parameters, ablation studies, etc. Hence, it is
notoriously challenging to develop new AL methods for applications where model training
itself is already computationally costly. In the field of OD, a number of works overcame
this cumbersome hurdle [8, 23,32,37,58,134,156,160,172,206,210]. However, these works
did so in very different settings which makes their comparison difficult. Hence, it is difficult
to give any advice for practitioners, which AL method to choose. Besides that, AL with
real-world data may suffer from other influencing factors, e.g., the quality of labels to which
end fundamental research is conducted on AL in presence of label errors [6, 7, 207, 208].
These observations demand for a development environment that enables rapid prototyping,

125

5 Rapid Prototyping of Active Learning for Object Detection

DL

object detector

 training

DU

DQ

query

labeling by oracle

t = 1, . . . , T

t

evaluation

testing

Figure 5.1: The generic pool-based AL cycle consisting of training on labeled data DL, querying
informative data points DQ out of a pool of unlabeled data DU and annotation by a (human)
oracle. In practice, training compute time is orders of magnitude larger than evaluating the AL
strategy itself.

cutting down to the huge computational efforts of AL in object detection and fostering
comparability of different AL methods.

In this chapter, we propose a development environment that drastically cuts down the
computational cost of developing AL methods. We do so by reducing the complexity of
the deep object detectors as well as the complexity of the database, establishing a non-
trivial sandbox for deep OD. To this end, we construct (a) two datasets that generalize
MNIST digits [92] and EMNIST letters [26] to the setting of OD by pasting colored and
transformed samples into background images from MS-COCO [102] and (b) a selection
of suitable small-scale object detectors. We justify this step and underline its value for
the field of AL in OD. To do so, we conduct several experiments which show that results
on our datasets generalize to a similar degree to established but more complex datasets
(Pascal VOC [38] and BDD100k [209]), as they generalize among each other. We also
demonstrate that we reduce the computational effort of AL experiments by factors of up
to 32. In addition, to establish further comparability of AL methods for OD, we propose
an extensive evaluation protocol. We summarize our contributions as follows:

• We propose a sandbox environment with two datasets, multiple networks, active
learning queries and an extensive evaluation protocol. This setup allows for broader
comparisons and detailed and transparent experiment tracking at lowered computa-
tional effort. We demonstrate this with extensive numerical results.

• We analyze the generalization capabilities of our sandbox and find that results ob-
tained by our sandbox generalize well to Pascal VOC and BDD100k.

• We contribute to future AL development by providing an implementation of our
pipeline in a flexible environment as well as an automated framework for evaluation
and visualization of results.

Code is publicly available46. All selected configurations and hyperparameters in addition
to evaluation files for the experiments conducted will be published in order to facilitate

46https://github.com/tobiasriedlinger/al-rapid-prototyping

126

https://github.com/tobiasriedlinger/al-rapid-prototyping

5.2 Related Work

COCO background

MNIST numbers:
transformed and colorized

S

V

H

Figure 5.2: Generation scheme of semisynthetic object detection data from MNIST digits on a
non-trivial background image from MS COCO.

future comparisons with the implemented baselines.

5.2 Related Work: State of Active Learning and
Specializations to Object Detection

Numerous methods of AL have been, and still are, developed in the classification set-
ting and largely fall into two main categories. Uncertainty-based query strategies rely
on the informativeness of a probabilistic model’s current prediction uncertainty [96]. In
probabilistic classification models, popular examples include the probability margin [159],
ensemble entropy [30], or committee disagreement [165]. A different approach is taken
by density-based query strategies, which aim at exploiting data diversity between already
known data and prospective queries. Typically, such methods are related to clustering al-
gorithms [129,163,196] which can also be used in conjunction with uncertainty estimation
methods. For a general overview of different AL approaches see for example the survey
by Settles [164].

The task of OD is more complex than image classification in that the background needs
to be distinguished against foreground instances and each foreground instance needs to
be assigned its own localization and classification. Not only does this require the choice
of additional hyperparameters for making predictions, but this also entails more complex
and expensive labels. Therefore, AL plays also a large role in OD. Yoo and Kweon [206]
present a task-agnostic method where a loss prediction module estimates a loss for every
potentially queried image and selects the images for which the largest loss is expected.
Brust et al. [8] estimate prediction-wise uncertainty by the probability margin and ag-
gregate to image uncertainty by the summation, averaging or taking the maximum. For
a black-box approach, Roy et al. [156] follow the same idea, but with using the classifi-
cation entropy as prediction uncertainty. Moreover, they propose a white-box approach
which is inspired by query-by-committee, making use of predictions at different scales in
the object detector. In general, an ensemble of OD heads, trained independently on the
same set of labeled images, can be used to estimate prediction-wise classification uncer-
tainty, i.e., mutual information based on entropy [58], or a combination of localization and
classification uncertainty due to region of interest similarities [160]. But in particular, as

127

5 Rapid Prototyping of Active Learning for Object Detection

training a variety of detector heads in each AL step is very costly, committee or ensemble
query methods tend to be approximated by Monte Carlo (MC) Dropout [45, 202]. Some
methods yield to custom object detectors, i.e., a Gaussian mixture model based object
detector with an adjusted loss [23], or they intervene at least in the training pipeline,
e.g., by suppressing noisy instances [210]. Another class of approaches is based on semi-
supervised learning, i.e., incorporating either pseudo-labels for some representative easy
samples to prevent distribution drift [37]. Alternatively used “weak” labels consist only of
the center coordinates [32,134,172]. In this chapter we compare uncertainty-based meth-
ods with each other that are exclusively based on fully supervised training [8, 23,58,156].
These works are difficult to compare since the datasets, network architectures, frame-
works, initial dataset sizes, query sizes and hyperparameters for training and inference
heavily differ from each other. Unlike the works mentioned, we aim at putting the AL
task itself on equal footing between different settings to improve development speed and
evaluation transparency. Here, we compare some methods mentioned above to each other
based on the same configurations for frequently used datasets and network architectures.
Comparative investigations of this kind has escaped previous research in the field.

5.3 Methods: A Sandbox Environment with Datasets,
Models and Evaluation Metrics

In this section we describe the objective of AL and also our sandbox environment. The
main setting which we propose consists of two semisynthetic OD datasets and down-
scaled versions of standard object detectors leaving the detection mechanism unchanged.
Additionally, we introduce evaluations capturing different aspects of the observed AL
curve.

5.3.1 The Active Learning Task

The term active learning refers to a setup depicted in fig. 5.1 where only a limited amount
of fully annotated data DL is available together with a task-specific model. In addition,
there is a pool or a stream of unlabeled data DU from which the model queries those
samples DQ which are most informative. Success of the query strategy is measured by
observing that training on the new data pool leads to an increase of test performance
higher than another method. Afterwards, DQ is annotated by an oracle which is usually a
human worker, added to DL and the model is fine-tuned or fitted from scratch on DL from
where the cycle continues. Before each acquisition step, the current model performance is
evaluated which leads to graphs like the ones in fig. 5.3. The query step can take diverse
algorithmic forms, see section 5.2 or [164].

5.3.2 Sandbox Datasets

We construct an OD problem by building a synthetic overlay to images from the real-world
MS COCO dataset (see fig. 5.2), which constitutes the data of our sandbox. MS COCO
images with deleted annotations provide a realistic, feature-rich background on which

128

5.3 Methods

Table 5.1: Exemplary object detection architectures with backbone configurations employed in the
experiments and associated number of parameters.

Detector Backbone # params Backbone # params

RetinaNet ResNet50 36.5M ResNet18 20.1M
Faster R-CNN ResNet101 60.2M ResNet18 28.3M
YOLOv3 Darknet53 61.6M Darknet20 10.3M

foreground objects shall be recognized. As foreground, we utilize two sets of categories:
MNIST digits and EMNIST letters. We apply randomized coloration and opacity to
foreground instances such that trivial edge detection becomes unfeasible. Colors are drawn
from HSV space uniformly by (h, s, v) ∼ U ([0.0, 1.0]× [0.05, 1.0]× [0.1, 1.0]) which yielded
the best optical variability. The chosen HSV-color is multiplied with the gray scale value
of the original image avoiding the instances being monochromatic. Opacity is similarly
drawn uniformly α ∼ U ([0.5, 0.9]) and in addition, we apply image translation, scaling
and shearing to all numbers/letters. The number of instances per background image is
Poisson-distributed with mean λ = 3. Tight bounding box and instance segmentation
annotations can be obtained from the original transformed gray scale (E)MNIST images
and the category label can be adopted. Compared to simple detection datasets such
as SVHN [187], the geometric variety in our datasets is more similar to those of OD
benchmarks such as Pascal VOC or MS COCO. The reduction in the dataset complexity
allows for the achievement of high performance even for small architectures and leads to
quickly converging training and low inference times. In the following we use the terms
“MNIST-Det” and “EMNIST-Det” to refer to our OD datasets.

5.3.3 Sandbox Models

Modern OD architectures utilize several conceptually different mechanisms to solve the
detection task (recall section 2.3.2). Irrespective of the amount of accessible data, some
applications of OD may require high inference speed while others may require a large
degree of precision or some trade-off between the two. The type of architecture as well
as the underlying detection mechanism are, however, disjoint to some degree from the
depth of the feature extraction in the backbone. The latter is mainly responsible for the
quality and resolution of features. We use this insight to down-scale architectures for AL
by reducing the network depth while keeping the detection mechanism in the network’s
head unchanged. Together with the simplified OD objectives from section 5.3.2, we obtain
a well-performing, low-capacity and fast-inference setup. This allows us to study AL
with the same OD mechanisms that occur in practice. table 5.1 shows the choices for
a YOLOv3 [39], RetinaNet [101] and Faster R-CNN [144] setup, which we have made
for our investigations together with the resulting number of parameters. The number of
parameters in the standard setup was reduced by up to a factor of around 6 leading to a
significant decrease in training and inference time.

129

5 Rapid Prototyping of Active Learning for Object Detection

5.3.4 Active Learning Methods for Object Detection

For the construction of baseline AL methods, we focus on querying whole images instead of
single bounding boxes. The latter would introduce an additional dimension of complexity
where unlabeled image regions need to be ignored. The frequently used uncertainty-
based query strategies from image classification, such as entropy, probability margin, MC
dropout, and mutual information, determine prediction-specific but not image-wise uncer-
tainties. Hence, we introduce an aggregation step to obtain image-wise query scores.

For a given image x, a neural network predicts a fixed number N̂out of bounding boxes

f̂(x|θ) =
{
(x̂nij , ŷ

n
ij , ŵ

n
ij , ĥ

n
ij , ŝ

n
ij , (π̂1)

n
ij , . . . , (π̂C)

n
ij)
}
n∈[NAnch],(i,j)∈I/ς2

. (5.1)

See section 2.3.2 for the respective notation. Only the set of boxes that remain after NMS
and score thresholding are used to determine prediction uncertainties. Already the choice
of the parameters for the NMS and the score threshold influence the queries, since they
decide which (uncertain) predictions ŷj (where j ∈ Nx) remain.

Given a prediction ŷj we compute its classification entropy

H(ŷj(x)) := −
∑
c∈[C]

π̂jc · log
(
π̂jc
)

(5.2)

and its probability margin score

M(ŷj(x)) := (1− [π̂j
ĉj
−max

c̸=ĉj
π̂jc])

2. (5.3)

Here, ĉj denotes the class with the highest predicted probability in ŷj . When dropout is
implemented in the architecture, MC Dropout samples can be drawn at inference time
when the output of the same anchor box j is sampled NDO times

ỹj(x) := {ŷj1, . . . , ŷjNDO
}. (5.4)

The mutual information under MC dropout is estimated by

I(ỹj(x)) := H

(
1

NDO

NDO∑
k=1

ŷjk

)
− 1

NDO

NDO∑
k=1

H
(
ŷjk

)
(5.5)

with the second term being the average entropy of the individual samples. We also regard
the maximum feature standard deviations within ỹj by first standardizing variances over
all query predictions over the unlabeled dataset DU to treat localization and classification
features on the same footing. Standardization

φ(x) 7→ φ(x) :=
φ(x)− 1

|DU |
∑

xu∈DU
φ(xu)

stdxj∈DUφ(xu)
(5.6)

130

5.3 Methods

maps any φ ∈ {x̂, ŷ, ŵ, ĥ, ŝ, π̂1, . . . , π̂C} to a quantity that is standardized over DU . Here,
stdxj∈DUφ(xu) denotes the unbiased standard deviation estimator. The dropout uncer-
tainty is then

D(ỹj(x)) := max
φ∈{x̂,ŷ,ŵ,ĥ,ŝ,π̂1,...,π̂C}

stdk∈[NDO]φ
j
k(x). (5.7)

This quantity is the maximal standard deviation of bounding box features, after scale of
the respective features has been accounted for by standardization. Note that for all these
methods, uncertainty is only considered in the predicted foreground instances. Since the
uncertainty-based selection strategies only determine prediction-based uncertainties, either
the sum, average, or maximum is taken over predicted instances to obtain a final query
score for the image. Summation, for instance, tends to prefer images with a large amount
of instances while averaging is strongly biased by the thresholds (imagine considering many
false positive predictions which could be filtered by a higher threshold). In the presented
experiments, we use summation and further aggregations are investigated in an ablation
study. Additionally, we also regard random acquisition as a completely uninformed query
baseline.

Diversity-based methods make use of latent activation features in neural networks which
heavily depend on the OD architecture. Since purely diversity-based methods have been
less prominent in the literature, we focus on the more broadly established uncertainty
baselines.

5.3.5 Evaluation Methods

Model Performance. In the literature, methods are frequently evaluated by counting
the number of data samples needed to cross some fixed reference performance mark. For
OD, performance is usually measured in terms of the mAP50 metric for which there is a
maximum value known when training on all available data. In AL then, some percentage
of this maximal performance, e.g., 90% needs to be reached with as few data points as
possible. Collecting performance over amount of queried data gives rise to curves such as
the one in the top right of fig. 5.1 which we call AL curves in the following.

Counting Annotations. “Amount of training data” usually translates to the number
of queried images which is set as a hyperparameter and fixed for each method and AL
cycle. Considering that in the annotation process, each bounding box needs to be labeled
and there tends to be high variance in the number of instances per image in common
benchmark datasets, it is not clear whether to measure annotated data in terms of images
or instances. Therefore, we stress that the scaling of the t-axis is important especially in
instance-wise prediction tasks such as OD. Both views, counting images or instances, can
be argued for. Therefore, we evaluate the performance of each result not only based on the
acquired images, but also transform the t-axis under the curves to the number of annotated
instances. By linear interpolation between query points and averaging of individual seeds
of the same experiment, we obtain image- or instance-wise standard deviations of the
performance.

131

5 Rapid Prototyping of Active Learning for Object Detection

amount of training data

te
st

p
er

fo
rm

an
ce

458.83
461.42

1074.79
1075.95

reference to max performance

t1 t2

Figure 5.3: Area under AL curve (AUC) metric at different stages of an AL curve for two different
query strategies (averaged, taken from fig. 5.5).

In light of the complexity of the AL problem, we propose the area under the AL curve
(AUC). It constitutes a more robust performance metric compared to (horizontal or
vertical) cross-sections through the learning curves. Figure 5.3 shows two AL curves and
corresponding AUC metrics at two distinct points t1 and t2. Note that in practice, there
is no fixed maximal dataset size for which a maximum performance exists. Then, the AL
experiment may end and be evaluated at any given vertical section of t points of training
data. Knowing the maximal performance (or the 90% mark shown in fig. 5.3) may lead
to wrong conclusions in the presented case which is taken from the scenario in fig. 5.5.
Ending the experiment at t1 clearly determines the red curve (which also has a higher
AUC) as preferable. Ending the experiment at t2 favors the blue curve by just looking at
the actual test performance. However, the AUC still favors the red curve, since it takes
the complete AL curve into account. This is in line with our qualitative feeling of the
curves when regarded up to t2. Note that we use the AUC metric for calculating rank
correlations in section 5.4.3. The raw results of the AUC metric are shown in extended
experimental results.

5.4 Experiments: Benchmarking, Generalization of
Results and Time Saving

In this section, we present results of experiments with our sandbox environment as well as
established datasets, namely Pascal VOC and BDD100k, for the rest of this chapter ab-
breviated as VOC and BDD. We do so by presenting AL curves, summarizing benchmark
results and discussing our observations for different evaluation metrics in section 5.4.2.
We then show in section 5.4.3 quantitatively that our sandbox results generalize to the
same extent to VOC and BDD as results obtained on those datasets generalize between
each other. In other words, we demonstrate the dataset-wise representativity of the re-
sults obtained by our sandbox. Thereafter, this is complemented with a study on the
computational speedup in section 5.4.5 when using the sandbox instead of VOC or BDD.

132

5.4 Experiments

Table 5.2: Maximum mAP50 values achieved by the models in table 5.1 on the respective datasets
(standard-size detectors on VOC and BDD; sandbox-size on (E)MNIST-Det). The entire available
training data is used.

YOLOv3 RetinaNet Faster R-CNN

MNIST-Det 0.962 0.908 0.937
EMNIST-Det 0.959 0.919 0.928
Pascal VOC 0.794 0.748 0.797
BDD100k 0.426 0.464 0.525

Table 5.3: Standard deviations of center coordinates, width and height (all relative to image size)
of bounding boxes, as well, as number of categories in the training split for several object detection
datasets.

Dataset x y w h C

SVHN 0.099 0.059 0.048 0.161 10
Pascal VOC 0.217 0.163 0.284 0.277 20
MS COCO 0.254 0.209 0.220 0.234 80
KITTI 0.229 0.080 0.067 0.157 8
BDD100k 0.224 0.133 0.059 0.086 10
MNIST-Det 0.233 0.233 0.054 0.054 10
EMNIST-Det 0.233 0.233 0.066 0.065 26

5.4.1 ⋔ Implementation Details

We implemented our pipeline in the open source MMDetection [18] toolbox. In our exper-
iments for VOC, DU initially consists of “2007 train” + “2012 trainval” and we evaluate
performance on the “2007 test”-split. At initialization, we randomly sample DL as a small
portion of DU . When tracking validation performance to assure convergence, we evaluate
on “2007 val”. Since BDD is a hard detection problem, we filtered frames with “clear”
weather condition at “daytime” from the “train” split as initial pool DU yielding 12,454
images. We apply the same filter to the “val” split and divide it in half to get a test
dataset (882 images for performance measurement) and a validation dataset (882 images
for convergence tracking). For the (E)MNIST-Det datasets we generated 20,000 train im-
ages, 500 validation images and 2,000 test images. For reference, we collect in table 5.2
the achieved performance of the respective models for each dataset which determines the
90% mark investigated in our experiments.

Dataset Variability. When comparing to existing OD datasets, our sandbox datasets
MNIST-Det and EMNIST-Det resemble in variability the common benchmarks like VOC,
MS COCO, KITTI or BDD. This can be seen when looking at the variations in bounding
box localization across each dataset. When normalizing to the total image resolution, we
can compare the standard deviations in the annotation center coordinates x, y as well
as the bounding box extent w and h, which we have collected in table 5.3. The SVHN
dataset consisting of photographs of house numbers shows little variability, especially in
the center localization of the object which are mostly centered on the image. Figure 5.4
shows samples from the MNIST-Det and EMNIST-Det datasets.

133

5 Rapid Prototyping of Active Learning for Object Detection

(a) MNIST-Det

(b) EMNIST-Det

Figure 5.4: Dataset samples from the (a) MNIST-Det and (b) EMNIST-Det datasets including
annotations.

134

5.4 Experiments

Table 5.4: Configuration of Darknet20 compared with Darknet53 in analogy to [39, Tab. 1]. At
equal resolution input, the feature maps also remain at the same resolution at each stage.

Darknet53 Darknet20
Type Size Blocks Filters Blocks Filters

Conv 3× 3 32 32
Conv 3× 3/2 64 32

Conv 1× 1 32 32
Conv 3× 3 1× 64 1× 64
Residual

Conv 3× 3/2 128 64

Conv 1× 1 64 32
Conv 3× 3 2× 128 1× 64
Residual

Conv 3× 3/2 256 128

Conv 1× 1 128 64
Conv 3× 3 8× 256 1× 128
Residual

Conv 3× 3/2 512 256

Conv 1× 1 256 128
Conv 3× 3 8× 512 2× 256
Residual

Conv 3× 3/2 1024 512

Conv 1× 1 512 256
Conv 3× 3 4× 1024 2× 512
Residual

135

5 Rapid Prototyping of Active Learning for Object Detection

Table 5.5: Overview of important AL hyperparameters for querying data and model training for
all datasets and architectures.

Query Training
|Uinit| |Q| τs image resolution T batch size training iters image resolution

Y
O
L
O
v
3 MNIST-Det 100 50 0.5 300× 300 8 4 35,000 300× 300

EMNIST-Det 100 100 0.5 320× 320 8 4 50,000 320× 320
Pascal VOC 200 150 0.5 608× 608 15 4 18,750 [(320, 320), (608, 608)]
BDD100k 1,100 700 0.5 608× 608 8 4 160,000 [(320, 320), (608, 608)]

F
R
C
N
N

MNIST-Det 100 50 0.7 300× 300 8 4 30,000 300× 300
EMNIST-Det 100 100 0.7 320× 320 8 4 30,000 320× 320
Pascal VOC 100 100 0.7 1000× 600 15 4 18,750 1000× 600
BDD100k 1,250 750 0.7 1000× 600 8 4 170,000 1000× 600

R
et
in
aN

et MNIST-Det 100 50 0.5 300× 300 8 4 25,000 300× 300
EMNIST-Det 225 125 0.5 300× 300 8 4 35,000 300× 300
Pascal VOC 550 350 0.5 1000× 600 8 4 60,000 1000× 600
BDD100k 1,000 500 0.5 1000× 600 8 4 175,000 1000× 600

Object Detection Models. In our experiments we used a YOLOv3 detector with the
standard Darknet53 backbone on VOC and BDD. In our down-scaled version we replace
the backbone with an analogous architecture working on the same resolutions, such that
all strides remain the same and the detection mechanism works identically. Table 5.4
shows the configuration comparison between the standard Darknet53 architecture and our
adapted version (here, called Darknet20) which significantly reduces depth and the number
of feature channels extracted. All other model and data augmentation configurations
remain unchanged. For Faster R-CNN we use a ResNet101 backbone on VOC and BDD
while for RetinaNet, we use a ResNet50. Here, we use a Feature Pyramid Network (FPN)
with [256, 512, 1024, 2048] channels. Both are down-scaled to ResNet18 backbones with
[64, 128, 256, 512]-channel FPN to accelerate training and inference.

For all architectures, we insert dropout layers between the two last layers (convolutional
layers at all stages for YOLOv3 and RetinaNet and fully connected for Faster R-CNN).
For all experiments involving sampling, i.e., MC Dropout and Mutual Information exper-
iments, we use dropout rates of 0.5 and perform 10 forward passes.

Active Learning Parameters. Table 5.5 gives an overview of chosen hyperparameters
for the AL cycle for all datasets and architectures. |Uinit| stands for the number of initially
annotated images, |Q| for the size of the selected query, ϵs for the score threshold for query
inference (hence, determining instance-wise uncertainty) and T for number of AL steps.
The hyperparameters for training are the batch size, which is always 4, the number of
training iterations, and the image resolution. It follows from table 5.5 (particularly, |Uinit|,
|Q| and T) that all architectures considered in our experiments need the fewest images for
our sandbox datasets MNIST-Det and EMNIST-Det to reach the 90% max performance
mark. Therefore, for the sandbox datasets we chose |Uinit| and |Q| smaller than for VOC
and BDD. Moreover, the sandbox datasets have lower image resolutions, which leads to
faster training and inference times, even if occasionally the training iterations are lower
for VOC, e.g., , for Faster R-CNN and YOLOv3. Apart from the latter case, the most
iterations to obtain convergence in the training processes are needed for BDD with up to

136

5.4 Experiments

175,000. The score threshold of 0.5 for YOLOv3 and RetinaNet, and 0.7 for Faster R-
CNN was determined by ablation studies for EMNIST-Det and then adopted for the other
datasets. For all query methods, we incorporate a class-weighting (the same as in [8]) for
computing instance-wise uncertainty scores.

5.4.2 Benchmark Results

We first investigate differences in AL results with respect to the datasets where we fix the
architecture. The comparison uses the YOLOv3 detector on two standard OD benchmarks
(VOC and BDD) and our EMNIST-Det dataset. Our comparison includes the five query
baselines described in section 5.3.4. We obtain AL curves averaged over four random ini-
tialization seeds and evaluated in terms of queried images as well as in terms of queried
object instances, respectively. Figure 5.5 shows the test performance curves with shaded
regions indicating point-wise standard deviations. The left panels show performance ac-
cording to queried images while the right panels show the same curves but according to
queried instances. We observe that the uncertainty-based query strategies tend to consis-
tently outperform the Random query in image-wise evaluation. However, when regarding
the number of queried bounding boxes, the situation is far less clear. For EMNIST-Det, the
difference between the Random and the uncertainty-based queries decreases substantially,
such that only a marginal difference is visible. In VOC and BDD, the Random baseline
falls roughly somewhere in-between the uncertainty baselines in instance-wise evaluation.
This indicates that greedy acquisition of images with the highest sum of uncertainty tends
to query images with a large amount of ground truth boxes. Obtaining many ground truth
signals improves detection performance in these cases, while the query of large amounts of
boxes gives rise to a higher annotation cost on the right panels. From this observation, we
conclude that comparing AL curves based only on the number of acquired training images
gives an incomplete impression of the method and the associated annotation costs. In
addition to the image-wise evaluation, an instance-wise evaluation should be considered.
Note also, that the AL curves for EMNIST-Det and VOC have a smoother progression
than those for BDD. We attribute this finding to the fact that BDD is a far more com-
plicated detection problem which includes a large amount of small objects. However, the
fluctuations in the AL curves on BDD tend to average out as we consider the AUC of the
AL curve as evaluation metric. This becomes clear in light of the results in section 5.4.3,
where we study the generalization across datasets in terms of the AUC of the AL curve.

In table 5.6 we show numerical benchmark results. For each detector to reach 90% of the
maximum performance, the table shows the number of queried images required and re-
spectively the number of bounding boxes for each method. These numbers were acquired
as the average of four runs. We see the rankings per experiment which often favor the
Entropy baseline, however, the overall rankings are rather unstable throughout the table.
Note in particular, that for the arguably the hardest detection problem under considera-
tion, BDD, the Random baseline beats the Mutual Information baseline for the YOLOv3
detector. In the analog setting for Faster R-CNN the image-wise margin of the Mutual
Information becomes slim. This observation also holds for instance-wise evaluation and is
even more pronounced where in six cases, Random beats an informed query baseline. For

137

5 Rapid Prototyping of Active Learning for Object Detection

500 1000 1500 2000

0.45

0.50

0.55

0.60

0.65

0.70

0.75

P
as

ca
l

V
O

C
m

A
P

50

Random

Entropy

Probability Margin

MC Dropout

Mutual Information

2000 4000

2000 3000 4000 5000 6000

0.275

0.300

0.325

0.350

0.375

0.400

B
D

D
10

0k
m

A
P

50

25000 50000 75000 100000 125000

200 400 600 800

Images

0.4

0.5

0.6

0.7

0.8

0.9

E
M

N
IS

T
-D

et
m

A
P

50

500 1000 1500 2000

Bounding Boxes

Figure 5.5: Comparison of YOLOv3 AL curves on three different datasets (Pascal VOC, BDD100k,
EMNIST-Det). Left : image-wise evaluation, right : box-wise evaluation.

138

5.4 Experiments

Table 5.6: Amount of queried images and bounding boxes necessary to cross the 90% performance
mark during AL when using sum aggregation. Lower values are better. Bold numbers indicate the
lowest amount of data per experiment and underlined numbers are the second lowest.

queried images # queried bounding boxes
MNIST-Det EMNIST-Det Pascal VOC BDD100k MNIST-Det EMNIST-Det Pascal VOC BDD100k

Y
O
L
O
v
3

Random 327.9 595.6 2236.8 5871.2 1079.1 1825.3 5344.2 116362.1
Entropy 245.5 398.8 1732.8 5389.3 1004.9 1583.0 4695.4 110694.9
Prob. Margin 256.2 429.0 1858.5 4895.2 1013.7 1617.1 4787.6 100376.3
MC Dropout 256.3 416.2 1679.4 5200.5 1115.3 1671.6 4875.1 110427.6
Mutual Inf. 249.8 399.5 1884.2 5912.9 1061.9 1602.7 5527.0 125050.1

F
a
st
er

R
-C

N
N Random 450.0 843.4 1293.7 6434.3 2140.0 2891.7 3125.2 129219.0

Entropy 384.5 561.6 1030.6 5916.7 1608.4 2156.4 2707.0 123008.6
Prob. Margin 408.7 626.2 1036.5 5761.6 1622.9 2285.1 2711.6 117889.3
MC Dropout 390.5 647.4 1127.5 6296.4 1818.1 2773.8 3624.7 130533.8
Mutual Inf. 395.3 572.6 1080.2 6385.7 1695.6 2235.3 3026.5 132855.7

R
et
in
aN

et

Random 390.3 950.4 2555.4 3616.2 1283.8 2957.7 6220.0 69842.0
Entropy 288.6 687.7 1961.2 2866.5 1292.0 2708.6 5421.6 64939.7
Prob. Margin 310.8 733.9 2087.3 2901.5 1277.5 2721.5 5445.6 64794.9
MC Dropout 293.3 749.6 2745.3 3027.7 1317.4 2926.4 7047.9 62395.5
Mutual Inf. 289.6 719.0 2881.9 3124.9 1248.0 2677.4 7389.0 61712.9

the RetinaNet architecture, we again notice striking ranking differences between image-
and instance-wise evaluation. Particularly, instance-wise evaluation has rather irregular
method rankings between datasets for the RetinaNet detector which are, however, also
reflected in our AUC evaluation discussed in table 5.8 in the following paragraph. These
results yield further evidence that the consideration of only a single evaluation metric
for active learning performance is insufficient. In light of the discussion in section 5.3.5,
we conclude that in order to assess the viability of a query strategy, AL curves should
be viewed from both angles: performance over number of images and over number of
bounding boxes queried.

⋔Benchmark Results in Terms of mAP50 and AUC. Table 5.7 shows the mAP50

achieved after the final query for each method and detector-dataset constellation in the
style of table 5.6. For each AL curve, the final performance (most queried images allowed
according to table 5.5) is independent of an image- or instance-wise point of view. Overall,
the Entropy baseline is consistently among the best two methods, however, the overall
rankings show a medium degree of variance across datasets and across detectors especially
when regarding instance-wise evaluation in table 5.6. Comparing vertical sections through
AL curves shows overall roughly similar behavior as the results in table 5.6 (horizontal
sections), however, we observe differences in the method rankings in terms of amount
of data queried vs. final detection performance (e.g., Faster R-CNN on the MNIST-Det
dataset).

In table 5.8 we collect the values of the AUC metric. Note, that the AUC metric scales
with the t-axis, i.e., results between different datasets can only be compared qualitatively.
The same is true for comparisons between image- and instance-wise evaluations. When
comparing with table 5.6, we see a high degree of ranking similarity with the amount of
data required to cross the 90%-mark in both, image- and instance-wise evaluation. We
conclude with previous findings on the rank correlations, that even in a rather late evalua-
tion (when some fixed reference mark in performance has already been crossed), the AUC

139

5 Rapid Prototyping of Active Learning for Object Detection

Table 5.7: Mean average precision results per query method for maximal amount of images selected;
higher values are better. Bold numbers indicate the highest performance per experiment and
underlined numbers are the second highest.

MNIST-Det EMNIST-Det Pascal VOC BDD100k

Y
O
L
O
v
3

Random 89.28 88.95 72.10 38.22
Entropy 91.53 91.75 73.08 39.28
Prob. Margin 91.03 91.42 72.65 39.35
MC Dropout 91.08 91.42 72.78 38.80
Mutual Inf. 91.05 91.42 72.22 38.30

F
as
te
r
R
-C

N
N Random 83.20 83.92 74.67 47.02

Entropy 85.27 87.15 75.10 48.30
Prob. Margin 85.00 86.62 75.40 48.35
MC Dropout 85.28 86.05 74.25 47.27
Mutual Inf. 85.27 87.07 74.35 47.27

R
et
in
aN

et

Random 82.95 83.70 69.58 43.20
Entropy 85.35 86.15 71.80 43.97
Prob. Margin 84.38 85.78 71.55 43.75
MC Dropout 85.02 85.60 68.17 43.50
Mutual Inf. 85.33 86.10 68.12 43.48

Table 5.8: Area under AL curve results per query method for maximal amount of data selected;
higher values are better. Bold numbers indicate the highest AUC per experiment and underlined
numbers are the second highest.

queried images # queried bounding boxes
MNIST-Det EMNIST-Det Pascal VOC BDD100k MNIST-Det EMNIST-Det Pascal VOC BDD100k

Y
O
L
O
v
3

Random 290.9 543.3 1645.1 1691.9 1503.8 2438.7 4274.3 37327.3
Entropy 299.6 577.4 1685.2 1728.8 1519.0 2491.4 4324.6 37816.6
Prob. Margin 298.1 571.9 1664.5 1733.6 1516.2 2485.3 4303.4 37931.1
MC Dropout 298.3 571.8 1684.9 1727.9 1503.8 2465.5 4284.6 37550.7
Mutual Inf. 299.1 578.0 1666.8 1716.1 1509.4 2482.6 4233.2 37514.5

F
as
te
r
R
-C

N
N Random 273.0 542.6 1207.9 2220.1 1448.6 2643.7 3121.5 47767.9

Entropy 281.3 567.1 1237.6 2266.7 1465.2 2703.6 3168.8 48167.8
Prob. Margin 279.7 561.3 1236.4 2274.7 1465.2 2692.5 3168.3 48449.2
MC Dropout 280.5 557.0 1227.0 2247.3 1451.4 2619.7 3052.8 47718.9
Mutual Inf. 280.2 566.6 1230.5 2247.8 1457.5 2697.4 3123.8 47714.8

R
et
in
aN

et

Random 270.4 677.5 1743.6 1380.5 1438.2 2896.9 4614.9 33141.5
Entropy 279.1 701.9 1819.7 1421.6 1446.2 2932.4 4714.6 33431.4
Prob. Margin 276.8 696.5 1802.8 1414.7 1445.6 2928.4 4722.5 33339.5
MC Dropout 279.0 696.3 1730.6 1406.2 1445.6 2915.8 4535.9 33452.9
Mutual Inf. 278.5 699.3 1734.7 1400.8 1449.1 2940.7 4543.9 33495.2

140

5.4 Experiments

0 25 50 75 100
Images in %

MNIST

EMNIST

VOC

BDD

Min: 0.5, Avg: 0.847

0 25 50 75 100
Boxes in %

Min: -0.3, Avg: 0.729

(a) AUC

0 25 50 75 100
Images in %

MNIST

EMNIST

VOC

BDD

Min: 0.2, Avg: 0.814

0 25 50 75 100
Boxes in %

Min: -0.3, Avg: 0.759

(b) mAP50

Figure 5.6: Curves of rank correlations between (a) the cumulative AUC and (b) the final rankings
at the 90% max performance mark for the YOLOv3 object detector.

shows more similarity with the 90% ranking than raw detection performance (table 5.7).
For instance, compare the Faster R-CNN row from table 5.6 with the corresponding row
in table 5.8.

5.4.3 Generalization of Sandbox Results

Stability of the AUC Metric. Instead of evaluating the pure performance at each AL
step we have proposed in section 5.3.5 to compute the corresponding AUC as a more ro-
bust metric of AL performance. With respect to the final method ranking at some fixed
reference mark, we compute Spearman rank correlations with the mAP50 metric at each
point t. We compare these with the analogous correlations with the respective AUC at
each point. Figure 5.6 shows intensity diagrams representing the rank correlations both,
in terms of image-wise and instance-wise evaluation. The reference mark we chose is
90% of the maximum mAP50 obtained (see table 5.2). The t-axes are normalized to the
maximum number of images, resp. bounding boxes queried, and the color indicates the
Spearman correlation of the rankings. Red represents negative correlation (i.e., partial to
full inversion of the observed ranking) while green means positive correlation (i.e., a higher
degree of similarity of the rankings). In fig. 5.6 both, mAP50 and AUC show overall high
correlation with the method ranking, especially towards the end of the curves. We see
that the correlations for AUC fluctuates far less. Moreover, the average correlation across
entire AL curves tends to be larger for the AUC metric than mAP50. Note that the final

141

5 Rapid Prototyping of Active Learning for Object Detection

0 25 50 75 100
Images in %

MNIST

EMNIST

VOC

BDD

Min: 0.5, Avg: 0.868

0 25 50 75 100
Boxes in %

Min: -0.4, Avg: 0.619

0 25 50 75 100
Images in %

Min: 0.1, Avg: 0.883

0 25 50 75 100

Boxes in %

Min: 0.2, Avg: 0.826

−1

0

1

(a) AUC

0 25 50 75 100
Images in %

MNIST

EMNIST

VOC

BDD

Min: 0.5, Avg: 0.904

0 25 50 75 100
Boxes in %

Min: -0.7, Avg: 0.619

0 25 50 75 100
Images in %

Min: 0.0, Avg: 0.885

0 25 50 75 100

Boxes in %

Min: -0.2, Avg: 0.789

−1

0

1

(b) mAP50

Figure 5.7: Curves of rank correlations between (a) the cumulative AUC and (b) the final rankings
at the 90% max performance mark. Left: RetinaNet, Right: Faster R-CNN.

ranking of either method does not need to be perfectly correlated with the 90% max per-
formance ranking for two reasons. Firstly, the latter does not take into consideration early
performance gains and secondly, the 90% max performance ranking is a horizontal section
through the curves while mAP50 and AUC are vertical sections. For a more quantitative
evaluation, we show minimal and average correlation over all curves in fig. 5.6. We ob-
serve overall high averages of upwards of 0.72 throughout the curves. The minimum AUC
correlation tends to be higher than the minimum mAP50 correlation. We conclude that
AUC tends to be highly correlated with the 90% max performance ranking and is more
stable with respect to t than mAP50. Ranking correlations for mAP50 and AUC for Reti-
naNet and Faster R-CNN, see fig. 5.7, tend to show similar behavior as for the YOLOv3
detector. The AUC fluctuates less than the mAP50 and both metrics show overall high
correlation with the 90% max performance ranking. For the image-wise evaluation, both
metrics have correlations greater or equal than 0.5. In the instance-wise evaluation, on the
other hand, the correlations increase only gradually. Even though the average correlations
are identical for the mAP50 and the AUC, the latter is clearly more stable with respect to
the 90% max performance ranking and has a higher minimum correlation.

Cross-Dataset Ranking Correlations. Next, we study how comparable AL experi-
ments are between the sandbox setting and full-complexity problems, i.e., VOC and BDD.
To this end, we consider the cross-dataset correlations of the AUC score when fixing the
detection architecture. Figure 5.8 shows correlation matrices for image- and instance-
wise evaluation. When comparing to the VOC-BDD correlations, the MNIST-Det and
EMNIST-Det method rankings tend to be similarly correlated with either one. Con-
sider, for instance, the image-wise correlations on VOC. For the YOLOv3 detector, both
MNIST-Det and EMNIST-Det have higher correlation with VOC than BDD does. Mean-

142

5.4 Experiments

MNIST-D
et

EMNIST-D
et

BDD100k

Pasca
l VOC

MNIST-Det

EMNIST-Det

BDD100k

Pascal VOC

1

0.8 1

0.3 0.3 1

0.9 0.5 0.4 1

MNIST-D
et

EMNIST-D
et

BDD100k

Pasca
l VOC

1

1 1

0.8 0.8 1

0.7 0.7 0.8 1

(a) YOLOv3

MNIST-D
et

EMNIST-D
et

BDD100k

Pasca
l VOC

1

0.56 1

0.56 0.6 1

0.67 0.8 0.9 1

MNIST-D
et

EMNIST-D
et

BDD100k

Pasca
l VOC

1

0.15 1

0.56 0.2 1

0.31 0.9 0.6 1 0.0

0.2

0.4

0.6

0.8

1.0

S
p

ea
rm

an
C

or
re

la
ti

on

(b) Faster R-CNN

MNIST-D
et

EMNIST-D
et

BDD100k

Pasca
l VOC

MNIST-Det

EMNIST-Det

BDD100k

Pascal VOC

1

0.7 1

0.7 0.7 1

0.1 0.5 0.6 1

MNIST-D
et

EMNIST-D
et

BDD100k

Pasca
l VOC

1

0.9 1

0.9 0.7 1

-0.3 0.1 -0.6 1 0.0

0.2

0.4

0.6

0.8

1.0

S
p

ea
rm

an
C

or
re

la
ti

on

(c) RetinaNet

Figure 5.8: Ranking correlations between AUC values for different detectors. Left : Image-wise;
Right : Instance-wise evaluation.

while, the BDD-MNIST-Det (respectively, EMNIST-Det) correlation is a bit lower than
VOC-BDD but similar. For Faster R-CNN, the correlation VOC-BDD is large with 0.9,
however, both EMNIST-Det-VOC and EMNIST-Det-BDD have correlations of 0.6 and
0.8 which are reasonably high. For all correlations of VOC with BDD, replacing either
one of the datasets with MNIST-Det or EMNIST-Det results in similar correlation. From
this, we conclude that comparing methods in the simplified setting yields a similar amount
of information about the relative performances of AL as the full-complexity setting. The
image-wise comparison for RetinaNet shows the highest correlation of 0.7 when comparing
MNIST-Det, EMNIST-Det and BDD respectively. VOC has the highest correlation with
BDD of 0.6, but the correlation with EMNIST-Det is similar with 0.5. No conclusions
can be drawn between the rankings of MNIST-Det and VOC due to the low correlation
of 0.1. In the instance-wise comparison, MNIST-Det has very high correlations of 0.9
with EMNIST-Det and BDD, and the comparability of the rankings of EMNIST-Det and
BDD is also given by a correlation of 0.7. However, it is again noticeable that VOC is
hardly comparable with any other dataset. This could be attributed to some dataset
characteristics. On one hand, we observed a significant number of missing labels when
looking at the VOC data (see fig. 5.9). On the other hand, the instance sizes of BDD and
EMNIST-Det/MNIST-Det seem to be rather comparable as opposed to the instance sizes
in VOC.

143

5 Rapid Prototyping of Active Learning for Object Detection

Figure 5.9: Annotation examples showing all labeled bounding boxes on each image (VOC [38] test
dataset).

5.4.4 ⋔ Image-Aggregation Methods

Figure 5.10 shows test mAP50 for different image aggregations, namely sum, average and
maximum, for the RetinaNet on EMNIST-Det. The left panels show mAP50 scores as
a function of the number of queried images while the right panels show mAP50 scores
as a function of the number of queried instances. For all four uncertainty baselines, the
sum dominates the maximum and the maximum dominates the average in the image-
wise evaluation. Nevertheless, the average remains consistently better than Random,
except for Mutual Information, where both curves are almost on par. A clearly different
course is obtained when considering the instance-wise evaluation. For the same number
of images queried, the sum prefers images with many boxes, whereas the average queries
images with even fewer boxes than the Random baseline. In terms of performance, the
average outperforms the sum and maximum, which are tied, and the Random baseline
for Entropy and Probability Margin. For Mutual Information, the average and sum are
best, whereas for MC Dropout all curves are hardly distinguishable from each other.
Comparable behaviors could also be observed on the other architectures and datasets.

Investigations of the kind presented here under normal conditions (using a full-scale stan-
dard object detector and a benchmark dataset) would require weeks of compute time
and yield valuable information on sensitive parameters for querying. Using our sandbox
environment makes extensive ablation studies of hyperparameters possible within a few
days.

144

5.4 Experiments

200 400 600 800 1000

images

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

Entropy (sum)

Entropy (avg)

Entropy (max)

500 1000 1500 2000 2500 3000 3500 4000 4500

boxes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

Entropy (sum)

Entropy (avg)

Entropy (max)

200 400 600 800 1000

images

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

Prob. Margin (sum)

Prob. Margin (avg)

Prob. Margin (max)

500 1000 1500 2000 2500 3000 3500 4000 4500

boxes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

Prob. Margin (sum)

Prob. Margin (avg)

Prob. Margin (max)

200 400 600 800 1000

images

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

MC Dropout (sum)

MC Dropout (avg)

MC Dropout (max)

500 1000 1500 2000 2500 3000 3500 4000 4500

boxes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

MC Dropout (sum)

MC Dropout (avg)

MC Dropout (max)

200 400 600 800 1000

images

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

Mutual Inf. (sum)

Mutual Inf. (avg)

Mutual Inf. (max)

500 1000 1500 2000 2500 3000 3500 4000 4500

boxes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

m
A
P

5
0

100%

85%

90%

95%

Random

Mutual Inf. (sum)

Mutual Inf. (avg)

Mutual Inf. (max)

Figure 5.10: Ablation study on the aggregation method for RetinaNet on the EMNIST-Det dataset.

145

5 Rapid Prototyping of Active Learning for Object Detection

EM
NI
ST

-D
et

Pa
sca

l V
OC

BD
D1

00k

1

10

ti
m
e
in

h
o
u
rs

YOLOv3

RetinaNet

Faster R-CNN

0
.6
2

0
.3
6

0.
8
2

8
.9
1

3.
1
6 4.
1
5 1
1.
4
3

1
1
.4
8 1
7.
87

Figure 5.11: Utilized time for one AL step (training until convergence + evaluating the query) for
investigated settings in hours.

5.4.5 Computational Runtime

AL for advanced image perception tasks such as OD tends to be highly time intensive,
compute-heavy and energy consuming. This is due to the fact that at each AL step the
model should be guaranteed to fit to convergence and there are multiple steps of (ideally)
several random seeds to be executed. Figure 5.11 shows the time per AL step used in our
setting when run on a Nvidia Tesla V100-SXM2-16GB GPU with a batch size of four.
Note that the time-axis is scaled logarithmically, so the experiments on EMNIST-Det are
always faster by at least half an order of magnitude. The training of YOLOv3 on VOC
does not start from MS COCO-pretrained weights (like YOLOv3+BDD) since the two
datasets VOC and MS COCO are highly similar and VOC consists of subclasses of the
MS COCO dataset. In this case, we opt for ImageNet-pretrained [157] backbone weights
just like for the other detectors. We overall save time up to a factor of around 14 for
VOC and around 32 for the BDD dataset. Translated to AL investigations, this means
that the effects of new queries can be evaluated within half a day on a single Nvidia Tesla
V100-SXM2-16GB.

5.5 Conclusion: Rapid Prototyping of Active Learning for
Object Detection

In this chapter, we investigated the possibility of simplifying the active learning setting
in deep object detection in order to accelerate development and evaluation time. We
found that active learning curves do not trivially generalize from one (dataset, detector,
evaluation metric)-constellation to another and that significant qualitative differences can
be observed. Even though this prohibits the prediction of final method rankings we observe
that the rank correlations are primarily positive and stay high throughout the active
learning experiment. In our evaluation, we also included a more direct measurement of
annotation effort in counting the number of queried instances in addition to the number

146

5.5 Conclusion

of queried images. Meanwhile, we can save more than an order of magnitude in total
compute time due to the down-scaling of the detection architecture and simplifying the
dataset complexity. Our environment allows for consistent benchmarking of active learning
methods in a unified object detection framework, thereby improving transparency.

147

6
Label Error Identification For Object
Detection Datasets

In this chapter we present a method to automatically detect annotation errors in object
detection datasets by regarding instance-wise loss values. The presented contents are in
large parts taken word-for-word from [162].

6.1 Introduction: Noisy Labels and the Detection of Label
Errors

Nowadays, the predominant paradigm in computer vision is to learn models from data.
The performance of the model largely depends on the amount of data and its quality, i.e.,
the diversity of input images and label accuracy [40,71,75,79,87]. DNNs are particularly
data hungry [173]. In this chapter, we focus on the case of object detection where multiple
objects per scene belonging to a fixed set of classes are annotated via bounding boxes [38,
146].

In many industrial and scientific applications, the labeling process consists of an iterative
cycle of data acquisition, labeling, quality assessment, and model training. Labeling data
is costly, time-consuming and error-prone, e.g., due to inconsistencies caused by multiple
human annotators or a change in label policy over time. Therefore, at least a partial
automation of the label process is desirable. One research direction that aims at this goal
is automated label error detection [35, 130, 154]. The extent to which noisy labels affect
the model performance is studied by [10,191]. Wu et al. [191] observes that the model is
able to tolerate a certain amount of missing annotations in training data without losing
too much performance on Pascal VOC and Open Images V3 test sets. In contrast, Büttner
et al. [10] show that inaccurate labels in terms of annotations size in training data yields
to significant decrease of test performance for calculus detection on bitewing radiographs.
Other methods model label uncertainty [121, 147] or improve robustness with respect to
noisy labels [13,44,97,214].

149

6 Label Error Identification For Object Detection Datasets

Up to now, automated detection of label errors has received less attention. There exist
some works on image classification datasets [130,131,175], one work on semantic segmen-
tation datasets [154] and some works for object detection [67,83]. Label errors may affect
generalization performance, which makes their detection desirable [131]. Furthermore,
there is economical interest in improving and accelerating the review process by partial
automation.

Here, we study the task of label error detection in object detection datasets by (a) intro-
ducing a benchmark and (b) developing a detection method and compare it against four
baselines. We introduce a benchmark by simulating label errors on the BDD100k [209]
and EMNIST-Det [146] dataset. The latter is a semisynthetic dataset consisting of EM-
NIST letters [26] pasted into MS COCO [102] images of which we expect to possess highly
accurate labels. The types of label errors that we consider are missing labels (drops),
correct localization but wrong classification (flips), correct classification but inaccurate
localization (shifts), and labels that actually represent background (spawns). We address
the detection of these errors by a novel method based on monitoring instance-wise object
detection loss. We study the effectiveness of our method in comparison to four base-
lines. Then, we demonstrate for commonly used object detection test datasets, such as
BDD100k, MS COCO, Pascal VOC [38] and KITTI [46], and also for a proprietary dataset
on car part detection by the company ControlExpert. Our method detects real label errors
by reviewing moderate sample sizes of 200 images per dataset. Our contributions can be
summarized as follows:

• We introduce a novel method based on the instance-wise loss for detecting label
errors in object detection.

• We introduce a benchmark for identifying four types of label errors on BDD100k
and EMNIST-Det.

• We apply our method to detect label errors in commonly used and proprietary
object detection datasets and manually evaluate the error detection performance for
moderate sample sizes.

To contribute to future development of label error detection methods and potentially
cleaning up object detection datasets, we provide an implementation of our benchmark,
method and baselines as well as label files that include simulated label errors and model
checkpoints that allow the reproduction of our results47.

6.2 Related Work: Identification of Label Errors in
Classification, Object Detection and Semantic
Segmentation

The influence of noisy labels in training as well as in the test data is an active and current
research topic. The labels for commonly used image classification datasets are noisy [131]

47https://github.com/schubertm/identifying_label_errors_in_od

150

https://github.com/schubertm/identifying_label_errors_in_od

6.2 Related Work

(a) Pascal VOC 2007 Error

(b) Label Drop (c) Label Flip

(d) Label Spawn (e) Label Shift

Figure 6.1: (a) Example image from the Pascal VOC 2007 test dataset with two labeled boats
marked by the blue boxes and multiple unlabeled boats. (b) – (e) Examples of the different types
of simulated label errors. The images are from the EMNIST-Det test dataset [146].

151

6 Label Error Identification For Object Detection Datasets

and this also applies to object detection. Figure 6.1 (a) shows an image from the Pascal
VOC 2007 test dataset containing just two labeled boats, but clearly more can be seen.

For the task of image classification, some learning methods exist that are more robust to
label noise [49, 56, 63, 77, 130, 143, 186, 195, 213]. Also the task of label error detection has
been tackled before [21,131] and theoretically underpinned [130]. [21] filter whole samples
with noisy labels, but individual label errors are not detected. Northcutt et al. present
label errors in image classification datasets and study to which extent they affect bench-
mark results [131] followed by the introduction of the task of label error detection [130].
The latter introduces a confident learning approach, assuming that the label errors are
image-independent. Then, the joint distribution between the noisy and the true labels
with class-agnostic label uncertainties is estimated and utilized to find label errors. This
method allows finding label errors on commonly used image classification (i.e., MNIST or
ImageNet) and sentiment classification datasets, resulting in improved model performance
by re-training on cleaned training data. This line of work has been recently extended to
the task of multi-label classification [175], where a single object is shown per image but
may carry multiple labels.

For object detection, the influence of noisy training labels on the model performance has
been studied [191,194] with the resulting observation that the model is reasonably robust
when dropping labels. To counter label errors in object detection, methods that model
label uncertainty [121,147] or more robust object detectors have been developed [10,44,78,
97,194,214]. Büttner et al. [10] simulate label errors and introduce a co-teaching approach
for more robust training with noisy training data. For the task of label error detection,
Koksal et al. [83] simulate different types of label errors in video sequences. Predictions
and labels of consecutive frames are compared and then manually reviewed to eliminate
erroneous annotations. Hu et al. [67] introduce a probability differential method (PD) to
identify and exclude annotations with wrong class labels during training.

For semantic segmentation, a benchmark is introduced by Rottmann and Reese [154] to
detect missing labels. For this purpose, uncertainty estimates are used to predict for each
false positive connected component whether a label error is present or not. Detection is
performed by considering the discrepancy of the given, potentially noisy, label and the
corresponding uncertainty estimate.

This chapter introduces the first benchmark with four types of label errors for label error
detection methods on object detection datasets as well as a label error detection method
(that detects all four types of label errors) and a number of baselines. For our benchmark,
we randomly simulate four types of label errors and detect them simultaneously with a
new and four baseline methods, including PD. In our method, the discrepancy between
the prediction or expectation of the network and the actual labels is used to find label
errors. This discrepancy is determined by the classification and regression loss from the
first and second stage of the detector. This allows to find not only simulated but also real
label errors on commonly used object detection test datasets.

152

6.3 Methods

Add GT as Proposals

Label Error
Proposals

Input
Image

RPN ROIs PredictionROI Head

GT

1

Figure 6.2: Visualization of our instance-wise loss method for detecting label errors. The red label
indicates a spawn, the blue one a drop and the yellow one a correct label.

6.3 Methods: Loss-based Label Error Detection,
Benchmarking and Evaluation

In this section we describe our label error benchmark as well as the setup and evaluation
for real label errors on commonly used object detection test datasets and a proprietary
dataset. We describe which datasets are used, which types of label errors are considered
and the way we simulate label errors inspired by observations that we made in commonly
used datasets and by related work. We then introduce our detection method as well as
four additional baseline methods. This is complemented with evaluation metrics used to
compare the methods with each other on our label error benchmark and the evaluation
procedure for commonly used test datasets where we manually review the findings of our
method for moderate sample sizes.

6.3.1 Benchmarking Label Error Detection

Datasets. For our benchmark we use the semisynthetic EMNIST-Det dataset and the
BDD100k dataset, in the following referred to as BDD. EMNIST-Det consists of 20,000
training and 2,000 test images. To have the best possible labels for BDD, we filter the
training and validation split, such that we only use daytime images with clear weather
conditions. This results in 12,454 training images and the validation split is split into
equally-sized test and validation sets, each consisting of 882 images.

Simulating Label Errors. We consider four different types of label errors: missing
labels (drops), correct localization but wrong classification (flips), correct classification but
inaccurate localization (shifts), and labels that actually represent background (spawns).
Any dataset

D := {(x1, y1), . . . , (x|D|, y|D|)} (6.1)

where yk = {b1k, . . . ,b
N(k)
k } for k ∈ [|D|] are all N(k) bounding box annotations

bjk = (xjk, y
j
k,w

j
k,h

j
k, κ

j
k), j ∈ [N(k)] (6.2)

153

6 Label Error Identification For Object Detection Datasets

is equipped with a set of G :=
∑

k∈[|D|]N(k) labels, i.e.,

B := {bjk : k ∈ [|D|], j ∈ [N(k)]}. (6.3)

We reorder all boxes such that we identify B = {bi : i ∈ [G]} and denote the set of
bounding box indices by IB := [G]. We now describe all types of label errors applied to
B, and we make the assumption that a single label is only perturbed by one type of label
error instead of multiple types. We choose a parameter γ ∈ [0, 1] representing the relative
frequency of label errors.

For dropping labels, we randomly choose a subset Idrop of IB with cardinality |Idrop| =
⌊γ4 · G⌋. We drop all labels Bdrop = {bi : i ∈ Idrop} and denote I\drop = I \ Idrop.
Analogously, B\drop = B \ Bdrop.

For flipping class labels, we randomly choose a subset Iflip of I\drop with cardinality

|Iflip| = ⌊γ4 · G⌋ and copy B̃flip = Bflip = {bi : i ∈ Iflip}. Then, we randomly flip the

class of every label in B̃flip to a different label. We denote I\flip = I\drop \ Iflip and

B\flip = (B\drop \ Bflip) ∪ B̃flip.

To insert shifts, we change the localization of labels. We randomly choose a subset Ishift of
I\flip with cardinality |Ishift| = ⌊γ4 ·G⌋ and copy B̃sh = Bsh = {bi : i ∈ Ishift}. For the shift
of a box b̃i ∈ B̃sh, the new values ỹ, h̃ are determined analogously to x̃ ∼ N (x, 0.15 · w)
and w̃ ∼ N (w, 0.15 · w) drawn from a normal distribution with itself as the expected
value and 0.15 · w as the standard deviation. To avoid the shift being too small or too
large, the parameters are repeatedly chosen until the intersection over union (IoU) of the
original label bi ∈ Bsh and b̃i ∈ B̃sh is in the interval of [0.4, 0.7], ∀i ∈ Ishift. We denote
I\shift = I\flip \ Ishift and B\shift = (B\flip \ Bshift) ∪ B̃shift.

For spawning labels, we randomly choose a subset Ispawn of I\shift with cardinality

|Ispawn| = ⌊γ4 · G⌋ and copy B̃spawn = Bspawn = {bi : i ∈ Ispawn}. Then, we assign

every label b̃i ∈ B̃spawn randomly to another image. Since in our experiments all images
in a dataset have the same resolution, this ensures that objects do not appear in unusual
positions like outside of the image. For instance, a car in BDD is more likely to be found
on the bottom part of the image rather than in the sky. We denote the set of noisy labels
as B̃ = B\shift ∪ B̃spawn.

One example per label error type is shown in fig. 6.1 (b)–(e). Note that the number of
labels G is unchanged as the number of drops and spawns is the same.

6.3.2 Instance-wise Loss Values for Label Error Detection

Our method to detect the introduced label error types in section 6.3.1 is based on an
instance-wise loss for two-stage object detectors. The NMS is no longer based on the
detection score or the entropy, but on the box-wise loss of the respective stage. Every
prediction in f̂RPN(x|θ) is assigned with a region proposal loss LRPN , which is the sum
of a classification (binary cross-entropy) and regression (smooth-L1) loss for the labels
and the prediction itself. The computation of the loss is identical to the one in training.

154

6.3 Methods

Refer to section 2.3.2.1 for the loss definitions. Since not all labels are associated with a
proposal after the first stage, i.e., the model may predict only background near a label,
we add the labels themselves to the set of label error proposals. After box refinement and
classification, every box f̂RoI is assigned with a region of interest loss (LROI), which is the
sum of a classification (cross entropy) and regression (smooth-L1) loss for the labels and
the prediction itself. Then LRPN and LROI are summed up to obtain an instance-wise
loss score. A sketch of our method is shown in fig. 6.2. We can find the dropped blue
label for “N” since the predictions near the object should have a high detection score,
resulting in a high first stage classification loss. The spawned red label is assigned with
a high classification loss from the first and second stage, since the assigned predictions
should have a score close to zero in the first stage and an almost uniform class distribution
in the second stage. Whether the yellow label is a flip is irrelevant for the first stage,
since the loss should be small either way. If the box is classified correctly according to the
associated label, there is a large classification loss for a flip and a small one otherwise.
The shifts are addressed by the first and second stage regression loss.

6.3.2.1 Theoretical Justification and Intuition

The intuition behind our method is that a sufficiently well-specified and fitted model has
small expected loss on data sampled during training. Sufficient data sampling and mod-
erate label error rates lead to label errors giving rise to outlier losses which are identified
as proposals. We show that our method separates correct from incorrect labels for a
classification model f̂ trained with the cross entropy loss LCE.

Proposition 1 (Statistical Separation of the Cross Entropy Loss). Let training and testing
labels be given under a stochastic flip in µ|X=x with probability pF. A correct label y = f(x)
is given by a true labeling function f : X → Y and has probability µ|X=x(f(x)) = 1− pF.
Incorrect labels ỹ ̸= f(x) are drawn with probability µ|X=x(ỹ) = pF/(C − 1). Let the label

distribution µ|X=(·) be PAC-learnable by the hypothesis space of an ERM learner f̂(·|x)
with respect to DKL (to precision ε and confidence 1−δ) and let κ > 0. If pF <

C−1
C (1−2κ),

we obtain strict separation of the loss function

LCE(f̂(x|θ)∥f(x)) < − log(1− pF − κ) < − log(κ+ pF
C−1) < LCE(f̂(x|θ)∥ỹ) (6.4)

for any incorrect label ỹ ̸= f(x) with probability 1 − δ over the chosen training data and
with probability 1− 2ε

κ2
over the choice of x.

We include a proof of this statement in the following paragraph. The PAC-learnability
assumption (see [166] and section 2.1.2) yields rigorous bounds for the deviation of the
model f̂ from the label distribution p which contains label flips. Conditioned to the
events of drawing correct versus drawing incorrect labels, these bounds carry over to the
cross entropy. These bounds separate the two events with certain probability given in the
statement above.

⋔ Setting and Proof of Proposition 1. Our goal is to show that the flip of a test
label is statistically captured by the cross entropy loss evaluated at a DNN’s48 prediction

48Technically, it is not required that the model is a DNN as long as PAC-learnability is fulfilled.

155

6 Label Error Identification For Object Detection Datasets

0

1

co
n
fi
d
en

ce

p̂(y|x) for wrong labels

p̂(y|x) for correct labels1− pF

1− pF − κ

pF
C−1

pF
C−1 + κ

Figure 6.3: Illustration of the probabilistic statement about predicted confidences conditioned to
correct and incorrect given labels. PAC learning leads to concentration of the confidences around
1− pF and pF

C−1 , respectively. The separation on the confidences carries over to the cross entropy
loss.

on a test sample x and the corresponding label y.

The rough intuition for this statement is that a probably approximate correct learner
(PAC-learner, recall section 2.1.2 or [166]) f̂ has probabilistic bounds for having predictive
distribution close to the data-generating distribution µZ . Therefore, sufficient data sam-
pling and empirical loss minimization will lead to statistical concentration of confidences
f̂ around µ|X=(·). If µZ does not suffer from too strong label noise, we obtain separation
between confidences on incorrect and confidences on correct labels. This separation then
carries over to the negative log-likelihood (i.e., cross entropy) loss by monotony.

We assume data points (x, y) = z ∼ µZ following some noisy data generating distribution
µZ , where x ∼ µX follows a marginal distribution µX . In practice, training and test
data originate from the same data pool, and we do not see any reason to assume that they
follow different labeling procedures. However, it is sufficient to require that for testing data
(x, y), x follows the same marginal distribution x ∼ µX . Our proof builds on the existence
of a true labeling function f : x 7→ y and the assumption that the data distribution µZ
introduces stochastic flips of labels that occur with a fixed uniform rate pF ∈ [0, 1). This
flip probability pF uniformly distributed over all C−1 incorrect classes which are not f(x)
leads to the following constraints49 on µ|X=(·) when conditioned to x:

µ|X=x(f(x)) := 1− pF, µ|X=x(c) := pF/(C − 1) ∀c ̸= f(x). (6.5)

49These assumptions seem relatively strict in that all classes except f(x) are uniformly distributed. This
assumption is merely a simplification which can easily be relaxed and modified. Here, we regard eq. (6.5)
as a special case.

156

6.3 Methods

We assume that a statistical model f̂ learns classification on samples of the (noisy) data
generating distribution µZ . In the present treatment, we assume PAC-learning with re-
spect to the Kullback-Leibler divergence (recall eq. (2.6)). In the following, our goal is to
show probabilistic statements about the cross entropy loss LCE on test data pairs (x, y).
We show that the loss is above a certain threshold if an incorrect label is given and below
some threshold in case of a correct, non-flipped label. Non-overlapping intervals indicate
that the statistical separation between losses given correct and false labels seen in our
experiments can be explained theoretically.

We assume PAC-learnability and ERMminimization for the proof. This assumption can be
justified via the error decomposition of empirical risk minimization for the KL divergence
over the hypothesis space H with training data {(x1, y1), . . . , (xn, yn)}:

D(µ|X=(·)∥f̂) := Ex∼µX [DKL(µ|X=x∥f̂(x|θ))]

≤ inf
ν∈H

D(µ|X=(·)∥ν|X=(·)) +

 1

n

n∑
j=1

LCE(f̂(xj)∥yj)− inf
ν|X=(·)∈H

LCE(ν|X=xj∥yj)

+ 2 · sup

ν|X=(·)∈H

∣∣∣∣∣∣D(µ|X=(·)∥ν|X=(·))−
1

n

n∑
j=1

LCE(ν|X=xj∥yj)−H(µ|X=xj)

∣∣∣∣∣∣ < ε

(6.6)

where H(µ|X=x) = −∑C
c=1 µ|X=x({c}) · log(µ|X=x({c})) is the entropy of the data gen-

erating distribution50. The first term is the model mis-specification error given by H .
In practice, we assume an expressive DNN with a large amount of capacity (appealing to
universal approximation) which allows for this error to be negligible. In particular, in this
case, no restrictions need to be made in the choice of H . The second term measures the
error of the learning algorithm with respect to an empirical risk minimizer h. Similarly
to the term, an expressive DNN trained to convergence leads to small contributions by
this term. Lastly, the third term is the sampling error made as compared to the loss
D(µ|X=(·)∥ν|X=(·)) in the true distribution. The third term can be controlled by appli-
cation of concentration inequalities and chaining under certain assumptions (see [180])
which is why the sum of the three terms can be made smaller than some fixed ε > 0 given
sufficient amount of data.

Proof of Proposition 1. Let p(·|x) = µ|X=x and p̂(·|x) = f̂(x). We aim at bounding

max
c=1,...,C

|p(c|x)− p̂(c|x)| (6.7)

by the total variation distance. PAC-learnability asserts that given enough data, the p̂-
distributions illustrated in fig. 6.3 are concentrated around 1− pF for true labels and pF

C−1
for incorrect labels. In particular, PAC-learnability implies

Ex∼µX [DKL(p(·|x)∥p̂(·|x))] < ε (6.8)

50Together with the cross entropy LCE, the entropy H yields an unbiased risk function for DKL.

157

6 Label Error Identification For Object Detection Datasets

with probability 1− δ over the choice of training data. Let κ > 0. From this PAC result,
we derive bounds for the probability of maxc=1,...,C |p(c|x) − p̂(c|x)| exceeding κ via the
total variation distance. We have

µX(∥p(·|x)− p̂(·|x)∥TV ≥ κ) ≤µX(
√
2DKL(p(·|x)∥p̂(·|x)) ≥ κ)

≤µX

(
DKL(p(·|x)∥p̂(·|x)) ≥

κ2

2

)
≤ 2

κ2
Ex∼µX [DKL(p(·|x)∥p̂(·|x))] <

2ε

κ2

(6.9)

with probability 1 − δ over the choice of training data. Here, the first inequality is the
application of Pinsker’s inequality [180, Ex. 49.] and the third due to the Markov inequality.

Assume that we are given a correct label y for x, then with probability 1− δ over training
data and with probability 1− 2ε

κ2
over sampling x, we have that

|p(y|x)− p̂(y|x)| = |(1− pF)− p̂(y|x)| ≤ max
y

|p(y|x)− p̂(y|x)| (6.10)

≤∥p(·|x)− p̂(·|x)∥TV < κ. (6.11)

This implies p̂(y|x) > 1 − pF − κ and therefore, by monotony of the logarithm function,
LCE(p̂(y|x)∥y) < − log(1 − pF − κ). Similarly, if y is any incorrect label, we have the
probabilistic statement

|p(y|x)− p̂(y|x)| =
∣∣∣∣ pF
C − 1

− p̂(y|x)
∣∣∣∣ ≤ max

y∈[C]
|p(y|x)− p̂(y|x)| < κ, (6.12)

i.e., p̂(y|x) < κ + pF
C−1 and we have LCE(p̂(x)∥y) > − log

(
κ+ pF

C−1

)
. Finally, we obtain

separability of losses with true versus false labels in probability if

1− pF − κ > κ+
pF

C − 1
⇐⇒ pF <

C − 1

C
(1− 2κ). (6.13)

Coming back to the assumptions on the label distribution in eq. (6.5), we note that the
only thing required is that a separation regime as in eq. (6.13) exists.

6.3.3 Evaluation Metrics

Ignoring that natural label errors exist in EMNIST-Det and BDD, we benchmark the five
methods introduced in above by means of our label error simulation. To this end, we take
the label error proposals of the respective method and the set of original labels B and
decide for every proposal whether it is a label error, which corresponds to a true positive
(TPl), or no label error, which corresponds to a false positive (FPl). Label errors that
are not detected are called false negatives (FNl). A proposal of a label error detector is a
TPl if the IoU between the proposal under consideration and a noisy label on the image
is greater or equal to a threshold 1 ≥ α > 0. Here, the noisy label categorizes what type
of label error is detected by the proposal. If the IoU is less than α, the proposal is a
FPl. After determining this for each proposal from the dataset, AuROC and F1 values are

158

6.4 Experiments

Table 6.1: Validation of object detection performance on our datasets. (∗) indicates learning with
simulated label errors (γ = 0.2).

Dataset Backbone mAP50 mAP
(∗)
50

EMNIST-Det Swin-T 98.2 98.0
EMNIST-Det ResNeSt101 96.4 95.2

BDD Swin-T 52.1 50.3
BDD ResNeSt101 56.8 52.9

COCO Swin-T 54.1 —
KITTI Swin-T 38.6 —
VOC Swin-T 83.3 —
CE Swin-T 70.0 —

calculated according to the decision between TPl and FPl. F1 values are determined with
thresholding on the score of the respective method (loss/detection score/entropy/PD). We
always choose the optimal threshold, i.e., the threshold at which the F1 value is maximized
(max F1). Note, since the naive baseline considers images and thus label error proposals
in random order, the associated AuROC values are always 0.5.

For commonly used datasets we proceed as follows. We consider for each dataset 200
proposals of our method with the highest loss and manually flag them as TPl or FPl,
based on the label policy corresponding to the given dataset. Note that we can still
compute precision values, but we are not able to determine AuROC or max F1 values as
the number of total label errors is unknown. Since several label errors can be detected
with one proposal, precision describes the ratio of proposals with at least one label error
and the total number of proposals considered, i.e. 200.

6.4 Experiments: Simulated and Real Label Errors

In this section we study label error detection performance on our label error benchmark as
well as for real label errors in BDD, VOC, MS COCO (COCO), KITTI and the proprietary
dataset (CE). The benchmark results are presented in terms of AuROC and max F1 values
for the joint evaluation of all label error types, i.e., when all label error types are present
simultaneously, in section 6.4.2. For the latter, we show how many real label errors we
can detect among the top-200 proposals for each real-world dataset in section 6.4.3.

6.4.1 ⋔ Implementation Details

We implemented our benchmark and methods in the open source MMDetection tool-
box [18]. Our models are based on a Swin-T transformer [108] and a ResNeSt101 [215]
backbone, both with a CascadeRoIHead [12] as the object detection head, with a total
number of trainable parameters of approx. 72M and 95M. As hyperparameters for the
label error benchmark we choose relative frequency of label errors γ = 0.2, the value for
score thresholding after the first stage τRPN

s = 0.25, the value for score thresholding af-
ter the second stage τRoI

s = 0 and the IoU-value α = 0.3 from which a proposal for a

159

6 Label Error Identification For Object Detection Datasets

Table 6.2: Label error detection experiments with two different backbones; higher values are better.
Bold numbers indicate the highest AuROC or max F1 per experiment and underlined numbers are
the second highest.

AuROC max F1

Dataset Backbone Train Labels Loss Detection Score Entropy PD Loss Detection Score Entropy PD

EMNIST-Det Swin-T Original 99.46 73.24 71.49 59.67 95.54 64.74 49.58 62.32
EMNIST-Det Swin-T Noisy 99.40 82.44 77.32 62.26 93.43 62.37 45.25 62.24
EMNIST-Det ResNeSt101 Original 99.84 88.45 86.70 60.59 94.31 62.56 38.81 60.82
EMNIST-Det ResNeSt101 Noisy 99.87 93.11 86.40 61.82 90.74 59.50 34.53 59.01

BDD Swin-T Original 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66
BDD Swin-T Noisy 92.16 89.21 69.42 57.58 35.97 31.68 18.33 34.72
BDD ResNeSt101 Original 95.79 87.47 83.58 60.31 54.62 31.99 20.37 47.16
BDD ResNeSt101 Noisy 92.97 90.76 78.18 56.79 27.85 25.65 18.10 27.74

Table 6.3: Training hyperparameters for the Swin-T and the ResNeSt101 ((∗)) backbone.

Dataset Batch Size Image Resolution # Training Iterations Learning Rate

EMNIST-Det 24 300× 300 24,000/48,000(∗) 0.02

BDD 4 1333× 800 150,000/250,000(∗) 0.01

KITTI 6 1000× 600 70,000 0.01
COCO 12 1000× 600 250,000 0.02
VOC 6 1000× 600 70,000 0.02
CE 4 1000× 600 200,000 0.01

label error is considered a TPl. We show performance results for the respective models
and for each dataset in table 6.1. The upper half shows results on original (mAP50) and
noisy training data (mAP∗

50), for which γ = 0.2 also holds. The bottom half of the table
presents performance of the models that we use for predicting label errors on real datasets.
This happens in each case based on a model trained on unmodified, i.e., original labels
and the Swin-T backbone. The performance results obtained have all been evaluated on
unmodified test datasets.

Datasets. For the detection of real label errors we use the same split for BDD as in-
troduced in section 6.3.1 as well as VOC, COCO, KITTI and CE. The training data
for VOC consists of “2007 train” + “2012 trainval” and we predict label errors on the
“2007 test”-split. For COCO train split is used for training and label errors are pre-
dicted on the validation split from 2017. For KITTI we use a scene-wise split, resulting
in 5 scenes (Sc = {2, 8, 10, 13, 17}) and 1,402 images for evaluation as well as 16 scenes
({0, 1, . . . , 20} \ Sc) and 6,407 images for training. The subset of CE data used includes
20,100 images for training and 1,070 images for evaluation. In the images, a car is in
focus and the task is to do a car part detection. The labels consist of 29 different classes
and divide the car into different parts, i.e., the four wheels, doors, number plate, mirrors,
bumper, etc. Compared to the static academic datasets, the CE dataset is dynamic and
thus of heterogeneous quality. An exemplary test image including labels for the propri-
etary dataset (CE) is shown in fig. 6.4. The labels divide the car into parts, such as the
two wheels “WheelFrontRight” and “WheelRearRight” as well as doors, roof, etc. The
example also includes a drop with the missing mirror “MirrorRight”.

160

6.4 Experiments

Figure 6.4: Example image from the CE test data with labels and a missing “MirrorRight”.

Dataset-dependent Parameters for Training. The dataset-dependent hyperparam-
eters for training are stated in table 6.3. The original images from EMNIST-Det have an
image resolution of 320×320 pixels, i.e., we do not artificially scale them to a higher image
resolution. The BDD images also contain many small labels while having a high original
resolution (1280× 720), which is a challenging setup. To get the best possible label error
detection, we keep this high resolution and rescale the images to 1333×800 pixels. KITTI,
COCO, VOC and CE are each rescaled to an image resolution of 1000× 600 pixels. The
batch size for all datasets is in the range of 4-24, the initial learning rate is either 0.02
or 0.01 depending on the dataset, and the number of training iterations is in the range
of 24,000 to 250,000. All numbers apply to the Swin-T backbone except the numbers
(∗) for the training iterations of EMNIST-Det and BDD, which apply to the ResNeSt101
backbone. All other hyperparameters are identical for the different architectures. The
files for the configurations used in training, also containing the precise values of the above
hyperparameters, are published with the code on GitHub.

6.4.1.1 Baseline Methods

The four baselines that we compare our instance-wise loss method with are based on

• inspecting the labels without the use of deep learning,

• the box-wise detection score,

• the classification entropy of the two-stage object detectors,

• the probability differential from [67].

Naive Baseline. We introduce a naive baseline to show the significant improvement of
deep learning in label error detection for object detection over manual label review. We
assume that all label errors can be smoothly found by taking a single look at all existing
noisy labels and the (actually unknown) drops, i.e., by performing ⌊(1+ γ

4) ·G⌋ operations.
This simplified assumption is of course unrealistic, however the corresponding results can
serve as a lower bound for the effort of manual label review.

161

6 Label Error Identification For Object Detection Datasets

Detection Score Baseline. The detection score baseline works as follows: For a given
image from the set of all images of the dataset (x, y) ∈ D, a neural network predicts
a fixed number N̂out of bounding boxes for the first stage f̂RPN(x|θ) (cf. section 2.3.2).
Then, we add the boxes y of the labels as proposals for the second stage to ensure that
at least one prediction exists for each label, which is particularly important for the de-
tection of spawns. For this purpose, each ground truth label from B is assigned with a
detection score of ŝRPN = 1 and treated like an RPN prediction. After adding the labels
to f̂RPN(x|θ), only those NRPN

x boxes that remain after class-independent NMS and score
thresholding on ŝRPN with τRPN

s ≥ 0, are fed into the RoI head. After box refinement
and classification as well as NMS on the detection score ŝRoI := maxc∈[C] π̂

RoI
c , NRoI

x la-

bel error proposals remain. The remaining NRoI
x label error proposals are defined by the

localization (x̂i, ŷi, ŵi, ĥi), the detection score ŝRoI
i and the class probabilities π̂i1, . . . , π̂

i
C .

The predicted class is given by ĉi := argmaxk=1,...,C π̂
i
k. Score thresholding is omitted

here, or the threshold τs used for this is equal to 0, since τs > 10−4 would suppress most
of the label error proposals that detect spawns. The detection score of these proposals is
mostly very close to zero unless a second true label is nearby. After inferring each image
(x, y) ∈ D as described above, we get label error proposals for the whole dataset.

Entropy Baseline. The entropy baseline follows the same procedure, only the NMS in
the first and second stage are based on the respective box-wise entropy rather than the
detection score.

Probability Differential Baseline. For the probability differential (PD) baseline from
[67], we do not add the boxes of the labels as proposals. Furthermore, score thresholding
and NMS is not applied, such that every proposal box f̂nij remains in the final proposal
set. After assigning every label with sufficiently overlapping predictions, the probability
differential for every label b ∈ B with class κ and the assigned predictions is defined as:

PD(b) =
1

2
∣∣∣Asgn−1

f̂ ,{b}
({b})

∣∣∣
∑

(i,j,n)∈Asgn−1

f̂ ,{b}
({b})

(
1 + max

k∈[C]\{κ}
((π̂k)

n
ij − (π̂κ)

n
ij)

)
(6.14)

The PD of a label is in [0, 1] and intuitively, the more the probabilities of the predictions
and the class of the label differ (higher PD) the more likely a label error is present. Note
that drops are always overlooked.

6.4.2 Benchmark Results for Simulated Label Errors

Table 6.1 (left) shows that although 20% of the training labels are modified, the perfor-
mance in terms of mAP50 to mAP∗

50 only decreases by a maximum of 1.2 percent points
(pp) for EMNIST-Det and 3.9 pp for BDD. In both cases, the performance decreases more
for the backbone containing more trainable parameters (ResNeSt101). This is consistent
with the results for image classification by Northcutt et al. [131]. Architectures with fewer
trainable parameters seem more suitable for handling label errors in the training data, pos-
sibly due to the network having less capacity to overfit the label errors. Figure 6.5 shows
exemplary plots for AuROC and F1 curves for the Swin-T backbone and BDD. On the
two left plots we show results based on original training data and the two right plots

162

6.4 Experiments

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Loss - AUROC : 0.963

Detection Score - AUROC : 0.768

Entropy - AUROC : 0.717

PD - AUROC : 0.606

0 20000 40000 60000 80000
Number of Label Error Proposals

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
1
-S

co
re

Loss - max F1 : 0.566

Detection Score - max F1 : 0.311

Entropy - max F1 : 0.222

PD - max F1 : 0.527

Number of Label Errors

(a) Original Training Data

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Loss - AUROC : 0.922

Detection Score - AUROC : 0.892

Entropy - AUROC : 0.694

PD - AUROC : 0.576

0 20000 40000 60000 80000
Number of Label Error Proposals

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
1
-S

co
re

Loss - max F1 : 0.360

Detection Score - max F1 : 0.317

Entropy - max F1 : 0.183

PD - max F1 : 0.347

Number of Label Errors

(b) Noisy Training Data

Figure 6.5: (a) Evaluations based on the predictions of a model trained on original training data.
(b) Evaluation based on noisy training data with γ = 0.2. The number of considered label error
proposals depends on threshold τ .

163

6 Label Error Identification For Object Detection Datasets

G
ro
un

dt
ru
th

P
ro
po

sa
l

Figure 6.6: Visualization of detected label errors in real test datasets. The top row of images
depicts the label error proposals and the bottom row the corresponding labels from the dataset.
The image pairs belong from left to right in steps of two to BDD, KITTI, COCO and VOC.

based on noisy training data. The ranking of the methods is not identical everywhere. In
terms of AuROC, loss (our method) is superior, followed by detection score, then entropy
(our baselines) and finally PD. In terms of max F1, PD outperforms the detection score
and the entropy but is worse compared to the loss. Because AuROC considers rates and
(max) F1 considers absolute values and the number of label error proposals varies widely,
the methods behave very differently with respect to AuROC and max F1. However, the
loss method outperforms all other methods on both metrics. Note, that the small step
in the upper right of each of the AuROC plots are the false negatives according to the
label errors (FNl), i.e., the simulated label errors that are not found by the methods. This
number of FNl is vanishingly small in relation to all simulated label errors, except for PD
as the method is not able to detect drops. The generally observed behavior for BDD also
does not change when looking at the results for the ResNeSt101 backbone in table 6.2.
When comparing the results for the different backbones with each other the AuROC for
the loss and PD seems to remain similar, whereas detection score/entropy perform signif-
icantly better with 10.65/11.85 pp for original training data and 1.55/8.76 pp for noisy
training data. The situation is different for the max F1 values. For label error detection,
loss/entropy/PD performs better with the Swin-T backbone for original training data
(1.97/1.84/5.50 pp). In particular, the loss and PD seem to handle the noisy training data
significantly better, resulting in 8.12 pp max F1 difference between Swin-T and ResNeSt
for the loss and 6.98 pp difference for PD. The detection score is 0.85 pp better with the
ResNeSt101 backbone on original training data, but on noisy data the Swin-T outperforms
the ResNeSt101 by 6.03 pp. Also, for EMNIST-Det it holds that the loss performs better
than the detection score and both better than the entropy. In contrast to the results of
BDD, the detection score slightly outperforms PD in all EMNIST-Det experiments also in
terms of max F1. The AuROC for loss appears to be stable across backbone and training
data quality with only a maximum 0.47 pp difference overall. The detection score and
entropy perform better in terms of AuROC with the ResNeSt101 backbone, but worse in
terms of max F1. Comparable to the results for BDD, the detection score performs better
in terms of AuROC based on noisy training data, but the max F1 values become worse.
For PD, the AuROC seems to be rather stable comparing the two backbones, but the
max F1 is better for Swin-T compared to ResNeSt101.

164

6.4 Experiments

Table 6.4: AuROC and max F1 values for loss, detection score (Score), entropy and PD for all
dataset-backbone-training label combinations; higher values are better. Bold numbers indicate the
highest AuROC or max F1 per experiment and underlined numbers are the second highest.

AuROC max F1

Label Error Type Dataset Backbone Train Labels Loss Score Entropy PD Loss Score Entropy PD

Drop

EMNIST-Det Swin-T Original 98.94 99.12 88.16 0.00 94.91 89.63 56.70 0.00
EMNIST-Det Swin-T Noisy 98.85 99.19 88.22 0.00 93.27 90.24 48.97 0.00
EMNIST-Det ResNeSt101 Original 99.66 99.65 78.33 0.00 93.58 87.02 32.82 0.00
EMNIST-Det ResNeSt101 Noisy 99.91 99.94 78.79 0.00 86.42 81.03 19.21 0.00

BDD Swin-T Original 94.92 96.05 51.48 0.00 41.80 48.38 2.37 0.00
BDD Swin-T Noisy 91.72 93.64 52.88 0.00 37.93 46.93 1.45 0.00
BDD ResNeSt101 Original 94.52 93.61 73.14 0.00 45.89 35.67 7.11 0.00
BDD ResNeSt101 Noisy 91.89 91.84 62.25 0.00 26.29 22.62 1.75 0.00

Flip

EMNIST-Det Swin-T Original 99.74 99.78 91.09 99.34 92.89 90.08 59.51 86.79
EMNIST-Det Swin-T Noisy 99.62 99.83 90.79 99.51 89.42 88.70 49.32 87.44
EMNIST-Det ResNeSt101 Original 99.96 99.97 78.95 99.07 90.77 86.70 31.65 82.93
EMNIST-Det ResNeSt101 Noisy 99.89 99.94 78.50 98.83 81.49 80.35 18.98 80.49

BDD Swin-T Original 99.68 98.36 50.63 98.53 74.54 58.79 2.75 73.86
BDD Swin-T Noisy 99.56 98.12 50.06 98.32 60.31 58.91 2.13 71.23
BDD ResNeSt101 Original 99.80 98.16 75.93 97.96 72.81 54.38 7.12 69.95
BDD ResNeSt101 Noisy 99.31 97.24 64.34 97.13 44.94 40.15 2.18 61.75

Shift

EMNIST-Det Swin-T Original 99.80 51.52 93.55 40.71 91.76 11.14 49.41 10.61
EMNIST-Det Swin-T Noisy 99.56 50.26 88.01 50.70 87.86 10.92 40.71 10.88
EMNIST-Det ResNeSt101 Original 99.67 51.28 86.14 45.54 88.65 11.28 30.32 10.56
EMNIST-Det ResNeSt101 Noisy 99.30 53.73 80.52 51.91 85.97 13.99 25.65 10.95

BDD Swin-T Original 65.49 51.76 61.17 50.24 16.78 11.22 14.99 10.55
BDD Swin-T Noisy 57.23 52.57 57.91 52.85 12.73 11.44 12.88 10.94
BDD ResNeSt101 Original 65.84 51.51 63.37 54.19 17.56 11.40 14.76 11.86
BDD ResNeSt101 Noisy 55.92 50.85 56.18 52.54 12.58 10.87 12.17 11.13

Spawn

EMNIST-Det Swin-T Original 99.37 75.62 97.92 97.04 98.87 19.89 65.08 78.97
EMNIST-Det Swin-T Noisy 99.68 50.95 98.48 97.16 97.77 19.26 59.18 79.33
EMNIST-Det ResNeSt101 Original 99.84 57.98 99.40 96.12 98.06 18.96 37.84 74.19
EMNIST-Det ResNeSt101 Noisy 99.93 76.31 99.33 94.89 94.93 15.89 35.39 67.92

BDD Swin-T Original 98.48 66.33 98.07 92.09 74.97 2.23 20.24 50.81
BDD Swin-T Noisy 90.55 78.13 92.98 78.00 17.98 9.21 11.32 10.94
BDD ResNeSt101 Original 95.80 79.79 97.00 87.57 60.38 5.04 13.75 38.71
BDD ResNeSt101 Noisy 90.30 89.19 95.74 76.07 7.39 6.92 11.08 28.55

⋔Results for Individual Simulated Label Error Types. In our experiments, all
label errors occur simultaneously, but the evaluation can also be conditioned on the indi-
vidual label error types. For drops or flips we consider only the false positives according to
ỹ, i.e., all boxes that have a maximum class-wise IoU of less than α(= 0.3) with all noisy
labels of the associated image. Then, we can calculate AuROC and max F1 values on this
subset. We do the same for the shifts, except that we only consider the true positives
according to B̃. For the spawns, we must consider both true positives and false positives
according to B̃, since the predicted class, that overlaps sufficiently with the spawned label,
can be the same as the class of the spawn itself.

The benchmark results for individual simulated label errors are stated in table 6.4. For
drops, the detection score and instance-wise loss perform similarly well, with the AuROC
values differing by at most 1.92 pp and a minimal AuROC of 91.72%. The difference in
the max F1 values is more pronounced, with the loss at EMNIST-Det outperforming the
detection score by 3.03 to 6.56 pp. For BDD, the detection score of Swin-T is superior to
the loss by up to 9 pp, whereas the loss for ResNeSt101 outperforms the detection score

165

6 Label Error Identification For Object Detection Datasets

Table 6.5: Validation of object detection performance and label error detection experiments for
different noise in training data: Swin-T on BDD; higher values are better. Bold numbers indicate
the highest AuROC or max F1 per experiment and underlined numbers are the second highest.

AuROC max F1

γ # train images mAP50 Loss Detection Score Entropy PD Loss Detection Score Entropy PD

0 12,454 52.1 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66
0.05 12,454 50.4 93.44 88.09 71.76 59.16 43.36 30.78 18.54 42.98
0.1 12,454 50.2 93.21 89.05 70.98 58.56 39.36 30.79 18.53 37.92
0.2 12,454 50.3 92.61 89.21 69.42 57.58 35.97 31.68 18.33 34.72

by up to 10.22 pp. The entropy reaches a maximum of 88.22%/56.70% AuROC/max F1

for EMNIST-Det and 73.14%/7.11% for BDD, which is far from the numbers achieved for
the loss and the detection score. PD is not able to detect drops, as the bounding boxes of
the labels are also the label error proposals itself.

A similar behavior can be observed for the flips, where the AuROC values for loss and
detection score only differ by a maximum of 1.64 pp. In terms of max F1 the loss out-
performs the detection score and entropy in every case. PD performs worse in terms of
AuROC compared to the loss, but in terms of max F1, PD outperforms the loss for BDD
based on both backbones trained on noisy data.

For the shifts, the detection score and PD have similar performance as the naive baseline
in terms of AuROC and all max F1 values are < 0.14. Except for BDD trained on noisy
data, where entropy performs superior to the loss, loss outperforms all baselines.

For the spawns, the detection score performs similar compared to the shifts. PD performs
well especially in terms of max F1, where PD even outperforms the loss for RestNeSt101
on BDD with noisy training data by 20.16 pp, otherwise loss is superior to PD. In the
cases where entropy outperforms loss, the difference is at most 5.44 pp in terms of AuROC
and 3.69 pp in terms of max F1.

The detection score can neither reliably detect the shifts nor the spawns, whereas the
entropy cannot detect the drops and flips well, especially for complicated problems such
as BDD. PD cannot reliably detect the shifts and is not able to detect drops by design. All
in all, the loss method is the only one of those presented that can detect all four different
types of label errors efficiently.

⋔Results for Different Noise Intensity during Training. Table 6.5 shows mAP,
AuROC and max F1 values for different noise intensities for Swin-T on the BDD training
dataset. In our experiments, it makes no difference whether the labels of the training data
contain 5% or 20% noise, the mAP is between 50.2 and 50.4, where the model has a mAP
of 52.1 due to training on the original training data. All mAP evaluations are based on
the test data with original and thus unmodified labels.

On the one hand, the AuROC and max F1 values decrease with increasing noise intensity
by 3.69/20.62 pp for loss, by 2.31/3.88 pp for entropy and by 3.01/17.94 pp for PD,
respectively. For the detection score, on the other hand, the AuROC value increases by
12.39 pp from 76.82 to 89.21 and the max F1 value increases only marginally by 0.54 pp

166

6.4 Experiments

Table 6.6: Validation of object detection performance and label error detection experiments for
different noise and number of images for training Swin-T on BDD; higher values are better. Bold
numbers indicate the highest AuROC or max F1 per experiment and underlined numbers are the
second highest.

AuROC max F1

γ # train images mAP50 Loss Detection Score Entropy PD Loss Detection Score Entropy PD

0 1,556 45.1 94.79 69.56 72.61 59.86 58.67 30.59 25.95 50.77
0 3,113 49.7 95.25 73.69 72.70 59.93 56.48 31.38 24.64 50.13
0 6,227 51.3 95.18 74.95 73.21 60.12 55.79 31.55 24.52 49.78
0 12,454 52.1 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66

0.2 1,556 40.7 94.82 84.98 73.53 58.73 44.47 27.07 18.72 33.87
0.2 3,113 46.9 93.35 88.90 70.31 58.98 35.45 28.38 18.28 33.45
0.2 6,227 49.1 93.08 90.31 70.80 58.37 33.60 30.38 18.18 33.43
0.2 12,454 50.3 92.61 89.21 69.42 57.58 35.97 31.68 18.33 34.72

to 31.68. Nevertheless, the loss outperforms the detection score/entropy/PD in every case
by at least 3.40/21.68/35.71 pp in terms of AuROC and by at least 4.29/17.64/0.38 pp in
terms of max F1. All AuROC/max F1 evaluations are based on the test data with γ = 0.2
and thus on the identical label basis as for table 6.2.

⋔Results for Different Amount of Training Images. Table 6.6 shows mAP,
AuROC and max F1 values for different amounts of training images for Swin-T on BDD.
Therefore, the subsets with fewer images are always included in the subsets with more
images and the identically sized subsets with different noise intensities contain the same
images.

The mAP increases the more images are used for training and the less label errors exist
in the training data. Here, the model trained on 6,227 and unmodified labels (γ = 0) has
a 0.8 points higher mAP than the model trained on 12,454 images with γ = 0.2. In this
case, after comparing the performances, it is worth to review and improve the underlying
labels instead of labeling new images and add them to the training set.

The AuROC values increase as the number of images increases with γ = 0. With γ = 0.2,
the values for loss and entropy decrease as the number of images increases. The max F1

values decrease independently of γ with increasing number of images for loss and entropy,
whereas the values increase for detection score. The decrease in AuROC and max F1

values for loss and entropy could be due to overfitting of the model. For PD, AuROC
and max F1 values remain almost constant for the respective datasets. However, the loss
always outperforms all baselines in terms of AuROC and max F1. All AuROC and max F1

evaluations are based on the test data with γ = 0.2 and thus on the identical label basis
as for table 6.2.

6.4.3 Evaluation for Real Label Errors

We now aim at detecting real instead of simulated label errors. The considered real-world
datasets apart from BDD (VOC, COCO, KITTI, CE) are more similar in complexity to
BDD than to EMNIST-Det. For BDD we observed in section 6.4.2 that the loss method
for the Swin-T backbone seems to be more stable according to label errors in the training

167

6 Label Error Identification For Object Detection Datasets

Table 6.7: Categorization of the top-200 proposals for real label errors with the loss method for
the Swin-T backbone. (∗) indicates the evaluation of proposals based on the detection of drops.

Dataset Label Errors Precision Spawn Drop Flip Shift

BDD 34 15.5 3 2 26 3

KITTI 96 47.5 75 0 4 17

COCO 50 24.5 14 1 18 17

COCO(∗) 125 61.0 0 125 0 0

VOC 23 11.5 13 0 10 0

VOC(∗) 175 71.5 0 175 0 0

CE(∗) 194 97.0 0 0 0 0

data. Especially the max F1 values for the loss and noisy labels are better for Swin-T
than for ResNeSt101. As we suspect label errors in the VOC, COCO, KITTI and CE
training datasets, we use the Swin-T backbone to detect as many label errors as possible.
Furthermore, we showed in table 6.2 that the loss method outperforms the detection score,
entropy and PD in each presented experiment so in the following we detect label errors
using only the loss method. Since we manually look at all proposals individually, and
we are not able to look at all proposals (i.e., about 265,000 for VOC), we categorize the
top-200 proposals into TPl or FPl. If a TPl is found we also note which type of label error
is present and if we are not sure whether the proposal is TPl or FPl, we conservatively
interpret it as FPl. The results are summarized in table 6.7. For BDD, there are at least
34 label errors, which mostly consist of flips. Since KITTI consists of image sequences, it
happens that one label error appears on several consecutive frames. When this happens, it
usually affects objects that are visible on previous frames but are covered by, for instance,
a bus for several frames but are still labeled. Label error proposals that fall into “Don’t
Care” areas are not considered. In total, we find 96 label errors with a precision of 47.5%
on KITTI. As COCO and VOC consist of images of different everyday scenes that really
differ from image to image, the variability of the representation of objects is very high
in these two datasets. Since a label error proposal is enforced for each label, this also
applies to the labels that are classified as background. In a usual test setting, these labels
would have been false negatives of the model, i.e., overlooked labels. The resulting loss
is so high that these proposals end up in the reviewed top-200 proposals. Nevertheless,
50 label errors can be detected on COCO and 23 on VOC. When dealing with these two
datasets, we noticed that drops are the most present label error type, although we did not
find any among the top-200 proposals. We use this knowledge to restrict the proposals
to those that have a class-independent IoU with the labels of the image of less than α.
Using this subset and re-reviewing the top-200 proposals, we are able to find 125 drops
with a precision of 61.0% for COCO and 175 drops with a precision of 71.5% for VOC. For
the calculation of the precision see section 6.3.3. Prior knowledge about the label quality
of the dataset and the types of label errors that occur helps to detect a specific type of
label error. From the high precision values for VOC and COCO, we conclude that our
method can help to correct the label errors resulting in cleaner benchmarks. Exemplary
label errors for the above datasets are shown in fig. 6.6. The first proposal detects a shift,

168

6.4 Experiments
P
ro
po

sa
l

G
ro
un

dt
ru
th

P
ro
po

sa
l

G
ro
un

dt
ru
th

P
ro
po

sa
l

G
ro
un

dt
ru
th

Figure 6.7: Visualization of further detected real label errors in test datasets for BDD (top), COCO
(center) and VOC (bottom).

the second a flip, the third and fourth a spawn and the remaining proposals detect drops.
For CE, we filter the proposals by drops, resulting in 194 detected drops with a precision
of 97%.

⋔Further Real Label Error Examples. Further, detected real label errors are pre-
sented in fig. 6.7. The top row shows examples for BDD, where all found label errors are
flips, except for the third proposal from the right. This proposal can be interpreted as
two label errors. Either the “car” label on the “bus” is wrong (spawn) and the bus was
forgotten to be labeled (drop), or the localization is inaccurate (shift) and the label has a
wrongly assigned class (flip). The middle and bottom rows represent detected real label
errors on COCO and VOC. All proposals show drops and at the fourth proposal from the
left in the middle row “pizza”, one can even discuss two spawns, since the two smaller
labels “pizza” should exactly reflect the label detected as drop.

169

6 Label Error Identification For Object Detection Datasets

6.5 Conclusion: Identifying Label Errors in Object
Detection Data

In this chapter, we have introduced a benchmark for label error detection for object
detection datasets. We for the first time simulated and evaluated four different types
of label errors on two selected datasets that appear to be suitable for further method
development. Furthermore, we developed a novel method based on instance-wise loss
scoring and compare it with four baselines. Our method prevails by a significant margin
in experiments on our simulated label error benchmark. In our experiments with real
label errors, we found a number of label errors in prominent datasets as well as in a
proprietary production-level dataset. With the evaluation for individual label error types
we can detect real label errors on commonly used test datasets in object detection with
a precision of up to 71.5%. Furthermore, we presented additional findings. Models with
less parameters are more robust to label errors in training sets while models with more
parameters suffer more.

170

7
Prediction Quality Estimation for
Lidar Object Detection

In this chapter we introduce a post-processing based uncertainty quantification method
for deep object detection of three-dimensional bounding boxes in Lidar point clouds. The
presented contents are in large parts taken word-for-word from [148].

7.1 Introduction: Uncertainty Quantification in Lidar
Object Detection

In recent years, deep learning has achieved great advances in the field of 3D object detec-
tion on Lidar data [89, 198, 199, 205]. DNN architectures for this task are well-developed,
however, there is little work in the area of uncertainty quantification (UQ) for such mod-
els [17,118,119,139,201]. UQ is crucial for deployment of DNN-based object detection in
the real world, since DNNs as statistical models statistically make erroneous predictions.
Down-stream algorithms are supposed to further process the predictions of perception algo-
rithms and rely on statistically accurate and meaningful UQ. Aleatoric uncertainty is usu-
ally estimated by adding variance parameters to the network prediction and fitting them
to data under a specific assumption for the distribution of residuals [17, 41, 43, 118, 119].
Such approaches usually alter the training objective of the detector by appealing to the
negative log-likelihood loss for normally distributed residuals. Epistemic uncertainty is
oftentimes estimated via Monte-Carlo (MC) dropout [17] or deep ensembles [201] (recall
section 2.2.4.2). In such approaches, model sampling leads to a significant increase in
inference time. Inspired by lines of research [145, 161] in the field of 2D object detection
on camera images, we develop a framework for UQ in 3D object detection for Lidar point
clouds. This approach does not alter the training objective and can be applied to any
pre-trained object detector and does not require prediction sampling. Our framework,
called LidarMetaDetect (short LMD), performs two UQ tasks: (1) meta classification,
which aims at estimating the probability of a given prediction being a true positive vs.

171

7 Prediction Quality Estimation for Lidar Object Detection

DNN objectness score LMD score

Figure 7.1: Prediction of a Lidar point cloud object detector with the native objectness score (left)
and LMD meta classifier scores (right) and corresponding camera images below. Detections based
on the objectness score are highly threshold-dependent and may lead to false positive detections.
Detections based on LMD scores are more reliable and separate true from false predictions in a
sharper way.

being a false positive; (2) meta regression, which estimates the localization quality of
a prediction compared with the ground truth. Note that, outside the context of UQ
for DNNs, the terms meta classification and meta regression refer to different concepts,
see [103] and [171], respectively. LMD operates as a post-processing module and can be
combined with any DNN without modifying it. Our methods learn on a small sample of
data to assess the DNN’s reliability in a frequentist sense at runtime, i.e., in the absence
of ground truth. In essence, we handcraft a number of uncertainty scores on bounding
box level, by which we convert both UQ tasks into structured machine learning tasks.
To the best of our knowledge, our method is the first purely post-processing-based UQ
method for 3D object detection based on Lidar point clouds. We conduct in-depth nu-
merical studies on the KITTI [46], nuScenes [11] as well as a propriety dataset including
comparisons of our methods with baseline methods on common uncertainty quantification
benchmarks, ablation studies of relevant parameters and the relevance of our uncertainty
features. This is complemented with down stream tasks where (1) we demonstrate that
our UQ increases the separation of true and false predictions and leads to well-calibrated
confidence estimates and (2) we show that our UQ can be utilized for the detection of
erroneous annotations in Lidar object detection datasets. We evaluate our method’s an-
notations error detection capabilities by reviewing its proposals on moderate samples from
KITTI and nuScenes. Our contributions can be summarized as follows:

• We develop the first purely post-processing based UQ framework for 3D object de-
tection in Lidar point clouds.

• We compare our UQ methods to baselines and show that they clearly outperform
the DNN’s built-in estimates of reliability.

172

7.2 Related Work

• We find annotation errors in the most commonly used publicly available Lidar object
detection datasets, i.e., KITTI and nuScenes.

7.2 Related Work: Reliable Lidar Object Detection via
Uncertainty Quantification

In recent years, technologically sophisticated methods such as perception in Lidar point
clouds have received attention in the UQ branch due to their potential industrial relevance
in the autonomous driving sector. Methods for 3D object detection roughly fall into the
categories of aleatoric and epistemic UQ. Aleatoric UQ methods usually build on esti-
mating distributional noise by adding a variance output for each regression variable while
epistemic UQmethods utilize some kind of model sampling either appealing to MC dropout
or deep ensembles. Meyer et al. [118] estimate aleatoric uncertainty by a two-dimensional
discretization scheme over the Lidar range and introducing a variance-weighted regression
loss for a multimodal distributional prediction in order to improve detection performance.
Meyer and Thakurdesai [119] estimate aleatoric uncertainty by adding scale regression
variables to the network output, modeling Laplace-distributed residuals under a label
noise assumption via a Kullback-Leibler divergence loss. Feng et al. [43] estimate het-
eroscedastic aleatoric uncertainty for the region proposal and the detection head of an
object detector separately by modeling diagonal-covariance normally distributed bound-
ing box regression. Feng et al. [41] achieve joint estimation of aleatoric and epistemic UQ
by adding regression variables that model the covariance diagonal of a multi-variate normal
distribution of the four bounding box parameters alongside MC dropout total variance for
the epistemic component. Chen et al. [17] extract aleatoric uncertainty information from
a self-supervised projection-reconstruction mechanism propagated to 3D object detection
on camera images. Further, epistemic uncertainty of object localization is quantified via
MC dropout. Yang et al. [201] perform UQ for 3D object detection on Lidar and extend
the multi-input multi-output model MIMO [59] which modifies the network to be supplied
simultaneously with n inputs and providing n outputs. This simulates a deep ensemble at
inference time at the cost of increased memory consumption for input and output layers.

In the field of 2D object detection in camera images by DNNs, methods for UQ have
been developed in a series of works [145, 161] related with research on UQ in semantic
segmentation [152, 153]. Schubert et al. [161] utilize the pre-NMS anchor statistics in a
post-processing approach to obtain box-wise confidence and IoU-estimates. Riedlinger
et al. [145] use instance-wise gradient scores in a post-processing scheme to obtain cali-
brated uncertainty estimates improving detection performance. Inspired by these lines of
research, we develop a framework for UQ in 3D object detection for Lidar point clouds.
We use lightweight post-processing models on top of a pre-trained Lidar point cloud ob-
ject detector in order to obtain improved uncertainty and IoU-estimates. In contrast to
previous work, our approach has the advantage that it may be applied to any pre-trained
object detector without alteration of training or architecture and does not carry the com-
putational and memory cost of sampling weights in a Bayesian manner like MC dropout
or deep ensembles. We show that this approach leads to more reliable object detection

173

7 Prediction Quality Estimation for Lidar Object Detection

predictions and that it can be applied in an intuitive way in order to detect annotation
errors in object detection datasets.

7.3 Methods: Output-based Feature Computation and
Meta Classification

In this section we describe our post-processing mechanism and how it can be applied to
improve detection performance and to detect annotation errors. Our method assumes an
object detector f̂(·) which maps point clouds x to a list of N proposal bounding boxes

f̂(x) =
{
b̂1, . . . , b̂N

}
. (7.1)

Point clouds x = (p1, . . . ,pNpt) consist of Lidar points p = (x, y, z, r) ∈ R4 represented by
three coordinates (x, y, z) and a reflectance value r each. Bounding boxes are represented
by features b̂j(x) = (x̂j , ŷj , ẑj , ℓ̂j , ŵj , ĥj , ϑ̂j , ŝj , π̂j1, . . . , π̂

j
C). Here, x̂j , ŷj , ẑj , ℓ̂j , ŵj , ĥj , ϑ̂j

define the bounding box geometry, ŝj is the objectness score and (π̂j1, . . . , π̂
j
C) is the predicted

categorical probability distribution. The bounding box geometry is defined by a center point
(x̂j , ŷj , ẑj), spatial extent (ℓ̂j , ŵj , ĥj) to either Cartesian direction and a rotation angle ϑ̂j

around the z-axis. The latter defines the predicted class κ̂j = argmaxc=1,...,C π̂
j
c while the

objectness score ŝj is the model’s native confidence estimate for each prediction. Out of the
N proposal bounding boxes, only a small amount NNMS will be left after non-maximum
suppression (NMS) filtering and contribute to the final prediction of the detector

NMS
[
f̂(x)

]
=
{
b̂i : i ∈ INMS

}
, (7.2)

where we let INMS ⊂ {1, . . . , N} denote the post-NMS index set indicating survivor boxes.
NMS follows the same procedure as explained in section 2.3.2 with the bird’s eye IoU as
overlap measure.

7.3.1 Computed Features in LidarMetaDetect

From this information we generate geometrical and statistical features for each b̂i ∈
NMS[f̂(x)] for the purpose of UQ. In addition to the bounding box features

ϕ̂i := {x̂i, ŷi, ẑi, ℓ̂i, ŵi, ĥi, ϑ̂i, ŝi, κ̂i} (7.3)

of b̂i we compute the geometric features volume V i = ℓ̂iŵiĥi, surface area Ai = 2(ℓ̂iŵi +
ℓ̂iĥi + ŵiĥi), relative size F i = V i/Ai, number of Lidar points P i = |x ∩ b̂i| within b̂i

and fraction of Lidar points Φi = P i/|x| in b̂i, see fig. 7.2 on the left for an illustration.
Moreover, each Lidar point that falls into b̂i (i.e., in x ∩ b̂i) has a reflectance value r. We
add the maximal (ρimax), mean (ρimean) and standard deviation (ρistd) over all reflectance

values of points in b̂i. Lastly, for each b̂i, we take the pre-NMS statistics into consideration
which involves all proposal boxes in f̂(x) that are NMS-filtered by b̂i, i.e., the pre-image

Prop
(
b̂i
)
:= NMS−1

[{
b̂i
}]

. (7.4)

174

7.3 Methods

b̂i

x ∩ b̂i

x \ b̂i
f̂(x) \ Prop(̂bj)

Prop(̂bj)

b̂j

Figure 7.2: Left : Illustration of the P i and Φi features counting Lidar points falling into a given
predicted box. From the points x ∩ b̂i, reflection statistics are generated. Right : Schematic
illustration of the proposal set Prop(̂bi) for a given predicted box b̂i (here, in two dimensions for
simplicity). From the proposal boxes, further pre-NMS statistics are derived.

These are characterized by having a significant three-dimensional IoU3D with b̂i, see fig. 7.2
on the right. The number of proposal boxes N i := |Prop(̂bi)| is an important statistics
since regions with more proposals are more likely to contain a true prediction. We further
derive minimum, maximum, mean and standard deviation statistics over proposal boxes
b̂ ∈ Prop(̂bi) for all

mi ∈ ϕ̂i ∪ {V i, Ai, F i, P i, Φi, ρimax, ρ
i
mean, ρ

i
std}, (7.5)

as well, as the IoU3D and bird-eye intersection over union IoUBEV values between b̂i and
all proposals Prop(̂bi). Overall, this amounts to a vector φi(x) of length n = 90 consisting
of co-variables (features) on which post-processing models are fit in order to predict the
IoUBEV between b̂i and the ground truth or classify samples as true (TP) or false positives
(FP). We call a box a TP if IoUBEV ≥ 0.5, otherwise we declare it FP.

7.3.2 Uncertainty Quantification in Post-Processing

On an annotated hold-out dataset Dval consisting of point cloud-annotation tuples (x, y),
we compute a structured dataset

φ = (φ1, . . . ,φNval) ∈ Rn×Nval . (7.6)

This dataset consists of feature vectors for each of the Nval predicted boxes over all of Dval.
The illustration of our method in fig. 7.3 shows this scheme for one particular Lidar frame
(x, y) and the respective prediction on it. Further, we compute ιi := IoUBEV(̂b

i(x), y)
between prediction and ground truth form Dval as target variables y = (ι1, . . . , ιNval) ∈
RNval . Similar to the method introduced in section 3.3.2 we then fit a light-weight (meta-
) regression model R : φi 7→ yi on (φ, y). This model acts as post-processing module
of the detector in order to produce IoUBEV-estimates ι̂i := R(φi) for each detection

175

7 Prediction Quality Estimation for Lidar Object Detection

point cloud with OD prediction

(x, f̂(x))

meta regression
training

meta regression
inference

co
m
p
u
te
d
fe
at
u
re
s (

φ1, . . . ,φN
)

(ι̂1, . . . , ι̂N)

estimated IoUBEV
computed IoUBEV

IoUBEV(f̂(x), y) = (ι1, . . . , ιN)

(x, y)

point cloud with ground truth

x

y

Object Detector

meta regression
model R

“
gr
ou

n
d
tr
u
th
”

fe
ed

b
a
ck

p
re
d
ic
ti
on

Figure 7.3: Schematic illustration of the LMD meta regression pipeline. Training of the model is
based on the output f(x) of a fixed (frozen) object detector and the bounding box ground truth
y. Meta classification follows the same scheme with binary training targets τ i = 1{ιi>0.5}.

176

7.4 Experiments

b̂i. Similarly, we fit a binary (meta-) classification model C obtaining the binary targets
1{y>0.5} which allows us to generate alternative confidence estimates τ̂ i := C(φi) ∈ [0, 1]

for each prediction b̂i in post-processing. Note that C is a potentially non-linear and non-
monotonous function of the features φi. Therefore, C can change the obtained confidence
ranking per frame and influence detection performance as opposed to simple re-calibration
methods [55,126].

Meta classification empirically turns out to produce confidence estimates which are both,
sharper (in the sense of separating TPs from FPs) and better calibrated that those pro-
duced natively by the detector, i.e., the objectness score. However, when regarding the
cases of disagreement between the computed IoUBEV and C, we frequently find that C
is to be trusted more than the computed IoUBEV due to missing annotations. We use
this observation in order to generate proposals (in descending estimation τ̂ i) based on the
object detector in comparison with the given ground truth (FP according to the ground
truth, i.e., ιi < 0.5) that serve as suggestions of annotation errors.

7.4 Experiments: Meta Classification, Meta Regression
and Label Error Detection

In this section we study meta classification and meta regression performance for two
benchmark datasets as well as a proprietary dataset from Aptiv. The meta classification
results are presented in terms of accuracy and AuROC and the meta regression results
are presented in terms of R2. We compare our uncertainty quantification method Li-
darMetaDetect (LMD) with two baseline methods (score, box features). Moreover, we
find label errors on both benchmark datasets using LMD.

7.4.1 ⋔ Implementation Details

Object Detection Models. We implemented our method in the open source MMDe-
tection3D toolbox [123]. For our experiments, we consider the PointPillars [89] and Cen-
terPoint [205] architectures. The mean average precision (mAP@IoU0.5) for KITTI based
on IoUBEV is 69.0 for CenterPoint and 68.8 for PointPillars. On KITTI, the mAP@IoU0.5

based on IoU3D is 64.2 for CenterPoint and 68.8 for PointPillars and for Aptiv, the
mAP@IoU0.5 based on IoU3D is 39.5 for CenterPoint and 43.7 for PointPillars. NuScenes
performance is given as a weighted sum of mAP as well as the nuScenes detection score
(NDS). For CenterPoint, the mAP is 57.4 and the NDS is 65.2 and for PointPillars the
mAP is 40.0 and the NDS is 53.3. For KITTI and Aptiv, the models were trained individ-
ually while available public model weights from MMDetection3D are used for nuScenes.
The performance results obtained have all been evaluated on respective test datasets.

Datasets. For KITTI, the images and associated point clouds are split scene-wise, such
that the training set consists of 3,712, the validation set of 1,997, and the test set of
1,772 frames. For nuScenes, the validation set is split scene-wise into 3,083 validation
and 2,936 test frames. The Aptivdataset consists of 50 sequences, split into 27, 14, 9
sequences with about 145K, 75K, 65K cuboid annotations for training, validation and

177

7 Prediction Quality Estimation for Lidar Object Detection

m
ax
{ŝ
i }

st
d{
ŝ
i } ŝ

i

m
ea
n{
ŝ
i }

N
i

m
ax
{Io
U
i
3D
}

m
ea
n{
Io
U
i
3D
}

st
d{
ρ
i
m
ax
}

st
d{
Io
U
i
3D
}

m
ax
{ρ
i
m
ax
}

m
ax
{P
i }

m
ea
n{
P
i }

0.2

0.4

0.6

0.8

P
ea
rs
on

co
rr
el
at
io
n
w
it
h
Io
U

B
E
V

Figure 7.4: Strongest correlation coefficients for constructed box-wise features and IoUBEV for the
CenterPoint architecture on the nuScenes test dataset and a score threshold τ = 0.1.

Table 7.1: Strongest correlation coefficients for constructed box-wise features and IoUBEV for the
CenterPoint (left) and PointPillars (right) architecture on the KITTI test dataset and a score
threshold τ = 0.1.

max{ŝi} 0.8056 ŝi 0.8050
std{ŝi} 0.7456 mean{ŝi} 0.7289
mean{ρimax} 0.5769 max{ρimax} 0.5768
ρimax 0.5739 min{ρimax} 0.5381
mean{IoUiBEV} 0.5083 min{IoUi3D} 0.4984
max{IoUi3D} 0.4974 max{P i} 0.4593

max{ŝi} 0.8493 ŝi 0.8490
mean{ŝi} 0.8309 std{ŝi} 0.7116
N i 0.6258 max{ℓi} 0.5631
max{wi} 0.5174 mean{ℓi} 0.5159
max{ρimax} 0.5144 mean{wi} 0.5129
max{F i} 0.5120 mean{F i} 0.5089

testing, respectively. Every sequence is about two minutes long while every fifth point
cloud is annotated. The covered locations are countryside, highway and urban from and
around Wuppertal, Germany. The dataset includes four classes: 1. smaller vehicles like
cars and vans, 2. larger vehicles like busses and trucks, 3. pedestrians and 4. motorbikes
and bicycles.

7.4.2 Correlation of Box-wise Features with the IoUBEV.

Figure 7.4 shows the Pearson correlation coefficients of the constructed box-wise dispersion
measures with the IoUBEV of prediction and ground truth for CenterPoint on the nuScenes
test dataset. The score features have strong correlations (> 0.5) with the IoUBEV. Note
that, although the four score-related features show the highest individual correlation, these
features may be partially redundant. The number of candidate boxes N i is also reasonably
correlated with the IoUBEV (0.3007), whereas the remaining features only show a minor
correlation (< 0.3). However, they may still contribute to higher combined explanatory
information in meta classification. The strongest correlation for the other network-dataset
combinations are shown in the following paragraph.

178

7.4 Experiments

Table 7.2: Strongest correlation coefficients for constructed box-wise features and IoUBEV for the
CenterPoint (left) and PointPillars (right) architecture on the nuScenes test dataset and a score
threshold τ = 0.1.

max{ŝi} 0.7516 std{ŝi} 0.6991
ŝi 0.6755 mean{ŝi} 0.5847
N i 0.3007 max{IoUi3D} 0.2900
mean{IoUi3D} 0.2707 std{ρimax} 0.2652
std{IoUi3D} 0.2560 max{ρimax} 0.2556
max{P i} 0.2519 mean{P i} 0.2500

max{ŝi} 0.7554 std{ŝi} 0.7344
mean{ŝi} 0.7161 N i 0.6629
ŝi 0.6244 std{ŵi} 0.4535
std{F i} 0.4228 std{ŷi} 0.3879

std{ℓ̂i} 0.3794 std{IoUi3D} 0.3689
std{IoUiBEV} 0.3581 std{P i} 0.3433

Table 7.3: Strongest correlation coefficients for constructed box-wise features and IoUBEV for the
CenterPoint (left) and PointPillars (right) architecture on the Aptiv test dataset and a score
threshold τ = 0.1.

max{ŝi} 0.7649 ŝi 0.7358
std{ŝi} 0.6598 mean{ŝi} 0.5913
max{IoUi3D} 0.5656 mean{IoUi3D} 0.5596
max{IoUiBEV} 0.5573 mean{IoUiBEV} 0.5555

ℓ̂i 0.3736 min{ℓ̂i} 0.3731

mean{ℓ̂i} 0.3724 max{ℓ̂i} 0.3694

max{ŝi} 0.7596 mean{ŝi} 0.7577
std{ŝi} 0.7570 ŝi 0.7108

N i 0.5226 std{ℓ̂i} 0.5225

std{F i} 0.4488 std{ĥi} 0.3998
std{IoUi3D} 0.3879 std{ρimax} 0.3802
std{ẑi} 0.3727 max{IoUi3D} 0.3443

⋔Extended Correlation Results. Tables 7.1 to 7.3 show the Pearson correlation co-
efficients of the constructed box-wise dispersion measures with the IoUBEV of prediction
and ground truth for the KITTI, nuScenes and Aptiv test datasets. Comparable to the
results from fig. 7.4 of the main paper, the score features have strong correlations (> 0.5)
with the IoUBEV, independently of the underlying dataset or architecture. Especially for
the PointPillars architecture, the number of proposal boxes N i has a correlation > 0.6 for
nuScenes and KITTI and > 0.5 for Aptiv, whereas for CenterPoint, N i shows minor cor-
relations (< 0.45). Moreover, the overlaps of the proposal boxes (different IoU features),
as well as the localization of the box (especially ℓ̂, ĥ and ŵ) and the maximal reflectance
value of points within the box (ρimax) seem to be reasonably correlated with the IoUBEV.
Although the other features have rather smaller correlations with the IoUBEV, they may
still contribute to a more informative set of features for meta classification and regression.

7.4.3 Comparison of Different Meta Classifiers and Meta Regressors.

Different models come into question as post-processing modules for meta classification (C)
and meta regression (R, see section 7.3). For meta classification, the metamodels under
consideration are logistic regression (LogReg), random forests (RF), gradient boosting
(GB) and a multilayer perceptron (MLP) with two hidden layers. For meta regression,
analogous regression models are used, only the logistic regression is replaced with a ridge
regression (RR).

The respective metamodels are trained on the box-wise features φi of the validation sets
Dval and evaluated on the features of the test sets which are disjoint from Dval. LMD uses
all available features to train the metamodels, whereas in the score baseline only the score

179

7 Prediction Quality Estimation for Lidar Object Detection

Table 7.4: Comparison of meta classification accuracy and AuROC as well as meta regression R2

values for the score baseline, bounding box features and LMD for CenterPoint and nuScenes test
dataset with score threshold τs = 0.1. Models used are Logistic Regression (LR), Ridge Regression
(RR), Random Forests (RF), Gradient Boosting (GB) and a Multi Layer Perceptron (MLP).

Meta Classification IoUBEV ≥ 0.5 vs. IoUBEV < 0.5 Meta Regression IoUBEV

Accuracies AuROCs R2

Method LogReg RF GB MLP LogReg RF GB MLP RR RF GB MLP

Score 0.8777 0.8524 0.8772 0.8773 0.8644 0.8617 0.8623 0.8640 0.4641 0.4675 0.4733 0.4751
Box Features 0.8877 0.9049 0.9203 0.8975 0.9056 0.9454 0.9529 0.9293 0.5292 0.6681 0.6792 0.6249

LMD 0.9118 0.9166 0.9297 0.9200 0.9450 0.9581 0.9628 0.9530 0.6451 0.7242 0.7296 0.7122

of the prediction ŝi is used to fit the metamodel. For the bounding box features baseline,
as the name implies, the box features of the prediction ϕ̂i are used, in which the score
ŝi is also included. Table 7.4 presents meta classification accuracy and AuROC as well
as meta regression R2 for the CenterPoint architecture on the nuScenes dataset. For the
score baseline, all metamodels perform similarly well. For the meta classification accuracy
there are differences of up to 2.53 percent points (pp), for the AuROC of at most 0.27 pp
and for meta regression R2 of up to 1.10 pp. In the box features the maximum differences
increase to 3.26 pp in terms of accuracy, to 4.73 pp for AuROC and to 15.00 pp for
R2. In particular, for the box features and LMD, the non-linear models (RF, GB, MLP)
outperform the linear model in both learning tasks. LMD outperforms the baselines box
features/score by 0.94/5.20 pp in terms of accuracy, by 0.99/9.84 pp in terms of AuROC
and by 5.04/25.45 pp in terms of R2. If overfitting of the metamodel is made unlikely by
choosing appropriate hyperparameters, the performance of the metamodel only benefits
from adding more features, since the available information and number of parameters
for fitting are increased. Overall, GB outperforms all other metamodels, especially when
multiple features are used to train and evaluate the respective learning task. Therefore,
only results based on GB are shown in the following experiments. An overview of the
different metamodels for all network+dataset combinations are shown in the following
paragraph.

⋔Extended Comparisons of Different Post-Processing Models. Table 7.5 pre-
sents meta classification accuracy and AuROC for different meta classification models
for the KITTI, nuScenes and Aptiv test datasets. For the score baseline, except for
PointPillars and nuScenes, the linear model (LogReg) outperforms the random forest,
gradient boosting and the MLP, where the difference is at most 2.96 percentage points (pp)
in terms of meta classification accuracy. In terms of meta classification AuROC, the linear
model outperforms all other metamodels of at most 0.8 pp. For the bounding box features
and LMD, random forest or gradient boosting are in most cases the best metamodels in
terms of meta classification accuracy and AuROC. In general, the bounding box features
outperform the score baseline and LMD outperforms the bounding box features.

Table 7.6 states meta regression R2 for different meta regression models for the KITTI,
nuScenes and Aptiv test datasets. Random forest and gradient boosting outperforms the
linear model (ridge regression) and the MLP in every case for the bounding box features
and LMD. Except for CenterPoint on Aptiv, both MLP and gradient boosting are the

180

7.4 Experiments

Table 7.5: Comparison of meta classification accuracy and AuROC for the score baseline, bounding
box features and LMD for all available network-dataset combinations with IoUBEV threshold 0.5
and score threshold τs = 0.1. Models used for meta classification are Logistic Regression (LogReg),
Gradient Boosting (GB), Random Forest (RF) and a Multi Layer Perceptron (MLP). Higher values
are better. Bold numbers indicate the highest performance and underlined numbers represent the
second highest (row-wise).

Accuracies AuROCs

Dataset Network Method LogReg RF GB MLP LogReg RF GB MLP

KITTI

PointPillars
Score 0.8955 0.8848 0.8921 0.8940 0.9566 0.9497 0.9530 0.9566

Box Features 0.8961 0.8958 0.8931 0.8846 0.9564 0.9548 0.9537 0.9482
LMD 0.9000 0.9028 0.9004 0.8844 0.9589 0.9621 0.9592 0.9479

CenterPoint
Score 0.8726 0.8651 0.8688 0.8725 0.9322 0.9242 0.9274 0.9322

Box Features 0.8727 0.8719 0.8691 0.8608 0.9244 0.9387 0.9343 0.9271
LMD 0.8818 0.8847 0.8806 0.8700 0.9421 0.9522 0.9466 0.9362

nuScenes

PointPillars
Score 0.8402 0.8106 0.8398 0.8403 0.8151 0.8130 0.8129 0.8150

Box Features 0.8409 0.8613 0.8708 0.8653 0.8499 0.9018 0.9002 0.8957
LMD 0.8875 0.8842 0.8915 0.8908 0.9208 0.9257 0.9280 0.9252

CenterPoint
Score 0.8777 0.8524 0.8772 0.8773 0.8644 0.8617 0.8623 0.8640

Box Features 0.8877 0.9049 0.9203 0.8975 0.9056 0.9454 0.9529 0.9293
LMD 0.9118 0.9166 0.9297 0.9200 0.9450 0.9581 0.9628 0.9530

Aptiv

PointPillars
Score 0.7956 0.7929 0.7939 0.7954 0.8582 0.8555 0.8558 0.8580

Box Features 0.8184 0.8508 0.8489 0.8472 0.8933 0.9289 0.9274 0.9255
LMD 0.8506 0.8599 0.8615 0.8515 0.9273 0.9382 0.9396 0.9300

CenterPoint
Score 0.8279 0.8149 0.8265 0.8279 0.8946 0.8900 0.8914 0.8946

Box Features 0.8340 0.8452 0.8440 0.8439 0.9029 0.9155 0.9134 0.9085
LMD 0.8478 0.8559 0.8548 0.8529 0.9187 0.9294 0.9275 0.9227

Table 7.6: Comparison of meta regression R2 for the score baseline, bounding box features and
LMD for all available network-dataset combinations using a IoUBEV threshold of 0.5 and score
threshold of 0.1. Models used for meta regression are Ridge Regression (RR), Gradient Boosting
(GB), Random Forest (RF) and a Multi Layer Perceptron (MLP). Higher values are better. Bold
numbers indicate the highest performance and underlined numbers represent the second highest
(row-wise).

R2

Dataset Network Method RR RF GB MLP

KITTI

PointPillars
Score 0.6901 0.6726 0.7108 0.7146

Box Features 0.6973 0.7044 0.7131 0.6819
LMD 0.7151 0.7301 0.7287 0.6837

CenterPoint
Score 0.6220 0.5877 0.6235 0.6273

Box Features 0.6260 0.6446 0.6472 0.6274
LMD 0.6631 0.6863 0.6840 0.6538

nuScenes

PointPillars
Score 0.3903 0.4006 0.4055 0.4054

Box Features 0.4187 0.5586 0.5593 0.5356
LMD 0.6105 0.6346 0.6413 0.6244

CenterPoint
Score 0.4641 0.4675 0.4733 0.4751

Box Features 0.5292 0.6681 0.6792 0.6249
LMD 0.6451 0.7242 0.7296 0.7122

Aptiv

PointPillars
Score 0.5005 0.5013 0.5096 0.5106

Box Features 0.5469 0.6484 0.6568 0.6482
LMD 0.6401 0.6830 0.6924 0.6614

CenterPoint
Score 0.5458 0.5329 0.5456 0.5469

Box Features 0.5749 0.6200 0.6286 0.6136
LMD 0.6210 0.6541 0.6591 0.6332

181

7 Prediction Quality Estimation for Lidar Object Detection

Table 7.7: Comparison of meta classification accuracy and AuROC as well as meta regression R2 for
the score baseline, bounding box features and LMD for all available network+dataset combinations
with IoUBEV threshold 0.5, score threshold τs = 0.1 and GB as metamodel.

Meta Classification IoUBEV ≥ 0.5 vs. IoUBEV < 0.5 Meta Regression IoUBEV

Accuracies AuROCs R2

Dataset Network Score Box LMD Score Box LMD Score Box LMD

KITTI
PointPillars 0.8921 0.8931 0.9004 0.9530 0.9537 0.9592 0.7108 0.7131 0.7287
CenterPoint 0.8688 0.8691 0.8806 0.9274 0.9343 0.9466 0.6235 0.6472 0.6840

nuScenes
PointPillars 0.8398 0.8708 0.8915 0.8129 0.9002 0.9280 0.4055 0.5593 0.6413
CenterPoint 0.8772 0.9203 0.9297 0.8623 0.9529 0.9628 0.4732 0.6792 0.7296

Aptiv
PointPillars 0.7939 0.8489 0.8615 0.8558 0.9274 0.9396 0.5096 0.6568 0.6924
CenterPoint 0.8265 0.8440 0.8548 0.8914 0.9134 0.9275 0.5456 0.6286 0.6591

superior metamodels (compared to random forest and ridge regression) in terms of meta
regression R2 for the score baseline. Comparable to the results of table 7.4 and the results
for meta classification in table 7.5, the bounding box features outperform the score baseline
and LMD outperforms the bounding box features.

7.4.4 Generalization over Datasets and Networks.

Table 7.7 shows meta classification accuracy and AuROC as well as meta regression R2

for all network+dataset combinations based on GB models. In all cases LMD outperforms
both baselines and the bounding box features outperform the score baseline. This is to
be expected, since the score is contained in the box features and the box features are
contained in the set of features of LMD. The improvement from the score baseline to
LMD ranges from 0.83 to 6.76 pp in terms of meta classification accuracy, from 0.62 to
10.51 pp in terms of AuROC and from 1.79 to 25.64 pp in terms of meta regression R2.
The improvement from the bounding box features to LMD ranges from 0.73 to 2.07 pp
in terms of meta classification accuracy, from 0.55 to 2.78 pp in terms of AuROC and
from 1.56 to 8.20 pp in terms of meta regression R2. This illustrates that the addition of
features, other than just the bounding box features of the prediction itself, has a significant
impact on meta classification and meta regression performances and, therefore, separation
of TP and FP predictions.

For CenterPoint and nuScenes, the confusion matrix fig. 7.5 shows that the GB classifier
based on LMD identifies most TPs and true negatives. Therefore, predictions that are
in fact FPs are also predicted as FPs. Note, that here we regard “meta” true negatives
conditional on the detector’s prediction (each example is a detection TP or FP that is
binarily classified). The values on the off-diagonals indicate the errors of the meta classi-
fier. 7,002 predictions are predicted as FPs even though they are TPs. In contrast, 4,484
predictions are predicted as TPs, even though they are actually FPs. Figure 7.6 shows a
scatter plot of the true IoUBEV of prediction and ground truth and the IoUBEV estimated
by LMD meta regression based on a GB model, where each point represents one predic-
tion. Well-concentrated points around the identity (dashed line) indicate well-calibrated

182

7.4 Experiments

Positive Negative
True Class

Po
sit

iv
e

Ne
ga

tiv
ePr

ed
ict

ed
 C

la
ss

24186 4484

7002 128562

0

20000

40000

60000

80000

100000

120000

Figure 7.5: Confusion matrix of a GB classifier for LMD on CenterPoint, nuScenes and score
threshold τs = 0.1.

Figure 7.6: Box-wise scatter plot of true IoUBEV and predicted IoUBEV values for LMD on Cen-
terPoint, nuScenes and score threshold τs = 0.1. The predictions are based on a GB regressor.

183

7 Prediction Quality Estimation for Lidar Object Detection

5 10

0.93

0.94

0.95

0.96

Number of features

A
u
R
O
C

(a) Meta Classification

5 10

0.6

0.65

0.7

Number of features

R
2

(b) Meta Regression

Figure 7.7: Feature selection using a greedy heuristic for CenterPoint, nuScenes and score threshold
τs = 0.1. (a) contains meta classification AuROC and (b) contains meta regression R2. The dashed
line shows the performance when incorporating all features (LMD).

Table 7.8: Feature selection for meta classification AuROC using a greedy heuristic for all network-
dataset combinations, score threshold τs = 0.1 and a GB classifier. The right-most column shows
the performance when incorporating all features (LMD).

Meta Classification

Number of Features

Network Meta Model 1 2 3 4 5 6 7 8 9 10 All

KITTI
PointPillars 0.9482 0.9512 0.9530 0.9543 0.9564 0.9576 0.9580 0.9584 0.9587 0.9588 0.9592
CenterPoint 0.9149 0.9268 0.9372 0.9405 0.9420 0.9439 0.9452 0.9458 0.9462 0.9463 0.9466

nuScenes
PointPillars 0.9117 0.9175 0.9214 0.9248 0.9253 0.9257 0.9259 0.9263 0.9268 0.9273 0.9280
CenterPoint 0.9253 0.9417 0.9591 0.9603 0.9609 0.9611 0.9614 0.9617 0.9619 0.9620 0.9628

Aptiv
PointPillars 0.8940 0.9182 0.9233 0.9288 0.9312 0.9330 0.9339 0.9348 0.9352 0.9356 0.9396
CenterPoint 0.9051 0.9150 0.9177 0.9195 0.9209 0.9226 0.9242 0.9255 0.9259 0.9268 0.9275

IoUBEV-estimates and, therefore, object-wise quality estimates.

7.4.5 Feature Selection for Meta Classification and Meta Regression.

Overall, LMD is based on 90 features, which partly describe very similar properties. In
order to get a subset of features which contains as few redundancies as possible but is still
powerful, we apply a greedy heuristic. Starting with an empty set, a single feature that
improves the meta prediction performance maximally is added iteratively. Figure 7.7 shows
results in terms of AuROC for meta classification and in terms of R2 for meta regression
for CenterPoint on nuScenes. The tests for the meta classification and the meta regression
are independent of each other, i.e., the selected features of the two saturation plots do
not have to match. When using five selected features, the associated metamodels perform
already roughly as well as when using all features (LMD), i.e., 0.19 pp worse in terms of
meta classification AuROC and 0.92 pp worse in terms of meta regression R2. With ten
features used, the respective differences with the results obtained by LMD are < 0.1 pp
and thus negligible. The tests for the greedy selection heuristic for all network+dataset
combinations are shown in the following paragraph.

⋔Extended Feature Selection Results. Table 7.8 shows feature selection results in
terms of meta classification AuROC and table 7.9 shows feature selection results in terms
of meta regression R2. For both tasks, meta classification and regression, a few features

184

7.4 Experiments

Table 7.9: Feature selection for meta regression R2 using a greedy heuristic for all network-dataset
combinations, score threshold τs = 0.1 and a GB regressor. The right-most column shows the
performance when incorporating all features (LMD).

Meta Regression

Number of Features

Network Meta Model 1 2 3 4 5 6 7 8 9 10 All

KITTI
PointPillars 0.7053 0.7121 0.7165 0.7195 0.7217 0.7229 0.7237 0.7248 0.7260 0.7267 0.7287
CenterPoint 0.6134 0.6449 0.6626 0.6746 0.6776 0.6791 0.6808 0.6815 0.6824 0.6833 0.6840

nuScenes
PointPillars 0.5931 0.6069 0.6174 0.6265 0.6318 0.6359 0.6383 0.6390 0.6397 0.6401 0.6413
CenterPoint 0.5892 0.6591 0.7079 0.7158 0.7204 0.7243 0.7264 0.7280 0.7286 0.7289 0.7296

Aptiv
PointPillars 0.5860 0.6300 0.6454 0.6615 0.6679 0.6740 0.6774 0.6806 0.6845 0.6875 0.6924
CenterPoint 0.5856 0.6301 0.6358 0.6400 0.6472 0.6500 0.6537 0.6558 0.6564 0.6572 0.6591

Figure 7.8: Reliability plots of the score (left) and GB classifier for LMD (right) with calibration
errors (ECE , MCE) for CenterPoint, nuScenes test dataset, score threshold τs = 0.1 and IoUBEV

threshold 0.5.

are sufficient to reach roughly the same performance as when using all features (LMD).
Metamodels using five or more selected features are at most 0.84 pp below the performance
of LMD in terms of meta classification AuROC and at most 2.45 pp in terms of meta
regression R2. With ten features used, the respective differences to the performance results
achieved by LMD are ≤ 0.4 pp in terms of meta classification AuROC and < 0.5 pp in
terms of meta regression R2.

7.4.6 Confidence Calibration

The score and the meta classifier confidences are divided into 10 confidence bins to evaluate
their calibration errors. Figure 7.8 shows exemplary reliability plots for the object detector
score and LMD based on a GB classifier with corresponding expected (ECE [126]) and
maximum calibration error (MCE [126]). Refer to section 3.3.2 for a treatment of these
calibration metrics. The score is over-confident in the lower confidence ranges and well-
calibrated in the upper confidence ranges, whereas the GB classifier for LMD is well-
calibrated over all confidence ranges. This observation is also reflected in the corresponding
calibration errors, as the GB classifier for LMD outperforms the score by 8.07 pp in terms of
ECE and by 11.48 pp in terms of MCE . This indicates that LMD improves the statistical

185

7 Prediction Quality Estimation for Lidar Object Detection

(a) nuScenes

(b) KITTI

Figure 7.9: Proposed label errors in (a) nuScenes and (b) KITTI. Top images show point clouds
with annotations in purple and the proposal in red. Camera images aid the evaluation.

reliability of the confidence assignment.

7.4.7 Label Error Detection as an Application of Meta Classification.

The task of annotations error detection with LMD is inspired by fig. 7.6. There are a
number of predictions with IoUBEV = 0 but with high predicted IoUBEV. After looking
at these FPs it has been noticed that not the prediction is incorrect itself but the cor-
responding ground truth. More precisely, incorrect ground truth corresponds to missing
labels, labels with a wrong assigned class or the location of the annotation is inaccurate,
i.e., the 3D bounding box is not correctly aligned with the point cloud. Annotation er-
ror detection with LMD works as follows: all FP predictions, i.e., predictions that have
IoUBEV < 0.5 with the ground truth, are sorted by the predicted IoUBEV in descending

186

7.4 Experiments

Table 7.10: Comparison of detected annotation errors for the KITTI test dataset using object
detectors as baselines and RF as best LMD classifier with a score threshold of 0.1 and a IoUBEV

threshold of 0.5.

KITTI Annotation Error Analysis (RF)

Network Classes Random Score LMD

PointPillars

Pedestrian 8/53 1/1 2/4
Cyclist 3/22 1/1 2/2
Car 9/25 76/98 88/94

Overall 20/100 78/100 92/100

CenterPoint

Pedestrian 4/25 25/40 7/7
Cyclist 1/11 8/12 1/1
Car 22/64 38/48 89/92

Overall 27/100 71/100 97/100

order across all images. Then, the first 100 predictions, i.e., the top 100 FPs with the
highest predicted IoUBEV, are manually reviewed, see fig. 7.9 for examples of proposals
by this method. In this case, a GB classifier is used to predict the box-wise IoUBEV. We
compare LMD against a score baseline which works in the same way, except that the FPs
are sorted by the objectness score. As a random baseline, 100 randomly drawn FPs are
considered for review which provides an insight into how well the respective test dataset is
labeled. In general, if it was unclear whether an annotation error was present or not, this
case was not marked as annotation error, i.e., the following numbers are a conservative
(under-)estimation. LMD finds 43 annotation errors from 100 proposals and, in contrast,
the score only 6 out of 100. Even the random baseline still finds 3 annotation errors,
which indicates that there are a significant number of annotation error in the nuScenes
test dataset and that these can be found at far smaller effort with LMD than with the
score. Explicit annotation error detection counts for PointPillars on nuScenes and for both
networks on the KITTI test dataset are shown in the following section.

⋔Extended Results on Annotation Error Detection. Table 7.10 presents annota-
tion error detection results for the KITTI test dataset. In each experiment, we manually
reviewed 100 candidates provided by a given detection method. For the random baseline
(randomly reviewing FPs of the network) applied to PointPillars, we discover 20 annota-
tion errors. Using CenterPoint, this number increases to 27 annotations errors with the
random baseline and CenterPoint, which indicates that there might be a significant num-
ber of annotation errors in the KITTI test dataset. This is already confirmed by the score
baseline. Combining it with PointPillars, we find 78 annotation errors and with Center-
Point, we find 71. Although these numbers seem enormous, LMD is capable of detecting
even more annotation errors. With PointPillars we detect 92 and with CenterPoint 97
annotation errors.

Table 7.11 shows annotation error detection results for the nuScenes test dataset. We
detect only 6 annotation errors using the score baseline and CenterPoint, whereas we
can find 43 annotation errors using LMD and CenterPoint. Considering PointPillars, the
gap between the detection results of the score baseline and LMD vanishes. With the

187

7 Prediction Quality Estimation for Lidar Object Detection

Table 7.11: Comparison of detected annotation errors for the nuScenes test dataset using object
detectors as baselines and GB as best LMD classifier with a score threshold of 0.1 and a IoUBEV

threshold of 0.5.

nuScenes Annotation Error Analysis (GB)

Network Classes Random Score LMD

PointPillars

Car 1/27 10/55 13/49
Pedestrian 1/29 4/10 −
Barrier 0/18 − −

Traffic Cone 0/10 − −
Truck 0/6 13/23 12/30
Trailer 0/1 0/10 1/6
Bicycle − − −

Construction Vehicle 0/4 − 0/6
Bus 0/2 0/2 2/9

Motorcycle 0/3 − −
Overall 2/100 27/100 28/100

CenterPoint

Car 2/51 0/8 31/62
Pedestrian − 5/14 2/2
Barrier 0/8 1/15 0/1

Traffic Cone − 0/4 −
Truck 0/14 0/3 8/30
Trailer 0/15 0/21 0/1
Bicycle − − −

Construction Vehicle 0/14 − 2/3
Bus 1/8 0/33 0/1

Motorcycle − 0/2 −
Overall 3/100 6/100 43/100

188

7.5 Conclusion

score baseline we detect 27 and with LMD 28 annotation errors. This observation is in
agreement with table 7.5, where CenterPoint achieves superior AuROC values compared
to PointPillars on the nuScenes test dataset. Supplementing the samples of our annotation
error proposal method shown above, we show additional proposals for the nuScenes test
dataset in fig. 7.10 and respectively for the KITTI test dataset in fig. 7.11.

7.5 Conclusion: Prediction Quality Estimation for Lidar
Object Detection

In this chapter we have introduced a purely post-processing-based uncertainty quantifica-
tion method (LMD). A post-processing module which is simple to fit and can be plugged
onto any pre-trained Lidar object detector allows for swift estimation of confidence (meta
classification) and localization precision (meta regression) in terms of IoUBEV at infer-
ence time. Our experiments show that separation of true and false predictions obtained
from LMD is sharper than that of the base detector. Statistical reliability is significantly
improved in terms of calibration of the obtained confidence scores and IoUBEV is esti-
mated to considerable precision at inference time, i.e., without knowledge of the ground
truth. In addition to statistical improvement in decision-making, we introduce a method
for detecting annotation errors in real-world datasets based on our uncertainty estimation
method. Error counts of hand-reviewed proposals which are shown for broadly used public
benchmark datasets suggest a highly beneficial industrial use case of our method beyond
improving prediction reliability.

189

7 Prediction Quality Estimation for Lidar Object Detection

Figure 7.10: Additional annotation error proposals on the nuScenes test dataset.

190

7.5 Conclusion

Figure 7.11: Additional annotation error proposals on the KITTI test dataset.

191

8
Conclusion and Outlook

In this thesis, we presented new approaches to quantify prediction uncertainty for deep
neural networks in object detection (chapters 3 and 7) and semantic segmentation (chap-
ter 4). The developed methods have some immediate applications in detecting prediction
errors (chapters 3, 4 and 7) like false positives and false negatives and the segmentation
of out-of-distribution objects (chapter 4). Additionally, secondary applications of uncer-
tainty quantification were also investigated. Such secondary applications of predictive
uncertainty quantification are active learning (chapter 5) and the automated detection of
label errors (chapters 6 and 7).

The following paragraphs contain relations and comparisons between the new insights
gained by the novel approaches in the presented studies. Starting from commonalities
and differences between the presented methods, we spotlight open questions and spaces
of interaction. With industrial use cases in mind we identify potential areas of future
research and follow-up work.

Uncertainty Quantification Methods. In chapter 3 we investigated the usage of loss
gradients computed per predicted instance in object detection as a measure or predictive
uncertainty. Gradient uncertainty can be seen as epistemic as discussed in section 3.3.1.2
which is supported by empirical findings already present in the literature. Investigations in
terms of meta classification and meta regression (cf. section 3.3.2) show that the proposed
method is on par with and oftentimes superior to sampling-based approaches. Confidence
scores from meta classification turn out to be well-calibrated since meta classification can
be regarded as multivariate re-calibration based on the training dataset of the meta clas-
sifier. The computation of loss gradients, while being computationally expensive, can be
shown to be still less computationally complex than sampling-based approaches which
can also be seen in explicit runtime measurements. The investigation of the theoretical
computational cost of instance-wise gradients in convolutional architectures led to insights
into efficient computations of gradients on a feature map level. These insights eventually
prompted the investigation of pixel-wise gradient scores in semantic segmentation in chap-
ter 4. The computation of pixel-wise gradients is achieved by the particularly simple form

193

8 Conclusion and Outlook

of the gradient for the last convolutional layer of a segmentation neural network. Our
investigations show that some gradient scores yield remarkably well-calibrated confidences
when evaluated pixel-wise, i.e., even without training a meta classifier on validation data.
When aggregated over segments in the same manner as in the MetaSeg framework, gra-
dient score heatmaps give rise to strong meta classifiers. Gradient scores have been found
to give rise to strong out-of-distribution detectors in previous work [69,132], so our inves-
tigation also contains a heavy focus on out-of-distribution segmentation. The proposed
method achieves high out-of-distribution recognition performance on the SegmentMeIfY-
ouCan benchmark. This is so especially when considering its small computational overhead
and absence of additional requirements like out-of-distribution data, specialized training
or architectural changes. Considering these discoveries and the recent emergence of OoD
detection in the object detection context opens the question whether gradient uncertainty
can be applied in this domain. For example, regarding the self-learning gradient of the
instance-wise classification loss might be applied in object detection to recognize OoD ob-
jects. Perhaps anchor-free object detection models are particularly well-suited to this task
due to their similarity to segmentation architectures. The approach presented in chapter 3
itself is likely less suited to this task due to the meta classifier being optimized to favor true
foreground instances. Note that the meta classifier is trained on in-distribution validation
data. When testing on data which has a large domain shift compared to this validation
data, deterioration of meta classification performance is to be expected due to the model’s
training bias. This can be presumed to influence meta classification performance and cali-
bration on segment level in semantic segmentation and also in object detection. Although
provably more efficient than sampling approaches, the implementation of computing gra-
dient uncertainty can come at large effort due to the complexity of the multi-criterial loss
function which is much simpler in semantic segmentation. Such an explicit implementa-
tion can be circumvented by computing gradients via the autograd framework which is,
in turn, slow when done instance-wise in an iterative manner. Then, gradient uncertainty
may be less beneficial in online supervision and more useful in offline applications like
active learning or as an additional input to meta classification applied in label error detec-
tion. These applications allow the combination of different sources of uncertainty which
also goes for the gradient heatmaps developed in chapter 4 as supplement for the MetaSeg
framework. While we have tested our uncertainty quantification methods with a focus on
everyday scene images and street scenes, they may find applications in other domains of
industrial importance such as medical imaging and robotics as well. Also, the true pixel-
wise learning gradient with respect to the ground truth may contain valuable information
for label error detection. Regions where training on potentially incorrect labels may lead
to large parameter updates may be well-suited candidates for label error proposals.

The proposed post-processing-based uncertainty quantification method for lidar object de-
tection presented in chapter 7 was inspired by the original MetaDetect framework which
was investigated as a baseline in chapter 3. Both approaches are conceptually similar
in that they use meta classification and meta regression on features which use the net-
work output before non-maximum suppression. However, LidarMetaDetect deals with the
peculiarities of object detection in point clouds. In addition to accessing features from
three-dimensional bounding boxes, also the information of the input that lies in the spatial

194

region of the prediction is inherently different. Whereas on camera images, the amount of
information from the input within a bounding box is always directly proportional to the
area of the bounding box (all pixels overlapping with the prediction), a variable number of
lidar points may fall into the three-dimensional volume of a predicted bounding box. This
allows for additional uncertainty scores which can be derived from the prediction and used
for meta classification. Comparing meta classification and meta regression results on the
KITTI dataset for the original MetaDetect and LidarMetaDetect, we see that the original
MetaDetect on camera images still achieves higher values in AuROC and R2. However,
there may be several reasons for this observation. Detecting two-dimensional bounding
boxes on camera images may be a much simpler task than lidar object detection. Further,
the base performance of the object detector may have an influence on both, meta classifica-
tion and meta regression. The latter part is not only connected to the network architecture
but also the training pipeline involving data augmentation, schedule and optimizer details.
Investigations into what kind of meta classification or meta regression model is most suit-
able, both the results in MetaDetect and in LidarMetaDetect agree that tree-based models
like random forests and gradient boosting models outperform linear models and shallow
neural networks. Our investigations involving an industrial proprietary dataset show that
LidarMetaDetect yields well-performing confidence scores on lidar object detections. This
suggests an industrial use case in the automotive sector for light-weight post-processing
mechanisms.

Uncertainty Queries in Active Learning for Object Detection. The develop-
ment of active learning strategies based on prediction uncertainty in object detection is
highly sensitive to hyperparameters such as IoU and confidence thresholds which deter-
mine the prediction. The reason for this is that commonly, uncertainty is meaningful
on the level of each predicted instance separately and the previously mentioned hyperpa-
rameters, therefore, quantify the uncertainties considered in the query mechanism. The
sandbox environment introduced in chapter 5 allows for quick prototyping, implementa-
tion and hyperparameter development of new active learning strategies. Especially with
increasing model and dataset complexity, the time reduction achieved makes ablation stud-
ies on vital parameters feasible. While the focus of the presented investigations was on
uncertainty-based query methods, other approaches such as diversity-based querying can
be investigated just the same. However, such methods have not been widely studied in the
context of object detection at the time of writing. The presented datasets are generated
from (E)MNIST ground truth and MS COCO background and follow certain sampling and
transformation prescriptions of foreground instances. This can, in principle, be modified
in order to steer the dataset by modelling it after desired criteria on the data distribution.
This way, for example, certain localization or class imbalances can be introduced into
the dataset in a controlled manner. The latter may be especially interesting in order to
understand the differences in query strategies between datasets when the object detection
architecture is fixed.

Identifying Label Errors in Object Detection Datasets. In chapter 6, we presented
a novel approach to detecting annotation errors in object detection datasets which uses
the loss function. In contrast, the approach in chapter 7 utilizing a meta classifier for

195

8 Conclusion and Outlook

lidar object detection is similar to previous work in semantic segmentation of camera
images [154]. Chapter 7 and [154] share similarities in using disagreements between meta
classifiers and the given ground truth as proposals, in descending order in the confidence
assigned. Note that the same can be done with MetaDetect in application to object
detection on camera images. However, the focus on predicted instances means that only
missing annotations or annotations with incorrect category can be expected to be found.
In special cases, an annotation box can be so badly localized that a prediction in its
vicinity counts as a false positive leading to the annotation error proposal. Incorrectly
given annotations (“spawned” annotations), are not found by purely prediction-based
methods such as the application of LidarMetaDetect. The KITTI dataset shows that
this is not an artificial problem since here, annotations are generated by tracking. Thus,
objects sometimes completely vanish visually from one frame to the next behind other
foreground instances while the annotations remain. In contrast, the loss-based method
has been shown to capture such spawned annotations since each ground truth annotation
generates a loss and can thus be regarded separately. Prediction-based methods can,
however, be modified to also involve matching ground truth annotations with predictions,
which requires to regard low-confidence predictions which was investigated in chapter 6 as
a baseline. Then, also spawned annotations can be detected, however, not as sharply as
via the loss approach. Both approaches, the one on camera images from chapter 6 and the
one on lidar point clouds from chapter 7, find numerous annotation errors in the KITTI
dataset which seem systematic. In both cases, instances that have a certain distance to
the ego car are not annotated, albeit that they are visible in the camera or lidar signal.
The success of both methods suggests potential industrial use cases in the automotive and
insurance branches. Based on the label error benchmark for camera images, the injection
of annotation errors into high quality datasets might provide a way to systematically learn
the detection of annotation errors with deep learning models For such a model, the injected
mismatch in the ground truth acts as the learning target.

196

List of Figures

2.1 Left : Schematic illustration of a fully connected layer mapping an input to
the layer output. Right : Schematic illustration of the architecture of an
MLP with two hidden layers of width 5 and two output neurons. 17

2.2 Illustration of the one-dimensional cross-correlation operation of a filter on
a sequence. 21

2.3 Illustration of the two-dimensional cross-correlation of a filter over a two-
dimensional feature map. 22

2.4 Illustration of the multichannel convolution layer mapping C = 3 in-going
feature maps to D = 2 out-going feature maps. 24

2.5 Convolutional ResNet block. 26

2.6 Left : Schematic depiction of an attention “block” involving the scaled dot-
product attention. Right : Illustration of the multi-head self attention mech-
anism. 27

2.7 Schematic depiction of the transformer block. 28

2.8 Left : Illustration of the image token embedding mechanism. Right : Illus-
tration of the shifting window mechanism. 29

2.9 Prediction error of an object detection model on a previously unseen test
sample. 38

2.10 Precision-recall curve with prediction samples. 45

2.11 ROC curve of a binary classifier with prediction samples. 47

2.12 Illustration of the ResNet50 architecture composed of a backbone network
which can also serve as a feature extractor and a classifier head. 48

2.13 Object detection ground truth annotation (left) and prediction (right). . . . 49

2.14 Quadratic prediction grid of size (5× 5) over a gray-padded input image. . 51

2.15 Illustration of the intersection over union localization quality estimate. . . . 52

2.16 Comparison of the L1 and L2 distance with the smooth L1 distance L1
sm,β

for different values of β. 56

197

List of Figures

2.17 Illustration of the YOLOv3 architecture. 59

2.18 Feature extraction based on a RPN proposal box in the RoI head. 61

2.19 Data for semantic segmentation including the original RGB image (top),
colorized pixel-wise category annotations (center) and predicted segmenta-
tion (bottom). 62

2.20 Schematic illustration of the DeepLabv3+ encoder-decoder architecture. . . 64

3.1 Object detection in a street scene. Top: DNN Score. Bottom: Meta classi-
fication confidence involving gradient features. 68

3.2 Meta classification and meta regression pipeline for object detection. 80

3.3 Schematic sketch of the baseline detection pipeline and the alternative
MetaFusion pipeline for an object detector. 82

3.4 Reliability plots of the Score (left) and meta classifiers for MD (center) and
GSfull (right). 83

3.5 Confidence violin plots divided into TP and FP for Score (left), GSfull (cen-
ter) and GSfull+MC+E+MD (right). 93

3.6 Scatter plots for samples of Score and meta regression based on MC dropout,
a deep ensemble, Meta Detect, gradient features GSfull and the combination
model MC+E+MD+GSfull. 94

3.7 Reliability diagrams for the Score and meta classifiers based on different
epistemic uncertainty features. 97

3.8 Meta classification for the class Pedestrian. 99

3.9 Score baseline and MetaFusion mean average precision. 99

4.1 Left : Semantic segmentation by a state-of-the-art deep neural network.
Right : Gradient uncertainty heatmap obtained by our method. 102

4.2 Schematic illustration of the computation of pixel-wise gradient norms for
a semantic segmentation network with a final convolution layer. 106

4.3 Segment-wise uncertainty evaluation results in terms of classification and
meta regression values. 115

4.4 Semantic segmentation prediction and gradient heatmap. 115

4.5 AuROC and R2 values for the different p-norms. 118

4.6 Ground truth, semantic segmentation prediction and gradient heatmaps for
different p-norms. 121

5.1 The generic pool-based AL cycle consisting of training on labeled data,
querying informative data points out of a pool of unlabeled data and anno-
tation by an oracle. 126

5.2 Generation scheme of semisynthetic object detection data. 127

5.3 Area under AL curve metric at different stages of an AL curve for two
different query strategies. 132

5.4 Dataset samples from the (a) MNIST-Det and (b) EMNIST-Det datasets
including annotations. 134

198

List of Figures

5.5 Comparison of YOLOv3 AL curves on three different datasets (Pascal VOC,
BDD100k, EMNIST-Det). Left : image-wise evaluation, right : box-wise
evaluation. 138

5.6 Curves of rank correlations between (a) the cumulative AUC and (b) the
final rankings at the 90% max performance mark. 141

5.7 Curves of rank correlations between (a) the cumulative AUC and (b) the
final rankings at the 90% max performance mark. 142

5.8 Ranking correlations between AUC values for different detectors. Left :
Image-wise; Right : Instance-wise evaluation. 143

5.9 Annotation examples showing all labeled bounding boxes on each image. . . 144
5.10 Ablation study on the aggregation method. 145
5.11 Utilized time for one AL step for investigated settings in hours. 146

6.1 (a) Example image from the Pascal VOC 2007 test dataset with multiple
unlabeled boats. (b) – (e) Examples of the different types of simulated label
errors. 151

6.2 Visualization of our instance-wise loss method for detecting label errors. . . 153
6.3 Illustration of the probabilistic statement about predicted confidences con-

ditioned to correct and incorrect given labels. 156
6.4 Example image from the CE test data with labels and a missing “Mirror-

Right”. 161
6.5 (a) Evaluations based on the predictions of a model trained on original

training data. (b) Evaluation based on noisy training data with γ = 0.2. . . 163
6.6 Visualization of detected label errors in real test datasets. 164
6.7 Visualization of further detected real label errors in test datasets for BDD

(top), COCO (center) and VOC (bottom). 169

7.1 Prediction of a Lidar point cloud object detector with the native object-
ness score (left) and LMD meta classifier scores (right) and corresponding
camera images. 172

7.2 Left : Illustration of the features counting Lidar points falling into a given
predicted box. Right : Schematic illustration of the proposal set Prop(̂bi)
for a given predicted box b̂i. 175

7.3 Schematic illustration of the LMD meta regression pipeline. 176
7.4 Strongest correlation coefficients for constructed box-wise features and the

IoUBEV. 178
7.5 Confusion matrix of a GB classifier for LMD. 183
7.6 Box-wise scatter plot of true IoUBEV and predicted IoUBEV values for LMD 183
7.7 Feature selection using a greedy heuristic. 184
7.8 Reliability plots of the score (left) and GB classifier for LMD (right) with

calibration errors (ECE , MCE). 185
7.9 Proposed label errors in nuScenes and KITTI. 186
7.10 Additional annotation error proposals on the nuScenes test dataset. 190
7.11 Additional annotation error proposals on the KITTI test dataset. 191

199

List of Tables

3.1 Upper bounds on FLOP and elementary function evaluations and post-
processing for sampling-based uncertainty quantification. 77

3.2 Number of layers and losses utilized and resulting numbers of gradients per
box. 84

3.3 Dataset splits used for training and evaluation of object detectors. 84
3.4 Ablation on the temperature parameter for the energy score in terms of

meta classification and meta regression. 89
3.5 Ablation on the sample count size for MC dropout in terms of meta classi-

fication and meta regression. 90
3.6 Ablation on the ensemble size for deep ensembles in terms of meta classifi-

cation and meta regression. 90
3.7 Ablation on the number of network layers used in terms of meta classifica-

tion and meta regression. 91
3.8 Meta classification performance per meta classifier input. 92
3.9 Meta regression performance per meta classifier input. 93
3.10 Meta classification and meta regression performance for different object

detection architectures. 95
3.11 Extended meta classification (AuROC and AP) and meta regression (R2)

performance results for the YOLOv3 odel. 96
3.12 Extended meta classification and meta regression performance results for

different object detection architectures. 96
3.13 Expected, maximum and average calibration errors per confidence model. . 98
3.14 Computation timing of different methods. 100

4.1 Pixel-wise uncertainty evaluation results. 113
4.2 Extended pixel-wise uncertainty evaluation results. 114
4.3 OoD segmentation benchmark results for the LostAndFound and the Road-

Obstacle21 dataset. 116

200

List of Tables

4.4 OoD segmentation benchmark results for the Fishyscapes LostAndFound
and the RoadAnomaly21 dataset. 116

4.5 Extended segment-wise uncertainty evaluation results. 117

4.6 OoD segmentation results for the LostAndFound and the RoadObstacle21
dataset. 119

4.7 OoD segmentation results for the Fishyscapes LostAndFound and the Road-
Anomaly21 dataset. 120

4.8 OoD segmentation results for the LostAndFound and the RoadObstacle21
dataset for different p-norms. 122

4.9 OoD segmentation results for the Fishyscapes LostAndFound and the Road-
Anomaly21 dataset for different p-norms. 123

4.10 OoD segmentation results for the LostAndFound and the Fishyscapes Lo-
stAndFound dataset for different p-norms and the second-to-last layer. . . . 124

4.11 Runtime measurements in seconds per frame for each method. 124

5.1 Exemplary object detection architectures with backbone configurations and
associated number of parameters. 129

5.2 Maximum mean average precision values achieved by models on the respec-
tive datasets. 133

5.3 Standard deviations of center coordinates, width and height bounding boxes,
as well, as number of categories in the training split for object detection
datasets. 133

5.4 Configuration of Darknet20 compared with Darknet53. 135

5.5 Overview of important AL hyperparameters for querying data and model
training for all datasets and architectures. 136

5.6 Amount of queried images and bounding boxes necessary to cross the 90%
performance mark during AL when using sum aggregation. 139

5.7 Mean average precision results per query method for maximal amount of
images selected. 140

5.8 Area under AL curve results per query method for maximal amount of data
selected. 140

6.1 Validation of object detection performance on our datasets. 159

6.2 Label error detection experiments with two different backbones. 160

6.3 Training hyperparameters for the Swin-T and the ResNeSt101 ((∗)) backbone.160

6.4 AuROC and max F1 values for loss, detection score (Score), entropy and
PD for all dataset-backbone-training label combinations. 165

6.5 Validation of object detection performance and label error detection exper-
iments for different noise in training data. 166

6.6 Validation of object detection performance and label error detection exper-
iments for different noise and number of images for training. 167

6.7 Categorization of the top-200 proposals for real label errors with the loss
method . 168

201

List of Tables

7.1 Strongest correlation coefficients for constructed box-wise features and IoUBEV:
KITTI. 178

7.2 Strongest correlation coefficients for constructed box-wise features and IoUBEV:
nuScenes. 179

7.3 Strongest correlation coefficients for constructed box-wise features and IoUBEV:
Aptiv. 179

7.4 Comparison of meta classification as well as meta regression performance
for different post-processing models. 180

7.5 Extended comparison of meta classification performance for different post-
processing models. 181

7.6 Extended comparison of meta regression performance for different post-
processing models. 181

7.7 Comparison of meta classification and meta regression performance for the
score baseline, bounding box features and LMD. 182

7.8 Extended feature selection for meta classification. 184
7.9 Extended feature selection for meta regression. 185
7.10 Comparison of detected annotation errors for the KITTI test dataset. . . . 187
7.11 Comparison of detected annotation errors for the nuScenes test dataset. . . 188

202

List of Notations

The following abbreviations and notations are used across all chapters:

N Set of natural numbers
R Set of real numbers

2.1 Statistical Learning Theory

(Ω,A ,Pr) Generic probability space
BX Borel-σ-algebra over X w.r.t. some metric
M1(Ω,A) Space of normalized (probability) measures over (Ω,A)
K (X ; (Y,AY)) Set of Markov kernels over (Y,AY) taking values in X
X Data/input space
Y Label/target space
x Vector in Rd for some d ∈ N
X,Y Random variables, X if vector-valued, (x, y) realizations
µX Push-forward measure of the random variable X
X ∼ µX X follows the probability distribution µX
EX∼µX Expectation operator over random variable X ∼ µX
χn Training sample {X1, . . . , Xn} of size n
d(·∥·),D(·∥·) Distance measures on M1 and K , respectively

f̂ Predictor function f̂ : X → Y
µ̂n Estimate measure given χn, {µ̂n}n∈N learning algorithm
H Hypothesis space of learning algorithm Hn := Img (µ̂n)
L (χn|ν) Likelihood of χn under ν

2.2 Deep Learning

[n] {1, . . . , n} for n ∈ N
[n : m] {n, n+ 1, . . . ,m− 1,m} for n < m ∈ N
H,W Height (# rows) and width (# columns) of an image
K ∗ ψ Convolution of filter K over feature map ψ
X Embedded vector X = (x1, . . . ,xn) of n tokens
Σ Softmax activation vector

203

List of Notations

Θ Parameter space Θ ⊆ Rq of model parameters θ ∈ Θ
Dθ “Total” differential with respect to variable θ
C(Id) Space of continuous functions over Id = [0, 1]d

M (Id) Space of regular signed measures over Id
Wn,k(Id) Space of Sobolev functions of regularity n and integrability k

∥ · ∥Lp Lebesgue norm ∥f∥Lp =
(∫

Rd ∥f(x)∥
p
p dx

)1/p
, f ∈ Lp(Rd;Rn)

2.3 Advanced Computer Vision Tasks

I Image pixels I = [H]× [W]
x, y,w,h Bounding box coordinates: center (x, y), size (w, h)
b Bounding box b = (ξ, κ) with ξ = (x, y,w, h) and

class κ ∈ [C]
π̂, ŝ Predicted class distribution π̂ = (π̂1, . . . , π̂C) and

objectness score ŝ

204

Bibliography

[1] M. Angus, K. Czarnecki, and R. Salay, Efficacy of Pixel-Level OOD Detection
for Semantic Segmentation, arXiv preprint arXiv:1911.02897, (2019).

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer Normalization, arXiv preprint
arXiv:1607.06450, (2016).

[3] V. Besnier, A. Bursuc, D. Picard, and A. Briot, Triggering Failures: Out-Of-
Distribution detection by learning from local adversarial attacks in Semantic Segmen-
tation, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, QC, Canada, Oct. 2021, IEEE, pp. 15681–15690.

[4] H. Blum, P.-E. Sarlin, J. Nieto, R. Siegwart, and C. Cadena, Fishyscapes:
A Benchmark for Safe Semantic Segmentation in Autonomous Driving, in 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
Seoul, Korea (South), Oct. 2019, IEEE, pp. 2403–2412.

[5] , The fishyscapes benchmark: Measuring blind spots in semantic segmentation,
International Journal of Computer Vision, 129 (2021), pp. 3119–3135.

[6] M.-R. Bouguelia, Y. Beläıd, and A. Beläıd, Identifying and mitigating la-
belling errors in active learning, in Pattern Recognition: Applications and Methods:
4th International Conference, ICPRAM 2015, Lisbon, Portugal, January 10-12, 2015,
Revised Selected Papers 4, Springer, 2015, pp. 35–51.

[7] M.-R. Bouguelia, S. Nowaczyk, KC. Santosh, and A. Verikas, Agreeing
to disagree: Active learning with noisy labels without crowdsourcing, International
Journal of Machine Learning and Cybernetics, 9 (2018), pp. 1307–1319.

[8] C.-A. Brust, C. Käding, and J. Denzler, Active Learning for Deep Object
Detection, arXiv preprint arXiv:1809.09875, (2018).

205

Bibliography

[9] S. Budd, E. C. Robinson, and B. Kainz, A survey on active learning and human-
in-the-loop deep learning for medical image analysis, Medical Image Analysis, 71
(2021), p. 102062.

[10] M. Büttner, L. Schneider, A. Krasowski, J. Krois, B. Feldberg, and
F. Schwendicke, Impact of noisy labels on dental deep Learning—Calculus detec-
tion on bitewing radiographs, Journal of Clinical Medicine, 12 (2023), p. 3058.

[11] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-
nan, Y. Pan, G. Baldan, and O. Beijbom, nuScenes: A Multimodal Dataset for
Autonomous Driving, in 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), Seattle, WA, USA, June 2020, IEEE, pp. 11618–11628.

[12] Z. Cai and N. Vasconcelos, Cascade R-CNN: Delving Into High Quality Ob-
ject Detection, in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, June 2018, IEEE, pp. 6154–6162.

[13] S. Chadwick and P. Newman, Training object detectors with noisy data, in 2019
IEEE Intelligent Vehicles Symposium (IV), IEEE, 2019, pp. 1319–1325.

[14] R. Chan, K. Lis, S. Uhlemeyer, H. Blum, S. Honari, R. Siegwart, P. Fua,
M. Salzmann, and M. Rottmann, SegmentMeIfYouCan: A benchmark for
anomaly segmentation, in Proceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks, J. Vanschoren and S. Yeung, eds., vol. 1,
Curran, 2021.

[15] R. Chan, M. Rottmann, and H. Gottschalk, Entropy Maximization and Meta
Classification for Out-of-Distribution Detection in Semantic Segmentation, in 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, Oct. 2021, IEEE, pp. 5108–5117.

[16] R. Chan, M. Rottmann, F. Huger, P. Schlicht, and H. Gottschalk, Con-
trolled False Negative Reduction of Minority Classes in Semantic Segmentation, in
2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United
Kingdom, July 2020, IEEE, pp. 1–8.

[17] H. Chen, Y. Huang, W. Tian, Z. Gao, and L. Xiong, MonoRUn: Monocu-
lar 3D Object Detection by Reconstruction and Uncertainty Propagation, in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, June 2021, IEEE, pp. 10374–10383.

[18] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng,
Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li,
X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy,
and D. Lin, MMDetection: Open MMLab detection toolbox and benchmark, arXiv
preprint arXiv:1906.07155, (2019).

[19] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, Rethinking Atrous
Convolution for Semantic Image Segmentation, arXiv preprint arXiv:1706.05587,
(2017).

206

Bibliography

[20] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-
Decoder with Atrous Separable Convolution for Semantic Image Segmentation, in
Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, eds., vol. 11211, Springer International Publishing, Cham, 2018, pp. 833–
851.

[21] P. Chen, B. B. Liao, G. Chen, and S. Zhang, Understanding and utilizing deep
neural networks trained with noisy labels, in International Conference on Machine
Learning, PMLR, 2019, pp. 1062–1070.

[22] T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, San Francisco California USA, Aug. 2016, ACM, pp. 785–794.

[23] J. Choi, I. Elezi, H.-J. Lee, C. Farabet, and J. M. Alvarez, Active Learning
for Deep Object Detection via Probabilistic Modeling, in 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), Montreal, QC, Canada, Oct. 2021,
IEEE, pp. 10244–10253.

[24] F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, in
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hon-
olulu, HI, July 2017, IEEE, pp. 1800–1807.

[25] G. Citovsky, G. DeSalvo, C. Gentile, L. Karydas, A. Rajagopalan,
A. Rostamizadeh, and S. Kumar, Batch active learning at scale, Advances in
Neural Information Processing Systems, 34 (2021), pp. 11933–11944.

[26] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, EMNIST: Extending
MNIST to handwritten letters, in 2017 International Joint Conference on Neural
Networks (IJCNN), May 2017, pp. 2921–2926.

[27] C. Corbière, N. Thome, A. Bar-Hen, M. Cord, and P. Pérez, Address-
ing failure prediction by learning model confidence, Advances in Neural Information
Processing Systems, 32 (2019).

[28] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, The Cityscapes Dataset for Semantic
Urban Scene Understanding, in 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Las Vegas, NV, USA, June 2016, IEEE, pp. 3213–3223.

[29] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathemat-
ics of control, signals and systems, 2 (1989), pp. 303–314.

[30] I. Dagan and S. P. Engelson, Committee-based sampling for training probabilistic
classifiers, in Machine Learning Proceedings 1995, Elsevier, 1995, pp. 150–157.

[31] J. Denker and Y. LeCun, Transforming neural-net output levels to probability
distributions, Advances in neural information processing systems, 3 (1990).

207

Bibliography

[32] S. V. Desai, A. C. Lagandula, W. Guo, S. Ninomiya, and V. N. Balasubra-
manian, An adaptive supervision framework for active learning in object detection,
in Proceedings of the British Machine Vision Conference (BMVC), K. Sidorov and
Y. Hicks, eds., BMVA Press, Sept. 2019, pp. 177.1–177.13.

[33] T. DeVries and G. W. Taylor, Leveraging Uncertainty Estimates for Predicting
Segmentation Quality, arXiv preprint arXiv:1807.00502, (2018).

[34] G. Di Biase, H. Blum, R. Siegwart, and C. Cadena, Pixel-wise Anomaly
Detection in Complex Driving Scenes, in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, June 2021, IEEE,
pp. 16913–16922.

[35] M. Dickinson and D. Meurers, Detecting errors in part-of-speech annotation,
in 10th Conference of the European Chapter of the Association for Computational
Linguistics, 2003.

[36] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, An image is worth 16x16 words: Transformers
for image recognition at scale, in 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net,
2021.

[37] I. Elezi, Z. Yu, A. Anandkumar, L. Leal-Taixe, and J. M. Alvarez, Not All
Labels Are Equal: Rationalizing The Labeling Costs for Training Object Detection, in
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, June 2022, IEEE, pp. 14472–14481.

[38] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, The Pascal Visual Object Classes (VOC) Challenge, International Journal of
Computer Vision, 88 (2010), pp. 303–338.

[39] A. Farhadi and J. Redmon, Yolov3: An incremental improvement, in Computer
Vision and Pattern Recognition, vol. 1804, Springer Berlin/Heidelberg, Germany,
2018, pp. 1–6.

[40] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Glaeser,
F. Timm, W. Wiesbeck, and K. Dietmayer, Deep multi-modal object detec-
tion and semantic segmentation for autonomous driving: Datasets, methods, and
challenges, IEEE Transactions on Intelligent Transportation Systems, 22 (2020),
pp. 1341–1360.

[41] D. Feng, L. Rosenbaum, and K. Dietmayer, Towards Safe Autonomous Driv-
ing: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detec-
tion, in 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), Nov. 2018, pp. 3266–3273.

208

Bibliography

[42] D. Feng, L. Rosenbaum, C. Glaeser, F. Timm, and K. Dietmayer, Can
We Trust You? On Calibration of a Probabilistic Object Detector for Autonomous
Driving, arXiv preprint arXiv:1909.12358, (2019).

[43] D. Feng, L. Rosenbaum, F. Timm, and K. Dietmayer, Leveraging Het-
eroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detec-
tion, in 2019 IEEE Intelligent Vehicles Symposium (IV), June 2019, pp. 1280–1287.

[44] D. Feng, Z. Wang, Y. Zhou, L. Rosenbaum, F. Timm, K. Dietmayer,
M. Tomizuka, and W. Zhan, Labels are not perfect: Inferring spatial uncer-
tainty in object detection, IEEE Transactions on Intelligent Transportation Systems,
(2021).

[45] Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing
model uncertainty in deep learning, in International Conference on Machine Learn-
ing, PMLR, 2016, pp. 1050–1059.

[46] A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving?
The KITTI vision benchmark suite, in 2012 IEEE Conference on Computer Vision
and Pattern Recognition, June 2012, pp. 3354–3361.

[47] R. Girshick, Fast R-CNN, in 2015 IEEE International Conference on Computer
Vision (ICCV), Dec. 2015, pp. 1440–1448.

[48] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies
for accurate object detection and semantic segmentation, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[49] J. Goldberger and E. Ben-Reuven, Training deep neural-networks using a noise
adaptation layer, in International Conference on Machine Learning, 2017.

[50] I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing
adversarial examples, arXiv preprint arXiv:1412.6572, (2014).

[51] H. Gottschalk, Hochdimensionale Wahrscheinlichkeitstheorie Und Maschinelles
Lernen, Private Communications.

[52] W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, M. Norouzi,
and K. Swersky, Your classifier is secretly an energy based model and you should
treat it like one, in International Conference on Learning Representations, 2020.

[53] M. Grcić, P. Bevandić, Z. Kalafatić, and S. Šegvić, Dense anomaly detec-
tion by robust learning on synthetic negative data, arXiv preprint arXiv:2112.12833,
(2021).

[54] M. Grcić, P. Bevandić, and S. Šegvić, Densehybrid: Hybrid anomaly detection
for dense open-set recognition, in Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXV, Springer,
2022, pp. 500–517.

209

Bibliography

[55] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, On calibration of modern
neural networks, in International Conference on Machine Learning, PMLR, 2017,
pp. 1321–1330.

[56] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama,
Co-teaching: Robust training of deep neural networks with extremely noisy labels,
Advances in neural information processing systems, 31 (2018).

[57] A. Harakeh, M. Smart, and S. L. Waslander, BayesOD: A Bayesian Approach
for Uncertainty Estimation in Deep Object Detectors, in 2020 IEEE International
Conference on Robotics and Automation (ICRA), May 2020, pp. 87–93.

[58] E. Haussmann, M. Fenzi, K. Chitta, J. Ivanecky, H. Xu, D. Roy, A. Mit-
tel, N. Koumchatzky, C. Farabet, and J. M. Alvarez, Scalable Active Learn-
ing for Object Detection, in 2020 IEEE Intelligent Vehicles Symposium (IV), Oct.
2020, pp. 1430–1435.

[59] M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek, B. Lakshmi-
narayanan, A. M. Dai, and D. Tran, Training independent subnetworks for
robust prediction, in International Conference on Learning Representations, 2021.

[60] J. He and J. Xu, MgNet: A Unified Framework of Multigrid and Convolutional
Neural Network, Science China Mathematics, 62 (2019), pp. 1331–1354.

[61] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, June 2016, IEEE, pp. 770–778.

[62] D. Hendrycks and K. Gimpel, A baseline for detecting misclassified and out-of-
distribution examples in neural networks, in 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, OpenReview.net, 2017.

[63] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, Using trusted data
to train deep networks on labels corrupted by severe noise, Advances in neural infor-
mation processing systems, 31 (2018).

[64] K. Hoebel, V. Andrearczyk, A. Beers, J. Patel, K. Chang, A. De-
peursinge, H. Müller, and J. Kalpathy-Cramer, An exploration of uncer-
tainty information for segmentation quality assessment, Medical Imaging 2020: Im-
age Processing, 11313 (2020), p. 113131K.

[65] J. Hornauer and V. Belagiannis, Gradient-Based Uncertainty for Monocu-
lar Depth Estimation, in Computer Vision – ECCV 2022, S. Avidan, G. Brostow,
M. Cissé, G. M. Farinella, and T. Hassner, eds., vol. 13680, Springer Nature Switzer-
land, Cham, 2022, pp. 613–630.

[66] J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–
7141.

210

Bibliography

[67] Z. Hu, K. Gao, X. Zhang, J. Wang, H. Wang, and J. Han, Probability
differential-based class label noise purification for object detection in aerial images,
IEEE Geoscience and Remote Sensing Letters, 19 (2022), pp. 1–5.

[68] C. Huang, Q. Wu, and F. Meng, Qualitynet: Segmentation quality evaluation
with deep convolutional networks, in 2016 Visual Communications and Image Pro-
cessing (VCIP), IEEE, 2016, pp. 1–4.

[69] R. Huang, A. Geng, and Y. Li, On the importance of gradients for detecting
distributional shifts in the wild, Advances in Neural Information Processing Systems,
34 (2021), pp. 677–689.

[70] E. Hüllermeier and W. Waegeman, Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods, Machine Learning, 110
(2021), pp. 457–506.

[71] R. Hussain and S. Zeadally, Autonomous cars: Research results, issues, and
future challenges, IEEE Communications Surveys & Tutorials, 21 (2018), pp. 1275–
1313.

[72] E. Ilg, Ö. Çiçek, S. Galesso, A. Klein, O. Makansi, F. Hutter, and
T. Brox, Uncertainty Estimates and Multi-hypotheses Networks for Optical Flow,
in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, eds., vol. 11211, Springer International Publishing, Cham, 2018, pp. 677–
693.

[73] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, in International Conference on Machine
Learning, pmlr, 2015, pp. 448–456.

[74] P. Jaccard, The distribution of the flora in the alpine zone, The New Phytologist,
11 (1912), pp. 37–50.

[75] P. F. Jaeger, S. A. Kohl, S. Bickelhaupt, F. Isensee, T. A. Kuder, H.-
P. Schlemmer, and K. H. Maier-Hein, Retina U-Net: Embarrassingly simple
exploitation of segmentation supervision for medical object detection, in Machine
Learning for Health Workshop, PMLR, 2020, pp. 171–183.

[76] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang, Acquisition of Localiza-
tion Confidence for Accurate Object Detection, in Computer Vision – ECCV 2018,
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, eds., vol. 11218, Springer
International Publishing, Cham, 2018, pp. 816–832.

[77] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels, in Inter-
national Conference on Machine Learning, PMLR, 2018, pp. 2304–2313.

211

Bibliography

[78] D. Kang, N. Arechiga, S. Pillai, P. D. Bailis, and M. Zaharia, Finding
label and model errors in perception data with learned observation assertions, in
Proceedings of the 2022 International Conference on Management of Data, 2022,
pp. 496–505.

[79] A. Kaur, Y. Singh, N. Neeru, L. Kaur, and A. Singh, A survey on deep
learning approaches to medical images and a systematic look up into real-time object
detection, Archives of Computational Methods in Engineering, (2021), pp. 1–41.

[80] A. Kendall and Y. Gal, What uncertainties do we need in bayesian deep learning
for computer vision?, Advances in neural information processing systems, 30 (2017).

[81] S. C. Kleene et al., Representation of events in nerve nets and finite automata,
Automata studies, 34 (1956), pp. 3–41.

[82] A. Klenke, Probability Theory: A Comprehensive Course, Universitext, Springer,
London, 2014.

[83] A. Koksal, K. G. Ince, and A. Alatan, Effect of annotation errors on drone
detection with YOLOv3, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 1030–1031.

[84] K. Kowol., M. Rottmann., S. Bracke., and H. Gottschalk., YOdar:
Uncertainty-based sensor fusion for vehicle detection with camera and radar sen-
sors, in Proceedings of the 13th International Conference on Agents and Artificial
Intelligence - Volume 2: ICAART,, SciTePress / INSTICC, 2021, pp. 177–186.

[85] F. Kraus and K. Dietmayer, Uncertainty Estimation in One-Stage Object De-
tection, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Oct.
2019, pp. 53–60.

[86] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with
deep convolutional neural networks, Communications of the ACM, 60 (2017), pp. 84–
90.

[87] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, A survey of deep
learning applications to autonomous vehicle control, IEEE Transactions on Intelli-
gent Transportation Systems, 22 (2020), pp. 712–733.

[88] B. Lakshminarayanan, A. Pritzel, and C. Blundell, Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles.

[89] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, Point-
Pillars: Fast Encoders for Object Detection From Point Clouds, in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, June 2019, IEEE, pp. 12689–12697.

[90] M. T. Le, F. Diehl, T. Brunner, and A. Knoll, Uncertainty Estimation
for Deep Neural Object Detectors in Safety-Critical Applications, in 2018 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC), Nov. 2018,
pp. 3873–3878.

212

Bibliography

[91] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, Backpropagation applied to handwritten zip code recog-
nition, Neural computation, 1 (1989), pp. 541–551.

[92] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE, 86 (1998), pp. 2278–2324.

[93] Lee, Jinsol, M. Prabhushankar, and G. AlRegib, Gradient-based adversarial
and out-of-distribution detection, in International Conference on Machine Learning
(ICML) Workshop on New Frontiers in Adversarial Machine Learning, 2022.

[94] H. J. Lee, S. T. Kim, H. Lee, N. Navab, and Y. M. Ro, Efficient ensemble
model generation for uncertainty estimation with Bayesian approximation in seg-
mentation, arXiv preprint arXiv:2005.10754, (2020).

[95] K. Lee, K. Lee, H. Lee, and J. Shin, A simple unified framework for detecting
out-of-distribution samples and adversarial attacks, Advances in neural information
processing systems, 31 (2018).

[96] D. D. Lewis and J. Catlett, Heterogeneous Uncertainty Sampling for Supervised
Learning, in Machine Learning Proceedings 1994, Elsevier, 1994, pp. 148–156.

[97] H. Li, Z. Wu, C. Zhu, C. Xiong, R. Socher, and L. S. Davis, Learning
from noisy anchors for one-stage object detection, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 10588–10597.

[98] M. Li and I. Sethi, Confidence-based active learning, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 28 (2006), pp. 1251–1261.

[99] S. Liang, Y. Li, and R. Srikant, Enhancing the reliability of out-of-distribution
image detection in neural networks, in International Conference on Learning Repre-
sentations, 2018.

[100] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
Feature Pyramid Networks for Object Detection, in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Honolulu, HI, July 2017, IEEE,
pp. 936–944.

[101] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense
object detection, in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 2980–2988.

[102] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, Microsoft COCO: Common objects in context,
in European Conference on Computer Vision, Springer, 2014, pp. 740–755.

[103] W.-H. Lin and A. Hauptmann, Meta-classification: Combining Multimodal Clas-
sifiers, in Mining Multimedia and Complex Data, O. R. Zäıane, S. J. Simoff, and
C. Djeraba, eds., Lecture Notes in Computer Science, Berlin, Heidelberg, 2003,
Springer, pp. 217–231.

213

Bibliography

[104] K. Lis, S. Honari, P. Fua, and M. Salzmann, Detecting Road Obstacles by
Erasing Them, arXiv preprint arXiv:2012.13633, (2021).

[105] K. Lis, K. K. Nakka, P. Fua, and M. Salzmann, Detecting the Unexpected
via Image Resynthesis, in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), Seoul, Korea (South), Oct. 2019, IEEE, pp. 2152–2161.

[106] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, SSD: Single Shot MultiBox Detector, vol. 9905, 2016, pp. 21–37.

[107] W. Liu, X. Wang, J. Owens, and Y. Li, Energy-based out-of-distribution detec-
tion, Advances in neural information processing systems, 33 (2020), pp. 21464–21475.

[108] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, in 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, Oct. 2021, IEEE, pp. 9992–10002.

[109] Z. Lyu, N. Gutierrez, A. Rajguru, and W. J. Beksi, Probabilistic object
detection via deep ensembles, in Computer Vision–ECCV 2020 Workshops: Glasgow,
UK, August 23–28, 2020, Proceedings, Part VI 16, Springer, 2020, pp. 67–75.

[110] K. Maag, False Negative Reduction in Video Instance Segmentation using Uncer-
tainty Estimates, in 2021 IEEE 33rd International Conference on Tools with Artifi-
cial Intelligence (ICTAI), Nov. 2021, pp. 1279–1286.

[111] K. Maag, R. Chan, S. Uhlemeyer, K. Kowol, and H. Gottschalk, Two
Video Data Sets for Tracking and Retrieval of Out of Distribution Objects, in Com-
puter Vision – ACCV 2022, L. Wang, J. Gall, T.-J. Chin, I. Sato, and R. Chellappa,
eds., vol. 13845, Springer Nature Switzerland, Cham, 2023, pp. 476–494.

[112] K. Maag and T. Riedlinger, Pixel-wise gradient uncertainty for convolutional
neural networks applied to out-of-distribution segmentation, arXiv preprint arXiv:
2303.06920, (2023).

[113] K. Maag, M. Rottmann, and H. Gottschalk, Time-Dynamic Estimates of
the Reliability of Deep Semantic Segmentation Networks, in 2020 IEEE 32nd In-
ternational Conference on Tools with Artificial Intelligence (ICTAI), Nov. 2020,
pp. 502–509.

[114] K. Maag, M. Rottmann, S. Varghese, F. Hüger, P. Schlicht, and
H. Gottschalk, Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates, in 2021 International Joint Conference on Neural Networks
(IJCNN), July 2021, pp. 1–8.

[115] D. J. C. MacKay, A Practical Bayesian Framework for Backpropagation Networks,
Neural Computation, 4 (1992), pp. 448–472.

[116] A. Malinin and M. Gales, Predictive uncertainty estimation via prior networks,
Advances in neural information processing systems, 31 (2018).

214

Bibliography

[117] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in
nervous activity, The bulletin of mathematical biophysics, 5 (1943), pp. 115–133.

[118] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K.
Wellington, LaserNet: An Efficient Probabilistic 3D Object Detector for Au-
tonomous Driving, in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, June 2019, IEEE, pp. 12669–12678.

[119] G. P. Meyer and N. Thakurdesai, Learning an Uncertainty-Aware Object De-
tector for Autonomous Driving, in 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Oct. 2020, pp. 10521–10527.

[120] D. Miller, F. Dayoub, M. Milford, and N. Sünderhauf, Evaluating Merging
Strategies for Sampling-based Uncertainty Techniques in Object Detection, in 2019
International Conference on Robotics and Automation (ICRA), May 2019, pp. 2348–
2354.

[121] D. Miller, L. Nicholson, F. Dayoub, and N. Sünderhauf, Dropout Sampling
for Robust Object Detection in Open-Set Conditions, in 2018 IEEE International
Conference on Robotics and Automation (ICRA), May 2018, pp. 3243–3249.

[122] D. Miller, N. Sünderhauf, H. Zhang, D. Hall, and F. Dayoub, Bench-
marking sampling-based probabilistic object detectors., in CVPR Workshops, vol. 3,
2019, p. 6.

[123] MMDetection3D Contributors, OpenMMLab’s Next-generation Platform for
General 3D Object Detection, July 2020.

[124] J. Mukhoti and Y. Gal, Evaluating Bayesian Deep Learning Methods for Seman-
tic Segmentation, arXiv preprint arXiv:1811.12709, (2019).

[125] K. P. Murphy, Probabilistic Machine Learning: An Introduction, MIT Press, Mar.
2022.

[126] M. P. Naeini, G. Cooper, and M. Hauskrecht, Obtaining well calibrated prob-
abilities using bayesian binning, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, 2015.

[127] I. Namatēvs, L. Aleksejeva, and I. Poļaka, Neural network modelling for
sports performance classification as a complex socio-technical system, Information
Technology and Management Science, 19 (2016), pp. 45–52.

[128] L. Neumann, A. Zisserman, and A. Vedaldi, Relaxed softmax: Efficient confi-
dence auto-calibration for safe pedestrian detection, in Machine Learning for Intelli-
gent Transportation Systems Workshop, NIPS, 2018.

[129] H. T. Nguyen and A. Smeulders, Active learning using pre-clustering, in Pro-
ceedings of the Twenty-First International Conference on Machine Learning, 2004,
p. 79.

215

Bibliography

[130] C. Northcutt, L. Jiang, and I. Chuang, Confident learning: Estimating un-
certainty in dataset labels, Journal of Artificial Intelligence Research, 70 (2021),
pp. 1373–1411.

[131] C. G. Northcutt, A. Athalye, and J. Mueller, Pervasive label errors in
test sets destabilize machine learning benchmarks, arXiv preprint arXiv:2103.14749,
(2021).

[132] P. Oberdiek, M. Rottmann, and H. Gottschalk, Classification uncertainty of
deep neural networks based on gradient information, in Artificial Neural Networks in
Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, Septem-
ber 19–21, 2018, Proceedings 8, Springer, 2018, pp. 113–125.

[133] J. A. Pandian, V. D. Kumar, O. Geman, M. Hnatiuc, M. Arif, and K. Kan-
chanadevi, Plant disease detection using deep convolutional neural network, Ap-
plied Sciences, 12 (2022), p. 6982.

[134] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari, Training
Object Class Detectors with Click Supervision, in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Honolulu, HI, July 2017, IEEE,
pp. 180–189.

[135] J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Ruben-
stein, Animal population censusing at scale with citizen science and photographic
identification, in AAAI Spring Symposium-Technical Report, 2017.

[136] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-
Performance Deep Learning Library.

[137] P. Pinggera, S. Ramos, S. Gehrig, U. Franke, C. Rother, and R. Mester,
Lost and Found: Detecting small road hazards for self-driving vehicles, in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct.
2016, pp. 1099–1106.

[138] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Nu-
merica, 8 (1999), pp. 143–195.

[139] M. Pitropov, C. Huang, V. Abdelzad, K. Czarnecki, and S. Waslander,
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object De-
tection, in 2022 IEEE Intelligent Vehicles Symposium (IV), June 2022, pp. 813–820.

[140] L. Plaza, Collision Between Vehicle Controlled by Developmental Automated Driv-
ing System and Pedestrian, Tempe, Arizona, March 18, 2018.

216

Bibliography

[141] T. Ramalho and M. Miranda, Density estimation in representation space to
predict model uncertainty, in Engineering Dependable and Secure Machine Learning
Systems: Third International Workshop, EDSMLS 2020, New York City, NY, USA,
February 7, 2020, Revised Selected Papers 3, Springer, 2020, pp. 84–96.

[142] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once:
Unified, Real-Time Object Detection, in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016, IEEE, pp. 779–
788.

[143] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich,
Training deep neural networks on noisy labels with bootstrapping, arXiv preprint
arXiv:1412.6596, (2014).

[144] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39 (2017), pp. 1137–1149.

[145] T. Riedlinger, M. Rottmann, M. Schubert, and H. Gottschalk, Gradient-
Based Quantification of Epistemic Uncertainty for Deep Object Detectors, in 2023
IEEE/ CVF Winter Conference on Applications of Computer Vision (WACV), Wai-
koloa, HI, USA, Jan. 2023, IEEE, pp. 3910–3920.

[146] T. Riedlinger, M. Schubert, K. Kahl, H. Gottschalk, and M. Rottmann,
Towards rapid prototyping and comparability in active learning for deep object de-
tection, arXiv preprint arXiv:2212.10836, (2022).

[147] T. Riedlinger, M. Schubert, K. Kahl, and M. Rottmann, Uncertainty quan-
tification for object detection: Output-and gradient-based approaches, in Deep Neural
Networks and Data for Automated Driving, Springer, Cham, 2022, pp. 251–275.

[148] T. Riedlinger, M. Schubert, S. Penquitt, J. Kezmann, P. Colling, K.
Kahl, L. Roese-Koerner, M. Arnold, U. Zimmermann, and M. Rottmann,
LMD: Light-weight Prediction Quality Estimation for Object Detection in Lidar
Point Clouds, June 2023.

[149] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks
for Biomedical Image Segmentation, in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and
A. F. Frangi, eds., Lecture Notes in Computer Science, Cham, 2015, Springer Inter-
national Publishing, pp. 234–241.

[150] F. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain., Psychological review, 65 (1958), p. 386.

[151] R. Rothe, M. Guillaumin, and L. Van Gool, Non-maximum Suppression for
Object Detection by Passing Messages Between Windows, in Computer Vision –
ACCV 2014, D. Cremers, I. Reid, H. Saito, and M.-H. Yang, eds., vol. 9003, Springer
International Publishing, Cham, 2015, pp. 290–306.

217

Bibliography

[152] M. Rottmann, P. Colling, T. Paul Hack, R. Chan, F. Hüger, P. Schlicht,
and H. Gottschalk, Prediction Error Meta Classification in Semantic Segmenta-
tion: Detection via Aggregated Dispersion Measures of Softmax Probabilities, in 2020
International Joint Conference on Neural Networks (IJCNN), July 2020, pp. 1–9.

[153] M. Rottmann, K. Maag, R. Chan, F. Hüger, P. Schlicht, and
H. Gottschalk, Detection of False Positive and False Negative Samples in Se-
mantic Segmentation, in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Mar. 2020, pp. 1351–1356.

[154] M. Rottmann and M. Reese, Automated detection of label errors in semantic seg-
mentation datasets via deep learning and uncertainty quantification, in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023,
pp. 3214–3223.

[155] M. Rottmann and M. Schubert, Uncertainty Measures and Prediction Quality
Rating for the Semantic Segmentation of Nested Multi Resolution Street Scene Im-
ages, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Long Beach, CA, USA, June 2019, IEEE, pp. 1361–1369.

[156] S. Roy, A. Unmesh, and V. P. Namboodiri, Deep active learning for object
detection., in BMVC, vol. 362, 2018, p. 91.

[157] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual
recognition challenge, International journal of computer vision, 115 (2015), pp. 211–
252.

[158] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, How does batch normal-
ization help optimization?, Advances in neural information processing systems, 31
(2018).

[159] T. Scheffer, C. Decomain, and S. Wrobel, Active hidden markov models for
information extraction, in Advances in Intelligent Data Analysis: 4th International
Conference, IDA 2001 Cascais, Portugal, September 13–15, 2001 Proceedings 4,
Springer, 2001, pp. 309–318.

[160] S. Schmidt, Q. Rao, J. Tatsch, and A. Knoll, Advanced Active Learning
Strategies for Object Detection, in 2020 IEEE Intelligent Vehicles Symposium (IV),
Oct. 2020, pp. 871–876.

[161] M. Schubert, K. Kahl, and M. Rottmann, MetaDetect: Uncertainty Quantifi-
cation and Prediction Quality Estimates for Object Detection, in 2021 International
Joint Conference on Neural Networks (IJCNN), July 2021, pp. 1–10.

[162] M. Schubert, T. Riedlinger, K. Kahl, D. Kröll, S. Schoenen, S. Šegvić,
and M. Rottmann, Identifying label errors in object detection datasets by loss
inspection, arXiv preprint arXiv:2303.06999, (2023).

218

Bibliography

[163] O. Sener and S. Savarese, Active learning for convolutional neural networks: A
core-set approach, in International Conference on Learning Representations, 2018.

[164] B. Settles, Active learning literature survey, Machine Learning, 15 (1994), pp. 201–
221.

[165] H. S. Seung, M. Opper, and H. Sompolinsky, Query by committee, in Pro-
ceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992,
pp. 287–294.

[166] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms, Cambridge University Press, first ed., May 2014.

[167] C. E. Shannon, A mathematical theory of communication, The Bell System Tech-
nical Journal, 27 (1948), pp. 379–423.

[168] S. Sinha, S. Ebrahimi, and T. Darrell, Variational Adversarial Active Learn-
ing, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Korea (South), Oct. 2019, IEEE, pp. 5971–5980.

[169] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, Dropout: A Simple Way to Prevent Neural Networks from Overfitting.

[170] N. St̊ahl, G. Falkman, A. Karlsson, and G. Mathiason, Evaluation of un-
certainty quantification in deep learning, in Information Processing and Management
of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU
2020, Lisbon, Portugal, June 15–19, 2020, Proceedings, Part I 18, Springer, 2020,
pp. 556–568.

[171] T. D. Stanley and S. B. Jarrell, Meta-Regression Analysis: A Quantitative
Method of Literature Surveys, Journal of Economic Surveys, 19 (2005), pp. 299–308.

[172] A. Subramanian and A. Subramanian, One-Click Annotation with Guided Hi-
erarchical Object Detection, arXiv preprint arXiv:1810.00609, (2018).

[173] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, Revisiting unreasonable
effectiveness of data in deep learning era, in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 843–852.

[174] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Good-
fellow, and R. Fergus, Intriguing properties of neural networks, in 2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, Y. Bengio and Y. LeCun, eds.,
2014.

[175] A. Thyagarajan, E. Snorrason, C. Northcutt, and J. Mueller, Identifying
incorrect annotations in multi-label classification data, arXiv preprint 2211.13895,
(2022).

219

Bibliography

[176] Y. Tian, Y. Liu, G. Pang, F. Liu, Y. Chen, and G. Carneiro, Pixel-wise
energy-biased abstention learning for anomaly segmentation on complex urban driv-
ing scenes, in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXXIX, Springer, 2022, pp. 246–263.

[177] A. Tsvigun, A. Shelmanov, G. Kuzmin, L. Sanochkin, D. Larionov, G. Gu-
sev, M. Avetisian, and L. Zhukov, Towards computationally feasible deep active
learning, in Findings of the Association for Computational Linguistics: NAACL
2022, 2022, pp. 1198–1218.

[178] D. Ulyanov, A. Vedaldi, and V. Lempitsky, Instance Normalization: The
Missing Ingredient for Fast Stylization, arXiv preprint arXiv:1607.08022, (2017).

[179] M. Valdenegro-Toro, Deep sub-ensembles for fast uncertainty estimation in im-
age classification, arXiv preprint arXiv:1910.08168, (2019).

[180] R. Van Handel, Probability in high dimension, tech. rep., PRINCETON UNIV
NJ, 2014.

[181] V. T. Vasudevan, A. Sethy, and A. R. Ghias, Towards better confidence esti-
mation for neural models, in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, pp. 7335–7339.

[182] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, Attention is All you Need.

[183] T. Vojir, T. Sipka, R. Aljundi, N. Chumerin, D. O. Reino, and J. Matas,
Road Anomaly Detection by Partial Image Reconstruction with Segmentation Cou-
pling, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, QC, Canada, Oct. 2021, IEEE, pp. 15631–15640.

[184] S. Wallelign, M. Polceanu, and C. Buche, Soybean plant disease identification
using convolutional neural network., in FLAIRS Conference, 2018, pp. 146–151.

[185] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu,
M. Tan, X. Wang, W. Liu, and B. Xiao, Deep High-Resolution Representa-
tion Learning for Visual Recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43 (2021), pp. 3349–3364.

[186] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, Symmetric cross
entropy for robust learning with noisy labels, in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 2019, pp. 322–330.

[187] YNT. Wang, A. Coates, A. Bissacco, B. Wu, and AY. Ng, Reading digits
in natural images with unsupervised feature learning, in NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[188] K. Wickstrøm, M. Kampffmeyer, and R. Jenssen, Uncertainty and inter-
pretability in convolutional neural networks for semantic segmentation of colorectal
polyps, Medical image analysis, 60 (2020), p. 101619.

220

Bibliography

[189] H. Wu, YOLOv3-in-PyTorch, 2018.

[190] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2, 2019.

[191] Z. Wu, N. Bodla, B. Singh, M. Najibi, R. Chellappa, and L. S. Davis, Soft
sampling for robust object detection, arXiv preprint arXiv:1806.06986, (2018).

[192] Z. Wu, C. Shen, and A. Van Den Hengel, Wider or deeper: Revisiting the
resnet model for visual recognition, Pattern Recognition, 90 (2019), pp. 119–133.

[193] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-MNIST: A novel image dataset
for benchmarking machine learning algorithms, 2017-08-28, 2017.

[194] M. Xu, Y. Bai, B. Ghanem, B. Liu, Y. Gao, N. Guo, X. Ye, F. Wan, H. You,
D. Fan, et al., Missing labels in object detection., in CVPR Workshops, vol. 3,
2019, p. 5.

[195] Y. Xu, P. Cao, Y. Kong, and Y. Wang, L dmi: A novel information-theoretic
loss function for training deep nets robust to label noise, Advances in neural infor-
mation processing systems, 32 (2019).

[196] Z. Xu, R. Akella, and Y. Zhang, Incorporating diversity and density in active
learning for relevance feedback, in European Conference on Information Retrieval,
Springer, 2007, pp. 246–257.

[197] R. Yampolskiy, Incident number 52, AI Incident Database, (2016).

[198] Y. Yan, Y. Mao, and B. Li, Second: Sparsely embedded convolutional detection,
Sensors, 18 (2018), p. 3337.

[199] B. Yang, W. Luo, and R. Urtasun, PIXOR: Real-time 3D Object Detection
from Point Clouds, in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, June 2018, IEEE, pp. 7652–7660.

[200] F. Yang, H.-z. Wang, H. Mi, C.-d. Lin, and W.-w. Cai, Using random for-
est for reliable classification and cost-sensitive learning for medical diagnosis, BMC
Bioinformatics, 10 (2009), p. S22.

[201] Q. Yang, H. Chen, Z. Chen, and J. Su, Uncertainty Estimation for Monocular
3D Object Detectors in Autonomous Driving, in 2021 6th International Conference
on Robotics and Automation Engineering (ICRAE), Nov. 2021, pp. 55–59.

[202] G. Yarin, Uncertainty in deep learning, University of Cambridge, Cambridge,
(2016).

[203] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural
Networks, 94 (2017), pp. 103–114.

[204] , Universal Approximations of Invariant Maps by Neural Networks, Construc-
tive Approximation, 55 (2022), pp. 407–474.

221

Bibliography

[205] T. Yin, X. Zhou, and P. Krahenbuhl, Center-based 3D Object Detection and
Tracking, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), Nashville, TN, USA, June 2021, IEEE, pp. 11779–11788.

[206] D. Yoo and I. S. Kweon, Learning Loss for Active Learning, in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, June 2019, IEEE, pp. 93–102.

[207] T. Younesian, D. Epema, and L. Y. Chen, Active Learning for Noisy Data
Streams Using Weak and Strong Labelers, arXiv preprint 2010.14149, (2020).

[208] T. Younesian, Z. Zhao, A. Ghiassi, R. Birke, and L. Y. Chen, Qactor:
Active learning on noisy labels, in Asian Conference on Machine Learning, PMLR,
2021, pp. 548–563.

[209] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and
T. Darrell, BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask
Learning, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), Seattle, WA, USA, June 2020, IEEE, pp. 2633–2642.

[210] T. Yuan, F. Wan, M. Fu, J. Liu, S. Xu, X. Ji, and Q. Ye, Multiple Instance
Active Learning for Object Detection, in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, June 2021, IEEE,
pp. 5326–5335.

[211] C. Yun, S. Bhojanapalli, A. S. Rawat, S. Reddi, and S. Kumar, Are Trans-
formers universal approximators of sequence-to-sequence functions?, in International
Conference on Learning Representations, 2020.

[212] X. Zhan, Q. Wang, K.-h. Huang, H. Xiong, D. Dou, and A. B. Chan, A
Comparative Survey of Deep Active Learning, arXiv preprint 2203.13450, (2022).

[213] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, Mixup: Beyond
empirical risk minimization, arXiv preprint arXiv:1710.09412, (2017).

[214] H. Zhang and J. Wang, Towards adversarially robust object detection, in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 421–430.

[215] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha, M. Li, and A. Smola, ResNeSt: Split-Attention
Networks, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), New Orleans, LA, USA, June 2022, IEEE, pp. 2735–
2745.

[216] W. Zhang, J. Tanida, K. Itoh, and Y. Ichioka, Shift-invariant pattern recogni-
tion neural network and its optical architecture, in Proceedings of Annual Conference
of the Japan Society of Applied Physics, Montreal, CA, 1988, pp. 2147–2151.

222

Bibliography

[217] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and
B. Catanzaro, Improving Semantic Segmentation via Video Propagation and La-
bel Relaxation, in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, June 2019, IEEE, pp. 8848–8857.

223

	Acknowledgements
	Foreword
	Introduction
	Foundations
	Statistical Learning Theory
	Supervised vs. Unsupervised Learning
	Supervised Learning
	Unsupervised Learning
	Probabilistic Supervised Learning

	PAC Learning
	ERM Learning
	Error Decomposition
	Maximum-Likelihood Estimation

	Deep Learning
	Architectures
	Perceptrons
	Convolutional Neural Networks
	Transformers

	Training Neural Networks
	Stochastic Gradient Descent
	Backpropagation

	Universal Approximation
	Single-Layer Perceptrons
	Perceptrons with ReLU Activation
	Convolutional Neural Networks
	Transformer Neural Networks

	Uncertainty Quantification
	Sources of Uncertainty
	Estimating Uncertainty

	Advanced Computer Vision Tasks
	Image Classification
	Loss Functions
	Evaluation Metrics
	Example Architectures

	Object Detection
	Loss Functions
	Evaluation Metrics
	Example Architectures

	Semantic Segmentation
	Loss Functions
	Evaluation Metrics
	Example Architectures

	Gradient Uncertainty for Deep Object Detectors
	Introduction
	Related Work
	Method
	Gradient-Based Uncertainty
	Classification Setting
	Theoretical Link
	Extension to Object Detectors
	Computational Complexity

	Meta Classification and Meta Regression

	Experiments
	Implementation Details
	Comparison with Output-based Uncertainty
	Generalization over Architectures
	Calibration
	Pedestrian Detection
	MetaFusion
	Runtime

	Conclusion

	Gradient Uncertainty in Semantic Segmentation
	Introduction
	Related Work
	Methods
	Efficient Computation
	Gradient Uncertainty Scores

	Experiments
	Implementation Details
	MetaSeg Feature Construction

	Pixel-wise Uncertainty Quantification
	Segment-wise Uncertainty Quantification
	Out-of-Distribution Segmentation
	Runtime

	Conclusion

	Rapid Prototyping of Active Learning for Object Detection
	Introduction
	Related Work
	Methods
	Active Learning
	Sandbox Datasets
	Sandbox Models
	AL Methods in Object Detection
	Evaluation Methods

	Experiments
	Implementation Details
	Benchmark Results
	Generalization of Sandbox Results
	Image-Aggregation Methods
	Runtime

	Conclusion

	Label Error Identification For Object Detection Datasets
	Introduction
	Related Work
	Methods
	Benchmarking
	Instance-wise Loss Values
	Theoretical Justification

	Evaluation Metrics

	Experiments
	Implementation Details
	Baseline Methods

	Benchmark Results
	Real Label Errors

	Conclusion

	Prediction Quality Estimation for Lidar Object Detection
	Introduction
	Related Work
	Methods
	LMD Features
	Post-Processing

	Experiments
	Implementation Details
	Correlation of Features and IoUBEV
	Meta Classification Models
	Generalization over Datasets and Networks
	Feature Selection
	Confidence Calibration
	Label Error Detection

	Conclusion

	Conclusion and Outlook
	List of Notations

