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Abstract

A major problem often faced in hadron spectroscopy within lattice QCD is the signal-
to-noise problem of temporal correlation functions between certain types of opera-
tors. Examples relevant for this work are iso-scalar mesons and spatial Wilson loops,
whose absolute error in the correlation function remains constant in time, leading to
short-lived signals from where effective masses are difficult to reliably extract. Fur-
thermore, the existing signal at early times is heavily influenced by the presence
of excited states of a same symmetry channel. The distillation technique has been
shown to be a versatile tool to address these issues, where excited state contamina-
tion is suppressed by smearing the quark fields. This work presents an improvement
to distillation by introducing the optimal meson distillation profiles and showing
how these can be built and customized for different kinds of meson operators.

The testing ground for this new method are two N f = 2 ensembles with clover-
improved Wilson fermions at half the physical charm quark mass with different
lattice spacings and physical volumes. The effective masses of the ground state
from a wide variety of local and derivative-based iso-vector charmonium operators,
including ones with exotic quantum numbers, are shown to have considerably re-
duced excited-state contamination at early times thanks to this improvement when
compared to standard distillation. This leads to earlier, and in most cases longer,
effective mass plateaus from where the mass of the state can be extracted. Effective
masses of the first excited states for most of the operators are also accessible purely
due to the use of the proposed method. Iso-scalar operators are also studied with
the optimal profiles since the absence of light quarks restricts the possible mixing
of glueballs to happen only with the charmonium states. The ground state mass of
the 0−+ channel displays a non-negligible positive shift from the iso-vector one. The
ground state mass of the 0++ agrees with that from spatial Wilson loops, which are
purely gluonic operators. This agreement points at a possible mixing of gluonic and
mesonic components which can be studied at early times thanks to the optimal pro-
files.

A close-to-physical setup to further apply the profiles is an N f = 3 + 1 ensemble
with clover-improved Wilson fermions at the SU(3) light flavor symmetric point,
physical charm quark mass and pion mass mπ ≈ 420 MeV. The spectrum of the
charmonium states which in nature are below the DD̄ threshold is calculated using
the optimal profiles, with all effective masses displaying a significant suppression of
excited state contamination compared to standard distillation. Although the discon-
nected contributions to the correlation functions are not considered due to limited
statistics, good agreement is obtained with the spectrum in nature. Mass splittings
are also found to agree with nature as well as with state-of-the art lattice calculations
with similar, if not smaller, statistical uncertainties.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the quantum field theory which describes the
dynamics between quarks and gluons,the building blocks for hadrons, via the strong
interaction. The Standard Model of particle physics contains 6 different flavors of
quarks (up, down, charm, strange, top and bottom) which are fermions with spin
1
2 and are always bound together by gluons, with the the latter being a spin 1 vec-
tor gauge boson. The simplest of these bounded states are mesons; a quark q and
an anti-quark q̄. The case of interest for this work is charmonium, expressed as
c̄c to signify the presence of a charm quark c and an anti-charm quark c̄ together.
Charmonium states are identified by their total angular momentum J, parity P and
charge conjugation symmetry C within the quark model [1–3] and their physical
properties (mass, decay width, decay modes, etc...) can be found in the Particle
Data Group database [4]. Considering only the strong interaction, c̄c states can de-
cay (at the simplest level) into pairs of so-called charmed mesons, i.e c̄c → c̄q + q̄c
with q ∈ {u, d, s}, or into uncharmed states via quark-anti-quark annihilation, e.g
c̄c → ūu, d̄d, s̄s. Charmed mesons involving up, down and strange quarks are called
D-mesons and a c̄c state must have an energy of at least twice the mass of the lightest
D-meson in order to be able to decay into a pair at rest, a restriction called the DD̄
or open charm threshold. Charmonium states with energy below this threshold can
only decay via intermediate gluonic exchange and while such decays are observed,
they are heavily suppressed. This phenomenon inspired the OZI rule [3, 5–7], which
dictates processes which have an intermediate state made entirely of gluon lines
are suppressed (or "forbidden") compared to those who do not, where the former
are denoted as disconnected and the latter as connected. The ηc (0−+), J/ψ (1−−),
χc0 (0++), χc1 (1++), hc (1+−), χc2 (2++) and the first radial excitations ηc(2S) and
Ψ(2S) are the only charmonium states with masses below the DD̄-threshold in na-
ture and therefore can only decay via the OZI-forbidden processes. Such processes
are of particular interest since they can also involve a final state made entirely of
gluons, a so-called glueball, where there are no quarks or anti-quarks [8–10]. These
glueball states arise due to the gluon self-interaction. They are a theoretical predic-
tion of QCD which has not yet been experimentally confirmed and their possible
mixing with q̄q states proves a major difficulty for their detection.

To study these states and their dynamics one needs to work at small energy scales,
e.g given by their masses. Since QCD exhibits confinement and the coupling con-
stant increases as the energy decreases, a perturbative approach is not feasible. One
relies on lattice QCD, a non-perturbative framework which will be explained in
Chapter 2, where QCD is formulated on a discrete lattice and the spectrum of strongly
interacting particles can be computed. Lattice QCD has exhibited great success re-
producing experimental results, which serves as a non-trivial validation of QCD. In
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this framework, masses are calculated from statistical averages over Markov Chains
of temporal correlation functions between lattice hadron/glueball operators. Unfor-
tunately, the results related to quark-anti-quark annihilation processes and glueballs
tend to present large statistical fluctuations and a signal-to-noise problem. Different
strategies are often used to try to overcome these difficulties. For glueball spec-
troscopy the use of large statistics and improved operators are the standard pro-
cedures, particularly since the measurement of these operators is computationally
cheap [11–15]. For meson spectroscopy a common alternative is to neglect the ef-
fects of the quark-anti-quark annihilation, since the remaining connected correlation
functions generally exhibit a considerably better signal. Such choice was justified by
the expectation that these neglected effects are small due to the OZI rule. Although
the dynamics behind the OZI rule in the non-perturbative regime is not completely
clear, charm annihilation effects were initially estimated to be around 1 − 4 MeV
[16]. A recent indirect lattice measurement of these effects on the mass of the ηc is
an upward shift of 7.3(1.2) MeV 1 [17], which confirms it is small yet not negligible
with the attainable precision. Other direct lattice measurements give values of sim-
ilar magnitude and same sign [18]. Furthermore, since perturbative non-relativistic
QCD calculations predict an effect of similar magnitude but opposite sign [19–22]
there is an indication that these effects are not fully understood and should be stud-
ied. Regardless of their magnitude, the disconnected contributions are necessary to
study the mixing between charmonium and glueballs. A common tool to compute
them is distillation [23], where the quark fields are projected onto the low energy
degrees of freedom relevant for hadron spectroscopy. This work presents a sim-
ple yet versatile improvement which optimizes the meson operators involved in the
charmonium and glueball mixing calculations. The work is organized as follows.
Chapter 2 provides a brief overview of lattice QCD and the methods relevant for
hadron spectroscopy. Chapter 3 deals with how charmonium is studied with fo-
cus only on the connected contributions, introduces the proposed improvement to
distillation and compares the resulting charmonium spectrum obtained with stan-
dard and improved distillation in two N f = 2 ensembles. Chapter 4 shows how
this method can also be used when the disconnected contributions are taken into
account for the calculation of the charmonium spectrum as well as for mixing with
gluonic operators. Chapter 5 shows how the proposed improvement is also appli-
cable in a close-to-physical N f = 3 + 1 ensemble with a physical charm quark and
three degenerate light quarks. Finally, Chapter 6 closes this work with conclusions
about the obtained results together with a discussion about additional applications
of the proposed improvement and future directions of study.

1Natural units with h̄ = 1 and c = 1 are used in this work.
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Chapter 2

Methods

Count what is countable, measure
what is measurable and what is not
measurable, make measurable.

Galileo Galilei

This chapter presents the theoretical and numerical methods used in this work.
All of them are either contained in or applicable to the lattice Quantum Chromo-
dynamics, or lattice QCD, framework. A general, non-exhaustive overview of this
framework and its methods will be presented, with emphasis only on the ones di-
rectly relevant for this work. References for the different topics covered will be given
such that the reader can find all details and discussions omitted here.

2.1 Lattice QCD

Lattice QCD is a non-perturbative, discretized approach to QCD, the quantum field
theory that describes the strong interaction, which allows for direct calculation of
quantities otherwise intractable in the continuum. First proposed in [24], a thorough
introduction to the topic can be found in [25–28]. Here only the basics regarding
the treatment of the relevant fields and their use for hadron spectroscopy will be
presented.

2.1.1 Fields on a lattice

The continuum space-time is discretized by defining a lattice Λ with NL sites in each
of the three spatial directions and Nt in the temporal direction. The lattice can be
defined by these sites as

Λ := {x|x = (t, x⃗); t = ax0; x⃗ = a(x1, x2, x3); x1, x2, x3 = 0, ..., NL − 1; x0 = 0, ..., Nt − 1},
(2.1)

where a is the lattice spacing, taken as equal for space and time directions to form an
isotropic lattice. The case of anisotropic lattices will not be considered in this work.
The quark fields take values at every site of the lattice Λ,

ψ( f )(x)α
c

ψ̄( f )(x)α
c

where f is the index for the flavor of the quark, c = 1, 2, 3 is a color index and
α = 0, 1, 2, 3 is a Dirac index. The variables ψ( f )(x)α

c
and ψ̄( f )(x)α

c
are Grassmann
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variables, which means the following anti-commutation relations hold:{
ψ( f1)(x)α1c1

, ψ( f2)(y)α2c2

}
= 0{

ψ̄( f1)(x)α1c1
, ψ̄( f2)(y)α2c2

}
= 0{

ψ( f1)(x)α1c1
, ψ̄( f2)(y)α2c2

}
= 0.

(2.2)

Introducing the gauge field variables on the lattice is not as straightforward as for
the fermion fields. In the continuum formulation one works with the gluon field
Aµ(x) corresponding to a hermitian and traceless 3 × 3 matrix for a fixed x and µ.
In the lattice formulation one does not work directly with Aµ(x) but rather with the
SU(3) matrices Uµ(x). Uµ(x) is defined to live on the link that connects lattice points
x and x + µ̂1 and because of this it is called a link variable. These variables also have
an orientation defined by

U−µ(x) = Uµ(x − µ̂)†, (2.3)

and can be related to the original gauge fields via

Uµ(x) = eiaAµ(x). (2.4)

Uµ(x) is interpreted as a parallel transporter between the two lattice points it con-
nects. The gauge transformations applied to the fermion and gauge fields are de-
fined by introducing a set of SU(3) matrices Ω(x)

ψ(x) → Ω(x)ψ(x)

ψ̄(x) → ψ̄(x)Ω(x)†

Uµ(x) → Ω(x)Uµ(x)Ω(x + µ̂)†.

(2.5)

It is important to note the gauge transformation involves only the color indices of the
fermion and gauge fields. Other transformations relevant for these fields are parity,
where x⃗ → −x⃗, and charge conjugation, where all particles turn into their anti-
particles and therefore all charges change sign. Under parity the fields transform
as

ψ(x⃗, t) → γ0ψ(−x⃗, t)
ψ̄(x⃗, t) → ψ̄(−x⃗, t)γ0

U0(x⃗, t) → U0(−x⃗, t)

U†
i (x⃗, t) → Ui(−x⃗ − î, t)

(2.6)

and under charge conjugation they transform as

ψ(x⃗, t) → C−1ψ(⃗t, t)
ψ̄(x⃗, t) → −ψ̄(x⃗, t)C

Uµ(x⃗, t) → Uµ(x⃗, t)∗
(2.7)

where γµ are the Euclidean Dirac matrices (see App. C for the conventions used
in this work), C is a charge conjugation matrix satisfying CγµC−1 = −γT

µ , γT
µ de-

notes the transpose of γµ and Uµ(x⃗, t)∗ is the complex conjugate of Uµ(x⃗, t). Here

1µ̂ denotes the displacement vector of length a in direction µ
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the time and position variables for the fields are written explicitly instead of in a
single space-time variable x because time and space behave differently under the
transformations being used. A final set of relevant transformations are those corre-
sponding to rotations of 90◦ and axis reflections. These transformations are elements
of the Lorentz group which can be realized on the lattice. For this work the most rel-
evant transformations are those of space and time reversal and therefore only those
will be explicitly presented, however the missing ones can be obtained by extending
the presented ones appropriately. A rotation of 90◦ in the µν-plane corresponds to
the change of space coordinates x′µ = −xν, x′ν = xµ such that the position vector
x⃗ = (x1, x2, x3) gets transformed into x⃗′ = (x′1, x′2, x′3). The fields transform accord-
ing to

ψ(x⃗, t) → 1√
2

(
1 + γµγν

)
ψ(x⃗′, t)

ψ̄(x⃗, t) → ψ̄(x⃗′, t)
1√
2

(
1 − γµγν

)
Uρ(x⃗, t) →


Uν(x⃗′, t) i f ρ = µ

U†
µ(x⃗′ − µ̂, t) i f ρ = ν

Uρ(x⃗′, t) otherwise

(2.8)

A 3D axis reflection transforms the space coordinates as x′µ = −xµ and the fields
transform according to

ψ(x⃗, t) → γµγ5ψ(x⃗′, t)
ψ̄(x⃗, t) → ψ̄(x⃗′, t)γ5γµ

Uν(x⃗, t) →
{

Uν(x⃗′, t) ν ̸= µ

U†
ν (x⃗′ − µ̂, t) ν = µ

(2.9)

The previously presented parity transformation is a special case of such reflections
where all 3 coordinates change sign. Finally, a temporal axis reflection, or time-
reversal, transforms the temporal coordinate as t′ = −t and the fields transform
according to

ψ(x⃗, t) → γ0γ5ψ(x⃗′, t′)
ψ̄(x⃗, t) → ψ̄(x⃗′, t′)γ5γ0

Uν(x⃗, t) →
{

Uν(x⃗, t′) ν ̸= 0
U†

ν (x⃗, t′ − a) ν = 0

(2.10)

These transformations form a representation of Lorentz group. A detailed treatment
of such transformations in the continuum and using Minkowski space-time can be
found in [29, 30] and the corresponding transformation rules in Euclidean space-
time that can be realized on the lattice are taken from [31]. These transformations
play an important role when defining the action of the theory. For the isotropic lat-
tices considered in this work, the action must be invariant under all of these transfor-
mations. They are also important when one defines the different hadron operators
that are relevant for this work, since these must have defined symmetries under
these transformations.
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2.1.2 The action on the lattice

The dynamics of the quark and gauge fields on the lattice can be encoded in an
action S[ψ, ψ̄, U], expressed as the sum of a fermionic action SF[ψ, ψ, U], which will
describe the dynamics of the fermion fields and their coupling to the gauge field,
and a gauge action SG[U] which describes the dynamics of the gauge field and its
self-interaction. To build SG[U] one needs a functional of link variables Uµ(x) such
that it is gauge invariant and the continuum pure gauge action is recovered in the
the continuum limit. i.e a → 0. Several choices of SG[U] satisfy these conditions.
This work uses the Wilson gauge action given by

SG[U] =
2
g2 ∑

x∈Λ
∑
µ<ν

Re
[
Tr
(
1 − Uµν(x)

)]
, (2.11)

where Uµν(n) is the plaquette defined as

Uµν(x) = Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x). (2.12)

The plaquette is the simplest non-trivial product of link variables along a closed
path, and is related to the field strength tensor Fµν as

Uµν(x) = eia2Fµν(x)+O(a3), (2.13)

and therefore the Wilson gauge action is related to this same tensor as

SG[U] =
a4

2g2 ∑
x∈Λ

∑
µ,ν

Tr
[
Fµν(x)2]+O

(
a6) . (2.14)

In the continuum limit a4 ∑x∈Λ becomes the integral over space-time and the contin-
uum Yang-Mills (YM) gauge action

SYM =
1

2g2

∫
Tr
[
Fµν(x)Fµν(x)

]
dx, (2.15)

is recovered. Since the plaquette is a product of link variables in a closed loop and
from the cyclic property of the trace, this choice of SG[U] is invariant under a gauge
transformation of the form shown in Eqn. (2.5). This choice also has the advantage
of being local since for a fixed point on the lattice it only involves the neighbors that
live in the hyper-cube of side 2a that enclose the point. Other choices of SG[U], such
as the Lüscher-Weisz gauge action [32], are also based on Wilson loops but involve
other beyond the plaquette for partial O(a2) improvements. For the fermionic action
similar considerations have to be taken into account regarding gauge invariance and
the recovery of the continuum action. The choice of SF[ψ, ψ̄, U] used in this work
corresponds to the clover-improved Wilson fermion action and is given by

SF[ψ, ψ̄, U] =
N f

∑
i=1

a4 ∑
x∈Λ

ψ̄(i)(x)
(

Dxy + miδxy
)

ψ(i)(y), (2.16)

where N f is the number of quark flavors considered, mi is the bare quark mass asso-
ciated with the quark field ψ(i) and D is the clover-improved Wilson-Dirac operator,
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given by

Dxy =
3

∑
µ=0

γµ

(
Uµ(x)δx+µ̂,y − Uµ(x − µ̂)†δx−µ̂,y

2a

)

− a
3

∑
µ=0

Uµ(x)δx+µ̂,y − 2δx,y + Uµ(x − µ̂)†δx−µ̂,y

2a2

+ δxycswa ∑
µ<ν

1
2

σµν F̂µν(x).

(2.17)

The different terms in Eqn. (2.17) have different origins and serve different pur-
poses. The first line corresponds to the naive gauge-covariant discretization of the
Dirac operator using symmetric differences for the derivatives. The second line cor-
responds to the Wilson term and it is proportional to the discrete covariant Laplacian
operator. This term decouples the fermion doublers that arise due to the discretiza-
tion which can be explicitly found when considering the free massless case of the
first line in Fourier space [25, 26] and are predicted by the Nielsen-Ninomiya no-
go theorem [33]. The third line corresponds to the clover improvement [34], where
σµν = − i

2 [γµ, γν], and involves a discretized version of the field-strength tensor[35]

F̂µν(x) =
−i
8a2

(
Qµν(x)− Qνµ(x)

)
, (2.18)

where Qµν(x) is the sum of the four plaquettes in the µ − ν plane starting from point
x, given by

Qµν(x) = Uµν(x) + Uν−µ(x) + U−µ−ν(x) + U−νµ(x). (2.19)

This term leads to an O(a) improvement of the action with an appropriate choice of
the Sheikholeslami-Wohlert coefficient csw. Methods to determine csw depending on
the action can be found in [36, 37]. This improvement follows from the Symanzik
improvement program [38, 39] to eliminate lattice artifacts from the action and a
complete derivation of this term can be found in [25]. Just as for SG[U] this choice of
fermion action is local since it involves only nearest neighbors via the derivatives in
D.

2.2 Hadron spectroscopy

A wide variety of states composed of quarks and gluons can be studied in lattice
QCD. Hadron spectroscopy deals with the calculation of their masses. Two kinds
are studied this work: mesons and glueballs. Mesons are hadrons composed of a
quark and an anti-quark while glueballs are bound states of gluons. Despite their
different composition, both have integer total angular momentum J and can be la-
beled by their quantum numbers JPC, where P = ± corresponds to the symmetry
under parity reversal and C = ± to the symmetry under charge conjugation. The
latter symmetry is defined for unflavored mesons.

2.2.1 Angular momentum on the lattice

The total angular momentum quantum number J labels the irreducible representa-
tions (irreps) of the group of three-dimensional rotations, SO(3). Once space-time



8 Chapter 2. Methods

is discretized into a lattice this group does not leave the lattice invariant. One is
therefore restricted to the cubic group O, which has 24 elements that leave a cube,
and therefore also a three-dimensional cubic lattice, invariant. This group has only
5 irreps which are labeled as A1, A2, E, T1 and T2 with dimensions 1, 1, 2, 3 and 3
respectively [40–42]. Due to this restriction there is a subduction of the different J
into the irreps of O. This means that from an irrep of SO(3) taking only the matrix
elements corresponding to the elements of O will form a reducible representation of
O. This representation can then be reduced into a direct sum of the mentioned irreps
of O and this decomposition defines the relation between the irreps of SO(3) and
those of O which is clearly not one-to-one. The subduction relations are displayed
in Table 2.1 up to J = 4 and are well-known in the literature. The different entries in
this table can be found by following the procedure presented in [42] or group theory
books such as [43, 44]. No consideration has been made yet regarding the parity and
charge conjugation symmetries. Parity is included by extending the group O into
Oh as O ⊗ Ci, where Ci is the group containing only the identity element and the
spatial inversion. Oh has 48 elements and 10 irreps which are now labeled as A±

1 ,
A±

2 , E±, T±
1 and T±

2 where the ± label denotes the parity symmetry [40]. Stating that
an object transforms according to irrep R± means that it transforms according to R
under the action of O and gains a factor ±1 under the action of the spatial inversion,
i.e the parity transformation. The characters of the irreps of Oh and other useful in-
formation of this group and O can be found in [40]. Since charge conjugation does
not affect space its inclusion is not done via a modification of the symmetry group
and will only be addressed once specific operators are built.

J Irreps.

0 A1
1 T1
2 E ⊕ T2

3 T1 ⊕ T2 ⊕ A2

4 A1 ⊕ T1 ⊕ T2 ⊕ E

TABLE 2.1: Subduction of J into the lattice irreps up to J = 4.

2.2.2 Operators on the lattice

An important step in hadron spectroscopy is to build operators that transform ac-
cording to a chosen irrep under the action of the elements of O and that also have
a fixed symmetry under parity reversal and charge conjugation. As previously pre-
sented, these irreps are directly linked to the JPC quantum numbers of interest. How-
ever, due to the subduction it is more convenient to characterize operators via RPC,
with R ∈ {A1, A2, E, T1, T2}. To identify the correct J quantum number from op-
erators that transform according to an irrep R one can count degeneracies in the
obtained spectrum according to Table 2.1 or use the method described in [45] for the
case of meson operators, which will be mentioned later when the construction of
these operators is presented. To begin the discussion, consider a hadron2 operator
O(x) that depends on the quark and gauge fields. For the study of masses one is
interested in the operator at zero spatial momentum, which can be introduced via a

2Keep in mind that in this work only hadrons with integer J will be considered, such as meson and
glueballs.
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spatial Fourier transform as

O( p⃗ = 0, t) =
1

N3
L

∑
x⃗∈Λ3D

O(x⃗, t), (2.20)

where Λ3D denotes all 3D points of the lattice Λ with fixed time t. An appropriate
choice of O(x⃗, t) guarantees that O( p⃗ = 0, t) has a fixed RPC behavior and the details
for making this choice for meson and glueball operators will be explored later. The
observable of interest is the temporal correlation of this zero momentum operator,
defined as

C(t) =
1
Z

∫
O(t)O(0)e−S[ψ,ψ̄,U]d [ψ] d [ψ̄] d [U] , (2.21)

with

Z =
∫

e−S[ψ,ψ̄,U]d [ψ] d [ψ̄] d [U] . (2.22)

Here the p⃗ = 0 label is omitted since it is to be understood from now on. Also, d[U]
is shorthand notation for

d[U] = ∏
x∈Λ

3

∏
µ=0

dUµ(x), (2.23)

which is the product of integration measures for the link variables at each lattice site
and in each direction. The individual measure dUµ(x) is the Haar measure which
characterizes the integration in SU(3)[25, 26]. Similarly, d [ψ] stands for

d [ψ] = ∏
f

3

∏
α=0

2

∏
c=0

∏
x∈Λ

dψ(x)( f )
α
c

, (2.24)

and the same for d [ψ̄]. The integrals involving these two measures are Grassmann
integrals which can be solved analytically following the rules presented in [25, 26].
For doing so it is convenient to define the quantity

[
O(t)O(0)

]
F =

1
ZF[U]

∫
d [ψ] d [ψ̄]O(t)O(0)e−SF [ψ,ψ̄,U], (2.25)

with

ZF[U] =
∫

d [ψ] d [ψ̄] e−SF [ψ,ψ̄,U]. (2.26)

The correlation C(t) can then be written as

C(t) = ⟨
[
O(t)O(0)

]
F⟩U

=
1
Z

∫
d [U] e−SG [U]ZF[U]

[
O(t)O(0)

]
F . (2.27)

While
[
O(t)O(0)

]
F is operator dependent, ZF can be calculated directly as shown in

[25, 26], yielding

ZF[U] = det (D) (2.28)
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for the case when only a single flavor of quark is used. C(t) becomes

C(t) =
1
Z

∫
d [U] e−SG [U] det (D)

[
O(t)O(0)

]
F (2.29)

and only the integral over the link variables remains. This issue will be addressed
shortly and for now it should be assumed that C(t) can be calculated. At this point
it is useful to examine the spectral decomposition of this correlation function. In
the Hilbert space where the chosen creation and annihilation operators can act this
correlation function can be written as [25]

C(t) =
Tr
[
e−(T−t)ĤÔe−tĤÔ†

]
Tr
[
e−TĤ

] , (2.30)

where T denotes the temporal extent of the lattice in physical units and periodic
boundary conditions in time for the link variables are assumed. The traces can be
evaluated by using the energy eigenstates of the Hamiltonian, defined as

Ĥ |n⟩ = En |n⟩ , (2.31)

ordered such that En ≤ En+1 and normalized such that ⟨n|n⟩ = 1. The denominator
in Eqn. (2.30) is evaluated as

Tr
[
e−TĤ

]
= ∑

n
e−TEn

≈ e−TE0 (2.32)

where in the second line the approximation of large T is taken such that only the
term including the energy of the vacuum E0, which is the lowest energy, contributes.
The denominator is evaluated as

Tr
[
e−(T−t)ĤÔe−tĤÔ†

]
= ∑

m
∑
n
⟨m| e−(T−t)ĤÔ |n⟩ ⟨n| e−tĤÔ† |m⟩

= ∑
m

∑
n

e−(T−t)Em ⟨m| Ô |n⟩ e−tEn ⟨n| Ô† |m⟩

= ∑
m

∑
n

e−TEm−t(En−Em)| ⟨n| Ô† |m⟩ |2. (2.33)

In the case with periodic boundary conditions in time for the link variables and in
the limit where both t and T are large and T − t is close to t, the correlation function
can be written as

C(t) = ∑
n
| ⟨n| Ô† |0⟩ |2

(
e−t(En−E0) + e−(T−t)(En−E0)

)
, (2.34)

where from now on the energy relative to the vacuum En − E0 will be written sim-
ply as En. Among the energy eigenstates at zero spatial momentum there might
be not only one-particle states but also multi-particle states with zero total spatial
momentum, e.g two mesons with back-to-back momentum. In the case of the one
particle state the energy would correspond to its mass but this will not be the case
for a multi-particle state. This work focuses only in the low-lying one particle states
and therefore from now on the energies will be denoted as mn to denote masses,
working under the assumption that the measured states correspond to one-particle
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states. This expression can be further simplified into

C(t) = ∑
n
| ⟨n| Ô† |0⟩ |22e−

T
2 mn cosh

((
T
2
− t
)

mn

)
. (2.35)

When t is close enough to T
2 only the term containing the energy of the ground state

|G⟩ of the fixed JPC numbers, denoted as mG, remains and one can use the functional
approximation:

C(t) ≈ | ⟨G| Ô† |0⟩ |22e−
T
2 mG cosh

((
T
2
− t
)

mG

)
, (2.36)

to extract the mass mG via the root-finding method suggested in [46]. As a final
remark, in the case where the operator considered has vacuum quantum numbers,
i.e transforms according to A++

1 , then one performs a vacuum expectation value
subtraction as

C(t) =
〈[
O(t)O(0)

]
F

〉
U − ⟨[O(t)]F⟩U

〈[
O(0)

]
F

〉
U (2.37)

to eliminate the time-independent term that would otherwise be included in the
relevant spectral decomposition. This method for calculating the masses of particles
comes with its own caveats, especially regarding the values of | ⟨G| Ô† |0⟩ |2. This
quantity represents the overlap of the created state with the true energy eigenstate
and if it is not sufficiently large then Eqn. (2.36) only holds for values of t very
close to T

2 . At such values of t the correlation C(t) can be severely affected by noise,
making the extraction of mG particularly difficult.

2.2.3 Accessing different energy levels

From the previous discussion it is clear that the energy of the ground state of a given
symmetry channel is the easiest one to access. However one can also be interested
in excited states of this same channel. In such cases a more sophisticated numerical
tool must be used. The one chosen for this work corresponds to the generalized
eigenvalue problem (GEVP) formulation [47, 48]. The starting point of this method
is a set of NB different operators Oi in the same symmetry channel and the main goal
is to build a linear combination that has the largest overlap with a desired energy
eigenstate |e⟩. Such optimal operator, denoted as O(e), can be written as

O(e) =
NB

∑
i=1

w(i)
e Oi, (2.38)

and the coefficients w(i)
e must be found. As first presented in [47] and further elab-

orated in [48], the procedure is to build the correlation matrix involving the basis
operators as

Cij(t) =
〈[

Oi(t)Ōj(0)
]

F

〉
U

, (2.39)

and then solve the GEVP given by

C(t)ze(t, tG) = λe(t, tG)C(tG)ze(t, tG), (2.40)
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with tG is a reference time, tG < t < T
2 − a, ze(t, tG) are the NB different NB-

dimensional generalized eigenvectors and λe(t, tG) are the corresponding general-
ized eigenvalues. The generalized eigenvalues are related to the masses and the
latter can be extracted by using the approximation

λe(t, tG) ≈ 2c0e−
T
2 m(e)

cosh
((

T
2
− t
)

m(e)
)

, (2.41)

for the case with periodic boundary conditions in time for the link variables as
shown in [46], where the constant c0 includes the dependence on tG. This approx-
imation holds up to exponential corrections which decrease in time and depend
on the difference me − me+1 of the energy eigenstates which are explored in detail
in [48]. This same reference shows the generalized eigenvectors ze(t, tG) are time-
independent up to exponentially suppressed corrections and correspond to the co-
efficients we required in Eqn. (2.38). The presence of statistical noise further affects
these approximations, mainly making the recommended choice of large tG very nu-
merically unstable. An issue that becomes important in the analysis of the general-
ized eigenvectors and that has been discussed in [49, 50] among others is the fact that
there might occur flipping when the corresponding eigenvalues are too close to each
other, particularly at large values of time where the GEVP is more sensitive to statis-
tical fluctuations. This phenomenon is important in scenarios like string-breaking;
in the region where the string breaks and avoided level-crossing happens the differ-
ent energy levels yielded by the GEVP get considerably close to each other [51, 52].
In such cases sorting the generalized eigenvalues by magnitude might lead to wrong
results and a better strategy is to sort them by the information contained in the gen-
eralized eigenvectors. One way to do so, which is used in [50], is to first choose a
reference time tr where the order of the generalized eigenvectors and eigenvalues is
trusted. Then for each value t ̸= tr all generalized eigenvectors of time t are com-
pared with the ones of tr by calculating the inner products we(tr, tG)

†C(tG)we′(t, tG)
and the order is assigned based on the absolute value of these results. This method
can nonetheless fail in some cases as discussed in [49] and in this same reference a
more robust method for sorting the generalized eigenvectors is presented which is
used in this work.

Two additional issues arise when using this GEVP formulation. The first one is re-
lated to the basis bias, i.e how the individual features of the NB basis operators Oi
define the features of the optimal operator O∗. The individual Oi should create states
with sufficient overlap with the energy eigenstate such that the one created by O∗

has a considerable overlap with it as well [52]. The second one is related to the nu-
merical stability of solving the GEVP for the matrix C(t). As will be seen soon this
solution involves either the inverse of C(tG) or of its Cholesky decomposition and
the calculation of these matrices is very sensitive to small eigenvalues. Even though
the operators are chosen to be different from each other they might be far from or-
thogonal and near degeneracies can lead to such unwanted small eigenvalues in
C(tG). Statistical fluctuations can make the situation worse by turning the smallest
eigenvalues negative, at which point the GEVP formulation is no longer well de-
fined. The basis bias can be addressed by choosing operators with clearly different
features, such as different number of lattice derivatives to sample different spatial
structures, or by using different sets of operators and checking the consistency of
the results obtained. The issue of numerical instability can be addressed by replac-
ing the correlation matrix C(t) in Eqn. (2.40) with a new correlation matrix C̃(t) with



2.2. Hadron spectroscopy 13

entries given by

C̃ij(t) = u†
i C(t)uj, (2.42)

where ui are the Ns singular vectors of C(ts) with largest singular values at a fixed
time ts where the states of interest are assumed to dominate [53, 54]. This so-called
pruning procedure yields a new correlation matrix built from orthonormal opera-
tors that contribute the most to the original correlation matrix. This can be seen by
explicitly calculating C̃(t) as follows:

C̃ij(t) = u†
i C(t)uj

=
NB

∑
m,n=1

u(m)∗
i Cmn(t)u

(n)
j

=
NB

∑
m,n=1

u(m)∗
i ⟨[Om(t)Ōn(0)]F⟩U u(n)

j

=
〈[

Qi(t)Q̄j(0)
]

F

〉
U

, (2.43)

where u(n)
j is the n-th entry of uj. The pruned operators are defined as

Qi(t) =
NB

∑
m=1

u(m)∗
i Om(t), (2.44)

and are orthogonal in their coefficients thanks to the orthogonality of the singular
vectors. Choosing Ns < NB effectively eliminates the operators corresponding to
small singular values of C(ts) which in turn improves the conditioning of the ma-
trix C̃(t) and makes the GEVP more numerically stable since since the discarded
operators are more sensitive to noise. The GEVP involving C̃(t) is therefore a bet-
ter starting point to extract the masses of the different energy eigenstates of interest.
This resulting GEVP is solved by turning it into a standard eigenvalue problem via
a Cholesky decomposition as shown in [45], which can be done given that C̃(tG) is
guaranteed to be hermitian and positive definite up to statistical fluctuations. The
remaining freedom of phase for these vectors is fixed by demanding that the first
entry of each vector is real and positive.

A final issue related to the GEVP formulation is the presence of different time-
reversal symmetries in the entries of the correlation matrix. Such a case can only
happen in an off-diagonal entry Cij(t) if the operators Oi(t) and Oj(t) have opposite
time-reversal symmetries and therefore

Cij(t) = −Cij(−t). (2.45)

Such a case was studied in [55], showing that in the presence of periodic boundary
conditions in time for the link variables the generalized eigenvalues no longer have
a leading cosh() behavior from where effective masses can be extracted. To avoid
the subtleties of such a case, all correlation matrices built in this work will be even
under time-reversal.
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2.2.4 Smearing of Gauge Fields

Many hadron operators in the lattice depend on the gauge links and these often
suffer from short-range fluctuations that introduce noise in the calculations where
the long distance behavior is of interest. To face this issue different methods of link
smearing can be used. These methods replace each link with a function that relates
said link and its close neighbors. This replacement not only suppresses short-range
variations but if different smearing schemes are used then one can define multiple
hadronic operators of the same symmetry channel to use in the GEVP formulation.
Some examples of link smearing methods are APE smearing [56], improved APE
smearing [12], HYP smearing [57], Stout smearing [58] and link Fuzzing [59]. In this
work only 3D APE smearing will be used and therefore only this strategy will be
briefly explained. 3D APE smearing proceeds with the following replacement:

Ũµ(x⃗, t) = ProjSU(3)

Uµ(x⃗, t) + αAPE

3

∑
ν=1
ν ̸=µ

Cµν(x⃗, t)

 (2.46)

where αAPE is a real parameter generally taken between 0 and 2
3 due to considera-

tions explained in [60] and Cµν(x⃗, t) is the sum of each pair of staples along perpen-
dicular spatial directions defined as

Cµν(x⃗, t) = Uν(x⃗, t)Uµ(x⃗ + ν̂, t)U†
ν (x⃗ + µ̂, t) (2.47)

+ U†
ν (x⃗ − ν̂, t)Uµ(x⃗ − ν̂, t)Uν(x⃗ − ν̂ + µ̂, t). (2.48)

The projection back onto SU(3) is performed because the weighted sum of SU(3)
elements is not an element of said group. This projection is not unique and the one
used in qcdlib corresponds to the one presented in [15]. The smeared link variable
Ũµ(x⃗, t) can be viewed as an average of neighboring paths that connect the sites x⃗
and x⃗ + µ̂ at a fixed time t, suppressing the short-range fluctuations that might be
present. The smearing step in Eqn. (2.46) can be repeated iteratively, yielding the
smearing step

Ũ(i+1)
µ (x⃗, t) = ProjSU(3)

U(i)
µ (x⃗) + αAPE

3

∑
ν=1
ν ̸=µ

C(i)
µν (x⃗, t)

 , (2.49)

where C(i)
µν (x⃗, t) is built as in Eqn. (2.48) using the gauge field U(i). Different choices

of smearing schemes together with different choices of smearing parameters (num-
ber of iterations NAPE, αAPE) can be used to build creation operators for the GEVP
formulation. The choice of the smearing parameters must be done very carefully. On
one hand, under-smearing must be avoided since failing to reduce short-distance
fluctuations makes the additional work pointless. On the other hand, over-smearing
can damage long-range features. As shown in [56, 60, 61] the 3D APE-smeared gauge

links have a "footprint" given by
〈
r2〉 1

2 =
√

NAPEαAPE√
2

in units of a single lattice spac-
ing. Unwanted scenarios include this quantity being close to or larger than half of
the spatial extent of the lattice, since long-range features would be eliminated and
wrapping around the periodic boundaries of the 3D lattice can also occur.
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2.2.5 Monte-Carlo integration with link variables

The explicit calculation of the different correlation functions for hadron spectroscopy
requires the computation of integrals over the gauge link variables with the form

C(t) =
1
Z

∫
dUe−SG [U]det(D) [O(t)Ō(0)]F . (2.50)

It is worth remembering that dU is shorthand notation for the product of all the
involved group invariant measures

dU = ∏
x∈Λ

3

∏
µ=0

dUµ(x), (2.51)

where dUµ(x) is the Haar measure for the integration of the link variable connecting
lattice point x with x + µ̂ over SU(3). Such integrals are only analytically solvable
for very simple integrands and the integrand in Eqn. (2.54) is not one of these cases
so it becomes necessary to numerically estimate the result. One case relevant for this
work is that of 2 degenerate quark fields, which means that the factor det(D) in Eqn.
(2.54) must be replaced with det(D2). It can be shown that

det(D2) = det(D†D) (2.52)

using the γ5-hermiticity of D and therefore det(D2) is a non-negative real number,
which is of vital importance for the numerical estimation to be done. Namely, since
the term

p(U) =
1
Z

e−SG [U]det(D2) (2.53)

is positive, normalized and a function of the link variables, it can be treated as a
probability density function. With this in mind, the integral at hand is the expecta-
tion value of [O(t)Ō(0))]F. For the sake of clarity it is convenient to work for now
with the expectation value of an observable A[U] which depends only on the gauge
links of the form

⟨A⟩U =
1
Z

∫
dUe−SG [U]det(D2)A[U]. (2.54)

This expectation value can be approximated via Monte-Carlo estimation as

⟨A⟩U ≈ 1
NMC

NMC

∑
i=1

A[Ui], (2.55)

where Ui is a gauge configuration sampled according to Eqn. (2.53) and NMC is the
total number of configurations used. To do this estimation it is necessary to be able to
sample gauge configurations according to the desired probability density function.
In this work Markov Chain Monte Carlo (MCMC) is the method of choice for this
sampling. In MCMC a chain of configurations U1, U2,... is created such that there is
a value j such that the configurations Uj, Uj+1, ... can be considered to be sampled
from the desired distribution and the chain is said to be thermalized. In this chain
Ui is built from Ui−1 and the initial configuration U1 can be chosen arbitrarily (sub-
jected to the restriction to SU(3)). There exist different ways of generating the chain
of configurations and the ones used in this work were generated using the Hybrid
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Monte Carlo (HMC) method first proposed in [62]. In this method a candidate for
a new configuration is created from the previous one via the solution of Hamilto-
nian equations of motion that involve the link variables and artificially-introduced
momenta variables. A detailed explanation of this method can be found in [25, 26],
where the determinant involved in the calculations is often approximated via the
pseudo-fermion approach [63].

Eqn. (2.55) has an statistical uncertainty associated to it. If the configurations used
are independent from each other this error can be estimated as

δA =
σA√
NMC

, (2.56)

where σA is the standard deviation of A. However, given the configurations gen-
erated in the MCMC method are part of a same Markov chain, and therefore may
be correlated, one needs to take this so-called auto-correlation into account when
estimating the error of the calculated average. The Γ-method described in [64, 65] is
used for this purpose, as well as to take into account correlations between different
observables analyzed on the same chain of configurations. The latter is of particular
importance since the extraction of masses involves the correlation function at differ-
ent values of time and the solution of the GEVP where the different entries of the
relevant correlation matrices may be correlated. The pyerrors [66] implementation of
the Γ-method in Python is used which employs automatic differentiation [67] for the
calculation of all derivatives involved. This feature is of particular importance when
analyzing quantities which can become very small and therefore the numerical eval-
uation of derivatives can become unstable without a fine tuning of the step-size used
and automatic differentiation eliminates this problem.

2.3 Distillation

Quark smearing techniques seek to create a smoother, more extended field which
better approximates the physical state of interest. Most methods available are iter-
ative, similar to the case of the link variables. Notable examples are the Wuppertal
smearing [68, 69], Jacobi smearing [69–71] and Gaussian smearing [70, 72–74]. The
success of these techniques comes from the fact that simulate wave functions with
extended spatial structure, better approximating the non point-like structure of real-
istic hadrons [25, 26, 75]. This is done by linearly and gauge covariantly combining
the quark fields to avoid the appearance of new Wick contractions. A widely used
non-iterative quark smearing scheme is distillation [23] and to better understand
how it works it is useful to explore its relation to the iterative schemes. A good
starting point is the explanation presented in [76] regarding the Jacobi. One can de-
fine a smeared field with a Gaussian profile of parameter σ2 and no defined gauge
symmetry as

ψ̃(x⃗, t; σ2) ∝
∫

e
−

r⃗2

4σ2 ψ(x⃗ + r⃗, t)d3r, (2.57)

where the normalization constant is ignored given that it is not immediately relevant
for the discussion. With the initial condition ψ̃(x⃗, t; σ2 = 0) = ψ(x⃗, t) and the relation
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σ2 = κτ the smeared field is a solution to the diffusion equation

∂ψ̃(x⃗, t; σ2)

∂τ
= κ∇2ψ̃(x⃗, t; σ2), (2.58)

where τ is a diffusion time and κ a diffusion constant. A discrete version of Eqn.
(2.58) that describes a single step of this smearing, with κ fixed as a smearing param-
eter, is

ψ̃(x⃗, t; κ(τ + ∆τ))− ψ̃(x⃗, t; κτ)

∆τ
= κ∇2ψ̃(x⃗, t; κτ). (2.59)

By setting a value σ2 = κτ0 of desired smearing and a number of smearing steps
n = τ0

∆τ , an expression for the smeared field in terms of the original field is given by

ψ̃(x⃗, t; σ2) =

(
I +

σ2∇2

n

)n

ψ(x⃗, t), (2.60)

from where it is possible to identify the operator acting on the original quark field
as the smearing function. The parameter σ2 controls the width of the smeared quark
field and should be chosen such that the field is smeared enough as to obtain a
size comparable to the physical state of interest while not too much as to introduce
significant finite-volume effects in the calculations. At this point it should be noted
that for a gauge-covariant lattice formulation of this smearing it is necessary to use
the gauge-covariant lattice 3D Laplacian operator ∇2[t] which is given by

∇2[t]x⃗,⃗y = −6δ⃗x,⃗y +
3

∑
k=1

Uk(x⃗, t)δ⃗x+k̂,y + U†
k (x⃗ − k̂, t)δ⃗x−k̂,y, (2.61)

which is a hermitian negative-definite operator. As stated in [23, 76] the link vari-
ables used in Eqn. (2.61) should be appropriately smeared. Given this operator only
acts on position and color space it is trivial in Dirac space and therefore any Dirac
component of the original quark field can be written as a linear combination of the
3N3

L eigenvectors vi[t] for a fixed time t as

ψ(x⃗, t)α =
3N3

L

∑
i=1

cα
i vi[t]x⃗, (2.62)

where α = 0, ..., 3 is the Dirac component and cα
i are the linear coefficients. Since in

the limit of large n

lim
n→∞

(
I +

σ2∇2[t]
n

)n

= eσ2∇2[t], (2.63)

the smeared field ψ̃(x⃗, t)α will exhibit an exponential suppression of the eigenvectors
vi[t] with large negative eigenvalues. This indicates that eliminating the eigenvec-
tors with high eigenvalues might serve as a good smearing strategy. Since these low
modes correspond to long range contributions then it makes sense to keep them to
determine properties like masses from the asymptotic behavior of correlation func-
tions. The original distillation operator that acts on the quark fields is given by

□[t] x⃗,⃗y
a,b
α,β

= δαβ

Nv

∑
i=1

vi[t]x⃗
a
vi[t]∗y⃗

b
, (2.64)
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which satisfies □[t]2 = □[t] however a more general one can be defined as

□̃[t] x⃗,⃗y
a,b
α,β

= δαβ

Nv

∑
i=1

g(λi[t])vi[t]x⃗
a
vi[t]∗y⃗

b
, (2.65)

where g(λi[t]), the quark distillation profile, is a function that can be freely chosen
and Nv is the number of Laplacian eigenvectors that are kept when the eigenval-
ues are ordered from smallest to largest in magnitude [23]. This general distillation
operator can be written in matrix form as

□̃[t] = V[t]J[t]V[t]† ⊗ IS, (2.66)

where IS is the 4× 4 identity, V[t] has dimension 3N3
L × Nv with the chosen Laplacian

eigenvectors as columns and J[t] is a Nv × Nv diagonal matrix with g(λ) evaluated
on each eigenvalue. The distilled quark fields are built by acting on the original
quark fields with the distillation operator, yielding

ψ̃(x⃗, t)α
a
=

Nv

∑
i=1

g(λi[t])vi[t]x⃗
a
vi[t]∗y⃗

b
ψ(⃗y, t)α

b
, (2.67)

where Einstein’s summation notation is used for repeated indices. The distilled
quark field ψ̃(x⃗, t) will be used from now on for all calculations. These fields can
be used to build a wide variety of operators for different kinds of particles however
in this work only the ones corresponding to mesons will be of interest. Their use for
building such operators will be explored in detail in Ch. 3. Distillation is a smear-
ing technique which is not iterative and corresponds to a restriction of the quark
fields to the span of the Laplacian eigenvectors chosen. These two features give rise
to the advantages and disadvantages of this method which will be explored later.
Nonetheless, two fundamental parts of it will be addressed here. First is the method
for calculating the wanted eigenpairs relevant to build the distillation operators and
second the method to numerically approximate a solution vector x = D−1b for a
given vector b.

As mentioned before, ∇2[t] as defined in Eqn. (2.61) is both hermitian and negative
definite. Furthermore, when expressed in matrix form it has size 3N3

L × 3N3
L yet it is

extremely sparse as it only involves local and nearest-neighbor interactions. These
three features, together with the fact that only Nv ≪ 3N3

L eigenpairs are needed,
make the Lanczos algorithm the ideal tool to perform this calculation. First pre-
sented in [77] and explored in detail in [78, 79], the Lanczos algorithm is an iterative
method to find extremal eigenvalues and corresponding eigenvectors of a hermi-
tian matrix where it is not necessary to explicitly access all entries of the matrix but
rather only its action on a vector. Details on its implementation and convergence
can be found in [78–81]. The standard Lanczos algorithm is not free of complica-
tions: there is loss of orthogonality between the vectors it uses as basis for the sub-
space where the eigenvectors are approximated (explored in detail in [81–83]), the
dependence of the convergence speed on how spread out the extremal eigenvalues
are, memory limitations for the storage of the necessary vectors and finding an ef-
ficient algorithm to solve the resulting reduced tridiagonal problem. With these in
mind, the algorithm of choice for this work is the Thick-Restart Lanczos [84, 85] with
periodic reorthogonalization [86, 87] and Chebyshev acceleration [88] together with
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the method of Relatively Robust Representations [89–91] to solve the reduced eigen-
problem, the latter being included in the Lapack library [92].

Finally, solving the linear system
Dx = b, (2.68)

with D the Dirac operator defined in Eqn. (2.17) and b a given vector, from here
on denoted as the right-hand side (RHS), is of major importance both in the HMC
method and in distillation. For the latter case it will be shown in Ch. 3 that a to-
tal of 4 × Nv × Nt linear systems need to be solved per gauge configuration where
the different RHS’s are related to the eigenvectors of the 3D covariant Laplacian
operator. For clarity the general form given in Eqn. (2.68) will be used for the
current discussion, since most methods to approximate the solution vector x =
D−1b can take as input any RHS b as long as the system is well-defined. Since
D has size 12N3

LNt × 12N3
LNt direct methods such as Gaussian elimination or LU-

decomposition are not feasible and iterative methods are the preferred option. In
such methods one builds a series of iterates x(0), x(1), ..., such that each new iterate
is a better approximation to the true solution x of Eqn. (2.68). Since D is also a very
sparse matrix, such that its action on a vector can be cheaply calculated, a family of
iterative methods often used is the Krylov subspace methods [93, 94], which build
each iterate x(n) from the Krylov subspace Kn(D, b) defined as

Kn(D, r(0)) = span
(

r(0), Dr(0), D2r(0), ..., Dn−1r(0)
)

, (2.69)

where r(0) = b − Dx(0) is the residual corresponding to the initial guess x(0). Meth-
ods such as the Generalized Minimum Residual (GMRES) [95] and Generalized Con-
jugate Residual (GCR) [96] belong to this family and build the iterates x(n) such that
the 2-norm of the residual at every iteration r(n) = b − Dx(n) is minimized. There
exist several improvements to these methods, such as preconditioning to replace the
system with an equivalent yet better conditioned one [93, 94], and these often de-
pend on the properties of the matrix D that defines the system. These improved
variants can also be used together with multi-grid schemes, e.g. [97]. In this work
the algorithm used to solve the linear systems, from now on denoted as the solver,
corresponds to the deflated GCR together with the Schwarz alternating procedure
(SAP) and even-odd (EO) preconditioning available in the openQCD library [98].
Details on SAP, EO preconditioning and the deflation used can be found in [99, 100]
and these different building blocks are put together to define a two-grid multi-grid
solver as explained in [97].

2.4 Ensembles

In this work a total of 4 different ensembles of gauge configurations are used. They
correspond to three different models of QCD: N f = 2, N f = 3 + 1 and N f = 0.
The N f = 2 ensembles are used as a simplified model to test the method developed
in this work for the improvement of the distillation method while the N f = 3 + 1
ensemble corresponds to a more physical setup, as will be explained shortly, and is
used for a first approach to test the method for the measurement of quantities that
can be compared to the physical world. Finally, the N f = 0 ensemble is used to
measure the glueball spectrum in absence of dynamical quarks to have a reference
point to compare the corresponding spectrum in the presence of N f = 2 dynamical
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quarks and the effect these have in terms of excited-state contamination. The details
of the different cases are now presented separately.

2.4.1 N f = 2

For the case of N f = 2 there are two different ensembles labeled as Em1 (composed
of 4080 gauge configurations) and Nm1 (composed of 480 gauge configurations).
Both have periodic boundary conditions in all directions except for anti-periodic
ones for the quark fields in time, are tuned such that the two degenerate quarks are
at half the physical charm quark mass and come from the standard Wilson fermion
action with a clover improvement term [37] and the Wilson plaquette gauge action.
Em1 has a bare coupling g2

0 = 6
5.3 , hopping parameter κ = 0.13270 and lattice size

48 × 243. These input parameters lead to a lattice spacing a = 0.0658(10) fm [101,
102] and a flow scale [103] t0

a2 = 1.8486(7). Nm1 has a bare coupling g2
0 = 6

5.5 ,
κ = 0.13383 and lattice size 96 × 483. These lead to a lattice spacing a = 0.0486(6)
[104, 105] and t0

a2 = 4.867(12). The main reason for using these two ensembles as
testing ground for this work is the absence of light quarks. This simplifying fea-
ture makes the low-lying charmonia states stable since no decay into DD̄ pairs can
happen. Furthermore, the absence of iso-scalar mesons composed purely of light
quarks guarantees that any possible mixing with glueball states is via the iso-scalar
charmonium states. The latter isolates this mixing phenomenon and facilitates its
study. Since one of the goals of this work is to develop a method to study this mix-
ing then these two ensembles are a very convenient starting point. Furthermore,
since the two ensembles have different physical volumes they allow the study of the
volume scaling property of the distillation method and how the method proposed
in this work performs in this regard. As a final remark, since the two degenerate
charm quarks are still sufficiently heavy then the solution of the multiple linear sys-
tems involving the Dirac operator D is a feasible task for the two different numbers
of configurations available.

2.4.2 N f = 0

For the case of N f = 0 the ensemble used in this work is labeled as qE, using a total
of 9000 configurations. It has periodic boundary conditions in all directions and was
generated using the Wilson plaquette gauge action. Its bare coupling is g2

0 = 6
5.85

and has a flow scale [103] t0
a2 = 1.844(3). The bare coupling was chosen such that t0

a2

matches the one from the Em1 ensemble.

2.4.3 N f = 3 + 1

For the case of N f = 3 + 1 the single ensemble studied in this work is labeled as
B, using a total of 500 configurations. It has periodic boundary conditions except
for Dirichlet (Schrödinger Functional) ones for the quark fields in the time direction
and open boundary conditions for the link variables also in the time direction to
avoid topological freezing [106]. The masses of the three degenerate light quarks
are taken at the symmetric point such that their sum is as in nature and the mass of
the charm quark is at its physical value. This ensemble was generated with an action
involving the Wilson fermion action with a suitably chosen clover improvement and
the Lüscher-Weisz action for the gauge field. The bare coupling is given by g2 =

6
3.43 and the hopping parameters from the light and charm quarks are κl = 0.13599
and κc = 0.13088 respectively. These parameters result in a = 0.04292(52) fm and
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the flow scale t0
a2 = 11.573(36) [103]. Details of these actions and the tuning of the

corresponding input parameters can be found in [107] and references therein. This
ensemble is used for a number of reasons in this work. First of all, unlike ensembles
Em1 and Nm1, it includes light quarks and contains a single charm quark at its
physical mass. This brings the resulting charm physics close to the physical point,
meaning that the corresponding results obtained can be compared with those from
nature. Furthermore, choosing to work at the symmetric point for the light quark
masses provides an additional improvement for masses coming from operators that
do not contain valence light quarks. As shown in [107], the relationship between the
physical mass mphys.

ηc of the ηc and the one measured in this ensemble msym.
ηc is given

by

mphys.
ηc = msym.

ηc + ∑
i=u,d,s

∂mηc

∂mi
|sym.

(
mphys.

i − msym.
i

)
+O

(
∆m2) , (2.70)

where the partial derivatives are evaluated at the symmetric point and therefore are
equal to each other. The second term in Eqn. (2.70) becomes

∂mηc

∂mi
|sym. ×

(
∑

i=u,d,s

(
mphys.

i − msym.
i

))
(2.71)

=
∂mηc

∂mi
|sym. ×

(
∑

i=u,d,s
mphys.

i − ∑
i=u,d,s

msym.
i

)
(2.72)

= 0 (2.73)

and therefore the leading correction term goes as the square of the mass differences.
Finally, the inclusion of light quarks allows for decays and mixing that were not
possible with ensembles Em1 and Nm1, such as the appearance of DD̄ pairs and the
mixing charmonia and light mesons via quark-anti-quark annihilation loops. The
latter in particular leads to a more dense energy spectrum in the singlet sector and
highlights one of the current obstacles that modern hadron spectroscopy in lattice
QCD must overcome.
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Chapter 3

Charmonium

It is only slightly overstating the case
to say that physics is the study of
symmetry.

Philip Anderson

This chapter focuses on the development of the optimal meson profile formalism
within the distillation framework and its application to study flavor-neutral meson
operators. First, the construction of these operators based on their transformation
under the action of the cubic group together with parity and charge conjugation is
briefly discussed. Afterwards the calculation of temporal correlation functions be-
tween these operators in the framework of distillation is explored and culminates
in the introduction of optimal meson distillation profiles which is shown to yield an
improvement over the standard distillation method. Implementation considerations
that make all of the required calculations considerably efficient are also discussed.
Finally the charmonium iso-vector spectrum results obtained using these profiles
for a selected set of JPC in ensembles Em1 and Nm1 are presented, based on which
the advantages and limitations of the proposed method of optimal profiles are dis-
cussed.

3.1 Meson operators on the lattice

Meson operators can be built by gauge-invariantly combining quark fields. A generic
flavor-neutral meson operator projected to zero spatial momentum can be defined
as 1

O(t) = ∑
x⃗∈Λ3D

∑
α,a

ψ̄(x⃗, t)α
a ∑

β,⃗y,b
Γ(x⃗, y⃗, t)αβ

ab
ψ(⃗y, t)β

b
, (3.1)

where Γ is an operator that can can depend on the gauge field U and act on spin,
position and color space. This meson operator is associated with a meson annihila-
tion operator in the corresponding Hilbert space. The one associated with a meson
creation operator in this space is its hermitian conjugate, given by

O(t) = ∑
x⃗∈Λ3D

∑
α,a

ψ̄(x⃗, t)α
a ∑

β,⃗y,b
Γ(x⃗, y⃗, t)αβ

ab
ψ(⃗y, t)β

b
, (3.2)

where Γ = γ0Γ†γ0. There is considerable freedom in the choice of the Γ operator
and it is dictated by the JPC quantum numbers of interest. Examples of Γ operators
are the Dirac matrices, or products of them, such as γ5, γi, γ5γi, etc... or covariant

1Convention is chosen such that no division by N3
L is done in the spatial Fourier transform.
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symmetric lattice derivatives ∇i. These are ultimately chosen such that the result-
ing meson operator transforms as a given irrep RPC of the cubic group O including
parity and charge conjugation and can therefore be associated with a given total
angular momentum J as dictated by Table 2.1. The simplest choice of only Dirac
matrices leads to operators that transform according to A++

1 , A−+
1 , T−−

1 , T++
1 and

T+−
1 [25]. The list of accessible irreps can be extended by including covariant lattice

derivatives, which are not local, in the sense that they involve the quark fields at dif-
ferent spatial points, and allow to sample more complex spatial structures that might
better resemble physical states [23, 50, 108, 109] as well as to build operators which
explicitly contain gluonic degrees of freedom and therefore are suitable to study
spin-exotic states such as 1−+ not allowed in the quark model [45, 110, 111]. This ex-
tension is based on calculating the product of irreps R1 ⊗ R2 generated by the Dirac
matrices or lattice derivatives and decomposing it into a direct sum of irreps [43, 44,
112]. New operators involving both Dirac matrices and lattice derivatives can then
be built by calculating the corresponding Clebsch-Gordan coefficients [113]. This
procedure is well known in the literature: the decompositions of all products of ir-
reps of the cubic group can be found in [40] and the explicit operators that transform
according to all irreps containing up to two lattice derivatives can be found in [45,
114, 115] together with the JPC to which they couple in the continuum limit. An al-
ternative construction based on the continuum SO(3) counterparts of the operators
can also be found in [50].

For this work the irreps of interest are A++
1 , A−+

1 , T++
1 , T−−

1 , T+−
1 , T−+

1 , E++ and
T++

2 , which allow to access values of J = 0, 1, 2 with the corresponding PC num-
bers. The connection between the obtained spectrum results of each irrep and the
different values of JPC must be done carefully due to the subduction mentioned
in Sect. 2.2.1. In principle one could count mass degeneracies across the different
irreps when approaching the continuum limit and compare this result with the dif-
ferent subduction results in Table 2.1. With this strategy a degeneracy in the E++

and T++
2 could be identified with a 2++ state. The problem with such a method is

that it requires a very high precision to avoid the appearance of near degeneracies
that would lead to a wrong identification of the correct continuum quantum num-
bers. This is explained in [111] with the example of the χc0 (0++), χc1 (1++) and
χc2 (2++) charmonium states whose mass is almost degenerate in nature [4]. With-
out sufficient precision to clearly distinguish the results from the A++

1 , T++
1 , E++

and T++
2 irreps then one might wrongly assign them to a single 4++ state. To avoid

this problem an alternative method is presented in [50, 111] based on the overlaps
⟨0| Ô |n⟩ between the created states and the actual energy eigenstates. By starting
from meson operators that have a fixed J in the continuum and projecting them onto
the different irreps of interest it can be shown that the overlaps obtained from the
latter are related to the continuum J and therefore these operators "remember" from
which J they were subduced. By following the procedure presented in [50, 111] one
can explicitly build these overlaps that exhibit the same degeneracies across irreps
as the masses for a fixed J and which can be used to assign the correct values of J to
the resulting spectrum. As explained in [50] there are two main advantages to this
technique over the counting of mass degeneracies: no approach to the continuum
limit via calculations in ensembles at different lattice spacings is necessary and the
near-degeneracies of the masses for some sets of values of JPC do not lead to near-
degeneracies in the overlaps that would require very high precision to disentangle.
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A detailed identification of the continuum quantum numbers of the obtained spec-
trum is not the main goal of this work so whenever it is done it will be by counting
mass degeneracies. As will be seen later on in the results, this approach provides
sufficiently reliable results for the ground states of the irreps analyzed.

As a final consideration it is important to discuss how the different JPC that can be
analyzed are related to the quark model. In this framework the meson states are
assumed to have the form q̄q with no explicit gluonic degrees of freedom. By fixing
the total orbital angular momentum L and total spin S of the state the parity and
charge conjugation symmetries are restricted to [5]

P = (−1)L+1

C = (−1)L+S. (3.3)

Since the quark and anti-quark have total spin 1
2 the only possible values for S are 0

and 1. The choice S = 0, corresponding to the spin-singlet case, has P × C = −1 and
some examples are 0−+ for L = 0, 1+− for L = 1, etc.. For S = 1, the spin-triplet case,
one has P × C = 1 and some examples are 1−− for L = 0, (0, 1, 2)++ for L = 1, etc...
A state with quantum numbers 1−+ is not allowed in this model and is therefore
referred to as exotic [5]. Nonetheless such a state can be studied on the lattice and a
possible way to account for its quantum numbers is to allow an additional gluonic
degree of freedom with its own JPgCg

g apart from the quark degrees of freedom [110,

116]. If JPgCg
g = 1+− then its combination with a q̄q state with 1−− can yield the

wanted 1−+ state. This is the so-called hybrid interpretation of the state 1−+ since
it mixes the q̄q one with a gluonic excitation and gives an indication that a suitable
choice of meson operator to study this state in the lattice should explicitly contain a
gluonic excitation in the form of the field-strength tensor Fµν. An example of such
choice of hybrid operator is [45, 114]

Γi = ϵijkγjBk, (3.4)

with Bi given by

Bi = ϵijk∇j∇k. (3.5)

In the continuum limit one has

Bi = − i
2

ϵijkFjk (3.6)

which explicitly contains the field-strength tensor. If the gauge field vanishes then
this hybrid operator vanishes as well, which indicates its sensitivity to the gluonic
degrees of freedom. A gluonic excitation carrying quantum numbers JPgCg

g = 1+−

combined with a 1−− state yields not only the 1−+ exotic state but also the non-exotic
0−+ and 2−+ states. This means that among the tower of excited states of these two
channels one expects to find hybrid excitations. Again, the use of operators in these
symmetry channels that explicitly involve the field-strength tensor would have the
best overlap with these hybrid states. Examples of such operators can be found in
[45, 114] while a table containing some hybrid supermultiplets of interest calculated
via a gluonic excitation can be found in [110].
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3.2 Meson correlation functions in the lattice using distilla-
tion

For the temporal correlations of mesons the quantity
[
O(t)O(0)

]
F is given by

[
O(t)O(0)

]
F =

1
ZF[U]

∫
dψdψ̄ ∑

x⃗,⃗y∈Λ3D

ψ̄(x⃗, t)Γψ(x⃗, t)ψ̄(⃗y, 0)Γ̄ψ(⃗y, 0). (3.7)

Since distilled quark fields will be used it is necessary to perform the replacement

ψ(x⃗, t)α
c
→

Nv

∑
i=1

f (λi[t])vi[t]x⃗
c
vi[t]∗n⃗

e
ψ(⃗n, t)α

e
, (3.8)

before performing the Grassmann integration. This integration for the iso-vector
case results in [

O(t)O(0)
]

F = −Tr (Φ[t]τ[t, 0]Φ̄[0]τ[0, t]) , (3.9)

and the temporal correlation of interest can be written as

C(t) = ⟨−Tr (Φ[t]τ[t, 0]Φ̄[0]τ[0, t])⟩U . (3.10)

To define the elementals Φ[t], write the factorization Γ = HD where H acts only in
Dirac space while D acts only in color and position space

Φ[t] ij
αβ

= Hαβg∗(λi[t])vi[t]†Dvj[t]g(λj[t]). (3.11)

The perambulators are defined as

τ[t, 0] ij
αβ

= vi[t]†D−1[t, 0]αβvj[0], (3.12)

and just like the elementals they are matrices of size 4Nv × 4Nv. Three observations
should be made about how they make distillation a very versatile technique. First,
calculations of the elementals and perambulators are completely independent. Once
all necessary perambulators are ready one can combine them with elementals com-
ing from different choices of Γ so their calculation cost is fixed. Second, both the
elementals and perambulators are relatively small matrices compared to the quark
propagator D−1 which makes their calculation and storage feasible. Third, for dif-
ferent choices of g(λ) it is not necessary to completely recalculate the elementals; it is
enough to calculate them once with g(λ) = 1 and then multiply them by the desired
choice of g(λ) on the fly. However these advantages do not come for free and there
is a notable disadvantage to distillation: the high number of inversions of D that
must be performed to build the perambulators. For a fixed gauge configuration one
needs to perform 4 × Nt × Nv inversions. On one hand, Nt can be around 48 or 92
for typical lattices. On the other hand, Nv scales with the physical volume of the lat-
tice if one wants to keep a fixed threshold for the Laplacian eigenvalues in physical
units and for larger lattices around 200 or more Laplacian eigenvectors are needed to
avoid over-smearing. These two conditions can lead to a considerable number of in-
versions per gauge configuration (≈ 73.6 × 103). Taking into account that one needs
order thousands gauge configurations to get good statistical estimates of the corre-
lation functions the total number of inversions easily enters the realm of millions.
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To deal with this issue the method of stochastic distillation was first introduced in
[117]. This method uses noise vectors in distillation space to stochastically estimate
the correlation functions of interest without having to perform all 4× Nt × Nv inver-
sions but rather a smaller number that can then be kept approximately constant even
when the lattice volume increases. However one must also be careful in controlling
the error this stochastic estimation introduces and dilution schemes must be tuned.
This method will not be discussed any further since this work focuses on the exact
calculation of perambulators. This leaves the number of inversions unchanged yet
seeks to answer a different question: are the available eigenvectors being used in the
best way possible?

3.3 Optimizing the distillation operator for meson operators

The choice g(λ) = 1 is the most often used for studies that employ distillation [50,
110, 118, 119], with the exception of [50] where a Gaussian is also used. This keeps
the distillation operator □[t] as an orthogonal projector onto the space spanned by
the Laplacian eigenvectors corresponding to small eigenvalues. The success of dis-
tillation indicates that this subspace is the right one, yet two issues arise:

• How to choose Nv to make sure no over-smearing is done by taking Nv too
small while not incurring excessive computational work when Nv is too large?

• Is an orthogonal projector the best mapping to take the original quark fields
into the distillation subspace?

The first one is related to the size of the perambulators and elementals while the sec-
ond one is related to the matrix J[t] and how each Laplacian eigenvector is used to
build the distilled quark fields. Due to computational effort, trial and error is not a
feasible method to estimate the optimal value of Nv and the physical volume scaling
remains the preferred method to estimate it. However this scaling is independent of
the operators being studied and it is not unreasonable to think that different opera-
tors might require more or less contributions from different Laplacian eigenvectors.
In other words, it is not enough to find a value of Nv such that relevant informa-
tion is not lost by over-smearing but one also needs to find a suitable choice of g(λ)
to make sure the operator resembles the physical state as much as possible. Since
the physical state is probably different for different quantum numbers JPC and their
corresponding excitations then different choices of Nv and g(λ) will probably be
necessary to better approximate them.

The method to approach the issue of finding an appropriate Nv and exploit the free-
dom of choice of g(λ) was first presented in [120] and the main idea will be outlined
here. The building blocks of this approach are distilled quark fields based on NB dif-
ferent quark distillation profiles gk(λ) with k = 1, ..., NB. By choosing a Γ operator
each distilled quark field can be used to build a meson operator Ok(t), appropriately
projected to zero spatial momentum, which in turn give rise to different elementals
defined as

Φ(k)[t] = Jk[t]†V[t]†ΓV[t]Jk[t]. (3.13)
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By using the factorization Γ = HD[t], where H acts on spin indices and D[t] acts on
color and spatial indices, the entries of these elementals are given as 2

Φ(k)
ij
αβ

[t] = Hαβgk(λi[t])vi[t]†D[t]vj[t]gk(λj[t])

= Hαβvi[t]†D[t]vj[t] fk(λi[t], λj[t]), (3.14)

where the meson distillation profile fk(λi[t], λj[t]) = g(λi[t])g(λj[t]) has been de-
fined. Note this profile is the only thing distinguishing these NB different elementals
and, compared to the explicit calculation of derivative-based operators that might be
included in D[t], its inclusion is extremely cheap. The goal is to find a way to linearly
combine the meson operators Ok(t) to obtain one which most resembles the physical
state of interest. Such an operator will have the form

Õ(t) =
NB

∑
k=1

akOk(t), (3.15)

where the linear coefficients ak are yet to be determined. One could be tempted to
build such an optimal operator to have the form

Õ(t) = ψ̄(t)V[t] J̃[t]V[t]†ΓV[t] J̃[t]V[t]†ψ(t) (3.16)

such that for a choice of Γ and energy level of the corresponding symmetry channel
there is an optimal quark distillation profile contained in J̃[t]. However such a fac-
torization is not always possible. This can be shown by explicitly writing down the
elemental corresponding to the operator Õ(t) as

Φ̃ ij
αβ

[t] =
NB

∑
k=1

akΦ(k)
ij
αβ

[t]

=
NB

∑
k=1

akHαβvi[t]†D[t]vj[t] fk(λi[t], λj[t])

= vi[t]†D[t]vj[t]
NB

∑
k=1

ak fk(λi[t], λj[t])

= vi[t]†D[t]vj[t] f̃ (λi[t], λj[t]), (3.17)

where

f̃ (λi[t], λj[t]) =
NB

∑
k=1

ak fk(λi[t], λj[t]) (3.18)

is the optimal meson profile. For a factorization as the one shown in Eqn. (3.16) to
exist then it must be possible to write

f̃ (λi[t], λj[t]) = g(λi[t])g(λj[t]), (3.19)

and for NB > 1 such a factorization is in general not possible. Furthermore, even if
it were possible to factorize f̃ (λi[t], λj[t]) in the form

f̃ (λi[t], λj[t]) = g1(λi[t])g2(λj[t]), (3.20)

2The profiles gk(λ) are assumed to be real so g∗(λ) = g(λ).
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the case where f̃ (λi[t], λj[t]) changes sign for some λi[t] = λj[t] would necessarily
mean that g1(λi[t]) ̸= g2(λi[t]) and therefore the wanted factorization is impossible.
Such change of sign is possible and dictated by the coefficients ak. These considera-
tions are an indication that it is necessary to remain at "meson level" when working
with optimal distillation profiles. This means that instead of aiming at a construction
as the one shown in Eqn. (3.16) one must work with one given by

Õ(t) = ψ̄(t)V[t]Φ̃[t]V[t]†ψ(t), (3.21)

where, rather than assigning an individual quark distillation profile to the ψ and
ψ̄ fields separately, the optimal meson distillation profile cannot be decoupled and
affects both fields. One can go a step further and write the operator as

Õ(t) = ψ̄(t)Γ̃[t]ψ(t), (3.22)

where

Γ̃[t] = V[t]Φ̃[t]V[t]†, (3.23)

can be considered as an optimal Γ operator which includes the original Γ plus the
action of the optimal meson distillation profile and therefore is not restricted to a
quark-level smearing. This construction leads to a further feature of the proposed
method. The Γ̃[t] operator acts on spin, position and color indices and one can be
interested in particular in its spatial behavior. A first step to access this property is to
find a way to "integrate out" the spin indices. As proposed in [120], this can be done
for the spin-singlet JPC for different values of angular momentum by calculating the
spin-projected operator as

Γ̃S[t] = Tr
(
γ5Γ̃[t]

)
, (3.24)

where the trace is taken over spin indices and spin-singlet S- and P-wave operators
subjected to this spin-projection are chosen to have only a γ5 in their definition for
setting the spin structure, i.e Γ = γ5 for 0−+ and Γ = γ5∇i for 1+−. The second step
is to define a 3D point-like vector

ϕx⃗
c
= h0δ⃗x,⃗z, (3.25)

where h0 ∈ C3 with ||h0||2 = 1 and z⃗ an arbitrary fixed position z⃗, such that Γ̃S[t] can
act on it and the spatial profile of the resulting 3D vector can be used to visualize
the spatial smearing effect of Γ̃S[t]. With the resulting vector for each value of time t
given as

ϕ̃(Γ,e)[t]x⃗
b
= ∑

y⃗,c
Γ̃S[t]x⃗y⃗

bc
ϕy⃗

c
, (3.26)

the spatial profile of the created state can be defined as

Ψ(Γ,0)(x⃗) =
1

Nt

Nt−1

∑
t=0

||ϕ̃(Γ,e)[t]||22, (3.27)

where the 2-norm || · ||2 is taken over color space only. A similar construction of
spatial wave functions based on Wuppertal smearing was presented in [121].
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Finally one needs to calculate the coefficients ak and this is done via the previously
explained GEVP formulation. The relevant correlation matrix is given by

Cij(t) =
〈
Oi(t)Ōj(0)

〉
=
〈
−Tr

(
Φ(i)[t]τ[t, 0]Φ̄(j)[0]τ[0, t]

)〉
U

, (3.28)

for the iso-vector case. As shown in Sect. 2.2.3 the generalized eigenvectors together
with the pruning vectors grant access to the coefficients ak for a fixed Γ and energy
level of interest. As will be seen in the results presented later on, not only do differ-
ent choices of Γ yield different optimal meson distillation profiles but also different
energy levels for a single choice of Γ have different optimal meson distillation pro-
files. This variety of profiles is an added advantage of the method since it allows to
tailor the optimal elemental to better approximate the state of interest. The method
can also be extended to the case where the GEVP includes not only different choices
of quark distillation profiles but also different choices of Γ operators with the same
quantum numbers. Considering NΓ Γ operators and NP quark distillation profiles
the elemental corresponding to the m-th Γ structure and the n-th quark profile is
given by

Φ(m,n)
ij
αβ

[t] = Hm
αβvi[t]†Dm[t]vj[t] fn(λi[t], λj[t]) (3.29)

such that the resulting optimal elemental is given by

Φ̃ ij
αβ

[t] = ∑
m,n

amnΦ(m,n)
ij
αβ

[t]

= ∑
m,n

amnHm
αβvi[t]†Dm[t]vj[t] fn(λi[t], λj[t])

= ∑
m

Hm
αβvi[t]†Dm[t]vj[t]∑

n
amn fn(λi[t], λj[t])

= ∑
m

Hm
αβvi[t]†Dm[t]vj[t] f̃ (m)(λi[t], λj[t]), (3.30)

where

f̃ (m)(λi[t], λj[t]) = ∑
n

amn fn(λi[t], λj[t]), (3.31)

is the optimal meson profile associated with the m-th Γ operator. The inclusion of
multiple Γ operators further expands the basis for the GEVP formulation and is ex-
pected to improve on the results obtained when a single Γ operator is used. Note
the coefficients amn that here would be determined from a GEVP starting from the
NΓNP × NΓNP temporal correlation matrix are not expected to coincide with those
from solving NΓ different GEVPs each one starting with an NP × NP correlation ma-
trix. This is due to the fact that the former considers the mixing between the different
Γ operators and their profiles while the latter only considers the mixing among dif-
ferent profiles for a fixed Γ structure. For this reason it would also be preferable to
solve the GEVP from the NΓNP × NΓNP correlation matrix to build the correspond-
ing optimal elemental instead of solving NΓ different GEVPs of size NP × NP to build
NΓ optimal elementals that could then be used to formulate an NΓ × NΓ GEVP.

A final remark to keep in mind is that the optimal profiles can be built and used
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in more general cases than the one presented in this work. The spectrum of fla-
vored mesons can be studied with this method, where the difference in masses of
the flavors used can lead to using a different value of Nv for each flavor. This would
be mainly motivated by the higher computational effort involved in the solution of
linear systems involving the D operator with light quark mass. In this situation the
resulting elementals would be rectangular matrices yet the introduction of the quark
profiles and construction of the optimal profiles via a GEVP can be done as presented
in this work. The case with non-zero spatial momentum can also be studied in this
formalism; a non-trivial complex exponential that fixes the momentum of the me-
son must be introduced in the elemental calculation however the introduction and
optimization of the profiles remain unchanged. The formalism can also be extended
to baryon operators, where the elementals will have three distillation indices and
therefore a product of three quark distillation profiles defines the basic baryon pro-
file. The applicability to these examples also holds within the framework of stochas-
tic distillation; since the elementals and perambulators are independent from each
other, the profiles can be introduced no matter if the perambulator is calculated ex-
actly or stochastically. The latter way of calculation the perambulators introduces
an additional error to the correlation functions via which the profiles are optimized,
however a careful tuning of the relevant parameters allows to keep said error under
control. The extension to the study of static potentials is also possible and was first
presented in [122], where the optimal profiles are built to improve so-called Laplace
trial states that represent a static color-anti-color source pair from whose temporal
correlation function one can measure the static potential. As mentioned in this same
reference, this strategy can also be extended to the study of static-light mesons.

3.4 Charmonium spectrum using the optimal meson distilla-
tion profiles

Now that the theoretical foundations of the method for building optimal meson dis-
tillation profiles have been presented it is possible to test the method and observe
the improvements it brings to the distillation framework. However it is important
to first discuss technical details regarding how each of the different steps of the cal-
culations are performed. There a total of four steps which must always be performed
sequentially:

1. Calculate the Nv lowest eigenvalues and eigenvectors for each value of t.

2. Calculate the elementals for the different choices of Γ of interest, which in-
volves an explicit calculation only if Γ is a derivative based operator.

3. Calculate the perambulators τ[t1, t2] for all time pairs (t1, t2).

4. Calculate the correlation functions of interest which involve products of the
appropriate elementals and perambulators.

Each step might seem straightforward yet there are several details to be considered
to make sure calculations are done in an efficient manner. All calculations apart
from the data analysis are performed using the qcdlib library, written by Dr. Tomasz
Korzec and based on C and MPI.
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3.4.1 Eigenpair calculation

The Thick-Restart Lanczos with Chebyshev acceleration and periodic reorthogonal-
ization used in this work relies on different input parameters that must be tuned.
Not only this, but its implementation for the case of the 3D covariant Laplacian op-
erator as defined in Eqn. (2.61) must be done carefully as to guarantee efficiency.
This is done by exploiting different properties of this operator and will be briefly
explained here. The different input parameters for the calculation of the desired
eigenvectors and eigenvalues can be separated into two categories: those of the
Chebyshev acceleration and those of the Thick-Restart method including the peri-
odic reorthogonalization. For the Chebyshev acceleration one defines a re-scaled
Chebyshev polynomial of the form

Pn(x) = γTn(αx + β), (3.32)

where Tn(x) is the Chebyshev polynomial of type 1 with degree n. These Tn(x)
are bounded by [−1, 1] when x ∈ [−1, 1] and the choice of coefficients α, β and γ
is made such that Pn(x) is bounded when x ∈ [a, b] where the interval [a, b] must
contain all unwanted eigenvalues of −∇2[t] larger than a. Demanding Pn(0) = 1,
Pn(b) = γTn(1) and Pn(a) = γTn(−1) the following definitions are obtained:

α =
2

b − a

β = 1 − 2
1 − a

b

γ =
1

Tn(β)
, (3.33)

where the normalization is chosen such that Pn(x) is positive and decreasing in the
interval [0, a]. With these coefficients all eigenvalues λi[t] of −∇2[t] smaller than a
get mapped to Pn(λi[t]) and become more spread out without allowing for ambigu-
ities due to unwanted eigenvalues being mapped outside of the range [−1, 1]. This
means that the operator Pn(−∇2[t]) will exhibit better convergence when used in
the Lanczos algorithm. For a total of Nv eigenpairs it is not known a priori what the
corresponding eigenvalues will be in order to choose the values of a and b. To find
suitable values for these parameters it is useful to note that if all link variables are
set to the unit matrix then ∇2[t] becomes the free 3D Laplacian operator with an ad-
ditional degree of freedom due to the color index. The spectrum of this free operator
is known to be contained in the interval [0, 12] in lattice units and the introduction of
non-trivial link variables leads to perturbations of this spectrum that are nonetheless
not significantly large. This means that a good choice for the value of b is a value
sufficiently above 12. Numerical experiments with a small 8 × 43 lattice revealed
that a value of b = 15 is appropriate. No unwanted eigenvalues from the upper side
of the spectrum appeared in the calculation performed in the ensembles used in this
work which means that this choice of b works well for the values of Nv considered.
To find a suitable value of a one can choose a sufficiently large initial guess and look
at the total number of eigenpairs that converge to the desired precision. As long as
this number is larger than Nv the choice of a is acceptable and a = 4 was found to
work well for all calculations in this work where NAPE = 20 APE smearing iterations
using αAPE = 0.5 were used for ensemble Em1 and same αAPE but NAPE = 40 for
Nm1 to take into account the larger 3D volume. These parameters were tuned in a
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separate study of ensemble Em13. A final consideration regarding the polynomial
Pn(x) is the choice of the degree n. Large values of n require several applications
of ∇2[t] and therefore can lead to a significant increase in the overall computational
cost. Furthermore, on a more technical note, since the polynomials Tn(x) are de-
fined via a recursion relation then its implementation can lead to stack-expensive
functions for deep recursions at large n. To counter this technical issue the function
that defines the recursion is written in a tail-recursive manner [123]. This only leaves
open the issue of the computational cost and the choice n = 8 was found to work
well in terms of balancing cost and convergence for the ensembles used in this work.

For the Thick-Restart algorithm the input parameters are the size of the restart sub-
space, the maximum number of restarts, the thickness in each restart, the wanted
residual threshold and the threshold for the periodic reorthogonalization procedure.
The choice for the size of the restart subspace is based on the general rule of thumb
for the Lanczos algorithm to use ∼ 3Nv or ∼ 4Nv vectors to allow Nv Ritz vectors
to converge to the desired precision. The thickness of the restart as defined in [84,
85]is chosen as a function of Nv and the total number of converged Ritz vectors per
restart as recommended in the references. The maximum number of restarts is cho-
sen as 30 throughout this work. Since in all cases a single run of the algorithm was
enough to obtain the wanted Nv vectors, no further tuning is required for the thick-
ness or the maximum number of restarts. The residual threshold is chosen as 10−8

which reduces the computational work required to achieve convergence. This is in
principle allowed since using a strict threshold would mean the obtained vectors are
closer to the actual eigenvectors there is no reason to believe vectors which slightly
deviate from them would damage the properties of the distillation operator. Finally,
the threshold for the periodic reorthogonalization method is set to 10−10. This value
is safer than the ∼ 10−8 one that has been argued to already be a sufficiently good
choice [86, 87, 124]. A very similar algorithm for the calculation of the eigenvalues
and eigenvectors of ∇2[t] was used in [117] with a very similar set of parameters
which indicates they are suitable for this calculation. As a final note, an important
property of the 3D covariant Laplacian operator is it is block-diagonal in time. This
means that ∇2[t1] and ∇2[t2], together with their corresponding eigenvalues and
eigenvectors, can be computed independently. This leads to a trivial parallelization
in time so eigenvalues and eigenvectors of the operator at different times can be cal-
culated and written to disk simultaneously. This is done in the framework of MPI
which the library qcdlib uses such that there is parallelization along the 3 spatial
dimensions and also the temporal one.

3.4.2 Elemental calculation

The elementals are a fundamental building block for the distillation framework.
These matrices only require explicit calculations when the operator Γ is not trivial in
position/color space. The only cases of this kind in this work are those with one or
two covariant 3D derivatives. Just like the 3D covariant Laplacian ∇2[t] each of the
three spatial derivatives ∇i[t] act only on 3D spinor components for a given value of
time t. The same trivial parallelization in time used for the Lanczos algorithm can be
used to calculate the elementals of different times simultaneously. Considering up
to two derivatives there is a total of 12 different elementals of size Nv × Nv that must

3Special thanks to Roman Höllwieser for help with this tuning of parameters.
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in principle be calculated per value of t: 3 for the single derivative case and 9 for
the two derivative case. However it is possible to get away with fewer calculations.
Single derivative elementals can be written as anti-hermitian matrices

Φ(k)
ij [t] = vi[t]†∇k[t]vj[t]. (3.34)

This means that one only needs to calculate and store the 1
2 Nv(Nv + 1) entries of the

upper or lower triangular section of Φ(k)[t] and the remaining ones can be calculated
when needed. This reduces by roughly half the number of inner products required.
Double derivative elementals can be written as

Φ(k,l)
ij [t] = vi[t]†∇k[t]∇l [t]vj[t] (3.35)

and are hermitian with respect to all indices including the directions of the deriva-

tives, i.e
(

Φ(k,l)[t]
)†

= Φ(l,k)[t]. The covariant derivatives ∇i[t] do not commute

for different directions in the presence of a non-trivial gauge field so all N2
v entries

of a fixed combination of directions (k, l) must be calculated however once these
are known, the entries of the elemental corresponding to combination (l, k) can be
obtained. This reduces the number of required elemental calculations from 12 to
9. Furthermore, thanks to the anti-hermiticity of the 3 corresponding to the single
derivatives and the hermiticity of the 3 double derivative ones with repeated direc-
tion indices, 6 of these 9 elementals only require approximately half of their entries
to be explicitly calculated and stored.

3.4.3 Perambulator calculation

Just as the elementals, the perambulators are a fundamental building block of the
distillation framework and their calculation is the main computational cost of this
framework. For a fixed pair (t1, t2) the 4Nv × 4Nv perambulator matrix is given by

τ[t1, t2] ij
αβ

= vi,α[t1]
†D−1vj,β[t2], (3.36)

so one needs to perform 4Nv inversions and 16N2
v inner products involving spinors

with time, position, color and spin indices. However the cost related to the inner
products can be straightforwardly reduced by noting vi,α[t] is non-zero only in time
index t1 and spin index α where it is equal to the 3D vector vi[t1] which means that
one only needs to calculate the 3D inner product between vi[t1] and the 3D com-
ponent of D−1vj,β[t2] in time index t1 and spin index α. Furthermore, since these
3D inner products are independent when different values of time indices are used,
one can use the same trivial parallelization in time used for the Lanczos algorithm
and elemental calculation. Once the vector D−1vj,β[t2] has been built different inner
products corresponding to Laplacian eigenvectors of different times can be calcu-
lated simultaneously to build the entries of the perambulator τ[t1, t2] for all relevant
values of t1 and save them to files. Doing so for all pairs (t1, t2) can lead to consid-
erable storage cost which can be reduced roughly by half by noting that the peram-
bulators inherit the γ5-hermiticity from D−1. This γ5-hermiticity means that only
1
2 Nt(Nt + 1) perambulators must be calculated and stored.

One final consideration is related to the way the perambulator calculations are or-
ganized. As mentioned before, the cost is divided between the inversions required
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and the corresponding inner products. The former have an approximately fixed cost
which depends on the solver used while the latter can be done in an efficient manner
by organizing the calculation as follows. One needs to solve the linear system

Dx(i,α,t) = vi,α[t], (3.37)

for i = 1, ..., Nv, α = 0, ..., 3 and t = 0, ..., Nt − 1. To avoid repeating the calculation of
the different solution vectors x(i,α,t) one can calculate all entries of the perambulator
that involve x(i,α,t) via the corresponding inner products, i.e

τ[t1, t] ij
βα

= vj,β[t1]
†D−1vi,α[t]

= vj,β[t1]
†x(i,α,t) (3.38)

for all j = 1, ..., Nv, β = 0, ..., 3 and t1 = 0, ..., Nt − 1. Given the large number of inner
products required it is convenient to not perform the communication to calculate
τ[t1, t] ij

βα

but only have each MPI process calculate its local part of the inner product

as

τ(loc)[t1, t] ij
βα

= ∑
x⃗∈Λloc

3D

3

∑
a=1

vj,β[t1]
∗
x⃗
a
x(i,α,t)

x⃗
a

, (3.39)

where Λloc
3D is the local 3D lattice contained in the MPI process. All 16N2

v entries of
each local perambulator for a fixed t and t1 = 0, ..., Nt − 1 are calculated without
communication except for the one involved in the solver. Once all local perambula-
tors τloc[t1, t] for the fixed t and all t1 are ready one can start a non-blocking commu-
nication routine to calculate the corresponding perambulators τ[t1, t]. Immediately
after, the calculation for the next set of local perambulators τloc[t1, t + 1] can begin.
Since this new calculation will involve the solution of 4Nv inversions and the corre-
sponding local inner products, the communication required to build τ[t1, t] can be
hidden behind these calculations 4.

3.4.4 Correlation calculation

Two-point temporal correlation functions calculated in the distillation framework
are traces of products involving elementals and perambulators. From Eqn. (3.10) it
follows the relevant traces correspond to

A(t1, t2) = Tr (Φ[t1]τ[t1, t2]Φ̄[t2]τ[t2, t1]) , (3.40)

and

B(t) = Tr (Φ[t]τ[t, t]) . (3.41)

It is clear for a fixed pair (t1, t2) the trace A(t1, t2) only depends on the elemen-
tals and perambulators of these times just as B(t) only depends on the ones at time
t. This means that for two distinct pairs (t1, t2) and (t3, t4) the traces A(t1, t2) and
A(t3, t4) can be calculated simultaneously, just as the traces B(t1) and B(t2) can be
calculated separately for t1 ̸= t2. The final step is the averaging of the correlation

4Special thanks to Gustavo Ramirez for this observation.
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function for all available time sources given a fixed time separation t to exploit trans-
lation invariance in time. Once the A(t1, t2) is known for all values of t1, t2 then the
correlation function C(t) is calculated as

C(t) =
1

Nt

Nt−1

∑
s=0

A(as + t, as), (3.42)

and a similar calculation follows for the disconnected contribution. This averaging
over the entire temporal extent of the lattice is only valid when periodic boundary
conditions in time are used for the link variables, as with the Em1 and Nm1 ensem-
bles. The case with open boundary conditions for ensemble B, which is explained
in Chapter 6, relies on translation invariance in a time interval sufficiently far away
from the temporal boundaries. As a final note, the elementals are sparse in the spin
indices since these only involve Dirac matrices. This sparsity can be exploited when
performing contractions over these indices in the products between elementals and
perambulators. The pattern of sparsity depends on the choice of Γ operator however
it is always possible to set up the matrix-matrix multiplication to avoid unnecessary
operations that would result in just adding up zeros.

3.4.5 Iso-vector spectrum results in N f = 2

The method presented in Section 3.3 is now applied to study different channels of
symmetry JPC in the iso-vector case, without the disconnected contribution. The
first step is to choose which JPC are of interest and the corresponding Γ operators
that can be used to access them. Table 3.1 displays those studied in this work. The
local operators are taken from [25] and the derivative-based ones are taken from
[111]. Local operators are used in all channels where possible due to their ease of
computation. Derivative-based operators are used to access a wider range of JPC

such as the 2++ and 1−+ and also to sample more complex spatial structure and
dependence on link variables. All local and derivative-based Γ operators used in
this work are displayed in Table 3.1, where the local ones are taken from [25] and
the derivative-based ones from [111, 114]. The Clebsch-Gordan coefficients Qijk can
be found in [111, 114] for the E component from the decomposition of the T1 ⊗ T1
representation. They are used to build a basis of E++ from the operators γi and ∇i
for the 2++ channel, where the subduction yields the direct sum E++ ⊕ T++

2 . The
T++

2 basis is given by the |ϵijk|γj∇k. For all operators in irreps with dimension larger
than 1 only one of the components is used, e.g γ1 from the three-dimensional γi.
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JPC Γ Particle

0−+ γ5 ηc
γ0γ5γi∇i

γiBi
1−− γi J/Ψ

∇i
γ5Bi

0++ I χc0
γi∇i

1++ γ5γi χc1
ϵijkγj∇k

1+− ϵijkγjγk hc
γ5∇i

2++ |ϵijk|γj∇k χc2
Qijkγj∇k

1−+ ϵijkγjBk ...
γ0∇i

TABLE 3.1: Quantum numbers JPC together with the Γ operators used
and the corresponding name of the particle in nature.

There is freedom in the choice of basis for the quark profiles, both in the number of
profiles and how each one is defined yet there are also guiding criteria that help nar-
row it down. First, distillation is based on the intuition that low eigenmodes of the
3D covariant Laplacian provide the largest contributions for hadron spectroscopy
since they correspond to low-energy modes. It makes sense to consider quark pro-
files which give more importance to the low eigenvalues compared to the higher
available ones. Furthermore, since the threshold where remaining eigenvalues give
sufficiently small contributions is not known a priori, the different profiles should
allow for different degrees of suppression of the higher eigenvalues. It is expected
the resulting optimal meson profile will show precisely where this threshold is. Fi-
nally, one can in principle find an arbitrarily large number of functions which satisfy
these conditions yet that does not mean one should use a basis that is too big. If
the chosen profiles do not lead to sufficiently different, or more specifically linearly
independent, meson operators, the resulting correlation matrix in the GEVP can be
ill-conditioned and make the problem numerically unstable. Based on these con-
siderations the choice for this work is a total of 7 different Gaussian profiles with
different widths defined as

gk(λ) = e
− λ2

2σ2
k , (3.43)

where the widths σk are chosen to allow for a wide range of suppression levels in
the interval of the eigenvalues. For ensemble Em1 a total of Nv = 200 eigenvectors
and eigenvalues are calculated and Fig. 3.1 shows the average over all 4080 gauge
configurations of the three largest and smallest ones. The corresponding errors are
very small compared to the values so there is no crossing or ambiguities between
successive eigenvalues. The eigenvalues of the Nm1 ensemble display the same
features. Based on these values the widths σk of the Gaussian profiles are chosen
equally spaced between σ1 = 0.05 and σ7 = 0.28666667 so there is enhancement or
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suppression over the whole range of eigenvalues. It is very important to note the
3D covariant Laplacian defined in Eqn. (2.61) assumes that distance is measured in
units of the lattice spacing a and therefore this quantity is not explicitly included.
This means the obtained eigenvalues are given as λa2, consistent with the fact that
the physical eigenvalues have units of inverse distance squared in natural units. The
distinction between lattice and physical eigenvalues is not of immediate importance
for this work and the simplified notation λ will be used. The resulting quark profiles
from the chosen values of σk can be seen in Fig. 3.2, where the minimum and max-
imum eigenvalues found in the analyzed configurations are marked by the dashed
lines. As wanted, the different Gaussian profiles cover a wide range of suppressions
of the eigenvalues. Since ensemble Nm1 has a different 3D lattice volume and lat-
tice spacing, the number of Laplacian eigenvectors required for the same level of
smearing as the Em1 case can be calculated via the 3D volume scaling rule as

Nv = 200
(48 × 0.049)3

(24 × 0.0658)3 ≈ 660. (3.44)

This calculation shows one would need to roughly triple the number of eigenvectors
used with respect to Em1, however this value of Nv would lead to computational
and storage costs that are not available for this work. To avoid such costs but still
use more vectors than in Em1, the value Nv = 325 is used for this ensemble which
roughly corresponds to 100 in Em1 and the corresponding widths for the Gaussian
profiles are scaled with the squared ratio of the lattice spacings of both ensembles.
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FIGURE 3.1: Three smallest and largest eigenvalues of the 3D covari-
ant Laplacian as a function of time calculated in ensemble Em1.
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FIGURE 3.2: Quark smearing profiles used for the Em1 ensemble as a
function of the Laplacian eigenvalues. Dashed lines mark the min-
imum and maximum eigenvalues over all the analyzed configura-

tions.

3.4.5.1 Local Γ operators

For the sake of clarity the different steps of the calculation with Γ = γ5 will be explic-
itly presented here for the Em1 ensemble and all other Γ operators, both local and
derivative-based for both ensembles, will be analyzed in the same manner. The first
step is the construction of the correlation matrix and its subsequent pruning as ex-
plained in Section 2.2.3. One should choose a pruning time ts where the correlation
matrix is dominated by the states of interest and then extract the singular vectors
corresponding to the largest singular values at that time. An important detail is the
correlation matrix is symmetric and positive definite, the latter up to statistical fluc-
tuations which can become significant at large values of time. This means with large
enough statistics and at not too large values of time the singular value decomposi-
tion of the correlation matrix is equivalent to its eigendecomposition. With this in
mind it is possible to devise a strategy to determine a suitable value of ts. As shown
in [47], the correlation matrix C(t) can be sufficiently well approximated by

C0(t)ij =
NB

∑
n=1

⟨Ω| Ôi |n⟩ ⟨n| Ô†
j |Ω⟩ e−mnt (3.45)

and the remaining terms of the infinite sum are treated as a perturbation. It follows
then that the eigenvalues of C0(t) are given by

λn(t) = e−mnt (3.46)

and the eigenvectors are related to the overlaps ⟨n| Ô†
j |Ω⟩. These vectors are time-

independent up to exponentially suppressed excited-state contamination [48], so if
one finds an interval of time where the eigenvectors are time-independent then ts
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should be chosen from this interval. Note that one has access to C(t) and not C0(t)
to perform this decomposition, however when the time-independence of the vectors
appears both matrices should be sufficiently similar. Fig. 3.3 shows the different en-
tries for the first six singular vectors corresponding to the largest singular values as a
function of time. The actual values of the different entries are not of importance, only
their behavior with respect to time, and therefore no labels in the y axis are included.
Three features are of interest in this plot. First, the early time-dependent contami-
nation is more significant for the vectors of largest singular values yet it tends to
disappear as time increases. Second, the time-independent expected behavior of the
vectors is eventually exhibited. How fast the early contamination disappears seems
to be different for every vector, with the ones corresponding to smaller singular val-
ues having the fastest convergence and clearest signal. Finally, for large enough val-
ues of time the different entries of each vector fluctuate more. This is related to the
crossing that also happens in the GEVP formulation and which was explained pre-
viously. At sufficiently large times the singular values become very close and when
sorting the vectors by the magnitudes of these values such crossings can occur. This
is specially significant for the vectors of larger singular values and beyond t = 6a the
fluctuations and crossings make this ordering unreliable. It is convenient to choose
ts = 4a and use only the first NS = 4 singular vectors for the pruning of the correla-
tion matrix. Here these NS vectors are in a region where the time-independence can
be seen. The singular values obtained with this choice of ts are given in Table 3.2,
where the first four singular values display a sufficiently clear dominance.

Index Singular Value

1 13.1092(44)
2 0.057368(58)
3 0.0009372(22)
4 0.00002428(21)
5 0.000000832(25)
6 0.00000000901(58)
7 0.0000000000134(20)

TABLE 3.2: Singular values of the correlation matrix at ts = 4a using
Γ = γ5 and the seven Gaussian basis profiles in the Em1 ensemble.

The resulting pruning vectors are used to define the meson profile basis onto which
the original correlation matrix will be projected and these profiles are displayed in
Fig. 3.4, where they have been normalized so the initial value is positive. The first
aspect to note is the pattern of nodes in the different profiles; the first one has no
nodes, the second one has one node, the third one has two nodes and the fourth
one has three nodes. This feature introduces additional non-trivial structure in dis-
tillation space and can be attributed to the relative negative signs in the entries of
the pruning vectors. This will in turn lead to non-trivial spatial structure when the
spatial profile of the meson operators is built from the corresponding optimal pro-
files, which are linear combinations of these pruned profiles. A second aspect is the
suppression of larger eigenvalues is still conserved in these pruned profiles, which
further indicates the importance of this feature.
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FIGURE 3.3: Entries of the six singular vectors corresponding to the
six largest singular values of the 7 × 7 correlation matrix C(t) for the
Γ = γ5 iso-vector operator in ensemble Em1. Dashed lines connecting

the points serve to guide the eye.
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FIGURE 3.4: Pruned profiles built from the original basis of gaussian
quark profiles and the selected pruning vectors for the Γ = γ5 iso-

vector operator in ensemble Em1.
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With the chosen pruning vectors the pruned correlation matrix can now be con-
structed and used to solve the GEVP. The value of tG chosen corresponds to the
same value of tS as it is recommended in [53, 54]. Since the dominance of the rele-
vant states was shown to be acceptably established at t = ts and since tG should be
chosen under this same criterion then tG = tS should work well. From the result-
ing GEVP the effective masses corresponding to the ground state are extracted from
the generalized eigenvalues λe(t, tG) with e = 0. Remember the ordering of these
eigenvalues and corresponding eigenvectors for a fixed t is done not necessarily by
magnitude of the eigenvalue but rather by the similarity between the eigenvectors
and those of a reference time tr taken as tr = 8a. To determine if such choice is ap-
propriate one can look at the entries of the eigenvectors as a function of time. This
is precisely what can be seen in Fig. 3.5, where vi,j denotes the j-th entry of the i-th
vector, i.e the entries of ω0(t, tG). Up to excited-state contamination at early times for
the entry v1,4 all entries remain approximately constant. This allows to approximate
the time-independent vector as an average over a suitably chosen time interval. The
colored bands for the different entries show the chosen plateau interval for these
vectors.
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FIGURE 3.5: Entries of the GEVP vector corresponding to the ground
state using the Γ = γ5 iso-vector operator in ensemble Em1.

Neglecting contamination from other states, the vector of the plateau averages dis-
played in Fig. 3.5 should have unit C(tG)-norm and be C(tG)-orthogonal to excited
states. These conditions are shown up to statistical fluctuations in App. B and nu-
merically checked in the calculations. At this point the time independence of what is
considered to be the ground state for the iso-vector Γ = γ5 is expected, nonetheless
it is necessary to verify that this assignment by extracting the effective masses from
the obtained eigenvalues. These masses can be compared with standard distillation,
i.e a quark profile g(λ) = 1 and therefore a meson profile f (λi, λj) = 1. Two things
are expected. First, both should arrive at a same plateau value corresponding to the
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ground state mass. Second, the effective masses obtained from this GEVP should
arrive considerably faster to this plateau value since they should correspond to a
meson operator built from the optimal meson distillation profile. Fig. 3.6 shows this
comparison for both ensembles. At sufficiently large values of time both sets of ef-
fective masses converge to the same value which confirms that both operators can
access the ground state. It is also clear from comparing the effective masses at early
times that excited-state contamination is considerably suppressed when the optimal
meson distillation profile is used. This gives rise to an earlier mass plateau. The red
and black bands displayed in the plot correspond to the plateau average and error
which is calculated via a weighted average of the masses in the plateau region using
the inverse squared errors as weights. It is important to note that just by looking at
the data points it is clear that whatever the chosen plateau interval is for both sets
the one for the case of the optimal meson profile should start earlier, however the
strategy for choosing a precise starting and ending point for a mass plateau is some-
thing that varies from study to study. One would like to find a systematic method
to determine an appropriate plateau region for arbitrary choice of Γ operators but
this must be done in a very careful way. As presented in [125] one can set a fit-based
criterion for the effective masses from a GEVP however the one presented there re-
lies on constraints for the values of t and tG that are not imposed in this work. As
mentioned in [25] one should always visually verify any automatically determined
plateau to avoid failure or bias. The mass plateaus in this work will always be deter-
mined via the visual inspection so that it is chosen when the masses are considered
to reach a plateau region within errors. The starting point is chosen so there is no
longer a decrease in the value of the effective masses but at most oscillations around
an approximately constant point. The final point must be chosen with care, since the
numerical instability of the GEVP at larger times can translate into mass points with
considerable error. This final point is then fixed so no point before it deviates too
much from the plateau.
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FIGURE 3.6: Ground state effective masses of the iso-vector Γ =
γ5 operator using standard distillation ( f (λi, λj) = 1) and distilla-
tion with the optimal meson distillation profile for the ground state(

f̃ (γ5,0)(λi, λj)
)

.

The mentioned important features seen in Fig. 3.6 can also be numerically quan-
tified. First, both mass plateau averages for each ensemble are consistent, a fact
reflected in the values am = 0.749866(84) using standard distillation and am =
0.749862(83) using the optimal profile in ensemble Em1 and am = 0.51504(20) and
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am = 0.51503(21) correspondingly in ensemble Nm1. Second, the approach to the
plateau region of both sets can be quantified by defining the fractional overlap of the
operator used as presented in [120]. This quantity lies between 0 and 1 and the closer
it is to 1 the more suppression of excited-state contamination there is. Fig. 3.7 shows
how the effective overlaps of both standard distillation and the optimal profile be-
have as a function of time and their approximately flat behavior in the mass plateau
region. From here a plateau average of this quantity can be defined in the same
way as for the masses. The resulting plateau averages are 0.95711(31) for standard
distillation and 0.99344(19) for the one with the optimal profile, which shows the
significant shift towards 1 when the optimal profile is used. Even though the use
of the optimal profile for the Γ = γ5 operator brings a significant improvement the
case with standard distillation already exhibits a fractional overlap larger than 0.9,
which indicates this choice of Γ for this symmetry channel is already a good one.
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FIGURE 3.7: Ground state effective fractional overlaps of the iso-
vector Γ = γ5 operator using standard distillation ( f (λi, λj) = 1) and
distillation with the optimal meson distillation profile for the ground

state
(

f̃ (γ5,0)(λi, λj)
)

in ensemble Em1.

At this point the improvement yielded by using the optimal meson distillation has
been both qualitatively and quantitatively shown for the iso-vector Γ = γ5 operator
for the A−+

1 channel. The significantly earlier access to the mass plateau region is of
particular importance for the iso-scalar operator of this channel. One can now check
how well the masses of radial excitations can be measured using the correspond-
ing optimal profiles. Fig. 3.8 shows the effective masses corresponding to the first
excited state of this channel in both ensembles, from where somewhat clear mass
plateaus can be defined. Access to a first excited state purely through the inclusion
of an optimal profile for a fixed Γ operator, even if the signal is not as clear as for the
ground state, is yet another advantage of the use of these profiles. Measurements
of excited states in other works that employ distillation are achieved by the use of
different Γ operators for a same symmetry channel, however the inclusion of a basis
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of different profiles introduces an additional degree of freedom for a GEVP formula-
tion which can be based on a single Γ operator. The use of different Γ operators with
different profiles in a single GEVP will be considered later on in this work.
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FIGURE 3.8: First excited state effective masses of the iso-vector
Γ = γ5 operator using standard distillation ( f (λi, λj) = 1) and dis-
tillation with the corresponding optimal meson distillation profile(

f̃ (γ5,1)(λi, λj)
)

.

One last issue is the use of different choices of Nv. Via the scaling with the physical
volume of the lattice [23] one can get an initial estimate of an appropriate choice of
Nv for standard distillation and then introduce the optimal profiles. One expects
different choices of Nv can lead to different levels of excited-state contamination in
standard distillation, given the additional vectors are not used in the optimal way,
while use of optimal profiles should guarantee all available vectors are being used
in the best way possible. This expectation is confirmed by the effective masses dis-
played in Fig. 3.9 calculated in the Em1 ensemble. Using a sample of 1500 gauge
configurations, the case of standard distillation with the choice of Nv = 200 brings
considerably more excited-state contamination compared to Nv = 100. This is of
particular importance since, compared to the total of 3 × 243 possible eigenvectors,
both 100 and 200 would seem equally small in order of magnitude and feasible for
the calculations. If one were to use Nv = 200 instead of Nv = 100 in standard dis-
tillation thinking that including the additional 100 vectors could help improve the
resulting effective masses then the completely opposite effect is obtained. Nonethe-
less, the corresponding optimal profiles show the excited-state contamination is al-
most equally suppressed, i.e the additional 100 vectors are used so no additional
contamination is introduced. Nonetheless one can still observe a slight difference
between Nv = 100 and Nv = 200 with the optimal profiles in the contamination at
early times. This is expected, since using 100 additional vectors in an optimal man-
ner should give rise to an improvement as long as the corresponding value of the
profile for those eigenvectors is not 0. These observations indicate that as long as
the optimal profile is used then the choice of Nv = 325 for ensemble Nm1 yield very
similar results to having used the 660 that the volume scaling suggests at least for
the ground state effective masses.
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Nv = 100 and Nv = 200 in ensemble Em1.

All other local Γ operators are now analyzed in the same manner as Γ = γ5 was.
The ground state effective masses for these operators are displayed in Fig. 3.10 for
ensemble Em1 and Fig. 3.11 for ensemble Nm1 including the corresponding mass
plateaus. The use of the optimal profile leads to a suppression of excited-state con-
tamination as with the Γ = γ5 case. The resulting fractional overlaps are given in
Table 3.3 including the first excited. All operators are improved to some degree.
The level of improvement is different for different choices of Γ, with γi and ϵijkγjγk
displaying the largest shift towards 1. Note that regardless of the improvement
achieved via optimal profiles for a chosen Γ this operator might by itself not be the
best one to use to study a given symmetry channel. This is seen for the Γ = ϵijkγjγk
and serves as an additional motivation to use derivative-based operators. Nonethe-
less these local operators with optimal profiles already provide clear access to the
ground state of interest.



3.4. Charmonium spectrum using the optimal meson distillation profiles 47

0.8580

0.8585

0.8590

0.8595

0.8600

0.8605

0.8610
am

ef
f

i

f( i, j) = 1
f( , 0)( i, j)

1.076

1.078

1.080

1.082

1.084

0 4 8 12 16 20
t
a

1.126

1.128

1.130

1.132

1.134

1.136

1.138

1.140

am
ef

f 5 i

0 4 8 12 16 20
t
a

1.110

1.115

1.120

1.125

1.130

1.135

1.140

ijk j k
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tors built from local Γ not including the Γ = γ5 case in ensemble Em1.
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γ5 γi I γ5γi ϵijkγjγk
Em1 f (λi, λj) = 1 0.95711(31) 0.9181(14) 0.9689(38) 0.939(18) 0.892(18)

f̃ (Γ,0)(λi, λj) 0.99344(19) 0.99498(67) 0.99470(85) 0.9907(41) 0.953(13)
f̃ (Γ,1)(λi, λj) 0.9914(17) 0.99632(76) 0.9795(52) 0.968(17) 0.9689(70)

Nm1 f (λi, λj) = 1 0.91439(72) 0.8669(38) 0.913(15) 0.846(34) 0.881(13)
f̃ (Γ,0)(λi, λj) 0.97225(56) 0.9784(36) 0.9650(54) 0.933(24) 0.9406(88)
f̃ (Γ,1)(λi, λj) 0.928(18) 0.935(22) 0.894(32) 0.874(32) 0.816(38)

TABLE 3.3: Fractional overlaps of the local Γ operators using stan-
dard distillation and the optimal meson profiles in ensembles Em1

and Nm1.

Radial excitations can be accessed via the corresponding optimal profiles for these
local operators. The effective masses can be seen in Fig. 3.12 from ensemble Em1
and Fig. 3.13 for ensemble Nm1 with their corresponding plateaus, from where two
observations can be made. First, there is a signal with all operators, so the use of
the optimal profile already yields operators that create states similar to the wanted
excited energy eigenstates. Second, even though the plateaus displayed give a first
indication of the mass of the state, the signal is not as clear as the ground state. This
is expected, since excited states probably contain more complex spatial structure that
local Γ operators might not appropriately sample. Furthermore, the quality of the
signal in the effective masses is operator dependent, which relates to the previously
mentioned innate quality of the Γ operator. A first glimpse would indicate the Γ = γi
operator with its optimal profile has the best access to its corresponding excited state
however no definitive statements about the overall structure of these excitations can
be made until more operators are used.
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FIGURE 3.13: First excited state effective masses of the iso-vector op-
erators built from local Γ not including the Γ = γ5 case in ensemble

Nm1.

The resulting mass spectrum in lattice units from the local operators is presented in
Table 3.4. For each operator the first two rows correspond to the plateau average
of the ground state using standard distillation and the optimal profile respectively
while the third row corresponds to the plateau average of the first excited state us-
ing the optimal profile. Next to each average is the plateau interval used. Good
agreement between standard distillation and the optimal profile is observed for the
ground state, with the main difference being the location of each plateau and its
length. In all cases the plateau using the optimal profile is located earlier in time and
is longer. This clearly displays the main advantage of using the profiles. Note even
when the plateau averages are identical within errors, such as for the cases Γ = γ5γi,
having a longer and earlier plateau is preferable for the inclusion of the disconnected
piece of the temporal correlation function relevant for the iso-scalar operators which
will be considered later.
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Ensemble Γ Plateau masses Plateau intervals

Em1 γ5 0.749866(84) 19-23
0.749862(83) 12-22
1.2351(10) 6-11

γi 0.85909(17) 19-23
0.85901(15) 12-22
1.28969(78) 5-8

I 1.08052(78) 10-13
1.07944(48) 7-12
1.4437(30) 6-7

γ5γi 1.1301(23) 13-15
1.1288(10) 9-13
1.4798(65) 7-9

ϵijkγjγk 1.1305(27) 13-16
1.1299(23) 11-16
1.5061(41) 6-8

Nm1 γ5 0.51504(20) 27-47
0.51503(21) 19-47
0.8164(40) 12-20

γi 0.58140(31) 26-47
0.58130(31) 19-47
0.8488(38) 12-18

I 0.7093(22) 16-27
0.7099(17) 12-27
0.9414(60) 11-12

γ5γi 0.7447(29) 20-27
0.7446(30) 17-27
0.9677(61) 11-12

ϵijkγjγk 0.7520(18) 16-22
0.7510(18) 13-22
0.9790(76) 11-13

TABLE 3.4: Plateau average masses for the ground and first excited
states using local Γ operators in both ensembles. For a fixed Γ the first
row corresponds to the ground state obtained via standard distilla-
tion, the second row for this same state but using the optimal profile
and the third row with the first excited state using the optimal profile.

3.4.5.2 Derivative-based Γ operators

The same analysis used for the local Γ operators can now be applied to different
choices of derivative-based Γ operators. The main difference is the elementals are
no longer diagonal in distillation space yet the overall steps to extract the effective
masses remains the same. As mentioned before, this kind of operators accesses ir-
reps that local operators cannot, e.g E++, T++

2 and T−+
1 , as well as to sample more

complex spatial structure and explicit dependence on link variables that local op-
erators cannot. The first operators analyzed correspond to the E++ and T++

2 irreps
whose ground state in the continuum limit becomes the 2++. Fig. 3.14 shows the ef-
fective masses and corresponding plateaus of the ground state for the Γ = Qijkγj∇k
(E++) and Γ = |ϵijk|γj∇k (T++

2 ) operators using both standard distillation and the
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corresponding optimal meson profiles in both ensembles. As expected the effective
masses from both operators are very similar, more so in Nm1 than in Em1 due to
the smaller lattice spacing. This similarity is present for both standard distillation
and the optimal profiles particularly at early values of time. At later values of time
both operators become dominated by statistical noise and their values drift apart
from each other. Just as for the local operators using the optimal profiles leads to
a considerable suppression of excited-state contamination, leading to earlier mass
plateaus. The plateaus obtained for both operators using standard distillation agree
quite well while the ones from the optimal profiles display a small tension in the
case of Em1. This could be attributed to the propagation of the statistical error in the
non-linear solution of the GEVP or the non-zero lattice spacing. Since in Nm1 this
tension is not present the latter effect is probably the dominant cause.
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FIGURE 3.14: Ground state effective masses of the iso-vector Γ =
Qijkγj∇k and Γ = |ϵijk|γj∇k.

The next case of interest is the A−+
1 derivative-based operators, i.e Γ = γ0γ5γi∇i,

γiBi. Fig. 3.15 shows the ground state effective masses for the iso-vector case for
both operators using standard distillation and the optimal profiles with their cor-
responding plateaus in both ensembles. Using standard distillation both operators
eventually reach a plateau consistent within errors but the γiBi operator exhibits
considerably less excited-state contamination. This speaks in favor of including ex-
plicit gluonic excitations via the Bi chromo-magnetic operator. The second thing
to note is the use of the optimal profile leads to a significant improvement for the
Γ = γ0γ5γi∇i operator, reducing its excited-state contamination below the Γ = γiBi
one with standard distillation without significantly increasing the noise of the effec-
tive masses. The final thing to note is such significant improvement is not observed
for the Γ = γiBi. Although there is a suppression of excited-state contamination at
very early times, both effective masses from standard distillation and optimal pro-
file quickly become very similar. A possible explanation, as mentioned in [120], is
either the contribution from the ground energy eigenstate in the state created by this
meson operator cannot be sufficiently enhanced by the inclusion of a profile or the
contributions from excited states, particularly with hybrid states high up the lad-
der of excitations expected from the use of the Bi operator, cannot be sufficiently
suppressed. This issue will have to be handled with tools different from the meson
profiles and such study is outside the scope of this work, nonetheless this shows the
limitations of the optimal profiles. Since the case of Γ = γ0γ5γi∇i gains a significant
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improvement from the optimal profile, there is further indication that explicit glu-
onic excitations in the meson operators have to be improved with a method different
than the optimal profiles.
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FIGURE 3.15: Ground state effective masses of the iso-vector Γ =
γ0γ5γi∇i and Γ = γiBi.

One can now look at the T−−
1 derivative-based operators given by Γ = ∇i and

Γ = γ5Bi. Fig. 3.16 shows the resulting ground state effective masses for the iso-
vector case for both operators using standard distillation and the optimal profiles
with their corresponding plateaus in both ensembles. Similar features as for the
A−+

1 case are observed. Using standard distillation the operator with the chromo-
magnetic component Bi exhibits less excited-state contamination compared to the
operator with a single derivative, however the inclusion of the optimal profile yields
a much clearer improvement for the former than for the latter. The reason for this is
probably the same as it was for the A−+

1 case. This further indicates the Bi must be
handled with care and improved in a different manner. For the remaining symmetry
channels a single derivative-based operator was used. These mass plateau averages
and corresponding intervals are presented in Table 3.5 for ensemble Em1 and Table
3.6 for ensemble Nm1. As with local operators, the optimal profiles lead to a signif-
icant suppression of excited-state contamination at early times while also yielding
earlier plateaus compatible with their standard distillation counterparts.
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FIGURE 3.16: Ground state effective masses of the iso-vector Γ = ∇i
and Γ = γ5Bi.

The effective masses for the first excited state of these symmetry channels using
the optimal profiles with their corresponding plateaus are also given in Table 3.5 to-
gether with the fractional overlaps to compare the ground state with and without the
use of the optimal profile. In the case of the A−+

1 and T−−
1 irreps, the one-derivative

operators provide a clearer access to the first excited state than the two-derivative
ones involving the chromo-magnetic component. This relates to the previously dis-
cussed issue of the latter operators having overlaps with hybrid states up the ladder
of excitations which are not sufficiently suppressed by the use of a profile. Nonethe-
less the plateaus for these operators, although they have a larger error, appear to be
in agreement with the one-derivative operators. As stated before, further improve-
ments to these two-derivative operators on top of an optimal profile might result in
clearer and longer plateaus.

A final channel of interest is T−+
1 which is only accessible via derivative-based oper-

ators. As was previously explained these quantum numbers cannot be realized by a
q̄q state in the quark model and an additional gluonic excitation serves as a possible
explanation. Fig. 3.17 displays the ground state effective masses and corresponding
plateaus for the iso-vector operators Γ = γ0∇i and Γ = ϵijkγjBk using both standard
distillation and the optimal profiles for both ensembles, where the former operator
is not used for ensemble Nm1. The operator involving the chromo-magnetic compo-
nent Bi is of special relevance since the ground state is expected to have a significant
contribution from a gluonic excitation. Three observations can be made from these
two operators. First, using standard distillation both display a very similar degree of
excited-state contamination, which would not lead to a preference toward either of
them. Second, the use of the optimal profile does not lead to a significant improve-
ment in the Γ = γ0∇i operator, reflected in completely consistent plateaus, possibly
indicating the operator by itself does not create a state resembling the energy eigen-
state and the profile cannot enhance the corresponding overlap sufficiently. For this
reason it was not used for the Nm1 ensemble. Third, the optimal profile leads to an
improvement for operator Γ = ϵijkγjBk, albeit with a slight increase in the error, and
therefore to a slightly earlier plateau with a small tension with standard distillation.
No clear signal for the first excited state of either operators of this irrep is observed
and therefore no plots are presented.
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FIGURE 3.17: Ground state effective masses of the iso-vector Γ =
γ0∇i and Γ = ϵijkγjBk.
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Γ Plateau masses Fractional overlaps Plateau intervals

γ0γ5γi∇i 0.749869(84) 0.95749(30) 20-23
0.749897(86) 0.99405(20) 12-21

1.2367(25) 0.9900(30) 8-12
γiBi 0.749879(86) 0.90701(51) 14-23

0.74984(11) 0.92701(81) 12-23
1.220(18) 0.56(11) 10-12

∇i 0.85929(14) 0.80353(89) 17-20
0.85916(18) 0.9337(11) 13-19
1.3134(60) 0.896(16) 9-12

γ5Bi 0.85942(22) 0.7240(14) 12-22
0.85931(25) 0.7343(18) 12-22

1.356(23) 0.684(51) 7-8
γi∇i 1.07920(46) 0.9716(20) 9-13

1.07924(35) 0.99218(88) 7-13
1.431(13) 0.916(48) 8-9

ϵijkγj∇k 1.1293(16) 0.908(11) 13-16
1.12915(71) 0.9866(30) 9-13
1.4788(19) 0.9929(19) 5-8

γ5∇i 1.1344(16) 0.894(13) 13-15
1.13459(91) 0.9829(37) 9-14
1.4790(25) 0.9909(13) 5-8

Qijkγj∇k 1.1565(19) 0.896(12) 12-13
1.15604(81) 0.9911(27) 8-12
1.4965(22) 0.9927(22) 5-7

|ϵijk|γj∇k 1.1561(20) 0.894(13) 12-16
1.1536(11) 0.9801(45) 9-13
1.4940(24) 0.9917(24) 5-7

γ0∇i 1.5042(66) 0.913(11) 6-8
1.5063(75) 0.942(13) 6-8

ϵijkγjBk 1.5191(56) 0.946(11) 6-8
1.4989(45) 0.9799(50) 5-8

TABLE 3.5: Plateau average masses and fractional overlaps for the
ground and first excited states using derivative-based Γ operators in
ensemble Em1. For a fixed Γ the first row corresponds to the ground
state using standard distillation, the second row to the ground state
using the optimal profile and the third row to the first excited state

using the optimal profile.
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Γ Plateau masses Fractional overlaps Plateau intervals

γ0γ5γi∇i 0.51505(21) 0.6425(11) 28-47
0.51502(21) 0.80242(86) 21-47
0.8240(31) 0.788(15) 11-14

γiBi 0.51505(20) 0.73818(54) 19-47
0.51504(19) 0.75430(59) 19-47
0.8255(70) 0.595(32) 10-14

∇i 0.58123(38) 0.4146(20) 29-44
0.58158(43) 0.6413(19) 20-38
0.8651(51) 0.664(29) 11-15

γ5Bi 0.58160(45) 0.4247(19) 17-47
0.58165(43) 0.4401(31) 17-47

0.855(26) 0.348(64) 10-14
γi∇i 0.7108(10) 0.9326(42) 12-24

0.7106(11) 0.9535(42) 12-24
0.9393(85) 0.833(51) 12-16

γ5∇i 0.7526(17) 0.873(14) 17-27
0.7528(13) 0.9619(51) 11-24
0.9789(41) 0.9574(94) 8-14

Qijkγj∇k 0.7669(19) 0.868(16) 16-24
0.7649(19) 0.952(12) 14-22
0.9855(67) 0.949(18) 9-15

|ϵijk|γj∇k 0.7662(16) 0.862(14) 16-21
0.7662(12) 0.9654(77) 12-17
0.9747(78) 0.901(37) 10-14

ϵijkγjBk 0.9941(57) 0.892(24) 9-10
0.9852(38) 0.957(11) 7-10
1.2136(94) 0.9580(96) 6-9

TABLE 3.6: Plateau average masses for the ground and first excited
states using derivative-based Γ operators in ensemble Nm1. For a
fixed Γ the first row corresponds to the ground state using standard
distillation, the second row to the ground state using the optimal pro-
file and the third row to the first excited state using the optimal pro-

file.

A final calculation of interest are the mass splittings given by [126]

∆mHF = mJ/Ψ − mηc

∆m1P−1S = m1P − m1S

∆mSO =
1
9
(5mχc2 − 3mχc1 − 2mχc0)

∆mtensor =
1
9
(3mχc1 − mχc2 − 2mχc0)

∆m1PHF = m1P − mhc , (3.47)

where ∆mHF is the 1S hyperfine splitting, ∆m1P−1S is the spin-average 1P − 1S split-
ting, ∆mSO is the spin-orbit splitting, ∆mtensor is the tensor splitting, ∆m1PHF is the
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P-wave hyperfine splitting and

m1S =
1
4
(
mηc + 3mJ/Ψ

)
m1P =

1
9
(mχc0 + 3mχc1 + 5mχc2) (3.48)

are the spin-averaged masses of the S- and P-waves respectively. These splittings are
measured for both ground and first excited states using the iso-vector operators that
yield the clearest signal in each channel and the results are presented in Table 3.7
for both ensembles. Relatively good precision is achieved in all the splittings thanks
to the earlier and most of the times longer plateaus from where the masses are ex-
tracted. These mass splittings are converted to physical units since the lattice spacing
of each ensemble is known, however the differences of the N f = 2 model used with
respect to nature makes a straightforward comparison impossible. Additionally, the
error of the lattice spacing would dominate the final propagated error. Nonetheless
this is not a problem since the main goal is to show that the proposed method of op-
timal profiles leads to effective masses with much less excited-state contamination,
something that is independent of the scale-setting procedure. Fig. 3.18 shows the
spectrum for both ensembles with this separation of uncertainty sources. The solid
rectangles represent the masses converted to physical units neglecting the error of
the lattice spacing while the light rectangles containing them represent the total error
including lattice spacing error.

Ensemble Splitting Ground state 1st excited state

Em1 ∆mHF 0.10911(10) 0.0532(22)
∆m1P−1S 0.30683(57) 0.2083(16)

∆mSO 0.02599(42) 0.0176(11)
∆mtensor 0.00806(21) 0.00582(76)
∆m1PHF 0.00398(83) 0.0057(22)

Nm1 ∆mHF 0.06627(21) 0.0325(17)
∆m1P−1S 0.1873(18) 0.1341(34)

∆mSO 0.0190(10) 0.0157(29)
∆mtensor 0.00546(70) 0.0039(10)
∆m1PHF -0.0007(13) -0.0042(55)

TABLE 3.7: Mass splittings for ground and first excited states in en-
sembles Em1 and Nm1.
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FIGURE 3.18: Charmonium spectrum obtained in the N f = 2 ensem-
bles. Solid rectangles ignore the error from the lattice spacing while

the light rectangles take it into account.

3.4.5.3 Mixed Γ operators

The use of the optimal profiles yields a substantial gain when accessing the mass of
the different states compared to standard distillation for a fixed Γ operator. Nonethe-
less this is not the last improvement that can be introduced. As explained in Sect.
3.3, it is also possible to build a correlation matrix which involves not only multiple
profiles but also multiple Γ operators for a fixed symmetry channel. This approach
can help further exploit the properties of different Γ operators already enhanced by
different distillation profiles. A first calculation is the comparison of the effective
masses obtained from an optimal profile for a fixed Γ operator with the effective
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masses obtained from a GEVP including different Γ operators using standard distil-
lation. This comparison shows the profiles optimize the resulting meson operator in
a way not equivalent to the inclusion of different Γ operators and lead to a larger im-
provement. This calculation uses operators that transform according to T−−

1 , namely
Γ = γi,∇i. The first step is building a 2 × 2 correlation matrix involving both opera-
tors using standard distillation and solving the GEVP. The resulting effective masses
for the ground state are shown in Fig. 3.19 together with the ones obtained indi-
vidually from each operator using standard distillation and from using only Γ = γi
with its optimal profile. A slight improvement at early times can be observed from
the optimal combination of both operators using standard distillation compared to
the one using only Γ = γi, which means the inclusion of Γ = ∇i helps suppress
excited-state contamination. However, this improvement is not nearly as significant
as using the optimal profile for the Γ = γi operator alone. This further highlights the
benefit of using the optimal profile. Keep in mind the Γ = ∇i operator by itself with
standard distillation was shown to not be a particularly good choice for the ground
state of this channel and this most likely affects how much its inclusion in the 2 × 2
GEVP will help.
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FIGURE 3.19: Effective masses for the ground state of the T−−
1 chan-

nel using the iso-vector operators Γ = γi with standard distillation,
Γ = ∇i with standard distillation, the optimal linear combination of
the two as dictated by the GEVP and Γ = γi with its optimal profile.

The next step is to introduce the 7 meson profiles for each of the two Γ operators,
which turns the 2× 2 correlation matrix into a 14× 14 one. Since this matrix involves
the correlations between all possible profiles for the two Γ operators it is expected
to yield better results than if only one Γ operator is used. Not only the degree of
freedom of the profile is exploited but also the spatial properties of the different Γ
operators. The resulting effective mass from solving the corresponding GEVP, to-
gether with the one obtained from using Γ = γi with its optimal profile can be seen
in Fig. 3.20. A slight suppression of excited-state contamination can be seen at early
times from the inclusion of the Γ = ∇i operator with a corresponding profile. There
is a clear improvement, graphically seen to be larger than the one from including
Γ = γi and Γ = ∇i in a 2 × 2 correlation matrix, indicating that one certainly gains
something when including the Γ = ∇i operator with the 7 basis profiles. However
it is not nearly as significant as the improvement obtained when comparing the case
of standard distillation with Γ = γi with the optimal profile. For these operators this
is not unexpected since the operator ∇i both with standard distillation and with its
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optimal profile did not grant particularly good access to the ground state. This can
be seen from the values of the corresponding fractional overlaps in Table 3.4. On the
other hand, the Γ = γi operator in both cases has a relatively high fractional overlap.
This indicates that the not so suitable Γ = ∇i operator is not the best choice to sig-
nificantly improve on the Γ = γi operator. Larger improvements might be achieved
by including other operators with better individual overlaps with the ground state
however this is already evidence of the advantage from extending the method of op-
timal profiles to multiple Γ operators. As a final result for this channel one can also
look at the first excited state obtained from mixing the Γ = γi and Γ = ∇i operators
with and without the optimal profiles. The resulting effective masses can be seen
in Fig. 3.21, together with the second excited state obtained from the combination
of both Γ operators using the corresponding optimal profile. The first thing to note
is that the effective masses from the 2 × 2 GEVP involving operators Γ = γi,∇i is
considerably higher than the ones yielded by Γ = γi with its optimal profile and the
combination of Γ = γi,∇i with its corresponding optimal profile. They are also con-
sistent with the mass of the second excited state from the combination of Γ = γi,∇i
with the optimal profile. This indicates this 2 × 2 GEVP misses the first excited state
and only accesses the second one and the reason is not clear. Since the ground state
effective masses from the 2 × 2 GEVP are almost identical to the Γ = γi operator
alone then the next excited state is most likely dominated by the ∇i operator which,
without an optimal profile, might have a large overlap with the second excited state
that the GEVP with both Γ operators and profiles see. The second thing is the effec-
tive masses of the first excited state from the expanded GEVP are almost identical
within errors to the first excited state of the Γ = γi operator alone with the corre-
sponding optimal profile. This supports the idea that the Γ = ∇i contributes mostly
to higher excited states and only very slightly to this first excitation even with an
optimal profile.
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FIGURE 3.20: Effective masses for the ground state of the T−−
1 chan-

nel using the iso-vector operator Γ = γi with its optimal profile and a
linear combination of the operators Γ = γi,∇i with its corresponding

optimal profile.
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FIGURE 3.21: Effective masses for the first excited state of the T−−
1

channel using the iso-vector operator Γ = ∇i with its optimal profile,
an optimal linear combination of the operators Γ = γi,∇i with its
corresponding optimal profile and an optimal linear combination of

the operators Γ = γi,∇i with standard distillation.

3.4.5.4 Optimal meson distillation profiles

The optimal meson distillation profiles for the different operators studied in this
work can be built as shown in Eqn. (3.18). Fig. 3.22 displays the ground state optimal
profiles for the local Γ operators and Fig. 3.23 displays the ones of the first excited
state for these same operators. The first feature seen is that none is a constant which
would be the case for standard distillation. This further supports the observation
that an orthogonal projection onto the range of the chosen Laplacian eigenvectors
is not the optimal way to build meson operators with good overlap with the low
energy eigenstates. A second feature of these profiles is the lack of nodes in the
ground state profiles and the presence of one in the profiles corresponding to the
first radial excitations. This points to the need of introducing structure in the space
of the Laplacian eigenvalues and therefore, as will be seen later, in coordinate space
to better resemble the wanted energy eigenstates. A third feature is while all profiles
shown retain a suppression of larger eigenvalues the ones corresponding to the first
radial excitations still allow for non-negligible contributions from larger eigenvalues
in comparison to the ground states. This suggests higher energy states require more
eigenvectors. A fourth feature is both cases exhibit non-zero contributions from the
largest eigenvalue so if one increased the value of Nv these additional vectors would
still contribute to the optimal meson operator. Finally, a distinction can be made be-
tween the profiles of the Γ = γ5, γi and Γ = I, γ5γi, ϵijkγjγk operators based on both
their general shape and the degree of suppression of higher eigenvalues, with the lat-
ter suppressing the higher eigenvalues less than the former. Whether this distinction
is related to the S- and P-wave classification of the JPC in the quark model remains
to be confirmed, however the free-field explanation presented in [50] for states with
larger L requiring contributions from eigenvectors with higher eigenvalues would
favor this connection.
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FIGURE 3.22: Optimal meson distillation profiles for the ground state
of the local Γ operators.
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FIGURE 3.23: Optimal meson distillation profiles for the first excited
state of the local Γ operators.

For the derivative-based operators the relevant optimal profiles are a function of two
eigenvalues λi and λj, unlike the local operators where only the case λi = λj is rele-
vant. Fig. 3.24 shows the optimal profile for the ground state of the Γ = Qijkγj∇k and
Γ = |ϵijk|γj∇k operators from the E++ and T++

2 irreps in ensemble Em1. Both dis-
play a preference for small eigenvalues while larger ones are relatively suppressed
in an approximately radially symmetric manner, consistent with the profiles of the
ground state of the local operators. These same profiles were found to be qualita-
tively identical in the Nm1 ensemble and therefore the latter are not shown. Fig. 3.25
shows the optimal profile for the first excited state of these same operators in ensem-
ble Em1, where the presence of an approximately radially symmetric node can be
seen, again in agreement with the local operators. Further examples of derivative-
based Γ operators are shown in Fig. 3.26 which display these same features, sug-
gesting tthe approximately radial suppression of eigenvalues and pattern of nodes
is present along the different operators as for the local Γ operators.
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FIGURE 3.24: Optimal meson distillation profiles for the ground state
of the Γ = Qijkγj∇k, |ϵijk|γj∇k operators in ensemble Em1.
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FIGURE 3.25: Optimal meson distillation profiles for the first excited
state of the Γ = Qijkγj∇k, |ϵijk|γj∇k operators in ensemble Em1.



3.4. Charmonium spectrum using the optimal meson distillation profiles 65

0.05 0.12 0.22 0.31 0.4
i

0.05

0.12

0.22

0.31

0.4

j
f ( 5 i, 0)( i, j)

2

4

6

8

10

12

14

0.05 0.12 0.22 0.31 0.4
i

f ( 5 i, 1)( i, j)

0

20

40

60

80

100

120140

FIGURE 3.26: Examples of optimal profiles for derivative-based Γ op-
erators in ensemble Em1.

3.4.5.5 Spatial profiles via the optimal meson distillation profiles

The spatial profiles of the corresponding optimal meson operators built via the op-
timal meson distillation profiles are shown in Eqn. (3.27). It is worth remembering
this is done only for the operators which correspond to spin-singlets in the quark
model and have a γ5 as the only spin structure in their definition, i.e Γ = γ5 and
Γ = γ5∇i which correspond to 0−+ and 1+−. The 3D point-source used is set at
z⃗ = (12a, 12a, 12a) for ensemble Em1 and z⃗ = (24a, 24a, 24a) for ensemble Nm1. The
spatial profiles for the ground and first excited states of the Γ = γ5 operator are
shown in Fig. 3.27 for both ensembles calculated in a single gauge configuration.
The ground states display a radially symmetric decay while the first excited states
show a radially symmetric node, hinting at a more complex spatial structure. Both
features are consistent with the expected S-wave behavior as well as with the wave
functions calculated in [121]. It is clear that ensemble Nm1 provides a better reso-
lution for the spatial profiles in both cases thanks to the smaller lattice spacing and
larger physical volume. The latter is particularly important, since one can see the
first excited state is better contained in this lattice and therefore finite-volume effects
are more under control.
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FIGURE 3.27: Spatial profiles for the ground and first excited states of
the iso-vector Γ = γ5 operator

The spatial profiles for ground and first excited state of the Γ = γ5∇i operator for
both ensembles are displayed in Fig. 3.28 calculated in a single gauge configura-
tion where a fixed direction was chosen for the derivative. The dumbbell-like struc-
ture expected from a P-wave behavior is clearly observed along the direction of the
derivative. The inclusion of the optimal profile for the first excited state introduces
additional non-trivial spatial structure along the y direction which is non-negligible
close to the boundaries. Just as for the S-waves, the larger physical volume and
smaller lattice spacing of ensemble Nm1 leads to a better-contained spatial profile.
While it is likely that finite-volume effects are present in both ensembles for the first
excited state, they are less significant in the Nm1 case. Further study of the spatial
profiles is beyond the scope of this work, which provides a first test of their con-
struction, yet it could be interesting to gain insight on spatial properties of these
states. Aspects such as finite-volume effects, spatial extent of the different states and
non-trivial spatial structure can be studied through these profiles to better under-
stand the states created by the optimal profiles and how they better approximate the
energy eigenstates.
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FIGURE 3.28: Spatial profiles for the ground and first excited states of
the iso-vector Γ = γ5∇i operator
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Chapter 4

Disconnected contributions and
charmonium-glueball mixing

Until now this work has focused on using mesonic operators for the study of the dif-
ferent symmetry channels, however this is not the complete picture of such states.
Iso-scalar operators that depend only on the gauge links with no explicit quark de-
grees of freedom can be built for each symmetry channel and are a first step to a
lattice study of glueballs, color-singlet bound states of gluons with integer J expected
to exist in QCD due to the self-coupling of the gauge field [5, 8]. In this work these
gluonic operators are built from spatial Wilson loops, i.e products of link variables
along a closed path involving only displacements in the spatial directions, while
other types of operators can be found in [11]. Further details about lattice studies
of glueballs can be found in [127]. Such gluonic operators can in principle mix with
iso-scalar mesonic operators and this can shed some light on the nature of the en-
ergy eigenstates. This mixing in the Em1 and Nm1 ensembles is the main topic of
this chapter and is calculated. These ensembles are a convenient testing ground for
this since the absence of light quarks means that any possible mixing with glueballs
is restricted to the charmonium states. Nonetheless, there are difficulties related to
both kinds of iso-scalar operators involved which will also be explained.

4.1 Iso-scalar charmonium spectrum

The starting point is the calculation of the iso-scalar charmonium spectrum in en-
sembles Em1 and Nm1. The steps of this calculation, including the determination
of the optimal profiles for the different channels, are identical to the ones presented
in Chapter 3 except now the disconnected contributions have to be taken into ac-
count to build the different temporal correlation functions. The temporal correlation
function for a meson operator is given by

C(t) = ⟨−Tr (Φ[t]τ[t, 0]Φ̄[0]τ[0, t])⟩U

+ N f ⟨Tr (Φ[t]τ[t, t]) Tr (Φ̄[0]τ[0, 0])⟩U , (4.1)

where again N f = 2 for Em1 and Nm1. The difference to the iso-vector correlation
function is given by the second term in Eqn. (4.1) and the product of traces involved
comes from the quark-anti-quark annihilation at times 0 and t, leading to the name
"disconnected" contributions. For the case of the correlation matrix relevant for the
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GEVP formulation the expression is given by

Cij(t) =
〈
−Tr

(
Φ(i)[t]τ[t, 0]Φ̄(j)[0]τ[0, t]

)〉
U

+ N f

〈
Tr
(

Φ(i)[t]τ[t, t]
)

Tr
(

Φ̄(j)[0]τ[0, 0]
)〉

U
. (4.2)

Although the calculation is not much more complicated than in the iso-vector case,
the main problem is that the disconnected pieces have a notorious signal-to-noise
problem compared with the connected ones and therefore the combination of both
in a sum gets lost in noise at very early times. The absolute error of the the discon-
nected contribution is expected to remain approximately constant just like in glue-
ball correlation functions [128, 129]. Furthermore, the disconnected contribution
is considerably smaller than the connected contribution in magnitude. This comes
from the OZI rule which indicates that processes with an intermediate step contain-
ing only gluons are strongly suppressed [5]. Finally, this contribution requires the
calculation of the perambulator τ[t, t] for all values of time t (or terms of the form
Tr
(
ΓD−1[t, t]

)
when distillation is not used), which leads to a considerably larger

computational cost. For these reasons this disconnected contribution has often been
neglected, motivated as well by the 1 − 4 MeV mass difference between iso-scalar
and iso-vector pseudo-scalar obtained in [16]. Nonetheless ignoring this contribu-
tion is not entirely correct for a number of reasons. First of all, the argument based
on the OZI rule is tied to the running coupling of QCD and therefore depends on
the energy scale at which the processes occur. Second of all, neglecting the discon-
nected contribution neglects as well the possible mixing with glueball states that can
significantly shift the iso-scalar mass [16]. Finally, hadron spectroscopy calculations
are reaching considerably precision such that differences of the order of 5 MeV are
significant. Recent studies including the disconnected contribution by looking at the
hyperfine mass splitting in charmonium either indirectly [17] or directly [18] agree
the mass of the pseudo-scalar is increased by around 3 − 7 MeV while the vector
mass is not significantly affected. Furthermore, this increase disagrees with the de-
crease predicted by non-relativistic QCD perturbation theory [17, 19], which further
motivates a careful study.

There is a clear motivation to apply the optimal distillation profiles to study the iso-
scalar charmonia spectrum; the resulting suppression of excited state contamination
at early times can in turn lead to an earlier mass plateau where the signal-to-noise
problem is not yet too pronounced. The channel to be analyzed first corresponds
to A−+

1 and this will be done using the Γ = γ5 operator since it displayed the best
results for the iso-vector case in both Em1 and Nm1 ensembles. Fig. 4.1 shows
the ground state effective masses obtained using both standard distillation and the
optimal profiles in ensembles Em1 and Nm1 using tG = 2. Two main features can
be observed in these results. First, the use of distillation allows to observe a non-
negligible splitting between the iso-scalar and iso-vector effective masses which is
yet another advantage of using this framework. Second and most importantly for
this work, the use of the corresponding optimal profile leads to a suppression of
excited-state contamination at early times just as for the iso-vector channels. Third,
in both ensembles there is an upwards shift in the mass from the iso-vector case
to the iso-scalar case, which agrees in sign with other results in the literature [17,
18]. Table 4.1 shows the resulting plateau average masses for the iso-scalar (I-S) and
iso-vector (I-V) Γ = γ5 operators for comparison, the improvement of the fractional
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overlap for the former case when the optimal profile is used and the mass difference
between the two in MeV. Both values of the mass difference are considerable larger
than the 7 MeV and 4 MeV presented in [17, 18], which can be due mainly to model
differences such as number of flavors and masses of the quarks. Nonetheless, the
measured differences and the improvement of the fractional overlaps indicate that
the optimal profiles are a useful tool to do this kind of measurement thanks to the
suppression of excited-state contamination at early times when the disconnected
signal is the most useful.
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FIGURE 4.1: Ground state effective masses for the iso-scalar Γ = γ5
using standard distillation and the optimal profile in the Em1 and
Nm1 ensembles. The blue bands indicate the plateau average of the

corresponding iso-vector channel for comparison.

Ensemble amI−S amI−V I-S Fractional Overlap ∆mI−S

Em1 0.7829(46) 0.749862(83) 0.926(30) → 0.9849(64) 98(14)
Nm1 0.537(13) 0.51503(21) 0.900(63) → 0.964(28) 89(53)

TABLE 4.1: Plateau average masses and fractional overlaps of the iso-
scalar Γ = γ5 operator in ensembles Em1 and Nm1. The physical

values of the splitting ∆mI−S are given in MeV.

The next channel is A++
1 , studied with the Γ = I operator. Fig. 4.2 shows the ground

state effective masses obtained using both standard distillation and the optimal pro-
files in ensembles Em1 and Nm1. Unlike the A−+

1 case, the mass shift from iso-vector
to iso-scalar is negative and significantly large. This same figure includes the effec-
tive masses for the first excited state of the iso-scalar channel, which in both ensem-
bles is very close to the ground state of the iso-vector channel. A rather interesting
feature is while the effective masses from the optimal profile display the expected
suppression of excited-state contamination, they also display significantly larger er-
rors when compared to standard distillation. A partial explanation for this can be
seen from Fig. 4.3, which shows the effective masses obtained from the diagonal
entries of the original 7 × 7 correlation matrix in the Em1 case. The masses from the
first two Gaussian widths σ1,2 display the least contamination at early times but also
the largest errors, so it makes sense that the result from the optimal profile will ex-
hibit a very similar pattern; these noisier but better operators are preferred, although
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the others probably contribute but less significantly. These two widths also corre-
spond to the smallest ones of the original basis, which could indicate that the state
particularly favors smaller eigenvalues. Nonetheless, the effective masses from stan-
dard distillation and the wider profile appear to eventually reach the correct mass at
later values of time and with smaller errors, indicating that contributions from larger
eigenvalues are not negligible. These two considerations together suggest a highly
non-trivial structure in distillation space, which will be observed when looking at
the corresponding optimal profiles. It also suggests the basis of Gaussian profiles
that has worked well until now might not be the best choice for this particular chan-
nel in terms of the resulting error. This opens the door to future work focused on
improving the choice of basis profiles. As a final note, the case of the T−−

1 did not
display a significant signal in either ensemble for the iso-scalar Γ = γi operator.
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FIGURE 4.2: Effective masses for the iso-scalar Γ = I using standard
distillation and the optimal profile in the Em1 and Nm1 ensembles.
The blue bands indicate the plateau average of the corresponding iso-

vector channel for comparison.
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4.1.1 Optimal meson distillation profiles

Just as for the iso-vector operators, the optimal meson profiles can be determined
for the different iso-scalar operators studied here. Fig. 4.4 displays the ground state
optimal meson distillation profiles for the Γ = γ5 operator in both iso-scalar (I-S) and
iso-vector (I-V) cases for both ensembles. For comparison all profiles are normalized
to f (λ1) = 1. For each ensemble there is similarity between the shapes of the profiles
for the iso-vector and iso-scalar cases, including the absence of nodes. The proximity
between the masses of the two states is a possible explanation. In [120] the optimal
profile obtained for the iso-vector was used to calculate the mass of the iso-scalar
and the result is very similar to the one displayed in Fig. 4.2a, which supports the
idea that similar masses entail similar profiles. This idea can be further tested by
looking at the optimal profiles of the A++

1 channel which are displayed in Fig. 4.5
for Em1. The ground state iso-scalar (I-S) profile displays a single node, unlike the
ground state of the iso-vector (I-V). Furthermore, the latter is more similar to the
first excited state I-S profile, which explains why the effective masses are consistent
with each other. These observations indicate that a meson state needs a rather non-
trivial structure to have good access to the desired ground state which, as will be
shown later, has a non-negligible contribution from purely gluonic operators. A
very similar behavior was observed for the Nm1 case.
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FIGURE 4.4: Optimal meson distillation profiles for the ground state
Γ = γ5 operator in ensembles Em1 (left) and Nm1 (right) for the iso-
scalar (I-S) and iso-vector (I-V) channels. All profiles are normalized

to start at 1.
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4.2 Gluonic spectrum

4.2.1 Gluonic operators from spatial Wilson loops

Gluonic operators at zero spatial momentum can be built from spatial Wilson loops
of a given shape by projecting them onto an irrep R of the cubic group with fixed
parity P and charge conjugation C symmetries as shown in [130]. This leads to the
expressions

GR±+

k,i (t) =
1

N3
L

∑
x⃗

23

∑
n=0

c(R,k,i)
n Re

{
Tr
(
Wn(x⃗, t)± Wp

n (x⃗, t)
)}

(4.3)

GR±−
k,i (t) =

1
N3

L
∑
x⃗

23

∑
n=0

c(R,k,i)
n Im

{
Tr
(
Wn(x⃗, t)± Wp

n (x⃗, t)
)}

, (4.4)

where c(R,k,i)
n are the projection coefficients to "row" i of copy k of irrep R, Wn(x⃗, t)

is the Wilson loop at (x⃗, t) with shape Wn given by applying group element g of
the cubic group to a fixed original shape W, e.g the 1 × 1 plaquette in a fixed plane,
and Wp

n is its parity twin. Not every shape has non-zero contributions in a given
irrep RPC and the irreducible content of shapes of lengths 4, 6 and 8 can be found
in [130], together with the method to calculate the irreducible content of shapes of
larger length. This method was implemented in a Python code to reproduce the ir-
reducible contents presented in that reference as well as to be able to do the same for
longer loop shapes not presented there.

To intuitively understand how glueball operators can be built from these loops it is
useful to consider two simple examples. First, the A++

1 irrep. Here one demands the
operator remains invariant under all elements of the cubic group as well as under
parity and charge conjugation. Such an operator can be built from the 1 × 1 plaque-
tte. By acting on it with any element of the cubic group one simply changes the plane
in which the plaquette is located. An example of such a transformation is shown in
Fig. 4.6; after the transformation the shape is conserved and only the plane where
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it lives changed. By acting on the original plaquette with all elements of the cubic
group one ends up with 24 plaquettes. Since the group is closed under its product,
applying any group element to any of these 24 plaquettes will turn it into another
one of this same set. It is clear that the sum of the 24 plaquettes is invariant under the
action of the cubic group. Here one sets the projection coefficients as cA1,1,1

n = 1 in the
definition of the projected glueball operators although of course there is a freedom
of normalization. The next step is to fix the parity symmetry. In the graphical rep-
resentation of the plaquette, a parity transformation amounts to performing every
displacement in the negative direction. The parity-projected A±

1 glueball operator
is the sum of the 24 plaquettes plus or minus the sum of the 24 parity transformed
plaquettes depending on the choice of P = ±. Fig. 4.7 shows the parity-transformed
plaquette from Fig. 4.6 as well as the original plaquette transformed by a particular
element of the cubic group. In the case of the plaquette one of the group elements
transforms it in the same way as a parity transformation does. This means the differ-
ence between the sum of the 24 plaquettes and the sum of the 24 parity-transformed
plaquettes will be 0 while the sum of the two will not. The former result shows one
cannot build a non-trivial operator that transforms as A−

1 from the plaquette. Finally,
for the charge conjugation symmetry one needs to add or subtract both orientations
of each plaquette, however this can be shown to be equivalent to taking the real or
imaginary part of the trace which defines the glueball operator. For the plaquette
only the projection to A++

1 gives a non-trivial operator and other choices of parity
and charge conjugation symmetries in A1 will not. An example on how to project
the plaquette onto the two-dimensional E++ irrep can be found in [26].

The second example is one which grants access to the A−+
1 irrep; the "hand". This

shape is shown in Fig. 4.8 together with its parity-transformed version, the latter
which cannot be obtained by applying any cubic transformation to the former. By
adding up all 24 transformations of the "hand", subtracting from each one of them
its parity twin and extracting the real part of the trace one can build a non-trivial
glueball operator that transforms as A−+

1 . In practice it would be very unpractical
to do a trial-and-error approach by taking every shape and applying the projector
onto all irreps of interest to it. The standard approach to avoid this is to form a rep-
resentation of the cubic group extended to include parity for each choice of shape
with fixed charge conjugation symmetry, i.e see how the shape transforms under the
action of the extended cubic group and build the corresponding matrices that repre-
sent these transformations [130]. The resulting representation can be expressed as a
direct sum of the irreps RP. If a given RP does not explicitly appear in this decom-
position then one cannot build a non-trivial glueball operator which transforms like
RPC just by using the chosen shape with fixed charge conjugation symmetry C. One
then applies the projectors of the RP that appear explicitly in the decomposition to
the chosen shape. A way of building the projection coefficients for all irreps R is also
presented in [130].
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(A) The plaquette in a fixed
plane.

(B) The plaquette under the ac-
tion of one of the cubic trans-

formations.

FIGURE 4.6: Example of the action of the cubic group on the plaque-
tte. The red dot denotes the starting point and the first link is marked

black for clarity.

(A) The original plaquette un-
der the action of a chosen cu-

bic transformation.

(B) The plaquette under the ac-
tion of the parity transforma-

tion.

FIGURE 4.7: Equivalence between parity transformation and one of
the cubic transformations for the plaquette.

(A) The "hand" Wilson loop.
(B) The "hand" under the ac-
tion of the parity transforma-

tion.

FIGURE 4.8: The "hand" Wilson loop and its parity-transformed ver-
sion.

One needs shapes of length at least 8 to simultaneously access the irreps A++
1 , A−+

1 ,
E++ and T++

2 which are of interest for this work, which is why the 5 shapes shown in
[130] are used. Additionally, the Cayley-Hamilton theorem guarantees that the sin-
gle and double winding of a fixed shape yield independent operators, which allows
to straightforwardly double the number of available operators [14]. Furthermore,
the same shape with double the length can also be easily built to again double the
number of operators. These last two considerations lead to Wilson loops involving
up to 32 link variables. Since longer products of link variables are expected to have
larger statistical fluctuations only the ones with the smallest noise will be considered
for calculating correlation functions. Finally, to further increase the number of avail-
able operators for a GEVP and reduce short-range fluctuations the APE smearing de-
scribed in Section 2.2.4 is used to smear the link variables before measuring the Wil-
son loops. Low-statistics studies with different APE parameters yielded αAPE = 0.35
and NAPE = 5, 10, 15, 20 as a good choice for ensemble Em1. For ensemble Nm1 the
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same value of αAPE was kept but with NAPE = 10, 20, 30, 40 to take into account the
larger spatial volume. All of these considerations yield a total of 2 × 2 × 5 × 4 = 80
glueball operators that can be used for a GEVP. As mentioned in [129], improving the
signal-to-noise ratio of glueball correlators also improves the overlap of the created
state with the wanted energy eigenstate. Because of this not all 80 available opera-
tors are put together in a single correlation matrix but rather only the ones displaying
the best signal-to-noise ratio in their individual temporal correlation functions. This
also avoids the inclusion of additional noise in the GEVP, which can become numer-
ically unstable in the presence of significant noise. As a final note, it is important
to keep in mind two additional complications when using Wilson loops as gluonic
operators. The first one is that since smearing tends to smooth out the link vari-
ables and therefore suppress short distance fluctuations then small loop shapes can
lead to very similar operators if their spatial extent is smaller or comparable to the
smearing radius. This was clearly observed and commented on in [131] when using
both APE smearing and the 3D Wilson flow, as such near-degeneracies can lead to
numerical instabilities in the GEVP formulation. The second one is that different
loop shapes can have the same leading order term in a small-a expansion as shown
in [132], meaning that up to a given power of a they correspond to the same oper-
ator of a given channel in terms of the continuum field-strength tensor Fij and its
derivatives Dk. At small enough values of lattice spacing this can lead to yet another
near-degeneracy which negatively affects the GEVP. Ways to avoid these degenera-
cies will be studied in future work and the signal-to-noise criterion will be used to
select suitable operators for the GEVP in each channel.

4.2.2 Results in N f = 0

Glueball spectroscopy in the absence of quarks has yielded a clear spectrum thanks
to the absence of mixing with mesonic or other states with quarks degrees of freedom
[14]. Since the spectrum is much less dense, significantly less excited-state contami-
nation is expected in the effective masses and therefore the signal-to-noise problem is
not as alarming. Furthermore, the generation of gauge configurations in this model
is much cheaper since no inversions of the Dirac operator are required. This allows
to work with large statistics that further improves the resulting masses. Additional
strategies like the use of anisotropic lattices can also be used to improve the temporal
resolution of the correlation functions, allowing to better sample the earlier physi-
cal times when the signal-to-noise problem is not as pronounced [14]. With these
considerations in mind, the glueball spectrum is measured using the previously de-
scribed spatial Wilson loops in the isotropic, pure gauge qE ensemble to both test the
effectiveness of these operators while at the same time having a reference spectrum
to compare the results that will be obtained once dynamical quarks are included.
Fig. 4.9 shows the resulting ground state effective masses of the A++

1 , A−+
1 , E++

and T++
2 obtained from the spatial Wilson loops. There is a non-negligible signal for

all the irreps, with the best signal being the one of the A++
1 glueball where excited-

stated contamination is gone after t
a = 0. The masses for the E++ and T++

2 irreps are
compatible until the point where the errors become too large and the ones from the
A−+

1 are slightly above them. This hierarchy is consistent with previous pure gauge
results [14]. While no mass plateaus can be reliably extracted for the E++, T++

2 and
A−+

1 irreps, one could argue that there is not much excited-state contamination in
these masses since the difference between them at successive values of time is not
large. The problematic issues with these channels are the large errors and the possi-
ble presence of cut-off effects due to the relatively large values of the effective masses
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in lattice units. Nonetheless, the hierarchy of states, the small presence of excited-
state contamination and the clear signal for the A++

1 channel are the benchmarks of
comparison for the results that will be obtained using the same gluonic operators in
the presence of dynamical quarks.

0 1 2 3 4 5
t
a

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

am
ef

f

A+ +
1

A +
1

E+ +

T+ +
2

FIGURE 4.9: Ground state effective masses of the 4 irreps of interest
in the qE ensemble.

4.2.3 Results in N f = 2

The gluonic operators are measured in the Em1 and Nm1 ensembles to extract the
corresponding glueball masses for the A++

1 , A−+
1 , E++ and T++

2 channels. Given
that these measurements are vastly cheaper than the ones for the meson operators
they are done in a larger number of gauge configurations, namely ≈ 12× 103 in Em1
and 982 in Nm1. The resulting ground states for the different channels of interest are
displayed in Fig. 4.10. The lightest channel in both ensembles, which also has the
clearest signal for the effective mass, is A++

1 , yielding a plateau average value of
am = 0.652(25) for Em1 and am = 0.567(36) for Nm1. These values are in relatively
good agreement with the ones obtained from the iso-scalar Γ = I previously mea-
sured, indicating that both gluonic and mesonic operators are granting access to the
same state. This agreement further motivates the study of the mixing between these
types of operators. The obtained spectrum can also be compared to the one obtained
in the qE ensemble, i.e in a pure gauge setup. In both cases, pure gauge and N f = 2,
the A++

1 effective masses display the clearest signal and smallest excited-state con-
tamination. This is particularly true when comparing the qE and Em1 ensembles.
This serves as further indications that this channel can have a significant gluonic
contribution. Furthermore, the hierarchy of states observed in the qE ensemble is
not the same as in the Em1 and Nm1 ensembles, where the A−+

1 effective masses
tend to lie below the ones of the E++ and T++

2 irreps. This is expected, since now
the gluonic operators couple to the iso-scalar states which are not pure glueballs. In
particular, the iso-scalar A−+

1 was observed to be slightly above the iso-vector one
and significantly below the iso-vector E++ and T++

2 by using mesonic operators. Fi-
nally, it is worth noting that the A−+

1 masses graphically exhibit larger excited-state
contamination than their pure gauge counterparts, most probably due to the denser
spectrum. Since the signal-to-noise problem is present in this setup as well, these
results emphasize the need to understand the mixing between gluonic and mesonic
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states as to be able to better disentangle the ground state from the excited ones at
early times before the noise becomes dominant.
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(A) In ensemble Em1.
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FIGURE 4.10: Ground state effective masses of the irreps A++
1 , A−+

1 ,
E++ and T++

2 in ensembles Em1 and Nm1.

4.3 Mesonic-Gluonic mixing

The mixing between gluonic and mesonic operators will be performed in the A++
1

channel using the previously discussed spatial Wilson loops and the iso-scalar Γ = I

operator. Furthermore, it is performed only in the Em1 where the statistics for the
gluonic operators are sufficiently large. Additionally, since this state is the lightest
one on this ensemble then it is expected to yield the clearest signal for the mixing.
It is worth noting that the correlation function involving Γ = I at source time and a
spatial Wilson loop at sink time is even under time-reversal so the GEVP formulation
is well-posed, which is not the case for the mixing involving the Γ = γ5 operators
with a A−+

1 gluonic operator. Finally, as can be seen in Fig. 4.11 for ensemble Em1,
the effective masses from the optimal A++

1 gluonic operator and the iso-scalar Γ = I

with the optimal profile are relatively consistent with each other, indicating that both
grant relatively good access to this lightest state. This same figure also displays the
effective masses coming from the optimal operator built from a 15 × 15 correlation
matrix involving the 7 mesonic operators with the Gaussian profile basis and the 8
different Wilson loop operators used in the previous section. The expected reduction
of excited-state contamination can be seen at early times, particularly compared to
the pure mesonic results, while at later times it is consistent with the purely gluonic
effective masses. Not only this, but the errors are consistent in magnitude with the
ones from the gluonic masses which points to the possibility that this kind of opera-
tors are the most significant ones to resolve this ground state. The resulting plateau
average masses for the three operators are

• Wilson loops: am = 0.652(25)

• Γ = I meson with optimal profile: am = 0.695(40)

• Optimal linear combination of the latter two: am = 0.640(21),

which are relatively consistent with each other. The effective masses for the first
excited state are displayed in Fig. 4.12 for the Γ = I mesonic operator using the op-
timal profile and the mixed operator generated from the 15 × 15 mixing correlation
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matrix. No results are shown from the Wilson loops alone since there is no clear
signal there for this state. The fact that both masses are completely consistent with
each other and that the Wilson loops alone do not get clear access to this state points
to the possibility of it being mainly mesonic, contrary to the ground state which can
be accessed by both types of operators and therefore most probably has significant
contributions from them. The plateau average masses for this state are given by

• Γ = I meson with optimal profile: am = 1.114(23)

• Optimal linear combination of the mesonic and gluonic operators: am = 1.114(19),

which are also considerably close to the am = 1.07944(48) plateau mass for the iso-
scalar Γ = I operator.
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FIGURE 4.11: Ground state effective masses of the A++
1 channel using

purely gluonic and purely mesonic operators together with the opti-
mal linear combination of them as given by the GEVP formulation in

ensemble Em1.
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FIGURE 4.12: First excited state effective masses of the A++
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nel using purely mesonic operators together with the optimal linear
combination of them with Wilson loops as given by the GEVP formu-

lation in ensemble Em1.

The fact that the effective masses obtained from the GEVP are different to the ones
from the separate optimal mesonic and gluonic operators and yield a slightly clearer
access to the ground state of interest means that there is a non-negligible mixing
between the gluonic and mesonic operators used in this work. This phenomenon is
already clear also at the level of the 15× 15 correlation matrix where the off-diagonal
entries are non-zero at early times when the error does not dominate the signal. The
interpretation of this mixing requires some care. The gluonic and mesonic opera-
tors used in this work are not expected to create states which are pure glueballs or
mesons respectively, but rather these created states have overlaps with presumably
all possible energy eigenstates in the symmetry channel independently of the na-
ture of each energy eigenstate. Furthermore, there is no guarantee that the energy
eigenstates can be divided into these two kinds and are not a mixture of both. On
the contrary, the fact that the Wilson loops, which contain only valence gluons, and
the meson operators, which include valence quarks, both grant access to the mass of
the ground state points to the possibility that this energy state contains both quark
and gluon degrees of freedom. This last observation is the main feature of the re-
sults presented in this chapter: one needs to take into account both quark and gluon
degrees of freedom to create a state with good overlap with the ground iso-scalar
0++ state. On the other hand, the first excited state seems to receive very little or
no contributions from gluonic operators, pointing to a mostly mesonic composition.
Nonetheless a strong statement about this cannot yet be done, since one should first
use other purely gluonic operators or try to improve on the current ones to access
this state to determine if the lack of signal is really due to no gluonic contributions to
this state or rather an effect of the considerable noise that all gluonic operators suffer
from.
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Chapter 5

Towards the physical point

We can only see a short distance
ahead, but we can see plenty there that
needs to be done.

Alan Turing

This chapter focuses on applying the method of the optimal profiles to the previ-
ously described B ensemble corresponding to N f = 3 + 1 QCD at the light flavor
symmetric point and one physical charm quark, being significantly closer to the
physical point than the previously analyzed Em1 and Nm1 ensembles. A selec-
tion of operators corresponding to different symmetry channels are used to study
the charmonium spectrum in this ensemble using both standard distillation and the
optimal profiles to see how the advantages of the latter manifest themselves in this
close-to-physical setup. The resulting spectrum is then compared with one obtained
for this same ensemble in [107] and with the corresponding values in nature. The
overall agreement with the former at considerably smaller statistics and earlier mass
plateau regions further emphasizes the advantages of the method proposed in this
work in a close-to-physical setup. The few discrepancies found with respect to na-
ture and their possible causes are discussed.

5.1 Open temporal boundary conditions

As stated in Sect. 2.4, ensemble B has open boundary conditions in the temporal
direction. This violates temporal translation invariance and therefore one needs to
be careful when calculating temporal correlation functions. One way of doing so is
choosing a time interval sufficiently far away from the boundaries such that their
effects can be safely neglected in this interval, a strategy which was used in [107] to
study flow-related observables in this same ensemble. There the interval was cho-
sen by looking at the behavior of these observables as a function of time which are
expected to slightly vary around a constant value when sufficiently away from the
open boundaries. The results in this reference serve as a guide to choose the relevant
time interval for this work, yet it is useful to perform a similar study based on the
Laplacian eigenvalues. As was seen in the Em1 and Nm1 ensembles, these eigenval-
ues slightly vary around a constant value for the entire temporal extent of the lattice
thanks to the periodic boundary conditions in time and the eigenvalues in this en-
semble should display a similar behavior away from the open boundaries. Fig 5.1
shows the 5 smallest and largest Laplacian eigenvalues as function of time together
with the lower

( t
a = 30

)
and upper

( t
a = 114

)
limits of the interval used in [107].

The effects of the open boundary conditions are clear at both sides of the temporal
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extent, yet in the interval proposed in [107] the expected approximately constant be-
havior is observed, indicating that it is a suitable choice to measure quantities that
depend directly on the Laplacian eigenvalues. It could be argued that this inter-
val could be increased, however the current choice already results in a total of 85
time slices where the correlation functions can be calculated and this quantity was
enough to obtain satisfactory results for the spectrum of particles studied in [107].
Since the method presented in this work is expected to significantly improve upon
these results then the same choice of time interval should be a good choice.
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FIGURE 5.1: Five smallest and largest eigenvalues of the 3D covariant
Laplacian as a function of time calculated in ensemble B. The vertical
lines denote the lower and upper limits of the interval that will be
used for calculating the temporal correlation functions in this work.

Two further modifications are required due to the use of temporal boundary con-
ditions and the Lüscher-Weisz gauge action in this ensemble: the calculation of the
effective masses and the calculation of the fractional overlaps. As explained in [133,
134], the use of the Lüscher-Weisz gauge action leads to the possibility of a spec-
tral decomposition whose terms are not all necessarily positive. This means at suf-
ficiently large values of time, masses can be extracted from an exponential decay
however the resulting effective masses may not necessarily approach the plateau
value from above as was the case for the Em1 and Nm1 ensembles. Furthermore,
due to the open temporal boundary conditions and the fact that the correlation is
measured at values of time sufficiently far away from the boundaries, the effective
masses must be calculated as

ame f f (t) = ln
(

C(t)
C(t + a)

)
, (5.1)

unlike the root-finding method related to the cosh behavior of the temporal correla-
tion functions used for the Em1 and Nm1 ensembles. The correlation function C(t)
in question can no longer be calculated as an average over all sources exploiting
translation invariance over the whole temporal extent, i.e

C(t) =
1

Nt

Nt−1

∑
s=0

C(as + t, as), (5.2)

since the correlation function C(t1, t2) between all possible source and sink times is
not available and boundary effects can become significant even if all source and sink
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times were available. Instead translation invariance is only assumed in the interval
chosen far away from the boundaries and the number of terms in the average will
depend on the value of t. Finally, the fractional overlaps have to be redefined in
terms of exponentials and not hyperbolic cosines as follows. The temporal correla-
tion function in the chosen interval is expected to have the form

C(t) = c0e−m0t + B1(t), (5.3)

where c0 is a time-independent constant and B1(t), now allowed to be negative, ac-
counts for the contributions from excited states. The normalized correlation function
can be defined as

C(t)
C(tG)

=

(
1 + B2(t)

1 + B2(tG)

)
e−m0(t−tG), (5.4)

with

B2(t) =
B1(t)

c0
em0t. (5.5)

The effective fractional overlap can be defined as

Ae f f (t) =
C(t)

C(tG)
em0(t−tG), (5.6)

and in the mass plateau interval where B1(t) is well-approximated by 0 this effective
fractional overlap should provide a good approximation to the constant

A =
1

1 + B2(tG)
. (5.7)

In total absence of any excited-state contamination at time tG the fractional overlap
becomes 1, which was also the case for the Em1 and Nm1 ensembles. In the presence
of excited-state contamination this quantity can either be smaller or larger than 1
depending on the sign of B2(tG), unlike the case of Em1 and Nm1 where B2(t) was
strictly positive. There is a possible divergence in the limit when B2(tG) approaches
−1, nonetheless this is not a problem since what matters for the fractional overlap
is its closeness to 1 as a measure of the excited-state contamination and therefore a
divergence towards ±∞ simply means that |B2(tG)| = 1 > 0. It should be noted that
this is not expected to happen in the numerical calculations. Furthermore, it was
observed in the Em1 and Nm1 ensembles that both standard distillation and the one
with the optimal profiles yielded fractional overlaps significantly closer to 1 than
0.5 and therefore one would not expect to obtain values of B2(tG) close enough to
−1 to yield problematically large values of fractional overlap. As mentioned in the
derivation of the fractional overlap for the case with periodic boundary conditions,
statistical fluctuations and numerical instability at large values of time in the case
of the GEVP leads to deviations from the expected constant of Eqn. (5.7), which in
turn introduces a systematic error to the effective fractional overlaps which can also
contribute to the approach to 1 from above.
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5.2 Charmonium in ensemble B

5.2.1 Setup of distillation parameters

The first consideration is the choice of Nv based on the results obtained for the Em1
and Nm1 ensembles. The 3D volume scaling from the Em1 ensemble as was done
for the Nm1 ensemble yields

Nv = 200 ×
(

0.0429 × 48
0.0658 × 24

)3

≈ 444, (5.8)

which means that, unlike in Nm1 where one would have needed to triple the num-
ber of eigenvectors used, one needs to roughly double the number of eigenvectors
to achieve a similar level of smearing in this ensemble. Although this would repre-
sent less computational work than for the Nm1 ensemble, it is still outside of reach
with the resources available for this work. Nonetheless, this is not expected to be a
problem: the use of the optimal profiles in ensemble Nm1 showed that with 325, out
of the 600 that the 3D volume scaling suggested, the improvement obtained over
standard distillation was already considerably significant and very clear access to
ground states together with a preliminary access to first excited states was achieved.
Although ensemble B has fundamental differences to Em1 and Nm1, it would be
expected (and will be shown) that using 325 vectors out of a recommended 444 to-
gether with the use of the optimal profiles yields similar if not better improvements
over standard distillation. With this in mind, the value Nv = 325 that was used for
Nm1 is kept for ensemble B as well. Another important consideration is that with
only a single charm quark in this ensemble, there is no iso-spin symmetry and the
corresponding correlation functions for charmonia should include both connected
and disconnected pieces. Nonetheless, these disconnected contributions are still ex-
pected to be relatively small compared to the connected ones and will be neglected,
which constitutes a systematic error in the final spectrum. As a further note, the
correlation functions which are measured as primary observables are reweighed as
described in [107]. The quark profiles used are the same Gaussian functions as for
ensembles Em1 and Nm1 but the widths have been scaled with the ratio of squared
lattice spacings with respect to the Em1 widths.

5.2.2 Results from local and derivative-based operators

5.2.2.1 Charmonium spectrum

The same analysis strategy as for ensembles Em1 and Nm1 is used regarding the
pruning of the correlation matrix and solution of the GEVP. The ground state effec-
tive masses for the case of Γ = γ5 using both standard distillation and the optimal
profile are displayed in 5.2. As expected, the use of the optimal profile leads to a
very significant suppression of excited-state contamination, which allows a much
earlier and longer mass plateau for this channel. This improvement at early times
is of particular importance since the effective masses at large values of t come from
correlation functions which are averaged over fewer time sources and therefore are
expected to have larger errors. This is clear from looking at the fluctuations and er-
rors of the masses at times t

a ≥ 60. The mass plateau averages are am = 0.64574(14)
for standard distillation and am = 0.64574(15) for the optimal profile, showing a
complete agreement between both methods.
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FIGURE 5.2: Ground state effective masses of the Γ = γ5 operator us-
ing standard distillation ( f (λi, λj) = 1) and distillation with the opti-

mal meson distillation profile for the ground state
(

f̃ (γ5,0)(λi, λj)
)

in
ensemble B.

The plateau averages of the fractional overlaps are given by 0.9380(22) for stan-
dard distillation and 0.99909(66) for the optimal profile which further confirms the
improvement. These results highlight the method of optimal profiles proposed in
this work yields significant improvements not only in the simplified models where
it was first tested but also in an ensemble with a close-to-physical setup. The ob-
tained mass for this operator is in good agreement with the one reported in [107],
achieving a consistent precision while using considerably smaller statistics. A final
result for this operator is the mass for its first excitation. The corresponding effective
masses are displayed in Fig. 5.3, where a somewhat clear plateau region can be iden-
tified. The signal for the mass of this first excited state is considerably better than
the one obtained in the Em1 and Nm1 ensembles in terms of length of the plateau
and suppression of early time contamination, as the plateau starts immediately after
the value of tG (cf. Eqn. (2.40)). The latter is not surprising, since the value of tG

a is
considerably larger than in the other two ensembles and therefore the contamination
from other states at this time is expected to be more suppressed than it was at tG

a ≈ 4
for the other ensembles.
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FIGURE 5.3: Effective masses of the first radial excitation of the
Γ = γ5 operator accessed via the corresponding optimal meson dis-

tillation profile in ensemble B.

The ground state effective masses using both standard distillation and the corre-
sponding optimal profiles can be seen in Fig. 5.4. All the local operators exhibit a
significant suppression of excited-state contamination when using the optimal pro-
file. Additionally, all cases display mass plateau values which are compatible be-
tween both approaches. As expected, large errors become particularly problematic
at large values of time partly due to the restricted averaging over available time
sources, however the plateau regions start early enough to be safe from this issue.
The effective masses for the first excitation of each operator using the corresponding
optimal profile are displayed in Fig. 5.5. Just as for the Γ = γ5 operator, there is a
relatively early and clear access to the masses of these different operators. This is an
encouraging result, since it shows the sole use of the optimal profiles grants suffi-
cient access to the first excitation and any improvement achieved by including other
Γ operators in an extended GEVP will build on it. The corresponding mass plateau
averages and fractional overlaps for ground and first excited states of all local op-
erators are displayed in Table 5.1, where the improvement brought by the optimal
profiles can be quantitatively seen. All operators display plateau masses consistent
between both methods used, the fractional overlaps are shifted considerably closer
to 1 when the optimal profiles are used and the plateau intervals both start earlier
and are longer compared to standard distillation, leading to more precise masses.
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FIGURE 5.4: Ground state effective masses of the operators built from
local Γ given in the plots in ensemble B.
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FIGURE 5.5: First excited state effective masses of the operators built
from local Γ given in the plots in ensemble B.
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Γ Plateau masses Fractional overlaps Plateau intervals

γ5 0.64602(15) 0.9375(20) 50-67
0.64607(14) 0.99828(73) 22-61
0.7883(14) 0.9955(16) 14-34

γi 0.67041(26) 0.8983(45) 45-66
0.67039(26) 0.9984(10) 19-54
0.7983(21) 0.9733(62) 17-24

I 0.7400(12) 0.856(20) 37-60
0.73950(71) 0.9842(42) 22-55
0.8394(37) 0.9607(89) 17-27

γ5γi 0.7607(27) 0.830(40) 35-49
0.7583(12) 0.9858(44) 19-38
0.8662(29) 0.9946(25) 14-25

ϵijkγjγk 0.7577(35) 0.693(55) 39-53
0.7617(14) 0.9771(71) 21-37
0.8777(38) 0.9991(39) 14-24

TABLE 5.1: Plateau average masses and fractional overlaps for the
ground and first excited states using local Γ operators in ensemble
B. For a fixed Γ the first row corresponds to the ground state using
standard distillation, the second row to the ground state using the
optimal profile and the third row to the first excited state using the

optimal profile.

With the presence of light quarks there is a threshold energy at which the different
states can decay into multi-particle states involving D mesons, which was not the
case in the Em1 and Nm1 ensembles. The mass of the D and Ds mesons, which are
degenerate in this ensemble, was calculated in [107] to be amD,Ds = 0.4138(4). Twice
this value sets the DD̄ threshold at 0.8276(7) and an excited state with quantum
numbers 0++ can decay into a DD̄ pair, for example. This can be the case for the
first excited state of the Γ = I operator, whose mass is above the DD̄ threshold. This
state is not stable and its analysis would require the use of multi-meson operators,
which is beyond the scope of this work. Further excited states with other JPC can
similarly decay into multi-meson states with matching quantum numbers so in this
work only the states whose masses are below the DD̄ threshold will be considered
as stable. For completeness, their masses obtained from local operators in lattice
(amc̄c) and physical units (mc̄c) are displayed in Table 5.2. Their similarity to the
corresponding values in nature (m∗

c̄c) [4] is clear. The uncertainties for the masses
converted into physical units include the one from the lattice spacing as reported in
[107].
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JPC amc̄c
√

t0mc̄c mc̄c m∗
c̄c

0−+ 0.64607(14) 2.1979(33) 2.970(36) 2.9839(4)
1−− 0.67039(26) 2.2806(33) 3.082(38) 3.096900(6)
0++ 0.73950(71) 2.5154(29) 3.399(41) 3.41471(30)
1++ 0.7583(12) 2.5799(32) 3.486(42) 3.51067(5)
1+− 0.7617(14) 2.5911(33) 3.502(43) 3.52538(11)

TABLE 5.2: Plateau average masses of the ground state using local
Γ operators in ensemble B in both lattice and physical units together
with the mass of the state in nature m∗

c̄c. Physical masses are given in
GeV.

In this ensemble the only derivative-based Γ operators studied transform in the E++

and T++
2 irreps to get access to the 2++ channel, i.e Γ = Qijkγj∇k (E++), |ϵijk|γj∇k(

T++
2

)
. Fig. 5.6 displays the ground state effective masses for both of these operators

using standard distillation and the corresponding optimal profiles. With both meth-
ods the effective masses are almost identical to each other until the errors become
relatively large at t

a > 30 for the GEVP results, after which they are still consistent.
Due to this the resulting four plateau averages are consistent with each other. This
reflects how at such a small value of lattice spacing a the ground states of both E++

and T++
2 come close together to become the ground state of the 2++ channel. The

suppression of excited-state contamination at early times is also visible and leads to
considerably early and longer plateau regions compared to the case of standard dis-
tillation. Fig. 5.7 displays the effective masses corresponding to the first excited state
of both operators using the corresponding optimal profiles, where there is again an
agreement between the results of both operators, indicating that this state belongs to
channel where both irreps contribute. The mass plateau averages and correspond-
ing fractional overlaps are displayed in Table 5.3 which quantify the improvement
achieved thanks to the use of the optimal profiles. It is worth noting that with the
optimal profiles the error is halved with respect to standard distillation. Table 5.4
displays the ground state mass plateau averages amc̄c converted to physical units
together with the value of the ground state 2++ in nature m∗

c̄c. The masses of the first
excited state of both operators is above the DD̄ threshold and therefore this state is
not stable.

A final calculation related to the obtained masses and which exemplifies the high
precision achieved is setting the scale based on them. This can be done by calculating
the splitting between spin-singlet states

a∆ = amhc − amηc (5.9)

and demanding its physical value is as in nature, i.e

∆ = m∗
hc
− m∗

ηc
. (5.10)

Solving for a results in

a = 0.04212(49) fm, (5.11)

which is in good agreement with the 0.04292(52) fm obtained in [107] using 2000
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configurations of this ensemble opposed to the 500 used in this work. The similar-
ity of the uncertainty in the presence of such difference in statistics is yet another
advantage of using the optimal profiles.
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FIGURE 5.6: Ground state effective masses of the Γ = Qijkγj∇k and
Γ = |ϵijk|γj∇k in ensemble B.
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and Γ = |ϵijk|γj∇k operators in ensemble B.



5.2. Charmonium in ensemble B 93

Γ Plateau masses Fractional overlaps Plateau intervals

Qijkγj∇k 0.7688(25) 0.767(31) 33-48
0.7680(12) 0.9907(31) 17-48
0.8710(31) 0.9972(28) 14-32

|ϵijk|γj∇k 0.7691(26) 0.762(39) 35-49
0.7680(13) 0.9900(35) 17-42
0.8678(28) 0.9909(30) 14-26

TABLE 5.3: Plateau average masses and fractional overlaps for the
ground and first excited states using the Γ = Qijkγj∇k, |ϵijk|γj∇k
operators in ensemble B. For a fixed Γ the first row corresponds to
the ground state using standard distillation, the second row to the
ground state using the optimal profile and the third row to the first

excited state using the optimal profile.

JPC amc̄c
√

t0mc̄c mc̄c m∗
c̄c

2++ (E++) 0.7680(12) 2.6126(32) 3.531(43) 3.55617(7)
2++

(
T++

2

)
0.7680(13) 2.6126(32) 3.531(43) 3.55617(7)

TABLE 5.4: Plateau average masses of the ground state using E++

and T++
2 Γ operators in ensemble B in both lattice and physical units

together with the mass of the state in nature m∗
c̄c. Physical masses are

given in GeV.

5.2.2.2 Optimal meson distillation profiles

The optimal profiles obtained for the ground state of the local Γ operators are dis-
played in Fig. 5.8. All profiles show the expected suppression of larger eigenval-
ues and enhancement of the lowest ones together with a similarity in overall shape
among S- and P-waves. It is worth noting that the error bars of these profiles are
larger, than the ones obtained for the Em1 and Nm1 ensembles. This is a conse-
quence of the smaller statistics available for this ensemble and the restricted average
over time sources for the correlation functions in the time interval chosen away from
the open temporal boundaries.
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FIGURE 5.8: Optimal meson distillation profiles for the ground state
of the local Γ operators in ensemble B.
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FIGURE 5.9: Optimal meson distillation profiles for the first excited
state of the local Γ operators in ensemble B.

The optimal profiles obtained for the first excited state of the local Γ operators are
displayed in Fig. 5.9. The expected single node appears in all cases at rather small
values of the eigenvalues which indicates non-trivial structure in space. The sup-
pression of larger eigenvalues is still present as for the Em1 and Nm1 ensembles,
yet the higher eigenvalues are more significantly suppressed. A similar feature is
observed for the ground state profiles and might be related to the difference in the
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charm quark mass which in turn can affect the spatial distribution of the meson state.
The optimal meson distillation profiles for the different states of the Γ = Qijkγj∇k
and Γ = |ϵijk|γj∇k operators can be built as for the Em1 and Nm1 ensembles. Fig.
5.10 shows the profile of the ground state of each operator. Both profiles have very
similar overall behavior; the radial symmetry and suppression of larger eigenvalues
are still present in both cases. Fig. 5.11 depicts the profiles of both operators corre-
sponding to the first excited state, where again the suppression of larger eigenvalues
is observed together with a radially symmetric node indicating a non-trivial spatial
structure. The presence of the node around relatively small values of r =

√
λ2

i + λ2
j

and the suppression by a factor of roughly 1
10 at the largest values of r indicate that

the choice of Nv = 325 is suitable to study both states.
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FIGURE 5.10: Optimal meson distillation profiles for the ground state
of the Γ = Qijkγj∇k, |ϵijk|γj∇k operators in ensemble B.

0.02 0.04 0.08 0.11 0.14
i

0.02

0.04

0.08

0.11

0.14

j

f ( ijk j k, 1)( i, j)

0

500

1000

1500

2000

2500

3000

35004000

0.02 0.04 0.08 0.11 0.14
i

f (| ijk| j k, 1)( i, j)

0

500

1000

1500

2000

2500
3000

FIGURE 5.11: Optimal meson distillation profiles for the first excited
state of the Γ = Qijkγj∇k, |ϵijk|γj∇k operators in ensemble B.

5.2.2.3 Spatial profiles via the optimal meson distillation profiles

As with Em1 and Nm1, the spatial profile of the ground and first excited states of the
Γ = γ5 operator can be built using the corresponding optimal distillation profiles,
this time by placing the 3D point-source at z⃗ = (24a, 24a, 24a) and evaluating it on a
single configuration. Both spatial profiles are displayed in Fig. 5.12, which are very
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similar to the ones from the other two ensembles analyzed in this work. The radial
symmetry and the appearance of a node can be seen and both profiles appear to
be well contained within the spatial extent of the lattice, which indicates that finite-
volume effects are still negligible for these two states.
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FIGURE 5.12: Spatial profiles for the ground and first excited states of
the Γ = γ5 operator in ensemble B.

5.2.3 Comparison with other lattice calculations

The ground state masses for the Γ = γ5, γi operators are consistent with those in
[107] while the remaining three exhibit a slight tension. This can be explained by
looking at Fig. 5.13, which shows the effective masses using the optimal profiles
together with the ones from [107], which were calculated without using distillation.
The plateau regions of the Γ = I, γ5γi and ϵijkγjγk of the latter work are heavily
affected by excited-state contamination, shifting each of the estimated plateau av-
erages above the ones from this work. Additionally, no quark smearing was used
there, which means excited-state contamination is more pronounced at early times.
Furthermore, the correlation functions were built by fixing the source time close to
a boundary and varying the sink time to reach different temporal separations. The
dominant terms in the spectral decomposition of such correlation functions are dif-
ferent to those of the correlation functions calculated here since they contain a de-
pendence on the source time [135, 136]. This means a direct comparison to quantify
the suppression of excited-state contamination cannot be straightforwardly done by
looking at the values of the correlation function at early times, however it helps to
explain the tension between the mass plateau values. What can be asserted is that
the use of optimal profiles in a region away from the boundaries results in effec-
tive masses approaching their corresponding plateau quicker and with a compara-
ble level of statistical precision despite having considerably smaller statistics. Fur-
thermore, the effective masses from the optimal profiles for the P-waves show the
plateaus calculated in [107] were still heavily affected by contamination of excited
states, which introduces a systematic error in the plateau averages reported.
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FIGURE 5.13: Ground state effective masses of the operators built
from local Γ not including the Γ = γ5 case in ensemble B using
the corresponding optimal profile together with the effective masses

measured in [107].

The different mass splittings can be compared to those from different state-of-the-art
lattice calculations. Table 5.5 displays the hyperfine splitting ∆mHF obtained in this
work together with its value from other calculations as well as in nature. In [17] the
authors use 2 + 1 + 1 and 1 + 1 + 1 + 1 HISQ ensembles and tune the charm quark
mass to recover the physical J/ψ mass. A continuum extrapolation is done to obtain
the final splitting result and the one included in the table does not include the ef-
fects of QED, which the authors also study. This study does not use distillation but
rather wall sources. In [126] the authors use a 2+ 1 asqtad fermion action for the up,
down and strange quarks and include the charm quark by tuning its bare mass so
the kinetic mass of the Ds matches the one in nature. The set of operators for each
irrep used in this reference includes the local and derivative-based ones used in this
work, however the authors do not use distillation but rather Gaussian smearing of
sources. The authors also perform a continuum extrapolation using a number of
different ensembles with different lattice spacings. In [118] the authors use a 2 + 1
anisotropic clover action for the up, down and strange quarks and include the charm
quark by tuning its bare mass so the ratio of the ηc meson mass and Ω baryon mass
has its physical value. Unlike the previous two references, this study uses distilla-
tion. Their value of ∆mHF deviates significantly from the one in nature, however this
was shown in [110] to be due to discretization effects related to the large value of the
spatial lattice spacing as ≈ 0.12 fm. Nonetheless, the statistical uncertainty of the re-
sult is compatible with the ones from the other calculations. The splitting presented
in this work is in good agreement not only with the value in nature but also with
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all other lattice calculations except for [118], even when no continuum extrapolation
was done. Furthermore, the statistical errors in this work are completely compatible
with all other lattice calculations, some of which have considerably larger statistics.
Table 5.6 displays the remaining splittings for the 8 stable states, i.e splittings in-
volving ground state masses and the hyperfine splitting for the first excited state of
the 0−+ and 1−− channels denoted as ∆mHF−1. All splittings show good agreement
with their corresponding experimental value as well as with the results from [126].
In particular, all splittings from this work except for ∆m1P−1S have smaller statistical
errors despite coming from smaller statistics. The absence of the disconnected con-
tributions to the correlation functions, the difference in the light quark masses and
the omission of QED effects lead to additional sources of systematic error which can
account for discrepancies between the values in this ensemble and their counterparts
in nature.

This work Ref. [17] Ref. [126] Ref. [118] Nature [4]

111.8(1.4) 118.6(1.1) 116.2(1.1) 88(1) 113.0(5)

TABLE 5.5: Hyperfine splitting ∆mHF calculated in this work together
with its value in other state-of-the-art lattice calculations as well as in

nature. All values are given in MeV.

Splitting This work Nature [4] Ref. [126] et al.

∆m1P−1S 447.3(5.5) 456.64(14) 462.2(4.5)
∆mSO 43.93(87) 46.60(8) 46.6(3.0)

∆mtensor 14.43(41) 16.27(7) 17.0(2.3)
∆m1PHF -0.2(1.6) -0.09(14) -6.1(4.2)

∆mHF−1 45.9(1.8) 48(1)

TABLE 5.6: Mass splittings for the stable states in ensemble B. All
values are given in MeV.

The final spectrum obtained can be seen in Fig. 5.14, where the mass of the ground
state ηc (0−+) has been subtracted from all others. This subtraction is done to elimi-
nate the effects of the charm quark mass mistuning, a strategy which was also used
in [118]. The solid rectangles are the masses converted to physical units via the lattice
spacing determined in [107] using the physical value of t0 at the N f = 3 symmet-
ric point [137], the red bands correspond to the DD̄ threshold as measured in [107]
and the blue rectangles correspond to the values in nature [4], including the D̄0D0
threshold. The good agreement with nature in most cases that was observed in Ta-
ble 5.2 is graphically seen. The JPC are used as labels instead of the irreps RPC based
on the agreement with the values in nature, including the combination of the E++

and T++
2 ground states into a single 2++ state since the plateau average masses are

identical within errors. The disconnected contributions were ignored yet there is an
overall agreement with nature up to small differences in some of the P-waves. This
indicates that these effects might play a larger role in these states. A future study
of these disconnected contributions for each symmetry channel will help clarify this
issue. Nonetheless, even if these disconnected contributions have very small effects
in the masses, they cannot be fully neglected since the mixing with glueballs and in
between light and heavy flavor neutral states can only happen through them.
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FIGURE 5.14: Low-lying charmonium spectrum relative to the ηc(1S)
in ensemble B converted to physical units including the DD̄ threshold
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5.2.4 A first look at the disconnected contributions

To get a clear picture of the current problem when measuring disconnected contribu-
tions to the correlation functions at such a close-to-physical setup one can see what
their signal is for the Γ = γ5 operator. Fig. 5.15 shows this contribution with stan-
dard distillation. There is a non-negligible signal up until around t

a = 15, meaning
one can add the disconnected contribution to the connected one to form the full cor-
relation function. However, this would prove problematic since this disconnected
contribution has a change of sign. A possible interpretation for this sign change is
the following. In the Em1 and Nm1 ensembles, the disconnected contribution for
this same operator was negative. When summed with the positive connected contri-
bution, the effective masses of the iso-scalar state were larger than the ones from the
iso-vector. For the case of Γ = I, the disconnected contributions were positive and
the effective masses of the iso-scalar were smaller than the ones from the iso-vector.
If the sign of the disconnected contribution has this same effect in this ensemble
then the negative values at early times indicate contributions from heavier states.
The change to a positive sign that happens at later times would therefore indicate
that the contributions from lighter states become dominant. These states correspond
to iso-scalar pseudo-scalars made of light quarks. This sign change was not present
in the Em1 and Nm1 ensembles and even there it was complicated to extract the
effective mass including the disconnected contribution for Γ = γ5, which indicates
a similar calculation in this setup is considerably more difficult. The disconnected
contribution for Γ = I is shown in Fig. 5.16, where there is also a non-negligible
signal at early times. There is no sign change, as was the case in Em1 and Nm1
when comparing iso-vector and iso-scalar charmonium. This indicates the presence
of contributions from lighter states made of light quarks and there is no reliable way
to extract the mass of the charmonium state unless operators for these light mesons
and glueballs are included in a GEVP basis. A careful study of these contributions is
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left for future work and these preliminary results exemplify the problem that arises
with the presence of light quarks in the setup.
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FIGURE 5.15: Disconnected contribution to the temporal correlation
function of the Γ = γ5 operator using standard distillation.
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Chapter 6

Conclusions and outlook

We shall not cease from exploration
and the end of all our exploring will be
to arrive where we started and know
the place for the first time.

T. S. Eliot

This work introduced an improvement to the distillation method via the optimal me-
son distillation profiles. These profiles lead to operators with earlier effective mass
plateaus thanks to a suppression of excited-state contamination in their correlation
functions. The optimality is defined via a GEVP for a fixed Γ operator in form ψ̄Γψ,
where the operator basis is built from different Gaussian quark profiles. The con-
struction of the correlation matrix comes at no significant additional computational
cost compared to the cost of the perambulators and elementals that are necessary for
distillation. Optimal profiles which maximize the overlap with ground and excited
states were obtained for a wide selection of local and derivative-based Γ operators.
Unlike the constant profile in standard distillation, the optimal profiles introduce
non-trivial structure that increased the overlap of the created states with the energy
eigenstates for each Γ. In this way the proposed method provides a systematic way
to individually improve meson operators. The method was also extended to the case
of multiple Γ operators within a same symmetry channel, such that different spatial
structures can be sampled via local and derivative-based Γ operators together with
an optimal profile. Finally, optimal profiles of selected operators were used to build
the spatial profile of the operator itself, a useful feature to examine its spatial behav-
ior as well as finite-volume effects.

The proposed improvement was first tested for iso-vector operators in two different
ensembles with N f = 2 clover-improved Wilson quarks. The effective masses ob-
tained from correlations of a wide variety of meson operators with both local and
derivative-based Γ, including ones with exotic quantum numbers 1−+, displayed a
significant suppression of excited-state contamination when compared to standard
distillation. Some examples of this improvement are Γ = γ5, γi, γ0γ5γi∇i, γ5∇i,
where the resulting ground state mass plateaus were considerably longer than their
standard distillation counterparts. Furthermore, an increase in the number of Lapla-
cian eigenvectors used was shown to increase excited-state contamination in stan-
dard distillation while the use of an optimal profile avoids this problem by appro-
priately weighing the contributions of these additional vectors. The profiles also
granted access to the first excited state for almost all Γ operators, something that
with standard distillation would require the additional cost of calculating elemen-
tals for at least two different Γ operators. None of the resulting optimal profiles
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resembled a constant, showing a customized approach for every operator is a better
choice than a constant profile. The improvement of the effective masses in terms
of suppression of excited-state contamination and precision was found to be larger
when using a fixed Γ operator with its optimal profile than when using two differ-
ent Γ operators with standard distillation. This means optimizing the profile is not
equivalent to optimizing a linear combination of different Γ operators. The former
is computationally cheaper and leads to a more substantial improvement. Both ap-
proaches were also combined; different Γ operators together with an optimal profile
lead to slightly larger suppression of excited-state contamination in the ground state
compared to the case of a single Γ with its optimal profile, showing such an extended
GEVP can still lead to an improvement.

Iso-scalar meson operators were also studied using the proposed method in the
N f = 2 ensembles and the suppression of excited-state contamination again ob-
served. Using Γ = γ5 and optimal profiles, the mass difference between the iso-
scalar an iso-vector masses could be resolved in both ensembles, although the time
interval from where these mass differences were extracted could perhaps still have
residual excited-state contamination. Using Γ = I and its optimal profile it was pos-
sible to access the mass of the lightest state in the model, shown to coincide with
the ground state mass obtained via 3D spatial Wilson loops in this same symmetry
channel. These two types of operators were mixed to study the mesonic and gluonic
contributions to the actual energy eigenstates. The ground state effective masses
benefited from including the meson operator together with the Wilson loops, show-
ing both contribute to this state. The first excited state could not be clearly accessed
with the Wilson loops alone and only the meson operator significantly contributed to
it. For this particular channel the basis profiles which had better access to the ground
state also had the effective masses with the largest errors, which points to the pos-
sibility of there being a better choice of basis. Near-degeneracies in the masses of
different Wilson loop operators were also seen which can affect the stability of the
GEVP. Possible solutions to this issue will be explored in a future work.

Finally, the proposed improvement was used to calculate the low-lying charmonium
spectrum on an N f = 3 + 1 ensemble at the SU(3) light flavor symmetric point with
a physical charm quark. The masses of the 8 charmonium states which in nature
are below the DD̄ threshold were measured and shown to be in good agreement
with their values in nature. The different mass splittings also displayed this same
agreement and their statistical uncertainties were comparable, if not smaller, to the
ones from state-of-the-art lattice calculations, some of which used larger statistics.
All symmetry channels benefited from the significant suppression of excited-state
contamination, which allowed to improve the values of some of them compared to
a previous study of this same ensemble which did not employ distillation. Due to
limited statistics only the connected contributions to the temporal correlation func-
tions were used, however the disconnected contributions were also measured and
will be used in a future study.

The profile optimization presented in this work has been used for the measurement
of static potentials based on Laplacian trial states in [122]. Future directions of study
based on this work include applying the method to light and D mesons, where for
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lighter quark masses one might need fewer eigenvectors. The corresponding ele-
mentals and profiles have to be appropriately modified and tuned. Scattering stud-
ies which use standard distillation, such as [138], can also benefit from the use of
optimal profiles. The proposed method can also be combined with stochastic distil-
lation [117], which is particularly useful for scattering studies such as in [139]. Since
the estimation of the perambulators can be done independently from the calculation
of the elementals, the construction of the optimal profiles via a GEVP formulation
can be done just as in this work. The optimal meson profile formalism can also be
extended to more general hadron operators such as baryons, where the correspond-
ing elementals from standard distillation can be modified to include profiles that
depend on three Laplacian eigenvalues instead of two. Further improvements to
the distillation framework are also possible. The calculation of the perambulators
represents the majority of the computational cost with or without the optimal pro-
files. The sparsity of the right-hand sides of the linear systems that must be solved
together with the fact that only the orthogonal projections of the solutions onto a
very low-dimensional subspace are required are features which could be exploited
to reduce the overall computational cost. This would be particularly useful for the
case of light quarks where the computationally expensive inversions are the main
issue when deciding on the number of Laplacian eigenvectors to use.
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Appendix A

The cubic group

Considering the three unitary vectors x, y and z one can characterize the cubic group
by how each element acts on each of them. The action of each group element is listed
below, where the ordering is not unique and the choice presented here corresponds
to the one used by [140].

• g0: (x, y, z) → (x, y, z)

• g1: (x, y, z) → (−x,−z,−y)

• g2: (x, y, z) → (z, x, y)

• g3: (x, y, z) → (−z,−y,−x)

• g4: (x, y, z) → (y, z, x)

• g5: (x, y, z) → (−y,−x,−z)

• g6: (x, y, z) → (x,−y,−z)

• g7: (x, y, z) → (−x, z, y)

• g8: (x, y, z) → (−z, x,−y)

• g9: (x, y, z) → (z, y,−x)

• g10: (x, y, z) → (−y,−z, x)

• g11: (x, y, z) → (y,−x, z)

• g12: (x, y, z) → (−x, y,−z)

• g13: (x, y, z) → (−z,−x,−y)

• g14: (x, y, z) → (−z,−x, y)

• g15: (x, y, z) → (z,−y, x)

• g16: (x, y, z) → (y,−z,−x)

• g17: (x, y, z) → (−y, x, z)

• g18: (x, y, z) → (−x,−y, z)

• g19: (x, y, z) → (x,−z, y)

• g20: (x, y, z) → (z,−x,−y)

• g21: (x, y, z) → (−z, y, x)

• g22: (x, y, z) → (−y, z,−x)

• g23: (x, y, z) → (y, x,−z)
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C(tG)-orthonormality of
plateau-averaged GEVP vectors

In the plateau region the vector at a given time ωi(t) (omitting the tG index for
brevity) can be written as

ωi(t) = ω∗
i + δi

t, (B.1)

where ω∗
i denotes the true vector of state i satisfying ω∗

i C(tG)ω
∗
j = δij in the absence

of any contamination and δi
t denotes the fluctuation at time t assumed to have sta-

tistical origin. For simplicity one can first consider the corresponding inner product
between two vectors formed by the average of the ωi(t) at two different values of t
in the corresponding plateau region (which can be different for different i)

ω†
i C(tG)ωj =

1
2

(
ω∗

i + δi
t1
+ ω∗

i + δi
t2

)†
C(tG)

(
ω∗

j + δ
j
t3
+ ω∗

j + δ
j
t4

) 1
2

, (B.2)

from where the terms that do not become proportional to δij are instead proportional
to one of these forms:

• ω∗†
i C(tG)δ

j
t′

• δi†
t C(tG)δ

j
t′ .

If one were to repeat these measurements over several Markov chains of gauge con-
figurations then the expected value of this inner product is given by〈

ωi(t)†C(tG)ωj(t)
〉

and the non-vanishing terms are of the form
〈

ω∗†
i C(tG)δ

j
t

〉
and

〈
δi†

t C(tG)δ
j
t′

〉
. As-

suming both ω∗
i and C(tG) are constant over such a chain of measurements then

any term of the form
〈

ω∗†
i C(tG)δ

j
t

〉
vanishes, as over these different measurements

δ
j
t should oscillate around zero if Eqn. (B.1) is an unbiased estimator of ω∗

i . The

quadratic terms of the form
〈

δi†
t C(tG)δ

j
t′

〉
do not vanish as long as all δi

t are not zero

and take the form of a covariance which quantifies the deviation of
〈
ωi(t)†C(tG)ωj(t)

〉
from δij. The better the estimator in Eqn. (B.1) becomes in terms of having δi

t fluc-
tuating much closer to 0 then the closer

〈
ωi(t)†C(tG)ωj(t)

〉
comes to being δij. The

extension of this analysis to a more general weighted average to define the esti-
mators is straightforward and will exhibit the same dependence only on the terms
quadratic in the δi

t. One can express C(tG) as an estimator of the true correlation
matrix and repeat this same analysis yet the result is equal in essence; the only
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non-vanishing terms are covariances between fluctuations from the different esti-
mators involved and the inner product becomes closer to δij the better these esti-
mators become. With these considerations, the average vectors are expected to be
C(tG)-orthonormal within statistical errors.
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Conventions

The conventions for the Euclidean Dirac matrices used in this work are those of
qcdlib, namely

γ0 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 (C.1)

γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 (C.2)

γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (C.3)

γ3 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 (C.4)

γ4 = −γ0 (C.5)

γ5 = γ0γ1γ2γ3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (C.6)

C = −γ0γ2 (C.7)
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