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Introduction

There are many cohomology theories in algebraic geometry and the study of these and
the relations between them are of central interest in the field. In the 1950’s and 1960’s the
formalism of Weil cohomology was constructed by the Grothendieck school, inspired by the
work of Weil on the Weil conjectures [Wei49]. These are cohomology theories for (smooth
projective) varieties over a field k with coefficients in a field K with char(K) = 0, i.e., a
contravariant functor

H∗ : {smooth projective varieties over k} → {graded K-algebras},

satisfying certain axioms. Among the axioms and data that goes into defining a Weil coho-
mology theory H∗ are a cup product and a cycle class map. The cup product is a graded-
commutative product

∪ : H∗(X) ∪H∗(X)→ H∗(X),

and the cycle class map is a map

cl : Zc(X)→ H2c(X)

that takes any closed subvariety Z ⊂ X of codimension c to a cohomology class of degree 2c
(for any c). Here Zc(X) denotes the group of all such cycles of codimension c, but in practice
the cycle class map factors through rational equivalence to give a map

cl : CHc(X)→ H2c(X).

When one has a cup product and a cycle class map one can define an action of correspondences.
Let X and Y be two such smooth projective varieties. A correspondence from X to Y is a
subvariety of X×k Y , or more generally an element α ∈ CHc(X×k Y ) for some c. Now let pX
and pY be the projections from X ×k Y to X and Y , respectively. Then the correspondence
α gives us a map H i(X)→ H i(Y ) for any i by the formula

β 7→ pY,∗
(
p∗X(β) ∪ cl(α)

)
,

for any β ∈ H i(X), where the push-forward pY,∗ is defined via Poincaré duality. This gives
us a generalization of the pushforward between cohomology groups and is very important in
algebro-geometric situations where one often has a dearth of morphisms. In several classi-
cal Weil cohomology theories (de Rham, `-adic, crystalline), the above map preserves extra
structure, which reflects the fact that the map is of geometric origin

Because of the usefulness of these correspondence actions it is desirable to try to construct
them for other important cohomology theories that are not Weil cohomology theories. In their
paper [CR11] Chatzistamatiou and Rülling constructed such actions for Hodge cohomology for
smooth (but not necessarily proper) schemes defined over a perfect field of positive charac-
teristic. Using this construction they proved vanishing theorems and isomorphism theorems
for higher direct images. These results were known to hold over fields of characteristic 0,
but the proofs there relied on the existence of resolutions of singularities, which is a major
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2 INTRODUCTION

open problem in positive characteristic. The construction involves defining so-called weak co-
homology theories with supports (WCTS), showing that Chow groups and Hodge cohomology
give examples of such WCTS, proving an existence (and uniqueness) theorem for morphisms
CH → F where CH denotes the WCTS of Chow groups and F denotes any WCTS assumed
to satisfy certain conditions, and finally to use the existence theorem to construct actions of
correspondences and to show that Hodge cohomology satisfies the conditions of the existence
theorem. The major technical parts of this construction are the proof of the existence theorem
and construction of Hodge cohomology as a WCTS, constructing a cycle class map to it, and
showing that Hodge cohomology satisfies the conditions of the existence theorem. This relies
heavily on, among other things, Grothendieck duality theory.

In this thesis we expand the work from [CR11] to the case where the schemes considered are
sepatated smooth schemes of finite type over a base scheme S, which is either a field (which does
not have to be perfect) or a Noetherian, regular, excellent, separated and irreducible scheme
of Krull dimension 1. The most important examples of these base schemes for me are (many
important) Dedekind domains, in particular rings of integers in number fields, including Z,
and the ring of Witt vectorsW (k) where k is a perfect field of positive characteristic, including
Zp = W (Fp).

An outline of the thesis is as follows.

Chapter 1. In Chapter 1 the construction of weak cohomology theories with supports
are are recalled from [CR11]. These consist of a quadruple (F∗,F∗, T, e) where F∗ and F∗ are
graded functors from categories V∗ and V ∗ to GrAb, respectively. These categories V∗ and V ∗
have the same objects, pairs consisting of smooth separated S-schemes of finite type together
with a family of supports. The morphisms of V∗ are given by

HomV∗((X,Φ), (Y,Ψ)) =

{f ∈HomS(X,Y )
∣∣ f |Φ is proper and f(Φ) ⊆ Ψ}.

and the morphisms of V ∗ are given by

HomV ∗((X,Φ), (Y,Ψ)) = {f ∈ HomS(X,Y )
∣∣f−1(Ψ) ⊆ Φ}.

For any such (X,Φ) ∈ obj(V∗) = obj(V ∗) we have F∗(X,Φ) = F∗(X,Φ) and the functors
differ only in the grading. So we can think of F∗ as cohomology groups with pullbacks and
F∗ as cohomology groups with pushforwards. Along with these functors we have a natural
transformation T and a morphism of Abelian groups e : Z → F (S) making both (F∗, T, e)
and (F∗, T, e) into symmetric monoidal functors.

Note that by considering S-schemes with supports, we are afforded more flexibility in the
sense that the schemes considered do not have to be proper over S and morphisms between
them do not need to be proper for the pushforward to exist, as long as the morphisms are
proper when restricted to the supports. We look at some basic properties of these weak
cohomology theories, and in particular define a cup product and state projection formulas. In
Chapter 1 we only assume our base scheme S is Noetherian.

The contents of Chapter 1 are not new and are contained in [CR11], but stated here in
the context of S-schemes.

Chapter 2. In Chapter 2 the first example of a weak cohomology theory with supports
is given. This is the example of Chow groups. This is a fundamental example to be able to
have actions of correspondences. We define the functors CH∗ and CH∗ sending (X,Φ) to the
groups CH∗(X/S,Φ) and CH∗(X/S,Φ), respectively. These are the Chow groups of cycles
in X that lie in Φ up to rational equivalence, and graded by codimension and S-dimension
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respectively.1 The pushforward is given by the proper pushforward of Chow groups and the
pullback is constructed using the refined Gysin homomorphism for local complete intersection
morphisms, using the fact that all morphisms between separated smooth S-schemes of finite
type are l.c.i. morphisms. Here we use more of the assumed properties of S. Namely, for
the S-dimensions to behave correctly we want S to be excellent (or universally catenary will
suffice) and in showing that the pullback preserves grading, and to have that all S-morphisms
between smooth separated S schemes of finite type are l.c.i. morphisms, we use the regularity
of S.

The product for Chow groups is given by the exterior product ×S . Here we have to restrict
the dimension of S to be at most 1. It would be interesting to see if this restriction could be
eased to allow for higher dimensional base schemes.

Chapter 3. In Chapter 3 we find one of the main theorems of the thesis. It states
that for a given WCTS F = (F∗,F∗, T, e) for which we can define a cycle class element
cl(Z,X) ∈ F2c(X,Z) for any smooth separated S-scheme of finite type X and any inte-
gral closed subscheme Z in X, such that for regular Z these cycle class elements satisfy some
conditions, then there exists a morphism of weak cohomology theories with supports

cl : CH→ F.

Namely, we have

Theorem 1. Let S be a Noetherian, excellent, regular, separated and irreducible scheme
of Krull-dimension at most 1. Let F ∈ T be a weak cohomology theory with supports satisfying
the semi-purity condition. Then HomT(CH,F) is non-empty if following conditions hold.

(1) For the 0-section ı0 : S → P1
S and the ∞-section ı∞ : S → P1

S the following equality
holds:

F∗(ı0) ◦ e = F∗(ı∞) ◦ e.
(2) If X is an NS-scheme and W ⊂ X is an integral closed subscheme then there exists

a cycle-class element cl(W,X) ∈ F2 dimS(W )(X,W ), and if W ⊂ X is any closed
subscheme we define

cl(W,X) =
∑
i

nicl(Wi, X),

where the Wi are the irreducible components of W and
∑

i ni[Wi] is the fundamental
cycle of W 2, such that the following conditions hold:
i) For any open U ⊆ X such that U ∩W is regular, we have

F∗(j)(cl(W,X)) = cl(W ∩ U,U),

where j : (U,U ∩W )→ (X,W ) is induced by the open immersion U ⊆ X.
ii) If f : X → Y is a smooth morphism between NS-schemes X and Y , and W ⊂ Y

is a regular closed subset, then

F∗(f)(cl(W,Y )) = cl(f−1(W ), X).

1Technically the group CH∗(X/S,Φ) is graded by S-codimension, but this agrees with the standard codi-
mension.

2Technically we should write cl(W,X) =
∑
i niF∗(iWi)cl(Wi, X) where iWi : (X,Wi) → (X,W ) enlarges

the supports. Notice also that when W is not pure S-dimensional the cycle-class element cl(W,X) does not
live in F2 dimS W (X,W ).
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iii) Let i : X → Y be the closed immersion of an irreducible, regular, closed S-
subscheme X into an NS-scheme Y . For any effective smooth divisor D ⊂ Y
such that
• D meets X properly, thus D ∩X := D ×Y X is a divisor on X,
• D′ := (D ∩X)red is regular and irreducible, so D ∩X = n ·D′ as divisors
(for some n ∈ Z, n ≥ 1).

We define g : (D,D
′
)→ (Y,X) in V ∗ as the map induced by the inclusion D ⊂ Y .

Then the following equality holds:

F∗(g)(cl(X,Y )) = n · cl(D
′
, D).

iv) Let f : X → Y be a morphism of NS-schemes. Let W ⊂ X be a regular closed
subset such that the restricted map

f |W : W → f(W )

is proper and finite of degree d. Then

F∗(f)(cl(W,X)) = d · cl(f(W ), Y ).

v) Let X,Y be NS-schemes and let W ⊂ X and V ⊂ Y be regular, integral closed
subschemes. Then the following equation holds

T (cl(W,X)⊗S cl(V, Y )) =

{
cl(W ×S V,X ×S Y ) if W or V is dominant over S,
0 otherwise.

vi) For the base scheme S we have cl(S, S) = 1S.

Here we first encounter one of the main differences between the work done in [CR11]
and this thesis. In [CR11], the authors worked over a perfect field k so they could ensure
that the smooth locus of any reduced scheme of finite type over k was non-empty. The
corresponding theorem in [CR11] gives conditions on cycle class elements for smooth integral
closed subschemes. Since S is not (in general) equal to Spec (k) for a perfect field, this can
not work in the generality presented in this thesis. However, we assume that S is excellent, so
in particular a J − 2 scheme so any scheme of finite type over S (like all schemes in this thesis
are assumed to be) has a non-empty open regular locus. This allows us to assume conditions
on the class element for regular integral closed subschemes and spread out from the regular
locus in general.

The proof of Theorem 1 is structured as follows. We need to define a family of morphisms
of graded Abelian groups

φA : CH(A)→ F(A),

where A is any object in obj(V∗) = obj(V ∗), and we need to show that this family induced
natural transformations of right-lax symmetric monoidal functors

(CH∗,×S , 1)→ (F∗, T, e), and,
(CH∗,×S , 1)→ (F∗, T, e).

The case of (CH∗, T, e)→ (F∗, T, e) is presented in Chapter 3 as its own Proposition. We start
by defining a family of homomorphisms of Abelian groups

φ
′

(X,Φ) : ZΦ(X)→ F(X,Φ)

indexed by the elements (X,Φ) ∈ obj(V ∗) = obj(V∗). For integral closed subschemes [W ], we
define

φ
′

(X,Φ)([W ]) = F∗(iW )(cl(W,X)),
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where iW : (X,W )→ (X,Φ) is induced by idX .
We then show that this family of homomorphisms extends to the desired natural trans-

formation of (right-lax) symmetric monoidal functors. First we show on the level of cycles,
this family φ′ is functorial with the pushforwards. Then we show that these morphisms φ′

send cycles that are rationally equivalent to zero, to 0 and therefore that this family defines
a natural transformation φ. Finally we show that this natural transformation is a natural
transformation of right-lax symmetric monoidal functors by showing that it respects the unit
and the product.

The proof of Theorem 1 then proceeds by showing that this given natural transformation
of right-lax symmetric monoidal functors φ : (CH∗,×S , 1) → (F∗, T, e) extends to a natural
transformation of right-lax symmetric monoidal funtors (CH∗,×S , 1) → (F∗, T, e), i.e., that
φ is functorial with respect to the pullback. We do this by using a well known dévissage
technique; we first show that it is for pullbacks along smooth morphisms, then for pullbacks
along regular closed immersions, and finally deducing the general case by factoring a morphism
into a composition of a smooth morphism and a regular closed immersion, which we can always
do since all morphisms between smooth separated S-schemes of finite type are l.c.i. morphisms.

Chapter 4. In this chapter we introduce Hodge cohomology with supports, the main
example of a weak cohomology theory with supports that is studied in this thesis, and on
which we want to have actions of correspondences. We define the cohomology groups as
follows. Let (X,Φ) be an smooth separated S-scheme of finite type with a family of supports
Φ. We define

H(X,Φ) :=
⊕
i,j

H i
Φ(X,Ωj

X/S).

and call this abelian group (or Γ(S,OS)-module) the Hodge cohomology of X with supports in
Φ. We denote by H∗(X,Φ) the graded abelian group given in degree n by

Hn(X,Φ) =
⊕
i+j=n

H i
Φ(X,Ωj

X/S).

We also want a “covariant grading”. Let X = qrXr be the decomposition of X into its
connected components, then we define H∗(X,Φ) to be the graded abelian group that in degree
n is

Hn(X,Φ) =
⊕
r

H2 dimS Xr−n(Xr,Φ).

For any map of S-schemes f : X → Y we have a natural map

Ωj
Y/S → f∗Ω

j
X/S

a · db 7→ f∗(a) · df∗(b),

and the pullback is induced by it. It is fairly easily seen to be functorial. The pushforward is
harder to construct. We start by defining a certain proper pushforward. Namely consider

X
f //

πX   

Y

πY��
S,
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where X and Y are separated S-schemes of finite type, and f is a proper morphism. Then we
can, using the theory of Grothendieck duality, define

Rf∗DX(Ωk
X/S)→ Rf∗RHomOX (Ωk

X/S , f
!π!
YOS)

→ RHomOY (Rf∗Ω
k
X/S ,Rf∗f

!π!
YOS)

(f∗)∨−−−→ RHomOY (Ωk
Y/S ,Rf∗f

!π!
YOS)

Trf−−→ DY (Ωk
Y/S),

where DX(F) denotes RHomOX (F , π!
XOS). The general pushforward for f : X → Y that is

not assumed to be proper, but X and Y are assumed to be smooth, separated and of finite
type over S, and f is assumed to be proper when restricted to the family of supports on X,
is defined by considering a Nagata compactification

X //

f   

X̄

f̄
��
Y.

Now f̄ is a proper morphism and the pushforward is induced by the proper pushforward
of f̄ along with the identifications of Ωj

X/S with DX(ΩdX−j
X/S ), and similarly for Y , where

dX := dimS(X) is the S-dimension of X. Unlike in the case of the pullback, now there is an
issue of whether this is well-defined. Namely, we may choosed different Nagata compactifica-
tions and we want to make sure that the definition of the pushforward does not depend on
this choice.

The product T is defined via the derived tensor product, and we define the “unit”
e : Z→ H(S, S) via the canonical ring homomorphism

Z→ Γ(S,OS) = H0(S,OS) ⊂ H(S, S).

We then show that (H∗, H
∗, T, e) is a weak cohomology theory with supports. Furthermore

we define a slight variant, called the pure part of H and denoted by HP . This essentially
consists of all Hn

Φ(X,Ωn
X/S) and has the same product and unit. There is a natural inclusion

of weak cohomology theories with supports

(HP∗, HP
∗, T, e) ↪→ (H∗, H

∗, T, e).

The next step is to define a cycle class, and to show that (HP∗, HP
∗, T, e) with this cycle

class satisfies the conditions of Theorem 1. This will give us a morphism of weak cohomology
theories with supports

cl : (CH∗,CH∗,×S , 1)→ (HP∗, HP
∗, T, e) ↪→ (H∗, H

∗, T, e).

Here the differences between this thesis and the work done in [CR11] are most pronounced.
Namely, in [CR11] they can always reduce to a non-empty smooth locus. So to define a cycle
class element cl(W,X) they define it for smooth integral closed subschemes W ↪→ X and
spread out from the smooth locus. But if i : W ↪→ X is a smooth integral closed subscheme,
then W, (X,W ) ∈ obj(V∗) and i is a morphism in V∗. So they can define

cl(W,X) := H∗(i)(1W ),

where 1W is a specific well-defined element. In our case, where we don’t have generic smooth-
ness, we have to define cycle class elements by defining them explicitly for regular integral
closed subschemes i : W ↪→ X and spread out from the regular locus. But notice that we
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“leave the realm of the WCTS”. By this we mean that when W is regular, and not smooth
over S, then W is not in obj(V∗) so we don’t have access to pushforwards and can not define
cl(W,X) in an analogous manner to the smooth case. We let X be a smooth separated S-
scheme of finite type, and let i : Z ↪→ X be a closed immersion of a regular, irreducible closed
subscheme Z to X of codimension c. Let I be the ideal sheaf of i. We have a well defined
map

I/I2 → i∗(Ω1
X/S) =

Ω1
X/S

I
ā 7→ da,

and by taking the wedge product we get a map
c∧
I/I2 φ−→ i∗Ωc

X/S .

The OZ-module
∧c I/I2 is invertible with inverse ωZ/X , so by tensoring with ωZ/X we get

OZ ∼=
c∧
I/I2 ⊗OZ ωZ/X

φ⊗id−−−→ i∗Ωc
X/S ⊗OZ ωZ/X .

Since i is a regular closed immersion (so in particular an l.c.i. morphism) we know that
ωZ/X ∼= i!OX [c] and we furthermore have

i∗Ωc
X/S ⊗OZ i

!OX [c] ∼= i!(Ωc
X/S)[c],

and we therefore have a morphism

OZ → i!(Ωc
X/S)[c].

By adjunction of Ri∗ and i!, we have

i∗OZ → Ωc
X/S [c].

Applying RΓZ to this and taking the zeroth cohomology gives us a map

H0(Z,OZ)→ Hc
Z(X,Ωc

X/S),

and we define cl(Z,X) as the image of 1 ∈ H0(Z,OZ) under this map.

Chapter 5. In Chapter 5 we recall how to define correspondences for weak cohomology
theories with supports. This chapter follows the work done in [CR11] quite closely.

We start Chapter 5 by defining a composition of correspondences, and this requires a
definition of new families of supports P (Φ,Ψ) on a product X ×S Y construced from the
families of supports Φ and Ψ on X and Y respectively. A new grading that is compatible with
a composition of correspondences is defined and we show that this composition is associative
and that the diagonals are identities for it.

For each weak cohomology theory with supports F we attach a graded additive category
CorF . The objects are obj(CorF ) = obj(V∗) = obj(V ∗) and the morphisms are given by the
correspondences, namely a morphism from (X,Φ) to (Y,Ψ) is an element in
F(X ×S Y, P (Φ,Ψ)). Furthermore if we now have a morphism φ : F → G of weak coho-
mology theories with supports then we get a functor of graded additive symmetric monoidal
categories

Cor(φ) : CorF → CorG,

given by
φ : F(X ×S Y, P (Φ,Ψ))→ G(X ×S Y, P (Φ,Ψ)),
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for all (X,Φ), (Y,Ψ) ∈ obj(CorF ) = obj(CorG). This allows us to define a functor

Cor : T→ CatGrAb,⊗S ,

F 7→ CorF, and
φ 7→ Cor(φ),

where CatGrAb,⊗S is the category of graded additive symmetric monoidal categories. We then
define for any WCTS F a functor

ρF : CorF → GrAb,

given on objects and morphisms by

ρF(X,Φ) = F(X,Φ),

ρF(γ) = (a 7→ F∗(p2)(F∗(p1)(a) ∪ γ)),

where γ : (X,Φ)→ (Y,Ψ) is a morphism in CorF, i.e. an element in F(X ×S Y, P (Φ,Ψ)).
The actions of correspondences are then precisely the composition of theses functors ap-

plied to the morphism of weak cohomology theories with supports cl : (CH∗,CH∗,×S , 1) →
(H∗, H

∗, T, e), i.e. ρH ◦ Cor(cl).

Chapter 6. In Chapter 6 we use the actions of correspondences on Hodge cohomology to
prove two theorems. The first theorem is a vanishing theorem that says that when a certain
type of correspondence from X to Y , where X,Y are connected smooth separated S-schemes
of finite type, projects to r codimensional subsets in Y or X, then this correspondence acts
trivially on certain parts of the Hodge cohomology. More precisely we have the following
theorem.

Theorem 2. Let X and Y be connected smooth separated S-schemes of finite type and let

α ∈ HomCorCH
(X,Y )0 = CHdX (X ×S Y, P (ΦX ,ΦY ))

be a correspondence from X to Y , where dX := dimS(X).
(1) If the support of α projects to an r-codimensional subset in Y , then the restriction of

ρH ◦ Cor(cl)(α) to ⊕j<r,iH i(X,Ωj
X/S) vanishes.

(2) If the support of α projects to an r-codimensional subset in X, then the restriction of
ρH ◦ Cor(cl)(α) to ⊕j≥dimS X−r+1,iH

i(X,Ωj
X/S) vanishes.

This theorem is used to prove Theorem 3, but we believe it has independent interest and
should be useful in other situations.

Now we come to the main theorem of this thesis. First we recall a definition.

Definition. Two integral schemes X and Y over a base scheme S are called properly
birational over S if there exists an integral scheme Z over S and proper birational S-morphisms

Z

  ~~
X Y.

Theorem 3. Let S be a Noetherian, excellent, regular, separated, irreducible scheme of
dimension at most 1. Let S′ be a separated S-scheme of finite type, and let X and Y be
irreducible, smooth, separated S-schemes of finite type, and f : X → S

′ and g : Y → S
′ be
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morphisms of S-schemes such that X and Y are properly birational over S′. Let Z be an
integral scheme and let Z → X and Z → Y be proper birational morphisms such that

Z

  ~~
X

f   

Y

g
��

S
′

commutes. We denote the image of Z in X ×S′ Y by Z0. Then in Z0 induces isomorphisms
of OS′ - modules

Rif∗OX
∼=−→ Rig∗OY and

Rif∗Ω
d
X/S

∼=−→ Rig∗Ω
d
Y/S ,

for all i, where d := dimS(X) = dimS(Y ).

An outline of the proof is as follows. We first reduce to the case of S = S
′ and Z0 = Z ⊂

X ×S Y . The subscheme Z defines a correspondence [Z] ∈ HomCorCH
(X,Y )0 and we denote

by [Zt] the transpose, i.e., the correspondence [Zt] ∈ HomCorCH
(Y,X)0 defined by viewing Z

as a subscheme of Y ×S X. We then show that

[Z] ◦ [Zt] = ∆Y/S + E1, and(0.1)

[Zt] ◦ [Z] = ∆X/S + E2,

where E1 and E2 are cycles supported in (Y \ Y ′) ×S (Y \ Y ′) and (X \ X ′) ×S (X \ X ′)
respectively. We then use Theorem 2 to show that E2 and E1 act by 0 on H i(X,OX) and
H i(X,Ωd

X/S) for all i, and on H i(Y,OY ) and H i(Y,Ωd
Y/S) for all i, respectively. Since the

diagonals are the identities this precisely shows that the map induced by [Z] has an inverse,
namely the map induced by [Zt].

Theorem 3 is new in this generality. It holds over S = Spec (k) where k is a field of
characteristic 0 as a consequence of Hironaka’s work on the resolution of singularities. When
S = Spec (k) where k is a perfect field of positive characteristic, then Theorem 3 is proven in
[CR11] by the same methods as in this thesis. In [Kov17], Kovács has proven two variations
of this theorem. More specifically [Kov17, Theorem 8.13.] states that for an arbitrary S
and X,Y excellent normal Cohen-Macaulay schemes that admit dualizing complexes then
the isomorphisms of Theorem 3 hold if Z is an excellent normal Cohen-Macaulay scheme
and Z → X and Z → Y are locally projective pseudo-rational modifications. It also states
that the isomorphisms of Theorem 3 hold without a condition on Z, Z → X or Z → Y if we
similarly assume that S is an excellent normal Cohen-Macaulay scheme that admits a dualizing
complex and the structure morphismsX → S and Y → S are locally projective pseudo-rational
modifications. Recall, see [Kov17, Definition 7.2.], that a morphism φ : Z → W of schemes is
called a pseudo-rational modification if
i) Z and W are locally equidimensional excellent schemes that admit dualizing complexes,
ii) φ is proper, birational, and an isomorphism in codimension 1 on the target, and
iii) The natural morphism φ∗ωZ,x → ωW,x is surjective for each x ∈W .
Furthermore, [Kov17, Theorem 9.14.] states that isomorphisms of Theorem 3 hold for an ar-
bitrary base scheme S if we assume that X and Y are Notherian excellent S-schemes that are
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properly birational over S, have pseudo-rational singularities, and admit a common Macaulay-
fication. Two schemes X and Y admit a common Macaulayfication if there exists a normal
Cohen-Macaulay scheme Z and locally projective birational morphisms Z → X and Z → Y ,
see [Kov17, Conjecture 1.18.].

Appendix. In the Appendix, we collect some facts from intersection theory needed for
our construction of Chow groups as weak cohomology theories with supports. This is in no
way meant to be exhaustive or complete, and proofs are mostly referenced or omitted. This
Appendix contains no new or original material.
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CHAPTER 1

Weak Cohomology Theories With Supports

In this section we follow [CR11, Chap. 1] closely with only minor changes. In this chapter
we assume we have a Noetherian base scheme S and all schemes are assumed to be S-schemes.

Definition 1.1. A family of supports Φ on X is a non-empty set of closed subsets of X
such that

(1) Φ is closed under finite unions.
(2) Any closed subset of an element in Φ is again in Φ.

If A is any set of closed subsets of X, then the smallest family of supports containing A is
given by

ΦA := {
⋃
finite

Z
′
i |Z

′
i ⊆
closed

Zi ∈ A},

i.e. it consists of all finite unions of closed subsets that lie in A. A special case of this is when
A = {Z}. Then we write ΦZ := ΦA This family of supports consists of all closed subsets of Z.

Notation 1.2. Let f : X → Y be a morphism of schemes, and Φ and Ψ be families of
supports on X and Y respectively.

(1) We denote by f−1(Ψ) the smallest family of supports on X that contains all f−1(Z)
for Z ∈ Ψ. That is

f−1(Ψ) := Φ{f−1(Z)|Z∈Ψ}.

(2) We denote by Φ ×S Ψ the smallest family of supports on X ×S Y that contains all
{Z1 ×S Z2|Z1 ∈ Φ and Z2 ∈ Ψ} i.e.

Φ×S Ψ := Φ{Z1×SZ2|Z1∈Φ and Z2∈Ψ}.

We say that f |Φ is proper if f |Z is proper for all Z ∈ Φ. The following lemmas collect
some of the properties of families of supports that we need.

Lemma 1.3. If f : X → Y is a morphism, Φ is a family of supports on X and f |Φ is
proper, then f(Φ) is a family of supports on Y .

Proof. It is clear that f(Φ) is nonempty, and since f |Φ is proper, then in particular f |Z
is closed for all Z ∈ Φ. So f(Φ) is a nonempty set of closed subsets of Y .

Let W1,W2 ∈ f(Φ). Then there exist by definition Z1, Z2 ∈ Φ such that W1 = f(Z1) and
W2 = f(Z2). But W1 ∪W2 = f(Z1) ∪ f(Z2) = f(Z1 ∪ Z2) and since Z1 ∪ Z2 ∈ Φ we have
W1 ∪W2 ∈ f(Φ) as desired.

Let W ∈ f(Φ) and let W ′ ⊆ W be a closed subset. Since W ∈ f(Φ) there exists by
definition Z ∈ Φ such that W = f(Z). Now define Z ′ = Z ∩ f−1(W

′
). This is a closed subset

of Z and f(Z
′
) = W

′
, proving that W ′ ∈ f(Φ). �

Lemma 1.4. Let X be a scheme and Φ1 and Φ2 be families of supports on X. Then Φ1∩Φ2

is a family of supports on X.

11



12 1. WEAK COHOMOLOGY THEORIES WITH SUPPORTS

Proof. Clearly Φ1 ∩ Φ2 is a nonempty set of closed subsets of X (nonempty because it
will at least contain the empty set).

Assume W 1,W 2 ∈ Φ1 ∩Φ2. We claim that W 1 ∪W 2 ∈ Φ1 ∩Φ2. There exist Z1
1 , Z

2
1 ∈ Φ1

and Z1
2 , Z

2
2 ∈ Φ2 such that W 1 = Z1

1 ∩ Z1
2 and W 2 = Z2

1 ∩ Z2
2 and then W 1 ∪ W 2 =

(Z1
1 ∩ Z1

2 ) ∪ (Z2
1 ∩ Z2

2 ) and can write

(Z1
1 ∩ Z1

2 ) ∪ (Z2
1 ∩ Z2

2 ) = ((Z1
1 ∩ Z1

2 ) ∪ Z2
1 ) ∩ ((Z1

1 ∩ Z1
2 ) ∪ Z2

2 ).

Now Z1
1 ∩ Z1

2 ∈ Φ1 because it is a closed subset of Z1
1 ∈ Φ1 and also Z2

1 ∈ Φ by construction.
Therefore (Z1

1 ∩ Z1
2 ) ∪ Z2

1 ∈ Φ1. Similarly, Z1
1 ∩ Z1

2 ∈ Φ2 because it is a closed subset of
Z1

2 ∈ Φ2, and Z2
2 ∈ Φ2 by construction. Therefore (Z1

1 ∩Z1
2 )∪Z2

2 ∈ Φ2. We have thus written
W 1 ∪W 2 as an intersection of an element of Φ1 with an element of Φ2, proving our claim.

The other condition is clear. Let W ∈ Φ1 ∩Φ2 and let W ′ ⊆W be a closed subset. Then
there exist Z1 ∈ Φ1 and Z2 ∈ Φ2 such that W = Z1 ∩ Z2. But then W

′ ⊆ Z1 ∩ Z2 so W ′ is a
closed subset of both Z1 and Z2. Thus W ′ ∈ Φ1 and W ′ ∈ Φ2 so by writing W ′

= W
′ ∩W ′

we see that W ′ ∈ Φ1 ∩ Φ2. �

Lemma 1.5. Let X and Y be schemes, and let Φ and Ψ be families of supports on X and
Y respectively. Then Φ ∪Ψ is a family of supports on X q Y .

Proof. Clearly Φ ∪Ψ is a nonempty set of closed subsets of X q Y . Let Z,W ∈ Φ ∪Ψ,
and we claim that Z∪W ∈ Φ∪Ψ. Since Z,W ∈ Φ∪Ψ there exist Z1,W1 ∈ Φ and Z2,W2 ∈ Ψ
such that Z = Z1 q Z2 and W = W1 qW2. But then Z ∪W = (Z1 ∪W1) q (Z2 ∪W2) and
since Z1 ∪W1 ∈ Φ and Z2 ∪W2 ∈ Ψ this proves the claim.

Let W ∈ Φ q Ψ and let W ′ ⊆ W be a closed subset. We claim that W ′ ∈ Φ q Ψ. By
definition we can write W = Z1qZ2 where Z1 ∈ Φ and Z2 ∈ Ψ. By definition of the topology
on X qY we have closed subsets Z ′1 ⊆ Z1 and Z ′2 ⊆ Z2 such that W ′

= Z
′
1qZ

′
2 which implies

W
′ ∈ Φ ∪Ψ since Z ′1 ∈ Φ and Z ′2 ∈ Ψ. �

Let us define the categories on which our weak cohomology theories with support act. We
introduce the following notation:

Notation 1.6. Let S be some base scheme. A scheme X is called an NS-scheme if it is a
smooth, separated S-scheme of finite type.

Definition 1.7. (1) Let V∗ be the category whose objects are all pairs (X,Φ) where
X is an NS-scheme, and Φ is a family of supports on X, and whose morphisms are
given by

HomV∗((X,Φ), (Y,Ψ)) =

{f ∈HomS(X,Y )
∣∣ f |Φ is proper and f(Φ) ⊆ Ψ}.

(2) Let V ∗ be the category whose objects are the same as the objects of V∗ and whose
morphisms are

HomV ∗((X,Φ), (Y,Ψ)) = {f ∈ HomS(X,Y )
∣∣f−1(Ψ) ⊆ Φ}.

Let X be an NS-scheme and let W ⊆ X be a closed subset. We write (X,W ) := (X,ΦW ),
and simply X := (X,X).

We define a coproduct in both V∗ and V ∗ by

(X,Φ)
∐

(Y,Ψ) := (X q Y,Φ ∪Ψ)

Lemma 1.8. The above construction defines a coproduct in V∗ and in V ∗.
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Proof. Let π1 : X → S and π2 : Y → S be the structure maps. Since the disjoint union
is the coproduct in Sch we know that there exists a unique morphism f : X q Y → S making
the following diagram commute

X

π1
##

i1 // X q Y
f

��

Y
i2oo

π2
{{

S

where i1 : X → X q Y and i2 : Y → X q Y are the natural inclusions.
The first thing we need to show is that this f : X q Y → S is smooth, separated and of

finite type. Let z ∈ X q Y . Without loss of generality, we can say that z is in X, i.e. that
z = i1(x) for some x ∈ X. Since π1 is smooth, we know that there exists some affine open
neighborhood U = Spec (A) of x and an affine open neighborhood V = Spec (R) of s = π1(x)
such that π1(U) ⊆ V and such that the induced ring map R → A is smooth. Now, i1 is an
open immersion so W = i1(U) is an affine open neighborhood of z. Furthermore we have
f(W ) = f(i1(U)) = π1(U) ⊆ V and W = Spec (A), showing that f is smooth at z. We know
that to show X q Y → S is separated, it is enough to show that the image of the diagonal
X qY → (X qY )×S (X qY ) is a closed subset (see [Har77, Cor. II.4.2.])). But we can write
(X q Y )×S (X q Y ) = (X ×S X)q (Y ×S Y ), and the diagonal becomes the map

x 7→ (x, x) ∈ (X ×S X)q (Y ×S Y ),

if x ∈ X q Y comes from X and symmetrically

y 7→ (y, y) ∈ (X ×S X)q (Y ×S Y ),

if y ∈ X q Y comes from Y . Thus the image of the diagonal is the union δX q δY where
δX is the image of the diagonal ∆X : X → X ×S X and δY is the image of the diagonal
∆Y : Y → Y ×S Y both of which are closed by assumption. Finally f : X q Y → S is
locally of finite type, since we have just shown that it is smooth and hence locally of finite
presentation and S is Noetherian so the notions ‘locally of finite presentation’ and ‘locally of
finite type’ coincide. Now let U ⊆ S be an affine open and consider the (topological) pre-image
V = f−1(U). We can write V = VX q VY where VX = π−1

1 (U) and VY = π−1
1 (U). But both

VX and VY are quasi-compact since π1 and π2 are of finite type. Therefore V is quasi-compact
and so f is quasi-compact and hence of finite type.

Consider NS-schemes X and Y , and families of supports Φ and Ψ on X and Y respectively.
We want to see that the standard maps from above i1 : X → X q Y and i2 : Y → X q Y give
morphisms

i1 : (X,Φ)→ (X q Y,Φ ∪Ψ)

and

i2 : (Y,Ψ)→ (X q Y,Φ ∪Ψ)

in both V∗ and V ∗. We look at i1. It is a closed immersion and hence proper, so i1|Φ is proper
and clearly i1(Φ) ⊂ Φ∪Ψ and i1 is a morphism in V∗. It is clear that i−1

1 (Φ∪Ψ) = Φ so i1 is
a morphism in V ∗. Now we consider the two cases

(1) Let (Z,Θ) ∈ V∗ and consider morphisms f ∈ HomV∗((X,Φ), (Z,Θ)) and
g ∈ HomV∗((Y,Ψ), (Z,Θ)). We want to show that there exists a unique morphism



14 1. WEAK COHOMOLOGY THEORIES WITH SUPPORTS

h ∈ HomV∗((X q Y,Φ ∪Ψ), (Z,Θ)), such that the following diagram commutes

(X,Φ)

f ''

i1 // (X q Y,Φ ∪Ψ)

∃!h
��

(Y,Ψ)
i2oo

gww
(Z,Θ).

One the level of schemes this morphism exists, since X q Y is the coproduct in Sch,
i.e. there exists a unique morphism h : X q Y → Z making the following diagram
commute in Sch

X
i1 //

f ##

X q Y
h
��

Y
i2oo

g
{{

Z

We need to check that h is a morphism in V∗. It is clear that h(Φ∪Ψ) = f(Φ)∪g(Ψ) ⊆
Θ, Let V ∈ Φ ∪ Ψ. Then we can write V = VX q VY , where VX ∈ Φ and VY ∈ Ψ.
Now h|VX = f |VX and h|VY = g|VY both of which are proper, so h|V is proper.

(2) It is clear that h−1(Θ) = f−1(Θ)q g−1(Θ) ⊆ Φ ∪Ψ, so h is a morphism in V ∗.
�

We do not have a product in general. We do however define for NS-schemes and families
of supports Φ and Ψ on X and Y respectively

(X,Φ)⊗S (Y,Ψ) = (X ×S Y,Φ×S Ψ).

We have an obvious ismorphism

(X,Φ)⊗S (Y,Ψ)
∼=−→ (Y,Ψ)⊗S (X,Φ),

and a unit
1 := S.

Lemma 1.9. With the unit, ⊗S-product and symmetry isomorphism for ⊗S as defined
above, both V∗ and V ∗ are endowed with the structure of a symmetric monoidal category.

Proof. With the symmetry isomorphism given above, the left and right unitors coming
from the isomorphism S ×S X → X and X ×S S → X respectively for all S-schemes X,
and the associators coming from the isomorphisms X ×S (Y ×S Z)

∼=−→ (X ×S Y )×S Z for all
S-schemes X,Y and Z it is easily checked that both (V∗,⊗S , S) and (V ∗,⊗S , S) are symmetric
monoidal categories. �

We now define weak cohomology theories with support. This definition is essentially
unchanced from the definition in [CR11, §1.1.7.–§1.1.8.]. We look at the following data
(F∗,F∗, T, e).

(1) We have functors to the symmetric monoidal category of graded Abelian groups

F∗ : V∗ → GrAb, and
F∗ : (V ∗)op → GrAb,

such that for any X ∈ ob(V∗) = ob(V ∗) we have F∗(X) = F∗(X) =: F(X).
(2) For every two objects X,Y ∈ ob(V∗) = ob(V ∗) we have a morphism of graded Abelian

groups for both gradings

TX,Y : F(X)⊗ F(Y )→ F(X ⊗ Y ).
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(3) We have a morphism of Abelian groups

e : Z→ F (S).

For all NS-schemes π : X → S we denote by 1X the image of 1 ∈ Z via the composi-
tion

Z e−→ F∗(S)
F∗(π)−−−→ F∗(X).

Definition 1.10. Such quadruple of data (F∗,F∗, T, e) is called a weak cohomology theory
with support if it satisfies the following conditions. 1

(1) The covariant “homology" functor F∗ preserves coproduct and the contravariant “co-
homology" functor F∗ maps coproducts to products. Moreover if we have objects
(X,Φ1) and (X,Φ2) with the same underlying scheme and such that the supports
don’t intersect, Φ1 ∩ Φ2 = ∅, then the map

F∗(1) + F∗(2) : F∗(X,Φ1)⊕ F∗(X,Φ2)→ F∗(X,Φ1 ∪ Φ2)

is required to be an isomorphism. Here the maps 1 and 2 are the maps in V ∗

1 : (X,Φ1 ∪ Φ2)→ (X,Φ1),

and
2 : (X,Φ1 ∪ Φ2)→ (X,Φ2),

induced by the identity map on the underlying scheme X.
(2) The subdata (F∗, T, e) and (F∗, T, e) define (right-lax) symmetric monoidal functors.
(3) Let (X,Φ) ∈ ob(V∗) = ob(V ∗) be an object such that the underlying scheme X

is connected. Then the gradings on F∗(X,Φ) and F∗(X,Φ) are connected by the
equality

Fi(X,Φ) = F2 dimS(X)−i(X,Φ).

(4) For all Cartesian diagrams

(X
′
,Φ
′
)

gX

��

f
′
// (Y

′
,Ψ
′
)

gY

��
(X,Φ)

f // (Y,Ψ)

of objects in ob(V∗) = ob(V ∗) and maps gX , gY ∈ V ∗ and f, f
′ ∈ V∗ such that either

• gY is smooth, or
• gY is a closed immersion and f is transversal to gY

the following equality holds

F∗(gY ) ◦ F∗(f) = F∗(f
′
) ◦ F∗(gX).

We have morphisms between WCTS’s and this allows us to talk about the category of
WCTS’s.

Definition 1.11. Let F = (F∗,F∗, T, e) and G = (G∗,G∗, U, ε) be weak cohomology
theories with supports. A morphism

φ : F→ G

1For ease of notation we often abbreviate ‘weak cohomology theory with supports’ to ‘WCTS’.
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is a family {φX} of morphisms φX : F(X) → G(X) of graded Abelian groups (for both
gradings) such that φ induces a natural transformation of (right-lax) symmetric monoidal
functors

φ : (F∗, T, e)→ (G∗, U, ε)
and

φ : (F∗, T, e)→ (G∗, U, ε).
The category of weak cohomology theories with supports and these morphisms is denoted by
T.

We now define a cup product in F = (F∗,F∗, T, e).

Definition 1.12. Let (X,Φ1), (X,Φ2) ∈ ob(V∗) be two objects with the same underlying
NS-scheme X. We define

∪ : F(X,Φ1)⊗Z F(X,Φ2)
T−→ F(X ×S X,Φ1 ×S Φ2)

F∗(∆X)−−−−−→ F(X,Φ1 ∩ Φ2),

where ∆X : (X,Φ1 ∩ Φ2)→ (X ×S X,Φ1 ×S Φ2) is induced by the diagonal immersion.

This cup product is clearly distributative over addition, and we furthermore have.

Lemma 1.13. The cup product is associative and graded-commutative.2

Proof. It is clear that the cup product is graded-commutative since (F∗, T, e) is a sym-
metric monoidal functor.

To show that the cup product is associative, we must show that the outer square of the
following diagram commutes, where (X,Φ1), (X,Φ2), (X,Φ3) ∈ obj(V ∗) all have the same
underlying NS-scheme X.

F∗(X,Φ1)⊗Z F∗(X,Φ2)⊗ F∗(X,Φ3) F∗(X,Φ1)⊗Z F∗(X ×S X,Φ2 ×S Φ3) F∗(X,Φ1)⊗S F∗(X,Φ2 ∩ Φ3)

F∗(X ×S X,Φ1 ×S Φ2)⊗Z F∗(X,Φ3) F∗(X ×S X ×S X,Φ1 ×S Φ2 ×S Φ3) F∗(X ×S X,Φ1 ×S (Φ2 ∩ Φ3))

F∗(X,Φ1 ∩ Φ2) F∗(X ×S X, (Φ1 ∩ Φ2)×S Φ3) F∗(X,Φ1 ∩ Φ2 ∩ Φ3).

T⊗id

id⊗T

1

id⊗F∗(∆X)

T 2 T

F∗(∆X)⊗id

T

3

F∗(id×S∆X)

F∗(∆X×Sid) 4 F∗(∆X)

T F∗(∆X)

The commutativity of square 1 comes from the associativity of T , since (F∗, T, e) is a
(right-lax) symmetric monoidal functor. The commutativity of squares 2 and 3 follows
from the functoriality of T . Finally, the commutativity of 4 follows from the easily checked
fact that as morphisms of S-schemes X → X ×S X ×S X we have

(id×S ∆X) ◦∆X = (∆X ×S id) ◦∆X .

�

The cup product respects the pullback functor F∗. Namely we have the following propo-
sition.

Proposition 1.14. Let (X,Φ1), (X,Φ2), (Y,Ψ1), (Y,Ψ2) ∈ obj(V ∗) = ob(V∗) and let
f : X → Y be a morphism of NS-schemes such that f−1(Ψi) ⊆ Φi for i = 1, 2. Then f induces
morphisms (X,Φi)→ (Y,Ψi) in V ∗ for i = 1, 2 and a morphism (X,Φ1 ∩Φ2)→ (Y,Ψ1 ∩Ψ2)
in V ∗. Then for any WCTS F and any a ∈ F(Y,Ψ1) and b ∈ F(Y,Ψ2) we have

F∗(f)(a ∪ b) = F∗(f)(a) ∪ F∗(f)(b).

2Recall that a graded commutative ring is a graded ring A = ⊕i∈IAi such that if a ∈ Ai and b ∈ Aj then
ab = (−1)ijba.
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Proof. By definition we have F∗(f)(a ∪ b) = F∗(f) ◦ F∗(∆Y/S)(T (a, b)), and by the
universal property of fibered products we have ∆Y/S ◦ f = f ×S f ◦ ∆X/S , where ∆Y/S :
(Y,Ψ1 ∩Ψ2)→ (Y ×S Y,Ψ1×S Ψ2), f : (X,Φ1 ∩Φ2)→ (Y,Ψ1 ∩Ψ2), f ×S f : (X ×S X,Φ1×S
Φ2)→ (Y ×S Y,Ψ1×S Ψ2) and ∆X/S : (X,Φ1 ∩Φ2)→ (X ×S X,Φ1×S Φ2) are all morphisms
in V ∗. Therefore

F∗(f)(a ∪ b) = F∗(f) ◦ F∗(∆Y/S)(T (a, b))

= F∗(∆X/S) ◦ F∗(f ×S f)(T (a, b))

= F∗(∆X/S)(T (F∗(f)(a),F∗(f)(b)))

= F∗(f)(a) ∪ F∗(f)(b),

where the penultimate equality is because (F∗, T, e) is a (right-lax) symmetric monoidal functor
and the morphism f in F∗(f)(a) is f : (X,Φ1) → (Y,Ψ1) and the morphism f in F∗(f)(b) is
f : (X,Φ2)→ (Y,Ψ2). �

We have the following two projection formulas.

Proposition 1.15. Let F = (F∗,F∗, T, e) ∈ T and let f : X → Y be a morphism between
NS-schemes, inducing morphisms

(1) f1 : (X,Φ1)→ (Y,Φ2) in V∗, and
(2) f2 : (X, f−1(Ψ))→ (Y,Ψ) in V ∗.

Then f also induces a morphism

f3 : (X,Φ1 ∩ f−1(Ψ))→ (Y,Φ2 ∩Ψ)

in V∗, and for all a ∈ F(X,Φ1) and b ∈ F(Y,Ψ) the following formulas hold in F(Y,Φ2 ∩Ψ)

(1) F∗(f3)(a ∪ F∗(f2)(b)) = F∗(f1)(a) ∪ b,
(2) F∗(f3)(F∗(f2)(b) ∪ a) = b ∪ F∗(f1)(a).

Proof. This is Chatzistamatiou and Rülling, [CR11, Proposition 1.1.16.]. �

Lemma 1.16. (1) For any NS-scheme with a family of supports (X,Φ) and
a ∈ F(X,Φ) the following equality holds.

1X ∪ a = a = a ∪ 1X .

In particular F(X) is a (graded) ring.
(2) For NS-schemes Xand Y we have

T (1X ⊗ 1Y ) = 1X×SY .

Proof. (1) Let X be an NS-scheme and let Φ be a family of supports on X. For
a ∈ F (X,Φ) we want to show that a ∪ 1X = a and the proof of 1X ∪ a is essentially
identical. By definition a ∪ 1X = F∗(∆X)(T (a ⊗ 1X)) and we have the following
commutative square from the naturality of T

F∗(X,Φ)⊗Z F∗(X)
T // F∗(X ×S X,Φ×S X)

F∗(X,Φ)⊗Z F∗(S)

id⊗F∗(πX)

OO

T // F∗(X,Φ),

F∗(idX×SπX)

OO

where πX : X → S is the structure map of X as an S-scheme. If we take a⊗ e(1) ∈
F∗(X,Φ)⊗ZF∗(S) then the commutativity gives us F∗(id⊗πX)(a) = T (a⊗1X), since
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T (a ⊗ e(1)) = a by definition. Now we notice that idX ×S πX = p1 as morphisms
X ×S X → X, where p1 is the projection onto the first factor. Now we have

a ∪ 1X = F∗(∆X)(T (a⊗ 1X))

= F∗(∆X)(F∗(idX ×S πX)(a))

= F∗(∆X)(F∗(p1)(a))

= F∗(p1 ◦∆X)(a)

= a,

where the penultimite equality comes from the universal property for the diagonal
morphism.

(2) Let X,Y be smooth, separated S-schemes of finite type. The naturality of T gives
us a commutative square

F∗(X)⊗Z F∗(Y )
T // F∗(X ×S Y )

F∗(S)⊗Z F∗(S)

F∗(πX)⊗F∗(πY )

OO

T // F∗(S),

F∗(πX×SY )

OO

and considering e(1)⊗ e(1) in the left-hand corner, gives us

1X×SY = F∗(πX×SY )(e(1))

= F∗(πX×SY )(T (e(1)⊗ e(1)))

= T (F∗(πX)(e(1))⊗ F∗(πY )(e(1)))

= T (1X ⊗ 1Y ).

�

Definition 1.17 (Semi-Purity). We say that a weak cohomology theory with supports
F = (F∗,F∗, T, e) satisfies the semi-purity condition if the following two conditions hold.

(1) For all NS-schemes X and all irreducible closed subschemes W ⊂ X the groups
Fi(X,W ) vanish if i > 2 dimS(W ).

(2) For all NS-schemes X, closed subsets W ⊂ X and open subsets U ⊂ X such that U
contains the generic point of every irreducible component of W , the map

F∗(j) : F2 dimSW (X,W )→ F2 dimSW (U,U ∩W )

is injective, where j : (U,U∩W )→ (X,W ) is induced by the open immersion U ⊂ X.



CHAPTER 2

Chow Groups as a Weak Cohomology Theory With Supports

In this chapter we give the first example of a weak cohomology theory with supports.
This example is of the Chow groups and is fundamental to even state the main existence
theorem, Theorem 3.1. We make here, and throughout the thesis, the following assumptions.
We assume that our base scheme S is

Notation 2.1.
• Noetherian
• excellent,
• regular,
• separated,
• irreducible,
• of dimension 0 or 1.

Furthermore we assume all schemes considered to be separated and of finite type over S.

We need to define two functors:

CH∗ :V∗ → GrAb, and
CH∗ :(V ∗)op → GrAb

It is clear that we define the objects CH(X,Φ) in the same way as in Definition A.5, i.e. we
define ZΦ(X) as the free Abelian group on the closed integral subschemes that lie in Φ and
RatΦ(X) is the free Abelian group generated by cycles of the form divW (f) with f ∈ R(W )×

and W ∈ Φ, and we set 1

CH(X/S,Φ) := ZΦ(X)/RatΦ(X).

On each object CH(X/S,Φ) we have a grading by S-dimension

CH(X/S,Φ) :=
⊕
d≥0

CHd(X/S,Φ)[2d],

where CHd(X/S,Φ) is the subgroup of CHd(X/S), defined in Definition A.5, consisting of
those d-cycles that lie in CH(X/S,Φ). The bracket [2d] indicates that the group CHd(X/S,Φ)
lies in degree 2d. Furthermore we have a grading by codimension. Namely if X is connected
we set

CH∗(X/S,Φ) :=
⊕
c≥0

CHc(X/S,Φ)[2c],

where CHc(X/S,Φ) is the subgroup of CH(X/S,Φ) consisting of cycles
∑
ni[Vi] where each

Vi has codimension c in X. If X is not connected, say X = qXi is a decomposition into

1We follow the convention from Appendix A and write CH(X/S) to illustrate that we are considering
everything over S.

19
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connected components, then we set

CH∗(X/S,Φ) :=
⊕
i

CH∗(Xi/S,Φ ∩ ΦXi).

The following lemma follows immediately from the definitions of the gradings and Proposition
A.2ii).

Lemma 2.2. For a connected NS-scheme X and a family of supports Φ on X we have

CHi(X/S,Φ) = CHdimS(X)−i(X/S,Φ).

�
We have functions on objects CH∗ resp. CH∗ sending (X,Φ) in V∗ resp. (V ∗)op to

CH∗(X/S,Φ) resp. CH∗(X/S,Φ). We now want to define CH∗ and CH∗ on morphisms and
extend CH∗ and CH∗ to functors.

1. Pushforward

Let f : (X,Φ)→ (Y,Ψ) be a morphism in V∗ and let V ∈ Φ be a closed subscheme of X.
By construction f |Φ is proper so we use Definition A.7 to get a pushforward

f∗ : ZΦ(X) ⊂ Z∗(X)→ Z∗(Y ),

f∗([V ]) = deg(V/f(V )) · [f(V )].

Furthermore since f is a morphism in V∗ we have f(V ) ∈ Ψ so this gives a pushforward on
cycles f∗ : ZΦ(X)→ ZΨ(Y ).

Let α = div(g) for g ∈ R(W )× with W ∈ Φ. Then by Theorem A.9, applied to f :
W → f(W ) we get that f∗(α) ∈ Rat(f(W )), and therefore f∗(α) ⊂ RatΨ(Y ), and we have a
pushforward

CH∗(f) : CH(X/S,Φ)→ CH(Y/S,Ψ),

induced by f∗. The functoriality of the proper pushforward, see Proposition A.10, shows that
this gives us a functor 2

CH∗ : V∗ → GrAb.

The following lemma allows us to simplify many arguments by reducing to the case where
the cycles are supported on a single closed subset.

Lemma 2.3. Let X be an NS-scheme and let Φ be a family of supports on X. The natural
monomorphisms ψW : CH(X/S,W )→ CH(X/S,Φ) for any W ∈ Φ induced by the inclusions
Z(W ) ⊂ ZΦ(X), induce an isomorphism

lim−→
W∈Φ

CH(X/S,W )
∼=−→ CH(X/S,Φ)

Proof. We first notice that Φ is a directed set; it is partially ordered by inclusion, and if
W1,W2 ∈ Φ thenW1∪W2 ∈ Φ is a common upper bound forW1 andW2. If now i : W1 ↪→W2

is the closed immersion between two closed subschemes of X contained in Φ, then we have a
pushforward

i∗ : CH(X/S,W1) = CH(W1/S)→ CH(W2/S) = CH(X/S,W2).

2We see in Appendix A that the proper pushforward actually respects the grading, see Definition A.7 and
Theorem A.9, and so we actually have a functor to GrAb and not just to the category of Abelian groups.
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We therefore obtain a direct system

{CH(X/S,W )}W∈Φ,

and it maps naturally to CH(X/S,Φ) via the maps

CH(X/S,W )→ CH(X/S,Φ),

induced by the natural inclusions Z(W ) ↪→ ZΦ(X). By the universal property of direct limits
we obtain a natural morphism

u : lim−→
W∈Φ

CH(X/S,W )→ CH(X/S,Φ).

Since by definition lim−→W∈Φ
Z(W ) = ZΦ(W ), it is clear that the map u is surjective. To see

that u is injective we assume that there is some α ∈ lim−→W∈Φ
CH(X/S,W ) s.t. u(α) = 0. Then

there exists some W ∈ Φ s.t. α can be represented by a cycle [α] supported on W . But then
u(α) = 0 precisely means that the image of [α] under the inclusion Z(W ) ↪→ ZΦ(X), lies in
RatΦ(X), i.e., is a finite sum

∑k
i=1 div(gi), where each gi ∈ R(Wi)

× and Wi ∈ Φ. Since Φ is
directed we may consider V = W ∪W1∪ . . .∪Wk and we see that the image of [α] is in Rat(V ).
Therefore, by the definition of the direct limit, we see that α = 0, and u is injective. �

2. Pullback

We first note the following important but easy lemma.

Lemma 2.4. Let X be a regular S-scheme and Y be an NS-scheme. Then any morphism
f : X → Y over S is an l.c.i. morphism.

Proof. We can factor f as

X

f

;;
Γf // X ×S Y

pr2 // Y,

where Γf : X → X ×S Y the graph morphism and pr2 is the projection. The graph morphism
is a closed immersion (it is always a locally closed immersion and since Y → S is separated, it
is a closed immersion), and any closed immersion between regular schemes is a regular closed
immersion. The projection morphism X ×S Y → Y is smooth, being the base change of the
smooth morphism Y → S so f is an l.c.i. morphism. �

Now we can use the refined Gysin homomorphisms for l.c.i. morphisms, see Definition
A.32, along with the above Lemmas 2.3 and 2.4 to construct a pullback.

Definition 2.5. Let f : (X,Φ) → (Y,Ψ) be a morphism in V ∗. The refined Gysin
homomorphism, Definition A.32, defines a morphism for any V ∈ Ψ,

CH(Y/S, V ) = CH(V/S)

f !

−→ CH(f−1(V )/S)

= CH(X, f−1(V )/S)

φf−1(V )−−−−−→ lim−→
W∈Φ

CH(X/S,W )

= CH(X/S,Φ),
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where φf−1(V ) is the natural morphism CH(X/S, f−1(V ))→ lim−→W∈Φ
CH(X/S,W ). Note that

if i : V1 ↪→ V2 is a closed immersion between two closed subschemes V1, V2 of Y s.t. V1, V2 ∈ Ψ
and j : f−1(V1) ↪→ f−1(V2) is the induced closed immersion of closed subschemes of X, then
the square

CH(V1/S)
f !

//

i∗
��

CH(f−1(V1)/S)

j∗
��

CH(V2/S)
f !

// CH(f−1(V2)/S),

commutes by Proposition A.35. Therefore, the universal property of direct limits tells us that
there is a unique morphism

CH∗(f) : CH(Y/S,Ψ)→ CH(X/S,Φ)

compatible with the refined Gysin homomorphisms.

We furthermore see that this homomorphism CH∗(f) respects the grading by codimensions.

Lemma 2.6. Let f : (X,Φ) → (Y,Ψ) be a morphism in V ∗ and let α ∈ CHc(Y/S,Ψ).
Then CH∗(f)(α) ∈ CHc(X/S,Φ).

Proof. The morphism f : X → Y is a morphism between two NS-schemes, so it is
an l.c.i. morphism of codimension say d, by Lemma 2.4. It suffices to prove the statement
for α = [V ] where V is an integral closed subscheme of codimension c in Y , i.e. we want
to show that CH∗(f)([V ]) ∈ CHc(X/S,Φ) for any [V ] ∈ CHc(Y/S,Ψ). Furthermore we can
reduce to the case where Y is connected. Since Y → S is smooth and S is regular, Y itself
is regular. Regular connected schemes are irreducible and so we may assume Y is irreducible
and in particular has pure S-dimension, say dimS(Y ) = e. Furthermore we can reduce to the
case where X is connected and we write dimS(X) = e

′ . We have the following commutative
diagram

CH0(V/S) CHc(Y/S, V )

��
CHdimS V (V/S)

f !

��

CHc(Y/S,Ψ)

CH∗(f)
��

CHdimS V−d(f
−1(V )/S)

��

CHdimS X−dimS V+d(X/S,Φ)

CHdimS V−d(X/S, f
−1(V )) CHdimS X−dimS V+d(X/S, f−1(V )),

OO

so we need to show that c = dimS X − dimS V + d. We know (see Proposition A.2ii)) that
c = dimS Y − dimS V and by Corollary A.37 we know that d = dimS Y − dimS X and the
result follows. �

It is clear that CH∗(id) = id so the following proposition finishes the proof that

CH∗(f) : (V ∗)op → GrAb

is a functor.
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Proposition 2.7. Let (X,Φ), (Y,Ψ), (Z,Θ) ∈ obj(V ∗) and let f : (X,Φ) → (Y,Ψ) and
g : (Y,Ψ)→ (Z,Θ) be morphisms in V ∗. Then

CH∗(g ◦ f) = CH∗(f) ◦ CH∗(g)

Proof. This follows from the fact that the construction of refined Gysin homomorphisms
respects compositions of l.c.i. morphisms, see part c) of Proposition A.35. Namely the dia-
grams

CH(V/S) //

''

f !◦g!=(g◦f)!

��

CH(W/S)

ww

f !◦g!=(g◦f)!

��

CH(Z/S,Θ)

u

��
CH(X/S,Φ),

for all V,W ∈ Θ, determine the morphism u uniquely. Both u = CH∗(g ◦ f) and u =
CH∗(f) ◦ CH∗(g) satisfy this universal property and so they are equal. �

3. CH = (CH∗,CH∗,×S , 1) is a weak cohomology theory with supports

We start by defining the unit 1, and the product ×S for Chow groups.

Definition 2.8. The unit is the group homomorphism

1 : Z→ CH(S/S),

1 7→ [S].

We define the product like in Definition A.38. Let (X,Φ) and (Y,Ψ) be NS-schemes with
families of supports and let V ∈ Φ and W ∈ Ψ be integral. Then the product [V ] ×S [W ] ∈
CH(X ×S Y/S,Φ×S Ψ) is given by

[V ]×S [W ] =

{
[V ×S W ], if V or W is flat over S,
0, otherwise.

We notice that this definition doesn’t mention the gradings on the Chow groups, however
to see that Chow groups give an example of a WCTS we have to show that it respects both
gradings.

Proposition 2.9. Let W → S and V → S be integral and of finite type and assume S is
irreducible and Noetherian of Krull dimension 0 or 1. Then W ×S V has pure S-dimension.

Proof. If dim(S) = 0 then S = Spec (K) for some field and the product of two irreducible
algebraic schemes is again irreducible.

If dim(S) = 1 we have three possibilities.
i) W maps to the closed point x ∈ S, V maps to the closed point y ∈ S and x 6= y,
ii) both W and V map to the same closed point s ∈ S, or
iii) One of the W,V is dominant over S.
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Possibility i) is trivial since in this case we have W ×S V = ∅. If possibility ii) holds then by
the 0-dimensional case above we have that W ×S V → Spec (ks) is equidimensional (where ks
is the residue field of the image s ∈ S) and by Proposition A.2v) we have for any irreducible
component Z of W ×S V that

dimS(Z) = dimS(s) + dims(Z) = dims(Z)− 1

so W ×S V has pure S-dimension. If possibility iii) holds, then without loss of generality we
may assume V → S is dominant and hence flat. If W ×S V = ∅3 then it is again trivially of
pure S-dimension. So we assume W ×S V 6= ∅ and let η be the generic point of S. Then
the generic fiber Vη = V ×S Spec (kη) is irreducible and the projection V ×S Spec (kη) →
Spec (kη) is equidimensional. By [SV00, Prop. 2.1.8] we have that V → S is universally
equidimensional of dimension r := dim(Vη). This implies that the projection W ×S V →W is
equidimensional of dimension r. Now consider any irreducible component Z of W ×S V . We
know that r = dim(ZµW ), where µW is the generic point of W 4, and by A.2vii) we have that
dim(ZµW ) = dimW (Z) so by A.2v) we get

dimS(Z) = dimS(W ) + dimW (Z)

= dimS(W ) + r.

�

Corollary 2.10. The exterior product ×S respects both gradings on the Chow groups.

Proof. We first consider the covariant grading. Let (X,Φ), (Y,Ψ) be NS-schemes with
supports and let V ∈ Φ and W ∈ Ψ be integral, and say dimS V = i and dimSW = j. Then
[V ] ∈ CH2i(X/S,Φ) and [W ] ∈ CH2j(Y/S,Ψ) and we want to show that

[V ]×S [W ] ∈ CH2i+2j(X ×S Y/S,Φ×S Ψ).

If neither V norW is flat over S, then [V ]×S [W ] = 0 which lies in CH2i+2j(X×SY/S,Φ×SΨ).
If, without loss of generality, V → S is flat, then [V ]×S [W ] = [V ×SW ]. Either V ×SW = ∅
and then

[V ]×S [W ] = 0 ∈ CH2i+2j(X ×S Y/S,Φ×S Ψ),

or V ×S W 6= ∅ and in this case we see that by Proposition 2.9 we have that V ×S W has
pure S-dimension equal to dimSW + r where Vη is the generic fiber and r = dimVη. By
Proposition A.2vii) we have r = dimVη = dimS V − dimS S = dimS V , and so [V ×S W ] ∈
CH2i+2j(X ×S Y/S,Φ×S Ψ).

For the contravariant grading, we assume that as before we have NS-schemes with families
of supports (X,Φ) and (Y,Ψ). We may assume that bothX and Y are connected. Furthermore
we assume we have integral V ∈ Φ and W ∈ Y such that [V ] ∈ CH2i(X/S,Φ) and [W ] ∈
CH2j(Y/S,Ψ). By definition this means that codim(V,X) = i and codim(W,Y ) = j and
by Lemma 2.2 we have that [V ] ∈ CH2 dimS X−2i(X/S,Φ) and [W ] ∈ CH2 dimS X−2j(Y/S,Ψ).
As before, the case where neither V → S nor W → S are flat is trivial, so we assume
without loss of generality that V → S is flat. By what we showed above, we have [V ×S
W ] ∈ CH2 dimS X−2i+2 dimS Y−2j(X ×S Y/S,Φ ×S Ψ). By Proposition 2.9 we have that both
X×S Y and V ×SW have pure S-dimension equal to dimS X+dimS Y and dimS V +dimSW
respectively. Because X×S Y and V ×SW are of pure S-dimension, we can restrict to looking
at one irreducible component [T ] of V ×S W which lies inside an irreducible component [Z]

3This can happen if W is not dominant over S and lies in a fibre over a point that is not in the image of
V → S.

4See discussion after Definition 2.1.2 in [SV00].
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of X ×S Y , and [V ×S W ] will lie inside the graded piece CHc(X ×S Y/S,Φ ×S Ψ) where
c = codim(T,Z). That is to say, we may restrict to the case where X ×S Y is connected and
then apply Lemma 2.2 and get

[V ]×S [W ] ∈ CH2 dimS X−2i+2 dimS Y−2j(X ×S Y/S, V ×S W )

= CH2 dimS X×SY−(2i+2j)(X ×S Y/S, V ×S W )

= CH2i+2j(X ×S Y/S, V ×S W )

⊂ CH2i+2j(X ×S Y/S, φ×S Ψ).

�

Lemma 2.11. The unit 1 and exterior product ×S defined above endow the functors CH∗
and CH∗ with the structure of (right-lax) symmetric monoidal functors.

Proof. We will prove this for (CH∗,×S , 1), the proof for (CH∗,×S , 1) is similar. To show
this we need to show the following:

a) Associativity of ×S ,
b) Commutativity of ×S ,
c) That 1 is a left and right unit, and
d) That ×S is a natural transformation of functors V∗ × V∗ → GrAb.

We go through these.

a) Consider (X,Φ), (Y,Ψ), (Z,Ξ) ∈ V∗. We want the following diagram to commute

CH∗(X/S,Φ)⊗Z CH∗(Y/S,Ψ)⊗Z CH∗(Z/S,Ξ)

×S⊗id
��

id⊗×S// CH∗(X/S,Φ)⊗Z CH∗(Y ×S Z/S,Ψ×S Ξ)

×S
��

CH∗(X ×S Y/S,Φ×S Ψ)⊗Z CH∗(Z/S,Ξ)
×S // CH∗(X ×S Y ×S Z/S,Φ×S Ψ×S Ξ).

It suffices to check this for integral [V ] ∈ CH∗(X/S,Φ), [W ] ∈ CH∗(Y/S,Ψ) and [T ] ∈
CH∗(Z/S,Ξ). If at most one of the integral schemes V,W or T is flat over S, then both
compositions will equal 0. So we can assume at least two of them are flat over S. Here
again, the commutativity is clear since both compositions will yield [V ×S W ×S T ] ∈
CH∗(X ×S Y ×S Z/S,Φ×S Ψ×S Ξ).

b) Consider (X,Φ), (Y,Ψ) ∈ V∗. We want to show that the following diagram commutes

CH∗(X/S,Φ)⊗Z CH∗(Y/S,Ψ)
×S //

��

CH∗(X ×S Y/S,Φ×S Ψ)

��
CH∗(Y/S,Ψ)⊗Z CH∗(X/S,Φ)

×S // CH∗(Y ×S X/S,Ψ×S Φ).

If we have integral closed subschemes V ∈ X andW ∈ Y such that [V ] ∈ CHi(X/S,Φ) and
[W ] ∈ CHj(Y/S,Ψ) then either both compositions will give 0, when neither V → S nor
W → S are flat, or we will get [W ×S V ] when we first go to the right and then down and
(−1)ij [W ×S V ] when we first go down and then to the right. But since by definition the
graded pieces are only non-trivial in even degrees (i.e. both i and j are even) these agree.

c) This is clear.
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d) We have two functors V∗ × V∗ → GrAb, namely

V∗ × V∗
CH∗×CH∗−−−−−−→ GrAb×GrAb ⊗−→ GrAb, and

V∗ × V∗
⊗−→ V∗

CH∗−−−→ GrAb,

and we want ×S to be a natural transformation from the first to the second. That is, for
any given (Xi,Φi) and (Yi,Ψi) in obj(V∗) and morphisms fi : (Xi,Φi)→ (Yi,Ψi) in V∗, for
i ∈ {1, 2} we want the following diagram to be commutative

CH∗(X1/S,Φ1)⊗Z CH∗(X2/S,Φ2)

CH∗(f1)⊗CH∗(f2)

��

×S // CH∗(X1 ×S X2/S,Φ1 ×S Φ2)

CH∗(f1×Sf2)

��
CH∗(Y1/S,Ψ1)⊗Z CH∗(Y2/S,Ψ2)

×S // CH∗(Y1 ×S Y2/S,Ψ1 ×S Ψ2).

This follows from the compatibility of exterior products with proper pushforwards, see
Proposition A.41.

�

Lemma 2.12. (1) The functor CH∗ : V∗ → GrAb preserves coproducts and the func-
tor CH∗ : V ∗ → GrAb maps coproducts to products.

(2) If (X,Φ1), (X,Φ2) ∈ V ∗ have the same underlying NS-scheme X such that Φ1∩Φ2 =
∅, then
CH∗(1) + CH∗(2) : CH∗(X/S,Φ1)⊕ CH∗(X/S,Φ2)→ CH∗(X/S,Φ1 ∪ Φ2)

is an isomorphism, where i : (X,Φ1 ∪ Φ2) → (X,Φi) are induced by the identity
idX : X → X.

Proof. (1) In V∗ and V ∗ we only have defined finite coproducts, so we can reduce
to the case of the coproduct of two elements. It is clear that CH∗((X1/S,Φ1) q
(X2,Φ2)) = CH∗(X1/S,Φ1)⊕ CH∗(X2/S,Φ2) and that CH∗(ij) : CH∗(Xj/S,Φj) →
CH∗(X1/S,Φ1) ⊗ CH∗(X2/S,Φ2) are the canonical inclusions. Therefore it is clear
that CH∗ sends coproducts to coproducts. Finite coproducts and finite products agree
(as objects) inGrAb and it is clear that CH∗(ij) : CH∗(X1/S,Φ1)×CH∗(X2/S,Φ2)→
CH∗(Xj/S,Φj) are the canonical projections, so CH∗ sends coproducts to products.

(2) The injectivity and surjectivity of CH∗(1) + CH∗(2) are easily checked.
�

We have the following base-change lemma.

Lemma 2.13. Let (X,Φ), (X
′
,Φ
′
), (Y,Ψ), (Y

′
,Ψ
′
) ∈ obj(V∗) = obj(V ∗) and let

(X
′
,Φ
′
)

gX

��

f
′
// (Y

′
,Ψ
′
)

gY

��
(X,Φ)

f // (Y,Ψ)

be a Cartesian diagram such that f, f ′ are morphisms in V∗ and gX , gY are morphisms in V ∗.
If either
a) gY is flat, or
b) gY is a closed immersion and f is transversal to gY ,
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then
CH∗(gY ) ◦ CH∗(f) = CH∗(f

′
) ◦ CH∗(gX).

Proof. a) This follows immediately from Proposition A.16.
b) This follows immediately from Proposition A.31a) and b).

�

Taken together, Lemma 2.12, Lemma 2.11, Lemma 2.2, and Lemma 2.13 prove the follow-
ing proposition.

Proposition 2.14. The quadruple (CH∗,CH∗,×S , 1) is a weak cohomology theory with
supports.





CHAPTER 3

Existence Theorem

Theorem 3.1. Let S be a Noetherian, excellent, regular, separated and irreducible scheme
of Krull-dimension at most 1. Let F ∈ T be a weak cohomology theory with supports satisfying
the semi-purity condition in definition 1.17. Then HomT(CH,F) is non-empty if following
conditions hold.

(1) For the 0-section ı0 : S → P1
S and the ∞-section ı∞ : S → P1

S the following equality
holds:

F∗(ı0) ◦ e = F∗(ı∞) ◦ e.
(2) If X is an NS-scheme and W ⊂ X is an integral closed subscheme then there exists

a cycle-class element cl(W,X) ∈ F2 dimS(W )(X,W ), and if W ⊂ X is any closed
subscheme we define

cl(W,X) =
∑
i

nicl(Wi, X),

where the Wi are the irreducible components of W and
∑

i ni[Wi] is the fundamental
cycle of W 1, such that the following conditions hold:
i) For any open U ⊆ X such that U ∩W is regular, we have

F∗(j)(cl(W,X)) = cl(W ∩ U,U),

where j : (U,U ∩W )→ (X,W ) is induced by the open immersion U ⊆ X.
ii) If f : X → Y is a smooth morphism between NS-schemes X and Y , and W ⊂ Y

is a regular closed subset, then

F∗(f)(cl(W,Y )) = cl(f−1(W ), X).

iii) Let i : X → Y be the closed immersion of an irreducible, regular, closed S-
subscheme X into an NS-scheme Y . For any effective smooth divisor D ⊂ Y
such that
• D meets X properly, thus D ∩X := D ×Y X is a divisor on X,
• D′ := (D ∩X)red is regular and irreducible, so D ∩X = n ·D′ as divisors
(for some n ∈ Z, n ≥ 1).

We define g : (D,D
′
)→ (Y,X) in V ∗ as the map induced by the inclusion D ⊂ Y .

Then the following equality holds:

F∗(g)(cl(X,Y )) = n · cl(D
′
, D).

iv) Let f : X → Y be a morphism of NS-schemes. Let W ⊂ X be a regular closed
subset such that the restricted map

f |W : W → f(W )

1Technically we should write cl(W,X) =
∑
i niF∗(iWi)cl(Wi, X) where iWi : (X,Wi) → (X,W ) enlarges

the supports. Notice also that when W is not pure S-dimensional the cycle-class element cl(W,X) does not
live in F2 dimS W (X,W ).

29
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is proper and finite of degree d. Then

F∗(f)(cl(W,X)) = d · cl(f(W ), Y ).

v) Let X,Y be NS-schemes and let W ⊂ X and V ⊂ Y be regular, integral closed
subschemes. Then the following equation holds

T (cl(W,X)⊗S cl(V, Y )) =

{
cl(W ×S V,X ×S Y ) if W or V is dominant over S,
0 otherwise.

vi) For the base scheme S we have cl(S, S) = 1S.

We break the proof of the theorem into two. First we prove the following proposition that
tells us that given the assumptions in Theorem 3.1 we can construct a natural transformation of
(right-lax) symmetric monoidal functors (CH∗,×S , 1)→ (F∗, T, e). Then the proof of theorem
consists of extending this natural transformation to a morphism in T.

Proposition 3.2. Let S be a Noetherian, excellent, regular, separated and irreducible
scheme of Krull-dimension at most 1, and let F ∈ T satisfy the semi-purity condition in
definition 1.17. Furthermore assume that conditions (1) and (2) from Theorem 3.1 hold for
F. Then there is a natural transformation of (right-lax) symmetric monoidal functors

φ : (CH∗,×S , 1)→ (F∗, T, e)

such that φ([X]) = 1X for every connected NS-scheme X, where [X] ∈ CH(X/S,X) =
CH(X/S).

1. Proof of the Proposition

We start by defining a family of homomorphisms of Abelian groups

φ
′

(X,Φ) : ZΦ(X)→ F(X,Φ)

indexed by the elements (X,Φ) ∈ obj(V ∗) = obj(V∗). Now ZΦ(X) is a free-Abelian group
so it suffices to give the definition of φ′(X,Φ) on the generators, which are [W ] for the integral
closed subschemes W ⊂ X such that W ∈ Φ. For these [W ] we define

φ
′

(X,Φ)([W ]) = F∗(iW )(cl(W,X)),

where iW : (X,W )→ (X,Φ) is induced by idX .
We now show in four steps that this family of homomorphisms extends to the desired

natural transformation of (right-lax) symmetric monoidal functors. In the first step we show on
the level of cycles, this family φ′ is functorial with the pushforwards. Step 2 is a technical step
to be used in Step 3, wherein we show that these morphisms φ′ send cycles that are rationally
equivalent to zero, to 0 and therefore that the naturality diagram from Step 1 extends from
cycles to the Chow groups and thus that this family defines a natural transformation φ. Finally
in Step 4 we show that this natural transformation is a natural transformation of right-lax
symmetric monoidal functors by showing that it respects the unit and the product.

Condition 2vi tells us that cl(S, S) = 1S and using condition 2ii for the smooth structure
morphism πX : X → S and the (regular) subset S ⊆ S we get

φ([X]) = cl(X,X) = F∗(πX)(1S) = 1X .
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1.1. Step 1: We show that for any morphism f : (X,Φ) → (Y,Ψ) in V∗, the following
square commutes2:

(3.1) ZΦ(X)
φ
′
(X,Φ)//

f∗
��

F(X,Φ)

F∗(f)
��

ZΨ(Y )
φ
′
(Y,Ψ)// F(Y,Ψ),

We have two cases to cover3

i) dimS(f(W )) < dimS(W ), and
ii) dimS(f(W )) = dimS(W ).

i) Let d := dimS(W ) and let a := φ
′

(X,Φ)([W ]). By definition

a := φ
′

(X,Φ)([W ]) = F∗(iW )(cl(X,W )),

and since cl(W,X) ∈ F2d(X,W ), and all morphisms are graded of degree 0, we have

a ∈ F2d(X,Φ).

Furthermore we have a commutative square

(3.2) F∗(X,W )
F∗(iW ) //

F∗(f)
��

F∗(X,Φ)

F∗(f)
��

F∗(Y, f(W ))
F∗(if(W ))

// F∗(Y,Ψ).

But then F∗(f)(a) = F∗(if(W ))(F∗(f)(cl(W,X))), and by semi-purity F∗(f)(cl(W,X)) ∈
F2d(Y, f(W )) = 0, so

F∗(φ
′

(X,Φ)([W ])) = F∗(f)(a) = 0.

On the other hand since f : (X,Φ) → (Y,Ψ) is in V∗, it is proper when restricted to
W ∈ Φ, so by the definition of proper pushforwards we have

f∗([W ]) = deg(W/f(W ))[f(W )] = 0

since deg(W/f(W )) = 0 because the S-dimension drops, and this shows that the square
(3.1) commutes when dimS(f(W )) < dimS(W ).

ii) Consider the following lemma.

Lemma 3.3. If X is an S-scheme locally of finite type and
W ⊂ X is an irreducible closed subset, Y is a locally Notherian, locally of finite type
S-scheme f : X → Y is a morphism of S-schemes such that the restriction f |W : W → Y
is proper and dimS(W ) = dimS(f(W )), then there exists an open U ⊂ Y such that
• U ∩ f(W ) 6= ∅,
• U ∩ f(W ) is regular,
• f−1(U) ∩W is regular, and

2The fact that f∗ is well-defined is clear from the definitions of ZΦ, ZΨ, V∗ and the definition of proper
pushforwards.

3By part iii) of Proposition A.2 we can’t have dimS(W ) < dimS(f(W )).
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• The map induced from f by restriction

f
′

: f−1(U) ∩W → U ∩ f(W )

is finite.

Proof. By part iii) of Proposition A.2 we have

dimS(W ) = dimS(f(W )) + tr.deg(R(W )/R(f(W )))

We assume that dimS(W ) = dimS(f(W )) so we have

tr.deg(R(W )/R(f(W ))) = 0

This allows us to use the following proposition (since f |W is proper and hence separated)
to obtain a nonempty affine open subset U1 ⊂ f(W ) such that the restriction

f : f |−1
W (U1) = f−1(U1) ∩W → U1

is finite.

Proposition 3.4. Let f : X → Y be a dominant morphism, locally of finite type
between integral schemes. Then the following are equivalent
(a) The extension R(Y ) ⊆ R(X) has transcendence degree 0,
(b) There exists a nonempty affine open V ⊆ Y such that

f−1(V )→ V

is finite.

Proof. See for example [Sta18, Tag: 02NX]. �

Now consider the singular locus in W (i.e. the locus of points in W that are not
regular). Since S is excellent it is in particular J-2. Any scheme that is locally of finite
type over S is J-2, so given our assumptions, Y is J-2 so Wreg is open and hence the
singular locus is closed. The restriction f |W is proper, so f(Wsing) is closed in f(W ). Let
O := f(W )\f(Wsing) and define Ũ := U1∩O∩f(W )reg. This is a nonempty open subset
of f(W ) and there exists an open U ⊆ Y such that U ∩ f(W ) = Ũ . Now we have already
seen that U ∩ f(W ) = Ũ is nonempty, and it is an open subscheme of f(W )reg so it is
regular. Consider f−1(U) ⊆ X. We have

f−1(U) ∩W ⊆ f−1(U ∩ f(W )) = f−1(Ũ) ⊆ f−1(O).

Now O = f(W ) \ f(Wsing) so f−1(U) ∩W ⊂ Wreg. Note that f−1(U ∩ f(W )) ∩W =
f−1(U) ∩W, so we see that the map

f
′

: f−1(U) ∩W → U ∩ f(W )

is finite as it is obtained from the finite map f−1(U1) ∩W → U1 by base change along
U ∩ f(W ) ⊂ U1. �

We choose such a U . Consider the maps

j : (U, f(W ) ∩ U)→ (Y, f(W )) and

j
′

: (f−1(U),W ∩ f−1(U))→ (X,W )

in V ∗ induced by the open immersions U ↪→ Y and f−1(U) ↪→ X respectively. By
condition2iv we have

(3.3) F∗(f |f−1(U))(cl(f−1(U) ∩W, f−1(U))) = d · cl(U ∩ f(W ), U)
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where d is the degree of the finite morphism

f
′

: f−1(U) ∩W → U ∩ f(W ).

Condition 2i now tells us that

F∗(j)(cl(f(W ), Y )) = cl(U ∩ f(W ), U), and(3.4)

F∗(j
′
)(cl(W,X)) = cl(f−1(U) ∩W, f−1(U)).

Substituting (3.4) into (3.3) we obtain

(3.5) F∗(f |f−1(U))(F∗(j
′
)(cl(W,X))) = d · F∗(j)(cl(f(W ), Y )).

Consider the fibre-square

f−1(U)

j
′

��

f |f−1(U) // U

j

��
X

f
// Y.

The morphism j is an open immersion, hence smooth, so we can use condition (4) from
Definition 1.10 to see that

F∗(f |f−1(U))(F∗(j
′
)(cl(W,X))) = F∗(j)(F∗(f)(cl(W,X))).

Substituting this into equation (3.5) we get

F∗(j)(F∗(f)(cl(W,X))) = d · F∗(j)(cl(f(W ), Y ))(3.6)
= F∗(j)(d · cl(f(W ), Y )).

We have that F∗(f)(cl(W,X)) and d · cl(f(W ), Y ) are in F2 dimS(f(W ))(Y, f(W )) so by
semi-purity, equation (3.6) implies

(3.7) F∗(f)(cl(W,X)) = d · cl(f(W ), Y )

We now apply F∗(if(W )) to both sides of (3.7), where i(f(W )) : (Y, f(W )) → (Y,Ψ) is
induced by idY , to obtain

F∗(if(W ))(F∗(f)(cl(W,X))) = F∗(if(W ))(d · cl(f(W ), Y ))(3.8)
= d · F∗(if(W ))(cl(f(W ), Y ))

= d · φ′(Y,Ψ)([f(W )])

= φ
′

(Y,Ψ) ◦ f∗([W ]).

This last equality holds because by definition we have

deg(f
′
) = deg(W ∩ f−1(U)/f(W ) ∩ U)

:= [R(W ∩ f−1(U)) : R(f(W ) ∩ U)],

and sinceW ∩f−1(U) is an open dense subset ofW and f(W )∩U is an open dense subset
of f(W ), we have

R(W ∩ f−1(U)) = R(W ), and
R(f(W ) ∩ U) = R(f(W )),
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so

d = deg(f
′
)

= [R(W ∩ f−1(U)) : R(f(W ) ∩ U)]

= [R(W ) : R(f(W ))]

= deg(f).

Furthermore, by looking at the commutative square (3.2) we see that

F∗(if(W ))(F∗(f)(cl(W,X))) = F∗(f)(F∗(iW )(cl(W,X)))(3.9)

= F∗(f) ◦ φ′(X,Φ)([W ]).

Combining (3.8) and (3.9) we obtain

(3.10) F∗(f) ◦ φ′(X,Φ)([W ]) = φ
′

(Y,Ψ) ◦ f∗([W ]),

which is precisely what we wanted to show.

1.2. Step 2: Now let X be an NS-scheme, W ⊂ X an integral closed subscheme, and D
a smooth divisor intersecting W properly, so that W ∩D := W ×X D is an effective Cartier
divisor on W . We denote by [W ∩D] the associated Weil divisor and we denote (D ∩W )red
by D′ . The following equality is what we want to prove

(3.11) F∗(iD)(cl(W,X)) = cl(D ∩W,D),

where iD : (D,D ∩W )→ (X,W ) in V ∗ is the map induced by the closed immersion D ⊂ X.
Let U be an open subset of X that contains all the generic points of D′ . The following

diagram in V ∗ commutes

(U ∩D, (W ∩D) ∩ U)
ı̂D //

̂
��

(U,U ∩W )

j

��
(D,W ∩D)

iD
// (X,W ),

where
• j : (U,U ∩W )→ (X,W ) is induced by the inclusion U ⊂ X,
• ̂ : (U ∩D, (W ∩D)∩U)→ (D,W ∩D) is induced by the inclusion U ∩D ⊂ D, and
• ı̂D : (U ∩D, (W ∩D) ∩ U)→ (U,U ∩D) is induced by the inclusion U ∩D → U .

Applying the contravariant functor F∗ gives us a commutative diagram

(3.12) F∗(X,W )
F∗(j) //

F∗(iD)

��

F∗(U,W ∩ U)

F∗(ı̂D)

��
F∗(D,W ∩D)

F∗(̂) // F∗(U ∩D, (W ∩D) ∩ U).

Lemma 3.5. Let X be an NS-scheme and W ⊆ X be an integral closed subscheme. Let
U ⊆ X be an open subscheme such that U ∩W 6= ∅. Then

F∗(j)(cl(W,X)) = cl(U ∩W,U).
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Proof. We know since W is an integral scheme over an excellent base scheme S that it
is generically regular. The same is true for the open subset U ∩W ⊂ W . We can thus find
and open subset V ⊂ U such that V ∩ (U ∩W ) = V ∩W is non-empty and regular. Consider
the map induced by inclusion jV : (V, V ∩W ) → (U,U ∩W ). Notice that since U ∩W is
irreducible and V ∩W is a non-empty subset of U ∩W the generic point of U ∩W is contained
in V ∩W . We also have that F∗(j)(cl(W,X)), and cl(U ∩W,U) are in F2 dimS(U∩W )(U,U ∩W ),
so in order to prove F∗(j)(cl(W,X)) = cl(U ∩W,U), it suffices by semi-purity to prove

F∗(jV )(F∗(j)(cl(W,X))) = F∗(jV )(cl(U ∩W,U)).

Since V ∩W is regular, condition 2i gives us that F∗(jV )(cl(U ∩W,U)) = cl(V ∩W,V ), and
since F∗(jV )◦F∗(j) = F∗(j ◦ jV ) where j ◦ jV : (V, V ∩W )→ (X,W ) is the morphism induced
by the open immersion V ⊂ X, we have again by condition 2i

F∗(jV )(F∗(j)(cl(W,X))) = F∗(j ◦ jV )(cl(W,X))

= cl(V ∩W,V ).

�

By the above lemma we have F∗(j)(cl(W,X)) = cl(W ∩ U,U) and F∗(̂)(cl(W ∩ D,D))
= cl((W ∩D) ∩ U,U ∩D), so if we can prove

F∗(̂ıD)(cl(W ∩ U,U)) = cl((W ∩D) ∩ U,U ∩D),

then F∗(iD)(cl(W,X)) = cl(D ∩W,D) follows from the commutativity of the square (3.12)
and by semi-purity. This shows that we may restrict to any open subset that contains all
the generic points of D′ . Furthermore, since X is Noetherian (being of finite type over the
Noetherian scheme S) we see that D′ has finitely many irreducible components. Therefore the
set A of all points lying in an intersection of connected components is a finite union of closed
sets and is thus closed. The set A contains no generic point of D′ and we can therefore look
at U \ A instead of U and reduce to the case where the irreducible components are disjoint.
Let V1, . . . , Vr be the irreducible components of D′ , then by Definition 1.10 we have

r⊕
i=1

F(D,Vi) ∼= F(D,W ∩D).

Therefore we may assume r = 1, i.e. that D′ is irreducible with a generic point η.
If W is regular in codimension 1 then (since D intersects W properly) OW,η is regular,

i.e. D′ is generically regular. Then there exists some dense open Ũ ⊂ D
′ that is regular, i.e.

there exists some open U ⊂ X such that U ∩ D′ is nonempty and regular. Furthermore we
may assume that U ∩ W is regular, since W is regular in codimension 1. By construction
η ∈ U , so it suffices by the above discussion to prove the equality for U , i.e. we can reduce
to the case where W and D′ are regular and irreducible in X. By condition 2iii we then have
F∗(iD)(cl(W,X)) = n · cl(D

′
, D), where n is the multiplicity of D along W . Furthermore, we

have n · cl(D
′
, D) = cl(D ∩W,D) so we finally have

F∗(iD)(cl(W,X)) = cl(D ∩W,D).

Recall that normal schemes are regular in codimension 1. We takeW that is not necessarily
normal, look at its normalization which is regular in codimension 1, and deduce the equation
we want to show from that case.



36 3. EXISTENCE THEOREM

Notice that we can find an affine open U ⊂ X such that U ∩D′ 6= ∅. In this case U ∩D′

is a non-empty open subset of D′ and thus contains the generic point η. We can therefore
restrict to looking at this U , i.e. we may assume X is affine.

Claim 1. We can find a closed immersion

W̃ →W ×S PnS
where W̃ denotes the normalization of W .

Proof. First we note that there are two definitions of a projective morphism to consider.
The first one is due to Grothendieck (see [Gro61, Def. 5.5.2]) and says that a morphism
f : X → Y is projective if it factors as

X → P(E)→ Y

where the first arrow is a closed immersion, E is a quasi-coherent OY -module of finite type
and P(E) = Proj

Y
(Sym(E)).

The other definition is in [Har77, Cha. II.4]. The Stacks Project, [Sta18, Tag: 01W8] uses
the term “H-projective" to distinguish between these notions, and we follow this convention.
A morphism f : X → Y is said to be H-projective if there exists an integer n and a closed
immersion

X → PnY
such that f factors as

X → PnY = Y ×S PnS → Y

where the latter arrow is the projection. This notion of H-projectivity is exactly what we are
looking for. These definitions are equivalent when Y is itself a quasi-projective scheme over
some affine scheme.

We want to consider the normalization morphism W̃ →W . We have made the assumption
that X is affine, and so since W is a closed subscheme of X it is affine as well. We are
therefore in this situation. Furthermore the normalization morphism W̃ → W is finite since
W is excellent, see for example [Sta18, Tag: 035R].4 Finite morphisms are projective (in the
sense of Grothendieck), see for example [Sta18, Tag: 0B3I], and so W̃ →W is projective and
hence H-projective. �

We now set X̃ := X ×S PnS , D̃ := D ×S PnS , ĩ : (D̃, W̃ ∩ D̃) → (X̃, W̃ ) and consider the
morphism pr1 : (X̃, W̃ )→ (X,W ) induced by the projection X̃ → X. The projection PnS → S
is always proper, so pr1 is a morphism in V∗. By Step 1 we have

φ
′

(X,W ) ◦ pr1∗ = F∗(pr1) ◦ φ′
(X̃,W̃ )

.

4Note that this lemma states this for Japanese schemes, but excellent rings are Nagata rings, and Nagata
rings are universally Japanese. See for example [Sta18, Tag: 0334].
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We now evaluate both sides at [W̃ ] and get

cl(X,W ) = φ
′

(X,W )([W ])

= φ
′

(X,W )([pr1(W̃ )])

= φ
′

(X,W ) ◦ pr1∗([W̃ ])

= F∗(pr1) ◦ φ′
(X̃,W̃ )

([W̃ ])

= F∗(pr1)(cl(W̃ , X̃)).

Applying F∗(i) to both sides gives

(3.13) F∗(i)(cl(W,X)) = F∗(i)(F∗(pr1)(cl(W̃ , X̃))).

We have a Cartesian diagram

(D̃, D̃ ∩ W̃ )
pr1|D̃ //

ĩ
��

(D,W ∩D)

i

��
(X̃, W̃ )

pr1 // (X,W ).

The morphism i is a closed immersion and it is transversal to pr1 so Definition 1.10 tells us
that

F∗(i) ◦ F∗(pr1) = F∗(pr1|D̃) ◦ F∗(̃i).

If we now evaluate both sides at cl(W̃ , X̃) we get

(3.14) F∗(i)(F∗(pr1)(cl(W̃ , X̃))) = F∗(pr1|D̃)(F∗(̃i)(cl(W̃ , X̃))).

From the first case discussed, where we have an integral closed subscheme that is regular in
codimension 1, we have

(3.15) F∗(̃i)(cl(W̃ , X̃)) = cl(W̃ ∩ D̃, D̃).

Note that pr1(W̃ ∩ D̃) = W ∩D so since the projection pr1|D̃ is proper we have

(3.16) φ
′

(D,W∩D)(pr1∗([W̃ ∩ D̃])) = φ
′

(D,W∩D)([W ∩D]).

Combining equations (3.13)–(3.16) we obtain

F∗(i)(cl(W,X)) = F∗(i)(F∗(pr1)(cl(W̃ , X̃)))

= F∗(pr1|D̃)(F∗(̃i)(cl(D̃, X̃)))

= F∗(pr1|D̃)(cl(W̃ ∩ D̃, D̃))

= φ
′

(D,W∩D)(pr1∗([W̃ ∩ D̃]))

= φ
′

(D,W∩D)([W ∩D])

= cl(W ∩D,D).
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1.3. Step 3: Our aim here is to prove that

φ
′

(X,Φ)(RatΦ(X)) = 0.

We use the “homotopy" definition of rational equavalences from Proposition A.13. By the
additivity of φ′ we see that we can reduce to showing that for an irreducible closed subset
W ⊂ X ×S P1

S such that pr1(W ) ∈ Φ and W → P1
SW

is dominant, where SW is the closure of
the image πX(W ) in S, we have

(3.17) φ′(X,pr1(W ))([pr1(W0)]) = φ′(X,pr1(W )([pr1(W∞)]),

where we write Wε := W ∩ (X ×S {ε}).
Now let us introduce some maps.

iε : (X, pr1(W ))→ (X ×S P1
S , pr1(W )×S P1

S), and

αε : (X, pr1(Wε))→ (X ×S P1
S ,W )

are both induced by the map X → X ×S P1
S given by the composition

X
∼=−→ X ×S {ε}

closed−−−−−−−→
immersion

X ×S P1
S .

The maps iε and αε are morphisms in both V∗ and V ∗. We also define the map

βε : (X, pr1(Wε))→ (X, pr1(W ))

in V∗ that is induced by idX .
By definition of φ′ we have φ′(X,pr1(W ))([pr1(Wε)]) = F∗(βε)(cl(pr1(Wε), X)) and by (3.11)

we have F∗(αε)(cl(W,X ×S P1
S)) = cl(pr1(Wε), X). Combining this we have

(3.18) F∗(βε) ◦ F∗(αε)(cl(W,X ×S P1
S)) = φ

′

(X,pr1(W ))([pr1(Wε)]).

The following square is Cartesian

(X, pr1(Wε))
βε //

αε
��

(X, pr1(W ))

iε
��

(X ×S P1
S ,W )

ξ // (X ×S P1
S , pr1(W )×S P1

S),

where ξ is induced by the identity. The map iε is a closed immersion and transversal to the
bottom identity morphism. Condition 4 in Definition 1.10, thus gives

(3.19) F∗(βε) ◦ F∗(αε) = F∗(iε) ◦ F∗(ξ),
and (3.18) becomes

F∗(iε) ◦ F∗(ξ)(cl(W,X ×S P1
S)) = φ

′

(X,pr1(W ))([pr1(Wε)]).

To prove (3.17) it is therefore sufficient to show that

F∗(i0) ◦ F∗(ξ) = F∗(i∞) ◦ F∗(ξ)
as maps F(X ×S P1

S ,W )→ F(X, pr1(W )).
We want to apply the first projection formula, Proposition 1.15, with f1 =: i

′
ε, f2 =: αε

where i′ε : X → X ×S P1
S is induced by the same closed immersion as αε. This makes f3 =: αε

as well. Now letting b ∈ F(X ×S P1
S , pr1(W )) be arbitrary and a = 1X we get

F∗(αε) ◦ F∗(αε)(b) = F∗(i
′
ε)(1X) ∪ b.
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If we know that F∗(i
′
0)(1X) = F∗(i

′
∞)(1X) then we have shown that as maps F(X×SP1

S ,W )→
F(X ×S P1

S ,W ) we have

F∗(α0) ◦ F∗(α0) = F∗(α∞) ◦ F∗(α∞).

We know that ξ ◦ αε = iε ◦ βε, and all these maps are in V∗, so we have

F∗(ξ) ◦ F∗(αε) = F∗(iε) ◦ F∗(βε).
We see that

F∗(ξ) ◦ F∗(αε) ◦ F∗(αε) = F∗(iε) ◦ F∗(βε) ◦ F∗(αε)
= F∗(iε) ◦ F∗(iε) ◦ F∗(ξ),

by (3.19). So what we have shown is that F∗(i0) ◦ F∗(i0) ◦ F∗(ξ) = F∗(i∞) ◦ F∗(i∞) ◦ F∗(ξ)
follows from F∗(i

′
0)(1X) = F∗(i

′
∞)(1X).

We have a commutative diagram in V∗

(X, pr1(W ))
iε //

id ))

(X ×S P1
S , pr1(W )×S P1

S)

pr1

��
(X, pr1(W ))

and we obtain F∗(pr1) ◦ F∗(iε) = F∗(id) = id. Notice that F∗(pr1) is completely independent
of ε so we can apply this to both sides of F∗(i0) ◦ F∗(i0) ◦ F∗(ξ) = F∗(i∞) ◦ F∗(i∞) ◦ F∗(ξ) to
obtain what we want

F∗(i0) ◦ F∗(ξ) = F∗(i∞) ◦ F∗(ξ).

What remains to be shown in this step is the equality

F∗(i
′
0)(1X) = F∗(i

′
∞)(1X).

First we recall that if πX : X → S is the structure morphism of X then F∗(i
′
ε)(1X) =

F∗(i
′
ε) ◦ F∗(πX) ◦ e(1). Consider the following Cartesian diagram

X
i
′
ε //

πX

��

X ×S P1
S

pr2
��

S pε
// P1
S

where pε : S → P1
S is the zero- or infinity section. Furthermore pr2 is smooth, being the

base change of πX along πP1 . We can therefore use condition 4 in Definition 1.10 to see that
F∗(i

′
ε)◦F∗(πX) = F∗(pr2)◦F∗(pε).We recall that condition 1 says thatF∗(p0)◦e = F∗(p∞)◦e.

Combining this we obtain

F∗(i
′
0)(1X) = F∗(i

′
0) ◦ F∗(πX) ◦ e(1)

= F∗(pr2) ◦ F∗(p0) ◦ e(1)

= F∗(pr2) ◦ F∗(p∞) ◦ e(1)

= F∗(i
′
∞) ◦ F∗(πX) ◦ e(1)

= F∗(i
′
∞)(1X).
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1.4. Step 4: We want to show that

φ ◦ 1 = e, and
φ ◦ ×S = T ◦ (φ⊗ φ).

It is enough to show that these equations hold on the level of cycles, i.e. to show the
equations

φ
′ ◦ 1 = e, and

φ
′ ◦ ×S = T ◦ (φ

′ ⊗ φ′).
The first equation follows directly from the definition. For any n ∈ Z we have

(φ
′
S ◦ 1)(n) = φ

′
S(n · [S])

= n · φ′S([S])

= n · cl(S, S)

= n · 1S
= n · e(1)

= e(n).

Now consider the second equation. What we want to show precisely is that for NS-schemes
with supports (X,Φ) and (Y,Ψ) and integral closed subschemes W ∈ Φ, V ∈ Ψ we have

(3.20) φ
′

(X×SY,Φ×SΨ)([W ]×S [V ]) = T (φ
′

(X,Φ)([W ])⊗S φ
′

(Y,Ψ)([V ]))

Let iW : (X,W ) → (X,Φ) and iV : (Y, V ) → (Y,Ψ) be the maps in V∗ induced by the
identities. Then so is iW ×S iV : (X ×S Y,W ×S V ) → (X ×S Y,Φ×S Ψ), and by naturality
of T we have

T (φ
′

(X,Φ)([W ])⊗S φ
′

(Y,Ψ)([V ])) = T (F∗(iW )(cl(W,X))⊗S F∗(iV )(cl(V, Y )))

= F∗(iW ×S iV )(T (cl(W,X)⊗S cl(V, Y )).

If neither W nor V is flat over S, then [W ] ×S [V ] = 0 by definition and T (cl(W,X) ⊗S
cl(V, Y )) = 0 by condition (2v), and therefore both sides of (3.20) are 0. Without loss of
generality we may assume that W is flat over S. Then [V ] ×S [W ] = [V ×S W ] and since
φ
′

(X×SY,Φ×SΨ)([W ×S V ]) = F∗(iW ×S iV )(cl(W ×S V,X ×S Y ))5, we see from the above
equation that it is enough to show

(3.21) cl(W ×S V,X ×S Y ) = T (cl(W,X)⊗S cl(V, Y )).

We first consider the case when W ×S V = ∅. Then both cl(W ×S V,X ×S Y ) and
T (cl(W,X)⊗S cl(V, Y )) lie in F (X ×S Y, ∅) = 0 so they trivially agree.

Now assume that W ×S V is not empty. We can find some open UX ⊂ X and UY ⊂ Y
such that

∅ 6= W ∩ UX is regular, and
∅ 6= V ∩ UY is regular

5This equation hold by definition if W ×S V is integral, and it is clear from the definition of the class
element in the non-integral case that the equation extends to that case to.
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(because S is excellent and thus in particular J-2).Then UX ×S UY ⊂ X ×S Y is open and
∅ 6= (W ×S V ) ∩ (UX ×S UY ) is regular, if W ×S V 6= ∅. Denote by

jX : (UX , UX ∩W )→ (X,W ), and
jY : (UY , UY ∩ V )→ (Y, V )

the maps in V ∗ induced by the open immersions UX ↪→ X and UY ↪→ Y respectively. Then

jX×SY := jX ×S jY : (UX ×S UY , (W ×S V ) ∩ (UX ×S UY ))→ (X ×S Y,W ×S V )

is the map in V ∗ induced by the open immersion UX ×S UY ↪→ X ×S Y . Again we use the
naturality of T to see

F∗(jX×SY )(T (cl(W,X)⊗ cl(V, Y ))

= T (F∗(jX)(cl(W,X))⊗ F∗(jY )(cl(V, Y ))).

By condition 2i we have that

F∗(jX)(cl(W,X)) = cl(UX ∩W,UX), and
F∗(jY )(cl(V, Y )) = cl(UY ∩ V,UY ),

so
F∗(jX×SY )(T (cl(W,X)⊗ cl(V, Y )) = T (cl(UX ∩W,UX)⊗ cl(UY ∩ V,UY )).

Condition 2v tells us that T (cl(UX∩W,UX)⊗cl(UY ∩V,UY )) = cl((UX∩W )×S (UY ∩V,UX×S
UY )) and condition 2i says that cl((UX ∩W )×S (UY ∩ V ), UX ∩ UY ) = F∗(jX×SY )(cl(W ×S
V,X ×S Y ), so we have

F∗(jX×SY )(cl(W ×S V,X ×S Y ) = F∗(jX×SY )(T (cl(W,X)⊗S cl(V, Y )))

and (3.21) follows by semi-purity if W ×S V is of pure S-dimension, but this follows from
Proposition 2.9.

�

2. Proof of the Theorem

In this part of the proof we have given a natural transformation of right-lax symmetric
monoidal functors

φ : (CH∗,×S ,1)→ (F∗, T, e),
and we want to extend it to a morphism φ ∈ HomT(CH,F). The conditions in Theorem 3.1
are assumed to hold for F and it is furthermore assumed to satisfy the semi-purity condition.

What remains to be proven is that the natural transformation φ : CH∗ → F∗ constructed
in Proposition 3.2 is also a natural transformation φ : CH∗ → F∗, i.e. that the following
diagram commutes for all f : (X,Φ)→ (Y,Ψ) in V ∗:

(3.22) CH(Y/S,Ψ)

φ(Y,Ψ)

��

CH∗(f)// CH(X/S,Φ)

φ(X,Φ)

��
F(Y,Ψ)

F∗(f) // F(X,Φ).

The proof proceeds in 5 steps. In Step 1 we show that diagram (3.22) commutes when f is
a smooth morphism. Steps 2 and 3 are technical steps that we use in Step 4 in which we
prove that diagram (3.22) commutes when f is a closed immersion. In Step 5 we deduce the



42 3. EXISTENCE THEOREM

general case from steps 1 and 4, because by Lemma 2.4 a general morphism f will be an l.c.i.
morphism.

2.1. Step 1: In this step we assume we are given a smooth f : (X,Φ) → (Y,Ψ) in V ∗.
We want to show that diagram (3.22) commutes for this f .

First of all we notice that the additivity of all maps tells us that it is enough to show that
(3.22) is commutative when evaluated at [W ] for W ∈ Ψ irreducible. Secondly, to show (3.22)
is commutative when evaluted at [W ], for W ∈ Ψ irreducible, it is enough to show that the
following diagram is commutative when evaluated at [W ]6.

CH(Y/S,W )
CH∗(f1) //

φ(Y,W )

��

CH(X/S, f−1
1 (W ))

φ
(X,f−1

1 (W ))

��
F(Y,W )

F∗(f1) // F(X, f−1
1 (W )).

Consider the following cube-diagram:

CH(Y/S,Ψ)
φ(Y,Ψ)

ww

CH∗(f) // CH(X/S,Φ)

φ(X,Φ)uu
F(Y,Ψ)

F∗(f) // F(X,Φ)

CH(Y/S,W )

CH∗(iY )

OO

CH∗(f1) //

φ(Y,W )

xx

CH(X/S, f−1
1 (W ))

CH∗(iX)

OO

φ
(X,f−1

1 (W ))uu
F(Y,W )

F∗(iY )

OO

F∗(f1)
// F(X, f−1

1 (W ))

F∗(iX)

OO

where iX : (X, f−1(W )) → (X,Φ) and iY : (Y,W ) → (Y,Ψ) are the maps induced by the
identities idX and idY respectively. Notice that

(Y,W )
f //

idY
��

(X, f−1(W ))

idX
��

(Y,Ψ)
f // (X,Φ)

is a Cartesian diagram with idX smooth so the commutativity of the frontside and the backside
follow from condition (4) in Definition 1.10. The sides are commutative since φ : CH∗ → F∗
is a natural transformation. Furthermore we assume that the bottom side commutes when
evaluated at [W ]. To show that the top side commutes when we evaluate at [W ] is just a
matter of diagram chasing.

Secondly, since X and Y are NS-schemes and S is regular, they are themselves regular.
They are therefore the disjoint unions of irreducible NS-schemes and if X = qXi and Y = qYj

6The map f1 : (X, f−1(W )) → (Y,W ) is induced by the same smooth map as f : (X,Φ) → (Y,Ψ) is. We
also denote this underlying map by f .



2. PROOF OF THE THEOREM 43

then for any i there is some j such that f(Xi) ⊂ Yj . We can thus reduce to the case where X
and Y are irreducible NS-schemes.

So we are reduced to showing that for irreducible NS-schemes X and Y , a smooth mor-
phism f : X → Y and an integral closed subscheme W ⊆ Y we have

F∗(f)(φ(Y,W ))[W ]) = φ(X,f−1(W ))(CH∗(f)([W ])).

Since φ(Y,W )([W ]) = cl(W,Y ), and

φ(X,f−1(W ))(CH∗(f)([W ])) = φ(X,f−1(W ))([f
−1(W )])(3.23)

= φ(X,f−1(W ))(
∑
i

ni[Vi])

=
∑
i

niφ(X,f−1(W ))([Vi])

=
∑
i

nicl(Vi, X)

= cl(f−1(W ), X),

where
∑

i ni[Vi] is the fundamental class of f−1(W ), we are reduced to showing that

(3.24) F∗(f)(cl(W,Y )) = cl(f−1(W ), X).

We have the following lemma.

Lemma 3.6. Consider a smooth morphism f : X → Y between NS-schemes. Let W ⊂ Y
be an irreducible closed subscheme such that f−1(W ) 6= ∅. Then there exists an open subset
U ⊂ Y such that

• U contains the generic point of W ,
• U ∩W is regular,
• f−1(U) contains all the generic points of f−1(W ), and
• f−1(U) ∩ f−1(W ) is regular.

Proof. W is generically regular so there exists an open U ⊂ Y such that

U ∩W = Wreg,

which is open (and hence dense) inW . This U satisfies the first two conditions, namely that U∩
W is regular and U contains the generic point ofW (any open subset ofW does). Furthermore,
f is smooth, in particular flat, so any irreducible component of f−1(W ) dominates W , i.e. f
sends any generic point of f−1(W ) to the generic point of W . Therefore f−1(U) contains all
the generic points of f−1(W ).

Finally we have that f : f−1(U ∩W )→ U ∩W is the base change of the smooth morphism
f : X → Y along U ∩W so f−1(U ∩W )→ U ∩W is smooth. Furthermore U ∩W is regular
and locally Noetherian so f−1(U ∩W ) is regular. �

Take such a U , and denote by
• 1 : (U,U ∩W )→ (Y,W ), and
• 2 : (f−1(U), f−1(U ∩W )→ (X, f−1(W ))

the maps in V ∗ induced by the open immersions U ↪→ Y and f−1(U) ↪→ X respectively. By
condition 2ii we have

(3.25) F∗(f)(cl(U ∩W,U)) = cl(f−1(U ∩W, f−1(U))
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and we want to deduce (3.24) from this.
By condition 2i we have F∗(j1)(cl(W,Y )) = cl(U ∩W,U), and if, as before, the irreducible

compontents of f−1(W ) are Vi then the irreducible components of f−1(U ∩W ) are f−1(U)∩Vi
(since f−1(U) contains all the generic points of f−1(W )). Therefore by condition 2i we have

F∗(j2)(cl(f−1(W ), X)) = F∗(j2)(
∑
i

nicl(Vi, X))

=
∑
i

niF∗(j2)(cl(Vi, X))

=
∑
i

nicl(f−1(U) ∩ Vi, f−1(U))

= cl(f−1(U ∩W ), f−1(U)).

Substitute this into (3.25) to obtain

(3.26) F∗(f)(F∗(j1)(cl(W,Y ))) = F∗(j2)(cl(f−1(W ), X))

By definition the following diagram commutes

f−1(U)
j2 //

f

��

X

f

��
U

j1 // Y,

and by applying the contravariant functor F∗ to it, we obtain the following commutative
diagram

F(Y,W )
F∗(j1) //

F∗(f)
��

F(U,U ∩W )

F∗(f)
��

F(X, f−1(W ))
F∗(j2)// F(f−1(U), f−1(U ∩W )),

i.e. we obtain
F∗(f) ◦ F∗(j1) = F∗(j2) ◦ F∗(f).

Substituting this into (3.26) we obtain

(3.27) F∗(j2)(F∗(f)(cl(W,Y ))) = F∗(j2)(cl(f−1(W ), X)).

By construction f−1(U) contains all the generic points of f−1(W ). By assumption, X and Y
are irreducible and so our smooth morphism f : X → Y is smooth of relative S-dimension
r = dimS(X) − dimS(Y ). This is stable under base change so f−1(W ) → W is smooth of
relative S-dimension r. In particular, it has pure S-dimension so that F∗(f)(cl(W,Y )) and
cl(f−1(W ), X) both lie in F2 dimS(f−1(W ))(X, f

−1(W )). Therefore by semi-purity, equation
(3.27) implies

F∗(f)(cl(W,Y )) = cl(f−1(W ), X).

2.2. Step 2: Consider a vector bundle

p : E → X

and let s : X → E be the zero-section. We want to prove that the following diagram commutes
for any closed subscheme W ↪→ X:
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(3.28) CH(E/S, p−1(W ))
CH∗(s)//

φ

��

CH(X/S,W )

φ

��
F(E, p−1(W ))

F∗(s) // F(X,W ).

We first note the following lemma that shows us that the diagram above makes sense, i.e.
that E is smooth over S.

Lemma 3.7. Let X → S be a smooth S-scheme and let p : E → X be a vector bundle on
X. Then E is a smooth S-scheme.

Proof. Since X → S is smooth it is enough to show that p : E → X is smooth. The
question of smoothness of p is local in the sense that it is enough to show that there exists an
open covering {Ui} of X and open coverings Vi,j of p−1(Ui) for each i such that the induced
morphism Vi,j → Ui is smooth for all i, j. But p : E → X is a vector bundle so there exists an
open covering {Ui} of X such that for each i we have

p−1(Ui) = AnS ×S Ui.
Since both Ui and AnS are smooth S-schemes, the fiber product is smooth over S as well. �

Recall “homotopy invariance" from Proposition A.27 says that if we let p : E → X and
s : X → E be as above. Then the flat pullback

CH∗(p) =: p∗ : CHk(X/S)→ CHk+n(E/S)

is an isomorphism for all k (where n is the rank of the vector bundle
p : E → X). Take some a ∈ CH(E/S, p−1(W )), which we can write as a = CH∗(p)(b)
for some b ∈ CH(X/S,W ) by the homotopy invariance, so we get:

F∗(s) ◦ φ(E,p−1(W ))(a) = F∗(s) ◦ φ(E,p−1(W )) ◦ CH∗(p)(b)(3.29)
= F∗(s) ◦ F∗(p) ◦ φ(X,W )(b), by Step 1
= F∗(p ◦ s)(φ(X,W )(b))

= φ(X,W )(b).

On the other hand

φ(X,W ) ◦ CH∗(s)(a) = φ(X,W ) ◦ CH∗(s) ◦ CH∗(p)(b)(3.30)
= φ(X,W ) ◦ CH∗(p ◦ s)(b)
= φ(X,W )(b).

Combining equations (3.29) and (3.30), gives the commutativity of(3.28).

2.3. Step 3: Now letW ⊂ X be a closed subscheme and consider the morphisms in both
V∗ and V ∗

i0 : (X,W )→ (X ×S P1
S ,W ×S P1

S), and

i∞ : (X,W )→ (X ×S P1
S ,W ×S P1

S)

induced by the inclusions (X ×S {0}) ⊂ X ×S P1
S and (X ×S {∞}) ⊂ X ×S P1

S respectively.
We want to show that

F∗(i0) = F∗(i∞).
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First of all we notice that
pr1 ◦ iε = id : (X,W )→ (X,W )

where iε denotes either i0 or i∞ and pr1 : (X×SP1
S ,W×SP1

S)→ (X,W ) is the morphism in V∗
induced by the first projection X×SP1

S → X. Furthermore, in CH we have 1X = [X] and since
φ(1X) = 1X we have φ([X]) = 1X . We can therefore write for any a ∈ F(X ×S P1

S ,W ×S P1
S)

(3.31) F∗(iε)(a) = F∗(pr1)F∗(iε)(φ([X]) ∪ F∗(iε)(a)).

The first projection formula, Proposition 1.15, tells us that

(3.32) F∗(iε)(φ([X]) ∪ F∗(iε)(a)) = F∗(iε)(φ([X])) ∪ a.

Combining (3.31) and (3.32) we obtain

(3.33) F∗(iε)(a) = F∗(pr1)(F∗(iε)(φ([X])) ∪ a).

Now φ is a natural transformation CH∗ → F∗ so we have

F∗(iε)(φ([X])) = φ(F∗(iε)([X])) = φ([X ×S {ε}]),

but [X ×S {0}] ∼ [X ×S {∞}] as cycles which shows that

F∗(i0) = F∗(i∞).

2.4. Step 4: In this section we want to show that φ commutes with F∗(f) when f is a
closed immersion. Namely, let f : X → Y be a closed immersion of smooth S-schemes and
V ⊂ Y be a closed subscheme. Denote the pre-image of V by W := f−1(V ) := V ×Y X. The
immersion f induces a morphism f : (X,W )→ (Y, V ) in V ∗ and we want to show that

(3.34) CH(Y/S, V )
CH∗(f)//

φ(Y,V )

��

CH(X/S,W )

φ(X,W )

��
F(Y, V )

F∗(f) // F(X,W )

commutes. Because of additivity, showing that (3.34) commutes, reduces to showing

(3.35) F∗(f)(φ([V ])) = φ(CH∗(f)([V ]))

when V is integral. Consider the following schemes:

M0 := BlX×S{∞S}(Y ×S P1
S) \BlX×S{∞S}(Y ×S {∞S}), and

M̃0 := BlW×S{∞S}(V ×S P1
S) \BlW×S{∞S}(V ×S {∞S}).

M̃0 is closed in M0 and by Proposition A.25 we have a dominant morphism ρ0 : M0 → P1
S ,

such that

(ρ0)−1(A1
S := P1

S \ {∞S}) = Y ×S A1
S , and

(ρ0)−1(∞S) = CXY := CX×S{∞S}Y ×S {∞S}.

Again by Proposition A.25 we have closed immersions

iX : X ×S P1
S →M0 and

iW : W ×S P1
S → M̃0,
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that deform the immersions X → Y and W → V respectively over A1
S to the zero section of

the respective normal cones CXY and CWV . We have W ×S P1
S = M̃0 ∩ (X ×S P1

S) as closed
subschemes of M0, and therefore we obtain a morphsm in V ∗ induced by iX

g : (X ×S P1
S ,W ×S P1

S)→ (M0, M̃0).

We define for ε ∈ {0S ,∞S} morphisms

iε : (X ×S {ε},W ×S {ε})→ (M0, M̃0)

in V ∗ by the composition

(X ×S {ε},W ×S {ε})
jε−→ (X ×S P1

S ,W ×S P1
S)

g−→ (M0, M̃0),

where jε is induced by the inclusions X ×S {ε} → X ×S P1
S . In Step 3 of the proof of the

Theorem, we showed that F∗(j0) = F∗(j∞) so we have

(3.36) F∗(i0) = F∗(i∞).

Consider the open immersion Y ×S A1
S →M0 and let j : (Y ×S A1

S , V ×S A1
S)→ (M0, M̃0) be

the induced morphism in V ∗. Consider also the morphism p : (Y ×S A1
S , V ×S A1

S) → (Y, V )
in V ∗ induced by the first projection Y ×S A1

S → Y , We have

CH∗(p)([V ]) = [V ×S A1
S ] = CH∗(j)([M̃0]).

Combining this with Step 1 (the commutativity of (3.22) for smooth f) gives us

F∗(p)(φ([V ])) = φ(CH∗(p)([V ])) = φ(CH∗(j)([M̃0])).

The morphism i0 has a factorization in V ∗

(X ×S {0S},W ×S {0S})
i0 //

f

��

(M0, M̃0)

(Y ×S {0S}, V ×S {0}) α
// (Y ×S A1

S , V ×S A1
S)

β

OO

where β is an open immersion and α is the closed immersion of the effective Cartier divisor
Y ×S {0S} into Y ×S A1

S . By Step 1 we have

F∗(β)(cl(M̃0,M0)) = cl(V ×S A1
S , Y ×S A1

S),

and since Y ×S {0S} is a smooth Cartier divisor in Y ×S A1
S intersecting V ×S A1

S properly
we have by Step 2 in the proof of Proposition 3.2 that

F∗(α)(cl(V ×S A1
S , Y ×S A1

S)) = cl(V ×S {0S}, Y ×S {0S}).

Furthermore, φ([V ]) = cl(V, Y ) and φ([M̃0]) = cl(M̃0,M0), and therefore we have

F∗(f)(φ([V ])) = F∗(i0)(φ([M̃0])),

and (3.36) gives us

(3.37) F∗(f)(φ([V ])) = F∗(i∞)(φ([M̃0])).

The normal bundle NXY is a smooth effective Cartier divisor in M0 and NXY intersects M̃0

properly since
NXY ∩ M̃0 = CWV.
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The morphism i∞ has a factorization in V ∗

(3.38) (X,W )

i∞

;;
s // (NXY,CWV )

t // (M0, M̃0)

where s is induced by the zero-section X → NXY of the normal bundle of X in Y , and t is
induced by the closed immersion NXY = CXY →M0. Step 2 of the proof of Proposition 3.2
tells us that

F∗(t)(φ(M0,M̃0)([M̃
0]) = φ(NXY,CWV )([CWV ]).

Consider the fiber diagram

NXY ×X W

��

// W

��

f |W // V

��
NXY // X

f // Y.

Since W → X is a closed immersion, NXY ×X W → NXY is a closed immersion as well and
the zero section X → NXY also induces a morphism

s
′

: (X,W )→ (NXY,NXY ×X W )

in V ∗. The identity morphism NXY → NXY induces a morphism

τ : (NXY,CWV )→ (NXY,NXY ×X W )

in V∗ and we have a Cartesian diagram

(X,W )
id //

s

��

(X,W )

s
′

��
(NXY,CWV )

τ // (NXY,NXY ×X W ).

The morphism s
′ is induced by the closed immersion X → NXY (this is a closed immersion

since NXY → X is affine and hence separated) and τ is clearly transversal to s′ so definition
1.10 tells us that

(3.39) F∗(s) = F∗(s
′
) ◦ F∗(τ).

We then have

F∗(f)(φ([V ])) = F∗(i∞)(φ([M̃0])) by (3.37)

= F∗(s) ◦ F∗(t)(φ([M̃0])) by (3.38)

= F∗(s
′
) ◦ F∗(τ)F∗(t)(φ([M̃0])) by (3.39)

= F∗(s
′
) ◦ F∗(τ)(φ(CH∗(t)([M̃0]))) by Step 2 in Proposition 3.2

= F∗(s
′
)(φ(CH∗(τ) ◦ CH∗(t)([M̃0]))) φ commutes with pushforwards

= φ(CH∗(s
′
) ◦ CH∗(τ) ◦ CH∗(t)([M̃0]))) by Step 2

= φ(CH∗(i∞)(M̃0)) by (3.39)

= φ(CH∗(i0)(M̃0))

= φ(CH∗(f)([V ])).
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2.5. Step 5: To finish the proof we let f : (X,Φ)→ (Y,Ψ) be any morphism in V ∗. Any
morphism between NS-schemes is an l.c.i. morphism by Lemma 2.4, so we can factor f as

(X,Φ)
i−→ (Z,Ω)

g−→ (Y,Ψ)

for some S-scheme Z and a some family of supports Ω on Z. Here g : (Z,Ω) → (Y,Ψ)
is induced by a smooth morphism and i : (X,Φ) → (Z,Ω) is induced by a regular closed
immersion.

We want to show that
φ ◦ CH∗(f) = F∗(f) ◦ φ

It is enough to show that this holds for any [V ] where V ∈ Ψ is irreducible. But then

φ ◦ CH∗(f) = φ ◦ CH∗(i) ◦ CH∗(g)

= F∗(i) ◦ φ ◦ CH(g) by Step 4
= F∗(i) ◦ F∗(g) ◦ φ by Step 1
= F∗(f) ◦ φ.

�





CHAPTER 4

Hodge Cohomology as a Weak Cohomology Theory With
Supports

1. Objects and Grading

Let (X,Φ) be an NS-scheme with a family of supports Φ. We define

H(X,Φ) =
⊕
i,j

H i
Φ(X,Ωj

X/S).

and call this abelian group (or Γ(S,OS)-module) the Hodge cohomology of X with supports in
Φ. We denote by H∗(X,Φ) the graded abelian group given in degree n by

Hn(X,Φ) =
⊕
i+j=n

H i
Φ(X,Ωj

X/S).

We also want a “covariant grading". Let X = qrXr be the decomposition of X into its
connected components, then we define H∗(X,Φ) to be the graded abelian group that in degree
n is

Hn(X,Φ) =
⊕
r

H2 dimS Xr−n(Xr,Φ).

Definition 4.1. We define a morphism of abelian groups e : Z→ H(S, S) via the canon-
ical ring homomorphism

Z→ Γ(S,OS) = H0(S,OS) ⊂ H(S, S).

2. Pullback

In this section we want to define a pullback in Hodge cohomology, so extend the map of
objects H∗ to a functor

H∗ : V ∗ → GrAb
We start with a lemma telling us that the functor ΓΨ commutes in a certain sense with

direct images.

Lemma 4.2. Let Y be a smooth S-scheme of finite type with a family of supports Ψ, let X
be a smooth S-scheme, and let f : X → Y be a morphism of S-schemes of finite type. Then
we have an equality

ΓΨ ◦ f∗ = f∗ ◦ Γf−1(Ψ)

of functors Sh(X)→ Sh(Y ), or Qcoh(X)→ Qcoh(Y).

Proof. We prove this here for functors Sh(X)→ Sh(Y ), the case for Qcoh(X)→ Qcoh(Y)
is the same with j−1 replaced by j∗. We start by proving this when the support is a closed
subset Z ⊂ Y . We denote the compliment Y \ Z by U and the canonical open immersion
U → Y by j. Then for any sheaf F of abelian groups on Y we have an exact sequence

(4.1) 0→ ΓZ(F)→ F → j∗j
−1F

51
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Let G be a sheaf of abelian groups on X. We on the one hand plug f∗G in for F into (4.1)
and on the other hand apply the left-exact functor f∗ to

0→ Γf−1(Z)(G)→ G → j′∗(j
′)−1G

which is the analog of (4.1) for sheaves onX. Now X has support f−1(Z) and j′ : X\f−1(Z) ↪→
X is the canonical open immersion. We obtain a commutative diagram

(4.2) 0 // ΓZ(f∗G) // f∗G // j∗j
−1f∗G

0 // f∗Γf−1(Z)(G) // f∗G // f∗j
′
∗(j
′)−1G

In light of (4.2) we see that to show ΓZ ◦ f∗ = f∗ ◦ Γf−1(Z), it suffices to show j∗j
−1f∗G =

f∗j
′
∗(j
′)−1G for all sheaves G of abelian groups on X. We have an obvious commutative square

of S-schemes and morphisms

f−1(U)

f |f−1(U)

��

j′ // X

f

��
U

j
// Y.

We thus have j∗ ◦ f∗ = f∗ ◦ j′∗ as operations on sheaves of abelian groups on f−1(U) (by abuse
of notation we denote f |f−1(U) by f). In particular we have for any sheaf G of abelian groups
on X f∗j

′
∗(j
′)−1G = j∗f∗(j

′)−1G, so to show that j∗j−1f∗G = f∗j
′
∗(j
′)−1G it is enough to show

j−1f∗G = f∗(j
′)−1G as sheaves on U .

For any open V ⊂ U we have j−1f∗G(V ) = (f∗G)|U (V ) = G(f−1(V )) and f∗((j′)−1G)(V ) =
(f∗(G|f−1(U)))(V ) = (G|U ′)(f−1(V )) = G(f−1(V )) and so j−1f∗G = f∗(j

′)−1G.
We have shown that ΓZ ◦ f∗ = f∗ ◦ Γf−1(Z) for closed subschemes Z ⊂ Y and to show

ΓΨ ◦ f∗ = f∗ ◦ Γf−1(Ψ) we take the direct limit lim−→Z∈Ψ
on both sides. �

For any j ≥ 0 we have a map

Ωj
Y/S → f∗Ω

j
X/S

a · db 7→ f∗(a) · df∗(b)
and a natural map

f∗Ω
j
X/S → Rf∗Ω

j
X/S

and applying RΓΨ to the composition gives us a map

RΓΨΩj
Y/S → RΓΨRf∗Ω

j
X/S .

If H is a flasque sheaf of abelian groups on X then f∗H is a flasque sheaf on Y and flasque
sheafs are acyclic for ΓΨ so by [GM02, Theorem III.7.1] we get

R(ΓΨ ◦ f∗) = RΓΨ ◦ Rf∗.

Similary, Γf−1(Ψ)H is flasque if H is flasque and flasque sheaves are acyclic for the direct image
so we have

R(f∗ ◦ Γf−1(Ψ)) = Rf∗ ◦ RΓf−1(Ψ).

Combining this with Lemma 4.2 we obtain a map

(4.3) RΓΨΩj
Y/S → RΓΨRf∗Ω

j
X/S = Rf∗RΓf−1(Ψ)Ω

j
X/S ,
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and by enlarging the supports we have a map

(4.4) RΓΨΩj
Y/S → Rf∗RΓΦΩj

X/S .

By applying RΓ(Y,−) to both sides of (4.4) get a map

RΓ(Y,RΓΨΩj
Y/S)→ RΓ(Y,Rf∗RΓΦΩj

X/S)

= RΓ(X,RΓΦΩj
X/S),

and the induced map on the i-th cohomology group gives us

H i
Ψ(Y,Ωj

Y/S)→ H i
Φ(X,Ωj

X/S).

We finally get the desired map by summing over all i, j,

H∗(f) : H(Y,Ψ)→ H(X,Φ).

We want to see that this map H∗(f), constructed above, is functorial.

Proposition 4.3. Let (X,Φ), (Y,Ψ) and (Z,Ξ) be smooth S-schemes of finite type and
let f : (X,Φ)→ (Y,Ψ) and g : (Y,Ψ)→ (Z,Ξ) be morphisms in V ∗. Then
i) H∗(id) : H(X,Φ)→ H(X,Φ) is the identity homomorphism.
ii) H∗(g ◦ f) = H∗(f) ◦H∗(g) as morphisms H(Z,Ξ)→ H(X,Φ).

Proof. i) This is clear since all relevant maps are identities and id−1(Φ) = Φ so there
is no enlarging of supports and the equality in (4.3) simply reads RΓΦΩj

X/S = RΓΦΩj
X/S .

ii) Notice that if we denote the map

Ωj
Y/S → f∗Ω

j
X/S

a · db 7→ f∗(a) · df∗(b)

by f̃ , then we have

(̃g ◦ f) = f̃ ◦ g̃,

as maps Ωj
Z/S → g∗f∗Ω

j
X/S = (g ◦ f)∗Ω

j
X/S .

We look at the natural map

(g ◦ f)∗Ω
j
X/S → R(g ◦ f)∗Ω

j
X/S

= Rg∗Rf∗Ω
j
X/S .

Applying RΓΞ to the composition map yields a map

RΓΞΩj
Z/S → RΓΞRg∗Rf∗Ω

j
X/S

Using Lemma 4.2 and enlarging supports gives us a map

RΓΞΩj
Z/S → Rg∗Rf∗RΓ(g◦f)−1(Ξ)Ω

j
X/S → Rg∗Rf∗RΓΦΩj

X/S .

Let us denote this map by αg◦f and similarly we denote the map RΓΞΩj
Z/S → Rg∗RΓΨΩj

Y/S

by αg and the map RΓΨΩj
Y/S → Rf∗Ω

j
X/S by αf .
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If we can prove that

(4.5) RΓΞΩj
Z/S

αg◦f //

αg &&

Rg∗Rf∗RΓΦΩj
X/S

Rg∗RΓΨΩj
Y/S

αf

66

is commutative, then we are done, since applying RΓ(Z,−) to (4.5) gives us

RΓ(Z,RΓΞΩj
Z/S) //

((

RΓ(X,RΓΦΩj
X/S)

RΓ(Y,RΓΨΩj
Y/S),

66

and taking i-th cohomology and summing over i, j gives us the result

H∗(Z,Ξ)
H∗(g◦f) //

H∗(g) &&

H∗(X,Φ)

H∗(Y,Ψ).

H∗(f)

88

We remart that in diagram (4.5) we write, by abuse of notation, αf for the map Rg∗(αf ).
To prove the commutativity of (4.5) we first notice that the following diagram com-

mutes.

RΓΞRg∗Rf∗Ω
j
X/S

Rg∗RΓg−1(Ξ)Rf∗Ω
j
X/S

Rg∗RΓΨRf∗Ω
j
X/S Rg∗Rf∗RΓ(g◦f)−1(Ξ)Ω

j
X/S

Rg∗Rf∗RΓf−1(Ψ)Ω
j
X/S

Rg∗Rf∗RΓΦΩj
X/S

?

1

2

??

3

The commutativity of 1 follows from lemma 4.2, and the commutativity of 2 and
3 is clear.

Notice that the composition of ? and ?? with
RΓΞΩj

Z/S → RΓΞRg∗Rf∗Ω
j
X/S is precisely αg◦f so we can look at the following diagram.

If it commutes then diagram (4.5) commutes.
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RΓΞΩj
Z/S

RΓΞRg∗Ω
j
Y/S RΓΞRg∗Rf∗Ω

j
X/S

Rg∗RΓg−1(Ξ)Ω
j
Y/S Rg∗RΓg−1(Ξ)Rf∗Ω

j
X/S

Rg∗RΓΨΩj
Y/S Rg∗RΓΨRf∗Ω

j
X/S

Rg∗Rf∗RΓf−1(Ψ)Ω
j
X/S

Rg∗Rf∗RΓΦΩj
X/S

4

αg◦f

αg

5

6

αf

The commutativity of 4 and 6 is clear and the commutativity of 5 follows from
Lemma 4.2.

�

3. Pushforward

By assumption S is Noetherian, regular and has Krull-dimension at most 1. It is therefore
Gorenstein of finite Krull dimension and OS is a dualizing complex for S. Furthermore any
smooth scheme X of finite type over S is also Gorenstein and of finite Krull dimension so
π!
XOS is a dualizing complex for X, where πX : X → S is the structure map.

3.1. A Pushforward Map for Proper morphisms. Assume we have a diagram of
separated, finite type S-schemes

X
f //

πX ��

Y

πY��
S

where f is a proper morphism. We want to be careful with labeling morphisms so we recall
the following notation:

Notation 4.4.

• cf,g : (gf)!
∼=−→ f !g!. (See [Con00, (3.3.14–3.3.15)])

• Trf : Rf∗f
! → id is the trace map. (See [Con00, §3.4.])

• βu : u∗RHom(−,−)
∼=−→ RHom(u∗(−), u∗(−)) is the natural isomorphism for any

étale u.
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• ef : f#
∼=−→ f ! for any separated smooth f . (See [Con00, (3.3.21)])1

• hu : u∗Ωk
Y/S

∼=−→ Ωk
X/S for any étale S-morphism u : X → Y .

We define a pushforward

f∗ : Rf∗DX(Ωk
X/S)→ DY (Ωk

Y/S)

for any k ≥ 0 as the composition

Rf∗DX(Ωk
X/S)

cf,πY−−−→ Rf∗RHomOX (Ωk
X/S , f

!π!
YOS)(4.6)

→ RHomOY (Rf∗Ω
k
X/S ,Rf∗f

!π!
YOS)

(f∗)∨−−−→ RHomOY (Ωk
Y/S ,Rf∗f

!π!
YOS)

Trf−−→ DY (Ωk
Y/S),

where DX(F) denotes RHomOX (F , π!
XOS). When f is also a finite map we can define the

pushforward as the composition

Rf∗DX(Ωk
X/S)

cf,πY−−−→ Rf∗RHomOX (Ωk
X/S , f

!π!
YOS)(4.7)

(f∗)∨−−−→ Rf∗RHomOY (f∗Ωk
Y/S , f

!π!
YOS)

→ Rf∗f
!RHomOY (Ωk

Y/S , π
!
YOS)

Trf−−→ DY (Ωk
Y/S).

Lemma 4.5. When f is a finite proper morphism, the two pushforwards defined by the
compositions (4.6) and (4.7) are equivalent.

Proof. By definition the map f∗ : Ωk
Y/S → f∗Ω

k
X/S is the same as the map Ωk

Y/S →

f∗f
∗Ωk

X/S

f∗−→ f∗Ω
k
X/S so we can write the composition (4.6) as

Rf∗DX(Ωk
X/S)

cf,πY−−−→ Rf∗RHomOX (Ωk
X/S , f

!π!
YOS)

(f∗)∨−−−→ Rf∗RHomOX (f∗Ωk
Y/S , f

!π!
YOS)

→ RHomOY (Rf∗f
∗Ωk

Y/S ,Rf∗f
!π!
YOS)

→ RHomOY (Ωk
Y/S ,Rf∗f

!π!
YOS)

Trf−−→ DY (Ωk
Y/S),

The equivalence boils down to the commutativity of the diagram

Rf∗RHomOX (f∗Ωk
Y/S , f

!π!
YOS) //

��

Rf∗f
!RHomOY (Ωk

Y/S , π
!
YOS)

Trf
��

RHomOY (Ωk
Y/S ,Rf∗f

!π!
YOS)

Trf // DY (Ωk
Y/S),

1Note that when u is étale, then it is clear from the definition of u# that u# = u∗, see [Con00, (2.2.7)]. In
this case we also write eu : u∗

∼=−→ u! for this isomorphism.
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which is well known, see e.g. [Har66, III. Prop. 6.9(d)]. �

The following proposition tells us that this pushforward is functorial and also gives us in
part (c) a technical property used for example in the proof of Proposition 4.8.

Proposition 4.6. ([CR11, Prop. 2.2.7.])
(a) id∗ = id.
(b) Let f : X → Y and g : Y → Z be two proper morphisms of NS-schemes. Then

(g ◦ f)∗ = g∗ ◦ Rg∗(f∗) : Rg∗Rf∗DX(Ωk
X/S)→ DZ(Ωk

Z/S).

(c) Let

X
′ u

′
//

f
′

��

X

f

��
Y
′ u // Y

be a Cartesian square of separated, finite type S-schemes with f proper, u étale and X of
pure S-dimension d. Then the following diagram commutes

u∗Rf̄∗DX(Ωk
X/S)

u∗(f∗)//

∼=
��

u∗DY (Ωk
Y/S)

∼=
��

Rf
′
∗DX(ωk

X′/S
)

f
′
∗ // DY ′ (ω

k
Y ′/S

).

The left vertical isomorphism is given by

(4.8) c−1
u′ ,πY

◦ eu′ ◦ (h∨
u′

)−1 ◦ βu′ ◦ α

where
αu,f : u∗Rf∗

∼=−→ Rf∗(u
′
)∗,

and the right vertial isomorphism is given by

(4.9) c−1
u,πY
◦ eu ◦ (h∨u)−1 ◦ βu.

Proof. The proof in our relative case is exacly like the proof in [CR11, 2.2.7.] with the
obvious change that the definition of the residual complex (in the proof of [CR11, lem. 2.2.12.])
is defined as

K = π∆
Y OS .

�

3.2. General Pushforward. Now we look at the case of a morphism

f : (X,Φ)→ (Y,Ψ)

in V∗. That is, we have a morphism f of NS-schemes such that f |Φ is proper and f(Φ) ⊆ Ψ.
As before we denote the S-dimension of X by dX , the S-dimension of Y by dY and the relative
S-dimension of f by r = dX − dY .

We recall the Nagata compactification theorem.

Theorem 4.7. Let X be a separated S-scheme of finite type with S quasi-compact and
quasi-separated. Then there exists an open immersion of S-schemes X → X̄ such that X is a
dense open in X̄ and X̄ → S is proper. Furthermore we may chose X̄ to be reduced.
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See [Nag63] for a proof in the Noetherian case, using valuation theory, and [Con07] for the
more general case, using scheme-theoretic methods.

We consider the Nagata compactification for the Y -scheme f : X → Y and obtain a Y -
morphism j : X → X̄ where f̄ : X̄ → Y is proper and X̄ is reduced. Since j : X → X̄ is a
separated morphism of finite type over the Notherian base Y and since each Z ∈ Φ is proper
over Y , the image j(Z) ⊂ X̄, with the induced subscheme structure, is a proper subscheme
over Y via f̄ : X̄ → Y . We can then view Φ as a family of supports on X̄ and the morphism
f̄

f̄ : (X̄,Φ)→ (Y,Ψ)

in V∗. Furthermore, the structure morphism π̄ : X̄ → S is flat. If dimS = 0 this is trivial. If
dimS = 1 then π̄ is flat if and only if each generic point of X̄ is sent to the generic point of
S. But X ⊂ X̄ is an open dense subset so any generic point of X̄ lies in X. The morphism
πX : X → S is flat by assumption and π̄ ◦ j = πX so any generic point η of X̄ is sent by π̄ to
πX(η) which is the generic point of S.

Our aim is to construct a morphism

H i
Φ(X,Ωj

X/S)→ H i−r
Ψ (Y,Ωj−r

Y/S)

Note that we have a morphism

mX : Ωj
X/S → RHomOX (ΩdX−j

X/S ,ΩdX
X/S)(4.10)

α 7→ (β 7→ α ∧ β)

for any j, which is an isomorphism if πX : X → S is smooth. Furthermore, again since X → S
is smooth, we have an isomorphism 2

(4.11) lX : ΩdX
X/S

∼=−→ π!
XOS [−dX ]

and combining these, we have an isomorphism

(4.12) Ωj
X/S

∼=−→ DX(ΩdX−j
X/S )[−dX ].

Consider the following composition:

DX(ΩdX−j
X/S )[−dX ]

cj,πX̄−−−→ RHomOX (ΩdX−j
X/S , j!π!

X̄OS)[−dX ](4.13)

e−1
j−−→ RHomOX (ΩdX−j

X/S , j∗π!
X̄OS)[−dX ]

h∨j−→ RHomOX (j∗ΩdX−j
X̄/S

, j!π!
X̄OS)[−dX ]

β−1
j−−→ j∗DX̄(ΩdX−j

X̄/S
)[−dX ],

where hj : j∗Ωk
X̄/S

→ Ωk
X/S is the canonical restriction isomorphism for any k ≥ 0. Taking

the i-th cohomology with supports Φ gives us an ismorphism

(4.14) H i
Φ(Ωj

X/S)
∼=−→ H i−dX

Φ (j∗DX̄(ΩdX−j
X̄/S

)).

2The maps mX and lX of course depend on j so the notation is a bit ambiguous, but this shouldn’t cause
any problems.
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By excision we have an isomorphism

(4.15) H i−dX
Φ (j∗DX̄(ΩdX−j

X̄/S
))
∼=−→ H i−dX

Φ (DX̄(ΩdX−j
X̄/S

))

and we have a natural morphism of enlarging supports

(4.16) H i−dX
Φ (DX̄(ΩdX−j

X̄/S
))→ H i−dX

f−1(Ψ)
(DX̄(ΩdX−j

X̄/S
)).

By lemma 4.2 we have
RΓΨRf̄∗F = Rf̄∗RΓf−1(Ψ)F

for any OX̄ -module F , so for all k ≥ 0 we have

Hk
Ψ(Rf̄∗F) = Hk

f̄−1(Ψ)(F)

and specifically for F = DX̄(ΩdX−j
X̄/S

) and using the fact that f−1(Ψ) = f̄−1(Ψ) we have

(4.17) H i−dX
f−1(Ψ)

(DX̄(ΩdX−j
X̄/S

)) = H i−dX
Ψ (Rf̄∗DX̄(ΩdX−j

X̄/S
)).

We now use the pushforward for the proper map f̄ that we constructed in 4.6 to obtain

(4.18) H i−dX
Ψ (Rf̄∗DX̄(ΩdX−j

X̄/S
))

f̄∗−→ H i−dX
Ψ (DY (ΩY/S)dX−j).

Finally we use that πY : Y → S is smooth to make the identification

H i−dX
Ψ (DY (ΩdX−j

Y/S )) = H i−r
Ψ (RHomOY (ΩdX−j

Y/S ,ΩdY
Y/S))(4.19)

= H i−r
Ψ (Ωj−r

Y/S).

The composition of (4.14)-(4.19) gives us

H i
Φ(Ωj

X/S)→ H i−r
Ψ (Ωj−r

Y/S),

which is the pushforward, after we sum over all i’s and j’s.

Now that we have this definition of the pushforward, there are two important things we
need to show:
i) That this pushforward is well defined. Namely, in the definition we make a choice of a

compactification and we need to show that the pushforward is independent of this choice.
ii) That this pushforward is functorial.

Proposition 4.8. The pushforward defined above is well defined.

Proof. To show that this definition is well defined, we assume we have two reduced
Y -schemes X̄1 and X̄2 such that the following diagram commutes:

X̄1

f̄1

  
X
. �

j1
==

f //� p

j2

!!

Y

X̄2,

f̄2

>>

where f̄1 and f̄2 are proper and j1 and j2 are open immersions making X a dense open
subscheme of X̄1 and X̄2 respectively.
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To show that the definition doesn’t depend on the choice of compactification j1 : X ↪→ X̄1

or j2 : X ↪→ X̄2 we must show that the following diagram commutes:

H i−dX
Φ (DX(ΩdX−j

X/S ))

H i−dX
Φ (j∗1DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Φ (j∗2DX̄2

(ΩdX−j
X̄2/S

))

H i−dX
Φ (DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Φ (DX̄2

(ΩdX−j
X̄2/S

))

H i−dX
Ψ (R(f̄1)∗DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Ψ (R(f̄2)∗DX̄2

(ΩdX−j
X̄2/S

))

H i−dX
Ψ (DY (ΩY/S)dX−j),

∼=
(1)

∼=
(2)

(3) ∼= (4)∼=

(6) (7)

(f̄1)∗ (f̄2)∗

where arrows (1) and (2) are the isomorphisms from (4.13), arrows (3) and (4) are the excision
isomorphisms and arrows (6) and (7) come from enlarging supports.

Notice that if X̄1 and X̄2 are two compactifications of X over Y , then there exists a third
one X̄ such that we have morphisms

g1 : X̄ → X̄1, and

g2 : X̄ → X̄2,

such that

gi|X = idX .

We can find this X̄ by considering the closure of the diagonal

X → X̄1 ×Y X̄2,

and the morphisms gi are the projections.
This allows us to reduce to the case where we have such a morphism g : X̄1 → X̄2 between

the compactifications. Notice that g is automatically proper.

We are thus reduced to showing that the following diagram commutes.
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H i−dX
Φ (DX(ΩdX−j

X/S ))

H i−dX
Φ (j∗1DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Φ (j∗2Rg∗DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Φ (j∗2DX̄2

(ΩdX−j
X̄2/S

))

H i−dX
Φ (DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Φ (Rg∗DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Φ (DX̄2

(ΩdX−j
X̄2/S

))

H i−dX
f−1(Ψ)

(DX̄1
(ΩdX−j

X̄1/S
)) H i−dX

f−1(Ψ)
(Rg∗DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Φ (DX̄2

(ΩdX−j
X̄2/S

))

H i−dX
Ψ (R(f̄1)∗DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Ψ (R(f̄2)∗Rg∗DX̄1

(ΩdX−j
X̄1/S

)) H i−dX
Ψ (R(f̄2)∗DX̄2

(ΩdX−j
X̄2/S

))

H i−dX
Ψ (DY (ΩY/S)dX−j)

βj1◦h
∨
j1
◦e−1
j1
◦cj1,πX̄1

βj2◦h
∨
j2
◦e−1
j2
◦cj2,πX̄2

exc.

αj2,g j∗2 (g∗)

exc. 1 exc.

g∗

2

g∗

3

(f̄1)∗
(f̄1)∗

g∗

(f̄2)∗

The top-left triangle commutes by definition and the top-right triangle commutes by Propo-
sition 4.6(c).

The commutativity of the three squares on the left is clear once we observe that since
g|X = idX we have

g−1(Φ) = Φ and

g−1(f−1(Ψ)) = f−1(Ψ).

The excision square 1 clearly commutes, and 2 is just enlarging supports and commutes.
The commutativity of 3 is clear and the bottom-left triangle is tautological. The bottom-
right triangle commutes by 4.6(b). �

Now we can show that this pushforward is functorial.

Proposition 4.9. (1) H∗(id) = id.
(2) If f : (X,Φ)→ (Y,Ψ) and g : (Y,Ψ)→ (Z,Ξ) are morphisms in V∗ then

H∗(g ◦ f) = H∗(g) ◦H∗(g).

Proof. (1) We may assume that X is connected. The statement is clear since id :
(X,Φ)→ (X,Φ) is proper so we have

H i
Φ(id) = id : H i

Φ(Ωj
X/S)→ H i

Φ(Ωj
X/S)

for all i, j.
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(2) Now we fix some notation. Consider the following diagram

X2

f2

  

f̄

��

X1

f1

!!

?�

j2

OO

Y1

g1

  
X
?�

j1

OO

f
//

j

??

Y g
//

?�

jY

OO

Z

where

X1

f1

  
X
?�

j1

OO

f
// Y,

Y1
g1

##
Y g

//
?�

jY

OO

Z and

X2

f2

  
X1

jX2

OO

jY ◦f1

// Y1

are compactifications of f , g and jY ◦ f1 respectively. We notice that j is an open
immersion of X into X2 making it a dense open subscheme and that f̄ is proper so

X
j−→ X2

f̄−→ Z

is a compactification of g ◦ f . Furthermore, we may consider

X1 := f−1
1 (Y ),

(since f−1
1 (Y ) contains j1(X) and f1 restricted to a closed subscheme will still be

proper). Thus we may assume that the commutative diagram

(4.20) X1
j2 //

f1

��

X2

f2

��
Y

jY // Y1

is Cartesian.
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By Proposition 4.8 showing the statement amounts to showing that the following
diagram commutes

Hk
Φ(X, j∗1DX1(Ωq

X1/S
)) Hk

Φ(X,DX(Ωq
X/S))

Hk
f−1
1 (Φ)

(X1, DX1(Ωq
X1/S

)) Hk
Φ(X1, DX1(Ωq

X1/S
)) Hk

Φ(X, j∗DX2(Ωq
X2/S

))

Hk
Ψ(Y,R(f1)∗DX1(Ωq

X1/S
)) Hk

Φ(X2, DX2(Ωq
X2/S

))

Hk
Ψ(Y,DY (Ωq

Y/S)) Hk
(g1◦f2)−1(Ξ)(X2, DX2(Ωq

X2/S
))

Hk
Ψ(Y, j∗YDY1(Ωq

Y1/S
)) Hk

Ψ(Y1, DY1(Ωq
Y1/S

)) Hk
Ξ(Z,Rf̄∗DX2(Ωq

X2/S
))

Hk
g−1
1 (Ξ)

(Y1, DY1(Ωq
Y1/S

)) Hk
Ξ(Z,DZ(Ωq

Z/S))

Hk
Ξ(Z,R(g1)∗DY1(Ωq

Y1/S
)),

exc. 1 αg◦f

αf

3

t1

t3

2

t2

exc.

(f1)∗

αg

exc.

4 f̄∗

(g1)∗

for k, q ≥ 0, where

αf := β−1
j1
◦ h∨j1 ◦ e

−1
j1
◦ cj1,πX1

,

αg := β−1
jY
◦ h∨jY ◦ e

−1
jY
◦ cjY ,πY1

, and

αg◦f := β−1
j ◦ h

∨
j ◦ e−1

j ◦ cj,πX2
.

We introduce the maps t1, t2 and t3, indicated by the dotted arrow, to break the
diagram into smaller more manageble diagrams. The morphisms t1, t2 and t3 are
defined as follows.

t1 : Hk
Φ(X1, DX1(Ωq

X1/S
))

β−1
j2
◦h∨j2◦e

−1
j2
◦cj2,πX2−−−−−−−−−−−−−→ Hk

Φ(X1, j
∗
2DX2(Ωq

X2/S
))

= Hk
Φ(X, j∗1j

∗
2DX2(Ωq

X2/S
))

= Hk
Φ(X, j∗DX2(Ωq

X2/S
)),

t2 : Hk
Φ(X, j∗DX2(Ωq

X2/S
)) = Hk

Φ(X2, DX2(Ωq
X2/S

))

→ Hk
f−1
2 (Ψ)

(X2, DX2(Ωq
X2/S

))

= Hk
Ψ(Y1, R(f2)∗DX2(Ωq

X2/S
))

(f2)∗−−−→ Hk
Ψ(Y1, DY1(Ωq

Y1/S
)),
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and

t3 : Hk
Φ(X1, DX1(Ωq

X1/S
))

β−1
j2
◦h∨j2◦e

−1
j2
◦cj2,πX2−−−−−−−−−−−−−→ Hk

Φ(X1, j
∗
1DX2(Ωq

X2/S
))

= Hk
Φ(X2, DX2(Ωq

X2/S
))

→ Hk
f−1
2 (Ψ)

(X2, DX2(Ωq
X2/S

))

= Hk
Ψ(Y1, R(f2)∗DX2(Ωq

X2/S
))

(f2)∗−−−→ Hk
Ψ(Y1, DY1(Ωq

Y1/S
)).

By construction of t1, t2 and t3 it is immediately clear that diagrams 1 and 2
commute. The commutativity of diagram 3 follows from Proposition 4.6(c) for the
Cartesian square (4.20). To show the commutativity of diagram 4 we first notice
that the triangle

Hk
Φ(X2, DX2(Ωq

X2/S
))

**tt
Hk
f−1
2 (Ψ)

(X2, DX2(Ωq
X2/S

)) // Hk
(g1◦f2)−1(Ξ)(X2, DX2(Ωq

X2/S
)),

where all arrows are enlarging supports, clearly commutes. We can therefore reduce
to showing that the following diagram commutes

(4.21)

Hk
f−1
2 (Ψ)

(X2, DX2(Ωq
X2/S

)) Hk
(g1◦f2)−1(Ξ)(X2, DX2(Ωq

X2/S
))

Hk
Ψ(Y,R(f2)∗DX2(Ωq

X2/S
)) Hk

Ξ(Z,Rf̄∗DX2(Ωq
X2/S

))

Hk
Ψ(Y1, DY1(Ωq

Y1/S
)) Hk

Ξ(Z,DZ(Ωq
Z/S))

Hk
g−1
1 (Ξ)

(Y1, DY1(Ωq
Y1/S

)) Hk
Ξ(Z,R(g1)∗DY1(Ωq

Y1/S
)).

(f2)∗ f̄∗

(g1)∗

we can write the composition

Hk
(g1◦f2)−1(Ξ)(X2, DX2(Ωq

X2/S
)) = Hk

Ξ(Z,Rf̄∗DX2(Ωq
X2/S

))
f̄∗−→ Hk

Ξ(Z,DZ(Ωq
Z/S))
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as

Hk
(g1◦f2)−1(Ξ)(X2, DX2(Ωq

X2/S
)) = Hk

f−1
2 (g−1

1 (Ξ))
(X2, DX2(Ωq

X2/S
))

= Hk
g−1
1 (Ξ)

(Y1, R(f2)∗DX2(Ωq
X2/S

))

(f2)∗−−−→ Hk
g−1
1 (Ξ)

(Y1, DY1(Ωq
Y1/S

))

= Hk
Ξ(Z,R(g1)∗DZ(Ωq

Z/S))

(g1)∗−−−→ Hk
Ξ(Z,DZ(Ωq

Z/S)),

and therefore the commutativity of (4.21) follows from the commutativity of the
following diagram

Hk
(g1◦f2)−1(Ξ)(X2, DX2(Ωq

X2/S
))

Hk
f−1
2 (Ψ)

(X2, DX2(Ωq
X2/S

)) Hk
f−1
2 (g−1

1 (Ξ))
(X2, DX2(Ωq

X2/S
))

Hk
Ψ(Y,R(f2)∗DX2(Ωq

X2/S
)) Hk

g−1
1 (Ξ)

(Y1, R(f2)∗DX2(Ωq
X2/S

))

Hk
Ψ(Y1, DY1(Ωq

Y1/S
)) Hk

g−1
1 (Ξ)

(Y1, DY1(Ωq
Y1/S

))

Hk
Ξ(Z,R(g1)∗DZ(Ωq

Z/S))

Hk
Ξ(Z,DZ(Ωq

Z/S))

(f2)∗ (f2)∗

(g1)∗

where the horizontal maps are enlarging of supports.
�

4. Hodge Cohomology as a Weak Cohomology Theory with Supports

4.1. Local Cohomology and symbol notation. In this section we recall some facts and
notation about local cohomology. We are consideringNS-schemes or regular closed subschemes
of those, and therefore all schemes considered are Noetherian, finite dimensional, and regular
(in particular Gorenstein). Thus the discussion in [CR11, Appendix A.1.-A.2.] holds without
change in our case and here we simply summarize the results we use. We refer to loc. cit. for
a more detailed discussion and proofs.

Let Y = Spec (B) be an affine scheme, X ⊂ Y a regular closed subscheme of pure codi-
mension c, I ⊂ B the ideal defining X, and t1, . . . , tc ∈ I a regular sequence with

√
(t) =

√
I,

where (t) = (t1, . . . , tc) denotes the ideal of B generated by the regular sequence. Denote by
K•(t) the Koszul complex of the sequence t, i.e.

K−q(t) = Kq(t) =

q∧
Bc,
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for q = 0, . . . , c, and

d−qK•(ei1,...,iq) = dK•q (ei1,...,iq) =

q∑
j=1

(−1)j+1tijei1,...,îj ...,iq ,

where {e1, . . . , ec} is the standard basis of Bc and ei1,...,iq := ei1 ∧ · · · ∧ eiq . For any B-module
M we define

K•(t,M) := HomB(K−•(t),M),

and denote the n-th cohomology of K•(t,M) by Hn(t,M). The map

HomB(
c∧
Bc,M)→M/(t)M,

φ 7→ φ(e1,...,c) + (t)M

induces a canonical isomorphism Hc(t,M) ∼= M/(t)M . There is an isomorphism

lim
→
M/(t)M = lim

→
Hc(t,M) ∼= Hc

X(Y, M̃),

where the direct limit is taken over all B-regular sequences t = t1, . . . , tc in B s.t. V ((t)) = X

and M̃ is the sheaf associated to M . We denote by
[
m
t

]
the image of m ∈ M under the

composition
M →M/(t)M → Hc(t,M)→ Hc

X(Y, M̃).

We have the following properties

Lemma 4.10. As before, we let Y = Spec (B) be an affine scheme, X ⊂ Y a regular closed
subscheme, I ⊂ B the ideal that defines X, and let M be a B-module.

(1) Let t′ and t be two regular sequences with V ((t)) = V ((t
′
)) = X and assume (t

′
) ⊂ (t).

Let T be the c× c-matrix such that t′ = Tt. Then[
det(T )m

t
′

]
=

[
m
t

]
,

for any m ∈M .
(2) For any regular sequence t = t1, . . . , tc with V ((t)) = X and any m,m′ ∈M , we have[

m+m
′

t

]
=

[
m
t

]
+

[
m
′

t

]
and[

tim
t

]
= 0, for all i.

(3) If M has finite rank, then

Hc
X(Y,OY )⊗B M

∼=−→ Hc
X(Y, M̃),[

b
t

]
⊗m 7→

[
bm
t

]
is an isomorphism.

Lemma 4.11. Let B be a ring, I ⊂ B an ideal, Y = Spec (B), X = Spec (B/I) such that
X ⊂ Y is a closed subscheme of pure codimension c, τ = τ1, . . . , τn ∈ I a B-regular sequence
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such that
√
I =

√
τ , and let f : M → N be a morphism of B-modules. Then the following

square commutes

M

f

��

m7→
[
m
τ

]
// Hc

X(Y, M̃)

f̃
��

N

n 7→
[
n
τ

] // Hc
X(Y, Ñ).

Proof. This is proven in [Gro68, Exp. II, Proposition 5.]. �

Lemma 4.12. Let X = Spec (A) be an affine NS-scheme and let V ⊂ X and W ⊂ X be
regular integral closed subschemes of codimensions c and e respectively. Furthermore we write
IV = (t1, . . . , tc) and IW = (s1, . . . , se) where t1, . . . , tc and s1, . . . , se are regular sequences in
A. Let M and N be A-modules, then for any m ∈M and n ∈ N we have

(4.22)
[

m
t1, . . . , tc

]
⊗A

[
n

s1, . . . , se

]
=

[
m⊗ n

t1, . . . , tc, s1, . . . , se

]
.

Proof. Recall that we construct
[

m
t1, . . . , tc

]
as the image of m under the composition

M → M

IVM

∼=−→ Hc(t,M)→ Hc(X, M̃),

where M̃ is the OX -module associated with M . We furthermore know that

Hc(t,M) ∼= Extc(A/IV ,M),

so we can consider the class [
m

t1, . . . , tc

]′
∈ Extc(A/IV ,M),

as the image of m ∈M under the composition

M → M

IVM

∼=−→ Hc(t,M)
∼=−→ Extc(A/IV ,M),

and if we can proof

(4.23)
[

m
t1, . . . , tc

]′
⊗A

[
n

s1, . . . , se

]′
=

[
m⊗ n

t1, . . . , tc, s1, . . . , se

]′
,

then (4.22) follows.
We note that

Extc(A/IV ,M) = HomD(A)(A/IV ,M [c]) = H0(HomK(A)(K
−•(t),M [c])),

where K(A) is the homotopy category of the category A−Mod and the second equality follows
from the fact thatK−•(t) is a free resolution ofA/IV inA−Mod. InH0(HomK(A)(K

−•(t),M [c])),[
m

t1, . . . , tc

]′
corresponds to the map that is the zero map in all degrees except degree −c and
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is the map

c∧
(Ac)→M,

e1 ∧ · · · ∧ ec 7→7→ (−1)
c(c+1)

2 m,

in degree −c. Similarly
[

n
s1, . . . , se

]′
corresponds to the map in H0(Hom•K(A)(K

−•(s), N [e]))

that is the zero map in all degrees except −e and is

e∧
(Ae)→ N,

f1 ∧ · · · ∧ fe 7→ (−1)
e(e+1)

2 n,

in degree −e, and
[

m⊗ n
t1, . . . , tc, s1, . . . , se

]′
corresponds to the map in

H0(Hom•K(A)(K
−•(t, s),M ⊗AN [c+ e])) that is the zero map in all degrees except −c− e and

is the map

c+e∧
(Ac+e)→M ⊗N,

e1 ∧ · · · ∧ ec ∧ f1 ∧ · · · ∧ fe 7→7→ (−1)
(c+e)(c+e+1)

2 m⊗ n,

in degree −c− e, where t, s denotes the regular sequence t1, . . . , tc, s1, . . . , se. But then (4.23)
follows from the definition of Koszul complexes as tensor products, see for example [Mat70,
§18.D]. �

4.2. Base-Change/Push-Pull.

Lemma 4.13. Let X be a flat proper S-scheme of pure S-dimension dX and let Y be an
NS-scheme of pure S-dimension dY . Denote by pr2 : X×S Y → Y the (proper) projection and
set d := dimS(X ×S Y ). Then for all j ≥ 0 there exists a morphism in D+

c (X ×S Y )

γ : pr!
2(OY )⊗ (pr∗2Ωj−dX

Y/S [dY ])→ DX×SY (pr∗2Ωd−j
Y/S)

satisfying the following conditions:

i) For all open subsets U ⊆ X smooth over S we denote by p2 : U ×S Y → Y the restriction
of pr2 to U ×S Y . Then γ|U×SY is the composition

(pr!
2(OY )⊗OX×SY pr

∗
2Ωj−dX

Y/S [dY ])|U×SY
∼=−→ ΩdX

U×SY/Y [dX ]⊗OU×SY p
∗
2Ωj−dX

Y/S [dY ]

∼=−→ ΩdX
U×SY/Y [dX ]⊗OU×SY p

∗
2RHomY (Ωd−j

Y/S ,Ω
dY
Y/S [dY ])

∼=−→ DU×SY (p∗2Ωd−j
Y/S).

where the last isomorphism is induced by the composition of the canonical isomorphisms

ΩdX
U×SY/Y [dX ]⊗OU×SY p

∗
2ΩdY

Y/S [dY ] ∼= Ωd
U×SY/S [d] ∼= π!

U×SY (OS).
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ii) The following diagram commutes:

Rpr2∗(pr
!
2(OY ))⊗ pr∗2Ωj−dX

Y/S [dY ]
γ //

proj. form.
��

Rpr2∗DX×SY (pr∗2Ωd−j
Y/S)

��

Rpr2∗(pr
!
2(OY ))⊗ Ωj−dX

Y/S [dY ]

Trpr2⊗id

))

RHomY (Ωd−j
Y/S , π

!
Y (OS))

Ωj−dX
Y/S [dY ],

∼=
66

where the vertical map on the right is Trpr2 ∼= adjunction ∼= cpr2,πY .

Proof. The proof here is identical to the proof of [CR11, Lem. 2.2.16.] with the obvious
change that we work with the dualizing complex π!

YOS and not π!
Y k. The main point here is

that the diagrams from [Con00] work in more generality than in this thesis and that we do
have canonical isomorphisms,

• π!
XOS ∼= ΩdX

X/S [dX ], and in general

• Ωj
X/S [n] ∼= DX(ΩdX−j

X/S )[n− dX ],
where πX : X → S is smooth, and X has pure dimension dX . �

Proposition 4.14. Let i : X ↪→ Y be a closed immersion of pure codimension c between
NS-schemes of pure S-dimension dX and dY , respectively. Then

RΓX/SΩq
Y/S [c] ∼= HcX/S(Ωq

Y/S)

in Db
qc(OY ) for all q ≥ 0. If we furthermore suppose that the ideal sheaf of X in OY is

generated by a sequence t = t1, . . . , tc of global sections of OY and define a morphism ıqX by

ıqX : i∗Ω
q
X/S → H

c
X/S(Ωc+q

Y/S),

α 7→ (−1)c
[
dtα̃
t

]
,

where α̃Ωq
Y/S is any lift of α and dt = dt1 ∧ · · · ∧ dtc. Then the following diagram in Db

qc(OY )

commutes:
i∗DX(ΩdX−q

X/S )[−dX ]
i∗ // DY (ΩdX−q

Y/S )[−dX ]

?

��
i∗Ω

q
X/S

?

OO

ıqX
��

Ωc+q
Y/S [c]

HX/S(Ωc+q
Y/S)

∼= // RΓX/S(Ωc+q
Y/S)[c].

OO

Proof. The proof of [CR11, Prop. 2.2.19.] carries over to our situation. In particular,
the first statement is proven in [CR11, Lemma A.2.5.] for Gorenstein schemes, and since X
and Y are smooth over the regular base S they are regular and hence Gorenstein. As for the
second part, we notice that the proper pushforward i∗ is defined in the same manner over S
as it is over k with the obvious change that over S we replace the dualizing complex π!

Xk by
the dualizing complex π!

XOS . �
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Corollary 4.15. Let

X
′ � � i

′
//

gX
��

Y
′

gY
��

X �
� i // Y,

be a Cartesian square of NS-schemes of pure S-dimensions dX , dX′ , dY , dY ′ , where i is a closed
immersion. Denote the codimension by c := dY −dX = dY ′ −dX′ . Then the following diagram
in Db

qc(Y ) commutes for all q ≥ 0:

i∗R(gX)∗Ω
q

X′/S
= R(gY )∗i

′
∗Ω

q

X′/S

?? // R(gY )∗Ω
c+q

Y ′/S
[c]

i∗Ω
q
X/S

? //

g∗X

OO

Ωc+q
Y/S [c].

g∗Y

OO

The map ? is given by the composition

i∗Ω
q
X/S

∼=−→ i∗DX(ΩdX−q
X/S )[−dX ]

i∗−→ DY (ΩdX−q
Y/S )[−dX ]

∼=−→ Ωc+q
Y/S [c],

where the isomorphisms on the ends are the self-duality isomorphisms (4.12), and the map ??
is given by applying R(gY )∗ to the analogous map for i′∗.

Proof. The proof of [CR11, Cor. 2.2.22.] carries over to our case without change. The
important thing is that we have a relative version of [CR11, Proposition 2.2.19.], namely
Proposition 4.14, and again we have the isomorphisms (4.12). �

Lemma 4.16. Consider a Cartesian diagram

(X ×S Y ′,Φ′)
gX×SY

��

f ′ // (Y ′,Ψ′)

gY
��

(X ×S Y,Φ)
f // (Y,Ψ)

such that f is induced by the projection X ×S Y → Y , with f, f ′ ∈ V∗ and gX×SY , gY ∈ V ∗.
Then

H∗(gY ) ◦H∗(f) = H∗(f
′) ◦H∗(gX×SY ).

Furthermore, H∗(f) : H(X ×S Y,Φ)→ H(Y,Ψ) factors over the projection

H(X ×S Y,Φ)→
⊕
i,j

H i
Φ(X ×S Y, pr∗1ΩdX

X/S ⊗ pr
∗
2Ωj

Y/S),

where dX is the S-dimension of X.

Proof. The proof of [CR11, Lemma 2.3.4] works in our generality once we have [CR11,
Lemma 2.2.19.], this is Lemma 4.13, and we know that we have a compactification of X, which
we do by Nagata’s Theorem 4.7. �

Proposition 4.17. Let

(X ′,Φ′)
f ′ //

gX
��

(Y ′,Ψ′)

gY
��

(X,Φ)
f // (Y,Ψ)
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be a Cartesian square with f, f ′ ∈ V∗ and gX , gY ∈ V ∗. Assume that either gY is flat or gY is
a closed immersion with f transversal to Y ′. Then

H∗(gY ) ◦H∗(f) = H∗(f
′) ◦H∗(gX).

Proof. In an analogous manner to the proof of [CR11, Prop. 2.3.7], this follows directly
from Proposition 4.9, Corollary 4.15 and Lemma 4.16. �

4.3. Künneth Morphism. We wish to construct a map

T : H(X,Φ)⊗H(Y,Ψ)→ H(X ×S Y,Φ×S Ψ),

for any NS-schemes with supports (X,Φ) and (Y,Ψ). We do this by defining a map

(4.24) × : Hn
Φ(X,Ωi

X/S)×Hm
Ψ (Y,Ωj

Y/S)→ Hn+m
Φ×Ψ (X ×S Y,Ωi+j

X×SY/S),

and then defining
T (αn,i ⊗ βm,j) = (−1)(n+i)m(αn,i × βm,j).

The map (4.24) is defined as a composition

Hn
Φ(X,Ωi

X/S)×Hm
Ψ (Y,Ωj

Y/S)

H∗(p1)×H∗(p2)−−−−−−−−−−→ Hn
Φ×SY (X ×S Y,Ωi

X×XY/S)×Hm
X×SΨ(X ×S Y,Ωj

X×SY/S)

t
′

−→ Hn+m
Φ×SΨ(X ×S Y,Ωi

X×SY/S ⊗
L
OX×SY

Ωj
X×SY/S)

m−→ Hn+m
Φ×SΨ(X ×S Y,Ωi+j

X×SY/S),

where the first map is induced by the projections,

p1 : X ×S Y → X, and
p2 : X ×S Y → Y,

and the map m is induced by the wedge product. It is the map t′ that we wish to construct.
We first construct it for the case where Φ = {V } and Ψ = {W}, the general case follows from
this by taking colimits in cohomology. Let X be some NS-scheme, V,W some closed subsets
in X and F and G be OX -modules. Then to find t′ it is sufficient to find a map

HomD(X)(OX ,RΓV (F•))×HomD(X)(OX ,RΓW (G•))→ HomD(X)(OX ,RΓV ∩W (F•⊗LOX G
•)),

for any complexes F• and G• of OX -modules. To construct t′ we then use this construction
specifically for F• = Ωi

X×SY/S [n] and G• = Ωj
X×SY/S [m]. That is, we wish to construct a map

(4.25) OX → RΓV ∩W (F• ⊗LOX G
•),

from given maps

OX → RΓV (F•) and
OX → RΓW (G•).

This is essentially just the derived tensor product. Namely, we have a natural map

OX ∼= OX ⊗LOX OX → RΓV (F•)⊗LOX RΓW (G•),

so constructing (4.25) boils down to showing that there exists a natural map

(4.26) RΓV (F•)⊗LOX RΓW (G•)→ RΓV ∩W (F• ⊗LOX G
•).
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Let jV : UV := X \ V ↪→ X be the open immersion. Then for any C• ∈ D(X) we have an
exact triangle

(4.27) RΓV (C•)→ C• → RjV ∗j
∗
V (C•),

and similarly for W and V ∩W . Now let us consider specifically

C• = RΓV (F•)⊗LOX RΓW (G•).

Then j∗V (C•) = 0 because j∗V commutes with the derived tensor product and j∗V RΓV (F•) = 0,
and therefore it follows from the exact triangle that RΓV (C•) = C•. Similarly we have
RΓW (C•) = C•. To construct (4.26) we have

C• = RΓW (C•)(4.28)
= RΓV (RΓW (C•))

= RΓV ∩W (C•)

→ RΓV ∩W (F• ⊗LOX G
•),

where the third equality follows from definition and the map is just the composition of the
natural enlarging of supports maps RΓV (F•)→ F• and RΓW (G•)→ G•.

Proposition 4.18. The triples (H∗, T, e) and (H∗, T, e) define right-lax symmetric monoidal
functors, where e : Z→ H(S, S) is the morphism defined in Definition 4.1.

Proof. We start by showing that (H∗, T, e) defines a right-lax symmetric monoidal func-
tor. What we need to show is
a) T is associative,
b) T is commutative,
c) e is a right and left unit,
d) T is a natural transformation of functors V ∗ × V ∗ → GrAb.
We go through these one by one.
a) The associativity of T follows from the associativity of the derived tensor product, and the

fact that if αn,i ∈ Hn
Φ(X,Ωi

X/S), βm,j ∈ Hm
Ψ (Y,Ωj

Y/S) and γl,k ∈ H l
Ξ(Z,Ωk

Z/S) then

T (T (αn,i ⊗ βm,j)⊗ γl,k) = (−1)(n+i)mT ((αn,i × βm,j)⊗ γl,k)

= (−1)(n+i)m(−1)(n+m+i+j)l(αn,i × βm,j)× γl,k
= (−1)(n+i)m(−1)(n+m+i+j)lαn,i × (βm,j × γl,k)
= T (αn,i ⊗ T (βm,j ⊗ γl,k)).

The penultimate equality follows from the associativity of the derived tensor product and
the last equality follows from

(n+ i)m+ (n+m+ i+ j)l = (m+ j)l + (n+ i)(m+ l).

b) We want to prove that the diagram

(4.29) H(X,Φ)⊗S H(Y,Ψ)
T //

��

H(X ×S Y,Φ×S Ψ)

H∗(ε1)
��

H(Y,Ψ)⊗S H(X,Φ)
T // H(Y ×S X,Ψ×S Φ)
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commutes., where

ε1 : (Y ×S X,Ψ×S Φ)→ (X ×S Y,Φ×S Ψ)

is the obvious map and the left vertical map is given by α⊗ β 7→ (−1)deg(α) deg(β)β ⊗ α. It
suffices to look at the case where Φ = V and Ψ = W where V and W are closed subsets
of X and Y respectively. Now let αi,p ∈ H i

V (X,Ωp
X/S) and βj,q ∈ Hj

W (Y,Ωq
Y/S). Then the

commutativity of (4.29) follows from the equation

(−1)(i+p)jH∗(ε1)(αi,p × βj,q) = (−1)(i+p)(j+q)+(j+q)iβj,q × αi,p,

i.e. from

(4.30) H∗(ε1)(αi,p × βj,q) = (−1)ij+pqβj,q × αi,p.

This is clear since the isomorphism Ωp
X/S [i] ⊗LOX×SY Ωq

Y/S [j]
∼=−→ Ωq

Y/S [j] ⊗LOX×SY Ωp
X/S [i]

has sign (−1)ij (see for example [Sta18, Tag: 0BYI]), and if around any point x, X ×S Y
is given by local coordinates z1, . . . , zd and a = dzl1 ∧ . . . ∧ dzlp ∈ Ωp

X×SY/S and b =

dzk1 ∧ . . . ∧ dzkq ∈ Ωq
X×SY/S then we have

a ∧ b = dzl1 ∧ . . . ∧ dzlp ∧ dzk1 ∧ . . . ∧ dzkq
= (−1)pqdzk1 ∧ . . . ∧ dzkq ∧ dzl1 ∧ . . . ∧ dzlp
= (−1)pqb ∧ a.

c) This is clear.
d) We want to prove that for any morphisms f : (X1,Φ1) → (X2,Φ2) and g : (Y1,Ψ1) →

(Y2,Ψ2) in V ∗ the following diagram commutes

(4.31) H(X2,Φ2)⊗S H(Y2,Ψ2)
T //

H∗(f)×H∗(g)
��

H(X2 ×S Y2,Φ2 ×S Ψ2)

H∗(f×g)
��

H(X1,Φ1)⊗S H(Y1,Ψ1)
T // H(X1 ×S Y1,Φ1 ×S Ψ1).

We can reduce to the case where Φi = Vi and Ψi = Wi for closed sets Vi ∈ Xi and Wi ∈ Yi
and i = 1, 2. Then what we need to show is that for any i, j, p, q the following square
commutes

H i
V2×SY2

(X2 ×S Y2,Ω
p
X2×SY2/S

)×Hj
X2×SW2

(X2 ×S Y2,Ω
q
X2×SY2/S

)
t //

H∗(f×g′ )×H∗(f ′×g)
��

H i+j
V2×SW2

(X2 ×S Y2,Ω
p+q
X2×SY2/S

)

H∗(f×g)
��

H i
V1×SY1

(X1 ×S Y1,Ω
p
X1×SY1/S

)×Hj
X1×SW1

(X1 ×S Y1,Ω
q
X1×SY1/S

)
t // H i+j

V1×SW1
(X1 ×S Y1,Ω

p+q
X1×SY1/S

),

where t is the map m ◦ t′ from the definition of T , and f
′

: (X1, X1) → (X2, X2) and
g
′

: (Y1, Y1)→ (Y2, Y2) have the same underlying maps of schemes as f and g respectively.
We can furthermore reduce to showing the following. Let f : X → Y be a map of NS-
schemes, V,W be closed subsets of Y and V ′ = f−1(V ),W ′

= f−1(W ). Let F and G be
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locally free OY -modules, then we want to show that the following diagram commutes.

H i
V (Y,F)×Hj

W (Y,G)
t
′

//

f∗×f∗
��

H i+j
V ∩W (Y,F ⊗OX G)

f∗

��

H i
V ′

(X, f∗F)×Hj

W ′
(X, f∗G)

t
′
// H i+j

V ′∩W ′ (X, f
∗F ⊗OX f∗G),

where the map f∗ : H i
V (Y,F)→ H i

V ′
(X, f∗F) is induced from the map F 7→ Rf∗f

∗F and
similar for the other cohomology groups. We now identify the cohomology groups with
Hom groups in the derived category, i.e.

H i
V (Y,F) = HomD(Y )(OY ,RΓV (F)[i]),

and similarly for the other cohomology groups. The map f∗ : H i
V (Y,F) → H i

V ′
(X, f∗F)

corresponds to a map on the Hom-side, which we also call f∗, which we can describe as the
composition

HomD(Y )(OY ,RΓV (F)[i])
Lf∗−−→ HomD(X)(f

∗OY , f∗RΓV (F)[i])(4.32)
unit−−→ HomD(X)(OX , f∗RΓV (Rf∗f

∗F)[i])
∼=−→ HomD(X)(OX , f∗Rf∗RΓV ′ (f

∗F)[i])

counit−−−−→ HomD(X)(OX ,RΓV ′ (f
∗F)[i]).

The commutativity of the diagram now follows from the functoriality of Lf∗ and ⊗L, and
the fact that Lf∗ commutes with ⊗L.

To show that (H∗, T, e) is a (right-lax) symmetric monoidal functor we go through the
same steps as for (H∗, T, e).
a) This is the same as for (H∗, T, e).
b) We want to show that the following diagram commutes

(4.33) H(X,Φ)⊗S H(Y,Ψ)
T //

��

H(X ×S Y,Φ×S Ψ)

H∗(ε2)

��
H(Y,Ψ)⊗S H(X,Φ)

T // H(Y ×S X,Ψ×S Φ),

where
ε2 : (X ×S Y,Φ×S Ψ)→ (Y ×S X,Ψ×S Φ)

is the obvious map and the left vertical map is given by α ⊗ β 7→ (−1)deg(α) deg(β). This
follows from what we did for (H∗, T, e) since H∗(ε1) = H∗(ε2).

c) Again this is clear.
d) We want to prove that for any morphisms f : (X1,Φ1) → (X2,Φ2) and g : (Y1,Ψ1) →

(Y2,Ψ2) in V∗ the following diagram commutes

(4.34) H(X1,Φ1)⊗S H(Y1,Ψ1)
T //

H∗(f)×H∗(g)
��

H(X1 ×S Y1,Φ1 ×S Ψ1)

H∗(f×g)
��

H(X2,Φ2)⊗S H(Y2,Ψ2)
T // H(X2 ×S Y2,Φ2 ×S Ψ2).
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It suffices to show that (4.34) commutes when g = idY1 . This is because we can factor the
diagram (4.34) into

H(X1,Φ1)⊗S H(Y1,Ψ1)
T //

H∗(f)×H∗(idY1
)

��

H(X1 ×S Y1,Φ1 ×S Ψ1)

H∗(f×idY1
)

��
H(X2,Φ2)⊗S H(Y1,Ψ1)

T //

��

H(X2 ×S Y1,Φ2 ×S Ψ1)

H∗(ε2)
��

H(Y1,Ψ1)⊗S H(X2,Φ2)
T //

H∗(g)×H∗(idX2
)

��

H(Y1 ×S X2,Ψ1 ×S Φ2)

H∗(g×idX2
)

��
H(Y2,Ψ2)⊗S H(X2,Φ2)

T //

��

H(Y2 ×S X2,Ψ2 ×S Φ2)

H∗(ε2)

��
H(X2,Φ2)⊗S H(Y2,Ψ2)

T // H(X2 ×S Y2,Φ2 ×S Ψ2),

and the second and final squares are known from (4.33) and if we can prove that the top
square commutes then the third one commutes as well. So for any p, q, i, j we want to show
that the following diagram commutes

(4.35) H i
Φ1

(X1,Ω
p
X1/S

)×Hj
Ψ(Y,Ωq

Y/S)

H∗(f)×H∗(idY )

��

× // H i+j
Φ1×SΨ(X1 ×S Y,Ωp+q

X1×SY/S)

H∗(f×idY )

��

H i−r
Φ2

(X2,Ω
p−r
X2/S

)×Hj
Ψ(Y,Ωq

Y/S)
× // H i+j−r

Φ2×SΨ(X2 ×S Y,Ωp+q−r
X2×SY/S),

where r is the relative dimension r := d1− d2 with di := dimS(Xi). Now recall that by the
definition of the map × we want to calculate

(4.36) H∗(f × idY )(t(H∗(p1)(a), H∗(p2)(b))),

where a ∈ H i
Φ1

(X1,Ω
p
X1/S

), b ∈ Hj
Ψ(Y,Ωq

Y/S) and p1 : (X1 ×S Y,Φ1 ×S Y ) → (X1,Φ1),

p2 : (X1×S Y,X1×SΨ)→ (Y,Ψ) are the canonical projections as maps in V ∗ and t = m◦t′

from the definition of T . We can factor p2 as

X1 ×S Y
p2

��

f×idY // X2 ×S Y

q2
uu

Y,

where q2 : X2 ×S Y → Y is the canonical projection, and we consider these as maps
f × idY : (X1×S Y,X1×S Ψ)→ (X2×S Y,X2×S Ψ), and q2 : (X2×S Y,X2×S Ψ)→ (Y,Ψ)
in V ∗. Therefore, (4.36) can be written as

H∗(f × idY )(t(H∗(p1)(a), H∗(f × idY )H∗(q2)(b))),

which by the projection formula in Lemma 4.19 below is equal to

(4.37) t(H∗(f × idY )H∗(p1)(a), H∗(q2)(b)).
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We have a Cartesian square

X1 ×S Y
f×idY //

p1

��

X2 ×S Y
q1

��
X1

f // X2,

where q1 : X2 ×S Y → X2 is the projection map. Since q1 is smooth, being a base chance
of the smooth structure map Y → S, Proposition 4.17 tells us that H∗(f × idY )H∗(p1) =
H∗(q1)H∗(f), which means that (4.37) is equal to

t(H∗(q1)H∗(f)(a), H∗(q2)(b)) = t(H∗(q1)H∗(f)(a), H∗(q2)H∗(idY )(b))

which is precisely what we get by going counterclockwise in (4.35).
�

Lemma 4.19. Let f : (X,Φ)→ (Y,Ψ) be a morphism in V∗ and let α ∈ H i
Φ(X,Ωp

X/S) and

β ∈ Hj
Ψ(Y,Ωq

Y/S). Then the following equality holds

H∗(f)(t(α,H∗(f)(β))) = t(H∗(f)α, β),

where we also consider f as a morphism (X, f−1(Ψ))→ (Y,Ψ) in V ∗.

Proof. Let dX := dimS(X), dY := dimS(Y ), and r := dX − dY . We want to prove that
the following diagram commutes

(4.38) H i
Φ(X,Ωp

X/S)×Hj
Ψ(Y,Ωq

Y/S) //

H∗(f)×id
��

H i+j
Φ (X,Ωp+q

X/S)

H∗(f)
��

H i−r
Ψ (Y,Ωp−r

Y/S)×Hj
Ψ(Y,Ωq

Y/S)
t // H i+j−r

Ψ (Y,Ωp+q−r
Y/S ),

where the top horizontal map is given by (α, β) 7→ t(α,H∗(f)(β)). Let

X

f   

� � j // X̄

f̄
��
Y

be a Nagata compactification of f and consider the OX̄ -module DX̄(ΩdX−p
X̄

). Notice that

DX̄(ΩdX−p
X̄/S

)|X := RHomOX (ΩdX−p
X̄/S

|X , (π!
X̄OS)|X)(4.39)

∼= RHomOX (ΩdX−p
X/S , j∗π!

X̄OS)

∼= RHomOX (ΩdX−p
X/S , j!π!

X̄OS)

∼= RHomOX (ΩdX−p
X/S , π!

XOS)

=: DX(ΩdX−p
X/S )

∼= Ωp
X/S [dX ],

where πX : X → S and πX̄ → S are the structure maps, the isomorphism

RHomOX (ΩdX−p
X/S , j∗π!

X̄OS)
∼=−→ RHomOX (ΩdX−p

X/S , j!π!
X̄OS)



4. HODGE COHOMOLOGY AS A WEAK COHOMOLOGY THEORY WITH SUPPORTS 77

is induced by ej for the open immersion j, see Notation 4.4, and the final isomorphism holds
sinceX is smooth over S so π!

XOS ∼= ΩdX
X/S [dX ] and Ωp

X/S
∼= Hom(ΩdX−p

X/S ,ΩdX
X/S). Furthermore,

since Y is smooth over S and dY = dX − r, we have Ωp−r
Y/S [dY ] ∼= DY (ΩdX−p

Y/S ). By enlarging
supports we can clearly reduce to the case Φ = f̄−1(Ψ), where we can view Φ as a family of
supports on X̄1 via the open immersion. By part (1) of Lemma 4.20 below we know that

H i+j
Φ (X,DX(ΩdX−p

X/S )[−dX ]⊗OX f∗Ω
q
Y/S)

∼=
��

µ|X [−dX ]// H i+j
Φ (X,DX(Ω

dX−(p+q)
X/S )[−dX ])

∼=
��

H i+j
Φ (X,Ωp

X/S ⊗OX f
∗Ωq

Y/S) // H i+j
Φ (X,Ωp+q

X/S)

commutes, and by (4.39) we can write the top line as

H i+j
Φ (X, j∗DX̄(ΩdX−p

X̄/S
)[−dX ]⊗OX j

∗f̄∗Ωq
Y/S)→ H i+j

Φ (X, j∗DX̄(Ω
dX−(p+q)

X̄/S
)[−dX ])

and by excision we have the following commutative square

H i+j
Φ (X, j∗DX̄(ΩdX−p

X̄/S
)[−dX ]⊗OX j∗f̄∗Ω

q
Y/S)

∼=
��

µ|X [−dX ]// H i+j
Φ (X, j∗DX̄(Ω

dX−(p+q)

X̄/S
)[−dX ])

∼=
��

H i+j
Φ (X̄,DX̄(ΩdX−p

X̄/S
)[−dX ]⊗OX̄ f̄

∗Ωq
Y/S)

µ[−dX ] // H i+j
Φ (X̄,DX̄(Ω

dX−(p+q)

X̄/S
)[−dX ]).

We write

H i+j
Φ (X̄,DX̄(Ω

dX−(p+q)

X̄/S
)[−dX ]) = H i+j

Ψ (Y,Rf̄∗DX̄(Ω
dX−(p+q)

X̄/S
)[−dX ])

and

H i+j
Φ (X̄,DX̄(ΩdX−p

X̄/S
)[−dX ]⊗OX̄ f̄

∗Ωq
Y/S) = H i+j

Ψ (Y,Rf̄∗(DX̄(ΩdX−p
X̄/S

)[−dX ]⊗OX̄ f̄
∗Ωq

Y/S))

(4.40)

∼= H i+j
Ψ (Y,Rf̄∗DX̄(ΩdX−p

X̄/S
)[−dX ]⊗OX̄ Ωq

Y/S)

and by part (2) of Lemma 4.20 we know that the square

H i+j
Ψ (Y,Rf̄∗DX̄(ΩdX−p

X̄/S
)[−dX ]⊗OY Ωq

Y/S)
µ[−dX ] //

f̄∗⊗id
��

H i+j
Ψ (Y,Rf̄∗DX̄(Ω

dX−(p+q)

X̄/S
)[−dX ])

f̄∗
��

H i+j
Ψ (Y,DY (ΩdX−p

Y/S )[−dX ]⊗OY Ωq
Y/S) // H i+j

Ψ (Y,DY (Ω
dX−(p+q)
Y/S )[−dX ]),

commutes. The square

H i
Φ(X̄,DX̄(ΩdX−p

X̄/S
)[−dX ])×Hj(Y,Ωq

Y/S)
t
′
(−,f̄(−)) //

��

H i
Φ(X̄,DX̄(ΩdX−p

X̄/S
)⊗OX̄ f̄Ωq

Y/S)

��

H i
Ψ(Y,Rf̄∗DX̄(ΩdX−p

X̄/S
)[−dX ])×Hj(Y,Ωq

Y/S)
t
′
// H i+j

Ψ (Y,Rf̄∗DX̄(ΩdX−p
X̄/S

)[−dX ]⊗OY Ωq
Y/S),
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commutes, where the right-hand side vertical arrow is the composition from (4.40). To see this
we identify H i

Φ(X̄,DX̄(ΩdX−p
X̄/S

)[−dX ]) with RHomD(X̄)(OX̄ ,F) where F :=

RΓΦ(DX̄(ΩdX−p
X̄/S

))[−dX + i], Hj(Y,Ωq
Y/S) with RHomD(Y )(OY , E) where E := Ωq

Y/S [j] etc.
We take α ∈ RHomD(X̄)(OX̄ ,F) and β ∈ RHomD(Y )(OY , E) and go clockwise to obtain the
map Rf̄∗(α ⊗ Lf̄∗(β)). If we go counterclockwise we obtain the map Rf̄∗(α) ⊗ β, and these
agree by the projection formula in the derived category.

To finish showing (4.38) we therefore need to show that the following square commutes

H i
Ψ(Y,Rf̄∗DX̄(ΩdX−p

X̄/S
)[−dX ])×Hj(Y,Ωq

Y/S)

f̄∗×id
��

t
′
// H i+j

Ψ (Y,Rf̄∗DX̄(ΩdX−p
X̄/S

)[−dX ]⊗OY Ωq
Y/S)

f̄∗⊗id
��

H i
Ψ(Y,DY (ΩdX−p

Y/S [−dX ]))×Hj(Y,Ωq
Y/S)

t
′

// H i+j
Ψ (Y,DY (ΩdX−p

Y/S [−dX ])⊗OY Ωq
Y/S),

and this is clear from the functoriality of the construction of t′ . �

Lemma 4.20. Let f : X → Y be a morphism of S-schemes. Assume Y is smooth over S
and X has pure S-dimension d. Then for any p, q ≥ 0, there is a morphism

µ : DX(Ωd−p
X/S)⊗ f∗Ωq

Y/S → DX(Ω
d−(p+q)
X/S ),

such that

(1) if U ⊆ X is an open subset, smooth over S, then the diagram

DU (Ωd−p
U/S)[−d]⊗ f |∗UΩq

Y/S

µ|U [−d]//

∼=
��

DU (Ω
d−(q+p)
U/S )[−d]

∼=
��

Ωp
U/S ⊗ f |

∗
UΩq

Y/S

α⊗β 7→α∧f∗(β) // Ωp+q
U/S

commutes.
(2) If f is proper, then the diagram

Rf∗DX(Ωd−p
X/S)⊗ Ωq

Y/S

∼= //

f∗⊗id

**

Rf∗(DX(Ωd−p
X/S)⊗ f∗Ωq

Y/S)
µ // Rf∗DX(Ω

d−(p+q)
X/S )

f∗
��

DY (Ωd−p
Y/S)⊗ Ωq

Y/S
// DY (Ω

d−(p+q)
Y/S )

commutes, where the lower horizontal map is induced by

Hom(Ωd−p
Y/S ,Ω

dY
Y/S)⊗ Ωq

Y/S → Hom(Ω
d−(p+q)
Y/S ,ΩdY

Y/S),

φ⊗ α 7→ φ(α ∧ (·)).

Proof. The proof of this is exactly the proof of [CR11, Lemma 2.4.4.] with the obvious
change that the dualizing complexes π!

Xk and π!
Y k are replaced by the dualizing complexes

π!
XOS and π!

YOS respectivly. �
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4.4. Summary and Pure Hodge Cohomology.

Proposition 4.21. The quadruple (H∗, H
∗, T, e) is a weak cohomology theory with sup-

ports.

Proof. Condition (1) in Definition 1.10 is clear, condition (2) is proven in Proposition
4.18, condition (3) is simply the definition of the grading, and finally condition (4) is proven
in Proposition 4.17. �

We now define the pure part of H. Namely consider for any (X,Φ) ∈ obj(V∗) = obj(V ∗)
the graded abelian group HP ∗(X,Φ) that is given in degree 2n as

HP 2n(X,Φ) = Hn
Φ(X,Ωn

X/S),

and that is zero in odd degrees. We let HP∗(X,Φ) be the graded abelian group which in
degree 2n equals

HP2n(X,Φ) =
⊕
r

HP 2 dimS Xr−n(Xr,Φ),

where X = qXr is the decomposition of X into its connected components.
We now have a quadruple (HP∗, HP

∗, T, e) where T and e are the same as in (H∗, H
∗, T, e)

and this defines aWCTS and there is a natural inclusion map (HP∗, HP
∗, T, e)→ (H∗, H

∗, T, e)
that clearly defines a morphism in T.

5. Cycle Class

5.1. Construction of the Cycle Class. We recall some notation

Notation 4.22.
• ηi : ExtnY (i∗OX ,F) → ωX/Y ⊗ i∗(F) is the Fundamental Local Isomorphism, for an
l.c.i. morphism i : X → Y of pure codimension n. (See [Con00, §2.5.])
• ζ ′f,g : ωX/Z → ωX/Y ⊗ f∗ωY/Z are isomorphisms for morphisms f : X → Y and
g : Y → Z such that each og f , g, and g ◦ f is either separated smooth, or an l.c.i.
morphism.3 (See [Con00, §2.2.])
• df : f [

∼=−→ f ! is and isomorphism for any finite map f . (See [Con00, (3.3.19.)])
• ψg,f : (f ◦ g)] → g[ ◦ f ] is an isomorphism defined for f : Y → Z a separated smooth
morphism, g : X → Y is a finite morphism, and f ◦g is a smooth separated morphism.
(See [Con00, (2.7.5.)])

We begin by defining a cycle class for regular, irreducible closed subschemes. Let X be an
NS-scheme and let i : Z ↪→ X be a closed immersion of a regular, irreducible closed subscheme
Z to X and denote by c := codim(Z,X). Then i is a regular closed immersion of codimension
c. Let I be the ideal sheaf of i. We have a well defined map

I/I2 → i∗(Ω1
X/S) =

Ω1
X/S

I
ā 7→ da,

and by taking the wedge product
∧c :=

∧c
OZ we get a map

(4.41)
c∧
I/I2 φ−→ i∗Ωc

X/S .

3The precise definition depends on the cases, i.e. whether all are smooth, all are l.c.i. morphisms, etc. The
definition in [Con00] lists the different cases and gives a precise definition in each case.
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The OZ-module
∧c I/I2 is invertible with inverse ωZ/X , so by tensoring (4.41) with ωZ/X we

get

(4.42) OZ ∼=
c∧
I/I2 ⊗OZ ωZ/X

φ⊗id−−−→ i∗Ωc
X/S ⊗OZ ωZ/X .

Since i is a regular closed immersion (so in particular an l.c.i. morphism) we know that
ωZ/X ∼= i!OX [c] and we furthermore have

i∗Ωc
X/S ⊗OZ i

!OX [c] ∼= i!(Ωc
X/S)[c],

see for example [Con00, §2.5], and we therefore have a morphism

(4.43) OZ → i!(Ωc
X/S)[c].

By adjunction of Ri∗ and i!, (4.43) gives a map

(4.44) i∗OZ → Ωc
X/S [c].

Applying RΓZ to this and taking the zeroth cohomology gives us then

(4.45) H0(Z,OZ)
γZ−→ Hc

Z(X,Ωc
X/S),

and we define
cl(Z,X) := γZ(1).

If the ideal sheaf I of i : Z ↪→ X is globally generated by a regular sequence s1, . . . , sc
then equivalently the class element cl(Z,X) is explicitly defined as the image of the map
1 7→ s̄∨1 ∧ · · · ∧ s̄∨c ⊗ i∗X(dsc ∧ · · · ∧ ds1) ∈ Hom(OZ , ωZ/X ⊗OZ i∗XΩc

X/S) under the composition

Hom(OZ , ωZ/X ⊗OZ i
∗
XΩc

X/S) = Γ(Z,H0(RHom(OZ , ωZ/X ⊗OZ i
∗
XΩc

X/S)))(4.46)

η−1
iX−−→ Γ(Z, Extc(OZ , i!XΩc

X/S))

∼= Extc((iX)∗OZ ,Ωc
X/S)

→ Hc
Z(X,Ωc

X/S),

where the map ηiX is the Fundamental Local Isomorphism, see Notation 4.22.4
The following proposition tells us that we can define a cycle class on all irreducible closed

subschemes Z in X by spreading out from the regular locus.

Proposition 4.23. Let X be an NS-scheme and let Z ⊂ X be an irreducible closed subset
of codimension c. There is a class cl(Z,X) ∈ Hc

Z(X,Ωc
X/S) such that

H∗(j)(cl(Z,X)) = cl(U ∩ Z,U)

for every open U ⊂ X such that U ∩ Z is regular and non-empty and j : (U,U ∩ Z)→ (X,Z)
is the map in V ∗ induced by the open immersion U ↪→ X. This class is unique by semi-purity.

Proof. Step 1: Let η be the generic point of Z. Define

Hc
η(X,Ω

c
X/S) := lim−→

U3η
Hc
U∩Z(U,Ωc

C/S)

where the limit runs over all open subschemes U ⊂ X such that η ∈ U . Choose
U such that U ∩ Z is regular, then the image of cl(U ∩ Z,U) in Hc

η(X,Ω
c
X/S) is

4Here we use adjunction and that OZ is a locally free OZ-module to get the isomorphism
Γ(X, Extc(OZ , i!XΩcX/S)) ∼= Extc((iX)∗OZ ,ΩcX/S).
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independent of the choice of U by Proposition 4.17. We denote this local class by
cl(Z,X)η or cl(Z)η.

Step 2: A class α ∈ Hc
η(X,Ω

c
X/S) extends to a global class, i.e. is in the image of

Hc
Z(X,Ωc

X/S)→ Hc
η(X,Ω

c
X/S),

if and only if for any 1-codimensional point x ∈ Z there exists an open subset U ⊂ X
containing x so that α lies in the image of

Hc
Z∩U (U,Ωc

U/S)→ Hc
η(X,Ω

c
X/S).

This is proven with the Cousin resolution, exactly as in [CR11, Prop. 3.1.1., Step 2].
Step 3: If Z is normal, then cl(Z)η extends uniquely to a class in Hc

Z(X,Ωc
X/S). This is

exactly like [CR11, Prop. 3.1.1., Step 3], except of course that we are looking an
open U ⊂ X such that U ∩Z is regular and U ∩Z contains all points of codimension
1 of Z.

Step 4: We may assume, by the preceding steps, that X is affine. We are working over
an excellent base scheme S, so the normalization Z̃ → Z is a finite, and hence a
projective map. Therefore the normalization factors as

Z̃ → PnZ
pr−→ Z,

for some n. Step 3 gives us a class cl(Z̃,PnX) ∈ Hn+c
Z̃

(PnX ,Ω
n+c
Pn ) and we consider

H∗(pr1)(cl(Z̃,PnX)) ∈ Hc
Z(X,Ωc

X/S). To show that H∗(pr1)(cl(Z̃,PnX)) is the class we
are looking for, we want to show that for any open U ⊂ X such that U ∩ Z 6= ∅ and
U ∩ Z is regular we have

H∗(j)H∗(pr1)(cl(Z̃,PnX)) = cl(U ∩ Z,U),

where j : (U,U ∩ Z) → (X,Z) is induced by the open immersion. Consider the
Cartesian square

PnU
j′

��

pr′1 // U

j

��
PnX

pr1 // X

From the push-pull property of weak cohomology theories with supports we have

H∗(j)H∗(pr1)(cl(Z̃)) = H∗(pr
′
1)H∗(j′)(cl(Z̃,PnX))

= H∗(pr
′
1)(cl(Z̃ ∩ PnU ,PnU )),

and what is left to be shown is that

H∗(pr
′
1)(cl(Z̃ ∩ PnU ,PnU )) = cl(U ∩ Z,U).

Notice that

Z̃ ∩ PnU = Z̃ ×PnX PnU
= Z̃ ×PnX PnX ×X U

= Z̃ ×X U.
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Furthermore normalization respects smooth base change, see for example [Sta18, Tag:
07TD], so if we denote the normalization of ZU := Z ∩ U by ZνU , then we have

ZνU = ZU ×Z Z̃

= U ×X Z ×Z Z̃

= U ×X Z̃.

Therefore Z̃ ∩ PnU → Z ∩ U is the normalization map and since Z ∩ U is regular it is
an isomorphism.

We can therefore without loss of generality consider the commutative triangle

PnX
π

��
Z �
� iX //
/ �

iP
??

X,

where X is an NS-scheme of S-dimension dX , Z is an integral regular closed sub-
scheme in X of codimension c and a regular closed subschem in PnX of codimension
n+ c and π : PnX → X is the projection map. It suffices to show that

(4.47) H∗(π)(cl(Z,PnX)) = cl(Z,X),

in Hc
Z(X,Ωc

X/S). Let σ : X → PnX be a section of π. In order to show (4.47) it suffices
to show

(4.48) H∗(σ)(cl(Z,X)) = cl(Z,PnX),

because if (4.48) holds then we have

cl(Z,X) = H∗(π ◦ σ)(cl(Z,X))

= H∗(π)(H∗(σ)(Z,X))

= H∗(π)(cl(Z,PnX)).

This follows from Proposition 4.25 below.
�

Lemma 4.24. Let X,Y be NS-schemes of S-dimensions dX and dY respectively and Z
a regular, separated S-scheme of finite type such that we have a commutative diagram of S-
schemes and S-morphisms

Y

Z �
�

iX
//

/ �

iY
>>

X
?�

i

OO
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where iX , i and iY are regular closed immersions of codimensions c, n and n+ c respectively.
Let f : ωZ/X ⊗OZ i∗X(Ωc

X/S)→ ωZ/Y ⊗OZ i∗Y (Ωn+c
Y/S) be the map given by the composition

ωZ/X ⊗OZ i
∗
XΩc

X/S
∼= ωZ/X ⊗OZ i

∗
X(Hom(ΩdX−c

X/S , ωX/S))(4.49)

∼= ωZ/X ⊗OZ i
∗
X(ωX/S ⊗OX Hom(ΩdX−c

X/S ,OX))

ζ
′
i,πY−−−→ ωZ/X ⊗OZ i

∗
X(ωX/Y ⊗OX i

∗ωY/S ⊗OX Hom(ΩdX−c
X/S ,OX))

(ζ
′
iX,i

)−1

−−−−−−→ ωZ/Y ⊗OZ i
∗
Y ωY/S ⊗OZ i

∗
X(Hom(ΩdX−c

X/S ,OX))

(i∗)∨−−−→ ωZ/Y ⊗OZ i
∗
Y ωY/S ⊗OZ i

∗
Y (Hom(ΩdX−c

Y/S ,OY ))

∼= ωZ/Y ⊗OZ i
∗
Y (Hom(Ω

dY −(n+c)
Y/S , ωY/S))

∼= ωZ/Y ⊗OZ i
∗
Y Ωn+c

Y/S ,

where i∗ : i∗ΩdX−c
Y/S → ΩdX−c

X/S is the canonical map., and ζ ′i,πY : ωX/S → ωX/Y ⊗OX i∗ωY/S and
ζ
′
iX ,i

: ωZ/Y → ωZ/X ⊗OZ i∗XωX/Y are isomorphism, see Notation 4.22. Then the following
square commutes

Hom(OZ , ωZ/X ⊗OZ i∗XΩc
X/S)

Hom(OZ ,f(−))
��

// Hc
Z(X,Ωc

X/S)

H∗(i)
��

Hom(OZ , ωZ/Y ⊗OZ i∗Y Ωn+c
Y/S) // Hn+c

Z (Y,Ωn+c
Y/S).

Proof. We first notice that i and iX are l.c.i. morphisms and πY is a separated smooth
morphism. So the definitions of ζ ′i,πY and ζ

′
iX ,i

are different. Namely, in [Con00, §2.2.] the
map ζ ′i,πY is defined in case (c) and ζ ′iX ,i is defined in case (b).

We break the square into the following two squares

(1)

Hom(OZ , ωZ/X ⊗OZ i∗XΩc
X/S)

Hom(OZ ,f(−))

��

η−1
iX // Γ(Z, Extc(OZ , i!XΩc

X/S))

Σ
′

��
Hom(OZ , ωZ/Y ⊗OZ i∗Y Ωn+c

Y/S)
η−1
iY // Γ(Z, Extn+c(OZ , i!Y Ωn+c

Y/S)), and

(2)

Extc((iX)∗OZ ,Ωc
X/S)

Σ
��

// Hc
Z(X,Ωc

X/S)

H∗(i)
��

Extn+c((iY )∗OZ ,Ωn+c
Y/S) // Hn+c

Z (Y,Ωn+c
Y/S),
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where we define Σ
′ such that the first square commutes, which we can do since η−1

iX
is an

isomorphism, and Σ is the corresponding map after making the identifications

Γ(Z, Extc(OZ , i!XΩc
X/S)) ∼= Extc((iX)∗OZ ,Ωc

X/S), and

Γ(Z, Extn+c(OZ , i!Y Ωn+c
Y/S))Extn+c((iY )∗OZ ,Ωn+c

Y/S).

We can make these identifications since Ωc
X/S and Ωn+c

Y/S is a locally free, so in particular a
coherent, OX -module and Ωn+c

Y/S is a locally free, so in particular a coherent, OY -module. The
schemes X and Y are regular, hence Cohen-Macaulay so we know that for any point z ∈ Z
we have

depthOX,z((Ω
c
X/S)z) ≥ dim(OX,z) ≥ codim(Z,X) = c, and

depthOY,z((Ω
n+c
Y/S)z) ≥ dim(OY,z) ≥ codim(Z, Y ) = n+ c,

so [Gro68, Exposé III, Proposition 3.3] tells us that

Extj(OZ , i!XΩc
X/S) = Extj((iX)∗OZ ,Ωc

X/S) = 0, for all j < c, and

Extj(OZ , i!Y Ωn+c
Y/S) = Extj((iY )∗OZ ,Ωn+c

Y/S) = 0, for all j < n+ c.

Now we show that square (2) commutes. The maps Extc((iX)∗OZ ,F) → Hc
Z(X,F) and

Extn+c((iY )∗OZ ,F) → Hn+c
Z (Y,F) are induced by the natural transformations

RHom((iX)∗OZ ,−) → RΓZ(−) and RHom((iY )∗OZ ,−) → RΓZ(−) respectively, and Σ is
given by the composition

Extc((iX)∗OZ ,Ωc
X/S) ∼= Extc((iX)∗OZ ,Hom(ΩdX−c

X/S , ωX/S))(4.50)

ζ
′
i,πY−−−→ Extc((iX)∗OZ ,Hom(ΩdX−c

X/S , ωX/Y ⊗OX i
∗ωY/S))

η−1
i−−→ Extn+c((iX)∗OZ ,Hom(ΩdX−c

X/S , i!ωY/S))

(i∗)∨−−−→ Extn+c((iX)∗OZ ,Hom(i∗Ω
dY −(n+c)
Y/S , i!ωY/S))

∼= Extn+c((iX)∗OZ , i!Hom(Ω
dY −(n+c)
Y/S , ωY/S))

∼= Extn+c((iY )∗OZ ,Hom(Ω
dY −(n+c)
Y/S , ωY/S))

∼= Extn+c((iY )∗OZ ,Ωn+c
Y/S).



5. CYCLE CLASS 85

We expand the left vertical map Σ in square (2) as this composition, and we expand the right
vertical map H∗(i) as the definition of the pushforward.

Extc((iX)∗OZ ,Ωc
X/S) //

��
1

Hc
Z(X,Ωc

X/S)

��

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/S)) //

ζ
′
i,πY ��

Hc
Z(X,Hom(ΩdX−c

X/S , ωX/S))

��

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/Y ⊗OX i∗ωY/S))

η−1
i
��

Hc
Z(Y, i∗Hom(ΩdX−c

X/S , ωX/S))

��

Extn+c((iX)∗OZ ,Hom(ΩdX−c
X/S , i!ωY/S))

(i∗)∨

��

2 Hc+n
Z (Y, i∗Hom(ΩdX−c

X/S , i!ωY/S))

(i∗)∨

��

Extn+c((iX)∗OZ ,Hom(i∗Ω
dY −(n+c)
Y/S , i!ωY/S))

��

Hc+n
Z (Y, i∗Hom(i∗Ω

dY −(n+c)
Y/S , i!ωY/S))

��

Extn+c((iX)∗OZ , i!Hom(Ω
dY −(n+c)
Y/S , ωY/S))

��

Hc+n
Z (Y, i∗i

!Hom(Ω
dY −(n+c)
Y/S , ωY/S))

Tri
��

Extn+c((iY )∗OZ ,Hom(Ω
dY −(n+c)
Y/S , ωY/S)) //

��

Hn+c
Z (Y,Hom(Ω

dY −(n+c)
Y/S , ωY/S))

��
Extn+c((iY )∗OZ ,Ωn+c

Y/S) //

3

Hn+c
Z (Y,Ωn+c

Y/S).

The top square, 1 ,

Extc((iX)∗OZ ,Ωc
X/S) //

��

Hc
Z(X,Ωc

X/S)

��

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/S)) // Hc

Z(X,Hom(ΩdX−c
X/S , ωX/S)),

and the bottom square, 3 ,

Extn+c((iY )∗OZ ,Hom(Ω
dY −(n+c)
Y/S , ωY/S)) //

��

Hn+c
Z (Y,Hom(Ω

dY −(n+c)
Y/S , ωY/S))

��
Extn+c((iY )∗OZ ,Ωn+c

Y/S) // Hn+c
Z (Y,Ωn+c

Y/S),
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are clearly commutative by naturality so what we are left to show is that the middle diagram,
2 , commutes.
(4.51)

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/S)) //

ζ
′
i,πY ��

Hc
Z(X,Hom(ΩdX−c

X/S , ωX/S))

��

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/Y ⊗OX i∗ωY/S))

η−1
i
��

A
Hc
Z(Y, i∗Hom(ΩdX−c

X/S , ωX/S))

��

Extn+c((iX)∗OZ ,Hom(ΩdX−c
X/S , i!ωY/S))

(i∗)∨

��

// Hc+n
Z (Y, i∗Hom(ΩdX−c

X/S , i!ωY/S))

(i∗)∨

��

Extn+c((iX)∗OZ ,Hom(i∗Ω
dY −(n+c)
Y/S , i!ωY/S))

��

B Hc+n
Z (Y, i∗Hom(i∗Ω

dY −(n+c)
Y/S , i!ωY/S))

��

Extn+c((iX)∗OZ , i!Hom(Ω
dY −(n+c)
Y/S , ωY/S))

��

// Hc+n
Z (Y, i∗i

!Hom(Ω
dY −(n+c)
Y/S , ωY/S))

Tri
��

Extn+c((iY )∗OZ ,Hom(Ω
dY −(n+c)
Y/S , ωY/S)) //

C

Hn+c
Z (Y,Hom(Ω

dY −(n+c)
Y/S , ωY/S)).

The middle diagram, B ,

Extn+c((iX)∗OZ ,Hom(ΩdX−c
X/S , i!ωY/S))

(i∗)∨

��

// Hc+n
Z (Y, i∗Hom(ΩdX−c

X/S , i!ωY/S))

(i∗)∨

��

Extn+c((iX)∗OZ ,Hom(i∗Ω
dY −(n+c)
Y/S , i!ωY/S))

��

Hc+n
Z (Y, i∗Hom(i∗Ω

dY −(n+c)
Y/S , i!ωY/S))

��

Extn+c((iX)∗OZ , i!Hom(Ω
dY −(n+c)
Y/S , ωY/S)) // Hc+n

Z (Y, i∗i
!Hom(Ω

dY −(n+c)
Y/S , ωY/S))

commutes by functoriality and the commutativity of the bottom square, C ,
(4.52)

Extn+c((iX)∗OZ , i!Hom(Ω
dY −(n+c)
Y/S , ωY/S))

��

// Hc+n
Z (Y, i∗i

!Hom(Ω
dY −(n+c)
Y/S , ωY/S))

Tri
��

Extn+c((iY )∗OZ ,Hom(Ω
dY −(n+c)
Y/S , ωY/S)) // Hn+c

Z (Y,Hom(Ω
dY −(n+c)
Y/S , ωY/S))

follows from the definition of Tri as the counit of adjunction for the adjoint pair (Ri∗, i
!).

Namely, for any OY -module G, the map Extn+c((iX)∗OZ , i!G)→ Hc+n
Z (Y, i∗i

!G) is defined as
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the composition making the following triangle commute

Extn+c((iX)∗OZ , i!G)

�� **
Extn+c(i∗(iX)∗OZ , i∗i!G) // Hc+n

Z (Y, i∗i
!G).

Therefore,the commutativity of (4.52) follows from the commutativity of the following func-
torial square

Extn+c(i∗(iX)∗OZ , i∗i!G)

Tri
��

// Hc+n
Z (Y, i∗i

!G)

Tri
��

Extn+c((iY )∗OZ ,G) // Hn+c
Z (Y,G).

To show the commutativity of (4.51) and finish the proof, we need to show the commutativity
of the top part A , of diagram (4.51),

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/S)) //

ζ
′
i,πY ��

Hc
Z(X,Hom(ΩdX−c

X/S , ωX/S))

��

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/Y ⊗OX i∗ωY/S))

η−1
i
��

Hc
Z(Y, i∗Hom(ΩdX−c

X/S , ωX/S))

��

Extn+c((iX)∗OZ ,Hom(ΩdX−c
X/S , i!ωY/S)) // Hc+n

Z (Y, i∗Hom(ΩdX−c
X/S , i!ωY/S)).

We can ignore the isomorphism Hc
Z(X,Hom(ΩdX−c

X/S , ωX/S)) ∼= Hc
Z(Y, i∗Hom(ΩdX−c

X/S , ωX/S))

and consider instead the diagram

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/S)) //

ζ
′
i,πY ��

Hc
Z(X,Hom(ΩdX−c

X/S , ωX/S))

��

Extc((iX)∗OZ ,Hom(ΩdX−c
X/S , ωX/Y ⊗OX i∗ωY/S))

η−1
i
��

Hc−dX
Z (X,Hom(ΩdX−c

X/S , π!
XOS))

ci,πY
��

Extn+c((iX)∗OZ ,Hom(ΩdX−c
X/S , i!ωY/S))

,,

Hc−dX
Z (X,Hom(ΩdX−c

X/S , i!π!
YOS))

��

Hc+n
Z (X,Hom(ΩdX−c

X/S , i!ωY/S)).



88 4. HODGE COHOMOLOGY AS A WEAK COHOMOLOGY THEORY WITH SUPPORTS

This commutes if

(4.53) ωX/S //

ζ
′
i,πY
��

π!
XOS [−dX ]

ci,πY
��

ωX/Y ⊗OX i∗ωY/S

η−1
i ((

i!π!
YOS [−dX ]

��
i!ωY/S [n]

does. We then see that (4.53) commutes if the following two diagram commute.

(4.54) π]XOS
ψi,πY

��

π!
XOS

e−1
πXoo

ci,πY
��

i[π]YOS i!π!
YOS

d−1
i ◦e

−1
πYoo

e−1
πY
��

i!π]YOS ,
d−1
i

dd

and

(4.55) ωX/S

ζ
′
i,πY
��

ψi,πY // i[π]YOS [−dX ]

ηivv
ωX/Y ⊗OX i∗ωY/S .

where ef , cf,g are maps defined in Notation 4.4, and the other maps are defined in Notation
4.22.

The diagram (4.54) is composed of a trivial triangle and a square that is known to be
commutative, see [Har66, III. Theorem 8.7, Var 5).]. Diagram (4.55) is also known to be
commutative, see [Con00, Lemma 3.5.3.].5 �

Proposition 4.25. Let X,Y be NS-schemes of S-dimensions dX and dY respectively, and
Z a regular, separated S-scheme such that the diagram

Y

Z �
�

iX
//

/ �

iY
>>

X,
?�

i

OO

where the maps iX , i and iY are regular closed immersions of codimensions c, n and n + c
respectively , commutes.Then

(4.56) H∗(i)(cl(Z,X)) = cl(Z, Y ).

5Note that in [Con00, Lemma 3.5.3.] it is claimed that this triangle commutes up to a sign depending on
the relatice dimension of πY and the codimension of i. This is however not true and is corrected in [Con].
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Proof. By steps (1)−(3) of the proof of Proposition 4.23 we may without loss of generality
assume that S = Spec (R), Y = Spec (A), X = Spec (B), and Z = Spec (C). Furthermore,
there exist ideals I ⊂ A, IY ⊂ A, and IX ⊂ B such that

B =
A

I
, and C =

B

IX
=

A

IY
.

As X and Y are smooth over S, we can assume that there exists an étale map of R-algebras

R[t1, . . . , tdY ]→ A,

s.t. I = (t1, . . . , tn) and

R[tn+1, . . . , tdY ]→ B

is étale. Furthermore, since Z ↪→ X is a regular embedding we may assume there exists a
regular sequence s1, . . . , sc in A s.t. IX = (s1, . . . , sc). Let r1, . . . , rc ∈ B be any lifts of
s1, . . . , sc and then (t1, . . . , tn, r1, . . . , rc) is a regular sequence generating IY . Again, we may
shrink X,Y and Z so we can without loss of generality assume that B is a local ring. For a
Noetherian local ring, any permutation of a regular sequence is again a regular sequence, so
we may assume that (r1, . . . , rc, t1, . . . , tn) is a regular sequence generating IY . To show (4.56)
it suffices to show that

(1) f(s̄∨1 ∧ · · · ∧ s̄∨c ⊗ i∗X(dsc ∧ · · · ∧ ds1)) = r̄∨1 ∧ · · · ∧ r̄∨c ∧ t̄∨1 ∧ · · · ∧ t̄∨n ⊗ i∗Y (dtn ∧ · · · ∧
dt1 ∧ drc ∧ · · · ∧ dt1), and

(2) the following square commutes

Hom(OZ , ωZ/X ⊗OZ i∗XΩc
X/S)

Hom(OZ ,f(−))
��

νiX // Hc
Z(X,Ωc

X/S)

H∗(i)
��

Hom(OZ , ωZ/Y ⊗OZ i∗Y Ωn+c
Y/S)

νiY // Hn+c
Z (Y,Ωn+c

Y/S),

where

f : ωZ/X ⊗OZ i
∗
XΩc

X/S → ωZ/Y ⊗OZ i
∗
Y Ωn+c

Y/S ,

is the map described in (4.49), and where νiX and νiY are the compositions defined
in (4.46).

The commutativity of the square is given in Lemma 4.24.
If b1, . . . , bn is a basis for ΩdX−c

X/S then the map Ωc
X/S → ωX/S ⊗OX Hom(ΩdX−c

X/S ,OX) can
be explicitly given as

α 7→
n∑
i=1

(α ∧ bi)⊗ b∨i .

A B-basis of ΩdX−c
X/S = ΩdX−c

B/R is given by

(4.57) dtI , I = (i1 < . . . < idX−c) with ij ∈ {n+ 1, . . . , dY },

and an A-basis of ΩdX−c
Y/S = Ω

dY −(n+c)
A/R is given by

(4.58) dtJ , J = (i1 < . . . < idX−c) with ij ∈ {1, . . . , dY }.
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Now we compute the image of s̄∨1 ∧ · · · ∧ s̄∨c ⊗ i∗X(dsc ∧ · · · ∧ ds1) =: s̄∨ ⊗ i∗Xds under the
composition (4.49).

s̄∨ ⊗ i∗Xds
∼=−→ s̄∨ ⊗

∑
I

i∗X(ds ∧ dtI ⊗ (dtI)
∨)

ζ
′
i,πY−−−→ s̄∨ ⊗

∑
I

i∗X(t̄∨1 ∧ · · · ∧ t̄∨n ⊗ i∗(dtn ∧ · · · ∧ dt1 ∧ drc ∧ · · · ∧ dr1 ∧ dtI ⊗ (dtI)
∨)

(ζ
′
iX,i

)−1

−−−−−−→ r̄∨ ∧ t̄∨ ⊗
∑
I

i∗Y (dtn ∧ · · · ∧ dt1 ∧ drc ∧ · · · ∧ dr1 ∧ dtI ⊗ (dtI)
∨)

(i∗)∨−−−→ r̄∨ ∧ t̄∨ ⊗
∑
I

i∗Y (dtn ∧ · · · ∧ dt1 ∧ drc ∧ · · · ∧ dr1 ∧ dtI ⊗ (dtI)
∨)

→ r̄∨1 ∧ . . . ∧ r̄∨c ∧ t̄∨1 ∧ . . . ∧ t̄∨n ⊗ i∗Y (dtn ∧ · · · ∧ dt1 ∧ drc ∧ · · · ∧ dr1),

where r̄∨ := r̄∨1 ∧ · · · ∧ r̄∨c and t̄∨ := t̄∨1 ∧ · · · ∧ t̄n∨. �

5.2. Conditions of Theorem. We start by noting how the (local) cycle class can be
written in symbol notation.

Lemma 4.26. Let Y be an NS-scheme and X ⊂ Y be a regular integral subscheme of
codimension c in Y , U ⊂ Y and open affine subscheme such that the ideal I of X ∩ U in OU
is generated by global sections t1, . . . , tc on Y , and let η be the generic point of X. Then

cl(X,Y )η = (−1)c
[
dt1 ∧ · · · ∧ dtc
t1, . . . , tc

]
in Hc

η(Y,Ω
c
Y/S).

Proof. We can without loss of generality assume that Y = Spec (A) is affine, and that
X = Spec (A)

(t1,...,tc)
. By definition we have that cl(X,Y )η is the image of 1 under the composition

i∗OX
φ−→ i∗ωX/Y ⊗OY Ωc

Y/S

ηi−→ i∗i
!(OY [c])⊗OY Ωc

Y/S

Tri−−→ Ωc
Y/S [c]

→ Hc
η(Y,Ω

c
Y/S),

where i : X ↪→ Y is the closed immersion, ηi is the Fundamental Local Isomorphism, see
Notation 4.22, and φ is the map sending 1 to t∨1 ∧ · · · ∧ t∨c ⊗ dtc ∧ · · · ∧ dt1. By applying RΓX
we see that the composition

i∗ωX/Y
ηi−→ i∗i

!(OY [c])
Tri−−→ OY [c]

factors through

(4.59) i∗ωX/Y
ηi−→ i∗i

!(OY [c])
Tri−−→ RΓXOY [c],
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and by [CR11, Lemma A.2.5.] there is a natural isomorphism RΓXOY [c] ∼= HcX(OY ) inDb
qc(Y )

s.t. (4.59) composed with this isomorphism is given by

i∗ωX/Y → HcX(OY ),(4.60)

at∨1 ∧ · · · ∧ t∨c 7→ (−1)c(c+1)/2

[
ã

t1, . . . , tc

]
where ã ∈ A is any lift of a ∈ A

(t1,...,tc)
. We therefore have

cl(X,Y )η = (−1)c(c+1)/2

[
1

t1, . . . , tc

]
⊗ dtc ∧ · · · ∧ dt1(4.61)

= (−1)c(c+1)/2

[
dtc ∧ · · · ∧ dt1
t1, . . . , tc

]
= (−1)c(c+1)/2(−1)c(c−1)/2

[
dt1 ∧ · · · ∧ dtc
t1, . . . , tc

]
= (−1)c

[
dt1 ∧ · · · ∧ dtc
t1, . . . , tc

]
where the second equality follows from part (3) of Lemma 4.10. �

Lemma 4.27. Let X be a regular scheme, V ⊂ X an irreducible closed subset of codi-
mension c with a generic point η, and let F be a finite locally free OX-module. Then the
localization

Hc
V (X,F)→ Hc

η(X,F)

is injective.

Proof. Let U ⊂ X be an open subscheme such that U ∩ Z 6= ∅, i.e. U is an open
neighborhood of η. Then we have a long exact sequence

(4.62) · · · → Hc
V ′

(X,F)→ Hc
V (X,F)→ Hc

V ∩U (U,F)→ · · · ,

where V ′ := V \ (V ∩ U) = V ∩ (X \ U). This is obtained from the standard long exact
sequence for local cohomology

· · ·H i
X\U (X,G)→ H i(X,G)→ H i(U,G)→ · · · ,

applied to G = ΓV (F) which is quasicoherent since X is Noetherian, see [Sta18, Tag: 07ZP].
Since X is regular, hence Cohen-Macaulay, we know that for any point x ∈ V ′ we have

depthOX,x(Fx) ≥ dim(OX,x) ≥ codim(V
′
, X) = c+ 1,

so [Gro68, Exposé III, Proposition 3.3] tells us that Hc
V ′

(X,F) = 0 and thus (4.62) tells us
that Hc

V (X,F)→ Hc
V ∩U (U,F) is injective. The map Hc

V (X,F)→ Hc
η(X,F) is then obtained

by taking the direct limit over all such neighborhoods U of η and is also injective. �

Proposition 4.28. The weak cohomology theory with supports (HP∗, HP
∗, T, e) satisfies

semi-purity.

Proof. Without loss of generality we may assume that we have a connected NS-scheme
X and an irreducible closed subset W ⊂ X. Recalling Proposition A.2 we notice that
codim(W,X) = dimS(X)− dimS(W ) and we denote this codimension by c. Then we need to
prove the following

(1) Hp
W (X,Ωp

X/S) = 0 when p > c, and
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(2) The map H∗(j) : Hc
W (X,Ωc

X/S) → Hc
U∩W (U,Ωc

X/S) is injective where U is an open
subscheme of X that intersects W and j : (U,W ∩ U) → (X,W ) is induced by the
open immersion U ↪→ X.

Condition (1) is well known and condition (2) has been proven as part of the proof of Lemma
4.27. �

Lemma 4.29. Let f : X → Y be a morphism of NS-schemes. Let W ⊂ X be a regular
closed integral subscheme such that the restricted map

f |W : W → f(W )

is finite of degree d. Then

H∗(f)(cl(W,X)) = d · cl(f(W ), Y ).

Proof. We write c := codim(W,X) and e := codim(f(W ), Y ). By Lemma 4.27 we know
that

He
f(W )(Y,Ω

e
Y/S)→ He

ξ (Y,Ωe
Y/S)

is injective, where ξ is the generic point of f(W ), so we can shrink Y around ξ. Furthermore,
if η is the generic point of W then η ∈ f−1(ξ) is a closed point, since f is finite. Therefore
we can shrink X around η. Without loss of generality we may therefore assume that we can
factor f through some AnY , i.e. we may assume that Y = Spec (A) and X = Spec (R) are
affine and then R is a finitely generated A-algebra so there exists some n such that we have a
surjection

A[x1, . . . , xn] � R,

i.e. a closed immersion i : X → AnY such that the following diagram commutes

W �
� //

f |W
��

X

f

��

� � i // AnY ,

p
~~

f(W ) �
� // Y

where p denotes the projection AnY → Y . Since i : X → AnY is a separated morphism of finite
type over the Noetherian base Y , and since W is proper over Y , we see that we can view W
as a regular integral closed subscheme of AnY . Furthermore

Hc
W (X,Ωc

X/S)
H∗(i) //

H∗(f)

��

Hn+e
W ((AnY ,Ω

n+e
AnY /S

)

H∗(p)uu
He
f(W )(Y,Ω

e
Y/S)

commutes because of the functoriality of the pushforward, and by Proposition 4.25 we have

H∗(i)(cl(W,X)) = cl(W,AnY ).

We can therefore without loss of generality reduce to the situation

(4.63) W �
� //

p|W
��

AnY
p

��
p(W ) �

� // Y,
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where p is the projection, and p|W : W → p(W ) is finite of degree d. Furthermore if n ≥ 2,
we can factor (4.63) as

(4.64) W �
� //

(q1)|W
��

AnY
q1
��

q1(W ) �
� //

(q2)|q1(W )

��

An−1
Y

q2

��
p(W ) �

� // Y,

where q1 : AnY → An−1
Y and q2 : An−1

Y → Y are the projections and then (q1)|W and (q2)|q1(W )

will be finite of degrees d1 and d2 respectively, with d = d1d2. Furthermore via an imbedding
A1
Y → P1

Y we can view W as a regular integral closed subscheme of P1
Y and we can therefore

without loss of generality furthere reduce to the case

(4.65) W �
� //

p|W
��

P1
S ×S Y

p

��
p(W ) �

� // Y,

where p is the projection, and p|W : W → p(W ) is finite of degree d. We can further shrink
Y around ξ to assume p(W ) is cut out by a regular sequence in A, p(W ) = V (s1, . . . , se), and
W = V (s1, . . . , se, g) where g is a monic irreduble polynomial in A[t] of degree d. By Lemmas
4.26 and 4.12 we see that

cl(W,P1
Y )η = (−1)e+1

[
ds1 ∧ · · · ∧ dse ∧ g

s1, . . . , se, g

]
= (−1)e

[
ds1 ∧ · · · ∧ dse
s1, . . . , se

]
∪ (−1)

[
dg
g

]
.

But by Lemmas 4.11 and 4.26 we have that

(−1)e
[
ds1 ∧ · · · ∧ dse
s1, . . . , se

]
= H∗(p)(cl(p(W ), Y )ξ)

and

(−1)

[
dg
g

]
= cl(Z,PY )ζ ,

where Z = V (g) ⊂ P1
Y is a divisor, and ζ is its generic point, i.e. we have

cl(W,P1
Y )η = H∗(p)(cl(p(W ), Y )ξ) ∪ cl(Z,PY )ζ ,

and using the projection formula, Proposition 1.15, we see that

H∗(p)(cl(W,P1
Y )η) = H∗(p)(H

∗(p)(cl(p(W ), Y )ξ) ∪ cl(Z,PY )ζ)

= cl(p(W ), Y )ξ ∪H∗(p)(cl(Z,PY )ζ).

This shows that to prove the lemma, it suffices to prove

(4.66) H∗(p)(cl(Z,P1
Y )) = d ∈ H0(Y,OY ),

where Y = Spec (A), Z = V (g) ⊂ P1
Y , and g is a monic irreducible polynomial in A[t]. We

can base-change to the function field K = κ(Y ) and without loss of generality it suffices to
show that

(4.67) H∗(p)(cl(z,P1
K)) = d ∈ K,
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where K is a field, z is a closed point of P1
K of degree d and p : P1

K → K is the projection.
Locally we write z = (g) ∈ K[t] where g is monic, irreducible and of degree d.

Now let x ∈ P1
K be any closed point, say x = (h) ∈ K[t]. Write R for the regular local ring

OP1
K ,x

, m = (h) ⊂ R for the maximal ideal, and P(x) := Spec (R). The standard long exact
sequence in local cohomology for P(x), U := P(x) \ {x} and F := Ω1

P(x)/S
is

0→ H0
x(P(x),F)→ H0(P(x),F)→(4.68)

→ H0(U,F)→ H1
x(P(x),F)→ H1(P(x),F)→ . . .

We note that
H0
x(P(x),F) = 0,

since any section of the locally free F that vanishes everywhere except possibly at x must also
vanish at x, and

H1(P(x),F) = 0,

since P(x) is affine. So we have short exact sequence

0→ H0(P(x),F)→ H0(U,F)→ H1
x(P(x),F)→ 0,

and so

H1
x(P(x),Ω

1
P(x)/S

) =
H0(U,Ω1

P(x)/S
)

H0(P(x),Ω
1
P(x)/S

)
.

We futhermore note that

H0(U,Ω1
P(x)/S

) = Ω1
K(t)/S , and

H0(P(x),Ω
1
P(x)/S

) = Ω1
P1
K/S,x

.

Consider the commutative diagram

H1
x(P(x),Ω

1
P(x)/S

) =
Ω1
K(t)/S

Ω1
P1
K
/S,x

Ω1
R/S [ 1

h ]

lim
→

Ω1
R/S

hnΩ1
R/S

Ω1
R/S

Ω1
R/S

hΩ1
R/S

.

[
α

h

]
←[α

α 7→α/h

We consider this specifically for x = z and α = dg, i.e. we are considering

Ω1
R/S → Ω1

R/S [
1

g
]→ H1

z (P1
K ,Ω

1
K/S)

dg 7→ dg

g
7→
[
dg
g

]
.

Furthermore the Cousin complex yields an exact sequence

(4.69) Ω1
K(t)/K →

⊕
x∈P1

K

H1
x(P1

K ,Ω
1
P1
K/S

)→ H1(P1
K ,Ω

1
P1
K/S

)→ 0,
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where the sum is taken over all closed points x in P1
K . We clearly have a commutative triangle

(4.70)
⊕

x∈P1
K
H1
x(P1

K ,Ω
1
P1
K/S

)
Σ //

⊕H∗(p) ))

H1(P1
K ,Ω

1
P1
K/S

)

H∗(p)
��
K

Now g ∈ K[t] is an irreducible monic polynomial of degree d, say

g(t) = td + ad−1t
d−1 + · · ·+ a1t+ a0

and dlog(g) ∈ Ω1
K(t)/L where L is the image of K in S. We have

dlog(g) ∈ Ω1
P1
K/L,x

,

for all x ∈ P1
K \ {z,∞}. Write µ = 1

t and then

g = µ−d(1 + ad−1µ+ · · ·+ a0µ
d),

and note that 1 + ad−1µ+ · · ·+ a0µ
d ∈ O×P1

K ,∞
and this implies that

(4.71) dlog(g) = −dlog(µ) + dlog(1 + ad−1µ+ · · ·+ a0µ
d) = −dlog(µ),

in ΩP1
K ,∞

[ 1
µ ]/ΩP1

K ,∞
. Now the Cousin complex (4.69) gives

Ω1
K(t)/K →

⊕
x∈P1

K

H1
x(P1

K ,Ω
1
P1
K/S

)→ H1(P1
K ,Ω

1
P1
K/S

)(4.72)

dlog(g) 7→(αx)x∈P1
K
7→ 0,

where

αx =


0 x 6= z,∞,
cl(z,P1

K) x = z,

d · cl(∞,P1
K) x =∞.

By (4.70), this means that

H∗(p)(cl(z,P1
K)) = d ·H∗(p)(cl(∞,P1

K))

in K. Note that we have a commutative triangle

P1
K

∞
- 

;;

∼= // Spec (K)
?�

OO

so by the proof of Proposition 4.23, specifically (4.47) we see that

H∗(p)(cl(∞,P1
K)) = cl(Spec (K), Spec (K)) = 1,

i.e.
H∗(p)(cl(z,P1

K)) = d.

�

Lemma 4.30. If f : X → Y is a smooth morphism between NS-schemes X and Y , and
W ⊂ Y is a regular integral closed subscheme, then

H∗(f)(cl(W,Y )) = cl(f−1(W ), X).
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Proof. Without loss of generality we may assume that f−1(W ) has a unique generic
point. Denote the generic point of W by η and the generic point of f−1(W ) by ν. By Lemma
4.27, it suffices to show that

H∗(f)(cl(W )η) = cl(f−1(W ))ν .

From the definition of the pullback we have a commutative diagram

Hc
η(Y, f∗Ω

c
X/S) // Hc

η(Y,Rf∗Ω
c
X/S) // Hc

ν(X,Ωc
X/S)

Hc
η(Y,Ω

c
Y/S),

OO 22

and Lemma 4.11 tells us that the square

f∗Ω
c
X/S

// Hc
η(Y, f∗Ω

c
X/S)

Ωc
Y/S

//

OO

Hc
η(Y,Ω

c
Y/S)

OO

commutes. Combining these diagrams with Lemma 4.26 then shows that

H∗(f)(cl(W )η) = cl(f−1(W ))ν .

�

We have the following corollary to Proposition 4.25 and Lemma 4.30 that shows that when
the integral closed subscheme X ⊂ Y is smooth, our class element is defined in an analogous
manner to the definition in [CR11]. In particular, when the base scheme S is Spec (k), where
k is perfect field of positive characteristic, then our definitions coincide.

Corollary 4.31. For any NS-scheme Y we have

1X = cl(Y, Y ).

Furthermore, let Y be an NS-scheme and let i : X ↪→ Y be an integral closed subscheme of Y
that is smooth over S. Then

H∗(i)(1X) = cl(X,Y ).

Proof. It is clear from the definition that 1S = cl(S, S). Therefore Lemma 4.30 applied
to the smooth structure morphism πY : Y → S tells us that

1Y := H∗(πY )(e(1))

= H∗(πY )(cl(S, S))

= cl(π−1
Y (S), Y )

= cl(Y, Y ).

Now let Y be an NS-scheme and let i : X ↪→ Y be an integral closed subscheme of Y that
is smooth over S. Then X is an NS-scheme and by letting Z = X, iX = idX and iY = i in
Proposition 4.25, the result follows immediately. �

Lemma 4.32. Let X be an NS-scheme and ı : D ⊂ X be the inclusion of a smooth divisor.
Let Φ be a family of supports on D and denote by ı1 : (D,Φ)→ (X,Φ) the map in V∗ induced
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by ı. Then H∗(ı1) : H i
Φ(D,Ωj

D/S) → H i+1
Φ (X,Ωj+1

X/S) is the connecting homomorphism of the
long exect cohomology sequence associated to the short exact sequence

0→ Ωj+1
X/S → Ωj+1

X/S(logD)
Res−−→ ı∗Ω

j
D/S → 0,

where Res(dtt α) = ı∗(α) for t ∈ OX a regular element defining D and α ∈ Ωj
X/S. In particular,

if Φ ⊂ X is supported in codimension ≥ i+ 1 in X, then H∗(ı1) is injective on H i
Φ.

Proof. This is [CR11, Lemma 2.3.8.] and the proof there works in our situation as
well. �

Lemma 4.33. (cf.[CR11, Lemma 3.1.5.]) Let i : X → Y be the closed immersion of an
irreducible, regular, closed S-subscheme X into an NS-scheme Y . For any effective smooth
divisor D ⊂ Y such that

• D meets X properly, thus D ∩X := D ×Y X is a divisor on X,
• D′ := (D ∩X)red is regular and irreducible, so D ∩X = n ·D′ as divisors (for some
n ∈ Z, n ≥ 1).

We define g : (D,D
′
)→ (Y,X) in V ∗ as the map induced by the inclusion D ⊂ Y . Then the

following equality holds:

(4.73) H∗(g)(cl(X,Y )) = n · cl(D
′
, D).

Proof. We denote by c the codimension of X in Y and denote by g̃ : (D,D
′
)→ (Y,D

′
)

and ĝ : D → (Y,D) the maps also induced by the inclusion D ⊂ Y . Since the codimension of
D
′ in Y is c+ 1, Lemma 4.32 tells us that

Hc
D′

(Y,Ωc+1
Y/S(log(D))) � ker(H∗(g̃)),

and the proof of Lemma 4.27 tells us that Hc
D
′ (Y,Ω

c+1
Y/S(log(D))) = 0. So we have that

H∗(g̃) : Hc
D′

(D,Ωc
D/S)→ Hc+1

D′
(Y,Ωc+1

Y/S)

is injective, and therefore to show (4.73) it suffices to show

(4.74) H∗(g̃)H∗(g)(cl(X,Y )) = n ·H∗(g̃)(cl(D
′
, D)).

The projection formula 1.15 gives

H∗(g̃)H∗(g)(cl(X,Y )) = H∗(g̃)(H∗(g)(cl(X,Y )) ∪ 1D)

= cl(X,Y ) ∪H∗(ĝ)(1D),

and it follows from Corollary 4.31 that 1D = cl(D,D) since D is smooth over S. Furthermore,
since ĝ is induced by a closed immersion Lemma 4.29 tells us that H∗(ĝ)(1D) = cl(D,Y ), and
similarly Lemma 4.29 gives H∗(g̃)(cl(D

′
, D)) = cl(D

′
, Y ) so we are reduced to showing

(4.75) cl(D,Y ) ∪ cl(X,Y ) = n · cl(D
′
, Y ).

Now we let η denote the generic point of D′ . Since Hc+1
Z (Y,Ωc+1

Y/S) = 0 for all closed subsets
Z ⊂ Y of codimension ≥ c+ 2, by Lemma 4.62, the restriction map

Hc+1
D′

(Y,Ωc+1
Y/S)→ Hc+1

η (Y,Ωc+1
Y/S)

is injective and it suffices to prove (4.75) after mapping to Hc+1
η (Y,Ωc+1

Y/S).
Since X is regular then i : X → Y is a regular closed immersion so we can find a regular

sequence t1, . . . , tc ∈ OY,η that generates the ideal of X, and furthermore we can find some f
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such that D = Div(f) around η. Using the explicit description of the class element given in
Lemma 4.26 we see that

cl(D,Y )η = (−1)

[
df
f

]
, and cl(X,Y )η = (−1)c

[
dt1 ∧ · · · ∧ dtc
t1, . . . , tc

]
and by Lemma 4.12 we have

(−1)

[
df
f

]
∪ (−1)c

[
dt1 ∧ · · · ∧ dtc
t1, . . . , tc

]
= (−1)c+1

[
df ∧ t1 ∧ · · · ∧ tc
f, t1, . . . , tc

]
,

so we are reduced to showing that in Hc+1
η (Y,Ωc+1

Y/S) we have

(4.76) (−1)c+1

[
df ∧ t1 ∧ · · · ∧ tc
f, t1, . . . , tc

]
= n · (−1)c+1

[
dπ ∧ dt1 ∧ · · · ∧ dtc

π, t1 . . . , tc

]
,

where the right-hand side follows again from the explicit description given in Lemma 4.26 and
π ∈ OY,η is a lift of a generator of the maximal ideal in OX,η. We can write f = aπn in OX,η
for some unit a ∈ O∗X,η so if ã ∈ O∗Y,η is some lift of a then f = ãπn modulo (t1, . . . , tc).
Therefore

(−1)c+1

[
df ∧ t1 ∧ · · · ∧ tc
f, t1, . . . , tc

]
= (−1)c+1

[
d(ãπn) ∧ t1 ∧ · · · ∧ tc

ãπn, t1, . . . , tc

]
= (−1)c+1

[
nãπn−1 · dπ ∧ t1 ∧ · · · ∧ tc

ãπn, t1, . . . , tc

]
= n · (−1)c+1

[
dπ ∧ dt1 ∧ · · · ∧ dtc

π, t1 . . . , tc

]
,

where the final equality follows from (1) and (2) of Lemma 4.10. �

Lemma 4.34. Let X be an NS-scheme and V ⊂ X be a regular integral closed subscheme.
If V lies in the fiber over a closed point s ∈ S, then

cl(V,X) = 0.

Proof. In light of Lemma 4.27 we note that it suffices to show that

cl(V,X)η = 0,

where η is the generic point of V . Without loss of generality we may restrict to the case
where S = Spec (R) for some ring R and then s = Spec (R/(σ) for some σ ∈ R. Furtheremore
we may assume that V is globally cut out by a regular sequence. Then we may choose that
regular sequence to be σ, t1, . . . , tc−1 for some t1, . . . , tc−1 where c = codim(V,X). But then
Lemma 4.26 we have

cl(V,X)η = (−1)c
[
dσ ∧ dt1 ∧ · · · ∧ dtc−1

σ, t1, . . . , tc−1

]
= 0,

since dσ = 0. �

Lemma 4.35. Let X and Y be NS-schemes and V and W be regular integral closed sub-
schemes in X and Y respectively. Then

(4.77) T (cl(V,X)⊗ cl(W,Y )) = cl(V ×S W,X ×S Y ).

Proof. By Lemma 4.34 we see that if either of V or W are not dominant over S, then
both sides of (4.77) vanish and the statement holds trivially. So we may assume that both V
and W are dominant over S. Let codim(V,X) = c and codim(W,Y ) = e, and note that since
the construction of the cycle class is a local question, then we may assume that X and Y are
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affine. Then the statement follows directly from writing the cycle class in symbol notation,
see Lemma 4.26, and the cup product of symbols, see Lemma 4.12. �

Lemma 4.36. Let i0 : S → P1
S and i∞ : S → P1

S be the zero-section and the infinity-section
respectively. Let e : Z→ H(S, S) be the morphism defined in Definition 4.1. Then

H∗(i0) ◦ e = H∗(i∞) ◦ e.

Proof. It is enough to show that

H∗(i0) ◦ e(1) = H∗(i∞) ◦ e(1),

and since e(1) = cl(S, S), it follows from Lemma 4.29 that it suffices to show that

(4.78) cl(0,P1
S) = cl(∞,P1

S).

Furthermore we note that by assumption S is integral, and we may without loss of generality
assume it is affine, say S = Spec (R). Denote by K the fraction field of R. A Čech cohomology
computation shows that

H1(P1
S ,ΩP1

S/S
) ∼=

Ω1
R[t,1/t]/R

{a− b|a ∈ Ω1
R[t]/R, b ∈ Ω1

R[1/t]/R}
,

and the map

R→ Ω1
R[t,1/t]/R,

λ 7→ λ · dlog(t),

induces an isomorphism
H0(S,OS) ∼= H1(P1

S ,ΩP1
S/S

).

We have a commutative square

H0(S,OS)

∼=
��

� � // K

∼=
��

H1(P1
S ,ΩP1

S/S
) // H1(P1

K ,ΩP1
K/K

),

and since the map H0(S,OS)→ K is injective, this implies that the map

H1(P1
S ,ΩP1

S/S
)→ H1(P1

K ,ΩP1
K/K

)

is also injective. Therefore, it suffices to show (4.78) holds in H1(P1
K ,ΩP1

K/K
), i.e. to show

cl(0,P1
K) = cl(∞,P1

K).

This follows directly from the Cousin argument in the proof of Lemma 4.29, for g = t. �

Theorem 4.37. There exists a morphism cl : CH→ H in T.

Proof. By Proposition 4.28, HP satisfies semi-purity, and Lemmas 4.36, 4.30, 4.33, 4.29,
and 4.35, show that there exists a morphism CH → HP in T and we obtain the desired
morphism by composing this with the inclusion HP ⊂ H. �





CHAPTER 5

Correspondences

The definitions and facts on correspondences are almost verbatim (with the appropriate
changes) to those presented in [CR11].

1. General Correspondences

We let F = (F∗,F∗, T, e) be a WCTS and let Xi be NS-schemes for i = 1, 2, 3. Let
Φij be a family of supports on Xi ×S Xj for (i, j) = (1, 2), (2, 3), (1, 3), and denote by pij :
X1 ×S X2 ×S X3 → Xi ×S Xj the projections. Now suppose that

• p13|p−1
12 (Φ12)∩p−1

23 (Φ23) is proper, and(5.1)

• p13(p−1
12 (Φ12) ∩ p−1

23 (Φ23) ⊂ Φ23,

i.e. that p13 induces a morphism (X1 ×S X2 ×S X3, p
−1
12 (Φ12) ∩ p−1

23 (Φ23))→ (X1 ×S X3,Φ13)
in V∗. We can then define a composition of correspondences

F (X1 ×S X2,Φ12)⊗ F (X2 ×S X3,Φ23)→ F (X1 ×S X3,Φ13),(5.2)
a⊗ b 7→ b ◦ a,

as the composition

F (X1 ×S X2,Φ12)⊗ F (X2 ×S X3,Φ23)
F∗(p12)⊗F∗(p23)−−−−−−−−−−→

F (X1 ×S X2 ×S X3,p
−1
12 (Φ12))⊗ F (X1 ×S X2 ×S X3, p

−1
23 (Φ23))

∪−→ F (X1 ×S X2 ×S X3, p
−1
12 (Φ12) ∩ p−1

23 (Φ23))

F∗(p13)−−−−→ F (X1 ×S X3,Φ13),

where ∪ is the cup product defined in Definition 1.12. This composition ◦ is compatible with
inclusions of subfamilies of supports. Namely assume we have families of supports Φ

′
ij on

Xi ×S Xj for (i, j) = (1, 2), (2, 3), (1, 3) and suppose that as before we have
• p13|p−1

12 (Φ
′
12)∩p−1

23 (Φ
′
23)

is proper, and

• p13(p−1
12 (Φ

′
12) ∩ p−1

23 (Φ
′
23) ⊂ Φ

′
23.

Furthermore, we suppose that Φ
′
ij ⊆ Φij for all (i, j). Then the following diagram clearly

commutes

F (X1 ×S X2,Φ
′
12)⊗ F (X2 ×S X3,Φ

′
23)

��

◦ // F (X1 ×S X3,Φ
′
13)

��
F (X1 ×S X2,Φ12)⊗ F (X2 ×S X3,Φ23)

◦ // F (X1 ×S X3,Φ13),

where the vertical arrows are the inclusions. This composition is also clearly distributative
over addition, since all morphisms in the definition are morphisms of abelian groups and the
cup product distributes over addition.

101
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The Chow groups will be an important case for us and we record here the following lemmas
that will be used in the proof of Theorem 6.4.

Lemma 5.1. Let Xi be NS-schemes for i = 1, 2, 3 and let Φij be families of supports on
Xi×SXj for (i, j) = (1, 2), (2, 3), (1, 3) satisfying the conditions in (5.1). Let a ∈ ZΦ12(X1×S
X2) and b ∈ ZΦ23(X2 ×S X3) and define

Supp(a, b) := p13(p−1
12 (Supp(a)) ∩ p−1

23 (Supp(b))).

The families of supports Φ
′
12 := ΦSupp(a) ⊆ Φ12, Φ

′
23 := ΦSupp(b) ⊆ Φ23 and Φ

′
13 := ΦSupp(a,b) ⊆

Φ13 satisfy condition (5.1) and the cycles a and b define classes ã ∈ CH(Supp(a)/S), b̃ ∈
CH(Supp(b)/S) and a ∈ CH(X1 ×S X2/S,Φ12), b ∈ CH(X2 ×S X3/S,Φ23). Then we can
calculate b ◦ a as the image of b̃ ◦ ã under the inclusion map CH(Supp(a, b)/S)→ CH(X1 ×S
X3/S,Φ13).

Proof. See [CR11, Lemma 1.3.4.] �

Lemma 5.2. Let Xi be NS-schemes for n = 1, 2, 3 and let a ∈ Z(X1 ×S X2) and b ∈
Z(X2 ×S X3) be algebraic cycles such that

p13|p−1
12 (Supp(a))∩p−1

23 (Supp(b))

is proper. Let U1 ⊂ X1 and U3 ⊂ X3 be open subsets and define a′ ∈ Z(U1 ×S X2) and
b
′ ∈ Z(X2 ×S U3) as the restrictions of a and b respectively. Then

(1) The restriction of p′13 to p
′−1
12 (Supp(a

′
)) ∩ p′−1

23 (Supp(b
′
)) is proper,

(2) We have Supp(a
′
, b
′
) = Supp(a, b) ∩ (U1 ×S U3),

(3) The composition b′◦a′ is the image of b◦a via the localization map CH(Supp(a, b)/S)→
CH(Supp(a

′
, b
′
)/S),

where p′ij is the projection from U1×SX2×S U3 to the i-th factor times the j-th factor (i < j).

Proof. See [CR11, Lemma 1.3.6.] �

2. New family of supports

We now define a new family of supports on the fibre product of two NS-schemes. So
let (X,Φ) and (Y,Ψ) be NS-schemes with families of supports. Then we define a family of
supports P (Φ,Ψ) on X ×S Y by

P (Φ,Ψ) := {Z ⊂ X ×S Y
∣∣Z is closed, pr2|Z is proper, and(5.3)

Z ∩ pr−1
1 (W ) ∈ pr−1

2 (Ψ) for every W ∈ Φ}.
This is a non-empty collection of closed subsets of X ×S Y that is clearly closed under fi-
nite unions and taking closed subsets, so this is a family of supports on X ×S Y . Further-
more, if (X1,Φ1), (X2,Φ2) and (X3,Φ3) are NS-schemes with families of supports then Φij :=

P (Φi,Φj) satisfy the conditions in (5.1). To see this we notice that if Z ∈ p−1
12 (Φ12)∩p−1

23 (Φ23)

then Z is a closed subset of some p−1
23 (W ) where W ∈ Φ23. Let us first assume that

Z = p−1
23 (W ), then we can write Z = W ×S X1 and we have a Cartesian diagram

Z //

p13|Z
��

W

pr3|W
��

X1 ×S X3
// X3,
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where p3 : X2 ×S X3 → X3 is the projection. By definition of the supports Φ23 := P (Φ2,Φ3)
the morphism p3|W is proper and so p13|Z is proper a base-change of a proper morphism. In
general, Z ′ ∈ p−1

23 (Φ23) is a closed subset of some Z = W ×S X1 where W ∈ Φ23. Then we
have p13|Z′ = p13|Z ◦ iZ′ , where iZ′ : Z

′
↪→ Z is the closed immersion, and is therefore proper.

The other condition in (5.1) says that we must have p13(p−1
12 (Φ12)∩p−1

23 (Φ23)) ⊆ Φ13. We have
seen that p13 is proper when restricted to p−1

12 (Φ12) ∩ p−1
23 (Φ23) so p13(p−1

12 (Φ12) ∩ p−1
23 (Φ23)) is

a closed subscheme of X1 ×S X3. We then need to show that
i) (p13

3 )|p13(p−1
12 (Φ12)∩p−1

23 (Φ23)) is proper, and
ii) For any A ∈ Φ1 we have p13(p−1

12 (Φ12) ∩ p−1
23 (Φ23)) ∩ (p13

1 )−1(A) ∈ (p13
3 )−1(Φ3).

Let us take Z12 ∈ Φ12 and Z23 ∈ Φ23 and write

Z := p−1
12 (Z12) ∩ p−1

23 (Z23) = (Z12 ×S X3) ∩ (X1 ×S Z23) = Z12 ×X2 Z23,

and W := p13(Z). Notice that we have a commutative square

Z12 ×X2 Z23
proj. //

p13|Z
��

Z23

(p23
3 )|Z23

��
W

(p13
3 )|W // X3,

and the projection Z12 ×X2 Z23 → Z23 is proper, as a base change of Z12 → X2 which is
proper by definition of Φ12. Similarly (p23

3 )|Z23 : Z23 →W is proper, so the composition

Z12 ×X2 Z23 → X3

is proper. We have already shown that p13|Z is proper, and since (p13
3 )|W is separated, it is

proper as well. This shows condition (i). For condition (ii) we, keeping the same notation as
above, similarly look at the commutative square

Z12 ×X2 Z23
proj. //

p13|Z
��

Z12

(p12
1 )|Z12

��
W

(p13
1 )|W // X1.

For any A ∈ Φ1, we want to show that

W ∩ (p13
1 )−1(A) ∈ (p13

3 )−1(Φ3).

Notice that

((p13
1 )|W )−1(A) = W ∩ (p13

1 )−1(A), and

((p12
1 )|Z12)−1(A) = (p12

1 )−1(A) ∩ Z12,

so by considering the preimage in Z12 ×X2 Z23 we have

((W ∩ (p13
1 )−1(A))×S X2) ∩ (Z12 ×X2 Z23) = ((p12

1 )−1(A) ∩ Z12)×X2 Z23.

We notice that from the definition of Φ12 there exists some B ∈ Φ2 such that

(p12
1 )−1(A) ∩ Z12 = (p12

2 )−1(B) = B ×S X1,

and therefore

((W ∩ (p13
1 )−1(A))×S X2) ∩ (Z12 ×X2 Z23) = (B ×S X1 ×S X3) ∩ (Z12 ×X2 Z23).

We have
(B ×S X1 ×S X3) ∩ (Z12 ×X2 Z23) ⊂ X1 ×S (B ×S X3) ∩ Z23,
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and from the definition of Φ23 there exists some C ∈ Φ3 such that

(B ×S X3) ∩ Z23 = C ×S X2,

so
((W ∩ (p13

1 )−1(A))×S X2) ∩ (Z12 ×X2 Z23) = X1 ×S C ×S X2.

We then finally see that

W ∩ (p13
1 )−1(A) = C ×S X1 = (p13

3 )−1(C),

which is precisely what we need to show (ii).
We can therefore define the composition

F(X1 ×S X2, P (Φ1,Φ2))⊗ F(X2 ×S X2, P (Φ2,Φ3))→ F(X1 ×S X3, P (Φ1,Φ3)),(5.4)
a⊗ b 7→ b ◦ a,

as in (5.2). The following proposition tells us that this composition is associative and has a
left and right units.

Proposition 5.3. (1) Let Xi, i = 1, . . . , 4 be NS-schemes with families of supports
Φi respectively. For all aij ∈ F(Xi ×S Xj , P (Φi,Φj)) we have

a34 ◦ (aa23◦a12) = (a34 ◦ a23) ◦ a12.

(2) For any NS-scheme with a family of supports (X,Φ), the diagonal immersion induces
a morphism ı : X → (X ×S X,P (Φ,Φ)) in V∗. We write

∆(X,Φ) = F∗(ı)(1X)

Then the equalities ∆(X,Φ) ◦ g = g and g ◦ ∆(X,Φ) = g hold for all NS-schemes
with families of supports (Y,Ψ) and all g ∈ F(Y ×S X,P (Ψ,Φ)) and g ∈ F(X ×S
Y, P (Φ,Ψ)) respectively.

Proof. (1) This is essentially proven in [Ful98, Prop. 16.1.1.(a).], but we repeat it
here to keep track of the supports. We denote by pijkik the projectionXi×SXj×SXk →
Xi ×S Xj and when the projection is from X1 ×S X2 ×S X3 ×S X4 we omit the
superscript. We also denote Φij := P (Φ1,Φ2).

a34 ◦ (a23 ◦ a12)

= a34 ◦
(
F∗(p123

13 )

(
F∗(p123

12 )(a12) ∪ F∗(p123
23 )(a34)

))
= F∗(p134

14 )

(
F∗(p134

13 )

(
F∗(p123

13 )

(
F∗(p123

12 )(a12) ∪ F∗(p123
23 )(a23)

))
(5.5)

∪ F∗(p134
34 )(a34)

)
.

Here the maps are:

F(X1 ×S X2 ×S X3, (p
123
12 )−1(Φ12) ∩ (p123

23 )−1(Φ23))
F∗(p123

13 )
−−−−−→ F(X1 ×S X3,Φ13),

F(X1 ×S X3 ×S X4, (p
134
13 )−1(Φ13) ∩ (p134

34 )−1(Φ34))
F∗(p134

14 )
−−−−−→ F(X1 ×S X4,Φ14), and

F(Xi ×S Xj ,Φij)
F∗(pijkij )
−−−−−→ F(Xi ×S Xj ×S Xk, (p

ijk
ij )−1(Φij)),
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where by F∗(pijkij ) we mean any of the maps F∗(p123
12 ),F∗(p123

23 ),F∗(p134
13 ) and F∗(p134

34 ).1

We have a Cartesian diagram

(5.6) X1 ×S X2 ×S X3 ×S X4

p134

��

p123 // X1 ×S X2 ×S X3

p123
13

��
X1 ×S X3 ×S X4

p134
13

// X1 ×S X3,

and given the supports on X1×S X3, X1×S X2×S X3 and X1×S X3×S X4 as above
and the supports

p−1
123((p123

12 )−1(Φ12) ∩ (p123
23 )−1(Φ23)) = p−1

12 (Φ12) ∩ p−1
23 (Φ23)

on X1 ×S . . . ×S X4 we want to show that p134 is a morphims in V∗. To do this we
consider another Cartesian diagram

X1 ×S X2 ×S X3 ×S X4

p134

��

p23 // X2 ×S X3

p23
3
��

X1 ×S X3 ×s X4

p134
3 // X3.

We take Z ∈ p−1
12 (Φ12) ∩ p−1

23 (Φ23) and assume for now that Z = p−1
23 (W ) for some

W ∈ Φ23 (in general Z will be a closed subset of such a preimage). Then Z has the
form Z = W ×S X1 ×S X4 and we have a Cartesian diagram

Z
p23|Z //

p134|Z
��

W

p23
3 |W
��

X1 ×S X2 ×S X3

p134
3 // X3.

Since p23
3 |W is proper by the definition of Φ23, so is p134|Z by base-change. If Z ′ ∈

p−1
23 (Φ23) then it is a closed subset of such a preimage Z, and we have p134|Z′ =

p134|Z ◦ i where i : Z
′
↪→ Z is the closed immersion and is proper as the composition

of two proper morphisms.
Now consider again the Cartesian diagram (5.6). We want to show that

p134(p−1
123((p123

12 )−1(Φ12) ∩ (p123
23 )−1(Φ23))) ⊆ (p134

13 )−1(Φ23).

Consider Z = p−1
123(W ) for someW ∈ (p123

12 )−1(Φ12)∩(p123
23 )−1(Φ23)). Then Z = W×S

X4 and p134(Z) ⊆ p123
13 (W )×SX4. Now p123

13 (W )×SX4 is precisely (p134
13 )−1(p123

13 (W ))
and since p123

13 is a morphism in V∗ we have p123
13 (W ) ∈ Φ13 and so p134(Z) is a

(closed since p134|Z is proper) subset of (p134
13 )−1(p123

13 (W )) ∈ (p134
13 )−1(Φ13) and so

Z ∈ (p134
13 )−1(Φ13). Finally in general if Z ′ is any element in p−1

123((p123
12 )−1(Φ12) ∩

(p123
23 )−1(Φ23)) then it is a closed subset of such a preimage Z = W ×S X4 and since

p134|Z is proper we have that p134(Z
′
) is a closed subset of p134(Z) ∈ (p134

13 )−1(Φ13)
and so lies in (p134

13 )−1(Φ13).

1Note that our notation here is imprecise, namely that some of the maps in question are F∗(pijkjk ) and not
F∗(pijkij ), but this is only for ease of notation.
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Furthermore, p123
13 is the base-change of the smooth structure-morphism π2 : X2 →

S and is thus itself smooth, and we can use the push-pull formula in condition (4) of
Definition 1.10 to obtain

F∗(p134
13 ) ◦ F∗(p123

13 ) = F∗(p134) ◦ F∗(p123).

We use this to get that
(5.5)

F∗(p134
14 )

(
F∗(p134) ◦ F∗(p123)

(
F∗(p123

12 )(a12) ∪ F∗(p123
23 )(a23)

)
∪ F∗(p134

34 )(a34)

)
=F∗(p134

14 )

(
F∗(p134)

(
F∗(p12)(a12) ∪ F∗(p23)(a23)

)
∪ F∗(p134

34 )(a34)

)
,

where the second equality follows from the compatibility of the cup product with
pullbacks, Proposition 1.14 , and F∗(p12) = F∗(p123

12 ◦ p123) and F∗(p23) = F∗(p123
23 ◦

p123) are maps

F(X1 ×S X2,Φ12)→ F(X1 ×S . . .×S X4, p
−1
12 (Φ12)) and

F(X2 ×S X3,Φ23)→ F(X1 ×S . . .×S X4, p
−1
23 (Φ23)),

respectively.2 Now if we use the first projection formula from Proposition 1.15 we get

F∗(p134
14 )

(
F∗(p134)

(
F∗(p12)(a12) ∪ F∗(p23)(a23)

)
∪ F∗(p134

34 )(a34)

)
= F∗(p134

14 )

(
F∗(p134)

(
F∗(p12)(a12) ∪ F∗(p23)(a23) ∪ F∗(p134) ◦ F∗(p134

34 )(a34)

))
= F∗(p14)

(
F∗(p12)(a12) ∪ F∗(p23)(a23) ∪ F∗(p34)(a34)

)
,

where in the first line F∗(p134) is a map

F(X1 ×S . . .×S X4, p
−1
12 (Φ12) ∩ p−1

23 (Φ23))→ F(X1 ×S X3 ×S X4, (p
134
13 )−1(Φ13)),

but in the second line F∗(p134) is a map

F(X1 ×S . . .×S X4, p
−1
12 (Φ12) ∩ p−1

23 (Φ23) ∩ p−1
34 (Φ34))

→ F(X1 ×S X3 ×S X4, (p
134
13 )−1(Φ13) ∩ (p134

34 )−1(Φ34)),

and therefore the composition F∗(p134
14 ) ◦ F∗(p134) is well defined and gives the map

F∗(p14) : F(X1 ×S . . .×S X4, p
−1
12 (Φ12) ∩ p−1

23 (Φ23) ∩ p−1
34 (Φ34))→ F(X1 ×S X4,Φ14).

The map F∗(p134) in the second line is a map from F(X1×SX2×SX3, (p
134
34 )−1(Φ34))

to F(X1 ×S . . .×S X4, p
−1
34 (Φ34)) and so the composition F∗(p134) ◦ F∗(p134

34 ) is a well
defined map F∗(p34) : (X3 ×S X4,Φ34)→ F(X1 ×S . . .×S X4, p

−1
34 (Φ34)).

If we go through the expansion of (a34 ◦ a23) ◦ a12 in the same way, we arrive at
the same expression

F∗(p14)

(
F∗(p12)(a12) ∪ F∗(p23)(a23) ∪ F∗(p34)(a34)

)
,

2Notice that F∗(p123) has different meanings here, depending on where it is. Before we distribute it
over the cup product, it is a map F(X1 ×S X2 ×S X3, (p

123
12 )−1(Φ12) ∩ (p123

23 )−1(Φ23)) → F(X1 ×S . . . ×S
X4, p

−1
12 (Φ12) ∩ p−1

23 (Φ23) and when acting on F∗(p123
23 )(a12) it is a map f(X1 ×S X2 ×S X3, (p

123
12 )−1(Φ12)) →

F(X1 ×S . . .×S X4, p
−1
12 (Φ12)) and similary when acting on F∗(p123

23 )(a23).
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and so the associativity of the correspondences follows from the associativity of the
cup product, Lemma 1.13.

(2) We show here that ∆(X,Φ) ◦g = g for all NS-schemes with supports (X,Φ) and (Y,Ψ)
and all g ∈ F(Y ×S X,P (Ψ,Φ)). The other claim is proved in the same way. We
denote by pij the projection map from Y ×S X ×S X to the product of the i-th
component and the j-th component. We write out

∆(X,Φ) ◦ g = F∗(p13)

(
F∗(p12)(g) ∪ F∗(p23)(∆(X,Φ))

)
= F∗(p13)

(
F∗(p12)(g) ∪ F∗(p23)(F∗(ı)(1X))

)
(5.7)

where the maps are
• F∗(p13) : (Y×SX×SX, p−1

12 (P (Ψ,Φ))∩p−1
23 (23)(P (Φ,Φ)))→ F(Y×SX,P (Ψ,Φ)),

• F∗(p12) : F(Y ×S X,P (Ψ,Φ))→ F(Y ×S X ×S X, p−1
12 (P (Ψ,Φ))), and

• F∗(p23) : F(X ×S X,P (Φ,Φ))→ F(Y ×S X ×S X, p−1
23 (P (Φ,Φ))).

Consider the following Cartesian diagram

Y ×S X
t //

pr2

��

(Y ×S X ×S X, p−1
23 (P (Φ,Φ)))

p23

��
X ı

// (X ×S X,P (Φ,Φ)),

where i and t := idY ×S ∆X are morphisms in V∗3and pr2 and p23 are morphisms in
V ∗. By condition 4 in Definition 1.10 of weak cohomology theories we have

F∗(p23)(F∗(ı)(1X)) = F∗(t)F∗(pr2)(1X)

= F∗(t)(1Y×SX),

and substituting this into (5.7) we get

∆(X,Φ) ◦ g = F∗(p13)

(
F∗(p12)(g) ∪ F∗(t)(1Y×SX)

)
.

Notice that as morphisms of S-schemes, p12 = p13 and we can use the second projec-
tion formula to write

F∗(p13)

(
F∗(p12)(g) ∪ F∗(t)(1Y×SX)

)
= g ∪ F∗(p12)F∗(t)(1Y×SX)

= g ∪ 1Y×SX

= g,

where p12 on the right-hand side of the first equation is the morphism (Y ×S X ×S
X, p−1

23 (P (Φ,Φ)))→ Y ×SX, which is easily checked to be in V∗, and p12◦t = idY×SX .
�

Neither the homological grading, coming from F∗, nor the cohomological grading, coming
from F∗, on F(X ×S Y, P (Φ,Ψ)) is compatible with correspondence composition ◦. We define

3It is clear that idY ×S ∆X is proper and one easily checks that the image of Y ×S X under idY ×S ∆X

lies in p−1
23 (P (Φ,Φ)) and this suffices to show that idY ×S ∆X is in V∗.



108 5. CORRESPONDENCES

a new grading, based on the cohomological grading, that is compatible. 4 We define for any
NS-schemes X and Y with families of supports Φ and Ψ respectively

F(X ×S Y, P (Φ,Ψ))i =
⊕
X′

F2 dimS(X
′
)+i(X

′ ×S Y, P (Φ ∩X ′ ,Ψ)),

where X ′ runs through the connected components of X.

Proposition 5.4. This grading defined above, is compatible with ◦.
Proof. What we want to show that if we haveNS-schemes with supports (X1,Φ1), (X2,Φ2)

and (X3,Φ3), and elements a ∈ F(X1 ×S X2,Φ12)i and b ∈ F(X2 ×S X3,Φ23)j , where
Φrs := P (Φr,Φs), then b ◦ a ∈ F(X1 ×S X3,Φ13)i+j . Since the composition ◦ distributes
over addition we can reduce to the case where X1, X2 and X3 are all connected, and denote
dimS(X1) =: d1 and dimS(X2) =: d2. Now F∗(p12) and F∗(p23) are graded so

b ◦ a = F∗(p13)(x ∪ y),

where x := F∗(p12)(a) ∈ F2d1+i(X1×SX2×SX3, p
−1
12 (Φ1)) and y := F∗(p−1

23 )(b) ∈ F2d2+j(X1×S
X2 ×S X3, p

−1
23 (Φ23)). The cup-product is defined by

x ∪ y = F∗(∆)(T (x, y)),

where

∆ : (X1 ×S X2 ×S X3, p
−1
12 (Φ12) ∩ p−1

23 (Φ23))→
((X1 ×S X2 ×S X3)×S(X1 ×S X2 ×S X3), p−1

12 (Φ12)×S p−1
23 (Φ23))

is induced by the diagonal morphism. T is a graded morphism, so

T (x, y) ∈ Fc((X1 ×S X2 ×S X3)×S (X1 ×S X2 ×S X3), p−1
12 (Φ12)×S p−1

23 (Φ23)),

where c := 2d1 + 2d2 + i+ j, and since F∗(∆) is graded we have

x ∪ y ∈ Fc(X1 ×S X2 ×S X3, p
−1
12 (Φ12) ∩ p−1

23 (Φ23)).

The morphism F∗(p13) is graded with respect to the homological grading and we have that
x∪ y ∈ Fd(X1 ×S X2 ×S X3, p

−1
12 (Φ12)∩ p−1

23 (Φ23)) where d = 2 dimS(X1 ×S X2 ×S X3)− c so
we have that

b ◦ a ∈ Fd(X1 ×S X3,Φ13) = FdimS(X1×SX3)−d(X1 ×S X3,Φ13).

To finish the proof we need to see that 2 dimS(X1 ×S X3)− d = 2d1 + i+ j. We have

2 dimS(X1 ×S X3)− d = 2 dimS(X1 ×S X3)− 2 dimS(X1 ×S X2 ×S X3) + c

= 2 dimS(X1 ×S X3)− 2 dimS(X1 ×S X2 ×S X3) + 2d2

+ 2d1 + i+ j,

so it suffices to show that dimS(X1 ×S X3) − dimS(X1 ×S X2 ×S X3) + d2 = 0. We notice
that we may assume that X1×S X3 is connected (and hence integral) for the same reasons we
reduced to the case of X1, X2 and X3 integral. By Proposition 2.9 we see that

dimS(X1 ×S X2 ×S X3) = dimS(X1 ×S X2 ×S X3) + dim((X2)η),

where η is the generic point of S and (X2)η is the generic fiber. But by part vii) of Proposition
A.2 we get that

dim((X2)η) = dimS(X2)− dimS(S) = dimS(X2)

which finishes the proof. �

4We could just as easily have chosen to define a new grading based on the homological one.
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3. The functor Cor

For each WCTS F ∈ T we attach a graded additive category CorF . The objects are
obj(CorF ) = obj(V∗) = obj(V ∗) and the morphisms are given by the correspondences, namely
a morphism from (X,Φ) to (Y,Ψ) is an element in F(X ×S Y, P (Φ,Ψ)). The composition
of morphisms is given by the composition of correspondences ◦ (i.e. if we have three objects
(X,Φ), (Y,Ψ) and (Z,Ξ) and morphisms a : (X,Φ)→ (Y,Ψ) and b : (Y,Ψ)→ (Z,Ξ) then the
composition is b ◦ a ∈ F(X ×S Z,P (Φ,Ξ))), which is associative by part (1) of Proposition
5.3, and from part (2) of Proposition 5.3 we see that for each object (X,Φ) ∈ obj(CorF ) the
identity morphisms is ∆(X,Φ) : (X,Φ)→ (X,Φ).

Definition 5.5. We define a tensor product on the category CorF by

(X,Φ)⊗S (Y,Ψ) = (X ×S Y,Φ×S Ψ)

on objects, and for morphisms f ∈ F(X ×S Y, P (Φ,Ψ)) and g ∈ F(Z ×S T, P (Ξ,Θ)) by

f ⊗ g ∈ HomCorF ((X,Φ)⊗S (Y,Ψ), (Z,Ξ)⊗S (T,Θ))

f ⊗ g := F∗(idX ×S µY,Z ×S idT )(T (f, g)),

where µY,Z is the permutation of the factors Y and Z.

We have the following proposition.

Proposition 5.6. This tensor product along with the unit object (S, S) endow the category
CorF with the structure of a symmetric monoidal category.

Proof. The associators are given by the natural associativity of the fiber product of
scheme, and the left and right unitors are given by the natural isomorphisms S×SX

∼=−→ X and
X×SS

∼=−→ X respectively. It is then trivial to check the pentagon and triangle diagrams to see
that (CorF ,⊗S , (S, S)) is a monoidal category. The natural isomorphism X ×S Y

∼=−→ Y ×S X
for all S-schemes X and Y allows us to see that (CorF ,⊗S , (S, S)) is a symmetric monoidal
category. �

If we now have a morphism φ : F → G in T then we get a functor of graded additive
symmetric monoidal categories

Cor(φ) : CorF → CorG,

given by
φ : F(X ×S Y, P (Φ,Ψ))→ G(X ×S Y, P (Φ,Ψ)),

for all (X,Φ), (Y,Ψ) ∈ obj(CorF ) = obj(CorG). This allows us to define a functor

Cor : T→ CatGrAb,⊗S ,

F 7→ CorF, and
φ 7→ Cor(φ),

where CatGrAb,⊗S is the category of graded additive symmetric monoidal categories.
This functor Cor will be a central object moving forward, so we wish to study it’s prop-

erties. In order to do so we introduce a related functor. First we consider DisV, the discrete
category on the class of objects obj(V∗) = obj(V ∗) = obj(CorF) for any F ∈ T. I.e., it’s
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the category with objects obj(DisV) = obj(V∗) = obj(V ∗) = obj(CorF) and for any objects
X,Y ∈ obj(DisV) we have

homDisV(X,Y ) =

{
idX if X = Y,

∅ otherwise.

Now we can define a category CatDisV/GrAb,⊗S , which has as objects functors DisV → C
where C runs over all elements of CatGrAb,⊗S and morphisms are commutative triangles

X
f // Y,

DisV

bb <<

where f : X → Y is a morphism in CatGrAb,⊗S , i.e. a functor of graded additive symmetric
monoidal categories. We note that we have obvious functors DisV → V∗,DisV → V ∗ and
DisV → CorF for any F ∈ T, and we have a functor

Cor : T→ CatDisV/GrAb,⊗S ,

F 7→ (DisV → CorF), and

(φ : F→ G) 7→ CorF
Cor(φ) // CorG.

DisV

dd ::

Proposition 5.7. The functor Cor : T→ CatDisV/GrAb,⊗S is fully faithful.

Proof. To show that Cor is faithful, we show that given a morphism φ : F → G in T
we can recover φ uniquely from the morphism Cor(φ) in CatDisV/GrAb,⊗S . Furthermore we
note that it is clear that two morphisms in φ, ψ : F → G in T agree if the homomorphisms
φ(X,Φ), ψ(X,Φ) : F(X,Φ)→ G(X,Φ) agree for all (X,Φ) ∈ obj(V∗) = obj(V ∗). But morphisms
(X,Φ)→ (Y,Ψ) in CorF are just elements of the group F(X ×S Y, P (Φ,Ψ)) and so Cor(φ) is
the homomorphism of graded abelian groups

φ(X×SY,P (Φ,Ψ)) : F(X ×S Y, P (Φ,Ψ))→ G(X ×S Y, P (Φ,Ψ))

for all (X,Φ) and (Y,Ψ) in obj(V∗) = obj(V ∗). This holds in particular for (Y,Ψ) = S, which
proves the claim.

To show that Cor is full, we notice that given any ψ : CorF → CorG in CatDisV/GrAb,⊗S ,
then

ψ : HomCorF(S, (X,Φ))→ HomCorF(S, (X,Φ))

defines a morphism F→ G in T. �

For any WCTS F ∈ T we can define a map on objects and morphisms ρF : CorF → GrAb
by

ρF(X,Φ) = F(X,Φ),

ρF(γ) = (a 7→ F∗(p2)(F∗(p1)(a) ∪ γ)),

where γ : (X,Φ)→ (Y,Ψ) is a morphism in CorF, i.e. an element in F(X ×S Y, P (Φ,Ψ)), and
the maps are p1 : (X ×S Y, p−1

1 (Φ))→ (X,Φ) and p2 : (X ×S Y, P (Φ,Ψ)∩ p−1
1 (Φ)) induced by
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the first and second projections respectively. The map ρF is well defined by the definition of
P (Φ,Ψ).

Lemma 5.8. The above construction gives us a functor ρF : CorF → GrAb for any F ∈ T.

Proof. We need to show that ρF sends the identity morphism to the identity morphism
and that it preserves the composition of morphisms.

Let (X,Φ) ∈ obj(CorF), then the identity morphism (X,Φ)→ (X,Φ) in CorF is ∆(X,Φ) =
F∗(ı)(1X), where as before ı : X → (X ×S X,P (Φ,Φ)) is induced by the diagonal morphism,
so we want to show that for any a ∈ F(X,Φ) we have

F∗(p2)(F∗(p1)(a) ∪ F∗(ı)(1X)) = a.

By the second projection formula, Proposition 1.15, we have

F∗(p2)(F∗(p1)(a) ∪ F∗(ı)(1X)) = a ∪ F∗(p) ◦ F∗(ı)(1X)

= a ∪ 1X

= a,

where p : (X ×S X,P (Φ,Φ)) → X is the morphism in V∗ induced by the projection (onto
either factor, they are the same morphism).

Now consider three NS-schemes with families of supports (X1,Φ1), (X2,Φ2) and (X3,Φ3).
For ease of notation, we denote as before Φij := P (Φi,Φj). Now let a ∈ F(X1,Φ1) and we get

ρF(β) ◦ ρF(α)(a) = ρF(β)

(
F∗(p12

2 )

(
F∗(p12

1 )(a) ∪ α
))

= F∗(p23
3 )

(
F∗(p23

2 )

(
F∗(p12

2 )

(
F∗(p12

1 )(a) ∪ α
))
∪ β
)

(5.8)

where as before piji denotes the projection fromXi×SXj toXi etc. and when we are projecting
from X1×S X2×S X3 we don’t write the superscript. Here in particular (keeping track of the
supports) we have the morphisms

p12
1 : (X1 ×S X2, (p

12
1 )−1(Φ1))→ (X1,Φ1),

p12
2 : (X1 ×S X2,Φ12 ∩ (p12

1 )−1(Φ1))→ (X2,Φ2),

p23
2 : (X2 ×S X3, (p

23
2 )−1(Φ2))→ (X2,Φ2), and

p23
3 : (X2 ×S X3,Φ23 ∩ (p23

2 )−1(Φ2))→ (X3,Φ3).

We have a Cartesian diagram

(X1 ×S X2 ×S X3, p
−1
12 (Φ12) ∩ p−1

1 (Φ1))
p12 //

p23

��

(X1 ×S X2,Φ12 ∩ (p12
1 )−1(Φ1))

p12
2

��
(X2 ×S X3, (p

23
2 )−1(Φ2))

p23
2

// (X2,Φ2),

where p12
2 , p23 ∈ V∗ and p12, p

23
2 ∈ V ∗.5 Furthermore, p12

2 is smooth (as the pullback of the
smooth structure morphism X1 → S by the structure morphism X2 → S) so we have by
condition (4) of Definition 1.10 that

F∗(p23
2 ) ◦ F∗(p12

2 ) = F∗(p23) ◦ F∗(p12),

5The fact that p23 is in V∗ can be checked in a similar manner to similar claims shown in the proof of
Proposition 5.3.
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and substituting this into (5.8) we obtain

ρF(β) ◦ ρF(α)(a) = F∗(p23
3 )

(
F∗(p23)

(
F∗(p12)

(
F∗(p12

1 )(a) ∪ α
))
∪ β
)

= F∗(p23
3 )

(
F∗(p23)

(
F∗(p1)(a) ∪ F∗(p12)(α)

)
∪ β
)
,(5.9)

where the second equality comes from the fact that pullbacks respect cup products, Proposition
1.14, and the maps are

p1 : (X1 ×S X2 ×S X3, p
−1
1 (Φ1))→ (X1,Φ1)

p12 : (X1 ×S X2 ×S X3, p
−1
12 (Φ12))→ (X1 ×S X2,Φ12).6

We now write x := F∗(p1)(a) ∪ F∗(p12)(α) and consider the expression

F∗(p23)(x) ∪ β.
We use the first projection formula from Proposition 1.15, to write this as

F∗(p23)(x) ∪ β = F∗(p23)
(
x ∪ F∗(p23)(β)

)
,

where on the right-hand side we have the maps

F∗(p23) : F(X1 ×S X2 ×S X3,p
−1
12 (Φ12) ∩ p−1

23 (Φ23) ∩ p−1
1 (Φ1))

→ F(X2 ×S X3, (p
23
2 )−1(Φ2) ∩ p−1

23 (Φ23)),

and
F∗(p23) : F(X1 ×S X2 ×S X3, p

−1
23 (Φ23))→ (X2 ×S X3,Φ23).

If we substitute this into (5.9) we obtain

ρF(β) ◦ ρF(α)(a) = F∗(p23
3 )

(
F∗(p23)

(
F∗(p1)(a) ∪ F∗(p12)(α)

)
∪ β
)

= F∗(p23
3 ) ◦ F∗(p23)

(
F∗(p1)(a) ∪ F∗(p12)(α) ∪ F∗(p23)(β)

)
= F∗(p3)

(
F∗(p1)(a) ∪ F∗(p12)(α) ∪ F∗(p23)(β)

)
.

Similarly we can calculate for any a ∈ F(X1,Φ1)

ρ(β ◦ α)(a) = F∗(p13
3 )

(
F∗(p13

1 )(a) ∪ (β ◦ α)

)
= F∗(p13

3 )

(
F∗(p13

1 )(a) ∪
(
F∗(p13)

(
F∗(p12)(α) ∪ F∗(p23)(β)

)))
= F∗(p13

3 )

(
F∗(p13)

(
F∗(p13)(F∗(p13

1 )(a)) ∪ F∗(p12)(α) ∪ F∗(p23)(β)

))
= F∗(p3)

(
F∗(p1)(a) ∪ F∗(p12)(α) ∪ F∗(p23)(β)

)
,

where the second equality comes from the definition of β ◦ α, the third equality comes
from the second projection formula from Proposition 1.15. This is exactly the same as
ρF(β) ◦ ρF(α)(a). �

6The p12 here is from the last expression (after taking it inside the cup product) and has different supports
than the p12 from the line above.



3. THE FUNCTOR Cor 113

We define a category Vprop as the subcategory of V∗ having the same objects as V∗ and
morphisms are the V∗ morphisms f : (X,Φ) → (Y,Ψ) such that the underlying morphism of
S-schemes X → Y is proper. For any WCTS F ∈ T we define two more functors7

τF∗ : Vprop → CorF, and
τ∗F : (V ∗)op → CorF.

Both are defined to be the identity on objects, and if f : (X,Φ) → (Y,Ψ) is a morphism in
Vprop then

τF∗ (f) = F∗(idX , f)(1X)

where the morphism (idX , f) : X → (X ×S Y, P (Φ,Ψ)) is in V∗, and if g : (X,Φ)→ (Y,Ψ) is
a morphism in V ∗ then

τ∗F(g) = F∗(g, idX)(1X)

where (g, idX) : X → (Y ×S X,P (Ψ,Φ)) is a morphism in V ∗.
Finally we have two lemmas that tell us how we can compose thesse functors ρF, τF∗ and

τ∗F to calculate pullbacks F∗ and pushforwards F∗ in a WCTS and how these interact with the
correspondence functor.

Lemma 5.9. For any F ∈ T we have
• ρF ◦ τF

∗ = F∗|Vprop and
• ρF ◦ τ∗F = F∗.

Proof. We prove that ρF ◦ τF∗ = F∗, the other claim is proved in the same way.
We first notice that for any object (X,Φ) ∈ ob(Vprop) = ob(V∗) we clearly have by definition

ρF ◦ τF∗ (X,Φ) = (X,Φ).
Now let f : (X,Φ)→ (Y,Ψ) be a morphism in Vprop. Then we have for any a ∈ F(X,Φ)

ρF ◦ τF∗ (f)(a) = ρF(F∗(idX , f)(1X))

= F∗(p2)(F∗(p1)(a) ∪ F∗(idX , f)(1X)),

where p1 : (X ×S Y, p−1
1 (Φ))→ (X,Φ) and p2 : (X ×S Y, P (Φ,Ψ) ∩ p−1

1 (Φ))→ (Y,Ψ). By the
second projection formula, Proposition 1.15, we have

F∗(p1)(a) ∪ F∗(idX , f)(1X) = F∗(idX , f)

(
F∗(idX , f)(F∗(p1)(a)) ∪ 1X

)
= F∗(idX , f)

(
F∗(idX , f)(F∗(p1)(a))

)
,

and therefore
ρF ◦ τF∗ (f)(a) = F∗(p2)F∗(idX , f)F∗(idX , f)F∗(p1)(a),

where F∗(idX , f) on the right-hand side of the first equation is a map F(X ×S Y, p−1
1 (Φ)) →

F(X,Φ) and F∗(idX , f) : F(X,Φ) → F(X ×S Y, P (Φ,Ψ) ∩ p−1
1 (Φ)). It is clear that p2 ◦

(idX , f) = f as maps (X,Φ)→ (Y,Ψ) and p1 ◦ (idX , f) = idX . Therefore we have

ρF ◦ τF∗ (f)(a) = F∗(f)(a).

�

7These functors are functors under DisV, i.e. τF
∗ ◦ φV∗ = φCorF and τ∗F ◦ φV ∗ = φCorF where φV∗ , φV ∗ , and

φCorF are the functors from DisV to Vprop, V
∗ and CorF respectively
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Lemma 5.10. For any morphism φ : F→ G in T we have

Cor(φ) ◦ τF
∗ = τG

∗ and
Cor(φ) ◦ τ∗F = τ∗G.

Proof. As before we just prove the first equality, the second is proved in the same way. It
is immediately clear that the equality holds on objects, so we check it for morphisms. Namely,
let f : (X,Φ)→ (Y,Ψ) be a morphism in Vprop. Then

Cor(φ) ◦ τF∗ (f) = Cor(φ)(F∗(idX , f)(1X))

= φ(F∗(idX , f)(1X))

= G∗(idX , f)(φ(1X))

= G∗(idX , f)(1X)

= τG∗ (f),

where the penultimate equality comes from the fact that for any morphism of WCTS φ : F→ G
we have φ(1X) = 1X . �
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Applications

Theorem 6.1. (cf. [CR11, Proposition 3.2.2.]) Let X and Y be connected NS-schemes
and let

α ∈ HomCorCH
(X,Y )0 = CHdX (X ×S Y, P (ΦX ,ΦY ))

be a correspondence from X to Y , where dX := dimS(X).

(1) If the support of α projects to an r-codimensional subset in Y , then the restriction of
ρH ◦ Cor(cl)(α) to ⊕j<r,iH i(X,Ωj

X/S) vanishes.
(2) If the support of α projects to an r-codimensional subset in X, then the restriction of

ρH ◦ Cor(cl)(α) to ⊕j≥dimS X−r+1,iH
i(X,Ωj

X/S) vanishes.

Proof. (1) Without loss of generality we can assume that α = [V ] where V ⊂
X ×S Y is an integral closed subscheme of S-dimension dimS(V ) = dimS(Y ) =: dY ,
and such that pr2(V ) ⊂ Y has codimension r, where pr2 : X ×S Y → Y is the
projection morphism. Recall that by definition

ρH ◦ Cor(cl)([V ])(β) = H∗(pr2)(H∗(pr1)(β) ∪ cl(V,X ×S Y )),

for β ∈ H(X,ΦX). Without loss of generality we can assume β ∈ H i(X,Ωj
X/S) and

so H∗(pr1)(β) ∈ H i(X ×S Y,Ωj
X×SY/S). Consider the diagram

⊕
a+b=dX

HdX
V (pr∗1Ωa

X/S ⊗OX×SY pr
∗
2Ωb

Y/S)

proj.
��

∼= // HdX
V (ΩdX

X×SY/S)
H∗(pr1)(β)∪ // HdX+i

V (ΩdX+j
X×SY/S)

proj.

��

HdX
V (pr∗1ΩdX−j

X/S ⊗OX×SY pr
∗
2Ωj

Y/S)
H∗(pr1)(β)∪ // HdX+i

V (pr∗1ΩdX
X/S ⊗OX×SY pr

∗
2Ωj

Y/S)

��

H i
pr2(V )(Y,Ω

j
Y/S),

where we write Hp
V (F) for Hp(X ×S Y,F) for readability. First of all, we notice

that the lower vertical map on the right is chosen so that the composition is exactly
H∗(pr2) which we know we can do by Lemma 4.16. Secondly we notice that the
square commutes. This is because the projection on the left is precisely the one such
that cupping with H∗(pr1)(β) lands in HdX+i

V (pr∗1ΩdX
X/S ⊗OX×SY pr

∗
2Ωj

Y/S), i.e. if the

left arrow projects to HdX
V (pr∗1Ωa

X/S⊗OX×SY pr
∗
2Ωb

Y/S), then cupping with H∗(pr1)(β)

maps to HdX+i
V (pr∗1Ωa+j

X/S ⊗OX×SY pr
∗
2Ωb

Y/S) forcing a = dX − j to hold.

115
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To show that this vanishes it thus suffices to show that cl(V,X)) vanishes under
the map

HdX
V (X ×S Y,ΩdX

X×SY/S)
proj.−−−→ HdX

V (X ×S Y, pr∗1ΩdX−j
X/S ⊗ pr

∗
2Ωj

Y/S),

for any 0 ≤ j ≤ r − 1. Furthermore, by Lemma 4.27 we may localize to the generic
point η of V and thus it suffices to show that cl(V,X)η vanishes under the projection
map

HdX
η (X ×S Y,ΩdX

X×SY/S)
proj.−−−→ HdX

η (X ×S Y, pr∗1ΩdX−j
X/S ⊗ pr

∗
2Ωj

Y/S),

for all 0 ≤ q ≤ r − 1.
We write B = OX×SY,η and OY,pr2(η). A is a regular local ring of dimension r and

B is formally smooth over A. Let t1, . . . , tr ∈ A be a regular sequence of parameters.
B/(1⊗ t1, . . . , 1⊗ tr) is a regular local ring so there exist elements sr+1, . . . , sdX ∈ B
such that 1 ⊗ t1, . . . , 1 ⊗ tr, sr+1, . . . , sdX is a regular sequence of parameters for B.
The explicit description of the cycle class given in Lemma 4.26 gives

cl(V,X)η = (−1)dX
[
d(1⊗ t1) ∧ · · · ∧ d(1⊗ tr) ∧ dsr+1 ∧ · · · ∧ dsdX

1⊗ t1, . . . , 1⊗ tr, sr+1, . . . , sdX

]
.

The construction of the element
[
m
t

]
in Section 4.1 and [CR11, Appendix A.1.] is

functorial, see Lemma 4.11. This tells us that to show that cl(V,X ×S Y )η vanishes
under

HdX
η (X ×S Y,ΩdX

X×SY/S)
proj.−−−→ HdX

η (X ×S Y, pr∗1ΩdX−j
X/S ⊗ pr

∗
2Ωj

Y/S),

it suffices to show that d(1⊗ t1) ∧ · · · ∧ d(1⊗ tr) ∧ dsr+1 ∧ · · · ∧ dsdX vanishes under
the corresponding projection

ΩdX
B/R → ΩdX−j

C/R ⊗R Ωj
A/R,

where R = OS(S), and C = OX,pr1(η). Since 0 ≤ j ≤ r − 1 this is clear; every term
of the image must have at least one d(1) = 0 occuring in the ΩdX−j

C/R part and hence
all terms are zero.

(2) The proof of this part is by symmetry the same as in part (1). It suffices to show
that cl(V,X ×S Y ) vanishes under the projection map

HdX
η (X ×S Y,ΩdX

X×SY/S)
proj.−−−→ HdX

η (X ×S Y, pr∗1Ωj
X/S ⊗ pr

∗
2ΩdX−j

Y/S ),

and from here the argument is the same.
�

Let S′ be a separated S-scheme and f : X → S
′ and g : Y → S

′ be integral S′-schemes that
are NS-schemes. Let Z ⊂ X ×S′ Y be a closed integral subscheme s.t. dimS(Z) = dimS(Y )
and s.t. pr2|Z : Z → Y is proper, where pr2 : X ×S′ Y → Y is the projection. For an
open subscheme U ⊂ S′ , we write ZU for the pullback of Z over U inside f−1(U)×U g−1(U).
This gives a correspondence [ZU ] ∈ HomCorCH

(f−1(U), g−1(U))0, which induces a morphism
of OS-modules

ρH ◦ Cor(cl)([ZU ]) : H i(f−1(U),Ωj
f−1(U)/S

)→ H i(g−1(U),Ωj
g−1(U)/S

),

for all i, j.
In this situation we have the following Proposition.
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Proposition 6.2. The set {ρH ◦ Cor(cl)([ZU ])|U ⊂ Z open} induces a morphism of
quasi-coherent OS′ -modules

ρH(Z/S
′
) : Rif∗Ω

j
X/S → Rig∗Ω

j
Y/S ,

for all i, j.

Proof. The proof follows along the same lines as the proof of the corresponding [CR11,
Proposition 3.2.4.] until the final conclusions.

We have to show two statements:
(1) The maps ρH ◦ Cor(cl)([ZU ]) are compatible with restrictions to opens sets.
(2) The maps ρH ◦ Cor(cl)([ZU ]) are O(U)-linear.

We denote by
pr1,U : f−1 × g−1(U)→ f−1(U)

the map in V ∗ induced by the first projection f−1 × g−1(U)→ f−1(U) and by

pr2,U : (f−1(U)×S′ g
−1(U), P (Φf−1(U),Φg−1(U)))→ g−1(Y )

the map in V∗ induced by the first projection f−1 × g−1(U)→ g−1(U), and denote by

jf : f−1(V )→ f−1(U) and

jg : g−1(V )→ g−1(U)

the morphisms in V ∗ induced by an open immersion j : V ↪→ U . To show (1) we have to show
that for any α ∈ H i(f−1(U),Ωj

f−1(U)/S
) we have

H∗(jg)H∗(pr2,U )(H∗(pr1,U )(α) ∪ cor(cl)([ZU ]))(6.1)
= H∗(pr2,V )(H∗(pr1,V )(H∗(jf )(α) ∪ cor(cl)([ZV ])).

Consider the Cartesian square

(f−1(U)×S′ g
−1(V ),Φ)

idf−1(U)×jg
��

pr
′
2,V // g−1(V )

jg

��
(f−1(U)×S′ g

−1(U), P (Φf−1(U),Φg−1(U)))
pr2,U // g−1(U),

where Φ is defined as (idf−1(U) × j)−1(P (Φf−1(U),Φg−1(U))) and

pr
′
2,V : (f−1(U)×S′ g

−1(V ),Φ)→ g−1(V )

is the map in V∗ induced by the first projection f−1(U) ×S′ g
−1(V ) → g−1(V ). Since jg is

induced by a smooth morphism we see that

(6.2) H∗(jg)H∗(pr2,U ) = H∗(pr
′
2,V )H∗(idf−1(U) × jg).

Denote by pr
′
1,U : f−1(U) ×S′ g

−1(V ) → f−1(U) the morphism in V ∗ induced by the first
projection, then applying (6.2) to the LHS of (6.1) gives

H∗(jg)H∗(pr2,U )(H∗(pr1,U )(α) ∪ cor(cl)([ZU ]))

= H∗(pr
′
2,V )H∗(idf−1(U) × jg)(H∗(pr1,U )(α) ∪ cor(cl)([ZU ]))

= H∗(pr
′
2,V )(H∗(pr

′
1,U )(α) ∪ cor(cl)([ZV ])),
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where the last equality follows from the fact that pr′1,U = jf◦pr1,V ,H∗(idf−1(U)×jg)(cor(cl)([ZU ])) =

cor(cl)([ZV ]) and pullbacks commute with cup products. We introduce the morphisms

jf × idg−1(V ); f
−1(V )×S′ g

−1(V )→ f−1(U)×S′ g
−1(V )

in V ∗, and
τ : (f−1(V )×S′ g

−1(V ), ZV )→ (f−1(U)×S′ g
−1(V ),Φ),

and
id
′

: (f−1(V )×S′ g
−1(V ), ZV )→ (f−1(V )×S′ g

−1(V ), P (Φf−1(V ),Φg−1(V )))

in V∗, where τ is induced by j × idg−1(V ) and id
′ is induced by the identity. Applying the

projection formula, Proposition 1.15, to H∗(pr
′
2,V )(H∗(pr

′
1,U )(α) ∪ cor(cl)([ZV ])) gives

H∗(pr
′
2,V )(H∗(pr

′
1,U )(α) ∪ cor(cl)([ZV ])) = H∗(pr

′
2,V )(H∗(pr

′
1,U )(α) ∪ cor(cl(CH∗(τ))([ZV ]))

= H∗(pr
′
2,V )H∗(τ)(H∗(jf × idg−1(V ))H

∗(pr
′
1,U )(α) ∪ cor(cl)([ZV ])),

and the equalities

H∗(pr
′
2,V )H∗(τ) = H∗(pr2,V )H∗(id

′
) and,

H∗(jf × idg−1(V ))H
∗(pr

′
1,U ) = H∗(pr1,V )H∗(jf )

imply that (6.1) holds.
To show (2) we note that it suffices to consider the case U = S

′
= Spec (R

′
). We have to

show that the following equality holds for all r′ ∈ R′ and all a ∈ H i(X,Ωj
X/S):

g∗(r
′
) ∪H∗(pr2)(H∗(pr1)(a) ∪ cl([Z]))(6.3)

= H∗(pr2)(H∗(pr1)(f∗(r
′
) ∪ a) ∪ cl([Z]),

where g∗ : R
′ → H0(X,OX) and f∗ : R

′ → H0(Y,OY ) are the ring homomorphisms inducing
a R′-module structures on H(X) and H(Y ), respectively. Notice that if we have

(6.4) H∗(pr2)(g∗(r
′
)) ∪ cl([Z]) = H∗(pr1)(f∗(r

′
)) ∪ cl([Z]),

in HdX
Z (X ×S Y,ΩdX

X×SY ), where dX := dimS(X), then

H∗(pr2)(H∗(pr1)(f∗(r
′
) ∪ a) ∪ cl([Z]))

= H∗(pr2)(H∗(pr1)(f∗(r
′
)) ∪H∗(pr1)(a) ∪ cl([Z]))

= H∗(pr2)(H∗(pr2)(g∗(r
′
)) ∪ cl([Z]) ∪H∗(pr1)(a))

= g∗(r
′
) ∪H∗(pr2)(H∗(pr1)(a) ∪ cl([Z])),

where the first equality holds since the pullback commutes with the cup product, see Proposi-
tion 1.14, the second equality is simply (6.4), and the final equality follows from the projection
formula, Proposition 1.15.

So to finish the proof, it therefore suffices to show that (6.4) holds, for any r′ ∈ R′ . By
Lemma 4.27, we see that it suffices to check this locally around the generic point η ∈ Z. We
can, without loss of generality, further shrink the open set around η and assume Z is regular
and such that the ideal of X is generated by a regular sequence t1, . . . , tdX . We can shrink
further around η and assume X ×S′ Y and X ×S Y are affine. By Lemma 4.26, we see that

cl(Z,X ×S Y )η = (−1)dX
[
dt1 ∧ · · · ∧ dtdX
t1, . . . , tdX

]
,
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and we write

r
′ ⊗ 1 := H∗(pr1)(f∗(r

′
)), and

1⊗ r′ := H∗(pr2)(g∗(r
′
)).

Then it suffices to show that

(6.5) r
′ ⊗ 1 ∪ (−1)dX

[
dt1 ∧ · · · ∧ dtdX
t1, . . . , tdX

]
= 1⊗ r′ ∪ (−1)dX

[
dt1 ∧ · · · ∧ dtdX
t1, . . . , tdX

]
.

It follows from Lemma 4.12 that

r
′ ⊗ 1 ∪ (−1)dX

[
dt1 ∧ · · · ∧ dtdX
t1, . . . , tdX

]
= (−1)dX

[
(r
′ ⊗ 1)dt1 ∧ · · · ∧ dtdX

t1, . . . , tdX

]
, and

1⊗ r′ ∪ (−1)dX
[
dt1 ∧ · · · ∧ dtdX
t1, . . . , tdX

]
= (−1)dX

[
(1⊗ r′)dt1 ∧ · · · ∧ dtdX

t1, . . . , tdX

]
,

So the equation (6.5) follows if we can proof

(6.6)
[
rdt1 ∧ · · · ∧ dtdX

t1, . . . , tdX

]
= 0,

where r := r
′ ⊗ 1− 1⊗ r′ . Note that since S′ → S is separated by assumption, we have that

X ×S′ Y → X ×S Y is a closed immersion, and if we pull r back to H0
Z(X ×S′ Y,OX×S′ Y )

then it clearly vanshes. In particular it lies in the ideal of Z in X ×S′ Y which is a subset of
the ideal of Z in X ×S Y . Then equation (6.6) follows from part (2) of Lemma 4.10. �

Recall the following definition.

Definition 6.3. Two integral schemes X and Y over a base scheme S are called properly
birational over S if there exists an integral scheme Z over S and proper birational S-morphisms

Z

  ~~
X Y.

Theorem 6.4. (cf. [CR11, Theorem 3.2.8.]) Let S be a Noetherian, excellent, regular,
separated, irreducible scheme of dimension at most 1. Let S′ be a separated S-scheme of finite
type, and let X and Y be irreducible NS-schemes of finite type, and f : X → S

′ and g : Y → S
′

be morphisms of S-schemes such that X and Y are properly birational over S′. Let Z be an
integral scheme and let Z → X and Z → Y be proper birational morphisms such that

Z

  ~~
X

f   

Y

g
��

S
′
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commutes. We denote the image of Z in X×S′ Y by Z0. Then ρ(Z0/S
′
) induces isomorphisms

of OS′ - modules

Rif∗OX
∼=−→ Rig∗OY and

Rif∗Ω
d
X/S

∼=−→ Rig∗Ω
d
Y/S ,

for all i, where d := dimS(X) = dimS(Y ).

Proof. Having set up the machinery of the actions of correspondences on Hodge cohomol-
ogy with supports, the proof of this statement is independent of the base scheme, i.e. it follows
along the same lines as the proof of the case over a perfect field of positive characteristic, i.e.
the proof of [CR11, Theorem 3.2.8.]. We record the proof here for completeness.

First we recall that ρ(Z0/S
′
) is defined as the sheafification of the maps

(6.7) ρH ◦ cor(cl)([Z0,U ]) : H i(f−1(U),Ωj
f−1(U)/S

)→ H i(g−1(U),Ωj
g−1(U)/S

),

where U runs over all open subsets of S′ and Z0,U is the restriction of Z0 to f−1(U)×U g−1(U).
It clearly suffices then to show that (6.7) is an isomorphism for j = 0, i = d and every open U ⊂
S
′ . We can therefore without loss of generality suppose that U = S

′
, f−1(U) = X, g−1(U) = Y

and Z0,U = Z0, and we need to show that

ρH ◦ cor(cl)([Z0]) : H i(X,OX)→ H i(Y,OY ) and

ρH ◦ cor(cl)([Z0]) : H i(X,Ωd
X/S)→ H i(Y,Ωd

Y/S)

are isomorphisms for all i. None of the cohomology groups, H i(X,OX), H i(Y,OY ),i (X,Ωd
X/S)

or H i(Y,Ωd
Y/S) depend on S′ , and it follows from the universal property of fiber products that

ρH ◦ cor(cl)([Z0]) does not depend on S′ . Furthermore, since Z0 ⊂ X ×S′ Y is closed, and
X ×S′ Y ⊂ X ×S Y is closed because we choose S′ to be separated over S, then Z0 ⊂ X ×S Y
is closed. We can therefore reduce to the case where S′ = S. Furthermore, since it is clear
that ρH ◦ cor(cl)([Z0]) only depends on the image of Z in X ×S Y , we may assume that
Z ⊂ X ×S Y and Z = Z0.

By assumption on Z,X, Y there exist open subsets Z ′ ⊂ Z,X
′ ⊂ X, and Y

′ ⊂ Y , s.t.
pr−1

1 (X
′
) = Z

′ and pr−1
2 (Y

′
) = Z

′ and such that pr1|Z′ : Z
′ → X

′ and pr2|Z′ : Z
′ → Y

′ are
isomorphisms, where pr1 : X ×S Y → X and pr2 : X ×S Y → Y denote the projections.

The subset Z defines a correspondence [Z] ∈ HomCorCH
(X,Y )0 and we denote by [Zt] the

transpose, i.e. the correspondence [Zt] ∈ HomCorCH
(Y,X)0 defined by viewing Z as a subset

of Y ×S X.
We claim that

[Z] ◦ [Zt] = ∆Y/S + E1, and(6.8)

[Zt] ◦ [Z] = ∆X/S + E2,

where E1 and E2 are cycles supported in (Y \ Y ′) ×S (Y \ Y ′) and (X \ X ′) ×S (X \ X ′)
respectively.

Lemma 5.1 tells us that [Zt] ◦ [Z] is naturally supported in

Supp(Z,Z
′
) =

{
(x1, x2) ∈ X ×S X|(x1, y) ∈ X, (y, x2) ∈ Z ′ , for some y ∈ Y

}
.
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Lemma 5.2 for the open subset X ′ ⊂ X tells us that [Z
′
] ◦ [Z] maps to [∆X′/S ] via the

localization map

CH(Supp(Z,Zt))→ CH(Supp(Z,Z
′
) ∩ (X

′ ×S X
′
)).

Therefore
[Zt] ◦ [Z] = ∆X/S + E2

where E2 is supported in Supp(Z,Zt) \ (X
′ ×S X

′
). Furthermore,

Supp(Z,Zt) ∩ ((X
′ ×S X) ∪ (X ×S X

′
)) = ∆X′/S = Supp(Z,Zt) ∩ (X

′ ×S X
′
),

and therefore E2 is supported in (X×SX)\((X ′×SX)∪(X×SX
′
)) = (X\X ′)×S (X\X ′). The

same argument shows that [Z]◦[Zt] = ∆Y/S+E1 where E1 is supported in (Y \Y ′)×S (Y \Y ′).
Theorem 6.1 now tells us that ρH ◦ cor(cl)(E2) vanishes on H i(X,OX) and H i(X,Ωd

X/S)

for all i, and that ρH ◦ cor(cl)(E1) vanishes on H i(Y,OY ) and H i(Y,Ωd
Y/S) for all i. this

implies that

ρH ◦ cor(cl)([Z]) : H i(X,OX)→ H i(Y,OY ) and

ρH ◦ cor(cl)([Z]) : H i(X,Ωd
X/S)→ H i(Y,Ωd

Y/S)

are isomorphisms for all i. �





APPENDIX A

Chow Groups Over a Base Scheme

In this appendix we collect the results from Fulton’s book [Ful98] that we need. We do not
present complete proofs here. These are all well known results and we mostly refer to proofs
found elsewhere. We assume we have a base scheme S that is Noetherian, regular, separated
and excellent. All schemes considered are assumed to be of finite type and separated over S.

1. Dimension and Rational Equivalence

1.1. Dimension. Recall the definition of the relative dimension from [Ful98, §20.1].

Definition A.1. Let π : X → S be a scheme and V ⊂ X be a closed integral subscheme
of X. We define

dimS(V ) := tr.deg(R(V )/R(T ))− codim(T, S),

where T is the closure of π(V ) in S. If ν ∈ X is the generic point of V and t = π(ν) then

dimS(V ) = tr.deg(κ(ν)/κ(t))− dim(OS,t).

The following proposition is [Web15, Proposition 2.1.3]. It gives many fundamental prop-
erties of this S-dimension.

Proposition A.2. Let X and Y be irreducible S-schemes.
i) We have

dimS(X) = dimS(Xred).

ii) If V → X is a closed irreducible subscheme of X we have

codim(V,X) = dimS(X)− dimS(V ).

iii) For any dominant morphism of finite type f : X → Y we have

dimS(X) = dimS(Y ) + tr.deg(k(X)/k(Y )).

iv) If f : X → S is a dominant morphism of finite type and closed, we have

dimS(X) = dim(X)− dim(S),

where the unadorned dim denotes the Krull-dimension
v) If f : X → Y is a morphism of S-schemes, then

dimS(X) = dimS(Y ) + dimY (X).

vi) If S = Spec (k) for a field K, then the S-dimension of X and the Krull-dimension of X
coincide. In the case that X and Y are irreducible schemes of finite type over a field k,
we have

dimY (X) = dim(X)− dim(Y ).

vii) If f : X → Y is a flat morphism. We have for every point y ∈ Y
dim(Xy) = dimS(X)− dimS(Y ).

123
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�
We can now definine cycles, rational equivalence, and the Chow group in an analogous

manner to the definition in [Ful98, §1.3].
We first look at the definition of k-cycles.

Definition A.3. A k-cycle in X is a finite formal sum,

α =
∑
Vi

nVi [Vi] ,

where each Vi is a closed integral subscheme of S-dimension k. The group of k-cycles is the
free Abelian group on these closed integral subschemes of S-dimension k. We denote this
group by Zk(X).

We now define a class of cycles that are said to be rationally equivalent to zero.

Definition A.4. By part (ii) of Proposition A.2, we see that if W is a closed integral
subscheme of X of S-dimension (k + 1) and if V ⊂ W is a closed integral subscheme of
codimension 1 in W , then

dimS(V ) = dimS(W )− codim(V,W ) = k + 1− 1 = k,

so if r ∈ R(W )∗ the standard definition

[divW (r)] :=
∑
Vi

(ordVi(r)) [Vi] ,

defines a k-cycle, where the sum is over all codimension 1 closed integral subschemes Vi of W ,
and

ordVi(r) = length(OW,ηVi/(r)),

where ηVi is the generic point of Vi.
We say that a k-cycle α is rationally equivalent to zero if there exist finitely many closed

integral subschemes Wi of S-dimension (k + 1), and ri ∈ R(Wi)
∗ such that

α =
∑
i

[divWi(ri)] .

This gives us a subgroup of Zk(X) that we denote by Ratk(X).

Now we can define the Chow group of X.

Definition A.5. Let X be an S-scheme. Then the Chow group of X is defined as

CH∗(X/S) =
⊕
k∈Z

CHk(X/S),

where

CHk(X/S) = Zk(X)/Ratk(X),

i.e., it is the graded group whose kth component is the group of k-cycles up to rational
equivalence.
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2. Proper Pushforwards and Flat Pullbacks

2.1. Proper Pushforwards.

We need the notion of a degree of a proper morphism. This is completely analogous to the
case over a field like in [Ful98, §1.4].

Let f : X → Y be a proper morphism of S-schemes. If V is a closed integral subscheme
of X then W := f(V ) is a closed integral subscheme of Y . Now f induces a morphism on
the function fields R(W )→ R(V ) endowing R(V ) the structure of a field extension of R(W ).
Furthermore, we have

dim(V ) = dim(W ) + tr.deg(R(V )/R(W )),

by [GD65, Cor. 5.6.6]. Notice that this is an equality (and not an inequality) because W is
of finite type over the excellent base scheme S, and hence itself excellent (and in particular
universally catenary). Therefore the extension [R(V ) : R(W )] is finite if and only if dim(V ) =
dim(W ). Furthermore we notice that by parts (iv) and (v) of Proposition A.2 we have

dim(V ) = dim(W ),

if and only if
dimS(V ) = dimS(W ).

We can therefore define the degree.

Definition A.6. As before we let f : X → Y be a proper morphism of S-schemes and
V ⊂ X be an integral closed subscheme. We denote by W := f(V ). Then

deg(V/W ) :=

{
[R(V ) : R(W )], if dimS(V ) = dimS(W )

0, otherwise.

We can now define the proper pushforward of k-cycles.

Definition A.7. Let f : X → Y be a proper morphism of S-schemes. Then we have a
homomorphism of Abelian groups

f∗ : Zk(X)→ Zk(Y ),

defined on generators as
f∗([V ]) = deg(V/f(V )) · [f(V )].

We want this to extend to a homomorphism of the Chow groups. We therefore need to
show that f∗ sends a cycle that is rationally equivalent to zero to a cycle that is also rationally
equivalent to zero. First we consider the following lemma, which is a relative analogue to
[Ful98, Prop. 1.4]. It is very important in order to define proper pushforwards and an to give
an alternate description of rational equivalence.

Lemma A.8. Let f : X → Y be a proper, surjective morphism of integral S-schemes and
let r ∈ R(X)∗. Then
a) f∗([div(r)]) = 0 if dimS(Y ) < dimS(X).
b) f∗([div(r)]) = [div(N(r))] if dimS(X) = dimS(Y ).
where N(r) is the norm of the R(Y )-linar endomorphism ·r : R(X) → R(X) which is well
defined since the extension R(X)/R(Y ) is finite.

Proof. This theorem holds for integral S-schemes where S is a regular scheme. See the
discussion after [Ful98, Lemma 20.1.] �
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Theorem A.9. If f : X → Y is a proper morphism of S-schemes, and α ∈ Ratk(X).
Then

f∗(α) ∈ Ratk(Y )

Therefore, the proper pushforward of cycles from Definition A.7 extends to a proper pushfor-
ward group homomorphism

f∗ : CH∗(X/S)→ CH∗(Y/S).

Proof. This Theorem follows directly from Lemma A.8, cf. [Ful98, Theorem 1.4.]. �

Proper pushforwards are functorial.

Proposition A.10. Let f : X → Y and g : Y → Z be proper morphisms of S-schemes.
Then

(g ◦ f)∗ = g∗ ◦ f∗,
as homomorphisms CH∗(X/S)→ CH∗(Z/S). Furthermore (idX)∗ : CH∗(X/S)→ CH∗(X/S)
is the identity homomorphism.

Proof. This is clear. �

2.2. Cycles of Subschemes. This definition is identical to the definition in [Ful98, §1.5]
restricted to the case of S-schemes.

Let X be any S-scheme with irreducible components X1, . . . , Xr. We associate a cycle [X]
to X, the (fundamental) cycle of X.

Definition A.11. The fundamental cycle of X is defined by

[X] :=

r∑
i=1

mi[Xi],

where the mi’s are the geometric multiplicities of the Xi in X defined by

mi = lOX,Xi (OX,Xi),

where lOX,Xi (M) denotes the length of the OX,Xi-module M .

2.3. Alternative Description of Rational Equivalence. We now give an alternate
description of rational equivalence and prove that it is equivalent to the one given when we
defined Chow groups. We use this description in the proof of Theorem 3.1.

For an S-scheme X we consider a (k + 1)-dimensional integral subscheme W of the fiber
product X ×S P1

S such that the second projection

X ×S P1
S → P1

S ,

induces a dominant morphism f : W → P1
S . Let us denote the first projection

X ×S P1
S → X,

by p. For any S-rational point P ∈ P1
S we consider the fiber f−1(P ) ⊂ X ×S {P} and p maps

this fiber isomorphically onto a subscheme V (P ) of X. In particular

p∗([f
−1(P )]) = [V (P )],

in Zk(X). We can in particular choose to look at the points P = 0 and P =∞, the zero-point
and ∞-point of P1

S .
We clearly have the following lemma
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Lemma A.12. Let W be an integral S-scheme of dimension k + 1 and let f : W → P1
S be

a dominant morphism. Now f defines a rational function in R(W ) which we also denote by f
and we have: The fibres f−1(0) and f−1(∞) are both subschemes of W of pure S-dimension
k and

[f−1(0)]− [f−1(∞)] = [div(f)].

By the above we have
[V (0)]− [V (P )] = p∗([div(f)]),

and we have the following proposition.

Proposition A.13. Let X be an S-scheme and let α ∈ Zk(X) by a k-cycle. Then α ∈
Ratk(X) if and only if there exist some (k + 1)-dimensional integral subschemes W1, . . . ,Wt

of X ×S P1
S such that the second projection induces dominant morphisms

Wi → P1
S ,

for each i, and

α =
t∑
i=1

([Wi(0)]− [Wi(∞)]),

in Zk(X).

Proof. This is proven as in [Ful98, Proposition 1.6.], since we have part (b) of Lemma
A.8 in our situation. �

2.4. Flat Pullback.
Similarly to the proper pushforward, we define the flat pullback on cycles first and then prove
it descends to a homomorphism of Chow groups.

Definition A.14. Let f : X → Y be a flat morphism of S-schemes of relative S-dimension
n. Then the flat pullback by f on cycles is defined by

f∗[Z] = [f−1(Z)],

for any closed integral subscheme Z ⊂ Y . This extends by linearity to a group homomorphism

f∗ : Zk(Y )→ Zk+n(X),

for any k.

To show that this extends to a homomorphism of the Chow groups, we need the following
lemma and proposition.

Lemma A.15. If f : X → Y is flat, then for any subscheme Z ⊂ Y we have

f∗([Z]) = [f−1(Z)].

Proof. This is [Ful98, Lemma 1.7.1], and is independent of a base scheme. �

We have the following “push-pull formula” for cycles.

Proposition A.16. Let

X
′ g

′
//

f
′

��

X

f

��
Y
′

g
// Y,
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be a Cartesian square of S-schemes and S-morphisms with g flat and f proper. Then g
′ is

flat, f ′ is proper and for all cycles α ∈ Z∗(X) we have

f
′
∗g
′∗(α) = g∗f∗(α),

in Z∗(Y
′
)

Proof. This is [Ful98, Proposition 1.7.], and it does not depend on the base scheme S. �

Theorem A.17. Let f : X → Y be a flat morphism of S-schemes of relative S-dimension
n, and let α ∈ Ratk(Y ). Then f∗(α) ∈ Ratk+n(X).

Proof. This follows from Proposition A.13 and Proposition A.16. Cf. [Ful98, Theorem
1.7.] �

We have a an exact sequence of Chow groups, relating the Chow groups of a closed sub-
scheme X of a scheme Y with the Chow groups of Y and the complement U := Y \X.

Proposition A.18. Let Y be an S-scheme, i : X → Y be a closed subscheme of Y and
j : U → Y be the open immersion of U := Y \X into Y . Then the following sequence is exact
for all k:

CHk(X/S)
i∗−→ CHk(Y/S)

j∗−→ CHk(U/S)→ 0.

Proof. This is [Ful98, Proposition 1.8.]. �

3. Vector Bundles and the Normal Cone

3.1. Blow-ups and the Normal Cone. For the following material on the normal cone
and blow-up we follow [Web15] quite closely.

Definition A.19. We let X be an S-scheme, A• = ⊕n≥0An a graded sheaf of OX -
algebras such that OX → A0 is an isomorphism and A• is locally generated in degree 1 as an
OX -algebra. For a variable t we let A•[t] be the graded OX -algebra given by

(A•[t])n = An ⊕An−1t⊕ . . .A1tn−1 ⊕A0tn.

We then define the cone of A• by
C := C(A•) := Spec (A•)→ X,

the projective cone of A• by
P (C) := P (A•) := Proj(A•)→ X.

We set
C ⊕ 1 := C(A•[t]),

and
P (C ⊕ 1) := Proj(A•[t]),

the projective closure of C.

Remark A.20. Vector bundles are particular examples of the cone construction. Namely
if E is a vector bundle on the S-scheme X and E is the sheaf of sections of E over X, then E
is the cone of the graded OX -algebra Sym•E∨.

From now on, unless otherwise stated, graded OX algebras A• are assumed to be such
that OX → A0 is an isomorphism and A• is locally generated by A1 as an OX -algebra.

Proposition A.21. Let X-be an S-scheme.
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(1) If A• → A′• is a surjective, graded homomorphism of graded sheaves of OX-algebras
and C := C(A•) and C ′ := C(A′•) then there are closed embeddings

C
′ → C,

and
P (C

′
)→ P (C),

such that the canonical line-bundle OC(1) on P (C) restricts to OC′ (1), the canonical
line-bundle on P (C

′
).

(2) The element t ∈ (A•[t])1 determines a regular section

s ∈ Γ(P (C ⊕ 1),OP (C⊕1)(1)).

The zero-scheme Z(s) of this section is canonically isomorphic to P (C) and its com-
pliment P (C ⊕ 1) \ P (C) is canonically isomorphic to C.

Proof. This is [Ful98, Appendix B.5.1.], and does not depend on any choice of a base
scheme. �

Definition A.22. Let X be an S-scheme, and E a vector bundle on X with sheaf of
sections E . Then the zero section

sE : C(OX) = X → E = C(Sym•E∨),

is defined by the surjection

e : Sym•E∨ → OX ,
e|Sym0E∨ = idOX , and
e|SymiE∨ = 0 for i ≥ 1.

Now we define the normal cone and the blow-up.

Definition A.23. Let Y be an S-scheme and let i : X → Y be a closed subscheme of Y
with ideal sheaf J on Y . Then we define the normal cone CXY to X in Y as

CXY := Spec (
⊕
n≥0

J n/J n+1),

i.e., the cone of the graded OY -algebra ⊕n≥0J n/J n+1. The blow-up BlXY of Y along X is
defined as the projective cone of the graded OY -algebra ⊕n≥0J n i.e.,

BlXY := Proj(
⊕
n≥0

J n).

The scheme
E := X ×Y BlXY,

is called the exeptional divisor of the blow-up BlXY .

I
We have the following proposition from [Web15, Prop. A.3.18.] that collects some standard

facts on blow-ups and normal cones.

Proposition A.24. Let i : X → Y be a closed immersion of S-schemes.
a) The morphism BlXY → Y is projective.
b) If Y is integral then BlXY is integral.
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c) The exceptional divisor E of the blow-up BlXY is an effective Cartier divisor on BlXY
and we have

E = P (CXY ).

d) If X does not contain any irreducible component of Y , then
BlXY → Y is birational.

e) If Y is S-equidimensional of S-dimension d, then so is CXY .
f) If Y → Z is another closed immersion, then there is a canonical closed immersion

BlXY → BlXZ,

such that the exceptional divisor of BlXZ restricts to the exceptional divisor of BlXY .

3.2. Deformation and Specialization to the Normal Cone.

Proposition A.25. Let i : X → Y be a closed immersion of S-schemes with normal cone
C := CXY . Then there exists a uniquely determined S-scheme M := BlX×S{∞}Y ×S P1

S and
a dominant morphism of S-schemes ρ : M → P1

S such that the following properties hold.
a) There exists a closed immersion ı̃ : X×SP1

S →M such that the following triangle commutes

X ×S P1
S

ı̃ //

pr2
##

M

ρ~~
P1
S .

b) Over A1
S = P1

S \ {∞} we have

ρ−1(A1
S) = Y ×S A1

S .

c) Over {∞} the Cartier divisor M∞ := ρ−1({∞}) is the sum of two effective Cartier divisors

M∞ = P (C ⊕ 1) +BlXY.

d) The closed immersion
ı̃∞ : X = X ×S {∞} →M∞,

induced by ı̃, is given by the composition of the zero section of X in C with the canonical
open immersion of C into P (C ⊕ 1).

e) The intersection of the two divisors P (C⊕1) and BlXY is P (C), regarded as the hyperplane
at infinity in P (C ⊕ 1) and the exeptional divisor of BlXY respectively.

f) In particular we have
ı̃∞(X) ∩BlXY = ∅

The closed immersion ı̃ gives a family of closed immersions of X

X ×S P1
S

ı̃ //

pr2
##

M0 := M \BlXY

ρ0

xx
P1
S

which deformes the given immersion i to the zero section ı̃∞ of X in C.

Proof. a) The morphism ρ is defined as the composition of the canonical morphism

M := BlX×S{∞S}Y ×S P1
S → Y ×S P1

S ,

and the projection Y ×S P1
S → P1

S .
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From the sequence of closed immersions

X ×S {∞S} ↪→ X ×S P1
S×S ↪→ Y ×S P1

S ,

we get a closed immersion

BlX×S{∞S}X ×S P1
S ↪→M,

such that the following square commutes

BlX×S{∞S}X ×S P1
S

��

� � // M

��
X ×S P1

S
� � // Y ×S P1

S .

Since X ×S {∞S} is a Cartier divisor in X ×S P1
S we have an isomorphism

BlX×S{∞S}X ×S P1
S

∼=−→ X ×S P1
S ,

and so we have a closed immersion

ı̃ : X ×S P1
S ↪→ BlX×S{∞S}Y ×S P1

S ,

such that the following diagram commutes

X ×S P1
S
� � ı̃ //

� p

  

pr2

��

M

��
Y ×S P1

S

��
P1
S .

b) This follows from the fact that the morphism M → Y ×S P1
S is an isomorphism away from

X ×S {∞S} in Y ×S P1
S and the exceptional divisor E in M .

c) The normal cone to Y ×S {∞S} in M is C ⊕ 1 so the exceptional divisor E in M is equal
to P (C ⊕ 1). Furthermore we have a sequence of closed immersions

X ×S {∞S} ↪→ Y ×S {∞S} ↪→ Y ×S P1
S ,

so we have a closed immersion
BlXY ↪→M.

This shows that both P (C ⊕ 1) and BlXY can be viewed as closed subschemes of M .
Showing that

M∞ = E +BlXY,

is a local problem. First we assume S = SpecR and we may assume Y = SpecA where A
is an R-algebra and X = SpecA/I where I is an ideal in A. We identify P1

S \ {0S} with
A1
S = R[t] and Y ×S A1

S with A[t].
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The part of M we look at is equal to the blowup BlX×S{0S}Y ×S A1
S and this is by

definition equal to Proj(I, t)• where

(I, t)n = In + In−1t+ . . .+Atn +Atn+1 + . . . .

Proj(I, t)• is covered by standard affine open sets Spec (I, t)•(a) where

(I, t)n(a) = { s
an
|s ∈ (I, t)n},

and a runs through the generators of (I, t) in A[t]. It is enough to consider each of these
sets Spec (I, t)•(a).

The exceptional divisor is defined as ProjR•, where

Rn =
(I, t)n

(I, t)n+1
.

We have a surjection (I, t)• → R• and the kernel is clearly (I, t) · (I, t)• so we have a short
exact sequence

0→ (I, t) · (I, t)• → (I, t)• → R• → 0.

We localize at (a) and obtain

0→ ((I, t) · (I, t)•)(a) → (I, t)•(a) → R•(a) → 0.

Now

((I, t) · (I, t)n)(a) = { s
an
|s ∈ (I, t)n+1}

= {a s

an+1
|s ∈ (I, t)n+1}

= a · (I, t)n+1
(a) ,

so the localized short exact sequence is in fact

0→ a · (I, t)•+1
(a) → (I, t)•(a) → R•(a) → 0.

Therefore we see that locally in Spec (I, t)•(a) the exceptional divisor is given by the equation
a

1
= 0.

Similarly we consider a local description of BlXY in Spec (I, t)•(a). By definition,

BlXY = ProjI•

and we have a surjection (I, t)• → I• which gives us a short exact sequence

0→ t · (I, t)• → (I, t)• → I• → 0.

We localize by (a) as before to obtain

0→ (t · (I, t)•)(a) → (I, t)•(a) → I•(a) → 0.

Now

(t · (I, t)n)(a) = { ts
an
|s ∈ (I, t)n−1}

= { t
a
· s
an
|s ∈ (I, t)n−1}

=
t

a
· (I, t)n−1,
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so the localized short exact sequence is

0→ t

a
· (I, t)•−1 → (I, t)•(a) → I•(a) → 0,

and we see that locally in Spec (I, t)•(a), the blowup BlXY is defined by the equation

t

a
= 0.

The fiber over infinity M∞ is defined by t = 0 and since we have

t =
1

a
· t
a
,

we see that
M∞ = P (C ⊕ 1) +BlXY.

d) The scheme X×S {∞S} is an effective Cartier divisor in X×S P1
S and the following square

is Cartesian

(A.1) X ×S {∞S}

=

��

// X ×S P1
S

��
X ×S {∞S} // Y ×S P1

S .

The universal property of blowups says that this square (A.1) factors uniquely as

(A.2) X ×S {∞S}

��

// X ×S P1
S

��
P (C ⊕ 1) //

��

M

��
X ×S {∞S} // Y ×S P1

S ,

so by noticing that the diagram (A.2) commutes when ŝ : X ×S {∞S} → P (C ⊕ 1) is
the zero-section X ×S {∞S} → C followed by the open immersion C → P (C ⊕ 1) and
f : X ×S P1

S → M is the map X ×S (P1
S \ {∞S}) → Y ×S (P1

S \ {∞S}) induced by
i : X → Y followed by the isomorphism Y ×S (P1

S \ {∞S}) → M \M∞ away from {∞S}
and ŝ followed by the closed immersion P (C ⊕ 1) → M on X ×S {∞S} ⊂ X ×S P1

S , the
claim follows from the universal property. Notice that this also tells us that f is uniquely
determined as ı̃.

e) Again we assume that S = SpecR, Y = SpecA, P1
S \ {0S} = A1

S = SpecR[t], and Y ×S
P1
S \ Y ×S {0S} = A[t]. To show that

BlXY ∩ P (C ⊕ 1) = P (C),

we show that
M∞ \BlXY = C.

The compliment of BlXY in Y ×S A1
S is Spec (I, t)•(t), where

(I, t)•(t) = . . .⊕ Int−n ⊕ . . .⊕ It−1 ⊕A⊕At⊕ . . .⊕Atn ⊕ . . . ,
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and the compliment of BlXY in M∞ is obtained by killing t in Spec (I, t)•(t), i.e. it is
Spec ((I, t)•(t)/(t · (I, t)

•
(t))). But

t · (I, t)•(t) =

. . .⊕Int−n+1 ⊕ . . .⊕ I ⊕At⊕At2 ⊕ . . .⊕Atn+1 ⊕ . . . ,

and we have
(I, t)•(t)/(t · (I, t)

•
(t))
∼=
⊕
n≥0

In/In+1,

so

M∞ \BlXY = Spec ((I, t)•(t)/(t · (I, t)
•
(t)))

= Spec (⊕n≥0I
n/In+1)

= C.

f) We have seen that ı̃∞(X) is contained in C and that P (C⊕1)∩BlXY = P (C) so it follows
that

ı̃∞(X) ∩BlXY = ∅.
The rest we have shown above.

�

Let i : X → Y be a closed immersion of S-schemes and let C := CXY be the normal cone.
We can define specialization morphisms on cycles

σ : Zk(Y )→ Zk(C),

by the formula
σ([V ]) = [CV ∩XV ],

for any integral closed subscheme V of Y .
The following proposition shows that these morphisms extend to morphisms of Chow

groups.

Proposition A.26. Let i : X → Y be a closed immerson of S-schemes with normal cone
C := CXY and associated specialization morphism σ. If α ∈ Zk(Y ) is rationally equivalent to
zero, then σ(α) is rationally equivalent to zero in Zk(C).

Proof. This is [Ful98, Proposition 5.2.]. �

4. The Refined Gysin Homomorphism

4.1. Homotopy Invariance and Gysin Homomorphism of the Zero-Section. We
start by looking at a homotopy invariance result for vector bundles.

Proposition A.27. Let p : E → X be a vector bundle of rank n over the S-scheme X,
then the pullback

p∗ : CHk(X/S)→ CHk+n(E/S),

is an isomorphism for all k.

Proof. This is [Ful98, Theorem 3.3.(a)], and it’s proof can be adapted to our situation.
�

We now recall the definition of the Gysin morphism of the zero-section of a vector bundle.
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Definition A.28. Let X be an S-scheme, E be a rank n vector bundle on X and sE :
X → E be the zero-section of E. Then the Gysin morphism of sE

s∗E : CHk(E/S)→ CHk−n(X/S),

is defined by
s∗E(α) = (p∗)−1(α).

It is clearly well-defined by A.27.

4.2. Refined Gysin Homomorphisms for Regular Closed Immersions. Let i :
X → Y be a regular closed immersion of S-schemes of codimension d. We let JX/Y and NXY
denote the ideal sheaf of i and the normal bundle of i respectively.

Definition A.29. Let f : V → Y be any morphism and consider the fibre square

W
j //

g

��

V

f
��

X
i // Y,

The morphism j is a closed immersion and we denote the ideal sheaf of j by JV/W . Let
N := g∗NXY and denote the projection onto W by π : N → W . Then JX/Y maps onto the
sheaf JV/W and we get a surjection⊕

n≥0

g∗(J nX/Y /J
n+1
X/Y )→

⊕
n≥0

J nV/W /J
n+1
V/W .

This gives us a closed immersion CWV → N and furthermore the following diagram commutes

CWV //

##

N

~~
W.

We now assume that V is S-equidimensional of S-dimension k. Then we define the intersection
product of V with X on Y by

X · V := s∗N ([CWV ]) ∈ CHk−d

where s∗N is the Gysin morphism of the zero-section of the bundle N on W .

We now define the refined Gysin homomorphisms for regular closed immersions.

Definition A.30. Let i : X → Y be a regular closed immersion of S-schemes of codimen-
sion d and let f : Y

′ → Y be any morphism. Consider the fibre-square

X
′ j //

g

��

Y
′

f

��
X

i // Y

The refined Gysin homomorphisms are defined by

i! : CHk(Y
′
/S)→ CHk−d(X

′
/S),∑

ni[Vi] 7→
∑

niX · Vi.
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A particular case of a refined Gysin homomorphism is when Y ′ = Y and f = idY . Then we
have a morphism

i! : CHk(Y/S)→ CHk−d(X/S),

which is simply called Gysin homomorphisms and are often denoted by i∗ instead of i!.

The following proposition gives us another description of the refined Gysin homomorphisms
in terms of the Gysin homomorphism of a zero-section and the specialization to the normal
cone.

The following proposition is part of [Web15, Proposition A.5.2.], and collects some of the
properties of the refined Gysin homomorphisms that we use.

Proposition A.31. Let i : X → Y be a closed regular immersion of S-schemes of codi-
mension d with ideal sheaf J . Consider the fibre square

X
′′ i

′′
//

q

��

Y
′′

p

��
X
′ i

′
//

f
′

��

Y
′

f

��
X

i // Y.

Then the following holds.
a) If p is proper and α ∈ CHk(Y

′′
/S) then

i!p∗(α) = q∗i
!(α),

in CHk−d(X
′
/S).

b) If f is transversal to i, i.e. if (f
′
)∗NXY = NX′Y

′, then for all α ∈ CHk(Y
′′
/S) we have

i!(α) = i
′!(α),

in CHk−d(X
′′
/S).

c) Let j : Y → Z be a regular closed immersion of S-schemes of codimension d′ and consider
a fiber square

Y
′ //

f

��

Z
′

h
��

Y
j // Z.

Then the composition j ◦ i : X → Z is a regular closed immersion of codimension d + d
′

and for all α ∈ CHk(Z
′
/S) we have

(j ◦ i)! = i!j!(α),

in CHk−d−d′ (X
′
/S).

4.3. Refined Gysin Homomorphisms for Local Complete Intersection Mor-
phisms. We are interested not only in regular closed immersions, but local complete in-
tersection morphisms more generally. We can define refined Gysin homomorphisms for them
as well.
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Recall that a morphism f : X → Y of S-schemes is called a local complete intersection
morphism, or l.c.i. morphism, of codimension d if there exists an S-scheme P such that f
factors as

X
f //

i   

Y

P,

p

??

where i : X → P is a regular closed immersion of codimension e (for some e) and p : P → Y
is a smooth morphism of relative S-dimension e− d.

Definition A.32. Let f : X → Y be an l.c.i. morphism of S-schemes of codimension d
and let g : Y

′ → Y be any morphism of S-schemes and consider the fibre square

X
′ f

′
//

g
′

��

Y
′

g

��
X

f // Y.

Now f factors as f = p ◦ i so the square “factors into” the following fibre diagram

X
′ i

′
//

g
′

��

P
′

��

p
′
// Y
′

g

��
X

i // P
p // Y.

The refined Gysin homomorphism

f ! : CHk(Y
′
/S)→ CHk−d(X

′
/S),

is defined by
f !(α) := i!(p

′∗(α)),

for all α ∈ CHk(Y
′
/S). Here p′∗ is the flat pullback of the smooth p

′ (it is a base-change
of the smooth morphism p) and i! is the refined Gysin homomorphism of the regular closed
immersion i determined by the left-hand square.

The definition above looks like it depends on the particular choice of a factorization f =
p ◦ i but the following lemma tells us that it does not and so this notion of a refined Gysin
homomorphism of f is well-defined.

Lemma A.33. Let f : X → Y be an l.c.i. morphism of S-schemes and let Y ′ → Y be some
morphism of S-schemes. Consider the Cartesian diagram

X
′ f

′
//

g
′

��

Y
′

g

��
X

f // Y.

The refined Gysin homomorphism f ! as defined in Definition A.32 is independent of the choice
of a factorization f = p ◦ i where p : P → Y is smooth and i : X → P is a regular closed
immersion.

Proof. See [Ful98, Proposition 6.6.(a)]. �
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The following proposition tells us that when f is an l.c.i. morphism and flat the refined
Gysin homomorphism and the flat pullback coincide.

Proposition A.34. Let f : X → Y be a flat l.c.i. morphism of S-schemes of codimension
d, let g : Y

′ → Y be any morphism of S-schemes and consider the fibre square

X
′ f

′
//

g
′

��

Y
′

g

��
X

f // Y

Then for all α ∈ CHk(Y
′
/S) we have

f !(α) = f
′∗(α)

in CHk−d(X
′
/S). In particular, when we look at the fibre square

X
f //

idX
��

Y

idY
��

X
f // Y

we have
f ! = f∗.

Proof. See [Ful98, Proposition 6.6.(b)] �

We have the same properties for refined Gysin homomorphisms of l.c.i. morphisms as we
had in Proposition A.31 for refined Gysin homomorphisms of regular closed immersions.

Proposition A.35. Let f : X → Y be an l.c.i. morphism of S-schemes of codimension
d. Consider the fibre square

X
′′ f

′′
//

q

��

Y
′′

p

��
X
′ f

′
//

g
′

��

Y
′

g

��
X

f // Y

Then the following holds.
a) If p is proper and α ∈ CHk(Y

′′
/S) then

f !p∗(α) = q∗f
!(α)

in CHk−d(X
′
/S).

b) If g is transversal to f , i.e. if (g
′
)∗NXY = NX′Y

′ , then for all α ∈ CHk(Y
′′
/S) we have

f !(α) = f
′!(α)

in CHk−d(X
′′
/S).
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c) Let h : Y → Z be an l.c.i. morphism of S-schemes of codimension d′ and consider a fiber
square

Y
′ //

g

��

Z
′

h
��

Y
j // Z

Then the composition h ◦ f : X → Z is an l.c.i. morphism of codimension d + d
′ and for

all α ∈ CHk(Z
′
/S) we have

(h ◦ f)! = f !h!(α)

in CHk−d−d′ (X
′
/S).

Proof. See [Ful98, Proposition 6.6.(c)] �

We clearly have.

Proposition A.36. Let f : X → Y be an l.c.i. morphism of S-schemes of codimension d
and assume Y is S-equidimensional of dimension e. Then the following holds for the refined
Gysin homomorphsm f ! : CH(Y/S)→ CH(X/S),

f !([Y ]) = [X].

We have the following corollary.

Corollary A.37. Let f : X → Y be an l.c.i. morphism of S-schemes of codimension d
and assume Y is S-equidimensional of dimension e. Then

dimS(Y ) = dimS(X) + d.

5. Exterior Products for 1-Dimensional Base Schemes

In [Ful98, §20.2] Fulton defines the exterior product over a 1-dimensional, regular base-
scheme S in the following way.

Definition A.38. Let X and Y be S-schemes and V ⊂ X and W ⊂ Y be closed integral
subschemes. Then the product cycle of [V ] and [W ] on X ×S Y is defined as

[V ]×S [W ] =

{
[V ×S W ], if V or W is flat over S,
0 otherwise.

We extend this in a linear way to more general cycles. The standard transposition isomor-
phism V ×S W

∼=−→W ×S V induces an isomorphism

[V ]×S [W ]
∼=−→ [W ]×S [V ],

where the cycle on the right is viewed as a cycle on X×S Y via the transposition isomorphism
Y ×S X → X ×S Y .

The dimensions of the cycles behave in the way we would expect.

Lemma A.39. Let X and Y be S-schemes and V ⊂ X and W ⊂ Y be closed integral
subschemes. Assume [V ] is a k-cycle in X and [W ] is an l-cycle in Y . Then [V ]×S [W ] is a
(k + l)-cycle in X ×S Y .

The following proposition shows that this definition of the exterior products passes to the
Chow groups.
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Proposition A.40. Let X and Y be S-schemes and V ⊂ X and W ⊂ Y be closed integral
subschemes. Assume that [V ] is rationally equivalent to 0, then [V ] ×S [W ] is rationally
equivalent to zero.

Proof. �

The following proposition, see for example [Web15, Proposition A.6.2.], collects some facts
about the exterior product.

Proposition A.41. Let X,Y,X ′ and Y ′ be S-schemes and f : X
′ → X and g : Y

′ → Y
be morphisms of S-schemes. We have the following.
a) Exterior products are compatible with proper pushforwards. Namely, if we assume f and g

are proper, then f ×S g : X
′ ×S Y

′ → X ×S Y is proper and for all α ∈ CHk(X
′
/S) and

β ∈ CHl(Y
′
/S) we have

(f ×S g)∗(α×S β) = f∗(α)×S g∗(β)

in CHk+l(X ×S Y/S).
b) Exterior products are compatible with flat pullbacks. Namely, if we assume that f is flat

of relative S-dimension n and g is flat of relative S-dimenstion m, then f ×S g is flat of
relative S-dimension n+m and for all α ∈ CHk(X/S) and β ∈ CHl(Y/S) we have

(f ×S g)∗(α×S β) = f∗(α)×S g∗(β)

in CHk+l+n+m(X
′ ×S Y

′
/S).

c) Exterior products are compatible with refined Gysin homomorphisms. Namely, if we assume
f is an l.c.i. morphism of codimension n and g is an l.c.i. morphism of codimension m
then f ×S g is an l.c.i. morphism of codimension n + m and for all α ∈ CHk(X/S) and
β ∈ CHl(Y/S) we have

(f ×S g)!(α×S β) = f !(α)×S g!(β)

in CHk+l−m−n(X
′ ×S Y

′
/S).
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