
Doctoral Thesis in Physics

Multigrid Multilevel Monte Carlo
Approaches for Trace Estimation

in Lattice QCD

Author:
Mostafa Nasr Khalil

Supervisor:
Prof. Andreas Frommer

Supervisor:
Prof. Raffaele Tripiccione

Supervisor:
Prof. Constantia Alexandrou

Supervisor:
Prof. Sebastiano Schifano

Monday 19th June, 2023

Acknowledgments

First of all, I would like to thank my co-supervisors, Prof. Tripiccione, Prof.
Schifano, Prof. Alexandrou, and Prof. Frommer, for helping me with my PhD
and giving me advice. I’m especially thankful for Prof. Tripiccione, who was
always friendly and helpful but unfortunately is no longer with us. I also want to
thank Prof. Schifano for stepping in afterward and continuing to give very helpful
guidance. To Prof. Alexandrou for all her help and guidance, and especially for
her significant role in making STIMULATE possible.

To Prof. Frommer, who made me feel welcome in his group, creating an inspir-
ing work environment, and providing me with helpful and invaluable guidance
throughout the various research aspects. In addition to his deep knowledge, his
humbleness, kindness, mentorship, care and willingness to help students all the
time is always inspiring to me.

I also want to thank my coleagues in our work group for engaging discussion and
providing sound advice. To Daniela, who helped me almost all the time, to Artur,
who provided me with the Matlab version of DDαAMG package to use in LQCD
experiments and answered my specific questions, and to Gustavo, who was and
still is a huge help, especially at the beginning of my PhD. They have made my
research work much more enjoyable.

I wish to thank my closest family members, including my parents, siblings, and
wife, for their priceless and unwavering support.

Lastly, I would like to acknowledge the members of the physics group at Wuppertal
led by Francesco Knechtli for providing me with configurations for the numerical
tests and also for organizing seminars related to my research.

I

Abstract

This thesis addresses the challenging problem of solving large systems of linear
equations that arise from the discretization of quantum chromodynamics on the
Lattice. The thesis contributes to overcome this challenge by improving stochastic
approaches for computing the trace of the inverse, which represents the discon-
nected loops contributions for certain relevant observables. The main objective
is to improve the accuracy of the trace estimator and reduce the computational
cost through variance reduction techniques.

The main idea is to take advantage of the multilevel hierarchy in the multi-
grid solves for the linear systems also for trace estimation. To achieve this goal,
we propose a novel stochastic method called multigrid multilevel Monte Carlo
(MG-MLMC), which merges both standard multigrid (MG) and multilevel Monte
Carlo (MLMC) methods. We also introduce a new trace estimator technique,
called multigrid multilevel Monte Carlo++ (MG-MLMC++), which combines
the Hutch++ method, a recent inexact deflation technique, with the MG-MLMC
approach.

These contributions provide advancements in the field of lattice QCD, improving
the accuracy and efficiency of numerical simulations, which are crucial for un-
derstanding the behavior of subatomic particles. The methods are designed to
handle the increasingly large and ill-conditioned systems of linear equations that
arise from the discretization of the QCD equations on a lattice and can be applied
in all situations where one has to compute the trace of the inverse of a matrix
and when an efficient multigrid hierarchy can be constructed.

III

Foreword

The work presented in this thesis is in parts based on the following publications:

• A. Frommer, M. N. Khalil, and G. Ramirez-Hidalgo, A multilevel
approach to variance reduction in the stochastic estimation of the trace of a
matrix, SIAM Journal on Scientific Computing, 44 (2022), pp. A2536–A2556

• M. Khalil and A. Frommer, MGMLMC++ as a Variance Reduction
Method for Estimating the Trace of a Matrix Inverse, PoS, LATTICE2022
(2022), p. 017

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No. 765048.

We computed all numerical results in this thesis on two machines in our group:
aicomp03 and aicomp04.

V

Contents

Acknowledgments I

Abstract III

Foreword V

Contents VII

1 Introduction 1

2 Mathematical definitions 5

2.1 Notation . 5

2.2 Basic definitions . 7

2.2.1 Linear Algebra . 7

2.2.2 Probability theory . 12

3 Quantum chromodynamics on the Lattice 15

3.1 Overview of the Standard Model of particle physics 15

VII

CONTENTS

3.2 Continuum QCD . 17

3.3 QCD on the Lattice . 19

3.3.1 Wilson Dirac Operator . 19

3.3.2 Clover-improved Wilson Dirac operator 20

3.4 Schwinger model . 21

4 Linear Solvers 23

4.1 Matrix decompositions . 24

4.1.1 Modified Gram-Schmidt 25

4.2 Iterative methods . 25

4.2.1 Krylov Subspace . 27

4.2.2 Arnoldi Process . 28

4.2.3 GMRES . 29

4.2.4 Preconditioning . 30

4.2.5 FGMRES . 31

4.3 Multigrid Methods . 32

4.3.1 The Geometry of Multigrid Methods 32

4.3.2 The main idea of Multigrid 34

4.3.3 Multilevel AMG . 35

4.3.4 Multigrid in Lattice QCD 38

5 Stochastic Trace Estimation 41

5.1 Basic idea of trace estimation . 41

5.2 Hutchinson Estimator . 43

5.2.1 Tail bounds for the Hutchinson estimator 44

5.2.2 Accuracy of trace estimation 45

6 Variance Reduction Methods 51

6.1 Deflation Approach . 51

6.1.1 Main idea of the deflation approach 52

VIII

CONTENTS

6.1.2 Exact deflation method . 56

6.1.3 Inexact Deflation . 58

6.2 Hutch++ . 60

6.3 A-Hutch++ . 64

7 Multigrid Multilevel Monte Carlo 69

7.1 Standard Monte Carlo method . 69

7.1.1 Computational Cost . 71

7.2 Multilevel Monte Carlo . 71

7.2.1 Two-level MC . 71

7.2.2 Multilevel Monte Carlo (MLMC) theory 73

7.2.3 Multilevel Monte Carlo for trace estimation 76

7.2.4 Error bounds of multilevel Monte Carlo methods 77

7.3 Multigrid Multilevel Monte Carlo Method 78

7.3.1 Two-Grid Two-Level Monte Carlo for trace estimation . . 79

7.3.2 Multigrid Multilevel Monte Carlo for trace estimation . . . 80

7.3.3 Multigrid Multilevel Monte Carlo ++ for trace estimation 84

7.3.4 Deflated MG-MLMC . 85

7.3.5 A proto-type algorithm for MG-MLMC approaches 86

8 Stopping criteria in Multigrid Multilevel Monte Carlo 89

8.1 Cost Model . 89

8.1.1 MG-MLMC . 91

8.1.2 MG-MLMC++ . 92

8.2 Distributing the variance . 93

8.2.1 Main features in algorithms 93

8.2.2 Algorithms based on the uniform variance distribution . . 95

8.2.3 Algorithms based on the optimal variance distribution . . 99

8.2.4 Skipping levels approach 103

IX

CONTENTS

9 Numerical Results 105

9.1 Methodology . 105

9.2 Two-dimensional Laplace . 106

9.3 Gauge Laplace . 111

9.4 Schwinger Model . 113

9.5 Lattice QCD . 118

9.6 Conclusion and Outlook . 121

List of Figures 123

List of Tables 125

Bibliography 127

X

Chapter 1
Introduction

Quantum chromodynamics (QCD) is a fundamental theory that describes the
interactions of quarks and gluons, which are the constituents of hadrons [19, 52].
However, confinement makes it impossible to isolate quarks in nature, so analytic
calculations in QCD typically rely on studying hadrons, which are composed of
quarks and are not subject to confinement. Although perturbative expansions are
often used in physics calculations, they are not always applicable when dealing
with QCD at specific energy levels, so alternative numerical and computational
methods must be used.

Quantum chromodynamics on the Lattice (Lattice QCD) is a rapidly growing
field in theoretical physics that seeks to understand the properties of subatomic
particles. One of the main challenges in Lattice QCD is to accurately determine
the properties of these particles, such as their mass and spin, through numerical
simulations. To address this challenge, inversion techniques are commonly used
to solve large systems of linear equations that arise from the discretization of
the QCD equations on a Lattice. The Lattice QCD method involves discretizing
the continuous QCD theory on a four-dimensional Lattice using Wick rotations
to simulate the theory on a discretized Euclidean space-time [105]. However,
this approach presents significant computational and mathematical challenges
and is regarded as one of the most demanding computational problems in the
world [12, 53]. Nonetheless, Lattice QCD has been successful in generating results
that closely match experimental observations.

Solving linear systems of equations is a core aspect of simulating QCD on the
Lattice, but this task becomes increasingly difficult as the Lattice parameters are
adjusted to match the continuum theory, resulting in more ill-conditioned systems
of larger coefficient matrices. This phenomenon is called ”critical slowing down,”
and requires a combination of numerical linear algebra and high-performance

1

1 Introduction

computing methods to overcome. Although traditional methods, such as odd-even
preconditioning [26, 32], deflation [68], and domain decomposition [42, 67], have
been used to address this challenge, critical slowing still impacts them. Multigrid
methods offer a promising alternative as they can converge independently of the
conditioning of the linear system. However, using geometric multigrid methods
based on underlying PDEs has been difficult in the past due to the random nature
of matrices in Lattice QCD simulations.

This thesis contributes to the advancement of Lattice QCD by improving stochas-
tic approaches for computing the trace of the inverse. The trace represents the
disconnected loop contributions for certain relevant observables. The main ob-
jective is to improve the accuracy of the trace estimator, reduce computational
time, and optimize the selection of inversion algorithms. The main idea is to take
advantage of the multilevel hierarchy in the multigrid solves for the linear systems
also for trace estimation.

Our first contribution is the proposal of a new stochastic method named multigrid
multilevel Monte Carlo (MG-MLMC) [41], which merges both standard multi-
grid and multilevel Monte Carlo methods. The second contribution is a new
trace estimator technique, called multigrid multilevel Monte Carlo ++ (MG-
MLMC++) [63], which combines the Hutch++ method, a recent inexact deflation
technique [70], with the MG-MLMC approach.

The new methods can be applied in all situations where one has to compute the
trace of the inverse of a matrix and when an efficient multigrid hierarchy can be
constructed.

Our contributions provide in particular advancements in the field of Lattice QCD,
as they improve the accuracy and efficiency of numerical simulations, which are
crucial for understanding the behavior of subatomic particles. Our methods are
designed to handle the increasingly large and ill-conditioned systems of linear
equations that arise from the discretization of the QCD equations on the Lattice
and can be applied to a wide range of problems in theoretical physics.

We structure this thesis as follows:

In Chapter 2, we introduce important mathematical definitions and concepts used
in this thesis. This includes a review of linear algebra, linear systems of equations,
and the theory of stochastic processes. We will also cover the estimation of traces
using random sampling.

In Chapter 3, we give an overview of QCD on the Lattice and its significance in
theoretical physics. We explain the basic concepts of the theory, including the use
of Lattice discretization to regulate the theory and the techniques used to extract
physical observables from the Lattice.

2

In Chapter 4, we focus on linear solvers, which are used to solve the large, sparse
linear systems of equations.We will introduce different types of solvers and discuss
their advantages and disadvantages.

In Chapter 5, we concentrate on stochastic trace estimation, which is a technique
used to estimate the trace of an operator. We will explore different methods for
performing the estimation and the sources of error in the process.

In Chapter 6, we introduce variance reduction methods, which are essential in this
thesis to decrease the error in stochastic trace estimation. We will discuss different
techniques, such as deflation, Hutch++ and Adaptive Hutch++ approaches in
detail.

In Chapter 7, we introduce the novel concept of MG-MLMC and MG-MLMC++.
We will discuss the principles of the methods and their advantages over deflated
Hutchinson and plain Hutchinson techniques.

In Chapter 8, we discuss the stopping criteria in the MG-MLMC and MG-
MLMC++ approaches. These techniques are used to control when to stop the
stochastic estimation process to achieve a balance between precision and compu-
tational cost. We will examine different methods for determining when to stop
the stochastic estimation process and their advantages and disadvantages.

Finally, in Chapter 9, we present numerical results that demonstrate the effec-
tiveness of the proposed stochastic approaches for trace estimation. These results
include a comparison of the performance of different linear solvers and variance
reduction methods, as well as a detailed analysis of the behavior of MG-MLMC
techniques for standard examples and in the context of QCD simulations.

3

Chapter 2
Mathematical definitions

In this chapter, we will introduce some important definitions of linear algebra and
statistics that are used throughout the thesis. These definitions include concepts
for matrices, such as the matrix inverse and the trace of a matrix, as well as
concepts such as eigenvalues and eigenvalue decomposition. We will also discuss
the singular value decomposition and the matrix condition number. In addition,
we will define key concepts in probability and statistics, including probability
functions, random vectors, expected value, variance, and estimators. Finally, we
will introduce the root mean square error (RMSE), which is a commonly used
measure of accuracy in the algorithms.

All of the definitions discussed in this chapter can be found in the following
references: [48, 51, 58, 71, 87, 88, 98]

2.1 Notation

In this thesis, all vector spaces and matrices are assumed to be complex and the
Euclidean norm ∥ · ∥ is used for vector norms without a subscript. The iteration
index is denoted by an upper letter □(k) within parentheses. In general, lowercase
letters represent vectors or scalars, while uppercase letters represent matrices.
The exception to this is the γ matrices, which are also lowercase letters.

The following notations and abbreviations are used throughout the thesis:

5

2 Mathematical definitions

n problem size
A = [ai,j] the matrix A consists of the elements ai,j
A = [a1|a2| · · · |an] the matrix A consists of vectors a1, a2, . . . , an as columns
A−1 inverse of the matrix A
V = [v1| · · · |vk] column matrix from a set of k vectors
A−H short-hand notation A−H = (A−1)H = (AH)−1

D continuous Dirac operator
D,D(m),DW (m) DW (m) (lattice) Wilson-Dirac operator (with mass m)
DN Neuberger overlap operator
γi generator matrices of the Clifford algebra, i ∈ {1, . . . , 4}
γ5 γ5 := γ1γ2γ3γ4
Γ5 lattice version of γ5
λ eigenvalue
Λ diagonal matrix of eigenvalues
X = [x1| · · · |xn] matrix of eigenvectors
spec(A) spectrum of A
span{· · · } space of the linear combinations of the vectors or matrices
tr(A) the trace of the matrix A
V the variance
ϵ the relative accuracy

Table 2.1: Notations and abbreviations

The column vector x ∈ Rn will be denoted as⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦
where the elements x1, x2, . . . , xn are the entries of the column vector.

The matrix A ∈ Rn×m can be represented in matrix form as:

A =

⎡⎢⎢⎢⎣
a11 a12 a13 . . . a1m
a21 a22 a23 . . . a2m
...

...
...

. . .
...

an1 an2 an3 . . . anm

⎤⎥⎥⎥⎦
Here, each element aij is located in the i− th row and j− th column of the matrix
A. The number of rows is n and the number of columns is m.

6

2.2 Basic definitions

2.2 Basic definitions

2.2.1 Linear Algebra

The main focus of this thesis is estimating the trace of the matrix inverse that
require solving linear systems of equations, which can be represented by matrices.
There are characteristics of special matrices with a specific structure that we can
take advantage of to create effective algorithms.

Definition 2.1 (Special matrices).
Assume a nonsingular matrix A ∈ Cn×n, we call A:

1. sparse, if the number of non-zero entries per row is significantly smaller
than n and independent of n.

2. symmetric, if A = AT ,

3. positive definite if xTAx > 0 ∀ x ∈ Cn, x ̸= 0

4. diagonal, if aij = 0 ∀ i ̸= j.

5. Hermitian, if A = AH ,

6. unitary, if AHA = I,

7. normal, if AHA = AAH ,

8. a projection, if A2 = A,

9. diagonally dominant, if |aii| >
∑︁
j ̸=i
|aij| for j = 1, . . . , n

We also define:

• If a matrix A is a projection matrix, then the matrix (I − A) is also a
projection matrix, as

(I − A)2 = I − 2A+ A2 = I − 2A+ A = I − A. (2.1)

Definitions 2.2, 2.3, 2.4 and 2.5 are introduced in order to provide a foundation
for estimating the trace of the inverse of a matrix.

Definition 2.2 (Matrix inverse).
A square matrix A is invertible or non-singular if it has an inverse, which means
there exists a matrix B such that AB = BA = I. In this case, the matrix B
is the inverse of A and is denoted as A−1. It is important to note that not all
matrices have an inverse. The following statements are equivalent to a matrix A
being non-singular:

7

2 Mathematical definitions

• The determinant of A is non-zero, det(A) ̸= 0.

• The columns of A, denoted aj, are linearly independent.

• The equation Ax = 0 has only one solution, x = 0.

• All eigenvalues of A, denoted λi, are non-zero.

Eigenvalue decomposition: The inverse of a matrix can be computed using its
eigenvalue decomposition.

Definition 2.3 (Trace of a matrix).
The trace of a square matrix A is the sum of its diagonal entries, tr(A) =

∑︁n
i aii.

For any n × n matrices A, B, and C, and a scalar α the properties of the trace
can be given as follows:

• tr(αA+B) = αtr(A) + tr(B).

• tr(AB) = tr(BA).

• tr(A) =
∑︁n

i=1(λi).

• The trace of a matrix is invariant under cyclic permutations of matrix prod-
ucts, i.e., tr(ABC) = tr(BCA) = tr(CAB).

• The trace of a matrix is invariant under similarity transformations, i.e.,
tr(A) = tr(PAP−1) for any invertible matrix P .

Definition 2.4 (Vector norm).
A vector norm is a way of measuring the size or length of a vector. For a vector
x ∈ Cn, some widely known norms are:

• Two-norm: ∥x∥2, also known as the Euclidean norm, is defined as

∥x∥2 =

(︄
n∑︂
i=1

|xi|2
)︄1/2

= ⟨x|x⟩1/2 (2.2)

• ρ-norm: ∥x∥ρ is defined as

∥x∥ρ =

(︄
n∑︂
i=1

|xi|ρ
)︄1/ρ

. (2.3)

• Infinity norm: ∥x∥∞ is defined as

∥x∥∞ = max
1≤i≤n

|xi|. (2.4)

8

2.2 Basic definitions

Definition 2.5 (Matrix norm).
A matrix norm is a way of measuring the size or length of a matrix. For a matrix
A ∈ Cn×m, some useful norms are:

• Induced norm: ∥A∥ρ, which is based on the way that the matrix A transforms
a vector x. It is defined as

∥A∥ρ = max
∥x∥ρ=1

∥Ax∥ρ, (2.5)

where ∥ · ∥ρ is a norm in space Cn

• Frobenius norm: ∥A∥F , which does not rely on a vector norm and uses all
the components of the matrix. It is defined as

∥A∥F =

⌜⃓⃓⎷(︄ n∑︂
i=1

m∑︂
j=1

|aij|2
)︄
. (2.6)

All the previous matrix norms have the following properties:

• ∥A∥ ≥ 0, ∥A∥ = 0 iff A = 0

• ∥αA∥ = |α|A,α ∈ C

• ∥A+B∥ ≤ ∥A∥+ ∥B∥

• ∥AB∥ ≤ ∥A∥∥B∥

We will analyze the computational cost of various algorithms presented in chap-
ters 6, 7 and 8. To do this, we will use a cost model that takes into account not
just the number of matrix-vector multiplications (mvms) performed, but also the
runtime of the algorithms. Our goal is to find some theoretical explanations for
the differences in runtime that we measure for the different methods.

Definition 2.6 (Cost model).
Let x, y ∈ Cn and α ∈ C be scalars. We will define the following types of opera-
tions as elementary vector operations [51]:

• axpy: y ← αx+ y, which performs a vector addition of the scaled vector αx
to y,

• scaling: y ← αy, which scales the vector y by α,

• assigning: y ← x, which copies the contents of x to y,

• swapping: y ↔ x, which exchanges the contents of x and y, and

9

2 Mathematical definitions

• dot-product: α← yHx, which computes the dot product between x and y.

Using these elementary vector operations, we can describe the cost model for
matrix-vector products as follows. Let x, y ∈ Cn and A ∈ Cn×n be a square
matrix. We define the following operations on x and y as the basic building blocks
for the computation of Ax:

• matrix-vector multiplication: y ← Ax, which computes the product of the
matrix A with the vector x using n2 complex scalar operations.

In our cost model, we assume that all vector operations in Definition 2.6 have
the same computational cost of n floating point operations. This assumption
is reasonable, especially on modern hardware that supports fused multiply-add
floating point operations. When discussing the number of operations in methods
involving a matrix A ∈ Cn×n, we only consider vector operations of size n.

Given that eigenvalues and eigenvectors are crucial concepts for Chapters 6, 7
and 8 we provide a definition that highlights a few concepts of an eigenvalue.

Definition 2.7 (Eigenvalue).
Given a square matrix A ∈ Cn×n we call λ ∈ C an eigenvalue of A if there exists
a nonzero vector x ∈ Cn such that

Ax = λx. (2.7)

Additional characteristics and terms related to eigenvalues:

• x is called an eigenvector (belonging to λ).

• A pair (λ, x) of eigenvalue λ and its eigenvector x is called an eigenpair.

• The set of all eigenvalues of A is called the spectrum of A and is denoted
by spec(A).

• The spectral radius of A is defined as ρ(A) := maxλ∈spec(A)(|λ|).

• Eigenvalues λi are the roots of the characteristic polynomial of A, i.e.,
pA(λ) := det(A− λI).

• The multiplicity mi of an eigenvalue in pA(λ) is called algebraic multiplicity
of λ.

• The geometric multiplicity is denoted by gi and is the dimension of the null
space of (A− λiI).

10

2.2 Basic definitions

Definition 2.8 (Eigenvalue decomposition).
A square matrix A ∈ Cn×n is called diagonalizable if and only if gi = mi for all
λi ∈ Λ. We define in this case the eigenvalue decomposition

A = XΛX−1, (2.8)

where each column xi of X contains an eigenvector of A belonging to the eigen-
value Λi,i = λi of the diagonal matrix Λ.

The singular value decomposition is a generalization of an eigenvalue decompo-
sition to non-square matrices. It allows us to decompose a matrix into its con-
stituent parts, much like an eigenvalue decomposition does for square matrices,
and can be defined as follows:

Definition 2.9 (Singular value decomposition).
Given a matrix A ∈ Cm×n there exists a matrix decomposition

A = UΣV H , (2.9)

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Cm×n is a diagonal
matrix with non-negative diagonal entries σi,i, this decomposition is called the
singular value decomposition (SVD). We call the column vectors ui and vi left
and right singular vectors (of σi,i).

Definition 2.10 (Power method).
Let A be a matrix with eigenvalues 0 ≤ |λ1| ≤ · · · |λn−1| < |λn| and let v(0) be an
initial vector such that ⟨v(0), xn⟩ ≠ 0. The power method is an iterative procedure
that generates a sequence of vectors v(0), v(1), v(2), . . . and corresponding Rayleigh
quotients λ(0), λ(1), λ(2), . . . as follows:

1. k ← 0.

2. w ← Av(k).

3. v(k+1) ← w/|w|.

4. λ(k+1) ← v(k+1)TAv(k+1).

If the desired convergence criterion is satisfied, return the approximations (λ(k), v(k))
of the largest eigenpair of A. Otherwise, set k ← k + 1 and go back to step 2.
It can be shown that the sequence of vectors v(k) produced by the power method
satisfies

v(k) → xn, as k →∞,

11

2 Mathematical definitions

if we assume v(k) to be normalized after each step. Furthermore, v(k) and its
corresponding Rayleigh quotient λ(k) satisfy

|v(k) − xn| = O

(︄⃓⃓⃓⃓
λn−1

λn

⃓⃓⃓⃓k)︄
and |λ(k) − λn| = O

(︄⃓⃓⃓⃓
λn−1

λn

⃓⃓⃓⃓2k)︄
.

The power method can also be modified to find eigenpairs corresponding to other
regions of the spectrum by shifting and inverting the matrix A. Specifically,
choosing a shift σ sufficiently close the target eigenvalue λJ , the power method
for (A− σI)−1 converges to 1

λj−σ

Definition 2.11 (Condition Number).
The condition number of a matrix A is a way of describing how well or badly the
system Ax = b could be approximated and defined as:

κ(A) = |A|2 · |A−1|2,

If A is singular, then κ(A) =∞. If κ(A) is small, the problem is well-conditioned,
and if κ(A) is large, the problem is rather ill-conditioned. Another expression for
the condition number is κ(A) = σmax/σmin, where σmax and σmin are the maximal
and minimal singular values of matrix A. If A is a symmetric matrix, then κ(A) =
|λmax/λmin|, where λmax and λmin denote the largest and smallest eigenvalues of
A.

2.2.2 Probability theory

We use the definitions that follow because they are all crucial and central to all of
the core algorithms described in this thesis. We only consider discrete stochastic
variables here.

Consider two random variable X, Y which take values xi, yi where i = 1, . . . , n
for X and Y respectively.

Definition 2.12 (Independent variables).
We call two random variables X, Y are independent if and only if any two of their
possible outcomes, x and y hold that:

Pr(X = x and Y = y) = Pr(X = x) Pr(Y = y). (2.10)

Definition 2.13 (Probability function).
The probability f(xi) of a random variable X can be represented by Pr(X = xi) =
Pri = f(xi) according to the axioms of Kolmogorov [16]. These axioms state that:

12

2.2 Basic definitions

• f(xi) must be nonnegative

• The sum of all possible values of f(xi) equals 1

• The probability of the random variable being equal to either xi or xj is the
sum of their individual probabilities (i.e. Pr(X = xi or X = xj) = f(xi) +
f(xj)).

For discrete variables, the following are the three most basic statistics quantities:

Definition 2.14 (Random vectors).
The fundamental concepts of statistics are generalized naturally to random vec-
tors [102]. A column vector X = (X1, ...Xn)

T with entries Xi ∈ C that are random
variables is called a random vector.

The variance of a random variable X is a measure of the dispersion or spread of
its possible values around the expected value. It is defined as follows:

Definition 2.15 (Expected value).
For a random variable X, the expected value E[X] is defined as the weighted
average of all possible outcomes xj with probability pj:

E[X] =
∑︂
j

xjpj. (2.11)

If all outcomes are equally likely, i.e., the probability f(x) is the same for all pos-
sible values of x, then the expected value is equal to the mean µ of the distribution:

E[X] = µ =
1

N

∑︂
j

xj, (2.12)

where N is the number of events. For a random vector X = (X1, X2, . . . , Xn), the
expected value can be represented as a column vector with each component being
the expected value of each random variable Xi:

E[X] =
(︁
E[X1] E[X2] · · · E[Xn]

)︁
. (2.13)

Definition 2.16 (Variance).
The variance of a random variable X, denoted as Var[X] or V[X], is given by the
formula:

V[X] = E[(X − E[X])2], (2.14)

where E[X] is the expected value of X, and E[(X − E[X])2] is the expected value
of the squared difference between X and its expected value.

13

2 Mathematical definitions

Definition 2.17 (Estimator).
An estimator is a statistical tool that allows us to estimate an unknown population
parameter using sample data. A common property that we seek in estimators is
unbiasedness, which means that the expected value of the estimator is equal to
the true value of the population parameter being estimated. Mathematically, an
unbiased estimator θ̂ of a population with expected value θ satisfies (2.15):

E(θ̂) = θ, (2.15)

where E(θ̂) is the expected value of the estimator and θ is the true value of the
population parameter.

Unbiased estimators are characterized by consistency, which means that the esti-
mator becomes more accurate as the sample size increases, i.e., limn→∞ E(θ̂) = θ.
We are interested in estimators which have small variance as in (2.16) (or even
the samllest possible variance) for the same population parameter.

Var(θ̂) = E(θ̂
2
)− (E(θ̂))2 (2.16)

Definition 2.18 (RMSE).
The Root Mean Squared Error (RMSE) is a measure of the difference between a
predicted value and the true value. It is widely used as a measure of the accuracy
of algorithms that predict. It is defined as the square root of the Mean Squared
Error (MSE), which is the average of the squared differences between the predicted
values and the true values and is given by:

RMSE(θ̂) =

√︂
MSE(θ̂) =

√︂
E((θ̂ − θ)2), (2.17)

where θ̂ is the predicted value and θ is the true value.

For an unbiased estimator, the RMSE is equal to the standard deviation, which is
a measure of the dispersion of a distribution. In this case, the RMSE is given by:

RMSE(θ̂) =

√︂
V[θ̂], (2.18)

where V[θ̂] is the variance of the predicted values.

14

Chapter 3
Quantum chromodynamics on the Lattice

In this Chapter, we explain the conceptual foundation and background physics
behind the methods discussed in subsequent chapters of this thesis. It is im-
portant to understand the connection between new algorithmic developments in
applied mathematics and the underlying physical systems in order to gain a bet-
ter intuition of the limitations and expected behavior of these algorithms. This
is particularly relevant in the context of Lattice quantum chromodynamics. Ad-
ditionally, having a clear understanding of the underlying physics is crucial for
understanding the motivation behind the implementations and new developments
in this field.

We begin by providing an overview of the QCD and its role in Standard Model
in Sec. 3.1. Then, we explore the concept of continuum QCD in Sec. 3.2, which
describes the theory in the limit of infinite space and time. Next, we delve into
the specific methods used to study QCD on the Lattice in Sec. 3.3, including the
Wilson Dirac operator in Sec. 3.3.1 and Clover-improved Wilson Dirac operator in
Sec.3.3.2.Lastly, we discuss the Schwinger model in Sec. 3.4, which is a simplified
version of QCD that can be solved analytically.

The majority of the information presented in this Chapter comes from the fol-
lowing sources: [8, 9, 44, 62, 69, 78, 83, 96].

3.1 Overview of the Standard Model of particle
physics

The Standard Model is a theory that describes the fundamental particles that
comprise all known matter in the universe, as well as the forces that govern their

15

3 Quantum chromodynamics on the Lattice

interactions [69]. It is predicated on the premise that all matter is composed of
two types of elementary particles: fermions and bosons. Fermions, which include
quarks and leptons, are the building components of matter and are characterized
by quantum mechanics. Bosons, such as the photon, gluon, W , and Z bosons,
are the carriers of the fundamental forces and are described by quantum field
theory. The Standard Model can accurately represent a vast array of events, from
the behavior of subatomic particles to the characteristics of atoms and molecules.
However, it is not a complete theory and does not explain a number of crucial
issues, such as the nature of dark matter and the observed matter-antimatter
asymmetry in the universe. Particle physics is conducting continuing studies into
these and other mysteries [96].

It is a gauge theory based on the gauge group SU(3)C × SU(2)L × U(1)Y , that
describes how elementary particles like fermions and bosons interact with each
other via the exchange of gauge bosons. Spinor fields that transform under gauge
group representations describe fermions, which are the building blocks of matter.
Quarks and leptons are examples of this. Gauge bosons, on the other hand, such as
the photon, gluon, W, and Z bosons, are described by vector fields that transform
under the gauge group’s adjoint representation. It is true that the Standard Model
is able to accurately explain a lot of phenomena regarding subatomic particles,
atoms, and molecules [78].

For example, one possible way to write the Lagrangian density for the Standard
Model is as a sum of four terms, representing the four sub-theories that make up
the Standard Model see [78, 96]:

L = LQED + LQCD + LEW + LHiggs, (3.1)

where:

• LQED represents the Lagrangian density of quantum electrodynamics, which
describes the electromagnetic force and the interactions of photons with
charged particles.

• LQCD represents the Lagrangian density of quantum chromodynamics, which
describes the strong nuclear force and the interactions of gluons with quarks.

• LEW represents the Lagrangian density of the electroweak theory, which
describes the weak nuclear force and the interactions of theW and Z bosons
with the matter.

• LHiggs represents the Lagrangian density of the Higgs boson, which gives
mass to the W and Z bosons and, in turn, to all other particles in the
Standard Model through the Higgs mechanism.

16

3.2 Continuum QCD

It’s important to note that the Lagrangian density is a mathematical construct,
it is not a physical observable. There are many different ways to write the La-
grangian density for the Standard Model, and the specific form used depends on
the context and the level of detail required.

3.2 Continuum QCD

The study of QCD is a fascinating and complex field within particle physics
that delves into the interactions between quarks and gluons, the fundamental
particles that make up protons and neutrons. To fully understand QCD, one
must have a deep understanding of modern quantum mechanics, special relativity,
and quantum field theory. In some cases, mathematical techniques such as the
Taylor series or other asymptotic expansions can be used to simplify calculations,
but other situations may require computational methods to fully grasp the model
without any analytic approximations. The study of QCD encompasses many
areas of physics and mathematics, including group theory, statistical mechanics,
and renormalization of non-Abelian group theories. The Large Hadron Collider at
CERN has played a vital role in experimental studies of QCD. This section aims to
provide an overview of QCD from an applied mathematics perspective, outlining
the key concepts and techniques required for simulating QCD on computers [77,
96].

The QCD Lagrangian describes the interactions of quarks and gluons as spin-1
2

fermions and vector gauge bosons, respectively. Quantum mechanical operators
defined on a four-dimensional space-time describe the quark and gluon fields.
These fields are denoted by Ψ(x) and Aµ(x), where x represents a position in
space-time and µ is an index ranging from 0 to 3, representing the four dimensions
of space-time [66].

The Dirac equation for the skew-adjoint continuum describes this interaction [8,
28, 78, 96].

(D +mI)ψ = η, (3.2)

where ψ = ψ(x) ∈ C12 and η = η(x) ∈ C12 are called spinors or quark fields. The
twelve components ψc,σ label the internal degrees of freedom, the so-called color
c = (1, 2, 3) and spin σ = (0, 1, 2, 3) of a given spinor at a point x = (x0, x1, x2, x3)
in space-time. The ordering of the degrees of freedom of a spinor is given as

17

3 Quantum chromodynamics on the Lattice

follows:

ψ(x) = (ψ1,0(x), ψ2,0(x), ψ3,0(x),

ψ1,1(x), ψ2,1(x), ψ3,1(x),

ψ1,2(x), ψ2,2(x), ψ3,2(x),

ψ1,3(x), ψ2,3(x), ψ3,3(x))
H

The scalar parameter m sets the quark mass of the QCD theory. The Dirac oper-
ator D describes the interaction between the quarks for a given gluon background
field and is defined as

D =
3∑︂

µ=0

γµ ⊗ (∂µ + Aµ), (3.3)

where ∂µ is a shorthand for ∂/∂xµ. The Hermitian and unitary γ-matrices
γ0, γ1, γ2, γ3 ∈ C4×4 generate a Clifford algebra [66], satisfying

γµγν + γνγµ =

{︄
2 · I, µ = ν

0, µ ̸= ν
for µ, ν ∈ {0, . . . , 3} (3.4)

and act nontrivially on the spin indices of the spinor and trivially on the color
indices:

(γµψ)(x) = (γµ ⊗ I3)ψ(x).

The gauge field, denoted by Aµ(x), describes the connection between infinitesi-
mally close space-time points. It is defined by matrices from the Lie algebra of
the special unitary group SU(3), namely the skew-Hermitian traceless matrices
from SU(3). The gauge field acts trivially on the spin and non-trivially on the
color, as represented by (3.5):

(Aµψ)(x) = (I4 ⊗ Aµ(x))ψ(x). (3.5)

To ensure that the spinor field, denoted by ψ(x), transforms convariantly under
local gauge transformations, a minimal coupling extension of the derivative, re-
ferred to as the covariant derivative and denoted by ∂µ+Aµ, is used. It is expressed
as ((∂µ +Aµ)ψ)(x). In addition, the combination of the covariant derivative and
the γ-matrices, denoted by D, ensures that the spinor field transforms in the
same way as the space-time transformations of special relativity. These principles
of local gauge invariance and special relativity are fundamental to the standard
model of elementary particle [39].

18

3.3 QCD on the Lattice

3.3 QCD on the Lattice

In Lattice quantum chromodynamics, a discretization of space-time is necessary
for simulations. This is achieved by dividing the four-dimensional Euclidean
space-time into a Lattice with, for example, periodic boundary conditions. The
Lattice has a size of nt× n3

s, where nt is the number of Lattice points in the time
dimension and ns is the number of Lattice points in each dimension of space. The
Lattice sites can be indexed by a four-tuple

x = (t, x, y, z) ∈ L := (Z/ntZ)× (Z/nsZ)3

The Dirac field, which describes the quarks, is defined on the Lattice sites and is
typically denoted by ψ(x). At each Lattice site, the field ψ consists of a combina-
tion of four spin and three color components, resulting in a total of 12 independent
complex variables. Therefore, ψ is a function ψ : L → C12 with x ↦→ ψ(x). Addi-
tionally, we define ψσ(x) ∈ C3 to contain only the three color components at the
Lattice site x for a given spin index σ ∈ 0, 1, 2, 3.

On the other hand, the gluons live on the links between neighboring Lattice sites.
To describe the coupling between Lattice sites, we need a few more definitions.
First, we define directions µi ∈ L for i = 0, . . . , 3 on the Lattice as

µ0 = (1, 0, 0, 0), µ1 = (0, 1, 0, 0), µ2 = (0, 0, 1, 0), and µ3 = (0, 0, 0, 1).

Therefore, the 8 neighbors of x ∈ L are the distinct points x±µi with i = 0, . . . , 3.
Second, the continuum gauge fields from QCD can be represented on the Lattice
by matrices Uµ(x) ∈ SU(3), called gauge links or link variables. Each Uµ(x) links
the Lattice site x with x+ µ and Uµ(x)

† = Uµ(x)
−1 links x+ µ with x vice versa.

The set U = {Uµ(x) : x ∈ L, µ ∈ µ0, µ1, µ2, µ3} containing all gauge links Uµ(x)
is called a configuration.

3.3.1 Wilson Dirac Operator

In the simulation of QCD on the Lattice, it is essential to use a discretized version
of the Dirac operator. One widely used discretization of the Dirac operator in
Lattice QCD is the Wilson-Dirac operator.

The Wilson-Dirac operator is a simple, local operator that incorporates the inter-
actions of the quarks with the gluons. The definition of the Wilson discretization
of the Dirac operator is given as follows:

Definition 3.1.
Given a gauge configuration U on a lattice L with nL sites, lattice spacing a, and

19

3 Quantum chromodynamics on the Lattice

mass parameter m0, the Wilson-Dirac operator is defined as:

DW :=
m0

a
I12nL +

1

2

3∑︂
µ=0

(γµ ⊗ (∆µ +∆µ)− aI4 ⊗∆µ∆
µ) , (3.6)

where m0 sets the quark mass, a is the Lattice spacing, and ∆µ and ∆µ denote
covariant backward and forward differences, respectively. Their sum describes a
discretization of first derivatives, while their product ∆µ∆

µ represents a Laplacian
type operator of second derivatives, which is added in (3.6) as a regularization term
to eliminate red-black instabilities [105].

In explicit matrix notation, the action of DW from (3.6) on a quark field ψ(x)
can be written as:

DW (ψ(x)) =
1

2a

3∑︂
µ=0

((I + γµ)⊗ Uµ(x))ψ(x+µ)+
(︁
(I − γµ)⊗ U †

µ(x− µ)
)︁
ψ(x−µ)+m0

2a
ψ(x),

(3.7)
where x denotes a point on the lattice, and Uµ(x) is the gauge link variable associ-
ated with the µ-direction at the point x. Note that we assume a four-dimensional
lattice by summing over four directions in (3.7).

3.3.2 Clover-improved Wilson Dirac operator

The Wilson-Dirac operator introduces lattice artifacts and explicitly breaks chiral
symmetry, which can cause significant computational difficulties and constraints.
Moreover, it does not satisfy the continuum Dirac equation. To address these
issues, a clover term is added to the Wilson-Dirac operator, resulting in the clover-
improved Wilson-Dirac operator Dclover [93]:

Dclover = DW + csw
i

4
σµνFµν (3.8)

Here, csw is the clover coefficient, σµν is the corresponding Pauli matrices, and
Fµν is the Lattice field strength tensor.

The addition of the clover term to the Wilson-Dirac operator improves the chi-
ral symmetry properties because the clover term reduces the discretization error
from O(a) to O(a2), where a is the lattice spacing. This improvement reduces
the explicit chiral symmetry breaking that occurs in the original Wilson-Dirac
operator, making the clover-improved operator a better approximation of the
continuum Dirac operator on the lattice. The spectrum of Dclover is symmetric

20

3.4 Schwinger model

with respect to the real axis, and the spectrum of DW is, in addition, symmetric
with respect to the vertical line Re(z) = 4+m0

a
. In other words, if λ is an element

of the spectrum of DW , then 2m0+4
a
− λ is also an element of the spectrum of

DW . The appropriate value of csw must be determined for different Lattice QCD
simulations (see Sheikholeslami and Wohlert, 1985 [93] for more information on
this). In practice, m0 is negative and for physically relevant mass parameters, the
spectrum of Dclover is located in the right half plane (as shown in Figure 3.1).

Figure 3.1: Spectrum of 44 Wilson-Dirac operator (left) and 44 clover improved
Wilson-Dirac operator (right) with m0 = 0 and csw = 0.1 respectively. Image
adapted from [83].

Fig. 3.1 illustrates the spectrum of a 44 Wilson-Dirac operator with m0 = 0 and
csw = 0 in the left panel, and the spectrum of a 44 clover improved Wilson-Dirac
operator with m0 = 0 and csw = 1 in the right panel.

The clover improved Wilson-Dirac operator has been successful in enabling ac-
curate numerical simulations of the QCD theory, and continues to be a valuable
tool in the study of the strong interactions [93].

3.4 Schwinger model

The Schwinger model is a description of Quantum Electrodynamics (QED) in two
dimensions [91]. It is used as a test bed for the development of algorithms for
Lattice QCD because it shares some properties with QCD, such as similar spectral
behavior and symmetries. The gauge field of continuum QED in the Schwinger
formulation is a real-valued function, and the gauge configurations on the Lattice
are a subset of complex numbers with modulus one.

Stabilization of the naive discretization of Lattice QED is necessary in order
to suppress the doubling problem. The Wilson-Schwinger operator is therefore

21

3 Quantum chromodynamics on the Lattice

defined as

SW :=
m0

a
I2nL +

1

2

2∑︂
µ=1

(σµ ⊗ (∆µ +∆µ)− aI2 ⊗∆µ∆
µ) , (3.9)

where m0 is the mass parameter, nL is the number of sites on the Lattice, a is
the Lattice spacing and σ1, σ2 are Pauli matrices ∈ C2×2. The analogue to the
Lattice QCD matrix γ5 in the Schwinger model is σ3 = iσ1σ2, and the analogoue
to Γ5 is Σ3 = σ3⊗InL . The Wilson-Schwinger operator is Σ3-symmetric, meaning
(Σ3SW)H = Σ3SW .

22

Chapter 4
Linear Solvers

In this chapter, we will examine various techniques for solving linear systems
of equations, including matrix decompositions in Sec. 4.1, iterative methods in
Sec. 4.2, and multigrid methods in Sec. 4.3. Matrix decompositions involve break-
ing the matrix down into simpler matrices that can be used to more efficiently
solve the linear system, and can be used to solve the system directly. Itera-
tive methods are used to solve the linear system by repeatedly improving an
approximate solution until convergence is reached, and are particularly useful for
large-scale problems. However, they may require more iterations to converge and
may have a convergence rate that depends on the condition number of the matrix.
Multigrid methods are a type of iterative method that use a hierarchy of grids to
accelerate convergence and are effective for problems with a wide range of length
scales.

We will delve into the specifics of popular iterative methods, including the gener-
alized minimal residual method (GMRES) in Sec. 4.2.3 and the flexible GMRES
in Sec. 4.2.5, which are effective for solving large and sparse linear systems. We
will also introduce the concepts of preconditioning in Sec. 4.2.4, Krylov subspaces
in Sec. 4.2.1, and Arnoldi method in Sec. 4.2.2. The focus of the chapter will
be on the mathematical foundations of these techniques and their applications in
solving linear systems of equations.

Finally, we will provide an overview of multigrid methods, including topics such
as geometric multigrid in Sec. 4.3.1, algebraic multigrid in Sec. 4.3.2, two-level
and multilevel multigrid in Sec. 4.3.3, and the application of multigrid methods
to Lattice QCD in Sec. 4.3.4.

This chapter draws heavily from sources [15, 58, 83, 87, 88, 95, 98], and proofs
and additional information can be found there.

23

4 Linear Solvers

We consider the problem of solving linear systems of equations of the form

Ax = b, (4.1)

where A is a square matrix, x is the unknown vector, and b is the right-hand side
vector.

4.1 Matrix decompositions

Matrix decompositions refer to the process of decomposing a matrix into simpler
matrices that can be used to more efficiently solve a linear system of equations.
Some common matrix decompositions include LU decomposition, QR decompo-
sition, and Cholesky decomposition [18, 27, 51, 98]. These decompositions can
be used as a preprocessing step before applying a direct method, or they can be
used to solve the linear system iteratively.

• LU decomposition with partial pivoting: This decomposition factorizes a
matrix A into the product of a permutation matrix P , a lower triangular
matrix L, and an upper triangular matrix U , i.e.,

A = PLU. (4.2)

This decomposition can be used to solve (4.1) by first solving the system
PLy = b for y, and then solving the system Ux = y for x.

• Cholesky decomposition: This decomposition is only applicable to symmet-
ric positive-definite matrices, and factorizes a matrix A ∈ Cn×n into the
product of a lower triangular matrix L and its transpose LH , i.e.

A = LLH , (4.3)

and solving (4.1) can be achieved by first solving Ly = b for y, and then
solving the system LHx = y for x.

• QR decomposition: This decomposition factorizes a matrix A ∈ Cn×n into
the product of an orthogonal matrix Q and an upper triangular matrix R,
i.e.

A = QR. (4.4)

One can utilize this decomposition to solve (4.1) by solving the equation
Rx = QHb for x. The columns of the matrix Q are an orthonormal basis,
meaning that the inner product of qi and qj is zero if i ̸= j and the norm
of ∥qk∥ = 1, ∀ k ∈ 1, ..., n. The matrix Q can be obtained using the

24

4.2 Iterative methods

modified Gram-Schmidt algorithm, which generates a full set of orthonor-
mal vectors Q = [q1, ..., qn] that span the space defined by a set of vectors
A = [a1, ..., an] if the vectors a1, ..., an are linearly independent and is a
numerically more stable version of the regular Gram-Schmidt algorithm.

4.1.1 Modified Gram-Schmidt

Modified Gram-Schmidt procedure is a numerically stable version of the regular
Gram-Schmidt algorithm and can be described as follows [98]:

1. Initialize an empty set of orthonormal vectors, Q = [].

2. For each vector ai in the set of input vectors A = a1, a2, ..., an:

a) qi = ai.

b) For each vector qj in the set of orthonormal vectors Q:

i. qi = qi −
qHj ai

qHj qj
qj.

c) Normalize qi by setting it to qi
|qi| .

d) Add qi to the set of orthonormal vectors Q.

3. Return the set of orthonormal vectors Q.

The resulting set of orthonormal vectors Q = [q1, q2, ..., qn] defines a basis of the
space spanned by the original set of vectors A = [a1, a2, ..., an].

4.2 Iterative methods

Direct methods like Gaussian elimination can solve linear systems of equations
like (4.1), but they tend to be too computationally expensive for large, sparse
matrices with a complexity of O(n3). Iterative solvers, on the other hand, have
a lower complexity of O(n) for one iteration if the number of nonzeros in A is
O(n) and can be stopped early to provide an approximate solution. They also
only require a routine for calculating the matrix-vector product Ax, and do not
require storing the entire matrix in memory [87].

To evaluate the quality of an approximation x(k), we can use the residual equation,
defined as

r(k) = b− Ax(k) and e(k) = x− x(k). (4.5)

25

4 Linear Solvers

The residual equation states that Ae(k) = r(k). The error of the approximation
can be bounded by

∥e(k)∥ = ∥A−1r(k)∥ ≤ ∥A−1∥ · ∥r(k)∥, (4.6)

which shows that if |A−1| is large, the error can still be significant even if the
residual is small. Many iterative methods involve updating the iteration vector
x(k) in each step, starting from an initial vector x(0), by approximating the error
e(k) with ẽ(k) and setting

x(k+1) = x(k) + ẽ(k). (4.7)

This process is repeated until some convergence criteria is met, or a maximum
number of iterations is reached. Its implementation requires the following steps [87,
98]:

(a) Begin with x0 as an initial guess solution.

(b) Iterate over the obtained solution xi until you get an approximation solution
which is accurate enough for the exact solution, where i = 1, . . . , k

(c) After k iterations, the error of the approximation is defined as

e(k) = x− x(k), (4.8)

and its relative norm is given by:

∥e(k)∥2 =
∥x− x(k)∥2
∥x(k)∥2

(4.9)

(d) Since the exact solution is unknown, the error cannot be directly computed.
Instead, the accuracy of the k-th approximation can be estimated using the
residual, which is defined as the difference between the right-hand side vector
b and the product of the coefficient matrix A and the current approximation
x(k), i.e., r(k) = b − Ax(k). By solving the linear system Ae(k) = r(k), the
error e(k) can be obtained as

e(k) = x− x(0) − x(1) − · · · − x(k−1) = A−1r(k) (4.10)

(e) The tolerance ϵ is the stopping criterion for the iterative method, and it is
defined as the maximum allowable reduction in the relative residual norm,
i.e., the ratio of the current residual norm to the initial residual norm:

∥r(k)∥2
∥r(0)∥2

≤ ϵ (4.11)

26

4.2 Iterative methods

only if x0 = 0, otherwise one takes r(0) = b− Ax(0)

One method of deriving an iterative method is to split the matrix A into two
matrices, M and N , such that A =M −N . This allows us to express the original
system of equations as follows:

Ax = (M −N)x = b, (4.12)

where M and N are both n×n matrices. Substituting this into the linear system
equation, we obtain:

Mx = Nx+ b. (4.13)

From this equation, we can construct a basic iterative method as follows:

Mxk+1 = Nxk + b or xk+1 =M−1Nxk +M−1b. (4.14)

After k + 1 steps, we can compute the iteration xk+1 from the previous one, xk.
This equation can also be rewritten as:

xk+1 = xk +M−1rk, (4.15)

where rk is the residual after k iterations, which determines the difference between
the exact and iterative solution of the algebraic linear system equation.

Basic Iterative Methods (BIM), such as Jacobi, Gauss-Siedel (GS), and Successive
over-relaxation (SOR), can be derived by using the splitting technique

A = D − U − L (4.16)

where D, U , and L are the diagonal, upper, and lower parts of A respectively.
Both matrices M and N depend on this decomposition. The update equations
for these BIMs are summarized in Table 4.1.

Method Matrix Splitting Update Equation
Jacobi M = D,N = L+ U xk+1 = D−1(b− Lxk)

Gauss-Seidel M = D − L,N = U xk+1 = L−1(b− Uxk)
SOR M = (1/ω)D − L,N = ((1− ω)/ω)D − L xk+1 = (1− ω)xk + ωD−1(b− Lxk)

Table 4.1: Comparison of the Jacobi, Gauss-Seidel, and SOR methods.

4.2.1 Krylov Subspace

When working with large, sparse matrices, such as those arising from the dis-
cretization of partial differential equations, it is often only possible to perform

27

4 Linear Solvers

matrix-vector multiplications with the matrix Ax. This is because direct manip-
ulation of the matrix, such as matrix decompositions, can be too computationally
expensive. Krylov subspace methods, which only require matrix-vector multi-
plications and have low storage requirements, are a good choice for this type of
problem because they are efficient and scalable [87]. It can be defined as:

Definition 4.1 (Krylov subspace).
Given a matrix A ∈ Cn×n and a vector r ∈ Cn, the m-th Krylov subspace is the
linear subspace spanned by the set of vectors r, Ar,A2r, . . . , Am−1r. This subspace
is denoted as Km(A, r), simply as Km.

The Krylov subspace method involves iteratively updating an approximation xk to
the solution of the linear system Ax = b by projecting the residual rk = b− Axk
onto the Krylov subspace Km and computing a new search direction pk. The
updated approximation is then given by xk+1 = xk + αkpk, where αk is a scalar
step size.

The dimension of the subspace being considered is determined by the index m.
The Krylov subspace methods typically involve projection processes using Km.
These processes are either orthogonal or oblique and are spanned by vectors of
the form p(A)v, where p is a polynomial defined as

ρ(A) =
m∑︂
i=1

ρiA
i−1 = ρ1 + ρ2A+ ρ3A

2 + ...+ ρmA
m−1. (4.17)

Therefore, any vector x ∈ Km can be expressed as x = p(A)r, as long as the
degree of the polynomial is not greater than m− 1.

4.2.2 Arnoldi Process

Arnoldi’s method [61], described in Algorithm 1 is an iterative method for con-
structing an orthonormal basis of the Krylov subspace Km [87].It is similar to
the modified Gram-Schmidt procedure described in Sec. 4.1.1, which is a method
for constructing an orthonormal basis from a set of vectors, but it is specifically
designed to deal with the ill-conditioning that often occurs when using the Krylov
subspace as a basis. The input to the algorithm is a matrix A and an initial vector
r, and the output is an orthonormal basis Qm of the Krylov subspace.

28

4.2 Iterative methods

Algorithm 1 Arnoldi Process

Input: matrix A ∈ Cn×n, vector r ∈ Cn, number of iterations m
Output: Orthonormal basis Qm ∈ Cn×m+1 of the Krylov subspace Km+1 and

upper Hessenberg matrix Hm ∈ Cm+1×m

1: q1 ← r/∥r∥2
2: Qm ← [q1]
3: for j = 1 to m do
4: v ← AQm(:, j)
5: for i = 1 to j do
6: hi,j ← Qm(:, i)

∗v
7: v ← v − hi,jQm(:, i)
8: end for
9: hj+1,j ← ∥v∥2

10: if hj+1,j = 0 then
11: return Qm and Hm = [H1:m,1:m]
12: end if
13: qj+1 ← v/hj+1,j

14: Qm ← [Qm, qj+1]
15: end for
16: return Qm and Hm = [H1:m,1:m]

In this algorithm, Qm is an orthonormal basis of the Krylov subspace Km+1,
and Hm is an upper Hessenberg matrix that approximates the matrix A in this
subspace. The Arnoldi process has a wide range of applications, including solv-
ing linear systems of equations, approximating eigenpairs and evaluating matrix
functions.

The Arnoldi relationAQm = QmHm+1,m, which is a matrix formulation of Arnoldi’s
method, can be used to define the Generalized Minimal Residual (GMRES)
method for solving linear systems of equations Ax = b. GMRES minimizes the
residual norm ∥r∥ = ∥b − Ax∥ by finding an approximation xm = x0 + Qmym,
where ym is the solution to an (m + 1) ×m least-squares problem. Accordingly,
the residual norm ∥r∥ can be cheaply updated in each iteration and the itera-
tion stops when ∥r∥ falls below a given threshold, resulting in the approximate
solution xm [87].

4.2.3 GMRES

GMRES starts with an initial residual and iteratively applies the Arnoldi process
to the matrix of the linear system and the residual vector. The solution to the
linear system is computed using the orthonormal basis generated by the Arnoldi

29

4 Linear Solvers

process and the residual is updated. The process continues until the residual
is below a desired tolerance or the maximum number of iterations is reached.
GMRES is efficient for solving large, sparse linear systems and is often used in
scientific and engineering applications and it can be described as follows [87]:

Given a matrix A ∈ Rn×n, a right-hand side vector b ∈ Rn, and a starting vector
x0 ∈ Rn, the GMRES method iteratively computes an approximation to the
solution x of (4.1) as follows:

1. Set r0 = b− Ax0

2. Perform m steps of Arnoldi’s method starting with r0. This gives Qm, Hm

in the Arnoldi relation AQm+1 = QmHm

3. Solve the least squares problem ym = argmin
y∈Cm

∥Hmy − ∥r0∥e1∥, where e! =

(1, 0, · · · , 0)T ∈ Cm

4. Return the iterates xm = x0 +Qmym

The maximum number of iterations must be specified in advance, but the method
may be terminated early if the residual is reduced to a desired tolerance before
the maximum number of iterations is reached. This is possible because of the
residual norm can be cheaply updated after each iteration of Arnoldi’s method
without computing the GMRES iterates

4.2.4 Preconditioning

Preconditioning is a technique used to accelerate the convergence of iterative
methods for solving linear systems of equations. It is based on the idea of trans-
forming the original problem (4.1) into an equivalent problem with a smaller
condition number κ(A). This can be done through left or right preconditioning.

1. Left preconditioning involves multiplying the preconditioner M from the
left to the original system, as shown in the equation MAx =Mb.

2. Right preconditioning involves multiplying the preconditioner from the right,
as shown in the equation AMy = b, with the solution x =My.

where M is a matrix that is ”close” to A−1 in some sense, such that κ(MA) ≈ 1.

Preconditioning requires the application of the preconditioner matrix M in each
iteration. To be effective,M should be ”close enough” to A−1 to have a significant
impact on the condition number, but it should also be cheaper to apply compared
to solving linear systems with A. M is often realized through a method that
provides a low precision solution of systems with matrix A.

30

4.2 Iterative methods

We now discuss two different preconditioners for GMRES and their impact on
the convergence speed of linear systems of equations involving the Dirac oper-
ator. It is important to note that applying non-stationary iterative schemes as
preconditioners for GMRES requires modifying GMRES to maintain its optimal-
ity criterion of minimizing the norm of the residual in each step. This modified
method is known as flexible GMRES (FGMRES) [85].

4.2.5 FGMRES

The Flexible Generalized Minimum Residual (FGMRES) method is an extension
of the GMRES method for solving linear systems of equations. The key difference
between GMRES and FGMRES is that FGMRES allows the user to specify a non-
stationary preconditioner, which is an iterative scheme to improve the convergence
of the algorithm. By applying the preconditioner to the residuals at each iteration,
FGMRES can often converge more quickly than GMRES and it can be described
as follows [85]:

Given a matrix A ∈ Rn×n, a right-hand side vector b ∈ Rn, and a starting vector
x0 ∈ Rn, the FGMRES method iteratively computes an approximation to the
solution x of the linear system Ax = b as follows:

1. Initialize the residual r0 = b−Ax0 and its norm β = ∥r0∥, and set the first
search direction as v1 = r0/β

2. For j = 1, . . . ,m:

a) Apply the preconditioner to vj to get zj

b) Compute wj = Azj

c) For i = 1, . . . , j:

i. hi,j ← ⟨wj, vi⟩

ii. wj ← wj − hi,jvi
d) hj+1,j ← wj

e) Update the residual norm ∥r∥

f) If ∥r∥ < tol, m← j and break

g) vj+1 ← wj/hj+1,j

3. Compute the optimal solution ym

4. Compute the approximate solution xm = x0 + Zmym

The FGMRES algorithm has the following important features:

31

4 Linear Solvers

• It maintains the optimality criterion of minimizing the norm of the residual
in each step over space Zm.

• The use of preconditioners can significantly improve the convergence speed
of the algorithm and reduce the overall computational cost.

• Preconditioning allows for (a) to be performed in single precision, leading
to faster execution times.

4.3 Multigrid Methods

The convergence speed of the iterative methods in Sec.4.2 is still dependent on the
conditioning of the matrix, so if no good preconditionar is available, Multigrid
methods can be used because the convergence speed does not depend on the
condition number [54, 84]. There are two main types of multigrid methods:

• Geometric multigrid (GMG): These methods use geometrically related grids.

• Algebraic multigrid (AMG): These methods construct an algebraic hierar-
chy of grids and operators based on the structure of the linear system.

Multigrid methods have been found to significantly improve the convergence of
iterative solvers in Lattice QCD simulations. However, the choice of method may
depend on the specific problem being solved and the available computational
resources, see [15]

4.3.1 The Geometry of Multigrid Methods

Multigrid methods were developed to understand iterative methods for solving
boundary value problems in a simple geometric interpretation. This interpreta-
tion is presented in [15] and [54]. As an example, consider the two-dimensional
boundary value problem of finding u(x, y) in the domain Ω = (0, 1)2 such that
−uxx − uyy = f(x, y) and u(x, y) = 0 for (x, y) ∈ δΩ, where δΩ is the boundary
of Ω.

The discretization of this boundary value problem by second-order finite differ-
ences on an equidistant grid with grid spacing h produces a set of linear equations.
The grid spacing is equal to hx = hy =

1
N
. The resulting system has m = (N−1)2

equations. Each equation has the form

−ui−1,j + 2uij − ui+1,j

h2
+
−ui,j−1 + 2uij − ui,j+1

h2
= fij,

32

4.3 Multigrid Methods

where fij = f(ihx, jhy) and i, j = 1, . . . , N − 1. The boundary conditions are
ui0 = uim = u0j = umj = 0.

Introducing lexicographically ordered vectors

u =
(︁
u11 u21 . . . uN−1,1 u1,2 . . . uN−1,N−1

)︁T
and

f =
(︁
f11 f21 . . . fN−1,1 f1,2 . . . fN−1,N−1

)︁T
this system of linear equations reads

Au = h2f, (4.18)

with A given by

A =

⎛⎜⎜⎜⎜⎜⎝
B −I
−I B −I

.

−I B −I
−I B

⎞⎟⎟⎟⎟⎟⎠ ,

where each block B is given by

B =

⎛⎜⎜⎜⎜⎜⎝
4 −1
−1 4 −1

.

−1 4 −1
−1 4

⎞⎟⎟⎟⎟⎟⎠ .

In the discretization of the two-dimensional Poisson equation each variable is
only coupled to its direct neighbors as shown in Fig. 4.1. The corresponding
linear system can be written in stencil notation as:

A =
1

h2

⎛⎝ −1
−1 4 −1

−1

⎞⎠
where h is the grid spacing. Solving such sparse linear systems has been a subject
of extensive research. One approach to solving these systems is to use a direct
solution method like Gaussian elimination. The best direct methods for two-
dimensional elliptic equations that use fast Fourier transforms and cyclic reduction
schemes have a computational complexity of O(N2 log(N)), which is close to
the optimal complexity of O(N2). However, these methods are limited to two-
dimensional problems with constant coefficients.

33

4 Linear Solvers

Figure 4.1: The coupling of a typical variable in the discrete equations (4.3.1) on
the two-dimensional equidistant grid.

4.3.2 The main idea of Multigrid

Multigrid methods use a hierarchy of grids with progressively finer discretizations
to reduce the error in the solution. There are two main components of a multigrid
method: a smoother and a coarse grid correction [14, 54, 84, 99]. The smoother
is an iterative method used to locally smooth out errors in the solution, while the
coarse grid correction involves projecting the smoothed residual onto a coarser
grid and solving for the correction there.

One common way to transition between grid levels is through the use of prolon-
gation and restriction operators, which map between grids of different sizes. A
full multigrid method involves cycling between multiple grid levels, with the most
common method being the V-cycle. This involves starting on the finest grid, pro-
gressing through coarser grids, and returning to the finest grid. Another option
is the W-cycle, which consists of two V-cycles connected by a single smoothing
operation on the finest grid. Fig. 4.2 shows two sketches of different multigrid
algorithms. The first sketch (a) shows one cycle of V-cycle multigrid, which con-
sists of a single loop that begins on the coarsest grid and progresses to the finest
grid, then back to the coarsest grid. The second sketch (b) shows one cycle of W-
cycle of multigrid, which consists of two V-cycles connected by a single smoothing
operation on the finest grid.

Algorithm 2 outlines the V-cycle multigrid method. The input includes the initial
approximation vh to the solution u on the fine grid Ωh, the residual rh, and the
coarser grid approximation e2h. It uses a hierarchy of grids with progressively
finer discretizations to reduce the error in the solution. The method consists of
two main components: a smoother and a coarse grid correction. The smoother is
an iterative method used to locally smooth out errors in the solution, while the
coarse grid correction involves projecting the smoothed residual onto a coarser

34

4.3 Multigrid Methods

grid and solving for the correction there. The V-cycle multigrid method starts on
the finest grid, progresses through coarser grids, and returns to the finest grid. It
uses prolongation and restriction operators to transition between grid levels and
applies a few iterations of the smoother at each step [15].

Algorithm 2 Single V-Cycle Multigrid

1: Get the approximation vh to the solution u for the problem Au = f in the
fine grid Ωh with a few iterations of the smoother.

2: Compute the residual: rh = fh − Ahvh.
3: Restrict the residual to the coarser grid: r2h = Rrh.
4: Approximate the solution for the residual equation r2h = A2he2h in the coarse

grid using a few iterations of the smoother.
5: Prolongate this correction to the fine grid Ωh and correct the fine grid ap-

proximation: vh ← vh + Pe2h.
6: Apply a few iterations of the smoother to the corrected solution in the fine

grid.

In the context of Lattice quantum chromodynamics, the Schwarz Alternating
Procedure (SAP) method is often used as a smoother in multigrid algorithms.
However, the SAP method is not effective at removing error components belonging
to the ”near kernel,” which is the space spanned by the eigenvectors associated
with small eigenvalues of the matrix D [83].

To address this issue, an operator Dc is found that behaves similarly to D on
the near kernel in terms of both its action on the near kernel and its connection
structure and sparsity. The multigrid method is then applied recursively to Dc in
order to extend it from a two-grid method to a true multigrid method. This allows
the algorithm to effectively remove error components belonging to the near kernel
in a smaller subspace with nc variables, which should accurately approximate the
near kernel.

4.3.3 Multilevel AMG

In AMG method, one possibility to define the coarse grid operator Dc is as a
Petrov-Galerkin projection of the matrix D, which is applied to the system of
linear equations [15]. Let nc < n with considering a full rank linear restriction
and prolongation/interpolation operators R : Cn → Cnc and P : Cnc → Cn. The
operator Dc is given by Dc = RDP . These operators transfer information be-
tween grids, with R going from a finer grid to a coarser grid and P going from
a coarser grid to a finer grid. The coarse grid correction is then applied to the
current approximation, ψ, as follows: ψ ← ψ + PD−1

c Rr, where r = η −Dψ.

35

4 Linear Solvers

(a) V-cycle (b) W-cycle

Figure 4.2: Schematic of the various approaches to the multigrid method.

Multigrid methods use restriction and prolongation operators to transfer informa-
tion between grid levels. The restriction operator R transfers information from
the original space to a subspace, while the prolongation operator P brings in-
formation back to the original space. In a coarse grid correction, the current
residual r is restricted using R to the subspace, and an equation is solved to find
the coarse error ec. This error is then brought back to the original space using P
as a correction for the current iterate ψ. One step of coarse grid correction can
be written as:

• ψ ← (I−PD−1
c RD)ψ+PD−1

c Rη, where Dc is the coarse grid operator and
η is the current iterate.

• The corresponding error propagator is given by I − PD−1
c RD, which is a

projection onto the orthogonal complement of the range of RD along the
range of P .

The purpose of the coarse grid correction is to complement the action of the
smoother by reducing error components that the smoother is unable to effectively
remove. To do this, it is important that the range of P approximately contains
the near kernel and that the range of RD is approximately orthogonal to the
remaining complementary eigenvectors. This second condition is satisfied if the
range of R is approximately spanned by the left eigenvectors corresponding to the
small eigenvalues of D. This is because left and right eigenvectors are orthogonal.

Mathematically, this can be expressed as:

range(P) ≈ near kernel, range(R) ≈ left eigenvectors of D,

range(RD)⊥ ≈ complementary right eigenvectors of D
(4.19)

The basic structure of a two-level algorithm using multigrid methods involves

36

4.3 Multigrid Methods

alternating between the application of a smoother and a coarse grid correction.
Specifically, the algorithm begins with an initial approximation of the solution,
and then applies the smoother to precondition the error. The residual is then
computed and transferred to the coarser grid, where it is solved using the coarse
grid operator. The solution is then interpolated back to the fine grid and used to
correct the error. These steps are repeated until convergence is achieved.

The two-grid method, or two-level V-cycle, is often used as a preconditioner in
combination with a Krylov subspace method to solve systems of linear equations.
The preconditioner is applied before the Krylov subspace method to reduce the
error in the initial guess for the solution, which can improve the convergence rate
and efficiency of the overall solution process, see [7].

The multilevel version of Algorithm 2, also known as AMG, involves recursively
applying a two-level method to successively coarser grids until a sufficiently small
operator Dc is obtained that can be solved directly. The matrices R and P ,
which transfer information between grids, should be chosen to approximate the
left and right near kernel of the original operator D as closely as possible in order
to effectively reduce error components in the near kernel. The goal is not to fix
the size of the coarser grids, as is done in deflation methods, but rather to find
sparse R and P that approximate the near kernel well. To construct the multilevel
hierarchy, the following steps are taken [15]:

1. The dimension of the vector space at each level l is denoted by nl.

2. Interpolation operators Pl : Cnl+1 → Cnl , l = 1, ..., L− 1, are defined.

3. The restrictors Rl = PH
l are defined.

4. The coarse grid operators Dl : Cnl → Cnl are defined as the Petrov-Galerkin
operator Dl = Pl−1Dl−1P

H
l−1 , l = 2, ..., L.

In AMG, the V-cycles and W-cycles are not always the optimal choice in terms
of performance. As a result, the K-cycle method is used, which is a recursive
method that uses solutions from a Krylov subspace method. Specifically, at each
level l, the solution to the system at level l is approximated using a few iterations
of a Krylov method preconditioned by the K-cycle multilevel method from level
l + 1 to L.

To solve the lack of a priori information about the test vectors for the construction
of Pl, the AMG method introduces a setup phase which is iterative and adaptive.
This phase outputs Nv test vectors using nsetup iterations. The iteration begins

with a random vector v
(0)
i and proceeds as follows:

v
(k)
i = D−1v

(k−1)
i = D−kv

(0)
i , i = 1, ..., Nv, k = 1, ..., nsetup. (4.20)

37

4 Linear Solvers

The inversion of D−1 is performed using the SAP smoother and the available
K-Cycle on the kth iteration. This approach converges the vi to the test vectors
needed, i.e., to the eigenvectors with the smallest eigenvalues.

In the field of scientific computing, effective P and R operators have been devel-
oped for a variety of applications, leading to solvers that do not suffer from critical
slowing down. In the following sections we will describe a specific construction of
P and R that has been successful in the context of Lattice QCD.

In the following chapters we will be discussing several developments related to
stochatic trace estimation of the inverse of a matrix which requires solving linear
systems of equations involving the Dirac matrix. These developments are based on
the multigrid hierarchy which constructed with a bootstrap setup and aggregation
based prolongations as in Domain Decomposition Aggregation-based Adaptive
Algebraic Multigrid method (DDαAMG), [38, 40] which is a code package and
is used to efficiently solve linear systems of equations.

Moreover, DDαAMG will be utilized in Sec. 9.4 to develop our own algebraic
multigrid solver for solving linear systems of equations involving the Schwinger
operator, which is used in lattice QED.

4.3.4 Multigrid in Lattice QCD

In this section, we will discuss the use of adaptive multigrid method to solve lin-
ear systems involving the Dirac operator in Lattice QCD. This method has been
shown to be effective for various discretizations of the Dirac operator, including
the Wilson, Twisted Mass, Staggered, and others [34, 47, 105]. In particular,
adaptive (algebraic) multigrid methods have demonstrated superior performance
for the Wilson Dirac operator in Lattice QCD, as well as in other Lattice QCD
discretizations [7, 13, 36, 40]. These methods offer faster convergence and insen-
sitivity to conditioning compared to conventional Krylov subspace methods. We
will describe one construction of efficient multigrid methods specifically for use in
Lattice QCD in the following.

The DDαAMG method is a multigrid method that uses domain decomposition
and aggregation-based intergrid transfer operators to solve linear systems of equa-
tions involving the Dirac operator. It is designed to be adaptive and able to handle
a wide range of systems efficiently.A detailed description of DDαAMG , including
its implementation, numerical studies, and additional references, can be found in
the PhD thesis by M. Rottmann [83] and in parts in [37, 39].

The DDαAMG method starts by generating the eigenvector information for the
intergrid operators through a setup procedure. This procedure has two phases
and is mainly based on the inverse iteration algorithm. In the first phase, the

38

4.3 Multigrid Methods

algorithm applies several steps of the smoother to a set of ntv of random test
vectors W = w1, . . . , wntv . Afterwards, the set of vectors W is splitted into ag-
gregates Ai, which can be thought of as a block splitting of the Lattice. The
details of this process are described in the following section. Similar to a Lattice
block, each aggregate Ai consists of a set of Lattice points, with the exception
that variables on a single Lattice site can belong to different aggregates. This
leads to a block structure in the matrix W , as shown in Figure 4.3. In this figure,
each aggregate Ai is orthogonalized and a ”block diagonal” interpolation oper-
ator P = diag(W) is defined, with each diagonal block containing an aggregate Ai.

(w1|w2|...|wNw) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→ P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
·
·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A1

A2

...

ANb

(4.21)

Figure 4.3: The construction of the interpolation operator P .

The iterative phase of the Bootstrap AMG setup procedure uses the initial multi-
grid hierarchy to improve the eigenvectors. It does this by applying a full AMG
cycle, which includes both the smoother and a coarse grid correction, to each
candidate eigenvector. The multigrid hierarchy is then updated and the process
is repeated on the next coarser level, see [83].

The Bootstrap AMG setup is a procedure for generating the interpolation and
restriction operators P and R that will be used in the DDαAMG method to solve
linear systems of equations involving the Dirac operator in Lattice QCD. This
algorithm begins by generating a set of random test vectors W , which are then
processed using a smoothing operator. The resulting test vectors are divided into
aggregates A1, . . . , As and orthogonalized to form the block diagonal interpolation
operator P . The restriction operator R is defined as the transpose of P . The
algorithm also includes an iterative phase in which the initial multigrid hierarchy
is used to further improve the eigenvectors by performing an AMG cycle on each
eigenvector and updating the multigrid hierarchy. The smoothing method used
in this algorithm can be chosen between the SAP and GMRES methods, with

39

4 Linear Solvers

numerical studies suggesting that the two color SAP approach is generally the
most suitable choice for the Dirac operator.

40

Chapter 5
Stochastic Trace Estimation

In this chapter, we discuss the problem of estimating the trace of the inverse of
a large sparse matrix D ∈ Cn×n, denoted as tr(D−1) =

∑︁n
i D

−1
ii , occuring in a

variety of applications, such as uncertainty quantification [11], computing the log-
determinant [90, 103], statistical learning [1, 33, 46], nuclear norm estimation [17],
computing the Estrada index of a graph [24]. Further applications are discussed
in [100, 101].

Our research is concentrated on Lattice QCD. The trace of the inverse of the
discretized Dirac operator is used to determine the disconnected fermion loop
contribution to an observable see [92]. With the advancement of simulation tech-
niques, these contributions become more significant. Computing the exact trace
of the matrix D−1 is prohibitive because of its huge size n×n, and the only way to
access information on the entries of D−1 is through matrix-vector multiplications
D−1ψ where ψ denotes suitable random vectors of length n, i.e. via the solution
of linear systems with matrix D.

We first introduce the main idea of estimating the trace of the matrix in Sec. 5.1,
and then in sections 5.2 and 5.2.1 we describe the Hutchinson estimator, the
standard approach for estimating the trace, and its tail bounds, respectively.
We close this chapter by exploring, in detail, the convergence analysis for trace
estimation in Sec. 5.2.2.

5.1 Basic idea of trace estimation

The trace of the inverse can be computed directly as a simple task with cubic
cost O(n3) if the matrix is small enough and given explicitly i.e easy to access
the diagonal entities directly. Unlikely, computing the trace of a matrix M could

41

5 Stochastic Trace Estimation

be extremely difficult when access to M is restricted to matrix-vector products
(MVPs), such asM is a function in another matrixM = f(D), and the quadratic
form ψHf(D)ψ is feasible for an arbitrary vector. We consider here M = D−1.
Computing the trace of the inverse of the Dirac operator D−1 is required in many
complicated problems in Lattice QCD [97].

Definition 5.1.
Assume that D admits a spectral decomposition of D = UΛU−1 and the function
f(D) is defined as:

f(D) = Uf(Λ)U−1, f(Λ) =

⎡⎢⎣f(λ1) . . .

f(λn)

⎤⎥⎦ (5.1)

Then the trace of f(D) can be written as:

tr(f(D)) = tr(Uf(Λ)U−1) = tr(f(Λ)) =
n∑︂
i=1

(f(λi)) (5.2)

In case of f(D) = D−1 we have f(λi) = 1/λi.

Estimating the trace of a matrix M ∈ Cn×n can be done by computing quadratic
forms ψHMψ, through one of the following strategies [6, 29, 60]:

• Estimator for fixed orthogonal basis Q which means choosing uniformly
random vector ψ from the elements of an orthonormal matrix Q. The trace
is then estimated to be ψHMψ.

• Gaussian estimator by choosing the elements of ψ from a zero-mean and
unit-variance Gaussian distribution. The elements must be independent and
identically distributed (i.i.d). The trace is then estimated to be ψHMψ.

• Hutchinson’s estimator, the approach considered here, by choosing ran-
domly, independently and identically distributed (i.i.d) the elements of ψ
from a Rademacher distribution Pr{±1}. The trace is then estimated to be
ψHMψ.

In the case of M = D−1 one can compute D−1ψ using a solver for D and then
compute the inner product with ψ.

42

5.2 Hutchinson Estimator

5.2 Hutchinson Estimator

The standard Monte Carlo approach for estimating the trace of the inverse of
a matrix is due to Hutchinson [60]. This method is based on lemma 5.2, which
states that the expected value of the inner product of a symmetric matrixM with
a random vector ψ is equal to the trace of M :

Lemma 5.2.
Suppose a matrix M ∈ Cn×n and ψ =

[︂
ψ1 . . . ψn

]︂
∈ Cn a random vector with

E[ψHψ] = I. Then

E
[︂
ψHMψ

]︂
= tr(M). (5.3)

Proof. The proof is very simple as in [60]:

E
[︂
ψHMψ

]︂
=

n∑︂
i=1

n∑︂
j=1

MijE[ψiψj] =
n∑︂
i=1

Mii = tr(M) (5.4)

where we have used the property E[ψHi ψj] = δij. This establishes the desired
result (5.3).

Typically, one takes the components of ψ to be identically independently dis-
tributed (i.i.d.) complex numbers z with

E[z] = 0 and E[z2] = 1. (5.5)

A prominent example is the Rademacher vectors, where z takes the values {−1, 1}
with equal probability. Averaging ψHD−1ψ over s independent random vectors
ψ gives an unbiased estimator for the trace.

trHs (M) :=
1

s

s∑︂
i=1

ψ(i)HMψ(i), (5.6)

where s is the number of samples, and if the matrix M is real and symmetric the
variance can be given as [60]:

V
(︂
ψHMψ

)︂
= 2
(︂
∥M∥2F −

n∑︂
i=1

M2
ii

)︂
. (5.7)

The accuracy of the Hutchinson estimator is proportional to the square root of

the variance over the number of samples
√︂

V(ψHMψ)
s

. Therefore, in order to achieve

43

5 Stochastic Trace Estimation

a high level of accuracy, it is important to use a large number of samples and to
choose the random vectors in such a way that the variance is minimized.

Algorithm 3 outlines the steps for using the Hutchinson estimator to estimate
the trace of the inverse of a matrix D. The algorithm requires a tolerance level
ϵ for the relative accuracy of the estimate. It involves generating a sequence
of random vectors ψs that satisfy (5.10). For each vector, its inner product with
D−1ψs is computed using some method for solving linear systems (multigrid in the
algorithm). The estimates τs are then averaged to produce the overall estimate
τ , and the Variance of the samples is computed. If the variance divided by the
number of samples is less than the square of the tolerance level multiplied by
the estimate τ , the algorithm terminates and returns the estimate τ as the final
result. Otherwise, the process is repeated with the next random vector in the
sequence.

Algorithm 3 Hutchinson method for estimating tr(D−1)

Input: D ∈ Cn×n nonsingular, ϵ relative accuracy
Output: Approximation τ for tr(D−1)
1: for s = 1, 2, . . . do
2: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
3: τs ← ψ∗

sD
−1ψs ▷ use mg to solve lin. sys.

4: τ = 1
s

∑︁s
i=1 τi, V = 1

s−1

∑︁s
i=1 |τi − τ |2 ▷ sample mean and variance

5: if V/s ≤ (τϵ)2 then
6: stop
7: end if
8: end for

5.2.1 Tail bounds for the Hutchinson estimator

One of the main advantages of the Hutchinson estimator for trace estimation is
that it has well-known tail bounds in the case that D is symmetric and positive
semidefinite. These tail bounds provide probabilistic results on the deviation
of the estimator from the true trace and can be used to determine the number
of samples needed to achieve a desired accuracy. Theorem 5.3 from [6] gives a
generalization of these bounds to the allowed probability spaces see [29, 104].

Theorem 5.3.
Assume that the matrix D ∈ Rn×n is symmetric and positive semidefinite. Let
trHs (D) denote the Hutchinson estimator with s samples which are Rademacher
vectors. Let ϵ, δ ∈ (0, 1). Then, if

s ≥ 6

ϵ2
log

n

δ
(5.8)

44

5.2 Hutchinson Estimator

one has
P
(︁⃓⃓
trHs (D)− tr(D)

⃓⃓
≤ ε tr(D)

)︁
≥ 1− δ; (5.9)

In the case of randomized Gaussian vectors instead of Rademacher vectors, (5.9)
holds if

s >
20

ϵ2
log

2

δ

In [81] the number of samples s for randomized vectors is improved to be

s >
6

ϵ2
log

2

δ
and s >

8

ϵ2
∥D−1∥2
tr(D−1)

log
2

δ

for randomized Rademacher vectors and Gaussian vectors, respectively.

Theorem 5.3 is a quantitative illustration of the crucial drawback of Monte Carlo
trace estimation: The accuracy increases only with the square root of the number
of samples as O(1/

√
s) and the convergence rate of Monte Carlo becomes very

slow, which makes high accuracy estimates practically infeasible unless modifica-
tions are found which reduce the variance substantially.

In Chapter 6 we will discuss the most common methods for variance reduction of
the Hutchinson estimator based on the projection idea.

5.2.2 Accuracy of trace estimation

The convergence analysis of trace estimation refers to the study of the rate at
which the estimate of the trace of a matrix approaches the true trace as the num-
ber of samples used in the estimate increases. This is an important consideration
in the use of Monte Carlo methods for trace estimation, as the accuracy of the
estimate depends on the number of samples used.

Theorem 5.4 is a result about the expected value and variance of the sample
mean τ of random variables ψHDψ [41]. It states that the expectation of the
trace estimator τ is equal to the true trace of the matrix D. The variance of τ
is calculated by taking the expected value of the squared difference between τ
and the true trace of D. It is shown that this variance is equal to the sum of the
product of the elements in the off-diagonal entries of D with the expected value
of the product of four independent components of the random vector ψ.

Theorem 5.4.
Let P : Ω→ [0, 1] be a probability measure on a sample space Ω and assume that

45

5 Stochastic Trace Estimation

the components ψi of the vector ψ ∈ Cn are random variables depending on ω ∈ Ω
and obey an isotropic distribution, i.e.

E[|ψi|2] = 1, E[ψiψj] = 0 for i, j = 1, . . . , n, i ̸= j. (5.10)

Typically, one takes the components to be identically independent distribution
(i.i.d.) complex numbers z with E[z] = 0 and E[|z2|] = 1.

Assume the sample means τ = ψHDψ, then

E[τ] = tr(D) and V[τ] =
n∑︂

i,j,k,p=1

i ̸=j,k ̸=p

dijdkpE
[︁
ψiψjψkψp]. (5.11)

In particular, if the probability space is such that each component ψi is independent
from ψj for i ̸= j, then

V[τ] =
n∑︂
i,j

i ̸=j

dijdij +
n∑︂
i,j

i ̸=j

dijdjiE[ψ2
i]E[ψ

2

j]. (5.12)

The fact that E[τ] = tr(D) was proved in lemma 5.2.

For the variance we have

V[τ] = E
[︂
(τ − tr(D))(τ − tr(D))

]︂
= E

[︁(︁ n∑︂
i,j=1

i ̸=j

ψidijψj
)︁(︁ n∑︂

k,p=1

k ̸=p

ψkdkpψp
)︁]︁

= E
[︁ n∑︂

i,j,k,p=1

i ̸=j,k ̸=p

dijdkpψiψjψkψp
]︁

=
n∑︂

i,j,k,p=1

i ̸=j,k ̸=p

dijdkpE[ψiψjψkψp]. (5.13)

Since the components ψi are assumed to be independent, we have

E[ψiψjψkψp] = 0 (5.14)

except when i = j, k = p (which does not occur in (5.13)) or i = k, j = p or

46

5.2 Hutchinson Estimator

i = p, j = k. This gives

n∑︂
i,j,k,p=1

i ̸=j,k ̸=p

dijdkpE[ψiψjψkψp] =
n∑︂
i,j

i ̸=j

dijdijE[ψiψjψiψj]+
n∑︂
i,j

i ̸=j

dijdjiE[ψiψjψjψi], (5.15)

and in the first sum

E[ψiψjψiψi] = E[ψiψi]E[ψjψj] = 1, (5.16)

by assumption, whereas in the second sum we have

E[ψiψjψjψi] = E[ψ2
i]E[ψ

2

j]. (5.17)

Note that as a definition for the variance of a complex random variable y we used
E[(y − E(y)(y−E[y])] rather than E[(y−E[y])2] to keep it real and non-negative.

Standard choices for the probability spaces are to take x with identically and
independently distributed (i.i.d.) components as

ψi ∈ {−1, 1} with equal probability 1
2
, (5.18)

ψi ∈ {−1, 1,−i, i} with equal probability 1
4
, (5.19)

ψi = exp(iθ) with θ uniformly distributed in [0, 2π], (5.20)

ψi is N(0, 1) normally distributed. (5.21)

For the first choice of probability space in (5.18), we have E[ψi] = 0 and E[ψiψi] =
1, so the first condition in (5.10) is satisfied. In addition, E[ψiψj] = 0 for i ̸= j,
so the second condition in (5.10) is also satisfied. This means that the probability
space defined in (5.18) is valid for use in Theorem 5.4.

For the second choice of probability space in (5.19), we have E[ψi] = 0 and
E[ψiψi] = 1, so the first condition in (5.10) is satisfied. In addition, E[ψiψj] = 0
for i ̸= j, so the second condition in (5.10) is also satisfied. This means that the
probability space defined in (5.19) is valid for use in Theorem 5.4.

For the third choice of probability space in (5.20), we have E[ψi] = 0 and E[ψiψi] =
1, so the first condition in (5.10) is satisfied. In addition, E[ψiψj] = 0 for i ̸= j,
so the second condition in (5.10) is also satisfied. This means that the probability
space defined in (5.20) is valid for use in Theorem 5.4.

For the fourth choice of probability space in (5.21), we have E[ψi] = 0 and
E[ψiψi] = 1, so the first condition in (5.10) is satisfied. However, E[ψiψj] = 0 for
i ̸= j does not hold.Therefore, the probability space defined in (5.21) is not valid
for use in Theorem 5.4.

47

5 Stochastic Trace Estimation

The variance of the random variable ψHDψ for the four different choices of prob-
ability spaces for the i.i.d. components ψi is given in Corollary 5.5.

Corollary 5.5.
If the components ψi are i.i.d. with distribution (5.18), then

V[ψHDψ] =
1

2
∥offdiag(D +DH)∥2F , (5.22)

where ∥ · ∥F denotes the Frobenius norm and offdiag the offdiagonal part of a
matrix. If the components are i.i.d. with distribution (5.19) or (5.20), then the
variance is

V[ψHDψ] = ∥offdiag(D)∥2F . (5.23)

In the case of the probability distribution (5.21) the variance is

V[ψHDψ] =
1

2
∥D +DT∥2F . (5.24)

Proof. For the distributions (5.18) and (5.21), the components ψi have only real
values and E[ψ2

i] = 1. Therefore

n∑︂
i,j

i ̸=j

dijdij +
n∑︂
i,j

i ̸=j

dijdjiE[ψ2
i]E[ψ

2

j] =
n∑︂
i,j

i ̸=j

dijdij +
n∑︂
i,j

i ̸=j

dijdji

=
1

2

n∑︂
i,j

i ̸=j

(dij + dji)(dij + dji)

=
1

2
∥offdiag(D +DH)∥2F . (5.25)

For the distributions (5.19) and (5.20) we have E[ψ2
i] = 0, and thus

n∑︂
i,j

i ̸=j

dijdij +
n∑︂
i,j

i ̸=j

dijdjiE[ψ2
i]E[ψ

2

j] =
n∑︂
i,j

i ̸=j

dijdij = ∥offdiag(D)∥2F . (5.26)

Remark 5.6.
The variance of the estimator ψHDψ can be used to determine the required number
of samples s in order to achieve a certain accuracy. For example, if we want the
relative error of the estimator to be less than ϵ, we can set

V[ψHDψ]
(E[ψHDψ])2

≤ ϵ2

4

48

5.2 Hutchinson Estimator

and solve for s. This gives us a bound on the number of samples needed to achieve
the desired accuracy.

We can obtain the estimation of tr(D) by averaging over N samples. In order to
evaluate the probability that the computed mean lies within a range of σ, 2σ or 3σ
interval, we calculate the sample root mean square deviation alongside the av-
erages and rely on the law of large numbers. As an asymptotic extension of
Hutchinson’s method, several results have been proposed, which provide tail or
concentration bounds; see [6, 21, 81], e.g. Here we provide a summary of the
results outlined in [70]. We utilize the sample root mean square deviation to
evaluate the accuracy of these results.

The following theorem provides a probabilistic bound on the accuracy of approx-
imating the trace of a matrix using the average of (ψ(i))HDψ(i) over a number of
samples s. It is useful for cases where the exact trace of the matrix is difficult or
impossible to compute directly.

Theorem 5.7.
Let the distribution for the i.i.d. components of the random vectors ψ(i) be sub-
Gaussian, and let ϵ, δ ∈ (0, 1). Then for s = O(log(1/δ)/ϵ2) we have that the
probability for ⃓⃓⃓⃓

⃓1s
s∑︂
i=1

(ψ(i))HDψ(i) − tr(D)

⃓⃓⃓⃓
⃓ ≤ ϵ∥D∥F (5.27)

is ≥ 1− δ.

Note that if D is symmetric positive semidefinite with λi denoting its (non-
negative) eigenvalues, then

∥D∥F =

(︄
n∑︂
i=1

λ2i

)︄1/2

≤
n∑︂
i=1

λi = tr(D), (5.28)

implying that (5.27) yields a (probabilistic) relative error bound for the trace.
Also note that the real distributions (5.18) and (5.21) are sub-Gaussian; see [70].

One can observe that Theorem 5.3 deals with the Hutchinson estimator, which
uses Rademacher or Gaussian random vectors to approximate the trace of a pos-
itive semidefinite matrix. On the other hand, Theorem 5.7 concerns the sample
mean estimator, which uses sub-Gaussian random vectors to approximate the
trace of a matrix. Both theorems provide upper bounds on the error of the esti-
mators with a certain probability guarantee. However, they differ in the specific
types of random vectors used and the assumptions made on the matrix.

49

Chapter 6
Variance Reduction Methods

The variance of the Hutchinson estimator for tr(D−1) is given by

1
2
∥offdiag(D−1 +D−H)∥2F

for Rademacher vectors, and it is ∥offdiag(D−1)∥2F for Z4-vectors; see [41], and the
heuristics underlying variance reduction techniques typically rely on just reducing
∥D−1∥2F . Reducing the variance can be achieved by using variance reduction
techniques to reduce the variance of the Hutchinson estimator and improve the
estimate’s accuracy for the trace of D−1.

The most common methods for reducing the variance of the plain Hutchinson
estimator, in relation to the thesis, are covered in detail in this chapter. We
provide an overview of the underlying theory of the deflation approach, which we
use as a standard of comparison in our numerical experiments in Sec. 6.1.1.

In sections 6.1.2 and 6.1.3, we explore the two main types of deflation for reducing
the variance. Then we discuss in Sec. 6.2, the Hutch++ method [70] as a new
estimator since we aim to merge it with our MG-MLMC approach to develop
the most efficient algorithm MG-MLMC++ in Sec. 7.3.3. The optimal way to
obtain the deflated subspace can be found using the recently adaptive version of
Hutch++ [76] which we finally discuss in Sec. 6.3.

6.1 Deflation Approach

The deflation technique is a method for improving the convergence of iterative
algorithms by removing certain parts of an operator that make it ”ill-conditioned”.
This technique was first proposed by Nicolaides in 1987 [74] in context of CG

51

6 Variance Reduction Methods

method and has since been widely used in a variety of methods. Deflation can be
employed in two different manners:

1. To solve linear systems of equations of the form Dψ = b, where D is a
matrix. The convergence of these equations is strongly influenced by the
distribution of eigenvalues of D. If D has eigenvalues that are close to the
origin of the complex plane, the convergence of the linear equations can
be slow. Removing the smallest eigenvalues of D can reduce the condi-
tion number of the matrix, thus speeding up the convergence. The Arnoldi
method is commonly used to construct an orthogonal basis of the Krylov
subspace for approximating the eigenpairs of D, especially when D is a
large sparse matrix. However, the Restarted Arnoldi (RA) method can
lead to slow convergence for more complicated problems, due to small sub-
spaces. Deflated strategies of RA can overcome this issue by removing a few
small eigenvalues [72]. Deflation techniques have been observed to improve
the convergence rates of iterative methods when adding a few approximate
eigenvectors to the Krylov subspaces [20, 25, 30, 64, 73, 86]. For more
details, see [89].

2. As a variance reduction method for estimating traces stochastically. De-
flation techniques have been used to handle exceptional eigenvalues. The
matrix is decomposed into a sum of two parts using a projection on a sub-
space of small dimension. One part has large rank but reduced the Frobenius
norm, thus reducing the effort for stochastic estimation. The other part has
a small rank, so that its trace can be computed directly. [42, 43, 45, 80].

However, in large systems such as Lattice QCD simulations, the cost of eigenvector
storage is one of the main drawbacks of deflation.

6.1.1 Main idea of the deflation approach

Consider an n× n algebraic linear system

Dψ = b (6.1)

where D ∈ Cn×n is a general matrix. Assume two projectors are given as

R = I −DZ(Y HDZ)−1Y H , (6.2)

Q = I − Z(Y HDZ)Y HD (6.3)

52

6.1 Deflation Approach

where the columns of the matrices Z and Y span suitable subspaces [31]. The
projectors Q and R have the sizes n× n and satisfy the following properties:

R2 = R, Q2 = Q, RD = DQ,

RDZ = Y HR = 0, Y HDQ = QZ = 0 (6.4)

These properties are often referred to as the projection properties of Q and R.
They ensure that Q and R act as projections onto certain subspaces, as indicated
by the zero entries in the last two equations. The first two equations ensure that Q
and R are idempotent, meaning that applying them twice is the same as applying
them once. The deflation approach allows us to decompose the original linear
system (6.1) into two smaller linear systems. The key idea is to use projectors to
split the linear system into subproblems that can be solved separately, one system
is obtained by applying the projector Q to both sides of the original system, while
the other system is obtained by applying the projector I −Q to both sides of the
original system.

More specifically, the first smaller linear system is given as

(DQ)ψ = (DQ)b (6.5)

This system can be derived as follows:

Dψ = b

DQψ +D(I −Q)ψ = b

DQψ = b−D(I −Q)ψ
(DQ)ψ = (D(I −Q))b (6.6)

The last equation shows that the system (6.5) is equivalent to the original sys-
tem (6.1). In other words, if we can solve the system (6.5), we can obtain the
solution to the original system. The second smaller linear system is given as

(D(I −Q))ψ = (D(I −Q))b. (6.7)

This system can be derived in a similar way:

Dψ = b

DQψ +D(I −Q)ψ = b

D(I −Q)ψ = b−DQψ
(D(I −Q))ψ = (DQ)⊥b (6.8)

where (DQ)⊥ denotes the orthogonal complement of the range of DQ. The last
equation shows that the system (D(I−Q))ψ = (D(I−Q))b is equivalent to (6.1).

53

6 Variance Reduction Methods

In other words, if we can solve the system (D(I − Q))ψ = (D(I − Q))b, we can
obtain the solution to the original system. Thus, by solving the two smaller linear
systems

(DQ)ψ = (DQ)b and (D(I −Q))ψ = (D(I −Q))b, (6.9)

we can obtain the solution to the original system (6.1). Now, let’s consider the
second linear system (D(I−Q))ψ = (D(I−Q))b. Using the projection properties
of Q and R, we can rewrite this system as

Dψ −DQψ = b−DQb. (6.10)

Substituting Qψ from the first linear system, we have

Dψ −DRψ = b−DQb
Dψ −D(DZ(Y HDZ)−1Y H)ψ = b−D(DZ(Y HDZ)−1Y H)b

(I −DZ(Y HDZ)−1Y H)ψ = Z(Y HDZ)−1Y Hb. (6.11)

Thus, we can compute the first term (I −Q)ψ by solving the linear system

(I −DZ(Y HDZ)−1Y H)ψ = Z(Y HDZ)−1Y Hb. (6.12)

Once we have computed both terms (I−Q)ψ and Qψ, we can obtain the solution
ψ to the original linear system Dψ = b as ψ = (I −Q)ψ +Qψ.

so, if we take Π = R from (6.2) we have D−1(I −Π)b = Z(Y HDZ)−1Y Hb, which
requires small subspace with Y HDZ to be solved and D−1Πb is solved iteratively.

This approach can be especially useful when the original matrix has certain struc-
tures or properties that can be exploited to make the solution of the smaller
systems more efficient.

Theorem 6.1.
Suppose a proper projector Π ∈ Cn×k applying on a matrix D ∈ Cn×n, then the
inverse of the matrix D−1 can be decomposed into two parts as

D−1 = (I − Π)D−1 +ΠD−1 (6.13)

Proof. We start with the definition of a projection operator: a matrix Π is a
projector if it is idempotent, meaning that Π2 = Π. Note that a projector Π is
proper if it is not the identity matrix.

Next, we want to show that D−1 can be decomposed into two parts as in equation
(6.13), where Π is a proper projector acting on D.

54

6.1 Deflation Approach

Using the properties of a projection operator, we have:

Π2 = Π

(I − Π)2 = I − 2Π + Π2 = I − Π (6.14)

Multiplying the second equation by Π, we get:

Π(I − Π) = 0 (6.15)

Now we can apply this to D−1:

Π(I − Π)D−1 = 0

⇒ ΠD−1 + (I − Π)D−1 = D−1 (6.16)

This shows that D−1 can be decomposed into two parts: (I −Π)D−1 and ΠD−1.

To see why these two parts add up to D−1, we can compute their sum:

((I − Π)D−1 +ΠD−1)D = (I − Π)DD−1 +ΠD−1D

= D−1(D − ΠD) + Π

= D−1D − ΠD−1D +Π

= I (6.17)

Therefore, we have shown that D−1 can be decomposed into (I − Π)D−1 and
ΠD−1, as in equation (6.13), for any proper projector Π acting on D.

The success of deflation approaches depends on how many small eigenvectors D
has i.e thus large eigenmodes of D−1, and it will become increasingly inefficient
if the number of large eigenvectors increase with the dimension of D−1 (“volume
dependence”). We first present the exact strategy of deflation based on orthog-
onal projection, the projection Π is built from exact eigenvectors belonging to
small eigenvalues [45], wheres in inexact approaches we take possibly quite in-
accurate approximations to such eigenvectors [80]. A different approach is thus
to construct an appropriate Π as an operator with a relatively high dimension

55

6 Variance Reduction Methods

that (approximately) represents a given percentage of the eigenvectors, see first
attempts in [10].

6.1.2 Exact deflation method

The convergence rate of the solution of linear systems can be significantly slowed
down if the eigenvalues of the matrix are close to the origin of the complex plane.
So exact deflation, widely used in Lattice QCD see [2, 3, 23], is employed to
overcome this problem as follows:

Theorem 6.2.
Assume that the random vectors are drawn by using Z2 noise as in the Hutchinson
approach, then the variance of the estimator is given by the square of the Frobenius
norm of the off-diagonal part.

V(ψHDψ) =
1

2
||offdiag(D +DT)||2F (6.18)

If the singular value decomposition of the non-singular matrix D is given as

D = V ΣWH with V,Σ,W ∈ Cn×n, V HV = WHW = I, (6.19)

V = [v1| · · · |vn], W = [w1| . . . |wn],
Σ = diag(σ1, . . . , σn), 0 < σ1 ≤ · · · ≤ σn, (6.20)

where ui left singular vectors, wi right singular vectors and positive singular values
σi which we ordered by increasing value for convenience here. Then the relation
between the Frobenius norm of D ∈ Cn×n and its singular values as:

∥offdiag(D)∥2F =
n∑︂
i=1

σ2
i −

n∑︂
i=1

|dii|2, (6.21)

Proof. The proof of Theorem 6.2 relies on the fact that the Frobenius norm of a
matrix can be expressed in terms of its singular values. Recall that the Frobenius
norm of a matrix A ∈ Cn×n is defined as ∥A∥F =

√︁
tr(AHA). We can express the

Frobenius norm of the off-diagonal part of D as follows:

∥offdiag(D)∥2F = ∥D∥2F −
n∑︂
i=1

∥dii∥2, (6.22)

56

6.1 Deflation Approach

Next, we can express ∥D∥2F in terms of the singular values of D using the singular
value decomposition of D given in eq. (6.19).

|D|2F = tr(DHD)

= tr(WΣ2WH)

=
n∑︂
i=1

σ2
i . (6.23)

Substituting this expression into the equation for ∥offdiag(D)∥2F gives us the de-
sired result.

∥offdiag(D)∥2F =
n∑︂
i=1

σ2
i −

n∑︂
i=1

|dii|2

=
n∑︂
i=1

σ2
i −

n∑︂
i=1

|aii|2. (6.24)

This completes the proof of Theorem 6.2.

The exact deflation is given as D−1vi = λivi where i = 1, . . . , s. eigenpairs, and
the orthogonal projector

Π = Vs(W
H
s DVs)

−1WH
s D = VsV

H
s , (6.25)

whereWs = [w1| · · · |vs] and Vs = [v1| · · · |vs] with wi, vi the left and right singular
vectors for the singular values σi of D. Then the trace of D−1 can be split as

tr(D−1) = tr((I − Π)D−1) + tr(ΠD−1). (6.26)

The first term is computed stochastically as in Alg. 4, whereas the second term
is computed directly as

tr(ΠD−1) = tr(V H
s D

−1Vs) =
s∑︂
i=1

1

σi
uHi vi. , V H

s D
−1Vs ∈ Cs×s (6.27)

If instead Ws and Vs contain the left and right eigenvectors belonging to the
smallest eigenvalues λi of D, then the oblique projector

Π = Vs(W
H
s DVs)

−1WH
s D = VsW

H
s (6.28)

57

6 Variance Reduction Methods

achieves the trace

tr(ΠD−1) = tr(WH
s D

−1Vs) =
s∑︂
i=1

1

λi
. (6.29)

If D is Hermitian and positive definite, the two deflation approaches coincide,
since then left and right eigenvectors as well as left and right singular vectors all
coincide, and the singular values are the eigenvalues.

The exact deflation method using eigenpairs to estimate the trace of the inverse
of a matrix D can be formulated as in Alg. 4. It does so by computing the ”low
rank” part of the trace, denoted as τ lr, using the exact eigenpairs of the matrix
D. The algorithm also computes a stochastic estimate of the trace, denoted as
τ , by generating random vectors and projecting them onto the null space of D.
The algorithm stops when the variance of the estimate, denoted as V, is less than
a certain threshold, which is a function of the relative accuracy parameter ϵ and
the sum of the low rank and stochastic estimates of the trace.

Algorithm 4 Exact Deflation

Input: D ∈ Cn×n, nonsingular, ϵ relative accuracy, k number of deflation vectors
Output: Approximation τ lr + τ for tr(D−1)
1: compute eigenpairs Dqi = λiqi, i = 1, . . . , k
2: Π← QkQ

H
k , Qk = [q1| · · · |qd] ▷ orthogonal projector

3: τ lr ←
∑︁k

i=1
1
λi

▷ low rank part
4: for s = 1, 2, . . . do ▷ stochastic part
5: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
6: zs ← ψs −Q(QHψs) ▷ projected vector
7: τs ← ψHs D

−1zs ▷ use mg to solve linear system
8: τ ← 1

s

∑︁s
i=1 τi, V←

1
s−1

∑︁s
i=1 |τi − τ |2 ▷ sample mean and variance

9: ρ = (τ + τ lr)ϵ
10: if V/s ≤ ρ2 then
11: stop
12: end if
13: end for

6.1.3 Inexact Deflation

The exact deflation method is still quite expensive due to two factors: first,
one must compute the singular pairs or eigenpairs in advance; second, we must
increase the number of s as the size of the matrix increases in order to maintain
the same variance reduction. Inexact deflation can be used as an alternative to

58

6.1 Deflation Approach

exact deflation, where one can use a large value s to reduce the variance roughly.
In [80] they tried to reduce the computational cost of exact deflation and speed
up the convergence rate by using an inexact eigensolver on the Hermitian Dirac-
Wilson operator to estimate the space of the deflation. In the inexact deflation
approach, we replace the projector Π with a more general form.

Definition 6.3.
Given Vs and Ws a number of approximate left and right singular vectors of the
largest singular values of D−1, we can form the general projector

Π = Vs(W
H
s DVs)

−1WH
s D, Vs,Ws ∈ Cn×s (6.30)

and split the trace computation into two parts as in (6.13).

Let’s consider the projection operator Π defined in Definition 6.3. Since Vs and
Ws are approximate singular vectors of D−1, we can write them as a perturbation
of the true singular vectors V and W as

Vs = V (I + δV), (6.31)

Ws = W (I + δW), (6.32)

where δV and δW are matrices representing the perturbation.

Substituting these expressions into the definition of the projection operator, we
have

Π =Vs(W
H
s DVs)

−1WH
s D

=Vs(I + δVs)(W
H
s (I + δWs)DVs(I + δVs))

−1WH
s (I + δWs)D

=Vs(I + δVs)(W
H
s DVsW

H
s D +WH

s DδVsW
H
s D

+WH
s δWsDVs +WH

s δWsDδVs)
−1WH

s (I + δWs)D

=Vs(I + δVs)(W
H
s DVsW

H
s D)−1WH

s (I + δWs)D

+ Vs(I + δVs)(W
H
s DVsW

H
s D)−1WH

s DδVs(W
HDVsW

H
s D)−1WH

s (I + δWs)D

+ · · · (6.33)

where we have used the identity

(A+B)−1 = A−1 − A−1BA−1 + A−1BA−1BA−1 − · · · . (6.34)

We can then rearrange the terms in the above expression to obtain

Π = Vs(I + δVs)(W
H
s DVsW

H
s D)−1WH

s (I + δWs)D + higher order terms. (6.35)

59

6 Variance Reduction Methods

Therefore, we can see that the projection operator Π defined in Definition 6.3 is
a perturbation of the projection operator defined in Theorem 6.1.

Now we have

tr(D−1) = tr(D−1 − Vs(WH
s DVs)

−1WH
s⏞ ⏟⏟ ⏞

(I−Π)D−1

) + tr(Vs(W
H
s DVs)

−1WH
s)⏞ ⏟⏟ ⏞

ΠD−1

) (6.36)

Now, tr(ΠD−1) is not directly available from approximate singular triplets or
eigenvalues and there is a difference between the projector VsV

H
s and the projector

Vs(W
H
s DVs)

−1WH
s D as follows :

Using the projector VsV
H
s requires s system solves with the large matrix D for

tr(ΠD−1) = tr(V H
s D

−1Vs), V H
s D

−1Vs ∈ Cs×s, (6.37)

whereas in the case of building the projector

Π = Vs(W
H
s DVs)

−1WH
s D (6.38)

it requires the inversion of a small s× s matrix,

tr(ΠD−1) = tr(Vs(W
H
s DVs)

−1WH
s). (6.39)

If we take larger values for s, we can estimate tr(ΠD−1) with the projector (6.38)
stochastically as in Alg. 5. The inexact deflation approach then becomes a two-
level Monte-Carlo method. The decomposition in (6.36) is also used in the Hutch
++ method [70], then the columns of Vs,Ws are taken to be stochastic vectors
see section 6.2.

Alg. 5, ”Inexact Deflation”, is similar to Alg. 4 but instead of using the exact
eigenpairs of the matrix D, it uses a projection based on the singular values of
the matrix.

6.2 Hutch++

Hutch++ is a method that can be used to estimate the trace of square matri-
ces implicitly through matrix-vector products by merging two phases, the initial
phase involves randomized low-rank approximation followed by stochastic trace
estimation [70]. The known theory for Hutch++ requires the given matrix D as
a symmetric positive semidefinite, but the method can be applied to any given

60

6.2 Hutch++

Algorithm 5 Inexact Deflation

Input: D ∈ Cn×n, nonsingular, ϵ relative accuracy, s number of deflation vectors
Output: Approximation τ lr + τ for tr(D−1)
1: Π← Vs(W

H
s DVs)

−1WH
s D, Vs,Ws ∈ Cn×k ▷ Proj. vec., based on sing.

values
2: τ lr ← tr(V H

s (WH
s DVs)

−1WH
s) ▷ low rank Vs = [v1| · · · |vs],Ws = [w1| · · · |ws],

3: for s = 1, 2, . . . do ▷ stochastic part
4: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
5: zs ← D−1ψs − Πψs ▷ projected vector
6: τs ← ψHs zs ▷ use mg to solve linear system
7: τ ← 1

s

∑︁s
i=1 τi, V←

1
s−1

∑︁s
i=1 |τi − τ |2 ▷ sample mean and variance

8: ρ = (τ + τ lr)ϵ
9: if V/s ≤ ρ2 then

10: stop
11: end if
12: end for

matrix. Additionally, Hutch++, to approximate the trace within a relative error
ϵ, requires O(ϵ−1) MVPs with a high probability, while using the plain Hutchinson
estimator, requires O(ϵ−2) MVPs. Hutch++ assigns a predetermined, number of
MVPs and distributes them to each of the two phases.

The main idea of Hutch++ is to project off the top eigenvalues by using a random-
ized projection and approximate the trace of the remainder which is due to all the
errors. The theory of Hutch++ can be achieved by introducing the lemma [70]:

Lemma 6.4.
Assume trHs (D) be the Hutchinson estimator for the matrix D ∈ Cn×n, with prob-
ability δ ∈ (0, 1/2]. If s ≥ c log(1/δ), for fixed constants c, C, then with probability
1− δ

Pr(| trHs (D)− tr(D)|) ≤ C

√︃
log(1/δ)

s
∥D∥F . (6.40)

Thus, if s = O(log(1/δ)/ε2) then, with probability 1 − δ, | trHs (D) − tr(D)| ≤
ε∥D∥F .

In case of D is PSD i.e D ⪰ 0 then estimation trace given as

tr(D) = ∥D∥F = ∥λ∥2 ≤ ∥λ∥1, with condition ∥λ∥2 ≈ ∥λ∥1

Based on the low-rank approach, another lemma was established as follows:

61

6 Variance Reduction Methods

Lemma 6.5.
Suppose a PSD matrix D and Dd be the best rank approximation, then

∥D −Dd∥F ≤
1√
d
tr(D). (6.41)

Proof. Since λd+1 ≤ 1
d

∑︁d
i=1 λi ≤

1
d
tr(D), the proof proceeds as follows:

First, we note that for a PSD matrix, the singular values are equal to the eigenval-
ues, and that the best rank-d approximation to D can be obtained by truncating
the singular value decomposition of D after the d largest singular values:

D = UΣUT ≈ UdΣdU
T
d = Dd, (6.42)

where U is an orthogonal matrix, Σ is a diagonal matrix of singular values, and
Ud and Σd contain only the first d columns/rows of U and Σ, respectively. Then,
we can write the squared Frobenius norm of the difference between D and Dd as
follows:

∥D −Dd∥2F = ∥U(Σ− Σd)V
T∥2F

=
n∑︂
i=1

n∑︂
j=1

∥uij(σi − σd,i)vij∥2

=
n∑︂

i=d+1

(σi − σd,i)2

≤ (σd+1)
2

n∑︂
i=d+1

1

= (σd+1)
2(n− d)

≤ 1

d2

(︄
n∑︂
i=1

σi

)︄2

=
1

d2
tr(D)2, (6.43)

where the second line follows from the SVD of D and Dd, the third line follows
from squaring and summing over the matrix entries, the fourth line uses the fact
that σi ≥ σd+1 for i ≥ d + 1 and |uij|2 = |vij|2 = 1, the fifth line uses the fact
that there are n−d terms being summed, and the last line follows from using the
definition of the trace.

62

6.2 Hutch++

A possible algorithm could be developed based on this result with O(1/ε) com-
plexity. It works as follows: we precompute yi := D−1si for d i.i.d. random vectors
si. Then the range of the vectors yi contains, with high probability, good approx-
imations to eigenvectors belonging to large eigenvalues of D−1. Therefore, with
V ∈ Cn×d denoting the matrix whose columns form an orthonormal basis of the
space spanned by the yi and Q = V V H the orthogonal projector onto the range
of V , we can decompose the inverse of the matrix as

D−1 = D−1Q+D−1(I −Q) (6.44)

The trace of the first term D−1Q can be computed directly using the cyclic prop-
erty of the trace as

tr(D−1Q) = tr(V HD−1V) =
d∑︂
i=1

vHi D
−1vi, where V = [v1| · · · |vd]. (6.45)

The trace of the second term can be estimated stochastically as in Alg. 6. Due
to the fact that (I −Q) approximately deflates the largest eigenpairs of D−1, we
anticipate this term to have a smaller variance. The singular value distribution of
D−1 significantly determine how successfully the two phases of Hutch++ work.
It would be sufficient to implement the estimation tr(D−1) ≈ tr(D−1

1) if D−1

implies an accurate low-rank approximation and one can skip the second part of
eq. (6.45). Whereas reducing the variance through Hutch++ is insignificant if all
singular values of D−1 are approximately equal and all efforts will be spent on
the second phase.

So by combining Lemmas 6.4 and 6.5, the error of the trace estimator trhpps (D)
becomes:

Pr(| trhpps (D)− tr(D)|) ≤ C

√︃
log(1/δ)

s
∥D∥F (6.46)

Therefore, for fixed δ, s = O(1/ε) would be enough for an (ε, δ)-approximator to
tr(D) .

Alg. 6 shows how Hutch++ is used for estimating the trace of the inverse of a
nonsingular matrix D ∈ Cn×n. It starts by generating k random vectors and
solving k linear systems to compute the matrix Y . Then, it computes the QR
factorization of Y and uses the resulting orthogonal matrix Q to compute the
low-rank part of the trace estimate. In the stochastic part of the algorithm, it
generates additional random vectors, projects them onto the orthogonal comple-
ment of the space spanned by the columns of Q, and solves linear systems to
compute the trace estimate. The algorithm terminates when the variance of the
trace estimate divided by the number of iterations falls below a certain threshold.

63

6 Variance Reduction Methods

Algorithm 6 Hutch++: for estimating tr(D−1)

Input: D ∈ Cn×n, nonsingular, ϵ relative accuracy, k number of deflation vectors
Output: Approximation τ lr + τ for tr(D−1)
1: generate k i.i.d. random vectors, ▷ with distribution satisfying (5.10)
2: collect them as columns in S ∈ Cn×k

3: Y ← D−1S, ▷ Y ∈ Cn×k, use mg for k lin. systems
4: Compute QR-factoriz. Y = QR ▷ Q = [q1| · · · |qk] ∈ Cn×k has orthon. cols
5: τ lr ←

∑︁k
i=1 q

H
i D

−1qi ▷ low rank part, use mg to solve lin. systems
6: for s = 1, 2, . . . do ▷ stochastic part
7: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
8: zs ← ψs −Q(QHψs) ▷ projected vector
9: τs ← ψHs D

−1zs ▷ solve linear system
10: τ ← 1

s

∑︁s
i=1 τi, V←

1
s−1

∑︁s
i=1 |τi − τ |2 ▷ sample mean and variance

11: ρ = (τ + τ lr)ϵ
12: if V/s ≤ ρ2 then
13: stop
14: end if
15: end for

For symmetric positive definite matrix D, the number of matvecs needed to reach
relative accuracy ϵ goes from O(1

ϵ2
) to O(1

ϵ
) if k is chosen approximately [70].

Alg.. 6 requires 2s
3

MVPs for the first phase, with D−1 : D−1S in line 3 of the
Algorithm and D−1Q for computing the trace of the low-rank part tr(QHD−1Q)
in line 5. It uses the rest of s

3
MVPS for the second phase, which is concerned

with estimating

tr(D−1 −QQHD−1) = tr((I −QQH)D−1(I −QQH)) (6.47)

stochastically, with D−1 to compute D−1((I−QQH)ψ) in line 9 of the Algorithm.

6.3 A-Hutch++

In the Hutch++ approach, the number of MVPs is predetermined and distributed
between the two phases. The Adaptive Hutch++ (A-Hutch++) method is an-
other version of Hutch++ which proposes two improved ranks [76]. It splits the
MVPs in an approximately optimal way among the two phases, to estimate the
trace within a certain error tolerance and with a controllable failure probability,
with an optimal splitting of matrix-vector products. If the matrix is a sym-
metric positive semi-definite, they present a special version of Hutch++ called

64

6.3 A-Hutch++

Nystrom++. In comparison to Hutch++, this algorithm requires only one pass
over the matrix, since it uses the Nystrom approximation.

A-Hutch++ approach aims to find an adaptive way of buildings randomized sin-
gular value decomposition (SVD) Qk column-by-column and the user does not
have to figure out how many matrix-vector products are necessary to output an
estimate of the trace that is within the prescribed error tolerance. It starts with
k = 1, 2, . . . and keeps track stop it when the minimum of m̃(k) is detected.

A-Hutch++ decomposes the matrix into two parts as D = Dlr − Drest after
applying a proper projector Π = QkQ

H
k , where Dlr denotes the low-rank part

and Drest denotes the rest of the matrix and k is the number of deflated vectors,
thus the decomposition of the matrix inverse D−1 is given as:

D−1 := QkQ
H
k D

−1⏞ ⏟⏟ ⏞
D−1

lr

+(I −QkQ
H
k)D

−1⏞ ⏟⏟ ⏞
D−1

rest

, (6.48)

and the trace estimation is given as in (6.49) where one can use the cyclic property
of the trace and noting that (I −QkQ

H
k)

2 = (I −QkQ
H
k)

tr(D−1) := tr(QkQ
H
k D

−1) + tr((I −QkQ
H
k)D

−1(I −QkQ
H
k)) (6.49)

The first part of the eq. (6.49) requires 2k matrix-vector products coming from
the construction of Qk which requires k products and we have another k products
when we compute tr(QkQ

H
k D

−1) as
∑︁k

i=1 q
h
i D

−1qi. While the second term denotes
the stochastic part, which can be estimated stochastically as in alg. 7, by requiring
M(k) number of matrix-vector products with D−1. Then the total number of
matrix-vector products with D−1 is

m(k) = 2k +M(k). (6.50)

Furthermore, A-Hutch++ aims at minimizing m(k) in order to obtain a near-
optimal distribution of matrix-vector products between the two phases. That can
be achieved by applying Lemma 6.7 on Theorem 6.6 as follows [76]

Theorem 6.6.
Assume a symmetric matrix A ∈ Cn×n, the tail bound for stochastic trace estima-
tor trm(A) is

P (| trm(A)− tr(A)| ≥ ε) ≤ 2 exp

(︃
−m ε2

4∥A∥2F + 4ε∥A∥2

)︃
. (6.51)

65

6 Variance Reduction Methods

Lemma 6.7.
Let m ≥ 4(1+c) log(2/δ)

c2ρ(A)
for given c > 0 . Then the inequality

| trm(A)− tr(A)| ≤ 2
√
1 + c

√︃
log (2/δ)

m
∥A∥F (6.52)

holds with probability at least 1− δ.

Proof. By combining the right-hand side of (6.52), ε := 2
√
1 + c

√︂
log(2/δ)

m
∥A∥F ,

with (6.51), one can obtain the following results.

P (| trm(A)− tr(A)| ≥ ε) ≤ 2 exp

⎛⎝− (1 + c) log(2/δ)∥A∥F

∥A∥F + 2
√
1 + c

√︂
log(2/δ)

m
∥A∥2

⎞⎠
≤ 2 exp

(︃
−(1 + c) log(2/δ)∥A∥F

(1 + c)∥A∥F

)︃
= δ,

where the second inequality utilizes

c∥A∥F ≥ 2
√
1 + c

√︃
log(2/δ)

m
∥A∥2,

We can apply this theorem to bound the probability of the error in the estimate.
To do so, we can use the value of m(k) given in equation (6.50) as the number
of matrix-vector products in the estimator, and we can use the spectral norm of
D−1 in place of ∥A∥2 in the bound. Based on the symmetry of D−1 the Frobenius
norm of D−1

rest is given as

∥D−1
rest∥2F = ∥(I −QkQ

H
k)D

−1(I −QkQ
H
k)∥2F (6.53)

= ∥D−1∥2F + ∥QH
k D

−1Qk∥2F − 2∥D−1Qk∥2F

and the number of matrix-vector products M(k) of D−1
rest is

M(k) ≈ 1

ϵ2
log

2

δ⏞ ⏟⏟ ⏞
C(ϵ,δ)

∥(I −QkQ
H
k)D

−1(I −QkQ
H
k)∥2F (6.54)

66

6.3 A-Hutch++

Let
C(ε, δ) := 4(1 + c)ε−2 log(2/δ). (6.55)

By Lemma 6.7, number of samples equal to C(ε, δ)∥A∥2F for suitable small ε, is
adequate to attain | trm(A)− tr(A)| ≤ ε with probability at least 1− δ. In turn,
m(k) and the function

m̃(k) := 2k + C(ε, δ)
(︁
∥QH

k D
−1Qk∥2F − 2∥D−1Qk∥2F

)︁
(6.56)

have the same minimum, since

m(k) := 2k + C(ϵ, δ)∥(I −QkQ
H
k)D

−1(I −QkQ
H
k)∥2F

= 2k − C(ϵ, δ)(∥QkD
−1QH

k ∥2F − 2∥QH
k D

−1∥2F⏞ ⏟⏟ ⏞ˆ︁m(k)

+C(ϵ, δ)∥D−1∥2F

Recursive updating can be used to compute the latter, without the need for
additional matrix-vector products with D−1.

Alg. 7 aims to approximate the trace of the inverse of a given matrix D ∈ Cn×n

using a combination of low rank and stochastic approximations. The low-rank
approximation is obtained by iteratively generating random matrices Yk ∈ Cn×k

with i.i.d. entries from the normal distribution, computing an orthonormal basis
for the range of Yk, and updating a running total for the trace of the inverse of the
projection of D onto the range of Yk. The stochastic approximation is obtained
by generating random vectors ψs with i.i.d. entries from the normal distribution
and computing the trace of the inverse of the projection of D onto the orthogonal
complement of the range of Yk. The algorithm terminates when the variance of
the stochastic approximation falls below a predetermined threshold.

67

6 Variance Reduction Methods

Algorithm 7 A-Hutch++: for estimating tr(D−1)

Input: D ∈ Cn×n, nonsingular, ϵ relative accuracy, δ failure probability, C
Output: Approximation τ lr + τ for tr(D−1)
1: k ← 1
2: Yk ← D−1ψ where ψ ∈ Rn×k has i.i.d. N(0, 1) entries.
3: Obtain orthonormal basis q for range (Yk).
4: Qk ← qk
5: τ lr ← tr

(︁
qHk (D−1qk)

)︁
6: Compute m̃(k).
7: for k = 2, 3, . . . do
8: Yk ← D−1ψk where ψk ∈ Rn×k has i.i.d. N(0, 1) entries.

9: ˜︁Qk ← (I −Qk−1Q
H
k−1)Yk

10: Obtain orthonormal basis qk for range
(︂ ˜︁Qk

)︂
.

11: Qk ←
[︁
Qk−1 qk

]︁
12: τ lr ← τ lr + tr

(︁
qHk (D−1qk)

)︁
13: m̃(k) :← C(ε, δ)

(︁
∥QH

k D
−1Qk∥2F − 2∥D−1Qk∥2F

)︁
▷ Update m̃(k)

recursively.
14: if m̃(k) ≥ m̃(k − 1) then
15: stop
16: end if
17: end for
18: for s = 1, 2, . . . do ▷ stochastic part
19: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
20: zs ← ψs −Q(QHψs) ▷ projected vector
21: τs ← ψHs D

−1zs ▷ solve linear system
22: τ ← 1

s

∑︁s
i=1 τi, V←

1
s−1

∑︁s
i=1 |τi − τ |2 ▷ sample mean and variance

23: ρ = (τ + τ lr)ϵ
24: if V/s ≤ ρ2 then
25: stop
26: end if
27: end for

68

Chapter 7
Multigrid Multilevel Monte Carlo

The main concept underlying our novel method, Multigrid Multilevel Monte Carlo
(MG-MLMC), is covered in detail in this Chapter. The name MG-MLMC is
coming from merging the Hierachical Multigrid method with the Multilevel Monte
Carlo technique. So we begin by reviewing the fundamental facts from Monte
Carlo (MC), two-level MC, and multilevel Monte Carlo (MLMC) methods in
Sec. 7.1, Sec. 7.2.1, and Sec. 7.2.2, respectively. Then we explore the main idea
of the MG-MLMC method, its derivation and how we can use it as a variance
reduction method in sections 7.3, 7.3.2.1 and 7.3.2. Furthermore, we examine how
to apply Hutch++ and exact deflation approaches on MG-MLMC in Sec. 7.3.3
and Sec. 7.3.4 respectively.

7.1 Standard Monte Carlo method

Monte Carlo method is a computational algorithm that obtains numerical results
through repeated random sampling to solve problems that might seem determinis-
tic in essence [65]. Typically, the samples are chosen randomly and independently.
The realization variable is estimated based on the basis of those samples.

Monte Carlo (MC) is frequently the preferred method when the total number
of free variables is high, so numerous mathematical and physical issues can be
solved using the Monte Carlo method, particularly those falling into one of three
broad categories: numerical integration, optimization, or generating draws based
on probability distributions [65]. It works as follows:

Theorem 7.1.
Suppose g : Rd → R is a function of a d-dimensional random variable X with
probability density ρ, then the expected value of the function g(x) is given as

69

7 Multigrid Multilevel Monte Carlo

Y = E[g(x)] =
∫︂
Rd

g(x)ρ(x)dx (7.1)

the plain MC estimator of (7.1) is given as [50]:

θ̂N =
1

N

N∑︂
i=1

g(Xi) (7.2)

where Xi, i = 1, . . . , N are independent samples of the random variable X and
θ̂N → E[g(x)] as N →∞ [82].

The expected value of the unbiased MC estimator θ̂N of Y is:

E(θ̂N) =
1

N

N∑︂
i=1

E(g(Xi)) = E[g(X)] (7.3)

and the variance of the estimator θ̂N is

V(θ̂N) = E
[︂
(θ̂N − θ)2

]︂
=
σ2

N
. (7.4)

where σ2 = V(g(X)), and the root mean square error (RMSE) of the estimator
θ̂N :

RMSE(θ̂n) =
σ√
N

(7.5)

Eq. (7.5) shows that the convergence order of RMSE of the simple MC estimator
is O(1√

N
) [50]. Furthermore, using the central limit theorem on a finite sample

for large enough N the estimator will be approximately normally distributed if
variance is finite as:

θ̂N ≈ N(θ,
σ2

N
) (7.6)

The Monte Carlo techniques build samples using simulations of random processes.
However, it is not always possible to simulate random processes precisely.

As a result, one can observe that the MC method has a number of benefits, in-
cluding being straightforward to comprehend, simple to implement, non-intrusive,
trivially parallelizable, and performance independent of the number or dimension-
ality of the stochastic parameters.

70

7.2 Multilevel Monte Carlo

7.1.1 Computational Cost

The sum of all calls to the generator for random numbers is known as computa-
tional cost (complexity) [59]. This indicates the cost for the plain MC approach
is determined by multiplying the number of instances of random variables by the
cost of computing a single random variable. Assume that θ̂ is the approximation
of θ thus the mean square error can be expressed as:

MSE = E
[︂
(θ̂ − θ)2

]︂
. (7.7)

E
[︂
(θ̂ − θ)2

]︂
= E

[︂
(θ̂ + E[θ̂]− E[θ̂]− θ)2

]︂
.

= E
[︂
(θ̂ − E[θ̂])2

]︂
+ E

[︂
(E[θ̂]− θ)2

]︂ (7.8)

the first term E
[︂
(θ̂−E[θ̂])2

]︂
represents the variance and the second term E

[︂
(E[θ̂]−

θ)2
]︂
denotes the bias of the approximation. For a RMSE of order ε, MSE should

be O(ε2) which is achieved if

MSE = E
[︂
(θ̂ − θ)2

]︂
= O(ε2) (7.9)

7.2 Multilevel Monte Carlo

Obviously, standard Monte Carlo is the easiest and most widely used technique
for calculating the expectations of random variables. The only weakness of MC is
the relatively slow convergence, which can lead to extremely costly computations.
Multilevel Monte Carlo, or MLMC for short, is an adaptive method to improve
this slow convergence and significantly lower simulation costs. In the following
sections, the basic idea of MLMC will be discussed in detail.

7.2.1 Two-level MC

The main idea of the Multilevel Monte Carlo technique was first used to estimate
E[g(X,µ)], where X is a random vector and µ is a parameter, in the context
of parametric integration [56, 57]. Giles generalized the idea to be known as
MLMC in his seminal paper [49]. Multilevel Monte Carlo exploits a hierarchy of
solving approximations X1, X2, ..., XL at different levels starting with the coarsest

71

7 Multigrid Multilevel Monte Carlo

and cheapest approximation XL and going up to the finest and most expensive
approximation X1.

The simplified version of the MLMC method, the two levels Monte Carlo, is
where we start our discussion. For a given random variable X0 assume we take
another random variable X1 and consider: X1, X2 and let X1 ≤ X2 then X2 is
given by:

X1 = (X1 −X2) +X2 (7.10)

and its expected value as:

E[X1] = E[X1 −X2] + E[X2], (7.11)

and we consider the estimator is given by:

θ̂1 =
1

N1

N1∑︂
i=1

(X
(i)
1 −X

(i)
2) +

1

N2

N2∑︂
i=1

X
(i)
2 (7.12)

X
(i)
1 − X

(i)
2 represents a sample of difference X1 − X2 for the same underlying

stochastic sample w(i). The total cost for generating (7.12) is

CT = N1C1 +N2C2 (7.13)

where C2 is the cost for estimating a single sample of X2 and C1 represents the
cost for estimating a single sample of X1 −X2. For the variance of the estimator
we have

V(
1

N2

N2∑︂
i=1

X
(i)
2) =

N2

N2
1

V1 =
1

N2

V1,

V(
1

N1

N1∑︂
i=1

(X
(i)
1 −X

(i)
2)) =

1

N1

V1 (7.14)

the total variance is

VT = N−1
1 V1 +N−1

2 V2 (7.15)

We want to minimize C(N1, N2) under the constraint VT = ϵ2, so we consider the
Lagrangian function

L(N1, N2, λ) = C(N1, N2) + λ(VT − C2) (7.16)

72

7.2 Multilevel Monte Carlo

with the multiplier λ ∈ R. The stationary points of λ satisfy

∇C[N1, N2] + λ∇VT = 0 , (C1 −
λ

N2
1

V1, C2 −
λ

N2
2

V2) = 0 (7.17)

and

VT − ϵ2 = 0
1

N1

V1 +
1

N2

V2 − ϵ2 = 0 (7.18)

From (7.17) we get N1 =
√︂
λV1

C1
, N2 =

√︂
λV2

C2
so that (7.18) given

1√
λ
(
√︁

V1C1 +
√︁

V2C2) = ϵ2,

and then

λ =
1

ϵ4
(
√︁

V1C1 +
√︁

V2C2)
2

N1 =
1

ϵ2

√︂
V1

C1

(
√
V1C1 +

√
V2C2)2

N2 =
1

ϵ2

√︂
V2

C2

(
√
V1C1 +

√
V2C2)2

,

where

V(N1, N2) = N−1
1 V1 +N−1

2 V2 and C(N1, N2) = N1C1 +N2C2. (7.19)

7.2.2 Multilevel Monte Carlo (MLMC) theory

The main goal of MLMC is to estimate the expected values of the quantities that
come out from the simulations to reduce the variance of the random variable.
Its strategy requires repeating random sampling and taking random samples on
different levels of accuracy. only the last few samples are taken with high accu-
racy with considered high computational costs. Extending the two-level approach
of 7.2.1, we continue repeating the process of adding levels until the maximum
number of levels L, and decomposing the quantity Xℓ where ℓ = 1, 2, · · · , L, as

Xℓ = (X1 −X2) + (X2 −X3) + · · ·+ (XL−1 −XL) +XL (7.20)

73

7 Multigrid Multilevel Monte Carlo

where X1 = Xℓ for all values of ℓ, and it can be written as

Xℓ =
L−1∑︂
ℓ=1

(Xℓ −Xℓ+1) +XL (7.21)

since the sequence of random variablesX1, . . . XL approximatesXℓ with increasing
accuracy but also increasing cost. level L is the coarsest and level 1 is the finest.

The expection value of eq. (7.21) is

E[Xℓ] = E
[︂ L−1∑︂
ℓ=1

(Xℓ −Xℓ+1)
]︂
+ E[XL]. (7.22)

Terms of eq. (7.22) can be estimated independently and the multilevel Monte

Carlo estimator ˆ︁θ =∑︁L
ℓ=0 θℓ is given as

ˆ︁θ = L−1∑︂
ℓ=1

(︄
N−1
ℓ

Nℓ∑︂
i=1

(︂
X

(i)
ℓ −X

(i)
ℓ+1

)︂)︄
+N−1

L

NL∑︂
i=1

X
(i)
L . (7.23)

It is the two level case, X i
ℓ−X i

ℓ+1 stands for one instance of random variable Xℓ−
Xℓ+1 The variance of ˆ︁θ gives the variance for the random variable Xℓ−Xℓ+1 [49]

V(ˆ︁θ) = L−1∑︂
ℓ=1

N−1
ℓ Vℓ (7.24)

Define the cost of one sample of X1 as C1 and Define the cost of one sample of
Xℓ −Xℓ+1 as Cℓ, then by summing over all levels we obtain the total cost as:

Ctot = N1C1 +N2C2 + · · ·+NLCL =
L∑︂
ℓ=1

NℓCℓ. (7.25)

The optimal number of samples at each level difference Nℓ can be obtained by
applying Lagrangian multiplier µ2 and taking the gradient to find the minimum
variance for a fixed cost as

L(N1, . . . , NL, µ
2) =

L∑︂
ℓ=1

(N−1
ℓ Vℓ + µ2NℓCℓ), ℓ = 0, 1, · · · , L (7.26)

74

7.2 Multilevel Monte Carlo

∂

∂Ni

Ni∑︂
i=1

(N−1
i Vi + µ2NiCi) = −N−2

ℓ Vℓ + µ2Cℓ) = 0, (7.27)

we can reformulate the problem to minimize the quantity

L∑︂
ℓ=1

NℓCℓ + µ2(
Vℓ
Nℓ

− ε2

2
)

After solving eq. (7.27) the number of samples at each level difference is given as

Nℓ =
1

µ

√︃
Vℓ

Cℓ
, (7.28)

and minimal variance of is given as

V(ˆ︁θ) = L∑︂
ℓ=1

Vℓ

Nℓ

=
L∑︂
ℓ=1

1

µ

√︃
Cℓ
Vℓ

Vℓ =
1

µ

L∑︂
ℓ=1

√︁
CℓVℓ := ε−2 (7.29)

From eq. (7.29) we get

µ = ε2(
L∑︂
ℓ=1

√︁
CℓVℓ)

−1, (7.30)

and the number of samples Nℓ can be written as

Nℓ = ε−2

√︃
Vℓ

Cℓ

(︄
L∑︂
ℓ=1

√︁
CℓVℓ

)︄
(7.31)

The total cost of multilevel Monte Carlo is then expressed as

Cmlmc =
L∑︂
ℓ=1

NℓCℓ = ε−2

(︄
L∑︂
ℓ=1

√︁
CℓVℓ

)︄2

. (7.32)

Eq. (7.32) shows that the dominant cost is determined based on varying the
product term VℓCℓ with the level difference ℓ, since we have three different cases
for the total cost [49] as:

1. If VℓCℓ increases with ℓ: then the finest level is responsible for the majority
of the cost, and Cmlmc ≈ ε−2VLCL

75

7 Multigrid Multilevel Monte Carlo

2. If VℓCℓ decrease increases with ℓ: then the coarsest level is responsible for
the majority of the cost, and Cmlmc ≈ ε−2VLCL

3. VℓCℓ does not vary: the overall cost Cmlmc ≈ ε−2L2VLCL ≈ ε−2L2VLCL.

7.2.3 Multilevel Monte Carlo for trace estimation

We now turn to estimating the trace of an (implicitly) given matrix D = D1. We
know from section 5.2, that the random variable

X = ηHDη, η a Radamacher vector, (7.33)

is an unbaised estimator for trD. The idea to obtain a MLMC for trace estimation
is now to consider a decomposition

D1 =
L−1∑︂
ℓ=1

(Dℓ −Dℓ+1) +DL, (7.34)

so that

tr(D1) =
L−1∑︂
ℓ=1

tr(Dℓ −Dℓ+1) + tr(DL), (7.35)

and introduce the stochastic variable

Xℓ −Xℓ+1 = ηHℓ (Dℓ −Dℓ+1)ηℓ. (7.36)

as well as
XL = ηHLDLηL (7.37)

Then

X =
L−1∑︂
ℓ=1

(Xℓ −Xℓ+1) +XL (7.38)

and

tr(X) = E[X] =
L−1∑︂
ℓ=1

E[Xℓ −Xℓ+1] + E[XL] (7.39)

These should be chosen such that V(Xℓ−Xℓ+1) is small when Xℓ−Xℓ+1 is costly
to evaluate (typically for the small values of ℓ) and possibly large when they are
cheap to evaluate (for the large values of ℓ). Then for a given accuracy, we need
only a few samples that are costly to evaluate and possibly many when they are

76

7.2 Multilevel Monte Carlo

cheap to evaluate. And it might happen that the expected value of XL can be
computed without any stochastic technique.

The variance ρ2 for the resulting estimator for E[X] is the sum of the variances
of the estimators for E[Xℓ]. In the uniform approach one chooses the number Nℓ

of samples at each level such that

V[Xℓ]/Nℓ = ρ2/L. (7.40)

If one knows the cost Cℓ for an evaluation of Xℓ, the problem of minimizing the
total cost under the constraint to obtain a variance of ρ2 is solved for the optimal
values [49]

Nℓ =
1

ρ2

√︁
V[Xℓ]/Cℓ

L−1∑︂
j=1

√︂
V[Xj]Cj. (7.41)

The variance of the estimator for Xℓ with Nℓ samples is then

V[Xℓ]/Nℓ = ρ2
√︁

V[Xℓ]Cℓ

/︄
L−1∑︂
j=1

√︂
V[Xj]Cj . (7.42)

The main goal of the multilevel Monte Carlo method is to reduce the variance by
decomposing the main matrix D at different levels. In contrast to the lower levels,
which are more expensive to estimate, when evaluating f(D) is more expensive,
the variance is small on the higher numbered levels.

7.2.4 Error bounds of multilevel Monte Carlo methods

In this section, we discuss the error bound (guarantees) for multilevel Monte

Carlo. Let we have a matrix D ∈ Cn×n and Rademacher vectors ψ
(i)
ℓ with iiḋ.,

then the estimator of the multilevel can be expressed as

trs(D) =
L∑︂
ℓ=1

sℓ∑︂
i=1

1

sℓ
ψ

(i)H
ℓ Dℓψ

(i)
ℓ , (7.43)

Theorem 7.2 shows how to obtain bounds of the estimator trs on the accuracy for
single-level samples [22].

Theorem 7.2.
Assume a nonzero symmetric matrix D ∈ Cn×n with all-zero diagonal entries and

77

7 Multigrid Multilevel Monte Carlo

a Rademacher vector ψ ∈ Rn with i.i.d. . Then for all ε > 0,

Pr
(︁
|ψHDψ| ≥ ε

)︁
≤ 2 exp

(︃
− ε2

8∥D∥2F + 8ε∥D∥2

)︃
. (7.44)

The same proof technique can be used to extend this bound error to a multilevel
approach [55] as in theorem 7.3.

Theorem 7.3.
Assume a nonzero symmetric matrix D ∈ Rn×n. For multilevel ℓ = 1, . . . , L we
have Dℓ symmetric matrices where D =

∑︁L
ℓ=1Dℓ, and let Bℓ equal Dℓ but with the

diagonal entries set to zero. For sample sizes m = mℓ, ℓ = 1, · · · , L, let trm(D)
be defined as in (7.43). Then for all ε > 0,

Pr (| trm(D)− tr(D)| ≥ ε) ≤ 2 exp

⎛⎝ −ε2/8∑︁L
ℓ=1 ∥Bℓ∥2F/mℓ + εmax

1≤ℓ≤L
∥Bℓ∥2/mℓ

⎞⎠ .

(7.45)
Furthermore, let Cℓ denotes the cost of sampling from Bℓ and the variance Vℓ =

∥Bℓ∥2F + ε∥Bℓ∥2. Then if mℓ ≥ µ
√︂

Vℓ

Cℓ
where

µ = 8ε−2 log(2/δ)
L∑︂
ℓ=1

√︁
CℓVℓ, (7.46)

it follows that Pr (| trm(D)− tr(D)| ≥ ε) ≤ δ.

The total cost of the MLMC estimator for a given pair (ε, δ) can be approximated
as

Cmlmc = 8ε−2 log(2/δ)

(︄
L∑︂
ℓ=1

√︁
CℓVℓ

)︄2

. (7.47)

Multilevel Monte Carlo estimators can have smaller variances and better (ε, δ)-
type error bounds as well.

7.3 Multigrid Multilevel Monte Carlo Method

The basic goal is to combine both standard multigrid (MG) and MLMC techniques
together to reduce the variance of trace estimation of the matrix inverse and
accelerate the convergence rate. The idea behind MG-MLMC is approximating

78

7.3 Multigrid Multilevel Monte Carlo Method

the trace of the inverse at one level and the next level, restrict the random vector
to solve the small system, then prolongate it up again and estimating the trace
of this difference.

Using a solver for the finer level i.e Multigrid method, we need to calculate
the number of matrix-vector multiplications (MVPs) to find the cost of the re-
quired work for each stochastic estimate and can compare it to the plain deflated
Hutchinson approach. In the Multigrid Multilevel Monte Carlo approach, we have
three different phases:

1. Setup Phase: Based on the multigrid hierarchy, we define the prolongation
Pℓ, restriction Rℓ and matrices Dℓ at each level. We use the multigrid
method as a solver for each level difference.

2. Difference (fine-coarse) part which estimates the trace of the difference on
two matrices corresponding to two consecutive levels

3. Coarsest part which is included in the final matrix DL (coarsest matrix)
that remains after doing the difference part, and its trace of D−1

L might
be computed directly if the size of the final operator DL is small enough,
otherwise we can compute it stochastically.

7.3.1 Two-Grid Two-Level Monte Carlo for trace estimation

We are interested in estimating the tr(D−1) where D ∈ Cn×n. To simplify things
we begin our discussion with the simple case, two levels, and use the notation D1

for the original (finest) system, call it level 1, and D2 for the coarse system, call it
level 2. Moreover, P1 and R1 are the prolongation and restriction between levels
1 and 2, so that

D2 = R1D1P1.

The original matrix decomposes as

D−1
1 = D−1

1 − P1D
−1
2 R1⏞ ⏟⏟ ⏞

level 1

+P1D
−1
2 R1⏞ ⏟⏟ ⏞

level 2

. (7.48)

Then the trace of D−1
1 is

tr(D−1
1) = tr(D−1

1 − P1D
−1
2 R1)⏞ ⏟⏟ ⏞

level 1

+ tr(P1D
−1
2 R1)⏞ ⏟⏟ ⏞

level 2

. (7.49)

In (7.49), we always have to start with a random vector on level 1 when stochas-
tically estimating the various summands. We must also apply R1 and P1 if we
estimate for the level difference 1.

79

7 Multigrid Multilevel Monte Carlo

For simplicity, Fig. 7.1 demonstrates an instance of a level difference between two
multigrid hierarchy levels ℓ = 1, 2; the difference level operator can be displayed
as in (7.50)

M1 = D−1
1 − P1D

−1
2 R1 (7.50)

Figure 7.1: shows 2-grid 2-level Monte Carlo example for splitting the original
problem into two parts

7.3.2 Multigrid Multilevel Monte Carlo for trace estimation

We can generalize the case in 7.3.1 for levels ℓ = 1, . . . , L, and the original matrix
D1 for the number of levels L could split corresponding to the number of levels as
D1, D2, . . . , DL coarsest matrices at different levels. To obtain a multilevel Monte
Carlo decomposition we discard the smoother and only consider the coarse grid
operators and the intergrid transfer operators which we now describe algebraically.

7.3.2.1 Derivation of Multigrid Multilevel Monte Carlo

The coarse grid operators are given by a sequence of matrices with Petrov-
Galerkin construction, i.e.

Dℓ ∈ Cnℓ×nℓ , ℓ = 1, . . . , L,

representing the original matrix D = D1 ∈ Cn1×n1 . On the different levels ℓ =
1, . . . , L; the prolongation and restriction operators

Pℓ ∈ Cnℓ×nℓ+1 , Rℓ ∈ Cnℓ+1×nℓ , ℓ = 1, . . . , L− 1.

80

7.3 Multigrid Multilevel Monte Carlo Method

transfer data between the levels. Typically, when A is Hermitian, one takes
Pℓ = RH

ℓ , and for given Pℓ, Rℓ the coarse system matrices Dℓ are often constructed
using the Petrov-Galerkin approach

Dℓ+1 = RℓDℓPℓ, ℓ = 1, . . . , L− 1.

Using the accumulated prolongation and restriction operators

P̂ ℓ = P1 · · ·Pℓ−1 ∈ Cn×nℓ , R̂ℓ = Rℓ−1 · · ·R1 ∈ Cnℓ×n, ℓ = 1, . . . , L,

where we put R̂1 = P̂ 1 = I ∈ Cn×n by convention, we regard P̂ ℓD
−1
ℓ R̂ℓ as the

approximation to D−1 at level ℓ. Thus the original matrix D decomposes as

D = (D1−P1D2P
H
1)+(P1D2P

H
1 −P1P2D3P

H
2 P

H
1) . . . +P1 · · ·PL−1DLP

H
L−1 · · ·PH

1

(7.51)
which can be written as:

D−1 =
L−1∑︂
ℓ=1

(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
+ P̂LDLR̂L, (7.52)

We thus obtain a multilevel decomposition for the trace of D−1 as

tr(D−1) =
L−1∑︂
ℓ=1

tr
(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
+ tr(P̂LD

−1
L R̂L). (7.53)

This gives

tr(D−1) =
L−1∑︂
ℓ=1

E
[︂
(ψℓ)H

(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
ψℓ
]︂
+E

[︂
(ψL)HP̂LD

−1
L R̂Lψ

L
]︂
,

(7.54)
with the components of ψℓ ∈ Cn being i.i.d. stochastic variables satisfying (5.10).
The unbiased multilevel Monte Carlo estimator is then

tr(D−1) ≈
L−1∑︂
ℓ=1

1

Mℓ

Mℓ∑︂
m=1

(︂
(ψ(m,ℓ))HP̂ ℓD

−1
ℓ R̂ℓψ

(m,ℓ) − (ψ(m,ℓ))HP̂ ℓ+1D
−1
ℓ+1R̂ℓ+1ψ

(m,ℓ)
)︂

+
1

ML

ML∑︂
i=1

(ψ(m,L))HP̂LD
−1
L R̂Lψ

(m,L), (7.55)

where the vectors ψ(m,ℓ) ∈ Cn are stochastically independent samples of the ran-
dom variable ψ ∈ Cn satisfying (5.10).

81

7 Multigrid Multilevel Monte Carlo

We obtain Π1D
−1
1 = P1D

−1
2 R1 based on the projector Π1 = P1D

−1
2 R1D1 and

similarly for the coarser levels, thus establishing the connection with inexact de-
flation discussed in the previous chapter in sec. 6.1.3. The prolongations Pℓ, in
the multigrid hierarchy, are precisely built in such a way that they contain accu-
rate approximations to the small eigenmodes or singular triplets of Dℓ. Since the
prolongations Pℓ+1 are constructed to approximate small eigenpairs or singular
triples of Dℓ, for each level difference we anticipate that the variance of

P̂ ℓD
−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

will be small. A stochastic estimate becomes increasingly less expensive with each
level difference because the size of the matrices to invert on each level difference
decreases significantly with the level. Depending on the size of the matrix DL at
the coarsest level L, we might be able to compute the trace directly as

NL∑︂
i=1

eTi D
−1
L R̂LP̂Lei.

If we perform it stochastically, we have to invert a matrix with a very small
dimension compared to that of D1.

Computationally, the estimator requires to solve systems of the form Dℓy
(m,ℓ) = z

with z = R̂ℓψ
(m,ℓ). Since the matrices Dℓ arise from the multigrid hierarchy, we

directly have a multigrid method available for these systems by restricting the
method for D1 to the levels ℓ, . . . , L.

7.3.2.2 Coarsest level in the Multigrid Multilevel Monte Carlo method

In the MG-MLMC approach always there are differences all the time so the stan-
dard deviation for these differences is small and easy to estimate, but the very last
level there is no difference and the variance is expected to be large so we need to
take a lot of stochastic samples so that it may be better to compute this directly.
Solving the coarsest level directly provides us with a substantial gain, so if we
could do it earlier then the gaining will be twice, first solving the coarsest level,
and second, we have less accuracy required on the other levels too. At times,
even the coarsest matrix in extremely large sparse matrices may still be large,
making direct computation of the trace of its inverse expensive. Consequently,
a preferable alternative is to compute the trace stochastically. Considering more
levels means we have more relative accuracy (be more accurate) on each level
because the variance required is the summation of the variances on each level.

82

7.3 Multigrid Multilevel Monte Carlo Method

Since for any two matrices A = (aij) ∈ Cn×m and B = (bkl) ∈ Cm×n the trace of
their product does not depend on the order,

tr(AB) =
n∑︂
i=1

m∑︂
j=1

aijbji =
m∑︂
j=1

n∑︂
i=1

bjiaij = tr(BA), (7.56)

we have
tr(P̂LD

−1
L R̂L) = tr(D−1

L R̂LP̂L). (7.57)

So, instead of estimating the contribution tr(P̂LD
−1
L R̂L) in (7.53) stochastically,

we can also compute it directly by inverting the matrix DL ∈ CnL×nL and com-
puting the product D−1

L R̂LP̂L. Note that the matrices R̂L and P̂L are usually
sparse with a maximum of d, say, non-zero entries per row. The arithmetic work
for D−1

L R̂LP̂L is thus of order O(dn2
L) for the product R̂LP̂L plus O(n3

L) for the in-

version of DL and the product D−1
L (R̂LP̂L). Since the variance of ψ

HP̂LD
−1
L R̂Lψ

is presumably large, this direct computation can be much more efficient than
a stochastic estimation, even when we aim at only quite low precision in the
stochastic estimate.

7.3.2.3 Aggregation-based case

In the successful multigrid approaches for the Wilson-Dirac matrix or its twisted
mass variant, see [4, 7, 13, 40], the restrictions and prolongations are aggregation
based with Rℓ = PH

ℓ and Rℓ orthonormal i.e we have RℓPℓ = I, ℓ = 1, · · · , L.
Then

tr(P̂ ℓD
−1
ℓ R̂ℓ) = tr(D−1

ℓ R̂ℓP̂ ℓ) = tr(D−1
ℓ), (7.58)

and

tr(P̂ ℓ+1D
−1
ℓ+1R̂ℓ+1) = tr(P̂ ℓPℓD

−1
ℓ+1RℓR̂ℓ)

= tr(PℓD
−1
ℓ+1RℓR̂ℓP̂ ℓ)

= tr(PℓD
−1
ℓ+1Rℓ). (7.59)

This means that instead of the multilevel decomposition (7.53) we can use

tr(D−1) =
L−1∑︂
ℓ=1

tr
(︁
D−1
ℓ − PℓD

−1
ℓ+1Rℓ

)︁
+ tr(D−1

L), (7.60)

83

7 Multigrid Multilevel Monte Carlo

in which the stochastic estimation on level ℓ now involves random vectors from
Cnℓ instead of Cn.

In the general case, we can use the formula as it stands and do Hutch for the
matrix

D−1
l R̂lP̂ l − PlD−1

l+1R̂l+1P̂ l from eq. (7.53)

which again requires only random vectors from Cnℓ Finally, one can consider the
MG-MLMC approach as a recursive inexact deflation approach by applying an
oblique projector on the matrix D−1

ℓ

Theorem 7.4.
Consider an nonsingular matrix D ∈ Cn×n, apply projector Πℓ = PℓD

−1
ℓ+1RℓDℓ on

the matrix inverse D−1. Then, the matrix inverse at each level of the hierarchy
D−1
ℓ , ℓ = 1, 2, · · · , L, can be written as follows:

D−1
ℓ = (I − Πℓ)D

−1
ℓ +ΠℓD

−1
ℓ

= (Iℓ − PℓD−1
ℓ+1RℓDℓ)D

−1
ℓ + PℓD

−1
ℓ+1RℓDℓD

−1
ℓ

= (Iℓ − PℓD−1
ℓ+1RℓDℓ)D

−1
ℓ + PℓD

−1
ℓ+1Rℓ (7.61)

7.3.3 Multigrid Multilevel Monte Carlo ++ for trace
estimation

The main goal is to find a new trace estimator technique by merging between the
Hutch++ method as discussed in section 6.2 and the MG-MLMC approach to
reduce the variance of trace estimation of the matrix inverse and speed up the
convergence rate of the solver which is used to invert the matrices at different
levels [63].

We choose a suitable orthogonal projection

Πℓ = QH
ℓ Qℓ ∈ Cdℓ×dℓ , QH

ℓ Qℓ = I (7.62)

where dℓ is the number of deflated vectors at each level difference and 1 ≤ ℓ < L,
then apply it on the level decomposition operator

Mℓ = D−1
ℓ − PℓD

−1
ℓ+1Rℓ, Mℓ ∈ Cnℓ×nℓ . (7.63)

One obtains a decomposition on each level to reduce the variance as

Mℓ = ΠℓMℓ + (I − Πℓ)Mℓ, (7.64)

84

7.3 Multigrid Multilevel Monte Carlo Method

and
tr(Mℓ) = tr(ΠℓMℓ⏞ ⏟⏟ ⏞

low-rank

) + tr((I − Πℓ)Mℓ⏞ ⏟⏟ ⏞
stochastically

) (7.65)

In general, the approach can be decomposed into three phases:

1. Low-rank phase: it computes the trace of ΠℓMℓ directly (no stochastic sam-
ples required) see (7.66).

2. Stochastic phase: works in the same way as on a level differences in MG-
MLMC, but with an additional projection operator.

3. Coarsest phase: computes the trace of the coarsest level in the same manner
as coearsest part in MG-MLMC

The trace of the low-rank part can be computed directly by using the trace cyclic
property as

tr(ΠℓMℓ) = tr(QH
ℓ MℓQℓ), ∈ Cdℓ×dℓ (7.66)

In the MG-MLMC++ approach, the number of deflation vectors dℓ for each level
difference must be chosen a priori and we have three different phases plus the
setup one:

1. Setup phase: the same as in the MG-MLMC approach.

2. Hutch++ phase: we compute the deflated vectors for each level difference
and compute its trace directly.

3. Difference (fine-coarse) part: same as in MG-MLMC approach.

4. Coarsest part: similar to MG-MLMC approach.

7.3.4 Deflated MG-MLMC

In the same manner as MG-MLMC++, one can apply an exact projector Πℓ

corresponding to each level difference ℓ in multigrid multilevel Monte Carlo which
requires computing the largest singular vectors of the difference-level operator [43].
The difference level operator of multilevel Monte Carlo is given as:

Mℓ = D−1
ℓ − PℓD

−1
ℓ+1Rℓ (7.67)

85

7 Multigrid Multilevel Monte Carlo

For the lattice QCD and Wilson Dirace operator and Schwinger model the com-
putation of singular triplets can be eigenpairs. Using the relations, we can build
operators of the Hermitian difference level,

Γℓ5Pℓ = PℓΓ
ℓ+1
5 , PH

ℓ Γℓ5 = Γℓ+1
5 PH

ℓ , (Γℓ5)
H = Γℓ5, (Γℓ5)

HΓℓ5 = I, (7.68)

which result from the ”spin-preserving” algebraic multigrid building projects cov-
ered in [40] and which imply

Qℓ := Γℓ5Dℓ = DH
ℓ Γ

ℓ
5 = QH

ℓ .

The hermitian operator can be obtained using these relations, which we can use
to indirectly extract the singular vectors of Mℓ as Jℓ =MℓΓ

ℓ
5 then

Jℓ = D−1
ℓ Γℓ5 − PℓD−1

ℓ+1P
H
ℓ Γℓ5

= Q−1
ℓ − PℓD

−1
ℓ+1Γ

ℓ+1
5 PH

ℓ

= Q−1
ℓ − PℓQ

−1
ℓ+1P

H
ℓ . (7.69)

Then, the singular vectors of Mℓ can be extracted using the eigenvectors of Jℓ

Jℓ = XΛXH ⇒Mℓ = XΛXHΓℓ5 ⇒ U = Xsign(Λ), S = abs(Λ), V = Γ5X
(7.70)

7.3.5 A proto-type algorithm for MG-MLMC approaches

In this section, we imply a prototype Alg. 8 that one can use to implement the MG-
MLMC approach with fixed accuracies for approximating the trace of the inverse
of a square matrix D. In the next chapter, we will discuss further algorithms of
MG-MLMC based on different stopping criteria types.

The algorithm operates on a hierarchy of grid levels, with restriction and prolon-
gation operators R̂ℓ and P̂ ℓ defining the relationships between levels. On each
level ℓ, the algorithm generates a sequence of random vectors xs distributed as
in (5.10), and computes an approximation for the trace using the matrix Dℓ on
that level. The algorithm then calculates the sample mean and variance of the
trace approximation, and continues iterating until the variance is within a spec-
ified relative accuracy ρℓ for that level. The coarsest level is computed directly,
without the use of random vectors. Once all levels have been processed, the
algorithm returns an approximation for the trace of D−1.

86

7.3 Multigrid Multilevel Monte Carlo Method

Algorithm 8 MG-MLMC with fixed accuracies: A proto-type algorithm

Input: D ∈ Cn×n, nonsingular, ϵ relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ matrix on
level ℓ, ℓ = 1, . . . , L

Output: Approximation
∑︁L

ℓ=1 τℓ for tr(D
−1)

1: fix relative accuracies ϵℓ s.t.
∑︁L−1

ℓ=1 ϵ
2
ℓ = ϵ2

2: Compute rough estimate τrough for the trace ▷ via 5 samples in Algorithm 3
3: ρ← ϵτrough
4: for ℓ = 1, . . . , L− 1 do ▷ all level differences
5: ρℓ ← ϵℓρ ▷ accuracy for level difference ℓ
6: for s = 1, 2, . . . do
7: generate next random vector xs ▷ xs i.i.d. satisfying (5.10)

8: τs,ℓ ← xHs

(︂
P̂ ℓD

−1
ℓ R̂ℓxs − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1xs

)︂
▷ two mg solves

9: τℓ =
1
s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ − τℓ|2 ▷ sample mean and variance

10: if Vℓ/s ≤ ρ2ℓ then
11: stop
12: end if
13: end for
14: end for
15: τL ←

∑︁NL

i=1(e
T
i PL)D

−1
L (RLei) ▷ coarsest level is computed directly

87

Chapter 8
Stopping criteria in Multigrid Multilevel
Monte Carlo

One of the key considerations when choosing numerical algorithms is the compu-
tational cost, which refers to the number of floating point operations (FLOPS)
performed by the algorithm. The cost is usually expressed in terms of big O
notation, with the number of FLOPS represented by the exponent p. In Sec. 8.1,
we discuss the underlying cost model for all of the numerical results presented in
chapter 9. In Sec. 8.2, we examine the two main approaches for distributing the
target variance among the difference levels of the multilevel method.

In Sec. 8.2.1, we first provide an overview of the main features of Multigrid Mul-
tilevel Monte Carlo (MG-MLMC) algorithms. Based on the type of stopping
criteria used, since we can create two versions of each MG-MLMC algorithm. We
then delve into a detailed analysis of each algorithm, starting with the uniform
MG-MLMC, MG-MLMC++ and Deflated MG-MLMC algorithms in Sec. 8.2.2
and its optimized versions in Sec. 8.2.3. Finally, in Sec. 8.2.4, we discuss how the
MG-MLMC approaches can be made less costly by using the skipping technique.

8.1 Cost Model

In this section, we discuss the cost model that underlies all numerical methods in
this thesis. This model evaluates the performance of algorithms by counting the
number of arithmetic operations in matrix-vector multiplications, including pro-
jections, restrictions and prolongations, and smoothing iterations in the multigrid
solver. We neglect all operations on vectors and scalars. This number is presented
as an indication for the operators at different levels, and is proportional to the

89

8 Stopping criteria in Multigrid Multilevel Monte Carlo

number of non-zeros in the corresponding matrix. We report two main quantities
for each experiment: (1) the number of stochastic samples run for the multi-
level Monte Carlo method and the number of stochastic samples in the deflated
Hutchinson method at each level difference (which always require linear solves
at the finest level), and (2) the approximate arithmetic costs for the approach,
which are calculated using the cost model. These data provide insight into how
the multilevel Monte Carlo method shifts higher variances to coarser level differ-
ences.

The computation of the quantity ψHP̂ ℓD
−1
ℓ R̂ℓψ is the main focus of the cost

model that we are interested in as follows: in this computation, we only take into
account the matrix-vector products. These result from multiplications with the
variables P̂ ℓ and R̂ℓ as well as from the matrix-vector multiplications we carry
out in the multigrid solver that we employ to compute D−1

ℓ y at each level ℓ.

We assume a cost of nnz(B), the number of nonzeroes in B, for each matrix-vector
product of the generic form Bx. Accordingly, one unit in the cost model roughly
equates to a multiplication plus an addition. This applies to the computation
of residuals, of prolongations and restrictions and the coarsest grid solve in the
multigrid solver as well as to the global restrictions and prolongations R̂ℓ, P̂ ℓ used
in each stochastic sample in multilevel Monte-Carlo.

For all multilevel algorithms, we also count the cost for the direct computation
of the trace at the coarsest level, which involves the inversion of the coarsest grid
matrix and additional matrix-matrix products.

In case of deflation, we used the k smallest eigenmodes that we precomputed,
and then optimized k so as to obtain the smallest overall cost, excluding the cost
for the eigenvector computation. So the work for deflated Hutchinson is actually
higher than what we report. We use our cost model for the following approaches:

1. MG-MLMC method, we are considering the stochastic work is the stochastic
samples (on levels differences) plus cost for the direct computational at the
coarsest level.

2. MG-MLMC++ method, same as the first one plus the work to compute
and apply the projections for the low-rank part on each level difference.

3. Deflated MG-MLMC, is the same as in 2 with the exception of computing
the projections , since this uses subtractions for eigenpairs for which we lack
a cost model.
The cost of the low-rank part remains indeterminate in this scenario due
to the absence of a cost model that can accurately determine the specific
eigenpairs of the deflation projection.

90

8.1 Cost Model

8.1.1 MG-MLMC

Given: number of levels L, difference levels l = 1, 2, . . . L − 1, and at each level
we have operators Dℓ, Pℓ, Rℓ, Pℓ̂, Rℓ

ˆ . The level difference operator is given as:

Mℓ = P̂ ℓD
−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1 (8.1)

and its trace is

tr(Mℓ) = tr(P̂ ℓD
−1
ℓ R̂ℓ − P̂ ℓ+1⏞⏟⏟⏞

=Pℓ̂Pℓ

D−1
ℓ+1R̂ℓ+1)

= tr(D−1
ℓ R̂ℓP̂ ℓ − PℓD−1

ℓ+1 R̂ℓ+1⏞⏟⏟⏞
RℓR̂ℓ

P̂ ℓ).
(8.2)

We distinguish two cases for P̂ and R̂.

1. General case: we can use the formula as it stands and apply plain Hutchin-
son or Hutch ++ method for the matrix:

D−1
ℓ R̂ℓP̂ ℓ − PℓD−1

ℓ+1RℓR̂ℓP̂ ℓ (8.3)

(a) This means that the work is the MVPs with 2× P̂ ℓ, 2× R̂ℓ, Pℓ, Rℓ :

W ℓ
Stoch = 2× nnz(P̂ ℓ) + 2× nnz(R̂ℓ) + nnz(Pℓ) + nnz(Rℓ) (8.4)

2. Aggregation case: we have P̂ ℓR̂ℓ = I and reduce the level differences to

D−1
ℓ − PℓD

−1
ℓ+1Rℓ (8.5)

(a) The stochastic work is MVPs with Pℓ, Rℓ:

W ℓ
stoch = nnz(Pℓ) + nnz(Pℓ) (8.6)

(b) Compute the work W ℓ
solv for solving the linear systems of Dℓ and Dℓ+1

We have levels ℓ = 1, . . . , L, where L is the coarsest level, and the tr(P̂LDLR̂L)
can be computed directly using the cyclic property of the trace. The work required
for this direct part consists of the work to compute the inverse of the matrix D−1

L ,

the product R̂P̂ . and the product (R̂P̂)D−1
L .

(c) Then the direct work is given as:

Wdir = 2× n3
L + nL × nnz(P̂L). (8.7)

91

8 Stopping criteria in Multigrid Multilevel Monte Carlo

The total work is the sum of all parts:

Wmlmc = W ℓ
stoch +W ℓ

solve +Wdir. (8.8)

8.1.2 MG-MLMC++

When dealing with the MG-MLMC++ case, we construct the matrix Qℓ in the
projection I −QℓQ

H
ℓ from the matrix S ∈ Cnℓ×dℓ . Then the total work will be as

before plus the cost of the low-rank part, which is described as:

• the work of the QR factorization:

Wqr = 2× (nℓ − dℓ/3)× d2ℓ × k (8.9)

since k is the number of power iterations, where MG-MLMC++ as intro-
duced do at least ope power iteration.

• the work of computing the low-rank trace directly tr(QℓD
−1
ℓ Qℓ) ∈ Cdℓ×dℓ :

Wdirtr = nℓ × dℓ + nnz(Pℓ) + nnz(Rℓ) (8.10)

• then the work for the projection term Qℓ(Q
H
ℓ x) is

Wproj = 2× nℓ × dℓ (8.11)

• Compute the work W lr
solv for solving the linear systems.

• the low-rank work is given as,

W ℓ
LR = Wqr +Wdirtr +Wproj +W lr

solv (8.12)

then the total work would be the sum of all parts:

Wmlmc++ = W ℓ
LR +W ℓ

stoch +W ℓ
solve +Wdir (8.13)

In the numerical experiments, one can consider time measurements as a cost
model rather than FLOPS by measuring the execution times of every particu-
lar operation, including solving systems with Dℓ, deflations, Pℓ, P

H
ℓ and axpy

operations.

92

8.2 Distributing the variance

8.2 Distributing the variance

In the following, we discuss two different types of variance distribution for MG-
MLMC algorithms and show their impact on the convergence speed of linear
systems of equations involving the inverse of the matrix D−1. Assume we perform
the variance Vℓ and stochastic samples Nℓ at each level difference for independent
samples

wℓ = ψHD−1
ℓ ψ, ℓ = 1, 2, · · · , L. (8.14)

Then, in order to achieve a target variance of ρ = ε tr(D−1) in the stochastic
estimation, we should have

L−1∑︂
ℓ=1

Vℓ

Nℓ

≤ ρ2. (8.15)

8.2.1 Main features in algorithms

Before implementing each algorithm in detail, we first outline the most important
features that are considered in algorithms in Sec. 8.2.2 and Sec. 8.2.3:

• All algorithms share common assumptions, including the initial matrix D ∈
Cn×n, the relative accuracy ε, and the total number of hierarchical levels
ℓ, ℓ = 1, . . . , L.

• The multilevel hierarchy operators Dℓ, Pℓ and Rℓ are constructed during
the setup phase, and we refer to them as givens. The setup phase, which
has been thoroughly covered in Chapter 4, is disregarded in all multilevel
algorithms.

• In all multilevel algorithms, there are two main phases that are presented:
first, the stochastic phase and followed by the coarsest phase. The low-
rank term is an additional phase found in the MG-MLMC++ and Deflated
MG-MLMC algorithms.

• The goal is to calculate the trace of the inverse matrix tr(D−1). This is
obtained by approximating the trace for each phase and adding them all up
to get the estimated trace value in total.

• The target variance is given as ρ = ε tr(D−1). Since we are unsure of the
exact trace, we compute a rough estimate τrough for the trace via 5 samples
as in Algorithm 3 to determine ρ.

• For all algorithms, we generate random vectors ψs and use them to compute
a stochastic estimate of the trace at each level:

93

8 Stopping criteria in Multigrid Multilevel Monte Carlo

1. uniform case: The sample mean and variance of these estimates are
used to determine whether the required accuracy has been reached. If
the variance of the estimates is less than the required accuracy squared,
the level is considered to have reached the required accuracy and the
algorithm moves on to the next level. If the variance of the estimates
is greater than the required accuracy squared, more samples are taken
until the required accuracy is reached.

2. optimal case: The sample mean and variance are calculated and used
to update the target accuracy for each active level. If the variance of
a level difference falls below the required accuracy, the level is marked
as inactive, indicating that it has reached the required accuracy. This
process continues until all levels are inactive, at which point the algo-
rithm terminates.

• In general, we use the multigrid method to solve the linear systems.

• We usually compute the trace of the coarsest level directly except for the
very large matrices at very higher target accuracy because of the size of
the coarsest matrix still too large and costly to compute the trace of its
inverse directly so we estimate the trace in that case as stochasticly as
Plain Hutchinson approach.

• For the MG-MLMC++ and deflated MG-MLMC algorithms, the number
of deflation vectors dℓ for each level difference must be chosen a priori.

• Deflation vectors for Deflated MG-MLMC algorithm are computed as in the
exact deflation approach in 6.1.2

• To measure the cost for a stochastic sample, we consider the cost model
in sec. 8.1.1 for the MG-MLMC algorithms and consider the cost model in
sec. 8.1.2 for MG-MLMC++ algorithms.

• All the uniform algorithms use the uniform variance distribution in 8.2.2,
whereas the optimal algorithms are based on the optimal variance distribu-
tion in 8.2.3.

• We describe the algorithms using the decomposition (8.3) with the accumu-
lated prolongations and restrictions. The adaptation to eq. (8.5), should it
apply, is straightforward.

• For algorithms based on the optimal variance distribution as discussed in
sec. 8.2.3,

1. we take averages of the cost for each stochastic sample to get an in-
creasingly accurate average cost estimate Cℓ.

94

8.2 Distributing the variance

2. With this measured cost and the measured sample variance Vℓ we
determine the optimal target variance from (8.17) for each level dif-
ference.

3. This target variance is updated at each additional sample on that level
difference.

• For MG-MLMC++ algorithms, Lines 5 and 6 perform one step of the block
power iteration, the crucial ingredient of the Hutch++ method. We can
perform more than 1, k say, iterations of the block power method by re-
peating these lines with Sℓ in the next sweep equal to Qℓ from the previous
sweep.

8.2.2 Algorithms based on the uniform variance distribution

The uniform variance distribution case is achieved by distributing the target ac-
curacy ρ2 in equal and asking for Vℓ

Nℓ
≤ ρ2

L−1
for all ℓ, and thus the target accuracy

for each level difference is given by:

ρℓ = ϵτ/
√
L− 1 for all ℓ, (8.16)

In practice, this kind of distribution works well and gives good results in simple
examples such as 2d Laplace and Gauge Laplace matrices [41], however, it is
impractical for more advanced problems such as the Schwinger model.So we need
to distribute the target variance in an optimal way as in section 8.2.3 see Alg. 12.

Algorithm 9 shows how to implement the MG-MLMC method for estimating
the trace of the inverse of the matrix tr(D−1) based on the uniform variance
distribution. To obtain the total value of the trace, we first estimate the trace of
the fine-coarse levels differences stochastically τℓ, ℓ = 1, · · · , L− 1 , then compute
the trace of the coarsest level directly τL, and finally, the sum of all trace estimates
at each level is returned as the result.

Algorithm 10 explores evaluating the MG-MLMC++ approach for estimating
the trace of the inverse of the matrix tr(D−1) relying on the uniform variance
distribution, with a fixed number of deflation vectors dℓ at each level difference. To
determine the total value of the trace, we first decompose the matrix by applying
the Hutch++ approach, then compute the trace of the low-rank stage τ lrℓ , estimate
the trace of the differences between the fine and coarse levels stochastically τℓ, ℓ =
1, · · · , L−1, compute the trace of the coarsest level directly τL, and sum all values.

Implementing the Deflated MG-MLMC approach for estimating the trace of the
inverse of the matrix tr(D−1) based on the uniform variance distribution with

95

8 Stopping criteria in Multigrid Multilevel Monte Carlo

Algorithm 9 MG-MLMC, uniform accuracies

Input: D ∈ Cn×n nonsingular, ε relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ matrix on
level ℓ, ℓ = 1, . . . , L

Output: Approximation
∑︁L

ℓ=1 τℓ for tr(D
−1)

1: τL ←
∑︁NL

i=1(e
H
i P̂L)D

−1
L (R̂Lei) ▷ coarsest level is computed directly

2: Compute rough estimate τrough for the trace ▷ via 5 samples in Algorithm 3
3: ρ← ετrough
4: for ℓ = 1, . . . , L− 1 do ▷ all level differences
5: ρℓ ← ρ/

√
L− 1 ▷ accuracy for level difference ℓ

6: for s = 1, 2, . . . do
7: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)

8: τs,ℓ ← ψHs

(︂
P̂ ℓD

−1
ℓ R̂ℓψs − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1ψs

)︂
▷ two mg solves

9: τℓ =
1
s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ − τℓ|2 ▷ sample mean and variance

10: if Vℓ/s ≤ ρ2ℓ then
11: stop
12: end if
13: end for
14: end for

a fixed number of deflation vectors dℓ at each level difference is shown in Algo-
rithm 11, taking into account the aforementioned features. To obtain the total
value of the trace, we first decompose the matrix by applying the exact deflation,
then compute the trace of the deflated part τdeflℓ , estimate the trace of the differ-
ences between the fine and coarse levels stochastically τℓ, compute the trace of
the coarsest level directly as τL, and sum all values.

96

8.2 Distributing the variance

Algorithm 10 MG-MLMC++, uniform accuracies

Input: D ∈ Cn×n nonsingular, ϵ relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ ∈ Cnℓ×nℓ

matrix on level ℓ, dℓ number of deflation vectors on level ℓ, ℓ = 1, . . . , L.
Output: Approximation

∑︁L−1
ℓ=1 (τ

lr
ℓ + τℓ) + τL for tr(D−1)

1: for ℓ = 1, . . . , L− 1 do ▷ obtain deflation vectors
2: generate dℓ i.i.d. random vectors si, i = 1, . . . , dℓ, ▷ with distribution

satisfying (5.10)
3: collect them as columns in Sℓ ∈ Cn×dℓ

4: Yℓ ←
(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
Sℓ, ▷ Yℓ ∈ Cn×dℓ , 2dℓ mg solves.

5: Compute QR-factoriz. Yℓ = QℓKℓ ▷ Qℓ = [q1| · · · |qdℓ] ∈ Cn×dℓ has orthon.
cols

6: τ lrℓ ←
∑︁dℓ

i=1 q
H
i

(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
qi ▷ low rank part, use mg to

solve lin. sys.
7: end for
8: τL ←

∑︁NL

i=1(e
H
i P̂L)D

−1
L (R̂Lei) ▷ coarsest level is computed directly

9: Compute rough estimate τrough for the trace ▷ via 5 samples in Algorithm 3
10: ρ← ετrough
11: for ℓ = 1, . . . , L− 1 do ▷ all level differences
12: ρℓ ← ρ/

√
L− 1 ▷ accuracy for level difference ℓ

13: for s = 1, 2, . . . do
14: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
15: zs ← ψs −Qdℓ(Q

H
dℓ
ψs) ▷ projected vector

16: τs,ℓ ← zHs

(︂
P̂ ℓD

−1
ℓ R̂ℓψs − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1ψs

)︂
▷ two mg solves

17: τℓ =
1
s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ − τℓ|2 ▷ sample mean and variance

18: if Vℓ/s ≤ ρ2ℓ then
19: stop
20: end if
21: end for
22: end for

97

8 Stopping criteria in Multigrid Multilevel Monte Carlo

Algorithm 11 Deflated MG-MLMC, uniform accuracies

Input: D ∈ Cn×n nonsingular, ϵ relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ ∈ Cnℓ×nℓ

matrix on level ℓ, dℓ number of deflation vectors on level ℓ, ℓ = 1, . . . , L,
Output: Approximation

∑︁L−1
ℓ=1 (τ

defl
ℓ + τℓ) + τL for tr(D−1)

1: for ℓ = 1, . . . , L− 1 do ▷ obtain deflation vectors

2: compute left singular vectors qi of
(︂
P̂ ℓDℓR̂ℓ − P̂ ℓ+1Dℓ+1R̂ℓ+1

)︂
, i =

q1, · · · , qdℓ
3: Qdℓ = [q1| · · · |qdℓ]
4: τdeflℓ ←

∑︁dℓ
i=1 q

H
i

(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
qi ▷ low rank, solve lin.

systems using mg.
5: end for
6: τL ←

∑︁NL

i=1(e
H
i P̂L)D

−1
L (R̂Lei) ▷ coarsest level is computed directly

7: Compute rough estimate τrough for the trace ▷ via 5 samples in Algorithm 3
8: ρ← ετrough
9: for ℓ = 1, . . . , L− 1 do ▷ all level differences
10: ρℓ ← ρ/

√
L− 1 ▷ accuracy for level difference ℓ

11: for s = 1, 2, . . . do
12: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
13: zs ← ψs −Qdℓ(Q

H
dℓ
ψs) ▷ projected vector

14: τs,ℓ ← zHs

(︂
P̂ ℓD

−1
ℓ R̂ℓψs − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1ψs

)︂
▷ two mg solves

15: τℓ =
1
s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ − τℓ|2 ▷ sample mean and variance

16: if Vℓ/s ≤ ρ2ℓ then
17: stop
18: end if
19: end for
20: end for

98

8.2 Distributing the variance

8.2.3 Algorithms based on the optimal variance distribution

This kind of distribution relies on stopping criteria which use the current sample
variances Vℓ and the current estimates for the costs Cℓ. If these estimates were
indeed the exact variances and the exact cost (per stochastic sample), and if τ
were the exact trace, we see that the computation at level ℓ would stop after
having performed Nℓ stochastic samples with Nℓ the smallest number for which

Vℓ/Nℓ ≤

(︄√︁
CℓVℓ

/︄
L−1∑︂
j=1

√︁
CjVj

)︄
ρ2, (8.17)

where ρ = ε tr(D−1) and ε dentes to the relative accuracy. Thus, up to rounding
to the next integer, we have

Nℓ =
1

ρ2

√︁
CℓVℓ

L−1∑︂
j=1

√︁
CjVj, (8.18)

which is the optimal number of samples such that the total cost is minimized, see
section 7.2.2.

A variant of the uniform distribution as in Algorithms in Sec. 8.2.2, turned the
optimal distribution, updates the parameter ρℓ in a unique way. This approach
is based on the following reasoning: for non-active levels, the sample variances
Vℓ/Nℓ are taken as the exact variances for their contribution τℓ to the trace.
Therefore, the variances for the remaining active levels should add up to a variance
of ρ2 −

∑︁L
j=1,j non active ρ

2
j . Algorithm 0 is used to determine the target accuracy

to aim for on each of the active levels, in order to achieve minimal cost for this
requirement.

ρℓ ←
(︂√

CℓVℓ /
∑︁L−1

j=1,j active

√︁
CjVj

)︂1/2
·
(︂
(ετ)2 −

∑︁L−1
j=1,j non active ρ

2
j

)︂1/2

This optimal approach distributes the target accuracy at the levels differences to
ensure that the lowest possible occupancy and fits the difference across each level.
On the other hand, we can notice that for each stochastic sample the accuracy
dynamically adapts during the experiment to each level difference according to
the variance and the cost quantities that we estimated per each sample. Based
on the accuracy type, one can display different methods, including:

99

8 Stopping criteria in Multigrid Multilevel Monte Carlo

• Deflated Hutchinson (Exact deflation) 4 which is used as a reference for
comparison. We did not use non-deflated Hutchinson, because its perfor-
mance is by two orders of magnitude worse than that of deflated Hutchinson.

• MG-MLMC with uniform target variances on the levels differences and its
modification working with optimal target variances and the corresponding
two versions for MG-MLMC++ and Deflated MG-MLMC.

Algorithm 12 describes the implementation of the MG-MLMC approach for es-
timating the trace of the inverse of the matrix tr(D−1) relying on the optimal
variance distribution. To obtain the total value of the trace, we do as same as in
Alg. 9.

Algorithm 12 MG-MLMC, optimal accuracies

Input: D ∈ Cn×n nonsingular, ε relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ matrix on
level ℓ, ℓ = 1, . . . , L

Output: Approximation
∑︁L

ℓ=1 τℓ for tr(D
−1)

1: Set all levels ℓ to active ▷ non active levels have reached required accuracy
2: τL ←

∑︁NL

i=1(e
H
i P̂L)D

−1
L (R̂Lei) ▷ coarsest level is computed directly

3: for s = 1, 2, . . . until all levels ℓ are not active do
4: for ℓ = 1, . . . , L− 1 and ℓ is active do ▷ next stoch. est.
5: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)

6: τs,ℓ ← ψHs

(︂
P̂ ℓD

−1
ℓ R̂ℓψs − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1ψs

)︂
, cost is Cs,ℓ

7: τℓ =
1
s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ − τℓ|2 ▷ sample mean and variance

8: Cℓ =
1
s

∑︁s
i=1Cs,ℓ ▷ average cost per sample

9: end for
10: τ =

∑︁L
ℓ=1 τℓ

11: for ℓ = 1, . . . , L− 1 and ℓ is active do ▷ update target accuracies ρℓ

12: ρℓ ←
(︂√

CℓVℓ /
∑︁L−1

j=1

√︁
CjVj

)︂1/2
· (ετ)

13: if Vℓ/s ≤ ρ2ℓ then
14: set level ℓ to inactive ▷ Nℓ = s
15: end if
16: end for
17: end for

Algorithm 13 describes the implementation of the MG-MLMC++ approach for
estimating the trace of the inverse of the matrix tr(D−1) relying on the optimal
variance distribution, with a fixed number of deflation vectors dℓ at each level
difference. We follow the same procedure as in 10 to obtain the total value of the
trace.

100

8.2 Distributing the variance

Algorithm 13 MG-MLMC++, optimal accuracies

Input: D ∈ Cn×n nonsingular, ϵ relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ ∈ Cnℓ×nℓ

matrix on level ℓ, dℓ number of deflation vectors on level ℓ, ℓ = 1, . . . , L,
Output: Approximation τ + τL for tr(D−1)
1: for ℓ = 1, . . . , L− 1 do ▷ obtain deflation vectors
2: generate dℓ i.i.d. random vectors si, i = 1, . . . , dℓ, ▷ with distribution

satisfying (5.10)
3: collect them as columns in Sℓ ∈ Cn×dℓ

4: Yℓ ←
(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
Sℓ, ▷ Yℓ ∈ Cn×dℓ , , 2dℓ mg solves.

5: Compute QR-factoriz. Yℓ = QℓKℓ ▷ Qℓ = [q1| · · · |qdℓ] ∈ Cn×dℓ has orthon.
cols

6: τ lrℓ ←
∑︁dℓ

i=1 q
H
i

(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
qi ▷ low rank part, use mg to

solve lin. sys.
7: end for
8: τL ←

∑︁NL

i=1(e
H
i P̂L)D

−1
L (R̂Lei) ▷ coarsest level is computed directly

9: Set all levels ℓ to active ▷ non active levels have reached required accuracy
10: for s = 1, 2, . . . until all levels ℓ not active do ▷ stochastic part
11: for ℓ = 1, . . . , L− 1 and ℓ is active do
12: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
13: zs = ψs −Qℓ(Q

H
ℓ ψs) ▷ projected vector

14: τs,ℓ ← zHs

(︂
P̂ ℓD

−1
ℓ R̂ℓψs − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1ψs

)︂
15: Cs,ℓ ← cost for lines 11 - 12
16: τℓ =

1
s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ − τℓ|2 ▷ sample mean and variance

17: Cℓ =
1
s

∑︁s
i=1Ci,ℓ ▷ average cost per sample

18: end for
19: τ =

∑︁L
ℓ=1(τℓ + τ lrℓ)

20: for ℓ = 1, . . . , L− 1 and ℓ is active do ▷ update target accuracies ρℓ

21: ρℓ ←
(︂√

CℓVℓ /
∑︁L−1

j=1

√︁
CjVj

)︂1/2
· (ϵτ)

22: if Vℓ/s ≤ ρ2ℓ then
23: set level ℓ to inactive
24: end if
25: end for
26: end for

101

8 Stopping criteria in Multigrid Multilevel Monte Carlo

Algorithm. 14 illustrates implementing the Deflated MG-MLMC method for es-
timating the trace of the inverse of the matrix tr(D−1) based on the optimal
variance distribution with a fixed number of deflation vectors dℓ at each level
difference. We follow the same procedure as in 11 to obtain the total value of the
trace.

Algorithm 14 Deflated MG-MLMC, optimal accuracies

Input: D ∈ Cn×n nonsingular, ϵ relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ ∈ Cnℓ×nℓ

matrix on level ℓ, dℓ number of deflation vectors on level ℓ, ℓ = 1, . . . , L,
Output: Approximation

∑︁L−1
ℓ=1 (τ

defl
ℓ + τℓ) + τL for tr(D−1)

1: for ℓ = 1, . . . , L− 1 do ▷ obtain deflation vectors

2: compute left singular vectors qi of
(︂
P̂ ℓDℓR̂ℓ − P̂ ℓ+1Dℓ+1R̂ℓ+1

)︂
, i =

q1, · · · , qdℓ
3: Qdℓ = [q1| · · · |qdℓ]
4: τdeflℓ ←

∑︁dℓ
i=1 q

H
i

(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
qi ▷ deflated part, solve lin.

systems using mg.
5: end for
6: τL ←

∑︁NL

i=1(e
H
i P̂L)D

−1
L (R̂Lei) ▷ coarsest level is computed directly

7: Set all levels ℓ to active ▷ non active levels have reached required accuracy
8: for s = 1, 2, . . . until all levels ℓ not active do ▷ stochastic part
9: for ℓ = 1, . . . , L− 1 and ℓ is active do
10: generate next random vector ψs ▷ ψs i.i.d. satisfying (5.10)
11: zs = ψs −Qℓ(Q

H
ℓ ψs) ▷ projected vector

12: τs,ℓ ← zHs

(︂
P̂ ℓD

−1
ℓ R̂ℓψs − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1ψs

)︂
13: Cs,ℓ ← cost for lines 11 - 12
14: τℓ =

1
s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ − τℓ|2 ▷ sample mean and variance

15: Cℓ =
1
s

∑︁s
i=1Ci,ℓ ▷ average cost per sample

16: end for
17: τ =

∑︁L
ℓ=1(τℓ + τdeflℓ)

18: for ℓ = 1, . . . , L− 1 and ℓ is active do ▷ update target accuracies ρℓ

19: ρℓ ←
(︂√

CℓVℓ /
∑︁L−1

j=1

√︁
CjVj

)︂1/2
· (ϵτ)

20: if Vℓ/s ≤ ρ2ℓ then
21: set level ℓ to inactive
22: end if
23: end for
24: end for

Algorithm 15 describes the implementation of the Adaptive MG-MLMC++ ap-
proach for estimating the trace of the inverse of the matrix tr(D−1) relying on
the optimal variance distribution, with a dynamical number of deflation vectors

102

8.2 Distributing the variance

dℓ at each level difference. We follow the same procedure as in 13 to obtain the
total value of the trace.

Algorithm 15 Adaptive MG-MLMC++, optimal accuracies

Input: D ∈ Cn×n nonsingular, ϵ relative accuracy, L number of levels, R̂ℓ, P̂ ℓ

restriction and prolongation operators between levels 1 and ℓ, Dℓ ∈ Cnℓ×nℓ

matrix on level ℓ, ℓ = 1, . . . , L,
Output: Approximation

∑︁L−1
ℓ=1 (τ

lr
ℓ + τℓ) + τL for tr(D−1)

1: Set all levels ℓ to active ▷ non active levels have reached required accuracy
2: for s = 1, 2, . . . until all levels ℓ not active do ▷ stochastic part
3: for ℓ = 1, . . . , L− 1 and ℓ is active do
4: generate dℓ,s = i.i.d. random vectors
5: collect them as columns in Sℓ ∈ Cn×dℓ,s

6: Yℓ ←
(︂
P̂ ℓD

−1
ℓ R̂ℓ − P̂ ℓ+1D

−1
ℓ+1R̂ℓ+1

)︂
ηℓ, ▷ Yℓ ∈ Cn×dℓ , , 2dℓ mg solves.

7: Compute QR-factoriz. Yℓ = QℓKℓ ▷ Qℓ = [q1| · · · |qdℓ,s] ∈ Cn×dℓ,s has
orthon. cols

8: Cs,ℓ ← cost
9: τ lrℓ = 1

s

∑︁s
i=1 τi,ℓ, Vℓ =

1
s−1

∑︁s
i=1 |τi,ℓ− τℓ|2 ▷ sample mean and variance

10: Cℓ =
1
s

∑︁s
i=1Ci,ℓ ▷ average cost per sample

11: ρℓ ←
(︂√

CℓVℓ /
∑︁L−1

j=1

√︁
CjVj

)︂1/2
· (ϵτ lr)

12: if Vℓ/s ≤ ρ2ℓ then
13: set level ℓ to inactive
14: end if
15: end for
16: end for
17: τL ←

∑︁NL

i=1(e
H
i P̂L)D

−1
L (R̂Lei) ▷ coarsest level is computed directly

18: do stepts from 9 to 26 in Alg. 13 to compute τl

8.2.4 Skipping levels approach

According to numerical experiments, in some MG-MLMC cases such as the Schwinger
example, the number of nonzero elements in the projected matrix D2 = R1D1P1

is nearly the same as at the second level difference ℓ = 2 which makes the second
level nearly as expensive as the first. Consequently, the concept of skipping levels
might be a helpful way to let us get rid of the second-level difference [41].

Assume four-level multigrid hierarchy since the number of levels differences ℓ = 3
then the operator at each level difference is given as:

103

8 Stopping criteria in Multigrid Multilevel Monte Carlo

D−1
1 = D−1

1 − P1̂D
−1
2 R1̂⏞ ⏟⏟ ⏞

1st level diff

+P1̂D
−1
2 R1̂ − P2̂D

−1
3 R2̂⏞ ⏟⏟ ⏞

2nd level diff

+P2̂D
−1
3 R2̂ − P3̂D

−1
4 R3̂⏞ ⏟⏟ ⏞

3rd level diff

+P3̂D
−1
4 R3̂.

(8.19)
We can contract the two first terms , skipping the inversion with D2, to get

D−1
1 = D−1

1 − P2̂D
−1
3 R2̂ + P2̂D

−1
3 R2̂ − P3̂D

−1
4 R3̂ + P3̂D

−1
4 R3̂. (8.20)

and now estimate the trace of these three (instad of four) terms.

As a result of avoiding inversions with D2 during the multilevel trace expansion,
the first term in (8.20) may have a higher variance than the first or second terms
in the summation in (7.60). Skipping levels may be caused by increasing the
number of samples because the subtraction is less accurate. Although, it could
be helpful to apply the Hutch++ or the exact deflation on top of the MG-MLMC
approach as in 7.3.3 and 7.3.4 respectively.

104

Chapter 9
Numerical Results

In this chapter, four different mathematical models used in physics for numer-
ical experiments are presented and analyzed, including the standard discrete
2−dimensional Laplacian in Sec. 9.2, the 2−dimensional gauge Laplacian in Sec. 9.3,
the Schwinger model in Sec. 9.4 and the Wilson-Dirac matrix found in Lattice
QCD in Sec. 9.5. Each of these models has its own level of complexity and is used
in different areas of physics research.

The 2d Laplacian is the simplest model among the four and is a symmetric,
positive definite matrix with an analytical known trace. It is often used as a basic
test problem for numerical methods. The gauge Laplacian is a modification of the
2d Laplacian, where the coupling coefficients are complex numbers with random
phases. It is used as a first step in modeling gauge field theories in physics. It is
a little more complex than the 2d Laplacian, but still relatively straightforward.

The Schwinger model is a quantum field theory that describes the behavior of
electrons and positrons in the presence of an electromagnetic field. It results in
the 2−dimentional Dirac operator and it is considered to be a relatively complex
model. The LQCD is the most complex model among the four and requires
sophisticated algorithms for its solution.

9.1 Methodology

When deciding which model to use for a particular research question, it is impor-
tant to consider the available computational resources and the level of complexity
required for the research. The 2d Laplacian is a good starting point for simple
research questions with limited computational resources, while the gauge Lapla-
cian, Schwinger model, and LQCD may be more appropriate for more complex

105

9 Numerical Results

research questions that require more computational power. Each of these models
has its own advantages and disadvantages and the choice of model will depend
on the specific research question and desired level of accuracy.

We always comapre the performance of an MG-MLMC algorithms to the plain
Hutchinson method, Algorithm 3, and to exactly deflated Hutchinson as described
in Algorithm 4.

In this study, we conduct numerical experiments on a single thread of a node with
44 cores Intel Xeon Processor E5-2699 v4 @ 2.20GHz. We are using MATLAB
R2021a for the 2-dimensional Laplacian and LQCD, and using Python for the
gauge Laplacian and the Schwinger model. Our goal is to achieve a relative
accuracy of ϵ = 10−3 in examples 9.2, 9.3 and 9.4 and ϵ = 5 × 10−5 in example
9.5.

To assess the performance of the algorithms we use the simple cost model pre-
sented in section 8.1 which counts the arithmetic operations in all occurring
matrix-vector multiplications, i.e. in the projections, the restrictions and pro-
longations and in the smoothing iteration in the multigrid solver. This arithmetic
cost is proportional to the number of non-zeros in the respective matrix.

For each stochastic sample for (7.53) we have to solve linear systems with the
matrices Dℓ and Dℓ+1. This is done using a multigrid method based on the same
prolongations Pℓ, restrictions Rℓ and coarse grid operators Dℓ that we use to
obtain our multilevel decomposition 7.53. However, when multigrid is used as a
solver, we use the full hierarchy going down to coarse grids of very small sizes,
whereas in the multilevel decomposition (7.53) used in multilevel Monte-Carlo we
might stop at an earlier level.

In the first two examples, the simplest MG-MLMC (uniform MG-MLMC) Alg. 9
is sufficient to achieve the required accuracy with less cost when compared to
deflated Hutchinson [41]. As a result, we will need to conduct additional exper-
iments utilizing another more sophisticated algorithms such as MG-MLMC++
Alg. 13 in those circumstances [63].

9.2 Two-dimensional Laplace

The 2d Laplacian is a mathematical operator that describes the distribution of a
scalar field over a two-dimensional surface. The discrete 2d Laplacian is a matrix
representation of this operator for a specific case, where the field is approximated
on an equidistant grid in the unit square with Dirichlet boundary conditions. The

106

9.2 Two-dimensional Laplace

matrix, denoted as LN , is an N2 ×N2 matrix, with I being the N ×N identity
matrix and defined as

LN = B ⊗ I + I ⊗B, B =

⎡⎢⎢⎢⎣
2 −1
−1 2

. . .
. −1
−1 2

⎤⎥⎥⎥⎦ ∈ CN×N

The eigenvalues of LN are explicitly known, which allows for the calculation of
the trace of the inverse, which is directly available as equal to the sum of the
inverses of the eigenvalues.

For the multigrid hierarchy, the standard bilinear interpolation from a grid of size
Nℓ+1×Nℓ+1 to one of size Nℓ×Nℓ is chosen as Pℓ, as described in [99], where Nℓ is
the size of the matrix on level ℓ of a multigrid hierarchy. The number of grid points
in one dimension on level ℓ is recursively defined as Nℓ+1 = ⌊Nℓ

2
⌋. The coarse grid

operators LNℓ are obtained as Galerkin approximations LNℓ+1 = RℓL
N
ℓ Pℓ, and the

restrictions Pℓ are taken as the adjoints of the interpolations Pℓ. Since nℓ = N2
ℓ ,

the operator LNℓ at level ℓ is a nℓ × nℓ matrix.

A V-cycle multigrid algorithm with one step of Gauss-Seidel pre- and post-
smoothing is used as the solver. The solver starts at the finest level of the hi-
erarchy, performs a series of operations on the various levels, and then reaches
the coarsest level of the hierarchy, where the size of the matrix is N2 = 72. At
this level, the matrix is inverted directly using a Cholesky factorization. For
multilevel Monte-Carlo, the maximum number of levels, L, is chosen such that
NL = 15. This choice is made because the cost for the direct computation of
the trace at level L, which requires the inversion of a matrix of size 152 = 225,
is small enough compared to the other costs. The parameters and quantities for
this example are summarized in Table 9.1, which includes the matrix size (N),
the number of levels (L), the number of eigenvalues deflated (ndefl), and the num-
ber of nodes (nℓ) and non-zero elements (nnz(LNℓ)) in the matrix at each level.
The sizes of the matrices in this example range from 632 × 632 = 3969 × 3969
to 5112 × 5112 = 261.121 × 261.121. The data in the table reflects that as the
matrix size increases, the number of levels and the number of eigenvalues deflated
also increases, while the number of nodes and non-zero elements in the matrix
decreases at each level.

In Figure 9.1, results are presented for a study that aimed to determine the most
time-efficient number of eigenvalues to use in the deflated Hutchinson method for
a specific problem with N = 127 and a target relative accuracy of ϵ = 10−3. The
study found that as the number of deflated eigenpairs is increased, the number of
stochastic samples required to reach the target accuracy decreases. The left side

107

9 Numerical Results

2d Laplace

N ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6 ndefl L

63 nℓ 632 312 152 92 3
nnz(LNℓ) 1.96e4 8.28e3 1.85e3

127 nℓ 1272 632 312 152 44 4
nnz(LNℓ) 8.01e4 3.50e4 8.28e3 1.85e3

255 nℓ 2552 1272 632 312 152 64 5
nnz(LNℓ) 3.24e5 1.44e5 3.50e4 8.28e3 1.85e3

511 nℓ 5112 2552 1272 632 312 152 76 6
nnz(LNℓ) 1.30e6 5.82e5 1.44e5 3.50e4 8.28e3 1.85e3

Table 9.1: Parameters and quantities for Example 9.2

0 50 100 150 200 250 300

deflated eigenvalues

0

5

10

15

20

25

30

35

40

45

ti
m

e

2d Laplace: N = 127, eps = 0.001

defl. Hutch: total

defl. Hutch.: eigen comp.

defl. Hutch: stoch. estimation

multilevel MC

0 50 100 150 200 250 300

deflated eigenvalues

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

w
o

rk

10
9 2d Laplace, N = 127, eps = 0.001

defl. Hutch w/o eigen comp.

defl. Hutch: projections

defl. Hutch: lin. solves

mulilevel MC

Figure 9.1: 2d Laplace: Comparison of execution times and arithmetic cost for
multilevel Monte-Carlo and deflated Hutchinson, varying ndefl.

of the figure shows that this results in a significant reduction in execution time
up to around 50 deflated eigenpairs. Beyond that point, the cost for computing
the eigenpairs becomes increasingly larger, eventually becoming the main factor
determining the overall execution time. The bottom horizontal line in Figure 9.1
represents the time required when using the multilevel Monte-Carlo approach
with L = 4 levels. Even when using the optimal number of deflated eigenvalues,
the deflated Hutchinson method takes around 7 times longer than the multilevel
Monte-Carlo approach. The right side of the figure shows the arithmetic cost,
which does not include the cost for the computation of the eigenpairs, as the
details of the specific function used (Matlab’s eigs) are not included. The
top line in the right side of the figure corresponds to the line marked with open
squares on the left side, and it can be seen that the cost model matches the
observed execution times quite accurately.

In Figure 9.1, the cost of the computations is shown for the deflated Hutchinson
method and the multilevel Monte-Carlo approach. The cost for the computation

108

9.2 Two-dimensional Laplace

1 2 3 4 5

level

0

50

100

150

200

250

300

#
 e

s
ti
m

a
te

s

2d Laplace, eps = 0.001

N = 63

N = 127

N = 255

N = 511

63 127 255 511

Lattice Size

10
8

10
9

10
10

c
o

s
t

2d Laplace, eps = 0.001

multilevel MC

defl. Hutch w/o eigen comp.

Figure 9.2: Comparison of multilevel Monte-Carlo and optimally deflated
Hutchinson for the 2d Laplace matrix: no of stochastic samples on each level
difference (7.53) and total cost for different N .

of projections, which is the cost of calculating (I − UU∗)x = x − U(U∗x) where
U is the matrix of eigenvectors and ndefl is the number of deflated eigenpairs, is
shown as one of the lines below the top line, and it is equal to 2nndefl. The cost
of linear solves, which is the cost of solving the linear systems, is shown as the
other line below the top line. The horizontal line represents the cost for multilevel
Monte-Carlo approach. It can be observed that when a large number of eigenpairs
are deflated, the cost of linear solves in the deflated Hutchinson method becomes
similar to that of the multilevel Monte-Carlo approach. This is because both
methods require a similar number of stochastic samples to achieve a certain level
of accuracy in the solution. However, the cost of computation for projection is
still an overhead for deflated Hutchinson.

However, each sample has become significantly more expensive as a result of the
additional projections, so we still see a factor of about 3 in favor of multilevel
Monte-Carlo. We emphasize that this comparison does not account for the cost
of computing the eigenpairs in deflated Hutchinson. None of the timings account
for the time spent configuring the multigrid method. Because we need an efficient
solver in both approaches, we must set up the multigrid method in both deflated
Hutchinson and multilevel Monte-Carlo. prolongations, restrictions, and coarse
grid operators for the discrete 2d Laplace operator are explicitly known and do not
need to be computed, so the multigrid setup time is completely negligible. The
adaptive algebraic multigrid construction used in Examples 9.3 and 9.4 below is
only marginally different, as the time for the multigrid setup is only on the order
of 10 times the time for one subsequent multigrid solve.

In Figure 9.2, an evaluation of the performance of the multilevel Monte-Carlo
and deflated Hutchinson method is presented for four different size parameters,
N = 63, 127, 255, 511. The left portion of the figure depicts the number of stochas-

109

9 Numerical Results

1e-1 1e-1.5 1e-2 1e-2.5 1e-3 1e-3.5 1e-4

eps

10
7

10
8

10
9

10
10

10
11

10
12

10
13

w
o
rk

2d Laplace, N = 127

multilevel MC

Hutchinson

Figure 9.3: Arithmetic cost for multilevel Monte-Carlo and standard Hutchinson
as a function of the target accuracy ϵ.

tic samples required by the multilevel Monte-Carlo approach for each of the dif-
ferences P̂ ℓ(LNℓ)−1R̂ℓ − P̂ ℓ+ 1(LNℓ+1)

−1R̂ℓ+ 1 as stated in equation (7.53). For
the purpose of comparison, the number of stochastic samples required by the de-
flated Hutchinson method, which has been optimized for time, is represented by
dashed horizontal lines. The specific values of ndefl used in the deflated Hutchin-
son method can be found in Table 9.1. The right portion of Figure 9.2 illustrates
the total cost of the different methods, where the cost associated with the compu-
tation of eigenpairs in the deflated Hutchinson method is not taken into account.
The figure demonstrates that in the multilevel Monte-Carlo approach, a smaller
number of samples are required on the fine and expensive levels and a higher
number of samples on the coarse and less expensive levels. The plots on the right
side of the figure illustrate the significant reduction in arithmetic cost achieved
by the multilevel Monte-Carlo approach, with a difference of approximately one
order of magnitude for larger values of N, even without accounting for the cost of
computing eigenpairs in the deflated Hutchinson method.

In Figure 9.3, the performance of our multilevel Monte-Carlo approach is evalu-
ated for a specific size parameter, N = 127, by examining the relationship between
target accuracy, ϵ, and the number of stochastic samples required. The results
indicate that the multilevel Monte-Carlo approach exhibits a quadratic scaling
with respect to ϵ, which is similar to that of the standard Hutchinson method.
This can be observed in the logscale plot, where it is clear that as the target
accuracy decreases, the number of samples required increases at a rate that is
close to quadratic.

110

9.3 Gauge Laplace

This quadratic scaling can be attributed to the fact that our multilevel Monte-
Carlo approach performs a Monte-Carlo sample for each level difference, and as
the accuracy requirement becomes stricter, more samples are needed to achieve
that accuracy. However, it’s worth noting that for larger values of ϵ, the results are
less significant as a minimum of at least 5 stochastic samples is always performed
for each level difference. This means that the cost for multilevel Monte-Carlo is
identical and probably unnecessarily high for ϵ = 10−1 and ϵ = 10−1.5 for all level
differences.

Furthermore, it is also worth noting that the arithmetic cost of the standard
Hutchinson method is between 2 and 3 orders of magnitude higher than that of
the multilevel Monte-Carlo approach for ϵ ≤ 10−2. This highlights the efficiency
of the multilevel Monte-Carlo approach in comparison to the standard Hutchinson
method, especially when a high level of accuracy is required.

9.3 Gauge Laplace

In this example we are studying the gauge Laplacian, denoted as GN , which
is a variation of the standard 2-dimensional discrete Laplace matrix, where the
coupling coefficients, also known as gauge links, are complex numbers of modulus
one but with a random phase. The gauge Laplacian represents a first step towards
the modeling of gauge field theories in physics, where the random coefficients
model the fluctuating background gauge field. In this context, the variables uij
represent the values at a specific grid point (ih, jh), where h = 1/N and i, j =
0, . . . , N − 1. The coupling between the variables is described by one row of the
gauge Laplacian GN ∈ CN2×N2

, which is defined as follows:

4uij − eıΘijui+1,j − eıΦijui,j+1 − e−ıΘi−1,jui−1,j − e−ıΦi,j−1ui,j−1,

i, j = 0, . . . , N − 1,

where the indices are understood to be mod N since periodic boundary conditions
are assumed. It is important to note that gauge Laplacians are Hermitian and
positive semidefinite, and in most cases, they are even positive definite.

Table 9.2 contains parameters and quantities used in an example related to the
gauge Laplacian. The table contains four columns for the size parameter N , the
number of levels ℓ, the number of unknowns nℓ at each level, and the number of
non-zero entries nnz(GN

ℓ) of the gauge Laplacian at each level. The table also
contains two additional columns for the number of deflated eigenpairs ndefl and
the number of levels used in the multilevel Monte-Carlo method L. For each size
parameter, the number of unknowns and non-zero entries decreases as the level

111

9 Numerical Results

increases. This is due to the coarsening of the grid and the reduction of the number
of degrees of freedom at each level. The number of deflated eigenpairs and the
number of levels used in the multilevel Monte-Carlo method are constant across
all size parameters. The example demonstrates the effectiveness of the multilevel
Monte-Carlo method in reducing the computational cost of solving linear systems
with the gauge Laplacian.

Gauge Laplace

N ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ndefl L

64 nℓ 4096 1354 134 60 3
nnz(GN

ℓ) 20480 24900 3172

128 nℓ 16384 5440 554 60 3
nnz(GN

ℓ) 81920 99448 11300

256 nℓ 65536 21802 2348 196 20 4
nnz(GN

ℓ) 327680 394628 49416 6352

512 nℓ 262144 87296 9562 924 20 4
nnz(GN

ℓ) 327680 394628 49416 6352

Table 9.2: Parameters and quantities for Example 9.3

The python pyAMG package, as stated in the reference [75], provides a set of
functions to generate gauge Laplacians with specific distributions for the phases
Θij and Φij of the gauge links. These gauge links are complex numbers with
modulus 1, which are used to model the fluctuating background gauge fields in
physics. In our experiments, we created gauge Laplacians with a grid spacing
of a = 1 and a temperature of β = 0.009 for the distribution of the gauge link
phases.

The pyAMG package also offers a range of algebraic multigrid methods, which we
utilized to construct a multigrid hierarchy for gauge Laplacians. Specifically, we
employed the adaptive smoothed aggregation method, in which for the adaptive
setup we took the parameters to

num candidates = 2, candidate iters = 5, improvement iters = 8.

In order to solve linear systems, we employed the V-cycle multigrid method with
one step of Gauss-Seidel pre- and post-smoothing. Table 9.2 presents a summary
of important quantities for four different Lattice sizes. The table illustrates that
the smoothed aggregation method results in matrices at level 2 that are smaller
by a factor of 3, however, they are more dense as they contain more non-zero
elements than matrices at level 1. Additionally, it can be observed that for the
following levels, the coarsening is quite aggressive as it reduces the sizes by a
factor of approximately 10 and similarly for the number of non-zeros.

112

9.4 Schwinger Model

1 2 3

level

0

100

200

300

400

500

600

#
 e

s
ti
m

a
te

s

Gauge Laplace, eps = 0.001

N = 64

N = 128

N = 256

N = 512

64 128 256 512

N

10
3

10
4

c
o

s
t

Gauge Laplace, eps = 0.001

multilevel MC

defl. Hutch w/o eigen comp.

Figure 9.4: Comparison of multilevel Monte-Carlo and optimally deflated
Hutchinson for the gauge Laplace matrices: no of stochastic samples on each
level difference (7.53) and total cost for different N .

In Figure 9.4, similar to Figure 9.2 for the 2d Laplacian, the performance of the
multilevel Monte-Carlo and optimally deflated Hutchinson methods are evaluated
for the gauge Laplacian. The figure illustrates the number of samples required
at different levels and the arithmetic cost for each method. The results show
that the multilevel Monte-Carlo approach allows for fewer samples to be taken
on fine levels, resulting in a cost reduction of up to a factor of 5 for larger values
of N , such as N = 256 and N = 512. However, for smaller values of N , such
as N = 64, the multilevel Monte-Carlo approach may not be as effective as the
deflated Hutchinson method. It is also important to note that the arithmetic
cost for computing the eigenpairs in deflated Hutchinson is not included in this
comparison.

9.4 Schwinger Model

The third example we discuss the Schwinger discretization of the 2-dimensional
Dirac operator, as introduced by Schwinger in 1962 [91]. This operator is used
to model quantum electrodynamics (QED), which is the quantum field theory
of the electromagnetic interaction between charged particles through photons.
The Schwinger matrix is similar to the gauge Laplacian in that it has a peri-
odic nearest-neighbor coupling on an equidistant grid in the unit square and the
coupling coefficients are based on complex numbers with a modulus of 1 and a
random phase. The difference is that for Dirac operators there are several (here:
two) variables per grid point, representing different spins. With the Pauli matrices

σ1 =

[︃
0 1
1 0

]︃
, σ2 =

[︃
0 i
−i 0

]︃
,

113

9 Numerical Results

and the understanding that a grid variable uij has now two components, i.e.
uij ∈ C2, representing the different spins at grid point (ih, jh), the periodic
coupling is now given as

(4 +m) · uij − eıΘij(I − σ1)ui+1,j − eıΦij(I − σ2)ui,j+1 (9.1)

− e−ıΘi−1,j(I + σ1)ui−1,j − e−ıΦi,j−1(I + σ2)ui,j−1, (9.2)

i, j = 1, . . . , N. (9.3)

Note that the Pauli matrices cross-couple the spins. Thus, if we order spin com-
ponents such that the first spin componentat each grid location comes first and
all second spin components follow, the Schwinger matrix has the form

SN =

[︃
GN B
−B∗ GN

]︃
(9.4)

where the matrices GN are gauge Laplacians and the matrix B represents the
spin cross-coupling.

The Schwinger matrix used in this study is derived from a thermalized config-
uration within a Markov process, which ensures that the random gauge links
follow a Boltzmann distribution with a specified temperature parameter. The
matrix has a size of 2N2 × 2N2, where N = 128, resulting in a matrix of di-
mensions 32, 768× 32, 768. To construct the multigrid hierarchy for this matrix,
we employed an aggregation-based approach similar to the one used for the 4-
dimensional Wilson-Dirac operator; see [7, 40]. This approach involves decreasing
the size of the Lattice at each level and representing the operator as a periodic
nearest neighbor coupling.

Each Lattice site has several degrees of freedom (dofs) represented by variables
of length d. To proceed to the next level, the Lattice is subdivided into smaller
subLattices, called aggregates, with each aggregate becoming a single Lattice site
on the next level. The restriction operator is approximated by computing the d
smallest eigenvectors and assembling them over the aggregates and orthogonaliz-
ing the components. This results in restriction operators that are orthonormal,
and since we take the prolongations to be their adjoints, we are in a simplified
situation for estimating the traces of the differences in multilevel Monte-Carlo.

The Schwinger matrix is not Hermitian, but its eigenvalues come in complex con-
jugate pairs. This is due to a non-trivial symmetry induced by the spin structure
that can be seen from (9.4),

JSN =
(︁
SN
)︁∗
J, where J =

[︃
I 0
0 −I

]︃
,

114

9.4 Schwinger Model

Schwinger model

L ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

4 nℓ 2 · 1282 4 · 322 8 · 82 8 · 22
nnz(Dℓ) 2.94e5 1.64e5 2.46e4 1024

m1 m2 m3 m4 m5

mass value −0.1320 −0.1325 −0.1329 −0.1332 −0.1333
defl. vects. 384 384 512 512 512

Table 9.3: Parameters used in the Schwinger model and number of deflated
eigenvectors chosen in exactly deflated Hutchinson. nnz(Dℓ) denotes the number
of non-zero elements in Dℓ

so that to each right eigenpair (x, λ) of SN corresponds a left eigenpair ((Jx)∗, λ̄).
This spin symmetry can be preserved on the coarser levels if one doubles the dofs;
see [7, 40].

We built a multigrid hierarchy with four levels. For the aggregates, at all levels we
always aggregated 4×4 subLattices into one Lattice site on the next level, and we
started with 2 dofs for the second level and 4 for all remaining levels. Those dofs
are then doubled because we implemented the spin structure preserving approach.
Table 9.3 summarizes the most important information on the multigrid hierarchy.
It also shows the five different (negative) values for the mass m that we used
in our experiments. These values are physically meaningful, and for all of them
the spectrum of SN is contained in the right half plane. As m becomes smaller,
SN becomes more ill-conditioned, so the cost for each stochastic sample increases.
When solving linear systems at the various levels, we used one V-cycle of multigrid
with two steps of Gauss-Seidel pre- and post-smoothing as a preconditioner for
flexible GMRES [87].

Our implementation was done in Python1,2 with the same configuration and pa-
rameters as in [41]. In particular, we use 5 different (negative) masses m to shift
the mass-less Schwinger operator by the respective multiple of the identity, thus
yielding operators with increasing condition number. The multigrid hierarchy
was constructed with a bootstrap setup and aggregation based prolongations as
in DDαAMG [40]. Properties of the matrices at the various levels are summarized
in the top part of Table 9.3.

We use a deflated Hutchinson method as our reference for comparison. We did
not use non-deflated Hutchinson, because its performance is by two orders of
magnitude worse than that of deflated Hutchinson. For deflation, we used the k

1The MG-MLMC program can be found in the GitHub repository
https://github.com/Gustavroot/MLMCTraceComputer

2The MG-MLMC++ programs can be found in the GitHub repository
https://github.com/khlmtf/MGMLMCpp

115

9 Numerical Results

0 50 100

nr deflation vectors

1

1.2

1.4

1.6

1.8

2
c
o

s
ts

:
le

v
e

l
o

n
e

10
4

0 50 100

nr deflation vectors

4000

6000

8000

10000

12000

c
o

s
ts

:
le

v
e

l
tw

o

k=1

k=2

k=3

k=4

0 50 100

nr deflation vectors

600

800

1000

1200

1400

1600

c
o

s
ts

:
le

v
e

l
th

re
e

0 50 100

nr deflation vectors

1.5

2

2.5

3

to
ta

l
c
o

s
ts

:
a

ll
 l
e

v
e

ls

10
4

Figure 9.5: Work at each level difference as a function of the number of vectors
in the block power iteration and total work when taking the same number on all
levels.

smallest eigenmodes that we precomputed, and then optimized k so as to obtain
the smallest overall cost, excluding the cost for the eigenvector computation. So
the work for deflated Hutchinson is actually higher than what we report.

Figure 9.6 reports the arithmetic cost in MFLOPS for five different methods:
Deflated Hutchinson for reference, MG-MLMC with uniform target variances on
the difference levels and its modification working with optimal target variances,
and then the corresponding two versions for MG-MLMC++. Here, we determined
the number k of steps of the block power iteration and the number dℓ of vectors
to be used there by a parameter scan on each level. This scan is reported in
Fig. 9.5. We find that k = 2 is a better choice than k = 1, and that increasing
k further does not result in significant further gains. Also, dℓ ≈ 50 appears as a
good choice on all level differences.

The plot in Fig. 9.6 shows that for all masses considered, the best MG-MLMC
method now outperforms deflated Hutchinson (with an optimal number of de-
flated vectors and without counting the work for computing those). It also shows
that with optimal numbers of vectors in the block power iteration, the “++”-
enhancement improves MG-MLMC by a factor of 1.5 to 3, with a stronger im-
provement for the smaller values of m, i.e. the more ill-conditioned matrices. The

116

9.4 Schwinger Model

-0
.1

33
3

-0
.1

33
2

-0
.1

32
9

-0
.1

32
5

-0
.1

32

shifted mass

10
4

10
5

10
6

c
o
s
t

mlmc uniform

mlmc optimal

mlmc++ uniform

mlmc++ optimal

deflation

Figure 9.6: MG-MLMCM, MG-MLMC++ and deflated Hutchinson for the
Schwinger matrix: total cost for different masses with uniform and the opti-
mized target variances.

influence of the strategy to determine the target variance (“uniform” or “opti-
mized”) is, on the other hand, not very significant.

As a supplementary information, Tab. 9.4 reports the number of stochastic sam-
ples that were carried out on the different level differences. These numbers di-
rectly illustrate the variance reductions achieved in the different approaches. Each
stochastic sample involves the solution of two linear systems (with matrices Dℓ

and Dℓ+1). These are done via multigrid and are thus quite efficient. This is
why the numbers of stochastic samples do not reflect the total arithmetic cost
of the methods, in which, in particular, performing the projections has a high
cost when the deflating subspace becomes larger. Interestingly, there is no visible
dependence on the mass parameter for the MG-MLMC approaches as was already
observed in [41].

The table presents the results of a numerical experiment comparing different
sampling methods for a particular problem. The table shows the number of
samples used for each method at different levels of the multigrid hierarchy. The
results are reported in three different rows, labeled as ”samples/mi, i = 1, · · · , 5”,
representing different measurement time.

The deflated hutchinson method uses a constant number of samples across all lev-
els, while the other methods use different numbers of samples at different levels.

117

9 Numerical Results

method estimates per mass
-0.1320 -0.1325 -0.1329 -0.1333 -0.1333 level

deflation 529 1004 2318 7431 13845

ML opt. 325 321 315 313 306 ℓ = 1
854 873 837 833 791 ℓ = 2
4208 4218 4414 4287 4171 ℓ = 3

ML++ opt. 181 158 143 108 177 ℓ = 1
221 221 200 148 111 ℓ = 2
278 272 243 162 173 ℓ = 3

Table 9.4: Number of stochastic samples for different masses at each level ℓ
for deflated Hutchinson, MG-MLMC and MG-MLMC++, both with optimized
target variances

The ”MG-MLMC uniform” method uses a fixed number of samples at each level,
while the ”MG-MLMC optimal” method uses a variable number of samples at each
level in order to achieve a desired level of accuracy. The ”MG-MLMC++ uni-
form” and ”MG-MLMc++ optimal” methods are variations of the ”MG-MLMC”
methods, with the ”MG-MLMC++ optimal” method using the fewest number of
samples at each level.

The results show that the ”MG-MLMC optimal” and ”MG-MLMC++ optimal”
methods are more efficient than the other methods, using fewer samples at each
level to achieve the same level of accuracy. The ”MG-MLMC optimal” and ”MG-
MLMC++ optimal” method also have the lowest sample numbers at each level,
indicating that they are more efficient. This can be attributed to their ability to
adapt the number of samples to the specific requirements of each level.

9.5 Lattice QCD

In this example, we applied our optimal multigrid multilevel Monte-Carlo ap-
proaches as in Alg. 12 and Alg. 13 to compute the trace of the inverse of the
four dimentional Dirac operator in Lattice QCD, specifically using the clover-
improved Wilson-Dirac discretization. We tested our methods on two Lattices of
size L = 164 with matrix dimension 786, 432× 786, 432 and L = 324 with matrix
dimension 12, 582, 912× 12, 582, 912.

In Lattice QCD simulations, the spacetime is discretized into a four-dimensional
grid known as the Lattice configuration. The Wilson-Dirac matrix is defined as
DW = mI − D0 with m = 4 +m0, where D0 is the hopping matrix constructed

118

9.5 Lattice QCD

from the Lattice configuration and m0 is the quark mass. The parameter κ is
often used as a simulation parameter instead of m0.

The choice of simulation parameters will affect the spectrum of the operator, de-
pending on the Lattice size, boundary conditions, and other parameters. For sim-
ulations setup (provided by the Lattice QCD group at Wuppertal university led by
Prof. Francesco Knechtli) on the two Lattices with sizes 164 and 324, a Luescher-
Weiss gauge action and three flavors of mass-degenerate Wilson-clover fermions
are used with parameters β = 3.55, κ = 0.137, m0 = −0.350364963503650, and
csw = 1.8248654.

These parameter choices resulted in a Lattice spacing of a = 0.0643 fm and a
quark mass very close to the average of the physical up, down, and strange quark
masses, yielding a resulting pion mass of around 420 MeV. We utilized a Matlab
version of the DDαAMG package 3 with parameters as shown in Tab. 9.5 and
using v-cycle to solve linear systems at different levels in the multilevel hierarchy
for our MG-MLMC and the Hutchinson methods. We used three multigrid levels
with aggregation blocks of size 44 from the finest level to the first coarse one, and
of size 24 from the first coarse level to the coarsest.

Parameter Value
test vectors 20

test vectors type EVs
setup tol 10−5

smoother GMRES
GMRES iters 8× 3
presmoothing 0
postsmoothing 1
mlmc solver tol 10−7

coarse tol 10−1

levels 3

Table 9.5: Parameters of DDαAMG

In contrast to previous three examples, we are using the plain Hutchinson method
as reference in this case, as we have found in practice that there are two main
drawbacks of using the deflated Hutchinson method for comparison. Firstly, deter-
mining the optimal number of deflated vectors for each matrix requires scanning
the expected range of vectors, which can be challenging for very large matrices.
Secondly, there is no solid cost model for computing the choosen optimal eigen-
vectors of the matrix. In the Schwinger model case, this work was neglected, but
for Lattice QCD, it is unfair to ignore it, as it can constitute the majority of
the total cost for certain matrix sizes. In addition, our optimal MG-MLMC++

3https://github.com/mrottmann/DDalphaAMG

119

9 Numerical Results

16 32

N

3

4

5

6

7

8

9

10
c
o

s
t

10
6 LQCD, eps = 5e-05

Hutch.

ml opt.

ml opt.++

Figure 9.7: MG-MLMC, MG-MLMC++ and plain Hutchinson for the Lattice
QCD: total cost for different latice sizes 164 and 324 with the optimized target
variances and relative accuracy ϵ = 5e−5.

approach has been found to outperform deflation method in example 9.4, that we
found as a suitable example to compare all MG-MLMC approaches with deflation
method.

Typically, we compute the trace of the coarsest level directly. However, for very
large matrices (like the current example), it becomes computationally expensive
to compute the trace of the inverse directly since the size of the coarsest ma-
trix remains very large. To overcome this limitation, we resort to stochastically
computing the trace of the coarsest level using plain Hutchinson. In practice,
we observed how this approach enhances the cost model in general for very large
matrices with high target accuracy.

The results in Fig. 9.7 report the total arithmetic cost in MFLOPS of three meth-
ods: Hutchinson, MG-MLMC and MG-MLMC++ with optimal target variances
on the difference levels for the multilevel methods. The plot shows that the
multigrid multilevel methods, particularly MG-MLMC++, outperform Hutchin-
son method and significanly reduce the total cost for Lattice size L = 164 by factor
of 3 to 4 and for L = 324 by factor to 2 to 3. In addition, the MG-MLMC++
enhancement improves MG-MLMC by a factor of 1.5 to 3.

120

9.6 Conclusion and Outlook

Figure 9.8 presents a comparison of the sample size obtained using plain Hutchin-
son, MG-MLMC and MG-MLMC++ methods on the difference levels of two
Lattices. The results show that, for both Lattices, the sample size at the first
difference level (the most expensive level) of the multilevel methods is consis-
tently lower than that of the plain Hutchinson method. Additionally, even at the
second difference level, MG-MLMC++ can significantly reduce the samples and
outperform Hutchinson.

1 2 3

Level

10
2

10
3

10
4

s
a

m
p

le
s

LQCD , eps = 5e-05

hutc. N = 16

ml. N = 16

ml.++ N = 16

hutc. N = 32

ml. N = 32

ml.++ N = 32

Figure 9.8: MG-MLMC, MG-MLMC++, and Plain Hutchinson for the Lattice
QCD: the sample size for different latice sizes 164 and 324 with the optimized
target variances and relative accuracy ϵ = 5e−5.

Additional information is provided in Tab. 9.6, which lists the number of stochas-
tic samples that were run on the various level differences.

9.6 Conclusion and Outlook

The goal of this thesis is to enhance the accuracy of estimating the trace and
minimizing computational costs using variance reduction techniques. Two novel
stochastic approaches, MG-MLMC and MG-MLMC++, are proposed for achiev-
ing this objective by utilizing the multilevel hierarchy in the multigrid solves for

121

9 Numerical Results

method type samples nr. per lattice size
164 324 level

Plain Hutchinson 2241 142

MG-MLMC, optimal 918 54 ℓ = 1
7,195 314 ℓ = 2
13,820 335 ℓ = 3

MG-MLMC++, optimal 713 48 ℓ = 1
1,505 134 ℓ = 2
11,921 289 ℓ = 3

Table 9.6: Number of stochastic samples for Lattice sizes L = 164 and L =
324 for Hutchinson, MG-MLMC and MG-MLMC++ at each level ℓ, both with
optimized target variances

linear systems and also for the trace estimation. These methods can be applied in
any problem that requires the computation of the trace of the inverse of a matrix.

The numerical results presented in sections 9.2, 9.3 and 9.4 are notable and have
encouraged us to conduct additional experiments for Lattice QCD as in 9.5, how-
ever we have not compared the performance gains in 9.5 to those achieved by the
deflated Hutchinson method, we have observed significant improvements when
using our multilevel approach to compute Lattice QCD matrices. These results
suggest that our mulilevel approach has great potential for improving the effi-
ciency of Lattice QCD simulations. Moreover, we have not yet applied the Adap-
tive MG-MLMC++ on the Lattice QCD case and still need to test it for both
examples 9.4 and 9.5.

The results in Sec. 9.5 are promising and motivated us to extend the applicability
of the methods to more complex systems and gauge theories, where the com-
putational challenges are even greater. To overcome these challenges, we plan
to implement the multilevel algorithms in parallel using a suitable programming
language. This will enable us to take full advantage of modern computing archi-
tectures and significantly improve the efficiency of our methods.

Our MG-MLMC algorithms are very flexible because of the computation of each
level difference, including the coarsest level in some cases as shown in 9.5, via plain
Hutchinson method. This flexibility allows us to improve the algorithms further
if we can utilize the hierarchical probing technique [94], in the same manner of
deflation approach 7.3.4, that is used for trace estimation in Lattice QCD. This
will all be investigated in upcoming work.

122

List of Figures

3.1 Spectrum of 44 Wilson-Dirac operator (left) and 44 clover improved
Wilson-Dirac operator (right) with m0 = 0 and csw = 0.1 respec-
tively. Image adapted from [83]. 21

4.1 Coupling of variables on equidistant grid for FD Laplace 34

4.2 Schematic of the various approaches to the multigrid method. . . 36

4.3 The construction of the interpolation operator P 39

7.1 shows 2-grid 2-level Monte Carlo example for splitting the original
problem into two parts . 80

9.1 2d Laplace: Comparison of execution times and arithmetic cost for
multilevel Monte-Carlo and deflated Hutchinson, varying ndefl. . . 108

9.2 Comparison of multilevel Monte-Carlo and optimally deflated Hutchin-
son for the 2d Laplace matrix: no of stochastic samples on each
level difference (7.53) and total cost for different N 109

9.3 Arithmetic cost for multilevel Monte-Carlo and standard Hutchin-
son as a function of the target accuracy ϵ. 110

9.4 Comparison of multilevel Monte-Carlo and optimally deflated Hutchin-
son for the gauge Laplace matrices: no of stochastic samples on
each level difference (7.53) and total cost for different N 113

9.5 Work at each level difference as a function of the number of vectors
in the block power iteration and total work when taking the same
number on all levels. 116

123

LIST OF FIGURES

9.6 MG-MLMCM, MG-MLMC++ and deflated Hutchinson for the
Schwinger matrix: total cost for different masses with uniform and
the optimized target variances. 117

9.7 MG-MLMC, MG-MLMC++ and plain Hutchinson for the Lattice
QCD: total cost for different latice sizes 164 and 324 with the op-
timized target variances and relative accuracy ϵ = 5e−5. 120

9.8 MG-MLMC, MG-MLMC++, and Plain Hutchinson for the Lattice
QCD: the sample size for different latice sizes 164 and 324 with the
optimized target variances and relative accuracy ϵ = 5e−5. 121

124

List of Tables

2.1 Notations and abbreviations . 6

4.1 Comparison of the Jacobi, Gauss-Seidel, and SOR methods. . . . 27

9.1 Parameters and quantities for Example 9.2 108

9.2 Parameters and quantities for Example 9.3 112

9.3 Parameters used in the Schwinger model and number of deflated
eigenvectors chosen in exactly deflated Hutchinson. nnz(Dℓ) de-
notes the number of non-zero elements in Dℓ 115

9.4 Number of stochastic samples for different masses at each level ℓ for
deflated Hutchinson, MG-MLMC and MG-MLMC++, both with
optimized target variances . 118

9.5 Parameters of DDαAMG . 119

9.6 Number of stochastic samples for Lattice sizes L = 164 and L =
324 for Hutchinson, MG-MLMC and MG-MLMC++ at each level
ℓ, both with optimized target variances 122

125

List of Algorithms

1 Arnoldi Process . 29
2 Single V-Cycle Multigrid . 35

3 Hutchinson method for estimating tr(D−1) 44

4 Exact Deflation . 58
5 Inexact Deflation . 61
6 Hutch++: for estimating tr(D−1) 64
7 A-Hutch++: for estimating tr(D−1) 68

8 MG-MLMC with fixed accuracies: A proto-type algorithm 87

9 MG-MLMC, uniform accuracies 96
10 MG-MLMC++, uniform accuracies 97
11 Deflated MG-MLMC, uniform accuracies 98
12 MG-MLMC, optimal accuracies 100
13 MG-MLMC++, optimal accuracies 101
14 Deflated MG-MLMC, optimal accuracies 102
15 Adaptive MG-MLMC++, optimal accuracies 103

126

Bibliography

[1] R. H. Affandi, E. Fox, R. Adams, and B. Taskar, Learning the pa-
rameters of determinantal point process kernels, in International Conference
on Machine Learning, PMLR, 2014, pp. 1224–1232.

[2] C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath,
K. Hadjiyiannakou, K. Jansen, G. Koutsou, and A. V. A. Casco,
Proton and neutron electromagnetic form factors from Lattice QCD, Phys-
ical Review D, (2019).

[3] C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath,
K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos,
G. Spanoudes, E. T. M. Collaboration, et al., Complete flavor
decomposition of the spin and momentum fraction of the proton using lat-
tice qcd simulations at physical pion mass, Physical Review D, 101 (2020),
p. 094513.

[4] C. Alexandrou, S. Bacchio, J. Finkenrath, A. Frommer,
K. Kahl, and M. Rottmann, Adaptive aggregation-based domain de-
composition multigrid for twisted mass fermions, Physical review letters, 94
(2016), p. 114509. arxiv hep-lat/1610.02370.

[5] C. Alexandrou, M. Constantinou, T. Korzec, and et al., Twisted
mass qcd and its applications, The European Physical Journal A, 53 (2017),
p. 44.

[6] H. Avron and S. Toledo, Randomized algorithms for estimating the
trace of an implicit symmetric positive semi-definite matrix, J. ACM, 58
(2011).

[7] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A. Man-
teuffel, S. F. McCormick, J. C. Osborn, and C. Rebbi, Adaptive

127

BIBLIOGRAPHY

multigrid algorithm for the lattice Wilson-Dirac operator, Physical review
letters, 105 (2010), p. 201602.

[8] S. G. Bacchio, Simulating maximally twisted fermions at the physical
pointa with multigrid methods, (2019).

[9] J. Baez and J. Huerta, The algebra of grand unified theories, Bulletin
of the American Mathematical Society, 47 (2010), pp. 483–552.

[10] G. Bali, S. Collins, A. Frommer, K. Kahl, I. Kanamori,
B. Müller, M. Rottmann, and J. Simeth, (approximate) low-mode
averaging with a new multigrid eigensolver, 2015.

[11] C. Bekas, A. Curioni, and I. Fedulova, Low cost high performance
uncertainty quantification, in Proceedings of the 2nd Workshop on High
Performance Computational Finance, 2009, pp. 1–8.

[12] T. Bergrath, M. Ramalho, R. Kenway, et al.,
PRACE scientific annual report 2012, tech. rep., PRACE, 2012.
http://www.prace-ri.eu/IMG/pdf/PRACE Scientific Annual Report

2012.pdf, p. 32.

[13] J. Brannick, R. C. Brower, M. A. Clark, J. C. Osborn, and
C. Rebbi, Adaptive Multigrid Algorithm for Lattice QCD, Physical review
letters, 100:041601 (2007).

[14] M. Brezina, T. Manteuffel, S. McCormick, J. Ruge, and
G. Sanders, Towards adaptive smoothed aggregation (αSA) for nonsym-
metric systems, SIAM J. Sci. Comput., 32 (2010), pp. 14–39.

[15] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid
tutorial, SIAM, 2000.

[16] B. C. Brookes and A. N. Kolmogorov, Foundations of the theory of
probability, The Mathematical Gazette, 35 (1951).

[17] Z. Bujanovic and D. Kressner, Norm and trace estimation with ran-
dom rank-one vectors, SIAM Journal on Matrix Analysis and Applications,
42 (2021), pp. 202–223.

[18] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric
indefinite systems of linear equations, SIAM Journal on Numerical Analysis,
8 (1971), pp. 639–655.

[19] J. Campbell, J. Huston, and F. Krauss, The black book of quantum
chromodynamics: a primer for the LHC era, Oxford University Press, 2018.

128

BIBLIOGRAPHY

[20] A. Chapman and Y. Saad, Deflated and augmented krylov subspace tech-
niques, Numerical linear algebra with applications, 4 (1997), pp. 43–66.

[21] A. Cortinovis and D. Kressner, On randomized trace estimates for in-
definite matrices with an application to determinants, Foundations of Com-
putational Mathematics, 22 (2022), pp. 875–903.

[22] A. Cortinovis and D. Kressner, On randomized trace estimates for in-
definite matrices with an application to determinants, Foundations of Com-
putational Mathematics, 22 (2022), pp. 875–903.

[23] Z. Davoudi, W. Detmold, P. Shanahan, K. Orginos, A. Parreno,
M. J. Savage, and M. L. Wagman, Nuclear matrix elements from lattice
qcd for electroweak and beyond-standard-model processes, Physics Reports,
900 (2021), pp. 1–74.

[24] J. A. De La Peña, I. Gutman, and J. Rada, Estimating the estrada
index, Linear Algebra and its Applications, 427 (2007), pp. 70–76.

[25] E. De Sturler, Truncation strategies for optimal krylov subspace methods,
SIAM Journal on Numerical Analysis, 36 (1999), pp. 864–889.

[26] T. A. DeGrand and P. Rossi, Conditioning techniques for dynamical
fermions, Comput. Phys. Commun., 60 (1990), pp. 211–214.

[27] J. Demmel, Applied Numerical Linear Algebra, Society for Industrial and
Applied Mathematics, 1997.

[28] P. A. M. Dirac, The quantum theory of the electron, Proceedings of the
Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, 117 (1928), pp. 610–624.

[29] S. Dong and K. Liu, Stochastic estimation with Z2 noise, Phys. Lett. B,
328 (1994), pp. 130–136.

[30] J. Erhel, K. Burrage, and B. Pohl, Restarted gmres preconditioned
by deflation, Journal of computational and applied mathematics, 69 (1996),
pp. 303–318.

[31] Y. A. Erlangga and R. Nabben, Deflation and balancing precondition-
ers for krylov subspace methods applied to nonsymmetric matrices, SIAM
Journal on Matrix Analysis and Applications, 30 (2008), pp. 684–699.

[32] S. Fischer, A. Frommer, U. Glassner, T. Lippert, G. Ritzen-
hofer, and K. Schilling, A parallel SSOR preconditioner for Lattice
QCD, Comput. Phys. Commun., 98 (1996), pp. 20–34.

129

BIBLIOGRAPHY

[33] J. Fitzsimons, D. Granziol, K. Cutajar, M. Osborne, M. Filip-
pone, and S. Roberts, Entropic trace estimates for log determinants, in
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, Springer, 2017, pp. 323–338.

[34] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz, A local formula-
tion of lattice qcd without unphysical fermion zero modes, Nuclear Physics
B-Proceedings Supplements, 83 (2000), pp. 941–946.

[35] R. Frezzotti, S. Sint, and P. Weisz, O (a) improved twisted mass
lattice qcd, Journal of High Energy Physics, 2001 (2001), p. 048.

[36] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann,
Aggregation-based multilevel methods for Lattice QCD, arXiv preprint
arXiv:1202.2462, (2012).

[37] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann, An
adaptive aggregation based domain decomposition multilevel method for the
lattice wilson dirac operator: Multilevel results, arXiv: High Energy Physics
- Lattice, (2013).

[38] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann,
Adaptive aggregation-based domain decomposition multigrid for the lattice
Wilson–Dirac operator, SIAM J. Sci. Comp., 36 (2014), pp. A1581–A1608.

[39] , Adaptive aggregation based domain decomposition multigrid for the
lattice Wilson-Dirac operator, SIAM J. Sci. Comp., 36 (2014), pp. A1581–
A1608.

[40] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann,
Adaptive aggregation-based domain decomposition multigrid for the lattice
Wilson-Dirac operator, SIAM journal on scientific computing, 36 (2014),
pp. A1581–A1608.

[41] A. Frommer, M. N. Khalil, and G. Ramirez-Hidalgo, A multilevel
approach to variance reduction in the stochastic estimation of the trace of
a matrix, SIAM Journal on Scientific Computing, 44 (2022), pp. A2536–
A2556.

[42] A. Frommer, A. Nobile, and P. Zingler, Deflation and flexi-
ble SAP-preconditioning of GMRES in Lattice QCD simulations, (2012).
arXiv:1204.5463.

[43] A. Frommer and G. Ramirez-Hidalgo, Deflated Multigrid Multilevel
Monte Carlo, PoS, LATTICE2022 (2022), p. 030.

130

BIBLIOGRAPHY

[44] A. S. Gambhir, Disconnected diagrams in Lattice QCD, (2017).

[45] A. S. Gambhir, A. Stathopoulos, and K. Orginos, Deflation as a
method of variance reduction for estimating the trace of a matrix inverse,
SIAM J. on Sci. Comput., 39 (2017), pp. A532–A558.

[46] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G.
Wilson, Gpytorch: Blackbox matrix-matrix gaussian process inference with
gpu acceleration, Advances in neural information processing systems, 31
(2018).

[47] C. Gattringer and C. Lang, Quantum Chromodynamics on the Lattice:
an introductory presentation, vol. 788, Springer Science & Business Media,
2009.

[48] S. Ghahramani, Fundamentals of probability: With stochastic processes,
third edition, 2015.

[49] M. B. Giles, Multilevel Monte Carlo methods., Acta Numer., 24 (2015),
pp. 259–328.

[50] P. Glasserman, Monte Carlo methods in financial engineering, vol. 53,
Springer, 2004.

[51] G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins
University Press, 4th ed., 2013.

[52] W. Greiner, S. Schramm, and E. Stein, Quantum chromodynamics,
Springer Science & Business Media, 2007.

[53] M. Guest, G. Aloisio, R. Kenway, et al., The scientific case
for HPC in Europe 2012 - 2020, tech. rep., PRACE, October 2012.
http://www.prace-ri.eu/PRACE-The-Scientific-Case-for-HPC, p. 75.

[54] W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer
Series in Computational Mathematics, Springer, 1985.

[55] E. Hallman and D. Troester, A multilevel approach to stochastic trace
estimation, Linear Algebra and its Applications, 638 (2022), pp. 125–149.

[56] S. Heinrich,Monte carlo complexity of global solution of integral equations,
Journal of complexity, 14 (1998), pp. 151–175.

[57] S. Heinrich and E. Sindambiwe, Monte carlo complexity of parametric
integration, Journal of Complexity, 15 (1999), pp. 317–341.

[58] N. J. Higham, Functions of Matrices: Theory and Computation, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

131

BIBLIOGRAPHY

[59] J. C. Hull, Options futures and other derivatives, Pearson Education In-
dia, 2003.

[60] M. F. Hutchinson, A stochastic estimator of the trace of the influence
matrix for Laplacian smoothing splines, Comm. Statist. Simulation Com-
put., 19 (1990), pp. 433–450.

[61] W. Joubert, On the convergence behavior of the restarted gmres algorithm
for solving nonsymmetric linear systems, Numerical linear algebra with ap-
plications, 1 (1994), pp. 427–447.

[62] K. Kahl, Adaptive algebraic multigrid for Lattice QCD computations, PhD
thesis, Universität Wuppertal, Fakultät für Mathematik und Naturwis-
senschaften . . . , 2018.

[63] M. Khalil and A. Frommer, MGMLMC++ as a Variance Reduction
Method for Estimating the Trace of a Matrix Inverse, PoS, LATTICE2022
(2022), p. 017.

[64] S. A. Kharchenko and A. Yu. Yeremin, Eigenvalue translation based
preconditioners for the gmres (k) method, Numerical linear algebra with
applications, 2 (1995), pp. 51–77.

[65] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, Why the
monte carlo method is so important today, Wiley Interdisciplinary Reviews:
Computational Statistics, 6 (2014), pp. 386–392.

[66] H. B. Lawson and M.-L. Michelsohn, Spin Geometry (PMS-38), Vol-
ume 38, Princeton university press, 2016.

[67] M. Lüscher, Solution of the Dirac equation in Lattice QCD using a domain
decomposition method, Comput. Phys. Commun., 156 (2004), pp. 209–220.

[68] M. Lüscher, Local coherence and deflation of the low quark modes in
Lattice QCD, JHEP, 2007 (2007), p. 081.

[69] R. Mann, An introduction to particle physics and the standard model, Tay-
lor & Francis, 2010.

[70] R. A. Meyer, C. Musco, C. Musco, and D. P. Woodruff,
Hutch++: Optimal stochastic trace estimation, in Symposium on Simplicity
in Algorithms (SOSA), SIAM, 2021, pp. 142–155.

[71] A. C. Micheas, Theory of Stochastic Objects, 2018.

[72] R. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput., 24
(2002), pp. 20–37.

132

BIBLIOGRAPHY

[73] R. B. Morgan, A restarted gmres method augmented with eigenvectors,
SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 1154–
1171.

[74] R. A. Nicolaides, Deflation of conjugate gradients with applications to
boundary value problems, SIAM Journal on Numerical Analysis, 24 (1987),
pp. 355–365.

[75] L. N. Olson and J. B. Schroder, PyAMG: Algebraic multigrid solvers
in Python v4.0, 2018. Release 4.0.

[76] D. Persson, A. Cortinovis, and D. Kressner, Improved variants
of the hutch++ algorithm for trace estimation, SIAM Journal on Matrix
Analysis and Applications, 43 (2022), pp. 1162–1185.

[77] M. Peskin, An introduction to quantum field theory, CRC press, 2018.

[78] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field
Theory, Westview Press, 1995.

[79] J. Rolf and S. Sint, Twisted mass Lattice QCD, Progress in Particle and
Nuclear Physics, 103 (2018), pp. 74–107.

[80] E. Romero, A. Stathopoulos, and K. Orginos, Multigrid deflation
for lattice QCD, J. Comput. Phys., 409 (2020), p. 109356.

[81] F. Roosta Khorasani and U. Ascher, Improved bounds on sample size
for implicit matrix trace estimators, Foundations of Computational Mathe-
matics, 15 (2015), pp. 1187–1212.

[82] S. M. Ross, Simulation, Oxford, 2022.

[83] M. Rottmann, Adaptive Domain Decomposition Multigrid for Lattice
QCD, PhD thesis, Wuppertal U., 2016.

[84] J. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods,
S. F. McCormick, ed., vol. 3 of Frontiers in Applied Mathematics, SIAM,
Philadelphia, PA, USA, 1987, pp. 73–130.

[85] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM
J. Sci. Comput, 14 (1992), pp. 461–469.

[86] Y. Saad, Analysis of augmented krylov subspace methods, SIAM Journal
on Matrix Analysis and Applications, 18 (1997), pp. 435–449.

[87] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia,
PA, USA, 2nd ed., 2003.

133

BIBLIOGRAPHY

[88] , Numerical Methods for Large Eigenvalue Problems, SIAM, Philadel-
phia, PA, USA, 2nd ed., 2011.

[89] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h, A deflated ver-
sion of the conjugate gradient algorithm, SIAM Journal on Scientific Com-
puting, 21 (2000), pp. 1909–1926.

[90] A. K. Saibaba, A. Alexanderian, and I. C. Ipsen, Randomized
matrix-free trace and log-determinant estimators, Numerische Mathematik,
137 (2017), pp. 353–395.

[91] J. Schwinger, Gauge invariance and mass II, Phys. Rev., 128 (1962),
p. 2425–2429.

[92] J. Sexton and D. Weingarten, Systematic expansion for full QCD
based on the valence approximation, 1994.

[93] B. Sheikholeslami and R. Wohlert, Improved continuum limit Lat-
tice action for QCD with Wilson Fermions, Nuclear Physics B, 259 (1985),
pp. 572–596.

[94] A. Stathopoulos, J. Laeuchli, and K. Orginos, Hierarchical probing
for estimating the trace of the matrix inverse on toroidal lattices, SIAM J.
Sci. Comput., 35 (2013), pp. 299–322.

[95] A. Strebel, Advanced Applications For Algebraic Multigrid Methods In
Lattice QCD, PhD thesis, Universität Wuppertal, Fakultät für Mathematik
und Naturwissenschaften . . . , 2020.

[96] M. Thomson, Modern Particle Physics, Cambridge University Press, 2013.

[97] C. Thron, S. Dong, K. Liu, and H. Ying, Padé-z 2 estimator of
determinants, Physical Review D, 57 (1998), p. 1642.

[98] L. Trefethen and D. Bau, Numerical Linear Algebra, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 1st ed., 1997.

[99] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid.
with Guest Contributions by A. Brandt, P. Oswald, K. Stüben, Academic
Press, Orlando, FL, 2001.

[100] S. Ubaru, J. Chen, and Y. Saad, Fast estimation of tr(f(A)) via
stochastic Lanczos quadrature, SIAM J. Matrix Anal. Appl., 38 (2017),
pp. 1075–1099.

[101] S. Ubaru and Y. Saad, Applications of trace estimation techniques, in
International Conference on High Performance Computing in Science and
Engineering, Springer, 2017, pp. 19–33.

134

BIBLIOGRAPHY

[102] R. Vershynin, High-Dimensional Probability, 2018.

[103] M. J. Wainwright and M. I. Jordan, Log-determinant relaxation for
approximate inference in discrete Markov random fields, IEEE transactions
on signal processing, 54 (2006), pp. 2099–2109.

[104] W. Wilcox, Noise methods for flavor singlet quantities, (1999).

[105] K. G. Wilson, Confinement of Quarks, Physical review D, 10 (1974),
pp. 2445–2459.

135

	Acknowledgments
	Abstract
	Foreword
	Contents
	Introduction
	Mathematical definitions
	Notation
	Basic definitions
	Linear Algebra
	Probability theory

	Quantum chromodynamics on the Lattice
	Overview of the Standard Model of particle physics
	Continuum QCD
	QCD on the Lattice
	Wilson Dirac Operator
	Clover-improved Wilson Dirac operator

	Schwinger model

	Linear Solvers
	Matrix decompositions
	Modified Gram-Schmidt

	Iterative methods
	Krylov Subspace
	Arnoldi Process
	GMRES
	Preconditioning
	FGMRES

	Multigrid Methods
	The Geometry of Multigrid Methods
	The main idea of Multigrid
	Multilevel AMG
	Multigrid in Lattice QCD

	Stochastic Trace Estimation
	Basic idea of trace estimation
	Hutchinson Estimator
	Tail bounds for the Hutchinson estimator
	Accuracy of trace estimation

	Variance Reduction Methods
	Deflation Approach
	Main idea of the deflation approach
	Exact deflation method
	Inexact Deflation

	Hutch++
	A-Hutch++

	Multigrid Multilevel Monte Carlo
	Standard Monte Carlo method
	Computational Cost

	Multilevel Monte Carlo
	Two-level MC
	Multilevel Monte Carlo (MLMC) theory
	Multilevel Monte Carlo for trace estimation
	Error bounds of multilevel Monte Carlo methods

	Multigrid Multilevel Monte Carlo Method
	Two-Grid Two-Level Monte Carlo for trace estimation
	Multigrid Multilevel Monte Carlo for trace estimation
	Multigrid Multilevel Monte Carlo ++ for trace estimation
	Deflated MG-MLMC
	A proto-type algorithm for MG-MLMC approaches

	Stopping criteria in Multigrid Multilevel Monte Carlo
	Cost Model
	MG-MLMC
	MG-MLMC++

	Distributing the variance
	Main features in algorithms
	Algorithms based on the uniform variance distribution
	Algorithms based on the optimal variance distribution
	Skipping levels approach

	Numerical Results
	Methodology
	Two-dimensional Laplace
	Gauge Laplace
	Schwinger Model
	Lattice QCD
	Conclusion and Outlook

	List of Figures
	List of Tables
	Bibliography

