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Summary 
Photosymbiosis is the association between heterotrophs and autotrophs and is the main driver for 

ecological success in oligotrophic aquatic ecosystems. Ciliates, Radiolaria, foraminifers, sponges, 

cnidarians, acoelomorpha and rhabdocoelan worms, mollusks, ascidians, and some amphibians are 

examples of heterotroph hosts. They harbor mainly intracellular photobionts like cyanobacteria, 

dinoflagellates, unicellular green algae, and in special cases, even “stolen” chloroplasts. In mollusks 

like sea slugs three photosymbiotic strategies occur: 1) cladobranchs from the superfamilies 

Fionoidea, Arminoidea, and Aeolidioidea associate with Symbiodiniaceae obtained from their 

photosymbiotic cnidarian prey, 2) cladobranch species belonging to Dendronotoidea that acquire 

their photobiont directly from their environment, and 3) sacoglossan sea slugs that feed on 

macroalgae and sequester the photosynthetically active chloroplasts, known as kleptoplasts. 

 

The study of photosymbiosis breakdown has increased in the past twenty years given the imminent 

threat of climate change to the survival of marine ecosystems, in particular coral reefs. To 

understand how and why the photosymbiosis is disrupted, it is mandatory to study how it begins 

and how it is maintained. Many studies have addressed these questions at the molecular and cellular 

level using the Cnidaria-Symbiodiniaceae model, given its ecological role as main reef-builders. In 

this line, the host innate immune system came into focus, given its important role in distinguishing 

phototrophic partners from harmful pathogens. However, the mechanisms behind the onset and 

maintenance of the photosymbiosis in non-calcifying animals like sea slugs remain largely 

unknown. The aim of the present study was to investigate the onset and maintenance of the 

photosymbiosis in marine slugs.  

 

First, knowledge of photosymbiosis in cladobranchs and unanswered questions about this 

association were compiled into a review, which proposed cladobranchia as a model for studying 

photosymbiosis evolution. Second, the host innate immune receptors involved in the process of 

photobiont recognition were identified in the sacoglossans Elysia cornigera, Elysia timida, and 

Elysia chlorotica, and the cladobranch Berghia stephanieae. Based on the gene expression profile 

of these species, scavenger receptors (SRs) from the class B and E, C-type lectins, and 

thrombospondin-type-1 repeat proteins (TSRs) were identified as potential candidates for plastid 

and Symbiodiniaceae recognition. Particularly for the latter, fibrinogen-like proteins are promising 

candidates in cladobranchs. Further, the diverse SRs and TSRs repertoire in sacoglossan sea slugs 

and cladobranchs is similar to the one present in other photosymbiotic animals like the cnidarians. 
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The maintenance of the photosymbiosis was also a focus in this study. The downstream signaling 

cascades and immune pathways that are activated or suppressed to promote the host tolerance to the 

symbiont, and thus its persistence within the host, were analyzed in B. stephanieae and E. 

chlorotica. Based on the gene expression, the transforming growth factor β (TGF- β) pathway is not 

involved in the immunotolerance to the photobiont in sea slugs, contrary to what is known from 

cnidarians. As other mollusks, B. stephanieae and E. chlorotica lack key elements for the activation 

of the pathway such as the TGF- β sensu stricto ligand. Moreover, the digestion and symbiont 

maintenance occur simultaneously in B. stephanieae during feeding on symbiotic anemones. A 

transcriptional signal for symbiont expulsion via vomocytosis is also activated in this slug. In 

contrast, the general immune response seems to be suppressed in E. chlorotica, and no vomocytosis 

activation was detected while feeding, likely contributing to kleptoplast maintenance. 

The antioxidant defense against toxic by-products like reactive oxygen species (ROS) was activated 

since early stages in E. chlorotica and in adult B. stephanieae in the presence of the photobiont. The 

antioxidant activity was further analyzed in B. stephanieae during feeding and starvation under 

different light intensities. Starvation alone triggers autophagy and may cause symptoms of oxidative 

stress regardless of the light condition. This effect is heightened in light deprived conditions and 

was also evidenced in E. viridis. Starvation in darkness can generate an energy metabolic change 

and an increase of lysosomal abundance in the digestive gland of the slug. Kleptoplasts nutritional 

support is not enough to prevent length loss during starvation and they function more as food 

storage that can be accesed via autophagy. 

 

New genomic tools like mitochondrial genomes and transcriptomes are also presented here. The 

mitogenome of B. stephanieae and E. viridis were sequenced using a combination of Illumina short-

reads and Oxford Nanopore long-reads. The mitogenomes are similar to other heterobranch species 

containing 13 protein-encoding genes, 21 tRNAs and 2 rRNAs. Particular to B. stephanieae is the 

presence of a duplicated tRNA- Ser 1, whereas in E. viridis a tRNA-S2 gene is missing. 

 

The results presented here are pioneer work in the photosymbiosis in marine slugs and contribute to 

understanding how the photosymbiosis begins and how it is maintained. The process of photobiont 

recognition in marine slugs shares similarities to the cnidarian system, which is expected 

considering how conserved and ancient the innate immune system in metazoans is. Comparative 

studies with non-photosymbiotic congeners and stable symbiotic species, as well as from the 

photobiont perspective and the other members of the microbiome, are needed to fully understand 

the photosymbiosis in sea slugs. 
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Chapter 1 

General Introduction 
 

Photosynthetic symbiosis 
 

Symbiosis is the relationship between organisms that live together (De Bary, 1879) found in various 

unicellular and multicellular species. It ranges from parasitic to mutualistic relationships and is an 

imperative driver of evolution (Sapp et al., 1994). Some heterotrophic and phototrophic organisms 

form a particular type of symbiosis known as photosymbiosis or photosynthetic symbiosis (Cowen, 

1988) (Figure 1). This mixotrophy includes endosymbiosis and organelle retention that can be 

facultative or obligate interactions (Johnson, 2011). Often, the phototrophic partner (photobiont) 

resides intracellularly in the heterotrophic partner (host), but there are also extracellular 

photosymbioses. The heterotroph provides the compounds needed for photosynthesis to the 

photobionts, such as ammonium and carbon dioxide. In turn, the phototroph translocates 

photosynthetic products, mainly glucose, to the host (Buchner, 1921; Yonge, 1934; Melo Clavijo et 

al., 2018) (Figure 1). This nutrient exchange is essential for long-term photosymbioses and forms 

the basis for the stability of many aquatic food webs (Chapman, 2013). 

 
 

 

 

Figure 1. Photosymbiosis in Metazoa (modified from Melo Clavijo et al., (2018)). Photosynthetic 

symbionts on the left side, animal hosts on the right side. Lines connect symbionts with hosts. Modified 

with BioRender.com 



General Introduction   Chapter 1 
 
	
  

2 

However, the metabolic integration between the partners and the degree of dependency varies 

(Johnson, 2011), and so does the stability of the symbiosis. The contribution from the photobiont to 

the host’s nutrition ranges from 70 % (Muscatine et al., 1981; Trench et al., 1981; Hawkins & 

Klumpp, 1995; Tanaka et al., 2006; Tremblay et al., 2012) to up to 170 % in some cases (Muscatine 

et al., 1984; Thomas et al., 2023). If the photobionts cannot fully support the hosts, the animals 

forage to obtain nitrogen, phosphorus, and other essential compounds (Davies, 1984; Muscatine et 

al., 1984). Thus, photosymbiosis provides a considerable advantage to animals, especially in low-

nutrient environments (Johnson, 2011; Stanley & Lipps, 2011; Grube et al., 2017). The nutritional 

support enables a higher and faster growth rate of the heterotrophs (Fitt et al., 1986; Starzak et al., 

2014; Gabay et al., 2018) and, in some cases, allows higher calcification rates that form the basis of 

the oldest and most productive marine ecosystem, the coral reefs (Stanley & van de Schootbrugge, 

2009; Stanley & Lipps, 2011; Drake et al., 2020).   
 

The ability to associate with a phototroph partner and establish a photosymbiosis is present in a few 

Metazoa phyla (Melo Clavijo et al., 2018). It involves animal hosts such as sponges, cnidarians, 

acoelomorph and rhabdocoelan worms, mollusks, ascidians, and even some amphibians, and also 

different photobionts like cyanobacteria, dinoflagellates, diatoms, unicellular green algae, and in a 

special case, stolen chloroplasts (Venn et al., 2008; Melo Clavijo et al., 2018; Maruyama & Kim, 

2020). Most animal hosts are marine and inhabit coral reef ecosystems; just a few cases are found in 

freshwater habitats (Melo Clavijo et al., 2018). Common to almost all animal hosts are some 

adaptations that allow them to harbor photobionts and promote their photosynthetic activity by 

increasing the light uptake (Venn et al., 2008). For instance, large surface areas are provided by the 

corresponding volume ratio in the body plan. Also, morphological adaptations such as an extended 

mantle and highly branched digestive systems in some mollusks facilitate exposure of photobionts 

to light (Norton et al., 1992; Farmer et al., 2001; Burghardt et al., 2008a,b; Hernawan, 2008; Moore 

& Gosliner, 2011). Tentacle specialization occurs in some anemones, where one type harbors only 

symbionts and is extended during the day, while the other type is long and filled with nematocysts, 

well adapted to feeding and defense (Day, 1994; Venn et al., 2008). With increased and prolonged 

UV-light exposure, the risk of thermal and light stress increases for both the host and the 

photobiont. To protect itself and the photobiont’s photosystem against potential light and/or thermal 

stress, the animal host has developed a range of protection mechanisms. For example, as a 

photoprotective mechanism, some animal hosts produce fluorescent proteins and accumulate 

mycosporine-like amino acids (MAAs) that act as natural sun blockers (Banaszak et al., 2000; Shick 
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& Dunlap, 2002; Roth, 2014). Some hosts also modify their behavior according to the day-night 

cycle by retracting and extending the tissues harboring the photobionts (Venn et al., 2008; Sorek et 

al., 2014). By doing so, the hosts relocate the photobionts to shallow or deeper parts of the tissue 

(Fang et al., 2016). The animal host also migrates vertically and horizontally in the water column to 

access light during the day or more nutrients at night (Djeghri et al., 2019). 

 

The adaptations to a photosymbiotic lifestyle are not only present in the heterotroph partner, but 

also in the photobiont. The most common photobiont in various animal hosts belongs to the family 

Symbiodiniaceae, Dinoflagellata (Taylor, 1974; Stat et al., 2006; LaJeunesse et al., 2018). Members 

of this family can be host-specific like clade I, which is only found in foraminiferans, or associate 

with hosts that harbor multiple genera/species of Symbiodiniaceae, or have an exclusive free-living 

lifestyle like Effrenium voratum (H.J.Jeong, S.Y.Lee, N.S.Kang & LaJeunesse) LaJeunesse & 

H.J.Jeong 2018 (LaJeunesse et al., 2018; Maruyama & Kim, 2020). Within Symbiodiniaceae, 

several distinct genotypes with different morphological, physiological, and ecological traits exist. 

For instance, genera in Symbiodiniaceae differ in cell size (LaJeunesse, 2001), inorganic carbon 

acquisition (Brading et al., 2013), photosynthetic carbon fixation (Leal et al., 2015), growth rates, 

chlorophyll level (Hennige et al., 2009), MAAs synthesis (Banaszak et al., 2000), enzymatic 

antioxidant repertoire (Krueger et al., 2015), to name a few. These distinct attributes can impact 

how Symbiodiniaceae and its host -the holobiont- respond to environmental changes (Tchernov et 

al., 2004; Goulet et al., 2005, 2008, 2019). To establish a photosymbiosis, the free-living 

Symbiodiniaceae have to transform from a motile stage (with flagella) to a non-motile stage (a 

coccoid form) (Koike et al., 2004; Mohamed et al., 2020). While in the coccoid stage, the cell wall 

structure is thinner (Palincsar et al., 1988; Wakefield et al., 2000; Pasaribu et al., 2015). In 

symbiosis, the cell cycle of Symbiodiniaceae also changes. The G1 phase, where the cell grows and 

prepares for mitosis, is extended dramatically (Stambler, 2011). The progression from G1 phase to 

S is constrained when Symbiodiniaceae is in hospite (Smith & Muscatine, 1999). At the molecular 

level, symbiotic Symbiodiniaceae exhibit an expansion of bicarbonate, glucose, and ammonium 

transporters compared to other dinoflagellates (Aranda et al., 2016). Symbiotic species also show 

massive genome divergence (more transposable elements, genetic duplication, structural 

rearrangements, and pseudogenisation) compared to free-living ones within Symbiodiniaceae 

(González-Pech et al., 2021). 
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The adaptations mentioned above contribute to the successful association between heterotrophs and 

autotrophs, the holobiont. At a deeper level, molecular adaptations enable heterotroph hosts to 

recognize specific endosymbionts and maintain them in a vacuole free from digestion (Johnson, 

2011). These adaptations of the holobiont are still being uncovered and explored with the help of 

new genomic, transcriptomic, proteomic, and metabolomic tools (e.g., Gordon & Leggat, 2010; 

Shinzato et al., 2011; Meyer & Weis, 2012; Barshis et al., 2013; Pernice & Levy, 2014; Baumgarten 

et al., 2015; Aranda et al., 2016; Shoguchi et al., 2018; Maor-Landaw et al., 2020; González-Pech et 

al., 2021). A number of studies have also explored the molecular and cellular events involved in the 

photosymbiosis (e.g., Rosset et al., 2021; Tortorelli et al., 2022), the adaptations required by both 

partners to establish the symbiosis (Allemand & Furla, 2018; González-Pech et al., 2021), and the 

effects of stress on the symbiosis (e.g., Weis, 2008; Baird et al., 2009; Cziesielski et al., 2019; 

Maire et al., 2022; van Woesik et al., 2022). 

 

Innate immunity and photosymbiosis 
 

As with other symbiotic relationships, addressing fundamental questions such as how the 

photosymbiosis is initiated and how it is maintained requires an examination of the immune system 

and its role in the onset of the photosynthetic association (Kitano & Oda, 2006; McFall-Ngai et al., 

2010; Chu & Mazmanian, 2013; Cao et al., 2017). In all organisms, the immune system is the first 

line of defense against microbial invaders. In addition to detecting and eliminating potential 

pathogens, this system also recognizes and manages potential symbionts (Parkin & Cohen, 2001). 

Two immune systems are present in animals: the innate immune system and the adaptive immune 

system (Pancer & Cooper, 2006; Boehm & Swann, 2014; Buchmann, 2014). Generally, the innate 

immune system acts immediately after any microbe invasion and distinguishes between own cells 

and pathogens (Janeway & Medzhitov, 2002). In a more precise way, the adaptive immune system 

recognizes specific microbial invasive proteins (antigens) by specific host proteins (antibodies) 

(Pancer & Cooper, 2006; Boehm & Swann, 2014). Additionally, the adaptive immune system 

provides immunological memory of infection, which enables it to only respond when a particular 

pathogen is present (Janeway & Medzhitov, 2002). 

 

In invertebrates only the innate immune system is present, while in vertebrates both the innate and 

the adaptive immune system are working together (Pancer & Cooper, 2006; Boehm & Swann, 

2014; Buchmann, 2014). The fact that invertebrates only rely on their innate immunity does not 
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imply that it is less complex. For instance, innate immunity memory has evolved in animal lineages 

lacking an adaptive immune response as a result of functional epigenetic reprogramming. This 

promotes the rise, storage, and recall of new immunological capacities in innate immunity cells 

(Gourbal et al., 2018). Furthermore, invertebrates exhibit many gene expansions of different 

immunological components that do not occur in vertebrates (Adema, 2015; Zhang et al., 2015; 

Neubauer et al., 2016; Kamm et al., 2019; Emery et al., 2021). These components are highly diverse 

and contribute to the invertebrate innate immune response to a huge variety of microbe invaders. 
 

Microbe detection or recognition is the first action when a microbe invader is present (Janeway & 

Medzhitov, 2002; Nyholm & McFall-Ngai, 2004; Davy et al., 2012; Nyholm & Graf, 2012). During 

the initial contact between the host and the microbe invader, a molecular signaling process initiates 

the recognition process. In both the animal host and the microbe, cellular receptors (secreted or 

transmembrane) participate in this process (Nyholm & McFall-Ngai, 2004; Davy et al., 2012; 

Nyholm & Graf, 2012). In the host these receptors are called pattern recognition receptors (PRRs), 

while in the microbe they are known as microbe associated molecular patterns (MAMPs) or 

pathogen associated molecular patterns (PAMPs) (Nyholm & Graf, 2012) (Figure 2).  

The interaction between PRRs-

MAMPs/PAMPs triggers different 

signaling cascades that result in the 

elimination of the pathogen or the uptake 

of the potential symbiont (Davy et al., 

2012). In the context of photosymbiosis, 

PRRs like scavenger receptors (SRs) and 

C-type lectins have been proposed as 

key players in the onset of this 

association (Jimbo et al., 2000, 2005; 

Koike et al., 2004; Rodriguez-Lanetty et 

al., 2006; Wood-Charlson et al., 2006; 

Kvennefors et al., 2008, 2010; Lehnert et 

al., 2014; Neubauer et al., 2016). 

In the same way, other elements of the 

innate immunity like the complement 

system (Poole et al., 2016) and the thrombospondin-type-1 repeat (TSRs) domain-containing 

Figure 2. MAMPs and PRRs in photosymbiosis. C3R, TSRs, 
Lectins, TLRs, SRs, and NODs have been proposed as PRRs 
involved in the symbiont recognition in photosymbioses. PG, 
glycans, GPIs, and LPS are some of the MAMPs that can be 
present on the cellular surface of microbes. MAMPs-PRRs 
interaction can trigger signaling cascades that promote the 
elimination of the pathogen (red) or the uptake of the symbiont 
(green). Model based on Davy et al., (2012) and created with 
BioRender.com. 
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proteins (Neubauer et al., 2017) have been hypothesized to act indirectly in the recognition process 

by binding to PRRs or other secondary proteins to amplify the host response (reviewed in Davy et 

al., 2012; Fransolet et al., 2012; Mansfield & Gilmore, 2019). Toll-like receptors (TLRs) and NOD-

like receptors (NDRs) have been identified in photosymbiotic animals (e.g. Emery et al., 2021) and 

their role in the symbiont recognition has been suggested, based on their involvement in pathogen 

recognition and self/altered-self/non-self-recognition (Mohamed et al., 2020). Nevertheless, 

functional studies are still required to establish their role in the symbiosis establishment.  

 

Once the potential symbiont is recognized and engulfed, several host immune pathways are set off 

that will promote the symbiont permanence within the host cell. There is a general 

immunosuppression in the host, where the complement system (Poole et al., 2016), the transforming 

growth factor β (TGF-β) (Detournay et al., 2012; Berthelier et al., 2017; Fuess et al., 2020), and the 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) immune signaling pathways 

(DeSalvo et al., 2010; Wolfowicz et al., 2016; Mansfield et al., 2017) play key roles in the symbiont 

maintenance (reviewed in Mansfield & Gilmore, 2019). The general down-regulation of the host 

immune response prevents the elimination of the symbiont either via apoptosis, selected autophagy 

(Davy et al., 2012), expulsion (vomocytosis) (Jacobovitz et al., 2021), and/or digestion 

(symbiophagy) by inhibiting the phagosome maturation (Hill & Hill, 2012; Mohamed et al., 2016, 

2020). 

 

If the phagosome does not mature and the symbiont avoids elimination, a functional symbiosome 

will be established in intracellular symbioses. This allows the communication between the host and 

the symbiont, including nutrient exchange (Davy et al., 2012; Hill & Hill, 2012; Rosset et al., 

2021). However, in some photosymbioses, such as the one between clams from the family 

Cardiidae and Symbiodiniaceae, the symbiont is located extracellularly in the digestive tubular 

system (Norton et al., 1992; Farmer et al., 2001; Hernawan, 2008). In the acoel Symsagittifera 

roscoffensis (Graff, 1891) the symbionts (the green algae Tetraselmis convolutae (Parke & Manton) 

R.E.Norris, Hori & Chihara, 1980) even reside in the extracellular spaces of the parenchyma (Bailly 

et al., 2014). In both examples no proper individual symbiosome is established, but the metabolic 

exchange between partners still occurs resulting in a stable symbiosis (Yellowlees et al., 2008; 

Leggat et al., 2002; Bailly et al., 2014). Thus, the membrane surrounding the extracellular spaces 

where the symbionts are located might act as a symbiosome-like environment involved in signaling, 

acidification, and molecule trafficking (Bailly et al., 2014). 
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In photosymbioses the photosynthetic activity of the symbionts is the main feature. The symbionts 

need particularly carbon dioxide to perform this light-dependent reaction. The dissolved inorganic 

carbon can be obtained by three different pathways. i) The animal host takes up CO2 from the 

surrounding seawater as bicarbonate, and transports it to the symbiont through the symbiosome via 

bicarbonate transporters. In the symbiosome, bicarbonate is converted into CO2 by carbonic 

anhydrases, and is then available for photosynthesis. ii) The symbionts can take up carbon dioxide 

directly from the seawater. iii) The symbionts receive CO2 as a result of the host metabolism 

(reviewed in Furla et al., 2000a,b; Leggat et al., 2002; Yellowlees et al., 2008; Davy et al., 2012). 

Through photosynthesis, the acquired carbon is fixed and several organic compounds like amino 

acids are synthesized by the symbiont. The photosynthetically fixed carbon and a portion of the 

other photosynthates are translocated to the host supporting respiration, growth, and reproduction 

(Muscatine et al., 1984; Davy et al., 2012; Tremblay et al., 2014). Waste products of the host 

catabolic processes like ammonium are assimilated and recycled by the symbiont, and relocated to 

the host as free amino acids or glycoconjugates (glycans or carbohydrates linked to a protein, 

peptide or lipid) (Sutton & Hoegh-Guldberg, 1990; Markell & Trench, 1993; Wang & Douglas, 

1997; Markell & Wood-Charlson, 2010). Dissolved inorganic nitrate is taken up from the water 

column by the animal host, but only the photosynthetic symbiont can assimilate it, converting it to 

ammonium and subsequently transforming it to amino acids (Tanaka et al., 2006; Leggat et al., 

2007; Yellowlees et al., 2008; Davy et al., 2012).  

  

Symbiosis breakdown 
 

Environmental changes like high temperatures, ocean acidification, high sedimentation, changes in 

salinity, increased nutrients or pollutants (heavy metals), and excessive light exposure are stress 

factors that can disrupt the symbiosis (reviewed in Weis, 2008; Lesser, 2011; Maor-Landaw & 

Levy, 2016; Cziesielski et al., 2019; van Woesik et al., 2022). As a result of drastic changes in 

abiotic factors, photosynthesis may be disrupted, chloroplasts may be damaged, and the photobiont 

may produce excessive amounts of reactive oxygen species (ROS) such as H2O2 and singlet oxygen 

(Lesser, 1997, 2006; Weis, 2008). The excessive production of ROS exceeds the ability of the 

antioxidant system of the photobiont to quench ROS (Lesser, 1997, 2006; Weis, 2008). 

Consequently, ROS accumulate in the photobiont and also diffuse into the host cells. Yet, it is 

unclear how ROS from the symbionts leak into the animal cells while in hospite. In addition, 

elevated temperature and light can also directly damage the host mitochondria leading to increased 
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ROS levels (Nii & Muscatine, 1997; Weis, 2008; Lesser, 2011). Generally, high levels of ROS can 

cause oxidative damage to cells via lipid peroxidation, protein oxidation, and DNA degradation, 

leading to a general metabolic dysfunction (Lesser, 2006). This then leads to a stress response in the 

animal host to counteract the ROS stress, inducing the disruption of the symbiosis, the so-called 

bleaching  (Lesser, 1997, 2011; Weis, 2008). Yet, bleaching also occurs independent of symbiont-

derived ROS (Tolleter et al., 2013; Rädecker et al., 2021; Dungan et al., 2022). Upsetting the 

balance of nutrient exchange between both partners can also jeopardize the stability of the 

photosymbiotic association. 

 

Currently, most studies have used the model Cnidaria-Symbiodiniaceae to study photosymbiosis, 

because this association is crucial in the health and maintenance of coral reef ecosystems, especially 

in relation to climate change (reviewed in Weis, 2008; Lesser, 2011; Maor-Landaw & Levy, 2016; 

Cziesielski et al., 2019; van Woesik et al., 2022). There have been multiple bleaching events in reef 

ecosystems over the past few years, and some experts predict even more in the near future (van 

Woesik & Kratochwill, 2022). Questions about the photosymbiosis onset and maintenance, 

particularly at the molecular and cellular level, have become more relevant when trying to 

understand what happens when the symbiosis is disrupted. In addition to contributing to the 

development of strategies that will 

help coral reef ecosystems recover 

and maintain, this research also 

paves the way for the study of other 

photosymbiotic systems, their 

evolution, and their response to 

global warming. For instance, in sea 

slugs. 

  

Photosymbiosis in marine slugs 
 

There are five types of 

photosymbiosis among mollusks: i) 

bivalves from the family Cardiidae 

associate with dinoflagellates from 

the family Symbiodiniaceae (Li et 

Figure 3. Photosymbiosis in Heterobranchia. Schematic 
dendogram showing the main taxa in Heterobranchia based on 
Zapata et al. (2014) and Krug et al. (2022). Dinoflagellate and 
chloroplast indicate the presence of photosynthetic associations 
within Nudibranchia and Sacoglossa, respectively. Created with 
BioRender.com.  
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al., 2020); ii) the caeonogastropod species Aliger gigas (Linnaeus, 1758) hosts Symbiodiniaceae 

and maintains an apparent mutualistic symbiosis in larval stages that becomes parasitic in adulthood 

(García Ramos & Banaszak, 2014); this association is debatable and needs more evidence; iii) 

cladobranch gastropods (Nudibranchia) from the family Dendronotoidea acquire Symbiodiniaceae 

from the water column (Burghardt & Wägele, 2014); iv) cladobranch gastropods from the families 

Arminoidea, Fionoidea, and Aeolidioidea obtain Symbiodiniaceae by feeding on photosymbiotic 

cnidarians (Rola et al., 2022); v) and a special case in gastropods belonging to the superorder 

Sacoglossa, where the symbiont is not an entire organism, but a sequestered organelle obtained 

from the algal food source- the so-called functional kleptoplasty (Wägele & Martin, 2014). A 

particular focus will be placed here on the photosymbiosis of marine slugs. 

 

Photosymbiotic cladobranchs are usually carnivorous that prey on sea anemones (Actinaria), 

hydrozoans (Hydrozoa), soft corals (Alcyonacea), and stony corals (Scleractinia) (Rola et al., 2022). 

In contrast, Sacoglossa are herbivorous that feed on algae usually belonging to the Ulvophyceae or 

Xantophyceae (Wägele & Martin, 2014). In these sea slugs, unique and rare forms of 

photosymbioses occur (Figure 3). Most cladobranchs become a secondary host, but members of the 

genus Melibe Rang, 1829 are the primary host of Symbiodiniaceae (Rola et al., 2022). One of the 

most unusual forms is found in sacoglossan sea slugs that steal photosynthetically active 

chloroplasts (functional kleptoplasty) and integrate them intracellularly (Wägele et al., 2010). 

Whether functional kleptoplasty can be classified as a mutualistic symbiosis is still debatable. While 

Symbiodiniaceae contribute greatly to the nutritional requirements of their host and can divide in 

hospite (e.g. Muscatine et al., 1984; Stambler, 2011), the contribution of kleptoplasts is reduced, 

and kleptoplasts cannot divide in the slug’s cytosol (de Vries et al., 2014a; Wägele & Martin, 2014; 

Rauch et al., 2017a). 

 

Despite the differences between these two systems, for example, the nature of the endosymbiont (a 

whole organism vs. a sequestered organelle), some similarities can be observed when these distantly 

related taxa are compared. In both superorders, Cladobranchia and Sacoglossa, different levels of 

the photosynthetic association can be identified. Depending on the ability of the slug to retain the 

symbiont, the morphology and the branching pattern of the digestive gland system, six levels were 

proposed by Kempf (1991) for cladobranchs: (1) non-photosymbiotic species that instantly digest 

the dinoflagellates, or (2) that expel them in a healthy state without incorporation; (3) species that 

can incorporate the dinoflagellates but keep them up to 6 days and then defecate them undigested, 
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or (4) species that can keep the symbionts for short time and digest them; (5-6) species with a 

highly branched and specialized digestive system that can harbor large populations of healthy 

symbionts and can maintain them for months during starvation periods. This classification might be 

summarized in three different levels according to the stability of the symbiosis: non-symbiotic 

species (levels 1 and 2 from Kempf’s classification), species with an unstable symbiosis (levels 3 

and 4), and stable photosymbiotic species (levels 5-6) (Rola et al., 2022). Similarly, the 

classification proposed by Clark et al., (1990) for Sacoglossa included six levels of kleptoplast 

retention. Level one included species that cannot retain the kleptoplasts and immediately digest 

them. Level six grouped species with long-term retention function and kleptoplasts’ photosynthetic 

activity longer than one week. Nowadays, only three levels of kleptoplast retention are used for 

classifying the sacoglossan slugs: non-retention form (NR), where the chloroplasts are incorporated 

but immediately digested; short-retention form (StR), where the kleptoplasts are kept intracellularly 

for a week; and long retention-form, where the retention extends over several months (Evertsen et 

al., 2007; Händeler et al., 2009). 

 

The evolution of the photosynthetic partner acquisition (organism or organelle) in sea slugs seems 

to be convergent, but it is not yet entirely clear. In cladobranchs, it seems that the ability to establish 

a symbiotic relationship with Symbiodiniaceae evolved independently in Dendronotoidea, 

Arminoidea, Fionoidea, and Aeolidioidea. Yet, it is still unexplored whether unstable 

photosymbiosis is a precursor to stable photosymbiosis, or if it evolved separately (Rola et al., 

2022). Similarly, functional kleptoplasty evolved multiple times in Sacoglossans: twice as short-

term retention in Costasiella Pruvot-Fol, 1951 and Plakobranchoidea, and six times independently 

as long-term retention (Christa et al., 2015; Hirokane et al., 2022). 

 

Most studies on cladobranch photosymbiosis have focused on the diversity and systematics of 

species harboring dinoflagellates (e.g. Moore & Gosliner, 2011; Carmona et al., 2013; Moore & 

Gosliner, 2014). The cladobranch symbionts were originally called zooxanthellae (e.g. Rousseau, 

1934, 1935; Rudman, 1981a,b), but with advances in dinoflagellate systematics, the symbiont was 

re-named Symbiodinium Freudenthal, 1962 (e.g. Burghardt et al., 2005, 2008; Burghardt & Wägele, 

2014). Phylogenetically distinct clades within Symbiodinium were later described (Pochon et al., 

2006), and several studies have classified the cladobranch symbiont according to this classification 

(Loh et al., 2006; FitzPatrick et al., 2012; Wecker et al., 2015; Yorifuji et al., 2015; Ziegler et al., 

2014). Only a few recent studies have identified the symbiont genotype present in the cladobranch 
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host (Monteiro et al., 2019; Melo Clavijo et al., 2022) based on the most recent classification of the 

Symbiodiniaceae (LaJeunesse et al., 2018). The photophysiological aspects of the symbiosis have 

been addressed by focusing on the photosynthetic activity of the symbiont in hospite (Wägele & 

Johnsen, 2001; Burghardt et al., 2005; Burghardt et al., 2008a,b; Burghardt & Wägele, 2004, 2014), 

particularly during starvation. Yet, many questions remain regarding how the photosymbiosis is 

initiated, the nature of this association, whether and how nutrients are exchanged between the 

partners, and the consequences of the breakdown of this association. 

 

Earlier research on functional kleptoplasty in Sacoglossa focused on morphological factors such as 

the location of the kleptoplasts within the cytosol of the sacoglossan slug and whether host 

membranes surrounded the stolen organelles (reviewed in Wägele & Martin, 2014). Numerous 

studies have addressed the most intriguing question regarding functional kleptoplasty: how does the 

kleptoplast remain photosynthetically active inside an animal cell without the proteins and enzymes 

encoded by the nucleus? Different hypotheses have been proposed including a later dismissed 

horizontal gene transfer (Pierce et al., 1996, 2012; Rumpho et al., 2008; Wägele et al., 2011; de 

Vries et al., 2014b; Wägele & Martin, 2014; Rauch et al., 2015), dual targeting of core proteins 

(Rumpho et al., 2000, 2011), kleptoplast intrinsic properties such as longevity and robustness (Giles 

& Sarafis, 1972; Trench & Ohlhorst, 1976; Green et al., 2005; de Vries et al., 2013, 2014a; Serôdio 

et al., 2014; Cruz et al., 2015), and the compatibility between kleptoplasts with specific properties 

and slugs that can incorporate and maintain them (de Vries et al., 2014b, 2015; Wägele & Martin, 

2014; Rauch et al., 2018). Still a big question is how well the kleptoplasts support the slug's 

nutritional requirements, and whether or not the slug exchanges nutrients with the kleptoplasts at all 

(de Vries et al., 2014a,b; Cartaxana et al., 2017; Laetz et al., 2017a; Rauch et al., 2017a; Cruz et al., 

2020; Frankenbach et al., 2021). However, similar to cladobranchs, the cellular and molecular 

events behind the selective incorporation of kleptoplasts and their maintenance within the slug’s 

cytosol remain unexplained. 

 

Aims and scope of the present dissertation 
 

Most of the knowledge we know about photosymbiosis comes from calcifying animals like the 

scleractinian corals-Symbiodiniaceae model. In contrast, little is known about the initiation and 

maintenance of the photosymbiosis, the nutrient exchange between partners, and the resilience of 

photosymbiosis in non-calcifying animals, such as sea slugs. The present study aims to fill this 
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knowledge gap and gain a deeper understanding of the biology of photosymbiosis in marine slugs, 

its evolution, physiology, and the cellular and molecular mechanisms that lead to the photosynthetic 

association. In particular, new genomic tools are offered to study photosymbiosis in non-calcifying 

marine slugs (Chapter 2.3 Melo Clavijo et al., 2022; Chapter 2.4 Frankenbach et al., 2023; Chapter 

2.5 Melo Clavijo et al., 2021). The study seeks to find answers to the following questions: 

 

I. Are cladobranchs a suitable model for studying the molecular mechanisms and the evolution of 

photosymbiosis? (Chapter 2.1: Rola et al., 2022). 

II. How does the sea slug host recognize the potential symbiont? (Chapter 2.2: Melo Clavijo et al., 

2020; Chapter 2.3: Melo Clavijo et al., 2022). 

III. What cellular mechanisms are necessary to establish a stable photosymbiosis and kleptoplasty in 

sea slugs? (Chapter 2.3: Melo Clavijo et al., 2022; Chapter 2.6). 

IV. What is the effect of starvation in the animal host? (Chapter 2.3: Melo Clavijo et al., 2022; 

Chapter 2.4: Frankenbach et al., 2023).  

V. How is the response of the slug host to abiotic factors like light and continuous darkness 

combined with starvation stress? (Chapter 2.4: Frankenbach et al., 2023; Chapter 2.6). 
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Chapter 2 

Results 
 

The results of this dissertation cover some of the main processes in the initiation and maintenance 

of the photosymbiosis in sea slugs, as well as the physiology and biology of photosymbiotic sea 

slugs. These are presented as individual chapters that correspond to scientific publications. 

Unpublished data are presented in Chapter 2.6.  

 

Chapter 2.1 
 

Rola, M., Frankenbach, S., Bleidißel, S., Sickinger, C., Donath, A., Frommlet, J. C., Greve, C., 

Serôdio, J., Preisfeld, A., Melo Clavijo, J. & Christa, G., (2022). Cladobranchia (Gastropoda, 

Nudibranchia) as a promising model to understand the molecular evolution of photosymbiosis in 

animals. Frontiers in Marine Science, 8, 1920. DOI:10.3389/fmars.2021.745644 

 

This review gathers the main aspects of the photosymbiosis between sea slugs belonging to the 

suborder Cladobranchia and dinoflagellates from the family Symbiodiniaceae. Here we propose the 

taxon Cladobranchia as model for studying the evolution of photosymbiosis based on the presence 

of different levels of the symbiosis and different modes of photobiont acquisition within the taxon. 

My contribution to this paper was 20 % and included literature revision, drafting, and revision of 

the manuscript. 

 

Chapter 2.2 

 

Melo Clavijo, J., Frankenbach, S., Fidalgo, C., Serôdio, J., Donath, A., Preisfeld, A. & Christa, G., 

(2020). Identification of scavenger receptors and thrombospondin‐type‐1 repeat proteins potentially 

relevant for plastid recognition in Sacoglossa. Ecology and Evolution, 10(21), 12348-12363. 

DOI:10.1002/ece3.6865.  

 

In this publication we found a shared and a species-specific gene expression of immune receptors 

potentially relevant for plastid recognition by analyzing the gene expression of three sacoglossan 

sea slugs that are able to incorporate plastids of different algal sources. The core set of expressed 

genes is similar than the one known from photosymbiotic cnidarians, suggesting convergently 
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evolved mechanisms for symbiont recognition in taxonomically diverse animal hosts. My 

contribution to this paper was 60 % and included data collecting, analyses, drafting, and revision of 

the manuscript. 

 

Chapter 2.3 
 

Melo Clavijo, J., Sickinger, C., Bleidißel, S., Gasparoni, G., Tierling, S., Preisfeld, A., & Christa, 

G. (2022). The nudibranch Berghia stephanieae (Valdés, 2005) is not able to initiate a functional 

symbiosome to maintain Breviolum minutum (J.E.Parkinson & LaJeunesse, 2018). Frontiers in 

Marine Science. DOI: 10.3389/fmars.2022.934307. 

 

In this publication we present the first gene expression assessment in a dinoflagellate-bearing 

nudibranch that compares symbiotic and aposymbiotic animals feeding, starving, and re-feeding 

after a starvation period. The recognition machinery in nudibranchs is similar to the ones present in 

sacoglossan sea slugs and cnidarians. Further, we show that in this unstable symbiosis the slug can 

recognize, engulf the dinoflagellates, and activate antioxidant mechanisms in their presence, but is 

not able to suppress the immune response against the dinoflagellates nor inhibit the phagosome 

maturation, leading to their digestion or expulsion. My contribution to this paper was 60 % and 

included data collecting, experimental design, analyses, drafting, and revision of the manuscript. 

 

Chapter 2.4 
 

Frankenbach, S., Melo Clavijo, J., Brück, M., Bleidißel, S., Simon, M., Gasparoni, G., Lo Porto, 

C., Laetz, E.M., Greve, C., Donath, A., Pütz, L., Sickinger, C., Serôdio, J., & Christa, G. (2023). 

Shedding light on starvation in darkness in the plastid-bearing sea slug Elysia viridis (Montagu, 

1804). Marine Biology, 170(89). DOI: 10.1007/s00227-023-04225-0 

 

In this publication we address the effect of darkness in starved plastid-bearing sea slugs beyond the 

inhibition of photosynthesis. The gene expression analysis showed that starvation induces stress, 

and as response autophagy might be triggered. Starvation in darkness not only inhibits 
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Symbiosis with photoautotrophic organisms has evolved in various species and even
whole animal lineages, which allowed them to directly benefit from photosynthesis.
This so-called photosymbiosis is best studied in cnidarians, which primarily establish
symbioses with dinoflagellates from the family Symbiodiniaceae. In most other animals
the mechanisms of establishing photosymbiosis, the physiological basis, and the
evolution of a photosymbiotic life history remain poorly understood. Sea slugs belonging
to the Cladobranchia (Gastropoda, Nudibranchia) are no exception, and are a rather
neglected animal lineage in the research field of photosymbiosis. Yet, studying these
sea slugs holds great potential to establish a unique photosymbiosis model, as they are
the only known taxon that has evolved two different strategies to acquire their symbiont:
either from cnidarian prey (thus becoming a secondary host) or directly out of the water
column. The mechanisms for photobiont uptake and maintenance are unknown for
these sea slugs, but might be similar to those of cnidarians. However, in terms of the
evolution of photosymbiosis, Cladobranchia seem to share many commonalities with
more closely related sea slugs belonging to the Sacoglossa, which only maintain the
chloroplasts of the algae they feed on. Hence, Cladobranchia have the potential to shed
light on the evolution of photosymbiosis in taxonomically divergent animals that also
harbor photobionts of different evolutionary lineages.

Keywords: Nudibranchia, photosynthetic symbiosis, sea slugs, Symbiodiniaceae, symbiont recognition

INTRODUCTION

Symbiotic relationships shape genomic and morphological plasticity, which is a driving force of
evolution within prokaryotes and eukaryotes (Margulis, 1981; Burki et al., 2020). Most common are
symbioses between heterotrophic organisms, but some protists (Decelle, 2013; Decelle et al., 2015;
Foster and Zehr, 2019) and a few animal lineages (Melo Clavijo et al., 2018) engage in symbioses
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with photoautotrophic organisms (photobionts) – the so-
called photosymbiosis (Cowen, 1988; Stanley, 2006). Among
animals, stony corals (Scleractinia) are probably the best-
known example of a successful photosymbiosis. Corals primarily
form a mutualistic symbiosis with dinoflagellates of the
family Symbiodiniaceae (Fensome, 1993), that are referred
to zooxanthellae when in hospite. Yet, more recently the
mutualism of the photosymbiosis has been questioned and some
authors refer to a host-controlled parasitism of the photobiont
(Wooldridge, 2010; Blackstone andGolladay, 2018). Independent
on the exact nature of the symbiosis, the photosymbiosis of
corals and Symbiodiniaceae is based on an interdependent
nutrient exchange cycle between the host and the photobiont
(Stanley and Helmle, 2010; Tornabene et al., 2017). It has been
shown that the coral host obtains nutritional support by the
photobiont in the form of sugars, amino acids and some other
essential nutrients, sometimes even superseding its nutritional
requirements, allowing the coral host to thrive in oligotrophic
waters (Muscatine and Porter, 1977; Falkowski et al., 1984; Lin
et al., 2015) and enhances their ability to form skeletons and build
up the coral reef structure (Stanley and Lipps, 2011; Tambutté
et al., 2011; Roth, 2014). In return, the coral host provides carbon
dioxide and ammonium, which are key limiting compounds for
the photobiont (e.g., Yellowlees et al., 2008). The coordination
of this nutrient exchange cycle is complex. Its disruption, for
instance caused by heat stress, can lead to the breakdown of the
symbiosis and can result in the expulsion of the photobionts. This
process is known as bleaching and often eventually results in the
coral’s death leading in extreme cases to mass bleaching events, as
seen in recent years, that are endangering entire reef communities
across the globe (Suggett and Smith, 2020).

Aside from Scleractinia, photosymbiosis in metazoans is not
well understood (Melo Clavijo et al., 2018). Considering its
potential benefit for the heterotrophic host, it remains unclear
why the symbiosis with a photobiont has evolved only in a
few metazoan lineages. It is likely that photosymbiotic animals
share components of a common genetic tool kit, which are
essential for the initiation and maintenance of a photosymbiosis.
This set of genes probably includes a large fraction related to
the innate immune system (Gross et al., 2009; Davy et al.,
2012; Mansfield and Gilmore, 2019), which is also highly
relevant for other animal-microbe symbioses (e.g., McFall-Ngai
et al., 2012; Schmittmann et al., 2021). Genomic data could
help to understand these molecular mechanisms, but are still
scarce for most photosymbiotic animal lineages (Melo Clavijo
et al., 2018). Fortunately, genome-sequencing initiatives such
as the recently launched Aquatic Symbiosis Genomics Project
by the Welcome Sanger Institute and the Gordon and Betty
Moore Foundation are addressing this lack of genomic data.
Among others, this initative focuses on key photosymbiotic
species in di�erent lineages, which will provide a wealth of
data and hence enable us to boost our understanding of
photosymbioses. However, the acquisition of genomes of non-
photosymbiotic congeners will be eminent to identify relevant
genomic adaptations promoting photosymbiosis. Analyzing and
comparing photosymbiotic and non-photosymbiotic animals
within and between di�erent lineages will have the potential

to unravel their common genomic adaptations for photobiont
recognition and maintenance. Such comparisons also hold the
key to clarify at which point in the evolutionary history the animal
host acquired distinct adaptations needed for photosymbiosis
and if these adaptations evolved convergently or homologously.

We propose that a specific group of sea slugs, the
Cladobranchia that belong to the Nudibranchia, should be
studied inmore detail. This lineage could considerably contribute
to our understanding of photosymbiotic processes and the
evolution of photosymbiosis in distantly related animals.

“Butterflies of the Sea”
Nudibranchia are a morphologically diverse and colorful group
of non-shelled sea slugs, belonging to the Heterobranchia
(Burmeister, 1837) and consisting of the suborder Doridina
and the suborder Cladobranchia. Over 4,000 nudibranch species
have been described and, due to their colorful appearance,
they fascinate scientists and non-scientists alike and are often
called “butterflies of the sea” (Anderson, 1995). Current research
on Nudibranchia focuses on assessing their biodiversity (e.g.,
Eisenbarth et al., 2018; Fritts-Penniman et al., 2020; Korshunova
et al., 2021), their developmental biology and life cycle (Page,
1993; Kristof and Klussmann-Kolb, 2010; Ahmadian et al., 2016;
Togawa et al., 2019), and phylogenetic relationships within
the di�erent groups (e.g., Carmona et al., 2013; Goodheart
et al., 2015a,b; Karmeinski et al., 2021 Korshunova et al.,
2021). Furthermore, because most Nudibranchia lost their
protective shell, alternative defense strategies, such as mimicry
of food sources (Gosliner and Behrens, 1990), calcareous
needles (Cattaneo-Vietti et al., 1995), the synthesis of toxic
metabolites (Bogdanov et al., 2017), and storing and using
cnidocysts “stolen” from their cnidarian food source (Obermann
et al., 2012; Goodheart et al., 2018) are investigated. Especially
the potential pharmaceutical relevance of their secondary
metabolites (reviewed by Cimino and Gavagnin, 2006; Putz et al.,
2010; Fisch et al., 2017) makes them an interesting group for
researchers. Photosymbiosis is only found in the Cladobranchia
that comprise approximately 1,000 species and that can be
identified by the lack of gills and their large dorsal appendices,
the cerata, that also function as respiratory organ. However,
photosymbiosis in Cladobranchia is not well understood.

Cladobranchia Evolved Different
Strategies of Photobiont Acquisition
Like most photosymbiotic animals, Cladobranchia acquire their
photobionts anew in each generation (i.e., horizontally, instead
of vertically from their parents), which is the most common
mechanism of photobiont acquisition in animals (reviewed in
Melo Clavijo et al., 2018). However, only Cladobranchia evolved
two di�erent modes of horizontal photobiont acquisition – out of
the water column or from photosymbiotic cnidarians (Figure 1).
Within the Cladobranchia, members of the Dendronotoidea
(Allmann, 1845), such as Melibe engeli Risbec, 1937 (Figure 1),
experienced morphological modifications that resulted in a
fan-like mouth opening (Gosliner, 1987), allowing them to
e�ectively ingest the photobionts out of the water column
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FIGURE 1 | Cladogram of selected Cladobranchia species showing different levels of photosymbiosis. Members of Cladobranchia are widespread distributed (1.
Habitat) and acquire their photobiont horizontally either from the water column or by feeding on photosymbiotic cnidarians (2. Photobiont source). Different degree of
ramification of the digestive gland system is present in Cladobranchia (3. Digestive gland system) that might be correlated to the stability of the photosymbiosis (4.
Photosymbiosis). The cladogramm and the respective information are based on published data (Wägele and Willan, 2000; Johnson and Gosliner, 2012; Moore and
Gosliner, 2014; Goodheart et al., 2018; Karmeinski et al., 2021). The images were taken by Heike Waegele (Melibe engeli, Dermatobranchus semistriatus), Daniela
Kupschus (Flabellina affinis, Cratena peregrina, Pteraeolidia ianthina), and Sabrina Bleidissel (Phyllodesmium briareum).

(Bleidissel, 2010; Burghardt and Wägele, 2014). To the best of
our knowledge, adults of the genus Melibe are the only sea
slugs to obtain their photobionts this way. The vast majority
of Cladobranchia, however, acquire the photobionts by feeding
on cnidarian prey and “stealing” the cnidarians’ photobionts
(Rudman, 1981; Kempf, 1984; Wägele, 2004). This is a unique
photobiont acquisition strategy in animals that evolved in
Cladobranchia probably multiple times in the superfamilies
Arminoidea, Iredale and O’Donoghue (1923), Fionoidea Gray
(1827), and Aeolidioidea Gray (1827) (Figure 1).

Not All Cladobranchia Can Maintain
Photobionts
Subsequent to the uptake, Cladobranchia selectively phagocytize
the photobionts into epithelial cells of their digestive gland
system (DGS). The DGS branches throughout the entire body
and, particularly, into the cerata (Figures 2A,B). Once the algae
are phagocytized in the epithelial cells, they remain in their
coccoid state and are surrounded by the phagosomal membrane

(Figures 2C,D; Wägele and Johnsen, 2001;Wakefield and Kempf,
2001). Inmost cladobranchs, like Flabellina a�nis (Gmelin, 1791)
or Cratena peregrina (Gmelin, 1791) (Figure 1), the algae are
then rapidly digested, while some species, like Berghia stephanieae
(Valdés, 2005) (Figure 2A) are capable to maintain the algae
photosynthetically active for a few days (Monteiro et al., 2019).
Regarding the organismic interaction that we describe in this
review we refer to the general symbiotic terminology. Within
that terminology, the existing subcategories of photosymbiosis
are defined based on the beneficial aspects and the time-span
of interaction, following the definitions by Kempf (1991). Based
on this, maintaining the photobiont for a short term is here
referred to an unstable photosymbiosis, because the algae reside
intracellularly, but the slugs, like B. stephanieae, tend to digest
the algae within a couple of days, or expel them from the
cells and secrete them in a viable state in the feces. Species
that have evolved an unstable photosymbiosis do not appear
to benefit from the photosynthesis performed by the acquired
photobionts. They are neither able to maintain their symbionts
nor their biomass when solely relying on the photobiont as
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FIGURE 2 | Morphology and microscopic details of Berghia stephanieae. Morphology of B. stephanieae (A). Detail of a cerata of B. stephanieae bearing the
photobionts (B), histological cross-section through a cerata showing the host cells of the cerata bearing the photobiont (C), and detail of the coccoid (non-motile)
stage of intracellular Symbiodiniaceae (D). cm: Symbiodiniaceae cell membrane, cp: chloroplast, li: lipid droplets, lu: lumen of the host digestive gland, n: nucleus,
pm: host phagosomal membrane, Sym: Symbiodiniaceae. The images were taken by Gregor Christa (A,B), Jenny Melo (C) and Elise Laetz (D).

source of nutrition (Kempf, 1991; McFarland and Muller-Parker,
1993; Bleidissel, 2010; Monteiro et al., 2019). Yet, some taxa
have evolved the ability to establish a stable photosymbiosis,
maintaining the photobionts for months. For a couple of these
photosymbiotic species, like Melibe engeli and Phyllodesmium
briareum (Bergh, 1896), it has been shown that the photobiont
can fully support the host, enhancing growth and the ability
of long-term reproduction without a reduction in the quantity
and quality of egg-masses under regular light conditions (Kempf,
1984; Burghardt and Wägele, 2004, 2006, 2014; Burghardt
et al., 2005, 2008a,b; Burghardt and Gosliner, 2006). These
observations support the idea that at least these Cladobranchia
species and Symbiodiniaceae are involved in a mutualistic
symbiosis, which is unique in gastropods. More closely related
Sacoglossa sea slugs, that are in a sort of photosymbiosis with
chloroplasts of their algal prey, are not able to grow, or even
maintain their biomass, if they are exclusively dependent on their
ingested chloroplasts for more than a couple of weeks (Pelletreau
et al., 2012; Christa et al., 2014). Further, they are not able to
maintain the quantity and quality of egg-masses during periods
of food depletion (Cartaxana et al., 2019). Hence, Cladobranchia
provide a unique opportunity to understand which genomic
adaptations are needed to evolve a mutualistic photosymbiosis

in sea slugs. Comparative analyses of photosymbiotic and non-
photosymbiotic Cladobranchia with Sacoglossa and Cnidaria
might uncover if these genomic adaptations are based on
convergent evolution or if, for instance, epigenetic modifications
are involved in activating specific genes in photosymbiotic slugs.

Mechanisms for Photobiont Recognition
and Maintenance Are Unknown in
Cladobranchia
The selective incorporation of photobionts in Cladobranchia is
a complex process. It remains unknown how the slugs are able
to distinguish between photobionts and plankton and further
digest all plankton (e.g., in Melibe) or tissues of the cnidarian
prey while maintaining the photobionts intact. The mechanisms
of photobiont recognition by the epithelial cells of the DGS
have not yet been addressed, while in cnidarians the photobiont
recognition is based on a set of animal host pattern recognition
receptors (PRRs). Specific microbe associated molecular patterns
(MAMPs) of the photobiont (Neubauer et al., 2016, 2017;
Mansfield and Gilmore, 2019) bind to the PRRs, which triggers
downstream signaling cascades tomaintain the photobiont (Davy
et al., 2012). The PRRs of Cladobranchia might be similar to
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those of their cnidarian host, as they incorporate the same
photobiont and hence need to recognize the same MAMPs.
However, Cladobranchia could also just use di�erent PRRs to
recognize other MAMPs to identify the equivalent photobiont.
The incorporation process might even be more similar to the
selective uptake of chloroplasts by more closely related members
of sea slugs belonging to the Sacoglossa (Chan et al., 2018; Melo
Clavijo et al., 2020). Using phylogenetic and domain specific
analyses of the respective receptors will help to understand if the
relationship of the respective PRRs is matching the taxonomy of
the host. In combination with subsequent functional analyses,
for instance by gene expression and manipulation, a list of
candidate genes can be generated that could be involved in
photobiont recognition. Therefore, Cladobranchia are the only
animals that could permit a direct comparison of photobiont
recognition mechanisms, in particular PRRs, between a primary
(Cnidaria) and secondary (Cladobranchia) host of the same
photobiont. At the same time, Cladobranchia allow comparisons
with mechanisms of chloroplast recognition in the more closely
related Sacoglossa. These analyses may provide insights into
the relevance of PRRs in photosymbiosis across taxonomically
divergent animal taxa. Furthermore, they may elucidate how
conserved the signaling pathways for initiating photosymbiosis
are – independent from the taxonomic lineage of the photobiont.

Evolution of Stable Photosymbiosis in
Cladobranchia
The evolution of a stable photosymbiosis in Cladobranchia
is still not well understood. It appears that photosymbiosis
evolved several times independently in di�erent Cladobranchia
superfamilies (Figure 1). For instance, it might have evolved
independently in the Dendronotoidea and a monophyletic
group including Arminoidea, Fionoidea, and Aeolidioidea. This
would explain the evolution of the two di�erent acquisition
modes. Alternatively, photosymbiosis could also have evolved in
each of the superfamilies independently. It is furthermore
unknown whether unstable and stable photosymbiosis
evolved separately, or if stable photosymbiosis evolved from
unstable photosymbiosis.

Commonly, photosymbiotic Cladobranchia have a highly
branched digestive gland system and specialized digestive
structures, such as large circular chambers, fine tubules and
cisternae that are located at the tips and harbor the photobionts
(Burghardt and Wägele, 2014). These structures are considered
to enlarge colonizable space and optimize light attenuation,
increasing photobiont density and photosynthesis, respectively
(Rudman, 1991; Burghardt et al., 2008a,b; Moore and Gosliner,
2011). Yet, despite of having a highly branched digestive gland
system, species of Phestilla or Limenandra (Figure 1), and
species like Melibe leonina (Gould, 1852) or Phyllodesmium
kabiranum Baba, 1991, are non-photosymbiotic (Figure 1). Aside
of this exception the genus Phyllodesmium shows a correlation
between photosymbiosis and a highly branched digestive gland
system (Rudman, 1991; Burghardt et al., 2008a,b; Moore and
Gosliner, 2011). A highly branched DGS might not be a
prerequisite to evolve a stable photosymbiosis, but it appears to

be advantageous to harbor larger numbers of photobionts and to
optimize photosynthesis.

The cnidarian prey is considered important for the stability of
the photosymbiosis in Cladobranchia (Wägele et al., 2010). For
instance, members of the genus Phyllodesmium, in which most
species have a stable photosymbiosis, feed exclusively on xeneid
cnidarians belonging to the Alcyonacea. However, Pteraeolidia
semperi (Bergh, 1970), also in a stable photosymbiosis, obtains the
photobionts fromHydrozoa, so that the food source is not strictly
connected to photosymbiosis (Figure 1). Instead, it seems to be
based on obtaining specific secondary metabolites for defense
purposes (Bogdanov et al., 2017) and the feeding preference
is rather taxon-specific. Independent of the source of the
photobiont, the e�ciency of the photosymbiosis may be further
influenced by the specific algal taxon. For instance, in other stable
photosymbiotic systems, such as Cnidaria-Symbiodiniaceae and
Bivalvia-Symbiodiniaceae associations, the animal hosts could
benefit from more physiologically resilient photobionts during
increased ambient temperature (Hume et al., 2016; Cziesielski
et al., 2018; Mies, 2019; Cunning and Baker, 2020). When corals
are in symbiosis withmultiple symbiodiniacean genera, the active
removal of less resilient strains results in an adaptive bleaching,
which might increase the animal’s fitness and improve the
stability of the symbiosis considerably (Ziegler et al., 2014; Bayliss
et al., 2019; Chen et al., 2019). So far, only a few studies have
investigated the diversity and composition of Symbiodiniaceae
in Cladobranchia (Loh et al., 2006; FitzPatrick et al., 2012;
Ziegler et al., 2014; Wecker et al., 2015; Yorifuji et al., 2015).
Nevertheless, these studies have not uncovered any correlation
between specific Symbiodiniaceae taxa and the ability to establish
a photosymbiosis with Nudibranchia. It rather seems that
symbionts are taken up from the cnidarian prey indiscriminately.
Future analyses of photobiont abundance in cladobranchs in
comparison to their cnidarian prey will help to understand if
the slugs are able to distinguish between Symbiodiniaceae taxa
and selectively expel less beneficial photobionts. Comparative
metabarcoding analyses, as available for some cnidarians and
their Symbiodiniaceae composition (Fujise et al., 2021), is still
lacking for sea slugs, but are needed to reveal the relevance
for a stable photosymbiosis in Cladobranchia. It might be
further worth to investigate, if the slugs play a role in genotype
dispersion of symbiodiniaceans in marine habitats. The fact
that symbionts are transferred from a sessile to a motile host
could potentially enhance the dispersion of symbiodiniaceans
and could change the composition of clades and strains
in environmental populations (Parker, 1984). This could be
beneficial for other sessile photosymbiotic animals and their
symbiont uptake, facing environmental changes with di�erent
adapted symbionts (Umeki et al., 2020).

Regardless of the stability of the photosymbiosis, little is
known on how nutrients are exchanged between the slugs and
the algae. The phagosomal membrane surrounding photobionts
in cnidarians is known as symbiosome (Hill and Hill, 2012). The
symbiosome plays a crucial role in the successful establishment
of the symbiosis. Transporters relevant for nutrient exchange,
i.e., sugars from the algae to the animal and dissolved
inorganic compounds from the animal to the algae, are
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situated in the symbiosomal membrane (Sproles et al., 2018).
In cladobranchs it is unknown if and which transporters are
present on the phagosomal membrane and how comparable
it is to the symbiosome in terms of functionality. Future
immuno-histochemical studies could give valuable insights into
the localization of photosymbiosis-relevant receptors and their
role in the nutritional exchange between the two partners,
while metabolomics could provide important information on
the interdependent nutrient exchange between both partners.
Further, it remains to be shown whether in species with a
stable photosymbiosis the symbiosis is beneficial for the host
and whether the symbiosis is mutualistic or even some sort
of parasitism as proposed for other photosymbiotic animals by
some authors (Lesser et al., 2013; Blackstone and Golladay, 2018;
Androuin et al., 2020).

CLADOBRANCHIA CAN SHED LIGHT ON
PHOTOSYMBIOSIS

Cladobranchia are a promising model to deepen the knowledge
on fundamental processes that lead towards the evolution of
photosymbiosis in animals as they resemble a connecting link
between the well studied photosymbiosis in cnidarians and
the less understood animal lineages such as sea slugs. Future
research combining genomics, metabolomics, physiological, and
immuno-histochemical studies, as well as phylogenetic analyzes
of key receptors or proteins involved in photosymbiosis,
will highlight if photosymbiosis evolved convergently or
homologously in the di�erent animal lineages.
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Abstract
Functional kleptoplasty is a photosymbiotic relationship, in which photosyntheti-
cally active chloroplasts serve as an intracellular symbiont for a heterotrophic host. 
Among Metazoa, functional kleptoplasty is only found in marine sea slugs belong-
ing to the Sacoglossa and recently described in Rhabdocoela worms. Although func-
tional kleptoplasty has been intensively studied in Sacoglossa, the fundamentals of 
the specific recognition of the chloroplasts and their subsequent incorporation are 
unknown. The key to ensure the initiation of any symbiosis is the ability to specifi-
cally recognize the symbiont and to differentiate a symbiont from a pathogen. For in-
stance, in photosymbiotic cnidarians, several studies have shown that the host innate 
immune system, in particular scavenger receptors (SRs) and thrombospondin-type-1 
repeat (TSR) protein superfamily, is playing a major role in the process of recognizing 
and differentiating symbionts from pathogens. In the present study, SRs and TSRs of 
three Sacoglossa sea slugs, Elysia cornigera, Elysia timida, and Elysia chlorotica, were 
identified by translating available transcriptomes into potential proteins and search-
ing for receptor specific protein and/or transmembrane domains. Both receptors 
classes are highly diverse in the slugs, and many new domain arrangements for each 
receptor class were found. The analyses of the gene expression of these three spe-
cies provided a set of species-specific candidate genes, that is, SR-Bs, SR-Es, C-type 
lectins, and TSRs, that are potentially relevant for the recognition of kleptoplasts. The 
results set the base for future experimental studies to understand if and how these 
candidate receptors are indeed involved in chloroplast recognition.

K E Y W O R D S

Elysia, Kleptoplasty, photosymbiosis, sacoglossa, scavenger receptors, thrombospondin
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1  | INTRODUC TION

Animals of many metazoan phyla establish a mutualistic symbiotic 
relationship with photosynthetic partners (Melo Clavijo et al., 2018). 
This so-called photosymbiosis allows the respective host to pas-
sively gain access to the benefits of photosynthesis, while the 
symbionts are protected against biotic and abiotic factors and are 
supplied with compounds relevant for the photosynthesis, such as 
CO2 (Davy et al., 2012; Dean et al., 2016; Muscatine & Porter, 1977). 
Photosymbiotic processes, like the initiation of the symbiosis, 
mechanisms of symbiosis disruption, and the physiological ben-
efits of both partners, are probably best understood in cnidarians 
(Davy et al., 2012; Fransolet et al., 2012; Koike et al., 2004; Lehnert 
et al., 2014; Neubauer, Poole, Detournay, Weis, & Davy, 2017; 
Neubauer, Poole, Neubauer, et al., 2017; Schwarz et al., 2008; van 
der Burg et al., 2016; Wood-Charlson et al., 2006). However, in other 
photosymbiotic systems, for example, in sacoglossan sea slugs, these 
mechanisms are less understood. Sacoglossa sea slugs suck out the 
cell content of their prey, mainly macroalgae, and some species then 
exclusively incorporate the chloroplasts into their own cytosol (de 
Vries, Christa, & Gould, 2014). These “stolen plastids” (kleptoplasts) 
retain their photosynthetic activity even for weeks or months in the 
absence of any nuclear support from their original host (Händeler 
et al., 2009; Rauch et al., 2017; Wägele et al., 2011). This photosym-
biotic system involving an animal host and photosynthetically ac-
tive kleptoplasts is called “functional kleptoplasty” (Gilyarov, 1983; 
Waugh & Clark, 1986) and in metazoans it was only further described 
for two rhabdocoelan species (van Steenkiste et al., 2019).

Most Sacoglossa species are not able to retain functional klepto-
plasts and even in the species that do, the stability of the association 
varies (see, e.g., Christa et al., 2015, 2017; Cruz et al., 2014; de Vries 
et al., 2015). For instance, the shelled Oxynooidea and most of the 
shell-less “Limapontioidea” are not able to incorporate functional 

kleptoplasts (non-retention, NR; Figure 1). However, some members 
of the Costasiellidae and most members of the Plakobranchoidea 
retain the chloroplasts for a few days up to a couple of weeks 
(short-term retention, StR; Figure 1) (Christa et al., 2014; Händeler 
et al., 2009). Only five species are known in which the kleptoplasts 
are photosynthetically active for more than three months (long-term 
retention, LtR) (Christa et al., 2015). Among functional plastid-bear-
ing Sacoglossa, the LtR species Elysia chlorotica Gould, 1870 and 
Elysia timida Risso, 1818, as well as the StR species Elysia cornigera 
Nuttall, 1989 are the most intensively investigated species (see, 
e.g., de Vries et al., 2014; Gimenez-Casalduero et al., 2011; Rumpho 
et al., 2008). It has been hypothesized that in E. chlorotica (LtR) 
functional kleptoplasty takes at least seven to 10 days postmeta-
morphosis to become stable. Generally, the process toward a stable 
functional kleptoplasty can be split into an initial phase, in which the 
chloroplasts are primarily recognized, a transient phase, in which the 
kleptoplasts are incorporated but still digested, and a stable phase, 
in which the kleptoplasts support the slugs during development by 
to a small degree (Pelletreau et al., 2012).

The reasons for the different abilities to maintain functional 
kleptoplasty are still unknown. Based on observations that the food 
source alone is not sufficient (Christa et al., 2015), it is assumed that 
the right combination of abiotic factors, such as temperature (Laetz 
& Wägele, 2018), slug intrinsic factors (i.e., genomic adaptations to 
support the kleptoplasts), and algae chloroplast intrinsic factors (i.e., 
longevity of proteins relevant for photosynthesis), leads to long-term 
functional kleptoplasty (de Vries et al., 2014).

Nevertheless, the food source might be important for the ini-
tiation of the symbiosis. While E. timida (LtR) and E. cornigera (StR) 
feed on the ulvophyte Acetabularia acetabulum P.C Silva, 1952 
(Christa et al., 2013; de Vries et al., 2014), E. chlorotica (LtR) feeds 
on the heterokontophyte Vaucheria litorea C. Agardh, 1823 (Rumpho 
et al., 2000) (Figure 1). However, the evolutionary origin of the 

F I G U R E  1   Simplified phylogenetic 
relationship based on Christa et al. (2015) 
of Elysia timida, Elysia cornigera, and Elysia 
chlorotica as well as information on the 
retention form and food algae, and the 
experimental condition the three slugs 
were exposed to. The shelled Oxynooidea 
are the most basal Sacoglossa. Costasiella 
ocellifera is the only known member of 
the paraphyletic “Limapontioidea” in 
which long-term functional kleptoplasty is 
known (Christa et al., 2015)
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chloroplasts of these two algae is quite different. Chloroplasts of 
A. acetabulum evolved from a primary endosymbiosis in the chlo-
rophyte lineage, while those of V. litorea evolved from a secondary 
endosymbiotic event in the rhodophyte lineage (Gould et al., 2008). 
The different evolutionary origin of the chloroplasts, and with this 
potential differences in the composition of glycans or lipopolysac-
charides of the inner and outer chloroplast membranes, might thus 
have implications on their recognition by the host. However, it re-
mains to be understood how the slugs specifically recognize the 
chloroplasts and if the recognition differs for kleptoplasts originat-
ing from different algal lineages.

The innate immune system probably plays a major role in the 
initiation of the photosymbiosis process (van der Burg et al., 2016; 
Davy et al., 2012; Fransolet et al., 2012; Koike et al., 2004; 
Lehnert et al., 2014; Mansfield & Gilmore, 2019; Neubauer, Poole, 
Detournay, et al., 2017; Neubauer, Poole, Neubauer, et al., 2017; 
Poole et al., 2016; Schwarz et al., 2008; Wood-Charlson et al., 2006). 
Particularly, interactions between pattern recognition receptors 
(PRRs) of the host cell and microbe-associated molecular patterns 
(MAMPs) of the microbe/symbiont cell trigger different signaling 
cascades, which are essential to discriminate a pathogen from a 
symbiont (Davy et al., 2012; Fransolet et al., 2012; Wood-Charlson 
et al., 2006). Among PRRs, innate immune receptors, such as scav-
enger receptors (SRs), extracellular matrix proteins, like the throm-
bospondin-type-1 repeat (TSR) domain-containing proteins, and 
cnidarian ficolin-like receptors (CniFLs), have been shown to be 
involved in symbiont recognition (Baumgarten et al., 2015; Davy 
et al., 2012; Mansfield & Gilmore, 2019; Neubauer, Poole, Detournay, 
et al., 2017; Neubauer, Poole, Neubauer, et al., 2017; Rodriguez-
Lanetty et al., 2006; van der Burg et al., 2016; Wood-Charlson 
et al., 2006). Especially, receptors of the SR-B and SR-E class play 
a major role in symbiont recognition (reviewed in Davy et al., 2012; 
Mansfield & Gilmore, 2019) and SR-B receptors are further thought 
to interact with proteins containing TSR domains. This interaction 
might trigger the immunosuppressive transforming growth factor 
β (TGF-β) pathway (Detournay et al., 2012; Li et al., 2006; Masli 
et al., 2006; Yehualaeshet et al., 1999), which seems to prevent a 
host immune response and to promote symbiont colonization and 
establishment (Detournay et al., 2012).

In sacoglossan sea slugs, a detailed examination of PRRs is miss-
ing and was so far only briefly investigated in the LtR species Elysia 
chlorotica (Chan et al., 2018). Here, we describe the abundance of 
SRs and TSRs in the StR species E. cornigera, and the LtR species E. 
timida, and E. chlorotica. To this end, we analyzed the available dif-
ferential gene expression data with regard to the specific expres-
sion of both PRR groups, either during the different stages toward 
a stable functional kleptoplasty (E. chlorotica), or in freshly fed an-
imals compared to different starvation periods (E. cornigera and E. 
timida). Our results revealed that Sacoglossa have a diverse SR and 
TSR repertoire, similar to photosymbiotic cnidarians. The expression 
profiles of the two PRR classes provided a set of species-specific 
candidate genes that might be involved in chloroplast recognition 
in Sacoglossa.

2  | METHODS

2.1 | Analyzed species

Publicly available RNA datasets of three Sacoglossa species were 
used for the analyses of the abundance and expression of SRs and 
TSRs: Elysia chlorotica (LtR; NCBI SRA sample accession SRS3101883) 
(Chan et al., 2018), Elysia timida (LtR; SRS706683), and Elysia corni-
gera (StR; SRS706681) (de Vries et al., 2015). The retrieved data-
sets were generated under different experimental conditions: From 
Elysia chlorotica, total RNA was extracted by pooling > 20 individuals 
each from unfed juveniles (aposymbiotic) and from juveniles feeding 
for five, seven, and 10 days postmetamorphosis (Chan et al., 2018), 
always in triplicates. From Elysia timida and Elysia cornigera, total 
RNA was extracted by pooling > seven individuals from freshly fed 
adults (fed) and from adults starved for four and seven days, and 
additionally from adults starved for 30 days for E. timida(de Vries 
et al., 2015).

2.2 | Annotation of transcriptomic data

For all species, the available assembled transcriptomes (Elysia corni-
gera: NCBI TSA version GBRW00000000.1; E. timida: TSA version 
GBRM00000000.1; E. chlorotica: http://cyano phora.rutge rs.edu/
Elysi a-expre ssion/) were first clustered using CD-HIT v4.6.8 with de-
fault parameters (Fu et al., 2012; Li & Godzik, 2006). For Elysia corni-
gera, we obtained 458,434 transcript clusters, for E. timida 274,479, 
and for E. chlorotica 129,716. The clustered transcriptomes were 
translated into the longest open reading frame to retrieve potential 
proteins using TransDecoder v3.0.1 (Haas & Papanicolaou, 2015) 
with default settings. The datasets were then subjected to a BLASTP 
search against the UniProt database version 11/13/19 (The UniProt 
Consortium, 2019) setting the E-value to 1e-10. Taxonomic assign-
ment for each protein sequence was performed using the UniProt 
taxonomic database and sequences were subsequently filtered 
for Metazoa annotations (Appendix S1). Using this approach, we 
obtained 29,444 annotated proteins for E. cornigera, 20,445 for E. 
timida, and 13,389 for E. chlorotica.

2.3 | Identification of scavenger receptors and 
thrombospondin-type-1 repeat proteins

The domain architecture of the filtered protein sequences was char-
acterized by using HMMER v.3.1b2 (Eddy, Wheeler, & the HMMER 
Development Team, 2015) with default settings against the pro-
tein database PfamA 31.0 (Finn et al., 2016). Transmembrane re-
gions (TM) were identified using the TMHMM server v.2.0 (Krogh 
et al., 2001; Sonnhammer et al., 1998). Sequences were then fil-
tered for the different receptor class specific domains, as defined 
in PrabhuDas et al. (2014, 2017). For example, protein sequences 
having an N-terminal cytoplasmic tail, a transmembrane domain, 
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spacer region, α-helical coiled coil domain, collagen domain, and a 
C-terminal scavenger receptor cysteine-rich (SRCR) domain were 
annotated as a member of the SR-A class; protein sequences con-
taining a CD36 domain in the form of an extracellular loop flanked 
by two transmembrane regions were annotated as a member of the 
SR-B class; protein sequences having a transmembrane region with a 
single C-type lectin domain were annotated as a member of the SR-
E-like class, because sequence homology is not sufficient to include 
them in a SR-E group. To be classified as SR-E, a scavenger activ-
ity must be experimentally demonstrated (PrabhuDas et al., 2014, 
2017). Protein sequences containing a transmembrane region with 
multiple SRCR domains were annotated as a member of the SR-I 
class. All proteins that contained C-type lectin domains, at least one 
transmembrane domain, and which could not be assigned to SR-Es 
were classified as C-type lectins. All proteins containing SRCR do-
mains and that would not be assigned to SRs were classified as SRCR 
members.

Protein sequences were characterized as a member of the TSR 
superfamily if they contained a thrombospondin-type-1 (TSP1) 
domain, a disintegrin and metalloproteinase with thrombospondin 
motifs spacer 1 domain (ADAMTS Spacer 1), or a Sema domain. A 
further classification of the various TSR family members followed 
the definition given by Adams and Tucker (2000), Tucker (2004), 
and Adams and Lawler (2011). For instance, thrombospondins 
(TSPs) have an invariant carboxy-terminal region consisting of 
repeats of epidermal growth factor (EGF)-like domains, 13 calci-
um-binding type 3 repeats, a homologous L-type lectin domain in 
the C-terminal region, and N-terminal region that varies in domain 
composition (Adams & Lawler, 2011). Repeats of the TSP1 do-
main are named as TSR. The TSR domain in cnidarians is similar to 
that in vertebrates (Adams & Tucker, 2000; Silverstein, 2002; Tan 
et al., 2002). It includes six cysteine residues, a protein and glycos-
aminoglycan (GAG) binding site formed by the motif WXXWXXW, 
a RXRXRX motif consisting of polar residues (such as arginine, ly-
sine, and glutamine). Further, it contains binding regions for SR-B 
proteins formed by the motifs CSVTCG and GVQTRXR (Neubauer, 
Poole, Neubauer, et al., 2017). Members of the ADAMTS group 
have a signal peptide, a prodomain, a metalloproteinase catalytic 
domain, a disintegrin-like domain, a central TSP1-like domain re-
peat, a cysteine-rich domain, a spacer region with variable length, 
and C-terminus with a variable number of TSP1 domains (Porter 
et al., 2005). Semaphorins, a group of secreted and transmembrane 
proteins, were identified by the presence of the Sema domain 
(Raper, 2000). Out of the eight classes of semaphorins (1 to 7 plus 
class V for viruses), class 5 is also classified as TSR, due to the pres-
ence of the TSP1 domain (Adams & Tucker, 2000; Tucker, 2004). 
Properdin, a further member of the TSR superfamily, is charac-
terized only by the presence of six consecutive TSP1 domains 
(Nolan et al., 1991, 1992; Sun et al., 2004). In the present study, 
sequences similar to properdin were defined as TSR-TM (without 
transmembrane regions). Sequences containing only TSP1 domains 
with a transmembrane region were grouped as TSR + TM. Proteins 
were further filtered for a minimum length of 150 amino acids and 

an independent E-value of 1e-5 as recommended in the manual of 
HMMER v.3.1b2 (Eddy et al., 2015). A sequence logo of the TSP1 
domains of those TSR sequences that were differentially expressed 
(see below) was created using the weblogo server (http://weblo 
go.berke ley.edu/logo.cgi) and compared to the general Pfam TSP1 
domain motif downloaded from https://pfam.xfam.org/.

2.4 | Gene expression analyses

The datasets used in this study were previously analyzed using 
different tools. In order to avoid any method-based difference, 
we de novo analyzed the gene expression. For this, the respective 
short reads were downloaded for each species from the short read 
archive deposited in GenBank (see above) analyses. Reads were 
then mapped using Bowtie2 v2.3.4.3 (Langmead & Salzberg, 2012) 
onto the clustered transcriptomes. Transcript abundance of se-
quences with a raw read count of at least 100 raw counts in any 
two samples tested was estimated using RSEM (Li & Dewey, 2011) 
implemented in Trinity v.2.9.0 (Grabherr et al., 2011). Differential 
gene expression analyses were performed using edgeR v3.30.3 
(Robinson et al., 2010). For feeding juveniles of E. chlorotica, we 
compared specimens fed for five days to the aposymbiotic state 
(initial); specimens fed for seven days with specimens fed for five 
days (transient); and specimens fed for 10 days with specimens 
fed for seven days (stable), to investigate whether the expres-
sion of the receptors changed during the different hypothesized 
stages to establish a stable functional kleptoplasty (Pelletreau 
et al., 2012). For E. timida and E. cornigera, we compared the 
freshly fed animals to the different starvation periods, in order to 
identify genes that might be relevant, while the slugs are feeding. 
We then focused on genes that were highly expressed in feeding 
animals compared to all starvation periods. Only genes with a log2 
fold change (L2FC) >1 or <−1 were considered as significantly dif-
ferentially expressed, because we assumed the expression of a 
gene to be relevant when it changes twofold. Further, because for 
E. cornigera and E. timida no biological replicates are available, we 
used a L2FC threshold of < −1 or >1 as a way to infer meaningful 
expression changes.

3  | RESULTS

3.1 | Abundance of scavenger receptors in Elysias

No putative SR-A receptor proteins could be identified in any of the 
investigated Elysia species. A total of eight potential SR-B proteins, 
a varying number of SR-E-like proteins, with the highest number 
identified in E. timida (15), and two to four SR-I proteins were found 
in all sea slugs (Figure 2). Additionally, numerous protein sequences 
containing one or multiple CTLD, often combined with various other 
domains, were found. Especially in E. cornigera, a high diversity (41) 
of C-type lectin proteins was found. Additionally, proteins containing 
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SRCR domains combined with other domains were found in all three 
slugs (Figure 2).

3.2 | Abundance of TSRs in Elysias

In all analyzed Elysia species, a potential thrombospondin type 5/
cartilage oligomeric matrix protein (COMP) homologue was identi-
fied (Figure 3). Additionally, several different putative ADAMTS-like, 

semaphorin, and plexin homologues were found. The vast major-
ity of TSR sequences only contained TSP1 sequences (Figure 3). 
Furthermore, for each species an Astacin homologue and several 
homologues containing either of von Willebrand factor A (VWA) do-
mains or immunoglobulin-like domains, or UNC-5 domains, as well 
as putative homologues of RPE-spondin and spondin (Figure 4). The 
highest diversity of TSR receptors (15 different arrangements) was 
found for proteins that contained one or several TSP1 domains com-
bined with a variety of different receptors (Figure 4).

F I G U R E  2   Overview about the 
diversity of scavenger receptor proteins 
in Elysia timida, Elysia cornigera, and 
Elysia chlorotica. As no putative SR-A 
proteins were identified in any of the 
slugs, the general domain architecture 
of SR-A proteins in humans is shown as 
a reference. Astacin, peptidase family 
M12A; CD36, cluster of differentiation 36; 
CTLD, C-type lectin domain; GAIN/GPS, G 
protein-coupled receptors autoproteolysis 
inducing domain; Ig, immunoglobulin 
domain; I-set, immunoglobulin I-set 
domain; LDL, low-density lipoprotein 
domain; LRR8, leucine-rich repeat 8 
domain; PKD, polycystic kidney disease 
domain; REJ, receptor of egg jelly domain; 
ShK, Stichodactyla helianthus K+ channel 
toxin domain; SRCR, scavenger receptor 
cysteine-rich domain

Protein domain architecture

SR-B

SR-A SRA1

SRCL

SR-E like

MARCO SCARA5

C-type lectin

Key to domain

I-set

PKD
REJ

Cadherin

Calx-beta

GAIN/GPS

LDL

SRCR Trypsin

Zona pellucida

Fz
CTLD CUB

Ig
IgG Fc binding

Fibronectin

ShK

Astacin
Kringle

7-Transmembrane 2
Transmembrane

Lectin leg-likeLRR8Collagen

CD36

Pan 1

XendoU

SRCR

acit or ol hc
ai syl

E

ar egi nr oc
ai syl

E
adi

mit
ai syl

E

8 8 8

9 41 4

14
3 2

2
1

1

2 2

1 1

1

1
1

1

1
1
1
1
1
1

1

19 4
9 3

1 1 1

1
2 1

1

1
2

1 1 1

1

 20457758, 2020, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.6865 by Cochrane G

erm
any, W

iley O
nline Library on [11/03/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



Pattern recognition receptors in Sacoglossa   Chapter 2.2 
 
	
  

32 

 

     |  12353MELO CLAVIJO Et AL.

3.3 | Expression of PRRs in adults of the StR E. 
cornigera and the LtR E. timida

In the StR species E. cornigera, six out of 68 genes belonging to 
the SRs class were significantly upregulated in the freshly fed ani-
mal, compared to both starvation periods (Table 1, Figure 5). One 
of these genes is a putative SR-B homologue (GBRW01136834.1), 

a putative Perlucin homologue (GBRW01100272.1) belonging 
to the SR-E receptors, and four C-type lectins. Among the C-type 
lectins are two putative C-type mannose receptor 2 sequence 
homologues (GBRW01106608.1 and GBRW01163094.1), and one 
putative Versican core protein homologue (GBRW01163094.1) that 
all contained two C-type lectin domains (CTLD) and one transmem-
brane (TM) region. Further, we found one gene to be significantly 

F I G U R E  3   Overview about the diversity of thrombospondin-type-1 repeat (TSR) proteins in Elysia timida, Elysia cornigera, and Elysia 
chlorotica. COMP, cartilage oligomeric matrix protein; EGF, epidermal growth factor domain; I-set, immunoglobulin I-set domain; PLAC, 
protease and lacunin domain; PSI, plexin repeat; TIG/IPT, immunoglobulin-like, plexins, transcription factor domain; TSP1, thrombospondin-
type-1 domain; TSP3, thrombospondin-type-3 domain

 20457758, 2020, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.6865 by Cochrane G

erm
any, W

iley O
nline Library on [11/03/2023]. See the Term

s and Conditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable Creative Com

m
ons License



Pattern recognition receptors in Sacoglossa   Chapter 2.2 
 
	
  

33 

 

12354  |     MELO CLAVIJO Et AL.

F I G U R E  4   Overview about the diversity of new domain arrangements of thrombospondin–type-1 repeat (TSR) proteins in Elysia 
timida, Elysia cornigera, and Elysia chlorotica. CUB, complement C1r/C1s, Uegf, Bmp1 domain; EGF, epidermal growth factor domain; Ig, 
immunoglobulin domain; I-set, immunoglobulin I-set domain; Kunitz BPTI, Kunitz bovine pancreatic trypsin inhibitor domain; LDL, low-
density lipoprotein domain; LRR8, leucine-rich repeat 8 domain; TSP1, thrombospondin-type-1 domain; VWA, von Willebrand factor type A 
domain
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upregulated (GBRW01019759.1) which contained two CTLDs 
flanked at both sides by a TM region and was annotated as putative 
Snaclec agglucetin subunit beta-1 homologue.

In freshly fed animals of the StR E. cornigera, only one out 
of 53 identified TSRs was significantly expressed compared to 
both starvation conditions (Table 1, Figure 6). This sequence 
(GBRW01123401.1) only contained one TSP domain and was an-
notated as Hemicentin-1.

Regardless of the starvation duration, six out of the 40 genes 
classified as SRs were significantly upregulated in the freshly fed 
animal of the LtR species Elysia timida (Table 1, Figure 5). Five of 
those genes belonged to the SR-E like class, all containing one TM 
and one CTLD. Among those genes were a putative Collectin-10 
(GBRM01064602.1), two C-type lectin 37Da homologues 
(GBRM01009636.1 and GBRM01066486.1), one putative Perlucin 
homologue (GBRM01066478.1), and one putative C-type mannose 
receptor 2 homologue (GBRM01039872.1). Additionally, one C-type 
lectin homologue (GBRM01017414.1), containing one CTLD flanked 
at both sites by TM regions, was significantly upregulated.

In freshly fed adults of the LtR E. timida, only one out of 52 TSR 
genes was significantly upregulated compared to all three starvation 
conditions (Table 1, Figure 6). This gene (GBRM01039431.1) was 
classified as ADAMTS member and contained two TSP domains, one 

I-set domain, and one PLAC domain and was annotated as Protein 
madd-4 homologue.

3.4 | Expression of PRRs in feeding juveniles of the 
LtR E. chlorotica

In feeding juveniles of the LtR species Elysia chlorotica, four of the 33 
receptors classified as SRs were expressed during the initial phase 
of functional kleptoplasty (Table 2, Figure 5). Out of those two SR-B 
receptor homologues (c104938_g1_i1_1-2480 and c128999_g1_
i3_1-4140) and two genes belonging to the C-type lectins, a puta-
tive snaclec B1 homologue (c119366_g1_i1_1-1981) and a putative 
secretory phospholipase A2 receptor homologue (c124460_g1_
i2_1-2516) were significantly upregulated during the initial phase 
of functional kleptoplasty (Figure 5). During the transient phase 
of kleptoplasty, one of the previous upregulated SR-B homologues 
(c104938_g1_i1_1-2480) was significantly down-regulated, while 
the other SR-B homologue and the two C-type lectins were not sig-
nificantly altered. During the stable phase, the gene expression of 
SRs changed considerably. Out of 33 genes, 20 were significantly 
upregulated, while the remaining sequences did not change sig-
nificantly. Overall, five SR-B, one SR-E like, both SR-I, nine C-type 

TA B L E  1   Scavenger receptors and thrombospondin-type 1 receptors of the StR species Elysia cornigera and the LtR species Elysia timida 
that were significantly upregulated in freshly fed animals

Species Receptor
Domain 
arrangement Gene_ID UniProtKB annotation

log2 fold change

Day 4 Day 7
Day 
30

Elysia cornigera 
(StR)

SR-B TM + CD36 + 
TM

GBRW01136834.1 Scavenger receptor class 
B member 1

2.41 1.43 –

SR-E like TM + CTLD GBRW01100272.1 Perlucin 3.04 1.32 –

C-type lectins CTLD + CTLD 
+TM

GBRW01106608.1 C-type mannose receptor 
2

2.53 8.50 –

GBRW01166191.1 C-type mannose receptor 
2

2.11 1.15 –

GBRW01163094.1 Versican core protein 1.22 2.28 –

TM + CTLD 
+CTLD + TM

GBRW01019759.1 Snaclec agglucetin 
subunit beta-1

1.69 1.17 –

TSP1 TSP1 GBRW01123401.1 Hemicentin-1 3.24 2.69 –

Elysia timida (LtR) SR-E like TM + CTLD GBRM01064602.1 Collectin-10 2.66 3.54 2.08

GBRM01009636.1 C-type lectin 37 Da 2.80 2.54 6.14

GBRM01066486.1 C-type lectin 37 Da 3.87 3.66 6.09

GBRM01066478.1 Perlucin 3.69 3.92 4.63

GBRM01039872.1 C-type mannose receptor 
2

2.90 2.61 2.36

C-type lectins TM + CTLD +TM GBRM01017414.1 Collectin-12 3.58 1.73 2.72

ADAMTS TSP1 + TSP1 + 
I-set + Plac

GBRM01039431.1 Protein madd-4 8.92 9.47 10.06

Note: The log2 fold change shows the expression in freshly fed animals compared to the respective starvation period.
Abbreviations: CD36, cluster of differentiation 36; CTLD, C-type lectin domain; I-set, immunoglobulin I-set domain; Plac, protease and lacunin 
domain; TM, transmembrane region; TSP1, thrombospondin-type-1 domain.
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F I G U R E  5   Gene expression profile of scavenger receptors in Elysia cornigera (StR), Elysia timida (LtR) and Elysia chlorotica (LtR). Shown is 
the log2 fold change (L2FC) of the gene expression and only genes that were differentially expressed in at least one condition are displayed

E. cornigera (StR) E. timida (LtR) E. chlorotica (LtR)

c104938_g1_i1_1-2480

c117614_g1_i2_1-2387

c124094_g1_i5_1-1948

c128350_g1_i2_5-2199

c128823_g3_i1_1-2283

c128886_g1_i1_3-3327

c128999_g1_i3_1-4140

c117145_g1_i1_3-3724

c106320_g1_i1_49-1505

c33902_g1_i2_1-733

c129289_g2_i1_1-4081

c128000_g1_i2_1-12399

c115788_g1_i3_1-1258

c106588_g1_i1_1-744

c119366_g1_i1_1-1981

c124460_g1_i2_1-2516

c126765_g1_i1_1-6135

c126622_g1_i1_3-5995

c74166_g1_i1_1-1722

c123105_g1_i3_59-3000

c114151_g1_i2_1-3170

c122685_g1_i2_1-3243

c125560_g1_i1_1-4698

c121387_g2_i2_22-3524

c128729_g1_i1_1-5657

c119390_g1_i1_1-2102

c129004_g1_i1_1-5286

c127888_g1_i4_1-2564

c87930_g2_i1_26-2336

Fed-D
ay7

Fed-D
ay4

GBRW01094262.1

GBRW01094265.1

GBRW01130359.1

GBRW01130360.1

GBRW01136834.1

GBRW01140943.1

GBRW01094263.1

GBRW01100269.1

GBRW01068411.1

GBRW01068418.1

GBRW01100272.1

GBRW01100274.1

GBRW01138248.1

GBRW01138249.1

GBRW01173382.1

GBRW01096037.1

GBRW01096038.1

GBRW01097119.1

GBRW01116182.1

GBRW01145868.1

GBRW01145871.1

GBRW01157904.1

GBRW01163086.1

GBRW01071035.1

GBRW01071305.1

GBRW01084664.1

GBRW01087603.1

GBRW01145868.1

GBRW01061507.1

GBRW01106608.1

GBRW01163094.1

GBRW01163078.1

GBRW01166191.1

GBRW01043873.1

GBRW01072859.1

GBRW01019759.1

GBRW01157904.1

GBRW01167574.1

GBRW01026606.1

GBRW01166457.1

GBRW01165745.1

GBRW01173130.1

GBRW01163533.1

GBRW01161051.1

GBRW01148167.1

GBRW01171333.1

GBRW01171334.1

GBRW01121556.1

GBRW01165957.1

GBRW01140463.1

SR-B

SR-E like

GBRM01013094.1

GBRM01038491.1

GBRM01076016.1

GBRM01087667.1

GBRM01087705.1

GBRM01088550.1

GBRM01088551.1

GBRM01102049.1

GBRM01064602.1

GBRM01009636.1

GBRM01023430.1

GBRM01025715.1

GBRM01034582.1

GBRM01039872.1

GBRM01047939.1

GBRM01066478.1

GBRM01066486.1

GBRM01087703.1

GBRM01101629.1

GBRM01051533.1

GBRM01099855.1

GBRM01017414.1

GBRM01080556.1

GBRM01023160.1

GBRM01081547.1

GBRM01060658.1

GBRM01081194.1

GBRM01087727.1

GBRM01087730.1

GBRM01102532.1

GBRM01019544.1

GBRM01014143.1

GBRM01029086.1

GBRM01058693.1

Fed-D
ay7

Fed-D
ay7

SR-I

C-type lectins

SRCR

initial

transient

stable
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lectins, and three SRCR homologues were upregulated during the 
stable phase.

In feeding juveniles of the LtR species E. chlorotica, only two TSR 
genes, a collagen alpha-5 chain homologue (c126864_g2_i1_1-2228), 

which contains a VWA and a TSP1 domain, as well as a Plexin-B ho-
mologue (c126864_g2_i1_1-2228), which contains a Sema domain 
(SEMA) and a PSI integrin domain (PSI), were significantly upregulated 
during the initial phase of functional kleptoplasty (Table 2, Figure 6). 

F I G U R E  6   Gene expression profile of thrombospondin-type-1 repeat (TSR) proteins in Elysia cornigera (StR), Elysia timida (LtR) and Elysia 
chlorotica (LtR). Shown is the log2 fold change (L2FC) of the gene expression and only genes that were differentially expressed in at least one 
condition are displayed
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This general expression profile does not change during the transient 
phase of functional kleptoplasty, with the exception that the Plexin-B 
homologue (L2FC 0.39) was not significantly regulated anymore. 
During the stable phase of functional kleptoplasty, the expression pro-
file of TSRs changes, similar as of SRs, extensively (Figure 6). Overall, 
18 genes were significantly upregulated during the stable phase, three 
significantly down-regulated, and 19 did not change. Especially, seven 
ADAMTS domain-containing proteins were significantly upregulated 
(average L2FC 2.13 ± 0.67). Among genes containing only TSP1 do-
mains, two were significantly upregulated as well; a Hemicentin-1 
homologue (c127001_g1_i3_1-3608, L2FC 1.04) containing 14 TSP1 
domains and a thrombospondin-type-1 domain-containing protein 7A 
homologue (c120954_g1_i2_4-3449, L2FC 1.48) containing two TSP1 
domains and a transmembrane region.

Generally, the TSP1 domains of the upregulated TSR sequences 
of the slugs were made out of six conserved cystein residues, con-
taining a WXXW (where X is any amino acid) motif, a motif similar to 
the CSVTCG motif and a subsequent RXR motif (Figure 7).

4  | DISCUSSION

To shed light on the initiation of functional kleptoplasty, we analyzed 
the abundance and domain architecture of scavenger receptors 
(SRs) and thrombospondin-type-1 repeat (TSR) protein superfam-
ily in three kleptoplastid-bearing sea slugs Elysia cornigera (StR), E. 
timida (LtR), and E. chlorotica (LtR). All species possess a similar SRs 
and TSRs receptor repertoire independent on the ability to either 
maintain the kleptoplasts in the short or long term. We could only 
find minor differences in the number of genes and the diversity of 
some receptors mainly between E. cornigera/E. timida and E. chloro-
tica. This might, however, be based on the different experimental 
setups and developmental stage of the used specimens with an ac-
cording different gene expression profile, rather than genomic dif-
ferences, for example, gene duplication, diversification, or losses. 
Nevertheless, the general abundance is also similar to that found 
in cnidarians (Neubauer, Poole, Detournay, et al., 2017; Neubauer, 
Poole, Neubauer, et al., 2017).

TA B L E  2   Scavenger receptors and thrombospondin-type-1 receptors of the LtR species Elysia chlorotica

Species Receptor
Domain 
arrangement Gene_ID

UniportKB 
annotation

log2 fold change

Initial Transient Stable

Elysia chlorotica (LtR) SR-B TM + CD36 + TM c104938_g1_i1_1-2480 Lysosome 
membrane 
protein 2

2.02 −2.12 1.33

c128999_g1_i3_1-4140 Scavenger receptor 
class B member 1

2.58 −0.38 1.90

C-type lectins CTLD + CTLD +TM c119366_g1_i1_1-1981 Snaclec B1 1.10 −0.05 3.17

c124460_g1_i2_1-2516 Secretory 
phospholipase A2 
receptor

1.68 0.48 2.95

VWA VWA + TSP1 + 
VWA

c108772_g2_i1_27-1786 Collagen alpha−5 
chain

1.05 2.00 −1.55

Semaphorin SEMA + PSI c126864_g2_i1_1-2228 Plexin-B 1.33 0.39 0.72

Note: The log2 fold change shows the expression during the different stages of functional kleptoplasty. The focus was set on genes expressed during 
the initial phase.
Abbreviations: CD36, cluster of differentiation 36; CTLD, C-type lectin domain; SEMA, Sema domain; TM, transmembrane region;TSP1, 
thrombospondin-type-1 domain; VWA, von Willebrand factor type A domain.

F I G U R E  7   Sequence logo of the TSP1 domains of TSR genes that were differentially expressed throughout the experimental conditions 
in the three slugs. The profile was compared to the general Pfam profile of TSP1 domains. The glycosaminoglycan (GAG) and CD36 binding 
sites are highlighted in the boxes, and the six conserved cysteines are shown in orange
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Independently of the experimental condition, the gene expres-
sion profiles of the three species provided a set of species-specific 
candidate genes, in particular SR-B, SR-E, C-type lectins, and TSR 
genes, that might be relevant for plastid recognition (Figure 8). 
Receptors belonging to those classes are likewise upregulated 
during the onset of a symbiosis in cnidarians (Mohamed et al., 2016; 
Neubauer, Poole, Neubauer, et al., 2017) and at least for SR-Bs 
and TSRs their involvement in symbiont recognition was verified 
by physiological trials (Neubauer, Poole, Detournay, et al., 2017; 
Neubauer, Poole, Neubauer, et al., 2017). We found TSP1 domain 
motifs of the TSR proteins (six conserved cystein residues, the pro-
tein and glycosaminoglycan binding motif, and a motif similar to the 
CD36 binding motif) (Zhang & Lawler, 2007), that are needed for 
potential interactions of the TSRs with SR-B receptors (Detournay 
et al., 2012; Neubauer, Poole, Neubauer, et al., 2017). The candidate 
TSR genes identified in the slugs differ among the three species and 
to those known from cnidarians, where a previous analysis of the 
gene expression showed an upregulation of semaphorin 5A and a 
trypsin-like gene (Neubauer, Poole, Neubauer, et al., 2017). Thus, if 
there is an interaction of TSRs with SR-Bs in the slugs, the exact TSR 
proteins involved vary with the different slugs and compared to cni-
darians. Yet, whether the identified candidate genes in the slugs are 
indeed involved in symbiont recognition and whether the TSRs are 
interacting with the SR-Bs (Figure 8), and hence are involved in pro-
moting the symbiont tolerance by the host (Detournay et al., 2012; 
Mansfield & Gilmore, 2019), remains to be experimentally tested.

CTLD-containing receptors are upregulated in all three slugs, 
and evidence exists that glycan–lectin interactions are relevant in 
the symbiont recognition process in cnidarians (reviewed in Davy 
et al., 2012; Mansfield & Gilmore, 2019). For instance, lectins can 
bind to conserved glycans in Symbiodinium cell walls inducing phago-
cytic processes, and the activation of the complement pathway (Davy 
et al., 2012; Fransolet et al., 2012; Koike et al., 2004; Lin et al., 2000; 
Logan et al., 2010; Poole et al., 2016; Wood-Charlson et al., 2006). 
Lectins have been found surrounding symbionts in gastrodermal 

host cells (Jimbo et al., 2000, 2005; Kvennefors et al., 2008, 2010) 
and they can induce Symbiodinium transformation, from the motile 
stage to a coccoid nonmotile stage, suitable for the symbiosis estab-
lishment (Koike et al., 2004).

An involvement of lectins in chloroplast recognition is, however, 
uncertain. In some plant species, for instance in the pea Pisum sa-
tivum (Keegstra & Cline, 1982), the outer membrane of the chloro-
plasts lacks glycoproteins, which would prevent interactions with 
lectins. Whether the chloroplasts of the Sacoglossan food sources 
lack glycoproteins too is unknown (Figure 8). The outer envelope 
of primary chloroplasts, as in Acetabularia acetabulum, the food 
source of E. cornigera and E. timida, is generally rich in galactolip-
ids (mono- and digalactosyldiacylglycerol), phosphatidylcholine, and 
low in phospholipids, with a small portion of phosphatidylglycerol 
(Block et al., 2007; Keegstra & Yousif, 1986), and has the highest 
lipid to protein ratio among any plant membrane (Block et al., 1983). 
Secondary chloroplasts, as in Vaucheria litorea, the food source of 
E. chlorotica, possess three to four membranes consisting also of 
mono- and digalactosyldiacylglycerol, although the precise location 
of these galactolipids in the various plastid membranes is still unclear 
(Petroutsos et al., 2014). In the case of V. litorea plastids, the mem-
branes are also associated with the endoplasmic reticulum in what 
is called the chloroplast endoplasmic reticulum (Graves et al., 1979; 
Rumpho et al., 2000). In E. chlorotica, the outer two membranes of 
the kleptoplasts are, however, degraded (Rumpho et al., 2000). What 
mechanism underpins this degradation and whether it occurs before 
or after the ingestion is unknown, but might be an, additional, im-
portant factor regarding chloroplast recognition. Nevertheless, an 
involvement of SR-E-like or other C-type lectin domain-containing 
receptors should not be ruled out (Figure 8).

The recognition process also includes the release of compounds 
by the symbiont. For instance, glycoconjugates are thought to serve 
as species-specific signaling molecules, important during recognition 
and maintenance of the symbiont (Markell & Wood-Charlson, 2010). 
So far, there is no evidence of the secretion of potential recognition 

F I G U R E  8   Schematic overview of potential recognition processes in Sacoglossa sea slugs. (a) The exact composition of glycans, 
lipopolysaccharides, and glycosaminoglycans of the chloroplast is still unknown for Acetabularia acetabulum and Vaucheria litorea. (b) 
TSRs are expressed in a species-specific manner and might bind to glycosaminoglycan to enhance binding to SR-B. The chloroplasts can 
potentially also directly bind to SR-Bs through lipopolysaccharides. Further, SR-E and C-type lectins can bind to glycans

(a) (b)
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signal molecules from the chloroplast in a kleptoplastic system and 
at least the lipidome does not undergo any shifts during the onset of 
functional kleptoplasty (Rey et al., 2017). Thus, if and how the chlo-
roplasts might be actively enhance the recognition process remains 
elusive.

The present study made a step toward compiling a list of candidate 
genes potentially involved in chloroplast recognition in Sacoglossa, 
but the exact mechanisms are still far from being understood. This 
is in part due to the fact that available transcriptomic data are het-
erogeneous, making it hard to infer a general pattern. Furthermore, 
in particular for juveniles of E. chlorotica it is nearly impossible to 
discriminate between gene expression related to development or 
chloroplast recognition. Based on the expression analyses between 
the different phases of functional kleptoplasty, it seems that during 
each transition, the gene expression changes considerably, espe-
cially during the stable phase of functional kleptoplasty, which could 
be more related to development than to functional kleptoplasty (see 
also Chan et al., 2018). Future research should thus focus on gener-
ating homogenous datasets including aposymbiotic animals in order 
to help understand how Sacoglossa can recognize and subsequently 
maintain their kleptoplasts. This task is, however, particularly com-
plicated, because only for the StR species Elysia viridis aposymbiotic 
adults could be cultured so far under laboratory conditions (Rauch 
et al., 2018), but there is no transcriptomic dataset available for this 
species. Further, a comparative analysis using shelled species, that 
digest the chloroplast extracellularly, combined with homogenous 
datasets of StR and LtR species, would have the potential to allow 
for a better understanding of the mechanisms and the evolution of 
gene expression related to incorporate chloroplasts in plastid-bear-
ing sea slugs.
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The nudibranch Berghia
stephanieae (Valdés, 2005) is
not able to initiate a functional
symbiosome-like environment
to maintain Breviolum minutum
(J.E.Parkinson & LaJeunesse 2018)

Jenny Melo Clavijo1*, Corinna Sickinger1, Sabrina Bleidißel1,
Gilles Gasparoni2, Sascha Tierling2, Angelika Preisfeld1

and Gregor Christa2*

1Institute for Zoology and Didactic of Biology, University of Wuppertal, Wuppertal, Germany,
2Department of Genetics, Saarland University, Saarbrücken, Germany

Photosymbiosis is found in different animal lineages and is best understood in
cnidarians. A successful initiation and maintenance of the symbiosis between
the animal hosts and the photosymbiotic partners is based on a recognition by
specific host receptors. This triggers signaling cascades that promote the
photobiont tolerance by the host, including an interpartner nutrient
exchange and the ability of the host to cope with increased levels of reactive
oxygen species (ROS) generated by the photobiont. Key to the successful
symbiosis is the inhibition of the phagosomal maturation resulting in the
formation of the symbiosome. In animals other than cnidarians, little is
known about the photosymbiosis initiation and maintenance, for instance in
sea slugs belonging to the Nudibranchia. Here, we investigated the gene
expression profile of Berghia stephanieae, which is able to incorporate
Breviolum minutum from its cnidarian prey Exaiptasia diaphana (Rapp, 1829)
but is not able to maintain the algae for more than a couple of days during
starvation. We show that the recognition of the algae is based on similar
mechanisms present in cnidarians, and we identified some additional candidate
genes that might be molluscan specific for photobiont recognition.
Downstream, B. stephanieae responds to increased levels of ROS but is not
able to stop the phagosomal maturation or decrease the immune response
against B. minutum, which seem to be the key factors missing in B. stephanieae
that accounts for the unstable symbiosis in this slug. Hence, B. stephanieae can
be considered a transitional state toward a stable photosymbiosis and can help
to elucidate general aspects of the evolutionary processes involved in
establishing photosymbioses in animals.
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Introduction

Several animal lineages evolved the ability to engage in a
symbiotic relationship—the so-called photosymbiosis—with
unicellular algae or Cyanobacteria (Melo Clavijo et al., 2018).
This symbiosis is especially beneficial for the animal host in
oligotrophic environments (Stanley and Lipps, 2011; Roth, 2014)
and is based on a nutritional exchange between the animal host
and the photosynthetic symbiont (the photobiont) (Matthews
et al., 2017; Rädecker et al., 2021). Most photosymbiotic animals
acquire the photobiont from the environment (horizontal
transmission), but some marine slugs belonging to the
Cladobranchia (Gastropoda, Nudibranchia) evolved a unique
strategy. Cladobranchs feed on photosymbiotic cnidarians and
specifically incorporate the prey’s symbiotic dinoflagellates
(Symbiodiniaceae) into epithelial cells of their own digestive
gland system (Rudman, 1987; Burghardt and Wägele, 2004;
Burghardt et al., 2005; Burghardt and Wägele, 2006; Burghardt
et al., 2008; Wägele et al., 2010). This process makes the slugs the
only known secondary host of photobionts in the animal
kingdom (Rousseau, 1934; Rousseau, 1935; Wägele and
Johnsen, 2001). Depending on the Cladobranchia species, the
algae are then directly digested intracellularly (non-symbiotic
species) or maintained physiologically active for variable times
as photobionts, ranging from a couple of weeks (unstable
symbiosis) to several months (stable symbiosis) (reviewed in
Rola et al., 2022). In species with unstable symbiosis, the
photobionts are often found photosynthetically active in the
animal’s feces, suggesting a symbiont expelling mechanism that
might be based on vomocytosis (Jacobovitz et al., 2021); in
species with stable symbiosis, the healthy photobionts are not
expelled and are even able to divide intracellularly (Kempf, 1991;
Burghardt and Wägele, 2004; Burghardt and Wägele, 2004;
Burghardt et al., 2005; Burghardt and Wägele, 2006; Burghardt
et al., 2008; Wägele et al., 2010; Rola et al., 2022).

The evolution of photosymbiosis in Cladobranchia, and
hence the mechanisms underpinning the selective photobiont
recognition and the subsequent maintenance for the varying
time periods, remains unknown. Regardless of the evolutionary
distance between the slugs and their cnidarian prey, photobiont
recognition and maintenance mechanisms might indeed be
similar (Chan et al., 2018; Melo et al., 2020). The winnowing,
a series of complex steps that occur to establish a stable
symbiosis (Nyholm and McFall-Ngai, 2004), has been well
described in cnidarians (Davy et al., 2012) and can serve as a

reference to understand if the same mechanisms are at play in
Cladobranchia. For instance, in cnidarians the successful
initiation of the photosymbiosis is initiated by the interaction
of pattern recognition receptors (PRRs) of the host, such as
scavenger receptors and lectins, with membrane-associated
molecular patterns (MAMPs) of the photobiont like glycans
(reviewed in Davy et al., 2012, and Mansfield and Gilmore,
2019). This is followed by an inhibition of the phagosomal
maturation, where Rab proteins, V-ATPases, and lysosomes are
highly involved (Davy et al., 2012). The resulting membrane
surrounding the photobiont intracellularly is known as
symbiosome (Neckelmann and Muscatine, 1983; Hinde and
Trautman, 2001; Kazandjian et al., 2008) and is highly relevant
for interpartner nutritional exchange (Hill and Hill, 2012;
Mohamed et al., 2016). A stable photosymbiosis is then based
on tolerating the photobiont, involving processes like the
quenching of reactive oxygen species (ROS), a constant
nutrient exchange (Rädecker et al., 2021), and the decrease of
the innate immune response where the complement system and
signaling pathways like the transforming growth factor-beta
(TGF-b), the Toll-like receptor (TLR), and the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) are
major players (Mansfield and Gilmore, 2019). Only recently,
the initial steps of the photosymbiosis establishment have been
addressed in the context of the functional kleptoplasty of
Sacoglossa sea slugs, revealing evidence for a recognition
machinery that is in part conserved among evolutionary
distant related taxa (Chan et al., 2018; Melo Clavijo et al.,
2020). Yet, in Cladobranchia, and other photosymbiotic
animals, mechanisms involved in the establishment of
photosymbiosis have not yet been studied.

In the present study, we address this knowledge gap by using
the cladobranch Berghia stephanieae (Valdés, 2005). B.
stephanieae obtains its photobionts by feeding on sea
anemones from the genus Exaiptasia (Carroll and Kempf,
1990; Valdés, 2005; Dionıśio et al., 2013) and is considered a
transitional form toward a stable photosymbiosis: even though
the photobionts are kept for a few days to 1 week, their
maintenance does not seem to provide any physiological
advantages to the slug (Kempf, 1991; Bleidißel, 2010; Mies
et al., 2017; Monteiro et al., 2019a, b). Moreover, Exaiptasia
diaphana is used as a model organism to study the
photosymbiosis in cnidarians (Dungan et al., 2020), and both
animals can be cultivated in symbiotic and aposymbiotic
(symbiont-free) states under laboratory conditions. Hence, B.
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stephanieae is an ideal organism for studying the evolution of
photosymbiosis in Cladobranchia, because it allows a direct
comparison of known mechanisms involved in photobiont
recognition and maintenance in taxonomically divergent taxa.
Studying the gene expression of B. stephanieae, we found that
one major step toward the evolution of a stable photosymbiosis
in Cladobranchia might be based on the inhibition of the
photobiont digestion/expulsion and the immunosuppression
response of the host against the photobiont.

Methods

Exaiptasia diaphana culture

Symbiotic individuals of Exaiptasia diaphana were obtained
from a local provider (Seepferdchen24 Meeresaquaristik GmbH,
Germany) in February 2019 and were maintained in a 55-l tank
(60 cm × 30 cm × 30 cm) filled with circulating artificial seawater
(ASW) (AB Reef Salt, Aqua Medic, Germany), keeping the
salinity at 33 Practical Salinity Units (PSU), the temperature at
25°C, pH at 8, and light intensity at 30 µmol photons m-2 s-1

provided by RGB top light for reef tanks (Daylight Sunrise 520,
Sera), on a 12-h light/12-h dark cycle. To ensure a stable
microbiome in the tank (Godoy-Olmos et al., 2019; Xiao et al.,
2019), 2 BactoBalls (Fauna Marin GmbH, Germany) were added
and replaced every 2 weeks. In parallel, brine shrimp Artemia
were cultivated using the Artemio Set and 16 g of ArtemioMix
eggs + salt (JBL, Germany). The anemones were fed with freshly
hatched brine shrimp nauplii Artemia two to three times
per week.

In order to produce aposymbiotic individuals of E.
diaphana, 40 animals were placed in a separate 10-l tank with
circulating artificial seawater and menthol (20% w/v in ethanol;
Carl Roth, Germany) at a final concentration of 0.19 mM as
recommended by Matthews et al. (2016). Minor changes to this
procedure were done and are described as follows: to induce
bleaching without causing mortality, the anemones were placed
in the menthol tank for 6 h at light intensity of 30 µmol photons
m-2 s-1 provided by RGB top light for reef tanks and later
incubated in another 55-l tank with ASW and 0.21 M
monolinuron (Algol, JBL, Germany) for 18 h in total darkness.
At the beginning of this 18-h incubation period, the anemones
were fed with freshly hatched nauplii of Artemia three times per
week. Monolinuron acts as a photosynthesis blocker, thus
preventing unwanted algal blooms and reducing the possibility
of any symbiont recolonization (Arnaud et al., 1994). This
process of menthol + monolinuron incubation was done for 4
consecutive days, with a 3-day pause, during which the
anemones were kept in the monolinuron tank in total
darkness. The bleaching procedure was performed for 1
month at 23°C, with pH 8, and the salinity was kept at 33
PSU, compensating any loss due to evaporation with newly fresh

water. The bottom of all tanks was cleaned, and 30% of the water
was changed weekly. To confirm the aposymbiotic status,
individuals were visually inspected with the stereo microscope
(SteREO Discovery V.8, Zeiss, Germany), light microscope
(Imager A2, Zeiss, Germany), and fluorescence microscope
(Biozero, Keyence, Japan).

Berghia stephanieae culture

Six breeding pairs of B. stephanieae were obtained from a
local provider (Seepferdchen24 Meeresaquaristik GmbH,
Posthausen) in February 2019 and cultivated in the lab at 23°
C, at a day/night cycle of 12 h/12 h. Each pair was kept in a 50-ml
plastic container with a lid (75 mm, FAUST, Germany) in 35 ml
of ASW. Water changes (50%) were made three times per week,
with freshly prepared ASW with a salinity of 33 PSU, pH of 8.0,
and temperature of 23°C. The slugs were fed with small
symbiotic E. diaphana anemones (7-mm foot and 4-mm oral
disk or 4-mm foot and 3-mm oral disk) three times per week.
Once the breeding pairs spawned, the egg masses were collected
and placed individually in 25-ml plastic containers with lids
(55 mm, FAUST, Germany) with ASW and maintained as
stated above.

The embryological development was monitored, and as soon
as the animals hatched they were separated into two groups:
symbiotic and aposymbiotic. Depending on the group, the
animals were given several cut tentacles as food, symbiotic
tentacles for the symbiotic group and aposymbiotic tentacles,
or small aposymbiotic anemone pieces for the aposymbiotic
group, three times a week. When the animals had developed
cerata and were around 1 cm in length, they were fed with small
symbiotic or aposymbiotic anemones (7-mm foot and 4-mm
oral disk or 4-mm foot and 3-mm oral disk), according to their
feeding group.

Symbiodiniaceae identification

In order to identify the Symbiodiniaceae genotype present in
B. stephanieae and in its anemone prey E. diaphana, total DNA
was extracted from three anemones and three slugs from our
cultures using the E.Z.N.A®Mollusc DNA Kit, Omega (Georgia,
USA). Then, in a total volume of 20 µl, 5 µl of the total DNA was
used as a PCR template using 10 µl of 2× concentrated GoTaq®

Green Master Mix (Promega, USA) and 10 mM of forward and
reverse primers for the Internal Transcriber Space 2 (ITS2) gene
attached to Illumina adapter sequences (ITS2 forward: TCT
TTC CCT ACA CGA CGC TCT TCC GAT CT GTG AAT TGC
AGA ACT CCG TG (Pochon et al. (2001)); ITS2 reverse: GTG
ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T CCT
CCG CTT ACT TAT ATG CTT (Stat et al. (2009)); Illumina
adapter sequence underlined). A three-step PCR was done using
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a Gradient Mastercycler® (Eppendorf, Germany), with a 15-min
initial denaturation at 95°C, followed by 30 cycles of 1-min
denaturation at 94°C, 1 min of primer annealing at 54°C, and
1 min of elongation at 70°C, and ending in a 10-min final
elongation at 70°C. The PCR products were visualized with an
electrophoresis gel and subsequently purified with 0.7 volume of
AMPure XP beads (Beckman Coulter, USA). A second PCR was
performed with 10 µl of 2×Q5®High-Fidelity Master Mix (New
England Biolabs, UK), 10 mM of Illumina sequencing adapters
containing TruSeq indexes, and 5 µl of purified PCR products as
template in a 20-µl total volume. The amplification protocol
included a 5-min initial denaturation at 95°C, 9 cycles of 1 min
at 94°C denaturation, a 1-min annealing step at 52°C, and 1 min
of elongation at 70°C, ending with a 10-min elongation at 70°C.
The PCR products were purified with 0.7 volume of AMPure XP
beads, quantified with a Qubit fluorometer (Thermo Fisher,
USA), and concentrated equimolarly to 5 nM. The samples were
sequenced on a MiSeq platform (Illumina, Germany) at the
Saarland University using the MiSeq Reagent Nano Kit v2 (500-
cycle) chemistry (Illumina, Germany). The quality of raw reads
was inspected using FastQC v0.11.8 Andrews (2010), adapters
were removed, and sequences were quality trimmed using
cutadapt v1.15 Martin (2011) with -m 10 -O 17 -e 0 -q 20,20
parameters. Subsequently, the sequences were imported into
QIIME 2 v2021.4 (Bolyen et al., 2019) and were denoised with a
maximum error rate of 2 using the dada2 plugin (Callahan et al.,
2016). For Symbiodiniaceae assignment, we first trained an ITS2
classifier using the Symbiodatabacea database published by
Fujise et al. (2021) and then followed the qiime2 pipeline to
obtain Symbiodiniaceae annotations for our samples.
Annotations were only considered valid if at least 150
sequences could be assigned to the according annotation for
each sample (Supplementary Table 1, Supplementary Figure 1;
BioProject ID: PRJNA812737; BioSample IDs: SAMN29176735-
SAMN29176740; GenBank SRA: SRR19736587-SRR19736592).

Experimental design and
sample collection

Nine nudibranchs fed with symbiotic anemones were
selected from the culture, and each individual was placed in
one 25-ml container with ASW. The animals were separated into
three groups, with three animals per group. The first group was
fed three times a week with symbiotic anemones (Fed). One hour
after feeding, they were snap frozen on dry ice in a -80°C freezer
until processing. The second group was fed only once followed
by a starvation period of 7 days (Starved). Once the starvation
period ended, the animals were snap frozen at -80°C until
processing. The third group was fed only once, starved for 7
days, and refed with small symbiotic anemones (Re-fed). One
hour after refeeding, they were snap frozen at -80°C
until processing.

The same experimental design was applied for other nine
nudibranchs fed with aposymbiotic anemones, divided into
three groups, with three animals per group. The groups were
as follows: Fed with aposymbiotic anemones, Starved, and Re-
fed with aposymbiotic anemones after starvation.

During the experiment, the water of all 18 containers was
changed (50%) three times a week and they were maintained
with the parameters previously described. For each feeding
group, samples were collected and stored as stated before.

RNA isolation and sequencing

For the 18 slug samples corresponding to six feeding
conditions described before (BioSample IDs: SAMN26426654-
SAMN26426659), total RNA was extracted from whole animals
using the my-Budget RNA Mini Kit (Bio-Budget Technologies,
Germany) following the manufacturer’s instructions. The RNA
concentration was quantified with Qubit fluorometric
quantification (Thermo Fisher, USA) and NanoDrop™ One/
OneC (Thermo Fisher, USA). A total amount of 800 µg RNA per
sample was used for sequencing with Novogene (UK). Poly(A)
mRNA enrichment, library preparation using NEBNext®

Ultra™ RNA Library Prep Kit for Illumina® (New England
Biolabs, USA), and 150-bp paired-end sequencing using the
Illumina NovaSeq 6000 System were done by Novogene (UK).
Samples were run in multiple lanes separating symbiotic from
aposymbiotic samples, and all samples were multiplexed using
double indices. Batch effects based on using different lanes are
excluded based on principal component analysis (PCA) showing
that the separation of samples is based on symbiont presence/
absence or on feeding state.

Transcriptome assembly and annotation

A total of 1,210,391,662 reads were obtained (Supplementary
Table 2; BioProject ID: PRJNA812737; GenBank SRA:
SRR18218271-SRR18218254). Given the presence of the prey
and the symbiont genes in the raw reads, a filtering step was
performed by mapping the raw reads to the nucleotide sequences
of the genome scaffolds of E. diaphana (Baumgarten et al., 2015),
Cladocopium sp. C1acro, Fugacium kawagutii (Liu et al., 2018), S.
microadriaticum (Aranda et al., 2016), and Breviolum minutum
(Shoguchi et al., 2013) using BBSplit as implemented in BBTools
v38.90 with qin=33 as input parameter (Bushnel l ,
sourceforge.net/projects/bbmap/). This filtering step resulted in
1,038,020,410 reads that could not be mapped to either the
anemone or the dinoflagellates (Supplementary Table 2). An
assembly for these unmapped reads was done using Trinity
v2.12.0 (Henschel et al., 2012; Haas et al., 2013), which resulted
in 1,554,424 transcripts. The assembled transcriptome was then
clustered with CD-HIT-EST v4.8.1 with -c 0.9 -n 7 -B 1 -g 1 -s
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0.9 parameters (Li and Godzik, 2006; Fu et al., 2012), which
reduced the assembly to 1,274,094 transcript clusters
(Supplementary Data 1). TransDecoder v5.5.0 (Haas and
Papanicolaou, 2016) was then used to translate the transcript
clusters into the longest open reading frame (Supplementary
Data 2). To assess sequence completeness, the amino acid
sequences were compared against the mollusca_odb10 BUSCO
database using BUSCO v5.1.3 (Supplementary Table 3). The
amino acid dataset was then annotated by a BLASTP search
(part of the BLAST+ package v2.9.0) against the UniProt
database version 03/2021 (The UniProt Consortium, 2021),
the genomes of Fugacium kawagutii, Cladocopium sp. C1acro

(Liu et al., 2018), S. microadriaticum (Aranda et al., 2016), and
Exaiptasia diaphana (Baumgarten et al., 2015), setting the E-
value to 1e-10. Functional annotations of Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
identifiers were obtained using eggNOG-mapper v2
(Cantalapiedra et al., 2021). Taxonomic assignment for each
protein sequence was done using the UniProt taxonomic
database. Sequences were subsequently filtered for metazoan
annotations excluding annotations with their best hit to
Exaiptasia and annotations of bacteria, fungi, and plants
(Supplementary Data 3). The annotations were then screened
for innate immune elements involved in symbiont recognition
and maintenance such as scavenger receptors, C-type lectins,
Tol l - l ike receptors , complement components , the
thrombospondin-type-1 repeat (TSR) domain-containing
proteins, components of the TGF-ß signaling pathway, genes
associated with immune suppression, apoptosis, phagosome
maturation, nutrient transporters, and reactive oxygen species
(ROS) quenching. An additional search with InterProScan was
done in order to identify the transcripts with a characteristic
domain architecture correspondent to the innate immune
recognition receptors that were not identified based on the
annotation, following the classification done in our previous
work (Melo Clavijo et al., 2020). Additionally, KEGG pathways
of apoptosis, autophagy, Toll-like receptor, complement, and
TGF-ß signaling pathways were reconstructed using the online
KEGG Mapper tool (https://www.genome.jp/kegg/tool/map_
pathway.html).

Differential gene expression analysis

The transcript abundance of sequences was estimated with
kallisto v0.46.1 (Bray et al., 2016) following the Trinity pipeline
v2.12.0 (Henschel et al., 2012; Haas et al., 2013). Differential
expression analysis was done with DeSeq2 v1.32.0 (Love et al.,
2014) implemented in Trinity. Differentially expressed genes
(DEGs) were defined with FDR p-values of 0.005 and 0.05.
Genes with expression values of more than three TMM in at least
two replicates of one condition were considered. The normalized
expression data corresponding to all genes found in the

transcriptome, the annotated ones, and the DEGs were
analyzed via principal components using the prcomp function
in R v4.0.2 (R Core Team, 2021). Gene ontology analysis with
adaptive clustering were performed using the GOMWU R
package (https://github.com/z0on/GO_MWU) to measure
whether each GO category was significantly enriched
according to the expression value (Wright et al., 2015).
EuKaryotic Orthologous Groups (KOG) class enrichment tests
were performed using the KOGMWU R Package v1.2 (Dixon
et al., 2015) and published gene expression data of animals under
different experimental conditions: the coral Stylophora pistillata
exposed to heat stress (Meyer et al., 2011; Dixon et al., 2015),
different fluorescence morphotypes of the larvae of the coral
Acropora millepora (Strader et al., 2016), symbiotic vs.
aposymbiotic states of the anemone prey Exaiptasia diaphana
(Lehnert et al., 2014), and the dauer and diapause dataset of the
nematode Caenorhabditis elegans (Sinha et al., 2012) and
the midge Sitodiplosis mosellana (Gong et al., 2013). With the
KOGMWU analysis, delta ranks are computed as the difference
between the mean rank of genes in a KOG class and the mean
rank of all other genes (Dixon et al., 2015; Matz, 2019). These
comparisons using KOG classes and delta ranks of different
datasets aid to identify a general pattern of expression in our
samples, and the effect of the presence of the symbiont and the
starvation as a stress factor. Schematic models were created
with BioRender.com.

Results

E. diaphana and B. stephanieae both harbored Breviolum
minutum as a photobiont. Only in one anemone did we
additionally identify Cladocopium and Symbiodinium, but in
low frequency (248 and 191 sequences, respectively;
Supplementary Figure 1, Supplementary Table 1).

Gene expression plasticity depends on
symbiotic state and starvation

Overall, the gene expression pattern of animals feeding and
refeeding with symbiotic prey were distinctly separated in a
principal component space from each other and from all other
experimental conditions (Figure 1). The samples corresponded
to animals feeding and refeeding with aposymbiotic prey, and
starved symbiotic and aposymbiotic animals clustered together,
independently of the group of genes selected for the analysis
(only annotated genes, only differentially expressed genes).

For the comparison between symbiotic vs. aposymbiotic fed
animals and symbiotic vs. aposymbiotic refed animals,
significantly enriched gene ontology (GO) terms were
identified in the Biological Processes (BP), Cellular
Components (CC), and Molecular Function (MF) categories

Clavijo et al. 10.3389/fmars.2022.934307

Frontiers in Marine Science frontiersin.org05



Symbiont recognition and maintenance in Berghia stephanieae Chapter 2.3 
 
	
  

49 

 

(Supplementary Figure 2). No significantly enriched GO terms
could be found for starved animals.

In symbiotic fed animals, the GO term “antigen processing
and presentation of peptide antigen via MHC class II” in the BP
category was predominantly upregulated. Processes in the BP
category related to protein hydrolysis such as “positive
regulation of peptidase activity” and “positive regulation of
cysteine-type endopeptidase activity,” “regulation of cell
death,” “metabolic and biosynthetic processes,” and “gene
expression” were predominantly downregulated. Within the
CC category, the GO term “plasmodesma,” important in
cellular communication, was enriched exclusively among the
upregulated genes. Regarding the MF category, GO terms
associated with protein endohydrolysis were strongly
upregulated, while s ignal ing receptor act ivi ty was
downregulated in fed animals.

In refed animals, cellular components and biological
processes depending on the microtubule cytoskeleton and
related to cellular division were enriched among the
upregulated genes. GO terms related to the extracellular region
and the nucleoplasm were downregulated in symbiotic refed
animals (Supplementary Figure 2).

We then compared the KOG delta ranks with previously
published data on cnidarians that were exposed to heat stress
(Meyer et al., 2011; Dixon et al., 2015), on different fluorescence
morphotypes of the larvae of the coral Acropora millepora
(Strader et al., 2016), on the anemone prey Exaiptasia
diaphana, for which a comparison of the gene expression
between symbiotic and aposymbiotic animals is available
(Lehnert et al., 2014), and with the dauer and diapause dataset
of the nematode Caenorhabditis elegans (Sinha et al., 2012) and
the midge Sitodiplosis mosellana (Gong et al., 2013), respectively
(Figure 2). Two main clusters were identified: one cluster
included animals under stress conditions, while the other one
consisted of unstressed animals. Comparisons of the gene
expression between symbiotic vs. aposymbiotic fed and refed

B. stephanieae and its prey E. diaphana clustered within the
unstressed group. Starvation in B. stephanieae resulted in a
similar gene expression compared to heat-stressed corals,
regardless of the symbiotic state. In the stressed cluster, KOG
terms belonging to the category “Metabolism” are
predominantly downregulated, while KOG terms belonging to
“Cellular processes and signaling” and “Information storage and
processing” are mainly upregulated. Only the KOG term
“Translation, ribosomal structure and biogenesis” was
significantly enriched among upregulated genes in symbiotic
vs. aposymbiotic fed B. stephanieae , while the terms
“Transcription” and “Signal transduction mechanisms” were
significantly enriched among the downregulated genes. In
aposymbiotic starved vs. fed animals, the term “Cytoskeleton”
was significantly enriched among downregulated genes. The
term “Posttranslational modification, protein turnover,
chaperones” was significantly enriched among upregulated genes.

Symbiont recognition in B. stephanieae

The symbiont recognition process in E. diaphana is a
receptor-mediated contact of the host’s PRRs and the
symbiont’s MAMPs. Among the PRRs, the scavenger receptors
from class B (SR-B) and E (SR-E), C-type lectins (like collectins),
thrombospondin‐type‐1 repeat domain‐containing proteins
(TSRs), and the complement system have been previously
linked to the symbiont recognition process (Figure 3A)
(reviewed in Davy et al., 2012; Mansfield and Gilmore, 2019).
The role in the onset of the photosynthetic symbiosis of other
PRRs like Toll-like receptors (TLRs), nucleotide oligomerization
domain (NOD)-like receptors (NODs), fibrinogen-related
proteins (FREPs), and peptidoglycan recognition proteins
(PGRPs) is unknown. We found most of these aforementioned
receptors in our gene expression analyses of Berghia
stephanieae (Table 1).

BA

FIGURE 1

Principal component analysis of rlog-transformed counts for (A) all differentially expressed genes (DEGs) (n = 184,798) and (B) all annotated
genes (n = 40,229) identified in the transcriptome of Berghia stephanieae.
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Overall, 15 genes were classified as scavenger receptors,
from which six belong to class B, three to class E-like, and six to
class I. In order to find potential candidates involved in
symbiont recognition, we compared the gene expression of
these receptors between symbiotic and aposymbiotic refed
animals, after a 7-day starvation period. We expected those
genes relevant for symbiont recognition to be upregulated in
symbiotic refed animals, because our chosen time frame of
refeeding of 1 h after a starvation period should induce a
photobiont-specific gene expression. In animals regularly fed,
this expression pattern might be lost, as observed in Acropora
digitifera (Mohamed et al., 2016). Out of the six SR-B genes,
two were significantly upregulated: a homologue of the
lysosome membrane protein 2 (DN954_c6_g1; L2FC 4.53)
was upregulated in symbiotic refed animals, while the other
SR-B homologue annotated as SRB1 (DN224730_c0_g3; L2FC
5.33) was upregulated in aposymbiotic refed animals

(Supplementary Figure 3). From the three identified SR-E-
like receptors, a snaclec agkisacutacin subunit A (p < 0.005:
DN2954_c1_g1, L2FC 3.43) and fibulin-5 (p < 0.05:
DN4915_c0_g1, L2FC 1.85) were significantly upregulated in
symbiotic refed animals (Supplementary Figure 3). None of the
SR-I genes were differentially expressed (Supplementary Data
3). Forty-one genes were classified as C-type lectins, and out of
them, one C-type mannose receptor was significantly
differentially expressed in symbiotic refed animals (p < 0.005:
DN264_c2_g1, L2FC 1.36). Additionally, collectin 12 and a
low-affinity immunoglobulin epsilon Fc receptor were highly
expressed in symbiotic refed animals (Supplementary Figure 3
and Table 1). Nine genes were grouped as SRCR, but none of
them was differentially expressed (Supplementary Data 3).
Among the TSRs, eight genes were classified as ADAMTS (a
disintegrin and metalloproteinase with thrombospondin
motifs), 15 as semaphorins, three as plexins, 11 as sequences

FIGURE 2

Gene expression profile based on KOG classes. Clustered heatmap of enriched KOG classes in B. stephanieae compared to publicly available
datasets of other organisms exposed to stress factors: different fluorescence morphotypes of the larvae of the coral Acropora millepora (Strader
et al., 2016), heat-stressed coral Stylophora pistillata (Meyer et al., 2011; Dixon et al., 2015), symbiotic vs. aposymbiotic Exaiptasia diaphana
(Lehnert et al., 2014), the dauer state of the nematode Caenorhabditis elegans (Sinha et al., 2012), and the diapause state of the midge
Sitodiplosis mosellana (Gong et al., 2013). KOG classes within three main KOG categories are shown. The regulation of the KOG classes is
color-coded, where red indicates upregulation and blue downregulation based on the delta rank score. Asterisks show the KOG classes that
were significantly enriched (FDR = 0.1).

Clavijo et al. 10.3389/fmars.2022.934307

Frontiers in Marine Science frontiersin.org07



Symbiont recognition and maintenance in Berghia stephanieae Chapter 2.3 
 
	
  

51 

 

FIGURE 3

Model of the cellular events involved in the symbiont recognition and maintenance in the sea anemone Exaiptasia diaphana (A-D) based on
previously published works (Chen et al., 2003, 2004, 2005, Davy et al., 2012, Detournay et al., 2012, Fransolet et al., 2012, Lehnert et al., 2014,
Mohamed et al., 2016, Neubauer et al., 2016, 2017, Ishii et al., 2019) and our results on Berghia stephanieae (E-I). In E. diaphana, the first step of
the winnowing is the recognition of the potential symbiont (A) mediated by the host’s pattern recognition receptors (PRRs) such as SR-Bs, SR-
E-like, C-type Lectins, and TSRs. (B) The recognition by TSRs and/or SR-Bs seems to trigger the tolerogenic TGF-b pathway, with a high
phosphorylation (P) of the transcription factor SMAD2/3 that promotes an immunosuppression response. (C) The phagocytosis of the potential
symbiont takes place, where activator proteins like EEA-1, VPS34, and DYN-1 induce the early phagosome formation by the recruitment of
Rab5. The phagosomal maturation continues by the replacement of Rab5 with Rab7, which induces the recruitment of lysosome-associated
membrane protein (LAMP) and the fusion of the phagosome with lysosomes (L). Once the phagosome content is successfully degraded, the
recyclement of the phagosome is triggered by the replacement of Rab7 with Rab11. (D) In stable symbiosis, the phagosomal maturation is
inhibited and a functional symbiosome is established, where a nutrient exchange takes place via bicarbonate, glucose, and ammonium
transporters, among others. In B. stephanieae, the recognition of the photobiont (E) might be mediated by PRRs such as SR-Bs, SR-E-like, C-
type Lectins, TSRs, and/or FREPs. (F) The tolerogenic TGF-b pathway is not regulated, and core components like TGF-b ligand and TGF-bRII are
missing. (G) During the early phagosome formation, only the activator protein VPS34 (PIK3C3) is activated and the recruitment of Rab5 is
triggered. In contrast with its prey, in B. stephanieae there is no selective symbiont elimination, instead, the phagosomal maturation continues
for healthy symbionts, marked by the expression of Rab7. Once the photobiont is successfully digested, the phagosome recycling is activated by
the replacement of Rab7 with Rab11. (H) Since the phagosomal maturation is not inhibited, it seems that no functional symbiosome can be
established or maintained, so no nutrient exchange takes place. (I) The alternative is that the photobionts cannot escape vomocytosis, given that
MyD88 is activated preventing the maintenance of the photobiont in the animal host, and promoting the expulsion of healthy photosynthetically
active dinoflagellates.
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containing only the TSP1 (thrombospondin‐type‐1) domain
with transmembrane region (TM), 103 as TSP1 without TM,
one astacin metallopeptidase, 2 as F-spondin-like, and 27 as
sequences containing TSP1 in combination with other
domains (Supplementary Data 3). Out of the 114 TSRs, eight
were significantly differentially expressed in symbiotic refed
animals (p < 0.005). From those eight TSRs, one was annotated
as Coadhesin (DN47020_c0_g1, L2FC 7.15), one as ADAMTS
adt-1 (DN23670_c0_g4, L2FC 7.69), five as Hemicentin-1
(DN24418_c0_g1, L2FC 7.69; DN31129_c0_g1, L2FC 7.29;
DN50968_c0_g1, L2FC 6.74; DN82106_c0_g1, L2FC -2.32,
DN9953_c4_g1, L2FC 1.9) , and one as Spondin-1
(DN33987_c0_g2, L2FC 7.17) (Supplementary Figure 3).

Furthermore, 35 activator genes of the complement
system were identified (Supplementary Data 3), yet none of
them were significantly differentially expressed. Only one
mannose-binding protein A and one mannose-binding
protein C were highly expressed in symbiotic refed animals
compared to aposymbiotic refed ones (Supplementary
Figure 4; Table 1).

We identified 40 genes involved in the TLR pathway, out of
which 30 were classified as Toll-like receptors (TLRs), five as
myeloid differentiation primary response protein (MyD88), and
five as the nuclear factor NF-kappa-B (NF-kB). Further, 13 genes
were grouped as NOD-like receptors (Supplementary Data 3).

None of the TLRs, MyD88, NF-kB, and NODs was significantly
differentially expressed, except for one MyD88 that was
upregulated in symbiotic refed animals (Supplementary
Figure 4; Table 1). Sixty-eight genes were classified as
fibrinogen-related proteins (FREPs), and three peptidoglycan
recognition proteins (PGRPs) were identified, but none of these
genes were differentially expressed in symbiotic refed animals
(Supplementary Data 3; Supplementary Figure 4). Only one
FREP annotated as fibroleukin (Supplementary Figure 4) and
one PGRP annotated as peptidoglycan recognition protein 3
were upregulated in symbiotic refed animals compared to
aposymbiotic refed ones (Supplementary Figure 4; Table 1).

TGF-b signaling pathway is not
responsible for symbiont tolerance
in B. stephanieae

Once the symbiont is recognized in cnidarians, signaling
cascades like the TGF-b signaling pathway might be triggered,
leading to an immunosuppression response (Detournay et al.,
2012) (Figure 3B). However, in B. stephanieae, core elements
like the activation ligand TGF-b sensu stricto and TGF-b
receptor II (TGFbRII) were not present (Figure 3F), and only
one bone morphogenetic protein 1 (BMP1) (DN5506_c0_g1,

TABLE 1 Innate immune genes potentially involved in the photosymbiosis initiation in Berghia stephanieae.

Receptor group Gene ID UniProtKB annotation Protein entry L2FC re-fed Apo vs. Sym

SR-B DN954_c6_g1 Lysosome membrane protein 2 P27615 4.53**

SR-B DN224730_c0_g3 Scavenger receptor class B member 1 (SRB1) P16671 5.33**

SR-E-like DN2954_c1_g1 Snaclec agkisacutacin subunit A Q9IAM1 3.43**

SR-E-like DN4915_c0_g1 Fibulin-5 Q9WVH9 1.85*

SR-E-like DN1503_c0_g3 Low affinity immunoglobulin epsilon Fc receptor P20693 2.11

C-type lectin DN264_c2_g1 C-type mannose receptors Q9UBG0 1.36**

C-type lectin DN79_c0_g1 Collectin-12 A6QP79 1

C-type lectin DN52138_c0_g1 Low affinity immunoglobulin epsilon Fc receptor P20693 0.3

TSR DN47020_c0_g1 Coadhesin B3EWZ3 7.15**

TSR DN23670_c0_g4 ADAMTS adt-1 G5ECS8 7.69**

TSR DN24418_c0_g1 Hemicentin-1 D3YXG0 7.69**

TSR DN31129_c0_g1 Hemicentin-1 Q96RW7 7.29**

TSR DN50968_c0_g1 Hemicentin-1 D3YXG0 6.74**

TSR DN82106_c0_g1 Hemicentin-1 Q96RW7 -2.32**

TSR DN9953_c4_g1 Hemicentin-1 D3YXG0 1.9**

TSR DN33987_c0_g2 Spondin-1 Q8VCC9 7.17**

Complement DN16476_c0_g1 Mannose-binding protein A P39039 0.13

Complement DN2766_c0_g2 Mannose-binding protein C Q66S61 0.65

TLR pathway DN4567_c0_g1 Myeloid differentiation factor 88 A5HNF6 0.59

FREPs DN72561_c0_g1 Fibroleukin Q29RY7 0.66

PGRPs DN1038_c0_g5 Peptidoglycan recognition protein 3 Q96LB9 1.81

List of candidate proteins for photobiont recognition in Berghia stephanieae identified by comparing the gene expression between symbiotic re-fed animals and apo-symbiotic re-fed
animals. Asterisks denote the p-value < 0.005 (**) and p-value < 0.05 (*).
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L2FC -2.63) was significantly downregulated in symbiotic refed
animals. None of the other TGF-b signaling pathway
components were expressed above three TMM in any of the
feeding conditions (Supplementary Data 3).

Phagosome maturation: Photobiont
digestion and maintenance
occur simultaneously

In cnidarians, the potential photobionts are phagocytized,
after the successful recognition, into cells of the animal host
and are still surrounded by the phagosomal membrane. In
order to maintain the photobiont, the phagosomal maturation
has to be prevented (Figure 3C) (Hill and Hill, 2012). Usually,
newly formed phagosomes fuse with early endosomes and
acquire the necessary proteins for maturation including Ras-
related protein 5 (Rab5), early endosomal antigen 1 (EEA1),
dynamin (DYN-1), and vacuolar sorting protein-34 (VPS34,
also known as PIK3C3) (Kinchen and Ravichandran, 2008; Lee
et al., 2020). In E. diaphana, Rab5 is only present in
phagosomes with healthy photobionts (Chen et al., 2004).
The early phagosome matures into late phagosome by the
replacement of Rab5 with Rab7, promoting the fusion with
lysosomes via lysosome-associated membrane protein
(LAMP1 and LAMP2) recruitment, the accumulation of V-
ATPases, and the subsequent acidification of the late
phagosome (Lee et al., 2020). Once phagosomal degradation
is initiated, the endosome is recycled by the replacement of
Rab7 and the recruitment of Rab11. In cnidarian
photosymbiosis, proteins like Rab22, amyotrophic lateral
sclerosis2 (ALS2), TBC1 domain family member 9 (TBCD9),
rabenosyn-5 (RBNS5), and Ras-related and estrogen-regulated
growth inhibitor (RERG) might block Rab7 by the constant
activation of Rab5, preventing the maturation of the
phagosome (Mohamed et al., 2016; Lee et al., 2020). In B.
s t ephan i eae , Rab5A (DN60084_c0_g1) and Rab7
(DN353992_c0_g1) were significantly upregulated in
symbiotic fed and refed animals (p < 0.005: Rab5A L2FC
8.25, L2FC 7.39; Rab7 L2FC 7.71, L2FC 8.09, respectively)
(Supplementary Figure 5). Rab7A (DN23467_c1_g2, L2FC
1.90) was significantly upregulated only in symbiotic refed
animals (Supplementary Figure 5). None of the activators of
Rab5 (EEA1, dynamin) was significantly differentially
expressed in any feeding condition; only VPS34/PIK3C3 was
upregu la ted in symbio t i c f ed and re f ed an ima l s
(Supplementary Figure 5). Rab11A and Rab11B were
downregulated in symbiotic fed animals, while they were
upregulated in symbiotic refed animals. LAMP1 was
significantly differentially expressed in symbiotic refed
animals (DN5522_c5_g1, L2FC 1.33, p < 0.05). V-ATPases
were significantly upregulated during feeding (p < 0.005:
DN35123_c0_g2, L2FC 10.69; p<0.05: DN23173_c0_g1,

L2FC 1.62; DN4712_c0_g1, L2FC 1.3) and refeeding with
symbiotic prey (p < 0.005: DN35123_c0_g2, L2FC 8.39; p <
0.05: DN10201_c0_g2, L2FC 1.09; DN13065_c0_g2, L2FC
1.06; DN32461_c0_g1, L2FC 2.55; DN4147_c0_g1, L2FC
0.66) (Supplementary Data 3).

Functional phagosome: Amino acid
metabolism and nutrient transporters

In cnidarians, the arrested phagosomes harboring healthy
photobionts that evade maturation would communicate with
the animal host via membrane transporters to obtain the
necessary compounds for photosynthesis (dissolved inorganic
carbon in the form of bicarbonate or as CO2), translocate
produced organic compounds to the host (e.g., glycerol,
glucose, amino acids, lipids), and recycle the host’s waste
products like nitrogen (Figure 3D) (Matthews et al., 2017).
The metabolic exchange is key for the stability of the symbiosis.
In B. stephanieae, we compared symbiotic and aposymbiotic
animals for each experimental condition and identified several
transporters such as ammonium, bicarbonate, and glucose
transporters (Figure 3H; Supplementary Figure 6).
Ammonium transporters were significantly upregulated in
symbiotic fed animals (p < 0.05: DN2986_c0_g2, L2FC 2.01),
symbiotic refed animals (p < 0.005: DN340748_c0_g1, L2FC
8.29), and starved symbiotic animals (p < 0.05: DN8797_c3_g2,
L2FC 2.24). Bicarbonate transporters were significantly
downregulated in symbiotic starved animals (p < 0.005:
DN3291_c0_g2, L2FC -3.58; p < 0.05: DN3291_c0_g1, L2FC
-3.41), but not differentially expressed in any other
comparison. Once transported over the phagosomal
membrane, bicarbonate must be converted to CO2, to make
it available for photosynthesis, by carbonic anhydrases (Weis,
1993). Several carbonic anhydrases (Supplementary Figure 6)
were significantly upregulated in symbiotic refed (p < 0.005;
DN78523_c0_g1, L2FC 1.6; DN72715_c0_g1, L2FC 3.04) and
symbiotic starved animals (p < 0.05; DN5108_c0_g1, L2FC
-2.46; DN78523_c0_g1, L2FC 1.73; DN87999_c0_g1,
L2FC 1.48).

For the animal host, the received glucose is a major
nutrient and is essential to assimilating waste products, like
ammonium, for the synthesis of amino acids. Hence, we
expected that glucose transporters were upregulated in all
symbiotic animals, in order to maintain the photobionts. Yet,
in B. stephanieae glucose transporters were only significantly
upregulated in symbiotic refed animals (p < 0.05:
DN1101_c0_g1, L2FC 1.28) (Supplementary Figure 6).

Ammonium is mainly used in the amino acid synthesis
through the glutamine synthetase (GS)— glutamine
oxoglutarate aminotransferase (GOGAT). In this GS-GOGAT
cycle, glutamate dehydrogenases (GDH) convert ammonium
into glutamate and GS transforms ammonium into glutamine.
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In B. stephanieae, one GDH was significantly downregulated in
symbiotic refed animals (p < 0.05: DN134779_c0_g1, L2FC 2.16)
(Supplementary Figure 6). One GS homologue was significantly
upregulated in symbiotic refed animals (p < 0.005:
DN34097_c3_g2, L2FC 2.16) and symbiotic starved animals (p
< 0.05: DN34097_c3_g2, L2FC 1.99) (Supplementary Figure 6).
No GOGAT homologue could be identified.

Host oxidative stress is promoted by the
photobiont presence

The presence of the photobiont may induce additional stress
to the animal host by photosynthetic-derived reactive oxygen
species (ROS). The maintenance of the photobiont is linked to the
ability of the host to cope with this additional stress induced by the
photobiont (Richier et al., 2005; 2006; Lesser, 2011). Hence, we
expected ROS quenching mechanisms to be active in symbiotic
animals. In B. stephanieae, catalases were significantly upregulated
in symbiotic refed animals (p < 0.005: DN2499_c9_g2, L2FC 1.83)
but also during feeding and refeeding with aposymbiotic prey (p <
0.005: DN5526_c0_g1, L2FC -2.46, -2.63, respectively)
(Supplementary Figure 7). Glutathione peroxidases were also
significantly upregulated in symbiotic refed animals (p < 0.005:
DN11199_c1_g1, L2FC 2.42; p < 0.05: DN39313_c1_g1, L2FC
1.92) but significantly downregulated in aposymbiotic refed
animals (DN39313_c1_g2, L2FC -4.59). Glutathione S-
transferases were significantly upregulated in symbiotic refed
animals (p < 0.005: DN57713_c0_g1, L2FC 2; p < 0.05:
DN32195_c4_g1, L2FC 0.89). Likewise, peroxiredoxins and
peroxiredoxin-like proteins were significantly differentially
expressed during feeding and refeeding with symbiotic prey
compared to aposymbiotic fed and refed animals (p < 0.005:
DN1905_c0_g2, L2FC 8.75, 9.10; DN40077_c0_g2, L2FC 11.03,
9.63, respectively) (Supplementary Figure 7).

Discussion

In the present study, we provide the first differential gene
expression analysis of a dinoflagellate-bearing sea slug
belonging to Cladobranchia. The comparison of symbiotic
and aposymbiotic animals either feeding, refeeding, or
starving revealed a unique insight into mechanisms involved
in the recognition of Symbiodiniaceae obtained from the slugs’
cnidarian prey (Figure 3E). Starvation induced a gene
expression profile similar to heat-stressed corals (Meyer
et al., 2011; Dixon et al., 2015), including a downregulation
of essential metabolic processes (Figure 2). Moreover, in
Berghia stephanieae mechanisms to cope with reactive
oxygen species are induced in the presence of the photobiont
(Supplementary Figure 7). Yet, the immune response against
the photobiont is not suppressed and the phagosome

maturation is not inhibited. Thus, the slug are probably not
able to maintain the photobionts in the long term perhaps due
to the inability to initiate the formation of a functional and
stable symbiosome that supports a nutrient exchange between
host and photobiont.

B. stephanieae and E. diaphana harbored the same
symbiodiniaceae genotype (Supplementary Figure 1,
Supplementary Table 1), and we found that the recognition of the
algae in B. stephanieae (Figure 3E) might depend on the same
molecular machinery present in its cnidarian prey E. diaphana,
involving SR-B, SR-E-like, C-type lectins, and TSRs (reviewed in
Mansfield and Gilmore, 2019) (Figure 3A). Hence, the photobiont
recognition seems to be conserved among taxonomically divergent
host taxa and independent on the phylogenetic origin of the
phototrophic organism, or organelle (Melo Clavijo et al., 2020).
Yet, SR-B has multi-ligand recognition and diverse cellular
functions. For instance, SR-Bs recognize MAMPs from pathogens
like fungi and bacteria, polyanionic ligands such as high-density and
low-density lipoproteins (HDL, LDL), and oxidized phospholipids,
apoptotic cells, and amyloid proteins (PrabhuDas et al., 2017).
Additionally, SR-B is involved in lipid transport and phagocytosis
(Silverstein and Febbraio, 2009; Yu et al., 2021). Furthermore, SR-B
homologues are also highly expressed in aposymbiotic B.
stephanieae. Hence, in the case of SR-B, the determination of a
clear involvement in symbiont recognition in the slugs is
complicated. This also applies to the other aforementioned
receptors, but at least experimental verification has shown the
relevance of SR-B, C-type lectins, and TSRs in symbiont
recognition in cnidarians (Jimbo et al., 2000; Koike et al., 2004;
Neubauer et al., 2016; Neubauer et al., 2017), which is why we
consider these receptors as promising candidates for photobiont
recognition in B. stephanieae.

Further candidates in photobiont recognition and
photosymbiosis initiation in cnidarians belong to the TLRs
and NODs, although their involvement is debated (Mansfield
and Gilmore, 2019). TLRs and NODs can activate the NF-kB
transcription factor, which play a central role in the immune
response, inflammatory process, and cytokine release
and modulation (Doyle and O’Neill, 2006; Dev et al.,
2010). In cnidarian symbiosis, NF-kB is downregulated by
Symbiodiniaceae (DeSalvo et al., 2010; Wolfowicz et al., 2016;
Mansfield et al., 2017; Mansfield and Gilmore, 2019), yet in B.
stephanieae NF-kB is not regulated, nor are TLRs or NODs
(Supplementary Figure 4).

A potential new candidate in symbiont recognition in
cladobranchs is fibroleukin, which belongs to a highly
diversified group of glycoproteins in mollusks known as
FREPs. Members of FREPs contain a fibrinogen domain
followed by different domains (Romero et al., 2011), can
recognize bacteria and fungi (Kenjo et al., 2001; Middha and
Wang, 2008; Wu et al., 2011; Xiang et al., 2014; Huang et al.,
2015), and are involved in agglutination, clotting, and
phagocytosis during the destruction of pathogens (Huang
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et al., 2015; Buchmann, 2014). There is no evidence for an
involvement of fibroleukin in other photosymbioses, but more
detailed analyses could illuminate a potential function.

Finally, PGRP 3 was highly expressed in symbiotic B.
stephanieae, which belongs to receptors containing a
peptidoglycan-binding type 2 amidase (PGRP) domain that
binds to peptidoglycan (PG), lipopolysaccharides (LPS), and
lipoteichoic acid (Royet et al., 2011). Their main role is in
pathogen defense in invertebrates and in the host-microbiota
symbiosis establishment, for instance, between the
bioluminescent bacteria Vibrio fischeri and the Hawaiian
bobtail squid Euprymna scolopes (Dierking and Pita, 2020).
LPS and PG are mostly present in the outer cell walls of
bacteria (Diks et al., 2001), but so far there is no evidence of
their presence in dinoflagellates. Yet, in B. stephanieae PGRP
might be involved in bacterial recognition inducing a shift in
the bacteriome related to the presence of a photobiont, as
previously shown in its prey E. diaphana (Röthig et al., 2016).

After recognizing the algae and a subsequent phagocytosis,
B. stephanieae is mainly digesting or excreting the algae and is
not establishing a stable mutualistic symbiosis. Well-known
photobiont maintenance mechanisms in cnidarians such as the
TGF-ß pathway (Detournay et al., 2012; Berthelier et al., 2017),
the complement system (Poole et al., 2016), the TLR pathway
(Jacobovitz et al., 2021), and downstream NF-kB activation
(DeSalvo et al., 2010; Wolfowicz et al., 2016; Mansfield et al.,
2017) were not present or regulated in B. stephanieae, which
would be essential for symbiont tolerance (reviewed in Mansfield
and Gilmore, 2019).

For instance, the recognition of Symbiodiniaceae, possibly
via SR-B and/or TSRs, triggers tolerogenic pathways like the
TGF-b pathway that leads to the suppression of the host innate
immune response in E. diaphana (Detournay et al., 2012)
(Figure 3B). Yet, in B. stephanieae, none of the elements of
this pathway were regulated. Moreover, core elements of the
TGF-ß pathway were missing (e.g., the ligand TGF-b sensu
stricto and the TGF-b receptor II); thereupon, there is no
immunosuppression via the TGF-b pathway (Figure 3F).
Indeed, TGF-b sensu stricto and TGF-b RII are missing in
several mollusks (Herpin et al., 2004), which is why alternative
pathways could be relevant for immunosuppression, such as the
pathways of the complement system.

The complement system is relevant for recognition and
promotes phagocytosis (Poole et al. , 2016), and its
downregulation seems to play a role in the onset and
maintenance of the photosymbiosis in cnidarians (Kvennefors
et al., 2010; Ganot et al., 2011; Poole et al., 2016; Mansfield and
Gilmore, 2019). The activation of the complement system can be
achieved through different pathways (Rus et al., 2005;
Dunkelberger and Song, 2010; Kemper et al., 2010), resulting
in the cleavage of the C3 protein that labels pathogens and
recruits the macrophages for phagocytosis (Dunkelberger and
Song, 2010). In B. stephanieae, we could only identify a potential

triggering of the lectin pathway of the complement system
through the mannose binding lectin (MBL2) and/or a possible
activation via the alternative pathway through collectin-12 (Ma
et al., 2015). Yet, essential ficolins and downstream components
for this pathway were not differentially expressed in B.
stephanieae (Supplementary Data 3). Thus, the complement
pathway might not be relevant for the symbiosis onset in B.
stephanieae either.

The transcriptional repression of MyD88 and NF-kB may also
promote symbiosis establishment (DeSalvo et al., 2010; Wolfowicz
et al., 2016; Mansfield et al., 2017; Mansfield and Gilmore, 2019;
Jacobovitz et al., 2021). However, MyD88 is activated and NF-kB is
not regulated in the symbiotic B. stephanieae, pointing to an active
immune response against the algae, rather than an
immunosuppression. Furthermore, it has been shown that the
same symbiodiniaceae genotype performs differently depending
on the host (Goulet et al., 2019). Thus, even though E. diaphana
is in a stable photosymbiosis with Breviolum minutum B1/B2, B.
stephanieae might not be able to establish a stable photosymbiosis
with the strain due to photobiont intrinsic properties. Further, E.
diaphana can be colonized by other less beneficial and productive
Symbiodiniaceae such as Symbiodinium microadriaticum and
Durusdinium trenchii (Gabay et al., 2018), or the heterologous
Cladocopium goreaui (Tortorelli et al., 2020). In previous studies, B.
stephanieae fed with anemones harboring S. microadriaticum A1
was able to incorporate these photobionts but only retained them
for 10 days maximum (Mies et al., 2017; Monteiro et al., 2019b).
Whether B. stephanieae can incorporate and maintain other
Symbiodiniaceae genotypes present in its prey remains to be seen.
To date, there is no report that identified the native symbiont
genotype of this slug in the wild.

Vital for the stability of the symbiosis in intracellular
photosymbioses is the inhibition of the phagosome
maturation (Hill and Hill, 2012; Mohamed et al., 2016;
Mohamed et al., 2020). The high expression of Rab7 in
symbiotic B. stephanieae in combination with lysosomes
recruiting LAMPs and the V-ATPases rather suggest an
ongoing phagosome maturation leading to the photobiont
digestion, instead of its maintenance and the establishment
of the functional symbiosome (Chen et al., 2003; Chen et al.,
2004; Fransolet et al., 2012) (Figure 3G). Yet, V-ATPases can
also act as carbon concentration mechanisms by acidifying the
phagosome (Kinchen and Ravichandran, 2008; Kinchen et al.,
2008). This would then lead to a conversion of bicarbonate to
CO2 and a subsequent translocation of CO2 to the photobiont
in cnidarians and mollusks (Armstrong et al., 2018; Barott
et al., 2022), promoting photosynthesis (Barott et al., 2015). For
the system to work properly, carbonic anhydrases and
bicarbonate transporters would be needed (Weis et al., 1989;
Weis and Levine, 1996; Grasso et al., 2008; Ganot et al., 2011;
Meyer and Weis, 2012; Ip et al., 2017; Chew et al., 2019), but
carbonic anhydrases were highly expressed only in symbiotic B.
stephanieae (Supplementary Figure 6).
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Other mollusks use different hosting strategies for harboring
Symbiodiniaceae and are able to establish stable symbioses. In
clams belonging to the family Cardiidae, Symbiodiniaceae are
located in extracellular spaces known as the zooxanthellal tubular
system (Norton et al., 1992; Hernawan, 2008). In these clams, a
symbiosome per se is absent. Yet, the ectodermal membrane
surrounding the zooxanthellal tubular system may act as some
sort of symbiosome involved in signaling, acidification, and
molecule transport (Armstrong et al., 2018) to establish a stable
symbiosis, similar toother extracellular stablephotosymbioses such
as the acoelomorph Symsagittifera roscoffensis and the green algae
Tetraselmis convolutae (Bailly et al., 2014).

In addition, some ammonium and glucose transporters
were upregulated in symbiotic B. stephanieae, but starvation
had no effect on the expression of these transporters
(Supplementary Figure 6), which would be expected in a
stable symbiosis. Particularly, ammonium is important for
the algae in hospite to ensure a high photosynthetic activity
(Taylor, 1978; Koop et al., 2001; Yellowlees et al., 2008), which
is actively provided to the algae and is used to control the algal
growth (Rädecker et al., 2018; Cui et al., 2019; Xiang et al.,
2020). When heat stressed, corals increase the catabolic
degradation of amino acids to fuel the GS-GOGAT cycle to
generate a-ketoglutarate needed for the tricarboxylic acid
(TCA) cycle but simultaneously increase the translocation of
ammonium to the algae (Rädecker et al., 2021). As a result, the
algae use their photosynthates to grow instead of translocating
these to the host (Baker et al., 2018). In the slug’s prey E.
diaphana, the GS-GOGAT cycle is highly upregulated (Cui
et al., 2019), while in the slug we could only observe an
upregulation of GS in symbiotic animals when feeding, but
not during starvation (Supplementary Figure 6). Thus, the GS-
GOGAT cycle is probably not connected to a symbiotic
relationship in B. stephanieae and is likely used to catabolize
proteins during starvation to fuel the TCA cycle, similar to
heat-stressed corals.

In addition to a nutrient exchange, the swift detoxification of
reactive oxygen species (ROS) produced primarily by the
photobiont is fundamental in a stable photosymbiosis. In B.
stephanieae, ROS quenching mechanisms were predominantly
activated in the presence of the algae (Supplementary Figure 7),
similar to photosymbiotic cnidarians (Ganot et al., 2011; Meyer
and Weis, 2012; Matthews et al., 2017; Yuyama et al., 2018).
Starvation-induced stress prior to feeding seemed to enhance
ROS quenching, particularly inducing the glutathione peroxidase.

In summary, the main challenges for cladobranchs to
establish a stable photosymbiosis are thus the inhibition of
the phagosomal maturation, which might be based on the
successful nutrient exchange with the algae and suppressing
immune responses that promote the expulsion of the
photosynthetic partner. In combination with previous
observations of both digested and intact photobionts in
juveniles and in the feces of B. stephanieae (Figure 4)
(Kempf, 1991; Bleidißel, 2010; Mies et al., 2017; Monteiro
et al., 2019b), symbiophagy is probably the dominant process
that might be even accompanied by vomocytosis as the TLR
pathway is not downregulated (Jacobovitz et al., 2021)
(Figure 3I). Given that gene regulation can take place at
different steps and levels (posttranscriptional, translational,
posttranslational, epigenetic), changes in gene expression are
not definitive evidence of activation/inhibition of signaling
pathways but provide information of the overall regulation of
cellular processes at a certain time (Day & Tuite, 1998; Gibney
and Nolan, 2010; Zhao et al., 2017).

Data availability statement
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Supplementary Material.

A B C

FIGURE 4

Fecal pellet of B.stephanieae containing intact, photosynthetically active dinoflagellates. Image taken (A) by Corinna Sickinger with a stereo
microscope (SteREO Discovery.V8, Zeiss, Germany), 80× magnification, (B) by Jenny Melo with a light microscope (Imager A2, Zeiss, Germany),
200×, and (C) with a fluorescence microscope (BZ-X800E, Keyence, Japan), using the Texas Red Filter and a 400× magnification.
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Supplementary Material 
 

Supplementary Table 1. Symbiodiniaceae annotation. 

 
 

Supplementary Table 2. Summary of RNA sequencing data information of Berghia stephanieae. 

 
 

Supplementary Table 3. BUSCO analysis results of the transcriptome of Berghia stephanieae. 

 
 

Species Sample-ID BioSample IDs SRR Accession Input Filtered % of input 
passed filter Denoised Merged % of input 

merged

Exaiptasia diaphana Exaiptasia2 SAMN29176735 SRR19736592 2219 1997 90 1978 1886 84.99

Exaiptasia diaphana Exaiptasia3 SAMN29176736 SRR19736591 2233 2066 92.52 2036 1941 86.92

Exaiptasia diaphana Exaiptasia4 SAMN29176737 SRR19736590 2600 2443 93.96 2417 2188 84.15

Berghia stephanieae Berghia1 SAMN29176738 SRR19736589 6016 5708 94.88 5686 5495 91.34

Berghia stephanieae Berghia2 SAMN29176739 SRR19736588 7887 7583 96.15 7572 7283 92.34

Berghia stephanieae Berghia3 SAMN29176740 SRR19736587 6090 5790 95.07 5779 5479 89.97

Sample-ID Non-chimeric % of input non-
chimeric Breviolum Symbiodinium Cladocopium % Annotated

Exaiptasia2 1886 84.99 1447 248 191 100

Exaiptasia3 1941 86.92 1779 88 74 100

Exaiptasia4 2188 84.15 1977 88 123 100

Berghia1 4895 81.37 4886 0 9 100

Berghia2 6608 83.78 6557 38 13 100

Berghia3 5479 89.97 5466 0 13 100

Sample
Raw reads 
Paired-end

Raw data
Effective(%

)
Error(%) Q20(%) Q30(%) GC(%)

Raw reads 
after 

BBSplit 
(paired-

end)
Starved A1 57536758 8.6 98.53 0.03 97.32 92.92 40.47 56122922
Starved A2 56845036 8.5 98.06 0.03 96.82 91.8 39.62 55607248
Starved A3 55144492 8.3 97.74 0.03 96.92 91.9 41.53 52946256
Refed A4 56416476 8.5 98.35 0.03 97.27 92.58 41.14 53381120
Refed A5 55628646 8.3 98.14 0.03 96.86 91.85 39.84 48248998
Refed A6 69410298 10.4 98.1 0.03 96.91 91.86 42 54072846
Fed A7 74426506 11.2 99.16 0.03 97.69 93.49 46.75 60356744
Fed A8 82084356 12.3 98.78 0.03 97.26 92.74 50.65 69681974
Fed A9 79560100 11.9 98.82 0.03 97.38 92.85 45.07 69341948
Fed S1 78401652 11.1 98.74 0.03 97.56 93.46 40.59 55718024
Fed S2 78858224 11.7 98.76 0.03 97.7 93.77 40.8 48075996
Fed S3 57619200 8.1 98.39 0.03 97.36 93.19 40.09 42975048
Refed S4 72221684 10.1 98.5 0.03 97.74 93.79 40.76 60200342
Refed S5 64023254 9.1 98.46 0.03 97.78 93.83 40.25 50726274
Refed S6 62739464 9.3 98.74 0.03 97.71 93.72 40.44 55700052
Starved S7 67119036 9.9 98.74 0.03 97.74 93.72 38.12 65869354
Starved S8 73935468 11 98.77 0.03 97.74 93.73 40.09 72357830
Starved S9 68421012 10.1 98.88 0.03 97.61 93.59 39.2 66637434

Total 1210391662 1038020410

Condition
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po
sy
m
bi
ot
ic

Sy
m
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ot
ic

Supplementary Table 3. BUSCO analysis results of the transcriptome of Berghia stephanieae

Complete BUSCOs (C) 4591 86.7%
Complete and single-copy BUSCOs (S) 1633 30.8%
Complete and duplicated BUSCOs (D) 2958 55.9%
Fragmented BUSCOs (F) 152 2.9%
Missing BUSCOs (M) 552 10.4%
Total BUSCO groups searched 5295
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For the Supplementary Data 1-3 of this publication, please visit the link:  

10.6084/m9.figshare.19690843 

 

All the supplementary material for this publication is available at: 

https://www.frontiersin.org/articles/10.3389/fmars.2022.934307/full#supplementary-material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Relative abundance of Symbiodiniaceae 
genera present in B. stephanieae and E. diaphana. Annotations were 
based on the obtained ITS 2 sequences, Symbiodatabacea database, 
and qiime2 pipeline. Green for Symbiodinium; Red for Breviolum; 
Blue for Cladocopium 
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Supplementary Figure 2. Rank-based gene ontology enrichment analysis (GOMWU) of Fed and Re-fed 
symbiotic B. stephanieae compared to aposymbiotic state. The outer circle shows a scatter plot for each GO term 
of the log2FC of the assigned genes. Red small circles display up- regulation and blue ones down- regulation based 
on their delta-rank scores. GO term categories shown here correspond to Biological Process (BP), Cellular 
Components (CC), and Molecular Function (MF). The figure was created using GOplot (Walter et al., 2015). 



Symbiont recognition and maintenance in Berghia stephanieae Chapter 2.3 
 
	
  

64 

 

 
 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3. Gene expression profile of pattern recognition receptors (PRRs) 
in B. stephanieae. (A) Scavenger receptor class B, (B) Scavenger receptor class E-like, (C) 
C-type lectins, (D) Thrombospondin-type-1 repeat domain-containing proteins, (E) 
Fibrinogen-related proteins. Genes were grouped by the UniProt protein identifier. Boxplots 
show the expression values in TMM, where the whiskers are the minimum and maximum 
values, and the centers correspond to the medians. The domain architecture for each group 
of receptors is also shown. UniProt ID: P16671: Scavenger receptor class B member 1; 
P27615: Lysosome membrane protein 2; P20693: Low affinity immunoglobulin epsilon Fc 
receptor; Q6RY07: Acidic mammalian chitinase; Q9IAM1: Snaclec agkisacutacin subunit 
A; Q9WVH9: Fibulin-5; A6QP79: Collectin-12; P22897: Macrophage mannose receptor 1; 
P42674: Blastula protease 10; Q8IZF6: Adhesion G-protein coupled receptor G4; Q9UBG0: 
C-type mannose receptor 2; B3EWZ3: Coadhesin; D3YXG0: Hemicentin-1; G5ECS8: 
ADAMTS adt-1; O60241: Adhesion G protein-coupled receptor B2; O60242: Adhesion G 
protein-coupled receptor B3; Q6UWB4: Serine protease 55; Q8VCC9: Spondin-1; 
Q96RW7: Hemicentin-1; Q9Y6R7: IgGFc-binding protein; A2AV25: Fibrinogen C domain-
containing protein 1; Q29RY7: Fibroleukin. 
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Supplementary Figure 4. Gene expression profile of innate immune genes relevant for 
symbiont recognition in Berghia stephanieae. Genes were grouped by the UniProt protein 
identifier. Boxplots show the expression values in TMM, where the whiskers are the 
minimum and maximum values, and the centers correspond to the medians. UniProt ID: 
P39039: Mannose-binding protein A; Q66S61: Mannose-binding protein C (MBL2); 
P06684: Complement C5; Q6YHK3: CD109 Antigen; P20023: Complement receptor type 
2; Q96LB9: Peptidoglycan recognition protein 3; V5NAL9: Toll-like receptor 4; A5HNF6: 
Myeloid differentiation primary response protein MyD88. 
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Supplementary Figure 5. Expression profile of genes involved in the phagosome 
maturation events in B. stephanieae. (A) Ras-related protein Rab-5A, (B) Ras-related protein 
Rab7, (C) Ras-related protein Ra-7a, (D) Phosphatidylinositol 3-kinase catalytic subunit 
type 3, (E) Ras- related protein Rab-11A, (F) Ras-related protein Rab-11B, (G) Lysosome-
associated membrane glycoprotein 1. Genes were grouped by the UniProt protein identifier. 
Boxplots show the expression values in TMM, where the whiskers are the minimum and 
maximum values, and the centers correspond to the medians. UniProt ID: M0RC99: Ras-
related protein Rab-5A; H9BW96: Ras-related protein Rab7; P18067: Ras-related protein 
Rab-7a; Q6AZN6: Phosphatidylinositol 3-kinase catalytic subunit type 3; P62494: Ras- 
related protein Rab-11A; P22129: Ras- related protein Rab-11B; P05300: Lysosome-
associated membrane glycoprotein 1. 
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Supplementary Figure 6. Gene expression profile of transporters and enzymes involved in the 
hypothetical nutrient exchange in B. stephanieae. (A) Ammonium transporter, (B) Bicarbonate 
transporter, (C) Carbonic anhydrases, (D) Glucose transporter, (E) Glutamate dehydrogenase, (F) 
Glutamine synthetase. Genes were grouped by the UniProt protein identifier. Boxplots show the 
expression values in TMM, where the whiskers are the minimum and maximum values, and the 
centers correspond to the medians. UniProt ID: P54145: Putative ammonium transporter 1; Q6DGC4: 
Tetraspanin; Q7T070: Ammonium transporter Rh type B; Q8NBS3: Sodium bicarbonate transporter-
like protein 11; P00920: Carbonic anhydrase 2; P00922: Carbonic anhydrase 2; P28651: Carbonic 
anhydrase-related protein; Q22460: Beta carbonic anhydrase 1; Q9WVT6: Carbonic anhydrase 14; 
Q80T22: Sodium-dependent glucose transporter 1; P00367: Glutamate dehydrogenase 1, 
mitochondria; P82264: Glutamate dehydrogenase, mitochondria; Q04831: Glutamine synthetase; 
Q8HZM5: Glutamine synthetase. 
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Supplementary Figure 7. Gene expression profile of ROS quenching elements in B. stephanieae. (A) Catalase, 
(B-C) Glutathione peroxidase, (D-E) Microsomal glutathione S-transferase, (F-H) Peroxiredoxin, (I-J) 
Peroxiredoxin-like. All feeding conditions are shown. Genes were grouped by the UniProt protein identifier. 
Boxplots show the expression values in TMM, where the whiskers are the minimum and maximum values, and 
the centers correspond to the medians. UniProt ID: P04040: Catalase; O62839: Catalase; Q9PWF7: Catalase; 
G9JJU2: Glutathione peroxidase; P22352: Glutathione peroxidase 3; A2RST1: Microsomal glutathione S-
transferase 2; Q9CPU4: Microsomal glutathione S-transferase 3; Q3T100: Microsomal glutathione S-transferase 
3; O08807: Peroxiredoxin-4; P30044: Peroxiredoxin-5; Q9GLW7: Peroxiredoxin-5, mitochondrial; O77834: 
Peroxiredoxin-6; Q5ZJF4: Peroxiredoxin-6; Q6PBP3: Peroxiredoxin-like 2A; Q5ZI34: Peroxiredoxin-like 2A; 
B5X9L9: Prostamide/prostaglandin F synthase; C1C416: Prostamide/prostaglandin F synthase. 
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Abstract 
Sacoglossa are known for stealing photosynthetically active chloroplasts from their macroalgal food 

and incorporating them into their cytosol. The nutritional support these alien organelles 

(kleptoplasts) provide to the slugs is still debatable. Comparing slugs starved in continuous 

darkness (non-photosynthetic condition) and light (photosynthetic condition) is often used to 

understand the contribution of the kleptoplasts to the slugs' metabolism. Here, we examined the 

slugs' side of starvation in darkness to better understand the effects of darkness on the slugs. We 

compared the gene expression profile and digestive activity of Elysia viridis, starved for one week 

under ambient light and continuous darkness. Starvation in darkness led to the up-regulation of 

genes related to glucose deficiency, while genes involved in the development, cellular organization, 

and reproduction were down-regulated. This specific gene expression may counteract reduced 

nutrient availability under non-photosynthetic conditions. Under photosynthetic conditions, 

kleptoplasts may have a higher nutritional value and may be able to support some metabolic 

processes. It appears that the slugs can only access kleptoplast photosynthates through autophagy 

during starvation. Nevertheless, autophagy and length reduction in darkness are highly elevated 

compared to light conditions, suggesting that more slug tissue is needed to satisfy the nutritional 

demands under non-photosynthetic conditions. Since we did not detect a gene expression related to 

the export of photosynthates to the slugs, our results support the hypothesis that slugs use 

kleptoplasts as larders accessible via autophagy. As long as the kleptoplasts are functional, they 

provide an energetic support, helping the slugs to reduce starvation-induced stress. 

Introduction 

The symbiotic relationship between animals and photosynthetic organisms is known as 

photosymbiosis and is considered especially beneficial for animal hosts (Melo Clavijo et al. 2018). 

Corals and their symbionts, the unicellular algae Symbiodiniaceae, are one of the best-studied 

systems of photosymbioses. The nutritional boost provided by symbionts increases the calcification 

rate of corals, facilitating the formation of large reef structures (Stanley and Lipps 2011). However, 

there is a special form of photosymbiosis found in many sacoglossan sea slugs (Händeler et al. 

2009) and a few microturbellarian flatworms (Van Steenkiste et al. 2019). These two taxa only 

incorporate the chloroplasts from their algal prey into their cells, a process known as kleptoplasty. 
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In some Sacoglossa, the "stolen" chloroplasts (kleptoplasts) remain photosynthetically active for 

weeks or months in the absence of any support from the algal nucleus (Wägele and Martin 2014). 

Even after decades of research, it is still uncertain what mechanisms are necessary to enable this so-

called functional kleptoplasty in Sacoglossa. In the slugs, the expression of genes involved in 

kleptoplast recognition (Melo Clavijo et al. 2020; Mendoza et al. 2023) and maintenance (de Vries 

et al. 2015; Chan et al. 2018; Maeda et al. 2021) may mediate the establishment of functional 

kleptoplasty. Furthermore, the phototactic behavior of the slugs (Weaver and Clark 1981; Schmitt 

and Wägele 2011; Cartaxana et al. 2018) and chloroplast photoprotection mechanisms (Christa et 

al. 2018; Cartaxana et al. 2019; Havurinne and Tyystjärvi 2020; Havurinne et al. 2021) are 

considered to increase the longevity of kleptoplasts in slugs. 

 

Compared to other photosymbiotic systems, the nutritional relevance of bearing functional 

kleptoplasts is less apparent (Rauch et al. 2017a). For instance, it is estimated that kleptoplasts can 

provide up to 60 % of the required carbon (Raven et al. 2001; Rauch et al. 2017a), while symbionts 

in other photosymbioses can fully support the host up to over 170 % carbon (Thomas et al. 2023). 

To understand the nutritional relevance of kleptoplasts to sacoglossans, starvation experiments 

under continuous light (photosynthetic condition) and constant darkness (non-photosynthetic 

condition) are often conducted. Several studies have shown that dark-starved animals lose body size 

and weight faster than light-starved animals (Cartaxana et al. 2017; Shiroyama et al. 2020). In 

others, the effects of starvation in darkness were only apparent after several weeks (Casalduero and 

Muniain 2008; Maeda et al. 2021). The differences between dark-starved and light-starved slugs 

have been mainly interpreted as a result of blocked photosynthetic activity. However, some species 

can even overcome several months of starvation without functional kleptoplasts under natural light 

conditions (Klochkova et al. 2013). Further, alternative explanations are often not considered 

(Christa et al. 2014b). For instance, continuous darkness is an unnatural condition that can affect the 

slug's metabolism independently of kleptoplasts' photosynthesis or the slugs’ behavior. Thus, some 

studies have used a photosynthesis blocker (e.g., Monolinuron) to avoid darkness-induced artifacts 

and showed similar starvation tolerances compared to photosynthetic conditions (Christa et al. 

2014a; de Vries et al. 2015; Laetz et al. 2017b).  

Regardless of the exact support by the kleptoplasts, there is no doubt that slugs can metabolize the 

kleptoplasts' photosynthates (Kremer 1976; Hinde 1978; Cruz et al. 2020). However, how they 

access these photosynthates is unclear. From corals, it is known that the host supports the 
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photobionts actively with bicarbonate and ammonium, while the photobionts provide sugars to the 

host (Barott et al. 2015). This exchange of nutrients is crucial for a successful and long-term 

symbiosis and requires a symbiosome (Mohamed et al. 2016; Matthews et al. 2017). The 

symbiosome is a membrane that surrounds the symbiont and contains transporters relevant for 

translocating ammonium and bicarbonate to the symbiont and glucose to the host (Thies et al. 

2022). The disruption of this nutrient exchange may lead to the breakdown of the symbiosis 

(Rädecker et al. 2021). In sacoglossan sea slugs, it is unknown whether there are nutrient 

transporters in the membrane surrounding the kleptoplasts and how sacoglossan sea slugs can 

access the photosynthetically derived assimilates. In some species, kleptoplasts accumulate starch 

(Evertsen and Johnsen 2009; Pelletreau et al. 2014; Laetz et al. 2017b; Cruz et al. 2020), which at 

least questions an active export of glucose. It even appears that the slugs digest the kleptoplasts 

while feeding (Maeda et al. 2012; Frankenbach et al. 2021) and during starvation (Laetz et al. 

2017a) to access the photosynthates. Hence, the kleptoplasts may instead function as larders and 

their products as reserves (Pelletreau et al. 2014; Laetz et al. 2017b) accessed by digestion.   

 

In the present study, we analyzed the gene expression profile of the plastid-bearing sea slug Elysia 

viridis (Montagu, 1804) under the presence and absence of light to address the effects of darkness 

on starvation specifically. We focused on energy metabolism, mitochondrial function, and 

transporters relevant to the exchange of nutrients between the host and the symbiont to maintain 

symbiosis. We further combined the gene expression of central components of autophagy with the 

analyses of kleptoplast and lysosome abundance to better understand how the slugs might access the 

kleptoplasts' photosynthates.  

 

Material and Methods 

Sea slug collection and laboratory culturing 

The specimens of Elysia viridis used for transcriptome analyses were collected from their food 

source Codium tomentosum Stackhouse, 1797 in September 2020 at the rocky beach of Figueira da 

Foz, Portugal (40°10'05.0"N, 8°53'20.9"W) and immediately transported to the laboratory. Animals 

were kept in sets of 10 individuals in 500 ml of natural GF/F (0.7 µm pore size, Whatman) filtered 

seawater at 18 ± 1 ˚C, 25-30 µmol photons m-2 s-1 (white fluorescence lamps, Philips, TL-D 

36W/54) at a 12h/12h day/night cycle and a salinity of 33 PPT. We provided the macroalgae 

Bryopsis hypnoides J.V.Lamouroux, 1809 as a food source as it can be easily cultured under 
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laboratory settings and it is a source of chloroplasts that remain functional in E. viridis (Rauch et al. 

2018). Bryopsis hypnoides was cultured in autoclaved seawater enriched with F/2 Medium 

(Guillard 1975) under constant aeration and the same light regime and temperature as the slugs. 

Weekly, 80 % of the seawater and 100 % medium were changed. The slugs remained in culture five 

months before the experiment to ensure they were fully acclimated to laboratory conditions. 

 

Experimental setup, RNA extraction, and sequencing 

Nine randomly chosen slugs (BioSample IDs: SAMN26303207 - SAMN26303215) were used in a 

starvation experiment. Each slug was transferred into a 50 ml Falcon tube filled with 35 ml natural 

GF/F filtered seawater, with 50% of the seawater changed daily. After an acclimation period of 

three weeks, the slugs were randomly chosen to starve in constant darkness for one week (SD; n=3), 

to starve for one week under culturing light conditions (SL; n=3) or to serve as the fed control 

group under culturing light conditions (FED; n=3). All slugs (SD, SL, and FED) were fixed in 

liquid nitrogen at the end of the experiment. All animals were subsequently freeze-dried at -80 °C 

for two days. Total RNA from each sample was extracted using the my-Budget RNA Mini Kit (Bio-

Budget Technologies, Germany) following the manufacturer's instructions. The RNA concentration 

was quantified with Qubit fluorometric quantification (ThermoFisher, USA) and NanoDrop™ 

One/OneC (ThermoFisher, USA). Poly(A) mRNA enrichment, library preparation using 

NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (New England Biolabs, USA), and 150 

bp paired-end sequencing using the Illumina NovaSeq system was done by Novogene (UK). 

 

Transcriptome assembly and annotation 

The sequencing resulted in 709,603,664 quality filtered (Q30) paired-end reads (on average 

78,844,851 per library; Online Resource 1; BioProject ID: PRJNA810987, Accession Nr.: 

SRR18163429 – SRR18163437). Reads were assembled using Trinity v2.12.0 (Grabherr et al. 

2011), and the assembled transcriptome was then clustered with CD-HIT-EST v.4.8.1 with -c 0.9 -n 

7 -B 1 -g 1 -s 0.9 parameters (Fu et al. 2012) (Online Resource 2). For each contig, the longest open 

reading frames were obtained using TransDecoder v5.5.0 (Haas and Papanicolaou 2015). The data 

set was then annotated by a BLASTP search (part of the BLAST+ package v2.9.0) against the 

UniProt database version 09/2021 (The UniProt Consortium 2019). Subsequently, all non-annotated 

genes were subjected to a BLASTP search against a molluscan-specific TrEMBL database. 

Taxonomic assignment for each protein sequence was obtained from the UniProt and TrEMBL 

taxonomic database (Online Resource 3). Sequences and annotations were subsequently filtered for 
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metazoan annotations to exclude annotations of bacteria, fungi, and plants in downstream analyses. 

Functional annotations of gene ontology (GO) terms, cluster of Eukaryotic Orthologous groups 

(KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers for the filtered data set 

were obtained by using eggNOG mapper v.2.1.6 in default mode (Huerta-Cepas et al. 2017) (Online 

Resource 4).  

 

Differential gene expression analysis 

The transcript abundance of sequences was estimated with kallisto v0.46.2 (Bray et al. 2016) 

following the Trinity pipeline v2.12.0 (Online Resource 1) to obtain raw read counts and 

normalized trimmed mean of M-values (TMM). Differential expression analysis was performed 

with DeSeq2 v1.32.0 (Love et al. 2014) using the raw reads matrix implemented in Trinity. 

Differentially expressed genes (DEGs) were defined by a false discovery rate (FDR) < 0.05. 

Principal Component Analysis (PCA) of annotated DEGs was done using the prcomp() function in 

the stats package in R v. 4.1.0 (R Core Team 2020) using the TMM values for each gene to 

visualize the effects of starvation on the general gene expression. Gene ontology analyses with 

adaptive clustering were performed using the GOMWU R package to measure whether each GO 

category was significantly enriched according to the expression value (Wright et al. 2015). 

EuKaryotic Orthologous Groups (KOG) class enrichment tests were performed using the 

KOGMWU R Package (Dixon et al. 2015). KOGMWU allows the comparison of the gene 

expression of samples analyzed under different conditions. The correlation is based on the KOG 

delta ranks across the data sets. The delta rank is the difference between the mean rank of genes in a 

KOG class and the mean rank of all other genes (Dixon et al. 2015). To get a general idea of how 

starvation under different light conditions affects E. viridis, we compared our data set with 

published data of developing juveniles of Elysia chlorotica Gould, 1870 (Chan et al. 2018), heat-

stressed colonies of Stylophora pistillata (Esper, 1792) (Rädecker et al. 2021), and symbiotic vs. 

apo-symbiotic Exaiptasia diaphana (Rapp, 1829) (Lehnert et al. 2014). 

 
DNA extraction, sequencing, and mitochondrial genome assembly and annotation 

High molecular weight DNA was extracted using the approach described in Melo Clavijo et al. 

(2021) from one specimen of E. viridis collected in Aguda, Portugal (41°02'52.6"N, 8°39'16.0"W) 

in September 2017. The sample was fixed in 70 % EtOH and was transported to the University of 

Aveiro. Single-end library prep of 500-600 bp read length for Illumina HiSeq2500 instrument (1x 

100 nucleotides) was prepared using the tagmentation protocol (Picelli et al. 2014). Overall, 
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54,437,385 raw single-end Illumina reads with lengths between 50 and 95 nucleotides [nt] 

(SRR18210511 and SRR18210512) were quality trimmed using BBDuk v.38.91 of the BBMap tool 

(Bushnell et al. 2017) setting trimq=20. Sequence quality was subsequently verified using fastqc 

v.0.11.9 (Andrews 2010). We then used a hybrid assembly approach using Spades v.3.11.1 in 

default mode (Antipov et al. 2016), including 1,159,884 Nanopore long reads (SRR18251374) 

generated using the LSK109 kit following the protocol in Melo Clavijo et al. (2021). The 

mitochondrial genome was identified using a BLASTN search of a cytochrome oxidase 1 

nucleotide sequence of Elysia viridis (GenBank accession: MN223463) against the assembly. The 

extracted contig had a length of 14,204 base pairs (bp) and was subsequently manually edited to 

obtain the circular genome. The circular sequence consisted of 14,149 bp and was annotated using 

the MITOS2 webserver (Donath et al. 2019). The annotation was manually curated using Geneious 

Prime v.2022.0.2 (https://www.geneious.com), using the published mitochondrial genomes of four 

other Elysia species as reference: Elysia chlorotica (NC_010567; (Rumpho et al. 2008)), Elysia 

cornigera Nutall 1989 (NC_035489; (Rauch et al. 2017b)), E. timida (Risso, 1818) (NC_035490; 

(Rauch et al. 2017b)), and Elysia ornata (Swainson, 1840) (NC_030537; (Karagozlu et al. 2016)). 

A circular view of the mitochondrial genome was created using OrganellarGenomeDraw (Lohse et 

al. 2013).  

 

Kleptoplast and lysosomal abundance measurements 

Twenty specimens of E. viridis used for kleptoplast and lysosomal abundance analyses were 

collected in May 2017 in Aguda, Portugal (41°02'46.7"N, 8°39'14.6"W), in rocky intertidal pools 

and transferred to the laboratory at the Zoological Research Museum Alexander Koenig (Bonn, 

Germany). Specimens were cultured in groups of 10 individuals in 500 mL artificial seawater 

(ABReef Salt, Aqua Medic, Germany, ASW) in glass jars with a salinity of 33 PPT under a 12h/12h 

day/night cycle setting the light intensity to 30 µmol photons m⁸² s⁸¹ provided by daylight sunrise 

LED X-change tubes (Sera, Germany) at 20 ± 1 °C. The water was changed three times a week. The 

food source, Bryopsis hypnoides, was given to the slugs three times a week for five weeks. B. 

hypnoides was cultured under the conditions mentioned above. For each light treatment (SD, SL, 

and FED), three randomly chosen slugs were used and cultured under the same conditions in 

individual 50 mL plastic containers filled with 35 mL of ASW. Slugs were imaged using a DP21 

camera mounted on an SZX12 stereo microscope (Olympus, Tokyo, Japan) at the beginning of the 

experiment and, in the case of the SD and SL group, after one week of starvation, and the length 

measured as an indicator of fitness. The average length of each slug was calculated from five 
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images taken during movement to obtain the point of maximum elongation. Chlorophyll a 

fluorescence was subsequently measured in each slug using a Diving Pulse Amplitude Modulated 

(Diving-PAM) fluorometer (Walz, Effeltrich Germany). For this, samples were dark acclimated for 

5 minutes, and then the maximum quantum yield (Fv/Fm; Fv = Fm -Fo; where Fo and Fm are the 

minimum and maximum fluorescence emitted by dark-adapted samples, respectively) was 

determined by applying a saturation pulse (pulse duration 0.8 ms, white light, >5,000 µmol photons 

m−2 s−1) (Serôdio et al. 2010). One measurement per specimen was performed by placing the optic 

fiber about 3–5 mm above the slug’s pericardium to obtain F0 values of around 200–500. 

Measurements were taken at the beginning of the experiment and immediately after one week of 

starvation before preparing the samples for confocal microscopy and served as a measure of 

kleptoplast fitness. 

 

To determine the lysosomal and kleptoplast abundance, SD, SL, and FED animals were examined 

by confocal laser scanning microscopy using a Leica SPE CLSM (Leica Microsystems AG, 

Germany). Kleptoplasts were detected via chlorophyll a autofluorescence. The lysosome abundance 

of the slugs was visualized by incubating them for 30 minutes in 5 µM acridine orange (Sigma-

Aldrich, Germany). After incubation, the slugs were vivisected into ~0.5 mm thick transverse 

sections. The samples were then placed on a microscope slide and imaged using a 488 nm laser to 

excite both acridine orange and chlorophyll a. The wavelength range accepted for acridine orange 

emission was set to 645 nm to 770 nm to distinguish acridine orange from chlorophyll a (acridine 

orange dimer peak emission is 656 nm) (Laetz et al. 2017a). Chlorophyll a autofluorescence was 

recorded, setting the emission from 600-640 nm (peak 633 nm). Five different sections per slug 

were imaged. Each section was made up of 8 images 1 μm in depth (z plane) for a total of 8 μm of 

tissue depth. Thus, for each experimental condition (SD, SL, FED), 15 image stacks were analyzed. 

The images were processed in ImageJ v. 1.52i (Schindelin et al. 2012) by defining a region of 

interest and subsequently quantifying the fluorescence signals. All images were processed using the 

same settings for the fluorescence signals.  

 

Results 

Starvation, particularly in darkness, induced changes in energy metabolism 

The transcriptome of Elysia viridis consisted of 366,188 contigs that translated into 104,180 amino 

acid sequences based on potential open reading frames. We could annotate 22,996 (22.07 % of all 
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protein sequences) of these amino acid sequences, most likely belonging to E. viridis (Online 

Resource 5). Additionally, 205 protein sequences (0.20 %) could be assigned to Archaea, 10,599 

sequences (10.17 %) were assigned to Bacteria, and 925 sequences (0.89 %) were assigned to 

Viridiplantae (Online Resource 3). For all subsequent analyses, we only used the genes that most 

likely belonged to E. viridis. 

 

We analyzed the gene expression in Elysia viridis and compared freshly fed (FED) animals and 

those starved for one week under a 12h / 12h day/night light cycle (SL) or in complete darkness 

(SD). Generally, SD resulted in a different gene expression than SL; both were different from the 

gene expression of FED specimens. An exception was a replicate of SL animals (SL02) that showed 

little correlation with the other samples (Fig. 1 A) and showed a higher PC variance compared to 

the additional replicates (Fig. 1 B). Thus, this sample was excluded from the subsequent differential 

gene expression analyses. Overall, we identified 1,862 differentially expressed genes (DEGs) when 

comparing FED and SD samples, 216 DEGs when comparing FED and SL samples, and 879 DEGs 

when comparing SL and SD samples (Online Resource 5).  

 

 

We found no significantly enriched Gene Ontology (GO) term among DEGs when using GOMWU 

to compare FED and SL animals (Online Resource 6). In the Biological Process (BP) division, we 

found 22 significantly enriched GO-terms (FDR < 0.1) when comparing SD to FED animals and 24 

significantly enriched GO-terms (FDR < 0.1) when comparing SD to SL animals (Fig. 2). The 
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excite both acridine orange and chlorophyll a. The wave-
length range accepted for acridine orange emission was set 
to 645 nm to 770 nm to distinguish acridine orange from 
chlorophyll a (acridine orange dimer peak emission is 
656 nm) (Laetz et al. 2017a). Chlorophyll a autofluorescence 
was recorded, setting the emission from 600–640 nm (peak 
633 nm). Five different sections per slug were imaged. Each 
section was made up of 8 images 1 μm in depth (z plane) for 
a total of 8 μm of tissue depth. Thus, for each experimental 
condition (SD, SL, FED), 15 image stacks were analyzed. 
The images were processed in ImageJ v. 1.52i (Schindelin 
et al. 2012) by defining a region of interest and subsequently 
quantifying the fluorescence signals. All images were pro-
cessed using the same settings for the fluorescence signals.

Results

Starvation, particularly in darkness, induced 
changes in energy metabolism

The transcriptome of Elysia viridis consisted of 366,188 
contigs that translated into 104,180 amino acid sequences 
based on potential open reading frames. We could annotate 
22,996 (22.07% of all protein sequences) of these amino 
acid sequences, most likely belonging to E. viridis (Online 

Resource 5). Additionally, 205 protein sequences (0.20%) 
could be assigned to Archaea, 10,599 sequences (10.17%) 
were assigned to Bacteria, and 925 sequences (0.89%) were 
assigned to Viridiplantae (Online Resource 3). For all sub-
sequent analyses, we only used the genes that most likely 
belonged to E. viridis.

We analyzed the gene expression in Elysia viridis and 
compared freshly fed (FED) animals and those starved for 
one week under a 12 h / 12 h day/night light cycle (SL) or 
in complete darkness (SD). Generally, SD resulted in a dif-
ferent gene expression than SL; both were different from 
the gene expression of FED specimens. An exception was 
a replicate of SL animals (SL02) that showed little correla-
tion with the other samples (Fig. 1A) and showed a higher 
PC variance compared to the additional replicates (Fig. 1B). 
Thus, this sample was excluded from the subsequent differ-
ential gene expression analyses. Overall, we identified 1,862 
differentially expressed genes (DEGs) when comparing FED 
and SD samples, 216 DEGs when comparing FED and SL 
samples, and 879 DEGs when comparing SL and SD sam-
ples (Online Resource 5).

We found no significantly enriched Gene Ontology (GO) 
term among DEGs when using GOMWU to compare FED 
and SL animals (Online Resource 6). In the Biological 
Process (BP) division, we found 22 significantly enriched 
GO-terms (FDR < 0.1) when comparing SD to FED animals 

Fig. 1  Hierarchical clustering of Pearson correlations. (A) and Principal Component Analysis (B) of differentially expressed genes in specimens 
of Elysia viridis freshly fed (FED), starved in darkness (SD), or starved in light (SL)

Fig. 1. Hierarchical clustering of Pearson correlations (A) and Principal Component Analysis (B) of differentially 
expressed genes in specimens of Elysia viridis freshly fed (FED), starved in darkness (SD), or starved in light (SL). 
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majority of these GO terms were down-regulated in SD animals and could be assigned to the cell 

cycle and development, independent of the comparison (Fig. 2). Two GO terms related to 

translation and the GO term "cellular amino acid metabolism" were enriched and up-regulated in 

SD animals. The GO term "protein folding" was up-regulated when comparing SD to SL animals. 

GO terms associated with the "cytoskeleton", "microtubule organization center", and "cilium" in the 

cellular compartment (CC) division were enriched and down-regulated in SD animals, independent 

of the comparison; The GO term "ribosome" was enriched and up-regulated (Online Resource 6). In 

the Molecular Function (MF) division, the GO terms "cytoskeletal protein binding" and 

"transcription factor binding" were enriched and down-regulated in SD compared to FED animals. 

In contrast, the GO terms "ligase activity", "lyase activity", and "isomerase activity" were enriched 

and up-regulated (Online Resource 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We analyzed the euKaryotic Orthologous Groups (KOG) using KOGMWU to investigate further 

the general expression profile (Online Resource 7). We found one main cluster made of fed 

individuals of Elysia chlorotica and one main cluster made of our starved samples of Elysia viridis 

and two selected cnidarians (Fig. 3). The expression of genes assigned to the respective KOG 

StarvedD vs Fed StarvedD vs StarvedL

Fig. 2: Gene ontology (GO) terms significantly enriched in the Biological Process (BP) category with 
genes either up- (red) or down-regulated (blue) in specimens of Elysia viridis starved in darkness (SD) 
compared to freshly fed (FED) or light starved (SL) animals. Shown are genes with an FDR < 0.05 
relative to the total number of all genes within the BP category. 
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categories of SD animals, independent of the comparison with FED or SL animals, clustered with 

individuals of Exaiptasia diaphana (comparison of symbiotic vs. apo-symbiotic animals). The gene 

expression of SL vs. FED individuals of E. viridis clustered with heat-stressed individuals of 

Stylophora pistillata (Fig. 3).  

Similarly, as in the Gene Ontology analyses, we could not find significantly enriched KOG 

categories in SL vs. FED individuals of E. viridis (Fig. 3). In SD animals, the categories "Energy 

production and conversion" and "Cell wall/membrane/envelope biogenesis" were enriched with 

mainly up-regulated genes, regardless of being compared to FED or SL animals. Moreover, in SD 

vs. SL animals, the KOG categories "Nucleotide transport and metabolism", "Amino acid transport 

and metabolism", and "Carbohydrate transport and metabolism" were enriched among up-regulated 

genes in SD animals (Fig. 3).  

The KOG categories "RNA processing and modification", "Cytoskeleton", and "Signal transduction 

mechanisms" were enriched and down-regulated independent of the comparison of SD animals, 

supporting our GO enrichment analyses. Furthermore, the KOG categories "Intracellular trafficking, 

secretion, and vesicular transport" and "Posttranslational modification, protein turnover, 

 chaperones" were enriched and down-regulated in the SD vs. FED comparison (Fig. 3).
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enrichment analyses. Furthermore, the KOG categories 
"Intracellular trafficking, secretion, and vesicular trans-
port" and "Posttranslational modification, protein turnover, 
chaperones" were enriched and down-regulated in the SD 
vs. FED comparison (Fig. 3).

Protein import into mitochondria decreases 
during starvation

Many enriched and down-regulated GO and KOG terms 
were assigned to energy metabolism. Thus, we subsequently 
analyzed the gene expression (not only of the differentially 
expressed genes) associated with the mitochondria in more 

detail. In starved specimens, independent of the light condi-
tion, the oxidative phosphorylation (OXPHOS) was predom-
inantly down-regulated, especially genes belonging to com-
plex I, II, and V (Online Resource 5). In SD animals, various 
genes of the Pentose Phosphate Pathway (e.g., deoxyribose-
phosphate aldolase), the tricarboxylic acid cycle (e.g., oxo-
gluterate dehydrogenase), and glycolysis (e.g., 6-phospho-
fructinase, pyruvate dehydrogenase) were up-regulated 
(Fig. 4A; Online Resource 5). Most genes belonging to the 
fatty acid metabolism were down-regulated in starved ani-
mals (Fig. 4A), including carnitine O-palmitoyltransferase 
I and II (CPT1 and CPT2). However, several genes involved 

Fig. 3  Heat map of enrichment of cluster of Eukaryotic Orthologous 
groups (KOG) classes by differentially expressed genes in differ-
ent data sets. Significantly enriched KOG classes (FDR < 0.05) with 
up- (red) or down-regulated (blue) genes are identified by an asterisk. 

For data references, see the text. Different letters after Elysia chloro-
tica indicate stable symbiosis (S), transient symbiosis (U), and stable 
symbiosis (T), as defined earlier (Pelletreau et al. 2012)

Fig. 3. Heat map of enrichment of cluster of Eukaryotic Orthologous groups (KOG) classes by 
differentially expressed genes in different data sets. Significantly enriched KOG classes (FDR < 0.05) 
with up- (red) or down-regulated (blue) genes are identified by an asterisk. For data references, see the 
text. Different letters after Elysia chlorotica indicate unstable symbiosis (S), transient symbiosis (U), 
and stable symbiosis (T), as defined earlier (Pelletreau et al. 2012).  
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Protein import into mitochondria decreases during starvation 

Many enriched and down-regulated GO and KOG terms were assigned to energy metabolism. Thus, 

we subsequently analyzed the gene expression (not only of the differentially expressed genes) 

associated with the mitochondria in more detail. In starved specimens, independent of the light 

condition, the oxidative phosphorylation (OXPHOS) was predominantly down-regulated, especially 

genes belonging to complex I, II, and V (Online Resource 5).  

 

 

In SD animals, various genes of the Pentose Phosphate Pathway (e.g., deoxyribose-phosphate 

aldolase), the tricarboxylic acid cycle (e.g., oxogluterate dehydrogenase), and glycolysis (e.g., 6-

phosphofructinase, pyruvate dehydrogenase) were up-regulated (Fig. 4 A; Online Resource 5). Most 

genes belonging to the fatty acid metabolism were down-regulated in starved animals (Fig. 4 A), 
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in fatty acid beta-oxidation in SD animals were up-regulated 
(Fig. 4B).

The mitochondrial genome of E. viridis (GenBank acces-
sion no.: ON065001) has a length of 14,149 bp and con-
sists of 13 protein-coding genes, 2 rRNAs, and 21 tRNAs, 
a standard set of genes among Heterobranchia, except for a 
missing tRNA-S2 gene. A comparison with the published 
mitochondrial genomes of four other Elysia species did not 
reveal sufficient sequence/structure conservation to annotate 
this gene. Most proteins relevant to mitochondrial metab-
olism are nuclear-encoded and have to be imported. Yet, 
core components of the translocase of the outer membrane 
(TOM) and the translocase of the inner membrane (TIM) 
complexes were down-regulated in starved slugs (Fig. 4B).

Autophagy as primary source to obtain kleptoplast 
nutrients

Afterwards, we examined how starving slugs may obtain 
nutrients by analyzing the abundance of lysosomes and 
the expression of genes involved in lysosome formation 
and autophagy. Independent of the light condition, starva-
tion for one week led to an increase in the abundance of 
lysosomes and a simultaneous decrease in the abundance 
of kleptoplasts in specimens of E. viridis (Fig. 5A–C). SD 
animals had a higher lysosomal abundance (39.9% ± 5.7%) 
after one week of starvation than SL animals (17.3% ± 1.7%) 
and FED animals (11.4% ± 2.1%; Fig. 5B). There was a sub-
stantial decrease in kleptoplasts abundance during starvation 
compared to FED animals (42.9% ± 5.1%; Fig. 5B). Klepto-
plast abundance in the starvation conditions was low, albeit 
a considerable variation in SD animals was observed (SD: 

Fig. 4  A Overview of the expression of mitochondrial energy-related 
genes in E. viridis freshly fed (FED), starved in darkness (SD), and 
starved in light (SL). The average TMM of the replicates of each con-
dition in relation to the average TMM of the respective gene across 
all samples is shown. B Specific expression profile of important genes 
related to fatty acid metabolism (purple), Pentose Phosphate Pathway 
(yellow), genes of the Translocase of the inner (TIM, pink) and outer 
(TOM, orange) mitochondrial membrane. Boxplot whiskers show the 
minimum and maximum TMM values, and the centers correspond 

to the medians. C Circular map of the mitochondrial genome of Ely-
sia viridis. The annotations of the tRNAs were omitted for display-
ing reasons. ACAD: acyl-CoA dehydrogenase; ACAT: acetyl-CoA 
acetyltransferase; ACS: acetyl-CoA synthetase; CPT1, CPT2: Carni-
tine palmitoyltransferase 1, 2; ECHD: enoyl-CoA hydratase; HADH: 
hydroxyacyl-CoA dehydrogenase; DERA: deoxyribose-phosphate 
aldolase; TMM: Trimmed means of M value; TCA: tricarboxylic acid 
cycle; OXPHOS: oxidative phosphorylation; PPP: pentose phosphate 
pathway

Fig. 4. (A) Overview of the expression of mitochondrial energy-related genes in E. viridis freshly fed (FED), starved 
in darkness (SD), and starved in light (SL). The average TMM of the replicates of each condition in relation to the 
average TMM of the respective gene across all samples is shown. (B) Specific expression profile of important genes 
related to fatty acid metabolism (purple), Pentose Phosphate Pathway (yellow), genes of the Translocase of the inner 
(TIM, pink) and outer (TOM, orange) mitochondrial membrane. Boxplot whiskers show the minimum and maximum 
TMM values, and the centers correspond to the medians. (C) Circular map of the mitochondrial genome of Elysia 
viridis. The annotations of the tRNAs were omitted for displaying reasons. ACAD: acyl-CoA dehydrogenase; 
ACAT: acetyl-CoA acetyltransferase; ACS: acetyl-CoA synthetase; CPT1, CPT2: Carnitine palmitoyltransferase 1, 
2; ECHD: enoyl-CoA hydratase; HADH: hydroxyacyl-CoA dehydrogenase; DERA: deoxyribose-phosphate aldolase; 
TMM: Trimmed means of M value; TCA: tricarboxylic acid cycle; OXPHOS: oxidative phosphorylation; PPP: 
pentose phosphate pathway. 
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including carnitine O-palmitoyltransferase I and II (CPT1 and CPT2). However, several genes 

involved in fatty acid beta-oxidation in SD animals were up-regulated (Fig. 4 B).  

 

The mitochondrial genome of E. viridis (GenBank accession no.: ON065001) has a length of 

14,149 bp and consists of 13 protein-coding genes, 2 rRNAs, and 21 tRNAs, a standard set of genes 

among Heterobranchia, except for a missing tRNA-S2 gene. A comparison with the published 

mitochondrial genomes of four other Elysia species did not reveal sufficient sequence/structure 

conservation to annotate this gene. Most proteins relevant to mitochondrial metabolism are nuclear-

encoded and have to be imported. Yet, core components of the translocase of the outer membrane 

(TOM) and the translocase of the inner membrane (TIM) complexes were down-regulated in 

starved slugs (Fig. 4 B). 

 

Autophagy as primary source to obtain kleptoplast nutrients 

Afterwards, we examined how starving slugs may obtain nutrients by analyzing the abundance of 

lysosomes and the expression of genes involved in lysosome formation and autophagy. Independent 

of the light condition, starvation for one week led to an increase in the abundance of lysosomes and 

a simultaneous decrease in the abundance of kleptoplasts in specimens of E. viridis (Fig. 5 A-C). 

SD animals had a higher lysosomal abundance (39.9 % ± 5.7 %) after one week of starvation than 

SL animals (17.3 % ± 1.7 %) and FED animals (11.4 % ± 2.1 %; Fig. 5 B). There was a substantial 

decrease in kleptoplasts abundance during starvation compared to FED animals (42.9 % ± 5.1 %; 

Fig. 5 B). Kleptoplast abundance in the starvation conditions was low, albeit a considerable 

variation in SD animals was observed (SD: 15.7 % ± 7.9 %, SL 19.7 % ± 1.7 %; Fig. 5 C). 

Interestingly, SL animals slightly increased in length after one week of starvation (102 % ± 4 % of 

the initial length), while in SD animals, the length was reduced by about 3 % (97.0 % ± 2.0 % of the 

initial length; Fig. 5 D). The maximum quantum yield (Fv/Fm) of kleptoplasts decreased similarly in 

SD and SL specimens (Fig. 5 E). 
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Consistent with an increased lysosomal abundance, the serine/threonine-protein kinase TOR (target 

of rapamycin) was down-regulated in starved animals, which may initiate autophagy. Beclin-1 

(BECN) was highly up-regulated in SD animals but only slightly in SL animals. Additionally, 

VPS34 was down-regulated in SD slugs, which can also trigger autophagy (Fig. 6 A). Several 

lysosomal cathepsins (CTSB, CTSD, and CTSF), serine carboxypeptidase (CPVL), and NPC 

intracellular cholesterol transporter 2 (NPC2) were up-regulated during starvation, independent of 

the light conditions (Fig. 6 A). On the contrary, lysosomal genes like alpha-glucosidase (GAA) and 

alpha-mannosidase (MANB) were down-regulated in starved animals (Fig. 6 A). 

 

Glutamine is generated from ammonia by glutamine synthetase (GS), which was up-regulated in SL 

and SD slugs (Fig. 6 B). The glutamate synthase (GOGAT) and the catabolic glutamate 

dehydrogenase (GLUD2) were also up-regulated, especially in SD animals, while the anabolic 

glutamate dehydrogenase (GLUD1) was primarily down-regulated in SL animals (Fig. 6B).  
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15.7% ± 7.9%, SL 19.7% ± 1.7%; Fig. 5C). Interestingly, SL 
animals slightly increased in length after one week of starva-
tion (102% ± 4% of the initial length), while in SD animals, 
the length was reduced by about 3% (97.0% ± 2.0% of the 
initial length; Fig. 5D). The maximum quantum yield  (Fv/
Fm) of kleptoplasts decreased similarly in SD and SL speci-
mens (Fig. 5E).

Consistent with an increased lysosomal abundance, the 
serine/threonine-protein kinase TOR (target of rapamycin) 
was down-regulated in starved animals, which may initi-
ate autophagy. Beclin-1 (BECN) was highly up-regulated 
in SD animals but only slightly in SL animals. Addition-
ally, VPS34 was down-regulated in SD slugs, which can 
also trigger autophagy (Fig. 6A). Several lysosomal cath-
epsins (CTSB, CTSD, and CTSF), serine carboxypeptidase 
(CPVL), and NPC intracellular cholesterol transporter 2 
(NPC2) were up-regulated during starvation, independent 
of the light conditions (Fig. 6A). On the contrary, lysosomal 

genes like alpha-glucosidase (GAA) and alpha-mannosidase 
(MANB) were down-regulated in starved animals (Fig. 6A).

Glutamine is generated from ammonia by glutamine syn-
thetase (GS), which was up-regulated in SL and SD slugs 
(Fig. 6B). The glutamate synthase (GOGAT) and the cata-
bolic glutamate dehydrogenase (GLUD2) were also up-regu-
lated, especially in SD animals, while the anabolic glutamate 
dehydrogenase (GLUD1) was primarily down-regulated in 
SL animals (Fig. 6B).

There was no up-regulation of bicarbonate, carbonic 
anhydrases, or glucose transporters regardless of the light 
condition, but only a significant up-regulation of ammonium 
transporters in SD animals (Online Resource 5).

Fig. 5  A Confocal images of the digestive gland tubules of a lateral 
part of the parapodia and microscopic images of single individuals 
of E. viridis freshly fed (FED), starved for one week in continuous 
darkness (SD), and starved for one week in light (SL). The auto-flu-
orescence of chlorophyll a of kleptoplasts (red) and the fluorescence 
of acridine orange depicting lysosomal abundance (blue) are shown. 
Percentage of lysosomes (B) and kleptoplasts (C) coverage in the 
digestive gland tubules (DGS) of 5 different regions in the parapo-

dia of individuals of E. viridis freshly fed (FED) and after one week 
of starvation in continuous darkness (SD) or light (SL). D Relative 
length of individuals of E. viridis during one week of starvation in 
continuous darkness (SD) or light (SL), and (E) the maximum quan-
tum yield  (Fv/Fm) of the kleptoplasts in the same individuals. Boxplot 
whiskers show the minimum and maximum values, and the center 
lines correspond to the medians

Fig. 5. (A) Confocal images of the digestive gland tubules of a lateral part of the parapodia and microscopic 
images of single individuals of E. viridis freshly fed (FED), starved for one week in continuous darkness 
(SD), and starved for one week in light (SL). The auto-fluorescence of chlorophyll a of kleptoplasts (red) 
and the fluorescence of acridine orange depicting lysosomal abundance (blue) are shown. Percentage of 
lysosomes (B) and kleptoplasts (C) coverage in the digestive gland tubules (DGS) of 5 different regions in 
the parapodia of individuals of E. viridis freshly fed (FED) and after one week of starvation in continuous 
darkness (SD) or light (SL). (D) Relative length of individuals of E. viridis during one week of starvation in 
continuous darkness (SD) or light (SL), and (E) the maximum quantum yield (Fv/Fm) of the kleptoplasts in 
the same individuals. Boxplot whiskers show the minimum and maximum values, and the center lines 
correspond to the medians. 
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There was no up-regulation of bicarbonate, carbonic anhydrases, or glucose transporters regardless 

of the light condition, but only a significant up-regulation of ammonium transporters in SD animals 

(Online Resource 5). 

 

 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

Discussion 
Even after decades of research, several aspects of functional kleptoplasty in Sacoglossa remain 

unclear. Of particular interest is the contribution of kleptoplasts to the metabolism of the slugs and 

how the slugs can access the photosynthates of the kleptoplasts. Continuous darkness is often used 

to assess the contribution of photosynthetically active kleptoplasts to the slug's metabolism 

(Casalduero and Muniain 2008; Yamamoto et al. 2013; Christa et al. 2014a; Cartaxana et al. 2017). 

However, it remains unexplored if and how darkness affects the metabolism of sacoglossan sea 

slugs. This is the first study to compare the gene expression of a plastid-bearing sea slug starved in 
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Fig. 6. (A) Simplified pathway and (B) expression of genes involved in autophagy-related components and 
downstream formation of autophagolysosomes of E. viridis freshly fed (FED) during one week of starvation in 
continuous darkness (SD) or the light (SL). The pathway was created with BioRender.com. mt: mitochodria; 
cp: chloroplasts; lp: lipids; pr: proteins. (C) Expression of genes of the GS-GOGAT cycle of E. viridis freshly 
fed (FED) during one week of starvation in continuous darkness (SD) or the light (SL). Boxplots show the 
expression values in TMM (Trimmed means of M values), where the whiskers are the minimum and 
maximum values, and the centers correspond to the medians. mTOR: mechanistic target of rapamycin kinase; 
ATG101: autophagy related 101; BECN: beclin; VPS34: also PIK3C3: phosphatidylinositol 3-kinase catalytic 
subunit type 3; CTSB, CTSD, CTSF: cathepsin B, D, F; CPVL: carboxypeptidase vitellogenic like; GAA: 
alpha glucosidase; MANB: phosphomannomutase; NPC2: NPC intracellular cholesterol transporter 2; GS: 
glutamine synthetase; GOGAT: glutamate synthase; GDH ana.: glutamate dehydrogenase anabolic; GDH cat: 
glutamate dehydrogenase catabolic. Pathway created with BioRender.com. 
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light and continuous darkness to shed light on the effects of starvation in darkness. We found that 

darkness primarily leads to glucose starvation and a general down-regulation of the metabolism. 

However, in conjunction with an increased autophagy rate regardless of the light condition, our 

results support the hypothesis that kleptoplasts function as a sort of reserve or larder in Elysia 

viridis. 

 

Dark-starved slugs reduce their metabolic activity, cellular processes, and development. Further, 

starvation in darkness leads to a metabolic switch towards fatty acid beta-oxidation and 

deoxyribose-phosphate aldolase (DERA) expression. Interestingly, both are induced by glucose 

starvation in organisms (Salleron et al. 2014; Weber et al. 2020), which is observed in dark-starved 

specimens and could be related to a lack of glucose produced through photosynthesis. Starvation 

also caused the down-regulation of the translocase complexes TIM and TOM and fatty acid 

translocase receptors (CPTI and CPTII) of mitochondria. This down-regulation reduces the capacity 

to import nuclear-encoded proteins and translocate fatty acid into the mitochondria. Particularly 

during periods without food, CPTII deficiency prevents using certain fats for energy production 

(Joshi and Zierz 2020). Hence, starvation in darkness seems to induce a metabolic switch towards 

fatty acid degradation, but energy production through this pathway is highly reduced and 

independent of the light condition. Despite this, starvation in darkness might not only induce 

glucose starvation. Among others, constant darkness could inhibit the slug's diurnal rhythm, leading 

to a stress response similar to that observed in other gastropods (Shirley and Findley 1978). 

Darkness could also induce a resting phase, irrespective of food availability. Our KOG analyses 

further suggest a comparable stress response in different taxa to diverse factors like starvation, 

higher temperature, or darkness. Hence, at this stage, an unambiguous assignment of what triggers 

the reduction in the metabolic and developmental processes in dark-starved slugs is complicated. 

Nevertheless, the absence of photosynthates, specifically glucose, may serve as a starvation 

enhancer, if not an inducer. Thus, kleptoplast photosynthesis can avoid metabolic reduction by 

providing glucose, at least for one week of starvation in Elysia viridis. 

 

It has been shown that kleptoplasts accumulate starch in some species (Evertsen and Johnsen 2009; 

Laetz et al. 2017b). During feeding, the kleptoplasts are exchanged (Maeda et al. 2012; 

Frankenbach et al. 2021), and an increased lysosomal abundance during starvation points towards 

digestion of the kleptoplasts (Laetz et al. 2017a). Therefore, kleptoplasts may export a few 

photosynthates to slugs actively or not at all. The increase in lysosomal abundance and decrease in 
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chloroplasts abundance that we observed here, provide further support that E. viridis digests its 

chloroplasts to acquire energy when autophagy is initiated.  

 

Autophagy is probably the primary energy source during starvation, irrespective of starvation in 

light or darkness, as previously suggested (de Vries et al. 2014), but there are notable differences 

between starvation in light and darkness. The increased lysosomal abundance in darkness compared 

to light is likely based on a lower nutritional value of the kleptoplasts in non-photosynthetic 

conditions. Hence, more slug tissue is needed to satisfy the energetic demands. In light, kleptoplasts 

accumulate photosynthates (Laetz et al. 2017a) and provide sufficient amounts of glucose (or 

starch) to prevent physiological responses to glucose starvation and increased need for slug tissue 

degradation. This could also explain the slight increase in the length of the slugs in light and the 

decrease in the length of slugs in darkness. Similar observations were made in juveniles of Elysia 

chlorotica in which a slight increase in length was observed shortly after entering starvation, 

followed by a decrease in length in the longer term (Pelletreau et al. 2012). As long as the 

kleptoplasts are fully functional, as suggested by our Chl a fluorescence measurement, they can 

provide a benefit to the slugs, at least for a couple of days to one week, by acting as some sort of 

food depot.  

 

Our results suggest that the autophagic response could be initiated via the down-regulation of 

VPS34 due to glucose starvation (Corona Velazquez and Jackson 2018). Since SL animals might 

not enter glucose starvation, a different pathway is likely involved, but the exact mechanism needs 

to be further examined. Moreover, even under feeding conditions, we could not find an expression 

of transporters relevant for nutrient exchange in other photosymbioses, including glucose, 

ammonium, and bicarbonate transporters (Zoccola et al. 2015; Matthews et al. 2017; Roberty et al. 

2020) further supporting the lack of an active nutrient exchange.  

 

Apart from glucose, ammonium is a crucial nutrient that connects hosts and their symbionts in 

photosymbioses via the GS/GOGAT cycle. It was recently suggested that functional kleptoplasts 

under constant feeding and light could putatively help to retrieve additional ammonium via 

photosynthesis in Elysia viridis (Cruz et al. 2020). Our results revealed an up-regulation of both GS 

and GOGAT during starvation in E. viridis, indicating that the slugs indeed receive an increased 

amount of ammonium. The primary source of ammonium under starvation conditions are 

macromolecules, such as proteins, that are degraded by autophagy (Liu et al. 2021). Hence, 
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starvation for one week probably does not induce a nitrogen limitation, and the kleptoplasts may 

serve as a nitrogen source.  

 

Furthermore, in other photosymbioses, the translocation of bicarbonate to the symbionts is vital to 

ensure a high photosynthetic rate (Matthews et al. 2017; Roberty et al. 2020). In some sacoglossans, 

the maximum quantum yield (Fv/Fm) of kleptoplasts is higher compared to the Fv/Fm of the 

chloroplasts in their natural host algae (Serôdio et al. 2014). Because we could not identify an up-

regulation of relevant bicarbonate transporters, this increased Fv/Fm could be based on a higher 

partial CO2 pressure inside the animal cells that would induce a higher CO2 availability for the 

kleptoplasts through diffusion (Serôdio et al. 2014).  

 

Conclusion 

Kleptoplasts in sacoglossans synthesize photosynthates when provided light and can act as a 

valuable source of nutrients during starvation at least for one week. Under non-photosynthetic 

conditions, the lack of nutritional support induces length reduction of the slug. Here we show that 

autophagy is probably a primary source of nutrients for the slugs during starvation in light or 

darkness. Starvation in darkness reduces energy-consuming processes, such as cell cycle and 

development, which is probably caused by glucose starvation. The photosynthetic activity of 

kleptoplasts may help to overcome some energetic shortcomings, but photosynthates are probably 

not actively exported to the slug. Kleptoplasts in E. viridis more likely function as larders, whose 

energy can be utilized following their degradation during autophagy and can support the slugs under 

photosynthetic conditions in the short term.  
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Supplementary Material 
 

The supplementary material of this publication is organized in Online Resources according to the 

style of the journal Marine Biology and is available online. In this section only the short tables are 

displayed for reading purposes.  

 

Online Resource 1: 
Supplementary Table 1.1. Sequencing stats of Elysia viridis transcriptome. 

 
 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

Sequencing_stats

Page 1

Sample Treatment Sample_ID Raw reads Raw data
 [GB] Effective(%) Error(%) Q20(%) Q30(%) GC(%) Biosample ID Accession Nr.

Elvir_1 Fed FED01 67993830 10.2 97.05 0.03 97.05 91.9 35.29 SAMN26303207 SRR18163437

Elvir_2 Fed FED02 106544212 16 97.3 0.03 97.77 93.75 37.16 SAMN26303208 SRR18163436

Elvir_3 Fed FED03 70371612 10.6 96.34 0.03 96.27 90.92 37.46 SAMN26303209 SRR18163435

Elvir_4 Starved in light SL01 66015288 9.9 98.94 0.03 97.28 92.43 35.13 SAMN26303210 SRR18163434

Elvir_5 Starved in light SL02 82108314 12.3 96.19 0.03 97.73 93.32 37.45 SAMN26303211 SRR18163433

Elvir_6 Starved in light SL03 86360294 13 95.79 0.03 97.81 93.89 38.26 SAMN26303212 SRR18163432

Elvir_7 Starved in darkness SD01 85840148 12.9 97.55 0.03 97.52 92.99 38.44 SAMN26303213 SRR18163431

Elvir_8 Starved in darkness SD02 71828554 10.8 97.01 0.03 96.81 91.7 36.78 SAMN26303214 SRR18163430

Elvir_9 Starved in darkness SD03 72541412 10.9 97.53 0.03 97.93 93.76 37.28 SAMN26303215 SRR18163429
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Online Resource 6: 

Supplementary Table 6.1. Gene Ontology (GO) term among DEGs of SD vs FED conditions of 

Elysia viridis. 

 
 

 

E_viridis_StarvedD_FED

Page 1

Delta.rank pval Level #seqs GO Term Name p.adj GO 
Category

-140 3.3E+06 1 72 GO:0007049 cell cycle 1.6E+08 BP
-120 2.3E+08 2 71 GO:0009790 embryo development 5.7E-05 BP
-119 1.6E-05 1 59 GO:0007010 cytoskeleton organization 2.6E-04 BP
155 7.8E-05 2 28 GO:0006399 tRNA metabolic process 7.7E-04 BP

-102 6.4E-05 1 70 GO:0051276 chromosome organization 7.7E-04 BP
-119 1.1E-04 2 47 GO:0000278 mitotic cell cycle 8.7E-04 BP
-95 1.6E-04 1 73 GO:0040011 locomotion 1.1E-03 BP
-92 2.0E-04 1 76 GO:0042592 homeostatic process 1.2E-03 BP

-103 3.3E-04 2 54 GO:0006397 mRNA processing 1.8E-03 BP
-128 5.0E-04 2 32 GO:0006913 nucleocytoplasmic transport 2.3E-03 BP

-184 5.2E-04 2 15 GO:0030705
cytoskeleton-dependent 
intracellular transport 2.3E-03 BP

88 7.7E-04 2 66 GO:0006520 cellular amino acid metabolic process 3.1E-03 BP
79 1.1E-03 2 79 GO:0006412 translation 3.9E-03 BP

-111 1.3E-03 1 37 GO:0007005 mitochondrion organization 3.9E-03 BP

-95 1.2E-03 1 52 GO:0048646
anatomical structure formation 
involved in morphogenesis 3.9E-03 BP

-97 1.3E-03 1 49 GO:0050877 nervous system process 3.9E-03 BP
-89 2.3E-03 2 53 GO:0048870 cell motility 6.5E-03 BP
-94 3.3E-03 1 43 GO:0007568 aging 9.0E-03 BP
-99 4.3E-03 1 36 GO:0061024 membrane organization 1.1E-02 BP
-95 5.2E-03 1 38 GO:0000902 cell morphogenesis 1.2E-02 BP

-118 5.2E-03 1 24 GO:0007059 chromosome segregation 1.2E-02 BP
-77 1.7E-02 1 43 GO:0008283 cell population proliferation 3.7E-02 BP
54 6.7E-02 1 52 GO:0005975 carbohydrate metabolic process 1.4E-01 BP

-74 1.0E-01 1 21 GO:0007155 cell adhesion 2.0E-01 BP
-52 1.0E-01 1 44 GO:0008219 cell death 2.0E-01 BP
-70 1.0E-01 1 23 GO:0030198 extracellular matrix organization 2.0E-01 BP
-76 1.2E-01 1 18 GO:0021700 developmental maturation 2.0E-01 BP
-86 1.2E-01 1 14 GO:0140014 mitotic nuclear division 2.0E-01 BP
50 1.2E-01 2 42 GO:0006351 transcription. DNA-templated 2.1E-01 BP

-67 1.8E-01 1 17 GO:0003013 circulatory system process 3.0E-01 BP
-50 1.9E-01 1 29 GO:0051301 cell division 3.0E-01 BP
-50 2.1E-01 2 27 GO:0006605 protein targeting 3.3E-01 BP
-26 2.9E-01 2 77 GO:0006259 DNA metabolic process 4.0E-01 BP
-90 2.8E-01 1 6 GO:0019748 secondary metabolic process 4.0E-01 BP
-77 2.9E-01 1 8 GO:0034330 cell junction organization 4.0E-01 BP
-45 2.7E-01 1 26 GO:0040007 growth 4.0E-01 BP

-31 3.6E-01 1 39 GO:0044403
biological process involved in 
symbiotic interaction 4.7E-01 BP

-29 3.7E-01 2 42 GO:0055085 transmembrane transport 4.8E-01 BP
49 4.5E-01 2 10 GO:0007034 vacuolar transport 5.7E-01 BP
20 5.2E-01 1 46 GO:0006457 protein folding 6.4E-01 BP
14 5.7E-01 1 76 GO:0006629 lipid metabolic process 6.8E-01 BP

15 6.0E-01 1 53 GO:0006091
generation of precursor metabolites 
and energy 6.8E-01 BP

22 6.0E-01 1 24 GO:0051604 protein maturation 6.8E-01 BP
-16 6.2E-01 3 42 GO:0022618 ribonucleoprotein complex assembly 6.9E-01 BP

9 8.2E-01 1 29 GO:0007267 cell-cell signaling 8.9E-01 BP
7 8.5E-01 1 37 GO:0006790 sulfur compound metabolic process 9.0E-01 BP
4 8.8E-01 1 60 GO:0042254 ribosome biogenesis 9.2E-01 BP
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E_viridis_StarvedD_FED

Page 2

-6 9.0E-01 2 21 GO:0006914 autophagy 9.2E-01 BP

1 9.8E-01 2 47 GO:0034655
nucleobase-containing compound 
catabolic process 9.8E-01 BP

130 9.7E+08 1 35 GO:0016874 ligase activity 3.0E-04 MF
-99 8.0E-04 1 35 GO:0008092 cytoskeletal protein binding 1.2E-02 MF
96 1.5E-03 1 33 GO:0016829 lyase activity 1.6E-02 MF

-83 2.8E-03 1 40 GO:0008134 transcription factor binding 2.1E-02 MF
69 9.5E-03 1 44 GO:0016853 isomerase activity 5.9E-02 MF

-54 4.6E-02 2 41 GO:0003729 mRNA binding 1.4E-01 MF
76 4.2E-02 1 21 GO:0016779 nucleotidyltransferase activity 1.4E-01 MF

-100 3.4E-02 1 13 GO:0016791 phosphatase activity 1.4E-01 MF

-109 3.4E-02 1 11 GO:0016798
hydrolase activity. acting on glycosyl 
bonds 1.4E-01 MF

-62 4.6E-02 1 31 GO:0030234 enzyme regulator activity 1.4E-01 MF

93 5.8E-02 2 12
GO:0004386;
GO:0140657 helicase activity 1.6E-01 MF

-130 6.1E-02 1 6 GO:0030674
protein-macromolecule adaptor 
activity 1.6E-01 MF

-57 8.4E-02 1 28 GO:0008289 lipid binding 2.0E-01 MF
-124 1.0E-01 1 5 GO:0042393 histone binding 2.3E-01 MF
-37 1.2E-01 1 58 GO:0005198 structural molecule activity 2.4E-01 MF
41 1.9E-01 2 31 GO:0003735 structural constituent of ribosome 3.7E-01 MF
27 2.1E-01 1 67 GO:0008233 peptidase activity 3.8E-01 MF
38 4.1E-01 2 14 GO:0019843 rRNA binding 7.0E-01 MF

-58 4.4E-01 1 5 GO:0016765

transferase activity. transferring 
alkyl or aryl (other than methyl) 
groups 7.3E-01 MF

26 4.8E-01 1 22 GO:0016301 kinase activity 7.4E-01 MF
-21 5.1E-01 1 30 GO:0016746 acyltransferase activity 7.6E-01 MF
19 6.0E-01 1 24 GO:0003924 GTPase activity 7.6E-01 MF

20 5.7E-01 2 25 GO:0008135
translation factor activity. 
RNA binding 7.6E-01 MF

-35 6.2E-01 1 6 GO:0016757 glycosyltransferase activity 7.6E-01 MF
-16 5.9E-01 1 34 GO:0022857 transmembrane transporter activity 7.6E-01 MF
16 7.0E-01 1 17 GO:0008168 methyltransferase activity 8.2E-01 MF

19 7.1E-01 1 11 GO:0016810

hydrolase activity. acting on 
carbon-nitrogen (but not peptide) 
bonds 8.2E-01 MF

-5 8.2E-01 1 66 GO:0003677 DNA binding 8.2E-01 MF

11 7.5E-01 1 24 GO:0003700
DNA-binding transcription factor 
activity 8.2E-01 MF

-10 7.7E-01 1 25 GO:0004518 nuclease activity 8.2E-01 MF
-8 8.2E-01 1 25 GO:0051082 unfolded protein binding 8.2E-01 MF
64 8.3E-05 2 37 GO:0005840 ribosome 1.3E-03 CC

-59 1.2E-03 2 29 GO:0005929 cilium 9.7E-03 CC
-55 2.2E-03 1 30 GO:0005815 microtubule organizing center 1.1E-02 CC
-36 3.3E-03 2 75 GO:0005856 cytoskeleton 1.3E-02 CC

27 4.7E-02 2 57
GO:0005764;
GO:0005773 vacuole 1.5E-01 CC

21 1.8E-01 3 43 GO:0005768 endosome 4.1E-01 CCE_viridis_StarvedD_FED

Page 3

-35 1.6E-01 2 15 GO:0005777 peroxisome 4.1E-01 CC
16 2.2E-01 1 66 GO:0005615 extracellular space 4.4E-01 CC

-12 4.7E-01 3 32 GO:0000228 nuclear chromosome 7.0E-01 CC
-10 4.6E-01 2 63 GO:0005694 chromosome 7.0E-01 CC
-29 4.9E-01 2 5 GO:0009536 plastid 7.0E-01 CC

12 5.2E-01 2 29
GO:0031012;
GO:0030312 external encapsulating structure 7.0E-01 CC

17 6.6E-01 2 6 GO:0005618 cell wall 8.1E-01 CC
-2 9.2E-01 1 26 GO:0005635 nuclear envelope 9.5E-01 CC
-2 8.6E-01 2 57 GO:0005794 Golgi apparatus 9.5E-01 CC
3 9.5E-01 2 6 GO:0005811 lipid droplet 9.5E-01 CC
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Supplementary Table 6.2. Gene Ontology (GO) term among DEGs of SD vs SL conditions of 

Elysia viridis. 

 

E_viridis_StarvedD_StarvedL

Page 1

Delta.rank pval Level #seqs GO Term Name p.adj GO 
Category

86 1.5E-07 2 32 GO:0006412 translation 6.2E-06 BP
-76 8.7E-07 2 37 GO:0009790 embryo development 1.7E-05 BP
99 2.2E-05 2 15 GO:0006399 tRNA metabolic process 2.2E-04 BP

-70 1.9E-05 1 32 GO:0007010 cytoskeleton organization 2.2E-04 BP
-63 5.2E-05 1 37 GO:0040011 locomotion 4.2E-04 BP
-75 1.9E-04 1 21 GO:0000902 cell morphogenesis 1.2E-03 BP
-80 3.0E-04 1 17 GO:0007267 cell-cell signaling 1.7E-03 BP
-62 6.5E-04 1 26 GO:0050877 nervous system process 3.3E-03 BP
-51 1.4E-03 2 35 GO:0015031 protein transport 5.8E-03 BP
-56 1.5E-03 2 28 GO:0048870 cell motility 5.8E-03 BP
-63 2.1E-03 1 20 GO:0007049 cell cycle 7.5E-03 BP
-46 3.5E-03 1 36 GO:0042592 homeostatic process 1.2E-02 BP

44 7.9E-03 2 31 GO:0006520
cellular amino acid metabolic 
process 2.4E-02 BP

-39 9.3E-03 1 39 GO:0002376 immune system process 2.6E-02 BP
54 1.1E-02 1 18 GO:0006457 protein folding 3.0E-02 BP

-58 1.6E-02 2 14 GO:0000278 mitotic cell cycle 3.9E-02 BP
-59 2.3E-02 1 12 GO:0061024 membrane organization 5.4E-02 BP

41 2.8E-02 1 25 GO:0006091
generation of precursor 
metabolites and energy 5.7E-02 BP

-51 2.9E-02 1 15 GO:0040007 growth 5.7E-02 BP

-40 2.8E-02 1 26 GO:0048646
anatomical structure formation 
involved in morphogenesis 5.7E-02 BP

-51 3.0E-02 1 15 GO:0007568 aging 5.8E-02 BP
-59 3.8E-02 1 10 GO:0003013 circulatory system process 6.9E-02 BP

60 4.5E-02 2 9 GO:0022618
ribonucleoprotein complex
assembly 7.9E-02 BP

-42 5.6E-02 2 17 GO:0006397 mRNA processing 9.3E-02 BP
41 6.3E-02 2 17 GO:0006351 transcription, DNA-templated 1.0E-01 BP

-47 8.4E-02 1 11 GO:0007155 cell adhesion 1.3E-01 BP
-51 9.0E-02 1 9 GO:0021700 developmental maturation 1.3E-01 BP
40 1.1E-01 1 13 GO:0042254 ribosome biogenesis 1.6E-01 BP

-33 1.2E-01 1 19 GO:0051276 chromosome organization 1.6E-01 BP
-33 1.6E-01 1 15 GO:0051301 cell division 2.1E-01 BP
-31 2.2E-01 1 13 GO:0008219 cell death 2.8E-01 BP
-30 2.5E-01 1 12 GO:0007005 mitochondrion organization 3.0E-01 BP

29 2.5E-01 1 13 GO:0044403
biological process involved in 
symbiotic interaction 3.0E-01 BP

15 3.2E-01 1 37 GO:0005975
carbohydrate metabolic 
process 3.8E-01 BP

24 3.5E-01 1 12 GO:0051604 protein maturation 4.0E-01 BP

16 4.7E-01 2 18 GO:0034655
nucleobase-containing 
compound catabolic process 5.2E-01 BP

-17 4.9E-01 2 14 GO:0055085 transmembrane transport 5.3E-01 BP
-10 7.0E-01 1 11 GO:0030198 extracellular matrix organization 7.4E-01 BP

-8 7.3E-01 1 14 GO:0006790
sulfur compound metabolic 
process 7.5E-01 BP

2 9.2E-01 2 24 GO:0006259 DNA metabolic process 9.2E-01 BP
58 8.4E-04 1 19 GO:0016874 ligase activity 2.4E-02 MF

-50 4.6E-03 1 18 GO:0008092 cytoskeletal protein binding 4.5E-02 MF
46 3.4E-03 1 24 GO:0016853 isomerase activity 4.5E-02 MF
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E_viridis_StarvedD_StarvedL

Page 2

50 1.5E-02 2 13 GO:0003735 structural constituent of ribosome 6.6E-02 MF
67 1.6E-02 1 7 GO:0003924 GTPase activity 6.6E-02 MF
73 1.5E-02 2 6 GO:0019843 rRNA binding 6.6E-02 MF
63 1.5E-02 1 8 GO:0051082 unfolded protein binding 6.6E-02 MF

57 2.1E-02 2 9 GO:0008135
translation factor activity, 
RNA binding 7.7E-02 MF

-50 3.3E-02 1 10 GO:0016798
hydrolase activity, acting on 
glycosyl bonds 1.1E-01 MF

-36 3.9E-02 1 19 GO:0030234 enzyme regulator activity 1.1E-01 MF
-38 4.7E-02 1 15 GO:0008289 lipid binding 1.2E-01 MF
-36 6.2E-02 2 15 GO:0003729 mRNA binding 1.5E-01 MF
28 9.5E-02 1 20 GO:0016829 lyase activity 2.1E-01 MF

-22 1.3E-01 1 27 GO:0003677 DNA binding 2.7E-01 MF
-48 1.4E-01 1 5 GO:0032182 ubiquitin-like protein binding 2.7E-01 MF
-29 2.4E-01 1 9 GO:0008134 transcription factor binding 4.2E-01 MF
-31 2.3E-01 1 8 GO:0016791 phosphatase activity 4.2E-01 MF
26 2.7E-01 1 10 GO:0016779 nucleotidyltransferase activity 4.3E-01 MF

-20 3.4E-01 1 13 GO:0022857
transmembrane transporter 
activity 5.3E-01 MF

-18 5.8E-01 1 5 GO:0016757 glycosyltransferase activity 8.4E-01 MF

7 7.7E-01 1 9 GO:0003700
DNA-binding transcription 
factor activity 9.0E-01 MF

9 7.4E-01 1 7 GO:0004518 nuclease activity 9.0E-01 MF
-15 6.5E-01 1 5 GO:0008168 methyltransferase activity 9.0E-01 MF
-5 7.4E-01 1 24 GO:0008233 peptidase activity 9.0E-01 MF
-6 7.5E-01 1 15 GO:0016746 acyltransferase activity 9.0E-01 MF

3 9.3E-01 2 6
GO:0004386;
GO:0140657 helicase activity 9.6E-01 MF

1 9.2E-01 1 28 GO:0005198 structural molecule activity 9.6E-01 MF
-3 9.0E-01 1 11 GO:0016301 kinase activity 9.6E-01 MF

2 9.6E-01 1 5 GO:0016810

hydrolase activity, acting on 
carbon-nitrogen (but not peptide) 
bonds 9.6E-01 MF

58 8.7E-06 2 16 GO:0005840 ribosome 1.2E-04 CC
-26 4.7E-02 2 15 GO:0005694 chromosome 2.2E-01 CC
-23 4.8E-02 3 20 GO:0005768 endosome 2.2E-01 CC
-21 6.8E-02 2 21 GO:0005929 cilium 2.4E-01 CC
32 8.9E-02 1 7 GO:0005635 nuclear envelope 2.5E-01 CC

-15 1.2E-01 2 31 GO:0005794 Golgi apparatus 2.7E-01 CC
19 1.4E-01 1 17 GO:0030312 external encapsulating structure 2.7E-01 CC

-19 1.8E-01 1 13 GO:0005815 microtubule organizing center 3.1E-01 CC
13 3.8E-01 2 12 GO:0031012 extracellular matrix 5.8E-01 CC
11 4.2E-01 2 15 GO:0005730 nucleolus 5.9E-01 CC
-4 6.6E-01 1 31 GO:0005615 extracellular space 7.1E-01 CC
4 6.4E-01 2 33 GO:0005739 mitochondrion 7.1E-01 CC
9 6.3E-01 2 7 GO:0005777 peroxisome 7.1E-01 CC

3 8.0E-01 2 27
GO:0005773;
GO:0005764 vacuole 8.0E-01 CC
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Supplementary Table 6.3. Gene Ontology (GO) term among DEGs of SL vs FED conditions of 

Elysia viridis. 

 
 
 

 

 
 

 
 

 

 
 

 
 

E_viridis_StarvedL_FED

Page 1

Delta.rank pval Level #seqs GO Term Name p.adj GO 
Category

16 0.03 1 8 GO:0007010 cytoskeleton organization 0.66 BP
-13 0.09 1 7 GO:0007005 mitochondrion organization 0.70 BP
-17 0.06 1 5 GO:0030198 extracellular matrix organization 0.70 BP
-8 0.26 2 9 GO:0006259 DNA metabolic process 0.82 BP
-6 0.48 2 6 GO:0006397 mRNA processing 0.82 BP
-8 0.40 2 5 GO:0006605 protein targeting 0.82 BP
-5 0.44 1 9 GO:0006790 sulfur compound metabolic process 0.82 BP
10 0.15 1 8 GO:0007049 cell cycle 0.82 BP
-7 0.47 1 5 GO:0007155 cell adhesion 0.82 BP
-8 0.26 1 9 GO:0008219 cell death 0.82 BP

-8 0.31 3 6 GO:0022618
ribonucleoprotein complex 
assembly 0.82 BP

-9 0.29 1 6 GO:0042254 ribosome biogenesis 0.82 BP

-8 0.33 1 7 GO:0048646
anatomical structure formation 
involved in morphogenesis 0.82 BP

-6 0.50 1 6 GO:0050877 nervous system process 0.82 BP
5 0.54 1 6 GO:0005975 carbohydrate metabolic process 0.83 BP
4 0.62 1 6 GO:0008283 cell population proliferation 0.89 BP

-1 0.90 2 5 GO:0006351 transcription, DNA-templated 0.98 BP

2 0.84 2 7 GO:0006520
cellular amino acid metabolic 
process 0.98 BP

-1 0.94 1 9 GO:0007568 aging 0.98 BP
2 0.81 1 5 GO:0040007 growth 0.98 BP

-2 0.75 1 7
GO:0040011;
GO:0048870 locomotion 0.98 BP

-1 0.92 1 6 GO:0051276 chromosome organization 0.98 BP
0 1.00 2 6 GO:0006913 nucleocytoplasmic transport 1.00 BP

-4 0.33 1 7 GO:0003677 DNA binding 0.77 MF
6 0.25 1 5 GO:0008092 cytoskeletal protein binding 0.77 MF
7 0.18 1 4 GO:0016829 lyase activity 0.77 MF

-3 0.48 1 7 GO:0005198 structural molecule activity 0.83 MF
-2 0.68 1 5 GO:0030234 enzyme regulator activity 0.95 MF
0 0.98 1 8 GO:0008134 transcription factor binding 0.98 MF
1 0.85 1 7 GO:0008289 lipid binding 0.98 MF

-6 0.11 2 8
GO:0031012;
GO:0030312 extracellular matrix 0.43 CC

4 0.24 1 7 GO:0005815 microtubule organizing center 0.48 CC
2 0.69 3 7 GO:0005768 endosome 0.91 CC
0 0.93 2 6 GO:0005694 chromosome 0.93 CC
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Online Resource 7: 

Supplementary Table 7.1. EuKaryotic Orthologous Groups (KOG) term among DEGs of SD vs 

FED conditions of Elysia viridis. 

 
Supplementary Table 7.2. EuKaryotic Orthologous Groups (KOG) term among DEGs of SD vs 

SL conditions of Elysia viridis. 

 
	
  

	
  

	
  

E_viridis_StarvedD_FED

Page 1

KOG-term #seqs Delta.rank pval padj
Signal transduction mechanisms 85 -237 1.2E-08 2.8E-07
Cell wall/membrane/envelope biogenesis 30 335 9.7E-07 9.7E-06
Energy production and conversion 119 172 1.3E-06 9.7E-06
Intracellular trafficking, secretion, and vesicular transport 59 -223 5.9E-06 3.4E-05
Nucleotide transport and metabolism 47 223 5.0E-05 2.3E-04
RNA processing and modification 64 -177 1.9E-04 7.2E-04
Cytoskeleton 40 -219 2.3E-04 7.7E-04
Amino acid transport and metabolism 91 133 9.5E-04 2.7E-03
Posttranslational modification, protein turnover, chaperones 203 -76 7.4E-03 1.9E-02
Carbohydrate transport and metabolism 67 108 2.0E-02 4.5E-02
Chromatin structure and dynamics 11 -217 5.3E-02 1.1E-01
Extracellular structures 15 -182 5.8E-02 1.1E-01
Cell motility 2 -468 7.4E-02 1.3E-01
Coenzyme transport and metabolism 26 123 9.2E-02 1.5E-01
Inorganic ion transport and metabolism 36 88 1.6E-01 2.5E-01
Transcription 62 43 3.7E-01 5.2E-01
Lipid transport and metabolism 67 40 3.9E-01 5.2E-01
Secondary metabolites biosynthesis, transport and catabolism 27 30 6.8E-01 8.7E-01
Translation, ribosomal structure and biogenesis 155 10 7.6E-01 8.9E-01
Cell cycle control, cell division, chromosome partitioning 13 28 7.9E-01 8.9E-01
Replication, recombination and repair 60 12 8.1E-01 8.9E-01
Nuclear structure 1 71 8.5E-01 8.9E-01
Defense mechanisms 9 12 9.2E-01 9.2E-01

E_viridis_StarvedD_StarvedL

Page 1

KOG-term #seqs Delta.rank pval padj
Signal transduction mechanisms 53 -125 0.00 0.00
Cell wall/membrane/envelope biogenesis 22 136 0.00 0.00
RNA processing and modification 22 -129 0.00 0.00
Energy production and conversion 63 76 0.00 0.00
Cytoskeleton 26 -100 0.00 0.01
Intracellular trafficking, secretion, and vesicular transport 23 -77 0.03 0.11
Amino acid transport and metabolism 53 50 0.04 0.12
Translation, ribosomal structure and biogenesis 61 39 0.08 0.22
Nucleotide transport and metabolism 15 65 0.14 0.33
Cell motility 1 -240 0.15 0.33
Extracellular structures 8 -80 0.18 0.33
Coenzyme transport and metabolism 14 60 0.18 0.33
Transcription 24 41 0.23 0.38
Replication, recombination and repair 18 47 0.24 0.38
Chromatin structure and dynamics 4 -90 0.28 0.42
Lipid transport and metabolism 33 28 0.35 0.48
Inorganic ion transport and metabolism 24 -30 0.38 0.49
Defense mechanisms 2 -65 0.58 0.71
Posttranslational modification, protein turnover, chaperones 69 -8 0.70 0.81
Carbohydrate transport and metabolism 33 8 0.78 0.86
Cell cycle control, cell division, chromosome partitioning 6 -14 0.84 0.88
Secondary metabolites biosynthesis, transport and catabolism 8 -3 0.96 0.96
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Supplementary Table 7.3. EuKaryotic Orthologous Groups (KOG) term among DEGs of SL vs 

FED conditions of Elysia viridis. 

 
Supplementary Table 7.4. EuKaryotic Orthologous Groups (KOG) term among DEGs of Day 5 of 

development and feeding of Elysia chlorotica. 

 
 

 

 

 

 

E_viridis_StarvedL_FED

Page 1

KOG-term #seqs Delta.rank pval padj
Chromatin structure and dynamics 2 -53 0.04 0.64
Secondary metabolites biosynthesis, transport and catabolism 4 -33 0.06 0.64
Cell wall/membrane/envelope biogenesis 3 32 0.12 0.64
Cytoskeleton 5 25 0.12 0.64
Translation, ribosomal structure and biogenesis 9 -15 0.23 0.89
Inorganic ion transport and metabolism 3 -19 0.35 0.89
Nucleotide transport and metabolism 2 -21 0.40 0.89
Amino acid transport and metabolism 10 10 0.40 0.89
Carbohydrate transport and metabolism 10 9 0.43 0.89
Extracellular structures 5 -11 0.49 0.89
Defense mechanisms 1 -24 0.50 0.89
Coenzyme transport and metabolism 3 14 0.51 0.89
RNA processing and modification 6 8 0.61 0.90
Replication, recombination and repair 2 13 0.62 0.90
Posttranslational modification, protein turnover, chaperones 16 4 0.66 0.90
Cell cycle control, cell division, chromosome partitioning 2 -10 0.71 0.90
Transcription 5 6 0.73 0.90
Signal transduction mechanisms 18 -2 0.81 0.94
Energy production and conversion 6 1 0.95 1.00
Intracellular trafficking, secretion, and vesicular transport 3 -1 0.97 1.00
Lipid transport and metabolism 6 0 1.00 1.00

E_chlorotica_APO_Day5

Page 1

KOG-term #seqs Delta.rank pval padj
Signal transduction mechanisms 731 -933 3.9E-76 1.0E-74
Inorganic ion transport and metabolism 184 -1051 3.8E-29 5.0E-28
Translation, ribosomal structure and biogenesis 237 875 7.0E-26 6.1E-25
Replication, recombination and repair 130 951 9.4E-18 6.1E-17
RNA processing and modification 200 627 3.6E-12 1.9E-11
General function prediction only 783 -281 1.1E-08 4.6E-08
Energy production and conversion 135 499 4.5E-06 1.7E-05
Extracellular structures 90 -595 7.3E-06 2.4E-05
Function unknown 396 282 1.7E-05 5.1E-05
Cell cycle control, cell division, chromosome partitioning 136 463 2.0E-05 5.1E-05
Nuclear structure 31 928 3.5E-05 8.4E-05
Posttranslational modification, protein turnover, chaperones 438 253 5.6E-05 1.2E-04
Cell wall/membrane/envelope biogenesis 56 -624 2.0E-04 3.9E-04
Cytoskeleton 169 -328 7.9E-04 1.5E-03
Coenzyme transport and metabolism 41 585 2.7E-03 4.7E-03
Lipid transport and metabolism 192 238 9.5E-03 1.5E-02
Defense mechanisms 50 -383 3.0E-02 4.7E-02
Nucleotide transport and metabolism 76 276 5.5E-02 8.0E-02
Cell motility 13 -616 7.5E-02 1.0E-01
Amino acid transport and metabolism 170 -158 1.0E-01 1.4E-01
Translation, ribosomal structure and biogenesis 1 1932 1.2E-01 1.5E-01
Chromatin structure and dynamics 70 221 1.4E-01 1.7E-01
Intracellular trafficking, secretion, and vesicular transport 253 74 3.6E-01 4.0E-01
Secondary metabolites biosynthesis, transport and catabolism 101 -42 7.4E-01 7.5E-01
Transcription 237 27 7.4E-01 7.5E-01
Carbohydrate transport and metabolism 155 -32 7.5E-01 7.5E-01
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Supplementary Table 7.5. EuKaryotic Orthologous Groups (KOG) term among DEGs of Day 7 of 

development and feeding of Elysia chlorotica. 

 
Supplementary Table 7.6. EuKaryotic Orthologous Groups (KOG) term among DEGs of Day 10 

of development and feeding of Elysia chlorotica. 

 
 

 
 

E_chlorotica_APO_Day7

Page 1

KOG-term #seqs Delta.rank pval padj
Signal transduction mechanisms 1012 -1143 1.4E-99 3.6E-98
Translation, ribosomal structure and biogenesis 218 1314 1.0E-34 1.3E-33
Inorganic ion transport and metabolism 220 -1143 6.4E-27 5.4E-26
Replication, recombination and repair 165 1170 1.0E-21 6.4E-21
RNA processing and modification 221 980 2.7E-20 1.3E-19
Energy production and conversion 140 790 2.4E-09 1.0E-08
Posttranslational modification, protein turnover, chaperones 517 420 4.3E-09 1.5E-08
General function prediction only 1028 -301 2.0E-08 6.3E-08
Function unknown 515 398 2.7E-08 7.6E-08
Cell cycle control, cell division, chromosome partitioning 156 612 1.1E-06 2.7E-06
Cytoskeleton 223 -503 2.0E-06 4.5E-06
Nuclear structure 31 1311 2.5E-06 5.2E-06
Extracellular structures 106 -657 1.5E-05 2.9E-05
Coenzyme transport and metabolism 46 809 4.1E-04 7.3E-04
Nucleotide transport and metabolism 85 544 1.3E-03 2.2E-03
Cell motility 20 -854 1.4E-02 2.1E-02
Cell wall/membrane/envelope biogenesis 71 -411 2.6E-02 3.8E-02
Chromatin structure and dynamics 84 284 9.5E-02 1.3E-01
Secondary metabolites biosynthesis, transport and catabolism 123 -220 1.2E-01 1.6E-01
Amino acid transport and metabolism 195 -162 1.5E-01 1.9E-01
Defense mechanisms 67 -191 3.1E-01 3.7E-01
Carbohydrate transport and metabolism 202 -72 5.2E-01 5.8E-01
Intracellular trafficking, secretion, and vesicular transport 314 56 5.3E-01 5.8E-01
Transcription 306 51 5.7E-01 6.0E-01
Lipid transport and metabolism 231 2 9.8E-01 9.8E-01

E_chlorotica_APO_Day10

Page 1

KOG-term #seqs Delta.rank pval padj
Signal transduction mechanisms 717 -386 1.1E-16 2.8E-15
Replication, recombination and repair 121 809 7.3E-15 9.2E-14
Inorganic ion transport and metabolism 171 -583 3.7E-11 3.1E-10
Nuclear structure 25 745 9.9E-04 6.2E-03
Posttranslational modification, protein turnover, chaperones 397 184 2.1E-03 8.8E-03
Cell cycle control, cell division, chromosome partitioning 115 328 2.1E-03 8.8E-03
RNA processing and modification 162 253 5.1E-03 1.8E-02
Amino acid transport and metabolism 157 -242 8.3E-03 2.6E-02
Nucleotide transport and metabolism 70 307 2.4E-02 6.6E-02
Translation, ribosomal structure and biogenesis 159 183 4.5E-02 1.1E-01
Coenzyme transport and metabolism 34 341 7.9E-02 1.8E-01
Energy production and conversion 115 179 9.3E-02 1.9E-01
Extracellular structures 101 170 1.3E-01 2.6E-01
Function unknown 321 87 1.8E-01 3.3E-01
General function prediction only 735 -58 2.1E-01 3.5E-01
Cell motility 18 -314 2.4E-01 3.7E-01
Carbohydrate transport and metabolism 163 97 2.8E-01 4.1E-01
Lipid transport and metabolism 189 72 3.9E-01 5.4E-01
Chromatin structure and dynamics 58 77 6.1E-01 8.0E-01
Transcription 197 -38 6.4E-01 8.0E-01
Defense mechanisms 50 -59 7.1E-01 8.5E-01
Cell wall/membrane/envelope biogenesis 61 -20 8.9E-01 9.7E-01
Secondary metabolites biosynthesis, transport and catabolism 117 -13 9.0E-01 9.7E-01
Cytoskeleton 160 -8 9.3E-01 9.7E-01
Intracellular trafficking, secretion, and vesicular transport 201 -1 0.99 0.99
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Supplementary Table 7.7. EuKaryotic Orthologous Groups (KOG) term among DEGs of 

aposymbiotic vs symbiotic state of Exaiptasia diaphana. 

 
Supplementary Table 7.8. EuKaryotic Orthologous Groups (KOG) term among DEGs of heat 

stressed Stylophora pistillata. 

 
 
 

 

E_diaphana

Page 1

KOG-term #seqs Delta.rank pval padj
Inorganic ion transport and metabolism 71 90 0.01 0.21
Signal transduction mechanisms 225 -53 0.02 0.21
Defense mechanisms 11 -195 0.03 0.25
Amino acid transport and metabolism 78 -71 0.04 0.26
Translation, ribosomal structure and biogenesis 35 93 0.07 0.33
Extracellular structures 28 -97 0.09 0.33
Intracellular trafficking, secretion, and vesicular transport 46 72 0.11 0.33
Function unknown 60 -64 0.11 0.33
Nucleotide transport and metabolism 7 167 0.14 0.38
Lipid transport and metabolism 61 52 0.18 0.40
Replication, recombination and repair 9 -129 0.19 0.40
Cell cycle control, cell division, chromosome partitioning 15 -97 0.21 0.40
Transcription 53 -53 0.21 0.40
Cell wall/membrane/envelope biogenesis 6 131 0.28 0.45
Posttranslational modification, protein turnover, chaperones 113 -32 0.28 0.45
Carbohydrate transport and metabolism 60 42 0.29 0.45
Cell motility 1 -286 0.33 0.49
Chromatin structure and dynamics 8 -91 0.38 0.53
RNA processing and modification 29 -37 0.51 0.65
Cytoskeleton 28 -36 0.52 0.65
Energy production and conversion 27 22 0.70 0.81
Nuclear structure 4 -54 0.72 0.81
Secondary metabolites biosynthesis, transport and catabolism 26 16 0.79 0.86
General function prediction only 200 3 0.88 0.92
Coenzyme transport and metabolism 17 0 1.00 1.00

S_pistillata

Page 1

KOG-term #seqs Delta.rank pval padj
Carbohydrate transport and metabolism 50 -170 0.00 0.04
Posttranslational modification, protein turnover, chaperones 155 91 0.00 0.05
Signal transduction mechanisms 324 63 0.01 0.07
Cell wall/membrane/envelope biogenesis 13 237 0.02 0.13
Nucleotide transport and metabolism 18 -196 0.03 0.13
Cell motility 4 387 0.04 0.15
Replication, recombination and repair 31 -130 0.05 0.17
Intracellular trafficking, secretion, and vesicular transport 48 104 0.06 0.17
Inorganic ion transport and metabolism 60 -76 0.12 0.33
Secondary metabolites biosynthesis, transport and catabolism 27 -92 0.20 0.40
General function prediction only 246 32 0.22 0.40
Chromatin structure and dynamics 27 87 0.22 0.40
Defense mechanisms 24 -92 0.23 0.40
Function unknown 97 46 0.24 0.40
Amino acid transport and metabolism 71 -53 0.24 0.40
Coenzyme transport and metabolism 6 -152 0.31 0.49
RNA processing and modification 38 59 0.33 0.49
Extracellular structures 45 -45 0.42 0.57
Energy production and conversion 48 -40 0.46 0.57
Cell cycle control, cell division, chromosome partitioning 48 39 0.47 0.57
Lipid transport and metabolism 51 37 0.48 0.57
Nuclear structure 5 109 0.51 0.58
Translation, ribosomal structure and biogenesis 16 42 0.65 0.68
Transcription 50 -24 0.65 0.68
Cytoskeleton 59 -6 0.91 0.91
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MITOGENOME ANNOUNCEMENT

The complete mitochondrial genome of the photosymbiotic sea slug Berghia
stephanieae (Vald!es, 2005) (Gastropoda, Nudibranchia)

Jenny Melo Clavijoa, Franziska Drewsb, Marcello Pirritanob, Martin Simonb, Abdulrahman Salhabc, Alexander
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Mikrobiologie, Wuppertal, Germany; cDepartment of Genetics, Saarland University, Saarbrucken, Germany; dZoologisches Forschungsinstitut
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ABSTRACT
Berghia stephanieae (Nudibranchia, Cladobranchia) is a photosymbiotic sea slug that feeds exclusively
on sea anemones from the genus Exaiptasia. It then specifically incorporates dinoflagellates belonging
to the Symbiodiniaceae obtained from their prey. Here, we present the complete mitochondrial gen-
ome sequence of B. stephanieae combining Oxford Nanopore long read and Illumina short-read
sequencing data. The mitochondrial genome has a total length of 14,786bp, it contains the 13 protein-
encoding genes, 23 tRNAs, and two rRNAs and is similar to other nudibranchs except for the presence
of a duplicated tRNA-Ser 1.
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The aeolid nudibranch Berghia stephanieae (Vald!es 2005)
(Nudibranchia, Cladobranchia) is a stenophagous species that
preferentially preys on the photosymbiotic sea anemone
Exaiptasia diaphana (Rapp 1829). The slug digests all the ane-
mones’ tissue and incorporates the dinoflagellate symbionts
Symbiodiniaceae Fensome et al. 1993, in epithelial cells of
the digestive gland system (Vald!es 2005; Carmona et al.
2014). Once ingested, the symbionts are retained photosyn-
thetically active for about 10 days (Mies et al. 2017), but the
slugs are even able to overcome prolonged starvation peri-
ods up to 48 days apo-symbiotically (symbiont-free)
(Bleidissel 2010). Further, because apo-symbiotic adults lose
their biomass in the same manner as photosymbiotic ones,
the photosymbiotic relationship of B. stephanieae and
Symbiodiniaceae is rather considered as non-mutalistic than
a stable one (Mies et al. 2017; Monteiro et al. 2019).
Nevertheless, B. stephanieae is an important species to under-
stand the evolution of photosymbiosis in Cladobranchia,
because the species seems to be in a transitional state
between non-photosymbiotic and photosymbiotic. To better
understand the genomic adaptations needed to evolve a sta-
ble photosymbiosis (Melo Clavijo et al. 2018), the metabolism
of the mitochondrial genome can give valuable insights into
a potential connectivity of the host and the symbiont (Rauch
et al. 2017). As a first step toward more comprehensive stud-
ies, we sequenced the mitochondrial genome of B.

stephanieae using a combination of Oxford Nanopore long-
read and Illumina short-read sequencing.

Specimens of B. stephanieae were purchased from a local
provider (Seepferdchen24 Meeresaquaristik GmbH,
Posthausen) in February 2019 and cultivated in our lab at
25 !C, at a day/night cycle of 12 h/12h. Voucher material was
preserved in 96% ethanol and stored in the Biobank at the
Zoological Research Museum Alexander Koenig (Bonn,
Germany, voucher no. ZFMK-TIS-53240, biobank@leibniz-zfmk.
de). Seven specimens of B. stephanieae were frozen in liquid
nitrogen and total DNA was extracted using a modified
protocol based on the E.Z.N.AVRMollusc DNA Kit, Omega
(Georgia, USA) and after Schalamun et al. (2019)
(Supplementary material S1). The genomic library preparation
was performed using the 1D Ligation Sequencing Kit
SQK-LSK109, Oxford Nanopore Technologies (Oxford, UK) for
long-read sequencing on a MinION device, using a modified
manufacturer’s protocol (Supplementary material S1) generat-
ing about 13GB of long reads. An additional library (insert
size 100 bp, single end) was prepared using the Nextera DNA
Library Prep Kit (California, USA) for Illumina sequencing on a
HiSeq2500 platform resulting in approximately 5.5 GB of data.
A hybrid assembly was done using SPAdes V3.14.1 (Nurk
et al. 2013; Antipov et al. 2016), the assembled genome was
annotated using the MITOS2 webserver (Bernt et al. 2013;
Donath et al. 2019), and annotations were manually edited
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using Geneious 9.1.5. (https://www.geneious.com). Duplicated
tRNAs were further confirmed with ARWEN v.1.2 (Laslett and
Canback 2008).

The mitochondrial genome of B. stephanieae (GenBank
accession number: MW027646) has a total length of
14,786 bp and consists of 13 protein-coding genes, two ribo-
somal RNA (rRNA) genes, and 23 tRNA genes. The base com-
position of the mitogenome is 26% A, 15% C, 21% G, and
38% T. The gene order is as follows: tRNA-Lys (aaa), cox1,
tRNA-Val (gta), the large-subunit rRNA (rrnL), tRNA-Leu (cta) 1,
tRNA-Ala (gca), tRNA-Pro (cca), nad6, nad5, nad1, tRNA-Tyr
(tac), tRNA-Trp (tga), nad4L, cob, tRNA-Asp (gac), tRNA-Phe
(ttc), cox2, tRNA-Gly (gga), tRNA-His (cac), tRNA-Cys (tgc),
-tRNA-Gln (caa), -tRNA-Leu (tta) 2, -atp8, -tRNA-Asn (aac),
-atp6, -tRNA-Arg (cga), -tRNA-Glu (gaa), -the small-subunit
rRNA (rrnS), -tRNA-Met (atg), -nad3, -tRNA-Ser (tca) 2, tRNA-Ser
(agc) 1, tRNA-Ser (aga) 1, nad4, -tRNA-Thr (aca), -cox3, tRNA-Ile
(atc), nad2. The mitogenome of B. stephanieae is similar in
size, base composition, has the same coding regions and

gene arrangement compared to all publicly available nudi-
branch mitochondrial genomes (Sevigny et al. 2015;
Karagozlu, Sung, Lee, Kim, et al. 2016; Karagozlu, Sung, Lee,
Kwak, et al. 2016; Xiang, Lin, Wang, et al. 2016; Xiang, Lin,
Zhao, et al. 2016; Lin et al. 2017; Yu et al. 2018; Dinh Do,
Choi, et al. 2019; Dinh Do, Kim, et al. 2019) and only differs
in the presence of a duplicated tRNA-Ser 1.

Full-length mitochondrial genome sequences of 20
Nudipleura species were downloaded from NCBI and aligned
using MAFFT (Auto mode) V7.222 (Katoh and Stanley 2013).
A phylogenetic tree was built based on the maximum likeli-
hood criterion using IQ-TREE version 2.0.5 (Minh et al. 2020)
with the Model Finder Plus option (-m TEST), 1000 bootstrap
replicates, and Aplysia californica J. G. Cooper 1863 set as
outgroup. Berghia stephanieae clustered with the other
Cladobranchia species, and forms a monophyletic clade with
Sakuraeolis japonica (Baba 1937) and Hermissenda emurai
(Baba 1937), that corresponds to the superfamily Aeolidioidea
(Figure 1).

Figure 1. The molecular phylogeny of Berghia stephanieae and other nudibranchs based on the whole mitochondrial genome. The phylogenetic tree was calculated
under the maximum-likelihood optimality criterion and 1,000 bootstrap replicates using Aplysia californica as outgroup. The accepted names (WoRMS Editorial
Board, 2020) for Tyrannodoris europaea (synonym Roboastra europaea) and Tritonia tetraquetra (synonym Tritonia diomedea) were used (!).
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Appendix 1. DNA extraction protocol and library preparation 1DSQK-LSK109 for nanopore 

sequencing. 

	
  

Seven specimens of Berghia stephanieae, 17 mg each, were frozen in liquid nitrogen. The tissue 

was homogenized using 350 µl of the lysis buffer ML1 from the E.Z.N.A® Mollusc DNA Kit, 

Omega (Georgia, USA) and 25 µl of Proteinase K and heated to 60 °C for 1 h. The samples were 

then cleaned adding 350 µl of chloroform: isoamyl (24:1) and the phases were separate by 

centrifugation for 5 min at 8000 g at room temperature. The aqueous phase was collected and 

transferred to a new tube. One volume of buffer BL of the E.Z.N.A® Mollusc DNA Kit and 10 µl 

RNase A/T (Thermo Scientific, Massachusetts, USA) were added and incubated at 70 °C for 10 

min. A second cleaning step was done by adding one volume of chloroform: isoamyl (24:1) to the 

samples and centrifuged them at 8000 g at room temperature and the aqueous phase recovered. The 

DNA in the aqueous phase was precipitated adding 0.1 volume 3M sodium acetate, and 1 ml 96% 

ethanol, and further centrifuged for 5 min at 5000 g at room temperature. The supernatant was 

discarded and the pellet was washed with 1 ml 70% ethanol and centrifuged for 10 min at 8000 g at 

room temperature. After a second washing step with 1 ml 70% ethanol, the pellet was air dried and 

eluted overnight at room temperature in 100 µl of Elution Buffer E.Z.N.A® Mollusc DNA Kit. The 

concentration and purity of the isolated total DNA was measured with Nanodrop and Qubit, 

respectively.  

 

Library preparation for long-read sequencing with the MinION (Oxford Nanopore, Oxford, UK) 

was performed using the 1D SQK-LSK109 ligation kit, following the manufacturers’ 

recommendations. Briefly, 2 µg of pre-warmed (50 °C) isolated genomic DNA were end-repaired 

and prepared using the NEBNext FFPE DNA repair Mix (New England Biolabs, Massachusetts, 

USA) and NEBNext End repair/dA-tailing Module (New England Biolabs, Massachusetts, USA) 

for one hour at 20 °C followed by one hour at 65 °C. The sample was then incubated for 15 min at 

room temperature with AMPure XP beads (1:1, v/v) (Beckman Coulter, California, USA) 

previously acclimated at room temperature for 30 min. The sample was then briefly spinned down 

using a mini centrifuge (LMS, Tokyo, Japan), and the tube subsequently placed on a magnetic rack 

allowing the beads to concentrate at the side of the magnet for 5 min. Afterwards, the supernatant 

was removed and the beads washed by adding 500 µl of freshly prepared 70% ethanol. The washing 

step was repeated twice. The cleaned pellet was then eluted in 62 µl of nuclease-free water at 37 °C 
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for 30 min. Subsequently, the concentration and purity of the DNA was checked using a Nanodrop 

and only proceeded if the A260/A280 ratio was 1.8. Then, 25 µl of LNB, 10 µl of NEBNext Quick 

T4 DNA Ligase, and 5 µl of the Adapter Mix AMX were added to the DNA and incubated at room 

temperature for 1 h. Next, 40 µl of AMPure XP beads were added and mixed by inversion for 15 

min at room temperature, and placed on the magnetic rack for 5 min. The supernatant was discarded 

and 250 µl of L Fragment Buffer LFB were added to the beads mix in order to select fragments 

longer than 3 kbp. This washing step was repeated once. After removing all the remaining LFB 

buffer from the second washing step, the pellet was resuspended in 15 µl Elution Buffer (pre-

warmed at 50 °C) and incubated at 37 °C for 20 min. For sequencing, 15 µl of final DNA were 

mixed with 36 µl of sequencing buffer SQB, and 24 µl of loading beads LB, mixed immediately 

before use, having in total 75 μl DNA in solution to be loaded onto the flow cell. The flow cell was 

primed with a priming solution made out of 30 μl Flush Tether FLT directly mixed with 1 ml of 

Flush Buffer FLB. First, 800 μl of the priming solution were added into the sample port with a 

closed SpotON port. After 5 min the remaining 200 μl of the priming solution were added, but with 

an open SpotON port. Next, the prepared DNA library was loaded drop-by-drop into the open 

SpotON port. The sequencing run was monitored on a Ubuntu 18.04. platform using MINKNOW 

v.2.2. basecalling was performed using Guppy v.3.0.3.  
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Abstract 
Photosymbiosis, the symbiosis of animals with unicellular phototrophic partners (photobionts), is 

taxonomically widespread among metazoans. The key elements to a successful interpartner 

maintenance are mechanisms for conflict mediation that involve the translocation of organic and 

inorganic compounds by the host to the photobiont. The photobiont in return provides the host, for 

instance, with nitrogen and energy in the form of glucose and ATP. In some marine slugs belonging 

to the Sacoglossa, a functionally different photosymbiotic system is found. Here, the photobionts 

are only chloroplasts stolen from their algal prey (kleptoplasts) and kept photosynthetically active in 

cells of the slug’s digestive system. In Sacoglossa, little is known regarding the mechanisms of 

conflict mediation, photobiont maintenance, and the metabolic exchange. Yet, this could provide 

important insights into potential convergently evolved mechanisms in different photosymbiotic 

taxa, for example in comparison to cnidarians. Here, we analyzed the transcriptomic response of the 

sea slug Elysia chlorotica with regard to signatures of such mechanisms involved in maintaining the 

alien organelle. It appears that kleptoplast maintenance in Sacoglossa is dependent on the reduction 

of the innate immune response, the prevention of apoptosis, an increased ROS scavenging capacity, 

and an increased DNA repair, which is in parts similar to what is known in cnidarians. However, in 

E. chlorotica genes related to organic and inorganic compound translocation to the photobiont, like 

carbonic anhydrases and ammonium transporters, were not expressed during feeding, questioning 

an active involvement of the slugs to support the kleptoplasts’ photosynthesis. Thus, it seems that in 

Sacoglossa the kleptoplast maintenance is not based on mechanisms involving an exchange of 

compounds. 
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Introduction 
Photosymbiosis is a special form of a symbiosis between a heterotrophic host and a phototrophic 

symbiont (photobiont) and is taxonomically widespread in animals (Melo Clavijo et al., 2018). The 

host supports the photobiont with inorganic and organic nutrients, while the translocation of 

assimilates into the host’s cytosol by the photobiont might supersede the nutritional demands of the 

host. This is in particular important for reef building Scleractinia cnidarians (Stanley & Lipps, 

2011). Although the view on photosymbiosis as being mutualistic is challenged in some cnidarians 

(Peng et al., 2020), and might also be referred to as controlled parasitism by the animal host 

(Wooldridge, 2010), both the host and the photobiont evolved certain features that are involved in 

conflict mediation to maintain the symbiosis (Blackstone & Golladay, 2018). For instance, 

cnidarian hosts express certain carbonic anhydrases and ammonium transporters to ensure a high 

photosynthetic activity of the photobiont, reduce the innate immune response to tolerate the 

symbiont, and increase the scavenging of elevated levels of reactive oxygen species formed due to 

the photosynthesis of the photobiont (Lehnert et al., 2014; Mohamed et al., 2016; Matthews et al., 

2017). In return, the photobiont provides the animal host with amino acids and energy, mainly in 

form of fixed carbon and ATP that is also needed to fuel the transporters for compound 

translocation to the photobiont (Roberty et al., 2020). If photosynthesis would cease, for instance 

due to photodamage, this exchange-cycle would eventually cease and would probably favor the 

expulsion of photobionts leading to coral bleaching (Blackstone & Golladay, 2018). 

 

The mutualistic nature of photosymbiosis is not only challenged in corals, but also recently in 

protists (Decelle, 2013), acoel worms (Androuin et al., 2020), the yellow-spotted salamander 

Ambystoma maculatum (Shaw, 1802) (Burns et al., 2017; 2020), the Exaiptasia-eating nudibranch 

Berghia stephanieae (Valdés, 2005) (Monteiro et al., 2019), and in some species of marine slugs 

belonging to the Sacoglossa (Rauch et al., 2017). In the latter, the photobionts are only 

photosynthetically active chloroplasts obtained from their food algae and incorporated 

intracellularly in specific cells of the digestive gland system (Händeler et al., 2009). Because the 

interaction is not between two organisms, this photosymbiotic system is called functional 

kleptoplasty (Rumpho et al., 2011) and in Metazoa only found additionally in a couple of 

rhabdocoel worms (Van Steenkiste et al., 2019). It is still unknown whether these taxonomically 
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different photosymbiotic animal hosts evolved the ability to recognize and maintain the diverse 

photobionts convergently or if these hosts evolved different mechanisms (Melo Clavijo et al., 

2018). Only recently, it has been proposed for Sacoglossa that the recognition of the chloroplasts  

(Melo Clavijo et al., 2020) and an increased reactive oxygen quenching ability of the slugs (de 

Vries et al., 2015; Chan et al., 2018) are potentially important factors to engulf and maintain the 

kleptoplasts. Further, the synthesis of complex polyketides (Torres et al., 2020) might additionally 

enhance kleptoplast longevity in the slugs. But if there are further mechanism of conflict mediation 

or metabolic exchange between the slugs and the chloroplasts to maintain this special symbiosis, 

remains unknown.  

 

To get an insight into potential mechanisms of conflict mediation by Sacoglossa, we analyzed the 

transcriptomic response of Elysia chlorotica Gould 1870 in more detail and compared it to known 

mechanisms in cnidarians. In many aspects, the molecular mechanisms to maintain functional 

kleptoplasty are different from those known in the cnidarian-photosymbiont model. These 

differences are mainly based on the absence of key components of important pathways. However, 

similarities with regard to the decrease of the innate immune response were found. Although there 

is evidence that an increased amount of glucose might be transported to the host, kleptoplast 

digestion proceeds, while ammonium transporters are not expressed. Thus, in Sacoglossa it seems 

that conflict mediation is absent favoring the hypothesis that the slugs keep the kleptoplasts as some 

kind of larder. 

 

Material and Methods 
Transcriptome annotation 

The publicly available assembled transcriptomic data set of Elysia chlorotica was downloaded from 

http://cyanophora.rutgers.edu/Elysia-expression (Chan et al., 2018). The data set was generated by 

extracting total RNA of > 20 pooled individuals each from unfed juveniles (aposymbiotic) and from 

juveniles feeding for five, seven, and ten days post metamorphosis (Chan et al., 2018). The 130,413 

contigs of the assembled transcriptome were translated into amino acids sequences using the 

LongOrf function implemented in TransDecoder v5.5.0 (Haas et al., 2015) resulting in 49,345 

potential proteins. The proteins were subsequently annotated by a BLASTP (part of the BLAST+ 

package v2.9.0) search against the Swiss-Prot database (The UniProt Consortium, 2019) including 

functional annotations of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and 
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Genomes (KEGG) identifiers. The E-value was set to 1e-10 and annotations taxonomically filtered 

for Metazoa, which resulted in 13,237 annotated proteins. This strategy was employed because the 

original annotation of the transcriptome included annotations of bacteria, fungi, and plants, which 

were excluded here. The annotations were then screened for core elements of the transforming 

growth factor ß (TGF-ß) signaling pathway, genes associated with immune suppression, apoptosis, 

phagosome maturation, nutrient transporters, and reactive oxygen species (ROS) quenching, which 

are all known to be relevant for photobiont maintenance in cnidarians (Detournay et al., 2012; 

Lehnert et al., 2014; Mohamed et al., 2016; Matthews et al., 2017). Additionally, KEGG pathways 

were reconstructed using the online KEGG mapper tool 

(https://www.genome.jp/kegg/tool/map_pathway.html) and pathways related to apoptosis and TGF-

ß inspected in more detail.  

 

Analysis of the differential gene expression 

To analyze the gene expression, reads of the different developmental stages from Elysia chlorotica 

were downloaded from the NCBI short read archive (SRA accession number: SRS3101883). The 

short reads were mapped onto the transcriptome using Bowtie2 v2.3.4.3 (Langmead & Salzberg, 

2012) and the transcript abundance of sequences was estimated using RSEM (Li & Dewey, 2011) 

as implemented in Trinity v2.9.0 (Grabherr et al., 2011). Differential gene expression analyses were 

performed using edgeR v1.26.0 (Robinson et al., 2010) and were log2 fold-change (L2FC) 

transformed. We compared the expression of all feeding stages to the aposymbiotic juveniles. 

Expression values of E. chlorotica were filtered for an adjusted p-value of ≤ 0.05 and only 

considered as significantly differentially expressed if the L2FC was ≤ -1 or ≥ 1. Gene ontology 

enrichment tests of significantly differentially expressed genes were performed using the GOMWU 

package (Wright et al., 2015) and filtered for an adjusted p-value of 0.01. 

 

Results 
Core components of the TGF-ß sensu stricto pathway are missing 

The first step to successfully establish a photosymbiosis is the recognition of the symbiont, which is 

likely carried out by scavenger receptor class B members (SR-B) and thrombospondin-type-1-

repeat proteins (TSRs) in sacoglossan sea slugs (Melo Clavijo et al., 2020). Particularly, in E. 

chlorotica SR-B is up-regulated at 5 days post-metamorphosis, down-regulated at 7 days, and up-

regulated again at 10 days of feeding and development (Melo Clavijo et al., 2020). The TSRs-SR-B 
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binding might initiate a downstream cascade including the TGF-ß sensu stricto (ss) pathway to 

tolerate the alien organelle (Figure 1A). Yet, while in the transcriptome of E. chlorotica 

homologues of members belonging to the TGF-ß family (BMP ligands, Myostatin (GDF8), Nodal, 

and SMAD 1, 2, 4, and 6) could be identified, no TGF-ß sensu stricto (ss) ligand could be found 

(Supplementary Table 1). Receptors belonging to the type I and type II TGF-ß receptor class, 

including TGF-ß receptor type I, Activin receptor type I, BMP receptor type I, as well as Activin 

type II, and BMP type II receptors were present, but TGF-ß receptor type II and type III could not 

be identified (Supplementary Table 1). Thus, major components of the TGF-ß ss pathway are 

missing. However, the phosphorylation of SMAD2 might also be governed through the Activin, 

Figure 1. Model of the recognition and downstream cascade involving the TGF-ß family in E. chlorotica. (A) 
TGF-ß signaling pathway. Generally, ligands of the TGF-ß family are hypothesized to be activated through the 
binding of extracytosolic thrombospondin-type-1 repeat proteins (TSRs) to a symbiont (in the case of Sacoglossa 
to the chloroplasts) that increases the recognition (or the infection success) by scavenger receptor class B (SR-B) 
members. The exact mode of this activation is still unknown. The ligand is activated and binds to TGF-ß type II 
receptors (RII)(Li et al., 2006; Detournay et al., 2012). These receptors then form a complex with TGF-ß type I 
receptors (RI; TGFR1) leading to a downstream activation of SMAD2/3. SMAD2/3 forms a dimer with SMAD4 
and can subsequently suppress transcription. The formation of the SMAD2/3-SMAD4 complex can be inhibited by 
SMAD6. The figure was redrawn from the human KEGG pathway map (hsa04350) with BioRender.com. (B) 
Expression of TGF-ß family components. Only genes that were significantly expressed (padj < 0.05) in any 
feeding condition are shown. BMP: bone morphogenic protein; ACVR1: activin receptor type I; BMR1B/BMPR2: 
bone morphogenic protein receptor type 1B, receptor type 2, respectively.  Created with BioRender.com 
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BMP, or myostatin signaling cascade. Yet, BMP ligands were continuously down-regulated, while 

BMP receptors, as well as SMAD1 and SMAD2 were significantly up-regulated only after 10 days 

of feeding and development (Figure 1B).  

 

General down-regulation of the immune 

response 

Besides the TGF-ß pathway, further genes 

might be involved in immune suppression 

leading to a kleptoplast tolerance. For 

example, homologues of the mammalian 

pancreatic secretory granule membrane major 

glycoprotein GP2 (GP2) are supposed to play 

a major role in initiating symbiont tolerance 

(Mohamed et al., 2016), but in E. chlorotica 

GP2 was not expressed under any condition.  

To get a further overview on the innate 

immune response of E. chlorotica during 

feeding, we screened the transcriptome for 

gene ontology (GO) annotations of the 

biological process “immune response” 

(Supplementary Table 1). Overall, 270 genes 

could be identified, out of which 70 were not 

differentially expressed in any condition. 

After five days of feeding and development 

the number of up-regulated (75 genes) and 

down-regulated (72 genes) innate immune 

system relevant genes was comparable. After 

seven days of feeding and developing, 

however, the majority of genes were down-regulated (120) and only 66 genes were up-regulated. 

After 10 days of feeding and development, the vast majority of genes (151 genes) was not 

differentially regulated, while 88 genes were down-regulated and 52 were up-regulated. Thus, after 

seven days of feeding the innate immune system seems to be predominantly down-regulated. 

Among the 10 most down-regulated genes under any condition is a homologue of the Baculoviral 

Figure 2. Expression of the 10 most up- and 10 most 
down-regulated genes that had “innate immune system” 
gene ontology annotations in E. chlorotica. Highlighted in 
bold are genes that are expressed in all of the three feeding 
periods (fed for 5, 7, and 10 days, respectively).  In case of 
multiple copy homologs, the mean value and the standard 
deviation of the expression value are shown. 
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IAP repeat-containing protein 1f, homologues of a Chitotriosidase-1, a Prolow-density lipoprotein 

receptor-related protein 1 homologue, Dual oxidase homologues, and Cathepsin K homologues 

(Figure 2).  

 

Maturation and arrest of phagosomes 

After the successful photobiont recognition, the kleptoplasts are likely engulfed by a phagosome 

membrane (Martin et al., 2013). The first step in phagosome maturation then includes the 

translocation of Rab5 to the phagosome, which is conducted through the Phosphatidylinositol 3-

kinase (PIK3C3 or VPS-34), the early endosome antigen 1 (EEA-1), and Dynein (DYN-1) (Figure 

3A) (Kinchen & Ravichandran, 2008).  

 

Figure 3. Model of phagosomal maturation and potential arrested maturation in E. chlorotica. (A) After 
recognition of the chloroplasts, the alien organelles are most likely enclosed by a phagosomal membrane on 
which Rab5 binds, guided by VPS-34, DYN-1, and EEA-1. As long as Rab5 is bound to the membrane, a 
replacement by Rab7 is inhibited and thus kleptoplasts could be maintained. ALS2, RBNS5, RERG, and 
TBCD9 are supposed to inhibit Rab7 from replacing Rab5. Prolonged presence of the kleptoplasts in the 
cytosol might lead to increased ROS formation in the kleptoplasts and an export into the animals’ cytosol, 
for instance triggered through photodamage. As a result, increased ROS quenching would be necessary to 
cope with the elevated intracellular ROS level. Ultimately, the kleptoplasts will be damaged, which might 
result in a dislocation of Rab5, although it is currently unknown how this might be triggered. Once Rab5 is 
dislocated, Rab7 can bind to the damaged kleptoplasts and V-ATPase (VATA) pump H+ ions into the 
phagosomal lumen for acidification and kleptoplasts degradation. Then Rab11 binds to recycle the 
phagosomal membrane. The pathway is drawn after (Fransolet et al., 2012; Wright et al., 2015). (B and C) 
Gene expression of genes involved in phagosomal maturation and of ROS quenchers, respectively. Only 
genes that were expressed in at least one feeding period are shown. EEA1: early endosome antigen; DYN1: 
dynamin; PK3C3/VPS34: phosphatidylinositol 3-kinase; TBCD9: TBC1 domain family member 9; ALS2: 
alcin; RBNS5: Rabenosyn-5; RERG: Ras-related and estrogen-regulated growth inhibitor; L: lysosomes; 
GPX: Glutathione peroxidase; MGST: microsomal gluthatione S- transferase; PRDX: peroxiredoxin; PXL: 
peroxiredoxin-like; SODC: superoxide dismutase [Cu-Zn]; SODE: extracellular superoxide dismutase [Cu-
Zn]; SODM: superoxide dismutase [Mn]. Created with BioRender.com 
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Yet, only EEA-1 was significantly up-regulated after seven days of feeding and development and 

none of the three genes was significantly regulated under any other feeding period (Figure 3B). 

Further, Rab5, Rab7, and Rab11 were down-regulated only after seven days of feeding and 

developing. For further maturation, Rab5 needs to be removed from the phagosome, paving the way 

for Rab7 to bind. Rabenosyn-5 (RBNS5), Alsin (ALS2), Ras-related and estrogen-regulated growth 

inhibitor (RERG), and TBC1 domain family member 9 (TBCD9) are supposed to inhibit the 

maturation of the phagosome by blocking the translocation of Rab5 from the phagosome (Mohamed 

et al., 2016). Yet, almost all of these genes were either not or significantly down-regulated and only 

one RERG homologue is up-regulated after ten days of feeding and development (Figure 3B). 

 

Response to oxidative stress is elevated 

The degradation of kleptoplasts might be triggered, among others, by photodamage induced through 

exposure to high levels of photosynthetically active radiation. This results in the increased 

formation of reactive oxygen species (ROS) that need to be detoxified to prevent damage to the host 

cell (de Vries et al., 2015). In E. chlorotica, homologues of the cytosolic peroxiredoxin-4 (PRDX4, 

sequence ID: c127224_g1_i1_2-2380; mean L2FC: 1.71 ± 0.68), the cytosolic peroxiredoxin-6 

(PRDX6, c119266_g1_i1_67-2469; mean L2FC: 2.10 ± 0.58), and the cytosolic copper, zinc 

superoxide dismutase (SODC, c123617_g1_i2_1-1601, mean L2FC: 1.52 ± 0.69) were significantly 

up-regulated. Yet, another homologue of a peroxiredoxin-6 (c183435_g1_i1_1-409; mean L2FC: -

5.50 ± 0.44) was significantly down-regulated (Figure 3C). Additionally, a homologue of the 

mitochondrial peroxiredoxin-5 (PRDX5, c118907_g1_i1_69-2194; mean L2FC: 2.37 ± 0,58) and a 

homologue of the mitochondrial manganese superoxide dismutase (SODM, c116278_g1_i1_1-

3283; mean L2FC: 1.42 ± 0.48) were significantly up-regulated (Figure 3C). Besides these two 

ROS quenchers, a homologue of a catalase (CATA, c124802_g2_i1_1-2074) was up-regulated, but 

not significantly (mean L2FC: 0.89 ± 0.15).  

 

 

Apoptosis is prevented 

Apoptosis might be induced either through the extrinsic receptor mediated pathway (Figure 4A) or 

the intrinsic mitochondria mediated pathway. Key for the extrinsic pathway are death related 

receptors, such as the Tumor Necrosis Factor Receptors (TNFR) that bind to Tumor Necrosis Factor 

Related Apoptosis Inducing Ligands (TRAIL), or the Fas ligand that binds to the FAS receptor 

(cluster of differentiation 95, CD95) that then initiate a downstream cascade through the adapter 
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protein Fas-associated death domain (FADD) (Figure 4A). However, in E. chlorotica none of the 

aforementioned genes was present in the transcriptome (Figure 4B). Furthermore, caspase 8 needed 

for the extrinsic pathway to be activated, was significantly down-regulated after seven days of 

feeding (CASP8, c113476_g1_i1_4-2367; L2FC: -2.03) while its interacting partner, caspase 10 

was not expressed at all. For both, the extrinsic and intrinsic pathway, caspase 3 and caspase 7 

(CASP3, CASP7) inevitable induce apoptosis. While caspase 3 was only significantly up-regulated 

after seven days of feeding (c122193_g2_i2_2-3789; L2FC 1.31), caspase 7 was significantly 

down-regulated in all conditions (c121339_g1_i1_12-1270; mean L2FC: -1.72 ± 0.26) (Figure 4B). 

Additionally caspase 9, needed for apoptosis execution, was not expressed in any condition. Thus, 

both the extrinsic and the intrinsic apoptosis pathway seem to be silenced in fed E. chlorotica. 

Furthermore, the p53 protein, the core component of the cellular tumor antigen (p53) signaling 

pathway and important for inducing apoptosis, was not present in the transcriptome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apoptosis may also be triggered by the toll-like receptor signaling pathway through the signal 

transducer MyD88 (myeloid differentiation primary response 88) and FADD, leading to the 

expression of caspase 8 and the innate immune activated apoptosis (Figure 4A). Yet, none of the 

Figure 4. Apoptosis pathways in E. chlorotica. (A) Extrinsic apoptosis pathway and toll-like receptor 
(TLR) signaling pathway. The figure is based on the human KEEP pathways for apoptosis 
(hsa04210) and toll-like receptor signaling (hsa04620) created with BioRender.com. Genes not 
present in the transcriptome are colored in white, genes present in the transcriptome are colored 
depending on their expression. (B) Expression of genes involved in the extrinsic apoptosis and toll-
like receptor signaling. Only genes that were expressed in at least one feeding period are shown. 
CASP: caspases; MYD88: Myeloid differentiation primary response 88; TOLIP: toll interacting 
protein. Created with BioRender.com 
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needed toll-like receptors (TLR2 and TLR6), or FADD were present in the transcriptome and 

MyD88 was down-regulated.  

 

Cell cycle and DNA repair is increased 

During five to seven days of feeding, GO terms associate to cell cycle and DNA and RNA 

metabolism were significantly enriched  (p < 0.01) and up-regulated (Figure 5). After ten days of 

feeding, especially the GO terms DNA repair, DNA recombination, and DNA metabolic processes 

were significantly enriched (p < 0.01) and up-regulated (Supplementary Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nutrient transporters and the Vitamin K cycle 

The kleptoplasts need to be provided with organic nutrients to guarantee a high photosynthetic 

capacity. Among these nutrients are CO2 and ammonium. CO2 might be converted to the less freely 

diffusion bicarbonate by carbonic anhydrases (CH) (Figure 6A). However, we could only identify 

one CH 2 homologue that was up-regulated during all feeding time points (c127490_g3_i1_1-2189; 

mean L2FC: 1.80 ± 0.85), while four CH 4 homologues (mean L2FC: -2.71 ± 1.08) and one CH 8 

homologue (c119528_g1_i3_1-4769; mean L2FC: -1.38 ± 0.38) were significantly down-regulated 

in all conditions (Figure 6). We only considered as significantly differentially expressed if the L2FC 

was ≤ -1 or ≥ 1; only one AMT1 appears to be up-regulated at 10th day according (Figure 6B), but 

Figure 5. Enriched gene ontology (GO) terms after (A) five and (B) seven days of feeding of juveniles 
of E. chlorotica. Brown font displays up-regulated, green font down-regulated GO terms. The number 
represent the amount of statistically relevant genes included in the respective GO category and the 
amount of all genes in this category. Only categories with an adjusted p-value of 0.01 are displayed. 
 

7/8 meiosis I cell cycle process
5/5 resolution of meiotic recombination intermediates
8/12 meiotic cell cycle process
39/108 cell cycle process
9/21 cell cycle G1/S phase transition
4/6 nucleobase−containing compound biosynthetic process
5/10 heterocycle biosynthetic process
11/29 chromosome organization
5/11 nuclear chromosome segregation
6/6 double−strand break repair via break−induced replication
17/28 DNA recombination
25/53 DNA metabolic process
19/42 cellular response to DNA damage stimulus
8/18 DNA integrity checkpoint
6/12 DNA replication checkpoint
12/30 regulation of cell cycle
11/43 movement of cell or subcellular component
8/17 neuron migration
10/23 locomotion
15/72 microtubule−based process
2/21 cilium movement
28/106 cellular component assembly
5/11 formation of cytoplasmic translation initiation complex
10/32 rRNA processing
1/13 maturation of SSU−rRNA from tricistronic rRNA transcript (SSU−rRNA, 5.8S rRNA, LSU−rRNA)
15/51 ncRNA metabolic process
5/10 maturation of LSU−rRNA
43/165 RNA metabolic process
16/75 RNA splicing
20/89 mRNA metabolic process
7/24 RNA modification
10/31 tissue morphogenesis
5/24 morphogenesis of an epithelium
43/123 multicellular organismal process
6/17 morphogenesis of a branching structure
23/75 anatomical structure morphogenesis
7/13 cell morphogenesis involved in differentiation
7/21 system process
17/66 anatomical structure formation involved in morphogenesis
12/47 angiogenesis
15/32 cell cycle
19/59 positive regulation of biological process
12/46 positive regulation of cellular process

9/9 meiosis I cell cycle process
6/6 resolution of meiotic recombination intermediates
12/14 meiotic cell cycle process
77/130 cell cycle process
13/25 G1/S transition of mitotic cell cycle
22/33 chromosome organization
7/11 sister chromatid segregation
6/7 double−strand break repair via break−induced replication
19/36 DNA recombination
36/63 DNA metabolic process
26/49 cellular response to DNA damage stimulus
12/21 cell cycle checkpoint
8/12 DNA replication checkpoint
21/35 regulation of cell cycle
9/14 regulation of cyclin−dependent protein serine/threonine kinase
40/64 movement of cell or subcellular component
19/31 microtubule−based movement
60/100 microtubule−based process
21/33 locomotion
51/80 protein−containing complex subunit organization
8/10 formation of cytoplasmic translation initiation complex
66/111 cellular component assembly
12/17 spliceosomal snRNP assembly
22/28 tube morphogenesis
32/40 tissue morphogenesis
69/97 anatomical structure morphogenesis
16/20 morphogenesis of a branching structure
103/148 multicellular organismal process
18/24 system process
13/18 establishment of planar polarity
49/83 anatomical structure formation involved in morphogenesis
36/55 angiogenesis
31/44 cell cycle
22/36 rRNA metabolic process
9/13 maturation of SSU−rRNA from tricistronic rRNA transcript (SSU−rRNA, 5.8S rRNA, LSU−rRNA
33/55 ncRNA processing
78/133 RNA processing
46/78 RNA splicing
103/182 RNA metabolic process
8/11 maturation of LSU−rRNA
12/25 RNA modification
9/15 tRNA processing
55/99 mRNA metabolic process
15/29 RNA catabolic process
44/66 positive regulation of cellular process
31/45 positive regulation of nitrogen compound metabolic process
54/84 positive regulation of biological process
27/39 regulation of signaling
12/18 mitochondrion organizationA B

Day5 Day7
up-regulated down-regulated
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the L2FC of this gene was 0.79. None of the ammonium transporters were significantly up-

regulated, but one putative ammonium transporter 3 was significantly down-regulated 

(c95919_g1_i1_1-1720: mean L2FC: -2.92 ± 1.59) (Figure 6B). It is likely, that the slugs obtain 

their nutritional support from the photobiont through glucose, which needs to be exported into the 

potential symbiosome and then exported into the cytosol. In E. chlorotica one homologue of a 

glucose transporter 1 (c125382_g1_i4_1-2771; mean L2FC: 1.19 ± 0.18) was significantly up-

regulated during the feeding period, and one (c128647_g1_i2_7-4137; L2FC: 3.52) was 

significantly up-regulated after 10 days of feeding (Figure 6B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A further receptor often associated with photosymbiotic cnidarians is the cell adhesion protein 

sym32, which contains a transmembrane domain and two fasciclin domains (Ganot et al., 2011). To 

function properly, sym32 has to be carboxylated, which is governed through the vitamin K cycle. 

For the vitamin K cycle a vitamin K epoxide reductase (VKOR) is needed, that might be in turn 

inhibited by calumenin. In the transcriptome of E. chlorotica no sym32 homologue could be 

Figure 6. Overview of potential transporters involved in the exchange of inorganic and organic 
compounds between the animals’ cytosol and the kleptoplasts in E. chlorotica. (A) Bicarbonate 
transporters (BTR) and ammonium transporters (AMT) might be located at the phagosomal 
membrane to support the kleptoplasts with sufficient inorganic and organic compounds relevant for 
photosynthesis. Carbonic anhydrases (CHs) might be present inside the phagosome to convert the 
transported bicarbonate ions into CO2. Fixed carbon, synthesized by kleptoplast photosynthesis, might 
be exported through glucose transporters (GTRs) that might be located at the phagosomal membrane. 
Additionally, GTRs connect the epithelial cells with the sub-epithelial cell layer to distribute glucose 
throughout the animal. (B) Expression of carbonic anhydrases, ammonium transporters, and glucose 
transporters, respectively. Only genes that were expressed in at least one feeding period are shown. 
BCA: Beta carbonic anhydrase; CAH/CAHZ: carbonic anhydrase; RHBGA/B: Ammonium 
transporter Rh type B-A, B-B; MFS4B: sodium-dependent glucose transporter. Created with 
BioRender.com 
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identified. Yet, we found a homologue of a transforming growth factor-beta-induced protein 

(TGFBI) that contained a transmembrane domain and two fasciclin domains, that was highly down-

regulated during the feeding period (c103353_g1_i1_1-1283; mean L2FC: -4.25 ± 1.62). Both, 

VKOR (c110310_g1_i1_54-1172 and c118998_g1_i5_1-1648; mean L2FC: 2.30 ± 0.73) and 

calumenin (c112469_g1_i2_12-2309 and c127853_g1_i1_1-3480; mean L2FC: 1.14 ± 0.90) were 

up-regulated throughout the feeding period, but the Vitamin K-dependent gamma-carboxylase, 

needed to carboxylate a potential sym32, was significantly down-regulated (c100672_g1_i2_35-

2203; mean L2FC: -1.76 ± 0.95) (Supplementary Table 1).  

 

Discussion  
The mechanisms for photobiont maintenance and the host-photobiont conflict mediation in 

functional kleptoplasty in Sacoglossa are still largely unknown. To tackle this gap of knowledge, 

the current study focused on the expression of potentially relevant genes and pathways of the host 

that might pave the way for the establishment of a successful kleptoplastic association. We found 

transcriptional evidence that the tolerance of kleptoplasts might depend on the ability of the host to 

decrease the expression of certain genes related to the innate immune system response to microbial 

invasion and degradation. It also should be noted that the pathways here mentioned could be 

regulated before or after the samples were taken. Likewise some results that differ from the original 

data (Chan et al., 2018) might be largely based on the methodology implemented here based on 

detailed pathway expression analysis and rank-based gene ontology analysis with adaptive 

clustering (GOMWU), instead of superclusters.  

 

For instance, the down-regulation of dual oxidases 2, that are involved in the antimicrobial defense 

at the mucosa surface in humans (Sarr et al., 2018), and cathepsins, that are potentially involved in 

the lysosomal degradation of pathogens and induction of apoptosis (Leist & Jäättelä, 2001), might 

support the successful incorporation and tolerance of the kleptoplasts within the host cell. In 

combination with a reduced expression, or the lack of expression of apoptosis core genes, for 

instance caspases, cells with kleptoplasts might be prevented from undergoing apoptosis. Apoptosis 

is involved in removal of heterologous Symbiodiniaceae strains in some cnidarians (Dunn & Weis, 

2009), while in others several genes related to apoptosis are highly expressed in the symbiotic state 

(Lehnert et al., 2014). Thus, the exact role of apoptosis might vary depending on the species and 

condition investigated. However, it is feasible that in the LtR species Elysia chlorotica, the 
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inhibition of apoptosis might be essential to maintain the kleptoplasts. Additionally, the absence of 

core components of the toll-like receptor signaling pathway might further be necessary for 

maintaining the kleptoplasts. This pathway not only induces apoptosis (Wiens et al., 2007; Salaun et 

al., 2007; Rauta et al., 2014), but it is also important for inflammatory response (Fitzgerald & 

Kagan, 2020) and the anti-microbial defense systems (Carpenter & O’Neill, 2007). In cnidarians, 

the toll-like signaling pathway is involved in the removal of damaged or harmful symbionts 

(DeSalvo et al., 2010; Wolfowicz et al., 2016; Mansfield et al., 2017). In mollusks there is an 

expansion of the toll-like receptor genes and their signaling components, which are relevant in the 

immune response against pathogens (Brennan & Gilmore, 2018). The lack of expression of core 

components of this pathway in Elysia chlorotica might thus facilitate the maintenance of the 

kleptoplasts by suppressing immune response and apoptosis.  

 

Different than in cnidarians, the TGF-ß pathway and GP2 are not involved in the establishment and 

maintenance of functional kleptoplasty in sacoglossan sea slugs. The absence of the TGF-ß ss 

components in E. chlorotica is not surprising, because these are also not encoded in the genomes of 

some mollusks (Herpin, 2004). If other components of the TGF-ß pathway, like the BMP or Activin 

pathway, would be involved in kleptoplast tolerance, a constant significant up-regulation of their 

components would have been expected, yet it is rather not the case. Further, none of the other TGF-

ß family pathways are known to be activated through the interaction of receptors involved in 

symbiont recognition, as is the case for TGF-ß ss (Li et al., 2006); Nor have they been linked to 

photosymbiosis (Mansfield & Gilmore, 2019). The down-regulation of GP2 seems relevant in the 

establishment of cnidarian photosymbiosis (Kuo et al., 2010; Mohamed et al., 2016, 2020) and 

might be evidence of the attenuated microbial response during the initiation of the association. This 

glycoprotein serves as the first line of defense against bacterial pathogens in mammalian guts 

(Kurashima et al., 2021), but their function in invertebrates is currently unknown. Whether GP2 is 

present in other sacoglossans or whether it plays a role in bacterial recognition in mollusks is 

unknown, but its role in the kleptoplasty in Sacoglossa may be excluded at least based on the 

transcriptional level. 

 

Similar to Chan et al., (2018) we identified a suppression of the phagosome maturation but provide 

further details in the regulation of the genes involved in this process. The results observed here 

could point to the distinction of two phases in the establishment of the kleptoplasty proposed by 

Pelletreau et al., (2012). During the first five days of feeding and development known as “transient 
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kleptoplasty” there is kleptoplast incorporation but constant kleptoplast digestion, based on Rab7 

expression. After seven days of feeding and developing, there is an up-regulation of the genes 

responsible for the phagosome initiation, but a down-regulation of Rab proteins hinting to the 

inhibition of the phagosome maturation. This phase is considered as the permanent kleptoplasty 

(Pelletreau et al., 2012). However, after 10 days there is no regulation of Rab Proteins. If the 

permanent kleptoplasty state continues, the expression pattern would be similar between the 7th day 

and the 10th day, but this is not the case. An alternative explanation according to some observations 

is based on the presumed absence of the phagosome membrane surrounding some kleptoplasts in 

histological section of E. chlorotica adults. Here, kleptoplasts seem to be directly in contact with the 

animal cytosol and are maintained for up to 8 months of starvation (Graves et al., 1979; Mujer et al., 

1996; Rumpho et al., 2001). Such is also the case in E. chlorotica juveniles (Pelletreau et al., 2014). 

However, the fact that the membrane was not detected in all kleptoplasts in these studies does not 

necessarily imply that the membrane is not present. There is also the possibility that a cellular signal 

not based on Rab proteins promotes the inhibition of the phagosome maturation, but this requires 

further investigation. 

 

We could provide further evidence that the successful maintenance of kleptoplasts, might depend on 

the ability of the animal host to efficiently quench ROS, supporting previous works on Sacoglossa 

(de Vries et al., 2015; Chan et al., 2018). Increased ROS formation in kleptoplasts could be 

triggered through photodamage (Christa et al., 2018; Cartaxana et al., 2019a) and a potential 

photoprotective behavior of the slugs (Jesus et al., 2010; Schmitt & Wägele, 2011), or kleptoplast 

photoprotection mechanisms (Cartaxana et al., 2019a; Havurinne & Tyystjärvi, 2020) might not be 

enough to compensate net photodamage to the kleptoplasts (Vieira et al., 2009). In order to maintain 

healthy cells, ROS production needs to be kept at bay to prevent an excessive accumulation, that 

reaches toxic levels triggering an apoptosis response (Simon et al., 2000). Thus, an efficient ROS 

scavenging system combined with the inhibition of apoptosis might be crucial for kleptoplast 

retention. But if photoprotection mechanisms of the kleptoplasts are subdued and the kleptoplasts 

become a source of increased ROS stress that could not be scavenged properly, as seen in species 

not able to maintain the kleptoplasts in the long-term (de Vries et al., 2015), apoptosis might 

nevertheless be triggered.  

 

In developing juveniles genes involved in cell cycle and DNA metabolism are important to ensure 

growth. Following Chan et al., (2018), our analysis also showed that genes related to these 
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processes are enriched and highly up-regulated. Because the slugs were developing, the gene 

expression cannot be solely attributed to the kleptoplastic association, as noted by Chan et al., 

(2018). 

The question whether kleptoplasts actively provide the slugs with nutrients (Yamamoto et al., 2013; 

Akimoto et al., 2014; Cartaxana et al., 2017; Cruz et al., 2020; Donohoo et al., 2020; Lopes et al., 

2022) or if the kleptoplasts rather function as a larder (Christa et al., 2014; de Vries et al., 2015; 

Laetz et al., 2017) is probably the most enigmatic research topic to unravel, independent on the 

exact amount of nutritional support the slugs might get. For years several studies have attempted to 

show evidence that the kleptoplasts are vital for the slugs development, survival, and fitness (e.g. 

Middlebrooks et al 2012; Yamamoto et al., 2013; Akimoto et al., 2014; Cartaxana et al., 2017; Cruz 

et al., 2020; Donohoo et al., 2020; Lopes et al., 2022), yet the data of these studies do not show a 

nutrient exchange between the alien organelles and the slug confirming this hypothesis. The most 

important factor for growing and reproduction seems to be the constant availability of food and the 

light acclimation state of the algae (Baumgartner et al., 2015; Cartaxana et al., 2019b; Shiroyama et 

al., 2020). Often, the latter is interpreted as if the kleptoplasts would then have a higher 

photosynthetic capacity and thus could provide more assimilates to the host. Yet, the slugs feed 

primarily on the cytosol of the algae, which will be of higher nutritional value when photosynthesis 

is increased. Thus, the effects seen in feeding slugs might rather depend on a higher nutritional 

value of the algal cytosol and might be independent on the photosynthetic activity of the 

kleptoplasts. The present study showed that digestion and maintenance of kleptoplasts is probably 

simultaneously occurring when the slugs are feeding, especially in the “transient kleptoplasty” state 

(5 days post-metamorphosis). This is to be expected, because kleptoplasts are degrading and being 

digested even in species that maintain them over long periods (Evertsen & Johnsen, 2009; Maeda et 

al., 2012; Frankenbach et al., 2021). Thus, a discrimination between an active export of assimilates 

by the kleptoplasts and assimilates obtained through digestion is currently not possibly, and hence, 

whether the kleptoplasts are somehow involved in conflict mediation. However, the increased 

expression of glucose transporters in feeding slugs points towards an increased translocation of 

glucose. But at this point, it is not possible to determine whether these transporters are located at the 

phagosomal membrane surrounding the kleptoplasts to transport glucose from the kleptoplasts into 

the host cytosol, and/or at the basal cell membrane to distribute glucose obtained by feeding, as is 

also speculated for corals (Lehnert et al., 2014). Immunohistological examination of these 

transporters and other carbohydrate products might be able to shed light on this matter. 
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Ammonium and bicarbonate are the limiting nutrients to ensure a high photosynthetic rate (Roberty 

et al., 2020). In Sacoglossa it is often observed that the photosynthetic capacity of the kleptoplasts 

in freshly fed animals is higher than in the algae, potentially due to a higher partial CO2 pressure in 

the animal’s cytosol (Serôdio et al., 2014). In this line, it is interesting that at least one carbonic 

anhydrase (CH) was up-regulated during the feeding period. This might point towards a support of 

CO2 to the enslaved organelle, if a bicarbonate transporter would be located on a phagosomal 

membrane, but the exact location of this transporter in the host cells is not yet possible to determine. 

Alternatively, TEM of the kleptoplast containing cells (Mondy & Pierce 2003; Pelletreau et al., 

2014) shows the cells have a lot of mitochondria, often directly adjacent to the plastids. So, a 

diffusion of CO2 could be happening given the significant production coming out of the 

mitochondria.  

 

Because none of the ammonium transporters are up-regulated, it could be assumed that the animal 

host is probably not actively supporting the kleptoplasts with ammonium. Yet, the kleptoplasts are 

still photosynthetically active, and a passive translocation of ammonium or other forms of nitrogen 

through diffusion might support the alien organelle with the needed nutrients.  

 

Sym32 was identified as a symbiosis-specific protein located in the symbiosome surrounding 

Symbiodiniaceae (Mohamed et al., 2016). It is highly expressed in symbiotic state mainly in the 

gastroderm of some photosymbiotic cnidarians and it might serve an interpartner signaling function. 

Yet, how sym32 participates in cell signaling and recognition remains unclear. The lack of sym32 

in E. chlorotica and the vitamin K cycle suggest that this pathway might not be relevant for 

functional kleptoplasty, and that the interpartner communication might be based on other pathways 

or proteins; or there is not such interaction and the slugs rather use the kleptoplasts as a larder as 

suggested earlier (Christa et al., 2014; Laetz et al., 2017).  
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Supplementary Table 1. Annotation list of genes identified for each pathway analyzed in this 

study. (See online).  

Supplementary Table 2. GOMWU results of the biological process categories. 
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219 1.46E-01 2 10 GO:0003006 Developmental process involved in reproduction 2.56E-01
-261 1.46E-01 1 7 GO:0007610 Behavior 2.56E-01

108 1.54E-01 6 40
GO:0001701;GO:0043009;GO:0009792;GO:0009790;
GO:0007275 Multicellular organism development 2.66E-01

-106 1.55E-01 2 41 GO:0044255;GO:0006629 Cellular Lipid metabolic process 2.68E-01
-178 1.61E-01 3 14 GO:0000302;GO:0006979;GO:1901700;GO:0042221 Response to chemical 2.73E-01
-157 1.61E-01 4 18 GO:0050776;GO:0002682 Regulation of immune system process 2.73E-01
-209 1.64E-01 2 10 GO:0048585 Negative Regulation of response to stimulus 2.75E-01
-293 1.68E-01 2 5 GO:0044057 Regulation of system process 2.80E-01
-154 1.70E-01 2 18 GO:0001822 Kidney development 2.80E-01
-163 1.72E-01 5 16 GO:0001523;GO:0016101;GO:0006721;GO:0006720 Terpenoid metabolic process 2.81E-01
260 1.81E-01 5 6 GO:0000050;GO:0019627;GO:0071941 Urea cycle 2.89E-01
-165 1.79E-01 2 15 GO:0001649 Osteoblast differentiation 2.89E-01
150 1.81E-01 4 18 GO:0006886;GO:0046907 Intracellular transport 2.89E-01
-277 1.91E-01 4 5 GO:0001667 Ameboidal-type cell migration 3.02E-01
-276 1.93E-01 2 5 GO:0001775 Cell activation 3.02E-01
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-523 1.38E-02 3 5 GO:0003013 Circulatory system process 4.44E-02

-439 1.46E-02 4 7
GO:0003429;GO:0003414;GO:0003422;GO:0090171;
GO:0060536 Cartilage morphogenesis 4.55E-02

-520 1.43E-02 4 5 GO:0030030 Cell projection organization 4.55E-02

424 1.83E-02 4 7
GO:0006959;GO:0001867;GO:0006956;GO:0045087;
GO:0098542 Innate immune response 5.63E-02

381 2.32E-02 2 8
GO:0000479;GO:0000478;GO:0000469;GO:0090502;
GO:0090501 Cleavage involved in rRNA processing 7.04E-02

-380 2.37E-02 3 8 GO:0001504;GO:0006836;GO:0098657 Neurotransmitter transport 7.09E-02
-436 2.45E-02 4 6 GO:0001659;GO:0048871 Multicellular organismal homeostasis 7.11E-02
-323 2.44E-02 2 11 GO:0002831;GO:0031347;GO:0032101;GO:0080134 Regulation of response to external stimulus 7.11E-02
-475 2.53E-02 3 5 GO:0003127;GO:0009726;GO:0009719 Detection of nodal flow 7.23E-02
371 2.74E-02 7 8 GO:0000413;GO:0018208;GO:0018193 Peptidyl-amino acid modification 7.72E-02

463 2.90E-02 4 5 GO:0000491
Small nucleolar ribonucleoprotein complex 
assembly 8.03E-02

-179 2.93E-02 2 34 GO:0048584 Positive Regulation of response to stimulus 8.03E-02
-149 3.03E-02 4 49 GO:0000226;GO:0007010 Microtubule cytoskeleton organization 8.21E-02
387 3.11E-02 2 7 GO:0001522 Pseudouridine synthesis 8.30E-02
-355 3.43E-02 2 8 GO:0007155;GO:0022610 Cell adhesion 9.05E-02
317 3.48E-02 2 10 GO:0000266;GO:0048285 Organelle fission 9.07E-02
437 3.95E-02 2 5 GO:0000154 rRNA modification 1.01E-01
-395 4.16E-02 2 6 GO:0008610;GO:0072330 Lipid biosynthetic process 1.06E-01
317 4.55E-02 2 9 GO:0002098;GO:0002097 tRNA wobble base modification 1.14E-01

272 4.74E-02 6 12

GO:0000054;GO:0033750;GO:0071428;GO:0071426;
GO:0006405;GO:0006611;GO:0031503;GO:0050658;
GO:0051168;GO:0050657;GO:0051236;GO:0015931;
GO:0006913;GO:0051169 Nucleocytoplasmic transport 1.17E-01

280 5.06E-02 5 11 GO:0090305 Nucleic acid phosphodiester bond hydrolysis 1.24E-01
348 5.27E-02 4 7 GO:0001510;GO:0043414;GO:0032259 Macromolecule methylation 1.25E-01
87 5.49E-02 3 117 GO:0006996 Organelle organization 1.25E-01

144 5.43E-02 2 41 GO:0044271;GO:0043604;GO:1901566;GO:0043603 Cellular nitrogen compound biosynthetic process 1.25E-01
132 5.29E-02 3 50 GO:0044772;GO:0044770 Cell cycle phase transition 1.25E-01
-139 5.48E-02 2 44 GO:0048869 Cellular developmental process 1.25E-01
-324 5.37E-02 2 8 GO:0051606 Detection of stimulus 1.25E-01
134 5.83E-02 2 46 GO:0044249;GO:1901576;GO:0009058 Organic substance biosynthetic process 1.31E-01
-88 6.11E-02 3 109 GO:0006810;GO:0051234;GO:0051179 Localization 1.36E-01
-312 6.29E-02 3 8 GO:0050877 Nervous system process 1.37E-01
-313 6.23E-02 2 8 GO:0051239 Regulation of multicellular organismal process 1.37E-01
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-141 4.01E-01 3 8 GO:0048468;GO:0002064 Cell development 5.07E-01
149 4.06E-01 2 7 GO:0000028 Ribosomal small subunit assembly 5.09E-01
-98 4.10E-01 3 16 GO:0001505 Regulation of neurotransmitter levels 5.10E-01
-137 4.13E-01 3 8 GO:0001654;GO:0007423 Eye development 5.12E-01
-157 4.19E-01 4 6 GO:0001558;GO:0040008 Regulation of cell growth 5.16E-01
89 4.27E-01 4 18 GO:0000027 Ribosomal large subunit assembly 5.19E-01
-114 4.25E-01 2 11 GO:0006869 Lipid transport 5.19E-01
-124 4.33E-01 3 9 GO:0001568 Blood vessel development 5.23E-01
-81 4.37E-01 2 21 GO:0001503 Ossification 5.25E-01

-134 4.54E-01 6 7

GO:0000188;GO:0043407;GO:0043409;GO:0071901;
GO:1902532;GO:0009968;GO:0010648;GO:0023057;
GO:0006469;GO:0033673;GO:0051348;GO:0043086;
GO:0044092 Negative Regulation of kinase activity 5.39E-01

73 4.53E-01 3 24 GO:0051656;GO:0051640 Organelle localization 5.39E-01
156 4.63E-01 3 5 GO:0001958;GO:0036075 Endochondral ossification 5.46E-01
-62 4.84E-01 2 29 GO:0000086;GO:0044839 G2/M transition of mitotic cell cycle 5.66E-01
51 4.86E-01 2 44 GO:0009057;GO:0044265 Macromolecule catabolic process 5.66E-01
94 4.93E-01 2 12 GO:0002252 Immune effector process 5.72E-01
-54 5.02E-01 2 36 GO:0000209;GO:0016567;GO:0032446 Protein ubiquitination 5.79E-01
-112 5.04E-01 2 8 GO:0044283;GO:0046394;GO:0016053 Small molecule biosynthetic process 5.79E-01

-81 5.08E-01 5 15
GO:0001933;GO:0031400;GO:0042326;GO:0032269;
GO:0051248;GO:0045936;GO:0010563 Negative Regulation of phosphorylation 5.79E-01

75 5.17E-01 3 17 GO:0006508 Proteolysis 5.86E-01

-23 5.23E-01 5 198

GO:0000122;GO:0006357;GO:0045892;GO:0006355;
GO:1903506;GO:2000112;GO:2001141;GO:0010556;
GO:0031326;GO:0009889;GO:0051252;GO:0019219;
GO:0010629;GO:1903507;GO:2000113;GO:1902679;
GO:0010558;GO:0031327;GO:0009890;GO:0031324;
GO:0051253;GO:0045934;GO:0051172

Regulation of nucleobase-containing compound 
metabolic process 5.86E-01

-85 5.22E-01 6 13
GO:0000132;GO:0040001;GO:0051294;GO:0051293;
GO:1902850;GO:0051653 Establishment of spindle orientation 5.86E-01

-92 5.39E-01 2 10 GO:0002931 Response to ischemia 6.01E-01

64 5.58E-01 7 19
GO:0000381;GO:0048024;GO:0043484;GO:0050684;
GO:1903311 Regulation of mRNA processing 6.20E-01

109 5.73E-01 2 6 GO:0035148 Tube formation 6.32E-01
-92 5.82E-01 2 8 GO:0002250 Adaptive immune response 6.39E-01
110 6.06E-01 5 5 GO:0000012 Single strand break repair 6.62E-01
-80 6.55E-01 4 7 GO:0003143;GO:0060562 Epithelial tube morphogenesis 7.11E-01
-59 7.43E-01 4 7 GO:0002224;GO:0002221 Pattern recognition receptor signaling pathway 8.00E-01
-45 7.45E-01 4 12 GO:0002253;GO:0050778;GO:0002684 Positive Regulation of immune system process 8.00E-01
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-66 7.55E-01 2 5 GO:0000380 Alternative mRNA splicing, via spliceosome 8.06E-01
-44 8.22E-01 2 6 GO:0001936;GO:0050678;GO:0042127 Regulation of cell population proliferation 8.69E-01

-41 8.19E-01 3 7

GO:0046395;GO:0016054;GO:0044282;GO:0001561;GO:0
009062;GO:0019395;
GO:0044242;GO:0072329;GO:0034440;GO:0016042;GO:0
030258;GO:0055114 Carboxylic acid catabolic process 8.69E-01

-16 8.32E-01 4 42 GO:0071702 Organic substance transport 8.76E-01
-41 8.47E-01 2 5 GO:0009791 Post-embryonic development 8.87E-01

-12 8.70E-01 6 43 GO:0070647
Protein modification by small protein 
conjugation or removal 9.06E-01

11 8.98E-01 4 30 GO:0071705 Nitrogen compound transport 9.30E-01
8 9.46E-01 2 16 GO:0006955 Immune response 9.70E-01
5 9.46E-01 2 38 GO:0051641;GO:0051649 Establishment of localization in cell 9.70E-01
-5 9.66E-01 4 19 GO:0000281;GO:0061640;GO:0000910 Mitotic cytokinesis 9.86E-01
4 9.84E-01 2 5 GO:0001947 Heart looping 9.89E-01

5 9.79E-01 4 7 GO:0006511;GO:0019941;GO:0043632;GO:0051603 Modification-dependent protein catabolic process 9.89E-01

-2 9.80E-01 5 27
GO:0006631;GO:0032787;GO:0019752;GO:0043436;
GO:0006082 Carboxylic acid metabolic process 9.89E-01

-1 9.95E-01 5 7
GO:0001678;GO:0042593;GO:0055082;GO:0033500;
GO:0048878;GO:0019725 Chemical homeostasis 9.95E-01
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102 1.94E-01 2 37 GO:0044281 Small molecule metabolic process 3.02E-01

-249 1.99E-01 2 6 GO:0002833;GO:0032103 Positive Regulation of response to biotic stimulus 3.08E-01
-104 2.04E-01 1 34 GO:0002376 Immune system process 3.14E-01
-95 2.11E-01 2 40 GO:0006811 Ion transport 3.22E-01
264 2.13E-01 7 5 GO:0000055 Ribosomal large subunit export from nucleus 3.23E-01

120 2.28E-01 3 23
GO:0000165;GO:0023014;GO:0035556;GO:0006468;
GO:0016310;GO:0006796;GO:0006793 Phosphorus metabolic process 3.40E-01

113 2.27E-01 4 26
GO:0015031;GO:0015833;GO:0045184;GO:0042886;
GO:0008104;GO:0033036 Protein localization 3.40E-01

-255 2.31E-01 6 5 GO:0002090;GO:0048259;GO:0030100;GO:0060627 Regulation of receptor-mediated endocytosis 3.42E-01
183 2.48E-01 3 9 GO:0001889;GO:0048732 Liver development 3.65E-01
-157 2.51E-01 2 12 GO:0006814;GO:0015672 Monovalent inorganic cation transport 3.67E-01
176 2.66E-01 2 9 GO:0000038 Very long-chain fatty acid metabolic process 3.82E-01
-200 2.65E-01 2 7 GO:0051049 Regulation of transport 3.82E-01
199 2.68E-01 3 7 GO:0000338;GO:0070646 Protein modification by small protein removal 3.83E-01
-209 2.81E-01 2 6 GO:0001816;GO:0010467 Cytokine production 3.99E-01
-85 2.90E-01 3 36 GO:0048513 Animal organ development 4.09E-01

155 3.01E-01 2 10
GO:0009605;GO:0051707;GO:0043207;GO:0044419;
GO:0009607 Response to external stimulus 4.22E-01

-196 3.12E-01 4 6 GO:0007166 Cell surface receptor signaling pathway 4.30E-01

89 3.11E-01 2 30
GO:0034645;GO:0009059;GO:0002181;GO:0006412;
GO:0043043;GO:0006518 Cellular macromolecule biosynthetic process 4.30E-01

-106 3.19E-01 2 20 GO:0000045;GO:0070925;GO:1905037;GO:0007033 Organelle assembly 4.38E-01
-191 3.25E-01 4 6 GO:0000186 Activation of MAPKK activity 4.43E-01

-186 3.38E-01 5 6
GO:0002576;GO:0045055;GO:0006887;GO:0032940;
GO:0046903;GO:0140352 Secretion by cell 4.55E-01

186 3.38E-01 2 6 GO:0022412
Cellular process involved in reproduction in 
multicellular organism 4.55E-01

-58 3.41E-01 5 64
GO:0001932;GO:0031399;GO:0042325;GO:0019220;
GO:0051174;GO:0032268;GO:0051246 Regulation of phosphorus metabolic process 4.55E-01

-92 3.46E-01 4 24 GO:0001666;GO:0036293;GO:0070482;GO:0009628 Response to decreased oxygen levels 4.59E-01
-69 3.66E-01 2 40 GO:0007165 Signal transduction 4.79E-01
-162 3.67E-01 2 7 GO:0016192 Vesicle-mediated transport 4.79E-01
-104 3.68E-01 6 17 GO:0030001;GO:0006812 Metal ion transport 4.79E-01
130 3.85E-01 5 10 GO:0000244 Spliceosomal tri-snRNP complex assembly 4.98E-01
183 3.89E-01 2 5 GO:0003002;GO:0007389 Regionalization 5.00E-01
81 3.96E-01 3 25 GO:0042592 Homeostatic process 5.06E-01

-59 4.02E-01 4 46
GO:0045859;GO:0043549;GO:0051338;GO:0050790;
GO:0065009;GO:0071900 Regulation of transferase activity 5.07E-01
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Delta.rank pval Level # seqs GO term GO Name p.adj
490 8.79E-27 4 182 GO:0016070 RNA metabolic process 1.9E-24
509 5.80E-22 5 133 GO:0006396 RNA processing 6.4E-20
563 2.72E-12 2 55 GO:0034470;GO:0034660 ncRNA processing 2.0E-10
421 3.87E-12 2 99 GO:0016071 mRNA metabolic process 2.1E-10

448 4.37E-11 3 78
GO:0000398;GO:0000377;GO:0006397;GO:0000375;
GO:0008380 RNA splicing 1.9E-09

486 1.11E-10 2 63 GO:0006259 DNA metabolic process 4.1E-09
-377 7.39E-10 2 97 GO:0009653 anatomical structure morphogenesis 2.3E-08

410 1.03E-09 3 80
GO:0022618;GO:0034622;GO:0071826;GO:0065003;
GO:0043933 protein-containing complex subunit organization 2.9E-08

493 7.24E-09 5 49 GO:0006281;GO:0006974;GO:0033554;GO:0051716 cellular response to DNA damage stimulus 1.8E-07
562 1.40E-08 3 36 GO:0006364;GO:0016072 rRNA metabolic process 3.1E-07
524 1.18E-07 2 36 GO:0000724;GO:0000725;GO:0006302;GO:0006310 DNA recombination 2.4E-06
525 3.82E-07 2 33 GO:0051276 chromosome organization 7.0E-06
-359 1.57E-06 2 64 GO:0006928 movement of cell or subcellular component 2.3E-05
276 1.57E-06 2 111 GO:0022607 cellular component assembly 2.3E-05
484 1.43E-06 4 35 GO:0051726 regulation of cell cycle 2.3E-05
-232 3.90E-06 1 148 GO:0032501 multicellular organismal process 5.4E-05
-604 5.08E-06 4 20 GO:0001658;GO:0048754;GO:0061138;GO:0001763 morphogenesis of a branching structure 6.6E-05
-425 6.13E-06 2 40 GO:0002009;GO:0048729 tissue morphogenesis 7.5E-05
518 1.22E-05 2 25 GO:0009451 RNA modification 1.4E-04
832 2.36E-05 2 9 GO:0061982 meiosis I cell cycle process 2.6E-04
654 3.45E-05 2 14 GO:1903046 meiotic cell cycle process 3.6E-04
213 6.69E-05 2 130 GO:1903047;GO:0022402 cell cycle process 6.7E-04
-479 7.38E-05 2 24 GO:0003008 system process 7.1E-04
-291 7.69E-05 2 66 GO:0031325;GO:0009893;GO:0048522;GO:0010604 positive regulation of cellular process 7.1E-04
540 1.09E-04 2 18 GO:0007005 mitochondrion organization 9.6E-04

712 1.35E-04 6 10 GO:0001732
formation of cytoplasmic translation initiation 
complex 1.1E-03

673 1.57E-04 3 11 GO:0000070;GO:0000819;GO:0098813;GO:0007059 sister chromatid segregation 1.3E-03
338 1.67E-04 2 44 GO:0000278;GO:0007049 cell cycle 1.3E-03
-304 1.61E-04 2 55 GO:0001525 angiogenesis 1.3E-03
-420 1.78E-04 2 28 GO:0035239 tube morphogenesis 1.3E-03
-246 1.75E-04 3 84 GO:0048518 positive regulation of biological process 1.3E-03
634 2.00E-04 2 12 GO:0000076 DNA replication checkpoint 1.3E-03
-397 1.98E-04 3 31 GO:0003341;GO:0007018 microtubule-based movement 1.3E-03Day7
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595 2.81E-04 2 13 GO:0000462;GO:0030490
maturation of SSU-rRNA from tricistronic rRNA 
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) 1.8E-03

637 3.48E-04 4 11 GO:0000463;GO:0000470 maturation of LSU-rRNA 2.2E-03
456 4.20E-04 3 21 GO:0031570;GO:0000075;GO:0045786 cell cycle checkpoint 2.6E-03
828 5.79E-04 2 6 GO:0000712 resolution of meiotic recombination intermediates 3.3E-03

765 6.01E-04 8 7 GO:0000727
double-strand break repair via break-induced 
replication 3.3E-03

525 5.77E-04 2 15 GO:0008033;GO:0006399 tRNA processing 3.3E-03

-327 5.89E-04 4 39
GO:0043405;GO:0043408;GO:1902531;GO:0009966
;GO:0010646;GO:0023051 regulation of signaling 3.3E-03

403 6.80E-04 2 25 GO:0000082;GO:0044843 G1/S transition of mitotic cell cycle 3.7E-03

-301 7.08E-04 4 45
GO:0001934;GO:0031401;GO:0042327;GO:0032270;
GO:0045937;GO:0010562;GO:0051247;GO:0051173

positive regulation of nitrogen compound
metabolic process 3.7E-03

472 9.88E-04 5 17 GO:0000387 spliceosomal snRNP assembly 5.1E-03

516 1.08E-03 3 14 GO:0000079;GO:1904029
regulation of cyclin-dependent protein 
serine/threonine kinase activity 5.4E-03

354 1.30E-03 3 29 GO:0000956;GO:0006402;GO:0006401 RNA catabolic process 6.4E-03
-443 1.48E-03 3 18 GO:0001736;GO:0007164 establishment of planar polarity 7.1E-03
-321 1.87E-03 2 33 GO:0016477;GO:0048870;GO:0040011;GO:0001764 locomotion 8.8E-03
-186 2.05E-03 2 100 GO:0007017 microtubule-based process 9.4E-03

-203 2.10E-03 2 83 GO:0048646
anatomical structure formation involved in 
morphogenesis 9.5E-03

-347 2.34E-03 5 27
GO:0000187;GO:0043406;GO:0043410;GO:0071902;
GO:1902533;GO:0009967;GO:0010647;GO:0023056 positive regulation of signaling 1.0E-02

-787 2.85E-03 3 5 GO:0003382 epithelial cell morphogenesis 1.2E-02
-712 3.10E-03 4 6 GO:0001659;GO:0048871 multicellular organismal homeostasis 1.3E-02
520 3.47E-03 2 11 GO:0006400 tRNA modification 1.4E-02

-311 3.52E-03 5 31
GO:0032147;GO:0045860;GO:0033674;GO:0051347;
GO:0043085;GO:0044093 positive regulation of protein kinase activity 1.4E-02

-458 5.14E-03 2 13 GO:0000904 cell morphogenesis involved in differentiation 2.1E-02
-476 5.25E-03 2 12 GO:0009887 animal organ morphogenesis 2.1E-02

-118 5.69E-03 3 211

GO:0000122;GO:0006357;GO:0045892;GO:0006355;
GO:1903506;GO:2000112;GO:2001141;GO:0010556;
GO:0031326;GO:0009889;GO:1903507;GO:2000113;
GO:1902679;GO:0010558;GO:0031327;GO:0051253;
GO:0009890;GO:0045934;GO:0051172

negative regulation of nitrogen compound 
metabolic process 2.2E-02

-334 5.71E-03 2 24 GO:0001501;GO:0048731 system development 2.2E-02
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-216 5.90E-03 2 58 GO:0048583 regulation of response to stimulus 2.2E-02
443 6.88E-03 2 13 GO:0018130;GO:0019438;GO:1901362 heterocycle biosynthetic process 2.5E-02
-480 7.06E-03 1 11 GO:0007610 behavior 2.6E-02
644 7.48E-03 2 6 GO:0001731 formation of translation preinitiation complex 2.7E-02
382 7.67E-03 5 17 GO:0000723;GO:0032200;GO:0060249 anatomical structure homeostasis 2.7E-02
510 9.57E-03 2 9 GO:0001510;GO:0043414;GO:0032259 macromolecule methylation 3.3E-02

510 9.52E-03 3 9 GO:0034654
nucleobase-containing compound 
biosynthetic process 3.3E-02

449 1.17E-02 6 11

GO:0000054;GO:0033750;GO:0071428;GO:0071426;
GO:0006405;GO:0006611;GO:0031503;GO:0050658;
GO:0051168;GO:0050657;GO:0051236;GO:0006913;
GO:0015931;GO:0051169 nucleocytoplasmic transport 3.9E-02

446 1.22E-02 3 11 GO:0018193;GO:0000413;GO:0018208 peptidyl-amino acid modification 4.0E-02
-368 1.27E-02 3 16 GO:0000272;GO:0005976;GO:0016052;GO:0005975 carbohydrate metabolic process 4.1E-02
126 1.26E-02 2 145 GO:0006996 organelle organization 4.1E-02

651 1.36E-02 2 5 GO:0000491
small nucleolar ribonucleoprotein 
complex assembly 4.3E-02

513 1.39E-02 4 8 GO:0002098;GO:0002097 tRNA wobble base modification 4.3E-02
-548 1.39E-02 2 7 GO:0003013 circulatory system process 4.3E-02

316 1.43E-02 8 21 GO:0000184
nuclear-transcribed mRNA catabolic process
nonsense-mediated decay 4.3E-02

588 1.46E-02 3 6 GO:0001522 pseudouridine synthesis 4.3E-02

230 1.45E-02 2 40
GO:0034655;GO:0044265;GO:0019439;GO:0044270;
GO:0046700;GO:1901361 cellular macromolecule catabolic process 4.3E-02

123 1.57E-02 2 143 GO:0006464;GO:0036211;GO:0043412 macromolecule modification 4.6E-02
434 2.00E-02 3 10 GO:0000245 spliceosomal complex assembly 5.5E-02

487 1.96E-02 2 8
GO:0000479;GO:0000478;GO:0000469;GO:0090502;
GO:0090501 cleavage involved in rRNA processing 5.5E-02

-214 1.95E-02 2 42 GO:0048584 positive regulation of response to stimulus 5.5E-02
-184 2.00E-02 2 57 GO:0048869 cellular developmental process 5.5E-02
-197 2.05E-02 1 49 GO:0002376 immune system process 5.6E-02
515 2.08E-02 3 7 GO:0000154 rRNA modification 5.6E-02
539 2.51E-02 3 6 GO:0000002 mitochondrial genome maintenance 6.7E-02

-144 2.80E-02 4 84
GO:0001932;GO:0031399;GO:0042325;GO:0032268;
GO:0019220;GO:0051246;GO:0051174 regulation of phosphorylation 7.4E-02

403 3.08E-02 3 10 GO:0000266;GO:0048285 organelle fission 7.9E-02
208 3.07E-02 1 38 GO:0022414 reproductive process 7.9E-02
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-113 3.16E-02 2 135 GO:0051234;GO:0051179;GO:0006810 localization 8.0E-02
170 3.44E-02 2 55 GO:0044249;GO:1901576;GO:0009058 biosynthetic process 8.6E-02
193 3.56E-02 3 42 GO:0034645;GO:0009059;GO:0044271 cellular nitrogen compound biosynthetic process 8.8E-02
-195 4.36E-02 2 38 GO:0030154 cell differentiation 1.1E-01
-465 5.33E-02 3 6 GO:0030030 cell projection organization 1.3E-01

-456 5.85E-02 5 6
GO:0003429;GO:0003414;GO:0003422;GO:0090171;
GO:0060536 growth plate cartilage chondrocyte morphogenesis 1.4E-01

238 5.95E-02 5 22
GO:0000381;GO:0048024;GO:0043484;GO:0050684;
GO:1903311 regulation of mRNA processing 1.4E-01

-496 6.02E-02 3 5 GO:0001919 regulation of receptor recycling 1.4E-01

350 6.08E-02 3 10
GO:0006959;GO:0001867;GO:0006956;GO:0045087;
GO:0098542 defense response to other organism 1.4E-01

-387 6.39E-02 2 8 GO:0007155;GO:0022610 cell adhesion 1.5E-01
408 6.71E-02 2 7 GO:0000338;GO:0070646 protein modification by small protein removal 1.5E-01
178 6.88E-02 2 37 GO:0044281 small molecule metabolic process 1.6E-01
-260 6.96E-02 3 17 GO:0001649 osteoblast differentiation 1.6E-01

-421 8.01E-02 3 6 GO:0002092;GO:0048260;GO:0045807;GO:0051130
positive regulation of cellular component 
organization 1.8E-01

-210 8.18E-02 2 24 GO:0001503 ossification 1.8E-01
-82 8.34E-02 2 167 GO:0048856 anatomical structure development 1.8E-01
-387 8.28E-02 2 7 GO:0050877 nervous system process 1.8E-01
291 8.79E-02 2 12 GO:0090305 nucleic acid phosphodiester bond hydrolysis 1.9E-01
379 8.93E-02 5 7 GO:0000050;GO:0019627;GO:0071941 urea cycle 1.9E-01
-408 9.03E-02 2 6 GO:0006633;GO:0008610;GO:0072330 lipid biosynthetic process 1.9E-01

-347 9.58E-02 5 8

GO:0003333;GO:0006865;GO:1905039;GO:0046942;
GO:0098656;GO:1903825;GO:0015711;GO:0015849;
GO:0006820;GO:0034220;GO:0055085 organic acid transport 2.0E-01

-144 9.65E-02 4 47 GO:0006811 ion transport 2.0E-01
118 9.84E-02 2 71 GO:1901575;GO:0009056;GO:0044248 catabolic process 2.0E-01
-134 1.04E-01 2 52 GO:0007165 signal transduction 2.1E-01
-255 1.06E-01 4 14 GO:0002831;GO:0031347;GO:0032101;GO:0080134 regulation of response to external stimulus 2.1E-01

154 1.09E-01 4 38 GO:0001701;GO:0043009;GO:0009792;GO:0009790
embryo development ending in birth or egg 
hatching 2.2E-01

-214 1.25E-01 2 18 GO:0048598 embryonic morphogenesis 2.5E-01
-111 1.28E-01 2 67 GO:0000226;GO:0007010 microtubule cytoskeleton organization 2.5E-01
184 1.27E-01 2 24 GO:0051656;GO:0051640 organelle localization 2.5E-01
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-204 1.33E-01 7 19
GO:0001933;GO:0031400;GO:0042326;GO:0032269;
GO:0051248;GO:0045936;GO:0010563

negative regulation of phosphate metabolic 
process 2.5E-01

-247 1.32E-01 2 13 GO:0002250 adaptive immune response 2.5E-01
110 1.30E-01 4 68 GO:0044772;GO:0044770 mitotic cell cycle phase transition 2.5E-01
76 1.33E-01 1 144 GO:0050896;GO:0006950 response to stimulus 2.5E-01
389 1.40E-01 2 5 GO:0006520 cellular amino acid metabolic process 2.6E-01
-263 1.39E-01 2 11 GO:0048585 negative regulation of response to stimulus 2.6E-01
-354 1.42E-01 4 6 GO:0003351;GO:0006858;GO:0099111 extracellular transport 2.6E-01
-164 1.51E-01 2 27 GO:0000902 cell morphogenesis 2.7E-01
-280 1.55E-01 4 9 GO:0002576;GO:0045055;GO:0006887 exocytosis 2.8E-01
370 1.60E-01 2 5 GO:0048609 multicellular organismal reproductive process 2.8E-01
-287 1.69E-01 3 8 GO:0001504;GO:0006836;GO:0098657 neurotransmitter transport 3.0E-01
361 1.71E-01 2 5 GO:0000012 single strand break repair 3.0E-01
-248 1.84E-01 2 10 GO:0001568 blood vessel development 3.1E-01
-350 1.84E-01 2 5 GO:0001667 ameboidal-type cell migration 3.1E-01
-320 1.84E-01 2 6 GO:0001775;GO:0002263 cell activation 3.1E-01

-275 1.88E-01 5 8 GO:0002833;GO:0032103
positive regulation of response to external 
stimulus 3.2E-01

-292 1.90E-01 2 7 GO:0051050 positive regulation of transport 3.2E-01
-157 1.95E-01 2 24 GO:0000045;GO:0070925;GO:1905037;GO:0007033 organelle assembly 3.2E-01
-152 2.01E-01 4 25 GO:0051128 regulation of cellular component organization 3.3E-01

-248 2.07E-01 4 9

GO:0000188;GO:0043407;GO:0043409;GO:0071901;
GO:1902532;GO:0006469;GO:0033673;GO:0051348;
GO:0043086;GO:0044092;GO:0009968;GO:0010648;
GO:0023057 negative regulation of signaling 3.4E-01

60 2.07E-01 4 169 GO:0044267;GO:0019538;GO:1901564 organonitrogen compound metabolic process 3.4E-01
300 2.13E-01 3 6 GO:0046395;GO:0016054;GO:0044282 organic acid catabolic process 3.4E-01
-93 2.23E-01 2 61 GO:0065008 regulation of biological quality 3.6E-01
269 2.28E-01 6 7 GO:0000028 ribosomal small subunit assembly 3.6E-01
-143 2.28E-01 4 25 GO:0001822 kidney development 3.6E-01
113 2.34E-01 2 39 GO:0043604;GO:1901566;GO:0043603 organonitrogen compound biosynthetic process 3.7E-01
-129 2.40E-01 3 29 GO:0001666;GO:0036293;GO:0070482;GO:0009628 response to hypoxia 3.7E-01
-154 2.43E-01 2 20 GO:0006814;GO:0015672 monovalent inorganic cation transport 3.7E-01
97 2.43E-01 2 52 GO:0007275 multicellular organism development 3.7E-01
-220 2.38E-01 2 10 GO:0048468 cell development 3.7E-01
-260 2.44E-01 2 7 GO:0051606 detection of stimulus 3.7E-01
-274 2.55E-01 2 6 GO:0002064 epithelial cell development 3.8E-01

Day7
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221 2.62E-01 4 9 GO:0001889;GO:0048732 liver development 3.9E-01
-231 2.69E-01 7 8 GO:0000186 activation of MAPKK activity 4.0E-01
217 2.70E-01 2 9 GO:0000244 spliceosomal tri-snRNP complex assembly 4.0E-01
212 2.80E-01 2 9 GO:0000077 DNA damage checkpoint 4.0E-01

241 2.81E-01 4 7
GO:0001507;GO:0006581;GO:0008291;GO:0042135;
GO:0042133;GO:1900619 acetylcholine metabolic process 4.0E-01

-101 2.79E-01 2 41
GO:0015031;GO:0015833;GO:0045184;GO:0042886;
GO:0071705;GO:0008104;GO:0033036 nitrogen compound transport 4.0E-01

-88 2.77E-01 4 54 GO:0071702 organic substance transport 4.0E-01
-278 2.92E-01 2 5 GO:0001541;GO:0048608 ovarian follicle development 4.1E-01
-197 2.91E-01 2 10 GO:0001558;GO:0040008 regulation of cell growth 4.1E-01
140 2.90E-01 3 20 GO:0006886;GO:0046907 intracellular transport 4.1E-01
-152 2.91E-01 3 17 GO:0032879 regulation of localization 4.1E-01
-97 2.99E-01 2 41 GO:0044255;GO:0006629 cellular lipid metabolic process 4.1E-01
270 3.06E-01 3 5 GO:1901565 organonitrogen compound catabolic process 4.2E-01
-265 3.16E-01 2 5 GO:0003014 renal system process 4.3E-01
241 3.18E-01 2 6 GO:0000038 very long-chain fatty acid metabolic process 4.3E-01
222 3.20E-01 2 7 GO:0003002;GO:0007389 pattern specification process 4.3E-01
-220 3.24E-01 4 7 GO:0001816;GO:0010467 gene expression 4.3E-01

-81 3.24E-01 6 53
GO:0045859;GO:0043549;GO:0051338;GO:0050790;
GO:0065009;GO:0071900 regulation of kinase activity 4.3E-01

-170 3.38E-01 2 11 GO:0051239 regulation of multicellular organismal process 4.5E-01
-250 3.42E-01 5 5 GO:0031349 positive regulation of defense response 4.5E-01
-135 3.46E-01 3 17 GO:0001523;GO:0016101;GO:0006721;GO:0006720 terpenoid metabolic process 4.6E-01
125 3.82E-01 2 17 GO:0006508 proteolysis 5.0E-01
-97 3.87E-01 2 28 GO:0002682 regulation of immune system process 5.0E-01
-99 4.11E-01 2 24 GO:0006955 immune response 5.3E-01
-181 4.18E-01 2 7 GO:0008016;GO:1903522;GO:0044057 regulation of blood circulation 5.4E-01
-208 4.31E-01 6 5 GO:0001676 long-chain fatty acid metabolic process 5.5E-01
145 4.39E-01 4 10 GO:0001843;GO:0060606;GO:0035148 tube formation 5.6E-01
83 4.44E-01 3 30 GO:0042592 homeostatic process 5.6E-01
-132 4.58E-01 3 11 GO:0003143;GO:0060562 embryonic heart tube morphogenesis 5.8E-01
-96 4.69E-01 2 20 GO:0002252 immune effector process 5.9E-01
95 4.72E-01 6 20 GO:0000027 ribosomal large subunit assembly 5.9E-01
-64 4.77E-01 2 43 GO:0000086;GO:0044839 G2/M transition of mitotic cell cycle 5.9E-01
-171 4.77E-01 5 6 GO:0002224;GO:0002221 toll-like receptor signaling pathway 5.9E-01
-110 4.87E-01 2 14 GO:0000302;GO:0006979;GO:1901700;GO:0042221 response to chemical 6.0E-01
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-82 4.99E-01 2 24 GO:0002684;GO:0050776;GO:0050778 regulation of immune response 6.0E-01
-115 4.99E-01 4 12 GO:0002697 regulation of immune effector process 6.0E-01
121 4.97E-01 3 11 GO:0006486;GO:0043413;GO:0070085 protein glycosylation 6.0E-01

109 5.04E-01 2 13
GO:0009605;GO:0051707;GO:0043207;GO:0044419;
GO:0009607 response to external stimulus 6.0E-01

-148 5.08E-01 4 7 GO:0002443;GO:0002449;GO:0002460

adaptive immune response based on somatic 
recombination of immune receptors built from 
immunoglobulin superfamily domains 6.0E-01

166 5.30E-01 6 5 GO:0000722;GO:0006312 telomere maintenance via recombination 6.2E-01

167 5.28E-01 3 5
GO:0002091;GO:0048261;GO:0045806;GO:0051051;
GO:0051129 negative regulation of receptor internalization 6.2E-01

-101 5.53E-01 3 12
GO:0002090;GO:0048259;GO:0030100;GO:0060627;
GO:0051049 regulation of transport 6.4E-01

-145 5.48E-01 2 6 GO:0007166 cell surface receptor signaling pathway 6.4E-01
-68 5.53E-01 6 27 GO:0030001;GO:0006812 metal ion transport 6.4E-01
-95 5.95E-01 2 11 GO:0002931 response to ischemia 6.8E-01
42 6.10E-01 4 53 GO:0009057 macromolecule catabolic process 6.9E-01
-46 6.09E-01 2 43 GO:0048513 animal organ development 6.9E-01
-81 6.23E-01 3 13 GO:0016192;GO:0032940;GO:0046903;GO:0140352 vesicle-mediated transport 7.1E-01

-103 6.45E-01 2 7 GO:0051603;GO:0006511;GO:0019941;GO:0043632
proteolysis involved in cellular protein catabolic 
process 7.3E-01

-33 6.56E-01 6 66 GO:0000209;GO:0016567;GO:0032446;GO:0070647
protein modification by small protein conjugation 
or removal 7.3E-01

-98 6.60E-01 3 7 GO:0002164;GO:0009791 post-embryonic development 7.3E-01
-117 6.57E-01 2 5 GO:0008283 cell population proliferation 7.3E-01
55 7.17E-01 2 15 GO:0006952 defense response 7.9E-01
-51 7.39E-01 3 15 GO:0001505 regulation of neurotransmitter levels 8.1E-01
70 7.39E-01 4 8 GO:0001654;GO:0007423 eye development 8.1E-01
-56 7.33E-01 5 13 GO:0006869 lipid transport 8.1E-01
71 0.7504828022 7 GO:0001947 heart looping 8.1E-01

36 7.64E-01 5 25
GO:0006631;GO:0032787;GO:0019752;GO:0043436;
GO:0006082 carboxylic acid metabolic process 8.2E-01

-58 7.68E-01 2 9 GO:0044283;GO:0046394;GO:0016053 small molecule biosynthetic process 8.2E-01
47 8.00E-01 5 10 GO:0001936;GO:0050678;GO:0042127 regulation of cell population proliferation 8.5E-01

37 8.19E-01 6 13
GO:0000132;GO:0040001;GO:0051294;GO:0051293;
GO:1902850;GO:0051653 establishment of mitotic spindle localization 8.7E-01

41 8.35E-01 3 9 GO:0002244 hematopoietic progenitor cell differentiation 8.8E-01Day7

Page 8

41 8.44E-01 2 8 GO:0022412
cellular process involved in reproduction in 
multicellular organism 8.9E-01

38 8.73E-01 2 6 GO:0001825 blastocyst formation 9.1E-01
24 8.70E-01 2 16 GO:0003006 developmental process involved in reproduction 9.1E-01
-17 8.82E-01 5 27 GO:0002181;GO:0006412;GO:0043043;GO:0006518 peptide metabolic process 9.1E-01
-34 8.87E-01 2 6 GO:0002699 positive regulation of immune effector process 9.2E-01
32 9.05E-01 3 5 GO:0034613;GO:0070727 cellular macromolecule localization 9.3E-01
7 9.37E-01 3 44 GO:0051649;GO:0051641 establishment of localization in cell 9.6E-01
-9 9.47E-01 4 21 GO:0000281;GO:0061640;GO:0000910 cytoskeleton-dependent cytokinesis 9.6E-01

-15 9.55E-01 2 5 GO:0002700
regulation of production of molecular mediator 
of immune response 9.7E-01

3 9.78E-01 6 34
GO:0000165;GO:0023014;GO:0035556;GO:0006468;
GO:0016310;GO:0006796;GO:0006793 phosphorus metabolic process 9.9E-01

6 9.81E-01 2 5 GO:0030258 lipid modification 9.9E-01
0 1.00E+00 3 13 GO:0002253 activation of immune response 1.0E+00
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Delta.rank pval Level # seqs GO Term GO Name p.adj
441 9.8E-06 2 20 GO:0000724;GO:0000725;GO:0006302;GO:0006310 DNA recombination 0.0
315 9.4E-06 2 40 GO:0006259 DNA metabolic process 0.0
518 5.5E-05 2 12 GO:1903046 meiotic cell cycle process 0.0
354 2.0E-04 5 22 GO:0006281 DNA repair 0.0
630 1.8E-04 2 7 GO:0061982 meiosis I cell cycle process 0.0
291 3.7E-04 4 30 GO:0006974;GO:0033554;GO:0051716 cellular response to DNA damage stimulus 0.0

-322 5.6E-04 2 23 GO:0003008 system process 0.0
157 5.6E-04 3 102 GO:1903047;GO:0022402 cell cycle process 0.0
325 6.5E-04 5 22 GO:0051276 chromosome organization 0.0
431 7.9E-04 2 12 GO:0002224;GO:0002221 pattern recognition receptor signaling pathway 0.0
277 1.0E-03 2 28 GO:0051726 regulation of cell cycle 0.0
237 1.5E-03 2 36 GO:0000278;GO:0007049 cell cycle 0.0

-337 3.4E-03 2 15 GO:0001763 morphogenesis of a branching structure 0.1
268 4.0E-03 2 23 GO:0000082;GO:0044843 G1/S transition of mitotic cell cycle 0.1
393 5.2E-03 7 10 GO:0000076 DNA replication checkpoint 0.1

-434 5.8E-03 4 8
GO:0003333;GO:1905039;GO:0098656;
GO:1903825;GO:0034220;GO:0055085 organic acid transmembrane transport 0.1

-286 6.5E-03 3 18 GO:0048731 system development 0.1
453 7.0E-03 2 7 GO:0000727 double-strand break repair via break-induced replication 0.1

-344 7.4E-03 3 12 GO:0001658;GO:0048754;GO:0061138 branching morphogenesis of an epithelial tube 0.1
-296 7.9E-03 3 16 GO:0000272;GO:0005976;GO:0016052;GO:0005975 carbohydrate metabolic process 0.1
220 9.5E-03 1 28 GO:0022414 reproductive process 0.1

-111 9.7E-03 1 116 GO:0032501 multicellular organismal process 0.1
518 9.2E-03 3 5 GO:0034654 nucleobase-containing compound biosynthetic process 0.1

-465 1.0E-02 2 6 GO:0030030 cell projection organization 0.1
-313 1.1E-02 2 13 GO:0001501 skeletal system development 0.1
-418 1.3E-02 3 7 GO:0003013 circulatory system process 0.1
-156 1.8E-02 2 47 GO:0006928 movement of cell or subcellular component 0.1
296 1.7E-02 2 13 GO:0006952 defense response 0.1
97 1.8E-02 2 129 GO:0016070 RNA metabolic process 0.1

252 1.7E-02 3 18 GO:0031570;GO:0000075;GO:0045786 negative regulation of cell cycle 0.1
-207 2.1E-02 3 25 GO:0016477;GO:0048870;GO:0040011 locomotion 0.1

317 2.4E-02 4 10 GO:0000079;GO:1904029
regulation of cyclin-dependent protein 
serine/threonine kinase activity 0.2

-246 2.7E-02 2 16 GO:0000027 ribosomal large subunit assembly 0.2
329 2.6E-02 2 9 GO:0000070;GO:0000819;GO:0098813;GO:0007059 mitotic sister chromatid segregation 0.2Day10
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293 2.9E-02 7 11 GO:0001732 formation of cytoplasmic translation initiation complex 0.2

291 3.0E-02 4 11
GO:0006959;GO:0001867;GO:0006956;GO:0045087;
GO:0002253;GO:0098542 activation of immune response 0.2

-221 3.6E-02 2 18 GO:0001764 neuron migration 0.2
293 3.7E-02 2 10 GO:0060249;GO:0000723;GO:0032200 anatomical structure homeostasis 0.2
189 3.8E-02 3 24 GO:0000956;GO:0006402;GO:0006401 RNA catabolic process 0.2

-110 4.1E-02 2 72 GO:0009653 anatomical structure morphogenesis 0.2

-282 4.5E-02 5 10
GO:0006865;GO:0046942;GO:0015711;GO:0015849;
GO:0006820 organic acid transport 0.2

-196 6.2E-02 3 18 GO:0000045;GO:0070925;GO:1905037;GO:0007033 organelle assembly 0.3

131 5.7E-02 3 43
GO:0001701;GO:0043009;GO:0009792;GO:0009790;
GO:0007275 multicellular organism development 0.3

102 6.0E-02 2 70 GO:0016071 mRNA metabolic process 0.3
-295 6.0E-02 4 8 GO:0048585 negative regulation of response to stimulus 0.3
-156 6.1E-02 2 29 GO:0048729 tissue morphogenesis 0.3
-369 6.3E-02 3 5 GO:0048871 multicellular organismal homeostasis 0.3
-177 7.7E-02 3 20 GO:0002009;GO:0035239 morphogenesis of an epithelium 0.3

-161 7.7E-02 6 24
GO:0043405;GO:0043408;GO:1902531;GO:0009966;
GO:0010646;GO:0023051 regulation of signaling 0.3

-293 8.1E-02 2 7 GO:0050877 nervous system process 0.3

243 8.4E-02 2 10
GO:0051707;GO:0043207;GO:0044419;GO:0009605;
GO:0009607 response to external stimulus 0.3

-223 9.7E-02 4 11 GO:0001736;GO:0007164 establishment of planar polarity 0.4
75 9.8E-02 2 102 GO:0006996 organelle organization 0.4

174 1.2E-01 7 16 GO:0000184
nuclear-transcribed mRNA catabolic process 
nonsense-mediated decay 0.4

-167 1.2E-01 2 17 GO:0001503 ossification 0.4
146 1.3E-01 2 22 GO:0002682 regulation of immune system process 0.4

-148 1.2E-01 3 22 GO:0003341;GO:0007018 cilium movement 0.4
194 1.2E-01 3 13 GO:0007005 mitochondrion organization 0.4

-118 1.2E-01 2 35 GO:0044255;GO:0006629 cellular lipid metabolic process 0.4
-143 1.2E-01 4 23 GO:0071705 nitrogen compound transport 0.4

-170 1.3E-01 3 16
GO:0000187;GO:0043406;GO:0043410;GO:0071902;
GO:1902533;GO:0009967;GO:0010647;GO:0023056 positive regulation of signaling 0.4

223 1.3E-01 2 9 GO:0018130;GO:0019438;GO:1901362 heterocycle biosynthetic process 0.4
-171 1.5E-01 2 14 GO:0001649 osteoblast differentiation 0.5
174 1.6E-01 7 13 GO:0000387 spliceosomal snRNP assembly 0.5
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141 2.9E-01 2 11 GO:0003006 developmental process involved in reproduction 0.7
-202 3.1E-01 3 5 GO:0007166 cell surface receptor signaling pathway 0.7
-68 3.2E-01 2 44 GO:0048869 cellular developmental process 0.7
143 3.3E-01 8 9 GO:0000462;GO:0030490 maturation of SSU-rRNA 0.7
-81 3.4E-01 2 28 GO:0030154 cell differentiation 0.7
-83 3.6E-01 2 25 GO:0000086;GO:0044839 G2/M transition of mitotic cell cycle 0.7
131 3.5E-01 5 10 GO:0000245 spliceosomal complex assembly 0.7
187 3.5E-01 3 5 GO:0001731 formation of translation preinitiation complex 0.7
183 3.6E-01 5 5 GO:0002699 positive regulation of immune effector process 0.7
176 3.8E-01 5 5 GO:0002027 regulation of heart rate 0.7
43 3.7E-01 2 90 GO:0006464;GO:0036211;GO:0043412 macromolecule modification 0.7

-150 3.7E-01 1 7 GO:0007610 behavior 0.7
-93 4.1E-01 3 16 GO:0000904 cell morphogenesis involved in differentiation 0.8
143 3.9E-01 2 7 GO:0001510;GO:0043414;GO:0032259 macromolecule methylation 0.8
165 4.1E-01 3 5 GO:0001654;GO:0007423 eye development 0.8
-56 4.0E-01 4 47 GO:0006811 ion transport 0.8

-28 4.1E-01 6 199

GO:0010629;GO:0000122;GO:0006357;GO:0045892;
GO:0006355;GO:1903506;GO:2000112;GO:2001141;
GO:0010556;GO:0031326;GO:0051252;GO:0009889;
GO:0019219;GO:1903507;GO:2000113;GO:1902679;
GO:0010558;GO:0031327;GO:0051253;GO:0009890;
GO:0031324;GO:0045934;GO:0051172

regulation of nucleobase-containing compound metabolic 
process

0.8
33 4.1E-01 2 132 GO:0048856 anatomical structure development 0.8

-163 4.1E-01 2 5 GO:0051050 positive regulation of transport 0.8
36 4.2E-01 2 106 GO:0006950;GO:0050896 response to stimulus 0.8

-106 4.3E-01 2 11 GO:0051239 regulation of multicellular organismal process 0.8
-86 4.5E-01 3 15 GO:0001523;GO:0016101;GO:0006721;GO:0006720 diterpenoid metabolic process 0.8
109 4.6E-01 2 9 GO:0001889;GO:0048732 liver development 0.8

-132 4.7E-01 4 6 GO:0001936;GO:0050678;GO:0042127 regulation of cell population proliferation 0.8
-61 4.4E-01 1 32 GO:0002376 immune system process 0.8
64 4.6E-01 3 27 GO:0006364;GO:0016072 rRNA processing 0.8

-94 4.6E-01 2 12 GO:0032879 regulation of localization 0.8
-84 4.6E-01 2 15 GO:0042221;GO:0000302;GO:0006979;GO:1901700 response to chemical 0.8
-52 4.7E-01 2 39 GO:0044271;GO:1901566;GO:0043604;GO:0043603 cellular nitrogen compound biosynthetic process 0.8
56 4.7E-01 2 34 GO:0044281 small molecule metabolic process 0.8

-45 4.7E-01 2 53 GO:0065008 regulation of biological quality 0.8
120 4.8E-01 3 7 GO:0046395;GO:0016054;GO:0044282 carboxylic acid catabolic process 0.8Day10
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-103 1.6E-01 4 37 GO:0071702 organic substance transport 0.5

-117 1.7E-01 4 28
GO:0002181;GO:0006412;GO:0034645;GO:0043043;
GO:0009059;GO:0006518 macromolecule biosynthetic process 0.5

228 1.8E-01 6 7

GO:0000054;GO:0033750;GO:0071428;GO:0071426;
GO:0006405;GO:0006611;GO:0031503;GO:0050658;
GO:0051168;GO:0050657;GO:0051236;GO:0006913;
GO:0015931;GO:0051169 nucleocytoplasmic transport 0.5

214 1.7E-01 5 8 GO:0000413;GO:0018208;GO:0018193 peptidyl-amino acid modification 0.5
-245 1.8E-01 2 6 GO:0001816;GO:0010467 cytokine production 0.5
162 1.7E-01 5 14 GO:0009451 RNA modification 0.5
87 1.8E-01 3 48 GO:0044772;GO:0044770 cell cycle phase transition 0.5

-139 1.9E-01 6 18
GO:0032147;GO:0045860;GO:0033674;GO:0051347;
GO:0043085;GO:0044093 activation of protein kinase activity 0.5

-136 2.0E-01 4 18 GO:0001666;GO:0036293;GO:0070482;GO:0009628 response to decreased oxygen levels 0.5

-98 2.1E-01 8 33

GO:0001934;GO:0031401;GO:0042327;GO:0032270;
GO:0045937;GO:0031325;GO:0051247;GO:0010562;
GO:0009893;GO:0010604;GO:0051173 positive regulation of metabolic process 0.6

61 2.1E-01 2 89 GO:0006396 RNA processing 0.6

208 2.2E-01 4 7
GO:0001507;GO:0006581;GO:0008291;GO:0042135;
GO:0042133;GO:1900619 acetylcholine metabolic process 0.6

-167 2.1E-01 3 11 GO:0002250 adaptive immune response 0.6
-244 2.2E-01 2 5 GO:0007155;GO:0022610 cell adhesion 0.6
126 2.3E-01 4 18 GO:0002684;GO:0050776;GO:0050778 regulation of immune response 0.6
-54 2.3E-01 3 104 GO:0006810;GO:0051234;GO:0051179 localization 0.6

-229 2.5E-01 3 5 GO:0006308 DNA catabolic process 0.6
83 2.5E-01 2 39 GO:0007165 signal transduction 0.6
82 2.7E-01 5 37 GO:0034470;GO:0034660 ncRNA metabolic process 0.6

198 2.8E-01 4 6 GO:0000050;GO:0019627;GO:0071941 urea cycle 0.6

-212 2.9E-01 6 5

GO:0000188;GO:0043407;GO:0043409;GO:0071901;
GO:1902532;GO:0009968;GO:0010648;GO:0023057;
GO:0006469;GO:0033673;GO:0051348;GO:0043086;
GO:0044092 negative regulation of intracellular signal transduction 0.6

159 2.8E-01 3 9 GO:0001568 blood vessel development 0.6
124 2.8E-01 2 15 GO:0002252 immune effector process 0.6
-69 2.8E-01 2 50 GO:0009057 macromolecule catabolic process 0.6

81 2.7E-01 2 37
GO:0034655;GO:0044265;GO:0019439;GO:0044270;
GO:0046700;GO:1901361 cellular macromolecule catabolic process 0.6
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-117 4.9E-01 3 7 GO:0044283;GO:0046394;GO:0016053 small molecule biosynthetic process 0.8
-114 5.0E-01 2 7 GO:0055082;GO:0048878;GO:0019725 chemical homeostasis 0.8

-122 5.0E-01 2 6 GO:0002449;GO:0002460;GO:0002443

adaptive immune response based on somatic recombination 
of immune 
receptors built from immunoglobulin superfamily domains 0.8

85 5.1E-01 4 12 GO:0002697;GO:0002831 regulation of response to biotic stimulus 0.8

40 5.2E-01 3 53
GO:0000398;GO:0000377;GO:0006397;GO:0000375;
GO:0008380 RNA splicing 0.8

-101 5.2E-01 2 8 GO:0008016;GO:1903522;GO:0044057 regulation of blood circulation 0.8
-63 5.2E-01 5 21 GO:0030001;GO:0006812 cation transport 0.8
-97 5.4E-01 3 8 GO:0001504;GO:0006836;GO:0098657 neurotransmitter transport 0.8
88 5.3E-01 3 10 GO:0048468 cell development 0.8
70 5.3E-01 3 16 GO:0051656;GO:0051640 establishment of organelle localization 0.8
96 5.7E-01 2 7 GO:0000244 spliceosomal tri-snRNP complex assembly 0.8
88 5.8E-01 6 8 GO:0000266;GO:0048285 organelle fission 0.8

-112 5.7E-01 2 5 GO:0001678;GO:0042593;GO:0033500 cellular glucose homeostasis 0.8
107 5.6E-01 3 6 GO:0003143;GO:0060562 embryonic heart tube morphogenesis 0.8
-99 5.6E-01 5 7 GO:0006511;GO:0019941;GO:0043632;GO:0051603 modification-dependent protein catabolic process 0.8
111 5.8E-01 2 5 GO:0006520 cellular amino acid metabolic process 0.8

96 5.7E-01 2 7 GO:0022412
cellular process involved in reproduction in
multicellular organism 0.8

-39 5.7E-01 2 43 GO:0044249;GO:1901576;GO:0009058 organic substance biosynthetic process 0.8
51 5.4E-01 3 29 GO:0048513 animal organ development 0.8
48 5.6E-01 2 30 GO:0048584 positive regulation of response to stimulus 0.8
87 6.1E-01 3 7 GO:0000077 DNA damage checkpoint 0.8

-103 6.1E-01 3 5 GO:0001825 blastocyst formation 0.8
76 6.1E-01 3 9 GO:0002244 hematopoietic progenitor cell differentiation 0.8
83 6.0E-01 3 8 GO:0008033;GO:0006399 tRNA processing 0.8

-100 6.1E-01 3 5 GO:0001945 lymph vessel development 0.8
-79 6.4E-01 2 7 GO:0002931 response to ischemia 0.9

-64 6.3E-01 4 11
GO:0003429;GO:0003414;GO:0003422;GO:0090171;
GO:0060536;GO:0009887 animal organ morphogenesis 0.9

-53 6.4E-01 3 16 GO:0006814;GO:0015672 monovalent inorganic cation transport 0.9
45 6.6E-01 2 19 GO:0000281;GO:0061640;GO:0000910 mitotic cytokinesis 0.9
66 7.2E-01 3 6 GO:0000338;GO:0070646 protein modification by small protein removal 0.9

-38 7.2E-01 6 18
GO:0000381;GO:0048024;GO:0043484;GO:0050684;
GO:1903311 regulation of alternative mRNA splicing, via spliceosome 0.9Day10
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77 7.0E-01 4 5 GO:0000447

endonucleolytic cleavage in ITS1 to separate SSU-rRNA 
from 5.8S rRNA and LSU-rRNA from tricistronic rRNA 
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) 0.9

57 7.2E-01 2 8
GO:0000479;GO:0000478;GO:0000469;GO:0090502;
GO:0090501 cleavage involved in rRNA processing 0.9

42 7.2E-01 3 15 GO:0001505 regulation of neurotransmitter levels 0.9
25 7.0E-01 2 50 GO:0001525 angiogenesis 0.9

24 6.9E-01 3 55
GO:0001932;GO:0031399;GO:0042325;GO:0032268;
GO:0019220;GO:0051246;GO:0051174 regulation of phosphorylation 0.9

68 6.9E-01 3 7 GO:0006486;GO:0043413;GO:0070085 protein glycosylation 0.9

-36 7.0E-01 4 24
GO:0006631;GO:0032787;GO:0019752;GO:0043436;
GO:0006082 oxoacid metabolic process 0.9

-80 6.9E-01 2 5 GO:0009791 post-embryonic development 0.9
60 6.7E-01 2 10 GO:0031347;GO:0032101;GO:0080134 regulation of response to external stimulus 0.9

-16 7.1E-01 4 123 GO:0044267;GO:0019538;GO:1901564 organonitrogen compound metabolic process 0.9
59 6.9E-01 2 9 GO:0048598 embryonic morphogenesis 0.9

-46 7.0E-01 2 14 GO:0051128 regulation of cellular component organization 0.9
-53 6.7E-01 4 13 GO:0090305 nucleic acid phosphodiester bond hydrolysis 0.9
23 7.3E-01 4 48 GO:0000226;GO:0007010 microtubule cytoskeleton organization 0.9
19 7.2E-01 2 71 GO:0048646 anatomical structure formation involved in morphogenesis 0.9
33 7.3E-01 2 21 GO:0006955 immune response 0.9

-60 7.4E-01 5 6

GO:0001561;GO:0009062;GO:0019395;GO:0044242;
GO:0072329;GO:0034440;GO:0016042;GO:0030258;
GO:0055114 lipid modification 0.9

33 7.4E-01 3 21 GO:0042592 homeostatic process 0.9
64 7.5E-01 2 5 GO:0006400 tRNA modification 0.9

-53 7.7E-01 5 6 GO:0000028 ribosomal small subunit assembly 0.9
-51 7.8E-01 2 6 GO:0000038 very long-chain fatty acid metabolic process 0.9
-24 7.7E-01 2 29 GO:0000902 cell morphogenesis 0.9
-56 7.8E-01 4 5 GO:0001667 ameboidal-type cell migration 0.9

-34 7.8E-01 8 14
GO:0001933;GO:0031400;GO:0042326;GO:0032269;
GO:0045936;GO:0051248;GO:0010563 negative regulation of protein phosphorylation 0.9

59 7.7E-01 2 5 GO:0002833 positive regulation of response to biotic stimulus 0.9
-15 7.8E-01 2 72 GO:0007017 microtubule-based process 0.9
29 7.9E-01 5 17 GO:0015833;GO:0042886;GO:0008104;GO:0033036 protein localization 0.9

-53 7.9E-01 3 5 GO:0016192 vesicle-mediated transport 0.9
16 7.9E-01 2 55 GO:0048522;GO:0048518 positive regulation of biological process 0.9

Day10
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26 8.0E-01 5 20
GO:0000165;GO:0023014;GO:0035556;GO:0006468;
GO:0016310;GO:0006796;GO:0006793 phosphorus metabolic process 0.9

-19 8.1E-01 2 32 GO:0000209 protein polyubiquitination 0.9
-32 8.1E-01 5 12 GO:0006869 lipid transport 0.9
27 8.2E-01 2 14 GO:0001822 kidney development 0.9
16 8.5E-01 2 27 GO:0051641;GO:0051649 establishment of localization in cell 0.9

8 8.6E-01 3 88
GO:0022618;GO:0034622;GO:0071826;GO:0065003;
GO:0022607;GO:0043933 cellular component assembly 0.9

18 8.7E-01 2 15 GO:0006508 proteolysis 0.9

-12 8.8E-01 6 33
GO:0045859;GO:0043549;GO:0051338;GO:0050790;
GO:0065009;GO:0071900 regulation of kinase activity 0.9

-20 8.9E-01 5 10
GO:0000132;GO:0040001;GO:0051294;GO:0051293;
GO:1902850;GO:0051653 establishment of mitotic spindle orientation 0.9

-19 8.9E-01 2 10 GO:0000463;GO:0000470 maturation of LSU-rRNA 0.9
-23 9.1E-01 3 5 GO:0003360 brainstem development 0.9
-15 9.2E-01 2 8 GO:0051606 detection of stimulus 1.0
-11 9.3E-01 4 12 GO:0006886;GO:0015031;GO:0046907;GO:0045184 protein transport 1.0

3 9.5E-01 2 69 GO:0044248;GO:0009056;GO:1901575 catabolic process 1.0

-5 9.8E-01 6 9
GO:0002090;GO:0048259;GO:0030100;GO:0060627;
GO:0051049 regulation of transport 1.0

-2 9.7E-01 3 44 GO:0016567;GO:0032446;GO:0070647 protein modification by small protein conjugation or removal 1.0
2 9.7E-01 3 44 GO:0048583 regulation of response to stimulus 1.0
2 9.9E-01 2 6 GO:0002064 epithelial cell development 1.0
1 1.0E+00 2 6 GO:0035148;GO:0001843;GO:0060606 tube formation 1.0
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Supplementary Figure 1. KEGG map of the TGF-beta signaling pathway. Genes highlighted in green were present in 
the analyzed transcriptome. 
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Supplementary Figure 2. KEGG map of apoptosis. Genes highlighted in green were present in the analyzed 
transcriptome. 
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Starvation coupled with excessive light or darkness causes oxidative stress in 

Berghia stephanieae (Valdés, 2005). 
  

Jenny Melo Clavijo1, Onur Baltaci1, Angelika Preisfeld1, Gregor Christa1 

 
1Zoology and Didactics of Biology, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany 

 

Introduction 
Reactive oxygen species (ROS) such as superoxide radical (O2

•-), singlet oxygen (1O2), hydroxyl 

radical (*OH), and hydrogen peroxide (H2O2) are naturally produced as byproducts of biochemical 

reactions, for instance in the mitochondria, chloroplasts, and the endoplasmic reticulum (Halliwell 

& Gutteridge, 2015). The imbalance between the production of ROS and the antioxidant defense 

activity is considered as the cause for oxidative stress in the cells (Richier et al., 2005). Starvation is 

thought to be responsible for increased ROS production leading to harmful cellular effects like lipid 

peroxidation, protein oxidation, and DNA degradation (Domenicali et al., 2001; Pascual et al., 

2003; Lesser, 2006). Like starvation, abiotic factors such as light intensity can also induce oxidative 

stress, especially in photosymbiotic animals (Roth, 2014). Prolonged exposure to high light 

intensity can cause photodamage in the photosynthetic apparatus of the photobiont. Due to the 

prolonged high absorption of excitation energy, the reduction in photosynthetic electron transport, 

and the ongoing creation of ROS, photoinhibition may also result from light stress (Lesser, 2006). 

Likewise, darkness can induce photoinhibition, hypoxia, and endoplasmic reticulum stress 

(DeSalvo et al., 2012), and long-term darkness might even lead to telomere length shortening 

(Rouan et al., 2021). Dark stress yields an accumulation of ROS, dark-induced bleaching, cell 

death, and the breakdown of the photosymbiosis. 

 

An accumulation of ROS induces the host enzymatic defense response to act and prevent the 

damaging effects of ROS via quenching (Richier et al., 2005; Lesser, 2006). Enzymes like 

superoxide dismutase (SOD), peroxidases, glutathione reductase, glutathione S-transferase, and 

catalase (CAT), and non-enzymatic compound like reduced glutathione (GSH) participate in the 

antioxidant defense. SODs are the first defense against oxidative damage converting toxic O2
•- 
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radicals into H2O2 (Fridovich, 1995; Chung, 2017). Catalases are responsible for the reduction of 

H2O2 into water (García-Caparrós, 2021). Glutathione reductase is a flavo-protein oxidoreductase 

that reduces glutathione disulfide (GSSH) to glutathione (GSH), and is mainly generated in 

mitochondria, chloroplasts, and cytosol (Schulz et al., 1978). GSH is a critical molecule composed 

of thiol tripeptide (γ-glutamylcysteinyl-glycine) that acts as a reducing agent, scavenges ROS via 

the ascorbate-glutathione cycle (Hasanuzzaman et al., 2017), glutathiolation, or by reduction 

resulting in GSSH (García-Caparros, 2021). 

 

Oxidative stress in the context of photosymbiosis has been studied through the effects of light 

intensity and the symbiotic state in corals (Lesser, 2006; DeSalvo et al., 2012; Roth, 2014; Rouan et 

al., 2021). Marine slugs have been the subjects of studies addressing the effects of starvation and 

oxidative stress, especially in the frame of functional kleptoplasty (e.g. Christa et al., 2014; de Vries 

et al., 2015; Rey et al., 2020). In these studies, starvation under darkness is commonly used to 

determine the kleptoplast contribution to the animal host. Likewise, in photosymbiotic cladobranchs 

the symbiont retention and the nutritional support of the dinoflagellate (Symbiodiniaceae) to its host 

have been evaluated during starvation in the presence and absence of light (Kempf, 1984; Burghardt 

& Wägele, 2004, 2006, 2014; Burghardt et al., 2005, 2008a,b; Wägele & Johnsen, 2001). Yet, the 

effect of different light intensities, continuous darkness, and starvation on the slugs in terms of 

oxidative stress and antioxidant defense remains unknown.  

The aim of this study was to evaluate the effect of starvation and light intensity in the nudibranch 

Berghia stephanieae (Valdés, 2005). For this, we analyzed the antioxidant defense of the slug under 

different light conditions and starvation, focusing in three major players in ROS scavenging: GSH, 

SOD, and CAT.  

 

Materials and methods 
Exaiptasia diaphana culture 

The culture of the animals in this study was done as described in Melo Clavijo et al., (2022). 

Individuals of Exaiptasia diaphana (Rapp, 1829) were kept in 55 l tanks (60 cm x 30 cm x 30 cm) 

filled with circulating artificial seawater (ASW) (ABReef Salt, Aqua Medic, Germany) with a 

salinity of 1.02 to 1.03 s.g., temperature of 25 °C, pH 8, and light intensity of 30 mol photons m-2 

s-1 provided by RGB top light for reef tanks (Daylight Sunrise 520). Every two weeks 2 BactoBalls 

(Fauna Marin GmbH, Germany) were added and replaced to ensure a stable microbiome. Brine 
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shrimp Artemia Leach, 1819 were grown using the Artemio Set and 16 g of Artemio Mix Eggs+Salt 

(JBL, Germany). Two to three times per week, the anemones were fed freshly hatched brine shrimp 

nauplii Artemia.  

 

Berghia stephanieae culture 

The animals in this study were cultured in the way described by Melo Clavijo et al., (2022). In 

short, individuals of B. stephanieae cultivated in our lab at 23°C, at a day/night cycle of 12 h/12 h 

were kept in a 50 ml plastic container with lid (75mm, FAUST, Germany) with ASW. Freshly 

prepared ASW with salinity between 1.02 and 1.03 s.g., pH 8.0, and at 23 °C was used for water 

changes (50%) three times per week. Three times per week, the slugs were fed small E. diaphana 

anemones (7 mm foot and 4 mm oral disk or 4 mm foot and 3 mm oral disk).  

 

Experimental design and sample collection 

Forty-five specimens of B. stephanieae were randomly selected from the culture and each 

individual was placed in a 25 ml container with ASW. The animals were separated in three main 

groups: feeding (Experiment 1), starvation after light acclimation (Experiment 2), and direct 

starvation (Experiment 3). All the slugs were fed with anemones acclimated at low light. In the first 

group the slugs were feeding under high light, low light, and darkness. In the second group the 

slugs were feeding during an acclimation week under high light, low light and darkness, and starved 

for another week under the respective light intensity. Slugs in the third group were feeding under 

low light and starved directly for seven days under different light conditions. In each group, three 

subgroups were created according to the light condition: high light (90 μmol quanta m−2 s−1), low 

light (25 μmol quanta m−2 s−1), and constant darkness. Except for darkness, the slugs under high 

light and low light were kept at a day/night cycle of 12 h/12 h. For each light condition five slugs 

were used (Figure 1). 

 

During the starvation period for both starvation groups, the chlorophyll a fluorescence of the 

dinoflagellates in the slugs was measured using a Diving Pulse Amplitude Modulated (PAM) 

fluorometer (Walz, Effeltrich Germany). After the slugs were dark acclimated for 5 min, the 

maximum quantum yield (Fv/Fm; Fv = Fm -Fo; where Fo and Fm are the minimum and maximum 

fluorescence emitted by dark adapted samples, respectively) was determined by applying a 

saturation pulse (pulse duration 0.8 ms, white light, >5,000 µmol photons m−2 s−1). For length 

measurements, five images of each slug were taken with a phone camera during movement to 
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obtain the point of maximum elongation, and the average length of the individual images was 

calculated using ImageJ v2.3.0. Both measurements (length and maximum quantum yield) were 

taken at the beginning of the experiment (Day 0), at Day 2, Day 5, and after one week of starvation 

(Day 7). At Day 7 of starvation, the animals were snap frozen and stored at -80 °C until processing.  

 

 

Glutathione quantification 

The quantification of total glutathione was done following Bornhorst protocol. First the KPE Buffer 

(KH2PO4 15.9 mM, K2HPO4 81.9 mM, EDTA 8.78 mM), the glutathione in reduced form (GSH) 

and oxidized glutathione (GSSG) stock solutions (1mg/ml in KPE buffer), and extraction buffer (20 

μl Triton X-100, 120 mg sulfosalicylic acid, 20 ml KPE buffer) were prepared and stored at 4 °C 

Figure 1. Experimental design. The animals were divided in three major groups according to the experiment. 
Experiment 1: the slugs regularly fed with symbiotic anemones under high light, low light (control), and 
darkness. Experiment 2: the slugs fed during one week under high light, low light, and darkness and starved 
for one week. Experiment 3:  the slugs fed under low light and starved under high light, low light, and 
darkness for one week. Each experiment was done with 15 slugs, 5 per light intensity. Created with 
BioRender.com 
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until use. The GSH and GSSG standards were prepared by serial dilutions from 8 μM to 30 nM in 

extraction buffer, starting from a stock solution of 1 mg/ml in extraction buffer.  

The samples were homogenized in 300 μl ice-cold extraction buffer using a homogenizer (Janke & 

Kunkel Ika-Werk Ultra Turrax, Heinrich Faust GmbH, Germany), and then centrifuged at 3000 g 

for 4 min at 4 °C. The pellets were discarded and 120 μl supernatant were subsequently used. 

Solutions of DTNB (5,5′-dithiobis-(2-nitrobenzoic acid)) (2 mg DTNB in 3 ml KPE buffer), 

NADPH (2 mg NADPH in 3 ml KPE buffer), and glutathione reductase (GR) (40 μl of GR in 3 ml 

KPE buffer) were freshly prepared and stored on ice until use. A Corning™ Costar™ 96-well plate 

(Thermo Fischer, USA) was used for the quantification of total GSH and GSSG. For the plate set up 

20 μl of KPE buffer for blank, 20 μl of standards, or 20 μl of the samples’ supernatant were added 

into each well. Equal volumes of DTNB and GR solutions were mixed together at the same time, 

and 120 μl of the mixed DTNB/GR was added to each well. Exactly 30 s after, 60 μl of NADPH 

solution was added to each well. The absorbance was quantified at 412 nm using an Infinite® 200 

microplate reader (Tecan, Switzerland) and the software iControl 2.0.10. 

 

The rate of 2-nitro-5-thiobenzoic acid formation for samples and standards was calculated by the 

change in absorbance per min. Parallel, an 1:1 ethanol/KPE solution was prepared and kept on ice 

until use. Then 5 μl 2-vinylpyridine were added to the EtOH/KPE mix. For the GSSG 

quantification, 2 μl of the 2-vinylpyridine/EtOH/KPE mix were added to 100 μl of the samples’ 

supernatant and the GSSG standards, and were kept under a fume hood for 1 hour. The plate set up 

and the GSSG measurement was done exactly like the GSH as previously described. The samples’ 

supernatant was subsequently used for the quantification of total protein concentration following the 

Lowry (1951) protein assay. Briefly, the Lowry reagent mix solution was prepared using 100 ml of 

Lowry A (4 g/l NaOH, 20 g/l Na2CO3), 1 ml of Lowry B (1% CuSO4 x 5 H2O), and 1 ml of Lowry 

C (2% NaK-Tartrate). Then, 10 μl of each sample were mixed with 90 μl ddH2O and 2000 μl of 

Lowry reagent mix and incubated for 10 min at room temperature in darkness. 

After, 100 μl of Folin & Ciocalteu′s phenol reagent (1:2 diluted in ddH2O) were added to the mix 

and incubated for 30 min at room temperature in darkness. The absorbance was quantified at 578 

nm with a Genesys 10UV spectrophotometer (ThermoFisher, Germany). Bovine albumin serum 

(BSA, Sigma-Aldrich, Germany) dilutions (0–1000 μg/ml) were used as standards, starting from a 

stock solution of 1 mg/ml (Supplementary Figure 1, Supplementary Table 1).  
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Lowry results were then used to normalize GSH and GSSG results to total protein content in 

nmol/mg protein. The concentration of GSH and GSSG in the samples was calculated using the 

linear regression for the standard curve. However, based on prior tests on other slug samples that 

yielded a negative or undetectable GSSG value, the quantification of GSSG was not performed for 

the samples of these experiments. So the subsequent analysis was only done using GSH values. Yet, 

the procedure is described in detail for replication purposes in further studies.  

 

Superoxide dismutase enzymatic activity 

The enzymatic activity of the superoxide dismutase was measured using the stored frozen samples 

following Sun et al. (1988) protocol and adapted to smaller volumes. In summary, SOD activity 

involves nitroblue tetrazolium (NBT) reduction inhibition, with xanthine-xanthine oxidase acting as 

a superoxide producer (Sun et al., 1988). First, a reactive solution was prepared using xanthin 0.3 

mM as substrate, EDTA 0.6 mM, NBT 150 μg/L, Na2CO3 400 nM, and BSA 1g/L. The stock 

solution of the enzyme xanthin oxidase (XOD) was prepared with a concentration of 0.167 U/ml 

and was stored at 4 °C. To prepare the XOD solution, 9 μl (0.167 U/ml) of the XOD stock solution 

were mixed with 1.5 ml of 2M (NH4)2SO4 and kept in ice until use. For the blank measure 178 μl of 

the reactive solution and 3 μl of the XOD solution were mixed. For the target measure 178 μl of the 

reactive solution, 3 μl of the XOD solution, and 6.25 μl of the sample were mixed. Blank and 

targets were mix by vortex and incubated for 20 min at 25 °C. Subsequently, 6.25 μl of 0.8 mM 

CuCl2.2H2O to the blank and the targets to stop the reaction. Then, 3 μl of sample were added to the 

blank. Blank and targets were mix by vortex and placed in separate wells in a Corning™ Costar™ 

96-well plate (Thermo Fischer, USA). The absorbance was measured at 560 nm against distilled 

water using a Infinite® 200 microplate reader (Tecan, Switzerland) and the software iControl 2.0.10. 

The enzymatic activity (U/mg Protein) was calculated as follows, considering the total protein 

content of the supernatant and negative values as no (0) enyzmatic activity: 

 

𝐸𝑛𝑧𝑦𝑚𝑎𝑡𝑖𝑐  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =       
𝐵𝑙𝑎𝑛𝑘  𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 − 𝑇𝑎𝑟𝑔𝑒𝑡  𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

𝐵𝑙𝑎𝑛𝑘  𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛
𝑋  

20  𝑈/𝑚𝑙  𝑆𝑂𝐷
𝑚𝑔  𝑃𝑟𝑜𝑡𝑒𝑖𝑛   𝑠𝑎𝑚𝑝𝑙𝑒

𝑋  𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟 

 

Catalase enzymatic activity 

The enzymatic activity of catalases was measured using the stored frozen samples following 

Lartillot et al., (1988) protocol and adapted to smaller volumes. The protocol is based on the 

determination of the residual H2O2 by spectrophotometry. First, the phosphate buffer solution (50 
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mM H3PO4 85%, pH 6.8) and the substrate solution (10 mM H2O2 in 50 mM H3PO4, pH 6.8) were 

freshly prepared. Then, 625 μl of the substrate buffer were mixed with 5 μl of the sample by vortex 

and incubated exactly for 2 min at 37 °C. To stop the reaction, 125 μl of 1N HCl were added to the 

mix. The absorbance (Ar) was then quantified at 240 nm with a Genesys 10UV spectrophotometer 

(ThermoFisher, Germany). For the control, 625 μl of the phosphate buffer mixed with 125 μl of 1N 

HCl were used. The absorbance was quantified at time zero (As) on a solution of 625 μl of the 

substrate buffer with 125 μl of 1N HCl. To eliminate the absorbance of the protein sample, the 

absorbance of a solution containing 625 μl of the phosphate buffer, 5 μl of the sample, and 125 μl 

of 1N HCl (At) was measured. The absorbance variation due to enzymatic activity was calculated 

as: A= (As+At)-Ar. The enzymatic activity (U/ml) was calculated according to Lartillot et al., 

(1988) with the following equation: 

𝐸𝑛𝑧𝑦𝑚𝑎𝑡𝑖𝑐  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =   
𝐴 ∗ 𝑉𝑡
𝜖 ∗ 𝑡 ∗ 𝑉𝑠

 

 

Where A is the absorbance variation due to enzymatic activity, Vt is the total reaction volume, ϵ is 

the specific absorbance coefficient of H2O2 (0.0396 cm2/μmol), t is the time of the reaction (2 min), 

and Vs is the sample volume (5 μl). Specific enzymatic activity was then calculated considering the 

total protein content of the supernatant (U/mg protein). Negative values were considered as no (0) 

enyzmatic activity. 

 

Statistical analyses 

Kruskal-Wallis tests were done to determine if there were significant differences between the 

conditions for each assay. Wilcoxon tests were used for pairwise comparisons using the Benjamini 

& Hochberg (1995) (BH) correction for adjusting the p value. All statistical analyses were 

performed with R (R Core Team, 2022). Results were considered statistically significant at a 

significance level of 0.05.  

 

Results 

Direct starvation induces higher concentration of glutathione 

The glutathione concentration was quantified in slugs feeding under different light conditions 

(Experiment 1), in slugs feeding and acclimated to each light condition for a week and starved for 

seven days under the same light condition (Experiment 2), and in slugs that were feeding under low 
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light and starved directly for 

seven days with no 

acclimation period under 

different light conditions 

(Experiment 3) 

(Supplementary Table 2).   

The slugs that fed constantly 

under high light, low light, 

and darkness showed a lower 

concentration of GSH than the 

slugs acclimated and starved, 

and the slugs directly starved 

(Figure 2). During feeding, the GSH concentration was significantly higher under darkness 

(3.06x106 nM GSH nmol-1 mg-1 Protein ± 1x106) compared to high light (1.39x106 nM GSH nmol-1 

mg-1 Protein ± 6x105, p = 0.048), and compared to low light (1.12x106 nM GSH nmol-1 mg-1 Protein 

± 3x105, p = 0.024) (Figure 2). There was no significant difference between the GSH concentration 

in slugs feeding under low light and high light (p=0.69). In general, the slugs increased in length 

regardless of the light condition they were exposed to (high light: 109 %  ± 2 % of the initial length; 

low light: 108 % ± 1%; darkness: 116% ± 3%) (Figure 3). 

The GSH concentration in slugs that were feeding and acclimated to each light condition for a 

Figure 2. Glutathione concentration in B. stephanieae. Boxplots show the 
concentration values of GSH, where the whiskers are the minimum and 
maximum values, and the centers correspond to the medians. The asterisk (*) 
represents significant values. 
	
  

Figure 3. Relative length of B. stephanieae. Boxplots show the relative length (cm) of the animals in each 
experiment under high light, low light, and darkness, where the whiskers are the minimum and maximum values, 
and the centers correspond to the medians. 
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week, and then starved under the same light conditions for seven days was similar in all conditions 

(Experiment 2; High light: 2.9 x 106 nM GSH nmol-1 mg-1 Protein ± 1 x 106; Low light: 3.8 x 106 ± 1 

x 106; Darkness: 4.2 x 106 ± 7 x 106) (Figure 2). No significant differences were found between the 

GSH concentrations under different light conditions (Kruskal-Wallis p=0.18). The length of starved 

animals under high light (99.9 % ± 9.9 % of the initial length) and darkness (101 % ± 22.45 %) 

seemed to stay constant, while in low light it decreased 2 % (98 % ± 10.2 %)(Figure 3). The 

maximum quantum yield (Fv/Fm) of Symbiodiniaceae in these slugs dropped notably after the fifth 

day of starvation (Figure 4). 

Likewise, in slugs that starved 

directly without an acclimation 

period, there were no significant 

differences in the GSH 

concentration under different light 

conditions (Experiment 3; High 

light: 7.8 x 106 nM GSH nmol-1 

mg-1 Protein ± 2 x 106; Low light: 

7.3 x 106 ± 1 x 106; Darkness: 8.9 x 

106 ± 1 x 106; Wilcoxon p=0.46 D-

HL and D-LL, p=0.17 HL-LL) 

(Figure 2). The length of the 

animals decreased around 12 % in 

all conditions (High light: 88 % ± 11.2 %; Low light: 85% ± 6.9 %; Darkness: 89% ± 8.6%) (Figure 

3). The maximum quantum yield (Fv/Fm) of Symbiodiniaceae in these slugs declined to 0 after the 

fifth day of starvation (Figure 4). 

 

GSH concentrations of slugs under high light, low light, and darkness were also compared between 

acclimation-starvation (Experiment 2) and direct starvation treatments (Experiment 3). Overall, the 

GSH concentration in each light intensity condition almost duplicated in slugs directly starved 

compared to acclimated and starved slugs (Figure 2). There were significant differences between 

the GSH concentrations of acclimation-starvation and direct starvation treatments in all light 

conditions (Wilcoxon p=0.024 HL Exp2-Exp3, p=0.017 LL Exp2-Exp3, p=0.017 D Exp2-Exp3). 

 

 

Figure 4. Maximum quantum yield of Symbiodiniaceae in B. 
stephanieae. Boxplots show the Fv/Fm of the photobionts within 
the animal host in experiments 2 and 3 under high light, low light, 
and darkness, where the whiskers are the minimum and maximum 
values, and the centers correspond to the medians. 
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Direct starvation might induce higher SOD enzymatic activity under high light 

The enzymatic activity of SOD and catalase were only measured in starved slugs of experiments 2 

and 3. In general SOD enzymatic activity ranged between 0.06 and 7.8 IU/mg protein in starved 

slugs. For the experiment 2, the levels of SOD activity in light-acclimated-starved slugs where 

almost undetectable in all light conditions and no significant differences were found between 

treatments (High light: 0.16 IU/ mg Protein ± 0.28; Low 

light: 0.31 ± 0.70; Darkness: 0.38 ± 0.58; Wilcoxon p=0.8 

D-HL, p=0.8 D-LL and HL-LL). 

Starved slugs of the experiment 3 with no light 

acclimation showed significantly higher levels of SOD 

activity, especially under high light (High light: 6.33 IU/ 

mg Protein ± 2.24; Low light: 4.11± 2.98; Darkness: 

0.54 ± 0.93; Wilcoxon p=0.033 D-HL, p=0.1 D-LL, 

p=0.151 HL-LL) (Figure 5). Overall, the SOD activity 

was higher in directly starved slugs under high light and 

low light compared to light-acclimated-starved slugs 

(Figure 5). Yet, these SOD activity values were significant 

only in high light (Kruskal-Wallis p=0.004, Wilcoxon 

p=0.045 HL 

Exp2-Exp3, 

p=0.135 LL Exp2-Exp3, p=1 D Exp2-Exp3) 

(Supplementary Table 3).  

 

Starvation induces similar CAT enzymatic activity 

regardless of the light intensity or light acclimation 

The levels of catalase activity in starved slugs ranged from 

0.5 to 36.9 IU/mg protein. Acclimated starved slugs 

(experiment 2) showed almost undetectable levels of 

catalase activity in all light conditions and no significant 

differences were found between treatments (High light: 

2.63 IU/ mg Protein ± 2.39; Low light: 0.11 ± 0.24; 

Darkness: 4.74 ± 8.95; Wilcoxon p=0.59 D-HL and D-LL, 

p=0.13 HL-LL). Slugs starved directly (experiment 3) 

Figure 5. SOD activity in B. stephanieae. 
Boxplots show the SOD activity (IU/mg 
protein) in the slug in experiments 2 and 3 
under high light, low light, and darkness, 
where the whiskers are the minimum and 
maximum values, and the centers 
correspond to the medians. Asterisks (*) 
show significant values. Negative values 
were taken as 0 activity for plotting. 
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showed higher levels of catalase activity under high light and undetectable levels in low light, but 

no significant differences were found (High light: 11.1 IU/ mg Protein ± 6.43; Low light: 

9.45  ± 18.78; Darkness: 14.56 ± 15.08; Wilcoxon p=1 D-HL, p=0.5 D-LL and HL-LL) (Figure 6). 

Further, the CAT activity was higher in slugs directly starved under high light and darkness 

compared to acclimated and starved slugs (Figure 6). However, no significant differences were 

found between the CAT activity values of acclimation-starvation and direct starvation treatments in 

all light conditions (Kruskal-Wallis p=0.06; Wilcoxon p=0.12 HL Exp2-Exp3, p=0.60 LL Exp2-

Exp3, p=0.51 D Exp2-Exp3) (Supplementary Table 4). 

 

Discussion 
In the present study we provide some insight on the effect of starvation and light intensity on 

photosymbiotic cladobranch slugs. Our results show that with a steady food supply, darkness acts as 

more damaging stressor than higher light intensities. Starvation induces symptoms of oxidative 

stress as indicated by the increased levels of antioxidant activity. Food depletion combined with 

light stress and no light acclimation might trigger a higher antioxidant defense in Berghia 

stephanieae especially under high light intensity. Thus, starvation alone is a pro-oxidant condition 

that together with external abiotic factors like light enhances the stress response in the slugs. 

  

The effect of starvation and light stress has been previously evaluated in photosymbiotic 

scleractinian coral species like Stylophora pistillata (Esper, 1792). Bleached corals resisted light 

stress (500 μmoles photons m-2s-1) better when fed; they exhibit less oxidative damage and protein 

degradation than starved individuals (Levy et al., 2016). Heterotrophy protects organisms from 

oxidative damage and aids in protein and DNA repair. Such is also the case of B. stephanieae, the 

slugs tolerated high light intensity and darkness better during feeding than under starvation (Figure 

2). Here, the levels of GSH incremented almost twice during starvation compared with fed slugs.  

 

Starvation also contributes to the bleaching response (the symbiont expulsion) in photosymbiotic 

animals. High light intensity induces the loss of ca 80% of the symbionts in starved corals, which is 

reduced to 15% loss in well-fed corals (Levy et al., 2016). The photosynthetic activity of 

Symbiodiniaceae in B. stephanieae dropped to 0 after 2 days of starvation regardless of the light 

condition or the light acclimation period (Figure 4). The symbionts in the slug are being digested 

and/or expelled in the feces during starvation, which also happens when the food is not limited 
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under regular light conditions. Previous studies have shown that this slug can retain the symbionts 

for up to 10 days during starvation under regular light intensity (80 μmol photons m−2 s−1), losing 

90% of symbiont cells by day 5 of starvation (Monteiro et al., 2019). However no maximum 

quantum yield values of the symbionts have been recorded in these reports, so the slug might 

looked pigmented and some symbiont cells might be visible, but the dinoflagellates might no longer 

be photosynthetically active even before the 5 day threshold. 

 

Our results show that the combination of two stressors, starvation with no light acclimation is more 

damaging to the slugs. Slugs directly starved showed almost six times more GSH than the fed slugs, 

and twice or three times more GSH than light-acclimated-starved slugs. We found differences in 

GSH levels between light-acclimation and direct starvation, but not within the treatments. Thus, the 

GSH levels seen in light-acclimated slugs are more likely linked to starvation stress rather than light 

stress. Hence, the GSH levels detected in directly starved slugs are the result of the synergistic 

effects of starvation and light stress, similar to the combined effect seen in light-stressed starved 

corals (Levy et al., 2016). The light-acclimated starved slugs under low light (Experiment 2) should 

have had similar GSH concentration than the slugs directly starved under low light (Experiment 3). 

Yet, the GSH levels significantly doubled, and SOD and CAT activity increased but not 

significantly in the slugs of experiment 3 compared to the ones in experiment 2. A possible 

explanation could be based on the individual fitness, since their length decrease more than the slugs 

in experiment 2.  

 

High light intensity combined with starvation seems to induce symptoms of oxidative stress, as 

indicated by the enhanced SOD activity in the slugs. This might be explained by the fact that SOD 

is the first line of antioxidant defense (Lesser, 2006; Richier, 2003, 2005), and could suggest that 

toxic O2
•- levels increase faster than other types of ROS under high light intensities. Similarly, in 

light-stressed corals SOD genes were also highly up-regulated as an oxidative stress symptom 

(Levy et al., 2016). However, in the slugs SOD activity levels were much lower than the ones 

detected on other photosymbiotic mollusks (unstressed 11-105 U/mg protein depending on the 

tissue: Schick & Dykens, 1985; 200 U/mg protein in heat-stressed Tridacna crocea Lamarck, 1819 

after 12 h, Zhou et al., 2018). The difference could be based on the different methods used or could 

also indicate an effect of the sample storage on the activity measurement. Here, the quantification 

was carried out on frozen samples after sample preparation, and not immediately after protein 



Starvation and light stress in Berghia stephanieae Chapter 2.6 
 
	
  

163 

extraction. To confirm the effect of high light on SOD activity in the slugs, a replication of these 

methods would be required. 

 

Catalase activity was similar in all light and starvation treatments in the slugs. Contrary to SOD, the 

CAT activity values obtained here were comparable to the ones detected in heat-stressed mollusks 

(approx. 10 U/mg protein; Zhou et al., 2018) and other photosymbiotic animals (20-40 U/mg 

protein; Dykens & Shick, 1984; Shick & Dykens, 1985; Merle et al., 2007). Starvation induces an 

increase in SOD and CAT activity (Morales et al., 2004; Suda et al., 2015). SOD activity can lead 

to an enhanced H2O2 generation, which can be normally catabolized by peroxidases. When the H2O2 

dose is higher and potentially harmful, catalases are more efficient H2O2 quenchers (Halliwell & 

Gutteridge, 2015). For instance, in marine mollusks like the Antarctic limpet Nacella concinna 

(Strebel, 1908), CAT activity increased in animals starved for a week compared to fed ones. In 

prolonged starvation, SOD activity increased first, followed by an increment in the CAT activity in 

these limpets (Suda et al., 2015). In the slugs, starvation induces a higher CAT gene expression 

(Melo Clavijo et al., 2022) and CAT enzymatic activity regardless of the light condition, but further 

comparisons against fed slugs are needed to have a more complete picture.  

 

Darkness seems to have an additional stress effect during feeding, indicated by the significantly 

higher GSH concentration (Figure 2: Experiment 1). In corals, prolonged darkness treatment causes 

hypoxia and likely photodamage in the symbiont photosynthetic machinery (DeSalvo et al., 2012). 

The anemones given to the slugs were acclimated to low light, so the symptoms of oxidative stress 

seen in slugs feeding under darkness might no be a result of prior stress of the anemone’s symbiont. 

However, the change from low light to continuous darkness could have induced a stress response in 

the symbiont once in the slug, becoming a stressor for its host. Other cladobranch species fed in 

darkness show a decrease on the number of photosynthetically active symbiont cells, which could 

be due to symbiont digestion and a switch in the symbiont to heterotrophic state (Burghardt et al., 

2005). Harboring symbionts in darkness seems to be less beneficial for other photosymbiotic hosts. 

Such is the case of Paramecium bursaria (Ehrenberg) Focker, 1836 and its symbiont Chlorella 

Beijerinck, 1890; the host can grow faster symbiont-free than in symbiotic state under darkness 

(Lowe et al., 2016; Sørensen et al., 2019). Darkness also affects circadian rhythm of the animal host 

(Shirley & Findley, 1978), so the higher GSH concentration detected in darkness during feeding 

might be a result of stress induced by the symbiont combined with alterations in the circadian 

rhythm in the slugs. 
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Supplementary Material 

 

 

 

 

Supplementary Table 1. Calibration values of BSA for Lowry protein assay. R1, R2, and R3: 

replicates 1, 2, and 3. 
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Calibration curve BSA for Lowry Test

BSA$Concentration$
(μg/ml) R1 R2 R3 Average

Standard$
deviation

25 0,001 0,003 0,003 0,002 0,001
50 0,004 0,005 0,006 0,005 0,001
75 0,015 0,01 0,009 0,011 0,003

100 0,024 0,022 0,022 0,023 0,001
125 0,025 0,026 0,022 0,024 0,002
150 0,031 0,033 0,032 0,032 0,001
175 0,039 0,038 0,037 0,038 0,001
200 0,045 0,041 0,043 0,043 0,002
300 0,063 0,065 0,07 0,066 0,004
400 0,085 0,085 0,093 0,088 0,005
500 0,093 0,108 0,108 0,103 0,009
600 0,117 0,121 0,121 0,120 0,002
700 0,141 0,138 0,146 0,142 0,004
800 0,157 0,153 0,153 0,154 0,002
900 0,174 0,168 0,168 0,170 0,003
1000 0,18 0,186 0,175 0,180 0,006

BSA Concentration 
(μg/ml) R1 R2 R3 Average Standard 

deviation
25 0.001 0.003 0.003 0.002 0.001
50 0.004 0.005 0.006 0.005 0.001
75 0.015 0.01 0.009 0.011 0.003
100 0.024 0.022 0.022 0.023 0.001
125 0.025 0.026 0.022 0.024 0.002
150 0.031 0.033 0.032 0.032 0.001
175 0.039 0.038 0.037 0.038 0.001
200 0.045 0.041 0.043 0.043 0.002
300 0.063 0.065 0.070 0.066 0.004
400 0.085 0.085 0.093 0.088 0.005
500 0.093 0.108 0.108 0.103 0.009
600 0.117 0.121 0.121 0.120 0.002
700 0.141 0.138 0.146 0.142 0.004
800 0.157 0.153 0.153 0.154 0.002
900 0.174 0.168 0.168 0.170 0.003
1000 0.180 0.186 0.175 0.180 0.006

Absorbance$(578$nm)

Absorbance (578 nm)

Supplementary Figure 1. Calibration curve BSA for Lowry protein assay. BSA was used 
as a reference protein.  
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Supplementary Table 2. GSH concentration values. SD: Standard deviation. 
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B1 2.35E-06 0.006 0.008 7657.048 1197349.232
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Supplementary Table 3. SOD concentration values. SD: Standard deviation.	
  
	
  

	
  
	
  
Supplementary Table 4. CAT concentration values. SD: Standard deviation.  
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Activity 
(IU/mg) SD

B1 0.092 0.098 -0.060 0.006 5.812 -0.205 0.000
B2 0.132 0.094 0.285 0.004 3.628 1.568 1.568
B3 0.094 0.150 -0.596 0.004 3.878 -3.073 0.000
B4 0.104 0.146 -0.414 0.004 3.945 -2.096 0.000
B5 0.097 0.159 -0.646 0.005 5.262 -2.454 0.000
B6 0.093 0.095 -0.023 0.006 6.362 -0.071 0.000
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B9 0.112 0.113 -0.010 0.004 4.378 -0.045 0.000
B10 0.136 0.115 0.156 0.005 4.762 0.656 0.656
B11 0.094 0.092 0.021 0.006 5.795 0.074 0.074
B12 0.090 0.094 -0.042 0.004 4.128 -0.203 0.000
B13 0.095 0.100 -0.052 0.004 3.978 -0.260 0.000
B14 0.100 0.092 0.078 0.004 3.562 0.438 0.438
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B9 0.536 0.184 0.657 0.002 1.778 7.388 7.388
B10 0.551 0.154 0.720 0.002 2.078 6.927 6.927
B11 0.192 0.207 -0.081 0.002 1.495 -1.080 0.000
B12 0.099 0.096 0.034 0.001 1.178 0.581 0.581
B13 0.116 0.150 -0.286 0.002 2.178 -2.629 0.000
B14 0.179 0.209 -0.165 0.002 2.012 -1.643 0.000
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B1 0.056 0.066 -0.007 -14.681 5.812 -2.526 0.000
B2 0.046 0.051 -0.002 -4.194 3.628 -1.156 0.000
B3 0.063 0.065 0.001 2.097 3.878 0.541 0.541
B4 0.045 0.051 -0.003 -6.292 3.945 -1.595 0.000
B5 0.060 0.073 -0.010 -20.972 5.262 -3.986 0.000
B6 0.046 0.096 -0.047 -98.569 6.362 -15.494 0.000
B7 0.048 0.047 0.004 8.389 3.878 2.163 2.163
B8 0.061 0.049 0.015 31.458 4.995 6.298 6.298
B9 0.053 0.049 0.007 14.681 4.378 3.353 3.353
B10 0.055 0.055 0.003 6.292 4.762 1.321 1.321
B11 0.066 0.080 -0.011 -23.069 5.795 -3.981 0.000
B12 0.047 0.078 -0.028 -58.722 4.128 -14.224 0.000
B13 0.120 0.084 0.039 81.792 3.978 20.559 20.559
B14 0.052 0.092 -0.037 -77.597 3.562 -21.787 0.000
B15 0.060 0.057 0.006 12.583 3.978 3.163 3.163

B1 0.056 0.049 0.010 20.972 2.462 8.520 8.520
B2 0.062 0.089 -0.024 -50.333 2.428 -20.728 0.000
B3 0.065 0.099 -0.031 -65.014 2.245 -28.959 0.000
B4 0.086 0.054 0.035 73.403 1.895 38.735 38.735
B5 0.062 0.073 -0.008 -16.778 1.762 -9.524 0.000
B6 0.072 0.068 0.007 14.681 2.212 6.638 6.638
B7 0.054 0.047 0.010 20.972 1.562 13.429 13.429
B8 0.060 0.050 0.013 27.264 2.295 11.880 11.880
B9 0.063 0.063 0.003 6.292 1.778 3.538 3.538
B10 0.083 0.066 0.020 41.944 2.078 20.182 20.182
B11 0.056 0.051 0.008 16.778 1.495 11.223 11.223
B12 0.072 0.053 0.022 46.139 1.178 39.156 39.156
B13 0.073 0.070 0.006 12.583 2.178 5.777 5.777
B14 0.063 0.050 0.016 33.556 2.012 16.680 16.680
B15 0.059 0.138 -0.076 -159.389 2.128 -74.889 0.000
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Chapter 3 

General Discussion 
 

The present dissertation aimed to understand the molecular mechanisms behind the onset and the 

maintenance of the photosymbiosis in heterobranch sea slugs. A special focus was given to the role 

of the host’s innate immune system in these associations. Moreover, this work also explored the 

stress response induced by starvation and abiotic factors such as light intensity and continuous 

darkness in sea slugs, and the implications on the photosymbiotic association. Lastly, it provides 

new genomic resources that serve as useful molecular tools to understand these unique and 

fascinating photosynthetic symbioses. 

Initiation of photosymbiosis: photobiont recognition 
 

Figure 1. Summary of PRRs potentially involved in photobiont recognition in marine slugs. E. diapahana data 
serves as a reference (reviewed in Mansfield & Gilmore, 2019). Based on Chan et al. (2018); Melo Clavijo (2018); 
Melo Clavijo et al. (2020, 2022); Mendoza et al. (2023). The color code of the rectangles is based on the presence of 
the PRRs in transcriptomes or genomes (when available) and their regulation. Cnidarian ficolin-like receptors 
(CniFLs) also contain fibrinogen domain in combination with collagen and immunoglobulin domains, they were not 
classified as FReDs, but as an entire different group (*) (Baumgarten et al., 2015). Photos: E. diaphana, B. 
stephanieae, E. viridis: Jenny Melo; E. timida, E. cornigera: Heike Wägele. Created with BioRender.com.   
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A central finding of this study is that distantly related animals seem to recognize different 

symbionts using conserved mechanisms of the innate immune system. Whether the animal host 

engulfs an organelle or an entire organism, similar receptors are present and are highly expressed 

during the initial contact between the animal host cell and the potential symbiont (Melo Clavijo et 

al., 2020, 2022), at least at the transcriptional level. Scavenger receptors from the class B, class E-

like, C-type lectins, and TSRs are candidates for the symbiont recognition in sacoglossans (Melo 

Clavijo et al., 2020), in cladobranchs (Melo Clavijo et al., 2022), and in photosymbiotic cnidarians 

(reviewed in Mansfield & Gilmore, 2019) (Figure 1). So far, no studies have examined the 

receptors potentially involved in the symbiont recognition in photosymbiotic bivalves or other 

dinoflagellate-bearing animals. Nevertheless, based on the hypothesis that innate elements are 

conserved across distantly divergent taxa, it would be expected that homologue receptors could be 

involved in the dinoflagellate recognition in bivalves and other animals hosting Symbiodiniaceae.  

 

The present study is the first to highlight that fibrinogen-related domain-containing proteins 

(FReDs) seem to be relevant for the selective uptake of dinoflagellates, particularly for 

cladobranchs (Melo Clavijo et al., 2022). The FReDs are involved in non-self recognition, 

especially relevant for the pathogen recognition and defense against them (Hanington & Zhang, 

2011; Adema, 2015; Gordy et al., 2015). This group of proteins is characterized by the fibrinogen 

domain at the C-terminal, followed by different domains at the N-terminal (Romero et al., 2011). 

Cnidarians have similar domain architectures, but they are classified as a separate group of proteins 

called cnidarian ficolin-like proteins (CniFLs) (Baumgarten et al., 2015). These CniFLs contain 

fibrinogen domain, immunoglobulin, collagen at the N-terminal, transmembrane regions, and in 

some cases whey acidic protein domain (WAP) (Baumgarten et al., 2015; van der Burg et al., 

2016). However, more evidence is needed to confirm their involvement in the symbiosis onset. In 

gastropods, fibrinogen-containing proteins have the C-terminal fibrinogen domain followed by one 

or two immunoglobulin domains at the N-terminal and are classified as FREPs or IgSF-FREPs 

(Adema et al., 1997; Gorbushin et al., 2010; Adema, 2015). They have been identified and 

characterized only in Heterobranchia in the freshwater snail Biomphalaria glabrata (Say, 1818) 

(Adema et al., 1997), the sea hare Aplysia californica Cooper, 1863 (Gorbushin et al., 2010), and 

the marine gastropod Littorina littorea (Linnaeus, 1758) (Gorbushin & Borisova, 2015). Within 

heterobranchia, FReDs have been identified in the sacoglossan transcriptomes of the non-retention 

species Placida dendritica (Alder & Hancock, 1843), the StR species Elysia cornigera, and the LtR 

species E. timida and E. chlorotica (Melo Clavijo, 2018). However, expression analyses of these 
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PRRs need to be conducted to understand if they are involved in the onset of functional 

kleptoplasty. The fibrinogen-like proteins identified in B. stephanieae only had one fibrinogen 

domain and were annotated as fibroleukin or fibrinogen-like protein 2 (Melo Clavijo et al., 2022). 

These could be protein sequences that only contain this domain as in other mollusks, and thus 

would be assigned as FReDs (Adema, 2015). Alternatively, they could be incomplete sequences 

lacking the IgSF domain and would still belong to the IgSF-FREPs, similar to the FREPs 1, 5, 6, 8, 

9, 10, and 11 identified in Biomphalaria glabrata (Hanington & Zhang, 2011). Due to their function 

as PRRs and their expression pattern, they are possible candidates in the initiation of the 

photosymbiosis and their involvement warrants further evidence. Additional studies targeting these 

proteins would be needed to clarify their evolution within Heterobranchia, and if they are present as 

IgSF-FREPs or only as FReDs in other cladobranchs. In the context of photosymbiosis, more 

research into the role of these PRRs in recognizing Symbiodiniaceae in species with stable 

symbiosis is essential. This also applies to the other PRRs aforementioned. Immunohistology assays 

and in situ hybridization (ISH) could clarify the location of these receptors within the animal cell. 

Combined with the gene expression at a specific time, this approach could reveal valuable 

information on the mechanisms of symbiont recognition.  

 

In the symbiont recognition process, not only the host’s PRRs are relevant, but also the symbiont’s 

MAMPs. When the symbiont is an entire organism like Symbiodiniaceae, there is more evidence 

regarding the type of MAMPs that it produces, specifically the glycome. This information is crucial 

for their potential role in the host colonization. For instance, N-glycans seem to influence the speed 

and success of the host colonization by Symbiodiniaceae (Tivey et al., 2020). Further, the 

abundance of N-glycans present in Symbiodiniaceae cell surface has a direct effect on the uptake by 

the host (Tivey et al., 2020). For instance, D-galactose residues are more abundant in the cell 

surface of compatible symbionts like Breviolum minutum and Cladocopium goreaui than in 

incompatible and free-living species like Fugacium kawagutii (Tortorelli et al., 2022). Not only N-

glycans abundance is relevant for the onset of symbiosis, but also the proportion of these glycans 

within a specific range. For example, low and high abundance of high-mannose glycans reduces 

colonization success (Lin et al., 2000; Wood-Charlson, et al., 2006; Tivey et al., 2020). Several 

studies support the interaction of Symbiodiniaceae glycans with the animal host lectins (reviewed in 

Davy et al., 2012). For instance, D-galactose residues interact with cnidarian host lectins like the 

SLL2 (Jimbo et al., 2000, 2005, 2013; Koike et al., 2004) and the CeCL (Jimbo et al., 2010). In 

particular, β-D-galactose residues are crucial for the recognition of suitable symbionts, and other 
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sugar residues like L-fucose, D-xylose, and D-galacturonic acid are likely involved in the 

photosymbiosis onset in cnidarians (Tortorelli et al., 2022). Similar glycan-lectins interactions may 

be also present between Symbiodiniaceae and cladobranchs.  

In the case of functional kleptoplasty, where the symbiont is a stolen organelle, the MAMPs have 

been only hypothesized based on the chloroplast's cyanobacterial past. It is unclear if MAMPs are 

present in the chloroplasts, or if they interact with the sacoglossan host lectins (Melo Clavijo et al., 

2020). To date, no study has examined the chloroplast glycome of any of the algae sacoglossan 

slugs feed on. Nonetheless, there is a potential lectin-glycan interaction based on the abundance and 

presence of galactolipids in the outer membranes of primary and secondary chloroplasts and the 

higher expression of lectins during the initial contact between the sacoglossan slug and the algae 

food source. Therefore, functional studies must be carried out from the perspective of both the 

animal host PRRs and the kleptoplasts. 

 

Photobiont tolerance and maintenance 

Identifying the receptors potentially involved in the symbiont recognition is the first step to 

understanding photosymbiosis in sea slugs. This study shed first light on potential mechanisms of 

photobiont recognition in sea slugs, but the subsequent steps leading to symbiont maintenance are 

still unclear. The first assumption is that recognition triggers phagocytosis of the potential 

symbiont. A phagosome would then engulf the symbiont. In intracellular symbioses, the phagosome 

serves as the membrane that connects the host and its symbiont, also known as symbiosome 

(Neckelmann & Muscatine, 1983; Hinde & Trautman, 2001; Kazandjian et al., 2008). However, the 

mechanisms behind the symbiosome formation are still poorly understood. In cladobranchs, for 

instance in B. stephanieae, a membrane surrounds Symbiodiniaceae (Figure 2D in Rola et al., 

2022). As reported in other cladobranchs such as Baeolidia moebii Bergh, 1888 (formerly known as 

Berghia major), species of Melibe, and Pteraeolidia ianthina, Symbiodiniaceae reside in vacuoles 

within the “carrier” cells of the digestive gland as the result of phagocytosis (Kempf, 1984). In 

some cladobranch species like P. ianthina and M. engeli, Symbiodiniaceae are located not only 

within the digestive glandular epithelium, but also in tubules and cisternae originated from the 

digestive gland (Rudman, 1981a; Wägele & Johnsen, 2001; Burghardt & Wägele, 2014). Carrier 

cells arrange closely together forming these fine tubules in P. ianthina. The membrane of these 

carrier cells surrounds three to five Symbiodiniaceae cells rather than a single cell (Wägele & 

Johnsen, 2001). This particular case shares structural similarities with the zooxanthellal tubular 
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system in photosymbiotic clams, where epithelial siphonal mantel cells line and form the tubules 

housing large numbers of Symbiodiniaceae cells extracellularly (Norton et al., 1992).  

In Sacoglossa, the membrane matter is still debated. Several authors have reported the presence of 

the host phagosome membrane surrounding some kleptoplasts but not all, in Elysia viridis, 

Costasiella ocellifera, E. timida juveniles, and Placida dendritica; While other studies found that a 

phagosome membrane is absent and the kleptoplast is in direct contact with the animal cytosol, for 

instance in E. timida adults and E. chlorotica (reviewed in Wägele & Martin, 2014). These 

observations led to the hypothesis that the presence of a phagosome membrane is correlated with 

the kleptoplast digestion, where kleptoplasts within a phagosome membrane are quickly digested 

and kleptoplasts without this membrane are retained longer (Marín & Ros, 1993; Evertsen & 

Johnsen, 2009; Wägele & Martin, 2014; Martin et al., 2015; Schmitt, 2020). However, the apparent 

absence of the membrane in some kleptoplasts does not necessarily imply that it does not exist. 

During fixation and tissue processing for electron microscopy, the membrane can rupture. Other 

studies have confirmed the presence of such membrane tightly surrounding the kleptoplasts (e.g. 

Mondy & Pierce, 2003; Curtis et al., 2006). Even more enigmatic is what happens to the 

kleptoplasts in some slug species that consume Vaucheria litorea, like E. chlorotica. The 

chloroplasts of this xanthophyte alga are surrounded by four membranes, indicating a secondary 

endosymbiosis event. When they are phagocytized, these kleptoplasts lose two of their four 

membranes (Rumpho et al., 2001). It is still unknown why this occurs and whether it also the case 

in other sacoglossan species that also feed on Vaucheria and incorporate their chloroplasts, such as 

Alderia modesta (Lóven, 1844).  

 

In cnidarians, once the symbiont is engulfed, several cellular mechanisms promote the maintenance 

of the symbiont within the host cell, establishing a stable symbiosis. Usually, early phagosomes 

mature into functional ones by fusing with lysosomes. Yet, cnidarian phagosomes containing 

healthy symbionts do not fuse with lysosomes, inhibiting maturation and leading to the symbiosis 

maintenance (e.g. Fitt & Trench, 1983; Fransolet et al., 2012). Thus, a crucial step in symbiont 

maintenance is to stop the phagosome maturation and prevent symbiont digestion (symbiophagy). 

Rab proteins mediate this process. In photosymbiotic cnidarians like E. diaphana, Rab5 marks 

phagosomes with healthy symbionts (Chen et al., 2004), while Rab7 labels phagosomes with 

damaged ones. The damage can be caused by heat or photosynthesis blockers like DCMU (3-(3,4-

dichlorophenyl)-1,1-dimethylurea) (Chen et al., 2003). Similar to Rab7, Rab11 is only present in 
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phagosomes containing damaged symbionts and acts during the endosome recycling (Zerial & 

McBride, 2001; Chen et al., 2005) (Figure 2).  

 

In sea slugs, the mechanisms related to the phagosome maturation are only beginning to be explored 

(Figure 2). In the unstable symbiosis between B. stephanieae and the dinoflagellate Breviolum 

minutum, Rab5, Rab7, and Rab11 are up-regulated together with lysosome proteins LAMP1 and 2 

in the presence of the symbiont. This expression pattern indicates an ongoing symbiophagy, rather 

than an inhibition of the phagosome maturation (Melo Clavijo et al., 2022). Several possibilities can 

explain this expression pattern. For instance, the slugs cannot distinguish phagosome content in the 

long term and digest symbionts even if they are healthy. Moreover, B. minutum might be unable to 

change the chemical properties of the phagosome membrane, to interfere with the endosome 

Figure 2. Summary of some of the players in photobiont maintenance in marine slugs. E. diapahana data serves as a 
reference (reviewed in Mansfield & Gilmore, 2019). Based on Chan et al., (2018); Melo Clavijo et al., (2022). The 
color code of the rectangles is based on the presence of the elements in transcriptomes or genomes (when available) 
and their regulation. Phosphorylation evidence (*) (Detournay et al., 2012). Photos: E. diaphana, B. stephanieae, E. 
viridis: Jenny Melo; E. timida, E. cornigera: Heike Wägele. Created with BioRender.com.   
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recycling, or to prevent the phagosome maturation and its own digestion. Many other intracellular 

microbial pathogens like Leishmania donovani (Laveran & Mesnil, 1903) Ross, 1903, Tripanosoma 

cruzi Chagas, 1909, Mycobacterium Lehmann & Neumann, 1896, and Salmonella Lignières, 1900 

can selectively retain Rab5 and prevent Rab7 and Rab11 from marking their phagosomes inhibiting 

the fusion with lysosomes (Scianimanico et al., 1999; Duclos et al., 2000; Hashim et al., 2000; 

Machado et al., 2000). Similarly, apicomplexan parasites, the sister taxon of dinoflagellates 

(Janouškovec et al., 2010), are able to manipulate host’s Rab functions and expression levels 

(Coppens & Romano, 2020). To date, it remains unknown how Symbiodiniaceae adapts to the 

highly acidic phagosome environment, and how it survives or evades the phagosome maturation. 

Likewise, there is no information about the inhibition of the phagosome maturation in cladobranch 

species with stable symbiosis.  

In Sacoglossa, the expression of these Rab proteins has only been addressed in E. chlorotica 

juveniles, where there were not regulated in day 5 and 10 of development, but only down-regulated 

after seven days of feeding and development (Chapter 2.6 unpublished data, Chan et al., 2018). This 

could be based on the adaptions of symbionts like Symbiodiniaceae to persist within their host (e.g. 

chemical signals and modulation of the host phagosome machinery), which might be lacking in 

sequestered kleptoplasts. Similar to cladobranchs, the mechanisms to prevent kleptoplast digestion 

in Sacoglossa are unknown.  

	
  

Another crucial step to ensure photobiont maintenance is the suppression of the host immune 

response against the photobiont (Mansfield & Gilmore, 2019; Jacobovitz et al., 2021) (Figure 5). In 

cladobranchs, this process has only been explored in B. stephanieae (Melo Clavijo et al., 2022). 

Contrary to stable symbioses in photosymbiotic cnidarians, B. stephanieae cannot suppress the 

immune attack against its symbiont B. minutum. Innate immune pathways involved in the symbiont 

tolerance in stable symbioses like TGF-β, TLR, NF-κB are either incomplete or not regulated in B. 

stephanieae (Melo Clavijo et al., 2022). In cladobranchs with stable symbioses, one would expect 

the opposite: an active immunosuppression response in the presence of Symbiodiniaceae to 

maintain the symbiotic relationship. However, expression studies are necessary to verify this 

hypothesis. In the sacoglossan LtR species E. chlorotica, the gene expression analysis of juveniles 

suggests this may be the case (Chan et al., 2018; Chapter 2.6 unpublished data). Here, genes related 

to the immune response were predominantly down-regulated in slugs that were feeding and 

developing. Also, the number of down-regulated genes was higher after seven days of feeding and 

developing than after only five days. This follows the idea of two stages of early development in E. 
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chlorotica proposed by Pelletreau et al., (2012), where the first five days are considered transient 

kleptoplasty, and the later phase (from the 7th day of development) is known as permanent 

kleptoplasty. Similar to unstable symbiosis in cladobranchs, the TGF-β pathway was not involved 

in kleptoplast immunotolerance; it was rather incomplete and not regulated (Chapter 2.6 

unpublished data). However, contrary to unstable symbiosis, the signal transducer MyD88 from the 

TLR pathway was down-regulated preventing apoptosis and expulsion of kleptoplasts via 

vomocytosis (Jacobovitz et al., 2021) (Figure 5). Further innate immune pathways from the 

complement system or NF-κB activation have not been yet examined in any sacoglossan slugs. 

	
  

Further, apoptosis can act as a post-phagocytic sorting process in cnidarians even at the early stages 

of development, where incompatible Symbiodiniaceae strains can be recognized by host PRRs, but 

are later removed by the host apoptotic response (Davy et al., 2012). Here, the gastrodermis exhibits 

high caspase activity, similar to the activity in some mollusks’ digestive gland in response to 

parasite damage or environmental toxins (Sokolova, 2009; Kiss, 2010; Romero et al., 2015). In 

unstable cladobranchs, only one of the apoptosis activators, the adaptor protein Fas-associated death 

domain (FADD), was highly up-regulated in the presence of the symbiont (Melo Clavijo et al., 

2022). But none of the downstream elements involved in apoptosis were regulated, for example the 

initiator caspases-8 and -9, the executioner caspases-3, -6, and -7 (McIlwain et al., 2013), or the 

transcription factor NF-κB. This lack of regulation suggests that the elimination of the symbiont is 

not done via apoptosis, at least at the transcriptional level (Melo Clavijo et al., 2022).  

In sacoglossans, it seems that the apoptotic sorting process following phagocytosis is not carried out 

when the animals are feeding, which contributes to the retention of kleptoplasts (Chapter 2.6 

unpublished data). Additionally, no evidence of apoptotic activity has been found in the digestive 

tissue of healthy adults (Pierce et al., 1999; Mondy & Pierce, 2003). Kleptoplasts are digested in 

animals feeding constantly after a food switch (Frankenbach et al., 2021). However, it is currently 

not possible to determine whether apoptosis or digestion is responsible for kleptoplast turnover. 

Only after prolonged starvation and at the end of the animal’s life cycle, the apoptotic activity 

increases with the concurrent expression of an endogenous retrovirus (Pierce et al., 1999; Mondy & 

Pierce, 2003).  

	
  

Moreover, the host's ability to cope with increased levels of ROS has been identified as an essential 

factor in maintaining the symbiont and hence the stability of the symbiosis (Lesser, 2006; Weis, 

2008; Ishikawa et al., 2016; Rosset et al., 2021). ROS can be generated as a byproduct of the 
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symbiont’s photosynthesis in hospite (Dykens & Shick, 1982; Niyogi, 1999; Richier et al., 2003; 

Lesser, 2006; Roth, 2014; Parrin et al., 2017). Comparative studies between symbiotic and non-

symbiotic cnidarians show that the response to oxidative stress varies greatly. Symbiotic animals 

have a more diverse repertoire of antioxidant enzymatic isoforms than non- symbiotic ones (Richier 

et al., 2003; Furla et al., 2005). The expression and activity of these enzymes is increased compared 

to the aposymbiotic state (Dykens & Shick, 1982; Richier et al., 2005, 2006). Conversely, some 

anemones show decreased antioxidant activity in the symbiotic state compared to the aposymbiotic 

state (Rodriguez-Lanetty et al., 2006; Ganot et al., 2011; Lehnert et al., 2014; Oakley et al., 2016). 

Particularly for superoxide dismutases (SODs), this contradiction may be explained by the 

expression, activity, location, and specific function of different isoforms in the cnidarian host 

(Richier et al., 2003; Furla et al., 2005; Rodriguez-Lanetty et al., 2006). For instance, in some 

anemones, MnSODs and FeSODs are found in the mitochondrial of the symbiont and host 

endodermal cells (Furla et al., 2005), and their activity increase only in the symbiotic state (Richier 

et al., 2005; Rodriguez-Lanetty et al., 2006). Whereas other SODs like CuZnSOD are thought to be 

specific to the animal host (Furla et al., 2005), are located in both endoderm and ectoderm, and their 

activity decreases in symbiotic state (Richier et al., 2005; Rodriguez-Lanetty et al., 2006). It has 

been suggested that the symbiont may be producing these enzymes as an additional antioxidant 

defense for the holobiont, explaining why SOD activity in the host decreased in the symbiotic state 

in some cnidarians (Rodriguez-Lanetty et al., 2006; Oakley et al., 2016). This hypothesis hasn't 

been fully verified yet, not for SODs or for the other antioxidants that exhibit this expression in 

cnidarians. 

	
  

The expression of ROS scavengers radically changes in the early stages of the symbiosis 

breakdown, where the animal host increases its antioxidant defense (Richier et al., 2006; Weis, 

2008; Louis et al., 2017). There are also differences in ROS scavenging mechanisms in unstable and 

stable symbioses. Species with a stable symbiosis, like Hydra viridissima Pallas, 1766, scavenge 

ROS more effectively than unstable symbiotic species, such as Hydra vulgaris Pallas, 1766 

(Ishikawa et al., 2016). Similarly, LtR sacoglossan species seem to cope with elevated ROS in their 

cells more efficiently than StR species (de Vries et al., 2015). This activation of antioxidant defense 

has been evidenced since early stages of the development in the presence of newly acquired 

kleptoplasts in E. chlorotica (Chan et al., 2018; Chapter 2.6 unpublished data). Unstable 

photosymbiotic cladobranchs show an elevated antioxidant activity in the presence of the symbiont 

during feeding (Melo Clavijo et al., 2022), which follows the hypothesis that the host first 
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establishes the endosymbiosis and the ROS tolerance emerges later (Kawano et al., 2004). In this 

line, maintaining a symbiosis can become costly because the symbiont might be a burden, as seen 

also in H. vulgaris (Ishikawa et al., 2016). To date, no comparison of the efficiency of the 

antioxidant defense has been made between unstable and stable photosymbiotic cladobranch 

species. Whether species with stable symbioses are more resistant to oxidative stress and have a 

higher tolerance to ROS remains to be seen.  

 

Finally and yet equally important for the maintenance and stability of the symbiosis, is the role of 

other host-associated microorganisms (microbiome), aside the photobionts (reviewed in Bourne et 

al., 2016; Garrido et al., 2021). Especially the host-associated bacterial component known as 

bacteriome has been the focus of recent research. In these tripartite relationships (photobiont-host-

bacteriome) each partner influences the ability of the others to function and survive (Bernasconi et 

al., 2019). In cnidarians, the bacteriome diversity may be affected by abiotic factors (temperature, 

pH, salinity, and organic compounds) (Ahmed et al., 2019) and by the presence of photobionts 

(Bourne et al., 2013, 2016; Röthig et al., 2016; Bathia et al., 2022; Xiang et al., 2022). A change in 

the symbiotic state significantly varies the bacteriome composition and its interaction with the 

photobiont. For example, dimethylsulfoniopropionate (DMSP) is a sulfur compound that mediates 

the interactions between host, photobiont, and microbiome (Garrido et al., 2021). The photobiont, 

the coral-host, and even some bacterial symbionts (members of the Alphaproteobacteria) can 

generate DMSP, a crucial substrate for bacterial sulfur cycle (Raina et al., 2013; Kuek et al., 2022). 

But in some cases, the absence of the photobiont, as well as thermal stress, may cause a shift in the 

DMSP-degrading bacterial communities related to the available DMSP concentration in the host 

(Van Alstyne et al., 2009; Frade et al., 2015; Röthig et al., 2016). Opportunistic pathogen 

populations like Vibrio coralliilyticus Ben-Haim et al., 2003 may increase, while beneficial 

symbionts such as Endozoicomonas Kurahashi & Yokota, 2007 decrease (Maher et al., 2022). 

 

Even though there has been an increase in microbiome studies in sea slugs (e.g. Doepke et al., 2012; 

Abdelrahman et al., 2021; Zhukova et al., 2022; Rosani, 2022), it is still only the beginning in the 

context of photosymbiosis. For instance, there is evidence that nudibranch predators and their 

cnidarian prey share similarities in the bacterial composition present in the cerata tips and tentacles, 

respectively (Doepke et al., 2012). This interrelationship can be further explored in species that 

engage in a photosymbiosis and have restricted diet preferences. To date, only one study has 

addressed the bacteriome composition in photosymbiotic cladobranchs (Sickinger et al., 2022).  
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In Sacoglossa, only a few studies have shown the bacterial diversity present in these slugs (Devine 

et al., 2012; Davis et al., 2013; Mahadevan & Middlebrooks, 2020). So far, the role of the 

microbiome in sea slug photosymbiosis and kleptoplasty is not yet fully understood. 

 

Symbiotic vs aposymbiotic: how to generate symbiont-free hosts 

 

 

 

 

	
  

	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The different aspects of the photosymbiosis are usually studied comparing symbiotic individuals to 

aposymbiotic ones. Thermal treatments like heat-shock or cold-shock, menthol induced bleaching, 

continuous darkness, and/or chemical inhibition of photosynthesis with DCMU are methods often 

used to generate symbiont-free individuals (Wang et al., 2012; Dani et al., 2016; Matthews et al., 

2016; Schmidt et al., 2022). Menthol treatment has proven to be the fastest and most effective in 

terms of less mortality and better host fitness in cnidarians (Matthews et al., 2016) (Figure 3). 

 

Because most sea slugs acquire their photobionts via food ingestion, the easiest way to generate 

aposymbiotic individuals is to starve them. Alternatively, they can be fed with aposymbiotic prey, 

Symbio'c)state) Aposymbio'c)state)

Figure 3. Comparison between symbiotic anemones and aposymbiotic ones. 
Symbiont-free anemones were obtained following Matthews et al., (2016) menthol 
treatment protocol. 
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but this requires producing and maintaining symbiont-free prey. This approach can be applied to 

photosymbiotic cladobranchs, and it has been successfully used in Berghia stephanieae adults (Leal 

et al., 2012; Monteiro et al., 2019; Melo Clavijo et al., 2022), and cultured juveniles that reached 

adulthood and produced offspring (García Galera, 2021) (Figure 4). But, feeding on aposymbiotic 

prey may also induce a shift in the composition of fatty acids in the slug and its offspring. For 

example, embryos from slugs fed with aposymbiotic prey had lower content of docosahexaenoic 

acid (DHA) and higher levels of alpha-linolenic acid (ALA) compared to embryos of symbiotic-fed 

parents (Leal et al., 2012). This effect might be only relevant depending on the question one seeks 

to answer, but it is worth to take it into consideration. For instance, questions regarding the 

nutritional impact of fatty acids on the development, fitness, and foraging behavior of the offspring 

from parents fed on bleached anemones (Silva et al., 2023). This matter may be extended to trophic 

ecological questions about the impact of prolonged consumption of bleached prey on the predator 

population growth (e.g. Poor quality diet with low DHA content may slow or even stop population 

growth in crustaceans like Daphnia (Martin-Creuzburg & von Elert, 2009)). 

 

In comparison, obtaining aposymbiotic individuals of sacoglossan slugs can be more challenging. 

One way is to use juveniles post-metamorphosis as aposymbiotic state, but they have to feed 

constantly to develop and survive. Thus, any differences seen between symbiotic (kleptoplastic) and 

symbiont-free state can be attributed to the development and the constant feeding and not solely to 

the photobiont presence (Chan et al., 2018; Chapter 2.6 unpublished data). In this context, the 

polyphagous Elysia viridis becomes a very useful model, since it can be classified as non-

incorporation (aposymbiotic), StR, or LtR, depending on what it feeds on (Rauch et al., 2018). The 

common alternative methods have been the photosynthesis inhibition of the kleptoplasts with 

DCMU or monolinuron, starvation, and continuous darkness, but these come with additional effects 

that are just being explored. 
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What happens to the animal host during starvation? 

In photosymbiotic cnidarians, starvation induces symbiophagy and autophagy to compensate for 

nutritional deficiencies (Chera et al., 2009; Dani et al., 2016; Klionsky et al., 2021). These 

processes are considered common mechanisms to control the photobiont populations, but are 

enhanced during starvation and can be stopped after food reintroduction (Davy et al., 2012; Dani et 

al., 2016). The main survival strategy in food depletion conditions seems to be autophagy, which 

occurs independently of the photobiont presence (Chera et al., 2009; Klionsky et al., 2021). 

When studying photosymbiotic sea slugs, starvation alone, or combined with darkness, are 

commonly used to gain insight into the nutritional support that the photobiont may provide to its 

host. Yet, little is known about what happens in the slug during starvation, and even less when they 

starve under darkness. The response to food depletion also changes depending on the stability of the 

symbiosis. For instance, cladobranch species that form a stable symbiosis are able to survive, 

maintain their biomass and photosynthetically active and dividing Symbiodiniaceae cells. The slugs 

still lay eggs during starvation periods, most likely due to the photobiont contribution. Although, it 

is still unclear how nutrient exchange would occur (Burghardt et al., 2005; Burghardt & Wägele, 

2014). Whether these eggs can further developed and reach reproductive maturity has not yet been 

explored. In contrast, unstable symbiotic species like B. stephanieae lose biomass and their 

symbionts in short time during starvation periods. Even though they lay eggs, the majority of these 

are not fertile. Such is also the case of sacoglossan sea slugs that lose biomass or length during 

starvation, regardless on the retention form (StR or LtR) (Hinde & Smith, 1975; Green et al., 2005; 

Casalduero & Mundain, 2008; Yamamoto et al., 2013; Christa et al., 2014; Cartaxana et al., 2017; 

Donohoo et al., 2020; Frankenbach et al., 2023), which is a sign that the contribution of the 

kleptoplast to the host is simply not enough to maintain nor gain biomass (Rauch et al., 2017a).  

 

In general, starvation can have pro-oxidant effects and may cause major oxidative damage (e.g. 

Robinson et al., 1997; Domenicali et al., 2001; Morales et al., 2004; Chen et al., 2023). In 

particular, the response at the transcriptional level of starved animals like cnidarians and slugs, is 

very similar to the stress response induced by abiotic factors like light, acidification, or temperature 

(Levy et al., 2016; Melo Clavijo et al., 2022). This stress response doesn’t change if the slug feeds 

on symbiotic or aposymbiotic prey before the starvation period (Melo Clavijo et al., 2022). So far, 

the effect of starvation at the molecular level has not been studied in stable symbiotic cladobranch 

species, nor the combined stress of starvation and abiotic factors like light intensity, temperature, or 

continuous darkness. 
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Darkness affects the survival of stable symbiotic cladobranch species despite being fed (Burghardt 

& Wägele, 2014), and may cause symptoms of oxidative stress in unstable symbiotic species even if 

they are feeding (Chapter 2.6 unpublished data). A shift to heterotrophy of the dinoflagellate 

symbiont might be the cause of these effects in cladobranchs hosts (Burghardt et al., 2005). To date, 

the effect of darkness during feeding in sacoglossan slugs has not yet been investigated. 

Starvation and darkness have synergistic effects in the slug host, meaning the stress response 

heightens. Here, the photobiont is not only affected by photosynthesis inhibition, but also by the 

host stress response of symbiophagy and autophagy induced by starvation. The photosynthetic 

activity of the photobiont (Symbiodiniaceae and kleptoplasts) and the abundance in the slug host 

decreases drastically in dark starved individuals (Burghardt et al., 2005; Frankenbach et al., 2023). 

Cladobranch slugs starved in darkness shrink much faster, become paler, develop local swellings, 

lose more cerata, and are less active than the ones starved in light. These effects are much stronger 

in juveniles than in adult individuals (Burghardt et al., 2005). Similar effects are seen in sacoglossan 

sea slugs, where starvation in darkness induces an energy metabolic change, a decrease in protein 

import into mitochondria, and an increase of lysosomal abundance (Frankenbach et al., 2023). As a 

response to starvation, authophagy in the digestive gland is triggered in sacoglossan slugs (Laetz et 

al., 2017b), as seen in other mollusks that can withstand fasting for months (Klionsky et al., 2021), 

but it is more dramatic under darkness (Frankenbach et al., 2023).  

 

New genomic resources available of photosymbiotic slugs  

Genomic resources such as genomes and transcriptomes are vital tools to study many aspects of the 

photosymbiosis. Up to 2018, only 33 of these resources were publicly available of different 

photosymbiotic animals; one of them belongs to photosymbiotic cladobranchs and 5 to sacoglossan 

slugs (Melo Clavijo et al., 2018). To date, many more have been generated including the ones in 

this study (Maeda et al., 2021; Melo Clavijo et al., 2021; Frankenbach et al., 2023; Melo Clavijo et 

al., 2022; Mendoza et al., 2023). Transcriptomes can provide insight of the genes actively expressed 

in a certain tissue of an organism occurring at a specific time. Thus, if a certain gene is not present 

in the transcriptome does not necessarily mean the gene is not encoded in the genome of the 

organism. This doubt can be resolved if the genome of the certain species is available, but as 

mentioned before this is not the case in many sea slugs involved in photosymbiosis or kleptoplasty. 

Also, conclusions can be drawn only at the transcriptional level, which means the regulation might 

be happening in other stages pre- transcription, post-transcriptional, posttranslational 
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(phosphorylation, ubiquitination, acetylation), epigenetically for instance by methylation (Feder & 

Walser, 2005).  

 

To date 8 mitochondrial genomes belonging to Cladobranchia are publicly available (Sevigny et al., 

2015; Karagozlu et al., 2016a; Dinh et al., 2019, 2020; Melo Clavijo et al., 2021; Galià-Camps et 

al., 2023; Mizobata et al., 2023), but only two of photosymbiotic species. Whereas 9 mitogenomes 

of Sacoglossa have been published (Grande et al., 2008; Rumpho et al., 2008; Medina et al., 2011; 

Fan et al., 2013; Karagozlu et al., 2016b; Greve et al., 2017; Rauch et al., 2017b; Frankenbach et al., 

2023). The mitochondrial genomes of Cladobranchia and Sacoglossa are very similar in size 

(roughly 14Kb) and in gene arrangements like other heterobranch mitogenomes (Wägele et al., 

2008). Mitogenomes are useful tools not only to infer phylogenetic relationships, but also to study 

further effects of starvation stress in symbiosis, and the relationship between photobionts and host 

mitochondria (Rauch et al. 2017b).  

 

Outlook 
Research on photosymbioses in heterobranch slugs, specifically regarding the molecular events that 

take place to establish and maintain this association is in its infancy. This study provides a reference 

framework about how the initial contact between host and symbiont might occur, specifically which 

candidate genes might be involved in this process. Further, which immune pathways seem to be 

relevant in the establishment and the maintenance of the photosymbiosis. This work offers 

molecular tools like transcriptomes, mitogenomes, and a sorted list of candidate genes as reference 

for targeted functional studies at the cellular and molecular level.  

 

This work is only the beginning, as many questions remain unexplored and many others emerge 

from this starting point. Future research could focus on pivotal questions regarding the metabolic 

exchange between the slug and the photobiont, particularly for the cladobranch system: How much 

photosynthetically fixed carbon is translocated to the animal host? In what forms? How is it 

translocated (control mechanisms), and what is the contribution in the nutrition, survival, and 

fitness of the slug? Further topics need attention, such as the role of the microbiome, the part 

mitochondria play in the photosymbiosis, the autophagy process during starvation in 

plastid/symbiont bearing slugs, and the effect of heterologous Symbiodiniaceae genotypes, as well 
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as abiotic stressors like temperature and acidification in the photosymbiotic and kleptoplastic 

association. 

 

In this work the focus was more towards the animal host, but in the photosymbiosis two other 

players are vital for the stability of the association: the photosynthetic symbiont and the rest of the 

microbiome (protists, endolitic algae, eubacteria, archaea, and viruses). Further studies could focus 

on the symbiont perspective like its contribution and benefit in the association, and also the role of 

the microbiome in the initiation and maintenance, and the effect of its alteration in the 

photosymbiotic association.  
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Appendix 

Figure 1. Asynchronous embryonic development of Berghia stephanieae. The time-lapse shows two egg masses 
with embryos dividing at different time. Yellow arrows point to 2-cell division stage. Green arrows show 4-cell 
division stage. Blue arrows indicate multicellular stage, where the divisions are difficult to count. 
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