
Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften

Dissertation

Efficient Computation of the Action of
Matrix Rational Functions and Laplace

Transforms

eingereicht von
Manuel Tsolakis, M. Sc.

zur Erlangung des Grades eines Doktors der Naturwissenschaften

Wuppertal, 28. April 2023

Betreut durch Prof. Dr. Andreas Frommer,
Dr. Karsten Kahl und
Dr. Marcel Schweitzer.





七転び八起き
Fall down seven times, get up eight.

(Japanese Proverb)





Acknowledgments

This endeavor would not have been possible without Prof. Dr. Andreas Frommer as he
continuously helped me grow as a mathematician by asking the right questions, giving
the right answers or pointing in the right direction. Moreover, he provided the initial
research ideas and offered me the doctorate position in the first place.

I am also grateful to Dr. Karsten Kahl for directly guiding me, answering my questions,
offering me new (mathematical) viewpoints or just having inspiring discussions.

Special thanks also go to Dr. Marcel Schweitzer whose mathematical expertise (espe-
cially in Krylov subspaces) and willingness to dig through MATLAB code helped a lot.
I also thank him for the soft drink in Manchester the locals called “beer”.

I thank all three of them for their unique personalities and for dedicating much of their
time—even when it was scarce—to me and my work.





Contents

1. Introduction 1

2. Review of basic material 5
2.1. Relevant classes of functions . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2. Rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3. Other classes of functions . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. Definition of matrix functions . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4. Krylov subspace methods for general matrix functions . . . . . . . . . . 24

2.4.1. The Arnoldi approximation . . . . . . . . . . . . . . . . . . . . . 24
2.4.2. The restarted Arnoldi method . . . . . . . . . . . . . . . . . . . 28
2.4.3. Error bounds for the restarted Arnoldi method . . . . . . . . . . 32

2.5. Iterative methods for rational matrix functions . . . . . . . . . . . . . . 34
2.5.1. Krylov subspace methods for the matrix inverse . . . . . . . . . . 35
2.5.2. Algebraic multigrid methods . . . . . . . . . . . . . . . . . . . . 38

2.6. Matrix pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3. CF-matrices 45
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1. Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2. Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2. Search for numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1. Partial fraction expansion . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2. Generalized Sylvester equation . . . . . . . . . . . . . . . . . . . 58
3.2.3. Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . 60
3.2.4. Multigrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1. Preconditioned CG . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2. Preconditioned GMRES and complex shifts . . . . . . . . . . . . 72
3.3.3. AMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



Contents

4. Restarts for Laplace transforms 77
4.1. A new representation of the error function . . . . . . . . . . . . . . . . . 77

4.1.1. Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.2. Related classes of functions . . . . . . . . . . . . . . . . . . . . . 84

4.2. Implementational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.1. Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.2. Breaking the recursion . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.3. Matrix exponential function . . . . . . . . . . . . . . . . . . . . . 95
4.2.4. Modifications for complete Bernstein functions . . . . . . . . . . 97

4.3. Numerical experiments I: Comparison to other methods . . . . . . . . . 98
4.3.1. Fractional negative power less than −1 . . . . . . . . . . . . . . . 98
4.3.2. Fractional diffusion processes on graphs . . . . . . . . . . . . . . 102
4.3.3. Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.4. Square root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.5. Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4. Error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.1. A priori bound I: Finite integration interval . . . . . . . . . . . . 114
4.4.2. A priori bound II: Exponentially bounded integrand . . . . . . . 116
4.4.3. A priori bound III: Main case . . . . . . . . . . . . . . . . . . . . 120
4.4.4. A posteriori bound . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5. Numerical experiments II: Error bounds . . . . . . . . . . . . . . . . . . 123
4.5.1. Fractional negative power less than −1 . . . . . . . . . . . . . . . 123
4.5.2. Fractional diffusion processes on graphs . . . . . . . . . . . . . . 124
4.5.3. Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5.4. Square root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.5. Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5. Conclusions 133

A. Other definitions of the Laplace transform 135

Bibliography 139

viii



Notation

Throughout this thesis, vectors are denoted by lower-case letters in bold font whereas
matrices are denoted by upper-case letters. While most of our notation can be consid-
ered standard, we mention the following to avoid potential confusion:

Notation regarding scalars

s complex conjugate of s
bsc floor function of s; largest integer n ≤ s
C∞ set of extended complex numbers; C ∪ {∞}
R+ strictly positive real axis; (0,∞)
R+
0 non-negative real axis; R+ ∪ {0}

Im(s) imaginary part of s
Re(s) real part of s

Kα
i=1

(
ci
bi

)
continued fraction (see Definition 2.38)

Notation regarding functions

f [k] kth derivative of f
L1(E) set of functions that are integrable in E
L1

loc(E) set of functions that are locally integrable in E

L{f̂} Laplace transform of f̂ (see Definition 2.1)
O(f) big O notation
α{f̂} abscissa of existence of L{f̂} (see Definition 2.3)
∆[µ1,...,µj ]{f} divided difference of f with nodes µ1, . . . , µj
χE characteristic function of the set E
ω{f̂} exponential order of f̂ (see Definition 2.5)

ix



Notation

Notation regarding matrices

ei ith column of the identity matrix
In identity matrix of size n (without index if obvious)
I(A)−1 approximation to A−1 (see Section 2.5.2)
Km(A, b) mth Krylov subspace of A and b (see Definition 2.59)
κ(A) condition number of A (w.r.t. the 2-norm)
spec(A) set of eigenvalues of the matrix A
specp(T ) set of eigenvalues of the pencil T (s) (see Definition 2.82)
Tm(A) CF-matrix (see Definition 3.1)
W(A) numerical range of A
AH conjugate transpose of A
AT transpose of A
A⊗B Kronecker product
A⊕B Kronecker sum; A⊗ I + I ⊗B
A�B element-wise (Hadamard) product; [aijbij ]

A ⊕̂B direct sum;
[
A 0
0 B

]

x



1. Introduction

Given a matrix A ∈ Cn×n, a vector b ∈ Cn and a function f : C → C, the action of a
matrix function is defined as

f(A)b,

i.e., as the product of the matrix function f(A) ∈ Cn×n and the vector b. An impor-
tant example is the exponential function f(s) = exp(cs) because it arises, e.g., from
solving (matrix) differential equations [73]. Other examples include the square root in
machine learning [76] and other fields [7, 59], the sign function with applications in
quantum chromodynamics (theoretical physics) [32] and the logarithm, which appears
as the “entropy” for example in quantum statistical mechanics [10]. A naive approach
for computing f(A)b is to first evaluate f(A) and then multiply this matrix with b.
Of course, for increasing n, this becomes prohibitively expensive in terms of required
arithmetic operations or memory.

Although it is usually not considered a matrix function, the most common case is the
inverse f(s) = s−1, for which the action is the solution x of the linear system

Ax = b.

This special case has many properties that are not present for other choices of f (e.g.,
the multiplicative inverse of f(s) coincides with its inverse function, f(s)−1 = f−1(s))
but can be exploited for very efficient algorithms to compute A−1b that can be used
even for very large n. Important examples are the conjugate gradient method (CG) and
the generalized minimal residual method (GMRES). Both belong to the class of Krylov
subspace methods that project the linear system onto a subspace that is increased
in each iteration. Another important class is the class of multigrid methods, which
combine cheap iterative methods with a subspace correction. In contrast to Krylov
subspace methods, the subspace is constructed beforehand based on the structure of A
and remains fixed.

Extending these methods to other functions f is not always trivial. One approach is
to first replace f by a rational approximation r(s) ≈ f(s). One can then use the partial
fraction expansion, i.e.,

r(s) =
m∑
i=1

wi
s+ τi

assuming that r has only simple poles, to express r(A)b by the linear systems

(A+ τiI)x = b. (1.1)

1



1. Introduction

These systems can be solved using the standard methods mentioned above. Indeed,
specialized Krylov subspace methods allow one to solve all of these systems approxi-
mately for the price of one. On the other hand, multigrid methods need to solve each
system separately and are thus at a disadvantage.

Even rarer is the application of multigrid methods for arbitrary f for there is no gen-
eral multigrid method for f(A)b available. In contrast, the simplest Krylov subspace
method, the Arnoldi method, can be used for more or less any f . One problem that
Krylov subspace methods face, however, is that the computational cost increases with
each iteration, i.e., the size of the current subspace. Thus, the subspace needs to be
kept small in some cases—for example, because of an insufficient amount of available
memory. One approach is to restart the method, which is already widely known for
GMRES. Efficient and stable restarting algorithms require a suitable error representa-
tion, which is available only for certain classes of functions, however. In [40], such an
error representation and a restarting algorithm based on it were presented for analytic
functions. While this covers most of the relevant functions, the algorithm needs addi-
tional input from the user. In particular, one needs to choose a contour that depends
on f and A, which is usually not a trivial task. If f is a Stieltjes function and A pos-
itive definite (in the sense that xHAx > 0 for every x 6= 0), however, no hand-chosen
contour or similar input is necessary. In that sense, the algorithm can be considered a
“black-box” method (only) for Stieltjes functions.

In this thesis, we develop new ways for computing f(A)b. In addition to the theoret-
ical groundwork in Chapter 2, this thesis treats two topics: In Chapter 3, we present a
new representation of r(A)b, where r is a rational function given as a continued frac-
tion. We construct a block tridiagonal matrix T , which we call the CF-matrix. We
then show that we only need to solve one linear system with T to obtain r(A)b. How-
ever, each block of T has the same size as A, i.e., T ∈ Cmn×mn is much larger than
A. Thus, we need to carefully investigate whether the CF-matrix yields any computa-
tional advantage compared to existing methods for r(A)b, in particular Krylov subspace
and multigrid methods for Eq. (1.1). To this end, we present theoretical results and
numerical experiments.

Chapter 4 is the second part of this thesis. Here, we present a new error representation
for the restarted Arnoldi method if f is a Laplace transform or a complete Bernstein
function. Based on this representation, we discuss the necessary steps to develop a
new restarting algorithm that is efficient and stable. While our functions are analytic
and thus could be treated by the algorithm from [40], our method does not need a
hand-chosen contour. We only need that the numerical range of A is “far enough to
the right”, which for many f reads as A being positive definite. The class of Stieltjes
functions is also covered by our algorithm, so it can be considered a generalization of the
“black-box” approach of [40]. Moreover, we present a new error bound for the restarted
Arnoldi method, which proves that our algorithm converges at least linearly in some
cases. Numerical experiments illustrating the performance of our algorithm and error
bounds complete the chapter.

2



Many results in this thesis (though not all) have already been published: Parts of
Chapter 3 are based on [CF], whereas parts of Chapter 4 are based on [L]. However, we
also present new results accompanied by fitting numerical experiments. We give more
details at the beginning of the chapters.

3





2. Review of basic material

We start as usual with a review of known results. Throughout this thesis, we assume
familiarity with basic concepts of linear algebra and Lebesgue integration1.

As we are interested in computing f(A)b, we start by introducing the classes of
functions f most relevant in this thesis in Section 2.1. In Section 2.2, we describe
continued fractions, which we use to represent rational functions. Of course, we need
to know how f(A) is defined in the first place if we want to compute it. Thus, we state
its definition in Section 2.3. While there is a lot that could be said about methods that
compute f(A), we are interested only in f(A)b, for which more efficient algorithms
exist. The two main ideas that we consider here are the following:

• Project f(A)b onto a subspace and prolongate the projected solution back to the
original space. One particular way of doing this is using Krylov subspaces, which
is described in Section 2.4 and is the foundation of Chapter 4.

• Approximate the function f by a function that can be computed more easily,
i.e., f ≈ r =⇒ f(A)b ≈ r(A)b. This is the foundation of Chapter 3, where
r(s) = p(s)

q(s) is a rational function that can be represented as a continued fraction.
We consider how to compute r(A)b when r(s) is a rational function in Section 2.5.

We end the chapter by giving a short description of matrix pencils in Section 2.6 as
they are required in Chapter 3.

2.1. Relevant classes of functions

In this section, we discuss the classes of functions that we consider in Chapters 3 and 4,
but we make references in later parts of this chapter as well. In addition to their
definitions, relevant properties and connections are included.

Laplace transforms (Section 2.1.1) are the cornerstone of our discussion here and
in Chapter 4. We establish their connection to other classes of functions. We drew
inspiration from [6, 25, 80, 94] for this section.

1For more information about Lebesgue integration, see for example [77].

5



2. Review of basic material

2.1.1. Laplace transforms
Definition 2.1. The Laplace transform Lt{f̂(t)}(s) of a measurable function f̂ is de-
fined by the proper Lebesgue integral

Lt{f̂(t)}(s) :=
∫ ∞

0
exp(−ts)f̂(t)dt, s ∈ C, (2.1)

whenever it has a finite value. In case the integration variable is clear, we write
L{f̂(t)}(s) or just L{f̂}(s).

Let us first consider necessary conditions for the existence of the Laplace transform,
i.e., for a finite integral in Eq. (2.1). One such condition is that f̂ is locally integrable:

Lemma 2.2. Let f̂ (and s) be such that∫ ∞

0
exp(−ts)f̂(t)dt <∞.

Then ∫ T

0
f̂(t)dt <∞

for every finite T ≥ 0, i.e., f̂ ∈ L1
loc(R

+
0 ).

Proof. By the definition of the Lebesgue integral, we have∫ ∞

0
exp(−ts)f̂(t)dt <∞ ⇐⇒

∫ ∞

0
exp(−tRe(s))|f̂(t)|dt <∞.

The Monotone Convergence Theorem (see, e.g., [77, Theorem 1.26]) tells us that the
integral on the right side is equal to∫ ∞

0
exp(−tRe(s))|f̂(t)|dt = lim

T→∞

∫ T

0
exp(−tRe(s))|f̂(t)|dt.

The integrals in the limit are non-decreasing, so the limit can only converge to a finite
value if ∫ T

0
exp(−tRe(s))|f̂(t)|dt <∞

for every finite T ≥ 0. It easily follows ([77, 1.24(a)]) that∫ T

0
exp(−tRe(s))|f̂(t)|dt ≥ cs

∫ T

0
|f̂(t)|dt, cs =

{
exp(−T Re(s)), Re(s) > 0,

1, Re(s) ≤ 0.

The integral on the right side is finite for every T if and only if f̂ ∈ L1
loc(R

+
0 ).

The region of existence of Laplace transforms is generally a right half-plane in the
complex plane. We can thus describe the region of existence by a single number.

6



2.1. Relevant classes of functions

Definition 2.3. We call the number

αt{f̂(t)} ≡ α{f̂} := inf{Re(s) : L{f̂}(s) exists}

the abscissa of existence of L{f̂}.

Theorem 2.4 ([25, Theorem 3.3]). The exact region of existence of the Laplace trans-
form of f̂ is either the open half-plane Re(s) > α{f̂} or the closed half-plane Re(s) ≥
α{f̂}.

The abscissa of existence can be bounded if f̂ grows (at most) exponentially.

Definition 2.5. We call

ωt{f̂(t)} ≡ ω{f̂} := inf{ω ∈ R : f̂(t) = O(exp(tω)) as t→ ∞}

the exponential order of f̂ .

Lemma 2.6 (cf. [6, Eq. (1.10)]). Let f̂ ∈ L1
loc(R

+
0 ). Then α{f̂} ≤ ω{f̂}.

Proof. If ω{f̂} = ∞, then the statement is trivial. If ω{f̂} <∞, then for any ω > ω{f̂},
we can write |f̂(t)| ≤ c exp(tω) for t ≥ T and some T ≥ 0, c ≥ 0. Now,

L{f̂}(s) =
∫ T

0
exp(−ts)f̂(t)dt+

∫ ∞

T
exp(−ts)f̂(t)dt.

The first integral has a finite value because f̂ ∈ L1
loc(R

+
0 ). We see from∫ ∞

T
|exp(−ts)f̂(t)|dt ≤ c

∫ ∞

T
exp(−tRe(s)) exp(tω)dt

that the second integral has a finite value if Re(s) > ω > ω{f̂}. Since α{f̂} is by
definition the smallest number α such that L{f̂}(s) exists for Re(s) > α, it follows that
α{f̂} ≤ inf{ω : ω > ω{f̂}} = ω{f̂}.

Actually, the abscissa is characterized by the antiderivative of |f̂ |:

Theorem 2.7 ([6, Theorem 1.4.3], cf. [94, Ch. II §2.4, §3.2]). Let f̂ ∈ L1
loc(R

+
0 ) and

F (t) =

∫ t

0
|f̂(z)|dz, F∞ =

{
limt→∞ F (t) if the limit exists,
0 otherwise.

Then2

α{f̂} = ω{F (t)− F∞}.
2Including the constant F∞ might seem unnecessary at first sight. However, F (t) is a monotonically

increasing function, so ω{F} ≥ 0. By including F∞, we enable negative values, too.

7



2. Review of basic material

Laplace transforms have some nice properties. From the definition, it immediately
follows that Laplace transforms are linear, i.e.,

L{c1f̂1(t) + c2f̂2(t)}(s) = c1L{f̂1}(s) + c2L{f̂2}(s).

In addition, Laplace transforms are analytic functions and their derivatives are again
Laplace transforms.

Theorem 2.8 ([25, Theorem 6.1]). Let α{f̂} < ∞. Then all derivatives of L{f̂}(s)
exist for Re(s) > α{f̂} and they are given by

dn

dsn
L{f̂(t)}(s) =: L{f̂(t)}[n](s) = (−1)nL{tnf̂(t)}(s), n ∈ N.

Example 2.9. We have

Lt
{
tβ−1

Γ(β)
exp(at)

}
(s) = (s− a)−β, Re(β) > 0, α{f̂} = Re(a),

see [25, Table of Laplace Transforms]. Here, Γ(β) denotes the gamma function

Γ(β) =

∫ ∞

0
tβ−1 exp(−t)dt, Re(β) > 0,

which is a generalization of the factorial, i.e., Γ(n) = (n− 1)! for n ∈ N.

Before we discuss the other classes of functions that are relevant in this thesis (and
their relation to Laplace transforms), we remark on alternative definitions of Laplace
transforms.

Remark 2.10. Definitions other than Definition 2.1 have been considered in the liter-
ature. In [6, 25], Laplace transforms are defined as

lim
ω→∞

∫ ω

0
exp(−ts)f̂(t)dt,

i.e., as an improper Lebesgue integral. This allows for more functions f̂ than Defini-
tion 2.1 but the additional limit complicates working with the transforms. In par-
ticular, the region of existence of f̂ (now called the “region of convergence”) and
the one of |f̂ | (“region of absolute convergence”) do not necessarily coincide any-
more, i.e., α{f̂} ≤ α{|f̂ |}. On the other hand, the two regions are identically equal,
α{f̂} ≡ α{|f̂ |}, in our case by the definition of Lebesgue integration. Note that our
definition is the special case where the above limit converges to a finite value not only
for f̂ but also for |f̂ | (see Lemma A.1 for more details). Thus, we can still use results
from [6, 25] if we apply them to |f̂ | instead of f̂ . Note also that proofs in [25] are often
given in terms of improper Riemann integrals but—as mentioned on p. 11 in [25]—“the
statements remain essentially unchanged”.

8



2.1. Relevant classes of functions

Schilling et al. [80] use the proper integral∫ ∞

0
exp(−ts)dµ(t),

where µ is a positive measure. This definition allows one to express every completely
monotone function (see Definition 2.22) as a Laplace transform, see [80, Theorem 1.4].
On the other hand, it does not include all possible Laplace transforms of Definition 2.1
but only those with non-negative f̂ (see Lemma A.4). Thus, their results hold for us
(only) for non-negative f̂ or for |f̂ |.

Relevant examples—such as those that we consider in Chapter 4—are usually con-
tained in all three definitions. Thus, we use our conceptually simpler definition of a
proper Lebesgue integral in this thesis: This way we can present the main ideas with-
out cluttering the proofs with technical details. Nonetheless, we briefly discuss the
relationship between the definitions and whether our main result (Corollary 4.8) holds
for those, too, in Appendix A.

2.1.2. Rational functions
Another class of functions we consider is the class of rational functions.

Definition 2.11. Let p and q 6≡ 0 be polynomials. Then the function

r(s) =
p(s)

q(s)
, s ∈ C\{s : q(s) = 0},

is called a rational function.

We might want to classify rational functions by the degrees n and m of the numerator
polynomial and denominator polynomial. However, the simple example r(s) = sk

sk
= 1

for k ∈ N, s 6= 0 shows that these degrees are not unique for a given r.

Definition 2.12. Let r be a rational function. Let p̃ and q̃ be polynomials of lowest
degree ñ and m̃, respectively, such that

p̃(s)

q̃(s)
= r(s).

Then we call (ñ, m̃) the degree of r.

Working with rational functions is often simplified by decomposing them into a sum
of simpler functions.

Theorem 2.13 (e.g., [89, Theorem 23.1]). Let r(s) = p(s)
q(s) be a rational function of

degree (n,m) with n,m > 0. Then r has the unique representation

r(s) = p0(s) +

k∑
j=1

mj∑
i=1

wj,i
(s− τj)i

,

9



2. Review of basic material

where q(τj) = 0, m =
∑k

j=1mj and p0 is a polynomial of degree n0 ≤ n. We call this
representation partial fraction expansion.

Several algorithms that compute the partial fraction expansion have been known for
a long time, see, e.g., [66]. If the polynomial part p0 vanishes, p0 ≡ 0, rational functions
are Laplace transforms (for large enough Re(s)). This is often used for solving simple
differential equations, see, e.g., [25, Chapter 15].

Corollary 2.14. Let r be a rational function. Then it can be written as

r(s) = p0(s) +

k∑
j=1

mj∑
i=1

wj,i
(i− 1)!

Lt{ti−1 exp(τjt)}(s)

for Re(s) > maxj=1,...,k Re(τj).

Proof. Theorem 2.13 and Example 2.9.

Rational matrix functions are usually not of interest by themselves but only as ap-
proximations of other functions. For instance, given a function f , the rational function
r that minimizes the maximum error in a region for a given degree (n,m) is sometimes
called the rational minimax approximation to f , see [89, Ch. 24]. Another popular
choice of rational approximations is the class of Padé approximations, which we discuss
now based on [22, 89].

Definition 2.15. Let f(s) be analytic at ξ. Let rn,m be a rational function of degree
(n,m) such that

|f(s)− rn,m(s)| = O((s− ξ)n+m+1),

i.e., the first n+m+1 terms of the Taylor expansions of f and rn,m at ξ coincide. Then
we call rn,m the Padé approximation of degree (n,m) to f .

If it is possible, ξ is typically chosen to be 0. Otherwise, ξ = 1 is often chosen. Padé
approximations of varying degrees are sometimes ordered in a table

r0,0 r0,1 r0,2 r0,3 . . .
r1,0 r1,1 r1,2 . . .

r2,0 r2,1
. . .

r3,0
...

...

.

Because of this, the Padé approximations with degree (n, n) are called diagonal. Sim-
ilarly, a sequence {rk,0, rk+1,0, rk+1,1, rk+2,1, . . . } of Padé approximations for k ≥ 0 is
called a descending staircase [22, Eq. (4.3.1)]. Note that the first column of the Padé
table is just the sequence of the Taylor approximations of f . Moreover, the following
holds:

10



2.1. Relevant classes of functions

Lemma 2.16 ([22, Section 4.2]). Let rn,m(s) = pn,m(s)
qn,m(s) be the Padé approximation of

degree (n,m) for f(s). Then the Padé approximation of degree (m,n) for 1
f(s) is given

by 1
rn,m(s) =

qn,m(s)
pn,m(s) .

Padé approximations of different degrees may coincide. This can only occur if all
approximations inside a square block

rn,m rn,m+1 . . . rn,m+k

rn+1,m rn+1,m+1 . . . rn+1,m+k
...

... . . . ...
rn+k,m rn+k,m+1 . . . rn+k,m+k

coincide, however, see [22, Theorem 4.2.1].

2.1.3. Other classes of functions
Two-sided Laplace transforms

Definition 2.17. The two-sided Laplace transform of a function f̂ ∈ L1
loc(R) is defined

by the proper Lebesgue integral ∫ ∞

−∞
exp(−ts)f̂(t)dt

whenever it has a finite value.

Compared to the Laplace transforms from Definition 2.1, two-sided Laplace trans-
forms extend the domain of integration to negative numbers (see [25, Chapter 24]). To
distinguish two-sided Laplace transforms from the Laplace transforms of Definition 2.1,
we may call the latter one-sided. The two-sided transforms can be interpreted as the
generalization of the Fourier transform∫ ∞

−∞
exp(−tiω)f̂(t)dt, ω ∈ R,

to complex values for ω. From basic properties of Lebesgue integrals, it follows∫ ∞

−∞
exp(−ts)f̂(t)dt =

∫ ∞

0
exp(−ts)f̂(t)dt+

∫ 0

−∞
exp(−ts)f̂(t)dt

= L{f̂(t)}(s) + L{f̂(−t)}(−s)

whenever the integral on the left or the two on the right are finite (cf. [77, Theo-
rem 1.32]). Thus, if we want to evaluate two-sided Laplace transforms, we can fall back
to algorithms for one-sided ones. However, both L{f̂(t)}(s) and L{f̂(−t)}(−s) need
to exist for the same value s. The exact region of existence is thus the strip α{f̂(t)} <
Re(s) < −α{f̂(−t)}, possibly including Re(s) = α{f̂} or Re(s) = −α{f̂(−t)}. Note
that the one-sided Laplace transforms are the subclass of the two-sided ones with
f̂(t) = 0 for t < 0.

11



2. Review of basic material

Entire functions

Definition 2.18. A function f is entire if it is analytic on the whole complex plane.
An entire function is of order one if

lim sup
r→∞

log logM(r)

log r
= 1, M(r) = max

|s|=r
|f(s)|.

See [15] for more information about entire functions.

Example 2.19. The most prominent example of an entire function is the exponential
function f(s) = exp(as) with a ∈ C. It is easily verified that it is also of order one.

Laplace transforms are analytic in their region of existence. Consequently, if α{f̂} =
−∞, then L{f̂} is an entire function. One way to construct such functions is by
restricting the region of integration to a finite interval.

Lemma 2.20. Let T ≥ 0 be finite and f̂ ∈ L1([0, T ]). Then

∫ T

0
exp(−ts)f̂(t)dt <∞

for every value of s ∈ C.

Proof. This immediately follows from

∫ T

0
exp(−tRe(s))|f̂(t)|dt ≤ cs

∫ T

0
|f̂(t)|dt, cs =

{
exp(−T Re(s)), Re(s) < 0,

1, Re(s) ≥ 0.

Corollary 2.21 ([25, Theorem 6.2]). Let T ≥ 0 be finite and f̂ ∈ L1([0, T ]). Denote by
χ(0,T )(t) the characteristic function of the interval (0, T ). A Laplace transform of the
form

L{f̂(t)χ(0,T )(t)}(s) =
∫ T

0
exp(−ts)f̂(t)dt

is an entire function.

We are interested in entire functions when we do polynomial interpolation: If one
interpolates an entire function such that the maximum error is minimized, one can show
that this error converges superlinearly to 0 when increasing the degree of the polynomial,
see, e.g., [37]. This has been used when analyzing the convergence of the (restarted)
Arnoldi method, see Theorem 2.70. We give a variation of this in Section 4.4.1.

12



2.1. Relevant classes of functions

Completely monotone functions

Definition 2.22. A function f : R+ → R+
0 is called completely monotone if all its

derivatives f [n](s) exist for s ∈ R+ and

(−1)nf [n](s) ≥ 0 for all s ∈ R+, n ∈ N.

See [80, Chapter 1] for more information. It immediately follows from Theorem 2.8
that many Laplace transforms are completely monotone.

Lemma 2.23 ([25, Theorem 31.9], [80, Theorem 1.4]). Let f̂ ≥ 0 and α{f̂} ≤ 0. Then
L{f̂}(s) (restricted to s ∈ R+) is a completely monotone function.

Example 2.24. The function f(s) = s−1 = L{1}(s) is completely monotone.

An important property of completely monotone functions is their closure under mul-
tiplication.

Lemma 2.25 ([80, Corollary 1.6]). Let f(s) and g(s) be completely monotone functions.
Then the product f(s)g(s) is also completely monotone.

Integrals of a completely monotone function can be bounded from below and from
above by Gauß quadrature rules, see [46]. Based on this, one can compute a posteriori
error bounds for the restarted Arnoldi method for f(A)b, see Theorem 2.72.

Stieltjes functions

Definition 2.26. A function f : C\R−
0 → C defined by

f(s) = b+

∫ ∞

0

ρ(t)

t+ s
dt

with b ≥ 0 and ρ ≥ 0 such that ∫ ∞

0

ρ(t)

t+ 1
dt <∞

is called a Stieltjes function.3

Since (t+s)−1 = Lτ{exp(−tτ)}(s) for Re(s) > t, Stieltjes functions can be interpreted
as iterated Laplace transforms:

Lemma 2.27 ([80, Theorem 2.2]). Every Stieltjes function f has a restriction to
Re(s) > 0 of the form

f(s) = b+ L{L{ρ}(t)}(s).
3Stieltjes functions are often defined more generally, see, e.g., [12, 80]. This is done by using other

measures than ρ(t) dt. As we restrict ourselves to the measure f̂(t) dt for Laplace transforms in a
similar way (cf. Remark 2.10), we use this simpler definition here.

13



2. Review of basic material

Note that if g = L{ρ} is completely monotone, then L{g} is also completely mono-
tone. From Lemma 2.23, we immediately arrive at the following corollary:

Corollary 2.28 ([80, Theorem 2.2]). A Stieltjes function (restricted to R+) is a com-
pletely monotone function.

We also have the following result regarding Padé approximations:

Lemma 2.29 ([22, Theorem 4.2.3]). Let rn,m and rk,` be two Padé approximations to
a Stieltjes function f . Then rn,m ≡ rk,` implies (n,m) = (k, `). In other words, Padé
approximations to Stieltjes functions are pairwise distinct.

Example 2.30. The function f(s) = s−1/2 is a Stieltjes function with b = 0 and
ρ(t) = π−1t−1/2, [13, §14.15].

The restarted Arnoldi method (Section 2.4.2) has been described in [39, 40, 41, 49,
81] for Stieltjes functions. In Chapter 4, we extend their method to Laplace transforms.

Bernstein functions

Definition 2.31 ([80, Definition 3.1]). A function f : R+ → R+
0 is called a Bernstein

function if all its derivatives f [n](s) exist in R+ and

(−1)n−1f [n](s) ≥ 0, n ∈ N.

In other words, its derivative is completely monotone.

Bernstein functions have the following integral representation.

Theorem 2.32 ([80, Theorem 3.2]). A function f : R+ → R+
0 is a Bernstein function

if and only if it has the Lévy-Khintchine representation, i.e.,

f(s) = a+ bs+

∫ ∞

0
(1− exp(−ts))dµ(t),

where a, b ≥ 0 and µ is a measure such that∫ ∞

0
min(1, t)dµ(t) <∞.

This integral representation shows that Bernstein functions can be extended to the
right half-plane:

Corollary 2.33 ([80, Proposition 3.6]). Every Bernstein function f has a holomorphic
extension to Re(s) > 0.

In what follows, we do not differentiate strictly between the original function f and
its extension. We also consider only the following subclass of Bernstein functions.

14



2.2. Continued fractions

Definition 2.34. A Bernstein function f is called complete if the measure µ in the
Lévy-Khintchine representation has a completely monotone derivative with respect to
the Lebesgue measure, i.e.,

f(s) = a+ bs+

∫ ∞

0
(1− exp(−ts))µ′(t)dt.

Complete Bernstein functions are closely related to Laplace transforms and Stieltjes
functions:

Lemma 2.35. Let f be a complete Bernstein function. Then its derivative f ′ is
essentially a Laplace transform, more precisely,

f ′(s) = b+

∫ ∞

0
exp(−ts)tµ′(t)dt = b+ L{tµ′(t)}(s).

Proof. In the proof of Theorem 3.2 in [80], it is shown that

f ′(s) = b+

∫ ∞

0
exp(−ts)tdµ(t)

if f is a Bernstein function with b and µ as in Theorem 2.32.

Theorem 2.36 ([80, Theorem 6.2]). Let f be a complete Bernstein function. If a = 0
and if µ′ can be represented by a Laplace transform µ′(t) = L{g}(t), then s−1f(s) is a
Stieltjes function (restricted to Re(s) > 0).4

Conversely, if f is a Stieltjes function, then sf(s) (restricted to Re(s) > 0) is a
complete Bernstein function.

Example 2.37. The function f(s) =
√
s is a complete Bernstein function with a, b = 0

and µ′(t) = (2
√
π)−1t−3/2, [80, Section 16.2, No. 1].

It turns out that complete Bernstein functions can be treated exactly as Laplace
transforms in the restarted Arnoldi method, see Section 4.1.2.

2.2. Continued fractions
In Chapter 3, we introduce a new method for evaluating rational matrix functions. For
this, we need to represent rational functions as continued fractions. Before we can do
this, however, we need to define continued fractions first without reference to functions.
This section presents well-known results about continued fractions that can be found,
e.g., in [22, 54]. In parts, we use a similar description as in [CF].

We use the extended complex numbers C∞ = C ∪ {∞} with the usual arithmetic
conventions.

4Using a more general definition for Stieltjes functions, this holds for all complete Bernstein functions.

15



2. Review of basic material

Definition 2.38. Given two (finite or infinite) sequences {ci}αi=1 and {bi}αi=0 with
ci, bi ∈ C and α ∈ N ∪ {∞}, we define the functions zi : C∞ → C∞ for i = 0, 1, . . . to
be

z0(s) = b0 + s, zj(s) =
cj

bj + s
for j ≥ 1,

and denote their compositions (with 0 as starting argument) by

gi := z0 ◦ z1 ◦ · · · ◦ zi(0) ∈ C∞.

We call

g =

{
gα if α ∈ N,
limi→∞ gi if α = ∞

the formal continued fraction of ({ci}αi=1, {bi}αi=0), which we write as

g =: b0 +

α

K
i=1

(
ci
bi

)
.

We further call the elements ci, bi and gi the ith partial numerator, partial denominator
and approximant, respectively.

If α ∈ N, we may call g finite; if α = ∞, we may call g infinite.

While we allow division by 0 by working within C∞, the approximants (and in turn
the formal continued fractions) are only defined if the term 0

0 does not occur. It is
common in number theory to assume that ci 6= 0 for all i to avoid this (e.g., [54,
§12.1]). It will be useful later on to include cases where ci potentially vanishes, so we
do not assume this. Note, however, that if gj is defined and ci = 0 for some i < j, then
gj = gi−1.

Definition 2.39. Let g be the formal continued fraction of {ci}αi=1 and {bi}αi=0. If the
term 0

0 appears in an approximant gi, we call gi undefined, otherwise defined.

• If g is finite and g = gα is defined, then we call g a (finite) continued fraction.

• If g is infinite and has only a finite number of undefined approximants, then we
call g an (infinite) continued fraction and take the limit only over all defined
approximants.

While Definitions 2.38 and 2.39 seem somewhat abstract, they enable the simple
representations

g = b0 +
∞

K
i=1

(
ci
bi

)
= b0 +

c1

b1 +
c2

b2 + . . .

∈ C∞

16



2.2. Continued fractions

for an infinite continued fraction g and

gm = b0 +
m

K
i=1

(
ci
bi

)
= b0 +

c1

b1 +
c2

b2 + . . .
+
cm

bm

∈ C∞

for both an mth approximant and a finite continued fraction.

Lemma 2.40 ([54, Corollary 12.1b]). Let g be a continued fraction. Then the approx-
imants are simple fractions gm = pm

qm
, where the numerator and denominator fulfill the

recurrence relation[
p−1

q−1

]
=

[
1
0

]
,

[
p0
q0

]
=

[
b0
1

]
,

[
pm
qm

]
= bm

[
pm−1

qm−1

]
+ cm

[
pm−2

qm−2

]
for m ≥ 1.

Corollary 2.41. Lemma 2.40 also holds if gm is undefined in the sense that the recur-
sion yields pm = 0 and qm = 0 in that case.

Proof. If gm is undefined because bm = cm = 0, then the statement immediately follows
from the recursion. Otherwise, let

ti :=
ci+1

bi+1 +
ci+2

bi+2 + . . .
+
cm

bm

= zi+1 ◦ · · · ◦ zm(0),

where i < m is chosen as large as possible such that bi + ti = ci = 0. Then ti is defined
and we can write

gm = b0 +
c1

b1 +
c2

b2 + . . .
+

ci

bi + ti

.

This is again the case where the last fraction is 0
0 , so we have[

pm
qm

]
= (bi + ti)

[
pi−1

qi−1

]
+ ci

[
pi−2

qi−2

]
= 0.

We mention some results that are useful later on: Another way of evaluating a finite
continued fraction is by solving a linear system.

17



2. Review of basic material

Theorem 2.42 ([71, Theorem 1], cf. [CF, Theorem 3.1]). Let gm = b0+Km
i=1

(
ci
bi

)
6= ∞

be a finite continued fraction. If the entries of the tridiagonal matrix

Tm =



β1 γ2

α2 β2
. . .

. . . . . . . . .
. . . βm−1 γm

αm βm


∈ Cm×m

fulfill

βi = bi, i = 1, . . . ,m,

−αiγi = ci, i = 2, . . . ,m,

then Tm is non-singular and

gm = b0 + c1(T
−1
m )1,1 = b0 + c1e

T
1 T

−1
m e1.

Remark 2.43. We have gm = ∞ if and only if Tm is singular, see [CF, Remark 3.2]. If
we assign eT

1 T
−1
m e1 = ∞ for a singular matrix Tm, then the above equation still holds

for gm = ∞.

There is a way to multiply the partial numerators and partial denominators by con-
stants without changing the approximants.

Lemma 2.44 ([54, Eq. (12.1-11)]). Let

g = b0 +

α

K
i=1

(
ci
bi

)
be a continued fraction. Then its approximants coincide with the ones of

g̃ = b0 +

α

K
i=1

(
di−1dici
dibi

)
with d0 = 1 and di 6= 0, i.e., we have gi = g̃i and g = g̃.

Analogously, we can transform the matrix Tm in Theorem 2.42:

Corollary 2.45 ([CF, Corollary 3.3]). Theorem 2.42 still holds if Tm is multiplied by
any two non-singular matrices from the left and the right as long as e1 is a right and
left eigenvector, respectively, of these matrices with reciprocal eigenvalue:

H−1
` e1 = λe1

eT
1H

−1
r = λ−1eT

1

}
=⇒ gm = b0 + eT

1 T
−1
m e1 = b0 + eT

1 (H`TmHr)
−1e1.

In particular, using diagonal matrices D = diag(1, d2, . . . , dm) for H` and Hr is equiv-
alent to expanding the continued fraction as in Lemma 2.44.

18



2.2. Continued fractions

It will turn out useful to reduce the length of a continued fraction.

Lemma 2.46 ([22, Eq. (1.5.3)]). Let α be even and

g = b0 +

α

K
i=1

(
ci
bi

)
be a continued fraction. Define the continued fraction

g̃ = b0 +

α/2

K
i=1

(
ai
di

)
with a1 = c1b2, d1 = c2 + b1b2 and

ai = −c2i−2c2i−1b2i
b2i−2

, di = c2i + b2i−1b2i +
c2i−1b2i
b2i−2

, i ≥ 2.

Then every approximant of g̃ coincides with every other approximant of g, i.e., g2i = g̃i
for i ≥ 0. We call g̃ the contraction of g.

The connection between continued fractions and rational functions becomes apparent
if we replace the partial numerators and denominators ci and bi by polynomials ci(s)
and bi(s). Then pi(s) and qi(s) in the recursion of Lemma 2.40 are polynomials, too.
This means the approximants are the rational functions gi(s) = pi(s)

qi(s)
. Now we also see

why we did not demand that ci 6= 0 in Definitions 2.38 and 2.39: For non-constant
polynomials ci(s), we can find at least one value of s such that ci(s) = 0 but an
approximant gi(s) is not necessarily undefined in this case.

If the approximant gi(s) is undefined for some value s, however, then pi(s), qi(s) =
0 by Corollary 2.41. We can easily avoid this situation by considering the rational
functions gi(s) only for values of s such that qi(s) 6= 0. This way, we also have gi(s) ∈
C for all remaining s. Thus, a pair of polynomial sequences ({ci(s)}αi=1, {bi(s)}αi=0)
interpreted as a continued fraction generates a sequence of rational functions {ri(s) =
gi(s)}αi=0.

One might wonder now which continued fractions yield interesting rational functions.
We briefly discuss this here (based on [CF, 22]). We are interested in rational functions
as approximations to other functions. In Section 2.1.2, we introduced the Padé approx-
imations as examples. It turns out they are closely connected to continued fractions.

Definition 2.47. A continued fraction of the form

b0 +
∞

K
i=1

(
cis

ni

1

)
, b0 ∈ C, ci ∈ C\{0}, ni ∈ N,

is called a C-fraction. If ni = 1 for all i, then the C-fraction is called regular.

19



2. Review of basic material

Theorem 2.48 ([22, Theorem 4.3.1]). Let S = {rk,0, rk+1,0, rk+1,1, rk+2,1, . . . }, k ≥
0, be a descending staircase of Padé approximations to a function f . If every three
consecutive elements of S are distinct, then there exists a C-fraction

rk,0(s) + sk
∞

K
i=1

(cis
1

)
, ci 6= 0,

such that its mth approximant is the (m+ 1)st element of S for all m ≥ 0.

Applying the contraction from Lemma 2.46, we immediately obtain the following
modification.

Corollary 2.49. Let rk,k(s) denote the diagonal Padé approximations to a function f .
If rk,k 6≡ rk+1,k+1 for all k, then there exists a continued fraction

r0,0 +
c1s

1 + c2s+ K∞
i=2

(
−c2i−2c2i−1s2

1+(c2i+c2i−1)s

) , ci 6= 0,

such that its mth approximant is the diagonal Padé approximation rm,m(s).

The condition rk,k 6≡ rk+1,k+1 is fulfilled, for example, if f is a Stieltjes function, see
Lemma 2.29.

Of course, other kinds of continued fractions also yield approximations to functions.
Describing them in detail would go beyond the scope of this thesis. We refer to [22,
Part III] for many examples of continued fractions whose approximants gm(s) converge
to functions for m→ ∞.

We do not cover how to construct continued fractions in detail and only give some
pointers: The coefficients of C-fractions can be found from Taylor series using the
qd algorithm [22, Section 6.1]. So-called Thiele fractions [22, Section 6.8] allow the
construction of interpolating rational functions. If a rational function r(s) = p(s)

q(s) is
already given as a fraction of two polynomials, then one continued fraction is of course
just g1(s) = 0 + p(s)

q(s)+0 . One might, however, want to find longer continued fractions
where the partial numerators and denominators have lower degrees than p and q. One
way to achieve this is to apply the Euclidean algorithm on p and q ([53, §6.3 III.]).
Here, we start with polynomial long division such that

p(s)

q(s)
= b0(s) +

a(s)

q(s)
= b0(s) +

1
q(s)
a(s)

,

where a(s) is a polynomial of degree smaller than that of q(s). Iterating on the resulting
rational functions q(s)

a(s) , we obtain a continued fraction. Specifically, if r(s) has degree
(n, n′), then this results in

r(s) =
p(s)

q(s)
= b0(s) +

m

K
i=1

(
1

bi(s)

)
, (2.2)

with m ≤ n′, see [62].

20



2.3. Definition of matrix functions

2.3. Definition of matrix functions

Throughout this work, we are interested in computing the action of a matrix function
on a vector, i.e.,

f(A)b,

where A ∈ Cn×n and b ∈ Cn. Before we discuss numerical methods in the next section,
we need to define f(A) first. This section states the common (and for analytic functions
equivalent) definitions of the matrix function f(A) as given, e.g., in [56, Section 1.2].

Let us start by recalling the Jordan canonical form.

Definition 2.50. A matrix

J(µ,m) = µIm + Sm ∈ Cm×m

with

µ ∈ C, Sm =


0 1

. . . . . .
. . . 1

0

 ∈ Cm×m

is called a Jordan block.

It is well known that every matrix A ∈ Cn×n has a Jordan canonical form, i.e., it can
be written as

A = ZJZ−1, J =

`⊕̂
j=1

J(µj ,mj) ∈ Cn×n, Z ∈ Cn×n,

where µj ∈ spec(A) are eigenvalues of A and
∑`

j=1mj = n. The symbol ⊕̂ denotes
the direct sum. Let us denote the pairwise distinct eigenvalues of A by λ1, . . . , λs. The
index nk of an eigenvalue λk is the size of the largest Jordan block containing it, i.e.,

nk = max{mj : µj = λk, j = 1, . . . , `}, k = 1, . . . , s.

Definition 2.51. We call a function f defined on the spectrum of the matrix A if the
values

f [i](λk), i = 0, . . . , nk − 1, k = 1, . . . , s

exist.

Definition 2.51 informs us about the conditions f has to fulfill such that f(A) is
defined. We see this in our first definition of f(A):

21



2. Review of basic material

Definition 2.52. Let f be defined on the spectrum of A = ZJZ−1. Then

f(A) := Zf(J)Z−1 = Z

`⊕̂
j=1

f(J(µj ,mj))Z
−1 and

f(J(µj ,mj)) :=


f(µj) f [1](µj) . . .

f [mj−1](µj)
(mj−1)!

f(µj)
. . . ...
. . . f [1](µj)

f(µj)

 .

It immediately follows that matrix functions commute, i.e., f(A)g(A) = g(A)f(A).
The Jordan canonical form is rarely used in computations, however, as it can be very
sensitive to perturbations. Though in the special case that A is normal, i.e., unitarily
diagonalizable, it follows from Definition 2.52 that f(A) = Z diag(f(µ1), . . . , f(µn))ZH.
Thus, in this case, f(A) and f(A)b can be computed by using the well-conditioned
eigendecomposition of A. Typically, the computational burden scales like O(n3) so this
approach is only feasible for small matrices. We use this direct computation of f(A)
when A is a small Hermitian matrix in Section 4.2.3.

Another way of defining f(A) is by expressing it as a matrix polynomial. While they
are, strictly speaking, a class of matrix functions, their definition immediately follows
from the basic operations5 already defined on matrices.

Definition 2.53. Let f be a function defined on the spectrum of A. A function p that
fulfills

p[i](λk) = f [i](λk), i = 0, . . . , nk − 1, k = 1, . . . , s,

is said to interpolate f at the spectrum of A.

Definition 2.54. Let f be a function defined on the spectrum of A. Further, let p be
the unique polynomial of degree less than

∑s
k=1 nk that interpolates f at the spectrum

of A. Then p is said to be the Hermite interpolating polynomial and

f(A) := p(A).

Theorem 2.55 ([56, Theorem 1.12]). Definition 2.52 and Definition 2.54 are equiva-
lent.

While Definition 2.54 might seem numerically more practical than Definition 2.52
at first sight, note that the interpolating polynomial p depends not only on f but
also on the eigenvalues of A. Moreover, this approach would require O(n4) floating
point operations (O(n) matrix-matrix multiplications each of which costs O(n3)) and
is numerically unstable, see [56, Section 4.8] and [43].

5Namely addition, scalar multiplication, matrix-matrix multiplication.

22



2.3. Definition of matrix functions

Expressing f(A) as an interpolating polynomial is still helpful for the theory discussed
in Sections 2.4 and 4.4. Note that any polynomial that interpolates f at the spectrum
of A yields f(A) = p(A) (see [56, Theorem 1.3, Remark 1.5]). We can construct a
polynomial, e.g., without knowing the indices nk:

Lemma 2.56 ([56, Remarks 1.5 and 1.6]). Let µ1, . . . , µn denote the eigenvalues of A
including algebraic multiplicity. Let

∆[µ1,...,µj ]{f}

be the divided difference of f with nodes µ1, . . . , µj. Then the polynomial

q(s) =

n∑
j=1

∆[µ1,...,µj ]{f} · (s− µ1) . . . (s− µj−1)

interpolates f at the spectrum of A and q(A) = f(A).
If, in addition, the algebraic multiplicities coincide with the indices for all eigenvalues,

q is the Hermite interpolating polynomial from Definition 2.54.

Proof. Let m(λk) denote the algebraic multiplicity of the pair-wise distinct eigenvalues
λk. By construction of q by a Newton form, we have

q[i](λk) = f [i](λk), i = 0, . . . ,m(λk)− 1, k = 1, . . . , s,

see, e.g., [16, Eq. (7)]. As the algebraic multiplicity is a bound for the index, i.e.,

nk ≤
∑̀
j=1
µj=λk

mj = m(λk),

q interpolates f at the spectrum of A. It now follows from [56, Theorem 1.3] that
q(A) = p(A) = f(A).

For the second statement, we have the hypothesis nk = m(λk) and thus
s∑

k=1

nk =

s∑
k=1

m(λk) = n.

On one hand, the Hermite interpolating polynomial p is unique and of degree less than∑s
k=1 nk; on the other hand, q has degree n− 1. It follows that q = p.

The previous two definitions solely assumed f is defined on the spectrum of A. Here
we assume that f is analytic. Such functions can be represented as a Cauchy integral,
which allows for the third and last definition:

Definition 2.57. Let f be analytic in and on a closed contour Γ enclosing spec(A).
Then

f(A) :=
1

2πi

∫
Γ
(sI −A)−1f(s)ds.

23



2. Review of basic material

Theorem 2.58 ([56, Theorem 1.12]). If f is analytic, then Definition 2.57 is equivalent
to Definitions 2.52 and 2.54.

The functions we consider in this thesis are all analytic, so Definition 2.57 is applicable
and we use it theoretically in Section 4.4.1. Numerically, however, one would need to
find a suitable contour and quadrature rule, which depend on both f and A. For
example, [23] discusses the case that Γ is a simple circle and the repeated trapezoidal
rule is used. See [52] for a more elaborate example.

2.4. Krylov subspace methods for general matrix functions
In this section, we consider approximations based on Krylov subspaces. Our description
is guided by [78, 81]. We first define the subspace.

Definition 2.59. The mth Krylov subspace of A ∈ Cn×n and b ∈ Cn is given by

Km(A, b) := span(b, Ab, A2b, . . . , Am−1b) = {p(A)b : p ∈ Pm−1},

where Pm−1 is the set of all polynomials of degree at most m− 1.

To evaluate f(A)b, we project f(A)b onto the subspace Km(A, b) for increasing m
until some convergence criterion is fulfilled.

2.4.1. The Arnoldi approximation
To construct an approximation fm to f(A)b, we need to construct a basis for Km(A, b)
first. For numerical stability, we want an orthonormal basis and this is usually obtained
using the Arnoldi process, which is described in Algorithm 1. The idea is to start
with v1 = 1

‖b‖2b and iteratively construct new basis vectors by orthogonalizing Avj
against the previous basis vectors v1, . . . ,vj . In Algorithm 1, we use Modified Gram-
Schmidt for orthogonalization. We do not discuss other variants and refer instead to
[78, Section 6.3.2].

The Arnoldi process yields the matrix Vm ∈ Cn×m, whose columns contain the or-
thonormal basis vectors v1, . . . ,vm for Km(A, b), and an upper Hessenberg matrix
Hm = [hi,j ] ∈ Cm×m. They fulfill the Arnoldi relation [78, Eq. (6.6)]

AVm = VmHm + hm+1,mvm+1e
T
m. (2.3)

From Hm = V H
mAVm, we see that for Hermitian A = AH, the Hessenberg matrix Hm is

Hermitian, too, and thus tridiagonal. But if hi,j = 0, the vector vi is already orthogonal
to wj in Algorithm 1. If we simplify the Arnoldi process according to this, we arrive
at the Lanczos process. We describe it in Algorithm 2, where we overload the function
Arnoldi from Algorithm 1. Note that the Arnoldi process has an increasing number of
inner products vH

i wj in each iteration and so becomes more expensive as the iteration
proceeds. In contrast, there is only one inner product (for i = j) in the Lanczos process,
which leads to a constant amount of computational work per iteration.

24



2.4. Krylov subspace methods for general matrix functions

Algorithm 1 Arnoldi process [78, Algorithm 6.2]
1: function Arnoldi(A, b, m)
2: v1 =

1
‖b‖b

3: for j = 1, . . . ,m do
4: wj = Avj
5: for i = 1, . . . , j do
6: hi,j = vH

i wj

7: wj = wj − hi,jvi
8: hj+1,j = ‖wj‖2
9: if hj+1,j = 0 then

10: break
11: vj+1 = wj/hj+1,j

12: Vm = [v1, . . . ,vm], Hm = [hi,j ]i,j=1,...,m

13: return Vm, Hm, hm+1,m, vm+1

Algorithm 2 Lanczos process [78, Algorithm 6.15]
1: function Arnoldi(A = AH, b, m)
2: v1 =

1
‖b‖b

3: for j = 1, . . . ,m do
4: if j ≥ 2 then
5: wj = Avj − hj,j−1vj−1

6: else
7: wj = Avj
8: hj,j = vH

j wj

9: wj = wj − hj,jvj
10: hj+1,j = hj,j+1 = ‖wj‖2
11: if hj+1,j = 0 then
12: break
13: vj+1 = wj/hj+1,j

14: Vm = [v1, . . . ,vm], Hm = [hi,j ]i,j=1,...,m

15: return Vm, Hm, hm+1,m, vm+1

25



2. Review of basic material

Remark 2.60. Hermitian matrices are not the only matrices that yield short recur-
rences in the Arnoldi method, i.e., where only a limited number of diagonals of the
Hessenberg matrix Hm is non-zero. See [34] for a full characterization.

We obtain an approximation to f(A)b from the Krylov subspace by evaluating the
function at the Hessenberg matrix:

Definition 2.61. Let f be defined on the spectrum of A and on the spectrum of Hm.
We call the approximation

f(A)b ≈ fm := Vmf(V
H
mAVm)V

H
mb = ‖b‖2Vmf(Hm)e1. (2.4)

the Arnoldi approximation to f(A)b.

As justification for this approximation, consider the following theorem:

Theorem 2.62 (e.g., [30, Theorem 2.4]). Let Vm, Hm, hm+1,m and vm+1 result from
the Arnoldi process for A and b. Then

‖b‖2Vmf(Hm)e1 = ‖b‖2Vmq(Hm)e1 = q(A)b,

where q is the Hermite interpolating polynomial that interpolates f at the spectrum of
Hm.

Theorem 2.62 tells us that using the Arnoldi approximation means we use the spec-
trum of Hm instead of the spectrum of A to construct the interpolating polynomial.
Therefore, the approximation is close to the correct solution if the m eigenvalues of the
Hessenberg matrix (the so-called Ritz values) are close to the n eigenvalues of A. From
Hm = V H

mAVm, it follows that the eigenvalues lie in the numerical range of A, i.e.,

spec(Hm) ⊆ W(A) := {xHAx : ‖x‖2 = 1}.

As we also have spec(A) ⊆ W(A), the Arnoldi approximation Eq. (2.4) is a reasonable
approach. Furthermore, we know that the eigenvalues of Hm eventually become eigen-
values of A. In other words, the Arnoldi approximation is exact after a finite number
of iterations:

Lemma 2.63 ([78, Proposition 6.6], [56, Section 13.2.2]). There exists a smallest num-
ber m? ≤ n such that Km?+1(A, b) = Km?(A, b). This is the first j for which hj+1,j = 0,
i.e., the Arnoldi process is feasible up to m? and only then breaks down.

We also have

spec(Hm?) ⊆ spec(A), f(A)b = ‖b‖2Vm?f(Hm?)e1,

i.e., the Arnoldi approximation is exact for m?.

Typically, we can only perform a small number of iterations mmax � m? (see below),
so we are more interested in how fast the Ritz values converge to eigenvalues of A. We
do not discuss this here and refer instead to [79, Chapter 6] and [63].

26



2.4. Krylov subspace methods for general matrix functions

Remark 2.64. When discussing Krylov subspace methods, one often assumes exact
arithmetic. This can be problematic especially for the Lanczos process: In finite-
precision arithmetic, the assumed orthogonality of the basis vectors can be gradually
lost. In this case, Hm is not the orthogonal projection of A onto span(v1, . . . ,vm).
Round-off errors can thus influence the convergence of the Ritz values to the eigenval-
ues of A. See [70, Section 4] for an overview of theoretical results.

The Arnoldi approximation has the advantage that it needs A only for the matrix-
vector products Avj . Thus, it can be applied to cases where A is not explicitly stored.
It is of particular use for sparse matrices, where the cost of a matrix-vector product is
only O(n).

However, we need to store the matrix Vm which is generally a full matrix. This is true
even when A is sparse or Hermitian (or both).6 For large n, we might be able to store
a sparse matrix A, but we are able to store Vm only for a small number of iterations
m due to limited memory. Moreover, in the non-Hermitian case, the iterations become
more expensive with every iteration, which constitutes a computational hazard. There
are several approaches to remedy this:

• In the Hermitian case, one can use the two-pass Lanczos process. The idea is to
construct the Krylov subspace twice. First, we compute the Hessenberg matrix
Hm without storing Vm. Then, when the size m of the subspace is deemed suffi-
ciently large for a good approximation, we evaluate y = f(Hm)e1. We compute

fm = Vmy =
m∑
j=1

yjvj ,

where yj is the jth element of y, by constructing the subspace again; this time to
obtain the contributions of each basis vector vj to the approximation fm. Doing
so avoids storing Vm but doubles the number of matrix-vector products, which
are usually the dominant computational cost.

A problem is finding a reliable criterion for when to stop increasing m since the
approximation fm is not available after every iteration. In addition, the cost
of evaluating f(Hm) still increases with m. If a large number m of iterations
are needed, then the loss of orthogonality (Remark 2.64) can also slow down
convergence.

• We can replace the Krylov subspace by some other subspace so that a small
number of iterations is sufficient for a good approximation. In particular, we
want to mention rational Krylov subspaces [48]

qm−1(A)
−1Km(A, b),

6We discuss an exception in Section 2.5.1.

27



2. Review of basic material

where qm−1 is a polynomial of degree m−1, and—as a special case—the extended
Krylov subspace [61]

A−mK2m(A, b) = Km(A, b) +Km(A
−1, A−1b).

Instead of polynomial approximations to f(A)b, one now obtains rational ap-
proximations, which promise higher accuracy. The disadvantage is that one needs
to solve shifted linear systems (A + sI)−1b, which might necessitate a Krylov
subspace method on its own, cf. Section 2.5.

• Recently, [50] presented a method, which partially avoids the orthogonalization in
the Arnoldi process by using a randomized subspace embedding (see, e.g., [67]).
The representation of f(A) via a Cauchy integral (see Definition 2.57) is used to
reduce the problem f(A)b to shifted inverses (A+sI)−1b. Then, Krylov subspace
methods for inverses are accelerated by a sketch-and-solve approach similar to
[74].

• Another approach is given by restarting the Arnoldi process, which was first de-
scribed in [30], cf. [88]. Here, one approximates the error of the Arnoldi approxi-
mation by another Arnoldi approximation and continues like this iteratively. We
discuss this in more detail in the following.

2.4.2. The restarted Arnoldi method
Suppose that we are only able to run mmax iterations of Arnoldi. As explained above,
this might be due to a limited amount of memory or because the orthogonalization
becomes too expensive in later iterations in the non-Hermitian case. In both cases,
the underlying problem is the number of basis vectors vj that increases with m. The
Arnoldi approximation Eq. (2.4) might still be far from the exact solution, i.e., the
norm ‖εmmax‖2 of the error

εm := f(A)b− fm

is larger than the desired accuracy. The idea behind restarts is to express the error εm
after m iterations7 again as a matrix function times a vector,

εm = f (2)(A)b(2).

Then we can start a new Arnoldi process to approximate this quantity. If the resulting
Arnoldi approximation

f (2)(A)b(2) ≈ f (2)
m := ‖b(2)‖2V (2)

m f (2)(H(2)
m )e1

is close to the exact error f (2)(A)b(2), then fm + f
(2)
m is close to f(A)b. Doing this

iteratively, we obtain a series of approximations

f(A)b ≈ d(k)
m = d(k−1)

m + f (k)
m , k = 2, 3, . . . ,

7Restarts are not restricted to mmax and can be applied for smaller m. Because of this and for
notational simplicity, we write m instead of mmax.

28



2.4. Krylov subspace methods for general matrix functions

where d
(1)
m = f

(1)
m = fm is just the original Arnoldi approximation to f(A)b and f

(k)
m

for k ≥ 2 is the Arnoldi approximation to

f (k)(A)b(k) = ε(k−1)
m := f(A)b− d(k−1)

m .

For simplicity, we assume here and in the following that the same number of iterations
m is chosen for all Arnoldi decompositions and call m the restart length.

Of course, we need representations for f (k) and b(k) as without them we cannot
implement this method. We state the resulting algorithm (called restarted Arnoldi
method) in Algorithm 3 under the assumption that b(k) = ‖b‖2v(k−1)

m+1 . This is the case
in all known approaches, see, e.g., [L, 1, 29, 30, 40, 59].

Algorithm 3 Generic restarted Arnoldi method for f(A)b (see [L, 30, 40])
1: function Restarted_Arnoldi(f , A, b, m)
2: V

(1)
m , H(1)

m , h(1)m+1,m, v(1)
m+1 = Arnoldi(A, b, m)

3: d
(1)
m = f

(1)
m = ‖b‖2V (1)

m f(H
(1)
m )e1

4: for k = 2, 3, . . . until convergence do
5: Determine the error function f (k) such that ε

(k−1)
m = ‖b‖2f (k)(A)v(k−1)

m+1 .
6: V

(k)
m , H(k)

m , h(k)m+1,m, v(k)
m+1 = Arnoldi(A, v(k−1)

m+1 , m)
7: f

(k)
m = ‖b‖2V (k)

m f (k)(H
(k)
m )e1

8: d
(k)
m = d

(k−1)
m + f

(k)
m

9: return d
(k)
m

The approximation d
(k)
m from the restarted Arnoldi method is still a polynomial

approximation:

Lemma 2.65 (see [30]). Let Wkm = [V
(1)
m . . . V

(k)
m ]. Let Υkm be defined by the recursion

Υkm =

[
Υ(k−1)m

h
(k−1)
m+1,me1e

T
(k−1)m H

(k)
m

]
, Υm = H(1)

m .

Then
d(k)
m = ‖b‖2Wkmf(Υkm)e1 = ‖b‖2Wkmq(Υkm)e1 = q(A)b,

where q is the Hermite interpolating polynomial that interpolates f at the spectrum of
Υkm.

Proof. Combine Eq. (3.14) with Theorem 2.4 in [30].

Considering this characterization, it is not surprising that we can always represent
f (k) via divided differences:

29



2. Review of basic material

Theorem 2.66 ([30, Theorem 2.6]). Define

γ(k)m :=

m∏
j=1

h
(k)
j+1,j .

Let θ(k)1 , . . . , θ
(k)
m be the eigenvalues of H(k)

m including algebraic multiplicities. Then the
error of the restarted Arnoldi approximation to f(A)b after k ≥ 1 cycles is

ε(k)m = f (k+1)(A)b(k+1)

with b(k+1) = ‖b‖2v(k)
m+1 and

f (k+1)(s) = γ(k)m ∆
[θ

(k)
1 ,...,θ

(k)
m ,s]

{f (k)}.

It is well known that working with divided differences is prone to numerical in-
stabilities (see, e.g., [69]). It has been observed that this instability can prevent the
convergence of the restarted Arnoldi method. Consequently, other error representations
(or slightly modified restart algorithms) have been developed in [1, 30, 59]. Yet, none
of the known approaches fulfills all of the following properties:

• Numerically stable.

• Generally applicable (i.e., for all kinds of functions and all kinds of matrices).

• Efficient (i.e., the cost of evaluating one cycle in Algorithm 3 is dominated by the
Arnoldi decomposition and consequently bounded for k → ∞).

An error representation that comes close to fulfilling all three requirements was pre-
sented in [40]. There, a representation based on an integral representation of f was
developed.

Theorem 2.67 ([40, Corollary 3.5]). Let the analytic function f : Ω → C have the
integral representation

f(s) =

∫
Γ

g(t)

t− s
dt

with a path Γ ⊆ C\Ω and a function g : Γ → C. Let w(j)
m (t) = det(tI −H

(j)
m ) and γ

(j)
m

be as in Theorem 2.66. If further W(A) ⊆ Ω, then

f (k+1)(s) = γ(1)m . . . γ(k)m

∫
Γ

g(t)

w
(1)
m (t) . . . w

(k)
m (t)

(t− s)−1 dt,

provided the integrals exist.

30



2.4. Krylov subspace methods for general matrix functions

After choosing a suitable quadrature rule, this error representation allows for stable
and efficient restarts for many practically relevant functions f . In particular, Theo-
rem 2.67 includes the case where Γ is a closed contour with W(A) in its interior. Then
g(t) = f(t)(2πi)−1, cf. Definition 2.57. When applying Theorem 2.67, choosing Γ and
the quadrature rule typically requires detailed knowledge about W(A). For Stieltjes
functions, however, the situation simplifies.

Theorem 2.68 ([L, Theorem 2.1], cf. [39, Theorem 2.1, Eq. (2.4)]). Let f be a Stieltjes
function (Definition 2.26), i.e.,

f(s) =

∫ ∞

0

ρ(t)

t+ s
dt.

Assume that W(A) ∩ (−∞, 0] = ∅. Let ψ(j)
m (t) = eT

m(H
(j)
m + tI)−1e1. Then

f (k+1)(s) = (−1)k
( k∏
j=1

h
(j)
m+1,m

)∫ ∞

0
ρ(t)

( k∏
j=1

ψ(j)
m (t)

)
(s+ t)−1 dt.

Proof. While the theorem was already stated in [L, Theorem 2.1] and slightly modified
in [39, Theorem 2.1, Eq. (2.4)], no full proof was given in either case. Furthermore, the
error representations in [L] and [39] differ by a factor of (−1)k. We include the proof
here to show that the one in [L] is correct.

We use the fact that Theorem 2.67 includes Stieltjes functions in the following way:
We start from the integral representation of f and use the transformation τ = −t. Then
we see that f has the integral representation assumed in Theorem 2.67,

f(s) =

∫ ∞

0

ρ(t)

t+ s
dt =

∫ 0

−∞

ρ(−τ)
s− τ

dτ =

∫ 0

−∞

−ρ(−τ)
τ − s

dτ,

with Γ = (−∞, 0] and g(t) = −ρ(−t). Thus, it holds by Theorem 2.67

f (k+1)(s) = −γ(1)m . . . γ(k)m

∫ 0

−∞

ρ(−t)
w

(1)
m (t) . . . w

(k)
m (t)

(t− s)−1 dt

= −γ(1)m . . . γ(k)m

∫ ∞

0

ρ(τ)

w
(1)
m (−τ) . . . w(k)

m (−τ)
(−τ − s)−1 dτ

= γ(1)m . . . γ(k)m

∫ ∞

0

ρ(t)

w
(1)
m (−t) . . . w(k)

m (−t)
(t+ s)−1 dt

by using again the transformation τ = −t for the second line and renaming τ = t in
the third line. Next, note that

γ
(j)
m

w
(j)
m (−t)

= h
(j)
m+1,me

T
m(−tI −H(j)

m )−1e1 = −h(j)m+1,me
T
m(tI +H(j)

m )−1e1

= −h(j)m+1,mψ
(j)
m (t).

31



2. Review of basic material

The first equality is easily verified by Cramer’s rule and was already stated, e.g., in [40,
Eq. (3.20)]. Applying this in the integral above yields the theorem’s statement.

Remark 2.69. We assume that the number of iterations m in each restart cycle is a
constant. It is, however, possible to assign each cycle j an individual restart length m(j).
Then, one might wonder how to choose k and m(1), . . . ,m(k) such that the number of
matrix-vector products

∑k
j=1m

(j) is minimized while ‖ε(k)‖2 is below the desired toler-
ance. One might expect that choosing m(j) = mmax as large as possible yields the best
result. However, it was observed in the context of restarted Krylov subspace methods
that increasing m can hurt [31]. Numerical experiments by Marcel Schweitzer (personal
communication, University of Wuppertal, Oct 2022) show that for the algorithm in [40]
(i.e., using Theorems 2.67 and 2.68), it can in some cases be beneficial to choose

m(j) =

{
mmax if j odd,
m̂ else

with mmax > m̂ instead of m̂ = mmax. This topic is probably related to the Forsythe
conjecture [33, 36] but has not received much attention in the literature and goes beyond
the scope of this thesis.

2.4.3. Error bounds for the restarted Arnoldi method
Lemma 2.65 reveals that the restarted Arnoldi method approximates f(A)b by interpo-
lating f at the eigenvalues of Υkm, i.e., the eigenvalues of diag(H(1)

m , . . . , H
(k)
m ). We know

from Lemma 2.63 that the eigenvalues of H(k)
m are eigenvalues of A if m is large enough,

in which case the approximation is exact. If m is not large enough and we increase
k instead, the eigenvalues of Υkm do not converge to the eigenvalues of A, however.
Thus, even for km ≥ n, we do not obtain the exact solution from the restarted Arnoldi
method. It can still be attractive if we get numerically close to the exact solution after
a reasonable number km of matrix-vector products. Thus, an important question is
whether we can obtain convergence results.

A priori bounds

We start with a priori error bounds, i.e., bounds that are useful before starting a
calculation. They generally show that under certain conditions

lim
k→∞

d(k)
m = f(A)b.

While a priori bounds also bound the rate of convergence, they can be very pessimistic
in this regard. We give two error bounds relevant for our investigation.

As Lemma 2.65 shows us that we effectively interpolate f , one might be inclined to
apply results from interpolation theory. The first result is for entire functions of order
one (see Definition 2.18).

32



2.4. Krylov subspace methods for general matrix functions

Theorem 2.70 ([30, Theorem 4.2]). Let f be an entire function of order one. Let ε(k)m
denote the error of restarted Arnoldi after k restarts with restart length m. Then there
exist constants C and γ such that the error satisfies

‖ε(k)m ‖2 = ‖f(A)b− d(k)
m ‖2 ≤ C

γkm−1

(km− 1)!
.

Essentially, this shows that we have guaranteed superlinear convergence to the exact
solution for entire functions8. The term γkm−1, however, tells us that this behavior
might emerge only after a large number of matrix-vector products km if γ > 1.

If we restrict ourselves to Stieltjes functions and Hermitian positive definite matrices,
we have at least linear convergence.

Theorem 2.71 ([39, Theorem 4.3]). Let A be Hermitian positive definite and f be a
Stieltjes function. Denote by κ(A+ tI) the condition number of A+ tI. Define for t ≥ 0

q(t) =

√
κ(A+ tI)− 1√
κ(A+ tI) + 1

, γm(t) =
1

cosh(m log q(t))
=

2

q(t)−m + q(t)m
< 1.

The error of the restarted Arnoldi method then fulfills

‖ε(k)m ‖2 ≤ Cγm(t0)
k.

Here t0 ≥ 0 is the left endpoint of the support of ρ(t),

C = ‖b‖2
√
κ(A) f(

√
λminλmax)

and λmin and λmax are the smallest and the largest eigenvalue of A, respectively.

A posteriori bounds

A posteriori bounds are computed while the algorithm is executed. As they are com-
monly close to the exact error norm, they can be used as a stopping criterion. In [41,
81], one such bound was presented for Stieltjes functions. Reusing an intermediate
result of theirs, we later show that it holds for many Laplace transforms, too.

Assume we use the restarted Arnoldi method for f(A)b for some function f and
Hermitian positive definite matrix A. If we express the error as the action of a matrix
function, then

‖ε(k)m ‖22 = (ε(k)m )Hε(k)m

= (v
(k)
m+1)

Hf (k+1)(A)Hf (k+1)(A)v
(k)
m+1

= (v
(k)
m+1)

H(f (k+1)(A))2v
(k)
m+1.

8It is mentioned in [30] that the error bound can be generalized to entire functions of other orders.

33



2. Review of basic material

Functions of the form vH
1 g(A)v2 for some vectors v1, v2 and a matrix function g(A)

are known as sesquilinear forms, which correspond to bilinear forms in the real case.
In [46], it is explained how to compute bilinear forms or bounds for them using the
Lanczos process. Based on this, one can derive the following result:

Theorem 2.72 (cf. [41, Theorem 4]). Let A be Hermitian positive definite and g be a
completely monotone function. Denote by Hm the tridiagonal matrix obtained from the
Lanczos process applied to A and v after m steps. Let

H̃m =

[
Hm hm+1,mem

hm+1,me
H
m h2m+1,me

T
m(Hm − aI)−1em

]
with 0 < a ≤ min spec(A). Then

eT
1 g(Hm)e1 ≤ vHg(A)v ≤ eT

1 g(H̃m)e1.

Proof. The statement essentially coincides with Theorem 4 in [41] if g is a Stieltjes
function. However, their derivation only uses that Stieltjes functions are completely
monotone and it contains our statement as an intermediate result. In particular, com-
bine Eq. (11), Theorem 1 and Theorem 2 in [41].

The bounds of [41] follow by noting that if f is a Stieltjes function, then f (k) is
again a Stieltjes function by Theorem 2.68. Moreover, we know that Stieltjes functions
are completely monotone by Corollary 2.28 and that the product of two completely
monotone functions is again completely monotone by Lemma 2.25.

Corollary 2.73 ([41, Theorem 4]). Let A be Hermitian positive definite and f be a
Stieltjes function. Denote by H

(k)
m the tridiagonal matrix from the restarted Arnoldi

method for f(A)b after k cycles with restart length m and by ε
(k−1)
m = f (k)(A)v

(k)
m the

error after k−1 cycles. Let H̃(k)
m be the modification of H(k)

m as in Theorem 2.72. Then

‖f (k)(H(k)
m )e1‖2 ≤ ‖ε(k−1)

m ‖2 ≤ ‖f (k)(H̃(k)
m )e1‖2.

In practice, we need to compute the Hessenberg matrix from the Lanczos process for
A and v

(k+1)
m+1 . This does not incur any additional cost, however, for that is exactly what

we do if we want to continue the restarted Arnoldi method for an additional restart
cycle. We also need a suitable value for a. If the smallest eigenvalue of A is not known,
one can use an estimate, e.g., the smallest Ritz value, and multiply it by a safety factor
0 < c < 1. In essence, we can bound the error of the previous cycle basically for free.

2.5. Iterative methods for rational matrix functions
In this section, we summarize some methods used for computing f(A)b when f = r
is a rational function. In Chapter 3, we compare our new method to such methods.
Theorem 2.75 is also used in Section 4.4.

34



2.5. Iterative methods for rational matrix functions

We restrict ourselves to the partial fraction expansion (Theorem 2.13): For any ra-
tional function r, we find

r(A)b = p0(A)b+

k∑
j=1

mj∑
i=1

wj,i(A− τjI)
−ib (2.5)

for some p0, k, mj and wj,i according to Theorem 2.13. For evaluating r(A)b, we now
need to evaluate p0(A)b, which is trivial, and terms of the form (A − τjI)

−ib. These
can be written as

(A− τjI)
−ib = (A− τjI)

−1 . . . (A− τjI)
−1︸ ︷︷ ︸

i times

b.

It is thus sufficient to discuss how linear systems

x =M−1b ⇐⇒ Mx = b

can be solved.
Before we start, however, a note on the partial fraction expansion: While methods

for linear systems can be used for rational functions via the partial fraction expansion,
that does not mean that this is necessarily the best way. If the rational function is
given in the form of two polynomials r(s) = p(s)

q(s) , we could in principle evaluate r(A)b
as

r(A)b = p(A)(q(A)−1b) = q(A)−1(p(A)b),

which leads to only one linear system we need to solve. In some cases, this is a suitable
approach. The partial fraction expansion offers some advantages, however: First, for a
large matrix A and a large degree of q, it is prohibitively expensive to explicitly form
q(A). For some methods like Krylov subspace methods, we only need it implicitly,
i.e., its matrix-vector products q(A)v, but these products can be much more expensive
than, say, the product (A−τjI)v. Second, the condition number of q(A) might be much
larger than the one of A or (A − τjI). Third, the partial fraction expansion approach
is embarrassingly parallelizable: The sums

mj∑
i=1

wj,i(A− τjI)
−ib

for j = 1, . . . , k can be evaluated separately from each other. Moreover, we explain in
Section 2.5.1 that Krylov subspace methods can solve these systems very efficiently.

2.5.1. Krylov subspace methods for the matrix inverse
We already discussed in Section 2.4.1 how the Krylov subspace Km(A, b) can be used
for an approximation to f(A)b. We now consider f(s) = s−1. Then, the Arnoldi
approximation to the problem

x = A−1b ⇐⇒ Ax = b

35



2. Review of basic material

is given by
xm = ‖b‖2VmH−1

m e1.

This is known as the full orthogonalization method (FOM). Note that it is often custom-
ary to provide an initial guess x0 if f(s) = s−1 and to construct the Krylov subspace
with the residual r0 = b− Ax0 instead of b. We assume in the following that x0 = 0.
Thus r0 = b.

FOM as we have described it here is rarely used in practice. It suffers from the same
problem as the Arnoldi approximation in general: the arithmetic and memory cost both
increase with m. Restarts are possible since as a simplification compared to the general
case, the error function can be formulated immediately using the residual:

Lemma 2.74 ([78, Proposition 6.7]). Define ψm = eT
mH

−1
m e1 for m ≥ 1. The residual

rm = b−Axm of FOM fulfills

rm = −hm+1,m‖b‖2ψmvm+1.

Now we can easily see that

εm = A−1b− xm = A−1(b−Axm) = A−1rm = −hm+1,m‖b‖2ψmA−1vm+1,

so we have

f (k)(s) = (−1)k
( k∏
i=1

h
(i)
m+1,mψ

(i)
m

)
s−1

in Section 2.4.2 with ψ(i)
m = eT

m(H
(i)
m )−1e1 (cf. Theorem 2.68). However, one of the two

following variants of FOM is usually used instead.

Conjugate Gradient

The Conjugate Gradient method (CG) is a variant of FOM for Hermitian positive defi-
nite matrices. As the matrix is Hermitian, we can use the Lanczos process (Algorithm 2)
instead of the Arnoldi process (Algorithm 1) to construct the Krylov subspace. The
algorithm for CG is optimized by exploiting this short recurrence and the fact that f (k)
is only a scaled version of f : The approximation xm is obtained as a cheap update
xm = xm−1 + ym, where ym (and thus xm) is obtained without explicitly inverting
Hm. In fact, Hm and Vm are not explicitly formed or stored. This means the amount of
work per iteration is constant and only a small amount of memory is needed. See, e.g.,
[78, Section 6.7] for more details. Note that the only changes are algorithmic. Mathe-
matically, CG is still equivalent to FOM (for Hermitian positive definite matrices).

One can show that with CG the error in the A-norm is minimized (e.g., Lemma 2.79
or [47, Theorem 2.3.2]) and decreases strictly monotonically with each iteration (e.g.,
[64, Theorem 5.6.1]). Moreover, one can show the following bound that was used for
Theorem 2.71:

36



2.5. Iterative methods for rational matrix functions

Theorem 2.75 ([39, Theorem 3.1], [47, Theorem 3.1.1]). Let A be Hermitian positive
definite. Denote by λmax and λmin its largest and smallest eigenvalue, respectively, and
by κ(A) = λmax

λmin
its condition number. Then the error εm after m steps of CG for

Ax = b fulfills
‖εm‖A ≤ γm‖x‖A

with

γm =
1

cosh(m log q)
, q =

√
κ(A)− 1√
κ(A) + 1

.

Since cosh(m log q) = 1
2(q

m + q−m), we can also write this statement in the more
familiar (but less tight) form

‖εm‖A
‖x‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)m
.

One should keep in mind that—like the Arnoldi method—FOM and CG compute the
exact solution after a finite number of steps. Error bounds such as Theorem 2.75 can
thus be very pessimistic. In particular, while a large condition number κ(A) implies
a large bound, it does not imply a large error. See, e.g., [65, Section 3.1.1] for more
details. Moreover, CG often shows superlinear convergence (e.g., [64, Section 5.6.4]).
Considering the low computational and memory cost, too, we see that there is no reason
to use restarts for CG. See [64, Section 5.9], [70, Section 5] for overviews of the behavior
of CG in the presence of round-off errors.

Generalized Minimal Residual

If the matrix A is not Hermitian positive definite, then the A-norm does not exist.
The Generalized Minimal Residual method (GMRES) (see, e.g., [78, Section 6.5]) uses
the Krylov subspace to minimize the residual norm ‖rm‖2 instead: If the matrix A is
non-singular, then this is equivalent to minimizing the error in the AHA-norm,

‖rm‖2 = ‖Aεm‖2 =
√
εH
mA

HAεm = ‖εm‖AHA.

The method is related to FOM in the following way: In FOM, we solve the linear system
Hmym = ‖b‖2e1. If Hm is non-singular, then the unique solution is ym = ‖b‖2H−1

m e1.
This can also be expressed as solving the least-squares problem ym = arg miny‖‖b‖2e1−
Hmy‖2.9 In GMRES, we extend Hm to

Hm :=

[
Hm

eT
mhm+1,m

]
and solve the least-squares problem arg miny‖‖b‖2e1−Hmy‖2 instead. We refer to [78,
Section 6.5.3] for some implementational aspects. As the matrices Hm and Hm differ in

9If Hm is non-singular, the unique minimizer ym yields ‖‖b‖2e1 −Hmym‖2 = 0.

37



2. Review of basic material

essence only by the entry hm+1,m, the residual norms produced by FOM and GMRES
are closely connected. See, e.g., [78, Section 6.5.7] for more information.

Since it relies on the Arnoldi process, the computational burden of GMRES increases
with each iteration. While it deviates slightly from the Arnoldi approximation in Sec-
tion 2.4.1, it is still possible to use restarts: Given the approximation xm from GMRES,
one would try to solve the system A(x− xm) = rm in the next cycle.

Multi-shift variants

The partial fraction expansion offers another advantage for Krylov subspace methods.
Let us assume for illustration that mj = 1 for all j in Eq. (2.5). Then we only need to
solve

(A− τjI)
−1b

for k values of τj . The Krylov subspaces are, however, shift-invariant,

Km(A− τ1I, b) = Km(A− τ2I, b) = · · · = Km(A− τkI, b) = Km(A, b).

This is easily verified from (A − τjI)b = Ab − τjb ∈ K2(A, b). Because the Krylov
subspaces coincide for all linear systems we are interested in, the computed basis of the
subspace of one system can be reused for the other ones.10 Constructing the solution
for all systems is thus only marginally more expensive than constructing the solution
for a single system. In particular, we only need one matrix-vector product (instead of
k) to extend the subspaces. Variants of Krylov subspace methods that exploit this are
occasionally called multi-shift. See [84, Section 14.1] for an overview.

We see from Lemma 2.74 that the residual from FOM is collinear to the last Arnoldi
vector vm+1. This does not change by introducing a shift. Thus, the Krylov subspaces
for several shifted systems also coincide after restarts. A multi-shift variant of restarted
GMRES is (only) possible if one relaxes the minimization properties for the shifted
systems, see [38].

2.5.2. Algebraic multigrid methods

Multigrid methods are another way of solving linear systems. They can be classified as
either geometric or algebraic. The geometric and original point of view comes from the
discretization of a differential equation which defines the linear system. In geometric
multigrid methods, this system is solved with the help of smaller systems that arise
from coarser discretizations. Here, we focus on algebraic multigrid, which does not need
a geometric interpretation but uses the same terminology. We do not include many
practical details as we are mostly interested in the theoretically best possible way of
10The interpretation here is that we evaluate the function f(s) = s−1 at several matrices A− τjI and

it turns out their subspaces coincide. Another interpretation is that we evaluate several functions
fj(s) = (s − τj)

−1 at the same matrix A. This way it is clear that only one basis is needed but
algorithms such as CG and GMRES are traditionally described for f(s) = s−1 without any shift.

38



2.5. Iterative methods for rational matrix functions

constructing such a method. As is customary, we assume that A is symmetric positive
definite. For more information about multigrid methods, we refer to [90] for geometric
multigrid and to [95] for algebraic multigrid as starting points.

For illustration purposes, we describe two-grid methods first: Multigrid methods
are easily obtained by recursing on two-grid methods. A two-grid method has two
components:

• Smoother : This is an iterative method that initially decreases the error of the cur-
rent approximation at low computational cost. However, using only this method
would be too expensive, e.g., because asymptotically it decreases the error only
very slowly.

• Coarse-grid correction: The coarse-grid correction computes an approximation to
the error by restricting the residual to a lower-dimensional space, solving for the
error there and prolongating it back to the original space. Typically, one effectively
applies an A-orthogonal projection to the error. The subspace is chosen such that
(hopefully) the smoother coupled with this correction converges fast.

Both components update the iterate xk according to

xk+1 = xk + I(A)−1rk, k ≥ 0, (2.6)

where rk = b − Axk is the residual. I(A)−1 ∈ Rn×n is a matrix that approximates
A−1. For smoothers, I(A)−1 is typically defined by its inverse I(A) := (I(A)−1)−1.
For a coarse-grid correction, I(A)−1 is a projector and thus singular. In this case, we
consider I(A)−1 a single symbol.

Smoother

We assume that a stationary method is used, i.e., we can write the error as εk+1 =
Ek+1ε0 with the error propagator E = I − I(A)−1A. These are typically splitting-
based methods like Jacobi or Gauß-Seidel: One defines two matrices M , N such that
A =M −N and M is non-singular. Then the method is obtained by setting I(A)−1 =
M−1 in Eq. (2.6). Note that we can construct any non-singular matrix M in this way.
A good splitting-based method tries to set N close to 0 while ensuring that M can be
cheaply inverted.

Example 2.76. We can easily represent the common splitting-based methods using
the element-wise (or Hadamard) product �:

Jacobi: I(A) = A� I,

Gauß-Seidel: I(A) = A�

1... . . .
1 . . . 1

 .

39



2. Review of basic material

The respective block methods can also be represented in this way. For example, the
block Jacobi method with block size 2 would lead to

I(A) = A�

112 . . .
112

 , 112 =

[
1 1
1 1

]
,

assuming that n is even.

We see that splitting-based methods are stationary from

εk+1 = A−1b− xk+1 = A−1b− xk − I(A)−1rk

= εk − I(A)−1Aεk

= Eεk = Ek+1ε0.

Now consider some11 norm of the error. We have12

‖εk‖ = ‖Ekε0‖ ≤ ‖Ek‖‖ε0‖,
lim
k→∞

‖Ek‖1/k = ρ(E).

Consequently, for large k, we expect that a stationary method behaves according to
the spectral radius ρ(E) of the error propagator. This leads to the following famous
theorem.

Theorem 2.77 (e.g., [78, Theorem 4.1]). Let ρ(E) < 1. Then the splitting-based
method converges for any right-hand side b and initial guess x0.

Many results exist that guarantee ρ(E) < 1 for different methods and classes of
matrices. See, e.g., [96, Chapter 4].

For small values of k, however, we usually see a better reduction of the error norm
than ρ(E). The reason is simple: The modulus of many eigenvalues lies far from ρ(E)
and closer to 0. Generally, the initial error ε0 contains contributions from eigenvectors
with eigenvalue close to 0. Thus, we observe an initial rate of convergence close to 0.
However, with each iteration, these contributions become less significant,13 which is
why the rate of convergence can slow down significantly.

Remark 2.78. In geometric multigrid (for elliptic partial differential equations), the
eigenvectors of E with eigenvalues close to 0 correspond to high frequencies, i.e., their
value changes quickly when going from one variable to the next. Consequently, the
problematic eigenvectors and the error after a few iterations look geometrically smooth,
hence the name “smoother”.
11For now, it does not matter which norm is used.
12The limit is known as the Gelfand formula, see, e.g., [58, Corollary 5.6.14].
13For a formal description of this effect, see the Power Method (e.g., [79, Section 4.1.1]) for eigenvalue

approximation.

40



2.5. Iterative methods for rational matrix functions

Motivation for a coarse-grid correction

We saw that the rate of convergence of typical stationary methods is often very close to
1 for large values of k. Using only such a method would therefore not be a good idea.
The problem is that the error εk is composed mostly of a subset of the problematic
eigenvectors. An idea for solving this is to orthogonalize the error against the problem-
atic eigenvectors. This would necessitate the error itself but if we knew the error, we
would also have solved the linear system. Instead, we apply a projection to the residual
rk = b−Axk, which can be readily calculated.

Let us assume that the matrix I(A) = M of the smoother is symmetric, M = MT.
As A is symmetric positive definite, we know that the generalized eigendecomposition

MQ = AQD

yields Q such that QTAQ = QQTA = I and a real diagonal D, see Theorem 2.86. The
columns of Q are eigenvectors of the error propagator E, i.e.,

MQ = AQD ⇐⇒ QD−1 =M−1AQ ⇐⇒ (I −M−1A)Q = QΛ

with Λ = I −D−1. We can thus rewrite the error in terms of the residual,

εk+1 = (I −M−1A)εk = (I −M−1A)QQTAεk = QΛQTrk.

Let us now consider the error in the A-norm:

‖εk+1‖2A = εT
k+1Aεk+1 = rT

kQΛQTAQΛQTrk = ‖ΛQTrk‖22.

Since

ΛQTrk =

λ1v
T
1 rk
...

λnv
T
nrk

 ,
an eigenvalue λi of E contributes to the A-norm of the error only if vT

i rk 6= 0. This
motivates the orthogonalization of the residual rk against problematic eigenvectors
before applying the smoother. We achieve this by the Galerkin approach. We state it
here more generally for the complex case.

Lemma 2.79 ([90, Corollary A.2.1]). Let x0 be an approximation to Ax = b. Let
V ∈ Cn×j with j < n, rank(V ) = j. Define

AC := V HAV ∈ Cj×j

and let further
x1 = x0 + V A−1

C V Hr0 (2.7)

with the residual r0 = b−Ax0. Then the resulting residual r1 is orthogonal to range(V ),
i.e.,

V Hr1 = 0.

41



2. Review of basic material

In addition, if A is Hermitian positive definite, then the error propagator

E = I − V A−1
C V HA

is an A-orthogonal projector onto the complement of range(V ), i.e., the error is mini-
mized in the A-norm:

‖ε1‖A = ‖Eε0‖A = min
y∈Cj

‖ε0 − V y‖A.

Since AC is of smaller size j < n than A, the matrix AC is called the coarse-grid
operator while the matrices V and V H = V T are called the interpolation and restriction
operator, respectively, when used in a multigrid context. Note that the coarse-grid
correction Eq. (2.7) is of the form Eq. (2.6) with I(A)−1 = V A−1

C V T. Note also that
‖I − V A−1

C V TA‖A = 1, i.e., the coarse-grid correction cannot increase the A-norm of
the error.

Coarse-grid correction in practice

Consider the error propagator E of a smoother. Let us assume the eigenvalues λi of
E (and accordingly its eigenvectors vi) are ordered such that |λ1| ≥ · · · ≥ |λn|. Let j
be the largest number such that |λj | ≥ θ is above some threshold θ ≈ 1. If we choose
V such that range(V ) contains all eigenvectors vi, i = 1, . . . , j, with large absolute
eigenvalues, then the smoother is accelerated by the coarse-grid correction Eq. (2.7).
However, we assume that A is large and sparse and we usually have j = O(n). It follows
that this approach is far from practical:

• We do not know the eigenvectors vi and calculating them would usually be pro-
hibitively expensive.

• Even if we knew the eigenvectors, the approach would still be too expensive.
Setting V = [v1 . . .vj ] would generally result in a full matrix. Thus, if j = O(n),
then the cost for storing V and for matrix-vector products with V would be O(n2).

• Similarly, even for sparse V , the coarse-grid operator AC might be dense. Its
inversion would then be again too expensive.

Many algorithms to construct V and AC such that they are sparse have been published.
We do not go into details and refer instead to [90, 95] for overviews.

It is worth noting, however, that the best possible convergence rate of a two-grid
method is still determined by the eigenvalues of the smoother. We state this more
precisely in Theorem 2.80. For this, we need the matrix M̃ =M(M +MT −A)−1MT.
It can be interpreted as the symmetrized smoother because M̃ = M̃T and

(I −M−TA)(I −M−1A) = I −M−T(M +MT −A)M−1A = I − M̃−1A.

Accordingly, if M = MT, then M̃ corresponds to two applications of M . We assume
that ‖I −M−1A‖A < 1, i.e., that the smoother converges strictly monotonically in the
A-norm.

42



2.6. Matrix pencils

Theorem 2.80 ([18, Lemma 1]). Let V ∈ Rn×j be full rank. Let ‖I−M−1A‖A < 1 and
M̃ =M(M +MT −A)−1MT. Denote by λ1 ≥ · · · ≥ λn and v1, . . . ,vn the eigenvalues
and A-orthogonal eigenvectors of I− M̃−1A. Then the minimal convergence rate of the
two-grid method

E(V ) = (I −M−1A)(I − V A−1
C V TA)

is given by
min
V

‖E(V )‖2A = λj+1

and it is obtained whenever

range(V ) = span(v1, . . . ,vj).

Multigrid method

A multigrid method is obtained by recursing on the two-grid method: The coarse-grid
correction needs to solve the linear system

ACyk = V Trk,

where AC is sparse. This system can be solved by choosing a suitable smoother coupled
with a coarse-grid correction that is defined via AC instead of A. Continuing in this
manner, we eventually obtain a matrix that is small enough that we can solve its linear
system by a direct method. Note that this means we do not invert AC exactly and only
use an approximation ỹk to yk. This might lead to slower convergence than anticipated
from the finest two-grid method. It does not essentially alter the argument, however.
For example, as long as ỹk is close enough to yk, i.e., ‖yk− ỹk‖A ≤ ‖yk‖A, the approx-
imate coarse-grid correction still cannot increase the error εk, see [90, Lemma A.2.2].

2.6. Matrix pencils
This section gives a short introduction to matrix pencils and is inspired by [CF, 87].

Definition 2.81. Let T (0), T (1) ∈ Cn×n be two matrices. Then the function T : C →
Cn×n defined by

T (s) = T (0) − sT (1)

is called a (matrix) pencil.

Notice that we can write the eigenvalue problem of a matrix T (0) as

T (0)v = τv ⇐⇒ (T (0) − τI)v = 0,

where T (0) − τI is a special case of a matrix pencil with T (1) = I. Matrix pencils,
therefore, give rise to generalized eigenvalue problems

(T (0) − τT (1))v = 0 ⇐⇒ T (0)v = τT (1)v.

43



2. Review of basic material

Definition 2.82. A number τ ∈ C is called an eigenvalue of the pencil T (s) = T (0) −
sT (1) if there is a non-zero vector v such that

(T (0) − τT (1))v = 0.

Then v is called an eigenvector of T . The set of all eigenvalues of a pencil is called its
spectrum specp(T ).

Remark 2.83. Typically, one also says that the pencil T has an eigenvalue at infin-
ity, τ = ∞, if T (1) is singular [87, Chapter VI]. We explicitly do not include ∞ in
Definition 2.82.

The determinant of a pencil can be identically zero. We classify pencils accordingly:

Definition 2.84. Let T (s) = T (0) − sT (1) be a matrix pencil. If det(T (0) − sT (1)) ≡ 0
(that is det(T (0) − sT (1)) = 0 for all values of s), then we call T singular, otherwise
regular.

We solely encounter regular pencils in this thesis. For regular pencils, the Jordan
canonical form generalizes to the Weierstrass canonical form.

Theorem 2.85 ([87, Chapter VI, Theorem 1.13], cf. [CF, Section 4.2]). Let T (s) =
T (0) − sT (1) with T (0), T (1) ∈ Cn×n be a regular matrix pencil. Let τj denote the
eigenvalues of T . Then there exist non-singular matrices U, V ∈ Cn×n such that

U(T (0) − sT (1))V = (J (0) ⊕̂ In(1))− s(In(0) ⊕̂ J (1)) =

[
J (0) − sIn(0)

In(1) − sJ (1)

]
with the Jordan matrices

J (0) =

k0⊕̂
j=1

J(τj , n
(0)
j ), J (1) =

k1⊕̂
j=1

J(0, n
(1)
j ).

Here, n(i) =
∑ki

j=1 n
(i)
j for i = 0, 1 and n(0) + n(1) = n. J(·, ·) denotes a Jordan block

(see Definition 2.50). This decomposition is known as the Weierstrass canonical form.

We know that a Hermitian matrix can be unitarily diagonalized. For pencils, a similar
result holds:

Theorem 2.86 ([87, Chapter VI, Theorem 1.15]). Let T (0) ∈ Cn×n be Hermitian and
T (1) ∈ Cn×n be Hermitian positive definite. Then the eigenvalues τi of the pencil
T (0) − sT (1) are real and its eigenvectors vi can be chosen to be T (1)-orthogonal. That
is, there exists a non-singular matrix Q = [v1, . . . ,vn] and a real diagonal matrix
D = diag(τi) satisfying

T (0)Q = T (1)QD

and
QHT (1)Q = I = QQHT (1).

44



3. CF-matrices

In this chapter, we develop a new way of expressing the action of rational matrix func-
tions r(A)b based on continued fractions and then examine if this new representation
offers any computational advantage. Of course, we compare it to what we discussed
in Section 2.5, i.e., to the linear shifted systems (A − τjI)

−1b (generated by the par-
tial fraction expansion) to which we apply a Krylov subspace method or a multigrid
method.

For the idea presented here, we were inspired by work [17, 75] in the context of
“Quantum Chromodynamics” (QCD), i.e., theoretical physics, where the sign function
of a matrix is approximated using continued fractions.

We have already published a large part of the results in this chapter in [CF]. However,
many parts are new or have been completely rewritten. We summarize the major
changes: We slightly changed the representation by starting from a continued fraction
for r(s) instead of one for r(s)−1, see Remark 3.12 for a comparison. This simplifies the
resulting matrices and our proofs. We included a new subsection about Krylov subspace
methods (Section 3.2.3). The proofs in Section 3.2.4 were simplified (Theorem 3.21)
or modified to yield a stronger result (Theorem 3.24). The numerical experiments in
Section 3.3 were adapted to fit the rest of the chapter. In particular, we present new
experiments regarding multigrid methods in Section 3.3.3.

3.1. Introduction
The main concept discussed in this section is the CF-matrix, which enables us to rep-
resent the action of a rational matrix function by a single matrix inverse.

3.1.1. Basic properties
We again consider continued fractions as rational functions as in Section 2.2. Let gm
be the finite continued fraction

gm(s) = b0 +

m

K
i=1

(
ci(s)

bi(s)

)
.

Let ci and bi be polynomials of degree at most ` so we can write

bi(s) =
∑̀
j=0

b
(j)
i sj , ci(s) =

∑̀
j=0

c
(j)
i sj .

45



3. CF-matrices

On the other hand, let us define the tridiagonal matrix

Tm(s) =


β1(s) γ2(s)

α2(s) β2(s)
. . .

. . . . . . γm(s)

αm(s) βm(s)

 ∈ Cm×m,

with polynomials αi, βi, γi. We know from Theorem 2.42 that we can express a (con-
stant) finite continued fraction via the inverse of a tridiagonal matrix. The same holds
for continued fractions that contain polynomials. In particular,

gm(s) = b0(s) + c1(s)e
T
1 Tm(s)

−1e1,

if gm(s) is defined and

βi(s) = bi(s), i = 1, . . . ,m,

−αi(s)γi(s) = ci(s), i = 2, . . . ,m.
(3.1)

Now we want to evaluate the continued fraction at the matrix A. If we interpret
gm(s) = r(s) = p(s)

q(s) as a rational function, we can write r(A) = gm(A). The definition
of continued fractions extends easily to matrices:

gm(A) = b0(A) + c1(A)
(
b1(A) + c2(A)

(
b2(A) + . . .

)−1
)−1

(3.2)

= p(A)q(A)−1 = r(A).

How does this translate to the matrix Tm(s)? Its elements are polynomials in s, so
Tm(A) should be a matrix with polynomials in A as its elements.

Definition 3.1. Let A ∈ Cn×n be a matrix and

gm(s) =

m

K
i=1

(
ci(s)

bi(s)

)

be a finite continued fraction that is defined on the spectrum of A. Let αi(s), βi(s), γi(s)
be polynomials that fulfill Eq. (3.1). Then the CF-matrix of gm(s) and A is defined as
the block tridiagonal matrix

Tm(A) =


β1(A) γ2(A)

α2(A) β2(A)
. . .

. . . . . . γm(A)

αm(A) βm(A)

 ∈ Cnm×nm.

46



3.1. Introduction

Having defined Tm(A), we now show how to obtain gm(A) from its inverse Tm(A)−1.
For this, we use the block UDL decomposition. Compared to the related LDU decom-
position, the UDL decomposition is somewhat uncommon but it is by no means a new
concept, see, e.g., [35].

Lemma 3.2 (cf. [CF, Lemma 3.6]). Let Tm(A) be a CF-matrix. Let all matrices Σi
defined by

Σm = βm(A), Σi = βi(A)− γi+1(A)Σ
−1
i+1αi(A), i = m− 1, . . . , 1,

be non-singular. Then Tm(A) has the block UDL decomposition

Tm(A) = UDL,

where D = diag(Σ1, . . . ,Σm) and

U =


In γ2(A)Σ

−1
2

. . . . . .

In γm(A)Σ
−1
m

In

 , L =


In

Σ−1
2 α2(A) In

. . . . . .

Σ−1
m αm(A) In

 .

Proof. This is easily verified by direct calculation.

Theorem 3.3 (cf. [CF, Theorem 3.7]). Let Tm(A) be the non-singular CF-matrix of
gm(s) and A ∈ Cn×n. Let r(s) = gm(s) be defined on the spectrum of A. Then

gm(A) = b0(A) + c1(A)(e
T
1 ⊗ In)Tm(A)

−1(e1 ⊗ In),

where ⊗ denotes the Kronecker product and e1 is the first unit vector in Cm.

Proof. We first assume that all Σi of the UDL decomposition of Tm(A) (Lemma 3.2)
are non-singular. Then we have

Tm(A)
−1 = (UDL)−1 = L−1D−1U−1.

Because of the block structure of L and U , one quickly verifies that

U(e1 ⊗ In) = e1 ⊗ In =⇒ U−1(e1 ⊗ In) = e1 ⊗ In,

(eT
1 ⊗ In)L = eT

1 ⊗ In =⇒ (eT
1 ⊗ In)L

−1 = eT
1 ⊗ In.

From this, we see that

(eT
1 ⊗ In)Tm(A)

−1(e1 ⊗ In) = (eT
1 ⊗ In)D

−1(e1 ⊗ In) = Σ−1
1 .

47



3. CF-matrices

The matrices Σi can be interpreted as rational functions in A. Matrix functions in the
same matrix commute with each other (see Section 2.3), so we have by construction

Σ1 = β1(A)− γ2(A)Σ
−1
2 α2(A) = b1(A)− c2(A)Σ

−1
2 .

Continuing similarly for the other Σi, i = 2, . . . ,m, we see that

gm(A) = b0(A) + c1(A)Σ
−1
1 = b0(A) + c1(A)(e

T
1 ⊗ In)Tm(A)

−1(e1 ⊗ In),

cf. Eq. (3.2).
If any Σi is singular, we use a continuity argument: Let Aε = A+ εI with ε > 0. It

is clear that spec(Aε) = spec(A) + ε. A rational function is holomorphic everywhere
except for a finite set of points (its poles). As gm(s) is a rational function defined on
the spectrum of A, gm(Aε) is also defined for small enough ε and

gm(A) = lim
ε→0

gm(Aε).

Similarly, even if Σi = ri(A) is singular for some i, there are small enough ε such that
all ri(Aε) are non-singular because spec(Aε) and the set of poles of all ri(s) are both
finite sets. For these ε, we know from the above that

gm(Aε) = b0(Aε) + c1(Aε)(e
T
1 ⊗ In)Tm(Aε)

−1(e1 ⊗ In)

and it follows

gm(A) = lim
ε→0

gm(Aε) = b0(A) + c1(A)(e
T
1 ⊗ In)Tm(A)

−1(e1 ⊗ In).

Corollary 3.4. Let gm(s) = r(s) be a continued fraction and let Tm(A) be the non-
singular CF-matrix of gm(s) and A. Then

r(A)b = b0(A)b+ c1(A)(e
T
1 ⊗ In)Tm(A)

−1(e1 ⊗ b).

We saw in Corollary 2.45 that the representation of gm by the tridiagonal matrix Tm
remains valid after multiplying the latter by matrices that have e1 as eigenvector. This
easily extends to CF-matrices:

Corollary 3.5. Let λ 6= 0 and H`,Hr ∈ Cm×m be matrices such that

H−1
` e1 = λe1,

eT
1H

−1
r = λ−1eT

1 .

Then Theorem 3.3 still holds if Tm(A) is multiplied by H` ⊗ I and Hr ⊗ I from the left
and the right, respectively. That is

gm(A) = b0(A) + c1(A)(e
T
1 ⊗ In)T̃m(A)

−1(e1 ⊗ In)

with
T̃m(A) = (H` ⊗ I)Tm(A)(Hr ⊗ I).

48



3.1. Introduction

We now express Tm(A) as a sum of Kronecker products, which will help further
investigations. Let us shortly return to the scalar case Tm(s). We know that β(j)i = b

(j)
i

and that the degrees of all αi and γi are bounded by `. We can thus write Tm(s) as a
polynomial with matrix coefficients. To this end, we define the tridiagonal matrices

T (j)
m =


β
(j)
1 γ

(j)
2

α
(j)
2 β

(j)
2

. . .
. . . . . . γ

(j)
m

α
(j)
m β

(j)
m

 ∈ Cm×m, j = 0, . . . , `, (3.3)

where the elements are the coefficients of the polynomials

αi(s) =
∑̀
j=0

α
(j)
i sj , βi(s) =

∑̀
j=0

β
(j)
i sj , γi(s) =

∑̀
j=0

γ
(j)
i sj . (3.4)

Consequently, we can write

Tm(s) =
∑̀
j=0

T (j)
m sj .

We extend this idea to the matrix case:

Lemma 3.6. Let T (j)
m be defined as in Eq. (3.3) with Eq. (3.4). The CF-matrix Tm(A)

can be written as the sum of Kronecker products, i.e.,

Tm(A) =
∑̀
j=0

T (j)
m ⊗Aj .

Proof. This follows immediately from

Tm(A) =



∑`
j=0 β

(j)
1 Aj

∑`
j=0 γ

(j)
2 Aj∑`

j=0 α
(j)
2 Aj

∑`
j=0 β

(j)
2 Aj

. . .

. . . . . . ∑`
j=0 γ

(j)
m Aj∑`

j=0 α
(j)
m Aj

∑`
j=0 β

(j)
m Aj



=
∑̀
j=0


β
(j)
1 Aj γ

(j)
2 Aj

α
(j)
2 Aj β

(j)
2 Aj

. . .
. . . . . . γ

(j)
m Aj

α
(j)
m Aj β

(j)
m Aj

 =
∑̀
j=0

T (j)
m ⊗Aj .

49



3. CF-matrices

Note that −αi(s)γi(s) ≡ ci(s) does not imply that −α(j)
i γ

(j)
i = c

(j)
i , thus the matrices

Tm(s) and T
(j)
m are not unique for a given continued fraction gm(s), cf. Corollary 2.45.

Moreover, it turns out that most of the following holds for any matrix T (A) of the form∑`
j=0 T

(j) ⊗ Aj , i.e., for arbitrary T (j) that are not necessarily connected to a known
continued fraction. Because of this and for the sake of notational simplicity, we use an
index m in the following only if we want to emphasize that the matrix is constructed
from a continued fraction gm.

The representation with Kronecker products allows us to connect the spectrum of
T (A) and the spectrum of T (s) for particular s.
Lemma 3.7. Let T (A) =

∑`
j=0 T

(j)⊗Aj with T (j) ∈ Cm×m and A ∈ Cn×n. Let λi for
i = 1, . . . , n be the eigenvalues of A. Then

spec(T (A)) =
n⋃
i=1

spec(T (λi)).

Proof. Let A = ZJZ−1 be the Jordan canonical form of A. As similarity transforma-
tions do not change the eigenvalues, we have

spec(T (A)) = spec
(
(I ⊗ Z)−1T (A)(I ⊗ Z)

)
= spec

(∑̀
j=0

T (j) ⊗ J j
)
.

It is known that there exists a (perfect shuffle) permutation matrix P such that

A⊗B = P (B ⊗A)P−1

for any square matrices A and B, see [44, Eq. (1.3.5)] or [57, Eq. (4.3.12)]. Applying
this similarity transformation, we have

spec
(∑̀
j=0

T (j) ⊗ J j
)

= spec
(∑̀
j=0

J j ⊗ T (j)

)
.

Note that J j ⊗ T (j) is block upper triangular. The eigenvalues of such matrices are
those of their diagonal blocks:

spec
(∑̀
j=0

J j ⊗ T (j)

)
=

n⋃
i=1

spec
(∑̀
j=0

(J j)i,iT
(j)

)
.

The diagonal entries of J j are just λji . This means
∑`

j=0(J
j)i,iT

(j) = T (λi).

In Theorem 3.3, we had to assume that Tm(A) is non-singular. We use Lemma 3.7
to show that it is sufficient to have the rational function be defined on the spectrum of
A.
Corollary 3.8. The CF-matrix Tm(A) of gm(s) and A is non-singular if r(s) = gm(s)
is defined on the spectrum of A.
Proof. As r(λ) is defined for all eigenvalues λ by hypothesis, we know det(Tm(λ)) 6= 0
by Theorem 2.42 and thus det(Tm(A)) 6= 0 by Lemma 3.7.

50



3.1. Introduction

3.1.2. Construction
We saw that we can write any matrix continued fraction as

gm(A) = b0(A) + c1(A)(e
T
1 ⊗ In)Tm(A)

−1(e1 ⊗ In)

with Tm(A) =
∑`

j=0 T
(j)
m ⊗Aj for some `. We now give some examples (similarly to [CF,

Section 4.1]) for the structure of Tm(A) for some kinds of continued fractions. These
examples illustrate that often we only need the first two terms T (0)

m and T
(1)
m , which is

advantageous: While we might not need to store Tm(A) explicitly, we generally want
to avoid higher powers of A even implicitly.1

Example 3.9 (Regular C-fractions). In the approximant of a regular C-fraction (Def-
inition 2.47)

gm(s) = b0 +
m

K
i=1

(cis
1

)
,

the partial denominators are all 1. Because of this, we have βi(s) = 1. For the partial
numerators, we can choose αi(s) = −cis and γi(s) = 1 so that −αi(s)γi(s) = cis. This
results in

Tm(s) = T (0)
m − T (1)

m s =⇒ Tm(A) = T (0)
m ⊗ I − T (1)

m ⊗A

with

T (0)
m =


1 1

. . . . . .
. . . 1

1

 , T (1)
m =


0

c2
. . .
. . . . . .

cm 0

 .
Here, we chose the subdiagonal to contain the coefficients ci, but we could as well choose
the superdiagonal, i.e., we could take the pair (T

(0)
m )T, (T (1)

m )T instead of T (0)
m , T (1)

m .

Since Padé approximations rk,k′(s) can often be represented by C-fractions (The-
orem 2.48), we can represent rk,k′(A) by a CF-matrix Tm(A) in this way. However,
increasing m increases only either the degree of the numerator k or the degree of the
denominator k′. Using a contraction, we can increase both at the same time but still
only need the first two terms T (0)

m , T (1)
m for Tm(A).

Example 3.10 (Contracted regular C-fractions). We use the contraction Lemma 2.46
of the regular C-fraction before constructing the CF-matrix (cf. Corollary 2.49). The
approximants are

g̃m(s) = b0 +
c1s

1 + c2s+ Km
i=2

(
−c2i−2c2i−1s2

1+(c2i+c2i−1)s

) .
1This follows a similar argument as the comparison between expressing a rational function as the

quotient of two polynomials or via the partial fraction expansion in Section 2.5.

51



3. CF-matrices

We choose αi(s) =
√
c2i−2c2i−1s = γi(s). Then we have

Tm(s) = T (0)
m − T (1)

m s =⇒ Tm(A) = T (0)
m ⊗ I − T (1)

m ⊗A

with

T (0)
m = Im,

T (1)
m = (−1) ·



c2
√
c2c3

√
c2c3 c3 + c4

√
c4c5

√
c4c5 c5 + c6

. . .
. . . . . . √

c2m−2c2m−1
√
c2m−2c2m−1 c2m−1 + c2m


.

Thus, if c2i−2c2i−1 > 0 for i ≥ 2, both T
(0)
m and T

(1)
m are symmetric, so Tm(A) is

symmetric if A is symmetric. Another possible choice is αi(s) = c2i−1s and γi(s) =
c2i−2s that does not yield symmetric matrices but avoids the introduction of imaginary
numbers if c2i−2c2i−1 < 0 but ci ∈ R:

T̃ (0)
m = Im,

T̃ (1)
m = (−1) ·


c2 c2

c3 c3 + c4 c4
c5 c5 + c6

. . .
. . . . . . c2m−2

c2m−1 c2m−1 + c2m

 .

Note that the T (1)
m and T̃

(1)
m are similar to each other: We define D = diag(d1, . . . , dm)

with
d1 = 1, di+1 =

√
c2i
c2i+1

di, i = 1, . . . ,m− 1.

Then we verify that

DT̃ (1)
m D−1 = T (1)

m , (D ⊗ I)T̃m(A)(D
−1 ⊗ I) = Tm(A).

Example 3.11 (Continued fractions by the Euclidean algorithm). In Eq. (2.2), we saw
that we can write every rational function as a continued fraction by using the Euclidean
algorithm:

r(s) =
p(s)

q(s)
= b0(s) +

m

K
i=1

(
1

bi(s)

)
.

Assume that the degree of bi(s) is at most 1 for every i = 1, . . . ,m, i.e., bi(s) =

b
(0)
i − b

(1)
i s. Then

Tm(s) = T (0)
m − T (1)

m s =⇒ Tm(A) = T (0)
m ⊗ I − T (1)

m ⊗A

52



3.1. Introduction

with

T (0)
m =


b
(0)
1 −1

1
. . . . . .
. . . . . . −1

1 b
(0)
n

 , T (1)
m =

b
(1)
1

. . .
b
(1)
n

 .
By Corollary 3.5, we can modify this CF-matrix to be symmetric if A is symmetric.
For example, we define

DL = diag((−1)b0/2c, . . . , (−1)bn/2c),

DR = diag((−1)b(0+1)/2c, . . . , (−1)b(n+1)/2c).

We have DLe1 = e1 and eT
1DR = eT

1 , so Corollary 3.5 is applicable. Thus, we can use

DLT
(0)
m DR =


(−1)0b

(0)
1 1

1 (−1)1b
(0)
2

. . .
. . . . . . 1

1 (−1)n−1b
(0)
n

 ,

DLT
(1)
m DR = diag((−1)0b

(1)
1 , . . . , (−1)n−1b(1)n )

or, alternatively,

DRT
(0)
m DL =


(−1)0b

(0)
1 −1

−1 (−1)1b
(0)
2

. . .
. . . . . . −1

−1 (−1)n−1b
(0)
n

 ,

DRT
(1)
m DL = DLT

(1)
m DR.

Strictly speaking, we cannot call (DL ⊗ I)Tm(A)(DR ⊗ I) a CF-matrix of r(s) be-
cause every second diagonal entry of DLTm(s)DR has the wrong sign. However, (DL ⊗
I)Tm(A)(DR ⊗ I) is still a CF-matrix of an expanded continued fraction that is equiv-
alent to r(s), see Lemma 2.44 and Corollary 3.5.

Remark 3.12. We have been constructing CF-matrices such that the terms b0(A) and
c1(A) need to be evaluated separately. They can be included by noting that

gm(s) = b0(s) +
m

K
i=1

(
ci(s)

bi(s)

)
=

1

0 +
1

b0(s) + Km
i=1

(
ci(s)
bi(s)

).

53



3. CF-matrices

Accordingly, we can write

gm(A) = (eT
1 ⊗ I)T̃m+2(A)

−1(e1 ⊗ I)

with, e.g.,

T̃m+2(A) =



0 I
−I b0(A) c1(A)

−I b1(A) c2(A)

. . . . . . . . .
−I bm−1(A) cm−1(A)

−I bm(A)


∈ C(m+2)n×(m+2)n.

Similarly, assume we have the inverse of a rational function given as a continued fraction,

r(s) =
1

gm(s)
.

Then
r(A) = gm(A)

−1 = (eT
1 ⊗ I)Tm+1(A)

−1(e1 ⊗ I)

with

Tm+1(A) =


b0(A) c1(A)
−I b1(A) c2(A)

. . . . . . . . .
−I bm−1(A) cm−1(A)

−I bm(A)

 ∈ C(m+1)n×(m+1)n.

We took this approach in [CF]. Note that it increases the size of the CF-matrices by one
block. Moreover, for contracted regular C-fractions, T (1)

m+1 has a zero on its subdiagonal,
i.e., we cannot symmetrize the matrix as we did before.

3.2. Search for numerical methods
We established that we can evaluate the action r(A)b of a rational matrix function
r(A) = gm(A) by

r(A)b = b0(A)b+ c1(A)(e
T
1 ⊗ I)Tm(A)

−1(e1 ⊗ b)

and what the matrix Tm(A) can look like. The evaluation of p(A)b, where p is a
polynomial, is straightforward. This is why we need to investigate only the step (eT

1 ⊗
I)Tm(A)

−1(e1 ⊗ b). In this section, we investigate numerical methods for solving this
linear system, i.e., for

Tm(A)x = e1 ⊗ b.

54



3.2. Search for numerical methods

Further, we assume that

Tm(A) = T (0)
m ⊗ I − T (1)

m ⊗A.

As was shown in Section 3.1.2, this restriction covers, e.g., regular C-fractions and thus
Padé approximations (recall Theorem 2.48). Consequently, we retain many interesting
rational functions. In addition, higher powers of A would increase the number of non-
zero elements and the cost of matrix-vector products, both of which one wants to
avoid for iterative methods. Furthermore, Tm(s) = T

(0)
m − sT

(1)
m is now a pencil (see

Section 2.6). In our analysis, we use its Weierstrass canonical form (Theorem 2.85),
which requires the pencil to be regular. This is, however, not a restriction:

Lemma 3.13. Let Tm(s) = T
(0)
m − sT

(1)
m be a pencil and the rational function r(s) =

eT
1 Tm(s)

−1e1 be defined on the spectrum of A. Then Tm(s) is regular.

Proof. As r(s) is defined on the spectrum of A, we have det(Tm(λ)) 6= 0 for any eigen-
value λ of A. This means det(Tm(s)) 6≡ 0.

When constructing numerical methods involving a matrix, one should try to exploit
as much structural information about it as possible. This is especially true in our case
because Tm(A) is larger than A by a factor of m. This is why our analysis focuses
on the assumption that we want to exploit the Kronecker product structure of Tm(A).
Of course, we could instead just apply a black-box method to Tm(A)x = c (where
c = e1 ⊗ b), e.g., a generic algebraic multigrid method. We cannot rule out that in
some cases this would yield some advantage compared to more refined approaches. On
the other hand, we also have no reason to believe this. This is all the more true if
the partial fraction expansion of gm(s) is available as it is usually easier to work with
several small matrices (like A− τjI) instead of a single large one (like Tm(A)).

As before, we write the index m only if we want to emphasize that the matrix is
constructed from a continued fraction. For a generic pencil T (s) = T (0) − sT (1), the
matrix T (A) then denotes evidently T (A) = T (0) ⊗ I − T (1) ⊗A.

3.2.1. Partial fraction expansion
As we have discussed in Section 2.5, we can efficiently evaluate r(A)b using the partial
fraction expansion:

r(A)b = p0(A)b+
k∑
j=1

mj∑
i=1

wj,i(A− τjI)
−ib. (3.5)

We also know that r(A)b = (eT
1 ⊗ I)Tm(A)

−1(e1 ⊗ b), which implies that

(eT
1 ⊗ I)Tm(A)

−1(e1 ⊗ b) = p0(A)b+

k∑
j=1

mj∑
i=1

wj,i(A− τjI)
−ib.

55



3. CF-matrices

In cases where both the partial fraction expansion and a continued fraction expansion
of a rational function are known, the two approaches thus are in direct competition. We
now show how the partial fraction expansion can be retrieved from any regular pencil.

Theorem 3.14 (cf. [CF, Theorem 4.1] and [14, Theorem 3.1]). Let T (s) = T (0)−sT (1)

be a regular pencil. Let U , V and J(τj ,m(0)
j ), J(0,m(1)

j ) be the matrices and parameters
of its Weierstrass canonical form, i.e.,

UT (0)V = J (0) ⊕̂ Im(1) , UT (1)V = Im(0) ⊕̂ J (1)

with the Jordan matrices

J (0) =

k0⊕̂
j=1

J(τj ,m
(0)
j ), J (1) =

k1⊕̂
j=1

J(0,m
(1)
j ).

Let u = Ue1 and vT = eT
1 V . Denote by u(j) and v(j), j = 1, . . . , k0 + k1, their blocks

corresponding to block j of the Weierstrass canonical form. Define

wj,i = −(v(j))T(S
m

(0)
j

)i−1
u(j),

σj,i = (v(k0+j))T(S
m

(1)
j

)i
u(k0+j)

with the matrices

Sm =


0 1

. . . . . .
. . . 1

0

 ∈ Cm×m

from Definition 2.50. Then

eT
1 T (s)

−1e1 =

k0∑
j=1

m
(0)
j∑

i=1

wj,i
(s− τj)i

+

k1∑
j=1

m
(1)
j −1∑
i=0

siσj,i.

Proof. The Weierstrass canonical form implies

T (s)−1 = V
(
(J (0) − sI) ⊕̂ (−sJ (1) + I)

)−1
U,

so we have
eT
1 T (s)

−1e1 = vT((J (0) − sI)−1 ⊕̂ (−sJ (1) + I)−1
)
u. (3.6)

For any Jordan block J(µ,m) = µI + Sm, we know that

J(µ,m)−1 =
m−1∑
i=0

(−1)i

µi+1

(
Sm
)i

=
m−1∑
i=0

−1

(−µ)i+1

(
Sm
)i
,

56



3.2. Search for numerical methods

cf. Definition 2.52. As J(µ,m)− sI = J(µ− s,m), this gives

(J (0) − sI)−1 =

k0⊕̂
j=1

J(τj − s,m
(0)
j )−1 =

k0⊕̂
j=1

m
(0)
j −1∑
i=0

−1

(s− τj)i+1

(
S
m

(0)
j

)i

=

k0⊕̂
j=1

m
(0)
j∑

i=1

−1

(s− τj)i
(
S
m

(0)
j

)i−1
.

It follows similarly

(−sJ (1) + I)−1 =

k1⊕̂
j=1

m
(1)
j −1∑
i=0

si
(
S
m

(1)
j

)i
.

Inserting the last two equations into Eq. (3.6) gives

eT
1 T (s)

−1e1 =

k0∑
j=1

m
(0)
j∑

i=1

1

(s− τj)i
(−v(j))T(S

m
(0)
j

)i−1
u(j)︸ ︷︷ ︸

=wj,i

+

k1∑
j=1

m
(1)
j −1∑
i=0

si (v(k0+j))T(S
m

(1)
j

)i
u(k0+j)︸ ︷︷ ︸

=σj,i

.

Theorem 3.14 tells us that whenever we have a two-term CF-matrix for r(A), we also
know how to construct the partial fraction expansion Eq. (3.5): We need to construct
the Weierstrass canonical form of the pencil Tm(s). Similarly to the Jordan canonical
form, this computation can be prone to numerical instability. We do not expect this to
be a problem, however: If the continued fraction is a contracted regular C-fraction and
has only positive coefficients, then T

(0)
m = I and T

(1)
m is symmetric, see Example 3.10.

The Weierstrass canonical form now degenerates to the eigendecomposition of a real
symmetric matrix, which is a perfectly well-conditioned problem. More generally, if
one of T (0)

m or T (1)
m is Hermitian positive definite and the other Hermitian, then we can

invoke Theorem 2.86 and the Weierstrass canonical form is again well-conditioned. Note
that for two-term CF-matrices obtained by the Euclidean algorithm (Example 3.11),
the pencil can again be made symmetric. By not including the polynomial part in the
CF-matrix, we can also force T (1)

m to be non-singular by Theorem 3.14.
We are not aware of any relevant rational function that yields a two-term pencil

but whose partial fraction expansion is ill-conditioned. Because of this, we assume in
the following that the partial fraction expansion is available. Thus, we compare our
CF-matrix approach for r(A)b with Eq. (3.5).

57



3. CF-matrices

Remark 3.15. In [CF, Example 5.1], we argued that one can sometimes avoid complex
arithmetic with the CF-matrix. The argument went like this: If T (0), T (1), A and b are
real, then we can solve T (A)−1(e1⊗b) using only real arithmetic. However, specp(T (s))
is not necessarily a subset of the real numbers. If it is not, then A − τjI is a complex
matrix for some τj ∈ specp(T (s)) and we have to use the more expensive complex
arithmetic.

In the special case of Krylov subspace methods, this argument is moot: As the
Krylov subspace is shift-invariant, one can still construct it without relying on complex
arithmetic by just using the matrix-vector products with A instead of A − τjI. The
cost-critical part of the algorithm then uses only real numbers. Another counterpoint
is valid for all methods: Under our assumptions, the eigenvalues τj come in complex
conjugate pairs since the pencil is real, i.e.,

(T (0) − τjT
(1))v = 0 =⇒ (T (0) − τjT

(1))v = 0.

If we have solved
x = (A− τjI)

−1b,

it is not necessary to solve
y = (A− τjI)

−1b,

for the solution y is just the complex conjugate of x, i.e., y = x. This way, we obtain
the solution of two systems effectively for the price of one. It is thus questionable
whether the CF-matrix approach would yield a significant speedup merely by avoiding
complex arithmetic.

3.2.2. Generalized Sylvester equation

The linear system T (A)x = e1 ⊗ b is equivalent to a matrix equation. We state the
connection and shortly discuss whether this insight offers a solution method.

We define the vectorization vec(X) of a matrix X = [x1 . . .xm] ∈ Cn×m as stacking
the columns xi ∈ Cn atop of each other, i.e.,

vec(X) =

x1
...

xm

 ∈ Cnm.

The vectorization and the Kronecker product have the following well-known connection:

Lemma 3.16 ([57, Corollary 4.3.1]). Let A ∈ Cp×n, B ∈ Cm×q and X ∈ Cn×m. Then

vec(AXB) = (BT ⊗A) vec(X).

With this, we can rewrite the linear system involving the CF-matrix:

58



3.2. Search for numerical methods

Lemma 3.17 (cf. [CF, Corollary 4.3]). Let

T (A) =
∑̀
j=0

T (j) ⊗Aj .

Then the solution x of the linear system

T (A)x = e1 ⊗ b

is the vectorization x = vec(X) of the matrix X fulfilling

∑̀
j=0

AjX(T (j))T = beT
1 .

If T (A) = T (0)⊗ I−T (1)⊗A and T (1) is non-singular, we obtain the matrix equation

X(T (0))T(T (1))−T −AX = beT
1 (T

(1))−T. (3.7)

Matrix equations of the form
XB −AX = C, (3.8)

where A, B, C and X are matrices with compatible sizes and X is unknown, are called
Sylvester equations. We see that Eq. (3.7) is a Sylvester equation. For singular T (1),
we have

X(T (0))T −AX(T (1))T = beT
1 ,

XB(0) −AXB(1) = C,

which can be called a generalized Sylvester equation.
One might now wonder if solution methods for (generalized) Sylvester equations offer

any benefit for our case. Algorithmic approaches for such matrix equations are reviewed
in [83]. The two main ideas presented there are the following:

• Compute the eigendecomposition of the matrix BT = (T (1))−1T (0). This leads
to shifted linear systems with the matrix A, i.e., to the partial fraction expan-
sion according to Theorem 3.14. The Schur decomposition2 is mentioned as an
alternative but involves more shifted linear systems than the eigendecomposition.
Since we assume that the partial fraction expansion is available, we do not gain
anything from this approach.

• Project the equation onto a subspace. One defines the residual

Rk := XkB
(0) −AXkB

(1) − C

2The Schur decomposition yields a triangular matrix S = UAUH with unitary U .

59



3. CF-matrices

and demands that V H
k Rk = 0, where range(Vk) is some subspace. One obtains

the smaller generalized Sylvester equation

YkB
(0) − (V H

k AVk)YkB
(1) = V H

k C

by choosing Xk = VkYk, hoping that Xk ≈ X. For the subspace, it is suggested
in [83] to use the block Krylov subspace

K�
k (A,C) = range([C,AC, . . . , Ak−1C]).

Note that in our case, range(C) = span(b), so

K�
k (A,C) = range([b, Ab, . . . , Ak−1b]) = Kk(A, b),

i.e., the block Krylov subspace for the Sylvester equation is just the regular Krylov
subspace for A and b. Moreover, this approach is the same as the Galerkin
approach (cf. Lemma 2.79) applied to the linear system T (A)x = e1 ⊗ b, i.e.,

(I ⊗ V H
k )T (A)(I ⊗ Vk)yk = T (V H

k AVk)yk = e1 ⊗ V H
k b, yk = vec(Yk).

We discuss this in the next subsection.

In essence, we can fall back to the familiar case of a linear system without losing any
information or benefit.

3.2.3. Krylov subspace methods
A straightforward idea to solve the linear system involving the CF-matrix is to use
a subspace projection. As Tm(A) is larger than A but has Kronecker structure, it is
reasonable to use a structured subspace of the form range(I⊗Vk) = range(Vk)m, where
Vk ∈ Cn×k with k < n. The matrix Vk and the subspace range(Vk) can also be used for
a subspace projection for the systems of the partial fraction expansion approach. We
now show that these two approaches are in fact equivalent.

We assume for now that the subspace has a basis in the form I ⊗ Vk with V H
k Vk = I.

Then (I ⊗ V H
k )Tm(A)(I ⊗ Vk) = Tm(V

H
k AVk).

Lemma 3.18. Let Vk ∈ Cn×k such that V H
k Vk = I and eT

1 Tm(s)
−1e1 is defined on the

spectrum of V H
k AVk. Let b ∈ Cn and

xk = (I ⊗ Vk)Tm(V
H
k AVk)

−1(e1 ⊗ V H
k b).

Then

(eT
1 ⊗ I)xk =

k0∑
j=1

m
(0)
j∑

i=1

wj,iVk(V
H
k AVk − τjI)

−iV H
k b+

k1∑
j=1

m
(1)
j −1∑
i=0

σj,iVk(V
H
k AVk)

ib (3.9)

with wj,i, σj,i as in Theorem 3.14 for T (s) = Tm(s).

60



3.2. Search for numerical methods

Proof. We have
(eT

1 ⊗ I)(I ⊗ Vk) = eT
1 ⊗ Vk = Vk(e

T
1 ⊗ I).

This means that

(eT
1 ⊗ I)xk = Vk(e

T
1 ⊗ I)Tm(V

H
k AVk)

−1(e1 ⊗ I)V H
k b

= Vk

(
k0∑
j=1

m
(0)
j∑

i=1

wj,i(V
H
k AVk − τjI)

−i +

k1∑
j=1

m
(1)
j −1∑
i=0

σj,i(V
H
k AVk)

i

)
V H
k b,

where the last equality follows from Theorems 3.3 and 3.14. Expanding the bracket
yields the statement.

Lemma 3.18 tells us what a projection method on the CF-matrix looks like when writ-
ten via the partial fraction expansion. Consider the opposite direction: We apply a pro-
jection method to the shifted linear systems and the polynomial part of the partial frac-
tion expansion of r(A)b; for each system and each power of A, we use the same subspace
range(Vk). Then we obtain exactly the right-hand side of Eq. (3.9). Thus, Lemma 3.18
says there is no difference between the subspace range(Im ⊗ Vk) = range(Vk)m in the
CF-matrix approach and the subspace range(Vk) in the partial fraction expansion ap-
proach.

There is also no advantage when considering the number of computational operations.
Applying I⊗Vk to Tm(A) is as expensive as applying Vk to A. But solving the projected
problem can be more expensive with the CF-matrix. For the sake of simplicity, let us
assume that there is no polynomial part (k1 = 0) and no higher power inverses (m(0)

j = 1
for j = 1, . . . , k0). Then we have to solve k0 = m systems of the form

(V H
k AVk − τjI)

−1V H
k b

for the partial fraction expansion approach. The number of operations for solving one
such linear system is O(kα) with α ≥ 1 and α depending on the method. The total
cost follows as O(mkα). On the other hand, for the CF-matrix approach, we have to
solve one system of the form

Tm(V
H
k AVk)

−1(e1 ⊗ V H
k b).

Here, the total cost is O((mk)α) = O(mαkα). This is the same as O(mkα) only in the
best case α = 1 and worse for α > 1.

The above also holds for the special case range(Vk) = Kk(A, b). Of course, the sub-
space range(Im⊗Vk) = Kk(A, b)

m is not the standard Krylov subspace Kk(Tm(A), e1⊗
b) for the system Tm(A)x = e1 ⊗ b. So let us compare these two.

Lemma 3.19. Let T (A) = T (0) ⊗ I −T (1) ⊗A with T (0), T (1) ∈ Cm×m and m ≥ 2. Let
κ be the smallest number such that Kκ+1(A, b) = Kκ(A, b). If k < mκ, then

Kk(T (A), e1 ⊗ b) ( Kk(A, b)
m.

61



3. CF-matrices

If k ≥ mκ, then
Kk(T (A), e1 ⊗ b) ⊆ Kκ(A, b)

m.

Proof. We first show that every block of a vector v ∈ Kk(T (A), e1 ⊗ b) is an element
of Kk(A, b). For this, we show by induction that

T (A)i(e1 ⊗ b) =
i∑
l=0

v
(i)
l ⊗Alb

for some vectors v
(i)
l ∈ Cm for every i ≥ 0. The case i = 0 is trivial. Assume now that

the above equation holds for some i. Then we have

T (A)i+1(e1 ⊗ b) = T (A)

( i∑
l=0

v
(i)
l ⊗Alb

)

= (T (0) ⊗ I)

( i∑
l=0

v
(i)
l ⊗Alb

)
− (T (1) ⊗A)

( i∑
l=0

v
(i)
l ⊗Alb

)

=
i∑
l=0

T (0)v
(i)
l ⊗Alb−

i+1∑
l=1

T (1)v
(i)
l−1 ⊗Alb

= T (0)v
(i)
0 ⊗ b+

i∑
l=1

(T (0)v
(i)
l − T (1)v

(i)
l−1)⊗Alb− T (1)v

(i)
i ⊗Ai+1b

=

i+1∑
l=0

v
(i+1)
l ⊗Alb

with

v
(i+1)
l =


T (0)v

(i)
0 , l = 0,

T (0)v
(i)
l − T (1)v

(i)
l−1, l = 1, . . . , i,

−T (1)v
(i)
i , l = i+ 1.

This concludes the induction process.
By applying this knowledge to our vector v ∈ Kk(T (A), e1 ⊗ b), we can write it

similarly as a sum of Kronecker products with Aib. Specifically, there are constants c(i)
for i = 0, . . . , k − 1 such that

v =

k−1∑
i=0

c(i)T (A)i(e1⊗ b) =

k−1∑
i=0

i∑
l=0

c(i)v
(i)
l ⊗Alb =

k−1∑
l=0

k−1∑
i=l

c(i)v
(i)
l ⊗Alb =

k−1∑
l=0

ṽl⊗Alb.

We obtain the jth block by multiplying with eT
j ⊗ I, which leads to

(eT
j ⊗ I)v =

k−1∑
l=0

(eT
j ṽl)A

lb ∈ Kk(A, b).

62



3.2. Search for numerical methods

As this holds for every block, it follows that Kk(T (A), e1 ⊗ b) ⊆ Kk(A, b)
m.

What is left to prove is the inequality of the sets for the case k < mκ. We use a
dimensional argument:

dim(Kk(T (A), e1 ⊗ b)) ≤ k < min{mk,mκ} = dim(Kk(A, b)
m)

i.e., the subspace Kk(T (A), e1 ⊗ b) is smaller than Kk(A, b)
m.

Therefore, we expect the subspace Kk(A, b)
m to always yield better approximations

than Kk(Tm(A), e1 ⊗ b). Both subspaces need exactly k − 1 matrix-vector products
with A to be constructed and we assume that these products are the dominating cost.
Accordingly, we do not expect any computational advantage from using Kk(Tm(A), e1⊗
b).

The situation is less clear if the residual is less structured. For example, this is the case
for a non-zero initial guess or restarts since Tm(V H

k AVk)
−1(e1 ⊗ V H

k b) is generally not
a Kronecker product. But then for a matrix-vector product of Tm(A) and the residual,
we need up to m matrix-vector products of A (corresponding to the m blocks). This is
in contrast to the partial fraction expansion approach, where we need only one product
with A to increase the Krylov subspace even after restarts.

Still, one might hope that some method converges significantly faster if applied to
T (A). In this regard, it is interesting that we can easily connect the spectrum of T (A)
with the ones of A− τjI in some cases.

Lemma 3.20. Let T (0), T (1) ∈ Cm×m be such that they are simultaneously triangular-
izable and T (s) = T (0) − sT (1) is a regular pencil. Let τj for j = 1, . . . , k0 ≤ m denote
the eigenvalues of T (s) (with k0 as in its Weierstrass canonical form). Then there exist
cj ∈ C\{0} such that

k0⋃
j=1

cj spec(A− τjI) ⊆ spec(T (A)),

where the set equality holds if T (1) is non-singular.

Proof. Since T (0), T (1) are simultaneously triangularizable, there exists a U such that
UT (0)U−1 and UT (1)U−1 are upper triangular. Let φj and ψj for j = 1, . . . ,m denote
the diagonal elements of UT (0)U−1 and UT (1)U−1, respectively. We apply the similarity
transformation with U ⊗ I to T (A). As the resulting matrix is block upper triangular,
we have

spec(T (A)) =
m⋃
j=1

spec(φjI − ψjA).

Assume that there are k non-zero elements of ψj . We reorder the ordered pairs (φj , ψj)
such that these elements appear first. Then we can write

spec(T (A)) =
k⋃
j=1

(−ψj) spec(A− φj
ψj
I) ∪

m⋃
j=k+1

{φj}.

63



3. CF-matrices

Note that T (1) is non-singular if and only if there is no j such that ψj = 0, in which
case the union on the right is empty.

What remains to show is that k = k0 and φj
ψj

= τj . For this, we apply U to the
eigenequation of the pencil T (s),

(T (0) − sT (1))v = 0,

(UT (0)U−1 − sUT (1)U−1)(Uv) = 0.

The equation is fulfilled if and only if the matrix on the left side has an eigenvalue 0.
But this matrix is upper triangular. Thus, we are looking for those values for s such
that the diagonal has a zero element, i.e.,

φj − sψj = 0.

If ψj = 0, then the equation is only fulfilled if φj = 0. But then we could choose any s,
which would contradict the hypothesis that the pencil is regular. Consequently, there
are k values for j left to investigate. For those, we find k eigenvalues of T (s) as τj = φj

ψj
.

There are no other eigenvalues, meaning k = k0, since there are no other possibilities
to fulfill the equation and the initial similarity transformation with U did not change
the eigenvalues.

While the spectrum of T (A) by itself does not provide us full insight into the behavior
of potential Krylov subspace methods, we can still make two observations: The matrix
T (A) can only be positive (or negative) definite if all A − τjI are positive or negative
definite. This is not sufficient, however, as the cj might have conflicting signs or be
complex. Moreover, some convergence results for Krylov subspace methods use spectral
information. For example, the error bound for CG given in Theorem 2.75 uses the
condition number κ(T (A)) = maxλi,λj∈spec(T (A)) λiλ

−1
j (for Hermitian positive definite

T (A)). As this ratio is not changed by multiplying both eigenvalues with a constant,
Lemma 3.20 implies that κ(T (A)) ≥ maxj κ(A − τjI), so we obtain at best the same
error bound for T (A) as for A−τjI. Of course, we have assumed here that T (0), T (1) are
simultaneously triangularizable. This is not a farfetched case, however: An important
class of continued fractions is the class of contracted C-fractions. For those, we can
choose T (0)

m = I (Example 3.10), which is simultaneously triangularizable with any T (1)
m

by using the Jordan canonical form of the latter.
We conclude that the CF-matrix does not seem to offer benefits when working with

Krylov subspace methods.

3.2.4. Multigrid methods
In this subsection, we want to investigate if it is possible to construct a multigrid method
for the CF-matrix approach that beats a good multigrid method for the partial fraction
expansion approach. We explained in Section 2.5.2 that we need two components for
a multigrid method: a simple iterative method called the smoother and a subspace

64



3.2. Search for numerical methods

projection called the coarse-grid correction. We know that the best possible conver-
gence rate and the according subspace is characterized by the eigendecomposition of
the smoother, see Theorem 2.80. Therefore, we aim to relate the eigendecompositions
of the two approaches.

As a reminder, we want to solve the linear system

T (A)x = e1 ⊗ b

and consider iterative methods of the form

xk+1 = xk + I(T (A))−1rk

for the smoother. The matrix I(T (A)) needs to be cheap to invert but still a good
approximation of T (A)−1.

Consider the Kronecker product structure of T (A) = T (0)⊗ I−T (1)⊗A. As the first
dimension m is assumed to be much smaller than the second dimension n, we expect
that changes in the first Kronecker factors would not help much. For example, if we
choose

I(T (A)) = (I � T (0))⊗ I − (I � T (1))⊗A,

then I(T (A)) is block diagonal and thus easier to invert than the block tridiagonal
matrix T (A). Indeed, this is just the block Jacobi method. However, we have to
invert the m shifted matrices T (0)

i,i I−T
(1)
i,i A at each iteration. Using the partial fraction

expansion, we would also need to solve up to m shifted systems but only once, so the
above is usually not a reasonable approach.

Hence, we want to investigate changes in the second Kronecker factor. As the matrix
I can be trivially inverted, we assume that I(I) = I and only consider modifications
I(A) of A:

I(T (A)) = T (0) ⊗ I − T (1) ⊗ I(A) = T (I(A)).

However, if we only modify A, then I(A) can also be used to construct the smoothers

yj,k+1 = yj,k + I(A− τjI)
−1ri,k, j = 1, . . . , k0,

for the shifted systems
(A− τjI)yj = b

of the partial fraction expansion (Theorem 3.14): We only need to set I(A − τjI) =
I(A) − τjI. This is fairly common: For example, it is fulfilled if I(A − τjI) yields
the diagonal of A − τjI (resulting in the Jacobi method) or the lower triangular part
(resulting in the Gauß-Seidel method). So we ask ourselves: Can the smoother for
T (A) behave better than the smoothers for A − τjI? We relate the spectra of their
error propagators in the following theorem:

65



3. CF-matrices

Theorem 3.21 (cf. [CF, Theorem 4.7]). Let T (s) = T (0) − sT (1) be a regular pencil
and assume that T (I(A)) is non-singular. Let

E[T (A)] = I − T (I(A))−1T (A),

E[A− τjI] = I − (I(A)− τjI)
−1(A− τjI), j = 1, . . . , k0,

where τj are the eigenvalues of T (s). Let further S = {0} if T (1) is singular; otherwise
let S be the empty set S = ∅. Then it holds

spec(E[T (A)]) =

k0⋃
j=1

spec(E[A− τjI]) ∪ S.

Proof. Clearly, spec(I −M) = 1− spec(M) for every matrix M . It is thus sufficient to
prove

spec(T (I(A))−1T (A)) =

k0⋃
j=1

spec((I(A)− τjI)
−1(A− τjI)) ∪ S̃

with S̃ = {1} if T (1) is singular and S̃ = ∅ otherwise. Let

UT (s)V = (J (0) − sI) ⊕̂ (I − sJ (1)) ⇐⇒ UT (0)V = J (0) ⊕̂ I, UT (1)V = I ⊕̂ J (1)

be the Weierstrass canonical form of T (s). We then have

(U ⊗ I)T (A)(V ⊗ I) = (J (0) ⊕̂ I)⊗ I + (I ⊕̂ J (1))⊗A

= (J (0) ⊗ I + I ⊗A) ⊕̂ (I ⊗ I + J (1) ⊗A)

and similarly for T (I(A)). We define

y = (V −1 ⊗ I)x,

D(0) = (J (0) ⊗ I − I ⊗ I(A))−1(J (0) ⊗ I − I ⊗A),

D(1) = (I ⊗ I − J (1) ⊗ I(A))−1(I ⊗ I − J (1) ⊗A).

Note that T (I(A)) non-singular implies that J (0) ⊗ I + I ⊗ I(A) is non-singular. With
the help of these definitions, we apply the following similarity transformation to the
eigenequation T (I(A))−1T (A)x = λx:

(V −1 ⊗ I)T (I(A))−1(U−1 ⊗ I)(U ⊗ I)T (A)(V ⊗ I)y = λy,

(D(0) ⊕̂D(1))y = λy.

From this, we obtain

spec(T (I(A))−1T (A)) = spec(D(0)) ∪ spec(D(1)).

66



3.2. Search for numerical methods

Note that J (0), J (1) and I are upper triangular, so (U ⊗ I)T (A)(V ⊗ I) and (U ⊗
I)T (I(A))(V ⊗ I) are block upper triangular. Moreover, the inverse and products of
block upper triangular matrices are again block upper triangular. This means that both
D(0) and D(1) are block upper triangular. Thus, we can determine their eigenvalues by
considering each of their diagonal blocks. The diagonal blocks of D(0) are of the form

(τjI − I(A))−1(τjI −A) = (I(A)− τjI)
−1(A− τjI).

Hence, it follows that

spec(D(0)) =

k0⋃
j=1

spec((I(A)− τjI)
−1(A− τjI)).

The set S̃ is obtained from D(1). We see that its diagonal blocks are In (because J (1)

has only 0 on its diagonal), so it yields the eigenvalue 1 if it exists. However, we know
that

UT (1)V = I ⊕̂ J (1)

and that U and V are non-singular by definition. Consequently, the singular block J (1)

and by extension D(1) exist if and only if T (1) is singular.

Remark 3.22. It is assumed in Theorem 3.21 that T (I(A)) is non-singular. This
is equivalent to assuming that T (s) is non-singular for every eigenvalue of I(A) by
Lemma 3.7. If T (s) = Tm(s) is constructed from a continued fraction r(s) = gm(s),
then this is also equivalent to assuming that r(s) = eT

1 Tm(s)
−1e1 is defined on the

spectrum of I(A).

Let us assume that T (1) is non-singular. Then Theorem 3.21 tells us that the smoother
for T (A) behaves exactly as if we combined all smoothers for A− τjI into one method.
Ergo, the CF-matrix does not offer any benefit. If T (1) is singular, the error propagator
might have in addition the eigenvalue 0. But inspecting the partial fraction expansion
tells us that this case only occurs if a polynomial part is included in T (s). Hence, this
0 does not offer any advantage since we could also reduce the size of T (s).

Of course, we know from Theorem 2.80 that not only the eigenvalues but also the
eigenvectors are important. For example, E[T (A)] could have a cheap and sparse ba-
sis for its eigenvectors with large eigenvalues while E[A − τjI] do not. However, the
eigenvectors are also closely connected. To prove this, we first mention a simple lemma.

Lemma 3.23. Let a, c ∈ Cm and b,d ∈ Cn. If

a⊗ b = c⊗ d 6= 0,

then a and c are collinear.

67



3. CF-matrices

Proof. Reading the equation componentwise yields

aibj = cidj , i = 1, . . . ,m, j = 1, . . . , n.

Choose j such that bj 6= 0. Then

ai =
dj
bj
ci.

Since this holds for every i = 1, . . . ,m, we see that a and c are collinear.

Now we can show a correspondence between eigenvectors of the error propagators.

Theorem 3.24 (cf. [CF, Corollary 4.8]3). Let the assumptions of Theorem 3.21 hold.
Let v 6= 0 ∈ Cm, w 6= 0 ∈ Cn and λ 6= 0 ∈ C. We have

E[T (A)](v ⊗w) = λv ⊗w

if and only if
T (τ)v = 0 and E[A− τI]w = λw.

Proof. We rewrite the two eigenequations as generalized eigenvalue problems: Shifting
a matrix does not change its eigenvectors. We use µ = 1 − λ to remove the shifts in
the error propagators. We also put T (I(A)) and (I(A) − τI) to the right side of the
equations, which yields the following equivalent statement:

T (A)(v ⊗w) = µT (I(A))(v ⊗w)

if and only if
T (τ)v = 0 and (A− τI)w = µ(I(A)− τI)w.

We now prove the forward direction: Starting thus from the upper equation, we have

T (0)v ⊗w − T (1)v ⊗Aw = µT (0)v ⊗w − µT (1)v ⊗ I(A)w,

(1− µ)T (0)v ⊗w = T (1)v ⊗ (A− µI(A))w.

Assume for now that T (0)v 6= 0. Then we can apply Lemma 3.23. On one hand, this
means that T (0)v = τT (1)v for some constant τ 6= 0, from which we get

T (1)v 6= 0, T (τ)v = 0.

Using this, we obtain

(1− µ)τT (1)v ⊗w = T (1)v ⊗ (A− µI(A))w,

(1− µ)τw = (A− µI(A))w.

3As far as our analysis concerns, Corollary 4.8 in [CF] is much weaker than the result presented here
in Theorem 3.24: There, only the backward direction of the equivalence is considered for only a
subset of regular pencils. Note that the result in [CF] does not require λ 6= 0 but the corresponding
eigenvectors are of no interest to us anyway.

68



3.3. Numerical Experiments

We put the terms multiplied by µ to the left side and the others to the right side. This
yields

µ(I(A)− τI)w = (A− τI)w

on the other hand and thus proves the statement for T (0)v 6= 0.
Let us now consider what happens if T (0)v = 0. In this case,

0 = T (1)v ⊗ (A− µI(A))w.

But T (1)v = 0 cannot be true because otherwise T (s)v = 0 for every s and we assumed
that T (s) is a regular pencil, so we find (A−µI(A))w = 0. This situation is included in
the statement with τ = 0. We have thus proven the statement in the forward direction.
The other direction is verified by retracing our steps for the case T (0)v 6= 0. However,
we do not need to treat the case T (0)v = 0 differently this time.

How does that translate to a coarse-grid correction? We know by Theorem 2.80
that the best subspace for the coarse-grid correction is given by the subspace that is
spanned by eigenvectors with problematic eigenvalues of E[T (A)]. We want to exploit
the Kronecker product structure and consequently use a basis of the form I ⊗W for
this subspace. But Theorem 3.24 tells us that the subspace with basis W eliminates the
same eigenvalues in E[A − τjI]. Consequently, any such coarse-grid correction for the
CF-matrix approach induces a coarse-grid correction for the partial fraction expansion
approach that behaves equally well. We have thus found no reason to use the CF-matrix.

Remark 3.25. The smoothers we have considered here fulfill I(T (A)) = T (I(A)), i.e.,
only the matrix A is modified for the inversion. This is a fairly abstract description
of an iterative method, so one might wonder if there is a connection to any of the
common smoothers like the Jacobi method or the Gauß-Seidel method. As mentioned
in the proof of Lemma 3.7, we can always switch the order in the Kronecker product
by permutation. Specifically, there always exists a permutation matrix P such that

PT (I(A))PT = P (T (0) ⊗ I − T (1) ⊗ I(A))PT = I ⊗ T (0) − I(A)⊗ T (1),

see [44, Eq. (1.3.5)], [57, Eq. (4.3.12)]. Now, if we take only the diagonal of A, i.e.,
I(A) = I � A, then PT (I(A))PT is block diagonal and inverting a block diagonal
matrix is what happens in the block Jacobi method. The resulting smoother for T (A)
can thus be interpreted as the block Jacobi method for a specific—and maybe not
intuitive—choice of blocks. Similarly, if we take the lower triangular part of A, then
PT (I(A))PT is block lower triangular and we obtain the block Gauß-Seidel method for
the same choice of blocks.

3.3. Numerical Experiments
Our investigations in Section 3.2 offered no explicit method for the CF-matrix to beat
the partial fraction expansion. As we focused on exploiting the Kronecker product

69



3. CF-matrices

structure of T (A) before, we try standard methods instead. Specifically, we want to
examine numerically two ideas in this section:

1. When solving the shifted systems of the partial fraction expansion, one might
want to exploit the shift-invariance of the Krylov subspace and apply a multi-
shift solver. Preconditioning these systems is not a trivial task since the precon-
ditioned Krylov subspaces should ideally also be shift-invariant (see, e.g., [2]). On
the other hand, with the CF-matrix we only need to solve one system and thus
are free to choose any preconditioner. Not explicitly accounting for the block
structure of T (A), standard preconditioners could help our approach be advanta-
geous compared to the partial fraction expansion approach. We investigate this
in Sections 3.3.1 and 3.3.2.

2. Algebraic multigrid methods are more or less black-box methods, i.e., the coarse-
grid hierarchy is constructed automatically from the entries of the matrix. Such
methods may work better with T (A) than with A − τjI. We check this in Sec-
tion 3.3.3.

The following numerical experiments were run on a laptop with Intel® Core™ i7-
8650U and 16GB. They were implemented in the programming language Python (Ver-
sion 3.8.15) using the package SciPy [91] (Version 1.10.0). Where appropriate, we used
functions from its module sparse.

3.3.1. Preconditioned CG

We want to investigate if CG with a standard preconditioner can give better perfor-
mance applied to T (A) compared to the matrices A − τjI. We choose the regular
C-fraction

g(s) = b0 +
∞

K
i=1

(cis
1

)
with b0 = 1, c1 = α, ci =

{
i−2α
4(i−1) , i = 2, 4, . . . ,
i−1+2α

4i , i = 3, 5, . . . .

This way, we have g(s) = (s + 1)α for |arg(s + 1)| < π and its approximants yield
corresponding Padé approximations, see [22, Eq. 11.7.1]. We build the symmetric CF-
matrix by using the contraction g̃10(s) of g20(s) (Example 3.10) for α = −1

2 . This
results in

T (0) = I10, T (1) = −1

4


3 1

1 2
. . .

. . . . . . 1
1 2

 ∈ R10×10.

To obtain an approximation for s−1/2 instead of for (s+1)−1/2, we use A−I as argument,
which gives

T (A) := (T (0) + T (1))⊗ I − T (1) ⊗A.

70



3.3. Numerical Experiments

For A, we choose the discrete 2D Laplace operator on a square grid of size N = 100
with Dirichlet boundary conditions. That is,

A = A1 ⊕A1 ∈ RN
2×N2

, A1 =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 ∈ RN×N , (3.10)

where ⊕ denotes the Kronecker sum defined as

A⊕B = A⊗ In2 + In1 ⊗B

for two matrices A ∈ Cn1×n1 and B ∈ Cn2×n2 .
As (T (1))−1(T (0)+T (1)) = (T (1))−1+ I, the shifts τj of the partial fraction expansion

can easily be obtained by computing the eigenvalues of T (1). Note that τj < 0 and
that the matrices A− τjI and T (A) are symmetric positive definite. We apply the CG
method to the systems T (A)−1(e1 ⊗ b) and (A − τjI)

−1b with b = e1 and zero initial
guess. We also choose a target accuracy of 10−12 for the relative residual norm and a
maximum number of 200 iterations.

The relative residual norms are plotted in Fig. 3.1 on the left side. Since we shift the
spectrum of A away from 0, most of the shifted systems are well conditioned and CG
finishes after a few iterations. With the CF-matrix, this performance is not attained
by the CG method. Instead, it behaves similarly as with the slowest converging system
A− τjI.

We now construct a sparse incomplete LU factorization as a preconditioner to speed
up the convergence of CG. To be more precise, we use the function spilu() of the SciPy
package (with a fill factor of 40), which yields an ILUTP preconditioner, see, e.g., [78,
Section 10.4.4]. The CG method for T (A) now converges after only 9 iterations. Of
course, we had to invest additional CPU time to construct the preconditioner. For
a fairer comparison with the partial fraction expansion, we precondition each of the
matrices A− τjI in the same way. The resulting residuals are plotted in Fig. 3.1 on the
right side. We see that even the slowest case needs only about half as many iterations.

One might argue that constructing several preconditioners for A− τjI could turn out
to be more expensive than a single one for T (A). We do not want to give a detailed
analysis of the CPU time as that depends heavily on the implementation. However,
preconditioning and solving all systems (A−τjI)−1b took about 0.5 s in total, while the
same for T (A)−1(e1 ⊗ b) took about 32 s. This is a large difference in speed, especially
considering that we do not exploit the shift-invariance of the Krylov subspace. From
this example, it seems that it is not trivial to find a preconditioner such that working
with the CF-matrix becomes more efficient than working with the shifted matrices.

71



3. CF-matrices

0 50 100 150 200
10−13

10−9

10−5

10−1

iteration

re
la

tiv
e

re
sid

ua
ln

or
m

0 2 4 6 8

iteration

Figure 3.1.: Convergence curves for solving T (A)−1(e1 ⊗ b) (marked line, ) and
(A − τjI)

−1b (unmarked lines) with the CG method. The counterclock-
wise ordering of the unmarked lines corresponds to increasing values of τj
and thus increasing condition numbers κ(A − τjI). Left: without precon-
ditioner. Right: with ILUTP.

3.3.2. Preconditioned GMRES and complex shifts

Perhaps the situation changes if A and T (A) are not symmetric positive definite. We
consider the C-fraction

g(s) = b0 +

∞

K
i=1

(cis
1

)
with b0 = 1, c1 = −1, ci =

{
(2i− 2)−1, i = 2, 4, . . . ,

−(2i)−1, i = 3, 5, . . . ,

which yields g(s) = exp(−s), see [22, Eq. (11.1.3)]. This time, we have cici+1 < 0, so we
cannot construct a real symmetric T (1) as before. From the contraction g̃10(s) = g20(s),
we construct the CF-matrix as in Example 3.10. We have

T (0) = I10, T (1) = (−1)



1
2

1
2

−1
6 0 1

6

− 1
10

. . . . . .

. . . . . . 1
34

− 1
38 0


∈ R10×10.

We also switch to a non-symmetric (though related) choice for A, namely the 2D
convection-diffusion operator with first-order upwind discretization. With the step size
h = (N + 1)−1 for a square grid of size N = 100 on the unit cube, the direction vector

72



3.3. Numerical Experiments

0 20 40 60 80 100
10−14

10−9

10−4

global iteration

re
la

tiv
e

re
sid

ua
ln

or
m

0 1 2 3 4 5

Restart cycle

0 1 2 3 4

iteration

Figure 3.2.: Convergence curves for solving T (A)−1(e1⊗b) (marked line, ) and (A−
τjI)

−1b (unmarked lines) with the GMRES method with restart length
20. Left: without preconditioner. Right: with ILUTP, no restarts were
necessary.

[1,−1] and a diffusion coefficient of ε = 10−3, this implies

A = εh−2A1 ⊕A1 + h−1A2 ⊕AT
2 ∈ RN

2×N2
, A2 =


1

−1
. . .
. . . . . .

−1 1

 ∈ RN×N .

The matrix A1 is defined as in Eq. (3.10). The right-hand side b = e1 and the zero
initial guess remain unchanged.

Instead of the CG method, we use the GMRES method with restart length 20 for
T (A)−1(e1 ⊗ b) and (A− τjI)

−1b, where

T (A) = T (0) ⊗ I − T (1) ⊗A, τj ∈ specp(T (0) − sT (1)) = spec((T (1))−1).

Note that the shifts τj are all complex numbers that come in complex conjugate pairs.
Because of this, we only need to solve five systems of the form (A − τjI)

−1b, see
Remark 3.15. The relative residuals without and with ILUTP are plotted in Fig. 3.2.
We see that GMRES with T (A) converges only very slowly, while GMRES with A−τjI
finishes in the third restart cycle. With preconditioning, all systems converge within a
couple of inner iterations.

For the systems involving A−τjI, however, we need complex arithmetic. On the other
hand, solving with T (A) is done completely in real arithmetic. As we have discussed in

73



3. CF-matrices

0 5 10 15
10−13

10−9

10−5

10−1

iteration

re
la

tiv
e

re
sid

ua
ln

or
m

0 10 20 30 40

iteration

Figure 3.3.: Convergence curves for solving T (A)−1(e1 ⊗ b) (marked line, ) and
(A − τjI)

−1b (unmarked lines) with PyAMG. The counterclockwise or-
dering of the unmarked lines corresponds to increasing values of τj and
thus increasing condition numbers κ(A − τjI). Left: Black-box approach
(solve() is used for every system). Right: Structured approach (a coarse-
grid hierarchy for A is used for all systems).

Remark 3.15, this could manifest itself by an increased run time for GMRES with A−τjI
if the implementation does not exploit the shift-invariance of the Krylov subspace. This
is the case for us, so it might be interesting to look at the CPU times: For T (A),
constructing the preconditioner and solving with GMRES took about 31 s, while for all
5 systems of the form A − τjI, it took about 0.3 s in total. This difference in speed is
comparable to before and does not speak in favor of the CF-matrix approach.

3.3.3. AMG

Lastly, we choose the function solve() from the package PyAMG [9] (Version 4.2.3)
for a black-box algebraic multigrid method. We use matrices similar to the ones of
Section 3.3.1: The pencil T (s) ∈ R10×10 and the CF-matrix T (A) are constructed in
the same way, so implicitly we again try to approximate A−1/2b. For A, however, we
choose the Laplace operator now on a 3D cubic grid of size N = 30, i.e.,

A = A1 ⊕A1 ⊕A1 ∈ RN
3×N3

with A1 as in Eq. (3.10). The relative residuals for b = e1 are plotted in Fig. 3.3 on
the left.

We do not encounter anything new here: While the method converges fast with the
CF-matrix, it converges even faster with the shifted systems. If we consider the CPU
time, then the black-box method for the CF-matrix took about 23 s whereas for the
shifted systems, it finishes after around 14 s. So while still faster than with the CF-

74



3.3. Numerical Experiments

matrix, the partial fraction expansion approach does not seem to work as well with
PyAMG.

We can also verify Theorem 3.24 using PyAMG. For this, we choose the Jacobi
method as smoother and obtain a coarse-grid hierarchy for the matrix A from PyAMG.
(There are several construction methods available. We chose smoothed aggregation.)
This is used for every shifted matrix A − τjI. Lifting the coarse grids of A using
the Kronecker product (see Section 3.2.4 and cf. Section 3.2.3) and choosing the block
variant of the smoother, we also have a coarse-grid hierarchy for T (A). The relative
residuals are plotted in Fig. 3.3 on the right. We see that the multigrid method for
T (A) behaves only marginally better than the slowest one for A − τjI. We expect
that the small difference in the rate of convergence vanishes for a larger number of
iterations: After all, the plot implies that a significant portion of the error still comes
from faster-converging systems.

75





4. Restarts for Laplace transforms
We discussed in Section 2.4.2 that restarting the Arnoldi approximation to f(A)b is
not always a trivial task. Thus far, numerically stable and efficient algorithms are only
known for some classes of functions f . In this chapter, we show how to make efficient
and stable restarts possible for one- and two-sided Laplace transforms and complete
Bernstein functions.

Here is our roadmap: In Section 4.1, we develop a new representation of the error
function for Laplace transforms and discuss how it can be extended to the other two
classes of functions. With this theoretical basis, we explain in Section 4.2 how the
restarted Arnoldi method with our error representation can be implemented such that
it is indeed stable and efficient in practice. Numerical experiments are presented in
Section 4.3. Section 4.4 focuses on error bounds: The new error representation allows
us to develop a new a priori error bound, which proves the convergence of our method
for some classes of matrices. In addition, we explain how to obtain an a posteriori error
bound. We illustrate the practical behavior of these bounds in Section 4.5.

We have already published most of our findings in [L] and Sections 4.1 to 4.3 are
based on this. The content of Sections 4.4 and 4.5 has not been published yet, however.

4.1. A new representation of the error function
We start with the error representation. As a reminder, if we want to approximate f(A)b
using the Arnoldi approximation fm after m steps, we obtain the error

εm = f(A)b− fm = f(A)b− ‖b‖2Vmf(Hm)e1.

We now want to find a function f (2)(s) and a vector b(2) such that

εm = f (2)(A)b(2).

Once we have found them, we can approximate the error again using the Arnoldi ap-
proximation. We show how to find f (2)(s) and b(2) if

f(s) = L{f̂}(s) =
∫ ∞

0
exp(−ts)f̂(t)dt

is the Laplace transform of some function f̂ . We want f (2) to be a Laplace transform,
too, so that we can apply restarts iteratively.

The derivation of the new representation is the subject of Section 4.1.1. We discuss
how to translate our result to related classes of functions in Section 4.1.2. This section
is based on [L, Sections 3 and 4].

77



4. Restarts for Laplace transforms

4.1.1. Laplace transforms
How do we find a new representation? Looking at the error for a Laplace transform

εm =

∫ ∞

0
exp(−tA)bf̂(t)dt− ‖b‖2Vm

∫ ∞

0
exp(−tHm)e1f̂(t)dt

=

∫ ∞

0
(exp(−tA)b− ‖b‖2Vm exp(−tHm)e1)f̂(t)dt,

=

∫ ∞

0
εexp,m(t)f̂(t)dt,

we see that we have to integrate the error

εexp,m(t) = exp(−tA)b− ‖b‖2Vm exp(−tHm)e1 (4.1)

for the matrix exponential exp(−tA)b. The idea is to find an integral representation for
εexp,m that contains exp(−tA) and then manipulate the resulting double integral such
that we obtain a new matrix Laplace transform. The following representation fulfills
our demands and has been known for many years, see, e.g., [27, p. 44] or [92, Proof of
Theorem 3.1].

Lemma 4.1 (cf. [L, Lemma 3.1]). Let A ∈ Cn×n, b ∈ Cn. Let Hm, Vm, hm+1,m, vm+1

be generated from their Arnoldi process (Algorithm 1). Then

εexp,m(t) = −hm+1,m‖b‖2
∫ t

0
exp((τ − t)A)vm+1g(τ)dτ,

where εexp,m(t) is defined as in Eq. (4.1) and

g(τ) = eT
m exp(−τHm)e1

is the (m, 1) entry of exp(−τHm).

Proof. While the lemma has been used before, it is usually mentioned only en passant.
Because of this and for completeness, we give a proof here. We define

y(t) = exp(−tA)b, ym(t) = ‖b‖2Vm exp(−tHm)e1

so that εexp,m(t) = y(t)− ym(t). The derivative with respect to t is

ε′exp,m(t) = y′(t)− y′
m(t) = −Ay(t) + ‖b‖2VmHm exp(−tHm)e1.

If we insert the Arnoldi relation Eq. (2.3) into the rightmost term, it changes to

‖b‖2VmHm exp(−tHm)e1 = ‖b‖2(AVm − hm+1,mvm+1e
T
m) exp(−tHm)e1

= Aym(t)− ‖b‖2hm+1,mvm+1g(t).

78



4.1. A new representation of the error function

Inserting this back into ε′exp,m(t), we see that

ε′exp,m(t) = −Aεexp,m(t)− ‖b‖2hm+1,mvm+1g(t).

We now have an initial-value problem with εexp,m(0) = b−b = 0. We solve it using the
Laplace transform. Note that εexp,m(t) and g(t) are of exponential type, i.e., we have
ω{εexp,m} < s and ω{g} < s for large enough s. For such s, we can apply the Laplace
transform to the above equation, which results in

L{ε′exp,m}(s) = −AL{εexp,m}(s)− ‖b‖2hm+1,mvm+1L{g}(s).

We know that

L{ε′exp,m}(s) = sL{εexp,m}(s)− εexp,m(0) = sL{εexp,m}(s)

from the Differentiation Theorem for Laplace transforms, see [25, Theorem 9.1]. By
combining these two equations, we can write

(sI +A)L{εexp,m}(s) = −‖b‖2hm+1,mvm+1L{g}(s),
L{εexp,m}(s) = −‖b‖2hm+1,m(sI +A)−1vm+1L{g}(s).

As (sI + A)−1 = L{exp(−tA)}(s) (see Example 2.9), we are looking for a function
εexp,m(t) whose Laplace transform is the product of two Laplace transforms. According
to [25, Theorem 10.1], we obtain the convolution

εexp,m(t) = −hm+1,m‖b‖2
∫ t

0
exp((τ − t)A)vm+1g(τ)dτ,

which proves our assertion.

Theorem 4.2 (cf. [L, Theorem 3.2]). With the definitions of Lemma 4.1, let f(s) =
L{f̂}(s) with measurable f̂ be a Laplace transform. Assume that the numerical range
W(A) of A is within the interior of the half-plane of existence, i.e.,

α{f̂} < min
s∈W(A)

Re(s).

Then the error εm := f(A)b− ‖b‖2Vmf(Hm)e1 can be represented as

εm = −hm+1,m‖b‖2L{f̂ (2)}(A)vm+1 with f̂ (2)(t) =

∫ ∞

0
f̂(t+ τ)g(τ)dτ.

Proof. Starting from the known equality for the error of a Laplace transform

εm =

∫ ∞

0
exp(−tA)bf̂(t)dt− ‖b‖2Vm

∫ ∞

0
exp(−tHm)e1f̂(t)dt

=

∫ ∞

0
εexp,m(t)f̂(t)dt,

79



4. Restarts for Laplace transforms

we insert the representation of εexp,m from Lemma 4.1 and obtain

εm = −hm+1,m‖b‖2
∫ ∞

0

∫ t

0
exp((τ − t)A)vm+1g(τ)f̂(t)dτ dt.

In order to have the exponential of A only in the outer integral, we use the transforma-
tion z = t− τ for the inner integral so that

εm = −hm+1,m‖b‖2
∫ ∞

0

∫ t

0
exp(−zA)vm+1g(t− z)f̂(t)dz dt

= −hm+1,m‖b‖2
∫ ∞

0

∫ ∞

0
exp(−zA)vm+1g(t− z)f̂(t)χE(t, z)dz dt. (4.2)

Here, we used the characteristic function

χE(t, z) =

{
1, (t, z) ∈ E,

0, (t, z) /∈ E,
with E = {(t, z) ∈ R2 : t > z > 0}.

We show in a separate proof in Corollary 4.6 that we can interchange the order of
integration. Hence

εm = −hm+1,m‖b‖2
∫ ∞

0
exp(−zA)vm+1

∫ ∞

0
g(t− z)f̂(t)χE(t, z)dtdz

= −hm+1,m‖b‖2
∫ ∞

0
exp(−zA)vm+1

∫ ∞

z
g(t− z)f̂(t)dtdz.

If we transform back, i.e., use τ = t− z for the inner integral, we have∫ ∞

z
g(t− z)f̂(t)dt =

∫ ∞

0
g(τ)f̂(z + τ)dτ =: f̂ (2)(z),

which means we proved our assertion.

What remains to show is that we can indeed interchange the order of integration.
We use the following variant of Fubini’s Theorem.

Theorem 4.3 (adapted from Theorem 8.12 in [77]). Let f(t, z) be a measurable function
and ∫

X

∫
Y
|f(t, z)|dz dt <∞

with X,Y ⊆ R. Then ∫
X

∫
Y
f(t, z)dz dt =

∫
Y

∫
X
f(t, z)dtdz.

We want to apply Theorem 4.3 to Eq. (4.2) and so need to check the two assumptions.
We do so in the following two lemmas:

80



4.1. A new representation of the error function

Lemma 4.4. The integrand

exp(−zA)vm+1g(t− z)f̂(t)χE(t, z)

in Eq. (4.2) is measurable.

Proof. Note that the product of measurable functions is also measurable, see [77, 1.9(c)].
Consequently, it suffices to check each factor. The functions exp(−zA) and g(t− z) are
continuous and thus Lebesgue measurable. The function f̂ is measurable as otherwise its
Laplace transform would not be defined. The characteristic function χE is measurable
if E = {(t, z) ∈ R2 : t > z > 0} is a measurable set, see [77, 1.9(d)]. To prove this,
consider a point p = (px, py) ∈ E which implies px > py > 0. Since the rational numbers
are dense in R, there is always a rational number q such that 2q > px > q > py.1 The
open rectangle Rq = {(x, y) ∈ R2 : 2q > x > q > y > 0} is of course measurable
(see, e.g., the definition of product σ-algebras [77, Definition 8.1]). In addition, it
contains p and is a subset of E. As p has been chosen arbitrarily, E is the union of all
such rectangles. But there are only countably many rational numbers q and thus only
countably many rectangles Rq. We conclude that E is a countable union of measurable
sets and thus measurable itself.

Lemma 4.5 (cf. [L, Appendix A]). The double integral in Eq. (4.2) is finite if the
integrand is replaced by its absolute value, i.e.,

v :=

∫ ∞

0

∫ ∞

0
|exp(−zA)vm+1g(t− z)f̂(t)χE(t, z)|dz dt <∞.

Proof. The integrand and the double integral are vectors, so we need to check every
entry individually. To avoid this, we note that |xi| ≤ ‖x‖2 for every entry xi of any
vector x. Applying this and the triangle inequality to the integrand, we have

vi ≤
∫ ∞

0

∫ ∞

0
‖exp(−zA)vm+1‖2|g(t− z)| |f̂(t)|χE(t, z)dz dt

≤
∫ ∞

0

∫ t

0
‖exp(−zA)‖2 |g(t− z)| |f̂(t)|dz dt. (4.3)

Similarly, it is hard not to show that

|g(t)| = |eT
m exp(−tHm)e1| ≤ ‖exp(−tHm)e1‖2 ≤ ‖exp(−tHm)‖2,

|g(t− z)| ≤ ‖exp(−(t− z)Hm)‖2.

The norm of any matrix function can be bounded by

‖f(A)‖2 ≤ c sup
s∈W(A)

|f(s)|

1If 2q is not large enough, we can find a new rational number q̃ such that px > q̃ > q and repeat in
this manner until q̃ is close enough to px.

81



4. Restarts for Laplace transforms

with c = 1 +
√
2, see [21, Eq. (3), Theorem 3.1]. Applying this to the exponential, we

get

‖exp(−zA)‖2 ≤ c sup
s∈W(A)

|exp(−zs)| = c max
s∈W(A)

exp(−zRe(s)) = c exp(−zν)

with ν = mins∈W(A) Re(s). (Note that we need the minimum because z ≥ 0.) By
exploiting that W(Hm) ⊆ W(A) and t− z ≥ 0, we similarly deduce

‖exp(−(t− z)Hm)‖2 ≤ c exp(−(t− z)ν).

Inserting both bounds into Eq. (4.3) results in

vi ≤ c2
∫ ∞

0

∫ t

0
exp(−zν) exp(−(t− z)ν)|f̂(t)|dz dt

= c2
∫ ∞

0
exp(−tν)|f̂(t)|

∫ t

0
dz dt

= c2L{t|f̂(t)|}(ν).

Now, the question is whether L{t|f̂(t)|}(s) exists for s = ν. Theorem 2.8 tells us that
L{t|f̂(t)|}(s) is the derivative of −L{|f̂ |}(s) and it exists if Re(s) > α{|f̂ |} = α{f̂}.
By hypothesis, we have α{f̂} < ν = mins∈W(A) Re(s), so L{t|f̂(t)|}(ν) exists.

Corollary 4.6. The order of integration in Eq. (4.2) can be interchanged.

Proof. By Lemmas 4.4 and 4.5, we can apply Theorem 4.3.

Now that we have finished our main proof(s), we want to state the recursive version
of Theorem 4.2 in Corollary 4.8. Before that, we have to discuss the region of existence,
however. To apply Theorem 4.2 recursively, we need that W(A) lies again within the
new open half-plane Re(s) > α{f̂ (2)}. It turns out that α{f̂ (2)} is bounded by α{f̂}:

Lemma 4.7. Under the assumptions of Theorem 4.2, we have

α{f̂ (2)} ≤ α{f̂}.

Proof. Consider that by definition

L{f̂ (2)}(s) =
∫ ∞

0

∫ ∞

0
exp(−zs)g(t− z)f̂(t)χE(t, z)dtdz

with E = {(t, z) ∈ R2 : t > z > 0}. Assume that

v :=

∫ ∞

0

∫ ∞

0
|exp(−zs)g(t− z)f̂(t)χE(t, z)|dz dt <∞.

82



4.1. A new representation of the error function

Then the double integral∫ ∞

0

∫ ∞

0
exp(−zs)g(t− z)f̂(t)χE(t, z)dz dt

is finite and it coincides with L{f̂ (2)}(s) by Theorem 4.3. (Note that the integrand is
measurable, cf. Lemma 4.4.) This implies that L{f̂ (2)}(s) exists and thus α{f̂ (2)} ≤ s.
We now investigate for which s the assumption v <∞ holds.

We proceed similarly to the proof of Lemma 4.5. First, we use the same bound for
|g(t− z)| to obtain

v ≤ c

∫ ∞

0
|f̂(t)| exp(−tν)

∫ t

0
exp(−z(Re(s)− ν))dz dt (4.4)

with ν = mins∈W(A) Re(s) as before. The inner integral is finite for every s ∈ C. For
Re(s) = ν, we proceed as in the proof of Lemma 4.5, i.e., we have

v ≤ c

∫ ∞

0
|f̂(t)| exp(−tν)tdt = cL{t|f̂(t)|}(ν),

which exists by Theorem 2.8. In the case Re(s) 6= ν, we can evaluate the inner integral
in Eq. (4.4) as ∫ t

0
exp(−z(Re(s)− ν))dz =

exp
(
tν − tRe(s)

)
− 1

ν − Re(s)
.

Inserting this back into Eq. (4.4), we have

v ≤ c

ν − Re(s)

∫ ∞

0
|f̂(t)| exp(−tν)

(
exp
(
tν − tRe(s)

)
− 1
)

dt

=
c

ν − Re(s)

(∫ ∞

0
|f̂(t)| exp(−tRe(s))dt−

∫ ∞

0
|f̂(t)| exp(−tν)dt

)
=

c

ν − Re(s)
(
L{|f̂ |}(Re(s))− L{|f̂ |}(ν)

)
,

where we assumed that both L{|f̂ |}(Re(s)) and L{|f̂ |}(ν) exist for the first equality.
L{|f̂ |}(ν) exists by hypothesis (see Theorem 4.2). Thus, v is finite if L{|f̂ |}(Re(s))
exists. This requirement is fulfilled for Re(s) > α{f̂}. We conclude that L{f̂ (2)}(s)
exists if Re(s) > α{f̂}, which implies α{f̂ (2)} ≤ α{f̂}.

Corollary 4.8 ([L, Corollary 3.3]). Let the assumptions of Theorem 4.2 hold. Let H(k)
m ,

V
(k)
m , h(k)m+1,m, v(k)

m+1 be generated from the restarted Arnoldi process. Then

ε(k)m = ‖b‖2(−1)k
( k∏
j=1

h
(j)
m+1,m

)
L{f̂ (k+1)}(A)v(k)

m+1, k ≥ 1,

83



4. Restarts for Laplace transforms

where the functions f̂ (k+1) are defined by the recursion

f̂ (1)(t) = f̂(t),

f̂ (k+1)(t) =

∫ ∞

0
f̂ (k)(t+ z)g(k)(z)dz, g(k)(z) = eT

m exp(−zH(k)
m )e1, k ≥ 1.

4.1.2. Related classes of functions

We now turn our attention to other classes of functions for which we can apply Theo-
rem 4.2 or a modification of it.

Two-sided Laplace transforms

Two-sided Laplace transforms (Definition 2.17) can be written as the sum of two one-
sided Laplace transforms:

f(s) =

∫ ∞

−∞
exp(−ts)f̂(t)dt = L{f̂(t)}(s) + L{f̂(−t)}(−s).

It is straightforward to apply Theorem 4.2 and Corollary 4.8 to both of these separately.
In this way, we can implement the restarted Arnoldi method for two-sided Laplace
transforms. Most interestingly, the cost remains approximately the same as for a one-
sided Laplace transform: We have

f(A)b = L{f̂(t)}(A)b+ L{f̂(−t)}(−A)b,

so we need to construct the Krylov subspaces Km(A, b) and Km(−A, b). Of course,
these two coincide. In essence, although we want to evaluate two (one-sided) Laplace
transforms, we need to run the Arnoldi process only once for each restart cycle.

Stieltjes functions

An error representation for Stieltjes functions (Definition 2.26) is already known, see
Theorem 2.68. Since every Stieltjes function is also a Laplace transform, we can derive
this representation in an alternative proof now.

Lemma 4.9 (cf. Theorem 2.68 and [L, Corollary 3.5]). Under the assumptions of
Corollary 4.8, if f(s) is a Stieltjes function with f(s) = L{L{ρ}}(s), then

ε(k)m = ‖b‖2(−1)k
( k∏
j=1

h
(j)
m+1,m

)∫ ∞

0
ρ(t)

( k∏
j=1

ψ(j)
m (t)

)
(A+ tI)−1v

(k)
m+1 dt,

with ψ(j)
m (t) = eT

m(H
(j)
m + tI)−1e1.

84



4.1. A new representation of the error function

Proof. Comparing the statement with the representation for ε
(k)
m in Corollary 4.8, we

see that the statement reads as

L{f̂ (k+1)}(A)v(k)
m+1 =

∫ ∞

0
ρ(t)

( k∏
j=1

ψ(j)
m (t)

)
(A+ tI)−1v

(k)
m+1 dt.

We simplify this equation by writing the Stieltjes function on the right as a Laplace
transform,

L{f̂ (k+1)}(A)v(k)
m+1 = L2

{
ρ(t)

k∏
j=1

ψ(j)
m (t)

}
(A)v

(k)
m+1,

so we only need to show that

f̂ (k+1)(s) = L{ρ(t)
k∏
j=1

ψ(j)
m (t)}(s).

We prove this by induction for every k ≥ 0: The case k = 0 is trivial for we have
f̂ (1) = f̂ = L{ρ} by hypothesis. Now assume that the above equation holds for k − 1,
i.e.,

f̂ (k)(s) = L{ρ(t)
k−1∏
j=1

ψ(j)
m (t)}(s).

We can write f̂ (k+1) as

f̂ (k+1)(s) =

∫ ∞

0
f̂ (k)(s+ z)g(k)(z)dz =

∫ ∞

s
f̂ (k)(t)g(k)(t− s)dt

by applying the transformation t = s + z to its definition (see Corollary 4.8). Since
f̂ (k) is a Laplace transform by our assumption, we can also write f̂ (k+1) as a Laplace
transform, see [3, Theorem 2.1] for more details. In particular, we have

f̂ (k+1)(s) = L{L−1{f̂ (k)}L{g(k)}}(s) = L{ρ(t)
k−1∏
j=1

ψ(j)
m (t)L{g(k)}(t)}.

What remains to show is that L{g(k)} = ψ
(k)
m . This easily follows from Example 2.9 as

L{g(k)}(t) =
∫ ∞

0
exp(−τt)eT

m exp(−τHm)e1 dτ

= eT
mLτ{exp(−τt)}(Hm)e1

= eT
m(H

(k)
m + tI)−1e1 = ψ(k)

m (t).

This concludes the induction and thus our proof.

85



4. Restarts for Laplace transforms

Complete Bernstein functions

Consider a complete Bernstein function

f(s) = c0 + c1s+

∫ ∞

0
(1− exp(−ts))f̂(t)dt.

Suppose we want to evaluate f(A)b. Then the first two terms are given by c0b and
c1Ab and can be easily evaluated. If we apply the Arnoldi method for the remaining
integral, we have

εm =

∫ ∞

0
(I − exp(−tA))bf̂(t)dt− Vm

∫ ∞

0
(I − exp(−tHm))e1f̂(t)dt

=

∫ ∞

0
(b− exp(−tA)b− (b− Vm exp(−tHm)e1))f̂(t)dt

= −
∫ ∞

0
(exp(−tA)b− Vm exp(−tHm)e1)f̂(t)dt.

Provided that L{f̂}(A) is defined, this corresponds to the error for −L{f̂}(A)b. We can
thus use Theorem 4.2 and Corollary 4.8 for Bernstein functions, as well. We then need to
assume that W(A) lies in the interior of the region of existence of L{f̂}(t). This is quite
restrictive. Take f(s) =

√
s as in Example 2.37. Then we have f̂(t) = (2

√
π)−1t−3/2.

This function is not locally integrable and its Laplace transform accordingly does not
exist. Therefore, we mention a variation of Corollary 4.8 explicitly for complete Bern-
stein functions.

Lemma 4.10. Let
f(s) =

∫ ∞

0
(1− exp(−ts))f̂(t)dt

with
max(α{tf̂(t)}, 0) < min

s∈W(A)
Re(s).

Then the error for restarted Arnoldi is given by

ε(k)m = ‖b‖2(−1)k−1
( k∏
j=1

h
(j)
m+1,m

)
L{f̂ (k+1)}(A)v(k)

m+1, k ≥ 1,

with f̂ (j) for j ≥ 1 as in Corollary 4.8.

Proof. As discussed above, we have the error for the (formal) Laplace transform −L{f̂}.
For Theorem 4.2, we used the assumption α{f̂(t)} < mins∈W(A) Re(s) =: ν only to
prove the existence of L{t|f̂(t)|}(ν), see the proof of Lemma 4.5. Our new assumption
guarantees this, so the case k = 1 follows immediately.

To obtain the recursive version (k > 1), we show that α{f̂ (2)} < ν. If this is true,
we can just use Corollary 4.8 for all later restarts. Lemma 4.7 does not help us directly

86



4.2. Implementational aspects

as we have not required anything about α{f̂}. We follow a similar argument as in its
proof, however: We use the bound

|g(t− z)| ≤ c exp(−(t− z)ν) ≤ c

(note that (t− z)ν > 0) and obtain

v ≤ c

∫ ∞

0
|f̂(t)|

∫ t

0
exp(−zRe(s))dz dt

instead of Eq. (4.4). Evaluating the inner integral, we have for s 6= 0

v ≤ c

Re(s)

∫ ∞

0
|f̂(t)|

(
1− exp(−tRe(s))

)
dt,

where the integral is just the absolute version of our original Bernstein function f(s).
Thus, it is finite for s > 0 by definition, which implies that α{f̂ (2)} ≤ 0. Since 0 < ν,
we also have α{f̂ (2)} < ν and thus can apply Corollary 4.8.

Remark 4.11. The requirement 0 < mins∈W(A) Re(s) is not a large restriction as our
definition of a Bernstein function assumes Re(s) > 0, anyway.

Remark 4.12. We said that we evaluate c0b + c1Ab directly. This is actually not
necessary: Clearly, c0b ∈ K1(A, b) ⊆ K2(A, b) and c1Ab ∈ K2(A, b). Hence, assuming
that m ≥ 2, we do not change the error εm by including c0 + c1s in the definition of
f(s) and Lemma 4.10 still holds.

4.2. Implementational aspects
With Corollary 4.8, it seems clear how the restarted Arnoldi method can be imple-
mented for a Laplace transform: We just set

f (k)(s) = (−1)k−1
(k−1∏
j=1

h
(j)
m+1,m

)
L{f̂ (k)}(s)

for k ≥ 2 in Algorithm 3. However, it turns out there are some open questions regarding
an actual implementation, especially if we want it to be efficient. In particular, Line 7
in Algorithm 3, i.e., computing

f (k)
m = ‖b‖2V (k)

m f (k)(H(k)
m )e1,

is not as straightforward as it seems. We discuss these questions in this section. It
is based on [L, Section 5]. Since our implementation was done in MATLAB [68], we
reference some of its functions. The resulting algorithm is stated as Algorithm 4.

87



4. Restarts for Laplace transforms

Algorithm 4 Restarted Arnoldi method for Laplace transforms, cf. [L, Algorithm 5.1]
1: function Restarted_Arnoldi(f̂ (1), A, b, m)
2: V

(1)
m , H(1)

m , h(1)m+1,m, v(1)
m+1 = Arnoldi(A, b, m)

3: Choose a quadrature rule (ti, wi)i=1,...,nq for L{f̂ (1)}(H(1)
m )e1.

4: d
(1)
m = f

(1)
m = ‖b‖2V (1)

m L{f̂ (1)}(H(1)
m )e1

5: for k = 2, 3, . . . until convergence do
6: V

(k)
m , H(k)

m , h(k)m+1,m, v(k)
m+1 = Arnoldi(A, v(k−1)

m+1 , m)
7: Choose a quadrature rule (ti, wi)i=1,...,nq for L{f̂ (k)}(H(k)

m )e1.
8: if k = 2 then
9: p(k−1) = f̂ (k−1)

10: else
11: Construct p(k−1) such that p(k−1) ≈ f̂ (k−1).
12: Approximate (f̂ (k)(ti))i=1,...,nq using p(k−1) as in Eq. (4.6).
13: c = (−1)k−1

(∏k−1
j=1 h

(j)
m+1,m

)
14: Compute f

(k)
m = c‖b‖2V (k)

m L{f̂ (k)}(H(k)
m )e1 by numerical quadrature.

15: d
(k)
m = d

(k−1)
m + f

(k)
m

16: return d
(k)
m

4.2.1. Quadrature
First, note that for

f (k)(H(k)
m )e1 = (−1)k−1

(k−1∏
j=1

h
(j)
m+1,m

)
L{f̂ (k)}(H(k)

m )e1,

we need to evaluate the Laplace transform L{f̂ (k)} at a matrix. In general, we do not
have a closed-form expression for this. Thus, we need to rely on numerical integration.
We use a quadrature rule to approximate L{f̂ (k)}(H(k)

m )e1, i.e., we choose nq weights
wi > 0 and pairwise distinct nodes ti ≥ 0 for i = 1, . . . , nq and approximate

L{f̂ (k)}(H(k)
m )e1 ≈

nq∑
i=1

wif̂
(k)(ti) exp(−tiH(k)

m )e1.

How do we choose wi and ti? Any quadrature rule that gives an accurate approx-
imation can be used. We first describe our implementation but also mention other
possibilities.

Note that the integral L{f̂ (k)}(H(k)
m )e1 is vector-valued (or even matrix-valued if we

do not include e1 to the integrand and multiply with it only after the integration). For
efficiency, we want to treat every entry in the same way. We can reduce the integral to
a scalar-valued one by choosing a number ν(k) (depending on H

(k)
m ) and determining

88



4.2. Implementational aspects

the quadrature rule for L{f̂ (k)}(ν(k)). As the exponential function quickly converges
to 0 for large real values, we expect that the major contributions in L{f̂ (k)}(H(k)

m )e1
come from eigenvalues with small real value. Thus, we choose ν(k) to be the smallest
real part of the eigenvalues of H(k)

m ,

ν(k) = min
λ∈spec(H(k)

m )

Re(λ).

This immediately raises the question if a new quadrature rule needs to be set up in
every cycle. Our experiments suggest, however, that it is sufficient to use the same rule
across all cycles. For the sake of notational simplicity, we assume this in Algorithm 4
and in the following, i.e., ν(k) = ν(1) = ν.

In our implementation, we resorted to a well-tried general-purpose quadrature rule:
We determine wi and ti in the same way as the MATLAB function integral() does,
see [82]: Two transformations are applied. The first one, x =

√
t, is supposed to treat a

possible singularity at t = 0, the second one, z = x(1− x)−1, yields a finite integration
interval. Together, we have z =

√
t(1−

√
t)−1 and

L{f̂ (k)}(ν) =
∫ 1

0
exp(−νφ(z))f̂ (k)(φ(z))φ′(z)dz, φ(z) =

z2

(1− z)2
.

The interval [0, 1] is partitioned into the 10 subintervals [0, 0.1], [0.1, 0.2], . . . , [0.9, 1]. In
each of those, a 7-point Gauß rule is combined with a 15-point Kronrod rule to obtain
an approximation to both the integral value on the subinterval and its error.2 If any
estimated error is too large (i.e., larger than a target accuracy εq), we split the respective
subinterval in the middle and recurse on the new subintervals. The quadrature nodes
zi are then transformed back to ti = z2i (1 + zi)

−2.

Remark 4.13. We observed two problems with the above approach:

• If the imaginary part of an eigenvalue λ of H(k)
m is large in absolute value, the

quadrature rule defined for ν ∈ R does not yield good approximations to L{f̂}(λ).
However, if the imaginary part is included in ν, the quadrature can fail to con-
verge or only does with a large number nq of nodes. This is probably because
exp(−tν) = exp(−tRe(ν)) exp(−ti Im(ν)) then contains the rapidly oscillating
term exp(−ti Im(ν)). It is indeed advised in [82, Section 4.2] to use specialized
methods for oscillatory integrals on infinite intervals.

• We often have that exp(−tν)f̂(t) converges to 0 for t→ ∞. However, this is not
necessary and exp(−tν) or f̂(t) can grow indefinitely. This can lead to numerical
problems if the diverging term evaluates numerically to ∞. Thus, one has to be
careful, e.g., when working with indefinite or even negative-definite matrices.

2For more information about Gauß quadrature rules, see, e.g., [45, Chapter 6] and the references
therein.

89



4. Restarts for Laplace transforms

Remark 4.14. The quadrature rule in Line 3 in Algorithm 4 is not needed for Line 4
if A is Hermitian. Then we can compute f(H(1)

m ) directly via the eigendecomposition
of H(1)

m . We use it, however, even in the Hermitian case for the evaluation of f̂ (2), see
Section 4.2.2.

In the literature, numerical integration for the inverse Laplace transform—which
means finding a function f̂ such that L{f̂}(s) ≈ f(s) for some value of s—has re-
ceived considerably more attention than integration for the Laplace transform itself.
Nonetheless, we want to mention some alternatives to our implementation:

Example 4.15. An alternative would be the Gauß-Laguerre quadrature rule. This is
a reasonable choice for Laplace transforms since it is exact for integrals of the form∫ ∞

0
exp(−z)p(z)dz

if p(z) is a polynomial of degree at most 2nq − 1. This form is obtained for a Laplace
transform L{f̂ (k)}(s) by using the transformation z = st, so that

L{f̂ (k)}(s) = s−1

∫ ∞

0
exp(−z)f̂ (k)(s−1z)dz.

Now consider our matrix Laplace transforms

L{f̂ (k)}(H(k)
m )e1 =

∫ ∞

0
exp(−z)f̂ (k)(z(H(k)

m )−1)dz (H(k)
m )−1e1.

We cannot transform the quadrature nodes back because s is a matrix. We notice two
problems with this approach:

• Working with the inverse of H(k)
m implies that it is non-singular. We might not

be able to guarantee this if 0 ∈ W(A).

• We have to evaluate the function f̂ (k) at the matrix z(H(k)
m )−1. Thus, f̂ (k) needs to

be defined on the spectrum of z(H(k)
m )−1. So if H(k)

m is not diagonalizable, deriva-
tives of f̂ (k) need to exist. Note that we also cannot rely on existing optimized
algorithms like in Section 4.2.3 for exp(−tH(k)

m ).

Example 4.16. A recent paper [93] considers numerical integration for both the
Laplace transform and its inverse. It is suggested there to truncate an expansion of
f̂ in terms of scaled Laguerre polynomials Li, which can be transformed exactly. To be
more precise, one uses

f̂(t) ≈ exp(αt)
n∑
i=0

exp(−βt)aiLi(2βt) =⇒ L{f̂}(s) ≈ 1− r̂(s)

2β

n∑
i=0

air̂(s)
i

90



4.2. Implementational aspects

with α > α{f̂}, β > 0 and

r̂(s) =
α+ β − s

α− β − s
,

see [93, Section 2.1]. This does not correspond to a quadrature rule. Effectively, we
would replace f(s) = L{f̂}(s) by a rational approximation. While this could yield good
results in our context, too, it would somewhat defeat the purpose of this chapter: If we
approximate f(s) ≈ r(s), then we can use the methods discussed in Section 2.5 and do
not need a new error representation or algorithm.

Example 4.17. Another approach is sinc quadrature. The underlying idea is to con-
struct an interpolation of the integrand in terms of shifted sinc functions. We give a
short summary of [51, Appendix D]. Let

ph(t) =
∞∑

k=−∞
f(kh) sinc

( t
h
− k
)
, sinc(t) = sin(πt)

πt
, h > 0.

Then it is easily verified that ph(ih) = f(ih) for i ∈ Z, i.e., the function ph(t) interpolates
f(t) at the points ih. As a first step towards a quadrature rule, one interpolates the
integrand in this way. This results in∫ ∞

−∞
f(t)dt ≈

∫ ∞

−∞
ph(t)dt = h

∞∑
k=−∞

f(kh)

by noting that ∫ ∞

−∞
sinc

( t
h
− k
)

dt = h

∫ ∞

−∞
sinc(t)dt = h.

The resulting approximation can be interpreted as the infinite trapezoidal rule. Next,
one truncates the series in both directions, i.e.,∫ ∞

−∞
f(t)dt ≈ h

N∑
k=−N

f(kh), N ∈ N.

If f(t) decays fast enough (e.g., exponentially) for |t| → ∞ and is analytic in a horizontal
strip Dd = {x + iy : x, y ∈ R,−d < y < d}, d > 0, one can derive how to choose h
such that the error is bounded by O(exp(−c

√
N)), where c > 0 is a constant that does

not depend on N ; see, e.g., [51, Theorem D.28]. If we want to apply this to a Laplace
transform L{f̂}(s), we first need to transform the integrand such that the integration
interval is (−∞,∞) instead of [0,∞). Note that we cannot use

L{f̂}(s) =
∫ ∞

−∞
exp(−ts)f̂(t)χ[0,∞)(t)dt

since the integrand would not be analytic at 0 ∈ Dd. Whether a suitable transformation
is available and, if yes, which one yields the best error bound depends on f̂ , of course.

91



4. Restarts for Laplace transforms

For our implementation, we opted for a more black-box approach by relying on the
MATLAB function integral. We note, however, that there are error bounds for some
subclasses of Laplace transforms available, see [86, Theorem 6.9.5]. Furthermore, sinc
quadrature for the Stieltjes functions f(s) = s−α, α ∈ (0, 1), with an application to
matrix functions has recently been described in [20].

4.2.2. Breaking the recursion

Now that we are equipped with a quadrature rule, we can evaluate L{f̂ (k)}(H(k)
m )e1 by

evaluating f̂ (k)(ti) and exp(−tiH(k)
m ) for the quadrature nodes ti, i = 1, . . . , nq. We now

investigate the first part. The matrix exponential is then discussed in Section 4.2.3.
From its definition (see Corollary 4.8), it is easy to see that f̂ (k) can be interpreted

as yet another Laplace transform,

f̂ (k)(z) =

∫ ∞

0
f̂ (k−1)(z + t)eT

m exp(−tH(k−1)
m )e1 dt = eT

mLt{f̂ (k−1)(z + t)}(H(k−1)
m )e1.

The quadrature rule that we used in the previous cycle for L{f̂ (k−1)}(H(k−1)
m )e1 can be

applied to f̂ (k)(z) as well. This results in

f̂ (k)(z) ≈
nq∑
i=1

wif̂
(k−1)(z + ti)e

T
m exp(−tiH(k−1)

m )e1.

But now the question becomes how to evaluate f̂ (k−1)(z + ti). Indeed, expanding the
recursion from the definition of f̂ (k),

f̂ (k)(z) =

∫ ∞

0
· · ·
∫ ∞

0
f̂(z +

k−1∑
i=1

τi)

k−1∏
i=1

g(i)(τi)dτ1 . . . dτk−1, (4.5)

we see that we have an (k−1)-fold integral. We could naively apply a series of quadrature
rules. However, that would become more and more expensive with each new restart
cycle.3 This is not acceptable to us as we demand that our restart algorithm is efficient.
We propose to use

f̂ (k)(z) ≈
nq∑
i=1

wip
(k−1)(z + ti)e

T
m exp(−tiH(k−1)

m )e1 (4.6)

instead, where p(k−1) ≈ f̂ (k−1) is some approximation to f̂ (k−1) if k > 2. As long
as the approximation is relatively cheap to compute and its error is small enough in
[0,∞), it is not important what kind of approximation we use. For the remainder of
this subsection, we describe how we use interpolating splines in our implementation to
give an example.

3This can become even more expensive in terms of arithmetic cost than evaluating d
(k)
m by Lemma 2.65.

92



4.2. Implementational aspects

Spline interpolation

In the previous cycle k − 1, we have already calculated f̂ (k−1)(ti) for the quadrature
rule

L{f̂ (k−1)}(H(k−1)
m )e1 ≈

nq∑
i=1

wif̂
(k−1)(ti) exp(−tiH(k−1)

m )e1.

For efficiency, we want to reuse those values to construct the approximation p(k−1),
which suggests taking p(k−1) as an interpolating function. In our implementation, we
opted for an interpolating cubic spline.

Definition 4.18. A function

p(x) =


p1(x), x ≤ x2,

p2(x), x2 ≤ x ≤ x3,
...

...
pns−1(x), xns−1 ≤ x,

defined piecewise by cubic polynomials pj and pairwise distinct nodes xi, is called a
(cubic) spline if it fulfills the smoothness conditions

pj−1(xj) = pj(xj),

p′j−1(xj) = p′j(xj),

p′′j−1(xj) = p′′j (xj)

for j = 2, . . . , ns − 1. A spline is said to interpolate f if it satisfies in addition p(xj) =
f(xj) for j = 1, . . . , ns.

Interpolating splines as defined above are not yet unique. Two boundary conditions
need to be provided such as the common “not-a-knot” boundary conditions, which
mean that p1 ≡ p2 and pns−2 ≡ pns−1. The interested reader is referred to [16] for a
detailed treatment of spline interpolation. We used the MATLAB function spline()
to construct such interpolating splines.

In our case, we have ns = nq and xj = tj for j = 1, . . . , ns. Initial numerical
experiments showed, however, that the approximation error obtained this way tended
to be too large, which prevented d

(k)
m from converging to f(A)b for k → ∞. (The

vectors d
(k)
m and subsequently f

(k)
m are defined as in Algorithms 3 and 4.)

Spline refinement

To improve the approximation, we chose to adaptively increase the number ns of in-
terpolation nodes. Starting with the spline p(k−1)

1 from xj = tj , we accomplish this
by adding the points (xj + xj+1)/2 to the set of interpolation nodes, which generates
the spline p(k−1)

2 . We repeat this process—obtaining a more and more refined spline

93



4. Restarts for Laplace transforms

p
(k−1)
r this way—until we are satisfied with the approximation error. We check this

by comparing the resulting values for f
(k)
m = ‖b‖2Vmf (k)(H(k)

m )e1 after each refinement
step. That is, if f r denotes the computed value of f (k)(H(k)

m )e1 with spline p(k−1)
r , i.e.,

f r = (−1)k−1
(k−1∏
j=1

h
(j)
m+1,m

) nq∑
i=1

wi exp(−tiH(k)
m )e1

nq∑
j=1

wjp
(k−1)
r (ti + tj)g

(k−1)(tj)︸ ︷︷ ︸
≈f̂ (k)(ti)︸ ︷︷ ︸

≈L{f̂ (k)}(H(k)
m )e1︸ ︷︷ ︸

≈f (k)(H(k)
m )e1

,

we check whether
‖b‖2 ‖f r − f r−1‖2 ≤ εs‖d(k−1)

m ‖2

for a user-specified tolerance εs.
We can bound the number of refinement steps in the following way: As the above

equation illustrates, we only need to evaluate p(k−1) at n2q values right now: ti + tj . If
the above refinement process adds O(n2q) points to the set of interpolation nodes, it is
favorable to stop the refinement process and add the nodes ti + tj instead. Then, the
spline p(k−1) does not introduce an additional error anymore (at least in this cycle, see
Remark 4.20). It is possible to estimate the number of refinement steps needed, so we
can sometimes skip directly to using ti+ tj as interpolation nodes. We do this with the
following error bound for splines:

Lemma 4.19 (cf. [8, Eq. (1.8)], [L, Section 5.2]). Let f be a real function such that its
first three derivatives exist and are continuous in [x1, xns ]. Let p(t) be a cubic spline that
interpolates f in the points xj, j = 1, . . . , ns, with “not-a-knot” boundary conditions.
Define ∆j = xj+1 − xj and ∆max = maxi=1,...,ns−1∆i. If the fourth derivative f [4] of f
exists everywhere in [x1, xns ], then

|f(t)− p(t)| ≤ c∆2
j∆

2
max ‖f [4]‖∞ for xj ≤ t ≤ xj+1,

where c > 0 is a constant independent of f and xj and

‖f [4]‖∞ = sup
s∈[x1,xns ]

|f [4](s)|.

Proof. We start from [8, Eq. (1.8)], i.e.,

|f(t)− p(t)| ≤ c∆j∆
2
max δ(f

[3],∆j) for xj ≤ t ≤ xj+1

with
δ(f [3],∆j) = sup{|f [3](t+ h)− f [3](t)| : x1 ≤ t ≤ xns , 0 < h ≤ ∆j}.

94



4.2. Implementational aspects

As the fourth derivative of f exists everywhere in [x1, xns ], we can write

|f [3](t+ h)− f [3](t)| =
∣∣∣∣∫ t+h

t
f [4](s)ds

∣∣∣∣ ≤ ∫ t+h

t
|f [4](s)|ds ≤ h‖f [4]‖∞,

see [77, Theorem 7.21] for the equality. The proof concludes by inserting this into
δ(f [3],∆j):

δ(f [3],∆j) ≤ sup{h‖f [4]‖∞ : 0 < h ≤ ∆j} = ∆j‖f [4]‖∞.

The above error bound is reduced by a factor of 24 = 16 for each refinement step.
For our estimation, we thus assume that the error at each ti+ tj is reduced by a factor
of 16 in each step. The estimated number of necessary refinement steps r follows as

r ≈ log16
‖b‖2 ‖f2 − f1‖2
εs‖d(k−1)

m ‖2
.

Of course, the exact error can differ from the bound (if it is indeed applicable) but
we have not observed large deviations in our experiments. Note that the goal of this
estimation is to decide whether it is cheaper to skip the refinement process and use
ti + tj as interpolation nodes instead. Consequently, even if the error bound does not
reflect the real behavior of the error, the total number of evaluations of f̂ (k−1) is still
O(n2q).

Remark 4.20. Assume we have constructed the spline p(k−1) for f̂ (k−1) in cycle k and
move to the next cycle k+1. We now want to construct the spline p(k) for f̂ (k) so that

f̂ (k+1)(z) ≈
nq∑
i=1

wip
(k)(z + ti)e

T
m exp(−tiH(k)

m )e1.

For refining p(k), we then need additional evaluations of f̂ (k). We reuse p(k−1) instead of
f̂ (k−1) to keep avoiding the recursion. This leads to evaluations of the form p(k−1)(ti +
tj + tl) for i, j, l = 1, . . . , nq. Thus, even if p(k−1)(ti + tj) = f̂ (k−1)(ti + tj), the use of
spline interpolation typically introduces still an error.

4.2.3. Matrix exponential function

If we use a quadrature rule as described in Section 4.2.1, we need to evaluate terms
of the form exp(−tjH(k)

m )e1 for several values of tj . We now discuss how this can be
implemented efficiently.

For Hermitian H
(k)
m (i.e., for Hermitian A), we can use its eigendecomposition as

mentioned in Section 2.3: We have

exp(−tjH(k)
m )e1 = Z exp(−tjΛ)ZHe1

95



4. Restarts for Laplace transforms

for H(k)
m = ZΛZH with diagonal Λ and unitary Z. The only term that depends on tj is

exp(−tjΛ), which simply resolves to m evaluations of the (scalar) exponential function.
If the eigendecomposition involves O(m3) operations, then we need O(m3 + nqm

2)
operations in total, for we obtain the matrix-vector product Z(exp(−tjΛ)ZHe1) for a
cost of O(m2) for nq values of tj .4

If H(k)
m is not Hermitian, the eigendecomposition might be ill-conditioned or not exist

at all. MATLAB offers the function expm(), which computes the matrix exponential
for any matrix. The underlying gist of this function is to use the scaling and squaring
approach, i.e.,

exp(−tjH(k)
m ) = exp(−2−1tjH

(k)
m )2 = exp(−2−itjH

(k)
m )2

i
.

The matrix exponential M = exp(−2−itjH
(k)
m ) is evaluated by a Padé approximation,

which yields a good approximation if the eigenvalues of −2−itjH
(k)
m are close to 0, i.e.,

if i is large enough. (The number i is chosen based on a norm estimation of the matrix
tjH

(k)
m .) Then repeated squaring is used to compute M2i , i.e.,

M2i = (M2)2
i−1

= (. . . ((M2)2)2 . . . )2,

which needs i matrix-matrix products. For more details about expm(), see [4, 55] or
[56, Section 10.3]. Note that one call to expm() involves O(m3) operations, so we have
O(nqm

3) operations in total.
As we are not interested in the full matrix exp(−tjH(k)

m ), we can reduce the execution
time by employing an algorithm that does not compute exp(−tjH(k)

m ) explicitly and
instead directly computes the vector exp(−tjH(k)

m )e1. We choose the MATLAB function
expmv()5, which implements the algorithm presented in [5]. As we did for expm(), we
only give a short overview of expmv(). Here, only matrix-vector products are needed
by switching to truncated Taylor series instead of Padé approximations. Thus, one call
should involve O(m2) operations. Note that there is no analog of repeated squaring
for matrix-vector products, so M2iv involves 2i matrix-vector products, while M2i only
requires i matrix-matrix products. Thus, we can expect expmv() to be computationally
cheaper than expm() only if it determines a small value for i. We modified the code of
expmv() in our implementation accordingly so that for i > 0 it switches to expm(). In
the worst case, all calls to expmv() end up using expm(), which still leads to O(nqm

3)
operations. However, if only a small number of calls to expm() are involved, we have
again O(m3 + nqm

2) operations.

Remark 4.21. One can reduce the probability that scaling needs to be involved in
expmv(): Assuming that the quadrature nodes tj are sorted in increasing order, one
writes

xj := exp(−tjH(k)
m )e1 = exp(−(tj − tj−1)H

(k)
m )xj−1,

4Of course, the vector ZHe1 can be reused for all values of tj .
5available at https://github.com/higham/expmv

96

https://github.com/higham/expmv


4.2. Implementational aspects

This means one can reuse the already computed vector xj−1 := exp(−tj−1H
(k)
m )e1. This

way, one needs the matrix exponential of −(tj − tj−1)H
(k)
m instead of −tjH(k)

m , which
has eigenvalues close to 0 if tj ≈ tj−1. Note, however, that this propagates any error in
xj−1 to all later vectors xj ,xj+1, . . . ,xnq .

4.2.4. Modifications for complete Bernstein functions
Before we move on to numerical experiments, we want to mention how Algorithm 4
needs to be modified such that it can be used for complete Bernstein functions instead
of Laplace transforms. We assume that f and f̂ are given such that

f(s) =

∫ ∞

0
(1− exp(−st))f̂(t)dt.

Let us first assume that the matrix A is not Hermitian. Then we need the following
changes, which we implemented for our numerical experiment in Section 4.3.4.

• In Line 4, the Laplace transform L{f̂} needs to be replaced by the Bernstein
function f .

• We might replace Line 3 by two quadrature rules: We need one quadrature rule
for the complete Bernstein function f to evaluate f(H(1)

m ) (a Bernstein function,
not a Laplace transform). We need another one for the next cycle to evaluate
f̂ (2)(z), which we interpret as a Laplace transform for fixed z, see Section 4.2.2.
Of course, nothing prevents us from trying the same quadrature rule for both
cases and this is indeed what we do in our implementation.

• The sign of f̂ needs to be flipped after Line 4 (note the additional factor −1 in
Lemma 4.10 compared to Corollary 4.8).

If A is Hermitian, then we can evaluate f(H
(1)
m ) without the use of a quadrature

rule by using the eigendecomposition of H(1)
m , cf. Remark 4.14. This means we could

potentially leave Line 3 unchanged. However, the Laplace transform L{f̂(t)} might
not exist, in which case trying an adaptive quadrature rule as we do is a bad idea. We
know that Lt{f̂(t + z)}(ν) exists for almost all z ∈ [0,∞) (with ν being the smallest
eigenvalue of H(1)

m ). Otherwise, the representation of the error function as a Laplace
transform (Lemma 4.10) would not be possible. One alternative is thus to use some
fixed value for z to determine the quadrature rule.

For Hermitian A, there is in fact no need for any distinction between the two algo-
rithms. We could just change Line 4 to evaluate f instead of L{f̂}. Then Algorithm 4
can still be used for Laplace transforms. It is, however, also applicable to complete
Bernstein functions: We only need to pass −f̂ instead of f̂ . If L{f̂} does not exist,
then we can pass −f̂(t + ε). A black-box quadrature rule has less trouble with that
function and it is a good approximation if f̂ is continuous and ε is small enough. We
try this in Section 4.3.5.

97



4. Restarts for Laplace transforms

4.3. Numerical experiments I: Comparison to other methods

We now want to verify whether we can implement the restarted Arnoldi method for
Laplace transforms in an efficient and stable way. We also want to compare if our
approach yields any benefit compared to the alternative algorithms:

• Even if f(s) is not a Stieltjes function, we might be able to use the algorithm
from [40] after some modification. For example, h(s) = f(s)s−1 is a Stieltjes
function for many complete Bernstein functions f(s), see Theorem 2.36.6 If A
is non-singular, we can write f(A)b = h(A)(Ab) and need to evaluate a matrix
Stieltjes function.7

• In the Hermitian case, we do not have to rely on restarts at all since we can use
the two-pass Lanczos method, which we described at the end of Section 2.4.1.

We report the results of numerical experiments that are obtained from our imple-
mentation. Sections 4.3.1 and 4.3.2 concern Laplace transforms. In Section 4.3.3, we
treat a two-sided Laplace transform. Lastly, we apply our algorithm to two complete
Bernstein functions in Sections 4.3.4 and 4.3.5.

All experiments are calculated in MATLAB R2021a [68] on a laptop with Intel®
Core™ i7-8650U and 16GB. For the algorithm for Stieltjes functions from [40], we use
the MATLAB package funm_quad8 [42].

As target precision tol for the relative error norm, we choose tol = 10−7. The
absolute and relative error tolerance εq for the quadrature rule is set to εq = 10−3 ·
tol = 10−10. The same is done for the tolerance εs for the spline refinement from
Section 4.2.2, εs = εq = 10−10. Unless otherwise noted, we use a restart length of
m = 50 for Hermitian matrices and m = 20 for other matrices. For the two-pass
Lanczos method, we check for convergence every m steps to make it comparable—
at least to some extent—to the restarted algorithms. We base our discussion on [L,
Section 6], where we have already published these experiments (except for those in
Section 4.3.5). Accordingly, we reuse the data for generating the plots.

4.3.1. Fractional negative power less than −1

This subsection is based on [L, Section 6.1]. As a first function, we choose f(s) = s−3/2

as a fractional power less than −1. By Example 2.9, we know that

f(s) = s−3/2 =
2√
π
L{

√
t}(s)

6As mentioned there, this holds for all complete Bernstein functions for a more general definition of
Stieltjes functions.

7In some sense, this is possible even for singular A, see Remark 4.23.
8available at http://www.guettel.com/funm_quad

98

http://www.guettel.com/funm_quad


4.3. Numerical experiments I: Comparison to other methods

with α{
√
t} = 0. The function f̂(t) =

√
t is not a Laplace transform and thus f is not

a Stieltjes function. However, we saw in Example 2.30 that

h(s) = f(s) · s = s−1/2 = π−1

∫ ∞

0

1√
t(t+ s)

dt

is a Stieltjes function. Consequently, we can evaluate f(A)b by first solving x = A−1b
using CG9 or GMRES and then evaluating h(A)x with funm_quad. For CG and GM-
RES, we use the built-in MATLAB functionalities. We choose a smaller target preci-
sion of 10−2 · tol = 10−9 for the residual norm in these methods. This ensures that
funm_quad can achieve a precision of tol even with the initial error for A−1b present.

As the Hermitian test matrix, we choose the 3D Laplace operator from Section 3.3.3:

AL = A1 ⊕A1 ⊕A1 ∈ RN
3×N3

, A1 =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 ∈ RN×N ,

where ⊕ denotes the Kronecker sum. For a non-Hermitian matrix, we use the con-
vection-diffusion operator with first-order upwind discretization from Section 3.3.2, but
we extend it to three dimensions. With the step size h = (N + 1)−1 for a square grid
of size N on the unit cube, the direction vector [1,−1, 1] and a diffusion coefficient of
ε = 10−3, this results in the matrix

ACD = εh−2AL + h−1A2 ⊕AT
2 ⊕A2 ∈ RN

3×N3
, A2 =


1

−1
. . .
. . . . . .

−1 1

 ∈ RN×N .

We choose

b = v ⊗ v ⊗ v with v =
N∑
i=1

[
sin
( πi

N + 1

)
, . . . , sin

( Nπi
N + 1

)]T
∈ RN

in the Hermitian case and b = [1, . . . , 1]T ∈ RN3 in the non-Hermitian case. In our
experiments, we vary N from N = 20 to N = 100 in steps of 10, which leads to
matrices of sizes n = 8000 to n = 106. Note that for both AL and ACD and for all
values of N ≥ 1, the numerical range lies strictly in the right half plane. This means
our new algorithm can be applied.

Figure 4.1 shows how many matrix-vector products each of the three algorithms
perform before reaching the target precision. We see that we need significantly fewer

9Note that α{f̂} = 0 implies that A has to be positive definite, anyway.

99



4. Restarts for Laplace transforms

20 40 60 80 100
0

500

1,000

0.46 0.45 0.45
0.4

0.41
0.38

0.37
0.35

0.34

N

m
at

ve
cs

Laplace op. AL (m = 50)

Laplace
Stieltjes
Lanczos

20 40 60 80 100
0

200

400

600

800

0.58
0.57

0.58 0.55 0.58 0.56 0.54 0.55
0.55

N

conv.-diff. op. ACD (m = 20)

Figure 4.1.: Number of matrix-vector products (“matvecs”) for approximating A−3/2b.
“Laplace” denotes Algorithm 4. “Stieltjes” is the combination of funm_quad
with CG (left) or GMRES (right). The small numbers above the dashed line
indicate which fraction of the overall number of matrix-vector products is
computed in the first phase, i.e., in the CG or GMRES method. “Lanczos”
denotes the two-pass Lanczos method. The restart length is m.

matrix-vector products using directly the Laplace transform (our algorithm) than the
detour via the Stieltjes function (CG/GMRES and funm_quad). It turns out that our
algorithm (for f(s)) and funm_quad (for h(s) = f(s)·s) perform quite similarly and that
the difference in matrix-vector products is mostly due to the CG or GMRES method.
To illustrate this, we include the ratio of the matrix-vector products that are caused by
CG or GMRES to the total amount. They are listed above each data point in Fig. 4.1.
One interpretation is thus that we can save some matrix-vector products by unifying the
initial solving of a linear system with the evaluation of the matrix function into a single
algorithm. The two-pass Lanczos method also needs more matrix-vector products than
Algorithm 4 for N ≤ 70. However, this is not the case for N > 70 so it might not be a
systematic observation.

In Fig. 4.2, we show the convergence curves forN = 100 (after the initial CG/GMRES
phase). They further illustrate that Algorithm 4 and funm_quad by themselves behave
similarly to each other while the two-pass Lanczos method exhibits a better asymptotic
rate of convergence.

The overall smaller number of matrix-vector products for our algorithm compared to
the “Stieltjes” case is not caused by a general loss of the achieved accuracy. We back
this up by plotting the achieved relative error norms in Fig. 4.3.

We now want to illustrate that we implemented our algorithm efficiently in the sense
that the computational cost is O(n), where n = N3 is the size of the matrix A. We plot

100



4.3. Numerical experiments I: Comparison to other methods

0 200 400 600 800
10−8

10−5

10−2

matvecs

re
la

tiv
e

er
ro

r
no

rm

Laplace op. AL (m = 50)

Laplace
funm_quad
Lanczos

0 100 200 300 400

matvecs

conv.-diff. op. ACD (m = 20)

Figure 4.2.: Convergence curves for A−3/2b with Algorithm 4 (“Laplace”) or the two-
pass Lanczos method (“Lanczos”) and for A−1/2c where c = A−1b, with
funm_quad. N = 100. The restart length is m.

20 40 60 80 100
10−11

10−10

10−9

10−8

10−7

10−6

N

re
la

tiv
e

er
ro

r
no

rm

Laplace op. AL (m = 50)

Laplace
Stieltjes
Lanczos

20 40 60 80 100

N

conv.-diff. op. ACD (m = 20)

Figure 4.3.: Accuracy at termination when approximating A−3/2b. “Laplace” denotes
Algorithm 4. “Stieltjes” is the combination of funm_quad with CG (left)
or GMRES (right). “Lanczos” denotes the two-pass Lanczos method. The
restart length is m.

101



4. Restarts for Laplace transforms

0 2 4 6 8 10
0

5

10

15

20

N3/105

tim
e/

s
Laplace op. AL (m = 50)

Laplace
Stieltjes
Lanczos

0 2 4 6 8 10
0

20

40

N3/105

conv.-diff. op. ACD (m = 20)

Figure 4.4.: Execution times when approximating A−3/2b for varying matrix sizes N3.
“Laplace” denotes Algorithm 4. “Stieltjes” is the combination of funm_quad
with CG (left) or GMRES (right). “Lanczos” denotes the two-pass Lanczos
method. The restart length is m.

the execution times for the various sizes in Fig. 4.4. We see that the resulting curve
becomes linear for increasing n (neglecting some inaccuracy in measurement), which
confirms our claim. We also observe that the execution time correlates with the number
of matrix-vector products: Algorithm 4 needs less time than funm_quad in all examined
cases. Of course, execution times are highly dependent on the implementation, so one
should not derive general statements from Fig. 4.4.

Lastly, we want to confirm that our choices for the restart length m are not only
common but indeed appropriate. In Fig. 4.5, we show the execution times for varying
values of m for N = 100. A larger restart length can improve the rate of convergence,
which should yield a smaller execution time. This can be indeed observed in the Hermi-
tian case AL. However, in the non-Hermitian case ACD, a larger restart length increases
the cost for the Arnoldi process: The next basis vector for the Krylov subspace needs
to be orthogonalized against all previous ones, so one wants to keep the number of basis
vectors (i.e., the restart length) small.

4.3.2. Fractional diffusion processes on graphs
Next, we choose a more practically relevant Laplace transform (based on [L, Sec-
tion 6.2]). In fractional diffusion processes, one is interested in

exp(−τLα)b, α ∈ (0, 1), τ > 0,

see, e.g., [11]. The matrix L here is a graph Laplacian, i.e., given an undirected graph
G, we have L = D−A, where D is the diagonal matrix of degrees and A is the adjacency

102



4.3. Numerical experiments I: Comparison to other methods

20 40 60 80 100
0

20

40

60

m

tim
e/

s

Laplace op. AL

Laplace
Stieltjes
Lanczos

20 40 60 80 100
0

100

200

m

conv.-diff. op. ACD

Figure 4.5.: Execution times when approximating A−3/2b for varying restart lengths m
and N = 100. “Laplace” denotes Algorithm 4. “Stieltjes” is the combina-
tion of funm_quad with CG (left) or GMRES (right). “Lanczos” denotes
the two-pass Lanczos method. Note that for two-pass Lanczos, m specifies
that the stopping criterion is checked every m iterations.

matrix. We choose α = 1
2 , which leads to

f(s) = exp(−τ
√
s) =

τ

2
√
π
L{exp(−τ2/(4t))

t3/2
}(s), α{f̂} = 0,

see, e.g., [25, Table of Laplace Transforms, No. 49].

Remark 4.22. As a generalization of Example 2.37, the function sα with α ∈ (0, 1)
is a complete Bernstein function, see [80, Section 16.2, No. 1]. On one hand, this
implies that f(s) = exp(−τsα) is a completely monotone function by Theorem 3.7 in
[80]. On the other hand, every completely monotone function can be expressed by
a Laplace transform if one allows more general measures than the Lebesgue measure
([80, Theorem 1.4]). It follows that exp(−τsα) is a Laplace transform for all values of
α ∈ (0, 1). We choose α = 1

2 because a closed-form expression for the inverse Laplace
transform f̂ is available for this value.

We want to use funm_quad again for comparison: The function h(s) := (f(s)− 1)s−1

has the integral representation

h(s) =
f(s)− 1

s
= −

∫ 0

−∞

1

t− s

sin(τ
√
−t)

πt
dt,

see [28, Example 1]. Theorem 2.67 gives an integral representation of the error functions

103



4. Restarts for Laplace transforms

Table 4.1.: Number of nodes and edges of the largest connected components. The
graphs were obtained from [24].

Name nodes edges

usroads-48 126 146 323 900
loc-Gowalla 196 591 1 900 654
dblp-2010 226 413 1 432 920
com-Amazon 334 863 1 851 744

for this kind of integral.10 Furthermore, simply switching the sign of the integration
variable yields

h(s) =

∫ ∞

0

ρ(t)

s+ t
dt, ρ(t) = −sin(τ

√
t)

πt
.

While h(s) is not a Stieltjes function since ρ(t) 6≥ 0, we can still use funm_quad to
evaluate f(L)b = h(L)(Lb) + b.

We choose the largest connected components of four real-world graphs from the
SuiteSparse Matrix Collection [24] to construct the Laplacian matrix L. The graphs
are listed in Table 4.1 together with the number of nodes (i.e., the size of L) and the
number of edges (i.e., the number of non-zero, non-diagonal elements of L) of their
largest connected component. Moreover, we chose b to be e1 orthogonalized against
[1, . . . , 1]T ∈ Rn, see Remark 4.23 below. We present the convergence curves for τ = 1
in Fig. 4.6. We observe that computing f(L)b with Algorithm 4 needs significantly
fewer matrix-vector products than via funm_quad; in one case even less than half. The
two-pass Lanczos method performs even better except for the graph “dblp-2010”.

Remark 4.23. Note that our matrices are positive semidefinite, i.e., they have 0 as
an eigenvalue. This means that, in principle, the matrix h(L) is undefined. Moreover,
α{f̂} = 0, so the requirement

α{f̂} < min
s∈W(L)

Re(s)

in Theorem 4.2 is not fulfilled. From this point of view, neither Algorithm 4 nor
funm_quad should be applicable. However, we can effectively remove the zero eigenvalue
by so-called desingularization, which we shortly explain in the following.

We used here implicit desingularization as described in [11, Section 5.2]. We orthog-
onalized the vector b = e1 against the eigenvector v = [1, . . . , 1]T ∈ Rn corresponding
to the eigenvalue 0. This resulted in the new vector

b̃ = b− vTb

n
v.

10Note that Theorem 2.67 does not guarantee that the integral representation exists; in our case, this
is guaranteed by [81, Proposition 3.8], however.

104



4.3. Numerical experiments I: Comparison to other methods

0 15,000 30,000 45,000

10−7

10−6

10−5

10−4

10−3

matvecs

re
la

tiv
e

er
ro

r
no

rm

usroads-48

Laplace
Stieltjes
Lanczos

0 2,500 5,000 7,500 10,000

10−7

10−5

10−3

10−1

matvecs

loc-Gowalla

0 200 400 600 800 1,000

10−7

10−6

10−5

10−4

10−3

10−2

matvecs

re
la

tiv
e

er
ro

r
no

rm

dblp-2010

0 4,000 8,000 12,000

10−7

10−6

10−5

10−4

10−3

10−2

matvecs

com-Amazon

Figure 4.6.: Convergence curves for approximating exp(−
√
L)b. “Laplace” denotes Al-

gorithm 4. “Stieltjes” refers to the final error obtained by using funm_quad
for h(L)(Lb) in exp(−

√
L)b = (h(L)L + I)b. “Lanczos” denotes the two-

pass Lanczos method. The restart length is m = 50.

105



4. Restarts for Laplace transforms

It can be shown (see [11, Theorem 5.1]) that a Krylov subspace method for f(L)b̃
then yields the same result as for the projected expression Qf(QTLQ)(QTb), where the
columns of Q ∈ Cn×(n−1) form an orthonormal basis for the complement of span(v).
In other words, by ensuring that the right-hand side is orthogonal to the nullspace of
the matrix, we effectively solve the problem within its range instead of the whole space.
The eigenvalue 0 is not present in this subspace.

Note that one can easily retrieve f(L)b after desingularization: If one has evaluated

f(L)b̃ = f(L)b− vTb

n
f(L)v,

one just needs f(L)v, which simplifies to f(0)v since v is an eigenvector of L.

4.3.3. Gamma function

As an example of a two-sided Laplace transform, we present experiments involving the
gamma function

f(s) = Γ(s) =

∫ ∞

0
xs−1 exp(−x)dx, Re(s) > 0,

cf. [L, Section 6.3]. The computation of the matrix gamma function has recently received
attention in [19, 72]. To show that Γ(s) is indeed a two-sided Laplace transform, we
use the fact that x = exp(log(x)) for x > 0 and then the transformation t = − log(x).
This results in

Γ(s) =

∫ ∞

0
exp
(
(s− 1) log(x)

)
exp
(
− exp(log(x))

)
dx

=

∫ ∞

−∞
exp(−st) exp

(
− exp(−t)

)
dt

= L{exp(− exp(−t))}(s) + L{exp(− exp(t))}(−s),

which is the two-sided Laplace transform of f̂(t) = exp(− exp(−t)). For the region of
existence, we have α{f̂} = 0 by Lemma 2.6 since ω{f̂} = 0 and

L{f̂}(0) =
∫ ∞

0
exp(− exp(−t))dt =

∫ 1

0

exp(−x)
x

dx = ∞.

Moreover, α{f̂(−t)} ≤ ω{f̂(−t)} = −∞. In summary, the gamma function Γ(s) can
be represented by a two-sided Laplace transform in the half-plane Re(s) > 0.

We implemented Algorithm 4.5 combined with Algorithm 4.1 of [19]. This way we
can compute Γ(A) directly and thus determine the error for Γ(A)b in our experiments.
However, this approach scales like O(n3), where n is the size of A, so it becomes

106



4.3. Numerical experiments I: Comparison to other methods

20 40 60 80 100 120
0

200

400

600

800

N

m
at

ve
cs

Laplace op. AL (m = 50)

Laplace
Lanczos

20 40 60 80 100 120
0

100

200

300

N

conv.-diff. op. ACD (m = 20)

Figure 4.7.: Number of matrix-vector products for approximating Γ(A)b. “Laplace”
denotes Algorithm 4. “Lanczos” denotes the two-pass Lanczos method.
The restart length is m.

prohibitively expensive for large values of n. We restrict ourselves consequently to the
2D versions of the matrices AL and ACD from Section 4.3.1, i.e., we use

AL = A1 ⊕A1 ∈ RN
2×N2

,

ACD = εh−2AL + h−1A2 ⊕AT
2 ∈ RN

2×N2
.

Both matrices are again positive definite, so we can apply our Algorithm 4 for both
L{f̂}(A)b and L{f̂(−t)}(−A)b. We choose b = [1, . . . , 1]T ∈ RN3 and let N vary from
20 to 120, which results in n varying from 400 to 14400.

The number of required matrix-vector products and the achieved accuracy are plotted
in Figs. 4.7 and 4.8. While the two-pass Lanczos method requires fewer matrix-vector
products for larger sizes of AL, we conclude that our algorithm can be employed for
two-sided Laplace transforms.

4.3.4. Square root

The first complete Bernstein function we treat is the square root

f(s) =
√
s =

1

2
√
π

∫ ∞

0
(1− exp(−ts))t−3/2 dt,

see Example 2.37. We base our discussion on [L, Section 6.4]. The action of the square
root f(A)b has several applications including machine learning [76], sampling from
Gaussian Markov random fields [59] and preconditioning [7].

107



4. Restarts for Laplace transforms

20 40 60 80 100 120

10−13

10−11

10−9

10−7

N

re
la

tiv
e

er
ro

r
no

rm
Laplace op. AL (m = 50)

Laplace
Lanczos

20 40 60 80 100 120

N

conv.-diff. op. ACD (m = 20)

Figure 4.8.: Accuracy at termination when approximating Γ(A)b. “Laplace” denotes
Algorithm 4. “Lanczos” denotes the two-pass Lanczos method. The restart
length is m.

We apply Theorem 2.7 to determine α{tf̂(t)} = α{t−1/2}: We know that∫ t

0
z−1/2 dz = 2

√
t

and ω{
√
t} = 0. It follows that α{tf̂(t)} = 0. This means we can compute the action

of the square root for positive definite matrices using Algorithm 4, see Lemma 4.10.
For comparison, the package funm_quad can also be used: We evaluate h(A)c = f(A)b,
where h(s) = s−1/2 is a Stieltjes function (see Example 2.30) and c = Ab.

We choose again the 3D versions of the Laplace operator AL and the convection-
diffusion operator ACD from Section 4.3.1 and b = [1, . . . , 1]T ∈ RN3 . The number of
matrix-vector products and the achieved accuracy are plotted in Figs. 4.9 and 4.10.
While the effect is not as strong in the non-Hermitian case, we see once again that
Algorithm 4 needs fewer matrix-vector products than the detour via funm_quad. This
time, it even needs fewer products than the two-pass Lanczos method (except for N =
90). Note, however, that the difference is usually only m products. As only multiples
of m are possible for the reported number of products, this might not be significant.

4.3.5. Entropy

Let A ∈ Cn×n be a density matrix, i.e., A is Hermitian positive semi-definite with
trace(A) = 1. The (von Neumann) entropy of A is then given by trace(− log(A)A). As
is mentioned in [10], the entropy appears in several fields including quantum statistical
mechanics and network science, see the references in [10]. One often approximates it

108



4.3. Numerical experiments I: Comparison to other methods

20 40 60 80 100
0

200

400

N

m
at

ve
cs

Laplace op. AL (m = 50)

Laplace
Stieltjes
Lanczos

20 40 60 80 100
0

200

400

N

conv.-diff. op. ACD (m = 20)

Figure 4.9.: Number of matrix-vector products for approximating A1/2b. “Laplace”
denotes Algorithm 4. “Stieltjes” is funm_quad for A−1/2c with c = Ab.
“Lanczos” denotes the two-pass Lanczos method. The restart length is m.

20 40 60 80 100

10−11

10−9

10−7

N

re
la

tiv
e

er
ro

r
no

rm

Laplace op. AL (m = 50)

Laplace
Stieltjes
Lanczos

20 40 60 80 100

N

conv.-diff. op. ACD (m = 20)

Figure 4.10.: Accuracy at termination when approximating A1/2b. “Laplace” denotes
Algorithm 4. “Stieltjes” is funm_quad for A−1/2c with c = Ab. “Lanczos”
denotes the two-pass Lanczos method. The restart length is m.

109



4. Restarts for Laplace transforms

by

trace(− log(A)A) ≈ −
∑̀
i=1

vT
i log(A)Avi

with so-called probing vectors vi and ` � n. If we write b = Avi, then we can easily
evaluate the term vT

i log(A)b with our restart method by applying it to

f(A)b = log(A)b.

This is possible because the logarithm is a complete Bernstein function with

log(s+ 1) =

∫ ∞

0
(1− exp(−ts))f̂(t)dt, f̂ = exp(−t)t−1

according to [80, Section 16.4, No. 26].
Note that the integral representation above gives log(A + I)b whereas we want

log(A)b. One might be tempted to define M = A− I and then compute log(M + I)b =
log(A)b. However, the matrix M has negative eigenvalues. Theoretically, this is not
a problem because α{t exp(−t)t−1} = α{exp(−t)} = −1. Moreover, M can have −1
as an eigenvalue only if A has 0 as an eigenvalue. We use implicit desingularization as
in Remark 4.23 since b = Avi, thus 0 is effectively not present. In practice, however,
negative eigenvalues can lead to numerically difficult integrals.

Luckily, the exponential function exp(−t) represents a shift in the context of Laplace
transforms. Indeed, since

AVm = VmHm + hm+1,mvm+1e
T
m =⇒ (A− I)Vm = Vm(Hm − I) + hm+1,mvm+1e

T
m,

we have

L{f̂ (2)}(M) =

∫ ∞

0
exp(−t(A− I))

∫ ∞

0
f̂ (1)(t+ τ)eT

m exp(−τ(H(1)
m − I))e1 dτ dt

=

∫ ∞

0
exp(−tA)

∫ ∞

0
(t+ τ)−1eT

m exp(−τH(1)
m )e1 dτ dt

= L{F̂ (2)}(A),

where F̂ (t) = f̂(t) exp(t) = t−1 and F̂ (2) follows formally by restarting L{F̂}(A)b. In
other words, the term exp(−t) in f̂ and the shift −I for our matrix cancel each other
out after the first cycle. Before that, i.e., in the first cycle, we do not need the integral
representation since we restricted ourselves to Hermitian A. Accordingly, we can work
directly with F̂ = t−1 and A.

We use the implementation that is meant for Laplace transforms as explained in
Section 4.2.4, i.e., we pass f̂(t) ≈ −(t+ ε)−1 with ε = εq = 10−10. As test matrices, we
choose the graph Laplacians of Section 4.3.2 but normalize by dividing by their traces
so that the resulting matrices are density matrices, i.e., A = trace(L)−1L. We also
choose e1 as probing vector, which means b = Ae1. The results are plotted in Fig. 4.11.

110



4.3. Numerical experiments I: Comparison to other methods

0 100 200 300 400 500

10−7

10−6

10−5

matvecs

re
la

tiv
e

er
ro

r
no

rm

usroads-48

Laplace
Stieltjes
Lanczos

0 100 200 300

matvecs

loc-Gowalla

0 100 200 300 400

10−7

10−6

10−5

matvecs

re
la

tiv
e

er
ro

r
no

rm

dblp-2010

0 100 200 300 400

matvecs

com-Amazon

Figure 4.11.: Convergence curves for approximating log(A)b. “Laplace” denotes Algo-
rithm 4. “Stieltjes” refers to the final error obtained by using funm_quad
for h(M)c with h(s) = log(s)s−1, M = A − I and c = Mb. “Lanczos”
denotes the two-pass Lanczos method. The restart length is m = 50.

111



4. Restarts for Laplace transforms

In the previous examples, our algorithm often needed more matrix-vector products
than the two-pass Lanczos method. This time, however, we observe that the con-
vergence rate does not worsen much when restarting: Except for usroads-48, the kth
approximation of Algorithm 4 is only marginally worse than the kth approximation of
the two-pass Lanczos method. As the latter needs to perform every matrix-vector prod-
uct twice, Algorithm 4 thus requires only around half as many matrix-vector products.
We also observe that the approximation t−1 ≈ (t + ε)−1 did not prevent Algorithm 4
from reaching the target accuracy.

We tried using funm_quad as well: The function h(s) = log(s + 1)s−1 is a Stieltjes
function and we can write log(A)b = h(M)(Mb). We observe in Fig. 4.11 that the first
cycle yields an approximation with a similar error to the other two methods. After that,
it fails to improve it, however. A numerical investigation by Marcel Schweitzer (personal
communication, University of Wuppertal, Feb 2023) revealed that this is mostly due to
the combination of the spectrum of M and the quadrature in funm_quad: Since

log(s+ 1)

s
=

∫ ∞

1

1

t(t+ s)
dt,

the error function is

f (k+1)(s) = (−1)k
( k∏
j=1

h
(j)
m+1,m

)∫ ∞

1
t−1
( k∏
j=1

ψ(j)
m (t)

)
(s+ t)−1 dt

with ψ
(j)
m (t) = eT

m(H
(j)
m + tI)−1e1, cf. Theorem 2.68. The matrices A have eigenvalues

only close to 0 and so the eigenvalues of M and subsequently of H(j)
m are all close to −1.

This means that ψ(j)
m (t), (t + s)−1 (with s = H

(k+1)
m ) and consequently the integrand

have significant values only for t ≈ 1. The quadrature rule in funm_quad does not
detect this and thus yields a value close to 0 for the integral.11 This results in updates
too small to change the error norm significantly.

4.4. Error bounds
In Section 4.1, we developed a new representation for the error of restarted Arnoldi
for Laplace transforms. We also explained that it can be used to construct an efficient
restarting algorithm in Section 4.2. However, we do not know yet whether the approx-
imation d

(k)
m of our algorithm will become arbitrarily close to f(A)b if we just invest

enough restart cycles, i.e., whether our algorithm converges.
Therefore, we present a new a priori error bound for Laplace transforms. A classical

result (see Lemma 2.6) about Laplace transforms is that L{f̂}(s) with f̂ ∈ L1
loc(R

+
0 )

exists if ω{f̂} < Re(s). That is, if there are T , c and ω large enough such that

|f̂(t)| ≤ c exp(tω)
11Before computing the Gauß-Laguerre quadrature rule, funm_quad applies a transformation to the

integral, see [40]. This transformation does not change the argument, however.

112



4.4. Error bounds

for almost all t ≥ T , then L{f̂}(s) < ∞ for every s with ω < Re(s). Our bound is
based on the following idea: We split the integral L{f̂}(s) at this T , i.e.,

L{f̂}(s) =
∫ ∞

0
exp(−ts)f̂(t)dt

=

∫ T

0
exp(−ts)f̂(t)dt+

∫ ∞

T
exp(−ts)f̂(t)dt

= L{f̂χ(0,T )}(s) + L{f̂χ(T,∞)}(s).

We consider three cases:

• The first case regards functions of the form L{f̂χ(0,T )}(s). Such a function is an
entire function, see Corollary 2.21. Thus, we expect superlinear convergence by
Theorem 2.70. We derive explicit representations for the involved constants in
Section 4.4.1.

• In Section 4.4.2, we consider functions L{f̂}(s), where f̂(t) can be exponentially
bounded for t ≥ 0. Since L{exp(tω)}(s) = (s−ω)−1 (see Example 2.9), we should
be able to apply knowledge about shifted linear systems. This case also includes
functions L{f̂χ(T,∞)}(s), where f̂(t) can be bounded only for t ≥ T .

• The more general case described above is obtained by combining the two cases.
We present the main result in Section 4.4.3. Similarly to Theorem 4.2, it can be
easily extended to complete Bernstein functions.

Afterward, we also shortly explain how an a posteriori error bound can be computed
in Section 4.4.4. Before we start, we want to mention that under mild assumptions we
can also show that the error cannot increase:

Lemma 4.24 ([26, Remark 1]). Let A be Hermitian. Let f̂(t) be real and have constant
sign. The error for the restarted Arnoldi method for L{f̂}(s) satisfies

‖ε(k)m ‖2 ≤ ‖ε(k)m−1‖2

for k ≥ 1 and m ≥ 2.

Proof. The case k = 1 is proved in [26, Remark 1]. Thus, it suffices to show that
f̂ (k+1) is real and has constant sign if the same holds for f̂ (k). The rest follows then by
induction. By definition of f̂ (k+1),

f̂ (k+1)(t) =

∫ ∞

0
f̂ (k)(t+ τ)g(k)(τ)dτ,

we see that we need to investigate g(k). Because A is Hermitian, we know that g(k) is
real and has constant sign; we show this later in Lemma 4.28. Consequently, the same
holds for f̂ (k+1)(t).

113



4. Restarts for Laplace transforms

4.4.1. A priori bound I: Finite integration interval
While we know from Theorem 2.70 that the error for L{f̂χ(0,T )}(s) converges super-
linearly, we want to include the dependence of T . We first describe an error bound for
the exponential function in Lemma 4.25 and then integrate it in Lemma 4.26.

Lemma 4.25 (cf. [30, Theorem 4.2]). Let y
(k)
m (t) be the approximation to exp(−tA)b

from the restarted Arnoldi method. Let Γ be a closed contour enclosing W(A). Denote
by `(Γ) its length, by dist(Γ,W(A)) > 0 its distance to W(A) and by ξ = mins∈Γ Re(s)
its smallest real part. Then

‖exp(−tA)b− y(k)
m (t)‖2 ≤ ‖b‖2C0

(C1t)
km

(km)!
exp(−tξ),

where
C0 =

`(Γ)

2π dist(Γ,W(A))
, C1 = max

s∈Γ
|s|+ ρ(A).

Proof. The statement is essentially [30, Theorem 4.2]. To see the dependence on t,
we have to modify their proof. First note that y

(k)
m (t) = qt(A)b by Lemma 2.65.

(As a reminder, the polynomial qt is the Hermite interpolating polynomial that in-
terpolates exp(−ts) at the spectrum of Υkm as given in Lemma 2.65.) This means
we can write the error as a new matrix function exp(−tA)b − y

(k)
m (t) = ft(A)b with

ft(s) = exp(−ts) − qt(s). This function is an entire function (since the exponential
function and any polynomial are entire functions), so we can represent it using the
Cauchy integral formula (see Definition 2.57) and obtain

‖exp(−tA)b− y(k)
m (t)‖2 = ‖ 1

2πi

∫
Γ
(sI −A)−1bft(s)ds‖2

≤ 1

2π

∫
Γ
‖(sI −A)−1b‖2|ft(s)|ds

≤ ‖b‖2
2π dist(Γ,W(A))

∫
Γ
|ft(s)|ds.

We used ‖(sI −A)−1‖2 ≤ dist(Γ,W(A))−1 from [30, Eq. (4.14)] for the last inequality.
Now, assume that the Hermite interpolating polynomial qt(s) can be written as

qt(s) =

km∑
j=1

∆[θ1,...,θj ]{exp(−ts)} · (s− θ1) . . . (s− θj−1),

where θj are the eigenvalues of H(i)
m for i = 1, . . . , k and ∆[θ1,...,θj ]{exp(−ts)} are the

corresponding divided differences. The fact that qt(s) can be represented in this form
is proved later in Lemma 4.26. A well-known result regarding polynomial interpolation
is that this implies

|ft(s)| = |∆[θ1,...,θkm,s]{exp(−ts)}|
km∏
j=1

|s− θj |,

114



4.4. Error bounds

see, e.g., [16, Chapter I, Theorem (14)]. The divided difference can be bounded by

|∆[θ1,...,θkm,s]{exp(−ts)}| ≤ 1

(km)!
max
s∈Ω

| dkm

dskm
exp(−ts)|

=
tkm

(km)!
exp(−tξ),

where Ω is the convex hull of Γ, see, e.g., [56, Eq. (B.28)]. Since the eigenvalues θj are
contained in W(A), we can bound the absolute value of the so-called nodal polynomial
by

km∏
j=1

|s− θj | ≤
km∏
j=1

(|s|+ |θj |) ≤ Ckm1 .

The remaining integral can thus be bounded by∫
Γ
|ft(s)|ds =

∫
Γ
|∆[θ1,...,θkm,s]{exp(−ts)}|

km∏
j=1

|s− θj |ds

≤ (C1t)
km

(km)!
exp(−tξ)

∫
Γ

ds = (C1t)
km

(km)!
exp(−tξ)`(Γ).

In the above proof, we assumed that the Hermite interpolating polynomial q from
Lemma 2.65 can be written in the form of Lemma 2.56. This is indeed true. While not
a new result, it is usually only mentioned en passant, so we give a short proof:

Lemma 4.26. The polynomial q from Lemma 2.65 can be written as

q(s) =

km∑
j=1

∆[θ1,...,θj ]{f} · (s− θ1) . . . (s− θj−1),

where θj are the eigenvalues of H(i)
m for i = 1, . . . , k and ∆[θ1,...,θj ]{f} are the corre-

sponding divided differences.

Proof. Note that Υkm is block lower triangular so its eigenvalues are the eigenvalues
of its diagonal blocks H(i)

m . Thus, we only need to show that the indices of θj coincide
with their algebraic multiplicities because of Lemma 2.56. As Υkm is also an upper
Hessenberg matrix, we easily see that rank(Υkm − sI) ≥ km − 1 by considering the
sparsity of the columns; a zero entry on the subdiagonal is not possible as otherwise the
Arnoldi process would have broken down, see Lemma 2.63. It follows that the geometric
multiplicity of every eigenvalue of Υkm is (at most and thus equal to) 1. Respectively,
there is only one Jordan block for each distinct eigenvalue and the indices coincide with
the algebraic multiplicity.

As mentioned before, we obtain an error bound for the first case, i.e., L{f̂χ(0,T )}(s),
by integrating over the result of Lemma 4.25:

115



4. Restarts for Laplace transforms

Lemma 4.27. Let f̂ ∈ L1([0, T ]). With the definitions of Lemma 4.25, the error of the
restarted Arnoldi method for the function L{f̂χ(0,T )}(s) satisfies

‖ε(k)m ‖2 ≤ ‖b‖2C0
(C1T )

km

(km)!
L{|f̂ |χ(0,T )}(ξ).

Proof. Starting from the definition of the error

ε(k)m =

∫ ∞

0
(exp(−tA)b− y(k)

m (t))f̂(t)χ(0,T ) dt,

we have
‖ε(k)m ‖2 ≤

∫ T

0
‖exp(−tA)b− y(k)

m (t)‖2|f̂(t)|dt.

The lemma now follows easily by inserting Lemma 4.25 and noting that tkm ≤ T km.

4.4.2. A priori bound II: Exponentially bounded integrand
Next, we consider the error for functions of the form L{f̂}(s), where |f̂(t)| ≤ c exp(tω)
for almost all t ≥ 0. We use that the exponential bound is preserved after restarts,
which we prove in Lemma 4.29. For this, we need an auxiliary result that we have
already used in Lemma 4.24:

Lemma 4.28. Let A be Hermitian. Then g(k)(t) = (−1)m−1|g(k)(t)| for k ≥ 1 and
t ≥ 0. In particular, g(k)(t) is real and has constant sign.

Proof. Interpreting cycle k as a separated start of the restarted Arnoldi method, we
can set Υm = H

(k)
m . Thus, Lemma 4.26 can be applied to H(k)

m , which results in

g(k)(τ) = eT
m exp(−τH(k)

m )e1 =

m∑
j=1

∆[θ1,...,θj ]{exp(−τs)} · eT
m

(j−1∏
i=1

(H(k)
m − θiI)

)
e1,

where θj are the eigenvalues of H(k)
m . Note that eT

m(H
(k)
m )j−1e1 and by extension the

expressions

eT
m

(j−1∏
i=1

(H(k)
m − θiI)

)
e1

vanish for 0 ≤ j − 1 < m − 1 because of the sparsity of the matrix H
(k)
m . Thus, g(k)

simplifies to

g(k)(τ) = ∆[θ1,...,θm]{exp(−τs)} · eT
m

(m−1∏
i=1

(H(k)
m − θiI)

)
e1

= ∆[θ1,...,θm]{exp(−τs)}eT
m(H

(k)
m )m−1e1.

116



4.4. Error bounds

Similarly, it is straightforward to see

eT
m(H

(k)
m )m−1e1 =

m−1∏
j=1

h
(k)
j+1,j ,

which is positive. The divided difference, on the other hand, can be expressed as

∆[θ1,...,θm]{exp(−τs)} = (−1)m−1 τm−1

(m− 1)!
exp(−τξ)

for some ξ ∈ W(H
(k)
m ) due to H(k)

m being Hermitian, see [56, Eq. (B.26)]. It follows that
g(k)(τ) = (−1)m−1|g(k)(τ)| since all terms besides (−1)m−1 are non-negative.

Lemma 4.29. Let |f̂(t)| ≤ c exp(tω) for almost all t ≥ 0. Let further A be Hermitian
and its smallest eigenvalue λmin > ω. Then

|f̂ (k+1)(t)| ≤ c exp(tω)
k∏
j=1

|ψ(j)
m (−ω)|

for all t ≥ 0 with ψ(j)
m (−ω) = eT

m(H
(k)
m − ωI)−1e1.

Proof. The proof follows by induction. The case k = 0 is trivial by hypothesis. Now,
assume that the equation holds for k − 1, i.e.,

|f̂ (k)(t)| ≤ c exp(tω)
k−1∏
j=1

|ψ(j)
m (−ω)|.

By definition of f̂ (k+1), it follows

|f̂ (k+1)(t)| ≤
∫ ∞

0
|f̂ (k)(t+ τ)||g(k)(τ)|dτ

≤ c exp(tω)
k−1∏
j=1

|ψ(j)
m (−ω)|

∫ ∞

0
exp(τω)|g(k)(τ)|dτ. (4.7)

The induction process and thus the proof concludes if we can bound the integral in
Eq. (4.7) by |ψ(k)

m (−ω)|. We know that g(k)(τ) has constant sign by Lemma 4.28. It
follows ∫ ∞

0
exp(τω)|g(k)(τ)|dτ =

∣∣∣∣∫ ∞

0
exp(τω)g(k)(τ)dτ

∣∣∣∣
=

∣∣∣∣∫ ∞

0
exp(τω)eT

m exp(−τH(k)
m )e1 dτ

∣∣∣∣
= |eT

mLτ{exp(τω)}(H(k)
m )e1| = |ψ(k)

m (−ω)|,

where the Laplace transform exists for H(k)
m because λmin > ω.

117



4. Restarts for Laplace transforms

We have already seen the term ψ
(1)
m (0) when characterizing the residual of FOM in

Lemma 2.74. We now relate the error for Laplace transforms to the error of FOM via
the terms ψ(j)

m (−ω). The reader is reminded that FOM coincides with CG for Hermitian
positive definite matrices.

Lemma 4.30. Let A−ωI be Hermitian positive definite and λmax be the largest eigen-
value of A. Let r

(k)
m (−ω) and ε

(k)
m (−ω) denote the residual and error of restarted

FOM/CG applied to the matrix A− ωI and right-hand side b. Then

‖b‖2
k∏
j=1

h
(j)
m+1,m|ψ

(j)
m (−ω)| = ‖r(k)m (−ω)‖2 ≤

√
λmax − ω ‖ε(k)m (−ω)‖A−ωI

with ψ(j)
m (−ω) = eT

m(H
(k)
m − ωI)−1e1 as before.

Proof. The equality follows from combining the last equation on p. 1608 in [39] with
Eq. (3.20) in [40]. It also follows from applying Lemma 2.74 recursively by noting that
the elements h(j)m+1,m are not influenced by the shift −ωI. This can be seen by using
the Arnoldi relation Eq. (2.3):

(A− ωI)V (k)
m = AV (k)

m − ωV (k)
m = V (k)

m H(k)
m + h

(k)
m+1,mv

(k)
m+1e

T
m − ωV (k)

m

= V (k)
m (H(k)

m − ωI) + h
(k)
m+1,mv

(k)
m+1e

T
m.

The inequality follows from the simple relation r
(k)
m (−ω) = (A − ωI)ε

(k)
m (−ω) and the

bound ‖(A− ωI)1/2‖2 ≤ λmax − ω, i.e.,

‖r(k)m (−ω)‖2 = ‖(A− ωI)1/2(A− ωI)1/2ε(k)m (−ω)‖2
≤
√
λmax − ω ‖ε(k)m (−ω)‖A−ωI .

With this result, we now obtain the following error bound.

Lemma 4.31. Let f̂ ∈ L1
loc(R

+
0 ) with |f̂(t)| ≤ c exp(tω) for almost all t ≥ 0. Let A

be Hermitian and its smallest eigenvalue λmin > ω. The error of the restarted Arnoldi
method for L{f̂}(s) satisfies

‖ε(k)m ‖2 ≤ ‖b‖2 c

√
κ(A− ωI)

λmin − ω
‖ε(k)m (−ω)‖A−ωI ,

where κ(A−ωI) is the condition number of A−ωI and ε
(k)
m (−ω) is the error of restarted

CG for the matrix A− ωI.

Proof. We know that

ε(k)m = ‖b‖2(−1)k
( k∏
j=1

h
(j)
m+1,m

)
L{f̂ (k+1)}(A)v(k)

m+1

118



4.4. Error bounds

from Corollary 4.8. We have ‖exp(−tA)v(k)
m+1‖ ≤ exp(−tλmin) as v

(k)
m+1 is of unit norm.

Taking the norm of the error ε
(k)
m and inserting this yields

‖ε(k)m ‖2 ≤ ‖b‖2
( k∏
j=1

h
(j)
m+1,m

)∫ ∞

0
‖exp(−tA)v(k)

m+1‖2|f̂
(k+1)(t)|dt

≤ ‖b‖2
( k∏
j=1

h
(j)
m+1,m

)
L{|f̂ (k+1)|}(λmin).

We now replace |f̂ (k+1)| by the bound from Lemma 4.29 to obtain

‖ε(k)m ‖2 ≤ c‖b‖2
( k∏
j=1

h
(j)
m+1,m|ψ

(j)
m (−ω)|

)
L{exp(tω)}(λmin).

By hypothesis, we have λmin > ω, so the Laplace transform L{exp(tω)}(λmin) = (λmin−
ω)−1 exists, see Example 2.9. Moreover, A−ωI is Hermitian positive definite (λmin−ω >
0), so we can use Lemma 4.30, which yields

‖ε(k)m ‖2 ≤ ‖b‖2c(λmin − ω)−1
√
λmax − ω ‖ε(k)m (−ω)‖A−ωI .

Since
√
κ(A− ωI) =

√
(λmax − ω)(λmin − ω)−1, this proves the assertion.

Any error bound for restarted CG can now be combined with Lemma 4.31 to show
convergence. We use Theorem 2.75.

Corollary 4.32. Under the assumptions of Lemma 4.31, the error satisfies

‖ε(k)m ‖2 ≤ ‖b‖2 c
√
κ(A− ωI)

λmin − ω
γm(−ω)k

with the constants

γm(−ω) =
1

cosh(m log q(−ω))
< 1, q(−ω) =

√
κ(A− ωI)− 1√
κ(A− ωI) + 1

.

Proof. After inserting Theorem 2.75 into Lemma 4.31, we use

‖(A− ωI)−1b‖A−ωI ≤
‖b‖2√
λmin − ω

,

see, e.g., [81, Eq. (5.12)].

Remark 4.33. Corollary 4.32 is similar to the error bound

‖ε(k)m ‖2 ≤ ‖b‖2
√
κ(A)f(

√
λminλmax)γm(t0)

k

119



4. Restarts for Laplace transforms

for Stieltjes functions (Theorem 2.71) if both are applicable: Assume that Theorem 2.71
and Corollary 4.32 can both be applied, i.e., A is Hermitian positive definite and f(s) =
L{f̂}(s) is not only a Laplace transform but can also be written as

f(s) =

∫ ∞

0

ρ(t)

t+ s
dt

for ρ ≥ 0. (In other words, f is a Stieltjes function.) Then we have f̂(t) = L{ρ}(t),
so f̂ ≥ 0 for t ≥ 0. Moreover, since f̂(t) is a Laplace transform, we can choose ω = 0
for an exponential bound, see [25, Theorem 23.7]. We insert this exponential bound,
which yields

f(s) = L{|f̂ |}(s) ≤ cL{1}(s) = cs−1.

The term f(
√
λminλmax) in Theorem 2.71 resolves to

f(
√
λminλmax) ≤ c

√
λminλmax

−1
≤ cλ−1

min.

We also have γm(t0) ≤ γm(0) (see, e.g., [81, Proposition 5.6]). The bound in Theo-
rem 2.71 now gives

‖ε(k)m ‖2 ≤ ‖b‖2 c
√
κ(A)

λmin
γm(0)

k,

which is exactly Corollary 4.32 for our choice ω = 0. Thus, our bound can be interpreted
as a variation of Theorem 2.71 that applies to many Laplace transforms even if they
are not Stieltjes functions. The disadvantage is that it is less tight.

4.4.3. A priori bound III: Main case
We now turn our attention to the case where f̂(t) can be exponentially bounded only
for t ≥ T for some T ≥ 0 and otherwise is integrable.

Theorem 4.34. Let f̂ ∈ L1([0, T ]) and |f̂ | ≤ c exp(tω) for almost all t ≥ T . Let A
be Hermitian and its smallest eigenvalue λmin > ω. The error of the restarted Arnoldi
method for L{f̂}(s) or for the complete Bernstein function with density µ′(t) = f̂(t) in
Definition 2.34 satisfies

‖ε(k)m ‖2
‖b‖2

≤ C0
(C1T )

km

(km)!
L{|f̂ |χ(0,T )}(ξ) + c

√
κ(A− ωI)

λmin − ω
γm(−ω)k,

where the constants C0, C1, ξ are as in Lemma 4.25 and γm(−ω) < 1 is defined in
Corollary 4.32.

Proof. As mentioned at the beginning of the section, we split the integral at T : We
have

‖ε(k)m ‖2 = ‖
∫ ∞

0
(exp(−tA)b− y(k)

m (t))f̂(t)dt‖2

≤ ‖
∫ T

0
(exp(−tA)b− y(k)

m (t))f̂(t)dt‖2 + ‖
∫ ∞

T
(exp(−tA)b− y(k)

m (t))f̂(t)dt‖2

120



4.4. Error bounds

where y
(k)
m is the restarted Arnoldi approximation to exp(−tA)b as in Lemma 4.25. The

first term is the error for L{f̂χ(0,T )}(s), so we can apply Lemma 4.27. The second term
is the error for L{f̂χ(T,∞)}(s). Since |f̂(t)χ(T,∞)(t)| ≤ c exp(tω) for almost all t ≥ 0,
we can apply Corollary 4.32. Note that the same line of thought holds for complete
Bernstein functions.

For some complete Bernstein functions the property f̂ ∈ L1([0, T ]) is not satisfied.
For the error representation in Lemma 4.10, we showed that it is sufficient to consider
α{tf̂(t)} instead of α{f̂(t)}. We can similarly modify the above error bound:

Corollary 4.35. Let the conditions of Theorem 4.34 hold, but instead of f̂ ∈ L1([0, T ]),
let tf̂(t) ∈ L1([0, T ]). Then

‖ε(k)m ‖2
‖b‖2

≤ C0
Ckm1 T km−1

(km)!
L{t|f̂(t)|χ(0,T )(t)}(ξ) + c

√
κ(A− ωI)

λmin − ω
γm(−ω)k.

Proof. We changed the properties of f̂ only in [0, T ], so only the first term in the proof
of Theorem 4.34 is affected. The rest follows as in the proof for Lemma 4.27 with the
difference that we use tkm ≤ tT km−1 instead of tkm ≤ T km.

With Theorem 4.34 and Corollary 4.35, we have derived error bounds for many
Laplace transforms and complete Bernstein functions. Besides the requirements on
A, we only need an exponential bound for |f̂(t)| that is valid almost everywhere. In
Section 4.5, we present such bounds for our previous examples from Section 4.3. This
shall serve as an illustration that our error bound covers many relevant cases. There
are, however, Laplace transforms and complete Bernstein functions that are not covered:
Take, e.g.,

f̂(t) =

∞∑
j=0

j!χ(j, j+(j!)−2)(t).

Then it is easy to see that |f̂(t)| cannot be exponentially bounded but its Laplace
transform exists with α{f̂} ≤ 0. This is implied by

L{f̂}(0) =
∞∑
j=0

j!

∫ j+(j!)−2

j
dt =

∞∑
j=0

1

j!
= exp(1) <∞,

where we interchanged the order of integration and (infinite) summation according to
[77, Theorem 1.27] for the first equality.

Remark 4.36. We used the smallest eigenvalue λmin of A in the previous proofs. It is
well-known that the Lanczos process captures an eigenvalue λ only if the corresponding
eigenvector v is not orthogonal to b, i.e., if vHb 6= 0, see, e.g., [85] and cf. Remark 4.23.
Accordingly, one can replace λmin by a larger eigenvalue if it is known that b is orthog-
onal to the eigenvectors corresponding to smaller eigenvalues. One sometimes works

121



4. Restarts for Laplace transforms

with this “effective” smallest eigenvalue λmin,eff (and the resulting effective condition
number) when analyzing the behavior of CG, see, e.g., [60, Eq. (8)]. It is easily verified
that this can be incorporated into our bounds.

4.4.4. A posteriori bound
The a posteriori error bound for Stieltjes functions from [41], see Corollary 2.73, can be
extended to Laplace transforms. Following the discussion in Section 4.1.2, it is easily
modified for complete Bernstein functions. We state both cases using parentheses.

Lemma 4.37. Let the assumptions of Corollary 4.8 (Lemma 4.10) hold. Let further
f̂(t) be real and have constant sign for t ≥ 0, α{f̂} ≤ 0 (α{tf̂(t)} ≤ 0) and A be
Hermitian positive definite. Define

H̃(k)
m =

[
H

(k)
m h

(k)
m+1,mem

h
(k)
m+1,me

H
m (h

(k)
m+1,m)

2eT
m(H

(k)
m − aI)−1em

]

with 0 < a ≤ λmin. Let f (k) be the error function as in Algorithm 1, i.e.,

ε(k−1)
m = ‖b‖2f (k)(A)v(k−1)

m+1 ,

which means

f (k)(s) = (−1)k−1
(k−1∏
j=1

h
(j)
m+1,m

)
L{f̂ (k)}(s).

Then for k ≥ 2,

‖f (k)(H(k)
m )e1‖2 ≤

‖ε(k−1)
m ‖2
‖b‖2

≤ ‖f (k)(H̃(k)
m )e1‖2.

Proof. The proof is similar to the derivation of Corollary 2.73. Consider the norm of
the error

‖ε(k−1)
m ‖22 = ‖b‖22(v

(k−1)
m+1 )H(f (k)(A))H

f (k)(A)v
(k−1)
m+1 .

The matrix A is Hermitian, so
(
f (k)(A)

)H
= f (k)(A). This means we have the bilinear

form
‖ε(k−1)

m ‖22
‖b‖22

= (v
(k−1)
m+1 )H(f (k)(A))2v

(k−1)
m+1

and similarly

‖f (k)(H(k)
m )e1‖22 = eT

1 (f
(k)(H(k)

m ))2e1, ‖f (k)(H̃(k)
m )e1‖22 = eT

1 (f
(k)(H̃(k)

m ))2e1.

If the function (f (k)(s))2 is a completely monotone function, then the lemma’s assertion
follows from Theorem 2.72. Note that

(f (k)(s))2 =
(k−1∏
j=1

h
(j)
m+1,m

)2
(L{f̂ (k)}(s))2

122



4.5. Numerical experiments II: Error bounds

is completely monotone if and only if (L{f̂ (k)}(s))2 is completely monotone as the re-
maining term is a positive constant. Furthermore, the product of completely monotone
functions is again completely monotone (Lemma 2.25), so it suffices to show that either
L{f̂ (k)}(s) or −L{f̂ (k)}(s) is completely monotone. Since f̂ (1) has constant sign and
g(k) has constant sign (Lemma 4.28), we know that f̂ (k) has constant sign, see the proof
of Lemma 4.24. But this means that either f̂ (k) or −f̂ (k) is non-negative, which implies
that ±L{f̂ (k)}(s) is completely monotone by Lemma 2.23.

4.5. Numerical experiments II: Error bounds
We want to conclude this chapter by examining how the error bounds from Section 4.4
behave in practice. We apply them to the experiments from Section 4.3 with Hermitian
test matrices. For our a priori error bound from Theorem 4.34, we need to investigate
each function individually to obtain good (i.e., small) constants. The application of the
a posteriori error bound from Lemma 4.37 is more straightforward. We only need to
choose a value for a such that 0 < a ≤ λmin, where λmin is the smallest eigenvalue of A.
In cycle k, we always choose the smallest eigenvalue of H(j)

m , j = 1, . . . , k, multiplied by
a safety factor, which is set to 10−1 unless stated otherwise.

4.5.1. Fractional negative power less than −1

Consider again f̂(t) = 2
√
π
−1√

t for the Laplace transform f(s) = s−3/2 = L{f̂}(s)
from Section 4.3.1. We can choose T = 0 and ω > 0 but not ω = 0. For a given ω, we
want to find the minimum value for c such that 2π−1/2

√
t ≤ c exp(tω). We start from

2√
π

√
t ≤ c exp(tω) =⇒ c ≥ 2√

π

√
t exp(−tω).

We look for the global maximum of the function on the very right as the inequality has
to hold for every t. Because

d
dt

2√
π

√
t exp(−ωt) = exp(−ωt)√

πt
(1− 2ωt),

the maximum is achieved for t = (2ω)−1, from which we get

c ≥

√
2

πω exp(1)
≈ 0.484ω−1/2.

We apply Theorem 4.3412 for several values of ω with the above c for AL with N = 100
in the left plot in Fig. 4.12. For ω → 0, we seem to approximately retrieve the observed
convergence rate. The distance of the error bounds to the actual error is too large to be
12As we set T = 0, this is equivalent to using Corollary 4.32.

123



4. Restarts for Laplace transforms

0 5 10 15 20
10−4

102

108

1014

cycle

ab
so

lu
te

er
ro

r
no

rm
A priori

exact error
ω = 10−3

ω = 10−4

ω = 10−5

0 5 10 15 20
10−4

10−1

102

105

cycle

A posteriori

exact error
lower bound
upper bound

Figure 4.12.: Error norm and bounds for A−3/2
L b with AL the 3D Laplace operator.

Left: A priori by Theorem 4.34 with c as small as possible for different
values of ω. Right: A posteriori by Lemma 4.37.

of any practical use, however. One might be tempted to change some of our parameter
choices to obtain a tighter bound. Note that√

κ(AL)

λmin
≈ 104.3,

which partly explains the large distance of the error bounds to the actual error. The rest
comes from c; since 0 < ω < λmin ≈ 10−2.5, decreasing c is only possible by choosing a
value for T larger than (2ω)−1. This, however, leads to an even worse error bound for
a moderate number of matrix-vector products as it introduces the term T km.

We next determine the a posteriori error bounds from Lemma 4.37 and plot them on
the right in Fig. 4.12. We see that these error bounds are much tighter and give a good
indication of the exact norm of the error.

4.5.2. Fractional diffusion processes on graphs

The function f̂(t) = (2
√
π)−1 exp(−(4t)−1)t−3/2 from Section 4.3.2 is integrable and

converges to 0 for t → ∞, so we can choose T = 0 and ω ≥ 0. Our matrices are
graph Laplacians, which are always singular. Thus, λmin > ω cannot be fulfilled. As we
use implicit desingularization (Remark 4.23), we can replace λmin by its effective value
λmin,eff > 0 as mentioned in Remark 4.36. Accordingly, we choose ω = 0.

Next, we need to determine c such that

|f̂(t)| = 1

2
√
π

exp(−(4t)−1)

t3/2
≤ c exp(0) = c.

124



4.5. Numerical experiments II: Error bounds

We look again for the global maximum of |f̂ | by differentiating. Using the product rule,
this derivative follows as

d
dt

|f̂(t)| = 1

4
exp(−(4t)−1)t−7/2 − 3

2
exp(−(4t)−1)t−5/2

=
1

4
exp(−(4t)−1)t−5/2(t−1 − 6).

The maximum occurs at t = 6−1 giving

c ≥ 3

√
6

π exp(3)
≈ 0.925.

To evaluate the a priori error bound from Theorem 4.34, we approximate the largest
and the second smallest eigenvalue using MATLAB’s eigs(). The resulting error bound
is plotted in Fig. 4.13. We observe that it is again far from being practical due to several
orders of magnitude in difference to the exact error norm. In addition, the slope of its
curve differs significantly from the slope for the exact error norm, so the bound does
not describe the observed rate of convergence very well.

The a posteriori error bounds are shown in Fig. 4.14. Here, we choose again the
smallest eigenvalue of H(k)

m for a. We observed that with a safety factor of 10−1, the
resulting estimate for the smallest eigenvalue of A was larger than the exact one. We
thus chose a safety factor of 10−3. Compared to the a priori bounds, the a posteriori
bounds are much closer to the exact error norm and the curves of the error bounds
show slopes similar to the curve of the error itself.

4.5.3. Gamma function
The gamma function from Section 4.3.3 needs two Laplace transforms since it is a two-
sided Laplace transform. For the first one, we have f̂(t) = exp(− exp(−t)), for which
we can choose T = 0. It is easy to see that 0 < f̂(t) < 1 and that f̂(t) converges to 1
for t→ ∞. The smallest value for ω is thus ω = 0 with c ≥ 1.

The second transform L{f̂(−t)} uses f̂(−t) = exp(− exp(t)). This function converges
to 0 faster than any exponential exp(ωt), so we can choose any value for ω. As finding
an optimal value for c is not trivial and we have ω = 0 for the first transform L{f̂},
we choose again ω = 0 and only need to find the maximum of exp(− exp(t)). This
function decreases monotonically, so its largest value is attained at t = 0, which implies
c ≥ exp(−1). We combine the two bounds and obtain

‖ε(k)m ‖2 ≤ (1 + exp(−1))‖b‖2
√
κ(AL)

λmin
γm(0)

k.

This bound together with the exact error norm is plotted in Fig. 4.15 on the left side.
The right side shows the sum of the a posteriori error bounds from Lemma 4.37 for
L{f̂(t)}(AL) and L{f̂(−t)}(−AL).

125



4. Restarts for Laplace transforms

0 100 200 300 400
10−8

10−3

102

107

cycle

ab
so

lu
te

er
ro

r
no

rm

usroads-48

exact error
bound

0 50 100 150
10−10

10−5

100

105

cycle

loc-Gowalla

0 5 10
10−8

10−4

100

104

cycle

ab
so

lu
te

er
ro

r
no

rm

dblp-2010

0 50 100 150
10−8

10−3

102

107

cycle

com-Amazon

Figure 4.13.: Error norm and a priori bound (by Theorem 4.34) for exp(−
√
L)b with L

a graph Laplacian.

126



4.5. Numerical experiments II: Error bounds

0 100 200 300 400

10−9

10−7

10−5

10−3

cycle

ab
so

lu
te

er
ro

r
no

rm

usroads-48

exact error
lower bound
upper bound

0 50 100 150
10−12

10−9

10−6

10−3

cycle

loc-Gowalla

0 5 10
10−8

10−7

10−6

10−5

10−4

10−3

cycle

ab
so

lu
te

er
ro

r
no

rm

dblp-2010

0 50 100 150

10−9

10−7

10−5

10−3

cycle

com-Amazon

Figure 4.14.: Error norm and a posteriori bounds (by Lemma 4.37) for exp(−
√
L)b with

L a graph Laplacian.

127



4. Restarts for Laplace transforms

0 5 10 15 20
10−8

10−4

100

104

cycle

ab
so

lu
te

er
ro

r
no

rm
A priori

exact error
bound

0 5 10 15 20

cycle

A posteriori

exact error
lower bound
upper bound

Figure 4.15.: Error norm and bounds for Γ(AL)b with AL the 2D Laplace operator.
Left: A priori by Theorem 4.34 as explained in the running text. Right:
A posteriori by Lemma 4.37.

4.5.4. Square root
Our first example of a complete Bernstein function was the square root in Section 4.3.4,
for which we have the function f̂(t) = (2

√
π)−1t−3/2. Since f̂ is not integrable, we need

Corollary 4.35. We use the bound

|f̂(t)| = f̂(t) ≤ f̂(T ) exp(ωt), t > T > 0, ω ≥ 0,

and choose ω = 0. For the 3D Laplace operator AL, we choose the contour Γ such that
it has a constant distance of 1 to [0, 12] ⊇ W(AL) and the winding number is 1. Then
the parameters of Lemma 4.25 that we need for Corollary 4.35 are

`(Γ) = 24 + 2π, dist(Γ,W(AL)) = 1, ξ = −1.

The constants in Corollary 4.35 are thus

C0 =
`(Γ)

2π dist(Γ,W(A))
=

24 + 2π

2π
=

12

π
+ 1,

C1 = max
s∈Γ

|s|+ ρ(AL) = 13 + ρ(AL) ≤ 25,

L{tf̂(t)χ(0,T )(t)}(ξ) =
1

2
√
π

∫ T

0
exp(t)t−1/2 dt ≤ exp(T )

√
T√

π
.

We summarize this as

‖ε(k)m ‖2
‖b‖2

≤
(
12

π
+ 1

)
exp(T )

√
T√

π

25kmT km−1

(km)!
+ f̂(T )

√
κ(AL)

λmin
γm(0)

k.

128



4.5. Numerical experiments II: Error bounds

0 2 4 6 8 10 12
10−10

10−2

106

1014

cycle

ab
so

lu
te

er
ro

r
no

rm

A priori

exact error
T = 0.1
T = 1
T = 3

0 2 4 6 8 10

10−9

10−7

10−5

10−3

cycle

A posteriori

exact error
lower bound
upper bound

Figure 4.16.: Error norm and bounds for A1/2
L b with AL the 3D Laplace operator. Left:

A priori by Corollary 4.35 for different values of T as explained in the
running text. Right: A posteriori by Lemma 4.37.

We plot the resulting bound for several values of T in Fig. 4.16 (left side). We also
plot the a posteriori error bounds from Lemma 4.37 in the same figure on the right side.
We see once again that the a priori error bound is far away from the exact error while
the a posteriori bounds are very close. Moreover, we see that increasing T reduces the
distance of the a priori error bound to the exact error norm by a small amount if k is
large. For moderate k, however, the bound increases immensely when increasing T .

4.5.5. Entropy
Lastly, consider again the entropy from Section 4.3.5. We have f̂(t) = t−1, which is not
integrable. We proceed similarly to Section 4.5.4: We choose again ω = 0 (we need to
use the effective smallest eigenvalue again) so that

|f̂(t)| = f̂(t) ≤ T−1 exp(0) = T−1, t > T > 0.

The contour is modified by replacing [0, 12] by [0, 1] ⊇ W(A). This results in

C0 =
1

π
+ 1, C1 ≤ 3, L{tf̂(t)χ(0,T )(t)}(ξ) =

∫ T

0
exp(t)dt = exp(T )− 1

and the bound

‖ε(k)m ‖2
‖b‖2

≤
(
1

π
+ 1

)
(exp(T )− 1)

3kmT km−1

(km)!
+ T−1

√
κeff(A)

λmin,eff
γm(0)

k.

The error bounds for three values of T are plotted in Fig. 4.17. To better capture the
asymptotic behavior, we increased the number of cycles to 10. The eigenvalues were

129



4. Restarts for Laplace transforms

again approximated using eigs(). We observe that the bounds are even worse than
for the previous examples. An explanation is again the smallest eigenvalue λmin,eff. It
is already close to 0 for the graph Laplacians L and—as we obtained A by dividing L
by its trace—we introduced the factor trace(L) into the bound via λmin,eff. The trace
is of order 106 for our graphs, so we obtain a large constant in the linear term.

The a posteriori bounds from Lemma 4.37, on the other hand, are once again close to
the exact error norm. We plot them in Fig. 4.18, where we again have chosen a safety
factor of 10−3.

130



4.5. Numerical experiments II: Error bounds

0 2 4 6 8 10
10−12

10−5

102

109

cycle

ab
so

lu
te

er
ro

r
no

rm

usroads-48

exact error
T = 1
T = 10
T = 20

0 2 4 6 8 10

cycle

loc-Gowalla

0 2 4 6 8 10
10−14

10−6

102

1010

cycle

ab
so

lu
te

er
ro

r
no

rm

dblp-2010

0 2 4 6 8 10

cycle

com-Amazon

Figure 4.17.: Error norm and a priori bound (by Corollary 4.35) for log(A)b with A a
normalized graph Laplacian.

131



4. Restarts for Laplace transforms

0 2 4 6 8 10

10−12

10−11

10−10

10−9

cycle

ab
so

lu
te

er
ro

r
no

rm

usroads-48

exact error
lower bound
upper bound

0 2 4 6 8 10
10−12

10−11

10−10

10−9

10−8

cycle

loc-Gowalla

0 2 4 6 8 10
10−14

10−13

10−12

10−11

10−10

10−9

cycle

ab
so

lu
te

er
ro

r
no

rm

dblp-2010

0 2 4 6 8 10
10−13

10−12

10−11

10−10

10−9

cycle

com-Amazon

Figure 4.18.: Error norm and a posteriori bound (by Lemma 4.37) for log(A)b with A
a normalized graph Laplacian.

132



5. Conclusions

We treated two topics regarding the computation of f(A)b in this thesis. First, we
developed a new way of evaluating the action of rational matrix functions r(A)b: In
Section 3.1, we showed how to construct the CF-matrix Tm(A) from a representation of
the rational function r(s) as a continued fraction. The computation of r(A)b essentially
boils down to solving the linear system Tm(A)x = e1 ⊗ b, where the CF-matrix Tm(A)
is block tridiagonal and each of its blocks has the same size as A.

We hoped that this reduction to a single linear system would lead to computationally
faster methods than evaluating r(A)b using the shifted systems (A− τjI)

−1b from the
partial fraction expansion of r(s). Since Tm(A) is much larger than A, we focused
our efforts on exploiting its block structure. With this in mind, we presented several
theoretical results regarding Krylov subspace and multigrid methods in Section 3.2.
They can be summarized as follows:

It seems one cannot beat the partial fraction expansion approach while ex-
ploiting the block structure of the CF-matrix.

Because of that, we numerically investigated in Section 3.3 some ideas that do not
exploit the structure. The CF-matrix approach did not offer any benefit there, either.

However, our approach might be beneficial in some cases, which we did not encounter
here: There might be cases where a continued fraction representation of r(s) is available
but its partial fraction expansion is ill-conditioned. Then we can avoid calculating the
expansion with the CF matrix approach and compute directly r(A)b. Even if the partial
fraction expansion is known, avoiding it might give a computational advantage: In
some cases, the partial fraction expansion approach needs complex arithmetic, whereas
our approach does not, see Remark 3.15. Then there are also fewer shifted systems
from the partial fraction expansion, so this does not necessarily translate to a large
computational advantage. Still, even a small speedup might be attractive. Lastly,
our theoretical results focus on methods that use the Kronecker structure of Tm(A).
Despite our numerical experiments, some methods that do not exploit the Kronecker
structure might yield a computational advantage when working with the CF-matrix.
Future research could investigate these ideas in more detail.

We then turned our attention to the restarted Arnoldi method for f(A)b in Chap-
ter 4. We developed in Section 4.1 a new representation of the error function if f is a
Laplace transform. As this representation describes the error as a new Laplace trans-
form, it can be applied for further restarts, too. We showed that our result is easily
extended to two-sided Laplace transforms and complete Bernstein functions. Using

133



5. Conclusions

this new representation, we described in Section 4.2 a possible implementation of the
restarted Arnoldi method that is based on numerical integration. We suggested spline
interpolation to avoid integrals defined recursively.

We implemented our ideas in MATLAB and subsequently illustrated in numerical
experiments (Section 4.3) that efficient and stable restarts are possible for Laplace
transforms and complete Bernstein functions: We tested our algorithm for several func-
tions and various matrices including real-world graphs and were able to achieve our
target accuracy in all cases. Thus, we have extended the class of functions for which
the restarted Arnoldi method can be considered “black-box”, i.e., for which a hand-
tailored contour that depends on A is not required. Some of these new functions could
already be treated by the package funm_quad after some modifications like premulti-
plying the right-hand side b by A. In all our experiments, our algorithm needed up
to a factor of 2 fewer matrix-vector products and can thus be considered faster. For
Hermitian matrices, it even beat the two-pass Lanczos method in the number of re-
quired matrix-vector products in some cases. Indeed, for one function (the entropy in
Section 4.3.5), the difference was again a factor of up to 2.

We then continued our theoretical investigation in Section 4.4: We developed an a
priori error bound that is applicable to many Laplace transforms and complete Bernstein
functions. The only requirement on f is that the transformed function f̂ grows at most
exponentially. This bound proves that our algorithm converges at least linearly for these
functions if A is Hermitian and its smallest eigenvalue is not too small. Our numerical
experiments in Section 4.5 showed that this bound is of minor practical relevance as
it is several orders of magnitude larger than the exact error norm and often does not
describe the observed rate of convergence very well. As a practical error bound, we
extended an a posteriori error bound for Stieltjes functions to many Laplace transforms
and complete Bernstein functions. We applied it to our experiments and observed that
it is close to the exact error. As it also comes at a negligible cost, it can thus be used
as a stopping criterion. Some care is required though as the upper a posteriori bound
needs a good approximation of the smallest eigenvalue.

Future research could investigate how well other quadrature rules perform compared
to the one of our implementation. The sinc quadrature (see Example 4.17), in particular,
is a promising alternative as it has been used recently for f(A)b with the Laplace
transforms f(s) = s−α, α ∈ (0, 1), see [20]. Moreover, while our a priori error bound
covers many practically relevant functions, an a priori error bound that can be applied
to all Laplace transforms and complete Bernstein functions might be interesting. A
refinement of our bound such that it is closer to the exact error norm would also make
it practically more relevant.

134



A. Other definitions of the Laplace
transform

In this appendix, we want to expand on Remark 2.10. In particular, we relate the
different definitions of Laplace transforms and examine whether our error representation
(Theorem 4.2 and Corollary 4.8) holds for those, too. As practically relevant functions
are already included in the definition we used, we do not go too much into detail here.

Improper Lebesgue integral
In [6, 25], Laplace transforms are defined as

Lim{f̂}(s) := lim
ω→∞

∫ ω

0
exp(−ts)f̂(t)dt = lim

ω→∞

∫ ∞

0
exp(−ts)f̂(t)χ(0,ω)(t)dt

= lim
ω→∞

L{f̂χ(0,ω)}(s),

i.e., as an improper Lebesgue integral. Let us relate Lim{f̂} to our definition L{f̂}:

Lemma A.1. Let one of the following be true:

(i) L{f̂}(s) exists.

(ii) Lim{f̂}(s) converges absolutely.

Then the other statement is also true and

L{f̂}(s) = Lim{f̂}(s),

i.e., the definition of [6, 25] coincides with Definition 2.1.

Proof. By the Monotone Convergence Theorem (see [77, Theorem 1.26]), we have∫ ∞

0
exp(−tRe(s))|f̂(t)|dt = lim

ω→∞

∫ ∞

0
exp(−tRe(s))|f̂(t)|χ(0,ω)(t)dt.

Hypothesis (i) says that the left side has a finite value whereas (ii) states that the right
side has a finite value. This proves the first part. For the second part, note that the
above implies that exp(−tRe(s))|f̂(t)| is integrable. As we also have

exp(−tRe(s))|f̂(t)|χ(0,ω)(t) ≤ exp(−tRe(s))|f̂(t)|,

135



A. Other definitions of the Laplace transform

the Dominated Convergence Theorem (see [77, Theorem 1.34]) tells us that

Lim{f̂}(s) =
∫ ∞

0
exp(−ts)f̂(t)( lim

ω→∞
χ(0,ω)(t))dt = L{f̂}(s).

Note that for Lim{f̂}, both regions of convergence (simple and absolute) are half-
planes, see [25, Theorem 3.3, 3.5]. Lemma A.1 implies that as long as we restrict
ourselves to the region of absolute convergence, everything we established in Chapter 4
still holds. It turns out that this restriction is not very large:

Theorem A.2 (adapted from [25, Theorem 3.4]). If Lim{f̂}(s0) converges, then for
any s with Re(s) > Re(s0), we have

Lim{f̂}(s) = (s− s0)L{φ(t)}(s− s0),

where
φ(t) =

∫ t

0
exp(−s0τ)f̂(τ)dτ, α{φ} ≤ 0.

This means that any improper Laplace transform Lim{f̂}(s) can be expressed by a
proper Laplace transform L{φ}(s − s0) with an additional factor of s − s0. The only
exception is the case s = s0. Choosing s0 as small as possible shows us that we need to
be in the interior of the region of convergence of Lim{f̂}.

Corollary A.3. Let

αim{f̂} := inf{Re(s) : Lim{f̂}(s) converges to a finite value}

denote the abscissa of convergence of Lim{f̂}. Let for some s0

αim{f̂} < Re(s0) < min
s∈W(A)

Re(s).

Then
Lim{f̂}(A)b = L{φ}(A− s0I)

(
(A− s0I)b

)
.

For this Laplace transform, we have

α{φ} < min
s∈W(A−s0I)

Re(s),

so our restart results Theorem 4.2 and Corollary 4.8 can be applied.

Other measures
Schilling et al. [80] use the proper integral

L{dµ}(s) :=
∫ ∞

0
exp(−ts)dµ(t) <∞,

where µ is a positive measure.

136



Lemma A.4. For any non-negative f̂ , there is a positive measure µ such that

L{f̂}(s) = L{dµ}(s)

for every s ∈ C. Conversely, for any positive σ-finite measure µ that is absolutely
continuous with respect to the Lebesgue measure,1 there is a non-negative function f̂
such that the above equation is fulfilled for every s ∈ C.

Proof. The first statement follows immediately by defining

µ(E) =

∫
E
f̂(t)dt.

The second statement is just the Radon-Nikodym Theorem, see [77, Theorem 6.10].

Note that f̂ is non-negative in all our previous examples but there are Laplace trans-
forms with oscillating f̂ , e.g., L{sin(t)}(s) = (s2 + 1)−1 ([25, Table of Laplace Trans-
forms, No. 14]). On the other hand, it is easy to see that any function f̂ that fulfills
f̂(t)dt = dµ(t) for positive µ(t) has to be non-negative. Thus, while the intersection
of the two definitions is quite large, one is not contained in the other. It is not clear,
however, which measures would yield interesting Laplace transforms but not allow a
representation via a function f̂ . We give nonetheless a variation of our error represen-
tation from Corollary 4.8.

Lemma A.5. Let µ be a positive σ-finite measure defined on the Borel σ-algebra.
Denote by

α{dµ(t)} := inf{Re(s) : L{dµ(t)}(s) exists}

the abscissa of existence of L{dµ(t)}. Let

max(α{dµ}, 0) < min
s∈W(A)

Re(s).

Then the error of the restarted Arnoldi method for L{dµ}(s) is

ε(k)m = ‖b‖2(−1)k(

k∏
j=1

h
(j)
m+1,m)L{f̂

(k+1)}(A)v(k)
m+1, k ≥ 1,

with f̂ (k+1) defined as in Corollary 4.8 for k ≥ 2 and

f̂ (2)(t) =

∫ ∞

t
g(1)(τ − t)dµ(t) for k = 1.

1That is, if every null-set of the Lebesgue measure is a null-set of µ.

137



A. Other definitions of the Laplace transform

Proof. The proof follows the ones for Theorem 4.2 (for k = 1) and Corollary 4.8 (for k ≥
2) if we replace f̂(t)dt in the integrals by dµ(t) (and equivalently L{f̂} by L{dµ(t)}).
We mention the necessary tweaks:

The proof for k = 1 follows as for Theorem 4.2 with changes only when proving that
the order of integration can be interchanged: First, one needs a more general form of
Fubini’s Theorem than Theorem 4.3, e.g., [77, Theorem 8.8] (for which we need that µ
is σ-finite). By specifying that µ is defined on the Borel σ-algebra, the argument for
Lemma 4.4 does not change, i.e., the integrand is measurable. The double integral of
its absolute value is finite since L{tdµ(t)}(ν) in Lemma 4.5 exists: Assuming that it
exists, that transform is still the derivative of L{dµ(t)} by [80, Proof of Proposition 1.2].
The existence of the derivative is guaranteed by [80, Theorem 1.4] since 0 < ν =
mins∈W(A) Re(s).

For k ≥ 2, note that the error for k = 1 is the Laplace transform of a function and
not of a general measure anymore. Thus, we can use Corollary 4.8 to obtain the error
representations for further restarts as long as α{f̂ (2)} ≤ α{dµ}. This follows exactly
as the proof for Lemma 4.7 by replacing f̂(t)dt by dµ(t).

138



Bibliography

Own publications
[L] A. Frommer, K. Kahl, M. Schweitzer, and M. Tsolakis, Krylov subspace

restarting for matrix Laplace transforms, SIAM J. Matrix Anal. Appl., 44 (2023),
pp. 693–717, doi: 10.1137/22M1499674.

[CF] A. Frommer, K. Kahl, and M. Tsolakis, Matrix functions via linear systems
built from continued fractions, arXiv preprint arXiv:2109.03527 (2021), doi: 10.
48550/ARXIV.2109.03527.

Other publications
[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, Implementation

of a restarted Krylov subspace method for the evaluation of matrix functions,
Linear Algebra Appl., 429 (2008), pp. 2293–2314, doi: 10.1016/j.laa.2008.
06.029.

[2] M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen, Preconditioned multishift
BiCG for H2-optimal model reduction, SIAM J. Matrix Anal. Appl., 38 (2017),
pp. 401–424, doi: 10.1137/130914905.

[3] R. AlAhmad, Laplace transform of the product of two functions, Italian J. Pure
Appl. Math, 44 (2020), pp. 800–804, url: https://ijpam.uniud.it/online_
issue/202044/71%20RamiAlahmad.pdf.

[4] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for
the matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 970–989,
doi: 10.1137/09074721X.

[5] A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix expo-
nential, with an application to exponential integrators, SIAM J. Sci. Comput., 33
(2011), pp. 488–511, doi: 10.1137/100788860.

[6] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued
Laplace Transforms and Cauchy Problems, 2nd ed., Springer, Basel, Switzerland,
2011, doi: 10.1007/978-3-0348-0087-7.

[7] M. Arioli and D. Loghin, Discrete interpolation norms with applications,
SIAM J. Numer. Anal., 47 (2009), pp. 2924–2951, doi: 10.1137/080729360.

139

https://doi.org/10.1137/22M1499674
https://doi.org/10.48550/ARXIV.2109.03527
https://doi.org/10.48550/ARXIV.2109.03527
https://doi.org/10.1016/j.laa.2008.06.029
https://doi.org/10.1016/j.laa.2008.06.029
https://doi.org/10.1137/130914905
https://ijpam.uniud.it/online_issue/202044/71%20RamiAlahmad.pdf
https://ijpam.uniud.it/online_issue/202044/71%20RamiAlahmad.pdf
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/100788860
https://doi.org/10.1007/978-3-0348-0087-7
https://doi.org/10.1137/080729360


Bibliography

[8] R. K. Beatson, On the convergence of some cubic spline interpolation schemes,
SIAM J. Numer. Anal., 23 (1986), pp. 903–912, doi: 10.1137/0723058.

[9] N. Bell, L. N. Olson, and J. Schroder, PyAMG: Algebraic multigrid solvers
in Python, J. Open Source Softw., 7 (2022), p. 4142, doi: 10.21105/joss.04142.

[10] M. Benzi, M. Rinelli, and I. Simunec, Computation of the von Neumann
entropy of large matrices via trace estimators and rational Krylov methods, arXiv
preprint arXiv:2212.09642 (2022), doi: 10.48550/ARXIV.2212.09642.

[11] M. Benzi and I. Simunec, Rational Krylov methods for fractional diffusion
problems on graphs, BIT, 62 (2022), pp. 357–385, doi: 10.1007/s10543-021-
00881-0.

[12] C. Berg, Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete
monotonicity, in: Positive Definite Functions. From Schoenberg to Space-Time
Challenges, ed. by J. Mateu and E. Porcu, University Jaume I, Castellón de
la Plana, Spain, 2008.

[13] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups,
Springer, Berlin, Germany, 1975.

[14] M. Berljafa and S. Güttel, The RKFIT algorithm for nonlinear rational
approximation, SIAM J. Sci. Comput., 39 (2017), A2049–A2071, doi: 10.1137/
15M1025426.

[15] R. P. Boas, Entire Functions, Academic Press, New York, USA, 1954.
[16] C. de Boor, A Practical Guide to Splines, revised ed., Springer, New York, USA,

2001.
[17] A. Boriçi, A. D. Kennedy, B. J. Pendleton, and U. Wenger, The overlap

operator as a continued fraction, Nucl. Phys. B - Proceedings Supplements, 106
(2002), pp. 757–759, doi: 10.1016/S0920-5632(01)01835-7.

[18] J. Brannick, F. Cao, K. Kahl, R. D. Falgout, and X. Hu, Optimal inter-
polation and compatible relaxation in classical algebraic multigrid, SIAM J. Sci.
Comput., 40 (2018), A1473–A1493, doi: 10.1137/17M1123456.

[19] J. R. Cardoso and A. Sadeghi, Computation of matrix gamma function, BIT,
59 (2019), pp. 343–370, doi: 10.1007/s10543-018-00744-1.

[20] A. A. Casulli and L. Robol, Low-rank tensor structure preservation in frac-
tional operators by means of exponential sums, arXiv preprint arXiv:2208.05189
(2022), doi: 10.48550/ARXIV.2208.05189.

[21] M. Crouzeix and C. Palencia, The numerical range is a (1+
√
2)-spectral set,

SIAM J. Matrix Anal. Appl., 38 (2017), pp. 649–655, doi: 10.1137/17M1116672.
[22] A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones,

Handbook of Continued Fractions for Special Functions, Springer, Dordrecht,
Netherlands, 2008, doi: 10.1007/978-1-4020-6949-9.

140

https://doi.org/10.1137/0723058
https://doi.org/10.21105/joss.04142
https://doi.org/10.48550/ARXIV.2212.09642
https://doi.org/10.1007/s10543-021-00881-0
https://doi.org/10.1007/s10543-021-00881-0
https://doi.org/10.1137/15M1025426
https://doi.org/10.1137/15M1025426
https://doi.org/10.1016/S0920-5632(01)01835-7
https://doi.org/10.1137/17M1123456
https://doi.org/10.1007/s10543-018-00744-1
https://doi.org/10.48550/ARXIV.2208.05189
https://doi.org/10.1137/17M1116672
https://doi.org/10.1007/978-1-4020-6949-9


[23] P. I. Davies and N. J. Higham, Computing f(A)b for Matrix Functions f , in:
QCD and Numerical Analysis III, ed. by A. Boriçi, A. Frommer, B. Joó,
A. D. Kennedy, and B. Pendleton, Springer, Berlin, Germany, 2005, pp. 15–
24, doi: 10.1007/3-540-28504-0_2.

[24] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection,
ACM Trans. Math. Software, 38 (2011), pp. 1–25, doi: 10 . 1145 / 2049662 .
2049663.

[25] G. Doetsch, Introduction to the Theory and Application of the Laplace Trans-
formation, Springer, Berlin, Germany, 1974, doi: 10.1007/978-3-642-65690-3.

[26] V. Druskin, On monotonicity of the Lanczos approximation to the matrix expo-
nential, Linear Algebra Appl., 429 (2008), pp. 1679–1683, doi: 10.1016/j.laa.
2008.04.046.

[27] V. Druskin, A. Greenbaum, and L. Knizhnerman, Using nonorthogonal
Lanczos vectors in the computation of matrix functions, SIAM J. Sci. Comput.,
19 (1998), pp. 38–54, doi: 10.1137/S1064827596303661.

[28] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: Approximation
of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19
(1998), pp. 755–771, doi: 10.1137/S0895479895292400.

[29] M. Eiermann, O. G. Ernst, and S. Güttel, Deflated restarting for matrix
functions, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 621–641, doi: 10.1137/
090774665.

[30] M. Eiermann and O. G. Ernst, A restarted Krylov subspace method for the
evaluation of matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481–2504,
doi: 10.1137/050633846.

[31] M. Embree, The tortoise and the hare restart GMRES, SIAM Rev., 45 (2003),
pp. 259–266, doi: 10.1137/S003614450139961.

[32] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and H. A. van
der Vorst, Numerical methods for the QCD overlap operator. I. Sign-function
and error bounds, Comput. Phys. Commun., 146 (2002), pp. 203–224, doi: 10.
1016/S0010-4655(02)00455-1.

[33] V. Faber, J. Liesen, and P. Tichý, On the Forsythe conjecture, arXiv preprint
arXiv:2209.14579 (2022), doi: 10.48550/ARXIV.2209.14579.

[34] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the
existence of a Conjugate Gradient method, SIAM J. Numer. Anal., 21 (1984),
pp. 352–362, doi: 10.1137/0721026.

[35] K. V. Fernando, On computing an eigenvector of a tridiagonal matrix. Part
I: Basic results, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1013–1034, doi:
10.1137/S0895479895294484.

141

https://doi.org/10.1007/3-540-28504-0_2
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/978-3-642-65690-3
https://doi.org/10.1016/j.laa.2008.04.046
https://doi.org/10.1016/j.laa.2008.04.046
https://doi.org/10.1137/S1064827596303661
https://doi.org/10.1137/S0895479895292400
https://doi.org/10.1137/090774665
https://doi.org/10.1137/090774665
https://doi.org/10.1137/050633846
https://doi.org/10.1137/S003614450139961
https://doi.org/10.1016/S0010-4655(02)00455-1
https://doi.org/10.1016/S0010-4655(02)00455-1
https://doi.org/10.48550/ARXIV.2209.14579
https://doi.org/10.1137/0721026
https://doi.org/10.1137/S0895479895294484


Bibliography

[36] G. E. Forsythe, On the asymptotic directions of the s-dimensional optimum gra-
dient method, Numer. Math., 11 (1968), pp. 57–76, doi: 10.1007/BF02165472.

[37] M. Freund and E. Görlich, Polynomial approximation of an entire function
and rate of growth of Taylor coefficients, Proc. Edinb. Math. Soc., 28 (1985),
pp. 341–348, doi: 10.1017/S0013091500017156.

[38] A. Frommer and U. Glässner, Restarted GMRES for shifted linear systems,
SIAM J. Sci. Comput., 19 (1998), pp. 15–26, doi: 10.1137/S1064827596304563.

[39] A. Frommer, S. Güttel, and M. Schweitzer, Convergence of restarted Krylov
subspace methods for Stieltjes functions of matrices, SIAM J. Matrix Anal. Appl.,
35 (2014), pp. 1602–1624, doi: 10.1137/140973463.

[40] A. Frommer, S. Güttel, and M. Schweitzer, Efficient and stable Arnoldi
restarts for matrix functions based on quadrature, SIAM J. Matrix Anal. Appl.,
35 (2014), pp. 661–683, doi: 10.1137/13093491X.

[41] A. Frommer and M. Schweitzer, Error bounds and estimates for Krylov
subspace approximations of Stieltjes matrix functions, BIT, 56 (2016), pp. 865–
892, doi: 10.1007/s10543-015-0596-3.

[42] A. Frommer, S. Güttel, and M. Schweitzer, FUNM_QUAD: An implemen-
tation of a stable, quadrature-based restarted Arnoldi method for matrix functions,
tech. rep., Bergische Universität Wuppertal, Germany, 2014.

[43] W. Gautschi, The condition of polynomials in power form, Math. Comp., 33
(1979), pp. 343–352, doi: 10.2307/2006047.

[44] G. H. Golub and C. F. van Loan, Matrix Computations, 4th ed., Johns Hop-
kins University Press, Baltimore, USA, 2013.

[45] G. H. Golub and G. Meurant, Matrices, moments and quadrature, in: Nu-
merical Analysis 1993, ed. by D. F. Griffiths and G. A. Watson, Longman
Scientific & Technical, Essex, United Kingdom, 1994, pp. 105–156.

[46] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with Ap-
plications, Princeton University Press, Princeton, USA, 2010.

[47] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadel-
phia, USA, 1997.

[48] S. Güttel, Rational Krylov approximation of matrix functions: Numerical meth-
ods and optimal pole selection, GAMM-Mitt., 36 (2013), pp. 8–31, doi: 10.1002/
gamm.201310002.

[49] S. Güttel and M. Schweitzer, A comparison of limited-memory Krylov meth-
ods for Stieltjes functions of Hermitian matrices, SIAM J. Matrix Anal. Appl.,
42 (2021), pp. 83–107, doi: 10.1137/20M1351072.

[50] S. Güttel and M. Schweitzer, Randomized sketching for Krylov approxima-
tions of large-scale matrix functions, arXiv preprint arXiv:2208.11447 (2022),
doi: 10.48550/ARXIV.2208.11447.

142

https://doi.org/10.1007/BF02165472
https://doi.org/10.1017/S0013091500017156
https://doi.org/10.1137/S1064827596304563
https://doi.org/10.1137/140973463
https://doi.org/10.1137/13093491X
https://doi.org/10.1007/s10543-015-0596-3
https://doi.org/10.2307/2006047
https://doi.org/10.1002/gamm.201310002
https://doi.org/10.1002/gamm.201310002
https://doi.org/10.1137/20M1351072
https://doi.org/10.48550/ARXIV.2208.11447


[51] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer, Ber-
lin, Germany, 2015, doi: 10.1007/978-3-662-47324-5.

[52] N. Hale, N. J. Higham, and L. N. Trefethen, Computing Aα, log(A), and
related matrix functions by contour integrals, SIAM J. Numer. Anal., 46 (2008),
pp. 2505–2523, doi: 10.1137/070700607.

[53] P. Henrici, Applied and Computational Complex Analysis, Vol. 1, John Wiley
& Sons, New York, USA, 1974.

[54] P. Henrici, Applied and Computational Complex Analysis, Vol. 2, John Wiley
& Sons, New York, USA, 1977.

[55] N. J. Higham, The scaling and squaring method for the matrix exponential re-
visited, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193, doi: 10.1137/
04061101X.

[56] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadel-
phia, USA, 2008, doi: 10.1137/1.9780898717778.

[57] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univer-
sity Press, Cambridge, United Kingdom, 1991, doi: 10.1017/CBO9780511840371.

[58] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge Univer-
sity Press, Cambridge, United Kingdom, 2013.

[59] M. Ilić, I. W. Turner, and D. P. Simpson, A restarted Lanczos approximation
to functions of a symmetric matrix, IMA J. Numer. Anal., 30 (2010), pp. 1044–
1061, doi: 10.1093/imanum/drp003.

[60] K. Kahl and H. Rittich, The deflated conjugate gradient method: Convergence,
perturbation and accuracy, Linear Algebra Appl., 515 (2017), pp. 111–129, doi:
10.1016/j.laa.2016.10.027.

[61] L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov
subspace method for matrix function evaluations, Numer. Linear Algebra Appl.,
17 (2010), pp. 615–638, doi: 10.1002/nla.652.

[62] A. Knopfmacher and J. Knopfmacher, Maximum Length of the Euclidean
Algorithm and Continued Fractions in F(X), in: Applications of Fibonacci Num-
bers, ed. by G. E. Bergum, A. N. Philippou, and A. F. Horadam, Springer,
Dordrecht, Netherlands, 1990, pp. 217–222, doi: 10.1007/978-94-009-1910-
5_25.

[63] A. B. J. Kuijlaars, Which eigenvalues are found by the Lanczos method?, SIAM
J. Matrix Anal. Appl., 22 (2000), pp. 306–321, doi: 10.1137/S089547989935527X.

[64] J. Liesen and Z. Strakoš, Krylov Subspace Methods, Oxford University Press,
London, United Kingdom, 2013.

[65] J. Liesen and P. Tichý, Convergence analysis of Krylov subspace methods,
GAMM-Mitt., 27 (2004), pp. 153–173, doi: 10.1002/gamm.201490008.

143

https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1137/070700607
https://doi.org/10.1137/04061101X
https://doi.org/10.1137/04061101X
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1093/imanum/drp003
https://doi.org/10.1016/j.laa.2016.10.027
https://doi.org/10.1002/nla.652
https://doi.org/10.1007/978-94-009-1910-5_25
https://doi.org/10.1007/978-94-009-1910-5_25
https://doi.org/10.1137/S089547989935527X
https://doi.org/10.1002/gamm.201490008


Bibliography

[66] J. Mahoney and B. Sivazlian, Partial fractions expansion: a review of compu-
tational methodology and efficiency, J. Comput. Appl. Math., 9 (1983), pp. 247–
269, doi: 10.1016/0377-0427(83)90018-3.

[67] P.-G. Martinsson and J. A. Tropp, Randomized numerical linear algebra:
Foundations and algorithms, Acta Numer., 29 (2020), pp. 403–572, doi: 10.
1017/S0962492920000021.

[68] MATLAB, version 9.10.0 (R2021a), The MathWorks Inc., Natick, USA, 2022.
[69] A. McCurdy, K. C. Ng, and B. N. Parlett, Accurate computation of divided

differences of the exponential function, Math. Comp., 43 (1984), pp. 501–528,
doi: 10.2307/2008291.

[70] G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms
in finite precision arithmetic, Acta Numer., 15 (2006), pp. 471–542, doi: 10.
1017/S096249290626001X.

[71] J. Miklosko, Investigation of algorithms for numerical computation of continued
fractions, USSR Comput. Math. Math. Phys., 16 (1976), pp. 1–12, doi: 10.1016/
0041-5553(76)90001-X.

[72] S. Miyajima, Verified computation of matrix gamma function, Linear Multilinear
Algebra, 70 (2022), pp. 1207–1229, doi: 10.1080/03081087.2020.1757602.

[73] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49, doi: 10.
1137/S00361445024180.

[74] Y. Nakatsukasa and J. A. Tropp, Fast & accurate randomized algorithms for
linear systems and eigenvalue problems, arXiv preprint arXiv:2111.00113 (2021),
doi: 10.48550/ARXIV.2111.00113.

[75] H. Neuberger, Overlap lattice Dirac operator and dynamical fermions, Phys.
Rev. D, 60 (1999), p. 065006, doi: 10.1103/PhysRevD.60.065006.

[76] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. Gardner, Fast
matrix square roots with applications to Gaussian processes and Bayesian opti-
mization, in: Adv. Neural Inf. Process. Syst. Vol. 33, 2020, pp. 22268–22281.

[77] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, USA,
1987.

[78] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadel-
phia, USA, 2003, doi: 10.1137/1.9780898718003.

[79] Y. Saad, Numerical Methods for Large Eigenvalue Problems, 2nd ed., SIAM,
Philadelphia, USA, 2011, doi: 10.1137/1.9781611970739.

[80] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions, 2nd ed.,
De Gruyter, Berlin, Germany, 2012, doi: 10.1515/9783110269338.

144

https://doi.org/10.1016/0377-0427(83)90018-3
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.2307/2008291
https://doi.org/10.1017/S096249290626001X
https://doi.org/10.1017/S096249290626001X
https://doi.org/10.1016/0041-5553(76)90001-X
https://doi.org/10.1016/0041-5553(76)90001-X
https://doi.org/10.1080/03081087.2020.1757602
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.48550/ARXIV.2111.00113
https://doi.org/10.1103/PhysRevD.60.065006
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1515/9783110269338


[81] M. Schweitzer, Restarting and error estimation in polynomial and extended
Krylov subspace methods for the approximation of matrix functions, Doctorate
Thesis, Bergische Universität Wuppertal, Germany, 2015.

[82] L. F. Shampine, Vectorized adaptive quadrature in MATLAB, J. Comput. Appl.
Math., 211 (2008), pp. 131–140, doi: 10.1016/j.cam.2006.11.021.

[83] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev.,
58 (2016), pp. 377–441, doi: 10.1137/130912839.

[84] V. Simoncini and D. B. Szyld, Recent computational developments in Krylov
subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007),
pp. 1–59, doi: 10.1002/nla.499.

[85] A. van der Sluis and H. A. van der Vorst, The rate of convergence of Conjugate
Gradients, Numer. Math., 48 (1986), pp. 543–560, doi: 10.1007/BF01389450.

[86] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer,
New York, USA, 1993, doi: 10.1007/978-1-4612-2706-9.

[87] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press,
Boston, USA, 1990.

[88] H. Tal-Ezer, On restart and error estimation for Krylov approximation of
w = f(A)v, SIAM J. Sci. Comput., 29 (2007), pp. 2426–2441, doi: 10.1137/
040617868.

[89] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM,
Philadelphia, USA, 2013.

[90] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic
Press, San Diego, USA, 2000.

[91] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.
Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C J Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I.
Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, SciPy 1.0:
Fundamental algorithms for scientific computing in python, Nat. Methods, 17
(2020), pp. 261–272, doi: 10.1038/s41592-019-0686-2.

[92] H. Wang and Q. Ye, Error bounds for the Krylov subspace methods for compu-
tations of matrix exponentials, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 155–
187, doi: 10.1137/16M1063733.

[93] J. A. C. Weidemann and B. Fornberg, Fully numerical Laplace transform
methods, Numer. Algorithms, 92 (2023), pp. 985–1006, doi: 10.1007/s11075-
022-01368-x.

145

https://doi.org/10.1016/j.cam.2006.11.021
https://doi.org/10.1137/130912839
https://doi.org/10.1002/nla.499
https://doi.org/10.1007/BF01389450
https://doi.org/10.1007/978-1-4612-2706-9
https://doi.org/10.1137/040617868
https://doi.org/10.1137/040617868
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/16M1063733
https://doi.org/10.1007/s11075-022-01368-x
https://doi.org/10.1007/s11075-022-01368-x


Bibliography

[94] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton,
USA, 1952.

[95] J. Xu and L. Zikatanov, Algebraic multigrid methods, Acta Numer., 26 (2017),
pp. 591–721, doi: 10.1017/S0962492917000083.

[96] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, Or-
lando, USA, 1971, doi: 10.1016/C2013-0-11733-3.

146

https://doi.org/10.1017/S0962492917000083
https://doi.org/10.1016/C2013-0-11733-3

	Introduction
	Review of basic material
	Relevant classes of functions
	Laplace transforms
	Rational functions
	Other classes of functions

	Continued fractions
	Definition of matrix functions
	Krylov subspace methods for general matrix functions
	The Arnoldi approximation
	The restarted Arnoldi method
	Error bounds for the restarted Arnoldi method

	Iterative methods for rational matrix functions
	Krylov subspace methods for the matrix inverse
	Algebraic multigrid methods

	Matrix pencils

	CF-matrices
	Introduction
	Basic properties
	Construction

	Search for numerical methods
	Partial fraction expansion
	Generalized Sylvester equation
	Krylov subspace methods
	Multigrid methods

	Numerical Experiments
	Preconditioned CG
	Preconditioned GMRES and complex shifts
	AMG


	Restarts for Laplace transforms
	A new representation of the error function
	Laplace transforms
	Related classes of functions

	Implementational aspects
	Quadrature
	Breaking the recursion
	Matrix exponential function
	Modifications for complete Bernstein functions

	Numerical experiments I: Comparison to other methods
	Fractional negative power less than -1
	Fractional diffusion processes on graphs
	Gamma function
	Square root
	Entropy

	Error bounds
	A priori bound I: Finite integration interval
	A priori bound II: Exponentially bounded integrand
	A priori bound III: Main case
	A posteriori bound

	Numerical experiments II: Error bounds
	Fractional negative power less than -1
	Fractional diffusion processes on graphs
	Gamma function
	Square root
	Entropy


	Conclusions
	Other definitions of the Laplace transform
	Bibliography

