
doctoral dissertation

On the Tight Security of the
Transport Layer Security (TLS) Protocol Version 1.3

Denis Diemert, M.Sc.

January 18, 2023

Submitted to the
School of Electrical, Information and Media Engineering

University of Wuppertal

for the degree of
Doktor-Ingenieur (Dr.-Ing.)



This work is licensed under a Creative Commons Attribution 4.0 International (CC-
BY 4.0) License. To view a copy of this license, visit https://creativecommons.org/
licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Denis Diemert
Place of birth: Detmold, NRW, Germany

Author’s contact information:
dediemert@gmail.com

Thesis Advisor:

Second Examiner:

Thesis submitted:
Thesis defense:
Last revision:

Prof. Dr.-Ing. Tibor Jager
Chair for IT Security and Cryptography
University of Wuppertal, Wuppertal, Germany
Prof. Dr. phil. nat. Marc Fischlin
Cryptography and Complexity Theory Group
Technische Universität Darmstadt, Darmstadt, Germany
January 18, 2023
April 19, 2023
June 5, 2023

mailto:dediemert@gmail.com




list of publications

Publications in this thesis. The following publications are part of this thesis.

[DDGJ22] Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. “On the
Concrete Security of TLS 1.3 PSK Mode”. In: Advances in Cryptology –
EUROCRYPT 2022, Part II. Ed. by Orr Dunkelman and Stefan Dziembowski.
Vol. 13276. Lecture Notes in Computer Science. Springer, Heidelberg, May
2022, pp. 876–906. doi: 10.1007/978-3-031-07085-3_30.

[DGJL21] Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. “More Efficient Dig-
ital Signatures with Tight Multi-user Security”. In: PKC 2021: 24th In-
ternational Conference on Theory and Practice of Public Key Cryptography,
Part II. Ed. by Juan Garay. Vol. 12711. Lecture Notes in Computer Science.
Springer, Heidelberg, May 2021, pp. 1–31. doi: 10.1007/978-3-030-
75248-4_1.

[DJ21] Denis Diemert and Tibor Jager. “On the Tight Security of TLS 1.3: Theo-
retically Sound Cryptographic Parameters for Real-World Deployments”.
In: Journal of Cryptology 34.3 (July 2021), p. 30. doi: 10.1007/s00145-
021-09388-x.

Other publications.

[Bem+23] Pascal Bemmann, Sebastian Berndt, Denis Diemert, Thomas Eisenbarth,
and Tibor Jager. “Subversion-Resilient Authenticated Encryption without
Random Oracles”. In: ACNS 2023: 21st International Conference on Ap-
plied Cryptography and Network Security. To appear in Lecture Notes in
Computer Science. Springer, 2023.

[DGJL21] Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. “Digital Signatures
with Memory-Tight Security in the Multi-challenge Setting”. In: Advances
in Cryptology – ASIACRYPT 2021, Part IV. Ed. by Mehdi Tibouchi and
HuaxiongWang. Vol. 13093. Lecture Notes in Computer Science. Springer,
Heidelberg, December 2021, pp. 403–433. doi: 10.1007/978-3-030-
92068-5_14.

v

https://doi.org/10.1007/978-3-031-07085-3_30
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1007/978-3-030-92068-5_14
https://doi.org/10.1007/978-3-030-92068-5_14


[BBDE19] Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. “Up-
datable Anonymous Credentials and Applications to Incentive Systems”.
In: ACM CCS 2019: 26th Conference on Computer and Communications
Security. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz. ACM Press, November 2019, pp. 1671–1685. doi:
10.1145/3319535.3354223.

[Bem+18] Kai Bemmann, Johannes Blömer, Jan Bobolz, Henrik Bröcher, Denis
Diemert, Fabian Eidens, Lukas Eilers, Jan Haltermann, Jakob Juhnke,
Burhan Otour, Laurens Porzenheim, Simon Pukrop, Erik Schilling,
Michael Schlichtig, and Marcel Stienemeier. “Fully-Featured Anonymous
Credentials with Reputation System”. In: ARES 2018: 13th International
Conference on Availability, Reliability and Security. ACM, 2018, 42:1–42:10.
doi: 10.1145/3230833.3234517.

vi

https://doi.org/10.1145/3319535.3354223
https://doi.org/10.1145/3230833.3234517


acknowledgements

On the journey that led to this work, I was fortunate to be accompanied by a number of
great people. Here, I would like to thank those who have been with me along this way.
First and foremost, I would like to thank my supervisor, Tibor Jager. Without Tibor

this work would never have happened. He offered me the position in his group when
I thought I had already decided not to stay at the university and convinced me that
research was exactly what I was looking for to deepen my interest in IT security and
cryptography. I am so thankful that he gave me this opportunity and made it possible
to do research the way I wanted to. Tibor is a great leader who always stands up for his
team and is always there to give useful advice, whether it is for our careers in general or
for a certain research problem. Thank you so much, Tibor, for guiding and supporting
me throughout!

Then, there are all of the great people I was lucky to call my colleagues over the years.
Thank you, Pascal Bemmann, Peter Chvojka, Gareth T. Davies, Jan Drees, Amin Faez, Kai
Gellert, Tobias Handirk, Raphael Heitjohann, Máté Horváth, Saqib Kakvi, Rafael Kurek,
Lin Lyu, Jutta Maerten, David Niehues, Marloes Venema, and Jonas von der Heyden. I
am grateful that I had the opportunity to be a part of such an awesome team, and all of
you made this an enjoyable experience that I will always remember. I would especially
like to thank Pascal for making the countless train rides less annoying and for always
having an open ear, whether it was for personal matters or research.
The essence of research is collaboration and I was fortunate to work with a number

of talented and inspiring people. I would like to thank my co-authors Pascal Bemmann,
Sebastian Berndt, Johannes Blömer, Jan Bobolz, Hannah E. Davis, Fabian Eidens, Thomas
Eisenbarth, Kai Gellert, Felix Günther, Tibor Jager, Lin Lyu, and the members of my
project group “RE(AC)t” at Paderborn University. I am not only happy to have met you,
but also to have learned so much from you. I am especially grateful that Hannah and
Felix handled our independent and current work so professionally, and opened the doors
for our insightful collaboration.
I thank Marc Fischlin for agreeing on co-reviewing my thesis.
A very special thanks goes to the Codes and Cryptography group at Paderborn Uni-

versity, who always treated me as one of their own when I was a student. In particular, I
would like to thank Johannes Blömer for teaching me the foundations of cryptography
(and more) and sparking my interest in the field of cryptography. Moreover, I would like
to thank Jan Bobolz and Fabian Eidens. Jan and Fabian gave me the opportunity to work
with them as a student, which showed me how much I like scientific work. It was such
a pleasure working with them such that they significantly influenced this part of my

vii



acknowledgements

career, and even though they would deny it, they teached me the majority of the skills
I used on a day-to-day basis during my own research journey. Despite that I decided
to pursue my research with a different focus, I am deeply grateful that the connection
between the three of us is still unchanged after many years.
I also would like to thank my close friends. Caro, Eric, Meli, Pauli, and Timo, even

though we are all scattered around Germany, I am happy that no matter how far we are
apart, or how long we have not seen, nothing changes between us. I am grateful for our
regular trips, which always feel like we were still at school and for your constant support,
probably without even noticing. Aylin and Julian, I am thankful for our evenings with
good food and games, which particularly helped me to forget everything for a bit and
just enjoy the moment. Anna, Fabian, and Gregor, I am thankful for the days we have
spent walking around, eating ice cream, playing games, or cooking Carbonara together.
Especially, Fabian, who went through this process right before me, was able to help me
with his experiences and advice through it all such that I kept going and made it to the
end sanely. Thank you all so much for being part of my life!

Zu guter Letzt möchte ich meiner Familie danken, die all das hier möglich gemacht hat.
Die Familie meiner Freundin, Ede, Kerstin, Nico, Kalli und Anni, hat mich von Beginn
an als vollwertiges Mitglied der Familie aufgenommen und ich danke euch dafür, dass
ihr mir ein zweites Zuhause gebt. Meine Schwester Jana und ihr Mann Basti, begleiten
mich in allen Lebenslagen. Danke, dass ihr mich immer unterstützt, zu mir haltet und
für mich da seid, wann immer ich es brauche. Auch wenn man sich Geschwister nicht
aussuchen kann, könnte ich es mir nicht besser wünschen. Meine Freundin Lea hat
vermutlich, ohne es zu wissen, den größten Teil an dieser Arbeit beigesteuert. Sie hat
mich immer wieder motiviert weiterzumachen und mir vor allem das Gefühl gegeben,
dass ich alles schaffen kann, wenn ich selbst nicht mehr daran geglaubt habe. In Zeiten
in denen ich Ablenkung brauchte, hat sie für diese gesorgt, wenn ich Freiraum brauchte,
hat sie mir diesen gegeben. Wenn es nötig war, hat sie alles von mir ferngehalten, damit
ich mich auf mich konzentrieren konnte. Dankbarkeit drückt nicht im Geringsten aus,
was ich für dich empfinde. Ich kann mir keine bessere Partnerin für den Rest meines
Lebens vorstellen, denn ich weiß, dass wir zusammen alles meistern. Meine Eltern, Ralf
und Ulrike, haben es mir durch ihre bedingungslose Unterstützung in jeglicher Hinsicht
ermöglicht zu studieren, diesen unkonventionellen Weg zu gehen und somit schließlich
diese Arbeit zu verfassen. Ohne euch wäre ich heute nicht an diesem Punkt, aber viel
wichtiger noch, vor allem nicht der Mensch, der ich heute bin. Deshalb möchte ich euch
diese Arbeit widmen.

viii



abstract

Nowadays, a life without communicating over the Internet is unimaginable. This com-
munication reaches from staying in contact with other people using instant messaging
services or social media to delicate tasks like transferring money from home using on-
line banking. The Internet itself needs to be considered as an insecure communication
channel as potential attackers could read the communication or even make unwanted
modifications to it. Presumably, the importance of the Internet would never have been
as it is today without the means that enable secure communication. The de-facto standard
for secure communication is the Transport Layer Security (TLS) protocol. It enables two
parties to communicate securely over an insecure channel, such as the Internet, with
the use of cryptography. In particular, it ensures that the communication data in transit
cannot be read (confidentiality), or modified (without detection) by outsiders (integrity).
Additionally, it ensures that the two parties communicating are certain about their com-
munication partner’s identity (authentication). In TLS, the two parties aiming for secure
communication perform the following two steps. First, they run a key exchange protocol
called the TLS handshake to establish a shared secret, agree on parameters, and prove
their identities to each other. Then, the TLS record protocol uses the established secret
and parameters to built-up the secure communication channel.
Since there are so many applications including delicate ones (e.g., online banking)

that rely on secure communication over the Internet, a rigorous analysis of a security
mechanism as important as TLS is crucial. Modern cryptography makes use of the tools
of math to provide rigorous formal treatments of cryptographic constructions referred
to as security proofs. It is even common that new constructions nowadays come with
such a proof of security. A cryptographic security proof is always with respect to some
well-defined security model that captures the cryptographic system and its security goals
as precisely as possible to result in meaningful statements. These proofs are then based
on computational problems that are widely assumed to be hard to solve with access to a
reasonable amount of resources. The proof itself assumes that there is an algorithm that
is able to break the security of the cryptographic system with respect to the well-defined
security model. Then, it transforms this algorithm into an algorithm that solves the
assumed-to-be-hard problem. This transformation is called reduction. Now, under the
assumption that the problem is hard to solve, this reduction shows that breaking the
system is also hard to achieve with access to a reasonable amount of resources.
A proof of security does not only provide an excellent assertion of the plausibility of

a construction, but also can be used to select parameters, which determine the provided
level of security of a cryptographic system, based on a theoretical foundation. Here,

ix



abstract

we are particularly concerned about the tightness of the security proof. The tightness
describes how close the relation between the algorithm that breaks the cryptographic
system and the reduction that solves the assumed-to-be-hard problem is. Intuitively, the
tighter the relation the more security guarantees from the hard problem are inherited to
the cryptographic scheme. That is, if the relation is very loose, it is required to increase
the security guarantees provided by the assumed-to-be-hard problem to compensate the
loss in security induced by the security proof (reduction). This usually means increasing
the parameters of the cryptographic scheme, which unfortunately, incurs a penalty when
it comes to efficiency of the overall scheme. Hence, for cryptographic systems that are
deployed in the real world achieving tight security proofs is of particular importance.
Namely, tight security proofs allow it to deploy cryptographic systems with parameters
that are theoretically-sound (i.e., backed up by the security proof) without the need to
compensate any loss in security induced by the security proof. Thus, allowing for a
deployment that does not need to make trade-offs between efficiency and security.
In this thesis, we give insights on the tight security of the most recent version of the

TLS protocol, namely TLS 1.3 (RFC 8446). To this end, we present in one part of this thesis
a tight security proof for all variants of the TLS 1.3 handshake protocol in an idealized
model called the random oracle model (ROM). This improves on prior analyses of TLS 1.3
that suffer from a loss that is a quadratic function in the number of TLS sessions across
all users. Thus, enabling a theoretically-sound deployment of TLS 1.3. Furthermore,
we discuss the current state of the tightness of the TLS 1.3 record protocol. Finally, we
present a new generic construction for a digital signature scheme that is secure in the very
strong setting of existential unforgeability under an adaptive chosen-message attack in
themulti-user settingwith adaptive corruptions in the ROM. This scheme is the currently
most efficient scheme achieving such security notion and is an ideal candidate to be used
in tightly-secure key exchange protocols that use digital signatures for authentication.
In particular, the signature schemes supported by TLS 1.3 at the moment do not satisfy
this strong notion even though our tight analysis of the TLS 1.3 handshake requires it.
Hence, our signature scheme demonstrates that the TLS 1.3 handshake protocol can be
tightly instantiated with appropriate building blocks and we provide this scheme as a
suggestion.

x



zusammenfassung

Kommunikation über das Internet ist heutzutage kaum noch aus dem alltäglichen Leben
wegzudenken. Die Anwendungen sind vielfältig: So nutzt man das Internet um mit an-
deren Menschen über Instant-Messenger oder Soziale Netzwerke in Kontakt zu bleiben
bis hin zu heiklen Aufgaben, wie der Überweisung von Geld von zu Hause aus mithilfe
von Online-Banking. Da potenzielle Angreifer die Kommunikation über das Internet
mitlesen oder sogar unerwünschte Änderungen daran vornehmen könnten, muss das
Internet als unsicherer Übertragungsweg betrachtet werden. Ohne Maßnahmen, die eine
sichere Übertragung über das Internet gewährleisten, wäre dieses vermutlich nicht zu
dem geworden, was es heute ist. Der de-facto Standard um eine sichere Übertragung zu
gewährleisten, ist das Transport Layer Security (TLS) Protokoll. TLS ermöglicht es, dass
zwei Parteien mithilfe von Kryptographie sicher über einen unsicheren Übertragungs-
weg, wie das Internet, kommunizieren können. Insbesondere sorgt TLS dafür, dass die
gesendeten Daten während der Übertragung nicht von Außenstehenden gelesen (Ver-
traulichkeit) oder unbemerkt verändert werden können (Integrität). Außerdem stellt es
sicher, dass die sich die beiden Parteien über die Identität ihres jeweiligen Kommuni-
kationspartners sicher sein können (Authentifizierung). Zwei Parteien, die mithilfe des
TLS-Protokolls sicher Kommunizieren wollen, führen die folgenden zwei Schritte aus.
Zunächst führen sie ein Schlüsselaustauschprotokoll, den so genannten TLS-Handshake,
durch, um ein gemeinsames Geheimnis festzulegen, sich auf Parameter zu einigen und
sich gegenseitig ihre Identitäten zu beweisen. Dann verwendet das TLS-Record-Protokoll
das ausgetauschte Geheimnis und die Parameter, um einen sicheren Kommunikations-
kanal aufzubauen.
Viele Anwendungen erfordern sichere Kommunikation über das Internet, darunter

auch Anwendungen (wie Online-Banking), die hochsensible Daten verarbeiten. Hier ist
von besonderer Bedeutung, dass sich ein so wichtiger Sicherheitsmechanismus wie TLS,
strengen Sicherheitsanalysen unterzieht. Moderne Kryptographie nutzt die Werkzeuge
der Mathematik, um genaue formale Analysen von kryptographischen Konstruktionen,
so genannte Sicherheitsbeweise, zu erstellen. Heutzutage ist es sogar üblich, dass neue
Konstruktionen zusammen mit einem solchen Sicherheitsbeweis entwickelt werden. Ein
kryptographischer Sicherheitsbeweis bezieht sich immer auf ein wohldefiniertes Sicher-
heitsmodell, das das kryptographische System und seine Sicherheitsziele so genau wie
möglich beschreibt, ummöglichst aussagekräftige Ergebnisse zu erhalten. Diese Beweise
basieren dann auf Berechnungsproblemen, von denen man annimmt, dass sie mit einer
realistischen Menge an Ressourcen schwer zu lösen sind. Der Beweis nimmt an, dass
es einen Algorithmus gibt, der in der Lage ist, die Sicherheit des kryptographischen

xi



zusammenfassung

Systems im Hinblick auf das wohldefinierte Sicherheitsmodell zu brechen. Dieser Algo-
rithmus wird dann in einen Algorithmus umgewandelt, der das Berechnungsproblem
löst. Diese Umwandlung wird als Reduktion bezeichnet. Unter der Annahme, dass das
Berechnungsproblem schwer zu lösen ist, zeigt diese Reduktion, dass es auch schwer
sein muss, das System zu brechen, wenn man von Zugang zu einer realistischen Menge
an Ressourcen ausgeht.
Ein Sicherheitsbeweis liefert nicht nur eine hervorragende Prüfung der Plausibilität

einer Konstruktion, sondern kann auch bei der Auswahl von Parametern verwendet
werden, die in direktem Zusammenhang mit der garantierten Sicherheit eines kryp-
tographischen Systems stehen. Hier ist insbesondere die Schärfe (engl. tightness) des
Sicherheitsbeweises von Bedeutung. Die Schärfe beschreibt, wie eng der Zusammenhang
zwischen dem Algorithmus, der das kryptographische System bricht, und der Reduktion,
die das angenommen schwierige Problem löst, ist. Je enger der Zusammenhang ist, desto
mehr Sicherheitsgarantien werden von dem schwierigen Problem an das kryptographi-
sche System übertragen. Das heißt, wenn der Zusammenhang nicht scharf genug ist,
müssen die Sicherheitsgarantien, die das schwierige Problem bietet, erhöht werden, um
den durch den Sicherheitsbeweis (Reduktion) verursachten Sicherheitsverlust auszuglei-
chen. Daher ist es für kryptographische Systeme, die in der realenWelt eingesetztwerden,
von besonderer Bedeutung, scharfe Sicherheitsbeweise anzustreben. Diese ermöglichen
es nämlich, kryptographische Systeme mit theoretisch begründeten Parametern (d. h.,
die durch den Sicherheitsbeweis gestützt werden) einzusetzen, ohne dass ein durch den
Sicherheitsbeweis verursachter Sicherheitsverlust ausgeglichen werden muss. Dies be-
deutet in der Regel, dass bei der Benutzung des Systems keine Kompromisse zwischen
Effizienz und Sicherheit gemacht werden müssen.
Diese Arbeit gibt Einblicke in Bezug auf die scharfe Sicherheit der neuesten Versi-

on des TLS-Protokolls, TLS 1.3 (RFC 8446). Daher wird in einem Teil dieser Arbeit ein
scharfer Sicherheitsbeweis für alle Varianten des TLS 1.3 Handshake-Protokolls in einem
idealisierten Modell, dem sogenannten Random-Oracle-Modell (ROM), vorgestellt. Dies
verbessert frühere Analysen von TLS 1.3, da diese einen Sicherheitsverlust quadratisch
in der Anzahl der TLS-Sitzungen über alle Benutzer nach sich ziehen. Dadurch werden
die Parameter von TLS 1.3 theoretisch begründet. Darüber hinaus wird der aktuellen
Stand der scharfen Sicherheit des TLS 1.3 Record-Protokolls diskutiert. Schließlich wird
eine neue generische Konstruktion für ein digitales Signaturverfahren vorgestellt, das
die starke Sicherheitseigenschaft in Form von existentieller Unfälschbarkeit in einer
Umgebung mit mehreren Benutzern und adaptiven Korruptionen im ROM erfüllt (engl.
existential unforgeability under an adaptive chosen-message attack in the multi-user setting
with adaptive corruptions). Diese Konstruktion ist das derzeit effizienteste Verfahren, das
eine solche Sicherheitseigenschaft erreicht, und ist ein idealer Kandidat für den Einsatz
in Schlüsselaustauschprotokollen, die scharfe Sicherheit anstreben und die digitale Signa-
turen zur Authentifizierung verwenden. Insbesondere erfüllen die derzeit von TLS 1.3
unterstützten Signaturverfahren diese starke Eigenschaft nicht, obwohl unserer scharfe
Sicherheitsbeweis des TLS 1.3-Handshakes dies erfordert. Daher zeigt das vorgestellte
Signaturverfahren, dass das TLS 1.3-Handshake-Protokoll mit geeigneten Bausteinen
instanziiert werden kann, sodass es scharfe Sicherheit erreicht.

xii



contents

Acknowledgements vii

Abstract ix

Zusammenfassung xi

Acronyms xvii

1 Introduction 1
1.1 (Brief) History of TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Provable Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Previous Analyses of TLS 1.3 and their Tightness . . . . . . . . . . . . . 8
1.4 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Difficulty of Tightly-secure AKE and Signatures in the Multi-user Setting 12
1.6 Further Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I Preliminaries 19

2 Notation 21

3 Computational Problems 23
3.1 Discrete Logarithm Problem . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Computational Diffie–Hellman Problem . . . . . . . . . . . . . . . . . . . 24
3.3 Decisional Diffie–Hellman Problem . . . . . . . . . . . . . . . . . . . . . 24
3.4 Strong Diffie–Hellman Problem . . . . . . . . . . . . . . . . . . . . . . . 25

4 Cryptographic Building Blocks 27
4.1 Hash Functions and the Random Oracle Model . . . . . . . . . . . . . . . 27
4.2 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Lossy Identification Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 33

xiii



Contents

II On the Tightness of the TLS 1.3 Handshake Protocol 37

5 Multi-stage Key Exchange Protocols 39
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Security Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Multi-stage Session Matching . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Transport Layer Security Handshake Protocol 61
6.1 HMAC and HKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Omitted Features of TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 TLS 1.3 Full (EC)DHE Handshake . . . . . . . . . . . . . . . . . . . . . . 65
6.5 TLS 1.3 PSK-only/PSK-(EC)DHE Handshake . . . . . . . . . . . . . . . . 72

7 Abstracting the TLS Key Schedule 77
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Abstracted Key Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Indifferentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Proving the TLS 1.3 Key Schedule Indifferentiable . . . . . . . . . . . . . 88
7.5 Defining the Domains Th and Ch . . . . . . . . . . . . . . . . . . . . . 105
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Modularizing Handshake Encryption 129
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Handshake Encryption as a Modular Transformation . . . . . . . . . . . 130

9 Tight Security of the TLS Full Handshake 135
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.2 TLS 1.3 Full (EC)DHE Handshake as an MSKE Protocol . . . . . . . . . . 138
9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake . . . . . . . . . . 140
9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10 Tight Security of the TLS-PSK Handshakes 169
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.2 TLS 1.3 PSK-only and PSK-(EC)DHE Handshake as an MSKE Protocol . . 170
10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake . . . . . . . . . . . . 172
10.4 Tight Security of the TLS 1.3 PSK-only Handshake . . . . . . . . . . . . . 191
10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

III On the Tightness of the TLS 1.3 Record Protocol 195

11 On the Tightness of the TLS 1.3 Record Protocol 197

xiv



Contents

IV More Efficient Digital Signatures with Tight Multi-User Secu-
rity 203

12 Introduction 205

13 Construction 211

14 Instantiations 225
14.1 Instantiation based on Decisional Diffie–Hellman . . . . . . . . . . . . . 225
14.2 Instantiation from the 𝜙-Hiding Assumption . . . . . . . . . . . . . . . . 230

15 Discussion 235

Conclusion 237

16 Conclusion 239

Bibliography 241

xv





acronyms

AEAD authenticated encryption with associated data
AKE authenticated key exchange
CBC cipher block chaining
CDH computational Diffie–Hellman
DDH decisional Diffie–Hellman
DH Diffie–Hellman
DHE Diffie–Hellman key exchange
DLOG discrete logarithm
GDH gap Diffie–Hellman
GGM generic group model
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IETF Internet Engineering Task Force
IMAP Internet Message Access Protocol
KDF key derivation function
LID lossy identification scheme
MAC message authentication code
MSKE multi-stage key exchange
POP Post Office Protocol
PRF pseudorandom function
PSK pre-shared key
ROM random oracle model
RTT round-trip time
SDH strong Diffie–Hellman
SMTP Simple Mail Transfer Protocol
SSL Secure Socket Layer
TCP Transport Control Protocol
TLS Transport Layer Security

xvii





1
introduction

Transport Layer Security. The de-facto standard for secure communication on the
Internet (or, any computer network in general) is Transport Layer Security (TLS) specified
in RFC 8446 [Res18]. As such it protects a wide range of application layer protocols, such
as the Hypertext Transfer Protocol (HTTP) for web browsing, and the Internet Message
Access Protocol (IMAP) [ML21], the Post Office Protocol (POP) [MR96], and the Simple
Mail Transfer Protocol (SMTP) [Kle08] for email. These applications make TLS to one of
the most important security mechanisms on the internet protecting billions of connec-
tions every day. Its most popular use clearly is its application to secure HTTP resulting
in Hypertext Transfer Protocol Secure (HTTPS) (“HTTP over TLS”). This usually is indi-
cated in the web browser by the padlock symbol next to the web address. In late 2022,
roughly 80 % of web pages loaded by the Mozilla Firefox browser used HTTPS.1 Similar
numbers hold for Google’s Chrome browser.2 These numbers clearly demonstrate the
importance of TLS on the Internet.

Classical communication over the Internet suffers from the limitation that most of the
application layer protocols (e.g., HTTP, IMAP, POP, and SMTP) send their data in the
plain. With the Internet having taken an increasingly important role in the everyday life,
and new applications evolving day by day, the exchange of sensible data (e.g., personal
bank information) increases such that sending data in plain is not sufficient anymore.
TLS aims to close this gap by securing the data in transit and therefore enables to perform
delicate tasks over the Internet, such as online banking, securely. Quoting the standard
RFC 8446, the main goal of TLS is the following:

“TLS allows client/server applications to communicate over the Internet in a way
that is designed to prevent eavesdropping, tampering, and message forgery.”

— Abstract of RFC 8446 [Res18]

To achieve this, TLS establishes a secure channel between two peers (i.e., client and
server). Here, “secure”, in particular, means that the channel established between the
two endpoints satisfies:

1 https://letsencrypt.org/stats/ (visited Dec 31, 2022)
2 https://transparencyreport.google.com/https/overview (visited Dec 31, 2022)

1

https://letsencrypt.org/stats/
https://transparencyreport.google.com/https/overview


1 introduction

1. Confidentiality: Only the two communicating peers should be able to understand
the data exchanged.

2. Integrity: It should not be possible to change the data in transit without the peers
noticing that tampering occurred.

3. Authenticity: The server always authenticates towards the client. Intuitively speak-
ing, a client should be sure that its communication partner is the intended one.
Client authentication is optional and may be explicitly requested by the server.

TLS achieves these properties by only requiring a reliable (and in-order) transport of
data. As its name already suggests, Transport Layer Security works directly on top of the
transport layer and directly below the application layer in the Internet Protocol Suite (also
known as the TCP/IP model). Usually, the reliable transport is implemented using the
Transport Control Protocol (TCP) [Edd22]. Further, TLS is independent of the application
it secures. Informally, this means that TLS takes the data of the application layer protocol
that would be otherwise sent in the plain and protects this data as described above. To
do so, TLS consists of two major components:

1. Handshake protocol. To establish the aforementioned secure channel, the two
endpoints first perform a handshake in which they authenticate, negotiate crypto-
graphic parameters, and establish shared keys.

2. Record protocol. The record protocol implements the secure channel to protect
the data exchanged between the two communicating parties using the parameters
negotiated in the previous handshake.

1.1 (Brief) History of TLS

SSL and TLS 1.0–1.2. Due to its relevance and the accompanying public attention,
numerous attacks on TLS have been found since its introduction. TLS originally was
published under the name Secure Socket Layer (SSL). The protocol was developed by
Netscape Communications. Unfortunately, the history of SSL was accompanied by a
number of serious security flaws. Its first version SSL version 1 (SSL 1.0) was never
publicly available as it suffered from numerous shortcomings and flaws, e.g., the lack
of integrity protection of data (cf. [Opp16]). Its first publicly available version SSL ver-
sion 2 (SSL 2.0) [EH95] still suffered from serious flaws, e.g., the cipher suite rollback
attack in which an active adversary is able to make changes to the list of cipher suites
to enforce the communicating to use weaker cryptographic schemes than they actually
support (cf. [WS96]). A number of issues of SSL 2.0 were addressed in Microsoft’s concur-
rence protocol, which they called Private Communication Technology (PCT) [Ben+95].
SSL 3.0 [FKK11] adopted the improvements of PCT. The superordinated companies Mi-
crosoft and Netscape now faced the challenge that their products still needed to support
each other’s security protocol to ensure interoperability. Therefore, in 1996 the Inter-
net Engineering Task Force (IETF) TLS working group was founded to find a unified

2



1.1 (Brief) History of TLS

solution.3 They published the first version of the new Transport Layer Security protocol
(version 1.0) as RFC 2246 [DA99] in 1999. The changes compared to SSL were minimal,
so TLS 1.0 can be seen as SSL 3.1 (cf. [Opp16]). TLS 1.0 was obsoleted by TLS 1.1 pub-
lished as RFC 4346 [DR06] in 2006. This revision mostly addresses vulnerabilities4 of
the cipher block chaining (CBC) mode of operation for block ciphers used in the record
protocol, which enable so-called padding oracle attacks first discovered by Vaudenay
[Vau02]. Already two years after, TLS 1.1 was obsoleted by TLS 1.2, which was published
in 2008 as RFC 5446 [KN09]. In the upcoming years, SSL/TLS has been subject to a num-
ber of attacks on various aspects of the protocol. To just name a few that raised public
attention, there were the attacks BEAST [Duo11], CRIME [RD12], Heartbleed [Cod14],
POODLE [Bod14], DROWN [Avi+16], and SLOTH [BL16b].

SSL 2.0 has been deprecated in March 2011 [TP11] due to its shortcomings, e.g., the use
of hash functionMD5 [Riv92], which is not considered collision resistant anymore [TC11]
and the aforementioned lack of integrity protection when it comes to the list of cipher
suites allowing active adversaries to enforce weak cryptographic schemes. In 2014, the
POODLE attack [Bod14] on SSL 3.0 was published, which allows an adversary to de-
crypt messages encrypted with CBC without knowing the corresponding key material.
This resulted in a deprecation of SSL 3.0 [BTPL15]. Versions 1.0 and 1.1 of TLS have
been deprecated by the IETF in 2021 with RFC 8996 [MF21b] due to the use of legacy
cryptography and some of the attacks listed above.

TLS 1.3. Motivated by the history of attacks, the IETF involved for the first time both
academia and industry in the standardization process of the next TLS version 1.3. The
standard was published in 2018 as RFC 8446 [Res18] and is the most recent version. The
new version includes rather major changes compared to the previous standard TLS 1.2.
For instance, it removes legacy cryptography from the selection of algorithms (e.g., only
allowing authenticated encryption with associated data encryption algorithms), adds a
low-latency (i.e., zero round-trip time) mode for early application data exchange, and
removes RSA-encryption based and static Diffie–Hellman (DH) key exchange present
in previous versions such that ephemeral DH key exchange is the only key exchange
mode possible. Further, it disables the compression feature by default (to counteract
CRIME-like attacks) and completely redesigns of the key derivation in the handshake
protocol. Note that even though the changes to the TLS protocol from version 1.2 to
version 1.3 seem quite incompatible, backwards compatibility with previous versions is
an important feature of the new TLS 1.3 standard. For example, the standard says that
“Implementations of TLS 1.3 which choose to support prior versions of TLS SHOULD
support TLS 1.2.” [Res18, Sect. 4.2.1] to ensure fallback to version 1.2. In fact, according
to SSL Pulse5 in December 2022 almost every TLS-enabled web server of the Alexa
list of the most popular websites on the Internet supports TLS 1.2 (99,9 %) while only
58,9 % support the most recent version TLS 1.3 (four years after its introduction). This

3 https://datatracker.ietf.org/group/tls/about/
4 https://www.openssl.org/~bodo/tls-cbc.txt
5 https://www.ssllabs.com/ssl-pulse/

3

https://datatracker.ietf.org/group/tls/about/
https://www.openssl.org/~bodo/tls-cbc.txt
https://www.ssllabs.com/ssl-pulse/


1 introduction

especially demonstrates how important TLS 1.2 still is today even though it has been
target of numerous attacks. Therefore, it also is non-trivial to securely configure TLS 1.2.

1.2 Provable Security

The history of TLS is an excellent example how important a rigorous analysis of a system,
in particular a cryptographic one, is before deploying it in the wild. A common formal
approach for such analyses in the area of cryptography is provable security, which first
appeared in 1982 in the seminal work “Probabilistic Encryption and How to Play Mental
Poker Keeping Secret All Partial Information” by Goldwasser and Micali [GM82]. The
provable security approach has proven to be a great tool, not only to check the plausi-
bility of real-world cryptographic system, but also to make design decisions founded
on a theoretically-sound ground. In the provable security approach one uses concepts
stemming from computational complexity to give rigorous formal proofs of security
for cryptographic systems. The central concept of the provable security approach is a
cryptographic reduction.

1.2.1 Cryptographic Reductions

A fundamental concept of computational complexity theory is the reduction. The main
idea is simple: Given an algorithm to solve some computational problem 𝐵, we construct
an algorithm that solves some other problem 𝐴 by giving an algorithm  (called reduc-
tion) that transforms an instance 𝜙𝐴 of problem𝐴 into an instance 𝜙𝐵 of problem 𝐵. Then,
we can solve problem 𝐴 by first transforming the problem instance 𝜙𝐴 into a problem
instance 𝜙𝐵 for problem 𝐵 using algorithm , and run the algorithm solving problem 𝐵
on 𝜙𝐵. Finally, we only have to find a way to map a solution of problem 𝐵 to a solution of
problem 𝐴. If all of this can be done efficiently (that is, e.g., in time and space polynomial
in the input length), we say that problem 𝐴 is reducible to problem 𝐵. This is sometimes
written as 𝐴 ≤𝑝 𝐵, which illustrates nicely what this actually means. Namely, that the
problem 𝐴 is at most as “hard to solve” as problem 𝐵. Put differently, if a solver for
problem 𝐵 can be used as a subroutine to solve problem 𝐴, problem 𝐵 has to be at least
as hard to solve as problem 𝐴. This technique classically is used to relate computational
hardness of problems.

In modern cryptography, we make use of the exact same concept to formally prove se-
curity of a cryptographic system. Here, we base our security on computational problems
that are assumed to be hard (e.g., discrete logarithms, factoring of composite integers,
etc.). Now, equipped with the technique of a reduction, we can reduce the security of
a cryptographic system to the hardness of a computational problem with the following
steps.

1. Define a security model capturing the security requirements of the cryptographic
system. This is used to precisely define the capabilities of an adversary and what it
means for an adversary to be successful (i.e., breaking the cryptographic system).

4



1.2 Provable Security

Adversary

Reduction

Computational
Hardness Assumption

Figure 1.1: Block diagram illustrating a cryptographic reduction.

Usually, this model is formally captured in form of a security experiment (or security
game).

2. Choose an appropriate computational problem that is assumed to be hard.
3. Assume there is an algorithm called adversary  that can break the security of

the cryptographic system with respect to the security model defined in (1). Then,
construct an efficient reductionwith the goal to solve the computational problem
using adversary as a subroutine. This step is illustrated in Figure 1.1.

4. Conclude that under the assumption that the computational problem is hard (i.e.,
no efficient algorithm can solve it), this efficient reduction cannot exist. Hence,
there cannot exist an efficient adversary  breaking the security of the crypto-
graphic system.

As this technique arose from computational complexity theory, as discussed above,
the results are mostly considered asymptotically. However, for real-world applications
such asymptotic results do not give meaningful guarantees. This only yields results of
the form “there exist sufficiently large parameters for our cryptographic system such
that the cryptographic system is secure with respect to the defined security model”. One
desirable goal would be to use the full power of the security proof and use it, for example,
to support the selection of parameters of the cryptographic system to actually have
“theoretically-sound” parameters for deployment. Here, comes the concrete security (also
called exact security) approach into play.

1.2.2 Concrete Security

In contrast to the previously outlined asymptotic approach to security, the concrete
approach makes all bounds, e.g., on the running time and success probability of an
adversary , explicit. In general, we deduce from a reduction  constructed based on
some adversary bounds of the form

𝜖 ≤ 𝓁() ⋅ 𝜖 (1.1)

where 𝜖 and 𝜖 denotes the success probability of and , respectively, and 𝓁(⋅) is a
function of the adversary called the (security) loss of reduction. In the asymptotic
setting, it would be sufficient to show that 𝓁 is polynomially bounded and reduction
is efficient to conclude that the success probability is asymptotically small (“negligible”)

5



1 introduction

and thus the scheme is considered “secure”. The concrete approach focuses more on
specific instances. Here, the relation between the algorithms (i.e., adversaries) is of higher
importance. Also, one does not consider systems parameterized by the so-called security
parameter determining the desired level of security. In the concrete approach, one rather
considers an instance of the family of systems defined via the security parameter. For
illustration, think of the security parameter to be, e.g., the length of the cryptographic key
or the size of an algebraic group. In the asymptotic approach, everything is a function
of this security parameter and thus asymptotically, there exists a choice of parameters
(e.g., a key length) that is sufficiently large to “provide security”. In contrast, concretely
one rather focuses on the success probability of an adversary for a given (fixed) choice
of parameters. This is much more practice-oriented as schemes obviously are deployed
with fixed values for certain parameters in the real world. As such the concrete security
approach also allows to deploy schemes with parameters that are actually supported by
the formal security proof, as one can choose the parameters of the system such that a
desired level of security is achieved. We demonstrate this with a toy example below.

Work Factors. To measure the efficiency of an adversary (resp. an algorithm in gen-
eral), one can consider the work factor following Bellare and Ristenpart [BR09b, BR09a].
For an adversarywith success probability 𝜖 and running time 𝑡, we define the work
factor of adversary  to be the term 𝜖/𝑡.6 Using the work factor, we can rewrite
Equation (1.1) as follows:

𝜖
𝑡

≤ 𝓁() ⋅
𝜖
𝑡

(1.2)

where 𝑡 and 𝑡 are the running time, and 𝜖/𝑡 and 𝜖/𝑡 the work factor of adver-
sary and reduction , respectively.

1.2.3 Tight Security and Theoretically-sound Parameters

The concrete security approach is not only interesting from a practical perspective, but
also from a theoretical one as this also raises important new research questions. For
example, now that all resources (e.g., running time and success probability) are made ex-
plicit, it would be desirable to get the relation of the adversary and the reduction as close
as possible. Now, one may ask what the consequences of a loose reduction (or security
proof) are (i.e., an overly estimated upper-bound on an adversary’s success probability).
Let us illustrate the impact of the security loss 𝓁 on the security and ultimately on the ef-
ficiency of a cryptographic scheme. Suppose a security bound as given in Equation (1.1)
that relates the success of an adversary  against some cryptographic scheme and a
reduction against some conjectured-to-be-hard problem using as a subroutine such
that 𝜖 ≤ 𝓁() ⋅ 𝜖. Further, suppose that 𝓁 ≤ 2−90 and we have a desired security level
of 128 “bits of security” for the cryptographic scheme. That is, we want to protect the

6 Opposed to Bellare and Ristenpart, we consider the inverse of their work factor just to avoid dividing
by 0 in the somewhat artificial case in which 𝜖 = 0. We may assume that 𝑡 > 0 as the adversary at least
needs to read its input.

6



1.2 Provable Security

cryptographic scheme against adversaries such that

𝜖
𝑡

≤ 2−128 ⟺ −log2(
𝜖
𝑡 ) ≥ 128.

Since the security proof “looses” 90 bits of security, we have to instantiate the crypto-
graphic scheme (i.e., select its parameters) such that

128 ≤ − log2(𝓁() ⋅
𝜖
𝑡 ) ⟺ 128 ≤ −90 − log2(

𝜖
𝑡 ) ⟺ 218 ≤ − log2(

𝜖
𝑡 ).

Thus, we actually have to instantiate the underlying problem such that it provides 218 bits
of security to yield a security level of 128 bits of security for the cryptographic scheme.
Even though the choice of parameters providing 218 bits of security (e.g., an algebraic
group of order roughly 22⋅218) would yield a theoretically-sound deployment of the cryp-
tographic scheme, it incurs a significant penalty when it comes to efficiency. In the above
example we illustrated the impact of a constant (resp. concrete) loss. However, often
this loss depends on parameters that might change over time, or at least are not known
when deploying a scheme (e.g., the number of users using a scheme). Therefore, these
values need to be estimated and this imposes new challenges. If the parameters chosen
for deployment are underestimated, then there might be a point in time when the choice
of parameters is not supported by the security proof anymore. If they are overestimated,
then it might incur a significant loss in efficiency. Therefore, it is desirable to aim for a
reduction, where the loss 𝓁 is a small constant (preferably independent of the parame-
ters of the system or the adversary). Such reductions are called tight. Tight proofs are
especially interesting in the context of real-world protocols such as authenticated key
exchange (e.g., the TLS handshake) as straightforward proof techniques usually induce
a loss that is a quadratic function in the number of key exchange protocol runs. In these
key exchange protocols, this is particularly problematic as the number of key exchanges
for such important protocols like TLS is huge. It is reasonable to assume that for TLS
there are billions of users each running thousands of key exchanges (over the whole
lifetime of the protocol) such that a number of users of around 230 and 215 key exchanges
per user are realistic. This results in a number of 245 many key exchanges. That is, for
these numbers a loss of at least 90 bits of security needs to be compensated, which is
huge.

To illustrate this practically, assume that the lossy reduction outlined in the previous
paragraph is to some problem that is related to an (elliptic curve) group (in the case of
TLS one can think of the Diffie–Hellman group used for the DH key exchange happening
internally). According to the NIST recommendations7, achieving 128 bits of security re-
quires to use an (elliptic curve) group of order roughly 22⋅128 (e.g., secp256r1 [Nat13]). If
one would instantiate TLS with this group andwe have a security proof that looses 90 bits
of security, then from a theoretical perspective our proof only guarantees 128 − 90 = 38
bits of security, which is not even a third of the desired security level. That is, we ac-
tually would need to choose a group that is of order at least roughly 22⋅218 = 2436 since

7 https://www.keylength.com/en/4/

7

https://www.keylength.com/en/4/


1 introduction

we computed that we need to achieve 218 bits of security of the underlying problem
to compensate the loss. Of course, choosing larger groups, or increasing the system’s
parameters in general, comes with a significant performance penalty. Thus, it seems
impractical for most real-world applications to choose parameters that are supported by
the security proof. This, in particular, holds for the application of TLS as larger parame-
ters might significantly increase the computation time, which would cause, for example,
a delay of website delivery. This ultimately might increase the costs (resp. decrease the
turnover) especially for major website providers. But not only “large-scale” applications
might suffer from the performance penalty, also smaller Internet of Things (IoT) devices
might simply not have the resources to use significantly larger parameters. Therefore,
parameters in practice usually are not chosen such that they are sound with respect
to a theoretical security bound. This however is undesirable in two ways. First, then
there is no (provable) foundation for the selection of parameters. Secondly, the security
proof is not meaningful for these kind of parameter choices and thus it merely serves
as a “sanity-check” to verify the plausibility of a construction. Even though a formal
security proof helps to understand the underlying problem and in fact is an excellent
indicator for the plausibility of a construction’s security, we believe that a security proof
can be more than that and consider it desirable to enable a theoretically-sound selection
of parameters in practice by giving tighter bounds of security.

1.3 Previous Analyses of TLS 1.3 and their Tightness

As already reported in Section 1.1, TLS 1.3 was the first version of SSL/TLS that was
developed in close collaboration between industry and academia, which allowed for a
thorough assessment of TLS 1.3 drafts before the final version was standardized. During
this process a number of analyses using different kind of approaches have been published.
In the following, we focus on the reduction-based (computational) analyses as we aim
to assess the tightness of previous analyses. For an overview of works using different
approaches, we refer to Section 1.6 below. The overall design of the TLS 1.3 handshake
protocol is based on OPTLS proposed by Krawczyk and Wee [KW16]. For various drafts,
security analyses for the TLS 1.3 handshake protocol [DFGS15, Koh+14, DFGS16, Li+16,
FG17] and (aspects of) the record layer [Bad+15b, BT16, PS18, Del+17, GM17] have
been conducted. For the final TLS 1.3 standard [Res18], Dowling, Fischlin, Günther, and
Stebila [DFGS21] gave a complete analysis of all modes of the handshake protocol. For
the record layer, Hoang, Tessaro, and Thiruvengadam [HTT18] revisited the analysis
by Bellare and Tackmann [BT16] of the multi-user security of AES-GCM as used in the
TLS record layer, and Degabriele, Govinden, Günther, and Paterson [DGGP21] extended
this work to the other encryption algorithm used in the TLS 1.3 record layer, ChaCha20-
Poly1305. For the handshake, none of the above analyses has a tight security proof
as they all roughly have a loss that is quadratic in the total number of key exchange
sessions. We will outline in Section 1.5 below where this loss comes from and why it
is common in the context of key exchange protocols like the TLS handshake. For the
record layer, we have tight bounds for the multi-user security of the buildings blocks

8



1.4 Contributions of this Work

(AES-GCM and ChaCha20-Poly1305) (cf. [HTT18, BT16, DGGP21]), but there is a lack
of a precise security model capturing all aspects of the secure channel implemented by
the record layer protocol. (We discuss this in more detail in Chapter 11.)
The above considerations naturally raise the following research question:

How tightly-secure is TLS 1.3?

1.4 Contributions of this Work

In this thesis, we address the above research question and give major insights on the
tight security of TLS 1.3. Here, we mainly focus on formally proving tight security for
the TLS 1.3 handshake protocol. Concretely, we present the following results in this
thesis.

Abstracting the TLS 1.3 Key Schedule. In a first step, we describe a new abstraction
of the TLS 1.3 key derivation function (called the key schedule [Res18, Sect. 7.1])
used in the TLS handshake. During the TLS 1.3 handshake different intermediate
values are derived to ultimately derive multiple keys for various purposes. We ab-
stract the derivation of these intermediate values such that the key schedule only
consists of a set of functions TKDF𝑥 , where each of these functions only derives
the key 𝑥 . With this abstraction at hand, we formally prove using the indifferen-
tiability framework [MRH04, BDG20] that each of these functions behaves like
an independent (publicly available) ideal random function. This holds under the
assumption that the hash function used in TLS 1.3 behaves like an ideal random
function. This abstraction reflects the natural intuition of what one would ex-
pect from the keys derived in the key schedule, namely that they are “as good as”
independently chosen random cryptographic keys. Furthermore, it reduces the
complexity of the key derivation in the handshake protocol. Since the key sched-
ule as defined in the standard [Res18, Sect. 7.1] is a complex procedure, which
involves a number of interleaved computations. This ultimately also reduces the
complexity of subsequent analyses of the handshake protocol.

Tight Security of the TLS 1.3 Handshake. The TLS 1.3 handshake comes in two vari-
ants. First, there is the “standard” full handshake that uses authentication based on
public key certificates. At its core it uses the prominent ephemeral Diffie–Hellman
key exchange (DHE) [DH76] based on a finite field or a elliptic-curve (EC) group.
Therefore, this variant is called the TLS 1.3 full (EC)DHE handshake. Second, there
are the pre-shared key handshakes. This variant uses that client and server can
exchange an additional key called the pre-shared key (PSK) after the full hand-
shake completed to perform an abbreviated handshake at a later point in time
(session resumption). There is also the option that this PSK is established externally
(“out-of-band”). In the PSK handshakes, authentication is essentially skipped as
the knowledge of the PSK already provides a certain degree of (implicit mutual)

9



1 introduction

authentication. This variant comes in two modes: the PSK-only mode and the PSK-
(EC)DHE mode. In the latter there is an additional DH key exchange performed to
provide higher grade of security.

In this work, we give a tight security bound for all of the handshake modes reduc-
ing its security to the used building blocks. Here, the security of the full handshake
reduces to the security of the digital signature scheme (unforgeability in the multi-
user setting) used for authentication and the hardness of the strong Diffie–Hellman
problem [ABR01] under the assumption that the TLS hash function is modeled as a
publicly available ideal random function. The security of the PSK-only handshake
holds under the assumption that the TLS hash function is a publicly available ideal
random function. The security of the PSK-(EC)DHE handshake reduces to the
hardness of the strong Diffie–Hellman problem [ABR01] under the assumption
that the TLS hash function is modeled as a publicly available ideal random function.
In our tight analysis, we leverage our abstraction of the key schedule to tame the
complexity of the overall proof and to present it in a modular fashion. Following
most of the previous computational analyses of TLS 1.3, we prove security using
a variant of the multi-stage key exchange (MSKE) security model originally pro-
posed by Fischlin and Günther [FG14] capturing complex properties of modern
key exchange protocols.

In early work, the author of this thesis contributed to a tight analysis of the full
handshake of TLS 1.3 [DJ21], which proved a tight bound under strong assump-
tions of the key derivation function of TLS 1.3. There also was independent and
concurrent work by Davis and Günther [DG21a], which also gave a tight bound
for the full handshake and also made similar assumptions about the key derivation
function of TLS 1.3. Additionally, both neglected dependencies between different
uses of the hash function in the key derivation function and the remaining TLS
handshake protocol. To resolve this, the authors of [DJ21, DG21a] jointly devel-
oped a solution to these problems, which resulted in the abstraction of the key
schedule and the tight analysis of the PSK handshake given in Chapters 7 and 10 of
this work, respectively. These results were originally published in [DDGJ22b]. For
details, we refer to Chapter 7. The analysis of the full handshake presented in this
work is under weaker assumptions compared to the previous results [DJ21] and
incorporates our new abstraction of the key schedule similar to the PSK handshake
analyses in [DDGJ22b]. The results of [DJ21, DG21a] therefore are only implicitly
part of this thesis.

Discussion of Tightness of the TLS 1.3 Record Protocol. In order to complete the
treatment of TLS 1.3, we also (informally) discuss the tightness of record protocol.
The MSKE security model in some versions [DFGS15, Gün18] contains a composi-
tion theorem for TLS, which proves generically security of the composition of TLS
with an arbitrary, secure symmetric-key protocol (e.g., the record layer protocol
keyed with the application traffic encryption key established in the handshake).
Unfortunately, this composition theorem does not apply (directly) to the variant

10



1.4 Contributions of this Work

of the MSKE model we are considering in this work. This is due to advanced
properties of authentication the model captures. Furthermore, Dowling, Fischlin,
Günther, and Stebila [DFGS21] using a similar variant of the MSKE model already
pointed out that the above composition theorem does not necessary hold for these
properties. Even though it is possible to prove the theorem given in [DFGS15,
Gün18] tightly (cf. [DJ21]), a complete computational analysis of the record layer
remains elusive mainly because there is no suitable security model. We discuss
what we consider possible in that regard.

More Efficient Digital Signatures with Tight Multi-user Security. In the TLS 1.3
handshake, parties can choose among four different signature schemes: RSA-
PSS [MKJR16, Cor02], RSA-PKCS#1 v1.5 [Kal98, MKJR16], ECDSA [JMV01], and
EdDSA [JL17, Ber+11]. Due to the fact that RSA-based public keys are the most
common in practice, the RSA-based schemes currently have the greatest practical
relevance in the context of TLS 1.3. As usual in tightly-secure authenticated key
exchange (AKE) [Bad+15a, GJ18, JKRS21, Han+21], we require in our tight security
bound for the full handshake existential unforgeability in the multi-user setting with
adaptive corruptions [Bad+15a] from the signature scheme used for authentication.
To achieve a fully tight bound for the full handshake, we also need tightly-secure
building blocks. Otherwise, even though the bound of the handshake seems to be
tight, the overall bound will not be tight. For the signature scheme, two dimen-
sions are relevant for tightness, (i) the number of signatures issued per user, and
(ii) the number of users.

• RSA-PSS has a tight security proof in the number of signatures per user [Cor02,
Kak19], but not in the number of users.

• RSA-PKCS #1 v1.5 also has a tight security proof [JKM18] in the number of
signatures per user, but not in the number of users. However, we note that
this proof requires to double the size of the modulus, and also that it requires
a hash function with “long” output (about half of the size of the modulus),
and therefore does not immediately apply to TLS 1.3.

• For ECDSA there exists a security proof [FKP17] that considers a weaker
“one-signature-per-message” security experiment that is not tight.

All of these signatures have unique secret keys in the sense of [BJLS16], and thus
according to Bader, Jager, Li, and Schäge [BJLS16] it is impossible for these schemes
to be a tightly-secure in the number of users.

Since none of the standardized schemes is tightly-secure, we present an efficient
signature scheme that is tightly (strong) existential unforgeability in the multi-
user setting with adaptive corruptions. The construction is generic and it can
be instantiated with any lossy identification scheme [AFLT12] satisfying certain
properties.

11



1 introduction

1.5 Difficulty of Tightly-secure Authenticated Key
Exchange and Signatures in the Multi-user Setting

Classical security models for authenticated key exchange (such as the widely-used Bel-
lare–Rogaway [BR94] or the Canetti–Krawczyk [CK01] model and their countless deriva-
tives, e.g., the MSKE model) try to reflect the real world as best as possible and thus are
in the multi-user setting. This means they consider multiple users that can interact with
each other and each of these users usually holds a (long-term) key, which classically
corresponds to a key pair of a digital signature scheme for authentication. Moreover,
these models consider very strong adversaries that have full control over the communi-
cation network and therefore, are able to modify, drop, or inject messages. In addition,
the adversary can corrupt users by revealing their long-term secrets (e.g., the signature
secret key) and also reveal established session keys. The overall objective in this setting
is then for the adversary to not being able to distinguish real session keys established
by the users running the protocol from uniformly random keys. Giving security proofs
in such a model is already challenging due to the model’s mere complexity, let alone
achieving a tight security proof.

Guessing the adversary’s behavior induces loss. Usually the security loss of a
reduction is induced by guessing the adversary’s behavior. For example, a common
strategy in the multi-user setting is to guess a user that remains uncorrupted until the
end of the security game to embed the reduction’s challenge, so that the reduction can
extract a valid solution for its challenge. This results in the reduction only winning with
the same probability as the adversary if the guess was correct. For the example, this then
would result in a success probability 𝜖 ≤ 1/𝓁 ⋅ 𝜖, where 𝓁 is linear in the number of
users. To avoid such guessing arguments, a reduction always needs to be prepared to
extract a solution of its challenge for every possible behavior of the adversary. In the
above example, this means a tight reduction would need to be able to extract a solution
for any user and thus of course embed a (variant) of the challenge in any user. Next, let
us have a look at why avoiding such guessing arguments is particularly important in the
context of authenticated key exchange protocols.

Guessing in AKE proofs and the commitment problem. Nearly all classical secu-
rity proofs for authenticated key exchange have a quadratic loss (in the number of key
exchange sessions). The reason for this is a guessing argument to solve the “commitment
problem” as it was called by Gjøsteen and Jager [GJ18]. In key exchange the challenge
of the adversary is to distinguish exchanged keys from random keys in sessions where
the adversary, informally, neither revealed the exchanged key nor corrupted any of the
parties to exclude trivial attacks. These instances usually are referred to as fresh. A reduc-
tion to some computational problem now needs to embed its challenge into such a key
exchange to be able to extract a solution if the adversary successfully distinguishes the
key exchange in a fresh instance. However, let us illustrate the idea of the commitment
problem using the Diffie–Hellman key exchange, which most of modern key exchange

12



1.5 Difficulty of Tightly-secure AKE and Signatures in the Multi-user Setting

protocols build upon. The protocol is a two-party and two-message protocol, where
one party 𝜋 sends a group element 𝐴 = 𝑔𝑎 and the other party 𝜋′ sends 𝐵 = 𝑔𝑏 such
that the established key is 𝐵𝑎 = 𝑔𝑎𝑏 = 𝐴𝑏. The reduction now would get a (decisional)
Diffie–Hellman challenge (𝐴, 𝐵, 𝐶) and embeds 𝐴 in a party 𝜋. Recall that the decisional
Diffie–Hellman problem asks to decide whether dlog𝑔(𝐶) = 𝑎𝑏 holds given 𝐴 = 𝑔𝑎 and
𝐵 = 𝑔𝑏. Now, the reduction “committed” to not knowing the discrete logarithm of 𝐴 and
thus the party 𝜋 can only compute a key if it receives 𝐵. Even though there is another
party 𝜋′ that receives 𝐴 and the reduction can embed 𝐵 there, 𝜋′ cannot compute its
key as usual, but the reduction can embed the challenge 𝐶 as the established key. If the
adversary wants to be challenged on that key exchange, the reduction can output 𝐶 and
an adversary that distinguishes real from random keys will decide the problem for the
reduction. However, the adversary still could tamper with the value sent to 𝜋 (due to the
strong key exchange model, in which the adversary has full control over the network)
and send a group element 𝐵′ to party 𝜋. If the adversary now asks 𝜋 to reveal its key,
the simulation embedding 𝐴 would be discovered as the reduction cannot compute 𝐵′𝑎

due to the lack of 𝑎 (and the adversarially chosen 𝑏′ such that 𝐵′ = 𝑔𝑏′ ). To resolve this,
one usually guesses the parties (𝜋, 𝜋′) exchanging the key that the adversary at the end
wants to be challenge on and thus the reduction is guaranteed that embedding a chal-
lenge is safe, if the guess is correct, because the adversary cannot reveal the challenge
key. Unfortunately, this results in a quadratic loss in the number of key exchanges, since
the probability to guess the correct parties is 1/𝑠2 where 𝑠 is the number of key exchange
instances run. To circumvent this a reduction needs to be able to embed a challenge in a
user and at the same time still being able to reveal the corresponding keys.

Resolving the commitment problem. Recent approaches to tightly-secure authen-
ticated key exchange such as [GJ18] resolve the commitment problem using a carefully
chosen construction. We believe that the approach of “tight security by design” is the
way going forward, however this is not an option for (existing) real-world protocols like
TLS 1.3 as their construction is fixed. For these constructions, one needs to find clever
proof techniques that leverage different aspects. In this work, we leverage the technique
recently proposed by Cohn-Gordon et al. [Coh+19], which we discuss more in detail
when we present our tight proofs in Chapters 9 and 10.

Handling adaptive corruptions of users. Another challenge is to handle adaptive
corruption of users. As already mentioned above, a user in a key exchange protocol
usually holds a long-term public-secret-key pair corresponding to a signature scheme.
Bader et al. [Bad+15a] identified in the context of the first tightly-secure authenticated
key exchange protocol that the security notion that reflects the requirements of a signa-
ture used in key exchange most realistically is existential unforgeability in the multi-user
setting with adaptive corruptions. Namely, a key exchange protocol is also in a multi-user
setting and a corruption in a key exchange protocol directly translates to a corruption
of an instance the signature scheme. This notion tames the complexity of the actual key
exchange proof, because the a reduction to signature security becomes straightforward.

13



1 introduction

However, this basically only moves a subset of the challenges of a tight security proof
to the signature scheme. Nevertheless, this modular approach allows for less complex
individual proofs of the key exchange protocol and the signature scheme. Unfortunately,
single-user unforgeability implies multi-user unforgeability with adaptive corruptions
only with a loss that is linear in the number involved in the system using a simple guess-
ing argument, in which the reduction guesses the user for which the adversary will
output a forgery attempt for. Following Bader, Jager, Li, and Schäge [BJLS16], this seems
to be unavoidable for a large class of signature schemes (signatures with unique secret
keys in the sense of [BJLS16]). To circumvent this impossibility, and prove tight multi-
user security for a signature scheme, one has to avoid such a guessing argument while at
the same time solving the following paradoxical situation. Namely, in such a reduction
one needs to know all secret keys to be able to respond to any possible corruption to
avoid guessing uncorrupted users. At the same time, this reduction also needs to be able
to extract a solution to some computational problem from a valid forgery attempt, while
knowing the secret key to such an instance of the problem.

Solving the paradox of tightly multi-user-secure signatures. To circumvent this
paradox, we leverage a technique already leveraged in previous tightly secure signa-
tures [Bad+15a, GJ18] in the multi-user setting, which one could refer to as the “double
signature” approach. Here, a signature 𝜎 = (𝜎0, 𝜎1) consist of two components a “real”
one 𝜎𝑏 and a “fake” one 𝜎1−𝑏. The same holds for the public key 𝑝𝑘 = (𝑝𝑘0, 𝑝𝑘1) for
the real public key 𝑝𝑘𝑏, we know a secret key 𝑠𝑘𝑏 and for the fake one 𝑝𝑘1−𝑏, we do not.
The bit 𝑏 is chosen uniformly at random for every new user individually. Therefore, the
adversary does not know which of the components is real and which is fake. Upon a
corruption, we always output the real secret key 𝑠𝑘𝑏 and embed our challenge always
in the fake component (1 − 𝑏). Note that this only leaks the bit 𝑏 of the corrupted user.
Since, real and fake public keys should be indistinguishable, the adversary will forge
with probability 1/2 with respect to the fake public key 𝑝𝑘1−𝑏 allowing us to extract a
solution with probability 1/2 ⋅ Pr[adversary forges]. Unfortunately, this approach does
not work for most signature schemes. As they usually lack a method to have “real” and
“fake” public keys. Mostly, this feature is implied by the possibility to simulate signature
in some way without the use of a secret key. We do implement this using lossy identifi-
cation schemes [AFLT12], where a “real” key is a normal key and a “fake” key is a lossy
key.

1.6 Further Related Work

In this section we present further related work that we did not mention before in this
chapter.

Analyses of TLS prior to TLS 1.3. Even though there has not been any involve-
ment of academia in the actual standardization process of previous version of TLS, the
public attention of TLS attracted a number of analyses of the final standards, particu-

14



1.6 Further Related Work

larly, TLS 1.2 [KN09]. There have been early works [MSW08, Gaj08, JK02] on (slightly)
modified versions of the handshake protocol. Another early work [Gaj+08] discusses
security of the unauthenticated handshake in the Universally Composable (UC) Frame-
work [Can01]. In 2012, Jager, Kohlar, Schäge, and Schwenk [JKSS12] gave the first
full analysis of the DH-based key exchange of TLS. To this end, they introduced a new
model, which they called Authenticated and Confidential Channel Establishment (ACCE)
tailored directly for the use of TLS-like protocols. ACCE merges a Bellare–Rogaway-
like [BR94] authenticated key exchange model with the encryption notion of stateful
length-hiding authenticated encryption to capture the record layer encryption intro-
duced by Paterson, Ristenpart, and Shrimpton [PRS11]. Unfortunately, TLS prior to
version 1.3 used the record layer encryption key already to encrypt the last messages of
the handshake. Therefore, indistinguishability-based key exchange security is impossi-
ble to achieve for these versions as an adversary always can try to decrypt handshake
messages with its challenge key to determine whether it receives a real or random key as
challenge. Therefore, a modular proof of the TLS 1.2 handshake protocol as standardized
is not possible in a standard key exchange model. The work by Jager, Kohlar, Schäge,
and Schwenk was extended to further key exchange modes and mutual authentication
by Krawczyk, Paterson, and Wee [KPW13] and Kohlar, Schäge, and Schwenk [KSS13].
Giesen, Kohlar, and Stebila [GKS13] analyzed the renegotiation of TLS, i.e., the interac-
tion of multiple handshake protocol runs in the (extended) ACCE setting. Li et al. [Li+14]
analyzed the pre-shared key cipher suites of TLS [ET05] in the ACCE setting. Dowling
and Stebila [DS15] treated the often neglected negotiation of cipher suites and versions
formally for TLS.

While most of the above analyses are “classical” reduction-based analyses, there also
is the team around miTLS8, which published the miTLS reference implementation of
TLS [Bha+13]. They combined formal software verification with the tools of provable
security to analyze TLS [Bha+14b].

Attacks on TLS prior to Version 1.3. Various aspects of the TLS protocol were target
of attacks in the past years. For example, there have been attacks on the following
aspects:

• RC4 [AlF+13, VP15, Man15]
• Hash functions, e.g., SLOTH [BL16b], [WY05, LW05, SLW07, Ste+09]
• DES/3DES, e.g., Sweet32 [BL16a]
• RSA PKCS#1 v1.5 [Ble98, Mey+14]
• CBC encryption and padding, e.g., BEAST [Duo11], POODLE [Bod14],
Lucky13 [AP13]

• Support for older versions: [JSS15], DROWN [Avi+16]
• Parameter negotiation/downgrade to weaker cryptography: [WS96], Log-
jam [Adr+15], Freak [Beu+15]

8 https://www.mitls.org

15

https://www.mitls.org


1 introduction

• Compression: CRIME [RD12], BREACH [PHG13], HEIST [VG16]

• Triple-handshake attack [Bha+14a]

• Flaws in implementations, e.g., Heartbleed [Cod14], SMACK [Beu+15],
ROBOT [BSY18]

Other Analyses of TLS 1.3. Above we already named a number of reduction-based
analyses of the TLS 1.3 protocol, but this classical provable security approach is not the
only type of analysis. Cremers, Horvat, Scott, and van derMerwe [CHSv16] and Cremers
et al. [Cre+17] conducted an automated analysis of drafts (10 and 21, respectively) of the
TLS 1.3 standard using the Tamarin9 prover. There also were analyzed combining formal
verification and computational analysis [BBK17, Del+17]. Even though the other kind of
approaches are out-of-scope of this work, they are not less important for understanding
security of TLS 1.3.

In some works specific aspects of the TLS protocol were analyzed. For example, Bhar-
gavan et al. [Bha+16] studied the downgrade resilience of TLS 1.3, Krawczyk [Kra16]
studied client authentication, and Fischlin, Günther, Schmidt, and Warinschi [FGSW16]
initiated a formal treatment of key confirmation in key exchange and its application
to TLS 1.3. Further, Brendel, Fischlin, and Günther [BFG19] studied the breakdown re-
silience of different real-world protocol including TLS 1.3. Drucker and Gueron [DG21b]
present a reflection attack on the TLS 1.3 PSKmode (called “Selfie”), which breaks mutual
authentication in this mode. Arfaoui et al. [Arf+19] study the privacy of TLS 1.3, since
improving the privacy was an important design goal of TLS 1.3. Aviram, Gellert, and
Jager [AGJ19, AGJ21] proposed an improvement for the TLS 1.3 session resumption fea-
ture to achieve forward security efficiently for all messages including the zero round-trip
time data that in the original version of TLS 1.3 are not forward secure.
Due to the rising interest in post-quantum cryptography, Schwabe, Stebila, and Wig-

gers [SSW20] developed a protocol called KEM-TLS, which tries to serve as a proposal
for a future post-quantum-secure replacement for TLS using KEMs instead of signa-
tures for authentication. In the series of follow-up works [SSW21, GRTW22, GRTW21,
CHSW22, Cel+21] the KEM-TLS protocol has been further analyzed and extended by
various aspects.

Tightly-secure Digital Signatures in the Multi-user Setting. The first tightly se-
cure signature with adaptive corruptions in the multi-user setting, was proposed by
Bader et al. [Bad+15a]. Unfortunately, their main signature scheme (i.e., the one with
a tight reduction) is based on a tree-based construction from [HJ12] and thus results in
rather large signatures (linear in the security parameter many group elements). There is
a second construction in their paper with constant-size signatures, but the construction
is only “almost tight”, i.e., it has a security loss linear in the security parameter. Both con-
structions are pairing-based and in the standard model. Han et al. [Han+21] identified
a subtle gap in the proof of the second, constant-sized signature variant by Bader et al.

9 https://github.com/tamarin-prover/tamarin-prover

16

https://github.com/tamarin-prover/tamarin-prover


1.7 Outline of this Thesis

[Bad+15a, Sect 2.3]. As they were not able to close this gap, they provided a new vari-
ant, which they prove tightly secure in the multi-user setting with adaptive corruptions.
The scheme still is pairing-based and in the standard model, and used the pairing-based,
tightly-secure hierarchical identity-based encryption (HIBE) scheme of Langrehr and
Pan [LP19] as a blueprint to correct the proof. Another scheme was proposed by Gjøs-
teen and Jager [GJ18] it has constant-size signatures and the security proof is tight in
the random oracle model. Pan and Wagner [PW22] presented the first compact lattice-
based signature scheme that is tightly secure signature with adaptive corruptions in the
multi-user setting. Their construction builds upon the generic construction presented
in this work, originally published in [DGJL21b].

1.7 Outline of this Thesis

The remainder of this thesis is divided into four parts, in which we discuss the following.

Part I: Preliminaries. In the first part, we introduce fundamental concepts and notions
used throughout this thesis. To this end, we introduce basic notation in Chapter 2.
Additionally, we define in Chapter 3 computational problems, and in Chapter 4
cryptographic building blocks relevant for this thesis.

Part II: On the Tightness of the TLS 1.3 Handshake Protocol. In the second part,
we discuss the tightness of the TLS 1.3 handshake protocol. To this end, we first
define in Chapter 5 the notion of multi-stage key exchange (MSKE) protocols.
Then, we describe the TLS 1.3 handshake protocol in Chapter 6. With these two
important prerequisites in place, we start the journey to prove a tight security
bound for the TLS 1.3 handshake protocol in the MSKE model. Here, we first
present our new abstraction of the TLS 1.3 key schedule in Chapter 7 and present
in Chapter 8 an abstraction for the TLS 1.3 handshake encryption. Finally, we
present in Chapter 9 our tight security analysis for the TLS 1.3 full handshake and
in Chapter 10 our tight security analysis for the TLS 1.3 PSK handshakes.

Part III: On the Tightness of the TLS 1.3 Record Protocol. In the short third part,
we discuss in Chapter 11 the current state of the tight security of the TLS 1.3
record layer protocol. Even though, we do not give a formal treatment, we point
to interesting open questions for future work.

Part IV: More Efficient Digital Signatures with Tight Multi-User Security. In the
fourth part, we present our efficient digital signature scheme with tight multi-user
security with adaptive corruptions. Here, we present our generic construction
based on lossy identification schemes in Chapter 13 and present two instantiations
for this scheme in Chapter 14.

Finally, we summarize our results in Chapter 16.

17





Part I

Preliminaries





2
notation

In this chapter, we introduce notation used throughout this thesis. This includes basic
notation for numbers, strings, algorithms, cryptographic schemes and security experi-
ments.

Numbers. Let N denote the set of natural numbers and let N0 ≔ N ∪ {0}. For an
integer 𝑛 ∈ N, we denote the set of integers ranging from 1 to 𝑛 by [𝑛] ≔ {1, … , 𝑛}. Let
Z denote the set of integers and for 𝑁 ∈ N let Z𝑁 denote the ring of integers modulo 𝑁 .
For any set 𝑋 = {𝑥1, 𝑥2, …}, we use (𝑣𝑖)𝑖∈𝑋 as a shorthand for the tuple (𝑣𝑥1 , 𝑣𝑥2 , …).

Strings. Let Σ be an alphabet (i.e., a non-empty finite set of symbols) and let 𝑠 ∈ Σ∗

be a string (i.e., a finite sequence of symbols from the alphabet). The length of a string
𝑠 is denoted by |𝑠|, and the string of length 0 is called the empty string denoted by 𝜀.
For symbols 𝑎, 𝑏 ∈ Σ, we denote the concatenation of these symbols by 𝑎 ‖ 𝑏 ≔ 𝑎𝑏.
Analogously, we denote the concatenation of two strings 𝑠, 𝑡 ∈ Σ∗ by 𝑠 ‖ 𝑡. In this thesis,
if not stated otherwise, we focus on bit strings, i.e., Σ = {0, 1}.

Random Variables and Algorithms. We denote the operation of assigning a value
𝑦 to a variable 𝑥 by 𝑥 ≔ 𝑦. If 𝑆 is a finite set, we denote by 𝑥 $← 𝑆 the operation of
sampling a value uniformly at random from set 𝑆 and assigning it to variable 𝑥 . For a
deterministic algorithm, we write 𝑥 ≔ (𝑦1, 𝑦2, … ) to denote that on inputs 𝑦1, 𝑦2,
… outputs 𝑥 . In case is probabilistic, we overload notation and write 𝑥 $← (𝑦1, 𝑦2, … )
to denote the random variable 𝑥 that takes on the value output by algorithm ran on
inputs 𝑦1, 𝑦2, … with fresh random coins. Sometimes we also denote this random variable
simply by (𝑦1, 𝑦2, … ). We write (⋅) if algorithm  has oracle access to some other
algorithm .

Schemes. In cryptography, we often call combinations of algorithms for a specific
task a (cryptographic) scheme. For example, a classical digital signature scheme, which
we formally introduce in Section 4.4, consists of three algorithms: a key generation
algorithm, a signing algorithm and a verification algorithm. For a scheme Scheme =

21



2 notation

(Algo1,Algo2, …), we write Scheme.Algo1 to clarify that we refer to Algo1 of Scheme if
the context might be ambiguous.

Lower-level cryptographic algorithms that are usually used a building block for crypto-
graphic schemes are often called a (cryptographic) primitives. Examples for cryptographic
primitives are (cryptographic) hash function and pseudorandom functions introduced in
Chapter 4.

Security Experiments and Advantage. To formally define security for a crypto-
graphic scheme (e.g., a digital signature scheme), we define a security experiment, or
synonymously a security game, that reflects the security goal we want to define. In such
an experiment, we challenge a (potentially malicious) algorithm called the adversary 
to break the security of the cryptographic scheme bywinning the experiment. Intuitively,
the experiment is an algorithm that sets up an environment for the adversary, runs the
adversary as a subroutine and checks whether the adversary satisfies some well-defined
winning condition. For a security goal GOAL and a scheme Scheme, we denote the secu-
rity experiment for GOAL with respect to Scheme and an adversary  by ExpGOALScheme().
The experiment always produces an output that is either 0 or 1 indicating whether the
adversary looses or wins the experiment. As an example, a classical security goal for a
digital signature scheme is existential unforgeability under an adaptive chosen-message
attack (EUF-CMA) formally defined in Figure 4.3 and Definition 4.6. Here, GOAL = EUF-
CMA and in the experiment the adversary is challenged to output a digital signature
for any (new) message without knowing the secret signing key even if the experiment
provides digital signature for messages of the adversary’s choice. The experiment han-
dles the key generation, executes secret-key-operations for the adversary and checks
whether the digital signature output in the end satisfies the winning condition.

To measure the success in breaking the security of a scheme, we define the advantage
of an adversary, which we write as AdvGOALScheme() for the previous example of exper-
iment ExpGOALScheme(). The advantage is always defined with respect to some security
experiment and depends on this security experiment. Common choices for the advan-
tage are the following:

• The bit-guessing advantage: AdvGOALScheme() ≔ |Pr[ExpGOALScheme() = 1] − 1
2 |. This is

a common choice if the security notion GOAL represents a decision problem (i.e.,
the solution to the problem is binary). Here, the challenge of the adversary is
usually to guess a bit chosen at the beginning of the experiment. The advantage
captures how much better the adversary performs compared to random guessing.
A variant of this is AdvGOALScheme() ≔ 2 Pr[ExpGOALScheme() = 1] − 1, which scales the
range of the advantage to the interval [0, 1] as opposed to the interval [0, 12 ] for
the former notation.

• For search problems, i.e., problems where the adversary is challenged to output an
arbitrary string, e.g., a digital signature as in the above example of EUF-CMA, it is
common to set

AdvGOALScheme() ≔ Pr[ExpGOALScheme() = 1].

Here, the advantage directly measures the success probability of the adversary.

22



3
computational problems

Contents

3.1 Discrete Logarithm Problem . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Computational Diffie–Hellman Problem . . . . . . . . . . . . . . . . . . . 24
3.3 Decisional Diffie–Hellman Problem . . . . . . . . . . . . . . . . . . . . . 24
3.4 Strong Diffie–Hellman Problem . . . . . . . . . . . . . . . . . . . . . . . 25

In this chapter, we introduce basic computational problems that we use for the security
results in this thesis. In particular, we introduce problems based on the discrete loga-
rithm problem and the related Diffie–Hellman problems. All of the problems presented
in this chapter are asymptotically assumed to be hard. That is, no efficient algorithm
(resp. adversary) can solve the problems with overwhelming probability. Since we only
consider the advantages of algorithms concretely in this work, we only formally de-
fine the respective problem and the corresponding advantage. However, sometimes we
might refer to a computational problem and the corresponding (computational hardness)
assumption synonymously in an informal context.

3.1 Discrete Logarithm Problem

The majority of computational problems considered in this work are related to the prob-
lem of computing discrete logarithms (DLOGs). Thus, let us first formally introduce the
notion of a DLOG and subsequently define the related problem.

Definition 3.1 (Discrete Logarithm). Let G be a cyclic group of prime order 𝑝, let 𝑔 be a
generator of G and let ℎ ∈ G. We call the unique element 𝑎 ∈ Z𝑝 with ℎ = 𝑔𝑎 the discrete
logarithm (DLOG) of ℎ with respect to base 𝑔 and write 𝑎 = dlog𝑔(ℎ).

Definition 3.2 (Discrete Logarithm Problem). Let G be a cyclic group of prime order 𝑝
and let 𝑔 be a generator of G. We denote the advantage of an adversary  in solving the
DLOG problem for G by

AdvDLOGG,𝑔 () ∶= Pr[𝑎 $← Z𝑝 ∶ (𝑔𝑎) = 𝑎].

23



3 computational problems

3.2 Computational Diffie–Hellman Problem

In their seminal work, Diffie and Hellman [DH76] laid the foundation of public key
cryptography. In this context, they proposed the famous Diffie–Hellman key exchange
(DHE) protocol, which most of modern key exchange relies on.

Diffie–Hellman key exchange. The basic idea of the protocol is simple. Given a
group G with generator 𝑔 , two parties 𝐴 and 𝐵 that want to exchange a key, choose a
number 𝑎 and 𝑏, respectively, uniformly and independently at random. Then,𝐴 computes
𝐾𝐴 ≔ 𝑔𝑎 and 𝐵 computes 𝐾𝐵 ≔ 𝑔𝑏, and both send their computed value to their partner.
Upon receiving their partner’s value, 𝐴 computes 𝐾 𝑎

𝐵 and 𝐵 computes 𝐾 𝑏
𝐴. It is easy to

see that (assuming no tampering occurred) that the two parties 𝐴 and 𝐵 will end up
computing the same key 𝐾𝐴𝐵 ≔ 𝐾 𝑎

𝐵 = 𝐾 𝑏
𝐴 = 𝑔𝑎𝑏. We often refer to 𝐾𝐴𝐵 = 𝑔𝑎𝑏 as the

Diffie–Hellman (DH) key. The key 𝐾𝐴𝐵 is usually not directly used, rather the parties
deterministically derive the actual key from 𝐾𝐴𝐵, e.g., using a hash function (Section 4.1)
or a pseudorandom function (Section 4.2)).

A passive adversary that tries to recover the exchanged key 𝐾𝐴𝐵, faces the following
problem referred to in the literature as the computational Diffie–Hellman (CDH) problem:
For a fixed group G with generator 𝑔 , given 𝑔𝑎 and 𝑔𝑏, where 𝑎, 𝑏 $← Z𝑝, the challenge
is to compute 𝑔𝑎𝑏.

Definition 3.3 (Computational Diffie–Hellman Problem). Let G be a cyclic group of
prime order 𝑝 and let 𝑔 be a generator of G. We denote the advantage of an adversary
in solving the CDH problem for G by

AdvCDHG,𝑔 () ≔ Pr[𝑎, 𝑏 $← Z𝑝 ∶ (𝑔𝑎, 𝑔𝑏) = 𝑔𝑎𝑏].

Relation between CDH and DLOG. It is easy to see that the assumption that the
CDH problem is hard is a stronger assumption than the one that the DLOG problem
is hard. This follows from a straightforward reduction. Informally, an algorithm that
computes discrete logarithms can be used to solve CDH by simply computing the discrete
logarithms 𝑎 = dlog𝑔(𝑔𝑎) and 𝑏 = dlog𝑔(𝑔𝑏), and outputs 𝑔𝑎𝑏. Whether the two problems
are equally hard unfortunately remains unknown in general. However, for some special
cases this is true (cf. [Mau94, MW96]).

3.3 Decisional Diffie–Hellman Problem

Even though, CDH might be the obvious choice to capture security of the DHE protocol,
it does not reflect the actual security requirements we have for a key exchange protocol.
Namely, in the real-world it might even be a problem if the adversary gets any infor-
mation about the exchanged key. Hence, full recovery of the key might be too weak
for real-world applications. To capture this better, one rather considers the decisional
Diffie–Hellman (DDH) problem, which was first considered by Brands [Bra93]. The prob-
lem states that for a fixed group G with generator 𝑔 , given (𝑔𝑎, 𝑔𝑏) and either 𝑔𝑎𝑏 or 𝑔𝑐 ,

24



3.4 Strong Diffie–Hellman Problem

where 𝑎, 𝑏, 𝑐 $← Z𝑝, the adversary has to tell whether it received 𝑔𝑎𝑏 or 𝑔𝑐 . Informally,
this captures that it should be hard for the adversary to tell a DH key 𝑔𝑎𝑏 from a random
group element apart.

Definition 3.4 (Decisional Diffie–Hellman Problem). Let G be a cyclic group of prime
order 𝑝 and let 𝑔 be a generator of G. We denote the advantage of an adversary  in
solving the DDH problem for G by

AdvDDHG,𝑔 () ≔ || Pr[𝑎, 𝑏
$← Z𝑝 ∶ (𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1]

− Pr[𝑎, 𝑏, 𝑐 $← Z𝑝 ∶ (𝑔𝑎, 𝑔𝑏, 𝑔𝑐) = 1]||.

Relation between CDH and DDH. As we have seen before, the assumption that the
CDH problem is hard is a stronger assumption than the assumption that the DLOG prob-
lem is hard. The assumption that the DDH problem is hard, now in turn, is stronger than
the assumption that the CDH problem is hard. This follows again from a straightforward
reduction. Informally, given (𝑔𝑎, 𝑔𝑏, ℎ) and an algorithm solving the CDH problem, one
can easily decide DDH by computing the DH key 𝑔𝑎𝑏 from 𝑔𝑎 and 𝑔𝑏 and comparing it
to its input ℎ.

3.4 Strong Diffie–Hellman Problem

Abdalla, Bellare, and Rogaway [ABR01] introduced a problem that is related to the DH
problems, which they call the strong Diffie–Hellman (SDH) problem. The problem states
that for a fixed group G with generator 𝑔 , given (𝑔𝑎, 𝑔𝑏) and oracle access to an algo-
rithm DDH𝑎, the adversary has to compute 𝑔𝑎𝑏. Here, DDH𝑎 for a fixed value 𝑎 ∈ Z𝑝
is the function that on input (𝑔𝑦 , 𝑔𝑧) outputs 1 iff. 𝑧 = 𝑎𝑦 mod 𝑝, where 𝑝 is the prime
order of G. Formally, we define the SDH problem as follows.

Definition 3.5 (Strong Diffie–Hellman Problem). Let G be a cyclic group of prime order
𝑝 and let 𝑔 be a generator of G. Further, let DDH𝑎(⋅, ⋅) for 𝑎 ∈ Z𝑝 denote the oracle
that on input (𝑔𝑦 , 𝑔𝑧) ∈ G2 outputs 1 iff. 𝑧 = 𝑎𝑦 mod 𝑝. We denote the advantage of an
adversary  against the strong Diffie–Hellman (SDH) assumption by

AdvSDHG,𝑔 () ≔ Pr[𝑎, 𝑏 $← Z𝑝 ∶ DDH𝑎(⋅,⋅)(𝑔𝑎, 𝑔𝑏) = 𝑔𝑎𝑏].

The SDH problem is a variant of the gap Diffie–Hellman (GDH) problem [OP01].
Okamoto and Pointcheval [OP01] introduced gap problems1 as a new family of prob-
lems. Intuitively, a gap problem is to solve some computational (search) problem (e.g.,
CDH) with the help of an oracle for a related decision problem (e.g., DDH). In this con-
text, they also defined the GDH problem. This problem is defined as the SDH problem
except that the adversary here gets oracle access to a more general oracle DDH. Namely,

1 The family of gap problems introduced by Okamoto and Pointcheval [OP01] should not be confused
with the gap problems from computational complexity theory.

25



3 computational problems

DDH is the function that on input (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧) outputs 1 iff. 𝑧 = 𝑥𝑦 mod 𝑝, where 𝑝 is the
prime order of G, i.e., DDH𝑎 is a special case, where the first component is fixed to 𝑔𝑎.
Intuitively, the GDH problem is hard in groups in which the DDH problem is easy,

but the CDH problem still remains hard. Also, it is easy to see that the assumption that
the GDH problem is hard is a stronger assumption than the assumption that the SDH
problem is hard.
In this work, the SDH assumption will be the leverage to prove tight security for the

TLS 1.3 handshake protocol in Chapters 9 and 10. The technique we use is due to Cohn-
Gordon et al. [Coh+19] and it is in the random oracle model (introduced in Section 4.1).

26



4
cryptographic building blocks

Contents

4.1 Hash Functions and the Random Oracle Model . . . . . . . . . . . . . . . 27
4.1.1 Cryptographic Hash Functions . . . . . . . . . . . . . . . . . . . 27
4.1.2 Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Lossy Identification Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 33

In this chapter, we define well-known cryptographic primitives used in the protocols
and constructions presented in this work. Here, we only focus on the basic definitions
of the syntax and security of these building blocks and we refer, e.g., to the foundational
textbook by Katz and Lindell [KL21] for more details.

4.1 Hash Functions and the Random Oracle Model

In this section, we introduce cryptographic hash function, their security guarantees and
their idealization in the form of random oracles.

4.1.1 Cryptographic Hash Functions

A (cryptographic) hash function is a deterministic algorithm that implements a function
𝐻 ∶ {0, 1}∗ → {0, 1}𝜆, where 𝜆 is called the output length of the hash function. In general,
a hash function is characterized bymapping inputs from a huge (possibly infinite) domain
to a small range, thus compressing the inputs. Security-wise we require that the hash
function is collision-resistant. That is, it should ideally be infeasible for an adversary to
find inputs 𝑥1, 𝑥2 ∈ {0, 1}∗ with 𝑥1 ≠ 𝑥2 such that 𝐻(𝑥1) = 𝐻(𝑥2). The tuple (𝑥1, 𝑥2) then
is called a collision. However, since the domain of 𝐻 is larger then then its range by
definition, it cannot be injective. Thus, a tuple (𝑥1, 𝑥2) with 𝑥1 ≠ 𝑥2 and 𝐻(𝑥1) = 𝐻(𝑥2)
has to exist, even thoughwemight not be able to find it efficiently. However, even though
we might not be able to write the collision down as humans, there is exists an adversary

27



4 cryptographic building blocks

that only outputs the collision (hardcoded in its definition). Therefore, a fixed, publicly
known function 𝐻 cannot be collision-resistant. In the asymptotic setting, one solves
this by introducing a hash key because even though there can be an efficient algorithm
that outputs a collision for a fixed key, there cannot be an efficient algorithm (using a
reasonable amount of space) that outputs a collision for any key. But all of the hash
functions ever used in practice, like MD5 [Riv92], SHA-1 [EJ01], SHA-2 [EH06, EH11],
and SHA-3 [Dwo15], are keyless. Due to the real-world focus of this work, we also
focus on keyless hash function only. For more information on this, we refer to [Rog06a,
Rog06b].

To formalize the above intuition consider the following definition.

Definition 4.1. Let 𝐻 ∶ {0, 1}∗ → {0, 1}𝜆 be a hash function with output length 𝜆. We
define the advantage of an adversary against the collision-resistance of 𝐻 as

AdvCR𝐻 () ≔ Pr[(𝑚1, 𝑚2)
$←  ∶ 𝑚1 ≠ 𝑚2 ∧ 𝐻(𝑚1) = 𝐻(𝑚2)].

4.1.2 Random Oracle Model

A commonly used theoretical abstraction of a hash function is the random oracle. A
random oracle captures an idealization of a hash function, which is considered to be
flawless. The corresponding theoretical model is called the random oracle model (ROM).
Here, we assume that all parties involved in a cryptographic scheme (e.g., in a security
experiment) have access to the same instance of a random oracle. Unfortunately, the
assumption of the existence of a random oracle is too strong and cannot hold in a practical
environment. The main reason is that its description is too large and thus it is impractical
to even store a local copy of it. Nevertheless, from a theoretical point of view it is still
interesting to analyze what is achievable in such a theoretical model as the ROM. Even
for practical applications the random oracle paradigm [BR93] is a commonly accepted
heuristic to construct practical cryptographic schemes that then can be proven secure
in the ROM. Next, let us have a look at random oracles more formally.

Random oracles. A random oracle is a publicly available truly random function

RO∶ {0, 1}∗ → {0, 1}𝜆.

Every actor involved in a cryptographic scheme including the adversary has oracle access
to the random oracle RO. The random oracle RO can be seen as a function {0, 1}∗ → {0, 1}𝜆

that is chosen uniformly and independently at random at the beginning of the security
experiment (resp. at initialization of the cryptographic scheme). One can also think
about the random oracle as a table that is filled successively using lazy sampling. That is,
initially this table is empty and whenever the the random oracle RO is queried on input
𝑥 ∈ {0, 1}∗ (that was not queried before), it samples a new image 𝑦 $← {0, 1}𝜆 as response.
The pair (𝑥, 𝑦) is then stored in the table so that the random oracle is able to answer
consistently.

28



4.2 Pseudorandom Functions

The random oracle methodology. Bellare and Rogaway [BR93] introduced the fol-
lowing paradigm to design practical (i.e., efficient) schemes:

1. Design a cryptographic scheme in the ROM.
2. Prove its security in the ROM.
3. Replace the oracle access to the random oracle by computations of a hash func-

tion 𝐻 .

As already mentioned above this paradigm is also a heuristic. First of all, the hash
function used cannot replace a random oracle one-to-one simply because itsmuch smaller
description. Then, the success of the above paradigm clearly depends on the quality of
the hash function and its ability to “emulate” a random oracle. However, in practice
this paradigm has “proven” well and still finds a lot of adoption. In particular, proving
constructions in the ROM is a great tool to check the plausibility of a cryptographic
scheme.

Programmable random oracles. Security proofs in the ROM often make use of a
property of the random oracle called programmability. A reduction usually emulates the
whole security experiment for an adversary. In the ROM, this also includes the random
oracle RO. That is, the reduction has control over the random oracle table, including,
for example, to implement the lazy sampling of the images. Now, this ability allows the
reduction also to program the images of the random oracle. Here, it is important that the
images remain uniformly distributed from the view of the adversary. This ability is an
important proof technique in many proofs and we will also make use of it in this thesis.

4.2 Pseudorandom Functions

An important building block of numerous cryptographic constructions is a pseudoran-
dom function (PRF). They find applications mostly in the construction of encryption
schemes, but also in the key derivation steps of key exchange protocols PRFs are vital.
Informally, a PRF is a function that is indistinguishable from a truly random function.
To be precise, consider the the space of all functions {0, 1}∗ → {0, 1}𝜇 denoted by (∗, 𝜇).
A PRF is a keyed function (or family of functions) {𝐹𝑘 ∶ {0, 1}∗ → {0, 1}𝜇}𝑘∈{0,1}𝜅 such that
the distributions

{𝑘 $← {0, 1}𝜅 ∶ 𝐹𝑘} and {𝐹 $← (∗, 𝜇) ∶ 𝐹}

are indistinguishable. To formalize this property, consider the following definition.

Definition 4.2. Let 𝜅, 𝜇 ∈ N and let 𝐹 be a deterministic, keyed function 𝐹 with key
space {0, 1}𝜅 , domain {0, 1}∗, and range {0, 1}𝜇. We define the advantage of an adversary
against the pseudorandomness of 𝐹 as

AdvPRF𝐹 () ≔
||||
Pr[ExpPRF𝐹 () = 1] −

1
2
||||

where ExpPRF𝐹 () is defined on the left-hand side of Figure 4.1.

29



4 cryptographic building blocks

ExpPRF𝐹 ():

1 ∶ 𝑘 $← {0, 1}𝜅

2 ∶ 0(⋅) ≔ 𝐹(𝑘, ⋅)
3 ∶ 𝑓 $← (∗, 𝜇)
4 ∶ 1(⋅) ≔ 𝑓 (⋅)
5 ∶ 𝑏 $← {0, 1}

6 ∶ 𝑏′ $← 𝑏(⋅)

7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 1 iff. 𝑏 = 𝑏′

Figure 4.1: Security experiment for PRFs.

4.3 Message Authentication Codes

Message authentication codes (MACs) allow two parties sharing a (symmetric) key to
authenticate messages using a tag. These tags (or sometimes simply referred to as MACs)
then can also be verified using the same shared key. A MAC scheme is defined as follows.

Definition 4.3. A message authentication code MAC = (MAC.Gen,MAC.Tag,MAC.Vrfy)
for key space , message space, and tag space  is a triple of algorithms such that

1. The randomized key generation algorithmMAC.Gen is given no input, and outputs
a key 𝑘 ∈ .

2. The randomized tagging algorithm MAC.Tag is given a key 𝑘 ∈  and a mes-
sage 𝑚 ∈  as input, and outputs a tag 𝑡 ∈  .

3. The deterministic verification algorithm MAC.Vrfy is given a key 𝑘, a message 𝑚,
and a tag 𝑡 as input, and outputs a bit 𝑏.

Correctness. We require that for a MAC schemeMAC for all 𝑘 ∈  and for all𝑚 ∈ ,
it holds that MAC.Vrfy(𝑘, 𝑚,MAC.Tag(𝑘, 𝑚)) = 1.

Security. Since MAC schemes are used to provide authenticity to messages, we require
for security of aMAC scheme that, informally, it should be hard for an adversary to forge a
MAC tag for anymessage (existential forgery). This should even hold if the adversary gets
oracle access to a tagging oracle providing MAC tag for messages of its choice (adaptive
chosen-message attack). Clearly, to exclude trivial attacks the adversary has to forge for
a new message, i.e., a message that has not been queried to the tagging oracle.

Definition 4.4. Let MAC = (MAC.Gen,MAC.Tag,MAC.Vrfy) be a MAC scheme. We
define the advantage of an adversary  against the existential unforgeability under an
adaptive chosen-message attack (EUF-CMA) as

AdvEUF-CMA
MAC () ≔ Pr[ExpEUF-CMA

MAC () = 1]

30



4.4 Digital Signatures

ExpEUF-CMA
MAC ():

1 ∶  ≔ ∅
2 ∶ 𝐾 $← MAC.Gen

3 ∶ (𝑚∗, 𝑡∗) $← Tag(⋅)

4 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑚∗, ⋅) ∉ 
∧MAC.Vrfy(𝑘, 𝑚∗, 𝑡∗) = 1

Tag(𝑚):

1 ∶ 𝑇 $← MAC.Tag(𝑘, 𝑚)
2 ∶  ≔  ∪ {(𝑚, 𝑡)}
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑇

Figure 4.2: Security experiment for existential unforgeability under an adaptive chosen-
message attack (EUF-CMA) for MACs.

where ExpEUF-CMA
MAC () is defined in Figure 4.2.

Remark 4.1. Definition 4.4 can be strengthened by changing the winning condition in
Line 4 of ExpEUF-CMA

MAC () to

(𝑚∗, 𝑡∗) ∉  ∧MAC.Vrfy(𝑘, 𝑚∗, 𝑡∗) = 1.

That is, the adversary now wins if the forgery 𝑡∗ was never output by the tagging or-
acle on input 𝑚∗. In contrast, to the condition that 𝑚∗ was not allowed to be queried
before. The resulting notion is in the literature called strong EUF-CMA-security, which
we denote by sEUF-CMA. This notion is particularly interesting as this captures that
the corresponding MAC scheme is “non-malleable”. This means, informally, it is hard to
compute a (different) tag 𝑡∗ for a message 𝑚∗, even if a tag 𝑡 $← Tag(𝑘, 𝑚∗) with 𝑡 ≠ 𝑡∗ is
known.

4.4 Digital Signatures

In some applications, e.g., for authentication in the TLS handshake protocol, messages
need to be authenticated such that they are publicly verifiable. A MAC scheme as in-
troduced in Section 4.3, unfortunately, can only authenticate messages if users share
a symmetric key. Since a shared symmetric key is not always present, an entity can
authenticate messages in a publicly verifiable way using a digital signature scheme. The
entity holds a secret key to compute signatures and publishes the corresponding pub-
lic key, so that signature can be verified. For security, it shall be guaranteed that only
the entity holding the secret key can compute valid signatures (under the public key).
Thus, informally, it should feasible to a forge signature for some message. We recall
the standard definition of a digital signature scheme by Goldwasser, Micali, and Rivest
[GMR88].

Definition 4.5 (Digital Signature Scheme). A digital signature scheme formessage space
is a triple of algorithms Sig = (Sig.Gen, Sig.Sign, Sig.Vrfy) such that

1. The randomized key generation algorithm Sig.Gen is given no input and generates
a public (verification) key 𝑝𝑘 and a secret (signing) key 𝑠𝑘.

31



4 cryptographic building blocks

ExpEUF-CMA
Sig ():

1 ∶  ≔ ∅
2 ∶ (𝑝𝑘, 𝑠𝑘) $← Sig.Gen

3 ∶ (𝑚∗, 𝜎∗) $← Sign𝑠𝑘(⋅)(𝑝𝑘)
4 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑚∗, ⋅) ∉ 

∧ Sig.Vrfy(𝑝𝑘, 𝑚∗, 𝜎∗) = 1

Sign(𝑚):

1 ∶ 𝜎 $← Sign(𝑠𝑘, 𝑚)
2 ∶  ≔  ∪ {(𝑚, 𝜎)}
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝜎

Figure 4.3: Security experiment for existential unforgeability under an adaptive chosen-
message attack (EUF-CMA) for digital signature schemes.

2. The randomized signing algorithm Sig.Sign on input a signing key 𝑠𝑘 and amessage
𝑚 ∈ , it outputs a signature 𝜎.

3. The deterministic verification algorithm Sig.Vrfy on input verification key 𝑝𝑘, a
message 𝑚 ∈  and a signature 𝜎 outputs either 0 or 1.

Correctness. We say that a digital signature scheme Sig is correct if for any 𝑚 ∈ ,
and for any (𝑝𝑘, 𝑠𝑘) that can be output by Sig.Gen, it holds

Sig.Vrfy (𝑝𝑘, 𝑚, Sig.Sign(𝑠𝑘, 𝑚)) = 1.

Existential unforgeability of signatures. The standard notion of security for digi-
tal signature schemes is existential unforgeability under an adaptive chosen-message at-
tack (EUF-CMA). As we already introduced this notion for MACs in Section 4.3 in a
symmetric setting, we only briefly present the adapted definition here.

Definition 4.6. Let Sig = (Sig.Gen, Sig.Sign, Sig.Vrfy) be a digital signature scheme. We
define the advantage of an adversary  against the existential unforgeability under an
adaptive chosen-message attack (EUF-CMA) as

AdvEUF-CMA
Sig () ≔ Pr[ExpEUF-CMA

Sig () = 1],

where ExpEUF-CMA
Sig () is defined in Figure 4.3.

Existential unforgeability in a multi-user setting. In a “real-world” scenario, the
adversary is more likely faced a different challenge than described in Definition 4.6.
Namely, a real-world adversary presumably plays against multiple users at the same
time and might even be able to get the secret keys of a subset of these users. In this
setting, its challenge is to forge a signature for any of the users that it has no control
of (to exclude trivial attacks). Here, one can think of the TLS protocol where billions of
users on the Internet exchange digital signatures for authentication in the handshake
protocol. An adversary now operates on the Internet, in an environment with multiple
users communicating, with the goal to impersonate (i.e., forging a signature) any of

32



4.5 Lossy Identification Schemes

ExpMU-EUF-CMAcorr

Sig ():

1 ∶ 𝑁 ≔ 0
2 ∶ corr ≔ ∅

3 ∶ (𝑖∗, 𝑚∗, 𝜎∗) $← New,Sign(⋅,⋅),Corrupt(⋅)

4 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑚∗, ⋅) ∉ 𝑖∗ ∧ 𝑖∗ ∉ corr

∧ Sig.Vrfy(𝑝𝑘𝑖∗ , 𝑚
∗, 𝜎∗) = 1

Corrupt(𝑖):

1 ∶ corr ≔ corr ∪ {𝑖}
2 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑘𝑖

New

1 ∶ 𝑁 ≔ 𝑁 + 1; 𝑁 ≔ ∅
2 ∶ (𝑝𝑘𝑁 , 𝑠𝑘𝑁 )

$← Sig.Gen
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑘𝑁

Sign𝑠𝑘(𝑖, 𝑚):

1 ∶ 𝜎 $← Sig.Sign(𝑠𝑘𝑖, 𝑚)
2 ∶ 𝑖 ≔ 𝑖 ∪ {(𝑚, 𝜎)}
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝜎

Figure 4.4: Security experiment for existential unforgeability under an adaptive chosen-
message attack in the multi-user setting with adaptive corruptions (MU-EUF-CMAcorr) for

digital signature schemes.

these users. In Definition 4.6, the adversary rather operates in an “isolated” network
in which only one user is connected. To capture this intuition we additionally consider
the multi-user EUF-CMA notion with adaptive corruptions as proposed by Bader et al.
[Bad+15a]. To this end, the single-user notion given in Definition 4.6 can naturally be
upgraded to a multi-user notion with adaptive corruptions as follows.

Definition 4.7. Let Sig = (Sig.Gen, Sig.Sign, Sig.Vrfy) be a digital signature scheme. We
define the advantage of an adversary  against the existential unforgeability under an
adaptive chosen-message attack in the multi-user setting with adaptive corruptions (MU-
EUF-CMAcorr) as

AdvMU-EUF-CMAcorr

Sig () ≔ Pr[ExpMU-EUF-CMAcorr

Sig () = 1]

where ExpMU-EUF-CMAcorr

Sig () is defined in Figure 4.4.

Remark 4.2. Analogously to MAC schemes, we can define sEUF-CMA-security (resp.
MU-sEUF-CMAcorr-security) for digital signature schemes in the same way.
Remark 4.3. This notion can also be weakened by excluding adaptive corruptions. The re-
sulting experiment is analogous except that queries to the corruption oracle are forbidden.
The corresponding notions are denoted by MU-EUF-CMA instead of MU-EUF-CMAcorr.

4.5 Lossy Identification Schemes

Lossy identification schemes (LIDs) originally were introduced by Abdalla, Fouque,
Lyubashevsky, and Tibouchi [AFLT12, AFLT16] in the context of a construction of a
tightly-secure signature scheme. We recall the definition of a LID scheme presented in
[DGJL21b]. This definition adapts the definitions of [AFLT12, AFLT16, KMP16]. Syntac-
tically, a LID scheme is defined as follows.

33



4 cryptographic building blocks

Definition 4.8. A lossy identification scheme is a five-tuple LID = (LID.Gen, LID.LossyGen,
LID.Prove, LID.Vrfy, LID.Sim) of algorithms with the following properties.

1. LID.Gen is the (normal) key generation algorithm. It outputs a public verification
key 𝑝𝑘 and a secret key 𝑠𝑘.

2. LID.LossyGen is the lossy key generation algorithm. It outputs a lossy verification
key 𝑝𝑘.

3. LID.Prove is the prover algorithm that is split into two algorithms:

• (cmt, st) $← LID.Prove1(𝑠𝑘) is a probabilistic algorithm that takes as input the
secret key and returns a commitment cmt and a state st.

• resp ≔ LID.Prove2(𝑠𝑘, cmt, ch, st) is a deterministic algorithm1 that takes as
input a secret key 𝑠𝑘, a commitment cmt, a challenge ch, a state st, and returns
a response resp.

4. LID.Vrfy(𝑝𝑘, cmt, ch, resp) is a deterministic verification algorithm that takes a pub-
lic key, and a conversation transcript (i.e., a commitment, a challenge, and a re-
sponse) as input and outputs a bit, where 1 indicates that the proof is “accepted”
and 0 that it is “rejected”.

5. cmt ≔ LID.Sim(𝑝𝑘, ch, resp) is a deterministic algorithm that takes a public key 𝑝𝑘,
a challenge ch, and a response resp as inputs and outputs a commitment cmt.

We assume that a public key 𝑝𝑘 implicitly defines two sets, the set of challenges CSet
and the set of responses RSet.

Further, we define the following properties of a LID scheme based on the definitions
given in [AFLT12, AFLT16].

Definition 4.9. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) be de-
fined as above.

• Completeness of normal keys.We call LID 𝜌-complete, if

Pr

⎡
⎢
⎢
⎢
⎢
⎣

LID.Vrfy(𝑝𝑘, cmt, ch, resp) = 1 ∶

(𝑝𝑘, 𝑠𝑘) $← LID.Gen;
(cmt, st) $← LID.Prove1(𝑠𝑘);
ch

$← CSet;
resp ≔ LID.Prove2(𝑠𝑘, cmt, ch, st)

⎤
⎥
⎥
⎥
⎥
⎦

≥ 𝜌.

We call LID perfectly-complete, if it is 1-complete.

• Simulatability of transcripts.We call LID 𝜀𝑠-simulatable if for (𝑝𝑘, 𝑠𝑘) $← LID.Gen,
(ch, resp) $← CSet × RSet, the distribution of the transcript (cmt, ch, resp) where

1All known instantiations of lossy identification schemes have a deterministic LID.Prove2 algorithm.
However, if a new instantiation requires randomness, then it can be “forwarded” from LID.Prove1 in the
state variable st. Therefore the requirement that LID.Prove2 is deterministic is without loss of generality,
and only made to simplify our security analysis.

34



4.5 Lossy Identification Schemes

cmt ≔ LID.Sim(𝑝𝑘, ch, resp) is statistically indistinguishable from honestly gener-
ated transcript (with a statistical distance up to 𝜀𝑠) and we have that LID.Vrfy(𝑝𝑘,
cmt, ch, resp) = 1. That is, for any adversary it holds that

|Pr[(𝑝𝑘, 𝑋) = 1] − Pr[(𝑝𝑘, 𝑌 ) = 1]| ≤ 𝜀𝑠

where (𝑝𝑘, 𝑠𝑘) $← LID.Gen, 𝑋 = (cmt, ch, resp) with (cmt, st) $← LID.Prove1(𝑠𝑘),
ch

$← CSet, and resp
$← LID.Prove2(𝑠𝑘, cmt, ch, st), and 𝑌 = (cmt′, ch′, resp′) with

(ch′, resp′) $← CSet × RSet and cmt′ ≔ LID.Sim(𝑝𝑘, ch′, resp′). If 𝜀𝑠 = 0, we call LID
perfectly simulatable.

Note that this simulatability property is different from the original definition in
[AFLT12] where the simulator simulates the whole transcript.

• Indistinguishability of keys. This definition is a generalization of the standard key
indistinguishability definition of a lossy identification scheme extended to multiple
instances. We define the advantage of an adversary  breaking the multi-key-
indistinguishability of LID as

AdvMU-IND-KEY
LID () ≔ |||Pr [

New = 1] − Pr [NewLoss = 1]
|||,

where oracle New generates a key pair (𝑝𝑘(𝑖), 𝑠𝑘(𝑖)) $← LID.Gen and returns 𝑝𝑘(𝑖)

upon the 𝑖-th query and oracle NewLoss generates a key 𝑝𝑘′(𝑖) $← LID.LossyGen
and returns it upon the 𝑖-th query.

• Lossiness. We call LID 𝜀𝓁-lossy if for any 𝑝𝑘 ∈ {𝑝𝑘 ∶ 𝑝𝑘 $← LID.LossyGen}, any
commitment cmt, it holds that the ratio of challenges ch such that there exists a
response resp with LID.Vrfy(𝑝𝑘, cmt, ch, resp) = 1 is at most 𝜀𝓁.2

Below we present a relaxation of the uniqueness property with respect to lossy keys.
An information-theorectic variant is defined in [AFLT12, AFLT16].

Definition 4.10. We define the advantage of an adversary  against the uniqueness of
LID with respect to lossy keys as

AdvunqLID() ≔ Pr
⎡
⎢
⎢
⎣

LID.Vrfy(𝑝𝑘, cmt, ch, resp) = 1
∧ LID.Vrfy(𝑝𝑘, cmt, ch, resp′) = 1
∧ resp ≠ resp′

∶ 𝑝𝑘 $← LID.LossyGen;
(cmt, ch, resp, resp′) $← (𝑝𝑘)

⎤
⎥
⎥
⎦

Below we recall the property of min-entropy for LID schemes adapted from [AFLT12,
AFLT16].

2 This notion of lossiness is a stronger notion than the one originally used by Abdalla, Fouque, Lyuba-
shevsky, and Tibouchi [AFLT12, AFLT16] and it adapts the notion of optimal soundness for three-
message public-coin protocols (3PC) used by Fischlin, Harasser, and Janson [FHJ20] to lossy identifica-
tion schemes.

35



4 cryptographic building blocks

Definition 4.11. Let (𝑝𝑘, 𝑠𝑘) $← LID.Gen be any honestly generated key pair and (𝑠𝑘) ≔
{cmt ∶ (cmt, ⋅) $← LID.Prove1(𝑠𝑘)} be the set of commitments associated to 𝑠𝑘. We define
the min-entropy with respect to LID as

𝛼 ≔ − log2( max
𝑠𝑘,cmt∈(𝑠𝑘)

Pr [LID.Prove1(𝑠𝑘) = (cmt, ⋅)]) .

Further, we recall the definition of commitment-recoverability by Kiltz, Masny, and
Pan [KMP16].

Definition 4.12. A lossy identification scheme LID is commitment-recoverable if the
algorithm LID.Vrfy(𝑝𝑘, cmt, ch, resp) first recomputes a commitment cmt′ = LID.Sim(𝑝𝑘,
ch, resp) and then outputs 1 if and only if cmt′ = cmt.

Below, we recall a new property for LID schemes introduced in [DGJL21b] which
requires that the LID.Sim algorithm is injective with respect to the input challenge.

Definition 4.13. A lossy identification scheme LID has an injective simulator if for any
(𝑝𝑘, 𝑠𝑘) $← LID.Gen, any response resp ∈ RSet, any ch ≠ ch′, it holds that LID.Sim(𝑝𝑘, ch,
resp) ≠ LID.Sim(𝑝𝑘, ch′, resp).

36



Part II

On the Tightness of the TLS 1.3
Handshake Protocol





5
multi-stage key exchange
protocols

Author’s contribution. The security model presented in this chapter is based on joint
work with Hannah Davis, Felix Günther and Tibor Jager [DDGJ22b, DDGJ22a]. While
we discussed all aspects of this paper together, Hannah Davis developed the code-based
multi-stage key exchange (MSKE) model for the PSK modes of TLS 1.3 with the support
of Felix Günther. The model as it is presented in this thesis is an extension of this model.
The author of this thesis used the code-based PSK MSKE model as a foundation and
extended it by a public-key version to give a unified code-based MSKE model for both
MSKE variants following the example of the (textual) MSKE model by Dowling, Fischlin,
Günther, and Stebila [DFGS21]. The most notable addition compared to the previous
PSK MSKE model [DDGJ22b, DDGJ22a] is the integration of updatable authentication
originally introduced in [DFGS21]. The new code-based public-key MSKE variant finds
application in the tight analysis of the TLS 1.3 full handshake presented in Chapter 9.

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Security Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Multi-stage Session Matching . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Introduction

Classically, a key exchange protocol is a protocol in which two parties negotiate a sin-
gle key, called the session key, that then, for example, is intended to be used to secure
communication between the two parties using symmetric encryption or a more complex
channel protocol. However, modern real-world protocols like Google’s QUIC [IT21] and
TLS 1.3 [Res18] deviate from this structure and negotiate multiple keys during their key

39



5 multi-stage key exchange protocols

exchange phase. These keys also do not necessarily have to be intended to secure com-
munication. In TLS 1.3, for example, there are also keys derived that allow for session
resumption (i.e., a later abbreviated handshake between the same parties) or an exporter
key that is intended to provide “good” key material for further use in the application
layer. To capture these modern protocols more precisely, Fischlin and Günther [FG14]
introduced the notion of multi-stage key exchange (MSKE) protocols. The model ex-
tends the classical Bellare–Rogaway (BR) model [BR94] for (single key) authenticated
key exchange (AKE) to the needs of more complex key exchange protocols, like QUIC
and TLS 1.3. The BR model is along with the model by Canetti and Krawczyk [CK02]
the de-facto standard and the foundation for most key exchange models. In a series of
works [DFGS15, DFGS16, FG17, Gün18, SSW20, DFGS21, DDGJ22b] the notion of MSKE
protocols was extended. Here, the works [DFGS15, DFGS16, FG17] adapted the model
initially introduced for the QUIC protocol to the needs of the TLS 1.3 handshake protocol
(drafts), Schwabe, Stebila, andWiggers [SSW20] in the context of a post-quantum-secure
alternative for the TLS 1.3 handshake protocol (KEM-TLS) introduced multiple levels of
forward secrecy and explicit authentication, and Dowling, Fischlin, Günther, and Stebila
[DFGS21] refined the notion of authenticated in the form of upgradable authentication
for an analysis of the final TLS 1.3 standard. While most of the above variants of MSKE
were presented in textual form, Davis, Diemert, Günther, and Jager [DDGJ22b] presented
the first code-based variant in the sense of code-based games by Bellare and Rogaway
[BR06, BR04] of the pre-shared key (PSK) variant of MSKE protocols. Here, we refer to
the PSK variant as the variant of MSKE protocols in which each party taking part in the
protocol holds a pre-shared symmetric (long-)term key. This is opposed to the public-key
variant in which each party holds a public-secret-key pair (e.g., a digital signature key
pair in combination with some public key infrastructure).

Chapter outline. In this chapter, we give a unified, code-based version of the MSKE
notion for both PSKs and public keys. To this end, we extend the model presented
in [DDGJ22b] by a public-key variant mostly following Dowling, Fischlin, Günther, and
Stebila [DFGS21], but including explicit authentication and different levels of forward
secrecy, as in [SSW20], in this work similar to the PSK variant from [DDGJ22b]. We
first give a informal description of MSKE protocols to define the setting in Section 5.2
and then define the notion including the security model formally in Sections 5.3 and 5.4.
In Section 5.5, we briefly recall the notion of multi-stage session matching as defined
by Günther [Gün18], which is required for the formal results of Chapter 8.

5.2 Setting

Since the MSKE model is a complex security model, we first informally introduce the
setting of (multi-stage) key exchange protocols to aid the understanding of the formal
model. To this end, we describe the actors involved in the protocol, and various aspects
necessary to reflect the real world as precisely as possible such as the derivation of mul-
tiple keys, authentication, the distinction between internal and external keys, different

40



5.2 Setting

types of long-term keys, the replayability of certain messages, a paradigm of secret re-
veals, and the notion of forward secrecy. The informal description given in this section
is then formalized in the following Sections 5.3 and 5.4.

Actors. A key exchange protocol KE is run between multiple parties, called users, con-
nected via a network. We assume users to have some kind of long-term key. This can
either be a public-secret-key pair (usually a digital signature key pair) or a symmetric
key shared between pairs of users before-hand (pre-shared key (PSK)). Each user can
run multiple instances of the key exchange protocol, either sequentially or in parallel;
such an instance is called a session. A user can take two roles in a session determined by
whether it sends or receives the first protocol message. Here, we call a session that sends
the first message (i.e., it initiates a protocol run) the initiator and a session that receives
the first message the responder. In a client-server setting, like we have it, for example, in
the case of TLS, the client would usually be the initiator and the responder would be the
server. We use these terms interchangeably in this work.

A key exchange protocol offers the following interface. Sessions can be activated (i.e.,
created), which initializes a new session and in case of an imitator session generates the
first message. Once sessions are created, they can send and receive messages. To do
so, they take messages as input, process them, update their internal state and generate
a response. Sending messages to a session can also affect its status, which is running
when it is waiting for the next message to arrive, accepted when a session key has been
established, and rejected if the execution of the protocol failed.

Goals. Key exchange is a complex task and a model capturing modern key exchange
protocols needs to consider a number of aspects to reflect the real world and its security
goals as good as possible. Therefore, the following aspects are of importance for modern
key exchange protocols.

Multiple Stages/Keys. The main goal of each instance of the protocol is to negotiate a
session key. In a multi-stage key exchange, the sessions aim to negotiate multiple
session keys in stages. The main security goal for these keys is indistinguishabil-
ity from random. Informally, this means that the session keys established in an
uncompromised session, usually referred to as a fresh session, should be as good
as uniformly random keys. Thus, providing secrecy to the derived keys.

Authentication. Even though secrecy of the session keys is crucial for the security of
a key exchange protocol, this alone is not enough. Namely, we not only have to
achieve that “outsiders” of a protocol execution cannot learn the derived session
key, we also have to achieve that only the “right” parties know the derived key.
Here, comes the concept of authentication into play, which provides parties with
guarantees on the identity of their intended communication partner. In a two-
party protocol, authentication can be one-way (unilateral), i.e., only one party
proves its identity, or mutual, i.e., both parties prove their identity. Furthermore,
authentication can be implicit or explicit. Implicit authentication for a session 𝜋

41



5 multi-stage key exchange protocols

informally means that any session 𝜋′ (if existent) that derives the same key as 𝜋
must be owned by the intended communication partner of session 𝜋. Note that
this notion does not guarantee the existence of session 𝜋′, only that if it existed it
would derive the same key. The existence of such a partner session is guaranteed
by the notion of explicit authentication. Namely, explicit authentication extends
implicit authentication by the requirement that if 𝜋’s intended communication
partner is uncompromised, then there exists a session 𝜋′ owned by 𝜋’s partner
that derived the same key. That is, session 𝜋 can be sure that there exists an (honest)
session 𝜋′ deriving the same key and that is owned by the intended partner. Explicit
authentication is a stronger notion than implicit authentication. In fact, de Saint
Guilhem, Fischlin, andWarinschi [dFW20] show that implicit (key) authentication
in combination with key confirmation (i.e., a session getting a guarantee that
another session derived the same key; cf. [FGSW16] for a formal treatment of key
confirmation) yields explicit (key) authentication.

Next, let us discuss how we reflect authentication in the MSKE model. We distin-
guish between three levels of authentication of each stage. A stage can be unauthen-
ticated, unilaterally authenticated (only the responder authenticates), andmutually
authenticated (both initiator and responder authenticate). The level of authentica-
tion for each stage can be defined individually and we allow every session to have
a different type of authentication. Here we refer to a type of authentication as the
vector that defines a level of authentication for every stage. For instance, we allow
that there are two sessions of the same user, where one session in some stage aims
for unilateral authentication and the other one for mutual authentication in the
same stage. This captures exactly what we have in the real world, for example, in
TLS. By default, most sessions on the Internet aim for unilateral authentication
(the server showing its certificate to prove its identity to the client). However,
some applications also require mutual authentication, for example, IoT devices
reporting back to a server. As introduced by Dowling, Fischlin, Günther, and Ste-
bila [DFGS21], we also allow the level of authentication of a stage to be upgraded
upon acceptance of a later stage. To this end, we assume every stage to be initially
unauthenticated and define at which stage the authentication level is upgraded
to unilateral or mutual authentication. Here, we also allow that a stage can be
authenticated right away or never establishes unilateral or mutual authentication.

In the MSKE model of Dowling, Fischlin, Günther, and Stebila [DFGS21], authen-
tication is mainly captured implicitly, but as an extension we also include in our
model the option of upgrading authentication to explicit authentication (e.g., if
the key is later confirmed). This was already introduced by Davis, Diemert, Gün-
ther, and Jager [DDGJ22b] in the context of their code-based pre-shared key MSKE
model, but there is the special case of all stages being already initially mutually
authenticated via the PSK. Schwabe, Stebila, and Wiggers [SSW20] also extended
the MSKE model by the notion of explicit authentication before. We incorporate
explicit authentication, in particular for the public-key variant, similar to the (code-
based) AKE model by [DG21a]. We also allow only unilateral authentication, for

42



5.2 Setting

example, resulting in only the initiator being able to receive explicit authentication
of the responder.

Internal and External Keys. Classical key exchange protocols, like the (signed) Diffie–
Hellman key exchange, usually capture the negotiation of session keys that are
intended to be only used outside of the (key exchange) protocol, e.g., a secure
channel protocol. However, modern protocols, such as TLS 1.3, also establish keys
that might be used inside the protocol. For instance, consider the TLS 1.3 hand-
shake described in Chapter 6. TLS 1.3 introduced the encryption of the handshake
messages, particularly, to strengthen privacy. Thus, the TLS 1.3 handshake nego-
tiates a key called the handshake traffic key intended to protect the data that is
sent during the handshake protocol. This requires the distinction of internal and
external session keys. Internal keys are allowed to be used during the execution
of the protocol and external keys are only allowed to be outside of the protocol.
An external session key could, for example, be the classical application traffic key
negotiated in the TLS 1.3 handshake that is intended to be used to protect applica-
tion data (outside of the handshake protocol). The distinction is crucial to provide
reasonable security to the session keys as internal keys can only be “secret” (i.e.,
indistinguishable from random) if it has not been used during the protocol. This
requires the model to basically pause, allowing the adversary to be challenged
against an internal key. Namely, if an internal key would be treated exactly as an
external key (not used during the protocol), this might provide a trivial attack to
distinguish a challenge from random. In the above handshake example, the adver-
sary could just decrypt an intercepted handshake message with the challenge key
and if there is a reasonable output it knows that it has received the real (internal)
key with certainty.

Long-term Keys. MSKE protocols come in two different flavors depending on the type
of long-term key that the users hold. On the one hand, there is the public-key
variant, which we refer to as pMSKE following [DFGS21], where the long-term
key is a public-secret key pair. An example for such a MSKE is the full 1-RTT
TLS 1.3 handshake protocol presented in Section 6.4. Here, the public-secret-key
pair is a key pair of a digital signature scheme. We do not consider a public-key
infrastructure in this work, but rather the model holds a list of all public keys
(denoted by pkeys) that grants sessions access to all public keys (including its
own). For a treatment of certification of public keys in AKE protocols, we refer to
[Boy+13].

The other variant is the pre-shared key variant, which we refer to as sMSKE follow-
ing [DFGS21], where long-term keys are symmetric keys, called pre-shared keys
(PSKs), shared among pairs of users. An example here is the abbreviated TLS 1.3
PSK handshake protocol presented in Section 6.5. To keep the model simple, we
assume PSKs to be chosen uniformly and independently at random from the PSK
space KE.PSKS defined by the protocol. This can be generalized and strengthened
by, e.g., considering any distribution on KE.PSKS or to allow for the registration

43



5 multi-stage key exchange protocols

of adversarially chosen PSKs. However, we expect that most PSKs, particularly
for TLS 1.3, were established in a prior protocol run and thus it is reasonable to
assume them to be random. Pairs of users can usually share multiple PSKs, but we
only allow a key to be used in a fixed role (i.e., either as an initiator or a responder)
to avoid the Selfie attack [DG21b]. Intuitively, the Selfie attack is a Man in the Mid-
dle (MITM) attack abusing if a PSK can be used in different roles to break mutual
authentication that is assumed to be provided by the PSK. To mitigate the attack a
PSK must not be shared between more than one client and one server (cf. [DG21b,
Sect. 6]). Our model also does not cover the negotiation of a PSK.
In general, we assume in our model that every session in either variant of MSKE
knows at the start of the execution which key it uses.

Replayability. Some protocols, e.g., 0-RTT key exchange protocols, include protection
against replays. That is, exchanged keys shall still be secure (i.e., indistinguishable
from random) even if messages were replayed, which might result in one session
negotiating the same key with multiple partners. To capture this feature as a
property of the protocol rather than an attack, the MSKEmodel allows for protocol
stages to be replayable.

Secret Reveals. The model captures the revelation of long-term keys and sessions keys
negotiated during the execution of the protocol. This follows the classical model
by Bellare and Rogaway [BR94]. We do not consider the compromise of ephemeral
keys or the internal state of a session. Note that TLS 1.3, which is the main focus
of this work, is not designed to be secure in a setting that includes the compromise
of ephemeral keys or the internal state. The compromise of long-term keys is even
necessary to capture forward secrecy as described below.

Forward Secrecy. Another important security property of modern key exchange pro-
tocols is the notion of forward secrecy. Forward secrecy (with respect to long-term
keys), informally, captures that even if a long-term key of a user (e.g., the signature
key pair or the PSK) gets compromised after a protocol run has been terminated,
this compromise should not harm the secrecy of session keys established in this
protocol run. This of course can only hold if the session keys have been erased
after their usage. For TLS 1.3, the full handshake and the PSK-(EC)DHE hand-
shake described in Sections 6.4 and 6.5, respectively, provide forward secrecy. The
TLS 1.3 PSK-only handshake does not provide forward secrecy. This is due to the
fact that the full handshake and the PSK-(EC)DHE handshake are based on the
ephemeral Diffie–Hellman key exchange, which intuitively ensures that session
keys always depend on local (ephemeral) randomness such that a long-term key
reveal is not sufficient to recover keys established in a terminated session. Again,
this only holds under the assumption that the randomness has been erased. How-
ever, the long-term key reveal implies that future protocol runs are inherently
compromised, since an adversary in possession of a long-term can perfectly imper-
sonate the owner of the long-term key. For a more detailed discussion on forward
secrecy, we refer to the work by [BG20].

44



5.3 Syntax

We follow Schwabe, Stebila, and Wiggers [SSW20] and distinguish between dif-
ferent levels of forward secrecy in our model. The first level is no forward secrecy,
which means that a stage key is only guaranteed to be indistinguishable from ran-
dom if the adversary never compromised the long-term key of the communication
partner of the session that derived the key. The second level isweak forward secrecy
2 (wfs2), which means that a stage key is only guaranteed to be indistinguishable
from random either if the adversary was passive or if the adversary never compro-
mised the long-term key of the communication partner of the session that derived
the key. The third level is (full) forward secrecy (fs), which means that a stage
key is only guaranteed to be indistinguishable from random either if the adver-
sary was passive or if the adversary did compromised the long-term key of the
communication partner after acceptance of the key.

Similar to authentication we define the level of forward secrecy of each stage
individually and allow the level to be upgraded upon the acceptance of a later
stage. This extension was also already introduced in [DDGJ22b].

Adversary model. For key exchange protocols, we consider a powerful adversary ,
which has full control over the communication network. In particular, it can eavesdrop
the communication, inject new messages, or drop messages.

5.3 Syntax

In the following, we formalize the intuitions given in Section 5.2 into a formal security
model. We start with the syntax of MSKE protocols, which consist of MSKE-specific
notation, properties that are specific to a MSKE protocol, the internal state of a session
and finally the formal security experiment.

MSKE-specific notation. The set of users is denoted by  and every user in  is
identified by a user identifier 𝑢 ∈  . The sessions owned by a user 𝑢 ∈  are identified
by 𝜋 𝑖

𝑢, where 𝑖 is a unique index for that session.
In pMSKE, each user 𝑢 ∈  is associated with a long-term key pair (𝑝𝑘𝑢, 𝑠𝑘𝑢). Here,

we assume that 𝑝𝑘𝑢 is certified. In sMSKE, we assume that pairs of users share long-
term symmetric keys (PSKs) chosen uniformly at random from set KE.PSKS called the
PSK space. The assumption of uniformly random PSKs could also be relaxed to any
distribution, but for simplicity, we chose the uniform distribution. Each PSK is identified
by a (unique) PSK identifier 𝑝𝑠𝑘𝑖𝑑 and is stored in a list pskeys indexed by (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑)
where (𝑢, 𝑣) are the users sharing the PSK identified by 𝑝𝑠𝑘𝑖𝑑. We require that for every
index (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) of pskeys, 𝑢 only uses the respective PSK in the initiator role and 𝑣 only
in the responder role.

Protocol-specific properties. The definition of a MSKE protocol requires the defini-
tion of the following properties.

45



5 multi-stage key exchange protocols

• STAGES ∈ N denotes the numbers of stages (i.e., the number of keys derived);

• AUTH ⊆ {(𝑢, 𝑚, 𝑒𝑎in, 𝑒𝑎res) ∶ 𝑢, 𝑚, 𝑒𝑎in, 𝑒𝑎res ∈ [STAGES] ∪ {∞}}STAGES denotes the
set of supported authentication types of the MSKE protocol. Each vector 𝑎𝑢𝑡ℎ =
(𝑢(𝑖), 𝑚(𝑖), 𝑒𝑎(𝑖)in , 𝑒𝑎

(𝑖)
res)𝑖∈[STAGES] ∈ AUTH represents an authentication type a session

could be aiming for. It contains an entry for every stage and defines the stage that
establishes a certain level of authentication for the corresponding stage key. For
illustration, consider the 𝑖-th entry 𝑎𝑢𝑡ℎ𝑖 = (𝑢(𝑖), 𝑚(𝑖), 𝑒𝑎(𝑖)in , 𝑒𝑎

(𝑖)
res). Initially all keys

are unauthenticated. Now, 𝑎𝑢𝑡ℎ𝑖 defines when stage 𝑖 becomes unilaterally, mutu-
ally, and explicitly authenticated. That is, stage 𝑖 is unilaterally authenticated upon
acceptance of stage 𝑢(𝑖), mutually authenticated upon acceptance of stage 𝑚(𝑖), ex-
plicitly authenticated for the initiator upon acceptance of stage 𝑒𝑎(𝑖)in , and explicitly
authenticated for the responder upon acceptance of stage 𝑒𝑎(𝑖)res. If any entry of the
tuple is set to ∞ this means that stage 𝑖 never reaches this authentication level.

Note that there are constraints on how these tuples are formed, since they are
dependent on each other. The entries (𝑢(𝑖), 𝑚(𝑖)) define when the stage-𝑖 key be-
comes implicitly authenticated. This means if 𝑢(𝑖) = ∞, then 𝑒𝑎(𝑖)in = ∞, and simi-
larly if 𝑚(𝑖) = ∞ then 𝑒𝑎(𝑖)res = ∞, since implicit authentication (resp. key secrecy)
is a prerequisite of explicit authentication. Moreover, it has to hold 𝑢(𝑖) ≤ 𝑚(𝑖),
𝑢(𝑖) ≤ 𝑒𝑎(𝑖)i , and 𝑚(𝑖) ≤ 𝑒𝑎(𝑖)r . We highlight that this does not exclude to set, for
example, 𝑢(𝑖) = 𝑚(𝑖) = 𝑒𝑎(𝑖)in = 𝑒𝑎(𝑖)res = 𝑖 resulting in stage 𝑖 being explicitly authenti-
cated for both roles upon acceptance.

We write EAUTH[𝑟 , 𝑠] = 𝑡 if and only if stage 𝑠 becomes explicitly authenticated
for role 𝑟 upon acceptance of stage 𝑡.

• FS = (FSinitiator, FSresponder) with FS𝑟𝑜𝑙𝑒 ∈ {−,wfs2, fs}STAGES×STAGES denotes the (tri-
angular) matrices indicating which level of forward secrecy is established for a
stage upon acceptance of this (or later) stage(s). To allow for a more fine grained
distinction, we allow forward secrecy for each role to be established at different
stages. Note that the level might change retroactively upon acceptance of a later
stage. To simplify notation, we write for 𝑙𝑣𝑙 ∈ {wfs2, fs}, FS[𝑟 , 𝑠, 𝑙𝑣𝑙] = 𝑡 if and only
if (FS𝑟)𝑠,𝑡 = 𝑙𝑣𝑙, i.e., stage 𝑠 of a session with role 𝑟 establishes 𝑙𝑣𝑙 in stage 𝑡. If
𝑙𝑣𝑙 ∈ {wfs2, fs} for role 𝑟 in stage 𝑠 is never established, we write FS[𝑟 , 𝑠, 𝑙𝑣𝑙] = ∞.
If FSinitiator = FSresponder, we shorten notation and only write FS[𝑠, 𝑙𝑣𝑙].

• INT ∈ {true, false}STAGES denotes the vector indicating whether a key of a stage is
internal. Here, INT[𝑠] = true if and only if the key accepted in stage 𝑠 is internal.

• REPLAY ∈ {true, false}STAGES denotes the vector indicating whether a stage is re-
playable. Here, REPLAY[𝑠] = true if and only if stage 𝑠 is replayable.

Internal session state. Every session 𝜋 𝑖
𝑢 maintains an internal state, which includes

the following information:

• 𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {running𝑠 , accepted𝑠 , rejected𝑠 ∣ 𝑠 ∈ [1, … , STAGES]} ∪ {running0}: The
variable 𝑠𝑡𝑎𝑡𝑢𝑠 represents the state of execution, which upon activation of a ses-

46



5.3 Syntax

sion always is set to running0. When a session accepts the key of stage 𝑠 it sets
𝑠𝑡𝑎𝑡𝑢𝑠 ≔ accepted𝑠; when a session rejects a key it sets 𝑠𝑡𝑎𝑡𝑢𝑠 ≔ rejected𝑠

1; and
when it continues the execution after the stage-(𝑠 − 1) key was accepted it sets
𝑠𝑡𝑎𝑡𝑢𝑠 ≔ running𝑠 .

• 𝑟𝑜𝑙𝑒 ∈ {initiator, responder}: The variable 𝑟𝑜𝑙𝑒 holds the session owner’s role in the
protocol execution. Note that there is no default value and the role has to be
defined during activation of a session.

• 𝑎𝑢𝑡ℎ ∈ AUTH. The variable 𝑎𝑢𝑡ℎ holds the intended authentication type for this
session. There is no default value and the type has to be defined during activation
of the session.

Note that in the sMSKE variant, this field can be omitted as the PSK provides
already implicit mutual authentication. That is, whether explicit authentication is
achieved becomes basically a protocol-wide property.

• 𝑝𝑖𝑑 ∈  ∪ {∗}: The variable 𝑝𝑖𝑑 holds the identity of the intended communication
partner of the session owner. The value is defined during activation of the session,
but we allow the identity in the pMSKE variant to be set during the execution of
the protocol indicated by “∗”.

• 𝑝𝑠𝑘𝑖𝑑 ∈ {0, 1}∗. The variable 𝑝𝑠𝑘𝑖𝑑 holds the identifier of the PSK that is used in
this session. This field is only available in the sMSKE variant. For simplicity, we
require in the sMSKE variant that 𝑝𝑠𝑘𝑖𝑑 and 𝑝𝑖𝑑 are set upon activation and there
actually is a PSK pskeys[𝑢, 𝑝𝑖𝑑, 𝑝𝑠𝑘𝑖𝑑] (if 𝑟𝑜𝑙𝑒 = initiator) or pskeys[𝑝𝑖𝑑, 𝑢, 𝑝𝑠𝑘𝑖𝑑]
(otherwise) set. This follows the assumption that we do not cover PSK negotiation,
but the model could be adapted to support this resulting in a more complex model.

• 𝑠𝑡𝑎𝑔𝑒 ∈ [STAGES]: The variable 𝑠𝑡𝑎𝑔𝑒 holds the current stage of the session. Ini-
tially, this is set to 0 indicating that the execution just started. It is set to 𝑖 if the
state of execution changes to accepted𝑖 or rejected𝑖.

• 𝑠𝑖𝑑[𝑠] ∈ {0, 1}∗: The variable 𝑠𝑖𝑑[𝑠] holds the session identifier for stage 𝑠. Initially,
all session identifiers are set to ⊥ indicating that they are not defined. The session
identifier 𝑠𝑖𝑑[𝑠] is set only if stage 𝑠 is accepted and only set once.

• 𝑐𝑖𝑑 initiator[𝑠], 𝑐𝑖𝑑responder[𝑠] ∈ {0, 1}∗: The variables 𝑐𝑖𝑑 initiator[𝑠] and 𝑐𝑖𝑑responder[𝑠] hold
the contributive identifier for stage 𝑠, i.e., the communication that a session and
its communication partner (depending on its role) must have honestly received.
This is allowed to be set multiple times and initially both are set to ⊥ indicating
that they are undefined.

The introduction of a contributive identifier for each role was introduced by Davis,
Diemert, Günther, and Jager [DDGJ22b] to allow for a more fine-grained testing.
In prior MSKE variants, a session only keeps one contributive identifier and not
one for itself and one for its partner.

1 Note that we allow a session to continue its execution if some stage key was rejected.

47



5 multi-stage key exchange protocols

• 𝑠𝑘𝑒𝑦[𝑠] ∈ 𝑠: The variable 𝑠𝑘𝑒𝑦[𝑠] holds the key established in stage 𝑠. Initially, it
is set to⊥ to indicate that it is undefined and it (usually) is set once upon acceptance
of stage 𝑠. However, there are situations in which is might be updated (e.g., if it is
an internal key). For every stage 𝑠, the MSKE protocol defines a key space 𝑠 .

Interface of a MSKE protocol. Syntactically, a key exchange protocol KE is a pair of
algorithms (Activate,Run). The input and output of the algorithms differs depending on
the MSKE variant, i.e., pMSKE or sMSKE.

• Algorithm Activate creates a new session. In pMSKE, algorithm Activate receives
as input the list of all user public keys pkeys, the user identifier of the session
owner 𝑢 ∈  , the session owner’s secret key 𝑠𝑘𝑢, the user identifier of the intended
communication partner 𝑝𝑖𝑑 ∈  ∪ {∗}, a role 𝑟𝑜𝑙𝑒 ∈ {initiator, responder}, and an au-
thentication type 𝑎𝑢𝑡ℎ ∈ AUTH. In sMSKE, the algorithm receives as input the user
ID of the session owner 𝑢 ∈  , the user identifier of the intended communication
partner 𝑝𝑖𝑑 ∈  ∪ {∗}, a PSK 𝑝𝑠𝑘 and a role 𝑟𝑜𝑙𝑒 ∈ {initiator, responder}.
In both variants, algorithm Activate outputs a new session 𝜋 𝑖

𝑢 and (potentially) a
first message 𝑚′ ∈ {0, 1}∗ ∪ {⊥}, and initializes the internal state of 𝜋 𝑖

𝑢 with the
given inputs.

• Algorithm Run implements the processing of messages. In pMSKE, the algo-
rithm Run receives as input the list of all user public keys pkeys, the session owner
identifier 𝑢, the session owner’s secret key 𝑠𝑘𝑢, the session to be ran 𝜋 𝑖

𝑢 and a
message 𝑚 to be processed. In sMSKE, the algorithm receives as input the session
owner identifier 𝑢, a PSK 𝑝𝑠𝑘, the session to be ran 𝜋 𝑖

𝑢 and a message 𝑚 to be
processed.
In both variants, it outputs the session 𝜋 𝑖

𝑢 (with potentially updated state) and a
response 𝑚′.

5.4 Security Game

One of the most important notions to formally define security for MSKE protocols is
the notion of partnering. Informally, we say that two sessions are partners if they have
“matching conversations” [BR94], i.e., the messages sent and received by the sessions
match. Formally, we define this via the session identifiers maintained by every session
as follows.
Definition 5.1 (Partnering). Let 𝜋 ≠ 𝜋′ be two distinct sessions of the key exchange
protocol KE and let 𝑠 ∈ STAGES be a stage of KE. We say that session 𝜋 is partnered to
session 𝜋′ in stage 𝑠 if and only if 𝜋.𝑠𝑖𝑑[𝑠] = 𝜋′.𝑠𝑖𝑑[𝑠] ≠ ⊥.
Note that the session identifier is only set upon acceptance of a stage. That is, if the

session identifier of a session is different from ⊥ the session already accepted. The notion
of partnering also dictates the correctness requirement we have for a MSKE protocol.
Namely, we require that all pairs of sessions that executed the protocol honestly (i.e., the
adversary only is passive) are partnered in all stages upon acceptance/termination.

48



5.4 Security Game

Game variables. The security game keeps track of the time certain events occur
during the execution of the game to resemble the order of events. To that end, itmaintains
a counter time, which initially is set to 0 and is incremented whenever an oracle query
is issued. For each session 𝜋 𝑖

𝑢, the game holds the following values. In the following, we
refer to oracle queries defined in detail below.

• accepted[𝑠]: The variable 𝜋 𝑖
𝑢.accepted[𝑠] denotes the point in time in which ses-

sion 𝜋 𝑖
𝑢 accepted stage 𝑠.

• revealed[𝑠]: The variable 𝜋 𝑖
𝑢.revealed[𝑠] denotes the point in time in which the

adversary issued the query RevSessionKey(𝑢, 𝑖, 𝑠) disclosing the stage 𝑠 key. If
𝜋 𝑖
𝑢.revealed[𝑠] < ∞, we say that stage 𝑠 of 𝜋 𝑖

𝑢 is revealed.
• tested[𝑠]: The variable 𝜋 𝑖

𝑢.tested[𝑠] denotes the point in time in which the adversary
issued the query Test(𝑢, 𝑖, 𝑠) to be challenged on the stage-𝑠 key. If 𝜋 𝑖

𝑢.tested[𝑠] < ∞,
we say 𝜋 𝑖

𝑢 is tested on stage 𝑠.

Additionally, the game also keeps track of the points in time when a long-term key
corruption occurred. Here, we need to distinguish between the two MSKE variants. In
the public-key variant pMSKE, the game holds the time when RevLongTermKey(𝑢) was
issued, which we denote by revsk[𝑢] for user 𝑢. If revsk[𝑢] < ∞, we say user 𝑢 or any of
its sessions 𝜋 𝑖

𝑢 is corrupted. In the pre-shared key variant sMSKE, we track the time when
a PSK has been corrupted. To this end, we maintain a list similar to pskeys called revpsk.
An entry indexed by (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) represents the time at which the PSK pskeys[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑]
has been revealed. Initially, all entries are initialized to ∞. As a shorthand, we write in
Boolean expressions just revpsk[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑] instead of revpsk[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑] ≠ ∞. If revpsk[𝑢,
𝑣, 𝑝𝑠𝑘𝑖𝑑] < ∞, we say (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) (or the PSK shared between 𝑢 and 𝑣) is corrupted.

Oracles. During the execution of the game the adversary interacts with the proto-
col via the following oracles. The code of the oracles defined below can be found in
Figures 5.1 to 5.5.

• NewUser: The NewUser oracle is only present in the public-key variant pMSKE and
the code is shown in Figure 5.1.
Querying this oracle results in creating a new user with user identifier users + 1,
where users is initially 0. For simplicity, we give users consecutive user identifiers,
however one can adapt this to adversarially chosen user identifiers by introducing
the user identifier as input to the oracle. For each new user a public-secret key
pair is generated and the public key is returned to the adversary. A variant of this
model would be to parameterize the model by the number of users involved in the
protocol.

• NewSecret(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑): The NewSecret oracle is only present in the pre-shared key
variant sMSKE and the code is shown in Figure 5.1.
A query (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) establishes a fresh (and honest) PSK between user 𝑢 and its
partner 𝑣 with (adversarially chosen) PSK identifier 𝑝𝑠𝑘𝑖𝑑 if no PSK has been es-
tablished with this triple before. In this work, we assume for simplicity that PSKs

49



5 multi-stage key exchange protocols

NewUser

1 ∶ time ≔ time + 1
2 ∶ users ≔ users + 1
3 ∶ (𝑝𝑘users, 𝑠𝑘users)

$← Gen

4 ∶ pkeys[users] ≔ 𝑝𝑘users
5 ∶ revsk[users] ≔ ∞
6 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑘users

NewSecret(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑)

1 ∶ time ≔ time + 1
2 ∶ 𝐢𝐟 pskeys[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑] ≠ ⊥ 𝐭𝐡𝐞𝐧
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ⊥
4 ∶ pskeys[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑] $← KE.PSKS
5 ∶ revpsk[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑] ≔ ∞
6 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑠𝑘𝑖𝑑

Figure 5.1: Code of the oracles NewUser and NewSecret.

are honest and chosen uniformly at random from space KE.PSKS. However, we
highlight that the model might be generalized to any distribution on KE.PSKS.

• Send(𝑢, 𝑖, 𝑚): The code of the Send oracle is shown in Figure 5.2. Note that the two
variants only differ in the inputs of Activate and Run.
The Send oracle allows the adversary to interact with sessions. In general, a query
(𝑢, 𝑖, 𝑚) sends message 𝑚 to the 𝑖-th session of user 𝑢 denoted by 𝜋 𝑖

𝑢. If session 𝜋 𝑖
𝑢

does not exist yet, we assume for simplicity that the adversary always sends the
required information to activate a new session. The oracle then runs Activate to
create a new session and compute the initialmessage𝑚′ of the session. If session 𝜋 𝑖

𝑢
was already activated before, the oracle runs the algorithm Run for session 𝜋 𝑖

𝑢 to
process message𝑚 and compute a response𝑚′ (Line 10). If the session 𝜋 𝑖

𝑢 changed
its status to accepted𝜋 𝑖

𝑢.𝑠𝑡𝑎𝑔𝑒 meaning that it accepted in its current stage, the oracle
additionally sets the time session 𝜋 𝑖

𝑢 accepted to the current time. The final step
now is to check whether there was a session before that accepted 𝜋 𝑖

𝑢’s current
stage with the same session identifier (i.e., 𝜋 𝑖

𝑢 is partnered to). If this is the case,
we set 𝜋 𝑖

𝑢’s session key consistently. Note that this only applies to internal stages,
as int_repr is only set in Test for internal keys (see Test below). In either case, the
oracle returns 𝑚′ to the adversary.

• RevSessionKey(𝑢, 𝑖, 𝑠). The code of the RevSessionKey oracle is shown in Figure 5.3.
Querying this oracle on (𝑢, 𝑖, 𝑠) allows the adversary to get access to the session
key of 𝜋 𝑖

𝑢 established in stage 𝑠 provided that 𝜋 𝑖
𝑢 exists and accepted in stage 𝑠. If

RevSessionKey(𝑢, 𝑖, 𝑠) was issued we call 𝜋 𝑖
𝑢 revealed in stage 𝑠.

• RevLongTermKey(𝑢) / RevLongTermKey(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑): The former query is only used
in the public-key variant pMSKE of the model and the latter only in the pre-shared
key variant sMSKE. The code is shown in Figure 5.4.
The RevLongTermKey oracle allows the adversary to get hold of a long-term key.
In the public-key variant pMSKE, this means it receives the secret key 𝑠𝑘𝑢, and
in the pre-shared key variant sMSKE it receives the PSK pskeys[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑]. If
RevLongTermKey was queried for either a user or a PSK, we say that the user or
the PSK is corrupted.

50



5.4 Security Game

Send(𝑢, 𝑖, 𝑚)

1 ∶ time ≔ time + 1
2 ∶ 𝐢𝐟 𝜋 𝑖

𝑢 = ⊥ 𝐭𝐡𝐞𝐧

3 ∶ (𝑝𝑖𝑑, 𝑟𝑜𝑙𝑒, 𝑎𝑢𝑡ℎ) ≔ 𝑚 ∣ (𝑝𝑖𝑑, 𝑝𝑠𝑘𝑖𝑑, 𝑟𝑜𝑙𝑒) ≔ 𝑚

4 ∶ 𝐢𝐟 𝑟𝑜𝑙𝑒 = initiator 𝐭𝐡𝐞𝐧
5 ∶ 𝑝𝑠𝑘 ≔ pskeys[𝑢, 𝑝𝑖𝑑, 𝑝𝑠𝑘𝑖𝑑]
6 ∶ 𝐞𝐥𝐬𝐞
7 ∶ 𝑝𝑠𝑘 ≔ pskeys[𝑝𝑖𝑑, 𝑢, 𝑝𝑠𝑘𝑖𝑑]

8 ∶ (𝜋 𝑖
𝑢, 𝑚

′) $← Activate( pkeys, 𝑢, 𝑠𝑘𝑢, 𝑝𝑖𝑑, 𝑟𝑜𝑙𝑒, 𝑎𝑢𝑡ℎ ∣ 𝑢, 𝑝𝑖𝑑, 𝑝𝑠𝑘, 𝑟𝑜𝑙𝑒 )

9 ∶ 𝐞𝐥𝐬𝐞

10 ∶ (𝜋 𝑖
𝑢, 𝑚

′) $← Run( pkeys, 𝑢, 𝑠𝑘𝑢, 𝜋 𝑖
𝑢, 𝑚 ∣ 𝑢, 𝜋 𝑖

𝑢.𝑝𝑠𝑘, 𝜋 𝑖
𝑢, 𝑚 )

11 ∶ 𝐢𝐟 𝜋 𝑖
𝑢.𝑠𝑡𝑎𝑡𝑢𝑠 = accepted𝜋 𝑖

𝑢.𝑠𝑡𝑎𝑔𝑒 𝐭𝐡𝐞𝐧

12 ∶ 𝑠 ≔ 𝜋 𝑖
𝑢.𝑠𝑡𝑎𝑔𝑒

13 ∶ 𝜋 𝑖
𝑢.accepted[𝑠] ≔ time

14 ∶ // Reprogram internal key

15 ∶ 𝐢𝐟 int_repr[𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠]] ≠ ⊥ 𝐭𝐡𝐞𝐧

16 ∶ 𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[𝑠] ≔ int_repr[𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠]]
17 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑚′

Figure 5.2: Code of the oracle Send. Code marked with 𝑥 ∣ 𝑦 indicates that 𝑥 is only
present in the pMSKE variant and 𝑦 is only present in the sMSKE variant, while code

marked only is only present in sMSKE and omitted in pMSKE.

RevSessionKey(𝑢, 𝑖, 𝑠)

1 ∶ time ≔ time + 1
2 ∶ 𝐢𝐟 𝜋 𝑖

𝑢 = ⊥ ∨ 𝜋 𝑖
𝑢.accepted[𝑠] = ∞ 𝐭𝐡𝐞𝐧

3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ⊥
4 ∶ 𝜋 𝑖

𝑢.revealed[𝑠] ≔ time

5 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[𝑠]

Figure 5.3: Code of the oracle RevSessionKey.

51



5 multi-stage key exchange protocols

RevLongTermKey( 𝑢 ∣ 𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑 )

1 ∶ time ≔ time + 1

2 ∶ revsk[𝑢] ∣ revpsk[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑] ≔ time

3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑘𝑢 ∣ pskeys[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑]

Figure 5.4: Code of the oracle RevLongTermKey. Code marked with 𝑥 ∣ 𝑦 indicates that
𝑥 is executed in the pMSKE variant and 𝑦 in the sMSKE variant.

Note that we follow [DDGJ22b] and capture forward secrecy in the Fresh predicate
defined below. Previous MSKE models, e.g., [DFGS21], capture this in the corrupt
oracle. Using the predicate allows us to keep the oracles simpler and capture
misbehaviour of the adversary afterwards.

• Test(𝑢, 𝑖, 𝑠): The code of the Test oracle is shown in Figure 5.5.

The Test oracle allows the adversary to be challenged on a session and a stage.
On a query (𝑢, 𝑖, 𝑠), the adversary receives the real session key if the challenge bit
𝑏 = 0 and a uniformly random key otherwise. There are a couple of cases in which
we prohibit the adversary to issue a certain query (𝑢, 𝑖, 𝑠). First of all, we exclude
trivial Test queries (𝑢, 𝑖, 𝑠), which are that session 𝜋 𝑖

𝑢 is undefined, has not accepted
stage 𝑠 yet, or has already been tested before. Then, we allow for internal keys that
they can only be tested before they have been used in the protocol to exclude trivial
distinguishability of the challenge. As already mentioned in Section 5.2, allowing
the adversary to test internal keys after these keys have been used opens a side
channel for the adversary. For example, think of the internal key as a key that is
used to encrypt key exchange messages. If the internal key now is used after it has
been tested, the adversary could try to decrypt the corresponding communication
using its “challenge key” and would potentially be able to distinguish the key
from random when, e.g.,, the decrypted message follows the expected format of a
protocol message.

Lastly, we require in the pMSKE model that unauthenticated stages and responder
in unilaterally authenticated stages can only be tested if they have a contribu-
tive partner. We capture this using the rectified authentication level introduced
by Dowling, Fischlin, Günther, and Stebila [DFGS21]. To that end, we define
𝜋 𝑖
𝑢.𝑟𝑒𝑐𝑡_𝑎𝑢𝑡ℎ𝑠 for a stage 𝑠 and a session 𝜋 𝑖

𝑢 as follows:

𝜋 𝑖
𝑢.𝑟𝑒𝑐𝑡_𝑎𝑢𝑡ℎ𝑠 ≔

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

mutual if 𝑠𝑡𝑎𝑔𝑒 ≥ 𝑎𝑢𝑡ℎ𝑠,2 ∧ corrupted ≥ accepted[𝑎𝑢𝑡ℎ𝑠,2]
unilateral if 𝑠𝑡𝑎𝑔𝑒 ≥ 𝑎𝑢𝑡ℎ𝑠,1 ∧ corrupted ≥ accepted[𝑎𝑢𝑡ℎ𝑠,1]
unauth otherwise

where 𝑠𝑡𝑎𝑔𝑒 = 𝜋 𝑖
𝑢.𝑠𝑡𝑎𝑔𝑒, 𝑎𝑢𝑡ℎ𝑠,1 and 𝑎𝑢𝑡ℎ𝑠,2 denote the first and second entry of

𝑎𝑢𝑡ℎ𝑠 with 𝑎𝑢𝑡ℎ𝑠 being the 𝑠-th entry of 𝜋 𝑖
𝑢 intended authentication type 𝜋 𝑖

𝑢.𝑎𝑢𝑡ℎ,

52



5.4 Security Game

Test(𝑢, 𝑖, 𝑠)

1 ∶ time ≔ time + 1
2 ∶ 𝐢𝐟 𝜋 𝑖

𝑢 = ⊥ ∨ 𝜋 𝑖
𝑢.accepted[𝑠] = ∞ ∨ 𝜋 𝑖

𝑢.tested[𝑠] ≠ ∞ 𝐭𝐡𝐞𝐧
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ⊥
4 ∶ // Internal keys can only be tested before use

5 ∶ 𝐢𝐟 INT[𝑠] ∧ ∃𝜋𝑗
𝑣 ∶ 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠] = 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠] ∧ 𝜋𝑗

𝑣 .accepted[𝑠] < ∞
6 ∶ ∧ 𝜋𝑗

𝑣 .𝑠𝑡𝑎𝑡𝑢𝑠 ≠ accepted𝑠 𝐭𝐡𝐞𝐧
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ⊥
8 ∶ // Unauth. stages and responder in unilaterally auth. stages can only

9 ∶ // be tested with contributive partner

10 ∶ 𝐢𝐟 (𝜋 𝑖
𝑢.𝑟𝑒𝑐𝑡_𝑎𝑢𝑡ℎ𝑠 = unauth ∨ 𝜋 𝑖

𝑢.𝑟𝑒𝑐𝑡_𝑎𝑢𝑡ℎ𝑠 = unilateral

11 ∶ ∧ 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒 = responder)

12 ∶ ∧ ∄𝜋𝑗
𝑣 ≠ 𝜋 𝑖

𝑢 ∶ 𝜋 𝑖
𝑢.𝑐𝑖𝑑𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒[𝑠] = 𝜋𝑗
𝑣 .𝑐𝑖𝑑𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒[𝑠] 𝐭𝐡𝐞𝐧
13 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ⊥
14 ∶ 𝜋 𝑖

𝑢.tested[𝑠] ≔ time

15 ∶  ≔  ∪ {(𝑢, 𝑖, 𝑠)}
16 ∶ 𝑘0 ≔ 𝜋 𝑖

𝑢.𝑠𝑘𝑒𝑦[𝑠]
17 ∶ 𝑘1

$← 𝑠

18 ∶ // For internal keys, replace skey[s] of 𝜋 𝑖
𝑢 and all its partners by 𝑘𝑏

19 ∶ 𝐢𝐟 INT[𝑠] = true 𝐭𝐡𝐞𝐧
20 ∶ 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 𝜋𝑗

𝑣 ∶ 𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑠] = 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠] ∧ 𝜋𝑗
𝑣 .𝑠𝑡𝑎𝑡𝑢𝑠 = accepted𝑠 𝐝𝐨

21 ∶ 𝜋𝑗
𝑣 .𝑠𝑘𝑒𝑦[𝑠] ≔ 𝑘𝑏

22 ∶ // Store 𝑘𝑏 under 𝑠𝑖𝑑 to ensure consistency of later accepting sessions

23 ∶ int_repr[𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠]] ≔ 𝑘𝑏

24 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑘𝑏

Figure 5.5: Code of the oracle Test.

53



5 multi-stage key exchange protocols

and corrupted and accepted[𝑎𝑢𝑡ℎ𝑠,𝑖] denotes the time the owner of 𝜋 𝑖
𝑢 was corrupted

and the time 𝑎𝑢𝑡ℎ𝑠,𝑖 for 𝑖 = 1, 2 was accepted, respectively. Using this definition
ensures that the authentication level of stage 𝑠 is only upgraded to unilateral when
stage 𝑎𝑢𝑡ℎ𝑠,1 is reached and only upgraded to mutual when stage 𝑎𝑢𝑡ℎ𝑠,2 is reached
if no corruption occurred prior to these stages. Note that this only applies to
the pMSKE variant, as in the sMSKE variant, we already have mutual (implicit)
authentication via the PSK throughout.
If the query (𝑢, 𝑖, 𝑠) is eligible for testing, the oracle sets the time of𝜋 𝑖

𝑢 being tested to
the current time, and adds (𝑢, 𝑖, 𝑠) to the set  to register the tuple as “tested”. Next,
the oracle prepares two keys 𝑘0 and 𝑘1, where 𝑘0 is the real session key derived
by 𝜋 𝑖

𝑢 in stage 𝑠 and 𝑘1 is a uniformly random key. For consistency, the oracle
replaces the session key of all partners of 𝜋 𝑖

𝑢 by the challenge key 𝑘𝑏 and stores the
challenge key indexedwith 𝜋 𝑖

𝑢’s session identifier for possible later reprogramming.
See oracle Send for further detail. Finally, Test outputs the challenge key 𝑘𝑏.
Note that the code in the pMSKE and sMSKE variant for Test is identical.

Predicates. Using the Test oracle we captures the security property of key secrecy
(i.e., indistinguishability from random) by a allowing the adversary to adaptively query a
“real-or-random challenge” for various pairs of session and stage. However, the security
of the protocol can not only be broken by distinguishing a session key from a random
key, but also by violating other aspects of the protocol. To this end, we define predicates
Sound, ExplAuth, and Fresh that are used in the security games for pMSKE and sMSKE to
determine the final output of the game. Here, the adversary breaks the security of the
protocol and thus winning the game if it is able to violate either the Sound or ExplAuth
predicate, and the final guess 𝑏′ of the challenge bit 𝑏 output by the adversary is only
considered valid if the Fresh predicate is satisfied. These predicates are defined as follows.

• Sound: The predicate Sound shown in Figure 5.6 captures that session identifiers
identify partnered session as indented. In detail, this includes the following prop-
erties:

1. Partnered session share the same key.
2. Partnered sessions have different roles in non-replayable stages.
3. Partnered sessions agree on the authentication type.
4. Partnered sessions agree on their contributive identifiers.
5. Partnered sessions agree on their authenticated partner.
6. The session identifier does not match across different stages.
7. For all non-replayable stages, there are at most two sessions partnered.

Note that the code of the predicate is almost identical for the pMSKE and sMSKE
variant. The only difference is that in the sMSKE we additionally require in Prop-
erty 5 that partners in mutually authenticated stages (which holds for every stage
in sMSKE because of the PSK) agree on the PSK identifier.

54



5.4 Security Game

Sound

1 ∶ // Partnering ⟹ same key

2 ∶ 𝐢𝐟 ∃𝜋 𝑖
𝑢 ≠ 𝜋𝑗

𝑣 , 𝑠 ∶ 𝜋 𝑖
𝑢.accepted[𝑠] < ∞ ∧ 𝜋𝑗

𝑣 .accepted[𝑠] < ∞
3 ∶ ∧ 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑠] ≠ ⊥ ∧ 𝜋 𝑖

𝑢.𝑠𝑘𝑒𝑦[𝑠] ≠ 𝜋𝑗
𝑣 .𝑠𝑘𝑒𝑦[𝑠] 𝐭𝐡𝐞𝐧

4 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

5 ∶ // Partnering ⟹ different roles (in non-replayable stages)

6 ∶ ∃𝜋 𝑖
𝑢 ≠ 𝜋𝑗

𝑣 , 𝑠 with 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠] ≠ ⊥ ∧ 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒 = 𝜋𝑗

𝑣 .𝑟𝑜𝑙𝑒
7 ∶ ∧ (REPLAY[𝑠] = false ∨ 𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒 = initiator) 𝐭𝐡𝐞𝐧
8 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

9 ∶ // Partnering ⟹ same authentication type

10 ∶ 𝐢𝐟 ∃𝜋 𝑖
𝑢 ≠ 𝜋𝑗

𝑣 , 𝑠 ∶ 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠] ≠ ⊥ ∧ 𝜋 𝑖
𝑢.𝑎𝑢𝑡ℎ𝑠 ≠ 𝜋𝑗

𝑣 .𝑎𝑢𝑡ℎ𝑠 𝐭𝐡𝐞𝐧
11 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

12 ∶ // Partnering ⟹ agreement on contributive ids

13 ∶ 𝐢𝐟 ∃𝜋 𝑖
𝑢 ≠ 𝜋𝑗

𝑣 , 𝑠 ∶ 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠] ≠ ⊥ ∧ (𝜋 𝑖
𝑢.𝑐𝑖𝑑 initiator[𝑠] ≠ 𝜋𝑗

𝑣 .𝑐𝑖𝑑 initiator[𝑠]
14 ∶ ∨ 𝜋 𝑖

𝑢.𝑐𝑖𝑑responder[𝑠] ≠ 𝜋𝑗
𝑣 .𝑐𝑖𝑑responder[𝑠]) 𝐭𝐡𝐞𝐧

15 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

16 ∶ // Partnering ⟹ agreement on authenticated partner

17 ∶ 𝐢𝐟 ∃𝜋 𝑖
𝑢 ≠ 𝜋𝑗

𝑣 , 𝑠 ≤ 𝑡 ∶ 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒 = initiator ∧ 𝜋𝑗

𝑣 .𝑟𝑜𝑙𝑒 = responder

18 ∶ ∧ 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠] ≠ ⊥ ∧ 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑡] = 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑡] ≠ ⊥
19 ∶ ∧ ([𝜋 𝑖

𝑢.𝑎𝑢𝑡ℎ𝑠,1 ≤ 𝑡 ∧ 𝜋 𝑖
𝑢.𝑝𝑖𝑑 ≠ 𝑣]

20 ∶ ∨ [𝜋 𝑖
𝑢.𝑎𝑢𝑡ℎ𝑠,2 ≤ 𝑡 ∧ (𝜋𝑗

𝑣 .𝑝𝑖𝑑 ≠ 𝑢 ∨ 𝜋 𝑖
𝑢.𝑝𝑠𝑘𝑖𝑑 ≠ 𝜋𝑗

𝑣 .𝑝𝑠𝑘𝑖𝑑)]) 𝐭𝐡𝐞𝐧
21 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

22 ∶ // Different stages do not share a session id

23 ∶ 𝐢𝐟 ∃𝜋 𝑖
𝑢, 𝜋

𝑗
𝑣 , 𝑠 ≠ 𝑡 ∶ 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑡] ≠ ⊥ 𝐭𝐡𝐞𝐧

24 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

25 ∶ // In non-replayable stages, there are at most two sessions partnered

26 ∶ 𝐢𝐟 ∃𝑠, pairwise distinct 𝜋 𝑖
𝑢, 𝜋

𝑗
𝑣 , 𝜋

𝑘
𝑤 with 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑠] = 𝜋𝑘

𝑤.𝑠𝑖𝑑[𝑠] ≠ ⊥
27 ∶ ∧ REPLAY[𝑠] = false 𝐭𝐡𝐞𝐧
28 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

29 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 true

Figure 5.6: Code of predicate Sound. Code marked with is only present in the sMSKE
variant. The rest is identical in both the pMSKE and sMSKE variant.

55



5 multi-stage key exchange protocols

• Fresh: The predicate Fresh shown in Figure 5.7 captures whether the adversary
behaved correctly during the execution of the security experiment. In particular,
it captures whether the adversary tested any session for which the challenge is
trivially distinguishable. This occurs if the adversary tests a session on a stage and
reveals the session key of that stage at any point in time.
Note that the predicate in the pMSKE and sMSKE only differs in the syntax of how
long-term key reveal is measured. Namely, in pMSKE, we need to check whether
the session owner’s secret key has been revealed. Whereas, in sMSKE, we need to
check whether the session’s PSK has been revealed.

• ExplAuth: The predicate ExplAuth shown in Figure 5.8 captures whether the ad-
versary breaks the explicit authentication during the execution of the security
experiment. Explicit authentication is broken if there is a session that maliciously
accepts in a stage and a role at which explicit authentication is supposed to be
established. Here, malicious acceptance means that a session accepts a stage that
establishes explicit authentication with an uncorrupted peer, but there is no honest
partner session. For corrupted peers we expect the adversary to trivially make a
session accept without an honest partner.
Note that the code of predicate ExplAuth in pMSKE and in sMSKE only differs in
how long term key reveal is measured and that in sMSKE the partnered session also
needs to share the same PSK captured by agreement on the PSK identifier (Line 13).

Games. Now that we have defined all oracles and all predicates, we are prepared to
define the security games. We define MSKE in two variants: the first variant is pMSKE,
which refers to the public key variant, and the second one is sMSKE, which refers to
the pre-shared key variant, following [DFGS21]. The public key variant, adapts the
code-based pre-shared key variant from [DDGJ22b] to the public key setting. The two
security games only differ in the oracles the adversary is provided with and the exact
implementation of the oracle depending of theMSKE variant as discussed in the definition
of the oracles above. The final pMSKE model can also be seen as an adaptation of the
code-based game of [DG21a] into the multi-stage setting.

Definition 5.2 (Public-keyMSKE). LetKE be a pMSKE protocolwith properties (STAGES,
AUTH, FS, INT,REPLAY). We define the advantage of an adversary in breaking pMSKE-
security of KE as

AdvpMSKE
KE () ≔ 2 ⋅ Pr[ExppMSKE

KE () = 1] − 1

where ExppMSKE
KE () is defined in Figure 5.9.

Definition 5.3 (Pre-Shared Key MSKE). Let KE be a MSKE protocol with properties
(STAGES,AUTH, FS, INT,REPLAY). We define the advantage of an adversary in break-
ing sMSKE-security of KE as

AdvsMSKE
KE () ≔ 2 ⋅ Pr[ExpsMSKE

KE () = 1] − 1

where ExpsMSKE
KE () is defined in Figure 5.10.

56



5.4 Security Game

Fresh

1 ∶ 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 (𝑢, 𝑖, 𝑠) ∈  𝐝𝐨
2 ∶ 𝑡test ≔ 𝜋 𝑖

𝑢.tested[𝑠]
3 ∶ // Tested sessions not revealed

4 ∶ 𝐢𝐟 𝜋 𝑖
𝑢.revealed[𝑠] < ∞ 𝐭𝐡𝐞𝐧

5 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

6 ∶ // Partners of tested session may neither be tested nor revealed

7 ∶ 𝐢𝐟 ∃𝜋𝑗
𝑣 ≠ 𝜋 𝑖

𝑢 ∶ 𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑠] = 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠] ∧ (𝜋𝑗
𝑣 .tested[𝑠] ∨ 𝜋𝑗

𝑣 .revealed[𝑠]) 𝐭𝐡𝐞𝐧
8 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

9 ∶ // Sessions tested on forward secret stages are fresh if corrupted

10 ∶ // after fs was achieved or if they have a contributive partner

11 ∶ 𝐢𝐟 𝜋 𝑖
𝑢.accepted[FS[𝜋

𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠, fs]] < 𝑡test 𝐭𝐡𝐞𝐧

12 ∶ 𝐢𝐟 revsk[𝜋 𝑖
𝑢.𝑝𝑖𝑑] ∣ revpsk[𝑢, 𝜋 𝑖

𝑢.𝑝𝑖𝑑, 𝜋 𝑖
𝑢.𝑝𝑠𝑘𝑖𝑑]

13 ∶ < 𝜋 𝑖
𝑢.accepted[FS[𝜋

𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠, fs]]

14 ∶ ∧ ∄𝜋𝑗
𝑣 ≠ 𝜋 𝑖

𝑢 ∶ 𝜋 𝑖
𝑢.𝑐𝑖𝑑𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒[FS[𝜋
𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠, fs]]

15 ∶ = 𝜋𝑗
𝑣 .𝑐𝑖𝑑𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒[FS[𝜋
𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠, fs]] 𝐭𝐡𝐞𝐧

16 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

17 ∶ // Sessions tested on wfs2 stages are fresh if never corrupted

18 ∶ // or if they have a contributive partner

19 ∶ 𝐞𝐥𝐬𝐞𝐢𝐟 𝜋 𝑖
𝑢.accepted[FS[𝜋

𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠,wfs2]] < 𝑡test 𝐭𝐡𝐞𝐧

20 ∶ 𝐢𝐟 revsk[𝜋 𝑖
𝑢.𝑝𝑖𝑑] ∣ revpsk[𝑢, 𝜋 𝑖

𝑢.𝑝𝑖𝑑, 𝜋 𝑖
𝑢.𝑝𝑠𝑘𝑖𝑑] < ∞

21 ∶ ∧ ∄𝜋𝑗
𝑣 ≠ 𝜋 𝑖

𝑢 ∶ 𝜋 𝑖
𝑢.𝑐𝑖𝑑𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒[FS[𝜋
𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠,wfs2]]

22 ∶ = 𝜋𝑗
𝑣 .𝑐𝑖𝑑𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒[FS[𝜋
𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠,wfs2]] 𝐭𝐡𝐞𝐧

23 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

24 ∶ // Session on non-fs stages are fresh if never corrupted.

25 ∶ 𝐞𝐥𝐬𝐞𝐢𝐟 revsk[𝜋 𝑖
𝑢.𝑝𝑖𝑑] ∣ revpsk[𝑢, 𝜋 𝑖

𝑢.𝑝𝑖𝑑, 𝜋 𝑖
𝑢.𝑝𝑠𝑘𝑖𝑑] < ∞ 𝐭𝐡𝐞𝐧

26 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 false

27 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 true

Figure 5.7: Code of predicate Fresh. Code marked with 𝑥 ∣ 𝑦 indicates that 𝑥 is only
present in the pMSKE variant and 𝑦 is only present in the sMSKE variant.

57



5 multi-stage key exchange protocols

ExplAuth

1 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ∀(𝜋 𝑖
𝑢, 𝑠) ∶

2 ∶ 𝑠′ ← EAUTH[𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒, 𝑠]

3 ∶ // Sessions accepting in explicitly authenticated stages

4 ∶ // that were not corrupted before acceptance of the stage

5 ∶ // at which explicit authentication was (perhaps

6 ∶ // retroactively) established...

7 ∶ 𝜋 𝑖
𝑢.accepted[𝑠] < ∞ ∧ 𝜋 𝑖

𝑢.accepted[𝑠
′] < ∞

8 ∶ ∧ 𝜋 𝑖
𝑢.accepted[𝑠

′] < revsk[𝜋 𝑖
𝑢.𝑝𝑖𝑑] ∣ revpsk[𝑢, 𝜋 𝑖

𝑢.𝑝𝑖𝑑, 𝜋 𝑖
𝑢.𝑝𝑠𝑘𝑖𝑑]

9 ∶ // are partnered

10 ∶ ⟹ ∃𝜋𝑗
𝑣 ∶ 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠
′] = 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠
′]

11 ∶ // with the intended peer

12 ∶ ∧ 𝜋 𝑖
𝑢.𝑝𝑖𝑑 = 𝑣

13 ∶ ∧ 𝜋 𝑖
𝑢.𝑝𝑠𝑘𝑖𝑑 = 𝜋𝑗

𝑣 .𝑝𝑠𝑘𝑖𝑑
14 ∶ // and are also partnered (upon acceptance) in the stage that

15 ∶ // (perhaps retroactively) got expl. auth.

16 ∶ ∧ (𝜋𝑗
𝑣 .accepted[𝑠] < ∞ ⟹ 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠] = 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠])

17 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 true

Figure 5.8: Code of predicate ExplAuth. Code marked with 𝑥 ∣ 𝑦 indicates that 𝑥 is only
present in the pMSKE variant and 𝑦 is only present in the sMSKE variant, while code

marked only is only present in sMSKE and omitted in pMSKE.

ExppMSKE
KE ()

1 ∶ time ≔ 0; users ≔ 0; 𝑏 $← {0, 1}

2 ∶ 𝑏′ $← NewUser,Send(⋅,⋅,⋅),RevSessionKey(⋅,⋅,⋅),RevLongTermKey(⋅),Test(⋅,⋅,⋅)

3 ∶ 𝐢𝐟 ¬Sound ∨ ¬ExplAuth 𝐭𝐡𝐞𝐧
4 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 1
5 ∶ 𝐢𝐟 ¬Fresh 𝐭𝐡𝐞𝐧
6 ∶ 𝑏′ ≔ 0
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑏 = 𝑏′)

Figure 5.9: Code of the pMSKE game.

58



5.5 Multi-stage Session Matching

ExpsMSKE
KE ()

1 ∶ time ≔ 0; 𝑏 $← {0, 1}

2 ∶ 𝑏′ $← NewSecret(⋅,⋅,⋅),Send(⋅,⋅,⋅),RevSessionKey(⋅,⋅,⋅),RevLongTermKey(⋅,⋅,⋅),Test(⋅,⋅,⋅)

3 ∶ 𝐢𝐟 ¬Sound ∨ ¬ExplAuth 𝐭𝐡𝐞𝐧
4 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 1
5 ∶ 𝐢𝐟 ¬Fresh 𝐭𝐡𝐞𝐧
6 ∶ 𝑏′ ≔ 0
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑏 = 𝑏′)

Figure 5.10: Code of the sMSKE game.

5.5 Multi-stage Session Matching

The notion of (public) session matching was considered by numerous works when it
comes to the composition of a key exchange protocol and an symmetric-key protocol (e.g.,
a channel protocol). Brzuska, Fischlin, Warinschi, and Williams [BFWW11] used this
notion for the composition of “single-stage” key exchange protocols secure in the Bellare–
Rogaway [BR94] model. This was extended for the multi-stage setting by Dowling,
Fischlin, Günther, and Stebila [DFGS15] and Günther [Gün18]. We recall the definition
of a multi-stage session matching algorithm stated by Günther [Gün18].

Definition 5.4. Let Π ∈ {pMSKE, sMSKE}. Let be any adversary interacting in the ex-
periment ExpΠKE(). We say an algorithm is a multi-stage session matching algorithm
if the following holds. On input a stage 𝑖, the public information of the experiment, an
ordered list of all queries made by and responses from ExpΠKE() at any point of the
experiment execution, as well as a list of all stage-𝑗 keys with 𝑗 < 𝑖 for all session ac-
cepted at this point, algorithm outputs two lists of pairs of all session in stage 𝑖. Here,
the first list contains exactly those pairs of sessions that are partnered (i.e., they share
the same session identifier 𝑠𝑖𝑑𝑖). The second list contains exactly those pairs of sessions
that are contributively partnered (i.e., they share the same contributive identifier 𝑐𝑖𝑑𝑖).

Note that the session matching algorithms can be run at any point of the execution of
the key exchange protocol.

59





6
transport layer security
handshake protocol

Contents

6.1 HMAC and HKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1.1 HMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 HKDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Omitted Features of TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 TLS 1.3 Full (EC)DHE Handshake . . . . . . . . . . . . . . . . . . . . . . 65
6.5 TLS 1.3 PSK-only/PSK-(EC)DHE Handshake . . . . . . . . . . . . . . . . 72

In this chapter, we describe the cryptographic core of the TLS 1.3 handshake protocol
standardized as RFC 8446 [Res18]. The handshake protocol comes in two major modes:

1. the full one round-trip time (1-RTT) (EC)DHE handshake, and

2. the (abbreviated) pre-shared key (PSK) handshake with optional zero round-trip
time (0-RTT) data.

In Section 6.4, we focus on the description of the full handshake and in Section 6.5 we
focus on the description of the PSK mode. Before we describe the two handshakes, we
first introduce in Section 6.1 the two important building blocks of the handshake, HMAC

and HKDF, clarify our view on the handshake, particularly, which features of TLS we
are not considering in Section 6.2, and introduce specific notation for the presentation
of the handshakes in Section 6.3.

6.1 HMAC and HKDF

In this section, we recap the definitions of the functions HMAC and HKDF. These two
functions are an important building block of the TLS 1.3 handshake protocol. HKDF

is the main building block of the TLS 1.3 key schedule [Res18, Sect. 7.1], which is the

61



6 transport layer security handshake protocol

key derivation procedure of TLS 1.3, and it is build from HMAC. Additionally, HMAC is
used as a MAC scheme (Section 4.3) in TLS 1.3. For further detail, we refer to the reader
description of the TLS 1.3 handshake protocol presented in Sections 6.4 and 6.5.

6.1.1 HMAC

A prominent example of a deterministic MAC is HMAC [BCK96, KBC97]. It is based on
a cryptographic hash function 𝐻 (Section 4.1) and it is defined as follows: Let 𝐻 be a
cryptographic hash function with output length 𝜆 ∈ N and let be 𝜅 ∈ N (called the key
length).

Key generation. Algorithm HMAC.Gen chooses a key 𝑘 $← {0, 1}𝜅 and returns 𝑘.

Tagging. Algorithm HMAC.Tag on input a key 𝑘 and a message 𝑚 returns

𝑡 ≔ 𝐻((𝑘 ⊕ opad) ‖ 𝐻((𝑘 ⊕ ipad) ‖ 𝑚)),

where opad and ipad are according to RFC 2104 [KBC97] the bytes 0x5c and 0x36
repeated 𝐵-times, respectively, for block size 𝐵 (in bytes) of the hash function 𝐻 .

Verification. Algorithm HMAC.Vrfy on input a key 𝑘, a message 𝑚 and a tag 𝑡 returns
1 if and only if 𝑡 = HMAC.Tag(𝑘, 𝑚).

Remark 6.1. The key 𝑘 is padded with zeroes to match the block size 𝐵. If key 𝑘 should
be larger than the block size 𝐵, then it is compressed using the hash function and then
padded to the right length as before. In this work, we only consider keys smaller than
the block size, so that an additional hashing operation is not required.
Remark 6.2. In this thesis, we often refer to the HMAC function. As HMAC is not only a
MAC scheme, but also can be viewed as a PRF (cf. [BCK96, Bel06, Bel15]). Therefore, we
also define

HMAC(𝑘, 𝑚) ≔ 𝐻((𝑘 ⊕ opad) ‖ 𝐻((𝑘 ⊕ ipad) ‖ 𝑚)).

6.1.2 HMAC-based Extract-and-Expand Key Derivation Function
(HKDF)

The core of the TLS 1.3 key derivation [Res18, Sect. 7.1] is the key derivation func-
tion (KDF) HKDF proposed by Krawczyk [Kra10b, Kra10a] and standardized in RFC
5869 [KE10]. It follows the extract-and-expand [Kra10a] paradigm and is based on HMAC.
The algorithm consists of two subroutines HKDF.Extract and HKDF.Expand. The function
HKDF.Extract is a randomness extractor [NT99, NZ96] that on input a (non-secret and
possibly fixed) extractor salt 𝑥𝑡𝑠 and a (not necessarily uniformly distributed) source key
material 𝑠𝑘𝑚 outputs a pseudorandom key 𝑝𝑟𝑘. The function HKDF.Expand is a variable
output length PRF1 that on input 𝑝𝑟𝑘, (potentially empty) context information 𝑐𝑡𝑥 and
length parameter 𝐿 outputs a pseudorandom key 𝑘𝑚 of length 𝐿. That is, HKDF.Expand
intuitively expands the input key 𝑝𝑟𝑘 to length 𝐿.

1A variable output length PRF is a variant of the PRFs introduced in Section 4.2. Informally, this primitive
takes the desired output length as input and outputs a pseudorandom string of the desired length.

62



6.2 Omitted Features of TLS

Construction. Intuitively, HKDF derives a pseudorandom key (i.e., indistinguishable
from a uniformly sampled key) from some source key material and then expands this
pseudorandom key to the desired length. Formally, we have the following construction,
which is based on the HMAC function (cf. Section 6.1.1 and Remark 6.2).

1. 𝑝𝑟𝑘 ≔ HKDF.Extract(𝑥𝑡𝑠, 𝑠𝑘𝑚) = HMAC(𝑥𝑡𝑠, 𝑠𝑘𝑚)

2. 𝑘𝑚 = 𝐾(1) ‖ ⋯ ‖ 𝐾(𝜔) ≔ HKDF.Expand(𝑝𝑟𝑘, 𝑐𝑡𝑥, 𝐿), where 𝜔 ≔ ⌈𝐿/𝜆⌉, 𝜆 is the
output length of the underlying hash function used inHMAC and𝐾(𝑖) is inductively
defined by

• 𝐾(1) ≔ HMAC(𝑝𝑟𝑘, 𝑐𝑡𝑥 ‖ 0x01), and

• 𝐾(𝑖) ≔ HMAC(𝑝𝑟𝑘, 𝐾(𝑖 − 1) ‖ 𝑐𝑡𝑥 ‖ ⟨𝑖⟩) for 2 ≤ 𝑖 ≤ 𝜔 and ⟨𝑖⟩ denotes the
encoding of the integer 𝑖 + 1 in a single byte2.

𝐾(𝜔) is simply truncated to the first (𝐿 mod 𝜆) bits to get the desired length 𝐿.

We overload notation to denote by HKDF.Expand(𝑝𝑟𝑘, 𝑐𝑡𝑥) the function described above
for a fixed length parameter 𝐿 that is clear from the context.
Even though we never use it in that way, we denote by the function HKDF the ex-

ecution of the functions HKDF.Extract and HKDF.Expand in sequence. That is, on in-
put (𝑥𝑡𝑠, 𝑠𝑘𝑚, 𝑐𝑡𝑥, 𝐿) it computes 𝑝𝑟𝑘 ≔ HKDF.Extract(𝑥𝑡𝑠, 𝑠𝑘𝑚) and outputs 𝑘𝑚 with
𝑘𝑚 ≔ HKDF.Expand(𝑝𝑟𝑘, 𝑐𝑡𝑥, 𝐿).

6.2 Omitted Features of TLS

The cryptographic core of the TLS 1.3 handshake protocol we are considering in this
thesis is a similar abstraction of the TLS handshake as in previous computational analyses
of TLS 1.3 [DFGS21] and its predecessor TLS 1.2 (e.g., [JKSS12, KPW13]). In detail, we
omit the following features.

Version negotiation. The standard allows clients to provide a list of supported TLS
versions (via the supported_versions extension [Res18, Sect. 4.2.1]) so that prior
TLS versions might be negotiated in case the server does not support TLS 1.3. This
feature is out of scope of this work. We only consider negotiation of TLS 1.3. In
particular, this means that we omit backward compatability features supported
by the TLS 1.3 standard. Version negotiation and backward compatability was
considered in [Bha+16, DS15].

Algorithm negotiation. TLS allows the client to present a selection of different cipher
suites (i.e., pairs of authenticated encryption with associated data (AEAD) algo-
rithm and hash algorithm; cf. [Res18, App. B.4]) from which the server selects its
preferred one. The same holds for the DH group and signature algorithm used in
some modes. However, the negotiation of these parameters is out of scope in this

2 Note that this implies 𝐿 ≤ 255 ⋅ 𝜆.

63



6 transport layer security handshake protocol

work. We consider a selection of algorithms fixed once and for all before the proto-
col starts. This means our view captures all possible combinations of algorithms in
every handshake mode, however we only consider each configuration in isolation.

*Hello extensions. The initial messages of the client and the server are called the
ClientHello and ServerHello message, respectively, and allow for various ex-
tensions to be appended. These are, for example, used to negotiate supported
versions, supported signature algorithms, etc. For details, we refer the reader to
the specification [Res18, Sect. 4.2]. As most of the features are omitted in this
work, we also omit the corresponding extensions. We only include the extensions
that are mandatory for the negotiation of the cryptographic keys and explicitly
mention the extensions appended in the protocol descriptions below.

Post-handshake messages. TLS allows for some messages to be sent after the main
handshake (as we present it below). These message are defined in [Res18, Sect. 4.6]
and include messages to issue a session ticket to define a new PSK, for post-
handshake authentication and to notify the communication partner that a key
update occurs. We cover neither of these messages in this work. Nevertheless, we
briefly discuss the post-handshake session ticket in Section 6.5 to illustrate how
PSKs are exchanged, but do not include the exchange of the respective message
in our analyses. Post-handshake authentication allows the server to request client
authentication (via certificate) at any point in time after the handshake has been
completed. This requires that the client has sent the post_handshake_auth ex-
tension. We do not cover post-handshake client-authentication in this work and
only cover either unilateral or mutual authentication during the (full) handshake
via certificates.

Record layer protocol. In this section, we solely focus on the TLS 1.3 handshake proto-
col and do not cover the secure channel of the TLS 1.3 record layer protocol [Res18,
Sect. 5]. We briefly discuss the record layer protocol in Chapter 11.

Alert protocol. The TLS 1.3 alert protocol [Res18, Sect. 6] handles closure and error
information by defining a specific Alert content type of messages. In this work,
we exclude the alert protocol from our view entirely.

6.3 Notation

Next, we introduce notation that we use in the description of two handshake variants in
the following Sections 6.4 and 6.5. In the sequel, we denote the used AEAD scheme by
AEAD, the hash algorithm by𝐇, the DH group byG and the signature scheme by Sig. The
output length of the hash function 𝐇 is denoted by 𝜆 ∈ N, i.e., 𝐇∶ {0, 1}∗ → {0, 1}𝜆, and
the prime order of the group G is denoted by 𝑝. TLS 1.3 makes use of its hash function
in various ways. It is used to condense transcripts, as a subroutine to derive keys, and as
a subroutine of the message authentication code computed during the handshake. We
define the following three subroutines used in the TLS 1.3 handshake:

64



6.4 TLS 1.3 Full (EC)DHE Handshake

• The message authentication code𝐌𝐀𝐂 with

𝐌𝐀𝐂∶ {0, 1}𝜆 × {0, 1}∗ → {0, 1}𝜆, (𝑘, 𝑚) ↦ HMAC[𝐇](𝑘, 𝑚)

using the hash function 𝐇 in HMAC (Section 6.1.1).
• The functions 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝 used in the key schedule with

𝐄𝐱𝐭𝐫𝐚𝐜𝐭∶ {0, 1}𝜆 × {0, 1}∗ → {0, 1}𝜆, (𝑘, 𝑚) ↦ HKDF.Extract(𝑘, 𝑚),

and

𝐄𝐱𝐩𝐚𝐧𝐝∶ {0, 1}𝜆 × {0, 1}∗ × N → {0, 1}𝜆, (𝑘, 𝑚, 𝐿) ↦ HKDF.Expand(𝑘, 𝑚, 𝐿).

Here, HKDF.Extract and HKDF.Expand (Section 6.1.2) are instantiated with 𝐌𝐀𝐂
(resp. HMAC[𝐇]). For almost every application of 𝐄𝐱𝐩𝐚𝐧𝐝 (except the traffic key
derivations) the output length parameter 𝐿 is equal to the output length 𝜆 of the
hash function. If not explicitly given, we omit 𝐿 and set it implicitly to 𝐿 = 𝜆. In
this case, it holds that 𝐄𝐱𝐩𝐚𝐧𝐝(𝑘, 𝑚) = 𝐌𝐀𝐂(𝑘, 𝑚 ‖ 0x01).
The secrets derived (cf. Table 6.1) during the handshake are in the standard [Res18]
defined by calls of the form

Value = 𝐄𝐱𝐩𝐚𝐧𝐝(Secret, HkdfLabel, Length),

where Secret is the base secret Value is derived from, HkdfLabel = Length ‖
"tls13 " ‖ Label ‖ Context, and Length is the output length of the cipher suite
hash algorithm 𝜆 for all calls of 𝐄𝐱𝐩𝐚𝐧𝐝 in the TLS handshakes. For simplicity, we
cut the constant overhead ofLength‖"tls13 " and only considerLabel‖Context
as input to 𝐄𝐱𝐩𝐚𝐧𝐝. Table 6.1 shows the values of base secret Secret, label Label,
and context (hash) Context used during the handshake to derive secret Value.

Note that the definition of 𝐇, 𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝 closely reflects the TLS 1.3
standard [Res18] despite the different naming. This abstraction is only conceptual and
aims to highlight which parts of the handshake make use of the hash function. In our
analysis, we model the hash function as a random oracle and this abstraction helps to
separate each use of the hash function precisely, and this is discussed in more detail
in Chapter 7.

6.4 TLS 1.3 Full (EC)DHE Handshake

The full TLS 1.3 (EC)DHE handshake protocol is depicted in Figure 6.1. An overview of
labels and transcript hashes used to derive the secrets during the handshake is given in
Table 6.1 and an overview of the information used to derive the authentication messages
(i.e., signatures and finished tags) is given in Table 6.2.

In the following, we describe the messages exchanged during the handshake in detail.
We use the terminology used in the specification RFC8446 [Res18]. For further detail,
we also refer to this specification.

65



6 transport layer security handshake protocol

Client (𝑝𝑘𝐶 , 𝑠𝑘𝐶) Server (𝑝𝑘𝑆 , 𝑠𝑘𝑆)

ClientHello: 𝑟𝐶
$← {0, 1}256

+ ClientKeyShare: 𝑋 ≔ 𝑔𝑥 with 𝑥 $← Z𝑝

𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 0)

ServerHello: 𝑟𝑆
$← {0, 1}256

+ ServerKeyShare: 𝑌 ≔ 𝑔𝑦 with 𝑦 $← Z𝑝

𝑍 ≔ 𝑌 𝑥 𝑍 ≔ 𝑋 𝑦

𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑍)

ℎ𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁4 ‖ 𝐻3)
ℎ𝑡𝑘𝐶 ≔ DeriveTK(ℎ𝑡𝑠𝐶) End of Stage 1

ℎ𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁5 ‖ 𝐻3)
ℎ𝑡𝑘𝑆 ≔ DeriveTK(ℎ𝑡𝑠𝑆) End of Stage 2

{EncryptedExtensions}
{CertificateRequest∗}

{ServerCertificate}: 𝑆, 𝑝𝑘𝑆
{ServerCertificateVerify}: 𝜎𝑆

$← Sig.Sign(𝑠𝑘𝑆 , 𝓁13 ‖ 𝐻8)
𝑓 𝑘𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝑆 , 𝓁6, 𝜆)

{ServerFinished}: 𝑓 𝑖𝑛𝑆 ≔ 𝐌𝐀𝐂(𝑓 𝑘𝑆 , 𝐻4)

Abort if Sig.Vrfy(𝑝𝑘𝑆 , 𝓁13 ‖ 𝐻8, 𝜎𝑆) ≠ 1 or 𝑓 𝑖𝑛𝑆 ≠ 𝐌𝐀𝐂(𝑓 𝑘𝑆 , 𝐻4)
𝑠𝑎𝑙𝑡𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁3 ‖ 𝐻0)
𝑚𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡𝑚𝑠 , 0)

𝑎𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁7 ‖ 𝐻5) End of Stage 3
𝑎𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁8 ‖ 𝐻5) End of Stage 4
𝑒𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁9 ‖ 𝐻5) End of Stage 5

{ClientCertificate∗}: 𝐶, 𝑝𝑘𝐶
{ClientCertificateVerify∗}: 𝜎𝐶

$← Sig.Sign(𝑠𝑘𝐶 , 𝓁14 ‖ 𝐻9)
𝑓 𝑘𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝐶 , 𝓁6)

{ClientFinished}: 𝑓 𝑖𝑛𝐶 ≔ 𝐌𝐀𝐂(𝑓 𝑘𝐶 , 𝐻6)

Abort if Sig.Vrfy(𝑝𝑘𝐶 , 𝓁14 ‖ 𝐻9, 𝜎𝐶) ≠ 1 or 𝑓 𝑖𝑛𝐶 ≠ 𝐌𝐀𝐂(𝑓 𝑘𝐶 , 𝐻6)
𝑟𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁10 ‖ 𝐻7) End of Stage 6

Figure 6.1: TLS 1.3 full (EC)DHE handshake. Every TLS handshake message is denoted
as “MSG∶ 𝐶”, where 𝐶 denotes the message’s content. Similarly, an extension is denoted
by “+ MSG∶ 𝐶”. Further, we denote by “{MSG}∶ 𝐶” messages containing 𝐶 and being
AEAD-encrypted under the handshake traffic key ℎ𝑡𝑘. A message “MSG∗” is an optional,
resp. context-dependent message. Centered computations are executed by both client and
server with their respective messages received, and possibly at different points in time.

66



6.4 TLS 1.3 Full (EC)DHE Handshake

Table 6.1: Definition of the labels and transcript hashes used to derive the secrets using
𝐄𝐱𝐩𝐚𝐧𝐝. Themessages markedwith [⋅] are only present in the full and PSK-(EC)DHE hand-
shake. A hash𝐇(𝑚‖⋯‖𝑚′) is always over all message from𝑚 to𝑚′ inclusive, i.e., a hash is
not always computed over the same number of messages as in some modes/configurations

some intermediate message are omitted.

Value Secret Label Context (Transcript Hash)

𝑏𝑘 𝑒𝑠 𝓁0 = "ext binder"/"res binder" 𝐻0 = 𝐻(𝜀) = 𝐇("")
𝑓 𝑘B 𝑏𝑘 𝓁6 = "finished" 𝜀 = ""
𝑒𝑡𝑠 𝑒𝑠 𝓁1 = "c e traffic" 𝐻2 = 𝐇(CH ‖ [CKS] ‖ CPSK)
𝑒𝑒𝑚𝑠 𝑒𝑠 𝓁2 = "e exp master" 𝐻2 = 𝐇(CH ‖ [CKS] ‖ CPSK)

𝑠𝑎𝑙𝑡ℎ𝑠 𝑒𝑠 𝓁3 = "derived" 𝐻0 = 𝐻(𝜀) = 𝐇("")
ℎ𝑡𝑠𝐶 ℎ𝑠 𝓁4 = "c hs traffic" 𝐻3 = 𝐇(CH ‖ [CKS] ‖ SH ‖ [SKS])
ℎ𝑡𝑠𝑆 ℎ𝑠 𝓁5 = "s hs traffic" 𝐻3 = 𝐇(CH ‖ [CKS] ‖ SH ‖ [SKS])
𝑓 𝑘𝑆 ℎ𝑡𝑠𝑆 𝓁6 = "finished" 𝜀 = ""
𝑠𝑎𝑙𝑡𝑚𝑠 ℎ𝑠 𝓁3 = "derived" 𝐻0 = 𝐻(𝜀) = 𝐇("")
𝑎𝑡𝑠𝐶 𝑚𝑠 𝓁7 = "c ap traffic" 𝐻5 = 𝐇(CH ‖ ⋯ ‖ SF)
𝑎𝑡𝑠𝑆 𝑚𝑠 𝓁8 = "s ap traffic" 𝐻5 = 𝐇(CH ‖ ⋯ ‖ SF)
𝑒𝑚𝑠 𝑚𝑠 𝓁9 = "exp master" 𝐻5 = 𝐇(CH ‖ ⋯ ‖ SF)
𝑓 𝑘𝐶 ℎ𝑡𝑠𝐶 𝓁6 = "finished" 𝜀 = ""
𝑟𝑚𝑠 𝑚𝑠 𝓁10 = "res master" 𝐻7 = 𝐇(CH ‖ ⋯ ‖ SF ‖ ⋯ ‖ CF)

Table 6.2: Definition of the context string and content of the authentication messages
(signatures and finished messages). The signatures are computed with the considered
digital signature algorithm under the party’s secret key and the message signed is
Context ‖ Content. The finished messages are computed as the𝐌𝐀𝐂 of Content under
the party’s finished key. Note that messages for the transcript hashes are given for the full
handshake below. In the PSK mode, the hash values for the finished values are computed
over the same message, but all signature-related messages are omitted. The messages

marked with [⋅] are only present in the full and PSK-(EC)DHE handshake.

Auth. Msg. Context (Sig. only) Content

𝑏𝑖𝑛𝑑𝑒𝑟 — 𝐻1 = 𝐇(CH ‖ [CKS] ‖ CPSK−)
𝜎𝑆 𝓁13 = "TLS 1.3, server CertificateVerify" 𝐻8 = 𝐇(CH ‖ ⋯ ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT)
𝑓 𝑖𝑛𝑆 — 𝐻4 = 𝐇(CH ‖ ⋯ ‖ SCRT)
𝜎𝐶 𝓁14 = "TLS 1.3, client CertificateVerify" 𝐻9 = 𝐇(CH ‖ ⋯ ‖ SCV ‖ SF ‖ CCRT∗)
𝑓 𝑖𝑛𝐶 — 𝐻6 = 𝐇(CH ‖ ⋯ ‖ CCRT∗ ‖ CCV∗)

67



6 transport layer security handshake protocol

ClientHello (CH): The ClientHello message is the first message of the TLS 1.3 hand-
shake and is used by a client to initiate the protocol with a server. The message
itself contains information for the negotiation of the used version and the algo-
rithms to be used in the protocol run. Most of them are not relevant to our analysis,
because we do not consider negotiation of parameters.3 In particular, we only con-
sider the negotiation of TLS 1.3 (i.e., no negotiation of versions prior to TLS 1.3 or
backwards compatibility), and we consider the algorithms (i.e., the cipher suite) to
be fixed once and for all. As described earlier, our perspective covers all possible
combinations of groups and cipher suites, but only in isolation. Moreover, the
ClientHello message contains a field called random, which is the random nonce
chosen by the client consisting of a 256-bit value 𝑟𝐶 .

There are various extensions added to this message in the extensions field. For
our view only the key_share extension [Res18, Sect. 4.2.8] is important. We
denote this as a separate message called ClientKeyShare described next.

ClientKeyShare (CKS): The key_share extension of the ClientHello message con-
sists of the public DHE value 𝑋 chosen by the client. It is defined as 𝑋 ≔ 𝑔𝑥 ,
where 𝑥 $← Z𝑝 is the client’s private DHE exponent and 𝑔 the generator of the
considered group G. Note that if the negotiation of the group would be considered
the standard allows for the client to present multiple groups it supports and thus
also presents a key share for each of these groups. However, here it only contains
a single key share as we only consider a single group, which is fixed once and for
all before the execution of the protocol.

ServerHello (SH): In response to the ClientHello the server sends the ServerHello.
This message is structured similarly to the ClientHello message. If version and
algorithm negotiation would be considered, the server would now pick parameters
from the values presented by the client. However, in our view again only the
random field is of importance. Here, we denote the 256-bit random value chosen
by the server by 𝑟𝑆 .

As defined in the standard, the server would now pick a group among the the sup-
ported groups of the client, and responds with a key_share extension containing
its key share for the selected group. Since we do not consider negotiation, the
server does not need to pick a group, but responds with a key share for the fixed
group G. Similar to ClientKeyShare, we denote the server’s key share extension
by ServerKeyShare as a separate message.

ServerKeyShare (SKS): This message consists of the server’s public DHE value 𝑌 . It is
defined as 𝑌 ≔ 𝑔𝑦 , where 𝑦 $← Z𝑝 is the server’s private DHE exponent and 𝑔 the
generator of G.

After this message is computed the server is ready to compute the handshake traffic keys
used to encrypt the communication of the handshake from this point on. During the

3 In Section 7.5, we discuss the structure of the message much more in detail.

68



6.4 TLS 1.3 Full (EC)DHE Handshake

handshake two handshake traffic keys are derived, namely one for each direction of
communication. To this end, the server first computes the exchanged DHE key 𝑍 ≔ 𝑋 𝑦 ,
where 𝑋 is the client’s public DHE value sent in the ClientKeyShare message. Using
𝑍 , it computes the handshake secret ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑍) with 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖
𝐻0, 𝜆) and 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 0). The handshake secret is then used to derive the client
handshake traffic secret ℎ𝑡𝑠𝐶 and the server handshake traffic secret ℎ𝑡𝑠𝑆 defined as

ℎ𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁4 ‖ 𝐻3) and ℎ𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁5 ‖ 𝐻3)

with 𝐻3 = 𝐻(CH ‖ CKS ‖ SH ‖ SKS). Based on the handshake traffic secrets ℎ𝑡𝑠𝐶 and ℎ𝑡𝑘𝑆
the server derives the client handshake traffic key ℎ𝑡𝑘𝐶 and the server handshake traffic
key ℎ𝑡𝑘𝑆 as

ℎ𝑡𝑘𝐶 ≔ DeriveTK(ℎ𝑡𝑠𝐶) and ℎ𝑡𝑘𝑆 ≔ DeriveTK(ℎ𝑡𝑠𝑆).

Here, DeriveTK(𝑠) outputs (𝑘, 𝑖𝑣) with 𝑘 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑠, 𝓁11, 𝑙) and 𝑖𝑣 ∶= 𝐄𝐱𝐩𝐚𝐧𝐝(𝑠, 𝓁12, 𝑑),
where 𝑙, 𝑑 ∈ N with 𝑙 being the encryption key length and 𝑑 being the IV length of
AEAD4, respectively, and 𝓁11 = "key" and 𝓁12 = "iv". In essence, it combines the traffic
key derivation in the way that encryption key and initialization vector (IV) are now
abstracted into a single key. The function DeriveTK is not described in the specification
[Res18]. We introduce this function to tame the complexity.
Upon receiving (SH, SKS), the client performs the same computations to derive ℎ𝑡𝑘𝐶

and ℎ𝑡𝑘𝑆 (and all the intermediate values) except that it computes the DHE key as 𝑍 ≔ 𝑌 𝑥 .
All messages sent from here on are encrypted under the handshake traffic key using

AEAD. For the direction ‘server→ client’, we use the server handshake traffic key ℎ𝑡𝑘𝑆 and
for the opposite direction, we use the client handshake traffic key ℎ𝑡𝑘𝐶 . This concludes
the key exchange phase of the handshake. The next phase is the server parameter phase.

EncryptedExtensions (EE): Thismessage contains all extensions that are not required
to determine the cryptographic parameters. In previous versions, these extensions
were sent as plaintext values. In TLS 1.3, these extensions are encrypted under the
server handshake traffic key ℎ𝑡𝑘𝑆 .

CertificateRequest (CR): The CertificateRequest message is a context-depen-
dent message that may be sent by the server if it desires client authentication via
a certificate. This concludes the negotiation of server parameters.

ServerCertificate (SCRT): This message consists of the actual server certificate used
for authentication to the client initiating the authentication phase of the handshake.
Since we do not consider any PKI, we view this message as some certificate5 that
contains some server identity 𝑆 and a public key 𝑝𝑘𝑆 that is appropriate for the
signature scheme.

4 The key length is at most 256 bits and the IV length is always 96 bits (for references, see [McG08, Sect. 5],
[NL18, Sect. 2.8], and [MB12, Sect. 6.1]). That is, for all 𝜆 ∈ {256, 384} it holds 𝑙, 𝑑 ≤ 𝜆.

5 The certificate might be self-signed.

69



6 transport layer security handshake protocol

ServerCertificateVerify (SCV): To provide a “proof” that the server sending the
ServerCertificate message really is in possession of the private key 𝑠𝑘𝑆 corre-
sponding to the announced public key 𝑝𝑘𝑆 , it sends a signature

𝜎𝑆
$← Sig.Sign(𝑠𝑘𝑆 , 𝓁13 ‖ 𝐻8)

over the hash 𝐻8 of the messages sent and received so far, i.e.,

𝐻8 = 𝐻(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT).

Recall that every message marked with ∗ is an optional or context-dependent mes-
sage.
In the standard, the message signed is defined as (0x20)64 ‖ Context ‖ 0x00 ‖
Content (here: Context = 𝓁13 and Context = 𝐻8) to prevent an attack on previ-
ous versions of TLS. For further detail, we refer to the standard [Res18, Sect. 4.4.3].
We expect that this constant overhead does not change our analysis and thus drop
it for simplicity.

ServerFinished (SF): This message contains the HMAC (Section 6.1.1) value over a
hash of all handshake messages computed and received by the server. To that end,
the server derives the server finished key 𝑓 𝑘𝑆 from ℎ𝑡𝑠𝑆 as 𝑓 𝑘𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝑆 , 𝓁6).
Then, it computes the MAC

𝑓 𝑖𝑛𝑆 ≔ HMAC(𝑓 𝑘𝑆 , 𝐻4)

with 𝐻4 = 𝐻(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT ‖ SCV).

Now, the server can derive the application traffic keys. It first derives the master secret
𝑚𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡𝑚𝑠 , 0) with 𝑠𝑎𝑙𝑡𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁3 ‖ 𝐻0) from the handshake secret ℎ𝑠
derived earlier. Based on 𝑚𝑠 and the handshake transcript up to the ServerFinished
message, the client application traffic secret 𝑎𝑡𝑠𝐶 and server application traffic secret 𝑎𝑡𝑠𝑆 ,
respectively, are defined as

𝑎𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁7 ‖ 𝐻5) and 𝑎𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁8 ‖ 𝐻5)

where 𝐻5 = 𝐻(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT ‖ SCV ‖ SF). Using 𝑎𝑡𝑠𝐶 and 𝑎𝑡𝑠𝑆 , the
client application traffic key 𝑎𝑡𝑘𝐶 and server application traffic key 𝑎𝑡𝑘𝑆 is derived as

𝑎𝑡𝑘𝐶 ≔ DeriveTK(𝑎𝑡𝑠𝐶) and 𝑎𝑡𝑘𝑆 ≔ DeriveTK(𝑎𝑡𝑠𝑆)

where DeriveTK is the same function used in the derivation of ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆 .
After having derived 𝑎𝑡𝑘𝐶 and 𝑎𝑡𝑘𝑆 , the exporter master secret 𝑒𝑚𝑠 can also be derived

from themaster secret and the handshake transcript up to the ServerFinishedmessage:

𝑒𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁9 ‖ 𝐻5)

where 𝐻5 is defined above. Using 𝑎𝑡𝑘𝑆 the server can optionally already send application
data over the record layer to the client.

70



6.4 TLS 1.3 Full (EC)DHE Handshake

After receiving and decrypting of (EE, CR∗, SCRT, SCV, SF), the client first checks if the
signature and the MAC contained in the SCV message and ServerFinished message,
respectively, are valid. To that end, it retrieves the server’s public key from the SCRT
message, derives the server finished key 𝑓 𝑘𝑆 based on ℎ𝑡𝑠𝑆 , and recomputes the hashes
𝐻8 and𝐻4 with the messages it has computed and received. The client aborts the protocol
if either verification check fails. Provided the client does not abort, it derives the client
and server application traffic key 𝑎𝑡𝑘𝐶 and 𝑎𝑡𝑘𝑆 just as described above. If application
data was already sent, the client can now decrypt it using 𝑎𝑡𝑘𝑆 . Then, it prepares the
following messages.

ClientCertificate (CCRT): This message is context dependent and is only sent by
the client in response to a CertificateRequest message, i.e., if the server de-
mands client authentication. The message is structured analogously to the Server
Certificate message except that it contains a client identity 𝐶 and an appropri-
ate public key 𝑝𝑘𝐶 .

ClientCertificateVerify (CCV): This message also is context dependent and only
sent in conjunction with the ClientCertificate message. Similar to message
ServerCertificateVerify, this message contains a signature 𝜎𝐶 computed
over the hash 𝐻9 of all messages computed and received by the client so far, i.e.,
𝜎𝐶

$← Sig.Sign(𝑠𝑘𝐶 , 𝓁14 ‖ 𝐻9) with

𝐻9 = 𝐻(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT ‖ SCV ‖ SF ‖ CCRT∗).

ClientFinished (CF): The last handshakemessage is the finishedmessage of the client.
As for the ServerFinished message this message contains a MAC over every
message computed and received so far by the client. The client derives the client
finished key 𝑓 𝑘𝐶 from ℎ𝑡𝑠𝐶 as 𝑓 𝑘𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝐶 , 𝓁6) and then, computes

𝑓 𝑖𝑛𝐶 ≔ HMAC(𝑓 𝑘𝐶 , 𝐻6)

with 𝐻6 = 𝐻(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT ‖ SCV ‖ SF ‖ CCRT∗ ‖ CCV∗).

After receiving and decrypting of (CCRT∗, CCV∗, CF), the server first checks whether the
signature and MAC contained in the CCV message and CF message, respectively, are
valid. To that end, it retrieves the client’s public key from the CCRT message (if present),
derives the client finished key based on ℎ𝑡𝑠𝐶 , and recomputes the hashes 𝐻9 and 𝐻6 with
the messages it received. If one of the checks fails, the server aborts.

Finally, both parties derive resumption master secret 𝑟𝑚𝑠 from the master secret derived
earlier and the handshake transcript up to the ClientFinished message:

𝑟𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁10 ‖ 𝐻7).

where 𝐻7 = 𝐻(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT ‖ SCV ‖ SF ‖ CCRT∗ ‖ CCV∗ ‖ CF).

71



6 transport layer security handshake protocol

6.5 TLS 1.3 PSK-only/PSK-(EC)DHE Handshake

Similarly to Section 6.4, we describe the messages exchanged in the TLS 1.3 PSK mode
of the handshake protocol in this section in detail. Since there are a lot of things shared
between the full and the PSK handshake, we do not repeat shared aspects of the two
protocol modes, but only discuss their differences. We describe the two variants of the
PSK mode, PSK-only and PSK-(EC)DHE, in parallel and highlight how the two modes
differ. An overview of the PSK mode of the TLS 1.3 handshake protocol is depicted
in Figure 6.2.
The main difference between the TLS 1.3 full handshake and the PSK mode is that

signature-based authentication is skipped in the PSK mode to allow for an abbreviated
handshake. Authentication then is intuitively established via the PSK. Another aspect
that distinguishes the PSK mode clearly from the full handshake is that the PSK mode
allows for 0-RTT application data to be sent with the first flight of the client. Similarly
to the long-term key pair for the full handshake, we assume that client and server know
the PSK they use for the session before-hand. That is, we do not capture negotiation of
the PSK in our view. Even though this does not affect the protocol description given in
this section, we would like to highlight that we only consider PSKs that were established
in a previous TLS 1.3 session, and do not cover PSKs negotiated out-of-band.

Deriving the PSK. The TLS 1.3 standard [Res18] defines PSKs derived from secrets
exchanged in a previous TLS 1.3 session as follows. As this is a detail of the implemen-
tation of the server, we assume that there is a mapping defined between the pre-shared
key identifier 𝑝𝑠𝑘𝑖𝑑 and the actual pre-shared key 𝑝𝑠𝑘 out-of-band. As mentioned above,
we only cover pre-shared keys established in previous TLS session and not pre-shared
keys that were established externally. Therefore, we briefly describe how the establish-
ment of these pre-shared keys would work. The last secret established in the TLS 1.3
handshake is the resumption master secret 𝑟𝑚𝑠. Its purpose is to be used as the base
key for the derivation of the pre-shared key established between a client and a server
to allow for an subsequent abbreviated handshake execution (session resumption). The
main idea here is that client and server that already successfully took part in a joint
execution of the handshake, can skip the authentication part of the handshake in later
handshakes. A prerequisite to derive a pre-shared key is that the server sends a (session)
ticket after a successful execution of the TLS handshake. To this end, the server can send
the post-handshake message NewSessionTicket [Res18, Sect. 4.6.1] at any time after
the ClientFinished was received. This message contains a ticket that together with
the resumption master secret 𝑟𝑚𝑠 uniquely defines a pre-shared key. A client can then
use this ticket and present it in the pre_shared_shared extension (see below), which
we denote as ClientPreSharedKey in this work. The content of the ticket depends
on the implementation of the server and the respective pre-shared key 𝑝𝑠𝑘 is defined as
follows:

𝑝𝑠𝑘 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑟𝑚𝑠, "resumption", ticket_nonce)

72



6.5 TLS 1.3 PSK-only/PSK-(EC)DHE Handshake

where ticket_nonce is a nonce that is part of the NewSessionTicket message. In this
work, we do not cover the exact derivation of the pre-shared key as described before. In
particular, we do not cover the exchange of the NewSessionTicket message as this is
encrypted under the application traffic secret (i.e., send over the record layer). This would
make the protocol more complex as the server application traffic secret then would be
used inside of the protocol and not only outside of it. That is, from the view of a MSKE
protocol, it would be an internal rather then an external key.

Differences between the full and the PSK handshake. In the following, we discuss
the differences between the handshake modes of TLS 1.3 in detail. To this end, we pick
the messages that are different and discuss the differences carefully.

ClientHello and ServerHello. In the PSK-(EC)DHE, the ClientHello is very sim-
ilarly structured to the full handshake presented in the previous section. The PSK
handshake only adds two additional mandatory extensions:

• psk_key_exchange_modes [Res18, Sect. 4.2.9]: This extension does, similar
to the ciphersuites extension, contain all PSK modes the client supports.
In particular, this means whether it supports the key exchange that includes
PSKs only or whether it (also) supports the PSK handshake with an additional
(EC)DHE exchange to provide forward secrecy. Since we always consider
the TLS handshake with a single configuration in isolation, we assume that
this extension only contains either psk_ke for the PSK-only handshake or
psk_dhe_ke for the PSK-(EC)DHE handshake.

• pre_shared_key [Res18, Sect. 4.2.11]: This extension contains all the ticket
identities that the clientwants to present to the server. For each of these ticket
identities, the client in additional has to present a PSK binder value [Res18,
Sect. 4.2.11.2.]. A binder value is computed exactly as a Finished message
except that the used finished key 𝑓 𝑘𝐵 uses the binder key 𝑏𝑘 as its base key
and it is computer over the hash of the truncated ClientHello message,
which is the ClientHello without the list of binder values. The respective
binder key is derived from the pre-shared key that corresponds to the the
ticket identity for which the binder value is computed. The possibility of
presenting multiple pre-shared keys allows the client and server to negotiate
a pre-shared key online. Since we do not consider negotiation of parameters
in this work, we also do not cover this negotiation. To this end, we here only
assume that the PSK used in a PSK handshake is known by the client and
server in advance before the execution of the protocol starts and clients only
include this pre-shared key in their pre_shared_key extension.

Servers also have to include the above mentioned extensions in their Server
Hello message. Here, they need to announce their selected values from the values
presented by the client. As we do not cover negotiation, we assume that servers
just echo the values given by the client. Note that the pre_shared_key extension

73



6 transport layer security handshake protocol

for the server only contains the selected ticket identity, so servers do not send a
binder.

Authentication. In the PSK mode of TLS 1.3, the parties are already assumed to be
implicitly mutually authenticated via the PSK. This is because only these two
parties should know the PSK and thus all the exchanged keys can only be derived by
them. In the PSK handshakes, authentication via certificates and digital signatures
therefore is omitted and yields an abbreviated handshake.

0-RTT Data. A feature unique to the PSK handshake is that clients can already send
data with its first flight, i.e., along with the ClientHello message. This data is
authenticated and encrypted using the PSK. However, security-wise this “channel”
only provides weaker guarantees. First, the data is not forward secret as the key
material used to protect the data is solely derived from the PSK, and second, since
the data does not depend on the ServerHello message including a nonce there
can be replays between connections. Possible replay attacks in this context are
discussed in [Res18, App. E.5] and ways to counter act these replays are discussed
in [Res18, Sect. 8].

The rest of the PSK handshake is analogous to the the full handshake except that some
of the transcript hashes are computed over different messages different, because some
message are present in the PSK handshake that are not in the full handshake, and vice
versa.

74



6.5 TLS 1.3 PSK-only/PSK-(EC)DHE Handshake

Client (𝑝𝑠𝑘) Server (𝑝𝑠𝑘)
ClientHello: 𝑟𝐶

$← {0, 1}256
[+ ClientKeyShare]: 𝑋 ≔ 𝑔𝑥 with 𝑥 $← Z𝑝

𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
𝑏𝑘 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁0 ‖ 𝐻0)
𝑓 𝑘B ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑏𝑘, 𝓁6 ‖ 𝜀)

𝑏𝑖𝑛𝑑𝑒𝑟 ≔ 𝐌𝐀𝐂(𝑓 𝑘B, 𝐻1)
+ ClientPreSharedKey: 𝑝𝑠𝑘𝑖𝑑, 𝑏𝑖𝑛𝑑𝑒𝑟

𝐚𝐛𝐨𝐫𝐭 𝐢𝐟 𝑏𝑖𝑛𝑑𝑒𝑟 ≠ 𝐌𝐀𝐂(𝑓 𝑘B, 𝐻1)
𝑒𝑡𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁1, 𝐻2) End of Stage 1
𝑒𝑒𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁2, 𝐻2) End of Stage 2

ServerHello: 𝑟𝑆
$← {0, 1}256

[+ ServerKeyShare]: 𝑌 ≔ 𝑔𝑦 with 𝑦 $← Z𝑝
+ ServerPreSharedKey: 𝑝𝑠𝑘𝑖𝑑

[𝑍 ≔ 𝑌 𝑥] 𝑍 ≔ 0 [𝑍 ≔ 𝑋 𝑦]
𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑍)

ℎ𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁4 ‖ 𝐻3)
ℎ𝑡𝑘𝐶 ≔ DeriveTK(ℎ𝑡𝑠𝐶) End of Stage 2

ℎ𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁5 ‖ 𝐻3)
ℎ𝑡𝑘𝑆 ≔ DeriveTK(ℎ𝑡𝑠𝑆) End of Stage 3

{EncryptedExtensions}
𝑓 𝑘𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝑆 , 𝓁6)

{ServerFinished}: 𝑓 𝑖𝑛𝑆 ≔ 𝐌𝐀𝐂(𝑓 𝑘𝑆 , 𝐻4)

𝐚𝐛𝐨𝐫𝐭 𝐢𝐟 𝑓 𝑖𝑛𝑆 ≠ 𝐌𝐀𝐂(𝑓 𝑘𝑆 , 𝐻4)
𝑠𝑎𝑙𝑡𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁3 ‖ 𝐻0)
𝑚𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡𝑚𝑠 , 0)

𝑎𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁7 ‖ 𝐻5) End of Stage 4
𝑎𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁8 ‖ 𝐻5) End of Stage 5
𝑒𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁9 ‖ 𝐻5) End of Stage 6𝑓 𝑘𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝐶 , 𝓁6)

{ClientFinished}: 𝑓 𝑖𝑛𝐶 ≔ 𝐌𝐀𝐂(𝑓 𝑘𝐶 , 𝐻6)

𝑟𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁10 ‖ 𝐻7) End of Stage 7
𝐚𝐛𝐨𝐫𝐭 𝐢𝐟 𝑓 𝑖𝑛𝐶 ≠ 𝐌𝐀𝐂(𝑓 𝑘𝐶 , 𝐻6)

Figure 6.2: TLS 1.3 PSK handshake. Every TLS handshakemessage is denoted as “MSG∶ 𝐶”,
where 𝐶 denotes the message’s content. Similarly, an extension is denoted by “+ MSG∶ 𝐶”.
Further, we denote by “{MSG}∶ 𝐶” messages containing 𝐶 and being AEAD-encrypted
under the handshake traffic key ℎ𝑡𝑘. A value “[⋅]” is only present in the PSK-(EC)DHE
handshake. Centered computations are executed by both client and server with their

respective messages received, and possibly at different points in time.

75





7
abstracting the tls key schedule

Author’s contribution. The contents presented in this chapter are based on joint
work with Hannah Davis, Felix Günther, and Tibor Jager [DDGJ22b, DDGJ22a]. We
discussed all aspects of this paper together, and in particular, jointly came up with the vi-
sion of a formally justified abstraction of the TLS 1.3 key schedule. This vision stemmed
from previous independent and concurrent work by Tibor Jager and the author of this
thesis [DJ21], and Hannah Davis and Felix Günther [DG21a], in which both analyzed the
tight security of the TLS 1.3 full handshake protocol under rather strong assumptions
on the key schedule. The goal of the joint work was to develop a new abstraction of
the TLS 1.3 key schedule relying on weaker assumptions. Technically, Hannah Davis
suggested the idea of using the indifferentiability framework to justify the newly de-
veloped abstraction and developed the architecture of the formal justification. As the
results from [DDGJ22b, Sect. 4] focused on the TLS 1.3 PSK handshake, the treatment of
the key schedule in this work also focused primarily on the key schedule as it is used in
the PSK handshakes. The author of this thesis adapted the result presented in [DDGJ22b,
Sect. 4] so that it also applies to the key schedule used in the full handshake. Since the
key schedule that is used in the PSK handshake is more general than the one of the
full handshake, the overall treatment presented in Sections 7.2 and 7.4 of this thesis in
essence is the same and follows along the lines of the proofs from [DDGJ22b, Sect. 4].
Nevertheless, the formal proof requires a careful domain-separation argument for the
different uses of the TLS hash function that is presented in [DDGJ22a, App. B] (the full
version of [DDGJ22b]). This domain-separation argument is different for the full and the
PSK handshake, since it uses the formatting of the handshake messages. Hence, the most
notable contribution of the author of this thesis is the extension of the domain-separation
argument for the PSK handshake to the full handshake presented in Section 7.5.2 of this
work. In this context, smaller inaccuracies with respect to the message formatting in the
argument of [DDGJ22b, Sect. 4] presented in Section 7.5.3 were fixed. Overall, the result
of this chapter is a similar result as presented in [DDGJ22b, Sect. 4], but extended to all
handshake modes.

77



7 abstracting the tls key schedule

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Abstracted Key Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Indifferentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Proving the TLS 1.3 Key Schedule Indifferentiable . . . . . . . . . . . . . 88

7.4.1 Step 1: Separating the Use of the Hash Function . . . . . . . . . . 90
7.4.2 Step 2: Separating the Use of the Hash Function . . . . . . . . . . 94
7.4.3 Step 3: Introducing the Key Schedule Abstraction . . . . . . . . . 97

7.5 Defining the Domains Th and Ch . . . . . . . . . . . . . . . . . . . . . 105
7.5.1 Assumptions and Hash Query Types . . . . . . . . . . . . . . . . 106
7.5.2 Domain Separation in the TLS 1.3 Full Handshake . . . . . . . . 114
7.5.3 Domain-separation in the TLS 1.3 PSK Handshake . . . . . . . . 118

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.1 Introduction

In this chapter, we show that the TLS 1.3 key schedule (i.e., the key derivation procedure
of TLS 1.3) can be abstracted as a set of independent functions. This reduces the complex-
ity of the security proofs for the TLS 1.3 handshake (Chapters 9 and 10) significantly as
one can treat every key derived during the handshake as well as the binder (in the PSK
mode) and finished MACs as independent functions of the pre-shared key (in the PSK
mode), the Diffie–Hellman values (in the full/PSK (EC)DHEmode), protocol message and
the randomness of the parties. To formally show this independence, we show over the
course of this chapter that under the assumption that the hash function used in TLS is a
random oracle, each of the abstract functions behaves like an independent random oracle
using the indifferentiability framework by Maurer, Renner, and Holenstein [MRH04].

Motivation for a key schedule abstraction. In their tight(er) analysis of the TLS 1.3
full handshake Diemert and Jager [DJ21] modeled the TLS 1.3 key schedule as four in-
dependent random oracles and Davis and Günther [DG21a] concurrently modeled the
two subroutines, HKDF.Extract and HKDF.Expand (Section 6.1.2), as two independent
random oracles. Both works do not provide formal justification for these assumptions.
These two abstractions both do not take into account that all subroutines of the key
schedule (i.e., HMAC (Section 6.1.1), HKDF.Extract, and HKDF.Expand denoted by 𝐌𝐀𝐂,
𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝, respectively, in Chapter 6) ultimately rely on the hash function
used in TLS 1.3, and that this hash function also is used, for example, to hash transcripts.
Recall that HKDF.Extract and HKDF.Expand both basically are HMAC. HKDF.Extract in-
ternally forwards its inputs directly to HMAC, and HKDF.Expand also forwards its inputs
to HMAC by appending only a 0x01 byte, as it is used in most cases to produce only a
single block of length equal to the output length of the hash function.1 This implies that

1 The only exception is the derivation of the traffic keys (in DeriveTK introduced in Section 6.4), which
consists of two HKDF.Expand calls with output length AEAD key length + AEAD IV length. However,

78



7.2 Abstracted Key Schedule

constructing HKDF.Extract and HKDF.Expand as independent random oracles cannot be
indifferentiable as they are correlated by definition. Note that this does not necessarily
mean that the analyses of Diemert and Jager [DJ21] and Davis and Günther [DG21a]
are invalid, rather it might be possible that the two abstractions might not be formally
justifiable under the assumption that only the TLS hash function is modeled as a random
oracle. As Bellare, Davis, and Günther [BDG20] pointed out for the NIST PQC KEMs
instantiating independent random oracles with a single hash function might lead to at-
tacks. Davis, Diemert, Günther, and Jager [DDGJ22b] closed this gap and showed for
the key schedule used in the TLS 1.3 PSK mode that the key schedule is indifferentiable
from 12 independent random oracles. They formally justified this under the assumption
that the hash function of TLS is modeled as a random oracle. In this work, we extend
this result to the full handshake.

Chapter outline. To this end, we first introduce an abstraction of the key schedule
in Section 7.2, give background on the indifferentiability framework in Section 7.3, and
finally, prove the abstraction introduced in Section 7.2 in the random oracle model in Sec-
tion 7.4.

7.2 Abstracted Key Schedule

In this section, we introduce our abstraction of the TLS 1.3 key schedule specified
in [Res18, Sect. 7.1] and implicitly presented in Figures 6.1 and 6.2 in Chapter 6. Our
abstraction consists of 11 functions, where each function corresponds to a key or a MAC
value (binder and Finished) derived during the TLS 1.3 handshake (Figures 6.1 and 6.2).
The 11 functions have the following signatures and their corresponding pseudocode is
given in Figure 7.1.

1. TKDF𝑏𝑖𝑛𝑑𝑒𝑟 ∶ {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆

2. TKDF𝑒𝑡𝑠 ∶ {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆

3. TKDF𝑒𝑒𝑚𝑠 ∶ {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆

4. TKDFℎ𝑡𝑘𝐶 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 → {0, 1}𝑙+𝑑

5. TKDF𝑓 𝑖𝑛𝐶 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆

6. TKDFℎ𝑡𝑘𝑆 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 → {0, 1}𝑙+𝑑

7. TKDF𝑓 𝑖𝑛𝑆 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆

8. TKDF𝑎𝑡𝑠𝐶 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 → {0, 1}𝜆

9. TKDF𝑎𝑡𝑠𝑆 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 → {0, 1}𝜆

10. TKDF𝑒𝑚𝑠 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 → {0, 1}𝜆

both of these quantities are for all possible AEAD schemes at most the output length of the hash function.
That is, one can view these derivations of two derivations of output length of the hash function that are
then trimmed down to the appropriate length.

79



7 abstracting the tls key schedule

11. TKDF𝑟𝑚𝑠 ∶ {0, 1}𝜆 × G × {0, 1}𝜆 → {0, 1}𝜆

Here, 𝜆 denotes the output length of the TLS hash function, and 𝑙 and 𝑑 denote the key
length and IV length, respectively, of the AEAD scheme. Introducing these functions
allows us to abstract away the intermediate computations. Note that these functions
do not change the protocol as presented in Chapter 6. Every function TKDF𝑥 captures
the same steps that are required to derive the respective key/MAC value 𝑥 . However, as
shown in the definition of the functions in Figure 7.1, the 11 functions induce redundancy
as every value is derived independently and therefore computes intermediate values
such as 𝑒𝑠 and ℎ𝑠 multiple times over the execution of the handshake. Fortunately, this
overhead is only conceptual. All of the intermediate value are derived deterministically,
thus they could be cached in an actual implementation.
Note that the above abstraction is valid for all three modes of the TLS 1.3 handshake

protocol. In the full handshake (Figure 6.1), we set the PSK to 0. Similarly, for the PSK-
only mode (Figure 6.2), we set the DH secret 𝑍 to 0. This directly implements what the
standard mandates: “If a given secret is not available, then the 0-value consisting of a
string of Hash.length bytes set to zeros is used.” [Res18, Sect. 7.1]. The TLS handshake
using the abstracted key schedule then is defined as shown in Figure 7.2. Our main
security proofs presented in Sections 9.3 and 10.3 will give a tight security bound for these
abstracted handshakes. With the results of this chapter and Chapter 8, we then deduce
a tight security bound for the (“unabstracted”) TLS handshakes shown in Figures 6.1
and 6.2.

7.3 Indifferentiability

In Section 4.1.2, we discussed the random oracle model (ROM). The random oracle
assumption on its own is quite strong, as it is well-known that random oracles can only
exist as a theoretical concept rather than actually being instantiated in practice simply
due to the size of its description. When applying the random oracle paradigm, it is often
the case that the random oracle is replaced by something that is not a monolithic object,
but a construction itself. Here you can think of a hash function constructed iteratively via
the well-known Merkle–Damgård construction. In this case, it would be desirable if we
could weaken our assumption that the hash function is ideal (i.e., a random oracle), to the
assumption that the compression function used in the construction of the hash function
is ideal. This would overall result in that we do not need to require a random oracle with
an infinite domain anymore, but only one with a fixed input length (i.e., a finite domain).
Even though, we still would be in the ROM, we weakened the assumptions.

At this point comes the indifferentiability framework originally proposed by Maurer,
Renner, and Holenstein [MRH04] into play. This framework allows us to show that a
construction that is based on some ideal function (e.g., a random oracle or ideal cipher)
is indistinguishable (or indifferentiable) from an ideal function. Let us illustrate this idea
using the example of the Merkle–Damgård hash function 𝐻 ∶ {0, 1}∗ → {0, 1}𝜆 using
compression function ℎ∶ {0, 1}𝜅+𝜆 → {0, 1}𝜆 denoted as 𝐻[ℎ]. Here, we are able to
show with aid of the indifferentiability framework that under the assumption that ℎ is a

80



7.3 Indifferentiability

TKDF𝑏𝑖𝑛𝑑𝑒𝑟(𝑝𝑠𝑘, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑏𝑘 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁0 ‖ 𝐻0)
3 ∶ 𝑓 𝑘B ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁6 ‖ 𝜀)
4 ∶ 𝑏𝑖𝑛𝑑𝑒𝑟 ≔ 𝐌𝐀𝐂(𝑓 𝑘B, 𝐻)
5 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑏𝑖𝑛𝑑𝑒𝑟

TKDF𝑒𝑡𝑠(𝑝𝑠𝑘, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑒𝑡𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁1 ‖ 𝐻)
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑒𝑡𝑠

TKDFℎ𝑡𝑘𝐶 (𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ ℎ𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁4 ‖ 𝐻)
5 ∶ ℎ𝑡𝑘𝐶 ≔ DeriveTK(ℎ𝑡𝑠𝐶)
6 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ𝑡𝑘𝐶

TKDF𝑎𝑡𝑠𝐶 (𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ 𝑠𝑎𝑙𝑡𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁3 ‖ 𝐻0)
5 ∶ 𝑚𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡𝑚𝑠 , 0)
6 ∶ 𝑎𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁7 ‖ 𝐻)
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑎𝑡𝑠𝐶

TKDF𝑓 𝑖𝑛𝐶 (𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻 , 𝐻 ′)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ ℎ𝑡𝑠𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁4 ‖ 𝐻)
5 ∶ 𝑓 𝑘𝐶 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝐶 , 𝓁6)
6 ∶ 𝑓 𝑖𝑛𝐶 ≔ 𝐌𝐀𝐂(𝑓 𝑘𝐶 , 𝐻

′)
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑓 𝑖𝑛𝐶

TKDF𝑒𝑚𝑠(𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ 𝑠𝑎𝑙𝑡𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁3 ‖ 𝐻0)
5 ∶ 𝑚𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡𝑚𝑠 , 0)
6 ∶ 𝑒𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁9 ‖ 𝐻)
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑒𝑚𝑠

TKDF𝑒𝑒𝑚𝑠(𝑝𝑠𝑘, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑒𝑒𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁2 ‖ 𝐻2)
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑒𝑒𝑚𝑠

TKDFℎ𝑡𝑘𝑆 (𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ ℎ𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁5 ‖ 𝐻)
5 ∶ ℎ𝑡𝑘𝑆 ≔ DeriveTK(ℎ𝑡𝑠𝑆)
6 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 ℎ𝑡𝑘𝑆

TKDF𝑎𝑡𝑠𝑆 (𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ 𝑠𝑎𝑙𝑡𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁3 ‖ 𝐻0)
5 ∶ 𝑚𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡𝑚𝑠 , 0)
6 ∶ 𝑎𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁8 ‖ 𝐻)
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑎𝑡𝑠𝑆

TKDF𝑓 𝑖𝑛𝑆 (𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻 , 𝐻 ′)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ ℎ𝑡𝑠𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁5 ‖ 𝐻)
5 ∶ 𝑓 𝑘𝑆 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑡𝑠𝑆 , 𝓁6)
6 ∶ 𝑓 𝑖𝑛𝑆 ≔ 𝐌𝐀𝐂(𝑓 𝑘𝑆 , 𝐻

′)
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑓 𝑖𝑛𝑆

TKDF𝑟𝑚𝑠(𝑝𝑠𝑘, 𝑑ℎ𝑒, 𝐻)

1 ∶ 𝑒𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(0, 𝑝𝑠𝑘)
2 ∶ 𝑠𝑎𝑙𝑡ℎ𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑒𝑠, 𝓁3 ‖ 𝐻0)
3 ∶ ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑑ℎ𝑒)
4 ∶ 𝑠𝑎𝑙𝑡𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(ℎ𝑠, 𝓁3 ‖ 𝐻0)
5 ∶ 𝑚𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡𝑚𝑠 , 0)
6 ∶ 𝑟𝑚𝑠 ≔ 𝐄𝐱𝐩𝐚𝐧𝐝(𝑚𝑠, 𝓁10 ‖ 𝐻)
7 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑟𝑚𝑠

Figure 7.1: Code of the TKDF functions. The subroutines 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, 𝐄𝐱𝐩𝐚𝐧𝐝 and𝐌𝐀𝐂 are
subroutines used in the TLS 1.3 handshake, and the labels and hashes used are defined

in Table 6.1.

81



7 abstracting the tls key schedule

Client (𝑝𝑘𝐶 , 𝑠𝑘𝐶) Server (𝑝𝑘𝑆 , 𝑠𝑘𝑆)

ClientHello: 𝑟𝐶
$← {0, 1}256

+ ClientKeyShare: 𝑋 ≔ 𝑔𝑥 with 𝑥 $← Z𝑝

ServerHello: 𝑟𝑆
$← {0, 1}256

+ ServerKeyShare: 𝑌 ≔ 𝑔𝑦 with 𝑦 $← Z𝑝

𝑍 ≔ 𝑌 𝑥 𝑍 ≔ 𝑋 𝑦

ℎ𝑡𝑘𝐶 ≔ TKDFℎ𝑡𝑘𝐶 (0, 𝑍, 𝐻3) End of Stage 1
ℎ𝑡𝑘𝑆 ≔ TKDFℎ𝑡𝑘𝑆 (0, 𝑍, 𝐻3) End of Stage 2

{EncryptedExtensions}
{CertificateRequest∗}

{ServerCertificate}: 𝑆, 𝑝𝑘𝑆
{ServerCertificateVerify}: 𝜎𝑆

$← Sig.Sign(𝑠𝑘𝑆 , 𝓁13 ‖ 𝐻8)
{ServerFinished}: 𝑓 𝑖𝑛𝑆 ≔ TKDF𝑓 𝑖𝑛𝑆 (0, 𝑍, 𝐻3, 𝐻4)

Abort if Sig.Vrfy(𝑝𝑘𝑆 , 𝓁13 ‖ 𝐻8, 𝜎𝑆) ≠ 1
or 𝑓 𝑖𝑛𝑆 ≠ TKDF𝑓 𝑖𝑛𝑆 (0, 𝑍, 𝐻3, 𝐻4)

𝑎𝑡𝑠𝐶 ≔ TKDF𝑎𝑡𝑠𝐶 (0, 𝑍, 𝐻5) End of Stage 3
𝑎𝑡𝑠𝑆 ≔ TKDF𝑎𝑡𝑠𝑆 (0, 𝑍, 𝐻5) End of Stage 4
𝑒𝑚𝑠 ≔ TKDF𝑒𝑚𝑠(0, 𝑍, 𝐻5) End of Stage 5

{ClientCertificate∗}: 𝐶, 𝑝𝑘𝐶
{ClientCertificateVerify∗}: 𝜎𝐶

$← Sig.Sign(𝑠𝑘𝐶 , 𝓁14 ‖ 𝐻9)
{ClientFinished}: 𝑓 𝑖𝑛𝐶 ≔ TKDF𝑓 𝑖𝑛𝐶 (0, 𝑍, 𝐻3, 𝐻6)

Abort if Sig.Vrfy(𝑝𝑘𝐶 , 𝓁14 ‖ 𝐻9, 𝜎𝐶) ≠ 1
or 𝑓 𝑖𝑛𝐶 ≠ TKDF𝑓 𝑖𝑛𝐶 (0, 𝑍, 𝐻3, 𝐻6)

𝑟𝑚𝑠 ≔ TKDF𝑟𝑚𝑠(0, 𝑍, 𝐻7) End of Stage 6

Client (𝑝𝑠𝑘) Server (𝑝𝑠𝑘)

ClientHello: 𝑟𝐶
$← {0, 1}256

[+ ClientKeyShare]: 𝑋 ≔ 𝑔𝑥 with 𝑥 $← Z𝑝

𝑏𝑖𝑛𝑑𝑒𝑟 ≔ TKDF𝑏𝑖𝑛𝑑𝑒𝑟(𝑝𝑠𝑘, 𝐻1)
+ ClientPreSharedKey: 𝑝𝑠𝑘𝑖𝑑, 𝑏𝑖𝑛𝑑𝑒𝑟

𝐚𝐛𝐨𝐫𝐭 𝐢𝐟 𝑏𝑖𝑛𝑑𝑒𝑟 ≠ TKDF𝑏𝑖𝑛𝑑𝑒𝑟(𝑝𝑠𝑘, 𝐻1)
𝑒𝑡𝑠 ≔ TKDF𝑒𝑡𝑠(𝑝𝑠𝑘, 𝐻2) End of Stage 1

𝑒𝑒𝑚𝑠 ≔ TKDF𝑒𝑒𝑚𝑠(𝑝𝑠𝑘, 𝐻2) End of Stage 2
ServerHello: 𝑟𝑆

$← {0, 1}256

[+ ServerKeyShare]: 𝑌 ≔ 𝑔𝑦 with 𝑦 $← Z𝑝

+ ServerPreSharedKey: 𝑝𝑠𝑘𝑖𝑑

[𝑍 ≔ 𝑌 𝑥] 𝑍 ≔ 0 [𝑍 ≔ 𝑋 𝑦]

ℎ𝑡𝑘𝐶 ≔ TKDFℎ𝑡𝑘𝐶 (𝑝𝑠𝑘, 𝑍, 𝐻3) End of Stage 2
ℎ𝑡𝑘𝑆 ≔ TKDFℎ𝑡𝑘𝑆 (𝑝𝑠𝑘, 𝑍, 𝐻3) End of Stage 3

{EncryptedExtensions}
{ServerFinished}: 𝑓 𝑖𝑛𝑆 ≔ TKDF𝑓 𝑖𝑛𝑆 (𝑝𝑠𝑘, 𝑍, 𝐻3, 𝐻4)

𝐚𝐛𝐨𝐫𝐭 𝐢𝐟 𝑓 𝑖𝑛𝑆 ≠ TKDF𝑓 𝑖𝑛𝑆 (𝑝𝑠𝑘, 𝑍, 𝐻3, 𝐻4)
𝑎𝑡𝑠𝐶 ≔ TKDF𝑎𝑡𝑠𝐶 (𝑝𝑠𝑘, 𝑍, 𝐻5) End of Stage 4
𝑎𝑡𝑠𝑆 ≔ TKDF𝑎𝑡𝑠𝑆 (𝑝𝑠𝑘, 𝑍, 𝐻5) End of Stage 5
𝑒𝑚𝑠 ≔ TKDF𝑒𝑚𝑠(𝑝𝑠𝑘, 𝑍, 𝐻5) End of Stage 6

{ClientFinished}: 𝑓 𝑖𝑛𝐶 ≔ TKDF𝑓 𝑖𝑛𝐶 (𝑝𝑠𝑘, 𝑍, 𝐻3, 𝐻6)

𝑟𝑚𝑠 ≔ TKDF𝑟𝑚𝑠(𝑝𝑠𝑘, 𝑍, 𝐻7) End of Stage 7
𝐚𝐛𝐨𝐫𝐭 𝐢𝐟 𝑓 𝑖𝑛𝐶 ≠ TKDF𝑓 𝑖𝑛𝐶 (𝑝𝑠𝑘, 𝑍, 𝐻3, 𝐻6)

Figure 7.2: TLS 1.3 full (left-hand side) and PSK (right-hand side) handshake with ab-
stracted key schedule.

random oracle (with fixed input length), the construction𝐻[ℎ] is “indistinguishable” from
a random oracle RO∶ {0, 1}∗ → {0, 1}𝜆 with infinite domain. That is, we can use ROwhen
constructing the cryptographic scheme instead of inlining the iterative construction of
the hash function 𝐻 , but only need to assume the existence of an ideal ℎ (resp. a random
oracle with finite domain).

In this thesis, we make use the indifferentiability framework to justify our abstraction
of the TLS 1.3 key schedule presented in Section 7.2. The abstraction allows us to tame
the complexity of the proof and the indifferentiability frameworks provides the tools to
back this up by a formal treatment. In contrast, we assumed in [DJ21] that parts of the
TLS 1.3 key schedule behave like a random oracle without formal justification. Using
the indifferentiability framework, we were able to prove in [DDGJ22b] that under the
assumption that the TLS hash function 𝐻 is a random oracle, each of the TKDF functions
introduced Section 7.2 behaves like an independent random oracles.

Before we present the aforementioned result, we first give a brief introduction to the
indifferentiability framework originally introduced by Maurer, Renner, and Holenstein
[MRH04]. For further details on the framework, we refer to the works cited in this section
and also, for example, the book by Mittelbach and Fischlin [MF21a]. In the following,
we roughly follow the notation used in [BDG20, DDGJ22b].

82



7.3 Indifferentiability

Notation. We call a set of functions F such that all functions in this set have the same
domain and range a function space. We view a construction 𝐂 as a mapping S → E,
where S (“starting space”) and E (“ending space”) are function spaces. More precisely, a
construction 𝐂 is a deterministic algorithm that given oracle access to a function 𝑠 ∈ S

defines a function 𝐂[𝑠] ∈ E. Here, 𝐂[⋅] denotes that𝐂 “is built from” another function. To
illustrate this, one can think of 𝐂[⋅] being the Merkle–Damgård construction and S being
a set of compression function such that 𝐂[𝑠] is an instantiation of Merkle–Darmgård
with a certain compression function. For simplicity, we refer to the functions in the
function spaces as random oracles despite the indifferentiability framework being more
general and could be used with other ideal objects (e.g., ideal ciphers), as well. We only
aim to show that a construction based on a random oracle from a starting space S “can
be replaced securely” by a random oracle from an ending space E and thus focusing on
random oracles is sufficient for this thesis.

Definition. In general, the notion of indifferentiability generalizes the classical notion
of indistinguishability by adding another oracle (called public in [MRH04]). Recall that
for indistinguishability the adversary informally is challenged to distinguish the real
world from the random (or ideal) world. Here, one can think for example of the definition
of PRFs given above in Definition 4.2. In the real world, the adversary gets oracle access
to the actual PRF (with a random key). While in the ideal world, it gets oracles access to
a random function. For indifferentiability, we now aim to show that for some function
space S and E and some random oracles ROS ∈ S and ROE ∈ E, the construction 𝐂[ROS]
behaves indistiguishably from ROE. Here, we also have a separation of a real and an ideal
world. Namely, in the real world the adversary gets oracle access to 𝐂[ROS] and in the
ideal world it gets oracle access to ROE. Now, we have that the construction 𝐂 is built
from random oracle ROS thus in the indifferentiability definition the adversary also gets
oracle access to ROS. However, this is not the complete picture as the adversary now
could simply distinguish the two worlds by just counting its oracles. This is overcome in
the definition of indifferentiability by introducing a simulator Sim in the ideal world that
aims to behave indistinguishably from ROS, but maintains consistency with ROE. That
is, in conclusion for indifferentiability the adversary has to distinguish the real world,
in which it gets oracle access to 𝐂[ROS] and ROS, from the ideal world, in which it gets
oracle access to ROE and Sim[ROE]. In the terminology of [MRH04], the oracles 𝐂[ROS]
and ROE are the private interface of their respective worlds. Similarly, the oracles ROS

and Sim are the public interface of the respective worlds. Intuitively, the terms “private”
and “public” are more relatable if one thinks of a different adversary than the one that
tries to distinguish the two worlds. One should rather think of an adversary that tries
to break the construction 𝐂, or a cryptographic system that uses 𝐂 as a building block.
With this rational the terms private and public interface become clearer. The public
interface reflects a classical random oracle that all parties have access to, i.e., the ideal
primitive ROS the construction 𝐂 is built from. The private interface, which corresponds
to the actual construction 𝐂, in the context of the cryptographic system is not publicly
available. It is rather the contrary, only the cryptographic system has access to building

83



7 abstracting the tls key schedule



𝐂 ROS



ROE Sim

Real World (𝑏 = 0) Ideal World (𝑏 = 1)

Figure 7.3: Interaction between the distiguisher and the oracles in the indifferentiability
framework.

block interface of the construction and an adversary attacking a certain system usually
only gets (if at all) access to outputs of the whole system rather of certain building blocks.
Formally, we define indifferentiability as follows, which is adapted from [DDGJ22b]. The
main interaction between the oracles and the distinguisher in both worlds is often (e.g.,
see [MRH04]) illustrated as shown in Figure 7.3.

Definition 7.1 (Indifferentiability). Let S and E be function spaces and let 𝐂 be a con-
struction for E from S. For any simulator Sim and any adversary  making 𝑞Priv queries
to oracle Priv and 𝑞Pub to oracle Pub, the advantage of  to indifferentiate 𝐂 is

Advindiff𝐂,Sim,S,E() ≔ |Pr[Expindiff,1𝐂,Sim,S,E() = 1] − Pr[Expindiff,0𝐂,Sim,S,E() = 1]|

where Expindiff,𝑏𝐂,Sim,S,E() is defined in Figure 7.4.

Indifferentiability composition theorem. Informally, Definition 7.1 only captures
the advantage of an distinguisher in detecting whether it interacts with the actual con-
struction or a random oracle. Unfortunately, this is only one side of the coin. Usually, the
construction will be part of a bigger cryptographic system. That is, it is only a building
block of another system. Here, one can think of the TKDF functions shown in Section 7.2
as the construction and the TLS handshake as the cryptographic system the construction
is used in. Now, what we actually want is given that our construction can be shown to be
indifferentiable from a random oracle is to replace the construction in the cryptographic
system by a random oracle. Recall that the overall goal of this section is to show that
the TLS key schedule (i.e., the TKDF functions) behaves like many independent random
oracles. With that goal in mind the actual power of the indifferentiability framework be-
comes clearer. Namely, the framework provides a composition theorem originally proven

84



7.3 Indifferentiability

Expindiff,𝑏𝐂,Sim,S,E()

1 ∶ ROS
$← S

2 ∶ ROE
$← E

3 ∶ 𝑠𝑡𝑎𝑡𝑒 ≔ ⊥

4 ∶ 𝑏′ $← Pub(⋅,⋅),Priv(⋅,⋅)

5 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑏 = 𝑏′)

Pub(𝑌 )

1 ∶ 𝐢𝐟 𝑏 = 0 𝐭𝐡𝐞𝐧
2 ∶ (𝑧, 𝑠𝑡𝑎𝑡𝑒) ≔ Sim[Priv](𝑌 , 𝑠𝑡𝑎𝑡𝑒)
3 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑧
4 ∶ 𝐞𝐥𝐬𝐞 𝐫𝐞𝐭𝐮𝐫𝐧 ROS(𝑌 )

Priv(𝑋)

1 ∶ 𝐢𝐟 𝑏 = 0 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 ROE(𝑋)
2 ∶ 𝐞𝐥𝐬𝐞 𝐫𝐞𝐭𝐮𝐫𝐧 𝐂[ROS](𝑋)

Figure 7.4: Security experiment for indifferentiability.

by Maurer, Renner, and Holenstein [MRH04] and later revisited by Ristenpart, Shacham,
and Shrimpton [RSS11]2 that intuitively provides the following:

If a construction 𝐂[⋅] is indifferentiable from a random oracle RO, then we
can securely replace any application of RO in any cryptographic system by
applications of 𝐂[⋅].

In other words, if we can show that 𝐂 is indifferentiable from RO, we can prove security
for a cryptographic system using RO (probably reducing the proof’s complexity) and
then inherently have provable security for the cryptographic system using 𝐂.

In this thesis, we only need the composition theorem forMSKE protocols, and therefore
only give the specific version of the indifferentiability composition theorem, even though
the theorem holds in a more generalized form for any “single-stage”3 security experiment
according to [RSS11]. The next theorem is originally from [DDGJ22b].

Theorem 7.1. Let KE be a MSKE protocol using function space E. Further, let 𝐂 be a
construction of space E from space S and let Sim be a simulator. The MSKE protocol KE′

using function space S is defined as follows: KE′ emulates KE, but whenever KE would
compute its function from E, KE′ instead computes 𝐂 using a function from S. Then, for
any adversary, we can construct an adversary  and a distinguisher  such that

AdvΠKE′() ≤ AdvΠKE() + Advindiff𝐂,Sim,S,E()

where Π ∈ {pMSKE, sMSKE} depending on the MSKE (public or pre-shared key) variant of
protocol KE.

2 Ristenpart, Shacham, and Shrimpton discovered that the theorem only holds for security experiments
that they refer to as “single-stage”, i.e., the adversary cannot be split up into different algorithms. Note
that the multi-stage key exchange model, we are considering actually is a single-stage experiment in
this terminology.

3 Recall that the term “single-stage” security game in the terminology used by Ristenpart, Shacham, and
Shrimpton [RSS11] refers to security games in which the adversary is only run once as opposed to in
multiple stages as, for example, in a “find-then-guess” [BDJR97] kind of security experiment. This is in
contrast to the stages (i.e., keys derived) that we have in the MSKE model.

85



7 abstracting the tls key schedule

In this work, we only sketch the rough idea of the proof of Theorem 7.1 for a detailed
treatment of the indifferentiability composition, we refer to [RSS11, MRH04].

Proof Sketch. The adversary  and distinguisher  are defined as follows. Adversary 
works exactly as adversary  except when  queries its random oracle from S,  re-
sponds to this query by running the simulator Sim instantiated with its random oracle
from E. The distinguisher  simulates the experiment ExpΠKE for adversary . Here, 
instantiates’s random oracle with the Pub oracle from the indifferentiability game, and
the random oracle from E that is used by KE is instantiated using the Priv oracle. Now,
observe that if the distinguisher  runs in the real indifferentiability experiment (i.e.,
𝑏 = 1), then Pub computes construction 𝐂 and Priv is just a random oracle from S. Thus,
 perfectly simulates ExpΠ

KE′
for. If the distinguisher runs in the ideal indifferentibility

experiment (i.e., 𝑏 = 0), then Pub runs the simulator instantiated with Priv, which is a
random oracle from E. Note that this is exactly what  would do. Thus,  perfectly
simulates ExpΠKE for .

Read-only indifferentiability. Many cryptographic schemes in the random oracle
model assume not only one, but multiple random oracles. At some point, during imple-
mentation at latest, these random oracles have to be constructed from a single random
oracle (resp. a hash function). Bellare, Davis, and Günther [BDG20] refer to the process of
constructing many random oracles out of a single one as oracle cloning. The easiest con-
struction is the identity (cloning) functor [BDG20], in which random oracles RO1,RO2, …
are constructed by just forwarding all queries of RO𝑖 to a “base random oracle” RO. Un-
fortunately, this construction is only indifferentiable if the domains to the oracle RO𝑖
are disjoint. In many cases, we face the problem that the oracles RO𝑖 have overlapping
domains, and even worse, all have domain {0, 1}∗. Bellare, Davis, and Günther [BDG20]
introduced a variant of the standard indifferentiability discussed above that is called
read-only indifferentiability. In this variant, they introduce a working domain W for the
functions and in the security experiment, the adversary is only allowed to query the
working domain even though the function is defined on a broader space. This enables
to prove that the above discussed identity functor is read-only indifferentiable [BDG20,
Thm. 1] if the working domains of the oracles RO𝑖 are (pairwise) disjoint, but the full
domains might overlap.
Formally, the read-only indifferentiability is different from the definition above not

only because of the working domain of the functions, but also because of the restric-
tion that the simulator is not allowed to write its state. In the indifferentiability ex-
periment shown in Figure 7.4, the simulator starts with an empty state and can read
and write it with every execution. In contrast, the read-only indifferentiability splits
the (read-only) simulator up into two algorithms: Sim.Setup generating the (static and
experiment-maintained) state and Sim.Eval receives as input the state and oracle access to
Priv, and defines a function Sim.Eval[Priv](⋅, 𝑠𝑡𝑎𝑡𝑒). We define read-only indifferentiability
following [BDG20] as follows.

Definition 7.2. Let S and E be function spaces, letW be the working domain of E (i.e.,W
is a subset of the domain of the functions contained in E) and let 𝐂 be a construction for

86



7.3 Indifferentiability

Exprd−indiff,𝑏𝐂,Sim,S,E,W()

1 ∶ ROS
$← S

2 ∶ ROE
$← E

3 ∶ 𝑠𝑡𝑎𝑡𝑒 $← Sim.Setup

4 ∶ 𝑏′ $← Pub(⋅,⋅),Priv(⋅,⋅)

5 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑏 = 𝑏′)

Pub(𝑌 )

1 ∶ 𝐢𝐟 𝑏 = 0 𝐭𝐡𝐞𝐧
2 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 Sim.Eval[Priv](𝑌 , 𝑠𝑡𝑎𝑡𝑒)
3 ∶ 𝐞𝐥𝐬𝐞 𝐫𝐞𝐭𝐮𝐫𝐧 ROS(𝑌 )

Priv(𝑋)

1 ∶ 𝐢𝐟 (𝑋) ∉ W 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 ⊥
2 ∶ 𝐢𝐟 𝑏 = 0 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 ROE(𝑋)
3 ∶ 𝐞𝐥𝐬𝐞 𝐫𝐞𝐭𝐮𝐫𝐧 𝐂[ROS](𝑋)

Figure 7.5: Security experiment for read-only indifferentiability.

E from S. For any (read-only) simulator Sim = (Sim.Setup, Sim.Eval) and any adversary
making 𝑞Priv queries to oracle Priv and 𝑞Pub to oracle Pub, the advantage of to (read-only)
indifferentiate 𝐂 is

Advrd−indiff𝐂,Sim,S,E,W() ≔ |Pr[Exprd−indiff,1𝐂,Sim,S,E,W() = 1] − Pr[Exprd−indiff,0𝐂,Sim,S,E,W() = 1]|

where Exprd−indiff,𝑏𝐂,Sim,S,E,W() is defined in Figure 7.5.

Simiarly to the indifferentiability composition theorem, the read-only indifferentiabil-
ity also provides a composition theorem. Bellare, Davis, and Günther [BDG20] prove
the special case of that composition theorem for the IND-CCA-security of KEMs. Even
though, read-only indifferentiability implies “classical” indifferentiability when consider-
ing full domains taking into account working domains requires a new formal treatment.
Bellare, Davis, and Günther claim that their composition theorem not only holds for
single-stage but also for multi-stage security games (opposed to the classical indifferen-
tiability composition theorem). Since we only focus on MSKE in this work, we adapt the
composition theorem of [BDG20] to the MSKE setting. The proof works analogously to
the proof of Theorem 7.1 sketched above.

Theorem 7.2. Let KE be a MSKE protocol using function space E with working domain W.
Further, let𝐂 be a construction of space E from space S and let Sim be a (read-only) simulator.
The MSKE protocol KE′ using function space S is defined as follows: KE′ emulates KE, but
whenever KE would compute its function from E, KE′ instead computes 𝐂 using a function
from S. Then, for any adversary , we can construct an adversary  and a distinguisher
 such that

AdvΠKE′() ≤ AdvΠKE() + Advrd−indiff𝐂,Sim,S,E,W()

where Π ∈ {pMSKE, sMSKE} depending on the MSKE (public or pre-shared key) variant of
protocol KE.

87



7 abstracting the tls key schedule

7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

In this section, we prove that the abstraction introduced in Section 7.2 is indifferentiable
from the TLS 1.3 key schedule in the random oracle model. By the indifferentiability
composition theorem, this implies that in the ROM the TLS 1.3 handshake shown in
Figures 6.1 and 6.2 is “at least as secure” as the abstracted TLS 1.3 handshake shown
in Figure 7.2. Note that this holds for each of the three handshake variants (full, PSK-
(EC)DHE, and PSK-only) of the handshake, given that the hash function 𝐇 used in TLS
is modeled as a random oracle. Formally, we prove the following two theorems, where
the latter is from [DDGJ22b].

Theorem 7.3. Let RO𝐻 ∶ {0, 1}∗ → {0, 1}𝜆 be a random oracle, where 𝜆 is the output length
of the hash function used in TLS. Let KE be the TLS 1.3 full handshake protocol described in
Figure 6.1 with𝐇 ≔ RO𝐻 and𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝 defined from 𝐇 as in Section 6.3.
Let KE′ be the corresponding abstracted TLS 1.3 full handshake protocol described on the
left-hand side of Figure 7.2, with 𝐇 ≔ ROTh and TKDF𝑥 ≔ RO𝑥 , where ROTh, ROℎ𝑡𝑘𝐶 , . . . ,
RO𝑟𝑚𝑠 are random oracles with the appropriate signatures. Then, for any adversary 
against KE, we can construct an adversary  against KE′ such that

AdvpMSKE
KE () ≤ AdvpMSKE

KE′
() +

2(13𝑞Send + 𝑞RO)2

2𝜆
+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆

where 𝑞RO and 𝑞Send are number of queries issued by to the random oracle and oracle 𝑞Send,
respectively.

Theorem 7.4. Let RO𝐻 ∶ {0, 1}∗ → {0, 1}𝜆 be a random oracle, where 𝜆 is the output length
of the hash function used in TLS. LetKE be the TLS 1.3 PSK-only or PSK-(EC)DHE handshake
protocol described in Figure 6.2 with 𝐇 ≔ RO𝐻 and 𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝 defined
from𝐇 as in . LetKE′ be the corresponding abstracted PSK-only or PSK-(EC)DHE handshake
protocol described on the right-hand side of Figure 7.2, with 𝐇 ≔ ROTh and TKDF𝑥 ≔ RO𝑥 ,
where ROTh, RO𝑏𝑖𝑛𝑑𝑒𝑟 , . . . , RO𝑟𝑚𝑠 are random oracles with the appropriate signatures. Then,
for any adversary  against KE, we can construct an adversary  against KE′ such that

AdvsMSKE
KE () ≤ AdvsMSKE

KE′ () +
2(12𝑞Send + 𝑞RO)2

2𝜆
+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆

where 𝑞RO and 𝑞Send are number of queries issued by to the random oracle and oracle 𝑞Send,
respectively.

To prove these two theorems, we proceed in three steps. Each step is an indifferen-
tiability step abstracting the use of the TLS hash function incrementally until it finally
abstracts the whole key schedule (resp. the TKDF functions defined in Section 7.2). Note
that each step results in a new intermediate protocol. Initially, we start with the pro-
tocol as it is defined in Figure 6.1 for the full handshake and in Figure 6.2 for the PSK
handshake. The hash function 𝐇 is initially modeled as a random oracle RO𝐻 .
Before we tackle the proofs formally, let us first outline the general idea of the three

steps. As mentioned before the goal is to incrementally abstract the use of the hash

88



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

RO𝐻 ROCh

ROTh

ROHMAC …

RO𝑏𝑖𝑛𝑑𝑒𝑟

RO𝑟𝑚𝑠

Step 1 Step 2 Step 3

Figure 7.6: Abstraction of the TLS 1.3 key schedule from one to 12 random oracles.

function in the TLS 1.3 handshake such that in the end, we are able to abstract each key
derivation and each MAC value computation during the handshake via an independent
function (resp. random oracle) as presented in Section 7.2, and in particular, as shown
in Figure 7.2. We highlight that the three steps are almost identical for the full hand-
shake (Theorem 7.3) and the PSK handshake (Theorem 7.4). The overall outline remains
the same, but the arguments differ only in detail. Consider Figure 7.6, for a visualization
of how the random oracles change after each step.

Step 1: Separating the use of the hash function. First, observe that the hash func-
tion𝐇 in TLS is used formultiple purposes. It is used to compute transcript hashes as well
as as a subroutine of 𝐌𝐀𝐂 (i.e., HMAC), which is not only used to compute the finished
MAC, but also as a subroutine of 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝. In the first step, we show that these
two applications of the hash function are distinct. That is, we can define two functions
Th (“transcript hash”) and Ch (“component hash”), which represent each use of the hash
function in TLS. Then, we can show using (read-only) indifferentiability (Section 7.3)
that under the assumption that 𝐇 is modeled as a random oracle RO𝐻 , the functions Th
and Ch can be modeled as two independent random oracles ROTh and ROCh.
In this step, we define the functions Th[RO𝐻 ] ≔ RO𝐻 and Ch[RO𝐻 ] ≔ RO𝐻 . In the

protocol, we replace calls of hash function 𝐇 (resp. RO𝐻 ) to compute transcript hashes
by a call of Th and instantiate 𝐌𝐀𝐂 with Ch (inherently defining 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝
overCh). Note that the TLS handshake using Th and Ch is by definition (in either variant)
identical to the corresponding protocol as defined in Figures 6.1 and 7.2 and this is merely
a change in notation. The protocol using two independent random oracle ROTh and ROCh,
however, induces the first intermediate protocol.

Step 2: AbstractingHMAC. With the hash function𝐇 being abstracted as two indepen-
dent random oracles ROTh and ROCh, we are able to abstract function𝐌𝐀𝐂 (implemented
as HMAC[ROCh]) as its own random oracle. Note that we cannot do this abstraction right
away, as𝐌𝐀𝐂 prior to Step 1 is implemented using𝐇 that is also used to hash transcripts
during the handshake. Modeling 𝐇 as the random oracle RO𝐻 and modeling 𝐌𝐀𝐂 as
an independent random oracle might neglect possible dependencies between these two
oracles. Therefore, Step 1 is crucial to have a formally-sound result, as it clearly separates
the different applications of the hash function as independent. To this end, we replace the
implementation of 𝐌𝐀𝐂 = HMAC[ROCh] in this step by 𝐌𝐀𝐂 calling a single random

89



7 abstracting the tls key schedule

oracle ROHMAC. Fortunately, we can rely on the result by Dodis, Ristenpart, Steinberger,
and Tessaro [DRST12] to show that HMAC[ROCh] is indifferentiable from ROHMAC. This
result only applies if the HMAC key is of a fixed length less than the block length of the
underlying hash function. TLS 1.3 supports SHA256 and SHA384, which have a block
size of 512 and 1024 bits, respectively. As TLS 1.3 uses HMAC keys only of the same
length as the output length of the hash function, i.e., 256 bits for SHA256 and 384 bits for
SHA384, this requirement is satisfied. There is an exception that are pre-shared keys that
are negotiated out-of-band, which might have a different length. In this work, we do not
consider out-of-band pre-shared keys, therefore we do not cover them in this analysis.
The random oracle ROHMAC subsumes the random oracle ROCh as Ch is only used as

a subroutine of HMAC. The random oracle ROTh remains such that the new abstraction
now consists of the random oracles ROTh and ROHMAC.

Step 3: Final abstraction. In the final abstraction step, we move to the key schedule
abstraction as depicted in Figure 7.2. After this indifferentiability step, we result in 12
independent random oracles, which consist of the oracle ROTh introduced in Step 1 and
11 random oracles that represent each key and MAC value computation during the hand-
shake, called RO𝑏𝑖𝑛𝑑𝑒𝑟 , RO𝑒𝑡𝑠 , RO𝑒𝑒𝑚𝑠 , ROℎ𝑡𝑘𝐶 , RO𝑓 𝑖𝑛𝐶 , ROℎ𝑡𝑘𝑆 , RO𝑓 𝑖𝑛𝑆 , RO𝑎𝑡𝑠𝐶 , RO𝑎𝑡𝑠𝑆 , RO𝑒𝑚𝑠 ,
and RO𝑟𝑚𝑠 . For this, we show that the TKDF functions implemented using ROHMAC are
indifferentiable from the aforementioned random oracles. Here, TKDF𝑥 is a construction
for RO𝑥 .

Outline of this section. Applying these three steps combined to the key schedule
used in the TLS 1.3 full and PSK handshake results in Theorems 7.3 and 7.4, respectively.
This then forms the formal foundation to only work with the abstracted key schedule
for subsequent analyses. In the remainder of this section, we formally prove the three
steps outlined below. Recall that the general structure is the same for the full and PSK
handshake, but the details, in particular for Step 1, differ. We will present a combined
analysis in the next section and highlight the aspects that differ in the the various modes.

7.4.1 Step 1: Separating the Use of the Hash Function

In this section, we show that the two different ways TLS uses its hash function can be
replaced by two independent random oracles. Recall that TLS uses its hash function
for computing transcript hashes and as a subroutine of𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝 (Sec-
tion 6.3). To separate these two applications of the hash function, we refer to the former
as Th (“transcript hash”) and to the latter as Ch (“component hash”). These two functions
are just defined as Th[𝐇] ≔ 𝐇 and Ch[𝐇] ≔ 𝐇, so they are only conceptual. On a high
level, we now want to show that these two uses of the hash function actually are distinct.
That is, TLS never computes a transcript and component hash of the same input value.
More formally, this means that we show that we can define domains Th and Ch for
Th and Ch, respectively, such that (Th,Ch) forms a partition of 𝐇’s domain {0, 1}∗ (i.e.,
Th ∩ Ch = ∅ and Th ∪ Ch = {0, 1}∗). With these domains defined, we can define

90



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

random oracles

ROTh∶ Th → {0, 1}𝜆 and ROCh∶ Ch → {0, 1}𝜆

and leverage the a construction that is called the identity cloning functor by Bellare, Davis,
and Günther [BDG20]. This construction constructs multiple random oracles (RO𝑖)𝑖 from
a “base random oracle” RO and RO𝑖(𝑥) = RO(𝑥) for all 𝑖, i.e., every query to oracle RO𝑖
is forwarded to RO without change. This construction clearly is only indifferentiable if
inputs 𝑥 for different 𝑖 are distinct (i.e., the domains of RO𝑖 to not overlap). Otherwise,
these oracles cannot be independent.

However, formally defining the domainsTh andCh is very complex, as they are only
implicitly defined by the standard. Hence, it would be desirable to define the random
oracles ROTh and ROCh over the full domain {0, 1}∗. Unfortunately, as mentioned above
we are then not able to prove these indifferentiable. To circumvent this, we can make
use of the working domains defined by Bellare, Davis, and Günther [BDG20] and prove
read-only indifferentiability (Definition 7.2) instead. In this setting, random oracles can
be defined over overlapping domains as long as they are only queried on the working
domain during the security experiment. That is, ROTh andROCh can be defined on domain
{0, 1}∗, but have working domainsTh andCh, respectively. The intuition behind this is
that ROTh and ROCh cannot be indiffierentiable in general, but only if queried on distinct
domains.

Proof strategy. To prove this, we proceed as follows. First, we prove Lemma 7.1 given
below stating that if 𝐇 is modeled as a random oracle RO𝐻 , then the way how 𝐇 is used
during the TLS handshake is read-only indifferentiable from two independent random
oracles ROTh and ROCh under the condition that the working domains of ROTh and ROCh

are disjoint. Using Lemma 7.1, we then can deduce from the (read-only) indifferentiability
composition theorem Theorem 7.2 that the TLS 1.3 full handshake as well as the TLS 1.3
PSK handshakes preservesMSKE-security if it uses the abstraction of two random oracles
representing the hash function. This is formalized in Lemmas 7.2 and 7.3. Note that the
above mentioned results up to this point only are valid under the assumption that we
can define (working) domains Th and Ch. We already mentioned that defining these
is complex. Therefore, we present a careful domain separation argument separately for
the TLS 1.3 full handshake protocol and the TLS 1.3 PSK-(EC)DHE/PSK-only handshake
protocol. Since this argument is so complex, we focus in this section on proving the
indifferentiability, and the defer the discussion on domain separation as well as the
definition of the working domains to Section 7.5.

Indifferentiability of the TLS hash function. Above we referred to the different
applications for 𝐇 as Th and Ch to highlight the overall idea. Formally, we need to
express this as outlined above using the identity cloning functor by Bellare, Davis, and
Günther [BDG20]. That is, the hash function construction𝐂1 from𝐇 used during the TLS
handshake can be formalized as follows: Let S1 = ({0, 1}∗, {0, 1}𝜆) and E1 = ({Th,Ch}×

91



7 abstracting the tls key schedule

Sim1.Eval[Priv](𝑌 , 𝑠𝑡𝑎𝑡𝑒)

1 ∶ 𝐢𝐟 𝑌 ∈ Th 𝐭𝐡𝐞𝐧 𝑖 = Th 𝐞𝐥𝐬𝐞 𝑖 = Ch

2 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 Priv(𝑖, 𝑌 )

Figure 7.7: Read-only simulator Sim1 for Lemma 7.1. The simulator does not hold a state,
i.e., Sim1.Setup = ⊥.

{0, 1}∗, {0, 1}𝜆). We define construction 𝐂1 for E1 from S1 as

𝐂1[𝑠](𝑖, 𝑥) ≔ 𝑠(𝑥) for 𝑖 ∈ {Th,Ch}.

For the above notation, we then have for the TLS handshake that Th(⋅) = 𝐂1[𝐇](Th, ⋅) and
Ch(⋅) = 𝐂1[𝐇](Ch, ⋅). Next, we prove the following lemma showing that construction
𝐂1 is (read-only) indifferentiable from two independent random oracles with disjoint
working domains. Implicitly this result was already given in [DDGJ22b] and adapts the
the proof of [BDG20, Thm. 1].

Lemma 7.1. Let S1 = ({0, 1}∗, {0, 1}𝜆) be the starting function space and E1 = ({Th,Ch}×
{0, 1}∗, {0, 1}𝜆) be the ending function space. Let W ≔ ({Th} × Th) ∪ ({Ch} × Ch) be the
working domain, whereTh andCh are disjoint sets withTh ∪Ch = {0, 1}∗. Further, let
construction𝐂1 for E1 from S1 be the construction defined above. Define read-only simulator
Sim1 as shown in Figure 7.7. Then, for any adversary , it holds

Advrd−indiff𝐂1,Sim1,S1,E1,W() = 0.

Proof. First, recall that

Advrd−indiff𝐂1,Sim1,S1,E1,W() = |Pr[Exprd−indiff,1𝐂1,Sim1,S1,E1,W() = 1] − Pr[Exprd−indiff,0𝐂1,Sim1,S1,E1,W() = 1]|

where Exprd−indiff,𝑏𝐂1,Sim,1S1,E1,W() is defined in Figure 7.5. We show that it holds

Pr[Exprd−indiff,1𝐂1,Sim1,S1,E1,W() = 1] = Pr[Exprd−indiff,0𝐂1,Sim1,S1,E1,W() = 1]

for Sim1 given in Figure 7.7 and any adversary . To that end, we argue that the output
of the oracles Priv and Pub in the read-only indifferentiability security experiment are
distributed identically independent of bit 𝑏. As a reminder, if 𝑏 = 1 then Priv(𝑖, 𝑋) =
𝐂1[𝑠](𝑖, 𝑋) = 𝑠(𝑋) for (𝑖, 𝑋) ∈ W and Priv(𝑖, 𝑋) = ⊥ otherwise, and Pub(𝑌 ) = 𝑠(𝑌 ) for
𝑠 $← S𝐈. If 𝑏 = 0, then Priv(𝑖, 𝑋) = 𝑒(𝑖, 𝑋) for (𝑖, 𝑋) ∈ W and Priv(𝑖, 𝑋) = ⊥ otherwise,
and Pub(𝑌 ) = Sim1.Eval[𝑒](𝑌 ) for 𝑒 $← E𝐈. Now, observe that both functions 𝑠 (if 𝑏 = 1)
and 𝑒 (if 𝑏 = 0), are random functions with range {0, 1}𝜆. They only differ in their
domain: function 𝑠 has domain {0, 1}∗ and function 𝑒 has domain {Th,Ch} × {0, 1}∗. That
is, function 𝑒 intuitively only adds a parameter for the intended use of the resulting
hash. Since functions 𝑠 and 𝑒 both are random functions with range {0, 1}𝜆, this implies
that oracle Priv by definition, independent of bit 𝑏, implements a random function with

92



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

range {0, 1}𝜆, as well, if queried on the working domain. For Pub the same holds if 𝑏 = 1.
If 𝑏 = 0, Pub is implemented using the simulator Sim1. By definition, Sim1.Eval[𝑒](𝑌 )
computes 𝑒(𝑖, 𝑌 ) with 𝑖 = Th if 𝑌 ∈ Th and 𝑖 = Ch otherwise. This means effectively,
Priv and Pub for 𝑏 = 0 are the same function, but with a different interface. Hence, Pub
and Priv (for the working domain) independent of bit 𝑏 implement a random function
with range {0, 1}𝜆. This means for all inputs queried to Pub and Priv, respectively, for
the first time, the output will be a uniformly distributed string on {0, 1}𝜆. Therefore,
Pr[Exprd−indiff,1𝐂1,Sim!,S1,E1,W() = 1] = Pr[Exprd−indiff,0𝐂1,Sim1,S1,E1,W() = 1] and the lemma follows.

Remark 7.1. Note that the read-only simulator Sim1 (Figure 7.7) used for Lemma 7.1
requires a membership function for setTh. The simulator thus asymptotically can only
be efficient if such a membership function exist efficiently.

Lemma 7.1 on a high-level now gives us that if we are able to define setsTh andCh,
then we can split-up a random oracle RO𝐻 ∶ {0, 1}∗ → {0, 1}𝜆 into two independent ran-
dom oracles ROCh∶ {0, 1}∗ → {0, 1}𝜆 and ROCh∶ {0, 1}∗ → {0, 1}𝜆 with the restriction that
ROTh and ROCh are only queried on Th and Ch, respectively. This intuition together
with the (read-only) indifferentiability composition theorem Theorem 7.2 directly im-
plies the following two lemmas formalizing that the TLS handshake protocol preserves
MSKE-security if ROTh and ROCh are used in place of RO𝐻 . Lemma 7.3 was already given
and shown in [DDGJ22b].

Lemma 7.2. Let KE be the TLS 1.3 full handshake protocol as defined in Theorem 7.3. Let
ROTh,ROCh∶ {0, 1}∗ → {0, 1}𝜆 be two independent random oracles. Let KE1 be the TLS 1.3
full handshake protocol as defined in Figure 6.1, where

• 𝐇 ≔ ROTh,

• 𝐌𝐀𝐂 ≔ HMAC[ROCh],

and 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝 are defined using 𝐌𝐀𝐂 as in KE. Further, let Th and Ch are
disjoint sets with Th ∪ Ch = {0, 1}∗. Then, for any adversary  against the pMSKE

security of KE, we can construct an adversary  against KE1 such that

AdvpMSKE
KE () ≤ AdvpMSKE

KE1
().

Lemma 7.3. Let KE be the TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol as defined
in Theorem 7.4. Let ROTh,ROCh∶ {0, 1}∗ → {0, 1}𝜆 be two independent random oracles. Let
KE1 be the TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol as defined in Figure 6.2,
where

• 𝐇 ≔ ROTh,

• 𝐌𝐀𝐂 ≔ HMAC[ROCh],

and 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝 are defined using 𝐌𝐀𝐂 as in KE. Further, let Th and Ch are
disjoint sets with Th ∪ Ch = {0, 1}∗. Then, for any adversary  against the sMSKE

security of KE, we can construct an adversary  against KE1 such that

AdvsMSKE
KE () ≤ AdvsMSKE

KE1
().

93



7 abstracting the tls key schedule

Remark 7.2. We highlight that Lemmas 7.2 and 7.3 only are valid under the assumption
that the working domains Th and Ch can be defined. The definition is quite involved
and requires a careful inspection of the format of the messages input to the hash func-
tion 𝐇. For better readability, we define these domains separately in Section 7.5 and
focus on the actual proof of the key-schedule indifferentiability in this section. Here, it
is sufficient to know that these domain can be defined.

7.4.2 Step 2: Separating the Use of the Hash Function

In the previous step (Section 7.4.1), we abstracted the hash function (resp. the random
oracle RO𝐻 ) used in the TLS 1.3 handshake by two independent random oracles ROTh

and ROCh, one for each use of the hash function. ROTh is used to hash transcripts, and
ROCh is used to instantiate 𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝. In this section, we keep ora-
cle ROTh as it is, and abstract oracle ROCh even further. In our current abstraction of the
TLS 1.3 handshake, which we referred to as KE1 in Lemmas 7.2 and 7.3, 𝐌𝐀𝐂 is defined
as HMAC[ROCh], i.e., HMAC instantiated with ROCh as hash function, and 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and
𝐄𝐱𝐩𝐚𝐧𝐝 are defined using 𝐌𝐀𝐂. Note that ROCh in KE1 is solely used to instantiate
𝐌𝐀𝐂. Therefore, the goal of this step is to replace HMAC[ROCh] by a random oracle
ROHMAC. To this end, we need to show that HMAC is indifferentiable. Fortunately, the
indifferentiability of HMAC has already been studied by Dodis, Ristenpart, Steinberger,
and Tessaro [DRST12]. Their result (given in [DRST12, Thm. 3] and [DRST13, Thm. 4.3])
shows indifferentiability for HMAC when the underlying hash function is modeled as
a random oracle and the key length is less than the block size of the underlying hash
function. However, this is not a big restriction in the context of TLS 1.3 as TLS 1.3 only
allows for the hash function to be SHA256 and SHA384, which have a block size of 512
and 1024 bits, respectively. Therefore, the key size of HMAC used in TLS is always small
enough as it is equal to the output length of the hash function, which is either 256 or
384 bits. The only exception might be if one would consider out-of-band PSKs that might
deviate from this length requirement. We do not consider out-of-band PSKs in this work,
so this is no restriction for our perspective.
Next, we show indifferentiability of HMAC as it is used in TLS, and then apply this

result to the TLS full and PSK handshake, respectively. The following lemma was already
implicitly given in [DDGJ22b] and the proof follows from [DRST13, Thm. 4.3].

Lemma 7.4. Let S2 = ({Th,Ch} × {0, 1}∗, {0, 1}𝜆) be the starting function space and E2 =
(({Th}× {0, 1}∗)∪({HMAC}× {0, 1}𝜆 ×{0, 1}∗), {0, 1}𝜆) be the ending function space. Further,
let construction 𝐂2 for E2 from S2 be the construction defined as follows:

𝐂2[𝑠](Th, 𝑥) = 𝑠(Th, 𝑥) and 𝐂2[𝑠](HMAC, 𝑘, 𝑥) = HMAC[𝑠](𝑘, 𝑥).

Define simulator Sim2 as shown in Figure 7.8. Then, for any adversary , it holds

Advindiff𝐂2,Sim2,S2,E2() ≤
2𝑞2

2𝜆

where 𝑞 is the total number of oracle queries issued by .

94



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

Sim2[Priv](𝑖, 𝑈 , 𝑠𝑡𝑎𝑡𝑒)

1 ∶ 𝐢𝐟 𝑖 = Th 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 Priv(Th, 𝑈 )
2 ∶ 𝐞𝐥𝐬𝐞 // 𝑖 = Ch

3 ∶ Parse 𝑈 as 𝑋 ‖ 𝑌 with |𝑋 | = block size
4 ∶ 𝐾 ≔ GetKey(𝑋) // remove ipad or opad from 𝑋

5 ∶ 𝐢𝐟 isOuter(𝑋) = 0 𝐭𝐡𝐞𝐧 // “inner query”

6 ∶ 𝑉 $← {0, 1}𝜆

7 ∶ 𝑠𝑡𝑎𝑡𝑒.𝐹[𝐾, 𝑉 ] ≔ 𝑌
8 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 𝑉
9 ∶ // “outer query” and “inner” made before

10 ∶ 𝐢𝐟 isOuter(𝑋) = 1 ∧ 𝑠𝑡𝑎𝑡𝑒.𝐹[𝐾, 𝑌 ] ≠ ⊥ 𝐭𝐡𝐞𝐧
11 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 Priv(HMAC, 𝐾 , 𝑠𝑡𝑎𝑡𝑒.𝐹[𝐾, 𝑌 ])
12 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝑅 $← {0, 1}𝜆)

Figure 7.8: Simulator Sim2 for Lemma 7.4. The construction is an augmented version of
the simulator used in the proof of [DRST13, Thm. 4.3]. We augment the simulator to be

able to process transcript hash queries.

Proof. Consider simulator Sim2 defined in Figure 7.8. The general idea is simple. Given
access to a Priv oracle in the indifferentiability experiment (Figure 7.4) that is either ROTh

or ROHMAC the simulator has to simulate ROTh and ROCh. As we do not touch ROTh for
this abstraction step and it is only considered for completeness, Sim2 just forwards every
Th query to ROTh as expected. To simulate ROCh simulator Sim2 is exactly the simulator
defined by Dodis, Ristenpart, Steinberger, and Tessaro in the proof of [DRST13, Thm. 4.3].
Their simulator just distinguishes whether the queried string 𝑈 resembles an “inner” or
an “outer” oracle call in the computation of HMAC. As a reminder, recall the definition
of the HMAC function (cf. Section 6.1.1):

𝐻 ((𝑘 ⊕ opad) ‖ 𝐻((𝑘 ⊕ ipad) ‖ 𝑚)) .

Here, we refer to 𝐻 ((𝑘 ⊕ opad) ‖ 𝑌 ) as an “outer” call and to 𝐻((𝑘 ⊕ ipad) ‖ 𝑌 ) as an
“inner” call. To be able to distinguish these two kind of queries, the simulator assumes
the existence of a predicate isOuter that on input 𝑘⊕opad outputs 1 and on input 𝑘⊕ ipad

outputs 0. Note that we consider a less general version of HMAC here compared to Dodis,
Ristenpart, Steinberger, and Tessaro. We only consider a fixed key length of 𝜆 (i.e., the
output length of the configured TLS hash function), which is for the two candidates
SHA256 and SHA386 much smaller than their respective block size. In this case, the
predicate isOuter can easily be implemented. HMAC pads the used key with 0 bits to
the block size of the hash function. As discussed before, the key length is much smaller
than the block size, and thus one can easily identify an “outer” or “inner” call as it either
contains an opad = 0x5c segment for an “outer” call and an ipad = 0x36 segment for an

95



7 abstracting the tls key schedule

“inner” call. With this the simulator, then is easily able to obtain the key for an input 𝑋
by first calling isOuter and then computing 𝐾 = 𝑋 ⊕opad if isOuter = 1 and 𝐾 = 𝑋 ⊕ ipad

otherwise. Now, if the simulator is queried for an inner query, it just chooses a random
response and keeps this in a look-up table in its state. An outer response is responded
by first looking-up whether the simulator was already queried for a suitable inner query.
If this is the case, the simulator answers with the HMAC random oracle keyed with the
computed key 𝐾 and the corresponding inner query from its state. In any other case, the
simulator just responds with a random string.

Now, note that transcript hash queries are identical in the real and ideal world as the
oracle ROTh is present in both worlds. Therefore, our change to the simulator compared
to Dodis, Ristenpart, Steinberger, and Tessaro does not affect their result. Hence, we get
by applying [DRST13, Thm. 4.3] that

Advindiff𝐂2,Sim2,S2,E2() ≤
2𝑞2

2𝜆

where 𝑞 is the total number of queries (i.e., 𝑞 = 𝑞Priv + 𝑞Pub) issued by .

Next, we can use the indifferentiability composition theorem (Theorem 7.1) to apply
Lemma 7.4 to the TLS handshake protocol.

Lemma 7.5. Let KE1 be the TLS 1.3 full handshake protocol as defined in Lemma 7.2. Let
ROTh∶ {0, 1}∗ → {0, 1}𝜆 and ROTh∶ {0, 1}𝜆 × {0, 1}∗ → {0, 1}𝜆 be two independent random
oracles. Let KE2 be the TLS 1.3 full handshake protocol as defined in Figure 6.1, where

• 𝐇 ≔ ROTh,

• 𝐌𝐀𝐂 ≔ ROHMAC,

and 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝 are defined using 𝐌𝐀𝐂 as defined in Chapter 6. Then, for any
adversary  against the pMSKE security of KE1, we can construct an adversary  against
KE2 such that

AdvpMSKE
KE1

() ≤ AdvpMSKE
KE2

() +
2(13𝑞Send + 𝑞RO)2

2𝜆

where 𝑞Send and 𝑞RO are the total amount of queries issued by to the Send oracle and its
random oracles, respectively.

Proof. As mentioned above the lemma follows from the indifferentiability composition
theorem (Theorem 7.1) and Lemma 7.4. The only thing that remains to be justified is
that the distinguisher constructed in the reduction for the composition theorem makes
a total amount of 13𝑞Send + 𝑞RO queries to Priv and Pub. Note that in the proof of the
composition theorem, the distinguisher simulates the full TLS handshake for using
the oracles Priv and Pub instead of ROTh and HMAC[ROCh]. Hence, we need to count
what is the maximum number of HMAC and transcript hash computations for a message
computation in the TLS full handshake. Considering the TLS full handshake (Figure 6.1)
carefully one observes that the maximum number of computations occurs if a server
receives the ClientHello message. Then, server computes 10 HMAC values (1 per

96



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝, respectively, and 2 per DeriveTK) and computes 3 transcript
hashes resulting in a total amount of at most 13 Priv queries per run of a session. In
addition, the distinguisher has to make 1 Pub query per query of  to either of the
random oracles. Hence, overall we have a total amount of oracles queries issued by 
of 13𝑞Send + 𝑞RO, where 𝑞Send and 𝑞RO are the total amount of queries issued by to the
Send oracle and its random oracles, respectively.

Lemma 7.6. LetKE1 be the TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol as defined
inLemma 7.3. Let ROTh,ROCh∶ {0, 1}∗ → {0, 1}𝜆 be two independent random oracles. Let
ROTh∶ {0, 1}∗ → {0, 1}𝜆 and ROTh∶ {0, 1}𝜆 × {0, 1}∗ → {0, 1}𝜆 be two independent random
oracles. Let KE2 be the TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol as defined in
Figure 6.2, where

• 𝐇 ≔ ROTh,

• 𝐌𝐀𝐂 ≔ ROHMAC,

and 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 and 𝐄𝐱𝐩𝐚𝐧𝐝 are defined using 𝐌𝐀𝐂 as defined in Chapter 6. Then, for any
adversary  against the sMSKE security of KE1, we can construct an adversary  against
KE2 such that

AdvsMSKE
KE1

() ≤ AdvsMSKE
KE2

() +
2(12𝑞Send + 𝑞RO)2

2𝜆

where 𝑞Send and 𝑞RO are the total amount of queries issued by to the Send oracle and its
random oracles, respectively.

Proof. Similar to the proof of Lemma 7.5, we only need to justify that the distinguisher
constructed in the context of the composition issues at most 12𝑞Send + 𝑞RO many queries.
Considering the TLS PSK handshake (Figure 6.2) carefully one observes that upon receiv-
ing the ClientHello message (independent of the PSK mode), the server computes 10
HMAC values (1 per 𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝, respectively, and 2 per DeriveTK) and
computes 2 transcript hashes resulting in a total amount of at most 12 Priv queries per
run of a session. In addition, the distinguisher has to make 1 Pub query per query of
to either of the random oracles. Hence, overall we have a total amount of oracles queries
issued by  of 12𝑞Send + 𝑞RO, where 𝑞Send and 𝑞RO are the total amount of queries issued
by  to the Send oracle and its random oracles, respectively.

7.4.3 Step 3: Introducing the Key Schedule Abstraction

After abstracting HMAC as its own random oracle, we are now on an abstraction level of
the TLS 1.3 handshake protocol that uses two different random oracles, one for computing
transcript hashes, whichwe denote byROTh, and one thatwe use in place ofHMAC, which
we denote by ROHMAC. In the next and last step, we move to the abstraction of the TLS 1.3
handshake protocol as depicted in Figure 7.2 and replace the HMAC random oracle by
11 independent random oracles, where each random oracle represents each of the TKDF
functions defined in Section 7.2. We start by showing that the abstraction of the TLS 1.3
with 11 independent random oracles is indifferentiable from the abstraction presented

97



7 abstracting the tls key schedule

in the previous step. Subsequently, we conclude with the indifferentiability composition
theorem that the three handshake variants of TLS 1.3 maintain security with the new
abstraction.

Lemma 7.7. Let S3 = (({Th} × {0, 1}∗) ∪ ({HMAC} × {0, 1}𝜆 × {0, 1}∗), {0, 1}𝜆) be the starting
function space and let

E3 = ({Th} × {0, 1}∗, {0, 1}𝜆) × 𝑏𝑖𝑛𝑑𝑒𝑟 × 𝑒𝑡𝑠 × ⋯ × 𝑟𝑚𝑠

be the ending function space, where 𝓁 denotes the space of all functions with domain and
range as TKDF𝓁 as defined in Section 7.2. Further, let construction 𝐂3 for E3 from S3 be the
construction defined as follows:

𝐂3[𝑠](Th, 𝑥) = 𝑠(Th, 𝑥) and 𝐂3[𝑠](𝓁, 𝑘, 𝑥) = TKDF𝓁[𝑠](𝑘, 𝑥)

with 𝓁 ∈ {𝑏𝑖𝑛𝑑𝑒𝑟, … , 𝑟𝑚𝑠}. Define simulator Sim3 as shown in Figure 7.9. Then, for any
adversary , it holds

Advindiff𝐂3,Sim3,S3,E3() ≤
2𝑞2Pub
2𝜆

+
8(𝑞Pub + 6𝑞Priv)2

2𝜆

where 𝑞 is the total number of oracle queries issued by .

Proof. In this proof, we bound the advantage of any distinguisher  against the simu-
lator Sim3. The construction of Sim3 is rather complex, therefore we start the proof by
providing an intuition on why the simulator is constructed as it is. After that we prove
the bound given above in a sequence of games [Sho04].

Construction of simulator Sim3. Consider the construction of simulator Sim3 pre-
sented in Figure 7.9. The simulator Sim3 takes as input 𝑖 ∈ {Th,HMAC}, a string 𝑠 ∈ {0, 1}∗,
and a state. Further, it gets oracle access to a random oracle RO ∈ E3 that represents
12 independent random oracles: ROTh, RO𝑏𝑖𝑛𝑑𝑒𝑟 , . . . , RO𝑟𝑚𝑠 . Each random oracle RO𝑥 can
be accessed via RO by providing a prefix, i.e., RO𝑥(⋅) ≔ RO(𝑥, ⋅). Intuitively, the overall
goal of the simulator is to simulate random oracle ROHMAC by using only the 11 random
oracles RO𝑏𝑖𝑛𝑑𝑒𝑟 , . . . , RO𝑟𝑚𝑠 representing the TKDF functions. The random oracle ROTh

is not abstracted in this step, therefore it remains unchanged. To this end, the simula-
tor Sim3 will always directly answer every query (Th, 𝑠) by simply forwarding it to the
random oracle RO, and outputs RO(Th, 𝑠). HMAC oracle queries (i.e., inputs of the form
(HMAC, ⋅, ⋅)) are more complex to respond to as we need to assure consistency with the
other 11 “TKDF oracles”. On input (HMAC, 𝑠), the simulator first parses every input 𝑠 as
a pair (𝐾, 𝑌 ) ∈ {0, 1}𝜆 × {0, 1}∗ and then simulates ROHMAC(𝐾, 𝑌 ) as follows.

The simulator Sim3 first starts by checking whether an HMAC query has already been
issued before and answers repeated queries consistently using a look-up table 𝑀 that it
keeps in its state. If the input has not been queried before, it first samples its response 𝑦
uniformly at random. Subsequently, the simulator ensures that is remains consistent
with its random oracle RO. Recall that in the indifferentiablity game, we have two worlds.

98



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

Sim[RO](𝑖, 𝑠, 𝑠𝑡𝑎𝑡𝑒)

1 ∶ 𝑀, 𝑇 ≔ state
2 ∶ // Th queries are just forwarded
3 ∶ 𝐢𝐟 𝑖 = Th 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 RO(Th, 𝑠)
4 ∶ // Otherwise, HMAC query
5 ∶ 𝐢𝐟 𝑀[𝑠] ≠ ⊥ 𝐭𝐡𝐞𝐧 𝐫𝐞𝐭𝐮𝐫𝐧 𝑀[𝑠]
6 ∶ parse 𝑠 as (𝐾, 𝑌 ) ∈ {0, 1}𝜆 × {0, 1}∗
7 ∶ // Sample random response
8 ∶ 𝑦 $← {0, 1}𝜆
9 ∶ // computation for 𝑒𝑠
10 ∶ 𝐢𝐟 𝐾 = 0 𝐭𝐡𝐞𝐧 𝑇psk[𝑦] ≔ 𝑌
11 ∶ // computation for 𝑚𝑠
12 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝑌 = 0 𝐭𝐡𝐞𝐧 𝑇saltMS[𝑦] ≔ 𝐾
13 ∶ // MAC key 𝐾 is already defined?
14 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝑇BK/HTS[𝐾] ≠ ⊥ 𝐭𝐡𝐞𝐧
15 ∶ 𝑒𝑠 ≔ 𝑇es[𝑇BK/HTS[𝐾]]
16 ∶ 𝑝𝑠𝑘 ≔ 𝑇psk[𝑒𝑠]
17 ∶ // 𝑏𝑖𝑛𝑑𝑒𝑟 computation
18 ∶ 𝐢𝐟 𝑝𝑠𝑘 ≠ ⊥ 𝐭𝐡𝐞𝐧
19 ∶ 𝑦 ≔ RO(𝑏𝑖𝑛𝑑𝑒𝑟, 𝑝𝑠𝑘, 𝑌 )
20 ∶ // 𝑓 𝑖𝑛𝐶/𝑆 computation
21 ∶ ℎ𝑡𝑠 ≔ 𝑇BK/HTS[𝐾]
22 ∶ (𝓁′, ℎ𝑠, 𝐻) ≔ 𝑇hs/H[ℎ𝑡𝑠]
23 ∶ (𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑍) ≔ 𝑇saltHS/DHE[ℎ𝑠]
24 ∶ 𝑝𝑠𝑘 ≔ 𝑇psk[𝑇es/hs[𝑠𝑎𝑙𝑡ℎ𝑠]]
25 ∶ 𝐢𝐟 𝑝𝑠𝑘 ≠ ⊥ 𝐭𝐡𝐞𝐧
26 ∶ (⋅, 𝑥) ≔ 𝓁′

27 ∶ 𝑦 ≔ RO(𝑥, 𝑝𝑠𝑘, 𝑍, 𝐻, 𝑌 )
28 ∶ // query is ℎ𝑠 computation
29 ∶ 𝐞𝐥𝐬𝐞 𝑇saltHS/DHE[𝑦] ≔ (𝐾, 𝑌 )
30 ∶ // Is 𝑌 a HkdfLabel?
31 ∶ 𝐢𝐟 𝑌 ≠ ⟨𝜆⟩2 ‖ ⟨𝑖⟩1 ‖ "tls13 "

32 ∶ ‖ 𝓁 ‖ ⋯ ‖ 0x01 with 𝑖 ∉ [8, 18]
33 ∶ ∧ |𝓁| ∉ [16, 96] 𝐭𝐡𝐞𝐧
34 ∶ // No, output current response
35 ∶ 𝑀[𝑠] ≔ 𝑦; 𝐫𝐞𝐭𝐮𝐫𝐧 𝑦
36 ∶ // Yes, parse 𝐄𝐱𝐩𝐚𝐧𝐝 format
37 ∶ parse 𝓁 from 𝑌
38 ∶ parse last 𝜆 + 1 bytes of 𝑌
39 ∶ as 𝐻 ‖ 0x01

Sim[RO](𝑖, 𝑠, 𝑠𝑡𝑎𝑡𝑒) // continued ...

40 ∶ // query is 𝑏𝑘 computation
41 ∶ 𝐢𝐟 𝓁 = 𝓁0 ∧ 𝐻 = 𝐻0 𝐭𝐡𝐞𝐧
42 ∶ 𝑇es[𝑦] ≔ 𝐾
43 ∶ // query is 𝑠𝑎𝑙𝑡ℎ𝑠/𝑚𝑠 computation
44 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝓁 = 𝓁3 ∧ 𝐻 = 𝐻0 𝐭𝐡𝐞𝐧
45 ∶ 𝑇es/hs[𝑦] ≔ 𝐾
46 ∶ // query is ℎ𝑡𝑠𝐶/𝑆 computation
47 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝓁 ∈ {𝓁4, 𝓁5} 𝐭𝐡𝐞𝐧
48 ∶ 𝑇hs/H[𝑦] ≔ ((𝓁), 𝐾 , 𝐻)
49 ∶ // query is 𝑒𝑡𝑠/𝑒𝑒𝑚𝑠 computation
50 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝓁 ∈ {𝓁1, 𝓁2} ∧ 𝑇psk[𝐾] ≠ ⊥ 𝐭𝐡𝐞𝐧
51 ∶ 𝐢𝐟 𝓁 = 𝓁1 𝐭𝐡𝐞𝐧 𝑥 = 𝑒𝑡𝑠
52 ∶ 𝐞𝐥𝐬𝐞 𝑥 = 𝑒𝑒𝑚𝑠
53 ∶ 𝑦 ≔ RO(𝑥, 𝑇psk[𝐾], 𝐻)
54 ∶ // query is 𝑎𝑡𝑠𝐶/𝑆/𝑒𝑚𝑠/𝑟𝑚𝑠 computation
55 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝓁 ∈ {𝓁7, 𝓁8, 𝓁9, 𝓁10} 𝐭𝐡𝐞𝐧
56 ∶ (𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑍) ≔ 𝑇saltHS/DHE[𝑇es/hs[
57 ∶ 𝑇saltMS[𝐾]]]
58 ∶ 𝑝𝑠𝑘 ≔ 𝑇psk[𝑇es/hs[𝑠𝑎𝑙𝑡ℎ𝑠]]
59 ∶ // 𝑥 is 𝑎𝑡𝑠𝐶/𝑆/𝑒𝑚𝑠/𝑟𝑚𝑠 depending on 𝓁
60 ∶ 𝐢𝐟 𝑝𝑠𝑘 ≠ ⊥ 𝐭𝐡𝐞𝐧
61 ∶ 𝑦 ≔ RO(𝑥, 𝑝𝑠𝑘, 𝑍, 𝐻)
62 ∶ // query is 𝑓 𝑘 computation
63 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝓁 = 𝓁6 ∧ 𝐻 = "" 𝐭𝐡𝐞𝐧
64 ∶ 𝑇BK/HTS[𝑦] ≔ 𝐾
65 ∶ // query is ℎ𝑡𝑘 computation
66 ∶ 𝐞𝐥𝐬𝐞 𝐢𝐟 𝓁 ∈ {"tls13 key",
67 ∶ "tls13 iv"} ∧ 𝐻 = 𝐻0 𝐭𝐡𝐞𝐧
68 ∶ (𝓁′, ℎ𝑠, 𝐻 ′) ≔ 𝑇hs/H[𝐾]
69 ∶ (𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑍) ≔ 𝑇saltHS/DHE[ℎ𝑠]
70 ∶ 𝑝𝑠𝑘 ≔ 𝑇psk[𝑇es/hs[𝑠𝑎𝑙𝑡ℎ𝑠]]
71 ∶ 𝐢𝐟 𝑝𝑠𝑘 ≠ ⊥ 𝐭𝐡𝐞𝐧
72 ∶ (𝑥, ⋅) ≔ 𝓁′

73 ∶ (𝑦0, 𝑦1) ≔ RO(𝑥, 𝑝𝑠𝑘, 𝑍, 𝐻 ′)
74 ∶ 𝑦 ≔ 𝑦(𝓁)
75 ∶ 𝑀[𝑠] ≔ 𝑦; 𝐫𝐞𝐭𝐮𝐫𝐧 𝑦

Figure 7.9: Simulator Sim3 for Lemma 7.7. The construction of the simulator is adapted
from [DDGJ22b, DDGJ22a]. The label translator outputs on input 𝓁4 the pair (ℎ𝑡𝑘𝐶 , 𝑓 𝑖𝑛𝐶);
on input 𝓁5 the pair (ℎ𝑡𝑘𝑆 , 𝑓 𝑖𝑛𝑆); on input "tls13 key" 0; on input "tls13 iv" 1; and

⊥ otherwise.

99



7 abstracting the tls key schedule

In the real world, an adversary has oracle access to the construction 𝐂3 and a random
oracle ROS ∈ S3, which 𝐂3 is defined upon. In the ideal world, in turn it has oracle
access to a random oracle RO ∈ E3 and the simulator Sim3, as without the simulator
informally speaking an adversary can win by just counting its oracles. Now, a query to
Sim3 ultimately could be part of computing 𝐂3 using the Sim3 and comparing it to RO

in order to determine in which “world” an adversary is. Due to this possible attack, it
is key for the simulator Sim3 to be consistent with the random oracle RO. Otherwise,
distinguishing the ideal from the real world might be trivial. Thus, simulator Sim3 cannot
always answer with a uniformly random 𝑦. Rather, it potentially needs to override the
uniform 𝑦 by the an output of its random oracle RO to keep consistent. For illustration,
think about the underlying construction of TKDF, which informally is just a special way
of callingHMAC. The output ofTKDF ultimately is always from anHMAC call. Since Sim3
basically simulates ROHMAC, it is clear that all the “last”HMAC computations of eachTKDF
function (cf. Figure 7.1) has to consistent as the corresponding RO query (resp. TKDF
computation). Since Sim3 simulates a random oracle, one can view this “overwriting” as
programming of the simulated random oracle. As mentioned before, only all the “last”
computations of TKDF have to be consistent with the simulation. Therefore, only the
keys derived during the handshake and the MAC values need to be programmed. All
the intermediate values that we abstracted away using the introduction of TKDF (e.g.,
𝑒𝑠, ℎ𝑠, etc.), the simulator stills need to keep track of using a look-up table 𝑇 kept in the
state for possible later programming. As sometimes multiple intermediate values are
possible in certain situations, we have combined look-up tables in these cases. As an
example take the computation of 𝑠𝑎𝑙𝑡ℎ𝑠 and 𝑠𝑎𝑙𝑡𝑚𝑠 (cf. Figure 7.1 for the precise definition).
Here, the computation of these two intermediate values only differs in the key they are
derived from, which is the early secret 𝑒𝑠 for 𝑠𝑎𝑙𝑡ℎ𝑠 and the handshake secret ℎ𝑠 for
𝑠𝑎𝑙𝑡𝑚𝑠 . The context 𝐻0 and the respective label are identical, therefore a key 𝐾 in a query
(HMAC, 𝐾 , 𝑌 ) could be both 𝑒𝑠 or ℎ𝑠. Therefore, we cannot say with certainty whether
the query belongs to a computation of 𝑠𝑎𝑙𝑡ℎ𝑠 and 𝑠𝑎𝑙𝑡𝑚𝑠 , hence we store the respective
key 𝐾 under the response 𝑦 to come back later to this query when more context is given.
Note that each intermediate value should only ever appear in a single key derivation
step except if there is a collision in ROHMAC. Therefore, if no collision occurs we will find
the right use (as 𝑒𝑠 or ℎ𝑠) for the stored key later.
Overall, the simulator Sim3 can be divided up into two phases. In the first phase,

it checks whether the query corresponds to a “plain” HMAC computation (Figure 7.9,
Lines 10–29). These occur in the TLS 1.3 key schedule whenever HMAC (for the MAC
values) or 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 is computed. Recall that informally, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 represents HKDF.Extract,
which is just another name for the HMAC function. These queries do not use labels, so
potentially multiple values are possible. In the second phase, the simulator Sim3 checks
whether the input string 𝑌 follows the specific structure of the 𝐄𝐱𝐩𝐚𝐧𝐝 calls used in
TLS 1.3. We discuss this in more detail in the next section, when we have a closer look
at the formatting of hash computation. However, the important thing to observe here is
that 𝐄𝐱𝐩𝐚𝐧𝐝 is also HMAC, but the input string 𝑌 has a specific structure to it. First of
all, it always ends with 0x01 as all 𝐄𝐱𝐩𝐚𝐧𝐝 queries used in TLS 1.3 have output length
of at most the output length of the underlying hash function. That is, all 𝐄𝐱𝐩𝐚𝐧𝐝 calls

100



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

only ever compute a single output block (cf. Section 6.1.2 for more details). The rest of 𝑌
is a special structure called HkdfLabel in the TLS 1.3 standard [Res18, Sect. 7.1], which
is structured as follows:

HkdfLabel = ⟨𝜆⟩2 ‖ ⟨𝑖⟩1 ‖ "tls13 " ‖ 𝓁 ‖ ⟨𝜆⟩1 ‖ 𝐻

where 𝜆 is the output length of the hash function configured in TLS, 𝓁 ‖ 𝐻 is the input
to 𝐄𝐱𝐩𝐚𝐧𝐝 consisting of label and a hash, 𝑖 ∈ [8, 18], and ⟨⋅⟩𝑗 denotes the encoding of
⋅ in 𝑖 bytes. This can then be used by the simulator to precisely determine which key
derivation the query might belong to. In summary, the simulator uses a look-up table
to backtrack through potential computations of intermediate values using queries to
ultimately find the inputs ensuring consistency with RO. Using this backtracking allows
the simulator to find the inputs to TKDF to derive a certain key.

Bounding the advantage. Let be any distinguisher. In the following, we construct
a sequence of games ([Sho04]) to bound the advantage Advindiff𝐂3,Sim3,S3,E3(). Let Game𝛿
denote the event that Game 𝛿 outputs 1. The sequence of games presented below was
already given in a similar form in [DDGJ22b, DDGJ22a].

game 0. The initial Game 0 is the “ideal” indifferentiability game Expindiff,0𝐂3,Sim3,S3,E3()
defined in Figure 7.4. This means the distinguisher  has oracle access to a Priv oracle
using a random oracle RO $← E3 and a Pub oracle using Sim3[RO]. In this game, it holds

Pr[Game0] = Pr[Expindiff,0𝐂3,Sim3,S3,E3() = 1].

game 1. In Game 1, we ensure that the response 𝑦 sampled by Sim3 (Line 8, Figure 7.9)
does not collide with neither the input nor the output of any previous query to Sim3. In
particular, we require for inputs (HMAC, 𝑠, ⋅) with 𝑠 parsed as (𝐾, 𝑌 ) ∈ {0, 1}𝜆 × {0, 1}∗ that
𝑦 does not collide with neither 𝐾 nor 𝑌 . If this event occurs, we set a flag bad𝐶 and if bad𝐶
is set in the end of the game, we always output 0. If distinguisher  issues at most 𝑞Pub
many queries to oracle Pub (resp. Sim3), there are in any query at most 2𝑞Pub values that
string 𝑦 $← {0, 1}𝜆 can collide with. Applying the union bound, the probability that such
a collision occurs and flag bad𝐶 is set, is bounded from above by 2𝑞2Pub/2𝜆. Then, it holds
(by the Difference Lemma [Sho04] or the Fundamental Lemma of game playing [BR06])
that

Pr[Game1] ≤ Pr[Game0] + Pr[bad𝐶] ≤ Pr[Game0] +
2𝑞2Pub
2𝜆

.

game 2. In Game 2, we recompute every query issued to oracle Priv using TKDF[Pub]
before the game computes its final output. That is, we store every query (𝑟, 𝑋) issued to
oracle Priv and in the end of the game we compute TKDF𝑟 [Pub](𝑋) for all (𝑟, 𝑋) stored
before. The result of each computation is discarded. Since we ignore the outputs, this
change only has an effect on the flag bad𝐶 being set, because any of the new computations
might ask a new query to oracle Pub that induces a collision. Recalling the definition
of TKDF (Figure 7.1), we observe that each of the functions call the subroutines 𝐄𝐱𝐭𝐫𝐚𝐜𝐭,

101



7 abstracting the tls key schedule

𝐄𝐱𝐩𝐚𝐧𝐝, and𝐌𝐀𝐂 at most 6 times in total. Since all of these functions correspond to a
single HMAC computation, this change induces at most 6⋅𝑞Priv additional Pub queries (i.e.,
at most 6 additional Pub per Priv query). Thus, this change only increases the probability
that flag bad𝐶 is set, which can be upper-bounded as follows:

Pr[Game2] ≤ Pr[Game1] +
2(𝑞Pub + 6𝑞Priv)2

2𝜆
.

game 3. In Game 3, we move the TKDF computations introduced in Game 2 directly to
the Priv oracle. That is, on query (𝑟, 𝑋) oracle Priv first computesTKDF𝑟 [Pub](𝑋), discards
the output and then outputs RO(𝑟, 𝑋). Note that this does not change the view of the
adversary as Priv(𝑟, 𝑋) = RO(𝑟, 𝑋) still holds. To be precise, if 𝑟 = Th then TKDF is not
computed and the input is directly forwarded to RO. However, this change induces that
now not only oracle Pub uses the simulator Sim3, but also Priv implicitly uses it because
TKDF has oracle access to Pub. This might change the state of the simulator and even
though the result is discarded the corresponding Pub queries might cause the flag bad𝐶 to
be set. Let us briefly elaborate on the consequences. Recall that RO is a “classical” random
oracle, i.e., a random function. Every output to new query is a string sampled uniformly
at random, and repeated queries will be answered consistently. The simulator Sim3 on
the other hand also “simulates” a random oracle (ROHMAC), but checks the structure of
queries and backtracks to potential previous computations to keep consistency with the
random oracle RO. By that we add computations of TKDF𝑟 [Pub](𝑋) for any query to
oracle Priv, every Pub query that would be necessary to ultimately compute the output
of TKDF has already been made. This of course changes the order of Pub queries, as the
adversary not necessarily queries all intermediate queries one after the other and also
does not necessarily query all of them. This has twomajor consequences: (1) the flag bad𝐶
might be set in Game 3 when it was not set in Game 2, and (2) a Priv query now has an
effect on the look-up table 𝑇 used to backtrack through computations to decide whether
all necessary queries have been made and consistency with RO has to be assured. Thus,
in Game 3 the simulator Sim3 might “program” responses not programmed in Game 2.
Next, let us analyze the difference of Game 3 and Game 2. As already mentioned

above the changes introduced in this game do not change the adversary’s view when it
comes to the Priv oracle. For the Pub oracle, we claim that the responses are distributed
identically except when either Game 3 or Game 2 sets bad𝐶 . Formally, let break denote
the event that bad𝐶 is set in either Game 3 or Game 2. First, we prove that the above
claim holds and then conclude that it holds that

Pr[Game3] ≤ Pr[Game2] + Pr[break].

We prove the above claim that if break does not occur then oracle Pub answers identically
(for the same randomness) in Game 3 and Game 2 by contradiction. To this end, assume
that event break does not occur. Let Pub and Priv behave identically in both Game 3 and
Game 2. In particular, Game 3 and Game 2 use the same randomness. Further, assume
that there exists a query 𝑄 issued by the adversary to oracle Pub (for the first time) that
is answered differently in Game 3 than in Game 2. As Game 3 and Game 2 use the same

102



7.4 Proving the TLS 1.3 Key Schedule Indifferentiable

randomness, this implies that the simulator Sim3 had to program the response in at least
one game. The simulator Sim3 only programs a response if the backtracking using the
look-up table 𝑇 results in a consistent history. Thus, let us consider the state of the
look-up tables in Games 2 and 3 when query 𝑄 is issued. Here, let 𝑇2 denote the look-up
table in Game 2 and let 𝑇3 denote the look-up table in Game 3. Recall that the index
of the look-up table always is the uniformly sampled response 𝑦. That is, entries can
only be overwritten in a look-up table if a collision occurs and event break occurs. Now,
recall that 𝑄 is the first query that results in a different answer of the oracle Pub. This
implies that 𝑇3 has to contain at least all the entries of 𝑇2. Since 𝑇 decides if (and how)
a response in programmed in Sim3, we have that every query prior to 𝑄 and 𝑄 itself
that is programmed in Game 2, has to be programmed to the same response in Game 3.
Equivalently, any response in Game 3 that has not been programmed (i.e., answered
uniformly at random), is also not programmed in Game 2.
Since the response to query 𝑄 now is different by assumption, it cannot be the case

that it was programmed in Game 2 or it was answered randomly in Game 3. Therefore,
query 𝑄 must have been answered randomly in Game 2, and programmed in Game 3.
Now, recall that in Game 3 TKDF is computed for every Priv query using Pub. This
computation induces a (consecutive) sequence of queries to Pub corresponding to a full
execution of the function. These queries have to store entries in 𝑇3 corresponding to
the intermediate values computed. Since 𝑄 is programmed in Game 3, it has to be
a “final” query of a TKDF computation. Let 𝑄1, … , 𝑄𝑖 denote the sequence of queries
corresponding to entries stored in 𝑇3 used to program 𝑄. In each query, the simulator
either stores an entry in table 𝑇 or programs a response 𝑦. Therefore, there has to exist
a 𝑟 such that 𝑄𝑟 that was answered by a random response. As each step of the TKDF

function computation depends on the previous, we have that the response of query 𝑄𝑗
in the sequence has to be contained in some way in the input of query 𝑄𝑗+1. Since 𝑄𝑖 is
the second last query for the computation of TKDF, 𝑄 can be seen as 𝑄𝑖+1.

In Game 2, it has to be the case that there is an entry missing in table 𝑇2 as otherwise,
the value would have been programmed. That is, there exists at least one query that has
not been issued before query 𝑄 in Game 2. Instead, this would be one of the queries
made at the end of Game 2, which in Game 3 is moved directly in the Priv oracle. Thus,
this is exactly the spot where the order of Pub query was changed. Let us denote this
query by 𝑄𝑗 . Observe that all other queries related to that TKDFwere already been made
before. Now, if 𝑄𝑗 is sampled at random it has to collide with (some part of) the input
to query 𝑄𝑗+1 because otherwise 𝑄1, … , 𝑄𝑖 would not be a valid sequence of queries
computation TKDF. However, this would cause bad𝐶 to be set and ultimately causes
event break to occur, which is a contradiction to our assumption that break does not
occur. Therefore, we can conclude that Priv is identically distributed in both games and
Pub is identical only if break does not occur. Overall, this implies that Game 3 and Game 2
are identical if break does not occur.
It remains to analyze the probability that break occurs. The number of queries Pub

queries, 𝑞Pub + 6𝑞Priv is identical in Game 3 and Game 2, as they only ask their queries in
a different order. Each sets the flag bad𝐶 with probability 2(𝑞Pub+6𝑞Priv)2

2𝜆 , and thus it holds

103



7 abstracting the tls key schedule

by the union bound

Pr[Game3] ≤ Pr[Game2] + Pr[break] ≤ Pr[Game2] +
4(𝑞Pub + 6𝑞Priv)2

2𝜆
.

game 4. In Game 4, we change the implementation of the Priv oracle. Instead of
computing TKDF and discarding the output, in this game we output the result instead
of the output of RO. Note that for completeness, we replace Priv(𝑟, 𝑋) by 𝐂[Pub](𝑟 , 𝑋)
to include Th queries, which is merely a matter of syntax. We claim that in this game it
holds

Pr[Game4] = Pr[Game3].

To see this, observe that the construction 𝐂3 when it computes TKDF always makes a
complete and well-formed sequence of queries to compute TKDF. The last query always
programs the response to ensure consistency with RO (or if it is repeated it is answered
using the RO table 𝑀). As discussed earlier, if it happens that queries are issued out of
order, a collision will be unavoidable as the output of the previous query will be (part of)
the input of the subsequent query. So as long as bad𝐶 is not set the games are identical.
Now, since setting of bad𝐶 induces a winning probability of 0 in both Game 4 and Game 3,
it follows that the winning probability is identical.

game 5. In Game 5, we remove that the game outputs 0 if bad𝐶 is set at the end of the
game. This just increases by the collision term that we already discussed multiple times.
The number of Pub in Game 5 still is 𝑞Pub + 6𝑞Priv. Therefore,

Pr[Game5] ≤ Pr[Game4] +
2(𝑞Pub + 6𝑞Priv)2

2𝜆

game 6. After having removed random oracle RO from the Priv oracle, random oracle
RO is only queried by Sim3. That is, we do not need to ensure consistency between Sim3
and RO anymore. Hence, we implement oracle Pub using a random function from S3
implemented via lazy sampling instead of using the simulator. The adversary cannot
detect this change, as it does not have access to RO anymore. Then, it holds that

Pr[Game6] = Pr[Game5].

Finally, observe that Game 6 is equal to “real” indifferentiability game Expindiff,1𝐂3,Sim3,S3,E3().
Collecting all the bound implies the lemma.

Note that the result of Lemma 7.7 covers the whole definition of the TKDF as it is
used in the PSK handshakes. In the full handshake, we have that the pre-shared key, for
example, is constantly set to 0, and the functions to derive the binder MAC, the early
traffic secret 𝑒𝑡𝑠 and the early exporter master secret 𝑒𝑒𝑚𝑠 are omitted. Nevertheless,
this does not change that the result remains applicable for the full handshake as the
version proven above is more general. This is why we chose the modular approach of
first proving the indifferentiability separately.

104



7.5 Defining the Domains Th and Ch

Next, we apply Lemma 7.7 to the different handshake modes. The following two
lemmas directly follow from the indifferentiability composition theorem Theorem 7.1
and Lemma 7.7. Note that for both the abstracted full and PSK handshake shown in
Figure 7.2 for each flight of the protocol, function TKDF only has to be computed at most
6 times. This implies that for every 𝑞Send issued by the adversary, the distinguisher 
constructed in the proof of Theorem 7.1 has to issued at most 6 Priv queries, i.e., 𝑞Priv =
6𝑞Send.

Lemma 7.8. Let KE2 be the TLS 1.3 full handshake protocol as defined in Lemma 7.5 and
let KE′ be the abstracted full handshake protocol as defined in Theorem 7.3. Then, for any
adversary  against the pMSKE security of KE2, we can construct an adversary  against
KE′ such that

AdvpMSKE
KE2

() ≤ AdvpMSKE

KE′
() +

2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆

where 𝑞RO and 𝑞Send are number of queries issued by to the random oracle RO (in total)
and oracle 𝑞Send, respectively.

Lemma 7.9. Let KE2 be the TLS 1.3 full handshake protocol as defined in Lemma 7.6 and
let KE′ be the abstracted full handshake protocol as defined in Theorem 7.4. Then, for any
adversary  against the sMSKE security of KE2, we can construct an adversary  against
KE′ such that

AdvsMSKE
KE2

() ≤ AdvsMSKE
KE′ () +

2𝑞2Pub
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆

where 𝑞RO and 𝑞Send are number of queries issued by to the random oracle RO (in total)
and oracle 𝑞Send, respectively.

Theorem 7.3 and Theorem 7.4 are a direct consequence of Lemmas 7.2, 7.5 and 7.8, and
Lemmas 7.3, 7.6 and 7.9, respectively. With these results, we can reduce the complexity
of our (tight) security proofs for the TLS 1.3 handshakes presented in Chapter 6 as it
suffices to only prove security for the abstracted TLS 1.3 handshakes as presented in
Figure 7.2.

7.5 Defining the Domains Th and Ch

Lemmas 7.1 to 7.3 highly rely on the assumption that we can define a setTh that defines
all possible strings representing all possible transcripts to be hashed during the TLS
handshake and a set Ch that defines all possible inputs to the hash function when it is
used as a subroutine ofHMAC during the TLS handshake. Clearly, formally defining these
sets and even writing them out is complex. However, the above mentioned lemmas can
only be valid if these sets exist. In this section, we define these sets based on formatting
of the TLS messages defined in the standard RFC 8446 [Res18] and show that they are
indeed disjoint. Since the full handshake and the PSK handshake of TLS 1.3 are different
in some aspects, we analyse these sets separately for each of the two variants. We start

105



7 abstracting the tls key schedule

with the full handshake, which is a new addition in this work and follow-up with the
PSK mode of the TLS 1.3 handshake, which is based on [DDGJ22b] (the details presented
here are only present in the full-version [DDGJ22a]). Before we actually define these
sets, we first discuss assumptions that we make, and more importantly define the format
of the possible inputs to the hash function.

7.5.1 Assumptions and HashQuery Types

In the following, we need to define disjoint sets Th and Ch such that an honest execu-
tion of the TLS 1.3 handshake only queries the random oracle RO𝐻 on Ch to compute
HMAC and on Th otherwise. To this end, we make a couple of assumptions.

Assumptions

The first assumption is on how messages are processed by honest sessions. We assume
that a server only responds (resp. continues the execution of the protocol) if the received
ClientHello message contains valid encodings of all the mandatory parameters of
TLS 1.3. If a server receives only invalid encodings, we assume that the server will abort.
Note that this does not exclude malformed ClientHello messages whatsoever, but
rather mandates that only valid ones will be processed. As we will see in Section 7.5.3,
we have to strengthen this assumption a bit to be able to separate the domains for PSK-
only with SHA384. Here, we need to require that the cipher suite values and extensions
presented in a ClientHello consist only of standardized values. For details, we refer to
Section 7.5.3. Further, the TLS 1.3 standard gives the field length always in (full) bytes.
That is, in contrast to the majority of this thesis, we consider the byte length of strings in
this section. We denote the output length in bytes of random oracle RO𝐻 by𝛬 ≔ 𝜆/8with
𝜆 being the output length of the configured hash function (i.e., either SHA256 or SHA384).
For the PSK mode, we always assume that the pre-shared key is of the same length as
the output length of RO𝐻 , i.e., of length 𝛬 bytes. Furthermore, if a Diffie–Hellman group
is used, we assume that it is one of the groups that are standardized (either elliptic curve
or finite field; cf. [Res18, Sect. 4.2.7]). Recall that in Chapter 6, we presented our view
on the TLS 1.3 handshake and stated the assumption that we do not consider parameter
negotiation. We consider the cipher suite, algebraic group, and signature scheme fixed
once and for all. That is we consider all combinations of these parameters, but in isolation.
To reflect this in this section, we assume that an honest client at least presents the fixed
parameters, and the server always selects the fixed parameters and ignores the others.
To be precise, this means, for example, that a client can present multiple cipher suites in
the ClientHello message, but the one that will be selected by the receiving server is
known before hand. This applies to all other parameters listed above.

HashQuery Types

The TLS 1.3 handshake does not provide intentional domain separation for the use its
hash function. Therefore, we need to analyze the formatting of the RO𝐻 queries made
by honest executions during the protocol run to find unintentional domain separation.

106



7.5 Defining the Domains Th and Ch

Allowing us to separate the sets Th and Ch. Note that the following analysis does not
apply to the RO𝐻 queries issued by the adversary. The adversary can query the random
oracle RO𝐻 arbitrary. The exact formatting of each input to the random oracle RO𝐻
highly depends on the considered mode of the TLS 1.3 handshake (i.e., full, PSK-only,
or PSK-(EC)DHE) and the selected cipher suite, in particular, the choice of hash function.
Therefore, we analyze each combination of mode and hash function separately. However,
the types of random oracle queries are shared between all of these cases. To this end, we
first define all types of queries to random oracle RO𝐻 appearing in the TLS 1.3 handshake
and then analyze each configuration separately in Sections 7.5.2 and 7.5.3 below.

Types of RO𝐻 queries. In general, we classify queries to random oracle RO𝐻 into two
types:

• Type 1 (component hash): These kind of queries are used to compute 𝐄𝐱𝐭𝐫𝐚𝐜𝐭,
𝐄𝐱𝐩𝐚𝐧𝐝, or𝐌𝐀𝐂, which ultimately are used to compute an HMAC.

• Type 2 (transcript hash): These kind of queries are used to compute digests of
protocol transcripts (or the empty string).

Further, these two types of queries can be split into seven subtypes: five subtypes of
Type 1 queries and two subtypes of Type 2 queries. Before we define the subtypes,
first recall the definition of 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, 𝐄𝐱𝐩𝐚𝐧𝐝, and 𝐌𝐀𝐂. Either of these functions is
defined in Section 6.3 in terms of 𝐌𝐀𝐂, where 𝐌𝐀𝐂 ≔ HMAC. 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 (abstracting
HKDF.Extract; cf. Section 6.1.2) is the same function as 𝐌𝐀𝐂, i.e., 𝐄𝐱𝐭𝐫𝐚𝐜𝐭 ≔ HMAC.
𝐄𝐱𝐩𝐚𝐧𝐝 (abstracting HKDF.Expand; cf. Section 6.1.2) is almost identical to the HMAC

function, but adds a trailing 0x01 byte to the end of the input. Formally, for a key 𝑘 and
an input 𝑠, it holds 𝐄𝐱𝐩𝐚𝐧𝐝(𝑘, 𝑠) = HMAC(𝑘, 𝑠 ‖ 0x01). Let us elaborate, why 𝐄𝐱𝐩𝐚𝐧𝐝
will always compute a single block. For this, recall that HKDF.Expand as defined in
Section 6.1.2 is a variable output length function. Informally, this means that it takes
a length parameter 𝐿 and produces ⌈𝐿/𝜆⌉ many blocks of length 𝜆 each resulting from
a HMAC computation, where 𝜆 is the output length of the function underlying HMAC,
and then trims down the last block to yield the desired output length of 𝐿. Note that for
the TLS 1.3 handshake all HKDF.Expand calls have a output length of at most the output
length of the underlying hash function, i.e., the hash function from the cipher suite. This
results then in HKDF.Expand only computing a single output block, thus being computed
as a single HMAC call where the input is padded with a 0x01 byte. In particular, this also
holds for the two 𝐄𝐱𝐩𝐚𝐧𝐝 calls in the conceptual subroutine DeriveTK used to compute
the handshake traffic keys. The function DeriveTK has a output length of 𝑙 + 𝑑, where
𝑙 is the encryption key length and 𝑑 is the IV length of the configured AEAD scheme,
respectively. Internally, DeriveTK makes two 𝐄𝐱𝐩𝐚𝐧𝐝 calls: one to compute the AEAD
key with output length 𝑙 and one to compute the AEAD IV with output length 𝑑. Now,
checking the standard [Res18, App. B.4] one observes that for each standardized AEAD
scheme defined for TLS 1.3, the key length is at most 256 bit and the IV length is always
96 bit (for references, see [McG08, Sect. 5], [NL18, Sect. 2.8], and [MB12, Sect. 6.1]). That
is, both 𝑙 and 𝑑 are at most the output length 𝜆 of configured hash function for both

107



7 abstracting the tls key schedule

Table 7.1: Table displaying the standardized groups for use with TLS 1.3, their encodings
in the NamedGroup enum, and the length of an encoded group element in bytes. This

table is taken from [DDGJ22a].

Group name NamedGroup value Enc. length |G|/8

secp256r1 [Nat13] 0x0017 32
secp384r1 [Nat13] 0x0018 48
secp521r1 [Nat13] 0x0019 66

x25519 [LHT16] 0x001d 32
x448 [LHT16] 0x001E 56

ffdhe2048 [Gil16] 0x0100 128
ffdhe3072 [Gil16] 0x0101 192
ffdhe4096 [Gil16] 0x0102 256
ffdhe6144 [Gil16] 0x0103 384
ffdhe8192 [Gil16] 0x0104 512

SHA256 and SHA384. Hence, without loss of generality, we can assume that the 𝐄𝐱𝐩𝐚𝐧𝐝
calls in the computation of DeriveTK also derive 𝜆 many output bits, and only use the
first 𝑙 or 𝑑 many bits, respectively.

Since each of the Type 1 queries boils down to an HMAC computation, we briefly recall
its definition. The function HMAC[RO𝐻 ](𝑘, 𝑠) is defined over the random oracle RO𝐻 and
takes as input a key 𝑘 of length 𝛬 bytes. The key 𝑘 is then padded with zeroes to the block
size 𝐵 of the underlying function, we call the padded key 𝑘′. The block size of SHA256
and SHA384 are 64 and 128 bytes, respectively. Thus, the key 𝑘 will in TLS 1.3 always
be padded with 𝐵 − 𝛬 > 0 many 0x00 bytes. To compute its output HMAC[RO𝐻 ](𝑘, 𝑠)
queries RO𝐻 twice:

1. ℎ ≔ RO𝐻 (𝑘′ ⊕ ipad ‖ 𝑠)

2. HMAC[RO𝐻 ](𝑘, 𝑠) = RO𝐻 (𝑘′ ⊕ opad ‖ ℎ)

where ipad and opad are byte strings of length 𝐵, where each byte is fixed to 0x36 and
0x5c, respectively. Since the padded key 𝑘′ always ends with a segment of 𝐵 − 𝛬 > 0
many 0x00 bytes, 𝑘′ ⊕ pad with pad ∈ {ipad, opad} every Type 1 query has a segment of
𝐵 − 𝛬 many bytes fixed to either 0x36 or 0x5c.

The seven subtypes of RO𝐻 queries are then defined as follows:

1. Outer HMAC queries. We call the second query (RO𝐻 (𝑘′ ⊕ opad ‖ ℎ)) made to
compute HMAC an outer HMAC query. The first part of the input has length
𝐵 bytes, and ends with a segment of 𝐵 − 𝛬 many 0x5c bytes. The second part is
a digest ℎ of length 𝛬 bytes. We call the segment at the end of the first part the
“fixed region”. For SHA256, the fixed region is 32 bytes, and for SHA384 the fixed
region is 80 bytes. This yields a total input length (independent of the considered
handshake mode) of 96 bytes for SHA256 and 176 bytes for SHA384 for outer
HMAC queries.

108



7.5 Defining the Domains Th and Ch

2. Inner HMAC queries. The next four subtypes are variants of the first query (ℎ ≔
RO𝐻 (𝑘′ ⊕ ipad ‖ 𝑠)) made to compute HMAC. The first variant is called an inner
HMAC query and occurs if the input string 𝑠 is an arbitrary byte string of length 𝛬.
Inner HMAC queries are formatted identically as outer HMAC queries except that
the fixed region is filled with 0x36 instead of 0x5c bytes. These kind of queries
occur in the computation of finished and binder MACs, the computation of the
early and master secret in all modes, and only in the PSK-only mode, also for the
computation of the handshake secret. For completeness, this yields a total input
length (independent of the considered handshake mode) of 96 bytes for SHA256
and 176 bytes for SHA384 for inner HMAC queries.

3. Diffie–Hellman HMAC queries. The second subtype of the first HMAC query, is
called a Diffie–HellmanHMAC query. This kind of query occurs if the input string 𝑠
is an encoded Diffie–Hellman key share. It appears in the full and PSK-(EC)DHE
mode of the handshake protocol to compute the handshake secret. The format is
similar to inner HMAC queries, but the length of the second part (i.e., following
the fixed region) has the length of an encoded Diffie–Hellman group element. We
denote this length (in bytes) by |G|/8 and give the corresponding values for each
standardized group in Table 7.1. Given that the first part of the input has length
block size 𝐵 of the hash function, this yields a total input length of a Diffie–Hellman
HMAC query of 64 + |G|/8 bytes for SHA256 and 128 + |G|/8 bytes for SHA384.

We assume that an honest execution of TLS 1.3 only queries group elements in this
context that correspond to the group fixed for the considered instance of TLS 1.3.
Recall we consider each configuration of TLS 1.3 in isolation and all clients and
server use the same group.

4. Derive-Secret queries. The TLS 1.3 key schedule [Res18, Sect. 7.1] defines a
function Derived-Secret(Secret, Label, Messages), which is ultimately a par-
ticular way of calling HKDF.Expand. We abstracted this in our view by writing it
out using HKDF.Expand. The inputs are a secret Secret of length 𝛬 bytes, a label
string of 2 to 12 ASCII characters (i.e., each character is encoded by one byte), and
an (arbitrary) string Messages. Derive-Secret performs the following compu-
tations:

a) It queries RO𝐻 (Messages) to hash down the input string; this is a transcript
hash.

b) It queries RO𝐻 with a special inner HMAC query. We call this query the
Derive-Secret query. The format of the query is identical to the inner
HMAC query and the Diffie–Hellman query except that the input string is the
struct HkdfLabel followed by a 0x01 byte. We already mentioned this struct
briefly in Section 6.3. The struct is defined as follows (cf. [Res18, Sect. 7.1]):

• 2 bytes encoding the integer value of 𝛬

109



7 abstracting the tls key schedule

• A variable-length vector consisting of a 1 byte length field followed by
the string "tls13 " encoded in 6 bytes and the string Label encoded
in 2 to 12 bytes4

• A variable-length vector consisting of a 1 byte length field and a byte
vector of length 𝛬 (the hash of Messages)

The total length of the struct HkdfLabel including the trailing 0x01 byte is
therefore at least 𝛬 + 13 bytes and at most 𝛬 + 23 bytes.

c) Lastly, it queries an outer HMAC query with the padded value of Secret as
key and the result of the Derive-Secret query of b).

Resulting in an overall input length of Derive-Secret query (described in b)) of
109–119 bytes for SHA256 and 189–199 bytes for SHA384.

5. Finished key queries. To derive the finished keys to compute the SF message,
the CF message, and the binder value in the PSK mode, a special Derive-Secret
query is used. Namely, the label string Label is fixed to "finished" and the
transcript hash (i.e., the final vector before the 0x01 byte) is replaced by a vector
of length 0 (i.e., the empty string 𝜀). This results in a label string encoded in 8 bytes
and an overall length of the respective HkdfLabel struct of 19 bytes. Therefore, the
total input length of a Finished key query is 83 bytes for SHA256 and 147 bytes
for SHA384. This kind of query is the last variant of a first HMAC query and also
concludes the subtypes of component hash queries (Type 1).

6. Empty transcript queries. We call the query RO𝐻 (𝜀) an empty transcript query.

7. Transcript queries. All query (sub-)types defined before are valid independent
of the considered mode. This is different for the RO𝐻 queries that are used to
condense transcripts, which we call transcript (hash) queries. Here, we need to
distinguish between the full and PSK handshake as the minimal transcript that is
hashed down during the respective handshakes differ.

Full handshake. In the TLS 1.3 full handshake, the smallest transcript that needs
to be hashed down (other than the empty transcript 𝜀) is the hash that we denote by
𝐻3, which consists of the ClientHello messages followed by the ServerHello
message (including all extensions appended to these messages). In the description
of TLS 1.3 we omitted a couple of fields to reduce complexity as they did not effect
our view when it comes to the security proof. In this section, we need to be a bit
more careful and consider fields that we omitted before, to ensure a sound domain
separation treatment. Let us consider the minimal size of a ClientHello message
and ServerHello message, respectively, in the full handshake:

The ClientHello message is minimally structured (including all mandatory ex-
tensions) in the full handshake as follows:

• 1 byte message type (0x01 for client_hello)
4 The label string in TLS are no longer than 12 ASCII characters. (cf. [Res18, Sect. 7.1])

110



7.5 Defining the Domains Th and Ch

• 3 bytes message length field

• 2 bytes legacy_version fixed to 0x0303 (indicating TLS 1.2)

• 32 bytes random

• 1 byte legacy_session_id (empty vector with 1 byte length field; we do
not consider compatibility with previous versions of TLS, so the standard
mandates that this must be an zero-length vector [Res18, Sect. 4.1.2])

• 4 bytes cipher_suites (2 bytes length field + 2 bytes cipher suite value, e.g.,
0x1303 for TLS_AES_128_GCM_SHA256)

• 2 bytes legacy_compression_methods (1 byte length field + 1 byte fixed to
0x00 for “null” compression method; TLS 1.3 ClientHello messages need
to set this exactly like this [Res18, Sect. 4.1.2])

• 2 bytes length field of the extensions vector

• 7 bytes of supported_versions extension (2 bytes extension type + 2 bytes
extension length field + 1 byte length field + 2 byte fixed to 0x0304 for
TLS 1.3)

• 8 bytes signature_algorithms extension (2 bytes extension type + 2 bytes
extension length field + 2 byte length field + 2 bytes SignatureScheme
value [Res18, Sect. 4.2.3])

• 8 bytes supported_groups extension (2 bytes extension type + 2 bytes ex-
tension length field + 2 bytes length field + 2 bytes NamedGroup value [Res18,
Sect. 4.2.7])

• 10 + |G|/8 bytes key_share extension (2 bytes extension type + 2 bytes ex-
tension length field + 2 bytes length field + 2 bytes NamedGroup value [Res18,
Sect. 4.2.7] + 2 bytes length field + |G|/8 bytes encoding of a NamedGroup
element (cf. Table 7.1)5

Note that according to [Res18, Sect. 9.2], the extensions presented above (suppor
ted_versions, signature_algorithms, supported_groups, andkey_share)
are mandatory for (ClientHello) messages for (EC)DHE key exchange and cer-
tificate authentication negotiating TLS 1.3, which all applies to the full hand-
shake. Also, note that the key_share extension might be sent empty to force
a HelloRetryRequest, we do not cover this in our view, so we require the
key_share extension to contain at least a single key share entry (i.e., a pair of
group and group element). All of the extensions mentioned above can be ordered
arbitrarily. The above minimal format of a ClientHello message in the full hand-
shake results in a minimum length of 80 + |G|/8 bytes.

The ServerHello message is minimally structured (including all mandatory ex-
tensions) in the full handshake as follows:

5 Note thatwe do not cover negotiation in this work. Therefore, we assume that the group that is presented
here is known in at advance and corresponds to the groupG considered to be configured for the protocol.

111



7 abstracting the tls key schedule

• 1 byte message type (0x02 for server_hello)

• 3 bytes message length field

• 2 bytes legacy_version fixed to 0x0303 (indicating TLS 1.2)

• 32 bytes random

• 1 byte legacy_session_id_echo (empty vector with 1 byte length field)

• 2 bytes cipher_suite (2 bytes cipher suite value)

• 1 bytes legacy_compression_method (1 byte fixed to 0x00 for “null” com-
pression method)

• 2 bytes length field of the extensions vector

• 6 bytes of supported_versions extension (2 bytes extension type + 2 bytes
extension length field + 2 byte fixed to 0x0304 for TLS 1.3)

• 8 + |G|/8 bytes key_share extension (2 bytes extension type + 2 bytes
extension length field + 2 bytes NamedGroup value + 2 byte length field +
|G|/8 bytes encoding of a NamedGroup element (cf. Table 7.1)

The aboveminimal format of a ServerHellomessage in the full handshake results
in a minimum length of 58 + |G|/8 bytes. This yields a minimal input length of a
transcript query in the full handshake to 138 + |G|/8 bytes.

In remains to determine an upper bound of the transcript length to determine the
maximum input length of a transcript hash query. Note that the ServerHello
message cannot vary in length as it only contains selections from the options
the client presented for the negotiation of the cryptographic parameters. There-
fore, the only thing that can be changed in the size is the extension field. This
is bounded by a maximum size of 216 bytes. Hence, the maximum 44 + 216 bytes
(including the encoding of the group element selected for key exchange). The max-
imum length of the ClientHello message is more complex as the ClientHello
includes a number of variable-length vectors. These vectors are cipher_suites,
legacy_compression_methods, and similar to the ServerHello the extension
field. The vector of cipher suites and the extension field are each upper bounded by
216 bytes. The compression methods can hold a vector of up to 28 bytes. However,
the standardmandates that all TLS 1.3 ClientHellomessages set this vectormust
contain “[. . . ] exactly one byte, set to zero, which corresponds to the ‘null’ com-
pression method [. . . ]” [Res18, Sect. 4.1.2]. Since we only consider negotiation of
TLS 1.3 we adapt this here. With these considerations we obtain an upper-bound
for the ClientHello message in the full handshake of 45 + 217 bytes. This yields
an overall upper-bound of 99 + 3 ⋅ 216 bytes for a transcript containing a Client
Hello and ServerHello message.

Note that all other transcripts to be hash will only be strictly longer and always
contain the prefix ClientHello and ServerHello. To this end, we only consider
the smallest transcript as a “transcript hash”. All arguments presented for this kind

112



7.5 Defining the Domains Th and Ch

of query in particular also holds for all other transcript hashes 𝐻𝑖 computed in the
full handshake (Table 6.1).

PSK-only handshake. In the PSK handshakes, each transcript contains at least a
partial ClientHello (i.e., a ClientHello message without the binder value/list).
Up to the supported_versions extension this partial ClientHello message is
structured identically to the ClientHellomessage in the full handshake described
above. We do not have authentication via certificates and thus the signature
_algorithms extension is never present. Instead two other extensions are manda-
tory: (1) psk_key_exchange_modes [Res18, Sect. 4.2.9] indicating all supported
PSK modes (i.e., PSK-only (0x00) or PSK-(EC)DHE (0x01)) and (2) pre_shared
_key [Res18, Sect. 4.2.11] containing a (list of) PSK(s). In the PSK-only mode, the
extensions supported_groups and key_share are also not required compared
to the full handshake. Therefore, a minimal partial ClientHello message in the
PSK-only mode includes the following fields:

• 1 byte message type (0x01 for client_hello)
• 3 bytes message length field
• 2 bytes legacy_version fixed to 0x0303 (indicating TLS 1.2)
• 32 bytes random

• 1 byte legacy_session_id (empty vector with 1 byte length field; we do
not consider compatibility with previous versions of TLS, so the standard
mandates that this must be a zero-length vector [Res18, Sect. 4.1.2])

• 4 bytes cipher_suites (2 bytes length field + 2 bytes cipher suite value, e.g.,
0x1303 for TLS_AES_128_GCM_SHA256)

• 2 bytes legacy_compression_methods (1 byte length field + 1 byte fixed to
0x00 for “null” compression method; TLS 1.3 ClientHello messages need
to set this exactly like this [Res18, Sect. 4.1.2])

• 2 bytes length field of the extensions vector
• 7 bytes of supported_versions extension (2 bytes extension type + 2 bytes
extension length field + 1 byte length field + 2 byte fixed to 0x0304 for
TLS 1.3)

• 6 bytes of psk_key_exchange_modes [Res18, Sect. 4.2.9] extension (2 bytes
extension type + 2 bytes extension length field + 1 byte length field + 1 byte
PskKeyExchangeMode value (0x00 for PSK-only).

• 13 bytes of pre_shared_key [Res18, Sect. 4.2.11] extension (2 bytes exten-
sion type + 2 bytes extension length field + 4 byte length field + 1 byte PSK
identity + 4 byte “obfuscated ticket age”; this extension must always be the
last; note that this is the partial version excluding the binder list)

Therefore, we get an minimal length of a partial ClientHello in the PSK-only
mode of at least 73 bytes. For an upper bound, recall that the fields cipher_suites

113



7 abstracting the tls key schedule

and extensions. As already discussed above both fields have a maximum length
of 216 bytes. Since the fields up to the extensions are identical to the full handshake,
we also get an upper bound of 45+217 for the partial ClientHello in the PSK-only
mode.

PSK-(EC)DHE handshake. To mitigate repetition, we only briefly discuss the
changes for a minimal transcript in the PSK-(EC)DHE handshake. As mentioned
above, each transcript hashed in the PSK-(EC)DHE handshake contains at an par-
tial ClientHello message. In this mode, the ClientHello message is more or
less a hybrid out of the PSK-only (partial) ClientHello and the ClientHello
message presented above for the full handshake. In detail, this means that the
partial ClientHello is similar to the one in the PSK-only handshake, but two
additional extensions (for the DH key exchange) are mandatory. Namely, the
key_share and supported_groups extensions have to be added. The mini-
mal length of these extensions is identical to the full handshake such that 18 +
|G|/8 bytes need to be added. The rest of the partial ClientHello is identical to
the PSK-only ClientHello. That is, we have a minimal length of 73+18+|G|/8 =
91 + |G|/8 bytes. Since only the extensions are different, and their length is upper
bounded by 216 bytes, the maximum length is 45 + 217 bytes in the PSK-(EC)DHE
handshake, as well.

7.5.2 Domain Separation in the TLS 1.3 Full Handshake

After defining all the possible queries that might be issued to the random oracle RO𝐻 ,
let us now start defining the domains Th and Ch. As the formatting of the message
highly depends on the selected parameters, as already outline above, we now consider
the full handshake and separate two cases. First of all, we fix the signature algorithm, the
cipher suite, and the group that will be negotiated. This implies that the ClientHello at
least has to contain these parameters and the server will always selected the fixed values.
However, we allow clients to repeat values or add additional values, but require that the
server ignores these, since we do not capture parameter negotiation. Since the length of
the queries as discussed in the previous part, highly depends on the hash function used,
we consider the choice of hash function as an individual case. Recall that TLS 1.3 allows
hash function SHA256 (with output length 𝜆 = 32 bytes and block size 𝐵 = 64 bytes) and
SHA384 (with output length 𝜆 = 48 bytes and block size 𝐵 = 128 bytes).

Full Handshake with SHA256

Let us startwith the case in which SHA256 is the configured hash function that is modeled
as RO𝐻 . In Table 7.2, we show the minimum and maximum input length for each of the
query types, we defined above. Next, we have to show for each type with overlapping
length that we can use the structure of the query to separate the query types. First note
that outer HMAC, inner HMAC, and DH HMAC queries could potentially collide for a
choice of G with encoding length of 32 bytes (e.g., the mandatory-to-implement group

114



7.5 Defining the Domains Th and Ch

Table 7.2: Minimal input length of the hash function calls made by TLS 1.3 in the full
handshake with SHA256.

Query type Min. length (in bytes) Max. length (in bytes)

Outer HMAC 96 96
Inner HMAC 96 96
DH HMAC 64 + |G|/8 64 + |G|/8

Derive-Secret 109 119
Finished key 83 83

Empty transcript 0 0
Transcript 138 + 2|G|/8 89 + 3 ⋅ 216

secp256r1; cf. Table 7.1 and [Res18, Sect. 9.1]) because all then have a length of 96 bytes.
Moreover, the input length of DH HMAC queries and Derive-Secret queries might
overlap for a choice of G with encoding length 48 bytes (e.g., secp384r1; cf. Table 7.1)
with an input length of 112 bytes. Now, observe that all of the mentioned queries are
component hash queries (Type 1). That is, all belong to the same domain, and a collision
would not be a problem. Furthermore, transcript queries with an input length of at least
138 + 2|G|/8 will always be longer than any of the possible component hash queries.
Therefore, separating Type 2 queries (either of length 0 or at least 138 + 2|G|/8) from
Type 1 queries is easy. However, we want to be more precise, so let us have a deeper
look on the queries.

First, recall that HMAC random oracle queries have a segment that we referred to has
the “fixed region”. This region for SHA256 starts with byte 33 and ends with byte 64 of the
input. Outer and inner HMAC queries can always be easily separated by this fixed region.
Namely, in an outer query, all bytes in the fixed region are set to 0x5c, and in an inner
query all bytes in this region are set to 0x36. Second, recall that inner HMAC, DH HMAC,
and Derive-Secret all are variants of the first random oracle query used to compute
HMAC. That is, all have the same fixed region set to 0x36, but the segment following
has different semantics. As a reminder, for inner HMAC this segment can be arbitrary,
for DH HMAC this needs to be an encoding of group element and for Derive-Secret
this is a special struct. Unfortunately, if for inner HMAC and DH HMAC, and DH HMAC

and Derive-Secret, respectively, the input length collide we cannot further separate.
But as noted above this is not a problem as all of these queries are Type 1 queries that
ultimately belong to the same domain.
Next, let us have a closer look at transcript hash queries. As noted above transcript

queries can easily be separated from component hash queries by length. For any choice
of group, they will be longer. However, a transcript hash query has a particular structure
since it always starts with a ClientHello. Namely, through the legacy_session_id
it is structured as follows:

0x01 ‖ ⋯⏟⏟⏟
3 bytes

‖0x0303 ‖ ⋯⏟⏟⏟
32 bytes

‖0x00

115



7 abstracting the tls key schedule

Table 7.3: Minimal input length of the hash function calls made by TLS 1.3 in the full
handshake with SHA384.

Query type Min. length (in bytes) Max. length (in bytes)

Outer HMAC 176 176
Inner HMAC 176 176
DH HMAC 128 + |G|/8 128 + |G|/8

Derive-Secret 189 199
Finished key 147 147

Empty transcript 0 0
Transcript 138 + 2|G|/8 89 + 3 ⋅ 216

Now, since we only consider TLS 1.3 ClientHello messages, the legacy_session_id
always will only consists of an empty vector with a length field set to 0x00. That is, at
byte 39 of a transcript hash there will always be a 0x00 byte. If we now compare this
to the component hash queries we observe that byte 39 is exactly in the fixed region of
the HMAC queries. That is for all other query types (i.e., 1–5), the 39-th byte will always
be either 0x5c or 0x36.6
With these considerations, we can precisely define the domains Th and Ch for the

full handshake protocol configured with SHA256 as follows:

The domain of all transcripts Th is the set that contains the empty string
and all strings in {0, 1}∗ with byte length at least 138+2|G|/8, where the 39-th
byte is not equal to 0x5c or 0x36. All other strings in {0, 1}∗ are contained
in Ch.

Note that this definition depends on the choice of group considered for the full handshake.
As mentioned before, we assume that the cryptographic parameters such as signature
algorithm, cipher suite, and group are fixed, and do not consider negotiation. That is, the
domainsTh andCh are defined differently for different combinations of cryptographic
parameters, but for all parameters we can define such domains. Therefore, we have
shown that Lemma 7.2 is valid for all combinations of signature algorithm, cipher suite
with SHA256, and group in isolation.

Full Handshake with SHA384

Next, we turn to the case in which SHA384 is the configured hash function that is
modeled as RO𝐻 . Consider the minimum and maximum input length for each query
type in Table 7.3. Recall that the output length for SHA384 is 48 bytes and its block size
is 128 bytes. This implies that the fixed region for the HMAC queries now is 80 bytes and
starts in byte 49. That is, outer and inner HMAC queries still can be identified by their

6 Note that even if we would allow a legacy session id this would have a maximum length of 32 bytes
according to [Res18, Sect. 4.1.2], which corresponds to length field value 0x20. That is, even in this case,
byte 39 would never be either 0x5c or 0x36.

116



7.5 Defining the Domains Th and Ch

fixed region being either 0x5c or 0x36. Collisions between inner HMAC and DH HMAC,
and DH HMAC and Derive-Secret, respectively, still are not obviously to separate due
to lack of structure. But as already noted above, this is not a problem as all of these
queries belong to the same domain (component hashes).
Transcript hashes in this case can again be easily separated from component hashes

due to their length. Even for the smallest possible group, a transcript hash query is of
input length at 202 bytes, which is larger than any component hash query. For SHA256,
we were able to give a bit more structure to transcript hash queries by using the “fixed
prefix” and the position of the legacy_session_id. This is unfortunately more difficult
for the case of SHA384. Let us elaborate on this. Every transcript starts with a Client
Hello message that in turn starts with a prefix of 39 bytes (from the message type
through the legacy session id) followed by 2 bytes for the length field for the cipher
suite vector and at least 2 bytes (up 216) cipher suite value(s). The cipher suites are
followed by 4 bytes (legacy compression method and extension length) before (at least)
33 + |G|/8 bytes for the mandatory extension data follow. Now, the fixed region of any
HMAC-related query starts in byte 49 and ends in byte 80. The problem for SHA384 now
is that the fixed region starts after the cipher suite length field. Since the cipher suite
field is of variable-length, we cannot say with certainty where it will end, as clients could
present multiple cipher suites (or even repeat values). We only require that the cipher
suite we are considering is present. Therefore, we cannot say for sure whether any byte
in the region of byte 49–80 is different from the fixed region. However, to be clear this
does not effect the possibility to define the domain of transcripts as transcript for the
full handshake fortunately are already separated by length. We only have to be more
general compared to SHA256.

For the full handshake protocol configured with SHA384, we define the do-
mainTh as the set containing the empty string and all string of {0, 1}∗ with
byte length of at least 138 + |G|/8. All other strings of {0, 1}∗ are contained
in Ch. Recall that these sets highly depend on the considered group.

Closing Remarks on Domain Separation for the Full handshake

As discussed above we were able to define separate domains Th and Ch such that the
TLS 1.3 full handshake instantiated with fixed cryptographic parameters only queries
its hash function (resp. the random oracle) on Th when computing transcript hashes
and on Ch when computing HMAC (and related functions). For the full handshake,
the minimal byte length of a transcript is already long enough to separate transcripts
by length. Therefore, explicit intentional domain separation is not necessarily required
as the length of the inputs already can be leveraged for separation. However, having
intentional domain separation for each use of the hash function would be the cleanest
and safest solution, and should be considered in future revision of the protocol.

117



7 abstracting the tls key schedule

Table 7.4: Minimal input length of the hash function calls made by TLS 1.3 in the PSK
handshakes with SHA256.

Query type Min. length (in bytes) Max. length (in bytes)

Outer HMAC 96 96
Inner HMAC 96 96
DH HMAC 64 + |G|/8 64 + |G|/8(only in PSK-(EC)DHE)

Derive-Secret 109 119
Finished key 83 83

Empty transcript 0 0
Transcript 73 45 + 217(PSK-only)

Transcript 91 + |G|/8 45 + 217(PSK-(EC)DHE)

7.5.3 Domain-separation in the TLS 1.3 PSK Handshake

Next, let us turn to defining the domain Th and Ch for the PSK handshakes. Similar
to the treatment of the full handshake, we fix the cipher suite, the PSK mode, and (in
the PSK-(EC)DHE mode) the group that will be negotiated. That is, we assume that
in all ClientHello at least these parameters are listed and even if other parameters
are present all servers will always pick the fixed parameters from the respective list.
We consider four major cases in the section. Namely, we analyze the two PSK modes,
PSK-only and the PSK-(EC)DHE, separately when configured with SHA256 or SHA384,
respectively. Since there is a lot of overlap with the full handshake, we consider the two
cases of PSK-only and PSK-(EC)DHE configured with SHA256 together. The argument
is almost identical to the full handshake and only the domains defined differ. The case
for SHA384 is more complex and therefore, we consider it for each PSK mode separately.

In this section, we only focus on collisions between transcript hashes and component
hashes. In the treatment of the full handshake, we discussed how some of the component
hashes can be separated bymaking use of their structure. Recall that this did not effect the
definitions of Th and Ch and merely served as a side remark. This discussion remains
valid for the PSK handshakes as it is only effected by the choice of hash function rather
the considered handshake mode. So, we refer for more insights on that to Section 7.5.2.

PSK Handshakes with SHA256

In Table 7.4, we show the minimal input length of the hash function calls made by
TLS 1.3 when SHA256 is configured as the hash function in the PSK handshakes. Observe
that for the PSK-only handshake the length ranges of a transcript hash query overlaps
with all component hash query types (i.e., outer and inner HMAC, Derive-Secret, and
Finished key). While the length range of a transcript hash query in the PSK-(EC)DHE
do not overlap with any of the component hash query types for all choices of the groupG.
According to Table 7.4, the minimal length of a transcript hash query is 91 + |G|/8 bytes,

118



7.5 Defining the Domains Th and Ch

where |G|/8 ≥ 32 for all standardized groups. That is, the minimum length is at least
123 bytes, which is larger than any of the maximum length (for the same choice of
group G) given for the component hash types. Next, we give a separation argument
for the PSK-only handshake. This argument is similar to the argument given for the
full handshake and only uses the “fixed prefix” of the ClientHello message up to the
legacy_session_id. In particular, the same argument applies to the ClientHello
message in the PSK-(EC)DHE handshake and allows us to be more specific about the
format of transcript hashes, even though in this mode transcript and component hashes
could already be separated by length.
Recall that every ClientHello (also the partial one) starts with the same structure.

Namely, 1 byte of message type (0x01), 3 bytes of ClientHello message length, 2 bytes
set to 0x0303, 32 bytes client nonce, and finally, 1 byte legacy_session_id = 0x00.
That is, byte 39 is always 0x00. Now recall that every kind of the component hash query
types represents either a first or second HMAC random oracle call. That is, it will start
with 32 bytes incorporating the HMAC key followed by the “fixed region” that is 32 bytes
of either 0x5c or 0x36. In particular, this means that for all component hash queries
the 39-th byte will be different from 0x00. This can be leveraged to separate Type 1
and Type 2 queries. For more details on this refer to the treatment of the full handshake
in Section 7.5.2 above.
With this insight, we can define the domain Th and Ch for the PSK handshakes

configured with SHA256 as follows:

• PSK-only handshake with SHA256: The domain of all transcripts Th is the set
that contains the empty string and all strings in {0, 1}∗ with byte length at least 73,
where the 39-th byte is not equal to 0x5c or 0x36. All other strings in {0, 1}∗ are
contained in Ch.

• PSK-(EC)DHE handshake with SHA256: The domain of all transcripts Th is the
set that contains the empty string and all strings in {0, 1}∗ with byte length at least
91 + |G|/8, where the 39-th byte is not equal to 0x5c or 0x36. All other strings in
{0, 1}∗ are contained in Ch.

PSK-only handshake with SHA384.

In Table 7.5, we show the minimal input length of the hash function calls made by TLS 1.3
when SHA384 is configured as the hash function in the PSK-only handshake. The length
range of transcript hash query overlap with all types of component hash queries. Let us
compare a transcript to an outer HMAC call for demonstration. The other types can be
treated analogously. Outer HMAC queries are in this configuration 176 bytes long. That
is, we have to compare it to a (partial) ClientHello message of length 176 bytes. Let
us first recall the mandatory segments. The first 39 bytes must appear in exactly that
order (up to the legacy_session_id). These bytes are followed by 2 bytes of cipher
suite length field and a cipher suites vector of length at least 2 bytes. Finally, there are
4 bytes of extension field length and at least 26 bytes of mandatory extensions. We refer
to the definition of the minimal partial ClientHello message given in Section 7.5.1 for

119



7 abstracting the tls key schedule

Table 7.5: Minimal input length of the hash function calls made by TLS 1.3 in the PSK-only
handshake with SHA384.

Query type Min. length (in bytes) Max. length (in bytes)

Outer HMAC 176 176
Inner HMAC 176 176

Derive-Secret 189 199
Finished key 147 147

Empty transcript 0 0
Transcript 73 45 + 217

details. Thus, for a ClientHello of length 176 there are 103 bytes undefined. Recall
that the cipher suites and extensions field are variable-length vectors and can be
extended. Schematically, a transcript is the structured as follows:

39 bytes ‖ 4 bytes ‖ ↔ ‖ 4 bytes ‖ ↔ ‖ 26 bytes

where ↔ indicates that these segments could vary in length. Note that for the 26 bytes
of mandatory extensions, the pre_shared_key extension always has to be the last
extension of the extension field. The other could be reordered arbitrarily and therefore
we only have a segment of variable-length before the mandatory extensions. To be more
precise, actually there is a variable-length segment before and after each of themandatory
extensions, except for the pre_shared_key extension that always is last and thus only
has a variable–length segment before. However, since the above is only an illustration,
we decided to keep it simple to just highlight that at the start of the extensions field
further extensions could be added to lengthen the transcript. In comparison, an outer
HMAC query is structured as follows:

48 bytes ‖ (0x5c)80 ‖ 48 bytes

where (0x5c)80 denotes the 80-byte string where all bytes are set to 0x5c. Now, if one
strictly follows the standard one can easily construct a collision between these two strings.
Namely, the standard allows for, for example, the cipher suites field to contain values that
are not standardized and servers should ignore all unknown/malformed values (cf. [Res18,
Sect. 4.2.1]). Therefore, it is sufficient for a ClientHello message to be still considered
valid if at least one valid value is contained in the cipher suites vector. Hence, a Client
Hello message with the following cipher suite vector would be indistinguishable from
an outer HMAC query. Define the cipher suite vector 0x1302 ‖ (0x5c)103, which yields a
ClientHello message of length 176 bytes, containing a valid cipher suite 0x1302 for
TLS_AES_256_GCM_SHA384. Now, observe that bytes 43–146 are fixed to 0x5c, which
in particular covers the fixed region of 80 0x5c in an outer HMAC call. Note that the
same construction also works for all variants of first HMAC queries by replacing 0x5c
by 0x36 and adapting the factor 103 so that the respective length is achieved. A similar
collision can be constructed when using extensions that are not specified. Here, servers

120



7.5 Defining the Domains Th and Ch

also are required to ignore unrecognized extensions (cf. [Res18, Sect. 4.1.2]) and as long
as all mandatory extensions are present, the handshake can still be continued.
These kind of collisions seem unavoidable as long as it is permitted to arbitrarily

choose the cipher suite vector and use unspecified extensions. We would like to high-
light that in our view as described in Chapter 6, we only consider clients that suggest
only a single cipher suite as we do not cover negotiation of cryptographic parameters.
Nevertheless, we would like to be as close as possible to the standard, therefore we did
not make any assumptions about the choice of cipher suites before as we were able to
achieve the desired results even with this more general approach. Moreover, we con-
sider it to be valuable independent of our analyses given in this work to understand
the structure underlying the random oracle queries. Unfortunately, this setting seems
to be too strong for the PSK-only mode with SHA384, because of the short minimal
length of the partial ClientHello message and the resulting gap in length between the
component and transcript hashes. This allows for too many bytes to be chosen freely
and favors constructing collisions. Given that TLS 1.3 in our abstraction only will ever
include a single (valid) cipher suite in the cipher suite vector, we consider it a reasonable
assumption to only consider ClientHello messages that contain standardized cipher
suites only. This is still more general than assuming the cipher suites field to be only a
single element, and allows us to find a way to separate the two types of hash queries.
We also make a similar assumption about the extensions in this mode. We assume that
only extensions will be present in transcripts that are specified in the standard and no
undefined extensions occur. Similar to the cipher suites, this is even more general than
the view we actually considering as we only include mandatory extensions as described
in Chapter 6.
We would like to highlight that even though no honest client would ever create a

ClientHello with values that are not standardized in our view, an adversary could
tamper with the message adding arbitrary, unstandardized values, for example, in the
list of cipher suites, in transit. If the server forwards this ClientHello to an honest
server, the honest server will query a transcript hash query that might cause a collision
with a component hash. Nevertheless, this tampered value will never result in a valid
honest execution, because the client that output the ClientHello will abort since its
transcript will be different from the server’s transcript, because the server received a
different ClientHello than the client sent. Hence, the assumption that we are making
to allow for domain separation in PSK-only with SHA384 basically is that the adversary
does not tamper with ClientHello messages in the sense that it adds additional values
in the variable length vectors of a valid, honest ClientHello message. To exclude this
exact attack.

Under the assumption of ClientHello messages only including standardized cipher
suite values as defined in [Res18, App. B.4], i.e., 0x130i for i ∈ {1, 2, 3, 4, 5} and only
specified extensions [Res18, Sect. 4.2] are allowed, we can domain separate PSK-only
with SHA384 as follows. To separate transcript hashes from component hashes (resp.
HMAC queries) we need to be sure that the fixed region of the HMAC queries (i.e., the
80 byte range 49–128) overlaps with a segment of transcript in which we can say with
certainty that it cannot contain the byte 0x5c (when comparing to an outerHMAC query)

121



7 abstracting the tls key schedule

or byte 0x36 (when comparing to any of the other component hash subtypes). Now, let
us demonstrate the domain separation by comparing a transcript hash to an outer HMAC

query. The other types follow analogously. Recall that in the transcript hash, we have
73 bytes that have to be present and 103 bytes (to get to the input length of 176 bytes of
an outer HMAC query) that can be chosen freely. The only fields in a (partial) Client
Hello message that are of variable length are the cipher suites and the extensions field.7
Now, there can essentially be two cases to yield the 176 bytes of ClientHello: (1) the
cipher suites vector overlaps with the fixed region, or (2) the cipher suites vector does
not overlap with the fixed region, but then the extensions vector has to overlap the fixed
region. These two cases naturally arise from the structure of mandatory segments of a
(partial) ClientHello message and that 103 bytes in the cipher suites and extensions
field can be added in total to achieve a length of 176 bytes. That is, to achieve the desired
length it is not possible that neither of the two do not overlap the fixed region of an
outer HMAC query. Next, let us be more precise on how the above considered cases can
actually occur. Recall that the fixed region is from bytes 49 to 128. Thus, if the cipher
suites field goes through byte 49 cases (1) occurs and the cipher suites vector overlaps
with the fixed region. If we now recall the structure of a ClientHello, we get that
the cipher suites vector starts in byte 42 because it is prepended byte the 39-byte “fixed”
prefix of the ClientHello and a 2 byte length field of the cipher suites vector. Now,
every possible standardized cipher suite value is 2 bytes. That is, to have an overlap with
the fixed region and the cipher suite vector overlaps byte 49, the vector has to contain at
least 4 cipher suite values (i.e., 8 bytes). This byte 49 then allows us to separate. Namely,
byte 49 in this case will be the second byte of a cipher suite value, which is one of the
bytes 0x0i for i ∈ {1, 2, 3, 4, 5}. In particular, we have under the assumption that only
standardized cipher suites are used in the cipher suite vector that byte 49 if the cipher
suite vector overlaps the fixed region of an outer HMAC query (i.e., bytes 49 to 128) that
this byte always is different from 0x5c. The same argument applies, of course, to all
the variants of the first HMAC query, since byte 49 also is always different from 0x36.
The only thing that changes are the number of bytes that can be freely chosen. The
remaining case to consider now is the case that the cipher suites vector does not overlap
the fixed region. This implies that the cipher suite vector has to contain strictly less
than 4 standardized cipher suite values. In this case, the cipher suite vector will end
in byte 47 and 2 bytes of extension length will follow. That is, in this case byte 49 will
be the second byte of the extensions length field. Unfortunately, this could take value
0x5c (or 0x36) so that is not the position that we can use to separate. Now, since at
most 4 bytes of the bytes that can be freely chosen are occupied by the cipher suite
vector (at most 6 byte cipher suite vector, where 2 are mandatory), the remaining (at
least) 99 bytes (up to 103 bytes) have to be filled up with additional extensions. That
is, in byte 50 the extensions field starts and in particular the first extension starts here.
Recall that every extension starts with 2 bytes extension type and 2 bytes length field of

7 Note that technically also the legacy session id and the legacy compression methods could be longer, but
since we only negotiate TLS 1.3 in this work and do not consider compatibility to pre-TLS 1.3 versions
these values are fixed as described above.

122



7.5 Defining the Domains Th and Ch

the extension followed by the actual extension data (cf. [Res18, Sect. 4.2]). Fortunately,
all ExtentionType values defined for TLS 1.3 are different from 0x5c (and 0x36). In
decimal, this would correspond to 92 (and 54), and there is no extension specified that
corresponds to value 92.8 In fact, all values are strictly smaller than 255 and therefore all
values will start with a 0x00 byte. Hence, both byte 50 and 51 are different from 0x5c
(or 0x36) with certainty under the assumption that only specified extensions are allowed
in this case. That is, transcripts of length exactly 176 bytes will have at least two bytes
different from from 0x5c (or 0x36) in the range of bytes 49–128 and therefore can be
separated from HMAC queries by structure.

Overall, we have seen that for the PSK-only handshake configured with SHA384 tran-
script hash queries can be separated by structure under the assumption that the cipher
suite vector only contains cipher suites value and the extension field only contains ex-
tensions that are standardized. In the previous paragraph, we have show that for all
possible cases for filling up the 73 bytes of a minimal ClientHello to match the length
of 176 bytes of an outer HMAC query, it has to hold for a transcript that there is at least
one byte different from 0x5c in the region of byte 49–128. This region is the fixed region
of an outer HMAC query, where all bytes are set to 0x5c. This argument easily can be
adapted to the three other types of HMAC query (i.e., inner HMAC, Derive-Secret, and
Finished key) by replacing 0x5c by 0x36 in the analysis and adapting the filled up
bytes such that the length of the transcript matches the respective input length of these
types. Finally, we can define the domains Th and Ch as follows:

For the PSK-only handshake protocol configured with SHA384, we define
the domainTh as the set containing the empty string and all string of {0, 1}∗
with byte length of at least 73 such that there exists at least one byte in the
range of byte 49 through 128 that is different from 0x5c and 0x36. All other
strings of {0, 1}∗ are contained in Ch.

PSK-(EC)DHE handshake with SHA384.

Finally, it remains to define domain Th and Ch for the PSK-(EC)DHE handshake con-
figured with SHA384. As in the previous section, in which we analyzed the PSK-only
handshake with SHA384, we have an overlap of the length range between transcript
hashes and all component hash types as shown in Table 7.6. The fixed region for all the
component hash queries is 80 bytes long and ranges from byte 49 through byte 128. Let
us first have a look at the structure of a (partial) ClientHello in the PSK-(EC)DHE hand-
shake. In comparison to the ClientHello in the PSK-only handshake, here 18 + |G|/8
additional bytes are mandatory to accommodate for the configured group and the corre-
sponding key share. This results in the following illustration of a ClientHello:

39 bytes ‖ 4 bytes ‖ ↔ ‖ 4 bytes ‖ ↔ ‖ (44 + |G|/8) bytes

where ↔ indicate segments that can vary in length. Recall that a ClientHello has to
end with the pre_shared_key extension and all other extensions might be reordered

8As a side remark, in DTLS [RM12] (not considered in this thesis), there is an extension with the value
54 specified (connection_id [RTFK22]).

123



7 abstracting the tls key schedule

Table 7.6: Minimal input length of the hash function calls made by TLS 1.3 in the PSK-
(EC)DHE handshake with SHA384.

Query type Min. length (in bytes) Max. length (in bytes)

Outer HMAC 176 176
Inner HMAC 176 176
DH HMAC 128 + |G|/8 128 + |G|/8

Derive-Secret 189 199
Finished key 147 147

Empty transcript 0 0
Transcript 91 + |G|/8 45 + 217

arbitrarily. The two segments that can vary in length are on the one hand the cipher
suites vector and the extensions field can be extended by further extensions. We show
that a transcript hash query cannot collide with any of the component hash queries
by contradiction. To this end, we assume that there is a transcript that collides with
a component hash query. As a reminder, we recap the structure of a component hash
query:

48 bytes ‖ (pad)80 ‖ 𝑘 bytes

where pad is 0x5c for outer HMAC queries and 0x36, otherwise, and 𝑘 is 48 bytes for
both inner and outerHMAC queries, |G|/8 bytes for DH HMAC queries, (at most) 71 bytes
for Derive-Secret queries, and 19 bytes for Finished key queries. As illustrated above
the mandatory extensions are (44+|G|/8) bytes, which is at least 76 bytes for the smallest
choice of G. That is, in the region after the 80 bytes of pad is not enough space to fit all
mandatory extensions for any of the query types. Now, we have the case that either one
of the mandatory extensions has to start in the fixed region or before the fixed region.
Recall that all extensions start with 2 byte each of extension type and extension length.
Since none of the standardized extensions of TLS 1.3, and thus in particular not the
mandatory ones have an extension type of 0x5c5c or 0x3636, they cannot start in the
fixed region as otherwise we would not have a collision. Thus, such an above collision
is only possible if any mandatory extension starts outside of the fixed region of (pad)80

and its extension data contains an 80 byte pad vector. This generally would be possible
as all mandatory extensions include a variable length vector. Next, let us have a look
at the region before the fixed region. All ClientHello messages start with 39 bytes
that always are ordered in the same way ending with the legacy_session_id that we
already leveraged to domain separate the handshake modes with SHA256 before. These
are followed by 2 bytes of cipher suite vector length and at least 2 bytes for a mandatory
cipher suite value, and 4 bytes of the extensions field length. This already results in
a mandatory prefix of 47 bytes. Now every extension starts with 2 byte of extension
type and 2 byte of extension data length. At this point, the contradiction becomes very
clear. The extension type field now overlaps the fixed region, as the second byte is
byte 49, which is the first byte of the fixed region. Recall that none of the extension

124



7.5 Defining the Domains Th and Ch

types actually contains 0x5c or 0x36. Hence, byte 49 cannot be pad. Therefore, the
mandatory extensions cannot start inside of the fixed region nor before it. Thus, it
is impossible to fit 80 bytes of pad in a transcript and also find enough space for all
mandatory extensions for any of the component hash queries. Let us be more precise
about this. The mandatory extensions include 44 + |G|/8 bytes, the mandatory prefix is
already 47 bytes. That is, there are only 1 byte before, and 𝑘 bytes (depending on the
query type) after the fixed region to fit in the mandatory extensions, when also wanting
to fit in a fixed region of 80 bytes of pad. For 𝑘 = |G|/8, there are missing 43 bytes. For
the other choices of 𝑘 with 𝑘 ≤ 71, it even holds for the smallest group that |G|/8 = 32.
This means that there are at least 4 bytes missing to encode all mandatory extensions.
Consequently, there has to be at least one byte in the range from 49 through 128 in a
transcript that is different from 0x5c or 0x36.
Overall, we define the domains for PSK-(EC)DHE with SHA384 as follows:

For the PSK-(EC)DHE handshake protocol configured with SHA384, we de-
fine the domain Th as the set containing the empty string and all string of
{0, 1}∗ with byte length of at least 91 + |G|/8 such that there exists at least
one byte in the range of byte 49 through 128 that is different from 0x5c and
0x36. All other strings of {0, 1}∗ are contained in Ch.

Closing Remarks on Domain Separation for the PSK handshakes.

As discussed above we were able to define separate domains Th and Ch such that the
TLS 1.3 PSK handshakes instantiated with fixed cryptographic parameters only queries
its hash function (resp. the random oracle) on Th when computing transcript hashes
and on Ch when computing HMAC (and related functions). The analysis presented
here relies on the domain separation analysis first presented in [DDGJ22b, DDGJ22a].
In the originally published version, there are a couple of missing bytes (e.g., message
type and message length) which we corrected in the presented version above.9 Also, as
these results presented originally domain separation for PSK-only with SHA384 was not
possible. Due to the shift by the aforementioned bytes, we were able to domain separate
the PSK-only handshake with SHA384 with an additional assumption. We assumed that
the cipher suite vector and the extensions vector only contains values that are specified
in the standard. Even though we believe that this assumption is not too strong despite
it does not reflect the standard entirely. In our formal model, TLS 1.3 will only use
mandatory extensions and only a single valid cipher suite value anyway. Thus, we never
run into the problem that TLS 1.3 as we consider it formally could construct such a
collision during execution. Hence, TLS 1.3 will never consider such artificial string as
a transcript in our abstraction and therefore the domains are well-defined for our use.
Nevertheless, we decided to keep this analysis as general as possible to give insides about
the domain separation unintentionally employed by the TLS 1.3 standard.

9 The authors of [DDGJ22b, DDGJ22a] would like to thank Robert Merget for spotting this and notifying
us immediately.

125



7 abstracting the tls key schedule

7.6 Discussion

In this chapter, we presented a new abstraction of the TLS 1.3 key schedule in the ROM,
which holds under the assumption that the TLS hash function is a random oracle. This
abstraction allows it to consider the TLS key schedule and the TLS hash function as 12
independent random oracles and thus tames the complexity of further analyses in a mod-
ular fashion. In particular, one does not need to deal with the interleaved computations
of key schedule in, for example, the subsequent key exchange proof. As we will see in
Chapters 9 and 10 this abstraction can be leveraged for a tight security proof for the
TLS 1.3 handshakes.

In an earlier version [DDGJ22b, DDGJ22a] of the results presented in this chapter
that focused solely on the PSK handshakes of TLS 1.3 instead of all handshake modes, it
was not possible to prove indifferentiability for the PSK-only handshake configured with
SHA384. The reason is that it was not possible to define the disjoint working domainsTh

andCh that were necessary for the first abstraction step (from one hash random oracle
to a transcript hash and component hash random oracle) to hold. In this work, we fixed
small inaccuracies with the formatting of the messages, which induced a shift of the
bytes in the domain-separation argument (cf. Section 7.5). This in combination with an
additional assumption allowed us to separate the domains for the PSK-only handshake
with SHA384. In essence, this assumption restricts the server in the PSK-only mode with
SHA384 to process ClientHello messages that contain unstandardized cipher suite
values or unstandardized extensions. Note that this assumption is not necessary for
the other handshake modes. Here, it is irrelevant if undefined values are contained in
these messages as long as at least one standardized cipher suite value is present and
all mandatory extensions for the mode are present. We would like to highlight, again,
that we believe that this is not a strong assumption for our perspective. Honest clients
would never add undefined values in our perspective on TLS, and rather only would
configure the bare minimum. That is, these ClientHello messages can only be received
by servers if an adversary tampered with it. However, the presence of this undefined
values in our perspective would uncover the adversarially-chosen messages. Therefore,
we consider it reasonable to consider only protocol messages as valid that can be output
by honest sessions. In our perspective, we have a fixed cipher suite, a fixed hash function,
a fixed signature algorithm, and a fixed group. Therefore, honest clients and servers
only configure the values and these values alone. Nevertheless, we wanted to keep our
analysis as general as possible to understand the unintentional domain separation and
thus wanted to make as little assumptions as possible.

Open Questions. Even though, we have formal justification for our key-schedule
abstraction and that is sufficient for our perspective on the TLS 1.3 protocol, we consider
the following direction valuable for future work. First, we consider it an interesting open
question for futurework to investigate the possibility of dropping the assumptionmade in
the domain-separation discussion for the PSK-only mode with SHA384. That is, it would
be interesting whether domain separation for transcript and component hashes can be
shown if one considers ClientHello messages that are allowed to contain undefined

126



7.6 Discussion

values. Recall that the standard considers messages as valid as long as at least one
recognized value in every vector is present and it mandates to simply ignore undefined
values [Res18, Sect. 4.2.1]. This is particularly interesting in a formal model that allows
for negotiation of the cipher suites, which we exclude. We highlight that our result still
applies to a model in which honest clients present only standardized values for the cipher
suites. However, as soon as it is allowed to add undefined values, our treatment needs to
be revisited. This might be achieved through revisiting the domain-separation argument
presented in Section 7.5, finding a different approach to formally justify the key schedule
abstraction presented in Section 7.2 that avoids such a domain-separation argument, or
even to revisit the domain separation for the uses of the hash function in future revisions
of the standard.
Another interesting avenue is to extend our treatment by out-of-band PSKs. In this

work, we excluded out-of-band PSK entirely, mostly because they are hard to capture
formally. The length of the externally established PSKs might be application dependent,
and even the provided entropy is unclear. Our treatment, especially in this chapter, highly
relies on the length of the PSK being equal to the output length of the hash function. In
future work, it would be interesting to investigate whether there is a way to incorporate
out-of-band PSKs into the results presented here.

127





8
modularizing handshake
encryption

Author’s contribution. The contents of this chapter are based on joint work with
Hannah Davis, Felix Günther and Tibor Jager [DDGJ22b, DDGJ22a]. While we discussed
all aspects of this paper together, the main idea to abstract the handshake encryption of
the TLS 1.3 protocol (resp. the use of internal keys forMSKE protocols, in general) and the
corresponding technical treatment is mainly due to HannahDavis and Felix Günther. The
author of this thesis extended the result by a theorem for the full handshake (Theorem 8.2),
which is a direct implication from the considerations of [DDGJ22b, DDGJ22a]. The result,
in particular, the transformation presented in Section 8.1 and the corresponding analysis
(Theorem 8.1) are almost identical as presented in [DDGJ22b, DDGJ22a].

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Handshake Encryption as a Modular Transformation . . . . . . . . . . . 130

8.1 Introduction

In this chapter, we address that with respect to key indistinguishability the encryption
used in the handshake protocol of TLS 1.3 does not contribute to security. That is, the
handshake would still provide indistinguishable keys even without the handshake mes-
sages starting from the EncryptedExtensions message being encrypted under the
handshake traffic key (cf. Chapter 6). The handshake encryption mainly is used for pri-
vacy to hide the identity of the client and server, e.g., contained in the certificates. We only
focus on the key exchange security of the TLS 1.3 handshake and do not cover privacy.
For information about the privacy of TLS 1.3, we refer to [Arf+19]. Since it does not con-
tribute to the key exchange security, it is desirable to abstract the handshake encryption
as it only increases complexity. In particular, recall that for MSKE-security (Chapter 5)
we distinguish between “internal” keys that are potentially used inside the protocol and

129



8 modulariz ing handshake encryption

“external” keys that may only be used outside of the MSKE protocol. The mentioned
handshake traffic key of the TLS 1.3 handshake is an internal key due to the handshake
encryption. Internal keys need to be handled with more care than external keys, because
testing of these keys potentially could open a side channel for the adversary. Recalling
the TLS 1.3 handshake encryption an adversary simply could get a real or random key
(i.e., testing a key) and then try to decrypt an encrypted TLS message with this key. If it
is successful, then distinguishing is easy since only real keys yield a meaningful decryp-
tion. Therefore, internal keys can only be tested by the adversary right after they have
been accepted and before they have been used in the protocol. Once tested, the internal
key gets replaced by the real or random test key to address the above mentioned side
channel. On the contrary, external keys can be tested as usual. For more details, we refer
to Chapter 5 and in particular to the definition of the oracle Test.

Therefore, removing the handshake encryption from the analyzed protocol and by this
removing the necessity of handling internal keys tames the complexity of our analysis.
To cover the TLS 1.3 handshake as it is defined, namely with handshake encryption,
we formally show how to define a protocol that is identical to TLS 1.3, but does not
use handshake encryption and all key derived during the protocol are considered to be
external. As this result might also benefit other security analysis of MSKE protocols, we
present this in a general way for anyMSKE protocol. This result originally was presented
in [DDGJ22b].

8.2 Handshake Encryption as a Modular Transformation

In this section, we define a transformation from a MSKE protocol that uses only external
keys to a MSKE protocol that works the same, but where a subset of stage keys is used
to transform messages before/after they are send/received. Here, one can think of this
transformation, for example, as encryption and decryption using an internal key.

Transformation. Let KE2 = (Gen,Activate,Run) be a MSKE protocol with no internal
keys, i.e., INT[𝑠] = false for all stages 𝑠 of KE2. Define KE1 parameterized by two (deter-
ministic) algorithms TransformSend and TransformRecv, and a set KSTransform ⊆ [STAGES],
where STAGES denotes the number of stages of KE2, as follows. The algorithms KE1.Gen
and KE1.Activate are identical to their counterparts of KE2. Algorithm KE1.Run is differ-
ent and its definition is shown in Figure 8.1. Intuitively, KE1.Run applies the transfor-
mation TransformRecv to its input (i.e., when receiving a message), then runs KE2.Run on
the transformed input, and finally outputs the result of the transformation TransformSend

applied to the output of KE2.Run (i.e., before sending a message). TransformSend and
TransformRecv receives the list of all stage keys corresponding to the stages in KSTransform
All the protocol-specific and session-specific properties for KE1 and KE2 are identical ex-
cept for the vector of internal stages INT, which sets INT[𝑠′] = true for all 𝑠′ ∈ KSTransform.

Correctness. Clearly, there exist implementations of algorithms TransformSend and
TransformRecv that do not yield the intuition described above. In particular, as defined

130



8.2 Handshake Encryption as a Modular Transformation

KE1.Run(𝑣, 𝜋 𝑖
𝑢, 𝑚)

1 ∶ keys ≔ (𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[𝑠])𝑠∈KSTransform

2 ∶ acc ≔ (𝜋 𝑖
𝑢.accepted[𝑠] ≠ ∞)𝑠∈KSTransform

3 ∶ 𝑚̃ ≔ TransformRecv(keys, 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒, acc, 𝑚)

4 ∶ (𝜋 𝑖
𝑢, 𝑀̃) ≔ KE2.Run(𝑣, 𝑚̃)

5 ∶ // Run might change the accepted keys/stages

6 ∶ keys ≔ (𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[𝑠])𝑠∈KSTransform

7 ∶ acc ≔ (𝜋 𝑖
𝑢.accepted[𝑠] ≠ ∞)𝑠∈KSTransform

8 ∶ 𝑀 ≔ TransformSend(keys, 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒, acc, 𝑀̃)

9 ∶ 𝐫𝐞𝐭𝐮𝐫𝐧 (𝜋 𝑖
𝑢, 𝑀)

Figure 8.1: Run procedure of the transformed key exchange protocol KE1. Depending of
the MSKE variant, 𝑣 = (pkeys, 𝑢, 𝑠𝑘𝑢) for pMSKE and 𝑣 = (𝑢, 𝑝𝑠𝑘) for sMSKE.

above TransformSend and TransformRecv might be defined in such a way that they alter
underlying protocol messages so that keys that are accepted without the transformation
are no longer accepted with the transformation. Therefore, we need to define correctness
for the transformation to ensure that it is meaningful. We require for correctness that
if two sessions honestly run protocol KE2 without presence of an adversary will accept
a key for stage 𝑠 with probability 𝑝, then two sessions honestly running protocol KE1
without presence of an adversary will accept a key for stage 𝑠 with probability 𝑝, as well.
Because of the absence of the adversary, it is ensured that all messages are sent honestly
and the only changes made are the ones induced by TransformSend and TransformRecv.
For TLS 1.3, one can think of TransformSend and TransformRecv as the encryption and

decryption algorithm of AEAD scheme configured for the handshake. These algorithms
are perfectly correct, and hence correctness of TransformSend and TransformRecv follows.

Security. Our goal is that KE1 is a secure MSKE protocol if KE2 is one. This should
hold independently of the transformation algorithms.
The following theorem was originally proven for sMSKE in [DDGJ22b]. We state a

more general version including pMSKE protocols in this work, and recap the proof.

Theorem 8.1. Let KE2 be a MSKE protocol with STAGES stages and KE2.INT[𝑠] = false

for all stages. Let be a session matching algorithm for KE2 (Definition 5.4). Further, let
TransformSend andTransformRecv be transformation algorithms andKSTransform ⊆ [STAGES].
Define KE1 exactly as KE2 but with KE1.Run defined as in Figure 8.1 and KE1.INT[𝑠] = true

for all 𝑠 ∈ KSTransform.
For any adversary against the MSKE security of KE1, we can construct an adversary 

such that
AdvΠKE1() ≤ AdvΠKE2()

where Π ∈ {pMSKE, sMSKE}.

131



8 modulariz ing handshake encryption

Proof. To prove this theorem, we give a construction of adversary  using  as a sub-
routine and relate the MSKE advantage of the two algorithms afterwards.

Construction of adversary 𝐵. Adversary  simulates the MSKE experiment for 
and forwards every query except Send queries to its own corresponding oracle. It main-
tains its own counter time and increments it upon every query. Further, it maintains for
each session 𝜋 𝑖

𝑢 a list keys𝑖𝑢 and a list acc𝑖𝑢[𝑠] which is set to false for every 𝑠 ∈ KSTransform.
To simulate Send(𝑢, 𝑖, 𝑚) for , adversary  first checks for which 𝑠 ∈ KSTransform with
acc𝑖𝑢[𝑠] it holds 𝜋 𝑖

𝑢.accepted[𝑠] ≠ ∞. Then, for each of these stages 𝑠 satisfying the con-
dition, it checks whether 𝜋 𝑖

𝑢 has been tested or revealed in stage 𝑠 (i.e., if 𝜋 𝑖
𝑢.tested[𝑠] or

𝜋 𝑖
𝑢.revealed[𝑠]). Additionally, it runs the session matching algorithm  for stage 𝑠 to

determine whether 𝜋 𝑖
𝑢 has a partnered session, and repeats the two previous checks for

the partner. If any of the conditions above holds, then adversary  can determine the
session key 𝜋 𝑖

𝑢.𝑠𝑘𝑒𝑦[𝑠]. Note that all stages 𝑠 ∈ KSTransform are considered internal from
’s view. That is, if an internal stage 𝑠 key is tested it will be overwritten by the key
output by Test. This needs to be handled by  during the simulation of the experiment
for , and hence it knows 𝜋 𝑖

𝑢.𝑠𝑘𝑒𝑦[𝑠]. If the conditions are not true, then  queries an
additional RevSessionKey(𝑢, 𝑖, 𝑠) query to obtain the key. In either case it adds 𝜋 𝑖

𝑢.𝑠𝑘𝑒𝑦[𝑠]
to keys𝑖𝑢, sets acc𝑖𝑢[𝑠] ≔ true, and computes

𝑚̃ ≔ TransformRecv(keys, 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒, acc, 𝑚).

Then, it queries Send(𝑢, 𝑖, 𝑚̃) to its own oracle, retrieves the response 𝑀̃ , and returns

𝑀 ≔ TransformSend(keys, 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒, acc, 𝑀̃)

to adversary.

Analysis. Note that KE1 and KE2 are identical except for the transformation applied
to the exchanged messages and that the stages in KSTransform are internal in KE1. This is
exactly what takes into account. Whenever adversary sends a message, adversary
determines the key(s) that potentially could be used in the transformation and then
applies the transformation. Thus, it is easy to verify that adversary perfectly simulates
AdvΠKE1(). Therefore, it only remains to argue that if  wins the MSKE experiment,
 also wins its experiment. Recall from the definition of the MSKE experiment and
winning the experiment can happen in three ways: (1) violating the Sound predicate,
(2) violating the ExplAuth predicate, or (3) satisfying the Fresh predicate and guessing
the bit 𝑏 correctly. We can handle the first two cases together. Note that the conditions
to check violation of either the Sound or ExplAuth predicate depends only on variables
maintained by the MSKE security experiment. That is, if  wins by violating Sound

or ExplAuth in the experiment simulated by , then Sound or ExplAuth also have to be
violated in the MSKE experiment for KE2 adversary  is running in. Thus,  would also
win.

In the third case,  wins by guessing the bit 𝑏 correctly if predicate Fresh is not
violated. First of all, the bit 𝑏 is determined by the MSKE experiment  is running in,

132



8.2 Handshake Encryption as a Modular Transformation

so if  wins, then inherently  wins as well. However, recall that  sometimes need
to query RevSessionKey (at most 𝑞Send times). Since one of the conditions of the Fresh

predicate is that no session is tested and revealed at the same time, it might happen that
even though does not violate Fresh, but does. Now, in the construction ofwemake
sure that we only reveal a session key if it has not been tested before. Therefore, the
critical case is when later tests the keys revealed by . However, note that all of these
keys are in KSTransform and therefore considered internal in’s protocol KE1. These keys
are only allowed to be tested right after acceptance and not if the protocol execution was
already continued, where this key might already been used. Adversary  now will only
reveal keys (other than the ones queried by ) if the respective stage has already been
accepted and the protocol moved on. This is because there already has been a Send query,
where the state of this stage was already set to accepted, and thus  cannot make any
later Test query to that session and stage. The same arguments hold for any partnered
session. Finally, the Fresh predicate can be violated by breaking the conditions of forward
secrecy. These conditions are defined over the contributive identifiers of sessions and the
timings of corruption. The time of corruption is maintained by the security experiment
and is not influenced by . The contributive identifiers are defined identically for KE1
and KE2. This means that if two session are contributively partnered in the simulated
experiment for KE1, they also are contributively partnered in the experiment that runs
in for KE2.
Hence, if  wins, then also  wins, which implies the theorem.

For the TLS 1.3 handshake, Theorem 8.1 implies that transforming the handshake mes-
sages using the AEAD algorithms does not impact the MSKE security of the handshake
protocol. Therefore, it is sufficient to analyze the security of the simpler protocol not
using handshake encryption and only uses external keys. For the full handshake and
the PSK handshakes, we then get the following two results, where the latter was already
given in [DDGJ22b].

Theorem 8.2. Let KE1 be the TLS 1.3 full handshake protocol with handshake encryption
(i.e., stages 1 and 2 are internal) defined in the left-hand side of Figure 7.2. Let KE2 be
the same protocol, but without handshake and encryption and all stages being external.
Further, let TransformSend and TransformRecv be the encryption and decryption algorithm
that is configured for the considered instance of the protocol, and let KSTransform = {1, 2}.
Then, for any adversary  we can construct an adversary  such that

AdvpMSKE
KE1

() ≤ AdvpMSKE
KE2

().

Theorem 8.3. Let KE1 be either the TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol
with handshake encryption (i.e., stages 3 and 4 are internal) defined in the right-hand side
of Figure 7.2. Let KE2 be the same protocol, but without handshake and encryption and all
stages being external. Further, let TransformSend and TransformRecv be the encryption and
decryption algorithm that is configured for the considered instance of the protocol, and let
KSTransform = {3, 4}. Then, for any adversary we can construct an adversary  such that

AdvsMSKE
KE1

() ≤ AdvsMSKE
KE2

().

133



8 modulariz ing handshake encryption

Theorems 8.2 and 8.3 are given for the abstracted handshake given in Figure 7.2. Note
that we could also have stated it for the “regular version” of the handshakes as presented
in Chapter 6. However, we abstracted the “regular” handshake in Chapter 7 and in this
chapter to prepare for the security proofs given in Chapters 9 and 10. The abstraction
of the handshake encryption completes the preparation of the handshake protocol for
the security proofs, and the MSKE security of the protocol(s) KE2 given in Theorems 8.2
and 8.3 will be subject of the subsequent chapters.

134



9
tight security of the tls full
handshake

Author’s contribution. The contents of this chapter are a new contribution added
in this thesis. The proof presented in Section 9.3 was solely developed by the author of
this thesis. The proof technique is based on a number of previous works. The general
idea, and particularly, leveraging the combination of the strong Diffie–Hellman (SDH)
assumption and a key derivation function that is modeled as a random oracle to prove
tight security of Diffie–Hellman (DH) based key exchange protocols is due to Cohn-
Gordon et al. [Coh+19]. In early work [DJ21], which was joint work with Tibor Jager,
we proved a tight security bound for the MSKE-security of the full TLS 1.3 handshake
under strong assumptions about the key schedule. The author of this thesis developed
the architecture of the aforementioned analysis that implicitly also finds application in
the analysis of Section 9.3. In concurrent and independent work [DG21a], Hannah Davis
and Felix Günther, also gave a tight security bound for TLS 1.3 full handshake in a weaker
securitymodelwith only a single stage and also under similarly strong assumptions about
the key schedule. The results of this chapter were also inspired by their work. Lastly, the
proof presented in Section 9.3, follows the example of the tight security proof for the PSK
handshakes presented in Chapter 10, which originated from joint work with Hannah
Davis, Felix Günther, and Tibor Jager [DDGJ22b, DDGJ22a]. The proof of Section 9.3
uses the key schedule abstraction introduced in Chapter 7, which also originated from
this joint work, and can be seen as an extension to the full handshake.

Contents

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.1.1 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 TLS 1.3 Full (EC)DHE Handshake as an MSKE Protocol . . . . . . . . . . 138
9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake . . . . . . . . . . 140

9.3.1 Tight Security Bound for the Abstracted Full Handshake . . . . . 140
9.3.2 Tight Security Bound for the Full Handshake . . . . . . . . . . . 164

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

135



9 tight security of the tls full handshake

9.1 Introduction

In this chapter, we present our tight security bound for the TLS 1.3 full (EC)DHE hand-
shake protocol. We begin by briefly outlining our approach. In this context, we discuss
howwe circumvent the difficulties of tightly-secure key exchange discussed in Section 1.5.
To this end, we first sketch our high-level approach to prove tight security, then we recall
the commitment problem and how to avoid it. Finally, we outline how we can leverage
the techniques to avoid the commitment problem for a tight security proof for the TLS 1.3
handshake protocol.

9.1.1 Technical Approach

The overall high-level idea to obtain our tight security bound for TLS 1.3 full handshake
is to take advantage of the abstraction for the TLS 1.3 key schedule (Chapter 7) and the
abstraction of the handshake encryption (Chapter 8) to reduce the overall complexity of
the handshake protocol. These abstractions allow us to focus on giving a tight security
bound for the abstracted TLS 1.3 full handshake as shown on left-hand side of Figure 7.2
without handshake encryption. With a tight bound for the abstracted TLS 1.3 full hand-
shake, we can use Theorems 7.3 and 8.2 to conclude tight security for the TLS 1.3 full
handshake without any abstractions.

The commitment problem and how to avoid it. To prove a tight bound for the
abstracted TLS 1.3 full handshake, we first need to solve the main challenge to prove
tight security, in particular of Diffie–Hellman-based, key exchange protocols, namely
the commitment problem outlined in Section 1.5. In the following, we sketch how to
approach a tight security proof for a Diffie–Hellman-based key exchange straightfor-
wardly and recap the core of the commitment problem. Then, we address how to solve
the commitment problem technically to yield a tight key exchange proof.
To reduce the security of a key exchange protocol to a Diffie–Hellman problem, one

usually leverages the random self-reducibility of this class of problems. This allows a
reduction to create arbitrary many Diffie–Hellman challenges from a single one that all
look like fresh challenges. Recall that the straightforward approach for a Diffie–Hellman-
based key exchange proof is to guess a “tested” session and its partner that remain
uncompromised until the end. In these two sessions the reduction can then embed its
challenge. This straightforward idea, unfortunately, induces a quadric loss in the number
of sessions. Using the random self-reducibility enables to evade such guessing, because
the reduction can just embed a challenge in basically every session. However, with this
approach new challenges evolve. Namely, by embeding a Diffie–Hellman challenge in
every session, the reduction commits to not knowing the secret Diffie–Hellman value for
any session. Now, a simple attack is possible that breaks the reduction: Assume that we
embed in any session a rerandomized Diffie–Hellman challenge and for illustration think
of the classical Diffie–Hellman key exchange (Section 3.2). Now, if an initiator outputs
such a value, the adversary could simply answer with a tampered Diffie–Hellman value,
for which the reduction does not know the corresponding secret value. The adversary

136



9.1 Introduction

now simply breaks the reduction by asking the initiator to reveal its key, which is a
common feature in key exchange models (cf. Chapter 5). The underlying problem here
is that the initiator committed on not knowing the secret Diffie–Hellman value for the
value that it output. Since the intiator cannot decide at the time it chooses its Diffie–
Hellman value, whether it will receive an honest or a dishonest Diffie–Hellman value,
this seems unavoidable.
Gjøsteen and Jager [GJ18] solved this by introducing an additional first message by

the intiator that can be seen as a reprogrammable commitment. In this approach, the
initiator can basically revoke to embed a rerandomized challenge by reprogramming the
first message and thus choose a fresh Diffie–Hellman value with a corresponding secret
to be able to compute a key. Unfortunately, this technique only applies to new protocols
that particularly aim for tight security. In existing (real-world) protocols like TLS 1.3 we
cannot add additional messages to prove tight security. Cohn-Gordon et al. [Coh+19]
proposed a technique that is applicable for a large class of protocols. They propose to
switch the underlying computational problem from the commonly used DDH (Defini-
tion 3.4) problem to the SDH (Definition 3.5) problem. This in combination with a key
derivation function that is modeled as a random oracle can be leveraged to achieve a
tight security proof for a large class of Diffie–Hellman based key exchange protocols.
The key derivation function needs to receives the Diffie–Hellman key, and ideally also,
the Diffie–Hellman values of both the initiator and responder computing the respective
key as input for this technique to work. The idea is then the following. Intuitively, the
challenge for SDH is solve to CDH (Section 3.2) with the help of a DDH oracle, where
the first component is fixed. This evades the attack described above as follows. If the
intiator receives a Diffie–Hellman value for which it is not able to compute a key, we
basically have two cases. Either the adversary has already queried the random oracle
for the respective Diffie–Hellman key or not. If it queried the random oracle, we are
able to use the DDH oracle and the context, i.e., the Diffie–Hellman values output and
received by the intiator, to recognize the Diffie–Hellman key the intiator is not able to
compute, and set the key accordingly, not breaking the reduction. This makes use of
the reduction having full control over the random oracle. If there has been no query to
the random oracle, the adversary also does not know the key, so it is consistent for the
initiator to simply guess it. We need to be careful, and reprogram the random oracle later
if necessary to ensure consistency. Morever, we can use a similar technique to argue
that the adversary in honest sessions where it did not interfere, is only able to get any
information about these honest keys, if it is able to solve SDH for the reduction. Namely,
it would need to query the random oracle with a Diffie–Hellman key by only observing
the (rerandomized) Diffie–Hellman values (cf. CDH Section 3.2). We can again recognize
such random oracle queries by using the DDH oracle and simple algebra. For responder
sessions this works analogously. Overall, with this technique we are able to circumvent
the commitment problem efficiently and prove tight security.

Avoiding the commitment problem in TLS 1.3. Fortunately, the TLS 1.3 full hand-
shake is at its core only a Diffie–Hellman key exchange. Thus, we are able to adopt

137



9 tight security of the tls full handshake

the technique by Cohn-Gordon et al. [Coh+19] to the full handshake of TLS 1.3. The
main challenge for this adoption is that in TLS 1.3 the key schedule does not include the
context of the used Diffie–Hellman key into the same function call as the corresponding
Diffie–Hellman key that than could serve as the random oracle outlined above. In par-
ticular, recall that in the TLS 1.3 key schedule (Figure 6.1) the Diffie–Hellman key 𝑍 is
used to derive the handshake secret ℎ𝑠 ≔ 𝐄𝐱𝐭𝐫𝐚𝐜𝐭(𝑠𝑎𝑙𝑡ℎ𝑠 , 𝑍), where 𝑠𝑎𝑙𝑡ℎ𝑠 is a constant
in the full handshake. This handshake secret ℎ𝑠 then is used in further derivation to
derive the handshake traffic secrets and the master secret, among others. Only in these
further derivation the Diffie–Hellman key 𝑍 is put into context by adding a context
hash that contains the Diffie–Hellman key shares. That is, as TLS 1.3 is standardized
the technique by Cohn-Gordon et al. [Coh+19] is not directly applicable. In early work,
Diemert and Jager [DJ21] abstracted the key schedule of TLS 1.3 as multiple random
oracles by summarizing certain steps. Here, they introduce four random oracles such
that one derives the handshake traffic secrets, one the application traffic secrets, one the
exporter master secret and one the resumption master secret. By doing so, these four
key derivations could be expressed as a function of the Diffie–Hellman key 𝑍 and the
context for the respective secrets containing the Diffie–Hellman values. This ultimately
allowed to apply the technique to TLS 1.3. In independent and concurrent work, Davis
and Günther [DG21a] modeled the subroutines HKDF.Extract and HKDF.Expand as in-
dependent random oracles, and applied a careful bookkeeping technique to overcome
the above problem and also were able to apply the technique by Cohn-Gordon et al.
[Coh+19]. Unfortunately, both of these techniques were not ideal, because they do not
provide a formal justification of this abstraction as already discussed in Chapter 7. Our
abstraction of the TLS 1.3 key schedule presented in Chapter 7 and originally published
in [DDGJ22b] closes this gap and provides a formally justified abstraction that allows
for the Cohn-Gordon et al. [Coh+19] technique to be applied in a natural way.

Chapter outline. To this end, we first present in Section 9.2 the protocol-specific
properties of the TLS 1.3 full handshake such that itmakes up a public-keyMSKE protocol
as defined in Chapter 5. Then, we prove in Section 9.3 the tight security bound for
the TLS 1.3 full handshake protocol in its abstracted form as obtained by the insights
presented in Chapters 7 and 8, i.e., we prove the security bound for the protocol as
presented on the left-hand side of Figure 7.2 without handshake encryption. Finally, we
apply the main results of the key schedule abstraction (Theorem 7.3 of Chapter 7) and
modularization of the handshake encryption (Theorem 8.2 of Chapter 8) to obtain the
final bound for the TLS 1.3 full handshake protocol as described in Section 6.4.

9.2 TLS 1.3 Full (EC)DHE Handshake as an MSKE Protocol

We begin by capturing the TLS 1.3 full (EC)DHE handshake protocol, specified in Fig-
ures 6.1 and 7.2, formally as an pMSKE protocol. To this end, wemust explicitly define the
variables discussed in Chapter 5. In particular, we have to define the stages themselves,

138



9.2 TLS 1.3 Full (EC)DHE Handshake as an MSKE Protocol

which stages are internal and which replayable, the session and contributive identifiers,
when stages receive authentication, and when stages become forward secret.

Stages. The TLS 1.3 (EC)DHE handshake protocol has six stages (i.e., STAGES = 6),
corresponding to the keys ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆 , 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , 𝑒𝑚𝑠, and 𝑟𝑚𝑠 in that order. The set INT
of internal keys contains ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆 , the handshake traffic encryption keys. None of
the stages are replayable, i.e., for all 𝑠 ∈ [STAGES] it holds that REPLAY[𝑠] = false.

Session and contributive identifiers. The session and contributive identifiers for
stage 𝑠 are tuples (𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑐𝑡𝑥𝑡), where 𝑙𝑎𝑏𝑒𝑙𝑠 is a unique label identifying stage 𝑠, and 𝑐𝑡𝑥𝑡
is the transcript that enters the key derivation. The session identifiers (𝑠𝑖𝑑[𝑠])𝑠∈{1,…,6} are
defined as follows:1

𝑠𝑖𝑑[1] = (“ℎ𝑡𝑘𝐶”, (CH, CKS, SH, SKS)) ,
𝑠𝑖𝑑[2] = (“ℎ𝑡𝑘𝑆”, (CH, CKS, SH, SKS)) ,
𝑠𝑖𝑑[3] = (“𝑎𝑡𝑠𝐶”, (CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF)) ,
𝑠𝑖𝑑[4] = (“𝑎𝑡𝑠𝑆”, (CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF)) ,
𝑠𝑖𝑑[5] = (“𝑒𝑚𝑠”, (CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF)) , and
𝑠𝑖𝑑[6] = (“𝑟𝑚𝑠”, (CH, CKS, SH, SKS, EE, CR∗, SCRT, SCV, SF, CCRT∗, CCV∗, CF)) .

To make sure that a server that received untampered ClientHello and ClientKey
Share can be tested in (the unauthenticated) stages 1 and 2, even if the sending client
did not receive the server’s answer, we set the contributive identifiers of stages 1 and 2
such that 𝑐𝑖𝑑𝑟𝑜𝑙𝑒 reflects the messages that a session in role 𝑟𝑜𝑙𝑒 must have honestly
received for testing to be allowed. Namely, we let clients (resp. servers) upon sending
(resp. receiving) the messages (CH, CKS) set

𝑐𝑖𝑑responder[1] = (“ℎ𝑡𝑘𝐶”, (CH, CKS)) and 𝑐𝑖𝑑responder[2] = (“ℎ𝑡𝑘𝑆”, (CH, CKS)) .

Further, when the client receives (resp. the server sends) the message (SH, SKS), they set

𝑐𝑖𝑑 initiator[1] = 𝑠𝑖𝑑[1] and 𝑐𝑖𝑑 initiator[2] = 𝑠𝑖𝑑[2].

For all other stages 𝑠 ∈ {3, 4, 5, 6}, 𝑐𝑖𝑑 initiator[𝑠] = 𝑐𝑖𝑑responder[𝑠] = 𝑠𝑖𝑑[𝑠] is set upon accep-
tance of the respective stage (i.e., when 𝑠𝑖𝑑[𝑠] is set as well).

Authentication. Note that in the TLS 1.3 full handshake the server always authen-
ticates via a certificate and it allows for optional client authentication via a certificate.
The stage 1 and 2 keys ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆 are initially unauthenticated. Upon acceptance of
stage 3, they become unilaterally authenticated by verifying the server signature from
the ServerCertificateVerify message. If client authentication is desired, then ℎ𝑡𝑘𝐶
and ℎ𝑡𝑘𝑆 become mutually authenticated upon acceptance of stage 6 after the client sig-
nature from the ClientCertificateVerify successfully was verified. All other keys,

1 Components marked with ∗ are only present if the client authenticates.

139



9 tight security of the tls full handshake

i.e., 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , 𝑒𝑚𝑠, 𝑟𝑚𝑠, become unilaterally authenticated upon acceptance of their re-
spective stage, and in case of client authenticated being executed, they become mutually
authenticated upon acceptance of stage 6.
For explicit authentication, initiators receive explicit authentication always upon ac-

ceptance of stage 3 after successfully verifying the ServerFinished message. Even
though stages 𝑠 > 3 of initiators actually receive explicit authentication upon accep-
tance, they receive it because of acceptance of stage 3. Responders only receive explicit
authentication if client authentication is done, and therefore receive explicit authentica-
tion upon acceptance of stage 6 after after successfully verifying the ClientFinished
message. That is, EAUTH[initiator, 𝑠] = 3 for all stages and only if client authentication
is done then EAUTH[responder, 𝑠] = 6 for all stages.

Formally, we define the following set AUTH:

{((3, 𝑚, 3, 𝑚), (3, 𝑚, 3, 𝑚), (3, 𝑚, 3, 𝑚), (4, 𝑚, 3, 𝑚), (5, 𝑚, 3, 𝑚), (6, 𝑚, 3, 𝑚)) ∣ 𝑚 ∈ {6,∞}}

Forward secrecy. In the full (EC)DHE handshake protocol, all keys are forward secret
upon acceptance because of the ephemeral Diffie–Hellman key that basically is the root
of the key derivation. Therefore, it holds FS[𝑟 , 𝑠, 𝑙𝑣𝑙] = 1 for all 𝑟 ∈ {initiator, responder},
all stages 𝑠 ∈ [STAGES] and all 𝑙𝑣𝑙 ∈ {wfs2, fs}.

9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

We start this section by proving a tight security bound for the abstracted TLS 1.3 full
handshake. With this bound, we successively apply the results from Chapters 7 and 8 to
obtain a bound for the TLS 1.3 handshake protocol as specified in Figure 6.1.

9.3.1 Tight Security Bound for the Abstracted Full Handshake

In the first step, we prove the following theorem.

Theorem 9.1. Let TLS-DHE be the (abstracted) TLS 1.3 full (EC)DHE handshake protocol
as specified on the left-hand side of Figure 7.2 without handshake encryption (i.e., INT[𝑠] =
false for all stages 𝑠). Let G be a standardized group with prime-order 𝑝. Let Sig be a
standardized signature scheme. Let 𝜆 ∈ N be the output length in bits of 𝐇. Further, let
𝐇 and TKDF𝑥 for each 𝑥 ∈ {ℎ𝑡𝑘𝐶 , 𝑓 𝑖𝑛𝐶 , ℎ𝑡𝑘𝑆 , 𝑓 𝑖𝑛𝑆 , 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , 𝑒𝑚𝑠, 𝑟𝑚𝑠} be modeled as 9
independent random oracles ROTh,ROℎ𝑡𝑘𝐶 , … ,RO𝑟𝑚𝑠 . Then, for any adversary , we can
construct adversaries  and  such that

AdvpMSKE
TLS-DHE() ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 7𝑞Send)2

2𝜆
+AdvSDHG,𝑝 () + AdvMU-EUF-CMAcorr

Sig () +
𝑞Send
2𝜆

.

where 𝑞Send is the number of Send and 𝑞RO the (total) number of random oracle queries
issued by adversary , respectively.

140



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

Proof. To prove the bound, we make an incremental series of changes [Sho04] to the
public-key MSKE experiment ExppMSKE

TLS-DHE() defined in Figure 5.9. Let Game𝛿 denote the
event that  in Game 𝛿 wins the game.

game 0. The initial game Game 0 is the public-key MSKE game ExppMSKE
TLS-DHE(). Since

the hash function𝐇 and the functions TKDF𝑥 are modeled as a random oracle, we assume
that each of these random oracles RO𝑥 is implemented using a look-up table ROList𝑥 .2
By definition, we have Pr[Game0] ≔ Pr[ExppMSKE

TLS-DHE() = 1].

game 1. In Game 1, we make sure that collisions among the random nonces and
group elements computed by honest sessions are excluded. To that end, we introduce
two flags bad𝐶 and bad𝐶′ , and abort the game if either of the two is set. These flags are
set if the following conditions are satisfied:

• bad𝐶 is set when honest sessions choose the same nonce (i.e., 𝑟𝐶 or 𝑟𝑆 and group
element (i.e., 𝑋 or 𝑌 ) in their Hello message, and

• bad𝐶′ is set when an honest responder samples some nonce and group element
that have already been received by another session. This case reflects a collision
with a nonce and group element chosen by the adversary.

Then, it holds that

Pr[Game0] ≤ Pr[Game1] + Pr[bad𝐶] + Pr[bad𝐶′].

Let us analyze the probability that bad𝐶 and bad𝐶′ are set in Game 1. First, note that
in each Send query at most one session will choose a nonce 𝑟 $← {0, 1}256 and a group
element 𝐺 $← G. If bad𝐶 is set, then there is a Send query such that a session 𝜋 𝑖

𝑢 is
activated via Activate and this session samples (𝑟, 𝐺) which were previously sampled by
another session 𝜋 𝑖′

𝑢′ . Thus, the probability for bad𝐶 to be set is the probability that a
collision among the (up to) 𝑞Send pairs (𝑟, 𝐺) occurs. This is bounded from above by the
birthday bound, i.e.,

Pr[bad𝐶] ≤
𝑞2Send
2256 ⋅ 𝑝

where 𝑞Send denotes the number of queries issued to Send by .
Next, if bad𝐶′ is set, then there is a Send query that creates a new responder session 𝜋𝑗

𝑣 .
This session samples a nonce 𝑟𝑆 $← {0, 1}256 and a group element 𝑌 $← G, which were
already received by another session 𝜋 𝑖

𝑢. There are at most 𝑞Send many sessions, so there
are no more than 𝑞Send pairs received by sessions that could collide with (𝑟𝐶 , 𝑌 ). By the
union bound, we get that the probability that the nonce and group element sampled by
𝜋𝑗
𝑣 collide is bounded from above by 𝑞Send/(2256 ⋅ 𝑝). Overall, we get, again by the union

bound, that there is a collision for any 𝜋𝑗
𝑣 with probability

Pr[bad𝑂] ≤ 𝑞Send ⋅
𝑞Send
2256 ⋅ 𝑝

=
𝑞2Send
2256 ⋅ 𝑝

.

2 For convenience, we assume that each of these look-up tables is implemented using a data structure
that allows for constant time access when indexed either by inputs or outputs. An example for this data
structure would be a hash table.

141



9 tight security of the tls full handshake

Hence, we have that

Pr[Game0] ≤ Pr[Game1] +
2𝑞2Send
2256 ⋅ 𝑝

.

Predicate Sound cannot be violated. At this point, we argue that in Game 1 and all
subsequent games, adversary  cannot violate the Sound predicate without the game
being aborted. If any of the conditions of the Sound predicate (defined in Figure 5.6) is
satisfied, either of the flags introduced above will also be set and the game will be aborted.
Recall that Sound includes 7 events that cause it to output false. We argue that none of
these events can occur in Game 1 and thus Sound = true holds from Game 1 on.

1. There are two sessions partnered in some stage that do not hold the same key in that
stage.

First, recall that according to Definition 5.1, it holds that two sessions are partnered
in a stage if and only if they agree on the session identifier in that stage. For stage 1,
we have that 𝑠𝑖𝑑[1] uniquely defines the ephemeral DH key 𝑍 as 𝑠𝑖𝑑[1] contains
the key shares of the client and server in the CKS and SKS messages, respectively.
Further, 𝑍 and the messages contained in 𝑠𝑖𝑑[1], i.e., CH ‖ ⋯ ‖ SKS, uniquely define
the stage-1 key ℎ𝑡𝑘𝐶 . That is, for stage 1 agreeing on 𝑠𝑖𝑑[1] implies agreement of
the key. For the remaining stages, first observe that 𝑠𝑖𝑑[2] only distinguishes from
𝑠𝑖𝑑[1] by unique label and the messages contained are identical. The messages
contained in 𝑠𝑖𝑑[1] (resp. 𝑠𝑖𝑑[2]) always are a prefix of the messages contained in
𝑠𝑖𝑑[𝑠] for 𝑠 ∈ {3, 4, 5, 6}. This implies that all session identifiers contain Client
KeyShare and ServerKeyShare, and thus uniquely define 𝑍 . Now, observe that
the stage 𝑠 key is always defined by the session identifier 𝑠𝑖𝑑[𝑠] = (𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑐𝑡𝑥𝑡) as
TKDF𝑙𝑎𝑏𝑒𝑙𝑠 (0, 𝑍, 𝐇(𝑐𝑡𝑥𝑡)). Since all session identifiers uniquely define𝑍 as discussed
before, the session identifier for any stage uniquely defines the respective stage
key implying that agreement on a session identifier implies agreement on the
respective stage key.

2. There are two sessions partnered (in a non-replayable stage), which have the same
role.

In the full handshake, none onf the stages are replayable. Therefore, we need to
consider all stages. All session identifiers contain the messages CH, CKS, SH, and
SKS by defintion. In these four messages there are two pairs of nonce and group
element included. One contributed by the client in (CH, CKS) and one contributed
by the server in (SH, SKS). Given that there are two honest sessions that share the
same 𝑠𝑖𝑑 and the same role, they would need to agree on (CH, CKS, SH, SKS) and
they would need to share the same nonce and group element. However, this would
cause flag bad𝐶 to be set as this would be a collision among two honest sessions.
We excluded this to occur in Game 1.

3. There are session partnered in a stage that aim for a different authentication level in
that stage.

142



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

Note that the authentication level is unambiguously determined by presence/ab-
sence of the context-dependent messages. Stages 1 and 2 are initially always
unauthenticated and become always unilaterally authenticated with the accep-
tance of stage 3. This is indicated by the messages SCRT and SCV appearing in
the 𝑠𝑖𝑑 from stage 3 on. In fact, all other stages become unilaterally authenticated
upon acceptance. The only difference for the authentication type is whether client
authentication is performed and mutual authentication is achieved. Mutual au-
thentication always is achieved in stage 6 for all stages (if at all). Here, the presence
of the messages CR, CCRT, and CCV clearly indicates that the client authenticated.
Hence, the 𝑠𝑖𝑑 unambiguously reflects the authentication level and agreement on
the 𝑠𝑖𝑑 (i.e., partnering) implies agreement on the authentication level.

4. There are sessions partnered in a stage that are not contributively partnered in that
stage.

This event can never occur, since our definition of contributive identifiers (cf. Sec-
tion 9.2) and session identifiers for any stage defines both equal as soon as the
session identifier is set.

5. There are partnered session that disagree on the identity of their peer.

Note that we only consider honest sessions in the context of the Sound predicate.
Honest session always only send certificates that contain their owners identity.
Responders always send the server certificate SCRT as all stages are unilaterally
authenticated upon acceptance of stage 3 (perhaps retroactively). Intiators only
send the client certificate CCRT if the server desires client authentication, and
mutual authentication is then achieved for all stages (perhaps retroactively) upon
acceptance of stage 6. The respective peer learns (and sets) the identity according
to the content of the Certificate message. That is, if a client and server aim for
unilateral authentication agreement on the stage-3 session identifier 𝑠𝑖𝑑[3] implies
the client will set the server identity as its peer identity. Similarly, if they aim for
mutual authentication agreement on the stage-6 session identifier 𝑠𝑖𝑑[6] implies
mutual agreement on the peer. Note that 𝑠𝑖𝑑[6] contains both SCRT and CCRT
containing both identities.

6. There are two stages with the same session identifier.

This event cannot occur as by definition of the session identifiers each identifier
is prefixed by a unique label defining the key they define.

7. In a non-replayable stage, there are three sessions sharing the same session identifier
for that stage.

Recall that each session identifier held by an honest session contains its pair of
nonce and DH key share. For a threefold collision, there have to exist two honest
sessions that sample the same pair of nonce and DH key share. This would cause
flag bad𝐶 to be set in Game 1 and the game would be aborted. Hence, this cannot
occur in Game 1.

143



9 tight security of the tls full handshake

game 2. In Game 2, we set a flag bad𝐻 if there are two distinct queries to random
oracle ROTh that result in the same output. If flag bad𝐻 is set, we abort the game. This
change ensures that each transcript has a unique hash. To implement this, we introduce
a look-up table CollListTh in random oracle ROTh. Whenever ROTh computes a hash 𝑑 for
some input 𝑠, we log CollListTh[𝑑] ≔ 𝑠. Therefore, ROTh can check whenever it computes
a hash 𝑑 on some input 𝑠′ whether CollListTh[𝑑] = 𝑠 ≠ ⊥ is already set. If it is already set,
then we have found a collision. Namely, if 𝑠′ would have been queried before, 𝑑 would
not have been computed, but just answered consistent with the previous query 𝑠′. Thus,
we have 𝑠 ≠ 𝑠′ such that ROTh(𝑠) = ROTh(𝑠′) = 𝑑.

There are at most 𝑞RO queries to ROTh issued by the adversary and in every protocol
execution there are up to 7 distinct transcript hashes computed. That is, in total there
are at most 𝑞RO + 7𝑞Send queries issued to ROTh. By the birthday bound, we get that
the probability that a collision occurs among the 𝑞RO + 7𝑞Send uniform and independent
samples from {0, 1}𝜆 is bounded from above as

Pr[bad𝐻 ] ≤
(𝑞RO + 7𝑞Send)2

2𝜆
.

Then, it holds that

Pr[Game1] ≤ Pr[Game2] + Pr[bad𝐻 ] ≤ Pr[Game2] +
(𝑞RO + 7𝑞Send)2

2𝜆

Changing the way partners compute their session keys, and Finished tags. In
the next games, we make a series of changes such that in partnered session the keys and
tags are only computed once and the partner computing these values later just copies the
respective values. Since in Game 2, Sound is always true, we can use here that all sessions
that are partnered (resp. agree on the 𝑠𝑖𝑑 for a certain stage) will derive the same key in
that stage. Thus, copying the value from the partner is consistent. This approach follows
the tight key exchange security proof by technique by Cohn-Gordon et al. [Coh+19],
which was, e.g., also adapted by Davis and Günther [DG21a] in their tighter proof for
SIGMA and TLS 1.3. This allows us to ensure consistency between partners more easily
in later games.

game 3. In Game 3, we let honest sessions log the keys and tags they computed. In
addition, we let honest initiator sessions log their first messages, so that a responder
can use this to check whether the received Hello message has an honest origin. To this
end, we introduce a set CHs to log the CH messages output by honest sessions, a look-up
table SKEYS to log the session keys computed by honest session under their respective
session identifier, and a look-up table TAGS to log the Finished tags computed by honest
sessions under the respetive context. In the following, we define how these tables are
filled, and finally argue that this is not detectable for the adversary.

Log honest ClientHello messages. First, we log for all honest initiator sessions the
messages CH ‖CKS in the set CHs before returning it to the adversary. Note that all values
logged in CHs will only be logged once, because otherwise there would be two honest

144



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

initiator session outputting the same Hello message. Due to Game 1, this cannot occur
as two identical Hello messages, in particular, share the same nonce and group element.

Log session keys computed by honest sessions. Second, recall that initiator sessions com-
pute the 𝑟𝑚𝑠 before their partner and responder sessions compute ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆 , 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 ,
and 𝑒𝑚𝑠 before their partner.3 Therefore, we let honest initiator sessions 𝜋 𝑖

𝑢 create a new
entry in SKEYS upon acceptance of stage 8 (𝑟𝑚𝑠), i.e., SKEYS[𝜋 𝑖

𝑢.𝑠𝑖𝑑[8]] ≔ 𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[8].

Honest responder sessions 𝜋𝑗
𝑣 create a new entry in SKEYS when accepting in stages 1

through 5, i.e.,
SKEYS[𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠]] ≔ 𝜋𝑗
𝑣 .𝑠𝑘𝑒𝑦[𝑠]

for 𝑠 ∈ {1, … , 5}. Note that no two sessions will ever log keys in the table SKEYS under
the same session identifier 𝑠𝑖𝑑. Since Sound cannot be violated in Game 3 anymore, we
know that in any (non-replayable, i.e., all) stage 𝑠 only one initiator and one responder
will share the same 𝑠𝑖𝑑[𝑠]. Thus, if two sessions share a 𝑠𝑖𝑑 one of them will only log the
key.

Log Finished tags computed by honest sessions. Third, recall that the ServerFinished
and ClientFinished messages, as their names already suggest, are computed first by
the server (responder) and the client (initiator), respectively. Therefore, we log whenever
an honest session computes its finished message and to this end queries RO𝑥 with 𝑥 ∈
{𝑓 𝑖𝑛𝐶 , 𝑓 𝑖𝑛𝑆}, the following value

TAGS[𝑥, 𝑍, 𝑑1, 𝑑2] ≔ RO𝑥(0, 𝑍, 𝑑1, 𝑑2)

where (0, 𝑍, 𝑑1, 𝑑2) constitutes the query issued by an honest session to compute its
finishedmessage. Note that we perform this logging in the session and not in the random
oracle. Therefore, TAGS only contains tags computed by honest sessions. As Finished
tags do not have a session identifier that they are defined over, we need to log the hashes
used to compute them. Note that for all transcripts, these are unique due to Game 2.

In this game, we only introduce bookkeeping. Thus, from the view of the adversary
nothing changes. That is,

Pr[Game2] = Pr[Game3].

game 4. In Game 4, we change the way sessions compute their keys and Finished
tags. Namely, if a session has an honest partner in stage 𝑠 it copies the stage 𝑠 key that
was already computed by its partner before instead of computing it itself. This can be
done using the table SKEYS introduced in Game 3. Note that only honest session log
their keys there, so if the session identifier of a session matches an entry in the look-up
table, it knows that it is honestly partnered.

3We remark here that in our abstraction without handshake encryption, we have no internal keys. There-
fore, servers always compute the listed keys before their partner client. When ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆 were
internal as in the unabstracted version of the TLS 1.3 handshake, there could be situations in which the
a server session is “on pause” waiting to be tested and a client then might compute these keys before
the server.

145



9 tight security of the tls full handshake

Honest server sessions. An honest server session 𝜋𝑗
𝑣 only copies (if any) the stage-6 key

(𝑟𝑚𝑠). That is, upon receiving CF the session 𝜋𝑗
𝑣 additionally checks before it computes

𝑟𝑚𝑠 itself whether there is an entry in SKEYS indexed by 𝜋𝑗
𝑣 .𝑠𝑖𝑑[6]. If so, it sets 𝑟𝑚𝑠 to

that value, and otherwise, proceeds as in Game 3.

Honest client sessions. An honest initiator session 𝜋 𝑖
𝑢 potentially copies all keys except

the last, 𝑟𝑚𝑠. To this end, upon receiving (SH, SKS) it sets the session identifier for stages 1
(ℎ𝑡𝑘𝐶) and 2 (ℎ𝑡𝑘𝑆), and then looks for entries for 𝜋 𝑖

𝑢.𝑠𝑖𝑑[1] and 𝜋 𝑖
𝑢.𝑠𝑖𝑑[2] in SKEYS. In

case, these values are set it copies the entry logged under 𝜋 𝑖
𝑢.𝑠𝑖𝑑[1] as its ℎ𝑡𝑘𝐶 and the

entry logged under 𝜋 𝑖
𝑢.𝑠𝑖𝑑[2] as its ℎ𝑡𝑘𝑆 . If there are no consistent entries, it continues as

in Game 3. Upon receiving (EE, CR∗, SCRT, SF), it sets the session identifier for stages 3–5.
Then, it checks whether there are entries indexed with the respective session identifiers.
If so, it copies its stage-𝑠 key from SKEYS[𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠]]. Otherwise, it just continues as in
Game 3.

Computation of MAC tags. All honest session (i.e., both client and server) which would
query RO𝑥 to compute a MAC (either for its Finished message or to verify one), first
check the table TAGS whether there is a consistent entry for them. If so, they copy
instead of making the query themselves.

It remains to argue that copying the keys from a partnered session is consistent with
computing the keys as in Game 3. First, recall that Sound is always true in Game 4. That
is, all sessions partnered in a stage 𝑠, i.e., sharing the same 𝑠𝑖𝑑[𝑠], agree on their stage-𝑠
key 𝑠𝑘𝑒𝑦[𝑠]. Thus, it does not matter whether a session copies the key from its partner
or computes it itself, the value of the key remains equal. Note that in Game 4 tampering
is still possible. In particular, the adversary could tamper with the signatures or the
Finished messages. Therefore, if, for example, an initiator copies their stage-1 and 2
keys because it is partnered in these stages (i.e., there is a consistent entry in SKEYS) this
does not necessarily mean it copies its remaining keys. But in these cases, the session
just act like in Game 3.
For Finished tags, we have that TAGS only caches responses to the random oracle

queries that would be necessary to compute the respective tag values anyway. That is,
if a session copies the value from TAGS instead of making the query itself, the concrete
value would not change. This is because an entry in TAGS consistent with the inputs
the session would hand to the random oracle implies that the corresponding random
oracle query has already been made. Therefore, the random oracle would only answer
consistently with the previous query anyway.
Hence, the view of the adversary is identical in Game 4 compared to Game 3 and it

holds that
Pr[Game3] = Pr[Game4].

game 5. In Game 5, we move the random sampling of the session keys and tag values
computed by honest sessions from the random oracles into the sessions. To ensure
consistency, we program the random oracles retroactively if later random oracle queries
are issued. To this end, we change the implementation as follows.

146



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

Random oracles. We introduce a new look-up table ProgList to keep track of values that
might need later programming. To this end, we introduce a list ProgList𝑥 for each random
oracle RO𝑥 . Additionally, we change the implementation of the random oracles RO𝑥 . For
any query, we check in RO𝑥 if there already exists an entry indexed by that query in
ProgList𝑥 . If so, we copy it in the random oracle table ROList𝑥 indexed by the query and
then proceed in RO𝑥 as in Game 4. This ensures consistency between the keys sampled
at random (as described below) and the random oracles.

Honest server sessions. All honest server sessions sample the keys ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆 , 𝑎𝑡𝑠𝐶 ,
𝑎𝑡𝑠𝑆 , and 𝑒𝑚𝑠 uniformly at random from the respective range instead of querying the
corresponding oracle. This is under the condition that the value of these keys has not
been fixed by queries to the corresponding random oracle with appropriate input before.
If a later random oracle query occurs it sets the random oracle table ROList𝑥 of the
corresponding oracle RO𝑥 to the previously sampled value. Let us demonstrate how
this is concretely implemented for ℎ𝑡𝑘𝐶 ; for the other keys this is analogous. If a server
session in Game 4 would query ROℎ𝑡𝑘𝐶 (0, 𝑍, 𝐻3) to compute ℎ𝑡𝑘𝐶 , we first check whether
the value is already fixed by checking ROListℎ𝑡𝑘𝐶 [0, 𝑍, 𝐻3] ≠ ⊥. If the random oracle
value is already fixed, we continue as in Game 4. Otherwise, we sample the value of ℎ𝑡𝑘𝐶
uniformly at random from {0, 1}𝜆 and log ProgListℎ𝑡𝑘𝐶 [0, 𝑍, 𝐻3] ≔ ℎ𝑡𝑘𝐶 for possible later
reprogramming of RO𝑥 as described above. Then, it continues as in Game 4 and logs the
“computed” key so that a partnered initiator could copy it. The computation of ℎ𝑡𝑘𝑆 , 𝑎𝑡𝑠𝐶 ,
𝑎𝑡𝑠𝑆 , and 𝑒𝑚𝑠 follows analogously.
Moreover, honest server sessions that do not copy 𝑟𝑚𝑠 from SKEYS do the same as

described above for 𝑟𝑚𝑠. With respect to the Finished tags, honest server sessions
compute their own ServerFinished message analogously to the the session keys, and
in particular, keep consistency by checking ROList and maintaining ProgList. To verify
ClientFinished it first checks TAGS as in Game 4 and if a value is set, it proceeds as
before. However, if there is no value set, the server samples the Finished value 𝑓 𝑖𝑛𝐶 for
verification at random (unless there is a suitable query in RO𝑓 𝑖𝑛𝐶 ensuring consistency
as before).

Honest client sessions. Honest client sessions that did not copy ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆 , 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 ,
and 𝑒𝑚𝑠 do the same as described for the server session. Moreover, all honest client
sessions compute their resumption master secret 𝑟𝑚𝑠 in the same way. The Finished
tags are handled analogously to server sessions.

We claim that these changes are unobservable for the adversary. As already men-
tioned above the essence of this change is that we move the lazy sampling from the
random oracles into the sessions if the values were not already fixed by the random ora-
cles. As we later program the random oracles when a suitable query arrives consistency
between all values is guaranteed. Therefore, partnered sessions still copy the keys from
their partner and all other sessions choose random keys consistent with the respective
random oracle. Thus, the distribution of keys did not alter from Game 4 to Game 5 and
it holds

Pr[Game4] = Pr[Game5].

147



9 tight security of the tls full handshake

game 6. In Game 6, we stop maintaining the consistency between the keys and tag
values computed and their corresponding random oracles in sessions honestly partnered
in the first two stages. In particular, we change the implementation of honest server
sessions that receive a ClientHello message that is contained in CHs, i.e., it originates
from an honest client. These sessions only sample the keys ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆 , 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , and 𝑒𝑚𝑠
uniformly at random without checking the random oracle table or maintaining ProgList.
The same holds if this session does not copy 𝑟𝑚𝑠. This also applies to honest clients that
are partnered in stages 1 and 2 (i.e., they received an honest ServerHello message), but
do not copy the stage-3, -4, or -5 key. These clients sample 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , and 𝑒𝑚𝑠 uniformly
at random without checking the random oracle table or maintaining ProgList. Moreover,
they sample 𝑟𝑚𝑠 inconsistently. The Finished tags are also derived inconsistently with
the random oracles in these sessions. Here, honest server sessions that receive an honest
CH sample their tag 𝑓 𝑖𝑛𝑆 uniformly at random without checking the random oracle or
maintaining ProgList. If these sessions receive a CF message, and there is no consistent
entry for verification in TAGS, then it samples this value at random similar to 𝑓 𝑖𝑛𝑆 .
Honest clients receiving an honest SH message, proceed similarly for their 𝑓 𝑖𝑛𝐶 value
and to verify SF. With these changes, we have that sessions partnered honestly in the
first two stages will have derived keys inconsistently with the respective random oracles.
Now, note that partnering in the first two stages implies agreement on the CH and SH
messages. Agreement on these messages implies that these session derive the same
ephemeral Diffie–Hellman key 𝑍 .
An adversary can only detect these inconsistencies if it is able to issue a query that

would have been used to derive one of the inconsistent keys. Note that we make sure that
the adversary could not have tampered with the messages CH and SH without detection
using our bookkeeping. Therefore, we are certain that the adversary does not know the
secret exponents 𝑥 and 𝑦 (i.e., the DLOGs of the client and server key share, respectively).
That is, the adversary can only issue such a query if it would be able to compute 𝑔𝑥𝑦 by
only observing 𝑋 = 𝑔𝑥 (contained in CKS) and 𝑌 = 𝑔𝑦 (contained in SKS). Intuitively, if
the adversary could do this, we could use it to solve the CDH problem (Definition 3.3).

Formally, we set a flag badDHE if at any point in the game the adversary queries one
of the following random oracle queries:

1. For any (𝑠, 𝑥) ∈ {(1, ℎ𝑡𝑘𝐶), (2, ℎ𝑡𝑘𝑆), (3, 𝑎𝑡𝑠𝐶), (4, 𝑎𝑡𝑠𝑆), (5, 𝑒𝑚𝑠)}, there is a query

RO𝑥(0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[𝑠]))

and there exists an honest server session 𝜋𝑗
𝑣 such that

• 𝜋𝑗
𝑣 holds session identifier 𝑠𝑖𝑑[𝑠] = (“𝑥”, 𝑐𝑡𝑥𝑡[𝑠]) in stage 𝑠,

• 𝜋𝑗
𝑣 received a ClientHello message with CH ‖ CKS ∈ CHs (i.e., it originated

from an honest client), and
• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 .

2. There is a query
RO𝑟𝑚𝑠(0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[6]))

and there exists an honest server session 𝜋𝑗
𝑣 such that

148



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

• 𝜋𝑗
𝑣 holds session identifier 𝑠𝑖𝑑[6] = (“𝑟𝑚𝑠”, 𝑐𝑡𝑥𝑡[6]) in stage 𝑠,

• 𝜋𝑗
𝑣 received a ClientHello message with CH ‖ CKS ∈ CHs (i.e., it originated

from an honest client), but there is no honest client session that shares 𝑠𝑖𝑑[6],
i.e., 𝜋𝑗

𝑣 did not copy from SKEYS, and

• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 .

3. There is a query
RO𝑟𝑚𝑠(0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[6]))

and there exists an honest client session 𝜋 𝑖
𝑢 such that

• 𝜋 𝑖
𝑢 holds session identifier 𝑠𝑖𝑑[6] = (“𝑟𝑚𝑠”, 𝑐𝑡𝑥𝑡[6]) in stage 𝑠,

• 𝜋 𝑖
𝑢 received a ServerHello message such that there is an entry for 𝜋 𝑖

𝑢.𝑠𝑖𝑑[1]
in SKEYS, and

• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 .

4. For any (𝑠, 𝑥) ∈ {(1, ℎ𝑡𝑘𝐶), (2, ℎ𝑡𝑘𝑆), (3, 𝑎𝑡𝑠𝐶), (4, 𝑎𝑡𝑠𝑆), (5, 𝑒𝑚𝑠)}, there is a query

RO𝑥(0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[𝑠]))

and there exists an honest client session 𝜋 𝑖
𝑢 such that

• 𝜋 𝑖
𝑢 holds session identifier 𝑠𝑖𝑑[𝑠] = (“𝑥”, 𝑐𝑡𝑥𝑡[𝑠]) in stage 𝑠,

• 𝜋 𝑖
𝑢 received a ServerHello message such that there is an entry for 𝜋 𝑖

𝑢.𝑠𝑖𝑑[1]
in SKEYS, but there is no honest client session that shares 𝑠𝑖𝑑[𝑠], i.e., 𝜋 𝑖

𝑢 did
not copy 𝑥 from SKEYS, and

• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 .

5. There is a query

RO𝑓 𝑖𝑛𝑆 (0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[1]),ROTh(CH ‖ ⋯ ‖ SCV))

and there exists an honest server session 𝜋𝑗
𝑣 such that

• 𝜋𝑗
𝑣 holds session identifier 𝑠𝑖𝑑[1] = (“ℎ𝑡𝑘𝐶”, 𝑐𝑡𝑥𝑡[1]) in stage 1 and computed

messages the message EE, CR, SCRT, and SCV,

• 𝜋𝑗
𝑣 received a ClientHello message with CH ‖ CKS ∈ CHs (i.e., it originated

from an honest client), and

• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 ,

6. There is a query

RO𝑓 𝑖𝑛𝐶 (0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[1]),ROTh(CH ‖ ⋯ ‖ CCV∗))

and there exists an honest server session 𝜋𝑗
𝑣 such that

• 𝜋𝑗
𝑣 holds session identifier 𝑠𝑖𝑑[1] = (“ℎ𝑡𝑘𝐶”, 𝑐𝑡𝑥𝑡[1]) in stage 1, computed the

message EE, CR∗, SCRT, and SCV,

149



9 tight security of the tls full handshake

• 𝜋𝑗
𝑣 received a ClientHello message with CH ‖ CKS ∈ CHs (i.e., it originated

from an honest client), and received CCRT∗ and CCV∗ not (if at all) output by
this honest client, and

• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 ,

7. There is a query

RO𝑓 𝑖𝑛𝑆 (0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[1]),ROTh(CH ‖ ⋯ ‖ SCV))

and there is an honest client session 𝜋 𝑖
𝑢 such that

• 𝜋 𝑖
𝑢 holds session identifier 𝑠𝑖𝑑[1] = (“ℎ𝑡𝑘𝐶”, 𝑐𝑡𝑥𝑡[1]) in stage 1,

• 𝜋 𝑖
𝑢 received a ServerHello message such that there is an entry for 𝜋 𝑖

𝑢.𝑠𝑖𝑑[1]
in SKEYS, i.e., there is an honest partner server, and it received (EE, CR∗,
SCRT, SCV) not output by this honest server session, and

• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 .

8. There is a query

RO𝑓 𝑖𝑛𝐶 (0, 𝑍,ROTh(𝑐𝑡𝑥𝑡[1]),ROTh(CH ‖ ⋯ ‖ CCV∗))

and there is an honest client session 𝜋 𝑖
𝑢 such that

• 𝜋 𝑖
𝑢 holds session identifier 𝑠𝑖𝑑[1] = (“ℎ𝑡𝑘𝐶”, 𝑐𝑡𝑥𝑡[1]) in stage 1, it received the

message EE, CR∗, SCRT, SCV, and SF, and computed CCRT∗, CCV∗,

• 𝜋 𝑖
𝑢 received a ServerHello message such that there is an entry for 𝜋 𝑖

𝑢.𝑠𝑖𝑑[1]
in SKEYS, and

• 𝑍 = 𝑔𝑥𝑦 with CKS = 𝑔𝑥 and SKS = 𝑔𝑦 .

Each of these queries could disclose an inconsistency introduced by the changes of
Game 6. We bound the probability of flag badDHE being set with a reduction  to
the strong Diffie–Hellman problem (Definition 3.5) in group G. Reduction  simu-
lates Game 6 for adversary , and it wins whenever the simulated game would set
the flag badDHE. Consider the following construction of reduction .

Construction of reduction . Reduction  gets as input a SDH challenge (𝐴 =
𝑔𝑎, 𝐵 = 𝑔𝑏) as well as access to the DDH oracle DDH𝑎(⋅, ⋅) = DDH(𝑔𝑎, ⋅, ⋅) with the first
argument fixed. It simulates the oracles RevLongTermKey, RevSessionKey and Test as in
Game 6, managing all the game variables itself. The Send oracle, i.e., the execution of the
sessions, and the random oracles are handled differently. Let us first describe the idea on
a high level and then elaborate on the details. When adversary issues a Send queries
the messages are delivered in the same way as in Game 6. However, the sessions handle
them differently. On a high level, adversary  embeds a rerandomization of its SDH
challenge in every client and in every server that receive an honest Hello message. Note
that it does not know 𝑎 or 𝑏, so it is not able to compute the DH key for these sessions.
If badDHE is set, then  learns the DH key corresponding to some of the embedded

150



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

rerandomizations. From this it can then extract the solution for the SDH challenge by
basic algebra.

Next, we describe the additional look-up tables used by and then describe how client
and server sessions are implemented in detail.

• The look-up table KSRnd is maintained by all (honest) sessions. It holds the random
exponent 𝜏 used by an honest session to randomize their key share 𝐺 indexed by
its nonce and key share (𝑟, 𝐺). Note that due to Game 1 every nonce and group
element pair is unique for a session and therefore we can use it to uniquely identify
the session using 𝜏.

• Each random oracle RO𝑥 maintains a look-up table DHEList𝑥 . It holds for each
query RO𝑥(0, 𝑍, 𝑑), the value of 𝑍 indexed by 𝑑.

• For each random oracle RO𝑥 , we maintain a look-up table RndList𝑥 . It maps a
transcript hash 𝑑 to a tuple of client key share randomizer 𝜏𝑖𝑢, server key share
randomizer 𝜏𝑗𝑣 , context 𝑐𝑡𝑥𝑡 (i.e., a transcript such that 𝑑 = ROTh(𝑐𝑡𝑥𝑡)), and poten-
tially a key 𝑘𝑒𝑦. This look-up table serves multiple purposes for random oracle
RO𝑥 . First, it can be used to check in RO𝑥 upon an incoming query (0, 𝑍, 𝑑)whether
this query sets badDHE. Second, it can be the case that honest client sessions re-
ceive a tampered SH message, but already committed to not knowing the DLOG
of their share. In this case, we need to be able to (1) recognize a query (0, 𝑍, 𝑑)
that requires consistency and (2) program the response so that RO𝑥 and key of the
client are consistent. Also, sometimes we have the case that 𝜏𝑗𝑣 = ⊥ when there
is no honest server partnered to the client, or 𝑘𝑒𝑦 = ⊥ if we are certain that there
never has to be a reprogramming of that value, e.g., if the corresponding sessions
are honestly partnered in stage 1.

Implementation of honest server sessions. Consider any server session 𝜋𝑗
𝑣 .  implements

this session as follows.

1. Upon receiving (CH, CKS), the reduction first checks whether these messages have
an honest origin by checking CH ‖ CKS ∈ CHs. If not, it will simulate 𝜋𝑗

𝑣 just as
in Game 6. In particular, this means it will not embed a challenge value (in SKS)
and maintains consistency with the random oracles. For the rest of this discussion
for server sessions, we assume that the origin, i.e., client session 𝜋 𝑖

𝑢, of the Hello
message is honest.

If there is an honest partner client, the session 𝜋𝑗
𝑣 generates its key share by ran-

domizing the challenge DH value 𝐵. All the remaining values are chosen as in
Game 6. To choose the key share, it chooses a randomizer 𝜏𝑗𝑣

$← Z𝑝 uniformly at
random, sets 𝑌 ≔ 𝐵 ⋅ 𝑔𝜏

𝑗
𝑣 , and logs KSRnd[𝑟𝑆 , 𝑌 ] ≔ 𝜏𝑗𝑣 .

2. Before it outputs (SH, SKS), it computes the keys ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆 . Now, we cannot
compute the DHE key 𝑍 because we embedded rerandomizations of the group
elements 𝐵 and𝐴 in this server session and, skipping slightly ahead, in the (honest)
client session that output the CH session 𝜋𝑗

𝑣 received, respectively. We distinguish

151



9 tight security of the tls full handshake

two cases whether there already was a query for 𝜋𝑗
𝑣 that triggers badDHE or not

(yet), we present the procedure for ℎ𝑡𝑘𝐶 and for ℎ𝑡𝑘𝑆 it is analogous. To this end,
we first check whether event badDHE is triggered for 𝜋𝑗

𝑣 and a previous query to
ROℎ𝑡𝑘𝐶 . If so,  can already solve its SDH challenge. If not, there are currently no
inconsistencies observable for the adversary  and we choose the key uniformly
at random. Additionally, we store the current context for later to check in the
random oracle ROℎ𝑡𝑘𝐶 whether a later query causes the flag badDHE to be set. For
this method, we utilize the look-up tables DHEListℎ𝑡𝑘𝐶 and RndListℎ𝑡𝑘𝐶 as follows.
First,  computes the transcript hash for ℎ𝑡𝑘𝐶 , i.e., 𝑑 = ROTh(CH ‖ ⋯ ‖ SH). Then, it
checks whether DHEListℎ𝑡𝑘𝐶 [𝑑] ≠ ∅. If so, i.e., there was a query to ROℎ𝑡𝑘𝐶 (0, ⋅, 𝑑),
the reduction  fetches the key share randomizer 𝜏𝑖𝑢 = KSRnd[𝑟𝐶 , 𝑋], where 𝑟𝐶
and 𝑋 are the nonce and key share of its honest partner client, and queries

DDH𝑎(𝑌 , 𝑍 ⋅ 𝑌 −𝜏
𝑖
𝑢)

for all 𝑍 ∈ DHEListℎ𝑡𝑘𝐶 and for 𝑌 being the key share of server 𝜋𝑗
𝑣 . If any of these

queries is answered positively, then there was a query that triggered badDHE (query
Type 1 according to the above list). That is, there is a 𝑍∗ ∈ DHEListℎ𝑡𝑘𝐶 [𝑑] with
𝑍∗ ⋅ 𝑌 𝜏𝑖𝑢 = 𝑌 𝑎, where 𝑎 is the DLOG (wrt. to generator 𝑔) of the challenge value 𝐴.
This then implies that 𝑍∗ = 𝑌 𝑎+𝜏𝑖𝑢 = 𝑋 𝑏+𝜏𝑗𝑣 , where 𝑎 and 𝑏 are the DLOGs of the
SDH challenges 𝐴 and 𝐵, respectively, and 𝑌 = 𝐵 ⋅ 𝑔𝜏

𝑗
𝑣 and 𝑋 = 𝐴 ⋅ 𝑔𝜏

𝑗
𝑣 are the key

shares of server session 𝜋𝑗
𝑣 and client session 𝜋 𝑖

𝑢, respectively. This would exactly
be the DHE key computed by 𝜋𝑗

𝑣 . We skip slightly ahead here, but we embed a
rerandomization of 𝐴 in every honest client session. The reduction then submits
the following solution to SDH to its game:

𝑍∗ ⋅ 𝑌 𝜏
𝑖
𝑢 ⋅ 𝐴−𝜏𝑗𝑣 = 𝑌 𝑎 ⋅ 𝐴−𝜏𝑗𝑣 = (𝑔𝑎)𝑏+𝜏

𝑗
𝑣 ⋅ (𝑔𝑎)−𝜏

𝑗
𝑣 = 𝑔𝑎𝑏.

Note that here setting of badDHE implies solving the SDH problem.
If none of the entries in DHEListℎ𝑡𝑘𝐶 [𝑑] is answered positively or DHEListℎ𝑡𝑘𝐶 [𝑑] is
empty, there has not been a query triggering badDHE (so far). Hence, we sample
ℎ𝑡𝑘𝐶 uniformly at random and log ℎ𝑡𝑘𝐶 under 𝜋𝑗

𝑣 .𝑠𝑖𝑑[1] in SKEYS. Further, we need
to prepare that the random oracle ROℎ𝑡𝑘𝐶 can check upon later queries whether
badDHE is set for this query by logging:

RndListℎ𝑡𝑘𝐶 [𝑑] ≔ (𝜏𝑖𝑢, 𝜏
𝑗
𝑣 , (CH, CKS, SH, SKS), ⊥).

Note that we do not need to store the key here, as server 𝜋𝑗
𝑣 is partnered with

an honest client in stage 1 and thus we never program ROℎ𝑡𝑘𝐶 . We only need to
observe the random oracle, whether  queries a tuple that could uncover this
inconsistency.
For ℎ𝑡𝑘𝑆 , 𝜋𝑗

𝑣 proceeds analogously.
3. Next, the server 𝜋𝑗

𝑣 computes the messages EE, CR, SCRT, and SCV as in Game 6.
Note that CertificateRequest is context dependent and is only sent if mutual
authentication is desired.

152



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

4. For computing the ServerFinished message, the reduction proceeds similarly
as described above for ℎ𝑡𝑘𝐶 , but the lists are indexed slightly differently as the
signature of the oracle RO𝑓 𝑖𝑛𝑆 is different. Namely, RO𝑓 𝑖𝑛𝑆 takes as input two
hashes 𝑑1 and 𝑑2. For the computation of the server finished tag 𝑓 𝑖𝑛𝑆 , these values
are defined as follows:

𝑑1 = ROTh(CH ‖ ⋯ ‖ SKS) and 𝑑2 = ROTh(CH ‖ ⋯ ‖ SCV).

For value 𝑓 𝑖𝑛𝑆 it proceeds as described above for ℎ𝑡𝑘𝐶 , but using lists DHEList𝑓 𝑖𝑛𝑆
and RndList𝑓 𝑖𝑛𝑆 indexed with (𝑑1, 𝑑2), and random oracle RO𝑓 𝑖𝑛𝑆 . Further, we store
the context in the list RndList𝑓 𝑖𝑛𝑆 as a tuple ((CH ‖ ⋯ ‖ SKS), (CH ‖ ⋯ ‖ SCV)). If
there is no (suitable) entry in DHEList𝑓 𝑖𝑛𝑆 , the value for 𝑓 𝑖𝑛𝑆 is chosen uniformly
at random and logged in TAGS instead of SKEYS. Note that TAGS requires the
DHE key, which we are not able to compute. Therefore, we log the following entry
instead:

TAGS[𝑓 𝑖𝑛𝑆 , (𝜏
𝑖
𝑢, 𝜏

𝑗
𝑣 , (CH, CKS, SH, SKS)), 𝑑1, 𝑑2] ≔ 𝑓 𝑖𝑛𝑆 .

5. Then, the server computes 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , and 𝑒𝑚𝑠. Here, it proceeds for each key
exactly as in Step 2, but uses a different random oracle (RO𝑎𝑡𝑠𝐶 , RO𝑎𝑡𝑠𝑆 , or RO𝑒𝑚𝑠)
and a different context 𝑑 = ROTh(CH ‖⋯‖SF). If badDHE is not triggered for a certain
stage key, the respective key is logged in SKEYS under the corresponding session
identifier.

The server then outputs (EE, CR∗, SCRT, SCV, SF).

6. Upon receiving (CCRT∗, CCV∗, CF), the server first checks (if client authentication
is performed, i.e., (CCRT∗, CCV∗) are present) the signature contained in CCV and
aborts if it is invalid for the announced public key CCRT. If not, it checks whether
there is an entry

TAGS[𝑓 𝑖𝑛𝐶 , (𝜏
𝑖
𝑢, 𝜏

𝑗
𝑣 , (CH, CKS, SH, SKS)), 𝑑1, 𝑑2]

with
𝑑1 = ROTh(CH ‖ ⋯ ‖ SKS) and 𝑑2 = ROTh(CH ‖ ⋯ ‖ CCV∗)

that is consistent with the messages it sent and received. If so, it compares this
value to the tag 𝑓 𝑖𝑛′𝐶 contained in CF and terminates if these values are different.
If there is no consistent entry in TAGS, 𝑓 𝑖𝑛′𝐶 was not computed by 𝜋𝑗

𝑣 ’s honest first
stage partner client 𝜋 𝑖

𝑢. (Note that we did not exclude signature orMAC forgeries in
this game so far.) Nevertheless, since 𝜋𝑗

𝑣 has an honest first stage partner, its DHE
key used to derive 𝑓 𝑖𝑛𝐶 is honestly established. Therefore, the server proceeds
for 𝑓 𝑖𝑛𝐶 analogously to the computation of 𝑓 𝑖𝑛𝑆 in Step 4, but does not log the
entry in TAGS if badDHE was not triggered by RO𝑓 𝑖𝑛𝐶 so far. It only samples 𝑓 𝑖𝑛𝐶
uniformly and without maintaining consistency. Now, it checks 𝑓 𝑖𝑛𝐶 against the
tag 𝑓 𝑖𝑛′𝐶 contained in CF. It they are different (which is quite likely), session 𝜋𝑗

𝑣
terminates. Otherwise, it proceeds to the last step.

153



9 tight security of the tls full handshake

7. Finally, 𝜋𝑗
𝑣 checks whether there is a consistent entry for 𝑟𝑚𝑠 in SKEYS and if so,

copies it and terminates. Otherwise, there has been tampering by the adversary,
but 𝜋𝑗

𝑣 had an honest first stage partner, so it computes 𝑟𝑚𝑠 exactly as ℎ𝑡𝑘𝐶 de-
scribed in Step 2, but with context CH ‖ ⋯ ‖ CCV∗ ‖ CF and without logging 𝑟𝑚𝑠 in
SKEYS. If badDHE was not triggered, it accepts 𝑟𝑚𝑠 and terminates.

Implementation of honest client sessions. Consider any client session 𝜋 𝑖
𝑢. Reduction 

implements this session as follows.

1.  proceeds exactly as in Game 6 until it chooses 𝜋 𝑖
𝑢’s key share. Instead of choosing

a fresh and random key share 𝑋 inG, it chooses 𝑋 as a rerandomization of 𝐴. That
is, it chooses 𝜏𝑖𝑢

$← Z𝑝 and sets 𝑋 ≔ 𝐴 ⋅ 𝑔𝜏𝑖𝑢 . Then it logs 𝜏𝑖𝑢 in KSRnd[𝑟𝐶 , 𝑋],
where 𝑟𝐶 is the nonce chosen by 𝜋 𝑖

𝑢. The rest is identical to Game 6 and it outputs
(CH, CKS).

2. Upon receiving (SH, SKS), it checks whether 𝜋 𝑖
𝑢 has an honest first stage partner,

by setting the stage-1 session identifier 𝑠𝑖𝑑[1] and checking whether

SKEYS[𝑠𝑖𝑑[1]] ≠ ⊥.

If so, there is an honest server that output the received Hellomessage and copies
ℎ𝑡𝑘𝐶 from SKEYS as well as ℎ𝑡𝑘𝑆 from SKEYS[𝑠𝑖𝑑[2]] after setting the stage-2 𝑠𝑖𝑑.

If not, the adversary did tamper with the received Hello message. Now, there
is the problem that in Step 1, reduction  already committed to not knowing the
DLOG of its key share by outputting a rerandomization of the challenge 𝐴. Thus,
it cannot compute the DHE key that is required to maintain consistency with
respective random oracles of the stage-1 and -2 keys. Note that in Game 6 we are
only inconsistent if sessions are partnered honestly in the first (two) stage(s). To
be consistent, we first need to check whether there already has been a random
oracle query that fixed ℎ𝑡𝑘𝐶 or ℎ𝑡𝑘𝑆 to ensure consistency. This can be done in
a similar way as we checked whether badDHE was set in the implementation of
honest server sessions above. We will elaborate on this below. If there has not
been such a query to either of the respective random oracles, we can sample the
key at random and store it in RndList𝑥 for later reprogramming and thus ensuring
consistency.

Concretely, we do the following for 𝑥 ∈ {ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆}. First, compute 𝑑 = ROTh(CH ‖
⋯ ‖ SKS) and then for all 𝑍 ∈ DHEList𝑥[𝑑], query

DDH𝑎(𝑌 , 𝑍 ⋅ 𝑌 −𝜏
𝑖
𝑢)

where 𝑌 is the dishonest key share contained in SKS. If there exists a value 𝑍∗ ∈
DHEList𝑥[𝑑] such that the above query returns 1, we set the key 𝑥 ≔ RO𝑥(0, 𝑍∗, 𝑑)
as this value is already defined. For further information, what the above DDH
query implies, see the implementation of honest server sessions above. If there is

154



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

no such 𝑍∗, we choose 𝑘𝑒𝑦 uniformly at random, set 𝑥 ≔ 𝑘𝑒𝑦 and store 𝑘𝑒𝑦 for
later reprogramming. That is, it logs

RndList𝑥[𝑑] ≔ (𝜏𝑖𝑢, ⊥, (CH, CKS, SH, SKS), 𝑘𝑒𝑦)

where the server key share randomizer is ⊥ as the key share in SKS is dishonest.

At this point, 𝜋 𝑖
𝑢 accepts both stage 1 and 2, because it either copied or computed

the respective keys.

3. Upon receiving (EE, CR∗, SCRT, SCV, SF), we distinguish, whether 𝜋 𝑖
𝑢 has an honest

partner in Step 1.

If there was no honest server session in the first (two) stage(s), then there will
also be no honest server session in all subsequent stages, because otherwise bad𝐶′

would occur, which is excluded in Game 1. This is due to the reason that the stage 1
transcript is a prefix of all transcripts contained in the 𝑠𝑖𝑑 of all subsequent stages.
Therefore, 𝜋 𝑖

𝑢 will also not copy the keys of stages 3, 4 and 5. Session 𝜋 𝑖
𝑢 processes

the messages as follows. It first verifies the received SCV message and aborts if
it is invalid. Then, it has no honest partner in stage 1, so there will be no entry
consistent entry in TAGS[𝑓 𝑖𝑛𝑆 , ⋅] to verify the SF message. Therefore, it samples
the 𝑓 𝑖𝑛𝑆 value at random unless there is a consistent RO𝑓 𝑖𝑛𝑆 query. To check this
it proceeds exactly as in Step 2 with 𝑥 = 𝑓 𝑖𝑛𝑆 except that Finished tags require
two transcript hashes 𝑑1 and 𝑑2, as well as two context strings. After this step,
either 𝑓 𝑖𝑛𝑆 is set consistently with RO𝑓 𝑖𝑛𝑆 or chosen uniformly at random. Next,
it verifies the SF tag against 𝑓 𝑖𝑛𝑆 and aborts if they are different. Otherwise, 𝜋 𝑖

𝑢
proceeds for 𝑥 ∈ {𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , 𝑒𝑚𝑠} exactly as described in Step 2, but with context
CH ‖ ⋯ ‖ SF.

If there was an honest server session, then we first check whether the adversary
tampered with one of the messages (EE, CR∗, SCRT, SCV, SF). To this end, it first
sets the session identifier for stages 3, 4 and 5. Then, session 𝜋 𝑖

𝑢 can check whether
tampering occurred by checking

SKEYS[𝑠𝑖𝑑[3]] = ⊥.

First, note that (ignoring the labels) 𝑠𝑖𝑑[3] = 𝑠𝑖𝑑[4] = 𝑠𝑖𝑑[5], which means that
if there is an honest partner in stage 3, then there is also one in stages 4 and 5.
Further, note that 𝜋 𝑖

𝑢 is honestly partnered in stage 1 and that SKEYS is only filled
by honest sessions. Due to the changes of Game 1, there can only be exactly one
honest server session that 𝜋 𝑖

𝑢 is partnered with in stage 3 and this is the server
session it is partnered with in the first (two) stage(s). Hence, if SKEYS is set for
𝑠𝑖𝑑[3], then no tampering occurred. If no tampering occurred, there will also be an
entry in TAGS for 𝑓 𝑖𝑛𝑆 consistent with 𝜋 𝑖

𝑢. Therefore, it checks for completeness
whether the SCV and SF messages are valid, but since no tampering occurred
the checks will go through. Then, it copies 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , and 𝑒𝑚𝑠 from SKEYS and
proceeds to the next step.

155



9 tight security of the tls full handshake

If there was tampering by the adversary, then we need to be more careful. Ses-
sion 𝜋 𝑖

𝑢 is partnered in the first stage, so the DHE key it would compute in Game 6,
would be an honest one. For the simulated game, this means that it cannot be com-
puted, since we embedded the SDH challenge in the key share of the two peers.
Thus, the adversary could trigger badDHE for this tampered handshake. Note that
we did not exclude signature forgeries up to now, so we first check whether the
SCV message is valid for the announced SCRT. If not, we terminate the session.
Otherwise, we need to fetch 𝑓 𝑖𝑛𝑆 for checking the SF message. Note that the ad-
versary could tampered with each of the messages (EE, CR∗, SCRT, SCV, SF). Since
if it tampered with (EE, CR∗), it also would need to forge a signature as we already
excluded invalid signatures. So, we focus on the cases that it tampered with either
the server signature or the server finished tag only, or both. If it tampered with the
SF message only, then there will be an entry in TAGS for 𝑓 𝑖𝑛𝑆 consistent with 𝜋 𝑖

𝑢’s
view that will uncover the tampering, and will cause 𝜋 𝑖

𝑢 to terminate. Because the
SF message depends only on the transcript up to (and including) the SCV message.
If it tampered with the signature only, then this immediately implies that it also
would need to tamper with the server finished tag as the honest server session 𝜋𝑗

𝑣
would not verify a tampered signature. Hence, the only interesting case is when it
tampered with both and there is no honest session that seeks to tag the transcript
that 𝜋 𝑖

𝑢 would expect to be in the SF message. Now, note that we are inconsistent
with 𝑓 𝑖𝑛𝑆 for this value, as the session is honestly partnered in stage 1. Here, we
proceed exactly as described in Step 6 of the server implementation, where the
server received a tampered CF. After that, badDHE was either triggered or 𝑓 𝑖𝑛𝑆 was
chosen at random. With this 𝑓 𝑖𝑛𝑆 value, the session verifies the SF message, and
terminates if it is different. If it is valid, we need to choose the keys 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 ,
and 𝑒𝑚𝑠 inconsistently with the random oracle. Here, we proceed exactly as in
Step 4 of the implementation of server session, but without storing the final keys
in SKEYS as there will be no partner that might copy these values.

4. Finally, it remains to compute (the client authentication messages and) the CF
message, and to compute 𝑟𝑚𝑠. If client authentication is required it computes
the corresponding messages (CCRT, CCV) as in Game 6. The ClientFinished
message needs to be computed in either of the two following ways. If 𝜋 𝑖

𝑢 has
been an honest first stage partner it computes the tag 𝑓 𝑖𝑛𝐶 analogously to 𝑓 𝑖𝑛𝑆
in Step 4 of the implementation of honest server sessions. Next, to compute 𝑟𝑚𝑠
it proceeds analogously as described in Step 2 of the implementation of honest
server. Note that we do not need to distinct here whether (EE, CR∗, SCRT, SCV, SF)
were tampered with. Since 𝜋 𝑖

𝑢 has an honest partner in stage 1 we are inconsistent
anyway and badDHE still could be triggered. The only thing to note here if there
has not been a partner in stage 3, the key 𝑟𝑚𝑠 will of course never be copied from
SKEYS.

If there has been no honest first stage partner, we need to ensure consistency and
so we compute Step 2 for 𝑥 ∈ {𝑓 𝑖𝑛𝐶 , 𝑟𝑚𝑠} ensuring consistency with the respective
random oracles.

156



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

Then, it accepts 𝑟𝑚𝑠 and terminates.

Implementation of random oracle RO𝑥 . If 𝑥 = Th, ROTh works just as in Game 6. For
𝑥 ≠ Th, that is for any of the TKDF oracles, we proceed as follows. If RO𝑥 receives a
query that was already answered before, we answer consistently. If there is a new query
(𝑝, 𝑍, 𝑑) with 𝑝 ≠ 0, we answer as in Game 6. If 𝑥 ∉ {𝑓 𝑖𝑛𝐶 , 𝑓 𝑖𝑛𝑆} and 𝑝 = 0, i.e., for
the random oracles computing stage keys, we process new queries (𝑝, 𝑍, 𝑑) as follows.
First, RO𝑥 logs DHEList𝑥[𝑑] ≔ DHEList𝑥[𝑑] ∪ 𝑍 , so that we can check in the session if
badDHE occurred. If RndList𝑥[𝑑] ≠ ⊥, we know that there already was an honest session
using context hash 𝑑 to compute a key 𝑥 without knowing the respective DHE key. If
not, we proceed as in Game 6. Let (𝜏𝑖𝑢, 𝜏𝑗𝑣 , 𝑐𝑡𝑥𝑡, 𝑘𝑒𝑦) = RndList𝑥[𝑑] be the tuple, where
the first two components are the randomness used by a client and server to randomize
the SDH challenge, 𝑑 = ROTh(𝑐𝑡𝑥𝑡), and 𝑘𝑒𝑦 denotes the (potentially undefined) value
of the computed key 𝑥 for reprogramming, because RO𝑥 has not fixed the value for 𝑥
at the time of computation. Now, we can check whether 𝑍 is the right value for the
query logged in RndList𝑥[𝑑] by querying DDH𝑎(𝑌 , 𝑍 ⋅ 𝑌 −𝜏𝑖𝑢). If this query is answered
positively, we know that 𝑍 is a valid 𝑍 for computing key 𝑥 with context 𝑑 by the session
that logged 𝑑. Next, we need to check whether 𝑍 is in fact a solution to SDH and badDHE
is triggered, or whether we need to program RO𝑥 for consistency. Recall that we only
ensure consistency if there was no honest stage 1 partner. For server session, we can
react adaptively as we can decide to embed the challenge and thus not knowing the DHE
key on demand when receiving the CH message. For client (initiator) sessions, this is
different. Here, we always embed and need to react when the SH is received, because
clients always commit on not knowing the DHE key. Therefore, we only need to ensure
consistency “manually” for honest initiator sessions without a first stage partner. We can
identify these logs in RndList as these sessions always set 𝜏𝑗𝑣 = ⊥ (i.e., no honest server
present). By the implementation of honest client sessions, the logs will also always set
𝑘𝑒𝑦 ≠ ⊥. Thus, we program the ROList𝑥[0, 𝑍, 𝑑] ≔ 𝑘𝑒𝑦 and answer accordingly. If 𝜏𝑗𝑣 is
defined, we know that the respective query belongs to a pair of honestly partnered client
and server, and this triggers badDHE. Hence,  submits 𝑍∗ ⋅ 𝑌 𝜏𝑖𝑢 ⋅ 𝐴−𝜏𝑗𝑣 to the SDH game
and will win (as discussed above).
If 𝑥 ∈ {𝑓 𝑖𝑛𝐶 , 𝑓 𝑖𝑛𝑆} and 𝑝 = 0, the random oracle RO𝑥 proceeds similarly as described

in the previous paragraph, but this computation required two hashes 𝑑1 and 𝑑2 instead
of a single hash 𝑑.
Unless,  solved the SDH challenge above RO𝑥 outputs ROList𝑥[0, 𝑍, 𝑑].

Analysis of reduction . By the considerations above, we have that if badDHE would
be set in Game 6, we are able to find a valid solution for’s SDH challenge. Further, note
that queries at most one DDH oracle query for every random oracle query issued by the
adversary. An honest server that received an honest CH queries the DDH oracle at most
once for every 𝑍 ∈ DHEList𝑥[𝑑] when computing key 𝑥 , where 𝑑 is the context hash of
the server for key 𝑥 . Due to Games 1 and 2, and the context hash is unique for this server.
Note that by the definition of the session identifiers there are multiple keys sharing
the same context and thus the same context hash, but they belong to the same session.

157



9 tight security of the tls full handshake

That is, only this server session will iterate DHEList𝑥[𝑑] (for all 𝑥 and corresponding
𝑑). Every entry 𝑍 ∈ DHEList𝑥[𝑑] implies that there was a query RO𝑥(0, 𝑍, 𝑑). Hence, a
server queries DDH for every of these random oracle queries at most once. This is an
upper-bound, because it does not necessarily query DDH for 𝑟𝑚𝑠 and 𝑓 𝑖𝑛𝐶 always, but
only if the adversary tampered with the last messages of the client. An honest client
session that has an honest partner server would share the same context hashes with that
server, but due to the existence of the honest session it will only copy the stage 1–5 keys
from SKEYS and only queries DDH for 𝑟𝑚𝑠 and 𝑓 𝑖𝑛𝐶 . Even though the partner server
would share the context for these values as well if it receives the honest values, it does
not query DDH again and uses SKEYS and TAGS instead. If the adversary tampered with
either the SH message or the authentication messages, the client will use DDH in the
worst case for all stage-1–6 keys and MAC values. However, due to Game 1, the CH of
this client and also the received SH (potentially dishonest) are unique among the honest
sessions. That is, the context hashes of this client are unique as well (cf. Game 2) and thus,
as for the server, only this client will iterate DHEList𝑥[𝑑] (for all 𝑥 and corresponding 𝑑).
Hence, informally every client and every server will query DDH for their own (disjoint)
set of random oracle queries (𝑥, 0, 𝑍, 𝑑) and only once per element. It remains to argue
about the random oracle RO𝑥 . RO𝑥 queries DDH in a query (0, 𝑍, 𝑑) once and only if
RndList𝑥[𝑑] is set. If this is the case, we have that there already was an honest session
with context 𝑑 for 𝑥 , and that badDHE was not triggered and no suitable value 𝑍 ′ was
queried before. Consequently, as 𝑑 is unique to that session (and its partner, which only
copies if it exists), 𝑍 will never be queried in a session again since that session already
accepted 𝑥 . Overall, we conclude that every random oracle query induces at most one
query to DDH, i.e.,  issues at most 𝑞RO DDH queries. That is, it holds that

Pr[Game5] ≤ Pr[Game6] + Pr[badDHE] ≤ Pr[Game6] + AdvSDHG,𝑝 ().

Now, if the game is not aborted because badDHE is set, we know that the adversary 
does not learn anything about the session keys and tags values computed by sessions
that partnered in the first stage. In the next two games, we will exclude forgeries of the
authentication messages of honest sessions and then will conclude that the adversary
cannot win the resulting game anymore.

game 7. In Game 7, we add a flag bad𝑆 and abort the game if it is set. The flag bad𝑆
is set if there is an honest session that receives a valid signature under an uncorrupted
public key and it authenticates a message that no honest session signed. We bound the
probability that flag bad𝑆 is set by a reduction to the multi-user security (Definition 4.7) of
the signature scheme Sig configured for the considered instance of the TLS 1.3 handshake.

Construction of reduction  . The reduction  receives no input and gets oracle
access to New, Sign, and Corrupt (as defined in Figure 4.4). It simulates Game 7 for the
adversary  except it changes the implementation of the NewUser oracle (cf. Figure 5.1)
to add new users, the RevLongTermKey oracle to corrupt the long term key of users
and the way how honest sessions compute their signature for the SCV/CCV message.
In the NewUser oracle, reduction  queries the oracle New to obtain a new public key

158



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

𝑝𝑘users instead of running the key generation algorithm Sig.Gen of Sig. Note that with
this implementation of NewUser reduction  is not able to compute the signatures of
the sessions anymore because it does not know the respective secret (signing) keys.
Therefore, it uses its signing oracle Sign to compute the signature in a session instead
of using the algorithm Sig.Sign. Concretely, if a session of user 𝑢 would compute 𝜎 $←
Sig.Sign(𝑠𝑘𝑢, 𝑚) in Game 7, reduction  queries 𝜎 $← Sign(𝑢, 𝑚). As mentioned above,
 does not know the the secret keys anymore, therefore it also needs to implement
the oracle RevLongTermKey, which allows the adversary to corrupt the long term keys
(i.e., the signature secret keys). To this end, it fetches 𝑠𝑘𝑢 ≔ Corrupt(𝑢) upon a query
RevLongTermKey(𝑢) and implements the rest exactly as in Game 7. We further introduce
bookkeeping for all messages signed by honest sessions. To this end, any honest session
𝜋 𝑖
𝑢 logs (𝑢, 𝑚) in a set SIGS if it computes a signature on message 𝑚. This then can

be used to easily check whether bad𝑆 would have been set in Game 7: After a session
verified the signature 𝜎 for some message 𝑚 received by its peer 𝑝𝑖𝑑 successfully, the
reduction  can check whether

revsk[𝑝𝑖𝑑] = ∞ ∧ (𝑝𝑖𝑑, 𝑚) ∉ SIGS

holds. If so, bad𝑆 would be set in Game 7, since this session received a signature that
is valid for the expected public key of 𝑝𝑖𝑑 such that 𝑝𝑖𝑑 is not corrupted and none of
𝑝𝑖𝑑’s sessions signed the message 𝑚 the signature is valid for. Hence,  found a forgery
(𝑝𝑖𝑑, 𝑚, 𝜎) and outputs it to its game. Note that this holds independently of the peer’s
role. We assume that sessions only receive signatures that they expect. In particular, we
assume that the adversary does not send a client signature to a server that did not sent
a CertificateRequest.

Analysis of reduction  . First of all, note that if bad𝑆 is set,  will output a valid
forgery for Sig. This is because how bad𝑆 is chosen. The flag ensures that the signature
received is valid for an uncorrupted public key and that the message was not output
by any of the sessions of the owner of that uncorrupted public key. As we compute all
honest signatures using the signing oracle, there cannot be a query to the signing oracle
for the respective user and message. Otherwise, there would be an entry in SIGS. That
is, if bad𝑆 is set, then the winning condition of the multi-user security experiment is met
by the tuple (𝑝𝑖𝑑, 𝑚, 𝜎) that induced flag bad𝑆 to be set. Then, it holds

Pr[bad𝑆] ≤ AdvMU-EUF-CMAcorr

Sig ().

Note that adversary  issues 𝑞NewUser queries to New, 𝑞Send queries to Sign (as every
session queries the Sign oracle at most once), and 𝑞RevLongTermKey queries to Corrupt. Its
runtime is approximately the same as the run time of.

Overall, it holds for Game 7 that

Pr[Game6] ≤ Pr[Game7] + Pr[bad𝑆] ≤ Pr[Game7] + AdvMU-EUF-CMAcorr

Sig ().

From this game on, we excluded that the adversary can tamper with the signature
(up to a certain degree briefly outlined next). Note that Game 7 only excludes that the

159



9 tight security of the tls full handshake

adversary cannot compute a signature under an uncorrupted public key for a message
that the owner of that public key did not intend to sign. This does not exclude that
the adversary may output a new signature for a message actually signed by an honest
session that is different from the one output by that session. To exclude this, we would
need to reduce the security to the strong unforgeability (cf. Remark 4.2) of the signature
scheme Sig. However, this requirement is unnecessarily strong as we can exclude this
in the next step by excluding MAC forgeries in honest sessions.

game 8. In Game 8, we add a flag bad𝑀 and abort the game if it is set. The flag bad𝑀
is set if there is an honest session with an honest partner in the first stage that receives
a valid Finished message that was not by any honest session. Next, we analyze the
probability that flag bad𝑀 is set. Note that due to the change of Game 6 all sessions
that are partnered in the first two stages (i.e., honest servers that received an honest
ClientHello and honest clients that receive an honest ServerHello from a server
that received their ClientHello) choose their keys inconsistently with the random
oracle without the adversary being able to detect this change. Therefore, all keys and
all tags computed by these sessions are distributed uniformly at random from the view
of the adversary. Recall that due to the changes of Game 6, if there is such a honest
session that receives a Finished message not output by an honest session, i.e., there
is no consistent entry in TAGS, then this session will sample the value it verifies the
Finished message against uniformly (and independently) at random. Therefore, for
any fixed session with a first stage partner that receives a dishonest Finished message,
it holds that the probability of this MAC being verified successfully is 1/2𝜆. By the union
bound, we can bound this probability for any session with a first stage partner from
above and thus also upper-bounding the probability of bad𝑀 being set as follows:

Pr[bad𝑆] ≤
𝑞Send
2𝜆

where 𝑞Send is the number of Send queries, i.e., an upper-bound on honest session activa-
tions. Hence, we overall have that

Pr[Game7] ≤ Pr[Game8] + Pr[bad𝑀 ] ≤ Pr[Game8] +
𝑞Send
2𝜆

.

ExplAuth cannot be violated. Next, we argue that in Game 8, predicate ExplAuth can-
not be violated by the adversary anymore, i.e., ExplAuth = true with certainty in Game 8.
Predicate ExplAuth is set to false if there is a session 𝜋 𝑖

𝑢 accepting an explicitly authen-
ticated stage 𝑠, whose intended peer 𝜋 𝑖

𝑢.𝑝𝑖𝑑 = 𝑣 was not corrupted at the time of 𝜋 𝑖
𝑢

accepting the stage 𝑠′ in which it received (perhaps retroactively) explicit authentication,
and (1) there is no honest session 𝜋𝑗

𝑣 partnered to 𝜋 𝑖
𝑢 in stage 𝑠′, (2) there is an honest

session 𝜋𝑗
𝑣 partnered to 𝜋 𝑖

𝑢 in stage 𝑠′, but it accepts with a peer identity 𝑤 ≠ 𝑣, or it is
not partnered to 𝜋 𝑖

𝑢 in stage 𝑠.
Recall that we always at least have unilateral (server-only) authentication. Therefore,

client (initiator) sessions receive explicit authentication with acceptance of stage 3, after
the ServerFinished message successfully verified. That is, stages 1 and 2 receive

160



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

explicit authentication retroactively upon acceptance of stage 3 and stages 3–6 received
explicit authentication upon acceptance, but due to acceptance of stage 3. For server
(responder) sessions, we have that they receive (retroactively) explicit authentication
upon acceptance of stage 6, after the ClientFinished successfully verified.
We first argue why (1) cannot occur in Game 8. Let us start with client sessions. In

the following, we explain why in Game 8 every honest initiator 𝜋 𝑖
𝑢 that accepts stage 3

with an uncorrupted peer will have an honest partner server 𝜋𝑗
𝑣 in stage 3. The crucial

argument here is that the adversary  cannot tamper with ServerHello message in
Game 8 anymore as we excluded signature forgeries in Game 7. That is, if an honest
initiator 𝜋 𝑖

𝑢 receives (SH, SKS, EE, CR∗, SCRT, SCV, SF) it can be certain about the following
things:

1. If SCV is valid for𝑚 = 𝓁13 ‖𝐻8, where 𝓁13 is defined in Table 6.1 and 𝐻8 = ROTh(CH ‖
⋯ ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT) for the messages sent and received by 𝜋 𝑖

𝑢, under the
uncorrupted public key of the peer identity 𝑣 announced in SCRT, then

a) There is an honest session 𝜋𝑗
𝑣 owned by 𝑣 that signed𝐻8, which due to Game 2

is unique to the messages CH ‖ ⋯ ‖ SH ‖ SKS ‖ EE ‖ SCRT.

b) Session 𝜋𝑗
𝑣 received the CH output by 𝜋 𝑖

𝑢 as it (1) due to Game 1 is unique
to 𝜋 𝑖

𝑢 and (2) otherwise it would not have included it in the transcript to be
signed.

c) The messages (SH, SKS, EE, SCRT)were computed by 𝜋𝑗
𝑣 as otherwise it would

not have signed these messages, and due to Game 1, (SH, SKS) are unique to
𝜋𝑗
𝑣 , thus only (the unique) session 𝜋𝑗

𝑣 would seek to sign this transcript.

Note that in Game 7, we only ensure that all sessions receive a signature that is
valid for a message that was actually signed by an honest session. However, this
does not include if the adversary is able to compute a new signature from the
signature output (e.g., by rerandomizing it). Intuitively it only ensures that the
adversary cannot compute signatures for messages no honest session would intent
to sign. Therefore, the MAC tag contained in the Finished message further is
required to ensure integrity of the SCV message.

2. Due to Game 8, there is an entry in TAGS for 𝜋 𝑖
𝑢’s view (i.e., its DHE key 𝑍 and

the hashes 𝑑1 = ROTh(CH ‖ ⋯ ‖ SKS) and 𝑑2 = ROTh(CH ‖ ⋯ ‖ SCV), which are unique
due to Game 2) that is consistent with the value 𝑓 𝑖𝑛𝑆 contained in SF such that
𝑓 𝑖𝑛𝑆 is valid and consequently SCV was output by an honest session, which is by
the considerations above the (unique) session 𝜋𝑗

𝑣 .

Since 𝜋𝑗
𝑣 is unique, it also has to be the honest session that computed the tag in TAGS as

no other session would have seeked to compute this value with the context. Hence, 𝜋𝑗
𝑣

is partnered to 𝜋 𝑖
𝑢 in stage 3.

Server (responder) sessions 𝜋 𝑖
𝑢 can only be explicitly authenticated if client authen-

tication is performed. In this case, we can argue similarly as for client sessions that
there always has to be an honest client session 𝜋𝑗

𝑣 that needs to be partnered to 𝜋 𝑖
𝑢 in

stage 6 in which the server receives explicit authentication for all stages. If this session

161



9 tight security of the tls full handshake

𝜋 𝑖
𝑢 accepts stage 6 with an uncorrupted peer, then this implies that if the signature CCV

received by 𝜋 𝑖
𝑢 has to be signed by an honest session 𝜋𝑗

𝑣 of the peer announced in the
CCRT message. The signature CCV authenticated the message 𝑚 = 𝓁14 ‖ 𝐻9, where 𝓁13 is
defined in Table 6.1 and 𝐻8 = ROTh(CH ‖ ⋯ ‖ SH ‖ SKS ‖ EE ‖ CR ‖ SCRT ‖ SCV ‖ SF ‖ CCRT) for
the messages sent and received by 𝜋 𝑖

𝑢. Following a similar line of arguments as above,
we conclude (due to Games 1, 2, and 7) that there has to be a unique client session 𝜋𝑗

𝑣
owned by 𝑣 that sent and received these messages. Again by Game 8, there has to be
an entry in TAGS for 𝜋 𝑖

𝑢 that proves validity of 𝑓 𝑖𝑛𝐶 contained in CF received by 𝜋 𝑖
𝑢 and

implies that CCV has to be computed by the same honest (unique) client session 𝜋𝑗
𝑣 that

signed the above transcript. Due to the uniqueness of this session, it also has to be the
session that computed the entry in TAGS, the CF message, and hence 𝜋𝑗

𝑣 is partnered to
𝜋 𝑖
𝑢 in stage 6.

Next, let us address the possibility of case (2). Recall that a server session receives (if
client authentication is performed) retroactively explicit authentication upon acceptance
of stage 6. Now, if a server session 𝜋 𝑖

𝑢 has a partner in stage 6, i.e., there is a session 𝜋𝑗
𝑣

with 𝜋 𝑖
𝑢.𝑠𝑖𝑑[6] = 𝜋𝑗

𝑣 .𝑠𝑖𝑑[6], then these sessions also have to be partnered in all stages 𝑠 <
6, because the transcripts contained in the session identifiers of stages 𝑠 < 6 are all
“sub-transcripts” of the session identifier of stage 6. Further, as 𝜋𝑗

𝑣 has set its session
identifier in stage 6, it also must have accepted stage 6 implying that it also had accepted
stages 𝑠 < 6. As in Game 8 predicate Sound cannot be violated anymore, we know by
Property 5 that all partnered sessions agree on the peer identity. Hence, for a server
session case (2) is impossible to be violated. For a client session, we have that stages 1
and 2 receives explicit authentication retroactively upon acceptance of stage 3, and all
stages 𝑠 > 3 receive explicit authentication upon acceptance, but because of acceptance
of stage 3. For stages 𝑠 ≤ 3, we can argue exactly as for the server session before. Further,
the peer is set upon verification of the authentication messages. As server signatures
and Finished messages are verified right before acceptance of stage 3, the peer identity
will not change anymore. However, the session identifier of stages 4–6 might. For
stages 4 and 5, the argument that this cannot occur is easy: the transcripts contained in
𝑠𝑖𝑑[𝑠] for 𝑠 = 3, 4, 5 are identical (except for the labels). Therefore, partnering in stage 3
implies partnering (upon acceptance) of stage 4 and 5, respectively. The session identifier
in stage 6 differs from the stage 5 session identifier only by the client authentication
messages (i.e., CCRT, CCV, and CF). Note that the CCRT and CCV are only sent if client
authentication is performed. So, to violate case (2) and thus ExplAuth the adversary
needs to ensure that the client does not have a partner in stage 6 even though it had one
stage 5. To this end, it can either drop the authentication messages from the client and
thus the partner server will never accept, or it has to forge, in particular, the Client
Finished message. Note that if it forges the client signature, then it also has to forge
the CF message. Dropping the messages, would induce that there is no partner for the
client in stage 6, but this case seems to be unavoidable as it is the last protocol message.
In our definition, we address this problem by requiring that the session only needs to be

162



9.3 Tight Security of the TLS 1.3 Full (EC)DHE Handshake

partnered with its stage 𝑠′ partner in stage 𝑠 if the partner accepted stage 𝑠′.4 Hence, the
adversary can only violate ExplAuth, when it makes the partner server accept a forged
ClientFinished, which is not possible due to Game 8.

If Fresh = true, then the adversary can only guess. Finally, we argue that the ad-
versary can only win Game 8 with probability at most 1

2 if the predicate Fresh is not
violated. Recall that if Fresh is not violated, then no session could have been tested and
revealed in the same stage, and a tested session’s partner may also be neither tested nor
revealed in that stage. In the following, we assume that this did not occur. Further, the
Fresh predicate depends on the levels of forward secrecy reached at the time of the Test
query. Recall that all stages in the TLS 1.3 full handshake receive forward secrecy upon
acceptance. That is, if a session 𝜋 𝑖

𝑢 is tested on a stage 𝑠 it remains fresh (i.e., Fresh is
not set to false) if the owner of the session’s peer was corrupted only after acceptance of
stage 𝑠 or if there is a contributive partner in that stage. Next, we argue that all tested
session keys in Game 8 such that the corresponding Test query does not violate Fresh are
distributed uniformly (and independently of the challenge bit 𝑏) at random from the view
of the adversary. Assume that session 𝜋 𝑖

𝑢 is any session that is tested in some stage 𝑠.
Further, let the owner of 𝜋 𝑖

𝑢’s peer be corrupted only after acceptance of stage 𝑠. This
implies that the 𝜋 𝑖

𝑢 accepted with an uncorrupted peer. In Game 8, due to the changes
introduced in Games 7 and 8, 𝜋 𝑖

𝑢 could only have received honest and untampered mes-
sages as signature andMAC forgeries are excluded, and the session would terminate after
detection of this tampering. If 𝑠 = 1, 2, then we can detect whether tampering occurs
using the lists CHs and SKEYS. Therefore, there has to be a session 𝜋𝑗

𝑣 that computed the
messages received by 𝜋 𝑖

𝑢 and this session has to be unique (by Games 1 and 2). In fact,
𝜋𝑗
𝑣 is a contributive partner of 𝜋 𝑖

𝑢 in stage 𝑠. Hence, due to Games 4–6, 𝜋 𝑖
𝑢 (depending

on its role and 𝑠) either samples its stage 𝑠 uniformly at random inconsistently with the
random oracle or copies the (uniformly random) stage 𝑠 key from SKEYS computed by
𝜋𝑗
𝑣 . Consequently, the key returned by Test is a uniformly random key independent of

the challenge bit 𝑏. Therefore, the adversary cannot learn anything about the stage 𝑠 key
of any session accepting stage 𝑠 with an uncorrupted peer. As 𝜋𝑗

𝑣 is a contributive partner
of 𝜋 𝑖

𝑢, we can use the same arguments given above to argue that the key returned by Test

is distributed uniformly at random independent of the challenge bit 𝑏 if the session’s
peer was corrupted before accepting stage 𝑠, but there is an honest contributive partner.

Overall, we have that the adversary cannot learn anything about the challenge bit 𝑏
from Test queries without violating Sound, ExplAuth, and Fresh. Thus, the probability to
win in this game is no greater than 1

2 , i.e., Pr[Game8] ≤ 1/2.
Collecting all the term, we get the following:

Pr[ExppMSKE
TLS-DHE() = 1] ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 7𝑞Send)2

2𝜆
+ AdvSDHG,𝑝 ()

4 For a detailed discussion, we refer to [FGSW16], which formally treat key confirmation in key exchange
and introduced the notion of almost-full key confirmation to circumvent such issues, which is closely
related to explicit authentication (cf. [dFW20]).

163



9 tight security of the tls full handshake

+ AdvMU-EUF-CMAcorr

Sig () +
𝑞Send
2𝜆

+
1
2
.

Hence, by Definition 5.2 it finally holds

AdvpMSKE
TLS-DHE() ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 7𝑞Send)2

2𝜆
+AdvSDHG,𝑝 () +AdvMU-EUF-CMAcorr

Sig () +
𝑞Send
2𝜆

.

9.3.2 Tight Security Bound for the Full Handshake

With the tight security bound for the abstracted handshake, we can now deduce a tight
security bound for the full (EC)DHE handshake as defined in Figure 6.1. In particular, this
bound applies to the TLS 1.3 protocol that uses handshake traffic encryption and internal
key (ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆), and only the hash function 𝐇 is modeled as a random oracle RO𝐻 .
To deduce the this bound, we define the following intermediate protocols:

• KE is the protocol defined in Theorem 7.3, i.e., the TLS 1.3 full handshake protocol
described in Figure 6.1 with 𝐇 ≔ RO𝐻 and 𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝 defined
from 𝐇 as in Chapter 6 (with handshake encryption). This is the protocol, we give
the final bound for.

• KE1 is the protocol defined in Theorem 7.3 (as KE′), i.e., full handshake protocol
described on the left-hand side of Figure 7.2, with 𝐇 ≔ ROTh and TKDF𝑥 ≔ RO𝑥 ,
where ROTh, ROℎ𝑡𝑘𝐶 , . . . , RO𝑟𝑚𝑠 are random oracles (with handshake encryption).

• KE2 is the protocol defined in Theorem 8.2, i.e., full handshake protocol described
on the left-hand side of Figure 7.2, with𝐇 ≔ ROTh and TKDF𝑥 ≔ RO𝑥 , where ROTh,
ROℎ𝑡𝑘𝐶 , . . . , RO𝑟𝑚𝑠 are random oracles as KE1, but without handshake encryption.
This is the protocol, we have proven tightly secure in Theorem 9.1.

Let  be any adversary against the pMSKE security of KE, then Theorem 7.3 grants
that we can construct an adversary 1 such that

AdvpMSKE
KE () ≤ AdvpMSKE

KE1
(1) +

2(13𝑞Send + 𝑞RO)2

2𝜆
+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆
.

Next, we can apply Theorem 8.2, which gives us that we can construct an adversary 2
from 1 such that

AdvpMSKE
KE () ≤ AdvpMSKE

KE2
(2) +

2(13𝑞Send + 𝑞RO)2

2𝜆
+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆
.

Finally, we can use Theorem 9.1, which bounds the pMSKE security of KE2 as follows.
This means, we can construct adversaries  and  (from 2) such that

AdvpMSKE
KE () ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 7𝑞Send)2

2𝜆
+ AdvSDHG,𝑝 () + AdvMU-EUF-CMAcorr

Sig ()

164



9.4 Discussion

+
𝑞Send
2𝜆

+
2(13𝑞Send + 𝑞RO)2

2𝜆
+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆

= AdvMU-EUF-CMA
Sig () + AdvSDHG,𝑝 () +

2𝑞2Send
2256 ⋅ 𝑝

+
𝑞Send + (𝑞RO + 7𝑞Send)2 + 2(13𝑞Send + 𝑞RO)2 + 2𝑞2RO + 8(𝑞RO + 36𝑞Send)2

2𝜆

This yields the following final tight security bound for the TLS 1.3 full (EC)DHE hand-
shake.

Corollary 9.1. Let KE be the TLS 1.3 full (EC)DHE handshake protocol as specified in
Figure 6.1. Let G be standardized group with order 𝑝. Let Sig be a standardized signature
scheme. Let 𝜆 ∈ N be the output length in bits of the hash function 𝐇. Further, let 𝐇 be
modeled as a random oracle RO𝐻 and let𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝 defined from 𝐇 as in
Chapter 6. Then, for any adversary, we can construct adversaries  and  such that

AdvpMSKE
KE () ≤ AdvMU-EUF-CMAcorr

Sig () + AdvSDHG,𝑝 () +
2𝑞2Send
2256 ⋅ 𝑝

+
𝑞Send + (𝑞RO + 7𝑞Send)2 + 2(13𝑞Send + 𝑞RO)2 + 2𝑞2RO + 8(𝑞RO + 36𝑞Send)2

2𝜆

where 𝑞Send is the number of Send and 𝑞RO the (total) number of random oracle queries
issued by adversary , respectively.

Remark 9.1. In the bound given in Corollary 9.1 one could further replace the SDH
advantage of by a generic groupmodel (GGM) [Sho97, Mau05] bound. Abdalla, Bellare,
and Rogaway [ABR01] originally proved in the GGM that any adversarymaking at most 𝑡
group operation and DDH oracle queries have an advantage (𝑡2/𝑝), where 𝑝 the prime
order of the respective group. Davis and Günther [DG21a, DG20] revisited this result
and bounded the SDH advantage from above by 4𝑡2/𝑝. In this work, we choose to give a
more general bound, therefore we did not replace it above, but still we wanted to point
to these results.

9.4 Discussion

In this chapter, we have proven a tight security bound for the TLS 1.3 full (EC)DHE hand-
shake protocol as described in Figure 6.1. The proof is in the random oracle model (Sec-
tion 4.1.2) and reduces the pMSKE-security (Definition 5.2) of TLS 1.3 full handshake
to the multi-user EUF-CMA-security with adaptive corruptions (Definition 4.7) of the
signature scheme used for authentication and to the SDH problem (Definition 3.5) in the
Diffie–Hellman group. In the remainder, we discuss the result of this chapter and point
to interesting open questions.

On the tightness of the standardized signatures. Unfortunately, even though the
boundwe are proving is tight, the TLS 1.3 full handshake is not fully tight. The reason for

165



9 tight security of the tls full handshake

this is that the standardized signature schemes supported by TLS 1.3 are not tightly multi-
user-secure with adaptive corruptions. They are only single-user-secure and therefore
there is an implicit loss that is linear in the number of users, because for any of the
standardizes scheme it holds that for any (multi-user) adversary  , we can construct an
single-user adversary  ′ such that

AdvMU-EUF-CMAcorr

Sig () ≤
1

𝑞New
⋅ AdvEUF-CMA

Sig ( ′)

where 𝑞New is the number of users generated by  . As already outlined in the introduc-
tion (Section 1.4), all schemes have unique keys (in the sense of [BJLS16]) and hence
this loss seems to be unavoidable according to the impossibility result by Bader, Jager,
Li, and Schäge [BJLS16]. In Part IV of this thesis, we present a signature scheme that is
multi-user-secure with adaptive corruptions with a tight reduction in the random oracle
model. When instantiated with DDH (Section 14.1), we result in a scheme with short
signatures (only 3 Z𝑝 elements). However, this scheme is not standardized and cannot
be used with TLS 1.3 in practice. For future revisions of TLS it would be interesting to
consider such signatures schemes, as well. Nevertheless, we consider it an interesting
open question for future work to investigate whether it is possible (under which assump-
tions) to circumvent the impossibility result by [BJLS16]. A possible direction would be
to try to find a relaxed notion of signature-security for which the impossibility result
does not apply, but that still gives rise to a tight-security proof. Such a model could, for
example, use that TLS 1.3 always signs messages with a special structure, i.e., hashes of
transcripts. Clearly, this security notion needs to be strong enough to still give rise to
a tight security proof for the TLS 1.3 handshake and thus had to be incorporated in our
proof outline above.

On getting rid of the random oracle. Our proof is in the random oracle model,
which is a commonly accepted heuristic for practical cryptographic schemes as dis-
cussed in Section 4.1.2. However, it would be interesting from a theoretical standpoint
whether it is possible to achieve a tight security bound for the TLS 1.3 handshake pro-
tocol without relying on the random oracle model. Previous computational analyses of
the TLS handshake (most prominently, for version 1.2 [JKSS12, KPW13] and for version
1.3 [DFGS21]), based security of the TLS handshake on the hardness of the PRF oracle-
Diffie–Hellman (PRF-ODH) problem introduced by Jager, Kohlar, Schäge, and Schwenk
[JKSS12] for the analysis of TLS-DHE version 1.2. The PRF-ODH problem is a variant of
the oracle-Diffie–Hellman (ODH) problem introduced by Abdalla, Bellare, and Rogaway
[ABR01]. Brendel, Fischlin, Günther, and Janson [BFGJ17] study the PRF-ODH problem
in detail and even generalize it. In this context, they showed that the PRF-ODH assump-
tion as introduced by in [JKSS12] can be instantiated with the SDH assumption in the
random oracle model. Brendel, Fischlin, Günther, and Janson also claim that instantiat-
ing PRF-ODH without a random oracle might be challenging based on an impossibility
result they are proving. However, this demonstrates that up to now we do not know
whether the previous (non-tight) analyses of the TLS handshake that appear to be in the
standard model (as opposed to the random oracle model) might actually be also implicitly

166



9.4 Discussion

in the random oracle model. For future work, it would be interesting to investiagate this
further. This could be done in various ways. First, it would be valuable to understand
the relation between PRF-ODH and the random oracle model better, and follow-up on
the work by Brendel, Fischlin, Günther, and Janson [BFGJ17]. Then, it is interesting to
investigate the (im)possibility of tight reductions for TLS 1.3 in the standard model, in
general. However, these two approaches might be linked, because previous analyses
(e.g., [JKSS12, KPW13, DFGS21]) already indicate that PRF-ODH actually is exactly what
we require from the TLS key derivation.

167





10
tight security of the tls-psk
handshakes

Author’s contribution. The contents of this chapter are based on joint work with
Hannah Davis, Felix Günther, and Tibor Jager [DDGJ22b, DDGJ22a]. While we dis-
cussed all aspects of this paper together, the author of this paper mainly developed the
architecture of the proof presented in Section 10.3 and worked out most of its details.
Nevertheless, Hannah Davis revised some parts of the proof. The proof of Section 10.3
incorporates techniques from [Coh+19, DJ21, DG21a] as already outlined for the author’s
contribution in Chapter 9 and uses the abstraction presented in Chapter 7. Since the
majority of the proof of [DDGJ22a, Sect. 7.1] was written by the author of this thesis, the
proof presented in Section 10.3 is almost verbatim from [DDGJ22a]. The same holds for
the contents of Section 10.2, in which we model the PSK handshake as MSKE protocols.

Contents

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.2 TLS 1.3 PSK-only and PSK-(EC)DHE Handshake as an MSKE Protocol . . 170
10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake . . . . . . . . . . . . 172

10.3.1 Tight Security Bound for the Abstracted PSK-(EC)DHE Handshake 172
10.3.2 Tight Security Bound for the PSK-(EC)DHE Handshake . . . . . 190

10.4 Tight Security of the TLS 1.3 PSK-only Handshake . . . . . . . . . . . . . 191
10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10.1 Introduction

In this chapter, we present our tight security bound for the TLS 1.3 PSK handshakes. The
technical approach is similar to the one we presented in Section 9.1.1 and only differs in
details of the proof that are specific to the PSK mode of TLS 1.3.

169



10 tight security of the tls-psk handshakes

Chapter outline. Analogously, to the treatment of the full handshake in Chapter 9, we
first present in Section 10.2 the protocol-specific properties of the TLS 1.3 PSK-only and
PSK-(EC)DHE handshakes to model them as symmetric-key MSKE (sMSKE) protocols as
defined in Chapter 5. Subsequently, we prove in Section 10.3 our tight security bound for
the TLS 1.3 PSK-(EC)DHE handshake in its abstracted form as obtained by the insights
presented in Chapters 7 and 8, i.e., we prove the security bound for the protocol as
presented on the right-hand side of Figure 7.2 without handshake encryption. Then,
again applying Theorems 7.3 and 8.2 in Section 10.3.2 we obtain the final bound for
the TLS 1.3 PSK-(EC)DHE handshake protocol as described in Section 6.4. Finally, we
argue in Section 10.4 how the analysis given for the PSK-(EC)DHE would change for the
PSK-only handshake without providing a full proof due to their similarity.

10.2 TLS 1.3 PSK-only and PSK-(EC)DHE Handshake as an
MSKE Protocol

We begin by capturing the TLS 1.3 PSK-only and PSK-(EC)DHE handshake protocols,
specified in Figures 6.2 and 7.2, formally as a sMSKE protocol. To this end, we must
explicitly define the variables discussed in Chapter 5. In particular, we have to define
the stages themselves, which stages are internal and which replayable, the session and
contributive identifiers, when stages receive authentication, and when stages become
forward secret.

Stages. The TLS 1.3 PSK-only/PSK-(EC)DHE handshake protocol has eight stages (i.e.,
STAGES = 8), corresponding to the keys 𝑒𝑡𝑠, 𝑒𝑒𝑚𝑠, ℎ𝑡𝑘𝑆 , ℎ𝑡𝑘𝐶 , 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , 𝑒𝑚𝑠, and 𝑟𝑚𝑠 in
that order. The set INT of internal keys contains ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆 , the handshake traffic
encryption keys. Stages 𝑒𝑡𝑠 and 𝑒𝑒𝑚𝑠 are replayable: REPLAY[𝑠] is true for 𝑠 ∈ {1, 2} and
false for all others.

Session and contributive identifiers. The session and contributive identifiers for
stage𝑠 are tuples (𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑐𝑡𝑥𝑡), where 𝑙𝑎𝑏𝑒𝑙𝑠 is a unique label identifying stage 𝑠, and 𝑐𝑡𝑥𝑡
is the transcript that enters key’s derivation. The session identifiers (𝑠𝑖𝑑[𝑠])𝑠∈{1,…,8} are
defined as follows:1

𝑠𝑖𝑑[1] = (“𝑒𝑡𝑠”, (CH, CKS†, CPSK)) ,

𝑠𝑖𝑑[2] = (“𝑒𝑒𝑚𝑠”, (CH, CKS†, CPSK)) ,

𝑠𝑖𝑑[3] = (“ℎ𝑡𝑘𝐶”, (CH, CKS†, CPSK, SH, SKS†, SPSK)) ,

𝑠𝑖𝑑[4] = (“ℎ𝑡𝑘𝑆”, (CH, CKS†, CPSK, SH, SKS†, SPSK)) ,

𝑠𝑖𝑑[5] = (“𝑎𝑡𝑠𝐶”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF)) ,

𝑠𝑖𝑑[6] = (“𝑎𝑡𝑠𝑆”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF)) ,

𝑠𝑖𝑑[7] = (“𝑒𝑚𝑠”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF)) , and
1 Components marked with † are only part of the TLS 1.3 PSK-(EC)DHE handshake.

170



10.2 TLS 1.3 PSK-only and PSK-(EC)DHE Handshake as an MSKE Protocol

𝑠𝑖𝑑[8] = (“𝑟𝑚𝑠”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF, CF)) .

To make sure that a server that received ClientHello, ClientKeyShare†, and CPSK
untampered can be tested in stages 3 and 4, even if the sending client did not receive
the server’s answer, we set the contributive identifiers of stages 3 and 4 such that 𝑐𝑖𝑑𝑟𝑜𝑙𝑒
reflects the messages that a session in role 𝑟𝑜𝑙𝑒 must have honestly received for testing
to be allowed. Namely, we let clients (resp. servers) upon sending (resp. receiving) the
messages (CH, CKS†, CPSK) set

𝑐𝑖𝑑responder[3] = (“ℎ𝑡𝑘𝐶”, (CH, CKS†, CPSK)) and

𝑐𝑖𝑑responder[4] = (“ℎ𝑡𝑘𝑆”, (CH, CKS†, CPSK)) .

Further, when the client receives (resp. the server sends) the message (SH, SKS†, SPSK),
they set

𝑐𝑖𝑑 initiator[3] = 𝑠𝑖𝑑[3] and 𝑐𝑖𝑑 initiator[4] = 𝑠𝑖𝑑[4].

For all other stages 𝑠 ∈ {1, 2, 5, 6, 7, 8}, 𝑐𝑖𝑑 initiator[𝑠] = 𝑐𝑖𝑑responder[𝑠] = 𝑠𝑖𝑑[𝑠] is set upon
acceptance of the respective stage (i.e., when 𝑠𝑖𝑑[𝑠] is set as well).

Authentication. As the PSK handshakes rely on a pre-shared key, which we assume
to be exchanged in a previous TLS 1.3 session, we already have that every stage is at
least implicitly mutually authenticated upon acceptance. This is because only the parties
that took part in the previous session can know the PSK and therefore only the intended
partner of a session knows any of its established key (except for potential corruption of
the PSK). Thus, we only focus on explicit authentication in the PSK protocols.
For initiator sessions, all stages achieve explicit authentication after successfully ver-

ifying the ServerFinished message. This happens right before stage 5 (i.e., 𝑎𝑡𝑠𝐶) is
accepted. That is, upon accepting stage 5 all previous stages receive explicit authentica-
tion retroactively and all following stages are explicitly authenticated upon acceptance.
Formally, we set EAUTH[initiator, 𝑠] = 5 for all stages 𝑠 ∈ {1, … , 8}.

For responder session, all stages receive explicit authentication upon (successful) ver-
ification of the ClientFinished message. This occurs right before the acceptance of
stage 8 (i.e., 𝑟𝑚𝑠). Similar to initiators, responders receive explicit authentication for all
stages upon acceptance of stage 8 since this is the last stage of the protocol. Accordingly,
we set EAUTH[responder, 𝑠] = 8 for all stages 𝑠 ∈ {1, … , 8}.

Forward secrecy. Only keys dependent on a Diffie–Hellman secret achieve forward
secrecy, so all stages 𝑠 of the PSK-only handshake have FS[𝑟 , 𝑠, fs] = FS[𝑟 , 𝑠,wfs2] = ∞
for both roles 𝑟 ∈ {initiator, responder}. In the PSK-(EC)DHE handshake, full forward
secrecy is achieved at the same stage as explicit authentication for all keys except 𝑒𝑡𝑠 and
𝑒𝑒𝑚𝑠, which are never forward secret. That is, for both roles 𝑟 and stages 𝑠 ∈ {3, … , 8}
we have FS[𝑟 , 𝑠, fs] = EAUTH[𝑟 , 𝑠]. All keys except 𝑒𝑡𝑠 and 𝑒𝑒𝑚𝑠 possess weak forward
secrecy 2 upon acceptance, so we set FS[𝑟 , 𝑠,wfs2] = 𝑠 for stages 𝑠 ∈ {3, … , 8}. Finally,
as stages 1 and 2 (i.e., 𝑒𝑡𝑠 and 𝑒𝑒𝑚𝑠) never achieve forward secrecy we set FS[𝑟 , 𝑠, fs] =
FS[𝑟 , 𝑠,wfs2] = ∞ for both roles 𝑟 and stages 𝑠 ∈ {1, 2}.

171



10 tight security of the tls-psk handshakes

10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

We proceed analogously to Section 9.3. That is, we start this section by proving a tight
security bound for the abstracted TLS 1.3 PSK-(EC)DHE handshake. With this bound,
we successively apply the results from Chapters 7 and 8 to obtain a bound for the TLS 1.3
PSK-(EC)DHE handshake protocol as specified in Figure 6.2.

10.3.1 Tight Security Bound for the Abstracted PSK-(EC)DHE
Handshake

In the first step, we prove the following theorem.

Theorem 10.1. Let TLS-PSK-DHE be the TLS 1.3 PSK-(EC)DHE handshake protocol (with
optional 0-RTT) as specified on the right-hand side in Figure 7.2 without handshake en-
cryption. Let G be a standardized group of order 𝑝. Let 𝜆 be the output length in bits of 𝐇,
and let the pre-shared key space be KE.PSKS = {0, 1}𝜆. Further, let 𝐇 and TKDF𝑥 for each
𝑥 ∈ {𝑏𝑖𝑛𝑑𝑒𝑟, … , 𝑟𝑚𝑠} bemodeled as 12 independent random oracles ROTh,RO𝑏𝑖𝑛𝑑𝑒𝑟 , … ,RO𝑟𝑚𝑠 .
Then, for any adversary , we can construct an adversary  such that

AdvsMSKE
TLS-PSK-DHE() ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 𝑞Send)2

2𝜆
+
𝑞2NewSecret

2𝜆
+
(𝑞RO + 6𝑞Send)2

2𝜆

+
𝑞RO ⋅ 𝑞NewSecret

2𝜆
+
𝑞Send
2𝜆

+ AdvSDHG,𝑝 ()

where 𝑞Send is the number of Send and 𝑞RO the (total) number of random oracle queries
issued by adversary , respectively.

Proof. To prove the bound, we make an incremental series of changes to the symmetric-
key MSKE experiment ExpsMSKE

TLS-PSK-DHE() defined in Figure 5.10. Due to the length of
the upcoming proof, we divide the proof into three phases reflecting the three ways the
adversary can win the security experiment:

1. We establish that the adversary cannot violate predicate Sound.

2. We establish that the adversary cannot violate predicate ExplAuth.

3. Finally, we ensure that all Test queries return uniformly random keys independent
of the challenge bit 𝑏 if predicate Fresh is not violated.

Then, we can conclude that the adversary cannot do better then random guessing to
win the security experiment implying an advantage of 0. In the following, let Game𝛿
denote the event that  in Game 𝛿 wins the game.

game 0. The initial game Game 0 is the sMSKE security experiment ExpsMSKE
TLS-PSK-DHE()

played for the TLS 1.3 PSK-(EC)DHE handshake (with optional 0-RTT) as specified in Fig-
ure 6.2 (right), but without handshake encryption. Note that the functions 𝐇 and TKDF𝑥
for 𝑥 ∈ {𝑏𝑖𝑛𝑑𝑒𝑟, … , 𝑟𝑚𝑠} are modeled as 12 independent random oracles ROTh,RO𝑏𝑖𝑛𝑑𝑒𝑟 ,
… ,RO𝑟𝑚𝑠 . We implement random oracle RO𝑥 by a look-up table ROList𝑥 assigning inputs

172



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

to outputs.2 By definition, we have

Pr[Game0] ≔ Pr[ExpsMSKE
TLS-PSK-DHE() = 1].

Phase 1: Ensuring Predicate Sound cannot be violated

game 1. In Game 1, we eliminate collisions among nonces and group elements com-
puted by honest sessions via two new flags bad𝐶 and bad𝐶′ , and abort the game if either
is set. The flags bad𝐶 and bad𝐶′ are defined identically as in Game 1 defined in the proof
of Theorem 9.1. Using an analogous line of argument, we get that

Pr[Game0] ≤ Pr[Game1] +
2𝑞2Send
2256 ⋅ 𝑝

. (10.1)

game 2. In Game 2, we abort the game if there is a collision among the binder values
computed by any honest session. Whenever two distinct queries to RO𝑏𝑖𝑛𝑑𝑒𝑟 return the
same value, we set a flag bad𝑏𝑖𝑛𝑑𝑒𝑟 and abort the game if this flag is set.

To implement this, we add a table CollList𝑏𝑖𝑛𝑑𝑒𝑟 to the random oracle RO𝑏𝑖𝑛𝑑𝑒𝑟 (this table
is currently redundant to the table implementing RO𝑏𝑖𝑛𝑑𝑒𝑟 , but will be useful in later
game hops, where we will introduce changes such that it is not guaranteed anymore that
all 𝑏𝑖𝑛𝑑𝑒𝑟 values will be contained in the RO𝑏𝑖𝑛𝑑𝑒𝑟 table). Whenever RO𝑏𝑖𝑛𝑑𝑒𝑟 computes a
binder value 𝑏 = RO𝑏𝑖𝑛𝑑𝑒𝑟(𝑝𝑠𝑘, 𝑐𝑡𝑥𝑡), we log CollList𝑏𝑖𝑛𝑑𝑒𝑟 [𝑏] ≔ (𝑝𝑠𝑘, 𝑐𝑡𝑥𝑡). Now, whenever
RO𝑏𝑖𝑛𝑑𝑒𝑟 computes some binder 𝑏 for some tuple 𝑠 and CollList𝑏𝑖𝑛𝑑𝑒𝑟 [𝑏] is not empty, there
has to be a tuple 𝑠′ = (𝑝𝑠𝑘, 𝑐𝑡𝑥𝑡) with RO𝑏𝑖𝑛𝑑𝑒𝑟(𝑝𝑠𝑘, 𝑐𝑡𝑥𝑡) = 𝑏 queried before and we have
found a collision if 𝑠 ≠ 𝑠′. In this case we set bad𝑏𝑖𝑛𝑑𝑒𝑟 .

Then, it holds that

Pr[Game1] ≤ Pr[Game2] + Pr[bad𝑏𝑖𝑛𝑑𝑒𝑟 ].

Next, we bound the probability that the game sets flag bad𝑏𝑖𝑛𝑑𝑒𝑟 . If bad𝑏𝑖𝑛𝑑𝑒𝑟 is set, then
this means that there is a collision in random oracle RO𝑏𝑖𝑛𝑑𝑒𝑟 . That is, there is a pair (𝑠, 𝑠′)
with 𝑠 ≠ 𝑠′ such that RO𝑏𝑖𝑛𝑑𝑒𝑟(𝑠) = RO𝑏𝑖𝑛𝑑𝑒𝑟(𝑠′). We bound this probability using the
birthday bound. There are at most 𝑞RO + 𝑞Send many queries issued to RO𝑏𝑖𝑛𝑑𝑒𝑟 , because
the adversary issues at most 𝑞RO queries to any of the random oracles and the protocol
computes at most 1 binder value per Send query (i.e., per honest session). Therefore, we
have at most 𝑞RO + 𝑞Send many uniform and independent samples from {0, 1}𝜆 in RO𝑏𝑖𝑛𝑑𝑒𝑟 .
Thus, we get that

Pr[bad𝑏𝑖𝑛𝑑𝑒𝑟 ] ≤
(𝑞RO + 𝑞Send)2

2𝜆
.

Hence, we have that

Pr[Game1] ≤ Pr[Game2] +
(𝑞RO + 𝑞Send)2

2𝜆
. (10.2)

2As in the proof of Theorem 9.1, we assume that every of these look-up tables is implemented using a data
structure that allows for constant time access when indexed either by inputs or outputs. An example
for this data structure would be a hash table.

173



10 tight security of the tls-psk handshakes

game 3. In Game 3, we set a flag bad𝑃𝐶 and abort the game whenever the NewSecret
oracle samples a previously sampled pre-shared key (again). Formally, we set bad𝑃𝐶 if
there exist two distinct tuples (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) and (𝑢′, 𝑣′, 𝑝𝑠𝑘𝑖𝑑′) with pskeys[(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑)] =
pskeys[(𝑢′, 𝑣′, 𝑝𝑠𝑘𝑖𝑑′)]. Since the pre-shared keys are uniformly distributed3 on {0, 1}𝜆,
by the birthday bound Then, we have that

Pr[Game2] ≤ Pr[Game3] + Pr[bad𝑃𝐶] ≤ Pr[Game3] +
𝑞2NewSecret

2𝜆
.

Conclusion of Phase 1. At this point, we argue that in Game 3 and any subsequent
games, adversary  cannot violate the Sound predicate without also causing the game
to abort. If any check of Sound is satified, one of the flags we introduced in the previous
games will be set and the game will be aborted. According to the definition of the MSKE
game, there are seven events that cause the predicate Sound to be violated (see Figure 5.6).
For the TLS 1.3 PSK handshakes only six of them are relevant, because the PSK provides
already implicit mutual authentication and therefore there only is one authentication
type. In the following, we argue why each of these events cannot occur in Game 3 and
thus Sound = true needs to hold from Game 3 on. The order presented above does not
reflect order of events as they are presented in Figure 5.6, because some events depend
on each other and for readability we decided to move them around.

1. There are three honest sessions that have the same session identifier at any non-
replayable stage.

Since the only replayable stages are stages 1 (𝑒𝑡𝑠) and 2 (𝑒𝑒𝑚𝑠), consider any later
stage 𝑠 ≥ 3. Recall that session identifiers 𝑠𝑖𝑑 for all stages 𝑠 ≥ 3 contain a
ClientHello message containing the initiator session’s nonce and group element
and a ServerHello message containing the responder session’s nonce and group
element (see Section 10.2). Every session’s 𝑠𝑖𝑑 therefore contains its own randomly
sampled nonce-group element pair. For three sessions to accept the same 𝑠𝑖𝑑[𝑠]
for 𝑠 ≥ 3, there must be two honest sessions who have sampled the same nonce
and group element. Due to Game 1, this would trigger the bad𝐶 flag, leading to
abortion of the game.

2. There are two sessions with the same session identifier in some non-replayable stage
that have the same role.

Session identifiers 𝑠𝑖𝑑[𝑠] for 𝑠 ≥ 3 as defined by TLS 1.3 (see Section 10.2) contain
only one pair of nonce and group element per initiator and responder. If two honest
sessions share a 𝑠𝑖𝑑 and a role, they must also share a nonce and group element.
This case would also trigger the bad𝐶 flag.

3. There are two sessions with the same session identifier in some stage that do not share
the same contributive identifier in that stage.

3 This can be generalized to a different distribution on {0, 1}𝜆, i.e., for any distribution  on {0, 1}𝜆, but
then the denominator has to be adapted to 2𝛼 , where 𝛼 is the min-entropy of .

174



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

Once a session holds both a contributive identifier and a session identifier for the
same stage, both are equal by our definition (see Section 10.2) of the session and
contributive identifiers for TLS 1.3. This case will therefore never occur.

4. There are two sessions that hold the same session identifier for different stages.

This is impossible as the session identifier of stage 𝑠 begins with the unique label
𝑙𝑎𝑏𝑒𝑙𝑠 for stage 𝑠.

5. There are two honest sessions with the same session identifier in some stage that
disagree on the identity of their peer or their 𝑝𝑠𝑘𝑖𝑑.

Two sessions which hold the same session identifier must necessarily agree on
the value of the 𝑏𝑖𝑛𝑑𝑒𝑟 , which is part of the ClientHello message. In Game 2,
we required the game is aborted if two queries to the oracle RO𝑏𝑖𝑛𝑑𝑒𝑟 collide. The
two sessions must therefore also agree on the pre-shared key, which they obtained
from the list pskeys. From Game 3, we have that the game is aborted if any two
distinct entries in pskeys contain the same value. Therefore two sessions can obtain
the same pre-shared key from pskeys only if they hold the same tuple (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑),
meaning they agree on both the peer identities and the pre-shared key identity.

6. Sessions with the same session identifier in some stage do not hold the same key in
that stage.

We have just established that two sessions with the same session identifier must
agree on the peer identities and 𝑝𝑠𝑘𝑖𝑑 (contained in CPSK and SPSK), meaning they
also share the same 𝑝𝑠𝑘. Session identifiers for stages whose keys are derived
from a Diffie–Hellman secret 𝑍 must include both Diffie–Hellman shares 𝑋 and 𝑌
(contained in CKS and SKS). These shares uniquely determine the DH key 𝑍 . Be-
sides that the session identifier also contains the context required to derive the
respective stage keys, which then uniquely determines the stage key. Therefore,
agreement on a session identifier implies agreement on a stage key.

Phase 2: Ensuring Predicate ExplAuth cannot be violated

game 4. In Game 4, we abort the game if two distinct queries to ROTh lead to colliding
outputs. This ensures that each transcript has a unique hash. When such a collision
occurs, we set a new flag bad𝐻 and let the game abort. As in Game 2, we introduce a
table CollListTh to random oracle ROTh. Whenever it computes a hash 𝑑 = ROTh(𝑠) for
some string s, we log CollListTh[𝑑] ≔ 𝑠. This table then is used to set bad𝐻 as in Game 2.

Analogously to Game 2, we bound the probability of bad𝐻 to be set using the birthday
bound. Random oracle ROTh is queried at most 𝑞RO + 6𝑞Send times. Namely at most 𝑞RO
queries issued by the adversary  and up to 6 queries for each session to compute the
distinct transcript hash value. Therefore, we have that

Pr[bad𝐻 ] ≤
(𝑞RO + 6𝑞Send)2

2𝜆
.

175



10 tight security of the tls-psk handshakes

and it follows that

Pr[Game3] ≤ Pr[Game4] +
(𝑞RO + 6𝑞Send)2

2𝜆
.

game 5. In Game 5, we abort the game when the adversary queries any random ora-
cle on a pre-shared key 𝑝𝑠𝑘 before that key has been corrupted via RevLongTermKey.
We introduce some bookkeeping in order to implement this change. First, we add
a reverse look-up table PSKList that is maintained by the NewSecret oracle. When
NewSecret(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) samples a fresh pre-shared key 𝑝𝑠𝑘, we log the tuple under in-
dex 𝑝𝑠𝑘 as PSKList[𝑝𝑠𝑘] ≔ (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑). Note that the pre-shared keys might repeat, so
we may have multiple entries in PSKList indexed by a single 𝑝𝑠𝑘. Second, we add a time
log T to the 12 random oracles RO𝑥 . Each random oracle query containing a pre-shared
key 𝑝𝑠𝑘 now creates an entry T[𝑝𝑠𝑘] ← time, where time is the counter maintained by
the key exchange experiment, unless T[𝑝𝑠𝑘] already exists.

The actual check whether the adversary queries any random oracle with a 𝑝𝑠𝑘 before
it was corrupted is performed at the end of the game, when the game determines its
output. We set a flag bad𝑝𝑠𝑘 if T(𝑝𝑠𝑘) ≤ revpsk(𝑢,𝑣,𝑝𝑠𝑘𝑖𝑑) for any 𝑝𝑠𝑘 ∈ T and (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) ∈
PSKList[𝑝𝑠𝑘]. If the bad𝑝𝑠𝑘 flag was set during this process, then the game aborts (i.e., it
outputs 0).
Next, let us analyze the probability that the game is lost due to flag bad𝑝𝑠𝑘 being set.

Each random oracle query could hit one out of 𝑞NewSecret many pre-shared keys. Before
a given pre-shared key is corrupted or queried to a random oracle, the adversary learns
nothing about its value. Since we assume that pre-shared keys are sampled uniformly
at random from {0, 1}𝜆, the probability to hit a specific one is at most 2−𝜆.4 By the union
bound, we obtain that the probability that the adversary hits any of the pre-shared keys in
a single random oracle query is upper-bounded by NewSecret ⋅ 2−𝜆. Thus, the probability
that bad𝑝𝑠𝑘 is set in response to any of the 𝑞RO many random oracle queries overall is
limited by 𝑞RO ⋅ 𝑞NewSecret ⋅ 2−𝜆. This follows again by applying the union bound.
Hence, we get that

Pr[Game4] ≤ Pr[Game5] + Pr[bad𝑝𝑠𝑘] ≤ Pr[Game5] +
𝑞RO ⋅ 𝑞NewSecret

2𝜆
.

In the next two games, we change the way that partnered sessions compute their
session keys, 𝑏𝑖𝑛𝑑𝑒𝑟 values, and Finished MAC tags. Since we have established in
Phase 1 that partnered sessions will always share the same key, we can compute these
keys only once and let partnered sessions copy the results. This will make it easier to
maintain consistency between partners as we change the way we compute keys and tags.
This approach follows the tight key exchange security proof techniques of Cohn-Gordon
et al. [Coh+19].

game 6. First, we will store all session keys in a look-up table SKEYS under their
session identifiers. Sessions will be able to use this table to easily check if they share a
session identifier with another honest session and thus share a key with a partner.

4 Note that at this point, we use that the pre-shared key distribution is uniform. As already mentioned
before, for any distribution  on {0, 1}𝜆, the probability would be 2−𝛼 , where 𝛼 is the min-entropy of .

176



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

Honest sessions 𝜋 𝑖
𝑢 in the initiator role (clients) will derive the keys 𝑒𝑡𝑠, 𝑒𝑒𝑚𝑠, and 𝑟𝑚𝑠

before their partners. In Game 6, when an initiator session accepts in stage 1 (𝑒𝑡𝑠), 2
(𝑒𝑒𝑚𝑠), or 8 (𝑟𝑚𝑠) it creates a new entry in SKEYS, i.e.,

SKEYS[𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠]] ≔ 𝜋 𝑖

𝑢.𝑠𝑘𝑒𝑦[𝑠]

for 𝑠 ∈ {1, 2, 8}. Honest responder sessions 𝜋𝑗
𝑣 (servers) will derive the keys ℎ𝑡𝑘𝑆 , ℎ𝑡𝑘𝐶 ,

𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , and 𝑒𝑚𝑠 before their partners. These sessions also log their keys in SKEYS

under the appropriate session identifier:

SKEYS[𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑠]] ≔ 𝜋𝑗

𝑣 .𝑠𝑘𝑒𝑦[𝑠]

for 𝑠 ∈ {3, … , 7}.
Note that no two sessions will ever log keys in table SKEYS under the same 𝑠𝑖𝑑. From

Sound, we know that only one initiator and one responder session may have the same
session identifier 𝑠𝑖𝑑[𝑠] in any stage 𝑠. Note that for the replayable stages 1 and 2 (𝑒𝑡𝑠
and 𝑒𝑒𝑚𝑠) we only log once because the messages will only be logged by the initiator
that output the replayed messages and not by the receivers that are receiving them.
We also store 𝑏𝑖𝑛𝑑𝑒𝑟 , 𝑓 𝑖𝑛𝐶 and 𝑓 𝑖𝑛𝑆 MAC tags. When any honest session queries

RO𝑥 with 𝑥 ∈ {𝑏𝑖𝑛𝑑𝑒𝑟, 𝑓 𝑖𝑛𝐶 , 𝑓 𝑖𝑛𝑆}, it logs the response in a second look-up table, TAGS,
indexed by 𝑥 and the inputs to RO𝑥 . That is, for a query (𝑝𝑠𝑘, 𝑍, 𝑑1, 𝑑2) to RO𝑓 𝑖𝑛𝑆 , we log

TAGS[𝑓 𝑖𝑛𝑆 , 𝑝𝑠𝑘, 𝑍, 𝑑1, 𝑑2] ≔ RO𝑓 𝑖𝑛𝑆 (𝑝𝑠𝑘, 𝑍, 𝑑1, 𝑑2).

Since Game 6 only introduces book-keeping steps, we have that

Pr[Game5] = Pr[Game6].

game 7. In Game 7, we change the way the sessions compute their keys and MAC
tags. Namely, if a session has an honest partner in stage 𝑠, instead of computing a key
itself, it copies the stage-𝑠 key already computed by the partner via the table SKEYS

introduced in Game 6. Concretely, the sessions compute their keys depending on their
role as follows.

Honest server sessions. An honest server session 𝜋𝑗
𝑣 , upon receiving (CH, CKS, CPSK),

sets its session identifier for stages 1 (𝑒𝑡𝑠) and 2 (𝑒𝑒𝑚𝑠). It then checks whether keys have
been logged in SKEYS under 𝜋𝑗

𝑣 .𝑠𝑖𝑑[1] and 𝜋𝑗
𝑣 .𝑠𝑖𝑑[2]. If such log entries exist, then 𝜋𝑗

𝑣 has
an honest partner in stages 1 and 2, and copies the keys 𝑒𝑡𝑠 and 𝑒𝑒𝑚𝑠 from SKEYS when
they would instead be computed directly.
Analogously, upon receiving CF, 𝜋𝑗

𝑣 uses SKEYS to check whether there is an honest
client session that shares the same stage-8 (𝑟𝑚𝑠) session identifier 𝜋𝑗

𝑣 .𝑠𝑖𝑑[8], and it copies
the 𝑟𝑚𝑠 key if this is the case. If there are no entries in SKEYS under the appropriate
session identifiers, 𝜋𝑗

𝑣 proceeds as in Game 6 and computes its keys using the random
oracles.

Honest client sessions. An honest client session 𝜋 𝑖
𝑢, upon receiving (SH, SKS, SPSK), sets

its session identifiers for stages 3–7, which identify the keys ℎ𝑡𝑘𝑆 , ℎ𝑡𝑘𝐶 , 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 and

177



10 tight security of the tls-psk handshakes

𝑒𝑚𝑠. It then searches for entries in SKEYS indexed by 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠] for 𝑠 ∈ {3, … , 7}. If these

entries are present for stage 𝑠, then 𝜋 𝑖
𝑣 copies the stage-𝑠 keys from SKEYS instead of

computing them itself. Otherwise, 𝜋 𝑖
𝑢 proceeds as in Game 6 and computes the keys

using the random oracle in each case.

Computation of MAC tags. Finally, all honest sessions (both client and server) which
would query RO𝑥 to compute 𝑥 ∈ {𝑏𝑖𝑛𝑑𝑒𝑟, 𝑓 𝑖𝑛𝐶 , 𝑓 𝑖𝑛𝑆} in Game 6 first check the look-up
table TAGS to see if their query has already been logged. If so, they copy the response
from TAGS instead of making the query to RO𝑥 .
It remains to argue that the procedure of copying the keys in partnered sessions de-

scribed in this game is consistent with computing the keys in Game 6. Recall that sessions
which are partnered in stage 𝑠 must agree on the stage-𝑠 key, since the Sound predicate
cannot be violated. Consider a session 𝜋 𝑖

𝑢 which accepts the stage-𝑠 key 𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[𝑠]. By

Sound, any other session 𝜋𝑗
𝑣 in Game 6 which accepts in stage 𝑠 with 𝜋𝑗

𝑣 .𝑠𝑖𝑑[𝑠] = 𝜋 𝑖
𝑢.𝑠𝑖𝑑[𝑠]

must set its stage-𝑠 key equal to 𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[𝑠]. Although in Game 7 the session 𝜋𝑗

𝑣 may copy
𝜋 𝑖
𝑢.𝑠𝑘𝑒𝑦[𝑠] from table SKEYS instead of deriving it directly, the value of 𝜋𝑗

𝑣 .𝑠𝑘𝑒𝑦[𝑠] does
not change between the two games.
Sessions may also copy queries from look-up table TAGS instead of making the ap-

propriate random oracle query themselves. However, table TAGS simply caches the
response to random oracle queries and does not change them. Hence, the view of the
adversary is identical. This implies that

Pr[Game6] = Pr[Game7].

With the next two games, we finalize Phase 2. First, we postpone the sampling of the
pre-shared key to the RevLongTermKey oracle such that only corrupted sessions hold pre-
shared keys. As a consequence of this change, we can no longer compute session keys and
MAC tags using the random oracles. We will instead sample these uniformly at random
from their respective range and only program the random oracles upon corruption of
the corresponding pre-shared key. After this change, we can show that in order to break
explicit authentication, the adversary must predict a uniformly random Finished MAC
tag, which is unlikely.

game 8. In Game 8, we postpone the sampling of pre-shared keys from the NewSecret
oracle to the RevLongTermKey oracle (if the pre-shared key gets corrupted) or at the end
of the game (if the key remains uncorrupted).
Since we now do not have a PSK anymore for uncorrupted sessions, we cannot use

the random oracle to compute keys or MAC tags in those sessions, but instead sample
them uniformly at random. If the corresponding pre-shared key is corrupted later and a
PSK is chosen (in RevLongTermKey), we will retroactively program the affected random
oracles to ensure consistency.
Concretely, we change the implementation of the game as follows. When NewSecret

receives a query (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), we set pskeys[(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑)] to a special symbol ⋆ instead of
a randomly chosen pre-shared key. The ⋆ serves as a placeholder and signalizes that the
NewSecret oracle already received a query (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), but no PSK has been chosen yet.

178



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

We add (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) to the set PSKList[⋆] to keep track of all tuples with an undefined
PSK.
We let honest sessions whose pre-shared key has not been sampled (yet) but equals

⋆ sample their session keys as well as 𝑏𝑖𝑛𝑑𝑒𝑟 and Finished MAC tags uniformly at
random. Due to the changes introduced in Game 7 we do not need to ensure consistency
when sampling, as we sample each value once and partnered sessions copy the suitable
value from the tables SKEYS and TAGS. (When sessions would log MAC tags in TAGS

under their pre-shared keys in Game 7, those with no pre-shared key use the tuple
(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) instead in this game.) We further log the respective random oracle query
that sessions would normally have used for the computation in a look-up table PrgList𝑥
for later programming of the respective random oracle RO𝑥 . Sessions which would log
their RO-derived values in tables SKEYS and TAGS now log their randomly chosen values
instead. That is, if a session in Game 7 would issue a query (⋆, 𝑍, 𝑐𝑡𝑥𝑡) (where 𝑍 might
be ⊥, e.g., for 𝑒𝑡𝑠 and 𝑒𝑒𝑚𝑠) to random oracle RO𝑥 to compute a value 𝑘, in Game 8 it
chooses 𝑘 uniformly at random from RO𝑥 ’s range and logs

PrgList𝑥[(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), 𝑍, 𝑐𝑡𝑥𝑡] ≔ 𝑘

in the look-up table PrgList𝑥 , where (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) uniquely identifies the used 𝑝𝑠𝑘. Note
that the table PrgList𝑥 is closely related to the random oracle table ROList𝑥 for RO𝑥 . Table
PrgList𝑥 is always usedwhen there is no 𝑝𝑠𝑘 defined for a session, i.e., it has not (yet) been
corrupted. Therefore, we need to make sure that if the 𝑝𝑠𝑘 (identified by (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑))
gets corrupted we are able to reprogram RO𝑥 . Using PrgList𝑥 we can upon corruption of
the pre-shared key associated with (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) efficiently look-up the entries we need
to program from PrgList𝑥 and transfer them to the random oracle table ROList𝑥 after 𝑝𝑠𝑘
has been set. We will discuss the precise process below when we describe how to adapt
the RevLongTermKey oracle.
We must be particularly careful when 𝑥 = 𝑏𝑖𝑛𝑑𝑒𝑟 , because we still wish to set the

bad𝑏𝑖𝑛𝑑𝑒𝑟 flagwhen two randomly chosen binder values collide. Therefore, honest sessions
still record the sampled binder values in list CollList𝑏𝑖𝑛𝑑𝑒𝑟 , so that the bad𝑏𝑖𝑛𝑑𝑒𝑟 flag is set
as before. This ensures that the probability of setting the flag does not change.
We also need to adapt the corruption oracle RevLongTermKey. Upon a query (𝑢, 𝑣,

𝑝𝑠𝑘𝑖𝑑) for which pskeys[(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑)] = ⋆, we perform the following additional steps:
First, we sample a fresh pre-shared key 𝑝𝑠𝑘 $← KE.PSKS and update pskeys, i.e., set
pskeys[(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑)] ≔ 𝑝𝑠𝑘. Next, we need to reprogram the random oracles using the
lists PrgList𝑥 to ensure consistency. Thus, for all 𝑥 we update the random oracle ta-
bles ROList𝑥 for RO𝑥 using PrgList𝑥 as follows. For every entry PrgList𝑥[((𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), 𝑍,
𝑐𝑡𝑥𝑡)] = 𝑘, we set

ROList𝑥[𝑝𝑠𝑘, 𝑍, 𝑐𝑡𝑥𝑡] ≔ 𝑘

where ROList𝑥 is the random oracle table of RO𝑥 . Lastly, we remove (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) from
the set PSKList[⋆] and add it to PSKList[𝑝𝑠𝑘].
To be able to still set bad𝑝𝑠𝑘 , we also make sure that at the end of the game every

pre-shared key is defined before the check against the random oracle time log T intro-
duced in Game 5. We sample a pre-shared key for every tuple (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) ∈ PSKList[⋆],

179



10 tight security of the tls-psk handshakes

setting pskeys[(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑)] $← KE.PSKS, and update the reverse look-up table PSKList

accordingly. As a result, also uncorrupted sessions now have a pre-shared key defined
and we can check the condition for bad𝑝𝑠𝑘 being set as introduced in Game 5.
The changes introduced in Game 8 are unobservable for the adversary as it never

queries the random oracle for an uncorrupted pre-shared key, as otherwise the game
would be aborted due to bad𝑝𝑠𝑘 introduced in Game 5. It hence does not matter whether
the pre-shared key is already set before or upon corruption, because from the view of the
adversary the keys (and the pre-shared key) are uniformly random bitstrings anyway
up to this point. Upon corruption of a pre-shared key, we make sure by reprogramming
the random oracle that all session keys and MAC tag computations are consistent with
sessions that would have otherwise used this pre-shared key but derived all session keys
and MAC tags without it. The procedure at the end of the game does not affect the view
of the adversary as it only retroactively defines keys on which the adversary cannot get
any information about anymore. Consequently,

Pr[Game7] = Pr[Game8].

game 9 (Exclude that honest sessions accept without a partner). In Game 9, we set a
flag badMAC and abort the game if any sessionwith an uncorrupted pre-shared key accepts
stage 5 (ℎ𝑡𝑘𝐶) as initiator, or stage 8 (𝑟𝑚𝑠) as responder, without having a partnered
session. Formally, we set badMAC if there is a session 𝜋 𝑖

𝑢 such that 𝜋 𝑖
𝑢.accepted[𝑠] <

revpsk(𝑢,𝑣,𝜋 𝑖
𝑢.𝑝𝑠𝑘𝑖𝑑) with 𝑣 = 𝜋 𝑖

𝑢.𝑝𝑖𝑑 and

𝑠 =

{
5 if 𝜋 𝑖

𝑢.𝑟𝑜𝑙𝑒 = initiator

8 if 𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒 = responder

and there is no session 𝜋𝑗
𝑣 with 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠] = 𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑠] when 𝜋 𝑖

𝑢 accepts stage 𝑠.
Let us analyze the probability Pr[badMAC]. Consider a session 𝜋 𝑖

𝑢 which triggers the
badMAC flag. In the following analysis, let 𝜋 𝑖

𝑢 be an initiator. For responder sessions
the arguments are analogous. The pre-shared key of session 𝜋 𝑖

𝑢 is uncorrupted, which
means that by the changes of Game 8 it has not been sampled. Therefore 𝜋 𝑖

𝑢 either sam-
ples the ServerFinished MAC tag uniformly at random or copies it from table TAGS
(in which case the MAC tag was uniformly sampled and logged by another honest ses-
sion). First observe that session 𝜋 𝑖

𝑢 will not copy the ServerFinished MAC tag from
table TAGS as this would imply that 𝜋 𝑖

𝑢 is partnered when it accepts in stage 5. This in
turn contradicts that 𝜋 𝑖

𝑢 has triggered flag badMAC. Namely, if 𝜋 𝑖
𝑢 would be able to copy

the ServerFinished MAC tag from table TAGS there must have been another hon-
est session that computed the same ServerFinished MAC, i.e., using the same tuple
(𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), DHE secret, and transcript hash. Recall that the session identifier of stage 5
contains both the ServerFinished message and the transcript hashed to computed the
ServerFinished MAC tag. Further, we have that transcript hashes are unique due to
Game 4. This implies that the session that logged the ServerFinished MAC tag in
TAGS needs to have the same stage-5 session identifier than 𝜋 𝑖

𝑢 meaning 𝜋 𝑖
𝑢 would be

partnered in stage 5.

180



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

Thus, if 𝜋 𝑖
𝑢 triggers badMAC, it must have sampled its ServerFinished MAC tag

at random. Hence, the probability that 𝜋 𝑖
𝑢 triggers the flag badMAC is bounded by 2−𝜆.

Namely, the probability that the sampled value matches the received ServerFinished
message. A union bound over all sessions gives

Pr[badMAC] ≤
𝑞Send
2𝜆

.

Overall, we get that

Pr[Game8] ≤ Pr[Game9] + Pr[badMAC] ≤ Pr[Game9] +
𝑞Send
2𝜆

.

Conclusion of Phase 2. At this point, we argue that in Game 9 and any subsequent
games, adversary cannot violate the ExplAuth predicate without also causing the game
to abort. To this end, we argue that ExplAuth = true holds with certainty from Game 9
on.
The predicate ExplAuth is set to false if there is a session 𝜋 𝑖

𝑢 accepting an explicitly
authenticated stage 𝑠, whose pre-shared keywas not corrupted before accepting the stage
𝑠′ in which it received (perhaps retroactively) explicit authentication, and (1) there is no
honest session 𝜋𝑗

𝑣 partnered to 𝜋 𝑖
𝑢 in stage 𝑠′, or (2) there is an honest partner session 𝜋𝑗

𝑣
for 𝜋 𝑖

𝑢 in stage 𝑠′ but it accepts with a peer identity 𝑤 ≠ 𝑢, with a different pre-shared key
identity than 𝜋 𝑖

𝑢, i.e. 𝜋𝑗
𝑣 .𝑝𝑠𝑘𝑖𝑑 ≠ 𝜋 𝑖

𝑢.𝑝𝑠𝑘𝑖𝑑, or with a different stage-𝑠 session identifier, i.e.
𝜋𝑗
𝑣 .𝑠𝑖𝑑[𝑠] ≠ 𝜋 𝑖

𝑢.𝑠𝑖𝑑[𝑠].
Recall that initiator (resp. responder) sessions receive explicit authentication with ac-

ceptance of stage 5 (resp. stage 8) meaning that all previous stages 1–4 (resp. stages 1–7)
receive explicit authentication retroactively and all future stages 6–8 upon their accep-
tance. From Game 9, we have that any initiator session 𝜋 𝑖

𝑢 accepting stage 5 (resp. any
responder session accepting stage 8) with uncorrupted 𝑝𝑠𝑘must have a partnered session
in that stage. Consequently, case (1) is impossible to achieve.

We next address the possibility of case (2). To achieve explicit authentication for stage
𝑠 ≤ 8, a responder session must have accepted stage 8. From Game 9 on, we know
that 𝜋 𝑖

𝑢 must have a partner with the same stage 8 session identifier. Observe that the
transcripts contained in 𝜋 𝑖

𝑢’s session identifiers for all stages are “sub-transcripts” of
the transcript contained in the session identifier of stage 8. Therefore the partner must
also have the same stage 𝑠 session identifier. Now, since the Sound predicate cannot be
violated in Game 9, we have that all partnered sessions agree on the peer identity and
the pre-shared key identity, so ExplAuth is not violated by session 𝜋 𝑖

𝑢. The same property
holds for initiator sessions accepting stages 𝑠 ≤ 5. So ExplAuth can only be violated if an
initiator session’s stage-5 partner accepts in stage 𝑠 > 5 with a different peer identity,
pre-shared key identifier, or session ID. Since peer and pre-shared key identifiers do
not change after they are set, only the session identifiers may not match in stage 𝑠. The
“sub-transcripts” of stage 6 (𝑎𝑡𝑠𝐶) and 7 (𝑎𝑡𝑠𝑆) session identifiers are identical to those of
stage 5, so a partner in stage 5will also be a partner in stages 6 and 7. Then the only way
to violate predicate ExplAuth is to convince the stage-5 partner, a responder session, to
accept a forged ClientFinishedmessage and accept stage 8. This is impossible because

181



10 tight security of the tls-psk handshakes

the partner will verify the received ClientFinished message against the message sent
by 𝜋 𝑖

𝑢, which it copies from table TAGS. It follows that no session, responder or initiator,
can violate the ExplAuth predicate.

Phase 3: Ensuring that the Challenge Bit is Independently Random

game 10. In this game, we rule out that the adversary manages to guess the DHE
secret of two honestly partnered session to learn about the keys they are computing.
Here, we only look at those session that have a corrupted pre-shared key, because we
already ruled out in Game 5 that the adversary learns something about the keys computed
by these sessions. To that end, we add another flag badDHE to the game and abort the
game when it is set. Flag badDHE is set if the adversary ever queries a random oracle

RO𝑥(𝑝𝑠𝑘, 𝑍,ROTh(𝑠𝑖𝑑[𝑠]))

for (𝑥, 𝑠) ∈ {(ℎ𝑡𝑘𝐶 , 3), (ℎ𝑡𝑘𝑆 , 4), (𝑓 𝑖𝑛𝑆 , 5)(𝑎𝑡𝑠𝐶 , 5), (𝑎𝑡𝑠𝑆 , 6), (𝑒𝑚𝑠, 7), (𝑓 𝑖𝑛𝐶 , 8), (𝑟𝑚𝑠, 8)} such
that

• 𝑝𝑠𝑘 is corrupted, i.e., the adversary made a prior query RevLongTermKey(𝑢, 𝑣,
𝑝𝑠𝑘𝑖𝑑) with pskeys[𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑] = 𝑝𝑠𝑘,

• there are honest sessions 𝜋 𝑖
𝑢 and 𝜋𝑗

𝑣 that are contributively partnered in stage 𝑠
with 𝜋𝑗

𝑣 .𝑐𝑖𝑑𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒[𝑠] = 𝜋 𝑖

𝑢.𝑐𝑖𝑑𝜋 𝑖
𝑢.𝑟𝑜𝑙𝑒[𝑠] = (CH, CKS, CPSK, SH, SKS, SPSK, …), and

• 𝑍 = 𝑔𝑥𝑦 such that CKS = 𝑔𝑥 and SKS = 𝑔𝑦 .5

We bound the probability of flag badDHE being set via a reduction  to the strong
Diffie–Hellman assumption in group G. Reduction  simulates Game 10 for , and it
wins the strong Diffie–Hellman whenever the simulated game would set the badDHE flag.

Construction of reduction . The reduction  gets as input a strong DH challenge
(𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏) as well as access to the oracle DDH𝑎 ≔ DDH(𝑔𝑎, ⋅, ⋅) for the Deci-
sional Diffie–Hellman problem with the first argument fixed. Adversary then honestly
executes the RevSessionKey, Test, and NewSecret oracles as well as the setup and the com-
putation of the output as Game 10 would, managing all game variables itself. We explain
in more detail how answers Send, RevLongTermKey, and random oracle queries.

Whenmakes a query to the Send oracle, delivers the message to a protocol session
in the same way as Game 10. However, the sessions themselves handle messages quite
differently. At a high level, embeds its strongDH challenges into the key shares of every
initiator session and every partnered responder session. When badDHE is triggered, 
learns the Diffie–Hellman secret𝑍 associatedwith two of these embedded key shares, and
it can extract a solution to the strong DH challenge using some basic algebra. However,
 must take care to appropriately program random oracles queries after corruptions,
since it cannot compute Diffie–Hellman secrets for embedded key shares as it does not

5 Note that the game knows the exponents 𝑥 and 𝑦 used by the sessions, but the reduction constructed in
the remainder will not.

182



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

know the corresponding exponents. Next, we describe how client and server sessions
are implemented in Game 10.
But first we explain the (constant-time accessible) look-up tables that are used (or

defined) by reduction  to ensure an efficient implementation:

• The look-up table KSRnd is maintained for all sessions. It holds the random ex-
ponent 𝜏 used by the honest sessions to randomize their key share 𝐺, indexed by
the session’s nonce and key share (𝑟, 𝐺) (see the implementation of the session for
further details). To identify a session uniquely we use its nonce 𝑟 and key share 𝐺
as the index.

• Each random oracle RO𝑥 maintains a look-up table DHEList𝑥 . For each query
RO𝑥(𝑝𝑠𝑘, 𝑍, 𝑑), the table stores the group element 𝑍 indexed by 𝑝𝑠𝑘 and 𝑑.

• Each random oracle RO𝑥 maintains a look-up table RndList𝑥 . It holds a tuple (𝜏, 𝜏′,
𝑐𝑡𝑥𝑡, 𝑘𝑒𝑦) indexed by the pair (𝑝𝑠𝑘, 𝑑). The table holds all necessary information
that is required to reprogram of the random oracle RO𝑥 . The fields 𝑝𝑠𝑘 and 𝑘𝑒𝑦 can
hold special values. If a 𝑝𝑠𝑘 is uncorrupted, we cannot log the information under
it because it is not defined. Therefore, we can use the tuple (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) uniquely
identifying 𝑝𝑠𝑘 instead. Moreover, 𝑘𝑒𝑦 can sometimes be an empty field, because
reprogramming of that value will never occur. When this field is empty, it will not
be accessed as we instead use the remaining information of RndList𝑥 to solve the
SDH challenge. See the remainder of the proof for details.

Implementation of honest server sessions. Consider any server session 𝜋𝑗
𝑣 .

1. Upon receiving (CH, CKS, CPSK), the reduction  first checks whether 𝜋𝑗
𝑣 has an

honest partner in stages 1 (𝑒𝑡𝑠) and 2 (𝑒𝑒𝑚𝑠) by checking for entries indexed by
𝜋𝑗
𝑣 .𝑠𝑖𝑑[1] and 𝜋𝑗

𝑣 .𝑠𝑖𝑑[2] in the look-up table SKEYS introduced in Game 6. If no
such entries exist, then  answers this and all future Send queries just as specified
in Game 10. For the rest of the discussion, we assume the entries do exist.

Session 𝜋𝑗
𝑣 generates its key share SKS by randomizing the challenge key share 𝐵.

Namely, it chooses a randomizer 𝜏𝑗𝑣
$← Z𝑝 uniformly at random and sets 𝑌 ≔ 𝐵⋅𝑔𝜏

𝑗
𝑣 .

Then, it logs 𝜏𝑗𝑣 under index (𝑟𝑆 , 𝑌 ) in the look-up table KSRnd.

2. Before 𝜋𝑗
𝑣 outputs (SH, SKS, SPSK), it computes the keys ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆 . By Game 8,

these keys are sampled randomly when 𝑝𝑠𝑘 is uncorrupted and computed using
ROℎ𝑡𝑘𝐶 , resp. ROℎ𝑡𝑘𝑆 otherwise. In both cases,  needs to know the Diffie–Hellman
secret 𝑍 to log in table PrgList𝑥 or to query RO𝑥 for 𝑥 ∈ {ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆}. However, 
cannot compute 𝑍 because it does not know the discrete logarithms of either CKS
or SKS. Therefore,  needs to compute the keys without knowing the DHE key
using the control over the random oracles. Server 𝜋𝑗

𝑣 first computes ℎ𝑡𝑘𝐶 . If the
pre-shared key has been corrupted, the adversary could potentially have already
queried the random oracle ROℎ𝑡𝑘𝐶 with the query 𝜋𝑗

𝑣 should make. To that end, 
first checks whether the corresponding query for ℎ𝑡𝑘𝐶 was already made to ROℎ𝑡𝑘𝐶 .
Concretely,  computes the context hash 𝑑 = ROTh(CH ‖ ⋯ ‖ SPSK) and checks for

183



10 tight security of the tls-psk handshakes

a suitable ROℎ𝑡𝑘𝐶 query using the look-up table DHEListℎ𝑡𝑘𝐶 [𝑝𝑠𝑘, 𝑑] maintained in
ROℎ𝑡𝑘𝐶 (see above for the definition). Reduction  queries DDH𝑎(𝑌 , 𝑍 ⋅ 𝑌 −𝜏𝑖𝑢) for
all 𝑍 ∈ DHEListℎ𝑡𝑘𝐶 [𝑝𝑠𝑘, 𝑑], where 𝜏𝑖𝑢 is the randomizer used by the honest partner
of 𝜋𝑗

𝑣 , which can be looked up from KSRnd[𝑟𝐶 , 𝑋] using 𝜋 𝑖
𝑢’s nonce and key share.

6 If any one of these queries is answered positively, we have by the definition of
DDH𝑎 that 𝑍 ⋅ 𝑌 −𝜏𝑖𝑢 = 𝑌 𝑎, which implies that 𝑍 = 𝑌 𝑎+𝜏𝑖𝑢 = 𝑋 𝑏+𝜏𝑗𝑣 by definition of
𝑌 and 𝑋 , which was computed by the honest partner 𝜋 𝑖

𝑢 that has output the CH
message received by 𝜋𝑗

𝑣 . This exactly is the 𝑍 value that 𝜋𝑗
𝑣 would have computed

if we would have known the discrete logarithm of 𝐵. Hence, we have found the
right 𝑍 value and only need to derandomize it to win the challenge. Therefore, we
let  submit the value

𝑍 ⋅ 𝑌 −𝜏
𝑖
𝑢 ⋅ 𝐴−𝜏𝑗𝑣 = 𝑌 𝑎 ⋅ 𝐴−𝜏𝑗𝑣 = (𝑔𝑎)𝑏+𝜏

𝑗
𝑣 ⋅ (𝑔𝑎)−𝜏

𝑗
𝑣 = 𝑔𝑎𝑏

as a solution to the strong Diffie–Hellman problem.

Observe that if badDHE is set due to a query to ROℎ𝑡𝑘𝐶 in Game 10, there is a random
oracle query such that one of the above DDH𝑎 queries will be answered positively.
Thus,  will win if badDDH is set. We do the same for ℎ𝑡𝑘𝑆 with ROℎ𝑡𝑘𝑆 .

If in the above process no query is answered positively, i.e., badDDH will also not
be set, then 𝜋𝑗

𝑣 samples the key ℎ𝑡𝑘𝐶
$← {0, 1}𝑙+𝑑 itself and logs the following

information so that future RO queries can be answered appropriately:

RndListℎ𝑡𝑘𝐶 (𝑝𝑠𝑘, 𝑑 = 𝐻(CH ‖ ⋯ ‖ SPSK)) ≔ (𝜏𝑖𝑢, 𝜏
𝑗
𝑣 , (CH ‖ ⋯ ‖ SPSK), ⊥) .

Again, we do the same for ℎ𝑡𝑘𝑆 .

If 𝑝𝑠𝑘 is not corrupted, then badDDH cannot possibly have been set and we do not
need to worry about consistency with earlier random oracle queries. Therefore,
we do not need to do the process described above and immediately sample ℎ𝑡𝑘𝐶
and ℎ𝑡𝑘𝑆 randomly as in Game 10. It logs the keys in table SKEYS under their
respective session identifiers, which do not contain 𝑍 or any unknown values. In
Game 10, we added entries to PrgListℎ𝑡𝑘𝐶 and PrgListℎ𝑡𝑘𝑆 in order to program future
random oracle queries upon corruption. The reduction cannot do this here as it
does not know 𝑍 ; instead, it logs

RndList𝑥[((𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), 𝑑 = 𝐻(CH ‖ ⋯ ‖ SPSK))] ≔ (𝜏𝑖𝑢, 𝜏
𝑗
𝑣 , (CH ‖ ⋯ ‖ SPSK), ⊥) .

for 𝑥 ∈ {ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆}. This will allow  to win if a later RevLongTermKey or random
oracle query triggers badDDH.

3. To compute the ServerFinished message  proceeds exactly as in Step 2 ex-
cept that it uses the random oracle RO𝑓 𝑖𝑛𝑆 and context CH ‖ ⋯ ‖ EE through the

6Although this may cause several DDH queries in response to a single Send query,  is still “effi-
cient” because it only checks random oracle queries whose context is 𝑑, and due to the lack of both
nonce/group element and hash collisions 𝑑 is unique to session 𝜋 𝑖

𝑢 and its partner. Therefore each entry
in DHEListℎ𝑡𝑘𝐶 [𝑝𝑠𝑘, 𝑑] will be checked at most twice over the course of the entire reduction.

184



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

EncryptedExtensions. Also, the ServerFinishedmessage is computed first by
the server, so  does not check table SKEYS or TAGS for any entries. Reduction 
also cannot log the inputs to random oracle query RO𝑓 𝑖𝑛𝑆 in table TAGS (as done
since game Game 6) because it does not know 𝑍 . Instead, it logs the derived value
of 𝑓 𝑖𝑛𝑆 in table TAGS and replaces 𝑍 in the index of TAGS by (𝜏𝑖𝑢, 𝜏𝑗𝑣 , (CH ‖ ⋯ ‖ EE)).
That is, if it computes 𝑓 𝑖𝑛𝑆 for inputs 𝑝𝑠𝑘, 𝑑1, and 𝑑2, it logs

TAGS[𝑓 𝑖𝑛𝑆 , 𝑝𝑠𝑘, (𝜏
𝑖
𝑢, 𝜏

𝑗
𝑣 , (CH ‖ ⋯ ‖ EE)), 𝑑1, 𝑑2] ≔ 𝑓 𝑖𝑛𝑆 .

That way, it is possible to identify 𝑍 without knowing it. For 𝑓 𝑖𝑛𝑆 , we keep the
same notation for the sets DHEList𝑥 , RndList𝑥 and ROList𝑥 numbered as the corre-
sponding random oracle RO𝑥 .

4. Reduction  proceeds exactly as for 𝑓 𝑖𝑛𝑆 above, except that we again use different
random oracles and the context 𝑠𝑖𝑑𝑎𝑡𝑠𝐶 = CH ‖ ⋯ ‖ SF = 𝑠𝑖𝑑𝑎𝑡𝑠𝑆 = 𝑠𝑖𝑑𝑒𝑚𝑠 , where 𝑠𝑖𝑑𝑥
denotes transcript contained in the session identifier which is prefixed by “𝑥”, and
thus the hash 𝑑 = ROTh(CH ‖ ⋯ ‖ SF). With respect to random oracles, we have
RO𝑎𝑡𝑠𝐶 for 𝑎𝑡𝑠𝐶 , RO𝑎𝑡𝑠𝑆 for 𝑎𝑡𝑠𝑆 and RO𝑒𝑚𝑠 for 𝑒𝑚𝑠, respectively. Reduction  logs
the keys in table SKEYS under their respective session identifiers, which do not
contain 𝑍 or any unknown values.
After this is done, 𝜋𝑗

𝑣 outputs (EE, SF).
5. Upon receiving CF, looks for a suitable entry for 𝑓 𝑖𝑛𝐶 in TAGS. If there is a value

𝑓 𝑖𝑛𝐶 consistent with 𝜋𝑗
𝑣 ’s view,  terminates the session as specified if CF does not

match the looked-up value of 𝑓 𝑖𝑛𝐶 . Otherwise,  continues to compute 𝑟𝑚𝑠. To
this end,  checks whether there is an entry in SKEYS that matches the stage-8
session identifier of 𝜋𝑗

𝑣 , if yes 𝜋𝑗
𝑣 simply copies that entry. If not, first observe that

if there is no entry in SKEYS there is no honest stage-8 partner, which implies that
𝑝𝑠𝑘 needs to be corrupted as otherwise the game would have been aborted due to
badMAC introduced in Game 9. Therefore, the adversary also would be allowed to
query RO𝑟𝑚𝑠 to compute 𝑟𝑚𝑠. Thus,  needs to check whether the value for 𝑟𝑚𝑠
is already set. Here, we need to distinguish two cases. Namely, whether there is
an honest contributive stage-3 partner or not.
First note that as described in Step 1,  does not embed its challenge in SKS if
there is no honest session output the ClientHello received, i.e., there is no hon-
est contributive stage-3 partner. Therefore, here  can simply implement 𝜋𝑗

𝑣 as
specified in Game 10.
In case there is an honest contributive stage-3 partner, then proceeds as described
in Step 2 for oracle RO𝑟𝑚𝑠 and context hash 𝑑 = ROTh(𝑠𝑖𝑑𝑟𝑚𝑠) = ROTh(CH ‖ ⋯ ‖ CF)
to check whether the adversary already solved the SDH challenge for . Note
that the stage-3 session identifier uniquely defines the DH key, thus if there is an
honest partner and there is a respective RO𝑟𝑚𝑠 query, the adversary has to break
SDH to submit the query.

Implementation of honest client sessions. Consider any client session 𝜋 𝑖
𝑢.

185



10 tight security of the tls-psk handshakes

1. The reduction  proceeds exactly as in Game 10 until the session chooses its key
share. Instead of choosing a fresh exponent as specified in Figure 6.2, it chooses
a value 𝜏𝑖𝑢

$← Z𝑝 uniformly at random and sets 𝑋 ≔ 𝐴 ⋅ 𝑔𝜏𝑖𝑢 as its key share in
the ClientKeyShare message. Further, it logs 𝜏𝑖𝑢 in KSRnd indexed with (𝑟𝐶 , 𝑋).
The rest is exactly as specified in Game 10. That is, it computes 𝑒𝑡𝑠 and 𝑒𝑒𝑚𝑠 and
outputs (CH, CKS, CPSK).

2. Upon receiving (SH, SKS, SPSK), 𝜋 𝑖
𝑢 checks whether there is an entry

SKEYS[("ℎ𝑡𝑘𝐶", CH, … , SPSK)] ≠ ⊥.

If this is the case, 𝜋 𝑖
𝑢 knows that there is an honest stage-3 partner, and it copies

all the keys stored under 𝜋 𝑖
𝑢’s session identifier as defined in Game 10. If there is

no suitable entry,  faces the problem that it already “committed” to not knowing
the discrete logarithm of 𝜋 𝑖

𝑢’s key share 𝑋 by embedding 𝐴 into it and thus we are
not able to compute the DHE value. Since there is no entry in SKEYS for ℎ𝑡𝑘𝐶 , we
know that there is no honest stage-3 partner session by definition of SKEYS. That
is, no honest server session computed SKS and thus it must have been chosen by
the adversary. If the pre-shared key is corrupted,  needs to use the DDH𝑎 oracle
to check whether there already was a query issued to RO𝑥 for 𝑥 ∈ {ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆}.
If this is not the case, 𝜋 𝑖

𝑢 freshly samples random keys and remembers them for
possible retroactive reprogramming of the random oracle. Concretely, we do the
following for each random oracle RO𝑥 for 𝑥 ∈ {ℎ𝑡𝑘𝐶 , ℎ𝑡𝑘𝑆}:

First compute 𝑑 = ROTh(CH ‖ … ‖ SPSK) and then query the DDH𝑎 oracle for all
𝑍 ∈ DHEList𝑥[𝑝𝑠𝑘, 𝑑], where 𝑝𝑠𝑘 is the pre-shared key used by 𝜋 𝑖

𝑢, as

DDH𝑎(𝑌 , 𝑍 ⋅ 𝑌 −𝜏
𝑖
𝑢) = 1 ⟺ 𝑍 = 𝑌 𝑎,

where 𝑌 is the DH key share contained in SPSK. See the server session implemen-
tation above for further explanation. If there is any of these queries is answered
positively, let the respective key be RO𝑥(𝑝𝑠𝑘, 𝑍, 𝑑). If there is no 𝑍 that results in
a positive query, let 𝑘𝑒𝑦 $← {0, 1}𝜆 be sampled at random, and  logs the value for
possible later reprogramming of the random oracle RO𝑥 , i.e.,

RndList𝑥[(𝑝𝑠𝑘, 𝑑 = ROTh(CH ‖ ⋯ ‖ SPSK))] ≔ (𝜏𝑖𝑢, ⊥, (CH ‖ ⋯ ‖ SPSK), 𝑘𝑒𝑦) .

After that 𝜋 𝑖
𝑣 either has copied the keys or chose them itself and will accept all of

the stage keys among these keys.

If the 𝑝𝑠𝑘 of 𝜋 𝑖
𝑢 has not been corrupted, then no “right” query can have been made

and the keys be sampled randomly. However, we still need to program future
“right” RO queries after a corruption. Therefore set

RndList𝑥[(𝑝𝑠𝑘, 𝑑 = ROTh(CH ‖ ⋯ ‖ SPSK))] ≔ (𝜏𝑖𝑢, ⊥, (CH ‖ ⋯ ‖ SPSK), 𝑘𝑒𝑦) .

PrgList𝑥 is not updated as in Game 10, because 𝑍 is unknown.

186



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

3. Upon receiving (EE, SF), similar to the previous step, 𝜋𝑗
𝑣 checks whether there is

an entry in SKEYS and TAGS (to verify SF) corresponding to its stage-5 session
identifier. If this is the case, it copies the keys from that list. In case there is none,
we have that there is no honest stage-5 partner. Here, we need to distinguish the
case whether there was an honest stage-3 partner before or not.

Namely, the adversary could corrupt the 𝑝𝑠𝑘, then change the EE output by an
honest session and then compute a new SF message for the changed transcript.
Hence, there is an honest stage-3 partner, but no stage-5 partner. In this case,
 again applies the approach from above (see implementation of server session,
Step 2) for the random oracles RO𝑥 for 𝑥 ∈ {𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , 𝑒𝑚𝑠} and the context 𝑑 =
ROTh(CH ‖ ⋯ ‖ SF) checking whether the random oracles received already a correct
query which set the keys 𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 and 𝑒𝑚𝑠. If this is the case and since there
was a stage-3 partner,  has embedded the DH challenge in both the client and
the server, this solves the strong Diffie–Hellman problem. When there is no such
query the keys are chosen at random and all necessary information for possible
retroactive programming of the random oracles RO𝑥 is logged in the table RndList𝑥 .
Please see above for details.

However, if there is no honest stage-3 partner, SKS was chosen by the adversary.
Hence,  needs to apply the procedure described in the previous step (Step 2) and
use the oracle DDH𝑎 to check the random oracles RO𝑥 for 𝑥 ∈ {𝑎𝑡𝑠𝐶 , 𝑎𝑡𝑠𝑆 , 𝑒𝑚𝑠}
whether they already set the keys. The important difference here is that a posi-
tive answer of the DDH𝑎 oracle does not solve stDH, as SKS was chosen by the
adversary. Note that  again needs to make sure that it gathers all the informa-
tion needed to make retroactive programming of the random oracles possible by
logging information in RndList𝑥 as before.

4. 𝜋 𝑖
𝑢 computes 𝑓 𝑖𝑛𝐶 using the same process as above: if 𝑝𝑠𝑘 is corrupted, it checks

for RO queries in DHEList𝑓 𝑖𝑛𝐶 [𝑝𝑠𝑘, 𝑑] that could set badDHE when 𝜋 𝑖
𝑢 has an honest

partner in stage 8 or fix the value of 𝑓 𝑖𝑛𝐶 when no honest partner exists. It then
solves SDH or sets 𝑓 𝑖𝑛𝐶 accordingly. If no earlier RO query matches 𝑓 𝑖𝑛𝐶 , then
we sample 𝑓 𝑖𝑛𝐶 randomly and log 𝜏𝑖𝑢, 𝑓 𝑖𝑛𝐶 , and the transcript in table RndList𝑓 𝑖𝑛𝐶
under 𝑝𝑠𝑘 and the transcript hash 𝑑. If 𝑝𝑠𝑘 is uncorrupted, 𝜋 𝑖

𝑢 immediately samples
𝑓 𝑖𝑛𝐶 randomly and logs 𝜏𝑖𝑢, 𝑓 𝑖𝑛𝐶 , and the transcript in RndList𝑓 𝑖𝑛𝐶 under index
((𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), 𝑑).

Next we compute 𝑟𝑚𝑠. As 𝜋 𝑖
𝑢 is not able to compute 𝑍 independent of there being

a honest stage-3 partner or not,  need to apply the same procedure that was
described before in Step 3, when there was no stage-5 partner for random oracle
RO𝑟𝑚𝑠 and context 𝑑 = ROTh(CH ‖ ⋯ ‖ CF). The only difference is that in case there
was a stage-3 partner, a SDH solution is output when the DDH oracle returns true,
and if there is no stage-3 partner, 𝑟𝑚𝑠 is only programmed. Then, 𝜋 𝑖

𝑢 outputs CF.

Besides changing the implementation of the session oracles, we also need to adapt
the random oracles RO𝑥 for 𝑥 ∈ {ℎ𝑡𝑘𝐶 , … , 𝑟𝑚𝑠} to make sure (1)  programs the random

187



10 tight security of the tls-psk handshakes

oracle retroactively if the random oracle receives the right query and (2) to checkwhether
the adversary computed 𝑍 for  for honestly partnered sessions.

Implementation of random oracle RO𝑥 . If RO𝑥 receives a query that was already
answered, it answers consistently. However, if there is a new query of the form (𝑝𝑠𝑘, 𝑍, 𝑑),
it appends 𝑍 to the set DHEList𝑘[𝑝𝑠𝑘, 𝑑]. If RndList𝑘[𝑝𝑠𝑘, 𝑑] ≠ ⊥, then there already was
a session using 𝑝𝑠𝑘 and context hash 𝑑 trying to compute a key without knowing the
correct DHE secret. Therefore,  uses the DDH𝑎 oracle to check whether 𝑍 is that
secret. Let (𝜏𝑖𝑢, 𝜏𝑗𝑣 , 𝑐𝑡𝑥𝑡, 𝑘𝑒𝑦) be the entry of RndList𝑘[𝑝𝑠𝑘, 𝑑], where 𝜏𝑖𝑢 and 𝜏𝑗𝑣 denote
the randomness used by the client and the server to randomize the DDH challenge,
respectively, 𝑐𝑡𝑥𝑡 = CH ‖ CKS ‖ CPSK ‖ SH ‖ SKS ‖ SPSK ‖ ⋯ denotes the context such that
𝑑 = ROTh(𝑐𝑡𝑥𝑡) and 𝑘𝑒𝑦 denotes the key chosen by the session since there was no random
oracle fixing it. Using this information, it fetches SKS = 𝑌 and queries DDH𝑎(𝑌 , 𝑍 ⋅ 𝑌 −𝜏𝑖𝑢).
If this query is answered positively,  knows that the right DH value 𝑍 was queried. If
𝜏𝑗𝑢 = ⊥, i.e., the log in RndList𝑘 was set by a client without an honestly partnered server,
needs to program the random oracle to be consistent. That is, ROList𝑘[𝑝𝑠𝑘, 𝑍, 𝑑] ≔ 𝑘𝑒𝑦.
Otherwise,  knows that the PrgList𝑥 entry was set by an honestly partnered session,
and thus 𝑍 is a randomized solution to the DDH challenge. Thus,  submits the solution
𝑍 ⋅ 𝑌 −𝜏𝑖𝑢 ⋅ 𝐴−𝜏𝑗𝑣 to its SDH instance.
Unless  solved the SDH challenge, the oracle outputs ROList𝑥[𝑝𝑠𝑘, 𝑍, 𝑑].

Implementation of corruption oracle RevLongTermKey. Finally,  needs to handle
corruptions via the RevLongTermKey oracle. Since Game 8, the RevLongTermKey oracle
upon input (𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑) samples a fresh 𝑝𝑠𝑘. It then uses lists PrgList𝑥 to program all
the random oracles RO𝑥 for consistency with any sessions whose pre-shared key is now
𝑝𝑠𝑘. Reduction  still does this, but in our reduction, the lists PrgList𝑥 are no longer
comprehensive. Some sessions fix the outputs of RO𝑥 on some query without knowing
the DHE input to that query. These sessions create log entries in RndList𝑥 , not PrgList𝑥 ,
and the entries have indices of the form ((𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), 𝑑).  cannot use these entries to
program past RO𝑥 queries, but this is not necessary since any past RO𝑥 query containing
𝑝𝑠𝑘 would set the bad𝑝𝑠𝑘 flag and cause the game to abort.  also cannot program future
queries because we still do not know the DHE key. Instead, just updates eachmatching
entry in PrgList𝑥 so that its index is (𝑝𝑠𝑘, 𝑑) instead of ((𝑢, 𝑣, 𝑝𝑠𝑘𝑖𝑑), 𝑑). Future RO𝑥 queries
containing 𝑝𝑠𝑘 will then handle strong DH checking and programming for .

By the considerations above, we have that if badDHE is set thewins the SDH challenge.
Then, by the considerations above

Pr[Game9] ≤ Pr[Game10] + Pr[badDHE] ≤ Pr[Game10] + AdvSDHG,𝑝 ().

Conclusion of Phase 3. We finally argue that the adversary’s probability in determin-
ing the challenge bit 𝑏 in Game 10 is at most 1

2 if the Fresh predicate is true. First, recall
that Fresh = true implies no session can be tested and revealed in the same stage, and
a tested session’s partner may also be neither tested nor revealed in that stage. In the
following, we refer to a session being “fresh” in a stage if this session does not violate the

188



10.3 Tight Security of TLS 1.3 PSK-(EC)DHE Handshake

conditions defined in the predicate Fresh in that stage. The Fresh predicate depends on
the level of forward secrecy reached at the time of each Test query. First, if a session is
tested in a non-forward secret stage, it remains only fresh if the 𝑝𝑠𝑘 was never corrupted.
Second, if a session is tested in a weak forward secret 2 stage 𝑠, it remains fresh if the 𝑝𝑠𝑘
was never corrupted or if there is a contributive partner in stage 𝑠. Lastly, if a session is
tested on a forward secret stage 𝑠, it remains fresh the 𝑝𝑠𝑘 was corrupted after forward
secrecy was established for that stage (perhaps retroactively) or if there is a contributive
partner.

Next, we argue for each level of forward secrecy that all tested keys in Game 10 which
do not violate Fresh are uniformly and independently distributed from the view of the
adversary. For the non-forward secret stages 1 (𝑒𝑡𝑠) and 2 (𝑒𝑒𝑚𝑠), the adversary cannot
corrupt the 𝑝𝑠𝑘 of all sessions that it queried Test on stage 1 or 2. Since Game 8, we
sample all session keys derived from uncorrupted pre-shared keys uniformly at random,
or copy uniformly random keys from SKEYS. That is, the key returned by the Test query
is a uniformly random key independent of the challenge bit 𝑏. Therefore, it cannot learn
anything about either 𝑒𝑡𝑠 nor 𝑒𝑒𝑚𝑠 of any session with an uncorrupted key, and thus the
response of a Test query will be a uniformly random string independent of the challenge
bit 𝑏 from the view of the adversary.

All other stages, i.e., stages 3–8, are weak forward secret 2 upon acceptance and become
forward secret as soon as the session achieves explicit authentication. If the pre-shared
key is never corrupted, we have by the same arguments given for the non-forward secret
stages that the adversary receives a uniformly random key in response to the Test query
independent of the challenge bit.

It remains to argue that the same is true if there is a contributive partner and the 𝑝𝑠𝑘
is corrupted. In this case, the adversary would need to make a random oracle query that
triggers badDHE introduced in Game 10 and would cause the game to abort. Without such
a query the respective key is just a uniformly and independently distributed bitstring
from the adversary’s view. Hence, without losing the game, the adversary cannot learn
anything about a weak forward secret 2 key, and thus it does not learn anything from
the response of the Test query.
Since forward secret stages are weak forward secret 2 until explicit authentication is

established, we only consider the case that a session that is tested on a weak forward
secret 2 stage was corrupted after forward secrecy has been (retroactively) established.
As we only establish forward secrecy after explicit authentication has been achieved, we
can be sure due to ExplAuth never being violated that there is a partnered session for
that stage. Hence, there also is a contributive partner and by the same arguments as
given before the adversary would trigger badDHE and lose the game before it can learn
something about the session.

Overall, we have that the adversary in Game 10 cannot gain any information on the
challenge bit 𝑏 without violating any of the predicates Sound, ExplAuth, or Fresh. Thus,
the probability that Game 10 returns 1 is no greater than 1/2. Formally,

Pr[Game10] ≤
1
2
.

189



10 tight security of the tls-psk handshakes

Collecting all the terms, we get the final bound

Pr[ExpsMSKE
TLS-PSK-DHE() = 1] ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 𝑞Send)2

2𝜆
+
𝑞2NewSecret

2𝜆
+
(𝑞RO + 6𝑞Send)2

2𝜆

+
𝑞RO ⋅ 𝑞NewSecret

2𝜆
+
𝑞Send
2𝜆

+ AdvSDHG,𝑝 () +
1
2

which implies that

AdvsMSKE
TLS-PSK-DHE() ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 𝑞Send)2

2𝜆
+
𝑞2NewSecret

2𝜆
+
(𝑞RO + 6𝑞Send)2

2𝜆

+
𝑞RO ⋅ 𝑞NewSecret

2𝜆
+
𝑞Send
2𝜆

+ AdvSDHG,𝑝 ()

10.3.2 Tight Security Bound for the PSK-(EC)DHE Handshake

To deduce a tight security bound for the PSK-(EC)DHE handshake as defined in Figure 6.2,
we proceed as in Section 9.3.2. In particular, this bound applies to the protocol that
uses handshake traffic encryption and internal key (ℎ𝑡𝑘𝐶 and ℎ𝑡𝑘𝑆), and only the hash
function 𝐇 is modeled as a random oracle RO𝐻 . To deduce the this bound, we define the
following intermediate protocols:

• KE is the protocol defined in Theorem 7.4, i.e., the TLS 1.3 PSK-(EC)DHE handshake
protocol described in Figure 6.2 with 𝐇 ≔ RO𝐻 and 𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝
defined from 𝐇 as in Chapter 6 (with handshake encryption). This is the protocol,
we give the final bound for.

• KE1 is the protocol defined in Theorem 7.4 (as KE′), i.e., the PSK-(EC)DHE hand-
shake protocol described on the right-hand side of Figure 7.2, with 𝐇 ≔ ROTh

and TKDF𝑥 ≔ RO𝑥 , where ROTh, RO𝑏𝑖𝑛𝑑𝑒𝑟 , . . . , RO𝑟𝑚𝑠 are random oracles (with
handshake encryption).

• KE2 is the protocol defined in Theorem 8.3, i.e., PSK-(EC)DHE handshake protocol
described on the right-hand side of Figure 7.2, with 𝐇 ≔ ROTh and TKDF𝑥 ≔ RO𝑥 ,
where ROTh, RO𝑏𝑖𝑛𝑑𝑒𝑟 , . . . , RO𝑟𝑚𝑠 are random oracles as KE1, but without handshake
encryption. This is the protocol TLS-PSK-DHE, we have proven tightly secure in
Theorem 10.1.

Let  be any adversary against the sMSKE security of KE and let 𝑞RO and 𝑞Send be
the number of queries issued by  to the random oracle RO (in total) and oracle 𝑞Send,
respectively, then Theorem 7.4 grants that we can construct an adversary 1 such that

AdvsMSKE
KE () ≤ AdvsMSKE

KE1
(1) +

2(12𝑞Send + 𝑞RO)2

2𝜆
+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆
.

Applying Theorem 8.3 yields that we can construct an adversary 2 from 1 such that

AdvsMSKE
KE () ≤ AdvsMSKE

KE2
(2) +

2(12𝑞Send + 𝑞RO)2

2𝜆
+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆
.

190



10.4 Tight Security of the TLS 1.3 PSK-only Handshake

Finally, applying Theorem 10.1 yields that we can construct an adversary  such that

AdvsMSKE
KE () ≤

2𝑞2Send
2256 ⋅ 𝑝

+
(𝑞RO + 𝑞Send)2

2𝜆
+
𝑞2NewSecret

2𝜆
+
(𝑞RO + 6𝑞Send)2

2𝜆

+
𝑞RO ⋅ 𝑞NewSecret

2𝜆
+
𝑞Send
2𝜆

+ AdvSDHG,𝑝 () +
2(12𝑞Send + 𝑞RO)2

2𝜆

+
2𝑞2RO
2𝜆

+
8(𝑞RO + 36𝑞Send)2

2𝜆

=
2(12𝑞Send + 𝑞RO)2 + 2𝑞2RO + 8(𝑞RO + 36𝑞Send)2

2𝜆
+

2𝑞2Send
2256 ⋅ 𝑝

+ AdvSDHG,𝑝 ()

+
(𝑞RO + 𝑞Send)2 + 𝑞2NewSecret + (𝑞RO + 6𝑞Send)2 + 𝑞RO ⋅ 𝑞NewSecret + 𝑞Send

2𝜆

Formally, we get the following final result for the TLS 1.3 PSK-(EC)DHE handshake
protocol.

Corollary 10.1. Let KE be the TLS 1.3 PSK-(EC)DHE handshake protocol as specified in
Figure 6.2. Let G be standardized group with order 𝑝. Let 𝜆 ∈ N be the output length in bits
of the hash function 𝐇. Further, let 𝐇 be modeled as a random oracle RO𝐻 and let 𝐌𝐀𝐂,
𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝 defined from 𝐇 as in Chapter 6. Then, for any adversary, we can
construct an adversary  such that

AdvsMSKE
KE () ≤

2(12𝑞Send + 𝑞RO)2 + 2𝑞2RO + 8(𝑞RO + 36𝑞Send)2

2𝜆
+

2𝑞2Send
2256 ⋅ 𝑝

+ AdvSDHG,𝑝 ()

+
(𝑞RO + 𝑞Send)2 + 𝑞2NewSecret + (𝑞RO + 6𝑞Send)2 + 𝑞RO ⋅ 𝑞NewSecret + 𝑞Send

2𝜆

where 𝑞Send is the number of Send and 𝑞RO the (total) number of random oracle queries
issued by adversary , respectively.

10.4 Tight Security of the TLS 1.3 PSK-only Handshake

In this section, we briefly discuss how the tight security proof for the TLS 1.3 PSK-
(EC)DHE handshake presented in Section 10.3.1 can be adapted to the PSK-only hand-
shake. Then, we state the theorems for the abstracted TLS 1.3 PSK-only handshake as
specified on the right-hand side in Figure 7.2 without handshake encryption and finally,
for the TLS 1.3 PSK-only handshake as presented in Figure 6.2.

On adapting our PSK-(EC)DHE proof to PSK-only. The structure and the resulting
tight security bound is in essence the same. However, there is of course the significant
difference that the PSK-only mode does perform a Diffie–Hellman key exchange and
therefore, there is no DH group and the messages ClientHello and ServerHello are
different in that they do not contain a group element as key share (i.e., the messages
ClientKeyShare and ServerKeyShare are not present). Consequently, we do not have
a reduction to the SDH problem in Game 10. The main consequence of the absence of

191



10 tight security of the tls-psk handshakes

the Diffie–Hellman values is that none of the keys can be forward secret. An adversary
that gets hold of a user’s pre-shared key can compute (resp. recompute) all previous and
future session keys of that user.

Technically, the security proof for the TLS 1.3 PSK-only handshake would yield almost
the same sequence of games as presented in Section 10.3.1. In particular, it would consist
of the Games 0 to 9 (only excluding Game 10, which excluded the adversary guessing
the DHE key). Games 2 to 9 remain almost identically ignoring everything that is related
to the Diffie–Hellman values (e.g., in indexes). The only significant change is in Game 1,
in which we exclude collision among the nonces and group elements chosen by honest
sessions. In the PSK-only mode honest sessions do not sample a group element, and
therefore Game 1 for the PSK-only mode only focuses on collisions among the nonces.
Thus, the bound for Game 0 in the PSK-only mode is

Pr[Game0] ≤ Pr[Game1] +
2𝑞2Send
2256

.

We then obtain a similar result as presented in Section 10.3.1 for the abstracted TLS 1.3
PSK-only handshake as presented in the right-hand side of Figure 7.2 without handshake
encryption.

Theorem 10.2. Let TLS-PSK be the TLS 1.3 PSK-only handshake protocol (with optional
0-RTT) as specified on the right-hand side in Figure 7.2 without handshake encryption. Let
𝜆 be the output length in bits of 𝐇, and let the pre-shared key space be KE.PSKS = {0, 1}𝜆.
Further, let 𝐇 and TKDF𝑥 for each 𝑥 ∈ {𝑏𝑖𝑛𝑑𝑒𝑟, … , 𝑟𝑚𝑠} be modeled as 12 independent
random oracles ROTh,RO𝑏𝑖𝑛𝑑𝑒𝑟 , … ,RO𝑟𝑚𝑠 . Then, for any adversary  it holds that

AdvsMSKE
TLS-PSK() ≤

2𝑞2Send
2256

+
(𝑞RO + 𝑞Send)2

2𝜆
+
𝑞2NewSecret

2𝜆
+
(𝑞RO + 6𝑞Send)2

2𝜆

+
𝑞RO ⋅ 𝑞NewSecret

2𝜆
+
𝑞Send
2𝜆

where 𝑞Send is the number of Send and 𝑞RO the (total) number of random oracle queries
issued by adversary , respectively.

Following along the arguments of Section 10.3.2, we obtain the following final result
for the TLS 1.3 PSK-only handshake as described in Figure 6.2.

Corollary 10.2. LetKE be the TLS 1.3 PSK-only handshake protocol as specified in Figure 6.2.
Let 𝜆 ∈ N be the output length in bits of the hash function 𝐇. Further, let 𝐇 be modeled as
a random oracle RO𝐻 and let𝐌𝐀𝐂, 𝐄𝐱𝐭𝐫𝐚𝐜𝐭, and 𝐄𝐱𝐩𝐚𝐧𝐝 defined from 𝐇 as in Chapter 6.
Then, for any adversary  it holds that

AdvsMSKE
KE () ≤

2(12𝑞Send + 𝑞RO)2 + 2𝑞2RO + 8(𝑞RO + 36𝑞Send)2

2𝜆
+
2𝑞2Send
2256

+
(𝑞RO + 𝑞Send)2 + 𝑞2NewSecret + (𝑞RO + 6𝑞Send)2 + 𝑞RO ⋅ 𝑞NewSecret + 𝑞Send

2𝜆

where 𝑞Send is the number of Send and 𝑞RO the (total) number of random oracle queries
issued by adversary , respectively.

192



10.5 Discussion

10.5 Discussion

In this chapter, we have proven a tight security bound for the TLS 1.3 PSK-only/PSK-
(EC)DHE handshake protocol as described in Figure 6.2. The proof is in the random
oracle model (Section 4.1.2). In the remainder, we discuss the result of this chapter and
point to interesting open questions.

Differences between the full handshake analysis. The first thing we discuss is the
difference between the full handshake analysis and the analysis for the PSK handshakes.
We only focus on the PSK-(EC)DHE handshake since the PSK-(EC)DHE handshake also
relies on a Diffie–Hellman key exchange. The general outline of the proofs are quite
similar. Of course, due to the absence of digital signature, there is no reduction to
the security of the signature scheme. Most significantly, in the PSK-(EC)DHE analysis
presented in Section 10.3.1 we could split the proof up into three phases, ensuring that
Sound cannot be violated, ExplAuth cannot be violated, and finally that the adversary
can only guess the challenge bit 𝑏 if Fresh remains valid. In the full handshake analysis
Section 9.3, we could only argue about the latter two phases together in the end of the
proof. The reason for this ultimately is the PSK. In the PSK handshake, the PSK obviously
adds another secret to the key derivation. Therefore, an adversary that cannot guess the
PSK of uncorrupted sessions will intuitively not be able to get any information about the
keys exchanged, and thus also the MAC values, computed by honest sessions. Informally
speaking in the PSK handshake analysis the final SDH reduction preventing the adversary
from guessing the DHE key from corrupted sessions is merely to exclude one specific
attack. Namely, that the adversary remains passive in an honest session or does not
corrupt its PSK upon acceptance ensuring that forward secrecy is not violated, which
then would cause Fresh to be violated (cf. Figure 5.7). Then, the adversary could corrupt
the PSK of this session (after acceptance) and if it is able to predict the corresponding
DHE key computed by that session, it can guess the challenge bit with certainty. In
the full handshake analysis this is different. Due to the absence of the PSK the whole
security of the keys, and MAC values, rely on the secrecy of the DHE keys. Thus, to even
argue that an adversary cannot predict Finished messages of honest sessions, we need
to exclude that the adversary is able to guess the DHE key. That is, the SDH reduction
intuitively is already a necessary condition to argue that ExplAuth cannot be violated in
the full handshake in contrast to the PSK handshakes.

Pre-shared keys. Secondly, we discuss the types of pre-shared keys we consider for
our analysis. Recall that TLS 1.3 supports “resumption keys”, i.e., keys that are derived
from the resumption master secret 𝑟𝑚𝑠 exchanged in a previous run of the full hand-
shake (cf. Section 6.5). Additionally, it supports “out-of-band” keys, which PSKs that are
established externally. For the resumption keys it is reasonable to assume that they are
uniform on {0, 1}𝜆, where 𝜆 is the output length of the TLS hash function, due to the way
they are derived. However, for out-of-band keys that is not generally the case. First, they
do not necessarily need to be of length 𝜆 (in bits). Second, they do not necessarily need to
follow some (high-entropy) distribution. We note that the results of Chapter 7 regarding

193



10 tight security of the tls-psk handshakes

the indifferentiability of the key schedule highly relies on the PSKs being of length 𝜆.
Nevertheless, it would be interesting how (if at all) our analyses would change if one
includes the consideration of out-of-band PSKs. In general, we would expect that the
results would generalize to any distribution on {0, 1}𝜆 that satisfy the length requirement,
but do not have full entropy. This applies in particular to the bounds for Game 2 and 4,
where we already remarked how they could be adapted based on the min-entropy of the
PSK distribution. However, we remark that lower-entropy PSK distributions result in
weaker bounds, due to the increased chance for collisions between PSKs as well as the
adversary guessing a PSK.

194



Part III

On the Tightness of the TLS 1.3
Record Protocol





11
on the tightness of the tls 1.3
record protocol

In this chapter, we briefly discuss the tightness of the TLS 1.3 record protocol. We do not
give a formal treatment in this thesis, butwe discuss the current state for completeness. In
this context, we point to open questions for future work. We start with a short overview
of the TLS 1.3 record protocol, which is specified in [Res18, Sect. 5]. Then, we discuss
the steps we consider necessary to prove tight security for the TLS 1.3 record protocol.

TLS 1.3 Record Protocol. The record protocol is the part of TLS that handles the
secure channel that TLS aims to provide. In particular, it takes the messages that a user
wants to send, fragments this data into blocks (records), protects these records and trans-
mits the protected data. The same goes for the reverse direction. That is, it takes the
protected records, decrypts them, reassembles the fragments to the original messages
and delivers these messages to a higher level (e.g., the handshake protocol or an ap-
plication layer protocol) to be processed. Each of the records has a content-type (e.g.,
handshake data: 0x16, application data: 0x17, and alert data: 0x15) this allows for mul-
tiple higher-level protocols to be multiplexed over the same record layer [Res18, Sect 5.1].
A higher-level protocol here is, for example, the handshake protocol, an application layer
protocol, or the alert protocol [Res18, Sect. 6]. The record layer refers to the part of the
record protocol that handles and protects the data streams. In particular, the record layer
fragments data into so-called TLSPlaintext records (a definition of the struct is given
in [Res18, Sect 5.1]), where each of these fragments can hold at most 214 bytes. Since
these might be fragmented over multiple records, there are certain rules. For example,
handshake records (i.e., with content-type 0x16) can be fragmented in a single record or
split-up among multiple. However, if one handshake message is fragmented in multiple
records, then it, for example, is not allowed to interleave with other content-types. Alert
records (i.e., content-type 0x15) are not allowed to be fragmented at all and application
data (i.e., content-type 0x17) might be fragmented arbitrarily.

In TLS 1.3, records might be protected [Res18, Sect. 5.2] using an authenticated encryp-
tion with associated data (AEAD) [Rog02] scheme. The possible schemes are defined
through the cipher suites defined in [Res18, App. B.4]. These include AES128-GCM,

197



11 on the tightness of the tls 1.3 record protocol

AES256-GCM, AES128-CCM, AES128-CCM8, which are defined in [McG08, MB12],
and ChaCha20-Poly1305 defined in [NL18]. Each of these AEAD schemes is nonce-
based [Rog02] and TLS 1.3 uses a special nonce randomization mechanism [Res18, Sect.
5.3] to derive the nonce for the record encryption. The nonce for the writing and reading
of records is derived from a sequence number and the initialization vector (IV) that is part
of the traffic keys derived in the handshake protocol. Recall that the traffic keys, such as
the handshake traffic key ℎ𝑡𝑘 or the application traffic key 𝑎𝑡𝑘, consist of two components:
a key 𝑘 and an IV 𝑖𝑣 (cf. Section 6.4). The key 𝑘 is the key for the record protection and the
IV is used to randomize the sequence number to obtain the record nonce as follows. The
record layer maintains two 64-bit sequence numbers initially set to 0. One sequence num-
ber is for reading (i.e., incoming) and the other one is for writing (i.e., outgoing) records.
The respective sequence number is incremented after a record has been read or written.
Using this sequence number of the record, the record layer derives a nonce for the AEAD
scheme in two steps. First, each AEAD scheme specifies a range of nonce length that it
supports ([N_MIN,N_MAX]; cf. [McG08]). In Section 6.4, we denoted the IV length in the
context of the traffic key derivation as 𝑑, and 𝑑 is always the larger value of 8 and N_MIN,
i.e., 𝑑 = max{8, N_MIN}. The nonce length for each of the supported schemes is 12 bytes
(= N_MIN = N_MAX) [McG08, MB12, NL18]. Now, the sequence number is only 8 bytes
and thus it is padded to the left with zeroes to 𝑑 bytes, i.e., for a sequence number seq
we have 𝑁 ′ ≔ 0𝑑−8 ‖ seq. Second, the padded sequence number is “randomized” by the
traffic key IV 𝑖𝑣 to obtain the nonce𝑁 ≔ 𝑁 ′⊕𝑖𝑣 = (0𝑑−8 ‖seq)⊕𝑖𝑣. Optionally, implemen-
tations could also artificially fill up the TLSPlaintext record length by 0 bytes to hide
the length of record as the ciphertext might reveal the record length. For details, we refer
to the work by Paterson, Ristenpart, and Shrimpton [PRS11], who discuss the notion of
length-hiding encryption. Then, the record layer encrypts (resp. decrypts) the records
using the corresponding key for the role (client/server) and the higher-level protocol
using the record layer (e.g., handshake or application).

Composing the TLS 1.3 handshake with the record protocol. In general, key
exchange protocols are only reasonable when used in combination with another protocol
that uses the derived keys. However, it is not trivially clear that the composition of a key
exchange protocol with a “partner protocol” still remains secure. To tame complexity
of the security analysis it is always desirable to be as modular as possible. Therefore,
the appealing option is to prove the two protocols secure on their own and apply some
generic composition theorem to show that the composition remains secure. In case of
the standard Bellare–Rogaway key exchange model [BR94], Brzuska, Fischlin, Warinschi,
and Williams [BFWW11] were able to show that a protocol that is secure in the Bellare–
Rogaway key exchange model can be securely composed with an arbitrary symmetric
key protocol (e.g., a secure channel protocol).
Fischlin and Günther [FG14] transferred this theorem into the multi-stage setting,

which also evolved over time with the MSKE model [DFGS15, FG17, DFGS16, Gün18].
The result states that an MSKE-secure protocol can be securely composed with an arbi-
trary symmetric key-protocol at a forward-secure, external and non-replayable stage.

198



11 on the tightness of the tls 1.3 record protocol

On the tight security of TLS 1.3. Since, we already gave tight bounds for the hand-
shake protocol in Chapters 9 and 10, a natural question that arises is whether the MSKE
composition theorem can also be used to deduce the tight security of the “whole” crypto-
graphic core of TLS 1.3 protocol, i.e., the composition of the handshake protocol and the
record protocol. This depends on a number of aspects that we discuss in the remainder
of this section. Since we already have tight security proof for the handshake protocol,
the following questions remain to be answered:

1. Does the composition theorem apply to our variant of the MSKE model?
2. Is the composition theorem tightly secure?
3. Is the record protocol tightly secure?

Unfortunately, we are not able to give a definitive answer to any of these questions in this
thesis, and as we discuss below, there are no affirmative answers at the moment. Never-
theless, we discuss what we know about these aspects and leave the formal treatment to
future work.

Does the composition theorem apply to our variant of the MSKE model? Un-
fortunately, the (most recent version of the) MSKE composition theorem from [Gün18]
does not directly apply to our variant of the MSKE model. This is mainly due to the
advanced feature of upgradeable authentication that we adopted in our MSKE variant
from [DFGS21]. Recall that this allows the authentication level of a stage in the MSKE
to be upgraded upon acceptance of a later stage (cf. Section 5.2). More precisely, this
means that if a stage (key) is unauthenticated upon acceptance, it might receive authen-
tication retroactively by, e.g., the verification of an authentication message. As pointed
out by [DFGS21] it is not obviously clear how to translate the notion of upgradable
authentication (as well as replayability) to an arbitrary symmetric key protocol.

Therefore, we expect that the composition theorem still applies to ourMSKE variant as
long as only external, non-replayable stage-keys are used in the symmetric key protocol
and we restrict the authentication to be fixed upon acceptance such that it does not
change with acceptance of later stages. However, this still would need to be verified in a
rigorous formal treatment.

Is the composition theorem tightly secure? First of all, let us state what composi-
tional security means in the context of key exchange more precisely. For the composi-
tion of a key exchange protocol and an arbitrary symmetric key protocol, one defines
a composed security experiment. This composed game consists of the key exchange
experiment and the experiment that defines security for the symmetric key protocol.
Intuitively, the key exchange experiment is run and whenever a key intended to be used
externally is accepted it gets “registered” in the symmetric-key protocol allowing the
adversary to interact with the symmetric-key experiment. The adversary now aims to
break the security of the symmetric-key protocol. Thus, instead of choosing fresh keys
for the symmetric-key protocol, the key exchange protocol is run. This also intuitively
captures what we expect from the TLS 1.3 protocol, namely that it provides a secure

199



11 on the tightness of the tls 1.3 record protocol

channel. Obviously, providing secure keys is a necessary condition for a secure channel,
but the ultimate goal is to secure the communication of the peers.
The MSKE composition theorem [Gün18] reduces the compositional security of a

MSKE protocol and an symmetric-key protocol to the security of the symmetric-key
protocol, the MSKE security of the MSKE protocol, and the Match-security of the MSKE
protocol (what we captured in this work by the Sound predicate in Chapter 5). As the
theorem is stated in [Gün18] and its previous iterations [DFGS15, FG17, DFGS16], the
reduction to the MSKE security is lossy and looses a factor that is linear in the number
of sessions activated by the adversary. This stems from a hybrid argument that basically
replaces every key registered in the composed experiment successively by a random key
using the indistinguishability of the session key that MSKE security provides. Günther
[Gün18] already conjectured that by leveraging the feature of multiple Test queries of
the MSKE model that this hybrid argument might be avoidable, and thus improving the
bound by this linear factor. In fact, Diemert and Jager [DJ21] revisited the proof and
were able to confirm this conjecture.1 Thus, the composition theorem for the MSKE can
be proven tightly. This is a good indicator that tight compositional security is possible.
However, it still is an open question whether it is possible to capture the advanced
features (e.g., upgradeable authentication) of the most recent iterations of the MSKE
models such as [DFGS21, DDGJ22b] and Chapter 5 in a similar composition theorem.
Hence, it still remains unclear that such a theorem preserves tightness, even though we
are confident that a similar technique should be applicable.

Is the record protocol tightly secure? Next, we turn to the question whether the
record protocol can be proven tightly-secure. At the core of the record protocol are the
AEAD schemes to protect the records in transition such that the record layer provides
confidentiality and integrity [Res18, App. E.2]. That is, an adversary “[. . . ] should not
be able to determine the plain text contents of a given record.” [Res18, App. E.2] and it
“[. . . ] should not be able to craft a new record which is different from an existing record
which will be accepted by the receiver.” [Res18, App. E.2]. Bellare and Tackmann [BT16]
initiated the investigation of the multi-user security of AEAD schemes used in TLS 1.3
by analysing the security of AES-GCM in the multi-user setting using the nonce ran-
domization mechasism of TLS 1.3 [Res18, Sect. 5.3]. However, they only give a bound
that is non-tight and restrict the adversary to be passive (i.e., they only consider con-
fidentiality). Hoang, Tessaro, and Thiruvengadam [HTT18] revisited the the work by
[BT16] and show a tight bound for AES-GCM as used in TLS 1.3 without restricting the
adversary to be passive. That is, they show full multi-user authenticated encryption (AE)
security (i.e., confidentiality and integrity of the cipher text) for AES-GCM with nonce
randomization. Degabriele, Govinden, Günther, and Paterson [DGGP21] extended the
work of Hoang, Tessaro, and Thiruvengadam and Bellare and Tackmann by a treatment
of the (tight) multi-user security of ChaCha20-Poly1305. Degabriele, Govinden, Gün-

1 This result stems from joint work with Tibor Jager [DJ21]. While Tibor Jager and the author of thesis
discussed all details of this paper together, this analysis was executed by the author of this thesis.

200



11 on the tightness of the tls 1.3 record protocol

ther, and Paterson also claim to improve the tight bound given by Hoang, Tessaro, and
Thiruvengadam for AES-GCM with nonce randomization.

Having tight multi-user secure building blocks is already a huge step forward for
achieving tight security for the record layer. Naively one could already built a simple
tightly-secure (multi-user) symmetric key protocol that is based on the multi-user secu-
rity of the AEAD schemes to reflect the record layer encryption (cf. [DJ21]). With an
appropriate (tight) composition theorem at hand and our tight analysis for the TLS hand-
shake protocol, we could then prove tight composition-security for the TLS 1.3 handshake
protocol when used with the supported AEAD schemes with nonce randomization. Un-
fortunately, the record protocol is much more than just plain AEAD encryption. Even
though AEAD is the right tool to achieve confidentiality and integrity in the record pro-
tocol, the record protocol aims to provide a secure channel. This secure channel requires
much more than only “authenticated encryption”. Here, we also need to ensure that
out-of-order delivery of messages are detected, in particular, replays of messages are
mitigated (cf. [Res18, App. E.2] “Order protection/non-replayability”). Further, a secure
channel needs means to terminate the channel in case errors occur (cf. [Res18, Sect. 6]).
It needs to handle messages of arbitrary length in the form of fragmentation and in the
case of TLS 1.3 it needs to support key updates. All of this is out of scope of the classical
notion of AE(AD) [Rog02]. Here, messages are usually considered to be atomic (i.e., no
fragmentation or data stream handling is considered), keys are chosen once upon setup
of the scheme and are not updated, and the detection of out-of-order delivery and replays
is also not incorporated in the standard definitions.

There has been work in the past years on various aspects of modern channel protocols.
For example, on the protection against reordering, replay, or drops of messages (e.g.,
stateful authenticated encryption [BKN02], order-resilient channels [FGJ20, DK22]), con-
sidering fragment (stream-based channels [FGMP15]), key updated (multi-key channels
[GM17]), error handling [BDPS12, BDPS14, BPS15], multiplexing ofmultiple data streams
over one channel (partially-specified channels [PS18]), and bidirectional channels [MP17].
However, a model incorporating all features of TLS 1.3 remains elusive. We consider it
an interesting open question to develop such a channel model that captures the record
protocol as close as possible. Arguably the resulting model would be very complex. How-
ever, we are confident that if such a model can be formalized tight security would almost
be an inherent consequence of the tight multi-user security of the AEAD building blocks.

We remark that there has been a (complete) analysis of the TLS 1.3 record layer (draft
18) [Del+17], which combines formal verification and a computational analysis. Their
bound also is not tight (cf. [Del+17, Thm. 5]) as it looses a linear factor in the number of
instances of the encryption scheme.

Conclusion. In this chapter, we informally discussed the current state of the tight
security of the record protocol of TLS 1.3. At the moment, only AEAD schemes used at
the core of the record protocol can be proven tightly-secure in the multi-user setting. It
remains elusive whether the whole record protocol can be proven tightly-secure due to
the lack of an appropriate model reflecting the features of the record protocol. Besides,

201



11 on the tightness of the tls 1.3 record protocol

for our definition of MSKE-security a composition theorem remains an open question,
as well, due to the advanced level of authentication we are considering. Transferring
these generically to an arbitrary symmetric-key protocol is not obviously clear. Hence,
the major open questions that remain for the tightness of the record layer protocol are
to prove a tight composition theorem for our variant of MSKE protocols, to find an
appropriate model to formalize the secure channel provided by the TLS 1.3 record layer
protocol, and finally, to prove the TLS 1.3 record protocol tightly-secure in that model
based on the tight multi-user security of the AEAD schemes used in the record protocol.
With these open questions answered positively, one could deduce the tight security of the
whole cryptographic core of TLS 1.3 by using our tight analysis of the TLS 1.3 handshake
protocol.

202



Part IV

More Efficient Digital Signatures
with Tight Multi-User Security





12
introduction

Author’s contribution. The contents of Chapters 12 to 15 are based on joint work
with Kai Gellert, Tibor Jager, and Lin Lyu [DGJL21b]. Significant parts of the results
presented in these chapters evolved through extensive mutual discussions. All authors
contributed equally to these results. Due to joint and sometimes even indivisible indi-
vidual contributions there are some parts contained in these chapters that were revised
by the author of this thesis, but still almost in verbatim form from the original publica-
tion [DGJL21b] or its full version [DGJL21a]. This particularly holds for Chapters 13
and 14, in which we present our construction and its instantiations, respectively.

Contents

12 Introduction 205

13 Construction 211

14 Instantiations 225
14.1 Instantiation based on Decisional Diffie–Hellman . . . . . . . . . . . . . 225

14.1.1 A DDH-based LID Scheme . . . . . . . . . . . . . . . . . . . . . . 226
14.1.2 Concrete instantiation . . . . . . . . . . . . . . . . . . . . . . . . 229

14.2 Instantiation from the 𝜙-Hiding Assumption . . . . . . . . . . . . . . . . 230
14.2.1 The Guillou–Quisquater LID Scheme. . . . . . . . . . . . . . . . . 231

15 Discussion 235

In the following chapters, we present a digital signature scheme that is tightly-secure
in the sense of multi-user existential unforgeability with adaptive corruptions in the
random oracle model. As we have seen in Chapter 9, this is exactly the security notion
we required in our tight security proof for the TLS 1.3 full handshake. Since unfortu-
nately none of the standardized signatures scheme satisfies this strong notion as already
discussed before (cf. Sections 1.4 and 9.4), we present a new construction based on lossy
identification schemes [AFLT12] that is the currently most efficient construction satisfy-
ing this notion (with respect to signature size) as discussed below. In the following, let us

205



12 introduction

elaborate why multi-user security is an important notion to look at for digital signature
schemes, why proving tightness for these schemes is difficult, and why our construction
separates from previous constructions satifying this notion.

Motivation formulti-user security. The commonly accepted standard notion for dig-
ital signature scheme is existential unforgeability under an chosen-message attack (EUF-
CMA) as defined in Definition 4.6. However, this notion is a “single-user” notion, i.e., in
the security model the adversary has access to a single public key and its challenge is to
forge a signature with respect to this public key. Digital signature scheme are rarely used
on their own, but rather as a building block in a larger cryptographic system, such as the
TLS 1.3 handshake protocol presented in Chapter 6. In such a system there are usually
multiple users involved such that the challenge an adversary is faced is a different one
than that captured by the security model of EUF-CMA. Namely, instead of having access
to a single public key, it might have access to many, and it is sufficient if the adversary
is able to forge a signature with respect to any of these public keys to break the security
that the digital signature scheme aims to provide for the higher-level system. That is,
EUF-CMA-security does not really reflect the “real-world” requirements of an digital
signature scheme. A stronger security notion that aims to capture this more precisely
is existential unforgeability under an chosen-message attack in the multi-user setting
with adaptive corruptions (MU-EUF-CMAcorr) as defined in Definition 4.7. This notion
generalizes EUF-CMA such that the adversary here has access to many public keys and
its challenge is to forge a signature with respect to any of these public keys. Additionally,
the adversary has the option to “corrupt” certain users by requesting their secret keys.
The final forgery attempt then has to be for an uncorrupted public key to exclude trivial
attacks. Unfortunately, EUF-CMA-security does not straightforwardly generalize toMU-
EUF-CMAcorr. Even though these notions are asymptotically equivalent, the reduction
from MU-EUF-CMAcorr-security to EUF-CMA-security has a concrete security loss that
is linear in the number of users. This loss is induced by the straightforward reduction
that essentially guesses one of the users in the MU-EUF-CMAcorr experiment that the
adversary will output a forgery for and embeds the EUF-CMA “challenge” public key in
this user. The aforementioned idea works, because the public key that the adversary
outputs a forgery attempt is required to be uncorrupted over the whole execution of
the security experiment. Therefore, the reduction never needs to hand the secret key
corresponding to the EUF-CMA challenge public key to the adversary. The remaining
key pairs, then simply can be simulated by the reduction such that it knows all the secret
keys to answer potential corruptions.

Difficulty of tight multi-user-secure signatures. One can even prove that the secu-
rity loss of the reduction outlined in the previous paragraph is unavoidable [BJLS16] for
signature schemes satisfying certain properties. While many signature schemes satisfy
these properties (e.g., having a unique secret key for every public key), there are some
constructions that avoid this loss and thus circumvent this impossibility result. We dis-
cuss these constructions and compare it to the one presented in Chapter 13 in the next

206



12 introduction

paragraph, but first we discuss why achieving a tight reduction in the MU-EUF-CMAcorr

setting is a difficult task to achieve.
As already implicitly mentioned in the previous paragraph, the main challenge for a

reduction to simulate the MU-EUF-CMAcorr experiment is that it needs to solve usually
some computational problem and at the same time it needs to know all secret keys to be
able to respond to corruptions. However, key pairs of a digital signature scheme usually
correspond to some computational problem that is related to the computational problem
that we rely our security on. For example, in signature scheme instantiation based on
the DDH problem presented in Section 14.1, we rely the security of the signature scheme
on the DDH problem and public keys are of the form (𝑔𝑥0 , ℎ𝑥0 , 𝑔𝑥1 , ℎ𝑥1), where 𝑔 is a
generator of some cyclic group and ℎ is a group element of that group. The secret key
then is 𝑥𝑏, i.e., the discrete logarithm of one of the two subpairs of the public key. (𝑥1−𝑏
is discarded.) Now, recall that we discussed in Chapter 3 that an algorithm solving the
DLOG problem in some cyclic group can ultimately be used to solve the DDH problem
in the same group. This illustrates the challenge one is faced when aiming for a tight
security proof for MU-EUF-CMAcorr. Namely, in this example the reduction to the DDH
problem embeds its challenge into the public key and at the same time needs to be able
to compute DLOGs to be able to simulate the MU-EUF-CMAcorr, because it needs to give
out secret keys upon corruption. Additionally, it needs to use the adversary against the
signature scheme to solve the DDH problem to result in a meanigful reduction. However,
if it already can solve the DLOG problem, then it does not need the signature adversary
to solve DDH. Hence, we are not able to related the security of the signature scheme to
the success probability of solving the DDH problem.
In general, this means that for a reduction to some computational problem proving

tight MU-EUF-CMAcorr-security that it needs to satisfy the following paradoxical prop-
erties:

1. It needs to know the secret key of all users to respond to the adaptive corruptions of
public keys by the adversary. Here, it cannot rely on guessing a user that remains
uncorrupted, because otherwise this would induce a loss.

2. The reduction needs to be able to extract a solution to a computational problem,
while at the same time knowing the secret key to the corresponding instance of
the signature scheme.

We address how our construction solves this paradox in detail at the beginning of Chap-
ter 13.

Known constructions and our scheme. To the best of our knowledge, there are at
the moment only a few constructions that are tightly multi-user secure with adaptive
corruptions (MU-EUF-CMAcorr). We give an overview of the public key size, the signature
size, the related assumption and the consideredmodel in Table 12.1. The first scheme that
achieved the notion of MU-EUF-CMAcorr-security was the construction by Bader et al.
[Bad+15a]. It is in the standard model and relies on bilinear pairings. The signatures of
this scheme are rather large (i.e., linear in the security parameter) such that this result

207



12 introduction

Table 12.1: Comparison of existing tightly-secure signature schemes in the multi-user
setting with adaptive corruptions. |𝜎| indicates the size of a signature and |𝑝𝑘| the size
of public keys, where |G| is the size of the binary representation of an element of the
underlying groupG, |𝑝| is the size of the binary representation of an integer in the discrete
interval [0, 𝑝 − 1], where 𝑝 is the order of G, and 𝜆 is the security parameter. The column
“Setting” indicates whether pairings / the Programmable Random Oracle (PRO) model /
the Non-Programmable Random Oracle (NPRO) model is used. The column “sEUF” refers

to whether the scheme is proven strongly existentially unforgeable.

Scheme |𝜎| |𝑝𝑘| Loss Assumption Setting sEUF

BHJKL [HJ12, Bad+15a] (𝜆)|G| (1)|G| (1) DLIN Pairings –
GJ [GJ18] 2|G| + 2𝜆 + 4|𝑝| 2|G| (1) DDH PRO –
HJKLPRS [Han+21] 5|G| 2|G| (1) SXDH Pairings –
Chapter 13 3|𝑝| 4|G| (1) Lossy ID/ NPRO ✔

DDH

can rather be seen as a possibility result in the standard model than an actual scheme
of practical interest. They also gave an “almost-tight” variant of this scheme with a
loss linear in the security parameter that has signature of constant size. However, this
construction was later revisited by Han et al. [Han+21], who identified a gap in the proof,
which they were not able to close such that they proposed a new variant of it. The variant
still is in the standard model and uses bilinear pairings, but it is tightly-secure (with a
constant loss). Due to the flaw in the proof of the second construction by Bader et al.
[Bad+15a], we only include Han et al. [Han+21] in Table 12.1. The first practical scheme
is due to Gjøsteen and Jager [GJ18], which is tightly-secure in the programmable random
oracle model. Our scheme presented in Chapter 13 is the first generic construction that
achieves tightMU-EUF-CMAcorr-security in the non-programmable random oracle model
and it can be instatiated under every computational problem that gives rise to a lossy
identification scheme [AFLT12]. Further, our scheme is the first that achieves strong
MU-EUF-CMAcorr-security (i.e., MU-sEUF-CMAcorr) and the currently most efficient of
these schemes. When instantiated with the DDH problem, signatures only consist of
three Z𝑝 elements, where 𝑝 is the order of the underlying group. This improves the
length of the signatures compared to the previously most efficient scheme as shown in
Table 12.1.

Pan and Wagner [PW22] presented the first compact lattice-based signature scheme
that is tightly MU-EUF-CMAcorr-secure. Their construction builds upon the generic con-
struction presented in this work originally published in [DGJL21b]. Pan and Wagner
stress that theirmain intention for theirworkwas to study the possibility of compact tight
MU-EUF-CMAcorr-secure based on lattices and thus they did not aim for efficiency. Their
signatures consist of linearly in the security parameter many lattice vectors independent
of the message length. However, they claim that the efficiency can be further improved.
Nevertheless, we decided, mostly due to the different setting of lattices, to exclude their
construction from our comparison. Also, we highlight that Pan and Wagner [PW22]

208



12 introduction

claim that they refined our generic construction [DGJL21b] such that it is more general.
Finally, their result does not yield MU-sEUF-CMAcorr-security directly in contrast to our
construction [DGJL21b]. However, they remark that it can be transformed tightly in a
strongly secure one using a one-time signature [LM18] and a transformation [SPW07].

Strong unforgeability and its relevance for key exchange. As mentioned in the
previous paragraph our construction is currently the most efficient construction that
achieves tight MU-EUF-CMAcorr-security and is the first (and only) construction that is
(directly) strongly unforgeable. Strong unforgeability (cf. Remark 4.2) basically captures
that an adversary is not able to efficiently compute a new valid signature 𝜎′ for some
message 𝑚 given a valid signature 𝜎 ≠ 𝜎′ for message 𝑚. This is particularly useful
for authenticated key exchange, when the partnering of two sessions is defined in the
sense of “matching conversations” as in the famous Bellare–Rogaway model [BR94]
for key exchange. Here, authentication is formalized by requiring that a session only
accepts if there exists an honest partner such that the session and its partner agree
on the conversation (i.e., the messages sent and received in the same order). Since
a key exchange protocol usually includes sending a signature, an adversary that can
compute new signatures from a give one, can efficiently break the above notion. Recall
that in our security proof presented in Section 9.3, we additionally needed to rely on
the Finished messages to guarantee integrity of the signatures sent to avoid strong
unforgeability in our proof. Without the existence of additional integrity protection, we
would need to require strong unforgeablity to exclude the abovementioned attack against
authentication. We highlight that we explicitly did this to weaken the assumptions we
need to require for our proof. Though, the more natural approach in our proof would
have been to reduce to the strong unforgeability. To state another example, Gjøsteen
and Jager [GJ18] even had to relax their notion of partnering and rely on the weaker
notion by Li and Schäge [LS17] to overcome the lack of strong unforgeability of their
signature scheme. With our scheme, we are confident that the partnering notion could
be strengthen. This shows that the property of strong unforgeability in combination
with the short signatures qualifies our scheme to be an ideal choice to instantiate tightly-
secure authenticated key exchange with.

Outline of this Part. In Chapter 13, we present our generic construction for tightly
MU-sEUF-CMA-secure digital signatures that is based on lossy identification scheme
as defined in Section 4.5. Then, we present in Chapter 14 two instantiations for our
genericconstruction one based on the DDH problem in Section 14.1 and another one
based on the 𝜙-hiding problem in Section 14.2. Finally, we briefly discuss our generic
construction and point to possible future work in Chapter 15.

209





13
construction

In this chapter, we present the construction of our digital signature scheme (originally
presented in [DGJL21b]) and prove it strongly unforgeable in the multi-user setting
with adaptive corruptions (MU-sEUF-CMAcorr). The security proof yields a tight security
bound in the random oracle model (ROM).

Idea of the construction. Before we give the construction, let us first discuss its
intuition. Our construction is based on sequential OR-proofs originally proposed by
Abe, Ohkubo, and Suzuki [AOS02] in the context of group signature schemes. This is
opposed to the “parallel” OR-proofs by Cramer, Damgård, and Schoenmakers [CDS94].1
Informally, an OR-proof is an interactive proof systemwhichworks as follows. One party
called the prover holds two statements 𝑥0 and 𝑥1 as well as a witness 𝑤𝑏 with 𝑏 ∈ {0, 1} for
𝑥0 or 𝑥1. This prover nowwants to convince another party called the verifier holding only
the statements 𝑥0 and 𝑥1 that it knows a witness for either of these statements. Ideally,
this should hold without the verifier learning which of these statements is satified. In the
construction, we transfer this idea to lossy identification schemes (LIDs) (Section 4.5).
In the key generation, we generate two key pairs (𝑝𝑘0, 𝑠𝑘0) and (𝑝𝑘1, 𝑠𝑘1). Then, we
choose a bit 𝑏 and discard the secret key 𝑠𝑘1−𝑏. That is, we now have a public key 𝑝𝑘 =
(𝑝𝑘0, 𝑝𝑘1) and a secret key 𝑠𝑘 = (𝑏, 𝑠𝑘𝑏). To sign a message 𝑚 ∈ {0, 1}∗, we then compute
a sequential OR-proof proving that the signer knows a secret key for either of the two
public keys (𝑝𝑘0, 𝑝𝑘1). This works as follows. On a high level, the signer computes two
transcript of the LID scheme, but since it only knows one of the secret keys, it computes
one transcript honestly and simulates the other one. Since we want to hide which of the
transcripts is honest, we apply the sequential OR-proof technique andmake the challenge
of the simulated transcript depend on the commitment of the honest transcript, and vice
versa. This induces the sequential fashion of the proof as we first need to compute the
honest commitment to simulate the other transcript, etc. The exact process is illustrated
in Figure 13.1. Moreover, the challenges depend on the message as in the well-known
Fiat–Shamir transform [FS87]. The signature then consists of the two commitments and
responses of the computed transcripts.

1 The distinction between sequential and parallel OR-proofs was used by Fischlin, Harasser, and Janson
[FHJ20] and we adopt this to separate the two notions.

211



13 construction

LID.Prove1

cmt𝑏 𝐻 ch1−𝑏

𝑝𝑘1−𝑏 LID.Sim

ch𝑏 𝐻 cmt1−𝑏

LID.Prove2

resp𝑏

𝑠𝑘𝑏 𝑚

𝑚

resp1−𝑏
$← RSet

Figure 13.1: Signatures from sequential OR-proofs and lossy identification schemes.

Fischlin, Harasser, and Janson [FHJ20] proved the construction outlined above EUF-
CMA-secure in the non-programmable ROM. We observed that by leveraging the com-
mitment-recoverability of LID schemes introduced by Kiltz, Masny, and Pan [KMP16],
we can slightly modify the construction such that signatures consist of a challenge of one
of the transcripts and the two respective responses. This yields a signature size of only
threeZ𝑝 elements when instantiating the signature schemewithDDH (as opposed to four
group elements and twoZ𝑝 elements in the previous construction). Further, we observed
that this construction can directly be proven strongly unforgeable and gives rise to tight
multi-user security with adaptive corruptions while staying in the non-programmable
ROM.

The OR-proof technique allows us here two solve the paradox discussed in Chapter 12
as follows. Since we always have two public keys (𝑝𝑘0, 𝑝𝑘1) such that we only hold one
secret key 𝑠𝑘𝑏 for either of the two, and the bit 𝑏 is perfectly hidden from the adversary.
The adversary cannot tell which is the real and which is the simulated component of
the signature. Therefore, we have that the adversary outputs a forgery for the simulated
component (1 − 𝑏) with probability 1/2. Now, in the reduction, we can embed our
challenge into the component (1 − 𝑏) (without the adversary detecting), and thus with
probability 1/2 the adversary will solve the challenge for us. This way we are able to
answer corruption queries and solve the reduction’s challenge at the same time without
inducing a loss larger than 1/2. The high-level idea was already used in [Bad+15a].

Construction. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) be a
LID scheme and let 𝐻 ∶ {0, 1}∗ → CSet be a hash function mapping finite-length bit
strings to the set of challenges CSet. We define the following digital signature scheme
Sig = (Sig.Gen, Sig.Sign, Sig.Vrfy) from LID.

Key generation. The key generation algorithm Sig.Gen samples a bit 𝑏 $← {0, 1} and
two independent key pairs (𝑝𝑘0, 𝑠𝑘0)

$← LID.Gen and (𝑝𝑘1, 𝑠𝑘1)
$← LID.Gen. Then

212



13 construction

it sets
𝑝𝑘 ≔ (𝑝𝑘0, 𝑝𝑘1) and 𝑠𝑘 ≔ (𝑏, 𝑠𝑘𝑏)

Note that the secret key consists only of 𝑠𝑘𝑏 and the other key 𝑠𝑘1−𝑏 is discarded.

Signing. The signing algorithm Sig.Sign takes as input 𝑠𝑘 = (𝑏, 𝑠𝑘𝑏) and a message
𝑚 ∈ {0, 1}∗. Then it proceeds as follows.

1. It first computes (cmt𝑏, st𝑏)
$← LID.Prove1(𝑠𝑘𝑏) and sets

ch1−𝑏 ≔ 𝐻(𝑚, cmt𝑏)

Note that the ch1−𝑏 is derived from cmt𝑏 and 𝑚.
2. It generates the simulated transcript by choosing resp1−𝑏

$← RSet and

cmt1−𝑏 ≔ LID.Sim(𝑝𝑘1−𝑏, ch1−𝑏, resp1−𝑏)

using the simulator.
3. Finally, it computes

ch𝑏 ≔ 𝐻(𝑚, cmt1−𝑏) and resp𝑏 ≔ LID.Prove2(𝑠𝑘𝑏, ch𝑏, cmt𝑏, st𝑏)

and outputs the signature 𝜎 ≔ (ch0, resp0, resp1). Note that ch1 is not included
in the signature.

Verification. The verification algorithm Sig.Vrfy takes as input a public key 𝑝𝑘 = (𝑝𝑘0,
𝑝𝑘1), a message 𝑚 ∈ {0, 1}∗, and a signature 𝜎 = (ch0, resp0, resp1). It first recovers

cmt0 ≔ LID.Sim(𝑝𝑘0, ch0, resp0)

From cmt0 it can then compute

ch1 ≔ 𝐻(𝑚, cmt0)

and then recovers
cmt1 ≔ LID.Sim(𝑝𝑘1, ch1, resp1)

Finally, the verification outputs 1 if and only if ch0 = 𝐻(𝑚, cmt1).

Proposition 13.1. Let 𝐻 be modeled as a random oracle. If scheme LID is commitment-
recoverable (Definition 4.12) and perfectly complete (Definition 4.9), then the above signature
scheme Sig is correct.

Proof. Let 𝑚 ∈ {0, 1}∗ be an arbitrary message. Let (𝑝𝑘, 𝑠𝑘) be any key pair such that
𝑝𝑘 = (𝑝𝑘0, 𝑝𝑘1) and 𝑠𝑘 = (𝑏, 𝑠𝑘𝑏) for (𝑝𝑘𝑖, 𝑠𝑘𝑖)

$← LID.Gen and 𝑏 $← {0, 1}. Further, let
𝜎 = (ch0, resp0, resp1) be any signature output by Sig.Sign. Next, we argue that Sig.Vrfy
outputs 1 on input (𝑝𝑘, 𝑚, 𝜎) with certainty. Without loss of generality fix 𝑏 = 0, the
analysis is easily adapted for the case 𝑏 = 1. Since LID is commitment-recoverable,
we have that LID.Vrfy(𝑝𝑘, cmt, ch, resp) = 1 if and only if cmt = LID.Sim(𝑝𝑘, ch, resp).

213



13 construction

Further, by perfect completeness, we have that cmt = LID.Sim(𝑝𝑘, ch, resp) with cer-
tainty for (𝑝𝑘, 𝑠𝑘) $← LID.Gen, (cmt, st) $← LID.Prove1(𝑠𝑘), ch $← CSet, and resp ≔
LID.Prove2(𝑠𝑘, cmt, ch, st). Now, under the assumption that 𝐻 is modeled as a random
oracle, we have that ch0 is distributed uniformly at random on CSet and resp0 is an hon-
estly computed response because it was output by Sig.Sign. By the considerations above,
LID.Sim(𝑝𝑘0, ch0, resp0) now outputs exactly the value cmt0 output in Step 1 of Sig.Sign
(with certainty). Further, as𝐻 is a deterministic algorithm, ch1 = 𝐻(𝑚, cmt0) is computed
exactly as in Step 1 of Sig.Sign and therefore we have that cmt1 = LID.Sim(𝑝𝑘1, ch1, resp1),
as LID.Sim is deterministic. Finally, again because of the determinism of 𝐻 , we have that
ch0 = 𝐻(𝑚, cmt1). Hence, we have that 𝜎 is accepted with certainty and thus Sig is
correct. For 𝑏 = 1 the same argumentation applies in reverse order.

Observe that Sig.Vrfy does not internally use LID.Vrfy. Nevertheless, we can prove
the following statement.

Proposition 13.2. If LID is perfectly simulatable, then for all 𝑝𝑘 = (𝑝𝑘0, 𝑝𝑘1), 𝑚 ∈ {0, 1}∗
and 𝜎 = (ch0, resp0, resp1) ∈ CSet × RSet2

Sig.Vrfy(𝑝𝑘, 𝑚, 𝜎) = 1 ⟹ LID.Vrfy(𝑝𝑘𝑗 , cmt𝑗 , ch𝑗 , resp𝑗 ) = 1

for 𝑗 ∈ {0, 1} and cmt𝑗 , ch𝑗 , resp𝑗 are defined as in the construction above.

Proof. Since, we have Sig.Vrfy(𝑝𝑘, 𝑚, 𝜎) = 1 with 𝜎 = (ch0, resp0, resp1) it holds by def-
inition of Sig.Vrfy that there are transcripts (cmt𝑗 , ch𝑗 , resp𝑗 ) for 𝑗 ∈ {0, 1} such that
cmt𝑗 = LID.Sim(𝑝𝑘𝑗 , ch𝑗 , resp𝑗 ) and ch𝑗 = 𝐻(𝑚, cmt1−𝑗 ). Since LID is perfectly simu-
latable, it implies that LID.Vrfy(𝑝𝑘𝑗 , cmt𝑗 , ch𝑗 , resp𝑗 ) = 1.

Security of the construction. Next, we prove that the above construction is strongly
unforgeable in multi-user setting with adaptive corruptions under the assumption that
the hash function ismodeled as a (non-programmable) random oracle and the scheme LID
is commitment-recoverable, perfectly simulatable, 𝜀𝓁-lossy, 𝜀𝑢-unique, has 𝛼-bit min-
entropy and has an injective simulator (cf. Definitions 4.9 to 4.13). Formally, we prove
the following theorem.

Theorem 13.1. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim) be a
LID scheme that is commitment-recoverable, perfectly simulatable, 𝜀𝓁-lossy, 𝜀𝑢-unique, has
𝛼-bit min-entropy and has an injective simulator. Further, let 𝐻 be modeled as a random
oracle. Then, for each adversary  breaking the MU-sEUF-CMAcorr security of the above
signature scheme Sig, we can construct adversaries  and ′ such that

AdvMU-sEUF-CMAcorr

Sig () ≤
2𝑞Sign𝑞𝐻

2𝛼
+

2
|CSet|

+ 2AdvMU-IND-KEY
LID () + 2𝜖𝑢

+ 2AdvMU-IND-KEY
LID (′) + 2 ⋅ 𝑞2𝐻 ⋅ 𝜀𝓁

where 𝑞S is the number of signing queries and 𝑞𝐻 is the number of hash queries.

214



13 construction

In the following, we prove the above theorem. On a high level, the proof works as
follows. We proceed in a sequence of games [Sho04] and make a series of incremental
changes to the MU-sEUF-CMAcorr experiment. In a first step, we rule out repeating com-
mitments in the signing queries, this ensures that every signing query makes fresh hash
queries to compute the challenges. Then, we make sure that the two hash queries made
in the final verification, i.e., when the validity of the forgery attempt is checked, already
have been queried before. This is a preparation for one of the subsequent changes. Next,
we exclude that the adversary uses implicit knowledge of the bit 𝑏(𝑖∗) of the signature
scheme instance 𝑖∗ for which it submits a forgery attempt in the end. To this end, we
exclude the case that the adversary reuses commitments in its forgery attempt that orig-
nate from a signing query. Recall that we consider strong unforgeability. That is, the
adversary potentially could transform a signature output by the signing oracle into a
valid forgery by intutively switching the honest and simulated transcripts. Note that it
has access to the transcripts by simply recomputing the verification itself. Previously we
have ensured that the hash queries required for the verification of the forgery attempt
are made before the forgery is submitted. Next, we ensure that the adversary can only
win if the hash query for challenge (1−𝑏(𝑖∗)) is made first. This implies that the adversary
has no knowledge about 𝑏(𝑖∗) and this is the prerequite for the final next step. In the final
step, we replace all (1 − 𝑏(𝑖)) public keys by lossy public keys. As the bit 𝑏(𝑖∗) is hidden
from the adversary it cannot know which key is lossy, so intutively with probability 1/2
it submits a forgery for the lossy key, which is due to the lossiness is unlikely to be valid.
This concludes the proof.

Proof. In the sequel, we proceed in a sequence of games [Sho04] and let Game𝛿 denote
the event that the experiment outputs 1 in Game 𝛿.

game 0. This is the original security experiment ExpMU-sEUF-CMAcorr

Sig (). In this exper-
iment, adversary  is provided with oracles New, Sign, and Corrupt, as well as a hash
oracle 𝐻 since we are working in the random oracle model. In the following, it will be
useful to specify the implementation of this game explicitly:

• The game initializes the counter of users 𝑁 ≔ 0, the set of corrupted userscorr ≔
∅ and the table ROList of the random oracle. Then, it runs adversarywith access
to the following oracles:

1. Oracle New. When the adversary queries this oracle to create a new user,
the game first increments 𝑁 ≔ 𝑁 + 1 and initializes the chosen-message
set (𝑁 ) ≔ ∅. Then, it runs Sig.Gen to compute a key pair (𝑝𝑘(𝑁 ), 𝑠𝑘(𝑁 )).
More precisely, the game samples a bit 𝑏(𝑁 ) $← {0, 1} and two independent
key pairs (𝑝𝑘(𝑁 )

0 , 𝑠𝑘(𝑁 )
0 ) $← LID.Gen and (𝑝𝑘(𝑁 )

1 , 𝑠𝑘(𝑁 )
1 ) $← LID.Gen. Then, it

sets 𝑝𝑘(𝑁 ) ≔ (𝑝𝑘(𝑁 )
0 , 𝑝𝑘(𝑁 )

1 ) and stores (𝑝𝑘(𝑁 ), 𝑏(𝑁 ), 𝑠𝑘(𝑁 )
𝑏(𝑁 )). Finally, it outputs

𝑝𝑘(𝑁 ). In the following proof, to simplify the notation, we use 𝑏 instead of
𝑏(𝑖) if 𝑖 is clear from the context.

2. Oracle 𝐻(𝑥). When the adversary or the simulation of the experiment make
a hash oracle query for some 𝑥 ∈ {0, 1}∗, the game checks whether 𝑦 =

215



13 construction

ROList[𝑥] for some 𝑦 ∈ CSet. If it exists, the game returns 𝑦. Otherwise the
game selects 𝑦 $← CSet, logs 𝑦 ≔ ROList[𝑥] and returns 𝑦.

3. Oracle Sign(𝑖, 𝑚). When the adversary queries the signing oracle with user 𝑖
and message 𝑚, the game first sets 𝑏 ≔ 𝑏(𝑖), then computes

(cmt𝑏, st𝑏)
$← LID.Prove1(𝑠𝑘(𝑖)𝑏 )

and sets ch1−𝑏 ≔ 𝐻(𝑚, cmt𝑏) bymaking a hash query. Then, the game chooses
resp1−𝑏

$← RSet and uses the simulator to compute cmt1−𝑏 ≔ LID.Sim(𝑝𝑘(𝑖)1−𝑏,
ch1−𝑏, resp1−𝑏). Finally, the game queries oracle 𝐻 to get ch𝑏 ≔ 𝐻(𝑚, cmt1−𝑏)
and then uses LID.Prove2 to compute

resp𝑏 ≔ LID.Prove2(𝑠𝑘(𝑖)𝑏 , ch𝑏, cmt𝑏, st𝑏).

The game outputs signature 𝜎 ≔ (ch0, resp0, resp1) and logs the pair (𝑚, 𝜎)
in set (𝑖).

4. Oracle Corrupt(𝑖). When the adversary  queries the Corrupt oracle for the
secret key of user 𝑖, the game returns 𝑠𝑘(𝑖) ≔ (𝑏(𝑖), 𝑠𝑘(𝑖)𝑏 ) to the adversary and
logs 𝑖 in the set corr.

• When adversary  outputs a forgery attempt (𝑖∗, 𝑚∗, 𝜎∗), the game outputs 1 if
and only if Sig.Vrfy(𝑝𝑘(𝑖∗), 𝑚∗, 𝜎∗) = 1, 𝑖∗ ∉ corr, and (𝑚∗, 𝜎∗) ∉ (𝑖∗) hold. More
precisely, for 𝜎∗ = (ch∗0 , resp∗0 , resp∗1), the game recovers cmt∗0 ≔ LID.Sim(𝑝𝑘(𝑖

∗)
0 ,

ch∗0 , resp∗0) and queries the hash oracle to get ch∗1 ≔ 𝐻(𝑚∗, cmt∗0). Then, it recov-
ers cmt∗1 ≔ LID.Sim(𝑝𝑘(𝑖

∗)
1 , ch∗1 , resp∗1) and queries the hash oracle to get ch∗ ≔

𝐻(𝑚∗, cmt∗1). Finally, the game outputs 1 if and only if ch∗0 = ch∗, 𝑖∗ ∉ corr and
(𝑚∗, 𝜎∗) ∉ (𝑖∗).

Then, by definition it holds that

Pr[Game0] ≔ Pr[ExpMU-sEUF-CMAcorr

Sig () = 1].

game 1. In Game 1, we introduce a flag badcmt and abort the game when it is set.
The flag badcmt is set if there exists a signing query Sign(𝑖, 𝑚) such that at least one of
the two hash queries 𝐻(𝑚, cmt𝑏(𝑖)) and 𝐻(𝑚, cmt1−𝑏(𝑖)) made in this signing query has
been made before. To implement this change, we introduce a counter time (intialized
with 0) that is incremented upon each oracle query. That is, every oracle executes the
following operation as its first step: time ≔ time + 1. Further, we augment the random
oracle table ROList by a second entry time such that ROList[𝑥] = (𝑦, time), where time

corresponds to the time when entry 𝑦 was logged under 𝑥 . In other words, time is the
time when 𝑥 was first queried to the random oracle. The default value for time when
ROList is intialized is ∞. Then, Sign only needs to check whether it holds 𝑡 < time or
𝑡′ < time for ROList[𝑚, cmt𝑏(𝑖)] = (⋅, 𝑡) and ROList[𝑚, cmt1−𝑏(𝑖)] = (⋅, 𝑡′), respectively. If so,
badcmt is set and the game is aborted.

216



13 construction

Then, it holds (by the Difference Lemma [Sho04] or the Fundamental Lemma of game
playing [BR06]) that

Pr[Game0] ≤ Pr[Game1] + Pr[badcmt].

In remains to analyze the probability that flag badcmt is set. To this end, we divide the
event that badcmt is set into two events distinguishing whether 𝐻(𝑚, cmt𝑏(𝑖)) or 𝐻(𝑚,
cmt1−𝑏(𝑖)) was the query causing badcmt to be set.

1. There exists a signing query Sign(𝑖, 𝑚) such that𝐻(𝑚, cmt𝑏(𝑖)) has been made before.

If this happens, then cmt𝑏(𝑖) is the output of LID.Prove1(𝑠𝑘
(𝑖)) for any signing query.

Since LID has 𝛼-bit min-entropy (cf. Definition 4.11), the probability that this
happens is at most 𝑞Sign𝑞𝐻/2𝛼 by the union bound, where 𝑞Sign and 𝑞𝐻 are the
number of signing and random oracle queries issued by, respectively.

2. There exists a signing query Sign(𝑖, 𝑚) such that 𝐻(𝑚, cmt1−𝑏(𝑖)) has been made
before.

Note that cmt1−𝑏(𝑖) is the output of

LID.Sim(𝑝𝑘(𝑖)1−𝑏, ch1−𝑏(𝑖) , resp1−𝑏(𝑖))

where ch1−𝑏(𝑖) = 𝐻(𝑚, cmt𝑏(𝑖)). Since LID.Sim is deterministic, we know that com-
mitment cmt1−𝑏(𝑖) is determined by 𝑝𝑘(𝑖)1−𝑏, 𝑚, cmt𝑏(𝑖) and resp1−𝑏(𝑖) . Furthermore,
since LID.Sim is injective with respect to challenges (cf. Definition 4.13), we know
that the entropy of cmt1−𝑏(𝑖) in any fixed signing query is at least the entropy of
cmt𝑏(𝑖) in that query. Thus, we obtain that the probability that this subevent hap-
pens is at most 𝑞Sign𝑞𝐻/2𝛼 , as well.

Hence, we have that Pr[badcmt] ≤
2𝑞Sign𝑞𝐻

2𝛼 , where 𝑞Sign and 𝑞𝐻 are the number of signing
and random oracle queries issued by , respectively, and 𝛼 is the min-entropy of LID.
Then, we have that

Pr[Game0] ≤ Pr[Game1] +
2𝑞Sign𝑞𝐻

2𝛼
.

Observe that from Game 1 on, the hash queries 𝐻(𝑚, cmt𝑏(𝑖)) and 𝐻(𝑚, cmt1−𝑏(𝑖)) are
not made before any signing query Sign(𝑖, 𝑚) if the game is not aborted. This implies
that each signing query uses independent and uniformly random ch1−𝑏(𝑖) and ch𝑏(𝑖) , and
they are not known to the adversary at that time.

game 2. In Game 2, we change the way the game checks the winning condition of the
adversary. Precisely, in Game 1 checking the winning condition for a forgery attempt
(𝑖∗, 𝑚∗, 𝜎∗) involves to issue two random oracle queries 𝐻(𝑚∗, cmt∗0) and 𝐻(𝑚∗, cmt∗1).
We call the former a “0-query” and the latter a “1-query”. Using the time log mechanism
introduced in Game 1, we set a flag badnot both if the forgery attempt is valid (i.e., is satifies
the winning condition of Game 1), but either the 0-query or the 1-query to check the
winning condition was not issued before the adversary submitted the forgery attempt

217



13 construction

(𝑖∗, 𝑚∗, 𝜎∗). That is, it was issued for the first time during the verification. If badnot both
is set, then Game 2 outputs 0.

That is, it holds that

Pr[Game1] ≤ Pr[Game2] + Pr[badnot both].

In other words, a forgery attempt that is valid in Game 1 is also valid in Game 2 unless
flag badnot both is set. Now, let us analyze the probability that flag badnot both is set for a
forgery attempt that be considered valid in Game 1 and thus induces Game 2 to abort.
Note that for an invalid forgery attempt both Game 1 and Game 2 output 0 independent
of flag badnot both being set, hence this is not relevant here. We split up the event of
badnot both being set such that it is set either because the 1-query has not been made or
the 0-query has not been made:

• 1-query has not been made: Now, since the forgery attempt (𝑖∗, 𝑚∗, 𝜎∗) would be
considered valid in Game 1, it satisfies the winning condition of Game 1, and in
particular, it holds that Sig.Vrfy(𝑝𝑘(𝑖∗), 𝑚∗, 𝜎∗) = 1. This implies that ch∗0 (chosen
by the adversary) equals the 1-query hash result ch∗ = 𝐻(𝑚∗, cmt∗1), which is a
random element in CSet. Since the 1-query has not been made at this time, the
adversary has no knowledge about this value. Thus, it could only have guessed the
right value of ch∗0 in the forgery attempt. That is, this event occurs with probability
at most 1/|CSet|.

• 0-query has not been made: The result of the 0-query is ch∗1 = 𝐻(𝑚∗, cmt∗0) and
it is used to recover cmt∗1 = LID.Sim(𝑝𝑘(𝑖

∗)
1 , ch∗1 , resp∗1). Since the 0-query has not

been made so far, the adversary has no knowledge about ch∗1 except that it is a
random element in CSet. Together with the fact that algorithm LID.Sim is injective
(cf. Definition 4.13), the adversary only knows that cmt∗1 is uniformly distributed
over a set of size |CSet|. To make the verification pass, the adversary would need to
select ch∗0 which equals to 𝐻(𝑚∗, cmt∗1). However, there are |CSet| possible values
for cmt∗1 so that this can happen with probability at most 1/|CSet|.

Overall, we deduce that
Pr[badnot both] ≤

2
|CSet|

and therefore
Pr[Game1] ≤ Pr[Game2] +

2
|CSet|

.

Observe that from Game 2 on, now both the 0-query and 1-query were issued before
the adversary submits its forgery attempt.

game 3. In Game 3, we add a flag badre-use and abort the game if it is set. The
flag badre-use is again set when the game checks its winning condition and is set if the
forgery attempt output by the adversary is valid with respect to Game 2, but the (first)
0-query and the (first) 1-query are made in a signing query Sign(𝑖∗, 𝑚∗) and the pair
(cmt∗0 , cmt∗1) (computed during the verification of the adversary’s forgery attempt) equals

218



13 construction

(cmt0, cmt1), which are computed during the signing query. Note that if flag badre-use is
set, then this implies that

ch𝑗 = 𝐻(𝑚∗, cmt1−𝑗 ) = 𝐻(𝑚∗, cmt∗1−𝑗 ) = ch∗𝑗

for 𝑗 ∈ {0, 1}. Now, since the corresponding forgery attempt is valid, it must hold
(𝑚∗, 𝜎∗) ∉ (𝑖∗), i.e., the query Sign(𝑖∗, 𝑚∗) that causes badre-use to be set output a dif-
ferent signature 𝜎 ≠ 𝜎∗. Thus, it must hold (resp∗0 , resp∗1) ≠ (resp0, resp1). This can only
occur in two possible ways:

• badre-use ∧ (resp∗1−𝑏(𝑖∗) = resp1−𝑏(𝑖∗)) ∧ (resp∗𝑏(𝑖∗) ≠ resp𝑏(𝑖∗)). Intuitively, this case
implies that the adversary succesfully guessed the bit 𝑏(𝑖∗) as it chose resp∗0 , resp∗1
such that resp∗1−𝑏(𝑖∗) is equal and resp∗𝑏(𝑖∗) is unequal.

2 However, in Game 3 the bit
𝑏(𝑖∗) is perfectly hidden from the adversary due to the following reasons:

– The public key 𝑝𝑘(𝑖
∗) is independent of 𝑏(𝑖∗).

– User 𝑖∗ is not corrupted (or otherwise the forgery is invalid, anyway), so the
bit 𝑏(𝑖∗) is not leaked through corruptions.

– The signature 𝜎 returned by oracle Sign(𝑖∗, 𝑚∗) is independent of bit 𝑏(𝑖∗). The
reason for this is the following. Due to Game 1, each Sign(𝑖∗, 𝑚∗) query uses
uniformly random values ch1−𝑏(𝑖∗) and ch𝑏(𝑖∗) . Thus, the signature essentially
contains the two transcripts

(cmt𝑏(𝑖∗) , ch𝑏(𝑖∗) , resp𝑏(𝑖∗)) and (cmt1−𝑏(𝑖∗) , ch1−𝑏(𝑖∗) , resp1−𝑏(𝑖∗))

Note that the 𝑏(𝑖∗) transcript is an “honestly generated” transcript and the (1−
𝑏(𝑖∗)) transcript is a “simulated” transcriptwith uniformly random ch1−𝑏(𝑖∗) and
resp1−𝑏(𝑖∗) . Due to the perfect simulatability of LID, we know that these two
transcripts are identically distributed. Thus, adversary gains no information
about 𝑏(𝑖∗) through signatures.

That is, this subcase can only occur if the adversary guesses 𝑏(𝑖∗) and the probability
for this case to occur is

1
2
⋅ Pr[badre-use].

• badre-use ∧ (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗)). The overall goal is to analyze the probability of
Game 3 aborting due to badre-use, because (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗)) holds and thus
rejecting a forgery attempt that is considered valid in Game 2. To analyze this
subcase, we consider an intermediate game. Namely, we consider a game Game 3’,
which is identical to Game 3, but it uses lossy public keys 𝑝𝑘(𝑖)1−𝑏

$← LID.LossyGen
for every user 𝑖. That is, the New oracle always chooses the public key 𝑝𝑘1−𝑏 for
a user as a lossy public key. Next, consider a forgery attempt (𝑖∗, 𝑚∗, 𝜎∗) that is
valid in Game 2. This implies that 𝜎∗ is valid, and by Proposition 13.2 it holds that

LID.Vrfy(𝑝𝑘(𝑖
∗)

1−𝑏, cmt∗1−𝑏(𝑖∗) , ch
∗
1−𝑏(𝑖∗) , resp

∗
1−𝑏(𝑖∗)) = 1.

2 Note that we do not have a uniqueness property for LID with respect to normal keys. Introducing this
non-standard property would potentially simplify this step.

219



13 construction

Further, by definition the signing query Sign(𝑖∗, 𝑚∗) also outputs valid signature 𝜎
for 𝑚∗ for which is also holds by Proposition 13.2 that

LID.Vrfy(𝑝𝑘(𝑖
∗)

1−𝑏, cmt1−𝑏(𝑖∗) , ch1−𝑏(𝑖∗) , resp1−𝑏(𝑖∗)) = 1.

In the following, we denote by badre-use that the flag is set in Game 3 and by bad′re-use
that the flag is set in Game 3’. If bad′re-use occurs, we have that (cmt1−𝑏(𝑖∗) , ch1−𝑏(𝑖∗)) =
(cmt∗1−𝑏(𝑖∗) , ch

∗
1−𝑏(𝑖∗)), and further, resp1−𝑏(𝑖∗) ≠ resp∗1−𝑏(𝑖∗) . Then, we can construct a

straightforward reduction ̂ to the uniqueness property with respect to lossy keys.
Then, we have that the probability that bad′re-use is set and (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗))
holds is at most AdvunqLID(̂).
It remains to bound the difference between badre-use∧(resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗)) occur-
ing in Game 3 and Game 3’. This can be bounded by a straightforward reduction
to the multi-key-indistinguishability. To this end, we construct a reduction  that
uses  as a subroutine as follows. The reduction has access to an oracle  that
outputs a (fresh) public key 𝑝𝑘 that is either normal or lossy. It simulates Game 2
for, but in the simulation of theNew oracle, it queries for every 𝑝𝑘(𝑖)1−𝑏 its oracle
instead of running LID.Gen. Note that Game 2 does not use 𝑠𝑘(𝑖)1−𝑏 for all users 𝑖,
so reduction  can simulate the game perfectly. Finally, if outputs forgery and
badre-use ∧ (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗)), the reduction outputs 1. It is straightforward to
see that it holds

Pr[badre-use ∧ (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗))] ≤ Pr[New = 1]

and
Pr[bad′re-use ∧ (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗))] ≤ Pr[NewLoss = 1]

where New and NewLoss are as defined in Definition 4.9. This yields

Pr[badre-use ∧ (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗))] ≤ Pr[bad′re-use ∧ (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗))]

+ AdvMU-IND-KEY
LID ().

Overall we get for this subcase that the probability for it to occur is bounded from
above by

Pr[badre-use ∧ (resp∗1−𝑏(𝑖∗) ≠ resp1−𝑏(𝑖∗))] ≤ AdvMU-IND-KEY
LID () + AdvunqLID(̂).

The considerations above yield that

Pr[badre-use] ≤
1
2
Pr[badre-use] + AdvMU-IND-KEY

LID () + AdvunqLID(̂)

and equivalently

Pr[badre-use] ≤ 2AdvMU-IND-KEY
LID () + 2AdvunqLID(̂).

220



13 construction

Hence, we have that

Pr[Game2] ≤ Pr[Game3] + Pr[badre-use]

≤ Pr[Game3] + 2AdvMU-IND-KEY
LID () + 2AdvunqLID(̂).

game 4. In Game 4, we further modify the winning condition. Namely, we introduce
another flag badorder that is set if a forgery attempt is considered valid in Game 3, and the
first 𝑏(𝑖∗)-query is made before the (1− 𝑏(𝑖∗))-query. When badorder is set the game outputs
0. Recall that we can again use the time log mechanism introduced in the previous games
to check whether the flag has to be set.
We analyze badorder and distinguish three different cases. Recall that due to Game 2,

both the 0-query and 1-query corresponding to the forgery attempt already have been
made when the adversary submits the forgery. Therefore, we distinguish the following
three cases, when these queries are made. Let (𝑖∗, 𝑚∗, 𝜎∗) be the forgery attempt output
by the adversary that satisfies the the winning condition of Game 3.

• Both the first 0-query and the first 1-query are issued in the context of one and
the same query Sign(𝑖∗, 𝑚∗).

We have that the two hash queries

{𝐻(𝑚∗, cmt∗0), 𝐻(𝑚∗, cmt∗1)}

computed during the final verification have the same input as the two hash queries
{𝐻(𝑚∗, cmt0), 𝐻(𝑚∗, cmt1)}made by the signing query Sign(𝑖∗, 𝑚∗). Due to Game 3,
we have that it needs to hold (cmt∗0 , cmt∗1) = (cmt1, cmt0). Now, by definition Sign

always issues 𝐻(𝑚∗, cmt𝑏(𝑖∗)) query before 𝐻(𝑚, cmt1−𝑏(𝑖∗)). Thus badorder will not
be for these 0-query and 1-query.

• Both the first 0-query and the first 1-query are made in one signing query Sign(𝑖′,
𝑚∗) for some 𝑖′ ≠ 𝑖∗.

By definition of Sign the 𝑏(𝑖′)-query is made first. Therefore, badorder will be set if
and only if 𝑏(𝑖′) = 𝑏(𝑖∗).

• The first 0-query and the first 1-query are not made in exactly one signing query.
In other words, they lie in different signing queries or at least one of them is made
by the adversary.

Here, the adversary  actually has full control over which query is made first.
Suppose that 𝛽-query is made first for some bit 𝛽 ∈ {0, 1} implicitly chosen by .
That is, badorder will be set if and only if 𝛽 = 𝑏(𝑖∗).

Using a similar line of arguments as in Game 3, we conclude that the bit 𝑏(𝑖∗) needs to be
perfectly hidden from the adversary. Therefore, we have

Pr[badorder] ≤
1
2
⋅ Pr[Game3]

221



13 construction

because the event that the first 𝑏(𝑖∗)-query is made before the (1 − 𝑏(𝑖∗))-query solely
depends on the choice of 𝑏(𝑖∗), which is perfectly hidden from adversary, and thus this
event is independent of the event the adversary outputs a valid forgery with respect to
Game 3.

Overall, we have that

Pr[Game3] ≤ Pr[Game4] + Pr[badorder] ⟺ Pr[Game3] ≤ 2 Pr[Game4].

game 5. In Game 5, we change the generation of the key 𝑝𝑘(𝑖)1−𝑏. Namely, the key
generation in Game 5 is exactly as in Game 4 except that we choose lossy public keys
𝑝𝑘(𝑖)1−𝑏

$← LID.LossyGen for every new user 𝑖 ∈ [𝑁 ] the New oracle in Game 5.
Informally, adversary  can only detect this change if it is able to distinguish lossy

from normal keys. Therefore, we bound the difference between Game 4 and Game 5
using a reduction ′ to the multi-key-indistinguishability that is constructed as follows.

Construction of reduction ′. The reduction ′ receives no input and gets access to
an oracle  that either outputs (fresh) normal public keys of LID or (fresh) lossy keys of
LID. It uses adversary as a subroutine and simulates Game 4 for. The only exception
in the simulation compared to Game 4 is that it uses its oracle  in the simulation of the
New oracle of the signature scheme Sig. Here, is used to compute the public key 𝑝𝑘(1−𝑏)
when a new user is created. In the end, when outputs a forgery attempt, ′ outputs 1
if and only if the forgery attempt is valid with respect to Game 4.

Analysis of reduction ′. Note that ′ only changes the implementation when it
comes to the generation of the public keys 𝑝𝑘(1−𝑏). If oracle  = New defined in Defini-
tion 4.9, then it perfectly simulates Game 4, as then alle public keys 𝑝𝑘(1−𝑏) are normal
public keys. If oracle  = NewLoss defined in Definition 4.9, then it perfectly simulates
Game 5, as then alle public keys 𝑝𝑘(1−𝑏) are lossy public keys. Note that in Game 4, 𝑠𝑘(1−𝑏)
is not used anyway, therefore ′ does not need to simulate it.

Therefore, it holds

Pr[Game4] ≤ Pr[′New = 1] and Pr[Game5] ≤ Pr[′NewLoss = 1]

and
Pr[Game4] ≤ Pr[Game5] + AdvMU-IND-KEY

LID (′)

follows.
Finally, we claim that in Game 5 it holds

Pr[Game5] ≤ 𝑞2𝐻 ⋅ 𝜀𝓁

where 𝑞𝐻 are the number of queries issued by  to oracle 𝐻 . Recall that the lossiness
property defined in Definition 4.9 needs to hold for any adversary, even unbounded ones.
Note that the multiplicative term 𝑞2𝐻 does not break the tightness of our bound because
𝜀𝓁 is a bound for all adversaries (informally speaking it is “statistically negligle”). Due to

222



13 construction

the change of Game 4, we have ensured that the adversary has to ask an (1 − 𝑏(𝑖∗))-query
before any 𝑏(𝑖∗)-query. This forces the adversary to commit to a value cmt∗1−𝑏(𝑖∗) before the
challenge ch∗1−𝑏(𝑖∗) is determined by a 𝑏(𝑖∗)-query. In Game 5, we have that for every user
the public key 𝑝𝑘1−𝑏 is a lossy public key generated by LID.LossyGen. To win Game 5, the
adversary has to output a valid signature 𝜎∗ that is associated with a transcript (cmt∗1−𝑏(𝑖∗) ,
ch∗1−𝑏(𝑖∗) , resp

∗
1−𝑏(𝑖∗)) valid under 𝑝𝑘(𝑖

∗)
1−𝑏(𝑖∗) . Since LID is 𝜀𝓁-lossy, we have that for lossy

𝑝𝑘(𝑖
∗)

1−𝑏(𝑖∗) and any commitment that only for an 𝜀𝓁-fraction of the challenges, there exists
a response that yields a valid transcript. Since the adversary has at most 𝑞𝐻 choices to
choose cmt∗1−𝑏(𝑖∗) and for each of these choices at most 𝑞𝐻 choices for cmt∗𝑏(𝑖∗) determining
ch∗1−𝑏(𝑖∗) = 𝐻(𝑚∗, cmt∗𝑏(𝑖∗)), we have that the probability that (cmt∗1−𝑏(𝑖∗) , ch

∗
1−𝑏(𝑖∗) , resp

∗
1−𝑏(𝑖∗))

is valid under 𝑝𝑘(𝑖
∗)

1−𝑏(𝑖∗) is at most 𝑞2𝐻 ⋅ 𝜀𝓁. Hence, the probability to win Game 5 is at most
𝑞2𝐻 ⋅ 𝜀𝓁 as claimed before.

Final bound. Collecting all the terms implies

AdvMU-sEUF-CMAcorr

Sig () = Pr[ExpMU-sEUF-CMAcorr

Sig () = 1]

≤
2𝑞Sign𝑞𝐻

2𝛼
+

2
|CSet|

+ 2AdvMU-IND-KEY
LID () + 2AdvunqLID(̂)

+ 2AdvMU-IND-KEY
LID (′) + 2𝑞2𝐻 ⋅ 𝜀𝓁

and the theorem follows.

223





14
instantiations

In this chapter, we present two instantiations of our generic construction presented in
Chapter 13. One is based on the DDH problem and the other one is based on the 𝜙-hiding
assumption [ABP13, CMS99, KOS10]. The constructions described in this chapter are
derived from [KW03, AFLT12, AFLT16, ABP13] and are well-known. The purpose of
this section is to argue and justify that these constructions indeed satisfy all properties
required for our signature scheme.

14.1 Instantiation based on Decisional Diffie–Hellman

The well-known DDH-based LID scheme uses a standard Σ-protocol [Dam10] to prove
equality of discrete logarithms by Chaum, Evertse, and van de Graaf [CEv88] (cf. Fig-
ure 14.1) as foundation, whichwas used by Katz andWang [KW03] to build tightly-secure
signatures (in the single-user setting without corruptions).

Alternative characterization of DDH. In Definition 3.4, we defined the DDH prob-
lem in a cyclic group G with prime-order 𝑝 and a generator 𝑔 ∈ G such that given 𝑔𝑎, 𝑔𝑏,
and 𝑔𝑐 for 𝑎, 𝑏 $← Z𝑝 it is to decide whether 𝑐 = 𝑎𝑏 mod 𝑝 or 𝑐 $← Z𝑝 . Alternatively, one
can characterize the DDH problem not only with respect to a generator 𝑔 , but also with
respect to a group element ℎ $← G. Then, the DDH problem is defined with respect to

Prover: 𝑠𝑘 = 𝑥 Verifier: 𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣)
𝑟 $← Z𝑝

cmt ≔ (𝑒, 𝑓 ) = (𝑔 𝑟 , ℎ𝑟 ) cmt

ch ch
$← Z𝑝

resp ≔ 𝑟 − ch ⋅ 𝑥 resp accept if 𝑒 = 𝑔 resp ⋅ 𝑢ch

and 𝑓 = ℎresp ⋅ 𝑣ch

Figure 14.1: The DDH-based identification scheme [CEv88].

225



14 instantiations

(𝑔, ℎ) as given (𝑢, 𝑣) ∈ G2 it is to decide whether dlog𝑔 𝑢 = dlogℎ 𝑣. Note that these two
characterizations are equivalent. If one sets ℎ = 𝑔𝑏 and 𝑢 = 𝑔𝑎, then 𝑣 = 𝑔𝑎𝑏 if and only
if dlog𝑔 𝑢 = dlogℎ 𝑣. For the protocol shown in Figure 14.1, the latter characterization is
more convenient so we use this one in this chapter.

14.1.1 A DDH-based LID Scheme

Let (G, 𝑔, 𝑝) be a cyclic group of prime order 𝑝 and generator 𝑔 and let ℎ ∈ G. We de-
fine the lossy identification scheme LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy,
LID.Sim) based on the protocol presented in Figure 14.1 as follows:

Key generation. The algorithm LID.Gen chooses a value 𝑥 $← Z𝑝 uniformly at random.
It sets 𝑝𝑘 ≔ (𝑔, ℎ, 𝑢, 𝑣) = (𝑔, ℎ, 𝑔𝑥 , ℎ𝑥) and 𝑠𝑘 ≔ 𝑥 , and outputs (𝑝𝑘, 𝑠𝑘).

Lossy key generation. The algorithm LID.LossyGen chooses two group elements (𝑢,
𝑣) $← G2 uniformly and independently at random. It outputs 𝑝𝑘 ≔ (𝑔, ℎ, 𝑢, 𝑣).

Proving. The algorithm LID.Prove is split up into the following two algorithms:

1. The algorithm LID.Prove1 takes as input a secret key 𝑠𝑘 = 𝑥 , chooses a ran-
dom value 𝑟 $← Z𝑝, and computes a commitment cmt ≔ (𝑒, 𝑓 ) = (𝑔 𝑟 , ℎ𝑟),
where 𝑔, ℎ are the value of the 𝑝𝑘 corresponding to 𝑠𝑘. It outputs (cmt, st)
with st ≔ 𝑟 .

2. The algorithm LID.Prove2 takes as input a secret key 𝑠𝑘 = 𝑥 , a commitment
cmt = (𝑒, 𝑓 ), a challenge ch ∈ Z𝑝, a state st = 𝑟 , and outputs a response
resp ≔ 𝑟 − ch ⋅ 𝑥 .

Verification. The verification algorithm LID.Vrfy takes as input a public key 𝑝𝑘 = (𝑔,
ℎ, 𝑢, 𝑣), a commitment cmt = (𝑒, 𝑓 ), a challenge ch ∈ Z𝑝 , and a response resp ∈ Z𝑝 .
It outputs 1 if and only if 𝑒 = 𝑔 resp ⋅ 𝑢ch and 𝑓 = ℎresp ⋅ 𝑣ch.

Simulation. The simulation algorithm LID.Sim takes as input a public key 𝑝𝑘 = (𝑔, ℎ,
𝑢, 𝑣), a challenge ch ∈ Z𝑝, and a response resp ∈ Z𝑝. It outputs a commitment
cmt = (𝑒, 𝑓 ) = (𝑔 resp ⋅ 𝑢ch, ℎresp ⋅ 𝑣ch).

Remark 14.1. Note that an honest public key generated with LID.Gen is of the form
𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣) such that (𝑢, 𝑣) is a valid DDH tuple, whereas a lossy public key generated
with LID.LossyGen is of the form 𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣) such that (𝑢, 𝑣) is not a DDH tuple with
(high probability).

Theorem 14.1. The scheme LID defined above is lossy with

𝜌 = 1, 𝜀𝑠 = 0, 𝜀𝓁 ≤ 1/𝑝,

and from any adversary  we can construct an adversary  such that

AdvMU-IND-KEY
LID () ≤ AdvDDHG,𝑔 ().

226



14.1 Instantiation based on Decisional Diffie–Hellman

Furthermore, LID is perfectly unique with respect to lossy keys (i.e., for any adversary  it
holds AdvunqLID() = 0), LID has 𝛼-bit min-entropy with 𝛼 = log2(𝑝), LID is commitment-
recoverable, and LID has an injective simulator.

The proof of this theorem is rather standard and implicitly contained in the aforemen-
tioned prior works. For completeness, we provide a sketch below.

Proof. To show that LID is lossy, we need to show that it satisfies all properties presented
in Section 4.5.

Completeness of normal keys. We claim that the above scheme is perfectly complete.
To prove this, we show that for any honest transcript it holds that LID.Vrfy(𝑝𝑘, cmt,
ch, resp) = 1. Let (𝑝𝑘, 𝑠𝑘) $← LID.Gen be an (honest) key pair and let (cmt, ch, resp)
be an honest transcript, that is, ch $← CSet, (cmt, st) $← LID.Prove1(𝑠𝑘) and resp ≔
LID.Prove2(𝑠𝑘, cmt, ch, st). By definition of the scheme, we have 𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣)
with (𝑢, 𝑣) such that dlog𝑔 𝑢 = dlogℎ 𝑣 and 𝑠𝑘 = 𝑥 and cmt = (𝑒, 𝑓 ) = (𝑔 𝑟 , ℎ𝑟) and
resp = 𝑟 − ch ⋅ 𝑥 . Further, LID.Vrfy(𝑝𝑘, cmt, ch, resp) = 1 if and only if 𝑒 = 𝑔 resp ⋅ 𝑢ch

and 𝑓 = ℎresp ⋅ 𝑣ch. Observe that

𝑔 resp ⋅ 𝑢ch = 𝑔 𝑟−ch⋅𝑥 ⋅ 𝑔ch⋅𝑥 = 𝑔 𝑟 = 𝑒.

An analogous equation holds for 𝑓 if 𝑔 is replaced by ℎ. Hence, LID.Vrfy outputs
1 for every honest transcript.

Simulatability of transcripts. We claim that the above scheme is perfectly simulatable.
To show this, we need to argue that the two distributions

⎧⎪⎪
⎨⎪⎪⎩
(cmt, ch, resp) ∶

(cmt, st) $← LID.Prove1(𝑠𝑘)
ch

$← Z𝑝
resp ≔ LID.Prove2(𝑠𝑘, ch, cmt, st)

⎫⎪⎪
⎬⎪⎪⎭

and
⎧⎪⎪
⎨⎪⎪⎩
(cmt, ch, resp) ∶

ch
$← Z𝑝

resp
$← Z𝑝

cmt ≔ LID.Sim(𝑝𝑘, ch, resp)

⎫⎪⎪
⎬⎪⎪⎭

are identical. Recall that we have 𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣)with (𝑢, 𝑣)with dlog𝑔 𝑢 = dlogℎ 𝑣,
𝑠𝑘 = 𝑥 , cmt = (𝑒, 𝑓 ) = (𝑔 𝑟 , ℎ𝑟) with st = 𝑟 $← Z𝑝 , and resp = 𝑟 − ch ⋅ 𝑥 for an honest
transcript (i.e., in the former distribution). Thus, we have that cmt = (𝑒, 𝑓 ) is
uniformly distributed over G2. Consequently, since 𝑟 $← Z𝑝 and ch

$← Z𝑝 , we also
have that the response resp is distributed uniformly and independently (of cmt and
ch) over Z𝑝 .
We will now take a look at the latter distribution. Note that ch and resp are both
uniformly random elements over Z𝑝 . It remains to show that cmt in the simulated
transcript is distributed uniformly over G2.
Recall that cmt ≔ LID.Sim(𝑝𝑘, ch, resp) is defined as cmt ≔ (𝑒, 𝑓 ) = (𝑔 resp ⋅𝑢ch, ℎresp ⋅
𝑣ch). Observe that log𝑔(𝑒) = resp+ch ⋅𝑥 and log𝑔(𝑓 ) = log𝑔(ℎ)⋅(resp + ch ⋅ 𝑥). Since

227



14 instantiations

ch
$← Z𝑝 and resp

$← Z𝑝 , we have that both dlog𝑔(𝑒) and dlog𝑔(𝑓 ) are distributed
uniformly and independently (of ch and resp) overZ𝑝 and thus (𝑒, 𝑓 ) is distributed
uniformly over G2. Note that 𝑒, 𝑓 are not distributed independently of each other
(as it is the case in the honest transcript).

Indistinguishability of keys. As already remarked above, honest keys contain a DDH
tuple, whereas lossy keys contain a non-DDH tuple (i.e., random (𝑢, 𝑣) ∈ G2. There-
fore, we claim that for every adversary  trying to distinguish honest from lossy
keys of LID, we can construct an adversary  such that

AdvMU-IND-KEY
LID () ≤ AdvDDHG,𝑔 ().

To prove this claim, we give a construction of  running as a subroutine. The
adversary  receives a tuple (𝑔, ℎ, 𝑢, 𝑣) such that (𝑢, 𝑣) either it holds dlog𝑔 𝑢 =
dlogℎ 𝑣 or not. Adversary  needs to simulate an oracle  for  that outputs
a public key. Here,  outputs a fresh rerandomization (𝑔, ℎ, 𝑢′, 𝑣′) of the tuple
(𝑔, ℎ, 𝑢, 𝑣).1 When halts and outputs a bit 𝑏,  halts and outputs 𝑏 as well.
Observe that due to the random self-reducibility of DDH that perfectly simulates
oracle New as defined in Definition 4.9 if it holds dlog𝑔 𝑢 = dlogℎ 𝑣 for the tuple
(𝑔, ℎ, 𝑢, 𝑣). Otherwise, it perfectly simulates NewLoss as defined in Definition 4.9.
In conclusion, we have

AdvMU-IND-KEY
LID () ≤ AdvDDHG,𝑔 ().

Lossiness. We claim that the above scheme LID is (1/𝑝)-lossy. To show this, we first
recall a standard result showing the soundness of the protocol to “prove DDH
tuples” by Chaum, Evertse, and van de Graaf presented above. Namely, we claim
that if log𝑔(𝑢) ≠ logℎ(𝑣) holds for the public key 𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣) (i.e., 𝑝𝑘 is a
lossy key and (𝑢, 𝑣) $← G2), for any commitment cmt there can only be at most
one challenge ch such that the transcript is valid. We prove this statement by
contradiction.
Let 𝑝𝑘 be any lossy public key that can be output by LID.LossyGen and let cmt =
(𝑒, 𝑓 ) be any commitment. We show that there is a response resp for only one ch
such that LID.Vrfy(𝑝𝑘, cmt, ch, resp) = 1. Suppose two responses resp1 and resp2 for
two different challenge ch1 ≠ ch2 such that LID.Vrfy(𝑝𝑘, cmt, ch1, resp1) = 1 and
LID.Vrfy(𝑝𝑘, cmt, ch2, resp2) = 1 holds. This implies by the definition of LID.Vrfy
that

𝑒 = 𝑔 resp1𝑢ch1 = 𝑔 resp2𝑢ch2 and 𝑓 = ℎresp1𝑣ch1 = ℎresp2𝑣ch2 .

Equivalently, we get by using the assumption that ch1 ≠ ch2:

log𝑔(𝑢) =
(resp1 − resp2)

ch2 − ch1
and logℎ(𝑣) =

(resp1 − resp2)
ch2 − ch1

.

1 It is well-known that the DDH problem (and the DH related problems in general) are random self-
reducible. That is, there is an algorithm that on input (𝑔, ℎ, 𝑢, 𝑣) outputs (𝑢′, 𝑣′) such that dlog𝑔 𝑢 = dlogℎ 𝑣
if and only if dlog𝑔 𝑢′ = dlogℎ 𝑣′ and (𝑢′, 𝑣′) are distributed as a fresh DDH pair. For more details, we
refer, e.g., to [BBM00, Lemma 5.2].

228



14.1 Instantiation based on Decisional Diffie–Hellman

However, this is a contraction to the assumption that log𝑔(𝑢) ≠ logℎ(𝑣).
Using this, we have that for every commitment, there can only be at most one
challenge ch for which there exists a response that yields a valid transcript. As
there is only one challenge for cmt, we have that the ratio of challenges for which
there exists a response that yields a valid transcript is at most 1/𝑝.

Uniqueness with respect to lossy keys. Let 𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣) with (𝑢, 𝑣) $← G2 and
(cmt, ch, resp) with LID.Vrfy(𝑝𝑘, cmt, ch, resp) = 1. Suppose that there is a resp′ ≠
resp such that LID.Vrfy(𝑝𝑘, cmt, ch, resp′) = 1. In this case, we have for cmt = (𝑒, 𝑓 )
that

𝑒 = 𝑔 resp𝑢ch = 𝑔 resp
′
𝑢ch and 𝑓 = ℎresp𝑣ch = ℎresp

′
𝑣ch.

However, this implies that

𝑔 resp = 𝑔 resp
′

and ℎresp = ℎresp
′
,

which implies that resp = resp′, contradicting the initial assumption.

Min-entropy. For any secret key 𝑠𝑘, the commitment cmt
$← LID.Prove1(𝑠𝑘) equals

(𝑔 𝑟 , ℎ𝑟) for 𝑟 $← Z𝑝, which is independent of 𝑠𝑘. So the min-entropy of cmt is
𝛼 = log2(𝑝).

Commitment-recoverable. The verification algorithm of LID first recovers a commit-
ment using the simulator and then compares the result with the commitment in
the transcript. So LID is commitment-recoverable.

Injective simulator. For any normal public key 𝑝𝑘 = (𝑔, ℎ, 𝑢, 𝑣), any response resp and
any challenge ch ≠ ch′, we have that

LID.Sim(𝑝𝑘, ch, resp) = (𝑔 resp𝑢ch, ℎresp𝑣ch),

LID.Sim(𝑝𝑘, ch′, resp) = (𝑔 resp𝑢ch
′
, ℎresp𝑣ch

′
).

Thus, if the above two pairs are equal, we must have that (𝑢ch, 𝑣ch) = (𝑢ch′ , 𝑣ch′).
That implies ch = ch′.

14.1.2 Concrete instantiation

We can now use the DDH-based lossy identification scheme to describe an explicit in-
stantiation of our signature scheme based on the DDH assumption. To this end, let
G be a group of prime order 𝑝 with generator 𝑔 , let ℎ $← G be a random generator
and let 𝐻 ∶ {0, 1}∗ → Z𝑝 be a hash function. We construct a digital signature scheme
Sig = (Sig.Gen, Sig.Sign, Sig.Vrfy) as follows.

Key generation. The key generation Sig.Gen algorithm samples 𝑥0, 𝑥1 $← Z𝑝 , 𝑏 $← {0, 1}.
Then it sets

𝑝𝑘 ≔ (𝑢0, 𝑣0, 𝑢1, 𝑣1) = (𝑔𝑥0 , ℎ𝑥0 , 𝑔𝑥1 , ℎ𝑥1) and 𝑠𝑘 ≔ (𝑏, 𝑥𝑏).

229



14 instantiations

Signing. The signing algorithm Sig.Sign takes as input 𝑠𝑘 = (𝑏, 𝑥𝑏) and a message 𝑚 ∈
{0, 1}∗. Then it proceeds as follows.

1. It first chooses a random value 𝑟 $← Z𝑝 , and sets (𝑒𝑏, 𝑓𝑏) ≔ (𝑔 𝑟 , ℎ𝑟) and

ch1−𝑏 ≔ 𝐻(𝑚, 𝑒𝑏, 𝑓𝑏).

2. Then it samples a value resp1−𝑏
$← Z𝑝 and computes

𝑒1−𝑏 = 𝑔 resp1−𝑏𝑢ch1−𝑏1−𝑏 and 𝑓1−𝑏 = ℎresp1−𝑏𝑣ch1−𝑏1−𝑏 .

3. Finally, it computes

ch𝑏 ≔ 𝐻(𝑚, 𝑒1−𝑏, 𝑓1−𝑏) and resp𝑏 ≔ 𝑟 − ch𝑏 ⋅ 𝑥𝑏

and outputs the signature 𝜎 ≔ (ch0, resp0, resp1) ∈ Z3
𝑝 .

Verification. The verification algorithm takes as input a public key 𝑝𝑘 ≔ (𝑢0, 𝑣0, 𝑢1, 𝑣1),
a message 𝑚 ∈ {0, 1}∗, and a signature 𝜎 = (ch0, resp0, resp1).
If first computes

𝑒0 = 𝑔 resp0𝑢ch00 and 𝑓0 = ℎresp0𝑣ch00 .

From (𝑒0, 𝑓0) it is then able to compute

ch1 ≔ 𝐻(𝑚, 𝑒0, 𝑓0)

and then
𝑒1 = 𝑔 resp1 ⋅ 𝑢ch11 and 𝑓1 = ℎresp1 ⋅ 𝑣ch11 .

Finally, the algorithm outputs 1 if and only if

ch0 = 𝐻(𝑚, 𝑒1, 𝑓1).

Note that public keys are 𝑝𝑘 ∈ G4, secret keys are 𝑠𝑘 ∈ {0, 1} × Z𝑝 , and signatures are
𝜎 ∈ Z3

𝑝 .

14.2 Instantiation from the 𝜙-Hiding Assumption

The second instantiation we present is based on the Guillou–Quisquater (GQ) identifi-
cation scheme [GQ90], which proves that an element 𝑈 = 𝑆𝑒 mod 𝑁 is an 𝑒-th residue
(cf. Figure 14.2). Abdalla, Ben Hamouda, and Pointcheval [ABP13] describe a lossy ver-
sion of the GQ scheme, based on the 𝜙-hiding. We observe that we can build a lossy
identification scheme on a weaker assumption, which is implied by 𝜙-hiding [ABP13,
CMS99, KOS10].

In order to achieve tightness in the multi-user setting, we will need a common setup,
which is shared across all users. This setup consists of a public tuple (𝑁 , 𝑒)where𝑁 = 𝑝⋅𝑞
is the product of two large random primes and 𝑒 is a uniformly random prime of length
𝓁𝑒 ≤ 𝜆/4 that divides 𝑝 − 1. The factors 𝑝 and 𝑞 need to remain secret, so we assume
that (𝑁 , 𝑒) either was generated by a trusted party, or by running a secure multi-party
computation protocol with multiple parties.

230



14.2 Instantiation from the 𝜙-Hiding Assumption

14.2.1 The Guillou–Quisquater LID Scheme.

We define the lossy identification scheme LID = (LID.Gen, LID.LossyGen, LID.Prove,
LID.Vrfy, LID.Sim) based on the protocol presented in Figure 14.2 as follows:

Common setup. The common system parameters are a tuple (𝑁 , 𝑒) where 𝑁 = 𝑝 ⋅ 𝑞
is the product of two distinct primes 𝑝, 𝑞 of length 𝜆/2 and 𝑒 is random prime of
length 𝓁𝑒 ≤ 𝜆/4 such that 𝑒 divides 𝑝 − 1.

Note that the parameters (𝑁 , 𝑒) are always in “lossy mode”, and not switched from
an “injective” pair (𝑁 , 𝑒) where 𝑒 is coprime to 𝜙(𝑁) = (𝑝 − 1)(𝑞 − 1) to “lossy” in
the security proof, as common in other works.

Key generation. The algorithm LID.Gen samples 𝑆 $← Z∗
𝑁 and computes 𝑈 = 𝑆𝑒 . It sets

𝑝𝑘 = (𝑁 , 𝑒, 𝑈 ) and 𝑠𝑘 = (𝑁 , 𝑒, 𝑆), where (𝑁 , 𝑒) are from the common parameters.

Lossy key generation. The lossy key generation algorithm LID.LossyGen samples 𝑈
uniformly at random from the 𝑒-th non-residues modulo 𝑁 .2

Proving. The algorithm LID.Prove is split up into the following two algorithms:

1. The algorithm LID.Prove1 takes as input a secret key 𝑠𝑘 = (𝑁 , 𝑒, 𝑆), chooses
a random value 𝑟 $← Z∗

𝑁 , and computes a commitment cmt ≔ 𝑟 𝑒 mod 𝑁 . It
outputs (cmt, st) with st ≔ 𝑟 .

2. The algorithm LID.Prove2 takes as input a secret key 𝑠𝑘 = (𝑁 , 𝑒, 𝑆), a com-
mitment cmt, a challenge ch ∈ {0, … , 2𝓁𝑒 − 1}, a state st = 𝑟 , and outputs a
response resp ≔ 𝑟 ⋅ 𝑆ch mod 𝑁 .

Verification. The verification algorithm LID.Vrfy takes as input a public key 𝑝𝑘 =
(𝑁 , 𝑒, 𝑈 ), a commitment cmt, a challenge ch, and a response resp. It outputs 1 if
and only if resp ≠ 0 mod 𝑁 and resp𝑒 = cmt ⋅ 𝑈 ch.

Simulation. The simulation algorithm LID.Sim takes as input a public key 𝑝𝑘 = (𝑁 , 𝑒,
𝑈 ), a challenge ch, and a response resp. It outputs a commitment cmt = resp𝑒/𝑈 ch.

Before we can prove that the above scheme indeed satisfies the properties we require
for LID schemes, we need to introduce the 𝑛-fold higher residuosity problem that we
rely our multi-key-indistinguishability on. To this end, we first define the RSA modulus
generation algorithm. The following definition is from [ABP13].

Definition 14.1. Let 𝓁𝑁 be a positive integer and let RSA𝓁𝑁 be the set of all tuples
(𝑁 , 𝑝1, 𝑝2) such that 𝑁 = 𝑝1𝑝2 is a 𝓁𝑁 -bit number and 𝑝1, 𝑝2 are two distinct primes in
the set of 𝓁𝑁/2-bit primes P𝓁𝑁 /2. Let 𝑅 be any relation on 𝑝1 and 𝑝2, define RSA𝓁𝑁 [𝑅] ≔
{(𝑁 , 𝑝1, 𝑝2) ∈ RSA𝓁𝑁 ∣ 𝑅(𝑝1, 𝑝2) = 1}.

2 This is indeed efficiently possible as 𝑈 $← Z∗
𝑁 is a not an 𝑒-th residue with probability 1−1/𝑒 and we can

efficiently check whether a given 𝑈 is an 𝑒-th residue when the factorization of 𝑁 is known [ABP13].

231



14 instantiations

Prover: 𝑠𝑘 = (𝑁 , 𝑒, 𝑆) Verifier: 𝑝𝑘 = (𝑁 , 𝑒, 𝑈 )
𝑟 $← Z∗

𝑁

cmt ≔ 𝑟 𝑒 mod 𝑁 cmt

ch ch
$← {0,… , 2𝓁𝑒 − 1}

resp ≔ 𝑟 ⋅ 𝑆ch resp accept if resp ≠ 0 mod 𝑁

and resp𝑒 = cmt ⋅ 𝑈 ch

Figure 14.2: The Guillou–Quisquater identification scheme [GQ90].

We can use it to define the 𝑛-fold higher residuosity assumption as well as the 𝜙-hiding
assumption [ABP13, CMS99, KOS10].

Definition 14.2. Let 𝑒 be a random prime of length 𝓁𝑒 ≤ 𝓁𝑁/4 and

(𝑁 , 𝑝1, 𝑝2)
$← RSA𝓁𝑁 [𝑝1 = 1 mod 𝑒]

and let HR𝑁 [𝑒] ≔ {𝑔𝑒 mod 𝑁 ∣ 𝑔 ∈ Z∗
𝑁 } be the set of 𝑒-th residues modulo 𝑁 . We define

the advantage of any in solving the higher residuosity problem as

Adv𝑛-HR() ≔ |Pr[(𝑁 , 𝑒, 𝑦1, … , 𝑦𝑛) = 1] − Pr[(𝑁 , 𝑒, 𝑦′1, … , 𝑦′𝑛) = 1]|,

where 𝑦1, … , 𝑦𝑛
$← HR𝑁 [𝑒] and 𝑦′1, … , 𝑦′𝑛

$← Z∗
𝑁 ⧵ HR𝑁 [𝑒].

Definition 14.3. Let 𝑐 ≤ 1/4 be a constant. For any adversary, define the advantage
of  in solving the 𝜙-hiding problem to be

Adv𝜙H() ≔ |Pr[(𝑁 , 𝑒) = 1] − Pr[(𝑁 ′, 𝑒) = 1]|,

where 𝑒 $← P𝑐𝓁𝑁 , (𝑁 , 𝑝1, 𝑝2)
$← RSA𝓁𝑁 [gcd(𝑒, 𝜙(𝑁 )) = 1] and (𝑁 ′, 𝑝′1, 𝑝′2)

$← RSA𝓁𝑁 [𝑝′1 =
1 mod 𝑒].

For the LID scheme presented above, we have the following properties.

Theorem 14.2. The scheme LID defined above is lossy with

𝜌 = 1, 𝜀𝑠 = 0, 𝜀𝓁 ≤ 1/2𝓁𝑒 ,

and from any adversary that issues 𝑛 queries to distinguish normal from lossy keys, we
can construct an adversary  such that

AdvMU-IND-KEY
LID () ≤ Adv𝑛-HR()

Furthermore, for any adversary against the uniqueness, we can construct an adversary′

such that AdvunqLID() ≤ Adv𝜙H(′), LID has 𝛼-bit min-entropy with 𝛼 ≥ 𝜆 − 2, LID is
commitment-recoverable, and LID has an injective simulator.

232



14.2 Instantiation from the 𝜙-Hiding Assumption

The above theorem has been proven in [ABP13] for most of its statements. What is left
is a proof for multi-key-indistinguishability and uniqueness, which we provide below.

Lemma 14.1. For any adversary  against the multi-key-indistinguishability of LID in
Figure 14.2, we can construct adversaries  and ′ such that an adversary  such that

AdvMU-IND-KEY
LID () ≤ Adv𝑛-HR()

Proof Sketch. The proof is a straightforward reduction.  receives (𝑁 , 𝑒, 𝑦1, … , 𝑦𝑛) as
input and defines the common parameters as (𝑁 , 𝑒) and it simulates ’s oracle  as
follows: Upon the 𝑖-th query, it outputs 𝑝𝑘𝑖 ≔ 𝑦𝑖. When  outputs a bit 𝑏, then 
outputs the same bit 𝑏. Note that this defines real keys if the 𝑦𝑖 are 𝑒-th residues, and
lossy keys if the 𝑦𝑖 are 𝑒-th non-residues. Thus,  simulates New if the values 𝑦𝑖 are 𝑒-th
residues and NewLoss otherwise.

Lemma 14.2. For any adversary against the uniqueness, we can construct an adversary′

such that AdvunqLID() ≤ Adv𝜙H(′).

Proof Sketch. The proof is a straightforward reduction. ′ gets a tuple (𝑁 , 𝑒), now it
generates a lossy public key 𝑈 as defined above and hands (𝑁 , 𝑒, 𝑈 ) to the adversary .
When the adversary outputs (cmt, ch, resp, resp′), ′ outputs 1 if and only if resp𝑒 =
(resp′)𝑒 = cmt ⋅ 𝑈 ch ∧ resp ≠ resp′. We denote the conjunction by win. Now, we conclude

AdvunqLID() = Pr[win occurs when gets (𝑁 , 𝑒, 𝑈 ) ]

≤ Pr[win occurs when gets (𝑁 ′, 𝑒, 𝑈 ) ] + Adv𝜙H(′)

where 𝑒 $← P𝑐𝓁𝑁 , (𝑁 , 𝑝1, 𝑝2)
$← RSA𝓁𝑁 [gcd(𝑒, 𝜙(𝑁 )) = 1] and (𝑁 ′, 𝑝′1, 𝑝′2)

$← RSA𝓁𝑁 [𝑝′1 =
1 mod 𝑒]. It remains to analyze Pr[win occurs when gets (𝑁 ′, 𝑒, 𝑈 ) ]. We claim that
win never occurs if the adversary gets a public key of the form (𝑁 ′, 𝑒, 𝑈 ). The reason
is that 𝑒 is coprime to 𝜙(𝑁 ′). This implies that 𝑥 ↦ 𝑥𝑒 mod 𝑁 ′ is a bijection over
Z∗
𝑁 . Consequently, for every cmt, ch, and 𝑈 there is at most one resp such that resp𝑒 =

cmt ⋅ 𝑈 ch mod 𝑁 ′. Hence, the lemma follows.

Finally, we can show that the 𝑛-fold higher residuosity assumption is tightly implied
by the 𝜙-hiding assumption [ABP13, CMS99, KOS10].

Lemma 14.3. For any adversary we can construct adversaries  and ′ such that

Adv𝑛-HR() ≤ Adv𝜙H() + Adv𝜙H(′) + 𝑛/𝑒

Proof Sketch. First, we have that

Adv𝑛-HR() = |Pr[(𝑁 ′, 𝑒, 𝑦1, … , 𝑦𝑛) = 1] − Pr[(𝑁 ′, 𝑒, 𝑦′1, … , 𝑦′𝑛) = 1]|
≤ |Pr[(𝑁 ′, 𝑒, 𝑦1, … , 𝑦𝑛) = 1] − Pr[(𝑁 , 𝑒, 𝑟1, … , 𝑟𝑛) = 1]|
+ |Pr[(𝑁 , 𝑒, 𝑟1, … , 𝑟𝑛) = 1] − Pr[(𝑁 ′, 𝑒, 𝑟1, … , 𝑟𝑛) = 1]|
+ |Pr[(𝑁 ′, 𝑒, 𝑟1, … , 𝑟𝑛) = 1] − Pr[(𝑁 ′, 𝑒, 𝑦′1, … , 𝑦′𝑛) = 1]|,

233



14 instantiations

wherewhere 𝑦1, … , 𝑦𝑛
$← HR𝑁 [𝑒], 𝑦′1, … , 𝑦′𝑛

$← Z∗
𝑁 ⧵HR𝑁 [𝑒], 𝑟1, … , 𝑟𝑛

$← Z∗
𝑁 , (𝑁 , 𝑝1, 𝑝2)

$←
RSA𝓁𝑁 [gcd(𝑒, 𝜙(𝑁 )) = 1] and (𝑁 ′, 𝑝′1, 𝑝′2)

$← RSA𝓁𝑁 [𝑝′1 = 1 mod 𝑒]. Next, we claim that
it holds

|Pr[(𝑁 ′, 𝑒, 𝑦1, … , 𝑦𝑛) = 1] − Pr[(𝑁 , 𝑒, 𝑟1, … , 𝑟𝑛) = 1]| ≤ Adv𝜙H().

We prove this claim by constructing a straightforward reduction . The reduction re-
ceives as input (𝑁 , 𝑒). It samples 𝑥1, … , 𝑥𝑛

$← Z𝑁 uniformly random and then defines
𝑦𝑖 ∶= 𝑥𝑒𝑖 mod 𝑁 for 𝑖 ∈ {1, … , 𝑛}. Then it runs  on input (𝑁 , 𝑒, 𝑦1, … , 𝑦𝑛) and returns
whatever  outputs. Note that if (𝑁 , 𝑒) is a “lossy” key, so that 𝑒 ∣ 𝜙(𝑁 ), then the 𝑦𝑖
are random 𝑒-th residues. However, if gcd(𝑒, 𝜙(𝑁 )) = 1, then all 𝑦𝑖 ≕ 𝑟𝑖 are uniformly
random in Z∗

𝑁 independent of 𝑒, since the map 𝑥 ↦ 𝑥𝑒 mod 𝑁 is a permutation.
Using an even simpler reduction that only choses 𝑟𝑖 $← Z∗

𝑁 ′ , we can prove that

|Pr[(𝑁 , 𝑒, 𝑟1, … , 𝑟𝑛) = 1] − Pr[(𝑁 ′, 𝑒, 𝑟1, … , 𝑟𝑛) = 1]| ≤ Adv𝜙H(′).

Finally, it remains to analyze |Pr[(𝑁 ′, 𝑒, 𝑟1, … , 𝑟𝑛) = 1]−Pr[(𝑁 ′, 𝑒, 𝑦′1, … , 𝑦′𝑛) = 1]|. We
claim that this is bounded from above by 𝑛/𝑒. To see this, recall 𝑟 $← Z∗

𝑁 is an 𝑒-residue
with probability 1/𝑒 (cf. [ABP13]). Thus, the distributions {(𝑟1, … , 𝑟𝑛) ∶ 𝑟𝑖

$← Z∗
𝑁 } and

{(𝑦′1, … , 𝑦′𝑛) ∶ 𝑦′𝑖
$← Z∗

𝑁 ⧵ HR𝑁 [𝑒]} are statistically close with a statistical distance of 𝑛/𝑒.
Overall, we have that Adv𝑛-HR() ≤ Adv𝜙H() + Adv𝜙H(′) + 𝑛/𝑒.

234



15
discussion

In Chapter 13, we presented a generic construction of a tightlyMU-sEUF-CMAcorr-secure
digital signature scheme in the non-programmable random oracle model. The construc-
tion is based on lossy identification schemes as defined in Section 4.5 and can be instan-
tiated with every computational problem that gives rise to such a scheme. In Chapter 14,
we presented two possible instantiations for our scheme, one based on DDH and the
other one based on 𝜙-hiding. The scheme is the currently most efficient scheme with
tight MU-EUF-CMAcorr security and the only one that is directly strongly unforgeable.1
Therefore, it is an ideal candidate to be used in combination with an signature-based
authenticated key exchange protocol that aims for tight security. In particular, it could
be considered for future revisions of TLS if tight security is one goal of the protocol
standard in the future.

Open questions. For future work, we consider it interesting to investigate more in-
stantiations of our generic signature scheme construction and to analyse their efficiency.
In particular, if our scheme should serve as an alternative to the currently standardized
signature schemes for real-world protocols such as the TLS 1.3 handshake, the efficiency
of our scheme has to be studied in more detail. Especially, it would be interesting to in-
vestigate how competive our construction instantiated under an appropriate assumption
in comparison to the standardized signatures, such as RSA-PSS and (EC)DSA, is.

1 Pan and Wagner [PW22] noted that their construction, which builds upon our construction, can be
tightly transformed into a strong signature with a transform using a one-time signature, we however
are able to directly prove strong security.

235





Conclusion





16
conclusion

In this thesis, we gave major insights on the tight security of the TLS 1.3 protocol. To
this end, we looked at the TLS 1.3 handshake protocol and the TLS 1.3 record protocol
separately. Formally, our results focused mainly on the handshake protocol.

For the handshake protocol, we formally proved tight security bounds for all variants
of the handshake protocol with a constant security loss in the multi-stage key exchange
(MSKE) model, where prior to our work all (computational) analyses suffered from a
quadratic loss in the number of TLS sessions. The proofs are in the random oracle
model (ROM) and rely on the assumption that the TLS 1.3 hash function is modeled
as a random oracle. In a first step, we showed that the TLS 1.3 key schedule, the key
derivation procedure of TLS 1.3, can be abstracted to 12 independent random oracles
using the indifferentiability framework relying only on the assumption that the TLS 1.3
hash function is modeled as a random oracle. This abstraction models every key and
every MAC value derived in the TLS 1.3 handshake as its own (independent random)
function, which reflects the natural intuition one would have when thinking about a
key derivation function. Namely, providing “as-good-as-random“ keys. With this ab-
straction at hand, we reduced the complexity of the TLS 1.3 protocol and abstracted
the complex, interleaved construction of the key schedule from our perspective for the
proof. In particular, this abstraction has the property that the Diffie–Hellman key and
the corresponding TLS transcript are input to the same function call. This property
allowed us to almost directly apply the technique to prove Diffie–Hellman-based key ex-
change protocols tightly-secure by Cohn-Gordon et al. [Coh+19]. Here, our abstraction
was the crucial ingredient to enable the proof with reasonable assumptions. Finally, we
showed that the MSKE-security of the TLS 1.3 full handshake reduces to the existential
unforgeability under an adaptive chosen-message attack in the multi-user setting with
adaptive corruptions (MU-EUF-CMAcorr) of the signature scheme used for authentica-
tion and to the strong Diffie–Hellman problem (SDH) in the underlying group. For the
PSK-(EC)DHE handshake, we reduced the MSKE security to the strong Diffie–Hellman
problem (SDH) in the underlying group under the assumption that the TLS hash function
is a random oracle. Both security proofs relied on the assumption that the TLS 1.3 hash
function is a random oracle. For the PSK-only handshake, the assumption that TLS hash
function is a random oracle was even sufficient to prove tight MSKE-security.

239



16 conclusion

For the TLS 1.3 record protocol, we did not give a formal treatment, but discussed the
current state of it with respect to tight security. We remarked that there currently is a
lack of a suitable model to capture all features of the record protocol, thus we were not
able to give a final answer for the tight security of the record protocol. Nevertheless, it
has been shown in prior work that the authenticated encryption with associated data
(AEAD) schemes, the main building block of the record protocol, supported by TLS 1.3
can be proven to be tightly multi-user-secure. This is already a significant step towards
tightness of the whole record protocol.
Unfortunately, none of the signature schemes supported by the TLS 1.3 handshake

is tightly-secure in the sense of MU-EUF-CMAcorr-security. That is, the TLS 1.3 full
handshake as it is today cannot be instantiated tightly due to the lack of the tight multi-
user-security of the signature schemes. To propose an alternative to the standardized
signatures, we presented a tightly MU-EUF-CMAcorr-secure digital signature with short
signatures. The construction is in the random oracle model and is generic. It can be
instantiated under any computational problem that gives rise to a loss identification
scheme and we present two instantiations in this work: one based on the decisional
Diffie–Hellman problem (DDH) and one based on the 𝜙-hiding problem. Our signature
scheme is the currently most-efficient scheme with tightMU-EUF-CMAcorr-security with
respect to signature size, as signatures when instantiated with DDH consist only of
three Z𝑝 elements, where 𝑝 is the prime-order of the underlying Diffie–Hellman group.
Moreover, our signature scheme is the first (and only) one that is (directly) tightly MU-
sEUF-CMAcorr-secure. Therefore, our signature scheme is not only a good candidate to
instantiate TLS 1.3 with tight security, but also to be used in any key exchange protocol
using authentication based on digital signatures that aim for tight security. Thus, it is
also of interest independently of TLS 1.3.

Overall, it remains to be said that with the insights gained in this thesis proving tight
security of the overall TLS 1.3 seems to be possible to achieve under reasonably strong
assumptions. Even thoughwe did not fully show this formally in this thesis, we advanced
the understanding of the tight security of TLS 1.3 protocol by giving formal results for
a major part of the protocol via our tight analysis of the TLS 1.3 handshake. As a real-
world protocol that was not designed to be tightly-secure, it is almost surprising that
proving tight security for the TLS 1.3 handshake protocol is possible. For the remaining
open questions discussed in the respective chapters, particularly regarding the TLS 1.3
record protocol, we are confident that these can be solved in further investigations.
Finally, we consider investigating the tight security of cryptographic constructions and
giving improved, tighter bounds to be valuable. This particularly holds for constructions
deployed in the real world and allows for a theoretically-sound deployment of these
constructions, in which security does not have to suffer in favor of efficiency.

240



bibliography

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. “The Oracle Diffie-
Hellman Assumptions and an Analysis of DHIES”. In: Topics in Cryptol-
ogy – CT-RSA 2001. Ed. by David Naccache. Vol. 2020. Lecture Notes in
Computer Science. Springer, Heidelberg, April 2001, pp. 143–158. doi:
10.1007/3-540-45353-9_12 (cit. on pp. 10, 25, 165, 166).

[ABP13] Michel Abdalla, Fabrice Ben Hamouda, and David Pointcheval. “Tighter
Reductions for Forward-Secure Signature Schemes”. In: PKC 2013: 16th
International Conference on Theory and Practice of Public Key Cryptography.
Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778. Lecture Notes
in Computer Science. Springer, Heidelberg, February 2013, pp. 292–311.
doi: 10.1007/978-3-642-36362-7_19 (cit. on pp. 225, 230–234).

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi
Tibouchi. “Tightly-Secure Signatures from Lossy Identification Schemes”.
In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David Pointcheval
and Thomas Johansson. Vol. 7237. Lecture Notes in Computer Science.
Springer, Heidelberg, April 2012, pp. 572–590. doi: 10.1007/978-3-
642-29011-4_34 (cit. on pp. 11, 14, 33–35, 205, 208, 225).

[AFLT16] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi
Tibouchi. “Tightly Secure Signatures From Lossy Identification Schemes”.
In: Journal of Cryptology 29.3 (July 2016), pp. 597–631. doi: 10.1007/
s00145-015-9203-7 (cit. on pp. 33–35, 225).

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. “1-out-of-n
Signatures from a Variety of Keys”. In: Advances in Cryptology –
ASIACRYPT 2002. Ed. by Yuliang Zheng. Vol. 2501. Lecture Notes in
Computer Science. Springer, Heidelberg, December 2002, pp. 415–432.
doi: 10.1007/3-540-36178-2_26 (cit. on p. 211).

[Adr+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Em-
manuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santi-
ago Zanella-Béguelin, and Paul Zimmermann. “Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice”. In: ACM CCS 2015: 22nd Conference
on Computer and Communications Security. Ed. by Indrajit Ray, Ninghui
Li, and Christopher Kruegel. ACM Press, October 2015, pp. 5–17. doi:
10.1145/2810103.2813707 (cit. on p. 15).

241

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-642-36362-7_19
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/s00145-015-9203-7
https://doi.org/10.1007/s00145-015-9203-7
https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1145/2810103.2813707


bibliography

[AlF+13] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram
Poettering, and Jacob C. N. Schuldt. “On the Security of RC4 in TLS”. In:
USENIX Security 2013: 22nd USENIX Security Symposium. Ed. by Samuel T.
King. USENIX Association, August 2013, pp. 305–320 (cit. on p. 15).

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. “Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols”. In: 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2013, pp. 526–540. doi:
10.1109/SP.2013.42 (cit. on p. 15).

[Arf+19] Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu, and
Cristina Onete. “The privacy of the TLS 1.3 protocol”. In: Proceedings on
Privacy Enhancing Technologies 2019.4 (October 2019), pp. 190–210. doi:
10.2478/popets-2019-0065 (cit. on pp. 16, 129).

[AGJ19] Nimrod Aviram, Kai Gellert, and Tibor Jager. “Session Resumption Proto-
cols and Efficient Forward Security for TLS 1.3 0-RTT”. In: Advances in
Cryptology – EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and Vincent Rij-
men. Vol. 11477. Lecture Notes in Computer Science. Springer, Heidelberg,
May 2019, pp. 117–150. doi: 10.1007/978-3-030-17656-3_5 (cit. on
p. 16).

[AGJ21] Nimrod Aviram, Kai Gellert, and Tibor Jager. “Session Resumption Pro-
tocols and Efficient Forward Security for TLS 1.3 0-RTT”. In: Journal of
Cryptology 34.3 (July 2021), p. 20. doi: 10.1007/s00145-021-09385-0
(cit. on p. 16).

[Avi+16] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger,
Maik Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halder-
man, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne En-
gels, Christof Paar, and Yuval Shavitt. “DROWN: Breaking TLS Using
SSLv2”. In: USENIX Security 2016: 25th USENIX Security Symposium. Ed.
by Thorsten Holz and Stefan Savage. USENIX Association, August 2016,
pp. 689–706 (cit. on pp. 3, 15).

[Bad+15a] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li.
“Tightly-Secure Authenticated Key Exchange”. In: TCC 2015: 12th Theory
of Cryptography Conference, Part I. Ed. by Yevgeniy Dodis and Jesper Buus
Nielsen. Vol. 9014. Lecture Notes in Computer Science. Springer, Heidel-
berg, March 2015, pp. 629–658. doi: 10.1007/978-3-662-46494-6_26
(cit. on pp. 11, 13, 14, 16, 33, 207, 208, 212).

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. “On the Impos-
sibility of Tight Cryptographic Reductions”. In: Advances in Cryptology –
EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron.
Vol. 9666. Lecture Notes in Computer Science. Springer, Heidelberg, May
2016, pp. 273–304. doi: 10.1007/978-3-662-49896-5_10 (cit. on
pp. 11, 14, 166, 206).

242

https://doi.org/10.1109/SP.2013.42
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/s00145-021-09385-0
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10


bibliography

[Bad+15b] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and
Björn Tackmann. “Augmented Secure Channels and the Goal of the TLS 1.3
Record Layer”. In: ProvSec 2015: 9th International Conference on Provable
Security. Ed. by Man Ho Au and Atsuko Miyaji. Vol. 9451. Lecture Notes
in Computer Science. Springer, Heidelberg, November 2015, pp. 85–104.
doi: 10.1007/978-3-319-26059-4_5 (cit. on p. 8).

[BTPL15] R. Barnes, M. Thomson, A. Pironti, and A. Langley. “Deprecating Secure
Sockets Layer Version 3.0”. RFC 7568. IETF, June 2015. url: http://
tools.ietf.org/rfc/rfc7568.txt (cit. on p. 3).

[BPS15] Guy Barwell, Dan Page, and Martijn Stam. “Rogue Decryption Failures:
Reconciling AE Robustness Notions”. Cryptology ePrint Archive, Report
2015/895. https://eprint.iacr.org/2015/895. 2015 (cit. on p. 201).

[Bel06] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without
Collision-Resistance”. In: Advances in Cryptology – CRYPTO 2006. Ed. by
Cynthia Dwork. Vol. 4117. Lecture Notes in Computer Science. Springer,
Heidelberg, August 2006, pp. 602–619. doi: 10.1007/11818175_36 (cit.
on p. 62).

[Bel15] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without Col-
lision Resistance”. In: Journal of Cryptology 28.4 (October 2015), pp. 844–
878. doi: 10.1007/s00145-014-9185-x (cit. on p. 62).

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. “Public-Key
Encryption in a Multi-user Setting: Security Proofs and Improvements”.
In: Advances in Cryptology – EUROCRYPT 2000. Ed. by Bart Preneel.
Vol. 1807. Lecture Notes in Computer Science. Springer, Heidelberg, May
2000, pp. 259–274. doi: 10.1007/3-540-45539-6_18 (cit. on p. 228).

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying Hash Functions
for Message Authentication”. In: Advances in Cryptology – CRYPTO’96. Ed.
by Neal Koblitz. Vol. 1109. Lecture Notes in Computer Science. Springer,
Heidelberg, August 1996, pp. 1–15. doi: 10.1007/3-540-68697-5_1
(cit. on p. 62).

[BDG20] Mihir Bellare, Hannah Davis, and Felix Günther. “Separate Your Domains:
NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability”. In:
Advances in Cryptology – EUROCRYPT 2020, Part II. Ed. by Anne Canteaut
and Yuval Ishai. Vol. 12106. Lecture Notes in Computer Science. Springer,
Heidelberg, May 2020, pp. 3–32. doi: 10.1007/978-3-030-45724-2_1
(cit. on pp. 9, 79, 82, 86, 87, 91, 92).

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. “A Concrete
Security Treatment of Symmetric Encryption”. In: 38th Annual Symposium
on Foundations of Computer Science. IEEE Computer Society Press, October
1997, pp. 394–403. doi: 10.1109/SFCS.1997.646128 (cit. on p. 85).

243

https://doi.org/10.1007/978-3-319-26059-4_5
http://tools.ietf.org/rfc/rfc7568.txt
http://tools.ietf.org/rfc/rfc7568.txt
https://eprint.iacr.org/2015/895
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1109/SFCS.1997.646128


bibliography

[BKN02] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. “Authenti-
cated Encryption in SSH: Provably Fixing The SSHBinary Packet Protocol”.
In: ACM CCS 2002: 9th Conference on Computer and Communications Secu-
rity. Ed. by Vijayalakshmi Atluri. ACM Press, November 2002, pp. 1–11.
doi: 10.1145/586110.586112 (cit. on p. 201).

[BR09a] Mihir Bellare and Thomas Ristenpart. “Simulation without the Artificial
Abort: Simplified Proof and Improved Concrete Security for Waters’ IBE
Scheme”. Cryptology ePrint Archive, Report 2009/084. https://eprint.
iacr.org/2009/084. 2009 (cit. on p. 6).

[BR09b] Mihir Bellare and Thomas Ristenpart. “Simulation without the Artificial
Abort: Simplified Proof and Improved Concrete Security for Waters’ IBE
Scheme”. In: Advances in Cryptology – EUROCRYPT 2009. Ed. by Antoine
Joux. Vol. 5479. Lecture Notes in Computer Science. Springer, Heidelberg,
April 2009, pp. 407–424. doi: 10.1007/978-3-642-01001-9_24 (cit. on
p. 6).

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols”. In: ACM CCS 93: 1st Confer-
ence on Computer and Communications Security. Ed. by Dorothy E. Den-
ning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby.
ACM Press, November 1993, pp. 62–73. doi: 10.1145/168588.168596
(cit. on pp. 28, 29).

[BR94] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Dis-
tribution”. In: Advances in Cryptology – CRYPTO’93. Ed. by Douglas R.
Stinson. Vol. 773. Lecture Notes in Computer Science. Springer, Heidel-
berg, August 1994, pp. 232–249. doi: 10.1007/3-540-48329-2_21
(cit. on pp. 12, 15, 40, 44, 48, 59, 198, 209).

[BR04] Mihir Bellare and Phillip Rogaway. “Code-Based Game-Playing Proofs
and the Security of Triple Encryption”. Cryptology ePrint Archive, Report
2004/331. https://eprint.iacr.org/2004/331. 2004 (cit. on p. 40).

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption
and a Framework for Code-Based Game-Playing Proofs”. In: Advances in
Cryptology – EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. Lecture
Notes in Computer Science. Springer, Heidelberg, May 2006, pp. 409–426.
doi: 10.1007/11761679_25 (cit. on pp. 40, 101, 217).

[BT16] Mihir Bellare and Björn Tackmann. “The Multi-user Security of Authen-
ticated Encryption: AES-GCM in TLS 1.3”. In: Advances in Cryptology
– CRYPTO 2016, Part I. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9814. Lecture Notes in Computer Science. Springer, Heidelberg,
August 2016, pp. 247–276. doi: 10.1007/978-3-662-53018-4_10
(cit. on pp. 8, 9, 200).

244

https://doi.org/10.1145/586110.586112
https://eprint.iacr.org/2009/084
https://eprint.iacr.org/2009/084
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-48329-2_21
https://eprint.iacr.org/2004/331
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-53018-4_10


bibliography

[Ben+95] Josh Benaloh, Butler Lampson, Daniel Simon, Terence Spies, and Bennet
Yee. “The Private Communication Technology Protocol”. Internet-Draft
draft-benaloh-pct-00. Work in Progress. Internet Engineering Task Force,
November 1995. 40 pp. url: https://datatracker.ietf.org/doc/
draft-benaloh-pct/00/ (cit. on p. 2).

[Ber+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. “High-SpeedHigh-Security Signatures”. In: Cryptographic Hardware
and Embedded Systems – CHES 2011. Ed. by Bart Preneel and Tsuyoshi Tak-
agi. Vol. 6917. Lecture Notes in Computer Science. Springer, Heidelberg,
September 2011, pp. 124–142. doi: 10.1007/978-3-642-23951-9_9
(cit. on p. 11).

[Beu+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub,
and Jean Karim Zinzindohoue. “A Messy State of the Union: Taming the
Composite State Machines of TLS”. In: 2015 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2015, pp. 535–552. doi:
10.1109/SP.2015.39 (cit. on pp. 15, 16).

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. “Verified
Models and Reference Implementations for the TLS 1.3 Standard Candi-
date”. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2017, pp. 483–502. doi: 10.1109/SP.2017.26 (cit. on
p. 16).

[Bha+16] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew
Green, Markulf Kohlweiss, and Santiago Zanella-Béguelin. “Downgrade
Resilience in Key-Exchange Protocols”. In: 2016 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, May 2016, pp. 506–525.
doi: 10.1109/SP.2016.37 (cit. on pp. 16, 63).

[Bha+14a] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Al-
fredo Pironti, and Pierre-Yves Strub. “Triple Handshakes and Cookie Cut-
ters: Breaking and Fixing Authentication over TLS”. In: 2014 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, May 2014,
pp. 98–113. doi: 10.1109/SP.2014.14 (cit. on p. 16).

[Bha+13] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, and Pierre-Yves Strub. “Implementing TLS with Verified
Cryptographic Security”. In: 2013 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2013, pp. 445–459. doi:
10.1109/SP.2013.37 (cit. on p. 15).

[Bha+14b] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Santiago Zanella Béguelin. “Proving
the TLS Handshake Secure (As It Is)”. In: Advances in Cryptology
– CRYPTO 2014, Part II. Ed. by Juan A. Garay and Rosario Gennaro.
Vol. 8617. Lecture Notes in Computer Science. Springer, Heidelberg,

245

https://datatracker.ietf.org/doc/draft-benaloh-pct/00/
https://datatracker.ietf.org/doc/draft-benaloh-pct/00/
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1109/SP.2013.37


bibliography

August 2014, pp. 235–255. doi: 10.1007/978-3-662-44381-1_14
(cit. on p. 15).

[BL16a] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Practical (In-
)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS
and OpenVPN”. In: ACM CCS 2016: 23rd Conference on Computer and
Communications Security. Ed. by Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi. ACM Press,
October 2016, pp. 456–467. doi: 10.1145/2976749.2978423 (cit. on
p. 15).

[BL16b] Karthikeyan Bhargavan andGaëtan Leurent. “Transcript Collision Attacks:
Breaking Authentication in TLS, IKE and SSH”. In: ISOC Network and
Distributed System Security Symposium – NDSS 2016. The Internet Society,
February 2016 (cit. on pp. 3, 15).

[Ble98] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard PKCS #1”. In: Advances in Cryp-
tology – CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. Lecture Notes
in Computer Science. Springer, Heidelberg, August 1998, pp. 1–12. doi:
10.1007/BFb0055716 (cit. on p. 15).

[BSY18] Hanno Böck, Juraj Somorovsky, and Craig Young. “Return Of Bleichen-
bacher’s Oracle Threat (ROBOT)”. In: USENIX Security 2018: 27th USENIX
Security Symposium. Ed. by William Enck and Adrienne Porter Felt.
USENIX Association, August 2018, pp. 817–849 (cit. on p. 16).

[Bod14] Krzysztof Kotowicz Bodo Möller Thai Duong. “This POODLE bites: Ex-
ploiting the SSL 3.0 fallback”. https://www.openssl.org/~bodo/ssl-
poodle.pdf. September 2014 (cit. on pp. 3, 15).

[BDPS12] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, andMar-
tijn Stam. “Security of Symmetric Encryption in the Presence of Ciphertext
Fragmentation”. In: Advances in Cryptology – EUROCRYPT 2012. Ed. by
David Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in
Computer Science. Springer, Heidelberg, April 2012, pp. 682–699. doi:
10.1007/978-3-642-29011-4_40 (cit. on p. 201).

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, andMar-
tijn Stam. “On Symmetric Encryption with Distinguishable Decryption
Failures”. In: Fast Software Encryption – FSE 2013. Ed. by Shiho Moriai.
Vol. 8424. Lecture Notes in Computer Science. Springer, Heidelberg, March
2014, pp. 367–390. doi: 10.1007/978-3-662-43933-3_19 (cit. on
p. 201).

[Boy+13] Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Paterson, Bertram
Poettering, and Douglas Stebila. “ASICS: Authenticated Key Exchange
Security Incorporating Certification Systems”. In: ESORICS 2013: 18th Eu-
ropean Symposium on Research in Computer Security. Ed. by Jason Cramp-

246

https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1007/BFb0055716
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://doi.org/10.1007/978-3-642-29011-4_40
https://doi.org/10.1007/978-3-662-43933-3_19


bibliography

ton, Sushil Jajodia, and Keith Mayes. Vol. 8134. Lecture Notes in Com-
puter Science. Springer, Heidelberg, September 2013, pp. 381–399. doi:
10.1007/978-3-642-40203-6_22 (cit. on p. 43).

[BG20] Colin Boyd and Kai Gellert. “A Modern View on Forward Security”. In:
The Computer Journal 64.4 (August 2020), pp. 639–652. doi: 10.1093/
comjnl / bxaa104. url: https : / / doi . org / 10 . 1093 / comjnl /
bxaa104 (cit. on p. 44).

[Bra93] Stefan Brands. “An Efficient Off-Line Electronic Cash System Based On
The Representation Problem”. Tech. rep. CS-R9323. CWI, 1993 (cit. on
p. 24).

[BFG19] Jacqueline Brendel, Marc Fischlin, and Felix Günther. “Breakdown Re-
silience of Key Exchange Protocols: NewHope, TLS 1.3, and Hybrids”. In:
ESORICS 2019: 24th European Symposium on Research in Computer Security,
Part II. Ed. by Kazue Sako, Steve Schneider, and Peter Y. A. Ryan. Vol. 11736.
Lecture Notes in Computer Science. Springer, Heidelberg, September 2019,
pp. 521–541. doi: 10.1007/978-3-030-29962-0_25 (cit. on p. 16).

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson.
“PRF-ODH: Relations, Instantiations, and Impossibility Results”. In: Ad-
vances in Cryptology – CRYPTO 2017, Part III. Ed. by Jonathan Katz and
Hovav Shacham. Vol. 10403. Lecture Notes in Computer Science. Springer,
Heidelberg, August 2017, pp. 651–681. doi: 10 . 1007 / 978 - 3 - 319 -
63697-9_22 (cit. on pp. 166, 167).

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C.
Williams. “Composability of Bellare-Rogaway key exchange protocols”.
In: ACM CCS 2011: 18th Conference on Computer and Communications
Security. Ed. by Yan Chen, George Danezis, and Vitaly Shmatikov. ACM
Press, October 2011, pp. 51–62. doi: 10 . 1145 / 2046707 . 2046716
(cit. on pp. 59, 198).

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. “Computationally Pri-
vate Information Retrieval with Polylogarithmic Communication”. In: Ad-
vances in Cryptology – EUROCRYPT’99. Ed. by Jacques Stern. Vol. 1592. Lec-
ture Notes in Computer Science. Springer, Heidelberg, May 1999, pp. 402–
414. doi: 10.1007/3-540-48910-X_28 (cit. on pp. 225, 230, 232, 233).

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: 42nd Annual Symposium on Foundations of
Computer Science. IEEE Computer Society Press, October 2001, pp. 136–
145. doi: 10.1109/SFCS.2001.959888 (cit. on p. 15).

[CK01] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols
and Their Use for Building Secure Channels”. In: Advances in Cryptology
– EUROCRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. Lecture Notes

247

https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1007/978-3-030-29962-0_25
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1109/SFCS.2001.959888


bibliography

in Computer Science. Springer, Heidelberg, May 2001, pp. 453–474. doi:
10.1007/3-540-44987-6_28 (cit. on p. 12).

[CK02] Ran Canetti and Hugo Krawczyk. “Security Analysis of IKE’s Signature-
based Key-Exchange Protocol”. In: Advances in Cryptology – CRYPTO 2002.
Ed. by Moti Yung. Vol. 2442. Lecture Notes in Computer Science. https:
//eprint.iacr.org/2002/120/. Springer, Heidelberg, August 2002,
pp. 143–161. doi: 10.1007/3-540-45708-9_10 (cit. on p. 40).

[Cel+21] Sofía Celi, Armando Faz-Hernández, Nick Sullivan, Goutam Tamvada,
Luke Valenta, Thom Wiggers, Bas Westerbaan, and Christopher A. Wood.
“Implementing and Measuring KEMTLS”. In: Progress in Cryptology - LAT-
INCRYPT 2021: 7th International Conference on Cryptology and Information
Security in Latin America. Ed. by Patrick Longa andCarla Ràfols. Vol. 12912.
Lecture Notes in Computer Science. Bogotá, Colombia: Springer, Heidel-
berg, October 2021, pp. 88–107. doi: 10.1007/978-3-030-88238-9_5
(cit. on p. 16).

[CHSW22] Sofía Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers. “A
Tale of Two Models: Formal Verification of KEMTLS via Tamarin”. In:
ESORICS 2022: 27th European Symposium on Research in Computer Security,
Part III. Ed. by Vijayalakshmi Atluri, Roberto Di Pietro, Christian Dams-
gaard Jensen, and Weizhi Meng. Vol. 13556. Lecture Notes in Computer
Science. Springer, Heidelberg, September 2022, pp. 63–83. doi: 10.1007/
978-3-031-17143-7_4 (cit. on p. 16).

[CEv88] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. “An Im-
proved Protocol for Demonstrating Possession of Discrete Logarithms and
Some Generalizations”. In: Advances in Cryptology – EUROCRYPT’87. Ed.
by David Chaum and Wyn L. Price. Vol. 304. Lecture Notes in Computer
Science. Springer, Heidelberg, April 1988, pp. 127–141. doi: 10.1007/3-
540-39118-5_13 (cit. on pp. 225, 228).

[Cod14] Codenomicon. “Heartbleed Bug”. http://heartbleed.com/. April 2014
(cit. on pp. 3, 16).

[Coh+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen,
and Tibor Jager. “Highly Efficient Key Exchange Protocols with Optimal
Tightness”. In: Advances in Cryptology – CRYPTO 2019, Part III. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Vol. 11694. Lecture Notes in
Computer Science. Springer, Heidelberg, August 2019, pp. 767–797. doi:
10.1007/978-3-030-26954-8_25 (cit. on pp. 13, 26, 135, 137, 138, 144,
169, 176, 239).

[Cor02] Jean-Sébastien Coron. “Optimal Security Proofs for PSS and Other Signa-
ture Schemes”. In: Advances in Cryptology – EUROCRYPT 2002. Ed. by
Lars R. Knudsen. Vol. 2332. Lecture Notes in Computer Science. Springer,
Heidelberg, April 2002, pp. 272–287. doi: 10.1007/3-540-46035-7_18
(cit. on p. 11).

248

https://doi.org/10.1007/3-540-44987-6_28
https://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2002/120/
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/978-3-030-88238-9_5
https://doi.org/10.1007/978-3-031-17143-7_4
https://doi.org/10.1007/978-3-031-17143-7_4
https://doi.org/10.1007/3-540-39118-5_13
https://doi.org/10.1007/3-540-39118-5_13
http://heartbleed.com/
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/3-540-46035-7_18


bibliography

[CDS94] Ronald Cramer, IvanDamgård, and Berry Schoenmakers. “Proofs of Partial
Knowledge and Simplified Design of Witness Hiding Protocols”. In: Ad-
vances in Cryptology – CRYPTO’94. Ed. by Yvo Desmedt. Vol. 839. Lecture
Notes in Computer Science. Springer, Heidelberg, August 1994, pp. 174–
187. doi: 10.1007/3-540-48658-5_19 (cit. on p. 211).

[Cre+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van
der Merwe. “A Comprehensive Symbolic Analysis of TLS 1.3”. In: ACM
CCS 2017: 24th Conference on Computer and Communications Security. Ed.
by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu. ACM Press, October 2017, pp. 1773–1788. doi: 10.1145/3133956.
3134063 (cit. on p. 16).

[CHSv16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. “Au-
tomated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and De-
layed Authentication”. In: 2016 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2016, pp. 470–485. doi: 10.1109/SP.
2016.35 (cit. on p. 16).

[Dam10] Ivan Damård. “On Σ-protocols”. https://cs.au.dk/~ivan/Sigma.
pdf. 2010 (cit. on p. 225).

[DDGJ22a] Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. “On the
Concrete Security of TLS 1.3 PSK Mode”. Cryptology ePrint Archive, Re-
port 2022/246. https://eprint.iacr.org/2022/246. 2022 (cit. on
pp. 39, 77, 99, 101, 106, 108, 125, 126, 129, 135, 169).

[DDGJ22b] Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. “On the
Concrete Security of TLS 1.3 PSK Mode”. In: Advances in Cryptology –
EUROCRYPT 2022, Part II. Ed. by Orr Dunkelman and Stefan Dziembowski.
Vol. 13276. Lecture Notes in Computer Science. Springer, Heidelberg, May
2022, pp. 876–906. doi: 10.1007/978-3-031-07085-3_30 (cit. on
pp. 10, 39, 40, 42, 45, 47, 52, 56, 77, 79, 82, 84, 85, 88, 92–94, 99, 101, 106,
125, 126, 129–131, 133, 135, 138, 169, 200).

[DG20] Hannah Davis and Felix Günther. “Tighter Proofs for the SIGMA and TLS
1.3 Key Exchange Protocols”. Cryptology ePrint Archive, Report 2020/1029.
https://eprint.iacr.org/2020/1029. 2020 (cit. on p. 165).

[DG21a] Hannah Davis and Felix Günther. “Tighter Proofs for the SIGMA and TLS
1.3 Key Exchange Protocols”. In: ACNS 21: 19th International Conference
on Applied Cryptography and Network Security, Part II. Ed. by Kazue Sako
and Nils Ole Tippenhauer. Vol. 12727. Lecture Notes in Computer Science.
Springer, Heidelberg, June 2021, pp. 448–479. doi: 10.1007/978-3-030-
78375-4_18 (cit. on pp. 10, 42, 56, 77–79, 135, 138, 144, 165, 169).

249

https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35
https://cs.au.dk/~ivan/Sigma.pdf
https://cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2022/246
https://doi.org/10.1007/978-3-031-07085-3_30
https://eprint.iacr.org/2020/1029
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18


bibliography

[dFW20] Cyprien de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi. “Au-
thentication in Key-Exchange: Definitions, Relations and Composition”.
In: CSF 2020: IEEE 33st Computer Security Foundations Symposium. Ed. by
Limin Jia and Ralf Küsters. IEEE Computer Society Press, 2020, pp. 288–
303. doi: 10.1109/CSF49147.2020.00028 (cit. on pp. 42, 163).

[DGGP21] Jean Paul Degabriele, Jérôme Govinden, Felix Günther, and Kenneth G.
Paterson. “The Security of ChaCha20-Poly1305 in the Multi-User Setting”.
In: ACM CCS 2021: 28th Conference on Computer and Communications
Security. Ed. by Giovanni Vigna and Elaine Shi. ACM Press, November
2021, pp. 1981–2003. doi: 10.1145/3460120.3484814 (cit. on pp. 8, 9,
200).

[DK22] Jean Paul Degabriele and Vukašin Karadžić. “Overloading the Nonce:
Rugged PRPs, Nonce-Set AEAD, and Order-Resilient Channels”. In: Ad-
vances in Cryptology – CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Vol. 13510. Lecture Notes in Computer Science.
Springer, Heidelberg, August 2022, pp. 264–295. doi: 10.1007/978-3-
031-15985-5_10 (cit. on p. 201).

[Del+17] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan
Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella-Béguelin,
Karthikeyan Bhargavan, Jianyang Pan, and Jean Karim Zinzindohoue.
“Implementing and Proving the TLS 1.3 Record Layer”. In: 2017 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May
2017, pp. 463–482. doi: 10.1109/SP.2017.58 (cit. on pp. 8, 16, 201).

[DGJL21a] Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. “More Efficient Digi-
tal Signatures with Tight Multi-User Security”. Cryptology ePrint Archive,
Report 2021/235. https://eprint.iacr.org/2021/235. 2021 (cit. on
p. 205).

[DGJL21b] Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. “More Efficient Dig-
ital Signatures with Tight Multi-user Security”. In: PKC 2021: 24th In-
ternational Conference on Theory and Practice of Public Key Cryptography,
Part II. Ed. by Juan Garay. Vol. 12711. Lecture Notes in Computer Science.
Springer, Heidelberg, May 2021, pp. 1–31. doi: 10.1007/978-3-030-
75248-4_1 (cit. on pp. 17, 33, 36, 205, 208, 209, 211).

[DJ21] Denis Diemert and Tibor Jager. “On the Tight Security of TLS 1.3: Theo-
retically Sound Cryptographic Parameters for Real-World Deployments”.
In: Journal of Cryptology 34.3 (July 2021), p. 30. doi: 10.1007/s00145-
021-09388-x (cit. on pp. 10, 11, 77–79, 82, 135, 138, 169, 200, 201).

[DA99] T. Dierks and C. Allen. “The TLS Protocol Version 1.0”. RFC 2246. IETF,
January 1999. url: http://tools.ietf.org/rfc/rfc2246.txt (cit.
on p. 3).

250

https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1145/3460120.3484814
https://doi.org/10.1007/978-3-031-15985-5_10
https://doi.org/10.1007/978-3-031-15985-5_10
https://doi.org/10.1109/SP.2017.58
https://eprint.iacr.org/2021/235
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1007/s00145-021-09388-x
http://tools.ietf.org/rfc/rfc2246.txt


bibliography

[DR06] T. Dierks and E. Rescorla. “The Transport Layer Security (TLS) Protocol
Version 1.1”. RFC 4346. IETF, April 2006. url: http://tools.ietf.
org/rfc/rfc4346.txt (cit. on p. 3).

[DH76] Whitfield Diffie andMartin E. Hellman. “NewDirections in Cryptography”.
In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654 (cit.
on pp. 9, 24).

[DRST13] Yevgeniy Dodis, Thomas Ristenpart, John Steinberger, and Stefano Tessaro.
“To Hash or Not to Hash Again? (In)differentiability Results for 𝐻 2 and
HMAC”. Cryptology ePrint Archive, Report 2013/382. https://eprint.
iacr.org/2013/382. 2013 (cit. on pp. 94–96).

[DRST12] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tes-
saro. “To Hash or Not to Hash Again? (In)Differentiability Results for 𝐻 2

and HMAC”. In: Advances in Cryptology – CRYPTO 2012. Ed. by Reihaneh
Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer Sci-
ence. Springer, Heidelberg, August 2012, pp. 348–366. doi: 10.1007/978-
3-642-32009-5_21 (cit. on pp. 90, 94).

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. “A
Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates”.
In: ACM CCS 2015: 22nd Conference on Computer and Communications
Security. Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM
Press, October 2015, pp. 1197–1210. doi: 10.1145/2810103.2813653
(cit. on pp. 8, 10, 11, 40, 59, 198, 200).

[DFGS16] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. “A
Cryptographic Analysis of the TLS 1.3 draft-10 Full and Pre-shared Key
Handshake Protocol”. Cryptology ePrint Archive, Report 2016/081. https:
//eprint.iacr.org/2016/081. 2016 (cit. on pp. 8, 40, 198, 200).

[DFGS21] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. “A
Cryptographic Analysis of the TLS 1.3 Handshake Protocol”. In: Journal
of Cryptology 34.4 (October 2021), p. 37. doi: 10.1007/s00145-021-
09384-1 (cit. on pp. 8, 11, 39, 40, 42, 43, 52, 56, 63, 166, 167, 199, 200).

[DS15] Benjamin Dowling and Douglas Stebila. “Modelling Ciphersuite and Ver-
sion Negotiation in the TLS Protocol”. In: ACISP 15: 20th Australasian
Conference on Information Security and Privacy. Ed. by Ernest Foo and
Douglas Stebila. Vol. 9144. Lecture Notes in Computer Science. Springer,
Heidelberg, June 2015, pp. 270–288. doi: 10.1007/978-3-319-19962-
7_16 (cit. on pp. 15, 63).

[DG21b] Nir Drucker and Shay Gueron. “Selfie: reflections on TLS 1.3 with PSK”.
In: Journal of Cryptology 34.3 (July 2021), p. 27. doi: 10.1007/s00145-
021-09387-y (cit. on pp. 16, 44).

[Duo11] Thai Duong. “BEAST”. http://vnhacker.blogspot.com.au/2011/
09/beast.html. September 2011 (cit. on pp. 3, 15).

251

http://tools.ietf.org/rfc/rfc4346.txt
http://tools.ietf.org/rfc/rfc4346.txt
https://eprint.iacr.org/2013/382
https://eprint.iacr.org/2013/382
https://doi.org/10.1007/978-3-642-32009-5_21
https://doi.org/10.1007/978-3-642-32009-5_21
https://doi.org/10.1145/2810103.2813653
https://eprint.iacr.org/2016/081
https://eprint.iacr.org/2016/081
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1007/s00145-021-09387-y
http://vnhacker.blogspot.com.au/2011/09/beast.html
http://vnhacker.blogspot.com.au/2011/09/beast.html


bibliography

[Dwo15] Morris Dworkin. “SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions”. NIST FIPS 202. August 2015. doi:
10 . 6028 / NIST . FIPS . 202. url: https : / / nvlpubs . nist . gov /
nistpubs/FIPS/NIST.FIPS.202.pdf (cit. on p. 28).

[EH06] D. Eastlake 3rd and T. Hansen. “US Secure Hash Algorithms (SHA and
HMAC-SHA)”. RFC 4634. IETF, July 2006. url: http://tools.ietf.
org/rfc/rfc4634.txt (cit. on p. 28).

[EH11] D. Eastlake 3rd and T. Hansen. “US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF)”. RFC 6234. IETF, May 2011. url: http:
//tools.ietf.org/rfc/rfc6234.txt (cit. on p. 28).

[EJ01] D. Eastlake 3rd and P. Jones. “US Secure Hash Algorithm 1 (SHA1)”. RFC
3174. IETF, September 2001. url: http://tools.ietf.org/rfc/
rfc3174.txt (cit. on p. 28).

[Edd22] W. Eddy. “Transmission Control Protocol (TCP)”. RFC 9293. IETF, August
2022. url: http://tools.ietf.org/rfc/rfc9293.txt (cit. on p. 2).

[EH95] Dr. Taher Elgamal and Kipp E.B. Hickman. “The SSL Protocol”. Internet-
Draft draft-hickman-netscape-ssl-00. Work in Progress. Internet Engineer-
ing Task Force, April 1995. 31 pp. url: https://datatracker.ietf.
org/doc/draft-hickman-netscape-ssl/00/ (cit. on p. 2).

[ET05] P. Eronen and H. Tschofenig. “Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS)”. RFC 4279. IETF, December 2005. url: http://
tools.ietf.org/rfc/rfc4279.txt (cit. on p. 15).

[FKP17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. “On the One-Per-
Message Unforgeability of (EC)DSA and Its Variants”. In: TCC 2017: 15th
Theory of Cryptography Conference, Part II. Ed. by Yael Kalai and Leonid
Reyzin. Vol. 10678. Lecture Notes in Computer Science. Springer, Heidel-
berg, November 2017, pp. 519–534. doi: 10.1007/978-3-319-70503-
3_17 (cit. on p. 11).

[FS87] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Advances in Cryptology
– CRYPTO’86. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in
Computer Science. Springer, Heidelberg, August 1987, pp. 186–194. doi:
10.1007/3-540-47721-7_12 (cit. on p. 211).

[FG14] Marc Fischlin and Felix Günther. “Multi-Stage Key Exchange and the
Case of Google’s QUIC Protocol”. In: ACM CCS 2014: 21st Conference
on Computer and Communications Security. Ed. by Gail-Joon Ahn, Moti
Yung, and Ninghui Li. ACM Press, November 2014, pp. 1193–1204. doi:
10.1145/2660267.2660308 (cit. on pp. 10, 40, 198).

252

https://doi.org/10.6028/NIST.FIPS.202
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://tools.ietf.org/rfc/rfc4634.txt
http://tools.ietf.org/rfc/rfc4634.txt
http://tools.ietf.org/rfc/rfc6234.txt
http://tools.ietf.org/rfc/rfc6234.txt
http://tools.ietf.org/rfc/rfc3174.txt
http://tools.ietf.org/rfc/rfc3174.txt
http://tools.ietf.org/rfc/rfc9293.txt
https://datatracker.ietf.org/doc/draft-hickman-netscape-ssl/00/
https://datatracker.ietf.org/doc/draft-hickman-netscape-ssl/00/
http://tools.ietf.org/rfc/rfc4279.txt
http://tools.ietf.org/rfc/rfc4279.txt
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/2660267.2660308


bibliography

[FG17] Marc Fischlin and Felix Günther. “Replay Attacks on Zero Round-Trip
Time: The Case of the TLS 1.3 Handshake Candidates”. In: 2017 IEEE
European Symposium on Security and Privacy, EuroS&P 2017. IEEE, April
2017, pp. 60–75 (cit. on pp. 8, 40, 198, 200).

[FGJ20] Marc Fischlin, Felix Günther, and Christian Janson. “Robust Channels:
Handling Unreliable Networks in the Record Layers of QUIC and DTLS
1.3”. Cryptology ePrint Archive, Report 2020/718. https://eprint.
iacr.org/2020/718. 2020 (cit. on p. 201).

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G.
Paterson. “Data Is a Stream: Security of Stream-Based Channels”. In:
Advances in Cryptology – CRYPTO 2015, Part II. Ed. by Rosario Gennaro
and Matthew J. B. Robshaw. Vol. 9216. Lecture Notes in Computer Science.
Springer, Heidelberg, August 2015, pp. 545–564. doi: 10.1007/978-3-
662-48000-7_27 (cit. on p. 201).

[FGSW16] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi.
“Key Confirmation in Key Exchange: A Formal Treatment and Implications
for TLS 1.3”. In: 2016 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2016, pp. 452–469. doi: 10.1109/SP.2016.
34 (cit. on pp. 16, 42, 163).

[FHJ20] Marc Fischlin, Patrick Harasser, and Christian Janson. “Signatures from
Sequential-OR Proofs”. In: Advances in Cryptology – EUROCRYPT 2020,
Part III. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12107. Lecture Notes
in Computer Science. Springer, Heidelberg, May 2020, pp. 212–244. doi:
10.1007/978-3-030-45727-3_8 (cit. on pp. 35, 211, 212).

[FKK11] A. Freier, P. Karlton, and P. Kocher. “The Secure Sockets Layer (SSL) Pro-
tocol Version 3.0”. RFC 6101. IETF, August 2011. url: http://tools.
ietf.org/rfc/rfc6101.txt (cit. on p. 2).

[Gaj08] Sebastian Gajek. “A Universally Composable Framework for the Analy-
sis of Browser-Based Security Protocols”. In: ProvSec 2008: 2nd Interna-
tional Conference on Provable Security. Ed. by Joonsang Baek, Feng Bao,
Kefei Chen, and Xuejia Lai. Vol. 5324. Lecture Notes in Computer Science.
Springer, Heidelberg, October 2008, pp. 283–297 (cit. on p. 15).

[Gaj+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and
Jörg Schwenk. “Universally Composable Security Analysis of TLS”. In:
ProvSec 2008: 2nd International Conference on Provable Security. Ed. by
Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai. Vol. 5324. Lecture
Notes in Computer Science. Springer, Heidelberg, October 2008, pp. 313–
327 (cit. on p. 15).

253

https://eprint.iacr.org/2020/718
https://eprint.iacr.org/2020/718
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1007/978-3-030-45727-3_8
http://tools.ietf.org/rfc/rfc6101.txt
http://tools.ietf.org/rfc/rfc6101.txt


bibliography

[GKS13] Florian Giesen, Florian Kohlar, and Douglas Stebila. “On the security of
TLS renegotiation”. In: ACM CCS 2013: 20th Conference on Computer and
Communications Security. Ed. by Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung. ACM Press, November 2013, pp. 387–398. doi: 10.1145/
2508859.2516694 (cit. on p. 15).

[Gil16] D. Gillmor. “Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
for Transport Layer Security (TLS)”. RFC 7919. IETF, August 2016. url:
http://tools.ietf.org/rfc/rfc7919.txt (cit. on p. 108).

[GJ18] Kristian Gjøsteen and Tibor Jager. “Practical and Tightly-Secure Digital
Signatures and Authenticated Key Exchange”. In: Advances in Cryptology
– CRYPTO 2018, Part II. Ed. by Hovav Shacham and Alexandra Boldyreva.
Vol. 10992. Lecture Notes in Computer Science. Springer, Heidelberg,
August 2018, pp. 95–125. doi: 10.1007/978-3-319-96881-0_4 (cit. on
pp. 11–14, 17, 137, 208, 209).

[GM82] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption and How
to Play Mental Poker Keeping Secret All Partial Information”. In: 14th
Annual ACM Symposium on Theory of Computing. ACM Press, May 1982,
pp. 365–377. doi: 10.1145/800070.802212 (cit. on p. 4).

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature
Scheme Secure Against Adaptive Chosen-message Attacks”. In: SIAM
Journal on Computing 17.2 (April 1988), pp. 281–308 (cit. on p. 31).

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. “A “Paradoxical” Indentity-
Based Signature Scheme Resulting from Zero-Knowledge”. In: Advances
in Cryptology – CRYPTO’88. Ed. by Shafi Goldwasser. Vol. 403. Lecture
Notes in Computer Science. Springer, Heidelberg, August 1990, pp. 216–
231. doi: 10.1007/0-387-34799-2_16 (cit. on pp. 230, 232).

[Gün18] Felix Günther. “Modeling Advanced Security Aspects of Key Exchange and
Secure Channel Protocols”. http://tuprints.ulb.tu-darmstadt.
de/7162/. PhD thesis. Darmstadt, Germany: Technische Universität
Darmstadt, 2018 (cit. on pp. 10, 11, 40, 59, 198–200).

[GM17] Felix Günther and Sogol Mazaheri. “A Formal Treatment of Multi-key
Channels”. In: Advances in Cryptology – CRYPTO 2017, Part III. Ed. by
Jonathan Katz andHovav Shacham. Vol. 10403. Lecture Notes in Computer
Science. Springer, Heidelberg, August 2017, pp. 587–618. doi: 10.1007/
978-3-319-63697-9_20 (cit. on pp. 8, 201).

[GRTW21] Felix Günther, Simon Rastikian, Patrick Towa, and Thom Wiggers.
“KEMTLS with Delayed Forward Identity Protection in (Almost) a
Single Round Trip”. Cryptology ePrint Archive, Report 2021/725.
https://eprint.iacr.org/2021/725. 2021 (cit. on p. 16).

254

https://doi.org/10.1145/2508859.2516694
https://doi.org/10.1145/2508859.2516694
http://tools.ietf.org/rfc/rfc7919.txt
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1145/800070.802212
https://doi.org/10.1007/0-387-34799-2_16
http://tuprints.ulb.tu-darmstadt.de/7162/
http://tuprints.ulb.tu-darmstadt.de/7162/
https://doi.org/10.1007/978-3-319-63697-9_20
https://doi.org/10.1007/978-3-319-63697-9_20
https://eprint.iacr.org/2021/725


bibliography

[GRTW22] Felix Günther, Simon Rastikian, Patrick Towa, and Thom Wiggers.
“KEMTLS with Delayed Forward Identity Protection in (Almost) a Single
Round Trip”. In: ACNS 22: 20th International Conference on Applied
Cryptography and Network Security. Ed. by Giuseppe Ateniese and Daniele
Venturi. Vol. 13269. Lecture Notes in Computer Science. Springer, Heidel-
berg, June 2022, pp. 253–272. doi: 10.1007/978-3-031-09234-3_13
(cit. on p. 16).

[Han+21] Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel,
and Sven Schäge. “Authenticated Key Exchange and Signatures with
Tight Security in the Standard Model”. In: Advances in Cryptology –
CRYPTO 2021, Part IV. Ed. by Tal Malkin and Chris Peikert. Vol. 12828.
Lecture Notes in Computer Science. Virtual Event: Springer, Heidelberg,
August 2021, pp. 670–700. doi: 10.1007/978-3-030-84259-8_23
(cit. on pp. 11, 16, 208).

[HTT18] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. “The
Multi-user Security of GCM, Revisited: Tight Bounds for Nonce Random-
ization”. In: ACM CCS 2018: 25th Conference on Computer and Communi-
cations Security. Ed. by David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang. ACM Press, October 2018, pp. 1429–1440. doi: 10.
1145/3243734.3243816 (cit. on pp. 8, 9, 200, 201).

[HJ12] Dennis Hofheinz and Tibor Jager. “Tightly Secure Signatures and Public-
Key Encryption”. In: Advances in Cryptology – CRYPTO 2012. Ed. by Rei-
haneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer
Science. Springer, Heidelberg, August 2012, pp. 590–607. doi: 10.1007/
978-3-642-32009-5_35 (cit. on pp. 16, 208).

[IT21] J. Iyengar and M. Thomson. “QUIC: A UDP-Based Multiplexed and Secure
Transport”. RFC 9000. IETF, May 2021. url: http://tools.ietf.org/
rfc/rfc9000.txt (cit. on p. 39).

[JKM18] Tibor Jager, Saqib A. Kakvi, and Alexander May. “On the Security of the
PKCS#1 v1.5 Signature Scheme”. In: ACM CCS 2018: 25th Conference on
Computer and Communications Security. Ed. by David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang. ACM Press, October 2018,
pp. 1195–1208. doi: 10.1145/3243734.3243798 (cit. on p. 11).

[JKRS21] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. “Tightly-Secure
Authenticated Key Exchange, Revisited”. In: Advances in Cryptology – EU-
ROCRYPT 2021, Part I. Ed. byAnne Canteaut and François-Xavier Standaert.
Vol. 12696. Lecture Notes in Computer Science. Springer, Heidelberg, Oc-
tober 2021, pp. 117–146. doi: 10.1007/978-3-030-77870-5_5 (cit. on
p. 11).

255

https://doi.org/10.1007/978-3-031-09234-3_13
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1145/3243734.3243816
https://doi.org/10.1145/3243734.3243816
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-32009-5_35
http://tools.ietf.org/rfc/rfc9000.txt
http://tools.ietf.org/rfc/rfc9000.txt
https://doi.org/10.1145/3243734.3243798
https://doi.org/10.1007/978-3-030-77870-5_5


bibliography

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. “On the
Security of TLS-DHE in the Standard Model”. In: Advances in Cryptology
– CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417.
Lecture Notes in Computer Science. Springer, Heidelberg, August 2012,
pp. 273–293. doi: 10.1007/978-3-642-32009-5_17 (cit. on pp. 15, 63,
166, 167).

[JSS15] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “On the Security of
TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption”. In:
ACMCCS 2015: 22nd Conference on Computer and Communications Security.
Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM Press,
October 2015, pp. 1185–1196. doi: 10.1145/2810103.2813657 (cit. on
p. 15).

[JMV01] Don Johnson, Alfred Menezes, and Scott A. Vanstone. “The Elliptic Curve
Digital Signature Algorithm (ECDSA)”. In: International Journal for Infor-
mation Security 1.1 (2001), pp. 36–63. doi: 10.1007/s102070100002.
url: https://doi.org/10.1007/s102070100002 (cit. on p. 11).

[JK02] Jakob Jonsson and Burton S. Kaliski Jr. “On the Security of RSA Encryp-
tion in TLS”. In: Advances in Cryptology – CRYPTO 2002. Ed. by Moti
Yung. Vol. 2442. Lecture Notes in Computer Science. Springer, Heidelberg,
August 2002, pp. 127–142. doi: 10.1007/3-540-45708-9_9 (cit. on
p. 15).

[JL17] S. Josefsson and I. Liusvaara. “Edwards-Curve Digital Signature Algorithm
(EdDSA)”. RFC 8032. IETF, January 2017. url: http://tools.ietf.
org/rfc/rfc8032.txt (cit. on p. 11).

[Kak19] Saqib A. Kakvi. “On the Security of RSA-PSS in the Wild”. In: Proceedings
of the 5th ACM Workshop on Security Standardisation Research Workshop,
London, UK, November 11, 2019. Ed. byMaryamMehrnezhad, Thyla van der
Merwe, and Feng Hao. ACM, 2019, pp. 23–34. doi: 10.1145/3338500.
3360333. url: https://doi.org/10.1145/3338500.3360333 (cit.
on p. 11).

[Kal98] B. Kaliski. “PKCS #1: RSA Encryption Version 1.5”. RFC 2313. IETF, March
1998. url: http://tools.ietf.org/rfc/rfc2313.txt (cit. on p. 11).

[KL21] Jonathan Katz and Yehuda Lindell. “Introduction to Modern Cryptogra-
phy”. 3rd ed. CRC Press, 2021 (cit. on p. 27).

[KW03] Jonathan Katz and Nan Wang. “Efficiency Improvements for Signature
Schemes with Tight Security Reductions”. In: ACM CCS 2003: 10th Con-
ference on Computer and Communications Security. Ed. by Sushil Jajodia,
Vijayalakshmi Atluri, and Trent Jaeger. ACM Press, October 2003, pp. 155–
164. doi: 10.1145/948109.948132 (cit. on p. 225).

256

https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/3-540-45708-9_9
http://tools.ietf.org/rfc/rfc8032.txt
http://tools.ietf.org/rfc/rfc8032.txt
https://doi.org/10.1145/3338500.3360333
https://doi.org/10.1145/3338500.3360333
https://doi.org/10.1145/3338500.3360333
http://tools.ietf.org/rfc/rfc2313.txt
https://doi.org/10.1145/948109.948132


bibliography

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. “Optimal Security Proofs for
Signatures from Identification Schemes”. In: Advances in Cryptology
– CRYPTO 2016, Part II. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9815. Lecture Notes in Computer Science. Springer, Heidelberg,
August 2016, pp. 33–61. doi: 10.1007/978-3-662-53008-5_2 (cit. on
pp. 33, 36, 212).

[KOS10] Eike Kiltz, Adam O’Neill, and Adam Smith. “Instantiability of RSA-
OAEP under Chosen-Plaintext Attack”. In: Advances in Cryptology
– CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. Lecture Notes in Com-
puter Science. Springer, Heidelberg, August 2010, pp. 295–313. doi:
10.1007/978-3-642-14623-7_16 (cit. on pp. 225, 230, 232, 233).

[Kle08] J. Klensin. “Simple Mail Transfer Protocol”. RFC 5321. IETF, October 2008.
url: http://tools.ietf.org/rfc/rfc5321.txt (cit. on p. 1).

[KSS13] Florian Kohlar, Sven Schäge, and Jörg Schwenk. “On the Security of TLS-
DH and TLS-RSA in the Standard Model”. Cryptology ePrint Archive,
Report 2013/367. https://eprint.iacr.org/2013/367. 2013 (cit. on
p. 15).

[Koh+14] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Bjoern Tackmann, and
Daniele Venturi. “(De-)Constructing TLS”. Cryptology ePrint Archive,
Report 2014/020. https://eprint.iacr.org/2014/020. 2014 (cit. on
p. 8).

[KN09] J. Korhonen and U. Nilsson. “Service Selection for Mobile IPv4”. RFC 5446.
IETF, February 2009. url: http://tools.ietf.org/rfc/rfc5446.
txt (cit. on pp. 3, 15).

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. “HMAC: Keyed-Hashing for
Message Authentication”. RFC 2104. IETF, February 1997. url: http:
//tools.ietf.org/rfc/rfc2104.txt (cit. on p. 62).

[KE10] H. Krawczyk and P. Eronen. “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF)”. RFC 5869. IETF, May 2010. url:
http://tools.ietf.org/rfc/rfc5869.txt (cit. on p. 62).

[Kra10a] Hugo Krawczyk. “Cryptographic Extraction and Key Derivation: The
HKDF Scheme”. Cryptology ePrint Archive, Report 2010/264. https :
//eprint.iacr.org/2010/264. 2010 (cit. on p. 62).

[Kra10b] Hugo Krawczyk. “Cryptographic Extraction and Key Derivation: The
HKDF Scheme”. In: Advances in Cryptology – CRYPTO 2010. Ed. by Tal Ra-
bin. Vol. 6223. Lecture Notes in Computer Science. Springer, Heidelberg,
August 2010, pp. 631–648. doi: 10.1007/978-3-642-14623-7_34
(cit. on p. 62).

257

https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-642-14623-7_16
http://tools.ietf.org/rfc/rfc5321.txt
https://eprint.iacr.org/2013/367
https://eprint.iacr.org/2014/020
http://tools.ietf.org/rfc/rfc5446.txt
http://tools.ietf.org/rfc/rfc5446.txt
http://tools.ietf.org/rfc/rfc2104.txt
http://tools.ietf.org/rfc/rfc2104.txt
http://tools.ietf.org/rfc/rfc5869.txt
https://eprint.iacr.org/2010/264
https://eprint.iacr.org/2010/264
https://doi.org/10.1007/978-3-642-14623-7_34


bibliography

[Kra16] Hugo Krawczyk. “A Unilateral-to-Mutual Authentication Compiler for
Key Exchange (with Applications to Client Authentication in TLS 1.3)”. In:
ACM CCS 2016: 23rd Conference on Computer and Communications Secu-
rity. Ed. by Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi. ACM Press, October 2016, pp. 1438–
1450. doi: 10.1145/2976749.2978325 (cit. on p. 16).

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. “On the Security
of the TLS Protocol: A Systematic Analysis”. In: Advances in Cryptology
– CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042.
Lecture Notes in Computer Science. Springer, Heidelberg, August 2013,
pp. 429–448. doi: 10.1007/978-3-642-40041-4_24 (cit. on pp. 15, 63,
166, 167).

[KW16] Hugo Krawczyk and Hoeteck Wee. “The OPTLS Protocol and TLS 1.3”. In:
2016 IEEE European Symposium on Security and Privacy. IEEE, March 2016,
pp. 81–96. doi: 10.1109/EuroSP.2016.18 (cit. on p. 8).

[LHT16] A. Langley, M. Hamburg, and S. Turner. “Elliptic Curves for Security”.
RFC 7748. IETF, January 2016. url: http://tools.ietf.org/rfc/
rfc7748.txt (cit. on p. 108).

[LP19] Roman Langrehr and Jiaxin Pan. “Tightly Secure Hierarchical Identity-
Based Encryption”. In: PKC 2019: 22nd International Conference on Theory
and Practice of Public Key Cryptography, Part I. Ed. by Dongdai Lin and
Kazue Sako. Vol. 11442. Lecture Notes in Computer Science. Springer,
Heidelberg, April 2019, pp. 436–465. doi: 10.1007/978-3-030-17253-
4_15 (cit. on p. 17).

[LW05] Arjen K. Lenstra and Benne de Weger. “On the Possibility of Construct-
ing Meaningful Hash Collisions for Public Keys”. In: ACISP 05: 10th Aus-
tralasian Conference on Information Security and Privacy. Ed. by Colin Boyd
and Juan Manuel González Nieto. Vol. 3574. Lecture Notes in Computer
Science. Springer, Heidelberg, July 2005, pp. 267–279 (cit. on p. 15).

[Li+16] Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and Honggang Hu.
“Multiple Handshakes Security of TLS 1.3 Candidates”. In: 2016 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, May 2016,
pp. 486–505. doi: 10.1109/SP.2016.36 (cit. on p. 8).

[LS17] Yong Li and Sven Schäge. “No-Match Attacks and Robust Partnering Defi-
nitions: Defining Trivial Attacks for Security Protocols is Not Trivial”. In:
ACM CCS 2017: 24th Conference on Computer and Communications Security.
Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu. ACM Press, October 2017, pp. 1343–1360. doi: 10.1145/3133956.
3134006 (cit. on p. 209).

258

https://doi.org/10.1145/2976749.2978325
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1109/EuroSP.2016.18
http://tools.ietf.org/rfc/rfc7748.txt
http://tools.ietf.org/rfc/rfc7748.txt
https://doi.org/10.1007/978-3-030-17253-4_15
https://doi.org/10.1007/978-3-030-17253-4_15
https://doi.org/10.1109/SP.2016.36
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006


bibliography

[Li+14] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. “On
the Security of the Pre-shared Key Ciphersuites of TLS”. In: PKC 2014: 17th
International Conference on Theory and Practice of Public Key Cryptography.
Ed. by Hugo Krawczyk. Vol. 8383. Lecture Notes in Computer Science.
Springer, Heidelberg, March 2014, pp. 669–684. doi: 10.1007/978-3-
642-54631-0_38 (cit. on p. 15).

[LM18] Vadim Lyubashevsky and Daniele Micciancio. “Asymptotically Efficient
Lattice-BasedDigital Signatures”. In: Journal of Cryptology 31.3 (July 2018),
pp. 774–797. doi: 10.1007/s00145-017-9270-z (cit. on p. 209).

[Man15] Itsik Mantin. “Attacking SSL when using RC4: Breaking SSL with a 13-
year-old RC4 Weakness”. In: Black Hat Asia. https://www.imperva.
com/docs/HII_Attacking_SSL_when_using_RC4.pdf. March 2015
(cit. on p. 15).

[MP17] Giorgia Azzurra Marson and Bertram Poettering. “Security Notions for
Bidirectional Channels”. In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 405–426. doi: 10.13154/tosc.v2017.i1.405-426
(cit. on p. 201).

[Mau94] Ueli M. Maurer. “Towards the Equivalence of Breaking the Diffie-Hellman
Protocol and Computing Discrete Algorithms”. In: Advances in Cryptology
– CRYPTO’94. Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Computer
Science. Springer, Heidelberg, August 1994, pp. 271–281. doi: 10.1007/
3-540-48658-5_26 (cit. on p. 24).

[Mau05] Ueli M. Maurer. “Abstract Models of Computation in Cryptography (In-
vited Paper)”. In: 10th IMA International Conference on Cryptography and
Coding. Ed. by Nigel P. Smart. Vol. 3796. Lecture Notes in Computer
Science. Springer, Heidelberg, December 2005, pp. 1–12 (cit. on p. 165).

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. “Indifferentiabil-
ity, Impossibility Results on Reductions, and Applications to the Random
Oracle Methodology”. In: TCC 2004: 1st Theory of Cryptography Confer-
ence. Ed. by Moni Naor. Vol. 2951. Lecture Notes in Computer Science.
Springer, Heidelberg, February 2004, pp. 21–39. doi: 10.1007/978-3-
540-24638-1_2 (cit. on pp. 9, 78, 80, 82–86).

[MW96] Ueli M. Maurer and Stefan Wolf. “Diffie-Hellman Oracles”. In: Advances in
Cryptology – CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in
Computer Science. Springer, Heidelberg, August 1996, pp. 268–282. doi:
10.1007/3-540-68697-5_21 (cit. on p. 24).

[McG08] D. McGrew. “An Interface and Algorithms for Authenticated Encryption”.
RFC 5116. IETF, January 2008. url: http://tools.ietf.org/rfc/
rfc5116.txt (cit. on pp. 69, 107, 198).

259

https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/s00145-017-9270-z
https://www.imperva.com/docs/HII_Attacking_SSL_when_using_RC4.pdf
https://www.imperva.com/docs/HII_Attacking_SSL_when_using_RC4.pdf
https://doi.org/10.13154/tosc.v2017.i1.405-426
https://doi.org/10.1007/3-540-48658-5_26
https://doi.org/10.1007/3-540-48658-5_26
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/3-540-68697-5_21
http://tools.ietf.org/rfc/rfc5116.txt
http://tools.ietf.org/rfc/rfc5116.txt


bibliography

[MB12] D. McGrew and D. Bailey. “AES-CCM Cipher Suites for Transport Layer
Security (TLS)”. RFC 6655. IETF, July 2012. url: http://tools.ietf.
org/rfc/rfc6655.txt (cit. on pp. 69, 107, 198).

[ML21] A. Melnikov and B. Leiba. “Internet Message Access Protocol (IMAP) -
Version 4rev2”. RFC 9051. IETF, August 2021. url: http://tools.ietf.
org/rfc/rfc9051.txt (cit. on p. 1).

[Mey+14] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebas-
tian Schinzel, and Erik Tews. “Revisiting SSL/TLS Implementations: New
Bleichenbacher Side Channels andAttacks”. In: USENIX Security 2014: 23rd
USENIX Security Symposium. Ed. by Kevin Fu and Jaeyeon Jung. USENIX
Association, August 2014, pp. 733–748 (cit. on p. 15).

[MF21a] Arno Mittelbach and Marc Fischlin. “The Theory of Hash Functions and
Random Oracles - An Approach to Modern Cryptography”. Information
Security and Cryptography. Springer, 2021. doi: 10.1007/978-3-030-
63287-8. url: https://doi.org/10.1007/978-3-030-63287-8
(cit. on p. 82).

[MF21b] K. Moriarty and S. Farrell. “Deprecating TLS 1.0 and TLS 1.1”. RFC 8996.
IETF, March 2021. url: http://tools.ietf.org/rfc/rfc8996.txt
(cit. on p. 3).

[MKJR16] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. “PKCS #1: RSA Cryptog-
raphy Specifications Version 2.2”. RFC 8017. IETF, November 2016. url:
http://tools.ietf.org/rfc/rfc8017.txt (cit. on p. 11).

[MSW08] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. “A Modular Secu-
rity Analysis of the TLS Handshake Protocol”. In: Advances in Cryptology
– ASIACRYPT 2008. Ed. by Josef Pieprzyk. Vol. 5350. Lecture Notes in
Computer Science. Springer, Heidelberg, December 2008, pp. 55–73. doi:
10.1007/978-3-540-89255-7_5 (cit. on p. 15).

[MR96] J. Myers and M. Rose. “Post Office Protocol - Version 3”. RFC 1939. IETF,
May 1996. url: http://tools.ietf.org/rfc/rfc1939.txt (cit. on
p. 1).

[Nat13] National Institute of Standards and Technology. “FIPS PUB 186-4: Digital
Signature Standard (DSS)”. 2013 (cit. on pp. 7, 108).

[NL18] Y. Nir and A. Langley. “ChaCha20 and Poly1305 for IETF Protocols”. RFC
8439. IETF, June 2018. url: http://tools.ietf.org/rfc/rfc8439.
txt (cit. on pp. 69, 107, 198).

[NT99] Noam Nisan and Amnon Ta-Shma. “Extracting Randomness: A Survey
and New Constructions”. In: Journal of Computer and System Sciences 58.1
(1999), pp. 148–173. doi: 10.1006/jcss.1997.1546. url: https:
//doi.org/10.1006/jcss.1997.1546 (cit. on p. 62).

260

http://tools.ietf.org/rfc/rfc6655.txt
http://tools.ietf.org/rfc/rfc6655.txt
http://tools.ietf.org/rfc/rfc9051.txt
http://tools.ietf.org/rfc/rfc9051.txt
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1007/978-3-030-63287-8
http://tools.ietf.org/rfc/rfc8996.txt
http://tools.ietf.org/rfc/rfc8017.txt
https://doi.org/10.1007/978-3-540-89255-7_5
http://tools.ietf.org/rfc/rfc1939.txt
http://tools.ietf.org/rfc/rfc8439.txt
http://tools.ietf.org/rfc/rfc8439.txt
https://doi.org/10.1006/jcss.1997.1546
https://doi.org/10.1006/jcss.1997.1546
https://doi.org/10.1006/jcss.1997.1546


bibliography

[NZ96] Noam Nisan and David Zuckerman. “Randomness is Linear in Space”.
In: Journal of Computer and System Sciences 52.1 (1996), pp. 43–52. doi:
10.1006/jcss.1996.0004. url: https://doi.org/10.1006/jcss.
1996.0004 (cit. on p. 62).

[OP01] Tatsuaki Okamoto and David Pointcheval. “The Gap-Problems: A New
Class of Problems for the Security of Cryptographic Schemes”. In:
PKC 2001: 4th International Workshop on Theory and Practice in Public
Key Cryptography. Ed. by Kwangjo Kim. Vol. 1992. Lecture Notes in
Computer Science. Springer, Heidelberg, February 2001, pp. 104–118. doi:
10.1007/3-540-44586-2_8 (cit. on p. 25).

[Opp16] Rolf Oppliger. “SSL and TLS: Theory and Practice, Second Edition”. Artech
House, 2016 (cit. on pp. 2, 3).

[PW22] Jiaxin Pan and Benedikt Wagner. “Lattice-Based Signatures with Tight
Adaptive Corruptions and More”. In: PKC 2022, Part II. Ed. by Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe. Vol. 13178. LNCS. Springer,
2022, pp. 347–378. doi: 10.1007/978- 3- 030- 97131- 1\_12. url:
https://doi.org/10.1007/978-3-030-97131-1%5C_12 (cit. on
pp. 17, 208, 235).

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. “Tag
Size Does Matter: Attacks and Proofs for the TLS Record Protocol”. In:
Advances in Cryptology – ASIACRYPT 2011. Ed. by Dong Hoon Lee and
Xiaoyun Wang. Vol. 7073. Lecture Notes in Computer Science. Springer,
Heidelberg, December 2011, pp. 372–389. doi: 10.1007/978-3-642-
25385-0_20 (cit. on pp. 15, 198).

[PS18] Christopher Patton and Thomas Shrimpton. “Partially Specified Chan-
nels: The TLS 1.3 Record Layer without Elision”. In: ACM CCS 2018: 25th
Conference on Computer and Communications Security. Ed. by David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang. ACM Press,
October 2018, pp. 1415–1428. doi: 10.1145/3243734.3243789 (cit. on
pp. 8, 201).

[PHG13] Angelo Prado, Neal Harris, and Yoel Gluck. “SSL, Gone in 30 Seconds:
A BREACH Beyond CRIME”. In: Black Hat USA 2013. https://www.
blackhat.com/us-13/archives.html#Prado. August 2013 (cit. on
p. 16).

[Res18] E. Rescorla. “The Transport Layer Security (TLS) Protocol Version 1.3”.
RFC 8446. IETF, August 2018. url: http://tools.ietf.org/rfc/
rfc8446.txt (cit. on pp. 1, 3, 8, 9, 39, 61–65, 68–70, 72–74, 79, 80, 101,
105–107, 109–113, 115, 116, 120, 121, 123, 127, 197, 198, 200, 201).

[RM12] E. Rescorla andN.Modadugu. “DatagramTransport Layer Security Version
1.2”. RFC 6347. IETF, January 2012. url: http://tools.ietf.org/
rfc/rfc6347.txt (cit. on p. 123).

261

https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/978-3-030-97131-1\_12
https://doi.org/10.1007/978-3-030-97131-1%5C_12
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1145/3243734.3243789
https://www.blackhat.com/us-13/archives.html#Prado
https://www.blackhat.com/us-13/archives.html#Prado
http://tools.ietf.org/rfc/rfc8446.txt
http://tools.ietf.org/rfc/rfc8446.txt
http://tools.ietf.org/rfc/rfc6347.txt
http://tools.ietf.org/rfc/rfc6347.txt


bibliography

[RTFK22] E. Rescorla, H. Tschofenig, T. Fossati, and A. Kraus. “Connection Identifier
for DTLS 1.2”. RFC 9146. IETF, March 2022. url: http://tools.ietf.
org/rfc/rfc9146.txt (cit. on p. 123).

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. “Careful
with Composition: Limitations of the Indifferentiability Framework”. In:
Advances in Cryptology – EUROCRYPT 2011. Ed. by Kenneth G. Paterson.
Vol. 6632. Lecture Notes in Computer Science. Springer, Heidelberg, May
2011, pp. 487–506. doi: 10.1007/978-3-642-20465-4_27 (cit. on
pp. 85, 86).

[Riv92] R. Rivest. “The MD5 Message-Digest Algorithm”. RFC 1321. IETF, April
1992. url: http://tools.ietf.org/rfc/rfc1321.txt (cit. on pp. 3,
28).

[RD12] Juliano Rizzo and Thai Duong. “The CRIME attack”. Presented at ekoparty
’12. http://goo.gl/mlw1X1. 2012 (cit. on pp. 3, 16).

[Rog02] Phillip Rogaway. “Authenticated-Encryption With Associated-Data”. In:
ACM CCS 2002: 9th Conference on Computer and Communications Security.
Ed. by Vijayalakshmi Atluri. ACM Press, November 2002, pp. 98–107. doi:
10.1145/586110.586125 (cit. on pp. 197, 198, 201).

[Rog06a] Phillip Rogaway. “Formalizing Human Ignorance”. In: Progress in Cryptol-
ogy - VIETCRYPT 06: 1st International Conference on Cryptology in Vietnam.
Ed. by Phong Q. Nguyen. Vol. 4341. Lecture Notes in Computer Science.
Springer, Heidelberg, September 2006, pp. 211–228 (cit. on p. 28).

[Rog06b] Phillip Rogaway. “Formalizing Human Ignorance: Collision-Resistant
Hashing without the Keys”. Cryptology ePrint Archive, Report 2006/281.
https://eprint.iacr.org/2006/281. 2006 (cit. on p. 28).

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS
Without Handshake Signatures”. In: ACM CCS 2020: 27th Conference on
Computer and Communications Security. Ed. by Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna. ACM Press, November 2020, pp. 1461–
1480. doi: 10.1145/3372297.3423350 (cit. on pp. 16, 40, 42, 45).

[SSW21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “More Efficient Post-
quantum KEMTLS with Pre-distributed Public Keys”. In: ESORICS 2021:
26th European Symposium on Research in Computer Security, Part I. Ed. by
Elisa Bertino, Haya Shulman, and Michael Waidner. Vol. 12972. Lecture
Notes in Computer Science. Springer, Heidelberg, October 2021, pp. 3–22.
doi: 10.1007/978-3-030-88418-5_1 (cit. on p. 16).

[Sho97] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Prob-
lems”. In: Advances in Cryptology – EUROCRYPT’97. Ed. by Walter Fumy.
Vol. 1233. Lecture Notes in Computer Science. Springer, Heidelberg, May
1997, pp. 256–266. doi: 10.1007/3-540-69053-0_18 (cit. on p. 165).

262

http://tools.ietf.org/rfc/rfc9146.txt
http://tools.ietf.org/rfc/rfc9146.txt
https://doi.org/10.1007/978-3-642-20465-4_27
http://tools.ietf.org/rfc/rfc1321.txt
http://goo.gl/mlw1X1
https://doi.org/10.1145/586110.586125
https://eprint.iacr.org/2006/281
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/3-540-69053-0_18


bibliography

[Sho04] Victor Shoup. “Sequences of games: a tool for taming complexity in se-
curity proofs”. Cryptology ePrint Archive, Report 2004/332. https://
eprint.iacr.org/2004/332. 2004 (cit. on pp. 98, 101, 141, 215, 217).

[SPW07] Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. “How to Strengthen
AnyWeakly Unforgeable Signature into a Strongly Unforgeable Signature”.
In: Topics in Cryptology – CT-RSA 2007. Ed. by Masayuki Abe. Vol. 4377.
Lecture Notes in Computer Science. Springer, Heidelberg, February 2007,
pp. 357–371. doi: 10.1007/11967668_23 (cit. on p. 209).

[SLW07] Marc Stevens, Arjen K. Lenstra, and Benne deWeger. “Chosen-Prefix Colli-
sions for MD5 and Colliding X.509 Certificates for Different Identities”. In:
Advances in Cryptology – EUROCRYPT 2007. Ed. by Moni Naor. Vol. 4515.
Lecture Notes in Computer Science. Springer, Heidelberg, May 2007, pp. 1–
22. doi: 10.1007/978-3-540-72540-4_1 (cit. on p. 15).

[Ste+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger. “Short Chosen-
Prefix Collisions for MD5 and the Creation of a Rogue CA Certificate”. In:
Advances in Cryptology – CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677.
Lecture Notes in Computer Science. Springer, Heidelberg, August 2009,
pp. 55–69. doi: 10.1007/978-3-642-03356-8_4 (cit. on p. 15).

[TC11] S. Turner and L. Chen. “Updated Security Considerations for the MD5
Message-Digest and the HMAC-MD5 Algorithms”. RFC 6151. IETF, March
2011. url: http://tools.ietf.org/rfc/rfc6151.txt (cit. on p. 3).

[TP11] S. Turner and T. Polk. “Prohibiting Secure Sockets Layer (SSL) Version
2.0”. RFC 6176. IETF, March 2011. url: http://tools.ietf.org/rfc/
rfc6176.txt (cit. on p. 3).

[VG16] Mathy Vanhoef and Tom Van Goethem. “HEIST: HTTP Encrypted Infor-
mation can be Stolen Through TCP-windows”. In: Black Hat USA. https:
//tom.vg/papers/heist_blackhat2016.pdf. August 2016 (cit. on
p. 16).

[VP15] Mathy Vanhoef and Frank Piessens. “All Your Biases Belong to Us: Break-
ing RC4 in WPA-TKIP and TLS”. In: USENIX Security 2015: 24th USENIX
Security Symposium. Ed. by Jaeyeon Jung and Thorsten Holz. USENIX
Association, August 2015, pp. 97–112 (cit. on p. 15).

[Vau02] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS...” In: Advances in Cryptology – EUROCRYPT 2002.
Ed. by Lars R. Knudsen. Vol. 2332. Lecture Notes in Computer Science.
Springer, Heidelberg, April 2002, pp. 534–546. doi: 10.1007/3-540-
46035-7_35 (cit. on p. 3).

263

https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://doi.org/10.1007/11967668_23
https://doi.org/10.1007/978-3-540-72540-4_1
https://doi.org/10.1007/978-3-642-03356-8_4
http://tools.ietf.org/rfc/rfc6151.txt
http://tools.ietf.org/rfc/rfc6176.txt
http://tools.ietf.org/rfc/rfc6176.txt
https://tom.vg/papers/heist_blackhat2016.pdf
https://tom.vg/papers/heist_blackhat2016.pdf
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35


bibliography

[WS96] David Wagner and Bruce Schneier. “Analysis of the SSL 3.0 Protocol”. In:
Second USENIX Workshop on Electronic Commerce. http://www.usenix.
org / publications / library / proceedings / ec96 / index . html.
November 1996 (cit. on pp. 2, 15).

[WY05] Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other Hash
Functions”. In: Advances in Cryptology – EUROCRYPT 2005. Ed. by Ronald
Cramer. Vol. 3494. Lecture Notes in Computer Science. Springer, Heidel-
berg, May 2005, pp. 19–35. doi: 10.1007/11426639_2 (cit. on p. 15).

264

http://www.usenix.org/publications/library/proceedings/ec96/index.html
http://www.usenix.org/publications/library/proceedings/ec96/index.html
https://doi.org/10.1007/11426639_2

	Acknowledgements
	Abstract
	Zusammenfassung
	Acronyms
	Introduction
	(Brief) History of TLS
	Provable Security
	Previous Analyses of TLS 1.3 and their Tightness
	Contributions of this Work
	Difficulty of Tightly-secure AKE and Signatures in the Multi-user Setting
	Further Related Work
	Outline of this Thesis

	Preliminaries
	Notation
	Computational Problems
	Discrete Logarithm Problem
	Computational Diffie–Hellman Problem
	Decisional Diffie–Hellman Problem
	Strong Diffie–Hellman Problem

	Cryptographic Building Blocks
	Hash Functions and the Random Oracle Model
	Pseudorandom Functions
	Message Authentication Codes
	Digital Signatures
	Lossy Identification Schemes


	On the Tightness of the TLS 1.3 Handshake Protocol
	Multi-stage Key Exchange Protocols
	Introduction
	Setting
	Syntax
	Security Game
	Multi-stage Session Matching

	Transport Layer Security Handshake Protocol
	HMAC and HKDF
	Omitted Features of TLS
	Notation
	TLS 1.3 Full (EC)DHE Handshake
	TLS 1.3 PSK-only/PSK-(EC)DHE Handshake

	Abstracting the TLS Key Schedule
	Introduction
	Abstracted Key Schedule
	Indifferentiability
	Proving the TLS 1.3 Key Schedule Indifferentiable
	Defining the Domains DTh and DCh
	Discussion

	Modularizing Handshake Encryption
	Introduction
	Handshake Encryption as a Modular Transformation

	Tight Security of the TLS Full Handshake
	Introduction
	TLS 1.3 Full (EC)DHE Handshake as an MSKE Protocol
	Tight Security of the TLS 1.3 Full (EC)DHE Handshake
	Discussion

	Tight Security of the TLS-PSK Handshakes
	Introduction
	TLS 1.3 PSK-only and PSK-(EC)DHE Handshake as an MSKE Protocol
	Tight Security of TLS 1.3 PSK-(EC)DHE Handshake
	Tight Security of the TLS 1.3 PSK-only Handshake
	Discussion


	On the Tightness of the TLS 1.3 Record Protocol
	On the Tightness of the TLS 1.3 Record Protocol

	More Efficient Digital Signatures with Tight Multi-User Security
	Introduction
	Construction
	Instantiations
	Instantiation based on Decisional Diffie–Hellman
	Instantiation from the -Hiding Assumption

	Discussion

	Conclusion
	Conclusion
	Bibliography


