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Abstract

Throughout this work, I will cover my humble contributions to the field of Machine
Learning (ML) and Artificial Intelligence (AI) for Advanced Driver Assistance System
(ADAS) applications. Over the course of three main chapters, three different types
of a-priori are presented. Integrated into various neural architectures, I show how
these a-priori, also world knowledge or priors, help improve performance in their
respective fields.

First, Chapter 2 covers the topic of semantic segmentation and free space detection.
It discusses the current state-of-the-art (SotA) and analyses the respective drawbacks.
Understanding the reasons behind the limitations of the current art, a novel adaptive
mask is proposed which improves both the runtime as well as the accuracy over the
baseline model. The mask is efficiently generated on a per-sample basis and is used
to direct the model towards the more challenging parts of the segmentation map,
the edges.

In Chapter 3, the computational and mathematical foundations of the convolution
function are discussed and analysed. Understanding the accompanying computa-
tional bottlenecks, an approximative convolution block is proposed, composed to
solve the bottlenecks while reducing the computational effort.

Finally, Chapter 4 discusses the representation of predicted trajectories as polynomi-
als. A new output formulation, which was developed for the use-case of motorway
trajectory predictions. A field which demands a thorough understanding of vehicles’
behaviours. With the direct prediction of a function, representing a movement in
time and space, the model manages to better generalise and predict more realistic
trajectories.

By the end of this work, I hope to have convinced the reader that there is more
to Data Science and Machine Learning than executing a pre-trained model from
GitHub. By truly understanding the task at hand, from the data through the model
to the outputs, creative algorithms could be realised to bridge the gap between the
SotA academic research and their applicability to every day consumer products.

Last but not least, a note regarding the first-person plural perspective in this work.
This work covers my various research projects. It was generally implemented
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by me around my ideas. Yet, no man is an island. My ideas were thoroughly
discussed, debated, refined, extended and occasionally also completely revised
by my colleagues, supervisors and friends before graduating to a project worth
publishing.

I feel that writing the work in the first-person singular form would not do justice
with one of the core concepts of the research community - the scientific exchange.
The rest of this work is hence written in the first-person plural form, ‘we’. It is used
as a way of recognising the time and effort of everyone who supported it along the
way.

The generation of the cover photo of this print was assisted by OpenAI’s DALL-E2
generative neural network [1]. The final query for the presented cover picture was
‘Multiple cars on a motorway in photorealistic style from a car’s ego perspective.
The ego car has its future driving trajectory drawn in-front of it in the form of a
continuous orange line which starts at the ego vehicle and shows a planned lane
change’. It was then manually edited and extended using DALL-E2’s editing tool to
match my expectations and the format requirements.

iv



Acknowledgements

Writing a dissertation while working a full-time job in parallel has proven to be a
tremendous challenge. It is both physically as well as mentally demanding, to strive
for a high-quality academic work while having to finish an eight-hours working day
before sitting down to write. For this reason, this work cannot be complete without
a special recognition of those who have dedicated a part of their extremely precious
time to support me and my work. Support which had many faces. Be it professional,
physical or mental. During but also prior to the period of writing, throughout the
course of the research projects described in this work.

First and foremost, a special thank you to my supervisor, Prof. Anton Kummert.
From day one you have always been a supporting column of optimism and support.
You have provided me an academic freedom with the selection of projects, and at
the same time you were always there to discuss and answer whatever questions I
might have had. Your utter sense of reassurance has encouraged me to believe in
myself, even and mostly through hard times.

I would also like to thank, in chronological order, Mirko Meuter and Christian Nunn
who did a great job selling Aptiv and the team, when other options where on the
table. I am so very happy you did. Jan Siegemund who can somehow immediately
grasp the strangest of concepts and then improve it. Klaus Friedrichs who is not
only one of the brightest minds I have ever worked with, but also by far the quickest
thinker I know. Lutz Roese-Koerner who is such a good friend and mentor that his
name literally appears in all acknowledgements sections from our group. Kun Zhao
from whom I am still learning. Be it theoretical background or the astonishing drive
to always fully understand every last little bit of information. Dennis Müller who
could sell ice in the north pole and happily uses this trait to encourage you become a
better version of yourself. Last but not least, Markus Bühren who is the most caring,
quick learning and organised person I have ever had the pleasure of working with. I
am still learning from you every day and awkwardly enough, I do not see it changing
anytime soon.

For hours of discussions of all colours and kinds I owe a special thanks to, in
alphabetical order, Antonia van Betteray, Frederik Hasecke, Lukas Hahn, Martin
Alsfasser, Pascal Colling, Peet Cremer and Sönke Behrends. This dream team has not

v



only taught me a lot but has also made me become a better version of myself. They
challenged my creativity and compensated for my ignorance. At the same time, they
also provided the occasional yet much needed break, allowing me to recharge and
continue this marathon of a work.

For extensive and elaborate feedback and proofreading of this work, I thank Anna,
Fabian, Frederik, Kun, Lukas, Lutz, Martin, Robert and Tobias.

Finally, the entire Machine Learning and Artificial Intelligence organisation, under
the leadership of Christian Nunn. A wonderful lot of colleagues and friends which
behaves and acts like a family.

For the aforementioned physical aspects, I would like to add Anke and Sebastian,
who have always understood that the best way to take the mind off of work is
to deprive it of oxygen and send it to the dark and cold bottom of random lakes.
Annika, who is the most understanding, accepting and supportive person I know.

Last, my family, including my wonderful partner Lisa, who had to listen to hours
on end of technical talk they could not have cared less about. They have done so
just because they recognised its value for me and have demonstrated nothing but an
utter support and patience.

You all are amazing people.

vi



Contents

1 Introduction 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . 6

2 Adaptive Masking for Efficiency and Generalisation 9

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 14

2.2.2 The Sparsity Assumption . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Conditional Random Field (Conditional Random Field (CRF)) 19

2.3 Interactive Free Space Detection . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Runtime Issues and Problem Definition . . . . . . . . . . . . . 26

2.3.2 Efficient Inference in Fully Connected CRFs . . . . . . . . . . 27

2.3.3 Investigating Segmentation Errors . . . . . . . . . . . . . . . 28

2.3.4 A Novel Adaptive Filtering Mask . . . . . . . . . . . . . . . . 29

2.4 Adaptive Loss Weighting . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Loss Functions for Semantic Segmentation . . . . . . . . . . . 35

2.4.2 Spatio-focal Loss: A New Edge-aware Loss Function for Se-
mantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Efficient Convolutional Neural Networks 47

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Hyper-Parameter Optimisation . . . . . . . . . . . . . . . . . 49

3.1.2 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.3 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4 Alternative Architectures . . . . . . . . . . . . . . . . . . . . . 51

3.2 On Convolution and Computation . . . . . . . . . . . . . . . . . . . . 52

vii



3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Convolution, a Computational Heavyweight . . . . . . . . . . 54

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Bottleneck Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Strides and Pooling . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Residual Connections . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.4 Separable Convolutions . . . . . . . . . . . . . . . . . . . . . 67

3.3.5 Data Compression . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.6 Processing Bottlenecks . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Introducing Our EffNet Block . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Multi-aspect Optimisation . . . . . . . . . . . . . . . . . . . . 73

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.1 Initial Comparison . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.2 Comparison with MobileNetV2 . . . . . . . . . . . . . . . . . 80

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Polynomial Predictions as a Strong Regulariser 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Pedestrian Trajectory Prediction . . . . . . . . . . . . . . . . . 87

4.2.2 Vehicle Trajectory Prediction . . . . . . . . . . . . . . . . . . . 88

4.2.3 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.4 Multi-modality . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.5 Kinematic Constraints . . . . . . . . . . . . . . . . . . . . . . 91

4.2.6 Polynomial Predictions . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 A Novel Output Layer for Continuous Functions . . . . . . . . . . . . 96

4.4.1 Layer Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.3 Our Proposed Polynomial Training Scheme . . . . . . . . . . . 99

4.4.4 Novel Polynomial Variance Estimation . . . . . . . . . . . . . 105

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Limitations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Conclusions 119

viii



5.1 Algorithmic Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Methodic Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 120

List of Acronyms 121

List of Figures 124

List of Tables 126

Bibliography 127

ix





Introduction 1
Early in the last decade, the available computational capacity has reached an im-
portant milestone. For the first time, research institutes had enough computational
power to develop the mostly theoretical and decades old fundamentals of Artificial
Neural Network and Artificial Intelligence. A few of the most well established
algorithms in the field have seen their foundations in theories, discussed by great
minds like the father of modern computing himself, Alan Turing [2], and later by
the Turing Award winners Bengio, Hinton and LeCun.

One of the most renounced modern works in Deep Learning (DL) is the 2012
work of Krizhevsky et al. [3] on the 2010 ImageNet Large Scale Visual Recognition
Challenge [4]. The challenge consists of 1,000 visual object classes, represented
by ∼ 1.2 million training images and ∼ 50,000 validation samples. To date it is
considered one of the more extensive datasets for image classification. It is still often
used by researchers as a benchmark or as a baseline for supervised pre-training.

The aforementioned work, although novel and widely important, was mostly a
re-implementation to modern scale of the Convolutional Neural Network (CNN)
algorithm presented in [5]. However, arguably the main novelty was the distributed
computing architecture. Equipped with two Graphics Processing Units (GPUs) of
type GTX 580, it reached a sufficient computational capacity to properly train a CNN
for image classification.

As a reference, while Krizhevsky et al. reported a training time of "five to six days"
to reach a top-1 error rate of 37.5 % [3], the latest entry on the Sanford training
benchmark page [6] claims a training time of 2:38 hours to an error rate of 6.96 %.

This is not to claim, that the model’s size was unjustified. The ImageNet classification
leader board shows a clear correlation between the number of parameters and the
top-1 accuracy [7]. Furthermore trend line of models’ sizes appears to not yet have
reached saturation. The largest and best scoring models are also the among the
newest. For reference, Figure 1.1 visualises a selected few of the language models
published in and around 2022 by their number of parameters. One can clearly see to
enormous extent of these networks.
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Fig. 1.1: A visualisation of the sizes of recent and selected language models. Notice how
even large models as the renounced ‘GPT-3’ is dwarfed in size compared to the
slightly more recent ‘PaLM’ model. From [8].

Nevertheless, the results presented a strong argument for Artificial Neural Networks
(ANNs). Up to the 2010 challenge, the main focus in computer vision research was
the manual engineering of visual feature extractors like edges and colour gradients.
These were then given to a simple classifier like Support Vector Machines for the final
assignment of a class [9]. Here, the disruptive nature of DL was demonstrated for the
first time. An end-to-end system, without hand-crafted features which outperformed
the second place by a staggering ∼ 8 %. This had marked the beginning of the
wide-scale adaption of ML for day to day applications, such as the in-vehicle active
safety systems described in this work.

In the following years, the community witnessed an exponential growth in research
and funding, see [10]. The parallel field of Natural Language Processing (NLP) was
also quick to adapt with the development of the Word Embeddings [11] and projects
like ‘WaveNet’ [12]. These projects were by themselves significant milestones. Word
embeddings enabled, for the first time, the vector representation of tokens, i.e.,
words, by their semantic meaning instead of the conventional random ‘one hot’
vectors. WaveNet was the first to synthesize realistic sounding human voice in a Text
to Speech (TTS) system.

With the advancements in Recurrent Neural Networkss (RNNs), in projects like
the Long Short Term Memory (LSTM) networks [13] or the later Gated Recurrent
Units (GRU) [14], it became possible to model conditionally dependent series, e.g.,
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time, opening the door to applications in further fields like finance [15]. Notice
the work by Kohzadi et al. from 1996 which also discussed the usage of ANN for a
similar purpose and was most certainly ahead of its time.

Meanwhile, the number of challenges and applications increased drastically. From
plain classification the focus shifted to localisation, complete scene understanding in
the form of semantic segmentation and image captioning. Research in these fields
was and still is supported by datasets like the infamous MS COCO [17], Cityscapes
[18] and more.

The promise for new opportunities soon transitioned from academia to the industry.
Early adopters were mainly start-ups, e.g., Tractable [19], DeepMind [20], etc.
However, research affine technology corporations from the likes of Google have also
followed, presenting renounced projects from the likes of ‘GoogLeNet’ [21].

The automotive industry is an additional early adopter. The nature of the industry
puts it in a unique position in the field. In addition to using ML to increase revenue,
it can also utilise it to save lives and increase equality. Better Mobility on Demand
platforms are considered a key feature in a safer, greener and more accessible
world.

According to the World Health Organisation (WHO), some ≈ 1.3 million road users
have died in accidents in 2018 [22]. Even though the holy grail of the industry is
a fully autonomous stack for mobility on demand, there are several intermediate
levels of automation which are yet to be reached.

For example, an Automatic Emergency Breaking (AEB) system requires little more
than a reliable mid-range classifier for an effective risk assessment. An additional
example is driver monitoring systems. Such systems constantly evaluate the state of
the driver and alert them upon disengagement or tiredness. They can detect events
from texting while driving to impaired driving. The possible benefits are significant
to the extend of quickly becoming a regulatory requirement by organisations like
the Euro NCAP for current safety ratings [23].

From the plurality of open research topics in this fast-changing industry, this work
focuses on advancing the capacities of ML for in-vehicle active safety systems.
A diverse and exhaustive task which may not fully depict its true extent at first
glimpse.

The main difficulties with production-ready, safety critical systems are the working
environment and the performance requirements. Most current works report using
high-end GPUs, often in a cluster configuration. These hardware architectures often
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Advantages Disadvantages
Research applicable to a wide variety of
domains [25].

Reduced applicability; Only theoretical
or cloud applications.

Little domain specific knowledge re-
quired.

Exclusion of institutes which cannot af-
ford suitable clouds and clusters [26].

Good results lead to good publicity.

Tab. 1.1: A tabular comparison of the main pros and cons of large models. One can see
that, for many applications, larger is not necessarily better.

cost thousands of Euros and run in a thermal envelop of around 300 Watts [24], i.e.,
they are energy hungry and exhibit instabilities outside of their relatively limited
thermal operating range.

These factors are often an advantage, as larger models tend to perform better, yet
there are also disadvantages to consider. The comparison in Table 1.1 covers the
main advantages and disadvantages of large, general purpose models.

Additionally, the costs play an important role, including such a hardware architecture
in every vehicle would decrease competitiveness in a saturated market, which in
turn reduces acceptance. High-energy systems which need to reliably operate in
the coldest and warmest parts of the world also increase complexity and respective
costs.

One common solution is to use dedicated embedded systems, like the Jetson product
family from nVidia [27]. Embedded systems are designed to solve the aforemen-
tioned issues, while sacrificing a marginal portion of their computational power.
There is, therefore, a strong demand for algorithms which do not only deliver SotA
results, but do so with significant computational constraints.

The SotA performance is perhaps the most challenging requirement in the automo-
tive industry. While it is common to read works reporting the likes of "93 % accuracy
on dataset x", imagine these missing 7 % mean missing a child by an AEB system.

This work thus sets to mitigate the discrepancy between the academic SotA per-
formance and its respective industrial requirements. It shifts the focus from a
true-positive only paradigm to usability in automotive applications.
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1.1 Outline

The different projects covered throughout this work are concentrated around the
utilisation of world knowledge, i.e., a-priori. These priors allow to specialise a neural
architecture to its task while removing excess capacity. The goal-optimised models
are than able to better utilise their capacities for the most relevant aspects of their
task. A utility which is often accompanied by improved learning performance and/or
reduced computational requirements.

The structure of this work follows the just-in-time paradigm. Each chapter is
encapsulated as a stand-alone unit. It includes the theoretical background, along
with an overview of the relevant literature, an explanation of our contribution, its
evaluation and, finally, the respective conclusions.

In Chapter 2, a novel adaptive masking algorithm is discussed. The systematic errors
of semantic segmentation algorithms in the image domain are studied to establish
that these mostly occur at the objects’ edges. We move to propose an adaptive
masking scheme, which based on the these edges is used in two ways to optimise
performance.

First, runtime optimisation. We show how one could utilise such masks to real-time
optimise the popular Conditional Random Field model for segmentation refinement.
By coupling the masks with the CRF framework, we demonstrate a classification
agreement of over 99 % with the baseline while reducing the runtime to ∼ 15 %.

Second, classification optimisation. We utilise our adaptive masks to improve on
the challenge of vanishing gradients. Since the common loss function for semantic
segmentation equally accounts for all pixels, the more important edge pixels vanish
under the extensive averaging. Using the edge masks, we re-focus the loss values on
the ‘harder’ pixels, leading to improved generalisation performance.

In Chapter 3, we present adjustments to the vanilla convolution layer which drasti-
cally reduce the computational burden. A theoretical and empirical analysis of the
exhaustive runtime intervals is provided. The lessons of this study are then used
to justify a novel convolution block, dubbed ‘EffNet’. The block increases efficiency
by splitting the convolution operator to a series of axis-wise convolutions, each is
optimised to be well streamlined on the given embedded hardware. We furthermore
show that our proposed convolution block outperforms similar architectures like the
commonly used ‘MobileNet’ and even its vanilla baseline.
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Subsequentially, Chapter 4 discusses a novel method to exploit the temporal coher-
ence of trajectories, improving the generalisation capacity of motion understanding
models. A literature survey showed that trajectories are predicted as a series of
mutually independent coordinates. We have furthermore established that such a
prediction format encourages artefacts in the predictions and over-fitting on the
predicted temporal offsets. These disadvantages are addressed by proposing a new
ad-hoc output layer which predicts polynomial coefficients, composing a mapping of
distance as a function of time. Since the polynomials offer an added flexibility, we
accompany the layer with a complete suite of training optimisations. The framework
is finally evaluated to demonstrate how the predicted trajectories are more natural
as well as more accurate than the common art coordinates.

Finally, Chapter 5 recapitulates the main observations of this work with a concluding
overview of the key contributions.

1.2 Contributions and Publications

The content of this work is based on the following publications

• Ido Freeman, Jan Siegemund
"Device and a method for assigning labels of a plurality of predetermined
classes to pixels of an image"
US Patent US16143741, 2017
Covered in Chapter 2

• Ido Freeman, Pascal Colling
"Spatio-Focal Loss Adaptive Weighting of Semantic Segmentation Loss"
European Patent Application EP21154378, 2021
Covered in Chapter 2

• Ido Freeman, Lutz Roese-Koerner, Anton Kummert
"Effnet: An efficient structure for convolutional neural networks"
25th IEEE International Conference on Image Processing (ICIP), 2018
Covered in Chapter 3

• Ido Freeman, Kun Zhao, Anton Kummert
"Polynomial Trajectory Predictions for Improved Learning Performance"
28th IEEE International Conference on Image Processing (ICIP), 2022
Covered in Chapter 4
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• Dominic Spata, Arne Grumpe, Mirko Meuter, Ido Freeman
"Methods and Systems for Predicting a Trajectory of an Object"
European Patent Application EP21186073, 2021
Covered briefly as a derivative work in Chapter 4

• Kun Zhao, Ido Freeman, Thomas Kurbiel
"Method and Computer System for Controlling the Movement of a Host Vehicle"
UK Patent Application GB2203519.0, 2022
Covered briefly as a derivative work in Chapter 4

• Dominic Spata, Arne Grumpe, Ido Freeman
"Variance Estimation for Deeptracker"
European Patent Application EP21188550, 2021
Covered briefly as a derivative work in Chapter 4

Additionally, the following publications did not align with the silver lining of this
work and were therefore not included

• Alessandro Cennamo, Ido Freeman, Anton Kummert
"A Statistical Defense Approach for Detecting Adversarial Examples"
International Conference on Pattern Recognition and Intelligent Systems, 2020
I had the pleasure of supervising Alessandro in his research towards his Mas-
ter’s thesis. We revised ideas together, optimised the implementation and
iterated on the algorithm to make it more robust and better performing.

• Ido Freeman, Klaus Friedrichs
"Method for classifying a capture taken by a sensor"
US Patent US11403498, 2022
In this work, Klaus and I have developed a softmax-based temporal fusion
algorithm to improve tracking results of spotlight classification on motorways
at night. We used the system to address classification instability at ranges
around 1 km where the common headlight is a patch of around 4× 4 pixels
in size. Our novel fusion algorithm encouraged the classifier to output large
confidence values for certain classifications. Incorporated with the exponential
nature of the softmax function, the fusion signal was made adaptive to the
samples. It combined the benefits of a stable classification with the agility of
quick reclassification. As soon as the target object enters the range of certain
classification the classifier overrides the fusion and forces its output. The
scheme has reduced our false positive rate from ∼ 5 % to ∼ 1 % on an internal
dataset. From the ten patents covered in this work, this project is the only
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one to have been successfully deployed in production. It is currently used to
control the headlights of the latest generation of Volvo’s lorries.

• Ido Freeman, Kun Zhao
"Temporally Adaptive Attention for Trajectory Prediction"
European Patent Application EP21150060, 2021
In this work, I extended the aforementioned fusion algorithm to stabilise the
attention in transformer networks. Adapting the domain, we showed that
stable attention weights support trajectory stability in motorway scenarios.
The model chooses its attention weights in the default case, yet under uncer-
tainty, the temporal fusion becomes dominant and factors in the previously
used weights. This implements the sparsity assumption, which states that
consecutive frames would only contain a limited amount of new information.
Hence the model can benefit from its previous predictions when the current
ones are uncertain.
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Adaptive Masking for
Efficiency and Generalisation

2
Object classification is a term which traditionally follows a simple definition - given
an image of an object, to what class of similar objects does it belong? Representa-
tions and examples for this definition are easily found in datasets from the likes of
Modified National Institute of Standards and Technology (MNIST) [28], ImageNet
[3] and Cifar10 [29]. Yet, ultimately, the main issue with applying object classifi-
cation to the real world is the ill-posed task. Considering real-world scenes with a
plurality of objects, which object should be classified? What about the other objects?
Furthermore, in some cases, the added context is crucial for a correct classification.
For example, is the snorkelling woman really snorkelling or is it merely a holiday
photo hanging on the wall?

As a solution, a focus shift from object classification to object detection and semantic
segmentation has taken place, with datasets like the Visual Object Classes (VOC)
2007 challenge [30] and Common Objects in Context (COCO) [17] representing
some of the earliest examples. The once direct mapping of one input to one class,
has evolved to one to many, thus also requiring substantially more computational
power. This increased intensity poses a challenge for embedded systems, already
pushed to their limits by simpler, traditional classifiers. Nevertheless, a challenge is
nothing but an opportunity for novelty, some of which is presented in this chapter.

This chapter covers two projects, consisting of the same idea applied to two different
scopes and purposes. At the core of our proposed algorithms is the recognition that
for the common semantic segmentation algorithm, the most challenging areas in an
image are along the objects’ borders. We propose to improve the performance of such
algorithms by artificially increasing the significance of these areas, using an adaptive,
sample-wise edge mask. We first show how such an edge map could be utilised to
significantly improve the runtime of the common Convolutional Neural Network-
Conditional Random Field model by only applying the CRF to the interesting parts
of the image. This work is covered in [31]. In [32], we later shifted the scope
to generalisation and segmentation performance and show how such a dynamic
mask could not only be beneficial on embedded systems, it could rather also assist
reducing the size of a model without loosing performance.
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The rest of the chapter is structured as follows. A joint related work section covers the
topics relevant for both projects. It is then followed by the discussion and evaluation
of the first method for efficient CRFs. Finally, the chapter is concluded with the
second method for adaptive weighting of loss functions for semantic segmentation
models.

2.1 Related Work

As hinted in the introduction for this chapter, semantic segmentation is the task
of assigning one of a plurality of classes to each pixel in an input signal. The task
resembles object detection, where each recognised object in the input is assigned a
bounding box and a class. It is also regarded as the preceding generation of instance
segmentation, where not only the given classes are assigned to each pixel, rather
also an instance index.

For example, let us regard a large group of athletes on the field. In object detection,
one can expect an overlapping set of bounding boxes, each represents a single
person. In semantic segmentation, the group will be assigned a single, large blob of
the class ‘person’. Finally, instance segmentation adds unique pixel-wise assignment
to represent each individual person. An example of all three cases is given in
Figure 2.1.

(a) Object detection - each in-
stance gets a bounding box
and a class assignment

(b) Semantic segmentation - in-
stances disregarded, only
classes are assigned

(c) Instance segmentation - each
instance is classified and seg-
mented separately

Fig. 2.1: An example illustrating the differences between object detection, semantic seg-
mentation and instance segmentation. From [33]

As the field addresses an extremely relevant task, it has seen a relatively large
number of datasets over the years. Among the most renounced benchmarks is the
Cityscapes dataset [18] which covers the open street domain, mostly of German
cities. Similar, yet slightly more versatile datasets are the 2012 version of the VOC
challenge [34] and the ADE20k [35] datasets. However, applications are not limited
to day-to-day objects. Other interesting domains include biological segmentation of
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cells [36], [37], analysis of aerial images [38], [39] and even diagnostic of surgical
endoscopy tools [40].

The large number of datasets provides a sandbox for experiments and developments
with a persistent competition for the best model.

2.1.1 Object Detection

First, consider the trivial evolution of the one image one object paradigm, the one
image multiple objects task. From an engineering point of view, bounding boxes
are often preferred to pixel-wise segmentation as they deliver a very similar amount
of information with only a few bytes of data. This is opposed to the more tedious
pixel-wise information which often requires additional processing steps.

For example, for representing only the bounding box’s two-dimensional location
and class, one would need two anchor points, e.g., the upper left corner and the
lower right corner of the box, and a class representation. Another advantage is that
these bounding boxes could easily be extended to include further signals, which are
not easily predicted on a pixel-wise resolution. These include, but not limited to,
heading angle, pitch and even estimations of depth.

The first publication in the field is the Region CNN paper [41] in which the usage
of a CNN classifier on pre-extracted bounding box candidates was proposed. The
successor of this work, the Faster RCNN model [42], combined the region proposal
and classification modules to allow for a quicker and better converging end to end
training. It was then followed by Faster RCNN [43] which incrementally refines the
pipeline to demonstrate even better detection rates at a lower runtime.

Finally, the YOLO models family [44], [45] and more. The YOLO strategy is to have
a single model which processes the entire input at once and generates a bounding
box estimation for all possible locations. It then uses a non-maximum suppression
to eliminate the improbable boxes, resulting in only the most reliable predictions.
Its simplicity has made it one of the more commonly used models and backbone
architectures for object detection to date.

However, it is important to remember, that bounding boxes are not always the best
solution. Classes like ‘road’, ‘sky’ or even ‘building’ are for most use cases pointless
as bounding boxes.
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2.1.2 Semantic Segmentation

Tasks which require more than bounding boxes are addressed by semantic segmen-
tation. Before Deep Neural Networks (DNNs) became strong competitors in vision
tasks, semantic segmentation was traditionally addressed by CRFs. First presented
in the 2001 work of Lafferty et al., these are a form of a graphical model which
models the interactions between nodes, in the visual case - pixels, superpixels (e.g.,
[47]) or regions, along weighted edges [46]. A more in depth discussion about CRFs
and their properties is provided in Subsection 2.2.3. The extension to actual pixels
was later proposed by Kraehenbuehl and Koltun which reformulated the inference
process, making it efficient enough to run on a large number of nodes [48]. As a
reference for the claim “efficient enough”, Fig. 1 of [48] reports an inference time of
0.2 seconds of their approach while the reference SotA method of [49] took some 36
hours to deliver comparable segmentation results.

One of the earlier CNN based attempts at semantic segmentation was [50]. It was
the first work to show that the fully connected layers at the top of a CNN architecture
could be replaced by their convolution counterparts, delivering a low resolution
pixel-wise classification map. At this point, the final results mostly suffered from the
unlearned up-scaling, leading to errors along the transitions between objects. The
work of Chen et al. then took the said CRF and partnered it with the aforementioned
CNN classifier for the unary predictions [51]. It was later revised in [52], mostly by
optimising the scope of the convolution layers. Finally, in [53] the CRF algorithm
was realised as an RNN which allowed an end-to-end training along with a simpler
implementation.

At roughly the same time, the ‘U-Net’ model was proposed [54]. It demonstrated
an adaptation of the autoencoder framework [55, pp.499-523] such that a fully
convolutional encoder-decoder architecture could be used in the domain of biological
cell segmentation. The advantage of the encoder-decoder architecture is that it
completely compresses the input signal, thus maximising the context. The result is
then up-sampled by the decoder to reconstruct the higher resolution. For further
details and references, we strongly recommend reading through the work of Arnab
et al., which in their 2018 overview discussed the latest advancements in the field
[56].

The latest SotA class of models for semantic segmentation evolves around hierar-
chical multi-scale attention architecture [57]. It generates segmentation maps at
different scales along with a vector of weights to merge the prediction. The idea
implements the divide and conquer strategy known as pyramid processing [58].
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By having separated model branches for the different scales, the variance in object
properties is mitigated.

Semantic segmentation offers a good solution for tasks like free space detection,
background extraction, etc. Yet it suffers from one significant drawback. Assigning
each pixel a class, one misses the differentiation between instances of the same
class. While being irrelevant in free space detection, being able to differently handle
animate objects, e.g., pedestrians, is a desirable property.

2.1.3 Instance Segmentation

The next phase in evolution is segmenting an input image to only to its semantic
classes, but rather also marking the individual instances of these classes. The most
renounced extension to the Region CNN framework was the Mask-RCNN described
in [59]. By extending the Faster RCNN model [42], He et al. did not only predict
bounding boxes, they have also segmented the content of the bounding box. The
model combines a fully convolutional head for the segmentation with a pixel-wise
classification head for the bounding boxes.

The current state of the art is held the work of Ghiasi et al. which combined ResNet 50
with Mask-RCNN and extended it with a robust data augmentation scheme [60].
The main contribution of this work is the usage of the ground truth instance labels to
randomly copy objects into different images. The augmented data adds a significant
amount of virtual training samples which are required to train such large models.

2.2 Motivation

The algorithm proposed in this chapter was motivated by the disadvantages of
its prior art. This section is opened with a very quick recapitulation of CNNs for
classification and segmentation. We will see that, regardless of their impressive
performance in vision tasks, this class of models embed an inherit design flaw,
limiting their spatial scope. This important property of CNNs is then used to segue
to CRFs. This class of models was developed with the sole purpose of accounting for
spatial information dependencies, making them an ideal compliment to CNNs.
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2.2.1 Convolutional Neural Networks

A convolutional neural network is the spatially adjusted version of the perceptron
algorithm. Conceptualised in the 1943 publication of [61], it described a learnable,
computational unit which mimics biological neurons. Some 14 years later, it was
finally described in algorithmic terms in [62]. The core idea behind the perceptron is
rather simple. Following the notation of [63, p. 227], it takes the following form

y =
J∑

j=0
θjxj + b. (2.1)

Here, θ ∈ RJ is the perceptron’s trainable parameter which maps the input vector
x ∈ RJ , of dimension J to the output y. The bias term, b, was later added to extend
the line equation for uncentred, i.e., unnormalised, data. The idea is that such a line
could be used to divide data into class a, above the line, and class b, below the line.
According to the hyperplane separation theorem, such a clear separation should
exist when the dimensionality is high enough [64, pp.46-51].

The perceptron algorithm, along its generations, has proven a powerful classification
algorithm, yet it exhibits a built in limitation when it comes to classifying natural
images. While the perceptron is implemented with a trainable weight per input
dimension, natural images are both large as well as translation invariant. This means
that any given object could be seen anywhere in a given image, without changing its
properties or its class. This matter was the main focus of LeCun et al. who have, in
1989 described a convolution based model for postcode recognition in letters [65].
They used small spatial kernels, often of size 3× 3, which are swiped over the larger
input image, thus applying the same weights to all positions of the input. By doing
so, the number of parameters was reduced while also addressing the translation
invariance issue.

This architecture design was heavily motivated by the receptive fields alignment
in the mammalian visual cortex. As early as 1962, Hubel and Wiesel showed
that the receptive fields in mammals implement a pipeline of increased complexity.
Such a processing chain is illustrated in Figure 2.2. The computational aspects of
convolution are discussed in further detail in Subsection 3.2.1.

Almost ten more year were required to get from optical digit recognition to the more
general document recognition in [68]. This is mostly related to the slow rates of
data transfer in the 90’s as well as the limited computational capacity. The ability
to efficiently process images in the wild arrived to market around 2012 with the
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Fig. 2.2: An illustration of the processing pipeline in mammal brains following [66]. Notice
the increasing complexity with each layer of processing, this motivated the design
choices behind the commonly used CNN. The visualisation of the receptive fields
is borrowed from [67].

publication of [3]. It initiated a revolution in image processing and brought the end
of the so called AI Winter.

To further demonstrate the importance of computational power for the capacity of
neural models, [69] plotted the, to-date, most popular models from the ImageNet
challenge leaders board as a function of their Floating Point Operations (FLOPs).
The near perfect correlation seen in the figure suggests an interesting observation.
Many of the latest developments in classification networks might rely more on
advancements in GPU technology, rather than some novel features or layers.

In order to increase the capacity and scope of CNNs, the said kernels are arranged in
groups, called layers. These layers are then extended by two other operators which
are applied on top of them. First, a non-linearity function allows neural networks to
successfully approximate any arbitrary function, as explained and well visualised in
[70, ch. 4]. The most common non-linear function to date is the so called Rectifying
Linear Unit (ReLU) [71]. Second, a pooling, also subsampling, is used to artificially
increase the scale on each layer of kernels. The pooling layer reduces the signal’s
size, mostly by picking the maximal valued element from a 2 × 2 neighbourhood.
By halving the signal’s size, along each of its spatial dimensions, the scope of the
consecutive kernels is effectively increased. The benefits of pooling were suggested
as early as 1995 in [5].

Evidentially, convolution layers have proven a strong non-linear feature extractor.
However, the final step of classifying the said feature required an extension. The
established modus operandi used to be a series of convolution layers, followed by a
final perceptron layer for the final classification. This last layer, also called dense
layer or fully connected layer, would then have the same number of perceptrons, i.e.,
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neurons or units, as the number of possible classes. The most active neuron, i.e., the
one with the largest value, represents the assigned class.

As the research community started demonstrating progress with object classification,
the question about the applicability of classification arose. The underlying question
asked in a classification framework is "which object is seen in this image?". This is
clearly a highly distilled version of the actual, real-world question "what is seen this
given scene?". I.e., the extensive scope of scene understanding is reduced to a single
object in an isolated environment, in contrast to the natural world which exists in
context.

As a side-note it is worth mentioning that works like [72], [73] have repeatedly
shown how the background is in many cases just enough to support the classification,
occasionally to the extend that the model "cheats" and uses solely the background
for classification, see Figure 5 from [72], shown here in Figure 2.3.

Fig. 2.3: A visualisation of the main attention areas for an image, correctly classified as
a horse. Middle: a Fisher vector based classification [74]. Right: a deep neural
network. Both classifiers have similar accuracy for the class horse. While the deep
neural network focuses at features like the outline of the horse, the Fisher vectors
solution learnt that all horse images in the dataset have a copyright text. Figure
from [72].

Mutual Independence in CNNs

It wasn’t until 2014 that a fully convolutional neural network demonstrated SotA
results in a vision task [50]. By using a fully convolutional model, Long et al.
resolved the constant input size limitation while producing a pixel-wise heat-map
over the possible classes. The heat-map is then super-sampled to the final semantic
map.

The fully convolutional setup showed impressive results on datasets as PASCAL VOC
[30] and NYUD [75]. Yet it suffered from the limitations of scope, context and
resolution.
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Scope and Context Convolution filters are, practically by definition, significantly
smaller than the input image they process. This poses a limitation on the amount of
context they see in a patch as objects are often times larger than the filters. When
a network is only based on subsampling, e.g., pooling or strided convolutions (see
Subsection 3.3.2), it is bound to have its output in a smaller resolution than its
inputs. In order to increase the context to the kernels, more subsampling could be
used. This improves the information exchange between different patches at the cost
of reducing the output’s resolution. Notice that this issue is now regarded as solved
with the common encoder-decoder architectures for vision, e.g., U-Net [54].

Output Resolution In the last paragraph, the trade-off between context and res-
olution was discussed. While the lower resolution output has a clear separation
of classes, it demonstrates an unpleasantly low resolution. Nevertheless, although
predicting at a higher resolution is visually more appealing, it exhibits awkward
discontinuities and more erroneous pixels.

Figure 2.4 provides an example of the Cityscapes dataset [18] and the Fully Con-
volutional Network (FCN) model, described in [50]. One could see that the lower
resolution prediction, ‘FCN-32s’ Figure 2.4a, is very pixelated yet generally accurate.
At the same time, the prediction at the full resolution, ‘FCN-8s’ Figure 2.4b, contains
more details. Unfortunately, these details come at the cost of additional compute,
almost a factor of two comparing to Figure 2.4a. This additional compute was not
widely available when it was first published, forcing the community to develop vari-
ous tricks, i.e., incorporate different biases, for making the inference more efficient.
One of these biases is the sparsity assumption, which is covered in the following
section.

(a) Semantic segmentation at the smallest resolu-
tion of the model of [50]

(b) Semantic segmentation at the full input reso-
lution

Fig. 2.4: A visualisation of semantic segmentation at different resolutions, coarse to fine.
Notice how the trade-off goes from poor resolution on the left to more erroneous
pixels on the right.
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2.2.2 The Sparsity Assumption

Real-world images are commonly described by n rows and m columns of pixels (px),
with both n and m being natural numbers, i.e., m,n ∈ N. Common sensor sizes
to-date range from around 10 megapixels to roughly 40 megapixels. This means that
most modern images consist of m× n ≈ 107 px.

Without prior knowledge, the upper boundary for the number of different elements
follows a simple combinatorics definition. Assuming a mutual independence of pixel
content, an image with 107 pixels could theoretically show more objects than most
modern compute architectures could process in real-time. That is, objects might be
as little as 1 px in size and are allowed to appear more than once while not effecting
each others probability of occurrence.

In order to make this practically infinite number of possibilities more manageable,
the sparsity assumption in natural images introduces several assisting priors. First,
objects are larger than a single pixel. Objects at the pixel scale are mostly irrelevant
for most applications. Even when they do happen to appear in an image, e.g., an
insect flying through the frame or a very distant object of interest, they do not contain
enough visual cues for correct classification. Subsequently, this means that the actual
amount of objects k ∈ N in an image is significantly smaller than its number of
pixels, i.e., k ≪ m× n. Second, objects are mostly clustered into instances where
each instance tends to exhibit unified characteristics. I.e., objects and instances are
made of a very few materials with little variation in colours, viscosity, reflectively
and other properties.

Figure 2.5 provides a general visualisation of this argument. It shows two images
from the Cityscapes dataset [18] which were segmented into 20 superpixels using
the SLIC superpixel algorithm [47]. The number of superpixels was chosen to
match the number of classes in the dataset. These superpixels, also completely
lacking understanding of the scenes and are only being based on the red, green and
blue (RGB) values. Yet these intensities are already enough to demonstrate a very
rough concept of semantics. This shows the power of the sparsity assumption, if
neighbouring pixels have similar values, they probably belong to the same semantic
class.

Understanding the limitations of CNNs and the classification framework, combined
with the promising possibilities which emerge from the sparsity assumption, the CRF
algorithm could now be explained in detail.
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Fig. 2.5: Two randomly selected images from the Cityscapes dataset [18], segmented by the
sparsity based SLIC superpixel algorithm [47]. The very rough semantic properties
of the superpixels demonstrate the strength of the sparsity assumption in natural
images.

2.2.3 Conditional Random Field (CRF)

CRFs [46] predate much of the hype around CNNs and Neural Networks (NNs)
as a whole. They were originally described by Lafferty et al. in 2001 as a further
development of the more established Hidden Markov Model [63, pp. 610-635].

While reliably classifying isolated objects is an all-but-trivial task, its applicability
to the real-world is questionable. Real-world images provide a contextual frame in
which multiple objects reside. For many applications, the focus on a single element
is counterproductive and even life-threatening. Imagine an autonomous vehicle
which can only focus on a single object at a time.

Utilising the prior knowledge of real-world objects, more efficient algorithms can be
implemented. Such an algorithm is the CRF. It looks at an image as a connected
graph, often fully connected [48], and filters unary, pixel-wise, classification results
to refine the label assignment. Messages between nodes, e.g., pixels, superpixels,
etc., are passed based on their spatial proximity and colour similarity. These two
factors are the most common ones while the CRF framework does not dictate a
specific logic to use. For example, my unpublished Master’s thesis predicted the
weights for the message passing using a CNN [76]. In hindsight, the algorithm
resembles the more modern visual transformers architecture (ViT) [77].

The said Master’s thesis is also used for the notation in the following equations.

Following the annotation of [48] to the work introduced in [46], a Conditional
Random Field is defined as

p(y|x, θ) ∝ exp(
∑

v∈V,k∈K

ψk(xv, yv) +
∑

e∈E,l∈L

φl(xe0, xe1)). (2.2)
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Aligned with the common graph annotation, V represents a set of nodes which are
connected by edges E . Each v ∈ V is processed by k ∈ K functions while l ∈ L
functions are applied each e ∈ E .

ψk(·) stands for the unary potential function k. Analogous is φl(·) which stands for
the pairwise potential function l. Both of these terms are explained in the following
subsections.

Unary Potentials

The unary potentials term represents the functions which operate on the node level,
here - the very pixels. They are neither predefined nor limited by the framework as
different domains have different node definitions and requirements. The number of
functions, |K|, is an additional hyper-parameter of the model.

The formal definition for a unary function ψ is

ψk = αkfk(·). (2.3)

Where α is a learned scalar which is mostly a real number, i.e., α ∈ R. The function
f(·) is developed to give the unary potentials.

An example for such a function from a different domain is found in [46]. In this
paper, the field of Natural Language Processing is considered and several unary
feature functions are proposed. One of which is a binary function which returns
True for an upper-cased token (word) and false otherwise. In this example, a node
represents a word-token, a trend which precedes the currently common use of
character tokens which are better suitable for dialects, spelling errors and slang
[78].

In the vision domain, a unary function for semantic segmentation could be defined
to take in an image and output pixel-wise class predictions. A very familiar type
of function to satisfy this definition is, for example, a pixel-level CNN as the one
proposed in [50].
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Pairwise Potentials

The interaction between graph nodes happens on the basis of connections or, in
graph jargon, edges.

The formal definition for a pairwise function is

φl = βlgl(·). (2.4)

Here as well, β is a trainable scalar.

The edges are freely defined to model a desired property and could be as simple as
the Potts model [79]

gl(yi, yj) =





0 if yi ̸= yj

1 otherwise
(2.5)

which only allows communication between nodes which have the same predicted
label y.

The bilateral filter was used in [80] for filtering the pairwise potentials. The filter
smooths the signals of two pixels by evaluating two Gaussian kernels. One for the
spatial coordinates and another for the intensities, i.e., the colour values. The closer
the pixels are together and the closer their intensities values are, the stronger the
signal smoothing becomes.

One of the most interesting functions here was proposed in [48]

gl(yi, yj , X) = −l(p(l)
i , p

(l)
j )(yi − yj)2. (2.6)

With p(l)
i being the input vector for the function l at the index i. They then further

defined l as a Gaussian kernel. The advantage is the differentiable form which allows
for a fully connected graph to be trained using the back propagation algorithm [65].
This definition meant that for the first time, CRFs were used as fully connected
graphs, as all reference indices i are set to be connected with all target indices j.
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The Splat, Blur and Slice Algorithm

In 2011 an extension was proposed in [48] to significantly improve the computa-
tional complexity by using the splat, filter, slice algorithm of [81]. As suggested by
its name, the algorithm comprises of three plus one steps, the splat, blue and slice
steps, preceded by an initialisation step. The algorithm, which is discussed in details
in the following paragraphs, is also depicted in Figure 2.6.

Initialisation This step, which does not officially count towards the runtime calcula-
tion, is based on the input signal and is thus required for each input once, regardless
of the number of inference iterations. Following [81], the bilateral filter W for the
image I at pixels i, j as defined in [82] is defined as

W (I) = 1
Ki

exp
[
−|i− j|

2

σ2
s

]
exp

[
−|Ii − Ij |2

σ2
I

]
. (2.7)

Here, Ki is a normalisation constant, I represents the pixel intensities. The elements
in I are indexed by the spatial coordinates i and j. σs and σI are additional hyper-
parameters, representing the standard deviation for the spatial domain and the
intensities domain, i.e., colour space, respectively. The bilateral filter helps us define
a regular grid, which is in this case based on the RGB intensities along the spatial
coordinates. Since the grid is spanned by constant n-dimensional increments, it was
named permutodehral lattice. For initialising the lattice, one then follows the same
definition which translates to

Li =
[
ri

σs
,
ci

σs
,
Iri

σI
,
Igi

σI
,
Ibi

σI

]
. (2.8)

With Li representing the five-dimensional lattice at the pixel index i. Its rows and
columns coordinates are ri and ci, respectively. Its RGB intensities are Iri , Igi and
Ibi

.

Notice the pixel-independent one-to-one mapping which corresponds to an O(N)
complexity.

Splat Having the lattice, the next step is to assign all data points to their place
on this regular grid. This step is called ‘splat’ and is demonstrated in Figure 2.6a.
It is achieved by calculating the barycentric coordinates of each pixel with respect
to (w.r.t) the lattice’s grid, practically projecting each pixel to its corresponding
lattice vertices. This step is depicted using the arrows in the said figure. The weight
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(a) Splat

1

1

2
1

1
2

1

1
2

(b) Blur (c) Slice

Fig. 2.6: A visualisation of the Splat, Blur, Slice algorithm, based on [81]. First, project
the data points, here in yellow, to the regular grid, the lattice, according to their
barycentric coordinates. Then using axis-wise convolution kernels, here in red,
blur the signals along each of the lattice’s dimensions. Notice that the actual kernel
should be normalised. Finally, collect the signals back to their original position.

of each arrow is proportional to its inverted length. The shorter the arrow is, the
larger portion its assignment gets from the total data point. Since the barycentric
projection should not change the data, its accumulated weight is one. The mapping
from the image space and the lattice space is achieved by a bidirectional hash map
which enables both the splatting and the slicing steps. This projection step is also
done in a pixel-wise manner, meaning another O(N) steps.

Blur With the image fully projected to the permutohedral lattice, the message
passing is achieved by a simple convolution with a normalised Gaussian blurring
kernel [1

4 ,
1
2 ,

1
4 ], depicted here in Figure 2.6b. The kernel is calculated separately

along each of the axes, resulting in a similar computational benefit as discussed in
Subsection 3.3.4. Put together, each vertex affects 3d neighbouring vertices with d
being the dimensionality of the lattice’s grid, i.e., 5. As previously discussed, the
convolution itself is computed in an O(N) complexity.

Slice The final step involves the collection of the filtered lattice information back
to the image domain. It is done by accumulating the vertex values by their respective
barycentric weights, saved in the hash map, into their original image space positions.
This step is depicted in Figure 2.6c. This is a trivial pixel-wise operation which is
also achieved in the linear complexity O(N).

The work discussed in [83] has put both model architectures covered in this chapter
together to show SotA results in semantic segmentation using a CNN with an
additional CRF for refining of its outputs. In 2015 an additional reformulation was
proposed in [53] which implemented the CRF framework as an RNN, making it
jointly trainable with the unary classifier in an end to end fashion.
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An example for the performance of a CRF is shown in Figure 2.7. The figure shows
the outputs of the unary classifier, i.e., the CNN, along three different CRF inference
steps, after the third, sixth and twelfth iterations. From segmentation step to the
other, one can see interesting developments. First and foremost, the improved
resolution which results from the up-sampling. One can also see that the prior
inference assumptions of the CRF allow it to defy the ground truth labels. While the
official label of the road pixels visible through the bicycle’s wheel is ‘two wheeler’,
the CRF utilises proximity and colour information to properly assign these pixels the
labels ‘road’. Furthermore, the improved details of the tree on the upper right corner
are also clearly visible.

On the other hand, the traffic sign at the centre of the image and the traffic lights
on the left present interesting edge cases. While the sign label is well propagated
to the entire circle, the sign-conditioning text, just below the main sign, is assigned
the class ‘building’ for its RGB information better matches the building behind it.
The traffic lights are almost entirely assimilated in their background since they are
completely surrounded by tress.

These symptoms show that while CRFs are well suitable for introducing structure to
semantic segmentation maps, they also come with drawbacks. Indeed, the presented
results might significantly improve by manually fine-tuning the different hyper
parameters of the CRF, yet, as shown here, the benefits and the drawbacks are two
sides of the same coin, making a global optimum infeasible.

The bottom line is that the benefits of CRFs outweigh their drawbacks. This was
repeatedly demonstrated by multiple works from the likes of [56] and [48]. Yet
when it comes to showing the results, most works present figures with significant
colour differences between the different objects, thus practically cherry-picking their
results.

2.3 Interactive Free Space Detection

The developments covered in the last section have lead to a system which does
not only integrate CNNs and CRFs to a single, end-to-end trainable framework,
but also reduces the running time complexity. However, executing such models
on modern Central Processing Units (CPUs) and GPUs is significantly simpler than
having them run on a small embedded hardware in interactive times and a low
thermal envelope.

24 Chapter 2 Adaptive Masking for Efficiency and Generalisation



(a) FCN-32s prediction. (b) Error map of the 32s prediction.

(c) FCN-8s prediction. (d) Error map if the 8s prediction.

(e) Prediction after the third CRF iteration. (f) Error map after the third CRF iteration.

(g) Prediction after the sixth CRF iteration. (h) Error map after the sixth CRF iteration.

(i) Prediction after the twelfth CRF iteration. (j) Error map after the twelfth CRF iteration.

Fig. 2.7: An example of the different performance of the segmentation stages. The left
column shows the segmentation results. The right column shows a coloured
error map where all colour pixels represent segmentation error, black pixels are
correctly segmented and white are the ignore classes. From the lower resolution
‘FCN-32s’ layer through the higher resolution ‘FCN-8s’ layer to the 12 CRF iteration.
Notice how the CRF adds structure, traffic sign in the middle, pedestrians and
the bicycle’s wheels. It also, sometimes, marginalises away desired classes like
the traffic lights. Although the CRF actually assigns the correct class to the area
between the bicycle’s wheels, the ground truth annotations are not as precise,
leading to an activated error map starting the third CRF iteration.
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In this section, we propose a novel way to enable the application of a CNN-CRF
model to runtime critical systems by significantly reducing the inference time of the
CRF. The core idea is to strictly limit the scope of the CRF to the boundaries of its
target objects. We show that these boundaries are more prone to errors than other
inner-object regions of the image. By adaptively focusing the filtering on the areas
around the edges, the algorithm reaches a segmentation agreement of 99.61 % with
its naive baseline, while requiring only 21.37 % of its runtime, on average. The work
was published in [31].

The rest of this section is structured as follows. We start with a quick overview
of the problem and its definition. Then, the algorithm itself is described and its
performance is demonstrated. Finally, we discuss the method’s drawbacks.

2.3.1 Runtime Issues and Problem Definition

The confinement to interactive inference times has diverted the scope of many
ADASs algorithms away from semantic segmentation towards the coarser object
detection. Still, detecting objects which span over large portions of the image, while
possibly also enclosing further objects, is not optimally tackled by bounding box
detection. Example of such classes are tunnels, sky and road. Since the latter class
is of significant relevance in the field of ADAS, it has its own task name, free space
detection. Free space detection is a binary segmentation task which aims to assign
each pixel in an input frame either the class drivable or not drivable. Man could
often further refine the definition by only looking for the pixels of the class ‘road’. It
is an important signal for applications such as path planning, obstacle avoidance
and more.

Yet, while the strategy for highly efficient object detection is often focusing on
smaller Regions of Interest (ROIs) and working in patches, e.g., [84], a global task
like semantic segmentation has to see the ‘bigger picture’, i.e., the entire frame or at
the very least its majority.

Note that patch-wise processing, also known as tiling, is an established go-to solution
for handling exhaustive algorithms. Even with modern computing capacities, this
strategy is still found in models like the ‘Vision Transformer’ (ViT), described in
[77].

Another simple solution for increasing efficiency is reducing the input size. As
explained in Subsection 3.2.2, the axis-wise runtime complexity of convolution is
O(N). I.e., the computational effort is linearly dependent on the input’s size. Hence,
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Fig. 2.8: The CNN-CRF model for semantic segmentation of [83].

subsampling the spatial axes by a factor of two, would reduce the computational
effort by 75 %. Unfortunately, the reduction would also result in a lower output reso-
lution which is already down-sampled by the pooling operators of the model. A good
example for such a lower resolution segmentation map is given in Figure 2.7a.

2.3.2 Efficient Inference in Fully Connected CRFs

Following the solution of Chen et al. in [83], depicted here in Figure 2.8, one could
benefit from both worlds by reducing the input’s size and then using a CRF to refine
the lower resolution segmentation. Yet, the inference time of CRFs is still far from
real-time. Even when following the splat, filter and slice scheme of [48], as described
in subsubsection 2.2.3, which is multiple orders of magnitude more efficient than
the prior art.

In Subsection 2.2.3 the splat, blur, slice algorithm was shown to run in linear time.
Yet, it was also shown to consist of many different steps, each iterating over all
pixels while evaluating tricky functions such as the exponential or the square root
on varied values. The term ‘tricky’ is used here since these functions are hard to
optimise, meaning that their evaluation takes a long time to compute, in spite of
their linear complexity.

Evidently, Table 2.1 presents the profiling information of an SSE optimised CRF
implementation on a 240× 320 px input. While the runtime of ∼ 74 ms might seem
reasonable, it corresponds to 13.58 Frames per Second (FPS) for the rather small
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Time (ms) Ratio
Initialisation 23.31 0.32
Splat 24.91 0.34
Blur 3.24 0.04
Slice 22.20 0.30
Total 73.66 1.00

Tab. 2.1: A function-wise runtime profiling of ten CRF iterations on a 240× 320 px sized
input. Notice that the implementation was optimised and evaluated on an Intel
CPU which support SSE. Furthermore, the initialisation step is calculated only
once per a given input, while the other steps are accumulated.

input size. Extrapolating to Cityscapes’ 1024 × 2048 px input sizes [18] results in
∼ 0.5 FPS.

2.3.3 Investigating Segmentation Errors

The improvement proposed to the aforementioned runtime complexity of the CRF
model originates from a deeper reflection on the nature of the task at hand.

To better understand systematic weaknesses of a classification system, it is often
helpful to visually inspect its inputs and outputs. We thus refer to the results of [51]
and at Figure 2.7. The visually appealing segmentation maps, which some five
years later still make for a common baseline, show a significant improvement in
performance by the CRF. However, possibly even more important is the observation
that most fail cases, which are improved on by the CRF, are located at the boundaries
between objects.

The sparsity assumption in natural images, as discussed in Subsection 2.2.2, states
that an image normally consists of a proportionally small number of objects. This, in
turn, implies that the number of border and edge pixels is significantly smaller than
the number of pixels in the image. Accordingly, counting all the edge pixels of all
objects in the Cityscapes validation set [18], the edge pixels make for 12.60 % of all
pixels. An edge pixel is regarded as such if either the label to its right or the label
above it are different than its own label.

Focusing on the ‘road’ class and on Cityscapes as a reference dataset [18], one could
see how significant this assumption is. It is a large, sparse and contiguous blob
which is often distinguishable by colour from the rest of the scene. These properties
make it an especially favourable candidate for CRF refinement.
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This typical behaviour is depicted in Figure 2.9 which shows the classification errors
of an encoder-decoder CNN model, ‘FCN8’ in this case [50]. The segmentation
errors mostly appear around the borders of the class blobs, shown as the fine lines
surrounding the objects in Figure 2.9d. For clarity, these binary errors are coloured
using the corresponding ground truth map.

(a) RGB (b) Ground truth

(c) Prediction (d) Binary error map, coloured using the ground
truth labels.

Fig. 2.9: A visualisation of the typical errors seen in semantic segmentation models. Notice
how the mis-classifications, all not black pixels in (d), are concentrated around
the borders while the inner parts are mostly well segmented. Visualisation created
using the ‘FCN8’ model, trained on the Cityscapes dataset [18].

2.3.4 A Novel Adaptive Filtering Mask

Extending on the edge-sparsity, an adaptive filtering mask could be imagined to
focus the CRF on the desired areas of an input signal. The algorithm, proposed in
this section does so in the following manner. First, an off-the-shelf binary classifier
is used to propose the unary potentials for the class Road. Then, based on the initial
segmentation map, the blob boundaries are extracted and padded. This padding
plays a crucial role in the accuracy of the algorithm, as it introduces context to the
boundary pixels. Finally, a CRF is applied to the segmentation map to refine the
unary results. Unlike the prior art though, the CRF is only applied at the padded
edge pixels which leads to a significant reduction in processing time while exhibiting
a near perfect agreement with the vanilla baseline.
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Luckily, there are plenty of simple algorithms for reliable edge detection. For
simplicity, the very well established Sobel Operator is used [85].

Edge Extraction

The Sobel operator defined two 3× 3 convolutional kernels, Gx, Gy

Gx =




1 0 −1
2 0 −2
1 0 −1


 , (2.9)

Gy =




1 2 1
0 0 0
−1 −2 −1


 . (2.10)

Since convolution is one of the most wide-spread and extremely optimised algorithms
in the field, algorithms which build on it automatically assume an advantageous
high-ground.

(a) The edges extracted from the RGB input (b) The edges extracted from the segmentation
map

Fig. 2.10: An example for the effects of the signal used for extracting the filtering edges. The
edges from the RGB signal are too noisy and too detailed for filtering large and
smooth classes like roads. For visual clarity, a high contrast colour map is used
and both edge maps are normalised such that the brightest edge is normalised to
255. For the sake of print visibility, both images were convolved with a normalised
9× 9 kernel to increase edge thickness.

The algorithm has two important hyper-parameters, the input to the edge detector
and second the sensitivity threshold. As an input for the Sobel kernels, one could
consider two options. First, the raw RGB input signal, containing valuable colour
signals. Second, the unprocessed segmentation maps which exhibit a lower com-
plexity and less ambiguity. Using the raw image or a low threshold would result in
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more edges while the segmentation output and a higher threshold value are less
sensitive.

An example of this trade-off could be seen in Figure 2.10 which shows the non-
dilated edge masks based both on the RGB input and on the output of the CNN
classifier. One can see how the colour input (right) leads to a lot of redundant edges
like around building windows or lane markers. On the other hand, by using the
initial segmentation mask (left), the algorithm can’t recover from missed segments
which were overseen by the CNN.

Edge Processing

Additionally, edges are often merely a transition between classes, for which a class
assignment is often ambiguous. The areas around the edges are therefore more
relevant than in the edges themselves. To apply the CRF to the areas around the
edges, the edges are dilated to ±100 px around each edge pixel. This sort of selective
edge padding is implemented by convolving the edge mask with a 100× 100 kernel
of ones, prior to binarising the signal. The exact size of the padding kernel is a
hyper-parameter of the algorithm which varies according to target class and input
size. The result is a binary map which is quickly and adaptively generated to include
all filtering candidates according to this edge centred logic.

As a side note, while computing the edges on the segmentation map could be
implemented via a pixel-wise series of ‘not equals’ comparisons, a Sobel kernel is
easier to use and since the convolution operator is often times well optimised, it is
also quicker to evaluate in practice.

For free space detection, the unfiltered segmentation maps have proven more
suitable. This is due to the broad nature of roads which are generally coarse and
cover large portions of the frame. For datasets and tasks with more fine-grained
objects, calculating the edges based on the RGB image could prove beneficial.

Evaluation

The various tests on the Cityscapes dataset [18] show that our adaptive masks,
focused only on the free-space blob edges, cover on average 17.75 % of the image,
reporting a runtime of 21.37 % of that of the baseline while matching the baseline’s
performance for 99.61 % of the pixels. This practically promises the baseline’s
performance at a ×5 less runtime and memory.
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(a) The result of the baseline CRF (b) The result of the masked CRF

(c) The padded filtering mask (d) A high contrast view of the binary difference
between both results. Purple stands for no
difference and yellow means a difference be-
tween the results. The results were convolved
with a 9 × 9 kernel to increase print visibility.
The total number of non-zero pixels is five.

Fig. 2.11: An example of the results both from the full CRF and the masked CRF in the first
row. White means road while black is the complementary assignment, i.e., not
road. The second row shows the used mask and the binary difference between
both results.

Method Drawbacks

Despite an average significant runtime improvement, the frame-wise improvement
might vary from frame to frame. The method itself might only introduce a negli-
gible overhead, yet the content of the adaptive mask is directly dependent on the
segmentation classifier used and the distribution of the target classes. When filtering
multiple classes or even sparse, evenly distributed ones, the mask could be valid for
a large portion of the frame, thus making this algorithm redundant.

Looking at the pedestrians class for example, there might be frames without any
pedestrians or frames with a large number of them scattered around the scene. An
example of such a scene is given in Figure 2.12 which shows a scene for which the
binary filtering mask is active for ∼ 47 % of the pixels.

Nevertheless, even in such a case as the one depicted in Figure 2.12, our adaptive
filtering cuts the runtime of the CRF by a half. That is, while a completely active
filtering mask is theoretically possible, in practice it is not very plausible.
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Finally, this example also demonstrates how the algorithm might have a large
variance in its runtime from frame to frame. Since the resources allocation of
an embedded System on a Chip (SoC) is a very delicate and well balanced topic,
algorithms with such a large variance are less favourable than their constant time
counterparts.

To address this issue, a method to benefit from the advantages of the adaptive masks
combined with the constant runtime of a CNN-only solution is discussed in the
following Section 2.4.

(a) An example of multiple scattered pedestrians
in a frame.

(b) The respective mask for the class ‘pedestrians’.

Fig. 2.12: An example of a scene with a large number of pedestrians. Notice that in this
specific case, a large portion of the mask, ∼ 47 %, is active in the mask. Data
from an internal, unpublished dataset.

2.4 Adaptive Loss Weighting

The work in the previous section was done in early 2017. The following years have
brought a significant improvement in CNN based architectures which tipped the
scale against the more complicated CRFs. The encoder-decoder architecture with
skip connections, as originally described in [54], has gained further maturity. Unlike
the low resolution outputs, these new architectures deliver crisp high resolution
outputs. The ‘DeepLab’ model of [51] was succeeded by its fully convolutional third
generation, proposed in [52]. ‘Gated-Shape CNN’, as discussed in [86], further
improved the prediction quality by conditioning their model on the RGB edges.
Additional works, like [87], have mostly benefited from the power and capacity of
the latest GPU generations, proposing ever larger models.

Yet many of these works have continued showing a systematic weakness around the
object edges [88]. Recognising this undesired property and based on the experience
gain from the work described in Section 2.3, we proposed in [32] a simple technique
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to encourage better performance around object edges. We named the algorithm
‘Spatio-focal Loss’, hinting to an extension to the well known focal loss algorithm
described in [89] to the spatial domain.

At the same time, the idea of edge based loss weighting was also discussed in [88].
A few months after our publication a very similar algorithm was published under
the name of ‘Inverseform’ [90]. This class of optimisation algorithms for semantic
segmentation addresses ways for shifting the focus of the loss function from the
simple classes to the more complicated ones. In the context at hand, simple classes
are regarded as classes which are vastly sparse and make for a large portion of the
input. For example, looking at the Cityscapes validation set [18], the classes ‘sky’
and ‘road’ account for ≈ 45 % of the pixels. On the other hand, the classes ‘traffic
light’ and ‘traffic sign’, which are extremely relevant for ADAS applications, make
for 1.87 % of the pixels.

(a) RGB (b) Ground truth

(c) Second epoch prediction (d) Binary error map, coloured using the ground
truth labels.

Fig. 2.13: An example of segmentation performance after the second epoch (corresponding
to roughly 30 minutes of training) on the Cityscapes dataset [18]. Notice how
the simple classes, e.g., building and road, are already taking shape while the
smaller classes, e.g., traffic sign and pedestrians, have not yet converged.

Harder and Easier Segmentation Classes To better understand if all classes are
equally hard to learn and predict, one could examine the early training epochs.
Looking at the segmentation performance, the first evidence quickly become visible.
As demonstrated in Figure 2.13, after only two epochs, one can see that those
easy classes are already taking shape while other, possibly just as relevant classes,
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Fig. 2.14: The class-wise IoU after the second epoch, the dashed blue line, versus the
normalised class ratio, the solid red line, in the validation set. The correlation is
clearly visible.

are still ignored. The large variance in class Intersection over Union (IoU) [91] is
also explained for the entire validation set in Figure 2.14. It shows the correlation
between the IoU of the different classes and their respective portion of the dataset.
This is again, after the second epoch. For reference, in our training environment, an
epoch takes around 15 minutes while acceptable results, to our subjective judgement,
are first seen after roughly 12 hours of training.

The rest of this section is dedicated to understanding our spatio-focal loss, which
was published in [32]. It opens with an overview of the more common loss functions
for semantic segmentation, discussing their advantages and disadvantages. Then,
the spatio-focal loss algorithm is described and explained. Finally, a performance
evaluation as well as an ablation study are provided to better asses the benefits of
the loss algorithm.

2.4.1 Loss Functions for Semantic Segmentation

Traditionally, the loss functions used for semantic segmentation were adapted from
single class classification. First and foremost, the softmax - cross entropy option is
the most basic and yet still widely used function of choice.

Cross Entropy Entropy is often used under slightly more domain specific definitions
in physics and chemistry. Though here, the definition used is rather the one from
the field of information theory. It looks at entropy as the number of bits, on average,
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required to transmit the value of a random variable [63, p.49]. The mathematical
definition, following [63, p.49], to accompany the verbal one is

H(X) = −
C∑

c=1
p(Xc) log2 p(Xc). (2.11)

With H(X) being the entropy for the signal X and p(Xc) being the corresponding
probability distribution for the class c out of C different possible classes.

Following the example from [92, pp.5-6], one can define a random variable of a
uniform distribution over eight values. This would give the following entropy

H(X) = −
8∑

i=1

1
8 log2

1
8 = log 8 = 3. (2.12)

That is, three bits are required for describing the variable’s value.

Now, looking at the non-uniform distribution of a random variable with eight signal
values such that X = {a, b, c, d, e, f, g, h} along with a respective probability function
p(X) = (1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64), one gets the following entropy

H(X) = −1
2 log2

1
2 −

1
4 log2

1
4 −

1
8 log2

1
8 −

1
16 log2

1
16 −

4
64 log2

1
64 = 2. (2.13)

Hence, on average, the non-uniform nature of p(X) could be utilised to encode
less data. Such a coding would be {0, 10, 110, 1110, 111100, 111101, 111110, 111111}.
The coding of a signal according to this bit strings has the required benefit of not
being ambiguous upon concatenation. Looking at the code 11001110, it could only
be decoded to c, a, d.

Now, assuming a neural network f(X) which should learn to approximate p(X).
As discussed in Figure 2.5, the actual dimensionality of p(X) is often ≈ 107 px
times 8 bits per pixel in the vision domain. It is thus infeasible to actually get p(X).
One possible solution is to resort to modelling the approximating distribution q(X).
Having both distributions, cross entropy is used to evaluate how many additional
bits are required to represent the same signal using q(X)

H(p, q) = LCE = −
C∑

c=1
p(Xc) log2 q(Xc). (2.14)

Thus, by regarding the cross entropy as a loss function, denoted as LCE , and
minimising it during training, one minimises the amount of noise or uncertainty
introduced to the system by the approximation of p(X). The standard notion for an
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arbitrary loss function is defined as L. The interested reader is referred to [63, pp.55-
58] to learn more about the relation between cross entropy and the KL divergence,
or the relative entropy [93].

Finally, after understanding why cross entropy is a valuable loss function, one
can look back at Figure 2.5 where some priors in the natural image domain were
discussed. While cross entropy makes for a reliable loss function, it was developed for
usage in general classification tasks which lack the spatial dimensions. It therefore
evaluates the loss on a pixel-wise basis, ignoring not only the structural properties
of the classes it is applied to, but also their distributions.

Focal Loss As seen in Figure 2.13, not all classes in a semantic segmentation task
are equally easy to learn. The algorithm, presented in [89], extends the classical
cross entropy to better account for the class imbalance problem. It does so by adding
a weight factor to the loss function, giving it the following form

LFL = −
C∑

c=1
p(Xc)(1−Xc)γ log2 q(Xc). (2.15)

The main difference from LCE is the term (1 − Xc)γ , whereas γ > 0 is a preset
hyper-parameter. It practically means that very easy and certain classifications, i.e.,
pixels for which the classifier output goes towards 1, have their contribution to the
final loss term discounted. At the same time, uncertain classifications receive an
exponentially increased attention.

The focal loss was well accepted by the community, currently cited by 11,949 different
works, and is now a common extension to the classical cross entropy loss. Yet, its
pixel-wise nature still fails to model the spatial information required for semantic
segmentation.

Dice Loss The dice loss, as described in [94], is one of the earlier attempts at
region-based loss modelling. It reformulates the Dice-Sørensen Coefficient (DSC) to
act as a loss function, making it possible to train directly on the common evaluation
metric. The coefficient is defined as

DSC = 2|X ∩ Y |
|X|+ |Y | . (2.16)

Here, X corresponds to the prediction, while Y represents the ground truth labels.
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The corresponding loss function is then

LDSC = 2 ∑N
i=1 p(Xi)q(Xi)∑N

i=1 p(Xi)2 + ∑N
i=1 q(Xi)2 . (2.17)

With N representing the total dimensionality of the signal, i.e., the number of
pixels.

Being the first loss function to account not only for the pixel-wise predictions, but
rather also for their spatial structure, the dice loss suffers from one major issue.
It only works for binary tasks, restricting its usability to specific use-cases like the
aforementioned free-space detection.

Edge-Aware Loss In parallel to this work, a similar concept was published in [95],
dubbed Edge-Aware Loss. Just as in this work, Zheng et al. realised that the classical
cross entropy loss does not account for structure and context. At the same time,
structural losses, like the dice loss, are binary and have limited applicability to
multi-class segmentation tasks.

(a) Focal loss mask [89] (b) Spatio-focal mask (ours)

Fig. 2.15: Different loss functions visualised as multiplicative masks on top of the cross
entropy loss. The brighter areas represent larger weight values while the map is
applied to the ground truth labels for the sake of visualisation. The corresponding
cross entropy mask is a less intensive version of (a) while the nature of the edge-
aware loss prevents a mask-like representation.

Vaguely similar to the image restoration from a long and a short exposure, e.g., [96],
the edge-aware loss combines a structural loss with a colour space loss to get the
best of both worlds. The algorithm extracts the edges from both the output and
the ground-truth segmentation maps. As the edges are a binary class, i.e., edge
and not-edge, Zheng et al. then use the dice loss to structure their output. The full
segmentation mask is processed using the cross entropy loss and both terms are
merged to a final loss value.
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A good reference to the amount of structure in edges is depicted in Figure 2.10,
where the edges alone are enough to get a good understanding of the image’s
content.

2.4.2 Spatio-focal Loss: A New Edge-aware Loss Function for
Semantic Segmentation

The algorithm itself is very similar to the one described in Subsection 2.3.4. It utilises
a CNN based classifier to create a semantic segmentation map

f(X) = q(X). (2.18)

With q(X) being the segmentation map, f(·) the neural network and X an input
image. The result is then passed through the Sobel operator [97] to extract all edges
of all classes

e =
√

(Gx ⊛ q(X))2 + (Gy ⊛ q(X))2. (2.19)

Here e represents the resulting edge map, Gx and Gy follow their definition in
Equation 2.9 and Equation 2.10, respectively. ⊛ represents the convolution operator.
Notice that two additional Sobel kernels are also used, which are rotated by ±45 deg.
For the sake of simplicity, Equation 2.19 only shows the main kernels. The extension
is trivial. Furthermore, unlike the algorithm in Subsection 2.3.4, this algorithm
supports multiple classes and the prediction is not reduced to a binary classification.
The edges are than padded to the range of ±40 px around each edge pixel using a
40× 40 matrix of ones

epad =




1 1 . . .
...

. . .

1 1


 ⊛ e. (2.20)

The result is then normalised to the maximum value of 1

epad ←
epad

max(epad) . (2.21)

Finally, the mask is used to weight the classical, pixel-wise cross entropy loss
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Fig. 2.16: The pipeline of the spatio-focal loss algorithm

LSFL = (0.99epad + 0.01)(−
C∑

c=1
p(Xc) log(q(Xc))). (2.22)

First, epad is shifted to the range of [0.01, 1.00] such that the simpler classes are still
generating learning signals. The pixel-wise weight matrix is then multiplied with
the cross entropy loss term LCE , where C is the total number of classes, p(Xc) is the
binary ground truth label for the respective class and q(Xc) is the predicted value
for the class c.

An example of the resulting mask is provided in Figure 2.15b which shows two
masks applied to their respective ground truth maps for the sake of visualisation. As
a reference Figure 2.15a shows the same sort of multiplicative mask using focal loss.
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Cross Entropy Focal Loss Edge-Aware Loss Spatio-Focal Loss
(naive baseline) [89] [95] (ours)

All Classes 49.51%± 0.62% 50.32%± 0.58% 54.87%± 0.66% 57.23%± 0.72%
Road 96.48% 96.72% 96.58% 96.63%
Sidewalk 75.16% 76.17% 75.99% 75.93%
Building 87.00% 87.47% 87.85% 87.68%
Wall 25.69% 29.86% 29.49% 27.81%
Fence 37.58% 35.44% 35.58% 35.66%
Pole 47.09% 43.58% 50.08% 48.90%
Traffic Light 00.00% 00.00% 48.85% 39.18%
Traffic Sign 58.75% 57.90% 64.40% 66.37%
Vegetation 89.74% 89.98% 90.34% 90.04%
Terrain 50.94% 49.93% 52.66% 52.56%
Sky 90.98% 91.79% 92.21% 92.07%
Person 65.45% 64.93% 66.73% 70.10%
Rider 00.00% 00.00% 00.00% 32.85%
Car 87.89% 89.08% 89.05% 89.32%
Truck 00.00% 24.04% 24.96% 20.74%
Bus 40.72% 37.49% 44.82% 40.96%
Train 24.88% 19.88% 24.90% 27.19%
Motorcycle 00.00% 19.53% 00.00% 24.62%
Bicycle 62.47% 61.87% 64.97% 67.90%

Tab. 2.2: The class-wise IoU results of the same model, trained using cross entropy, focal
loss, edge-aware loss and finally, our proposed spatio-focal loss. One can see
the advantage of the structured loss functions, i.e., edge-aware and spatio-focal
over the pixel-wise methods. The numbers are an average of three runs with the
standard deviation stated for the overall IoU.
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Notice how the focal loss weighting also tends to emphasise the edges, but it exhibits
a hard cut at the edges. This means that the gradient signals are lacking context, a
context which is crucial for robust learning, according to our hypothesis.

Furthermore, the edges themselves are merely the transition between classes. As
such, they are prone to sensing uncertainty due to aliasing and do not make for
the highest quality signal by themselves. The topic of aliasing is discussed in
Subsection 3.3.2, however for now one can imagine that the extract transition from
class ‘A’ to class ‘B’ is often ambiguous. Hence, focusing solely on the edges does not
seem to be an ideal strategy.

The entire pipeline is depicted in Figure 2.16.

Evaluation

We evaluated our spatio-focal loss on the thoroughly discussed Cityspaces [18]. The
architecture is a reduced version of the aforementioned FCN [50]. It was trained
until no further significant improvement was recorded on the validation set for ten or
more epochs, roughly 25 hours per model. The encoder’s weights were pre-trained
on the ImageNet dataset [98]. The model’s hyper-parameters were fixed such that
only the loss function varied throughout the experiments.

First, we examine the IoU values, both over all classes and for each individual class.
These are presented in Table 2.2. One can see a clear advantage of the edge-based
losses while our spatio-focal loss surpasses the second best method, the edge-aware
loss, by a significant margin of 2.36 %.

A better alignment is also witnessed in Figure 2.17. One can not only see the
improved shape over focal loss Figure 2.17b, edge-aware loss Figure 2.17c and the
baseline Figure 2.17a, but also the improved attention to details, seen best in the
pedestrian class.

Finally, we removed the accompanying CRF and evaluated the spatio-focal loss with
the larger DeepLab-V1 model [51]. On top of the mentioned pre-training time,
each model takes around 7 days to train, fully occupying a high-end GPU. This has
unfortunately limited our ability to freely experiment, yet Figure 2.18 visualises the
results while a zoomed side-by-side comparison is presented in Figure 2.19. The
figures show a significantly improved attention to details, achieved by a mere change
to the loss function.
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(a) Cross entropy loss (naive baseline) (b) Focal loss [89]

(c) Edge-aware loss [95] (d) Spatio-focal loss (ours)

Fig. 2.17: An example of the same frame predicted with the four different loss functions.
The ego vehicle is ignored during training, resulting in random predictions during
inference. One can see that the edge based approaches better match the shapes
of the predicted elements, e.g., pole and pedestrian, while our spatio-focal loss
generally reaches a slightly better performance.

The models reach a final mean IoU of 75.05 % for the cross entropy baseline and
76.14 % for the spatio-focal model, showing that the improvement scales well to
larger and more accurate models.

(a) Cross entropy loss (naive baseline) (b) Spatio-focal loss (ours)

Fig. 2.18: An example of the results from the Deeplab-V1 model [51]

Method Drawbacks The most obvious drawback of every method is its introduced
hyper-parameters. In the case of the spatio-focal loss, this hyper-parameter is the
padding size. Extensive padding reduces the attention to small details while no
padding results in fine border lines, similar to the focal loss mask, as depicted in
Figure 2.15.
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(a) Cross entropy loss (naive
baseline)

(b) Cross entropy loss (c) Cross entropy loss

(d) Spatio-focal loss (ours) (e) Spatio-focal loss (f) Spatio-focal loss

Fig. 2.19: A zoomed side by side comparison of selected parts of Figure 2.18.

2.5 Conclusions

Throughout this chapter, we demonstrated how the most underlying property of
natural images, their sparsity, could be used to improve the efficiency as well as the
performance of semantic segmentation models. This sparsity could act as a prior by
means as simple as an edge extraction.

Our adaptive masks could explicitly be incorporated into the model, as seen in
Section 2.3. In this configuration, the edges help us understand what parts of an
image are the likely candidates to profit from CRF filtering. The CRF is then only
applied to these parts, thus resulting in a factor ∼ 5 reduction in runtime, comparing
to the baseline. A reduction which comes at hardly any cost, exhibiting a 99.61 %
results agreement with the baseline.

Another embodiment would implicitly incorporate the edges into the model by
guiding the loss function, as seen in Section 2.4. As most pixels are redundant, there
is no actual justification for using them in training. On the contrary, they overshadow
the higher quality signals and reduce their importance. By only learning to segment
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the wide areas around the edges, the quality of the gradients is artificially increased
and their redundancy reduced. Doing so leads to an improved attention to details
and representation of smaller classes.

Future Work The successful application of our method to natural images, also
encourages its application to other domains. An example for such a domain which
could possibly benefit from the utilisation of edges is Lidar point cloud segmentation
[99], [100]. As Lidar outputs dense point clouds, it makes for a good candidate for
a future extension.

It would furthermore be interesting to explore the focus on edges in conjunction
with the future frame prediction, described in [101]. Such an extension of the loss
function could increase the reliability of the predicted segmentation maps, possibly
stretching further into the future.
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Efficient Convolutional Neural
Networks

3
As seen in the previous chapter, Convolutional Neural Networks make the current
state-of-the-art in spatial signal understanding. It started with the more standardised
visual scene parsing and models like AlexNet [3], ResNet [102], FCN [94] and many
more. Once more data, more compute and cheaper sensors caught up with the
availability of the common camera, CNNs also started presenting appealing results
in additional domains like the PointNet for, among others, radar signals [103] or
RangeNet++ for Lidar data [99].

Unfortunately, we now know that the impressive super-human performance of many
of these works is at the very least partially attributed to the latest releases from
nVidia [69]. In their work, Bianco et al. showed a very strong correlation between the
reported accuracy of published models and their respective computational capacity.
I.e., they implied that at least a part of the progress in performance in recent years
should be attributed to improvements in GPUs rather than to actual improvement in
neural architectures.

This correlation is, by itself, not enough to invalidate the hard work of the Computer
Vision and Machine Learning community. Nevertheless it is enough to encourage a
reconsideration of the current course of incremental developments. A reconsidera-
tion which would also consider Occam’s Razor [104] and the high environmental
impact of training such super-models [26].

Before making loud claims regarding the abandoned longing for simplicity in NN
architectures, it is worth mentioning that recent works have raised concerns about
the validity of Occam’s Razor to NNs. Students and enthusiasts alike learn that large
models are susceptible to over-fitting and that models should hence be as small
as possible. Then, works as [105], [21] and [102], all from top tier researchers,
shown the community that larger networks are not bad after all.

More recently, Belkin et al. studied the startling convergence of models which
have more parameters than the dimensionality of their training data [106]. They
concluded that for a not yet understood reason, the size of a model does not directly

47



correlate with its actually learnt complexity at convergence. In fact, the larger the
model is, the simpler the function it ends up learning.

Furthermore, many recent works have started presenting not only the final accuracy,
but also their model’s computational capacity [107], [69]. This shows for an
additional step towards democratisation and environmental responsibility. First,
by discounting the contribution of large models, attributing it to their mere size,
researchers are discouraged form training such models to begin with. Second,
accepting contributions which are maybe not the new SotA but are marginally more
efficient than their predecessors, allows smaller research institutes without server
farms and thousands of dollars training budget to publish as well. As a reference,
Sharir et al. estimated the training costs of Google’s T5 model [108] at 10 million
US dollars [26].

Nevertheless, even if accounting for the appealing accuracies of large models, they
are still not always applicable to all fields and use-cases. Perhaps the most obvious
example is real-time, embedded applications. This class of algorithms is required to
run at interactive inference frequencies on smaller hardware configurations, which
are often also battery-powered. With the increasing demand for such applications, a
novel class of architectures and algorithms has emerged. Here, the focus is shifted
from squeezing every last bit of accuracy to getting models which can directly run
on end devices, e.g., mobile devices, Digital Signal Processors (DSPs), etc.

This chapter covers our contribution to the field of efficient NN architectures in
the form of the EffNet model, published in [109] and [110]. The background is
discussed and the work is compared to the state-of-the-art in 2018. Finally the last
section discusses the impact of this work as well as the development of the art since
its publication.

3.1 Related Work

The field of efficient architectures mostly spans over three equally important branches.
Hyper-parameter optimisation, pruning and, last but not least, alternative archi-
tectures. This work contributes to the latter branch in the form of an alternative,
general purpose CNN block to replace the vanilla CNN layer.
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3.1.1 Hyper-Parameter Optimisation

Although the question of architecture choices remains an active research field,
there are several works which have significantly contributed to the community’s
knowledge. At the highest level, most tasks involving ML have a goal of the form

argminθ(L(y, fm(x|θ))). (3.1)

This means, given the input x, find the set of model parameters θ, which minimises
the loss L(·) between the ground truth label y and the output of the model. The loss
is an arbitrary function from the likes of l2, ‘negative log likelihood’, the ‘spatio-focal
loss’ as described in Subsection 2.4.2 or any other function of choice. As long as the
function can be used to evaluate the difference between the outputs and the targets
while having clear derivatives, it could be used as a loss function. Here, the model
f(·|θ) is parameterised by the trainable parameters θ, but also by the predetermined
set of hyper-parameters m. The latter determine the amount of layers, number of
filters, activation function, etc.

The task of hyper-parameter optimisation, which has recently taken on the more
marketing-friendly name of ‘Auto-ML’ [111], focuses on a different type of optimisa-
tion, namely of the set m

argminm(L(y, fm(x|θ))). (3.2)

This task definition aims to find the optimal set of hyper-parameters for a given
dataset. Such an optimisation is mostly achieved by one of three methods

1. Hyper-parameter optimisation; Here, the hyper parameters are addressed as a
black box which spans a search space. By assessing the effects of the different
parameters on the overall performance, an educated guess could be made
about their desired values and their respective relevancy to the task. The most
classical example for such a method is a grid search which samples the hyper
parameters at regular intervals. For more information, see [111, pp.3-35].

2. Meta learning; A study of the compounding aspects of different models and
their affect on the performance in different tasks. By collecting enough ex-
periment data, e.g., from multiple publication, a good approximate could be
made regarding a well suited set of hyper parameters for a given task. A more
extensive overview in provided in [111, pp.35-63].
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3. Neural architecture search; An alternative to the previous methods is to treat
the hyper parameter optimisation as a regression task and try to learn a general
model which predicts a matching architecture for a queried task. Here, too, a
good overview could be found in [111, pp.63-77].

3.1.2 Pruning

Pruning is an interesting method, as it is the only common method to take a bottom
up approach. Looking at the other methods covered in this section, like the hyper
parameter optimisation or even the alternative architectures at the core of this
chapter, one sees a top down approach. I.e., the attempt to create a new model
which is just as accurate as the baseline, yet with a lower computational demand.
Pruning, on the other hand, starts with a fully trained baseline and aims to remove
as much redundancy as possible, until only the absolute necessary core remains.

The algorithmic pipeline is straight forward. After fully training a baseline model,
it commences on Expectation Maximisation like pruning iterations [112]. While
iterating to a predefined convergence criterion, the model is first pruned according to
a given logic and then fine-tuned for the new architecture. The pruning itself mostly
means querying for the neurons with the least contribution to the performance and
removing them altogether. The fine-tuning step allows the remaining neurons to
adjust to the removed capacity.

While the performance loss is immanent, one could often expect as much as a
compression ratio of two along with a reduction of ∼ 2% in the overall performance
[113]. The strategy might seem to be the exact opposite to the aforementioned
findings of Belkin et al. in [106] who showed the clear benefit to increasing the num-
ber of parameters. Yet, it is important to remember that the use case is completely
different. Models are pruned knowing that some performance will be lost, but at the
same time, it means that these pruned models become suitable to end devices.

A thorough review of the current state of pruning algorithms, including an elaborate
meta study of no less than 81 different publications could be found in [114].

3.1.3 Quantisation

Quantisation is another familiar way to reduce the complexity of neural networks.
Unlike the other methods, here the goal is to reduce the redundancy of the weights
representations, mostly from 32 bit floating point to 8 bit integer. The idea builds
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Fig. 3.1: An example showing how two pairs of 8 bit unsigned integers could be added in
parallel without affecting each other. The left hand side evaluates 6 + 10 = 16
while the right hand side calculates 3 + 6 = 9. The numbers at the head of each
integer hint the value of the bit they are over.

on the low level implementation of single word parallelisation in many different
systems. Many given processors support 64 bit long words. These words could
be either utilised for a single computation per cycle or, packing multiple integer
variables, multiple computations in parallel. Looking at 8 bit integers, one could
reach as much as eight computations per cycles by concatenating eight 8 bit variables
into a single 64 bit word. The process of adding multiple variables in parallel is
demonstrated in Figure 3.1. This process only leads to collisions on overflow, yet
there are plenty of different methods to account for such a problem. The most
common solution is returning longer words as a result. For example, each addition
of two 8 bit numbers results in an 16 bit number.

This sort of parallelisation could be seen in two ways, either as reducing the compu-
tational burden for a given model, or, as shown by Jacob et al. in [115], increasing
the throughput and therefore also the accuracy per a given latency. The second
perspective is reasonable for embedded real-time application which normally have
a maximum budget of latency per frame. A recent and beginner friendly survey of
quantisation methods is provided in [113].

3.1.4 Alternative Architectures

Finally the branch of alternative architectures tackles the issue at its core. Here, by
carefully analysing and understanding the root causes of the high computational
demand, an alternative architecture is derived to optimise it altogether. These
models are admittedly about as good as their baseline, yet with significantly less
parameters and, in turn, also less FLOPs.
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The work in this direction was initiated in [116] with an architecture which was
dubbed ”MobileNet”. It was published in a technical report which has managed to
set a new baseline for efficient architectures in the following years. It is currently
at its third generation [117] with the original work is, according to Google Scholar,
currently at over 6,000 citations.

The key observation is that a substantial reduction in computational effort is achiev-
able by a separation of the spatial convolution from the channels dimension. The
notion was initially introduced in [118] and was dubbed depth-wise separable
convolution. Rather than having all input channels going into the computation of
each output channel, only a single input channel is used per output channel, see
Figure 3.2a and Figure 3.2b. The intra-channel information flow is consecutively
handled in a point-wise convolution layer. I.e., a layer over all channels with the
spatial resolution of 1× 1. The reformulation results is a computation reduction of

1
Chout

+ 1
hkwk

(3.3)

where Chout represents the number of output channels and hk, wk represent the
height and width of the spatial kernel, respectively.

The depth-wise convolution based architecture has demonstrated a similar accuracy
on ImageNet as the ‘VGG16’ model [105] with only ∼ 4 % of its multiplications and
additions.

The following development was the ‘ShuffleNet’ architecture [119]. Its main contri-
bution was to group the point-wise convolutions, thus reducing their computational
effort by a factor of the number of groups. The intra-group interactions were im-
plemented by shuffling the elements along the channels dimension. This shuffling
operation is depicted in Figure 3.2c.

Both of the aforementioned works have covered multiple architectural optimisations.
These optimisations, along with the principles behind them, are covered in the
following section. They are subsequently used to justify the design decisions in our
proposed convolution block.

3.2 On Convolution and Computation

Convolution as a mathematical operation and Convolutional Neural Networks as a
leading algorithm for neural architectures are so broadly used that it might seem
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(a) Vanilla convolution (b) Depth-wise convolution
(dw)

(c) Channel shuffle

Fig. 3.2: A visualisation of the core elements of the works discussed in Subsection 3.1.4.
The vanilla convolution (Figure 3.2a) processes all input channels for each output
channel. The depth-wise convolution (Figure 3.2b) only applies a single kernel per
input channel, resulting in a one-to-one mapping. The shuffle module (Figure 3.2c)
shuffles the elements of all channels to allow for a consecutive grouped processing.

like many users are completely unaware of the fundamentals behind the term. It has
now become a common knowledge that convolution is the application of a kernel to
an input signal. Yet where does it come from, why has it grown so popular and what
are its pros and cons?

3.2.1 Background

As the operator at hand is well established, it is hard to pinpoint its exact origin.
Nevertheless, it seems to have been proposed as a derivation of Taylor’s Theorem
in [120]. The domain is continuous which means that the application, represented
by ⊛, of the kernel g to the input I is an integral of the form

(I ⊛ g)(t) :=
∫ ∞

τ=−∞
g(τ)I(t− τ)dτ. (3.4)

While t is often a temporal offset, it might as well be any sort of a variational shift.

Notice that this original definition assumes a single-dimensional signal. However
the expansion to n dimensions is rather straight forward and gets even simpler in
the discrete domain.

Essentially, the convolution operator means the application of a known kernel of a
manageable size to a larger, more extensive input signal. I.e., the same function is
repeatedly evaluated on all possible positions on the input signal.

Additionally, it is worth mentioning that the challenge of integrating over the product
of an arbitrary function with an arbitrary signal is often solved by transitioning to
the Fourier domain. Following the transformation, a simple multiplication could be
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used to efficiently calculate the convolution. Yet here, even with efficient methods
as the Fast Fourier Transform (FFT) [121], the bottleneck is not fully resolved. It
is rather moved to the domain conversion and is, hence, not the ideal solution in
terms of computational efficiency.

A significantly more efficient alternative to domain transformation is the discretiza-
tion of both the input signal and the kernel. Since many types of sensors measure
discrete signals by nature, this alternative quickly becomes favourable for many
applications. The convolution of a discrete kernel, g, with a discrete input, I takes
the following form

(I ⊛ g)[t] =
M∑

m=−M

I[t−m]g[m]. (3.5)

Here, g is a kernel of 2M + 1 elements with its centre at the index zero. The rest of
the definition follows Equation 3.4.

In the field of ML where the kernel is optimised to the data, another computational
optimisation could be made. As one can see in Equation 3.5, the kernel is actually
applied in reversed order to the input. For two-dimensional inputs this means that
the rows and columns are flipped before being applied to the input signal. Yet
when the kernel is learnt, its order of application becomes arbitrary. For this reason,
most common implementations nowadays actually ignore the original flipping in
favour of more memory efficient cross correlation operator. Its definition is similar
to convolution, yet is lacking the flipping of the rows and columns. This means that
the kernels are only read from the memory once and remain in the much quicker
cache throughout the computation.

For the sake of completeness please note that the kernel is not actually read in once,

but rather
⌈2M + 1

CL

⌉
times, with CL representing the cache-lines’ length.

3.2.2 Convolution, a Computational Heavyweight

The next important recognition is that the four-dimensional computation, used by
CNNs, is compute intensive. Such layers were only first discussed in [3], merely a
decade ago. It was the first time in human history that enough computational power
was available to meet the very high demand of such models. This is ignoring small
scale, initial works like [5]. Subsection 3.2.1 covered the simple two-dimensional
case of convolution. Yet, images often span over three dimensions or more, i.e.,

54 Chapter 3 Efficient Convolutional Neural Networks



height, width, channels. Here, channels mostly mean the RGB information. This sec-
tion covers the computational burden which accompanies such layers and takes the
reader through a journey to visualise its intensity. The resulting computations, done
on a toy example for a single vanilla convolution layer, are then used throughout
the rest of this chapter as a reference illustrative baseline.

Building on top of the convolution operator, as described in Equation 3.5, a DNN
typically consists of multiple layers of such kernels. Each layer is then followed by
a non-linear function and often a pooling function before continuing to the next
one.

Throughout the processing pipeline, the channels diverge ever further from their
colour data and slowly transition into feature specific activations of different scales
and complexities. For example, when classifying cats and dogs, the last layer would
normally consist of two output channels while its height and width are processed
down to one. Along the pipeline, one can expect kernels which look for distinct
characteristics like pointy ears or tiger-like fur patterns [122]. These distinct features
are combined to detect complex structural interactions from the individual input
channels.

To enable the recognition of such inter-channel patterns, the convolution algorithm
from Subsection 3.2.1 is extended to include the channel dimensions. Following the
common notation, a 3× 3 kernel means a kernel with the spatial span of three by
three pixels. These are also referred to using hk for the height dimension and wk for
the width dimension. A set of 3× 3 kernels in a layer with 64 input channels, Chin,
and 128 output channels, Chout, is represented by a tensor of shape
[hk, wk, Chin, Chout] = [3, 3, 64, 128]. Subsequently, for the convolution of the input
I with the kernel k, at the rows and columns pixel position [r, c] and the output
channel chout, the output O is defined as follows

Or,c,chout =
Chin−1∑

chin=0

⌊ hk
2 ⌋∑

i=−⌊ hk
2 ⌋

⌊ wk
2 ⌋∑

j=−⌊ wk
2 ⌋
k

i+⌊ hk
2 ⌋,j+⌊ wk

2 ⌋,chin,chout
Ii+r,j+c,chin

. (3.6)

The input channels are represented by Chin and i and j are used to index the rows
and columns of the kernel, respectively. In this toy example we assume a convolution
with a padded single pixel frame of zeros. This frame means that the input size is the
same as the output size, thus simplifying both the annotation and the computations.
The algorithmic term for such a convolution is same and is implemented in all major
deep learning frameworks. An illustration of Equation 3.6 is provided in Figure 3.3
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Fig. 3.3: An illustration of a convolution with three kernels and five input channels. Notice
that the three kernels are applied to the same input tensor, depicted here three
times for the sake of visual clarity.

where an input tensor is convolved by three different kernels to give a multi-channel
output.

In terms of theoretical complexity, a summation over four dimensions is evaluated.
These are the height, the width, the input channels and the output channels. Such a
single iteration over the input data translates into the following Big O annotation

O(hIwIChinChout). (3.7)

With hI and wI representing the the input’s height and width, respectively. The iter-
ations over the kernel’s size are a small negligible constant in the Big O annotation,
since hk << hI and wk << wI .
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FLOPs

In terms of actual computations, the formulation in Equation 3.6 means a single
multiplication, repeated hk ×wk ×Chin times and a similar number of additions for
each output channel and pixel. In our example, the FLOPs per pixel are then

FLOPs[r,c] = 2hkwkChinChout

= 2 ∗ 3 ∗ 3 ∗ 64 ∗ 128 = 147,456.
(3.8)

The leading factor of 2 is for the multiplications as well as the additions, which
require the same amount of operations. Additionally, Equation 3.8 only accounts for
a single output pixel of a single layer. Considering even the small input resolution of
256× 256 = 65,536 px and that models like the renounced ‘ResNet50’ [102] consist
of no less than 50 layers, it is clear how such models operate within the millions
and billions ranges of FLOPs. A unified definition for the computation of FLOPs is
hence

FLOPs = hIwI2hkwkChinChout. (3.9)

For the single, toy example layer, a total of 65,536 ∗ 147,456 = 9,663,676,416 FLOPs
is expected.

Memory Access

An additional, often ignored, aspect of computational effort is the memory access.
Unfortunately, memory is scarce and expensive, meaning that data is not always at
the right place at the right time. It rather needs to be loaded and made available
for the computational kernels or cores to process. While data indexing is mostly
done in some sort of iteration loops, mostly for loops, where the data is indexed
one element at a time, in the background, the host machine is doing a lot more.

Since data access belongs to the most expensive operations in terms of execution
time, computers utilise a hierarchical caching system to access their memory. Each
call for loading data starts at the nearest preceding cache line address and loads an
entire burst of data. This burst of data could sometimes have a variable size but it
is limited by the memory bandwidth. E.g., even a call for a single 8 bit value often
results in loading 64 bits of contiguous data around the target element.
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Fig. 3.4: A visualisation of three consecutive memory access calls along their respective
convolution kernel placements. The numbers represent the kernel placement
per loaded memory elements. Notice that all placements are aligned with the
loaded rows, the vertical offset is for spacing and inseparability purposes only. One
can see that the first memory read only fetches enough data for six convolution
placements while consecutive data is combined with preceding elements to allow
for eight placements.

This burst definition takes advantage of the natural sparsity assumption, assuming
that if element i is currently required, the following iteration is likely to require
element i+ 1. In other words, related elements are contiguous in the memory.

Generally the bandwidth for accessing the memory might have a different lengths
for different architectures. However given the embedded scope of this chapter and
the assumption of data quantisation into an eight bit representation, there remains a
small number of realistic options. Throughout this chapter, the common embedded
bandwidth of 64 bits or eight pixels for each memory access is assumed [123].

Once a burst of elements is read, instead of simply passing it to the processor, it
is loaded to the different levels of cache for more efficient fetching in consecutive
iterations. As explained later in this section, the different cache levels have the
advantages of significantly shorter read/write intervals.

Regarding this section’s toy example, each cache-miss, i.e., indexing of an element
which was not yet cached, triggers a memory access which retrieves eight pixels.
A memory bandwidth of eight pixels allows for six kernel placements for the first
memory access and eight placements for the consecutive fetches. For the sake for
visual explanation, Figure 3.4 demonstrates the kernel placements for three three-
row memory loads. The figure utilises colour coding and a fetch-wise placement
enumeration to illustrate the computations associated with each memory access.

For the sake of simplicity, the initial six placements are disregarded and all memory
loads are treated as if they were loading enough data for eight full placements. The
number of memory accesses η for the vanilla convolution layer is thus
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η = ChinhkhI
wI

ρ
. (3.10)

With ρ representing the placements per cache line. In terms of this section’s toy
example, this means 64 ∗ 3 ∗ 256 ∗ 256/8 = 1,572,864 data loading accesses to the
memory. This order of magnitude validates the decision to ignore the effect of the
first placement, as it is fully amortised by the large amount of fetches.

From Operations and Calls to Cycles and Clocks

Finally, in the computations and equations so far, there is a missing piece of informa-
tion. When considering live applications, one often speaks in term of runtime on
a target hardware. The units of choice are most commonly FPS. Yet the preceding
computations of both the operations as well as the memory access calls were given
in timeless units. For the conversion of these units to actual runtime, one needs to
look at the cycles, or clocks per command.

Cycles and clocks are synonymous terms which are used to describe the time it takes
the hardware to complete a given command. These numbers vary from architecture
to architecture and are thus mostly ignored in favour of a simpler runtime analysis,
using a profiler for example. Nevertheless, a general understanding of clocks and
their meaning is essential for optimisation, as this crucial building block explains an
otherwise widely misleading understanding of the computational burden.

The exact definition of clocks exceeds the scope of this work. It is enough to explain
that the clocks belong to the main characteristics of a computational architecture.
When speaking, for example, of a computational unit, running at 1.6 GHz, the
reference is to the number of cycles this respective unit can execute in a second, i.e.,
1.6 ∗ 109 cycles per second. Defining a real-time application as an application which
runs at least at 24 FPS, one gets an average budget of ∼ 0.042 seconds per frame, or
∼ 66.67 ∗ 106 cycles per frame. This number might sound large, yet in relation to the
number of operations calculated earlier in this section, with ∼ 1.57 ∗ 106 memory
reads and ∼ 663.7 ∗ 106 multiplications and additions, the problem of real-time
application could be seen from a new perspective.

Furthermore, it is important to recognise that not all commands are equally de-
manding. Computational architectures have different types of memories which
increase in size as well as in access latencies the further they are located from
their computational unit. This work will not cover the deepest technical cavities of
different hardware components. Yet for the sake of illustration, we refer to the access
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latencies from [124], also supported by the discussion in [125]. These vary between
hardware types and models, yet the general relations and orders of magnitude are
valid across the line.

1. Registry access latency 1 cycle.

2. L1 cache access latency 4 cycles.

3. L2 cache access latency 11 cycles.

4. L3 cache access latency 39 cycles.

5. Main memory access latency 107 cycles; The input data is initially loaded from
here.

6. M.2 Solid State Drive (SSD) access latency ∼ 400 cycles; This is an extremely
rough estimation for an illustrative purpose only, as the SSD market exhibits
immense variations of products, generations, technology and performance.

Furthermore, actual computations, e.g., additions and multiplications, are not only
evaluated in a single cycle, they are rather also often highly optimised and executed
in parallel over a few cycles. As visualised in Figure 3.1, such parallelisation is also
common in more serial architectures like the common X86 CPU. Since it processes
data in 64 bits, also known as ‘word length’, there are commands which fully utilise
this capacity by multiplying eight 8 bit inputs at the same time, practically allowing
for a factor eight parallelisation.

Having the cycle latencies for each of the aforementioned commands, one can
finalise the computation and deduce the estimated runtime of the reference layer.
For the memory access, some 1,572,864 calls were estimated, each at 107 cycles,
i.e., 168,296,448 ≈ 168.3 ∗ 106 cycles. As for the actual computations, these were
estimated at 9,663,676,416 FLOPs, with a parallelisation factor of eight and a single
clock cycle per batch of eight-elements, resulting in 1,207,959,552 ≈ 1,208∗106 cycles.
It should now be understandable, why the memory usage is also an important factor
to consider when optimising for runtime.

3.3 Motivation

Prior to this work, the field of CNN architecture for computational sensitive ap-
plications consisted mostly of two popular architectures. These are ‘MobileNet’
and ‘ShuffleNet’, which were covered in Section 3.1 and considered promising for

60 Chapter 3 Efficient Convolutional Neural Networks



Accuracy FLOPs Ratio
Vanilla Baseline 79.30% 56,324,196 1.00
ShuffleNet Basline 72.05% 19,094,628 0.34
Vanilla Small 77.45% 18,263,908 0.32
ShuffleNet Small 71.28% 6,556,708 0.12

Tab. 3.1: Evaluating the necessity of an optimised architecture, here ShuffleNet [119].
First, the same vanilla baseline model, as evaluated throughout this chapter,
‘Vanilla Baseline’. Then using the same hyper-parameters, same number of blocks,
channels and the same pooling, a matching ShuffleNet architecture is trained,
‘ShuffleNet Baseline’. The third model, ‘Vanilla Small’, is a version of ‘Vanilla
Baseline’ with reduced channels to roughly match the computational cost of
the ‘ShuffleNet Baseline’ model. Finally, ‘ShuffleNet Small’ uses the same hyper-
parameters of ‘Vanilla Small’ but as a ShuffleNet architecture. The results support
our hypothesis that the ShuffleNet architecture mainly reduces excess capacity.

applications with limited resources. Yet upon evaluation on different automotive
benchmarks, we noticed a persistent decrease in accuracy, comparing to their vanilla
convolution baseline. These comparisons are discussed in Section 3.5. In order to
solve the observed decrease in accuracy, we first had to better understand its root
causes. The various properties of the aforementioned architectures were dissected
and analysed, delivering valuable insights for further advancements.

3.3.1 Bottleneck Blocks

Initially introduced in [126], a reduction factor of eight was proposed, meaning
the number of channels is compressed on block entry to one eighth of the block’s
output channels. The reduction is often done by a 1 × 1 convolution layer which
only processes the channels dimension. For example, the fire2 block from Table 1
of [126] consists of two layers, a squeeze layer and an expand layer. The squeeze
layer gets an input with 96 channels. These are then ‘squeezed’ down to 16, before
eventually inflated to 128 channels. This sort of block definition ignores the number
of input channels and only considers the desired number of output channels. The
justification is that by creating these artificial bottlenecks, the network is forced to
use its available bandwidth more efficiently. ShuffleNet [119] revised the concept
with the more conservative compression factor of four.

Looking at the architectures of these aforementioned works, one could notice that
although they claim to aim at mobile hardware, they cover architectures larger than
what was commonly supported back in 2016 and 2018, respectively, when they
were first saw light. Choosing a large number of channels to begin with, just to than
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reduce it by a given bottleneck factor seems redundant. We therefore compared a
bottleneck model to a smaller baseline. The results are presented in Table 3.1 and
show that the bottleneck architecture is merely the reduction of sparsity which exists
in the model due to its oversized architecture.

Another way to examine the effects of bottleneck architectures is by looking at
the actual throughput after each layer. This is covered in Subsection 3.3.5 and in
Table 3.5.

3.3.2 Strides and Pooling

In the second part of the design scrutiny, strided convolution was compared to
pooling. While max pooling is a widely used practice in CNNs, strided convolutions
are a less known and are therefore quickly recapitulated.

(a) First iteration, stride
1 (no stride)

(b) Second iteration,
stride 1 (no stride)

(c) First iteration, stride
2

(d) Second iteration,
stride 2

Fig. 3.5: Comparing vanilla convolution, (a) and (b), to strided convolution, (c) and (d).
The blue squares represent the input signal, the darker blue is the 3× 3 scope of
the depicted iteration, the cyan squares represent the results. Notice how a larger
input, in the strided case, results in the same output size as the not strided case.
Created using the open source implementation of [127].

Strided convolution, first discussed in [128], aims to reduce the number of computa-
tions by coalescing the convolution operation with its consecutive dimensionality
reduction layer. For example, consider the vanilla case of a swiping a 3× 3 convolu-
tion kernel over a larger input image and then applying a 2× 2 max-pooling kernel
to the intermediate result. In the strided case, the convolution kernel is evaluated at
every other placement, thus reducing the number of convolutions by skipping, for
example, odd indices. Figure 3.5 is provided to better illustrate the process. It shows
how the scope of the convolution kernel skips a position for the case of stride= 2.
The mathematical adjustment to Equation 3.5 is merely the introduction of the index
multiplier s, representing the desired stride
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(I ⊛ g)[t] =
M∑

m=−M

I[(ts)−m]g[m]. (3.11)

From the surface it appears that strides make for an elegant efficiency optimisation as
they both reduce the number of FLOPs as well as obviate the need for a consequential
pooling. Unfortunately, the reality is not as simple, mainly for two reasons.

First, for a technical reason. As discussed in Subsection 3.2.2, the computation itself
only takes a single order of magnitude longer than the memory access. Depending
on the specific hardware in use, the factor four reduction in operations might
already divert the bottleneck to the memory bandwidth, thus blocking further
improvements.

Additionally, systematically skipping kernel placements comes at the cost of spatial
aliasing. Aliasing is a term from signal processing which refers to the inaccurate
measurement of a signal due to insufficient sampling rates. The effect is more clearly
explained using single-dimensional functions such as the one shown in Figure 3.6a.
Trying to sample a wave function, one theoretically gets an infinite amount of
possible waves between two sampling points. In order to more reliably sample a
function, the sampling frequency needs to be increased. That is, more sampling
points along the function are required. Luckily, there is a target sampling frequency
which guarantees proper sampling of the target function. This frequency is called
the Nyquist frequency [129] and dictates twice the highest frequency in the function
for aliasing-free sampling.

In the image domain, high frequencies correspond to edges. Consider the example
of scaling down an image of circular waves, like the one shown in Figure 3.6b. An
awkward random selection of the yellow and the purple pixels only, i.e., the top and
the bottom of the amplitude, would result in a yellow-purple stripe, like the one
seen in the left part of Figure 3.6c. While the actual representation should include
more of the green spectrum, as seen in Figure 3.6b. The pixel skipping, induced
by larger stride values, is then equivalent to halving the sampling rate along each
spatial dimension, making the result more susceptible to artefacts along the edges.

Using the different frequencies of a signal is often used for various types of processing.
A low pass filter is defined as a kernel which removes higher frequencies such that
only a smooth surface remains, making it useful for noise reduction. A high pass
filter does exactly the opposite and is therefore often used for sharpening images by
emphasising the edges. As a reference, Figure 3.7 shows the results of both filters
on ten randomly selected traffic sign images.
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(a) An example of a 40 Hz one-dimensional signal, in blue, sampled once at the Nyquist frequency of
80 Hz, in orange, and once at 27 Hz, in green. Notice how the orange line correctly matches the
signal’s amplitude while the green line approximates a completely different function.

(b) An high resolution image with high frequency
data, i.e., edges.

(c) The linearly sub-sampled version of (b), show-
ing clear aliasing artefacts both at the horizon-
tal lines and at the higher frequency waves at
the right corners.

Fig. 3.6: Examples for aliasing in one-dimensional signals, the stripes on the left of each
figure, and two-dimensional signals represented by the circular wave pattern

To evaluate the effects of strided convolution on the performance in different con-
ditions, we evaluated it in an isolated environment. We compared two versions of
the same model, one using max pooling and the other using strided convolution
with s = 2. To push the aliasing effect even further, we introduced a version of the
input in which the edges were enhanced, i.e., a high-passed version, similar to the
middle row of Figure 3.7. An additional final configuration had its activations passed
through a high-pass filter before each convolution layer.

The results, presented in Table 3.2, show that while the max pooling version of
the model proves rather robust to the different levels of edges, the strided version
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Max Pooling Stride 2
Original 96.70% 93.60%
High Passed Input 96.47% 91.74%
All Layers High Passed 91.19% 81.74%

Tab. 3.2: The accuracy of the same network architecture, evaluated on German Traffic
Sign Recognition Benchmark (GTSRB) [130] both using max pooling and strided
convolution. One can see that the max pooling is only marginally affected by the
high pass filter while the strided version suffers from as much as ∼ 12 % accuracy
when confronted with high-passed data.

is much more sensitive and quicker to lose accuracy. At the same time, even its
baseline performance is worse than the max pooling version.

Fig. 3.7: A visualisation of randomly selected images from the GTSRB [130] dataset as:
Top: the original images.
Middle: the respective high-passed version.
Bottom: The respective low-passed version.

The in-depth analysis of the meaning of strides has not only encouraged the use of
max-pooling, it has rather also motivated an architecture which optimises the data
throughput. The goal is that the target hardware is neither idling while waiting for
its data to be fetched from the memory, nor should it be waiting for the computations
to finish. Ideally, a well streamlined architecture would utilise all of its hardware’s
parallel resources to the full, at any given time.

The issues with aliasing have also inspired others. In the recent [131], Ribeiro and
Schön studied the ways neural networks handle aliasing. They drew the conclusion
that models do not automatically allocate capacity to anti-aliasing. The work of
Zhang proposed tackling aliasing in the neural activations [132]. While it did not
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Baseline Baseline + Residual
Cifar10 79.30% 79.12%
SVHN 91.86% 91.13%
GTSRB 95.35% 92.93%

Tab. 3.3: Examining the effect of residual connections on small architectures. It can be
seen how the residual variant is constantly trailing behind its baseline.

explicitly increase classification accuracies, it was extremely beneficial for handling
augmented data. I.e., explicitly accounting for aliasing throughout the model has
increased its robustness to various transformations.

3.3.3 Residual Connections

Initially described by He et al. in [102], ‘residual connections’, also known as ‘skip
connections’, have established their place as a simple design trick for stabilising
the training of large networks. Nevertheless it was the very same work which
showed that this technique is best used with very large and very deep models. The
experiments, presented in Table 3.3, confirm this observation. They demonstrate a
persistent drop in accuracies across all attempts to include skip connections in the
final block architecture.

Unlike the nowadays more common encoder-decoder architecture, the simpler
classifier design used here can’t aggregate the data from different resolutions. We
have, therefore, experimented with connections similar to the bypass connections as
described in [126].

Furthermore, slim models do not require as much stabilisation and regularisation
measurements as larger models. This argument was the conclusion in [133], where
the loss landscape of many common architectures was studied and visualised. The
results, shown in Figure 3.8, clearly show the correlation between the complexity
of a model and its depth. It thus seems that the theoretical justification for such
connections is also lacking.

Finally, we examine the skip connections from an information flow perspective.
There are two common ways to implement skip connections, either by concatenating
the ‘skipped’ data to the main signal along the channels dimensions, or using an
element-wise addition to fuse the signals. Both methods inflate the amount of data
in the signal. As discussed in Subsection 3.3.1, slim models are sensitive to data

66 Chapter 3 Efficient Convolutional Neural Networks



(a) ResNet-20 (b) ResNet-56 (c) RestNet-110

Fig. 3.8: A visualisation of the loss spaces of the ResNet model [102] at three different
depths, given by number in the model’s name. One can see how the complexity
of the loss space increases with the size of the model. The more complex the
optimisation terrain is, the likelier it becomes that a gradient based optimisation
scheme will converge to a local rather the global minimum, harming the model’s
performance. Taken from [133]

compression and evidently also for inflation which requires a larger capacity to
process properly.

3.3.4 Separable Convolutions

Based on the separability properties of convolution [134, p.101] and following the
proposal of Szegedy et al. in [135], the notion of spatially separable convolutions
is revisited. To do so, we refer to the toy example for this chapter. The goal is to
process an RGB input of size [hI , wI , Chin] = 256×256×3 using a convolution layer
with 128 output channels, i.e., a kernel of size [hk, wk, Chin, Chout] = 3×3×3×128.
Hardware and algorithmic assumptions follow Subsection 3.2.2.

The processing requirements of axis-wise convolutions are a strong argument for the
significance of separable convolutions. The separable version of the two-dimensional
kernels, discussed throughout this section, is two sets of single-dimensional kernels,
3× 1 and 1× 3. Such an ensemble has a single limitation comparing to the full scale
kernels, it cannot simulate asymmetrical kernel functions. Nevertheless, it comes
with two alleged benefits.

First, as shown in [107], the depth of a neural network is at least as important as
its breadth or its input resolution. As the single-dimensional kernels also mean less
parameters, the added depth and non-linearity functions act as counter measures
to balance out the loss in potential. We have however put this to test by training
ShuffleNet [119] once with a ReLU after each convolution layer and once with
a single ReLU at the end of each block. Unfortunately, the results, presented in
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ShuffleNet single ReLU ShuffleNet full ReLU
Cifar10 [29] 71.58% 72.68%
SVHN [136] 83.73% 82.25%
GTSRB [130] 88.23% 88.91%

Tab. 3.4: Comparing the performance of ShuffleNet [119] in two different configurations.
Once with a ReLU after each convolution layer and once with a single ReLU at
the end of each block. Results are inconclusive.

Table 3.4, are inconclusive, showing no clear preference on any of the benchmark
datasets.

Second, by having a one-dimensional pooling operation after each layer, one can
half the amount of computation in the consecutive layer. This means that the initial
3× 1 convolution is followed by a 2× 1 max pooling layer. Then the complementary
1× 3 convolution along with its respective 1× 2 max pooling follow and complete
the approximation. Unlike strided convolution, this does not only reduce the number
of FLOPs, but rather also the number of memory accesses. We visualise the different
single-dimensional convolution configurations in Figure 3.9.

(a) 1 × 3 convolution (b) 3 × 1 convolution (c) 1 × 1 convolution

Fig. 3.9: A visualisation of the different one-dimensional convolution kernels.

Furthermore, separable convolutions often follow the proposal of Howard et al.
of using their so called depth-wise separable convolutions [116]. These refer to a
configuration in which each input channel is processed by a single spatial kernel,
while there is no flow of information between these kernels, recall Figure 3.2b.
Meaning the definition of spatial convolution for two-dimensional signals is linearly
extended to the multi-channel domain at a lower computational burden. Turning
back to our toy example with 64 input channels, the naive implementation would use
128 spatial kernels on each input channel. It therefore amounts to 64 ∗ 128 = 8,192
spatial kernels. In contrast to the vanilla convolution layer, the basic depth-wise
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convolution layer has a single kernel per input channel. This means a reduction
factor of ×128, or ∼ 66.67 %, in the amount of computations.

The definition of such convolutions comes with a hyper-parameter called depth
multiplier (κ, dm). It allows to assign multiple kernels to each input channel, thus
countering the drastic reduction to a desired extent. Setting the depth multiplier to
2 would mean that the total number of kernels is increased to 128, with two kernels
per input channel. The total number of kernels is thus κChin, while the premise is
that κ << Chout.

In computational terms, the influence is also significant. Each kernel placement
costs 3 multiplications and 3 additions, repeated along all of the 64 input channels
and resulting in 384 operations per placement. In the separable case, the number of
placements does not change. For the example layer this means 256×256 placements,
resulting in a total of 25,165,824 operations and 3,145,728 clock cycles. This signif-
icant reduction is often overshadowed by a consecutive 1 × 1 convolution, which
increases the computational effort. Yet, this is not always the case and different
architectures propose different solutions.

3.3.5 Data Compression

Although FLOPs are the most commonly compared aspect of efficiency, they are
certainly not the sole factor. Trying to better understand the influence of algorithmic
adjustments to the model’s performance, we have also taken the road less travelled,
studying further factors. We learnt that the compression rates of the activations
throughout a network highly correlate with its performance. The activations are
important for two reasons. For one, they carry the information from the input
throughout the model to the output. Consider a full scale model, optimised for the
Cifar 10 dataset [29] whereas all but ten activations are set to zero after the first layer.
It may be intuitive to understand that such a model could not be very successful
in object classification. The same logic works for any sort of data compression,
regardless of through bottlenecks or ‘drop out’ [137], each compression is bound to
reach the point from which information is permanently and destructively lost.

At the same time, activation compression could prove beneficial as it virtually
increases the kernels’ size while reducing the computational load. Revisiting the
toy example for this chapter, having 32 input channels to convolve, instead of
64 channels, would have the same effect on the computational effort as halving
the number of output channels. As for compression along the spatial dimensions,
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Vanilla Baseline MobileNet ShuffleNet EffNet
[116] [119] (this work)

Layer Data Size Layer Data Size Layer Data Size Layer Data Size
3× 3× 64, mp 16, 384 3× 3× 64, mp 16, 384 3× 3× 64, mp 16, 384 1× 1× 32 32, 768

1× 3 dw, 1dmp 16, 384
3× 1 dw, 1dmp 16, 384
1× 1× 64 16, 384

3× 3× 128, mp 8, 192 3× 3 dw, s 4, 096 1× 1× 32 gc4 8, 192 1× 1× 64 16, 384
1× 1× 128 8, 192 3× 3 dw, s 2, 048 1× 3 dw, 1dmp 8, 192

1× 1× 128 gc4 8, 192 3× 1 dw, 1dmp 8, 192
1× 1× 128 8, 192

3× 3× 256, mp 4, 096 3× 3 dw, s 2, 048 1× 1× 64 gc4 4, 096 1× 1× 128 8, 192
1× 1× 256 4, 096 3× 3 dw, s 1, 024 1× 3 dw, 1dmp 4, 096

1× 1× 256 gc4 4, 096 3× 1 dw, 1dmp 4, 096
1× 1× 256 4, 096

FC 10 FC 10 FC 10 FC 10

Tab. 3.5: A comparison of the different data compressions throughout different models. s
stands for strided convolution, mp stands for max pooling, dw means depth-wise
convolution, gc4 follows the definition for group convolutions as presented in
[119] and the 1d prefix means that the following term is only applied to a single
dimension. One can see the aggressive compression rates as described in [116],
but also the persistent compression-expansion in both other works. The numbers
marked in purple highlight a compression factor larger than two. Table adapted
from [109].

keeping the kernels at 3× 3 while reducing the size of their input would allow them
to cover more contextual information.

Table 3.5 was compiled to compare the above considerations of data compression,
side by side. The table shows how the design proposals from [116] and [119]
aggressively utilise the bottleneck principal, as described in Subsection 3.3.1. The
issue with such large compression rates is a twofold.

First, embedded models are small to begin with, ideally on the verge of under-fitting,
by reducing the data throughput, one risks breaching pass the lower bound of
lossless compression.

Second, the usefulness of the data expansion, which follows the compression, is
debatable. Could the lost information be recovered? If so, why is the expansion
necessary? As neural networks are high-dimensional, non-linear functions which
adjust to their given conditions, it is not trivial to find a direct answer. Nevertheless
the results, presented in Section 3.5 suggest that the practice is not beneficial.
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Image, 3*8 px = 192 bit

Weights, 3*3*32 px = 2,304 bit

Multiplication, 3*8 px = 768 bit

Addition, 3*8 px = 768 bit

Shifted, 8 px = 64 bit

Multiplication Core

Addition Core

Shift Core

3x3 Convolution, 32 Channels

Registers, 2 kB

600%

300%

200%

Legend

185.35%

Fig. 3.10: A visualisation of the calculated memory and computational load of Texas In-
struments’ TDA3 board [123] for a 3× 3 vanilla convolution layer with 32 input
channels. The visualisation unifies both loads by looking at the status for a single
clock cycle. The legend also shows the storage requirements of each module
while the colour-coded boxes for the registers assume the capacity of 2 kB as a
100% and are normalised to size.

3.3.6 Processing Bottlenecks

Finally, the best type of optimisation is also the least flexible one. Only by profiling
the target hardware and its processing load, one could make the final tweaks to
get the best possible hardware - software synergy. Directly measuring the load
across the architecture is not always feasible. Not all types of hardware support the
right tooling for the task. We have therefore compared the numbers throughout
this section with the capacity declared by the manufacturer. Specifically, the target
hardware was the TDA3 board from Texas Instruments [123].

Figure 3.10 depicts the hardware pipeline with the load representations both for the
registers as well as for the different compute cores of the board. To reliably visualise
both memory utilisation and the core load, the data is presented as a snapshot of a
single clock cycle. That is, how much is expected to be processed by the algorithm
versus the actual capacity of the respective part. The reference TDA3 board [123]
from Texas Instruments has multiple dedicated cores for computations such as the
depicted multiplication, addition and shift.
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Each core has a maximum capacity and a maximum throughput. These are rep-
resented as the size of their respective graph node. E.g., the framed part of the
‘Addition Core’ node represents the core at a 100 % load. The framed part of the
‘Registers’ node represents the entire 2 kB of memory.

The borderless rectangles are used to visualise the actual load on the core/memory
when evaluating a vanilla 3 × 3 convolution kernel on an arbitrary input. It can
be understood that the operation is compute bound, i.e., the load on the compute
cores is responsible for the bottleneck. The main bottleneck is at the multiplication
core, which has six time more to calculate than its capacity. The addition and shift
cores are also overloaded. Moreover, since the registers are also full, meaning they
rely intensively on the L1 cache to support the disproportional storage demand of
∼ 185 %. As discussed in Subsection 3.2.2, the L1 fetches take four times longer
than a register fetch, another bottleneck is thus created at the memory level.

For example, per kernel placement, 3× 3 multiplications are required. As seen in
Figure 3.4, there are eight placements for each three rows loaded from the memory.
The hardware level instructions only support the multiplication of eight elements,
twice, each cycle. These eight elements are split into 2×4 whereas the two stands for
the rows and the four is the amount of elements multiplied. Since the kernel is only
three elements wide, the last element is a stub, multiplied with a zero. Applied twice,
once per multiplication core, this results in 16 multiplications per cycles including
the stub and 12 multiplications per cycle of relevant data. At eight loaded pixels from
the required three rows, one gets 8 ∗ 9 = 72 multiplications. At 12 multiplications a
cycle, the final load of 600 % is calculated.

In this section, several different aspects of architecture optimisation were discussed.
Opening with the bottleneck blocks, their incompatibility to the domain of smaller
network was demonstrated. The strided convolution was shown to drastically reduce
the computational demand, but also suppress accuracies by encouraging aliasing.
The evaluation of residual connections matched the expectation and observation
of their inventors. They are only beneficial for large and very deep models. As
this is not the case with models for embedded architectures, they too were deemed
unsuitable. Finally separable convolutions and data intra-model compression rate
were examined and showed promising results, if properly handled. In the next
section, these lessons are used to realise a novel efficient convolutional block.
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3.4 Introducing Our EffNet Block

Following the thorough scrutiny of the varied design aspects, we came to propose
a novel convolution block, designed specifically for small and efficient networks,
hence its name, ‘EffNet’. Each block consists of a total of four convolution layers,
each is followed by a leaky ReLU [138].

The first layer is a depth-wise, single-dimensional spatial convolution, accompanied
by a one-dimensional max pooling operator along the same dimension. Throughout
this chapter, this layer is regarded as a 1 × 3 convolution, however depending on
the specific target hardware, swapping the order of both spatial convolution layers
might prove beneficial. For example, if the hardware at hand has three parallel
cache lines or a command to merge, multiply and add all eight placements in a
single instruction.

The third layer compliments the previous one by convolving the second spatial axis
with a 3× 1 kernel.

A final weighted pooling layer [139] with the kernel size 2× 1 is applied and used to
expand the channels, often by a factor of two. The decision to use weighted pooling
was empirical.

Finally, please notice that all depth-wise spatial kernels are used with a depth
multiplier factor of two (κ = 2).

For the sake of clarity, a visualisation of the block, along with the MobileNet block
[116] and ShuffleNet block [119] is presented in Figure 3.11.

All of the aforementioned blocks are flexible enough to be compounded into a
full size network structure. The resulting models are then evaluated on several
benchmarks and compared in the following section.

3.4.1 Multi-aspect Optimisation

Following the elaborate study of the different efficiency strategies, this section
discusses the design of the EffNet block from the same perspective. We show
how the block design significantly improves on many of the issues discussed in
Section 3.3.
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(a) A MobileNet Block [116] (b) A ShuffleNet block [119] (c) An EffNet block [109] (ours)

Fig. 3.11: A comparison of the MobileNet and the ShuffleNet architectures with the EffNet
architecture, presented in this chapter. dw means depth-wise, mp means max
pooling, gc means group convolutions and ch represents the number of channels.
The blue nodes represent spatial operations while the yellow nodes represent
point-wise operations. A gradient is used for the shuffling operation, since it
is a point-wise operation which is supporting the consecutive spatial operation.
Based on Fig. 1 of [109].

Replacing the First Layer Both MobileNet and ShuffleNet use vanilla convolution
for their first layer. The aim of this work was to propose a unified architecture for an
entire model. As a compromise, we proposed to extend the first EffNet block in the
model with a preceding point-wise convolution. Here, the number of channels is
determined by the so called ‘expansion rate’ (erate) which is defined as

Chout =
⌊Chinerate

2

⌋
. (3.12)

This hyper parameter does not have a significant meaning for the model, as it is
mostly kept at erate = 2, yet it allows for a direct comparability with MobileNetV2
[140] and is therefore included in the system.

Bottleneck Blocks and Data Compression Having established that bottleneck archi-
tectures implement an inherit design flow, the EffNet block implements the classical
paradigm of reduction by a factor of two. It means that the throughput is decreased
by a factor of two at each reduction layer. In the case of two-dimensional strided
convolution and pooling, this is achieved by increasing the number of channels to
account for the loss in spatial resolution. By doing so the model enjoys enough
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throughput for parsing and processing the input signals, before further reducing
them in a following layer. The effect of this design decision to the actual compression
factors is shown in Table 3.5.

Strides and Pooling The results shown in Table 3.2 make a strong argument against
strided convolution. We have also experimented with a depth-wise version of
weighted pooling [139]. While the theoretical advantage is the performance gain
at a very low computational cost, the experiment results were indecisive, leading
us to keep the classical max pooling algorithm for the first sub-sampling layer. For
the second subsampling weighted pooling is used. Weighted pooling is, in this
case, a 2× 1 convolution layer applied with a stride of 2. Such a layer merges the
single-dimensional max pooling with its following point-wise convolution and is
thus computed at an extremely low computational cost.

Residual Connections Models for interactive execution on embedded systems
are notably shallower than the current SotA. This observation alone is enough
to nullify the main alleged advantage of residual connections. We conclude the
discussion with the understanding that residual connections, although popular, are
counterproductive for designing a slim and computationally efficient model. We
thus refrain from using them throughout the EffNet architecture.

Separable Convolutions One of the more significant adjustments to the proposed
architecture, comparing to other models, is the separation of convolution dimensions.
On top of the clear reduction in computations, it also allows us to effectively sub-
sample an entire dimension, before processing the next one. By doing so, the input
resolution is halved along the column dimension, leading to 256× 128 placements.
These translate to 12,582,912 operations and 1,572,864 clock cycles.

The time spent accessing the memory is also simplified. The row-wise layer follows
the same computation as the the vanilla layer. The sole difference is that it is not ac-
cessing three rows for each placement, thus resulting in ChinhIwI/8 = 524,288 calls.
The column-wise layer implements a different logic. While requiring three parallel
cache lines, it benefits from its position after the row-wise pooling layer, resulting in
less columns to consume. The computation requires only 3ChinhIwI/2/8 = 786,432
calls.

The last layer has no spatial resolution, i.e., a so called point-wise convolution [141]
with 1× 1 kernels. It rather spans across the channels, combines and increases them
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from the 64 input channels up to the 128 output channels. A kernel placement costs
[hkwkChinChout] = 1 ∗ 1 ∗ 64 ∗ 128 = 8,192 multiplications and the same amount
of additions. These 16,384 operations are evaluated [hIwI ] = 256 ∗ 256 = 65,536
times, amounting to a total of 1,073,741,824 operations or, following the factor eight
parallelisation assumption, 134,217,728 cycles.

The memory access is rather straight forward and amounts to
[ChinhIwI/υ] = 64 ∗ 256 ∗ 256/8 = 524,288 calls and 56,098,816 cycles, where υ
represents the memory bandwidth.

Finally, adding the operations from all three axis-wise layers, one gets 524,288 +
786,432 + 524,288 = 1,835,008 memory reading calls, resulting in 196,345,856 cycles.
The computational side costs 25,165,824+12,582,912+1,073,741,824 = 1,111,490,560
operations and 138,936,320 cycles.

Looking at the corresponding vanilla convolution layer for reference, it exhibits
1,207,959,552 operation cycles and 168,296,448 memory access cycles. This means
that for a minor increase in memory access time to ∼ 116 %, a large portion of the
bottleneck is resolved and an entire order of magnitude less runtime is achieved,
11.50 % from the baseline operations.

This aggressive reduction in complexity comes almost without a cost to the model’s
accuracy, as shown in Section 3.5.

Processing Bottlenecks Finally, we calculate the same sort of loads as done for
Figure 3.10 to evaluate an EffNet convolution layer. The results are shown in
Figure 3.12. Immediately, one can see that the computational bottleneck was
drastically reduced to a third of its vanilla size. I.e., the multiplications take two
cycles instead of six. The registers overflow was also unclogged, allowing for a more
efficient memory loading time which is as much as four times quicker comparing to
the vanilla case.

Unfortunately, the reduction also comes at the cost of additional layers which further
increase the runtime. Nevertheless, dedicated profiling of the layers on the target
hardware show a net reduction of cycles to ∼ 52 %, for the entire EffNet block. As a
reference, a similar profiling of a matching MobileNetV1 layer resulted in ∼ 76 % of
the baseline’s number of cycles.
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Fig. 3.12: A visualisation of the calculated memory and computational load of Texas In-
strument’s TDA3 board [123] for a 1× 3 depth-wise convolution layer with 32
input channels. The visualisation unifies both loads by looking at the status for
a single clock cycle. The legend also shows the storage requirements of each
module while the colour-coded boxes for the registers assume the capacity of
2 kB as a 100 % and are normalised to size.

3.5 Evaluation

For the evaluation and comparison datasets were sought, which match the target
use-case of automotive applications. A narrow domain, with a limited number of
classes, sorted by a small model which should present interactive runtimes on a
minimal embedded hardware. This definition significantly reduces the number of
datasets to choose from, as the most common vision datasets, like ImageNet [98],
usually take pride of terabytes of images and thousands of classes. The three well
represented benchmarks which were finally selected are

• Cifar10 [29] - published back in 2009, this dataset is often referred to as one
of the main enablers of the deep learning renaissance of the last decade. The
data itself is a good match to the scope of this project. It exhibits ten classes,
each represented by 6,000 images of size 32× 32 pixels. Another positive trait
is the predefined split into a train and a test set, which means that all users
report their numbers on the same samples, allowing for a reliable comparison
with other works.

• Street View House Numbers [136], another early days dataset, doing exactly as
suggested by its name. It presents number, gathered from Google’s Streetview
data and divided into single digit-wise labels. Similar to Cifar10, the input
size is 32× 32 pixels and the ∼ 90,000 images are presorted into training and
testing data.
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• German Traffic Sign Recognition Benchmark [130] - a slightly more extensive
dataset with larger images of variable sizes between 30× 30 pixels and 60×
60 pixels. It covers 40 classes of various traffic signs collected on German roads
and extracted to only include patches of the traffic signs themselves.

The rest of this section follows [109] and is divided into two parts. First we cover
the initial comparison to [116] and [119]. Less than 48 hours prior to the initial
publication of our work, the MobileNetV2 model was published [140]. For a better
reference, we extended our work by an additional set of experiments. Since the
experiment configuration is not the same, these two sets of experiments are kept
apart in this work as well.

During all experiments, in both sections, each configuration was trained and evalu-
ated five times to cancel out the effects of randomness. Furthermore, neither data
augmentation nor pre-training on additional data was used. The baseline model was
composed with a size, for which it was empirically established that an execution in
real-time is feasible. The layers of this baseline model were then replaced in favour
of the alternative convolution blocks. The implementation was done in Python [142]
and Tensorflow [143] and trained using the Adam optimiser [144] with a learning
rate of λ = 0.001 and β1 = 0.75.

3.5.1 Initial Comparison

Throughout the experiments in this section and since the ‘EffNet’ architecture is
significantly less compute intensive than its baseline, an additional experiment was
done to evaluate the accuracies of an EffNet model inflated to roughly the same
amount of FLOPs as its baseline. These results are provided along the other models
and are dubbed ‘EffNet large’.

Cifar10

Table 3.6 shows the different experiments on this dataset. First and foremost, our
EffNet model demonstrates SotA results while requiring factor ∼ 7 less computations
than the baseline. Nevertheless, since both other models require roughly half the
computations of our model, the question arise regarding the reason for the improved
accuracy. We therefore trained a larger version of both models, which roughly
matches the amount of computations required by our model. The results show that
while their performance did improve by a small margin, they still clearly remain
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behind the EffNet accuracy. Furthermore, the accuracy of ‘EffNet large’ also surpasses
the baseline accuracy.

Model Name Mean Accuracy Mil. FLOPs Factor
Baseline 82.78% 80.3 1.00
EffNet large (ours) 85.02% 79.8 0.99
MobileNet [116] 77.48% 5.8 0.07
ShuffleNet [119] 77.30% 4.7 0.06
EffNet (ours) 80.20% 11.4 0.14
MobileNet large [116] 78.18% 11.6 0.14
ShuffleNet large [119] 77.90% 11.1 0.14

Tab. 3.6: A model comparison on the Cifar10 dataset. Data from [109]

Street View House Numbers

The results on SVHN, shown in Table 3.7, confirm those of the previous experiment.
One trend is clearly visible though, while the reference models for the Cifar10
experiment required less FLOPs than the EffNet model, here a different trend
is shown. The EffNet model delivers higher accuracy while being less compute
intensive at the same time. The reason for this difference is the portion of the
first layer in the total number of FLOPs. Since both MobileNet and ShuffleNet
use vanilla convolution as a first layer, the reduction in FLOPs for this layer is the
most significant. Furthermore, the ‘EffNet large’ model surpasses the baseline while
requiring less computations.

Model Name Mean Accuracy kFLOPs Factor
Baseline 91.08% 3,563.5 1.00
EffNet large (ours) 91.12% 3,530.7 0.99
MobileNet [116] 85.64% 773.4 0.22
ShuffleNet [119] 82.73% 733.1 0.21
EffNet (ours) 88.51% 517.6 0.14

Tab. 3.7: A model comparison on the SVHN dataset. Data from [109].

German Traffic Sign Recognition Benchmark

Finally, the GTSRB experiment shows an even stronger trend in Table 3.8, with
the EffNet model being both the most efficient and the most accurate among the
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optimised architectures. Also the ‘EffNet large’ model surpasses the baseline accuracy
while only requiring ∼ 93 % of its computations.

Model Name Mean Accuracy kFLOPs Factor
Baseline 94.48% 2,326.5 1.00
EffNet large (ours) 94.82% 2,171.9 0.93
MobileNet [116] 88.15% 533.0 0.23
ShuffleNet [119] 88.99% 540.7 0.23
EffNet (ours) 91.79% 344.1 0.15

Tab. 3.8: A model comparison on the GTSRB dataset. Data from [109].

3.5.2 Comparison with MobileNetV2

In the second batch of experiments, we compared the proposed model to Mo-
bileNetV2 as proposed in [140] which saw light parallel to our original publication.
The following tables show a comparison of the different expansion rates, which are
the main hyper-parameter proposed by Sandler et al. Each model was evaluated
on three different expansion rate configurations: 2, 4 and 6. The results, which are
shown in Table 3.9, Table 3.10 and Table 3.11 show that MobileNetV2 favourably
compares to our model in most configurations by around 1 %−3 % FLOPs comparing
to the baseline. Yet the EffNet model consistently draws the higher accuracy, often
by a larger margin of up to 5 %, as seen in Table 3.9.

Ex. Rate Model Name Mean Acc. Mil. FLOPs Fact.
Baseline 82.78% 80.3 1.00

6 EffNet 83.20% 44.1 0.55
MobileNetV2 79.10% 42.0 0.52

4 EffNet 82.45% 31.1 0.39
MobileNetV2 78.91% 29.2 0.36

2 EffNet 81.67% 18.1 0.22
MobileNetV2 76.47% 16.4 0.20

Tab. 3.9: A comparison of MobileNetV2 [140] and our EffNet [109] on the Cifar10 dataset
for various expansion rates. Data from [109].
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Ex. Rate Model Name Mean Acc. kFLOPs Fact.
Baseline 91.08% 3,563.5 1.00

6 EffNet 87.80% 2,254.8 0.63
MobileNetV2 87.16% 2,130.4 0.60

4 EffNet 87.49% 1,729.5 0.49
MobileNetV2 86.93% 1,646.6 0.46

2 EffNet 87.30% 1,204.2 0.34
MobileNetV2 86.71% 1,162.8 0.33

Tab. 3.10: A comparison of MobileNetV2 [140] and our EffNet [109] on the SVHN dataset
for various expansion rates. Data from [109].

Ex. Rate Model Name Mean Acc. kFLOPs Fact.
Baseline 94.48% 2,326, 5 1.00

6 EffNet 93.74% 1,208.3 0.51
MobileNetV2 92.82% 1,159.2 0.50

4 EffNet 92.30% 956.4 0.41
MobileNetV2 91.56% 934.9 0.40

2 EffNet 90.40% 704.5 0.30
MobileNetV2 90.74% 710.7 0.31

Tab. 3.11: A comparison of MobileNetV2 [140] and our EffNet [109] on the GTSRB dataset
for various expansion rates. Data from [109].

3.6 Conclusions

Throughout this chapter, the different design aspects were discussed, which are
commonly used to reduce the computational burden of convolutional neural net-
works. We showed that there are many possible tricks which make networks more
computationally efficient, yet these often bring along new challenges. From isolated
tests and experiments, we showed that from data compression, through memory
efficiency and to the very type of convolution, each of these factors is responsible for
a small portion of the solution, but also of the problem. Optimising only the number
of FLOPs, as seen in many other works, does not seem to reliably solve the problem,
but rather shift it to an unobserved aspect.

Our novel solution was proposed in the form of the ‘EffNet’ block. It tackles the
optimisation task from several different angles at the same time. While it does not
always have the upper hand in terms of FLOPs, its overall performance is superior
to its competitors.
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The field of efficient architectures has been enjoying positive sentiment. Our original
publication, [109], followed MobileNetV1 [116] and ShuffleNet [119], and was
published in parallel to MobileNetV2 [140]. It was furthermore cited over 80 times
according to Google Scholar, as of early May, 2022.

Additional high-impact publications have also followed, among which are Mo-
bileNetV3 [117] and ShuffleNetV2 [145]. While these publications might sound
interesting for further evaluation, a deeper look into their proposed architectures
shows that the field is starting to converge. The differences between publications are
decreasing to the point in which the choice of architecture becomes redundant.

Finally, recent works have established that depth-wise convolution suffers from
accuracy degradation when quantised to 8 bit [146], [147]. While the minimisation
of quantisation impact is an active field of research, we found that methods like
merging layers significantly reduce the severity of the matter. The advantages of
layer-merging were also discussed in [148] as a possible solution.
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Polynomial Predictions as a
Strong Regulariser

4

4.1 Introduction

This thesis is mostly concentrated around various favourable constraints and biases
for NN architectures. Following the adaptive masking of Chapter 2 and the efficient
CNN blocks of Chapter 3, this chapter covers an additional form of a-priori biasing.
Developed for the field of trajectory prediction in motorway scenarios, we propose a
novel polynomial output layer which is dedicated to predicting continuous movement
over time. This structural bias, published in [149], is shown to increase both
generalisation and robustness of the trained models.

From AEB in the widespread level 1 Advanced Driver Assistance System to the
complete automation of level 5, the scale of features might increase, yet many
of them extensively rely on motion understanding [150]. Consider an Automatic
Emergency Breaking system. Early anticipation of dangerous situations and slowing
down in advance would reduce abrupt breaking. Such a system would not only
increase the comfort for the passengers, but would rather also save lives.

At the top of the automation hierarchy, the fully automated level 5, it is hard to
imagine a system without robust motion understanding capabilities. These make
for a vital part of planning and reacting. They, therefore, are an absolute necessity
for every fully autonomous decision-making. Luckily, the reasoning behind motion
understanding is not complicated to explain.

As humans, at a driver’s capacity but also as pedestrians, the first thing we do when
deciding on an action, e.g., a lane change, is to look around and read the road.
People mostly do that using their ‘System 1’ brains [151], which is fully capable of
handling clear low risk cases. Upon seeing another agent which might pose a risk,
the ‘System 2’ brains is seamlessly activated to observe the situation with increased
attention.
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Notable Work Amongst the first works in the field was the 1995 publication of
[152]. In their work, Helbing and Molnar focused on modelling pedestrians moving
in a crowd. The relevancy of each surrounding agent for the ego motion was
described by a set of forces which shape the trajectory planning. In spite of the
lacking datasets for evaluation, the work has created a baseline and a new field.
Addressing trajectories as the result of social forces is still a common practice and
has seen support in publications like [153], [154], [155].

Other works have looked at the mechanics of the movement itself, before attending
to the interactions between agents. Since kinematics is a well studied field in physics,
the gained knowledge could be utilised to improve models. Works like [156]
and [157] have recently introduced different approaches for integrating kinematic
knowledge into neural networks.

Finally, an additional class of works is focusing on the uncertain nature of predicting
the future. With free choice as an agency, there always remains an unknown factor
in possible trajectories. Accounting for this plurality of possible futures, works like
[158] and [159] proposed novel multimodal prediction frameworks.

Datasets Following [152], there emerged a requirement for data to test and eval-
uate on. Here one can find the Collective Activity dataset [160], the ETH dataset
[153] and the Zara/UCY dataset [161]. All published with accompanying annotated
camera recordings of pedestrians in outdoor scenes. Such datasets mostly use the
footage from high fidelity security cameras, often of students walking around the
institute which collected the data.

It was only at a later phase that the field branched again to cover vehicles and
motorway scenarios. One of the earlier datasets here was the NGSIM dataset [162].
It was published in 2006 and has super-scaled the methods previously used for
pedestrians. The US Department of Transportation has strategically placed traffic
control cameras along, mainly, two motorway segments in California, each covering
roughly 500 metres of road. They then analysed the traffic over four 15 minute
periods during the day, tracked the passing vehicles and normalised the data to a
global coordinates system.

For many years, this has been the dataset of choice for development and evaluation
with currently around 4, 500 works referring to it. Yet, the progress of recent years
in ML and model accuracies has reached the edges of what could be achieved
with this dataset. Modern models require large amount of data along with a large
temporal and geographical variance. Furthermore, in the meta study reported in
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[163] inconsistencies in the data were shown, in the form of random noise and
unrealistic interactions. These include, for example, two cases of phantom collisions,
sudden and unrealistic acceleration, etc.

In 2018, the HighD dataset was published [164]. The institute behind the dataset
was licensed to deploy drones over motorways for data acquisition. This allowed
them to successfully record and annotate some 16.5 hours of data with a total driven
distance of ∼ 45,000 km. The choice of drones is well motivated as well. They are
more flexible than fixed monitoring cameras while not biasing the road as much as
an attention catching data-collection vehicle. Additionally, such a data-collection
vehicle can only collect the data around it, missing possible long-term interactions.

While the acceptance of the dataset is bound by its limiting licensing terms, it is to
date the most extensive dataset of vehicle movement understanding in the motorway
domain. Its size and quality have enabled interesting works like the adaptation
of Graph Neural Networks (GCNs) to the field in [165], reinforcement learning in
[166] and attention pooling in [167].

The problem of licensing still remains an issue in the field. Since many efforts are
supported by the industry, data is often acquired for a specific purpose and is never
published. Yet, be it in the vision domain, radar processing or even a multi-sensor
environment, trajectories have a wildly important property which was generally
overlooked in neural architectures, their spatio-temporal continuity. Experiencing
the world at any scale above the subatomic level, a movement from A to B must
traverse a continuous trajectory.

Temporally Consistent Trajectories Many of the current SotA models predict an
independent set of spatial coordinates. By using a vanilla fully connected layer to
predict future coordinates, the inherent spatio-temporal dependency becomes weakly
adherent. Meaning, it is only indirectly learnt as a correlation during training.

As repeatedly seen throughout this work, the right kind of bias tends to favourably
affect performance. Furthermore, an architectural constraint which is confined to
the rules of physics poses neither a limitation, nor a disadvantage. Notice algorithms,
like the one proposed in [168], which explicitly provide a map of the drivable area
to discourage invalid predictions, see Figure 4.1. By limiting the model to the subset
of physically plausible predictions, we implement Ockham’s razor [104] by removing
degrees of freedom which are beyond necessity.

In this chapter, we propose a replacement for the common art coordinates prediction
in favour of the marginally more complicated, yet more physically sound polynomial
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trajectory prediction. The polynomial prediction layer acts as an output layer of an
arbitrary NN architecture, predicting the axis-wise polynomial coefficients. These
represent a function, mapping the temporal axis to one of the spatial axes, the
longitudinal axis, x, or the lateral axis, y.

Since the conclusion of the original project in late 2019, published in [149], the
proposed algorithm has enjoyed a certain popularity within our research group. It
became a part of and extended in

1. [169] which adjusted the polynomial framework for tracking.

2. [170] which extended the said tracker to support our proposed variance
prediction capacities.

3. [171] which used the polynomial framework to predict the acceleration of
surrounding vehicles.

The focus of this chapter will be on [149], as it is my main first-author contribution
to the topic. Nevertheless, the additional spawned projects are also mentioned for
they deliver valuable conclusions and were a pleasure to contribute to.

Please also notice that the trajectories in this chapter are drawn as a function of
their position from the starting point while the evaluation are given in Average
Displacement Error, representing the actual error, comparing to the ground truth
signal.

4.2 Related Work

This work builds on the findings of a relatively large number of works from several
different fields. This section covers the main developments from those various fields.
We look at early works in trajectory prediction, more recent ML based models and
algorithms dedicated for vehicle trajectory prediction. We then branch to variance
estimation, multi-modal prediction and their relation to each other. We continue with
an overview of models which implement different levels of kinematic constraints
and finally conclude with the main works to address the intersection of polynomials
and neural networks.
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4.2.1 Pedestrian Trajectory Prediction

The social forces model As discussed in the previous section, trajectory prediction
predates the current ML resurgence. Early work in the field is often attributed to
[152], published as early as 1995. Helbing and Molnar defined a set of attractive
and repulsive forces as a physical system to describe pedestrians’ movement in a
crowd. An example for such an attractive force is the acceleration to walking velocity,
i.e., pedestrians are naturally drawn towards their comfortable walking speed. An
example for a repulsive force is the field around other pedestrians, meaning that
pedestrians would generally prefer to avoid collisions.

In order to properly work, the proposed simulation model needed a large crowd,
resulting in scenarios which resemble fluid dynamics. One could also argue that
the large amount of pedestrians reduces the search space to a small number of
plausible trajectories. But nevertheless, the resulting simulations appear empirically
feasible.

Over the years, the concept of a handcrafted framework for trajectory prediction
was advocated by works such as, for example, [154], [172] and [173].

The former looked at the use case of detecting emergencies in security footage. By
estimating the social forces between agents in a video, they looked for local regions
of abnormally large repulsive forces. These are then further observed as candidates
for panic situations, mass-escaping, etc.

Later, Leal-Taixé et al. proposed a graphical model for the interactions between
agents [172]. With each agent being a node in a graph, the intrinsic forces, e.g.,
acceleration to walking speed, were modelled by recursive potentials, similar to the
logic discussed in subsubsection 2.2.3. The extrinsic forces, also named interactive
forces, were modelled by the edges connecting the nodes. Such a graph also enables
the building of spontaneous clusters which are referred to as ‘collective activities’.

Finally, Choi and Savarese studied the grouping habits of pedestrians, recognising
that collision repulsive forces are irrelevant in close groups, walking together [173].
Thus, when multiple agents travel in proximity to each other over time and at a
similar velocity, they assume a group-definition and the collision avoidance term is
nullified.

ML based solutions One of the first works to address trajectory estimation using
NNs is [174] with the proposed Social LSTM model. Here, for each agent an
instance of the same NN is created with the past trajectory as an input and the future
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trajectory as the ground-truth output. For the interactions between the different
pedestrians, each agent instance is also provided the states of its neighbouring
agents. The challenge of a variable number of surrounding agents is solved by
assigning the agents to a grid and adding the activations of all agents in the same
grid. The process was dubbed ‘social pooling’ and leads to a fixed-size vector for
all agents at each step. The work has also shown that a blind LSTM, i.e., an LSTM
without context, is less performant than classical methods. Yet, once the social aspect
is added, it outperformed the references on almost all benchmarks.

The concept of social pooling was further developed in [175], which became one
of the more impactful papers in the field. It considers an LSTM based prediction
model which is learnt under the Generative Adverserial Network (GAN) framework
[176] for all agents in parallel. Here, the handcrafted series of forces is replaced
by a pooling mechanism which is designed to encode an interaction state for each
pedestrian, allowing the neural network to learn the relevant interactions during
training. The weight of each state is supported by the euclidean distance between
each agent and all other agents.

Finally, the ability to quickly scan through marginally important inputs and focus on
the more acute ones is not limited to humans. Following the 2017 introduction of
attention modules in neural networks [177], Sadeghian et al. covered the adaptation
of the technique to trajectory prediction [178]. They proposed a dual-attention
network, with one social attention which resembles the model proposed in [175] and
an additional environmental attention. Given the fact that pedestrians are confined
to the walkable parts of their environment, it is easy to imagine how accounting to
this environment would be beneficial. Sadeghian et al. have rectified their scenes
into a map-like grid which was then processes by a convolution module [178].
Utilising this additional piece of the puzzle, their model demonstrated a marginal
leap in performance on all benchmarks.

4.2.2 Vehicle Trajectory Prediction

Motivated by automotive applications and industrial resources, some of the research
was also diverted to prediction of vehicle trajectories. This domain enjoys the benefits
of a reduced dimensionality and degrees of freedom, as pedestrian movement is
not as regular as that of moving vehicles. At the same time, products which require
motorway trajectory anticipation are already in production while urban scenarios
are still under active research.
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A few of the more interesting works here are the aforementioned [165], [166] and
[167]. First, in [165] the different types of graph convolution were evaluated, both
on NGSIM as well as on the HighD dataset. The authors concluded that the best
performance for the task is achieved using a Graph Attention Network (GAT) with
residual connections and local connectivity, as opposed to a fully connected graph.

Another interesting finding was that the results on the HighD dataset were not
significantly affected by the model’s architecture. This was also true with the simple
fully connected model, which was trained as a reference. A further analysis of the
data supported the hypothesis that the trajectories in the dataset are not highly
dependent on interactions. Supporting the hypothesis is also the Constant Velocity
Model which presented a displacement error of 2.66 metres at five seconds. Meaning
that the simple "nothing changes" assumption performs better on HighD than the
best NGSIM model.

The work of Krasowski et al. described a pseudo reinforcement learning environment
on top of the HighD dataset [166]. Instead of enforcing the measured location of the
target agent, the model was allowed to drive as it deemed fit while a series of reward
terms defined its final learn-signal. First and foremost, the simulated agent should
have reached the position of the observed agent. Then, much like the attractive
and repulsive forces, a set of positive and negative reward terms was defined. For
example, a crash results in a strong negative reward, reaching the target position
means a strong positive reward, etc.

The logical introduction of attention models to the field could be found in [167].
In their model, Messaoud et al. have described an agent-wise LSTM, similar to the
one seen in [174]. Here, instead of an arbitrary pooling mechanism, the model was
trained to assign attention weights to all neighbouring agents [177].

A completely different strategy for consuming road data could be found in [179].
Here, instead of the sequential representation of movements, a binary mask was
created for each semantic class. These semantic classes were from the likes of lane
markers, vehicles, current ego agent, etc. Each mask makes for a channel in a
two-dimensional spatial image and all masks are concatenated along the channels
dimension. The multi-channel input signal is then processed by a CNN and passed
onwards to an RNN in the form of a state vector.
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4.2.3 Variance Estimation

The concept of predicting the parameters of a Gaussian distribution was first pub-
lished in [180] which coined the term Mixture Density Networks. However the tech
report seems to have been published almost 20 years ahead of its time. In 2013 the
field saw its first high impact work in [181]. The scope was to convert text into
handwriting using an LSTM. Since pencil strokes are not discrete though, there had
to be a naturally appearing randomness in the results.

The solution came in the form of a mixture of M bivariate Gaussians. Rather than
predicting the spatial coordinates of each point in the sequence, Graves predicted the
mean and standard deviation corresponding to a point. One would then sample from
the Gaussians to get the drawing position. This sort of sampling from a distribution
bridged the gap between discrete predictions and the desired natural randomness.

The concept of predicting the mean and variance of data points was since revisited
in various works from the likes of [174], [178], [182] and many others.

4.2.4 Multi-modality

Multi-modality addresses the uncertainty aspect in a broader sense than the variance
prediction. At a given point in time, an agent can take any number of actions,
leading to multiple possible outcomes. For example, one could accelerate or break,
overtake or keep following. Such decisions are motivated by acute reactions, e.g.,
emergency braking, as well as long term planning, e.g., following the planned
route to destination. Models are regarded as multi-modal if they allow for different,
plausible predictions given the same input. Additionally, variance estimation and
multi-modality predictions are complimentary methods. Meaning that each predicted
modality can include its own estimated variance.

Traditionally, there have been a few main model designs which support multi-model
predictions. First, multi-headed networks. I.e., networks with multiple output layers,
each predicting a different modality. One of the earlier representations of this class
of algorithms is brought in [158]. It proposed multiple predictions for each input
signal. The final loss was dominated by the most reliable prediction w.r.t the ground
truth label. Interestingly enough, Rupprecht et al. presented appealing results on
various tasks from object classification to pose estimation. Yet, they did not assess
their performance on trajectory prediction.

90 Chapter 4 Polynomial Predictions as a Strong Regulariser



The extension to behaviour understanding was presented in [159]. This work of
Cui et al. used the same concept on their unpublished data and showed visually
appealing results. The work has also coined the term ‘min of k’ which has been used
ever since to describe the procedure of predicting k times on the same input while
only using the best prediction for the training signal.

An alternative to the ‘min of k’ algorithm was proposed in [155]. Instead of using the
ground truth labels during training to pick the best modality, the labels were used as
an input to the model, conditioning it on a desired modality. The main advantage of
this method is that one can query the model for certain plausible futures. Example
queries could be imagined as "what would a lane change to the left look like?" or
"simulate a braking scenario". This ability to examine specific modalities is helpful
in various applications. E.g., an Adaptive Cruise Control (ACC) system which needs
to ensure a sufficient braking distance at any given time. Nevertheless, it also limits
the types of learned modalities to a predefined set of classes.

Another class of models utilises generative models, which by design include a
stochastic term. By doing so, the need for multiple prediction heads is made
obsolete. In GANs [176] the variation comes from the sampled noise while the
randomness in Varational Auto Encoders (VAEs) [183] originates from the random
sampling of the predicted mean and standard deviation. In terms of losses and
target modalities, both architectures inherently support both of the aforementioned
strategies.

Finally, consider the class of occupancy grid maps. Here, instead of an agent-wise
trajectory prediction, the models are trained to predict a heat map of the different
agents on a grid map of an arbitrary resolution. The grid map is designed to
correspond to the temporal dimension and cover future discrete offsets in time. By
using a positional distribution, the model can predict multiple modalities simply by
dividing the probability along several grid cells. Thus the multi-modality is made
an inherent property of the model. This class of works is represented by works like
[184], [185] and also our group’s [186] and [168]. An example for such a grid map
is provided in Figure 4.1.

4.2.5 Kinematic Constraints

While focusing on the best representation of surrounding context, addressing the
nature of the outputs was left uncharted. The vast majority of works in the field
discuss a novel input-crunching mechanism, followed by a state-of-the-art backbone
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Fig. 4.1: An example scene, created using the algorithm of [168]. The map of the drivable
area is used to discourage invalid predictions. The agents are represented in blue
while the trajectory predictions are shown in black.

architecture which outputs a set of two-dimensional coordinates, representing the
predicted future trajectory of the target object. There exists however an additional,
significantly smaller strain of works. These works assume the premise that predict-
ing coordinates is redundant as it diverts model capacity to re-learning the well
studied rules of physics. By incorporating this prior knowledge into the model, the
redundancy is reduced to the variable parts of the movement.

At first glimpse, developing a sound kinematic model of a car might sound infeasible.
One would not just have to consider the trivial variables like heading angle and
acceleration, but also rather factors like the wheel base, power curves of the motor,
wheel slip, etc. These factors are well considered and explained in [187].

Luckily, a study was presented in [188], which covered the performance difference of
different levels of model complexity. It was established that while the full kinematic
models do perform better than the simple bicycle model, the increase in performance
is often irrelevant for common driving manoeuvres.

The work of Cui et al. has integrated the bicycle model into a neural network [156].
They did so by predicting the future velocity, heading angle, longitudinal acceleration
and the steering angle, on top of the future Cartesian coordinates.

A different approach was taken in [157], where the kinematic model was used for
encoding the input measurements, rather than the predictions.
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The above-referenced works demonstrate the potential of a simple kinematic model
for trajectory prediction. Nevertheless, they all resolve to temporally discrete predic-
tions for naturally continuous systems. The work of [189] presented the planning of
offline flight trajectory, for airborne drones. It utilises the continuous and smooth
nature of three-dimensional curves to create offline trajectory plans of a varying
level of aggressiveness.

4.2.6 Polynomial Predictions

In this chapter, we aim at combining both strategies to reach a continuous and
kinematically motivated model. We propose a novel formulation for an ad-hoc,
architecture-independent output layer which directly outputs polynomials. The
concept is a simplified online variation of [189] for a kinematic system for trajectory
prediction. Nevertheless, unlike the aforementioned works, the polynomials are a
relaxed kinematic constraint. Instead of explicitly developing loss signals for the
velocity and acceleration, these are represented as derivatives of the position, see
discussion in Subsection 4.4.1.

While being the first to predict polynomial trajectories, the concept of predicting
coefficients was discussed before. Amongst the first works in the field, one can find
[190]. It covered a series of experiments for predicting sparse polynomials from an
experimental perspective. The idea was to explore and better understand the nature
of neural networks and their convergence, rather than to propose an application or
a solution to a problem. The prediction of ego agent movement polynomials was
presented in [191]. By better modelling the movement of the camera, Pérez-Rúa
et al. were able to improve several video related tasks, like video stabilisation and
optical flow. Finally, the usage of polynomials as an inter-layer activation function
was discussed in [192]. The work claimed that such an activation function improves
the expressibility of the model, leading to visually appealing results on a wide variety
of visual generative tasks.

4.3 Motivation

Our main concern with the prior art covered in Subsection 4.2.2 regarded the
over-fitting potential of the predicted trajectories. Traditionally, the common art
architecture involves a high-dimensional model, trained to predict fixed temporal
offsets as a set of Cartesian coordinates. While the problem of over-fitting is well
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documented and addressed in the literature [55, pp.108-113], the idea of over-
fitting the output is broadly unattended. This hypothesis was tested using a simple
experiment. Two models with an identical backbone and two different output layers
were trained

• The first model was trained on two fixed offsets (anchors), one at 2.5 seconds
and another at 5 seconds.

• The second model was trained on fixed offsets at 0.2 second steps up to 5
seconds.

Both models were trained and evaluated on the NGSIM dataset [162] until conver-
gence, using the same train/test split and the same hyper-parameters like learning
rate, optimiser, etc.

The models were then evaluated in a 0.1 seconds resolution up to 5 seconds into
the future. Figure 4.2a confirmed our intuition. It shows that for the same model,
with only the randomness of the predicted offsets as a difference, the fixed offsets
variant, ‘2 Anchors’, clearly over-fits its target offsets. Its prediction has a relatively
small displacement error on its fixed offsets and significantly worse performance
between the anchors. While this experiment also proposes a solution, namely
training on more offsets in ‘25 Anchors’, it also raises the question of possible further
improvement.

(a) The effects of the random anchoring scheme. (b) Test set performance of the different configu-
rations

Fig. 4.2: Left: evaluating the random anchoring scheme. Even with as little as 2 anchors
the polynomial accuracies exceed the 25 fixed anchors. Notice that the 2 anchors
model slightly over-fits the 2.5 second offset and scores there better than the
corresponding 25 anchors model.
Right: the results with 5 and 25 anchors per trajectory. For a given number of
anchors, the polynomial prediction models outperform the classical coordinates.
From [149].
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Fig. 4.3: Axis-wise visualisation of a random prediction from the test set.
Right: coordinates prediction.
Left: polynomial prediction.
The top and bottom rows show the lateral and longitudinal axes, respectively. No-
tice how the polynomial prediction results in smoother and less jagged trajectories.
From [149].

We furthermore looked at the trajectories as predicted by common architectures.
Figure 4.3 shows the axis-wise predictions of our model in the Cartesian configura-
tion. One can clearly see jittery trajectories, which, comparing to the given ground
truth trajectories, do not appear very natural. We attribute the observation to the
tendency of neural networks to demonstrate a limited regression resolution. This
tendency was established as early as 1998 in [193]. It stated that although the
commonly used bandwidth of 32 bit allows for a high prediction resolution, it is
often unused by the network.

The matter of regression precision is easily explained by looking at the weight of the
loss signals. Consider the toy example of regression to the value of 1. While the 32 bit
floating point value range supports a scale as low as 10−38, a value differentiation
on such a small scale has a negligible effect on the final loss value. The effect
is further magnified when considering that modern neural networks incorporate
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millions of neurons. The magnitude and direction of the final loss signal is thus an
averaged compromise over all units. The vanishing gradients towards the target
value is depicted in Figure 4.4a. Also notice the similarity of using the cross entropy
loss function on an entire image while there is only a handful of relevant pixels as
discussed in Subsection 2.4.1.

With the results from the experiments in this sections, we set to explore the effects
of polynomial trajectories on neural networks.

4.4 A Novel Output Layer for Continuous Functions

The concept of polynomial trajectories is simple. Instead of predicting an array of
coordinates, it is possible to directly predict the polynomial coefficients, correspond-
ing to an agent’s respective trajectory. Training such a polynomial model requires an
entire framework which makes for a significant part of this work’s contribution.

Formally, an arbitrary neural network, fbaseline(·), which comprises an arbitrary
number of arbitrary layers. For the temporally coherent nature of the trajectory
sequences, we resort to the recurrent GRU layers. However, by only adjusting the
output layer, this work becomes agnostic to its backbone architecture. Thus, other
types of layers, e.g., fully connected or convolutional, are equally supported.

4.4.1 Layer Definition

One common way to predict trajectories is

fbaseline(·) = [x1, y1, x2, y2, . . . , xn, yn]. (4.1)

A set of n Cartesian coordinates which represent the course of a target agent’s future
movement, see Figure 4.5a. The exact temporal offsets are hence a hyper-parameter
of the model and are fixed by design. For example, consider a model with pre-
selected offsets of 10, 20, 30 and 40 frames. The model, fbaseline(·), will predict four
coordinates. Assuming the common frame-rate of 10 FPS, the points will represent
10/10 = 1, 20/10 = 2, 3 and 4 seconds into the future, respectively.

Even in the kinematically justified class of models, the scheme is not significantly
different. For example, in [156] the acceleration, steering and velocity are predicted
at fixed offsets in the future.
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(a) Precision illustration (b) Bias illustration

Fig. 4.4: Left: A visualisation of the loss of a single parameter regression to 1.0. Used is
the common Squared Error loss, also known as (aka) l2 loss. The marked values
are the loss corresponding to the input values [0.25, 1.3, 0.75, 1.13]. Notice how
the three values closest to 1.0 result in very small gradient values. These values
only have a minimal effect when considered as a part of a model with millions of
parameters.
Right: An illustration of the effect of the bias coefficient on an arbitrary function.
Notice how the bias enables the predicted function to neatly separate class a from
class b.

Notice that the coordinate system is mostly target-centric. I.e., it progresses with the
target agent and changes at each time step such that the origin is always the current
position of the predicted agent. While requiring additional post-processing to project
all predictions back to the ego’s coordinate system, it correctly teaches the model
that the trajectory is not a function of distance to the ego vehicle. Additionally, by
simulating each agent as the target agent, one can drastically increase the size of
the dataset.

In this work, we propose to adjust the output to predict

fours(·) = {A,B}
= {[a1, . . . , adx ], [b1, . . . , bdy ]}.

(4.2)

The omission of a0 and b0 in discussed in Subsection 4.4.2. Here, fours references the
model presented in this chapter, dx and dy represent the degrees of the polynomials
for the x axis and the y axis, respectively, see Figure 4.5b. The sets A ∈ Rdx and
B ∈ Rdy are the predicted coefficients which parameterise two polynomial functions,
one for each spatial axis. Combined, these polynomials represent the course of the
trajectory of a given agent, as a function of time t, given throughout the rest of this
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(a) Cartesian coordinates prediction (b) Polynomial prediction

Fig. 4.5: Left: An illustration of the common prediction of Cartesian coordinates
Right: Our polynomial prediction layer. Notice that the depicted points along the
polynomial trajectory are arbitrary while the Cartesian offsets are fixed.

chapter in seconds. The polynomial for the x axis, parameterised by aj is defined
as

x(t|A) =
dx∑

j=1
ajt

j . (4.3)

The definition of y(t|B) is analogous.

The linear combination of coefficients with a temporal offset to derive a position is,
similar to [156], kinematically motivated.

• The zeroth degree is referred to as the bias dimension and is thoroughly
discussed in the next section.

• The first degree stands for a variable of the position over time, i.e., it represents
the velocity.

• The second degree corresponds to metre over squared second, i.e., the acceler-
ation.

• The third degree is called jerk.

• The fourth degree is called snap.

Finally, combining the aforementioned considerations means that our model outputs
the parameters of two functions, one for each spatial axis. These functions jointly
represent the future trajectory of a given target agent as a function of time. This is
illustrated in Figure 4.5b.
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In the derivative work, [171], we established that the spatial domain is not the only
option for polynomial predictions. The work, which I supported with discussions
and ideas, extended the scope to predicting the development of the acceleration and
steering angle curves over time.

4.4.2 Bias

Under the polynomial definition, the zeroth coefficient, e.g., a0 or b0, assumes the
role of the scalar. The machine learning term for this zeroth element is ‘bias’ [63,
p.227]. A term which earned its name by being an input-independent offset to the
decision line, represented by each perceptron. Figure 4.4b illustrates the effect of the
bias term on the classification line. However, this very offset poses a contradiction
in the case of trajectory prediction. Recalling that our coordinate system is set with
its origin at the target agent, see Subsection 4.4.1, an offsetting parameter would
inherently contracting this property.

4.4.3 Our Proposed Polynomial Training Scheme

The benefits of the predicted coefficients are a twofold. First, the predicted trajec-
tories are smooth and more realistic. Second, it opens the hatch for a powerful
training scheme. This training scheme is the focus in the rest of this section.

It is opened with the random anchoring scheme which is the most significant module
in our framework. Then the natural loss weighting is covered, a label selection
logic which focuses the training on the more challenging parts of the trajectories.
Sanity forcing backwards propagate the prediction to the input signal, acting as an
additional regulariser. Finally, coefficients regularisation and scaling are used to
stabilise the training and accelerate convergence.

Random Anchor Selection To address the over-fitting issue recognised in Sec-
tion 4.3, one could look at increasing the number of anchor (label) points. However,
this would assign the same importance to the trivial offsets, directly following the
current position, as to the more difficult ones, further out in the future. This follows
the same easy versus hard samples, discussed in Section 2.4. Additionally, evaluating
all frame-wise offsets is redundant and computationally tedious.

We tackle these unfortunate properties by introducing a novel random anchoring
approach. For each training iteration, a target temporal offset is drawn at random
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and used to fetch the corresponding label. The process is roughly inspired by
stochastic sampling [194], a sort of temporal Monte Carlo sampling. The following
paragraphs explain the scheme in detail.

In order to properly train a model, one needs to reliably direct it towards the desired
target function. Here, this function is the future trajectory of the target agent. The
learning is achieved by repeatedly sampling positions from the observed trajectory,
using the randomly drawn offsets, and adjusting the model’s weights accordingly.
With classical training algorithms, i.e., training with fixed offsets, only the same fixed
points along the trajectory are sampled. In contrast, using our random anchoring
scheme promises to eventually sample the entire length of the target function.

Consequently, we noticed that a single offset per sample is not enough for optimal
training and have thus introduced additional anchors, T in total. First, the maximal
offset oT is drawn from the uniform range U(omin ∈ N, omax ∈ N). Whereas omin

and omax are hyper-parameters of our training scheme. Their role is merely to define
the range of the uniform random sampling. Notice that these hyper-parameters
are strongly dependent on the dataset’s frame rate and are further discussed in the
following part of Section 4.4.3.

Using the drawn offset, the rest of the offsets are computed such that

[o1, o2, . . . , oT ] =
[
⌈oT

1
T
⌉, ⌈oT

2
T
⌉, . . . , ⌈oT

T

T
⌉
]
. (4.4)

The labels for trajectory prediction tasks are derived from the fact that an object is
tracked over time. Since the observed position of a vehicle over the course of the
track is a part of the collected data, the measurements from further along the track
could be regarded as the labels for training.

The drawn offsets [o1, o2, . . . , oT ] are then used as indices. For example, consider
the illustrated track in Figure 4.6, observed over the course of 120 frames. The
entire observed track, S0:120, is represented by the blue trajectory line. We define
an additional hyper-parameter, jref , which sets the division of the entire sequence
into an input and an output part. The fiftieth frame, jref = 50 (S50), is called the
reference frame as it references a scenario in which it is the current frame. The first
51 frames (S0:51), shown in orange, are used as the input.

Considering the rest of the sequence, i.e., S50:120, the indices [25, 50] are drawn
according to our random anchoring scheme. These mean that the labels, L, for the
current training iteration are taken from S25+jref

= S75 and S50+jref
= S100, shown

in purple. Possibly confusing is the fact the Sjref
appears both in the input sequence
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as well as the output sequence. This follows from the design decision to consider all
unseen indices, while the smallest possible value of o1 is 1.

Fig. 4.6: An illustration of the input and output selection from a track. The target agent is
currently at frame iref = 50. The current frame is concatenated with its preceding
50 frames to create an input sequence of length 51 frames. Frame oT = 50
was drawn at random, meaning that the first label is taken from frame index
jref + oT = 50 + 50 = 100. For T = 2, there is an additional intermediate label,
to further support the learning signal. This second label is taken from index
jref + oT

1/T = 50 + 50 ∗ 1/2 = 75. Since the entire track was recorded and due to
causality, the ‘future’ position of the agent is already known and could therefore
be used as a label.

Having both the random offsets, as well as their respective spatial positions, the
training algorithm could be finalised. The first step is to convert the frame indices
to temporal offsets. The conversion requires the frame rate which is 10 FPS for the
NGSIM dataset. Knowing this the conversion means computing the frame index by
the frame rate, e.g., oT/F P S. For this section’s toy example, the prediction points
25/10 = 2.5 and 50/10 = 5 seconds from the current time step are derived. These
values are then used to compose the temporal vector, e.g., [51, 52, 53], which is used
to evaluate the polynomials for the x axis coordinates, X, and the y axis coordinates,
Y , following Equation 4.3. We can now use the regression loss of choice to evaluate
the loss and calculate the gradients. For example, consider the Euclidean loss, also
known as the Mean Squared Error (MSE) [55, p.106]

LMSE({X,Y }, L) =
∑T

j=1(Lj,x −Xj)2 + (Lj,y − Yj)2

T
. (4.5)

Here, Lj,x refers to the x part of the label j. The entire algorithm is listed in
Algorithm 1 and depicted in Figure 4.7.

Natural Loss Weighting The additional similarity to Monte Carlo sampling comes
from our range selection. Monte Carlo sampling is often used to approximate an
unknown distribution. It does so by generating more samples which are likely to
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Algorithm 1 Our proposed polynomial training scheme with random anchoring

Require: S ▷ Observed track
Require: T ▷ Number of labels
A,B ← fours(S[0 : 51]) ▷ Predict poly. coefficients following Equation 4.2
oT ← random_int(50)
O ← [⌈oT

1
T ⌉, ⌈oT

2
T ⌉, . . . , ⌈oT

T
T ⌉] ▷ Anchor indices following Equation 4.4

L← S[O] ▷ Query the sequence at the offsets ‘O‘ for the labels

tx ←




(o1/10)1 . . . (o1/10)dx

...
(oT/10)1 . . . (oT/10)dx


 ▷ Create the temporal vectors

ty ←




(o1/10)1 . . . (o1/10)dy

...
(oT/10)1 . . . (oT/10)dy




X ← x(tx|A) ▷ Predict for both axes
Y ← y(ty|B)
L ← LMSE({X,Y }, L) ▷ Compute the loss, following Equation 4.5

reside within the distribution than out of it, based on the evaluation of previously
drawn samples. Considering trajectories, it means that a sampling scheme is pre-
ferred which favours temporal offsets with a larger error. Yet, unlike the classical use
case for Monte Carlo and as could be seen in Figure 4.2, the displacement error of
trajectories grows along the temporal axis. This matches the common expectation.
The larger the prediction offset is, the less linear, and thus more complicated, the
extrapolation becomes. Considering a car on the motorway, predicting its position
0.5 seconds into the future could often be trivially achieved by a linear extrapolation.
In fact, in [174] a simple linear extrapolation was used as a reference baseline for
the evaluation. The mean final displacement error at 4.8 seconds was merely ∼ 50 %
worse than the SotA.

To decrease the exposure to easier samples, the sampling range is defined as

oT = U(⌈0.75M⌉, ⌈1.25M⌉). (4.6)

With M being the maximal predicted offset. E.g., For a prediction task of 50 frames
into the future, an offset between 38 and 63 frames is uniformly selected.

The advantage for this sampling scheme is that the loss is focused on the more
relevant areas of the target function. Similar to Subsection 2.4.2, this resembles
the weighing scheme of [89]. We recognise the harder samples at the model-design
level and inherently steer the learning process towards them.
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Fig. 4.7: A visualisation of the main aspects of our polynomial training pipeline. First, an
input matrix with the ego as well as neighbouring agents is processed by the neural
network to output axis-wise, polynomial trajectories. Then, random frame offsets
are drawn, here 24 and 48. The polynomials are then sampled at those offsets,
resulting in Cartesian coordinates. The coordinates are then evaluated against a
measured ground-truth and an arbitrary loss function provide the learn signal to
the network. Best viewed in colour. The input variables follow the definition in
Subsection 4.5.1.
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Sanity Forcing In the subsequent publication of Spata et al., an extension was
considered to the anchoring scheme [170]. This extension, which considers the
domain of object tracking, recognises that the polynomial loss also supports the
beneficial property of sanity forcing. Instead of evaluating the predicted polynomials
on the future trajectory only, one could go further and sample negative temporal
offsets. That is, making sure that for t < 0 the respective observation, i.e., input
signal, is recovered.

The benefits of such a learning signal are threefold.

• First, the amount of training data is artificially increased.

• Second, the model is directly trained to extract the input trajectory. In archi-
tectures like the one proposed in [179] this is especially important, since the
observed trajectory is only implicitly given in the form of a binary image.

• Finally, the model is directly encouraged to learn that the future trajectory is
merely the not yet observed part of the already seen trajectory. I.e., continuity
and temporal consistency are explicitly enforced.

Equation 4.4 is thus revised to its final form of

[o1, o2, . . . , o2T ] =
[
⌈oT
−T
T
⌉, . . . , ⌈oT

−1
T
⌉, ⌈oT

1
T
⌉, . . . , ⌈oT

T

T
⌉
]
. (4.7)

Coefficients Scaling and Regularisation Throughout the experiments leading to
this work’s proposed algorithm, we have developed two numerical tricks to normalise
the learning signal and direct the network in the desired direction.

The first trick exploits the nature of motorway traffic to generally head forwards. A
property which is used to direct the network towards convergence at the first few
epochs. The signal is an l2 regulariser of an increasing weight to the predicted coef-
ficients. I.e., the larger the degree of the coefficient, the stronger its regularisation
factor becomes. For example, the regularisation for the x axis, rx is represented by

rx =
dx∑

j=1
2j−1|aj |. (4.8)

With rx assuming the regularisation value which is then added to the final loss
term. The scaler 2 was selected by manual hyper parameter optimisation. Such a
regulariser leads to a strong learning signal towards linear trajectories which are a
reliable initial hypothesis in motion understanding.
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Second, we follow the work of Bernardo et al. It established that common gradient
based learning is not well suited for predicting different orders of magnitude [193].
As the scale of the variables increases with their degree, we expect the predicted
coefficients to decrease accordingly. This property is incorporated into the model in
a similar manner to the regularisation term. An exponential scaling factor is added
to the model’s outputs, extending the definition of Equation 4.3.

x(t|A) =
dx∑

j=1
aj10−jtj . (4.9)

By upscaling the larger degree coefficients, the network is encouraged to keep them
small, leaning towards linearity. Since the higher coefficients have a significant
effect on the curvature, a minor change in value suffices for representing common
motorway manoeuvres, e.g., lane change. This corresponds to the precision aspect
in the coordinates model, discussed in Section 4.3. Here as well, the scalers were
manually determined during development such that the predicted coefficients are
normalised to the range [−10, 10].

As a concrete example, one can regard a lane change event four seconds in the
future. This translates to a predicted lateral offset of three metres in four seconds.
Assuming this translation is only represented by the highest degree coefficient, one
gets y(4|B) = 3 = 44b4. Solving for b4 results in b4 = 0.01172. Assuming the same
manoeuvre is strictly linear leads to y(4|B) = 3 = 41b1 and b1 = 0.75. Since both
coefficients are subjected to the same loss value, they should have the same scale.
They are thus scaled by a factor of 10 for b1 and 1,000 for b4. As the trajectory is
composed of four degrees of coefficients, the actual values are even smaller, resulting
in an additional order of magnitude to the scalers.

4.4.4 Novel Polynomial Variance Estimation

In addition to the adjustments to the actual trajectories, we also discuss an extension
to the variance prediction framework. Variance estimation acts as an indicator for the
quality of the prediction. It is useful for downstream applications which can use it to
understand the reliability of the prediction in real-time. So far, the common variance
estimation framework only regarded the prediction of fixed coordinates. Here, we
cover the extension of the framework to support our polynomial representation.

Adherently, please notice that this section refers to variance prediction while actually
predicting the standard deviation (σ). The reason is anchored in the terminology
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coined in [181]. Since the mapping between the values is constant, the terms are
abused and used interchangeably.

Variance for Coordinates

In Subsection 4.2.3, the work of Graves was mentioned as the first incorporation
of a distribution predicting framework to the very architecture of a neural network
[181]. It proposed a network for generation of hand writings and since pen strokes
are constantly varying, a factor of randomness in the prediction was required.

We consider a slightly simplified version of the mathematical derivations proposed
in [181]. In the following the parts which are irrelevant to this work are omitted
and the notation is unified with the one introduced in preceding sections.

The sought randomness is achieved by predicting a series of bivariate Gaussians
which are combined and sampled to get the final coordinates of the stroke. The
neural network is defined as

f(St−51:t) = (µt, σt, ρt). (4.10)

The definition follows the common notation, meaning f(·) is neural network, St−51:t

is the input signal, t ∈ N is the temporal index, µt ∈ R2, σt ∈ R2, ρt ∈ R are the
mean, standard deviation and correlation, respectively. Whereas each variable is a
two-dimensional vector, for both spatial axes.

The standard deviation is furthermore passed through the exponential function, ex

or exp(x), to ensure positivity. The correlation is passed through the hyperbolic
tangents function to enforce the range of (−1, 1).

The probability density function of the next coordinates (xt+1, yt+1), given the
current input St−51:t is then

Pr(xt+1, yt+1|St−51:t) = N (xt+1, yt+1|µt, σt, ρt). (4.11)

The definition is additionally dependent on

N (x, y|µ, σ, ρ) = 1
2πσ1σ2

√
1− ρ2 exp

( −Z
2(1− ρ2)

)
(4.12)
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as well as on

Z = (x− µ1)2

σ2
1

+ (y − µ2)2

σ2
2

− 2ρ(x− µ1)(y − µ2)
σ1σ2

. (4.13)

When (xt+1, yt+1|St−51:t) is known, i.e., during training, one can minimise the
negative log likelihood of the observed trajectory to accommodate learning.

Variance for Polynomial Coefficients

In the polynomial representation, the network predicts coefficients instead of posi-
tion points, thus the above formulation can not be directly applied. Maintaining the
logic of the variance framework, µ represents the mean of the coefficients instead of
the positional mean. The definition of σ is matched accordingly, i.e., the estimated
variance w.r.t the coefficients themselves can now be predicted. However both the
application as well as the loss function require the variance w.r.t the spatial coordi-
nates. The predicted uncertainty should thus be propagated from the coefficients to
the trajectory.

We start by assuming that the axis-wise coefficients are non-correlated. The simplest
example for this assumption is the constant velocity case, where only the first-degree
coefficient is larger than zero. Moreover, accounting for the full covariance matrix
renders the loss function computationally intractable, setting a strong practical
motivation for the approximation.

The second assumption is required to use the variation estimation framework as
defined in [181]. It states that the coefficients follow a normal distribution.

Under both assumptions, the covariance matrix for the longitudinal axis, x is denoted
as

cov(A) =




σ2
a1 0 . . . 0
0 σ2

a2 . . . 0
. . . . . . . . . 0
0 0 0 σ2

adx



. (4.14)
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The polynomial evaluation is a mere linear combination of the coefficients with the
input variable from Equation 4.9. The linear case of uncertainty propagation could
thus be used to get the variance from the covariance. It is defined as

var(x(t|A)) = IT cov(A)I⊤
T , (4.15)

where IT = [t1, t2, . . . , tdx ] follows the definition in Algorithm 1. Hence, the poly-
nomial form of the variance estimation consists of the coefficient-wise variance
predictions. These are propagated to the spatial domain and evaluated similar to
Equation 4.9. The adjusted form of Equation 4.9 for the variance values is hence

σ2
x(t|A) =

dx∑

j=1
10−2jσ2

aj
t2j . (4.16)

Finally, while the definitions throughout this section focus on the longitudinal axis,
the formulations for the lateral axis are analogous.

4.5 Evaluation

With the scope of this project set to motorway scenarios, we used the NGSIM dataset
for the evaluation [162]. Due to the industrial affiliation, we were prevented from
using other, more extensive datasets from the likes of HighD [164]. The dataset
covers two motorway segments in the USA, observed by static traffic control cameras
which record at 10 Hz. The collected data was manually filtered to include three
times of day: dawn, daylight and dusk. It was manually labelled and segmented
such that each track is 200 frames long, i.e., 20 seconds. There is also a proposed
train to test split at a 3:1 ratio.

While the test set was left at its original size of ∼ 3, 400 tracks, the training set was
filtered to reduce the inherent redundancy which characterises a straight motorway.
The amount of constant velocity, straight driving tracks was randomly halved,
resulting in a training set of ∼ 7, 500 tracks. Straight driving was defined as the
lack of change in the assigned lane. Constant velocity was considered as remaining
within the range of ±10 % of the track’s average velocity.

The results are reported either in Average Displacement Error (ADE) or in Root
Mean Squared Error (RMSE) in metres, whereas lower values correspond to more
accurate trajectories. The time is named in seconds.
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4.5.1 Architecture Design

For the evaluation of our polynomial prediction layer, a network architecture had to
be selected. The requirements dictate a model which could be trained in reasonable
time, uses off-the-shelf layers and at the same time delivers near SotA results, in
order to make the results comparable with other works.

For the matter of multi-modality, we experimented with the ‘min of k’ class of meth-
ods [159]. However, while the method showed visually and empirically appealing
results, it also lead to a new challenge. Rather than properly addressing multi-
modality, the ‘min of k’ scheme exchanges the difficulty of multi-modal predictions
for the challenge of modality selection. While this practice is acceptable during
training, during testing it becomes problematic.

The option of conditioning the model on the ground truth modality [155] is also
problematic, as it translates to telling the network what it is evaluated on. Imag-
ine training a model to predict three modalities of three possible crossings of an
intersection: turning left, going straight and turning right. There will always be a
modality which predicts a right turn, rendering a comparison with single-modality
algorithms obsolete. Moreover, one could artificially increase the potential accuracy
by predicting a larger number of modalities. Evidentially, while [158] discussed the
benefits of 3− 13 modalities, in [195] the authors already consider as much as 3,342
modes.

Phan-Minh et al. discussed adding a modality classification output layer to their
model [195]. Since the ground truth modality is known, using it as a parallel
classification task is a good option. Unfortunately, this only partially solves the
modality selection issue. Since this chapter mainly concerns the quality of the
predicted trajectories, it was desired to isolate the evaluation and not skew the
results through possible classification errors.

In the absence of better options, we resolved to using the architecture proposed in
[155] which conditions the decoder on the desired modality, generating only a single
prediction. In contrast to other works, modest three modalities were considered: a
lane change to the right, keeping straight and a lane change to the left. The elegance
of such a framework comes from accounting for multi-modality while not forcing it
on the model. It consists of a one-hot vector which is provided to the model as an
input, telling it which modality to predict. By conditioning the model on the ground
truth modality, one enjoys the benefits of multi-modality while not having to directly
handle the modality selection itself. Notice that the model is always conditioned
on the desired, i.e., correct, modality. It allows the network to learn the concept of
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different modalities while allowing us to focus the evaluation on the quality of the
trajectories.

Our model follows the encoder-decoder, GRU based architecture, initially proposed
in [196]. All three encoder layers and two decoder layers use 32 neurons with
hyperbolic tangent (tanh) as their activation function. For an immediate reference
two versions of this model are considered, one with the common coordinates and
variance based output and the other with our proposed polynomial output layers.
I.e., both configurations are equipped with four fully connected output layers, two
for the spatial representation and two for their respective variance values.

The input sequence S0:51 is composed from the target agent and the spatially next
eight neighbours. The neighbours are selected to include three agents from the
immediate right lane, another three from the immediate left, the leading vehicle
and the following one. I.e., each matrix row represents a position relative to the
ego agent. Rows without respective agents are set to zero. The sorting of the left
and right agents is interleaved, such that both leading and following vehicles are
used. The result is a 9 × 51 matrix in which each cell is defined as sj

t ∈ S0:51 =
[δxj

t , δy
j
t , v

j
t , α

j
t , θ

j
t , l

j
t , ψ

j
t ].

The agents are indexed using j and the time step index is t. Instead of the world
coordinates, we normalise the position to position increments [δxj

t , δy
j
t ] = [xj

t , y
j
t ]−

[xj−1
t , yj−1

t ]. The first time step is artificially set as the origin. The other dimensions
are the velocity, acceleration, heading angle and, finally, the polar coordinates to the
target agent, respectively.

4.5.2 Ablation Study

We start the evaluation with an ablation study of the different aspects of the frame-
work. Notice that the variance prediction can only be visually inspected, as it is an
error estimation of the model for its own performance. Ideally the variance would
be zero all throughout and the mean, i.e., the actual prediction, would always be
accurate.

Random Anchoring

As a first evaluation step we examine the effect of the random anchoring scheme.
The main challenge of this experiment was the evaluation of intermediate time
steps in the coordinates-predicting configuration. We have therefore decided to
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(a) Lateral predictions (b) Longitudinal predictions

Fig. 4.8: An axis-wise visualisation of a random test sample. One can see the smoother
and more reliable matching to the ground truth trajectory by the polynomial
model. In contrast the rough estimation of the coordinates model is also visible. It
presents a partially unrealistic movement along the lateral axis. As expected from
a motorway only dataset, the longitudinal movement is close to constant velocity.
This property is clearly reflected by the predictions of both models.

approximate the coordinates configuration using a polynomial network which was
trained on fixed anchors.

First, the validity of the previously discussed assumptions is evaluated. This was
achieved by training the same model backbone with both output configurations on 5
and 25 anchors. Recalling Figure 4.2b, one can see the configuration-wise improve-
ment with the number of anchors. Additionally, for a given number of anchors, the
polynomial configuration outperforms its coordinates counterpart. Finally, with the
built-in temporal coherence of the polynomial model, one can see that the 5 anchors
polynomial configuration is roughly on par with the 25 anchors coordinates one. The
hypothesis of a fair comparison is thus validated and we continue with evaluating
the effects of randomness as discussed in Subsection 4.4.3.

The over-fitting of the model configuration with two fixed anchors (Figure 4.2a)
was already discussed in Section 4.3. As a reference, a fixed anchor model with
25 anchors is also provided. Here again, one can clearly see that the over-fitting
decreases with the number of anchors. Last, the configuration with 2 random
anchors is provided and exhibits marginally better performance even comparing to
the 25 anchors model. We conclude that the randomness plays an important role in
generalisation. This matches the observation from [197] which discussed an image
denoising framework. In the absence of information about the type of noise in the
input, i.e., randomness w.r.t noise, their model learnt to denoise all types of images,
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regardless of their noise. That is, the randomness has proven a strong regulariser,
outperforming other noise-specific methods.

We have further picked a validation sample at random and visualised the respective
axis-wise prediction. The results are shown in Figure 4.8. Unlike the other figures
in this chapter, the figure shows the course of a track over time and not the error.
Here as well, one sees that the polynomial lateral prediction surpasses that of the
coordinates network. We attribute the jittery ground-truth trajectory to measurement
and acquisition noise.

Extrapolation

One of the best ways to evaluate generalisation is by extrapolating the outputs.
Extrapolation does not only evaluate the model on unseen samples, it rather does
so while increasing the complexity. In the case of trajectory prediction, it means
predicting for a longer temporal horizon than the one used for training.

The experiment setup included a polynomial and a coordinates model, each trained
with four anchor points up to an offset of four seconds. The converged models
were then tested on up to six seconds in the future, i.e., 150 % of the trained
prediction range. While the polynomial functions are inherently flexible in terms of
prediction offsets, the coordinates model required an additional step. Using Numpy’s
polyfit function [198], we fitted two curves to the original prediction. A linear
curve, resembling a Kalman filter progression [199], and a fourth order polynomial,
matching our model’s predictions.

The results are visualised in Figure 4.9a and show how the fourth order coordinates
extrapolation keeps track for about half a second before completely diverging from
the ground-truth. An unexpected observation came from the linear extrapolation
which roughly matches the error rate of the polynomial trajectory. Picking a single
sample from the evaluation set, at random, and analysing its axis-wise performance
provided a possible explanation.

Figure 4.9b and Figure 4.9c show the position over time. Unlike most figures in this
chapter, they do not represent an error, but rather the mere course of the track. One
can see that the polynomial trajectory provides a significantly better match for lateral
axis. Yet, at the same time, the scale of both axes is not comparable. For example,
1 % error on the lateral axis at 3 seconds would correspond to 0.002 metres, the same
error would correspond to 0.3 metres on the longitudinal axis. I.e., the longitudinal
axis dominates the loss by two orders of magnitude. Since the forwards movement
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(a) Overall performance in ADE (b) Lateral prediction, single
sample, in position

(c) Longitudinal prediction, sin-
gle sample, in position

Fig. 4.9: Both models were trained on up to four seconds and evaluated on up to six seconds.
To extrapolate the coordinates prediction, two functions were fitted, a linear and a
fourth degree polynomial. The trajectory polynomials provide a more accurate,
smooth match to the observed trajectory.

Offset
(sec)

Coords
baseline

Poly
(ours)

CS-LSTM (M)
[155]

MFP-1
[200]

1 0.43 0.55 0.62 0.54
2 1.00 0.93 1.27 1.16
3 1.72 1.64 2.09 1.90
4 2.76 2.64 3.10 2.78
5 3.98 3.85 4.37 3.83

Tab. 4.1: Results in RMSE of coordinates vs. polynomial training on NGSIM. For reference,
two other SotA results are provided.

in the NGSIM dataset is mostly linear, the linear extrapolation option manages to
score well in the overall performance. This matches the observation from [174]
where acceptable baseline results using a Kalman tracker were demonstrated.

4.5.3 Quantitative Results

Finally, we evaluated our method against two other SotA models, the ‘CS-LSTM (M)’
model with social pooling from [155] and the ‘MFP-1’ model with a multimodal RNN
from [200]. The results, presented in Table 4.1, are based on their respective publi-
cations and were not re-implemented. Here as well, one sees that the polynomial
prediction layer leads to a favourable outperformance.
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4.6 Limitations and Extensions

The work presented in this chapter supports the main claim of this dissertation
that the integration of prior knowledge into a neural architecture acts as a good
regulariser, leading to performance improvements and improved generalisation.
Nevertheless, we recognised some limitations, leaving a room for future develop-
ment.

First and foremost is the maximum representable complexity. While vehicle trajecto-
ries along a motorway are well represented using fourth-degree polynomials, the
reality becomes more complicated in urban scenarios. Furthermore, pedestrians
require a higher degree of freedom for common walking scenarios.

Consider the example of a person waiting and pacing outside of a building. They
might wait and stand around for a bit, then walk in one direction, turn around and
walk back. Predicting spatial polynomials to represent such a movement is often
more complicated than predicting polynomials for the velocity or acceleration of
the same agent. This is depicted in Figure 4.10, which shows how the velocity and
acceleration curves are less complex than the positional curves. This is also one of
the main claims in our consecutive publication [171].

Another possible solution would be to use splines. For example, one could use
natural cubic splines. These are a class of splines in which each spline consists of
multiple polynomials for different ranges. To enforce continuity, the splines are
forced to satisfy a smooth transition condition as well as continuous first and second
derivatives. Moreover, the model could predict the transition offsets between the
splines. A trajectory would thus have the form

Sjref :jref +mM =





f0(t) = x(t|A0), y(t|B0) 0 : m0

f1(t) = x(t|A1), y(t|B1) m0 : m1
...

...

fM−1(t) = x(t|AM−1), y(t|BM−1) mM−1 :∞

. (4.17)

Here M ∈ N represents the number of segments, m0:M−1 ∈ R represent the tran-
sition offsets (knots), in seconds, from one polynomial to the other. A0:M−1 and
B0:M−1 represent the predicted polynomial coefficients for the respective segment.
Following this proposed formulation M would be a hyper-parameter of the model.

114 Chapter 4 Polynomial Predictions as a Strong Regulariser



Fig. 4.10: An example pedestrian track from [153] of a pacing person waiting outside of a
building. The person is marked by a green bounding box and shown at frames
[0, 25, 100, 125, 175], corresponding to the horizontal dimension of all graphs.
The top two graphs show the pedestrian’s axis-wise position. The middle row
shows the axis-wise velocity. The bottom row shows the axis-wise acceleration.
All values are smoothed to account for acquisition and labelling noise.

To maintain smoothness, the layer would also have to enforce

f0(m0) = f1(m0)
f0(m0)′ = f1(m0)′

f0(m0)′′ = f1(m0)′′

f1(m1) = f2(m1)
f1(m1)′ = f2(m1)′

f1(m1)′′ = f2(m1)′′

...
fM−2(M − 1) = fM−1(M − 1)
fM−2(M − 1)′ = fM−1(M − 1)′

fM−2(M − 1)′′ = fM−1(M − 1)′′

. (4.18)
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I.e., for each knot the the zeroth, the first and the second derivatives of both the
current and the consecutive polynomials must match.

The second shortcoming is that we only tested our algorithm in the two-dimensional
domain. An expansion to the height dimension would benefit trajectory planning for
aerial vehicles from the likes of drones and other Unmanned Aerial Vehicles (UAVs).
This could be seen as an extension to [189].

Finally, as seen in Figure 4.3, the predicted trajectories cannot represent micro-
movements along the smooth trajectory. This is, however, not necessarily a limitation
of the polynomial trajectories, as the majority of applications only regards such
movements as noise to be ignored. Yet one could imagine some applications which
would care about such movements. For example, an algorithm for cut-in predictions
might be able to predict a cut-in event a few frames earlier, just by seeing such
micro-movement artefacts.

4.7 Conclusions

The previous chapters focused on a single aspect of optimisation. Chapter 2 explored
an improvement to the cross entropy loss function, making it more suitable for
spatially oriented tasks like semantic segmentation. In Chapter 3, we dissected the
convolution operation itself, optimising the processing effort for embedded systems.
This chapter, on the contrary, has discussed a plurality of methods, each with its own
contribution to the quality of predicted trajectories.

The key observation leading to this work is the temporally incoherent trajectories
predict by the prior art. By outputting a series of spatial coordinates, we showed
how the inherent continuity of trajectories is indirectly broken. This manifests itself
as jittery predictions which over-fit their target offsets.

The main enabler of our solution is the transition from coordinates prediction to the
prediction of polynomial coefficient. These coefficients parameterise polynomials of
position as a function of time. It was established that this type of an output format
is by itself enough to increase generalisation and performance.

Consequentially, the polynomials allow for further improvements to the training
scheme. The most significant of which has proven to be the random anchoring
scheme. By testing the model on randomly drawn temporal offsets, it is forced to
learn the movement rather than a series of fixed offsets. This improved generalisation
was mostly demonstrated by evaluating the model on time steps which are 1.5 times
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larger than the maximal offset during training. Even for these extended offsets, good
results were achieved, especially comparing to the coordinates baseline.

Supporting adjustments are the natural loss weighting, the sanity check and the
coefficient scaling. All of which stabilise the training process and have proven
valuable tools.

Finally, the commonly predicted variance estimation was extended and adjusted to
the polynomial form. The variance improves the information gain and allows for a
more informed decision making in downstream applications.

With the main weakness of the model being the performance in the first second,
enough room is left for future improvement. For this we proposed to explore
the option of splines. Splines are more flexible than their counterparts and, if
successfully implemented, they could improve our temporally coherent framework
even further.
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Conclusions 5
This work was written to exist in two planes. First, the algorithmic plane. Over the
course of its three chapters, we proposed three new schemes and frameworks which
improve the performance of neural network algorithms for automotive applications.
Second, the methodic plane. Each of our proposed algorithms was constructed
under a common denominator, the integration of a-priori world knowledge into
SotA models.

5.1 Algorithmic Conclusions

In Chapter 2 we covered the potential of structured loss functions. The reasons for
the incompatibility of classical classification loss functions to the field of pixel-wise
classification, i.e., semantic segmentation, were discussed and evaluated. We showed
how by accounting for these inherent structures one could not only drastically
improve runtime performance, but also the segmentation quality. Our Spatio-focal
Loss outperformed the reference algorithms, as well as the baseline, in handling
small objects. The utilisation of the same logic as a binary filtering mask lead to a
runtime reduction by a factor of ∼ 5 while maintaining a results-agreement rate of
99.61 % with the baseline.

In Chapter 3, we analysed the reasons which cause neural networks run slower
on embedded hardware. We established that the vanilla convolution layer causes
multiple bottlenecks on Texas Instruments’ TDA3 board. The results were then used
to propose a novel convolution block architecture which approximates the classical
layer. It does so in a more streamlined manner while solving most bottlenecks.
Furthermore, compared to other optimised architectures, it delivers a higher value
per computation with better accuracies. Additionally, it surpasses even the baseline’s
accuracy when inflated to its size.

Finally, in Chapter 4, we proposed to predict trajectories in the form of temporally
coherent polynomials. We showed the multiple benefits of this representation. It
generalised better, predicted more accurate trajectories and more realistically looking
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ones. Moreover the polynomial representation was demonstrated to be more flexible
and extrapolate better to unseen offsets.

5.2 Methodic Conclusions

The exact scope of this work was not set in advance. It has rather emerged during
the course of the programme and had manifested itself in a similar way across
the different projects. Regardless of the domain, most current SotA models were
developed to be as general and non-restricted as possible. An attribute which does
have a certain appeal, as reproducibility and applicability to similar domains are
generally a desirable feature. Yet these algorithms often overshadow years worth of
research and accumulated experience.

Our proposed spatio-focal loss, discussed in Section 2.4, is based on the same
concepts as the 1998 bilateral filter [80]. It accounts not only for the spatial distance
between two pixels, but rather also their colour, i.e., intensity, agreement.

Our EffNet block from Chapter 3 utilises the very nature of convolution. It states
that given a symmetric kernel, a multi-dimensional convolution equals its respective
single-dimensional decomposition [134, p.101]. The successful reintroduction of
this property to CNNs was the main novelty of this work.

Finally, the polynomial output layer of Chapter 4 is vaguely based on the well
established bicycle model. Luckily, works in this domain have not completely
neglected their kinematic background, as covered in Subsection 4.2.5.

The methodic conclusions of this work, ultimately aims to inspire future works to
acknowledge the valuable knowledge gained, before but also since the resurrection
of ML. It does not argue in any way against ML. It is a truly disruptive technology
which has not yet reached its full maturity and potential. Nevertheless, domain
adaptations and inter-domain inspiration are evidentially a good way to improve
models.
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List of Acronyms

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance System

ADE Average Displacement Error

AEB Automatic Emergency Breaking

AI Artificial Intelligence

aka also known as

ANN Artificial Neural Network

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processing Unit

CRF Conditional Random Field

DL Deep Learning

DNN Deep Neural Network

DSP Digital Signal Processor

FCN Fully Convolutional Network

FFT Fast Fourier Transform

FLOP Floating Point Operation

FPS Frames per Second

GAN Generative Adverserial Network

GAT Graph Attention Network

GCN Graph Neural Network

GPU Graphics Processing Unit
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GRU Gated Recurrent Units

GTSRB German Traffic Sign Recognition Benchmark

HMM Hidden Markov Model

IoU Intersection over Union

LSTM Long Short Term Memory

ML Machine Learning

MLP Multi Layer Perceptron

MNIST Modified National Institute of Standards and Technology

MSE Mean Squared Error

NLP Natural Language Processing

NN Neural Network

RAM Random Access Memory

ReLU Rectifying Linear Unit

RGB red, green and blue

RMSE Root Mean Squared Error

RNN Recurrent Neural Networks

ROI Region of Interest

SoC System on a Chip

SotA state-of-the-art

SSD Solid State Drive

TTS Text to Speech

UAV Unmanned Aerial Vehicle

VAE Varational Auto Encoder

VOC Visual Object Classes

WHO World Health Organisation

w.r.t with respect to

122 Chapter 5 Conclusions



dw depth-wise

s stride

mp max pooling

gc grouped convolutions

dm depth multiplier

FC Fully Connected
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