
Data-driven Integration Models

for Commercial Cloud Storage

Application and Evaluation in the ATLAS Experiment

Tobias Wegner

A thesis presented for the degree of

Doktor der Naturwissenschaften

Faculty of Mathematics and Natural Sciences

University of Wuppertal

October 8, 2022

Abstract

The issue of storing large quantities of data is already challenging for research insti-

tutions, and will become increasingly difficult over the next decade as more data are

generated in addition to the data already requiring storage. CERN, as the largest

particle physics laboratory globally, faces a particularly critical problem in this re-

gard and, with specific reference to the ATLAS experiment, this is complicated

by the upcoming implementation of the High-Luminosity Large Hadron Collider

upgrade in 2027. In order to address this issue, novel models for the optimal utilisa-

tion of already existing storage systems as well as the integration of further storage

solutions are required. However, this is hindered by the absence of sufficient test

beds, considering the scale of the problem, as well as an overall lack of research

related to alternative storage models at the exabyte scale.

The primary aim of this thesis was to extend the research in this area towards new

models and commercial cloud storage. This thesis therefore explored the combina-

tion of the Data Carousel model, which is currently being evaluated at CERN, and

the Hot/Cold Storage model, which is planned to moderate certain disadvantages

of the Data Carousel model. The GACS simulation tool was developed throughout

this thesis and then used for the evaluation of the new model combination. The

validation of GACS showed a difference between real world data and simulated data

of at most 3.3%. Together, the new model and GACS provides a foundation for

further investigation of cost-effective and efficient data storage methods at exabyte

scale by current R&D programmes at CERN.

Acknowledgements

The work presented in this thesis was continuously supported by the distributed

computing and data management groups of the ATLAS Collaboration, and we thank

the collaboration for its support and cooperation. Furthermore, the department of

physics at the University of Wuppertal and Prof. Dr. Peer Ueberholz from the

Hochschule Niederrhein significantly supported this work with frequent discussions

and regular reviews. I am also very grateful for the immense support of my CERN

supervisor Mario Lassnig, who was always available to offer help and support for

numerous topics. Also, special thanks to Alice Willison for a thorough language

review and to Christian Albrecht for valuable comments concerning the content of

this thesis. I also want to thank my parents for their continuous mental support

and patience. This work has been sponsored by the Wolfgang Gentner Programme

of the German Federal Ministry of Education and Research (grant no. 13E18CHA).

v

Declaration

I declare that this thesis has been written by myself and has not been submitted, in

whole or in part, towards any previous degree application or professional qualifica-

tion. Except for where indicated by reference or acknowledgement, I confirm that

the work presented in this thesis is my own.

I agree to the presence of audience members who are not members of the examination

board.

Wuppertal,

T. Wegner

vii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Outline . 5

2 Background 7

2.1 ATLAS Computing Fundamentals . 7

2.1.1 ATLAS Data . 7

2.1.2 Worldwide LHC Computing Grid 11

2.1.3 ATLAS Distributed Computing 14

2.2 Commercial Clouds . 17

2.2.1 Overview . 18

2.2.2 Google Cloud Platform . 19

2.2.3 Related Cloud Projects . 22

2.3 Related Models . 23

2.3.1 Data Carousel model . 24

2.3.2 Hot/Cold Storage model . 25

2.4 Related Simulation Tools . 26

2.4.1 Requirements . 27

2.4.2 Considered Simulation Tools 28

2.4.3 Discussion . 31

3 Simulation Tool Architecture 35

3.1 Overview . 35

3.1.1 Architecture Requirements . 36

3.1.2 Simulation Types . 37

3.2 Architecture Description . 38

3.2.1 Modules . 39

3.2.2 Interfaces . 46

3.2.3 Common Concepts . 48

ix

Contents

3.3 Discussion of the Architecture . 51

3.3.1 Event Size . 51

3.3.2 Simplifications . 52

3.3.3 Output Module . 53

4 Simulation Tool Implementation 55

4.1 Overview . 55

4.1.1 Software Dependencies . 56

4.1.2 Design Patterns . 57

4.1.3 Simulation Configuration System 58

4.1.4 Simulation Run Time . 63

4.2 Module Implementations . 65

4.2.1 Infrastructure Module . 66

4.2.2 Cloud Module . 69

4.2.3 Simulation Module . 72

4.2.4 Output Module . 78

4.3 Simulation Tool Validation . 80

4.3.1 Simulation Setup . 81

4.3.2 Parameters calculation and configuration 81

4.3.3 Evaluation . 97

4.4 General Scalability Considerations . 100

4.5 Run time scalability of the validation 105

5 HCDC model 109

5.1 Overview . 109

5.1.1 Motivation . 109

5.1.2 Model Variations . 110

5.2 Simulation Implementation . 114

5.2.1 Infrastructure Configuration 115

5.2.2 Transfer Generator Implemenntation 117

5.2.3 Used Parameters . 120

5.2.4 Performance . 123

5.3 Evaluation of the Results . 123

5.3.1 Methodology . 124

5.3.2 Evaluation Implementation 125

5.3.3 Results . 127

6 Conclusion 135

x

List of Figures

1.1 Estimated disk and tape storage requirements for the next decade . . 3

2.1 Persistent ATLAS data formats and their transformations 9

2.2 Data derivation and volume reduction 10

2.3 WLCG hierarchy structure . 12

2.4 ADC resource organisation . 14

2.5 Schematic of the Google Cloud Architecture 20

2.6 Hot/Cold storage model . 25

3.1 GACS modules . 39

3.2 GACS infrastructure module composition 41

3.3 Simulation event loop transitioning 45

3.4 Simulation interface architecture . 47

4.1 Simulation run time overview . 64

4.2 UML class diagram of the infrastructure module 66

4.3 Sequence diagram showing the creation of file and replica objects . . 69

4.4 UML class diagram of the cloud module 70

4.5 Flow chart illustrating the cloud storage cost tracking 71

4.6 UML class diagram of the simulation module 73

4.7 UML class diagram of the event rescheduling 74

4.8 Flow chart of the default transfer manager 76

4.9 UML class diagram of the output module 77

4.10 Flow chart outlining the process of writing output values 78

4.11 Infrastructure setup of the simulation validation 83

4.12 File size distribution comparison . 85

4.13 Number of transfers distribution from the monitoring data 90

4.14 Throughput distribution from the monitoring data 95

4.15 Summed daily simulated traffic . 99

4.16 Traffic comparison of real world and simulated data 100

4.17 Mean simulated transfer duration per day 101

4.18 Transfer duration comparison of real world and simulated data 102

xi

List of Figures

4.19 First run time scalability test . 106

4.20 Second run time scalability test . 107

5.1 Schematic of a HCDC model variation 113

5.2 Storage and network configuration of the implemented HCDC model 115

5.3 State transitioning of jobs during production phase. 118

5.4 HCDC simulation output data model 126

5.5 HCDC simulation results: storage filling 128

5.6 HCDC simulation results: waiting time distribution 130

5.7 HCDC simulation results: cold storage filling 131

xii

List of Tables

2.1 Tape and disk volume by data format 17

2.2 Simulation feature comparison . 32

4.1 Simulation validation parameters . 82

4.2 RSS scores of different distribution functions 87

4.3 Simulation validation results . 98

5.1 Storage mappings resulting in different HCDC variations 112

5.2 HCDC simulation parameters . 120

5.3 HCDC simulation network configuration 122

5.4 Different storage limits per configuration. 124

5.5 HCDC simulation results: number of jobs 127

5.6 HCDC simulation results: transferred volume 132

5.7 HCDC simulation results: cloud storage costs 133

xiii

Acronyms

ADC ATLAS Distributed Computing. 14, 36, 81

AOD Analysis Object Data. 10–12, 17, 24, 110

DAOD Derived Analysis Object Data. 11, 17

DDM Distributed Data Management. 14, 15, 24

DID Data Identifier. 16

DQ2 Don Quijote 2. 16

ESD Event Summary Data. 10

FTS File Transfer Service. 16, 22, 48

GACS Grid And Cloud Simulation. 5, 21, 22, 26, 28, 32–40, 42–45, 48, 49, 52,

54–57, 69, 75, 80, 81, 100, 101, 103, 104, 109, 114, 135, 136, 138, 139

GCE Google Compute Engine. 20, 112

GCP Google Cloud Platform. 19, 22, 23, 43, 69–72, 123, 133

GCS Google Cloud Storage. 19–23, 43, 112, 115–120, 122, 124, 127–129, 131–134,

136–139

HCDC Hot/Cold Data Carousel. 4–7, 23, 27, 35, 38, 109–111, 114–121, 123, 124,

130, 134–139

HL-LHC High Luminosity Large Hadron Collider. 1–3

HLT High Level Trigger. 8, 12

HS06 HEP-SPEC06. 15

IaaS Infrastructure as a Service. 18, 19

xv

Acronyms

JSON JavaScript Object Notation. 47, 56–58, 63–65, 70, 73, 75, 89

LHC Large Hadron Collider. 1, 3, 8, 11, 38

MC Monte Carlo. 8, 9

MIPS Million Instructions Per Second. 27, 28, 31

MTU Maximum Transmission Unit. 28, 32

PaaS Platform as a Service. 18

PanDA Production and Distributed Analysis. 15

ProdSys Production System. 15, 24

QoS Quality of Service. 13, 25, 26, 112

RAW RAW data / detector output format. 8–12, 17, 24

RDO RAW Data Object. 9, 10, 17

RSE Rucio Storage Element. 16

SaaS Software as a Service. 18

SSD solid state drive. 13

STL Standard Template Library. 56, 101, 117

VM Virtual Machine. 18, 19, 29, 30, 32, 33

WFMS Workflow Management System. 14

WLCG Worldwide LHC Computing Grid. 11, 13, 14, 16, 17, 22, 40, 41, 43, 48, 52,

106, 112, 134, 137–139

XML Extensible Markup Language. 57

xvi

1 Introduction

1.1 Context

The Large Hadron Collider (LHC) [BC+04; EB08] at CERN is a particle accelera-

tor with a circumference of 26.7km, designed to collide proton-proton or heavy ion

beams. The LHC employs two beam pipes, in which bunches of particles are accel-

erated nearly to the speed of light. Particle bunches in each pipe are accelerated

counter-directionally to allow for collisions at specific interaction points built into

the LHC. There are multiple detectors for various experiments located at interaction

points along the LHC.

The operation of the LHC follows a long-term schedule. The major items in the

schedule are runs and long shutdowns. During runs, the LHC is accelerating and

colliding particles. During long shutdowns, the LHC and the detectors are main-

tained and upgraded. LHC operation started with run 1 in late 2009, followed by

long shutdown 1 in early 2013. Run 2 started in 2015 and finished with the start

of long shutdown 2 in 2018. The LHC resumed operation with run 3 in 2021. Typ-

ically, the hardware as well as the software environments and computing models

experience significant modifications during long shutdowns.

An extensive upgrade of the LHC and its detectors is planned to start being used

with run 4 in 2027. The upgrade is referred to as High Luminosity Large Hadron

Collider (HL-LHC) [AB+17]. The HL-LHC upgrade will significantly increase the

number of collisions, and thus increase the expected amount of data generated by

the detectors.

One of the largest experiments at CERN is the ATLAS experiment [ATL08]. The

centre of the experiment is the ATLAS detector, which is one of the detectors at-

tached to the LHC. The ATLAS detector is a common-purpose detector used for

a diversity of research topics. In general, the objective is to detect interactions of

subatomic particles with different modules of the detector. The measurement of

these interactions is stored as the output data of the detector. The largest amount

of data delivered by the detector is produced during particle collisions at the LHC

interaction point in the centre of the detector. However, the detector is also able to

1

1.2. MOTIVATION

measure interactions with particles from other sources, e.g., data can be taken from

measurements of cosmic ray interactions.

Furthermore, there is a full software stack to create simulated detector data. The

data are created in multiple steps. First, collision data are generated using statis-

tical methods. Second, the collision data are processed by the detector simulation.

Third, the output of the simulation is transformed into a format similar to the real

detector output.

From the creation to the analysis, ATLAS physics data pass through various trans-

formations and formats. The transformations are used for two main reasons. First,

to obtain pre-processed data that are already prepared for analysis. This pre-

processing comprises common operations that are required prior to all types of

analysis. Second, to split the data in smaller, derived data parts, while keeping the

amount of redundant information low. However, the amount of data generated in the

scope of the ATLAS experiment is growing quickly. With the start of HL-LHC, the

data rate of the detector is expected to increase by at least an order of magnitude.

The rate at which collisions are stored is expected to increase from approximately

1.4 kHZ to 10 kHZ. The average data volume of a single collision is estimated to

increase from approximately 1.6 MB to 4.4 MB [ATL20].

1.2 Motivation

The expected rapid increase of the data rate challenges the existing computing and

data model. In order to continue properly storing, processing, and distributing the

data, a large increase of storage, compute, and network resources would be required.

ATLAS Collaboration [ATL20] evaluates three types of research and development

approaches. (i) The baseline scenario covers the minimal set of improvements. It

represents the case of continuing largely the same way as in run 2. It only assumes

the adoption of current, concrete improvements planned for run 3. (ii) The con-

servative R&D scenario assumes the successful adoption of numerous improvements

that are still being researched, such as the Data Carousel model, lossy compression,

and using fast simulation for most of the detector simulation. (iii) The aggressive

R&D scenario is the most ambitious approach. It assumes the adoption of the most

recent research approaches, including new experimental data formats and numerous

ideas of porting parts of the ATLAS software to GPUs.

Figure 1.1 illustrates an estimation of the tape and disk storage requirements for

the next decade based on the three different research approaches. The left graph

2

1.2. MOTIVATION

Year

2020 2022 2024 2026 2028 2030 2032 2034

T
ap

e
S

to
ra

ge
 [E

B
]

1

2

3

4

5

6

7

8 =55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - Tape

Tier-1 Baseline
Tier-1 Conservative R&D
Tier-1 Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

Year

2020 2022 2024 2026 2028 2030 2032 2034

D
is

k
S

to
ra

ge
 [E

B
]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 =55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - Disk

Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

Figure 1.1: Estimated tape storage (left) and disk storage (right) requirements

in exabyte for the next decade, assuming the three different research

approaches. The solid black lines illustrate a predicted storage capacity

increase of 10% and 20%, respectively. [ATL20]

shows the required Tier 1 tape storage, i.e., the required tape storage of the largest

computing centres used by ATLAS. The right graph shows the overall required disk

storage. Disk storage as high-performance storage and tape storage as archival stor-

age provide the vast majority of storage available to ATLAS. The solid black lines

show a yearly storage capacity increase of 10% and 20% assuming a sustained bud-

get. The red triangles show the conservative approach under the assumption that

the LHC will allow an average of 200 interactions per proton-proton bunch crossing.

The computing conceptual design report [ATL20] concludes that “storage remains

the most difficult of the HL-LHC challenges“. Figure 1.1 shows that there will be

insufficient tape storage starting with the HL-LHC even with the aggressive usage

approach. Availability of free disk storage will be limited and most likely negatively

impact the performance of analyses. These reasons suggest increasing the research

on data management and storage strategies beyond the current models.

There are various ongoing researches related to the resource challenges induced by

the increasing data rate. One category of research focuses on topics about improv-

ing the information density of the different data formats. For example, this includes

new data compression techniques and further reducing redundant information. An-

other research category investigates alternative data management strategies and

storage models. For example, models that allow migrating more data to low-cost

storage without unduly reducing the computing performance. Other storage models

try moving the problem to the network by storing all data centrally. When data

from the central storage are required, it would be cropped to the minimum required

amount and transferred to the destination.

3

1.2. MOTIVATION

Another storage model that is being investigated integrates commercial cloud re-

sources in ATLAS. Most researches related to commercial clouds focus on utilising

computing resources and consider cloud storage and network resources only as utility

for the computing resources. However, commercial cloud storage provides various

advantages. An evaluation of different approaches integrating those resources in AT-

LAS is required to assemble advantages and disadvantages and to highlight possible

technical challenges.

Commercial cloud resources can be adapted in various ways. One of the primary ad-

vantages of commercial cloud resources is the flexible allocation and deallocation of

resources to a seemingly unlimited extent. Another advantage is that maintaining

and upgrading the hardware resources is the responsibility of the cloud provider.

Furthermore, the cost models are typically much more explicit and purely usage

based.

As mentioned above, one approach to face the upcoming storage challenge is the

migration of data to low-cost storage, such as tape storage. The Data Carousel

model implements this approach. The Data Carousel model assumes that certain

data are solely stored on tape storage. When the data are required for processing,

the data are transferred to a more performant storage, such as disk storage, and

processed. After processing, the data are deleted from the disk storage.

There are two main concerns about the Data Carousel model. First, tape storage

systems typically come with much higher access latency compared to disk storage

systems. Especially, random and concurrent data access significantly reduce the

tape storage performance. This makes the Data Carousel model preferably suitable

for workflows with predictable and infrequent data accesses. Second, assuming the

workflows are organised into predictable bulk processing campaigns, there must be

sufficient disk storage to hold the bulked data when processing them.

An approach to overcome these concerns is the Hot/Cold Storage model. The Hot/-

Cold Storage model introduces a cold storage layer between the tape storage and the

disk storage. The cold storage layer serves as cache for data that might be required

again. Depending on the workflow, the cold storage layer can alternatively be used

as buffer storage for predicted bulk data. The combination of the Data Carousel

model and the Hot/Cold Storage model is referred to as Hot/Cold Data Carousel

(HCDC) model. As part of this thesis, the implementation of the cold storage layer

with commercial cloud storage is investigated. This provides a flexible sized cache

layer, which enables various options to optimise for cost or performance. The in-

vestigated workflow is the production of derived data. In ATLAS this workflow

exists in both modes, the infrequent, bulked processing campaigns and the frequent,

4

1.3. OUTLINE

unpredictable continuous production.

This thesis discusses the following research questions:

• Using a tape storage system to implement a Data Carousel model for frequently

and unpredictably accessed data reduces the processing efficiency by at least

10%.

• Adding a cache-aware model to the tape storage based Data Carousel model

allows reducing the on-premises disk storage requirements to less than 5% of

the unique input volume without reducing the number of finished jobs by more

than 5%.

In this work, these research statements are explored by evaluating an approach to

implement the HCDC model into the currently effective ATLAS data flow. Another

focus of this thesis is the evaluation of the potential benefit of integrating commer-

cial cloud storage into ATLAS. For this reason, the HCDC model was considered to

include commercial cloud storage.

For the evaluation, the HCDC model was implemented in a simulation software. A

study of popular existing simulation tools was performed. This showed that most

of the existing tools are not up-to-date and not further maintained. The other sim-

ulations did not fully conform to the requirements of the required simulation. For

this reason, the Grid And Cloud Simulation (GACS) toolkit was developed. Com-

pared to existing simulation software, GACS aims at allowing the implementation

of models from a data management perspective.

Results of this thesis have been peer-reviewed and were published in [Weg+22].

In particular, this comprises the investigation and evaluation of the HCDC model

described in Chapter 5.

1.3 Outline

Chapter 2 starts with describing the fundamentals and related work required for this

thesis. The first part of the chapter explains the ATLAS computing topics includ-

ing the various data processing chains, data formats, and the organisation of the

distributed computing. The second part summarises information about commercial

clouds and related projects. The last part gives an overview of related simulation

frameworks.

Afterwards, Chapter 3 elaborates on the requirements for simulation software and

develops an architecture based on the requirements. The chapter ends with a dis-

cussion of the presented architecture.

5

1.3. OUTLINE

Chapter 4 specifies the implementation of the simulation architecture. The chapter

describes the primary parts, such as the used library dependencies, design patterns,

the configuration system, and the runtime. Furthermore, it describes the validation

of the correctness and defines the performance boundaries.

Subsequently, Chapter 5 describes the HCDC model, the implementation of the

model into the simulation and the evaluation of the results.

Chapter 6 concludes the results in respect to the research questions and derives

possible topics for future work from the conclusion.

6

2 Background

This chapter is organised in four sections. The first section describes the envi-

ronment and the basic elements for which the HCDC model was developed. This

includes the primary types of ATLAS data and their characteristics, the structure

of the distributed computing and storage resources, and the projects and systems

used to manage these resources.

The second section explains the basics of commercial cloud resources, with particu-

lar reference to Google, as this cloud was used throughout this thesis. In addition,

the section provide an overview of relevant research related to commercial cloud

resources.

The third section describes the Data Carousel model and the Hot/Cold Storage

model. These models are especially relevant since their combination - the HCDC

model - is simulated and evaluated throughout this thesis.

The last section of this chapter states the requirements to a simulation tool, lists var-

ious existing simulations toolkits, and finally discusses the architecture and features

of the existing simulation toolkits under consideration of the defined requirements.

2.1 ATLAS Computing Fundamentals

The first part of this section describes which types of data ATLAS uses, how the

data are structured, and how the data are processed. The second part describes the

structure of the resources used to store and process the data. The last part describes

the software that is used to organise and work with the data.

2.1.1 ATLAS Data

The vast majority of the storage space available to ATLAS is required to store

physics data originating from the detector or its simulation. The data generated by

the ATLAS detector are subsequently grouped in different layers. An event is the

basic unit of data taking, which contains the data of a single collision of particle

bunches. Events are collected in luminosity blocks. A luminosity block contains

events of approximately one minute of data taking. The events of a luminosity

7

2.1. ATLAS COMPUTING FUNDAMENTALS

block are considered to have the same detector conditions, such as the luminosity

[Aab+16]. The luminosity blocks generated by a single fill of the LHC are composed

to a run. A run typically contains up to 8 hours of data taking. Runs made un-

der similar conditions are grouped together in sub-periods. Sub-periods are further

grouped into periods. The last level of data grouping is the LHC run. Data grouped

in a LHC run contain the periods between two long shutdowns.

Particle bunches accelerated in the LHC are colliding inside the detector with a rate

of ≈ 40 MHz. The storage space required for an event is ≈ 1.6 MB [ATL10]. Stor-

ing all events would be an extremely challenging task and result in an unnecessary

amount of additional data. For this reason, a two level trigger system quickly esti-

mates for each event: whether to reject or keep it for further investigation. The first

level is implemented in custom hardware inside the detector and reduces the event

rate to ≈ 100 KHz. The second level, the High Level Trigger (HLT), is implemented

in software running on a computing farm close to the detector. The HLT further

reduces the event rate to ≈ 1 KHz. Events passing the HLT are written to persistent

storage and are further processed offline.

For accurate data processing, the conditions of the detector are required, e.g., the

alignment refers to the exact detector and beamspot position and the calibration

describes the background noise of the detector. These conditions are determined

and stored in the condition database.

As mentioned in Section 1.1, there is a full software stack generating simulated de-

tector data in three main steps. Being able to simulate measurements of the ATLAS

detector serves different purposes, of which the most important is - probably - to

produce data based on the theoretical understanding of the physical processes in

the detector. If this data leads to results similar to the data measured by the detec-

tor, it reinforces the correctness of the theoretical understanding of these processes.

Furthermore, a simulation eases the process of analysing the exact same event under

different conditions or with different properties.

In ATLAS, data or data transformations often contain either the term data or Monte

Carlo (MC) in their name. The term data indicates that the origin of the data is

the detector, while MC indicates that the data were generated computationally. For

example, the derivation of detector data is called data derivation and for simulated

data MC derivation. The same is done for the various data formats.

Figure 2.1 illustrates the various transformations and formats of ATLAS physics

data. The two origins of the data are given at the top of the graphic. Data from

the detector are directly stored in RAW data / detector output format (RAW) files

after passing the HLT.

8

2.1. ATLAS COMPUTING FUNDAMENTALS

EVNT

HITS

RDORAW

(ESD) + AOD

DAOD

Simulation

Digitisation

Reconstruction

Derivation

Analysis

SimulationDetector

NTUP

Event Generation

Figure 2.1: Schematic of the persistent data formats of ATLAS. Event generation

creates EVNT data. The simulation uses EVNT data as input, gener-

ates detector hits, and outputs HITS data. Digitisation is the process

of generating detector readout from HITS data. The readout is stored

in RDO data. AOD data are created during reconstruction from RDO

data of simulated events or RAW data from the detector. AOD data

are derived in different DAOD formats for the various physic analysis

groups.

The generation of simulated data is divided into three main steps, with the last step

creating data similar to RAW data. The first step is the event generation. The event

generation is the process of computationally generating data that describe collision

events. Typically, the approaches to generate events are based on MC algorithms.

The generated events are stored in the EVNT format.

The second step is the ATLAS detector simulation. The simulation uses the EVNT

data as input. The objective is to simulate the occurrence of collision events from

EVNT data in the detector. The simulation can be configured with different con-

figurations and detector conditions. The output of the simulation describes the

detection of subatomic particles hitting and interacting with various detector mod-

ules. The output is stored as data in the HITS format.

The last step is called digitisation. The digitisation uses data in HITS format to

generate data in the form of the detector readout, i.e., electrical signals of the detec-

tor components. The digitisation output is stored in the RAW Data Object (RDO)

9

2.1. ATLAS COMPUTING FUNDAMENTALS

Figure 2.2: Run-2 derivation production workflow. The Figure shows how data

data derivation allows reducing the data volume by adjusting the data

to different analysis topics. [ATL17a]

format. During the digitisation, trigger- and pileup effects are simulated and added

to the RDO data. Other than RAW data, RDO data are intermediate and not

archived because they can be reproduced.

The content of RAW data is referred to as byte-stream data. Byte-stream data

refers to the data representing the detector readout, e.g., the energies measured in

the different detector modules. Byte-stream data do not contain any higher level

information of the event such as, particle type, trajectories, or similar objects. Since

these high level information are required for all physics analyses, the RAW and RDO

data are processed and transformed by the reconstruction. As RDO data are inter-

mediate, they are typically created and reconstructed in one process [BB+14].

The reconstruction creates the required high level information and stores them in

the intermediate Event Summary Data (ESD). The ESD contain all information for

each event, including overhead and redundant information. Moreover, ESD are not

directly readable by the ROOT software framework [AB+09], which is a widely used

analysis tool. For these reasons, the data are further transformed and persistently

stored as Analysis Object Data (AOD). Within ATLAS, the actual data files are

referred to as AODs [BE+15]. The format of the content of an AOD is called xAOD.

The xAOD format is directly readable by ROOT.

Figure 2.2 shows that the data volume used for AOD production is in the order of

petabytes. AODs contain a great deal of information. However, not every analysis

requires all the information but only a selected set of information, e.g., only specific

events or only specific variables from the events. For this reason, AODs are further

10

2.1. ATLAS COMPUTING FUNDAMENTALS

derived into the Derived Analysis Object Data (DAOD) format.

Typically, three operations are applied to derive an AODs. Skimming removes whole

events based on the requirements of the physics topic. Thinning removes objects

within events. Slimming removes variables within specified objects of all events.

[ATL19]

A DAOD requires less storage, but different analyses require different DAOD for-

mats. The derivation of AODs allows reducing the volume to the terabyte scale for

each DAOD format. The DAOD formats are typically named after their analysis

topic. For example, SUSY for Supersymmetry searches, HIGGS for Higgs physics,

or TOP for Top-Quark physics.

Since the different DAOD formats are not disjoint, the various DAOD formats lead

to numerous duplicated events. Since Run-1 there were 179 different DAOD formats.

During Run-2 84 different DAOD formats were still in regular use. For Run-2, events

had averagely 10 duplicates in different DAOD formats [ATL19].

Analysis jobs analyse the event data and usually produce NTUP files, which store

the results in the form of ROOT ntuples.

Two to three times a year, reprocessing campaigns are performed. This means,

the majority of the AODs and DAODs are recreated from the RAW data. A repro-

cessing campaign might be required when conditions of the condition database were

improved or when a major update of the reconstruction and derivation software was

released.

2.1.2 Worldwide LHC Computing Grid

ATLAS and the other LHC experiments use resources of the Worldwide LHC Com-

puting Grid (WLCG) [BB+14] to store and process their data. The WLCG is

the largest computing grid in the world. A typical attribute of the grid-computing

paradigm is the heterogeneity of the combined resources. Another typical attribute

is that various institutions, groups, or individuals, provide resources to the grid while

keeping the authority and responsibility of the resources. The considered resources

provided by the WLCG are computing, storage, and network resources.

The resources of the WLCG are organised hierarchically in four layers (Tier 0 -

Tier 3). Figure 2.3 illustrates the four layers from the perspective of the ATLAS

experiment. In addition, it shows the connections between the layers and the typi-

cal objectives of each layer. The objectives for each tier were partly determined by

using monitoring data of 2018, except for archival. The objectives include job types

with either the most number of completed jobs or most consumed CPU time. For

example, analysis jobs consumed only a very small amount of CPU time at Tier 0,

11

2.1. ATLAS COMPUTING FUNDAMENTALS

HLT

Tier 0

Tier 1 Tier 1

Tier 2 Tier 2

RAW

RAW + AOD

Tier 3 Tier 3 Tier 3 Tier 3

Archival
Reconstruction
Simulation
Derivation
Analysis

Archival
Reconstruction
Event generation
Simulation
Derivation
Analysis

Event generation
Simulation
Reconstruction
Analysis

Event generation
Simulation
Analysis

Figure 2.3: The tiered hierarchy structure of the WLCG. Written on the left side

are the typical computing task types for each layer. The bold arrows

indicate the high-throughput network connections.

but they provided the second most number of completed jobs.

The CERN data centre is the Tier 0 and represents the top level of the hierarchy.

All ATLAS data from the HLT pass through the Tier 0. Resources from the Tier 0

are primary used for archiving and for reconstruction of the RAW data. The RAW

data and their AODs from the reconstruction are distributed from the Tier 0 to a

number (≈ 16) of large Tier 1 data centres.

Tier 1 centres have to guarantee data durability and serve as data archives. Com-

puting resources of Tier 1 centres are also used for reprocessing campaigns of the

RAW data. The smaller Tier 2 computing centres access the data at the Tier 1

centres.

Tier 2 centres are usually local universities and institutes in close geographical prox-

imity to a Tier 1 centre. Initially, Tier 2 centres were supposed to operate with a

single Tier 1 centre. Because of evolving network capabilities, ATLAS shifts away

from this approach and allows workflows among Tier 2 and multiple Tier 1 centres

based on network connectivity metrics [BB+14]. For full reprocessing campaigns,

Tier 2 centres are employed as well.

Typically, physicists run their analyses on Tier 3 resources. The Tier 3 layer com-

prises resources that are experiment-affiliated but do not have a computing pledge,

12

2.1. ATLAS COMPUTING FUNDAMENTALS

e.g., small clusters of a local institute or personal computers.

The WLCG provides the vast majority of storage space to ATLAS. There are three

main types of storage media to consider, which are disk storage arrays, magnetic

tape drives, and solid state drives (SSDs). Each storage media provides different

Quality of Service (QoS) attributes. The three most relevant QoS metrics for stor-

age are cost, performance, and reliability. In terms of the cost per volume ratio and

the performance for various workflows, disk storage is generally placed between tape

storage and SSD storage. However, tape and SSD storage are considered to be the

more reliable storage types. Tape storage provides the best cost per volume poten-

tial. On the other hand, tape storage comes with certain performance drawbacks,

e.g., larger access latencies. SSDs operate highly performant but also have a high

cost per volume ratio compared to the other storage types. For this reason, they

are typically only used as smaller cache or buffer storage.

Most of the persistent storage space available to ATLAS is implemented by disk and

tape storage. The difference between the work mode of these two storage technolo-

gies results in significant performance differences for certain operations. For exam-

ple, disks are typically permanently mounted in the corresponding storage system,

which avoids having a latency for mounting the medium. Especially in combination

with concurrent and parallel processes, these two properties of disk storage allow a

significantly reduced access latency compared to tape storage.

On the other hand, tape storage is based on magnetic tapes. Generally, a tape

is spooled around a reel build into a cartridge. The cartridges are held in a tape

storage library disconnected from the online storage system. This results in a chain

of operations to read or write data to a tape. Typically, a tape access operation is

firstly queued for some time to allow optimising the access pattern. Afterwards, the

required cartridge must be brought online by mounting it into the storage system.

This is often performed by robots that are build into the tape storage library. Af-

ter the cartridge was mounted, the tape must be wound to the required position.

Subsequently, the data can be read or written. Then, the tape is rewound to a

certain position. Finally, the cartridge gets unmounted and placed back in the tape

storage library. These operations can require time in the order of seconds, and thus

introduce a significant access latency. Since also the winding of the tape requires a

notable amount of time, tape storage typically performs worse for random accesses

or concurrent processes.

13

2.1. ATLAS COMPUTING FUNDAMENTALS

RC Site

ATLAS Site

Storage Element

PanDA Site PanDA ProdSys

User

ProdDB

Jobs

Jobs Jobs

Tasks

Tasks

...

Figure 2.4: Illustration of the different elements and systems in the resource or-

ganisation. User or groups generate jobs and tasks, which are resolved

by various systems and distributed to an ATLAS site.

2.1.3 ATLAS Distributed Computing

As outlined in Section 2.1.2, ATLAS uses highly distributed systems to store and

process data. The group of scientists responsible for developing, maintaining, and

operating the software that implements the distributed workflows is called ATLAS

Distributed Computing (ADC) [ATL17a]. ADC works on two major activities: the

Workflow Management System (WFMS) and the Distributed Data Management

(DDM) [ATL17b]. WFMS comprises projects related to components that allow

managing the workloads in the WLCG. DDM comprises projects that are related to

accessing and distributing data in the WLCG.

Various terms are used to logically structure the computing and storage resources

available to ATLAS. The different terms and their relation are illustrated in Figure

2.4. A resource centre (RC) site typically pools resources of a single computing

facility. An ATLAS site is associated to an RC site. An ATLAS site describes

the resources available to ATLAS and provides the domain for storage elements

and PanDA sites. A storage element allows the description of a storage area of an

ATLAS site, including the storage endpoint addresses. One storage element is asso-

ciated with exactly one ATLAS site, but an ATLAS site can have multiple storage

elements. In such a way, it is possible to create storage elements addressing storage

areas with different properties or for different purposes, e.g., each Tier 1 ATLAS

site has at least one storage element for disk storage and one storage element for

tape storage. A PanDA site addresses a pool of computing resources.

In the context of ADC, a job refers to the basic unit for a description of compu-

tational work that can be executed by a computing node in the WLCG. Typically,

these descriptions comprise information, such as the program to execute, the pa-

14

2.1. ATLAS COMPUTING FUNDAMENTALS

rameters for the program execution including required input data, and potentially

special hardware requirements. A composition of jobs is called a task. Tasks are

usually organised in task campaigns, e.g., reprocessing of a particular dataset with

new physics algorithms.

RC sites provide a number of job slots depending on the number of available com-

puting nodes. Similar to a storage element that allows describing a certain storage

area at a site, job queues are used to describe the computing resources of a site.

Jobs from a job queue get matched to job slots based on the properties of the job

and the job queue.

The Production and Distributed Analysis (PanDA) system is responsible for the

matching of jobs to job slots. However, the heterogeneity of resources in grid com-

puting makes it challenging to store and maintain detailed information of every

computing node. For this reason, the computing resources are not managed cen-

trally. A key concept of PanDA is implemented in the Pilot system, which bypasses

the requirement of a centralised management system.

All job queues providing computing resources have to register themselves at the

Harvester system. The Harvester distributes the Pilot software to the computing

nodes. The Pilot is executed on each computing node and investigates its hardware

and software capabilities. As part of this investigation, the HEP-SPEC06 (HS06)

benchmark is executed. The HS06 benchmark is based on a subset of the indus-

trial standard benchmark SPEC CPU 2006 [GS20]. The benchmark is executed to

receive the HS06-score for each node. The Pilot reports the collected information

including the score to the PanDA server and requests a suitable job. The PanDA

server uses the HS06-score as a metric for the computing power of the nodes.

As the Pilot receives a job, it reads the job options and prepares the execution of

the payload. The Pilot imports required dependencies and downloads the job input

data. After validating the input data, Pilot executes the payload and uploads the

output data of successfully finished jobs. The whole process is monitored by Pi-

lot and collected metrics, such as downloaded volume, download duration, memory

consumption, and execution time are sent to the corresponding monitoring system.

Furthermore, detailed logs of the Pilot and the used software components are up-

loaded.

The Production System (ProdSys) is an abstraction layer for the PanDA system. A

production team in ATLAS defines tasks in ProdSys, which are saved to ProdDB.

ProdSys is responsible for resolving the tasks into jobs and submitting the jobs to

PanDA.

A central aspect of the DDM project is the development and operation of the

15

2.1. ATLAS COMPUTING FUNDAMENTALS

Rucio [BB+19] software. Rucio is the successor of Don Quijote 2 (DQ2) [BC+08],

the previously used data management tool for ATLAS. Since its development, Rucio

has evolved as a modern scientific data management software, which is also being

evaluated, adapted, and extended by a broad spectrum of experiments in the scien-

tific community [BB+19].

All WLCG storage available to ATLAS is managed by Rucio. Thus, Rucio must al-

low cataloguing all ATLAS data and data structures. For this reason, Rucio employs

three levels of data grouping:

• A file as the description of a single data object that comprises all the metadata,

such as, file size, checksum, creation time.

• A dataset as a collection of files.

• A container as a collection of datasets or containers.

Each of those objects can be addressed by a Data Identifier (DID), which is unique

across all three data groups.

A file is a purely logical unit. The data described by a file can exist multiple times as

replica. To address an actual replica of a file, the information of the storage element

is required. Rucio uses an extra layer of abstraction for storage elements, which are

called Rucio Storage Element (RSE).

Another objective of Rucio is the management of data transfers. Rucio does not

implement transfers itself, but employs the transfer tool interface. For ATLAS and

the WLCG, this interface is implemented using the CERN File Transfer Service

(FTS) [AS+14]. FTS is a service provided by the CERN IT department that allows

scheduling and monitoring of data transfers in the WLCG.

The way Rucio creates transfers is by evaluating replication rules. Individuals or

systems using Rucio do not request transfers directly. Instead, they add rules to

Rucio that describe how data must be available. For example, a rule states that a

specific dataset must be available on RSEs with certain attributes, such as, a specific

country or all Tier 1 sites. Rucio resolves those rules, checks if the rules are met,

and submits transfers to FTS when necessary.

Furthermore, replication rules indicate the requirement of replicas. Replication rules

have an expiration time. Replica are not deleted as long as there is a rule that states

that a specific replica is required. If all rules on a replica were expired, the replica

can be deleted.

Beside transfers, there are downloads and uploads. The difference to transfers is

that the source and destination data of a transfer are both registered in Rucio. A

16

2.2. COMMERCIAL CLOUDS

Metric RAW AOD DAOD

Volume tape 113 PB 63 PB 6 PB

Volume disk 2 PB 64 PB 103 PB

No. Events 3.66 · 1011 3.63 · 1011 9.82 · 1011

Table 2.1: Share of used tape and disk storage by data format for all ATLAS data

as of July 2020.

download pulls data from the WLCG and the downloaded data are not managed

by Rucio. An upload works the other way around; unmanaged data are placed in

the WLCG and must be registered in Rucio. Moreover, downloads and uploads are

not processed by a transfer tool. Typically, downloads and uploads are executed

directly by a client machine.

RAW, AOD, and DAOD are the three ATLAS data formats that require the vast

majority of storage space. Table 2.1 shows the volume distribution at tape- and disk

storage and the number of stored collision events for the three formats. The first two

rows give an impression of the usage of tape- and disk storage for the data. Typi-

cally, RAW data do not have persistent copy at disk storage but are solely stored

on tape because they are required infrequently. Furthermore, RAW data cannot be

reproduced, and thus they are archived by storing one copy of each RAW file at the

Tier 0 and another copy at an arbitrary Tier 1.

AOD have different requirements than RAW data. AOD are requested more fre-

quently to produce or reproduce DAOD. Moreover, AOD can be reproduced from

the corresponding RAW data for detector data or from the RDO for simulated data.

Since the reconstruction of AODs requires significant computational effort, AODs

are typically saved with an additional copy at tape storage. Because AODs are used

more frequently, there is an additional copy at disk storage of most AODs.

On the other hand, DAODs are the most frequently used data among the three

formats and require the highest availability. DAODs can be reproduced from the

corresponding AOD data. In addition, DAODs are accessed in random and concur-

rent access mode. For these reasons, DAODs are primarily stored on disk storage.

2.2 Commercial Clouds

This section starts by describing the basics of commercial cloud resources, includ-

ing common terminology, the fundamental concept of cloud resources, and certain

17

2.2. COMMERCIAL CLOUDS

characteristics of commercial clouds. Afterwards, details of Google as a commer-

cial cloud provider are given. Finally, certain projects related to commercial cloud

resources are summarised.

2.2.1 Overview

Cloud computing has remained a constant topic of research for ATLAS in the past

decade [PM+14; TB+15]. A key aspect of cloud computing is the virtualisation

of resources. Multiple Virtual Machines (VMs) are running on a single physical

machine. The specification of a VM can be chosen based on the requirements. The

VM starts from an image, which includes the operating system and the software

stack. Beside computing resources, clouds typically provide storage resources. Large

cloud providers also maintain their own network infrastructure among their data

centres.

With the ability of acquiring resources on-demand to a seemingly unlimited extent,

clouds provide a convenient method of resource provisioning. Two base types of

clouds are distinguished based on the resource domain. Private clouds comprise

resources only used by a single organisation, while public clouds can be used by

an arbitrary number of organisations. In addition, there are hybrid models that

combine these two approaches, e.g., by hosting storage in a private cloud and using

CPU resources from a public cloud.

In general, three types of service model are differentiated in a layered model.

1. Software as a Service (SaaS) is the highest layer service type. This layer pro-

vides fully fledged software services, typically in the form of web applications.

2. Platform as a Service (PaaS) is the middle layer service type. This layer

provides a platform to allow executing given applications or program code.

The platform provides all required dependencies for the application.

3. Infrastructure as a Service (IaaS) is the lowest layer service type. This layer

provides bare computing and storage resources.

Different cloud providers implement different cost models. Typically, computing re-

sources are charged depending on the VM specifications and the time the VM was

used. Storage is usually charged based on the volume per time, e.g., GiB/month.

Larger providers offer various storage classes for data with different access character-

istics. A common approach of charging network cost is to only consider the network

egress. Ingress traffic is typically free.

The cloud providers that provide their own intercontinental network connections

18

2.2. COMMERCIAL CLOUDS

typically charge the egress based on the destination location. In general, egress

includes all traffic leaving a data centre of the cloud provider, i.e., traffic from the

cloud provider to another network, such as the internet, and traffic from one data

centre to another data centre within the same cloud. For larger providers, the cost

of a VM or storage resource can vary, depending on the geographical location of the

associated data centre.

Most research for cloud resources is related to VM provisioning and scheduling

techniques. Other prominent research topics cover data security in public clouds or

energy-aware algorithms for cloud providers. Storage and data management con-

cerns are often neglected. From a data management perspective, three use-cases of

commercial cloud resources can be considered for an ATLAS associated institution.

1. Cloud storage as permanent storage extension to ATLAS, e.g., acquiring cloud

storage instead of increasing the on-premises resources.

2. Cloud storage bursting, i.e., in the case of peak storage requirements, cloud

storage could be quickly allocated and used to cover this peak. As the demand

for storage falls off, the cloud storage would be deallocated accordingly.

3. Network bursting, i.e., in the case of high network load or if additional band-

width is required, data can be sent through the cloud network.

2.2.2 Google Cloud Platform

Google offers a large variety of online services based on Googles computing infras-

tructure. These services build the Google Cloud Platform (GCP) [Goo21]. For this

thesis, Google was chosen as resource provider because several collaborative projects

between ATLAS and Google were initiated in parallel. This provided the opportu-

nity to exchange information with experts from Google and acquire real world data

from dedicated tests.

The GCP contains different products related to data storage, each of which meet

different requirements. For example, the Persistent Disk product is implemented

by a block storage and is designed to be used together with computing services to

store disk images for virtual machines. Alternatively, the Cloud Storage product is

implemented by an object storage and can be used as an IaaS. The Cloud Storage

product appeared to deliver the best compatibility considering the requirements for

ATLAS in terms of scalability, data formats, and independence of other GCP prod-

ucts.

In this thesis, Google Cloud Storage (GCS) denotes storage related to the Cloud

19

2.2. COMMERCIAL CLOUDS

Figure 2.5: Schematic of the GCS architecture. Illustrated are two continental

locations. Each continent can provide multiple regions. The example

shows the region EU-WEST2 in Europe and US-CENTRAL1 in North

America. Typically, each region has multiple zones, which provide a

certain degree of redundancy. The user can create arbitrary buckets

associated to a region. Files in a bucket are transparently stored in at

least two zones.

Storage product. Furthermore, Google Compute Engine (GCE) denotes any services

that provide computing capabilities, such as services that provide functionality to

operate virtual machines.

As object storage, GCS allows storing immutable objects containing data in ar-

bitrary formats. The objects are stored and organised into logical containers called

buckets. Primarily, buckets are described by a globally unique identifier, a specifi-

cation of the geographic location, and a storage class. The identifier can be chosen

arbitrarily as long as it is globally unique. The geographic location of a bucket

within GCS is implicitly specified by associating the bucket to a region as illus-

trated in Figure 2.5. A region is a logical abstraction for a specific geographic

location and consists of multiple zones. Which regions are useable for GCS and

which zones compose them is defined by Google. Typically, a zone corresponds to a

specific data centre, which provides the hardware resources.

All data uploaded to a GCS region is stored redundantly in at least two zones. The

geographic location of each region can be found in the GCS documentation. For

example, the region EU-WEST2 with zones located in London or EU-WEST9 with zones

located in Paris [Goo21].

However, buckets in GCS are not limited to one region. Buckets have to be as-

signed to at least one region, but they can also be set to dual-region or multi-region

20

2.2. COMMERCIAL CLOUDS

mode. In dual-region mode, two regions within the same continent can be specified

for a bucket. Using dual-regions, data insertion or removal from the bucket will

transparently be replicated to both regions. In multi-region mode, the data will be

transparently replicated across multiple regions of a given continent.

In dual-region and multi-region mode, special region names can be used that indi-

cate which geographic locations should be considered for the corresponding bucket.

For example, the dual-region EUR4 for Finland and Netherlands or the multi-region

EU for potentially all GCS data centres in the European Union [Goo21]. Using such

a special region is typically more cost-efficient than individually selecting arbitrary

regions.

The primary use case for the dual-region and multi-region mode is for applications

that require the best possible availability and latency to access data. A typical

example are video streaming platforms, which often require the requested data to

be available close to the receiver to provide a low latency access with a proper data

transfer rate. For ATLAS, the availability and low latency access are not the main

priority. Whether the data can be accessed in less than a second or in several sec-

onds does not significantly impact the ATLAS workflows, typically.

The last part required for creating a bucket is to decide which storage class to use.

Google provides four different storage classes: standard storage, nearline storage,

coldline storage, and archival storage. The main differences between the storage

classes are the minimum storage duration and the costs.

Standard storage is the most flexible storage class. The standard storage class has

no constraints on the storage duration of data, has the best monthly availability, and

is the most cost-efficient storage class for frequent data reads and writes. However,

standard storage has the most expensive cost per volume ratio.

Nearline storage is a storage class for less frequently accessed data. The nearline

storage class expects a minimum storage duration of 30 days. Removing data ear-

lier than 30 days would introduce additional cost. In addition, accessing data on

nearline storage is approximately 2.5 times as expensive as using standard storage.

On the other hand, the cost per volume ratio is approximately half as expensive as

for standard storage.

Coldline storage and archival storage have even further increased minium storage

durations. Coldline storage is designed for data with a minimum storage duration

of 90 days, while archival storage expects data to be stored for at least 365 days.

Consequently, the cost for data reads and writes increases and the cost per volume

ratio decreases for coldline and archival storage.

The implementation of GCS in GACS focused on standard, regional storage. Multi-

21

2.2. COMMERCIAL CLOUDS

regional storage was not considered beneficial for the use cases of ATLAS and is

infeasible to implement since the replication across multiple regions is done com-

pletely transparently to the user. Storage classes other than the standard storage

have not been used in this thesis, but are already implemented in GACS.

As a commercial cloud provider, most of the services offered in GCP come at a

certain cost. Related to the adoption of GCS, the costs can be described in three

main categories. First, the storage cost that depend on the volume of data stored in

the cloud. Second, the network cost depending on the volume of data transferred out

of the cloud or within the cloud. Last, the operation cost that depend on how many

storage operations such as download, upload, delete, or the change of metadata,

were executed.

The order of the costs depends on the usage. However, typically network cost can

be considered the most expensive, while the operation cost are the least expensive.

For example, storing 1 GiB in a single region, standard storage bucket in Frankfurt

would cost 0.023 USD per month, as of writing this thesis. Downloading 1 GiB

to a worldwide location, excluding Asia and Australia, would cost 0.12 USD. The

operational cost for requesting the data download would be 0.004 USD per 10k

requests.

GCP provides a so-called SKU ID for every type of operation within the GCP.

For example, a transfer from North America to Europe is identified by a certain

SKU ID. All SKU IDs and information about the operation they describe can be

downloaded via the GCP API. The information also include the pricing details.

2.2.3 Related Cloud Projects

Various projects in the past already investigated the potential benefit of commer-

cial cloud storage. In the scope of the Data Ocean project [Col19], ATLAS and

Google defined three use cases for which GCP could be advantageous. The consid-

ered workflow was the physics analysis. The general goals were to allow ATLAS to

explore and evaluate new models, including commercial cloud resources. Moreover,

the project allowed ATLAS to identify technical challenges when including GCP

resources into ATLAS. Google profited from the project by having the opportunity

to observe the usage of their resources for scientific use cases. This allows Google

to collect experience and improve their offers in the scientific market.

A large part of the Data Ocean project was the implementation of GCP features

into the ATLAS components. One problem was the authentication at GCP for data

transfers. This led to not being able to test the full bandwidth between the WLCG

and GCP. For this reason, an extension to the FTS was developed, but because of

22

2.3. RELATED MODELS

a late deployment time, it was not possible to test the transfers at full bandwidth

for the Data Ocean project. Another problem was introduced when executing the

analysis using direct-IO, i.e., the analysis software reads the input data directly from

the GCS without storing it locally. This lead to data corruption, and therefore it

could not be used.

In summary, the project allowed identifying the technical challenges of integrating

GCP into ATLAS. Moreover, it was possible to extend the existing ATLAS compo-

nents to be prepared for future projects using GCP.

Another project evaluated options of using GCP resources to extend the on-

premises resources of the Tokyo regional analysis centre, which is an ATLAS Tier-2

site [Kan20]. This project considered three approaches to integrate GCP into the

Tokyo site, full on-premises, full cloud, and a hybrid approach. The project con-

sidered the cost of acquiring on-premises resources in comparison to using GCP

resources.

For the full on-premises approach, the acquisition costs were estimated to a total

of 200 thousand USD/month for three years. Excluded are variable costs, such as,

power cost, maintenance cost, and other infrastructure cost. On the other hand, the

full cloud approach was estimated to 210 thousand USD/month for the computing

resources only. In addition, the cloud storage and network cost estimation is 270

thousand USD/month. This results in a total estimate of 480 thousand USD/month.

The third approach uses a hybrid system. The hybrid system consists of GCP com-

puting resources and on-premises storage resources. This approach avoids the large

cloud storage cost. However, the data extraction from the GCP computing resource

introduces additional network cost. The estimation of the total cost of the hybrid

approach is 270 thousand USD/month.

The VR Observatory went through a similar evaluation process and decided to

start using cloud resources from Google as interim data facility in 2023 [K20].

2.3 Related Models

This section elaborates on the Data Carousel model and Hot/Cold Storage model,

which are later combined to create the HCDC model and evaluated throughout this

thesis. The models are considered for usage with the data types, workflow types,

and resource types described in the previous sections.

23

2.3. RELATED MODELS

2.3.1 Data Carousel model

The Data Carousel model [BB+20] aims at reducing the usage of performance-

oriented storage like disk storage and prefers the usage of low-cost storage like tape

storage. This is particularly applicable for data that are accessed rather infrequently

or for data with an easily-predicted access pattern. As mentioned in Section 2.1.3,

these conditions apply to RAW- and AOD data. Ideally, these data are only re-

quested once per reprocessing campaign.

A data derivation campaign starts with the definition of the workload. In ATLAS

this is done by a production team creating tasks in ProdSys. ProdSys coordinates

with the DDM system [ATL17b] and the workflow management system [ATL11] the

transfer of the required data from tape storage to disk storage and the start of the

processing of those data.

In the best case scenario, all input data of derivation production workflows would

be stored solely on the low-cost storage. As mentioned in Section 1.2, the two main

concerns about the Data Carousel model are ensuring sufficient free disk storage for

processing campaigns and the tape performance.

Currently, the Data Carousel model uses a sliding window to address the concern

about having sufficient free disk storage. The input data are solely stored on tape.

When the derivation campaign is defined and the data to process are determined, a

sliding window is created. The sliding window has a specific size, e.g., the size of a

given percentage of the total input data. Data that are required for processing must

allocate space in the sliding window. After a successful allocation, the data can be

transferred from tape to disk storage. When sufficient data were transferred, the

workload can start to process the data. The data are downloaded from the disk stor-

age to the worker nodes, where they are processed by the derivation software. When

the processing of the data is complete, the corresponding data are deleted from the

disk storage and deallocated in the sliding window. Using this approach, only disk

storage equal to the sliding window size is required at any one time. [BB+20]

The possible size of the sliding window is limited by the following parameters:

• available storage for the sliding window

• volume of input data to process

• throughput of the tape storage

• time between start of transfers and start of workloads

• available computing resources

24

2.3. RELATED MODELS

Archival Storage
(e.g. tape storage)

Cold Storage
(e.g. commercial cloud storage)

Hot Storage
(e.g. disk storage)

A
cc

es
s

fre
qu

en
cy

Required storage capacity

Figure 2.6: Hot/Cold storage model. One replica of each file is stored on archival

storage. Files are migrated between cold and hot storage based on a

popularity metric.

The minimal and maximal size of the sliding window depends on the available stor-

age and the volume of the required input data. Typically, the volume of input data

is larger than the storage available for the sliding window. Thus, the temporary

storage available for processing is the limit rather than the volume of input data.

The window size must be sufficiently large to hold all the input data for all currently

running jobs.

Another potential limitation of the size of the sliding window is given by the per-

formance from the tape storage to the disk storage and the time it takes to process

the data. For example, if the performance from the tape- to the disk storage is the

bottleneck, a very small sliding window size would be sufficient. The reason is that

a large window could not be filled up.

2.3.2 Hot/Cold Storage model

As shown in Figure 2.6 the Hot/Cold Storage model divides the storage into hot

storage, cold storage, and archival storage. The main dimensions in which the

requirements to the storage categories differ are the storage capacity and a popularity

metric such as the access frequency of data estimated by the number of times a file

was used.

Hot storage requires a small capacity to store only the most frequently accessed

data. Optimally, hot storage should be located in close geographical distance to the

computing resources to allow a high bandwidth and low access latency connection.

Regarding the QoS properties, the medium implementing hot storage must provide

25

2.4. RELATED SIMULATION TOOLS

good performance in terms of throughput and access latency, especially in concurrent

and random access mode.

Cold storage requires a larger storage capacity than hot storage. There are two use

cases for cold storage. First, it can be used as a temporary buffer when the hot

storage is full. In this case, cold storage accepts data from archival storage that are

required or are likely to be required based on the popularity metric. Second, cold

storage can be used as a cache between an archival and a hot storage. In this case,

the cold storage caches the data from the hot storage that are no longer required at

the hot storage but are likely to be required again in the short term.

Archival storage requires the largest capacity. The QoS properties of archival storage

typically describe a higher access latency and significantly lower performance for

concurrent and random access mode. The Hot/Cold Storage model assumes that at

least one replica of each file is kept at the archival storage.

Different approaches are possible to use the storage categories together. Typically,

data on hot storage are replaced very frequently. The data are preferably transferred

from cold storage to hot storage. If the required data are not available on a cold

storage, they are transferred from an archival storage.

In the implemented variation of the Hot/Cold Storage model, the required data

that are not available on cold storage are directly transferred from the archival to

the hot storage. Prior to the deletion of the data from the hot storage, the data

are replicated to a cold storage. Alternatively, the required data could firstly be

transferred from the archival to the cold storage and then be transferred to the hot

storage. This would result in less delay for the deletion because the data do not have

to be transferred to the cold storage first. However, it would increase the waiting

time for the required data because of the initial transfer to the cold storage.

Another point is how the allocation and deallocation of cold storage are managed.

Ensuring the existence of hot storage data on cold storage prior to their deletion,

requires either a sufficient cold storage capacity or a deletion strategy of cold storage

data. Another approach would be to set a threshold based on the popularity metric

and only allow transferring data to the cold storage that have a certain popularity.

This threshold could be used to improve the hit/miss ratio when using the cold

storage as cache.

2.4 Related Simulation Tools

As mentioned earlier, the GACS tool was developed as part of this thesis to simulate

storage resource acquisition and file transfers among grid and cloud resources. The

26

2.4. RELATED SIMULATION TOOLS

following section gives an overview of the most relevant related simulation toolkits

developed over the past two decades. Most of these existing toolkits are discontinued,

rarely updated, or developed for rather specific scenarios.

2.4.1 Requirements

The most relevant features of a simulation software that are required for the HCDC

model are:

• The modelling of grid storage resources is required. The data centres are

considered as black boxes. Thus, the storage systems are described by high-

level properties, such as storage capacity or access latency.

• The possibility to model commercial cloud storage is required. The underlying

cost model should be customisable.

• Data management functionality is required, such as representation of storage

topologies, replica bookkeeping, as well as creation and deletion of files and

replicas.

• Modelling network topologies must be possible based on high-level metrics,

such as shared bandwidth or transfer duration.

• File transfer functionality is required. The transfer mechanic must use the con-

figured network topologies and interact with the data management to create

new replicas and keep track of incomplete replicas

• The simulated model is primarily defined by the logic that implements the

data generation, the data replication, and the data deletion.

The models are created from a high-level data management perspective. Hence,

features for a detailed simulation of CPU resources, e.g., using Million Instructions

Per Second (MIPS) to estimated job run times, are not required. Neither are de-

tailed network elements required, such as multiplexing and routing elements. The

level of detail about the available information is given by metrics, such as number

of total jobs finished, average job run time, average input- and output volume per

job, hourly throughput between storage elements. There are no precise information

of the hardware resources or the network topologies. The ATLAS sites, storage ele-

ments, and cloud resources are considered as black-boxes.

Network simulation models are typically differentiated between packet-level and

flow-level [VS+13]. Packet-level network models priories accuracy over scalability

27

2.4. RELATED SIMULATION TOOLS

by simulating each packet and the full network protocol in every detail. Flow-level

simulations simplify the network model by simulating the different data flows in the

network using parameters, such as bandwidth and number of active transfers. The

requirements for GACS suggest employing a flow-based network model implemen-

tation.

2.4.2 Considered Simulation Tools

Four simulation tools were found that were considered potentially relevant for this

thesis, and thus were investigated in more detail.

GridSim

The GridSim toolkit, presented in 2002 by Buyya and Murshed [BM02], is a software

specifically designed for simulating models related to grid computing structures. The

development was motivated by the requirement to develop and evaluate grid algo-

rithms without having access to real test beds. The latest release was in 2010 with

version GridSim 5.2 in their subversion repository on SourceForge [Sou21].

The toolkit is based on a multi-layer interface architecture. The two lowest layers de-

scribe interfaces for the basic programming- and simulation functionality. They are

implemented by the Java Virtual Machine and SimJava [HM98], a generic discrete-

event simulation framework. The next layer contains interfaces representing the

various grid resources and services and is the core of the GridSim toolkit. The next

layer describes the algorithms that assign the user requests and applications to the

resources provided by the lower levels. Finally, the top layer comprises the applica-

tions and scenario configurations of the user.

The main features of the GridSim comprise modelling of grid resources by creating

various objects, such as resource descriptions, physical machine descriptions, appli-

cation descriptions, or network links. Computing performance is specified in form

of MIPS. Network topologies are defined by creating objects for endpoints, links,

router, packets, and packet scheduler [SP+07]. These objects use properties such

as, bandwidth, Maximum Transmission Unit (MTU), or latency to calculate travel

time of packets in the simulation.

Originally, GridSim did not contain storage and data management features. Sulistio,

Cibej, et al. [SC+08] proposed a data grid extension, which was adopted in GridSim.

They describe and implement three components that are essential to simulate data

management in a grid environment: storage resources, replica catalogues, and a re-

source manager. They implemented an interface for storage resources with default

28

2.4. RELATED SIMULATION TOOLS

implementations for disk- and tape-storage. Two approaches of replica catalogues

are implemented, a hierarchical and a centralised catalogue. The resource man-

ager represents the system that combines the other components. It allows creating

the storage topology, receives data requests, resolves the requests, and manages the

resulting data transfers.

SimGrid

The SimGrid toolkit, presented in 2001 by Casanova [Cas01], started as a simulation

software for heterogeneous resources, such as in grid computing. It was motivated by

the requirement of tools that allow developing and evaluating scheduling algorithms

more rapidly and accurately compared to other simulation toolkits being researched

at that time. As of writing this thesis, SimGrid is still being actively developed.

Numerous researchers used SimGrid for a variety of topics. The code is managed

with git and publicly available on Framagit [Fra21].

Other than GridSim, SimGrid is implemented in C++ and includes several language

bindings. SimGrid provides multiple APIs for the user to set up a simulation sce-

nario. The MSG API was introduced in SimGrid v2 [CLQ08]. It allows the user

to control the simulation flow by programming concurrent simulation processes and

letting them communicate with each other via messages. The SimGrid documenta-

tion states that the MSG API is in the process of being replaced by the new S4U

API. The SMPI API allows the user to describe and run the simulation as MPI

programs. The last user API is the SimDAG API, which allows the user to describe

the simulation as an abstract task graph [CG+14].

The feature list of SimGrid covers numerous requirements for popular research top-

ics. It allows simulating applications on various platforms, such as grid-, cloud-,

or hpc-resources. It is possible to set up individual hosts or pre-defined cluster

topologies. Objects representing VMs are implemented, as well as VM migration

techniques. Barisits [Bar17] mentions that the network models are the most no-

ticeable contribution of SimGrid. The used network model is TCP flow-based and

frequently re-validated and improved [VS+13]. Using the S4U interface, the network

topology is represented by hosts placed in net zones, which use routing configura-

tions to send the data through the corresponding network links.

Similar to GridSim, SimGrid did not contain storage and data management capabil-

ities initially. These functionalities were added by an extension proposed by Lebre,

Legrand, et al. [LL+15]. The extension added components to simulate files, which

represent physical data. Files can be stored on a disk storage and accessed through

a file system. The file system assumes sequential access and simulates latencies and

29

2.4. RELATED SIMULATION TOOLS

I/O durations for file accesses. A disk resource can be attached to any type of host.

CloudSim

The CloudSim toolkit, presented in 2009 by R., Ranjan, and Calheiros [RRC09],

is a software focused on simulating cloud resources. The presentation of CloudSim

was motivated by the increasing demand for research related to resource allocation

strategies and application scheduling algorithms in cloud computing. As of writing

this thesis, the last full release was 2016, although there is a pre-release version from

2019. The code is managed using git and publicly available on Github [Git21].

CloudSim uses an architecture similar to the layered architecture of GridSim. Ini-

tially, the architecture was also based on SimJava. Since this led to suffering from

the same scalability issues and in order to support advanced functionality, the Sim-

Java component was removed from CloudSim [CR+11; OP+11].

The features of CloudSim address some of the most popular research topics related

to clouds. CloudSim allows modelling cloud resources including computing, storage,

and network. It is possible to specify individual CPUs of physical machines, which

run VMs. Furthermore, VM images can be specified to allow simulating application

containerisation. Various models are implemented to configure network topologies

within and among data centres. User-customisable policies are used to define the re-

source provisioning. In addition, energy-aware computing models are implemented.

CloudSim did not provide data management functionality in the beginning. Long

and Zhao [LZ12] proposed an extension to CloudSim based on the conepts of the

GridSim extension [SC+08] adding storage- and data management functionality to

the software. The extension adds replica capabilities by defining master files and al-

lowing additional replica files. Master files are pinned, which prevents them from be-

ing deleted before their copies are deleted. Furthermore, the extension to CloudSim

implements a name node that serves as a catalogue, resolving file identifiers into

location information. The extension also implements simulation of a distributed file

system using a block manager.

GroudSim

The GroudSim simulation framework, presented in 2011 by Ostermann, Planken-

steiner, et al. [OP+11], is a software specially developed to simulate models including

both grid and cloud resources. The development of GroudSim was motivated by the

requirement for a software able to simulate grid and cloud resources and the low

scalability of existing simulations. The last updates were committed in 2010 to their

subversion repository hosted on assembla [Ass21].

30

2.4. RELATED SIMULATION TOOLS

GroudSim is based on events scheduled at discrete time points. The simulation

engine stores an integer value representing the clock. Events are invoked based on

the clock. The user creates events to control the simulation flow. For example, a

job submit event that is configured with properties describing a simulated job, such

as the destination that runs the job, required CPU performance in MIPS, and the

state of the job. When this event is invoked, it acquires resources based on user

defined policies, and creates a job queued event. The handling of the job queued

event and the following events can be implemented by the user.

GroudSim provides basic file transfer features. In GroudSim a transfer consists of a

static number of events. Typically, one event on transfer submission, one on transfer

activation, and one event on transfer completion. There are a few more event types,

e.g., transfer cancellation or failure. On invocation of an activation event, the trans-

fer duration is calculated based on the file size and the bandwidth shared among

other active transfers. The transfer completion event is scheduled based on the cal-

culated transfer duration. When a transfer- activation or completion event changes

the number of active transfers, all other transfer completion events are rescheduled.

Because of the static number of events, the amount of consumed storage at the

destination and the consumed traffic on the network link are updated once in the

transfer completion event.

2.4.3 Discussion

In the following, the described simulation tools will be compared with consideration

of the software requirements mentioned earlier. Furthermore, examples are given

that show the relation between the scalability and the accuracy of the simulation

tools.

Feature Comparison

Table 2.2 shows the available and unavailable required features for each investigated

simulation toolkit. Grid storage means whether storage without an underlying cost

model can be simulated, while cloud storage requires the possibility to add such a

cost model. Furthermore, it should be possible to store the lifetime of data includ-

ing automatic deletion functionality. Managed replication means the creation and

transferring of a new replica and the automatic updating of the catalogue.

The storage and data management extension added disk- and tape storage resources

to GridSim. The resources are unified by an interface definition, which could be used

to implement additional cloud storage resources including a cost model. The net-

31

2.4. RELATED SIMULATION TOOLS

Feature GridSim SimGrid CloudSim GroudSim

Grid storage 4 4

Cloud storage 4 4

Bandwidth based network 4 4

Duration based network 4 4

Files and Replicas 4 4

Data lifetime

Data catalogue 4 4

Managed replication 4

Table 2.2: Most relevant features required for GACS and the availability in the

related simulation toolkits. A check indicates the available features.

work functionality on the other hand is based on packet transfers using the MTU

metric. This can not be used to implement transfers based on shared bandwidth

or average transfer duration. For this reason, network capabilities are considered

unavailable.

As already mentioned, SimGrid provides functionality to simulate disk storage re-

sources. Each disk storage is represented in a separate object. Multiple disks can be

attached to a host or a VM. However, these resources are meant to represent local

compute node storage and not the large scale distributed grid and cloud storage

resources that are required. For this reason, storage features are considered unavail-

able.

SimGrid provides functionality to create files on disk storage and to copy these files.

However, it does not logically associate the two copies with each other and does not

ensure read only access to copies. For this reason, the files and replicas feature is

considered unavailable.

As mentioned before, the storage- and data management extension to CloudSim

is based on the extension to GridSim. For this reason, the availability of required

features match between both simulations. A difference is the managed replication.

Although, it is possible to create replicas, there is no transfer functionality that

automatically transfers data from one storage element to another.

GroudSim does not allow modelling distributed data structures with files and repli-

cas and does not provide functionality to model distributed storage resources. Shared

32

2.4. RELATED SIMULATION TOOLS

bandwidth transfers are implemented by default and described by multiple transfer

volumes sharing the bandwidth of a network link. Duration based transfers can be

used by customising the scheduling of the transfer completion event.

Despite SimGrid having the fewest required features of the compared tools, it

would be the most appropriate option for an extension of missing features and use

for this thesis. This is due to it being the most actively developed tool of the

considered software. However, none of the tools allows creating models from the

data management perspective as required.

Scalability and Accuracy

Casanova, Giersch, et al. [CG+14] mentions two key concerns of a simulation soft-

ware, which are accuracy and scalability. Throughout their work, they describe sev-

eral cases when these two key concerns develop counter directional. Furthermore,

they state that only few simulation toolkits implement storage resource capabilities.

One reason for this is the small demand for those features. The other reason is that

it can be very challenging to develop accurate storage resource models.

A fine-grained discrete-event simulation would be an approach resulting in an ac-

curate simulation [CG+14]. This simulation would use events, such as address

resolutions of storage controllers in sectors and blocks, seek time of the disk drive,

and caching and buffer effects, to simulate the storage system. This would result in

an increased accuracy, but also in limiting the scalability.

The existing simulations allow or even force setting up the simulated resources in a

high level of detail. This often delivers a more intuitively understandable simulation

flow and a potentially much better accuracy. On the other hand, it negatively im-

pacts the scalability of the simulation and requires an extremely precise description

of the simulated resources.

For example, the aforementioned simulation tools have large object representations

for each host, VM, and job. SimGrid also requires a detailed description of every

single disk drive in a computing system. Some implemented network models create

object representations for each individually transferred packet. The simulated stor-

age systems simulate each read and write of a data block. Considering the objectives

of GACS and this thesis of evaluating data management models for grid and cloud

resources, these simulation tools provide an unnecessary level of detail in the wrong

place.

The scalability limitation introduced by too detailed resource descriptions can be

observed in the complex simulation scenario in the proposed data grid extension of

GridSim [SC+08]. They had to limit the simulated computing resources because

33

2.4. RELATED SIMULATION TOOLS

the simulation required more than the available 2 GB of memory. They simulated

11 computing centres with a total of 279 compute nodes.

GACS is supposed to simulate models from a data management perspective, i.e., the

extreme level of detail of the mentioned simulations is obstructive. There are two

main reasons for this. First, it is infeasible to collect the highly detailed information

of the modelled systems, especially for commercial cloud providers, which rarely

publish details about their system internals. Second, the scalability is favoured

over the accuracy. Hence, storage and network components are considered from a

higher-level perspective with simple simulation attributes, such as fixed or randomly

distributed access latency, used storage volume, available storage volume, or used

traffic.

Furthermore, there are a few concerns about the implementation of the related

simulation tools. Casanova, Giersch, et al. [CG+14] states that GridSim, CloudSim,

and SimGrid implement simplistic models to simulate data access times based on

fixed seek times and data transfer rates and that these models are neglecting impor-

tant storage effects. Moreover, the scalability of GridSim is questioned because each

simulated process is executed in its own thread, leading to an increasing number of

context switches.

In addition, there are two potential issues with the implementation of transfers in

GroudSim. First, the fact that GroudSim updates the amount of used storage and

used traffic only at the end of a transfer, could lead to inaccuracies for streamed

transfers. The state of the storage becomes the more inaccurate, the larger the data

and the slower the transfer is. This is because the used storage and used traffic

values are only correct at the beginning and at the end of a transfer. Depending on

the billing intervals of cloud providers, this could accumulate to significant errors in

the cost calculation.

Second, the rescheduling of all completion events of a network link can possibly

affect the scalability of the simulation. The method that reschedules all comple-

tion events when the shared bandwidth changes, removes each event from the event

schedule and adds a new, updated completion event. The event schedule is im-

plemented using Java’s PriorityBlockingQueue. A typical implementation of a

priority queue is using a min-heap. A min-heap requires linear time complexity to

find an arbitrary element and logarithmic time complexity to insert or remove a

specific element. This matches the Java documentation, which states that removing

an arbitrary object from PriorityBlockingQueue, has linear time complexity. For

large network topolgies with a large number of transfers, the constant removal of

events from the schedule could result in significant performance issues.

34

3 Simulation Tool Architecture

The development of the HCDC model, which will be described in more detail later,

resulted in certain requirements for a simulation software. The requirements were

already outlined in Section 2.4.1. This chapter starts by elaborating the require-

ments in the context of a software architecture. In addition, some typical simula-

tion toolkit characteristics are described and which of these characteristics apply to

GACS. Afterwards, it is explained how the architecture was developed to comply

with the requirements. The chapter ends by discussing certain design decisions of

the architecture.

3.1 Overview

This section explains the motivation of developing GACS. The first part of the sec-

tion lists the detailed requirements of the architecture. This allows comprehending

the design decisions of the architecture in the next section. The second part explains

various simulation types.

As discussed in Section 2.4.3, there are no existing simulation tools satisfying the

requirements for the research goals of this thesis. For this reason, the GACS toolkit

was developed. In general, GACS can be used to analyse models and scenarios com-

bining grid and commercial cloud resources from a data management perspective.

Key features are the modelling of storage and network resources and their usage by

simulating transfers.

A simulation software provides additional advantages. Especially, in the context of

commercial cloud resources, a simulation allows the evaluation of models, without

considerations about the cost of a real test bed. Furthermore, the implementation

of a model in a simulation tool can yield new ideas, findings, or problems before

use in a test or production system. In addition, a simulation typically allows the

quick exchange of algorithms or parameters and observing the change of the model’s

behaviour.

35

3.1. OVERVIEW

3.1.1 Architecture Requirements

To create storage models based on ATLAS data and workflows, the architecture of

GACS must allow creating models similar to the infrastructure used by ADC. In the

following, the requirements defined in Section 2.4.1 are elaborated and the specific

requirements for the architecture are described.

The first requirement is the data management functionality. This includes the pos-

sibility of creating storage resources. As in ADC, the architecture of GACS must

allow creating an arbitrary number of storage elements. Each storage element is as-

sociated to exactly one site. Sites can own an arbitrary number of storage elements.

Details about hardware and software solutions of the different data centres are not

available. Thus, it must be possible to describe sites and storage elements by high

level metrics, such as storage capacity or access latency.

Furthermore, the architecture must allow creating, accessing, and deleting data ob-

jects. Similar to the ADC environment, there must be a catalogue of all files. As

in the context of ADC, in the context of GACS a simulated file is only a logical

description of a physical file, while a replica is a physical file occupying storage

space at a storage element. Each file can have one replica at each storage element.

Replicas can be accessed per file or per storage element.

A key aspect of data management is the replication of data using transfers. To allow

the simulation of transfers, it must be possible to model network resources. From

the data management perspective, there are typically only high-level information of

the network resources available. An architecture is required that allows modelling

network resources based on directed point to point connections between pairs of

two storage endpoints. Detailed information about network packet routing paths

should not be required. Thus, the architecture accepts flow based network models.

The most relevant parameters of a network connection are the bandwidth and the

maximum number of active transfers. The primary metric of the network flow is the

traffic, i.e., the transferred bytes.

Given a network model, the architecture must include functionality to create and

manage transfers. It should be possible to simulate transfers based on transfer du-

ration and shared bandwidth. Furthermore, the transfer management must interact

with the data management to keep track from the creation of new replicas until

their completion. In contrast to existing simulation software, the data structures

representing the storage- and network connections must be able to keep track of the

change over time of used storage and induced traffic, respectively. This is necessary

to allow requesting the amount of used cloud resources at any point in time. Hence,

it is not sufficient to consider only the start and the end of a transfer.

36

3.1. OVERVIEW

The logic defining the creation of transfers, including number of transfers, source

data selection, destination storage selection, and transfer failure handling is the ma-

jor part of a model. The architecture must describe proper interfaces to allow the

user to define this logic.

The simulation architecture must enable the user to implement custom cloud

provider resources. These resources must be usable in the same way as the existing

grid resources. In addition to the grid resources, it must be possible to implement

a custom cost model for storage and network resources of cloud resources.

3.1.2 Simulation Types

Numerous types of computer simulations can be found in the literature. A typical

classification of simulation types is given by pairs of counter-directional character-

istics. The most prominent are described in the following.

In a discrete simulation the state of the simulation progresses only at discrete points

in time. The state stays exactly the same between two consecutive time points. On

the other hand, a continuous simulation uses equations to describe the state of the

simulation for a continuous time.

In a deterministic simulation, all inputs and algorithms must be well known and

deterministic. No random variables or distributions are used. A stochastic simula-

tion on the other hand, uses random values and distributions to approximate certain

input parameters.

A steady-state simulation describes the values of a system at a specific fixed be-

haviour. This type of simulation does not account the changes of the behaviour.

For example, a steady-state would be to consider only the maximum or average

bandwidth of a network link without accounting any changes in the bandwidth.

The opposite type is called dynamic simulation, which considers changes of the

behaviour.

Given these attributes, GACS can be classified as discrete, stochastic, and dy-

namic simulation. A discrete simulation type was chosen because the reference data

that will be used for parametrisation and validation are also based on discrete values.

For example, the available real world data used for accuracy validation is based on

discrete time points, e.g., the creation of files and transfers is stored as discrete time

point, files expire at discrete time points, etc. In addition, continuous simulations

are based on various equations, which can become very complex for large systems.

This can result in very complex changes when the model has to be extended or

modified.

The simulated and evaluated models described later in this thesis used a stochastic

37

3.2. ARCHITECTURE DESCRIPTION

approach to approximate certain input values, such as file size distribution. This was

done because the real world data were significantly larger than the approximation.

Furthermore, it was possible to well describe the inputs using random distributions.

In general, a deterministic model can be implemented in GACS, if all input param-

eter are available.

GACS is required to be dynamic to accurately calculate the cloud cost. For ex-

ample, the cost of allocated storage have to be calculated accounting every change

over time in the amount allocated. Using only the maximum or average of allocated

storage per month could result in significant inaccuracies.

3.2 Architecture Description

This section describes the details of the architecture of GACS. The section is struc-

tured in three parts. The first part explains the various modules of the architecture.

The second part shows the organisation of the interfaces that are used for the com-

munication among the modules. The last part describes common approaches and

concepts for implementing models in GACS. These approaches were also used to

evaluate the HCDC model. The section regularly refers to the detailed require-

ments stated in Section 3.1.1 and explains how the requirements are achieved by the

given architecture.

GACS is a discrete-event simulation, i.e., the simulation is based on events that

are scheduled to be invoked at discrete time points. A simulation event is not related

to the collision events of the LHC that were explained earlier.

In the literature, a simulation event is often defined as a message that changes the

simulation state [OP+11]. In GACS, it is possible that, based on the current state

or random number generation, the state is not changed. For example, an event

indicating the requirement of a replica at a specific data centre, but the replica

already exists at this destination. Such an event would not necessarily change the

simulation state.

In GACS, an event is the information that the simulation state must be evaluated

and potentially be changed. The event contains the information about what parts

have to be evaluated. The simulation state is provided by the data that represent

all objects of the simulated model at a specific point in simulation time.

Ostermann, Plankensteiner, et al. [OP+11] mention two more architectural parts

of a discrete-event simulation. The time advance algorithm, which increases the

simulation time provided by the simulation clock and the event scheduling algorithm,

which is responsible for the correct processing order of the events. In GACS, both

38

3.2. ARCHITECTURE DESCRIPTION

Infrastructure
- Rucio
- Site
- Storage element
- Network link
- File
- Replica

Cloud
- Cloud
- Region
- Bucket

Simulation
- Simulation engine
- Base event
- Common events

Output

Extend

Use to represent
infrastructure
during runtime

Save results

Figure 3.1: The four modules of the simulation. Simulation is the central module

that manages the control flow and uses the other modules to create,

manage, and save the simulation data. The bucket lists represent the

most relevant components of the module.

algorithms operate in combination to build the so-called event loop.

3.2.1 Modules

As illustrated in Figure 3.1, the architecture of GACS comprises four modules, the

infrastructure module, the cloud module, the simulation module, and the output

module. Further, the Figure shows the most relevant components of each module

and outlines the relation among the modules.

The modules can be categorised in active modules and passive modules. Active

modules provide functionality that is executed directly by the simulation engine

and makes decisions about changing the simulation state. For example, all events

are active functionality. Active modules use the functionality of passive modules to

change the simulation state and interact with the simulated model. Whereas, the

primary purpose of passive modules is to provide data structures that can be used

to represent a model. The functionality provided by passive modules is only used

to modify the data and ensure that the data remains consistent. Functionality of

passive modules is only executed by active modules.

The infrastructure module is a passive module that provides data types to represent

the model that is simulated, e.g., storage endpoints, network links, files, and repli-

cas. Furthermore, the module provides functionality to create, modify, or remove

39

3.2. ARCHITECTURE DESCRIPTION

instances of these data types. This way, it is possible to ensure that the data rela-

tions are consistent, e.g., ensure that each replica is associated with a file.

The cloud module is a passive module that extends the infrastructure module by

functionality that is required to simulate commercial cloud resources. This ap-

proach of extending the infrastructure module allows implementing different cloud

providers based on the same infrastructure components. Three main components

are required to create a cloud implementation. A specific cloud implementation

must provide the region and bucket components, which extend the site and storage

element components of the infrastructure module, respectively. Further, each cloud

implementation must implement its own cloud component. This component will be

used by the simulation to create region and bucket instances of this specific cloud.

The simulation module is an active module that contains functionality to control and

execute the simulation flow. The two main components of the simulation module are

the simulation engine and the base event. The base event provides the basic data

and functionality to represent an object that can be scheduled and contain a payload

to be executed. The simulation engine provides the functionality for advancing and

keeping track of the simulation time, executing the payload of scheduled events, and

rescheduling events. Furthermore, the simulation module contains various common

events that are already fully implemented. These events provide generically imple-

mented payloads for common, recurring tasks.

The output module is a passive module that provides functionality to persistently

store data generated by the simulation.

One aspect of the architecture is to ease the exchange of existing functionality and

of extending GACS with new functionality. Therefore, the modules allow replacing

most of their components or to be extended by custom implementations.

Infrastructure Module

The first requirement stated in Section 3.1.1 presumes data management function-

ality and the possibility to set up a distributed storage infrastructure. The infras-

tructure module comprises types and functionality to satisfy these requirements.

The key types of the module and their quantity relations are illustrated in Figure

3.2. The functionality of the infrastructure module provides operations to create

and access storage resources, network connections, and data. The structure of the

infrastructure types is inspired by the ATLAS structure of WLCG resources.

The centre of the infrastructure module is the Rucio component. The name is

adopted from the ATLAS data management software. There is only one Rucio com-

ponent per simulation engine. The Rucio component is the access point for the

40

3.2. ARCHITECTURE DESCRIPTION

1

0…*
1

1

0…*
0…*

0…*0…*
0…*

1

21

Replica

Storage
Element Network Link

File

Rucio

Site

Figure 3.2: Illustrates the various components of the infrastructure module, how

they reference each other, and the corresponding reference quantities.

The centre of the module is the Rucio component, which typically

exists only in a single instance per simulation. The Rucio component

provides access to the sites and files, which themselves provide access

to storage elements and replicas, respectively.

interaction with data and storage resources. Hence, it provides functionality to cre-

ate, delete, and access infrastructure objects, such as sites or storage elements and

data objects, such as files or replicas. In terms of the requirements from Section

3.1.1, the Rucio component fulfils the requirement of being able to represent the

distributed data and cataloguing of distributed files.

As with WLCG resources, sites are components representing data centres. They

are described by properties like name, location, and continental index. In addition,

each site can be addressed using a unique ID number. Sites provide functionality

to create and access their storage elements. As illustrated in Figure 3.2, each site

is associated with exactly one Rucio instance, but the Rucio instance can contain

numerous sites.

Storage elements are components that address a storage area of a site and describe

its properties. Primary properties describing a storage element are a unique ID,

the access latency, and the storage limit. The functionality provided by a storage

element comprises creation of and access to network links, creation and deletion

of replicas given a file, tracking of storage accesses, and storage space accounting.

Different types of storage elements are possible, e.g., one storage element might al-

low multiple replicas of the same file, while other storage elements prevent creating

multiple replicas of the same file.

41

3.2. ARCHITECTURE DESCRIPTION

Related to the storage space accounting, a storage element stores the values for used

storage and allocated storage. When creating a replica, the size of the file associated

to the replica must be allocated at the storage element. The amount of allocated

storage can not exceed the storage limit. As the size of a new replica increases, the

used storage value of the storage element increases as well.

Storage elements have the ownership of their replicas and their outgoing network

link objects. Other simulation objects might have references to these objects. In

other words, the source storage element of a network link possesses the ownership

of this network link object. Additionally, Figure 3.2 shows the quantity limits for

those references. A storage element is associated to exactly one site, while a site

can contain multiple storage elements. Each replica is owned by exactly one storage

element, but a storage element can contain numerous replicas.

A network link represents the connection between two storage elements and re-

solves the requirement of modelling network resources from Section 3.1.1. Since the

network functionality of GACS requires a flow based model, the most important

properties are the bandwidth and the maximum number of transfers allowed at the

same time. A flag indicates whether the bandwidth has to be interpreted as shared

bandwidth or as the unshared bandwidth for each transfer. Furthermore, statistics,

such as the number of active, completed, failed transfers, and the amount of induced

traffic are stored by a network link object. As shown in Figure 3.2, a network link

is associated to exactly two storage elements, namely the source and destination

storage element. However, a storage element can own numerous network links.

Files represent the description of data, which can be replicated or transferred. The

most important properties are the unique file ID, the file size, the creation time,

and the expiration time. In addition, a file object stores a reference to each of its

replicas. The expiration time can be used for the lifetime based file deletion. A

file object provides functionality to access its replicas and to extend the expiration

time.

A replica represents the physically stored data of a file on a storage element. The

most important properties are the unique replica ID, the currently used storage

space of the replica, the creation time, and the expiration time. Furthermore, a

replica object contains a reference to its file- and storage element object. Figure 3.2

illustrates the quantity relations of files and replicas. A file is associated to exactly

one Rucio instance. A replica is associated to exactly one file and one storage ele-

ment. However, a file can be linked to multiple replicas.

One of the most complex parts of the real Rucio is the processing of the replication

rules. To ease the replication- and especially the deletion process, for GACS the

42

3.2. ARCHITECTURE DESCRIPTION

expiration time is directly applied to the files and replicas. When a file is expired

and is going to be deleted, then all replicas will be deleted as well, irrespectively of

their expiration time. On the other hand, if all replicas of a file are deleted, the file

is also deleted. This mechanism can be deactivated to prevent automatic deletion

and enable the user to maintain a custom deletion strategy.

Cloud Module

The cloud module is designed to be an extension of the infrastructure module. There

are two relevant differences between the infrastructure- and the cloud module.

1. The cloud module can provide multiple, different implementations, i.e., provide

different implementations to simulate different cloud providers.

2. The file creation, registration, and deletion is only handled by the infrastruc-

ture module. This means the cloud component does not provide additional

data management functionality. Instead, the cloud component provides data

types based on the infrastructure module components but extended by func-

tionality required to model cloud resources.

Similar to the Rucio component of the infrastructure module, each cloud implemen-

tation must provide a cloud component that enables the user to create and access the

cloud resources. Currently, GACS provides only a GCS implementation. In context

of GCP, resources are pooled in regions, which refers to sites in terms of WLCG

resources. Storage space is addressed with buckets instead of storage elements.

The GCS implementation in GACS extends the site- and storage element type of the

infrastructure module by typical functionality of regions and buckets. Primarily, this

includes storing the values of the cost model, tracking of operations inducing costs,

and providing functionality to calculate the cost. The values of the cost model must

be acquired by the Google billing API and can then directly be loaded by GACS.

Simulation Module

The simulation module provides the majority of active functionality of GACS. The

module contains type definitions and functionality that are used to dictate the basic

behaviour of the simulation and how the simulated resources are configured. The

two primary subjects of the simulation module are events and the simulation engine.

Each event requires data and functionality that enables the event to be scheduled

during a simulation. To enable an event to be scheduled, the most important prop-

erty is a scheduled time point. Additionally, GACS stores a name and a real time

43

3.2. ARCHITECTURE DESCRIPTION

counter for each event. The counter is used to accumulate the real time execution

duration that the event required for processing. Storing the name and the execution

duration, enables the simulation to print performance statistics. Another manda-

tory part of each event is the payload. The payload defines the functionality that is

processed when an event is executed.

The simulation engine, as the second primary module subject, is responsible for

three subsequent tasks:

1. Initialising and configuring data structures to represent the model to simulate.

This is done using the functionality of the infrastructure and cloud modules.

The primary steps are creating and configuring sites, storage elements, and

network links.

2. Running the event loop and processing the schedule until a stop condition is

met. This means executing all events of a certain time point and increasing

the simulation clock accordingly.

3. Processing clean up routines and ensure that the results are stored persistently

when the simulation stops.

The base simulation engine component describes a data and interface definition

that are required to implement these tasks. Moreover, the base simulation engine

implements a basic event loop and time advance algorithm. Furthermore, GACS

provides the default simulation engine, which represents a default implementation

of the defined interfaces. This eases the creation of a simulation model and allows

loading configuration files. The functionality of both parts is generic and can be

used for various simulation scenarios. Alternatively, a user can replace or extend

the functionality by custom code.

The primary data attributes of every simulation engine are the simulation clock

and the event schedule. Furthermore, the simulation engine provides the access to

the Rucio component and all available clouds. GACS allows using exactly one grid

component and any number of cloud components.

The behaviour of the default event loop and time advance algorithm in the base

simulation engine are illustrated as an activity diagram in Figure 3.3. After the start

of the event loop, there are three conditions that can stop a simulation again. First,

when an event requests the simulation to stop. Second, when the clock reaches the

configured maximum simulation time. Third, when the schedule contains no more

events. If none of these conditions are given, the simulation engine extracts the

next event from the schedule and sets the clock to the scheduled time of this event.

44

3.2. ARCHITECTURE DESCRIPTION

Extract next
event

Set clock to
time of

current event

Execute
event

Put event
back into
schedule

- Event requested stop
- OR clock >= max. time
- OR Schedule empty

Shutdown

Event time > clock?

Yes

No

Figure 3.3: Illustrates the various steps of the event loop and the conditional tran-

sitioning.

Then, the payload of the event is executed. During the execution, the payload can

increase the scheduled time of the event. After the execution, the simulation engine

compares the scheduled time of the event with the clock. If the time was increased,

the event is put into the schedule again.

The default implementation of the simulation engine allows setting up basic simula-

tion scenarios using only configuration files. This is possible because of the common

events and functionality implemented in the simulation module. These events will

be explained in more detail in Section 3.2.3. The configuration files can be used to

compose the implemented events and thus create a model. These common events

also implement the requirements related to the transfer generation and manage-

ment mentioned in Section 3.1.1. Moreover, the events allow the user to implement

custom transfer generation routines.

Output Module

The output module provides functionality to persistently store the simulation results.

The output module is used by the simulation module and can use one of several

backends. GACS implements three backends by default.

• The dummy backend does not store any data. This is particularly useful for dry

runs of a specific model. In this case, the user is only interested in checking the

model implementation for any issues and not in the actual simulation results.

As soon as the model runs flawlessly, the output backend can be changed.

• The database SQLite backend stores data persistently in a SQLite database

[Hip21]. This requires the user to provide a configuration file describing the

database model. It is also possible to run certain database queries at the

45

3.2. ARCHITECTURE DESCRIPTION

shutdown of a simulation, e.g., to create all table indexes at once.

• The database psql backend is similar to the database SQLite backend, but it

is implemented using a PostgreSQL [Gro21] database and the psql API.

The output module is the only module that runs in a parallel thread by default.

This supports the reduction of delays in a simulation due to I/O operations with

the database. The output data are inserted into a buffer. The output module thread

consumes the data in parallel and inserts them into the database.

The current implementation of the output module does not allow editing or deleting

results that have been stored already. This has several reasons. First, it avoids

inconsistencies when attempting to edit results that have not been stored by the

I/O thread yet. Second, it improves performance in several cases, e.g., the results

buffer can be handled unordered and the database indexes can be built once in a

bunch at the end of a simulation. Editing stored results without existing indexes

would most likely result in bad performance. The most important disadvantage of

this approach is that the information of a result must be entirely known before the

insertion, e.g., a replica can only be inserted after its deletion so that the deletion

timestamp is known.

3.2.2 Interfaces

Figure 3.4 shows the various communication directions between the modules. To

define a model, the architecture provides two types of interfaces. The first type is

an interface based on configuration files, which is illustrated by the green box in the

figure. Configuration files contain data only and can be used to define and configure

compositions of events and simulated resources. The second type is an interface

based on program code, which is illustrated by the yellow boxes. The program code

interfaces must be used in order to implement custom functionality, e.g., in the form

of events. Typically, both interfaces are used in combination, i.e., program code is

used to define the behaviour of a model and parameters values are written in the

configuration file.

In the architecture, configuration files serve as an additional layer between the user

and the simulation engine. The configuration files allow changing the parameters

without compiling code. In addition, they organise the parameters centralised and

structured without functional code elements among the data. On the other hand,

the configurations files are less flexible than the programmatic interface because the

configuration files can use only existing functionality.

The configuration system allows combining and configuring existing functionality.

46

3.2. ARCHITECTURE DESCRIPTION

Configuration Files

Active Modules

Passive Modules

A
ct

io
n

In
te

rfa
ce

s

User

Figure 3.4: Interfaces that allow the user to set up models in the simulation and

that allow the various parts of the simulation to communicate with each

other. Interfacing with yellow boxes is done using program code and

requires recompilation. Configuration files are formatted in JavaScript

Object Notation (JSON) and can be modified without recompilation.

Typically, each simulation requires at least four configurable elements. First, a con-

figuration for the infrastructure, i.e., what sites exist and what storage elements

each site provides. Second, a configuration for the network links, i.e., in what direc-

tions the storage elements are connected and what are the corresponding bandwidth.

Third, a configuration of the data generator events that specify either the initial files

and replicas to create or a regular creation of new files. Last, the transfer configu-

ration that describes how the transfers are generated and executed. Optionally, a

configuration of the cloud module is possible allowing to define regions and buckets

for a specific cloud.

The programmatic interfaces allow implementing custom events and customising

the simulation engine. There are three programmatic parts interfacing with each

other in the simulation. The user extends the active modules with code. The active

modules implement the logic of the model, utilising the functionality provided by

the passive modules. In addition to these two modules, there are action interfaces.

Various operations of the passive modules invoke action interface operations. For

example, pre- and post-file creation, file deletion, or replica creation invoke action

interfaces. Passive modules implement certain action interface operations to keep

their data consistent. For example, a file object receives replica creation and deletion

actions to update its replica references accordingly. Active modules and the user

can receive actions to react on operations in the passive module.

47

3.2. ARCHITECTURE DESCRIPTION

3.2.3 Common Concepts

The previously presented architecture builds the basis for the given requirements.

However, to use certain features, such as lifetime based deletion or managed data

replication, additional active components are required. For example, each file storing

its expiration time defines the lifetime, but a file cannot process a deletion by itself

because it is a passive component. Hence, an active component, i.e., an event, is

required that executes the required activity.

An often used approach in GACS is the substitution of numerous small events by a

single large event. For example, instead of creating an event for each expiration of a

file, there is a single event that regularly removes all expired files. Another example

are transfers. Instead of creating one event for each transfer, there is a single event

that manages the creation, progress, and completion of numerous transfers.

Typically, these large events increase their schedule time during the execution of the

payload. As explained in 3.2.1, this instructs the simulation engine to schedule the

event again. However, the choice of the increment of the schedule time depends on

the event. For some events, it might be possible to calculate the exact time point.

Other events might increment the time by a random value, e.g., for irregular data

generation. The most of the implemented events are configured with a reschedule

frequency. This frequency represents a constant or randomly generated increment

for the scheduling time.

Beside the default simulation engine, the simulation component contains several

event implementations. These events provide active functionality that is commonly

required to implement models and eases the use of some architecture features. The

events are explained in the following.

Transfer Manager

The transfer manager event is used to initiate, update, and keep track of trans-

fers. The transfer manager event can be compared to the FTS, which manages

transfers for the WLCG resources. Both systems provide functionality to create

transfers given a source resource and a destination specification. In addition, both

systems move the transfers through different states. Typically, network links allow

a limited number of active transfers. Hence, transfers start in a waiting or queu-

ing state. Afterwards, they become active until the destination data is complete,

and the transfer is finished. The transfer manager provides queues for additional

replication requests, respecting the number of active transfers and its limit. The

FTS uses central message brokering services to notify systems about transfer state

48

3.2. ARCHITECTURE DESCRIPTION

changes. The transfer manager uses the action interfaces to notify the various sim-

ulation components about transfer state changes.

Each execution of the transfer manager event updates all existing transfers. That

means, based on the passed time, the destination replicas are increased, network

traffic is consumed, and completed transfers are replaced by new transfers from the

queue. Furthermore, the transfer manager uses action interfaces to fail transfers if

the source replica of a transfer is deleted.

By default, there are two transfer manager events available in GACS. The two trans-

fer manager events implement two different approaches of calculating the progress of

transfers. The first approach calculates the transferred volume between two progress

updates by using the passed time and the bandwidth. The second approach calcu-

lates the transferred volume based on a configurable transfer duration. These two

approaches allow using a bandwidth-based or a duration-based transfer model.

Transfer Generator

As mentioned in Section 3.1.1, the transfer generation logic is typically the most

relevant part to simulate a model. A straightforward approach of implementing this

logic is to create a transfer generator event. This event defines all the details about

the generation of transfers, including the number and frequency of the generation

of transfers, the source replica selection, and the destination storage selection.

Typically, the logic implemented in transfer generators is very specific to a certain

model. Thus, for more complex models, custom transfer generators must be imple-

mented. For simple cases, built-in transfer generators are available. The built-in

transfer generators are based on configurable random distributions, i.e., they gener-

ate transfers by selecting sources and destinations randomly.

Data Generator

A common task for a simulation is the generation of new data. The data generator

event provides generic functionality that allows creating new files and replicas. The

primary configuration options of a data generator event are a list of destination

storage elements for generated replicas, the number of files and replicas to create, a

file size distribution, and a file lifetime.

If more than one storage element is configured, a list of ratios can be provided. Using

these ratios, it can be configured that a certain number of files should have multiple

replicas. For example, creating 100 files and providing a ratio list with the values

0.7, 0.2, and 0.1, would result in the creation of 70 files with one replica, 20 files

with two replicas, and 10 files with three replicas. A random or ordered selection of

49

3.2. ARCHITECTURE DESCRIPTION

the storage elements can be configured.

The number of files, file size, and file lifetime can be configured using the random

number configuration functionality. Furthermore, the event can be configured with

a rescheduling frequency. A rescheduling frequency of 0 indicates that the event

will be executed only once. The single execution of the event is typically used to

initialise storage elements with data at the start of a simulation.

Reaper

The Reaper event is the event that takes care of the lifetime based deletion. The

name is adopted from the component that manages the deletion in the real ATLAS

distributed data system. The functionality is also inspired by the real Reaper system.

On each execution of the Reaper event, all expired files are extracted from the file

catalogue. Then, all replicas of each file are deleted from their storage elements.

Finally, the simulation internal file objects are deleted and the next execution time

of the Reaper event is specified. Typically, the execution intervals of the Reaper

event are specified by the rescheduling frequency.

Cloud Billing

The billing generator event is used to output and store the bills of cloud resources.

The only configuration property is the reschedule frequency, which defaults to 30

days in simulation time. Each time this event is invoked, it uses the given cloud

management objects to calculate the cost based on the passed time. The billing

objects are persistently stored using the output module and optionally are printed

to the standard output.

Heartbeat

The heartbeat event is an event that writes various values about the current simu-

lation state to the standard output. The event can be configured with a reschedule

frequency, an arbitrary number of event references, and an arbitrary number of

transfer manager references.

Each time the Heartbeat event is executed, it iterates through the referenced events.

For each event it writes the event name and the accumulated execution duration

in real time of the event, as described in Section 3.2.1, to the standard output. It

also prints the share of the total execution duration for each event. Furthermore,

the heartbeat event prints the statistics of the configured transfer managers, includ-

ing the average transfer duration and the number of active, completed, and failed

50

3.3. DISCUSSION OF THE ARCHITECTURE

transfers.

Action Interface

As pointed out in Section 3.2.1, the output module does not allow editing already

saved data. This means data can only be saved when all information of the data

are available. For example, a replica can only be stored after it was deleted, so that

the deletion timestamp is known. For this reason, an implementation of the action

interface is provided in the simulation module. This implementation is used by the

various transfer generators. It is notified when a file or replica is deleted and stores

it using the output module.

3.3 Discussion of the Architecture

As mentioned earlier, the simulation is designed for models from a data management

perspective. This leads to a focus on storage, network, and data resources. Data

management systems typically use abstraction layers for the underlying resources,

i.e., the storage and transfer systems are black boxes with well-defined interfaces.

This perspective is fundamental for certain design decisions of the simulation archi-

tecture.

3.3.1 Event Size

One of the most noticeable differences of the presented architecture compared to the

considered related simulation toolkits is the large comprehensiveness of the events.

The described related simulations in Section 2.4.2 use significantly more fine-grained

events. Two approaches can be considered, related to the scale of events.

The first, most intuitive approach for an event based simulation is to schedule an

event for each required activity. For example, for the lifetime based file deletion

a deletion event would be scheduled for each file expiration time, i.e., one event

for every file. The fine-grained event approach was already mentioned in Section

2.4.3. The approach discussed in that section schedules a transfer completion event

directly after creating the transfer.

A disadvantage of the approach using numerous fine-grained events is that it can

reduce the scalability of a simulation. This is the case if the schedule times of the

events are changed frequently, e.g., the expiration time of data can be increased or

decreased and the transfer durations change continuously. Changing the scheduling

time requires searching the position of the event in the schedule, removing it, and

51

3.3. DISCUSSION OF THE ARCHITECTURE

reinserting it. A tree data structure could be used for the schedule, which allows

inserting, searching, and deleting in logarithmic time complexity. However, with a

single schedule, the scalability would still depend on the overall number of events

and the number of times events have to be rescheduled, which are especially large

in this approach.

The second approach that was considered uses fewer events with a larger payload.

The approach is inspired by the deletion concept of the real ATLAS data man-

agement. The real system regularly evaluates the deletion conditions of data and

eventually triggers a deletion at the storage endpoint. In GACS, this approach is

implemented with a single event that updates all or a large part of the passive ob-

jects. For example, instead of having an expiration event for each file object, there

would be the Reaper event that is executed regularly. Each time the Reaper event

is executed, it collects all expired replicas and triggers their deletion at the storage

endpoints. Only one Reaper event is scheduled at any time. Depending on the

execution frequency of the event, this approach introduces an inaccuracy, e.g., if the

event is executed every 10 simulated seconds, the maximum error of a deletion is 9

seconds. On the other hand, this approach potentially improves the scalability by

reducing the number of events and removing the requirement to reschedule events.

3.3.2 Simplifications

Another point of the presented architecture that should be mentioned is the ne-

glecting of certain latencies that are typically introduced by the data management

system. For example, downloading a file from the WLCG requires various steps that

each induce a delay. These delays include time for authentication at the data man-

agement, requesting the existing replicas of the file to download, selecting a replica,

authenticating at the storage system, and finally downloading the replica. By de-

fault, these delays are not considered in detail by GACS. It is possible to configure a

fixed or random start latency of data transfers, but there is no differentiation among

the various delay sources.

These latencies were considered neglectable because they typically cover only a small

fraction of the overall data transfer. For example, the process of resolving replicas

with Rucio normally requires a few seconds. On the other hand, data transfers can

require several minutes or hours. Presumably, this simplification significantly im-

proves the scalability of the simulation and reduces the complexity of the simulated

models. However, it should be reconsidered when creating simulation models that

potentially stress the data management system in a way that would increase the

neglected latencies.

52

3.3. DISCUSSION OF THE ARCHITECTURE

Considering the storage systems as black boxes is another point that potentially

introduces inaccuracies. For example, the simulation does not consider the IOPS

limit of the underlying storage systems. The parameters for the planned simulation

use cases were calculated using real world data. Thus, the limits of the storage

systems were implicitly considered. However, using different scenarios, e.g., in the

case that many small transfers are created, limits of metrics, such as IOPS, should

be considered.

In the current architecture, the bandwidth of network links is provided as a fixed

configuration value. This means there are no fluctuations of the bandwidth, which

typically is not realistic. Related simulators, such as SimGrid, implement back-

ground traffic generators, which generate fluctuations of a network link bandwidth.

For the planned simulation use cases, the bandwidth values were calculated using a

few months of monitoring data. In this way, uncertainties in the bandwidth are al-

ready included in the bandwidth values. For this reason, the bandwidth fluctuations

were not implemented into the architecture. However, adding this feature belated

would not require significant changes.

3.3.3 Output Module

During development, the output module passed through various approaches. The

first approach used plain CSV file dumping. This approach was motivated by the

advantage of a straightforward implementation and high performance. However,

the CSV approach became complex as a more flexible and dynamic data model was

required. Furthermore, there was no form of constraint checking.

This led to the consideration of implementing a database system. The first imple-

mentation was based on SQLite. The advantage of SQLite is the small size and

small overhead. It can be included to the code using a single source file and pro-

vides a rich set of SQL features. Two advantages of the database approach are the

insertion of data into more explicit structures and the automatic checking of data

constraints. Additionally, the evaluation of the data is more flexible. When using

CSV data, the parsing for the evaluation is based in the order of the CSV data.

Then, for each evaluation type, data have to be selected, filtered, and aggregated

manually. A database approach eases these tasks by providing a query language

interface.

With larger simulation scenarios, the amount of output data increased. The query

interface of SQLite did not scale properly with tens of millions of replicas and trans-

fers. For this reason, an output module backend for a different database system was

implemented. PostgreSQL is a significantly larger project than SQLite. Typically,

53

3.3. DISCUSSION OF THE ARCHITECTURE

PostgreSQL runs in a dedicated server process. Tests showed that PostgreSQL per-

formed significantly better in both, inserting the data and running queries, than

SQLite. However, when the amount of data becomes larger and the required opera-

tions for the evaluation becomes more complex, even PostgreSQL started to require

an increasingly large response time.

For this reason, the same approach that is used for the real world monitoring data

was adapted. That is, migrating the data from PostgreSQL to a Hadoop file system

and running the filter and aggregation operations using map reduce algorithms. For

this thesis, the goal was to achieve a data format similar to the real world moni-

toring data format to allow comparing the results more easily. In the case that the

output volume becomes too large, it would be possible to implement runtime data

aggregation into GACS.

A different approach that is commonly used in the related simulations is the use

of traces. These traces store all simulation states for any processed time point. To

reduce data, only the change between two subsequent simulation states is stored.

In this way, it is possible to calculate the state of the simulation at any given time

following the simulation state changes.

54

4 Simulation Tool Implementation

This chapter focuses on the implementation details of the previously explained archi-

tecture. First, an overview of the implementation is given, explaining the choice of

the programming language, the required dependencies, and the used design patterns.

Moreover, the details of the configuration system implementation are described and

how it is integrated into the overall simulation runtime. Afterwards, the most rel-

evant implementation information, for each of the modules describe in Chapter 3,

will be described. Then, a simulation scenario will be discussed, which was used to

validate the correctness of the basic functionality of the simulation. The discussion

includes the details of the scenario setup, the preparation of the used parameters,

and the evaluation of the results. Finally, the chapter ends with consideration of

the scalability of the simulation.

4.1 Overview

The first approach considered was an implementation in Python using the SimPy

package. Early in the development process, the functionality was ported to C++.

The primary reasons for an implementation in C++ are:

• When iterating data, C++ has a significantly higher performance potential.

Native loops in Python provide a good performance compared to interpreted

loops, but native loops are limited to very static operations.

• The reduction of the memory footprint of the basic functionality of GACS

because Python had a noticeable memory overhead.

• Only the scheduling functionality of SimPy was required, which can straight-

forwardly be reproduced using a priorty queue.

To reduce the complexity, GACS is not built as a library but as a single, extendable

program. In the case of a large number of model implementations, this might result

in slightly more work of organising the code. The models are typically specified by

user code. The GACS code is publicly available on GitHub [Weg21].

55

4.1. OVERVIEW

4.1.1 Software Dependencies

The vast majority of the functionality of GACS is based on the Standard Template

Library (STL). GACS requires compilation with the C++17 standard, including

the C++17 functionality of the STL. The used features include file system access,

random number generation, time measurements, thread creation, various data struc-

tures, and various constants such as data type limits.

The STL provides various classes to generate random numbers. The random gen-

erator used by GACS can be exchanged. By default, the minimal standard gener-

ator is used. This is based on a linear congruential generator using the sequence

xi+1 = (axi) mod m. In GACS, the default values for the multiplier a and m are

used, which are a = 48271 and m = (231)− 1. The period of the sequence is m.

For time measurements, the STL provides the std::chrono namespace. It provides

the high resolution clock class to receive timestamps with the highest possible

resolution for the used platform. Furthermore, the std::chrono namespace pro-

vides classes to calculate durations and transform them between different units.

Three types of data container from the STL are used in GACS. First, sequence con-

tainers that allow sequential access, e.g., dynamic arrays and lists. Second, ordered

associative containers that keep elements sorted, such as, maps and sets, which are

implemented as red-black trees. Last, unordered associative containers that imple-

ment hash-based element access.

Arrays and lists are used if index-based element access or fast iteration is required.

Arrays are preferred if it is not required to maintain the relative order for insert

and remove operations. Lists provide the advantage that references to elements stay

valid if the list is changed. Maps and sets are used if the order is relevant and sorted

insertion and iteration is required. In addition, they allow for efficient searching of

elements. Unordered associative containers are used when iteration is less important

but fast element access using an element identifier is required.

Another feature used from the STL are the smart pointers. Most of the objects

in the simulation have a strictly defined ownership hierarchy implemented using

unique pointers from the STL. The simulation engine object represents the root

object, which creates and owns, e.g., the Rucio object. The Rucio object creates

and owns site and file objects. A reference to an object is generally implemented as

a native object pointer. If an object uses references, it must be considered that the

referenced object might be deleted by its corresponding owner object.

For the configuration files, the JSON format is used. JSON was chosen because

the format fits intuitively into the data structures in the code, such as lists, maps, or

values. Parsing JSON with a library, like the used nlohmann library [Loh21], requires

56

4.1. OVERVIEW

small development effort. Furthermore, the JSON format does not require as much

formatting text and many formatting characters as, for example, any Extensible

Markup Language (XML) based format.

As mentioned in Section 3.2.1, by default the output module contains a dummy and

two database backends. The sqlite backend requires that sqlite is included into the

compilation process. This can either be done by linking against the external library

file or by integrating the single source file of the sqlite library into GACS. The psql

backend requires including the libpq library to be able to use the PostgreSQL API.

This also requires the connection to a Postgres server.

4.1.2 Design Patterns

Each component of the modules from Section 3.2.1 is implemented in its own C++

class. The classes provide member attributes and class methods in respect to the re-

quired data properties and functionality defined in Section 3.2.1. Certain classes are

implemented using various object-oriented design patterns. The following describes

the used design patterns and explains the benefits of using them.

A commonly used pattern in the simulation are singleton classes, i.e., classes

that prevent the creation of more than one object of themselves. For example, the

CConfigManager and COutput classes are singleton classes. Typically, the imple-

mentation is done by declaring the constructor private and providing a static public

method to receive the class instance. The advantages are that at most one object

exists at the same time, and it can be globally accessed.

The cloud manager objects are created using the abstract factory pattern. Two

interfaces must be provided for each cloud implementation. Access to a cloud im-

plementation is possible through an implement of the IBaseCloud interface. On the

other hand, the ICloudFactory interface must be implemented to create objects of

the the IBaseCloud implementation.

Each cloud implementation must implement the ICloudFactory interface and must

register the implementation in the CCloudFactoryManager class. This class is de-

signed as singleton and stores all available cloud factory objects. The factory object

for each cloud is stored in a global static variable of the translation unit containing

the cloud implementation. The factory object registers itself at the factory manager

when the static variable is initialised.

The advantage of the abstract factory pattern for this part is that new cloud imple-

mentations can be added straightforwardly without a need to change code in another

module. Furthermore, it allows associating an arbitrary identifier with a cloud. The

identifier eases the referencing of the cloud provider in configuration files.

57

4.1. OVERVIEW

The storage element implementation uses the delegation pattern. The base class

CStorageElement declares the functionality of a storage element and is used to

access it. However, the implementation of the functionality is placed in a delegate

object, i.e., methods called on a CStorageElement object call the corresponding

methods of the delegate object, which contains the actual implementation of the

functionality.

A delegate object implements the IStorageElementDelegate interface. By default,

there are two implementations of this interface. One implementation allows multiple

replicas of the same file. The other implementation contains checks that prevent the

creation of duplicated replicas.

This pattern was chosen to allow extending the storage element functionality, e.g.,

for the cloud module, while maintaining the option to dynamically use the base

storage element functionality of the delegate implementations. For example, cloud

buckets should be accessible through the CStorageElement definition but must be

able to add cost calculation functionality. Using inheritance instead of delegation, a

separate bucket class would be required instead of each delegate. Using delegation,

a single bucket class is required to add functionality to the CStorageElement class

while being able to use an arbitrary delegate.

4.1.3 Simulation Configuration System

The configuration system is mainly used during the simulation initialisation proce-

dure to allow specifying certain parts of the simulation by using configuration files.

There are three important parts of the configuration system. First, the nlohmann

library provides a JSON class, which represents parsed JSON data and provides

various operators to access and iterate the data. Second, the IConfigConsumer in-

terface class declares the pure virtual method LoadConfig, which expects a JSON

object as argument. Every class that is required to load configuration data must

implement this interface. Last, the CConfigManager class simplifies the loading of

configuration files and profiles.

The CConfigManager class is implemented as singleton. It provides utility function-

ality to load files into JSON objects either from an absolute path or from various

configuration directories. Furthermore, the config manager implements functionality

to resolve sub configuration files into JSON. For example, the infrastructure config-

uration and the network links configuration are both loaded from the profile file. To

prevent having all configuration options in one large profile file and to allow using

the same, e.g., network links configuration in different profiles, the profile configu-

ration can use a special configuration key to point to a separate file containing the

58

4.1. OVERVIEW

configuration options. This will automatically be resolved by the config manager.

1 {

2 "profile": "simEval",

3 "output": {

4 "dbConnectionFile": "psql_connection.json",

5 "dbInitFileName": "psql_init_default.json"

6 }

7 }

Listing 4.1: Basic simulation configuration file. It defines the profile configuration

to load and the output configuration.

The first configuration file that is opened directly after starting the simulation

software is the simulation configuration. A basic simulation configuration file is

shown in Listing 4.1. The file is expected to be located at the path config/simcon-

fig.json relative to the working directory of the simulation software.

The simulation configuration contains two important options. First, the profile to

load. The configuration system uses profiles to keep different configurations for vari-

ous simulation scenarios organised. A profile is the name of a directory that contains

at least a profile.json file. This profile configuration file contains all information for

a certain simulation scenario.

The simulation will read the value of the profile key and use the config manager to

open the profile. The config manager expects that the value of that key matches a

directory in the profiles directory, which contains the profile.json. For example, given

the Listing 4.1 the config manager would try to load config/profiles/simEval/pro-

file.json.

The second option that must be configured in the simulation configuration is the

output module because it is the first module that is initialised. The configuration in

Listing 4.1 assumes the postgres output module is used. For this reason, a database

connection file is specified. This file is not uploaded to GitHub because it contains

the connection string including the username and password to the database server.

However, the readme file on GitHub states an example of how to configure this file.

Furthermore, the output section in the simconfig file allows specifying an optional

database initialisation file, which can contain queries to execute once at the simula-

tion start and once at the simulation shutdown. For example, this is useful to create

required tables before the simulation starts and create the index of the tables in one

operation at the end of the simulation.

59

4.1. OVERVIEW

1 {

2 "maxTick": 5166000 ,

3 "clouds": [{

4 "id": "gcp",

5 "name": "gcp_default",

6 "config": {"_file_": "gcp.json"}

7 }],

8 "rucio": {

9 "config": {"_file_": "rucio.json"}

10 },

11 "links": {

12 "config": {"_file_": "links.json"}

13 },

14 "dataGens": [],

15 "transferCfgs": [{

16 "manager": {

17 "type": "bandwidth",

18 "name": "DefaultTransferMgr",

19 "tickFreq": 1,

20 "startTick": 5

21 },

22 "generator": {}

23 }]

24 }

Listing 4.2: Basic profile configuration file. It contains the configuration for the

infrastructure, the clouds, and the network links. Furthermore, it

allows specifying and configuring the initial events to execute.

After the simconfig is loaded and the output module has been initialised, the

profile configuration will be loaded from the specified profile.json file. As outlined

in Section 3.2.2, the main parts of a configuration include the infrastructure config-

uration, the network link configuration, the data generator configuration, and the

transfer configuration. Optionally, a cloud configuration can be provided.

Listing 4.2 shows a very basic example of a profile configuration. The first key

maxTick can be used to define the time in simulation time after which the simula-

tion should shut down.

The clouds key can be used to set up a cloud configuration. The list can contain

one object for each cloud to configure. In the example, setting the value of the key

id to gcp results in the creation of a Google cloud object. The key name passes a

name to the Google cloud instance, which is used for the general output and bill

output. The value of the config key can be used to define the main part of the

60

4.1. OVERVIEW

configuration for the cloud. In the example, the special key file is used. This

key allows referencing a separate file that contains the configuration that should be

applied. The config manager will automatically resolve those keys internally.

The rucio key allows providing the configuration for the infrastructure module.

The referenced file contains the configuration for the used sites and storage ele-

ments. Similarly, the links key contains the configuration for the network links.

The dataGens key allows providing a list of objects. Each object contains the con-

figuration for a data generator event described in Section 3.2.3. Data generators can

be configured for a one time data generation or a regular execution.

Finally, the transferCfgs key allows the configuration of the transfer manager and

transfer generator events. Using the configuration system, each transfer generator

is associated with its own transfer manager. Both can be configured in an object

of the transferCfgs list. The object can contain the manager key to configure the

transfer manager and the generator key to configure the transfer generator.

The transfer manager can be configured with a name, the tick frequency, and the

start tick. These properties can be configured for every event, including data gener-

ators and transfer generators. The property special to the transfer manager is the

type. Currently, the simulation supports one of the values bandwidth or fixedTime.

As explained in 3.2.3 this specifies whether the transfers are updated based on a

bandwidth configuration or a transfer duration configuration.

The infrastructure, network links, data generators, and transfer configurations will

be explained in more detail in Section 4.3 using the simulation validation scenario

as an example.

1 "fileSizeCfg": {

2 "type": "exponential",

3 "lambda": 0.026 ,

4 "minCfg": {"type": "minAdd", "limit": 0.009765625} ,

5 "maxCfg": {"type": "maxModulo", "limit": 134.0}

6 },

Listing 4.3: Value generator object configuration. This provides a flexible way to

configure simulation properties with numeric values.

Another commonly used concept in configuration files is the flexible configuration

of numeric values by using value generator objects, as shown in Listing 4.3. In this

example, the property fileSizeCfg is configured with an object specifying a value

generator object. The most important property for every value generator object

is the type. The value of this property determines how the value generator will

actually generate the numeric values.

Depending on the configured type, different configuration options are required. In

61

4.1. OVERVIEW

the example, the type is set to exponential, which defines that the value generator

will yield exponentially distributed random numbers. This type allows setting the

parameter of the exponential distribution using the lambda key.

Another example would be to set the type to fixed., A value generator configured

with the fixed type will always yield the same constant value. Instead of the lambda

key, a fixed type value generator requires the value property to be set to the con-

stant that should be yield. A full list of available value generator types and their

parameters can be found in the documentation 1, which is also reachable through

GitHub.

limit(x, low, up) =


low, x < low

up, x > up

x, otherwise

(4.1)

In addition, all value generator objects can be configured with rules to limit the

generated values to a minimum and/or maximum. Listing 4.3 shows an example of

the limit configuration in line 4 and 5. Both, the minimum and the maximum limit

calculation can be configured with different approaches. Equation 4.1 describes a

straightforward approach to limit a value x so that low < x < up. This behaviour

can be set by configuring the value of the type key for the minCfg or the maxCfg

to the value minClip or maxClip, respectively.

limitUp(x, up) =


x− bx/upc · up, x > up

x, otherwise

(4.2)

However, limiting the values by minClip or maxClip can lead to spikes in the value

distribution at the lower and the upper limit. An alternative that is also used in

Listing 4.3 is to add the minimum value to the generated value to ensure the value

is larger than the lower limit. Afterwards, Equation 4.2 is applied to limit the value

to a value that is smaller than the upper limit.

Internally, a value generator is represented by the IValueGenerator interface

class that provides a unified way to generate numbers using configurable methods.

The IValueGenerator interface declares the pure virtual GetValue method that is

implemented by various subclasses. Each subclass implements a different way to

generate a number.

1https://twatgh.github.io/class_i_value_generator.html

62

https://twatgh.github.io/class_i_value_generator.html

4.1. OVERVIEW

The IValueGenerator class provides a static function that takes a JSON object

as parameter and uses it to generate an instance of the corresponding subclass.

Additionally, the function automatically sets the corresponding limits if configured.

This approach of generating random numbers is used because it fits well into the

modular design of the architecture, provides flexibility, and is an optimal solution

in terms of extendability and maintainability. However, for different use cases, such

as the bulk generation of a large number of random numbers, it is most likely that

this approach will not provide the best performance. In the case that this use

case is required in the future, it would be possible to extend the IValueGenerator

interface by a method to bulk generate random numbers. This method could then be

implemented in the subclasses by high performance approaches, e.g., using parallel

random number generation.

4.1.4 Simulation Run Time

The simulation run time can be divided in four stages:

1. The initialisation stage creates instances of all required modules and compo-

nents. Various configuration files are used to decide which implementations

to use and how to initialise them. Based on these configurations, the output-

and simulation engine backends are created.

2. The setup stage allows the simulation engine to create simulated resources in

accordance to the model.

3. The simulation stage runs the actual simulation. It uses the event scheduling-

and time advance algorithm to execute events and increase the simulation

clock. The default implementation runs until the simulation clock reaches a

configured time, until the event schedule becomes empty, or until an event

explicitly requests a shutdown.

4. The finalisation stage allows all simulated objects to pass their last data to the

output module. The output module ensures that all data is properly stored.

Figure 4.1 illustrates the four run time stages and the actions of each stage. The

first action at program start is setting up the configuration system. Therefore, the

first step is defining the path to the config directory and the profile directories in

the CConfigManager class. This class provides helper functions to load single config

files or full profiles into a single JSON object.

After the paths are set, the main simulation configuration file is parsed. This file

63

4.1. OVERVIEW

Set up config manager

Parse simulation configuration

Initialise output module

Load profile config
- Set up sites
- Set up clouds
- Store to output
- Set up network links

Schedule initial events

Run event loop

Shutdown and write output

Initialisation

Setup

Simulation

Finalisation

Figure 4.1: Overview of the four run time stages of the simulation. The stages are

written on the right. The boxes contain the executed actions from top

to bottom.

contains basic information for the initialisation of the simulation. Mainly, the infor-

mation specify how to initialise the output module and which profile to use. The

profile is parsed directly afterwards.

The next step is the initialisation of the output module. This must be done early at

program startup to enable the other modules to output initial data. For the output

module, different backends can be configured, as described in Section 3.2.1. The

output module initialisation is done in two steps. First, the underlying library is

loaded, which gives database based backends the opportunity to connect with the

database server. The second step starts the output thread and executes optionally

configurable initial output commands, e.g., initial queries to empty a database and

create new tables.

After the output module was set up, the simulation engine is initialised using the

profile JSON object. The default simulation engine implements functionality to set

up a simulation scenario from the profile config. The order in which the simulation

modules and their components are initialised is relevant.

64

4.2. MODULE IMPLEMENTATIONS

First, the infrastructure module is initialised. This is done by using the Rucio com-

ponent. The Rucio component implements the IConfigConsumer interface, and

thus can be set up from a JSON object. The Rucio component creates all sites and

storage elements configured in the corresponding JSON object.

Second, all configured clouds are initialised. This is done by first using the cloud ob-

ject factory to create the required cloud instances. Afterwards, the IConfigConsumer

implementations of the cloud objects are used in the same way they are used with

the Rucio component.

The third step is the writing of the created infrastructure and cloud objects to the

output module. These objects provide the basis for most objects that are created

afterwards. The output module should contain the fundamental objects prior to the

creation of new objects, e.g., to comply with foreign key constraints.

Finally, the network link objects are created. The configuration file allows specify-

ing the network link details given the source and destination storage element names.

The network links are written to the output module directly during their creation.

After all simulation components are set up, the initial events are created and queued

into the schedule. The default simulation engine implements functionality to create

the built-in transfer generators, transfer managers, and the events described in Sec-

tion 3.2.3.

When the setup stage completed successfully, the simulations starts running the

event loop. The loop runs until one of the explained exit conditions is met, and

then the simulation enters the finalisation stage. This stage starts with informing

each event left in the schedule about the simulation shutdown. Afterwards, final-

isation queries are sent to the database, which can be optionally provided by a

configuration file. These queries can be used to instruct the database to build all

table indexes at once. Finally, the output thread is requested to write the remaining

data and stop execution.

4.2 Module Implementations

This section explains the most relevant implementation details for each of the mod-

ules described in Chapter 3. First, the infrastructure module is explained, which

primary provides the data structures for files, replicas, sites, and storage elements.

Second, it is explained how the cloud module can be used to create a cloud imple-

mentation by extending the infrastructure module. Third, the simulation module is

explained in more detail. This includes a description of the default event loop and

the default transfer managers. Last, the output module is described in more detail.

65

4.2. MODULE IMPLEMENTATIONS

Figure 4.2: UML class diagram of the infrastructure module. Not all attributes

and operations are shown to improve the visibility, e.g., certain get

methods that allow read-only access are not illustrated.

4.2.1 Infrastructure Module

Since the infrastructure module is a passive module, it mainly comprises classes and

functionality to access or modify the data. There are various classes that implement

the components of the infrastructure module mentioned in Section 3.2.1. Figure 4.2

illustrates a UML class diagram of the infrastructure module. The class diagrams

and flow charts of this thesis were created using Visual Paradigm Online [Par]. Not

all attributes and operations are illustrated to keep the diagram size reasonable.

For example, the classes provide read-only access through methods to most of the

private attributes, such as the ID. Not all of these methods are illustrated. However,

the most relevant classes and their most relevant attributes are shown.

66

4.2. MODULE IMPLEMENTATIONS

The Rucio component of the infrastructure module is represented by the CRucio class

and provides the central access to the infrastructure module. The ISite interface

is implemented by the CGridSite class to represent grid sites. In addition, there is

an implementation of this interface in the cloud module to represent cloud regions.

The CStorageElement class provides access to simulated storage elements. Finally,

there are three relevant data structures in the infrastructure module. The SFile

structure to represent simulated files, the SReplica structure to represent simulated

replicas, and the SNetworkLink structure to represent network links between storage

elements.

Files and Replicas

Most of the methods provided by the SFile structure are used for the read-only data

access. However, a few additional methods exist to improve usability and keep the

data consistent. Each file contains an array of pointers to its replicas. Consistency

of this array must be ensured in case a replica gets created or deleted. This is done

by two methods. First, SFile::PostCreateReplica() which is called by a storage

element after the creation of a new replica. Second, SFile::PreRemoveReplica()

which is called right before the removal of a replica.

The last relevant method is SFile::GetReplicaByStorageElement(). This method

takes a storage element pointer as paramter. The method iterates over the replica

references of the file to check if a replica exists at the given storage element. Since

a file typically has only a few replicas, compared to a storage element that stores

potentially millions of replicas, it is more efficient to check a file for replicas at the

storage element than to check the storage element for replicas of a file.

The SFile::mSize property specifies the size of the file and must be known at con-

struction of the file. Moreover, the attribute must not be changed after construction,

thus SFile provides read-only access to the file size.

In contrast to a file, the size of the replica can change. After creation, the size is

zero. The replica can be increased by a given amount using the SReplica::Increase

method. This method also notifies the storage element that a replica was increased,

and thus more storage is consumed.

Sites and Storage Elements

The ISite class is abstract because it has two methods that must be implemented.

First, a method to create CStorageElement objects and second, a method to get

references to the created storage element objects. The ISite class has at least the

67

4.2. MODULE IMPLEMENTATIONS

CGridSite implementation in the infrastructure module to represent grid sites. The

cloud module can specialise this class to create cloud regions.

The CStorageElement class represents a storage area of a site and implements

the tracking of storage consumption, including replica creation, deletion, and size

changes. Thus, a storage element comprises variables to describe storage limits, used

storage, allocated storage, and an array to keep references to all replicas associated

with this storage element. Furthermore, a storage element provides methods to

create, delete, and increase replicas. These methods are implemented to also invoke

related action interfaces, and thus keep all objects consistent.

In addition, storage element objects are used to create CNetworkLink objects. For

this purpose, the storage element class provides a method that takes a reference

to the destination storage element object and additional parameters describing the

network link, such as bandwidth.

In terms of the ownership relations explained in Section 4.1.1, the Rucio object

has the ownership of site and file objects and has to manage their life cycles. Site

objects have the ownership of storage element objects, which have ownership of

replica objects and network link objects.

File and replica creation process

Figure 4.3 shows exemplarily the usage of the different entities for the creation of

new files and replicas during the simulation. Since the infrastructure module is

passive, an active module action is required to start the creation. In the Figure,

this action is represented by an event. For example, this could be a data generator

event.

The event uses the Rucio instance to create a file object. This will simply create a

new SFile object, register it in an array in the Rucio instance, and notify the action

listener interfaces. The new file object can then be passed to the CreateReplica

method of an arbitrary storage element instance.

The replica creation inside the storage element instance will first check the storage

constraints, i.e., whether the replica fits on the storage element. If sufficient storage

is available, the amount given by the file size will be allocated on the storage element.

Afterwards, a new SReplica object is created and registered in an array of the

storage element. Subsequently, the file is notified first that a new replica was created.

Finally, the action interface is called to notify potential listeners that a new replica

was created.

68

4.2. MODULE IMPLEMENTATIONS

Figure 4.3: Schematic of the different method calls and class involvements to create

a file and a replica of the file.

4.2.2 Cloud Module

As explained in Chapter 3, the cloud module extends the infrastructure module to

provide certain cloud storage functionality. As shown in Figure 4.4, GACS pro-

vides a common interface for all clouds. This interface consists of a cloud factory

to create objects of differently implemented cloud. All cloud implementations must

implement the base cloud interface. The base cloud interface can be used to create

regions. These regions represent the cloud implementation of the ISite interface

from the infrastructure module. Furthermore, the base cloud interface describes a

method used to process the billing. The bill is represented by another interface, the

cloud bill interface.

GCP implementation

Beside the interfaces, Figure 4.4 also illustrates the GCP implementation of these

interfaces. The first step to create a new cloud implementation in GACS is to create

an implementation of the base cloud interface. For GCP, this is done using the

69

4.2. MODULE IMPLEMENTATIONS

Figure 4.4: UML class diagram of the cloud module. Not all attributes and opera-

tions are shown to improve the visibility, e.g., certain get methods that

allow read-only access are not illustrated. Furthermore, in the code,

gcp is not used as class name prefix but as namespace.

CGCPCloud class. This class implements the methods required by the interface, such

as ProcessBilling and InitialiseNetworkLinks.

Furthermore, the GCP cloud implements the LoadConfig method. This method is

especially important to load the information of the implemented cloud services. As

mentioned in Section 2.2.2, GCP describes the information of its services by SKU

IDs. All SKU IDs with their information were exported through the GCP API and

exported into a JSON file. The file containing the SKU ID information must be

specified in the corresponding profile configuration of the cloud. The LoadConfig

method will use the configured SKU ID file to load the pricing information for

storage, transfers, and operations.

The next steps when creation a new cloud implementation are the implementation

of a class inherting from ISite. For the GCP implementation, the CGCPRegion class

is used for this. The CreateRegion method of the GCP cloud implementation will

create and return objects of the GCP region.

70

4.2. MODULE IMPLEMENTATIONS

Figure 4.5: Flow chart that shows the storage cost tracking of the GCP implemen-

tation in GACS.

Since sites are used to create storage elements and the storage elements for a cloud

must implement certain cost tracking features, the GGCPBucket provides a custom

storage element implementation. In addition, the GCP region is implemented to

create and return GCP buckets instead of grid storage elements.

As mentioned earlier, the main point of using specified versions of the site and storage

element classes is to add cost tracking. The class diagram in Figure 4.4 shows that

the region class and the bucket class contain numerous methods to calculate certain

costs. In general, the cost tracking functionality consists of two parts. First, the

tracking of costs or operations that introduce costs as they occur. Second, the

summarisation of the costs and the resetting of the counter variables.

There are three types of cost that are considered for using GCP. These are stor-

age cost, network cost, and operation cost. The tracking part of the storage cost is

illustrated in Figure 4.5. The tracking is done for each bucket object. Each time

a replica is increased or removed, the used cloud storage is potentially changed. A

check is done whether simulation time has passed since the last time the storage

cost were updated. If that is the case, the storage cost is updated by summing the

so far calculated storage cost with the storage cost introduced since the last update.

The unit of the price is cost per volume per time.

The network cost is not as explicitly tracked as the storage cost because compared

to the used storage, the used network traffic can not be reduced but only increased.

For this reason, the calculation of the network cost is done in the region objects. The

process straightforwardly iterates through the network links of the buckets, collects

the used traffic, determines the pricing information of a given network link, and

sums the product of the traffic and the price.

For the calculation of the operational cost, the buckets have to track the number of

operations explicitly again. However, since the operational cost is purely based on

the number of operations and not time based in any way, the implementation is less

71

4.2. MODULE IMPLEMENTATIONS

complex than the storage cost tracking. Each bucket implements the OnOperation

method, which is called for each operation, such as inserting new data or accessing

existing data. The bucket only needs to count the different operations. The actual

cost calculation can be done straightforwardly by multiplying the number of opera-

tions with the corresponding pricing information.

The CGCPCloud::ProcessBilling() method is implemented to calculate all costs,

reset all cost calculation variables, and start a new billing period. The implemen-

tation iterates through all region objects, letting each object calculate its storage,

network, and operation costs. Afterwards, the results are stored in a CGCPBill

object and returned.

The final step to implement a new cloud is to create an implementation of the

ICloudFactory interface. This interface is used by the simulation engine to create

the specialisation of the IBaseCloud interface. The factory object is instantiated

as a static variable and registers itself in the cloud factory manager singleton. The

cloud factory manager maps a cloud ID, such as gcp to a factory object, e.g., the

GCP factory instance. This allows finding a specific cloud factory by name, e.g.,

using configuration files.

4.2.3 Simulation Module

The simulation behaviour is mainly defined by the simulation module. Figure 4.6

shows the main classes of the simulation module, containing the most important

attributes and operations. The CSchedulable class provides the base class for every

event that can be executed by the simulation engine. The IBaseSim interface defines

the operations that each simulation engine implementation must provide.

The base simulation class and the schedulable class are in a composition relationship.

That means when the base simulation class is shut down, e.g., because the maximum

tick was reached, also all events related to this simulation instance are shut down.

Furthermore, in the more uncommon case where no more events are left, e.g., because

the events decided not to request a rescheduling, the simulation would shut down

too.

The schedulable base class provides two overridable methods. The OnUpdate()

method is used by the simulation engine to execute the event when its scheduled

time was reached. The scheduled time point is indicated by the mNextCallTick

variable. This variable is used to indicate the simulation engine the next time point

the corresponding event should be executed.

Figure 4.7 outlines the execution and rescheduling mechanic of an event. When the

simulation clock reaches mNextCallTick the OnUpdate() method of the event will

72

4.2. MODULE IMPLEMENTATIONS

Figure 4.6: UML class diagram of the simulation module. Not all attributes and

operations are shown to improve the visibility, e.g., certain get methods

that allow read-only access are not illustrated.

be called. The event executes its implementation dependent payload. Afterwards,

the event determines whether and when it must be rescheduled by the simulation

engine and sets the next call tick variable accordingly. If the next call tick variable

was not updated to a future time point, the overrideable method Shutdown() will

be called, and the event gets deleted.

The approach of how the simulation scenario is set up, how the configurations

are applied, and how the events are scheduled and executed is determined in the

IBaseSim implementation. The most relevant attributes of this class are the Rucio

instance reference providing access to the infrastructure module, the array of cloud

implementations, the mCurrenTick variable representing the simulation clock, and

the array of schedulables representing the schedule.

The SetupDefaults() method is required to be implemented by each simulation

engine. Optionally, an implementation can override the Run() and Stop() methods,

to customise the engine loop and the stopping behaviour, respectively.

The SetupDefaults() method receives a JSON object as input, which provides the

profile configuration loaded at program start. The method is supposed to create

and configure the infrastructure, clouds, network links, and the initial simulation

73

4.2. MODULE IMPLEMENTATIONS

Figure 4.7: Illustration of the execution and rescheduling of an event.

events. The Run() method is used to start the actual simulation loop.

1 void IBaseSim ::Run()

2 {

3 while(mIsRunning

4 && (mCurrentTick <= maxTick)

5 && !mSchedule.empty())

6 {

7 CSchedulable* event = mSchedule.pop();

8

9 mCurrentTick = event ->mNextCallTick;

10 event ->OnUpdate(mCurrentTick);

11

12 if(event ->mNextCallTick > mCurrentTick)

13 mSchedule.push(event);

14 else

15 event ->Shutdown(mCurrentTick);

16 }

17 mIsRunning = false;

18

19 while (! mSchedule.empty ())

20 mSchedule.pop()->Shutdown(mCurrentTick);

21 }

Listing 4.4: Default implementation of the event loop in the IBaseSim class.

The base simulation interface provides a generic default implementation of the event

loop. This default implementation is shown in Listing 4.4. The listing shows the

exit conditions of the event loop in the head of the while loop, which were already

discussed in Section 3.2.1. The time advance algorithm is implemented by extract-

ing the next event from the schedule in Line 7 and setting the simulation clock to

the time of this event in Line 9. Subsequently, in Line 10 the event is executed. If

the event requires to be scheduled again, it increased its mNextCallTick variable.

This is tested in Line 12 and the event is either rescheduled or removed. At the end

of the simulation, all existing events are informed about the end of the simulation.

74

4.2. MODULE IMPLEMENTATIONS

The code in the listing used the priority queue adaptor for the mSchedule variable,

which is based on a binary heap. Another approach would be a multiset, which

would result in a similar event loop code. However, a multiset would be based on a

red-black tree.

As shown in the class diagram in Figure 4.6, GACS comes with default simulation

engine implemented in the CDefaultBaseSim class. It was mentioned earlier that

the default simulation engine allows a full set up via configuration files. The way this

is done is by implementing the SetupDefaults() method to subsequently initialise

all modules and their components from the passed-in profile JSON object.

The profile loading is done in various steps. Each step is implemented in a separate

method shown in the class diagram. First, SetupRucio() is called, which uses the

infrastructure module to create grid sites and storage elements. Subsequently, all

potentially configured clouds are configured. After this point, all sites and storage

elements should have been created. The next action should be to add all grid

information and all cloud information to the output module to ensure that the

output module can resolve all references when the network links are created. Then,

it is safe to create the network links. If all these actions were executed successfully,

the simulation infrastructure should be fully configured.

Having a fully configured infrastructure, the active parts of the simulation can be

created. This includes mainly the creation and configuration of events. The first

events that are created come from the transfer configuration, as explained in Section

4.1.3. The default simulation provides methods that allow creating and configuring

a transfer manager and a transfer generator from a given JSON object.

The next events that are created are the data generator events. Since there is

currently only a single data generator object, the configuration is directly loaded

and applied in the SetupDefaults() method. Subsequently, potential cloud billing

events are created. Finally, a heartbeat event is created to regularly print simulation

statistics to the standard output during runtime.

Default Transfer Manager

As described in Section 3.2.3, GACS provides a default implemented bandwidth-

based and duration-based transfer manager. Except for the progress calculation,

both transfer managers are identical. The class of the bandwidth based transfer

manager is illustrated in the class diagram in Figure 4.6.

The most relevant attributes of the default transfer manager are the transfer queue,

the map of active transfers, and the last update time. When a new transfer is cre-

ated using a transfer manager, the transfer manager puts the new transfer in a queue

75

4.2. MODULE IMPLEMENTATIONS

Figure 4.8: Flow chart that outlines the process how the default transfer manager

implementation activates and updates transfers.

instead of starting it directly. This is done because the network link required for

the new transfer might be limited to a certain number of active transfers. For this

reason, the transfer queue in the transfer manager is implemented as map, which

contains a list of transfers for each network link.

For the active transfers, a multimap has been chosen as data structure. The mul-

timap groups transfers by their starting time. The starting time of a transfer might

be in a future point of simulation time. This is required because, e.g., a storage ele-

ment might be configured with a certain access latency. That means after a transfer

is activated, the actual updating of the transfer only starts after the starting time.

Since the multimap provides an ordered data structure, only the first elements of the

multimap are considered for updating until the starting time of an active transfer is

larger than the current simulation clock.

Furthermore, the transfer manager implements several operations. The operations

mainly serve three purposes. First, it allows creating transfer objects given a source

and destination replica. This operation consists of creating a new STransfer in-

stance using the given replicas and queuing the instance in the transfer queue asso-

ciated with the corresponding network link. Second, the transfer manager transits

created transfers through different states and simulates the transfer progress over

time during the event updates. Finally, it notifies registered receivers about transfer

completions and failures.

Figure 4.8 shows a flow chart outlining the event update procedure of the default

transfer manager. As first action, the queued transfers for each network link are

76

4.2. MODULE IMPLEMENTATIONS

Figure 4.9: UML class diagram of the output module. Not all attributes and op-

erations are shown to improve the visibility, e.g., certain get methods

that allow read-only access are not illustrated.

started depending on the number of active transfers and the limit of active transfers

allowed.

After no further queued transfers can be started, the active transfers are updated.

First, the delta time is calculated by using the last updated time and the current

simulation time. Then, the map of active transfers is iterated until the starting time

is larger than the current simulation time.

For each iterated transfer, the amount of data to transfer is calculated. This is

done by using either the shared or unshared bandwidth, depending on the network

configuration. Afterwards, the destination replica of the current transfer is increased

by the calculated amount.

Finally, it is checked whether the destination replica was completed during the

current update. If this is the case, the action interface listeners are notified, the

transfer is stored in the output module, and the transfer itself gets deleted.

77

4.2. MODULE IMPLEMENTATIONS

Figure 4.10: Flow chart diagram outlining the process of how to persistently store

simulation values using the output system.

4.2.4 Output Module

Figure 4.9 shows the main classes and interface definitions of the output module.

The COutput class is implemented as a singleton class and globally provides access

to the output functionality during the simulation runtime. As mentioned in Section

4.1.3 the output module is the first module to be initialised. This means that di-

rectly after the output configuration files were parsed, the Initialise() method

will be called. Internally, this method creates an implementation of the IDatabase

interface class and calls its Open() method.

If the initialisation succeeds, the output singleton can be used to create imple-

mentations of the IPreparedInsert interface. The prepared insert object contains

information about the format and destination of values that can be written to the

output system. However, it represents only a template for the data and no actual

values.

To actually output data, a matching prepared insert object can be used to create

an object of a IInserValuesContainer. This interface represents an actual con-

tainer for values. The format is specified by the prepared insert object. The value

container interface defines several methods to add values of different types to the

container.

Figure 4.10 shows a flow chart that outlines the process of writing values to the

output system. The best practice is to once create all required prepared insert

objects in the initialisation phase of the simulation. Advanced database imple-

mentations, such as Postgres, allow precompiling insert statements for improved

performance.

When the point is reached that data must be written to the output system, a value

container can be created using the prepared insert statement. After all values were

78

4.2. MODULE IMPLEMENTATIONS

added to the container, the container can be queued for storing it persistently using

the output singleton instance.

As mentioned before, the output module uses a separate thread to avoid perfor-

mance drops during I/O operations when storing simulation results. The output

module uses a lock free single consumer single producer queue to guarantee thread

safe data exchange. The main thread runs the simulation, and thus represents the

producer, i.e., the simulation produces the data and adds them to a value container.

When the value container is queued to the output system, the container is inter-

nally added to a shared buffer. The consumer thread takes the value containers

from the shared buffer and calls their InsertValues() method, which stores them

persistently in the database.

1 void COutput :: ConsumerThread ()

2 {

3 while(mIsConsumerRunning || (mConsumerIdx != mProducerIdx))

4 {

5 while(mConsumerIdx != mProducerIdx)

6 {

7 IInsertValuesContainer* container = mBuffer[mConsumerIdx];

8 mConsumerIdx = (mConsumerIdx + 1) % BUF_LEN;

9

10 container ->SaveToDisk ();

11 }

12

13 this_thread :: sleep_for(chrono :: milliseconds (5));

14 }

15 }

16

17 void COutput :: AddData(IInsertValuesContainer* Data)

18 {

19 const std:: size_t newProducerIdx = (mProducerIdx + 1) % BUF_LEN;

20 while(newProducerIdx == mConsumerIdx)

21 this_thread :: sleep_for(chrono :: milliseconds (10));

22

23 mBuffer[mProducerIdx] = Data;

24 mProducerIdx = newProducerIdx;

25 }

Listing 4.5: Simulation output thread

Listing 4.5 shows the C++ code for a basic implementation of the single consumer,

single producer buffer. The consumer thread from line 1 to 15 runs in parallel to

the rest of the simulation. The producer part from line 17 to 25 is called directly

from the simulation. The most relevant elements are the shared buffer mBuffer, the

79

4.3. SIMULATION TOOL VALIDATION

consumer index mConsumerIdx, and the producer index mProducerIdx. The shared

buffer is a fixed-size array storing pointers to the containers that contain the output

data. The consumer and producer index are two atomic integer variables. The index

calculation considers the array size to use the buffer as a circular buffer.

The producer index points at the location in the buffer where the next produced

element will be stored. In other words, this position is reserved for the producer

thread. The consumer index points at the element in the array that will be con-

sumed next.

Two relevant conditions are used in Listing 4.5. First, if the consumer index and the

producer index are equal, the buffer is empty. This is used in line 3 and 5 to check if

more elements can be consumed. Second, if the next producer index is equal to the

consumer index, the buffer is full. This is used in line 20 to check whether new data

can be added. If the buffer is full and new data needs to be added, the simulation

must wait until the consumer thread removed an element from the buffer.

The consumer thread uses two while-loops. The outer while-loop ensures that the

thread stays active as long as the output module is used or as long as more data can

be consumed. In other words, it is ensured that all data will be persistently stored

even if the output thread is requested to shut down. The inner while-loop takes the

next element, advances the consumer index, and instructs the output backend to

store the element persistently.

The implementation assumed that the producer is typically faster than the con-

sumer. Thus, the consumer thread rarely leaves the inner loop and enters the sleep.

If this assumption was proven wrong, the implementation could be further improved

by using a conditional wait construct.

4.3 Simulation Tool Validation

To validate the basic functionality of GACS, the transfers of the ATLAS derivation

input data were simulated. Since this is a process that is already running in produc-

tion, there are sufficient data available to calculate parameters for the simulation

and to provide a scale for the output.

This section firstly describes details about the setup of the simulation for this sce-

nario. Then, the used monitoring data are explained and the method to extract the

simulation parameters from them. Finally, the results are evaluated.

80

4.3. SIMULATION TOOL VALIDATION

4.3.1 Simulation Setup

The validation scenario was implemented in GACS by using the CFixedTransferGen

transfer generator. This transfer generator is generically implemented in GACS and

can be fully configured by configuration files. The main part of the configuration for

this transfer generator is represented by a mapping between source storage elements

and destination storage elements. In addition, each source/destination storage el-

ement pair contains a value generator object to calculate a number of transfers to

generate.

The CFixedTransferGen generator implements the PostCompleteReplicas() ac-

tion interface, which enables the transfer generator to be notified about finished

transfers. For example, this is required when the replicas should be deleted again

after transferring.

Since a transfer generator is an event, it can be regularly executed by the simula-

tion engine. Each time the transfer generator is executed, it processes several steps.

First, it processes the replicas whose transfers were completed since the last execu-

tion, e.g., deleting them again, so they can be transferred multiple times. Then, it

iterates through source/destination storage element pairs. For each pair, it calcu-

lates the number of transfers to generate.

Subsequently, a random replica of the source storage element is selected for each

transfer to generate. If the selected replica is already transferring, the replica array

is sequentially iterated starting from the selected replica until a proper source replica

is found. A new replica object is created at the destination storage element using

the file associated with the selected source replica. Finally, a new transfer is created

using the source and destination replicas.

4.3.2 Parameters calculation and configuration

Table 4.1 lists all parameters and their values that were used to simulate this sce-

nario. The data to calculate values for these parameters were taken from the ADC

monitoring system. This monitoring system only provides the data of the past two

months. For this reason, the simulated time frame was set to almost two months,

as shown in the table. Specifically, the transfer data from 2020-05-30 10:00:00 to

2020-07-29 05:00:00 2 of the three sites with the highest number of transfers during

this period were collected.

Five data samples of the monitoring data were considered for the validation. A sam-

2The distributed computing infrastructure and activity was not unduly impacted by the global

COVID-19 pandemic.

81

4.3. SIMULATION TOOL VALIDATION

Parameter Value/Configuration

Simulated time 59 days 19 hours

Transfer mgr. update interval 1 s

Transfer gen. update interval 10 s

No. initial replicas 1000 per site

Throughput 8.10 MB/s per network link

File size exponentially distributed:

λ = 0.61972

10.23 MB ≤ size ≤ 13.73 GB

No. transfers generated exponentially distributed:

λ = 3.33437

Table 4.1: Parameters and their configuration for the simulation validation.

ple of the file size, a sample of the number of transfers, and a sample of the transfer

throughput were used to calculate the parameters for the model. The samples of

the transferred volume and transfer duration were used to validate the output of the

model.

The parameters of the model were determined by finding a distribution function

that can be properly fitted to the real world data. An alternative approach would

be to investigate and apply certain curve fitting techniques. In this case, the input

parameter would be described by a polynomial. However, the first analysis of the

data suggested that the data can be well described by distribution functions. Also,

first tests showed that the fitting results can be considered more than sufficient to

describe the data.

Since the transfer manager is an event, a tick frequency can be configured as ex-

plained in Section 4.1.3. The tick frequency of the transfer manager can potentially

influence the run time of the simulation. However, first tests and the scale of the

parameters indicated that the validation scenario would not reach a scale that signif-

icantly increase the simulation run time. This allowed setting the transfer manager

update interval to the lowest value of 1 second to achieve the highest resolution.

The transfer generator update interval configures how frequently the transfer gener-

ator is executed. This effectively controls how frequently the random distribution for

the number of transfers is sampled. If the chosen parameters allow only the genera-

tion of numbers between 0 and 1, it could be possible that no transfers are generated

82

4.3. SIMULATION TOOL VALIDATION

Figure 4.11: Schematic of the infrastructure configuration used for the validation.

Each box represents a storage element. The arrows represent the

directional network links.

at all because the minimum number of transfer to generate is 1. To prevent this,

the numbers could be rounded upwards. However, this would introduce an error.

For this reason, the number after the decimal point are summed and considered by

subsequent executions of the transfer generator.

Choosing an excessively large transfer generator update interval would result in a

high but infrequent number of transfer generations. Conversely, a too small update

interval could result in a too small number of transfers to generate. An update

interval smaller than the time between two transfer generations does not improve

the resolution. The mean of the distribution function of the number of transfers

to generate is 1/λ = 1/3.33437 ≈ 0.3. This means that on average, using the 10

seconds interval, a new transfer is generated every third update for each storage

element pair.

At the start of the simulation, each storage element is initiated with 1000 replicas.

After a completed transfer, the destination replica is deleted immediately to allow

transferring the replica again. Thus, the 1000 replicas provide a sufficient pool of

selectable replicas.

Infrastructure

Figure 4.11 illustrates how the infrastructure was configured for the validation sce-

nario. The used monitoring data were collected from the three storage elements

shown in the figure. Not included in the figure are the three corresponding sites

because only one storage element of each site was taken. The monitoring data was

taken from transfer data in all directions among the three storage elements.

83

4.3. SIMULATION TOOL VALIDATION

1 "rucio": {

2 "sites": [{

3 "name": "CERN -PROD",

4 "storageElements": [{

5 "name": "CERN -PROD_DATADISK",

6 "allowDuplicateReplicas": false ,

7 "limit": 0

8 }]

9 }]

10 }

Listing 4.6: Part of the infrastructure configuration for the validation scenario

showing the most important site and storage element configuration

options. The configuration is located in the rucio configuration file.

Listing 4.6 shows a part of the used infrastructure configuration file. For the

simulation validation experiment, the full profile configuration is also uploaded to

GitHub [Weg21]. The file at config/profiles/simEval/profile.json contains the pro-

file configuration. For the infrastructure configuration part, the profile points to the

separate file at config/profiles/simEval/rucio.json file using a special configuration

key, as explained in Section 4.1.3.

As shown in Listing 4.6, the rucio configuration object contains a key sites that

contains a list of configuration objects. Each object in the list will result in the

creation of a new site object during simulation runtime. The example listing only

shows the configuration of the CERN-PROD site. Each site configuration object

contains a list of storage element configuration objects. Each storage element con-

figuration object will result in the creation of a storage element associated to the

corresponding site.

The main configuration properties of a storage element are the name, which is com-

monly used in other configuration files. For example, the network link configura-

tion uses the storage element name to reference the source and destination storage

element. The allowDuplicateReplicas property can be used to allow multiple

replicas of the same file on a single storage element. Another storage element con-

figuration property is the storage limit. A value of 0 means the storage is unlimited.

File size parameter

First, the parameters for the file size distribution were calculated. The monitoring

system provided the data in the form of a histogram showing the number of files

for a certain file size range. The minimal available bin width of the histogram was

128 MB. To analyse the histogram in more detail and calculate parameters for the

84

4.3. SIMULATION TOOL VALIDATION

Figure 4.12: Comparison among the real world data file size distribution, the fit-

ted exponential distribution function, and the fitted exponentiated

Weibull distribution functions.

simulation, the data were exported into a CSV file.

The CSV data were loaded in a Python script. Therefore, a custom function was

written that allowed to do basic filtering or resolve gaps in the CSV data. Resolving

gaps might be required because the export from the monitoring system did not

export bins that had a count of 0. Thus, if the code using the exported data expects

the bins to be equally spaced, the empty bins have to be added first.

After loading the data, distribution functions to describe the file size and the number

of transfers were searched. The main Python packages used to analyse the data

and find proper distribution functions were Matplotlib [Hun07] for visualisation,

NumPy [HM+20] for efficient array operations, SciPy [VG+20] especially the SciPy

stats module to represent the distribution functions, and distfit [Tas20] to compare

various distribution functions.

Figure 4.12 shows the real world data from the monitoring system and the fit-

ted exponential and exponentiated Weibull distribution functions from the SciPy

package. The process of how the distribution functions were fitted and how the

parameters for the simulation were configured will be explained in the following.

85

4.3. SIMULATION TOOL VALIDATION

1 # rwd = [(bin1 , count1), (bin2 , count2), ...]

2 rwd = GetCsvValsFromFile(’filesizes.csv’)

3

4 # calculate bin width

5 rwdStepSize = rwd [1][0] - rwd [0][0]

6

7 # get a list of only the counts

8 counts = list(zip(*rwd))[1]

9

10 # assume sizes are uniformly distributed wihtin one bin

11 curBin = (rwdStepSize / 2) / ONE_GB

12

13 subRwds = []

14 for count in counts:

15 subRwds.extend ([curBin] * int(count))

16 curBin += rwdStepSize / ONE_GB

17

18 distFit = scipy.stats.expon.fit(subRwds)

19 print(’lambda = {}’.format (1/ distFit [-1]))

Listing 4.7: Python snippet used to transform the file size distributtion real world

data and calculate the parameters for an exponential distribution

function

Since the fitting function of SciPy expects an array of data samples and not pre

aggregated data like a histogram, the data from the monitoring system had to be

transformed first. The most straightforward approach, for transforming the data,

was the approximate recreation of the data samples from the histogram. Listing 4.7

shows the code used to transform the CSV data so that the data can be passed to

SciPy for calculating the fitting parameters.

Line 2 uses the afore mentioned custom function to load the CSV data. By default,

gaps are resolved and no filtering is applied. The returned format is a list of tuples.

The first element of each tuple contains the bin value, e.g., the file size. The second

element of each tuple contains the count of the bin, e.g., the number of files.

Line 5 calculates the bin width assuming the bins are equally spaced. As mentioned

before, the file size histogram from the monitoring system has a bin width of 128

MB, thus rwdStepSize is 128 MB. Line 7 uses the zip function to transform the

CSV data into a tuple with two lists. The first list contains all bin values. The

second list contains all count values. The list with all count values is the required

list for the subsequent code.

The next lines generate a list with a file size entry for each file. Assuming the

number of files within each bin are uniformly distributed, the expected value for the

86

4.3. SIMULATION TOOL VALIDATION

Distribution RSS file size RSS file size filtered RSS num transfers

Erlang 0.99 0.85 20.23

Expo. Weibull 0.99 0.78 0.29

Gamma 1.79 0.97 13.20

Chi square 2.52 1.65 13.59

Alpha 2.64 2.00 1.34

Exponential 3.03 1.59 1.75

Beta 3.20 1.88 0.65

Cauchy 4.06 2.41 5.33

Normal 4.65 2.81 10.78

Uniform 5.44 3.52 32.38

Table 4.2: RSS score of various distribution functions fitted to the file size and

number of transfers data using the distfit package. The RSS column

shows the scores for the original data, while the RSS filtered column

shows the scores for the data where the size of the first bin was halved

to show the influence of the first bin on the fitting results.

first bin would be 64 MB. This is calculated in line 11 and transformed to gigabyte.

Line 13 declares the list that will contain a file size entry for each file. Line 14 to

16 generate the file size entries. The loop is executed for each count value of the

real world data. Line 15 extends the subRwds list by count entries with a value of

curBin. Afterwards, the value for the next bin is calculated.

Finally, in line 18 and 19 the data are passed to SciPy and fitted to the exponential

distribution function. The last element in the return value of the fit function is the

scale parameter that corresponds to 1/λ.

Based on the shape of the real world data shown in Figure 4.12, the exponen-

tial distribution was intuitively expected to be a good candidate to describe the

real world data. However, measured by the residual sum of squares (RSS), several

distributions showed good fitting results. The exponentiated Weibull distribution

and the Erlang distribution delivered the best RSS values of approximately 1. The

fitted exponential distribution resulted in an RSS value of approximately 3. Several

other distributions delivered an RSS value between 1 and 3. Table 4.2 shows the

87

4.3. SIMULATION TOOL VALIDATION

considered distribution functions and their corresponding RSS values.

For the file size, the main difference among the fitted distribution functions is how

well they estimate the first bin. The first bin is an exceptional large bin containing

the number of files with the smallest file size. In absolute numbers, real world data

of approximately 932k files were available. The first bin counted approximately 180k

files. This can be attributed to the fact that the first bin also counts the files with

a file size of 0. For example, this might happen if the monitoring system was not

fully able to record or transmit the file size.

Figure 4.12 shows that the exponentiated Weibull distribution estimates the first bin

very well. However, it generally tends to underestimate afterwards. On the other

hand, the exponential distribution clearly underestimates the first bin and tends to

overestimate afterwards.

The influence of the first bin on the fitting results can be observed when manually

limiting the size of the first bin, e.g., using a count of 90k files instead 180k. As

shown in the RSS file size filtered column of Table 4.2, the RSS of the exponentiated

Weibull fitting is reduced to approximately 0.78 while the RSS of the exponential

distribution is reduced to approximately 1.6 when limiting the first bin. That means,

different distribution functions could be used to better address different parts of the

data.

1 "fileSizeCfg": {

2 "name": "BNLDataGen",

3 "storageElements": ["BNL -OSG2_DATADISK"],

4 "numFilesCfg": {

5 "type": "fixed",

6 "value": 1000

7 },

8 "fileSizeCfg": {

9 "type": "exponential",

10 "lambda": 0.61972 ,

11 "minCfg": {"type": "minClip", "limit": 0.009765625} ,

12 "maxCfg": {"type": "maxClip", "limit": 12.79106355}

13 },

14 "lifetimeCfg": {

15 "type": "fixed",

16 "value": 157680000

17 }

18 }

Listing 4.8: Primary properties of the used data generator configuration located

in the profile configuration file

Once the parameters for a distribution function are calculated, the simulation

88

4.3. SIMULATION TOOL VALIDATION

can be configured accordingly. The file size distribution must be configured in

the data generator event. As explained in Section 4.1.3, the data generator event

configurations are located in a list in the profile JSON file. For the validation

scenario, this list contains three configuration objects, one for each storage element.

Each configuration object will instantiate and configure a data generator object at

runtime.

The most important configuration options of a data generator are shown in Listing

4.8. The only differences among the three configuration objects are the name, which

is only used for console output and the storage elements, which specify where the

simulated files should be generated. The values configured in the storageElements

key must match the storage element names configured in the rucio.json file. Since

no tick frequency is configured for the data generator events, the events are only

executed a single time.

The numFilesCfg key allows specifying an value generator object as described in

Section 4.1.3. This object is then used by the simulation to describe the number of

files the generator should generate. For the validation, a fixed number of 1000 files

was used.

The fileSizeCfg key allows specifying the value generator object describing the

file size distribution. For this object, the parameters of the exponential distribution

function fitted to the real world data are used. The limits were also taken from the

real world data.

Finally, the lifetimeCfg key allows specifying a value generator for the lifetime of

the file, i.e., the time after which the file should be deleted. However, since a fixed

number of files was used, automatic deletion of files was not used by setting the

lifetime larger than the simulated time frame.

1 "fileSizeCfg": {

2 "type": "expoweibull",

3 "a": 0.38797 ,

4 "c": 0.90383 ,

5 "l": 0.06399 ,

6 "minCfg": {"type": "minClip", "limit": 0.009765625} ,

7 "maxCfg": {"type": "maxClip", "limit": 12.79106355}

8 }

Listing 4.9: Alternative file size distribution configuration using the exponentiated

Weibull distribution fit

The configuration system allows exchanging parameters without recompilation

and without large effort. Listing 4.9 shows an alternative file size distribution con-

figuration using the parameters of the exponentiated Weibull distribution fitted to

89

4.3. SIMULATION TOOL VALIDATION

Figure 4.13: Number of transfers per hour from the monitoring data. These data

were used to calculate parameters for the validation simulation.

the real world data. This allows running the simulation with different characteristics

of the distribution functions. For example, the exponentiated Weibull distribution

which better estimates the files with a very small file size as explained earlier.

Number of transfers parameter

The second parameter that was required for the simulation validation was the num-

ber of transfers to generate. As explained in Section 4.3.1, the CFixedTransferGen

was used for this scenario. This transfer generator requires a value generator object

configuration for each source/destination storage element combination. This value

generator object is then used to determine the number of transfers that should be

generated between the given combination.

In the following, the calculation of the configuration parameters and how the con-

figuration was applied to the simulation will be explained in more detail.

Figure 4.13 shows the transformed real world data and the exponential distribu-

tion function used for the simulation scenario. Similar to the file size distribution,

the exponential distribution was the first candidate chosen based on the shape of

the real world data.

However, using the distfit package, the RSS score of several distribution functions

was calculated. The RSS num transfers column in Table 4.2 shows the RSS values

for the considered distribution functions. Again, the exponentiated Weibull distri-

90

4.3. SIMULATION TOOL VALIDATION

bution shows the best score and is able to estimate the beginning of the real world

data histogram better than the exponential function.

The process of calculating a distribution function for the number of transfers

to generate was similar to the one for the file size distribution. The monitoring

data were exported into another CSV file. However, for the number of transfers,

the monitoring data were in the form of a date time histogram. That means the

histogram contained one bin for each hour, with each bin describing the number

of generated transfers during this hour. On the other hand, the desired histogram

should show the frequency per number of generated transfers, i.e., one bin for each

number of generated transfers, with each bin containing the frequency this number

of transfers occurred. In addition, the monitoring data represented the sum of all

done transfers among the three sites with the most transfers during the observed

time.

For these reasons, the monitoring data had to be transformed before estimating the

parameters. The monitoring data provided data of the transfers among three sites,

each with two transfer directions, e.g., site A to site B and site B to site A. That

means the data had to be distributed among 6 directions. For the validation, it was

assumed that the number of transfers were equally distributed between the sites.

1 # rwd = [(bin1 , count1), (bin2 , count2), ...]

2 rwd = GetCsvValsFromFile(’numTransfersPerHour.csv’)

3

4 # calculate bin width (3600 = 1 hour)

5 rwdStepSize = rwd [1][0] - rwd [0][0]

6 simTickInterval = 10

7 ticksPerHour = int(rwdStepSize / simTickInterval)

8

9 # get only counts into a NumPy array

10 counts = np.array(rwd)[:, 1]

11

12 # equally distribute counts among 3 sites * 2 directions

13 counts = counts / 6

14

15 # transform: num/hour -> num/tick

16 counts = counts / ticksPerHour

17

18 distFit = scipy.stats.expon.fit(counts)

19 print(’lambda = {}’.format (1/ distFit [-1]))

Listing 4.10: Python snippet used to transform the real world data and calculate

the parameters for an exponential distribution function

Listing 4.10 shows the Python snippet that was used to do the required trans-

91

4.3. SIMULATION TOOL VALIDATION

formation of the real world data and estimate the parameter for an exponential

distribution function. The snippet starts similar to the file size fitting snippet. In

line 2 the helper function is used to read the CSV values. Line 5 calculates the bin

width, which is 1 hour. Thus, rwdStepSize will equal to 3600 seconds. In line 6,

the information is set that the transfer generator of the simulation will be executed

every 10 seconds in simulation time. In line 7, this information is used to calculate

the number of times the transfer generator will be executed per bin width, i.e., per

hour. For example, ticksPerHour = 360 means that the transfer generator in the

simulation will be executed 360 times per simulated hour.

Starting from line 10, the data transformation is done. Only the count values are

required. Thus, the CSV data are loaded into a NumPy array and the column with

the count values is extracted into the counts variable. Subsequently, in line 13, the

number of transfers per hour is equally distributed to 6 transfer directions. After-

wards, by dividing by ticksPerHour in line 16, the time unit is transformed from

count per hour to count per transfer generator execution.

After the transformation, the data can be passed to SciPy to calculate parameters

for a random distribution. In line 18, the lambda parameter for the exponential

distribution function is calculated and printed in line 19.

To fit the data to a different distribution function, only the last two lines must be

changed. For example, replacing scipy.stats.expon by scipy.stats.exponweib

would fit the data to the exponentiated Weibull function instead of the exponential

function. The output must be changed to print all required parameters.

92

4.3. SIMULATION TOOL VALIDATION

1 "generator": {

2 "type": "fixed",

3 "name": "FixedTransferGen",

4 "tickFreq": 10,

5 "startTick": 5,

6 "infos": [{

7 "storageElement": "BNL -OSG2_DATADISK",

8 "destinations": {

9 "CERN -PROD_DATADISK": {

10 "type": "exponential",

11 "lambda": 3.33437

12 },

13 "NDGF -T1_DATADISK": {

14 "type": "exponential",

15 "lambda": 3.33437

16 }

17 }

18 }]

19 }

Listing 4.11: Primary properties of the used transfer generator configuration

located in the profile configuration file.

Listing 4.11 shows the most important part of the transfer generator configuration

that was used for the simulation. As mentioned earlier, the number of transfers to

generate is the main parameter for the transfer generator. The transfer generator

can be configured in the profile configuration file. This is the same file where the

data generators can be configured with the file size distribution, i.e., config/pro-

files/simEval/profile.json.

The profile configuration file contains the key transferCfgs. The value of this key

is a list of objects. Each of these transfer config objects contains the manager key

and the generator key, which can be used to specify the configuration of the transfer

manager and the transfer generator, respectively. The generator will automatically

use the transfer manager configured within the same transfer config object.

The manager config is not shown in the listing, but only contains four configuration

options. The most important of it being the manager type and the execution fre-

quency. The type defines whether the transfer manager updates the transfers based

on the bandwidth or on a configurable transfer duration, as explained in Section

3.2.3. The execution frequency defines how frequent the transfer manager event is

executed. The two other properties are the start tick, i.e., when the transfer man-

ager is executed the first time and a name for the console output.

The validation scenario required a single transfer config object in the transferCfgs

93

4.3. SIMULATION TOOL VALIDATION

list because one CFixedTransferGen generator is able to generate all transfers

among the three sites. In line 2 of Listing 4.11 it is specified that the fixed transfer

generator should be used. Line 3 to 5 configure the common properties that can be

configured for every event.

Starting from line 6 the actual transfer configuration can be defined. The infos list

contains one object for each storage element that provides a source for transfers.

The listing only shows the configuration for the BNL-OSG2 DATADISK storage

element as an example. The full configuration actually contains three objects in

the infos list, one for each source storage element. As for the data generators, the

provided storage element names must match the storage elements configured in the

rucio.json file.

The destinations key of the source storage element allows specifying the destina-

tion storage elements. The format allows providing a value generator compatible

configuration object for each destination storage element name. Since the parameter

calculation assumed the transfers among the three storage elements were uniformly

distributed, each destination is configured with the same exponential distribution

parameters.

1 "DstStorageElement": {

2 "type": "expoweibull",

3 "a": 3.93496 ,

4 "c": 0.61761 ,

5 "l": 0.08224

6 }

Listing 4.12: Alternative configuration using the exponentiated Weibull

distribution

As mentioned earlier, the configuration system allows changing the distributions

and their parameters without a lot of effort and without recompiling. Since the

exponentiated Weibull distribution showed very good fitting results, a second vali-

dation was done with using the exponentiated Weibull distribution for the number of

transfers. The used parameter configuration for the second validation is exemplarily

shown in Listing 4.12.

Throughput parameter

The last input parameter that was taken from real world data is the network link

throughput. Similar to the sample of the number of transfers, the sample of the

throughput from the real world data was available as a date time histogram. This

histogram describes the mean throughput per hour among all three sites. Like with

94

4.3. SIMULATION TOOL VALIDATION

Figure 4.14: Histogram showing the frequency per mean throughput per day of the

real world data. One data point was considered as an outlier and has

been manually filtered from approximately 800 MB/s to 90 MB/s.

the sample of the number of transfers, the throughput data could be transformed

to show the frequency per mean throughput. These transformed data are shown in

Figure 4.14.

The shape of the real world data suggest the fitting of a normal distribution. How-

ever, as discussed in Section 3.3.2, the simulation accepts only fixed values for the

bandwidth or throughput configuration currently. Thus, the mean value of the

throughput real world data has been used, and the links were configured with a

throughput instead of a bandwidth.

A straightforward approach to improve the modelling of the throughput data would

be to use bandwidth information and a background noise generator. However, this

approach would require the information through which network routes the files have

been transferred in the real world. If this information was available, the bandwidth

details of the corresponding network routes would be required additionally. Further-

more, the usage of a background noise generator would require a separate model and

configuration. Those data are difficult to acquire and would contradict the require-

ment to simulate from a data management perspective. For this reason, the mean

throughput value is used and further improving the network modelling capabilities

is left subject to future work.

95

4.3. SIMULATION TOOL VALIDATION

1 "CERN -PROD_DATADISK": {

2 "NDGF -T1_DATADISK": {

3 "throughput": 8105274 ,

4 "maxActiveTransfers": 0,

5 "receivingLink": {

6 "throughput": 8105274 ,

7 "maxActiveTransfers": 0

8 }

9 }

10 }

Listing 4.13: Part of the network link configuration located in the links

configuration file.

Listing 4.13 shows a part of the network link configuration where the throughput

parameter is set. As suggested in Section 4.1.3, the link configuration is specified in

a separate file, which is also available in the GitHub repository [Weg21] at the path

config/profiles/simEval/links.json.

The notation for the network link configuration is to provide an object for each

source storage element. Each of these first level objects can contain keys corre-

sponding to the names of storage elements that define the destination of a link.

For example, in Listing 4.13 CERN-PROD DATADISK specifies the source storage

element. It provides an object containing the key NDGF-T1 DATADISK, which

specifies the destination storage element. With this configuration, a network link

from CERN-PROD DATADISK towards NDGF-T1 DATADISK will be created by

the simulation.

Furthermore, the destination storage element defines the receivingLink key. This

key can be used to indicate to the simulation that another link in the opposite

direction must be created with the provided properties. This allows conveniently

creating links in both directions with different configurations.

The main properties of each network link configuration is the maximum number of

active transfers. A limit above 0 means the transfer manager will keep transfers in

the queue until the number of active transfers falls below the specified limit. No

value or a value of 0 means an unlimited number of transfers can be active.

The last main property for a network link is the bandwidth or throughput. Using

the throughput key leads to setting the network link into throughput mode, i.e.,

each transfer will be updated based on the throughput and time and independent

of the number of active transfers. Using the bandwidth key instead leads to setting

the network link into shared-bandwidth mode, i.e., the configured bandwidth will

be divided by the number of active transfers.

96

4.3. SIMULATION TOOL VALIDATION

4.3.3 Evaluation

The previous sections explained how the validation scenario was configured. Es-

pecially, the calculation of simulation parameters for the file size, the number of

transfers, and the throughput based on real world data. As mentioned earlier, two

more real world data samples were available, which are used only for the output

comparison.

The simulation results that were used for the evaluation are the mean values of 10

different simulation runs. Using that number of runs, the standard error of each

metric did not exceed 0.8 %. The standard deviation of each observed metric was

below 0.06 %, except for the traffic and transfer duration metric. These metrics had

a standard deviation of 2.5 %.

As mentioned before, the first validation evaluation used the exponential distribu-

tion to describe the file size distribution and the number of transfers to generate.

However, since the exponentiated Weibull distribution showed even better fitting

results, another validation run was executed using the exponentiated Weibull distri-

bution for the estimation of the number of transfers to generate. This also allowed

giving an impression of how the results may behave when changing input variables.

Since the extracted monitoring data were limited to three sites, an evaluation of a

scenario with an arbitrary number of sites would not lead to a reasonable result for

a validation. The first consideration for a scenario with more than three sites would

be the network link configuration. The more sites, the more unrealistic becomes the

scenario that each site generates the same number of transfers to each other site.

This must be validated with further monitoring data. Another requirement would

be the acquisition of sufficient monitoring data for the output metrics.

For these reasons, the validation scenario was limited to three sites. Removing this

limitation would require model adjustments and significantly more monitoring data.

Table 4.3 shows a summary of the simulation results. The table allows comparing

the values of all five metrics for the given real world data samples, the simulated

data using the exponential distribution, and the simulated data using the exponen-

tiated Weibull distribution for the number of transfers.

Noticeable is the difference of the number of transfers between the Sim and Sim

Weibull column. Reconsidering the differences of the fitting results between the

exponential and exponentiated Weibull distribution, the fit of the exponential dis-

tribution slightly underestimates after the first bin of the real world data histogram.

Afterwards, the exponential distribution is more likely to generate larger numbers

than the exponentiated Weibull distribution. This might result in the difference of

this metric between the two validation runs.

97

4.3. SIMULATION TOOL VALIDATION

Metric RWD Sim Sim Weibull

File size 1.74 GB 1.74 GB 1.73 GB

No. transfers 0.177 No./s 0.180 No./s 0.171 No./s

Throughput 8.10 MB/s 8.11 MB/s 8.12 MB/s

Traffic 0.30 GB/s 0.31 GB/s 0.29 GB/s

Transfer duration 212.18 s 212.60 s 211.3 s

Table 4.3: Summary of the results of the simulation validation. The RWD column

shows the real world values. The Sim column shows the simulated val-

ues using the exponential distribution for the file size and number of

transfers. The Sim Weibull column shows the simulated values using

the exponentiated Weibull distribution for the number of transfers.

As input parameter, the throughput is directly based on the real world data. It

describes the mean value of the throughput of all transfers equally distributed to

the three sites. Compared to the throughput, the traffic is the summed data volume

that is transferred with each transfer manager update. Thus, the throughput metric

is calculated per transfer, while the traffic is calculated for all transfers based on a

time frame. The traffic is dependent on the file size and number of transfers.

The transfer duration is the mean duration of all transfers. It is calculated by tak-

ing the difference between the transfer start and end time. The transfer duration is

dependent on the file size and throughput metric.

Traffic comparison

Figure 4.15 shows the mean traffic per day averaged for the 10 different simulation

runs. The aura around the lines indicates the corresponding standard deviation

of the simulation runs. Furthermore, the results are shown for the validation run

using the exponential distribution and the one using the exponentiated Weibull

distribution. This provides an impression of the influence of the different distribution

function on the traffic metric.

As mentioned previously, the traffic value depends on the number of transfers. Fewer

transfers mean less traffic. Table 4.3 already showed that the exponentiated Weibull

distribution tends to generate fewer transfers than the exponential distribution. The

results shown in Figure 4.15 confirm this dependency of the metrics.

Figure 4.16 shows the comparison of the traffic distribution between the real world

98

4.3. SIMULATION TOOL VALIDATION

Figure 4.15: Comparison of the summed daily traffic between the two different

validation runs. The lines indicate the mean of the summed traffic of

multiple simulation runs. Each aura illustrates the standard deviation

of the multiple simulation runs.

data and the simulation results. On the scale of GB/s the difference between the

exponential distribution and exponentiated Weibull distribution is barely visible.

But as shown previously, considering the traffic per day, the difference becomes

clearer.

Compared to the real world data, the simulated data have a more steady shape,

while the real world data show more fluctuations in the front and centre of the

curve. However, the overall shapes of the real world and simulated data can at least

be considered similar, which emphasises the significance of the mean values shown

in Table 4.3.

Transfer duration comparison

Figure 4.17 allows comparing the difference of the mean transfer duration for the

different number of transfers distribution functions. The data illustrated in the

figure were generated by first calculating the mean transfer duration of all transfers

per day. These mean values were taken from 10 simulation runs and averaged

accordingly. The auras illustrate the standard deviation of the 10 simulation runs,

and thus give an impression of the consistency of the simulation.

Furthermore, the figure allows comparing the influence of using the exponential

distribution versus the exponentiated Weibull distribution. As expected, a clear

99

4.4. GENERAL SCALABILITY CONSIDERATIONS

Figure 4.16: Comparison of the traffic distribution among the real world data and

the two different validation simulation runs. The simulated data is

the mean of multiple simulation runs.

difference is not visible. For the configure scenario, the transfer duration is not

expected to be significantly impacted by the number of generated transfers.

Figure 4.18 shows the comparison of the transfer duration between the real world

data and the simulation results. As expected, the difference between the results

for the exponential and exponentiated Weibull distribution are barely visible. The

real world data has slightly more fluctuations than the simulated data, but over-

all the shapes can be considered very similar. The main visible difference is that

the simulated data has more noticeably more transfers with a very short transfer

duration.

4.4 General Scalability Considerations

The scalability of GACS, in terms of runtime and memory consumption, largely

depends on the implemented model. This makes it difficult to provide a specific

statement on the scalability of GACS. However, there are certain operations and

objects that are commonly used by model implementations, which can be evaluated

in more detail. Especially, four metrics were considered relevant for the scalability

of GACS: the number of events, the number of transfers, the number of files, and

the number of replicas.

100

4.4. GENERAL SCALABILITY CONSIDERATIONS

Figure 4.17: Comparison of the mean transfer duration per day between the two

different validation runs. The lines indicate the mean transfer dura-

tion of all transfer per day of multiple simulation runs. Each aura

indicates the standard deviation of the multiple simulation runs.

As explained in Section 3.3, the models implemented for this thesis use few, large

events rather than numerous, small events. This makes the scalability of the im-

plemented models less dependent on operations related to the schedule execution.

However, since GACS also supports numerous events, the influence on the scalabil-

ity must be considered.

The time complexity and memory consumption for events depend mainly on the

user implementation. The parts that all events share are the insertion and extrac-

tion from the schedule. An event requires at least to store a scheduling time in order

to be scheduled. In addition, a pointer to the event is required to be able to use

the run time polymorphism. Since the events are only referenced in the schedule,

this results in a linear memory requirement with at least 16 bytes for each event,

assuming a 64-bit compilation.

Regarding the insertion and extraction from the schedule, there are two implemen-

tations available. First, using the STL priority queue adaptor as the schedule. For

insertion and extraction, this results in a worst-case logarithmic time complexity

based on the number of events in the schedule, i.e., in the priority queue. The im-

plementation based on the priority queue does not allow searching for events and

rescheduling of events before they are executed.

The second implementation uses a multi-set from the STL. This container is based

101

4.4. GENERAL SCALABILITY CONSIDERATIONS

Figure 4.18: Comparison of the mean transfer duration distribution among the

real world data and the two different validation simulation runs. The

simulated data is the mean of multiple simulation runs.

on a red-black tree and allows keeping the events sorted by their scheduling time.

The extraction of the next event is done in amortised constant time complexity,

depending on how often the tree needs to be rebalanced. The insertion of an event

requires logarithmic time complexity. Compared to the priority queue, the multi-set

allows searching and rescheduling events. However, maintaining the tree structure

introduces additional memory requirements.

In terms of the memory complexity, both solutions scale linearly in the number of

events. Although, the multi-map approach has a slightly larger constant factor.

The time complexities depend on whether the priority queue or the multi-set are

used. The multi-set provides constant time complexity in the number of events for

insertion, extraction, and searching.

The scalability of the number of transfers can vary depending on the used transfer

manager. For the simulated scenarios, the default bandwidth-based transfer man-

ager was used. In terms of memory requirements, each transfer is described by a

60 bytes large object. Moreover, a transfer object is only referenced in the transfer

manager, resulting in a linear space complexity.

A straightforward approach of the default implemented transfer manager would be

to store all transfer objects in a list and iterate through all transfer objects each

time the transfer manager is executed. This would result in a linear time complexity

in respect to the number of transfers.

102

4.4. GENERAL SCALABILITY CONSIDERATIONS

However, the implemented approach uses two containers to separate the transfer

objects and update them in two steps. The first container is a hash table that maps

a network link to a list of transfer objects. The list for each network link contains

the queued transfers that wait for activation based on the limit of active transfers

of the network link. The second container is a multimap that maps a transfer start

time to a transfer object that was activated.

The first step of each transfer manager execution is to activate queued transfer ob-

jects if possible. This is done by iterating through the network links and extracting

as many queued transfers as possible using the associated list in the hash table.

For each extracted transfer, the transfer start time is calculated, and the transfer is

inserted into the multimap container.

The number of operations for the first step of the transfer manager update is lim-

ited by the number of network links and the limit of active transfers per network

link. Each network link is visited once. For each network link, at most the number

of transfers that can be activated is extracted from the list. Each extraction is a

constant time complexity operation. For each extracted transfer, the insertion into

the multimap costs logarithmic time complexity based on the total number of ac-

tive transfers. The advantage of this solution is that the limit of active transfers is

typically significantly smaller than the possible number of queued transfers.

The second step of each transfer manager execution is the updating of activated

transfers. The multimap container was chosen because it allows keeping the trans-

fer objects sorted by their starting time. This means not all activated transfers

must be visited, but only the transfers that were started already. After a transfer

is finished, the transfer is removed from the multimap, which requires amortised

constant time complexity.

Thus, regarding the number of transfers metric, the overall memory complexity

scales linear in the number of transfers. The time complexity scales linear with the

limit of possible active transfers, which is assumed to be significantly smaller than

the number of queued transfers.

The numbers of simulated files and replicas are the most relevant for common

operations in GACS. Typically, they provide the largest share of the memory con-

sumption. Each file object requires at least 76 bytes. In addition, a file object

requires a reference to each of its replicas. Each replica object also requires exactly

76 bytes.

The file objects are stored in an unordered dynamic array in the Rucio object. The

replica objects are stored in an unordered dynamic array in the corresponding stor-

age element. Typically, the storage element prevents duplicated replicas. Thus, at

103

4.4. GENERAL SCALABILITY CONSIDERATIONS

each storage element, a hash table based data structure contains an entry for each

replica to prevent the duplication of a replica for a given file.

The most common operations that are influenced by the number of files and replicas

are, the creation and deletion of files, the creation and deletion of replicas, and the

index based selection of replicas. Generally, the creation of new files and replicas

are implemented as insertions into the arrays, which requires amortised constant

time complexity. For replicas, there are two additional operations. The insertion

of a reference in the associated file object, which has an amortised constant time

complexity. The insertion into the hash table, which has constant time complexity

in the average case. However, the creation of new files and replicas also invokes

corresponding action interfaces, which can introduce additional user-defined com-

plexity.

The first step for the removal of a replica is to remove the reference to it in the

file object. These references are stored in a dynamic array. For the removal of a

replica, this results in a linear time complexity for searching the reference to remove.

However, the number of replica references per file is typically in the order of a single

digit. The actual removal from the array is done by swapping with the last ele-

ment in the array and reducing the array size by one. The second step is to remove

the replica from the hash table in the storage element. This has an average-case

constant time complexity and a linear time complexity in the worst-case. The last

step is to remove the replica from the array, which is also done with constant time

complexity by swapping with the last element and decrementing the array size.

To remove a file, all replicas of the file are removed first. Afterwards, the file object

is removed from the array in constant time complexity.

The last operation that is commonly used is the index based selection of replicas.

For example, this is required when transfer generators randomly select their source

replicas. Typically, a transfer generator maintains its own array of replica refer-

ences. Index based access is mandatory for the selection. Furthermore, replicas can

be added or removed. Thus, insertion of a new element as well as searching and

removing an existing element is required.

Storing the references in an unordered array allows index based access and effi-

cient insertion. However, searching requires linear time complexity. For this reason,

GACS provides a data structure that uses an array of replicas and a hash table that

maps a replica to the corresponding index in the array. This structure allows index

based access using the array and searching of an arbitrary replica using the hash

table. Inserting and removing elements has constant time complexity in the average

case. However, the hash table introduces additional memory requirements.

104

4.5. RUN TIME SCALABILITY OF THE VALIDATION

In summary, the memory complexity scales linearly for both files and replicas. When

neglecting the complexity of the action interfaces, the time complexity for creation

of files and replicas scales constantly on average. The time complexity for the dele-

tion of a file scales linearly in the number of replicas of this file. The deletion of a

replica scales linear in the number of replicas using the same file. The index based

selection of a replica has constant time complexity.

4.5 Run time scalability of the validation

The run time scalability was investigated in more detail using the validation scenario

described in Section 4.3. The first tests aimed to investigate the behaviour if the

number of sites increases. However, increasing the number of sites requires also to

specify how these sites are connected and how transfers are created. Otherwise, the

run time would not be significantly affected because sites are only passive objects.

For this reason, the first approach was to continue the pattern of the validation

scenario and connect all sites with each other. Since this results in a complete

directed graph, there would be N ∗ (N − 1) links required for a configuration with

N sites. Except the number of sites and the resulting number of network links, all

other configuration options were equally adopted from the validation scenario. In

other words, each link is used to create the same number of transfers using the same

throughput as the validation scenario.

Figure 4.19 shows the results of the first run time test. The number of transfers

and the number of links seems to grow linearly relative to each other, which is ex-

pected because the transfer generator uses the same number of transfer distribution

for each network link. In contrast to that, the shape of the run time curve indicates

that the growth rate of the run time increases at 30 sites and 60 sites. This indicates

that the run time does not scale linearly with the number of transfers nor with the

number of network links.

However, the increase of the growth rate still can be considered rather reasonable

taking into account the simulated scenario. The scenario assumes a simulation of up

to 80 sites, each site being connected with each other site, and a transfer generation

rate comparable to the three largest grid sites.

Further investigations of the results showed that the largest share of the run time is

spent in the transfer manager. The console output of the simulation showed that for

all simulation runs, at least 85% of the run time is spent in the transfer manager.

Compared to that, the transfer generator requires at most 13% of the run time.

Reconsidering the transfer manager configuration shows that the transfer manager

105

4.5. RUN TIME SCALABILITY OF THE VALIDATION

Figure 4.19: Results of the first run time test. The blue line belongs to the left axis

and shows the mean overall run time of the simulation. The red line

belongs to the right axis and shows the mean number of completed

transfers per day. The yellow line indicates the increase of number of

network links, which can be calculated with N ∗ (N − 1) for N sites.

is configured with a tick frequency of 1 simulated second, while the transfer gener-

ator only ticks every 10 simulated seconds. In the case that the transfer manager

introduces an unacceptable run time limit, an option would be to reduce the tick

frequency. However, this comes with the cost of a reduced simulation accuracy.

For example, using a tick frequency of 10 seconds instead of 1 second for the transfer

manager, the same simulation scenario requires approximately 55% of the run time

for the transfer manager and 40% for the transfer generator. The required total run

time of simulation runs using 50 sites is reduced from approximately 2760 seconds

to 640 seconds. However, the influence on the accuracy must be considered. For

the given scenario, the worst case error would be presumably 10 seconds around the

transfer duration.

The configuration of the scenario used for the first run time test was straightfor-

ward. However, the approach of how the sites are connected is not very realistic

considering the large number of transfers generated for each network link. In Section

4.3.3, it was already discussed that the main concern about increasing the number

of sites is the consideration of how the sites should be connected.

In the WLCG, the sites are more used in a hierarchical approach, e.g., the Tier 0

106

4.5. RUN TIME SCALABILITY OF THE VALIDATION

Figure 4.20: Results of the second run time test. The blue line belongs to the

left axis and shows the mean overall run time of the simulation. The

red line belongs to the right axis and shows the mean number of

completed transfers per day. The yellow line indicates the increase of

number of network links.

site exchanges most transfers with the Tier 1 sites one level below. Further, the Tier

1 sites complete numerous transfers with a set of Tier 2 sites, and so on. A second

run time test tried to adapt this model by connecting the sites in a hierarchical ap-

proach. However, this introduces two new concerns. First, it must be decided how

many sites of each tier exist. Second, it is not as easily possible to set the number

of total sites as with the previous test because the total number of sites is a result

of the sum of the children of each tier.

Figure 4.20 shows the results of the second run time test. For this test, the

number of sites was not set explicitly. Instead, a number of Tier 1 sites was defined,

a number of Tier 2 sites per Tier 1 site, and a number of Tier 3 sites per Tier 2.

This represents a completely different scenario compared to the validation, but the

approach of how sites are connected is more realistic and allows simulating up to

3616 sites in a reasonable amount of time.

The yellow line indicates the number of network links. Comparing the increase rate

of the number of links to the run time shows that the run time still increases with

a higher rate than the number of links.

107

5 HCDC model

This chapter explains the HCDC model as the combination of the Data Carousel

model and Hot/Cold Storage model. First, an overview is given, elaborating on the

motivation and possible variations of combining the models. Afterwards, the imple-

mentation of the HCDC model into GACS is explained. Mainly, this includes the

description of the used configuration, the implementation of the transfer generator,

and the used parameters. Finally, the evaluation method as well as the results of

the evaluation are presented.

5.1 Overview

The first part of this section states the details about the motivation behind the

creation of the HCDC model. Furthermore, it explains the model in detail and

which variations are possible for certain parts of the model.

5.1.1 Motivation

In general, data-intensive computing workflows require the use of performance-

oriented storage, such as disks, because of the lower response time and better per-

formance in concurrent and random access mode. This often results in maintaining

at least one permanent copy of each input file on a disk system.

These workflows could be scheduled to be infrequently executed in bulk processing

campaigns, e.g., whenever a new derivation software version is released. In this way,

input files have to be read only once per campaign. Given this case, the input data

would be preferably stored solely on tape. However, for larger collaborations, such

as ATLAS, it is challenging to optimally organise those workflows into campaigns

entirely. For this reason, there are continuous derivation workflows that read input

data more frequently.

To allow a continuous derivation workflow to have a proper throughput of input

data, a common solution is to keep at least one copy of the vast majority of input

files on a disk storage system. For example, almost all input data for the produc-

tion of derivation data for ATLAS have one permanent copy on both tape and disk

109

5.1. OVERVIEW

storage.

As explained in Section 2.3.1, the Data Carousel model implements an approach

that tries to take advantage of the infrequent usage of the input data for derivation

production campaigns. The concept of the Data Carousel model is to transfer the

input data from tape storage to disk storage, start processing the data, and contin-

uously replace the data that has been processed by new data coming from tape.

Using the Data Carousel model, only a limited number of input files are required

on disk storage at any one time. This allows removing the permanent copies of the

input files from the disk storage system and storing the input files solely on tape

storage. In this way, disk storage requirements are reduced to save cost or provide

disk storage for other types of data.

The Data Carousel model was developed to improve storage usage and tape perfor-

mance if the derivation workload is structured into campaigns so that the input files

are required only once per campaign. For the continuous derivation workflow, the

input files are accessed frequently which would result in using the tape storage in

concurrent random access mode and thus, significantly reduce the tape performance.

To allow using the Data Carousel model with continuous workflows, it can be ex-

tended by the Hot/Cold Storage model to the HCDC model. The HCDC model aims

at minimising the disk storage required for derivation campaigns as achieved by the

Data Carousel model, while mitigating the negative impact on the tape storage

performance for continuous derivation workflows.

5.1.2 Model Variations

The HCDC model combines the Data Carousel model with the Hot/Cold Storage

model. These models were explained in Section 2.3. The Hot/Cold Storage model

adds the cold storage layer between the tape and the disk storage. The combination

of the two models can be done in various configurations. The main differences among

possible variations are explained in this section. The variation that was evaluated

is explained in the next section.

First, the HCDC model can be considered for different workflows. However, for this

work the model was designed and configured with respect to the ATLAS derivation

workflow, which is explained in Section 2.1.1. Using the HCDC model for the

derivation workflow provides significant disk storage saving potential, e.g., in the

case that all AODs could be migrated to tape storage. In addition, the data access

pattern and the input file size distribution of derivation workflows were considered

promising.

The HCDC model considers two sources of storage resources. First, on-premises

110

5.1. OVERVIEW

storage, which is provided by the institution or company using the model. On-

premises storage is considered to be permanently available, i.e., it is not required to

be allocated on demand. For example, the institutions that are associated with the

ATLAS experiment provide a pledged amount of resources for a certain time period.

This means there is a defined limit of resources, and whether the resources are fully

used or partly used does not unduly affect the cost. On-premises storage costs are

mainly based on the hardware acquisition, maintenance, and administration.

The second source of storage resources are commercial cloud providers. These re-

sources are considered under typical cloud behaviour, i.e., they can be allocated

and deallocated on demand to an arbitrary extent. However, depending on the us-

age of commercial cloud resources, different kinds of costs are induced. Regarding

storage resources, there are at least the cost for the stored volume per time, which

depend on the storage type. Furthermore, there are typically costs for operations

like writing, reading, deleting, or changing metadata of files. Another cost factor is

the network traffic. Usually, cloud providers only charge egress and traffic between

different regions within the cloud. The amount charged for traffic within the same

cloud depends on the source and destination endpoints. Egress traffic out of the

cloud to the internet is the most expensive.

As mentioned before, the derivation workflow can be executed continuously or in

organised campaigns. The HCDC model can be used for both workflow types. A

first consideration when specifying the model implementation should be whether it

is based on bulked processing campaigns or executed continuously.

Organised campaigns result in an infrequent, predictable requirement of the input

data. This corresponds to the requirements of the Data Carousel model because the

data access pattern performs well in combination with tape storage. Hence, the Data

Carousel model part of the HCDC model is expected to be most effective, whereas

the Hot/Cold Storage part should be less impactful. In campaign processing, the

potential benefit from the Hot/Cold Storage model part would be to use the cold

storage as a buffer and prefetching area. This avoids that the performance of the

tape storage becomes a bottleneck after the start of the campaign.

Continuous derivation production leads to a more frequent and less predictable

demand for the input data. This reduces the potential performance of tape storage,

which reduces the impact of the Data Carousel model part. However, the Hot/Cold

Storage part should become more important in providing a cache for the processed

data and reduce the data access on tape storage. Another point to consider is

which storage category of the Hot/Cold Storage model part is implemented by the

cloud storage. This depends on the different storage types offered by the cloud

111

5.1. OVERVIEW

Hot Cold Archival

Disk Reduces WLCG disk

storage required; With

WLCG computing:

high performance, no

extra network cost

Flexible volume

requirement; Most

effective with GCS hot

storage and GCE

computing

Large amount of most

infrequently accessed

data; No optimal use

of disk storage.

GCS Highest cost/volume;

With GCE

computing: extra

compute cost, reduced

network cost; With

WLCG computing:

high egress cost

GCS suits the flexible

volume requirement;

Egress cost depend on

the recall rate

Largest amount of

cloud storage; Storage

required permanently;

Cheaper cost/volume

ratio

Tape Unsuitable because of

high access latency

and insufficient

performance

Flexible volume

requirement;

Potentially

throughput bottleneck

depending on recall

rate

Optimal use of tape

storage for the

requirements of

archival data

Table 5.1: Possible mappings from the storage types to the corresponding storage

categories of the model.

provider and should be decided based on the QoS properties described in Section

2.3.2. Table 5.1 compares each of the different storage types with the corresponding

model category.

Using the cloud storage as an archive, would require the permanent acquisition of

cloud storage for the largest amount of data among all three storage categories.

Some cloud providers offer different storage types with different pricing policies. For

example, GCS offers storage types with a reduced cost per volume ratio, but with

additional cost for each data access. Since the archival storage category is used for

the least frequently accessed data, the additional access cost could be negligible and

the reduced cost per volume ratio could be beneficial.

Using the cloud storage as hot storage, would reduce the required cloud storage

volume. Since hot storage requires high performance storage, the cost per volume

for the storage type would typically be higher. Furthermore, the egress cost could be

112

5.1. OVERVIEW

Cloud
Storage

Site 1

Tape Disk

CPU Input data
(egress)

Site 2

Tape Disk

CPU

Input data

Figure 5.1: Schematic of the combination of the Hot/Cold Storage model and the

Data Carousel model with two sites. The on-premises tape storage

provides the archival storage, the on-premises disk storage provides

the hot storage, and the commercial cloud storage provides the cold

storage.

very high if the data is processed outside the cloud because the hot storage contains

the most popular data.

Cold storage has a more flexible volume requirement, depending on the popularity

metric and the available hot storage. With cloud storage as cold storage, the egress

cost would depend on the number of reusages of the data and the available amount

of hot storage.

Using the cloud for cold storage enables the sliding window of the Data Carousel

model to become dynamic. This means that, in the case that the hot storage is

full, the sliding window can be extended by using cold storage to keep an optimal

performance of the archival storage.

Figure 5.1 illustrates a possible combination of the Hot/Cold Storage model and

the Data Carousel model. The storage categories of the Hot/Cold Storage model

part are assigned straightforwardly using on-premises tape storage as archival stor-

age, on-premises disk storage as hot storage, and commercial cloud storage as cold

storage. This particular combination is investigated in more detail throughout this

113

5.2. SIMULATION IMPLEMENTATION

chapter.

It is assumed that at least one replica of all input data is available at the tape

storage. In the evaluated model, the tape storage is considered to be read only, i.e.,

data is not added nor removed to the initial existing data at tape. This assumes

that adding new derivation input data to the tape storage takes place in a separate

phase.

The CPU box in the graphic represents the computing nodes with their local storage

areas. To process input data, the data need to be transferred to the local computing

node storage. To allow the computing nodes downloading input data to their local

storage, the input data must be available at the disk storage of the associated site.

The output data is uploaded to a disk storage area of the site.

Input data that are not available on disk storage can be transferred from the tape

storage or from the cloud storage if available. A transfer from the tape storage

potentially requires more time than from the cloud storage. However, transferring

from the cloud storage induces egress cost. As mentioned before, the input volume

for derivation workflows is typically larger than the output. Thus, the egress cost

could become significant.

When input data are no longer required on the disk storage, they are migrated to the

cold storage prior to their deletion on the disk storage. The ingress is assumed to be

free of charge. The deletion of the data at the cloud storage could be implemented

either with an expiration time or based on a storage limit and the popularity metric.

5.2 Simulation Implementation

This section describes the implementation of the HCDC model in GACS. Since the

HCDC model defines special rules of how data is migrated, the HCDC transfer

generator was implemented in GACS. The transfer generator is configurable with

several parameters and implements the behaviour of the HCDC model. Furthermore,

the HCDC transfer generator requires a certain configuration of the storage and

network infrastructure. For example, at least one hot, cold, and archival storage

element must exist.

This section starts by describing the used configuration of the storage and network

infrastructure. Mainly, this includes the properties of sites, storage elements, cloud

buckets, and network connections. Afterwards, the implementation of the HCDC

transfer generator is described in more detail. Then, the parameters used to simulate

the model are explained. Last, a short impression of the consumed memory and the

required run time is given.

114

5.2. SIMULATION IMPLEMENTATION

DISK

TAPE

GCS

WORKER

OUTPUT

DISK

TAPE

WORKER

OUTPUT

Download

Upload

Download

Upload

TransferTransfer

Site-1 Site-2

Figure 5.2: Implementation of the HCDC model in the simulation. It shows the

configured storage elements for each of both sites and the network

link setup. The network link labels name the type of transfer. GCS

illustrates a single cloud bucket used by both sites.

5.2.1 Infrastructure Configuration

Figure 5.2 shows the used storage and network configuration for the simulation of the

HCDC model. It is based on two grid sites Site-1 and Site-2 each with four different

storage elements. The simulation uses one transfer generator instance for each site,

i.e., one HCDC transfer generator instance is associated to exactly one site. The

HCDC transfer generator requires that each site associated with an HCDC transfer

generator provides at least the four illustrated storage elements and the illustrated

network connections. In addition, at least one globally accessible cold storage ele-

ment is required.

The used globally accessible cold storage element is implemented as GCS bucket

and represented by the GCS box. In the simulated scenarios, each site uses only

the data originating from its own tape storage element, although both sites have

access to all the data on GCS. To enable sites processing data from other sites, a

study would be required of how to split the workload exactly. A possible approach

would be to use a given share, e.g., 80% of the jobs use local site data and 20% of

the jobs use remote site data. Another approach could use the popularity metric to

additionally select remote site data.

In the following, the purpose of each of the four storage element types is explained.

115

5.2. SIMULATION IMPLEMENTATION

TAPE storage elements provide tape storage that represents the archival storage of

the Hot/Cold Storage model. The tape storage contains one replica of each input

file, and thus represents the origin of all input files. Typically, requests to tape are

kept in a queue for some time, if the tape is not mounted, to optimise the reading

requests. Additionally, there is a latency for mounting, positioning, and dismount-

ing the tape. These delays are simulated by configuring the tape storage elements

with an access latency. That means when a queued transfer from tape storage be-

comes active, the start of the actual data transferring is deferred based on the access

latency.

DISK storage elements provide disk storage exclusively for input data and represent

the hot storage of the Hot/Cold Storage model. The disk storage is used as source

for the downloads of the derivation production input files to the worker nodes. Only

files on disk storage elements can be downloaded to the worker nodes. The disk stor-

age represents the storage area of the sliding window in terms of the Data Carousel

model.

WORKER storage elements are used to simulate the local storage of the worker

nodes. The simulation was designed to represent transfers with storage and network

resources, so there is no default functionality for computing resources. It is assumed

that the input files always fit entirely on the worker node. Thus, worker storage

elements must not have a limit set. In general, the HCDC model can also be used

without this assumption, but the transfer generator implementation would require

several adjustments, e.g., to support streamed data input.

OUTPUT storage elements that represent a storage area exclusively for output

data. Output storage elements are used to store the output files of the jobs which

will be uploaded from the worker node storage.

GCS buckets are a special type of storage element used to represent the cold stor-

age of the Hot/Cold Storage model. The cloud module of the simulation contains

a GCS implementation. This implementation allows creating GCS buckets. GCS

buckets are storage elements that are extended by certain functionalities like stor-

age increase/decrease tracking, ingress/egress tracking, and cost calculation. These

functionalities implement the cost model of the cloud provider.

As in the real world system explained in Section 2.1.3, the simulation also uses

transfers, downloads, and uploads to copy data. The simulation implements down-

loads and uploads as a special type of transfer. The transfers from disk storage

elements to worker storage elements are called download instead of transfer. The

transfers from the worker storage element to the output storage element are called

upload instead of transfer. The difference between a download and a transfer is that

116

5.2. SIMULATION IMPLEMENTATION

the downloaded replica is not managed by the data management system. Respec-

tively, an upload creates a new managed replica in the data management system.

Furthermore, in the simulation downloads and uploads are not processed by the

transfer manager, and they are stored in a different format in the output module.

5.2.2 Transfer Generator Implemenntation

As explained in Section 3.2.3, a transfer generator implements the main part of a

model in the simulation. For this chapter, the HCDC transfer generator is imple-

mented and configured to simulate the continuous production of derivation data.

This task can be split in several steps:

1. A certain amount of input data are selected for processing.

2. If necessary, transfers are created to make the data available at the disk storage

element.

3. The data are downloaded to the worker storage.

4. The data are processed at the worker node.

5. The output data are generated and uploaded to the output storage element.

6. All input data that are no longer required at the disk storage element are

transferred to the GCS and deleted at the disk storage.

Since the transfer generator is implemented as a simulation event, these steps are

executed regularly based on a configured frequency until the simulation stops.

To keep track of the different steps for each selected input file, a state object is

used. These objects transit through states similar to the states of jobs in the Pi-

lot system explained in Section 2.1.3. Moreover, the state objects represent similar

information. For these reasons, the state objects are referred to as job object. The

first step, the selection of input data, is called job submission. In this step, a new

job object is created for each selected set of input data.

The HCDC transfer generator keeps track of all job objects and transits them

through a state machine. Technically, this is implemented by using one doubly

linked list for each state. A doubly linked list is used because for some states it is

required to maintain an order for the list. Thus, it is required to be able to insert

elements in front or behind an arbitrary element in the list. Furthermore, the singly

linked list of the STL does not provide a way to add an element to the end of the

117

5.2. SIMULATION IMPLEMENTATION

Waiting

Queued Active Running

Input data are
transferring

Job slot
available

Stage-In
complete

New job
submitted

Transferring

Input data are
complete

Figure 5.3: State transitioning of jobs during production phase.

list.

To represent the state machine using the lists, a job object is stored in exactly one

of the state lists at any time. The transfer generator updates state after state by

iterating through the lists and updating each job object. Job objects transit into

other states by migrating the object from one list to another.

Figure 5.3 illustrates the state machine implemented by the HCDC transfer gen-

erator. Each job object is in one of the states waiting, transferring, queued, active,

or running. The arrows indicate the transition among the states. The arrow labels

are the conditions for a state transition.

As mentioned before, the first step is the submission of new job objects. The first

step is calculating the number of jobs to generate. This is done by using a config-

ured random distribution. Afterwards, for each job to generate, a file is randomly

selected based on the popularity metric. Each selected input file is associated with a

new job object, which is created and registered in the transfer generator. The initial

state of a job object depends on the availability of the input data. In the following,

the various states and transitions are explained in more detail.

Waiting: The required input data is not available at the disk storage element. No

transfer for the input data to the disk storage element exists. Available disk storage

is insufficient to create a transfer of the required input data to the disk storage.

The objects in the waiting state are not all actively updated. When sufficient stor-

age at the disk storage element becomes available, exactly as many job objects from

the waiting state list are selected as possible considering the available storage. For

each of the selected job objects, a transfer is created. If available, data is transferred

from GCS. Otherwise, the data must be transferred from the tape storage element.

After transfer creation, the job object and all potential other job objects that were

118

5.2. SIMULATION IMPLEMENTATION

waiting for this input data are moved to the transferring state. Job objects in the

waiting state are processed in first in, first out order.

Transferring: Jobs are in this state when the required input data is not completely

available at the disk storage element, but a transfer is queued or running to replicate

the data to the disk storage element.

Updating the transferring state is implemented by using an action interface. The

HCDC transfer generator implements the PostCompleteReplica method of the stor-

age element action interface. This method is called when the replica becomes com-

plete at the disk storage element. The method uses a hash table to find the job

objects that are waiting for the completed replica and transits the job objects into

the queued state.

Queued: When at the time of the job submission the input data are already at

the storage element, the job directly enters the queued state. Otherwise, the job

enters the queued state as soon as a transfer for the input data is completed. In the

queued state, the job waits for compute resources in the form of job slots to become

available. The simulation can be configured to provide a specific number of job slots

per site. If a job slot is available, the job object state changes to active.

The queued state is updated by calculating the number of free job slots and then

migrating the corresponding number of job objects from the queued job list to the

active job list.

Active: In this state, a job is occupying a job slot. A download of the input data

from the disk storage element to the worker storage element is running. When the

download is finished, the details about the download and the job object are stored

to the simulation output by using the output module. Afterwards, the simulated

duration of the derivation job is calculated using a configured random distribution

and the job is moved to the running state.

Running: The job object simulates the derivation job execution. Job objects in

the running state are not regularly updated. Instead, the job objects are sorted by

their finishing time, which can be calculated using the calculated derivation job du-

ration. Then, the current simulation time can be used to select the finished running

jobs. For each finished job, output replicas are created and uploaded to the output

storage element. The job object is deleted after the upload is completed.

The last part of the transfer generator is the deletion of data. Two types of deletion

must be considered, depending on the underlying storage. First, the deletion of data

at the disk storage element. When the last job associated with a given replica is

finished, the replica is marked for deletion. At the next transfer generator update, all

replicas marked for deletion are transferred to the GCS, if they do not exist already.

119

5.2. SIMULATION IMPLEMENTATION

Parameter Value/Configuration

Simulated time 90 days

Transfer mgr. update frequency 1 s

Transfer gen. update frequency 10 s

No. sites 2

No. initial replicas 106 per site

Popularity geometrically distributed:

p = 0.1

1 ≤ x < 50

Input file size exponentially distributed:

λ = 0.026

9.76 MB ≤ size ≤ 134 GB

No. jobs submitted normally distributed:

µ = 0.63366

σ = 0.37292

n ≥ 0

Job duration exponentially distributed:

λ = 0.00409

t ≥ 16.666 minutes

Table 5.2: Parameters and their values for the simulation of the HCDC model.

After the transfer is complete, the replicas are deleted from the disk storage. To be

able to successfully transfer the replicas to GCS, either GCS must be unlimited or

data at GCS must regularly be deleted. The deletion of GCS data is the second type

of deletion. If GCS storage is limited and data must be deleted in order to transfer

new data, the data with the lowest popularity is deleted until sufficient storage is

available.

5.2.3 Used Parameters

Table 5.2 shows the general and site specific parameter values used for the simula-

tion of the HCDC model. The values were calculated using real world monitoring

data. The monitoring data were taken from different systems. Data to calculate

the bandwidth were taken from the transfer monitoring system. The other parame-

120

5.2. SIMULATION IMPLEMENTATION

ters such as input file size distribution were taken from the job monitoring system.

Contrary to the transfer monitoring data, the job monitoring data were not limited

to the past two months. However, since the mean bandwidth is calculated from

the data, it is assumed that the mean value is also representative for the time of

three months. The monitoring data for two months were taken for the time from

2020-07-08 12:00:00 to 2020-09-06 12:00:00. The monitoring data for three months

were taken for the time from 2020-06-08 12:00:00 to 2020-09-06 12:00:00.

First real world tests with the HCDC model would be limited to rather small-scale

deployments, especially in terms of the number of sites. This prevents a large wast-

ing of resources in case of issues with the implementation. Additionally, it allows

acquiring an impression of the model without incurring excessively large cloud costs.

The monitoring data showed that in total 80 sites processed ≈ 6.5 million derivation

jobs during the observed three months. The two sites with the largest number of

derivation jobs each processed ≈ 0.5 million jobs. To be able to use the same job

submission configuration and to keep the first evaluation of the model clear, only

these two sites were simulated. The simulated time was set to 90 days according to

the monitoring data.

The required real time to simulate one day was typically below one second. Thus, it

was possible to use a value of one second for the transfer manager update frequency

to achieve the best possible precision. The vast majority of the simulation run time

is spent in the transfer generator. The transfer generator update interval was chosen

for the same reason as in Section 4.3 but based on the number of submitted jobs.

The file size distribution was calculated using the same approach as in Section 4.3.

The used monitoring data did not provide the size of each input file, but only the

total input volume of each job. Using this monitoring data makes the assumption

that one transfer from the tape storage provides data for at least one job. That

implies a reasonable data placement on tape and that the workflow management

system is able to structure jobs to transfer data bunches from tape and process

them. These implications are still challenging objectives. To improve their impact

on the accuracy of the simulation, a more detailed model of the job submission

would be required. Furthermore, a more detailed tape model including the used

data placement strategies would be required.

Since one file corresponds to the input data of one job, the number of initial replicas

can be based on the number of jobs. The number of finished jobs in the monitoring

system was ≈ 106. Thus, an equal number of files and replicas was created.

As mentioned before, the number of times data was processed is used as the popular-

ity metric. This information can be collected from the central production database.

121

5.2. SIMULATION IMPLEMENTATION

Site Source Destination Max. active Value

Both GCS Disk 100 294.00 MB/s

Both Disk GCS 100 500.00 MB/s

Both Disk Worker ∞ 88.24 MB/s

Site-1 Tape Disk 100 22.62 MB/s

Site-2 Tape Disk 100 62.35 MB/s

Table 5.3: Network configuration of the simulated model.

Most data was processed once, exponentially falling-off to 50 times processed. A

geometrically distributed random function can approximate this falloff with the cho-

sen parameters of p = 0.1 and the limits of 1 ≤ x < 50.

The number of jobs to submit is generated by a normally distributed random func-

tion. The duration of each job is generated by an exponentially distributed random

function. The estimation of the parameters of these functions follows the same ap-

proach as the number of transfer generation in Section 4.3. Since the number of jobs

to submit is fitted to the monitoring data, no job slot limitation is configured.

No specific configuration for the number of output files and volume of the output

data was used. This is because in this model, these metrics do not affect the band-

width or cost. Only the job slot is blocked until all uploads of the output files are

finished. Furthermore, the metrics depend directly on the number of jobs finished,

and thus could be calculated offline after the simulation.

The other parameters define the network configuration. Table 5.3 shows the used

values. The first two rows show the configured bandwidth for the network links

between the GCS bucket and the disk storage elements. The third row shows the

bandwidth for downloads. These links are configured equally for Site-1 and Site-2.

For transfers managed by the transfer service, the maximum number of active trans-

fers was limited to 100 according to the real world limits. The number of downloads

is not explicitly limited.

For the bandwidth parameters, the mean value of the monitoring data was taken.

Compared to the transfers between the disk storage element and the GCS bucket,

the download bandwidth seems to be low, but it is used as unshared bandwidth.

For the bandwidth from and to the GCS bucket, only monitoring data from small

scale manual tests was available. Because of the small scale, these values might

contain uncertainties and must be adjusted when larger scale data are available.

122

5.3. EVALUATION OF THE RESULTS

Another configuration parameter to consider is the access latency of the tape stor-

age elements. Creating a proper model to estimate the access latency would be a

complex topic itself and would require detailed log data from real tape systems.

For this reason, a normally distributed random value with a mean of 30 minutes

and a standard deviation of 15 minutes was used, which were estimated based on

operational experience.

The pricing information of the commercial cloud storage is defined in a config-

uration file. It contains the pricing details of different storage categories, different

grades of cost depending on the stored volume, and the network cost depending

on the egress destination. The file was created based on the public pricing data

from the GCP documentation on the 2020-09-10. For the simulation, the standard

storage class for a regional bucket was used.

ATLAS and the VR Observatory worked on research and development projects in

collaboration with Google. During this work, special prices were negotiated. Fur-

thermore, Google supports different peering methods than using the internet. Con-

nection to GCP using a non-public network could immensely reduce the network

cost. For example, the price for downloading to the internet in Europe is between

0.08 and 0.12 USD/GiB. Using the direct peering option, the cost is reduced to 0.05

USD/GiB in Europe. The interconnect peering option charges only 0.02 USD/GiB

[Goo21]. These peering methods typically require a physical network connection to

an internet exchange point.

5.2.4 Performance

The simulation was executed on a virtual machine with 8 GB memory and 4 CPU

cores clocked at 2.4 GHz. The validation model required less than a second in

real time to simulate one day. The more complex HCDC model required less than

two seconds in real time for one simulated day. The memory consumption mainly

depends on the number of files and replicas. Both types require 76 bytes for each

object instance. The memory consumption of the HCDC simulation starts at ≈ 480

MB and peaks to ≈ 500 MB during run time.

5.3 Evaluation of the Results

This section elaborates on the results of the simulation of the HCDC model. First,

the methodology used for the evaluation is explained. Second, the implementation of

the used evaluation tools is described. Finally, the results are stated and evaluated.

123

5.3. EVALUATION OF THE RESULTS

Cfg. Disk limit GCS limit Tape limit

I N/A 0 N/A

II 100 TB 0 N/A

III 100 TB N/A N/A

Table 5.4: Different storage limits per configuration.

5.3.1 Methodology

Three different configurations of the HCDC model have been simulated. All configu-

rations use the job submission, file, and network parameters, as explained in Section

5.2.3. Since these parameters are fitted to real world data, the limits are known to

be achievable by the real world system. The differences between the configurations

are the storage limits of the disk storage elements and the GCS bucket. Table 5.4

shows the storage limits per configuration.

Configuration I has a minimal limit set for the GCS bucket. This prevents the

usage of the GCS bucket. Moreover, no limit is set on the disk storage elements.

With this configuration, all input data is transferred from the tape storage element

to the disk storage element and is kept at the disk storage element. The simu-

lation results should be comparable to the current ATLAS continuous derivation

production workflow. This is expected because after the initial transfer from the

tape storage element to the disk storage element, the data will always be directly

available at the disk storage.

Configuration II has the same minimal limit set for the GCS bucket. In addition,

a limit of 100 TB is set on each disk storage element, which corresponds to ≈ 1.6%

of the used input volume. This configuration of the model shows the results when

there is no cloud storage to cache the input data. In this scenario, the input data

must be transferred from the tape storage element to the disk storage each time the

data is required.

Configuration III is without a limit for the GCS bucket, but with the 100 TB

limit set on the disk storage elements. In this way, the fully combined model is

simulated with all storage areas usable. This configuration allows analysing the

difference when adding the cloud storage as cache.

124

5.3. EVALUATION OF THE RESULTS

5.3.2 Evaluation Implementation

The output of the simulation was analysed using Python scripts. A module was

written, which contains the SimData class. This class represents the data model

for the simulation output, i.e., each object of this class represents the output of a

simulation run. The class provides several utility routines, e.g., getting storage ele-

ment information by name, getting only input or output replicas, getting transfers

by source or destination.

For the analysis of the results, the module containing the SimData class could be

imported into a Jupyter notebook. Objects can be created from a given data source.

The objects then can be used to implement custom data aggregations and visuali-

sations.

Two types of data source can be used to create SimData objects. First, the data

from the Postgres database can be exported to a Hadoop Distributed File System.

In this case, the analysis uses the Apache Spark engine through PySpark to run

data aggregations on a cluster. Using PySpark, the SimData functions do not di-

rectly process the simulation data but modify data frame objects, which contain

only a description of the real data. To receive the data, the data frame including

modifications has to be prepared on the cluster and then send to the client. The

possibility to use a distributed system for the analysis was implemented to allow

the analysis of large output data without hitting memory or run time limitations of

local computing nodes.

The second type of data source is directly specifying a Postgres database. In this

case, the data are directly downloaded to the client. The data are stored in Pandas

data frames, which allow an efficient aggregation. This approach has the advantage

that no data export to a distributed file system nor a computing cluster is required.

On the other hand, this approach might not scale to a simulation output size that

is comparable to the real world.

Figure 5.4 illustrates the primary tables of the simulation output. Omitted are

the sites, storage elements, and network links table to improve the visibility. Each

value is stored as 8-byte integer. All storage and data volume related properties are

stored using bytes as unit. This includes the traffic properties. Of note, the traffic

properties require to be stored as 8-byte integers because they can likely exceed

the 4-byte integer limits. Since the id property is unique among all tables, it is

stored as 8-byte integer to improve the scalability. For example, the number of

replicas managed by the real world system is already in the order of a billion. Thus,

simulating a real world scale model could exceed a 4-byte integer limit.

There are redundant information, e.g., the source storage element id of a transfer

125

5.3. EVALUATION OF THE RESULTS

JobTraces

- id
- siteId
- createdAt
- queuedAt
- startedAt
- finishedAt

InputTraces

- id
- jobId
- siteId
- storageElementId
- fileId
- replicaId
- startedAt
- finishedAt
- traffic

Files

- id
- createdAt
- expiredAt
- filesize
- popularity

Replicas

- id
- fileId
- storageElementId
- createdAt
- expiredAt

Transfers

- id
- srcStorageElementId
- dstStorageElementId
- fileId
- srcReplicaId
- dstReplicaId
- queuedAt
- activatedAt
- startedAt
- finishedAt
- traffic

Figure 5.4: Illustrates the data model of the simulation output. Most of the prop-

erties represent 64-bit integer values. The id is unique among all tables.

The site and storage element tables are omitted for improved visibility.

could be received by finding the source replica in the replicas table. However, storing

these additional information enables the evaluation to reduce the number of join

operations among the tables, which improves the performance.

One recurring problem during the evaluation was the calculation of the state of an

object at a given time point. For example, the number of replicas on a certain

storage element at a given time. The replica table only stores one row for each

replica with a creation an expiration time. Thus, all created replicas up to the given

time point must be considered. Moreover, all expired replicas up to this time point

must be filtered out.

The used approach for this problem solves this by creating a temporary table with

one row for each creation time and for each expiration time. The table has two

columns, one for the time point and another for the number of objects that were

created or deleted at this time point. A creation counts as +1, while a deletion

126

5.3. EVALUATION OF THE RESULTS

Cfg. No. jobs done (SE) Download volume (SE)

I 996k ± 0.05% (0.01%) 41.11 PB ± 0.20% (0.04%)

II 853k ± 0.11% (0.02%) 35.28 PB ± 0.24% (0.05%)

III 996k ± 0.05% (0.01%) 41.02 PB ± 0.38% (0.08%)

Table 5.5: Mean number of finished jobs and mean volume downloaded with their

standard deviation for configuration I, II, and III of 20 simulation runs.

The number in the brackets is the corresponding standard error (SE).

counts as −1. Using this approach, the number of existing objects at a given time

can be calculated by accumulating the second column up to the given time point.

5.3.3 Results

The first metric that was evaluated is the number of finished jobs. From the data

of the monitoring system, it is known that the number of finished jobs should be

≈ 106. As explained in Section 5.3.1, it is expected that the results of configuration

I are similar to the real world data. In configuration II, the data on the disk storage

element are deleted after they have been processed because of the limited disk stor-

age. In addition, the GCS bucket is not used. This leads to transferring the data

from the tape storage element to the disk storage element each time the data are

required. Compared to configuration I this results in an increase of total required

transfers. With the increased number of transfers and the additional access latency

for tape access, configuration II is expected to show a decrease in the number of

finished jobs.

Table 5.5 shows the number of finished jobs and the total volume downloaded for

configuration I, II, and III. Comparing the results of configuration I and II already

gives an impression of the expected impact of the limit on disk storage. The limit

results in ≈ 15% fewer jobs finished and in ≈ 14% less input volume downloaded.

It is conceivable that the difference between the number of finished jobs of configura-

tion I and of configuration II increases as the simulated time frame increases. The

explanation is that in the beginning both configurations behave similarly because

all the data are on tape storage. At some point in configuration I all the data will

be available on disk storage. Thus, the data can directly be downloaded from the

disk storage without transferring them from tape first. This is not the case for con-

figuration II because of the disk storage limit. With a limited disk storage, further

127

5.3. EVALUATION OF THE RESULTS

Figure 5.5: Increase of used storage of the disk storage element for configuration

I (top), II (middle), and III (bottom). The used storage increase for

Site-1 and Site-2 overlap because they are very similar for configuration

I and II.

jobs can only start if sufficient disk storage space is made available by the running

jobs.

Configuration III uses the same values as configuration II except that the GCS

bucket has no limit. As Table 5.5 shows, the results are almost equal to configura-

tion I in terms of the number of jobs finished and the volume downloaded. That

means, in terms of these metrics, the cloud storage is able to compensate the limit

of the disk storage element.

Figure 5.5 shows the increase of used storage over time for each configuration and

each disk storage element. In configuration I, the disk storage element is unlimited.

This results in a quick increase of used storage at the beginning. The more data are

transferred to the disk storage, the more the increase flattens out.

128

5.3. EVALUATION OF THE RESULTS

The disk storage of configuration II is limited to 100 TB as reflected by the corre-

sponding graph in Figure 5.5. The used storage is fluctuating slightly below 100 TB

because of the continuous deletion of old replicas and the creation of new replicas.

At the beginning of the simulation, configuration III is equal to configuration II be-

cause all the data are at the tape storage element and are required to be transferred

to the disk storage element prior to their processing. During this time, more jobs are

submitted on average than can be processed because of the tape performance and

access latency. This results in a backlog of jobs waiting for disk storage. At some

point, a sufficient amount of data are stored on GCS. After this point, fewer jobs are

submitted on average than can be processed. This results in a quick processing of

the backlog of submitted jobs and afterwards a reduced storage requirement. Site-2

requires less time to reach this point because the tape throughput is larger than at

Site-1.

Approximately the same number of jobs are submitted for each configuration,

but in the case of configuration II ≈ 15% fewer jobs are finished. This leads to the

conclusion that some jobs spent more time in early states of the job object state

machine. Each job object stores different time points from its submission to its

deletion. The job waiting time is the time span from the submission of a job until

the job is queued. This includes the time the job must wait for disk storage, the

time that the corresponding transfer spends in the queue, and the time to finish the

transfer.

Figure 5.6 shows histograms for the job waiting time for each configuration. The

top histogram shows the data from configuration I. As expected, the vast majority

of jobs have a small job waiting time because the disk storage is not limited and

the data are transferred only once from the tape storage element to the disk storage

element. At the beginning of the simulation, the same backlog of jobs builds up that

was explained earlier for configuration III. The transfers at the end of this backlog

represent the outliers in the histogram with a job waiting time of ≈ 150 hours.

The second histogram shows the data from configuration II. The histogram shows

that more jobs have a larger job waiting time when the disk storage is limited. The

job waiting time distribution is different between Site-1 and Site-2. The histogram

shows that the job waiting time of Site-1 is distributed ≈ 2.5 times larger than of

Site-2. As in configuration III, a backlog of waiting jobs develops in configuration

II. In contrast to configuration I and configuration III, the job processing rate will

not exceed the rate of newly submitted jobs because the disk storage is limited and

GCS is not used. This means the data must be frequently transferred from tape.

Thus, the job backlog will not be processed completely.

129

5.3. EVALUATION OF THE RESULTS

Figure 5.6: Job waiting time distribution of the HCDC model for configuration I

(top), II (middle), and III (bottom). The number of bins in the top

and bottom histogram was reduced from 30 to 10 to improve visibility

of the first bin. The bins are stacked.

In configuration II, three types of jobs are responsible for the job waiting time close

to 0 hours. First, the very first jobs at the beginning of the simulation. Second,

jobs that require data that already exist at the disk storage at the time of the job

submission. Third, jobs whose input data are already being transferred to the disk

storage at the time of the job submission. Larger job waiting times indicate jobs

that were inserted further towards the end of the backlog. In addition, larger file

sizes, larger transfer times, and unpopular data potentially increase the job waiting

time.

The third histogram shows the data from configuration III. The result is similar to

the histogram of configuration I, but it contains more jobs with durations above

0 hours. This can be explained by the inclusion of the transfer duration into the

130

5.3. EVALUATION OF THE RESULTS

Figure 5.7: The solid blue and red line show the number of transfers from tape

to disk per hour for each site. The dashed lines show the number of

transfers from GCS to disk per hour for each site. The orange line

shows the GCS volume used.

waiting time. In this case, the transfer time from the GCS bucket to the disk storage

element is added.

Figure 5.7 illustrates the usage of GCS. This graphic is only available for config-

uration III because it is the only configuration using GCS. Data for the blue and

red lines is aggregated in the form of count per hour. To reduce the fluctuations

of these aggregated values, a mean filter was applied. The corresponding standard

deviation is shown by the line contours.

The blue and red lines show the number of transfers for Site-1 and Site-2, respec-

tively. The solid versions of these lines show the hourly number of transfers from

tape to disk, while the dashed versions show the hourly number of transfers from

GCS to disk. The orange line shows the used volume of GCS.

Since all the data are solely on tape storage at the beginning, the number of transfers

from GCS to disk and the used GCS volume start at 0. The blue and red solid lines

show that the most data are transferred from tape to disk storage at the beginning.

All the data that are transferred from the tape to the disk storage are subsequently

transferred from the disk storage to GCS. Furthermore, this implementation of the

model does not delete the data at GCS. That means the orange line increases depen-

131

5.3. EVALUATION OF THE RESULTS

Cfg. Site Transfer Volume (SE)

I Site-1 tape to disk 6.75 PB ± 0.28% (0.06%)

I Site-2 tape to disk 6.74 PB ± 0.29% (0.06%)

II Site-1 tape to disk 8.85 PB ± 0.07% (0.04%)

II Site-2 tape to disk 13.04 PB ± 0.20% (0.01%)

III Site-1 tape to disk 6.74 PB ± 0.30% (0.07%)

III Site-2 tape to disk 6.75 PB ± 0.19% (0.04%)

III GCS GCS to disk 24.99 PB ± 0.46% (0.10%)

Table 5.6: Mean and standard deviation of transferred volume between storage

elements for configuration I, II, and III of 20 simulation runs.

dent on the dashed lines. At some point, the most popular data are stored at GCS.

This is when the dashed line exceeds the corresponding solid line. That means, more

data can be transferred from GCS to the disk storage than from the tape storage

to the disk storage. The increase of the stored volume at GCS flattens as the most

popular data are replicated to GCS.

The figure also reflects the filled disk storage in the first half of the simulation. As

explained earlier, there is an initial job backlog due to the tape access latency and

limited number of transfers. Because of this, the disk storage limit is reached. The

filled disk storage leads to a steadily growing job backlog because new jobs must

wait for disk storage space. Even new jobs whose data are already on GCS must

wait for disk storage. As the amount of data at GCS is increasing, more and more

of the newly submitted jobs use GCS as data source. This allows processing the

jobs faster than new jobs are submitted on average. The peak in the dashed lines

indicates the time when the backlog has been processed.

Table 5.6 shows detailed numbers of the transfer statistics. The transferred vol-

ume of Site-1 and Site-2 for configuration I is almost the same. This is because

at some point the most popular data are available at the disk storage and do not

need to be transferred again from the tape storage. About 13.5 PB of data were

transferred to the disk storage. Comparing this amount to the volume downloaded

from disk to worker storage of 41.11 PB from Table 5.5 reinforces the conclusion

that data are reused.

The transferred volume for configuration II shows that significantly more data are

132

5.3. EVALUATION OF THE RESULTS

Month Storage cost/USD (SE) Network cost/USD (SE)

1 82k ± 0.10% (0.02%) 330k ± 0.39% (0.08%)

2 211k ± 0.16% (0.03%) 729k ± 0.31% (0.07%)

3 293k ± 0.23% (0.05%) 807k ± 0.25% (0.05%)

Table 5.7: Mean GCS costs for each month with the standard deviation and stan-

dard error for 20 simulation runs. Pricing information were taken in US

Dollar from the GCP documentation at 2020-09-10.

required to be transferred from tape storage. This is because the data at the disk

storage are deleted after processing and have to be re-transferred in case they are

required again. The difference of the transferred volume between Site-1 and Site-2

makes clear that the tape-to-disk throughput is the bottleneck.

The transferred volume from tape to disk storage for configuration III shows similar

numbers to configuration I. The volume of 6.75 PB indicates the storage required for

the most popular data. Once this data are available at the disk storage for configu-

ration I or at the GCS for configuration III, the tape-to-disk transfer performance

becomes less important.

The volume transferred from GCS to disk is split between both sites, which makes

a mean of ≈ 1.6 GB/s per site in 3 months. As mentioned before, the configured

throughput for the network links is based on small-scale real world tests. This con-

figuration must be adjusted when increasing the scale of the simulation in order to

maintain realistic results. The real world tests of the VR Observatory [K20] resulted

in a similar throughput estimation. Using a simple regression over 4 data points,

they calculated a bandwidth of ≈ 1.5 GB/s without special performance tuning.

At the end of the simulation, there is ≈ 12 PB of data stored at GCS. ≈ 6.8 PB

have not been transferred out of GCS during the simulated time. The number of

times a file was recalled from GCS is in the range from 0 to 45. The files that were

recalled less than 25 times are responsible for more than 90% of the traffic from

GCS to the site disk storage.

Table 5.7 lists the mean cost of the cloud resources per month used by the sim-

ulated model. The pricing information were taken from the GCP documentation

at 2020-09-10. The storage cost increase from the first month on because at the

beginning the data are solely on tape and are gradually transferred to the cloud

storage. With an increasing amount of data at GCS, more data can be transferred

from GCS to a disk storage element. Thus, the network cost is increasing from

133

5.3. EVALUATION OF THE RESULTS

month to month. The network cost is in general larger than the storage cost, since

the price for network traffic is typically significantly larger than the storage price.

Comparing these results to an approach that uses on-premises resources is chal-

lenging, since the costs of the WLCG resources are less explicit and infeasible to

model. For example, the evaluation of commercial cloud resources done by the

Tokyo site was mentioned in Section 2.2.3. Their estimation for the storage cost

of an on-premises system is 1.4 million USD for 16 PB for three years, i.e., ≈ 39

thousand USD per month for 16 PB. However, these cost are for the hardware only,

excluding potentially significant factors, such as power cost, maintenance cost, and

additional infrastructure cost.

Assuming the on-premises storage cost estimated for the Tokyo site, 12 PB of on-

premises storage would be about 30 thousand USD per month. On the other hand,

the simulation results show 293 thousand USD for approximately the same amount

of GCS. This significant difference suggests that the acquisition of additional on-

premises disk storage is more beneficial than using GCS. However, it must be con-

sidered that: (i) the on-premises cost might be underestimated by neglecting certain

cost factors (ii) the difference of the use cases is not considered, i.e., both, Tokyo

and the simulation considered the GCS as permanent storage extension, although

the simulation requires GCS only for storage bursting during peak requirements.

During the evaluation of the results, numerous thoughts of improving the model,

including potentially significant cost reduction, emerged. These thoughts and ap-

proaches to continue the work on the HCDC model will be described in the next

chapter.

134

6 Conclusion

The introduction in Chapter 1 explained the necessity to further expand the re-

search for storage models of data intensive experiments. This is not only important

for ATLAS, but for all scientific experiments that need to store increasingly large

amounts of data.

To face the upcoming data challenges, numerous approaches are investigated. The

Data Carousel model described in Section 2.3.1 is a promising concept to migrate

large shares of the data to lower cost storage. However, for optimal performance,

the Data Carousel model has certain constraints on the workflow organisation. Pre-

ferred are infrequent, predictable, bulked data accesses.

Often, the workflow requirements for the Data Carousel model cannot be achieved,

and the data processing appears unpredictable instead. In this case, the Hot/Cold

Storage model explained in Section 2.3.2 provides an approach to mitigate the de-

crease of the performance.

In combination, the models result in the HCDC model. The evaluation of an imple-

mentation of the HCDC model using commercial cloud storage is required in order

to estimate the potential benefit for the future data challenges.

Prior to the implementation of novel storage models, such as the HCDC model, into

a production system, a model could be analysed using a simulation software. Using

a simulation software provides various advantages. Often, the implementation of

a model into a simulation brings up new perspectives of the model, highlights po-

tential issues, and yields optimisation concepts. In addition, a simulation provides

a fault-tolerant environment for testing a model. Furthermore, a simulation allows

reproducing results by using the same parameters.

As explained in Section 2.4, currently existing simulation software do not suit the

needs for simulating data management models. For this reason, the GACS toolkit

was planned and developed. It provides an architecture to simulate models related

to data management approaches and allows simulating and evaluating the HCDC

model.

The architectural goals and decisions of GACS were explained and discussed in

Chapter 3. Chapter 4 described the implementation of the architecture. Further-

135

more, a workflow with sufficient real world monitoring data was simulated to validate

the basic functionality of the simulation toolkit.

Chapter 5 explained the implementation of the HCDC model into GACS, the

used parameters, and the produced simulation results. The implementation used

GCS as cold storage and assumed a continuous production of derivation data. With

a processed volume of 41 PB of input data in 3 months and a re-read rate of 25

times or less for 90% of the data, 12 PB of disk storage are required to be able to

keep the data solely on tape storage without throttling the job throughput. Using

the HCDC model, the on-premises disk storage limit can be further reduced to 100

TB by employing additional cloud storage without reducing the number of finished

jobs.

The initial research questions stated in Section 1.2 have been confirmed by the find-

ings from the simulation. The first statement was: using a tape storage system to

implement a Data Carousel model for frequently and unpredictably accessed data

reduces the processing efficiency by at least 10%. This is approached by configu-

ration II of the simulation. The configuration showed that ≈ 15% fewer jobs were

finished when using the tape based system.

The second statement was: adding a cache-aware model to the tape storage based

Data Carousel model allows reducing the on-premises disk storage requirements to

less than 5% of the unique input volume without reducing the number of finished

jobs by more than 5%. For this statement, the inclusion of GCS as cold storage was

simulated in configuration III. The statement requires an on-premises disk storage

reduction to less than 5% of the unique input data. In the simulated scenario, the

unique input volume for each site is ≈ 6 PB. Thus, the used disk storage limit of 100

TB is ≈ 1.6%. The difference in the number of finished jobs between configuration

I and configuration III is close to zero and within the margin of error.

However, when evaluating the results, it must be considered that the GCS and net-

work usage introduce additional costs. Whether these costs are worth the additional

throughput has to be decided individually for each institution of a collaboration.

A simulation software, such as the presented GACS toolkit, can assist by calculat-

ing the parameters for the decision whether to use cloud resources. For the HCDC

model, parameters can be considered as fixed or variable. Fixed parameters are dic-

tated by the problem description and the existing resources, e.g., bandwidths, input

volume to process, number of jobs to run, or the popularity of files. Variable param-

eters can be changed directly or change indirectly in dependence on other variable

parameters. For example, the costs and the job throughput change in dependence

136

on a potential GCS limit. The time limit to process all the data change in depen-

dence on the job throughput. The required GCS limit depends on the available

disk storage limit. Given a specific use case with well-defined limits of the variable

parameters, the simulation could be used to estimate the optimal balance among

the parameters.

A typical consideration is to compare the costs introduced by the cloud provider

against the benefits of the additional resources. In Section 5.3, the benefits of addi-

tional resources were measured in form of number of jobs finished resulting from the

input volume throughput. From these values, more specific metrics can be derived,

e.g., job slot saturation or the volume of output data. For example, configuration

I required ≈ 12 PB more disk storage, but configuration II finished ≈ 15 % fewer

jobs. Configuration III induced a cost of more than 2 million USD for three months.

There are two topics that should be prioritised in future work. First, implement-

ing additional concepts to optimise the costs and performance of the model. Second,

improving the used parameters and the underlying assumptions in order to achieve

more accurate and realistic results. When these topics have been addressed, a speci-

fication could be defined for the variable parameters and the simulation can be used

to search the optimal values. These values can be used for real world tests to analyse

the accuracy of the estimation of the simulation.

In terms of the first topic, there are two missing concepts that should be priori-

tised in future work. Currently, it is possible to limit the GCS, but the deletion

mechanism for GCS is not used. This is an essential concept to be able to define

narrower limits on GCS and subsequently reduce storage cost. The deletion is not

used because a model is needed that describes how data are selected for deletion,

e.g., based on the popularity.

The other concept that should be prioritised in future work is transfers between

sites. Using WLCG resources, the data to process is typically distributed among

various sites to benefit from different resources and optimally distribute the work-

load. The challenge of implementing this into the simulation is the creation of a

realistic model that specifies the amount and the selection of data to transfer among

sites.

When these two concepts are implemented, further adjustments to the HCDC model

are possible. For example, the GCS egress cost is even more critical than the GCS

storage cost. These could be reduced by improving the deletion at the disk storage

element and making the caching strategy more intelligent. Moreover, the utilisation

of the tape storage decreases as the GCS usage increases. Instead of always prefer-

ring GCS over the tape storage, both storage categories could be used optimally.

137

One approach for this would be to store the largest files only on the tape storage

and not to transfer them to GCS. The access to the tape storage becomes more per-

formant for larger files. The tape storage usage would be improved and the egress

cost of the cloud storage would be further reduced.

Another approach to potentially reduce egress cost is to utilise cloud computing re-

sources and derive data directly inside the cloud. Although this approach introduces

extra costs for the computing resources, it also reduces the egress cost because only

the smaller derived data have to be transferred out of the cloud.

The second topic that should be prioritised for future work is the improvement of

the used parameters and models. The used parameters are very specifically fitted

to the real world monitoring data. The parameters are realistic as long as the same

monitoring data is used. However, changing one of the parameters might invalidate

the other parameters. For this reason, the following improvements should be made.

(i) As described in 5.2.3, the job submission model should be adjusted, e.g., based

on a job slot limit per site. In the case of a job slot based model, it is also important

to carefully consider other limitations of the storage systems, such as IOPS. (ii) The

number of input files for each job must be generated based on a more realistic distri-

bution. (iii) The network links should be configured with a shared bandwidth, which

requires more detailed information about the real network topology. In addition, a

background traffic should be added to shared bandwidth links, assuming the links

are not exclusively used for the simulated scenario. (iv) The throughput between

GCS and the WLCG was based on rather small scale tests and needs to be tested

with larger transfer volumes or modelled differently. (v) The simulated HCDC model

used a statically assigned popularity based on a fitted random function. This could

be replaced by a dynamical assignment. A straightforward approach would be the

least recently used concept, which is an established CPU caching technique. More

advanced approaches could implement models of existing research about popularity

based data replication [MPT18; TZ+12]. (vi) The tape access latency is a strong

simplification of real tape systems. A more realistic model based on logs of a real

tape system would be required. (vii) The effect of increasing the simulation time has

to be investigated in future work. The simulation scales to much larger times, e.g.,

one year. However, this requires to implement the improvements of the parameters

because the current parameters might not be valid for more than 3 months.

Since, the architecture of GACS allows integrating new approaches and concepts

without significant effort, it is expected that most of the mentioned future work

thoughts technically could be implemented quickly. Moreover, most of the points

would be implemented in the HCDC model without the requirement of extending

138

GACS. Presumably, the only point that could require additions directly to GACS

is the implementation of a proper tape system simulation.

In fact, the most challenging part of the mentioned future topics is the proper

estimation of newly introduced parameters and the evaluation of their effect on

the results. For example, a popularity-based deletion of GCS data. Furthermore,

transferring data among the WLCG sites is already possible using GACS. However,

the most complex part will be the modelling of reasonable parameters for these

systems, e.g., which data to transfer among WLCG sites, the transfer rates, or the

number of transfers. To model these, existing real world data and known system

limitations must be thoroughly considered.

As of writing this thesis, the data management group at CERN has assembled an

R&D programme for the modelling of storage utilisation and the estimation of data

transfers. This process is complicated by the unpredictability of modelling; specif-

ically, the estimation of data access patterns, transfer duration, and fluctuations

in throughput. In addition, consideration of the upcoming surge in data quantity

highlights the importance of investigating advanced storage models, of which the

integration of commercial cloud storage was a focus in this thesis.

In mid-2022, a new collaboration project agreement between the US Department of

Energy and Google was signed for the benefit of the ATLAS Collaboration. The

invested amount in US Dollars is in the order of seven digits. This agreement covers

the evaluation of the Google Cloud as a production ATLAS site, and covers several

R&D programmes for the development of new integrative tools between high-energy

physics and commercial cloud providers. GACS will be used during these pro-

grammes for the dataflow cost evaluation, and will be continuously enhanced as

necessary.

With GACS as data management oriented simulation tool and the HCDC model as

novel approach to integrate commercial cloud resources, this thesis provides a foun-

dation for further research on advanced storage models. This foundation will be

used in the R&D programme to continue the research and create optimal methods

for the storage and data management at exabyte scale.

139

Bibliography

[Aab+16] Morad Aaboud et al. “Luminosity determination in pp collisions at
√
s

= 8 TeV using the ATLAS detector at the LHC”. In: Eur. Phys. J. C

76.12 (2016), p. 653. doi: 10.1140/epjc/s10052-016-4466-1.

[AB+09] I. Antcheva, M. Ballintijn, et al. “ROOT — A C++ framework for

petabyte data storage, statistical analysis and visualization”. In: Com-

puter Physics Communications 180.12 (Dec. 2009), pp. 2499–2512. doi:

10.1016/j.cpc.2009.08.005.

[AB+17] G. Apollinari, O. Brüning, et al. “High Luminosity Large Hadron Col-

lider HL-LHC”. In: CERN Yellow Report arXiv:1705.08830. 5 (May

2017), 1–19. 21 p. doi: 10.5170/CERN-2015-005.1.

[AS+14] A A Ayllon, M Salichos, et al. “FTS3: New Data Movement Service

For WLCG”. In: J. Phys.: Conf. Ser. 513 (2014), 032081. 7 p. doi:

10.1088/1742-6596/513/3/032081.

[Ass21] Assembla. GroundSim Subversion Repository. Accessed: 2021-03-31. 2021.

url: https://app.assembla.com/spaces/groudsim/.

[ATL08] ATLAS Collaboration. “The ATLAS Experiment at the CERN Large

Hadron Collider”. In: JINST 3 (Aug. 2008), S08003. doi: 10.1088/

1748-0221/3/08/S08003.

[ATL10] ATLAS Collaboration. ATLAS Fact Sheet : To raise awareness of the

ATLAS detector and collaboration on the LHC. 2010. doi: 10.17181/

CERN.1LN2.J772.

[ATL11] ATLAS Collaboration. “Overview of ATLAS PanDA Workload Man-

agement”. In: J.Phys.Conf.Ser. 331 (Dec. 2011), p. 072024. doi: 10.

1088/1742-6596/331/7/072024.

[ATL17a] ATLAS Collaboration. “ATLAS Distributed Computing experience and

performance during the LHC Run-2”. In: J. Phys. Conf. Ser. 898.5 (Oct.

2017), p. 052015. doi: 10.1088/1742-6596/898/5/052015.

141

https://doi.org/10.1140/epjc/s10052-016-4466-1
https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.1088/1742-6596/513/3/032081
https://app.assembla.com/spaces/groudsim/
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.17181/CERN.1LN2.J772
https://doi.org/10.17181/CERN.1LN2.J772
https://doi.org/10.1088/1742-6596/331/7/072024
https://doi.org/10.1088/1742-6596/331/7/072024
https://doi.org/10.1088/1742-6596/898/5/052015

Bibliography

[ATL17b] ATLAS Collaboration. “Experiences with the new ATLAS Distributed

Data Management System”. In: J. Phys. Conf. Ser. 898.6 (Oct. 2017),

p. 062019. doi: 10.1088/1742-6596/898/6/062019.

[ATL19] ATLAS Collaboration. The Analysis Model Study Group for Run-3 (AMSG-

R3). Tech. rep. CERN, Apr. 2019. url: https : / / cds . cern . ch /

record/2672527.

[ATL20] ATLAS Collaboration. ATLAS HL-LHC Computing Conceptual De-

sign Report. Tech. rep. CERN-LHCC-2020-015. LHCC-G-178. Geneva:

CERN, Sept. 2020. doi: 10.3204/PUBDB-2020-04972.

[Bar17] Martin Barisits. “Hybrid simulation models for data-intensive systems”.

PhD thesis. Vienna University of Technology, Faculty of Informatics,

Mar. 2017. url: https://cds.cern.ch/record/2262420.

[BB+14] I Bird, P Buncic, et al. Update of the Computing Models of the WLCG

and the LHC Experiments. Tech. rep. CERN-LHCC-2014-014. LCG-

TDR-002. CERN, Apr. 2014. url: https://cds.cern.ch/record/

1695401.

[BB+19] Martin Barisits, Thomas Beermann, et al. “Rucio: Scientific Data Man-

agement”. In: Computing and Software for Big Science 3.1 (Aug. 2019).

doi: 10.1007/s41781-019-0026-3.

[BB+20] Martin Barisits, Mikhail Borodin, et al. “ATLAS Data Carousel”. In:

EPJ Web Conf. 245 (2020), p. 04035. doi: 10.1051/epjconf/202024504035.

[BC+04] Oliver Sim Brüning, Paul Collier, et al. LHC Design Report. CERN

Yellow Reports: Monographs. Geneva: CERN, June 2004. doi: 10.5170/

CERN-2004-003-V-1.

[BC+08] M. Branco, D. Cameron, et al. “Managing ATLAS data on a petabyte-

scale with DQ2”. In: J. Phys.: Conf. Ser. 119 (2008), p. 062017. doi:

10.1088/1742-6596/119/6/062017.

[BE+15] Andrew Buckley, Till Eifert, et al. “Implementation of the ATLAS Run

2 event data model”. In: Journal of Physics: Conference Series 664.7

(Dec. 2015), p. 072045. doi: 10.1088/1742-6596/664/7/072045.

[BM02] Rajkumar Buyya and Manzur Murshed. “GridSim: A Toolkit for the

Modeling and Simulation of Distributed Resource Management and Schedul-

ing for Grid Computing”. In: Concurrency and Computation: Practice

and Experience 14 (Nov. 2002). doi: 10.1002/cpe.710.

142

https://doi.org/10.1088/1742-6596/898/6/062019
https://cds.cern.ch/record/2672527
https://cds.cern.ch/record/2672527
https://doi.org/10.3204/PUBDB-2020-04972
https://cds.cern.ch/record/2262420
https://cds.cern.ch/record/1695401
https://cds.cern.ch/record/1695401
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1051/epjconf/202024504035
https://doi.org/10.5170/CERN-2004-003-V-1
https://doi.org/10.5170/CERN-2004-003-V-1
https://doi.org/10.1088/1742-6596/119/6/062017
https://doi.org/10.1088/1742-6596/664/7/072045
https://doi.org/10.1002/cpe.710

Bibliography

[Cas01] Henri Casanova. “Simgrid: a toolkit for the simulation of application

scheduling”. In: Proceedings First IEEE/ACM International Symposium

on Cluster Computing and the Grid. 2001, pp. 430–437. doi: 10.1109/

CCGRID.2001.923223.

[CG+14] Henri Casanova, Arnaud Giersch, et al. “Versatile, Scalable, and Accu-

rate Simulation of Distributed Applications and Platforms”. In: Journal

of Parallel and Distributed Computing 74.10 (June 2014), pp. 2899–2917.

doi: 10.1016/j.jpdc.2014.06.008.

[CLQ08] H. Casanova, A. Legrand, and M. Quinson. “SimGrid: A Generic Frame-

work for Large-Scale Distributed Experiments”. In: Tenth International

Conference on Computer Modeling and Simulation (uksim 2008). May

2008, pp. 126–131. doi: 10.1109/UKSIM.2008.28.

[Col19] ATLAS Collaboration. “The Data Ocean project: An ATLAS and Google

R&D collaboration”. In: EPJ Web Conf. 214 (2019), p. 04020. doi:

10.1051/epjconf/201921404020.

[CR+11] Rodrigo N. Calheiros, Rajiv Ranjan, et al. “CloudSim: a toolkit for mod-

eling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms”. In: Software: Practice and Experience

41.1 (2011), pp. 23–50. doi: 10.1002/spe.995.

[EB08] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of In-

strumentation 3.08 (Aug. 2008), S08001–S08001. doi: 10.1088/1748-

0221/3/08/s08001.

[Fra21] Framagit. SimGrid Git Repository. Accessed: 2021-03-31. 2021. url:

https://framagit.org/simgrid/simgrid.

[Git21] Github. CloudSim Git Repository. Accessed: 2021-03-31. 2021. url: https:

//github.com/Cloudslab/cloudsim.

[Goo21] Google. Google Cloud Platform. Accessed: 2021-03-24. 2021. url: https:

//cloud.google.com/.

[Gro21] PostgreSQL Global Development Group. PostgreSQL. Accessed: 2021-

12-17. 2021. url: https://www.postgresql.org/.

[GS20] Domenico Giordano and Evangelia Santorinaiou. “Next Generation of

HEP CPU benchmarks”. In: Journal of Physics: Conference Series 1525

(Apr. 2020), p. 012073. doi: 10.1088/1742-6596/1525/1/012073.

[Hip21] Richard D Hipp. SQLite. Accessed: 2021-12-17. 2021. url: https://

www.sqlite.org/.

143

https://doi.org/10.1109/CCGRID.2001.923223
https://doi.org/10.1109/CCGRID.2001.923223
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1109/UKSIM.2008.28
https://doi.org/10.1051/epjconf/201921404020
https://doi.org/10.1002/spe.995
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08001
https://framagit.org/simgrid/simgrid
https://github.com/Cloudslab/cloudsim
https://github.com/Cloudslab/cloudsim
https://cloud.google.com/
https://cloud.google.com/
https://www.postgresql.org/
https://doi.org/10.1088/1742-6596/1525/1/012073
https://www.sqlite.org/
https://www.sqlite.org/

Bibliography

[HM+20] Charles R. Harris, K. Jarrod Millman, et al. “Array programming with

NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/

s41586-020-2649-2.

[HM98] Fred Howell and Ross Mcnab. “simjava: A Discrete Event Simulation

Library For Java”. In: In International Conference on Web-Based Mod-

eling and Simulation. 1998, pp. 51–56.

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing

in Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.

2007.55.

[K20] Lim K. DMTN-125: Google Cloud Engagement Results. Accessed: 2020-

11-13. 2020. url: https://dmtn-125.lsst.io/.

[Kan20] Michiru Kaneda. “External Resources: Clouds and HPCs for the ex-

pansion of the ATLAS production system at the Tokyo regional anal-

ysis center”. In: EPJ Web Conf. 245 (2020). Ed. by C. Doglioni et al.,

p. 07034. doi: 10.1051/epjconf/202024507034.

[LL+15] A. Lebre, A. Legrand, et al. “Adding Storage Simulation Capacities

to the SimGrid Toolkit: Concepts, Models, and API”. In: 2015 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-

puting. May 2015, pp. 251–260. doi: 10.1109/CCGrid.2015.134.

[Loh21] Niels Lohmann. JSON for Modern C++. Accessed: 2021-09-30. 2021.

url: https://github.com/nlohmann/json.

[LZ12] Saiqin Long and Yuelong Zhao. “A Toolkit for Modeling and Simulat-

ing Cloud Data Storage: An Extension to CloudSim”. In: 2012 Inter-

national Conference on Control Engineering and Communication Tech-

nology. Dec. 2012, pp. 597–600. doi: 10.1109/ICCECT.2012.160.

[MPT18] Marco Meoni, Raffaele Perego, and Nicola Tonellotto. “Dataset Popu-

larity Prediction for Caching of CMS Big Data”. In: Journal of Grid

Computing 16.2 (June 2018), pp. 211–228. issn: 1572-9184. doi: 10.

1007/s10723-018-9436-4.

[OP+11] Simon Ostermann, Kassian Plankensteiner, et al. “GroudSim: An Event-

Based Simulation Framework for Computational Grids and Clouds”. In:

Euro-Par 2010 Parallel Processing Workshops. Springer Berlin Heidel-

berg, July 2011, pp. 305–313. isbn: 978-3-642-21878-1. doi: 10.1007/

978-3-642-21878-1_38.

144

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://dmtn-125.lsst.io/
https://doi.org/10.1051/epjconf/202024507034
https://doi.org/10.1109/CCGrid.2015.134
https://github.com/nlohmann/json
https://doi.org/10.1109/ICCECT.2012.160
https://doi.org/10.1007/s10723-018-9436-4
https://doi.org/10.1007/s10723-018-9436-4
https://doi.org/10.1007/978-3-642-21878-1_38
https://doi.org/10.1007/978-3-642-21878-1_38

Bibliography

[Par] Visual Paradigm. Visual Paradigm Online. Last accessed: 2022-10-07.

url: https://online.visual-paradigm.com/.

[PM+14] Sergey Panitkin, Fernando Barreiro Megino, et al. “ATLAS Cloud R&D”.

In: Journal of Physics: Conference Series 513.6 (June 2014), p. 062037.

doi: 10.1088/1742-6596/513/6/062037.

[RRC09] Buyya R., R. Ranjan, and R. N. Calheiros. “Modeling and simulation of

scalable Cloud computing environments and the CloudSim toolkit: Chal-

lenges and opportunities”. In: 2009 International Conference on High

Performance Computing Simulation. 2009, pp. 1–11. doi: 10.1109/

HPCSIM.2009.5192685.

[SC+08] Anthony Sulistio, Uros Cibej, et al. “A toolkit for modelling and sim-

ulating Data Grids: An extension to GridSim”. In: Concurrency and

Computation: Practice and Experience 20 (Sept. 2008), pp. 1591–1609.

doi: 10.1002/cpe.1307.

[Sou21] SourceForge. GridSim Subversion Repository. Accessed: 2021-03-31. 2021.

url: https://sourceforge.net/projects/gridsim/.

[SP+07] Anthony Sulistio, Gokul Poduval, et al. “On incorporating differentiated

levels of network service into GridSim”. In: Future Generation Computer

Systems 23.4 (2007), pp. 606–615. issn: 0167-739X. doi: https://doi.

org/10.1016/j.future.2006.10.006.

[Tas20] Erdogan Taskesen. distfit - Probability density fitting. Version 1.4.0. Ac-

cessed: 2022-10-01. 2020. url: https://erdogant.github.io/distfit.

[TB+15] Ryan P Taylor, Frank Berghaus, et al. “The Evolution of Cloud Comput-

ing in ATLAS”. In: Journal of Physics: Conference Series 664.2 (Dec.

2015), p. 022038. doi: 10.1088/1742-6596/664/2/022038.

[TZ+12] M. Titov, G. Zaruba, et al. “A probabilistic analysis of data popularity

in ATLAS data caching”. In: J. Phys. Conf. Ser. 396 (2012), p. 032106.

doi: 10.1088/1742-6596/396/3/032106.

[VG+20] Pauli Virtanen, Ralf Gommers, et al. “SciPy 1.0: Fundamental Algo-

rithms for Scientific Computing in Python”. In: Nature Methods 17

(2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[VS+13] Pedro Velho, Lucas Mello Schnorr, et al. “On the Validity of Flow-Level

Tcp Network Models for Grid and Cloud Simulations”. In: 23.4 (Dec.

2013). issn: 1049-3301. doi: 10.1145/2517448.

145

https://online.visual-paradigm.com/
https://doi.org/10.1088/1742-6596/513/6/062037
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1002/cpe.1307
https://sourceforge.net/projects/gridsim/
https://doi.org/https://doi.org/10.1016/j.future.2006.10.006
https://doi.org/https://doi.org/10.1016/j.future.2006.10.006
https://erdogant.github.io/distfit
https://doi.org/10.1088/1742-6596/664/2/022038
https://doi.org/10.1088/1742-6596/396/3/032106
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/2517448

Bibliography

[Weg+22] Tobias Wegner et al. “Simulation and evaluation of cloud storage caching

for data intensive science”. In: Computing and Software for Big Science

6 (Dec. 2022). doi: 10.1007/s41781-021-00076-w.

[Weg21] Tobias Wegner. Grid And Cloud Simulation. Accessed: 2021-12-17. 2021.

url: https://github.com/TWAtGH/gacspp/.

146

https://doi.org/10.1007/s41781-021-00076-w
https://github.com/TWAtGH/gacspp/

	Introduction
	Context
	Motivation
	Outline

	Background
	ATLAS Computing Fundamentals
	ATLAS Data
	Worldwide LHC Computing Grid
	ATLAS Distributed Computing

	Commercial Clouds
	Overview
	Google Cloud Platform
	Related Cloud Projects

	Related Models
	Data Carousel model
	Hot/Cold Storage model

	Related Simulation Tools
	Requirements
	Considered Simulation Tools
	Discussion

	Simulation Tool Architecture
	Overview
	Architecture Requirements
	Simulation Types

	Architecture Description
	Modules
	Interfaces
	Common Concepts

	Discussion of the Architecture
	Event Size
	Simplifications
	Output Module

	Simulation Tool Implementation
	Overview
	Software Dependencies
	Design Patterns
	Simulation Configuration System
	Simulation Run Time

	Module Implementations
	Infrastructure Module
	Cloud Module
	Simulation Module
	Output Module

	Simulation Tool Validation
	Simulation Setup
	Parameters calculation and configuration
	Evaluation

	General Scalability Considerations
	Run time scalability of the validation

	HCDC model
	Overview
	Motivation
	Model Variations

	Simulation Implementation
	Infrastructure Configuration
	Transfer Generator Implemenntation
	Used Parameters
	Performance

	Evaluation of the Results
	Methodology
	Evaluation Implementation
	Results

	Conclusion

