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Abstract

Image-based environment perception is an important component especially for driver assistance systems or
autonomous driving. In this scope, modern neuronal networks are used to identify multiple objects as well
as the according position and size information within a single frame. The performance of such an object
detection model is important for the overall performance of the whole system. However, a detection model
might also predict these objects under a certain degree of uncertainty. In this context, we distinguish between
epistemic model uncertainty (e.g., due to a lack of knowledge) and aleatoric data uncertainty (e.g., due to
random effects in the input data). These uncertainties might have a large impact on the safety of the whole
system.

In this work, we examine the semantic uncertainty (which object type?) as well as the spatial uncertainty
(where is the object and how large is it?). We evaluate if the predicted uncertainties of an object detection
model match with the observed error that is achieved on real-world data. In the first part of this work, we
introduce the definition for confidence calibration of the semantic uncertainty in the context of object detec-
tion, instance segmentation, and semantic segmentation. We integrate additional position information in our
examinations to evaluate the effect of the object’s position on the semantic calibration properties. Besides
measuring calibration, it is also possible to perform a post-hoc recalibration of semantic uncertainty that
might have turned out to be miscalibrated. Thus, we derive new methods to perform a position-dependent
recalibration of possibly uncalibrated uncertainty information. Based on these methods, we introduce the
concept of Bayesian confidence calibration which allows to determine the epistemic uncertainty that is in-
herent in the recalibration methods itself. In this way, it is possible to add a new kind of uncertainty to the
overall perception chain.

The second part of this work deals with the spatial uncertainty obtained by a probabilistic detection model.
In the scope of regression uncertainty, several definitions for the term of calibration exists which we review
and relate to each other within this work. Similar to semantic confidence calibration, it is possible to apply a
post-hoc calibration of the spatial uncertainty. We review and extend common calibration methods so that it
is possible to obtain parametric uncertainty distributions for the position information in a more flexible way.

In the last part, we demonstrate a possible use-case for our derived calibration methods in the context of
object tracking. In contrast to object detection, an object tracker seeks to identify the same objects over a
sequence of images over time. We integrate our previously proposed calibration techniques and demonstrate
the usefulness of semantic and spatial uncertainty calibration in a subsequent process. We can show that
uncertainty calibration leads to a significantly improved object tracking.

In conclusion, in this work we show that common object detection models tend to be miscalibrated. This
holds for the semantic as well as for the spatial uncertainty. Our new calibration methods are useful tech-
niques to correct miscalibrated uncertainty estimates and have shown to be a valuable contribution to the
overall environment perception process.
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B(α,β)xα−1(1− x)β−1 where x ∈ [0, 1] and α, β ∈ R>0

Dir(x;α) Dirichlet distribution: Dir(x;α) = 1
B(α)

∏K
k=1 x

αk−1
k for α ∈ RK

>0 with K dimensions
Cauchy(x;ϑ, γ) Cauchy distribution: Cauchy(x;ϑ, γ) = 1

π
γ

γ2+(x−ϑ)2
where γ ∈ R>0

Notation for used Random Variables and their Realizations

X,x ∈ X Input image in space X

Y, y ∈ Y Label of an object in Y = {1, . . . ,K} with K classes
Ŷ , ŷ ∈ Y Predicted label of an object in Y obtained by an object detector
Ŷ ∗
j , ŷ

∗
j ∈ Y Predicted label for each pixel j ∈ J obtained by an instance/semantic segmentation model

Ȳ , ȳ ∈ Y Ground-truth label of an object in Y

Ȳ ∗
j , ȳ

∗
j ∈ Y Ground-truth label for each pixel j ∈ J

P, p ∈ [0, 1] Semantic confidence information of an object
P̂ , p̂ ∈ [0, 1] Predicted confidence information of an object obtained by an object detector
P̂ ∗
j , p̂

∗
j ∈ [0, 1] Predicted confidence information for each pixel j ∈ J obtained by an instance/semantic

segmentation model
Q̂, q̂ ∈ [0, 1] Calibrated confidence information of an object obtained by a calibration function
R, r ∈ R Position information of an object in R, commonly with R = (cx, cy, w, h)

⊤ where cx, cy are
the center x and y position and w, h are the width and height, respectively, so that R = RL

with L as the size of the box encoding
R̂, r̂ ∈ R Predicted position information of an object in R obtained by an object detector
R∗

j , r ∈ R∗ Position information for each pixel j ∈ J where R∗ = RL∗ with L∗ as the size of the position
encoding for each pixel
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Nomenclature

R̄, r̄ ∈ R Ground-truth position information of an object in R

R̃, r̃ ∈ R Predicted position information of an object in R obtained by an object tracker
Z, z ∈ R Logit of an object detector (output before sigmoid/softmax)
M̂, m̂ ∈ {0, 1} Indicator variable that a predicted object matches a ground-truth object
Ŝ, ŝ ∈ S Aggregated detector output in S with Ŝ = (P̂ , Ŷ , R̂)⊤

Tracking-specific Symbols

H ∈ RL×L∗ Observation matrix to translate from tracker state space to detection space during Kalman
filtering, with detector box size L and tracker state size L∗

F ∈ RL∗×L∗ State transition matrix to predict the proceeding state during Kalman filtering
ϱ ∼ N (0,Λ) Static observation/measurement noise with zero mean and covariance matrix Λ ∈ RL×L

ε ∼ N (0,Ψ) Static system noise with zero mean and covariance matrix Ψ ∈ RL∗×L∗

Miscellaneous Symbols

D Data set with N samples
h(·) Calibration function for semantic confidence or spatial uncertainty calibration
Bi Single bin used within a binning scheme for Histogram Binning or ECE calculation with i ∈

{1, . . . , I} where I is the total number of bins
w ∈ R>0 Scale weight used for calibration methods such as Logistic Calibration, Variance Scaling, or

GP-Normal
w ∈ RK

>0 Scale weight vector used for multivariate calibration methods such as position-dependent Lo-
gistic Calibration or multivariate GP-Normal with K dimensions

δ ∈ R Scale bias used for calibration methods such as Logistic Calibration or Beta Calibration
gp(0, k(·, ·),B) Gaussian Process with zero mean, kernel function k(·, ·) and coregionalization matrix B

XIII



1 Introduction

Machine learning models and especially neural networks are used in many applications nowadays, e.g., for
image classification [7] or object detection [8, 9]. Besides the advantages of using machine learning models,
there are also some challenges that users and developers have to face. In particular, the explainability [10] as
well as the reliability [11, 12, 13] are relevant issues especially in the context of safety-critical applications
such as autonomous driving [14, 15, 16] or medical diagnosis [17, 18, 19]. In this scope, it is mandatory to
be able to comprehend the decision-making process of a neural network especially within self-monitoring
procedures to be able to identify critical situations or even induce appropriate fallback solutions. If requested,
a neural network will always return a decision on each input, regardless of its own uncertainty. Especially in
the case of safety-relevant decisions, it is necessary that the model can output a reliable self-assessment of
its own uncertainty so that, in case of doubt, an adequate fallback solution can be applied, e.g., the decision-
making can be handed over to a human. In the scope of driver assistance systems and autonomous driving,
environment perception is an important part to interact with the surrounding area. Such a vehicle commonly
uses multiple kinds of sensors such as cameras [20], radar [21], or LiDAR [22] to construct an environment
model. This process is schematically shown in Fig. 1.1. In this thesis, we focus on the environment perception
using camera-based object detection algorithms. The process of object detection has rapidly developed in
the last years. Classical approaches such as a sliding window object detection using hand-crafted features
and filters [23] have been replaced by more efficient deep learning based detection architectures such as
Faster R-CNN [8] or Single-Shot detectors [24]. The extended single-shot architectures such as YOLO [25]
or RetinaNet [9] provide further improvements in performance and speed. These architectures are based on

Camera-based object detection

Camera-based
semantic segmentation Scenario from camera perspective LiDAR-based

environment perception

© 2022 camo.nrw. Reprinted, with permission.

Figure 1.1: Environment perception of an intelligent vehicle using different sensors and AI-based perception
systems (simluated example) 1. In this work, we focus on the camera-based environment percep-
tion with focus on the object detection task.
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1 Introduction

deep convolutinal neural networks [26, 27] which are neural networks with many intermediate convolutional
operations. A convolutional layer is nothing else but a filter mask that is applied to the preceding input to
recognize several features, e.g., edges or textures. The advantage of modern deep learning algorithms is that
they do not require a hand-crafted design of the convolutional operations. Instead, the models are able to
autonomously learn the relevant aspects of the intermediate filters to detect objects within an image.

First used for image classification [26, 28], deep learning architectures have been transferred to the more
complex task of object detection [29, 8, 24, 25, 9]. The task of object detection is a joint task of classification
(which type is the object?) and regression (where is the object located? which shape has the object?). The
initially proposed R-CNN architecture [29] utilizes a selective search algorithm to generate candidate boxes
for possible objects in conjunction with a convolutional neural network to classify and refine these boxes.
However, the selective search still leads to a large amount of candidate boxes which makes the network
training as well as the inference computational expensive. The advanced architectures Fast R-CNN [30] and
Faster R-CNN [8] mitigate this problem by using a more flexible region proposal network to select candidate
boxes. In the object proposal stage, fixed image locations are used as prior information for possible object
candidates and locations. Afterwards, a region proposal network applies a first selection and refinement of
candidate boxes. These candidate boxes are finally used in the second stage of the object detector which
applies a classification of the object category as well as a refinement of the object size and position using a
separate neural network. Similarly, the Single-Shot detector [24], YOLO [25], and RetinaNet [9] also use
fixed image locations as prior information for object candidates and locations. However, these architectures
do not use a region proposal network but directly apply the selection, classification, and refinement step to the
prior object candidates using a dedicated neural network. These architectures use deep convolutional neural
networks to extract the relevant image features. This allows for a refinement and classification of the prior
object locations to finally generate the object predictions. Thus, these architectures are known as one-stage
detection algorithms and have a very low computational runtime.

A related task to object detection is instance segmentation where the shape of individual objects is of
interest in addition to their position and size. With the success of modern object detection architectures,
it has also been possible to develop instance segmentation architectures. For example, the Mask R-CNN
architecture [31] extends the Faster R-CNN [8] detection model by an additional output that infers the object
shape by classifying each pixel within the detected object boxes. In contrast, with semantic segmentation, the
association of a pixel with a particular class or segment is determined, but individual objects are not identified
in this process. Semantic segmentation architectures such as DeepLabv2 [32] or DeepLabv3+ [33] utilize
a deep convolutional neural network to extract relevant features within an input image. The output of these
segmentation models is a joint classification of all pixels in the input image that serves as an estimation of
the relevant image segments.

Recent works have shown the superior performance of deep learning based object detectors and segmenta-

1Image from: Ruhr West University of Applied Sciences and University of Wuppertal: Automated Mobility: Overview of the
technological fundamentals (German original: Automatisierte Mobilität: Überblick über die technologischen Grundlagen),
p. 13, Fig. 5. © 2022 camo.nrw. Reprinted, with permission.
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1 Introduction

tion models over the classical approaches [8, 24, 31, 9, 33]. However, driver assistance systems and especially
autonomous driving are highly safety-relevant areas in which these detection algorithms need to operate. As
already stated, the explainability and the reliability of deep learning based methods are still open fields of
current research [11, 12, 13, 10]. A detection model needs to indicate in any case, if it is uncertain about a
certain prediction. For example, if a detection model needs to infer multiple objects within a frame under
challenging conditions (e.g., rain or with sensors of low quality), the estimation either of the semantic class
(what kind of object?) or of the position and size might be difficult and are subject to a high uncertainty.

Modern deep-learning based detection and segmentation architectures are able to estimate their prediction
uncertainty during inference. This uncertainty can be interpreted as a statistical measure for the estima-
tion of the prediction error. However, recent works have shown that modern neural networks tend to be too
self-confident in their predictions [11, 12, 13, 34], i.e., the estimated prediction uncertainty is too low com-
pared with the observed error. However, obtaining reliable uncertainty information is crucial especially for
environment perception within the safety-relevant context of autonomous driving.

In the past, several works address the problem of unreliable uncertainty information by applying an addi-
tional calibration step during inference [35, 36, 13, 34]. For classification, the authors in [35] initially sought
for a probabilistic output of support vector machines by utilizing the sigmoid function to transform an un-
restricted output score to a score in the [0, 1] interval that can be interpreted as an estimated probability of
correctness [35]. In common literature, this method is known as logistic calibration or Platt scaling and can
be used as a recalibration function to obtain calibrated probabilities [35, 13]. As opposed to this approach,
the authors in [36] proposed a binning scheme to convert uncalibrated probabilities to calibrated ones con-
ditioned on the estimated uncertainty. This approach is known as histogram binning. An extension to this
approach is Bayesian Binning into Quantiles (BBQ) proposed by [12] which utilizes multiple weighted his-
togram binning schemes to obtain calibrated probabilities. Furthermore, the authors in [12] proposed the
Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) which are both metrics to quan-
tify the misalignment between estimated and observed error. Based on this research, the authors in [13]
found that modern network architectures in particular tend to be too self-confident in their predictions, lead-
ing to a high calibration error. For multiclass classification tasks, the authors in [13] proposed temperature
scaling which is related to the logistic calibration function [35] but only with a single rescaling parameter for
all possible output classes. Recently, the authors in [37] and [38] investigated the calibration properties of
modern segmentation and object detection architectures, respectively. For both tasks, the authors studied the
influence of miscellaneous factors (e.g., position and shape in object detection) to the calibration properties.

In contrast to classification, the task of regression is to estimate a continuous output score, e.g., the object
location or shape when used within object detection. In probabilistic regression, a model does not only
estimate the requested regression score but also an additional uncertainty that indicates the belief of the
estimator in the correctness of its prediction [39, 40]. Recent works found that these uncertainty scores
also tend to miscalibration [34, 41, 42, 18] and proposed several methods such as Isotonic Regression [34],
Variance Scaling [42, 18], and GP-Beta [41] that are applied after inference as an additional calibration step.
A detailled explanation of the calibration methods for probabilistic regression is given in Chap. 5.
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1 Introduction

1.1 Research Question and Novelty

In this thesis, we address the problem of reliable uncertainty information obtained by modern detection
algorithms. We seek to examine if the estimated uncertainty is trustworthy, i.e., if it matches the observed
error in real-world applications. We follow this research question and apply our examinations to the semantic
(label) uncertainty as well as to the spatial (position and size) uncertainty. Moreover, recent works have
shown that modern neural networks tend to produce unreliable uncertainty information [11, 12, 43, 13]. Since
the deviation between estimated uncertainty and observed error undergoes a systemic error, it is possible to
apply post-hoc calibration methods [12, 13]. Such calibration methods apply a remapping of the estimated
uncertainties to more realistic ones that have been observed on a dedicated calibration data set. We transfer
these methods to the task of object detection and address the research question, if correlations exist between
semantic (label) and spatial (position and size) uncertainty. Thus, we derive new calibration methods that are
able to capture possible correlations by using further influential factors for uncertainty calibration within the
scope object detection. Our newly proposed methods are evaluated on state-of-the-art detection architectures
Faster R-CNN [31] and RetinaNet [9] and the data sets MS COCO [44] and Cityscapes [45].

For environment perception in the scope of driver assistance systems or autonomous driving, the detection
of single objects is the first step to implement an object tracking over subsequent frames within a sequence
of images. The object detection is thus the baseline task for object tracking [46, 47]. Especially for object
tracking, reliable uncertainties are crucial, as they are processed by the tracking algorithm and thus have
a significant impact on the tracking performance of individual objects. Therefore, we investigate if our
developed calibration methods have an influence on the task of object tracking. In this context, we apply our
new uncertainty calibration on the output of the baseline object detector and pass the recalibrated uncertainty
information to the tracking algorithm. This process is schematically shown in Fig. 1.2. In this way, we are
able to evaluate the influence of the predictive uncertainty in conjunction with our proposed calibration
methods on a subsequent process. Our contributions within this work are summarized in Tab. 1.1.

1.2 Structure of this Work

This work is structured as follows: First, we introduce the basic architectures for object detection and how
uncertainty information can be extracted from existing object detection architectures in Chap. 2. In Chap. 3,
we review the definitions for semantic confidence calibration and transfer these to the task of object detection,
instance segmentation, and semantic segmentation. We develop metrics to evaluate the uncertainty as well
as methods to correct unreliable confidence information. Furthermore, we evaluate our proposed metrics
and methods using several detection and segmentation models on common public data sets. Building on top
of this, we propose Bayesian confidence calibration in Chap. 4 that allows to capture additional uncertainty
within the uncertainty calibration methods itself. This adds an additional layer to model uncertainty in the
overall perception chain and allows a detection of possible failure modes during inference. In Chap. 5, we
review the definitions for spatial uncertainty evaluation. In addition, we extend common metrics as well
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Object Detection

Classification Branch
- Confidence -

Probabilistic Regression
- Mean & Uncertainty -

Calibration

Semantic Confidence
Calibration (Chap. 3)

Spatial Uncertainty
Calibration (Chap. 5)

Object Tracking
(Chap. 6)

Track Existence Estimation
- Discrete Bayes Filter -

Object State Estimation
- Kalman Filter -

Track Initialization
and Association

Figure 1.2: Concept of the environment perception pipeline that is addressed within this work. An object
detection model generates multiple predictions for possible object candidates with a certain se-
mantic and spatial uncertainty. We examine the semantic and spatial uncertainty for reliability.
Furthermore, we provide recalibration methods that can be applied and integrated into the track-
ing pipeline after the detection process. The recalibrated uncertainty information is finally con-
sumed by a tracking framework to track the detected objects over time in a sequence of images.

Table 1.1: Overview of our contributions within this work.
Contribution (short description) Reference Section
Definition of semantic confidence calibration for object detection [1, 4, 2] 3.2.2
Definition of semantic confidence calibration for instance segmentation [4] 3.2.3
Definition of semantic confidence calibration for semantic segmentation [4] 3.2.4
Position-dependent histogram binning calibration [1, 4] 3.3.1
Position-dependent logistic and beta calibration [1, 4] 3.3.2
Derivation of Bayesian confidence calibration [3] 4.1
Common mathematical context of multiple definitions for regression calibration [6] 5.2
Parametric regression uncertainty calibration using Gaussian processes [6] 5.3.2
Joint multivariate regression uncertainty calibration using Gaussian processes [6] 5.3.2
Covariance estimation of regression uncertainty [6] 5.4.2
Covariance recalibration of regression uncertainty [6] 5.4.2
Estimation of object existence over time using the detector’s semantic confidence - 6.3
Integration of semantic confidence calibration to object existence estimation - 6.3
Estimation of object state using the detector’s spatial uncertainty - 6.4
Integration of spatial uncertainty calibration to object estimation - 6.4

as methods for uncertainty correction to fit the needs for the task of object detection. We also evaluate
our proposed methods on different network architectures and different data sets. The proposed methods for
semantic and spatial uncertainty correction are used within Chap. 6 in the context of object tracking to inspect
and evaluate their influence on a relevant real-world application. This demonstrates the effectiveness of the
proposed methods. Finally, we give a conclusion about our evaluation results, our developed methods, and
our findings in Chap. 7.
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2 Object Detection and Uncertainty Modeling

Before we start with our main work, we present the basic principle of modern neural networks as well as
the architectures for image-based object detection that have been used throughout this work. Moreover, we
describe the basic types of uncertainties that are analyzed in common literature. These uncertainties play
an important role throughout this work so that we further describe how an object detection model is able
to estimate the uncertainty of a prediction. Finally, we give a brief overview of related work that aims to
elaborate possible reasons for an unreliable or misaligned uncertainty estimation of modern neural networks.

2.1 Basics of Neural Networks and Image-based Object Detection

In this work, we focus on the image-based object detection process based on neural network architectures.
Artificial neural networks are models in the field of machine learning. Machine learning is a concept to
enable systems to recognize patterns and characteristics in a known data set. This can subsequently be used
to classify new data on the basis of the previously learned patterns and characteristics. For example, in
image recognition, images are classified into individual categories. Based on a known data set, the machine
learning model is trained to extract the relevant image features to learn a mapping from the input image to the
desired category. The trained model can then be used to classify new images that are not part of the training
data set.

In this section, we start by introducing the basic concept of a neural network. Furthermore, we describe
how to train a neural network so that it is able to apply an appropriate mapping from an input image to the
desired output. Finally, we give an overview about the object detection architectures that are based on neural
networks and which are used within this work.

2.1.1 Fully-Connected Neural Networks

Basically, a neural network consists of multiple nodes (neurons) that are connected to each other. Each of
these connections has a weight that scales the input signal towards the target neuron. Commonly, the neurons
are organized into multiple consecutive layers, so that a neural network can be interpreted as a sequence of L
consecutive operations (network layers) that take the output of the preceding layer as input to generate a new
output. Given an input image X ∈ X = [0, 1]C×W×H of width W , height H , and C channels (e.g., RGB
image) with the respective ground-truth label Ȳ ∈ Y = {1, ...,K} with K classes, the whole neural network
dθ serves as a mapping from X to an overall output Y ∈ Y (categorical for classification or continuous for
regression), so that dθ : X → Y . In this scope, θ ∈ Θ denote the network parameters. We distinguish
between the input layer that consumes the image as input, the intermediate or hidden layers, and the output
layer that outputs the overall network prediction Ŷ ∈ Y which aims to target the real ground-truth label
Ȳ ∈ Y .
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Input layer (l = 1) Hidden layer (l = 2) Hidden layer (l = 3) Output layer (l = 4)

x1

x2

x3

ŷ1

ŷ2

Weights
W2

Weights
W3

Weights
W4

Figure 2.1: Concept of a fully-connected neural network (without bias terms) with two hidden layers, an
input layer, and an output layer to obtain the estimate for ŷ1, ŷ2 based on a given input x ∈ R3.

A basic layer type used in the context of neural networks is the so-called dense or fully-connected layer.
The idea is to use multiple nodes or neurons where each neuron is connected to all neurons in the previous
layer. Each neuron simply computes a weighted sum over the entire input which is given by the output of the
preceding neurons. The fully-connected layer can also be represented by a matrix multiplication between a
weight matrix Wl ∈ RMl×Ml−1 and the layer input xl ∈ RMl−1 which is the output of the preceding network
layer l− 1. In this context, Ml−1 and Ml denote the number of neurons or features of the preceding and the
actual layer, respectively. The matrix Wl holds the weights which are used for the connections between the
neurons from layer l− 1 to l. If the preceding layer is given either by the input image itself or a convolution
operation (cf. Sec. 2.1.2), the (3D) input gets flattened to a single vector, so that Ml−1 = Cl−1 ·Wl−1 ·Hl−1

with Wl−1, Hl−1, and Cl−1 as the width, height, and number of channels within the preceding layer l−1. Let
Vl denote the function of layer l. A fully-connected layer applies the transformation Vl(xl) = Wlxl = xl+1

which yields the output vector xl+1 ∈ RMl so that the whole network can be interpreted as a composite
function by

dθ(xn) = (VL ◦ . . . ◦ V1)(xn), (2.1)

given a certain sample xN . A neural network that solely consists of fully-connected layers is denoted a
fully-connected neural network. The concept of a such a network is schematically shown in Fig. 2.1.
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2 Object Detection and Uncertainty Modeling

Activation Functions
A matrix multiplication is a linear transformations of the incoming data. Moreover, the concatenation of
several linear operations also results in an overall linear transformation. Therefore, it is not possible to
model complex non-linear relationships between input and output space. For this reason, a so-called acti-
vation function is usually used which introduces a non-linearity after the linear transformation and between
the individual layers. The activation function needs to be differentiable because a neural network is typi-
cally trained using the backpropagation algorithm which requires the calculation of the function’s derivative.
Given an arbitrary function input t ∈ R, common choices for the intermediate activation functions are the
sigmoid given by

Φ(t) =
1

1 + exp(−t)
, (2.2)

the hyperbolic tangent function (tanh)

tanh(t) =
exp(2t)− 1

exp(2t) + 1
, (2.3)

or the Rectified Linear Unit (ReLU) given by max(0, t) with its derivative set to dmax(0,t)
dt = 0 for t = 0.

Furthermore, an activation function is often used after the output layer. For example, in binary classification,
if output scores in the [0, 1] interval are required, a common choice is the sigmoid function. In multiclass
classification with K classes and t ∈ RK , the softmax function given by

ΦSM(t)k =
exp(tk)∑K

k′=1 exp(tk′)
(2.4)

is a common choice to obtain predictions whose outputs sum up to 1, i.e., ∑K
k=1 ŷk = 1. In both cases,

the output can be interpreted as parameters for a Bernoulli or categorical distribution in binary or multiclass
classification, respectively, which allows for a probabilistic interpretation of the network output. The con-
cept of a single neuron within a fully-connected neural network using a subsequent activation function is
schematically shown in Fig. 2.2.

Training of the Network Weights1

According to the principle of Empirical Risk Minimization (ERM), it is not possible to know the true real-
world distribution of the data (e.g., the distribution of all possible images) so that we can not exactly deter-
mine the performance of our algorithm [50]. Instead, we are restricted to a certain set of training data which
is drawn from the true data distribution and on which we can quantify the model performance (the empirical
risk). Let D = {(xn, ȳn)}Nn=1 denote a data set of size N with images xn ∈ X and the known target labels
ȳn ∈ Y . The training set is generated by a probability distribution P over X . Furthermore, we assert that
a correct labeling function u∗ exists so that u∗ : X → Y . The task for a learning algorithm is to output

1The descriptions for training a neural network are partly adapted from previous works [48, 49].
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Input Weighted sum Activation function Output
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Figure 2.2: Concept of a single neuron with a subsequent non-linear activation function to generate an output
o ∈ R. The neuron takes either the network input or the preceding layer output and computes a
weighted sum over the complete input vector. The result is given to the activation function and
then passed on to the next network layer.

a prediction rule dD : X → Y based on the training set D to classify the images. The error LP,u∗ of the
prediction rule is given by

LP,u∗(dD) = PX∼P
[
dD(x) ̸= u∗(x)

]
. (2.5)

Since the distribution P as well as the true labeling function u∗ are unknown, the learner needs to find a
prediction rule dD that minimizes the prediction error on the given data set D. It is only possible to observe
the true labeling function u∗ for the samples that are present in the data set D as we know the true mapping
from the input x to the desired outcome ȳ. Thus, the training error or empirical error of a learner is given by

LD(dD) =
1

N

N∑
n=1

1(dD(xn) ̸= u∗(xn)), (2.6)

where 1(·) is the indicator function which evaluates to 1 if the argument is true and 0 otherwise.
Maximum Likelihood Estimation (MLE) is a method to learn the parameters θ that are used to model the

underlying probability distribution P by an approximate distribution Pθ parameterized by θ to construct an
appropriate prediction rule dθ [51]. The maximum likelihood estimation is a minimization technique for
ERM using the log loss on Pθ which is given by

− log
(
Pθ(x)

)
, (2.7)

with parameters θ and input data x. The equation (2.7) is also known as the Negative Log Likelihood (NLL).
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Using this definition, maximizing the log likelihood is equivalent to minimizing the empirical risk, since

argmin
θ

N∑
n=1

− log
(
Pθ(xn)

)
= argmax

θ

N∑
n=1

log
(
Pθ(xn)

)
, (2.8)

and it can be shown that the true risk of parameter θ is given by

EX∼P

[
− log

(
Pθ(x)

)]
= DKL

(
P(x)||Pθ(x)

)
+H

(
P(x)

)
, (2.9)

with DKL
(
P(x)||Pθ(x)

) as the Kullback-Leibler divergence [52] between true data distribution P and the
estimated one Pθ, and the Shannon entropy H

(
P(x)

) [53] of the true data distribution.
Now, given a neural network d with θ parameters, the objective of MLE is to obtain a θ̂ that maximizes

the likelihood of observing the data. Thus, during network training, it is required to pass each input image
through the network so that the network is requested to output a prediction ŷn = dθ(xn). Afterwards, the
predicted output ŷn is evaluated against the ground-truth label ȳn. A cost or loss function L(θ) such as the
NLL in (2.7) is used to implement the maximum likelihood estimation. In a binary classification setting
(Y = {0, 1}), the likelihood function is a Bernoulli distribution so that the NLL is given by

L(θ) = −
N∑

n=1

ȳn log(ŷn) + (1− ȳn) log(1− ŷn). (2.10)

In order to minimize the loss function L(θ), the Stochastic Gradient Descent (SGD) algorithm is used to
update the network parameters θ. An initial guess for the network parameters θ is used as a starting point
to iteratively descend in the direction of the minimum. The direction of the update is determined by the
gradient of the network components w.r.t. the parameters θ. Thus, the update for a weight matrix Wl at
layer l is calculated by

Wl = Wl − η
dL
dWl

, (2.11)

with η ∈ R>0 as the learning rate which controls the strength of the parameter update. Commonly, the
weight update is not applied using the whole data set D. Instead, the training data is grouped into batches
which are small subsets of D. During network training, the loss is repeatedly computed over all batches that
are present in the training set. In this way, the optimization is computationally more efficient and it may help
to overcome local minima in the loss function [54, 55].

The gradients, which are used by the SGD algorithm, are obtained using backpropagation [56]. Since the
neural network is grouped into several consecutive layers, the output and thus the loss L(θ) are composite
functions of multiple consecutive layer operations (cf. equation (2.1)). Thus, for the intermediate network
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layers, it is required to obtain the gradient using the chain rule
dL
dWl

=
dL
dVL

dVL

dVL−1
. . .

dVl+1

dVl

dVl

dWl
, (2.12)

to finally yield the gradient for the weight update. This process is repeated several times to finally approximate
the ground-truth data distribution fȲ (ȳ|x) by an estimated network distribution fŶ (ŷ|x).

Regularization
The minimization of the empirical risk may lead to overfitting, i.e., the estimator dD works well on the given
training data setD but fails to estimate the correct labels on unseen data. Weight decay [57] is a regularization
technique that adds an additional penalty to the loss term which penalizes large layer weights. Given the loss
function w.r.t. a dedicated weight matrix Wl, the equation for the loss including the weight decay is given
by

L̄(Wl) = L(Wl) +
η′

2
||Wl||22, (2.13)

where the parameter η′ ∈ R>0 controls the strength of the weight decay. Using this technique for regular-
ization, the weights of a layer are decreased in each iteration by a constant factor which reduces the model
capacity and helps to prevent overfitting.

In addition, dropout has originally been proposed as a regularization technique during network training.
When applying dropout, single network weights are randomly deactivated so that the network is requested
to apply a mapping without these specific connections. This behavior also aims to reduce model capacity
and strengthen the remaining network connections. Moreover, the authors in [58] showed that dropout can
also be used during inference to quantify the uncertainty of the network about a specific prediction. During
inference, the same input is passed multiple times through the network. In each forward pass, dropout is
applied on different randomly chosen network connections. This yields in multiple predictions for the same
input that span a sample distribution as the network output. The higher the variance of this output distribution,
the higher the network’s uncertainty about the current prediction. This process is known as Monte-Carlo
dropout [58].

Finally, the authors in [59] proposed batch normalization as a technique to normalize the output after each
layer l. This method aims to improve the network performance by minimizing the distribution shifts (in-
ternal covariate shift) after the hidden layer’s activation functions. Given the layer input xl ∈ RK with K

dimensions, the batch normalization is calculated by

x∗l,k =
xl,k − µB,k√

σ2
B,k + ϵ

, (2.14)

where µB,k and σ2
B,k are the mean and variance within batch B and dimension k, respectively, with ϵ ∈ R as

a small offset to increase numerical stability.
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The authors in [59] note that a normalization of each layer input may affect its representational power.
The authors propose to use additional parameters so that, during network training, it is possible to revert or
change the normalization, e.g., to obtain an identity transform. Therefore, after the batch normalization step
in (2.14), a shifting and rescaling of the input is applied by

x∗∗l,k = γkx
∗
l,k + δk, (2.15)

with scaling parameter γk ∈ R>0 and shift parameter δk ∈ R for all k ∈ {1, . . .K}.

2.1.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a network that utilizes at least one convolution operation as an
alternative type to the fully-connected layer in order to process the input data [60]. A convolution is a linear
operation on two functions f : R → R and g : R → R defined by

(f ∗ g)(t) =
∫ +∞

−∞
f(τ)g(t− τ)dτ, (2.16)

or, in the discrete case with f : Z → R and g : Z → R, by

(f ∗ g)(t) =
∑
τ∈Z

f(τ)g(t− τ). (2.17)

In image processing, the convolution describes the process of calculating a weighted sum of neighboring
pixels using a filter mask within the original image. The weights are the coefficients of the filter mask. The
filter mask is moved successively over all image positions to apply the filtering to the complete image and
to get feature representations for all image regions. This process is schematically shown in Fig. 2.3. More
formally, given the layer input xl ∈ RCl−1×Wl−1×Hl−1 of width Wl−1, height Hl−1, and Cl−1 channels
(obtained by the preceding layer l − 1), the discrete convolution operation is defined by

x
(cl,i,j)
l+1 =

Cl−1∑
cl−1=1

Wk∑
w=1

Hk∑
h=1

x
(cl−1,i+w,j+h)
l · w(cl,cl−1,w,h)

l (2.18)

given the filter mask Wl ∈ RCl×Cl−1×Wk×Hk with filter width Wk, filter height Hk, and Cl channels. Note
that it is only possible to shift the filter kernel so far until it reaches the image or feature map boundary. A
mitigation of this problem is called padding where missing pixel values are padded by a certain scheme,
e.g., by adding zeros to the missing pixel positions (zero padding). The application of the convolutional
operation is a common technique used in computer vision. The convolution filters are used to obtain fea-
ture representations (e.g., detected edges) to further process the input image. The advantage of applying a
convolution is that the layer is equivariant to translation, i.e., the filter mask is applied to all image regions
with the same filter weights. In the context of CNN, it is possible to learn the filter mask weights Wl by
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(a) Input image or feature map (b) Filter mask (c) Output feature map
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Figure 2.3: Concept of the convolution operation which is applied on an input image or feature map (a) with
a certain filter mask (b) to extract a new feature map (c). This result of the convolution can
represent certain image features such as edges or other structural information.

applying stochastic gradient descent using backpropagation algorithm (cf. next section). Note that, since the
convolution is a linear operation similar to the fully-connected layer, a subsequent activation function is also
required for a CNN after each layer. In image classification, the output of a CNN is commonly a vector that
describes the estimated class probabilities given a certain input image. In order to calculate the output vector,
the results after the convolutional layers are commonly passed to a fully-connected layer which generates the
final network output.

2.1.3 Architectures for Object Detection

In contrast to simple image recognition, where the label of the whole image is of interest, the task of object
detection is the joint task of classification (object type) and regression (object position). Thus, a neural
network architecture for object detection dθ needs to solve both tasks simultaneously given an input image
xn. In the following, we present the basic architectures of modern neural-network based object detectors.

Feature Extraction and Object Candidates
Each of the object detector algorithms are based on a backbone network to extract relevant image features
which are further processed for object classification and position/shape estimation. The backbone is usu-
ally a CNN that processes an image and generates intermediate feature representations of the input using its
convolution operations. This network is commonly adapted from classification and pretrained on a classifi-
cation data set [61]. Thus, passing the input image xn through the backbone network dθB

results in a feature
representation dθB

(xn) = ŷB ∈ RCB×WB×HB of the input image with CB feature maps of width WB and
height HB . At this point, it is necessary to distinguish between a two-stage and a single-stage object detector.
While a single-stage detector directly works with the backbone network, a two-stage detector uses an addi-

13



2 Object Detection and Uncertainty Modeling

tional step to generate prior assumptions about possible object candidates. In a two-stage architecture, the
feature maps of the backbone network are passed to a subsequent Region Proposal Network (RPN) denoted
by dθRPN [61]. The RPN itself is a small CNN that outputs a list of U object proposals by sliding its convolu-
tional network on the feature maps. These object proposals are initial guesses for possible object candidates.
For the computation of the object proposals, so-called anchor boxes are used for each location of the sliding
window. The anchor boxes can be interpreted as priors for the object proposals, as they are used at each
sliding window location of the RPN with fixed object locations and fixed aspect ratios. Subsequently, the
RPN uses two final fully-connected layer to compute an objectness score as well as the final coordinates for
the object proposals. The objectness score p̂u represents the belief of the RPN about the presence or absence
of an object within a certain anchor. This score is used to filter the object proposals so that only proposals
with an objectness score above a certain threshold are passed through the network. Furthermore, the RPN
outputs the center coordinates cx,u, cy,u as well as the width and height wu, hu of the proposal boxes. Thus,
the output of the RPN is given by (p̂u, cx,u, cy,u, wu, hu)

⊤ for all u ∈ {1, . . . , U}.
A drawback of the standard RPN architecture is that it only consumes the final output of the backbone

network which might represent features at a single scale [62]. In common image recognition systems, so-
called feature pyramids are used to extract image features at different scales, i.e, features that represent either
low-level (local) structures (e.g., single window, arm, leg) or high-level (global) structures (e.g., building,
car, human body). Recently, the authors in [62] proposed a Feature Pyramid Network (FPN) that is designed
to mitigate the limitations of a RPN by extracting the feature maps of the backbone network at different
scales to construct a feature pyramid. Furthermore, the different layers/scales of the FPN are connected to
each other to obtain a more flexible and computationally efficient architecture for object proposal generation.
The concept of the RPN as well as the FPN architectures are schematically shown in Fig. 2.4.

Two-Stage Detector: Faster R-CNN
Previously, we mentioned the distinction of modern neural-network based object detection algorithms into
two-stage architectures such as Faster R-CNN [61] and single-stage architectures such as Single-Shot detector
[24], YOLO [25], and RetinaNet [9]. A two-stage detector utilizes the previously described object proposal
stage using a RPN network. Furthermore, it is also possible to use a preceding FPN before the RPN for further
feature processing to improve the quality of the object proposals [62]. The object proposals as well as the
feature maps dθB

(xn) = ŷB of the backbone network are passed to a fully-connected classification network
dθCLS and to a fully-connected refinement network for the bounding boxes dθBOX to generate the final object
predictions ŷn with the according bounding box positions r̂n ∈ R. The object proposals are used to crop the
relevant features at the proposed object locations from the backbone feature maps ŷB . The classification head
dθCLS takes these features as input to generate the final prediction for the object class which might be one out
of K classes. The final network output is passed to the softmax activation function to obtain a probabilistic
interpretation of the class probabilities for a single object. For the estimation of the final bounding box of an
object, the refinement head dθBOX works similarly. The refinement network takes the relevant features from
ŷB at the proposed object locations and predicts an offset for the proposed object locations ∆cx,∆cy and
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objectness scores box coordinates anchor boxes

intermediate features
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intermediate layer
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backbone feature map

© 2015 IEEE. Reprinted, with permission.
(i) Concept of the Region Proposal Network (RPN) using a sliding window with different predefined anchor boxes for

each position within the output feature maps [61, p. 3, Fig. 1].

predict

© 2017 IEEE. Reprinted, with permission.
(ii) Basic structure of a Region Proposal Network

(RPN) that uses the final output of the backbone
network [62, p. 1, Fig. 1(b)].

predict

predict

predict

© 2017 IEEE. Reprinted, with permission.
(iii) Feature Pyramid Network (FPN) that also the in-

termediate features of the backbone to estimate
proposals at different scales [62, p. 1, Fig. 1(d)].

Figure 2.4: Concept of the Region Proposal Network (RPN) and the Feature Pyramid Network (FPN) used
for object detection. For object detection using neural networks, it is necessary to make an initial
assumption about possible object candidates and their locations [61, 9, 62]. Initially, a RPN has
been proposed by [61] to output object proposals by using a sliding window over the backbone
feature maps with predefined anchor boxes (top). However, the drawback of this approach is that
it only utilizes the features at the output of the backbone network (left bottom) which might only
work well at a single scale [62]. Therefore, the authors in [62] proposed a FPN to mitigate this
problem by utilizing the intermediate backbone features at different scales.
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Figure 2.5: Concept of the Faster R-CNN object detection architecture [61, p. 3, Fig. 2]. A basic backbone
network (denotes by “conv layers”) is used to generate feature representations of the input image.
Building on top of these features, the region proposal network generates multiple object propos-
als with possible object candidates. In the final step, the final pooling layer (denoted by “RoI
pooling”) discards all proposals that are classified as background. Furthermore, the final stage
applies a refinement of the bounding boxes that have not been classified as background.

for the proposed width and height ∆w,∆h. Thus, the two-stage detection architecture is a concatenation
of the backbone network, the proposal stage, and the detection head, so that the final object predictions are
obtained by (dθB

◦dθRPN ◦dθCLS)(xn) for the labels of the objects and (dθB
◦dθRPN ◦dθREG)(xn) for the object

positions given an input image xn. During network training, the backbone network, the proposal network as
well as the detection head are jointly optimized using the classification and refinement loss of the proposal
stage in conjunction with the classification and refinement loss of the detection head. The concept of the
Faster R-CNN detection architecture is schematically shown in Fig. 2.5.

Single-Stage Detector: RetinaNet
A single-stage detection architecture such as a RetinaNet [9] follows a similar concept of using a pretrained
backbone network to generate an intermediate feature representation of the input image. As opposed to
the previously described two-stage object detection approach, a single-stage detector does not utilize an
additional proposal stage. Instead, a single-stage architecture directly works with the anchor boxes that we
already know from the RPN architecture. The anchor boxes are placed with fixed object locations and fixed
aspect ratios over the whole image output and serve as priors for possible object candidates. The single-stage
object detector seeks to directly learn an appropriate scaling and shifting of these boxes to generate the final
object predictions. Thus, an additional proposal stage is not necessary. The anchor boxes are connected to
certain feature maps of intermediate layers within the backbone network to extract image features at different
scales. Furthermore, the RetinaNet architecture uses a FPN before scaling and shifting the anchor boxes to
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Figure 2.6: Concept of the RetinaNet object detection architecture [9, p. 5, Fig. 3]. Similar to a two-stage
detector, the RetinaNet uses a backbone network (left) to generate intermediate feature represen-
tations of the input image. A feature pyramid network extracts these feature representations at
predefined anchor locations and seeks to detect possible correlations between features of different
scale. Finally, the last refinement stage classifies the anchors based on the intermediate features
and applies a bounding box refinement of the anchor boxes to match the estimated objects within
an image.

improve the feature extraction process [62]. The output layers dθCLS and dθBOX are similar as to the ones used
within two-stage detectors as they also estimate the final object class as well as the final object position and
size. The concept of the RetinaNet architecture is schematically shown in Fig. 2.6.

2.2 Different Types of Uncertainty

The formerly presented object detection algorithms are deep learning techniques that are able to learn and
recognize features and patterns in the given input images. Although many machine learning and deep learn-
ing algorithms are designed to output deterministic estimates, such a process is always subject to certain
uncertainties during inference [39, 63]. In this scope, the authors in [63] identified 3 different reasons why
a machine learner is subject to uncertainty:

1. The dependency between input space and the respective true outcome (e.g., input image and its asso-
ciate classification label) may be of stochastic nature [63]. For example, given two overlapping distri-
butions within the same input space, the translation from input space to the output, which represents
the respective distribution label, is not deterministic. This is known as the aleatoric data uncertainty.

2. Before applied to real-world applications, a machine learning algorithm needs a dedicated training
phase to learn the translation from input to output space given a dedicated training set. However, the
training set is always a random sample drawn from the data generation process. This leaves a lack of
knowledge during application which is referred to as approximation uncertainty by [63].

3. A machine learning or deep learning model might be misspecified [63], i.e., it might not be able to
correctly capture all dependencies between input and output space. For example, a neural network
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with low capacity might fail in a classification of input images, whereas a network architecture with
high capacity might succeed. The authors in [63] denote this as model uncertainty [63].

These uncertainties are commonly divided into epistemic model and aleatoric data uncertainty [64, 39, 63].
The difference between these types of uncertainty is shown in Fig. 2.7.

Epistemic uncertainty represents the lack of knowledge inherent in the model due to a low amount of training
data or due to model misspecification [39, 63]. This uncertainty is commonly reducible given more training
data [39] or by an improved model specification [63]. In the context of neural networks, epistemic uncertainty
is not directly observable, i.e., we need advanced techniques to access this type of uncertainty. For this reason,
Bayesian neural networks (BNN) have been introduced to mitigate this problem [65, 66]. The idea of a BNN
is to place probability distributions over the (commonly deterministic) network weights to yield a probability
distribution as the network output. However, since neural networks exhibit a complex structure and work
with intermediate non-linearities, the output distribution is analytically not tractable [58]. Therefore, recent
works have introduced techniques for an approximation of BNNs. The authors in [67] use an ensemble of
neural networks during inference with the same architecture to yield a sample distribution as output given a
single input. The authors in [58] show that dropout, a common regularization technique where single neurons
get randomly deactivated within the network training, can also be used as an ensemble approximation during
network inference given new data. Another technique is Stochastic Variational Inference (SVI) [68] where
the network weights are replaced by variational distributions of known parametric form (e.g., Gaussian).
Using SVI, it is possible to approximate the variational distribution parameters during network training.
During inference, we can sample from these variational distributions to get multiple parameter sets for the
neural network. However, a known problem of SVI is that is does not scale well to large neural networks [68].
All of these techniques approximate a BNN by yielding a sample distribution for the network output given a
certain input. Recently, the authors in [69] derived a sampling-free technique to yield epistemic uncertainty

(i) Input image. (ii) Aleatoric uncertainty. (iii) Epistemic uncertainty.

© 2017 ACM. Reprinted, with permission.

Figure 2.7: Difference between aleatoric and epistemic uncertainty demonstrated at the task of semantic
segmentation [39, p. 2, Fig. 1]. We observe that aleatoric data uncertainty occurs on segment
boundaries or image regions with blurry contours, e.g., the top of the tree in the image center. In
contrast, the epistemic uncertainty represents the intrinsic model uncertainty that might occur at
different locations that are not well-known by the segmentation model.
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Figure 2.8: Given two non-overlapping distributions in a 2-D feature space, the distributions are separable
and we have no aleatoric uncertainty. However, if projected only to a single dimension and
provided to a machine learning model, the distributions might overlap which results in regions
with aleatoric uncertainty.

by using Gaussian error propagation as an approximation to BNNs. In this way, it is possible to represent
the intermediate as well as the final uncertainty as Gaussian distributions that are propagated through the
whole network architecture [69]. Using all of these techniques, it is possible to obtain epistemic uncertainty
of a neural network. If transferred to object detection architectures (cf. Sec. 2.1), we face a problem of
BNNs during the inference of objects. A Faster R-CNN as well as a RetinaNet both work with proposal
or anchor boxes before the final refinement stage. If we now apply the sampling techniques as described
above, we obtain multiple bounding box estimates for the same image. Furthermore, the assignment of the
proposal/anchor boxes to individual objects might change with each forward pass in the sampling process.
Thus, the authors in [70] and [16] use clustering techniques to group the predicted objects after sampling.
Consequently, it is also possible to obtain epistemic uncertainty within the detection process.

Aleatoric uncertainty represents the uncertainty inherent in the data. This kind of uncertainty can not be
explained away given more data [39]. However, the authors in [63] argue that aleatoric uncertainty might also
result from a misspecification of the problem setting. For example, given two non-overlapping distributions
in a 2-D feature space, the distributions are separable and we have no aleatoric uncertainty. However, if
projected only to a single dimension and provided to a machine learning model, the distributions might
overlap in this dimension which results in a region with aleatoric uncertainty. This is schematically shown in
Fig. 2.8. This example shall illustrate that aleatoric uncertainty might be mitigated given enough information
to a machine learning algorithm [63]. The advantage of working with aleatoric uncertainty is that we can train
a neural network to directly output an estimate of this kind of uncertainty. Since we are working with object
detection algorithms, we further need to distinguish between semantic label and spatial position uncertainty.
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2.2.1 Modeling of Semantic Confidence

Semantic confidence describes the belief of the learning model about the object category of a single object.
A neural network commonly estimates a score Zk ∈ R (logit) for each class k in the set of all classes
Y = {1, ...,K}. Afterwards, the logit of a neural network can be converted to a confidence score P̂k ∈ [0, 1]

for each class k ∈ {1, ...,K} using the softmax function ΦSM(Z)k. The advantage of using the softmax
function is that it yields confidence scores which sum up to 1 and which, in turn, can be used to construct
a categorical probability distribution targeting the predicted class for each object. In contrast, for binary
classification with Y = {0, 1}, a neural network only predicts a single logit Z which is converted to a
confidence score using the sigmoid function Φ(Z). Similar to the multivariate case, this confidence score is
used to construct a Bernoulli distribution which reflects the probability for an outcome belonging either to
class 0 or 1, respectively. In both cases, we treat the network output as a probabilistic forecast which allows
to derive the uncertainties directly by the network output.

2.2.2 Modeling of Spatial Uncertainty

The spatial uncertainty reflects the uncertainty during the prediction of an object position and shape within
a single image. For position and shape estimation, common object detection architectures use anchor or
proposal boxes as the basis for inference (cf. Sec. 2.1.3). A neural network learns to rescale and shift these
boxes during training to match possible objects within an image. This architecture has the advantage that
a neural network only needs to learn a rescaling and shifting of these boxes which is a simple regression
task. Let X ∈ X denote the input to an object detector within the input set X and let D denote a training
data set of size N which is used to train the parameters θ of a neural network. Within the training data
set, the variable r̄ ∈ R represents the ground-truth bounding box information of individual objects of di-
mension L in the space R consisting of the position, width, and height information. A standard regression
model interprets the network output R̂ as multiple independent normal distributions for each bounding box
dimension with fixed variance, so that R̂ ∼ N (µR̂|X,Σ), with µR̂|X ∈ R as the predicted mean vector and
Σ = diag(σ2

1, . . . , σ
2
L) as the diagonal covariance matrix with variances σ2

1, . . . , σ
2
L ∈ R>0. The variances

are commonly treated as fixed constants, so that Σ = σ2I with σ2 as a common variance (e.g., 1) and I as the
identity matrix. Since the variances are treated as constants, they are neglected within standard regression
applications. A regression model is trained using the NLL of the model given the training set, so that the
loss is defined by

L(θ) = − log

(
N∏

n=1

fR̂(r̄n|xn,θ)

)
(2.19)

∝
N∑

n=1

L∑
l=1

(
r̄n,l − µR̂l|xn

)2
, (2.20)

which is also known as the squared error loss function.
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A drawback of this interpretation is that the uncertainty, i.e., the variance, is not considered during model
training and inference. Thus, no information about the spatial uncertainty is available. For this reason,
recent work has reformulated this loss by also considering the variance as a function of the input data.
Therefore, the covariance matrix ΣR̂|X ∈ RL×L

>0 consisting of the independent variances σ2
R̂l|X

for each
dimension l ∈ {1, . . . , L} is also modeled by the regression network for each input xn, so that ΣR̂|X =

diag(σ2
R̂1|X

, . . . , σ2
R̂l|X

) [39]. Thus, the NLL extends to

L(θ) = − log

(
N∏

n=1

fR̂(r̄n|xn,θ)

)
(2.21)

= − log

(
N∏

n=1

L∏
l=1

1√
2πσ2

R̂l|xn

exp

[
−
(
r̄n,l − µR̂l|xn

)2
2σ2

R̂l|xn

])
(2.22)

∝
N∑

n=1

L∑
l=1

1

2
σ−2

R̂l|xn

(
r̄n − µR̂l|xn

)2
+

1

2
log
(
σ2
R̂l|xn

)
. (2.23)

For the joint training of mean and variance, no additional ground-truth information is required. Instead,
the network is able to increase the uncertainty which decreases the loss for uncertain samples during model
training. This type of regression has recently been used in the context of object detection [40, 71, 16].
Therefore, it is possible to obtain semantic as well as spatial uncertainty within the scope of object detection.

2.3 Reasons for Unreliable Uncertainty

Recent work has found that modern neural networks tend to produce unreliable uncertainty information
[11, 12, 13], i.e., the estimated uncertainty does not match the observed error distribution. The authors
in [13] found that especially modern architectures with a high model capacity produce too overconfident
confidence estimates, whereas simple models with a lower model capacity offer better calibration properties
[13]. Furthermore, the authors study the effect of additional regularization techniques such as batch nor-
malization [59] and weight decay [57] (for a description of these regularization techniques, cf. Sec. 2.1.1).
The authors found that the use of batch normalization tends to increase miscalibration of neural networks
[13] but the authors leave the interpretation of this phenomenon open for future work. Weight decay [57] is
an additional penalty added to the loss term which penalizes large layer weights to prevent an overfitting of
the network to the training data. As opposed to batch normalization, the authors in [13] found that weight
decay tends to minimize the model miscalibration. We support this statement during our experiments as we
observed that high network weights tend to produce less calibrated neural networks.

Finally, although the NLL is a direct measure for calibration [72, 73, 12, 74, 13] and used during model
training, the authors in [13] observe that the NLL might disconnect from optimizing the calibration proper-
ties of the neural network during model training. This is in agreement with other works as they show that
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the NLL can be decomposed into a classification and a refinement loss [72, 75, 74, 41]. As already pointed
out in the last section, a neural network predicts a probability distribution targeting the desired outcome,
e.g., a Bernoulli distribution within binary classification or a normal distribution within a regression setting.
We further denote the neural network by d(x) that predicts a probability distribution fŶ (ŷ|x) for a single
sample with input x ∈ X and the according ground-truth ȳ ∈ Y , where Y = {0, 1} or Y = R within binary
classification or regression, respectively. Furthermore, let ϑ̂x denote the estimated distribution parame-
ters of fŶ (ŷ|x). For example, within binary classification, the network outcome is a Bernoulli distribution
fŶ (ŷ|x) = Bern(ŷ; p̂x) with confidence p̂x, so that ϑ̂x = {p̂x}. In contrast, in the context of probabilistic
regression the output is parameterized in terms of a normal distribution fŶ (ŷ|x) = N (ŷ;µŷ|x, σ

2
ŷ|x) with

mean µŷ|x and variance σ2
ŷ|x, so that ϑ̂x = {µŷ|x, σ

2
ŷ|x}.

The predicted probability distribution is a direct estimate of the neural network about its uncertainty within
the predicted outcome. Depending on the capacity of the used neural network, this estimation might not nec-
essarily follow the real probability distribution about the ground-truth fȲ (ȳ|ϑ̂x) on the true data generation
process given the network output ϑ̂x. The network is trained by the NLL whose expectation over the data is
denoted by EX,Ȳ∼fX,Ȳ

[
− log

(
fŶ (ȳ|x)

)]2. In this sense, recent work has derived the decomposition of the
expected NLL into calibration and refinement loss [72, 75, 74, 41] given by

EX,Ȳ [NLL] = EX,Ȳ

[
− log

(
fŶ (ȳ|x)

)] (2.24)

= EX

[
EȲ

[
− log

(
fŶ (ȳ|x)

)
+ log

(
fȲ (ȳ|ϑ̂x)

)
− log

(
fȲ (ȳ|ϑ̂x)

)]] (2.25)

= EX

[
EȲ

[
log

(
fȲ (ȳ|ϑ̂x)

fŶ (ȳ|x)

)]]
− EX,Ȳ

[
− log

(
fȲ (ȳ|ϑ̂x)

)] (2.26)

= EX

[
DKL

(
fȲ (Ȳ |ϑ̂x)||fŶ (Ȳ |x)

)]︸ ︷︷ ︸
Calibration loss

+EX,Ȳ

[
− log

(
fȲ (ȳ|ϑ̂x)

)]︸ ︷︷ ︸
Refinement loss

, (2.27)

where

DKL
(
fȲ (Ȳ |ϑ̂x)||fŶ (Ȳ |x)

)
=

∫
Y
fȲ (Ȳ |ϑ̂x) log

(
fȲ (Ȳ |ϑ̂x)

fŶ (ȳ|x)

)
dȳ (2.28)

is the Kullback-Leibler divergence between the uncertainty distribution fȲ (Ȳ |ϑ̂x) of the true data generation
process given the network output ϑ̂x and the estimated uncertainty about the predicted outcome given by
fŶ (Ȳ |x). The refinement loss is responsible to improve the network accuracy on the given ground-truth data
set. The calibration loss serves as a regularizing term to match the predicted network confidence with the
observed error. The authors in [13] assume that overfitting, which might be a direct cause of a model with too
high capacity, might manifest in the calibration error rather than in the refinement loss during model training.

2For notational brevity, we further use an abbreviated expression to denote the random variable of the expectation, e.g., for
EX∼fX [·], we write EX[·].
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2 Object Detection and Uncertainty Modeling

The authors in [13] argue that once the model is not capable of further improving the network accuracy on
the given data, the training process seeks to minimize the calibration loss which results in an overfitting to
the training data.

Further related works [76, 77] seek to tackle this problem by directly incorporating additional regularization
during model training. The authors in [76] introduce a regularization technique that is related to the Expected
Calibration Error (ECE) known from classification calibration and use this technique to implement a more
targeted regularization during model training. In addition, [77] study the effect of the focal loss [9] which
is designed to set a higher weight on misclassified samples during model training. However, none of these
approaches address the problem of overfitting during network training directly as they solely incorporate a
penalty on high confidences but neglect the baseline generalization performance of a neural network. For
example, in a binary classification setting, a neural network might perfectly predict the right output label for
all samples in the training set. Since the regularization techniques proposed by [76] and [77] are based on
the error on the training set, the probability mass is completely set to the correct label in this example and
the additional regularization would not have any effect. This results in a perfect calibration on the training
set. However, this behavior is commonly known as an overfitting on the training set. In this case, none of
the regularization techniques is able to capture the “true” probability distribution on real-world data which
is out of the training distribution. This overfitting behavior, which is also a lack of generalization, is a major
reason for uncertainty miscalibration [13, 78].

A more recent study on the reasons for miscalibration by [78] examines the actual network architectures
such as MLP-Mixer (fully-connected classification networks) [79], Transformer classification models [80],
and modern ResNet [8] architectures. In their studies, the authors in [78] show that a higher model capacity
does not necessarily lead to an increased miscalibration of models as modern architectures tend to improve
the generalization performance [78]. Furthermore, their examinations are divided into in-distribution and
out-of-distribution data for classification networks on several subsets of the ImageNet [81] data set. The
authors in [78] found that a good calibration performance of a neural network also has a positive influence
on the calibration on out-of-distribution data. Similar to [13], their examinations show a correlation between
network capacity and miscalibration on in-distribution data which, however, is not as large as within the
examinations of [13]. Interestingly, [78] also found that models with a higher generalization performance
tend to have a better calibration performance on out-of-distribution data as these architectures seem to be
more robust under domain shift [78].

23



3 Semantic Confidence Calibration

In the scope of image-based environment perception, we recently introduced the basic concepts of object
detection models that are based on neural networks. A neural network estimates a score for each prediction
that can be interpreted as a probability of correctness of the estimate. This confidence score reflects the
aleatoric uncertainty about the semantic class membership for each prediction [82]. However, modern neural
networks in the scope of classification are known to produce overconfident confidence estimates [12, 13], i.e.,
the predicted confidence does not match the observed accuracy. This is a major safety concern as such a bias
within the confidence predictions might have a large impact on subsequent processes, e.g., object tracking.
Thus, it is desirable to measure the misalignment between predicted confidence and observed accuracy. If we
assert a systemic error within the objectness confidence, it is further possible to apply post-hoc calibration
methods that seek to correct such a misalignment. For classification tasks, several methods such as Logistic
Calibration [35], Temperature Scaling [13], or Beta Calibration [43] exist to correct biased confidence scores
after model inference.

If we consider the more advanced tasks of object detection and segmentation, we face new challenges as we
work with more complex models and within more complex environments. These tasks are of special interest
as they are commonly used within the environment perception process, e.g., for safety-critical applications
such as autonomous driving. For example, a detection model can be used within an object tracking process
(cf. Chap. 6). In this context, the semantic confidence is used to decide which tracks are kept and which are
discarded. Thus, a reliable self-assessment of the neural network about the semantic uncertainty is manda-
tory. However, if we detect a bias in the semantic confidence, calibration methods can be used to correct such
a misalignment between predicted confidence and observed model performance. The concept of confidence
calibration within an object tracking pipeline is schematically shown in Fig. 3.1. In this chapter, we solely
focus on the task of object detection and examine the calibration properties of detection and segmentation

Object Detection

Classification Branch
- Confidence -

Probabilistic Regression
- Mean & Uncertainty -

Calibration

Semantic Confidence
Calibration (Chap. 3)

Spatial Uncertainty
Calibration (Chap. 5)

Object Tracking
(Chap. 6)

Track Existence Estimation
- Discrete Bayes Filter -

Object State Estimation
- Kalman Filter -

Track Initialization
and Association

Figure 3.1: In this chapter, we focus on the evaluation and calibration of the semantic confidence that is of
major importance for the management of tracks within a subsequent object tracking. Therefore,
reliable and calibrated confidence information are of special interest.

24



3 Semantic Confidence Calibration

models. Furthermore, we investigate novel calibration methods that are designed for detection and segmen-
tation applications. These models are able to use additional information such as the object location or size
for confidence recalibration. We investigate the influence of semantic confidence calibration to the task of
object detection in Chap. 6.

We present the definition for classification calibration and transfer this to the task of object detection, in-
stance segmentation, and semantic segmentation. These definitions are given in Sec. 3.2. Object detection
is a joint task of classification and regression as a detection model does not only estimate the class member-
ship but also the position of individual objects. Thus, we investigate the influence of the model’s regression
branch to the calibration properties and introduce an additional position-dependence to the definition for
confidence calibration. Additionally, we extend common calibration metrics (Sec. 3.2) as well as common
calibration methods (Sec. 3.3) to measure miscalibration and to apply post-hoc calibration for detection and
segmentation models, respectively. This work has been subject of our previous publications in [1, 2, 4].
Finally, we evaluate our extended calibration methods as well as the definition for Bayesian confidence cal-
ibration in Sec. 3.4 for different neural network architectures and for different data sets. We summarize our
contributions and findings in Sec. 3.5.

Contributions: We summarize our contributions in the following:
• Definition of confidence calibration for object detection, instance, and semantic segmentation.
• Multivariate extension of calibration methods to include additional position information.
• Extensive studies on the effect of position-dependent confidence calibration.

3.1 Related Work in the Context of Confidence Calibration

Recent works have started a discussion about the calibration of the class confidence of probabilistic forecast-
ers [11, 72, 12, 13]. The common consent about the calibration of semantic uncertainty is that the estimated
confidence of a classifier can be interpreted as a probability mass function (Bernoulli or categorical dis-
tribution for multivariate cases) which should reflect the model’s uncertainty about the actual prediction.
Thus, confidence calibration is defined as the task of matching the predicted confidence with the observed
accuracy given a certain confidence level. It is possible to measure miscalibration using the expected calibra-
tion error (ECE) [12] which is derived from the definition of classification calibration. For ECE computation,
all samples of a data set are grouped by their predicted confidence information into several equally sized dis-
tinct bins. Afterwards, it is possible to measure the accuracy within each bin. This yields multiple accuracy
scores that are conditioned on a certain confidence range which is an approximation to the definition of
calibration. Finally, an overall miscalibration score is computed using the weighted sum of the differences
between observed accuracy and average confidence within each bin [12]. Besides the ECE, proper scoring
rules such as Brier score or negative log likelihood also measure the calibration properties of a classifier
inherently [83, 84]. Proper scoring rules are metrics that are minimized if and only if the predicted proba-
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3 Semantic Confidence Calibration

bility distribution is optimized towards the ground-truth data. These scoring rules can be decomposed into
a calibration and a refinement part. We refer to [75, 83, 84] for a more detailed discussion.

Besides measuring miscalibration, recent work has developed methods for a subsequent (post-hoc) cali-
bration of uncalibrated confidence estimates to calibrated ones. We distinguish between binning methods
and scaling methods. Similar to the computation of the ECE, the binning methods group all samples by their
predicted confidence and use a binning scheme to measure the accuracy conditioned on the confidence score.
This binning scheme is then used to reassign the observed accuracy as the calibrated confidence to grouped
samples. This technique is also referred to as Histogram Binning [36]. A more dynamic but related approach
is Isotonic Regression [85] where a strictly monotonically increasing step function is fit to the training data.
This function can be interpreted as a binning scheme with dynamic bin ranges and a dynamic amount of
bins. Further extensions of these methods are Bayesian Binning into Quantiles (BBQ) [12] and Ensemble
of Near Isotonic Regression (ENIR) [86] which are ensembles of multiple Histogram Binning and multiple
Isotonic Regression models, respectively.

In contrast, scaling methods such as Logistic Calibration (or Platt scaling) [35], Temperature Scaling [13],
Beta Calibration [43], or Dirichlet calibration [87] apply a rescaling of the logits before the sigmoid or soft-
max operation to yield calibrated confidence estimates. These scaling methods differ in their assumptions on
the input data and the resulting recalibration scheme. Furthermore, Temperature Scaling [13] and Dirichlet
calibration [87] are designed for the recalibration of multiclass classification tasks. The scaling methods are
known to be sample efficient compared to the binning methods [88], i.e., these methods provide a qualita-
tively good calibration performance given only a small amount of samples, compared to the binning methods.
However, these methods are also restricted by means of their underlying parametric assumptions [88], e.g.,
Gaussian distributions for Logistic Calibration [35, 43]. For this reason, the authors in [88] recently pro-
posed a scaling-binning calibration method that combines the sample-efficiency of the scaling methods with
the representational power of a Histogram Binning. A similar approach is applied by [89] who proposed
a bin-wise Temperature Scaling for calibration. Besides the binning and scaling methods, the authors in
[90] proposed a non-parametric Gaussian Process (GP) calibration scheme using a latent GP model with a
categorical likelihood to perform recalibration for multiclass classification tasks. Another approach by [91]
fits a spline function to the uncalibrated data to achieve confidence calibration.

Some research has also focused on confidence calibration directly during model training by regularization.
The authors in [92] propose a confidence penalty during the training of a neural network model to reduce
overconfidence. Similarly, the authors in [77] study the effect of the focal loss function [9] as the training
objective to confidence calibration. They found that focal loss significantly reduces overconfidence but might
also lead to underconfident models as well [2]. The drawback of these approaches is that they simply apply
untargeted penalties to the confidence, regardless of the observed accuracy. This is addressed by [76] who
propose the Maximum Mean Calibration Error (MMCE) which is a differentiable surrogate for the ECE
and which can be used as a regularization term during model training. A common drawback of calibration
methods during model training is that the baseline performance of a forecaster (e.g., accuracy or precision)
is commonly way better on the training data compared to new samples during inference. This has an impact
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on the regularization and commonly leads to a distortion of the confidences during model training as well. In
this chapter, we focus on post-hoc calibration and especially on the standard calibration methods Histogram
Binning [36], Logistic Calibration [35], and Beta Calibration [43], as these methods are most widely used.
Furthermore, it is straightforward to utilize and extend these methods to our task of object detection and
segmentation calibration.

Recently, the authors in [93] proposed the concept of meta classification which is quite related to our ap-
proach of extended and feature-aware confidence calibration. Within meta classification, different sources
of uncertainty are aggregated which are provided by a forecaster. Afterwards, a simple classification model
(e.g., Logistic Calibration) is used to produce the final outcome. This concept has been extended to object
detection by [38] which is denoted as MetaDetect and utilizes further features such as bounding box position
or object size. In the context of this work, we focus on the characteristics of calibration. Furthermore, we
derive our extended methods directly from existing calibration methods and set them in an overall context.
In addition, we present a multivariate extension of the calibration methods that also allows for the detection
of possible correlations between the individual features.

3.2 Definitions and Metrics for Confidence Calibration

In this section, we present the definition of semantic confidence calibration for classification and extend it
to the tasks of object detection, instance segmentation, and semantic segmentation. The derivation of these
definitions was the subject of our research in [1], [4, p. 228 f.], and [4, p. 230 f.].

3.2.1 Classification

Let D denote a data set of size N which consists of several images X ∈ X with height H , width W , and
number of channels C. Each image belongs to a certain ground-truth class Ȳ ∈ Y = {1, ...,K}, so that
the joint distribution for the input X and the respective ground-truth label Ȳ is given by fX,Ȳ (x, ȳ) =

fȲ (ȳ|x)fX(x). A multiclass classification model seeks to approximate fȲ (ȳ|x) by learning its parameters
so that it is able to predict a label Ŷ ∈ Y with a certain confidence score P̂ ∈ [0, 1] = [0, 1] that represents
the model’s belief about the prediction’s correctness. These predictions follow the joint model distribution
fP̂ ,Ŷ (p̂, ŷ|x). A classification model is confidence calibrated, if

P(Ŷ = Ȳ |P̂ = p̂) = p̂ (3.1)

is fullfilled for all p̂ ∈ [0, 1] [11, 12, 13]. This definition implies that the observed accuracyP(Ŷ = Ȳ |P̂ = p̂)

should match the estimated confidence given a certain confidence level p̂. For example, given 100 predictions
with a confidence score of 0.8 each, we would expect an accuracy of also 80%. If we observe a deviation, a
model is said to be miscalibrated. Note that for binary classification with Y = {0, 1}, the network output of
a classification model is commonly a sigmoidal function that outputs a score in the (0, 1) interval, indicating
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the belief for Ŷ = 1. Thus, our calibration target is the observed relative frequency for Ȳ = 1 instead of the
accuracy, so that

P(Ȳ = 1|P̂ = p̂) = p̂ (3.2)

is required for all p̂ ∈ [0, 1].
As already stated in the introduction in Sec. 2.2.1, the predicted probability distribution for Ŷ can be ex-

pressed in terms of a Bernoulli distribution with confidence P̂ as the probability parameter, so that the
estimated probability mass function is defined by

fŶ (ŷ|p̂) = Bern(ŷ; p̂) = p̂ŷ(1− p̂)1−ŷ. (3.3)

The definition for confidence calibration in (3.1) can be used to derive the Expected Calibration Error (ECE)
[12] that is a common metric to measure miscalibration in the scope of classification [12, 13]. We seek to
minimize the expectation of the difference between predicted confidence and observed accuracy [12] which
is denoted by

EP̂∼fP̂

[∣∣P(Ŷ = Ȳ |P̂ = p̂)− p̂
∣∣] (3.4)

=

∫ 1

0
fR̂(p̂) ·

∣∣P(Ŷ = Ȳ |P̂ = p̂)− p̂
∣∣dp̂ (3.5)

=

∫ 1

0

∣∣P(Ŷ = Ȳ |P̂ = p̂)− p̂
∣∣dFP̂ (p̂), (3.6)

using the Rieman-Stieltjes integral and with FP̂ (p̂) as the Cumulative Density Function (CDF) of the es-
timated confidence distribution. However, since P̂ is a continuous random variable, we can not get the
probability in (3.4) using a finite set of samples [13]. Therefore, the ECE is approximated by a binning
scheme over estimated confidence distribution of P̂ ∈ [0, 1] using I equally sized bins. Given a finite data
set, the ECE [12], [13, p. 11] is an approximation of (3.6) given by

ECE :=

I∑
i=1

P(P̂ ∈ Bi) ·
∣∣P(Ŷ = Ȳ |P̂ = p̂i)− p̂i

∣∣, (3.7)

∀p̂i ∈ Bi, i ∈ {1, . . . I}.

where p̂i denote all possible confidences within interval Bi. In other words, the ECE is calculated using the
weighted sum of the differences between average confidence and observed accuracy/frequency over all bins
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using a finite set of samples. This yields the representation form

ECE =
I∑

i=1

Ni

N
|acc(i)− conf(i)|, (3.8)

where Ni denotes the number of samples within bin Bi and

acc(i) = 1

Ni

Ni∑
ni=1

1(ŷni = ȳni), (3.9)

conf(i) = 1

Ni

Ni∑
ni=1

p̂ni , (3.10)

with indicator function 1(·) [12, 13]. In this case, acc(i) and conf(i) denote the average accuracy (or fre-
quency within binary classification) and the average confidence within each bin, respectively.

3.2.2 Object Detection

Similar to a classifier, an object detection model, which is based on a neural network, also estimates a label
Ŷ ∈ Y and an according objectness confidence score P̂ ∈ [0, 1] for each prediction within a single image
X ∈ X . Let further denote R̄ ∈ R = [0, 1]L the ground-truth information for the object’s position (relative
to image size) where L denotes the dimension of the box encoding (commonly center x and y positions cx, cy
as well as width w and height h). Thus, the joint ground-truth data distribution extends to fX,Ȳ ,R̄(x, ȳ, r̄) =

fȲ ,R̄(ȳ, r̄|x)fX(x). An object detection model thus also needs to infer the object’s position to approximate
fȲ ,R̄(ȳ, r̄|x). In the following, we denote the position predictions as R̂ ∈ R, so that the overall output
distribution of an object detection model is denoted by fP̂ ,Ŷ ,R̂(p̂, ŷ, r̂|x). In contrast to the simple case of
classification calibration, there are some limitations we need to address within object detection calibration.
On the one hand, as we know from Sec. 2.1, most object detectors use anchor or proposal boxes to implement
the object detection. These boxes serve as an initial estimate for a possible object location and get scaled
and shifted in a subsequent step to match a real object. However, if only a few amount of objects is present
within an image, most anchor/proposal boxes are classified as background. These predictions are discarded
in the final post-processing of a common object detection pipeline. This approach significantly reduces
the model output to the user-relevant predictions. During the model evaluation, we can denote the amount
of missed objects, the so-called false negatives. Since we have no information about what the detection
model has classified as background, we can not denote the true negatives within a single frame. However,
this information is mandatory for accuracy computation. For this reason, we further use the precision as
our calibration target as it measures the fraction of correctly identified objects. The precision denotes the
fraction of correctly detected and classified objects given all predicted objects by the detection model. In
order to determine the precision, an assignment of the predictions to ground truth objects is necessary. This
is usually done using the Intersection over Union (IoU) score between the predicted and the ground-truth
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objects. Furthermore, this means that the precision and thus the calibration of the detection model depends
on the selected IoU score.

On the other hand, as we observed in our examinations in [1] and [4], the data distribution of the training
set during model training has an influence on the prediction performance of an object detector. For example,
if most of the training samples have been located within the image center, the predictions near the bound-
aries might have a reduced performance. Therefore, we introduce a position-dependency to the definition of
confidence calibration for object detection which is thus given by

P(M̂ = 1|P̂ = p̂, Ŷ = ŷ, R̂ = r̂) = p̂ (3.11)
∀p̂ ∈ [0, 1], ŷ ∈ Y, r̂ ∈ R.

In this case, M̂ ∈ {0, 1} denotes if a predicted object has matched a ground-truth object with a certain IoU
and thus P(M̂ = 1) is a shorthand notation for P(Ŷ = Ȳ , R̂ = R̄).

Similar to the standard ECE definition in (3.4), we derive the Detection Expected Calibration Error (D-ECE)
which is the extension of the ECE to object detection. Let ŝ = (p̂, ŷ, r̂) denote a single prediction so that
ŝ ∈ S, where S is the aggregated set of the confidence, label, and bounding box spaces. If an object
detection model is calibrated, the expected difference between predicted confidence and observed preci-
sion conditioned on the model output gets minimal. The predicted joint output distribution is denoted by
fP̂ ,Ŷ ,R̂(p̂, ŷ, r̂) = fŜ(̂s), where FP̂ ,Ŷ ,R̂(̂s) is the respective CDF function. Thus, the expectation is denoted
by

EP̂ ,Ŷ ,R̂

[∣∣P(M̂ = 1|P̂ = p̂, Ŷ = ŷ, R̂ = r̂)− p̂
∣∣] (3.12)

= EŜ

[∣∣P(M̂ = 1|Ŝ = ŝ)− p̂
∣∣] (3.13)

=

∫
S
fŜ(̂s) ·

∣∣P(M̂ = 1|Ŝ = ŝ)− p̂
∣∣dŝ (3.14)

=

∫
S

∣∣P(M̂ = 1|Ŝ = ŝ)− p̂
∣∣dFŜ(̂s). (3.15)

Similar to (3.7), we can approximate the integral by a multidimensional binning scheme with I distinct bins
Bi over the joint output space S, so that the D-ECE is an approximation of the integral in (3.15) by

D-ECE :=

I∑
i=1

P(Ŝ ∈ Bi) ·
∣∣P(M̂ = 1|P̂ = p̂i, Ŷ = ŷi, R̂ = r̂i)− p̂i

∣∣ (3.16)

∀p̂i, ŷi, r̂i ∈ Bi, i ∈ {1, . . . I},
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which is finally computed by the weighted sum

D-ECE =
I∑

i=1

Ni

N
|prec(i)− conf(i)|, (3.17)

with Ni as the number of samples within bin Bi and prec(i) as the precision within bin Bi. Thus, the D-ECE
can be seen as the weighted sum of differences between precision and average confidence over all bins in the
output space for a finite set of samples.

3.2.3 Instance Segmentation

Let V denote the set of all objects over all images in data set D, where V denotes the total amount of objects.
Instance segmentation is the combined task of predicting individual objects and their shape at the pixel-level.
Thus, for each pixel j ∈ Jv = {1, ..., Jv} within the predicted bounding box R̂v ∈ R of an estimated object
v ∈ V with predicted label Ŷv ∈ Y , an instance segmentation model also predicts a label Ŷ ∗

j ∈ Y∗ = {0, 1}
in conjunction with a confidence score P̂ ∗

j ∈ [0, 1], indicating the estimated membership of each pixel to
the object mask. We further denote Ȳ ∗

j as the ground-truth information for the object segmentation masks
and R∗

j ∈ R∗ = [0, 1]L
∗ as the (normalized) pixel-position within a bounding box R̂v, where L∗ denotes

the size of the used position-encoding for a single pixel. In contrast to object detection, it is possible to
compute the accuracy on pixel-level over all objects and all instance segmentation masks. Since the mask
inference reduces to a binary classification task, our calibration target for instance segmentation is the pixel-
wise relative frequency P(Ŷ ∗

j = 1) of each pixel belonging to the object’s shape. Similar to the definition
of object detection calibration, we further introduce a position-dependency. For example, pixels close to the
shape boundary might have different calibration properties. Therefore, confidence calibration for instance
segmentation is defined by

P(Ŷ ∗
j = 1|P̂ ∗

j = p̂∗,R∗
j = r̂∗, Ŷ = ŷ) = p̂∗, (3.18)

∀p̂∗ ∈ [0, 1], r̂∗ ∈ R∗, ŷ ∈ Y, j ∈ Jv, v ∈ V.

Similar to (3.16), we can use the D-ECE to measure the miscalibration of an instance segmentation model.
For this purpose, a binning scheme over the joint space for the pixel-wise confidence, the pixel position R∗,
and all possible labels is used to approximate the D-ECE.

3.2.4 Semantic Segmentation

In contrast to instance segmentation, a semantic segmentation model does not predict individual objects
but rather estimates a label Ŷ ∗

j ∈ Y = {1, ...,K} with corresponding confidence P̂ ∗
j ∈ [0, 1] for each pixel

j ∈ J in an input image X ∈ X , where Ȳ ∗
j ∈ Y denotes the ground-truth information for pixel j. Therefore,

semantic segmentation can be seen as a joint (multiclass) classification task for each pixel in an image. Thus,
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Figure 3.2: Concept of box-sensitive confidence calibration w.r.t. the regression branch of an object detector
[1, p. 2, Fig. 2]. A detection model predicts several objects within an image with a certain posi-
tion and a certain class. Standard calibration methods (top row) only use the classification branch
of a detection model for confidence calibration. In contrast, our position-dependent calibration
methods also utilize the additional regression branch to keep track of possible correlations be-
tween box position and miscalibration.

the definition of confidence calibration for semantic segmentation changes to

P(Ŷ ∗
j = Ȳ ∗

j |P̂ ∗
j = p̂∗,R∗

j = r̂∗) = p̂∗, (3.19)
∀p̂∗ ∈ [0, 1], r̂∗ ∈ R∗, j ∈ J .

In contrast to the definition for instance segmentation calibration in (3.18), we have no dependency on indi-
vidual objects. Thus, we the definition of calibration for semantic segmentation is related to the calibration
definition for classification in (3.1) but on pixel-level and with an additional dependency on the pixel position.

3.3 Multivariate Confidence Calibration

The task of confidence calibration is to remap probability estimates so that they reflect the observed accuracy,
frequency, or precision. These calibration methods are applied as post-hoc calibration that is applied after
model inference. In a first step, we review existing calibration techniques and group these methods into
binning and scaling methods. Scaling calibration methods perform post-hoc recalibration by rescaling the
output of a forecaster to achieve well-calibrated confidence estimates [35, 13]. In contrast, binning methods
divide the probability space into several distinct bins (similar to the calculation of the ECE) and use this
binning scheme to derive a calibrated confidence [36, 12].

Moreover, we refer to the definition for position-dependent calibration from the previous section and extend
these methods to perform confidence calibration by means of the additional position information which is
provided by an object detection or segmentation model. This concept is schematically shown in Fig. 3.2. The
advantage of these extended calibration methods is that they are sensitive to possible correlations between
miscalibration and object location/shape. If there is a position dependence in the confidence miscalibration,
the common calibration methods will not be able to perform a proper recalibration. The effect of position-
dependent calibration is demonstrated in an artificial example in Fig. 3.3.
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Figure 3.3: Qualitative example of multivariate confidence calibration on an artificially created data set [1,
p. 5, Fig. 3], [4, p. 232, Fig. 1]. The samples are drawn with a certain confidence score P̂ and a
matched flag M̂ ∈ {0, 1}. Similar to the computation of the D-ECE, the position space is divided
into several bins. We measure the gap between average confidence and observed precision within
each bin and visualize the position-dependent miscalibration in terms of a heatmap. (a) The
deviation between average confidence and average precision follows a correlated bivariate normal
distribution and increases towards the distribution boundary. (b) Common calibration methods
are only able to rescale to average confidence in this scenario. This yields new confidences which
are calibrated on average but still show a position-dependent calibration error. (c) In contrast, our
multivariate calibration methods are able to successfully recalibrate the confidence information
by means of the position information.

The extended calibration methods yield a calibrated confidence Q̂ ∈ [0, 1] which reflects the probability of
a predicted object to match an existing one given the uncalibrated confidence P̂ , the object category Ŷ , and
the position information R̂ in the joint space S , so that h : S → [0, 1]. Therefore, the predicted probability
distribution for the categorical random variable M̂ (object detection) after calibration is also a Bernoulli
distribution whose probability parameter Q̂ can be expressed as a function of the uncalibrated confidence
and the predicted position information, so that the Probability Mass Function (PMF) of M̂ is given by

P
(
m̂|h(p̂, ŷ, r̂)

)
= Bern(m̂;h(p̂, ŷ, r̂)

)
. (3.20)

In the context of the multivariate scaling methods, we further distinguish between conditionally independent
and dependent variants. Both variants are able to model the influence of additional position information to the
calibration output. However, the conditionally independent methods assume independent random variables
as input which simplifies the calibration computation but also leads to a reduced representational power. In
contrast, the conditional dependent methods model the input distribution as a joint multivariate probability
distribution so that it is possible to capture possible correlations between the input quantities.

The multivariate extensions of the calibration methods was subject of our work in [1]. In the following, we
derive the position-dependent calibration techniques for the binning and scaling methods, respectively.
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3.3.1 Histogram Binning

Similar to the approximate computation of the ECE (cf. Sec. 3.2), the Histogram Binning method uses
a binning scheme with I equally sized bins over the confidence space [0, 1] to group all samples in D by
their confidence [36]. Afterwards, it is possible to measure the accuracy, frequency, or precision w.r.t. the
confidence. This allows for a remapping of uncalibrated confidences to calibrated ones [36]. More formally,
let N denote the amount of predictions obtained by a neural network with a certain label and confidence.
Additionally, let I denote the number of bins with interval boundaries 0 = a1 < a2 < ... < aI+1 = 1 as
well as the according calibration parameters θ =

{
θi|i ∈ {1, ..., I}

}, which reflect the observed accuracy,
frequency, or precision within each bin. The objective of Histogram Binning is the minimization of

θ̂ = argmin
θ

N∑
n=1

I∑
i=1

1(p̂n ∈ Bi)(θi − ȳn)
2, (3.21)

to infer the optimal recalibration parameters θ̂, where 1(p̂n ∈ Bi) is the indicator function that a predicted
sample falls into bin Bi [36]. By the strong law of large numbers, each parameter θi converges to the fraction
of positive samples within each bin [36, 13]. In contrast to isotonic regression [85], Histogram Binning
does not guarantee a monotonically increasing mapping from uncalibrated to calibrated confidence scores as
there is no restriction for neighboring bins to yield smaller or larger recalibration parameters θi. Therefore,
Histogram Binning might also affect the order of the predicted samples and thus might have an influence on
the computation of the average precision score.

Similar to the multivariate extension of the ECE in (3.16), we can further use a multivariate binning scheme
over the joint space S which consists of the probability space [0, 1], all possible labelsY , and the spatial space
R. In this way, all samples in D are grouped in I distinct bins Bi by their confidence, label, and position
information to construct a recalibration mapping, so that the objective function slightly changes to

θ̂ = argmin
θ

N∑
n=1

I∑
i=1

1(̂sn ∈ Bi)(θi − ȳn)
2, (3.22)

where 1(̂sn ∈ Bi) is the indicator function that sample n falls into bin Bi with a certain label in Y and a
certain set of boundaries for the confidence in [0, 1] and the position information in R.

3.3.2 Scaling Methods

In contrast to binning methods such as Histogram Binning, scaling methods perform a rescaling of the net-
work output to yield calibrated confidences. For this purpose, the methods Logistic Calibration [35] and
Beta Calibration [43] either rescale the logit before applying a sigmoid (or softmax for multiclass problems)
or directly rescale the confidence output after the sigmoid or softmax function, respectively. We further de-
note the logit by Z ∈ R which is related to the same distribution as the predicted confidence P̂ , so that the
predicted joint model distribution is given by fZ,Ŷ ,R̂(z, ŷ, r̂).
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The advantage of scaling methods is that they require significantly less parameters compared to binning
methods and thus are able to achieve a good calibration results given less data. We further inspect the
rescaling of the confidence output in more detail. For binary classification, the distribution of the confidence
P̂ ∈ [0, 1] can be represented using the probability density functions fP̂ (p̂|Ȳ = 1) and fP̂ (p̂|Ȳ = 0) for the
positive “+” (Ȳ = 1) and the negative classes “−” (Ȳ = 0), respectively. If we further treat these density
functions as the likelihood for Ȳ given P̂ , we can use this representation to derive a recalibration scheme by
the likelihood ratio between the likelihood for Ȳ = 1 and Ȳ = 0 [43]. Using the logarithm of this ratio, we
further refer to the log likelihood ratio as

ℓr(p̂) = log
fP̂ (p̂|Ȳ = 1)

fP̂ (p̂|Ȳ = 0)
. (3.23)

The calibrated probability for P(Ȳ = 1|P̂ = p̂) can be derived by the ratio

P(Ȳ = 1|P̂ = p̂)

P(Ȳ = 0|P̂ = p̂)
=

fP̂ (p̂|Ȳ = 1)

fP̂ (p̂|Ȳ = 0)

P(Ȳ = 1)

P(Ȳ = 0)
. (3.24)

If we assume a uniform prior for the positive and negative classes so that P(Ȳ = 1) = P(Ȳ = 0), the ratio
P(Ȳ=1)
P(Ȳ=0)

evaluates to 1 and can be neglected [43]. In addition, if P(Ȳ = 0|P̂ = p̂) = 1 − P(Ȳ = 1|P̂ = p̂)

within binary classification, the likelihood ratio equals the posterior odds [43], [94, p. 279], and we can
derive a calibrated probability by

P(Ȳ = 1|P̂ = p̂)

P(Ȳ = 0|P̂ = p̂)
=

fP̂ (p̂|Ȳ = 1)

fP̂ (p̂|Ȳ = 0)
(3.25)

⇔ P(Ȳ = 1|P̂ = p̂) =
(
1− P(Ȳ = 1|P̂ = p̂)

)
exp

(
ℓr(p̂)

) (3.26)
⇔ P(Ȳ = 1|P̂ = p̂) = exp

(
ℓr(p̂)

)
− P(Ȳ = 1|P̂ = p̂) exp

(
ℓr(p̂)

) (3.27)

⇔
exp

(
ℓr(p̂)

)
P(Ȳ = 1|P̂ = p̂)

= 1 + exp
(
ℓr(p̂)

) (3.28)

⇔ P(Ȳ = 1|P̂ = p̂)

exp
(
ℓr(p̂)

) =
1

1 + exp
(
ℓr(p̂)

) (3.29)

⇔ P(Ȳ = 1|P̂ = p̂) =
exp

(
ℓr(p̂)

)
1 + exp

(
ℓr(p̂)

) = Φ
(
ℓr(p̂)

)
, (3.30)

which recovers the logistic (sigmoid) function Φ
(
ℓr(p̂)

) [43]. This derivation also holds if we consider the
logits Z instead of the confidence P̂ , i.e., for the derivation of the Logistic Calibration function. In this case,
we utilize the log likelihood ratio for the logits by

ℓr(z) = log
fZ(z|Ȳ = 1)

fZ(z|Ȳ = 0)
, (3.31)
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which actually yields the probability for P(Ȳ = 1|Z = z). However, common literature treats this formu-
lation equivalently to P(Ȳ = 1|P̂ = p̂) since we are interested in the calibration properties by means of an
interpretable confidence score. This equivalent interpretation for calibration holds as the logitZ is commonly
remapped to a confidence P̂ = Φ(Z) using the bijective sigmoid function. Since the recalibration mapping
is also a logistic and thus monotonically increasing function, the standard scaling methods do not affect the
order of the samples provided by a forecaster. Therefore, the calibration does not affect the computation of
the average precision score.

According to the definition of confidence calibration for object detection models in Sec. 3.2, we further
want to include additional information such as position and shape of the predicted objects into a calibration
mapping for detection models. For this reason, we can also use the derivation of a calibrated probability in
(3.30) for multivariate probability distributions given the joint distribution fP̂ ,Ŷ ,R̂(p̂, ŷ, r̂|M̂). We further
use the shorthand notation fŜP̂

(̂sP̂ |M̂) for ŜP̂ = (P̂ , Ŷ , R̂) ∈ SP̂ . The equivalent joint distribution for
the logits is further denoted by fŜZ

(̂sZ |M̂) for ŜZ = (Z, Ŷ , R̂) ∈ SZ . To derive a multivariate calibration
mapping with K dimensions, we can assume conditional independence between all quantities in SP̂ or SZ

so that the log likelihood ratio can be rewritten to

ℓr(̂s) =
K∑
k=1

log
fŜ(ŝk|M̂ = 1)

fŜ(ŝk|M̂ = 0)
, (3.32)

for any Ŝ either in SP̂ or SZ . In contrast, it is also possible to derive a calibration mapping assuming
dependencies between all quantities in SP̂ or SZ using the log likelihood ratio for multivariate distributions.
In the following, we will derive the multivariate extension for the calibration methods Logistic Calibration
[35] and Beta Calibration [43].

Logistic Calibration
A popular recalibration method for binary classification is Logistic Calibration (or Platt scaling) [35] which
assumes normally distributed logit scores with mean values µ+, µ− ∈ R for the positive and negative classes,
respectively, and equal variance σ2 ∈ R>0. Therefore, the probability density functions are defined as
fZ(z|Ȳ = 1) = N (z;µ+, σ2) and fZ(z|Ȳ = 0) = N (z;µ−, σ2) [35, 43]. The log likelihood ratio ℓr(z) is
thus given by

ℓr(z) = log
fZ(z|Ȳ = 1)

fZ(z|Ȳ = 0)
=

1

2σ2

[
(z − µ−)2 − (z − µ+)2

]
(3.33)

=
1

2σ2

[
2z(µ+ − µ−)− (µ2

+ − µ2
−)
]

(3.34)

=
µ+ − µ−

2σ2

[
z − (µ+ − µ−)

]
(3.35)

= w(z − η), (3.36)
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where w = 1
2σ2 (µ

+ − µ−) and η = µ+ − µ− [43]. In practice, Logistic Calibration utilizes a disentangled
representation by the scale weight w ∈ R>0 and a bias δ ∈ R which can be interpreted as δ = −ηw. These
parameters are obtained by Maximum Likelihood Estimation (MLE) using the Negative Log Likelihood
(NLL) loss and are used to rescale the logits Z, so that a calibrated confidence estimate is derived by

P
(
Ȳ = 1|P̂ = Φ(z)

)
= Φ(w · z + δ), (3.37)

[35]. Similarly, we can derive the multivariate extension of the log likelihood ratio assuming conditional
independence between all quantities, so that the likelihood ratio is derived in the sense of (3.32) using normal
distributions for each quantity k which yields the log likelihood ratio

ℓr(̂sZ) = ŝ⊤Zw + δ, (3.38)

where w ∈ RK . In contrast, if we assume conditional dependence between all quantities, the log likelihood
ratio ℓr(̂s) is represented as the fraction of two Gaussians with mean vectors µ+,µ− ∈ RK for the positive
and negative classes, respectively, and the positive semidefinit covariance matrices Σ+,Σ− ∈ RK×K . This
yields the log likelihood ratio

ℓr(̂sZ) =
1

2

[
(̂s⊤−Σ

−1
− ŝ−)− (̂s⊤+Σ

−1
+ ŝ+)

]
+ δ, (3.39)

where ŝ+ = ŝZ − µ+, ŝ− = ŝZ − µ−, and δ = log |Σ−|
|Σ+| . During parameter optimization, we use Σ−1 =

(L⊤L)−1 = L−1(L−1)⊤ and directly infer L−1 to guarantee symmetric and positive semidefinit covariance
matrices.

Beta Calibration
Recently, the authors in [43] introduced the Beta Calibration method which takes advantage of the fact that
the confidence is defined in [0, 1]. Therefore, it is possible to directly rescale the confidence using beta
distributions for fP̂ (p̂|Ȳ ). The authors in [43] use the derivation for the calibrated confidence in (3.30)
using the uncalibrated confidence p̂ ∈ [0, 1] as function input and derive the log likelihood ratio

ℓr(p̂) = log

[
B(α−, β−)

B(α+, β+)

p̂α
+−1(1− p̂)β

+−1

p̂α−−1(1− p̂)β−−1

]
(3.40)

= a · log(p̂)− b · log(1− p̂) + c, (3.41)

between two beta distributions for Ȳ = 1 and Ȳ = 0, respectively, with the parameters a = α+ − α−,
b = β− − β+, and c = log B(α−,β−)

B(α+,β+)
. Furthermore, B(α, β) is the beta function. In practice, the parameters

a, b ∈ R>0 and c ∈ R are estimated by MLE using the NLL loss [43].
Similar to the multivariate extension of the Logistic Calibration method for object detection calibration, we

can derive a multivariate and conditional independent calibration mapping according to (3.32) for the Beta
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Calibration method as well. Since Beta Calibration aims to directly rescale the confidences, we further use
Ŝ ∈ SP̂ as the surrogate for ŜP̂ for notational simplicity. Thus, the log likelihood ratio for the multivariate
(independent) Beta Calibration is given by

ℓr(̂s) = δ +
K∑
k=1

ak log(ŝk)− bk log(1− ŝk), (3.42)

where ak = α+
k −α−

k , bk = β−
k −β+

k , and δ =
∑K

k=1 log
B(α−

k ,β−
k )

B(α+
k ,β+

k )
with the multivariate beta function B(α).

Similar to the univariate case, we optimize a,b ∈ RK
>0 and c ∈ R in practice. The multivariate extension

of the Beta Calibration method under the assumption of conditional dependence is not that straight forward
since the natural multivariate extension of a beta distribution is a Dirichlet distribution Dir(̂s;α) with shape
parameters α ∈ RK

>0. The Dirichlet distribution is defined for ∑K
k=1 ŝk = 1. However, this is not suitable

in our case as we do not work with a multivariate probability vector as the input to the calibration function.
The input ŝ ∈ S is not restricted to a sum of 1, so that we propose to utilize a multivariate beta distribution
that has been defined by the authors in [95] and is given by

fŜ(̂s|M̂) = B(α)−1 ·

∏K
k=1

[
λαk
k (ŝ∗k)

αk+1ŝ−2
k

]
[
1 +

∑K
k=1 λkŝ

∗
k

]∑K
k=0 αk

, (3.43)

with shape parameters αk, βk ∈ R>0 for all k ∈ {0, ...,K} and the abbreviations λk = βk
β0

and ŝ∗ = ŝ
1−ŝ .

This allows for a derivation of a log likelihood ratio defined by

ℓr(̂s) =
K∑
k=1

[
α+
k log(λ+

k )− α−
k log(λ−

k ) + (α+
k − α−

k ) log(ŝ
∗
k)
]
+ (3.44)

K∑
k=0

[
α−
k log

(
K∑
j=1

λ−
j ŝ

∗
j

)
− α+

k log

(
K∑
j=1

λ+
j ŝ

∗
j

)]
+ δ,

where α+, α− and λ+, λ− denote the shape parameters for the positive and negative classes, respectively,
and c = log B(a−)

B(a+)
.

3.4 Experiments for Semantic Confidence Calibration

In this section, we evaluate our calibration methods using different detection and segmentation architectures
that are based on neural networks. We describe our experimental setup and show the calibration results for
object detection, instance segmentation, and semantic segmentation. For each of these tasks, we use the MS
COCO [44] and the Cityscapes [45] validation data sets. The respective data sets are divided into two equally
sized parts for calibration training and evaluation, respectively. The respective training sets are used for the
training of the forecaster itself, whereas no ground-truth label information are available for the respective test
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sets, so that our experiments for calibration evaluation are limited to the validation sets. For Cityscapes, we
use the Munster & Lindau images for calibration training and the Frankfurt images for evaluation, whereas
the MS COCO validation set is split randomly. The experiments for multivariate confidence calibration
evaluation have been subject of our publications in [1] and [4, p. 235 ff.].

Note that the MetaDetect framework by [38] (mentioned in Sec. 3.1) also applies an extended uncertainty
evaluation of detection methods, which is related to our multivariate (conditional independent) calibration
methods presented in Sec. 3.3.2. Similarly, the authors in [37] propose an equivalent approach for the un-
certainty quantification within semantic segmentation. We leave a comparison of the works by [38] and [37]
with our methods subject of future works.

3.4.1 Object Detection

We follow the experimental setup in [4, p. 235 f.] and evaluate the Histogram Binning [36], Logistic Cal-
ibration [35], and Beta Calibration [43] methods either using the confidence information only or by using
all available information such as confidence, position, and shape of each detected object. We evaluate these
methods on the MS COCO [44] and the Cityscapes [45] validation data sets that consist of 5.000 and 500

annotated images, respectively. For MS COCO, we use a pretrained Faster R-CNN X101-FPN [61] and
a pretrained RetinaNet R101-FPN [9] model provided by [96] for inference. For the experiments on the
Cityscapes data set, we use the bounding box information provided by a pretrained Mask R-CNN R50-FPN

[31]. Samples with an uncalibrated confidence below 0.3 are neglected to keep the focus only on relevant
detections. The experiments are performed for the classes person, rider, car, truck, bus, train, motorcycle,
and bicycle, as these object categories are present in both data sets, which allows for a better comparison
of the results. We further utilize the D-ECE, Brier score, and NLL as metrics for calibration evaluation as
well as the Area under Precision-Recall Curve (AUPRC) to measure the model’s detection performance. We
divide our examinations into standard calibration evaluation where only the confidence information is used
and into the multivariate calibration where the confidence in conjunction with all available bounding box in-
formation is used for calibration. For D-ECE calculation in the confidence-only case, a binning scheme with
I = 20 equally sized bins is used over the confidence space. In contrast, the D-ECE for the multivariate case
uses Ik = 5 bins for each dimension k ∈ {1, . . . ,K} which yields a total amount of 3, 125 bins. Uninfor-
mative bins with less than 8 samples are neglected during D-ECE computation. For the computation of the
D-ECE, it is necessary to define the features that are used for the underlying binning scheme. Thus, compar-
ing D-ECE scores obtained by different subsets of features is not applicable since the conditional probability
distributions of P̂ differ from each other. For example, a D-ECE score obtained by using the confidence, cx,
and cy position should not be compared to a D-ECE score that is based on the confidence, width, and height,
as the conditional distributions for the confidence, and thus the approximate binning schemes, differ from
each other.

According to our definition for object detection calibration in (3.11), the calibration target is the precision,
which depends on the IoU score used to distinguish between correctly predicted objects and false nega-
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Table 3.1: Calibration results for object detection where only the predicted confidence P̂ is used for calibra-
tion and D-ECE evaluation. We observe that the scaling methods Logistic Calibration and Beta
Calibration consistently achieve the best calibration results for D-ECE, Brier score, and NLL. In
contrast to Histogram Binning, the scaling methods apply a monotonically increasing mapping of
uncalibrated confidence estimates to calibrated ones which does not affect the AUPRC [4, p. 238,
Tab. 1].

Network IoU Calibration method D-ECE Brier NLL AUPRC

F
a
s
t
e
r
R
-
C
N
N

(tra
ine

do
nM

SC
OC

O)

0.50
Uncalibrated 0.153 0.176 0.536 0.920
Histogram Binning 0.026 0.146 0.470 0.878
Logistic Calibration 0.021 0.142 0.433 0.920
Beta Calibration 0.020 0.142 0.433 0.920

0.75
Uncalibrated 0.294 0.257 0.829 0.866
Histogram Binning 0.026 0.155 0.510 0.770
Logistic Calibration 0.027 0.144 0.448 0.866
Beta Calibration 0.030 0.144 0.449 0.866

R
e
t
i
n
a
N
e
t

(tra
ine

do
nM

SC
OC

O)

0.50
Uncalibrated 0.083 0.157 0.478 0.907
Histogram Binning 0.025 0.152 0.482 0.889
Logistic Calibration 0.024 0.150 0.451 0.907
Beta Calibration 0.022 0.150 0.451 0.907

0.75
Uncalibrated 0.151 0.172 0.518 0.855
Histogram Binning 0.030 0.142 0.457 0.832
Logistic Calibration 0.032 0.140 0.439 0.855
Beta Calibration 0.026 0.140 0.437 0.855

M
a
s
k
R
-
C
N
N

(tra
ine

do
nC

ity
sca

pes
)

0.50
Uncalibrated 0.108 0.145 0.496 0.952
Histogram Binning 0.033 0.133 0.493 0.902
Logistic Calibration 0.029 0.124 0.378 0.952
Beta Calibration 0.029 0.125 0.379 0.952

0.75
Uncalibrated 0.296 0.269 1.055 0.896
Histogram Binning 0.036 0.160 0.547 0.757
Logistic Calibration 0.042 0.135 0.421 0.896
Beta Calibration 0.044 0.135 0.422 0.896

tives. Thus, we run our evaluations using an IoU threshold of 0.50 and 0.75. The calibration results for
the confidence-only case as well as for the multivariate calibration case are given in Tab. 3.1 and Tab. 3.2,
respectively. For further insights, we show the reliability diagrams for all calibration cases in Fig. 3.4.

For each inspected object detection model, we observe a high deviation between predicted confidence and
observed precision which is indicated by high scores, especially for D-ECE but also for Brier score and
NLL. This holds for the confidence-only case as well as for the position-dependent case. The reliability
diagrams in Fig. 3.4i reveal an overconfidence of the Faster R-CNN on the MS COCO data set. This is
in agreement with the current state of research which evaluates common neural network architectures as
overconfident [13, 78]. In contrast, the RetinaNet architecture is trained using the focal loss [9] which is
known of resulting in low confidence estimates and thus in underconfidence [77, 2]. In both cases, the object
detection models are miscalibrated which is alleviated using confidence calibration. In our experiments, we
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Table 3.2: Calibration results for object detection where all information Ŝ = (P̂ , Ŷ , R̂)⊤ are used for confi-
dence calibration and D-ECE evaluation. In this case, R̂ denotes the bounding box encoding that
consists of the center x and y positions cx, cy as well as of the width w and height h. Similar to
the results for the confidence-only case in Tab. 3.1, the scaling methods consistently achieve the
best results. However, the multivariate confidence calibration is not a monotonically increasing
function any more and thus has an influence on the AUPRC, which is marginal in this case [4, p.
239, Tab. 2].

Network IoU Calibration method D-ECE Brier NLL AUPRC

F
a
s
t
e
r
R
-
C
N
N

(tra
ine

do
nM

SC
OC

O) 0.50

Uncalibrated 0.119 0.176 0.536 0.920
Histogram Binning 0.052 0.174 0.712 0.829
Logistic Calibration (independent) 0.041 0.143 0.436 0.919
Logistic Calibration (dependent) 0.043 0.146 0.456 0.915
Beta Calibration (independent) 0.042 0.145 0.442 0.916
Beta Calibration (dependent) 0.046 0.146 0.444 0.914

0.75

Uncalibrated 0.227 0.257 0.829 0.866
Histogram Binning 0.059 0.186 0.689 0.723
Logistic Calibration (independent) 0.044 0.145 0.452 0.864
Logistic Calibration (dependent) 0.047 0.149 0.469 0.856
Beta Calibration (independent) 0.047 0.146 0.454 0.862
Beta Calibration (dependent) 0.047 0.147 0.456 0.861

R
e
t
i
n
a
N
e
t

(tra
ine

do
nM

SC
OC

O) 0.50

Uncalibrated 0.072 0.157 0.478 0.907
Histogram Binning 0.046 0.175 0.739 0.842
Logistic Calibration (independent) 0.045 0.149 0.450 0.908
Logistic Calibration (dependent) 0.049 0.153 0.474 0.903
Beta Calibration (independent) 0.046 0.150 0.458 0.906
Beta Calibration (dependent) 0.053 0.155 0.467 0.901

0.75

Uncalibrated 0.110 0.172 0.518 0.855
Histogram Binning 0.049 0.162 0.668 0.756
Logistic Calibration (independent) 0.048 0.140 0.439 0.855
Logistic Calibration (dependent) 0.048 0.142 0.463 0.848
Beta Calibration (independent) 0.047 0.139 0.439 0.853
Beta Calibration (dependent) 0.053 0.144 0.450 0.844

M
a
s
k
R
-
C
N
N

(tra
ine

do
nC

ity
sca

pes
) 0.50

Uncalibrated 0.102 0.145 0.496 0.952
Histogram Binning 0.053 0.150 0.536 0.857
Logistic Calibration (independent) 0.038 0.125 0.381 0.950
Logistic Calibration (dependent) 0.045 0.133 0.437 0.948
Beta Calibration (independent) 0.036 0.127 0.404 0.950
Beta Calibration (dependent) 0.063 0.134 0.413 0.925

0.75

Uncalibrated 0.281 0.269 1.055 0.896
Histogram Binning 0.080 0.194 0.606 0.685
Logistic Calibration (independent) 0.056 0.135 0.424 0.901
Logistic Calibration (dependent) 0.064 0.139 0.462 0.896
Beta Calibration (independent) 0.052 0.137 0.503 0.895
Beta Calibration (dependent) 0.096 0.160 0.491 0.832
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(i) Reliability diagrams w.r.t. the confidence only [4, p. 237, Fig. 3].
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(ii) Reliability diagrams w.r.t. the cx position of the predicted objects (1d) [4, p. 240, Fig. 4].
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(iii) Reliability diagrams w.r.t. the cx and cx position of the predicted objects (2d) [4, p. 240, Fig. 5].

Figure 3.4: Reliability diagrams (object detection) for a Faster R-CNN on the MS COCO calibration valida-
tion set for class pedestrian [4, p. 237 ff., Fig. 3-5] with uncalibrated confidences P̂ ≥ 0.3. The
uncalibrated baseline model is consistently overconfident for all confidence levels with increas-
ing miscalibration towards the image boundaries. In this example, standard calibration shows
good performance which is slightly improved using position-dependent calibration.
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found that especially the scaling methods Logistic Calibration and Beta Calibration are able to successfully
recalibrate the detection models. Furthermore, these methods provide a monotonically increasing mapping
of uncalibrated confidences to calibrated one in the standard (confidence only) case and therefore do not
affect the AUPRC scores. In contrast, Histogram Binning has no restrictions and thus leads to a degradation
of the prediction performance.

Similar to the standard (confidence only) calibration, our position-dependent calibration and especially
the scaling methods are also able to provide a meaningful recalibration mapping. The reliability diagrams
show minor improvements in the position-dependent calibration of the models especially in the 2d case. In
contrast to confidence-only calibration, the position-dependent calibration is not a monotonically increasing
mapping and thus does affect the AUPRC scores. However, the effect on the AUPRC scores is marginal
for the scaling methods. By comparing the conditional independent calibration methods with their condi-
tional dependent counterparts, we observe no improvements in calibration and only minor differences in
the results. We could find a low connection between position and miscalibration which, however, is not as
strong as initially suggested. This might be the reason why the conditional dependent methods do not yield
further improvements in calibration in our experiments. Therefore, we conclude that the standard scaling
methods already provide sufficient confidence calibration, which is further improved by our conditionally in-
dependent position-dependent calibration methods. This is a valuable extension especially for safety-critical
applications and subsequent processes which will be further investigated in Chap. 6.

3.4.2 Instance Segmentation

The experiments shown here are part of our previous work in [4, p. 239 ff.]. For the evaluation of calibration
within the task of instance segmentation, we apply a pretrained Mask R-CNN [31] as well as a pretrained
PointRend [97] on the MS COCO and Cityscapes validation data sets. Since the target is to perform re-
calibration for the instance segmentation masks, we can use each pixel as an own input to the calibration
functions. This leads to a large training data set (e.g., approx. 45 million samples for the class pedestrian
within the Cityscapes data set), resulting in a data set that is too large to train the scaling methods on com-
mon hardware in a reasonable time. Furthermore, it has recently been shown that binning methods such
as Histogram Binning yield a more robust calibration mapping compared to scaling methods given a large
amount of data [88]. In contrast, a large data set is available for the task of instance segmentation calibration.
Therefore, we only use the Histogram Binning as calibration method for instance segmentation calibration.

Instance segmentation is a joint task of object detection and semantic segmentation within a predicted
bounding box. Similar to object detection, it is necessary to distinguish between true and false positives
which requires a certain IoU threshold. Thus, we run our evaluations using an IoU threshold of 0.50 and 0.75,
respectively. Similar to our experiments for object detection, we further investigate the effect of standard
(confidence-only) calibration as well as of position-dependent calibration. We use the pixel x and y position
as position information which are normalized to the bounding box size to get x, y ∈ [0, 1] for calibration.
Furthermore, we suspect a correlation between miscalibration and a pixel’s distance to the next segment
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Table 3.3: Calibration results for instance segmentation where only the predicted pixel confidence P̂j is used
for calibration and D-ECE evaluation [4, p. 242, Tab. 3-4]. The Histogram Binning is able to
reduce miscalibration of the mask scores while preserving the mask quality in all cases.

Network Data set IoU Calibration method D-ECE Brier NLL AUPRC

Mask R-CNN

Cityscapes
0.50 Uncalibrated 0.071 0.110 0.432 0.724

Histogram Binning 0.057 0.099 0.320 0.723
0.75 Uncalibrated 0.129 0.147 0.622 0.375

Histogram Binning 0.059 0.108 0.340 0.375

MS COCO
0.50 Uncalibrated 0.220 0.222 0.940 0.663

Histogram Binning 0.064 0.150 0.442 0.662
0.75 Uncalibrated 0.266 0.250 1.070 0.237

Histogram Binning 0.060 0.144 0.423 0.235

PointRend

Cityscapes
0.50 Uncalibrated 0.129 0.160 0.785 0.709

Histogram Binning 0.027 0.105 0.326 0.698
0.75 Uncalibrated 0.187 0.192 0.929 0.347

Histogram Binning 0.039 0.115 0.349 0.344

MS COCO
0.50 Uncalibrated 0.223 0.222 0.946 0.672

Histogram Binning 0.063 0.144 0.428 0.664
0.75 Uncalibrated 0.266 0.248 1.060 0.258

Histogram Binning 0.067 0.138 0.411 0.238
© 2022 Springer Nature. Reprinted, with permission.

Table 3.4: Calibration results for instance segmentation where all information Ŝ = (P̂j , Ŷ , R̂j)
⊤ are used for

confidence calibration and D-ECE evaluation [4, p. 242, Tab. 3-4]. The multivariate Histogram
Binning also reduces miscalibration. Furthermore, it significantly improves the mask quality.

Network Data set IoU Calibration method D-ECE Brier NLL AUPRC

Mask R-CNN

Cityscapes
0.50 Uncalibrated 0.112 0.110 0.432 0.724

Histogram Binning 0.101 0.117 0.530 0.787
0.75 Uncalibrated 0.145 0.147 0.622 0.375

Histogram Binning 0.103 0.120 0.523 0.479

MS COCO
0.50 Uncalibrated 0.234 0.222 0.940 0.663

Histogram Binning 0.136 0.171 0.776 0.760
0.75 Uncalibrated 0.272 0.250 1.070 0.237

Histogram Binning 0.129 0.165 0.720 0.425

PointRend

Cityscapes
0.50 Uncalibrated 0.209 0.160 0.785 0.709

Histogram Binning 0.190 0.190 1.299 0.758
0.75 Uncalibrated 0.254 0.192 0.929 0.347

Histogram Binning 0.184 0.191 1.247 0.486

MS COCO
0.50 Uncalibrated 0.240 0.222 0.946 0.672

Histogram Binning 0.161 0.180 1.005 0.751
0.75 Uncalibrated 0.274 0.248 1.060 0.258

Histogram Binning 0.153 0.173 0.936 0.388
© 2022 Springer Nature. Reprinted, with permission.

44



3 Semantic Confidence Calibration

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Confidence

Re
l.F

req
uen

cy
(a) Uncalibrated

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Confidence

(b) After standard calibration

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Confidence

(c) After position-dependent calibration

© 2022 Springer Nature. Reprinted, with permission.
(i) Reliability diagrams w.r.t. the confidence only [4, p. 243, Fig. 6].
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(ii) Reliability diagrams w.r.t. the relative x position of each mask pixel (1d) [4, p. 243, Fig. 7].
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(iii) Reliability diagrams w.r.t. the relative x and y position of each mask pixel (2d) [4, p. 243, Fig. 8].

Figure 3.5: Reliability diagrams (instance segmentation) for a Mask R-CNN on the MS COCO calibration
validation set for class pedestrian [4, p. 243, Fig. 6-8]. The uncalibrated pixel confidences are
consistently too overconfident for all confidence levels. Furthermore, the gap between predicted
pixel confidence and observed frequency increases towards the mask’s center. This is mitigated
by standard calibration as well as by our extended methods.
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boundary. Thus, we also use the (normalized) distance as an additional feature for calibration. For calibration
evaluation, we use the D-ECE with Ik = 15 bins for each dimension k ∈ {1, . . . ,K}. Furthermore, the Brier
and NLL scores are used as complementary evaluation metrics. Finally, we report the Mean Intersection over
Union (mIoU) which is the mean IoU score over all classes and which is an indicator for the quality of the
predicted instance segmentation masks. The evaluation results for the confidence-only case as well as for the
multivariate calibration case are given in Tab. 3.3 and Tab. 3.4, respectively. For further insights, we show
the reliability diagrams for the confidence only as well as for including position information in Fig. 3.5.

As visualized in Fig. 3.5, the instance segmentation models are consistently overconfident in their predic-
tions for the pixel confidence. This miscalibration is reduced by the standard Histogram Binning as well as
by the position-dependent Histogram Binning. In some cases, the position-dependent Histogram Binning
does not lead to an improvement in the complementary Brier and NLL scores. On the one hand, we can
observe a strong connection between position information and miscalibration. In this case, both calibration
schemes lead to an improvement in calibration, whereas the position-dependent variant results in a more
uniform calibration over the x and y space compared to its confidence-only counterpart. On the other hand,
our experiments show that position-dependent calibration is able to significantly improve the quality of the
segmentation masks which is indicated by the gain in the mIoU scores for all evaluated models. For standard
calibration, the mask scores are only rescaled by their confidence which might lead to a better calibration
but sometimes also to unwanted losses of mask segments (especially small objects in the background). In
contrast, position-dependent calibration is able to apply a recalibration that is also aware of possible corre-
lations between pixel confidence and object size. We assume that this leads to improved estimates of the
mask confidences even for smaller objects. Therefore, we conclude that especially the position-dependent
calibration is a valuable contribution towards reliable confidence information and improved segmentation
masks for the task of instance segmentation.

3.4.3 Semantic Segmentation

As opposed to instance segmentation, it is not necessary to identify single objects within semantic segmen-
tation but to determine the membership of each image pixel to a general class. Therefore, the experiments
for semantic segmentation calibration do not rely on a preceding detection stage and we can use each image
pixel as an input for calibration training and evaluation using the Histogram Binning. We use a pretrained
DeepLabv3+ [33] and a pretrained DeepLabv2 [32] on the Cityscapes and MS COCO validation data sets,
respectively, as well as a pretrained HRNet [98, 99, 100]. We further use the same additional features for con-
fidence calibration such as relative x, y position and the pixel’s distance to the next segment boundary. The
calibration results are shown in Tab. 3.5 for the confidence-only calibration case as well as in Tab. 3.6 for the
position-dependent case. Furthermore, we show the respective reliability diagrams in Fig.3.6 to gain further
insights in the calibration properties of the examined models. In contrast to instance segmentation, the ex-
amined semantic segmentation models provide already well-calibrated confidence estimates on pixel-level.
In this case, neither standard Histogram Binning nor our position-dependent calibration are able to further
improve the calibration. However, position-dependent calibration leads to a slight degradation of the mask
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Table 3.5: Calibration results for semantic segmentation where only the predicted pixel confidence P̂j is used
for calibration and D-ECE evaluation [4, p. 245, Tab. 5]. The uncalibrated segmentation models
are already well-calibrated. The Histogram Binning does not affect the mask quality and only
leads to minor improvements in confidence calibration.

Network Data set Calibration Method D-ECE Brier NLL mIoU
DeepLabv3+ Cityscapes Uncalibrated 0.0016 0.060 0.139 0.623

Histogram Binning 0.0008 0.060 0.170 0.619
DeepLabv2 MS COCO Uncalibrated 0.0009 0.458 1.173 0.933

Histogram Binning 0.0006 0.456 1.515 0.933

HRNet

Cityscapes Uncalibrated 0.0007 0.057 0.115 0.629
Histogram Binning 0.0008 0.057 0.148 0.628

MS COCO Uncalibrated 0.0046 0.779 5.812 0.939
Histogram Binning 0.0006 0.563 2.261 0.939

© 2022 Springer Nature. Reprinted, with permission.

Table 3.6: Calibration results for semantic segmentation where all information Ŝ = (P̂j , R̂j)
⊤ are used

for confidence calibration and D-ECE evaluation [4, p. 245, Tab. 5]. In contrast to the case in
Tab. 3.5, the position-dependent calibration is not able to improve calibration. Furthermore, it
leads to a minor degradation of the mask quality as indicated by the mIoU.

Network Data set Calibration Method D-ECE Brier NLL mIoU
DeepLabv3+ Cityscapes Uncalibrated 0.0019 0.060 0.139 0.623

Histogram Binning 0.0019 0.062 0.189 0.589
DeepLabv2 MS COCO Uncalibrated 0.0015 0.458 1.173 0.933

Histogram Binning 0.0015 0.485 1.790 0.913

HRNet

Cityscapes Uncalibrated 0.0015 0.057 0.115 0.629
Histogram Binning 0.0019 0.060 0.171 0.582

MS COCO Uncalibrated 0.0046 0.779 0.812 0.939
Histogram Binning 0.0014 0.571 0.372 0.931

© 2022 Springer Nature. Reprinted, with permission.

quality as stated by the mIoU scores. Although the reliability diagrams in Fig. 3.6i show an overconfidence
for the confidence range P ∈ [0.35, 0.95], most pixels have a low confidence of P < 0.1, which results
in an overall low miscalibration score (D-ECE). We suspect that the major difference between instance
and semantic segmentation in calibration in our experiments arises from the different approaches for model
training. As already pointed out, instance segmentation is a joint task of object detection and segmentation.
Thus, the quality of the predicted bounding boxes directly affects the performance of the segmentation head.
It is a more challenging task to identify single objects in an image and to jointly optimize the network for
object detection and segmentation. Furthermore, a semantic segmentation model uses the whole image for
model training and thus has more pixels available, whereas an instance segmentation model is restricted to
the pixels within a detected bounding box. Therefore, we conclude that the semantic segmentation models,
that have been investigated in our experiments, already provide well-calibrated confidence estimates and thus
do not require an additional post-hoc calibration step.
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(i) Reliability diagrams w.r.t. the confidence only [4, p. 246, Fig. 11].
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(ii) Reliability diagrams w.r.t. the relative x position of each mask pixel (1d) [4, p. 247, Fig. 12].
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(iii) Reliability diagrams w.r.t. the relative x and y position of each mask pixel (2d) [4, p. 247, Fig. 13].

Figure 3.6: Reliability diagrams (semantic segmentation) for a DeepLabv3+ on the Cityscapes calibration
validation set for class pedestrian [4, p. 246 f., Fig. 11-13]. The uncalibrated segmentation model
already provides well-calibrated confidences (most samples are located at confidence levels of
0 or 1). This can be also seen in the 1d and 2d reliability diagrams. Thus, neither standard nor
position-dependent calibration lead to significant changes in calibration.
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3.5 Conclusion for Semantic Confidence Calibration

Object detection is the joint task of predicting the position, shape, and class of individual objects. For each
predicted object, a confidence score is estimated for the predicted class that can be interpreted as a probability
of the correctness of the predicted class label. In this chapter, we examined this semantic confidence score for
consistency, i.e., if the estimated uncertainty corresponds to the observed error. We started by deriving the
definitions of semantic confidence calibration for the tasks of object detection, instance segmentation, and
semantic segmentation. These definitions allow to investigate if the position information has an influence on
the semantic confidence as well. This also holds for instance and semantic segmentation where the position
of each pixel might have an influence to the confidence. Thus, these definitions allow for an extension of
the common Expected Calibration Error (ECE) metric to the task of object detection and segmentation. We
used the new Detection ECE (D-ECE) to measure the semantic miscalibration of detection and segmentation
models.

We extended the common calibration methods Histogram Binning [36], Logistic Calibration [35], and Beta
Calibration [43] to include additional information such as position and shape into a calibration and to capture
possible correlations between the given information. These multivariate calibration methods can be used to
apply a post-hoc calibration of the confidence scores provided by a detection or segmentation model. The
multivariate scaling methods Logistic Calibration and Beta Calibration calibration are further divided into
conditionally independent and dependent variants. Both variants use the confidence and the position of the
detected objects for confidence recalibration. Furthermore, both variants are able to model an influence of
the additional position information to the calibration result. However, the conditionally independent scaling
methods assume that the input random variables follow independent probability distributions. In contrast,
the conditionally dependent methods are able to capture possible dependencies in the input.

The proposed multivariate calibration methods have been evaluated using different neural network archi-
tectures and different data sets. Our investigations show that in our experiments, the semantic segmentation
models are already well calibrated so that our calibration methods have not been able to gain further improve-
ments. In contrast, the multivariate confidence calibration has a positive effect on the calibration properties
of object detection and especially on instance segmentation models. Although we could only find a minor
connection between position and miscalibration, our extended methods show a qualitatively good calibration
performance. In the case of instance segmentation, the extended multivariate calibration is able to not only
improve the calibration properties of the model but also to enhance the model’s prediction performance.
We suspect that the major difference between instance and semantic segmentation is a result of the different
training procedures that are used for model training.

Therefore, we conclude that our multivariate extension of the calibration methods provide a powerful frame-
work for the recalibration of semantic uncertainty. Since object detection is a part of the image-based envi-
ronment perception process (cf. Chap. 1), we further investigate the effect of semantic confidence calibration
on object detection within a subsequent object tracking in Chap. 6.

49



4 Bayesian Confidence Calibration

In the previous chapter 3, we derived the definitions for semantic confidence calibration from simple classifi-
cation to the more complex detection, instance, and semantic segmentation tasks. Furthermore, we proposed
methods for a position-dependent confidence calibration. But what if the calibration method itself is uncer-
tain in some cases, e.g., for an input sample which falls into a region with a sparsely populated training set?
For example, if a calibration method is embedded into a safety-relevant context, it might still lead to a false
sense of safety if applied to situations which are unknown either for the baseline model or for the calibration
mapping. In this case, it is advantageous to get a self-assessment about the epistemic calibration model un-
certainty. In contrast to the examinations for the aleatoric uncertainty given by the detector confidence, we
seek for the epistemic uncertainty which is inherent in a calibration function itself.

Therefore, we introduce the term of Bayesian confidence calibration which adapts the idea of probabilistic
modeling similar to Bayesian neural networks. Within a Bayesian neural network, the weights in the network
layers are treated as probability distributions that express the uncertainty in the weights [58, 101]. In this
way, it is possible to sample multiple realizations of the network weights from these distributions. Each of
these weight combinations is then used to generate a sample distribution for each output. In practice, it is
possible to approximate such a Bayesian neural network using dropout during the inference which is also
known as Monte-Carlo dropout [58].

1 23

1 100% → 98%
+1.2%
−1.3%

2 100% → 96%
+3.8%
−2.7%

3 99% → 85%
+15.0%
−14.8%

© 2021 IEEE. Reprinted, with permission.

Figure 4.1: Qualitative example of Bayesian confidence calibration for object detection [3, p. 1, Fig. 1]. For
each detection, a calibration method reassigns a new confidence score. If we apply Bayesian
confidence calibration, it is possible to yield a prediction interval for the calibrated confidence to
express the epistemic uncertainty in calibration.
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We adapt this idea of modeling the epistemic uncertainty and seek to transfer this to our calibration func-
tions. Similarly, a probability distribution is placed over each calibration weight. However, in contrast to
Bayesian neural networks, we can not use Monte-Carlo dropout for calibration methods as these functions do
not use any dropout or only use a few weights for recalibration, e.g., Temperature Scaling [13]. Therefore, we
approximate the weight distributions using Stochastic Variational Inference (SVI) which allows for training
variational distributions for each calibration weight. In this way, it is possible to obtain multiple calibrated
confidence estimates for a single input sample which, in turn, describe a sample distribution and thus reflect
the epistemic uncertainty of the calibration mapping itself. The concept of Bayesian confidence calibration
is qualitatively shown in Fig. 4.1. The work presented in this chapter was subject of the publication in [3].

In Sec. 4.1, we derive the Bayesian confidence calibration and describe how to obtain the calibrated con-
fidence estimates in conjunction with its epistemic uncertainty. The Bayesian calibration framework is af-
terwards used for the evaluation of the calibration performance and of the quality of the provided epistemic
uncertainty in Sec. 4.2. In our studies, we focus on the task of object detection since the Bayesian confidence
calibration framework requires a sampling during inference which has been computational too expensive
for the application to instance or semantic segmentation. We give a conclusion about the methods and our
findings in Sec. 4.3.

As opposed to Chap. 3 and Chap. 5, we do not aim to integrate this Bayesian framework into a subse-
quent process such as object tracking in this work. Our target is to show a possibility to capture additional
model uncertainties to increase the awareness of possible failure modes which is important for safety-critical
applications. Nevertheless, the integration of Bayesian confidence calibration, e.g., into an object tracking
process, is an interesting use case which we let open for future work.

Contributions: Our contributions are summarized by:
• Definition of Bayesian confidence calibration.
• Methods for Bayesian confidence calibration.

4.1 Epistemic Uncertainty Modeling of Confidence Calibration

We use the preceding notation and follow the definition of confidence calibration for classification in (3.1)
as well as for object detection in (3.11). In this scope, we work with an arbitrary classification or detection
model that estimates a label Ŷ ∈ Y as well as a confidence P̂ ∈ [0, 1] for each prediction where the con-
fidence expresses the model’s belief about the correctness of the actual prediction. We denote this belief
as M̂ ∼ Bern(P̂ ). An object detection model also outputs a position and shape estimate R̂ ∈ R for each
predicted objects, so that the joint conditioned model distribution is denoted by fP̂ ,Ŷ ,R̂(p̂, ŷ, r̂|x). We fur-
ther denote Ŝ = (P̂ , Ŷ , R̂)⊤ ∈ S1 as the aggregated variable for the model output. These predictions aim

1In the preceding chapter, we distinguished between SP as the aggregated output space using the confidence P̂ , and SZ as the
output space using the raw network logits Z. Since the derivation for Bayesian confidence calibration holds for both cases, we
use the shorthand notation of S to represent either SP or SZ .
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4 Bayesian Confidence Calibration

to target the true label Ȳ ∈ Y and the true position R̄ ∈ R which follow the joint ground-truth data dis-
tribution fX,Ȳ ,R̄(x, ȳ, r̄) = fȲ ,R̄(ȳ, r̄|x)fX(x). For confidence calibration, we adapt the scaling methods
presented in Sec. 3.3.2 whose calibration parameters θ ∈ Θ are commonly obtained by Maximum Like-
lihood Estimation (MLE) using a data set D = {(̂sn, m̂n)}Nn=1 with N samples, where Θ denotes the set
of all possible parameters. A position-dependent calibration function hθ : S → [0, 1] serves as a mapping
from the uncalibrated confidence, the estimated label and the predicted position to a calibrated confidence
estimate Q̂ ∈ [0, 1], so that Q̂ = hθ(Ŝ). The calibrated confidence is then used as the Bernoulli parameter
for M̂ , so that M̂ ∼ Bern(Q̂).

Similar to neural networks, a calibration mapping may also exhibit epistemic uncertainty, e.g., due to an
insufficient amount of training data (cf. Sec. 2.3). Thus, we are interested in modeling the epistemic un-
certainty of the calibrated confidence Q̂ for a new sample ŝ∗ ∈ S during inference given the calibration
parameters θ and the calibration training data set D. Therefore, we do not interpret the calibrated confidence
as a deterministic distribution parameter but rather as a random variable that follows a certain probability
distribution Q̂|̂s∗,D ∼ fQ̂. In Bayesian statistics, we can infer the conditional distribution of Q̂ using the
posterior predictive distribution that denotes the probability of Q̂ weighted by the posterior for the calibration
parameters fθ(θ|D). The posterior for the calibration parameters is marginalized out so that the posterior
predictive distribution is given by

fQ̂(q̂
∗ |̂s∗,D) =

∫
Θ
fQ̂(q̂

∗ |̂s∗,θ)fθ(θ|D)dθ, (4.1)

where fQ̂(q̂
∗ |̂s∗,θ) is obtained using the calibration function hθ (̂s

∗) given the parameters θ.
For posterior inference, we place a prior distribution fθ(θ) over the parameters θ so that it is possible to

obtain a posterior distribution fθ(θ|D) given the training data set D. Thus, the posterior is defined by

fθ(θ|D) = fθ(θ|s, m̂) =
fQ̂(m̂|s,θ)fθ(θ)∫

Θ fQ̂(m̂|s,θ∗)fθ(θ
∗)dθ∗ , (4.2)

using m̂ = (m̂1, . . . , m̂N )⊤ and s = (̂s1, . . . , ŝN )⊤, where fQ̂(m̂|s,θ) is the model likelihood of hθ given
the data set D. Thus, the posterior reflects the probability distribution for the model parameters θ given the
training dataD. However, since the integral over the complete parameter setΘ is intractable, it is not possible
to analytically obtain the posterior for θ [102, 68]. Therefore, we adapt SVI as an approximation method
to infer the posterior [102, 68, 101] where a variational distribution f∗

θ(θ|ω) of known functional form is
used with distribution parameters ω to approximate the real posterior, so that f∗

θ(θ|ω) ≈ fθ(θ|D). Note
that using variational distributions, possible correlations between the calibration parameters are neglected.
Furthermore, using Markov-Chain Monte-Carlo (MCMC) for approximating the posterior is known to be
asymptotically exact [103], whereas SVI methods are limited by the use of variational distributions. However,
SVI comes with computationally low costs and scales well to large data sets compared to MCMC methods.
Thus, we further use SVI for approximating the posterior using a Gaussian to implement the variational
distribution as it has a known functional form and is easy to evaluate.
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4 Bayesian Confidence Calibration

The distribution parameters ω of f∗
θ(θ|ω) are obtained using the Evidence Lower Bound (ELBO) loss [102,

101]. The basic idea is that the evidence f(D) is the target distribution to maximize the model likelihood
given a certain parameter set θ. The ELBO loss treats the evidence f(D) as an upper bound during the
maximization of the model likelihood and is derived by

log
(
f(D)

)
= log

(∫
Θ
f(D,θ)dθ

)
(4.3)

= log

(∫
Θ
f(D,θ)

f∗
θ(θ|ω)

f∗
θ(θ|ω)

dθ

)
(4.4)

= log

(
Ef∗

θ

[
fθ(D,θ)

f∗
θ(θ|ω)

])
(4.5)

≥ Ef∗
θ

[
log
(
fθ(D,θ)

)]
− Ef∗

θ

[
log
(
f∗
θ(θ|ω)

)]
, (4.6)

using Jensen’s inequality on the log probability of observations. Note that the ELBO is related to the
Kullback-Leibler divergence between the variational distribution f∗

θ(θ|ω) and the posterior fθ(θ|D) by

DKL
(
f∗
θ(θ|ω)||fθ(θ|D)

)
= Ef∗

θ

[
log

(
f∗
θ(θ|ω)

fθ(θ|D)

)]
(4.7)

= Ef∗
θ

[
log
(
f∗
θ(θ|ω)

)]
− Ef∗

θ

[
log
(
fθ(θ|D

)] (4.8)

= Ef∗
θ

[
log
(
f∗
θ(θ|ω)

)]
− Ef∗

θ

[
log
(
fθ(D,θ

)]
+ log

(
f(D)

) (4.9)

= −
[
Ef∗

θ

[
log
(
fθ(D,θ

)]
− Ef∗

θ

[
log
(
f∗
θ(θ|ω)

)]]
+ log

(
f(D)

)
, (4.10)

which is the negative ELBO and the log evidence f(D). Thus, maximizing the ELBO leads to a minimization
of the Kullback-Leibler divergence in (4.7). Similar to the training of neural networks, SVI utilizes a gradient
descent approach using backpropagation to optimize the variational distribution parameters ω. Once the
approximate distribution for the posterior has been learned, we can plug in the variational distribution into
the posterior predictive in (4.1) by

fQ̂(q̂
∗ |̂s∗,D) =

∫
Θ
fQ̂(q̂

∗ |̂s∗,θ)fθ(θ|D)dθ (4.11)

≈
∫
Θ
fQ̂(q̂

∗ |̂s∗,θ)f∗
θ(θ|ω)dθ, (4.12)

which denotes the probability distribution of Q̂∗ given the new sample ŝ∗ and the training set D. The distri-
bution for Q̂∗ should express the uncertainty for the calibrated probability. However, for subsequent applica-
tions such as object detection (cf. Chap. 6), it is mandatory to provide a scalar for the calibrated probability
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Figure 4.2: Concept of Bayesian confidence calibration [3, p. 2, Fig. 2]. A detector estimates several objects
with a certain confidence and a certain position within an image. In Bayesian confidence calibra-
tion, the parameters of the calibration function are replaced by variational (Gaussian) distribution
and learned by Stochastic Variational Inference (SVI). When the calibration method is applied
to the detector output, we sample from the variational distributions to obtain multiple parameter
sets. These parameter sets are then used to generate a sample distribution for the calibration out-
put that represents the uncertainty within the recalibrated confidence.

to finally construct the Bernoulli M̂∗. Thus, the expectation EQ̂∗ [Q̂
∗ |̂s∗,D] can be used to assess a mean

estimate for the calibrated confidence. In application, we sample T parameter combinations θ̂ ∈ Θ from
the posterior distribution θ̂ ∼ f∗

θ(θ|ω) and perform calibration with each parameter set to approximate the
expectation and the variance. We denote the mean by µQ̂ that is an approximation of the expectation to
obtain the calibrated confidence by

EQ̂∗ [Q̂
∗ |̂s∗,D] ≈ 1

T

T∑
t=1

fQ̂(q̂
∗ |̂s∗, θ̂t) = µQ̂∗ , (4.13)

which is used to construct the Bernoulli distribution for M̂∗, so that

fM̂∗(m̂
∗|µQ̂∗) = µm̂∗

Q̂∗ (1− µQ̂∗)
1−m̂∗

, (4.14)

yields the final calibrated confidence and probability distribution for M̂∗. The concept of Bayesian confi-
dence calibration is schematically shown in Fig. 4.2. Note that this kind of calibration does not necessarily
lead to a monotonically increasing calibration mapping any more which might affect the baseline average
precision. This influence is thus investigated in our experiments for Bayesian confidence calibration. In
general, it is also possible to obtain a variance by sampling from the posterior in the same way. However,
we face some challenges for the uncertainty quantification. On the one hand, the final probability for M̂∗

is expressed in terms of a Bernoulli distribution. Furthermore, we do not have a direct ground-truth for Q̂∗

available to evaluate the epistemic uncertainty. We mitigate this problem by using the same approach to
quantify the ground-truth information for Q̂∗ as within the Detection Expected Calibration Error (D-ECE)
calculation. We apply a binning scheme over the uncalibrated confidence estimates for all samples within a
data set D and measure the precision within each bin. This yields the ground-truth information P̄ ∈ [0, 1]

for all samples in D in each bin which allows for an evaluation of the calibrated uncertainty. Similarly to
the standard Expected Calibration Error (ECE) or D-ECE calculation, using a binning scheme leads to a
modeling error which, however, we tolerate in our experiments for practical reasons.
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Figure 4.3: Qualitative example of two samples after Bayesian confidence calibration with their respective
probability distributions for the calibrated confidence [3, p. 4, Fig. 3]. The probability distri-
butions do not necessarily follow a Gaussian distribution. Therefore, we seek for the highest
posterior density interval (HPDI) to express the epistemic uncertainty of a calibration mapping.

On the other hand, the probability distribution for the calibrated confidences might not necessarily follow a
distribution of a known parametric form, e.g., a Gaussian. This is demonstrated in Fig. 4.3. Thus, a sampled
variance might not properly reflect the epistemic uncertainty of a Bayesian confidence mapping. Therefore,
we seek to express the epistemic calibration uncertainty in terms of a prediction interval. A prediction interval
is represented by interval boundaries aτ , bτ ∈ [0, 1] which enclose a certain probability mass τ ∈ [0, 1], so
that ∫ bτ

aτ

fQ̂∗(q̂
∗ |̂s∗,D)dq̂∗ = τ. (4.15)

We further denote the prediction interval as Ĉ∗
τ = [â∗τ , b̂

∗
τ ]. The advantage of using prediction intervals is that

these intervals reflect the probability for a new sample located within the interval boundaries. However, since
prediction intervals are not uniquely defined, we consider the Highest Posterior Density Interval (HPDI) to
express epistemic uncertainty, which reflects the narrowest credible interval given a certain confidence level
τ . Using the HPDI, we can evaluate the consistency of the predicted uncertainty by comparing the prediction
interval with the observed interval coverage. This is a requirement by the definition for uncertainty calibration
[34] and will be discussed in Chap. 5 in more detail. For this reason, we adapt the Prediction Interval
Coverage Probability (PICP) [104] as a metric that measures the fraction of samples whose ground-truth
score fall into the estimated prediction interval for a certain confidence level, so that

PICP(τ) := 1

N

N∑
n=1

1(P̄n ∈ Ĉτ,n). (4.16)

Furthermore, we use the Mean Prediction Interval Width (MPIW) [104] as a complementary metric to evalu-
ate the sharpness of the predicted distribution. Thus, we finally considered all necessary aspects to determine
and evaluate the epistemic uncertainty of a Bayesian calibration method.
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4.2 Experiments for Bayesian Confidence Calibration

For the experiments of the Bayesian confidence calibration methods, we use the same setup as within our
experiments for object detection evaluation in Sec. 3.4.1 and use a Faster R-CNN, RetinaNet, and Mask

R-CNN on the MS COCO and Cityscapes data sets, respectively. We further use the D-ECE, Brier score, and
Negative Log Likelihood (NLL) to evaluate the calibration performance of the Bayesian methods. Further-
more, we also use the PICP and MPIW [104] metrics for a fixed prediction interval of τ = 0.95 to evaluate
the uncertainty (for a detailed description of these metrics, see Sec. 4.1). For further uncertainty evaluation,
we perform inference of each network on a different data set. For example, a Faster R-CNN, which has been
trained for MS COCO, is also used for inference on the Cityscapes validation set. We reuse the respective
calibration methods for each network configuration and do not perform a retraining of the methods on the
new data sets. In this way, we are able to study the effect of a possible covariate shift on the uncertainty
of the calibrated confidence. The evaluation results for the confidence-only case are shown in Tab. 4.1, as
well as for the position-dependent calibration cases in Tab. 4.2 and Tab. 4.3 for conditional independent and
conditional dependent calibration, respectively. Additionally, we compare the Bayesian calibration methods
with their deterministic counterparts (cf. Tab. 3.1 and Tab. 3.1) that is shown in Fig. 4.4.

As already stated, Bayesian confidence calibration does not guarantee a monotonically increasing calibra-
tion mapping and thus might affect the baseline average precision. However, we only find a marginal effect
of the Bayesian confidence calibration on the average precision which, thus, does not degenerate baseline
performance. The Bayesian calibration methods (confidence-only and position-dependent) consistently re-
duce miscalibration and show a similar calibration performance compared to the standard methods which
are trained by simple maximum likelihood estimation. This also holds for the miscalibration on the foreign
data sets in most cases. Moreover, we observe a higher epistemic uncertainty when calibration is applied
on the data sets for which the calibration methods have not been trained for (see MPIW scores). In our
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Figure 4.4: Comparison of the calibration performance between standard calibration and Bayesian confi-
dence calibration for the different scaling methods and on different networks and data sets. Apart
from one exception, we observe a consistent calibration performance of the Bayesian methods
compared to their standard counterparts which are built using maximum likelihood estimation.
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Table 4.1: Calibration results for Bayesian confidence calibration where only the predicted confidence P̂
is used for calibration and evaluation. Moreover, the networks as well as the trained calibration
methods are used on a different data set to evaluate the effect of a possible covariate shift on the
Bayesian confidence calibration. The best scores are highlighted in bold. In this case, logistic
and beta calibration show equal calibration performance. In addition, both calibration methods
consistently indicate a higher uncertainty on the data sets for which they have not been trained for.

Network IoU Evaluation
data set

Calibration
method D-ECE Brier NLL AUPRC PICP MPIW

F
a
s
t
e
r
R
-
C
N
N

(tra
ine

do
nM

SC
OC

O) 0.50
MS COCO

Uncalibrated 0.153 0.176 0.536 0.920 - -
Logistic Cal. 0.021 0.142 0.433 0.920 0.900 0.085
Beta Cal. 0.022 0.142 0.433 0.920 0.872 0.092

Cityscapes
Uncalibrated 0.093 0.168 0.552 0.887 - -
Logistic Cal. 0.115 0.166 0.505 0.887 0.971 0.116
Beta Cal. 0.117 0.167 0.509 0.887 0.954 0.113

0.75
MS COCO

Uncalibrated 0.294 0.257 0.829 0.866 - -
Logistic Cal. 0.027 0.144 0.449 0.866 0.922 0.085
Beta Cal. 0.027 0.144 0.448 0.866 0.978 0.093

Cityscapes
Uncalibrated 0.296 0.275 0.917 0.814 - -
Logistic Cal. 0.064 0.163 0.499 0.814 0.969 0.121
Beta Cal. 0.066 0.162 0.498 0.814 0.995 0.123

R
e
t
i
n
a
N
e
t

(tra
ine

do
nM

SC
OC

O) 0.50
MS COCO

Uncalibrated 0.083 0.157 0.478 0.907 - -
Logistic Cal. 0.024 0.149 0.451 0.907 0.894 0.076
Beta Cal. 0.026 0.150 0.452 0.907 0.852 0.095

Cityscapes
Uncalibrated 0.131 0.174 0.522 0.879 - -
Logistic Cal. 0.115 0.171 0.515 0.879 0.941 0.094
Beta Cal. 0.116 0.171 0.513 0.879 0.887 0.116

0.75
MS COCO

Uncalibrated 0.151 0.172 0.518 0.855 - -
Logistic Cal. 0.033 0.140 0.439 0.855 0.950 0.078
Beta Cal. 0.027 0.140 0.437 0.855 0.985 0.095

Cityscapes
Uncalibrated 0.149 0.190 0.565 0.789 - -
Logistic Cal. 0.063 0.161 0.495 0.789 0.966 0.097
Beta Cal. 0.058 0.160 0.492 0.789 0.986 0.113

M
a
s
k
R
-
C
N
N

(tra
ine

do
nC

ity
sca

pes
) 0.50

MS COCO
Uncalibrated 0.108 0.145 0.496 0.952 - -
Logistic Cal. 0.030 0.124 0.378 0.952 1.000 0.166
Beta Cal. 0.042 0.126 0.382 0.952 0.783 0.098

MS COCO
Uncalibrated 0.274 0.283 1.084 0.799 - -
Logistic Cal. 0.137 0.215 0.641 0.799 0.999 0.190
Beta Cal. 0.136 0.216 0.683 0.799 0.902 0.132

0.75
Cityscapes

Uncalibrated 0.296 0.269 1.055 0.896 - -
Logistic Cal. 0.042 0.134 0.420 0.896 0.997 0.203
Beta Cal. 0.055 0.137 0.429 0.896 0.958 0.112

MS COCO
Uncalibrated 0.439 0.397 1.632 0.689 - -
Logistic Cal. 0.086 0.184 0.555 0.689 1.000 0.205
Beta Cal. 0.116 0.192 0.598 0.689 0.986 0.133
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Table 4.2: Calibration results for Bayesian confidence calibration using the conditional independent scal-
ing methods where all information Ŝ = (P̂ , Ŷ , R̂)⊤ are used for calibration and evaluation. The
underlined scores are the best calibration results compared to their conditional dependent coun-
terparts in Tab. 4.3. For the position-dependent case, we observe an equal performance of both
calibration methods. Although the calibration methods indicate a higher uncertainty on foreign
data, the calibration uncertainty is consistently below the desired confidence level.

Network IoU Evaluation
data set

Calibration
method D-ECE Brier NLL AUPRC PICP MPIW

F
a
s
t
e
r
R
-
C
N
N

(tra
ine

do
nM

SC
OC

O) 0.50
MS COCO

Uncalibrated 0.119 0.176 0.536 0.920 - -
Logistic Cal. 0.042 0.143 0.434 0.920 0.627 0.108
Beta Cal. 0.044 0.144 0.439 0.918 0.738 0.175

Cityscapes
Uncalibrated 0.086 0.168 0.552 0.887 - -
Logistic Cal. 0.107 0.167 0.506 0.887 0.724 0.134
Beta Cal. 0.090 0.163 0.499 0.886 0.800 0.231

0.75
MS COCO

Uncalibrated 0.227 0.257 0.829 0.866 - -
Logistic Cal. 0.045 0.145 0.450 0.865 0.611 0.106
Beta Cal. 0.048 0.146 0.453 0.863 0.805 0.163

Cityscapes
Uncalibrated 0.274 0.275 0.917 0.814 - -
Logistic Cal. 0.063 0.163 0.499 0.814 0.748 0.151
Beta Cal. 0.081 0.164 0.502 0.814 0.881 0.232

R
e
t
i
n
a
N
e
t

(tra
ine

do
nM

SC
OC

O) 0.50
MS COCO

Uncalibrated 0.072 0.157 0.478 0.907 - -
Logistic Cal. 0.046 0.149 0.449 0.909 0.612 0.112
Beta Cal. 0.046 0.150 0.452 0.908 0.710 0.182

Cityscapes
Uncalibrated 0.123 0.174 0.522 0.879 - -
Logistic Cal. 0.109 0.172 0.519 0.880 0.657 0.122
Beta Cal. 0.114 0.179 0.546 0.881 0.792 0.252

0.75
MS COCO

Uncalibrated 0.110 0.172 0.518 0.855 - -
Logistic Cal. 0.046 0.139 0.437 0.856 0.660 0.101
Beta Cal. 0.046 0.139 0.439 0.855 0.810 0.165

Cityscapes
Uncalibrated 0.136 0.190 0.565 0.789 - -
Logistic Cal. 0.067 0.161 0.498 0.790 0.703 0.121
Beta Cal. 0.086 0.164 0.509 0.791 0.870 0.232

M
a
s
k
R
-
C
N
N

(tra
ine

do
nC

ity
sca

pes
) 0.50

Cityscapes
Uncalibrated 0.102 0.145 0.496 0.952 - -
Logistic Cal. 0.036 0.124 0.378 0.952 0.910 0.185
Beta Cal. 0.047 0.124 0.380 0.952 0.766 0.265

MS COCO
Uncalibrated 0.234 0.283 1.084 0.799 - -
Logistic Cal. 0.142 0.218 0.651 0.784 0.926 0.278
Beta Cal. 0.162 0.243 0.767 0.760 0.812 0.354

0.75
Cityscapes

Uncalibrated 0.281 0.269 1.055 0.896 - -
Logistic Cal. 0.056 0.136 0.423 0.898 0.969 0.227
Beta Cal. 0.061 0.135 0.427 0.899 0.881 0.253

MS COCO
Uncalibrated 0.361 0.397 1.632 0.689 - -
Logistic Cal. 0.118 0.190 0.572 0.703 0.983 0.299
Beta Cal. 0.134 0.209 0.658 0.666 0.888 0.336
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Table 4.3: Calibration results for Bayesian confidence calibration using the conditional dependent calibra-
tion methods where all information Ŝ = (P̂ , Ŷ , R̂)⊤ are used for calibration and evaluation. The
underlined scores are the best calibration results of compared to their conditional independent
counterparts in Tab. 4.2. The extended methods show similar calibration performance and further
provide a meaningful uncertainty with a prediction interval coverage probability which is consis-
tently close to the desired confidence level.

Network IoU Evaluation
data set

Calibration
method D-ECE Brier NLL AUPRC PICP MPIW

F
a
s
t
e
r
R
-
C
N
N

(tra
ine

do
nM

SC
OC

O) 0.50
MS COCO

Uncalibrated 0.119 0.176 0.536 0.920 - -
Logistic Cal. 0.044 0.144 0.439 0.919 0 0.885 0.284
Beta Cal. 0.047 0.145 0.445 0.916 0.837 0.263

Cityscapes
Uncalibrated 0.086 0.168 0.552 0.887 - -
Logistic Cal. 0.117 0.170 0.528 0.885 0.927 0.400
Beta Cal. 0.105 0.167 0.519 0.885 0.928 0.369

0.75
MS COCO

Uncalibrated 0.227 0.257 0.829 0.866 - -
Logistic Cal. 0.047 0.146 0.457 0.862 0.990 0.300
Beta Cal. 0.047 0.147 0.458 0.862 0.942 0.262

Cityscapes
Uncalibrated 0.274 0.275 0.917 0.814 - -
Logistic Cal. 0.077 0.165 0.508 0.814 0.991 0.464
Beta Cal. 0.068 0.165 0.507 0.806 0.986 0.415

R
e
t
i
n
a
N
e
t

(tra
ine

do
nM

SC
OC

O) 0.50
MS COCO

Uncalibrated 0.072 0.157 0.478 0.907 - -
Logistic Cal. 0.053 0.151 0.456 0.908 0.878 0.333
Beta Cal. 0.049 0.151 0.456 0.906 0.802 0.292

Cityscapes
Uncalibrated 0.123 0.174 0.522 0.879 - -
Logistic Cal. 0.118 0.171 0.527 0.877 0.962 0.463
Beta Cal. 0.088 0.167 0.516 0.881 0.824 0.336

0.75
MS COCO

Uncalibrated 0.110 0.172 0.518 0.855 - -
Logistic Cal. 0.048 0.140 0.439 0.856 0.978 0.318
Beta Cal. 0.047 0.141 0.441 0.853 0.906 0.265

Cityscapes
Uncalibrated 0.136 0.190 0.565 0.789 - -
Logistic Cal. 0.066 0.161 0.497 0.784 0.995 0.477
Beta Cal. 0.080 0.163 0.506 0.792 0.968 0.361

M
a
s
k
R
-
C
N
N

(tra
ine

do
nC

ity
sca

pes
) 0.50

Cityscapes
Uncalibrated 0.102 0.145 0.496 0.952 - -
Logistic Cal. 0.092 0.144 0.472 0.935 0.655 0.365
Beta Cal. 0.055 0.131 0.395 0.949 0.776 0.475

MS COCO
Uncalibrated 0.234 0.283 1.084 0.799 - -
Logistic Cal. 0.155 0.241 0.815 0.751 0.862 0.476
Beta Cal. 0.177 0.242 0.743 0.773 0.885 0.588

0.75
Cityscapes

Uncalibrated 0.281 0.269 1.055 0.896 - -
Logistic Cal. 0.081 0.150 0.480 0.889 0.809 0.574
Beta Cal. 0.067 0.140 0.436 0.895 0.945 0.536

MS COCO
Uncalibrated 0.361 0.397 1.632 0.689 - -
Logistic Cal. 0.101 0.193 0.598 0.685 0.947 0.665
Beta Cal. 0.140 0.213 0.648 0.675 0.969 0.556
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(i) Data distribution for the cx and cy position of ob-
jects for Cityscapes.
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(ii) Calibration error w.r.t. the epistemic uncertainty of
single predictions for Cityscapes.
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(iii) Data distribution for the cx and cy position of ob-
jects for MS COCO.

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

Prediction interval width

Ga
pb

etw
een

pre
cis

ion
and

con
fid

enc
e
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Figure 4.5: Data distribution of the cx and cy position and the correlation between epistemic calibration un-
certainty and calibration error of a logistic calibration model for a Mask R-CNN on different data
sets. [3, p. 5, Fig. 4]. The Mask R-CNN as well as the confidence calibration have been trained
on the Cityscapes data set. In the top row (b), we evaluate the correlation between epistemic
uncertainty obtained by Bayesian calibration and the calibration error itself for the Cityscapes
data set. The orange-dotted lines denote the {25, 50, 75} percentiles of the samples. We repeat
this for the MS COCO data set (d) to evaluate a possible change in uncertainty. We can inspect
that the calibration error increases for a large epistemic uncertainty in both cases. In addition,
the average epistemic uncertainty increases for the MS COCO data set as indicated by the per-
centiles.

experiments, the confidence-only methods provide consistent uncertainty quantifications whose prediction
interval coverage probability (PICP) is close to the desired confidence level of τ = 0.95. We further inspect
the position-dependent calibration and compare the conditionally independent methods with their condition-
ally dependent counterparts. Although the conditionally independent calibration methods provide a better
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calibration mapping in general, they underestimate the epistemic uncertainty in most cases. In contrast, the
conditionally dependent calibration methods consistently provide good uncertainty estimates which are close
to the desired confidence level. This also holds for calibration on the foreign data sets. For further uncertainty
evaluation, a visual example is given in Fig. 4.5 which demonstrates the effect of Bayesian confidence cali-
bration on foreign data sets. In this example, the Bayesian calibration method was trained on the Cityscapes
data set where most objects are located in the image center. If we compare the epistemic uncertainty with
the miscalibration for each sample individually, we can observe an increasing miscalibration for increasing
epistemic uncertainty. This is the desired effect for our Bayesian confidence calibration methods. In the next
step, this trained calibration mapping is used for calibration on the MS COCO data set. We observe a wider
distribution for the location of objects within the data set compared to Cityscapes. On the one hand, we
also observe an increasing miscalibration for increasing epistemic uncertainty. On the other hand, the epis-
temic uncertainty is higher on average compared to the calibration results for the Cityscapes data set. This
is visualized by the orange-dotted lines which indicate the {25, 50, 75} percentiles of the samples. In both
scenarios, we observe an increasing calibration error for samples with a prediction interval width above 0.5.
This indicates that a reliable prediction for the calibrated confidence of such samples is a challenging task.
One way to handle this phenomenon is to place a threshold for the prediction interval width to detect critical
samples during the inference. The high variation of the calibration error for uncertain samples might also
be reduced by using more training data. Therefore, we conclude that the epistemic uncertainty is a valuable
indicator for a possibly higher miscalibration as well as a sufficient criterion for a possible covariate shift of
the data during inference.

4.3 Conclusion for Bayesian Confidence Calibration

A reliable uncertainty assessment is crucial especially for safety-critical applications. A step towards more
safety is the usage of appropriate calibration methods to get a more interpretable assessment for the prob-
ability of being correct. However, confidence calibration might also be misleading in situations that are
unknown either to the baseline object detector or to the calibration mapping itself. Thus, we are interested in
the epistemic model uncertainty of such a calibration mapping to be able to indicate a possibly high model
uncertainty in critical situations. For this reason, we derive the term of Bayesian confidence calibration
that transfers the idea of epistemic uncertainty modeling in Bayesian statistics to the task of confidence
calibration. In this context, we interpret the calibrated confidence as a random variable whose probability
distribution is determined by probabilistic calibration methods. A prior distribution is placed over the cali-
bration weights which allows for a probabilistic computation of the calibrated confidences. In this way, it is
possible to quantify the (epistemic) model uncertainty of a calibration mapping itself which might be used
to assess the reliability in calibrated confidence estimates.

The investigations for the Bayesian confidence calibration models show that it is possible to yield a quali-
tatively good calibration mapping by using stochastic variational inference for calibration training. On the
one hand, the Bayesian calibration methods provide a meaningful uncertainty quantification for the epis-
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temic uncertainty inherent in the calibration mapping itself. Especially the conditionally dependent cali-
bration methods provide good uncertainty estimates for the epistemic calibration uncertainty. On the other
hand, we find a connection between epistemic uncertainty and miscalibration which might be used as a
sufficient criterion to detect a possible covariate shift within the calibration mapping. This allows for an
indication of possibly unknown out-of-distribution samples during inference. However, for samples with
a higher epistemic uncertainty, we also observe an increasing calibration error above a certain threshold.
Thus, a reliable estimation of the confidence is a challenging task for these samples which needs further
investigations. Nevertheless, we conclude that Bayesian confidence calibration is a valuable contribution for
safety-critical applications as it allows for an additional indication of epistemic uncertainty without losing cal-
ibration performance. Finally, it might be used as an additional component for a possible out-of-distribution
recognition. The assessment of the epistemic uncertainty for the object existence might also be used within
an object tracking framework using a particle filter for the object confidence estimation. This is subject of
future work.
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For environment perception, it is necessary to identify not only the semantic label of an object but also
its position. Thus, in the scope of object detection, a neural network needs to infer the class as well as
the position and shape of individual objects within an image. In this chapter, we focus on the regression
branch of an object detection model. While the classification head commonly outputs a score indicating the
model’s belief about the predicted class (cf. Chap. 3), the regression branch is usually designed to output
the position/shape information without any uncertainty information. However, a detection model can also
be trained so that it outputs probabilistic estimates for the position information using Gaussian distributions
[40, 71, 70, 16]. This has already been described in Sec. 2.2.2. On the one hand, this additional uncertainty
can be interpreted as a self-assessment of the model’s belief about the predicted position/shape information.
On the other hand, the uncertainty can also be used for subsequent processes such as Kalman filtering for
object tracking. Similar to semantic confidence calibration, the predicted variance can be interpreted as
an estimate of the aleatoric uncertainty which is inherent in the model input [39]. We can evaluate if the
predicted uncertainty matches the observed prediction error. This is of major importance especially if such a
detection model is used in the context safety-critical applications such as autonomous driving. Similar to the
methods for semantic confidence calibration, it is possible to examine the probabilistic forecaster regarding
a systemic bias in its uncertainty estimations for the bounding box position. If we detect such a deviation,
we can apply post-hoc calibration methods to perform a recalibration of the spatial uncertainty. The concept
of uncertainty calibration is qualitatively shown in Fig. 5.1.

(a) Uncalibrated (b) GP-Beta (c) GP-Normal (mv.)

Figure 5.1: Qualitative example for spatial uncertainty calibration on predictions of a probabilistic
RetinaNet (cf. Sec. 6.6) on the MS COCO data set [6, p. 2, Fig. 1]. (a) The probabilistic
detection model outputs normal distribution for the position, width, and height information that
are modeled as independent Gaussians. (b) The GP-Beta [41] is a non-parametric calibration
method that is able to estimate a calibrated probability distribution of arbitrary shape. (c) In con-
trast, our multivariate GP-Normal (cf. Sec. 5.4.2) is a parametric method yielding a multivariate
Gaussian as calibration output. Thus, this method is able to represent possible correlations be-
tween the dimensions.
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Object Detection

Classification Branch
- Confidence -

Probabilistic Regression
- Mean & Uncertainty -

Calibration

Semantic Confidence
Calibration (Chap. 3)

Spatial Uncertainty
Calibration (Chap. 5)

Object Tracking
(Chap. 6)

Track Existence Estimation
- Discrete Bayes Filter -

Object State Estimation
- Kalman Filter -

Track Initialization
and Association

Figure 5.2: In this chapter, we focus on the evaluation and calibration of spatial uncertainty which is a crucial
part of the image-based environment perception process. The recalibrated spatial uncertainty
might be used for subsequent applications, e.g., object tracking (cf. Chap. 6). Therefore, a reliable
assessment of spatial uncertainty is mandatory.

Reliable uncertainty evaluation is crucial especially if subsequent processes depend on these estimates, e.g.,
object tracking. Thus, we interpret the assessment as well as the recalibration of spatial uncertainty as part of
a superordinate process chain that could be used e.g. for image-based environment perception in a vehicle.
The concept of uncertainty calibration as a part of this process chain is schematically shown in Fig. 5.2. We
start by reviewing the state-of-the-art for regression uncertainty calibration in Sec. 5.1. Furthermore, we re-
view the existing definitions for regression uncertainty calibration and set them into a common mathematical
context to each other. On the basis of these definitions, we describe the respective calibration metrics and
derive new metrics to measure multivariate miscalibration in Sec. 5.2. In addition to these metrics, recent
work has developed several post-hoc methods for the calibration of regression uncertainty. These techniques
can be distinguished into parametric and non-parametric calibration methods. We review these methods and
provide detailed mathematical descriptions in Sec. 5.3. Furthermore, we extend these methods in Sec. 5.4
to construct a new calibration method GP-Normal for a flexible and parametric recalibration scheme. These
methods are evaluated on different data sets and for different object detection models in Sec. 5.5. Finally, we
give a conclusion about our findings in Sec. 5.6.

Contributions: In summary, the following contributions can be found in this section::
• Common mathematical context for the definitions of regression uncertainty calibration.
• Derivation of the M-QCE and C-QCE metrics to measure multivariate regression calibration.
• New methods GP-Normal and GP-Cauchy for parametric recalibration using Gaussian processes.
• Joint multivariate calibration of multiple dimensions.
• Covariance estimation & recalibration for multivariate regression tasks.
• Extensive studies on the effect of uncertainty recalibration for probabilistic object detectors.
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5.1 Related Work in the Context of Spatial Uncertainty Calibration

In the scope of regression uncertainty, recent work has proposed several definitions to define the term of
calibration. The authors in [34] define the term of quantile calibration which requires that the predicted
quantiles for a certain quantile level τ ∈ [0, 1] should cover 100τ% of the ground-truth scores given a finite
data set. Furthermore, the authors adapt the Isotonic Regression calibration method known from semantic
confidence calibration [85] and use this method to rescale the predicted cumulative distribution to achieve
quantile calibration [34]. Thus, the calibration is applied in a post-hoc step after model training. In con-
trast, the authors in [41] argue that the definition of quantile calibration only faces the marginal coverage
probability which does not consider the actually predicted probability distribution. The authors argue that
this is in contrast to the common understanding of uncertainty calibration known from semantic confidence
calibration which is conditioned on the actually predicted confidence [41] (cf. definition (3.1) in Sec. 3.2.1).
Therefore, the authors propose the term of distribution calibration which requires that a predicted distribu-
tion should match the observed error distribution given a certain probability distribution. As calibration
method, the authors further propose the GP-Beta method [41] which adapts the Beta calibration method
from semantic confidence calibration [43] to perform a rescaling of the predicted cumulative distribution
(similar to Isotonic Regression). To achieve distribution calibration, the authors adapt a Gaussian process
to obtain the recalibration parameters for each distribution, individually. Independently, the authors in [42]
and [18] propose the term of variance calibration which is designed for parametric normal distributions and
requires that the predicted variance should match the observed mean squared error (which is equivalent to
the observed variance) for a certain variance level. For variance calibration, the authors adapt the simple
Temperature Scaling from semantic confidence calibration [13] to rescale the predicted variance by a single
scalar [42, 18]. We use these definitions as well as the respective calibration methods for our examinations
and set them in a common mathematical context in Sec. 5.2 and Sec. 5.3, respectively.

Recent work has developed a parametric approach to construct a probabilistic object detection model
[40, 71, 70, 16]. A different approach of yielding aleatoric uncertainty is quantile regression [105, 106]
where a model does not predict a certain score but directly infers the quantile boundaries. However, quantile
regression has not been used for object detection so far but is definitely an interesting approach to investigate
for future work. Besides the previously mentioned post-hoc calibration methods, recent work has also pro-
posed techniques to achieve intrinsically calibrated probabilistic models during model training. The authors
in [15] propose a calibration loss which adds a second regularization term that aims to minimize the differ-
ence between predicted variance and observed squared error. Another approach provided by [107] adapts
maximum mean discrepancy (MMD) to perform a distribution matching between predicted and observed
distribution during model training. Similarly, the authors in [108] propose the method f -Cal which is also
used for a distribution matching during model training. The advantage of these calibration techniques is that
they do not require a dedicated held-out calibration training set. However, as already mentioned in Sec. 3.1,
the drawback of calibration during model training is that they aim to calibrate against the model’s perfor-
mance on the training set which is commonly much better compared to unseen data during inference. This
may lead to a distortion after calibration. Therefore, we focus on post-hoc methods for regression calibration.
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5.2 Definitions and Metrics for Uncertainty Calibration

In this section, we review the definitions of quantile calibration [34], distribution calibration [41], and vari-
ance calibration [42, 18] for regression uncertainty calibration and place them in a common mathematical
context. For this purpose, we follow the mathematical notation of the previous Chap. 3 and consider an object
detection model that predicts individual objects with a certain label Ŷ ∈ Y = {1, ...,K} with an according
confidence score P̂ ∈ [0, 1] given the input samples X ∈ X , where K denotes the available number of
classes. These predictions aim to target the real objects with ground-truth information for the class Ȳ ∈ Y .
Furthermore, let R denote the set of all possible bounding boxes with L as the size of the used box encoding.
Commonly an encoding with the position, width, and height is used.

In contrast to the label prediction, an object detection model does not assess the uncertainty of the pre-
dicted object location by default. Therefore, we consider a probabilistic object detector [40, 71, 16] (cf.
Sec. 2.2.2) that interprets the regression output R̂ as a Gaussian so that R̂|X ∼ N (µR̂|X,ΣR̂|X) with
mean vector µR̂|X ∈ R and the variances σ2

1, . . . , σ
2
L ∈ RL

>0 for each bounding box quantity, so that
ΣR̂|X = diag(σ2

1, . . . , σ
2
L). Thus, the network output for the bounding box regression can be interpreted as

a random variable with a Probability Density Function (PDF) denoted by fR̂|X(r̂) = N (r̂;µR̂|X,ΣR̂|X)

which targets the true object location R̄ ∈ R. Let further denote FR̂|X(r̂) as the respective Cumulative
Density Function (CDF) where F : R → [0, 1]. In the following, we also need the quantile function that
returns the quantile boundaries for each bounding box quantity given a certain quantile τ ∈ [0, 1]. However,
the quantile function is only defined for the univariate case. Given the univariate CDF FR̂|X(r̂) for a single
bounding box quantity R̂, the respective quantile function is denoted by F−1

R̂|X
(τ) so that F−1

R̂|X
: [0, 1] → R.

Note that using independent quantile functions for each bounding box quantity leads to a negligence of pos-
sible correlations.

The target of probabilistic object detection is to predict the mean as precisely as possible to the ground-
truth objects, but also to indicate a high uncertainty if the model fails to reliably predict the object position or
shape. Thus, it is required to evaluate the quality of the predicted uncertainties and to examine for calibration.
In the following, we review the different definitions of uncertainty calibration for the task of regression. We
give an overview over the different types of regression calibration in Fig. 5.3. Note that the probabilistic
object detector does not predict any covariances between the bounding box quantities which yields multiple
independent normal distributions for each quantity. Since most of the existing definitions for regression
calibration face only univariate probability distributions, we further revisit the definitions for single bounding
box quantities which are denoted by R̂ ∼ N (µR̂|X, σ2

R̂|X) for notational simplicity.

5.2.1 Quantile Calibration

The first definition for uncertainty calibration is quantile calibration that has initially been proposed by the
authors in [34]. A probabilistic forecaster is quantile-calibrated if the predicted quantiles for a quantile
level τ cover 100τ% of the ground-truth samples. For example, consider 100 samples where a probabilistic
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Ground-truth samples
Predicted distribution
67% prediction interval

(i) Principle of quantile calibration [34] demonstrated by 3 predicted distributions with a pre-
diction interval of 67%. The goal within quantile calibration is to cover approx. 67% of the
ground-truth samples within the predicted quantiles.

Predicted distribution
Observed error distribution

(ii) Principle of distribution calibration [41]. The definition for distribution calibration requires
that the observed error distribution matches the predicted distribution given all probability
distributions with the same shape, e.g., as shown above.

Predicted distribution
Observed error distribution

Predicted σ2

Observed MSE

(iii) Principle of variance calibration [42, 18]. For all predicted normal distributions with the
same variance, the term of variance calibration requires that the observed variance, i.e.,
the observed Mean Squared Error (MSE) matches the predicted variance.

Figure 5.3: Overview over the different definitions for regression uncertainty calibration. We distinguish
between (a) quantile calibration, (b) distribution calibration, and (c) variance calibration.
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forecaster predicts a mean and variance that targets the ground-truth value. If we consider a quantile level
of 0.8, we would expect that 80 of the ground-truth scores are covered by the predicted intervals. This must
hold for all quantile levels τ ∈ [0, 1]. Therefore, a probabilistic object detector is quantile-calibrated if

P
(
R̄ ≤ F−1

R̂|X
(τ)
)
= τ, ∀τ ∈ [0, 1], (5.1)

holds for each bounding box dimension [34]. This definition also holds for two sided quantiles τ = τ2 − τ1

where τ1 < τ2 [34], so that

P
(
F−1

R̂|X
(τ1) ≤ R̄ ≤ F−1

R̂|X
(τ2)

)
= τ2 − τ1, ∀τ1, τ2 ∈ [0, 1]. (5.2)

The principle of quantile calibration is schematically shown in Fig. 5.3i. A probabilistic forecaster is com-
monly evaluated for quantile calibration using the Pinball loss LPin [109] for a certain τ that is defined by

LPin(τ) :=


(
R̄− F−1

R̂|X
(τ)
)
τ if R̄ ≥ F−1

R̂|X
(τ)(

F−1

R̂|X
(τ)− R̄

)
(1− τ) if R̄ < F−1

R̂|X
(τ)

. (5.3)

A mean LPin := Eτ [LPin(τ)] can also be used to denote the calibration properties for several quantile levels.
Further metrics are the Prediction Interval Coverage Probability (PICP) (cf. (4.16) in Sec. 4.1) [104] and the
Mean Prediction Interval Width (MPIW) [104] for a certain τ (both have been introduced in Sec. 4.1).

A major difficulty for measuring quantile calibration is that prediction intervals for certain quantile levels
are not uniquely defined. Therefore, we seek for the Highest Posterior Density Interval (HPDI) which de-
notes the narrowest prediction interval given a certain quantile level τ . The computation of the HPDI for
non-parametric probability distributions requires a numerical approach for approximation. In contrast, it is
considerably easier to determine the HPDI and thus the prediction interval coverage of a Gaussian distri-
bution with a known parametric form. In addition, we can also determine the Highest Posterior Density
Region (HPDR) which is the multivariate counterpart of the HPDI and reflects a certain region with proba-
bility mass τ for a certain quantile τ . Similar to the univariate case, we would expect that approx. 100τ%
of the ground-truth samples are covered by this prediction region. To determine the prediction region cov-
erage of the true value vector R̄ given a predicted Gaussian distribution with mean µR̂|X and covariance
matrix ΣR̂|X, we adapt the Normalized Estimation Error Squared (NEES) from Kalman filter consistency
evaluation [46, pp. 232] [47, pp. 292] that is defined by

ϵR̂|X :=
(
R̄− µR̂|X

)⊤
Σ−1

R̂|X

(
R̄− µR̂|X

)
, (5.4)

which is also known as the squared Mahalanobis distance between the predicted distribution and the ground-
truth vector [110]. Furthermore, we assume that the estimator has no bias in its predictions. Thus, the
prediction interval coverage for the ground-truth vector R̄ can be determined using the χ2-test. It is well
known, see e.g. [47], that the NEES can be interpreted as the sum of L independent squared random vari-
ables with zero mean and unit variance [47, p. 295]. This sum is also represented by a χ2

L distribution
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with L degrees of freedom [47, p. 295]. The NEES ϵR̂|X is highly connected to the HPDR for Gaussian
distributions as its equation in (5.4) can also be interpreted as an equation for an ellipsoid which describes
the contours/isolines for certain quantile levels. To test for prediction interval coverage, it is only required to
determine if the radius of the ellipsoid for the ground-truth vector R̄ is below the radius for the target quantile
which is given by χ2

L(τ)
1. Therefore, for a certain sample x ∈ X , the ground-truth vector is covered by the

estimated prediction interval with a certain quantile level τ , if ϵR̂|x ≤ χ2
L(τ) is fulfilled. More formally, we

can denote the gap between the desired quantile level τ and the observed quantile coverage by∣∣∣P(ϵR̂|X ≤ χ2
L(τ)

)
− τ
∣∣∣. (5.5)

We use this derivation to construct the Marginal Quantile Calibration Error (M-QCE) that is a new metric
to measure for quantile calibration given multivariate normal distributions. The advantage of the M-QCE is
that it tests for quantile calibration given multivariate normal distributions that might also represent possible
correlations between the random variables. The M-QCE is related to the PICP but determines the absolute
difference between prediction interval coverage probability and the target quantile. Therefore, the M-QCE
can directly be interpreted as an error metric reflecting the deviation between expected and observed quantile
coverage. On a finite data set D =

{
(r̄n,µR̂|xn

,ΣR̂|xn
)
}N
n=1

with N samples, the M-QCE is designed to
approximate (5.5) by

M-QCE(τ) :=
∣∣∣∣∣ 1N

N∑
n=1

1
(
ϵR̂|xn

≤ χ2
L(τ)

)
− τ

∣∣∣∣∣. (5.6)

It is also possible to denote a mean M-QCE := Eτ [M-QCE(τ)] for several quantile levels to measure the
overall properties for quantile calibration of a probabilistic forecaster.

5.2.2 Distribution Calibration

If we review the definition for semantic confidence calibration (cf. (3.1) in Sec. 3.2.1), we can see that
the probability for the observed accuracy is conditioned on the predicted confidence. This ensures that a
forecaster not only predicts globally (marginally) calibrated confidences but also must provide informative
confidence estimates for each confidence level separately. In contrast, the definition for quantile calibration
only considers the marginal probability over all predicted probability distributions. This allows a forecaster to
have putatively good calibration properties if the predicted quantiles match the observed quantile coverage on
average, even if it is poorly calibrated at a local level (e.g., for subsets with neighboring samples). Therefore,
the authors in [41] recently introduced the definition of distribution calibration for regression uncertainty
calibration. Let P denote the set of all possible probability distributions, so that ΠR ∈ P . A probabilistic
forecaster is distribution-calibrated if the predicted probability distribution fR̂ matches the observed (error)

1For notational simplicity, we further refer to χ2
L(τ) as the percent point function (inverse CDF) of a χ2-distributed random

variable with L degrees of freedom and quantile τ ∈ [0, 1].
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distribution ΠR given a certain probability distribution π [41], so that

fR̂(r̂|ΠR = π) = π(r̂), (5.7)

must hold for all π ∈ P and for all r̂ ∈ R [41]. For example, consider a probabilistic forecaster that predicts
several samples with equal distributions (e.g., with same mean and variance using Gaussian distributions).
With these predictions, it is possible to construct an error distribution for the corresponding ground-truth
samples R̄ as well. If the predicted distributions match the observed ones, a probabilistic forecaster is distri-
bution-calibrated [41]. This principle is schematically shown in Fig. 5.3ii. The authors in [41] also point out
that a distribution-calibrated forecaster is also quantile-calibrated [41]. In the context of object detection,
false positive predictions may occur which, however, do not have a corresponding ground-truth label. Thus,
we can not compute error statistics for these predictions so that they are discarded in this process.

The authors in [41] use Negative Log Likelihood (NLL) for measuring distribution calibration. The authors
decompose the NLL into a calibration and a refinement loss and show the benefits of distribution calibration
to the former calibration loss. Although the definition for distribution calibration is more restrictive and
constructed in the sense of the well-known definition for semantic confidence calibration, the set of possible
probability distributions P can be very large and intractable if it is not restricted to a parametric distribution
family. This leads us to the next definition for regression uncertainty calibration.

5.2.3 Variance Calibration

Recently, the authors in [42] and [18] independently introduced the definition for variance calibration which
is designed to evaluate the calibration properties of Gaussian distributions. Given a joint ground-truth data
distribution fX,R̄(x, r̄) with input images X ∈ X and ground-truth bounding box positions R̄ ∈ R, a
probabilistic forecaster is variance-calibrated if the predicted variance matches the observed one given a
certain variance level [42, 18], so that

EX,R̄

[
(r̄ − µR̂|X)2|σ2

R̂|X = σ2
]
= σ2, (5.8)

must hold for all σ2 ∈ R>0 [42, 18]. We further refer to N (µR̄, σ
2
R̄
) as the observed (error) distribution with

mean µR̄ ∈ R and observed variance σ2
R̄
∈ R>0. A variance-calibrated forecaster is also quantile-calibrated

if the observed error distribution is a Gaussian and the forecaster is not biased in its predictions. The error
distribution is then equal to the predicted normal distribution N (µR̂|X, σ2

R̂|X) which results in equal quantile
functions F−1

R̂|X
(τ) = F−1

R̄
(τ) so that the predicted quantiles match the observed ones. In application,

the observed variance is equal to the Mean Squared Error (MSE) for a certain predicted variance level.
Furthermore, if the observed variance does not depend on the predicted mean, i.e., Cov(µR̂|X, σ2

R̄
) = 0,

then a variance-calibrated forecaster is also distribution-calibrated as the set of probability distributions P is
restricted to normal distributions and the mean µR̄ is no influential factor. Therefore, variance calibration can
be interpreted as a variant of distribution calibration for normal distributions with additional requirements
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on the forecaster and the ground-truth data. This principle is schematically shown in Fig. 5.3iii.
To test for variance calibration, the authors in [42] propose the Expected Normalized Calibration Er-

ror (ENCE) which measures the unweighted and normalized difference between predicted and observed
standard deviation for a certain standard deviation level. Similar to the Expected Calibration Error (ECE)
from semantic confidence calibration, the ENCE utilizes a binning scheme over the predicted standard de-
viation with I distinct bins to measure calibration by means of the predicted standard deviation, so that the
ENCE is defined by

ENCE :=
1

I

I∑
i=1

|RMSE(i)− RMV(i)|
RMV(i)

, (5.9)

where RMSE(i) and RMV(i) denote the root mean squared error and the root mean variance within bin i,
respectively. In practice, we choose the maximum of the estimated standard deviation σmax and divide the
interval [0, σmax] into I equally sized bins. Similarly, the authors in [18] propose the Uncertainty Calibration
Error (UCE) which measures the weighted and unnormalized difference between predicted and observed
variance for a certain variance level. Thus, the UCE is defined by

UCE :=
I∑

i=1

Ni

N
|MSE(i)− MV(i)|, (5.10)

where MSE(i) and MV(i) denote the mean squared error and the mean variance within bin i, respectively
[18]. The advantage of the ENCE is that the miscalibration can be quantified relative to the predicted uncer-
tainty. Therefore, the ENCE is independent of the size of the investigation space R.

A drawback of both metrics is that they can not capture the properties of multivariate normal distributions
with possible correlations. Using these formulations, it is not straightforward to measure calibration by means
of predicted covariances. Furthermore, our recently derived M-QCE metric only measures the marginal
calibration error which is not sensitive to calibration by means of different variances. Therefore, we first
consider the Standardized Generalized Variance (SGV) as a property of a multivariate normal distribution
which is defined by σ2SG = det(ΣR̂|X)

1
L [111, 112]. The SGV reflects the dispersion of a distribution over

all dimensions L. This allows distributions with similar dispersion to be grouped and compared to each other.
The distribution fσ2SG of the SGV is directly connected to the output of the object detector as it is derived by
the random variable R̂.

In (5.5), we already proposed the M-QCE to evaluate the HPDR of multivariate Gaussian distributions.
However, the M-QCE evaluates the calibration properties of a forecaster over all predictions. Instead, we seek
to evaluate a forecaster conditioned on its predictions, similar to the ECE known from semantic confidence
calibration evaluation (cf. Sec. 3.2.1). The ECE is conditioned on the predicted confidence to measure
miscalibration by means of the model output. Similarly, we can measure the quantile coverage conditioned
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on the SGV as the model output by

Eσ2SG∼f
σ2SG

[∣∣P(ϵR̂|X ≤ χ2
L(τ)|σ2SG

)
− τ
∣∣]. (5.11)

We can now reformulate the M-QCE to the Conditional Quantile Calibration Error (C-QCE) which mea-
sures the error between predicted quantile and observed quantile coverage as a function of the model output
given by the SGV. In practice, we further use the square root of the SGV to achieve a better data distribution
of the dispersion for binning. Similar to the UCE and ENCE, a binning scheme with I bins over the square
root of the SGV is applied, so that the C-QCE is an approximation of (5.11) on a finite data set D given by

C-QCE(τ) :=
I∑

i=1

Ni

N
|freq(i)− τ |, (5.12)

where

freq(i) = 1

Ni

∑
n∈Mi

1
(
ϵR̂|xn

≤ χ2
L(τ)

)
, (5.13)

denotes the prediction interval coverage frequency within bin i, where Mi is the set of sample indices with
all samples falling into bin i. In the following, these metrics are used for uncertainty calibration evaluation.

5.3 Review of Methods for Regression Uncertainty Calibration

In this section, we present state-of-the-art calibration methods such as Isotonic Regression [34], Variance
Scaling [42, 18], and GP-Beta [41]. These techniques perform calibration w.r.t. one of the previously in-
troduced definitions for regression uncertainty calibration. The effects of calibration by means of individual
calibration targets are qualitatively shown in Fig. 5.4. We can divide these calibration techniques into para-
metric and non-parametric methods. The former methods yield a parametric probability distribution (e.g.,
Gaussian) as calibration output, whereas the latter ones yield probability distributions of arbitrary shape.
While the non-parametric distributions are more flexible in representing any data distributions, it might
be necessary to utilize a parametric distributions after calibration, e.g., for subsequent applications such as
Kalman filtering for object tracking (cf. Chap. 6). Therefore, we propose an extension to the existing calibra-
tion methods that is able to perform parametric uncertainty calibration in the sense of distribution calibration.
We further derive a calibration scheme for a joint multivariate uncertainty recalibration of multiple dimen-
sions. Finally, we adapt the Gaussian process scheme for a covariance estimation and recalibration. This
allows for a post-hoc introduction of correlations between independently inferred probability distributions.
Note that we assert normal distributions as the input to the calibration methods as we work with the output
of probabilistic detection models that have been introduced in Sec. 2.1. We start by reviewing the state-of-
the-art methods for regression uncertainty calibration and present our extensions for parametric and joint
uncertainty calibration that are subject of our publication in [6].
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(i) Artificial data (green) and uncalibrated estimator with according predicted uncertainty (blue).

(ii) Isotonic Regression [34]. (iii) Variance Scaling [42, 18].

(iv) GP-Beta [41]. (v) GP-Normal [6].
Figure 5.4: Qualitative example on artificial data to demonstrate the differences between methods for quan-

tile calibration (ii), variance calibration (iii), and distribution calibration (iv & v) [6, p. 7, Fig. 2].
The ground-truth data is obtained by sampling from a cosine with aleatoric Gaussian noise (green
points). The noise amplitude is proportional to the y-value of the cosine function (with a small
offset), thus, the aleatoric uncertainty is correlated with the function value. Furthermore, we as-
sume an unbiased estimator (blue) with randomly sampled variance for each point which, how-
ever, is equally sampled for the whole function. In this example, we can see that the methods for
quantile calibration (ii) as well as for variance calibration (iii) can not to capture the dependency
between aleatoric uncertainty and the function value. In contrast, the methods for distribution
calibration (iv & v) are able to recalibrate the predicted uncertainty scores.
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5.3.1 Non-Parametric Calibration

A non-parametric calibration method takes an uncalibrated probability distribution and outputs a calibrated
distribution that has no analytical form, i.e., the PDF is not fixed to any arbitrary shape. The advantage
of this distribution representation is that calibration methods are not restricted to any assumptions and thus
can flexibly represent any data distribution. The existing non-parametric calibration methods are designed
to output a non-parametric density function given any probability distribution as input to fit the calibrated
distribution to the observed (error) distribution. Commonly, the calibration techniques are applied on the
univariate CDF of the input distributions (for each dimension independently) which denotes the cumulative
probability mass of a certain point. Since the total probability mass of any distribution is 1, the CDF also
always outputs scores only within the [0, 1] interval. This allows for the application of calibration techniques
known from semantic confidence calibration, since these methods are bound to the [0, 1] interval as well.
Specifically, the Isotonic Regression [85, 34] as well as the Beta Calibration [43, 41] methods have recently
been adapted for regression calibration which are presented in the following.

Isotonic Regression
As already described in Sec. 5.2.1, the same authors in [34] propose a recalibration framework to achieve a
quantile-calibrated forecaster. We further denote this as marginal calibration as the target is to construct a
recalibration method that leads to a quantile-calibrated model where only the marginal calibration properties
over all given samples are of interest. Let fR̂(r̂) and FR̂|X(r̂) denote the PDF and CDF of the predicted
object locations in a single dimension, respectively. For any quantile level τ ∈ [0, 1], the authors in [34]
seek to estimate the true probability of P(R̄ ≤ F−1

R̂|X
(τ)
) (cf. (5.1)) given a finite data set. If we observe

a deviation between the estimated prediction intervals and observed interval coverage (using the true target
score), a calibration function h will be necessary to recalibrate the estimated quantile boundaries. As the
recalibration target, the authors utilize the Empirical Cumulative Density Function (ECDF) which can be
interpreted as an estimator for the probability distribution of the true underlying data generation process.
The ECDF is a step function that denotes, for each sample n, the fraction of observations whose values are
less than or equal to the actual sample. According to the Glivenko–Cantelli theorem [113, 114], the ECDF
converges to the underlying distribution as the number of observations grows. In the case of quantile calibra-
tion, we are interested in the probability that an observation falls into the estimated prediction interval. The
authors in [34] utilize the ECDF to represent the according probability distribution. Given N observations
with known (univariate) ground-truth bounding box position r̄n as well as the estimated CDF FR̂|xn

for each
sample (obtained by a probabilistic object detector), the ECDF can be constructed by

Femp(r̄n) =
1

N

N∑
n∗=1

1
(
FR̂|xn∗ (r̄n∗) ≤ FR̂|xn

(r̄n)
)
. (5.14)

By constructing the ECDF for the probability distribution of the prediction interval coverage, the inverse
empirical quantile function reflects the desired estimate for P(R̄ ≤ F−1

R̂|X
(τ)
) which is the final target for
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quantile calibration. Thus, matching the predicted CDF scores with the according ECDF counterpart finally
yields in quantile-calibrated estimates.

For calibration, the function h(·) serves as a mapping from the uncalibrated CDF to a calibrated one, so
that h : [0, 1] → [0, 1]. The authors in [34] propose to use the Isotonic Regression calibration method
known from semantic confidence calibration [85]. As originally proposed by the authors in [85], Isotonic
Regression fits a piece-wise constant and monotonically increasing function as recalibration function to map
uncalibrated confidence estimates to calibrated ones. Thus, Isotonic Regression can be seen as a variant of
Histogram Binning [36], but with flexible bin sizes and a flexible amount of bins. A training data set for
the Isotonic Regression method can be constructed using the predicted CDF FR̂|xn

(r̄n) as the input to the
regression function and the according ECDF score Femp(r̄n) as the regression target for each sample n with
ground-truth r̄n, so that D = {FR̂|xn

(r̄n), Femp(r̄n)}Nn=1. We can use the training set D to construct the
regression function which serves as a mapping from uncalibrated quantiles to calibrated ones [34].

During inference, the mapping function is used to transform the CDF of each input data individually. For
each input sample, we draw a number of T points denoted by D∗

n =
{(

rt, FR̂|xn
(rt)
)}T

t=1
to represent the

predicted CDF of the input data with index n ∈ {1, . . . , N}. Afterwards, we can pass each of these points
through the calibration mapping to finally yield a non-parametric representation of the calibrated cumulative.
Thus, the calibrated CDF GR̂|X(r̂) for each point in D∗

n is given by

GR̂|xn
(rt,n) = h

(
FR̂|xn

(rt,n)
)
, ∀t ∈ {1, . . . , T}. (5.15)

An approximation for the respective calibrated density scores gR̂|xn
(rt,n) at the point locations rt,n can be

obtained by differentiation for each sample with index n.

Beta Calibration with Gaussian Process Parameter Estimation
Similarly to Isotonic Regression, the authors in [41] adapted the Beta Calibration method [43] from the
scope of confidence calibration and applied it to regression uncertainty calibration (cf. equation (3.41 in
Sec. 3.3.2 for a detailed description of Beta Calibration). Let hβ denote the Beta Calibration function which
transforms the quantiles τ ∈ [0, 1] (obtained by the CDF) to calibrated ones. For regression calibration, the
Beta Calibration parameters a, b ∈ R>0 and c ∈ R are used to rescale the cumulative of the input distribution
[41], so that the calibrated CDF is given by

GR̂|X(r̂) = Φ
(
a · log

(
FR̂|X(r̂)

)
− b · log

(
1− FR̂|X(r̂)

)
+ c
)

(5.16)

= Φ
(
zβ
(
FR̂|X(r̂)

)) (5.17)

= hβ

(
zβ
(
FR̂|X(r̂)

))
, (5.18)
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with Φ(·) as the sigmoid function, where

zβ
(
FR̂|X(r̂)

)
= a · log

(
FR̂|X(r̂)

)
− b · log

(
1− FR̂|X(r̂)

)
+ c. (5.19)

Similar to the previous Isotonic Regression [34], the Beta Calibration function seeks to serve as a transfor-
mation of uncalibrated quantiles to calibrated ones. Since the PDF can also be interpreted as the derivative
of the CDF, it is possible to derive the PDF by differentiation [41], so that the calibrated PDF gR̂|X is given
by

gR̂|X(r̂) =
dhβ

(
zβ
(
FR̂|X(r̂)

))
dr̂

(5.20)

=
dhβ

(
zβ
(
FR̂|X(r̂)

))
dzβ
(
FR̂|X(r̂)

) dzβ
(
FR̂|X(r̂)

)
dFR̂|X(r̂)

dFR̂|X(r̂)

dr̂
(5.21)

= h′β
(
FR̂|X(r̂)

)
· fR̂|X(r̂), (5.22)

where dFR̂|X(r̂)

dr̂ reduces to the uncalibrated input PDF and

h′β
(
FR̂|X(r̂)

)
=

dhβ

(
zβ
(
FR̂|X(r̂)

))
dzβ
(
FR̂|X(r̂)

) dzβ
(
FR̂|X(r̂)

)
dFR̂|X(r̂)

, (5.23)

is the derivative of hβ w.r.t. r̂ [41]. The derivative of the sigmoid function can be expressed by Φ(zβ)
′ =

Φ(zβ)
(
1− Φ(zβ)

), so that the function h′β can be derived by

h′β
(
FR̂|X(r̂)

)
=

dhβ

(
zβ
(
FR̂|X(r̂)

))
dFR̂|X(r̂)

=
dhβ

(
zβ
(
FR̂|X(r̂)

))
dzβ
(
FR̂|X(r̂)

) dzβ
(
FR̂|X(r̂)

)
dFR̂|X(r̂)

(5.24)

= Φ
(
zβ
(
FR̂|X(r̂)

))[
1− Φ

(
zβ
(
FR̂|X(r̂)

))][ a

FR̂|X(r̂)
+

b

1− FR̂|X(r̂)

]
(5.25)

= GR̂|X(r̂)
(
1−GR̂|X(r̂)

)[ a

FR̂|X(r̂)
+

b

1− FR̂|X(r̂)

]
. (5.26)

If the calibration parameters were trained by standard Maximum Likelihood Estimation (MLE) using the
NLL as the loss function, this calibration method would also perform marginal calibration yielding quan-
tile-calibrated distributions. This corresponds to the training procedure used within marginal recalibration
which we already introduced in the last section. However, the authors in [41] propose the term of distribution
calibration and thus seek to derive a calibration function that applies uncertainty calibration with a specific
parameter set for each input distribution, individually. As opposed to the training of the Isotonic Regression
method [34], we do not compute an empirical CDF over the training data set D as this would result in
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marginal recalibration. Instead, the authors in [41] use a Gaussian Process (GP) for inferring the calibration
parameters a(·), b(·) and c(·) as a function of the provided sample. The authors propose to use three latent
functions wa(·), wb(·), and wc(·) which are directly mapped to the calibration parameters a(·), b(·) and c(·)
by

a(·) = exp(νawa(·) + κa),

b(·) = exp(νbwb(·) + κb), (5.27)
c(·) = νcwc(·) + κc,

where the exponential functions guarantee that a, b ∈ R>0. The advantage of using the intermediate func-
tions wa, wb, and wc is that we have no restrictions on the GP, so that the latent functions can directly be
drawn from the GP. Furthermore, each additional scaling factor νa, νb, νc ∈ R and bias κa, κb, κc ∈ R are
used to prevent possible distortion during the GP initialization phase [41].

The idea of using a GP for distribution calibration is that neighboring samples in the input space (with
similar mean and variance) are likely to produce similar outputs. The concept of distribution calibration using
a GP model is to construct an error distribution for each sample individually based on the local neighborhood.
These error distributions can be compared to the ones that have been estimated by the object detector, so that
the GP can finally be used for a recalibration to achieve distribution calibration. For this reason, the authors
in [41] introduce a multi-output GP [115, 116, 117] to infer the latent functions wa(·), wb(·), and wc(·) by
means of the uncalibrated input. We further refer to the function weight vector as w = (wa, wb, wc)

⊤. A GP
is a stochastic process such that a finite collection of random variables follows a joint multivariate normal
distribution. The GP is parameterized by a mean and a positive semidefinit kernel or covariance function.
Especially the kernel function k(·, ·) is important as it is used to construct the covariance matrix of the GP
which reflects the correlations between the random variables. Common kernel functions for vector-valued
inputs are the squared exponential kernel, the rational quadratic kernel, or the periodic kernel.

However, in our case, the input to the kernel function are the (uncalibrated) predictions of a probabilistic
object detector that consist of the estimated distribution parameters for a Gaussian distribution. Thus, the
authors in [41] utilize a univariate Gaussian embedding using the Radial Basis Function (RBF) kernel [118]
which is given by

k
(
(µi, σ

2
i ), (µj , σ

2
j )
)
=

θ

|σ2
ij |

1
2

exp

(
− 1

2σ2
ij

(µi − µj)
2

)
, (5.28)

with length scale parameter θ ∈ R>0, where σ2
ij = σ2

i +σ2
j +θ2 [41]. Unfortunately, the authors in [118] do

not provide a mathematical proof that this kernel function yields a positive semidefinit covariance matrix.
However, we conducted extensive studies so that we have been able to empirically verify that the resulting
covariance matrices are valid.

Let D =
{(

r̄n, µR̂|xn
, σ2

R̂|xn

)}N
n=1

denote the training set with N samples consisting of the ground-truth
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r̄n as well as of the predicted mean µR̂|xn
and variance σ2

R̂|xn
. The predicted mean and variance are both

obtained by a probabilistic object detector. Note that we are working with the univariate (independent)
bounding box quantities. Furthermore, we denote the mean vector by µD = (µR̂|x1

, . . . , µR̂|xN
)⊤ and

the variance vector by σ2
D = (σ2

R̂|x1
, . . . , σ2

R̂|xN
)⊤ which both hold the predictions of the whole data

set D. Using the kernel function in (5.28), we denote the covariance matrix KD ∈ RN×N which is
given by KD = k

(
(µD,σ

2
D), (µD,σ

2
D)

′). Moreover, we denote the respective function weight matrix
by WD =

(
w⊤

1 , . . . ,w
⊤
N

)⊤ that contains the latent functions for all samples in D, where WD ∈ W . The
matrixWD is also a function of the input samples, which we will omit in the following for notation simplicity.

In our case, when modeling WD using a GP with zero mean and covariance matrix KD, the latent functions
follow a joint multivariate normal distribution, so that

f(WD|D) = N (WD|0,KD ⊗Bβ), (5.29)

where ⊗ is the Kronecker product and Bβ ∈ R3×3 is the coregionalization matrix that captures the de-
pendencies between all latent functions. The target is to obtain a vector-valued output for each sample (the
weights wa(·), wb(·), and wc(·)). Such a multi-output GP is also called an intrinsic coregionalization model
(ICM) [119] which models the dependencies between the outputs as a linear combination of multiple latent
variables that share the same covariance kernel. Thus, for a single sample, the weights are drawn by the GP
model so that

wa, wb, wc ∼ gp(0, k(·, ·),Bβ), (5.30)

where gp(0, k(·, ·),Bβ) denotes the GP model with zero mean, kernel function k and coregionalization
matrix Bβ . In summary, the GP model uses the scaling weights νa, νb, νc, the scaling biases κa, κb, κc, the
coregionalization matrix Bβ and the length scale parameter θ as trainable parameters.

In practice, the authors in [41] use an approximate variational GP for regression uncertainty calibration. We
can not use the standard log marginal likelihood for the training of the GP parameters as we use intermediate
latent functions that are passed through a non-linear exponential function and that do not have a ground-
truth [41]. Instead, it is necessary to utilize the posterior predictive distribution from Bayesian statistics to
obtain an appropriate likelihood function. Given the observations r̄D = (r̄1, . . . , r̄N )⊤ for the ground-truth
bounding box positions in the data set D (for a single dimension), the model likelihood is given by

f(r̄D|D) =

∫
W

f(r̄D|WD,D)f(WD|D)dWD (5.31)

=

∫
W

N∏
n=1

[
f
(
r̄n|wn, µR̂|xn

, σ2
R̂|xn

)]
f
(
WD|µR̂|xn

, σ2
R̂|xn

)
dWD, (5.32)
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where

f
(
r̄n|wn, µR̂|xn

, σ2
R̂|xn

)
= fR̂|xn

(r̄n) · h′β
(
FR̂|xn

(r̄n)
)
, (5.33)

is the likelihood obtained using the link function h′β(·) with weights wn [41]. Furthermore, the term
f
(
WD|µR̂|xn

, σ2
R̂|xn

) is the Gaussian likelihood of the GP model itself.
The GP is approximate because the kernel matrix, which is constructed during the computation of the GP,

scales quadratically with the amount of training samples which yields the complexity O(N2). Therefore,
the authors in [41] use a scalable inference scheme [120, 121] where a set of N∗ inducing points is learned
to represent the data set so that each inducing point has an own mean µu and variance σ2

u that needs to be
learned. We refer to [120], [121], and [41] for a detailed discussion about approximate GP models.

With this method, it is finally possible to perform distribution calibration by mapping uncalibrated Gaus-
sians to calibrated non-parametric probability distributions. Similar to the previously described Isotonic
Regression method [34], we start by generating a set of T points that describe the uncalibrated PDF and
CDF denoted by D∗

n =
{(

rt, fR̂|xn
(rt), FR̂|xn

(rt)
)}T

t=1
. Furthermore, we draw a set of weights from the

trained GP model given the new inference data. The calibrated PDF and CDF are approximated for each
point in D∗

n by computing the average of the rescaled PDF and CDF estimates using h′β and hβ in (5.20) and
(5.16), respectively, given the sampled set of weights. In this way, we can finally construct the recalibrated
and non-parametric probability distribution for each sample during inference.

5.3.2 Parametric Calibration

In contrast to the previously introduced non-parametric calibration techniques, parametric methods seek for
a recalibration using a known analytical representation of the probability distribution. In this context, we
present the Variance Scaling which is a parametric calibration method for normal distributions.

Variance Scaling
The Variance Scaling method for variance calibration has independently been introduced by [42] and [18]
and can be interpreted as a kind of temperature scaling [13] from classification calibration for the uncalibrated
variances of normal distributions. In this way, a single scaling parameter wσ ∈ R>0 is learned to yield a
calibrated normal distribution by

gR̂|X(r̂) = N
(
r̂;µR̂|X, (wσ · σR̂|X)2

)
, (5.34)

79



5 Spatial Uncertainty Calibration

where the scaling parameter is a fixed constant after calibration training [42, 18]. The parameter is trained
using MLE with the NLL as the optimization objective by

L(wσ) = −
N∑

n=1

log

[
1√

2π(wσ · σR̂|xn
)
exp

(
− 1

2
(wσ · σR̂|xn

)−2(r̄n − µR̂|xn
)2
)]

(5.35)

∝ −N log(wσ)−
1

2w2
σ

N∑
n=1

σ−2

R̂|xn
(r̄n − µR̂|xn

)2, (5.36)

which is to be minimized. Thus, we seek to get the minimum of the optimization objective which can
analytically be determined using its derivative dL(wσ)

dwσ
= 0 [18], so that

− N

wσ
+

1

w3
σ

N∑
n=1

σ−2

R̂|xn
(r̄n − µR̂|xn

)2 = 0 (5.37)

⇔ −Nw2
σ

N∑
n=1

σ−2

R̂|xn
(r̄n − µR̂|xn

)2 = 0 (5.38)

⇔ wσ = ±

√√√√ 1

N

N∑
n=1

σ−2

R̂|xn
(r̄n − µR̂|xn

)2 (5.39)

gives us the analytical solution for wσ given a certain set D of training samples [18], where the data set
D =

{(
r̄n, µR̂|xn

, σ2
R̂|xn

)}N
n=1

with N samples consists of the ground-truth r̄n as well as of the predicted
mean µR̂|xn

and variance σ2
R̂|xn

.

5.4 Parametric Calibration using Gaussian Processes

On the one hand, we seek to keep parameterized probability distributions after calibration. Although non-
parametric distributions might have a better representational power of the underlying data distribution, it is
often advantageous to use parametric distributions especially for subsequent processes such as object tracking
(cf. Chap. 6). On the other hand, we seek for more flexibility during calibration compared to the previously
introduced Variance Scaling [42, 18] to finally achieve distribution calibration. For this reason, we adapt the
recalibration framework provided by [41] which is based on the GP recalibration. Instead of a non-parametric
Beta Calibration on the CDF, we also adapt the Variance Scaling scheme by [42, 18] but seek to obtain the
scaling parameter wσ(fR̂|X) by a GP as a function of the input distribution fR̂|X to the calibration method,
so that

log
(
wσ(·)

)
∼ gp(0, k(·, ·)), (5.40)
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which finally yields a similar recalibrated PDF as within (5.34) but with an input-dependent scaling weight

gR̂|X(r̂) = N
(
r̂;µR̂|X, (wσ(fR̂|X) · σR̂|X)2

)
. (5.41)

This method is further denoted by GP-Normal. We use the exponential function to guarantee wσ(fR̂|X) ∈
R>0. Since we only infer a single parameter, a coregionalization matrix B is not necessary any more. This
method offers the flexibility of a GP towards distribution calibration and preserves a parametric Gaussian
distribution for subsequent processes. Therefore, the GP-Normal can be seen as an extension of the definition
for variance calibration towards distribution calibration but for normally distributed data. Thus, under the
assumption of normally distributed data, the GP-Normal seeks to achieve

EX,R̄

[
(R̄− µR̂|X)2

∣∣ΠR̄ = N (µ, σ2)
]
= σ2, (5.42)

for all µ ∈ R and for all σ2 ∈ R>0. The concept for the GP-Normal method is schematically shown
in Fig. 5.5. Basically, we can plug in any desired parametric probability distribution. For our probabilistic
object detection model from the experiments in Sec. 5.5, we observe error distributions between the predicted
mean and the ground-truth scores that are rather Cauchy-distributed than normally distributed. This is shown
in Fig. 5.6. Therefore, we can also use the GP to construct a calibrated Cauchy distribution with location
ϑ ∈ R and scale γ ∈ R>0, where the location parameter is approximated using the uncalibrated mean µR̂|X
and the scale parameter is obtained by

log
(
wγ(·)

)
∼ gp(0, k(·, ·)), (5.43)

so that a calibrated PDF is given by

gR̂|X(r̂) = Cauchy(r̂;ϑ = µR̂|X, γ = (wγ(fR̂|X) · σR̂|X)
)
. (5.44)

This method is denoted by GP-Cauchy.

5.4.1 Joint Multivariate Calibration

For the task of object detection, it is required to determine the object position and shape which results in a
multivariate regression problem. Most approaches for probabilistic object detection use independent normal
distributions for each bounding box dimension [71, 40, 70]. Therefore, we further extend the GP recali-
bration methods GP-Beta, GP-Normal, and GP-Cauchy to jointly infer the calibrated distributions using all
available input information. Similar to the position-dependent confidence calibration in Sec. 3.3, the joint
recalibration allows to capture possible correlations between the input quantities. For this reason, we adapt
the GP recalibration scheme by [41] and use a multi-output GP [115, 116, 117] which estimates the latent
functions for each dimension given the uncalibrated input distributions, where L is the number of bounding
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Figure 5.5: Schematic representation of the work principle of various calibration methods and how we de-
rive the GP-Normal method. (a) The GP-Beta [41] is a non-parametric calibration method that
uses a Gaussian Process (GP) to flexibly obtain the calibration parameters based on the input dis-
tribution. (b) In contrast, the Variance Scaling [42, 18] yields a parametric normal distribution
as calibration output but only uses a single scaling parameter for the recalibration of the input
variance. (c) Our GP-Normal method also yields a Gaussian as calibration output but uses the
flexible GP parameter estimation scheme of the GP-Beta. In this way, it is possible to keep a
parametric Gaussian representation of the input distribution as well as to perform input-sensitive
uncertainty calibration.

box dimensions. For the GP-Beta method [41], the parameter estimation for the multivariate case extends to

wa(·),wb(·),wc(·) ∼ gp(0,k(·, ·),Bβ

)
, (5.45)

with scaling functions wa(fR̂|X),wb(fR̂|X),wc(fR̂|X) ∈ RL that use the uncalibrated multivariate distri-
butions as input and return a scaling weight for each bounding box dimension L. In this case, the coregion-
alization matrix Bβ captures the dependencies between all parameters and all dimensions, so that it is given
by Bβ ∈ R3L×3L. Furthermore, since we now work with a multivariate input with mean vector µR̂|X and
(diagonal) covariance matrix ΣR̂|X, we use the original (multivariate) formulation for the kernel function k
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Figure 5.6: Error distribution of the regression output R̂ obtained by a Faster R-CNN object detector on
the MS COCO data set [6, p. 8, Fig. 3]. The Gaussian fit does not yield a good representation of
the error distribution. In contrast, the Cauchy distribution is more suitable as it allows for heavier
tails compared to a Gaussian.

[118] which is given by

k
(
(µi,Σi), (µj ,Σj)

)
= θL|Σij |−

1
2 exp

(
− 1

2
(µi − µj)

⊤Σ−1
ij (µi − µj)

)
, (5.46)

where Σij = Σi +Σj + θ2I with identity matrix I ∈ RL×L [118]. Similarly, the parameter estimation for
the GP-Normal in the multivariate case extends to

log
(
wΣ(·)

)
∼ gp(0,k(·, ·),BN

)
, (5.47)

as well as for the GP-Cauchy by

log
(
wγ(·)

)
∼ gp(0,k(·, ·),BC

)
, (5.48)

with wΣ(fR̂|X),wγ(fR̂|X) ∈ RL as the functions that return a scale weight w(l)
σ and w

(l)
γ for each bounding

box dimension k ∈ {1, . . . , L}. Here, the coregionalization matrices are given by BN ,BC ∈ RL×L. Al-
though we aim to capture possible correlations of the input for calibration, the resulting calibrated probability
distributions are still modeled using independent distributions, so that e.g. the calibrated normal distribution
is given by

gR̂|X(r̂) =

L∏
l=1

N
(
r̂l;µR̂l|X,

(
wΣ(fR̂|X)(l) · σR̂l|X

)2)
. (5.49)

This holds for all cases, the non-parametric GP-Beta as well as for the parametric GP-Normal or GP-Cauchy.
Thus, the likelihood of the GP for parameter training is simply the product of the likelihood functions for
each bounding box dimension. (cf. (5.32)). Therefore, it is now possible to jointly infer multiple dimensions
using the GP recalibration scheme.
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5.4.2 Correlation Estimation and Recalibration

Besides the inference of multiple independent probability distributions, it is also possible to infer paramet-
ric probability distributions with correlations between the dimensions using the GP recalibration scheme.
This allows for a post-hoc introduction of correlations between independently inferred random variables.
In this section, we use the multivariate normal distribution to introduce a correlation estimation scheme.
In a first step, we compute the marginal correlation coefficients ρij ∈ [−1, 1] between all dimensions
i, j ∈ {1, . . . , L}. The correlation coefficients are used to compute the full covariance matrices ΣR̂|X
with covariances σij = ρijσiσj for all samples which can be interpreted as a prior for the calibrated covari-
ances. Afterwards, we use the LDL⊤ decomposition of Σ where L is a lower triangular matrix and D the
respective diagonal. Using the decomposed representation, we can obtain the input-dependent scale weights
wL(fR̂|X) ∈ RL×L and wD(fR̂|X) ∈ RL×L

>0 for the lower triangular and the diagonal matrix, respectively,
by

log
(
wD(·)

)
,wL(·) ∼ gp(0,k(·, ·),BN

)
. (5.50)

This allows for a reconstruction of a calibrated covariance matrix by

Σ =
(
wL(fR̂|X)⊙ L

)(
wD(fR̂|X)⊙D

)(
wL(fR̂|X)⊙ L

)⊤
, (5.51)

where ⊙ denotes the element-wise product. The rescaling of a LDL⊤ decomposed matrix is numerically
more stable as it preserves a symmetric and positive semidefinit covariance matrix after calibration. The NLL
of the multivariate GP is simply obtained by the likelihood of the multivariate normal distribution. Therefore,
it is now possible not only to jointly recalibrate multiple dimensions but also to introduce correlations between
independently inferred random variables. This method can also be used for a covariance recalibration as
well, if the input is modeled with a non-diagonal covariance matrix. In this case, we can omit the first step
of computing the marginal correlation coefficients and directly use the provided covariances as the priors
for the GP recalibration. Similar to the standard GP-Normal method, covariance estimation and covariance
recalibration can be seen as the multivariate extension of the definition for variance calibration towards
multivariate distribution calibration using normal distributions, so that

EX,R̄

[
(R̄− µR̂|X)(R̄− µR̂|X)⊤

∣∣ΠR̄ = N (µ,Σ)
]
= Σ, (5.52)

is fulfilled for all µ ∈ R and all Σ ∈ RK×K , where Σ = Σ⊤ and Σ ⪰ 0.
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5.5 Experiments for Spatial Uncertainty Calibration

The evaluations presented in this section are part of our publication in [6, pp. 11]. We use a probabilistic
Faster R-CNN as well as a RetinaNet that output Gaussian distributions with mean and variance for each
bounding box quantity cx, cy, width, and height. The basic architectures for both networks have been adapted
from [96] and extended by a probabilistic bounding box regression output (cf. Sec. 2.2.2). We trained both
networks on the MS COCO [44] and Berkeley DeepDrive [122] training data sets following the standard
training configuration by [96]. Similar to our previous experiments for semantic confidence calibration in
Sec. 3.4, we use the predictions on the respective validation data sets for calibration training and evaluation.
For this reason, the images of the validation sets are divided randomly which yields equally sized sets with
probabilistic predictions for calibration training and evaluation, respectively. We start by examining if the
object detection model makes unbiased predictions for the object bounding boxes. The results are shown in
Tab. 5.1. For each object detection model, we observe a small bias in the estimated object position. However,
compared to the error variance, the bias is in a range where it does not have a large impact on our further
evaluations.

For our experiments, we adopt Isotonic Regression [34], Variance Scaling [42, 18], GP-Beta [41], and our
new parametric GP-Normal and GP-Cauchy methods. As calibration metrics, we use the NLL, Pinball loss,
C-QCE, UCE [18], and ENCE [42]. Each metric is reported as the average over all bounding box quantities.
Since the Pinball loss and C-QCE are computed for certain quantiles, we further report a mean Pinball loss
and a mean C-QCE for quantile levels from 0.05 to 0.95 with steps of 0.05. Furthermore, the C-QCE, UCE,

Table 5.1: Bias and the respective error standard deviation of the object detection models on the data sets for
all bounding box quantities (in pixels). We observe a small bias in each model which, however, is
in a range where it does not have a large impact on our uncertainty evaluation results.

DB Num. Detections Quantity Bias RMSE

F
a
s
t
e
r
R
-
C
N
N BDD 69.775

cx 0.165 7.637
cy 0.190 7.857
w -0.300 10.602
h -0.439 10.441

COCO 24.807
cx 0.604 20.406
cy 1.455 20.085
w -1.716 30.598
h -2.509 27.672

R
e
t
i
n
a
N
e
t BDD 108.133

cx 0.351 9.531
cy 0.196 8.199
w -0.640 12.467
h -0.801 11.763

COCO 50.274
cx 1.040 26.200
cy 3.180 26.622
w -1.849 37.102
h -5.187 34.999
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Figure 5.7: Reliability diagram of the regression uncertainty for different quantile levels and for different
calibration methods [6, p. 13, Fig. 4]. The expected quantile level (x axis) is compared to the ob-
served prediction interval coverage frequency of the ground-truth scores over all samples (y axis).
The diagram shows the miscalibration in terms of quantile calibration for the predicted uncer-
tainty of the cx coordinates before and after calibration. We can observe an underconfidence of
the uncalibrated uncertainty estimates. In this case, Isotonic Regression and GP-Cauchy achieve
the best calibration performance.

and ENCE require a binning scheme over the predicted variance/standard deviation, so that we use I = 20

bins for binning. Note that the GP-Cauchy calibration method yields a Cauchy distribution which, however,
has no statistical moments such as expectation and variance. Thus, we can not compute the UCE and ENCE
after calibration with GP-Cauchy.

Subsequently, we use the GP-Normal method to perform covariance estimation (cf. Sec. 5.4.2). This vari-
ant is denoted by GP-Normal (mv.). In this way, it is possible to capture possible correlations between the
bounding box quantities. For the multivariate evaluation, we also use the NLL and the C-QCE, where the
latter one is currently only defined for Gaussian distributions. Except for the multivariate GP-Normal, the
NLL is obtained by assuming independent probability distributions for each bounding box quantity. The cal-
ibration results for the univariate as well as for the multivariate case are presented in Tab. 5.2. Furthermore,
we show the reliability diagram in Fig. 5.7 which allows for an evaluation of the probabilistic forecaster by
means of quantile calibration.

The results show that Isotonic Regression calibration [34] achieves the best results for NLL, Pinball loss,
and C-QCE. This shows that Isotonic Regression achieves the best results for quantile calibration in our
experiments. As already mentioned in Sec. 5.3, the error distributions of the examined object detectors rather
follow a Cauchy distribution than a Gaussian. This can be seen in Fig. 5.6. Thus, the GP-Cauchy method
is also able to achieve qualitatively good calibration results. This is also underlined by the observations
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Table 5.2: Calibration results for the probabilistic bounding boxes of Faster R-CNN and RetinaNet object
detectors before and after regression uncertainty calibration [6, p. 12, Tab. 1]. The best calibra-
tion scores are highlighted in bold. In all cases, we observe a miscalibration for the uncalibrated
regression uncertainty. Furthermore, Isotonic Regression is able to achieve the best calibration
performance in terms of quantile calibration (cf. Pinball loss and C-QCE) compared to the re-
maining calibration methods. In contrast, Variance Scaling, GP-Normal, and GP-Beta achieve
the best results for variance calibration (cf. UCE and ENCE).

Setup Univariate Multivariate
DB Method NLL C-QCE LPin UCE ENCE NLL C-QCE

F
a
s
t
e
r
R
-
C
N
N

BDD

Uncalibrated 3.053 0.040 1.079 19.683 0.454 12.210 0.071
Isotonic Reg. 2.895 0.017 1.059 39.157 0.303 11.579 -
GP-Beta 2.941 0.057 1.077 3.635 0.199 11.764 -
Var. Scaling 2.962 0.061 1.086 3.361 0.175 11.848 0.131
GP-Normal 2.962 0.059 1.084 3.289 0.188 11.848 0.128
GP-Normal (mv.) 2.968 0.054 1.150 3.234 0.191 11.584 0.133
GP-Cauchy 3.011 0.050 1.189 - - 12.045 -

COCO

Uncalibrated 3.561 0.154 3.055 32.899 0.096 14.245 0.256
Isotonic Reg. 3.340 0.020 2.715 42.440 0.121 13.360 -
GP-Beta 3.412 0.074 2.750 51.455 0.140 13.649 -
Var. Scaling 3.554 0.131 2.952 33.155 0.093 14.216 0.222
GP-Normal 3.554 0.130 2.949 48.167 0.132 14.235 0.200
GP-Normal (mv.) 3.562 0.121 3.298 28.382 0.087 13.955 0.216
GP-Cauchy 3.406 0.039 2.897 - - 13.624 -

R
e
t
i
n
a
N
e
t

BDD

Uncalibrated 4.052 0.130 1.847 39.933 0.491 16.208 0.234
Isotonic Reg. 3.224 0.068 1.814 39.498 0.252 12.898 -
GP-Beta 3.419 0.091 2.169 14.892 0.173 13.677 -
Var. Scaling 3.392 0.095 2.203 15.833 0.180 13.568 0.131
GP-Normal 3.392 0.095 2.205 15.820 0.180 13.568 0.131
GP-Normal (mv.) 3.434 0.097 3.356 15.342 0.200 13.353 0.133
GP-Cauchy 3.316 0.097 1.944 - - 13.262 -

COCO

Uncalibrated 4.694 0.115 4.999 553.244 0.530 18.778 0.153
Isotonic Reg. 3.886 0.029 4.534 105.343 0.113 15.544 -
GP-Beta 4.169 0.142 5.093 77.017 0.071 16.677 -
Var. Scaling 4.204 0.167 5.606 83.653 0.072 16.815 0.207
GP-Normal 4.204 0.167 5.606 84.367 0.072 16.815 0.207
GP-Normal (mv.) 4.236 0.158 6.233 82.074 0.087 16.455 0.194
GP-Cauchy 3.936 0.043 4.716 - - 15.745 -

within the reliability diagram in Fig. 5.7. In contrast to the semantic confidence calibration, we observe an
underconfidence of the predicted uncertainty estimates. Interestingly, Isotonic Regression also outperforms
the non-parametric GP-Beta [41] which is originally designed to achieve distribution calibration. On the one
hand, GP-Beta is restricted to the beta calibration family of functions which, however, limits the calibration
power of this method. On the other hand, we can not find a strong connection between miscalibration and
position/shape information. This can also be seen by the minor differences in the calibration between Isotonic
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Regression and GP-Beta, as well as between Variance Scaling [42, 18] and GP-Normal. Both methods,
Variance Scaling and GP-Normal, yield parametric Gaussians as calibration output, whereas GP-Normal also
has the flexibility to capture possible correlations between miscalibration and position/shape information.
However, we only observe minor differences in calibration which leads to the assumption of only minor
correlations between position/shape information and miscalibration.

The best calibration results for UCE and ENCE are obtained by Variance Scaling [42, 18] and GP-Normal
which perform equally in our experiments. Thus, both methods achieve the best results in terms of vari-
ance calibration. In addition, the multivariate GP-Normal is able to further improve the multivariate NLL
compared to the (independent) Variance Scaling and GP-Normal recalibration. As described in Sec. 5.2.3,
a variance-calibrated forecaster is also quantile-calibrated if the predicted estimates are unbiased and the
ground-truth data are normally distributed. However, we already stated that the observed error distributions
are not optimally fit by Gaussians so that variance calibration does not lead to optimal quantile calibra-
tion in our experiments. Nevertheless, this might not be an issue if subsequent processes such as Kalman
filtering assert Gaussian distributions as input. In this case, calibration with Variance Scaling and GP-Normal
are advantageous since they are designed to provide an optimal Gaussian fit. The influence of regression
uncertainty calibration for a subsequent Kalman filtering is part of the experiments within the next Chap. 6.

Therefore, we conclude that the simple Isotonic Regression [34] achieves the best calibration results and
thus is sufficient to achieve quantile-calibrated uncertainty estimates. If the estimated quantiles of a proba-
bilistic object detector are of interest in application, then Isotonic Regression should be the preferred method.
In contrast, if a parametric distribution is required, the GP-Cauchy leads to an optimal fit for the observed er-
ror distributions in our examinations. Further investigations are necessary to gain more evidence if this also
holds for other detection architectures. Finally, the Variance Scaling [42, 18] and (multivariate) GP-Normal
lead to the best results regarding variance calibration and thus are able to achieve the best Gaussian fit in our
experiments. These methods should be preferred if a Gaussian representation of the spatial uncertainty is
required in a subsequent application.

5.6 Conclusion for Spatial Uncertainty Calibration

Since not only semantic class but also spatial position uncertainty is an important part of environment per-
ception, we examine and evaluate the spatial position uncertainty of common probabilistic object detectors
in this chapter. For this reason, we give an overview of the recent definitions for uncertainty calibration of
regression tasks and set these definitions into a common mathematical context. Thus, we are able to show
that a variance-calibrated forecaster [42, 18] is also quantile-calibrated [34] for unbiased predictions and
normally distributed data. Furthermore, we show the connection between distribution calibration [41] and
variance calibration [42, 18]. Since an object detection model needs to jointly estimate the position and shape
information of detected objects, we extend these definitions to the multivariate case.

In the next step, we present the most recent methods for regression uncertainty calibration. In this scope, we
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provide detailed descriptions for the non-parametric Isotonic Regression [34] and GP-Beta [41] for quantile
calibration and distribution calibration, respectively, as well as for the parametric Variance Scaling [42, 18]
for variance calibration. We extend the existing calibration methods and propose the GP-Normal and GP-
Cauchy methods [6] which both adapt the approach of distribution calibration using a Gaussian process (GP)
for parameter estimation. In contrast to the non-parametric GP-Beta [41], the GP-Normal and GP-Cauchy
yield parametric normal and Cauchy distributions as calibration output. This might be advantageous for
subsequent applications such as Kalman filtering that require parametric distributions as input. We provide
more detailed experiments on the effect of calibration on object tracking in Chap. 6. Furthermore, we use the
GP recalibration framework to jointly calibrate all dimensions that are necessary for bounding box inference.
This allows to capture possible correlations between position/shape information and miscalibration. We also
use the GP-Normal to derive a covariance estimation scheme which allows for a post-hoc introduction of
correlations between independently inferred random variables.

Our experiments show that the simple Isotonic Regression [34] is able to achieve the best calibration results
in terms of quantile calibration. We can not find a strong connection between position/shape information
and miscalibration so that the (marginal) recalibration using Isotonic Regression is sufficient within our
experiments. In contrast, the Variance Scaling [42, 18] and GP-Normal achieve the best results for a Gaussian
fit of the predicted uncertainty to the observed error distribution which, in turn, leads to the best results
for variance calibration. Furthermore, the GP-Normal method also allows for a post-hoc introduction of
correlations between independently inferred random variables. This allows for a further improvement in the
multivariate calibration case. Therefore, we conclude that Isotonic Regression is the method of choice if
the predicted quantiles are of special interest. However, if a parametric normal distribution is required, we
recommend to use Variance Scaling [42, 18] or the (multivariate) GP-Normal. This assumption is underlined
by our examinations for uncertainty calibration on object tracking which can be found in Chap. 6.
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6 Application of Calibration to Object Tracking

In the previous chapters, we focused on the task of object detection whose target is to identify objects within
a single frame. In contrast, the task of Multiple Object Tracking (MOT) is to identify the same objects
in subsequent frames within a sequence of images. In object tracking, we are interested in the position
information over time as well as the belief that the actual track matches a ground-truth object, i.e., if the
tracked object exists. In this chapter, we demonstrate how the uncertainty calibration methods for object
detection from the previous Chap. 3 and Chap. 5 can be integrated into an object tracking framework. For this
reason, we elaborate the mathematical context of object tracking and further show how to include semantic
confidence calibration as well as spatial uncertainty calibration in the estimation of the object’s existence
as well as for its position/shape information, respectively. We do not provide a state-of-the-art tracking
framework but rather aim to demonstrate the usefulness of calibration for subsequent applications such as
object tracking.

In Sec. 6.1, we start by introducing the basic concept of tracking-by-detection algorithms which utilizes
object detectors to generate the observations for the tracking process [123, 124]. Furthermore, we introduce
recursive Bayesian filtering in Sec. 6.2 that is the underlying framework for object tracking. Subsequently,
we use this concept in Sec. 6.3 to derive a mathematical expression for the estimation of the object existence
within a sequence of frames. On the one hand, this expression allows for a direct integration of the frame-
wise detector confidence into the estimation of the object’s confidence over time. On the other hand, we can
show how to directly include the semantic confidence calibration methods into object tracking. Similarly,
we introduce the Kalman filter in Sec. 6.4 that is an implementation of recursive filtering for the object
position using Gaussian distributions. We show how to include the uncertainty information for the object
position provided by the underlying probabilistic object detector. This uncertainty can also be recalibrated
using the calibration methods for spatial regression uncertainty. In Sec. 6.5, the basic functionality for the
initialization of new tracks as well as the association between existing tracks and new detections is shown so
that we have everything together to run our evaluations for object tracking in Sec. 6.6. Finally, we summarize
our contributions and findings in Sec. 6.7.

Contributions: In summary, we provide the following contributions to the field of object tracking:
• Derivation of a confidence likelihood to estimate the probability of object existence over time using

the detector’s confidence.
• Integration of semantic confidence calibration methods into the estimation of object existence.
• Integration of time-varying observation uncertainty for the object position which is provided by prob-

abilistic detection models.
• Integration of spatial uncertainty calibration methods into the estimation of object position.
• Evaluation of the performance and calibration properties of the object tracking when using calibrated

uncertainty.
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6.1 Object Tracking by Detection

In the scope of object tracking, a relationship between objects detected on different frames over time is
established. Common literature on object tracking offers several ways of identifying and tracking single
objects in subsequent frames [47, 46, 125]. In this work, we will focus on the tracking-by-detection paradigm
[123, 124]. This approach utilizes an object detector to identify multiple objects within a single frame.
Subsequently, each detected object is assigned to an object already known by the tracker. If no appropriate
object has been found, a new track is generated (cf. Sec. 6.5). In this scope, each track is within a dedicated
state that consists of the position/shape information, the object’s velocity and/or acceleration, as well as a
confidence score that represents the tracker’s belief of matching a real ground-truth object.

As already mentioned in the previous chapters, common object detectors provide the position/shape infor-
mation as well as a confidence for each detected object. The confidence represents the detector’s belief of
correctness about the individual detection. If we utilize a probabilistic object detector as shown in Chap. 5,
it is also possible to obtain uncertainty information for the position/shape information as well. Thus, we can
provide the object position/shape as well as the semantic and spatial detection uncertainty to the tracking
algorithm. In this chapter, we study the effect of uncertainty calibration on the task of object tracking. For
this reason, we adapt our calibration methods for semantic confidence (Chap. 3) and spatial uncertainty cali-
bration (Chap. 5) and use them as an intermediate calibration step before passing the uncertainty information
to the tracking algorithm. This concept is schematically shown in Fig. 6.1.

Object Detection

Classification Branch
- Confidence -

Probabilistic Regression
- Mean & Uncertainty -

Calibration

Semantic Confidence
Calibration (Chap. 3)

Spatial Uncertainty
Calibration (Chap. 5)

Object Tracking
(Chap. 6)

Track Existence Estimation
- Discrete Bayes Filter -

Object State Estimation
- Kalman Filter -

Track Initialization
and Association

Figure 6.1: Concept of object tracking by detection with additional uncertainty calibration. First, a proba-
bilistic object detector predicts multiple objects in a single frame with uncertainty information
for the object existence and position information. This information is used during object tracking
to establish a relationship between objects in consecutive frames within a sequence of images.
To study the effect of our proposed uncertainty calibration methods from Chap. 3 and Chap. 5,
we add an additional uncertainty calibration step between object detection and object tracking.
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6.2 Recursive Bayesian Filtering

In image-based object tracking-by-detection, we seek to infer the state of an object (e.g., its position and
shape, velocity, acceleration) at time step t given the predictions by an object detection model. In this scope,
an object detection model is used to identify objects within a single frame. The detection model outputs a
label Ŷt ∈ Y with an according confidence P̂t ∈ [0, 1] indicating its belief of matching real-world object
which we denote as M̂t ∼ Bern(P̂t). Furthermore, the detector outputs a probabilistic (Gaussian) estimate
for the object position R̂t ∼ N (µR̂,t,ΣR̂,t) with mean µR̂,t ∈ R and measurement noise covariance matrix
ΣR̂,t ∈ RL×L, where L is the size of the box encoding. Thus, the aggregated observations at time step t are
denoted by Ŝt ∈ S, where Ŝt = (P̂t, Ŷt, R̂t)

⊤.
A standard detection model does not establish a relationship between objects in consecutive frames. Fur-

thermore, the complete state C̃t ∈ C of an object at time step t is not directly observable given a prediction
within a single frame [46, 47, 125]. For example, it is possible to denote the position of an object given the
output of the underlying object detector. However, we can not quantify a velocity and an acceleration of an
object given a single frame [46, 47, 125] as these quantities require more observations of the same object
over time. In our setup, the internal object state for the position information is represented by a Gaussian
kinematic state model of second order [46, p. 268 ff.], i.e., the state information does not only contain the
actual position/shape but also its velocity (first order derivative) and acceleration (second order derivative).
These information are obtained during the tracking process.

In object tracking, we are interested in the (joint) probability distribution for the actual state c̃t given all
previous observations ŝ1, . . . , ŝt−1 as well as the actual observation ŝt, so that the Probability Density Func-
tion (PDF) for the actual state is denoted by f

C̃
(c̃t |̂s1, . . . , ŝt). We further use f

C̃
(c̃t |̂s1:t) for notation

simplicity. Under the Markov assumption, that the actual state c̃t solely depends on the last state c̃t−1 as
well as on the actual observation ŝt [46], the PDF of the updated state variables is given by

f
C̃
(c̃t |̂s1:t) =

fŜ(̂st|c̃t)fC̃(c̃t |̂s1:t−1)∫
C fŜ(̂st|c̃

∗
t )fC̃(c̃

∗
t |̂s1:t−1)dc̃∗t

. (6.1)

The term fŜ(̂st|c̃t) denotes the likelihood of the observation ŝt given the state c̃t, whereas f
C̃
(c̃t |̂s1:t−1)

denotes the probability distribution of the (new) state c̃t given all previous observations. The latter term can
be rewritten using the Chapman–Kolmogorov equation [46], so that it is given by

f
C̃
(c̃t |̂s1:t−1) =

∫
C
f
C̃
(c̃t|c̃t−1)fC̃(c̃t−1 |̂s1:t−1)dc̃t−1, (6.2)

where f
C̃
(c̃t|c̃t−1) denotes the probability of a transition from the previous state c̃t−1 to the actual one c̃t.

Furthermore, f
C̃
(c̃t−1 |̂s1:t−1) is nothing else but the state probability distribution of the last time step. There-

fore, it is required to provide an appropriate modeling for the observation likelihood function as well as for
the state transition distribution. This concept is known as recursive Bayesian filtering. The term in (6.2) is
also known as the prediction step as it can be used to generate predictions for the consecutive step without
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6 Application of Calibration to Object Tracking

observing any new data, whereas the equation in (6.1) is known as the update step that updates the predictions
for the internal state representations by new incoming observations.

We denote the object state of the estimated position by R̃t ∼ N (µ
R̃,t

,Σ
R̃,t

) with mean vector µ
R̃,t

∈ RL∗

and error covariance matrix Σ
R̃,t

∈ RL∗×L∗ , where L∗ is the size of state’s position information, in this case
L∗ = 3 · L (since the state consists of the actual position/shape, the velocity, and the acceleration). For the
state estimation of the object position, a Kalman filter is commonly used which will be explained in Sec. 6.4
in more detail.

Furthermore, we are interested in the belief that the tracked object matches a real ground-truth object given
all observations Ŝ1, . . . , Ŝt until time step t which we denote as M̃t|Ŝ1:t ∼ Bern(P̃t) with the track confi-
dence P̃t ∈ [0, 1]. The estimation of the object existence M̃t can be realized using a discrete Bayes filter.
Both concepts are a realization of the Bayesian filter framework in (6.1) and (6.2) for continuous and dis-
crete random variables, respectively. We further show how to include the calibration methods for semantic
confidence calibration (Chap. 3) and spatial regression uncertainty calibration (Chap. 5) into the tracking
environment.

6.3 Discrete Bayes Filter for Object Existence Estimation

For a proper track management, it is necessary to decide when a track no longer exists, e.g., when it has
not been recognized correctly or the object has left the image area. Commonly, simple techniques such as
exponential moving average (EMA) filters are used to implement a basic track management [126]. However,
such techniques are not aware of the uncertainty that is indicated by the underlying detection model as they
commonly use the information if an appropriate detection has been found for an existing track or not. In this
section, we therefore propose a new track management using the detector confidence for the estimation of
the object existence.

As already mentioned in Sec. 3.2.2, the probability of a match P(M̂t = 1) for an object within a single
frame is a shorthand notation for P(Ŷt = Ȳt, R̂t = R̄t), where Ŷt ∈ Y and R̂t ∈ R are the predicted
label and position of an object at time step t, respectively. An predicted object is considered to match a real
object if the IoU between predicted bounding box and a ground truth box is above a certain Intersection over
Union (IoU) threshold (in our case above 0.5). Furthermore, let Ȳt ∈ Y and R̄t ∈ R denote the respective
ground-truth information for the object label and position, respectively. For each detection, the underlying
object detector outputs a confidence score P̂t indicating its belief that the prediction matches a ground-truth
object, i.e., for M̂t = 1, so that M̂t ∼ Bern(P̂t). When using a position-dependent confidence calibration
model h, it is also possible to construct a Bernoulli distribution for M̂t whose probability parameter depends
on the complete model output Ŝt = (P̂t, Ŷt, R̂t)

⊤, so that M̂t ∼ Bern(h(Ŝt)
) (cf. (3.20) in Sec. 3.3).

For the estimation of the object existence, we are interested in the probability P̃t ∈ [0, 1] that a track
matches a ground-truth object given all previous confidence, label, and bounding box information, where
Ŝ1:t = (P̂1:t, Ŷ1:t, R̂1:t)

⊤ denotes the aggregated observations provided by the detection model. Thus, we
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can interpret the random variable M̃t|Ŝ1:t ∼ Bern(P̃t) for the track confidence similarly. Note that we can
interpret Ŝ1:t either as the aggregated model output, if we use position-dependent confidence calibration
during object existence estimation. Alternatively, it is also possible to assume that Ŝ1:t only represents the
detector’s confidence information, if no calibration or standard calibration methods are used.

From equation (3.3) in Sec. 3.2.1, we know that the confidence P̂t (or its calibrated variants) can be inter-
preted as the direct estimation of the probability parameter of the Bernoulli distribution of M̂t. However, we
can not directly adapt the detector confidence as a raw estimate for the track confidence P̃t as the underlying
random variable M̃t|Ŝ1:t is conditioned on all previous observations. Thus, the target now is to update the
model’s belief of matching a real ground-truth object over time given all previous observations Ŝ1:t. Since
M̃t is a discrete random variable, the probability distribution is given as a Probability Mass Function (PMF),
and we can adapt the Bayesian filtering equation (6.1) for the existence estimation to

P(m̃t |̂s1:t) =
fŜ(̂st|m̃t)P(m̃t |̂s1:t−1)∑

m̃∗
t∈{0,1}

fŜ(̂st|m̃
∗
t )P(m̃∗

t |̂s1:t−1)
, (6.3)

with

P(m̃t |̂s1:t−1) =
∑

m̃t−1∈{0,1}

P(m̃t|m̃t−1)P(m̃t−1 |̂s1:t−1), (6.4)

as the probability for the new state m̃t given the last observations ŝ1, . . . ŝt−1, and fŜ(̂st|m̃t) as the like-
lihood for the observation given the actual state. Here we can see that applying Bayes’ theorem under the
Markov assumption in (6.3) leads to a likelihood function only for the actual observation. We can rewrite
this likelihood to

fŜ(̂st|m̃t) =
P(m̃t |̂st)fŜ(̂st)

P(m̃t)
. (6.5)

Since the probability solely depends on the actual observation, the random variable M̃t|Ŝt stands for the
same intuitive interpretation of matching a ground-truth object given the actual prediction, which is also
reflected by the detector output M̂t|Ŝt. Therefore, we set M̂t|Ŝt = M̃t|Ŝt so that the probability P(m̂t |̂st) =
P(m̂t|p̂t, ŷt, r̂t) is our calibrated confidence known from equation (3.11) in Sec. 3.2.2. The marginal proba-
bility P(m̂t) is nothing else but the average precision of the object detector given a certain IoU threshold. If
we now plug-in the likelihood equation in (6.3), the final filter equation for the track existence is given by

P(m̃t |̂s1:t) =
P(m̂t |̂st)fŜ(̂st)P(m̂t)

−1P(m̃t |̂s1:t−1)∑
m̂∗

t∈{0,1}
P(m̂∗

t |̂st)fŜ(̂st)P(m̂
∗
t )

−1P(m̃∗
t |̂s1:t−1)

(6.6)

=
P(m̂t |̂st)P(m̂t)

−1P(m̃t |̂s1:t−1)∑
m̂∗

t∈{0,1}
P(m̂∗

t |̂st)P(m̂∗
t )

−1P(m̃∗
t |̂s1:t−1)

, (6.7)

because the prior fŜ(̂st) for the detector output is canceled out. In the standard case, it would be sufficient
to use the detector confidence P̂t as the Bernoulli parameter for M̂t|Ŝt. According to equation (3.20) in
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Figure 6.2: Confidence diagram to qualitatively demonstrate the influence of the detector confidence before
and after calibration to the estimation of the existence score over the time. During tracking,
objects with an existence score below the invalid threshold are discarded.

Sec. 3.3, the distribution for M̂t|Ŝt is a Bernoulli using the position-dependent calibration function h :

S → [0, 1] that maps the detector output P̂t, Ŷt, R̂t to a calibrated confidence estimate Q̂t ∈ [0, 1], so
that M̂t|Ŝt ∼ Bern(h(P̂t, Ŷt, R̂t)

). In summary, we need to determine the state transition probabilities
P(m̃t|m̃t−1), the detector precision P(m̂t) on a dedicated data set, and a calibration function h(·) to model
the track existence over time using our position-dependent confidence calibration methods from Sec. 3.3.
Additionally, a confidence threshold is required to decide when to discard an existing track. The influence
of the detector confidence on the object existence estimation before and after calibration is qualitatively
demonstrated in Fig. 6.2 using the precision and transition probabilities from our experiments in Sec. 6.6.

6.4 Kalman Filter for Object Position Tracking

The Kalman filter is an implementation of the recursive Bayes filter in (6.1) for normally distributed state
models and observations. In common applications, the Kalman filter is used to track the position and size
of an object within a sequence of images. The random variables for the internal state as well as the ones for
the observations are represented by multivariate normal distributions. Since a Gaussian is a conjugate prior
to itself, the prediction and update steps in (6.2) and (6.1) can be solved analytically which is advantageous
especially for real-time applications. In this section, we give a short overview of the basic Kalman filter
concept and propose to use the spatial uncertainty of a probabilistic object detector as a time-varying noise
for the observation likelihood. We further show how to use the spatial calibration methods from Chap. 5 to
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perform calibration of the time-varying observation noise.
As already mentioned, we use a Gaussian kinematic state model of second order [46, p. 268 ff.] which rep-

resents the position/shape information as well as the velocity and acceleration of the object’s position/shape
as Gaussian random variables for the state representation. The state for the position/shape follows a mul-
tivariate normal distribution so that R̃t ∼ N (µ

R̃,t
,Σ

R̃,t
) with mean µ

R̃,t
∈ RL∗ and error covariance

Σ
R̃,t

∈ RL∗×L∗ , where L∗ is the state size. The observations for each time step are the predicted bounding
boxes R̂t ∼ N (µR̂,t,ΣR̂,t) obtained by a probabilistic object detector with mean µR̂,t ∈ R and estimated
covariance ΣR̂,t ∈ RL×L, where L is the size of the box encoding.

As we can see in (6.1), we need to define appropriate functions for the state transition and the observation
likelihood. In the setting of a Kalman filter, the state transition is a linear function with transition matrix
Ft ∈ RL∗×L∗ that defines the transition from r̃t−1 to r̃t. The state transition matrix is used to specify the
relationship between position/shape information and the respective velocities/accelerations and is further
used to generate predictions for consecutive time steps. To construct a multivariate normal distribution for
the state, we seek to introduce Gaussian noise with zero mean and covariance Ψt ∈ RL∗×L∗ that is also
known as the system noise of the Kalman filter. Thus, the state transition model is given by

r̃t = Ftr̃t−1 + εt, (6.8)
where εt ∼ N (0,Ψt). (6.9)

This yields a multivariate normal distribution for the state transition distribution given by

f
R̃
(r̃t|r̃t−1) = N (r̃t;FtµR̃,t−1

,Ψt) (6.10)

If the initial prior belief for f
R̃
(r̃0) is also normally distributed, the posterior f

R̃
(r̃t |̂r0, . . . , r̂t) is always

normally distributed as well.
Furthermore, the likelihood is also defined by a linear function with transition matrix Ht ∈ RL×L∗ that

translates from the state space to the observation space. Similar to the state transition, a Gaussian noise with
zero mean and covariance Λt ∈ RL×L is added that represents the observation noise within the Kalman
filter, so that

r̂t = Htr̃t + ϱt, (6.11)
where ϱt ∼ N (0,Λt). (6.12)

In this case, the density function for the observation likelihood is a Gaussian of the form

fR̂(r̂t|r̃t) = N (r̂t;HtµR̃,t
,Λt). (6.13)

For common object detectors, which only provide deterministic predictions for the object’s position and
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shape, the covariance matrix Λt of the observation noise is fixed. The variance for each random variable in
the observation space is commonly set to the mean squared error of the object detector that is obtained on a
dedicated training set [125, p. 16].

Instead, if we use a probabilistic object detector, we can directly provide the estimated uncertainty ΣR̂t
to

the filter, so that the observation noise is time-varying. Therefore, we set Λt = ΣR̂t
if our predictions are ob-

tained by a probabilistic object detector. At this point, we can now integrate our regression calibration meth-
ods from Chap. 5 to recalibrate the spatial uncertainty in each frame before the application of the filter update.
Let h(·) denote a regression calibration method that takes an uncalibrated (multivariate) Gaussian as input
and outputs a recalibrated (multivariate) Gaussian distribution as well. The observation noise then changes
to Λt = h(ΣR̂t

). Note that for the non-parametric uncertainty calibration methods such as Isotonic Regres-
sion (Sec. 5.3.1) and GP-Beta (Sec. 5.3.1), a moment-matching from the non-parametric distributions to a
normal distribution is necessary to integrate the recalibrated uncertainty into object tracking using Kalman
filtering. In contrast, the output of the parametric Variance Scaling (Sec. 5.3.2) and GP-Normal (Sec. 5.4)
can be directly used as these methods already return a Gaussian representation of the uncertainty. Further-
more, we directly use the multivariate extension of the GP-Normal (Sec. 5.4.1) for recalibration. Since the
probabilistic object detector only estimates the position/shape information independently, we further inte-
grate our covariance estimation scheme presented in Sec. 5.4.2 to include possible correlations between the
observation quantities into the observation noise.

In summary, for Kalman filter implementation, the definition of the transition model Ft is given by the
used kinematic state model, whereas the observation matrix Ht defines the translation from the state space
to the observation space. For the observation noise Λt, we adapt the Gaussian uncertainty of the underlying
probabilistic object detector as our observation uncertainty. In this way, we are able to integrate our spatial
uncertainty calibration methods from Chap. 5 into object tracking.

6.5 Track Initialization and Association

At each time step t, it is necessary to either assign an observation by the object detector to an existing track
or to generate a new track if no appropriate track has been found. The assignment is commonly performed
by calculating a distance metric between each observation and each track [46, 125]. As a distance metric,
the Normalized Innovations Squared (NIS) is commonly used which is related to the Normalized Estimation
Error Squared (NEES) (cf. Sec. 5.2.1) [46, 125]. The NIS is the squared Mahalanobis distance between a
prediction by the object detector and the predicted position of an existing track for the actual time step t

NIS :=
(
µR̂t

−HtµR̃t

)⊤(
HtΣR̃t

H⊤
t +ΣR̂t

)−1(
µR̂t

−HtµR̃t

)
, (6.14)

where µR̂t
, µ

R̃t
are the mean and Σ

R̃t
, ΣR̂t

are the predicted track mean and covariance by the object
tracker, and the observation mean and covariance by the object detector, respectively. Similar to the NEES
(cf. Sec. 5.2.1), the NIS can be interpreted as an equation for an ellipsoid that - given a certain quantile level
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Figure 6.3: Concept of Kalman filtering illustrated by the example of a single vehicle. On the first frame
(left), an object detector (red) detects a vehicle with a certain spatial uncertainty for the bounding
box edges. However, a track has not been initialized so far. In the consecutive frame (right), the
object detector still recognizes the object and produces a prediction. In the meantime, the object
tracker initialized a track and predicts its next position (green). Finally, it associates the detector
observation to the actual track and updates the internal position (blue).

τ ∈ [0, 1] - spans a Highest Posterior Density Region (HPDR) for a certain τ and for the aggregated state
and observation uncertainty.

Thus, we can construct a distance matrix DNIS ∈ RL∗×L
>0 containing the NIS scores between all existing

tracks and all observations. Commonly, a quantile threshold is set for the NIS using a χ2
L distribution with

L degrees of freedom that determines the region in which an appropriate detection is searched for the as-
signment. This threshold is used to mark single entries as invalid for the final assignment. For the final
association step, we use the Hungarian method [127] which is a combinatorial optimization algorithm that
is used to obtain the optimal observation-to-track assignment by minimizing the overall assignment costs
given a cost matrix which is the matrix DNIS in our case. If no appropriate existing track can be found for
an observation, a new track is initialized at the position of the observation. The concept of Kalman filtering
is qualitatively shown in Fig. 6.3

6.6 Experiments for Calibration in Object Tracking

To evaluate the influence of calibration on the task of object tracking, we use the Berkeley DeepDrive data
set as well as the same Faster R-CNN network architecture with a probabilistic regression branch for the
object position as within our evaluations for spatial uncertainty calibration (cf. Sec. 5.5). For object tracking
evaluation, the Berkeley DeepDrive tracking data set provides 200 sequences with approx. 200 frames per
sequence on average with a frame rate of 5 Hz. We split these sequences and use the first half as a training
set to train the calibration methods as well as to get the average precision P(m̂t) and the state transition prob-
abilities P(m̂t|m̂t−1) which are both required to set up the object tracking model. For precision calculation
and calibration training, we use an IoU threshold of 0.5.
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As described in Sec. 6.5, the NIS score between existing tracks and incoming detections in conjunction with
the Hungarian algorithm [127] is used for a track-to-detection association. We further use a HPDR with a
quantile level of 0.95 to search for appropriate observations for each track. During object tracking, each track
with an existence probability below 0.3 is dropped. For object tracking evaluation, we use the MOT metrics
accuracy MOTA, precision MOTP, and the ratio of correctly identified detections over the average number
of ground-truths and detections which is denoted by IDF1 [128, 129]. The MOTA metric reflects the error
ratios of false positives, false negatives, and identity switches and is given by

MOTA := 1−

[∑T
t=1

[FPt + FNt + IDSwt

]∑T
t=1Nt

]
, (6.15)

with T as the number of frames, where Nt is the number of ground-truth samples present at time step t.
Furthermore, FPt, FNt, and IDSwt are the false positives, false negatives, and identity switches at time step
t, respectively. The MOTP metric denotes the misalignment between the tracks and the respective ground-
truth objects and is given by

MOTP :=

∑T
t=1

∑N
n=1

[
1(m̂t,n = 1) · ||r̃t,n − r̄t,n||2

]∑T
t=1 TPt

, (6.16)

where TPt are the number of true positives at time step t and ||r̃t,n− r̄t,n||2 is the Euclidean distance between
the estimated track position r̃t,n and the ground-truth position r̄t,n for object n at time step t, respectively.
Besides these metrics, we further calculate the average false positives (FP) and average false negatives (FN)
per frame as well as the average ID switches (IDSw) per object. Finally, we denote the fraction of objects
whose trajectories have been covered more than 80% (mostly tracked MT), whose trajectories have been
covered between 20% and 80% (partially tracked PT), and which are covered only below 20% (mostly lost
ML). For the final evaluation of the MOT metrics, we filter all tracks that have an existence probability above
0.5. The tracks with a confidence above the invalid threshold of 0.3 and below the evaluation threshold of
0.5 are used during object tracking but are discarded during MOT evaluation.

In contrast, we evaluate the calibration metrics using all available information to measure the calibration
properties on the complete confidence range. Thus, we only apply the invalid threshold of 0.3 only dur-
ing object tracking. Similar to the evaluations for semantic confidence calibration in Sec. 3.4, we use the
Expected Calibration Error (ECE), the position-dependent Detection Expected Calibration Error (D-ECE),
the Brier score, and the Negative Log Likelihood (NLL) with the same setup as within Sec. 3.4 to evaluate
the calibration properties of the object existence score. For the evaluation of the spatial uncertainty in object
tracking, common literature uses the NEES as an evaluation metric [46, 47]. In Sec. 5.2.1, we use the NEES
to construct the Marginal Quantile Calibration Error (M-QCE) metric which is more interpretable as it de-
notes the average error (in percent) between predicted and observed quantile. Therefore, we use the M-QCE
as well as the NLL with the same setup as within Sec. 5.5 to evaluate the spatial uncertainty calibration.
Note that the evaluation of the NEES is commonly performed on the estimated states directly which requires
ground-truth information for the whole state vector. However, no ground-truth information for the velocity
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and acceleration are available by the used data set. Furthermore, we perform the state estimation in image
coordinates in our setup. To mitigate these limitations, we transform the estimated states to the observa-
tion space using (6.11) and evaluate the state estimation using the available ground-truth information for the
object location and size in image coordinates. In the next section, we present our results using uncertainty
calibration for object tracking.

6.6.1 Evaluations for intermediate Semantic Confidence Calibration

We start with including the semantic confidence calibration methods into the object tracking that have been
presented in Sec. 3.3. For confidence calibration, we use the standard Histogram Binning [36], Logistic Cal-
ibration [35], and Beta Calibration [43] as well as their multivariate and position-dependent counter parts
presented in Sec. 3.3.1 and 3.3.2, respectively. In the following, the position-dependent methods are denoted
by “mv.” to distinguish between the standard confidence-only and the multivariate calibration methods. For
the position-dependent Logistic Calibration and Beta Calibration, we further distinguish between the con-
ditional independent (indep.) and the conditional dependent (dep.) variants which also model correlations
between the position information (cf. Sec. 3.3.2). The results of the object tracking with semantic confidence
calibration are presented in Tab. 6.1 and Tab. 6.2 with the MOT and calibration metrics, respectively. Fur-
thermore, the calibration results are presented in Fig. 6.4 and 6.5 as reliability diagrams and as a visualization
of the track coverage, respectively.

Although we observe a coverage drop in the track trajectories after calibration (cf. MT, PT, and ML in
Fig. 6.5), we are able to achieve a significant improvement in the overall MOTA tracking accuracy, the
MOTP tracking precision and the IDF1 score. All calibration methods lead to significant improvements
in the overall tracking performance, whereas the position-dependent Histogram Binning is able to achieve
the best results. We observe a major decrease in the average scores of false positives per frame (FP) but
also an increasing score of average false negatives (FN) which, however, is not as large as the drop of false

Table 6.1: Results in the MOT metrics for object existence estimation using semantic confidence calibration
The best scores are highlighted in bold. The multivariate Histogram Binning as well as the mul-
tivariate and conditionally dependent scaling methods achieve the best results.

Calibration
method

Calibration
type MOTA MOTP IDF1 IDSw FP FN MT PT ML

Uncalibrated - 36.845 82.679 47.88 2.23 3.06 3.16 0.382 0.438 0.180
Histogram
Binning

conf. only 44.201 84.212 50.11 1.68 1.52 4.12 0.273 0.456 0.270
mv. 47.404 83.805 50.98 1.64 1.41 3.88 0.266 0.497 0.237

Logistic
Calibration

conf. only 43.581 84.342 50.06 1.61 1.52 4.22 0.263 0.458 0.279
mv. (indep.) 42.086 84.396 49.53 1.71 1.64 4.23 0.261 0.458 0.281
mv. (dep.) 43.226 84.422 49.97 1.58 1.55 4.25 0.260 0.461 0.279

Beta
Calibration

conf. only 43.505 84.371 50.10 1.59 1.53 4.24 0.259 0.459 0.282
mv. (indep.) 42.941 84.329 49.71 1.67 1.59 4.20 0.270 0.450 0.280
mv. (dep.) 43.661 84.323 49.87 1.58 1.57 4.17 0.267 0.456 0.277
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positives. In safety-critical applications, the false negatives are particularly important since objects that are
not detected pose a potential safety risk. Changing the confidence threshold value during object tracking
for filtering the objects could counteract this phenomenon in order to increase the sensitivity of the model.
Furthermore, we observe that the average number of ID switches per object is decreasing (IDSw). If we
further inspect the calibration results given in Tab. 6.2, we can see an overall improvement of the confidence
calibration properties with intermediate calibration. In this case, the standard confidence methods but also
our multivariate and conditionally dependent Logistic Calibration and Beta Calibration (cf. Sec. 3.3.2) are
able to achieve the best calibration performance. In Fig. 6.4, we show the reliability diagrams for the track
confidence before and after calibration by a standard Histogram Binning [36] as well as by our position-
dependent Histogram Binning (cf. 3.3.1). By examining these diagrams, we can see the benefit of position-
dependent calibration as it further improves the calibration properties of the object tracking scores. Especially
in Fig. 6.4ii, we observe that the position-dependent Histogram Binning leads to an improvement in the
calibrated tracking scores across all image regions.

6.6.2 Evaluations for intermediate Spatial Uncertainty Calibration

Subsequently, we investigate the effect of spatial uncertainty calibration on object tracking. For this reason,
we use the Isotonic Regression [34], Variance Scaling [42, 18], and GP-Beta [41] for uncertainty recali-
bration. Since Isotonic Regression and GP-Beta yield non-parametric distributions as calibration output, it
is necessary to extract the expectation and the variance of the recalibrated distributions which allows for a
Gaussian approximation (moment-matching). This is mandatory as the Kalman filter only works with nor-
mal distributions. In addition to these methods, we also adapt our GP-Normal uncertainty calibration method
presented in Sec. 5.4 which directly yields Gaussian distributions after calibration. In our experiments, we
use the GP-Normal under the assumption of independent output variables as well as the multivariate (mv.)
GP-Normal that performs covariance estimation of independently learned quantities (cf. Sec. 5.4.2). In this
way, we can also evaluate the effect of covariance estimation calibration. The results of the object tracking

Table 6.2: Results in the calibration metrics for object existence estimation using semantic confidence cali-
bration. The multivariate dependent Beta Calibration offers the best calibration performance.

Calibration method Calibration
type

Semantic metrics Spatial metrics
ECE D-ECE Brier NLL M-QCE NLL

Uncalibrated - 0.174 0.174 0.177 0.560 0.107 19.095
Histogram Binning conf. only 0.075 0.080 0.130 0.403 0.117 18.027

mv. 0.070 0.077 0.144 0.456 0.119 15.227

Logistic Calibration
conf. only 0.073 0.078 0.130 0.390 0.117 19.153
mv. (indep.) 0.083 0.088 0.134 0.444 0.116 19.870
mv. (dep.) 0.071 0.077 0.128 0.384 0.117 19.146

Beta Calibration
conf. only 0.073 0.079 0.127 0.384 0.117 19.286
mv. (indep.) 0.080 0.085 0.130 0.424 0.116 19.010
mv. (dep.) 0.079 0.077 0.114 0.357 0.117 19.239
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(i) Reliability diagrams w.r.t. the confidence only (0d). The uncalibrated object tracking is consistently overconfident
for all confidence levels. This is mitigated by standard Histogram Binning [36] and even further improved using our
position-dependent Histogram Binning (cf. Sec. 3.3.1).
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(ii) Reliability diagrams w.r.t. the cx and cx position of the tracked objects (2d). The standard Histogram Binning [36]
improves the calibration properties of the uncalibrated object tracking. However, our position-dependent Histogram
Binning is able to reduce miscalibration consistently for nearly all image regions.

Figure 6.4: Reliability diagrams (object tracking) of the semantic confidence for a Faster R-CNN on the
Berkeley DeepDrive tracking calibration validation set before and after calibration by Histogram
Binning. For each frame, we determine for each track if it matches a real ground-truth anno-
tation. In combination with the track confidence for each object at a certain time step, we are
able to compute a reliability diagram over all objects and time steps. As already known from the
evaluations for object detection calibration in Sec. 3.4.1, the Faster R-CNN is consistently too
overconfident in its predictions. Accordingly, we can observe the same phenomenon for the track
confidence. If we now apply intermediate confidence calibration by standard Histogram Binning,
we can also observe a better calibration for the track confidence. The calibration properties are
further improved by our position-dependent Histogram Binning (cf. Sec. 3.3.1).
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(ii) Ground-truth coverage before and after calibration.
Figure 6.5: Visualization of the MOT metrics before and after semantic confidence calibration. In this case,

the position-dependent (mv.) Histogram Binning achieves the best results in the MOTA metric
(left diagram). Furthermore, it is almost able to preserve the tracking coverage of the uncalibrated
baseline model (right diagram).

with spatial uncertainty calibration are presented in Tab. 6.3 and Tab. 6.4 with the MOT and calibration met-
rics, respectively. Furthermore, we present the reliability diagrams as well as a visualization of the trajectory
coverage in Fig. 6.6 and 6.7, respectively.

As already suggested in the evaluation of the regression uncertainty calibration methods in Sec. 5.5 and
5.6, the parametric calibration methods Variance Scaling and GP-Normal, that directly output normal distri-
butions as calibration output, offer the best performance in our examinations. Especially the (independent)
GP-Normal is able to achieve a significant improvement of the overall tracking accuracy (MOTA). Further-

Table 6.3: Results in the MOT metrics of object tracking using spatial uncertainty calibration of the position
uncertainty. The best scores are highlighted in bold. Our (independent) GP-Normal method is able
to achieve the overall best tracking accuracy MOTA. The non-parametric Isotonic Regression [34]
is able to achieve the best results regarding the ID switches.

Calibration
method MOTA MOTP IDF1 IDSw FP FN MT PT ML
Uncalibrated 36.845 82.679 47.88 2.23 3.06 3.16 0.382 0.438 0.180
Isotonic Regression 37.315 81.777 49.76 2.00 3.05 3.18 0.383 0.434 0.183
Variance Scaling 37.557 82.611 48.30 2.18 3.03 3.13 0.391 0.432 0.178
GP-Beta 37.316 82.629 48.30 2.20 3.04 3.13 0.388 0.434 0.178
GP-Normal 37.702 82.608 48.43 2.21 3.04 3.13 0.392 0.429 0.179
GP-Normal (mv.) 34.917 82.759 46.20 2.38 3.18 3.19 0.373 0.446 0.181
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6 Application of Calibration to Object Tracking

more, the (independent) GP-Normal as well as the Variance Scaling are able to reduce the number of false
positives while not degrading the amount of false negatives. Interestingly, the multivariate GP-Normal is
able to improve the tracking precision (MOTP) and seems to provide very good results for the calibration
properties of the estimated quantiles regarding the spatial uncertainty (cf. Fig. 6.6). However, the multivari-
ate GP-Normal also leads to a loss in the tracking accuracy. This is mainly caused by the deterioration in the
tracking IDF1 score. We further discuss these observations in the next section.

6.6.3 Discussion of the Effect of intermediate Calibration

In our experiments, both types of uncertainty calibration offer an improvement in the tracking performance.
Especially in the case of semantic confidence calibration, we assume that the calibrated confidence leads to
a significant improvement of the track management. In our evaluations for the MOT metrics, we filter all
tracks that have an existence confidence of above 0.5. After semantic confidence calibration, this probability
of object existence is more interpretable as it better reflects the true (observed) probability of existence.
Thus, we have a higher chance of accessing all tracks that have a true (observed) probability of being alive
using a threshold of 0.5. However, we also observer an increase of false negatives which poses a potential
safety risk that needs further investigation. Nevertheless, we conclude that an improved confidence score
leads to a better object tracking performance. We observe that our position-dependent confidence calibration
methods and especially the multivariate Histogram Binning (cf. Sec. 3.3.1) are able to further improve the
tracking performance compared to the standard confidence-only calibration methods. Thus, we assume that
the additional position-dependency is advantageous to reliably reflect the tracking existence score which, in
turn, leads to an improved track management/filtering during object tracking and evaluation.

The evaluation of the methods for spatial uncertainty calibration reveals that the non-parametric Isotonic
Regression [34] achieves the best results regarding the ID switches and the spatial NLL. An advantage of the
non-parametric calibration methods is that they can not only recalibrate the variance but also the mean of the
calibrated distribution. Furthermore, the Isotonic Regression has much more degrees of freedom as it offers

Table 6.4: Results in the calibration metrics of object tracking using spatial uncertainty calibration of the
position uncertainty. The best scores are highlighted in bold. The GB-Beta is the only calibration
method that leads to slight improvements in the metrics for semantic confidence calibration. In
contrast, the non-parametric Isotonic Regression [34] leads to a significant improvement in the
spatial NLL score. The multivariate GP-Normal achieves the best multivariate quantile coverage.

Calibration method Semantic metrics Spatial metrics
ECE D-ECE Brier NLL M-QCE NLL

Uncalibrated 0.174 0.174 0.177 0.560 0.107 19.095
Isotonic Regression 0.188 0.188 0.186 0.605 0.204 15.561
Variance Scaling 0.175 0.175 0.177 0.562 0.152 17.271
GP-Beta 0.173 0.173 0.176 0.560 0.135 17.916
GP-Normal 0.175 0.175 0.177 0.563 0.151 17.279
GP-Normal (mv.) 0.176 0.176 0.179 0.564 0.073 21.894
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(i) Reliability diagram for the track cx coordinate.
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(ii) Reliability diagram for the track cy coordinate.
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(iii) Reliability diagram for the track width.
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(iv) Reliability diagram for the track height.
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(v) Reliability diagram for the joint multivariate quantile.

Figure 6.6: Reliability diagrams (object tracking) of the spatial uncertainty for a Faster R-CNN before and
after uncertainty calibration. Especially in the reliability diagrams for the single bounding box
quantities, the multivariate GP-Normal leads to the best calibration properties. However, this
seems to be detrimental for the multivariate quantile where the quantile coverage decreases.
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(ii) Ground-truth coverage before and after calibration.
Figure 6.7: Visualization of the MOT metrics before and after spatial uncertainty calibration. Except for the

Isotonic Regression [34], each calibration method is able to keep the trajectory coverage during
object tracking. The gain in the MOT tracking accuracy MOTA is not as large as for semantic
confidence calibration in Fig. 6.5. In this case, the standard GP-Normal is able to achieve the
overall best tracking accuracy.

a dynamic amount of bins that are used for the recalibration of the Cumulative Density Function (CDF).
In contrast, the non-parametric GP-Beta [41] is also able to offer better tracking accuracy (MOTA), less
ID switches, and an improved NLL score. However, although the GP-Beta is able to calibrate by means
of distribution calibration, the method is still limited to a certain type of recalibration functions due to its
parametrization. At this point, it is remarkable that the simple Variance Scaling [42, 18], which is nothing
else but a Temperature Scaling [13] for the variance of a normal distribution, is also able to achieve good
tracking results although it only uses a single parameter for recalibration. In the experiments, our GP-Normal
(cf. Sec. 5.4) is able to even further improve the performance of the object tracking. As described in Sec. 5.4,
the GP-Normal is a combination of the Variance Scaling and the flexible parameter estimation of the GP-
Beta. As already suggested for the spatial uncertainty calibration methods in Sec. 5.5, we can confirm in
our evaluations for object tracking that a direct Gaussian fit during uncertainty calibration is advantageous
if subsequent applications (such as Kalman filtering in this case) also require normal distributions. In our
experiments, we observe a superior recalibration performance of our GP-Normal as it offers a higher flexibil-
ity in calibration compared to the standard Variance Scaling. The multivariate GP-Normal with covariance
estimation offers the best scores for the spatial quantile calibration (M-QCE), tracking precision (MOTP),
and does not lead to a deterioration of the semantic confidence calibration metrics as opposed to the remain-
ing spatial calibration methods. Furthermore, the reliability diagrams in Fig. 6.6 show a good calibration
performance of the multivariate GP-Normal. However, it does not lead to the desired improvement in the
tracking performance as initially assumed. As already mentioned, the loss in tracking accuracy is mainly
caused by the higher amount of ID switches during object tracking. In our experiments, we observe that
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the multivariate GP-Normal leads to better calibrated but also narrower prediction intervals. We assume
that less observations are assigned to existing tracks, leading to intermediate losses of interrelated object
IDs. In contrast, the non-parametric Isotonic Regression leads to wider prediction intervals which might be
advantageous for the track assignment on the one hand. On the other hand, this also leads to less tracks that
are mostly tracked (cf. Fig. 6.7) as well as to a lower tracking precision MOTP which might be a hint that
the recalibrated uncertainty is also not optimal. Since the track association does also depend on the (static)
system uncertainty, we assume that an adjustment of the system noise should be done in conjunction with
the new spatial calibration methods. This is subject of future work.

Therefore, we conclude that a calibration of the semantic confidence and spatial uncertainty leads to sig-
nificant improvements in object tracking. We can confirm our initial suggestions from Sec. 5.5 that a direct
Gaussian fit during spatial recalibration is advantageous for subsequent applications such as Kalman filtering
that require normal distributions as an interface. Furthermore, our position-dependent semantic confidence
calibration methods (cf. Sec. 3.3) and especially the multivariate Histogram Binning showed superior per-
formance in our evaluations compared to the standard calibration methods.

6.7 Conclusion for Calibration in Object Tracking

The goal of this chapter is to show a possible use-case of uncertainty calibration for subsequent applications
after object detection. For example, in the context of autonomous driving, it is important to not only detect
objects but also to track their position over time. This is a crucial part of image-based environment perception.
In this chapter, we therefore applied the methods for semantic confidence calibration from Chap. 3 and for
spatial uncertainty calibration from Chap. 5 to the task of object tracking. For this reason, we have introduced
the concept of tracking-by-detection where an object detector is used to obtain observations of possible
objects within a single frame. These observations were used in a recursive Bayesian filtering framework
to construct object trajectories that are tracked over multiple subsequent frames. An object tracking model
consists of a position tracking as well as a track management with an assessment of the belief that a track
is alive, i.e., the belief that it matches a real ground-truth object. Therefore, we have firstly derived a belief
model for the object existence that consumes the (calibrated) confidence information of the object detector
to make assumptions of the probability for the track existence. Second, we have introduced the concept
of Kalman filtering which is an implementation of the recursive filtering using normal distributions. The
Kalman filter is used to track the position information of an object. Furthermore, the Kalman filter is also
capable to process the uncertainty which is inherent in the observations obtained by the object detector. Thus,
we used a probabilistic object detector (cf. Sec. 2.2.2) to obtain individual uncertainty quantifications for
each observation. In this context, we have applied our spatial uncertainty calibration methods from Chap. 5
for uncertainty recalibration. Therefore, we have been able to evaluate the effect of intermediate uncertainty
calibration on the task of object tracking.

The evaluations show that both types of uncertainty calibration lead to significant improvements in the
basic tracking performance as well as in the calibration properties of the track uncertainty. We can show that
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semantic confidence calibration leads to improved tracking performance with some limitations regarding
the increase of false negatives. Furthermore, our position-dependent calibration methods and especially the
multivariate Histogram Binning (cf. Sec. 3.3.1) showed superior performance. Thus, the calibration of the
semantic confidence had a positive influence on the management of individual tracks during object tracking.
Similarly, the methods for spatial uncertainty calibration also showed an improvement of the object tracking
performance as well as the spatial uncertainty representation of the tracked objects. In this case, the non-
parametric Isotonic Regression [34] and especially our parametric GP-Normal (cf. Sec. 5.4) showed superior
performance when applied to the task of object tracking. Thus, we can confirm our initial assumptions
from Sec. 5.5 that Gaussian calibration methods such as Variance Scaling [42, 18] or our GP-Normal are
advantageous if used in conjunction with subsequent applications that use normal distributions as input (such
as Kalman filtering in our case).

Therefore, we conclude that uncertainty calibration in general has the potential to influence the object track-
ing positively Furthermore, our extended position-dependent confidence calibration methods (cf. Sec. 3.3)
as well as our extended distribution-aware regression calibration methods (cf. Sec. 5.4) were able to fur-
ther improve the tracking performance as they are a valuable contribution to better reflect the uncertainty of
individual samples. For future applications, it might be interesting to investigate the effect of intermediate
Bayesian confidence calibration (cf. Sec. 4.1) to the task of object tracking. In this case, the object con-
fidence is represented by a sample distribution obtained by the Bayesian calibration methods. A possible
use case might be to adapt a particle filter framework to directly track the confidence distribution over time.
For the track management, a track might then be discarded if the expected confidence falls below a certain
threshold or if the variance of the confidence distribution gets too high. We let this open for future research
as it might be a valuable contribution to the context of object tracking.
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In this work, we evaluated the consistency of uncertainty quantification in the context of image-based object
detection which is a part of environment perception, e.g., for safety-critical applications such as autonomous
driving functions. Especially for safety-critical applications, a reliable uncertainty assessment is of special
interest. Modern detection algorithms are based on neural networks that aim to identify multiple objects with
their position, size, and their class within a single image. However, it is a known issue that modern neural
networks tend to produce either overconfident [13] or underconfident [2] uncertainty estimations, depending
on their architecture and use-case. Therefore, we started by introducing the basic concepts of object detec-
tion and uncertainty quantification in Chap. 2. Furthermore, we evaluated the semantic confidence (Chap. 3)
as well as the spatial uncertainty (Chap. 5) for consistency throughout this work which both represent the
uncertainty in the class label and the spatial position uncertainty, respectively. Both types of uncertainty
are estimated by probabilistic object detection models [40, 71, 16]. Thus, our target was not to evaluate or
improve the baseline detection performance (e.g., precision or recall) but to assess if the predicted uncertain-
ties reliably represent the model’s uncertainty which is equivalent to the observed error. Besides measuring
for uncertainty consistency, i.e., for calibration, we focused on methods which seek to correct possibly un-
calibrated uncertainty estimates without the need of retraining a detection model. Thus, it is possible to
learn and apply a post-hoc remapping either of semantic or spatial uncertainty to achieve an improved rep-
resentation of the observed error. In the last Chap. 6, we evaluated the effect of uncertainty calibration on a
subsequent object tracking. In contrast to object detection, a tracking model seeks to track the same object
across a sequence of frames over time. The object tracking is based on a mathematical framework in which
we can integrate our proposed calibration methods. Therefore, we have been able to evaluate our uncertainty
calibration methods for the complete perception pipeline from object detection to object tracking.

7.1 Summary of Semantic Confidence Calibration

In Chap. 3, we started with our evaluations for the calibration of the semantic confidence in the context of
object detection. Similar to the task of classification, an object detector provides a confidence score but
for each detection individually. This confidence can be interpreted as the model’s belief of matching a real
ground-truth object. In a first step, we extended the definition of confidence calibration to the task of object
detection and further introduced a dependency on the object position to the definition of calibration. Thus,
it is possible to measure the influence of the additional position information on the calibration of the confi-
dence score. Besides object detection, we also provided the respective calibration definitions for instance and
semantic segmentation. On this basis, we extended common calibration methods such as Histogram Binning
[36], Logistic Calibration [35], and Beta Calibration [43] to also include additional position information into
the recalibration of detection or segmentation models. We extended these methods in a way so that they are
capable of capturing possible correlations between confidence, position information, and miscalibration. In
the scope of semantic segmentation, we could not find a major improvement in calibration as the examined
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models already provide qualitatively well-calibrated confidence estimates. In contrast, we have been able to
significantly improve the calibration as well as the mask quality of instance segmentation models. Further-
more, we found the examined object detection models to be miscalibrated which could be improved using our
calibration methods. Although we could only find a minor connection between position and miscalibration,
our extended methods offered a qualitatively good calibration performance. In Chap. 6, we further evalu-
ated the effect of (position-dependent) confidence calibration on the task of object tracking. For this reason,
we derived a framework to estimate the score for the object existence using the confidence provided by the
underlying detection model. When semantic confidence calibration was applied as an intermediate step, we
observed that calibration in general and especially our position-dependent calibration methods are able to
significantly improve the tracking performance as well as the intrinsic track calibration properties. Therefore,
we conclude that semantic confidence calibration in general and especially our position-dependent methods
are able to enhance the tracking performance as well as the consistency of the track uncertainty which is a
valuable contribution especially for safety-critical applications.

7.2 Summary of Bayesian Confidence Calibration

Basically, the methods for semantic confidence calibration are obtained by standard Maximum Likelihood
Estimation (MLE). This approach yields deterministic parameters for the calibration functions. However,
especially during position-dependent calibration, it might occur that a new sample during inference is out of
the known distribution that has been used to learn the calibration parameters within the training phase. In
Chap. 4, we therefore proposed the term of Bayesian confidence calibration that introduces additional epis-
temic (model) uncertainty into a calibration mapping. Similar to Bayesian neural networks, we can construct
a calibration function whose parameters are not deterministic but rather represented by probability distribu-
tions. During inference, we can sample from these distributions to obtain a sample distribution for each
calibrated estimate that represents the epistemic uncertainty of the calibration model. In this context, we uti-
lized Stochastic Variational Inference (SVI) to place variational Gaussian distributions over each calibration
parameter and to learn the moments of the variational distribution during calibration training. In this way, we
are able to treat the calibration functions in a Bayesian way which allows to construct probability distributions
for the calibrated confidences. In our evaluations, we showed that a calibration method learned by SVI is able
to offer the same calibration performance compared to the standard methods learned by MLE. Furthermore,
the Bayesian calibration models provide an additional uncertainty for the calibrated confidence. We showed
that this additional uncertainty might be used as a sufficient criterion to detect a possible covariate shift.
Therefore, Bayesian confidence calibration is valuable extension especially for safety-critical applications
where a reliable uncertainty assessment of each component is of great importance.
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7.3 Summary of Spatial Uncertainty Calibration

After our examinations for the consistency of semantic confidence, in Chap. 5 we focused on the calibra-
tion properties of spatial uncertainty. Similar to the semantic confidence, the spatial uncertainty should
represent the observed error during inference. In this context, we reviewed several definitions for regres-
sion uncertainty calibration and related them to each other. Each of these definitions comes with its own
metrics to measure miscalibration that we use in our evaluations later on. Furthermore, we presented com-
mon calibration methods in the context of spatial uncertainty calibration that are divided into parametric and
non-parametric methods. The parametric calibration methods output a parametric probability distribution
(commonly Gaussian) after calibration, whereas the non-parametric methods output a probability distribu-
tion of arbitrary shape. Subsequently, we proposed an extended parametric calibration method GP-Normal
that is capable to jointly recalibrate multiple dimensions in a single forward pass while capturing possible
correlations between these dimensions. In addition, we proposed a covariance estimation scheme which
allows to introduce and model correlations between dimensions that have been learned independently from
each other. The experiments for the spatial calibration methods showed that the simple non-parametric Iso-
tonic Regression [34] offers the best results when applied to a probabilistic object detector. Additionally,
our extended GP-Normal method has also been able to achieve a good calibration performance. When ap-
plied to a subsequent object tracking in Chap. 6, we confirmed these observations and further observed that
especially the parametric Gaussian calibration methods achieve a good performance. In these experiments,
we have been able to confirm our initial assumptions that a direct modeling of a Gaussian distribution is
advantageous if a subsequent application such as Kalman filtering also requires a parametric Gaussian as
well. Therefore, similar to the task of semantic confidence calibration, we conclude that spatial uncertainty
calibration is a good way to improve the uncertainty consistency of a detection as well as a state estimation
within object tracking.

7.4 Final Remarks

In this work, we evaluate the uncertainty of detection and tracking models before and after the application
of post-hoc calibration methods. In our experiments, we can show that each kind of calibration is a valuable
contribution towards consistent uncertainty and thus to an improved assessment of the model’s reliability.
Our extended calibration metrics and methods from chapters 3 and 5 have shown to be a good contribution
for the safety-relevant context. In the final Chap. 6, we have been able to show that the task of calibration
is not only relevant for the object detection itself but also advantageous for subsequent applications such
as object tracking. Therefore, we conclude that calibration in general and especially our newly proposed
methods are precious contributions within a safety-relevant context.
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