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INTRODUCTION

Let K be a non-archimedean local field of residue characteristic p. The Drinfeld upper
half space of dimension d € N over K is defined as the complement

X::]P’i(\ U )
1



2 GEORG LINDEN

of all K-rational hyperplanes in d-dimensional projective space, and naturally carries a rigid-
analytic structure. It is of interest in arithmetic geometry for a number of reasons, one of
which is the study of its cohomology. This aspect originates from Drinfeld conjecture [24]
(specified by Carayol [15]) that the (compactly supported) f-adic cohomology of the étale
coverings of X realises the supercuspidal part of the local Langlands and Jacquet—-Langlands
correspondences which by now has been proven [28] [35] [36]. Results in this direction include
the computation of the étale cohomology with torsion coefficients prime to p, and, for p-adic
K, the de Rham cohomology of X by Schneider and Stuhler [69]. The compactly supported
l-adic cohomology, with ¢ # p, has been determined by Dat [21]. More recently Colmez,
Dospinescu and Niziol computed the p-adic étale and pro-étale cohomology of X, for p-adic
K [20]. They also show that, for d = 1 and K = Q,, the p-adic étale cohomology of the
étale coverings of X’ encodes the p-adic local Langlands correspondence for 2-dimensional de
Rham representations (of weight 0 and 1) |19].

On a slightly different note in [68], for p-adic K, Schneider introduced the notion of (p-adic)
holomorphic discrete series representations of GLg4y1(K), when studying the cohomology of
local systems on certain projective varieties uniformized by X. These representations occur
as the space of global rigid analytic sections H°(X,€) of GLg41, k-equivariant vector bun-
dles £ on IF’% restricted to X'. Their strong dual spaces are locally analytic representations
as introduced by Féaux de Lacroix and Schneider—Teitelbaum. Extending previous work
by Y. Morita for the SLs-case, descriptions of these resulting locally analytic GLg41(K)-
representations were given by Schneider and Teitelbaum [70] for the canonical bundle Q4

P4
by Pohlkamp [60] for the structure sheaf Opa , and by Orlik [56] for general £. "

In this work our goal is to describe the global rigid analytic sections of homogeneous vector
bundles on IE”‘}( restricted to the Drinfeld upper half space X over a general non-archimedean
local field K. We thereby adapt Orlik’s methods from [56] in a way that they are applicable
in the case when K has positive characteristic as well. We note that the coherent cohomology
of such vector bundles is solely concentrated in the global sections because X is a Stein space.

The basic definitions and results for locally analytic representations transfer from the p-
adic case to the setting over a non-archimedean field of positive characteristic. This was
already remarked by Grif in [32]. Even the anti-equivalence between locally analytic rep-
resentations of a locally analytic Lie group G and modules over algebras D(G) of locally
analytic distributions realised by passing to the strong dual spaces is still valid, and we make
frequent use of it.

Thus, for a homogeneous vector bundle £ on P% | the strong dual H°(X, & ), of the global
sections on X continues to be a locally analytic GLg41(K)-representation. Also Orlik’s
technique from [56] which takes advantage of the geometric structure of the divisor at in-
finity P4 \ X' via a certain spectral sequence is still applicable. The result is a filtration of
H%(X, &) by closed GLg 1 (K)-invariant subspaces. Moreover, the strong duals of the subquo-
tients of this filtration can be described as extensions of certain locally analytic GLgy1(K)-
representations. In analysing the locally analytic representations which arise here however,
we have to take an approach different from the one for a p-adic field in [56]. Our main result
is the following description.

Theorem A (Theorem Theorem|3.3.2)). Let K be a non-archimedean local field and € a
GLg+1, x -equivariant vector bundle on PS.. Then there exists o filtration by closed GLgy1(K)-
imvariant subspaces

HYX, &) =Vviovils  oviove=HYPL,E),
and, for j =1,...,d, there are extensions of locally analytic GLgs1 (K)-representations

0 — HI(PL, &) @ v ) vyt

Pla—jt1,1,...1)
!
= 77 = GL; (K)\/
— (D(GLd+1(K)) QD (glys1,Plaji1)st (H(]P;z(—j)rig(lpcfi(a &) ®k (UBJ-' ( ))b)> — 0.
b
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We explain the objects which occur in this theorem. We let Pq_;41,5) and Py_jq11,...1)
denote the standard parabolic subgroups of GL411(K) corresponding to the decompositions
in their respective index. Moreover, GL;(K) is considered as a subgroup of the standard Levi
factor GLg—j41(K) x GL;j(K) of P4_;41,5), and B; denotes the standard Borel subgroup of

GLg41(K) and &% ()

GL;(K). The representations Ui 1) B, are smooth (generalized) Steinberg

. . . . GL;(K) . . .
representations with coefficients in K, and P4_;11 ;) acts on g, i) Gia inflation.

Furthermore, D(g[dH7 P(d,jﬂ’j)) is a certain subalgebra of the locally analytic distribu-
tion algebra D(GLdH(K )) For any non-archimedean Lie group G, we define the hyperal-
gebra hy(G) of G which embeds into D(G) as a subalgebra. For a locally analytic subgroup
H C @G, the subalgebra D(g, H) is then defined to be generated by hy(G) and D(H). The
definition of this hyperalgebra hy(G) is inspired by the distribution algebra of an algebraic
group G as treated for example in [41]. It can be canonically identified with the latter when
G arises as the K-valued points of such G which is smooth. In particular if char(K) = 0,
hy(G) agrees with the universal enveloping algebra of the Lie algebra g of G. Therefore
D(g, H) generalizes a construction of Orlik and Strauch [58, §3.4] for p-adic K. The value of
this hyperalgebra to us lies in the fact that there is a non-degenerate pairing between hy(G)
and the space of germs of locally analytic functions on G at the identity element even when
char(K) > 0 (Proposition . Hence, one might informally say that the algebra D(g, H)
incorporates an infinitesimal neighbourhood around H.

Finally, there is the subspace

)y (P €) = Ken (HgPdK,j)“g(IP"}(, £) — HI(PL, 5))

of the local cohomology with respect to the Schubert variety (]P’;l(_j )rig viewed as a rigid-
analytic subvariety of P4. We show that this subspace is canonically equipped with the
structure of a D(g[dH, P(d_j+17j))—module. Taking the completed inductive tensor product

of it with D(GLg41(K)) yields the D(GLg41(K))-module

= ] =~ GLj K)\/
D(GLd+1(K)) QD (glas1,Pa—j1.5))t (HJ d=3yrig (P?O‘c") QK (vB,- ( ))b)' (%)
(PK ) J

L, (K)
B

Here v carries the finest locally convex topology. The strong dual of the D(GLdH (K ))—

module ] is a locally analytic GLg441 (K )-representation by the aforementioned anti-equiva-
lence for locally analytic representations.

For a p-adic field, this relates to the description of [56, Thm. 1] for H°(X, &)} as follows:
With the filtration of H°(X, &) being the same, Orlik there obtains a certain subspace of
a locally analytic induced representation in place of the strong dual space of ; the two
other terms of the short strictly exact sequence in Theorem [A] remain unchanged. However,
besides the isomorphism induced a posteriori in this way, there is a more intrinsic connection
between and the representation Orlik arrives at. Indeed, the subspace he obtains can

be characterized as .Fggdfig[{)) (ﬁéd,j(P%,E),vgfj(K)). The functors FS used here were
—J »J K

introduced by Orlik and Strauch [58] for the more general setup of a split connected reductive
group G over K and a standard parabolic subgroup P C G. Let G = G(K), P = P(K),
and let g, p be the respective Lie algebras. For a U(g)-module M € Oglg (where Oslg is a
certain subcategory of the BGG category O for g) and an admissible smooth representation
V' of the standard Levi subgroup Lp C P, this functor yields an admissible locally analytic
G-representation F§ (M, V). It is expected that their duals can be described as

FE(M,V) 2 D(G)®p.p) (Mo V')

(for trivial V' = K this is [58 Prop. 3.7]). Furthermore, in [1] Agrawal and Strauch con-
structed functors which expand on the functors F$ and are defined via taking a tensor
product with D(G) over D(g, P) in a similar way.

A U(g)-module M in the category 021g necessarily is finitely generated. Thus it can
be endowed with a locally convex topology via some epimorphism U(g)®" — M using the



4 GEORG LINDEN

subspace topology U(g) C D(G). The admissible smooth representation V in turn can be
considered with the finest locally convex topology. To compare Orlik’s description to we
show:

Proposition B (Proposition [3.4.7). There is a topological isomorphism of D(G)-modules
D(G) @p(g.py. (M &k x Vy) = D(G) @p(g,py (M @k V')

in the sense that D(G) ®@p(q,p),. (M OKr,x V;)’) topologized via the above already is complete,
and this topology agrees with the canonical Fréchet topology induced from it being a coadmis-
sible (abstract) D(G)-module, cf. [1].

Moreover, (the kernel of) the algebraic local cohomology group H. 1; ai (P4, €) with respect

to the Schubert variety is an element of (’)2{;7”1”' ). On the other hand, one can consider it

as a subspace of I;T(J'Pd,j)“g (P4, £) (see Corollary [2.5.6), and we prove in Corollary [3.4.9| that
K
the subspace topology agrees with the locally convex topology induced via some epimorphism

U(g)®™ — ﬁ;d,j (P4.,€). This yields a canonical topological isomorphism of D(G)-modules
K
between and

D(GLd+1(K)) ®D(g[d+17p(d—j+1,j)) (H]

(P?{j yrig

(]P)il(vg) QK (’Ugij(K))/>

endowed with its canonical Fréchet topology. 4
Orlik’s proof in [56] uses that the algebraic local cohomology groups HI; ad (P4, €) are

finitely generated over the universal enveloping algebra U(glg11). Since for a field of positive
characteristic this has an analogue only in exceptional cases, our strategy is to employ the
non-degenerate pairing between hy (GLd+1(K )) and the germs of locally analytic functions
on GLg11(K) in a more direct manner instead. This comes at the cost that the necessary
arguments from functional analysis are more involved.

The multiplicative group K* is among the most basic examples of a locally K-analytic
Lie group. We include an Appendix [B] where, for a local field K of positive characteristic
p, we investigate the one-dimensional continuous and locally analytic representations of K>
(i.e. characters) which take values in a non-archimedean field of the same characteristic p.

Compared with the p-adic situation, we find that there are significantly less locally analytic
characters in relation to continuous ones (Corollary . Moreover, the locally analytic
characters of K* behave rigidly in a sense. It suffices here to focus on the subgroup of
principal units 1 + myx C K* where mg is the maximal ideal of the ring of integers of K.
This subgroup constitutes the non-discrete part under the usual decomposition of K*, and
for its characters we obtain:

Theorem C (Theorem B.2.2] Corollary [B.2.3|). Let K be local field of characteristic p > 0,
and let C' be a complete extension of K. Then every locally analytic character
x:l4+mg — C*
factors over 1 +mg C C*, and there exists ¢ € Z, such that x = x. where
Xe(z) = 2¢ = Z (C> (z=1)" | foralzel+mg.

n
n=0

Moreover, the values of all p'-th hyperderivatives D®P)x at 1 are contained in F, C K, and
¢ is uniquely determined by c; = D®)x(1) mod (p), for the p-adic expansion c = S cipt

This yields an isomorphism Endja(1 + mg) = Z, of topological rings where the former
s the ring of locally analytic endomorphisms with multiplication given by composition and
carrying the compact-open topology.
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We want to add more details about the content of some of the individual sections. The
first chapter covers the theory of locally analytic representations necessary for our goal. For
the convenience of the reader, we decide to recapitulate the foundational theory in detail and
for the most part with proofs in the first five sections there.

The sixth section treats the space C1*(X, V) of germs of locally analytic functions at x € X
with values in a locally convex vector space V', for a locally analytic manifold X. For a locally
analytic Lie group G, the strong dual D, (G) of this space C}*(G, K) at the identity element
e embeds into the algebra of locally analytic distributions D(G). The hyperalgebra hy(G) is
then defined to consists of those elements of D.(G) which vanish on some power of the unique
maximal ideal of C!*(G, K). Moreover, following Orlik-Strauch [58] we consider subalgebras
D(g,H) C D(G) generated by hy(G) and D(H), for locally analytic subgroups H C G.
Analogously to Agrawal-Strauch [1], modules over these subalgebras correspond to so called
locally analytic (hy(G), H)-modules.

The final section concerns endowing the K-rational points X (K) of a smooth, separated
rigid analytic K-space X of countable type with the structure of a locally K-analytic man-
ifold. There we also show that hy (G(K )) and Dist(G) agree, for a smooth algebraic group
G over K.

The second chapter is devoted to showing that the strong dual spaces of H°(X,€) and
H (dP;J)r;g (P4, £) are locally analytic representations of compact type. While for H°(X, £) this
K
is done like in the p-adic case for £ = Qpa considered by Schneider-Teitelbaum [70], the local
cohomology groups require some preparation. The main step there is to give a description
Tk d o~ 1o TTR d
Higy yus (P, €) = Jm Hy, (- (P €)
neN
where €, := |r|", for a uniformizer 7 of K. In the limit on the right hand side, the local
cohomology groups with respect to £,-neighbourhoods P (£,,)~ around the Schubert variety
are Banach spaces. To take this limit in a controlled way we show that the differentials of
a certain Cech complex which computes the cohomology of £ on the complement P%, \ P/
are strict homomorphisms. The topology on this Cech complex comes from certain affinoid
subdomains of the principal open subsets D, (X;) C P%. Thereby we correct a flaw in the
proof of |56, Lemma 1.3.1].

Tk d ’os . n+1 .
Then HP}i{j(en)* (P%, &)} is a locally analytic P(d7j+17j)—representat10n where (d—jt1,5)

is a certain open subgroup of GLg11(Ok) which stabilizes ]P"Ii;j (en)”. Ultimately we can
conclude that H’ (P, ), is a locally analytic (hy(GLay1(K)), Pra—jt1,5))-module.

(s

PnJrl

The last chapter includes the proof of Theorem [A] In the first section we recall Orlik’s
method of using a certain acyclic “fundamental complex” of étale sheaves on the complement
P4\ X considered as a closed pseudo-adic subspace. This complex captures the combinatorial
geometry of the complement and is available for period domains more generally, cf. [57]. As
mentioned, a spectral sequence associated with it yields the filtration in Theorem [A] and
extensions

0 — HI(PL, &) @gvg ) (v vty

Pla—j+1,1,...,1)

GL4+1(Ok) ( 1737 d ’ Pla_j1.5)
— Tim IndGla+t (H L (PLE) @ vt )—>0
= 4 Pla—j+1,9) Py ](En)( w0 €)p @ Pl i,

()

of locally analytic GLg41 (K )-representations.
The next two sections then contain further analysis of the last term occurring in .
Roughly outlined our approach is to embed this term into C'® (GLd+1(0K)7 Wj) where

. . 77 d Pla—jt1,5
W; = lim (HI;?(__J-(%),(IPK,S)Q,@@K Ur )

d—j+1,1,...,1
nel (d—j+1, )
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For elements of C'» (GLd_H((’) K), Wj) the property of being invariant, for some n € N, under
the subgroup P(’fi_j +1.5) transfers to being invariant under the action of P(d,ﬂl,j)(@;{)
and the “infinitesimal” action of hy(GLd+1(K )) Dualizing then eventually results in an
isomorphism between the last term of and the strong dual of .

In the last section we compare our description in the case of a p-adic field K to the one
given by Orlik [56] and the functors F§ due to Orlik and Strauch [58]. This comparison and
the generalization of the 7§ due to Agrawal and Strauch [1] then motivates the definition of
an analogue of the functors F§ for a general non-archimedean local field.

Acknowledgements. I want to thank my advisor Sascha Orlik for introducing me to this
diverse and interesting topic. I am grateful to him for his valuable advise and strong support.
Moreover I want to thank Oliver Fiirst, Roland Huber, Christoph Spenke, Matthias Strauch,
and Yingying Wang for helpful comments and discussions.

A substantial part of this project was done while the author was a member of the research
training group GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology
which is funded by the Deutsche Forschungsgemeinschaft.

Notation and Conventions. We write N = {1,2,...} and Ny = {0, 1, ...}. For multiindices

i=(i1,...,1n) € N§, with n € N, we set i := i1 + ... +ip. Forr = (r1,...,7m,) € R", we
write rl =it - oplin.
Let K be a non-archimedean field with non-trivial absolute value |_|: K — R>o. We let

Ok = {z € K | |z| < 1} denote its ring of integers. For n € N, r € R, and a € K™, we
denote by

Bla):={z e K"|Vi=1,...,n:|z; —a;| <r;}

the “closed” ball of multiradius r around a; it is open and closed.

In this work, locally convex K-vector spaces play a central role. These are topological K-
vector spaces which have a neighbourhood basis of the origin consisting of O-submodules.
We will frequently refer to [27], [59] and |67] for the theory of this non-archimedean functional
analysis.

For locally convex K-vector spaces V and W, we denote by L(V, W) the K-vector space of
continuous homomorphisms from V' to W. With the strong topology of bounded convergence
(respectively, the weak topology of pointwise convergence) this space becomes a locally convex
K-vector space itself denoted by L, (V, W) (respectively, L;(V, W)), see |67, Examples p. 35].
We note that, for continuous homomorphisms of locally convex K-vector spaces f: V' — V
and h: W — W', the homomorphisms

Ly(V,W) — L,(V!,W), g+——gof, and
Ly(V,W) — Ly(V,W'), g+ hogy,

are continuous [67, §18, p. 113].

Moreover, we denote the dual space of a K-vector space V by V* := Homg (V, K). When
V is a locally convex, we write V' := L(V,K) C V* for the subspace of continuous linear
forms, as well as V)] and V/ for the strong and weak dual spaces accordingly. However,
when F is a K-Banach space, we occasionally simplify the notation by letting E’ denote its
strong dual space. For locally convex K-vector spaces V and W, taking the transpose yields
homomorphisms (see |27, §0.3.8])

LV,W) — LV, V) and LV, W) — LW, V).

On the tensor product of locally convex K-vector spaces V and W, we denote the projective
(respectively, inductive) tensor product topology by V @k » W (respectively, V @k, W), cf.
(67, §17). We write V @ » W and V &, W for the Hausdorff completions of the respective
locally convex K-vector spaces. If V and W both are K-Fréchet spaces or if both are semi-
complete LB-spaces, the projective and inductive tensor product topology agree, see |67,
Prop. 17.6] and [27, Prop. 1.1.31]. In these cases, we unambiguously write V ®@x W and
VeogW.
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The category of locally convex K-vector spaces with continuous homomorphisms is an
example of a quasi-abelian category in the sense of [76]. The strict morphisms are precisely
the homomorphisms f: V' — W which are strict in the conventional sense, i.e. for which the
induced V/Ker(f) — Im(f) is a topological isomorphism.

For subgroups H and H' of a group G, we use the notation H - H' to denote the subset of
G of all elements of the form hh', for h € H, h' € H'.

Finally, for a scheme or a rigid analytic space, we denote its structure sheaf by O when
the considered scheme or rigid analytic space is apparent from the context.

1. LOCALLY ANALYTIC REPRESENTATION THEORY

1.1. Non-Archimedean Manifolds. For the basics on manifolds over non-archimedean
fields we follow [12, §4,5] and |66, Ch. II]. Let L be a complete non-archimedean field with
non-trivial absolute value | _|.

Let E = (E,| -||g) be an L-Banach space, and denote by E[Xq,...,X,] the space of
formal power series in n variables with values in F, for n € N. For r € R, we define the
subspace of all power series strictly convergent on B™(0) with values in E

A (L E) == { > o Xpe X

iENR

EH%HE — 0 as |g —>oo} C E[Xy,...,X,]-

The L-vector space A,(L", E) is an L-Banach space with respect to the norm

Z viX{I X:lw
iEND

Note that, for > 1’ (i.e. r; > 7%, for all j = 1,...,n), the inclusion A, (L", E) C A (L™, E)
is a continuous homomorphism. Hence we define the space of power series convergent at 0
with values in E

= sup rt ol
r ieNy

A(Ln’E) = U Aﬂ(Ln7E)7
reRY,

and endow it with the inductive limit topology, i.e. with the finest locally convex topology
such that all inclusions A, (L", E) — A(L", E) are continuous.

Moreover, every f = deNg v; Xi' - Xin € A (L™, E) defines a continuous function
BP(0) — B, (x1,...,20) > f(21,. @) = Y vgatealy (1.1)
ieNg

Proposition 1.1.1 (Identity theorem for power series [12, 4.1.4]). Letn € N, r € R, and
let E be an L-Banach space. The homomorphism from A,(L™, E) to the L-vector space of
continuous functions on BJ'(0) given by associating to f € A.(L",E) the function (L.1) is
imjective.

Therefore we will denote both the power series as well as the induced function by f.

Proposition 1.1.2 (|12, 4.1.5] or [66, Prop. 5.4]). For m,n € N, r € RY, s € R, let
f e A (L™, L") be written as f = (fj)j=1,...n, for f; € A.(L™,L). Moreover, assume that
| fillr < sj, forallj =1,...,n, and let E be an L-Banach space. Then the map

A (L™ E) —— A, (L™, E)
g(Y) = EieNg v Yt —— (go f)(X) = deN{; vi LX) (X))
18 a well-defined continuous homomorphism of operator norm < 1, and the associated func-

tions satisfy (g o f)(x) = g(f(x)), for all x € B"(0).

Corollary 1.1.3 (|66, Cor. 5.5]). Let f € A.(L™,FE), and y € B]"*(0). Then there exists
fy € Ax(L™, E) such that || fy|lr = || f|l» and the associated functions satisfy

fle)=fyle—y) , forallze B’E(O) = B;"(y)
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Definition 1.1.4. Let U C L™ be an open subset, for m € N, and E an L-Banach space.
We call a function f: U — F locally L-analytic if, for every a € U, there exists a power series
fa € A(L™, E), for some 1 € R, such that f(z) = fo(z—a), for all z € B"(a). We denote

the L-vector space of locally L-analytic functions on U with values in E by C*(U, E).
Remark 1.1.5. In particular, such a locally L-analytic function is continuous.

Lemma 1.1.6 (|66, Lemma 6.3]). Let U C L™ and U’ C L™ be open subsets. Moreover, let
f € C™U, L") such that f(U) C U’, and let E be an L-Banach space. Then the map

Cla(U/aE) —>Cla(U7E)7 g'—>gof7
1s well-defined and L-linear.

Definition 1.1.7. Let X be a topological space.

(i) A chart of X consists of an open subset U C X and a map ¢: U — L™, for some m € N,
which is a homeomorphism onto an open subset of L. We will occasionally refer to a chart
simply by ¢ or U if the context allows it. For z € X, we say that ¢ is a chart around x if
z € U. We call ¢ centred at z if ¢(z) = 0.

(ii) Two charts p: U — L™ and ¢: W — L™ of X are compatible if the functions

Yvop lipUNW) —9UNW) and @oyp l:p(UNW) — o(UNW)

are locally L-analytic.

(iii) An atlas A of X is a set of pairwise compatible charts whose domains cover X. Two
atlases A and B of X are equivalent if AU B is an atlas as well. An atlas A is mazimal if
any equivalent atlas B satisfies B C A.

Remarks 1.1.8. (i) Equivalence of atlases indeed is an equivalence relation, and every equiv-
alence class contains a unique maximal atlas, see [66, Rmk. 7.2].

(ii) Given z € X and a maximal atlas A of X, there is a chart in A that is centred at x: Let
@: U — L™ be any chart with € U. Then ¢': U — L™,y — ¢(y) — ¢(x) is compatible
with the charts of A by Lemma [I.1.6

We want to consider manifolds with the following good properties:

Definition 1.1.9. A (finite-dimensional) locally L-analytic manifold is a Hausdorff, para-
compact, second-countable topological space X together with a maximal atlas A. In the
following, when we speak of a chart of a locally L-analytic manifold, we mean a chart of its
maximal atlas.

For a point x € X with a chart ¢: U — L™ around x, we call m the dimension of X at
x. By [66, Lemma 7.1], this dimension is independent of the chart around z.

Remarks 1.1.10. (i) Any locally L-analytic manifold X is strictly paracompact, i.e. any
open covering of X admits a refinement by pairwise disjoint open subsets (|12, 5.3.7] or |66,
Prop. 8.7]).

(ii) Let X be a locally L-analytic manifold. Then X is locally compact if and only if L is
locally compact (i.e. a local field) or X is a discrete topological space.

(iii) Any disjoint open covering of X is countable. Moreover, if L is locally compact, then, for
any locally L-analytic manifold X, there exists a disjoint countable covering of X by compact
open subsets.

Proof of (i) and (#i). These statements are probably well-known, but we still want to in-
clude proofs here.

For (ii), first assume that X is locally compact. If, for all x € X, we can find a charts
0: U — L% = {0} with x € U, it follows that X is discrete. On the other hand, consider
the situation that there exists a chart ¢: U — L™ with n > 0. We then find a compact
subset C' C U, and after shrinking we may assume that ¢(C') = BJ'(a), for r € RZ), a =
(a1,...,an) € ¢(C). This implies that B} (a1) C L is compact, too. But this is equivalent
to L being locally compact. For the reverse implication see [12| 5.1.9].
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In (iii), because X is second countable, for every open covering X = (J,.; U;, there exists
a countable subset .J C I such that X = (J,.; U; is a covering, see |9, Ch. IX. §2.8 Prop. 13].
If the covering X = J,; U; is disjoint, we necessarily have J = I.

Furthermore, the topology of X can be defined by a metric which satisfies the strict triangle
inequality because X is paracompact, see |66, Prop. 8.7]. Hence there exists a base B for
the topology of X that consists of subsets which are open and closed |9, Ch. IX. Ex. for §6,
Ex. 2a)]. As we have seen in (ii), the assumption that L is locally compact implies that X is
locally compact, i.e. for any x € X, there exists a compact neighbourhood C,, of . Then we
find an open and closed subset B, € B such that B, C C, and which therefore is compact
itself. In conclusion, we see that the set of compact open subsets constitutes a covering of X.
Hence there exists a countable collection {C),},en of compact open subsets which already
covers X. Setting W,, := C, \ (CoU...UC,_1) now yields the sought disjoint countable

covering X = (J,,cy Wn by compact open subsets. (]

Definition 1.1.11 (|12} 5.8.3]). A subset Y C X of a locally L-analytic manifold X is called
a locally L-analytic submanifold if, for every y € Y, there exist a chart ¢: U — L™ around
x and a linear subspace F' C L™ such that ¢ induces a homeomorphism

eluny: UNY — p(U)N F.

Taking isomorphisms F 22 L*, for some k < m, the charts |y : UNY — L¥ equip Y with
the structure of a locally L-analytic manifold, see [12| 5.8.1]. Indeed, Y also is paracompact
because X is metrizable by [66, Prop. 8.7]. When Y C X is open, a maximal atlas of YV is
given by the charts U of X such that U C Y, see |66} p. 48].

Remark 1.1.12. The product of two locally L-analytic manifolds X and Y becomes a
locally L-analytic manifold when endowed with the product topology and the atlas given by
e x: UxV — L™ for charts ¢: U — L™ and v: V — L™ of X and Y respectively.

Definition 1.1.13. (i) Let X be a locally L-analytic manifold and F an L-Banach space. A
function f: X — E is locally L-analytic if fop=1: p(U) — E is locally L-analytic, for every
chart ¢: U — L™ of X. We denote the L-vector space of these functions by C'*(X, E).
(ii) A map f: X — Y between two locally L-analytic manifolds is locally L-analytic if f is
continuous and, for all charts ©: V' — L™ of Y, the function ¢ o f from the open locally
L-analytic submanifold f~*(V) to the L-Banach space L™ is locally L-analytic.
Equivalently, such f: X — Y is locally L-analytic if, for every point x € X, there exist a
chart ¢: U — L™ around x and a chart ¢»: V' — L™ around f(x) such that f(U) C V and
Yo fop te B (pU),L"), see |66, Lemma 8.3].

Remark 1.1.14. In the case that Y C L™ is an open subsets with the canonical structure
of locally L-analytic manifolds, (i) and (ii) in the above definition are compatible. If in turn
X C L™ is an open subset, (i) is compatible with Definition see (12} 5.3.1,2].

1.2. Locally Analytic Functions. Let K be a complete non-archimedean field with non-
trivial absolute value | _|, and L C K a complete subfield.

Let X be a locally L-analytic manifold and V' a Hausdorff locally convex K-vector space.
For the case of char(K) = 0, Féaux de Lacroix [30] defined locally analytic functions on X
which take values in V, and endowed the space C'*(X, V) of such functions with the structure
of a locally convex K-vector space. As remarked by Graf, this carries over to the case of a
general complete non-archimedean field K verbatim (32, Part I, App. A]. Nevertheless we
want to recapitulate the reasoning for the construction of C'*(X, V) as well as some properties
of it.

Recall that, for a locally convex K-vector space V', a BH-subspace of V is an (algebraic)
subspace E' C V which admits the structure of a K-Banach space (with underlying K-vector
space structure coming from V') such that the associated topology is finer than its subspace
topology. We denote E carrying its Banach space structure by E so that we have a continuous
injection E — V. Note that the topologies from any two Banach space structures of a BH-
subspace E C V are the same by the open mapping theorem [67, Prop. 8.6].
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If F is a K-Banach space, it also carries the structure of an L-Banach space by restriction of
scalars. We will use this identification freely, for example to consider power series A, (L™, E)
on B"(0) with values in E.

Definition 1.2.1. A function f: X — V is called locally analytic if, for every a € X, there
exists a BH-subspace £ C V, a chart ¢: U — BE(O) of X, for some r € R%,, with a € U,

and a power series f, € A,(L", E) such that f(z) = f.(¢(z) — ¢(a)), for all z in some
neighbourhood of a. Here we consider f,(¢(-) — ¢(a)) as a function taking values in V' via
E — V. We denote the K-vector space of locally analytic functions on X with values in V
by C'*(X, V).

Remark 1.2.2. In particular a locally analytic function f: X — V is continuous.

To topologize C'(X, V) one expresses this space as the inductive limit of spaces of func-
tions which are locally analytic with respect to certain indices.

Definition 1.2.3. (i) A V-index Z of X is a family (apl-: Ui — Lmi,gi,Ei)iel where the ¢;
are charts of X, r; € RYj, and the E; C V are BH-subspaces such that

(1) X = U,¢; Ui is a disjoint open covering,

(2) ¢i(Ui) = By"(ai), for some (or any) a; € ¢;(U;).

(ii) Given two V-indices

17:?(@iZLQ49'Ln”,£“f% and ¢7::(¢HII@}‘%'LnjH%Wf%)

)ieI JjEJ
of X, we call Z finer than 7, if, for every ¢ € I, there exists j € J such that
(1) U; € W; (i.e. the covering of T is a refinement of the one of J),

(2) there exist a € ;(U;) and g; j = (gi jk)k=1,...n; € Ap, (L™, L™) such that
lgigk — 9ijk(O)llr, < sk, forall k=1,...,ny,
and ;o cp;l(x) = gi,j(x —a), for all z € ¢;(U;),
(3) Fj C E; (which implies that F; < E; is continuous).

Remark 1.2.4. Using Corollary one sees that condition (2) in (ii) is independent of
the choice of a € ¢;(U;), cf. [66, p. 76].

Lemma 1.2.5 (|30, Bem. 2.1.9], cf. [66, Lemma 10.2]). The set of V-indices of X is a directed
set with respect to the relation of being finer.

Let ¢: U — L™ be a chart of X. If there exist r € RY; and a € L™ such that
©(U) = Bl"(a), we call ¢ an analytic chart. For such a chart and a K-Banach space F,
we set

C’rig(gp,E) = {f: U—-E | dg € A (L™, E),Vz €U : f(z) = g(p(x) — a)} .
Using the identity theorem for power series (Proposition |1.1.1)), we immediately see that there

is an isomorphism

A (L™ E) =5 C8(p,E), g gle(-) - a).

In this way, we consider C™8(p, F) as a K-Banach space with norm given by | f| = ||g]/»
when f = g(p(-) — a). If the analytic chart ¢: U — B]"*(a) is understood, we also write
CT8(U, B) := C"¥(p, B).

Remark 1.2.6. If there exists some a € L™ such that ¢(U) = B;"(a), then ¢(U) = B"(b),
for all b € o(U). However, the existence of g € A,(L™, E) in the definition and ||f|| do not
depend on the choice of a € p(U) by Corollary

Definition 1.2.7. Let 7 = (gpi: Ui — L™ r. Ei)iel be a V-index of X.

sy Ly
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(i) A function f: X — V is subordinate to T if f|y, € C*8(y;, E;), for all i € I. Spelled out,

this means that, for all i € I, there exist g; € A, (L™, E;) and some a; € ¢;(U;) such that
(f ow; (@) = gi(w — as), for all z € @;(Uy).

(ii) We denote the K-vector space of all functions f: X — V which are subordinate to Z by
CR(X,V). As (U;)ier is a disjoint covering of X, the map

CIIa(Xa V) _>Hcrig(<pi7E)7 f'—> (f|Ui)i€I?
il
is an isomorphism of K-vector spaces. Via this isomorphism, we endow Clza(X ,V) with a
locally convex topology coming from the product topology of the right hand side.

Remark 1.2.8. If the index set [ is finite, then C}*(X,V) itself is a K-Banach space. In
any case, C%(X , V) is a K-Fréchet space since [ is necessarily countable, see Remarks|1.1.10
(iii).

Lemma 1.2.9 ([30, Bem. 2.1.9], cf. [66, Lemma 10.3]). If the V-index T is finer than the
V-index J, then C'#(X,V) C C(X,V) and this inclusion map is continuous.

Proposition 1.2.10 ([30, Bem. 2.1.9], cf. [66, p. 75]). For any locally analytic function
f: X =V, there exists a V-index T of X such that f is subordinate to Z. In other words

c*(X,V) = JCR(X,V)
T

where the union is taken over all V-indices T of X.

Hence we can and will endow C'(X, V) with the locally convex inductive limit topology
with respect to the C12(X, V), i.e. the finest locally convex topology such that the inclusions
Cla(X,V) < C'*(X,V) are continuous. This finishes the construction of the locally convex
K-vector space C'2(X, V).

Proposition 1.2.11 (|30, Satz 2.1.10], cf. [66, Prop. 12.1]). Let X be a locally L-analytic
manifold, and V a Hausdorff locally convex K-vector space. For any x € X, the evaluation
homomorphism

eve: C™(X, V) —V, [+ f(z),

15 continuous.

Corollary 1.2.12 (30, Satz 2.1.10], cf. [66, Cor. 12.2]). Let X be a locally L-analytic man-
ifold, and V' a Hausdorff locally convex K -vector space. Then C'*(X,V) is Hausdorff and
barrelled.

Proof. Let f, f' € C™®(X,V) with f # f’, and let z € X such that f(z) # f/(x). Because
V' is Hausdorff, there exist open neighbourhoods U,U’ C V of f(x) resp. f'(z) such that
UNU' = 0. As ev, is continuous by Proposition ev, }(U) and ev,(U’) are open
subsets of C!2(X, V) that separate f and f’. Therefore C'*(X, V) is Hausdorff.

Since K-Banach spaces are barrelled [67, Expl. 2) after Cor. 6.16], the direct product
C2(X,V) is barrelled, for every V-index Z of X, by [67, Prop. 14.3]. Moreover the inductive
limit of barrelled locally convex K-vector spaces is barrelled again [67, Expl. 3) after Cor.
6.16], and we conclude that C'*(X, V) is barrelled. O

Proposition 1.2.13 (|30, Kor. 2.2.4], cf. [66, Prop. 12.5]). Let X be a locally L-analytic
manifold, and V' a Hausdorff locally convex K -vector space. Then, for any disjoint covering
X = U, e Xi by open subsets X, there is a topological isomorphism

o

X V) = J]C"Xu V), f— (flxier
iel
Proof. By applying the statement of [66, Lemma 11.7] it suffices to show that, for any given
V-index J = (goj: Uj — L™, r Ej)jEJ of X, there exists a V-index Z of X which is finer

IR
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than J and whose covering is a refinement of X = {J,.; X;. Using [66, Lemma 1.4], we find,
for each open subset ¢;(U; N X;) C L™ with i € I,j € J, a disjoint covering of the form

pi(U;n X)) = | B (aij),
kEJZJ

for certain index sets J; ;, and s, ;. € R4, a; 5 € L™i. Now we define the index set

A:={(i,j,k)|itel,jedkeld;}, and set W, = go}l(Bgé’k(ai’j,k)), for (i,4,k) € A.
Then the W, ; ;. constitute a disjoint open covering of X by charts. Moreover,

I:= (@J|W7;k WZ-,]JC — L J’§i,j,k7EJ)(i,j,k)6A

is a V-index which is finer than 7, and its covering is a refinement of X = J
construction.

jer Xi by
O

Proposition 1.2.14 (|30, Bem. 2.1.11], |27, p. 40]). Let X be a locally L-analytic manifold,
and V' a Hausdorff locally conver K-vector space.
(i) If W is a Hausdorff locally convex K -vector space and A\:' V — W a continuous homo-
morphism, then X induces a continuous homomorphism

A C*(X, V) — C™(X, W), f+—Aof.
(ii) If Y is a locally L-analytic manifold and h: X — Y a locally L-analytic map, then h
induces a continuous homomorphism

R (Y, V) — C'™(X,V), f+— foh.

Proof. The statement of (i) follows from [27, Prop. 1.1.7], see ibid. p. 40.
For (ii), we adapt the argument outlined in the proof of |66 Prop. 12.4 (ii)]. First we
construct, for each fine enough V-index J = (wj: W; — L",s,, F; ) ; of Y, a V-index

) J?
I = (<pi: Uu, — L™ ,rz,E) iel of X which satisfies: For all ¢ € I, there exists j € J such
that

(1) U; € h=Y(W};), i.e. the covering of 7 is a refinement of the covering X = Ujes b “L(w;).
(2) there exist a; € ¢;(U;) and g;j = (gij.k)k=1,...n; € Ap, (L™, L") such that
||gz-7j,k — giyj,k(O)HL_ < Sik forall k=1,... T,
and ¢ o ho @; H(x) = gi j(x — a;), for all 2 € p;(U;) = B (ai),
(3) Fj C E;.
Indeed, for a covering Y = U]GJ W; of a given V- index J, we may take X = J,; U; to be a

disjoint refinement by analytic charts of X = J

e —L(w;). By the Definition |1.1.13] (ii) of

h being a locally analytic map, we may assume that ;o ho ;' € C%(¢p;(U;), L"), for all
i€l,je€J, with U; C h=Y(W;), after passing to fine enough J and X = Uiec; Ui- Therefore
the property (2) is satisfied for X = U 1 Ui after further refining. For i € [ with j € J such
that U; C h=Y(W;), we then set Ej : , and obtain the sought V-index Z of X.
For such Z and j € J, i € I with U C h L(W;), we can use the identifications

A (L, Fy) — CT8(5, Fy), g — g(v;(-) = 9:,3(0)),

Aﬁi(LmiaE) —>Crig((pi7E)7 g '—>g(§0i(*) _a’i)’
to obtain the commutative diagram

Crieg(y;, Fj) —— C™8(yp;, E;)

’4 Tg

Ay, (L9, ) —— Ay (L™, )

where the upper map is given by f foh and the lower one by g — go(g; ;—g:,;(0)). As this
latter map is continuous by Proposition the homomorphism Cla(Y V) = CR(X,V),
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f— foh, induced by the upper homomorphisms, for all such i and j, is continuous. Because
the sufficiently fine V-index J of Y was arbitrary, this shows that h*: C'*(Y, V) — C®2(X, V)
is continuous. O

Proposition 1.2.15. Let X be a compact locally L-analytic manifold, and V o Hausdorff
locally convex K-vector space.

(i) (cf. |27, p. 40]) Taking the inductive limit of the homomorphisms C'*(X, E) — C'*(X,V),
for all BH-subspaces E C X, yields a topological isomorphism

lim C'*(X, B) — C™(X, V).

ECV
(ii) (cf. |27, Prop. 2.1.30]) If V is of LF-type, i.e. can be written as the increasing union
V = UneN tn(Vi), for K-Fréchet spaces V,, with continuous injections t,: V,, — V, then
C'"™(X,V) is an LF-space, i.e. topologically isomorphic to the inductive limit of a sequence of
K-Fréchet spaces.

If V' even is of LB-type, i.e. the increasing union V =, cy Vo of BH-subspaces V,,, then
C'™(X,V) is an LB-space, i.e. topologically isomorphic to the inductive limit of a sequence of
K -Banach spaces.

(iii) (30} Satz 2.3.2]) If V is of compact type, then C'*(X,V) is of compact type and

CR(X K)Bx V= C™(X.V), foves f(), (12)
is a topological isomorphism. In particular, C'*(X, K) is of compact type in this case.

Proof. First note that every disjoint open covering of X necessarily is finite by compactness.
Because the finite sum of BH-subspaces is again a BH-subspace |27, Prop. 1.1.5], the set of
V-indices of X which have the same BH-subspace for all charts is cofinal in the set of all
V-indices of X. This shows the topological isomorphism in (i).

For (ii), if V' is of LF-type, then [11, I. §3.3 Prop. 1] implies that, for every BH-subspace E
of V, the injection E < V factors over some ¢,, via a continuous injection into V;,. The induc-
tive limit over these yields a continuous injection lim . C*(X,E) — lim C*(X, V).
Moreover, the ¢, give rise to a continuous injection ¢: lim C'*(X,V,) — C™(X,V). The
composition

lim C™*(X, E) «— lip C*(X, V;,) = C™*(X,V)

ECV neN
then agrees with the topological isomorphism from (i). Therefore ¢ itself is a topological
isomorphism.

Let (Up)nen be a cofinal sequence of disjoint open coverings of X, say U, = {U,;}ier,
with finite index sets I,,. Taking the inductive limit with respect to the BH-subspaces of V,,
first, we obtain a topological isomorphism

C'™(X,Vy) = ling 11 lig C™8 (U, E). (1.3)

neN ;eg,, ECVp
Since V,, is a K-Fréchet space, there is a topological isomorphism

lim C"8 (Ui, E) = C"8(Upi, K) @ Vi, (1.4)
ECV,
cf. |27, Prop. 2.1.13 (ii)]. Because the latter is a K-Fréchet space (see the discussion after
[67, Prop. 17.6]), we have exhibited C'*(X,V) as an inductive limit of K-Fréchet spaces.
Furthermore, if V is of LB-type, we may assume that the V,, are K-Banach spaces. Since
is a K-Banach space then and the products in are finite, the above also shows that
C'*(X,V) is an LB-space in this case.

For (iii), in regard of Remark (ii), we may distinguish the cases that X is discrete
or that L is locally compact. In the first case, we have C'*(X,V) = V", for some n € N.
Let us now assume that L is locally compact. Here we want to find a sequence (Z,)nen of
V-indices of X, with Z, 1 finer than Z,,, which is cofinal and such that the transition maps
C’lftl (X,V) < C2 (X,V) are compact. Applying Proposition to some finite disjoint

n+1
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covering of X by charts, it suffices to consider X = B*(0) C L™, for r := (r,...,r) € RZ,.
We fix ¢ € |L| with 0 < € < 1. Since L is locally compact, for each n € N, we find a finite
family of closed balls (BZ%, (an,i))i=1,....d, of radius ¢”r that constitute a disjoint covering of
X. Then, for BT, (a) C B%,.(b), the induced homomorphism

€ (B, (). K) — C™(B2 1, (0), K)

of K-Banach spaces is compact, cf. [67, §16 Claim, p. 98].

If V is of compact type, let (V,)nen be an inductive sequence of K-Banach spaces with
injective and compact transition maps such that V = hﬂneN V.. We define the V-indices
Z, == (B2 (an,),e"r, Vy)

morphism

i~y 4 of X which form a cofinal sequence. Moreover the homo-

Crig (B?"Lr(b)v Vn) _— Crig (B;nn+1r(a)7 Vn—i—l)
Crig (BQLT(b), K) ®K Vn - Crig (B;?“rlr(a)’ K) ®K ‘/n-l-l

is compact by [67, Lemma 18.12]. It follows from Lemma [A.3] (iii) that the homomorphism
C%n (X,V) — C (X,V) given by the sum of these is compact, for all n € N, so that

Tnt1
C'™(X,V) is of compact type.
Finally, [27, Prop. 1.1.32 (i)] shows that (1.2)) is a topological isomorphism. O

Corollary 1.2.16 (cf. [27, p. 40]). Let X be a locally compact locally L-analytic manifold.
Then C®(X, K) is reflexive and complete.

Proof. By Remark (iii), we find a covering X = (J;,c; X; by compact open subsets.
Then Proposition (iii) implies that C'*(X;, K) is reflexive and complete [67, Prop.
16.10], for all 7 € I. As both properties are preserved under taking products ([67, Prop. 9.10
and 9.11] resp. [67, Comment before Lemma 7.8]), the claim follows from Proposition [1.2.13]

O

Proposition 1.2.17 (cf. [73] Lemma A.1] and the discussion after [72, Thm. 12.2]). Let X
and 'Y be compact locally L-analytic manifolds. Then the map

CH(X,C™(Y.K)) =5 C™(X x Y, K),  fr— [(@,y) = f(2)(y)] (15)
18 a well-defined topological isomorphism.

Proof. Tt suffices to define (1.5 on all C'*(Y, K)-indices of X. To this end, consider a K-
index J = (1/)]-: W; — L"J',gj,K)j:1 ~ of Y with necessarily finite index set as Y is
compact. Then C’?(Y, K) < C"(Y,K) is a BH-subspace, and BH-subspaces of this form
exhaust C'*(Y, K). Hence it suffices to consider the C'*(Y, K)-indices of X of the form
K= ((pi: U; — L””i,zl-,C}}‘(K K))Z.:1  plor T = ((pi: U; — L”i,giJ() 4 & K-index of

X and J a K-index of Y. But using
AL‘ (Lml’ Aﬁj (Lnj ’ K)) = A(L 85) (Lmﬁ_nj ’ K) (16)

i=1,..

we find that

d e
ce(x,c™(v,K)) =[] c (so I1c e, K))

i=1 j=1
d,e

= [ c8(pi x 95, K) = CF, (X x Y, K)
i,j=1

where Z x J is the obvious K-index of X x Y. This way, we obtain the continuous homo-
morphism (1.5)). Furthermore, by applying (1.6} one sees that

C*(X xY,K) — C"*(X,C™(Y,K)), fr— [z [y fz,9)]],
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defines a K-linear map which is inverse to (|1.5)). It follows from the open mapping theorem
[27, Thm. 1.1.17] that (1.5 is even a topological isomorphism. O

Corollary 1.2.18. Let X and Y be compact locally L-analytic manifolds. Then there is a
topological isomorphism

C (X, K) 8k (Y. K) = C*(X x Y. K),  [f@g+— [(@,y) = f()gw)]-
Proof. This follows from combining Proposition [1.2.17| with Proposition [1.2.15| (iii). |

1.3. Locally Analytic Representations. In this section L C K continues to be a complete
subfield of a non-archimedean field K with non-trivial absolute value | _|. We will recall the
notion of locally analytic representations of locally L-analytic Lie groups from [30] which also
readily generalizes to our case (cf. |32, Part I, App. A]).

Definition 1.3.1. A locally L-analytic Lie group (or non-archimedean Lie group) is a locally
L-analytic manifold G which carries the structure of a group such that the multiplication and
inversion maps

m: GxG— G, inv: G — G
are locally L-analytic.

Remarks 1.3.2. (i) In the above definition it suffices to assume that the multiplication map
is locally L-analytic because this already implies that the inversion map is locally L-analytic
as well, see |12, 5.12.1], [66, Prop. 13.6].

(ii) If L is locally compact, then in particular every non-archimedean Lie group G is a topo-
logical group which is Hausdorff, totally disconnected, and locally compact. Therefore, each
neighbourhood of the identity element e in G contains an open subgroup of G [8, Ch. III.
§4.6, Cor. 1]. This implies that each neighbourhood of e in G also contains a compact open
subgroup.

Definition 1.3.3. A locally L-analytic subgroup H of a locally L-analytic Lie group G is
a subgroup H C G which is a locally L-analytic submanifold. Such a subgroup naturally
acquires the structure of a locally L-analytic Lie group itself, and is closed in G necessarily,
see |12} 5.12.3].

Example 1.3.4. Assume that L is locally compact with uniformizer 7, and let d € N. The
group GL4(L) is an example of a locally L-analytic Lie group. A family of charts centred at
the identity is given by

1+ 7" Ma(Or) — B (0), 1+ (ay) — (ay).

|7T‘n

Definition 1.3.5. A (left) locally analytic G-representation of a locally L-analytic Lie group
G is a barrelled, Hausdorff locally convex K-vector space V with a G-action by continuous
endomorphisms such that the orbit maps G — V, g — g.v, are locally analytic in the sense
of Definition for all v € V. A homomorphism of locally analytic G-representations
between V and W is a G-equivariant continuous homomorphism V — W.

Remark 1.3.6. By definition the map G x V. — V, (g,v) — g.v, of a locally analytic
G-representation is separately continuous. But if G is locally compact (e.g. if L is locally
compact) this already is equivalent to being jointly continuous by Lemma

Example 1.3.7. (i) We refer to Appendix B for a discussion of locally analytic characters
Y: L - K* and x: L* — K* when L is a local non-archimedean field. In particular in
Theorem we show that, for L a local field of char(L) = p > 0, every locally L-analytic
character x: 1 + my — K> is of the form x(z) = 2°, for some ¢ € Z,. Here 1+ m; C L*
denotes the subgroup of principal units satisfying |z — 1| < 1.

(ii) Let G be a compact locally L-analytic Lie group, and V a Hausdorff locally convex
K-vector space. Then

Gx C*™G, V) — C*(G, V), (9,f)— flg7'2):=[h~ f(g 'h)],
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defines a locally analytic G-representation called the left reqular G-representation with co-
efficients in C'*(G, V). Indeed, C'*(G,V) is barrelled and Hausdorff by Corollary
and the G-action is via continuous endomorphisms by Proposition (ii). To see that
the orbit maps are locally analytic, consider the locally analytic map of locally L-analytic
manifolds

GxG—G, (g,h)— g 'h.

Using Proposition and functoriality, this map induces the homomorphism
(G, V) — C™(G x G, V) = C"*(G,C"™(G,V)), fr—lg— [h— f(g " h)],

whose image precisely consists of the orbit maps.
Similarly, one shows that the right regular G-representation with coefficients in C'*(G, V)

G x C™(G, V) — C™G, V), (g,f)— f(-9) = [h > [(hg)],
and the G-representation by conjugation with coefficients in C*(G, V)
(97"

G x ™G, V) — C*(G, V), (g9,f)—f _9),

are locally analytic G-representations.

Proposition 1.3.8 (cf. [30, Satz 3.1.7], |27, Prop. 3.6.14]). Let G be a locally L-analytic
Lie group, and V' a locally analytic G-representation. Let W C V be a G-invariant closed
subspace.

(i) Then V/W is a locally analytic G-representation with respect to the induced G-action.
(ii) If W is barrelled, then W is a locally analytic G-representation with respect to the induced
G-action.

Proof. The quotient space V/W is barrelled |67, Expl. 4) after Cor. 6.16], and Hausdorff
because W C V is closed. Moreover, the G-invariance of W ensures that G acts by continuous
endomorphisms on W and V/W. To show that the orbit maps are locally analytic, consider
a BH-subspace E C V. As W C V is closed, ENW C W is a BH-subspace. Therefore the
orbit maps of W are locally analytic. Furthermore, by the functoriality of Proposition|1.2.14
(i), we have a continuous homomorphism C'*(G, V) — C%*(G,V/W). For v € V, the image
of its orbit map under this homomorphism is the orbit map of the residue class v +W. 0O

Proposition 1.3.9 (cf. [30, Lemma 3.2.4], [27, Prop. 3.6.11]). Let H be an open subgroup
of a locally L-analytic Lie group G, and V' a locally convex K-vector space on which G acts
by continuous endomorphisms. Then V is a locally analytic G-representation if and only if
V' is a locally analytic H-representation with respect to the induced H -action.

Proof. If V' is a locally analytic H-representation, consider v € V and g € GG. Then there
exists an analytic chart U C H around the identity element e such that the orbit map pg ., is
given by a convergent power series there. Hence the orbit map p, is given by a convergent
power series on the analytic chart Ug around g. This shows that V' is a locally analytic
G-representation. The converse implication is clear. O

Proposition 1.3.10 (For char(L) = 0, cf. |30, Kor. 3.1.9]). Let G be a locally L-analytic
Lie group, and E a K-Banach space with an abstract G-action. Then E is a locally analytic
representation with respect to this G-action if and only if the G-action on E is given by an
analytic linear representation in the sense of Bourbaki (10, III. §1.2 Expl. (3)], i.e. a locally
L-analytic homomorphism p: G — GL(E) C L(E, E) of Lie groupfﬂ. Here we view E as an
L-Banach space via restriction of scalars.

In particular, a locally analytic G-representation on a K-Banach space E is uniformly
locally analytic: For every g € G, there exists a neighbourhood U C G of g such that on U
all orbit maps py|y, v € E, are given by convergent power series.

1For the definition of locally L-analytic manifolds with charts taking values in L-Banach spaces and locally
L-analytic maps thereof, see |12, §5.1]
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Proof. Our proof differs from the one in |30] where differentiation with respect to elements
of the Lie algebra of G is used.

First assume that E is a locally analytic G-representation. This implies that G acts by
continuous endomorphisms, i.e. that there is a homomorphism p: G — GL(E) of (abstract)
groups. To show that p is a locally L-analytic map, it suffices to consider a fixed g € G and
a chart ¢: U — ¢(U) centred at g. We may now apply Proposition to the function
poypt:ioU)— Ly(E, E) and the continuous L-bilinear pairing

LyW(E,E)xE— E, (\v)+— Av), (1.7)

of L-Banach spaces. The continuity of follows from the fact that the topology of
Ly,(E, E) is induced by the operator norm |67, Rmk. 6.7]. This proposition then says that
po o' is analytic in some open neighbourhood of 0 since the orbit maps of p are locally
analytic.

Conversely, if p: G — GL(E) is a locally L-analytic homomorphism of Lie groups, the
opposite implication of Proposition implies that the orbit maps G — E,g — g.v, for
v € E, are locally analytic. Moreover, G clearly acts by continuous endomorphisms because
p(G) C L(E,E). O

1.4. Modules over Locally Analytic Distribution Algebras. Let K be a complete non-
archimedean field which is spherically complete, and let L C K a locally compact complete
subfield. Note that with these assumptions every locally L-analytic manifold admits a disjoint
countable covering by compact open subsets (see Remark (iii)), and the Hahn—Banach
theorem for locally convex K-vector spaces applies |67, Prop. 9.2].

In this section, we want to review locally analytic distributions and their interplay with
locally analytic representations. We follow [74] as the characteristic of L again makes no
difference. However occasionally we will need and prove slightly stronger statements.

Definition 1.4.1. (i) Let X be a locally L-analytic manifold. The space of locally analytic
distributions on X is defined as the strong dual space
D(X,K) = C"™(X, K);.
(ii) For z € X, the homomorphism
6p: C*(X,K) — K, [+ f(z),
is continuous by Proposition This element d, € D(X, K) is called the Dirac distribu-

tion supported at x.

Proposition 1.4.2 (cf. [74]). Let X be a locally L-analytic manifold.

(i) The locally convex K-vector space D(X, K) is reflexive.

(ii) If X is compact, D(X, K) is a nuclear K-Fréchet space.

(iii) Given a disjoint covering X = J,.; X; by open subsets X;, there is a natural topological
isomorphism

el

D(X,K) = P D(X;, K).
iel
In particular, for every p € D(X, K), there exists some compact open subsetY C X on which
it is supported, i.e. for which p € D(Y,K) C D(X, K).
(iv) The subspace of D(X, K) generated by all Dirac distributions 0., © € X, is dense.

Proof. If X is compact, then C'*(X, K) is of compact type by Proposition (iii). There-
fore its strong dual D(X, K) is a nuclear K-Fréchet space (see [67, Prop. 16.10] and |67, Prop.
19.9]) showing (ii).

The statement of (iii) follows from Proposition and [67, Prop. 9.11].

Note that a nuclear Fréchet space is reflexive [67, Cor. 19.3 (ii)] which settles (i) if X is
compact. In the general case, we find a countable disjoint covering X = (J;.; X; by open
compact subsets using Remark [[.1.10] (iii). It follows from [67, Prop. 9.10] and [67, Prop. 9.11]
that the direct sum of reflexive locally convex K-vector spaces is reflexive again. Applying

this to the direct sum of (iii), for X = (J,c; Xi, we see that D(X, K) is reflexive.
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Finally, let A C D(X, K) denote the closure of the subspace generated by the Dirac
distributions of X and assume that A € D(X, K). By the Hahn-Banach theorem [67, Cor.
9.3], there is a continuous linear functional £: D(X,K)/A — K which is non-zero. This
induces a non-zero continuous functional ¢: D(X, K) — K that vanishes on A. Because
D(X, K) is reflexive, ¢ corresponds to a locally analytic function f on X. But the vanishing
of £ on A implies that f = 0 which is a contradiction. |

Proposition 1.4.3 (cf. [74, Prop. 2.3]E| and [73, App.]). Let G be a locally L-analytic Lie
group. There exists a separately continuous K -bilinear map

D(G,K)x D(G,K) — D(G,K), (u,v)r— p*v, (1.8)

such that §g % 8y = Oggr, for g,¢9" € G. Concretely, for p,v € D(G,K) supported on compact
open subsets H respectively H' of G, jux v factors over C'*(H - H', K) and is given bgﬁ

Cla(H - H',K) —™ C'(H x H',K) = C*(H,K) &, C*(H', K) 2% K.
fr——= (1) = f(hR)]

(1.9)

If G is compact then (1.8)) is even jointly continuous.

Proof. Let G = J;o; H; be a countable disjoint covering by compact open subsets. Note that
there is a topological isomorphism [46, Cor. 1.2.14]

D(G,K) 8k, D(G,K) = @ (D(H;, K) 8k, D(H}, K)) .
ijel
Hence it suffices to define continuous homomorphisms
D(H;,K) &k, D(H;,K) — D(H; - H;,K) C D(G, K)
to define (|1.8). The multiplication map of G induces a continuous homomorphism
C™(H, - H;, K) ™5 C™(H; x H;, K) = C™(H;, K) @ x.» C*(H;, K)

using Proposition (ii) and Corollary m Taking the transpose of this homomor-
phism yields the continuous homomorphism

D(H;,K)®k, D(H;,K) = D(H;,K) @k~ D(H;, K) — D(H; - H;, K)

by |67, Prop. 17.6] and [67, Prop. 20.13]. This also shows that the convolution product is
given by , and that it is jointly continuous if G is compact. Moreover, for g € H;, ¢’ € Hj,
the linear form &, /) agrees with §, ® 0y on C'*(H;, K) ®x C'*(H;,K) C C'*(H; x H;, K).
Using that C'*(H;, K) ® x C'*(H;, K) is a dense subspace, this implies that 5,8, = 6,5 O

Definition and Proposition 1.4.4. For a locally L-analytic Lie group G, the convolution
product endows D(G, K) with the structure of an associative, unital K-algebra called
the (locally analytic) distribution algebra of G. Its unit element is d. where e is the identity
element of G. We also write D(G) := D(G, K) when the coefficient field K is clear from the
context.

Proof. By the separate continuity of ([1.8)) it suffices to check the necessary properties of D(G)
only for Dirac distributions. But for those they directly follow from the respective properties
of G as a group due to 0, * 0y = g4, for g,¢' € G. g

Corollary 1.4.5 (cf. [58, Proof of Prop. 3.5]). Let G be a locally L-analytic Lie group. For
f € C"*(G,K) and distributions u,v € D(G), the functions G — K given by

/ ’ ’ /
gr—vlg' = flgg)] and g — pulg— flgg')]
2For the proof of this proposition, Schneider and Teitelbaum refer to the diploma thesis |29] here which

was not available to me.
3Recall that H - H' denotes the set {hh/|h € H,W € H'} C G.
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are locally analytic, and we have the following identities reminiscent of Fubini’s theorem:
(uxv)(f) = ulg = vig = fl99)]] =v[g" = nulg = Flgg")]]- (1.10)

Proof. Assuming v is supported on the compact open subsets H' C @G, the first function
restricted to some compact open subset H C G is the image of f under

C“(H-H' K) " C'(H x H',K) = C"*(H,C**(H',K)) —~— C%(H,K).

Analogously, one shows that the second function is locally analytic. Now let p be supported
on the compact open subset H C G. Then the statement of (|1.10) follows from the commu-
tativity of

= C*(H,K)®x C*(H',K) \my)

C“(H-H' K) " C"(H x H' | K) K
\ Cla(H, Cla(HI,K)) i> Cla(H, K) %’

and the analogous diagram for v o . O

1

The locally L-analytic anti-automorphism inv: G — G, g — g~ *, induces by functoriality

an automorphism of locally convex K-vector spaces
inv*: C'(G,K) — C"*(G,K), f+— foinv.

Hence we obtain an automorphism of locally convex K-vector spaces

D(G) — D(G), pr— ji:=poinv* = [f > pu(foinv)]. (1.11)
Lemma 1.4.6. For u,v € D(G), we have that
(L*v) =% fi. (1.12)

Proof. We may assume that p and v are supported on compact open subsets H and H' of G
respectively. Then the claim follows from the commutativity of the following diagram:

Cla(H'=V, K) & C2(H-1, K) 2", cla(f! |) &y C2(H, K)

I N

Cla((H-H/)_l,K) swap K
inv*l %@L
C"*(H-H' K) C*(H,K)®x C*(H',K)

]

Proposition 1.4.7 (cf. [74, Thm. 2.2]). Let X be a locally L-analytic manifold and V a
Hausdorff locally convex K -vector space.
(i) There exists a unique continuous K -linear integration map

I: C™(X,V) — L,(D(X,K),V) (1.13)

such that I(f)(6:) = f(x), for all f € C'*(X,V) and x € X. Moreover, this map is natural
m X and V', and injective.

(ii) If V is of LB-type, i.e. V =, cy Vn, for a sequence Vo C Vi C ... C V of BH-subspaces,
then is an isomorphism of K -vector spaces with inverse

I"V L(D(X,K),V) = C*(X,V), T [z T(3,)].

Proof. First note that, for f € C'%(X,V), the condition I(f)(d,) = f(z), for all z € X,
determines I(f) uniquely by the density of the subspace generated by the Dirac distributions
of X.



20 GEORG LINDEN

For the existence of I take a countable disjoint covering X = [J,.; X; by open com-
pact subsets. Then Proposition and Proposition (iii) give topological isomor-
phisms C'*(X, V) = [[,c; C**(X;,V) and D(X,K) = @,; D(X;, K) respectively, with the
D(X;, K) being K-Fréchet spaces. By Lemma[A.9 we have the topological isomorphism

ﬁb(D(X, K),V) i) H£b<D(Xi7K)aV)7 Fi— (F|D(Xi,K))
el

i€l’

This way, we may reduce to the case that X is compact.

Here we first assume that V is a K-Banach space. As C'*(X,K) is of compact type,
we have a continuous linear bijection C'*(X,V) — C®(X,K)®x V by Proposition
Together with |67, Cor. 18.8] this gives the continuous linear bijection

I:C™(X,V) —— C"™(X,K) @V —— L,(D(X,K),V) (1.14)
fF)v feu — [ u(f)v]

which satisfies I(f)(0,) = f(z).
If V.= U,en Va is of LB-type then every BH-subspace of V' factors over some V,, by |11}
I. §3.3 Prop. 1]. Hence the compactness of X implies by Proposition [1.2.15| (i) that

C™(X,V) = lim C"™*(X, V,,).
neN
Furthermore, the continuous injections V,, < V induce continuous homomorphisms
Eb(D(X,K),Vn) — ﬁb(D(X7K),V).

These in turn give rise to a continuous homomorphism

li_n);lﬁb(D(X,K),vn) — Eb(D(X,K)J/)

ne
which is bijective by [11} I. §3.3 Prop. 1]. Taking the direct limit over the continuous linear
bijections ([1.14)), for all V,,, we now arrive at the continuous linear bijection

I: C*(X, V) 2 lim C™(X, V) — lim Lo(D(X, K), V) — Ly(D(X, K), V).
neN neN
For the case of a general Hausdorff locally convex K-vector space V, we observe that

by the compactness of X, every locally analytic V-valued function on X factors over some
BH-subspace of V. Therefore even in this case, we obtain the injective K-linear map I. O

Corollary 1.4.8. Let X be a locally L-analytic manifold and V' # {0} a Hausdorff locally
conver K-vector space. Then there is a natural, separately continuous, non-degenerate K-
bilinear pairing

D(X,K) x C®™(X,V) — V,  (u, f) = pu(f) = I(f)(w)- (1.15)

This pairing is induced by the duality between D(X, K) and C'*(X, K) in the sense that, for
compact open U C X and a BH-subspace E C 'V, the restriction of the pairing (1.15) to
D(U,K) x C'*(U, E) is given by tensoring the duality pairing D(U, K) x C**(U, K) — K with
E:

D(U,K)x C"™(U,K)&x E — E, (1, f®v) — u(f)v, (1.16)
using Proposition [A7]

Proof. Tt is clear that the pairing defined by I is natural, K-bilinear, and sepa-
rately continuous. The claimed compatibility with the duality pairing between D(X, K)
and C'*(X, K) follows from the construction of I in (L.14).

To show the non-degeneracy, fix a distribution u € D(X, K) and assume that u(f) = 0,
for all f € C'(X,V). Let u be supported on a compact open subset U C X. Moreover, we
find v € V, v # 0, contained in some BH-subspace E C V. For all h € C"*(U, K), we then
have u(h)v = u(h @ v) = 0. Therefore, the non-degeneracy of the duality pairing between
D(U,K) and C'*(U, K) implies that 1 = 0. On the other hand, consider f € C®?(X,V)
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such that p(f) =0, for all x € D(X,K). Then we have f(x) = I(f)(d;) = 0, for all Dirac
distributions d,, and hence f = 0. O

Proposition 1.4.9 ([74, Prop. 3.2]). Let G be a locally L-analytic Lie group, and V a locally
analytic G-representation with orbit maps p,: G =V, forve V.
(i) The K-bilinear map

DG)xV —V, (u,v)— pxv:=1I(p,)(p), (1.17)

is separately continuous, and V' becomes a D(G)-module this way. If G is compact and V a
K-Fréchet space, (L.17)) even is jointly continuous.
(ii) The K -bilinear map

D(G) x Vy — V. (p,0) — pxl:= [v = (i xv)], (1.18)

giwen by the D(G)-action contragredient to (1.17)) is separately continuous, and V; becomes
a D(G)-module this way. If G is compact and V] a K-Fréchet space, e.g. if V is of compact

type, then (1.18) even is jointly continuous.

In particular, we have 0, * v = g.v, and dy £ = g.¢, for all g € G, v € V, £ € V], where
gL = €(g'._) denotes the contragredient G-action.

Proof. The K-bilinearity of and its continuity in D(G) are clear. Now fix a distribution
@ € D(G). We may assume that p € D(H, K), for some compact open subset H C G.
By Proposition (iv), as D(H, K) is metrizable, p is the limit of a sequence (uy)nen in
D(H, K) where the p,, are linear combinations of Dirac distributions. But a Dirac distribution
dg4, g € H, acts by the continuous endomorphism v +— g.v on V. Hence the p, act by
continuous endomorphisms as well. As these continuous endomorphisms of V' converge to
the endomorphism induced by p pointwise, it follows from a version of the Banach-Steinhaus
theorem [11}, III. §4.2, Cor. 2] that the endomorphism induced by p is continuous.

To show that endows V with the structure of a D(G)-module, we have to see that
de * v = v, for the identity element e of G, and p* (v *xv) = (u*v) *xv, for all v € V,
w, v € D(G). But this holds for Dirac distributions, and hence for general elements of D(G)
by continuity.

For (ii), note that the homomorphism D(G) — £,(V, V) induced from is continuous
by [11, III. §5.3, Prop. 6] as D(G) is reflexive and therefore barrelled [67, Lemma 15.4].
Moreover, taking the transpose gives a topological embedding £y,(V, V) — Ly(Vy,V}) by |27,
Prop. 1.1.36]. Combining this with yields

D(G) —— D(G) —— Lp(V,V) —— Ly(V}, V)))

B fi

which gives the separately continuous K-bilinear pairing . To see that this defines a
D(G)-module structure on V}/, one again considers Dirac distributions first and then extends
to general elements of D(G) by continuity.

If G is compact and V or V} is a Fréchet space, the joint continuity of and ( -
follows from [11} III. §5.2 Cor. 1] because D(G) is a K-Fréchet space in thls case.

Proposition 1.4.10 (cf. |74} §3]). Let G be a locally L-analytic Lie group.
(i) Associating a D(G)-module structure via (1.17) gives an equivalence of categories

locally analytic G-representations separately continuous D(G)-modules
on locally convexr K-vector spaces . on locally convex K-vector spaces (1 19)
of LB-type with continuous of LB-type with continuous ) ’
G-equivariant homomorphisms D(G)-module maps
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(ii) Passing to the strong dual and associating the D(G)-module structure of (L.18)) gives an
anti-equivalence of categories

on locally convex K -vector spaces
of compact type with continuous
G-equivariant homomorphisms

on nuclear K-Fréchet spaces

locally analytic G-representations
(with continuous D(G)-module maps

separately continuous D(G)-modules
(1.20)

[f: V> W]— [ffs W, = V,].

If G is compact, the latter category already is equal to the category of continuous D(G)-
modules on nuclear K-Fréchet spaces with continuous D(G)-module homomorphisms.

Proof. For a continuous G-equivariant homomorphism f: V — W, we immediately have
dg * f(v) = f(64 *v), for all g € G, v € V. Hence it follows by continuity and density of the
space of Dirac distributions that f is a D(G)-module homomorphism. On the other hand,
if V is a separately continuous D(G)-module and of LB-type, we can define a G-action with
locally analytic orbit maps p, := I~(u +— p*v), for v € V, using Proposition m (ii).
Then g € G acts by the endomorphism V' — V, v + 04 * v, which therefore is continuous.
One readily checks that the functor defined this way is a quasi-inverse to .

For the statement of (ii), note that by (i) the first category is equivalent to the category
of separately continuous D(G)-modules on locally convex K-vector spaces of compact type
with continuous D(G)-module maps. Now Proposition and Proposition [[.4.9] (ii) show
that the functor is well defined and essentially surjective. Moreover, for locally convex
K-vector spaces V and W of compact type, one readily checks that the homomorphism

£b(V, W) — ‘Cb(WZ;’VZ) B— cb((%)gﬂ (Wé)g) = ‘Cb(Va W)’
f— ft — (ft)t’

using the reflexivity of V and W [67, Prop. 16.10 (i)], is in fact the identity. Combined with
a similar argument for £,(W/,V}/) we conclude that the natural map induced by taking the
transpose is a topological isomorphism

Ly(V.W) — Lo(Wy, V), fr— f".

Furthermore, one computes that f is a homomorphism of D(G)-modules if and only if f? is.
Therefore, is an anti-equivalence of categories. Finally, if G is compact, a separately
continuous D(G)-module structure on a K-Fréchet space is jointly continuous by [11}, III.
§5.2 Cor. 1], like before. O

1.5. Locally Analytic Induction. We keep the setting that K is a spherically complete
non-archimedean field and L C K a locally compact complete subfield. We will now recall
the notion of locally analytic induction from [30, Kap. 4] and make some easy comparisons
to the “finite” induction of locally analytic representation.

Definition 1.5.1 (30, §4.1]). Let G be a locally L-analytic Lie group, H C G a locally
L-analytic subgroup, and V' a locally analytic H-representation. We define the subspace

Indy% (V) := {f € C"™(G,V)|Vg € G,h € H: f(gh) = h*.f(g)} € C™*(G,V)

and consider it with the left regular G-action. We note that the continuity of the evaluation
homomorphisms and the action of H on V imply that this subspace is closed.

Proposition 1.5.2 (cf. [30, Satz 4.1.5]). Let G be a locally L-analytic Lie group and H C G
a locally L-analytic subgroup. Moreover, let V' be a locally analytic H-representation.

(i) (cf. [26, §2.1]) If V is of compact type and there exists a compact open subgroup Gy C G
such that G = Gy - H, then Indl;}’G(V) is a locally analytic G-representation of compact type.
(ii) (cf. [30, Satz 4.3.1]) If V is a K-Banach space and G/H is compact, then Indg’G(V) is
a locally analytic G-representation and any section of the projection map G — G/H induces
a topological isomorphism IndE’G(V) ~ C™(G/H,V).
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Proof. In both cases it follows from the functoriality of Proposition (i) that G acts
on Indllj’G(V) by continuous endomorphisms. In the first case, we set Hy := Gg N H, for
such Gy C G. Arguing analogously to |26, §2.1] we may view V as a locally analytic Ho-
representation and have an identification

Indfy% (V) = Ind ;% (V) € C"(Go, V),
f — f|G0

of (abstract) Go-representations on locally convex K-vector spaces. Because C'2(Gy, V) is
of compact type (Proposition (iii)), the closed subspace Indlfl’G(V) is so as well by
Proposition Moreover, the orbit maps of the Gy-action on Indlgl)co (V') are locally analytic
by |30, Satz 4.1.5] since G/ Hy is compact. It follows from Propositionthat Indlg’G(V)
is a locally analytic G-representation.

In the second case, the orbit maps of the G-action on Indlg’G(V) again are locally ana-
lytic by [30, Satz 4.1.5] as G/H is assumed to be compact. The topological isomorphism
Indﬁ’G(V) =~ C%(G/H,V), for any section of G — G/H, is the content of |30, Satz 4.3.1].
It follows that Indlg[’G(V) is barrelled (see Corollary and therefore a locally analytic
G-representation. |

Lemma 1.5.3 (see discussion after [27, Thm. 3.6.12]). Let V be a locally analytic represen-
tation of a locally L-analytic Lie group G with orbit maps p,: G =V, forv e V. IfV is an
LF-space (i.e. V is topologically isomorphic to the inductive limit of a sequence of K -Fréchet
spaces) then the orbit homomorphism

0: V. — C"™(G,V), v p,,
s continuous.

Proof. Let H C G be a compact open subgroup so that G = |J;.; Hg; is a disjoint covering.
Under the topological isomorphism from Proposition [1.2.13] the homomorphism o coincides
with the map

v IO 2 CE), v (o)
el

i€l’

Hence it suffices to show that o;: V — C'®(Hg;, V), v = py|ug,, is continuous, for all i € 1.
We fix i € I and consider the graph 'y C V x C'*(H', V), for H' := Hg;. One readily
computes that I, is precisely the kernel of the continuous homomorphism

VxC*H V) — [[ V., @f)r— ((hgi)v = f(hg:)),p-
heH

Therefore I',y C V x C'*(H’, V) is closed, and we conclude by a version of the closed graph
theorem |11} II. §4.6 Prop. 10] that o’ is continuous. For this we remark that in particular V'
is of LF-type (see [27, p. 15]) so that C'2(H’, V) is of LF-type by Proposition [1.2.15| (ii). O

When H is a subgroup of finite index in G, it suggest itself to consider the “finite” induction
of a H-representation V'

md% (V) == @gi oV
i=1
where g1, ..., g, are coset representatives of G/H. Here the G-action on Indg(V) is defined

via
n n

9~<Zgi . Ui) = Zgj(i) ® hi.vj,
i=1 i=1

for g € G with gg; = gj)hi, j(i) € {1,...,n}, hy € H. We can compare this to the locally
analytic induction.
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Proposition 1.5.4. Let G be a locally L-analytic Lie group and H C G a locally L-analytic
subgroup of finite index. Let V' be a locally analytic H-representation which is an LF-space.
Then there is a G-equivariant, topological isomorphism

Indjy (V) = Wd§(V), fr—> gie fg:), (1.21)
1=1

where g1, ..., gn are coset representatives of G/H.

Proof. We first note that the homomorphism (1.21]) is G-equivariant; it is continuous because
the evaluation homomorphisms ev, : C'#(G,V) — V are. Then we consider

Ind% (V) —>IndldG Zg,ovl g|—>h ; , for g = g;h with h € H|,

which is an inverse to ([:21). Using C'*(G,V) = @}, C'*(g;H, V) this homomorphism is
the direct sum of the homomorphisms

gioV — C*(g;H,V)NInd2%(V), v [gsh— b~ w | for h € HJ.

These in turn each can be identified with inv* o 0: V' — C'¥(H, V) which is continuous by
Lemma [1.5.3] O

Remarks 1.5.5. Let G be a group and H C G a subgroup of finite index.
(i) Let V' be a locally convex K-vector space which also is an (abstract) H-representation.
Then we have a G-equivariant, topological isomorphism Ind% (V); 2 Ind$ (V) via

(égi.v> —)@gloVb, Er—>Zgl fu+—>€giov)}
i=1

where g1, ..., gn are coset representatives of G/H.

(ii) We also have the following version of a push-pull formula (projection formula): Let V and
W be locally convex K-vector space such that V is an (abstract) G-representation and W an
(abstract) H-representation. Then there exists a G-equivariant, topological isomorphism

V @x Ind% (W) — nd$ (V|g @x W), Zvl®glowzi—>Zgl g5 v @ wy)

when the tensor products either both carry the pro_]ectlve or mductlve tensor product topol-
ogy. Again g1, ..., g, denote coset representatives of G/H.

In view of the anti-equivalence from Proposition [1.4.10] (ii), the locally analytic induction
can also be expressed in terms of taking tensor products with locally analytic distribution
algebras. To this end, we need the following from [46, Rmk. 1.2.11] and |27, §1.2].

Definition 1.5.6. (i) By a separately continuous locally convex K-algebra we mean a locally
convex K-vector space A which carries the structure of a K-algebra such that the multipli-
cation map A x A — A is separately continuous. If the multiplication map even is jointly
continuous, we simply call A a locally convexr K -algebra.

If in addition A is a K-Fréchet space, we call A a K-Fréchet algebra. We remark that the

multiplication map of such an algebra is jointly continuous automatically |11} III. §5.2 Cor.
1].
(ii) Let A be a separately continuous locally convex K-algebra and M a locally convex K-
vector space. We call M a separately continuous locally convex (left) A-module if M is a left
A-module and the scalar multiplication map is separately continuous. If A is a locally convex
K-algebra and the scalar multiplication map is jointly continuous, we call M a locally convex
(left) A-module.

If M is a separately continuous locally convex A-module, for a K-Fréchet algebra A, and
a K-Fréchet space itself, we call M an A-Fréchet module. Again the scalar multiplication of
such M is jointly continuous automatically.
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Lemma 1.5.7 (|27, Lemma 1.2.3]). Let A — B be a continuous homomorphism of locally
convex K-algebras, and M a locally convexr A-module. Then there is an isomorphism of
B-modules

B®aM = (B®gM)/M,

where M' is the B-submodule generated by ba®@m —bQam, forbe B,a € A, m € M. With
the induced quotient topology B ® 4 M becomes a locally conver B-module.

Definition 1.5.8. In the situation of the above lemma, we let B®4 . M denote the B-
module B ® 4 M with this quotient topology. Moreover, we write B ® A,x M for its Hausdorff
completion.

Remark 1.5.9. Note that B@Ayﬂ M again is a locally convex B-module. If B@)K,7T M is
hereditarily complete, i.e. all its Hausdorff quotients are complete [27, Def. 1.1.39], then by
[13, Cor. 2.2] completing preserves the strict exactness of

0—>M’—>B®K7WM—>B®A77TM—>O.

We thus have B&4 - M = (B&x . M) /M’ where M’ denotes the closure of M’ in B QK. M.
The above condition on B & K, M is fulfilled for example when B and M both are K-Fréchet
spaces (see discussion after |67, Prop. 17.6]) or both are of compact type (see |27, Prop. 1.1.32
(i)]) by the comment after |27, Def. 1.1.39].

Similarly if A — B is a continuous homomorphism of separately continuous locally con-
vex K-algebras and M is a separately continuous locally convex A-module, then B® 4 M
becomes a separately continuous locally convex B-module when given the quotient topology
of Bk, M (cf. [46, Rmk. 1.2.11]). We write B®4, M in this case. Furthermore, we let
B® A, M denote its Hausdorff completion.

Remark 1.5.10. In the case that A — B is a continuous homomorphism of K-Fréchet
algebras and M is an A-Fréchet module, the projective and inductive tensor product topology
on B®g M agree |67, Prop. 17.6]. Consequently we then simply write B®4 M (and B® 4 M)
to denote the B-Fréchet module (respectively, the locally convex B-module).

Lemma 1.5.11. (i) For a locally convex (respectively, separately continuous locally convez)
unital K-algebra A and a locally convex (respectively, separately continuous locally convex)
A-module M, there is a topological isomorphism of locally convexr A-modules

A®A77TME>M, a®m+— am,

(respectively, of separately continuous locally convex A-modules A®4, M = M ).

(ii) Let A and B be locally convex K-algebras, and L, M and N a locally convexr right A-
module, a locally convexr A-B-bi-module and a locally convex left B-module respectively. Then
there is a canonical topological isomorphism

(L ®A,7r M) ®B,7‘r N = L®A,7‘r (M ®B,7'r N)

For separately continuous locally conver K-algebras and separately continuous locally convex
modules, the analogous assertion holds with respect to the inductive tensor product topologies
instead.

Proof. In (i), the homomorphisms

M — A®g, M —— AQkg M

| |

A®A7LM A®A’7‘-M

given by m — 1®m are continuous by the definition of the inductive tensor product topology
(see |67, §17 A.]), and constitute inverses to the respective claimed isomorphisms.
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For (i), it is a classical result that the tensor product over a (commutative) ring is asso-
ciative. In particular this holds for lattices in L, M and N over Ok so that

p: (L®KM) QN — LRk (M®KN)

even is a topological isomorphism with respect to the projective tensor product topologies.
(These are defined by the tensor product of such lattices over O, see |67, §17 B.]). We can
now pass to the quotients

T (L@ M) @ s N — (L@ax M) @k N — (L®axM)®px N,

Tt LOKk (M @Kk N) — LOkr (M®prN) — L®a, (M®p.N).
Then 7, o ¢ factors over my, and 7 o ¢~ ! factors over =, yielding the sought topological
isomorphism.

In the case of only separately continuous locally convex K-algebras and modules, we recall
that the inductive tensor product topology on the tensor product V ®x W of two locally
convex K-vector spaces V and W is the final locally convex topology with respect to the
homomorphisms

_@uw:V —mVegW, v —v uw,
v W — VW, vr—oeu,

for all v € V, w € W. For fixed v =Y, , ¢, ® m; € L&k, M, it then follows from the
commutative diagrams

N mis- M®g,N

(£i®@mi)® —J lli@@ _

(L®K,L M) ®K,LN L L®K,L (M®K,L N)

that w o (v® -) is continuous. In turn for fixed n € N, the commutativity of

L®KL

(L®KL ®KLN*>L®KL M®KLN)

shows that ¢ o (- ® n) is continuous as well. Therefore |67, Lemma 5.1 (i)] implies that
¢ is continuous. Similarly one deduces that ¢! is continuous so that ¢ is a topological
isomorphism with respect to the inductive tensor product topologies. One then argues like
in the preceding case. O

Proposition 1.5.12 (cf. |47, §85]). Let G be a compact locally L-analytic Lie group with
a locally L-analytic subgroup H C G, and let V' be a locally analytic H-representation of
compact type. Then there is a canonical topological isomorphism of D(G)-modules

(Ind7%(V)); 2 D(G) @pem) V.-

Proof. By the definition of IndlfI’G(V) and using C'*(G,V) = C*(G, K) ®x V, we have the
exact sequence

0 — dg%(V) -5 096, K) &V -5 [ V (1.22)
geG,heH
fov — (flgh)v—flg)h™"w),,

where ¢ is strict. We want to consider the complex obtained by taking the strong dual of
(1.22)). The homomorphisms of this dual complex are continuous by [67, Rmk. 16.1].
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By [67, Prop. 9.11] we have a topological isomorphism
!/
(I v)> @ w
g€G,heH b g€G,heH
Under this isomorphism the transpose of v is given by

v P W — (CR(G K) @k V),
g€G,heH

St |£ 9000 3 1) £y0) ~ F(0) g0 0)]
There also is the topological isomorphism
D(G)®x Vi — (C™(G,K)&k V),, 0@l [f@u 6(f)E(0v)],

by [67, Prop. 20.13] and [67, Cor. 20.14]. Because we have f(g) ¢(h='.v) = 6,(f) (h.£)(v) and
f(gh) = (64 * 1) (f), the complex of the strong duals of is

!

D W5 DG ok -5 (ndgC(v)), — 0
g€G,heH

D lgn Y g% 0n @ Ly — 0y @ bl .

Since ¢ is a closed embedding it follows from the Hahn-Banach theorem [67, Cor. 9.4] that . is
surjective, and from the open mapping theorem [67, Prop. 8.6] that ¢! is strict. Furthermore,
we have Ker(:!) = Im(:)* by [11, IV. §4.1 Prop. 2] where

Im(c)" := {¢ € D(G) &k Vj | Vv € Im(¢) : £(v) = 0}.

Then it follows from the algebraic exactness of (1.22) that Im(:)* = Ker(x)* which implies
that Ker(:!) = Ker(¢)* C Im(¢)t) by Lemma Because Im(¢)!) C Ker(:!) and Ker(.!) is

closed, we have Ker(:!) = Im(¢t). But Im(1)?) is generated by the elements
S0, @0 —0gxhl ,forgeG he H, LeV,.

Therefore Remark [I.5.9] together with the density of the Dirac distributions yields the topo-
logical isomorphism

!

(Indy(V)), = (D(G) &k V) /Im(¥!) = D(G) & pry V-

As it is D(G)-linear with respect to the D(G)-action on the first component of D(G) &k V{ via
left multiplication, we see that the above isomorphism is an isomorphism of D(G)-modules.
]

1.6. The Hyperalgebra. In this section K continues to be a spherically complete non-
archimedean field with a locally compact complete subfield L C K. We recapitulate the
concept of germs of locally analytic functions and investigate certain subalgebras of the dual
space of these following |30, §2.3] and [46| §1.2].

Definition 1.6.1. Let X be a locally L-analytic manifold, and V' a Hausdorff locally convex
K-vector space. For x € X, we define the space of germs of locally analytic functions on X
with values in V' at x as the inductive limit over all open neighbourhoods U C X of =

CHX, V)= lm C*(U,V)
rcUCX
with respect to the canonical restriction homomorphisms and endowed with the inductive
limit topology.

Lemma 1.6.2 (cf. [30, §2.3.1]). Let X be a locally L-analytic manifold, and V a Hausdorff
locally convex K -vector space.
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(i) For every open subset U C X with x € U, the canonical map
(U, V) — C*(X,V)
18 a strict epimorphism.
(ii) We have a canonical topological isomorphism
CR(X,V) = lim C"¢(U, E)
(U.E)

where the latter inductive limit is taken over all pairs of analytic charts p: U — L™ and
BH-subspaces E C V' such that © € U. These are partially ordered via

(U,E)>(W,F) <= UCW and F C E.
In particular, the C*'8(U, E) C C!2(X,V) are BH-subspaces.
Proof. For (i) note that the restriction map C'3(U, V) — C'*(U’, V), for open subsets U’ C U
of X, is a strict epimorphism as it is given by the projection

cu,v)=[Cc™WU,v) — Cc™U',V),

icl

for a suitable disjoint covering U = J,.; U; by open subsets such that U’ € {U;},.;. For a
fixed open subset U C X with x € U, the canonical homomorphism C(U, V) — C12(X,V)
is the inductive limit over these restriction maps, for U’ C U with x € U’. Because it is the

colimit over the respective cokernels, C'#(U, V) — C!(X, V) is a strict epimorphism itself.
For (ii), we have by definition

la _ . : la

where the “inner” inductive limit is taken over all V-indices Z of U. The latter is topologically
isomorphic to the inductive limit indexed by the directed set

®:={(U,I)|U C X open with z € U, T a V-index of U}
endowed with the following preorder: Let (U,Z), (W, J) be elements of ®, with
T=(pi:Ui— L™ 1, Ei), ., and T =(;: W= L",5;, Fy)
Then we set (U,Z) > (W, J) if U C W and the relation from the proof of Proposition

(ii) between Z and J for the embedding U < W holds: For every i € I, there exists j € J
such that

(1) U; c W; N U, i.e. the covering of Z is a refinement of the covering U = Uje,
(2) there exist a; € ;(U;) and g; j = (gi jk)k=1,...n; € Ap, (L™, L") such that

WjﬂU,

||g¢7j7k — gLLk(O)”L < Sik s forallk=1,... OB
and ¢ o p; H(z) = g; j(x — a;), for all x € @;(U;) = B (ai),
(3) Fj C E;.
Now consider the subset ¥ C ® of those (U, Z) for which the covering of Z only consists of U
itself. This subset is cofinal in ®: For (U,Z) € ®, let ig € I such that x € U;,. Then

)’ =10’

(UiU,IO) = (Uim (QDZ'OZ Uio — LMo . Elo)) S \I/,
and (U;,,Zo) > (U,Z). Hence we conclude that

CHX,V)= lim CR(U.V).
(U,1)ev
But the directed set ¥ is precisely the directed set of pairs (U, E) where ¢: U — L™ is an
analytic chart around z and £ C V a BH-subspaces. For such Z = (<p: U—L"r, E) with
(U,T) € ¥, we moreover have CI2(U, V) = C"8(U, E). O
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Proposition 1.6.3. Let X be a locally L-analytic manifold, V' be a Hausdorff locally convex
K -vector space, and x € X.

(i) (cf. [30, Satz 2.3.1]) The locally convex K -vector space C2*(X,V) is Hausdorff and bar-
relled.

(ii) (cf. [30, Satz 2.3.1]) If V is of LB-type, then C*(X,V) is an LB-space.

(iii) (cf. [30, Satz 2.3.2]) If V is of compact type, then C2(X, V) is of compact type and there
is a natural topological isomorphism C*(X, V)= C*(X,K)®k V.

(iv) If E is a K-Banach space, then every analytic chart ¢ centred at x induces a topological
isomorphism C*(X, E) = A(L™, E) where m is the dimension of X at x.

Proof. Let ¢: U — BJ™*(0) be an analytic chart centred at z, for some r := (r,...,r) € RZ,.
Let ¢ € |L| with 0 < & < 1. Then the analytic charts U,, := ¢! (B%,.(0)) — B%(0) form a
neighbourhood basis of z, and in view of Lemma (ii) we have

CH(X,V) = lim C"8(U,, E) (1.23)

(n,E)
where inductive limit is taken over pairs of n € N and BH-subspaces E of V. As the
C"8(U,, E) are K-Banach spaces, C(X,V) is barrelled by [67, Expl. 3) after Cor. 6.16].
Moreover, we have continuous injections
C&(U,,E) = Acn (L™ E) — [[ E— [[ V
{ENT ieNm

by mapping a power series to the tuple of its coefficients. Taking the inductive limit over
these, we obtain a continuous injection C2(X, V) — [] V. It follows that C2(X, V) is
Hausdorff.

If V is of LB-type, write V' = J,,cyy Vi for an increasing sequence of BH-subspaces (V;,)nen.
Then the set of pairs {(n, V,,) | n € N} is cofinal in the directed set of (1.23). Hence C}*(X, V)
even is an LB-space in this case.

Now let V' be of compact type, say V = lignneN V,, for a sequence of K-Banach spaces

iENT

(Vi) nen with injective compact transition homomorphisms. Analogous to the proof of Propo-
sition [1.2.15] (iii), the transition maps
Crig(UnaVn) — Crig(UnJrla VnJrl)
are compact and injective, showing that C22(X,V) is of compact type. The topological
isomorphism C2(X, V) = C!*(X, K) ®x V now follows from [27, Prop. 1.1.32 (i)].
For a K-Banach space E, the claim of (iv) directly follows from the definition
A(L™ E) = ligAsnr(Lm,E).
neN

|

Proposition 1.6.4. Let ¢: X — Y be a locally L-analytic map between locally L-analytic
manifolds, and let V be a Hausdorff locally convexr K -vector space. For x € X, the map ¢
iduces a continuous homomorphism

©*: C}j‘(z) (Y, V) — C*(X,V), fr— foeo.

Proof. Let U C Y be an open neighbourhood of ¢(z). Then ¢ ~1(U) is an open neighbourhood
of x, and the locally L-analytic map ¢~ '(U) — U induces a continuous homomorphism
C'*(U,V) — C™(p~Y(U), V) by Proposition (ii). Via the universal property of the
inductive limit, these induce the desired ¢*. ]

Proposition 1.6.5. Let X be a locally L-analytic manifold and x € X.
(i) With respect to pointwise multiplication C}*(X, K) is a local K -algebra with maximal ideal
m, := Ker(ev,) C C*(X, K).

Here ev,: C*(X,K) — K denotes the continuous evaluation homomorphism induced by
ev,: C%(U,K) — K, for all open neighbourhoods U C X of .
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(ii) Let m be the dimension of X at x. The choice of an analytic chart centred at x yields
a topological isomorphism C22(X, K) = A(L™, K) of K -algebras with the ring of convergent
power Sseries.

(iii) For alln € N, m? C C!3(X, K) is a closed subspace of finite codimension.

Proof. Clearly, C!2(X, K) is a K-algebra and m, a maximal ideal. Via the usual inverse func-
tion theorem for power series, one shows that every f € C2(X, K) \ m, has a multiplicative
inverse, i.e. that C12(X, K) is local.

For (ii), note that the topological isomorphism in Proposition m (iv) is an isomorphism
of K-algebras.

To show that m? is a closed subspace of finite codimension, we may use (ii) to work with
Ker(evg)™ C A(L™, K) instead. There we have the strict epimorphism

Ar(Lm,K) . K(WH—W 1) : Z CLiXil .. .Xim — (ai)mfn—la

iEN
for every r > 0. These induce a strict epimorphism A(L™, K) — K (") whose kernel
precisely is Ker(evg)™. This shows the claim of (iii). O

Lemma 1.6.6. Let G be a locally L-analytic Lie group with identity element e. The multi-
plication m: G x G — G induces a continuous homomorphism of K -algebras

A: ™G, K) — C™(G,K) &k C*(G, K) (1.24)
which is compatible with
C(H,K) ™5 O™ (H x H,K) =~ C"(H, K) &x C"(H, K),

for every compact open subgroup H C G. Moreover, for all n € N, we have
n
(mg) C Y mi®xmy ™
i=0

Proof. Let (H,)nen be a family of compact open subgroups of G such that the restriction
homomorphisms C*&(H,,, K) — C“g( n+1, K) are compact. Then the inductive limit of the
corresponding homomorphisms m* yields a continuous homomorphism

C(G, ) 2 lim CV8(H,,, K) ™ lim C"5(H,, x H,,, K)
neN neN
via Lemma [1.6.2] (ii). Moreover,

lim C"'8(H,, x Hy, K) = lig (C"¢(H,, K) ©x C"8(H,, K)) = C(G, K) 8k O (G, K)

neN neN

by [67, Expl. after Prop. 17.10] and [27, Prop. 1.1.32 (i)]. The resulting continuous map
(1.24) is a homomorphism of K-algebras. Now consider the continuous homomorphism

eve ®eve: NG, K) 0k NG K) — K., f@f v fe)f'(e).
and the induced ev, ® ev,: C*(G, K) @k C*(G, K) — K. We claim that
(eve ® eve) oA =ev,. (1.25)

Indeed, it suffices to consider an compact open subgroup H C G and show the statement for

CrE(H, K) 25 CY8(H, K) & CT8(H, K) <=2, K.
Note that by density and metrizability of the completed tensor product, we can express
every element of C™8(H, K)®y C"8(H, K) as a convergent sum Ym0 .fn ® £, for some
fn, f1 € C"8(H, K). Consequently, for f € C"8(H, K), we may write A(f) = > >0 fn® frs
so that we have f(gg') =3 , 5 fn(9)fn(9'), for all g,¢" € H. We compute that

((eve®eve) ° A)(f) eve®ev <an ® f ) = Z fn(e)fvlz(e) = f(e) = eve(f).

n>0 n>0
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It follows from (1.25) that A(m.) C Ker(eve K eve). We want to show that this latter
subspace of C!*(G, K)®x C*(G, K) equals C'*(G, K) @ m, + m, @ C*(G, K). As the
short strictly exact sequence

0—m, — C*G K)— K—0

consists of locally convex K-vector spaces of compact type (see Proposition [A.4), its com-
pleted tensor product with C!*(G, K) remains strictly exact by |13, Cor. 2.2]:

0 — C2(G, K) &g me — C2(G, K) &g O (G, K) L2 0@, K) — 0.

Similarly, the map id ® ev, restricts to a strict epimorphism m, ®x C**(G, K) — m,. Since
eve ®ev, = ev, o (Id ® ev,), we conclude that

A(m) C Ker(eve @ eve) = (id@eve) " (me) = Ker(id @ eve) +m, Sx C(G, K)
= C™G, K) B me +m, O C(G, K).

The claim for A(m?), with n € N, now follows because A is a K-algebra homomorphism.
O

For a locally L-analytic Lie group G, we now want to study the strong dual of these spaces
of locally analytic germs supported at e. We continue to let e denote the identity element of
G, and we write D.(G) = D.(G, K) := C*(G, K);,.

Remark 1.6.7. The K-algebra C!*(G, K) constitutes an example of a CT-Hopf ®-algebra
as considered by Lyubinin in [51, Ch. 3.1.2] and |52, Ch. 3.2].

Indeed, let H,, C G, for n € N, be a family of compact open subgroups such that the restric-
tion homomorphisms r,, : C*8(H,,, K) — C*&(H,, 1, K) are compact. Then each C"'¢(H,,, K)
is a Banach Hopf ®-algebra (with comultiplication A, counit ev., and antipode inv*), and
the transition homomorphisms 7, are homomorphisms of Banach Hopf ®-algebras.

Moreover, the dual D,(G) is an NF-Hopf ®-algebra |52, Prop. 3.13]. O

Based on the hyperalgebraﬁ classically associated with algebraic groups, we make the
following definition.

Definition and Proposition 1.6.8. Let G be a locally L-analytic Lie group. We define
hy(G,K)n = {p € De(G,K) | p(m?T') =0}, for n € Ny,

hy(G, K) == | hy(G, K)n,
neNp
and call hy(G, K) the hyperalgebra of G.
Then hy(G, K),, is a finite-dimensional closed subspace of D(G, K) via the strict epimor-
phism C'*(G, K) — C2(G, K). Moreover, hy(G, K) is a K-subalgebra of D(G, K) with
hy(G, K),, x hy(G, K),, C hy(G, K)ptm , for all n,m € Ny.
When the coefficient field K is understood implicitly, we write hy(G) := hy(G, K).

Proof. We may suppose that G is compact, and consider the transpose D.(G) — D(G) of
the epimorphism C*(G, K) — C*(G,K). As C'*(G, K) and C'*(G, K) are reflexive locally
convex K-vector spaces, we can apply [11, IV. §4.2 Cor. 1] to conclude that D.(G) — D(Q)
is a strict injective homomorphism. We therefore may view D.(G) C D(G) as a closed
subspace. We write 1: m2*! — C2(G, K) for the closed embedding of Proposition m (iii).
By |11} IV. §4.1 Prop. 2|, we have

D.(G) D hy(G), = Ker(:") = Coker(¢)’
which in particular is a finite-dimensional subspace. Thus we have realised hy(G),, as a closed

finite-dimensional subspace of D(G).

40Often this object is called the “distribution algebra”, cf. |41} I. Ch.7]. But to avoid confusion we prefer
the name “hyperalgebra” here.
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Now let p € hy(G),, and v € hy(G),,. As C'*(G, K) — C'*(G, K) factors over C'*(H, K),
for any compact open subgroup H C G, we may assume that G is compact. Then the
distribution p * v: C'*(G, K) — K factors as

C*(G,K) —2— C™(G,K) &k . C*(G, K)

| | o

K
C*(G, K) £, C(G, K) @k C*(G, K) //@V.

We know from Lemma that A(m?27+) ¢ S i @ e m2tm 17 Therefore we

e

conclude that (p ® v)(A(m2T™1)) = 0 which shows p1 % v € hy(G)nm,. O

Example 1.6.9. Assume that K is a finite field extension of L, and let G be a smooth
algebraic group over L. In Remark (ii) we will endow the group of L-valued points
G(L) with the structure of a locally L-analytic Lie group. Furthermore, we will see in
Corollarythat hy(G(L)) canonically agrees with Dist(G) @, K. Here Dist(G) denotes
the hyperalgebra (algebraic distribution algebra) as treated in [41, I. Ch.7]. In particular if
char(L) = 0, this is an isomorphism hy(G(L)) = U(g) ®. K where g is the Lie algebra of G
and U(g) its universal enveloping algebra [41] I. §7.10].

Lemma 1.6.10. Let G be a locally L-analytic Lie group. Then the topological automorphism
(1.11) preserves hy(G), i.e. it induces an automorphism

hy(G) — hy(G), pr— .

Proof. This follows from the observations that, for every open neighbourhood U C G of e,
inv(U) is an open neighbourhood of e as well, and that the induced topological automorphism

invf: C1*(G, K) — C™(G,K), f+— foinv,

satisfies inv?(m,) = m,. O

Remark 1.6.11. In [52, Ch. 1.2.1] the notion of a finite dual of a Banach Hopf &®-algebra is
defined. With the obvious analogous definition for a CT-Hopf &-algebra, hy(G) is the finite
dual of C'*(G, K).

Proposition 1.6.12. Let G be a locally L-analytic Lie group, and V # {0} a Hausdorff
locally conver K -vector space. The pairing (1.15|) induces a natural, separately continuous,
non-degenerate K-bilinear pairing

De(G) x CMNG, V) — V., (p, ) = u(f) = u(f), (1.26)

where f € C'*(G,V) denotes some lift of f. Restricted to C"8(U,E) c C™(G,V), for a
compact open chart U around e and a BH-subspace E C V', this pairing is given by

D.(G) x C"8(U,E) — D.(G) x C**(G,K) &k E — E. (1.27)

Here the last map s the completed tensor product of the duality pairing between C*(G, K)
and D.(G) with E.

Proof. We may assume that G is compact. To see that is well defined, consider
fe Ker(C'*(G,V) — C(G,V)). Let E C V be a BH-subspace such that f e ™G, E).
Moreover, denote by 7: C'*(G,K) — C*(G,K) and 75: C"*(G, E) — C!*(G, E) the strict
epimorphisms from Lemma m (i). Then tensoring the short strictly exact sequence

0 — Ker(r) — C"*(G,K) — C*(G,K) — 0
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with E yields by the left exactness of the completed tensor product on locally convex K-vector
spaces |13, Lemma 2.1 (ii)] the following diagram with exact rows

0 —— Ker(1)®x E —— C*(G,K)®x E —— C*(G,K)®x E

I [ I

0 —— Ker(rg) —— C%(G,B) —— C%(G, E)

Because the middle and right vertical homomorphisms are bijective by Proposition [A77] we
see that Ker(tz) — Ker(T) @k E is bijective as well. If we consider f as an element of
Ker(7) ®x E and apply the pairing to it, we find that ,u(f) =0, for all u € D.(G), as
(cf. 11, TV. §4.1 Prop. 2])

De(G) = {p € D(G) | p(Ker(7)) = 0}

The separate continuity of ([1.26) and the non-degeneracy in D.(G) follow from the re-

spective statements for . Moreover, the description follows from .

It remains to show the non-degeneracy in C2(G, V). To this end, let f € C2(G, V) such
that pu(f) =0, for all u € D.(G). We have to show that f = 0. Let U be a compact open
chart around e and E C V a BH-subspace such that f € C™8(U, E). Then we have the topo-
logical isomorphism C*8(U, E) = C*'8(U, K) @ E, and C"8(U, K) @k E is a dense subspace
thereof. Hence we find sequences (f,,)nen C C"8(U, K), (an)nen C E, both converging to 0,
such that f=73%" o, fn ® an. It follows from our assumption and the description that

0=yp(f)= Z,u(fn)an , for all p € D.(G).

n>1
This implies that
> Afa)an =0, forall X € C"8(U, K, (1.28)
n>1
since the homomorphism D.(G) — C"8(U, K)" induced by the duality pairing between
C*(G, K) and D.(G) is surjective.
From now on, we identify C*8(U, K) as a locally convex K-vector space with the space of
sequences tending to 0

co(N) = {(an)neN c KY | a, —+0asn— oo}

endowed with the supremum norm. Our further reasoning uses that ¢o(N) is a K-Banach
space which has the so called approximation property, and essentially is a special case of
the statement |62, Prop. 4.6] in the archimedean setting. Nevertheless, we want to present a
streamlined but detailed account. To prove that f = 0 in ¢o(N) ® x E, we will show that

T(f)=0 ,forall T € (co(N) &g E) with T # 0.
We fix such T', and note that we have an isomorphism of K-vector spaces
(coN)@x E) =5 L(co(N),E'), 8 [(an)nen = [+ S(an)neny @ 0)]],  (1.29)

by [67, Rmk. 20.12]. Set C := ||T||Z(1 (N).E)? and let € > 0. We now consider the projections
co )

Pm,: CO(N) —>CO(N)7 (l'n)neN'—> (‘Tlv'-'7xm,707~-~) ) formEN,

which constitute continuous endomorphisms of finite rank. As f,, — 0 in ¢o(N), there exists
some N € N such that || fp|lc,ay < Ce, for all n > N. After enlarging N, we may assume
that || fr, — Pn(fn)llcoy < Ce, even for all n € N.

We set S := T o Py € E(CO(N),E’). Because S is of finite rank, there exist r € N,
As-- A € o(N), and 64,..., 4, € E' such that S = [z — Y1 Ai(@) 4] (cf. [67, §18]).
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Hence, when we apply S € (co(N) Dk E)/ to f, using ((1.29) we compute

ZZ)\ (fn)€ ZE(Z/\ (fn) n):o.

n>1 =1 n>1

For the last equality, we have used (1.28) here. Therefore

T <1T(F) = SN+ SN =1T(f) -

Z T(fn)(an) = S(fn)(an)

n>1
< max (HT(fn> = S(fu)llz - Hanllg) = max (HT(fn — Px(fa))|l5 - ||an||E)
< max (HTI\c(cO(N m)  Ifn = Pn(fa)leom) IIanllg) <emax|las] 5.

For & — 0, this shows that T'(f) = 0. Since T' € (co(N) & E)/ with T # 0 was arbitrary, we
can conclude that f = 0. O

Corollary 1.6.13. Let G be a locally L-analytic Lie group. Then hy(G) C D¢(G) is a dense
K -subalgebra. In particular, for any Hausdorff locally convex K -vector space V' # (0), the
K-bilinear pairing

hy(G) x C*(G,V) — V
induced from (1.26)) is non—degenemteﬂ

Proof. As a first step, we show that the above pairing is non-degenerate when V = K. In
hy(G) this is clear. On the other hand, let f € C*(G, K) such that u(f) = 0, for all
p € hy(G). For any n € Ny, it follows that f € hy(G): where we consider the orthogonal

under "
hy(G)i = {f' € C*(G,K) |Yu € hy(G)n : u(f') = 0}.

But we have hy(G),, = (m?*1)L by definition, and ((m;’“)l)l =m2*! by |11} I1. §6.3 Cor.
3]. Hence f € ﬂneNo m?T1 and we apply Krull’s intersection theorem to conclude that f = 0.

To show the density of hy(G) C D.(G), assume, for the sake of contradiction, that there is
§ € D.(G) \ hy(G). By the Hahn-Banach theorem [67, Cor. 9.3] there exists f € C'*(G, K)
such that p(f) =0, for all u € hy(G), and d(f) = 1. But as we have just seen, this implies
f =0 which is a contradiction.

The non-degeneracy of the pairing between hy(G) and C!2(G, V') now follows from hy(G)
being a dense subspace of D.(G) and Proposition [1.6.12 O

Proposition 1.6.14. Let G be a compact locally L-analytic Lie group, and V a Hausdorff
locally convex K -vector space. If we consider C'*(G, V') with the left reqular G-representation,
then we have in V the equality

(i f)(e) = u(f) . for allpe D(G), f € C*(G,V).
Proof. Let
ocn(avy: C™(G, V) — C*(G,C™(G,V)), f+— py,
denote the orbit homomorphism that sends a function f to its orbit map under the left

regular G-representation. Moreover, let Iy, denote the integration map (|1.13|) associated
with a Hausdorff locally convex K-vector space W. Now fix 4 € D(G), and consider the

5In [30, Kor. 4.7.4] Féaux de Lacroix shows that the pairing U(g) ® K x C12(G, V) — V is non-degenerate
for the case char(L) = 0. His proof uses differentiation with respect to elements of g which is why we pursue
a different method here.



EQUIVARIANT VECTOR BUNDLES ON THE DRINFELD UPPER HALF SPACE 35

following commutative diagram using that Iy is natural:

1 1 Teotae.v) 1
(G, C"*(G,V)) —— Ly(D(G),C™(G, K))

O¢la(a,v) ) eV
linvn l( -)

I la ev
C'*(G,V) c(@, (@G, V) 1 £, (D(G), C* (G, V) —2 C(G, V)
\ l(eve)* l(eve)* J/eVe
(G, V) Iv Ly(D(G),V) v

Taking the image of a function f € C'*(G,V) under the homomorphisms of the top path
to V then yields (Icia(q,v)(pr)(f1))(e) = (fo * f)(e). Taking the image via going the bottom
path yields Iy (f)(n) = pu(f). Hence the claim follows from the commutativity of the above
diagram. O

Proposition 1.6.15. Let G be a locally L-analytic Lie group.
(i) For every Hausdorff locally convex K -vector space V', the G-representation

G x C*G,V) — C™G, V), (9.f)— flg™ -9). (1.30)

1s locally analytic.
(ii) The adjoint representation, for every n € Ny,

Ady,: G x hy(G)p, — hy(@)p,  (g,p) — Adn(9) (1) := [f = n(flg-g7")],

18 locally analytic.

Proof. For (i), let H C G be a compact open subgroup. By Example m (ii), C'*(H,V)
with the H-action by conjugation is a locally analytic H-representation. Since the strict
epimorphism C*(H,V) — C'*(G, V) is H-equivariant with respect to the action by conjuga-
tion, C12(@G, V) is a locally analytic H-representation by Propositionm (i). Moreover, the
functoriality from Proposition shows that G acts on C!2(G, V) by topological endomor-
phisms. Hence Proposition implies that C!*(G, V) is a locally analytic G-representation.

For the second statement, let V = K, and consider the locally analytic G-representation
C'*(G, K) with the G-action of (i). As this representation is of compact type, D.(G) is a
separately continuous D(G)-module with respect to the structure induced from by
Proposition (ii). We claim that hy(G), C D.(G), for n € Ny, is a D(G)-submodule.
Indeed, if f € m, C C!*(G, K) then

eve(flg™' -9)) = flg " eg) = fle) =0,

which shows that f(g7'_g) € m,, for all g € G. Moreover, in G acts by K-algebra
homomorphisms. Hence m?*! C C!*(G, K) is a locally analytic G-subrepresentation. It
follows that hy(G), C D.(G) is a D(G)-submodule. Since hy(G),, is finite dimensional,
in particular it is of LB-type. Therefore, the equivalence of Proposition (i) shows
that hy(G),, carries the structure of a locally analytic G-representation and this is given by
Ad,. |

Definition and Proposition 1.6.16 (cf. [58, Prop. 3.5]). Assume that K is a finite exten-
sion of L. Let G be a locally L-analytic Lie group, and H C G a locally L-analytic subgroup.
Then every element of the K-subalgebra of D(G, K) generated by hy(G, K) and D(H, K) is
a finite sum of elements of the form u * 4§, for u € hy(G, K), 6 € D(H, K).

We denote this subalgebra by D(g, H, K) C D(G, K), or D(g, H) when the coefficient field
is implied.

Proof. With the appropriate adjustments we proceed analogously to the proof of [58, Prop.
3.5]. It suffices to show that, for all 6 € D(H), u € hy(G), § = p1 is a finite sum of elements
w x o', for ' € hy(G), 8’ € D(H). We fix such § and p, and may assume that u € hy(G)p,
for some n € Ny. By Proposition the adjoint representation Ad,, on hy(G), is given
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by a locally L-analytic map of locally L-analytic Lie groups G — GL (hy(G)n). Hence, for
an L-Basis y1, ..., it, of hy(Q),, there exist ci,...,c,. € C'*(G, K) such that

r

Ady(9)(n) = cilg)pi  forall g € G.

i=1
We define 6; € D(H), fori=1,...,r, by

5i(f) = 68[h > ci(h) f(h)] , for f e C™(H,K).
Then, for f € C'*(G, K), we compute

6+ m)(f) = 6[h = ulg = J(hg)]] = 6[h > Adu(B)(10)[g > £(gh)]]

i=1

= 6[h — (iq(@m) lg— f(gh)]] = Zr:é[h = ci(h) pilg — f(gh)]}

= 25[h = wilg — ci(h) f(gh)ﬂ = Z,Ui {9 — 6 [h — ci(h) f(gh)]}
i=1 i=1
=Y wilgr di[n Flgn)] | = D (i ) ().
i=1 i=1
using Corollary at several instances. Hence, we see that §* pu = >, p; * 0;. |

Corollary 1.6.17. Suppose that K is a finite extension of L, and let V be a locally analytic
representation of a locally L-analytic Lie group G. Then we have

g-(p*v) = Ad,(g) () ¥ (gv) , forallge G, p€hy(G),veV,
where n € Ny such that p € hy(G),,.

Proof. For g € G and u € hy(G),,, we find u1,...,u,. € hy(G), and cy,...,c,. € C'*(G, K)
such that

Ad,(9)(m) = cilg) pa
i=1
and consequently &g * u = >.._; ¢;(g) pi * 0, like in the proof of the above proposition. We
then compute, for v € V,

T T

Ady(9)(p) * (g-0) = > ci(g) pi* (gv) = > cilg) i * (6 % v)

i=1 =1

= (gci(g)ui*6g> *0 = (0g * p1) x v = g.( *v).

O

We want to characterize modules over the K-algebras D(g, H) analogously to the p-adic
situation considered by Agrawal and Strauch in [1].

Definition 1.6.18 (cf. |1, Def. 7.4.1]). Assume that K is a finite extension of L, and let
G be a locally L-analytic Lie group with a locally L-analytic subgroup H C G. We call a
locally analytic H-representation V which simultaneously is a hy(G)-module a locally analytic
(hy(G), H)-module if the scalar multiplication map hy(G) x V' — V is separately continuous
when hy(G) is endowed with the subspace topology of hy(G) C D(G) and the following two
compatibly conditions hold:

(1) The action of hy(H) as a K-subalgebra of hy(G) agrees with the action induced from

Proposition [1.4.9] (i) of hy(H) as a K-subalgebra of D(H).
(2) For all h € H, p € hy(G), v € V, and n € Ny with p € hy(G),,, we have

h.(u*v) = Ad,(h) (@) * (h.v).
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Remark 1.6.19. It follows from Corollary that a locally analytic G-representation
canonically carries the structure of a locally analytic (hy(G), H)-module, for any locally L-
analytic subgroup H C G.

Corollary 1.6.20 (cf. [1, Lemma 7.4.2]). Giving a locally analytic (hy(G), H)-module struc-
ture is naturally equivalent to giving a separately continuous D(g, H )-module structure. More-
over, passing to the strong dual space yields an anti-equivalence of categories

on locally convex K-vector spaces
of compact type with continuous H -
and hy(Q)-equivariant homomorphisms

on nuclear K-Fréchet spaces

locally analytic (hy(G), H)-modules
—
with continuous D(g, H)-module maps

separately continuous D(g, H) -modules>

Proof. A locally analytic (hy(G), H)-module V' naturally comes with a separately continuous
D(H )-module structure by Proposition [1.4.10| (i). Via setting

(pxd)*xv:=px*(d*xv) ,for ue€hy(G),d € D(H),veV,
and K-linear extension, we obtain a separately continuous homomorphism
D(g,H) xV —V

which is well defined by condition (1). To see that this defines a D(g, H)-module structure,
the only non-trivial assertion to verify is the associativity. Utilizing the associativity of the
hy(G)- and D(H)-actions and the density of the Dirac distributions, it suffices to show that

(Opxp)xv="0p* (uxv) ,forallhe H, up€hy(G),andveV.
But like in the proof of Corollary [I.6.17] we see that
(0, * ) * v = Ad,, (h)(p) * (h.v).

Therefore the associativity follows from condition (2). This also shows that conversely we
obtain a locally analytic (hy(G), H)-module structure on a separately continuous D(g, H)-
module.

For the anti-equivalence of categories, one argues analogously to the proof of Proposi-

tion [T.4.10] (ii). 0

1.7. Non-Archimedean Manifolds Arising from Rigid Analytic Spaces. Here we
want to associate locally analytic manifolds to rigid analytic spaces and schemes satisfying
some assumptions. When applied to a smooth algebraic group G this allows us to relate the
hyperalgebra of the locally analytic Lie group associated with G to the (algebraic) distribution
algebra Dist(G) as defined in |41, I. §7.7]. For the moment, let L be a complete non-
archimedean field with non-trivial absolute value | _]|.

Let X be a rigid analytic L-space and let m, denote the maximal ideal of Ox ., for x € X.
We consider on the set of L-valued points of X

X(L)={z€ X|Ox,y/m, =L}
the topology generated by U(L) C X (L), for all affinoid subdomains U C X.

Lemma 1.7.1. For the affinoid unit ball B* = Sp K{(T1,...,T,), for n € Ny, the topology
defined on B" (L) = B7(0) as above agrees with the “euclidean” topology given via B} (0) C L™.

Proof. By |7, 7.2.5 Cor. 4] the affinoid subdomains U C B" form a basis of the canonical

topology of B™. Moreover, for any = (z1,...,x,) € B", the Weierstrafl domains

Bn(fla .. 'afT) = {y € B" | ‘fl(y” < 13 R |f7’(y)| < 1} = Bn(fl) n... mBn(fT)7
for fi,..., fr € my, form a basis of neighbourhoods of z in the canonical topology |7, 7.2.1,
Prop. 3 (ii)].

For L-valued z € B"(L) and f € my = (Th — #1,..., T, — xy), let fl € L{Ty,...,T,)
such that f = f{(T1 —x1) + ...+ f, (T, — x,). We moreover find ¢ € L* such that
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le| = max | f/],,, = € '. Then, for y € B!, :=B" (c(Ty—m1),...,c(Ty—xy)), ie. y € B

sup
satisfying maxj_ |y; — x;| < €, we have

£ ()] < mlax | f{(y) |y — | < ™ Fmlax Jy; — i < 1,
and therefore B , C B"(f). We conclude that the B ., for ¢ € [L*|, constitute a neighbour-
hood basis of  for the canonical topology. But we also have B , (L) = B (z) which shows
that the “euclidean” topology on B"(L) is finer than the topology defined via the affinoid
subdomains of B”.

That the two topologies agree now easily follows from B (x) = BZ ,(L) and the fact that
the B , are affinoid subdomains, for x € B"(L) and ¢ € [L*|. O

For X with good properties, we now want to endow X (L) with the structure of a locally
L-analytic manifold. To define charts, we will use the following lemma. Its statement is
probably well-known but we include a proof since we could not find it in the literature.

Lemma 1.7.2. Let X be a rigid analytic L-variety, and x € X a regular L-rational point of
local dimension n. Then there exists an open affinoid subdomain U C X with x € U such
that U is isomorphic to the n-dimensional unit ball B"™. Moreover, for a system of reqular
parameters (f1,..., fn) of my, the isomorphism @: U = B" can be chosen in such a way

that ¢(z) =0 and T; is mapped to f; under the induced A(L", L) = Ogn o =N Ox z.

Proof. We may assume that X is affinoid, say X = Sp A, for some affinoid L-algebra A.
Because x € X is regular, Ay is a regular local ring (|7, 7.3.2, Prop. 8(i)]) where m C A
denotes the maximal ideal corresponding to x.

Let (fl, e fn) = mA,, denote a system of regular parameters, and let f; € Ox , be the
image of f; under Ay — Ox z, see |7, 7.3.2, Prop. 3]. After shrinking X, we may assume
that the f; lift to f; € m, so that f; is mapped to f; under the localization map A — Ap,.
Using that m C A is finitely generated, one verifies that there exists s € A\ m such that
sm C (fi,...,fn) and |s(z)| > 1. Via replacing A by the completed localization A(s~!), we
may assume that m = (f1,..., f,). Furthermore, by scaling we may assume that |f;[ ,, <1
or equivalently that the f; are power-bounded, see |7, 6.2.3, Prop. 1]. Therefore there exists
a continuous homomorphism of L-algebras |7}, 6.1.1, Prop. 4]

O L(Ty, ..., T,) — A, T, —> f;,

which induces a morphism ¢: X — B"™ of affinoid L-varieties. It follows that ¢(z) =0 € B"
and that z is the only point of X which is mapped to 0 since m = (fy,..., fn). Now @b
induces a homomorphism of the completion of the local rings

@Z: L[[T17’Tnﬂ g@B",O —>@X,17 Tl|—>ﬁ

As the fi,..., f, generate m@X,x and @X@/m@X’x >~ [, we may apply |25, Thm. 7.16 b.]
to conclude that gﬁi is surjective. By considering the dimensions of these rings it follows
that @’ is in fact an isomorphism. Then [7, 7.3.3, Prop. 5] implies that there exists an
affinoid subdomain V' C B" containing 0 such that ¢: ¢=*(V) — V is an isomorphism.
But the Weierstrall domains B"(¢Ty,...,cT,), for ¢ € L* with |¢| > 1, form a basis of
neighbourhoods of 0 € B, cf. the proof of Lemma In this way we obtain the sought
open affinoid subdomain

U:=¢ ' (B"(cTh,...,cT,)) — B"(cTh,...,cT,) = B"
0

Lemma 1.7.3. Let B™ — B™ be a morphism of rigid analytic L-spaces, for n,m € Ng. Then
the induced map B} (0) — Bi*(0) is given by convergent power series.
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Proof. By [7, 6.1.1 Prop. 4] we have
Hom(B",B™) = Homp a1y (L(Y1, ..., Vi), L(X1, ..., X)) = (Op(X1,..., Xn)) "
where to (f1,...,fm) € (OL<X1, e 7Xn>)m one associates the homomorphism which on
L-valued points is given by
B"(L) — B™(L), z+— (fi(2),..., fm(2)).
O

Definition 1.7.4 (|43, Def. 2.5.6]). A rigid analytic L-space is defined to be of countable
type if there exists an admissible covering X = |J..; U; by affinoid open subdomains U; C X
such that I is at most countable.

iel

Remarks 1.7.5. (i) Examples of such spaces include the rigid analytic L-space associated
to a scheme of finite type over L |43 Rmk. 2.5.11].

(ii) When the field L contains a dense countable subfield (e.g. when L is a non-archimedean
local field), any admissible open subset U of a rigid analytic L-space X of countable type is
of countable type itselﬂ

Proof of (ii). Taking an at most countable admissible covering X = J;.; U; by open affinoid
subdomains U; C X, and considering the admissible open U N U; C U;, we may assume that
X is affinoid.

Hence, let X = Sp A, for some affinoid L-algebra A, and let U = J,.; U; be some ad-
missible covering by open affinoid subdomains U; C X. This admissible covering is an open
covering with respect to the canonical topology on X. By [5, Prop. 2.1.15], we have a topo-
logical embedding X < M(A) where M(A) denotes the Berkovich spectrum associated with
A. Moreover, using that L contains a dense countable subfield, one can find a topological
embedding M(A) < [0, 1], see [18, p. 4]. Therefore U with its induced subspace topology
has a countable basis |9, Ch. IX. §2.8 Prop. 12]. But this implies that there already exists an
at most countable subset J C I such that U = |J;.; U; is a covering [9, Ch. IX. §2.8 Prop.
13]. |

Definition and Proposition 1.7.6. Let X be a smooth, separated rigid analytic L-space
of countable type. Then X (L) with the topology generated by U(L) C X (L), for all affinoid
subdomains U C X, and the atlas with charts induced by the isomorphisms of Lemma [1.7.2
is a locally L-analytic manifold. We will denote it by X2

Proof. For each x € X(L), by Lemma there exist an affinoid subdomain U, C X

containing x and an isomorphism ¢, : U, =, B"=, x — 0, where n, is the local dimension at
2. These isomorphisms yield charts

o

0z Ug(L) — BT=(0) C L™=

which we want to show to be compatible. For x,y € X (L) we obtain an isomorphism of rigid
analytic L-spaces

oy 00t 0p(UpNU,) — U, NU, —> 0, (Uy NU).
For z € ¢, (U, NU,)(L), we find ¢ € L™ such that
Y'i=Y(c(Tht—2),.,c(Tn, —2n,)) CY =, (U, NUy)
is an open affinoid subdomain with
VoY 5B, we—s e (w — 2),
and Y'(L) = B‘ZT,I (z). Applying Lemma to
pyopy oI BY — Y — ol {(Y) — (07 (Y1) — B™

6We learned about this from https://mathoverflow.net/q/155500 (version: 2014-01-23), and we follow
the reasoning suggested there by the user “ACL” (https://mathoverflow.net/users/10696/acl) for a proof.
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we find that f(w) := (¢ 00, *ow; 1) (w) is given by convergent power series, for w € B"ZT,I (2).
Therefore (¢, 0 ;1) (w) = f(c(w — 2)), for all z € Y(L) and such w, shows that ¢, o o
is locally L-analytic on ¢, (Uy N Uy )(L). This shows that the charts ¢, for € X(L), are
compatible, and we obtain a maximal atlas induced by them.

To see that X (L) is second countable let X = [ J,.; X; be an admissible covering by open
affinoid subdomains. We may assume I to be at most countable by the assumption on X to
be of countable type. But each affinoid X; is the a subspace of some B™ with respect to the
canonical topology. Hence X;(L) C B"(L) C L™ is second countable by Lemma [1.7.1]

By the assumption that X is separated, the diagonal morphism A: X — X x; X is a
closed immersion. It follows from |7, 9.3.5 Lemma 3| that U x; U C X xp X is an open
affinoid subdomain, for every open affinoid subdomain U C X, and from |7, 9.5.3 Prop. 2]
that the morphism A: U — U xp, U is a closed immersion. Hence A(U) C U x, U is closed
in the canonical topology. Therefore we can deduce that on the level of L-valued points

A(U(L)) c U(L) x U(L) = (U x, U)(L)

is closed when U(L) is endowed with the topology generated by all open affinoid subdomains
of U. This shows that X (L) is Hausdorff. Finally, since X (L) clearly is locally compact in
addition to being second countable and Hausdorff, we can conclude that it is paracompact. O

Corollary 1.7.7. Via assigning
X — X'
[f: X — Y] — f|X1a

we obtain a functor from the full subcategory of smooth, separated rigid analytic L-spaces of
countable type to the category of locally L-analytic manifolds.

Proof. Like in the proof of the previous proposition one shows that a morphism between rigid
analytic L-spaces induces a locally L-analytic map between the associated manifolds. O

Remarks 1.7.8. (i) For a smooth, separated L-scheme X of finite type, we may pass to
the rigid analytification X™& which is of countable type by Remark (i). Since being
separated and smooth carries over to X", we may associate with X the locally L-manifold
(Xig)la We denote the resulting functor by ().

(ii) In particular, if G is a smooth algebraic group over L, it is necessarily separated. It follows
from functoriality that the algebraic group structure of G endows G'? with the structure of
a locally L-analytic Lie group.

We now assume that L is a locally compact complete non-archimedean field and let K be
a finite extension of L.

Proposition 1.7.9. Let X be a smooth, separated rigid analytic L-space of countable type,
x € X(L). Then there is a isomorphism of local K -algebras

Oxe®L K — C*(X"" K), f®X— Af|xn. (1.31)

Proof. Employing Lemma we find an affinoid subdomain U C X containing = and an
isomorphism ¢: U — B", for some n € Ny, with ¢(z) = 0. For € € |01, \ {0}] we consider
the Weierstral domain B? := B"(¢ T, ...,cT,) C B" where ¢ € L such that |¢| = ¢~!. Then
the set of affinoid subdomains U, := ¢~ 1(B?) is cofinal in the family of affinoid subdomains
of X containing x. Therefore we find that

Ox.o @1 K = ( liny O(UE)> orK= lig  OU.)@LK.
c€|0L\{0}] e€|0L\{0}]
On the other hand the induced charts U.(L) — BZ(0) form a cofinal subset in the family of
analytic charts of X'* centred at x. Hence we have by Lemmam (ii)
CHX™ K)=  lim  C"(U.(L),K).
e€|0L\{0}]
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But there are compatible isomorphisms of L-algebras

OU.) — C"8(U.(L),L), [+ flu.), forallee|O\{0}. (1.32)
Indeed, an inverse is given as follows: For f € C™8(U.(L),L), let g € A.(L", L) be a
convergent power series such that f(z) = g(¢(2)), for all z € U.(L). As A.(L™, L) = O(BZ),
we map f to ¢’(g) where ¢’: O(B") = O(U.) is the isomorphism of affinoid L-algebras
corresponding to ¢|y.. Passing to the tensor product of (1.32) with K then yields (cf. |27,
§2.3)

OU.)®L K = C"8(U.(L),L)® K = C"8(U.(L), K)

Taking the direct limit over these isomorphisms gives (|1.31)).

Furthermore we note that the isomorphisms ([1.32]) preserve the maximal ideals of functions
vanishing at = so that (1.31)) is an isomorphism of local K-algebras. O

Corollary 1.7.10. Let G be a smooth algebraic group over L. Then the isomorphism (1.31)
for G™8 induces a canonical isomorphism of K-Hopf algebras
hy (G, K) — Dist(G) @ K
where Dist(G) denotes the distribution algebra of G, cf. [41, 1. §7.7]. In particular, if
char(L) = 0, then hy(G"* K) 2 U(LieG)®r K.
Proof. As noted in Remark (ii), we may apply Proposition to obtain an isomor-
phism of local K-algebras
a: Ogris. 1 K — C*(GP K).

For every n € Ny, we thus have a homomorphism

hy (G, K), — {€ € (Ogric @ K)* [{(ml T @, K) =0}, pr— poa. (1.33)
Let M, = Ker(ev,) C C2(G', K) denote the maximal ideal. By Propositionm (iii) every
p € C2(G?, K)* with u(97+1) = 0 factors over a finite-dimensional quotient of C;*(G'2, K).

€

Hence every such p already is continuous, and it follows that (|1.33)) an isomorphism of K-
vector spaces.

Moreover, let Og . and Oguie o denote the respective me-adic completions. As stated in
[6, p. 113] these completions are canonically isomorphi(ﬂ The homomorphisms

(OGrig7e XL K)* — (@Grig7e XL K)* = (@G,e XL K)* — (OG,E Xr, K)*

thus restrict to yield an isomorphism

{t € (Ogrs. @ K) | tm!T @, K) =0} 2 {l€(Og,.®K)*

= Dist, (G) @1, K.

E(m?“ Xr K) = 0}

That the resulting 8: hy(G'?, K) = Dist(G) ®, K is an isomorphism of K-Hopf algebras
follows from the commutativity of the following diagram, for pu,v € hy(G'?, K):

Og,e®r K —2— (0.0 K) @K (0. o1 K)

l l W@ﬂ(ﬂ

OGrig7€ R K NN (OGrig)e ®r K) Q@K (OGrig7e ®r K) — K

| ooe] e

C (G K) —2— O (G2 K) &k C*(G", K)

In |6] Bosch refers to [48| Satz 2.1], but this paper was not available to me.
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2. H(X,€);, AND LocAL COHOMOLOGY GROUPS AS LOCALLY ANALYTIC
REPRESENTATIONS

Let K be a complete non-archimedean field with non-trivial absolute value | _|.

2.1. Topologies on the Coherent and Local Cohomology of Rigid Analytic Spaces.
In this section we want to consider a more general situation than the one we later need for the
Drinfeld upper half space. Let X be a rigid analytic K-space and £ a coherent Ox-module.
Following [61, 1.6] we want to recall how the sections and the coherent cohomology groups
of £ on admissible open subsets can canonically be endowed with locally convex topologies.

Let U =Sp A C X be an affinoid subdomain, for some affinoid K-algebra A. By Kiehl’s
theorem (7, 9.4.3 Thm. 3], £(U) is a finite A-module, and hence carries the structure of a
complete normed A-module, unique up to equivalence of norms |7, 3.7.3 Prop. 3]. By fixing
such a norm £(U) becomes a K-Banach space. For another affinoid subdomain U’ C U C X,
the induced restriction homomorphism £(U) — £(U’) is continuous.

Next, we want to look at an admissible open subset U C X. For an admissible covering
U = ;e Ui by affinoid open subdomains U; C X, the intersections U; N Uj, for 4, j € I, are
admissible open again, and we can find admissible coverings U; NU; = |J,.c I Vijr by affinoid
open subdomains Vi C X. Because the £(U; NU;) — erl” E(Vijk) are monomorphisms
of K-vector spaces, we have an exact sequence

0— &) — [[ew) — I TI €Win) (2.1)

i€l i,j€l kel

of K-vector spaces. We would like to use this exact sequence to endow £(U) with a locally
convex topology. However in order to do this independently of the admissible coverings, we
restrict ourselves to the situation that the involved coverings are at most countable (e.g.
when U is of countable type, see Definition . In this case the products in are at
most countable, and therefore are K-Fréchet spaces. It follows that £(U) with the subspace
topology is a K-Fréchet space as well. To see that this topology is independent of the (at
most countable) admissible coverings, it suffices to consider the situation of a refinement of
such coverings. It is a classical result that the induced homomorphism of complexes is a
quasi-isomorphism algebraically [6, 6.2 Thm. 5]. Then one argues analogously to the case
of complexes of complex Fréchet spaces in |4, VII. Lemma 1.32] to deduce that the induced
isomorphisms between the cohomology groups are topological isomorphisms even. Note that
the restriction homomorphisms £(U) — £(U’), for admissible open U’ C U which allow an
at most countable admissible covering, are continuous.

Now consider an admissible open subset U C X with an at most countable admissible
covering U = |J,c; Us by admissible open subsets that each allow an at most countable
admissible covering by affinoid subdomains. Moreover, assume that the covering of U is
E-acyclic, i.e. all higher cohomology groups of £ on the intersections of the U; vanish. For
instance, when X is separated, this is fulfilled if the U; are affinoid or quasi-Stein [61, 1.6].
Then the associated Cech complex

i€l ioyi1€1
computes H*(U, €) on the level of K-vector spaces |6, 6.2 Thm. 5], and its differentials are
continuous. Note that consists of K-Fréchet spaces because all of the above products
are countable. We endow H*(U, &) with the locally convex topology that is induced from
being a subquotient of a term of .

By the open mapping theorem [67, Prop. 8.6] this topology is Hausdorff if and only if
the differentials of are strict. In general however, this is not the case. Like before one
shows that the topology on H*(U, £) does not depend on the choice of the at most countable
covering.

Furthermore, we want to consider the local cohomology groups of £ with respect to the set
theoretical complement Z := X \ U. We now suppose that X possesses an E-acyclic, at most
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countable, admissible covering X = |J e Vi by admissible open subsets which each have an
at most countable, admissible covering by affinoid open subdomains. We also suppose that
the intersections U; N V; admit an at most countable, admissible covering by affinoid open
subdomains. For example, this latter assumption is fulfilled if X is quasi-separated. In this
setting, we may assume that the covering U = J;c; U; is a refinement of U = UjeJ V;nU.

Hence, we have a continuous homomorphism of the Cech complexes

[[EV;) — II &V nVy) — ...

JjeJ Jo,j1€J

| |

icl ig,i1E€1

which in turn induces continuous homomorphisms H*(X, &) — H*(U, &), k > 0, by the usual
diagram chase.

As K-vector spaces the local cohomology groups H E(X ,&) are defined via the right derived
functors H%(X, -) of the functor Ker(I'(X, ) — T'(U, -)) [33, Exp. 2, Def. 2.1]. They fit
into the long exact cohomology sequence of K-vector spaces |33, Exp. 2, Cor. 2.9]:

S HEUX,E) o HMYX,E) s HENU,E) L HE(X,E) — ... (23)

We endow HE(X, &) with the locally convex final topology with respect to 9%~1, i.e. the
finest locally convex topology such that *~! is continuous.

Remark 2.1.1. It follows from [67, Lemma 5.1 (i)] that with this choice of topology on
H%(X, &) the homomorphism H%(X,E) — H*(X,E) is continuous as well. Moreover, then
0%~ even is a strict homomorphism by Lemma

2.2. Coherent (Local) Cohomology of Equivariant Vector Bundles. Now consider
a rigid analytic group variety G over K with multiplication morphism m: G xx G — G, and
a rigid analytic K-variety X with an action o: G xx X — X by this rigid analytic group
variety. Moreover, let £ be a G-equivariant coherent O x-module, i.e. a coherent O x-module
with an isomorphism

d: 0" = pray&
of O« x-modules which satisfies the cocycle condition on G xx G x g X:
prys® o (idg x 0)*® = (m x idx)*P.
For any g € G(K), g: SpK — G, by a slight abuse of notation we also let g denote the

. . id . . .
induced automorphism X IXEX G x x X 5 X. We thus obtain an isomorphism

Q,: 9" = (g xidx)"0"E loxidx)Te, (9 xidx)*prs€ =&
of Ox-modules, for each g € G(K).

Fix g € G(K), and let U C X be an admissible open subset. In the following, we keep the
assumptions from the previous section, i.e. that U admits an at most countable admissible, &-
acyclic covering by open subsets which in turn admit at most countable admissible coverings
by affinoid open subdomains. We get an induced isomorphism of K-vector spaces on the
cohomology groups

* o\ A - woy 2alg™'(U) _
In particular, we obtain an automorphism of H*(U, £) if g stabilizes U.
For an affinoid subdomain V' C U, we denote the continuous homomorphism of affinoid
K-algebras corresponding to g: g~ (V) = V by ¢},: O(V) = O(g~(V)) . Then

i EV) — gug €(V) = g"€ (g~ (V) 22D, g(gm1(v))
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is g},-semilinear, i.e. ¢, (ae) = g (a)p, v (e), for all a € O(V),e € £(V). Using that (V)
and E(g~'(V)) are finite O(V)- respectively O(g~!(V'))-modules, this implies that ¢,y is
continuous (cf. [7, 3.7.3 Prop. 2] where this is shown for linear homomorphisms). We apply
this to all V = U;, Nn...NU;,, for ip,...,i, € I, to obtain a continuous homomorphism of
the Cech complexes

[HEW;) — 1 €U, NnU;) — ...
iel io,i1€l

l l (2.5)

Hg(g_l(Uz)) e H 5(9_1(Ui0 ﬁUil)) —_ ...
il ioyi1 €1
In fact ([2.5) induces the isomorphisms (2.4)) which therefore are continuous.

Note that more generally, for an admissible open subset V' C g~ (U) satisfying the previous
assumptions, g induces continuous homomorphisms

H*U, &) 2% H* (g7 (U), &) — HM(V,E).

Turning to the local cohomology groups, we now consider Z := X \ U, and a subset
W C X such that g=*(Z) C W and X \ W is an admissible open subset satisfying the above

assumptions. The isomorphism ®,: g*& =, € then induces homomorphisms
g Hy(X,€) — Hiy (X, €) (2.6)

of K-vector spaces. These fit into an isomorphism of the long exact sequences of local
cohomology

S HE(X,E) —— H*(X,E) —— HMU,&) —L— HEY(X,8) —— ...

J{‘Pg J{‘P.q J{S"g l‘/’g
s HE(X,E) —— HYX,E) —— HYX\W,&) -2 HEY(X,6) — ...

Under the suitable assumptions on coverings of X, we conclude by |67, Lemma 5.1 (i)] that
the homomorphism ¢,: H%(X,£) — HE,(X,€) is continuous, too. Note that this ¢, is a
topological isomorphism if W = g=1(Z).

2.3. Coherent Cohomology of the Drinfeld Upper Half Space. Let K be non-archi-
medean local field with ring of integers Ok and residue characteristic p > 0. We denote the
completion of the algebraic closure of K by C, its ring of integers by O¢, and write | _| for
the absolute value on C. Moreover, we fix a uniformizer 7w of K so that mx = ().

For fixed d € N, we now consider the action of the linear algebraic group G := GLg4y1
on the projective space P%. We write G = GLg411(K) for the K-rational points of G, and
set Go := GL44+1(Ok) which is an open, maximal compact subgroup of G.

We will use the convention that ]P"}( = Proj Sym(K?t1)* is the projective space of lines
in K91 where Sym(K9t1)* = K[Xy,..., Xq4], with X, ..., Xy being the dual basis of the
standard basis of K91,

Then the natural left action o: GLyy1 x X x P% — P% is given by

GLd-i-l(C) X P(II((C) — P(;((C)7 (972) — gz = [ZOZ s :Zd] '9_17

on C-valued points. Note that the compatible left G-action on K[Xo,..., X ] is given by
g-X; = Zidzogini, for g = (gi;) € G, so that my, = g(m;), where m, C K[Xo,..., X/
denotes the maximal ideal corresponding to z € P%(C). We will continue to let GLg11 K,
P4, and o denote the respective rigid analytifications and the rigid analytic group action
when this causes no confusion.

We now recall the definition of the Drinfeld upper half space and its rigid-analytic structure
following Schneider and Stuhler [69} §1]. Unless stated otherwise, for 2z € P%.(C), we always
assume a representative [zg: ... :z4] of z to be unimodular, i.e. to satisfy |z;| < 1, for all
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i = 0,...,d, and |z]| = 1, for some i. Then, for any hyperplane H C P%(C), we let
Ly € (O%H)* be some unimodular linear form (i.e. £y (z) = Z?:o iz, for some unimodular
A= (Xo,---, M) € 0L such that

H={z¢€ P4 (C) !EH(Z) =0}.

This linear form ¢ is determined up to a unit in Oc¢.
Let H denote the set of all K-rational hyperplanes (i.e. there exists some A € (9?‘1 defining
H) in P4 (C). As a set, the Drinfeld upper half-space of dimension d over K is defined as

X = IP;@(C)\ U &
HeH

To describe its structure as a rigid analytic variety, let
X, = {2 €PL(C)|VH € H: |ty(2)| > |n|"},

forn € N. The &,, C P% are open affinoid subvarieties. Moreover, via the admissible covering
X = U, ey An the Drinfeld upper half space is an admissible open K-analytic subvariety of
P4, and in fact a Stein space |69, §1, Prop. 4]. Recall that this implies that, for any coherent
Ox-module &, the higher cohomology groups vanish |45, Satz 2.4]: H¥(X,€) = 0, for j > 0.

The open affinoid subsets X, C P‘Ii{ are stabilized under the action of Gy. Indeed, let
g € Goand z = [29:...:24] € X,,. Note that the representative [29: ... :24] - g~1 of gz
already is unimodular. For any H € H, with £y corresponding to unimodular A € Oé“, we
have to check that |[¢g(gz)| > |7|". But we have

i (92)| = [20: . 2 2a] - g7 - A = [g-10my (2)] 2 Im]",
and g~ !(H) is the hyperplane corresponding to g—* - AL.
Now consider the admissible open rigid analytic subgroups

Hpi1:= {9 € GL411(0¢) |3h € Go, I € Mg41(O¢) : g = h+ 7" W'} € GLay1(C), (2.7)

for n € N. Then the action o of GLg441,x on IP’?( restricts to an action of Hy,,1 on &),: Let
2 € X, and g € H, 1 with g = h+ 7"h/, for h € Go, K € Mg41(O¢). We compute, for
HeH,

(g™ 2)| = [n(m)(2) + 1" (200 ... i24) - B)| = ey (2)| > |m|™

since [0p gy (2)] > [Ty ([20: ... 1 2a] - B)].

Consider now a G-equivariant vector bundle £ on P%. We want to show how the strong
dual HO(X,E); of the global sections of & on the Drinfeld upper half space X is a locally
analytic G-representation. The methods are analogous to the ones used by Schneider and
Teitelbaum [70| for the canonical line bundle £ = QI‘;?( . But for the convenience of the reader

we include the proofs.

Proposition 2.3.1 (cf. |70, Cor. 3.9]). The representation

G x HO(X, &)y — H(X, )y, (9,0) — L(g™". ), (2.8)
18 locally analytic. Moreover, the canonical map
!/
iy 14, €)' — (m HO(%,,8)) = B2 (2.9
ne ne

is a topological isomorphism and H°(X, E)} is of compact type this way, i.e. it is the inductive
limit of
HY(X,E) — ... — H°X,,&) — H(X,11,E) — ... (2.10)

where the transition maps induced from X, C X, 11 are compact and injective.

For this proposition we proceed in several steps.
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Lemma 2.3.2. The natural actions of G on HY(X,E) and of Hyy1(K) on HY(X,,E), for
all n € N, are given by continuous endomorphisms.

Proof. This follows from the considerations in the previous section Section [2.2 O

Lemma 2.3.3. The space of global sections H° (X, E) is the projective limit of the K -Banach
spaces
HO(X,€) = lim HO(X,,£)
neN
with respect to the restriction maps €(Xyy1) = E(X,). These homomorphisms are compact
and have dense image. Moreover, the above isomorphism is Gg-equivariant.

Proof. We apply the discussion of Section to the admissible covering & = J,,cy Xn-
Noting that X,, C X,,+1, the topological isomorphism

HO(X, &) = Ker( [Tex) = I €n Xm)> = lim H°(X,,, )

neN l,meN neN

follows from . This isomorphism is Gy-equivariant by construction.

We now argue analogously to [70, §1 Prop. 4]. For each n € N, &, is a Weierstral domain
inside X, 11 [69, §1, Proof of Prop. 4]. This implies that the image of O(X,,+1) is dense inside
O(X,) |7, 7.3.4 Prop. 2].

Furthermore, by [69, §1, Proof of Prop. 4] the homomorphism ¢: O(X,,11) — O(X,) is
inner in the sense of [5, Def. 2.5.1], i.e. there exists a strict epimorphism

7 K(Th,...,Tn) — O(Xni1)
of affinoid K-algebras, for some m € N, such that
sup [¢(7(T3))(y)] <1,

YEXn
for all i = 1,...,m. By [70, §1 Lemma 5] it follows that ¢ is compact as a homomorphism
of locally convex K-vector spaces.
For a general vector bundle £, we know by Kieh!l’s theorem |7} 9.4.3 Thm. 3] that, for some
k € Ny, there is a commutative diagram
Dk

O(Xi1)®F Ly O(X,)®F

| |

E(Xn1) —— E(Xn)

where the vertical maps are strict epimorphisms. Then Lemma (ii) and (iii) imply that
E(Xnt1) — E(AX,) is compact. The above commutative diagram also shows that the image
of this restriction homomorphism is dense. O

Lemma 2.3.4. Forn € N, the representation
GO XHO(Xnvg) —>H0(Xn78)7 (g,v)>—>g.v,
on the K-Banach space H°(X,,, &) is locally analytic.

Proof. We have already seen in Lemmathat each g € Gy C Hy4+1(K) acts by a contin-
uous automorphism on H°(X,,, ). Hence, it suffices to show that, for every v € H°(&X,,,£),
the orbit maps Go — H%(X,,,£), g — g.v, are locally analytic.

To this end we fix v € £(X,) and g € Gy, and proceed just as in |70, Prop. 2.1’]. We use
the admissible open rigid analytic subgroup and the rigid analytic chart

tg: Dypyq =1+ "My 1(Oc) — Hup1, h— gh.
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Note that D, is isomorphic to a polydisc Sp K(T,...,T(q41)2) as a rigid analytic variety.
As H,41 fixes X, we can restrict the group action o and get the following commutative
diagram:

Lg Xid -
Dy Xg Xy —— Hppg X Xy — X,

\ [
pry
Xy,

Let F, € E(Xn)(T1, ..., T(44+1)2) denote the power series to which v is mapped under
E(Xy) — (1g X id)*0*E(Dpt1 X Xy)
l(LgXid)*q)(Dﬂd,l X 1 X))
(tg x1d)*pr3&(Dypy1 Xk Xn) = pr3€(Dpt1 X g Xp)
= (O(Dn+1) B O(Xn)) ®o(x,) €(Xn)
= (X )T, .., T(as1)2)-
Now consider, for a K-valued point h € D,,+1(K),

Lgxid p
Dt X X 2258 Hyo) xie Xy —2 X,

hxidT
gh
Xy

In terms of K-affinoid algebras the morphism A x id: &,, — D,41 X &), is given by the
evaluation of power series

evi: O(Dpgr) Ok O(X,) 2 O(X,)(Ths - .., Tias1y2) — O(Xy),
F+—— F(h).
Hence we arrive at the commutative diagram

E(Xn) Emd (Lg X 1d)*0'*5(Dn+1 XK Xn) E— g(Xn)<T1, e vT(d+1)2>

\ J’(hXid)* lth,
q>gh (Xn)

(gh)*E(Xn) E(Xn)
which shows that gh.v = F,(h). We conclude that the orbit map Gy — £(A},) is analytic on
the open neighbourhood tg(D;,41)(K) of g. O

Corollary 2.3.5. The contragredient representation
Go XHO(Xmg)/ _>HO(X7M5),7 (g’é)'_>€(gfl.i)’
on the K-Banach space H°(X,,,E)" is locally analytic.

Proof. We argue analogous to the proof of |70, Prop 3.8]. By Proposition the repre-
sentation of Gy on H°(X,,, €) from Lemma is given by a locally analytic homomorphism
of locally K-analytic Lie groups p: Go — GL(H°(X,,,£)). Then the contragredient represen-
tation

p*: Go — GL(H(X,,€)'), g p(g™")",
is given by a locally analytic homomorphism of Lie groups as well [10, III. §3.11 Cor. 2|, and
is locally analytic therefore. |

Proof of Proposition [2.3.1l For the statements about H°(X, £);, we argue analogously to the
proof of [70, Prop. 1.4]. By Lemma [2.3.3] the homomorphisms H(X,11,&) — HO(X,, &)
have dense image. Therefore, the image of the projections H°(X,&) — HY(X,,, &) is dense,
too |8, Ch. II. §3.5 Thm. 1]. We apply [67, Prop. 16.5] to conclude that is a topological

isomorphism.
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As H°(X,41,&) — H(X,, ) has dense image, the transpose H*(X,,, ) — H(X,,11,E)’
is injective. Moreover, [67, Lemma 16.4] implies that they are compact.

Concerning the G-action , we have seen in Lemma that G acts by continuous
endomorphisms on HY(X,£). Therefore the contragredient G-action on H°(X, ) is by
continuous endomorphisms as well.

In view of Proposition it suffices to show that the orbit maps of restricted to Gg
are locally analytic. For any £ € H?(X,E);, there exists some n € N such that £ € H(X,,€)/,
and the inclusion H°(X,,, &) — H°(X,E)j is Go-equivariant by Lemma

But we have seen in Corollary that the orbit map Gy — HY(X,,, &) of £ is locally
analytic. As H°(X,£&)} is of compact type with respect to ([2.10), H*(X,,€)" — H°(X,£),
constitutes a BH-subspace. Then by definition the orbit map Gy — HY(X, )] of ¢ is locally
analytic as well. O

2.4. Strictness of certain Cech Complexes for the Complement of Schubert Va-
rieties. Our next aim is to see how the strong duals of the local cohomology groups for
& with respect to Schubert varieties P}, C (P%)Tig become locally analytic representations.
Moreover, we will show that these strong dual spaces are of compact type similarly to (2.10))
by giving an exhaustion by the local cohomology groups with respect to “tubes” around the
Schubert varieties.

However, the first step in this section is to prove that certain Cech complexes which com-
pute the cohomology of the complement of these Schubert varieties consist of strict continuous
homomorphisms. The strictness property enables us to pass to the local cohomology with
respect to the “tubes” around the Schubert varieties in a well-behaved way.

First we define certain rigid analytic subvarieties of P4 which are neighbourhoods of the
Schubert varieties

Py = {[zoz cooizp:0:.00:0] EIP’CII(} =Vi( X1y, Xa) C}P’?{,

for fixed r € {0,...,d —1}. For 0 < e < 1, ¢ € |K|, the “open” e-neighbourhood around P,
is defined as

Pi(e) :={lz0: ... : zd] EP%‘V@':T—i—l,...’d: |zi| < e}, (2.11)
and the “closed” one as
Pi(e)” == {[20: ... : 24] EIP’}i(Wi:rJrl,...,d: |z < e}

We will describe some admissible coverings of the complements of these e-neighbourhoods.
Let A € K* and m € N such that e = 3/|A|. We have the admissible covering

d
Pi\Pr(e)” = | Uie (2.12)
i=r+1
by the Weierstrafl domains
Upe = Dy (Xy)e i={[201 ... 12d] €EPK|Vi=0,....d:e|z] < |z}
d |\ 2"
z{[zoz cooizq] EPY |V =0,...,d: )\z? gl},

cf. |7, 6.1.5 Thm. 4]. We will denote this covering (2.12)) by U, in the following. Note that
Ui e is contained in the standard open affine subset Dy (X;) of the projective space.
Moreover, for 0 <e < 1, ¢ € |K]|, let

U, =D (X)) =={lz0: ... 12a) €PL|Vj=0,....d:elz]| <|azl}.

Then U, _ becomes an open admissible subdomain of IF’f( which is quasi-Stein via the admis-
sible covering

U’i,& = U Ui,Eyn )
O |Sem e
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for any strictly decreasing sequence of (&, )men C |K |, with &, > €, &,, — €. The condition
on the associated homomorphisms of affinoid algebras to have dense image is fulfilled for every
inclusion of Weierstrafl domains [7, 7.3.4 Prop. 2]. In the extreme case of ¢ = 0, we have
Uo=U; & ¢f. |7, 9.3.4 Example 2]. Here U; ' denotes the rigid analytification of the open
affine subscheme U; := D (X;) C P%.

We let U denote the admissible covering

PL N\ Pl (e U (2.13)

i=r+1

In the extreme case ¢ = 0, we also write (P%)"® C P4 when we want to signify that the
complement of P4 C (P% )" is an admissible open subset

d
4\ (Pr)"® = U vrt= U Ui

i=r+1 i=r+1 0% |3m\0

Moreover, we let U denote the standard covering by open affine subschemes

d
Pi\Px = |J Ui (2.14)

1=r+1
Finally, we write, for any subset I C {0,...,d},
Ure == \Vie (2.15)
iel
and similarly Uy _, Uy, and U;ig. By convention we set Uy = Uy . = U, _ = Pd..

Lemma 2.4.1. Let 0 < e < 1 withe € |K|. Let I C {0,...,d} and denote by £¥8(U;) the
sections of € on the algebraic variety Ur. Then the homomorphism E£¥8(Ur) — E(Uy .) which
is induced from Uy . being an admissible open subdomain of U;ig is injective and its image is
dense. In particular, £(Ur.) is the completion of E¥8(Ur) when the latter is considered with
the topology coming from the Banach topology of € (Ur).

Proof. We may assume that I = {ig,..., iy} # 0. Then the isomorphism

Uiy = D4 (X)) — Spec K [T(i0) | 5= 0,...,d, 5 # o],

X.
Xj — T(]}io)7

io

of schemes induces an isomorphism Uy 2 Spec(A/a) where
A=K[T;in|i=0,...,dk=0,...,m, with j # ix],
a= (T4, Ty — 1|4k =0,...,m, with j # k).
Recall that U} is defined via the admissible covering [7, 9.3.4 Example 2]
rlg U UI \Tr\"
n>0
and we have isomorphisms Uy ||» = Sp(A,/aA,), for
A =K(m" T |i=0,...,d,k=0,...,m, with j # ix).
We see that A/a — A,/ aAn has dense image as A is dense in A,. Furthermore, the Weier-
strafl subdomain Uy . C U['® is contained in some Uy .= so that A/a < O(Ur,.) is dense as
well |7, 7.3.4 Prop. 2]|. This settles the case of the structure sheaf £ = O.
For a general G-equivariant vector bundle £ on P% by Lemma 2 we find a trivialization

= (Oe)%n|y, , for n o= rk(€). Therefore the claim follows from the compatible
isomorphisrns E¥N8(Ur) = OM8(U)®™ and E(Ur ) = O(Ur )% O




50 GEORG LINDEN

Remark 2.4.2. One can give a concrete description of the Gauss norm | _|_ on the affinoid
algebra O(Ur ) (and in turn on O8(Uy)), cf. |56, Proof of Lemma 1.3.1]:

o 1 max(0.0)
Z ag Xy°--- X 4 = sup ak|<€> . (2.16)
keA; e keAs

Here we use the notation

d
Zki:O,andWe{O,...,d}\I:ki>0}7

A= {k € 7+1
1=0

and
max(0, k) := (max(0, ko), ..., max(0, kq)).
We will need the following result about the Cech complex associated to the covering (2.14)f

Theorem 2.4.3. Let & be a G-equivariant vector bundle on P%, and 0 < & < 1 with
¢ € |K|. For the Cech complex C*(U,E) associated with the covering (2.14) which computes
the coherent cohomology H®*(P \ P, ), the differentials

di: CUU,E) — CTTHU, E)

are strict continuous homomorphisms when each E(Ur) (= £48(U;)) C E(Ur.) is endowed
with the topology coming from the Banach topology of E(Ur.), for I C {r+1,...,d}.

Let T C G denote the split maximal torus of diagonal matrices. For the group of its
characters, we have the usual identification X (T) = Z4*+! by choosing the characters

€¢: T —G,,, dag(ty,...,tq)—1t; ,fori=0,...,d,

as a Z-basis. Recall that for any T-module V in the sense of [41, I. §2.7], we have a decom-
position into weight spaces |41} I. §2.11]

V= @ Vi, for Vy:={veV|V K-algebras R, Vt € T(R) : t.(v® 1) = v ® A(t)}.
AeX(T)

In particular this is a decomposition into simultaneous eigenspaces with respect to the induced
action of T := T(K) on V. We say that v € V is T-homogeneous if v € V), for some
Ae X(T).

Note that the open affine subsets U; C P% are stabilized under the action of T, for all
i = 0,...,d. Therefore, the K-vector space of sections £(U;) obtains the structure of a
T-module which decomposes into weight spaces

EU)= P EWa (2.17)

AEX(T)

For z € P%, we let £(z) := £,/m,E&, denote the fibre of £ at z where m,, is the maximal
ideal of the local ring Opf{ 2+ The K-vector space £(r) is canonically isomorphic to the fibre
at x of the geometric vector bundle associated with £.

Note that the T-action on P% has the fixed points z; ;= [0: ... :0:1:0: ... :0] € Uj, for
i =0,...,d. We therefore obtain the structure of a T-module on &,,. When considering
the structure sheaf O of P4 as a G-equivariant sheaf in the usual way, the maximal ideal
my, C O, is a T-submodule for the same reason. It follows from

t.(se) = (t.s)(t.e) ,forallte T(R),sec OU,;)®k R, and e € E(U;) ®k R, (2.18)
that
t.(se) = (t.s)(t.e) ,forallt € T(R), s € Ops ,, @k R, and € € &, ®k R,

for all K-algebras R. Hence mg,&;, C &;, is a T-submodule as well, and we obtain the
structure of a T-module on the quotient &(x;).

8The statement of Theorem is found in the proof of |56, Lemma 1.3.1]. However the justification
given there contains some flaws.
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Moreover, let g denote the Lie algebra of G. For U C P% open, we have the following
Leibniz product rule

Y.(se)=(Y.s)e+s(Ye) ,forallY eg,secOU), ec ). (2.19)

Lemma 2.4.4 (cf. [44, Lemma 4.6]). Let & be a G-equivariant vector bundle on P% and
i €{0,...,d}. For all open subsets U C U;, there are T- and g-equivariant isomorphisms of
O(U)-modules

E(U) = 0U) @k E(xi),
which are compatible with respect to the restriction homomorphisms.
Proof. By [41, 1.5.16] and [41] I1.1.10], the G-equivariant vector bundle £ admits a trivialisa-
tion on the open affine subset U;. In particular, we can find sections in £(U;) which globally

generate &|y,. We may take a K-basis (e;);e.s, of £(U;) to do so. For U C U; open, we then
define the homomorphism

pu: EU) — OU) @K E(x;), Zsjejh] > Zsj ®e;(x;) ,fors; € OWU),
jeJ jeJ
of O(U)-modules. Note that ¢y is independent of the choice of the K-basis (e;)jcs. An
inverse to @y is given by
OU)®k E(x;) — EWU), S®Zaﬂeﬂ (x;) — ZGJSGJ|U ,for s e O(U), a5 € K.
jeJ jeJ

To show that oy is T-equivariant, let t € T, k € J, and t.e, = >
a; € K. It follows from ([2.18) that, for all s € O(U),

ou (t-(sex|v)) = u ( Z(t.s)ajej|U> =ts® Z aje;j(x;)
jeJ jeJd
=t.(s®@exr(x;)) = t.pu(serlv).

aje; in £(U;), for some a; € K, we analogously conclude via

jeg ajej in E(U;), for some

When Y € gand Yeep =3, ;
(2.19) that, for all s € O(U),

ou (Y.(sexv)) = eu ((YS)ekIU + S(

Zajej|U>> =Y.s®eg(x;) + Z a;s ® e;(x;)

jeJ JjeJ

=Ys®ep(z;)+s® Zajej(xi) =Y.s®ep(z;) + s @Y. (en(x;))

jeJ
=Y.(s®er(x;)) = Ypu (sexlv).
The compatibility of the ¢y with the restriction homomorphisms is immediate. O

It will be helpful to fix certain norms on £(Uy), for non-empty I C {0, ...,d}, which realise

its locally convex topology. Recall that
[max(0,k)|
ak< ) — 0 as |k| = ooy,

U] 5 = { Z ag X
keAr
with norm given by (2.16)). We now choose some i € I, and let vy, ...,v, € £(x;) be a K-basis
of weight vectors of weights A\;,..., A, € X(T). We endow E£(x;) with the norm prescribed
by this basis, i.e.

=1m \al| ,fOI‘CLh...,CLnGK.

We continue to denote the elements of £(U, ( ;) corresponding to 1 ® v; under the isomorphism
of Lemma [2.4.4 by v;. Consequently, we have an isomorphism of O(U;)-modules

~

O(Ul)GBn — S(Ul), (fl,...,fn) — Zfl (R
=1
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This induces an isomorphism of O(Ur)-modules E(Us.) = O(Ur,.)®™ which endows the
former with the norm

n
> fiv
=1

|max(0,k)|
1
= sup \al£| <E> s for ap i € K with fl = E CLLEXE S O(UI,€)~
e =1,..., n kEA;

(2.20)
We fix this norm on £(U; ) and on its subspace £(Ur) (= £218(U;)), and omit the ¢ from the
index. Note that for a different choice of i € T or the basis of weight vectors of £(x;), the
above construction yields an equivalent norm on &(Uy ) by [7, 3.7.3 Prop. 3].
As the main step towards proving Theorem [2.4.3] we want to show that, for “large enough”
weights A € X (T), the weight spaces £(U;), change in a uniform way when one varies the
“extreme” entries of X\. To this end we define, for m € Ny,

Because the T-modules £(x;) are finite-dimensional, we find some M € N such that the
weights of all £(zg),...,E(xq) are concentrated in Ay, i.e. for all ¢ € {0,...,d} and all
A € X(T) with E(z;)x # {0}, we have A € Ap;. We moreover set N := (2d + 1)M + d.

Proposition 2.4.5. For every p € X(T), there exist v € An and C € eNo such that, for all
non-empty I C {0, ...,d}, there is an isomorphism

ohwt EUD, — EUI)y

of K -vector spaces satisfying |}, ,(v)| = C'|vl, for all v € E(Ur,e)u, and such that these iso-

morphisms are compatible with the restriction homomorphisms, i.e. for ollI C J C {0,...,d},
the following diagram commutes:

E(UI)LL E— ((:(Uj)ﬁ

oho| |#

E(UL), —— EWU),.

=

[ 4

Proof. We proceed by induction on [|u|| := Z?:o |rej]. Note that for p € Ay, we may take
v = pu, C :=1, and the identity homomorphisms to obtain the assertion of the proposition.
This also deals with the base case ||u|| = 0.
Hence we now suppose that u ¢7AN. We let u,v € {0,...,d} such that p, is maximal
among the entries /i, ..., jtq and the entry u, is minimal. We set p — Quyp 7= b — €y + €.
For fixed I C {0,...,d} with i € I, let vy,...,v, € E(2;) be a K-basis of weight vectors
of weights Ay, ..., A,. We then have the following K-basis for the weight space

EUN = P K- X172y,

l€L,1
where L, 1 = {te{1,....n}| XHr=A ¢ O(Ur)}.
Lemma 2.4.6. Forl e {l,...,n}, we have
XE2 e OU;)  if and only if  XEww)=A c O(U).

If this is the case, for somel € {1,...,n}, we moreover have p,, > M +1 and p, < —(M+1)
so that in particular u # v.

Proof. We first note that X2~ € O(U;) if and only if E?:o pj — Ai,; = 0 and, for all

j€{0,...,d}\ I, we have ju; — A\ j > 0. For X&=%wv)=A the analogous statement holds.
To show the claimed equivalence it thus suffices to focus on the exponents of X, and X,,.
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Because p ¢ Ay, there exists j € {0,...,d} such that |u;| > N. We distinguish the two
cases that p; > 0 and that u; < 0. If u; > 0, then p,, > N > M + 1 by the maximality of
fy. Using |A; | < M we find that

w=1=Nu>N—-1-M>0
and also ft,, — Ar, > 0, so that the exponent of X, is not an obstacle in this case. Concerning
the exponent of X, since (1t — vy,v)v — At > o — Arw, we find that if Xi—d ¢ O(Uy), then

XE=euws)=A ¢ O(U;). Conversely suppose that X #=%«»)=A ¢ O(U;) so that in particular
Z;‘l:o (g — uw)j — Aij) =0 and (g — Quw)o — Ao = 0. We compute

d

d
i| = Z(M;‘ — M)+ Z Al =
=0

=0

d

Z _auv )\l,g +Z)\lg

=0

d d
=D N[ <Dl <@+ )M
=0 =0

Then

(d+1)M >

ﬂu+ZNj

J#u
together with p,, > N = (2d + 1)M + d implies that EJ 0 p; < —d(M + 1). Hence there

j=0

exists j/ € {0,...,d}, j/ # u, such that p;, < —(M +1). By the minimality of p,, it follows
that p, < —(M + 1). But using |A\;,| < M we find that

(= Qu)o = Ajjw = po +1 =Ny < =(M +1)+1+M =0.

Therefore X #~%wv)=2 ¢ O(U;) can only occur if v € I. We conclude that X~ € O(U;)
as well which finishes the proof in this case.

Now we consider the case that p; < 0. Here we find that u, < —N < —(M + 1) by the
minimality of u,. Like before, we have

d
(d+1)M > = |+ > 1]
j:
jv
From this and p, < —N we conclude that there exists j° € {0,...,d}, j° # v, such that
pjr > M+ 1. As p, is maximal, it follows that p,, > M + 1 as well. Therefore

(H_Oéu,v)u—)\l,u:,uu_l_)\l,u>(M‘i‘l)_l_M:O,

d
> H

Jj=0

and moreover fi,, — A;,, > 0. This shows that the exponent of X, is not an obstacle in this
case. For the exponent of X, we compute

(b= Qupw)o = Ao = flo +1 =Xy < =N +1+M <0,

and also 1, — A1, < 0. Therefore either of Xt=2 ¢ O(Uy) or Xp—ouo)=X ¢ O(Uy) implies
that v € I. This shows the assertion in the case u; < 0. ]

Using the above lemma, we see that

5(U1# = EB K- Xp—auw)— 11,17
ZGLﬁI

and we define the following isomorphism of K-vector spaces

(pﬂvu_@uv'g(UI) —>£(UI)M P C Mg X"y,
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For I € L, 1, it follows from 1, > M + 1, p, < —(M +1), and \; € Ay that

(H - au,v)u - )\l,u > 0; Hu — )\l,u > 07
(H - O4u,'u)'u - /\l,'u < 07 Moy — /\l,v <0.

Therefore
max (0, (B — Qup)u — )\l,u) = fty — 1 — A, = max (0,uu — )\l,u) -1,
max (0, (1 — yp)o — )\l,v) =0 = max (07 Ly — )\l,v)7
and we conclude that

Z?: max 0,(7704”,1,)]'7)\ N
o) g | <1> o max (0, 4)
g

1 (Z?:o max(O,,ujf)\l,j))fl
= (> =c |Xﬁ7&l v |.
€
Hence we have |<p£)u_aw (v)] =¢|v|, for all v € E(U),,-
Next we verify that the above family of isomorphisms ¢! := ©u—ay., s compatible with

the restriction maps. For this consider I € J C {0,...,d} withi € I and j € J. Let
:@O(U[)’Ul and gUJ @O UJ wk,

for a K-basis consisting of weight vectors vy,...,v, of S(xl) of weights Aq,...,,,, and a
K-basis consisting of weight vectors w1, ..., w, of £(z;) of weights &, ..., k,, which yield the
isomorphisms ! and ¢’ respectively. Let res: £(Ur) < £(U;) denote the restriction map

which is O(Uy)-linear and injective. Furthermore, there are a; ), € K such that

res(v;) ZalkX’\l Eeqy Sforalll=1,...,n
k=1
because res(v;) € £(Uy) is of weight ),. For I € {1,...,n} such that X2 € O(U;) we now
compute

reS(SDI (XH*AZ Ul)) — reS(X(ﬁ*au,u)*A[ Ul) X(M Qu,v) =2 res(vl)

n n
— x(p—au)=A E aix XNi—Eg wy = E ark X (p—auv) =5y, wy,
k=1 k=1

n n
=’ ( D g XEE wk) = ¢’ (X”Al D g XA wk>
k=1

k=1
(X“ lres(vl)) =’ (res(X“ lvl))

which shows the compatibility for I C J.

Finally, we want to apply the induction hypothesis. In the case that, for all I C {0,...,d}
with I # (), the set L, r is empty, we find that £(U;), = {0}, for all such I. We may for
example take v := (M +1,..., M +1) € Ay, and see that, for all such I and all [ = 1,.
we have v —p, ¢ Ar. It fOHOWb that £(Ur), = {0}, and we obtain the sought 1somorphlsms
trivially.

On the other hand, if there is some I C {0,...,d} with I # () for which L, ; is non-empty,
the second assertion of Lemma implies that a

d

g = ol = [ = 1+ o + 1+ D ] = (= 1) = (o + 1) + Z ] = [l = 2.
=0
e fmt
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Applying the induction hypothesis to 4 — ., we obtain ¥ € Ay and the family of isomor-
phisms goft_au Lo for I C{0,...,d}, as specified. Then the statement follows for p by taking
the compositions

r . I I
Puw = Pu—cauvr © Pup—on,o
O

Proof of Theorem[2.].3 Recall that in ([2.20)), for every non-empty I C {0,...,d}, we fixed
a norm on £(Ur). This endows the space of ¢g-th Cech cochains, for ¢ > 0,

CUU,E) = . € (Ufion....ig))
(i0,...,0q)E{r+1,...,d}at+1
with a norm as well. We also have a decomposition of C?(U, ) into weight spaces
CuEn- B EWi), fordeX(D),
(i0y0myiq)E{r+1,...,d}a+1 n
under the induced T-action. Note that if we have a weight decomposition of f € CI(U, &),
it follows from (2.20]) that

If] = sup)w for f= )" fr, with f € CUU,E),.
A€

X(T AEX(T)

Since the restriction maps resy j: E(Ur) — EUy), for I ¢ J C {r+1,...,d}, are T-
equivariant, so is the differential

di: CIU,E) — CTU,E),

g+1
(f(i07"'7iCI))(ig,...,iq) — (Z(_l)kresIaJ(f(j07~~7.77c7'--ajq+1))) ) ) ’
(J0s--2dqg+1)

k=0
of the Cech complex. Therefore we may restrict d? to the individual weight spaces
df: CU U, E)y — Cr U, &)y, for A € X(T).
Now let N € N be defined as before Proposition and consider
d: P WU — P CUE N (Fa)yen, = (@A) sen -
AEAN AEAN

Since this homomorphism takes values in a finite-dimensional K-vector space, d% is strict by
[11, 1.2.3. Cor.]. Hence there exists R > 0 such that

Br(0) NIm(dy) C d (B1(0)) (2.21)
where Br(0) and B;(0) denote the “closed” balls of radius R and 1 respectively.
To see that d? itself is strict, it suffices to show that
Br(0) NIm(d?) C d?(B(0)) (2.22)
by scaling. For this, let g € Im(d?) N Br(0), and let g = ZAGX(T) gx be a weight decomposi-
tion with gy € C"1 (U, E)x. As |g| = supyc x () [9al, we have [gy| < R, for all A € X(T). We
moreover have g € Im(di) since d? is T-equivariant. For A € Ay, we can therefore conclude
by (2.21) that there exists f € C/(U, &)y such that [fy| < 1 and d}(fy) = ga-
For A ¢ Ay in turn, we apply Proposition tofind v € Ay, C € o, and a compatible
family of isomorphisms

rnt EWUDNA = EWUy), ,for all non-empty I C {0,...,d},

such that \goiz(vﬂ = C'|v|, for all v € E(Ur) . We take the direct sum of these isomorphisms
to obtain isomorphisms

0, CIU,E)y — CIU,E), , for all ¢ >0,
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such that [ ,(v)| = C'|v], for all v € CU(U,E),. Moreover, the compatibility of the @iz
with the canonical restriction maps implies that the diagram

a3
C‘I(Z/I,S)A E— C’q“(u,é‘)A

| Jeg
dq

ciu,g), —— CU,¢E),

[>=

©

commutes. Since € € |K|, we may assume that ¢ = |a|, for some a € K, after an extension of
scalars by a finite extension of K. Then by scaling (2.21) by an appropriate power of a and
restricting to the vectors which are rational with respect to the original K, we see that

Bon(0) 0 Im(d,) € d (Be(0)).
Because we have |g0§;1(gA)| = Clgx| < CR, we find h € C1(U,E), such that |h| < C and
di(h) = ‘PS_;(QA)- Then f) = (@iﬂ)_l(h) satisfies d} (fa) = g and [fy] = C—tn <1
In total we obtain, for every A € X(T), an element fy € C4(U, &), such that d} (fa) = ga
and |fy] < 1. Taking the sum
fi=> 5

AEX(T)

we find that d?(f) = g and that [f| = supycx(r) [fa] < 1. This shows (2.22)) and therefore
the strictness of d9. O

2.5. Local Cohomology with respect to Tubes around Schubert Varieties. We
begin by fixing some notation. For r € {0,...,d — 1} and 0 < ¢ < 1 with ¢ € |K]|, we set

i (o) (Phe, €) = Ker (Hiy (P, €) — H'(P,£))

and endow it with the subspace topology. We define FNIZP%)rig (P4, &), ﬁﬂﬁ, ),(]P"Ii(,g), and

k(e

fIfm?{ (P4, €) analogously.

Lemma 2.5.1. Let 0 < e <& <1 withe,e’ € |K|, and I C {0,...,d}. Then the transition
map

E(ULE) — 5(U[’g/)
s a compact homomorphism between K-Banach spaces with dense image.
Proof. If I = (), we have Uy . = Uy o = P% and £(P%) is a finite dimensional K-vector space.
Therefore, the homomorphism in question is compact by [67, Lemma 16.4].

Now suppose that I # @. Our method here is similar to the proof of Lemma [2.3.3] For
I ={ig,...,im}, we consider the affinoid K-algebra

Ac = K(eT (i |7 =0,...,dk=0,...,m, with j # i)
1 |ﬁ|
= Z a, T € K[T] |a#|<€) —0as |p| = o0 p,

peNgmty
cf. |7, 6.1.5 Thm. 4]. Like in the proof of Lemma we have Uy . = Sp(Ac/aA.), for the
ideal

a= (T4, Ty — 1|3k =0,...,m, with j # k).
With similar definitions for Ur ./, we obtain a commutative diagram of affinoid K-algebras

A — Y AL

Lk

A JaA. —2 Ao jaAo
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where the vertical maps are strict epimorphisms, and 1 is the transition homomorphism
O(U;.) - O(Ur,e). We claim that ¢ is an inner homomorphism of affinoid K-algebras in
the sense of [5, Def. 2.5.1]. Indeed we have, for T' = T}; ;,) € A.,

swp BTN = sw [P GI)@)] < WD)y = 0Ty, = 5 < 2
€Uy o €Uy o c € €
It follows from |70, §1 Lemma 5] that 1 is a compact homomorphism of locally convex K-
vector spaces.
For a general G-equivariant vector bundle £, we again may apply Kiehl’s theorem |7, 9.4.3
Thm. 3] to find strict epimorphisms O (Ur.)®* — £(Ur ) and O(Ur o )®* — €(U; o) which
are compatible, for some k € No. Then Lemma [A.3] (ii) and (iii) applied to

$o"
O(U[’g)ealC E— O(UI75/)@I€

l l

EWUre) — E(Ure)

show that £(Ur) = £(Ur ) is compact.
Finally it follows from Lemma that the image of the transition map is dense. O

Proposition 2.5.2. Let 0 < ¢ < 1 with ¢ € |K|. Let (m)men be some strictly decreasing
sequence with €, € |K|, ¢ < &y, <1, and €,, — €. Then the K-Fréchet space Hi%(s)(P‘Ii{,E)
is the projective limit of the K-Banach spaces
Hiy (P62 Y Hi o (PL,E). (2.23)
Em \(E
The transition homomorphisms

H]lg’}(am)— (P;l(, &) — H];,;((a")_ (Pt}i(ﬂ &), forem <en,
which are induced from the inclusion Pl (e,,)” C Pl (e,,) are compact and have dense image
so that H]lﬁ,g((a)(Pil{,E) is nuclear. Moreover, the local cohomology group Hi;((]P’ﬁl{,S) of the
algebraic variety ]P"Ii( constitutes a dense subspace of Hi%(s) (]P’f(,é').

The analogous statements for ﬁi%(s)(ﬁ”‘}{,é’) hold as well.

Proof. We first focus on the K-Banach spaces associated with the “closed” neighbourhoods
of P%,. For now we fix 0 < ¢ < 1 with ¢ € |K| and consider the Cech complex C*(U., £) asso-
ciated with the covering which computes the cohomology groups H' (P4 \ P (¢)~, €).
For this Cech complex, we let

Zi(U,, ) 1= Ker (CV(U, £) 255 O (UL, £)),

BiU, €)= Im(CT Uy, £) 2 CHUL, )

denote the space of i-th Cech cocycles respectively the space of i-th Cech coboundaries. We
use the analogous notation for further Cech complexes that will occur.

Recall from Lemma that the cochains C*(U.,E) have the structure of a K-Banach
space, and the cochains C*(U, £2'8) of algebraic sections constitute a dense _subspace therein.
As a first step we want to see that the induced locally convex topology on H*(P4\P% ()7, &),
ol p :

Hﬂﬁ,}.{(E),(]P)K,E), and Hﬁ}.{(a), ' o
as well, and that their “algebraic” counterparts H®(P% \ P%,£%8), Hp,. (P4, £218), and
HH’;;( (P4, £218) embed as dense subspaces respectively.

(P4.,€) gives those spaces the structure of K-Banach spaces

To this end we consider C*(U, £¥8) with the subspace topology coming from C*(U., ) so
that C*(U., &) is the completion of C*(U,E8). We will endow all “algebraic” terms with
the topologies induced from C*(U, £28), and all “analytic” terms with the ones induced from

CU.,E).
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From Theorem we know that the differential d*: C*(U, £218) — C (U, £212) is strict,
and the differential dt: C*(U.,E) — CT1 (U, E) is the completion of d'. Therefore |7, 1.1.9
Prop. 5] implies that Z!(U., £) is the completion of Z*(U,E2), and B (U,,E) is the com-
pletion of B (U, £¥8). Moreover note that d’ is strict by 7, 1.1.9 Prop. 4], i.e. B"*Y(UL., E)
is a closed subspace of C'T1(U., &) so that H! (P} \ P} (¢)~, &) is a K-Banach space.

We also have the short strictly exact sequence

0 — BY(U,EM8) — Z' (U, EM8) — H'(PL \ P, £¥8) — 0.
The completion of this sequence yields the short strictly exact sequence |7, 1.1.9 Cor. 6]
0 — B'(Ue. E) — Z' (U, ) — H' (P \ P, E78) — 0.

Therefore the map H'(P% \ Py, £%8) — HY(P% \ Ph(¢)~,&) obtained by the universal
property of the completion is a topological isomorphism, and H*(P4 \ P (¢)7, &) is the
completion of H! (P4 \ Y., £218).

Now recall the long exact sequence of local cohomology

. i—1 .
oo — HTY(PL £88) & giTH(PY\ P, £718)
(2.24)

I by (P, £%) D (e, £ — .

We endow the local cohomology group Hﬂi,;( (IE”C}(, £218) with the locally convex final topology

with respect to 9*~!. As seen in Remark this makes 9'~! strict and 3’ continuous.
Furthermore, the homomorphisms ! and 3¢ are strict as well since H'(P%, £218) is a finite-
dimensional locally convex K-vector space [59, Cor. 3.4.25]. The analogous situation arises
for Pl ()~ C P%.

From this long strictly exact sequence, we obtain the following commutative diagram with
strictly exact rows

0 — Ker(ai~1) —— Hi=\(P%, £3%) 2 Im(ai~!) —— 0

| | 1 2

i—1 i—1
0 —— Ker(a? v

i—1

) —— H7Y(PL, ) —=— Im(ai™!) — 0.

-1 i—1

Because a’~! is a strict epimorphism, it follows that Im(a’~1) — Im(al™1) is a strict epi-
morphism |76, Prop. 1.1.8].

From ([2.24) we moreover obtain the commutative diagram

0 —— Tm(a'™!) —— H7L (P \ Py, £1%) —2 HE (P, €%%) —— 0

l J | (2.26)

0 —— Im(ai™!) —— HY(PL\ Ph(e)™, &) = Hi,  (PL,E) — 0

Pr(e)~
with strictly exact rows. Here we have used the exactness of (2.24]) for the identification
Ker(0'"!) = Im(a’~') and Im(9°~1) = Ker(3?) =: HH’;,;( (P4, £418), and likewise for the “an-
alytic” terms. The composition Im(a’~!) — HI=L(P% \ P}, £218) — HI=Y(PL \ Ph ()7, )
is a strict monomorphism |76, Prop. 1.1.7]. Therefore Im(a’~!) — Im(ai™!) is a strict
monomorphism as well [76, Prop. 1.1.8], and we conclude that Im(a’~!) = Im(a’~'). By
taking the completion of the first row of (2.26) and reasoning similarly to before, we find
that HJIZJ‘K (o)~ (P% ) is the completion of Hy, (P, E%).

From ([2.25]) we also can conclude that Ker(a'~!) = Ker(a’~!) by applying the appropriate
version of the snake lemma Since Im(8%) = Ker(a!) and Im(B%) = Ker(a!) by the
exactness of (2.24)), we arrive at the short strictly exact sequence

0 — Hi, (P, £Y8) — Hp, (P, £M8) — Ker(a') — 0.
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The completion of this sequence yields the following commutative diagram with strictly exact
rows |7, 1.1.9 Prop. 4, Cor. 6]

0 —— Hp, (Ph,E%) —— Hi, (P, £%8) —— Ker(a’) —— 0

J% | |

(P4, &) —— HI@}.((E),(IP"}{,@ — Ker(al) —— 0.

R

(2.27)

I7i
0—— HP;{ (6)-
Via the snake lemma it follows that the vertical homomorphism in the middle is a
topological isomorphism, too. Therefore H, (- (P4, €) is the completion of H’?{ (P4, gale).
. K
Fixing 0 < ¢ < 1 with € € |K| and a strictly decreasing sequence (&,,)men as specified, we
now consider € < &, < &, < 1 with &,,, e, € |K|. Using the commutativity of

HE, (P, £71%)

— ™~

Hpy e,y (P: €) Hy, (o)~ (P, €)

it follows from the statements about the density of the “algebraic” subspaces which we have
just shown that the transition homomorphism Hg, )_(IP’?(,S) — H )_(P%,S) has
e (Em

P% (en
dense image. Analogously one argues for H’;((am)_ (P4, &) — Hﬂi;((sn)— (P4, ).
To show that the transition homomorphisms are compact, we start at the commutative
diagram

. . d .
0 —— ZiU., ) — C(Us., ,£) —=+ B+ (U, ) — 0

Em? Em

A

0 —— Z2'U.,, &) — C'U.,,E) — B U., &) —— 0

with strictly exact rows. We have seen in Lemma [2.5.1] that the vertical homomorphism
in the middle is compact. Hence Lemma (i) implies that Z'(U., &) — Z'(U.,,E)
is compact. Using Lemma (ii) one argues in the analogous way to conclude that
H=H PR\ Py (em) ™, €) = H'H(PE\Pi ()7, €) and Hj (P4, €) — Hj (P, €)

P ()~ P (£0)
are compact. For

~ J ,
0 —— H];;(sm),(IPK,E) O HI;;((ET”),

! J

(P4, &) —— H];%(En),(IP"}{,S) —— Ker(al ) —— 0

(IP’?OE) — Ker(aém) — 0

0 —— Hy. (. -

the short strictly exact sequences of locally convex K-vector spaces in both rows split compat-
ibly as Ker(a® )= Ker(al ) is finite-dimensional [59, Cor. 3.4.27]. Therefore the transition
homomorphism Hp, . - (P4, &) — Hyr (o )- (P4, €) is compact by Lemma (iii).

Remark 2.5.3. Having seen that the transition maps Hi;((gm)_ (P4, &) — H];’;((an)— (P4, &)

have dense image, we can apply |56, Prop. 1.3.3] to obtain the topological isomorphism (2.23))
at this point. However, we will additionally present the alternative way mentioned in |56,
Rmk. 1.3.6] to do so. To this end, one needs the following lemma.

Lemma 2.5.4 (cf. [56, Lemma 1.3.7]). Consider a projective system of strictly exact se-
quences

0—V, —V,—V/ —0 ,forneN,
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of K-Fréchet spaces. If the transition maps V,, .| — V,., for all n € N, have dense image,
then the sequence

0 — lim V) — lim V;, — lim V;¥ — 0 (2.28)
neN neN neN

1s strictly exact, too.

Proof. We may view V, as the kernel of V,, — V”. Since taking the (projective) limit
. . ! . : "
commutes with kernels, we see that I}mneN V. is the kernel of l}mnEN Vi — im V.

Moreover, as the transition homomorphisms V,, ,; — V,, have dense image, the topological
Mittag-Leffler condition is fulfilled for this inverse system. It follows that (2.28]) is a short
exact sequence of vector spaces [34, 13.2.4 (i)]. Finally, the open mapping theorem [67, Prop.
8.6] implies that lim _ V, — lim _ V" is strict, too. O

The differential di: C*(U-,E) — C*THU-,E) is the projective limit of the differentials
di : C'(U.,,,.E) = C"T(U,,,,E). Therefore we have C* (U ,E) = lim_ C'U., ,E) and

ZH U, E) = Hm ZYU., , &) because the (projective) limit commutes with taking kernels.
But by Lemma there is the short strictly exact sequence

0— lim Z'U,,E) — lim C'U,,.E) — lim BT (U, .E) —0
Em \(E Em \E €m €

so that we can conclude B*H(U-, &) = lim_ B (U., ,€). In a similar way we obtain
H(PY \Pi(0),€) =lim___H(PL \ P (o) o€).

Likewisi arguing for the homomozphisms Bl = yﬂlm\e B and al = l'&ngm\e ag ., we
find that Hpr (o) (P4, &) = I‘&nam\e Hﬁ;(sm)— (P4, ) and Ker(al) = @Em\g Ker(at ). We

now take the projective limit over the projective system

0 — Hiv (o) (P, &) — Hip (o - (P, €) — Ker(al ) — 0

of short strictly exact sequences to arrive at the following commutative diagram with strictly
exact rows

0 — lim Hlﬁ,g((am)_(IP’?(,S) — lim H;,%(E,’,L)_(IP’}I(,E) — lim Ker(al ) —— 0

Em € em € Em &

) ! )

0 ’ ﬁé;(@(?’?of) H[’é’;{(s)(PlIi(7£) —— Ker(al) —— 0.

Since the outer vertical maps are topological isomorphisms, it follows from the snake lemma
i d AR i d
that HP}.{(E)(IP’K, &)= @em\_‘s HP%(%),(PK,E). O

The same reasoning shows the following statement in the extreme case ¢ = 0.

Corollary 2.5.5. For any strictly decreasing sequence (€., )men C |K| with 0 < g, < 1 and
em — 0, the K-Fréchet space H(iw Jri (IP’%7 &) is the projective limit of the K-Banach spaces
K

i d ~ T ' d
H(ZP;()H?,(IP’K,S) = lim H];%(sm),(PK,g),
em \0
with compact transition maps which have dense image. Moreover, the local cohomology group
H]}%K (P4, E) of the algebraic variety P4 constitutes a dense subspace of H(ip%)rig (P4, €).

For H!

(pr i (P4.,€) the analogous assertions hold.

There also is a result for the projective limit of the local cohomology groups H, i;( ) (P4, €)
with respect to the “open” e-neighbourhoods.
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Corollary 2.5.6. For any strictly decreasing sequence (£, )men C |K| with 0 < g, <1 and
em — 0, there is a topological isomorphism

i d o~ i
H(]P;()rig(PKvg) = lim Hp,
€m0

of K-Fréchet spaces. Moreover, the transition homomorphisms

H]f;,;{(sm)(P}‘l(,g) — H]f;’;(

(P, &) (2.29)

(Enz

(PL,E) , forem < en,

€n)

are compact and have dense image. N
Again, the analogous statements are true for H(Z'M()rig (P4, E).

Proof. For the topological isomorphism one argues analogously to the last part of the
proof of the preceeding proposition. To show that the topological Mittag-Leffler condition
for Lemma is fulfilled one uses the statement of Proposition about the density of
Hg. (P%.E) C H[;}»{(Em)(Pf(,é‘).

To see that the transition homomorphisms are compact, note that, for &, < g,, the
transition map factors as

Hpr (o) (P, €) — Hi oy (P, €) — Hpr (o (P, E). (2.30)

The first homomorphism is a continuous linear map from a nuclear locally convex K-vector
space to a K-Banach space and therefore is compact by |67, Prop. 19.5]. It follows from [67,
Rmk. 16.7 (i)] that the composition (2.30) is compact as well.

For H Epk)ﬁg (P4, £) one argues analogously. O

Proposition 2.5.7. We have the following description of the local cohomology groups

0 S fori<d—rori>d,
Hp, (P%,€) = { Hy, "(P%,E) , fori=d—r,
H{(P%,€) ,fori>d—r.

For 0 < e <1 with e € |K|, we have

0 , fori<d—rori>d,
Hﬂg;((s)(@;@,g)z Hgigs)(w(,g) ,fori=d—r,
H{(P%,€) , fori>d—r,

and similarly for Hi}.{(a), (P4, &) and H (P4, €).

(P)rs

Proof. The statement for Hﬂ’;;{ (P4, €) is shown in |56} pp. 595-597] (and the reasoning there

is independent of the field K). For Hﬂé’;((e) (P4, €), Hﬁ;,,;((s), (P4, ), and ng%)rig (P4, €) the
assertion then follows from the density of the “algebraic” local cohomology groups. O

2.6. Local Cohomology Groups with respect to Schubert Varieties as Locally
Analytic Representations. We let B C G = GLg41,x denote the Borel subgroup of lower
triangular matrices, and T C G the maximal torus of diagonal matrices. For ¢ =0,...,d, let
€;: T — G, be the character defined via ¢;(diag(to, ...,tqs)) = t;, and set «; ; := €; — ¢, for
i # 7, and oy = oyy1,4, for i =0,...,d — 1. Then the roots of G with respect to T are

®={o;; |0<i#j<d}
and its simple roots with respect to T C B are
A= {Oéo, ceey ad_l}.

Moreover, for I C A, we let P; C G denote the (lower) standard parabolic subgroup
associated with I, i.e. the subgroup generated by B and the root subgroups U_,, for a € I.
For example, we have Py = B and Po = G. We write P; := P;(K) which is a locally
K-analytic subgroup of G. We set Py := P 7(Ok) which is a compact open subgroup of
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Pr. Here P 7 denotes the respective standard parabolic subgroup of GLg41,7. Additionally,
consider the canonical reduction homomorphism

Pn: GO — GLd+1(OK/’/Tn),

for n € N. We define
P}L = p;l (PLz(OK/ﬂ'n))
which is an open compact subgroup of G containing Py g.

We now fix 7 € {0,...,d — 1}. Then the maximal parabolic subgroup Pa\q,} stabilizes
the subvariety P of P%. Consequently Pa\{a,} stabilizes (P})" under the group action of
G on (P4 )"s.

We claim that, for any n € N and ¢ € |K| with |7|" < ¢ < 1, the subgroup Pg\{%} C Gy

stabilizes Pj(¢). Indeed, for [zp: ... :z4] € Pi(e) and g = (gi5) € PR\(,,, let us write
g tz=:[wo: ... :wy]. We thus have, for j =r+1,...,d,
d
r d i d
lw;| = Zzigij < max (r?:ag( |zigij|,ir:n§j(1 |zlg”\) < max (r?:ag(l |7, Jax e - 1) <e.

i=0
Analogously one computes that P} (e)~
with |7]" <e < 1.

Proposition 2.6.1 (cf. [56, Cor. 1.3.9]). (i) Let e € |K| and n € N with |r|" < e < 1. Then
the representation

PZ\{OZT} X H];’%(a)(P(Ii(’g)g — Hﬂl";{(e) (P?(76);) ) (g’f) — é(gil *)a

is stabilized by PX,, , for any € € |K| and n € N

is locally analytic. Moreover, for any strictly decreasing sequence (€, )men C |K| with e, — €

and € < gy, < 1, the canonical map
!/

hﬂ Hi%(gm)f([p;l(,g)’ — ( Lﬁl H%g(e,,L)*(P%g))b = HH’;;((E)(IP?(,E)Q,
Em \E em \E
s a topological isomorphism, and Hi, () (]P’}i(,g)g is of compact type this way, i.e. it is the
K
inductive limit of the K-Banach spaces

fli

Py (e1)- (P%, &) — Hi

(P4.,8) — ... — H} By (emss)-

P}“{(Em)7

(P4, &) — ...

with compact, injective transition homomorphisms.
(ii) For the extreme case € = 0, the representation

Pav(ar) X Hipn (B, €)) — Hipw (P, E)y . (9.0) — (g™ 1),

18 locally analytic, and the underlying locally convexr K-vector space I?&,T i (]P"}l(,é')g is of
K
compact type analogously to (i).
Like in Section we proceed step by step.
Lemma 2.6.2. (i) Let 0 < ¢ < 1 with ¢ € |K|. For n € N with |r|" < ¢ (respectively,
|7|" < e), the group PR\ (a,} acts on HI%(E)(]P";(,S) (respectively, on Hﬂﬁ,;((a)_(]P"}{,E)) by
continuous endomorphisms, and the topological isomorphism (2.23) is PX\{QT}—equivam’ant.
Moreover, the analogous assertions are true for H-i%(s) (P4, €) and Hilif;?(e)_ (P4, €).
(ii) In the extreme case € = 0, Pa\{a,} acts on Hipr yrig (P4, E) and Hipr yiis (P4, &) by con-
K K
tinuous endomorphisms, and the topological isomorphism (2.23)) is Pa\ {q,},0-equivariant.
Proof. For the local cohomology groups this follows from the discussion in Section

The fact that the long exact sequence of local cohomology is equivariant for the respec-
tive group actions, implies the assertion for the kernels Hp, © (PL.€), HE, (6)- (P4, &), and
K K

Hip, s (PR, E). O
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Lemma 2.6.3. Forn € N and ¢ € |K| with |r|" < & < 1, the representation
PR\ (ary X Hip (o)~ (PR, &) — Hiy (o)~ (PR, E), (g,0) — gov,
on the K-Banach space f["%(s), (P4, €) is locally analytic.
Proof. Like in Lemma the only assertion left to show is that the orbit maps
PX\{a,y — Itj];’;((a)— (P, &), g— g,
are locally analytic, for every v € f["%(s),(]?%f). To do so, we first show that the orbit
maps for the Py, y-action on H{(P% \ Pr ()7, &) are locally analytic.

Fix g € PX\{QT} and consider the affinoid subdomain gD,, C GLg11(C), where we set
D, :=1+7"My441(O¢), with the rigid analytic chart

tg: Dy — gD,,,  h+— gh.
Moreover, we claim that, for every fixed v € fli%(s), (P4, ), the orbit map
PZ\{O‘T} — HZ(]P)CIl( \ P;{(E)*’g) 9 h/ — h.'U,

restricted to gD, (K) is given by a convergent power series.

To this end, we consider the admissible covering U of P% \ P} ()~ whose Cech complex
C'(U., E) computes H (P4 \ P ()7, E). We fix a non-empty subset I C {r +1,...,d} and
write U := Uy, with the notation from (2.15). We then have h(U) = g(U), for all h € gD,,.
Indeed, let z = [zp: ... :24] € U and (1 + 1’) € D,, so that

d
[z0: ... :za] - (L+R) = [wo: ... :wq)] , with w; :ZiJFZZjh;i'
=0

For i € I, we have

d
’ Z zihj;
j=0

where the last inequality holds because z € U C U, .. This implies |w;| = |z|. Now we
compute, for i € I, j € {0,...,d}:

< mgzllx|zjh;-i| < méx|zj| || < max elzi| <zl
j=0 j=0 j=0

d d
e ;| < max (e |21, mix e |zt ) < max (|2l mitx e []” |zl ) < Jzal = ]

which implies that (1 +h/)"1.2 € U.
Since the above non-empty subset I C {r +1,...,d} was arbitrary, we obtain a map

9Dy (K) x C*(g(U:),E) — C'(U:, E)

that affords the P, (, ,-action on H'(PE \ Pl (e)~, €) restricted to gD, (K), cf. (2.5). Here
g(U.) denotes the translated covering P4 \P%.(g)~ = U?=r+1 9(Ui.e). Consequently it suffices
to show that, for every v € £(g(U)) with U := Uy, for non-empty I C {r +1,...,d}, the
map gD, (K) — E(U), h — h.v, is given by a convergent power series.

For this we proceed similarly to the proof or Lemma Using that h(U) = ¢g(U), for
all h € gD,,, the group action 0: GLg41,x Xk IPC}( — Pf( induces the following commutative
diagram:

Dn X & U Lgxid gDn X K U o g(U)

k) [
U
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Let I, € E(U)(T1, ..., T(a+1)2) be the power series to which v € £(g(U)) is mapped under
E(g(U)) —— (14 xid)*o*E(Dy, Xk U)
J{(Lgxid)*{)(anKU)
(tg x id)*pr3&(Dy, X U) 2 prs&(Dy, xx U)
= (0(Dy) &x O(U)) @ow) E(U)
= EUNTL, ..., Ta+1)2)-

Now consider, for h € D, (K),

DXKU4>9D xg U 99

] /

In terms of K-affinoid algebras the morphism h xid: U — D,, X i U is given by the evaluation
homomorphism of power series

evy . O(Dn) (/X\)K O(U) = O(U)<T1, ey T(d+1)2> — O(U),
Hence we arrive at the commutative diagram
E(gU)) — (g x1d)*0"E(Dy xg U) —— EWU)(T1, ..., Tiat1)2)

\ l(hx1d) levh
h @qn(U)

(9h) W)

which shows that gh.v = F,(h). _
Having seen that the Py, ,-representation H'* (P4 \ P ()7, &) is locally analytic, we
now consider the long exact sequence of local cohomology
i—1

i — T — 9 % i
— H'U Py \ P (e)™,€) = Hpr (o (P%,E) — H'(PL,E) — ...

Since this sequence is PX\ {QT}—equivariant, Proposition m (ii) implies that the kernel

Hﬂﬁ,r (- (P4, €) is a locally analytic representation, too. O

seen in Proposition that the transition maps H&, (P4, &) — HPT (em)- (P4.,€)

% (Em+1)™

Proof of Pmposztzon | We argue similarly to the proof of Proposition [2.3.1 We have

are compact and have dense image.
Like in the pr00f~of Corollary one deduces from Lemma that the contragredient
representation on HE, (e ),(IF’%,E ) is locally analytic, too. The proposition then follows
K\&m

analogously. O

Remark 2.6.4. The cohomology groups H*(P%, £) are finite-dimensional algebraic G-repre-
sentations. It follows from Corollary that induced homomorphism G — GL(H!(P%, £))
on K-valued points is a homomorphism of locally K-analytic Lie groups. Therefore the
H (]P"Ii(7 &) are locally analytic G-representations by Proposition

3. THE GLg11(K)-REPRESENTATION HO(X,£)

Let K be a non-archimedean local field, and € a G-equivariant vector bundle on P% . Here
we write G = GLg41,x, and G = GLg41 (K) for its associated locally K-analytic Lie group.
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3.1. Orlik’s Fundamental Complex and the Associated Spectral Sequence. In this
section we want to recapitulate Orlik’s method [56] of using the geometric structure of the
divisor at infinity ) := P%\ X to obtain a filtration by locally analytic G-subrepresentations of
HO(Xx, & )5, and to express the respective subquotients as extensions of certain locally analytic
G-representations. Since the reasoning introduced there for a p-adic field K carries over to
the case of a general non-archimedean local field verbatim, we only present an overview. At
times we give some additional details but at others we refer to [56] for the full proofs.

The space of global sections HO(X, £) that we are interested in relates to the complement
Y via the long exact sequence of local cohomology

0— HO(P%, &) — H(X,E) — Hy(P%, E) — H (P%,E) — 0. (3.1)

Here the higher cohomology groups H'(X,£), for i > 0, vanish as X is quasi-Stein. Because
the H z'(IP)C}OS), for i+ = 0,1, are finite-dimensional algebraic G-representations, the main
difficulty lies in understanding H3},(P%, €).

In this regard the strategy of [56] unfolds as follows. Let (P%)d and A*d denote the adic
spaces attached to ]P’“Ii( and X respectively. Then one considers the complement

yad = (P%)ad \Xad

which is a closed pseudo-adic subspace of (P%)* by |57, Lemma 3.2], cf. [39, Ch. 1.10]. Since
the Zariski topoi of X and X®d, and the ones of P4 = (P%)"& and (P%)*! are equivalent (see

[38, Prop. 4.5 (i)]), it follows that H;ad ((P‘Ii()ad,é') = H&(P’}{,é’), for all i > 0.

Recall that, for a subset I of the set of simple roots A = {ayg,...,aq-1} of G := GLg41 k,
we denote the associated (lower) standard parabolic subgroup by P;. We write Py := Pr(K),
Pro:=P;7(0k), and P :=p, 1 (P;2(Ok /7™)) where

Pn: Go := GLg11(Okg) — GLg41(Ox /7")
is the canonical reduction homomorphism. Here P; 7 denotes the respective standard para-

bolic subgroup of GLg41,z.
For asubset I C A with A\T = {a,,..., i}, 01 < ... <is, we define the closed subvariety

i1
Y] = PK(@K63> :P% = V+(Xi1+1,...,Xd) C Pg{
§=0

so that

yad _ U U gY]ad~

ICA geG/Pr
Moreover, for a compact open subset W C G/ Py, we consider
A U gy
geWwW

which is a closed pseudo-adic subspace of (P% )24, see [57, Lemma 3.2]. In particular, we have

G/Pa\{ay_1}

ad _ d—1

V¥ = Za\ (o}

Next one defines on V2? certain étale sheaves of locally constant sections supported on

ZIG/PI. To this end, let
B, gypd . yad
Urw: 2y — Y
be the embeddings of closed pseudo-adic spaces and consider the étale sheaves

Zg,r = (P1,9)«(P1,9)" Zoyaa
ZZ}/V = (\IJI7W)*(\IJI7W)*Zyad

where Zy.a denotes the constant étale sheaf on Y24 with stalks equal to Z.
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Furthermore, we let Cq,p, denote the category of disjoint coverings of G/P; by compact
open subsets with morphisms given by refinement. For a covering ¢ € Cg/p, of the form
G/Pr=U;ca Wj, let Z denote the image of the sheaf homomorphism

Bz — 11 2
JEA g€G/Pr

which is induced by the homomorphisms ZZij — Zg,1, for g € W;, cf. [56, p. 621]. Taking
the inductive limit over all coverings of Cg/p, one arrives at the aforementioned sheaf

lim Z,.

=

CECG/PI

of locally constant sections supported on ZIG/ P With values in Z.

With the appropriate sheaf homomorphisms given by restriction, these sheaves fit together
to yield a complex of sheaves on )24

0 — Zyaa — @ hﬂ L —> ... —> @ hg Lo —> ...

IcA c€Cg/p; ICA c€Cq/p;
|A\T|=1 |A\T|=i
(3.2)
o= P lm Ze— lim Zo—0.
IcA c€Cq/py; ceCq/p,
|A\T[=d—1

Theorem 3.1.1 (|56, Thm. 2.1.1]). The complex (3.2) is acyclic.

Now, let 0 — & — Z° — Z' — ... be an injective resolution of the OP(;(—module E. Let

t: Y2 — (P%)2d denote the closed embedding. We want to consider the double complex
obtained by applying Hom(¢.(-),Z9) to the acyclic resolution (3.2) of Zyna, i.e.

Hom L*< @ lim ZC>,I‘1> ,if —(d—1)<p<0,¢>0,
IcA ceCq/p;
|ANT|=—p+1

0 , else.

EDT = (3.3)

This double complex is concentrated in the upper left quadrant.
There is a natural action of G on EJ'® as follows: For fixed g € G and I C A, we have a
homomorphism by functoriality of taking the inverse image under the automorphism g

Hom(/,*( lin Zc),Iq>—>Hom(g_1L*( li Zc>,g_1Iq>. (3.4)

CECG/PI CECG/PI

1

Moreover, for the restriction g: Y*d — Y24 of g we have g~ 1Z, = Z4-1. where g~ c denotes

the translated covering G/Pr = J;c4 g~ 'Wj, for ¢ = {W; | j € A}. This yields

gflL*( h_n>1 Zc>%L*§*l< h_n} ZC>§L*( hﬂ Zg—lc).

CGCG/pI CECG/PI CGCG/PI

Together with the homomorphism ¢~!'Z9 — ¢*Z% — 77 induced from ®,: g*€ — & in the
second component we obtain a homomorphism

Hom (g_lL*( h_ng Zc),g_llq> — Hom (L*( hﬂ Zg_lc),Iq>. (3.5)
CECG/PI CECG/PI
Then g acts via the endomorphism that arises as the composition of (3.4 and (3.5).
Associated with the double complex (3.3 we have two spectral sequences PEP? and VEP+9.
Since, for every n € Z, there are only finitely many pairs (p,q) € Z? with p + ¢ = n and
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E{? £ 0, both spectral sequences converge to the total cohomology of the double complex
[77, Tag 0132]. As all rows of "E}'? are exact apart from the entry at p = 0, we compute

hEp’q _ HOm(L*Zyad,Iq) s lfp = 0’ q Z O7
! 0 , else.

Therefore "EL? reads as follows
hppa _ J BXt(Zyea, ) i p=0,¢ >0,
2 0 , else,

and the spectral sequence "EP:9 collapses at the second page. Moreover, we have the G-
equivariant isomorphism

"By T = Bxt?(t.Zysa, €) = Hya (PR)™,E) = HE(PE, E),

for all ¢ > 0, by [33, Prop. 2.3 bis.].
We now turn to the spectral sequence YE?>? and compute that

Ext‘I(a*( @ lim Zc>75> yif =(d=1)<p<0,¢2>0,
VEfaq = ICA CECG/PI
|ANI|=—p+1

0 , else.

Furthermore, for all I C A, it is shown in [56, Prop. 2.2.1] that there is an isomorphism

Ext? (L( lim ZC),S) = Jim HY, (P, (3.6)
CGCG/PI "GNgeGo/P;"

for all ¢ > 0, with the definition of the “open” &,-neighbourhood of Y; from (2.11)). Here and
in the following, we abbreviate ¢, := |r|", for n € N.

Remark 3.1.2. We want to explain how the G-action on the Ext-groups on the left hand
side of transfers to the right hand side. While doing so, we will introduce some useful
notation.

First note that G/P; = Gy /Py, by the Iwasawa decomposition (see [16} §3.5]). The proof
of the isomorphism uses that the family of coverings

G/Pr= |J gPP/Pr , with gP}'/Pr:={gpP; € G/P |p€ P}'},
g€Go/ PP
for n € N, is cofinal in Cg/p,. This shows that

lim Ze=lm @ Z o
CECG/PI ”GNgGGo/PI" 1
One proceeds by applying [33, Prop. 2.3 bis.] and arguing that certain higher derived inverse
limits vanish.
Then the isomorphism is G-equivariant when the right hand side is equipped with the
following G-action by continuous endomorphisms: For fixed g € G, to give an endomorphism
by which g acts it suffices to define compatible homomorphisms

Sm

. d d
gn HSYI(EH)(PK,é’) — Hgm(em)(PK’g)’ (3.7)
ne€NgeGy /Py i=1

for all m € N. Here the g1, ...,gs,, are some coset representatives of Go/PJ" so that we have

G/Pr =", 9iP1"/ Pr.

We choose n = n(g,m) > m to be large enough such that the covering G/P; = U;;l h; Pl /Py,
for coset representatives hi,...,hs, of Go/PJ', is a refinement of the translated covering
G/Pr = ;" gg9:P"/Pr. In this way we obtain a surjection

og:{1l,...,sn} —{1,...,5m}
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where o,(j) is defined via h; Pf'/Pr C gg,(;)P1"/ Pr-
One computes that

h;Yi(en) = hi Pl Y1 C 995, Pr"-(Pr-Yr) = 990, ;) Y1(€m)
Then the homomorphisms

. d d
ot Hi oy Pl &) — Hy oo (P, E)

from (2.6) give
d
@Hh Yi(en) (P, € —>@ a:vi(em) (P €)s
Jj=1

(V1,...,0s,) — ( Z ©g(vj)y .-y Z @g(vj)).

j€og ' ({1}) i€og ({sm})

Combining this with the projection

d d
hm @ HQYI (en) PK’ - @Hh Y1 (en(g, m))(P 5)
neNgego/pn

yields the sought homomorphism (3.7)). One checks that these homomorphisms are compatible
and do not depend on the choice of n. O

Note that when g € Gy, the n for the action of g can always be chosen to be n = m. In
this case, g even acts on each constituent of projective limit in (3.6]) individually.
Using the isomorphisms

d d
Hgyl( )(IP’K,E)—>H§,(E )P, €),
for coset representatives g1, ..., gs,, of Go/PJ*, we obtain a Gy-equivariant isomorphism
Hg Yi(em )(P‘Ii(,g) — In de (H;I,I(E )(P‘;(,E)) ;o (V1,0 vs,,) Zgi o g, (V).
i=1 i=1

Consequently the spectral sequence reads as follows

VP, G v
EP — EB lﬁg IndSy (Hiz/l(g )(]Pu;(?g)) = VEpre = hppta H§>}+q(P‘}<,5).
IcA ne
[A\I|=—p+1

One continues analysing this spectral sequence by considering complexes K, defined as

Kp, = @ mmdl (H;Z/I o (P, 5)),
ICA
|[A\I|=—p+1
for —(d —1) <p <0, ¢ >0, so that VE}'? = =lim K .- Applying Proposition to the

local cohomology groups with respect to Y7(e,,) = P%, for I C Awith A\T = {ail yeees QG
1< ... <ig, and g > 0, we find that

0 5 if {ao,...,ad_q_1}¢l,
H;J,I(E )(p;l(,g): Hgd a(e )(IF’?(,E) Jif {ao, ... aq—g-1} C T and ag_q ¢ I,
Hq(IP"f{,S) ,if {ag, .. aq—q} C I

In particular the complex K7

is concentrated in the degrees p = —q+1,...,0.
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The next step is to write K, as an extension of complexes K;*, and K5, via the G-
equivariant, short strictly exact sequence

0 0
g pp— EB Ind} ( b n)(P?{,E))
|A\I|—7p+1

Kgn == @ IndP”( Yi(en )( P 5))

|A\I|——p+1
Qe Qd—g—1E€T J{
np . q(pd
KlP =— P mafs (H(P%, €))
ICA
[A\I|=—p+1
QQ,...,0g_q—1€1 J{
0 0

of K-Fréchet spaces. This sequence is induced by the short strictly exact sequences
0—0— HIPL,E) — HIPEL,E) — 0,
for I C A with ag,...,0q—q € I, and by

(]P)Cfl(vg) — H!

]P’d (e n)(P?Og) — Hq(]P)?(vg) — 07

q
0—>de aen)

for I € A with ag,...,a4—q—1 € I, aq—q ¢ I. Here the second homomorphism in the latter
sequence is surjective as H1(P4 \]P’d_q(an) £)=0.

By Proposition projective systems (K7, )nen satisfy the topological Mittag-LefHer
condition of Lemma Therefore we obtain the Go-equivariant, short strictly exact se-
quence

0 — lim K7, — "EP'? — lim K75, — 0 (3.8)
neN neN

of complexes of K-Fréchet spaces.

One finds that the complexes K%, and K5, for all ¢ > 0, n € N, are acyclic aside from the
very left and right position [56, Lemma 2.2.5]. After checking the (topological) Mittag-Leffler
conditions one then concludes that the complexes lim _ K%, and lim _ K73 are acyclic
apart from the very left and right position as well |56, Rmk 2.2.6]. To compute VER? we
can consider the long exact sequence of the cohomology of the complexes . It follows
that the only non-vanishing terms of YE§'? = HP(L o K5 » ) are the ones for p = —q +1,
qg=1,...,d, and the ones for p = 0, ¢ > 2. For these terms we obtain a short strictly exact

sequence
3 /—q+1 ; /—q+2 vip—q+lq
0 — Ker( Jim Ky — Jim K[ 172) — "B

neN neN (3 9)
— Ker( lim K[/ — lim K;’;q“) 0,
neN neN

for g=1,...,d, and one shows that
VEg’q _ ]r{q(]pgl(’(c;)7

for ¢ > 2. Moreover, from this one concludes that the spectral sequence VE?+¢ degenerates at
the Fa-page [56} p. 633].
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We want to investigate the strong dual of (3.9). We first look at limnEN K% Since
each K ”p is finite-dimensional, the transition homomorphisms of (K !'p )n ey are compact
|67 Lemma 16.4] so that im K o7 is a nuclear K-Fréchet space [67, Prop. 19.9]. Then
Ker(ﬁl Kot — Jm Ké"nq“) is a nuclear K-Fréchet space, too |67, Prop. 19.4
(1)]. It follows that

! /
. n—q+1 . "—q+2\ ~ . n—q+1 . n—q+2
Ker( im &7 — Jim K702) = ((lim Ker (&7 — lim K770%) )
neN neN neN neN
== lim Ker (K1 — Kr2),
neN
by |67, Prop. 16.5]. As K%, is exact at K/, 972, the image of K/, 7" — K/ 92 is closed

n

and this homomorphism is strict [11, IV. §4 2 Thm 1]. Hence |11 IV §4.1 Prop 2] implies
that there is topological isomorphism

Ker (K/70%" — K/0+2)! = Coker((K;(;q+2); - (K{]{;qﬂ);).

To simplify the notation we write Qq—4 := Py, for the standard parabolic subgroup
corresponding to the subset I_q = {0, ..., @a—q—1} C A. In Remark [L.5.5] (i) we have seen
that taking the strong dual and finite induction commute with each other. Therefore, we
obtain a G-equivariant, topological isomorphism

Coker((K;";q+2); — (K”;‘Hl);)

~ G G d
= Indgy (H( Pé / Z Ind(Z s }(H‘I(]P’K,E)’)
i=d—q

~ d / G d
~ (H(PL, &) @k IndQ‘fllq(K))/i;qu(]P’K, ‘@ Iy ey B

= HO(PY, ) @x 05}

where

G - G
vgh =Indgs / Z Ind % PE ey - (3.10)

i=d—q

We have used the push-pull formula from Remark (ii), since H4(P%,£) already is a
G-representation, and that taking the projective tensor product with H q(]P’%, €)' is exact |13,
Lemma 2.1 (ii)].

Furthermore, |27, Prop. 1.1.32 (i)] yields

liny (HQ(IP"}(,E) @K 05y ) >~ {I(PL, EY By % (vS%ﬂ).

neN

The second factor of this tensor product can be expressed as a smooth generalized Steinberg
representation (cf. |17])

sm,G sm,G
vgl = Indp, (K)/ Z Indp ™ (K
IcJjca

for I C A. Here Indi,“;’G(K ) denotes the smooth induction of the trivial Pj-representation,
i.e. the space locally constant functions invariant under P; endowed with left regular G-action:

Indp““(K) := {f € C™(G, K)|Vg € G.p € Pr: f(gp) = f(9)}.
Lemma 3.1.3. For I C A, there is a G-equivariant, topological isomorphism

hg(lndfi}%([() / > IndBs(K )gvg

neN ICJCcA
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where ng denotes the genmeralized smooth Steinberg representation endowed with the finest

locally convex topology.

Proof. For all J C A and n € N, we have a well-defined, Gy-equivariant inclusion

Inds (K) — Ind3r“(K), D giehir— [g— i, if gP; € g, P}/ Py]. (3.11)
=1

Here ¢1,...,9s, are coset representatives of Go/P%. Since Indgi} (K) is finite dimensional,
this is a continuous homomorphism when the right hand side carries the finest locally convex
topology.

Moreover, given a locally constant function f: G — K in Ind}T’G(K ), there exists n € N
such that for the covering G/Py = |Ji", 9;P}/Ps the function f is constant on each open
subset g; P} - Py. Thus f is contained in the image of . With the choice of the finest
locally convex topology on Ind;r?’G(K) it follows that Ind}T’G(K) = lim o Indg; (K) is a
topological isomorphism.

With vglﬂ defined in the obvious way, we take the inductive limit over the diagrams

P mdE (K) —— Wda(K) vEp 0
ICJcA j J{

P mdpre(K) —— Indp (k) v§ 0
ICJCA

which have strictly exact rows. The snake lemma then shows that the induced G-

. . s . Go G i . e ‘e
equivariant homomorphism hgneN Upn — VP, Is a topological isomorphism. Moreover,

this isomorphism is G-equivariant when li_n;neN vgﬁ carries the G-action induced from Re-
I

mark B.1.2 O

,N
compact by Corollary
to before one finds that

q.n

We now turn towards l'mnGN K[, Here the transition homomorphisms of (K & )neN are
so that @neN K'P is a nuclear K-Fréchet space, too. Similarly

/
: /—q+1 ; I—q+2\ ~7; 1—q+1Y\/ 1—q+2\/
Ker( im K7 — lim Ky0+2) 2 lim Coker ( (K1), = (K507),
neN neN neN

with injective, compact transition homomorphisms in the inductive limit of the right hand
side.
We write Py_q := P ,__ for the standard parabolic subgroup corresponding to the subset

Ja—q = A\ {ag—q} C A. We recall from Proposition [2.6.1| (ii) that W, := f];d,q(s )(IP’dK,S);,
(e

is a locally analytic Pj' -representation. Using the exactness of the “finite” induction
Indggl (-), the push-pull formula from Remark W (ii), and exactness of tensoring with
—4q
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W, |13, Lemma 2.1 (ii)], we compute that
—qg+2 / —q+1 /
Coler (1€,%), = (K71,

d—1
%Indg%_ (W) > Indgg, (W)
l—q ) d—qY{ai}
i=d—q+1
Pn d71 P’VL
=~ Ind) <IndQ”é“q (W) > Indp. * U{ﬂ_}(%))
i=d—q+1 T

d—1
~ G Pl Pi—q
= Indpg,;q <<Wn QK Inng,q (K))/ , dz:+1 Wn QK Indpln,i,qU{ai} (K)>
1=a—q

~ Go Py g
= IndPLq (Wn QK ngiq)
with the finite-dimensional representations
d—
vbi=e = mali-e (k) Zl mdhi  (K)
Qr_, - Qy_, P Uta '
i=d—q+1

Remark 3.1.4. We want to describe the induced G-action on

!/ n
: 1—q+1 : 1—q+2\) ~ s Go jag d / Pi_q
Ker(}g K, — nl;lI K, )b = 71%; Ind5, (1‘[}}17},,(_%%)(]P’K7 & Ok UQ;’LQ)'

—q

To ease the notation, we write P = Py_,4, and Q = Qg—4 here. Fix g € G and consider an
element v of the right hand side term. Let m € N such that

Sm
Go (77 d pm
v=3 giev € mdf (H;dK,q oy P )y O va),
i=1
where g1, ...,gs, are coset representatives of Go/P™.

Similarly to Remark let n > m such that G/Q = U;;l h;Q™/Q is a refinement of the
translated covering G/Q = |J;", 99:Q™/Q, for coset representatives hi,...,hs, of Go/Q".
We can consider the induced coverings of G/P under the surjection G/Q — G/P. After
enlarging n we may assume that the induced covering G/P = Uf;l hjP™/P is a refinement
of the induced covering G/P = |J;™, g9, P™/P.

For j = 1,...,8,, we have h;Q"/Q C gg,,(jyQ@™/Q with the notation of Remark
We claim that this implies 7; P"/Q C gg,(;)P™/Q. Indeed, using

nPrr=J meUec U ge,m@m/ec U 99.,0nP"/Q
hj Pr=h;Pn hjs Pr=h;Pn hjs Pn=h;Pn
it suffices to show that g, (;)P™ = go,(;)P™ if hjP™ = hjy P™. For this, we compute that
h;Q"/P C hjP" /PN ggs,;)P™/P. By the assumption on n with respect to the covering of
G/ P this shows that h; P"/P C ggog(j)Pm/Pﬂ The, if h; P = hj P", the sets gg,, ;) P™ /P
and g9,,(jHP™ /P have non-empty intersection which implies 9oy (NP = 9o, (i P™-
We now set py; = hj_lgggg(j) so that we have P"/Q C py;P™/Q. Then g induces

continuous homomorphisms

e, HY (Ph, &) — HY

PY Y (em) Py (en)

d
(]PKv 5)2
Furthermore, we have pg_’}P" C P™ - Q. Written in terms of locally constant functions py ;
gives a continuous homomorphism

Indg. (K) — Indg. (K),
fr—flpg;-)=[p— ), ifp,;p=1gq for p' € P", g€ Q).

9Recall that the function og4 is defined with regard to the coverings of G/Q.
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This in turn yields a continuous homomorphism v, . : vgm — vg:,. We let 7, ; denote the
tensor product

Thgg "= Ppy; @ Upy st H u»d . (P?{ag)b ®K Vogm —> H? (P, )y @k vin-

P ?(en)

In total the homomorphism by Wthh g acts is given by

Sm Sn
g. ( S gie v,—) =3 hjemy,, (Ve ) € Ind (Hﬂ‘gdK,q(En)(P;Q, &) @ vgn).
i=1 =1
0

Since the spectral sequence YEP:? degenerates at the FEs-page, we obtain a filtration

of H;,(P‘Ii(,g) by G-invariant subspaces whose successive subquotients are isomorphic to

VE; T7H . More precisely and taking into account the long exact sequence (3.1)) of local

cohomology with respect to Y C Pf(, we arrive at the following theorem.

Theorem 3.1.5 (cf. [56, Thm. 2.2.8]). Let £ be a G-equivariant vector bundle on P%. Then
there exist a filtration by closed D(G)-submodules

HY X, &) =viovits  oviovd=HgYPL,E),
and, for q =1,...,d, short strictly exact sequences of locally analytic G-representations
d G -1\’
0 — HI(P% ,5)'®Kde . (Vq/Vq )b
. P} (3.12
— lim In dGO q(H]P‘fd a(e )(P‘}(,E)g ®K vQé_‘i) — 0. )
neN
When K is a p-adic field, Orlik analyses the right hand side term of (3.12)) further. In [56,
p. 634] he shows that there is an isomorphism of locally analytic G-representations
P},

. ~ 1o la,G Pa_g )41
ling Indg) (Hgd ooy Pher ) G v ) ~ Ind}3 ¢ (N;l,q ® vQﬁl_q) . (3.13)
ne
We explain the notation used here. Let U(g) and U(pys—q) denote the universal enveloping
algebras of the Lie algebras of G and P4_, respectively. One shows that H;d,q(]P’C[l(,E) is
K
a quotient of a generalized Verma module for U(g). More precisely, there exists a finite-

dimensional P;_,-subrepresentation Ny_, C HY (P4, €) which generates it as a U(g)-

Py e
module [56, Lemma 1.2.1], i.e. there exists an eplmorphism of U(g)-modules
U(g) ®U(pd_q) Nd—q I Hﬂq»d q(P?{a 5)

Let 944 denote the kernel of this epimorphism. Then Imdla @ (N, ® Ugd ‘Z) " indicates
the subspace of those functions in the locally analytic mductlon that are annihilated by 04—,
cf. [56, p. 607]. In particular, the right hand side of - does not depend on the choice of
Ng_q.

However, when K is of positive characteristic ﬁ;d,q (IP"}(, &) in general is no longer finitely
generated, even if we replace U(g) by the algebrailé distribution algebra Dist(G) = hy(G)
of G, see |50, Ch. 2. 3] We tackle this problem by adapting a different description of
Indlsfq (N’ ® v Pd ") ‘% via the functors F§ defined by Orlik and Strauch in [58]. In
Section [3.4] we then compare Orlik’s and our description for the case of a p-adic field.

3.2. The Subquotients of H(X,£); as Locally Analytic GL4y1(Ok)-Representa-
tions. We now want to analyse the G-representations that occur as a quotient of (VE; q+17q);
in . We change the notation in as much as we fix r :=d —¢q € {0,...,d — 1}, and write
P =Py, as well as Q := Qq—,. For n € N, we have seen in the proof of Proposition m
that

Vp : Hﬂfr (o)~ (Ph, &) @ v5u (K) (3.14)
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is a locally analytic P™-representation whose underlying locally convex vector space is a
K-Banach space.

Lemma 3.2.1. The transition homomorphisms V,, — V11 are injective and compact, i.e.
V= hg V.
neN
is of compact type this way. In particular via the P™-actions on the V,, V' becomes a locally
analytic (hy(G), Po)-module in the sense of Definition|1.6.18
Proof. We have seen in Proposition that the transition maps

S (PR,E) — HE T (PRLE)

P (Ent1)™ P (en)™
are compact and have dense image. Therefore their transposes are injective and compact by

[67, Lemma 16.4]. Moreover the homomorphisms vgz — 1)5:: which are induced by the

restriction map Indg: (K) — Indgzj:i (K), f — f|pn+1, are injective as well. Hence it follows
from [27, Cor. 1.1.27] that the tensor product V;, — V;, 11 of these maps is injective. The

homomorphism vQPn — vgj: is compact as a homomorphism between finite-dimensional
K-vector spaces by |67, Lemma 16.4]. Therefore |67, Lemma 18.12] implies that V;, — Vi, 41
is compact as well.

Finally, we have hy(P™) = hy(G) because P™ C G is an open subgroup. Hence each V,,
is a locally analytic (hy(G), P™)-module via Remark and therefore a locally analytic
(hy(G), Py)-module in particular. It follows that V is a locally analytic (hy(G), Py)-module
as well. |

Remark 3.2.2. In fact, V is even a locally analytic P-representation. For fixed p € P, we
find n > m large enough such that h;P"/Q C pgag(j)Pm/Q, forall j = 1,...,s,, like in
Remark Considering the images under G/Q — G/ P, it follows from 1 € p~1 P"/P that
P™/P C pP™/P. This shows that P (e,,)~ C pP(ey,)” and we obtain a homomorphism

. ryd—r d rrd—r d
Pp: Hp;{(gm)f(]P)K>g)/ — H]P}"((gn)f(PK7€)l‘

Moreover, we have the continuous homomorphism 1y, : vg: — vgz induced by
P'm. Pn —
Indgm (K) — Indga (K),  f— f(p~'2).

The tensor product of these yields the continuous homomorphism 7, = ((p; QRYp): Vi = Vi
Like before the collection of these 7,, for all m € N, gives the action of p on V. This P-action
extends the one of Py and V is a locally analytic (hy(G), P)-module this way. |

Lemma 3.2.3. There is a canonical topological isomorphism of locally analytic (hy(G), P)-

modules
~ 77d—T ~  GLg_.(K
Ve HE o (P, £ B v, ),
Here GLy_r i is viewed as a subgroup of the standard Levi factor L =2 GL, 1 xk X g GLg—r i

of P = Pa\{a,}, and By, denotes the standard (lower) Borel subgroup of GLq_r k. On
Ugll;j:T(K) the group P acts via inflation, hy(G) acts trivially, and it carries the finest locally

convez topology.
Proof. First note that we have an isomorphism

n = GL4_r (O

Ind}. (K) — Indi " PN(K), e flar, 00

since P"/Q™ = GL4—r(Ok)/Bj_,. Here we view GLq_,(Og) C P, as a subgroup. This
~ . GL4_»(Ok)

yields isomorphisms vg: = vpgn , for all n € N. Taking the inductive limit over

these isomorphisms and applying Lemma to the case of By, C GL4—,.(K), we obtain

. . . n GLg_ (K
an isomorphism hmneN vgn = def ") of locally convex K-vector spaces. Moreover, one
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computes that this isomorphism is P-equivariant when h_r)nneN 115: carries the P-action from

Remark , and vgi‘jzr(m the one by inflation.

We recall from Proposition (i) that ﬁ(dpjf‘)rig (P, &) = lim ﬁgf& ) (P4, €). By
K n % (&n

[27, Prop. 1.1.32] we then obtain a P-equivariant topological isomorphism

. ~dr n\ . Trd—r ~  GLg_n(K
V= % (Hg% L - (Pk.E) o vgn) = AL (P, €), Brc v 710, (3.15)

Finally note that hy(G) acts trivially on vgz, for eachn € N, as Q™ C P™ is an open subgroup.

On [A—](dpjr)rig(P‘Ii{,E)g the hy(G)-action is induced by the actions on the ﬁgfé )_([Pﬁj;lﬁg)’.
K K\&n

Therefore (3.15)) is hy(G)-equivariant. O

We come back to the locally analytic G-representation lim md$e (W,,) from (3.12), for
W, = Hi" )(]P’%,E)g ®k vhn (K). The K-Banach spaces V;, allow us to exhibit this as a

P (en
locally convex K-vector space of compact type.

Lemma 3.2.4. There is a canonical topological isomorphism of locally analytic G-represen-
tations
lim Tnd (% (W5,) & lim Ind§% (V7). (3.16)
neN neN

Here the G-action on @neN Indg% (Vy) is given in the way analogous to Remark , More-

over, the transition maps Indgg (Vo) — Indg‘,ﬁ+1 (Vas1) of the right hand side are compact and
injective so that the underlying locally convex K-vector space of the above G-representation
s of compact type.

Proof. In view of the inductive limit description of Proposition 2:6.1] for n € N, the homo-
morphism

HE (P, &), — HE—T (Ph,E),

Ph (en) P (en+1)

factors over }ngf (E )- (P4, £)’. We therefore obtain a commutative diagram of locally analytic
K\En

P *l.representations

Hir (P, &) —— Hi (P&

L

rrd—r d rrd—r d
HP%EEH)(HDKag);) HP}“(EETHA)(PK’E);J'

Combined with the canonical homomorphisms 05: — US::: , this gives factorizations of the

transition maps of both inductive limits in (3.16))

Ind%o

%_, (Erd—" - (P4, £) ®x vgzj) — 5 Tnd$ (ﬁd—" (PL,E) @k ug;f)

Pi(en—1 Pi(en)™

| _— l

IndS? (E’ﬂf;:(sn) (P, €)}, ©x vhn ) —  d%,, (ﬁﬁgém) (PL,E)) @k vgiiﬁ).
We conclude that both inductive limits are topologically isomorphic to each other.

Now consider, for n € N, coset representatives hy,...,hs,  , of Go/P"™t and ¢1,...,gs,
of G/P™ such that h; gets mapped to g;(;) under Go/P"*t — Gy/P™. Then the transition
map Ind$3 (V,,) — Id$0,, (Vy41) is given by

Sn+1 Sn Sn+1

égioVn — @h_j. nt1, Zgi'vi — Z hj & vigj).-
i=1 Jj=1 J=1

i=1
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Therefore it is injective and compact as the finite direct sum of compact homomorphisms, by

Lemma (iii). O

Our next goal is to interpret lim o md$o (V;,) as a subspace of C'*(Go, V). We know

from Proposition that Tnd%2 (V,,) = Ind%°°(V,,). As each V,, is a BH-subspace of V,
we consequently obtain injective continuous homomorphisms, for all n € N:

tn: Ind$0 (V,,) — C™(Go, Vi) — C"*(Go, V),

Sn
Zgi oy — [g —p Lo, , for g = gip with p € P”]7
i=1

Given f € C'(Gy,V), g € Gy, and p € Py, we write f(g_p) for the locally analytic function
flg-p): Go — V', h+—— f(ghp).

We let u(f) denote p € hy(G) applied to a function f € C%(Gy, V) via the pairing (T.26).
The hy(G)-module action on V' is denoted by u* v, for v € V. Also recall that ji signifies the
involution from Lemma [[.6.10l

Lemma 3.2.5. The homomorphism

v lim Ind % (V,) — C'*(Go, V)
neN

induced by the v, is a closed embedding with

Im() = {f € C"™(Go,V)|Vg € Go,p € Po, n € hy(G) : u(f(g-p)) =p "% f(9)} -

Proof. Tt suffices to show the statement about Im(¢). Indeed, then Im(:) is the intersection
of the kernels of the continuous homomorphisms

C'"™(Go, V) — V,  fr—ru(flg-p)) —p “h* flg), (3.17)

for g € Go,p € Py, u € hy(G). As V is Hausdorff, these kernels are closed subspaces, and so
is Im(1). Since C'*(Gy, V) is of compact type by Proposition (iii), Im(¢) is of compact
type as well using Proposition [AZ4] Moreover, the induced homomorphism ¢ is a continuous
bijection onto its image. Because hﬂneN Indgﬂ (V) is the inductive limit of K-Banach spaces,
we can apply a version of the open mapping theorem [11, II. §4.6 Cor.] to conclude that ¢ is
strict.

It remains to show the statement about Im(:). Let p,: P* — GL(V,,) denote the rep-
resentation and p,,: P" — V,, for v € V,, its locally analytic orbit maps. First,
consider f € Im(¢). Then there exists n € N such that f € Im(s,), i.e. f € C'*(Go,Vy)
and f(gp) = p~L1.f(g), for all g € Goy, p € P™. Let D, := 1+ 7" My,1(Ok), and note that
P" =D, - Py. It follows that

Flgzp) = (2p)~"-f(9) = (pn,f(g) © V) (ap), (3.18)

forallg € Gy, x € D,,, p € Py. Wefix g € Gy and p € P, for the moment and consider (3.18))
as an identity of locally analytic functions in z on D,,. The homomorphism

V,, — C"*(P™ V), v+ (pn.ooinv)(_p),

is P"-equivariant with respect to the left regular representation on C'#(P",V,,). Therefore,
it is equivariant for the hy(G)-action as well, and for v = f(g), we obtain

(Prusf(g) ©InV)(-p) = p * ((Pn,f(g) o inv)(,p)), (3.19)
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for all 4 € hy(G). Finally, we apply u € hy(G) to (3.18) and compute for the functions
restricted to D,,:
1(f(g-p)) = 1((pn,fg) 0 inv)(-p))
= (1% ((pn,f(g) ©Inv)(-p))) (1) , by Proposition [1.6.14]
= ((pn,ﬂ*f(g) ° inv)(,p))(l) , by "
=p Lk f(g).
On the other hand, let f € C'*(Gy, V) such that u(f(g ,p)) =p Luxf(g), for all g € Gy,
p € Py, and p € hy(G). As Gy is compact, there exists some n € N such that f factors over

the BH-space V;, of V.. Moreover, we find m > n such that f is locally analytic with respect
to the finite covering

(3.20)

Go= |J U upDn, (3.21)

u€Go/P™ pEP™ /Dy,

i.e. flupp,, is analytic, for all cosets upD,,,. By Proposition|1.3.10} p,, is a locally K-analytic
map of locally K-analytic manifolds. After increasing m, we therefore may assume that
pn 0inv is analytic on each coset of as well. In particular, (p,,, ©inv)|ypp,, is analytic,
for all cosets upD,, and all v € V,,.

To show that f € Im(iy,), we fix g € Gy and p € P™ and write p = xpg, for © € D,,,
po € Po. Then f(g-po)|p,, and (pn o inv)(-po)|p,, are analytic, for all v € V,,. Indeed,
let u'p’ D,, by the coset of (3.21) containing gpg. Because f is analytic on w'p’ Dy, f(g-po)
is analytic on g~'u'p’Dp,py . But using that D,, is normal in G being the kernel of the
reduction homomorphism, we see that this last set is equal to D,,. Similarly (p,,, o inv) is
analytic on the coset g~ u'p'D,, so that (py,., o inv)(-po) is analytic on D,,. If we apply
p € hy(G) to the analytic function (pn, o inv)(_-po)|p,,, we compute analogously to

Pal'ﬂ * f(g) = M((pn,f(g) © inv)( pr))'
Combining this with the assumption x(f(g-p)) = p~'.f1* f(g), we see that the functions on
D, satisfy

1(f(g-p0)) = 1((Pn,5(g) © inV)(-p0)),

for all p € hy(G). By Proposition [1.6.12] this implies that the locally analytic germs at 1
of f(g-po) and (py, ¢(g) ©inv)(_po) agree. As both functions are analytic on all of D,,, we
conclude that they agree there, and we have, for all g € Go, p = xpg € D,,, - Py = P™:

flgp) = F(gzp0) = (pn.s(g) © V) (zpo) = (xpo)~".f(9) =p~ " f(9)-
0

Because V is of compact type, by Proposition |1.2.15| (iii) we have the topological isomor-
phism C'*(Go, K) ®x V 2 C'(Gy, V) induced by f @ v +— f(_)v. Under this identification,
the homomorphisms (3.17)) are given by

C™(Go, K)&xV —V, fov— u(flg-p)v—flg)p " i*v.

Therefore, ¢ fits into the sequence of continuous homomorphism

0 — limg Ind 2 (V,,) = C*(Go, K) 8¢ V -5 I1 1% (3.22)
neN 9€Go,pEPo,uchy(G)

fev— (u(f(g-p)v—Flg)p"iixo)

9P

which is algebraically exact, and ¢ is strict.
We want to consider the strong dual of this sequence (3.22)). Note that by [67, Rmk. 16.1
(ii)], the homomorphisms of this dualized sequence are continuous again. By [67, Prop. 9.11]
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there is a topological isomorphism

@ 144 o ( H V) ) Zggmw — {(Ug,pyu) = Zgg,pw(vgmw)] .
b

9€Go 9€Go
pEP PEP)
wehy(G) p€hy(G)
Under this isomorphism, the transpose of v is given by
Pt P V) — (C"™(Go, K) &k V),

9€Go,p€Po,puchy(G)

Zgg@u — [f v — Zﬂ(f(g —p)) e.q,p,u(v) - f(g)f Dy (p NI U)]

By applying Corollary at various points, we have
1(f(g-p) = ulh1 = flghip)]
= p[hy — 84[ha — 8, [hs — f(hahihs)]]]
= 8, [ha o p[hy o 8, [hs > F(hohuhs)]]]
= (09 p* 0p)(f)-
Furthermore, by the definition of the contragredient action of Py and hy(G) on V}:

Kg’p,u(p_l-/l *v) = (pLypu)(fr*v) = (n*plyp,)(v).

Moreover, both V and C'%(Gy, K) are reflexive with their strong duals being reflexive
Fréchet spaces. Hence by [67, Prop. 20.13] and [67, Cor. 20.14], we have a topological iso-
morphism

D(Go) & Vi — (C™(Go, K) Bk V), §@ L [fouve 8(f)L0)].
All in all, we see that the strong dual of (3.22)) is the complex
t =N J /
D Vb””—>D(GO)®KVb’—’>(1gIndG°( ))b—>0
9€Co,pE€ Po,u€hy(G) nel (3.23)
Z lopu — Z Og % % Op @ g py — Og & px pLyp .

As ¢ is a closed embedding, the Hahn-Banach Theorem [67, Cor. 9.4] implies that .
is surjective. It follows from the open mapping theorem [67, Prop. 8.6] that /! is strict.
Moreover, by [11, IV. §4 1 Prop. 2] we have Ker(:!) = Im(v )J- where

Im(¢)* := {€ € D(Go) ®x Vj | Vv € Im(¢) : £(v) = 0}.

Since Tm(1)t = Ke (’(/J)J‘ by the algebraic exactness of ( -, Lemma implies that
Ker(:) = Ker(¥)+ C Im(yt). As Im(¢*) C Ker(:!) and Ker(:!) is closed, we conclude that
Ker(it) = Im()?).

Under the equivalence of Proposition (ii), the homomorphism ¢! becomes a ho-
momorphism of D(Gy)-modules when D(Gy) @k V; carries the D(Gp)-module structure via

multiplication on the left in the first factor. We therefore obtain a topological isomorphism
of D(Gp)-modules

(lﬂlndGo( )); = (D(Go) @k V) [Ker(t!) = (D(Go) @k Vi) /Im(yh).

neN

The submodule Im(¢*) in turn is generated by the elements
Sy puxd, 0 —0,@uxpl  for g€ Gy, p€hy(G),pe Py, LEV.
Recall from Proposition [1.6.16| that D(g, Py) is generated by the elements of the form g * A,

for u € hy(G), A € D(Py). Together with the density of the Dirac distributions, it follows
that Im(¢?) is equal to the closure of the D(Gp)-submodule generated by the vectors

dxv@l—06xvxl | forde D(Gy),veD(g,P), eV,
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where V}/ is a separately continuous D(g, Py)-module via Corollary|1.6.20l Using Remark
we conclude the following:

Proposition 3.2.6. There is a canonical topological isomorphism of D(Gg)-modules
!/
( hgl Indgﬂ (Vn)) = D(Go) ®D(9,Po) VZ.
neN b

3.3. The Subquotients of H°(X,€); as Locally Analytic GL4y1(K)-Representa-
tions. On the level of locally analytic Go-representations, the above Proposition already
is a description of the term

n?rré TndSg (H;?{,q o) (P, ) @ vy, )
n

occuring in Theorem However, we want to extend this to a description as locally
analytic G-representations or equivalently as D(G)-modules.

Lemma 3.3.1. (i) There is a topological isomorphism of D(Gy)-D(P)-bi-modules
D(Go) ®p(py),. D(P) - D(G), p@®vw—— p*v,

(cf. |75, Lemma 6.1 (i)] for the statement on the algebraic level).
(ii) For a separately continuous D(g, P)-module M, natural inclusion D(Gy) — D(G) induces
a topological isomorphism

D(Go) @ p(g.pyy. M —+ D(G) @pg.py M, 0@ 350¢, (3.24)
of D(Gp)-modules.
Proof. For (i), essentially the proof from [73| Lemma 6.1 (i)] for the algebraic statement
applies: The Iwasawa decomposition G = GoP with Go N P = Py (see [16, §3.5]) gives a

disjoint covering G = UpE Po\P Gop by compact open subsets. In view of Proposition m
(iii) this yields a topological isomorphism
DG = P D(Go)*d,
pEP()\P
of D(Gy)-D(P)-bi-modules, and one of D(Fy)-D(P)-bi-modules
D(P)= P D(Py) 0,
pGP()\P

Moreover, there is a topological isomorphism [46, Lemma 1.2.13]

D(G0)®K,L< &y D(PO)*a,,)g B D(Go) @k, D(Py) 6,

pE P\ P pEPy\P

of D(Gy)-D(P)-bi-modules. Passing to the quotients we obtain the topological isomorphism

AT (- IO

pEPy\P

Il

D(Go) ®p(ry),. D(P)

IR

P D(Go)@p(py). D(Po) %6,
pepo\P

~ P D(Gy) 0, = D(G).
pEPy\ P
of D(Gy)-D(P)-bimodules.
For (ii), clearly the continuous homomorphism D(Gy) @k, M — D(G) ®k,, M induces the
continuous homomorphism ([3.24)) by passing to the homomorphism between the quotients

D(Go) ®p(g,py) M — D(G) @p(q,p),, M
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and completing. Moreover, using the statement of (i) and Lemma [1.5.11] (ii) we have a
topological isomorphism of D(Gy)-modules
D(G) QK. M = (D(Go) ®D(P0),L D(P)) RK,. M = D(Go) ®D(P0),L (D(P) QK. M)
Together with the well-defined continuous homomorphism of D(Gg)-modules
D(Go) @p(py)y. (D(P) @5, M) — D(Go) @p(g,py),. M,
0RARL— I @ AL

we obtain D(G) ®k, M — D(Go) ®p(q,p,), M. This homomorphism factors over the quo-
tient as

D(G) ®@p(g,p),. M — D(Go) ®p(g,py). M,
and one verifies that the completion of the latter homomorphism is an inverse to (3.24]). O

Theorem 3.3.2. Let £ be a G-equivariant vector bundle on P%. For the terms that occur
on the right hand side of the description of the subquotients in Theorem there are
topological isomorphisms of D(G)-modules

(gqlndpn (Hﬂgd oy (PHE O Vg ))

neN

!

b
~ D(G)® H? (PL,E)® La(F)
D(g,Pa—q):t (P ayrig K K e

forq=1,...,d. Here P;_q acts via inflation from the subgroup GL4(K) of its standard Levi

factor Ly_q on vy (‘II(() ) and hy(G) acts trivially ther.

Proof. We keep the simplified notation with r =d—q € {0,...,d — 1} fixed and P := P4,
Q := Qq—4. Combining the topological isomorphism

/
(13 nd$0 (V, )) = D(Go) @p(g,r) Vs
b

neN
from Proposition [3.2.6] which was obtained via the topological embedding
v: lim md%s (V,,) — C'*(Go, K) & V
neN

with the statement of Lemma (ii), already gives a topological isomorphism of D(Gy)-
modules

/ ~
liny a2 (V2)) > D(G) & V.
(ﬁ nd@ (Vi) = D) Bpe.r. Vi
It remains to show that w is D(G)-linear.
To do so we first construct a G-equivariant homomorphism
£ lim Indg0 (V) — C™(G, V)
neN

which is compatible with ¢ and the restriction map
(*)|Go: Cla(G7v) —>013(G07V)7 f'—>f|Gov

in the sense that (_)|g, 0% = t. Let f € Ind$9(V;,) correspond to the locally analytic function
f: Go — V,, so that f(gp) = p~L.f(g), for all g € Go, p € P". We define an associated
function f € C'*(G,V) as follows. For g € G with Iwasawa decomposition g = gop, with
go € Go, p € P, we set

flg)=p""f(g0) €V

Lq (K)

’
10gince vg carries the finest locally convex topology, (vgjq(K)) equals the algebraic dual. The

smooth dual of vy q( ) is a K-subspace thereof, but this inclusion is not an equality in general.



EQUIVARIANT VECTOR BUNDLES ON THE DRINFELD UPPER HALF SPACE 81

where p~! acts on f(go) € V as explained in Remark This gives a well-defined function
f: G — V, because, for a different decomposition g = gyp’ with g = gopy ', p’ = pop, for
some pg € Py, we have

Flaop') = )" fg6) =~ g - Flgopg ) = P~ f(90) = f(9)
as po € P". R
The function f is locally analytic: For fixed g = gop with g € Go, p € P, we consider the
open neighbourhood Gop of g. There f|g,p: hp — f(hp) = p~'.f(h) is locally analytic by
Proposition|1.2.14] (i) since f is locally analytic. In total we obtain the sought homomorphism

I lim d35 (Vo) — C™(G, V), fr—
neN
with (_)|g, 07 ="¢.
Next we want to show that ¢ is G-equivariant with respect to the left-regular G—actiorﬂ on
C'™(G, V). To this end, let f € Ind}G;E”,(Vm) be given by Y™ g;  v; so that f(g;p) = p~'.v;,
for p € P™. As usual g1,...,gs, denote coset representatives of Go/P™.

We fix g € G, and want to show that i(g.f) = ¢.7(f). Let n > m like in Remark SO
that P"/Q C p, ;P™/Q with pg ; := hj_lgggg(j). Then we have seen that

9f= 9'<Zgi * Ui) - Z hj Ty, (Vo)) € Indg‘,{ (V)
i—1

j=1
Now consider h € G, and let j € {1,...,s,} such that h € h;P"/P, i.e. h = h;p(,p, for
some p(,) € P", p € P. We compute that

({g-1))(h) = ((g-£)) (hipeyp) = " ((9-F) (hjp(n)))

= pil'p(_nl)'Tpgﬁj (vog(j)) = (TP71 o Tp(nl) o Tpg,j)(vay(j))'

On the other hand, we have

97 0 = oy )Py 315 ) (D)D) = G, ()P ;P ()P

Hence

(9-2N) (h) = 2(f) (g™ h) = i(f) (9o, (5)Py jP(m)P)

— -1
= (PgiP@1P) S (90,(5) = (Tp1 071 0T, ;) (00, (7)

This shows that indeed 7 is G-equivariant.
We now use the injective continuous integration homomorphism from Proposition m (i)
together with [67, Cor. 18.8] to obtain

C'™(G,V) — Ly(D(G),V) = D(G)}, ®x.x V-
As C'2(G, V) is reflexive by Corollary(1.2.16|this yields an injective continuous homomorphism

limy Ind@2 (V) —= C'™*(G, V) — C'™(G, K) Bk V
neN
that we continue to call 7.

Moreover, let G = | J,c; 9:Go be a disjoint covering, for coset representatives g; of G/Gj,
so that C"*(G,K) = [[;c; C**(9:Go, K) and D(G) = @,.; D(9;Go, K). Then there are

HAs @ is not compact, the left-regular G-representation is not locally analytic but it is continuous nev-
ertheless.
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topological isomorphisms

/

(C"™(G,K) Bk V), = <H C'"(g:Go, K) ®x V> , by [13] Lemma 2.1 (iii)]
iel b
= (P (C*(9:Go, K) Bk V), , by [67, Prop. 9.11]
i€l
=~ P D(9:Go, K) &k Vy , by [27, Prop. 1.1.32 (ii)]
i€l
>~ D(G) &k, Vy. , by [46, Cor. 1.2.14]

The resulting G-equivariant isomorphism fits into the commutative square

/

(C*(Go, K) &k V), — (C(G,K) &Kk V),

| |

D(G(]) @KVZ;/ _— D(G) @K,LVZ

IR

where the horizontal homomorphism on the top is the transpose of ( -)|g,, and the bottom
one is induced by the embedding D(Gy) — D(G). We finally arrive at the commutative
diagram

D(Go) ®k Vy D(Go) ®@p(g,py) Vs

o

IR

(C™(Go, K) Bk V),

l

b
(Cla(Gv K) QA@K,Tr V>; a \

D(G) &k, Vy D(G) ®D(Q,P),L V.

N
=
m
Z

3
=
o,
vQ
3o
s
N——
R

Since ¢! is surjective, so is i*. It follows that the induced topological isomorphism w is G-

equivariant because all the other homomorphisms in the lower “square” are. We conclude
that w is D(G)-linear by using the density of the Dirac distributions in D(G). |

3.4. The Functors F§ of Orlik—Strauch. In this section we want to relate our description
from Theorem to the functors F§ introduced by Orlik and Strauch in [58|. To this end
we suppose that the non-archimedean local field K is of mixed characteristic, i.e. a finite
extension of Q,. We begin by recapitulating the definition of the functors F§, but for
simplicity only under the assumption that the field of definition L agrees with the field of
coefficients K. We normalize the absolute value of K such that [p| = p~1.

Let G be a connected split reductive group over K. We fix a split maximal torus and a
Borel subgroup T C B C G, as well as a standard parabolic subgroup P O B with Levi
decomposition P = LpUp with T C Lp. We assume that G and the above subgroups
already are defined over Ok. Let G = G(K), P = P(K), etc. denote the associated locally
K-analytic Lie groups and write Go = G(Ok), Py = P(Ok), etc. by abuse of notation.
Furthermore let g = Lie(G), p = Lie(P), etc. denote the corresponding Lie algebras. We
consider the following subcategories of modules for the universal enveloping algebra U(g).

Definition 3.4.1 ([58| §2.5]). (i) Let OF be the full subcategory of U(g)-modules M satis-
fying

(1) M is finitely generated as a U(g)-module,

(2) viewed as an [p-module, M is the direct sum of finite-dimensional simple modules,
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(3) the action of up on M is locally finite, i.e. for every m € M, the K-vector subspace
U(up)m C M is finite-dimensional.

(i) Let Irr(Ip)™ be the set of isomorphism classes of finite-dimensional irreducible [p-repre-

sentations. We define (’)glg to be the full subcategory of OF of U(g)-modules M such that for

a decomposition
M = @ M,
aclrr(lp)fd

into the a-isotypic components as in (2), we have: If M, # (0) then a is the Lie algebra
representation induced by a finite-dimensional algebraic Lp-representation.

Note that for p = b, O := O is the adaptation of the classical category @ introduced by
Bernstein, Gelfand and Gelfand for semi-simple Lie algebras over the complex numbers.

The functor F§ from [58, §3,4] is now defined as follows: Let M € OF), and let V be a
smooth admissible representation of the Levi subgroup Lp C P on a K-vector space. We
regard V as a smooth P-representation via inflation and endow it with the finest locally
convex topology so that it becomes a locally analytic P-representation of compact type, see
[75, §2]. By the conditions on M € OP, there exists a finite-dimensional U (p)-submodule
W C M which generates M as a U(g)-module, i.e. there is a short exact sequence of U(g)-
modules

0—0—=U(g)Quep W — M — 0.

Then the p-representation W uniquely lifts to the structure of an algebraic P-representation
on W [58, Lemma 3.2]. There is a pairing (cf. |58, (3.2.2)])

(-, ey DIG)@ppy W x IndG (W' @k V) — C'*(G, V),
(0@ w, ) — [g (8% (evw 0 £))(9)]

Here we use the identification W/ @g V' = L,(W,V) from [67, Cor. 18.8] and denote the
evaluation homomorphism by ev,,: L,(W,V) — V| h — h(w). Moreover, “x,” signifies the
D(G)-module action on C'*(G, V) induced from the right regular action of G (see Exam-
ple[1.3.7 (ii)). Via the injective map

U(g) @u(py W — D(G) @ppy W
one may consider the subspace of Ind% (W’ @k V) annihilated by d and define |58, (4.4.1)]
FEM, V) =IndG(W' @k V)° = {f € IndE(W @k V) |V €0: (5, fowugy) =0}

The resulting fg(M ,V) is an admissiblﬂ locally analytic G-representation which even is
strongly admissiblﬂ if V is of finite length [58, Prop. 4.8]. This construction yields an exact
bi-functor

Ff: OF, x Repi™™™ (Lp) — Repg®™(G), (M, V) — FE(M,V),

which is contravariant in M and covariant in V, see [58, Prop. 4.7].

In the case that V' = K is the trivial representation, there is another description of
FS(M) = FS(M,K), for M € (’)glg. Since M is the union of finite-dimensional U (p)-
submodules, via lifting each of those to an algebraic P-representation one obtains a D(P)-
module structure on M, cf. |58 §3.4]. This yields a unique D(g, P)-module structure on M
such that the two actions of U(p) agree and the Dirac distributions &, € D(P) act like the
group elements p € P on M ([58, Cor. 3.6]). Then there are isomorphisms of D(G)- resp.
D(Gp)-modules [58, Prop. 3.7]

FE(M)' 2 D(G) ®p(g,p) M = D(Go) @p(g,p) M. (3.25)

By [71, Thm. 5.1] the locally analytic distribution algebra D(Gy) is a Fréchet—Stein algebra
since G is compact. It holds that D(G) ® p(g,py M is a coadmissible D(G)-module [58, Prop.

12In the sense of |71} §6].
13Meaning that as a representation of any (equivalently, of one) compact open subgroup H C G, it is
strongly admissible in the sense of |74} §3], i.e. its strong dual is finitely generated as a D(H)-module.
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3.7]. Recall that any coadmissible module over a Fréchet—Stein algebra can be endowed with
a canonical Fréchet topology [71, §3]. We note that with this topology (3.25) is a topological
isomorphism.

Remark 3.4.2. It is expected that a description similar to (3.25) holds for the case of
non-trivial V' as well. In fact, in [1] Agrawal and Strauch consider functors defined by

FE(M,V) := D(G) ®p(q,p) (Lift(M, log) @ V')

to generalize F§ to the case of M being an element of the extension closure Ozl’go of Oglg.

They show that the resulting D(G)-modules F§ (M, V) are coadmissible, see [1, Thm. 4.2.3].

We now come back to the concrete situation of G = GLg441,x. As mentioned towards
the end of Section Orlik shows in [56, Lemma 1.2.1] that the U(g)-module H;;l(_q(IP’}l(, €)

is contained in OF2~7. Moreover, let B, = BN GLy g denote the induced Borel subgroup

alg
of GLg,x — Lp deg Then the Steinberg representation ng‘I(K) is an irreducible smooth

representation of GL,(K) ([17, Thm. 2 (a)]), and hence of P;_,. Orlik then obtains a
description of the locally analytic G-representation (3.13|) as being isomorphic to
o (=

FS (H;(}(,q
The other term H4(P%, €)' @k Ugd,q of the extension (3.12)) is a strongly admissible locally
analytic G-representation as well, cf. the proof of [58, Lemma 2.4]. It follows that the exten-
sion (V4/V971); of the two terms is strongly admissible. Since the homomorphisms between
these (strongly) admissible representations in Orlik’s description are necessarily strict (see
|71, Prop. 6.4 (ii)]), we can conclude that there is a topological isomorphism between (|3.26]
and the strong dual of

(P%,f),vgf"m)- (3.26)

~ ~ ~ GL,(K)\’
D(G) QD(g,Py_q) (ng?{q)rig (P([i(, 5) K (qu ( ))b) (3.27)
from our description in Theorem [3.3.2) by the uniqueness of the quotient.
We recall from Corollary [2.5.5( that ngd,q)rig (P4.,€) is the completion of its subspace
K

I?]gd,q(IP"}(, £). Hence (3.27) is nothing but the Hausdorff completion of
K

~ GL.(K)\'
D(G) ®D(g,Pd,q),L (H;iq(ﬂmfi{a 5) ®K,7r (UBq ( ))b> . (328)

Therefore it is natural to ask how this Hausdorff completion relates to the coadmissible
abstract D(G)-module underlying when one considers the latter with its canonical
Fréchet topology. We answer this question in Corollary by showing that they agree, i.e.
that already is complete and its locally convex topology is the same as the canonical
Fréchet topology.

For the first ingredient used to this end, we return to the general setup of connected split
reductive G considered at the beginning of this section. We fix on U(g) C D(G) the subspace
topology, and likewise on all subalgebras of U(g). As U(g) already is contained in D(Gy)
and the latter is a K-Fréchet algebra, U(g) and its subalgebras become (jointly continuous)
locally convex K-algebras this way.

We want to give a concrete description of this topology of U(g). Let r1,...,1s be a K-basis
of g, and € > 0. Via the associated PBW-basis for U(g) consisting of g’fl -oxhs for k € N§,

we define the norm
|E|
1
> agriterh| = sup Iak|<e> (3:29)

EENg e keN;

on U(g) where |k| ==k + ...+ ks.
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Lemma 3.4.3. The topology on U(g) prescribed by the family of norms | _|_, for 0 <e <1,
equals the topology defined by regarding U(g) as a subspace of D(G).

Proof. By |74, Lemma 2.4], the subspace topology of U(g) C D.(G) C D(G) is defined via

the family of norms
N
> el eoat| o= s (1)
e keNj €

keNg
for € > 0, where k! := (k1!) - - - (ks!). Here || || vields a topology finer than the one of || _||./,
for e <¢e’. We immediately find that || _||. <|_|, since |k!| < 1.

On the other hand, we obtain by Legendre’s formula for the p-adic valuation of n! that
vp(n!) < 75, for n € N. Hence

k! = p ) > (p,,%l)"ﬂ.

It follows that || -|lc > |-] 1., and we conclude that the topology defined by the family
pr—leg
(] -le)o<e<1 is equal to the topology defined by the family (]| -||c)o<e- O
Remark 3.4.4. In [63] Thm. 2.1] Schmidt shows that there is a natural isomorphism of
topological K-algebras between the completion of U(g) with respect to the family of norms
|_|., for 0 < e < 1, and the Arens-Michael envelope U(g) of U(g). The latter is defined as
the Hausdorff completion of U(g) with respect to all submultiplicative seminorms on U(g).
Using that the completion of U(g) C D(G) with respect to the subspace topology is its
closure D.(G) in D(G) (see Corollary |1.6.13)), it follows that there is a natural isomorphism

of topological K-algebras U(g) = D.(G) as well.

Recalling that we fix the subspace topology on U(g) C D(G), we now consider a finitely
generated U(g)-module M (e.g. M € 021g)~ By assumption we then find some n € N and an
epimorphism of U(g)-modules

U(g)®™ —» M. (3.30)

Lemma 3.4.5. (i) When M is endowed with the quotient topology via , it becomes a
locally convex U(g)-module. Its Hausdorff completion is a nuclear K-Fréchet space.

(ii) Any homomorphism f: M — M’ between finitely generated U(g)-modules is continuous
and strict when M and M’ carry the quotient topology induced by some epimorphism as above.
In particular, this topology on M does not depend on the choice of the epimorphism .

Proof. For (i), since the quotient topology on M is locally convex, we only have to show that
the multiplication U(g) x M — M is continuous. To do so, we consider the commutative
diagram

Ulg) x U(g)*" —— U(g)®"

| |

Ulg)x M ——— M

where the vertical maps are open by our choice of topology on M. But the multiplication map
for the finite free U(g)-module U(g)®" is continuous which implies that the multiplication
map for M is as well.

The Hausdorff completion of U(g) is its closure D.(G) in D(G) which is a nuclear K-
Fréchet space. In particular, D.(G) is hereditarily complete, see the discussion after |27, Def.
1.1.39]. Hence the strict epimorphism induces a strict epimorphism

D (G)®" —» M
onto the Hausdorff completion of M by [13 Cor. 2.2]. As a quotient of a nuclear K-Fréchet
space M then is one itself, see |67, Prop. 8.3] and [67, Prop. 19.4 (ii)].

For (ii), we argue similarly to |7, 3.7.3 Prop. 2]. Consider an epimorphism ¢: U(g)®" - M
of U(g)-modules which endows M with its topology. Then the homomorphism ¢’ := f o is



86 GEORG LINDEN

continuous because the addition and multiplication maps of the locally convex U(g)-module
M’ are. As ¢ is open by definition, it follows that f is continuous. Furthermore, M /Ker(f)
and Im(f) are isomorphic as abstract U(g)-modules. The homomorphisms between these
finitely generated U(g)-modules that arrange this isomorphism are continuous. Therefore
M/Ker(f) and Im(f) are topologically isomorphic, i.e. f is strict. a

Lemma 3.4.6. The multiplication map U(g) x D(Py) — D(Gyp), (1,0) — p* 3§ induces a
topological isomorphism

U(9) ®u(p),= D(Po) — D(g, Po)
of U(g)-D(Po)-bi-modules.

Proof. Since the convolution product is jointly continuous here, it induces a continuous ho-
momorphism U(g) @y (p),» D(Po) = D(Go) of U(g)-D(Fp)-bi-modules. By [65, Lemma 4.1]
this homomorphism is injective with image being precisely D(g, Fp).

On the other hand, let u™ denote the Lie algebra of the opposite unipotent radical U™ of P.
Then the direct sum decomposition g = u~ @p yields an isomorphism U(g) = U(u™) @k U(p).
As mentioned in Remark the completion of U(g) with respect to the subspace topol-
ogy U(g) C D(G) is topologically isomorphic to the Arens—Michael envelope U (g) of U(g)
considered in [64] §3.2]. Hence we obtain a commutative diagram

~ ~

U(u™) @rrUp) —— Ulg)

] ]

Uu™) @k Up) — Ulg)

IR

where the vertical maps are the canonical embeddings, and the upper map is a topological
isomorphism by [64, Lemma 3.2.4]. It follows from |49, Lemma 2] that the bijective continuous
homomorphism U(u™) @k » U(p) — U(g) is strict and therefore a topological isomorphism.

Via this topological isomorphism, Lemma (ii), and the exactness of the projective
tensor product (see |13, Lemma 2.1 (ii)]) we obtain the topological embedding

U(g) ®u(p),n D(Po) 2 U (") @ D(Py) — D(Uy ) @k, D(Po) — D(Uy ) ®k,x D(Py).

The group multiplication induces an isomorphism U, x Py =2 G which yields a topological
isomorphism

D(Uy) ®k.» D(Py) = D(Uy x Py) = D(Gy).
This isomorphism is given by the multiplication in D(Gy) like in the definition of the convo-
lution product in the proof of Proposition [[.4.3] Hence we obtain the commutative square

D(Uy) &k, D(Py) —=— D(G)

] J

U(9) @u(p),» D(Po) — D(g, Po)

where the vertical maps are strict monomorphisms. Again, [49, Lemma 2] implies that
U(9) ®u(p),» D(Po) — D(g, Py) is strict as well, and thus a topological isomorphism as
claimed. 0

Proposition 3.4.7. Let M € Oglg be endowed with the topology coming from an epimorphism
. Moreover, let V' be a strongly admissible smooth P-representation endowed with the
finest locally convex topology and considered as a locally analytic representation of P. Then
there is a topological isomorphism of separately continuous D(G)-modules

D(G) @D(g,p)’b (M &X\)K,ﬂ Vb/) = D(G) ®D(g)p) (M RK V/) (3.31)

in the sense that D(G) ®p(g,p),. (M QK = Vb’) defined according to Deﬁnition is com-
plete, and its topology agrees with the canonical Fréchet topology induced from its underlying
(abstract) D(G)-module being coadmissible.
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Proof. By the assumptions on M € (’)Zlg, we may find a finite-dimensional U(p)-module
W and an epimorphism ¢: U(g) ®@ypy W — M of U(g)-modules. Since U(g) @y (p), W =

U(g)®dmx (W) is a quotient of U(g) @, W, the composition

¢
U(g) K, W — U(g) ®U(p),7r W — M

is a strict epimorphism by Lemma (). Hence it follows from [49, Lemma 2 (3)] that ¢
is a strict epimorphism, too.
Using Lemma [3.4.6] and Lemma [1.5.11] there is a topological isomorphism

D(g,Py) @p(py).« W = (U(8) @u(p).x D(Po)) @p(py) e W
= U(g) Qup),x (D(Po) @p(py)x W)
= U(9) @u(p)a W

which maps p* 6 @ w to p® § xw, for u € U(g), 6 € D(Py), w € W. Therefore ¢ induces a
strict epimorphism
D(g, Po) @p(pyy,x W —» M

which one checks to be D(g, Pp)-linear via the method of the proof of Proposition [1.6.16
As taking the projective tensor product is exact (see |13, Lemma 2.1 (ii)]), we obtain a
D(g, Py)-linear strict epimorphism

D(g, Po) @p(py)r (W Rk, Vi) = (D(9, Po) @p(py),n W) Qkn Vi) — M Qi Vi

using Lemma [1.5.11] (ii) once again. Here we extend the trivial U (p)-action on V}/ (recall that
V is a smooth representation) to the trivial U(g)-action. We note that this extended action
together with the given P-action on V satisfies the condition (2) of Definition

Moreover, the locally convex D(Py)-module W @ , V} is finitely generated as an abstract
D(Py)-module, cf. the proof of |1, Prop. 4.1.5] and [1, Prop. 6.4.1]. Such an epimorphism
D(Py)®™ — W Qg » V), for some n € N, is necessarily strict by the open mapping theorem
|67, Prop. 8.6] since W @k Vj is a K-Fréchet space. Therefore we obtain a commutative
diagram

D(g, Po) @K,z D(Py)®" —— D(g, Py) @« (W ®K.2 V)

} |

D(g, Py)®" —————— D(g, Py) @p(py)n (W @Kz V)

where the top homomorphism is a strict epimorphism by [13, Lemma 2.1 (ii)]. It follows from
[49, Lemma 2] that the bottom epimorphism is strict as well.

In total we thus arrive at a strict epimorphism (cf. |1} Prop. 4.1.5] for the statement that
the abstract module is finitely presented)

Ui D(g, Po)*" — M @k« V.-

Using the exactness of the projective tensor product again, we obtain the commutative dia-
gram

D(Go) ®k,» D(g, P))®" —— D(Go) @k ,x (M @,z V)

L l

D(G0)$n +> D(Gy) ®D(g,Po),w (M RK,x Vbl)
where all maps except a priori the bottom one are strict epimorphisms. Similarly to before
one argues that the epimorphism v is strict. On the other hand, the (abstract) D(Gy)-
module D(Gp) @ p(g,py) (M @k V;) is coadmissible by [, Thm. 4.2.3]. Therefore ¢ also is
strict when D(Go) ®p(qg,r,) (M ®x V;) carries its canonical Fréchet topology (see |71, §3]).
By the uniqueness of the quotient we conclude that this Fréchet topology agrees with the
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topology on D(Go) ®p(q,py),x (M @K,z Vy) from Definition In particular, the latter
already is complete so that taking the Hausdorff completion is redundant:

D(Go) @p(g.py) (M Brx Vy) = D(Go) ©p(g.pp)x (M @rcn Vy).-

Note here that since M is a K-Fréchet space by Lemma (i), M@)K,,r V) = ]\7@;{,” |4
is so as well by [67, Lemma 19.10 (i)] and the discussion after |67, Prop. 17.6]. Therefore
the projective and inductive tensor product of D(Gy) and M@K7T V)] over D(g, Py) agree.
Finally, the Iwasawa decomposition yields the isomorphism

D(G) ®@p(e,p) (M@K V') 2 D(Go) @p(g,p,) (M@K V')
of D(Gp)-modules (cf. [1, §4.2.2]), and Lemma (ii) yields the topological isomorphism
D(G) &p(g,py. (M &k Vi) = D(Go) Bpg,p) (M Ek.x Vi)

of separately continuous D(Gg)-modules. Together they give the topological isomorphism
(3.31)) of separately continuous D(G)-modules. O

We return to the concrete setting of G = GL441,x and the parabolic subgroup P = P,.,
for r € {0,...,d — 1}, from Theorem We want to apply Proposition to show that
(13.28) is complete and its locally convex topology agrees with the canonical Fréchet topology.

Let I C {0,...,d} be a non-empty subset, and let Uy C ]P’ﬁl( denote the intersection of
the corresponding principal open subsets as considered in Section Via the countable
admissible covering

U;Ig - U Ul,sa
0<e<1
e€| K|
and Lemma [2.4.1) we regard £(U;) as a subspace of E(U}®) = @E\OE(UI,E). Then the
topology of £(Ur) is induced by the family of norms | _|_, for 0 < ¢ < 1, defined in ([2.20)).

Proposition 3.4.8. For every non-empty subset I C {0,...,d}, there exist m € N and a
surjective homomorphism of U(g)-modules

¢: U(g)®™ — E(Ur)

such that ¢ is continuous and strict when U(g) C D(G) and E(Ur) C E(U;ig) carry their
respective subspace topologies.

Corollary 3.4.9. The U(g)-module ﬁlﬂﬂgr(ﬂj’f{, &) is finitely generated, and its locally convex

topology induced by an epimorphism from a finite free U(g)-module via (3.30)) agrees with the

subspace topology ﬁg;T(P%,E) C ﬁ(dpr)rig(P‘Ii{,S) from Corollary . Consequently, the

separately continuous D(G)-module (3.28)) already is complete and its topology agrees with
the canonical Fréchet topology.

Proof of Corollary[3.7.9. Recall that we defined the Cech complex C*(U, &) for the covering
U given by

d
Pi\Px = |J Ui
1=r+1
We fix on C1 (U, £), for ¢ > 0, the locally convex topology given via the subspace topologies of
E(Ur) C E(U®), for all non-empty I C {r +1,...,d}. Then we have seen in Corollary

(or rather in the proof of Proposition that the thereby induced topology on I?ST;T(IE’"}(, &)
agrees with the topology of the latter as a subspace of H (d]pz)rig (P4, €).

On the other hand, the epimorphisms of U(g)-modules onto £(U;r) from Proposition m
yield m, € N and epimorphisms

0q: U(g)®™ —» CUU,E) , for all ¢ > 0, (3.32)
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which are strict with regard to the subspace topologies of U(g) C D(G) and £(U;) C E(U}®).
Therefore the topology on C4(U, £) we fixed above agrees with the one induced via by
the uniqueness of the quotient.

Since U(g) is noetherian and the differentials of C*(U, &) are U(g)-linear, the subspace
Z9U,E) C CUU,E) of Cech cocycles is a finitely generated U (g)-module, too. Lemma
(ii) implies that its topology induced by some epimorphism from a finite free U(g)-module
agrees its topology as a subspace of C?(U, £). We conclude that H?(P% \ P}, £) is finitely gen-
erated as a U(g)-module, and its topology via an epimorphism from a finite free U(g)-module
agrees with its topology as a subquotient of C?(U, ). Arguing similarly for I;'H‘,ﬁ; "(P,E), we
find that its topology induced via some epimorphism from a finite free U(g)-module agrees

with the topology as a subspace of I;T(‘lpjr)rig (P4, €).
K
Proposition [3.4.7| applied to M = HSQT(P‘}(,E) and V = vgg_d:"(K) then shows the last

statement. O

To prove Proposition@in turn, we begin by fixing a suitable K-basis of g. For o, , € ®
with (u,v) € {0,...,d}?, u # v, let L4,y be the standard generator of the root space g, , -
Moreover, let Lo, ..., Lq be the standard basis of t. Then the L, ,) together with the L;
constitute a K-basis of g. The action of U(g) on O(Uy) is given by |56, (1.5)]

fo! k
Lf, oy Xt = ——— xuthou,
() (o — K)!
k Lk
LEXE = b xn,

for k € Ny, where we use the convention that (H“ij'k), = poy (ty — 1) -+ (1t — k + 1). Further-
more, recall that in (3.29) we defined a family of norms | _|_, for 0 < e < 1, in terms of such
a K-basis of U(g) which imposes the subspace topology on U(g) C D(G).

We fix a non-empty subset I C {0,...,d}. On the space of sections O(Ur) we want to
introduce a family of norms different from the norms | _|_ considered Remark To this
end, recall the notation

€

d
A= {ueZd‘H Zui:07Vj€{0,...7d}\I:uj>0}

Jj=0

and define on O(Uy) = @ K X% the norm

1 1 \max(O,ﬁ)|
min(0, u + 1)!| \ e ’

for 0 < e < 1 with € € |K|. Here we use the conventions

HEAI

Z a&Xﬁ

BEAT

= sup |a,|
e pEAT T

max(0, ) 1= (maX(O7 o), - - -, max(0, Md>)7
min(0, p + 1) 1= (min(O, o + 1), ..., min(0, pqg + 1)),

and (—n)! := (—n)(—n+1)---(=1) = (=1)™nl, for negative —n € Z. Moreover, let v, ..., v,
be a K-basis of the fibre £(x;), for some fixed ¢ € I. On E(Ur) = O(Ur) @k E(z;) via
Lemma [2.4.4] we then obtain the norm:

n 1 1 [max(0,u)|
;ﬁ Yl min(O,u-l—l)!‘(E) ’

for a,; € K with fi = Y a, X% € O(U)).
BEAT

= sup |a,l
e =1,....n
BEAT

Lemma 3.4.10. On £(U;) we have
[-le <l -lle < 1-1 L

p Ple
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where | _|. denotes the norm (2.20). In particular, the topologies defined by the families (I-1¢)
respectively (|| -||c), for 0 < e < 1, e € |K|, agree.

Proof. The estimate |_|c < ||-||c is obvious. For the other inequality we use the bound
vp(n!) < p”fll of the p-adic valuation given by Legendre’s formula, for n € N. Then

d .
op(min(0,p + 1)1) < 3 — 0ty + 1)

d d
1 . 1
< <— E mm(O,Mj)) =— E max(0, 11;)
p—1 — p—l=
J= J=
since Zj:o p; = 0. It follows that

1 [max(0,u)|
< (»7) -

O

Lemma 3.4.11. For sufficiently small € > 0 and endowed with the norm || ||, E(Ur) is a
normed U(g)-modules when U(g) carries the norm | _|..

Proof. We denote the basis elements of g fixed earlier by
{):1, - ,):S} = {L(u,v) | Qyup € ‘I)} @] {Lo, e Ld}.

For simplicity, we omit the ¢ from our notation of the norms here. First, we want to show
that

1
le-fll < Z Ul forall g € {ga,.. v} and f € O(Ur). (3.33)

To this end it suffices to consider monomials f = X%, for u € A;. For r = L;, we have

1
L5 XE = Ny XEI = s XA < [ XE] <~ XA

1 |max(0,&+0¢u,w)‘
E .

To prove that || L. X2 < L[| X% = Jmin(0, p+ 1) (%)Hlmax(o’ﬁ)‘ it therefore suffices
to see that

Moreover, for ¢ = Ly, we compute

Lo
‘min(O,u + ayp + 1)!

1L - X = [ XET || =

max(0, gy, + 1) + max(0, p, — 1) < 14 max(0, pty,) + max(0, pty)

and

Mo 1
< .
‘ (0 (0, + 2)!) (min(0, f20)1) ‘ = ‘ (in (0, i + 1)) (min(0, iy + 1)1 '
But the first assertion is immediate, and the second one follows from

( o min(0, u, + 1)!) . (min(O,uu + 1)!) ez

min(0, ft,)! min(0, g, + 2)!
ez ez
Now, we turn towards £(Ur) =2 O(Ur) ®k E(x;). We assume that € > 0 is small enough
such that for the action of g on £(x;), we have |r;.v;| < %, forallj=1,...,sandl=1,...,n.

To prove that £(Uy) is a normed U(g)-module it suffices to show the inequality

n 1kl n
1 n
H(chlf1 ). ) fw < (> max|| fil| = el | D frw
=1 =1

)

e
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for all k € N§, >/, fivi € E(Ur). We do so via induction on |k|. With the base case being
clear, let k € N§ with |k| > 0, and v = ;" fivy € E(Uy). Let j € {1,..., s} be maximal
such that k; > 0 and k;; = 0, for all j/ > j. By the Leibniz product rule we have

n
5.y fiv
1=

Here we have additionally used (3.33) and that |rj;.v] < 1, for all [ = 1,...,n. With the
induction hypothesis we then conclude

e B R 8]
=1

ki—1
<

1
< o mave (- Al 1l ls-1]) < - b £l

Z - f) o+ fi (o)

Proof of Proposition[3.7.5. We set
a={p ez |Vj=0,....d:|u| <d}.
The candidate for the sought U(g)-linear epimorphism ¢ is
¢: U(g EB U(g) eys — EWUD), Xyieps— X0 (X%0).

To prove the claimed strictness and surjectivity of ¢ we proceed in several steps. For the
moment we fix 0 < ¢ < 1 with € € |K| and sufficiently small such that £(U;) is a normed
U(g)-module as in Lemma [3.4.11] Again we omit ¢ from the index of the occurring norms.

Lemma 3.4.12. For all p € Aj, there exist X € U(g) and v € Ay N Aq such that
(1) |X| < |min(0, p + 1)|‘—1( )\max(o ,u)|,
(2) X.X2 = XK,

Proof. We use induction on ||ul| := Z?:o ||, For p € Ag, the claim is trivial. Therefore we
may assume that there is u € {0, ...,d} such that |u,| > d. If p, > 0, it follows from

d d
0= 1y =pmt ) b

3=0 i=

j#u
that Zj —0,juMi < —d, and hence that there exists v € I, v # u such that u, < —1. Arguing
similarly for the case u,, < 0, we thus may assume that there are u € {0,...,d}, v € I, u # v,
such that p, > 1, p, < —1.
We now set p1' := p — vy = pt — €4 + €, 50 that [|p'[| = |||l — 2. Then
L, v)'Xﬁl = // Xuteny = (1o + 1) XE

and |(py + 1) " Ly | = [0 + 1|7H(2). Moreover, by the induction hypothesis for 4/, there
exist v € A;N Ay and X' € U(g) as specified in the statement of the lemma. We thus find

that
1 / v 1 0/ 1
Ly - X' ). X% = Ly | XE = XE
po +1 o +1
and
L x| L[y
[y + 1) = | o + 1{|min(0, p/ + 1)1\ e '
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But we have 1+ [max(0, p')| = |max(0, u1)| since jz,, > 1 and p,, < —1. Furthermore, we have
(st + 1) (min (0, 1, + 1)) (0in(0, 1, + 11) = (g1 -+ 1)(min(0, o)1) (min(0, s +2)1)
= (,LLU + 1)(0')((/% + 2)')
— (o + 1)) = (min(0, o+ 1)!)(min(0, sy + 1))

so that X := (u, + 1)71L(u,v) - X’ and v fulfil the claimed properties with respect to p. O

Lemma 3.4.13. Forall p € A; andl € {1,...,n}, there exists 9, € U(g)") such that
i = max(0,

(1) Dyl < [min(0, u + 1)1 1(%)| ( H)\!

(2) p(Yp1) = Xt ;.

Proof of Claim 2. We fix y € Ay and I € {1,...,n}. Let X € U(g) and v € A; N Ay as
specified in Lemma [3.4.12f for p. We express X.v; in the K-basis vy, ..., v, of £(x;):

n
Xy = E apvy , foray,...,a, € K,
U'=1

so that max]i_; |ay| = || X.v|| < |X|||v]|| = |X]. We then set

Dy = <3€ evi = Y ar eu,l/> e U(g)",

I'=1

and compute that

1 [max(0,u)]
= | min(0, p + 1)! <g> '

Furthermore, using the Leibniz product rule and the property (2) of Lemma [3.4.12[ for X we
have

1
19,1 < (1%l i ) = 121 <

QO(QJ&J) = %.(Xivl) - Z ay XZ’UZ/
'=1

= (.%XZ) v + X% (%.Ul) - Z ap X%y
'=1

n n
= Xty + X% E ap vy — E ay X%vp = X2,
'=1 '=1

O

With Lemma |3.4.13| we can now prove that ¢ is a strict epimorphism with respect to the
norms |_|_ and || _|| & It suffices to show that, for all R > 0, we have Br(0) C ¢(Br(0)).
Here Bg(0) denotes the subset of elements of norm less or equal to R in the respective normed
K-vector spaces. To this end, let

n

v= Z < Z au,lX”)Ul e E(Ur) , for apu,l € K,

I=1 “p€A;
with |[v|| < R, i.e.
1 1 max(0.0)|
[[v]] =l=sll’}gnlaﬁ,z| N ATEST (€> <R
pEAT

14The reason we introduced the norms || -]l is that the strictness of ¢ asserted here in general no longer
holds for | _|. instead of || -||c on E(Uy).



EQUIVARIANT VECTOR BUNDLES ON THE DRINFELD UPPER HALF SPACE 93
Forall p € Ayand Il =1,...,n, we find 9, € U(g)Y) as specified in Lemma |3.4.13] Then

9 = Z Ap,l Q)H,l € U(g)(l)
l=1,...,n
BEAT

satisfies () = v and

D] < sup |auil|Dpil < sup fayl
=1,....n - =1,....n

\max(O,ﬁ)|

I S <R

min(0, x4+ 1)!| \ e -
BEAL BEAL o

showing that v € p(Bgr(0)).

Finally, we endow £(U;) C E(U}®) and U(g) C D(G) with their respective subspace
topologies. We recall from Lemma that the subspace topology on £(U;) is imposed
by the family of norms (| -|c)o<e<1. By Lemma it is therefore the same as the one
imposed by the family (| - ||c)o<c<1. Moreover, we have seen in Lemma|[3.4.3|that the subspace
topology of U(g) is defined by the family of submultiplicative norms (| -|:)o<e<1-

To show that ¢ is strict with this choice of topologies it suffices to show that ¢ is an open
map. Hence, let U C U(g)") be an open subset and consider z € p(U) with z = ¢(z), for
some z € U. Then by [59, Thm. 3.3.6] there exist 0 < €1,...,e, < 1 and R > 0 such that

{y € U(e)"|maxly — 2|, <R} C U.

We may suppose that €; < ... <&, so that the former set is equal to
B (@)= {y € U@)"|ly ~ 2=, < R}

as | _|c < |_|er, for ¢’ < e. Tt follows that @(Bgl)’_(x)) C ¢(U). We moreover may assume
that e; > 0 is sufficiently small as in the beginning of the proof. Since we have seen that
¢ is strict with respect to || on U(g) and |||, on &(Ur), the set @(Bgl)’f(m)) is an
open neighbourhood of z with respect to the topology induced by || -||c,. This shows that
p(U) C E(Uy) is open with respect to this || - ||, -topology, and therefore open with respect
to the subspace topology on (U;) C E(U}®) as well. O

Finally, we allow K to be a finite extension of a non-archimedean local field L of arbitrary
characteristic, and return to the setting of a connected split reductive group G over L as
considered in the beginning of this section. Let P a standard parabolic subgroup of G.
The preceding considerations as well as the generalization of the functors fg in the p-adic
situation due to Agrawal and Strauch [1] motivate the following definition.

Definition 3.4.14 (cf. |1} Def. 4.2.1]). For a separately continuous D(g, P, K)-module M
and an admissible smooth Lp-representations V on a K-vector space considered with the
finest locally convex topology, we define the functor

FS(M,V) := D(G, K) Bp(e.rx) . (M Ok x Vy)
which takes values in the category of separately continuous D(G)-modules.

Like before V} is a nuclear K-Fréchet space, for such an admissible smooth Lp-repre-
sentation V. If the Hausdorff completion M of M is a nuclear K-Fréchet space as well,
it follows from the discussion after [67, Prop. 17.6] and [67, Prop. 19.11, Prop. 20.4] that
M@)K,,r V] = ]\/ZQAQKJ V) is a nuclear K-Fréchet space, too. Since Lemma (ii) yields a
topological isomorphism

D(G) @p(g,p). (M &5,z Vi) = D(Go) @p(g.py) (M Bk x Vi)

it follows from |67, Prop. 19.4 (ii)] that S (M, V) is a nuclear K-Fréchet space. Hence the

strong dual ]—'g(M ,V);, is a locally analytic G-representation of compact type in this case,
by Proposition [1.4.10
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Remark 3.4.15. Let M be an abstract module for the (algebraic) distribution algebra
Dist(G) ®, K = hy(G). An obvious question is under which algebraic conditions on the
module M (such as M € Ozlg in the p-adic case) this lifts to a separately continuous D(g, P)-
module structure on M. Here analogues of the BGG category O in the setting of char(K) > 0

should play a role. For recent developments in regard to these analogues, see 2} |3} |31} |55].

APPENDIX A. NON-ARCHIMEDEAN FUNCTIONAL ANALYSIS

Here we collect some results of non-archimedean functional analysis. They are all (slight
generalizations of) statements that can be found in the literature or adaptions from the
archimedean setting. Let K be a spherically complete non-archimedean field with ring of
integers O = {zx € K | || < 1}.

We recall the definition of a compact continuous homomorphism between locally convex
K-vector spaces [59, Ch. 8.8 p. 334]:

Definition A.1. (i) A continuous homomorphism f: V' — W between Hausdorff locally
convex K-vector spaces is compact if there exists a complete compactoid subset X C W (cf.
[59, Def. 3.8.1]) such that f~(X) C V is a neighbourhood of 0 in V.

(ii) A continuous homomorphism f: V' — W between Hausdorff locally convex K-vector
spaces is semicompact if there exists a compactoid Banach disk B € W (cf. [59, p. 414]) such
that f~1(B) C V is a neighbourhood of 0 in V.

Remarks A.2. (i) If f is compact, then f is semicompact. If W is quasi-complete, then the
converse holds as well [59, Ch. 8.8 p. 334].
(ii) This definition is equivalent to the one in [67, §16]. There f is defined to be compact if

there exists an open lattice L C V such that the closure f(L) C W is bounded and c-compact.

Proof of (ii). For an open lattice L C V, by |67, Prop. 12.7] f(L) is bounded and c-compact
if and only if it is compactoid and complete. Hence X := ﬁ yields a complete compactoid
subset such that f~(X) D L is a neighbourhood of 0 in V.

On the other hand, given a complete compactoid X C W such that f~!(X) is a neigh-
bourhood of 0 in V, i.e. f~'(X) contains an open lattice L C V, it follows that f(L) C X.
But this implies that f(L) itself is compactoid by [59, Thm. 3.8.4], and complete by [67,

Rmk. 7.1 (iv), (v)]. O

Lemma A.3. (i) Consider the following commutative square of Hausdorff locally conver K -

vector spaces:

v L o w

lg lg/ (A1)
v w
If g’ is compact and f' a strict monomorphism, then g is compact.
(ii) In the commutative square , if g is compact and [ a strict epimorphism, then g' is
compact.
(iii) Finite products of compact homomorphisms are compact.

Proof. For (i), it follows from |67, Rmk. 16.7 (i)] that f' o g = ¢’ o f is compact if ¢’ is. Since
Im(f") =2 V', [67, Rmk. 16.7 (ii)] implies that g is compact.

In the situation of (ii), we again know from [67, Rem. 16.7 (i)] that ¢’o f = f’og is compact.
Then by definition there exists an open lattice L C V' such that (¢’ o f)(L) is bounded and
c-compact. But as f is a strict epimorphism, f(L) is an open lattice in W which shows that
g’ is compact.

For (iil), we consider compact homomorphisms f: V — W and f’: V! — W’ with open

lattices L C V', L'’ C V' such that f(L) is bounded and c-compact in W and the same holds
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for f/(L’) in W’. Then Lx L’ is an open lattice in V' x V' and (f x f/)(L x L) = f(L)x f'(L")

is bounded in W x W'. Moreover, f(L) x f/(L’) is c-compact by [67, Prop. 12.2]. O
).

Proposition A.4 ([74, Prop. 1.2 (i)]). Let V be a locally conver K -vector space of compact
type. If U C V is a closed subspace then U and V/U are of compact type again.

Proof. Let (V,,)nen be an inductive sequence of K-Banach spaces with injective and compact
transition maps such that V' = liglneN V,.. By [23, Thm. 3.1.16], U with its subspace topology
is topologically isomorphic to the inductive limit of the sequence (U, )nen where U,, := UNV,,.
Then the transition maps of (Up)nen are compact again [67, Rmk. 16.7]. Therefore U is of
compact type.

Furthermore, by Lemma (ii), the induced maps V,, /U, — V,41/U,11 are injective
and compact. Hence li_n}neN V.. /Uy is of compact type. Moreover, taking the inductive limit
over the short strictly exact sequences 0 — U,, — V,, — V,,/U,, — 0 we arrive at the sequence
of continuous homomorphisms

O—)UHV—)@Vn/UnHO
neN
which is exact as a sequence of K-vector spaces. It follows from the open mapping theorem
[11, II. §4.6 Cor.] that the continuous surjection V' — lim Vi/U, is strict. Therefore
lignEN V,/Un — V/U is a topological isomorphism. a

Proposition A.5 ([74, Thm. 1.3]). The strong dual of a locally convex K-vector space of
compact type is a nuclear Fréchet space, and the strong dual of a nuclear K-Fréchet space is
of compact type.

Proof. It V is a locally convex K-vector space of compact type, it follows from |23, Thm.
3.1.7 (vii),(viii)] that V} is a nuclear K-Fréchet space.

Conversely, let V' be a nuclear K-Fréchet space. For a decreasing neighbourhood base
of 0 consisting of lattices (L, )nen, one obtains an inductive sequence (VL’%)HGN of certain
K-Banach spaces Vi, with V' = (J,ey Vi, see [23, Def. 2.5.2]. Then [23, Prop. 3.1.13]
says that this sequence is semicompact; even compact by Remark (ii). Note that if K is
spherically complete every locally convex K-vector space is polar [59, Thm. 4.4.3 (i)].

Moreover, by [59, Cor. 8.5.3], V in particular is reflexive, and therefore V} is barrelled
by [59, Thm. 7.4.11 (i)]. (If K is spherically complete, barrelled and polarly barrelled are
equivalent |59, Thm. 7.1.9 (ii)].) Now |23} Cor. 2.5.9] implies that the inductive limit topology
on U, ey VL'% agrees with the strong topology of V'. Hence V} is of compact type. a

Lemma A.6. Let (V,,)nen be a projective sequence of locally convex K -vector spaces and W
a normed K -vector space. Then the canonical continuous homomorphism

limy L4V, W) — cb<@vn,w> (A.2)

neN neN

is surjective. If all projections pr,,: ].&nneN Vi, = Vo, have dense image, or if all V,, are
Hausdorff and the transition homomorphisms V, 411 — V,, are compact, then (A.2)) even is
bijective.

Proof. First consider f € E(l'&nneN Vo, W), and let By := {w € W ||lw|lw < 1} denote the
unit ball of W so that f~1(By) C ]iiilneN V,, is open. By the definition of the initial topology
of @neN V.., there exist integers nj,...,n, € N and open lattices L,, C V,,, ¢ =1,...,r,
such that

pr;“l(Lnl) Nn...N pr,;l(Lm) c f~Y(Bw).

Let m > ni,...,n,, and note that Ker(pr,,) C Ker(pr,.) C pr'(Ly,), for i = 1,...,r.
Hence we find that Ker(pr,,) C f~}(Bw). As Ker(pr,,) is a K-subvector space, it follows

that Ker(pr,,) C Ker(f). Therefore f factors over V,, via pr,,. This shows that (A.2)) is
surjective.
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If all projections pr,, have dense image, then the homomorphisms

ﬁ(Vn,W)—>[,(l'&nVn,W>, fr— fopr,,
neN

are injective because W is Hausdorff. As (A.2) is the direct limit of these homomorphisms,
its injectivity follows.

If all V,, are Hausdorff and the transition maps are compact, then there exists a projec-
tive system (U, )nen such that @neN V,, and l.glneN U, are topologically isomorphic, and
the canonical projections of the latter have dense image [67, p. 93]. Moreover, we have
lignEN Ly(Vi, W) = @nEN Ly(Up, W) by functoriality, and can conclude using the previouDS
case.

Proposition A.7 (|74 Prop. 1.5]). Let V be a locally convex K-vector space of compact
type, expressed as V = h—n}neN Vi, for a sequence of K-Banach spaces V, with compact
and injective transition maps. Moreover, let W be a K-Banach space. Then the canonical
continuous homomorphism

lim (V, 8x W) — Vax W

neN
18 bijective.
Proof. To ease the notation, we will simply denote the strong dual of a locally convex K-
vector space U by U’. Using [67, Cor. 18.8] and the fact that V is reflexive, we have a
topological isomorphism

VOrW V'@ W = Ly(V, W), vewrs [0 (v)w].
For each V,,, the duality map and [67, Lemma 18.1] at least give a continuous homomorphism
Va®xk W — V) @k W — Ly(V), W), v@w— [{— L(v)w],

so that we arrive at a commutative diagram of continuous homomorphism

lig  (Va®x W) —— VoW

| F (A.3)

h_n>ln€N Eb(V,{, W) — ﬁb(V/, W)

By [67, Lemma 16.4 (ii)] the projective system (V)),en is compact, and therefore the lower
map in is a bijection by Lemma
Hence the claim follows if we show that the left homomorphism is an isomorphism. But

by [67, Lemma 16.4 (iii)], the transition maps V, — V,,; factor over V,,;1 C V,,; which
gives

limy (V, @ W) —> lim (V! & W),

neN neN
Moreover, the image of V” @x W in Ly(V,., W) precisely is the subspace of compact ho-
momorphisms C(V,., W) by [67, Prop. 18.11]. It follows from [67, Rmk. 16.7 (i)] that the
transition maps Ly(V,,, W) — Ly(V,, 1, W) factor over C(V,, .1, W) C Ly(V, 1, W) because
they are given by precomposition with the compact maps V,;,; — V,. Hence

lim (V' & W) = lim C(Vy, W) — lim £,(V,, W)
neN neN neN

is a topological isomorphism, too. ([l

Lemma A.8 (cf. |70, Lemma 1.3]). Let X be a locally compact topological space. Let V' and
W be locally convex K -vector spaces, and assume that V is barrelled. If B: X x V — W is
a separately continuous map and B(x, -): V. — W is K-linear, for every x € X, then 3 is
jointly continuous.
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Proof. By the linearity of the S(z, -) it suffices to show that § is continuous at (z,0), for
every ¢ € X. Fix zp € X, and let U C X be a compact neighbourhood of zy3. We claim
that H := {B(z, -) |z € U} C Ls(V,W) is bounded. Assuming this claim for the moment, it
follows from the Banach-Steinhaus theorem [67, Prop. 6.15] that H is equicontinuous. Hence,
for any open lattice M C W, there exists an open lattice L C V such that g(U,L) C M.
This shows that § is continuous at (zg,0).

To show the claim, recall that the seminorms of L4(V,W) are ¢, p, for v € V and p
a continuous seminorm of W, and defined by g, ,(f) = p(f(v)), for f € Ly(V,W) |67,
Example 1 after 6.6]. For such a seminorm, we have

sup qup(f) = sup p(B(z,v)) < oo
feH zeU

because the image of the compact subset U under the continuous map po (-, v) is bounded.
It follows that H C Ls(V,W) is bounded. O

Lemma A.9. Let (V;)ic; and W be locally convex K-vector spaces. Then there exists a
natural topological isomorphism

a(@wvv) = [1 LoV, W), fr— (flv)ier,
iel iel
(For the case of W = K, see [67, Prop. 9.10])

Proof. Let ¢;: V; = V = @ie[‘/i denote the canonical embeddings, and pr;: V. — V;
the canonical projections. By [11, III. §3 Ex. 5 on p. I11.41] there is a natural topological
isomorphism
LoV, W) =[]V, W), fr—(f
il

where B is the family {¢;(B;)|i € I, B; C V; bounded} of bounded sets of V. We want
to show that the B-topology coincides with the strong topology on L(V,W). In view of
[67, Lemma 6.5], it suffices to show that for a given bounded subset B C V, there exist
tiy(B1),- .., ti,, (Bm) € B such that B is contained in the closure of the Og-module gener-
ated by v, (B1)U... U, (Bm)-

To do so, we proceed similarly to the proof of [67, Prop. 9.10], and fix a bounded subset
B C V. By [59, Thm. 3.6.4 (ii)], all pr;(B) C V; are bounded and there exists a finite
subset J C I such that pr;(B) c {0}, for all i € T\ J. We define the bounded subsets
Bj = pr;(B), for j € J. For given v € B, we write v = ), ; ¢;(v;) where v; € V;. We then
have 375 7 1i(v5) € 32,c 5 1i(By)).

To deal with ;7 ; Li(vi), let g be a continuous seminorm of V. By [67, Lemma 5.1 (ii)],
q o t; is a continuous seminorm of V;. Hence

q(ui(vi)) = (g o i) (pr;(v)) =0,
for all i € I'\ J, as pr;(B) C {0} for those i. It follows that, for i € I\ .J,

u(vi) € (\Ker(q) = 10

Vi)iEIa

where we take the intersection over all continuous seminorms ¢ of V. This shows that v is
contained in the closure of } . ;¢;(B;) in V. O

Proposition A.10 (cf. [14, Prop. 1]). Let K be a complete field with absolute value | _|. Let
U C K™ be open and let f: U — E be a function into a K-Banach space E. Let V. and W
be K-Banach spaces and let

ExV —W, (u,v)+— (u,v), (A.4)
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be a continuous K-bilinear map which induces an isometric embedding of E into the K-
Banach space Ly(V,W), i.e. such that, for all u € E,

[(u, v)|

lul = [I{u, )l = sup -
Lo (VW) © vevifor |Vl

Then, for zy € U, the following are equivalent:

(1) The function f is analytic in some open neighbourhood of z.

(2) For all v € V, there exists an open neighbourhood of zy such that the function
for U— W, z+—(f(2),0),
18 analytic there.

Proof. First assume that there exists r € Ry such that f is given by the power series
f(z)= > ai(z—2)" ,forx e B (),
ieNn
for certain a; € E. For v € V, it follows from the continuity of (A.4]) that
fol2) = (f(2),0) = Y {az,v) (2 = 20}t for all z € B} (z0).
ieN?

This shows that (i) implies (ii).
Conversely, for all v € V, let f, be analytic in a neighbourhood of zy. This means that
there exists a radius 7(*) € Ry such that f, is given by the convergent power series

Z a(”) —z)t , for all z € B, (20),
zeN’n

for certain a 6 W. Hence there is a constant C*) > 0 such that

I
D oy (1
a§)|<0<>(r(v)> , (A5)

for all § € Nij. As an intermediate step, we want to show:

Claim: There are > 0 and C > 0 such that, for all j € Ny, the maps
bi: V —W, v»—)ag-y),

are K-linear and continuous with

131
1 4
1bjllc,(viny < C (r) : (A.6)

Proof of the Claim. The bilinearity of (_, _) implies that
V — Map(U, W), v+ fy,

is K-linear. The linearity of b; then follows from the identity theorem for the coeflicients of
convergent power series [12} 3.2.1 resp. 4.2.1].

To proof the continuity and the bound , we endow N with the lexicographical order,
i.e. i < jif and only if iy < ji for the smallest k € {1,...,n} where iy # ji. We proceed by
induction on j € Njj with respect to this order.

Fix j € Nj and assume that the claim holds for all i < j (a vacuous assumption if
4 =1(0,...,0)). Hence there are r; > 0 and C; > 0 such that B

l1]
v 1 o
|a§ )ISCz <r> l[v| ,forallveV andalli<j.
i j 4
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Therefore the power series ZKJ al” Rt ... hin converges, for all (hy,...,h,) € B? ' (0) and

all v € V. Moreover, for any z € U, the linear map V. — W, v — f,(2) = (f ( ),v), 1
continuous. Hence, for any h € K™ with zy + h € ij (z0) N U, the operator

1 v) i
Th:V — W, v»—>.hn<fvzo+h Za )h)

JiL.
hl i<j

is K-linear and continuous, too. For fixed v € V, we may assume h € B, (0), and we
compute:

lim ... lim Th(’u) = lim ... lim i E a(”)hz . § :az(“)hi
hn—0 h1—0 hn—0 h1—0 1 hﬂn L2
1ENY i<j
= llm e lim E a(,v)hi17]1 e hinf.jn
hp—0 hi—0 “— % 1 n
(24
= lim ... lim E W piz=dz . pin—in
hp,—0 ho—0 e—t K3 2 n
i>j
: 11=J1

= agv) = b;(v).

By the Banach—Steinhaus theorem [11} III. §4.2 Cor. 2] we conclude that b; is continuous as
the pointwise limit of the operators T},.
It remains to show the bound (A.6) for all i < j. Define, for k,l € N,

— {veVI|Vi<j: o] < kY.

Then each Bk’l is closed in V by the continuity of b;, for i < j. By the pointwise bounds
(A.5), we have V Uk.ren B . Hence it follows from Baire’s theorem [9, Ch. IX. §5.3 Thm.
1] that some B ! contains an open ball B.(vg) of radius € > 0 centred at some vy € Bkl
Hence, for all v € V with |v| < ¢ and all i < J, we have
jaf”] = a{" ") — (") < |0l + [a{")] < 2k 111

We fix some w € K with 0 < |w| < 1. For any fixed v € V \ {0}, let m € Z such that
™ < 5 < @™, Then

)= S = e
which implies
| E“’| ok
bi = 1 ’
i N T
for all 4 < j. O

It follows from the claim that the power series > bj (2 — 20). defines an analytic

JENG
function with values in £,(V, W), on some open neighbourhood U C U of zg. On U’, this
power series agrees with f viewed as a map

frU — Ly(V,W), 2 (f(2), -).
Indeed, for z € U’ and v € V:
(X 056k )0) = 3 mo) = 20 = 3 e = 200 = £1(2) = (72,0
JENG JENG JENy

Hence f(z) = Z]er bj (z — 20)% is analytic on U’ as a map into Ly,(V, W).
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Finally, F can be identified with a closed subspace of L£y(V, W) by assumption. By the
same reasoning as in the proof of the claim, the coeflicients b; of f can be computed as the
limits of sequences in E. Therefore b; € E, for all j € Ny, and f: U’ — E is given by a
convergent power series. - - O

Lemma A.11. Let f: V — W be a continuous homomorphism between locally conver K-
vector spaces, and assume that V' is Hausdorff. Then in V' we have the equality

Im(ff) = Ker(f)* := {£ € V'| Vv € Ker(f) : £(v) = 0}

where Im(ft)S denotes the closure of the image of the transpose f': W' — V' in V..
Moreover, if in addition V is semi-reflexive, then Ker(f)+ C Im(f?) in V;.

Proof. Taking the transpose twice
LV.W) — LW, VY) — L((V])s, (W))L),

we see that f still defines a continuous homomorphism when V' and W carry the respective
weak topologies V, = (V). and W, = (W/).. Then the statement Ker(f)* = Im(f?) is part
of |11} IT. §6.4 Cor. 2].

It is a consequence of the Hahn-Banach theorem that the closed subspace Im(f*) C V} is
weakly closed as well [59, Thm. 5.2.1]. If we assume that V is semi-reflexive, i.e. the duality
homomorphism V' — (V}/)’ is bijective, then the topology on the weak dual of V' agrees with
the weak topology of the strong dual: V! = (V}/)s, see [23] Thm. 7.4.9]. Since Im(f*) now is

a closed subset of V! which contains Im(f*), it follows that Tm(ft)” C Im(f?). O

Lemma A.12. Let V be a locally convex K-vector space and f: V — W a homomorphism
of K-vector spaces. If W is given the locally convex final topology with respect to f, then f
18 strict.

Proof. Note that f as a homomorphism between locally convex K-vector spaces is continuous
if and only if the induced algebraic isomorphism f: V/Ker(f) — Im(f) is continuous with
respect to the quotient respectively subspace topology.

We assume by the way of contradiction that f is not a homeomorphism if W carries the
locally convex final topology with respect to f. In this case we find an open lattice L C V
such that f(L + Ker(f)) is a lattice in Im(f) which is not open. By extending we obtain a
lattice M C W such that M NIm(f) = f(L +Ker(f)). But f~(M) = L+ Ker(f) is an open
lattice of V. Therefore M must be an open lattice by the definition of the topology on W.
This yields a contradiction. O

Lemma A.13 (Snake lemma for quasi-abelian categories [49]E| ). Consider the commutative
diagram

0 v Vv d 0
O
0 W W W 0

of continuous homomorphisms between locally convex K -vector spaces with strictly exact rows.
Then the induced Ker-Coker-sequence

0 — Ker(a) —= Ker(3) N Ker(y) N Coker(a)) — Coker(f3) N Coker(y) — 0
(A7)
of continuous homomorphisms is exact in Ker(a), Ker(8), Coker(f), and Coker(vy). Further-
more, € and 6 are strict. We moreover have:

(1) If B is strict, then (A.7) is exact in Ker(y) and Coker(«), and § is strict.
(2) If v is strict, then (A.7) is exzact in Ker(B) and Ker(v), and ¢ is strict.

I5Note that the notion of “semiabelian” categories used in [49| agrees with the one of “quasi-abelian”
categories from [76|, cf. |49} p. 511].



EQUIVARIANT VECTOR BUNDLES ON THE DRINFELD UPPER HALF SPACE 101

(3) If v is strict, then (A.7)) is exact in Coker(a) and Coker(f3), and T is strict.
In particular, if oll three o, B, and v are strict, then (A.7) is a strictly exact sequence.

APPENDIX B. CONTINUOUS AND LOCALLY ANALYTIC CHARACTERS

In this appendix we consider continuous and locally analytic characters, i.e. one-dimen-
sional representations, of the multiplicative group of a non-archimedean local field of positive
characteristic.

However, let us first recall the situation for a p-adic field, i.e. a finite extension K of Q.
Let C,, be the completion of an algebraic closure of Q,,. Fixing a uniformizer = in the ring of
integers O, there is an isomorphism of topological groups |54} II. Satz 5.3]

K* 2 a5 gy x UYL, (B.1)

Here p4—1 denotes the group of (¢ — 1)-st roots of unity of K, where ¢ is the number of
elements of the residue field Ok /(7), and

Ul((n) ={z €Ok |z=1mod (n")} C Of ,forneN.

Because fi,—1 and 72 both are discrete groups, it suffices to focus on UI((I) when considering
continuous characters of K* with values in C;. For n > pfl with e being the index of
ramification of K/Q,, the logarithm and exponential functions afford an isomorphism of

topological groups between Uj((n) and the additive subgroup (7") of Ok |54, II. Satz 5.5].
Moreover, every UI((n ) is of finite index in U I((l ),

It follows from Mahler’s theorem |72, Thm. 13.1] that every continuous additive character
Y: (m) — C is of the form t(a) = 21 --- 237, for z; € Cp, with |z; — 1| < 1. Here we write
d:=[K:Qy) and a = a1e1 + ... + aqgeq in some Z,-basis e1,...,eq of Ok [72, Example
16.2]. By Amice’s theorem |72, Thm. 13.2] such a character v is locally Qp-analytic, i.e. it is
a locally analytic function when its source is considered as a locally Q,-analytic Lie group.
Moreover, it is locally K-analytic if and only if its differential dpy: K — C, is not only
Qp-linear but even K-linear |72, Prop. 16.3].

As the logarithm and exponential functions are locally K-analytic, it follows that every
continuous character x: K* — C is locally Qp-analytic, and even locally K-analytic if the
differential d;x is K-linear. Furthermore, in the latter case there exists ¢ € C, such that

€
p—1"

x(z) = 2¢ := exp (clog(z)) on UI(?), for n >

B.1. Continuous Characters. We now turn towards the situation of a local non-archime-
dean field K of positive characteristic p, say K = Fy((¢)), for ¢ = p". Of course, the only
additive character of K or subgroups thereof with values in a field of equal characteristic p
is the trivial one. For continuous multiplicative characters of K™, the same decomposition
holds and again reduces the task to studying the continuous characters of UI((U.

To this end, consider more generally abelian metric groups G and H with G locally compact
and second countable. Then the set Homes(G, H) of continuous group homomorphisms can
be endowed with the compact-open topology whose open sets are given by

UC,U) == {f € Homes (G, H) | f(C) U}, for C C G compact and U C H open.

With the pointwise group operation (f + f')(g) := f(g) + f'(g9), Hom¢is(G, H) becomes a
metrizable topological group itself |53 Prop. 6.5.2]. If moreover G is compact, this topology
coincides with the one of uniform convergence and a metric is given by [53] p. 238]

a(f, ') = SlelgdH(f(g),f'(g)) , for f, f" € Homes (G, H).
g

In the following, we will always view Homs(G, H) as a metric group this way.
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Let K C L be a finite field extension with absolute value | _| on L which extends the one
of K. Let f and e be the inertia degree respectively the ramification index of L over K, i.e.
L= qu((té)). Then the metric on HomCtS(UI((l), Ug)) is given by

d(x, x') = sup [x(2) - X(2)]  for x, X' € Homeo (U, ULY).
zEU};

We need the following description [54, II. Satz 5.7 (ii)] (which in turn reproduces [40, Prop.
2.8]): Let wy,...,w, be an Fp-basis of F, and define

Ex ::Hﬁzp

ptm i=1

where the first product is taken over all positive integers m which are not divisible by p.
Then the map

-
EK i) UI((l) 5 (a(mﬂ'))(m,i) — H H (]. + witm)a(m’i) 5 (BQ)
ptmi=1
is a well-defined isomorphism of topological groups.
Moreover, consider an Fj-basis wy 1, ... ,wy s of Fr such that w; 1 = w;, foralli =1,...,r.
Analogously, we have the isomorphism

rf rf
Ep = H H Zp = U]gl) R (b(n,j,k)) — H H (1 —|—a)j7kt%)b("d'k>
pin j,k=1 pin j,k=1

of topological groups. Let s,¢’ € N such that e = p®¢’ and p 1 ¢/. Under the above isomor-

phisms, the canonical inclusion U I((l )y Uél) corresponds to the embedding

paim,j) Hifn=e€emand k=1,

Fyx — FEp, (a(my,;)) — (b(n,j,k)) , where b(n,j,k) = {0 clse.

Proposition B.1.1. There is an isomorphism of topological groups

r.f
HOInCtS(Ug)7U£1)) — H H co(Npr, Zy), x> (g(mj’k) = (aE:;)k))), (B.3)
ptn j,k=1
given by
) n (o)
(U tewt™) = [ T @+ epute) oo
pin k=1
Here

co(Ny, Zy,) = {Q = (a(m’l), cel a(m’r)) cz,

- )
max |a(m”)| —0asm — oo} .
pfm i=1

carries the structure of a metric group by addition of sequences and the supremum-norm.

Proof. First we use the description of U g) as a countable product of copies of Z,, to reduce
to determining Homs (U g ), Zp). This is done by the following probably well-known lemma
for which we did not find a reference in the literature.

Lemma B.1.2. Let G be a locally compact, second countable, abelian metric group, and let
H;, i €1, be abelian metric groups, for a countable index set I. Then the map

«: Homgg (G, HHI) — HHomcts(G>Hi)
iel i€l
X+ (Pr; © X)ier

s an isomorphism of topological groups.
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Proof. Consider the homomorphisms
o : Homggs (G, HH’> — Homes (G, Hj), x> prjox,
iel
for j € I. For C C G compact and U; C H; open, we have
Ot]—l(Z/[(C,UJ)) U(C,U] X H Hl>
iel\{5}

Therefore the o are continuous. As « is induced from the «; by the universal property of
the product, « is a continuous group homomorphism.

An inverse 8 to « on the level of group homomorphisms is given by mapping a collection
(xi: G — H;)ier of homomorphisms to the homomorphism Hiel xi: G — Hiel H; induced

by the universal property of the product. Moreover, this inverse is continuous: Let C' C G
be compact and let U; C H; be open with U; = H;, for almost all i € I. Then we have

s (u (C, 11 U¢)> =[Juc.vy).
iel i€l
For m € N with p { m, and i € {1,...,7}, let 1(,,, ;) € Ex denote the element with

1 Jifm=mnandi=j,
pr(n,j)(]]-(m,i)) = {O

Via the topological isomorphism (B.2)), the following description of Homes(Ek,Z,) finishes
the proof of Proposition

Lemma B.1.3. There is an isomorphism of topological groups

Homeys (B, Zp) —+ co(Nyr, Z1) (B.4)

X (X(Tmn)s X (Lon))

|:a = (a(,m)) — Z Z a(,m))\(m’i)] < ()\(m,l)’ ceey )\(m,r))

ptm i=1

, else.

pfm

b
ptm

(cf. [29, Prop. 3.5 and 3.6] where the above map is shown to be a bijection).

Proof. For N > 0, let
Exn =[] »V2z, x [] 2

pim ptm

m<N m>N
The subsets Ex y form a system of fundamental open neighbourhoods of 0 € Ex, and satisfy
Lim) == (Lpm,1)s -+ > Lamyry) € Ex N, for all m > N. Therefore, for x € Homes(Ex, Zyp), the

continuity of y implies that the sequence (X(]l(m)))mm = (x(Lm))s- - 7X(]]-(m,r)))p+m tends
to 0 in Z;, when m — oo.

On the other hand, for a zero sequence (/\(m))p*m = ()\(m*l), ceey )\(myr))p*m of the right

hand side, clearly a(m7i)/\(m’i), for a(y) € Zp, is summable. It follows that is an
isomorphism of (abstract) groups.

It remains to show that is a homeomorphism. To do so, we consider a sequence
(X#)ken in Homes(Ex, Zp). Then convergence of (xx)ren to 0 is equivalent to

sup |xx(a)] — 0 as k — oo.
a€EFEK

When this is the case, it clearly follows that
sup ’Xk(]l(m))| — 0 as k — oo,
ptm
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i.e. that ((Xk(]l(m)))pfm)kGN converges to 0 in co(Ny, Z7).

Conversely, let ()\fcm))p ., be a zero sequence of elements of the right hand side corre-

t
sponding to xk, for k € N, and assume that ()\](cm))mm converges to 0 in ¢o(N,,Z,). Then

- (m.i)
sup |xx(a)| = sup (i) A
S k(@) = sup | DY anh

< ppm i=1

< sup sup |a(m7i)\|)\,(€m’i)| < sup |)\,(:n)’ — 0 ask — oo.
a€Ex pim pfm
i=1,...,7

Hence (xx)ken converges to 0 in Homeys(Ex, Zy). O
O

B.2. Locally Analytic Characters. In contrast to the case of a p-adic field, for a local
field of positive characteristic, there are significantly less locally analytic characters than
continuous characters when compared in a reasonable way. Furthermore these locally analytic
characters behave more rigidly than their p-adic counterparts. The reason for this is the
presence of the Frobenius endomorphism z — 2P on K.

We now consider locally analytic characters of U}({1) with values in C*, for a complete
non-archimedean field extension C' of K. We recall the following (see [42] for example):

Lemma B.2.1 (Lucas’s theorem). Let m and n be non-negative integers and p a prime.

Then )
(n) =IL () moa 0

where m = Zf:o mip' and n = Zf:o nip* are the p-adic expansions, and we use the conven-
tion that (}) =0 if a <b, for a,b € No.

In particular, we can canonically extend the definition of the binomial coefficient (g)
modulo (p) to ¢ € Z, and n € Z via

()= () (1) moa

where ¢ = Z;’io cipt and n = Z?:o n;p* are the p-adic expansions.

Furthermore, we will use hyperderivatives which were originally introduced by Hasse and
Teichmiiller, and whose properties are recollected in [42] §2]: Let f(z) = >0 jan(z — 20)"
be a formal power series with values in C' and centred at some zy € C. Then the k-th
hyperderivative of f is defined as the formal power series

oo

D®fz)=3" (Z) an (2 — 20)"*.

n=k

If f is strictly convergent on B!(zy) C C, for some 7 > 0, then D) f is strictly convergent
with the same radius of convergence around zy. Taking k-th hyperderivatives is C-linear. We
will also use a special instance of the chain rule |42} §2] (or [37]):

DW(fog)=((DWf)og) -DWy.

Theorem B.2.2. Let x: U1(<1) — C* be a locally K-analytic character. Then x factors over
Uf(g) C C*, and there exists c € Z, such that x = x. where

Xe(z) = 2¢ = Z (;) (z=1)" , forallze Uf(g). (B.5)

n=0
Moreover, the values of all p'-th hyperderivatives of x at 1 are in fact contained in ¥, C C and
c is uniquely determined by c¢; = D®)x(1) mod (p), for the p-adic expansion c = Yoo cipt
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Proof. First note that every function x. as in (B.5) defines a (locally) K-analytic character

from UI((I) to itself. Indeed, for ¢ € N, the equation y.(zw) = Xc(2)xc(w) follows from the

identity of formal power series in Z[z, w]. Approximation of ¢ € Z,, then yields
Xe(zw) = xe(2)xe(w) mod (¢™) ,foralln e N, z,w € Ul((l),

where ¢ is a uniformizer of Og = F,[[¢t]. This shows the sought functional equation.
Now, let x: UI(<1) — C* be a locally K-analytic character. Let N > 1 such that on

U I((N) = 1+ tN O the character y is given by the strictly convergent power series

x(z) = Zan(z -1, witha, € C.
n=0
Tt follows from x(zP) = x(2)P that
Zan(zp -1 = Zafl(zp —1" Lforall z e UI((N).
n=0 n=0

Hence by the identity theorem [L.T.T} we have a,, = af, and therefore a,, € F, C C. As

ns
lan| = 1, for all n > 0, the power series Y.~ an(z — 1)" strictly converges on the whole of

Ul({l). For z € UI((D, let 7 > 0 such that 2P e UI((N)‘ Then

P = () = 2( = (Z( - 1)“)pj.

Hence it follows that x(z) = Y7 qan(z — 1)", for all z € Uf(g), by the injectivity of the
Frobenius endomorphism.
Now consider, for all w € U I(<1 ), the chain rule applied to the hyperderivative with respect
to z:
X(w) DY x(2) = DY (x(w)x(2)) = DV x(wz) = DY (x 0 (w))(z) = DVx(w2) - w.
Setting z = 1 and noting that D™ y(1) = a;, we conclude that
X(w)ar = w DWx(w) = (w = 1)DWx(w) + DV (w).

By the identity theorem for power series , asw €U I((l ) was arbitrary, this is an identity
between power series. It follows that, for all n > 1,

a1n = (n —1’_ 1) Ap+1 + (?) Q. (BG)

For all [ > 0, we want to show by induction on j that
ai .
Alpyj = p ap ,forj=0,....,p—1, (B.7)
where we identify a; € F, with its representative in {0,...,p — 1} C Z. For j = 0,

holds trivially as (aol) = 1. Now assume ([B.7)) holds for j € {0,...,p — 2}. Then , for
n = Ip + j, together with the induction hypothesis gives

) lp+j+1 lp+j ~fa1
(J+ Dapj1 = < 1 )alp+j+1 = <a1 - ( 1 apj = (a1 = J)| . Jap-

J
Hence .
o= e
p+j+1 j+1 j P J+1 P

showing (B.7) for j + 1.
Observe that
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and therefore

1=0 \j=0
) p—1 a 00
=S (S ()1 agle - 17 =2 S a1
=0 Nj=0 \/ 1=0
We define, for z € Ul((l) and ¢ > 0,

X0 =Y aP (- 1)" |, where af) = ay,.

Then x(z) = 2 x(1)(2P). Using the injectivity of the Frobenius endomorphism this implies
that (V) is a locally K-analytic character on UI((I), too. Recursively it follows that x(® is a

locally K-analytic character on U I((l ), for all ¢+ > 0. Moreover, applied to x(V gives, for
all{ >0,

(4
i a i Qpi .
Qpi+iyjpi = al(p)ﬂ. = ( ; )al(p) = ( ;’ )alpi+l yfor j=0,...,p— 1. (B.8)
To finish the proof we show that, for all n > 0, a,, = [T\, (%*) where n = Y& np' is

g

the p-adic expansion of n. Indeed, fix n € N with such a p-adic expansion. Then (B.8)), for
1=0,...,k, gives

ay

n = a(Zle nipi’*l)p+no = <7’L0> a2§:1 n;pt

al ay ap
no a(Z;C:z nipifz)Pz'f‘"lp - ng ny Ay, nipt
_ _ a1 o apk
o ng

Lastly note that a,: = D(pi))((l)7 for all ¢ > 0. O

Corollary B.2.3. The locally analytic characters Endj, (Ul((l)) C Endgs (UI((U) constitute a
closed subring with multiplication given by composition. Moreover, with the induced subspace
topology, the description in (B.D) yields an isomorphism

Zp = Endi, (UY), ¢ — Xe,

of topological rings, and the above embedding Endy, (Ul((l)) - EndCtS(Ug)) corresponds to

diag: Z, — H H co(Np, Zy), ¢+ diag(c) == (g(n,j) = (CEZ;?)), (B.9)

ptnj=1

where M) {c yifm=mn andi=j,

(m3) 10 else,
under this isomorphism and the identification (B.3]).

Proof. One readily computes that the image diag(Z,) is a closed subgroup. To show that the
injective homomorphism of additive groups is a topological embedding, we show that
a sequence (cx)ren C Zj, converges to 0 if and only if (diag(cy)), . converges to 0. Indeed,
ey 10 010 co(Npy, Zp), for all n € N with
ptnandj=1,...,r. But for the supremum-norm | _|_ of ¢o(N,,Z,) we compute

the latter is equivalent to convergence of ((cl )(n,j))

[(c) gyl = sup [ (cr) (| = lewl.
pim (n,5)
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The only assertion left to verify is that the isomorphism Endla(UI((1 )) = 7, is compatible
with the multiplication, i.e. that x. o x4 = Xcd, for ¢,d € Z,. For ¢,d € N, this holds
because x.(z) is the usual exponentiation z¢ in this case. The general case then follows by
approximation and continuity. O
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