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ABSTRACT

Abstract

Climate change impacts such as sea level rise and change in storms particularly
threaten coastal regions. Therefore, proper predictions of significant wave height
(SWH) become crucial for coastal protection and marine disaster prevention. Es-
pecially for the coastal areas of the East Frisian North Sea, the complex morpho-
dynamic variability of ebb-tidal delta (ETD) sandbanks determines the local wave
climate along with non-linear wave propagation and tidal currents.
The major aim of this dissertation was to enhance the understanding of coastal mor-
phodynamic impacts on the nearshore sea state by analysis of the ETD damping
effect as well as utilizing this knowledge to improve spatial and temporal machine
learning predictions of SWH in the research area of Norderney, Germany.
Quantification of the sea state damping revealed a crucial variability of up to 14± 2%
due to variations of the coastal morphodynamics, while an average damping effect
of 41 ± 11% was found for the ETD sandbanks. Since the consideration of coastal
morphodynamics is hence essential for accurate prediction of SWH, an LSTM neural
network using bathymetric data for buoy-based short- and long-term SWH predic-
tions was developed for the first time. With an RMSE of 0.069 m, a parallel LSTM
structure was able to improve the SWH reconstruction using bathymetric data by
16.7%. As the accuracy was improved for the single-point predictions including
coastal morphodynamics, a further two-dimensional CNN wave height forecasting
model was developed for spatial predictions considering the continuously morpho-
dynamically changing ETD sandbanks. Limited by the few costly bathymetric data
available, it was required to develop a method to generate sufficient training data.
For the first time, geostatistical variogram analysis and random fields were applied
for ETD sandbank simulations. Trained with SWAN-modeled and metocean ground
truth, the mixed-data CNN surrogate model achieved good accuracy with an spa-
tial averaged RMSE of 0.097 m. Further validation on buoy measurements revealed
similar performance of the CNN (RMSE = 0.23 m) and SWAN (RMSE = 0.218 m)
models. In addition, the efficient machine learning approach offers the possibility
of real-time forecasting and exploration of various morphodynamic and metocean
scenarios for coastal protection, as the computation time was reduced by a factor
>300 000 compared to the numerical SWAN model.
These results make a decisive contribution to the research of sea state predictions
in coastal morphodynamically determined areas. New machine learning and geosta-
tistical methods for future studies are hereby provided.

Keywords: spatio-temporal forecasting, significant wave height prediction, LSTM, CNN,

machine learning, coastal morphodynamics, ebb-tidal deltas, SWAN surrogate
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KURZFASSUNG

Kurzfassung

Auswirkungen des Klimawandels, wie der Anstieg des Meeresspiegels und sich ver-
ändernde Stürme, bedrohen insbesondere die Küstenregionen. Korrekte Vorhersa-
gen der signifikanten Wellenhöhe (SWH) sind daher für den Küsten- und Katastro-
phenschutz von entscheidender Bedeutung. In den Küstengebieten der ostfriesischen
Nordsee bestimmen die morphodynamische Variabilität der Sandbänke des Gezei-
tendeltas (ETD) und eine komplexe Wellenausbreitung das lokale Seegangsklima.
Ziel dieser Arbeit ist es, die Auswirkungen der Küstenmorphodynamik auf den See-
gang durch die Analyse des ETD-Dämpfungseffektes zu verstehen und dieses Wissen
zur Verbesserung von räumlichen und zeitlichen Vorhersagen der SWH mit maschi-
nellen Lernverfahren im Forschungsgebiet Norderney zu nutzen.
Aufgrund von Variationen der Küstenmorphodynamik zeigte die Quantifizierung
der Seegangsdämpfung eine Variabilität von 14 ± 2%, während die ETD-Sandbänke
einen Dämpfungseffekt von durchschnittlich 41 ± 11% verursachten. Eine Berück-
sichtigung der Küstenmorphodynamik ist daher für genaue Vorhersagen der SWH
unerlässlich, weshalb erstmals ein neuronales LSTM-Netzwerk mit bathymetrischen
Inputdaten für bojenbasierte kurz- und langfristige Vorhersagen entwickelt wurde.
Mit einem RMSE von 0,069 m konnte eine parallele LSTM-Struktur die Rekon-
struktion der SWH um 16,7% verbessern. Da die Einbeziehung der Küstenmorpho-
dynamik die Genauigkeit punktueller Vorhersagen verbesserte, wurde ein zweidi-
mensionales CNN zur räumlichen Vorhersage der Wellenhöhen, unter Berücksichti-
gung der sich kontinuierlich morphodynamisch verändernden ETD-Sandbänke, ent-
wickelt. Aufgrund der teuren, begrenzt verfügbaren bathymetrischen Daten wurden
erstmalig geostatistische Variogrammanalysen und Zufallsfelder für die Simulation
synthetischer ETD-Sandbänke eingesetzt, um Trainingsdaten zu generieren. Trai-
niert auf gemischten Daten aus numerischen SWAN-Modellen sowie metozeanischen
Messungen, erreichte das CNN einen räumlich-gemittelten RMSE von 0,097 m. Eine
weitere Validierung mit Bojenmessungen ergab eine vergleichbare Leistung von CNN
(RMSE = 0,23 m) und SWAN (RMSE = 0,218 m). Da der Ansatz des maschinellen
Lernens die Berechnungszeit im Vergleich zum numerischen Modell um einen Faktor
>300 000 reduzieren konnte, bietet er die Möglichkeit der Echtzeitvorhersage sowie
der Untersuchung morphodynamischer und metozeanischer Szenarien.
Diese Ergebnisse leisten einen entscheidenden Beitrag zur Erforschung von Seegangs-
vorhersagen in küstennahen und morphodynamisch bestimmten Gebieten. Sie liefern
neue Methoden des maschinellen Lernens und der Geostatistik für künftige Studien.

Schlagworte: räumlich-zeitliche Vorhersage, signifikante Wellenhöhe, LSTM, CNN, ma-

schinelles Lernen, Küstenmorphodynamik, Gezeitendelta, SWAN Substitutionsmodell
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INTRODUCTION

1 Introduction

As a foundation of this dissertation, the following chapter introduces the research
topic and motivates the objectives. An overview of climate-related hazards to the
East Frisian North Sea as the study area of this work is provided, followed by a
review of basic related and state of the art research literature. Finally, the research
questions and objectives are derived from the identified research gaps.

1.1 Introduction and motivation

More than 10% of today’s world population lives in coastal regions that are less than
10 m above sea level. In the future, this number will increase even further (IPCC,
2019). These coastal regions are particularly affected by the present and future
impacts of global climate change (Toimil et al., 2020). Due to increasing rates of
ice loss from the ice sheets and glaciers, and the unabated thermal expansion of the
oceans driven by anthropogenic forced global warming, the global mean sea level
(GMSL) is rising at an accelerating rate in recent decades (Hay et al., 2015; IPCC,
2019). In addition, a potential increase in frequency and intensity of storms and a
possible trend of increasing ocean wave heights, which contribute to coastal erosion
and flooding, threaten the people living in those regions (Grabemann and Weisse,
2008; IPCC, 2019; Mori et al., 2013; Vanem and Walker, 2013; Weisse et al., 2012).
Especially for the coastal regions of the tide-dominated North Sea, storm surges
pose a perpetual hazard (Bitner-Gregersen et al., 2018; Weisse et al., 2012). About
14% of the land area of Lower Saxony, Germany is deemed to be vulnerable to
storm surges (Berkenbrink and Wurpts, 2019). These findings raise special issues
for coastal protection on the North Sea coast in light of climate-related hazards
(IPCC, 2019; Niemeyer et al., 2018). For proper protection of the coastal regions,
their populations, ecosystems, landscapes, and economies, common hard and soft
coastal protection measures such as dikes, seawalls, surge barriers, and beach nour-
ishments are often used (Berkenbrink and Wurpts, 2019; IPCC, 2019; Niemeyer
et al., 2018). Precise knowledge of the regional wave climate and accurate predic-
tions of related parameters are an essential requirement for building these coastal
protection and offshore structures, as well as for planing marine operations, disaster
prevention, and feeding climate and wave models (Deo and Naidu, 1999; Ti et al.,
2018). In this context, the wave height parameter is one of the most important wave
characteristics (besides the wave period), mostly represented by the significant wave
height (SWH), which is given by the mean wave height of the highest third of all
waves in a defined time interval (Teich et al., 2018).
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In order to monitor ocean wave heights, networks of ocean wave buoys can be used
(Berkenbrink et al., 2019). Multiple factors may cause gaps in the in-situ measured
time series. These include erroneous measurements by buoy floating during most
interesting extreme events, technical issues raised by the marine environment (me-
chanical impacts, marine fouling, and corrosion), maintenance operations, collisions
with ships, and vandalism (Cavaleri, 2009; Londhe, 2008). Therefore, sophisticated
methods for accurate reconstruction and prediction of ocean wave heights are re-
quired for seamless time series.

The buoy-based in-situ measurements are also essential for the setup and valida-
tion of spatial wave models. Examples for common state of the art numerical wave
models based on the spectral action balance equation are the third-generation wave
model Simulating WAves Nearshore (SWAN) (Booij et al., 1999), as well as WAM
(The Wamdi Group, 1988), and WAVEWATCH III (Tolman et al., 2002). SWAN
was especially designed for coastal and nearshore areas to model two-dimensional
irregular and random directional wave fields based on hydrodynamic boundary con-
ditions and an underlying bathymetry (Booij et al., 1999; Hoque et al., 2019; Sebas-
tian et al., 2014; Vieira et al., 2020).
Although SWAN generates precise wave models due to its physical equations of wave
propagation and interaction, it is a time- and cost-intensive approach and requires
high computational power. Thus, SWAN is not suitable for real-time predictions of
storm surge impacts (Hu et al., 2021).

As an alternative to numerical modeling, various studies and methods using a sta-
tistical machine learning (ML) approach exist for the reconstruction and prediction
of single-point and two-dimensional sea state data (Abed-Elmdoust and Kerachian,
2012; Fernández et al., 2015; Mahjoobi et al., 2008; Malekmohamadi et al., 2011;
Mandal and Prabaharan, 2010; Nitsure et al., 2012). Artificial neural networks
(ANN) constitute a major group of the soft-computing ML methods for the re-
lated tasks (Ali and Prasad, 2019; Deo and Naidu, 1999; Deo et al., 2001; Dixit
and Londhe, 2016; Durán-Rosal et al., 2016; Kumar et al., 2017; Law et al., 2020;
Londhe, 2008; Londhe and Panchang, 2007; Peres et al., 2015; Zamani et al., 2008).
While numerous different ANN architectures can be found (Goodfellow et al., 2016),
two of them are of particular focus in the remainder of this thesis:
On the one hand, recurrent neural networks (RNN) such as the long short-term
memory (LSTM) neural network are designed to process sequential data or time se-
ries (Hochreiter and Schmidhuber, 1997; LeCun et al., 2015). This class of network
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is capable of forgetting certain information and overcoming the vanishing gradient
problem (Gers et al., 2000). In addition to its typical application of speech and
handwriting recognition (Graves and Jaitly, 2014; Graves et al., 2009), machine
translation (Wu et al., 2016), image captioning (Aggarwal, 2018), and stock price
prediction (Kim and Won, 2018), the LSTM has already been applied to predict
single-point SWH with various lead times (Fan et al., 2020; Kagemoto, 2020; Ni and
Ma, 2020; Pirhooshyaran et al., 2020).
On the other hand, convolutional neural networks (CNN) are designed to process
spatial data like images by learning local patterns (LeCun et al., 1989). In addition
to its typical applications of image classification (Sultana et al., 2018; Thai et al.,
2012), face and speech recognition (Redmon et al., 2016), and semantic segmentation
(Yuan et al., 2020), the CNN has already been applied to predict two-dimensional
SWH (Bai et al., 2022; Wei and Davison, 2022). Furthermore, approaches combining
LSTM and CNN exist (Zhou et al., 2021).

However, none of these approaches have yet considered coastal morphodynamics
for sea state prediction. The ocean builds a complex system at the intersection of
hydrosphere, lithosphere, and atmosphere, including several non-linear processes un-
der the influence of the different geospheres. Especially nearshore areas are subject
to complex coastal morphodynamics, which should be considered for SWH predic-
tion on a local scale for a particular study area (Kaiser and Niemeyer, 2007; Wang
et al., 2012). This dissertation focuses on the study area of the nearshore area of
the East Frisian Island of Norderney, Germany (c.f. Section 1.3.3).
As typical for many coastal areas, an ebb-tidal delta (ETD) has developed as a mor-
phological feature in the study area of Norderney (Anthony, 2013; Bergillos et al.,
2016; Hansen et al., 2013). ETDs are generated by sediments from the ebb-tidal
currents that accumulate seaward of a tidal inlet and form sandbanks (Dallas and
Barnard, 2011; Hayes, 1980). The ETD sandbanks off the coast of Norderney exert
a great impact on the local wave climate and provide a natural coastal protection
against shoreward waves. The resulting damping effect of the ETD sandbanks de-
pends on the incoming SWH and the coastal morphodynamics and morphology of
the sandbanks (Niemeyer, 1979; Niemeyer and Kaiser, 1999).
Due to the ebb-tidal currents and even single severe storm surges, the ETD sand-
banks are subject to constant and rapid morphological changes by migration, ero-
sion, and accumulation (Castelle et al., 2007; Dallas and Barnard, 2011; Wang et al.,
2012). Therefore, the ETD sandbank morphology might be crucial for modeling,
reconstructing, and predicting single-point and spatial wave heights (Cooper and

3



INTRODUCTION

Navas, 2004; Dallas and Barnard, 2011; Eshleman et al., 2007). However, high tem-
poral and spatial resolution data of ETD sandbanks – mostly given by bathymetries
– are very limited and cost-intensive due to data acquisition by hydrographic surveys
(Spicer et al., 2019).

Based on the above mentioned scientific knowledge and ongoing challenges, this work
is concerned with the deeper understanding of the influence of the ETD sandbanks
in the nearshore area of Norderney on single-point and two-dimensional predictions
of SWH using ML methods, as well as the quantification of the sea state damping
effect. The application of different neural network architectures and the synthetic
generation of ETD sandbanks will also be analyzed in more detail as a part of this
work.

1.2 Emerging climate-related hazards to the North Sea coast

The following sections describe general climate-related hazards to the North Sea
coast and highlight the topic of sea level rise. The present measures and development
of coastal protection and management are finally presented.

1.2.1 General hazards

The North Sea is one of the most densely populated and major economic coastal
region in the world (Quante and Colijn, 2016; Wahl et al., 2013). In the future, the
region will be challenged by various climate change impacts like temperature change,
changes in solar radiation, precipitation, and evaporation, droughts, sea level rise
(SLR), storms, changes in wave conditions, and storm surges (Oost et al., 2017).
However, it is quite difficult to make regional or small-scale accurate predictions for
specific meteorological and oceanographic (metocean) parameters due to the great
natural variability of the North Sea region (Oost et al., 2017; Quante and Colijn,
2016). Ecosystems are often more influenced by anthropogenic factors like land use
change, agricultural practices, river management, and pollutant emissions than by
climate change itself, even though these factors in turn drive anthropogenic climate
change (Quante and Colijn, 2016).

Despite those uncertainties, specific changes exist. The Norddeutsche Klimabüro
published an information website for the public, containing several climate change
scenarios in the Wadden Sea area for temperature, precipitation, wind, and vegeta-
tion (www.coastalatlas.org).

4
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The yearly mean air temperature has increased in the last decades over the entire
North Sea region and is projected to increase between 1.7–3.2◦C until the end of
the 21st century, with respect to the period 1971–2000 for different IPCC scenarios
(RCP4.5 and RCP8.5). Also, the mean surface temperature of the south-east North
Sea has warmed by about 1◦C since the end of the 19th century. Additional studies
point out, that the sea surface temperature of the North Sea will increase further
until the end of the century, while the projected magnitude depends heavily on the
emission scenario and calculation method (Huthnance et al., 2016; Oost et al., 2017;
Schrum et al., 2016).
Another effect of climate change is the decrease in the pH-value of the North Sea in
recent decades. In combination with the rising surface temperatures, this leads to a
lower uptake of atmospheric carbon dioxide (CO2) by the North Sea as a sink and
thereby amplifies climate change (Huthnance et al., 2016; Schrum et al., 2016).
Extreme wave heights have increased by about 8 cm per decade over the period
1985–2018 in the North Atlantic Ocean due to SLR. They lead to extreme sea level
events, which therefore also have increased (IPCC, 2019). Analysis of data from
Cuxhaven showed an increase in extreme sea level events for more than 150 years,
but the uncertainties for future projected changes in extreme sea levels and extreme
waves are large, even if it is likely that they increase in the German Bight towards
the end of the 21st century (Weisse et al., 2012). Consequences are coastal erosion
and flooding.
The IPCC (2019) claimed a possible increase in global precipitation, winds and
storms. Changes in storm surge heights are closely linked to SLR and variations in
the wind patterns, although no reliable climate-related changes can be determined
for the North Sea region. Only modeling indicates an increase in storm surge heights,
with half of the increase driven by natural variability of local weather and the other
half by climate change (Oost et al., 2017; Weisse et al., 2012).

The marine and coastal ecosystems of the North Sea are also affected by climate
change. Biological processes and organizations are influenced at all scales, leading
to changes in the distribution, dynamics, and evolution of populations and the bio-
diversity of species. For example, species from warmer waters are more abundant
today, which will impact sustainable levels of harvesting and various ecosystem ser-
vices (Brander et al., 2016; Quante and Colijn, 2016). Habitats in dunes and salt
marshes may be threatened by SLR, changing wave climate, storm surges, and nat-
ural sediment transport, as well as human impacts on geomorphology and sediment
transport. Invasive plant species may grow faster and suppress other plants due to
competition (Bakker et al., 2016).
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These ecosystem changes have an impact on socio-economic factors such as fish-
eries and agriculture. While fish stocks and communities will change, fisheries and
management need to adapt to these changes (Pinnegar et al., 2016). For northern
areas of the North Sea region, an increase in agricultural productivity is expected,
while the southern areas may suffer from summer droughts. In general, a doubling
of atmospheric CO2 could lead to a yield increase of up to 40% for some crops in the
North Sea region, provided that sufficient water and nutrients are available (Olesen,
2016).
Regarding the field of offshore energy systems, several studies have identified an
increase in hydropower potential, while the development of the potential of other
renewable energy sources is uncertain. Energy and offshore activities are further very
vulnerable to extreme weather and wave events, storms, and storm surges (Halsnæs
et al., 2016).
Another important socio-economic and climate-sensitive sector is tourism, which
plays a major role in the coastal zone of the North Sea region. Summer tourism
is expected to benefit from rising air and water temperatures and a longer season,
although it must be noted that the tourism sector in turn contributes to climate
change (Kreilkamp et al., 2016).

Accurate analysis of climate-related hazards is difficult owing to the high natu-
ral variability in the North Sea region. For example, the present coastal erosion is
immense but irregular with some coastlines accreting. For scientists, it is therefore a
current challenge to isolate and project the regional impacts of climate change from
the natural variability in the North Sea region (Quante and Colijn, 2016).
Besides the above described climate-related impacts, the main hazard to the coastal
population is the SLR of the North Sea (c.f. Section 1.2.2), which leads to increasing
wave heights and wave periods of the depth-limited sea state in the coastal areas
(Lewis et al., 2019; Niemeyer et al., 2016).

1.2.2 Sea level rise

The GMSL is rising with an accelerated rate in the recent decades. While the SLR
was about 1.4 cm per decade from 1901–1990, the rate increased to about 3.6 cm
per decade for the period 2006–2015 (IPCC, 2019). The main cause of the GMSL
rise since 1970 is anthropogenically forced, but nevertheless it is the result of differ-
ent geophysical and climatological processes with various contributions to the total
GMSL rise (Frederikse et al., 2020; IPCC, 2019). The main contributions come from
ice loss of the Greenland and Antarctic ice sheets and glacier mass loss with about
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1.8 cm per decade over the period 2006–2015. This exceeds the contribution of
thermal expansion of the oceans with about 1.4 cm per decade for the same period
(IPCC, 2019).
While rates on a global scale give an appropriate overview of future trends, rates
of SLR on a local scale can still vary widely (Wahl et al., 2013). Meteorological
and oceanographic effects have a major influence on local SLR, as well as variations
in vertical land movements caused by natural or anthropogenic geological processes
(Church and White, 2011; Nicholls et al., 2007; Wahl et al., 2013). For the en-
tire North Sea region, a long-term SLR for the period 1900–2011 of about 1.5 cm
per decade was estimated (Wahl et al., 2013). Recent analyses by the Helmholtz-
Zentrum Hereon based on tide gauge data showed a SLR of about 8 cm over the
last 50 years (1.6 cm per decade) for the island of Norderney in the German North
Sea and a predicted further rise (Helmholtz-Zentrum hereon).
Taking a closer look at the gauge Norderney (Fig. 1.7), it showed that due to dif-
ferent long-term increases in tidal Mean High Water (MHW) and tidal Mean Low
Water (MLW) from 1922–2021, the tidal range has increased by about 1.4 cm per
decade in the last century (Fig. 1.1). Albeit natural variability of the SLR, a con-
tinuous positive linear trend of about 2.5 cm per decade for the MHW and about
1.1 cm per decade for the MLW can be observed from the data. The mean water
(MW) given by the mean of MHW and MLW shows a linear trend of 1.8 cm increase
per decade (Fig. 1.1). Significant trend changes are not apparent from Fig. 1.1;
the fluctuations around the trend are rather direct consequences of meteorological
conditions (Berkenbrink and Wurpts, 2019). More details on the study area are
given in Section 1.3.3.
Thus, the SLR of the North Sea region is within the range with the GMSL rise. Ex-
treme sea level events increased mainly due to SLR (Quante and Colijn, 2016). For
further projections, the latest increase can be extrapolated linearly, although uncer-
tainties persist regarding the dependency and e.g. according to the IPCC (2019)
emission scenarios (RCP2.6 to RCP8.5), a wide range of future rates of increase is
conceivable, leading coastal erosion and flooding (Harvey and Nicholls, 2008; IPCC,
2019). SLR also leads to an increase in wave heights and wave periods, which in
turn results in a non-linear increase in the loading of coastal protection structures
(Holthuijsen, 2007; Lewis et al., 2019).
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Figure 1.1: Time series of the tide gauge level Norderney Riffgat, showing the Mean
High Water (MHW), Mean Low Water (MLW), and Mean Water (MW) which is equal to
the mean of MHW and MLW (gauge level operator and data source WSA-Emden).

1.2.3 Coastal protection

Coastal areas are under tremendous threat from extreme events such as storms,
storm surges, and SLR, which contribute to flooding, erosion, coastal retreat, and
ecosystem loss (c.f. Sections 1.2.1; 1.2.2). These events can impose significant
costs on coastal communities, while there is considerable regional variation (Nicholls
et al., 2007). Large parts of the North Sea coastline are therefore highly defended
by coastal protection structures as part of an integrated coastal protection system
(Wahl et al., 2013). Every North Sea country has its own coastal protection strategy
with specific geographical boundary conditions, planning schedules, and governmen-
tal regulations. But all countries face the same challenge of climate change, making
them consider a general adaption strategy for future coastal protection: Coastal
protection structures must be economic to construct in the short-term, on the one
hand, and easily adaptable in the future, on the other hand, to remain flexible with
respect to climate change impacts that are unknown today (e.g. masked due to high
natural variability). The use of soft measures, which can be temporarily effective,
should also be implemented, as they might prevent counteracting natural trends
(Niemeyer et al., 2016).
Coastal protection on the North Sea coast has a long tradition of more than 1 000
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years. Most parts of the southern North Sea countries of Denmark, Germany, the
Netherlands, Belgium, and the United Kingdom are protected by a line of dikes,
solid structures, dunes, or cliffs. The challenges of climate change lead to adapta-
tions in coastal protection strategies, such as the do-nothing approach (i.e. release
specific areas to the ocean), retreat of the protection line by managed realignment,
reinforcement and maintenance of the existing protection line, wetland restoration,
and a flexible coastal protection response to erosion. Erosion is traditionally con-
trolled by sand nourishment. To hold the current coastline under future SLR, the
nourishment approach is required to be applied more frequently and on a larger
scale. Considering suitable sediment reservoirs with sufficient volume for sand nour-
ishment raises the question of sustainable management (Dronkers and Stojanovic,
2016; Niemeyer et al., 2016).
All North Sea countries have developed adaption strategies to cope with the yet
known impacts of climate change and are prepared for the challenge of a SLR of 1
m until 2100. Although there is already a lot of expertise in these countries, many
knowledge gaps still exist, and the countries would therefore benefit from joint re-
search management (Dronkers and Stojanovic, 2016).
Especially for morphodynamic complex areas like the East Frisian Islands, it will be
a major challenge to model and predict morphodynamics of future climate change
scenarios (not forecasts), besides the consideration of SLR, to meet the knowledge
required for the design of adaption measures for coastal protection (Niemeyer et al.,
2016; Ritzmann and Kaiser, 2010).

In Germany, coastal protection is controlled by the federal states. The Coastal
Research Station of the Lower Saxony Water Management, Coastal Defence, and
Nature Conservation Agency (NLWKN) is responsible for planning and construction
of the federal island and coastal protection system in Lower Saxony. As a reaction
to the severe storm surge of 1953, a change from a reactive coastal management
strategy to a precautionary strategy was performed in Germany, and to the severe
storm surge of February 1962, the State of Lower Saxony passed the Lower Sax-
ony Dike Law (dt.: Niedersächsisches Deichgesetz (NDG)). This makes it the only
German federal state with its own dike law (Lippe). Since than, dikes are build
under consideration of further changes of the wave climate – mostly forced by cli-
mate change. Although there is no clear evidence of an increase in the frequency of
storm surges, SLR currently is taken into account by increasing the precautionary
measure of the design water level from 50 cm to 100 cm (Berkenbrink and Wurpts,
2019). Since 1997, the numerical model SWAN (c.f. Section 1.3.2) is used for the
calculation of the design sea state for coastal protection structures, considering a
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design water level given by the single-value method on basis of a severe storm surge.
The design sea state and the resulting design dike height also take into account the
expected highest tidal high water and the local wave run-up (Niemeyer, 2001).
Every year, the federal state of Lower Saxony invests more than 60 million euros for
coastal protection (Stolz, 2021). In 2020, about 1.1 million people and a damage
potential of about 129 billion euros were protected by the main dikes and barrier
structures (NLWKN Pressestelle, 2020). Since 1955, a total amount of about 3 bil-
lion euros was put into Lower Saxony’s coastal protection (Lippe).
The main dike line of the entire federal state of Lower Saxony is about 610 km long
(Stolz, 2021). The dikes of the East Frisian Islands of Lower Saxony have a total
length of 35 km, while the dunes on the islands have a total length of about 97 km
(NLWKN, 2022). The highest dikes are up to 9 m high (Lippe). In case of any
further scientific evidence, the dikes can be raised by one additional meter. For a
sustainable and safe coastal protection, it is essential to check coastal protection
structures regularly and include new scientific knowledge about the climate-related
hazards continuously (Berkenbrink and Wurpts, 2019).

1.3 State of the art and basic related work

The following chapter provides an overview of the statistical, technical, and physical
basics that are employed in the remainder of this work. For further details, the reader
is referred to read the respective research studies (c.f. Chapters 2, 3, 4). The study
area of the research studies, mainly characterized by the ETD sandbanks, is finally
presented in detail.

1.3.1 What waves are and how they are measured and modeled

The spatio-temporal propagation of ocean waves is important for coastal manage-
ment, protection, and operations (Ti et al., 2018). Ocean waves can be defined as
all (directional) vertical motions of the ocean surface over space and time (Holthui-
jsen, 2007). To study waves, proper observations of wave height, wave period, and
wave direction are essential (Teich et al., 2018). Besides visual observations of the
sea surface by experts, advanced observation techniques with instruments are com-
monly used. One distinguishes between in-situ measurements taken directly in the
ocean by floating wave buoys, pressure transducers, current meters, echo-sounder at
the sea bottom, or wave pole measurement platforms and remote sensing techniques
taken from above the sea surface by drones, airplanes, satellites, or land-based imag-
ing with radar or laser (Holthuijsen, 2007).
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All measurement techniques, including wave buoys, record time series of the (di-
rectional) vertical motion of the sea surface. Wave buoys can measure the three-
dimensional acceleration of the surface water by moving up-and-down with the
waves including the horizontal surge-and-sway motion for directional information.
(Holthuijsen, 2007; Malcherek, 2010)

For the processing of buoy measurements and the determination of wave param-
eters, a continuous variance density spectrum S(f) of frequency f can be calculated
by a Fourier transformation of the buoy-measured sea surface elevation data (Fig.
1.2). Commonly, a period of 30 minutes is used for the spectral computation. The
unit of S(f) is [m2/Hz].

f

S(f)

t1 t2

t

η(t)

Figure 1.2: Transformation of the surface elevation η(t) of period [t1, t2] to the variance
density spectrum S(f) with frequency f .

Based on S(f), the wave parameters significant wave height Hm0 , mean wave pe-
riod Tm0,1 , energy period Tm−1,0 , peak period TP , and wave direction DirP can be
determined as follows:

Hm0 = HS = 4
√
m0 (1.1)

Tm0,1 = Tm =
m0

m1

(1.2)

Tm−1,0 = Te =
m−1

m0

(1.3)

TP = argmax(S(f))−1 (1.4)

where mn is the n-th moment of S(f) given by

mn =

∫
fnS(f)df (1.5)

and DirP is defined as the wave direction of the S(f) peak (Bacon and Carter, 1991;
Holthuijsen, 2007; Sheng and Li, 2017; SWAN, 2019b).
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While wave buoys only provide single-point data, spatial wave fields can be pro-
vided by numerical wave modeling methods. In turn, single-point buoy data are
used to calibrate and validate model parameters in numerical modeling. Commonly,
the numerical wave model SWAN is used for complex coastal areas. Wave propaga-
tion in the third-generation wave model SWAN (Booij et al., 1999) is computed by
the spectral action balance equation

∂

∂t
N +

∂

∂x
cxN +

∂

∂y
cyN +

∂

∂f
cfN +

∂

∂θ
cθN =

S

f
(1.6)

where N = N(f, θ) is the action density spectrum with frequency f and wave direc-
tion θ, S the variance density spectrum, t the time, and x and y the spatial propaga-
tion directions with velocities cx and cy, respectively. The fourth term describes the
changes in depth and currents, while the fifth term represents directional changes
caused by refraction (Booij et al., 1999; SWAN, 2019a,b). As coastal processes
like shoaling, refraction, diffraction, reflection, and wave breaking are considered by
SWAN, it is a suitable model for the nearshore area of the East Frisian North Sea
(Holthuijsen, 2007).
By using unstructured computational grids (compared to regular/rectangular or
curvilinear grids), a specific focus can be put on certain morphodynamic features in
the bathymetry and an efficient computation can be performed concurrently (SWAN,
2019b). A detailed description of the SWAN model parameter and calibration pro-
cess is given in Sections 2.4.3 and 4.2.4. While most studies and applications use
only static bathymetries (Akpinar et al., 2016; Hoque et al., 2019; Kutupoğlu et al.,
2018; Sierra et al., 2017), dynamically changing bathymetries can be used to analyze
morphological impacts on the wave climate (Dallas and Barnard, 2011; Eshleman
et al., 2007).

1.3.2 Neural networks and their application for wave height prediction

Machine learning

Artificial neural networks (ANN) are a class of learning algorithms of deep learn-
ing (DL), which belong to the field of artificial intelligence (AI). The data-driven
machine learning (ML) algorithms are inspired from the functionality of the human
brain. Albeit ANNs have been known for many decades (first attempts date back to
1943 (McCulloch and Pitts, 1943)), their vast potential has only been unleashed by
efficient learning algorithms, increased computational power, and optimized archi-
tectures. Moreover, the availability of training data in many domains has increased
enormously in recent years (Goodfellow et al., 2016). Thus, ANNs have developed
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tremendously and revealed outstanding performance in many fields of ML like com-
puter vision for image classification (Sultana et al., 2018; Thai et al., 2012), face
recognition and object detection (Redmon et al., 2016), and semantic segmentation
(Yuan et al., 2020) as well as non-linear regression problems like time-series predic-
tion (Hastie et al., 2009; Kuhn and Johnson, 2013; Song et al., 2020).
ML algorithms are categorized in supervised, unsupervised, semi-supervised, rein-
forcement, and transfer learning, while prominent examples for the supervised and
unsupervised learning are the classification/regression task and clustering, respec-
tively (Hastie et al., 2009). The algorithms used in this dissertation belong to the
supervised learning approach.

Basics of neural networks

A simple feed-forward neural network (FFNN) or multilayer perceptron consists of
an input, output, and hidden layer as well as bias units without inputs and forms the
basis of DL models. In case a FFNN has multiple hidden layers, it is called a deep
FFNN (DFFNN). An exemplary DFFNN architecture is shown in Fig. 1.3. The
strength of the connection between two neurons is expressed by weights, which also
represent the learnable parameters (degrees of freedom). If a connection between all
neurons of consecutive layers exists, the network is called fully-connected, as depicted
in Fig. 1.3. The hidden and output layers additionally contain a so-called activation
function f , which is chosen depending on the type of function to be approximated.
Typical non-linear activation functions are the sigmoid function, hyperbolic tangent
(tanh), and rectified linear unit (ReLU) function (Aggarwal, 2018; Goodfellow et al.,
2016; Hastie et al., 2009; Khan et al., 2020).
By means of a loss function L, the prediction error of the ANN can be estimated
based on the ground truth data and then minimized by backpropagation with an
optimization function (Goodfellow et al., 2016). The mean squared error (MSE)
with L2 regularization for reducing overfitting is widely used as loss function L for
regression problems:

L(X,W ) =
1

n

n∑
i=1

(ŷi − yi)2 +
1

2
λ‖W‖22, (1.7)

where n is the size of data, ŷ the predicted value, y the ground truth value and λ the
regularization parameter of the L2-norm ‖W‖2 of the weight matrices W (Good-
fellow et al., 2016; Ng, 2004; Nie et al., 2010). Common optimization algorithms
for the backpropagation of the gradients of the loss function are the adaptive mo-
ment estimation (Adam) (Kingma and Ba, 2015), stochastic gradient descent (SGD)
(Bottou, 1998), AdaGrad, RMSProp, and AdaDelta.
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input bias hidden output

Figure 1.3: Deep feed-forward neural network (DFFNN) with input neurons (blue), two
hidden layers with different numbers of neurons (red), output neurons (green), and bias
units (yellow), which is fully-connected.

To validate the accuracy of ANN predictions, error metrics like the root mean
squared error (RMSE) (Eq. 1.8), the mean absolute error (MAE), the mean error
(bias), the mean arctangent absolute percentage error (MAAPE) (Eq. 1.9) (Kim
and Kim, 2016), the Pearson correlation coefficient r (Eq. 1.10), and the coefficient
of determination R2 (Eq. 1.11) are often used.

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (1.8)

MAAPE =
1

n

n∑
i=1

arctan

(∣∣∣∣ ŷi − yiyi

∣∣∣∣) (1.9)

r =
cov(ŷ, y)√

(var(ŷ)var(y)
(1.10)

R2 = 1−
∑n

i=1 (ŷi − yi)2∑n
i=1 (yi − ȳ)2

(1.11)

where cov(x, y) is the covariance of x and y, var(x) the variance of x, and ȳ the
mean of the ground truth.

Long-Short term memory neural networks

Long-Short term memory (LSTM) neural networks are special recurrent neural net-
works (RNN) designed by Hochreiter and Schmidhuber (1997). While all RNNs
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include feedback connections to prior inputs in order to transfer information over
time (LeCun et al., 2015), the LSTMs are able to learn long term dependencies
and coping with the so-called vanishing gradient problem due to their cell struc-
ture (Gers et al., 2000; Hochreiter and Schmidhuber, 1997; Pascanu et al., 2013).
Each LSTM cell (Fig. 1.4) consists of four units, the forget gate ft, input gate it,
memory cell state Ct, and output gate ot at time t, as defined in Eq. 1.12 to Eq. 1.17.

ft = σ(Wfht−1 +Wfxt) (1.12)

it = σ(Wiht−1 +Wixt) (1.13)

C̃t = tanh(WCht−1 +WCxt) (1.14)

Ct = ft · Ct−1 + it · C̃t (1.15)

ot = σ(Woht−1 +Woxt) (1.16)

ht = ot · tanh(Ct) (1.17)

where xt, ht, C̃t, W , and σ are the input data, hidden state, temporary cell state,
weight matrices, and sigmoid activation function, respectively. The Hadamard ma-
trix product operation is denoted as ·. Biases are not added explicitly, since they
can be integrated to the weight matrices. The final output ŷt = Wyht can be used
in the loss function from Eq. 1.7 (Gers et al., 2000; Hochreiter and Schmidhuber,
1997; Qing and Niu, 2018).
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Figure 1.4: LSTM cell with forget gate ft, input gate it, memory cell state Ct, and
output gate ot at time t, and the sigmoid and tangent hyperbolic activation functions σ
and tanh, respectively.
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Convolutional neural networks

Convolutional neural networks (CNN) are especially designed for data on grid to-
pologies (e.g. images) by learning local patters and shift invariants (LeCun et al.,
1989). CNNs are therefore often applied for image classification, face and speech
recognition, and natural language processing (Aggarwal, 2018; Goodfellow et al.,
2016). The principle of a convolution operation by a so-called kernel filter is ex-
emplarily shown in Fig. 1.5. By moving over the input, the convolution operation
learns latent features and extracts them to the resulting output feature maps (Good-
fellow et al., 2016).

23 45 1 12 3

56 8 4 23 67

2 32 22 51 76

0 58 36 14 17

3 53 0 24 29

2 2 1

2 1 0

1 0 0

259

X =

Figure 1.5: Example of a convolution with a kernel of size 3 × 3. The output of the
convolution is called the feature map.

A convolution layer is defined by the number and size of the convolution kernels, the
step size of the kernel (stride), and the number of rows and columns added to the
boundaries of the input feature matrices for adjusting the size of the output feature
map (padding). The learnable parameters of a CNN are the weight matrices. The
convolution layer operation ∗ for an layer l and output feature map k with input
feature matrix Xk = (xijk)

n,m
i,j=1 ∈ Rn×m, n,m ∈ N and weight matrix of the convo-

lution kernel Wk = (wi′j′kk′)
r
i′,j′=−r ∈ R(s×k)×(s×k′), s = 2r + 1, r ∈ N is performed

by

z
(l)
ijk = (W ∗X)li,j,k =

d(l−1)∑
k′=1

∑
i′,j′

x
(l−1)
i+i′,j+j′,k′ · w

(l)
i′,j′,k′,k (1.18)

x
(l)
ijk = f

(
z
(l)
ijk

)
(1.19)

where Zk = (zijk)
n,m
i,j=1 ∈ Rn×m is the output feature map of the convolution and d(l)

the number of feature maps of layer l.
The architecture of a CNN can be composed of several additional layers like pooling
layer, batch normalization, dropout layer, and fully-connected layer. Pooling layer
are commonly used to reduce the size of the feature maps and thereby saving com-
putational cost and generalize by extracting the main features. The most popular
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variants of pooling are the max pooling and average pooling (Fig. 1.6). More infor-
mation on CNNs can be found in Sections 4.2.6 – 4.2.8.
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(A) Max Pooling (B) Average Pooling

2 x 2
pool size

2 x 2
pool size

Figure 1.6: Example of the (A) max pooling and (B) average pooling approach with a
kernel of size 2 × 2 and a stride of 2, respectively.

Neural networks for wave height prediction

Neural networks have long been used to predict environmental and climate data.
Consequently, there are several studies that applied ANNs for wave height pre-
diction (Ali and Prasad, 2019; Deka and Prahlada, 2012; Dixit and Londhe, 2016;
Durán-Rosal et al., 2016; Kumar et al., 2017; Londhe, 2008; Stefanakos, 2016). Even
though many different architectures, such as FFNN (Deo and Naidu, 1999; Deo et al.,
2001; Herman et al., 2007, 2009; Law et al., 2020; Londhe and Panchang, 2007; Peres
et al., 2015; Zamani et al., 2008), genetic algorithms (Altunkaynak, 2013), evolution-
ary product unit neural networks (Durán-Rosal et al., 2016), or extreme learning
machine (Kumar et al., 2018) have been developed for sea state prediction, the focus
in the following literature review will be on LSTM and CNN architectures as they
are used in this dissertation.

Since LSTMs are particularly suitable for time series data, they have already been
implemented for reconstructions and predictions of sequential environmental data
such as wind speed (Li et al., 2018), sea surface temperature (Xiao et al., 2019), so-
lar irradiance (Qing and Niu, 2018), and weather forecasting (Salman et al., 2018).
First applications of a RNN for sea state prediction date back to Balas et al. (2004).
Pirhooshyaran et al. (2020) first designed a more sophisticated encoder and decoder
LSTM neural network to reconstruct and predict deep ocean wave heights in the
North Pacific and North Atlantic Ocean. They achieved an R2 of up to 0.81 for the
SWH reconstruction at a deep ocean buoy near Los Angeles. Kagemoto (2020) fo-
cused on the prediction of water-surface wave trains and the motion of a containing
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floating body, while Ni and Ma (2020) concentrated on the prediction of polar west-
erlies wave heights based on few measurements available, both using LSTM neural
networks. Fan et al. (2020) also applied LSTMs for up to 6 h ahead predictions
of SWH at the deep ocean with an R2 of 0.97. Additionally, they combined the
LSTM with data of the numerical wave model SWAN and reached an improvement
by more than 65% for a single-point prediction. Another study of James et al.
(2018) also utilized FFNNs trained on SWAN-modeled data, here for the Monterey
Bay area. With a reduction of the computational time by a factor of more than
100 compared to the physics-based SWAN model, they achieved a satisfactory re-
sult for the spatial SWH surrogate prediction model. Feng et al. (2020) applied
SWAN-modeled input data from 2005–2014 to a FFNN for the prediction of SWH
and wave peak period of Lake Michigan. They were able to reduce computational
time by a factor of up to 20 000 while keeping comparable accuracy to SWAN. Chen
et al. (2021b) on the other hand developed a random forest surrogate model for
the spatial prediction of nearshore wave fields using SWAN-modeled ground truth
data. The performance for single-point predictions on buoy data was better for the
surrogate model (R2 = 0.91) than for the corresponding SWAN model (R2 = 0.85),
while computation time was additionally reduced by a factor of 100. Zhou et al.
(2021) presented a two-dimensional convolutional LSTM neural network for SWH
prediction in the South and East China Seas with lead times up to 24 h. Trained on
WAVEWATCH III data, they achieved a MAPE of 61% for the 24 h forecast. Zhou
et al. (2021) have combined the approaches of LSTM for temporal data and CNN
for spatial data in their network architecture.

CNNs have been rarely used to predict two-dimensional wave fields since the training
data usually need to be generated by numerical models. Bai et al. (2022) designed
a CNN model for spatial SWH prediction in the South China Sea using ERA5 re-
analysis data. Forecasts with lead times from 12–72 h were performed with MAPEs
between 8.55% and 19.48%, respectively. Another study of Wei and Davison (2022)
used a CNN model to predict waves and hydrodynamics in a nearshore area by ap-
plying SWASH-modeled ground truth data. Their model accurately predicted wave
propagation and wave breaking over sandbanks. Choi et al. (2020) applied the CNN
on raw ocean images captured on wave buoys for real-time predictions of SWH due
to their efficiency on image data.
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1.3.3 Study area and ETD sandbanks

The study area of this dissertation covers the nearshore area of the East Frisian
Island of Norderney in the German Bight of the North Sea (Fig. 1.7). The area
extends about 7.05–7.3◦ E and 53.65–53.85◦ N. Norderney is separated by the tidal
inlets Norderneyer Seegat and Wichter Ee from the islands Juist in the west and
Baltrum in the east, respectively. With a length of about 15 km, a maximum width
of 2.5 km, and a resulting total area of 26.3 km2, Norderney is the second largest of
the seven East Frisian Islands. While about two thirds of the island are dune and
sand landscapes, the urban area is located on the western end, reflecting the earlier
eastward migration by erosion.
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Figure 1.7: Bathymetry map of the study area, showing the ETD sandbanks, wave buoy
positions, and the tide gauge level Norderney Riffgat.

Located in the temperate climate zone, the predominant wind direction in the study
area is southwest (Fig. 1.8). The long-term MHW at the water level gauge Norder-
ney Riffgat is 1.23 m above the German mean sea level (NHN) and has a mean tidal
range of 2.47 m (Fig. 1.7). Due to the oceanic influence, the current mean water
temperature is about 14◦C. More details on SLR in the study area are given in the
previous Section 1.2.2.

19



INTRODUCTION

The genesis of the East Frisian Islands started about 8 500 years ago with the
warming after the Last Glacial Period of the Weichselian glaciation. By eustatic
SLR, the Dogger Bank and English Channel were flooded. Driven by the Coriolis
force, an eastward tidal flood at the East Frisian North Sea has then developed.
When the rate of SLR decreased significantly about 4 000 years ago, the North Ger-
man upland moor and peat were formed. After alternating phases of transgression
and regression, the interaction of tidal currents and waves resulted in the final accu-
mulation of sand sediments that today form the East Frisian Islands (Meyer, 2014;
Petersen, 2005; Quedens, 2000).
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Figure 1.8: Windroseplot of averaged data from 2004–2017 of the DWD station
Norderney. Wind direction, speed, and frequencies are shown.

Norderney is a typical East Frisian barrier island with strong tidal currents leading
to a massive drive of the sediment transport of the ETD sandbanks in the tidal
inlets. The eastward sediment transport parallel to the coast is disturbed by the
tidal currents in the main channel Norderneyer Seegat. On the west coast, the sand
subsequently accumulates to sandbanks. By wave breaking and energy dissipation,
the sandbanks protect the western part of the island. On its curved way to the
eastern part of Norderney, the sand of the ETD additionally supplies the beaches
(NLWKN, 2019). The mean velocity of the different plates of the ETD varies be-
tween 250–430 my−1, depending on the plates position in the cycle of about 37 years
in total (Bremermann and Meyer, 2012). Older studies quantified a mean movement
of 400 my−1 (Fitzgerald et al., 1984) and 325 my−1 in the west and 500–550 my−1

in the east (Gaye and Walther, 1935). Ebb-tidal currents and storm surges change
the morphodynamics of the ETD continuously and thus dominate the local wave
climate (Wang et al., 2012).
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The western plates north of the Buise-Low (Robbenplate and Osterriff) are period-
ically incised or separated by the Buise-Low (Fig. 1.7). Outflow of the Norderneyer
Seegat therefore varies from east of the northern plates and between the two plates of
the northern ETD sandbanks, if they are separated (Fig. 1.7). Thus, both plates of
the northern ETD underlay huge ongoing morphodynamic changes. Accretion of the
ETD sandbanks is constant in the central western part of Norderney (Meyer, 2014).
Besides the morphodynamic processes, the interaction of tidal range and waves is
important for the evolution of the barrier island Norderney (Quedens, 2000).
Continuous morphodynamic change and natural variability are highly dynamic and
must be considered in further analyses of the study area. A detailed analysis of the
morphodynamic changes in shape and size of the ETD sandbanks since 1995 is given
in Section 2.3.2. For further information on general morphological patterns in tidal
inlets, the reader is referred to Hayes (1980).

1.4 Research questions, aims, and objectives

The previous review of state of the art knowledge and recent publications high-
lighted the great potential of neural networks for precise predictions of sea state
data. Moreover, the importance of morphological changes of the ETD sandbanks
off the East Frisian Islands for the nearshore sea state climate was underlined.
Based and motivated by the prior work, the following research questions (RQ) were
inferred, aiming to contribute to better understand spatial and temporal predictions
of nearshore wave height with neural networks considering coastal morphodynamics
in light of coastal protection and climate risks:

RQ-a. How can the influence of coastal morphodynamics and its variability on the
nearshore sea state be quantified?

RQ-b. How can data of coastal morphodynamics improve the single-point recon-
struction and prediction of significant wave height by neural networks?

RQ-c. How can simulated bathymetries be used to predict two-dimensional signifi-
cant wave height with convolutional neural networks?

In addition to application-related implications for the research area, methodological
aspects were in the focus of the respective research. Different neural networks were
designed to cope with coastal morphodynamics in wave height prediction. The
methods were compared to other common machine learning methods for spatial
and temporal predictions and the speed-up compared to numerical modeling using
SWAN was considered.
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In the following, the above mentioned open research questions (a–c) are addressed
in three studies within this dissertation, each covering full methodological design,
model experiments, discussion of results, and challenges:

I. (RQ-a) How can the influence of coastal morphodynamics and its variability on
the nearshore sea state be quantified? What is the magnitude of the sea-state
damping effect in the Norderney research area, what does it depend on, and
how is it changing over time?
Understanding the coastal morphodynamics in the East-Frisian North Sea
area is crucial for precise predictions of the nearshore sea state. As stated in
Section 1.3.3, the ETD sandbanks exert a huge impact on the wave climate
(Niemeyer, 1979; Niemeyer and Kaiser, 1999). However, the damping effect
has not yet been precisely quantified. Also differences between swell-waves
and wind-waves were not yet investigated. In Chapter 2, these objectives
were addressed by validated SWAN simulations with dynamic bathymetries
(c.f. Section 1.3.1) for five representative storm events at tidal high water.
This allowed isolating the effect of different bathymetries on the nearshore sea
state to distinguish it from natural variability for the first time. In addition,
a GIS-based approach was used to analyze the ETD sandbank dynamics by
movement velocities and changes in size and shape to account for the problem
of rapid changes by migration, erosion, and accretion (Castelle et al., 2007;
Wang et al., 2012). Therefore, the bathymetries of the years 1995, 2005, 2006,
2008, and 2015 were used to cover a long interval of the complete live-cycle of
a single plate moving from west to east (c.f. Section 1.3.3).
Buoy-measured in-situ data are important for model validation (c.f. Section
1.3.1), thus data off the Norderney coast from 1992–2017 were compared to
the isolated model results.

II. (RQ-b) Are LSTM neural networks and an ensemble of parallel LSTMs suitable
for single-point reconstruction and short- and long-term prediction of signif-
icant wave height? How can data of coastal morphodynamics (bathymetries)
improve the model’s performance?
Many studies already investigated the single-point reconstruction (hindcast)
and prediction (forecast) of significant wave height with machine learning
methods – mostly neural networks (c.f. Section 1.3.2) – but non of them
considered complex coastal morphodynamics yet. Pirhooshyaran and Sny-
der (2020) introduced the sequence-to-sequence LSTM neural networks for
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deep ocean wave height reconstruction and prediction. Fan et al. (2020) used
LSTMs to improve numerical prediction of SWAN wave model (c.f. Section
1.3.1). In Chapter 3, the consideration of coastal morphodynamics for state
of the art single-point significant wave height reconstructions and predictions
was addressed in a coastal area for the first time using LSTM and ensemble
of parallel LSTM neural networks. The LSTM was fed by time series of meto-
cean input data coming from two wave buoys off the coast of Norderney and
a measurement station of the German Meteorological Service (DWD), as well
as linear bathymetry data of the ETD sandbanks from 2004–2017. The LSTM
was compared to several machine learning algorithms for benchmarking and
the proposed method was validated on well-studied offshore buoys off the U.S.
west coast. By feature selection, the improvement of the LSTM with included
bathymetric data was of special interest regarding the aim of this dissertation,
albeit this study was limited to single-point reconstructions and predictions.

III. (RQ-c) How can bathymetries of coastal morphodynamics be simulated and used
to predict two-dimensional significant wave height with convolutional neural
networks? What speed-up compared to common numerical modeling can be
reached using machine learning?
Since only limited data of ETD sandbank morphologies are available from
hydrographic surveys (Spicer et al., 2019), most models in the literature –
both numerical and machine learning – consider static bathymetries only (c.f.
Section 1.3.1). In Chapter 4, this problem was addressed by simulating ETD
sandbanks using a geostatistical approach based on variogram analysis and
random fields simulation. Simulated ETD sandbanks were used for the first
time to train a two-dimensional mixed-data deep CNN (c.f. Section 1.3.2),
since the aforementioned methodological approach can extend the amount
of coastal morphodynamic data. This aimed to generally consider arbitrary
coastal morphodynamics in SWH predictions. Ground truth wave fields were
modeled by SWAN (c.f. Section 1.3.1) and respective metocean data from
2004–2017, thus the resulting CNN model formed a SWAN surrogate model.
Other studies like Zhou et al. (2021) reached immense speed-ups by machine
learning (especially CNN) surrogates, compared to common SWAN numerical
model. Reduction of computational time is of special interest for rapid coastal
protection applications (Hu et al., 2021). The proposed CNN spatial model
was used for the investigation of SLR scenarios, as well as the impact of pos-
sible bad ETD morphologies on coastal protection at the Norderney coastline,
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since spatial morphodynamic dependencies are essential for accurate predic-
tions. Validation was performed on 59 buoy measurements by comparing the
performance of SWAN numerical model and proposed mixed-data CNN sur-
rogate model.

The three introduced studies are the framework of this dissertation and will be elab-
orated in the following three Chapters 2, 3 & 4. In Chapter 5, an overall discussion
of the results and findings is given and conclusions are made. Fig. 1.9 summarizes
the framework of this dissertation. All research discussed in this dissertation has
already been published in a peer-reviewed scientific journal or is under review (Ap-
pendix III: List of publications).

Study II

Introduction

Discussion and
Conclusions

Quantification of
coastal

morphodynamics

Coastal
morphodynamics for

single-point prediction

Simulated coastal
morphodynamics for

two-dimensional
prediction

mixed-data CNN neural network
random fields simulation


Study IIIStudy I

SWAN modeling
damping effect analysis
GIS analysis of ETD movement

LSTM neural network
improvement by including bathymetry

Figure 1.9: Flowchart diagram representing the structure of the main part of this
dissertation including the three consecutive studies with an overview of the corresponding
methodologies applied in each one. The arrows indicate the direction of information flow
between the research studies.
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2 Research Study I

Quantification of morphodynamic variability and sea state damping of
plates at the nearshore area in the East Frisian North Sea

Co-Authors: Cordula Berkenbrink, Jannis Heil & Britta Stumpe
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Abstract

At the nearshore area of Norderney, the ebb-tidal delta (ETD) sandbanks
exert a huge impact on the local wave climate, which is of particular interest
for coastal protection. Besides an eastward migration of the sandbanks with a
mean velocity from 435–491 my−1, depending on the plates position, the ETD
sandbanks had a high variability in shape and size. Therefore, the influence of
those morphodynamic changes on the sea state damping effect was quantified
by dynamic bathymetries using validated SWAN simulations. The impacts
of the bathymetries from the years 1995, 2005, 2006, 2008, and 2015 with
highest morphological variability were considered for five different boundary
conditions, representing storm surge events of the Norderney nearshore wave
climate. A mean variation of 14 ± 2% of the relative sea state damping ef-
fect was found for the different bathymetries of the ETD sandbanks at the
various boundary conditions. Swell waves showed a range of 16 ± 2% for the
damping effect, which increased with increasing incoming wave height. Buoy
data off the Norderney coast from 1992 to 2017 were investigated and a mean
buoy-measured damping effect of 0.37 was determined over the entire period.
General results of SWAN modeling were also found in the in-situ measure-
ments.

Keywords: sea state damping, SWAN, North Sea wave climate, ebb-tidal delta
sandbank morphology, sea state separation, sea state variability
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2.1 Introduction

Coastal areas are of great interest as present and future climate change impacts,
such as sea level rise, will put increasing pressure on humans living in those regions.
Also the possibility of an increase in extreme storm events, which may damage
coastal areas, is conceivable (Bengtsson et al., 2009; Weisse et al., 2012). For the
North Atlantic and the North Sea, various studies that have analyzed the wave cli-
mate identified an increasing trend in ocean wave heights (Bacon and Carter, 1991;
Grabemann and Weisse, 2008; Mori et al., 2013; Vanem and Walker, 2013; Weisse
and Gunther, 2007). To sufficiently assess coastal management risks and evaluate
human interferences, detailed knowledge about the wave climate is of particular in-
terest, not only for coastal protection, but also for offshore structures and operations
(Kaiser and Niemeyer, 2007; Teich et al., 2018; Wang et al., 2012).
For such purposes, the state of the art third generation wave model SWAN (Simu-
lating WAves Nearshore) is often applied for modeling design waves, wave climate,
and special events in shelf seas, coastal, and nearshore areas (Booij et al., 1999;
Hoque et al., 2019; Sebastian et al., 2014; Vieira et al., 2020). In many cases, static
bathymetries are used for those applications (Akpinar et al., 2016; Hoque et al.,
2019; Kutupoğlu et al., 2018; Sierra et al., 2017). But SWAN modeling with dy-
namical bathymetries is also an important and promising approach in coastal risk
assessment. Thus, some studies estimated morphological impacts on the wave cli-
mate in coastal and nearshore areas (Dallas and Barnard, 2011; Eshleman et al.,
2007). Due to local changes in the morphodynamic conditions and the interaction
of numerous different influences, global wave climate issues are very heterogeneous
on a local scale (Kaiser and Niemeyer, 2007; Wang et al., 2012). Various studies
analyzed those morphological conditions and sediment dynamics of ebb-tidal deltas
(ETD) in coastal areas (Anthony, 2013; Bergillos et al., 2016; Hansen et al., 2013).
ETDs consist of sediments from ebb-tidal currents, deposited seawards of the tidal
inlet (Dallas and Barnard, 2011). They are subject to rapid changes by migration,
erosion, and accretion (Castelle et al., 2007).
The ETD sandbanks off the Norderney coastline have a major impact on the local
wave climate, since they are a natural barrier against incoming waves, especially
during extreme events for which only few in-situ buoy data are available (Niemeyer,
1979; Niemeyer and Kaiser, 1999). Wave breaking causes the sea state energy to
be dissipated on the sandbanks before reaching the islands beaches, while many
influences affect the damping, whose complexity is not yet entirely known even due
to missing measurements (Niemeyer and Kaiser, 1999). In order to consider local
morphodynamic influences on the sea state, small-scale and high-resolution analy-
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ses are necessary. Until now, no quantification of this damping effect, especially for
the specific impact on swell waves, has yet been done. In particular, the influence
of specific small-scale morphological changes or rather gaps in the ETD sandbanks
on the sea state in this area is of great interest for coastal protection, as the ETD
sandbanks are constantly exposed to morphological changes.
Thus, the main objective of this study was to quantify the influence of the ETD
sandbank dynamics on the sea state and to analyze their damping effect by vali-
dated SWAN simulations for representative storm events at tidal high water (THW)
and for swell in specific.
In Section 2.2 the research area and dataset are presented. In Section 2.3 the ETD
sandbank dynamics (migration velocities and changes in size and shape) are ana-
lyzed with GIS based on five different bathymetries from 1995, 2005, 2006, 2008, and
2015. Section 2.4 presents the methods for data analysis and numerical modeling
with SWAN. Based on the previous analyzes, Section 2.5 focuses on the modeling
results of the nearshore sea state of Norderney with dynamic bathymetries in SWAN
to isolate and quantify the ETD influences on the sea state damping. Therefore,
five representative storm cases are simulated and the respective damping effects
are discussed. The Norderney nearshore wave climate is also characterized in this
chapter to distinguish natural variability from morphological influences. Further
evaluations transfer some general findings of the modeled sea state damping effect
to the buoy measurements, unaffected and affected by the morphodynamic of the
ETD sandbanks off the Norderney coast. Section 2.6 then provides appropriate
conclusions.

2.2 Research area and data

2.2.1 Research area

The research area covers the nearshore zone of the coastal area of the East Frisian
island of Norderney in the northern German North Sea. It extends from about
7.05◦–7.3◦ E and 53.85◦–53.65◦ N. Norderney is separated from the island of Juist
in the west by the Norderneyer Seegat and from Baltrum in the east by the Wichter
Ee (Fig. 2.1). The main wind direction of the research area is southwest. The
long-term Mean High Water (MHW) is 1.24 m above the German reference height
(NHN), which is equal to the German mean sea level.
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Figure 2.1: Map of the research area and the positions of the buoys. The buoys are
clustered according to their absolute variability. The SWAN model area (red) and the
extend of the relevant ETD sandbanks (dashed line) are shown on the map.

2.2.2 Data

Measurement data of three buoys located in the research area were provided by the
Coastal Research Station of the Lower Saxony Water Management, Coastal Defence
and Nature Conservation Agency (NLWKN), Norderney. Two buoys (Coast Ref &
Coast I) are located north of the ETD sandbanks – the reef arch west and north
of Norderney – and one buoy (Coast II) is located south of the ETD sandbanks
and north of the Norderney coastline (Fig. 2.1). Due to their position north and
south of the ETD sandbanks and the amount of data collected (1992–2017), the two
buoys Coast I and Coast II were selected for the analysis of the sea state damping
effect (Fig. 2.1). All buoys are of the type Datawell Waverider, both directional and
non-directional, which measure heave, north (directional only) and west (directional
only) acceleration with a frequency of 1.28 Hz. Wind and water level data were
given by the German Meteorological Service (Deutscher Wetterdienst, DWD) for
the station Norderney and the Waterways and Shipping Administration (WSA) for
the measurement level Norderney-Riffgat, respectively (Fig. 2.1). The mean tidal
water level at gauge Norderney-Riffgat was about 0.04 m NHN in the observed years.
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For the analysis of the ETD sandbank dynamics digital terrain models (DTMs) and
aerial photos of the ETD sandbanks were also provided by the NLWKN Coastal
Research Station. The DTMs included the years 1995, 2005, 2006, 2008, and 2015,
while the aerial photos were available for 1995 and 2005 to 2008. The DTMs were
also used as bathymetries for SWAN modeling.

2.3 Morphodynamic analysis of the ETD sandbanks by GIS

2.3.1 ETD dynamics analysis methods

In a first step an analysis of the ETD sandbank movements and dynamics was
performed with QGIS using the DTMs and aerial photos (QGIS Development Team,
2019). A detailed description of the meta data of the DTMs and the aerial photos
is given in Tab. 2.1. The five different bathymetries from the DTMs were selected
for the highest degree of variability in their characteristics of the sandbanks size
and shape. Differences between the aerial photos and the DTM analysis can be
explained by the varying dates of survey (Tab. 2.1). Different water levels of the
aerial photographs caused a coarse approximation of plates below sea level.
The hydrographic surveying for the DTMs was performed with a sampling rate of
3–10 kHz. For a more accurate measurement, the measurement profiles should be
perpendicular to the depth contours. However, this cannot always be guaranteed due
to the partly round shape of the ETD sandbanks (Bremermann and Meyer, 2012).
The DTMs were calculated in QGIS by triangulation via a Triangulated Irregular
Network (TIN) on an even grid with a grid point distance of 5 m. If necessary,
corresponding data points were recalculated after error correction (Bremermann
and Meyer, 2012). Because the Mean Low Water (MLW) is about -1.21 m NHN
and the Lowest Low Water (LLW) is about -2.48 m NHN, the ETD sandbanks were
defined as all areas above -3.5 m NHN, to ensure that all areas were taken into
account. Bremermann and Meyer (2012) used this value as the lower boundary for
the definition of sandbanks in order to include both single plates as well as extended
plate structures. To consider differences in sea level, the bathymetries have been
clipped to a reference area defined by the extend of the ETD sandbanks over all
years (Fig. 2.1) and were MLW-corrected by subtracting the annual MLW of the
respective years. The distribution of the water depths at MLW provided indications
of how wave breaking was influenced and the plates developed. To validate the
results of the DTMs, which include measurements of several months, the shape of the
ETD sandbanks was visually detected and calculated by image segmentation with
k-means algorithm (see Section 2.4.2) off the aerial photo snapshots (Dhanachandra
et al., 2015).
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Table 2.1: Information about the survey of the DTMs and aerial photos.

hydrographic surveying
year institution survey time point distance [m]

1995 BSH 23/05–13/09 200 × 200 (100 × 100)
2005 NLWKN 02/03–22/11 10 × 150
2006 BSH – 75 × 100
2008 NLWKN – 2 × 100
2015 BSH – 5 × 5

aerial photos
year institution scale recording time MEZ water level [m NHN]

1995 WBG 1:28 000 10/07 15:15 -1.52
2005 Hansa 1:28 000 22/09 08:38 -1.66
2006 WBG 1:28 000 01/07 09:27 -1.35
2007 WBG 1:28 000 03/10 –
2008 WBG 1:28 000 31/07 16:57 -1.66

2.3.2 ETD dynamics analysis results and discussion

The results of the long-term variability of the ETD sandbank dynamics were eval-
uated by analyzing their movement, size and shape based on the five topographies
as given below.
To obtain a general overview of the movement and size, Fig. 2.2 shows the different
height distributions of the sandbanks against the MLW-corrected water depths of
the relevant years. The histogram qualitatively describes the ETD sandbanks dis-
placements, since differences between the years are significant. In 1995 (blue) the
distribution was skewed to the left or lower water depth, while being skewed to the
right or higher water depth since 2005 (orange). In the interval of 1 to -3 m, fewest
values were found in 1995 (Fig. 2.2).
Following, we analyzed the specific movement velocities and patterns of the plates
Nordwestergründe (NWG I/NWG II) and Nordergründe (NG) (Tab. 2.2, Fig. 2.3).
In general, the ETD sandbanks move from the eastern end of Juist in a curve to
the north, east, and south-east and accumulate at the northern beach of Norderney
(Fig. 2.3). The mean velocity of the plates moving east is about 435 ± 180 my−1

for NWG I/NWG II and 491 ± 388 my−1 for NG with a high standard deviation
of annual velocities that will not allow for a consistent periodic pattern (Tab. 2.2).
Bremermann and Meyer (2012) indicated a displacement velocity varying between
250 and 430 my−1 depending on the current position of the plates, whereby a period
of approximately 37 years was calculated for a complete cycle of a plate. Other
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studies quantified the average displacement velocity at 400 my−1 (Fitzgerald et al.,
1984) and at 325 my−1 in the west and 500–550 my−1 in the east (Gaye and Walther,
1935).

Figure 2.2: Distribution of the ETD-clipped and MLW-corrected water depths for the
years 1995, 2005, 2006, 2008, and 2015.

The sizes of the ETD sandbanks vary over time with a mean area of 55 ± 24 ha or
126 ± 83 ha for NWG or NG, respectively. This could be caused by non-periodic,
extreme storm surges, which can lead to abrupt changes of the ETD sandbanks
shape and size and rather periodic influences such as currents and tidal inlets (Dal-
las and Barnard, 2011; Wang et al., 2012).
The qualitative analysis of the plates shape was carried out for individual years. In
1995, the shape of the ETD sandbanks was narrow between Coast I and Coast II
(three gaps were visible), while they were most developed in 2005 (Fig. 2.3). In 2005,
NWG II and NG merged. From 1995 to 2005, the small plate in the west (northwest
of Coast II) has moved south. In 2005, the entire area between Coast I and Coast
II was filled with plates. In 2006 there was a small gap between NWG I/NWG II
and NG, between 320◦ and 332◦. NWG I had moved north in 2006, getting closer to
NWG II and causing a great gap south of NWG I. The Buise-Low has extended to
the north in 2006 (Fig. 2.3). In 2008, the northern gap has moved between 345◦ and
10◦, while NWG I and NWG II merged during this year. Thus, the gap has become

31



RESEARCH STUDY I

13◦ larger. South of the new NWG plate a huge gap still existed. From 2005 to 2008
the development of an accumulating plate at the east of the Norderney beach was
clearly visible (Fig. 2.3). This small plate connected to the beach of Norderney in
2008. Areas falling dry periodically were identified in 2008 (Fig. 2.3). In 2015, the
small gap has moved to the west with a range of 325◦–345◦. It was 5◦ smaller than
the year before, but a new huge gap was developing from the east (Fig. 2.3).
Furthermore, the ETD sandbanks did not become higher with sea level rise, since
a significant correlation of the minimum, maximum, mean, and standard deviation
of the uncorrected depths and the MHW and MLW of the respective years was not
found (Tab. 2.3). However, potential growth effects may be superimposed by the
natural dynamics of the ETD sandbanks.
The dynamics of the ETD sandbanks described above provide a basis for further
analyses of its influences on the sea state. Respective methods are explained in the
next chapter. In summary, the ETD sandbanks were small in 1995, while being
most developed in 2005. In 2006, 2008, and 2015 small gaps between plates were
visible (Fig. 2.3).

Figure 2.3: Bathymetries of the research area for the years 1995, 2005, 2006, 2008, and
2015. The bathymetries were used for SWAN simulations.
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Table 2.2: ETD sandbank displacement velocities and sizes of the (a) DTMs (bathymetry) and (b) aerial photos.

year movement velocity & direction [my−1] area [ha]
NWG I NWG II NG NWG I NWG II NG

2005/06a 663 (N) 354 (NE) 256 (SW) 33/19 258/85
2005/06b 559 (N) 191 (N) 278 (E) 24/29 58/23 168/164

2006/07b 626 (NE) 1 160 (E) 29,23/51 164/147

2007/08b 315 (NE) 258 (SW) 51/72 147/30

2006/08a 335 (NE) 503 (E) 19/79 85/30

mean 435 491 55 126
std 180 388 24 83
min 191 256 19 30
max 663 1 160 82 258
n 7 5 7 7
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Table 2.3: Correlation between mean water level (MHW and MLW) and ETD sandbank
heights (uncorrected depth) for data of the years 1995, 2005, 2006, 2008, and 2015.

Water Level ETD min ETD max ETD mean ETD sd

MHW -0.74 0.11 -0.44 -0.03
MLW -0.25 0.64 0.21 0.29

2.4 Analysis methods of ETD sea state damping

2.4.1 Buoy data

2.4.1.1 Wave parameter postprocessing

The buoys postprocessing software W@ves21 provided wave parameters from a spec-
tral analysis at 30-min time periods (history data files) (Datawell, 2014). Since all
data should be processed consistently and the buoys software had changed over the
years, the raw (directional) surface elevation data of the 30-min periods were used in
addition to the history data files. Based on the buoys raw data, a data preprocess-
ing was performed with the MATLAB toolbox WAFO to calculate the continuous
variance density spectrum for a range of 0–0.65 Hz by a Fast Fourier Transformation
(FFT) of the surface elevation values of the 30-min periods (WAFO, 2011). Various
outlier detection tests were applied to remove and reconstruct spurious surface ele-
vations (Holthuijsen, 2007; WAFO, 2011).
The statistical wave parameters significant wave height Hm0 , energy period Tm−1,0 ,
peak period TP , and the wave direction DirP were determined half-hourly from the
spectral variance density. They are defined as

Hm0 = 4
√
m0, Tm−1,0 =

m−1

m0

, TP = argmax(S(f))−1 (2.1)

where mn is the n-th moment of the variance density spectrum defined as

mn =

∫
fnS(f) df (2.2)

where S(f) is the variance density spectrum of frequency f . The wave direction
DirP is defined as the wave direction at the variance density spectral peak (Bacon
and Carter, 1991; Holthuijsen, 2007; Sheng and Li, 2017; SWAN, 2019b; Young,
1999).
The data preprocessing and the calculated sea state parameters were validated with
the history data files (Fig. 2.4). As a result, the parameters calculated in Eqs. 1
and 2 were used in the following. Some measurement periods had to be excluded
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from further analysis due to buoy failure and incorrect measurements caused by
storms or maintenance. A qualitative verification of the measured data, followed by
an inspection of extreme storm events, and wind data was conducted (Axer et al.,
2005-2008). Only extreme wave events with a corresponding storm event were kept
in the final data set.

Figure 2.4: Comparison of buoy history data (green) and the processed raw data (red)
for the parameter Hm0 for three month of the year 2016. The parameters calculated from
the variance density spectrum of the raw data were used in this study.

2.4.1.2 Spectral separation

To identify swell and wind sea, a partitioning and separation of the variance density
spectra was performed. The applied partitioning algorithm is based on Hanson and
Phillips (2001) which is an implementation of the concept described by Hasselmann
et al. (1996). The idea is to consider the wave spectrum as mountains and to define
different regions by matching every spectral grid point to a local peak with highest
local spectral energy. This is also known as the watershed algorithm. From the
eight surrounding neighbor grid points, the one with the direction of the steepest
ascent was iteratively chosen. All grid points assigned to the same local maxima
were clustered into a partition of the wave spectrum. Individual partitions were
not merged to swell or wind sea systems as described in Hasselmann et al. (1996)
and Portilla et al. (2009), because the total swell or rather wind sea energy was
of interest. To remove fine scale noise, a H-maxima transformation was applied to
suppress all maxima of the wave spectrum whose height was less than h = 0.028

(Hanson and Phillips, 2001; Hanson et al., 2009; Portilla et al., 2009).
After partitioning, two different methods for spectral separation, namely wave age
criterion and separation frequency, were compared. The wave age criterion uses two-
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dimensional spectral information and depends on wind speed U [ms−1] and direction
Uθ [◦]. Since it is difficult to determine the phase speed c of the wind sea in shallow
waters for each wave event depending on the wave period T , the phase speed for
deep water was applied. Wind sea was defined after the wave age criterion by

f ≥ g

2π
(1.5 U · cos(δ))−1 : 0 ≤ δ ≤ π

2
(2.3)

where f = T−1 is the frequency of the waves, g = 9.81 the gravity constant and δ the
angle between Uθ and the measured wave direction DirP . If the peak of a partition
falls within the described parabolic area of Eq. 2.3, the entire partition was defined
as wind sea, otherwise as swell (App. I.1). Factor 1.5 was used in Hanson and
Phillips (2001) to ensure that all wind sea peaks are obtained.
The second method of the separation frequency fS uses the wind speed U only and,
therefore, does not depend on the directional information of the buoy to determine
a frequency which defines the swell at lower frequencies and the wind sea at higher
frequencies (App. I.1). For this method the following applies

fS = 0.104
g

U
(2.4)

based on the peak frequency of the Pierson-Moskowitz spectrum (PM-peak method)
(Pierson and Moskowitz, 1964; Portilla et al., 2009). To ensure that all wind sea
peaks were included, the separation frequency in Eq. 2.4 was applied. It is shifted
to lower frequencies compared to other methods, which, e.g., use the relationship
of the peak frequency of the steepness function and the wind speed (Portilla et al.,
2009; Wang and Hwang, 2001).
Compared to the wave age criterion, the separation frequency provided better results
for events with low wind speeds and a high difference between wind and mean wave
direction, and was therefore used in this study.

2.4.2 Statistical methods of natural sea state variability

While the analysis of the ETD sandbank dynamics was presented in the previous
chapter, the statistical methods to describe the natural variability of the sea state
are described below. To get a first overview of the data and their temporal vari-
ability, two time-series were plotted and a linear regression was performed on buoys
Coast I and Coast II to find a linear trend in the wave height data. Afterwards, the
general natural variability of the sea state was described by means and standard
deviations of the buoy data. To quantify the intensity of possible non-linear influ-
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ences on wave propagation in this area, the linear Pearson correlation coefficient r
between the wave heights of the different buoys was determined (Cowpertwait and
Metcalfe, 2009; Ruggiero et al., 2010).
In addition to the time series analysis, a k-means clustering of the data was carried
out, in order to identify groups of buoy positions with equal temporal variability
(Jain, 2010). Therefore, the clustering was performed according to the Hm0 stan-
dard deviation of each buoy. The k-means clustering algorithm is an unsupervised
method to group a dataset into a fix number of k ∈ N clusters. The centroid and
objects of each cluster are determined iteratively by assigning objects to clusters by
their nearest centroid and calculating new cluster centroids, whereby the initial cen-
troids are randomly selected. Iteration stops, when the sum of squared errors (SSE)
between the mean of every cluster centroid and its assigned objects is minimized. In
this study the Euclidean metric was used to calculate the distances (Herrero et al.,
2015; Jain, 2010; MacQueen, 1967). To find the optimal k, the sum of squared dis-
tances within a cluster (WSS) and the sum of squared distances between the clusters
(BSS) were calculated and minimized and maximized for k = 1, 2, 3, respectively
(Hartigan and Wong, 1979). The number of clusters at the elbow point of the re-
spective quality indicators was selected to ensure both good interpretability as well
as separation of the clusters (Hastie et al., 2009).
After determining spatial groups of similar wave height variability, we looked for sea-
sonality in the clustered data by periodicity analysis. Therefore, a periodogram was
calculated by FFT of the half-hourly Hm0 data (Venables and Ripley, 2002). The
periodogram shows the (smoothed) spectral density of periodic components with a
certain period of a time series. Thus, harmonic periodic patterns and their ampli-
tudes in the data were used to determine the main seasonal components (Bloomfield,
2000; Shumway and Stoffer, 2006; Vanem and Walker, 2013). Clearly identifiable
peaks in the periodogram indicate specific periodic signals in the sea state data.
The original data can be written as the sum of sinusoid functions determined by
the FFT. A period of e.g. 1 h in the periodogram refers to a sinus curve with the
respective period and an amplitude given by the spectral density.

2.4.3 Numerical modeling

2.4.3.1 SWAN wave model

Nearshore sea state modeling was performed with the third-generation wave model
SWAN with an unstructured grid. SWAN is made for simulations of random, short-
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crested waves in coastal regions (Booij et al., 1999). It calculates the spreading of
the sea state by solving the spectral action balance equation

∂

∂t
N +

∂

∂x
cxN +

∂

∂y
cyN +

∂

∂f
cfN +

∂

∂θ
cθN =

S

f
(2.5)

where N = N(f, θ) is the action density spectrum with frequency f and wave
direction θ. The action density spectrum is equal to the variance density spectrum
divided by the frequency f . t denotes the time, x and y represent the geographical
propagation with velocities cx and cy, respectively. The fourth term in Eq. 2.5
represents changes in depth and currents of the computational grid. The fifth term
of Eq. 2.5 represents directional changes caused by refraction (Booij et al., 1999;
SWAN, 2019a). The unstructured computational grid must have 4–10 cells around
every node and the size of the inner angles must not exceed 143◦ to run properly
in SWAN (SWAN, 2019b). Unstructured grids can be fitted to the topography and
simultaneously reduce the computational costs.

2.4.3.2 Model settings

The unstructured grid was adjusted to the average ETD sandbanks shape and was
therefore applicable for all bathymetries, while the number of nodes was kept low
at 32 055. The maximal spatial resolution of the unstructured grid was about 16
m around the ETD sandbanks, while the resolution had its minimum of about 154
m at the model boundaries (Fig. 2.5). The unstructured grid was created with
the Surface-water modeling system (SMS) and the paving method (Surface-Water
Modeling System, 2012).
All computations with SWAN were performed in stationary mode of SWAN model
version 41.20AB. The wind input and whitecapping generation was chosen according
to van der Westhuysen (2007). Triad wave-wave interactions of Eldeberky (1996)
were used with proportionality coefficient αEB = 0.1 and a maximum frequency
fmaxEB

= 2.5 fm01 with fm01 mean frequency, as proposed in van der Westhuysen
(2012). Quadruplet wave-wave interactions were modeled using the Discrete Inter-
action Approximation (DIA) according to Hasselmann et al. (1985). Bottom friction
was represented by Hasselmann et al. (1973) with a friction coefficient of 0.038m2s−3

as proposed by van der Westhuysen (2012). For depth-induced wave breaking the
β − kd parameterization of Salmon et al. (2015) was applied, which shows compa-
rable results to the φ parametrization of van der Westhuysen (2009, 2010) and is
recommended for complex coastal environments with horizontal bathymetries and
local wave generation like the nearshore area of Norderney (Salmon and Holthui-
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jsen, 2015). The proportionality coefficient α for the rate of dissipation of the β−kd
parametrization was tested during calibration of the respective events between 0.05
and 1.00 (see 2.4.3.4).

Figure 2.5: SWAN model boundary conditions and grid properties. The northern
boundary is equal to the sea state signal of Coast I. The western boundaries (B1 to B8)
are modeled by a one-dimensional SWAN simulation with the respective bottom profile
and incoming wave signal of Coast I. The southern and eastern boundaries are considered
as open boundaries. In the background the topography of 2015 is shown.

A frequency resolution of 73 frequencies between 0.025 Hz and 1.0 Hz and a di-
rectional resolution of 2.5◦ over the whole circle were applied. To ensure full con-
vergence of the SWAN computations, the curvature-based criterion of Zijlema and
van der Westhuysen (2005) was used. Accordingly, computations were stopped if the
curvature of the normalized Hm0 iteration curve was less than 0.005 and either the
absolute or relative change in Hm0 changed by less than 0.005 m or 0.01 respectively,
for over 98.5% of the computational wet grid points (Salmon and Holthuijsen, 2015).
A maximum of 80 iterations was set.
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2.4.3.3 Boundary conditions

Tab. 2.4 presents the selection of measured cases for the boundary conditions of
SWAN modeling. The buoy-measured signals of Tab. 2.4 at position Coast I were
used as the northern boundary for the respective cases (Fig. 2.5). The western
boundary was divided into eight different sections (Fig. 2.5), which were each mod-
eled by a one-dimensional simulation with SWANOne with the same hydrodynami-
cal and bathymetric conditions as the main simulation (Verhagen et al., 2008). The
southern and eastern boundaries were defined as open boundaries.
For each simulation, the wind input and water level were assumed to be constant
according to the measurements presented in Tab. 2.4 (Witting et al., 2014). The
calculated 10 m wind speed at sea was used. The bathymetries analyzed in Section
2.3 were used for the respective modeling cases. Currents were not considered in this
study, since only simulations and observations at THW were taken into account. In
the coastal area, the direction of the dominant tidal currents change near peak wa-
ter levels, thus the current velocities at these times, i.e., to THW and TLW, can be
neglected (Kaiser and Niemeyer, 1999; Koch and Niemeyer, 1978; Mai et al., 2004).
All selected cases are representative storm events from different years (different
bathymetries) with different wind speeds and wind directions at the respective THW
time, because coastal protection is focused on such events. The quantification of the
ETD damping effect is of great interest especially during such events.
With 12 cm, the variation of the observed MHW at Norderney-Riffgat in the com-
puted years 1995, 2005, 2006, 2008, and 2015 was significantly higher than the
theoretical mean sea level rise of about 28 cm per century so that sea level rise was
not considered in the simulations and an area-constant water level was used for each
modeled case.

2.4.3.4 Model calibration

The nine selected cases in Tab. 2.4 were divided into four calibration and five
validation cases. Calibration was performed to fmaxEB

of the triad wave-wave in-
teractions, bottom friction coefficient, and the proportionality coefficient α of the
β−kd parametrization. For fmaxEB

∈ [2.00, 5.00] fm01 best results in terms of abso-
lute percentage error of the wave parameters and qualitative analysis of the spectra
were achieved for fmaxEB

= 2.5 fm01 as initially set according to van der Westhuy-
sen (2012) (see 2.4.3.2). The bottom-friction coefficient was tested for the interval
[0.01, 0.1] with the best results for the initial parameter 0.038 m2s−3 by (van der
Westhuysen, 2012) (see 2.4.3.2). Fig. 2.6 shows the results of the triad wave-wave
interactions and bottom friction calibrated model wave spectra at position Coast II.

40



RESEARCH STUDY I

Table 2.4: Selection of Buoy Measurement Cases of Coast I and Coast II for Calibration and Validation (Test Cases) for the boundary conditions
of SWAN modeling.

Case Name Date and Time
(UTC+1)

USee
[ms−1]

Uθ [◦]
Water Level
[m NHN] Tidal Phase Hm0

Coast I [m]
Tm−1,0

Coast I [s]
Dir
Coast I [°]

Calibration #1 15-Nov-2005 10:00 10.2 320 1.99 THW 2.00 6.02 318
Calibration #2 16-Dec-2005 10:00 18.5 343 2.18 THW 4.82 8.28 333
Calibration #3 07-Nov-2015 21:30 16.0 247 1.64 THW 1.92 4.91 353
Calibration #4 11-Jan-2015 14:30 21.4 290 2.45 THW 5.37 8.91 324
Validation/Test Case #1 25-Jan-2015 02:30 7.9 310 1.91 THW 2.08 6.29 308
Validation/Test Case #2 02-Feb-2015 10:00 9.1 313 1.47 THW 2.30 6.09 303
Validation/Test Case #3 05-Sep-2015 16:00 17.9 307 1.97 THW 3.91 7.39 324
Validation/Test Case #4 16-Dec-2005 23:00 18.8 330 2.62 THW 4.42 8.19 333
Validation/Test Case #5 20-Jan-2005 06:00 18.3 277 1.70 THW 3.98 7.76 324
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The β − kd proportionality coefficient α was adjusted individually to the different
wind speeds and directions in the range of 0.05–0.25 for both the calibration and
validation data, which provided the best results (Fig. 2.6). Comparing the measured
and modeled wave parameters after calibration, good results were obtained, since
mean absolute percentage errors (MAPE) of 2.07% for Hm0 , 9.19% for Tm0,1 , 6.00%
for Tm−1,0 , and 8.25% for TP were achieved for the calibration data. While case A
underestimated the spectral energy density peak, it was slightly overestimated in
case B. In case C, the wind sea was underestimated and the swell overestimated,
which could be caused by the western wind direction. In total, good correspondence
of the wave parameters is shown. The calibration to the northwesterly storm event
D showed a good fit to the wave parameters, but overestimated the spectral peak
and did not fit the wind sea properly. SWAN also showed an overall satisfactory
modeling accuracy of the mean wave direction (Fig. 2.6).

Figure 2.6: Variance density spectra of the calibration cases. The observed (blue) and
modeled (red) spectra and directions as well as the wave parameters are shown for A:
15-Nov-2005 10:00 with β − kd proportionality coefficient α = 0.05, B: 16-Dec-2005 10:00
with α = 0.05, C: 07-Nov-2015 21:30 with α = 0.05, and D: 11-Jan-2015 14:30 with
α = 0.25.
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2.4.4 Model validation and transfer to test cases

After calibration, the model settings were transferred to the five validation and test
cases of Tab. 2.4 as shown in Fig. 2.7. The validation reached good results with
MAPE of 1.47% for Hm0 , 10.80% for Tm0,1 , 7.24% for Tm−1,0 , and 18.76% for TP . An
overall satisfactory accuracy of the mean wave direction was achieved (Fig. 2.7).

Figure 2.7: Variance density spectra of the validation and test cases. The observed
(blue) and modeled (red) spectra and directions as well as the wave parameters are shown
for A: 25-Jan-2015 02:30, B: 02-Feb-2015 10:00, C: 05-Sep-2015 16:00, D: 16-Dec-2005
23:00, and E: 20-Jan-2005 06:00.

Therefore, the validated cases were suitable to model the isolated changes of the
ETD sandbanks on the sea state damping effect and were also used as the test cases
of this study with the above described boundary conditions (Tab. 2.4). The bound-
ary conditions were selected for different wind speeds and wind directions as well
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as different related bathymetries, since the aim was to focus on representative sea
states during storm events at THW. Because only the bathymetries differed in the
simulations of each test case, the model results were able to describe the isolated
ETD sandbanks influence on the wave height by the sea state damping effect as
defined in Eq. 2.6.
For each of the five test cases an ensemble of three simulations with five different
bathymetries each were performed. Differences within the three respective compu-
tational runs were neglectable, indicating a good numerical convergence.

2.4.5 Sea state damping effect

According to Niemeyer (1979), we define the relative and absolute sea state damping
effect of the ETD sandbanks as

∆rel Hm0 = 1−
HII
m0

HI
m0

and ∆abs Hm0 = HI
m0
−HII

m0
(2.6)

where HI
m0

and HII
m0

are the significant wave heights Hm0 measured at position Coast
I and Coast II, respectively.
To compare buoy-measured damping effects with SWAN simulations, a filtering of
the in-situ data according to the model boundary conditions is mandatory before
calculating the damping effects as defined in Eq. 2.6. Simulations were applied
to expand measurement data, thus relevant events were only sparsely covered by
the buoy data. Since many factors influence the buoy-measured damping effects
and SWAN represents only one specific condition, the sea state has to be filtered
according to: (A) significant wave height Hm0 and mean wave direction, (B) wind
direction and wind speed, (C) water level and tidal phase, divided into THW and
TLW, whereby a buffer of 1.5 h was placed around the events and the currents at
THW and TLW tend to zero, (D) swell and wind sea, as swell behaves differently
than wind sea when crossing the ETD sandbanks, and (E) summer and winter pe-
riod, defined as the period from April to September and from October to March,
respectively (Holthuijsen, 2007; Young, 1999).

2.5 Results and discussion of ETD sea state damping

2.5.1 Natural wave climate variability

For a first overview, detailed descriptive statistics of the different buoy positions
are given in Tab. 2.5. With increasing coastal proximity, the mean significant
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wave height Hm0 decreased from 1.20–0.63 m, mainly caused by depth-induced wave
breaking. Concurrently, the mean wave period Tm−1,0 and the quotient of its stan-
dard deviation and mean value increased slightly with increasing coastal proximity.
This could indicate a variability of different sea states and wave transformation pro-
cesses.

Table 2.5: Descriptive statistics of all buoys and buoy clusters of the research area.

Coast Ref Coast I Coast II Sea Area Nearshore
Area

Hm0 [m]

mean 1.20 1.07 0.63 1.14 0.63
sd 0.76 0.69 0.39 0.73 0.39
range 0.09–8.40 0.09–6.91 0.04–3.01 0.09–8.40 0.04–3.01

Tm−1,0 [s]

mean 5.62 5.77 6.04 5.70 6.04
sd 1.37 1.47 1.75 1.42 1.75
range 2.48–24.76 2.58–30.87 2.29–21.56 2.48–30.87 2.29–21.56

Based on the absolute variability (standard deviation) of Hm0 , the following two
groups were identified by k-means clustering: Sea Area and Nearshore Area (Fig.
2.1). The groups reflect the coastal proximity of the buoys. The absolute variability
of Hm0 also decreased with shorter distance to the coast, since it was related to the
decrease of Hm0 (Tab. 2.5). Tm−1,0 and its variability increased from the Sea Area
to the Nearshore Area (Tab. 2.5). While the two buoys of the Sea Area (Coast
Ref and Coast I) are unaffected by the ETD sandbanks, buoy Coast II (Nearshore
Area) must have been affected by the ETD sandbanks embossing, since the ETD
sandbanks are located between buoy Coast I and Coast II (Fig. 2.1). As position
Coast II forms its own cluster (Nearshore Area), the particular influences at this
position became evident (Tab. 2.5).
In order to identify and analyze small-scale periodical variability and its amplitude,
the periodogram of all buoy time series was performed (App. I.2). Since a strong
and dominant periodic pattern of the tidal signal was observed for the Nearshore
Area (period of 12.5 h) and a weaker signal for the Sea Area, the same two groups
were identified as by clustering. Therefore, the Sea Area was relatively less affected
by the tides than the Nearshore Area. Periods of about 6.25 h and 4 h showed also
small peaks for the Nearshore Area, as they could be artifacts of the tidal peak. The
tidal currents (tidal inlets and outlets) cause this effect, as they increase towards the
coast and the Wadden Sea. Compared to the North Atlantic wave climate, where
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the periodogram is mainly dominated by a one-year period (Vanem and Walker,
2013), the nearshore zone of Norderney shows a more complex structure.
As the correlation of Hm0 between the buoys Coast Ref and Coast I was very high
(r = 0.96), non-linear influences were neglectable. The correlations between Coast I
and Coast II and Coast Ref and Coast II were significantly weaker at r = 0.83 and
r = 0.82, respectively. Thus, non-linear influences could also occur between Coast
I and Coast II. This suggested that the ETD sandbanks may exert a non-linear
impact on the sea state, but the shallower water depth, currents, and interactions
with the beach and breakwaters may also have an effect on the correlation between
those positions.
In conclusion, to accurately quantify the influence of the ETD sandbanks on the
sea state variability and damping effect, the sea state at buoys Coast I and Coast
II was suitable. Fig. 2.8 shows the time series of buoys Coast I and Coast II. Since
Hm0 was much higher at both buoys in the winter month, a clear annual periodicity
became evident. This was caused by rougher weather, storms, and storm surges
with more frequent wind directions from north and northwest. Due to its position
in deeper waters, Coast I showed higher waves than Coast II. In contrast to previous
studies from Vanem and Walker (2013), a statistically significant long-term linear
trend could not be observed in the two datasets, since the R2 were 0.0379 and 0.0002
for annual mean values, respectively (Fig. 2.8).

Figure 2.8: Time series of Hm0 from 1992–2017 for the measurement of Coast I and
Coast II. The red line indicates a linear regression.
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2.5.2 Sea state damping effect – impact of ETD sandbanks on sea state

In addition to the analysis of the morphodynamic variability of the ETD sandbanks
as described in Section 2.3, this section presents the quantification of the correspond-
ing influences on the sea state damping effect in the nearshore area of Norderney,
which is of main interest in this study. To get a better overview, the results of Hm0

and the wave directions were evaluated graphically for the entire research area. For
test case #3, the northwest storm, the parameters Tm−1,0 , Hm0 swell, and DirSpr

were shown exemplarily for the whole research area (App. I.3). Since all test cases
were modeled to THW with neglectable currents, no generalizations were feasible
beyond this. The modeled sea state parameters and damping effects due to the
different bathymetries were analyzed for every one of the five test cases separately.
Afterwards some general findings of the results were presented.

2.5.2.1 Test case #1

Test case #1 reflects a moderate wind event from the northwest at THW (Tab. 2.4).
In 1995, Hm0 decreased slightly from 2.04–1.64 m between Coast I and Coast II
(Tab. 2.6). Although the relative damping effect was only locally defined, the waves
propagated almost undamped over the entire width of the coastline. Compared to
all other bathymetries, Hm0 was highest along the entire coastline in 1995 (Fig.
2.9A). Tm−1,0 also decreased least in 1995 from 7.26–7.06 s (Tab. 2.6). The waves
propagated almost straight from Coast I to Coast II without being deflected by the
topography (Fig. 2.9A). From 1995–2005 the greatest morphodynamic change in the
northern gap of the ETD sandbanks was modeled, resulting in an increase in the
absolute damping effect by 0.28–0.68 m. (Fig. 2.9A, Tab. 2.6). In 2005, the lowest
Hm0 and Tm−1,0 values were modeled with 1.36 m and 6.42 s, respectively, since the
area of the ETD sandbanks showed a maximum relative damping (Fig. 2.9A, Tab.
2.6). The respective relative swell damping increased from 1995–2005 by 0.17 (Tab.
2.6). In 2006, Hm0 increased again around Coast II compared to 2005 (Fig. 2.9A,
Tab. 2.6), as well as Tm−1,0 and Hm0 of the swell (Tab. 2.6). This was likely caused
by the gap between NWG and NG, where the waves reaching position Coast II were
passing through (Fig. 2.9A). In 2008, the increasing trend of Hm0 continued for the
area between Coast I and Coast II (Fig. 2.9A). The northern gap between NWG
and NG moved east and got larger, thus more wave energy could pass through to
Coast II (Fig. 2.9A). In 2015, no significant changes of Hm0 between Coast I and
Coast II were simulated compared to 2008. Hm0 and Tm−1,0 changed only slightly at
Coast II and the mean wave direction moved north by 3◦ in 2008 (Fig. 2.9A, Tab.
2.6).
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Figure 2.9: Modeling results of Hm0 for the years 1995, 2005, 2006, 2008, and 2015 for
test case #1 (A) and test case #2 (B). The arrows indicate the mean wave direction at
the respective grid points.
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Table 2.6: Modeled sea state parameters and damping effects of the considered years for
test case #1 with damping range 0.13 and 0.17 for swell, respectively.

Parameter Buoy Coast Topography

1995 2005 2006 2008 2015

Hmo [m]
I 2.04 2.04 2.04 2.04 2.04
II 1.64 1.36 1.42 1.50 1.52

Tm−1,0 [s]
I 7.26 7.26 7.26 7.26 7.26
II 7.06 6.42 6.51 6.67 6.65

wave direction [°] I 324 324 324 324 324
II 337 336 337 336 339

directional spreading [°] I 35 35 35 35 35
II 25 25 27 25 27

Hm0 swell [m]
I 0.51 0.51 0.51 0.51 0.51
II 0.44 0.35 0.37 0.39 0.39

water depth [m] I 14.01 14.01 14.01 14.01 14.01
II 9.03 7.18 7.49 7.44 8.02

absolute damping effect 0.40 0.68 0.62 0.54 0.52
relative damping effect 0.20 0.33 0.30 0.26 0.25
absolute swell damping effect 0.07 0.16 0.14 0.12 0.12
relative swell damping effect 0.14 0.31 0.27 0.24 0.24

In summary, the mean relative damping effect at position Coast II of all modeled
years for this test case was 0.27 ± 0.05. The relative damping effect increased from
0.20 in 1995 (minimum) to 0.33 in 2005 (maximum). The range of 0.13 or 13%
indicated an order of magnitude for the influence of the ETD sandbanks of 1995–
2015 on the damping effect for such an event. The mean relative damping effect for
swell was 0.24 ± 0.06, thus, the swell was less affected and damped than the entire
sea state for this event. With a range of 0.17 (0.14 in 1995 and 0.31 in 2005), swell
was percentagewise more influenced by the ETD sandbank dynamics (Tab. 2.6).
The mean wave directions between Coast I and Coast II did not change significantly
due to the morphological changes of the different years (Fig. 2.9A, Tab. 2.6).

2.5.2.2 Test case #2

Test case #2 also reflects a moderate wind event from northwest at THW, but with
a slightly higher wind speed and incoming wave height compared to #1 (Tab. 2.4).
The results were comparable with those of test case #1. The change of Hm0 due
to the changed damping effect from 1995–2005 was 0.41 m or 0.18 of the relative
damping, respectively (Tab. 2.7). Again, in 1995, when the highest value of Hm0
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was modeled, the waves propagated almost undamped and homogeneously over the
entire width of the coastline (Fig. 2.9B). Tm−1,0 also decreased least in 1995 7.02–6.84
s (Tab. 2.7). In 2005, the lowest Hm0 and Tm−1,0 values were simulated with 1.34 m
and 6.27 s, respectively (Fig. 2.9B, Tab. 2.7). The respective relative swell damping
increased from 1995–2005 by 0.19 (Tab. 2.7). In 2006, Hm0 increased around Coast
II compared to 2005 (Fig. 2.9B, Tab. 2.7). In 2008, the decreasing trend in the
relative damping effect continued for the area between Coast I and Coast II (Fig.
2.9B). The damping effect of the small plate in the east got significant (Fig. 2.9B).
In 2015, again, no significant changes of Hm0 between Coast I and Coast II were
found compared to 2008 (Fig. 2.9B, Tab. 2.7).

Table 2.7: Modeled sea state parameters and damping effects of the considered years for
test case #2 with damping range 0.18 and 0.19 for swell, respectively.

Parameter Buoy Coast Topography

1995 2005 2006 2008 2015

Hmo [m]
I 2.27 2.27 2.27 2.27 2.27
II 1.75 1.34 1.42 1.52 1.53

Tm−1,0 [s]
I 7.02 7.02 7.02 7.02 7.02
II 6.84 6.27 6.38 6.53 6.51

wave direction [°] I 328 328 328 328 328
II 337 335 336 336 339

directional spreading [°] I 36 36 36 36 36
II 26 27 28 25 27

Hm0 swell [m]
I 0.64 0.64 0.64 0.64 0.64
II 0.53 0.41 0.44 0.47 0.47

water depth [m] I 13.57 13.57 13.57 13.57 13.57
II 8.59 6.74 7.05 7.00 7.58

absolute damping effect 0.52 0.93 0.85 0.75 0.74
relative damping effect 0.23 0.41 0.37 0.33 0.33
absolute swell damping effect 0.11 0.23 0.20 0.17 0.17
relative swell damping effect 0.17 0.36 0.31 0.27 0.27

In summary, the mean relative damping effect at position Coast II of all modeled
years for this test case was 0.33 ± 0.07, with a range of 0.18 indicating an overall
stronger damping effect than in test case #1 for this event. The mean relative
damping effect for swell was 0.28 ± 0.07. Thus, the swell was again less affected
and damped than the entire sea state for this event. The stronger damping in
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test case #2 can be explained by the higher incoming wave height at the northern
model boundary (see also Section 2.5.3). The mean wave directions between Coast
I and Coast II did not change significantly due to the morphological changes of the
different years (Fig. 2.9B, Tab. 2.7).

2.5.2.3 Test case #3

Test case #3 represents a strong northwest storm event at THW with an incoming
Hm0 of 3.91 m and a wind speed of 18 ms−1 (Tab. 2.4). For this test case, the
parameters Tm−1,0 , Hm0 swell, and DirSpr were mapped exemplarily for the whole
research area, since such an event is representative for many storm events relevant
for coastal protection in this area. The effect of small-scale morphodynamic changes
in form of small gaps in the ETD sandbanks was also analyzed with this test case.
In 1995, Hm0 decreased slightly from 3.91–2.30 m between Coast I and Coast II,
where Hm0 again reached its maximum (Tab. 2.8). The plates in the south, NG,
and the accumulating plate in the east were the only ones dampingHm0 significantly,
while the small gaps in the southwest and northeast indicated higher values of Hm0

(Fig. 2.10A). Hm0 was a rough approximation of the topographical conditions, since
the shallower water depths were associated with lower wave heights, due to wave
breaking (Niemeyer and Kaiser, 1999; Salmon and Holthuijsen, 2015) (Fig. 2.10A).
Compared to all other bathymetries, the waves again propagated almost homoge-
neously over the entire width of the Norderney coastline and Hm0 was highest in
1995 in the entire area around Coast II (Fig. 2.10A). Tm−1,0 decreased least in 1995
from 8.19 to 6.80 s (Tab. 2.8). The waves propagated almost straight from Coast I
to Coast II (Fig. 2.10A) and the directional spreading was comparable low between
the two buoys (App. I.3).
In 2005, the lowest Hm0 and Tm−1,0 values were modeled with 1.79 m and 6.01 s,
respectively (Fig. 2.10A, Tab. 2.8). The area around the ETD sandbanks showed a
maximum relative damping (Fig. 2.10A). The respective swell values decreased in
the entire area between Coast I and Coast II from 1995–2005 (App. I.3). Compared
to all other bathymetries, Hm0 was lower in 2005, especially on the strip perpendic-
ular to the line Coast I and Coast II (Fig. 2.10A). While the mean wave directions
between Coast I and Coast II and the directional spreading at position Coast II did
not change significantly, the area of higher directional spreading has increased off
the coast due to the morphological changes (App. I.3, Tab. 2.8).
In 2006, Hm0 increased around Coast II compared to 2005 (Fig. 2.10A), as well
as Tm−1,0 and Hm0 swell (App. I.3). This was likely caused by the gap between
NWG and NG, where the waves reaching position Coast II were passing through
(Fig. 2.10A). In addition, a lot of energy passed through south of NWG I, while
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the waves were dampened east of NWG I, likely caused by the high depth of the
Buise-Low in the northern parts (Fig. 2.10A). These results only apply to THW
events where the currents can be neglected. Considering currents at other times, a
different behavior was assumed. Thus, mainly specific small-scale morphodynamic
changes of the ETD sandbanks between NWG II and NG (320◦–332◦) may have led
to the decrease of 0.02 of the relative damping effect and the increase in Hm0 of 0.07
m compared to 2005 for this test case. Since the directional spreading in the east
increased, an interaction with the accumulating plate was presumed (App. I.3).

Table 2.8: Modeled sea state parameters and damping effects of the considered years for
test case #3 with damping range 0.13 and 0.17 for swell, respectively.

Parameter Buoy Coast Topography

1995 2005 2006 2008 2015

Hmo [m]
I 3.91 3.91 3.91 3.91 3.91
II 2.30 1.79 1.86 2.00 2.01

Tm−1,0 [s]
I 8.19 8.19 8.19 8.19 8.19
II 6.80 6.01 6.14 6.35 6.37

wave direction [°] I 325 325 325 325 325
II 329 328 328 330 332

directional spreading [°] I 33 33 33 33 33
II 26 28 29 27 29

Hm0 swell [m]
I 1.16 1.16 1.16 1.16 1.16
II 0.68 0.49 0.52 0.56 0.57

water depth [m] I 14.07 14.07 14.07 14.07 14.07
II 9.10 7.24 7.55 7.50 8.08

absolute damping effect 1.61 2.12 2.05 1.91 1.90
relative damping effect 0.41 0.54 0.52 0.49 0.49
absolute swell damping effect 0.48 0.67 0.64 0.60 0.59
relative swell damping effect 0.41 0.58 0.55 0.52 0.51

In 2008, the increasing trend of Hm0 continued for the area between Coast I and
Coast II (Fig. 2.10A). Although the northern gap between NWG and NG moved
east, waves could pass likely by refraction (Fig. 2.10A). Since the gap was 13◦ larger
(345◦–10◦) compared to 2006, more wave energy passed through to Coast II and
the relative damping effect decreased by 0.03 (Tab. 2.8). The accumulating plate
in the east caused a strong damping, indicated by low Hm0 and Tm−1,0 and a high
directional spreading (Fig. 2.10A, App. I.3).
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Figure 2.10: Modeling results of Hm0 for the years 1995, 2005, 2006, 2008, and 2015
for test case #3 (A) and test case #4 (B). The arrows indicate the mean wave direction
at the respective grid points.
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In 2015, no significant changes of Hm0 between Coast I and Coast II were found
compared to 2008. Hm0 and Tm−1,0 and the mean wave direction remained nearly
unchanged at Coast II (Fig. 2.10A, Tab. 2.8). Hm0 was 0.15 m higher and, thus,
the relative damping effect still 0.03 lower than in 2006, likely caused by the north-
ern gap between NWG and NG (325◦–345◦) as well as refraction processes, turning
incoming waves to the south. The small plates in the east accumulated at the
Norderney beach, causing a Hm0 of about 2.5 m in 2015 compared to about 1.5
m in 2008 (Fig. 2.10A). Likewise, Tm−1,0 increased at this area in 2015, while the
directional spreading decreased against 2008 (App. I.3).
Small-scale morphodynamic changes in form of small gaps in the ETD sandbanks
locally caused a maximum influence of 0.22 m or 0.05 of the relative damping effect
on the sea state, comparing the years 2005, 2006, 2008, and 2015 for this test case
(Fig. 2.10A). A generalization of the impact of small-scale morphodynamic changes
is therefore not feasible. In summary, the mean relative damping effect at position
Coast II of all modeled years for this test case was 0.49 ± 0.05 with a range of
0.13 indicating a range for the influence of the morphodynamic changes of the ETD
sandbanks from 1995–2015 on the damping effect for this test case (Fig. 2.10A,
Tab. 2.8). The significant higher mean compared to the previous test cases could
be caused by the higher input wave height of the storm event. The mean relative
damping effect for swell was 0.51 ± 0.06, thus, the swell was more affected and
damped than the entire sea state and showed a greater interaction with the ETD
sandbanks. With a range of 0.17, swell was also percentagewise more influenced
by the ETD sandbank dynamics (Tab. 2.8, App. I.3). A greater effect on swell,
compared to the entire sea state, was therefore only found in more severe events,
likely caused by depth-induced breaking, leading to a higher variability of the swell
damping effect.

2.5.2.4 Test case #4

Test case #4 represents a strong northern storm event at THW with an incoming
Hm0 of 4.42 m (Tab. 2.4). From 1995–2005, Hm0 decreased by 0.58 m at Coast II
resulting in an increase of 0.13 in the relative damping effect (Tab. 2.9). In this
test case, the waves propagated almost homogeneously over the entire width of the
coastline in 1995, when the highest value of Hm0 was modeled (Fig. 2.10B). Tm−1,0

decreased least in 1995 from 9.13 to 7.71 s (Tab. 2.9). In 2005, the lowest Hm0

and Tm−1,0 values were modeled with 2.36 m and 7.21 s, respectively (Fig. 2.10B,
Tab. 2.9). The respective relative swell damping also increased from 1995–2005 by
0.13 (Tab. 2.9). In 2006, Hm0 increased along the coastline compared to 2005 (Fig.
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2.10B, Tab. 2.9). In 2008, the relative damping effect continued to decrease by 0.02
for Coast II (Tab. 2.9). In 2015 again, no significant changes of Hm0 between Coast
I and Coast II were simulated compared to 2008 (Fig. 2.10B, Tab. 2.9).
In summary, the mean relative damping effect at position Coast II of all modeled
years for this test case was 0.42 ± 0.05, with a range of 0.13 indicating an overall
weaker damping effect than in test case #3. The reduced damping effect could be
explained by the more northern storm direction, as the water level increased and the
waves tended to run over the ETD sandbanks. Compared to test case #3, the mean
wave directions south of the ETD sandbanks, as well as the mean wave direction at
Coast II, were further north (Fig. 2.10B, Tab. 2.9). The mean relative damping
effect for swell was 0.56 ± 0.05, thus, the swell was again more affected and damped
than the entire sea state for this event. Compared to test case #3, swell was damped
significantly more in absolute and relative terms.

Table 2.9: Modeled sea state parameters and damping effects of the considered years for
test case #4 with damping range 0.13 and 0.13 for swell, respectively.

Parameter Buoy Coast Topography

1995 2005 2006 2008 2015

Hmo [m]
I 4.46 4.46 4.46 4.46 4.46
II 2.94 2.36 2.48 2.60 2.59

Tm−1,0 [s]
I 9.13 9.13 9.13 9.13 9.13
II 7.71 7.21 7.31 7.43 7.37

wave direction [°] I 334 334 334 334 334
II 338 338 339 339 341

directional spreading [°] I 36 36 36 36 36
II 26 28 29 27 28

Hm0 swell [m]
I 2.93 2.93 2.93 2.93 2.93
II 1.53 1.15 1.22 1.31 1.29

water depth [m] I 14.72 14.72 14.72 14.72 14.72
II 9.74 7.89 8.20 8.15 8.73

absolute damping effect 1.52 2.10 1.98 1.86 1.87
relative damping effect 0.34 0.47 0.44 0.42 0.42
absolute swell damping effect 1.40 1.78 1.71 1.62 1.64
relative swell damping effect 0.48 0.61 0.58 0.55 0.56

2.5.2.5 Test case #5

Test case #5 is the only one that represents a strong storm event from the west at
THW with an incoming Hm0 of 3.98 m (Tab. 2.4). Apart from the wind direction,
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the boundary conditions of this test case were comparable to test case #3. From
1995–2005 Hm0 decreased by 0.49 m at Coast II resulting in an increase of 0.12
of the relative damping effect (Tab. 2.10). Again, in 1995, the waves propagated
almost homogeneously over the entire width of the coastline (Fig. 2.11A). Tm−1,0

decreased least in 1995 from 8.62 to 7.66 s (Tab. 2.10). In 2005, again the lowest
Hm0 and Tm−1,0 values were modeled for Coast II with 1.58 m and 6.76 s, respectively
(Tab. 2.10). From 1995–2005 the respective relative swell damping increased by 0.16
(Tab. 2.10). In 2006, the relative damping effect again decreased along the coastline
compared to 2005 (Fig. 2.11A, Tab. 2.10). In 2008, it continued to decrease by
0.03 for Coast II (Tab. 2.10). In 2015 again, no significant changes of Hm0 and
the damping effects between Coast I and Coast II were modeled compared to 2008
(Fig. 2.11A, Tab. 2.10). A significant damping by the small plate in the east was
modeled in 2015.

Table 2.10: Modelled sea state parameters and damping effects of the considered years
for test case #5 with damping range 0.12 and 0.16 for swell, respectively.

Parameter Buoy Coast Topography

1995 2005 2006 2008 2015

Hmo [m]
I 3.89 3.89 3.89 3.89 3.89
II 2.07 1.58 1.66 1.77 1.76

Tm−1,0 [s]
I 8.62 8.62 8.62 8.62 8.62
II 7.66 6.76 6.98 7.23 7.21

wave direction [°] I 324 324 324 324 324
II 322 318 318 322 322

directional spreading [°] I 36 36 36 36 36
II 29 34 34 33 35

Hm0 swell [m]
I 2.13 2.13 2.13 2.13 2.13
II 1.11 0.77 0.83 0.92 0.91

water depth [m] I 13.80 13.80 13.80 13.80 13.80
II 8.82 6.97 7.28 7.23 7.81

absolute damping effect 1.82 2.31 2.23 2.12 2.13
relative damping effect 0.47 0.59 0.57 0.54 0.55
absolute swell damping effect 1.02 1.36 1.30 1.21 1.22
relative swell damping effect 0.48 0.64 0.61 0.57 0.57

In summary, the mean relative damping effect at position Coast II for all modeled
years for this test case was 0.54 ± 0.05, with a range of 0.12. It was the highest
mean damping effect of all test cases. The high damping effect could be explained by
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the more westerly wind direction, which led to a lower water level and an approach
of the waves from the west to the ETD sandbanks. Compared to test case #3,
the mean wave directions south of the ETD sandbanks, as well as the mean wave
direction at Coast II, were further west, since wind sea had a greater influence on
the directions (Fig. 2.11A, Tab. 2.10). The alignment by refraction to the beach
was visible. The mean relative damping effect for swell was 0.57 ± 0.06, i.e., this
event had not the highest damping effect of all five cases.

2.5.2.6 Test cases – general findings

The interactions of the waves with the ETD sandbanks of the different bathymetries
were clearly visible for all test cases, since the direction of wave propagation showed
an arched movement west and east around the reef at particularly high sections.
At the westside of the island the waves propagated southwards along the Norderney
Seegat for all bathymetries and all test cases. Throughout the test cases, propagation
of Hm0 showed lowest values at the southside of the plates. In the Buise-Low area,
where the water depth is comparatively deep, Hm0 was lowest (Fig. 2.9–2.11).
In general, the ETD sandbanks caused a mean variation of the local damping effect
of 0.14 ± 0.02 and 0.16 ± 0.02 for swell with the lowest damping in 1995 and the
highest damping in 2005. These values indicate the mean range of the relative
damping effects for the different bathymetries of the five test cases and quantify the
influence of the ETD sandbanks on the relative damping effect at position Coast
II. A minimum range of 0.12 for test case #5 (0.13 for test case #4 for swell) and
a maximum range of 0.18 for test case #2 (0.19 for test case #2 for swell) were
modeled. Thus, the range of the damping effect remained rather constant between
the different bathymetries, regardless of the boundary conditions.
In addition to the variability caused by the bathymetries, the variability of the
different boundary conditions showed a range of 0.27 (0.33 for swell) with means of
0.41 ± 0.11 (0.43 ± 0.16 for swell) for the mean relative damping effects of all test
cases, i.e. the various boundary conditions. Thus, the influence of the boundary
conditions in the simulations was much higher than the influence of the different
bathymetries.
It was also found, that the damping effect increased with increasing incoming wave
height (see also Section 2.5.3). With westerly winds and related lower water levels,
stronger damping effects were modeled for particular storm events than with more
northerly winds and related higher water levels. This could be explained by a new
growth of the wind sea beyond the ETD sandbanks at position Coast II at northern
wind events and an overall higher water level. The range of the damping effect,
however, was independent of the water level at the buoy positions.
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Figure 2.11: Modeling results of Hm0 for test case #5 (A) and the respective
bathymetries for a better overview (B). The years 1995, 2005, 2006, 2008, and 2015 are
shown. The arrows (A) indicate the mean wave direction at the respective grid points.
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Compared to the entire sea state, swell was relatively more damped for high than
for low wave events, likely caused by depth-induced wave breaking. Higher damping
effects of the swell compared to the entire sea state were found in northern winds
than in western winds. Since the wind sea could increase again behind the ETD
sandbanks, especially for northern winds, it had a stronger influence on the wave
height and direction of the entire sea state behind the plates. Swell on the other
hand was breaking at the ETD sandbanks.
The SWAN simulations of the different years within the test cases differed only
in the bathymetries, so the results were interpreted as differences caused only by
topographic changes of the ETD sandbanks. The mean correlation between the
area of NG and the relative damping effects of the five test cases is significant at
r = 0.94 and r = 0.89 for the DTMs and aerial photos, respectively. Since the waves
approach from northwest, they cross NG before reaching Coast II. Between the area
of NWG and the relative damping effect, however, no significant correlation was
found.

2.5.3 General findings of the buoy-measured damping effect

While the validated SWAN simulations provided detailed spatial information on
the influence of the ETD sandbanks on the sea state damping effect for events
with few available measurements, this section focuses on the general findings of the
buoy-measured damping effect. The overall buoy-measured damping effects were
described statistically and the general model results were exemplarily transferred to
the in-situ buoy data by filtering.
Extreme events are of particular interest, nevertheless only 9% of all measurements
have HI

m0
≥ 2m. For the year 1995 no data were available after preprocessing.

Therefore, a comparison between the modeled and measured damping effects of
small-scale morphodynamic changes of the ETD sandbanks is not suitable, since an
isolation of the topographic changes from the hydraulic boundary conditions could
not be performed due to not enough data after filtering. However, the general find-
ings of SWAN modeling could be confirmed by buoy measurements, since the model
was validated before.
The mean relative damping effect of all measurements from all years and for all
hydraulic conditions was about 0.37, distinctly skewed to the left (Tab. 2.11, App.
I.4). On average about 37% of the wave height was dissipated by the ETD sand-
banks and other influences between Coast I and Coast II. A standard deviation of
about 0.18 indicated a high variability in the measured damping effect, which was
not caused by the dynamic of the ETD sandbanks alone, but mainly by the param-
eters described in Section 2.4.5.
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Table 2.11: Various filterings of the measured data. The top value in each box denotes
the mean damping, the middle value the standard deviation, and the bottom value the
number of observations. Denote: 95% of all wave heights HI

m0
are smaller than 2.38 m

and only 9% of all wave heights are greater than 2 m.

filtering
method

mean
2004–2017

filtering
method

mean
2004–2017

∆rel ∆abs ∆rel ∆abs

no filtering
0.37
0.18

65 809

0.42
0.42

65 809
– – –

2.5 m ≤ HI
m0
≤ 3.5 m

USee ≥ 15ms−1, THW
240◦ ≤ Uθ ≤ 300◦

0.47
0.07
118

1.41
0.30
118

2.5 m ≤ HI
m0
≤ 3.5 m

USee ≥ 15ms−1, THW
330◦ ≤ Uθ ≤ 30◦

0.40
0.09
35

1.23
0.35
35

1.5 m ≤ HI
m0
≤ 2.5 m

0.41
0.17
9 713

0.76
0.34
9 713

1.5 m ≤ HI
m0
≤ 2.5 m

swell

0.26
0.27
6 795

0.36
0.17
9 713

HI
m0
≥ 3 m

0.59
0.11
1 282

2.25
0.69
1 282

HI
m0
≥ 3 m

swell

0.63
0.41
596

0.65
1.05
1 282

Since SWAN showed a dependency of the sea state damping effect from the in-
coming wave height at Coast I and the prevailing water level, their impact on the
buoy-measured damping effect is shown in Fig. 2.12. According to the model re-
sults, the buoy-measured damping effect increased with increasing wave height at
Coast I and decreased with an increasing water level at gauge Norderney Riffgat
(Niemeyer, 1979; Niemeyer and Kaiser, 1999). An exponential relationship between
these factors was derived (Fig. 2.12). The events of the five boundary conditions
of the SWAN modeled test cases were highlighted in the graph and showed a wide
range of damping effects and water levels (Fig. 2.12, Tab. 2.4). During storm
surges, the water level did not increase as fast as the growing of waves, so that the
damping effect was huge at storm surges (Niemeyer, 1979). Previous results showed,
that there was no linear increase in the mean water level for the years analyzed in
this study (see Section 2.4.3.3), nevertheless the tides caused a high variability of
the water level. As high waves are usually linked to high wind speeds, the damping
effect was greater with stronger winds. Furthermore, other general findings of the
simulations were reflected in the buoy-measured damping effect; Tab. 2.11 shows
some filtering.

60



RESEARCH STUDY I

Figure 2.12: Relative sea state damping in relation to the quotient of incoming Hm0 at
position Coast I and the water level. Only wave events with HI

m0
≥ 2m are used. A total

of n = 5252 data points are given and a correlation coefficient of r = 0.73 is obtained. An
exponential fit with its 0.99-confidence boundaries is plotted on the data. The events of the
five boundary conditions of the test cases for SWAN modeling are highlighted in the graph.

Although only few data remained, the buoy data of all years combined showed a
stronger damping at west winds (240◦–300◦) compared to north winds (330◦–30◦) for
storm events with USee ≥ 15ms−1 and 2.5 m ≤ HI

m0
≤ 3.5 m at THW (Tab. 2.11).

This was in line with the results of SWAN modeling. Higher relative damping
effects were exemplarily obtained for swell at HI

m0
≥ 3 m (∆rel = 0.63) as for

1.5 m ≤ HI
m0
≤ 2.5 m (∆rel = 0.26) in absolute terms and relatively to the overall

measured damping effect (Tab. 2.11). However, since only HI
m0

was filtered, the
standard deviation was high.
Filtering, which constrained the data to the exact boundary conditions of the five
test cases, was not feasible due to missing values after filtering, caused by the rare
occurrence of such relevant events. Differences between SWAN-modeled and buoy-
measured damping effects can occur due to the temporal resolution of the ETD
sandbank bathymetries. While storm surges and extreme events can lead to rapid
changes in ETD morphology (Bennett et al., 2019; Phillips et al., 2017; Wang et al.,
2012), buoy data of an entire year had to be assigned to a single bathymetry and wave
climate. This may cause inaccuracies, requiring the development and use of high-
resolution measurement methods for the ETD sandbanks, even though approaches
by coastal radar already exist (Bell et al., 2016; Bird et al., 2017).
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In complex sea state systems such as the southern North Sea, an exact separation
between wind sea and swell is difficult to determine. Thus, the applied PM-peak
method tends to overestimate wind sea in some cases, which can also lead to a high
standard deviation (Portilla et al., 2009).

2.6 Conclusions

This study quantitatively determined a significant influence of the ETD sandbank
dynamics on the sea state damping at the nearshore area of Norderney. Non-linear
influences, mainly caused by the ETD sandbanks, clearly characterized the wave
climate in the nearshore area. Sizes and shapes of single ETD plates showed high
dynamics, with mean movement velocities of 435–491 my−1, depending on the posi-
tion of the plates.
By SWAN modeling, significant differences of the relative damping effects between
the bathymetries of the highly different sized ETD sandbanks of 1995, 2005, 2006,
2008, and 2015 were shown for five different test cases. Those morphodynamical
changes had a mean impact of 14 ± 2% on the variation of the relative damping
effect in the validated SWAN simulations of various severe storm events at THW.
The events had a mean damping effect of 0.41 ± 0.11 over all bathymetries and all
of the five test cases, while the effect was highest in 2005 and lowest in 1995. A
mean variation of the damping effect for the test cases of 16 ± 2% was modeled for
swell waves.
It was also found, that the damping effect increased with increasing incoming wave
height. With westerly winds and lower water levels, stronger damping effects were
modeled for particular storm events than with more northerly winds and higher
water levels. Compared to the entire sea state, swell was relatively more damped
for high than for low wave events. Since the nearshore wave climate is strongly
influenced by the tides, only THW events with negligible currents were considered
in this study. Nevertheless, it is still of interest to evaluate the influence of tidal
currents on the sea state damping effect more precisely.
The overall buoy-measured relative damping effect showed a mean of 0.37 ± 0.18,
while no reliable conclusions on the specific morphodynamic influences of the ETD
sandbanks on the sea state damping could be provided by the in-situ data, since
an isolation of the topographic changes from the hydraulic boundary conditions was
not applicable due to insufficient data availability. Therefore, SWAN modeling was
an appropriate method to fill measurement gaps for relevant rare events.
Due to measurement and buoy failures, the reconstruction of missing data seems
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to be essential. Especially during extreme events, which are of special interest
for coastal protection, measurement failures often occur. A further problem arises
from the assignment of a single ETD sandbank topography to the wave data of a
whole year, caused by the bearing measurement intervals. The development and use
of high-temporal resolution measurement methods, e.g., a coastal radar to record
sandbank topography at a high temporal resolution is therefore essential. We pro-
pose that the found dynamics of the ETD sandbanks and the quantification of the
damping effect have to be considered by the responsible authorities for coastal pro-
tection, whereby further investigations on the specific influences of the boundary
conditions on the damping effect are of great interest.
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Abstract

Since climate change impacts threaten the coastal regions of the North Sea,
consistent sea state time series are essential for building coastal protection or
offshore structures. Vast gaps in buoy data, caused by false measurements or
maintenance periods, require reconstruction and forecasting of ocean waves.
Morphodynamic changes of the Ebb-Tidal Delta (ETD) sandbanks exert a
huge impact on the local wave climate off the island of Norderney, Germany.
Therefore, the objective of this paper is to develop a machine learning model
based on Long Short-Term Memory (LSTM) neural networks for reconstruc-
tion and short- and long-term prediction of nearshore significant wave height
(SWH), integrating bathymetric data for the first time. Time series of sea
state and weather data of adjacent buoys as well as bathymetric data of the
ETD sandbanks from 2004 to 2017 were used and the networks were tuned
with Bayesian hyperparameter optimization. Including the bathymetries im-
proved the performance of the LSTM for SWH reconstruction, short-, and
long-term predictions by 16.7%, 7.4–11.7%, and 8.8–9.1% in terms of RMSE,
respectively. The LSTM outperformed deep feed-forward neural networks and
other state-of-the-art machine learning algorithms. With an RMSE of 0.069
m, a parallel LSTM structure (P-LSTM) is the proposed method for SWH
reconstruction.

Keywords: Long short-term memory (LSTM) neural network, Machine learn-
ing, Wave height prediction, Forecasting ocean waves, Bayesian optimization,
Dynamic bathymetries
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3.1 Introduction

Climate change impacts, such as sea level rise, a possible increase in storm frequency
and intensity, a possible trend in increasing ocean wave heights, and global warming
in general, will become emerging challenges for coastal regions of the North Sea
(Grabemann and Weisse, 2008; Mori et al., 2013; Vanem and Walker, 2013). Fur-
thermore, storm surges are a frequently recurring and well-known danger (Bitner-
Gregersen et al., 2018; Weisse et al., 2012). Substantial knowledge of the sea state is
therefore essential for building coastal protection or offshore structures and marine
operations, as well as for feeding numerical and climate models (Ti et al., 2018).
Wave height is consequently one of the most important wave characteristics for such
purposes (Teich et al., 2018) and commonly measured by networks of moored wave
buoys. Time series of such wave buoys typically have gaps due to erroneous mea-
surements or maintenance operations (Londhe, 2008). Especially extreme events
are often recorded erroneously, although they are of great interest in ocean science
(Cavaleri, 2009). Thus, sophisticated tools for reconstructing and predicting ocean
wave heights are required.
Especially in coastal areas, several complex processes influence the propagation of
waves and wave height. The morphodynamic change of Ebb-Tidal Delta (ETD)
sandbanks of the coastal area of Norderney, Germany exerts a huge impact on the
local wave climate (Jörges et al., 2021a). Caused by ebb-tidal currents, the ETD
sandbanks are dynamically changing by migration, erosion, and accretion (Castelle
et al., 2007; Dallas and Barnard, 2011) and thus influence the reconstruction and
forecast of coastal wave heights by increasing the complexity of the prediction (Spicer
et al., 2019). The ETD sandbanks are also a natural coastal protection by damp-
ing the incoming wave height, especially for extreme events (Jörges et al., 2021a;
Niemeyer, 1979; Niemeyer and Kaiser, 1999).
Usually, numerical models such as Simulating WAves Nearshore (SWAN) are used for
predicting irregular, random waves. However, they are often expensive in computa-
tional costs but precise due to exact physical equations. Soft-computing frameworks
as machine learning algorithms can be an alternative in some cases (Abed-Elmdoust
and Kerachian, 2012; Fernández et al., 2015; Mahjoobi et al., 2008; Malekmohamadi
et al., 2011; Mandal and Prabaharan, 2010; Nitsure et al., 2012). Combinations
of numerical modeling and soft-computing techniques also exist (Malekmohamadi
et al., 2008; Puscasu, 2014; Reikard et al., 2011). Artificial neural networks (ANN) in
particular are widely used nowadays for wave height reconstruction and prediction,
namely the feed-forward neural networks (FFNN) as a common example (Deo and
Naidu, 1999; Deo et al., 2001; Law et al., 2020; Londhe and Panchang, 2007; Peres
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et al., 2015; Zamani et al., 2008). In the project MOSES (Herman et al., 2007),
time series of spatial wave climate data of the nearshore area of Norderney were
reconstructed with FFNNs for the period 1962–2002. As a result, numerical model-
ing including SWAN was enhanced by an efficient soft-computing method (Herman
et al., 2009). Berkenbrink and Niemeyer (2017) analyzed a changing salinity intru-
sion due to estuarine waterway deepening in the German Bight with FFNN. James
et al. (2018) used FFNN with numerically modeled SWAN data of Monterey Bay and
reduced the computational time by a factor >1000 compared to the physics-based
model. ANN approaches with a genetic algorithm (Altunkaynak, 2013) and evolu-
tionary product unit neural networks (EPUNN) (Durán-Rosal et al., 2016) were also
used. Kumar et al. (2017) predicted ocean wave heights with a Radial Basis Func-
tion (RBF) called Minimal Resource Allocation Network (MRAN), while Stefanakos
(2016) used the Adaptive Network-based Fuzzy Inference System (ANFIS). Further-
more, approaches with Extreme Learning Machine (ELM) (Ali and Prasad, 2019;
Kumar et al., 2018) and Discrete Wavelet Transforms Neural Networks (Deka and
Prahlada, 2012; Dixit and Londhe, 2016) were successfully implemented for wave
height forecasting. However, for sequential data, recurrent neural networks (RNN),
ANNs with feedback connections to neurons from previous time steps (LeCun et al.,
2015), are suitable and still used for wave height prediction (Balas et al., 2004).
The Long Short-Term Memory (LSTM) neural network is a specific RNN and was
designed by Hochreiter and Schmidhuber (1997) to handle long-term dependencies.
An LSTM decides on its own weather to remember or to forget information (Gers
et al., 2000). Besides the use for speech and handwriting recognition (Graves and
Jaitly, 2014; Graves et al., 2009), machine translation (Wu et al., 2016), image cap-
tioning (Aggarwal, 2018), and stock price prediction (Kim and Won, 2018), LSTMs
are already used for reconstruction and prediction of time series in various related
fields such as wind speed forecasting (Li et al., 2018), sea surface temperature pre-
diction (Xiao et al., 2019), solar irradiance prediction (Qing and Niu, 2018), and
weather forecasting (Salman et al., 2018). First experiments with LSTM neural net-
works for the reconstruction and prediction of nearshore wave heights with data of
the Norderney coastal area were quite promising (Jörges, 2018; Jörges et al., 2020).
Pirhooshyaran et al. (2020) first applied a sequence-to-sequence neural network with
LSTM encoder and decoder to reconstruct and predict offshore and deep ocean wave
heights of the North Pacific and North Atlantic Ocean. They achieved a reconstruc-
tion R2 of up to 0.81 at a deep ocean buoy position near Los Angeles. Fan et al.
(2020) used LSTM neural networks for one and 6-h ahead predictions of offshore
and deep ocean significant wave height and combined it with the third-generation
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numerical wave model SWAN to improve the predictions. 6-h ahead predictions
were performed with an R2 of up to 0.97 for a deep ocean buoy east of Florida.
Kagemoto (2020) satisfactorily predicted water-surface wave trains and the motion
of a floating body in it with LSTM neural networks, while Ni and Ma (2020) applied
a LSTM neural network for the prediction of polar westerlies wave height with only
few measurements available. However, to the best of our knowledge, none of the pre-
vious studies have yet considered complex morphodynamic conditions or integrated
bathymetric data for the reconstruction or prediction of ocean wave heights with
LSTM neural networks. In addition, the LSTM has not yet been applied to shallow
waters in nearshore areas, where morphodynamic influences typically are greater.
Thus, the objective of this study was to design an LSTM based reconstruction and
short- and long-term prediction model for significant wave height including bathy-
metric data to overcome the challenge of morphodynamic changes in the nearshore
area. The reconstruction and short- and long-term predictions were performed on
buoy measurements of neighboring buoys off the Norderney coastline – separated by
the ETD sandbanks – and wind and water level parameters as well as bathymetric
data of the ETD sandbanks.
In a first step, a model comparison of several machine learning methods was per-
formed on the nearshore wave data to benchmark the LSTM neural network, while
the proposed method was also validated on well-studied offshore buoy measurements
off the U.S. west coast. In a second step, the impact of including bathymetric data on
model performance was investigated by experiments, and further feature selections
were tested. The main contributions of this study are as follows:

• A LSTM neural network and an ensemble of parallel LSTM networks are
presented for reconstruction and short- and long-term prediction of nearshore
wave heights

• Bathymetric data are presented as features to improve wave height reconstruc-
tion and prediction for the first time

3.2 Methods

3.2.1 Research area and dataset

3.2.1.1 Research area

The research area is located in the nearshore area of the East Frisian island of
Norderney in the German North Sea (Fig. 3.1). The islands Juist (west) and
Baltrum (east) are separated from Norderney by the tidal inlets Norderneyer Seegat
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and Wichter Ee, respectively. Between the barrier islands high tidal currents are
present, which activate the sediment transport of the ETD and the tidal flats. The
long-term Mean High Water (MHW) at gauge Norderney Riffgat is 1.24 m above
the German reference height (NHN) or the German mean sea level with a mean
tidal range of 2.45 m. The main wind direction of the research area is southwest
(Fig. 3.1).
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Figure 3.1: Map of the research area and the positions of the buoys. The transect of all
bathymetries (red line) and the bathymetry of 2004 (extend of the ETD sandbanks) are
shown on the map.

3.2.1.2 Dataset

Buoy data of three Waverider (Datawell, Haarlem, The Netherlands) buoys were
provided by the Coastal Research Station of the Lower Saxony Water Management,
Coastal Defence and Nature Conservation Agency (NLWKN), Norderney (Tab. 3.1).
While the two buoys Coast Ref and Coast I are located north of the ETD sandbanks
– the reef arch west and north of Norderney – the predicted position Coast II is lo-
cated south of it and directly in front of the Norderney beach (Fig. 3.1). Nearshore
wave height at buoy Coast II thus is greatly influenced by morphodynamic processes
of the ETD sandbanks (Jörges et al., 2021a; Niemeyer, 1979). The parameters sig-
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nificant wave height (SWH), mean wave period, energy period, and mean wave
direction were calculated from the energy density spectra of the raw buoy data.
These data were available in half-hourly resolution for the years 2004–2017 without
the years 2012–2014 and with many missing values throughout the dataset (Tab.
3.1). Fig. 3.2 shows a sample portion of the SWH at position Coast I. Besides sev-
eral data gaps in the annual record (top), the influence of the tides was significant
in the daily record (bottom).

Table 3.1: Basic information of the different buoy positions.

Buoy
Position

SWH
Mean
[m]

SWH
Std.
[m]

SWH
Range
[m]

Mean
energy
wave
period [s]

# Data Location

Water
depth
2015
[m NHN]

Coast Ref 1.20 0.76 [0.09; 8.40] 5.62 84 428 N 53.836653
E 7.193904 23.39

Coast I 1.07 0.69 [0.09; 6.91] 5.77 95 887 N 53.744781
E 7.112101 12.11

Coast II 0.63 0.39 [0.04; 3.01] 6.04 88 804 N 53.715653
E 7.141280 6.15

Wind data were provided by the German Meteorological Service (Deutscher Wet-
terdienst, DWD) for the station Norderney at a resolution of 10 min and water
level data by the Waterways and Shipping Administration (WSA) for the gauge
level Norderney-Riffgat at a resolution of 1 min. All parameters were averaged to a
half-hourly resolution.
Morphodynamic changes of the ETD sandbanks were obtained by the bathyme-
tries of yearly surveys, which were provided by the NLWKN, Coastal Research
Station, and EasyGSH-DB. Due to the huge financial effort and time required, ad-
ditional survey missions by ship were not possible in this challenging area. The
EasyGSH-DB bathymetries and metadata were obtained from the EasyGSH-DB
portal www.easygsh-db.org (Hagen et al., 2020) and only used after a validation
process for years where no measurement data of the NLWKN Coastal Research Sta-
tion were available.
Fig. 3.3 shows the correlogram of relevant metric parameters. Significant correla-
tions between the SWH of Coast II and the other positions were found (r = 0.82

and r = 0.83). Wind speed and water level also showed correlations to the SWH at
Coast II with r = 0.56 and r = 0.48, respectively. Peak wave periods did not show
any relevant correlations to the SWH at Coast II (Fig. 3.3). The feature selection
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was conducted according to these correlations by selecting parameters with r > 0.3

to SWH at Coast II. Parameters with low correlation coefficients also can have a
high non-linear influence. The correlogram also provides a better insight into the
structure of the dataset.
The feature parameters significant wave height Hm0 [m] of the buoys Coast Ref and
Coast I, wind speed at sea [ms−1], wind direction [◦], water level [m + NHN ], the
tidal phase {ebb, low water, flood, high water}, and the morphodynamic shape of
the ETD sandbanks (see 3.2.2) were used for the reconstruction and prediction of
the significant wave height Hm0 at buoy Coast II.

Figure 3.2: Time series of the SWH at position Coast I from October 2015 to September
2016 with zoom in to one month and one day.

3.2.1.3 Data preprocessing

As a preprocessing, all measurement rows or time steps with at least one miss-
ing value (NaN) of any buoy or water level and wind measurement were deleted
completely. Then, all features were min-max-normalized to the interval [0, 1] by

xN =
x−min(x)

max(x)−min(x)
(3.1)

where xN is the normalized feature value and x the measured feature value. The
normalization was performed to prevent certain features from having a greater in-
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fluence on the neurons input by their range alone. No further data preprocessing
beyond that was done in order to not manipulate the prediction results in any way
(Ali and Prasad, 2019).
The dataset was randomly divided into train (70%) and test data (30%) for every
model setting or model run to obtain robust results by forcing the algorithms to
work fully independent of the specific training data. All error metrics given in this
study (see 3.2.5) refer to the rescaled predictions, thus did not underlie the normal-
ization and can easily be interpreted. The normalization only refers to the min and
max of the training data, to ensure the models did not see any information (e.g.,
the range) of the test data during the training process.

Figure 3.3: Correlogram of the moored wave buoy parameters of Coast Ref, Coast I, and
Coast II, wind speed and direction, and water level.

3.2.2 Morphodynamic influences and bathymetry preprocessing

Since the ETD sandbanks exert a huge and dynamical influence on the sea state
damping in the nearshore area of Norderney – depending on their shape and size
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the damping effect varies on average by 14% – better reconstruction and prediction
performances were expected by including the bathymetric data (Jörges et al., 2021a).
In order to avoid overfitting and to achieve a better generalization of the models,
a dimension reduction of the bathymetries was carried out. For this purpose, a
one-dimensional transect covering the mean ETD sandbank line over all years was
defined from the two-dimensional measurement data (Fig. 3.1). In this way, both a
good representation of the yearly ETD sandbanks and a lower dimensional dataset
by omitting unimportant information were achieved and thus used for data selec-
tion. Due to the different resolutions of the bathymetries, the transect was divided
into six equidistant sections and the mean values of each sections bottom heights
were used as input for the models (Tab. 3.2). This feature engineering process re-
sults in a strong dimension reduction and generalization of the bathymetries already
with the input data. Thus, the error caused by the bathymetries with only annual
resolution was addressed. Substantial variations in the characteristics of the ETD
sandbank within the respective years were observed, while the mean bottom height
of the transect over all bathymetries was -3.68 ± 0.20 m (Tab. 3.2).

Table 3.2: ETD sandbank heights, mean, and standard deviation [m] of the different
bathymetries along the transect from west (Sec. 1) to east (Sec. 6) in relation to NHN-0m.

year Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6 Mean Std.

2004 -4.82 -2.62 -2.85 -2.58 -4.44 -3.46 -3.46 0.88
2005 -4.46 -3.03 -2.36 -2.80 -3.94 -2.69 -3.21 0.74
2006 -4.80 -3.54 -3.01 -3.31 -4.09 -2.64 -3.57 0.71
2007 -5.79 -3.09 -4.11 -3.42 -3.46 -3.53 -3.90 0.90
2008 -5.04 -2.94 -3.21 -3.82 -3.03 -4.13 -3.70 0.74
2009 -5.00 -3.02 -2.97 -3.43 -3.52 -4.50 -3.74 0.76
2010 -4.97 -2.86 -2.96 -3.47 -3.68 -4.42 -3.73 0.76
2011 -5.07 -3.01 -3.15 -3.51 -3.67 -4.49 -3.82 0.73
2015 -5.22 -3.10 -3.29 -3.41 -3.68 -4.23 -3.82 0.72
2016 -5.56 -3.56 -2.78 -3.54 -3.86 -4.05 -3.89 0.84
2017 -5.72 -2.86 -2.90 -2.74 -3.75 -4.07 -3.67 1.04

Caused by the huge difference of the measurement intervals between the bathyme-
tries and the sea state data, we matched a wave event to the bathymetry corre-
sponding to the same measurement year. This led to the greatest accuracy, as the
ship measurements were usually carried out during the summer month of a year.
Nevertheless, strong storm surges can lead to rapid changes of ETD sandbanks and
inaccuracies in matching the bathymetries to the buoy data (Wang et al., 2012).
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3.2.3 Long Short-Term Memory neural networks

LSTM neural networks are special RNN able to learn long term dependencies and
coping with the vanishing gradient problem (Gers et al., 2000; Hochreiter and
Schmidhuber, 1997; Pascanu et al., 2013).
Each LSTM cell (Fig. 3.4) consists of four units, the forget gate ft, input gate it,
memory cell state Ct, and output gate ot at time t, defined as:

ft = σ(Wfht−1 +Wfxt) (3.2)

it = σ(Wiht−1 +Wixt) (3.3)

C̃t = tanh(WCht−1 +WCxt) (3.4)

Ct = ft · Ct−1 + it · C̃t (3.5)

ot = σ(Woht−1 +Woxt) (3.6)

ht = ot · tanh(Ct) (3.7)

where xt, ht, C̃t, W , and σ are the input data, hidden state, temporary cell state,
weight matrices, and sigmoid activation function, respectively. The operation ·
indicates the Hadamard matrix product for matrices with equal dimensions. Biases
are not added explicitly, since they can be integrated to the weight matrices. The
final output ŷt = Wyht is used in the loss function (Eq. 3.8) (Gers et al., 2000;
Hochreiter and Schmidhuber, 1997; Qing and Niu, 2018).
To translate the abstract learned features into the prediction output, a fully-con-
nected layer was added after the last LSTM layer.
Additionally, a parallel LSTM structure (P-LSTM) was designed. Therefore, an
additive resampling method similar to Pirhooshyaran et al. (2020) was performed to
split the data for the respective parallel ensemble members: The entire dataset was
chronologically split into s subsets of equal size. Then, each subset was randomly
divided into a training and a test dataset as described above. The proposed LSTM
model was trained independently on each of these training subsets, concatenated
with the entire training dataset to learn additional functional relations hidden in the
entire dataset (Pirhooshyaran et al., 2020). P-LSTM performance was evaluated on
the union of all test subsets by the mean prediction of the parallel ensemble models.
None of the ensemble models has ever seen this test data during training. For s = 1,
the P-LSTM structure is the same as the standard LSTM structure of this study, but
trained on twice the set of training data. Since this leads to no new information,
we set s > 1, with the best results obtained for s = 2. The P-LSTM ensemble
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method with additive resampling in the background results in the same number of
test samples as the other algorithms, hence it is comparable to them.

Figure 3.4: LSTM cell with forget gate ft, input gate it, memory cell state Ct, and
output gate ot at time t, and the sigmoid and tangent hyperbolic activation functions σ
and tanh, respectively.

3.2.4 Model settings

In all computational runs, the proposed LSTM and P-LSTM models were always
compared to a standard FFNN (Hastie et al., 2009), a random forest (RF) (Breiman,
2001), a support vector regression (SVR) (Vapnik, 1998), and a multiple linear re-
gression (MLR) as benchmark methods found in the literature (Fan et al., 2020;
Pirhooshyaran et al., 2020; Qing and Niu, 2018). While MLR with least-squares
fitting is a simple linear model that allows both a good interpretability of how the
inputs affect the outputs by considering the β-coefficients and low computational
costs, RF belongs among the more complex supervised machine learning algorithms.
Based on several random decision trees fitted to a dataset, the RF algorithm out-
puts a mean prediction of the ensemble. Each tree is grown from a random subset
of the features which are used as candidates for the best binary split at each node at
random. By repeated selection with replacement from the training data (bagging),
uncorrelated random trees are created. The bootstrap samples left out by selection
– out-of-bag samples – are used for the calculation of the prediction error (Breiman,
2001; Hastie et al., 2009).
SVR is based on the idea of a support vector machine (SVM) applied on regres-
sion problems. Using an ε-sensitive loss function makes the SVR robust and sparse
since it is less affected by noisy inputs (Vapnik, 2000). Thus, only prediction errors
outside a defined ε-tube with ε > 0 are penalized by the L2-objective function of
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the coefficient vector. Data points around the ε-tube are called the support vec-
tors. Another parameter C > 0 controls the regularization of the loss function for
predictions outside the ε-tube. Both ε and C were set to ε = 0.08 and C = 1.5 by
Bayesian hyperparameter optimization (see 3.2.6). Non-linear functions are approx-
imated with SVR by mapping the data points to a higher dimensional feature space
using a kernel function (Awad and Khanna, 2015). In this study, the radial basis
function kernel and the Python LIBSVM implementation were used for calculations
(Chang and Lin, 2021).
A model input sequence X = (x1, . . . , xk) in this study consists of the last k values
of all input variables xi = (x(1), . . . , x(s)), where s is the number of input features.
Since the measurements were available in half-hourly resolution, the k/2 last hours
were used as input. Y = (y1, . . . , yl) is the output sequence for the prediction until
time step t+ l, where t denotes the current time step. In this study, predictions were
made on the SWH of the current time step (l = 0), the next 3 h (l = 6), 6 h (l = 12),
9 h (l = 18), and 12 h (l = 24), which according to the literature is an appropriate
interval for short-term predictions (Berbić et al., 2017; Fan et al., 2020). Long-term
predictions were made for an usual range of 24 h-ahead (l = 48) and 48 h-ahead
(l = 96) (Dixit and Londhe, 2016; Pirhooshyaran et al., 2020). The lookback k on
the input sequence was set to 6 for all models, thus the last 3 h of all input features
were used for the predictions. Especially the past wind speed and direction, the
fetch, is crucial for the further propagation of the sea state, since the development
of ocean waves takes a certain time (Holthuijsen, 2007; Nitsure et al., 2012). Every
setting consisting of a specific statistical model and the predicted time step l were
calculated in an ensemble of three independent runs to cope with random variations
in the performance of the training process and the split in training and testing data.
A robust model can only be assumed if the variation of the error metrics around
the mean prediction error is small. The neural networks were trained for 100 epochs
each.
All calculations were performed with Python 3.8 and TensorFlow 2 on an Intel Xeon
Gold 6146 CPU 12 Core 3.2Ghz, 64 GB RAM, and a Quadro P1000 GPU.

3.2.5 Loss function, optimizer, and error metrics

The loss function L used in the model is the mean squared error (MSE) with an L2
regularization term:

L(X,W ) =
1

n

n∑
i=1

(ŷi − yi)2 +
1

2
λ‖W‖22 (3.8)
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where n is the number of data, ŷ the predicted value, y the measured value and λ the
tunable regularization parameter for the 2-norm ‖W‖2 of the weight matrices W .
L2 regularization was used to reduce overfitting in the models (Goodfellow et al.,
2016; Ng, 2004; Nie et al., 2010).
The gradient of the loss function is calculated by backpropagation with the adaptive
moment estimation (Adam) optimization algorithm (Kingma and Ba, 2015). The
weights are updated for mini batches of samples X with a tunable size b ≤ n of a
power of 2. A tunable decay of the tunable learning rate α is used to achieve a more
robust convergence of the optimization process.
As error metrics the root mean squared error (RMSE), the mean absolute error
(MAE), the mean arctangent absolute percentage error (MAAPE) (Kim and Kim,
2016), the Pearson correlation coefficient r, and the coefficient of determination R2

were used in this study:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (3.9)

MAE =
1

n

n∑
i=1

| ŷi − yi | (3.10)

MAAPE =
1

n

n∑
i=1

arctan

(∣∣∣∣ ŷi − yiyi

∣∣∣∣) (3.11)

r =
cov(ŷ, y)√

(var(ŷ)var(y)
(3.12)

R2 = 1−
∑n

i=1 (ŷi − yi)2∑n
i=1 (yi − ȳ)2

(3.13)

where cov(x, y) is the covariance of x, y, var(x) the variance of x, and ȳ the mean
of the measured values.
The RMSE (Eq. 3.9) is equal to the square root of the MSE and scale-dependent as
it has the same dimension as the predicted parameter (here [m]). Thus, an RMSE of
0 indicates a perfect fit, while the prediction error increases with increasing RMSE.
MAE (Eq. 3.10) is scale-dependent, but does not penalize large errors as much as
MSE and RMSE. r on the other hand is dimensionless with −1 ≤ r ≤ 1 and can only
be used for describing linear correlations (Kuhn and Johnson, 2013). MAAPE (Eq.
3.11) is scale-independent and dimensionless, overcoming the problem of division by
zero or values close to zero (Kim and Kim, 2016).
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3.2.6 Hyperparameter tuning

In order to find the best hyperparameters of the proposed model, a Bayesian hy-
perparameter optimization was performed on a training dataset (Bergstra et al.,
2011; Snoek et al., 2012). The number of LSTM layers, number of LSTM nodes in
each layer, activation function, mini batch size b, learning rate α, decay of learning
rate α, dropout rate between the LSTM layers, and regularization parameter λ were
tuned. A number of 50 iterations were performed maximizing the scale-independent
R2 objective function during the tuning process.
The Bayesian optimization handles the LSTM model as a random black box function
on the hyperparameters, which is expensive to evaluate. Therefore, the algorithm
estimates the best hyperparameters with a minimum of objective function evalua-
tions (Brochu et al., 2010). Prior, a Gaussian Process is built over the objective
functions and best hyperparameters are selected according to their likelihood. Af-
ter evaluating the objective function with those hyperparameters, the posterior is
built and the next hyperparameters for function evaluation can be determined again
(Cabrera et al., 2020; Cornejo-Bueno et al., 2018; Snoek et al., 2012).
The partly discrete search domain and the results of the Bayesian optimization are
shown in Tab. 3.3. The results of the Bayesian hyperparameter search were used for
all LSTM and P-LSTM models as well as for all FFNN models to have a comparable
architecture.

Table 3.3: Hyperparameter tuning values and results.

Parameter Search interval Final value

# layers [1, 5] 2
# nodes per layer [1, 128] 50
activation function {relu, sigmoid, tanh} relu
mini batch size b [1, 128] 64
learning rate α [1e-4, 1e-2] 0.0025
decay of learning rate α [1e-6, 1e-2] 0.00025
dropout rate between layers [0, 0.5] 0.025
regularization parameter λ [1e-7, 1e-3] 0.000001
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3.3 Results and discussion

In a first step, the performance of our proposed model for significant wave height
reconstruction (l = 0), short-term (l = 6, 12, 18, 24), and long-term (l = 48, 96)
prediction was compared to other common statistical and machine learning models,
both in the nearshore area and on a commonly studied deep ocean buoy dataset.
In a next step, we investigated the improvements of the reconstruction and short-
and long-term prediction models by adding the bathymetries to the training data.
The test data were not shown to the networks during training in any way. Also, the
influence of other feature selections on the model performance was investigated.

3.3.1 Model comparison – nearshore excluding bathymetry features

To evaluate the performance of the proposed LSTM and P-LSTM architecture for
the different reconstruction and short- and long-term prediction settings excluding
the bathymetry, the models were compared to a two-layered deep fully connected
FFNN with the same settings for learning rate, optimization algorithm, batch size,
and number of neurons as the LSTM models as well as a simple single-layered fully
connected FFNN (SL-FFNN), a SVR, a RF, and a common MLR.

3.3.1.1 Reconstruction

Tab. 3.4 gives an overview of the results for the reconstruction task excluding and
including bathymetries. The unknown SWH of buoy Coast II was reconstructed
by the known SWH of the other buoys and the wind and water level data only.
By excluding the bathymetries, the influence of the ETD sandbanks was implicitly
considered with the buoy data of Coast II, since this position is influenced by those.
Best reconstruction results excluding bathymetry features were achieved with the
P-LSTM and LSTM neural networks with RMSEs of 0.079 and 0.084 m, respectively
(Tab. 3.4). Because the hyperparameter tuning of the FFNN was initialized with
the optimal tuning parameters of the LSTM and the initial values were among the
best results, the same hyperparameters allowed a proper comparison of both mod-
els. The performances of the FFNN and RF and the SL-FFNN and SVR were quite
similar (Tab. 3.4). For all models, the scale-independent metric r was higher than
the scale-independent metric R2 and the scale-dependent metric RMSE higher than
the scale-dependent metric MAE. Fig. 3.5 shows the results of the reconstruction
excluding the bathymetries by comparing measured and predicted values. The data
points of the two LSTMs were closest around the bisector. Although extreme val-
ues tended to be slightly underestimated, the reconstruction error did not increase
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further at higher wave heights. The FFNN, SVR, and RF showed deviations of the
reconstruction with increasing wave height, while extreme wave heights were under-
estimated especially by the RF (Fig. 3.5). Since the regression line (solid red line)
was consistently below the bisector (dashed red line), all models underestimated the
SWH on average.
The MLR distinctly showed the greatest spreading around the bisector and the
regression line with increasing wave height and tended to overestimate extreme val-
ues (Fig. 3.5). Nevertheless, the MLR is easy to interpret compared to the other
methods. The β-coefficients of the MLR provide information about the directional
influence of the different input parameters on the prediction. For the reconstruction
excluding bathymetric data, the β-coefficient for time step t of Hm0 Coast I was
highest with 0.457 ± 0.007 and 0.131 ± 0.034 for Hm0 Coast Ref. This corresponds
to the correlation of the input parameters, which also showed the highest value for
Hm0 Coast I (Fig. 3.3). With r = 0.96, the correlation between Hm0 Coast Ref and
Hm0 Coast I was very high, which could explain the low influence of this variable
in the MLR. A mean β-coefficient of 0.322 ± 0.032 was found for the water level of
time step t, while the general correlation between this variable and Hm0 Coast II
was r = 0.48. Although the correlation between the wind speed and Hm0 Coast II
was r = 0.56, the β-coefficient at time step t for this variable was low at 0.054 ±
0.009. This may be due to the high correlation of r = 0.73 between Hm0 Coast Ref
and the wind speed (Fig. 3.3).
A comparison of the reconstructed time series is given in Fig. 3.6. The LSTM and
P-LSTM (dashed green lines) showed an overall good fit to the measured data (solid
grey line). A high volatility of the other methods, except the FFNN, were found for
local extreme values.
Fig. 3.7 shows the error of the standardized training and test data during the train-
ing process of the LSTM and FFNN over the 100 epochs for the reconstruction
excluded the bathymetries. While the performance on the training and test data
were nearly equal for the LSTM, the FFNN had a significantly worse performance
on the test data. It was assumed that the LSTM learned a better generalization of
the time series data due to its recurrent units and various gates, while the FFNN
showed a slight overfitting (Gers et al., 2000). Hyperparameter tuning showed that
deeper networks did not increase the test performance, but led to an overfitting of
the training data.
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Table 3.4: Reconstruction of significant wave height Hm0 performance results excluding and including bathymetric data. The mean value and
standard deviation of the three independent runs are given, respectively.

Model Bathymetry Features RMSE [m] R2 r MAAPE MAE [m]

LSTM Excluded 0.084 ± 0.003 0.948 ± 0.003 0.976 ± 0.000 0.109 ± 0.002 0.061 ± 0.002
Included 0.070 ± 0.001 0.964 ± 0.002 0.983 ± 0.001 0.096 ± 0.001 0.052 ± 0.001

P-LSTM Excluded 0.079 ± 0.001 0.953 ± 0.001 0.977 ± 0.001 0.105 ± 0.000 0.058 ± 0.000
Included 0.069 ± 0.001 0.965 ± 0.002 0.984 ± 0.000 0.093 ± 0.001 0.051 ± 0.001

FFNN Excluded 0.107 ± 0.001 0.916 ± 0.002 0.959 ± 0.000 0.137 ± 0.000 0.077 ± 0.001
Included 0.085 ± 0.001 0.947 ± 0.001 0.974 ± 0.001 0.114 ± 0.003 0.062 ± 0.000

SL-FFNN Excluded 0.125 ± 0.000 0.884 ± 0.001 0.942 ± 0.002 0.171 ± 0.002 0.093 ± 0.000
Included 0.101 ± 0.005 0.925 ± 0.008 0.965 ± 0.002 0.145 ± 0.010 0.076 ± 0.004

SVR Excluded 0.122 ± 0.001 0.890 ± 0.002 0.949 ± 0.001 0.201 ± 0.002 0.097 ± 0.001
Included 0.114 ± 0.000 0.904 ± 0.001 0.953 ± 0.001 0.189 ± 0.002 0.092 ± 0.000

RF Excluded 0.110 ± 0.000 0.911 ± 0.000 0.955 ± 0.000 0.147 ± 0.001 0.081 ± 0.000
Included 0.104 ± 0.001 0.921 ± 0.002 0.960 ± 0.001 0.142 ± 0.001 0.077 ± 0.000

MLR Excluded 0.152 ± 0.000 0.830 ± 0.002 0.911 ± 0.001 0.210 ± 0.001 0.113 ± 0.000
Included 0.149 ± 0.000 0.837 ± 0.001 0.915 ± 0.001 0.208 ± 0.002 0.111 ± 0.000
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Figure 3.5: Comparison between the measured and predicted SWH for the reconstruction
excluding bathymetries for the LSTM, P-LSTM, FFNN, SVR, RF, and MLR on the test
data.
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Figure 3.6: Time series of SWH reconstruction excluded the bathymetries. The inset
shows the entire test dataset.

Figure 3.7: Loss of standardized train and test data during the 100 training epochs of
the LSTM (left) and FFNN (right) for the reconstruction excluded the bathymetries.
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3.3.1.2 Short-term prediction

Not only for the reconstruction but also for the multi-step forecasts, the perfor-
mance of the P-LSTM and LSTM were better than those of the other methods.
The P-LSTM parallel structure with additive resampling consequently showed a
slightly better performance than the non-parallelized LSTM structure for all short-
term prediction intervals. The performance for the 3 h, 6 h, 9 h, and 12 h-ahead
forecasts of the significant wave height for buoy Coast II by historical data of the
surrounding buoys is given in Tab. 3.5. As expected, the performance of all models
became increasingly worse, as the prediction interval increased. Fig. 3.8 shows the
logarithmically increasing RMSE of the LSTM for the different prediction intervals.
For the prediction task, the performance of the RF was better than the SVR and,
except for the 3 h-ahead prediction, it was better than the FFNN (Tab. 3.5). Nev-
ertheless, differences between the models could be identified. While the R2 of the
LSTM for the 3 h-ahead prediction increased by 4.7% compared to the FFNN, by
7.7% compared to the SVR, and by 5.3% compared to the RF, it increased by 10.2%,
11.2%, and 7.8% for the 6 h-ahead prediction, 13.5%, 15.8%, and 10.9% for the 9
h-ahead prediction, and by 20.3%, 21.8%, and 13.6% for the 12 h-ahead prediction,
respectively (Tab. 3.5). The error metric of r showed a similar behavior (Tab.
3.5). This indicates that the LSTM and P-LSTM performed better compared to
the other machine learning algorithms with increasing forecasting horizon. On the
other hand, the RMSE of the FFNN, SVR, and RF was 20.7%, 31.5%, and 23.4%
higher than the RMSE of the LSTM for the 3 h-ahead prediction, 24.3%, 25.7%,
and 19.3% higher for the 6 h-ahead prediction, 22.7%, 25.2%, and 18.4% for the 9
h-ahead prediction, and 23.6%, 25.3%, and 17.6% higher for the 12 h-ahead predic-
tion, respectively (Tab. 3.5). MAE showed a similar pattern. Fig. 3.9 shows the
differences between the measured and modeled values for the 12 h-ahead prediction
excluding bathymetric data. The P-LSTM and LSTM showed the narrowest line
here as well. The FFNN showed a higher variability for extreme values than the RF
and a similar scatter plot to the SVR. Differences between the several models were
most significant for this forecasting period.
Thus, the improvement of the LSTM and P-LSTM for the different predictions
in terms of R2 and r increased with increasing forecasting period, while the im-
provement in terms of RMSE and MAE was equal or decreased with an increasing
forecasting period. Nevertheless, it corresponds to the expectation that the LSTM
and P-LSTM can bring their power to bear, especially with larger forecasting peri-
ods. This highlights the broad potential of LSTMs for time series data (Fan et al.,
2020).
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Table 3.5: Short-term (3–12h) and long-term (24–48h) forecasting significant wave height Hm0 performance results excluding and including bathymetric data.
The mean value and standard deviation of the three independent runs are given, respectively.

Prediction Model Excluded Bathymetry Included Bathymetry
RMSE [m] R2 r MAAPE MAE [m] RMSE [m] R2 r MAAPE MAE [m]

3h-ahead LSTM 0.111 ± 0.002 0.910 ± 0.003 0.957 ± 0.001 0.142 ± 0.004 0.080 ± 0.001 0.098 ± 0.001 0.928 ± 0.002 0.966 ± 0.000 0.131 ± 0.002 0.072 ± 0.000
P-LSTM 0.106 ± 0.000 0.918 ± 0.000 0.959 ± 0.000 0.140 ± 0.000 0.078 ± 0.000 0.096 ± 0.000 0.932 ± 0.000 0.966 ± 0.001 0.128 ± 0.002 0.070 ± 0.000
FFNN 0.134 ± 0.001 0.869 ± 0.001 0.933 ± 0.000 0.173 ± 0.002 0.097 ± 0.000 0.119 ± 0.001 0.895 ± 0.000 0.946 ± 0.000 0.159 ± 0.002 0.087 ± 0.001
SL-FFNN 0.152 ± 0.003 0.831 ± 0.003 0.916 ± 0.001 0.190 ± 0.002 0.111 ± 0.001 0.135 ± 0.003 0.864 ± 0.004 0.933 ± 0.002 0.180 ± 0.005 0.099 ± 0.002
SVR 0.146 ± 0.002 0.845 ± 0.005 0.924 ± 0.002 0.232 ± 0.003 0.115 ± 0.002 0.137 ± 0.000 0.860 ± 0.001 0.931 ± 0.001 0.217 ± 0.000 0.108 ± 0.000
RF 0.137 ± 0.001 0.864 ± 0.004 0.930 ± 0.002 0.181 ± 0.001 0.100 ± 0.001 0.133 ± 0.000 0.868 ± 0.002 0.932 ± 0.001 0.178 ± 0.001 0.098 ± 0.000
MLR 0.168 ± 0.002 0.794 ± 0.005 0.891 ± 0.003 0.231 ± 0.001 0.126 ± 0.001 0.166 ± 0.001 0.795 ± 0.000 0.892 ± 0.000 0.230 ± 0.001 0.124 ± 0.001

6h-ahead LSTM 0.140 ± 0.001 0.855 ± 0.002 0.925 ± 0.001 0.190 ± 0.000 0.103 ± 0.000 0.128 ± 0.001 0.881 ± 0.003 0.940 ± 0.001 0.167 ± 0.002 0.094 ± 0.001
P-LSTM 0.137 ± 0.002 0.863 ± 0.003 0.930 ± 0.000 0.179 ± 0.001 0.101 ± 0.001 0.124 ± 0.001 0.887 ± 0.003 0.944 ± 0.002 0.167 ± 0.002 0.092 ± 0.001
FFNN 0.174 ± 0.000 0.776 ± 0.002 0.882 ± 0.002 0.223 ± 0.002 0.127 ± 0.001 0.157 ± 0.001 0.822 ± 0.004 0.907 ± 0.002 0.200 ± 0.004 0.113 ± 0.001
SL-FFNN 0.192 ± 0.004 0.726 ± 0.012 0.859 ± 0.008 0.250 ± 0.009 0.141 ± 0.003 0.174 ± 0.004 0.779 ± 0.009 0.887 ± 0.004 0.221 ± 0.002 0.127 ± 0.002
SVR 0.176 ± 0.000 0.769 ± 0.001 0.882 ± 0.002 0.264 ± 0.004 0.137 ± 0.001 0.166 ± 0.000 0.799 ± 0.002 0.897 ± 0.001 0.251 ± 0.001 0.130 ± 0.000
RF 0.167 ± 0.000 0.793 ± 0.002 0.891 ± 0.001 0.227 ± 0.001 0.124 ± 0.000 0.167 ± 0.001 0.798 ± 0.003 0.894 ± 0.002 0.223 ± 0.001 0.123 ± 0.001
MLR 0.195 ± 0.001 0.718 ± 0.003 0.848 ± 0.002 0.269 ± 0.001 0.148 ± 0.001 0.195 ± 0.002 0.724 ± 0.003 0.851 ± 0.002 0.266 ± 0.002 0.147 ± 0.001

9h-ahead LSTM 0.163 ± 0.001 0.807 ± 0.003 0.900 ± 0.002 0.215 ± 0.002 0.120 ± 0.000 0.151 ± 0.003 0.833 ± 0.006 0.917 ± 0.001 0.199 ± 0.003 0.111 ± 0.001
P-LSTM 0.157 ± 0.001 0.817 ± 0.005 0.906 ± 0.003 0.208 ± 0.004 0.116 ± 0.001 0.145 ± 0.001 0.846 ± 0.001 0.922 ± 0.000 0.191 ± 0.000 0.106 ± 0.001
FFNN 0.200 ± 0.001 0.711 ± 0.002 0.845 ± 0.002 0.252 ± 0.001 0.145 ± 0.001 0.182 ± 0.001 0.755 ± 0.006 0.870 ± 0.003 0.236 ± 0.001 0.133 ± 0.001
SL-FFNN 0.231 ± 0.003 0.612 ± 0.007 0.803 ± 0.003 0.283 ± 0.002 0.167 ± 0.002 0.202 ± 0.004 0.701 ± 0.018 0.840 ± 0.010 0.253 ± 0.009 0.146 ± 0.004
SVR 0.204 ± 0.000 0.697 ± 0.003 0.839 ± 0.002 0.292 ± 0.003 0.157 ± 0.000 0.189 ± 0.001 0.737 ± 0.006 0.862 ± 0.004 0.279 ± 0.002 0.147 ± 0.001
RF 0.193 ± 0.001 0.728 ± 0.005 0.854 ± 0.003 0.257 ± 0.002 0.143 ± 0.000 0.191 ± 0.001 0.733 ± 0.006 0.857 ± 0.003 0.256 ± 0.002 0.142 ± 0.000
MLR 0.219 ± 0.001 0.653 ± 0.005 0.808 ± 0.004 0.295 ± 0.001 0.166 ± 0.001 0.215 ± 0.001 0.659 ± 0.006 0.812 ± 0.004 0.294 ± 0.000 0.164 ± 0.000

12h-ahead LSTM 0.182 ± 0.002 0.759 ± 0.001 0.873 ± 0.002 0.239 ± 0.004 0.134 ± 0.000 0.167 ± 0.001 0.793 ± 0.004 0.895 ± 0.002 0.220 ± 0.002 0.124 ± 0.001
P-LSTM 0.179 ± 0.002 0.766 ± 0.007 0.877 ± 0.004 0.232 ± 0.002 0.131 ± 0.001 0.165 ± 0.006 0.798 ± 0.010 0.901 ± 0.004 0.210 ± 0.002 0.121 ± 0.003
FFNN 0.225 ± 0.001 0.631 ± 0.006 0.799 ± 0.003 0.272 ± 0.005 0.162 ± 0.001 0.207 ± 0.003 0.683 ± 0.011 0.829 ± 0.007 0.259 ± 0.005 0.151 ± 0.002
SL-FFNN 0.262 ± 0.007 0.502 ± 0.034 0.747 ± 0.012 0.315 ± 0.007 0.189 ± 0.004 0.232 ± 0.001 0.605 ± 0.009 0.789 ± 0.009 0.281 ± 0.004 0.167 ± 0.001
SVR 0.228 ± 0.001 0.623 ± 0.006 0.793 ± 0.004 0.319 ± 0.000 0.175 ± 0.001 0.209 ± 0.001 0.678 ± 0.007 0.825 ± 0.004 0.295 ± 0.003 0.160 ± 0.001
RF 0.214 ± 0.002 0.668 ± 0.004 0.818 ± 0.002 0.285 ± 0.001 0.160 ± 0.000 0.212 ± 0.002 0.670 ± 0.006 0.819 ± 0.004 0.279 ± 0.003 0.157 ± 0.001
MLR 0.233 ± 0.002 0.608 ± 0.007 0.779 ± 0.005 0.311 ± 0.002 0.176 ± 0.001 0.231 ± 0.002 0.607 ± 0.004 0.779 ± 0.003 0.309 ± 0.003 0.175 ± 0.001

24h-ahead LSTM 0.243 ± 0.000 0.578 ± 0.005 0.762 ± 0.004 0.307 ± 0.002 0.178 ± 0.001 0.221 ± 0.002 0.648 ± 0.007 0.808 ± 0.001 0.281 ± 0.008 0.162 ± 0.000
P-LSTM 0.235 ± 0.003 0.606 ± 0.012 0.783 ± 0.005 0.294 ± 0.001 0.173 ± 0.002 0.211 ± 0.002 0.681 ± 0.006 0.829 ± 0.004 0.267 ± 0.002 0.154 ± 0.001
FFNN 0.302 ± 0.002 0.345 ± 0.011 0.611 ± 0.005 0.355 ± 0.004 0.221 ± 0.003 0.294 ± 0.027 0.446 ± 0.017 0.675 ± 0.011 0.337 ± 0.006 0.203 ± 0.003
SL-FFNN 0.287 ± 0.001 0.418 ± 0.011 0.653 ± 0.005 0.360 ± 0.008 0.214 ± 0.003 0.283 ± 0.004 0.437 ± 0.006 0.667 ± 0.002 0.361 ± 0.012 0.211 ± 0.004
SVR 0.295 ± 0.001 0.376 ± 0.003 0.624 ± 0.001 0.381 ± 0.003 0.224 ± 0.000 0.269 ± 0.003 0.477 ± 0.013 0.693 ± 0.009 0.359 ± 0.001 0.205 ± 0.002
RF 0.276 ± 0.000 0.457 ± 0.005 0.676 ± 0.004 0.359 ± 0.003 0.208 ± 0.001 0.268 ± 0.002 0.481 ± 0.010 0.694 ± 0.008 0.351 ± 0.001 0.202 ± 0.001
MLR 0.289 ± 0.002 0.401 ± 0.003 0.633 ± 0.002 0.375 ± 0.002 0.221 ± 0.000 0.284 ± 0.003 0.416 ± 0.011 0.645 ± 0.009 0.371 ± 0.001 0.217 ± 0.002

48h-ahead LSTM 0.283 ± 0.001 0.414 ± 0.007 0.645 ± 0.004 0.368 ± 0.004 0.215 ± 0.000 0.258 ± 0.003 0.514 ± 0.009 0.720 ± 0.006 0.337 ± 0.007 0.194 ± 0.002
P-LSTM 0.276 ± 0.002 0.454 ± 0.008 0.675 ± 0.006 0.359 ± 0.004 0.209 ± 0.001 0.249 ± 0.002 0.552 ± 0.006 0.746 ± 0.006 0.325 ± 0.003 0.186 ± 0.001
FFNN 0.332 ± 0.004 0.205 ± 0.006 0.468 ± 0.003 0.413 ± 0.009 0.252 ± 0.002 0.316 ± 0.001 0.288 ± 0.008 0.542 ± 0.003 0.399 ± 0.009 0.240 ± 0.002
SL-FFNN 0.335 ± 0.005 0.185 ± 0.012 0.457 ± 0.015 0.421 ± 0.012 0.256 ± 0.003 0.319 ± 0.004 0.265 ± 0.008 0.533 ± 0.007 0.388 ± 0.008 0.240 ± 0.002
SVR 0.338 ± 0.003 0.165 ± 0.012 0.447 ± 0.010 0.435 ± 0.003 0.262 ± 0.002 0.311 ± 0.001 0.292 ± 0.005 0.547 ± 0.005 0.409 ± 0.002 0.241 ± 0.001
RF 0.312 ± 0.000 0.287 ± 0.003 0.537 ± 0.003 0.411 ± 0.003 0.241 ± 0.000 0.302 ± 0.001 0.328 ± 0.005 0.575 ± 0.005 0.401 ± 0.002 0.234 ± 0.000
MLR 0.325 ± 0.001 0.226 ± 0.006 0.476 ± 0.006 0.425 ± 0.003 0.253 ± 0.000 0.321 ± 0.001 0.242 ± 0.010 0.494 ± 0.009 0.418 ± 0.002 0.249 ± 0.002
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Figure 3.8: RMSE of the LSTM for the different prediction intervals of the SWH
excluded the bathymetries.

The overall poor performance of the MLR can be explained by considering only
linear relations, while the data showed a much more complex and non-linear pattern.
Since the ETD sandbank movements and their non-linear influence on the sea state
at position Coast II were not considered in this setting, a poor performance of the
MLR was expected (Jörges et al., 2021a).
As the variability or standard deviation of the different model runs error metrics was
mostly smaller by more than a factor of 100 than the mean value (Tab. 3.4, Tab.
3.5), it is sufficient to consider the mean value only, while variations can be neglected.
The SL-FFNN showed the highest variability, especially for longer forecast periods.
All models, except the SL-FFNN, were robust against the random train-test split
of the dataset as well as the random initialization of particular parameters in the
algorithms.

3.3.1.3 Long-term prediction

Since the SL-FFNN showed an extreme overfitting in both long-term tasks and the
FFNN in the 48 h-ahead predictions when training over 100 epochs, the number of
epochs for the long-term prediction of these methods was reduced to 10. Results of
the long-term predictions are given in Tab. 3.5.
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Figure 3.9: Comparison between the measured and predicted SWH for the 12 h-ahead
prediction excluded the bathymetries for the LSTM, P-LSTM, FFNN, SVR, RF, and
MLR on the test data.
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Compared to the SWH range of 2.97 m at position Coast II (Tab. 3.1), the MAEs
of 0.173 m at 24 h-ahead and 0.209 m at 48 h-ahead using the P-LSTM are still
acceptable. The MAAPEs for the LSTM (0.368) and P-LSTM (0.359) for the 48
h-ahead prediction indicate that the LSTMs are capable of long-term prediction.
Values are similar to the experimental results on some deep ocean buoy positions
in Pirhooshyaran et al. (2020). As seen from Tab. 3.5, the differences between the
LSTMs and the benchmark methods are significant, while the differences among the
benchmark methods are negligible.

3.3.2 Model comparison – validation on offshore data

3.3.2.1 NOAA dataset

Validation of the proposed LSTM and P-LSTM method was performed on a well-
studied deep ocean buoy dataset from the National Oceanic and Atmospheric Ad-
ministration (NOAA) (https://www.ndbc.noaa.gov). The three adjacent offshore
buoys, 46042, 46069, and 46025, are located in the Pacific Ocean off the U.S. west
coast (supplementary material, App. II.1). Hourly SWH data from 2009 to 2010
were used for training and testing, respectively. For detailed information on the
buoys parameters, refer to App. II.1 of the supplementary material. As in previous
studies (Cornejo-Bueno et al., 2018; Londhe, 2008; Londhe and Panchang, 2007;
Pirhooshyaran et al., 2020), we reconstructed the SWH of buoy 46069 at time t
using information of SWH for the last 12 h (k = 12) to t from the two nearby
buoys 46042 and 46025. The neural networks only received information about the
SWH of the two adjacent buoys for the reconstructed time step t, while some of
the benchmark methods used additional features such as wind speed, average wave
period, air temperature, atmospheric pressure, and longer lookback times. Missing
data were deleted completely, resulting in a total of 3 728 data points for training
and 4 201 for testing. The architecture of the LSTM and P-LSTM was optimized
for the NOAA dataset using Bayesian hyperparameter optimization. One LSTM
layer with 125 neurons, relu activation function, and a final fully-connected layer
was trained over 30 epochs.

3.3.2.2 Experimental results on NOAA dataset

Results of the reconstruction task with our proposed methods and the performance
of benchmark methods from the literature are given in Tab. 3.6. Compared to
Cornejo-Bueno et al. (2018) and Pirhooshyaran et al. (2020), our proposed method,
original designed for the nearshore area in the East Frisian North Sea, also performed
well on deeper and more offshore buoy positions. With a MAE of 0.2327 m, the
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proposed LSTM model achieved the smallest error. While the LSTM had a smaller
RMSE, the P-LSTM had a slightly higher R2. Overall, the performance of the LSTM
and P-LSTM was very similar to the performance of the Seqtoseq and LSTM models
in Pirhooshyaran et al. (2020). In addition to the reconstruction of the SWH, we
also performed forecasting for the deep ocean data (Tab. 3.6). While the 3 h-ahead
prediction came to a MAE of 0.239 m, the 12 h-ahead prediction had a MAE of
0.3289 m.

3.3.3 Impact of bathymetry features

3.3.3.1 Reconstruction including bathymetry

Including bathymetric data to the training purpose significantly improved the per-
formance of our proposed LSTM frameworks and all other models on the test data.
Tab. 3.4 shows the results for the reconstruction with included bathymetric data.
The mean ensemble RMSE of the LSTM and P-LSTM was reduced by 16.7% to
0.070 m and by 12.7% to 0.069 m with included bathymetries, respectively. The
P-LSTM setting achieved the best accuracy for all experiments and in terms of all
error metrics. Therefore, the SWH can be predicted with a MAE of about 5 cm, al-
though the model does not have any historical data on the predicted position south
of the ETD sandbanks. The reconstruction error of the FFNN decreased by 20.6%
to an RMSE of 0.085 m by including bathymetry features, which was the greatest
decrease of all models. Including bathymetry features decreased the RMSE of the
SL-FFNN by 19.2% to 0.101 m, of the SVR by 6.6% to 0.114 m, of the RF by 5.5%
to 0.104 m, and of the MLR by 2.0% to 0.149 m.
The performance of the FFNN was better or equal than the performance of the SVR
and RF for the reconstruction excluding and including bathymetries. Pirhooshyaran
et al. (2020) mentioned the superior performance of the LSTM for SWH reconstruc-
tion, while they also had a very good performance using RF in contrast to our
results. It turned out, that the neural networks could use the additional informa-
tion on bathymetry best to increase their performance.
The performances of the P-LSTM excluding and including the bathymetries for re-
constructing SWH are compared in Fig. 3.10. The data points were significantly
closer to the bisector when the bathymetry was included and most extreme values
were reconstructed satisfactory. The improvements in all error metrics also demon-
strate this. For example, MAAPE decreased by 11.4% and R2 increased by 1.3%
for the P-LSTM. The relative improvements in R2 and r were always below those of
the other error metrics. Even by including bathymetric data, the measured values
were underestimated on average – although not as much – as can be seen from the
solid red line in Fig. 3.10.
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Table 3.6: Reconstruction and short-term forecasting significant wave height Hm0 performance results on NOAA buoy dataset.

Problem task Reference Model RMSE [m] R2 r MAAPE MAE [m]

Reconstruction

Cornejo-Bueno et al. (2018)

All features-ELM 0.4653 0.6624 – – 0.3582
All features-SVR 0.6519 0.3949 – – 0.4986
GGA-ELM-ELM 0.3650 0.7049 – – 0.2858
GGA-ELM-SVR 0.3599 0.7056 – – 0.2727
BO-GGA-ELM-ELM 0.3324 0.7429 – – 0.2519
BO-GGA-ELM-SVR 0.3331 0.7396 – – 0.2461

Pirhooshyaran et al. (2020)
3-layered FCN 0.3960 0.7503 – – 0.2913
Seqtoseq (Adam) 0.3419 0.8106 – – 0.2528
LSTM (Adam) 0.2784 0.7922 – – 0.2392

This study LSTM 0.3096 0.7979 0.8946 0.1278 0.2327
P-LSTM 0.3303 0.8034 0.8971 0.1278 0.2448

3h-ahead LSTM 0.3167 0.7906 0.8928 0.1329 0.2390
P-LSTM 0.3397 0.7911 0.8907 0.1314 0.2496

6h-ahead LSTM 0.3470 0.7527 0.8723 0.1411 0.2577
P-LSTM 0.3684 0.7606 0.8730 0.1372 0.2721

9h-ahead LSTM 0.3989 0.6887 0.8342 0.1583 0.2933
P-LSTM 0.4302 0.6748 0.8242 0.1622 0.3172

12h-ahead LSTM 0.4502 0.6026 0.7887 0.1758 0.3289
P-LSTM 0.4617 0.6378 0.8024 0.1680 0.3364
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Differences in the predicted time series between the P-LSTM excluding and including
the bathymetries for the reconstruction are illustrated in Fig. 3.11. Although both
lines are generally close to each other, differences were found especially at local
extremes, while extreme values were regularly underestimated.

Figure 3.10: Comparison between the measured and predicted SWH for the
reconstruction with included (left) and excluded (right) bathymetries for the P-LSTM on
the test data.

Figure 3.11: Time series of SWH reconstruction with included (green) and excluded
(blue) bathymetries for the P-LSTM. The inset shows the entire test dataset.
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3.3.3.2 Prediction including bathymetry

By including the bathymetric data to the 3, 6, 9, and 12 h-ahead prediction of the
LSTM and P-LSTM, the relative reduction of the RMSE was about similar for both
methods and all time steps, resulting in a reduction of the RMSEs by 7.6–9.5% for
the P-LSTM and 7.4–11.7% for the LSTM. Thus, the RMSE decreased to 0.096 m,
0.124 m, 0.145 m, and 0.165 m for the P-LSTM, respectively (Tab. 3.5). Valid 12
h-ahead predictions were still made with the proposed models. This time span can
be sufficient to initiate practical solutions, e.g., for coastal protection. It underlines
the good performance of neural networks, especially the recurrent LSTM neural
networks, to accurately predict complex time series data with morphodynamic in-
fluences.
Among the benchmark methods, the FFNN significantly performed best in terms of
RMSE and MAAPE. It improved the RMSE by 11.2% for the 3 h-ahead prediction
and by 8% for the 12 h-ahead prediction by including bathymetric data. The SVR,
RF, and MLR could reduce the RMSE by only up to 8.3%, 2.9%, and 1.8% for the
short-term predictions, respectively. While the performance of all error metrics of
the FFNN was similar or worse than that of the RF by excluding the bathymetries,
it was better by including the bathymetries for the short- term predictions (Tab.
3.5).
As seen in Fig. 3.12, the data points of the 3 h-ahead prediction with included
bathymetries were closer around the bisector. Even with the prediction of extreme
events there was no increase in the prediction error of the P-LSTM. With the in-
clusion of the bathymetries, the prediction error of extreme events was lower in the
3 and 6 h-ahead forecast of the P-LSTM. By increasing the forecasting interval to
6 h, the prediction error became larger, as indicated by the more developed bulge
around the bisector.
Fig. 3.13 illustrates the comparison between the measured and predicted values of
the P-LSTM including and excluding the bathymetry features for the 9 and 12 h-
ahead prediction. There is a distinctly greater bulge around the bisector as well as a
stronger spread of certain predicted values. Nevertheless, with bathymetry included,
the data points were closer to the bisector even at these prediction intervals.
The LSTM gate units allow the recurrent model to remember long periods while
selecting only essential information (Xiao et al., 2019). Without these morphody-
namic information, the models tended to underestimate extreme values (Fig. 3.12
and Fig. 3.13).
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Figure 3.12: Comparison between the measured and predicted SWH for the 3 h-ahead
(top) and 6 h-ahead (bottom) prediction with included (left) and excluded (right)
bathymetries for the P-LSTM on the test data.

The 24 and 48 h-ahead long-term predictions of SWH were also improved by in-
cluding bathymetric data (Tab. 3.5). RMSE and MAAPE of the P-LSTM were
reduced by 10.2 and 9.2% for the 24 h-ahead prediction and by 9.8 and 9.5% for
the 48 h-ahead prediction, respectively. As a result, the long-term predictions were
improved by a greater percentage in terms of RMSE compared to the short-term
predictions by the P-LSTM with bathymetry features.
In general, all models in the nearshore area improved their performance by including
bathymetric features, hence they are highly relevant in reconstructing and predict-
ing SWH in the study area.
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Figure 3.13: Comparison between the measured and predicted SWH for the 6 h-ahead
(top) and 12 h-ahead (bottom) prediction with included (left) and excluded (right)
bathymetries for the P-LSTM on the test data.

3.3.3.3 Limitations of including bathymetric data

The train and test split was randomly selected, thus the models and their perfor-
mances on the test data cannot be transferred or generalized to other areas, espe-
cially other bathymetries. For a better generalization, more bathymetric data are
necessary for training and learning the ETD influence. However, it can be assumed
that the LSTM is a suitable method to process even more complex morphodynamic
data. In order to process 2-dimensional bathymetric data a combined LSTM and
convolutional neural network (CNN) could be promising. Choi et al. (2020) used
such a framework in a similar context with ocean images instead of bathymetric
data. In addition, a MLR, which tends to underfitting and leads to a greater gener-
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alization due to its low number of weights, consistently showed an improvement by
adding bathymetric data, indicating a general improvement.
Overall, the bathymetric data have improved the reconstruction and prediction ac-
curacy. The results showed that the ETD sandbanks have a significant influence on
the propagation of the waves and the wave height on the island coast, which was also
found by numerical modelling (Jörges et al., 2021a). As the size and shape of the
ETD sandbanks are constantly changing by morphodynamic effects, their influence
on local forecast models must be considered in addition to continuous monitoring.

3.3.4 Further feature selection analysis

While adding bathymetric features significantly improved the performance of all
models, one should also investigate the influence of other features. It must be noted
that the best performance was observed with the inclusion of all the above features,
hence they all contain significant information for the prediction.

3.3.4.1 Wind speed and direction

Even though theoretically the greatest influence is expected from wind speed, by
including this feature the RMSE of the reconstruction was reduced by only 11.4% for
the LSTM and 14.8% for the P-LSTM (supplementary material, App. II.2). Thus,
the influence of bathymetric features (-16.7% for LSTM and -12.7% for P-LSTM
in terms of RMSE) was about similar to the influence of wind speed. This may
be due to the fact that the SWH data of the two other buoy positions are affected
significantly by wind speed and thus a fraction of the wind speed information is
redundant. The influence of the bathymetry, however, only becomes effective south
of the two other buoy positions, and is not already hidden within them in any way.
By reducing the RMSE of the reconstruction by 21.3% for the LSTM and 21.6%
for the P-LSTM, the influence of wind direction was slightly higher than for wind
speed and bathymetries (supplementary material, App. II.3). The wind direction
influences the non-linear wave breaking at the ETD sandbanks as well as fetch length
and wave direction.

3.3.4.2 Water level

With feature selection excluding only water level and tidal information, the best
RMSE and R2 were 0.132 m and 0.873 for reconstruction with the P-LSTM, respec-
tively (supplementary material, App. II.4). Since the reduction in RMSE for the
reconstruction was 47.8% for the LSTM and 47.7% for the P-LSTM, the influence of
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the water level was greater than any other single feature, which can be explained by
the complex, nearshore location of the buoys where tides dominate the wave climate.

3.3.4.3 SWH only – nearshore vs. offshore performance

Considering only SWH for reconstruction and forecast resulted in the worst pre-
diction performance with a reconstruction RMSE of 0.175 m and 0.173 m for the
LSTM and P-LSTM, respectively (supplementary material, App. II.5). While the
differences between the models in terms of all error metrics are huge in some cases,
the performances in this case, except for MLR, were very similar. As the regression
problem became simpler with less parameters, the LSTM methods, which are opti-
mized for complex problems, may have been overfitted. Thus, not only LSTM and
P-LSTM had the best performance, but also (SL-)FFNN and RF performed quite
well in this case. The best reconstruction performance on the Norderney nearshore
dataset was R2 = 0.781 for the FFNN and MAAPE = 0.2 for the P-LSTM.
Compared to the performance on the deep ocean NOAA dataset, the scale-indepen-
dent error metrics were worse in the nearshore area, since the best performance on
the offshore dataset was R2 = 0.8106. Although this is a small difference, it must be
noted that the distance between the buoy positions is much smaller in the nearshore
area. This emphasizes that considering SWH only in the nearshore area is not a
proper method and other features must be considered since the sea state is much
more complex. Bathymetry – mainly represented by the ETD sandbanks for the
research area of this study – is a main feature in the nearshore area.

3.4 Conclusions

This study aimed to reconstruct and multi-step forecast SWH of the nearshore area
of Norderney, Germany based on neighboring moored buoy measurements, with
the focus set on the model improvements by including bathymetric data on a local
scale. Exact knowledge of nearshore wave conditions – considering natural sea state
damping by the morphodynamically changing ETD sandbanks – is essential for
coastal protection, planning offshore missions, and running sea state and climate
forecasting models.
It was found in our experiments, that the LSTM and P-LSTM neural networks
performed best among other existing benchmark methods such as FFNN, SVR, RF,
and MLR both for reconstruction and prediction. Compared to the LSTM, the
RMSE of the FFNN was at least 21%, the SVR 25%, the RF 18%, and the MLR
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28% higher for the reconstruction and short-term prediction task. To achieve reliable
and fair results, hyperparameters were tuned using Bayesian optimization. For all
models and reconstruction or prediction intervals an ensemble of three independent
model runs was performed. All models showed robust results on the test data with
respect to the various training sets.
By including bathymetry features, the performance of the proposed LSTM and P-
LSTM method in terms of RMSE increased by 16.7% to an RMSE of 0.07 m and
by 12.7% to an RMSE of 0.069 m for the reconstruction, respectively. The short-
term predictions 3, 6, 9, and 12 h- ahead showed significantly better performance
in terms of all error metrics used – namely RMSE, R2, r, MAAPE, and MAE – by
including the bathymetries. Compared to other feature selections, the improvements
were considerable. Thus, our findings highlight the broad potential of LSTM neural
networks for SWH reconstruction and prediction as well as the need to consider
bathymetries in morphodynamic changing coastal areas, such as the East Frisian
Islands.
Further experiments on well-studied deep ocean wave data also showed satisfactory
results, so the proposed method is not limited to the nearshore area.
The LSTM and P-LSTM neural networks could satisfactorily predict even extreme
values of SWH using the bathymetric data, those events that are of special interest
for coastal protection and marine operations. Limitations of the presented study are
the insufficient availability of bathymetries for training the models. Nevertheless,
the presented methods can be used for other data and regions as well. Using high-
temporal-resolution measurements of a coastal radar may be a promising future way.
Due to the accurate reconstruction and prediction of the proposed model it might
also be possible to place the expensive ocean buoys more efficiently or even to drop
positions completely. Results can also be used to verify numerical models and vice
versa. Using additional information regarding the local wave climate such as wave
period and wave direction might also be considered in future studies.
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Abstract

With climate change impacts like sea level rise and changing storms, proper
prediction of significant wave height (SWH) becomes increasingly important
for coastal protection and marine disaster prevention. In the coastal areas of
the North Sea, the morphodynamically changing ebb-tidal delta (ETD) sand-
banks cause non-linear wave propagation. Therefore, consideration of spatial
dependencies using bathymetric data is essential for accurate machine learning
predictions. We developed a novel two-dimensional mixed-data deep convo-
lutional neural network (CNN) for spatial SWH prediction in the nearshore
area of Norderney, Germany. To overcome the problem of limited bathymetry
data, dynamic ETD sandbank morphologies were simulated using random
fields and used as model input for the first time. The regional mixed-data
CNN was also trained and tested with in-situ metocean input data from 2004–
2017 and SWAN-modeled ground truth wave fields as output. The proposed
CNN architecture outperformed other benchmark models on the test data
(RMSE = 0.097m, R2 = 0.977, MAAPE = 6.7%). Further validation on 59
buoy measurements revealed very similar accuracy of the CNN and SWAN.
Compared to the commonly used numerical SWAN model, the trained CNN
reduced the computational cost by a factor of more than 300 000, making it
an efficient surrogate predictive model.

Keywords: convolutional neural network (CNN), machine learning, wave height
forecasting, dynamic bathymetry, SWAN surrogate modeling, random fields
simulation
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4.1 Introduction

Proper predictions of nearshore significant wave height (SWH) are crucial for coastal
protection, ocean engineering, offshore operations, and marine disaster prevention
(Deo and Naidu, 1999; Teich et al., 2018; Ti et al., 2018). Especially under considera-
tion of climate change impacts like sea level rise and changes in storm characteristics,
challenging storm surges become an even worse risk for people living in coastal re-
gions like the North Sea (Bitner-Gregersen et al., 2018; Grabemann and Weisse,
2008; Mori et al., 2013; Weisse et al., 2012).
Common methods for predicting wave heights are third-generation numerical wave
models based on the spectral action balance equation such as Simulating Waves
Nearshore (SWAN) (Booij et al., 1999), WAM (The Wamdi Group, 1988), and
WAVEWATCH III (Tolman et al., 2002). Although numerical models are precise
due to their physical representation of wave propagation, they require immense com-
putational resources, up to high-performance computers for large computational do-
mains. Caused by the high computational cost and time requirement, they are not
suitable for rapid investigations like sea rescue or storm surge impacts (Hu et al.,
2021).
Alternatively to numerical modeling, numerous recent studies highlighted promis-
ing results in wave height forecasting using machine learning techniques (Abed-
Elmdoust and Kerachian, 2012; Mahjoobi et al., 2008; Malekmohamadi et al., 2011;
Mandal and Prabaharan, 2010). Artificial neural networks (ANN) are widely used
as a soft-computing method for wave height prediction and reconstruction (Ali and
Prasad, 2019; Deo and Naidu, 1999; Deo et al., 2001; Dixit and Londhe, 2016; Durán-
Rosal et al., 2016; Kumar et al., 2017; Law et al., 2020; Londhe, 2008; Londhe and
Panchang, 2007; Peres et al., 2015; Zamani et al., 2008). Pirhooshyaran et al. (2020)
applied a recurrent long short-term memory (LSTM) neural network to forecast time
series of wave heights. Fan et al. (2020) combined the LSTM neural network with
the numerical wave model SWAN and improved the accuracy of the standard SWAN
model by more than 65% for single-point predictions at a wave buoy position. In
other studies like Malekmohamadi et al. (2008) and Puscasu (2014), coupling of
ANN and numerical modeling for wave prediction has also been successfully per-
formed and yielded a significant speed-up in the prediction computation. O’Donncha
et al. (2018) integrated a physics-based SWAN model with machine learning for an
ensemble prediction, which outperformed either technique in isolation.
Despite the current popularity of machine learning methods for ocean wave height
prediction and reconstruction, most studies focused on single-point predictions, re-
sulting in insufficient consideration of spatial dependencies of surrounding waves and
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the underlying bathymetry, compared to two-dimensional SWAN numerical model-
ing. Only a few studies have already developed two-dimensional machine learning
surrogate models for the SWAN numerical wave model. James et al. (2018) de-
signed a feed-forward neural network (FFNN) trained with ocean currents, winds,
and SWAN-modeled SWH and wave period of the Monterey Bay area. An RMSE
of 0.09 m was achieved for the spatial SWH prediction. Their model required less
than 1/1000 of the computational time of the physics-based SWAN model. Feng
et al. (2020) predicted SWH and peak period of Lake Michigan with an FFNN using
SWAN-modeled input data from 2005–2014 and not only achieved comparable per-
formance to SWAN, but also reduced computation time by a factor of up to 20 000.
Chen et al. (2021b) designed a random forest surrogate model to predict nearshore
spatial wave fields modeled by SWAN based on buoy data at single locations. Vali-
dation against in-situ buoy data showed better performance of the surrogate model
(R2 = 0.91) than the corresponding SWAN model (R2 = 0.85) and reduced com-
putation time by a factor of 100. Zhou et al. (2021) presented a two-dimensional
convolutional LSTM neural network for forecasting SWH in the South and East
China Seas with lead times up to 24 h, trained on WAVEWATCH III data. For the
24 h forecast, a mean absolute percentage error of 61% was achieved. Convolutional
neural networks (CNN) are very efficient on two-dimensional data like images since
they can learn local patterns in the data (LeCun et al., 1989). Besides applications
in image classification, face and speech recognition, and natural language processing,
Choi et al. (2020) used a CNN for real-time ocean wave height prediction based on
raw ocean images in-situ captured on wave buoys. Wei and Davison (2022) created
a CNN model to predict waves and hydrodynamics in the nearshore area, using
SWASH-modeled data as input. They found that the CNN accurately predicted
wave propagation and wave breaking over a sandbar. Bai et al. (2022) developed
a two-dimensional wave field prediction model based on CNN for SWH forecasts in
the South China Sea. Forecasts using ERA5 reanalysis data with lead times from
12–72 h were performed, achieving mean absolute percentage errors between 8.55%
and 19.48%, respectively.
Although some ANN surrogate models for two-dimensional prediction of wave height
already exist, none of the above mentioned studies have yet considered bathymetry
as input. Particularly in coastal areas, SWH forecasting can be very challenging
due to complex non-linear nearshore processes of wave propagation and interaction.
Thus, it was found that the morphodynamic changes of the ebb-tidal delta (ETD)
sandbanks off the coast of Norderney, Germany significantly affect the local wave
climate (Jörges et al., 2021a). Driven by the ebb-tidal currents or even single strong
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storm surges, the ETD sandbanks are subject to constant and rapid morphologi-
cal changes by migration, erosion, and accumulation (Castelle et al., 2007; Dallas
and Barnard, 2011; Wang et al., 2012). Since the ETD sandbanks provide natural
coastal protection through sea state damping, especially for extreme events, their
extent is essential for predicting nearshore SWH (Jörges et al., 2021a; Niemeyer,
1979; Niemeyer and Kaiser, 1999). Therefore, Jörges et al. (2021b) improved the
single-point prediction and reconstruction of nearshore SWH by including a transect
of ETD sandbank bathymetry features to LSTM neural networks for the first time.
Since high temporal and spatial resolution bathymetry data are limited and hy-
drographic surveys are very cost-intensive (Spicer et al., 2019), no two-dimensional
predictions or a generalization of the morphodynamic evolution of the ETD sand-
banks was yet feasible.
Thus, to the best of our knowledge, none of the previous studies have yet integrated
dynamic bathymetric data for spatial SWH predictions. Therefore, the objective
of this study was to develop a two-dimensional spatial machine learning predic-
tion model capable of integrating the constantly morphodynamically changing ETD
sandbanks in the nearshore area of Norderney. Due to the limited availability of high
temporal resolution bathymetry data, a new methodological approach was required
to create a training dataset of simulated bathymetries. For the first time, syn-
thetic ETD sandbank morphologies were therefore generated using a geostatistical
approach based on variogram analysis and random field simulation, allowing real-
time exploration of the effects of different bathymetries. Two mixed-data CNN deep
neural networks were designed for spatial SWH prediction. The simulated synthetic
ETD sandbank morphologies and metocean measurement data were used as input,
and corresponding numerical SWAN-modeled wave fields as spatial ground truth.
The model setup, calibration, and validation for the nearshore area of Norderney
are mostly adopted from Jörges et al. (2021a). Special focus was set on the model
performance at the Norderney coastline and a climate change scenario including
massive sea level rise. The main contributions of this study were as follows:

• Spatial ETD sandbank bathymetric data were simulated with random fields
as features to improve wave height prediction

• A mixed-data CNN deep neural network was designed to predict spatial nearshore
wave heights
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4.2 Material and methods

4.2.1 Study area

This study focuses on the nearshore area of the East Frisian North Sea island of
Norderney, Germany (Fig. 4.1). Separated by the tidal inlets Norderneyer Seegat
and Wichter Ee, the islands of Juist and Baltrum are located to the west and east of
the barrier island of Norderney, respectively. Strong tidal currents in the tidal inlets
drive the sediment transport of the ETD and the tidal flats. The wave climate in the
study area is dominated by the morphodynamic of the ETD sandbanks. The study
area was therefore selected to fully cover the variation of random plate displacements.
Further details on ETD sandbank dynamics are given in Section 4.2.3. While the
long-term Mean High Water (MHW) at gauge Norderney Riffgat is 1.23 m above
the German mean sea level (NHN), its mean tidal range is 2.47 m, with the study
area affected by sea level rise. The main wind direction is southwest.
Fig. 4.2 summarizes the structure of the methodological framework of this study
concluding with the results of the performance analysis. Detailed information about
each step is given in the following subsections.

Buoy

Water Level Gauge

Coastline Point

ETD Sandbank Area

SWAN Grid

Bathymetry 2015

< -16 m

-16 m to -14 m

-14 m to -12 m

-12 m to -10 m

-10 m to -8 m

-8 m to -7 m

-7 m to -6 m

-6 m to -5 m

-5 m to -4 m

-4 m to -3.5 m

-3.5 m to -3 m

-3 m to -2.5 m

-2.5 m to -2 m

-2 m to -1.5 m

-1.5 m to -1 m

-1 m to -0.5 m

-0.5 m to 0 m

> 0 m

Legend

Figure 4.1: Map of the research area, SWAN grid boundary, and buoy positions. The
boundary of the simulated bathymetries (red line) and the output locations on the coastline
(black dots) are presented on the map.
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Figure 4.2: Structure of the methodological framework of this study.

4.2.2 Metocean data

The different plates of the ETD sandbank area north and west of the Norderney
coastline are located between the northern buoy Coast I and the southern buoy
Coast II (Fig. 4.1). Therefore, nearshore wave heights and periods at position
Coast II are significantly influenced by morphodynamic changes of the ETD sand-
banks (Jörges et al., 2021a; Niemeyer, 1979), why including the bathymetry of the
sandbanks improves nearshore wave height prediction at position Coast II (Jörges
et al., 2021b).
Buoy measurements of half-hourly resolution for the years 2004–2017 (without 2012–
2014) – measured by two Waverider (Datawell, Haarlem, The Netherlands) buoys
– were provided by the Coastal Research Station of the Lower Saxony Water Man-
agement, Coastal Defence, and Nature Conservation Agency (NLWKN), Norderney
(Tab. 4.1). The buoy-measured feature parameters SWH Hm0 [m], mean wave pe-
riods Tm0,1 , energy period Tm−1,0 , and peak period TP of buoy Coast I were used
as inputs for the spatial machine learning prediction of Hm0 . All parameters were
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calculated from the energy density spectra of the buoy measurements (Tab. 4.1),
while the same spectra were also used as model input for SWAN. Wave direction at
Position Coast I was not considered as necessary model input since not all buoys are
able to measure it, thus providing greater independence of the deployed buoy sys-
tem. In addition, there is a correlation between wave direction and wind direction,
currents, and coastal refraction, so wave direction was indirectly taken into account.
Buoy Coast II was only used for model validation.

Table 4.1: Main statistics of the two buoy measurement positions Coast I and Coast II.

Buoy
Position

SWH
Mean
[m]

SWH
Std.
[m]

SWH
Range
[m]

Mean energy
wave period
[s]

Location

Water
depth
2015
[m NHN]

Coast I 1.07 0.69 [0.09; 6.91] 5.77 N 53.744781
E 7.112101 12.11

Coast II 0.63 0.39 [0.04; 3.01] 6.04 N 53.715653
E 7.141280 6.15

Wind data of the station Norderney (53.71◦ N, 7.15◦ E, 16 m height) were provided
by the German Meteorological Service (Deutscher Wetterdienst, DWD) with a tem-
poral resolution of 10 min. Water level data of the gauge Norderney-Riffgat (Fig.
4.1) were provided by the Waterways and Shipping Administration (WSA) with a
temporal resolution of 1 min. An averaging to a common half-hourly resolution of
water level and wind parameters was performed, thus wind speed at sea US [ms−1],
wind direction Uθ [◦], and water level WL [m + NHN ] were also used for spatial
predictions of Hm0 .
Since storm surge events are of great interest for coastal regions due to their special
strength, features were selected accordingly. The data were filtered by Hm0 ≥ 1 m,
US ≥ 11 ms−1, and events within 1.5 h of the tidal high water (THW), so THW
± 1.5 h. All measurement time steps with at least one missing value (NaN) of the
above-described parameters were deleted completely. The feature selection proce-
dure resulted in 6 480 data points which were used for further analysis.

4.2.3 ETD sandbank characterization and geostatistical bathymetry sim-
ulation

As stated in the introduction, the morphodynamic influence of the ETD sandbanks
must be considered for spatial wave height prediction, since they exert a huge and
variable influence on sea state damping as natural coastal protection in the nearshore
area of Norderney (Jörges et al., 2021a,b). Therefore, in addition to wave, water
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level, and wind data, bathymetric data were used for further SWAN modeling and
spatial CNN mixed-data deep neural networks.
Yearly surveyed bathymetries or digital elevation models (DEM) of the ETD sand-
banks were provided by the NLWKN, Coastal Research Station, and EasyGSH-DB
for the years 1995, 2004–2011, and 2015–2017. EasyGSH-DB bathymetries were
obtained from the EasyGSH-DB portal www.easygsh-db.org (Hagen et al., 2020)
and considered only after visual validation and for years with no measurements of
the NLWKN Coastal Research Station available. Due to immense financial effort
and small time windows, more frequent survey missions by ship were not possible
in the study area.
Although there is a constant eastward migration of individual plates over a period
of about 37 years for a complete cycle through the entire study area due to cur-
rents, the morphodynamic changes in general are rather considered to be random
(Bremermann and Meyer, 2012; Jörges et al., 2021a; Meyer, 2014; Niemeyer, 1979).
Thus, even single severe storm surges can lead to rapid and immense changes of the
ETD sandbanks (Wang et al., 2012). These high random dynamics can therefore
not be captured at a high temporal resolution using common measurement tech-
niques. To overcome the problem of limited bathymetric training data available, we
developed a geostatistical feature engineering method based on variogram analysis
and random field simulations to generate synthetic bathymetries for machine learn-
ing model training for the first time. Morphodynamic changes and simulations only
were conducted in the areas of the ETD sandbanks, defined as all plates above -3.5
m NHN (Bremermann and Meyer, 2012). A smooth and averaged -3.5m-isobath of
all years was computed and used as the boundary of the ETD sandbank area (Fig.
4.1).
Based on the empirical variograms (Matheron, 1965) calculated for the defined ETD
sandbank areas of the respective years, a mean theoretical variogram model of
the Matérn class (Matérn, 1960) was fitted to the bathymetric data variograms
by weighted least squares using the gstat package of R (Pebesma, 2014). Matérn
isotropic covariance F is defined as (Handcock and Stein, 1993; Stein, 1999):

F (h) =
1

2ν−1Γ(ν)

(
h

r

)ν
Kν

(
h

r

)
(4.1)

where h is the spatial distance between points, Kν a modified Bessel function of the
second kind of order ν (Abramowitz and Stegun, 1972), Γ the gamma function, r > 0

the range parameter indicating the rate of correlation decay with distance, and ν > 0

a smoothness parameter. Due to the smoothness parameter, the Matérn model is
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flexible in modeling spatial covariances of various spatial processes (Minasny and
McBratney, 2005). E.g. for ν = 0.5 the Matérn model is equal to the exponential
model, while small ν represent rough spatial processes and large ν smooth processes.
The semivariance γ of the Matérn model with nugget effect c0, partial sill variance
c1, and sill variance c0 + c1 is calculated from Eq. 4.1 by:

γ(h) = c0 + c1(1− F (h)) (4.2)

The fitted mean Matérn variogram of the ETD sandbanks – averaged over all years
– had the parameters c0 = 0.11, c1 = 1.23, r = 262.83, and ν = 2.08 (Fig. 4.3). For
further random field simulations of bathymetries, the semivariance defined by the
above model was used.

Figure 4.3: Mean variogram of the ETD sandbanks of the Matérn class, averaged over
all years. Parameters are c0 = 0.11, c1 = 1.23, r = 262.83, and ν = 2.08, according to
Eq. 4.1 and Eq. 4.2.

Due to the random behavior of the ETD sandbanks, a random field was appropriate
for simulating bathymetrical changes. Gaussian random field (GRF) simulation with
zero-mean and a covariance matrix given by the above-defined Matérn model was
therefore performed using R statistical computing software (Schlather, 2001, 2012).
GRF use a (zero-mean) multivariate normal distribution to generate values and can
be used to model natural spatial processes. A two-dimensional GRF is equivalent to
a two-dimensional stochastic process (Lantuéjoul, 2002). Circular embedding with
computation on a torus based on Fourier transformation was used in this study due
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to its fast simulation performance for stationary GRFs (Dietrich and Newsam, 1997).
The more surveyed bathymetries are included in the variogram, the more precise the
simulation with random fields becomes. Random variations of the ETD sandbanks
were achieved by adding the yearly mean bottom height of the ETD sandbank
area to the simulation of the respective year and merging the final simulated ETD
sandbank area with a measured background bathymetry of the respective year. The
background bathymetries for the respective years consist of the corresponding survey
data. Since the spatial extent of the yearly bathymetries differed in the study area,
sections of missing values were filled by a reference bathymetry from the year 2015.
To obtain a smooth boundary between the simulated and measured areas, a two-
dimensional Gaussian smoothing with filter size 3 × 3 was computed for overlapping
boundary areas (Chung, 2021). Finally, the accuracy of the synthetic bathymetries
was visually verified for plausibility by experts, and single unnatural bathymetries
(e.g. sandbanks with large holes) were removed. A representative sample of four
simulated bathymetries with artificial ETD sandbanks is given in Fig. 4.4. These
cover the varying magnitude of the plates in general as well as the varying spatial
extent of accumulations of plates.

Figure 4.4: Example of four simulated ETD sandbank bathymetries. Different survey
data were used as the mean of the variances, with (A) modified based on the bathymetry
of 1995, (B) based on 2005, (C) based on 2015, and (D) based on 2017. All values are
given in m above the mean sea level (NHN).

106



RESEARCH STUDY III

4.2.4 SWAN modeling

Since simulated bathymetries were used in this study, nearshore spatial wave data
first had to be generated by numerical modeling to be used as ground truth for the
machine learning models. The third-generation wave model SWAN (Booij et al.,
1999), designed for coastal areas, was used with an unstructured grid. Wave prop-
agation is computed in SWAN by solving the spectral action balance equation:

∂

∂t
N +

∂

∂x
cxN +

∂

∂y
cyN +

∂

∂f
cfN +

∂

∂θ
cθN =

S

f
(4.3)

where N = N(f, θ) is the action density spectrum with frequency f and wave di-
rection θ, t the time, and x and y the spatial propagation with velocities cx and cy,
respectively. The fourth and fifth terms of Eq. 4.3 describe the changes in depth
and currents, and the changes in direction caused by refraction, respectively (Booij
et al., 1999; SWAN, 2019a,b).
The unstructured grid (Fig. 4.1) was adapted to the bathymetries including a mean
ETD sandbank shape to achieve both a good fit to the topography and a low number
of 29 347 nodes in total. This method reduced the computational cost compared
to a regular grid. The highest grid resolution was about 20 m in the area of the
morphodynamic ETD sandbanks, while the lowest resolution of about 120 m was set
at constant boundary positions. SWAN computations were executed in stationary
mode using SWAN version 41.20AB, and the unstructured grid was designed using
the Surface-water Modeling System (SMS) with the paving method (Surface-Water
Modeling System, 2012).
The SWAN modeling setup and model calibration and verification for this region
are described in more detail in Jörges et al. (2021a). All model parameters were
adopted from Jörges et al. (2021a) except for the proportionality coefficient α for
the rate of dissipation of the β−kd parametrization of depth-induced wave breaking
(Salmon and Holthuijsen, 2015; Salmon et al., 2015). It was set to 0.15 in this study,
which showed the overall best results.
While the northern boundary of the computational grid was controlled by the sig-
nals of buoy Coast I, the western boundary was controlled according to eight one-
dimensional computations using SWANOne (Verhagen et al., 2008) with the same
hydrodynamic boundary conditions applied to the respective northern boundary.
Southern and eastern boundaries were set as open boundaries. Wind and water
level inputs were defined according to the measured data of the respective event and
assumed to be constant over the entire computational grid (Witting et al., 2014).
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Figure 4.5: Variance density spectra of six validation cases of the SWAN modeling. The
observed (blue) and modeled (red) spectra and directions as well as the basic wave
parameters are shown for the events measured on A: 04-Jan-2004 21:00, B: 25-Jun-2004
15:00, C: 20-Jan-2007 23:00, D: 18-Oct-2007 01:30, E: 16-Mar-2008 19:00, and F:
03-Feb-2016 06:00.

Validation of the SWAN model was performed on 59 measured events with sur-
veyed bathymetries and buoy-measured boundary conditions. Good performance
was achieved on the validation data with a MAAPE of 14.3%, a R2 of 0.725, an
RMSE of 0.218 m, and a MAE of 0.18 m (Tab. 4.4, Fig. 4.11). Fig. 4.5 shows the
performance of the SWAN model for six sample events. Although the peak values
had the highest error, the general fit of the variance density spectra was satisfactory,
as well as the accuracy of the wave directions. In conclusion, the SWAN-modeled
data were suitable to produce an input dataset for further machine learning algo-
rithms. A total of 6 480 SWAN models were computed. Fig. 4.6 provides examples
of four events with different simulated bathymetries covering the range from high
(A) to low (D) resulting wave fields.
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Figure 4.6: Example of four SWAN-modeled spatial wave fields of various strengths. (A)
represents an event with a northern boundary wave height (Coast I) of Hm0 = 3.28 m,
wind speed US = 17.13 ms−1, and water level WL = 1.97 m NHN . (B) represents an
event with a northern boundary wave height (Coast I) of Hm0 = 1.91 m, wind speed
US = 12.31 ms−1, and water level WL = 1.35 m NHN . (C) represents an event with a
northern boundary wave height (Coast I) of Hm0 = 1.83 m, wind speed US = 16.51 ms−1,
and water level WL = 1.73 m NHN . (D) represents an event with a northern boundary
wave height (Coast I) of Hm0 = 1.22 m, wind speed US = 11.52 ms−1, and water level
WL = 0.75 m NHN . All Hm0 values are given in m.

4.2.5 Neural network data preprocessing

All in-situ point-measured and spatial SWAN-modeled features were min-max-nor-
malized to the interval [0, 1] by

xN =
x−min(x)

max(x)−min(x)
(4.4)

where xN is the normalized and x the original feature value. Feature normaliza-
tion prevents any feature from having a disproportionately influence on the network
training by its range of values.
The 6 480 data points were divided into 75% train data (4 860 data points) cov-
ering the simulated bathymetries from 2004–2011 and 25% test data (1 620 data
points) covering the simulated bathymetries from 2015–2017 for each machine learn-
ing model run, respectively. On this, a random shuffle before each training epoch
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was performed to ensure robust results. Feature normalizations only refer to the min
and max of the respective training data to hide any information (e.g. the range of
values) of the test data during the model training. Thus, test data were not shown
to the algorithms during training in any way. Especially the randomly simulated
bathymetries of the test data were hidden during the training and therefore used to
assess the performance of generalization of the proposed method.
Both, simulated bathymetry maps and SWAN-modeled wave height maps, were
scaled to a spatial resolution of 50 × 50 m due to computational costs. This in-
cluded a down-sampling by a factor of 10 for the simulated bathymetries resulting in
191 × 260 pixels and a down-sampling of the SWAN-modeled wave heights resulting
in 113 × 161 pixels. Further data preprocessing was not performed to minimize the
manipulation of the prediction results (Ali and Prasad, 2019).

4.2.6 Convolutional neural networks (CNN)

For working with data on grid topologies, the convolutional neural network (CNN)
class (LeCun et al., 1989) is very effective due to its convolutional operation in
multi-dimensional spaces. This allows CNNs to learn local patterns in the data (e.g.
image data like maps), share weights, and shift invariants, making CNNs widely
applied to e.g. image classification, face and speech recognition, and natural lan-
guage processing (Aggarwal, 2018). Computed on GPUs, CNNs can fully deploy
their power, especially for large spatial datasets (Li et al., 2016).
The convolution operation extracts latent features from an input image using con-
volution filters, called kernels. The resulting output of the convolution operation
is called a feature map (Goodfellow et al., 2016). Convolution layers are basically
defined by the number and size of the convolution kernels, the stride (kernel step
size), and the padding (number of rows and columns added to the boundaries of the
input feature matrices to adjust the size of the output feature map). All weights
of the convolution kernels are learned through backpropagation during the train-
ing, while the kernel size is a tunable hyperparameter. A convolution layer oper-
ation ∗ for the layer l and the output feature map k with input feature matrix
Xk = (xijk)

n,m
i,j=1 ∈ Rn×m, n,m ∈ N and weight matrix of the convolution kernel

Wk = (wi′j′kk′)
r
i′,j′=−r ∈ R(s×k)×(s×k′), s = 2r + 1, r ∈ N is performed by:

z
(l)
ijk = (W ∗X)li,j,k =

d(l−1)∑
k′=1

∑
i′,j′

x
(l−1)
i+i′,j+j′,k′ · w

(l)
i′,j′,k′,k (4.5)

x
(l)
ijk = f

(
z
(l)
ijk

)
(4.6)
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where Zk = (zijk)
n,m
i,j=1 ∈ Rn×m is the output feature map of the convolution and d(l)

the number of feature maps of layer l. Various activation functions f can be ap-
plied to the convolution operation, such as sigmoid, hyperbolic tangent (tanh), and
rectified linear unit (ReLU), with the latter used throughout this study due to its
non-linearity, positivity, and fast computation (Khan et al., 2020). The architecture
of a CNN can typically be composed of an input layer, convolution layer, pooling
layer, batch normalization layer, dropout layer, fully-connected layer, and an output
layer. Pooling layers reduce the spatial size of the feature map, decreasing compu-
tational cost by dimensionality reduction and achieving generalization by extracting
the main features. Max pooling returns the maximum value of the area covered by
the pooling filter, while average pooling calculates the average of all values covered
by the pooling filter. Since max pooling also suppresses noise by discarding small
noisy values, we used this method throughout this study for all CNNs.

4.2.7 Neural network model settings and architecture

Mixed-data neural networks were applied in this study to combine spatially simu-
lated bathymetries and point-measured metocean data as input features. As mixed-
data architectures are more complex, the Keras functional API was used to design
flexible networks (Gulli and Pal, 2017). Two branches of the networks, a fully-
connected-block for buoy-measured, wind, and water level data, and a CNN-block
for bathymetric maps, were concatenated to output SWAN-modeled spatial Hm0

ground truth data. The architecture of the proposed CNN model is described in
detail in Fig. 4.7 (a). In addition, a kind of encoder-decoder architecture for the
CNN neural network (ED-CNN) was developed to overcome the feature map com-
pression by the pooling operation with an up-sampling operation. Hence, the initial
size of the feature maps was restored by inverse pooling and the CNN-block of the
ED-CNN model has a symmetric shape. Details about the ED-CNN architecture
are given in Fig. 4.7 (b). For computational reasons, a fully-connected layer at the
end of the respective CNN blocks serves as a bottleneck.
The proposed CNN and ED-CNN mixed-data neural networks were benchmarked
to a common deep FFNN (DFFNN) (Hastie et al., 2009), a Resnet-50v2 (He et al.,
2016), a VGG-19 (Simonyan and Zissermann, 2015), an Inception-v3 (Szegedy et al.,
2015), and a Densenet-121 (Huang et al., 2018). For the DFFNN, the CNN-block was
replaced by three fully-connected layers, a batch normalization layer, and a dropout
layer. While the proposed CNN and ED-CNN models as well as the DFFNN were
designed for spatial regression outputs, the other benchmark models were designed
for image classification. For the layers inside the CNN-block, a fixed number of a 2
× 2 pooling size, a stride of 1, and padding, resulting in an output of the same size
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as the input, were defined. The choice of other model parameters (hyperparame-
ters) is described in the next subsection since they were selected by an optimization
technique.

CNN-Block

Fully Connected Fully Connected

Concatenate

(a)

(b)

Fully Connected Fully Connected

Concatenate
Reshape

Fully Connected Output

Metocean
Input

Bathymetry
Input

Metocean
Input

Bathymetry
Input

CNN-Block

Reshape

Fully Connected Output

E n c o d e r D e c o d e r

Convolution Batch
Normalization Pooling Upsampling

FlattenFully Connected Dropout Concatenate

113 x 161

113 x 161

Figure 4.7: Architecture of the proposed CNN (a) and ED-CNN (b) models for
mixed-data with the CNN-block for two-dimensional bathymetry input (size 191 × 260)
and a fully-connected part for the metocean input (size 42). The convolution sizes are (a)
191 × 260, 95 × 130, and 47 × 65 for the three respective layers with 32 feature maps
each, and (b) 191 × 260, 95 × 130, 47 × 65, and 94 × 130 on the two encoder and two
decoder convolution layers with 64, 32, 32, and 64 feature maps, respectively. The output
size is 113 × 161 for both (a) and (b).

A mixed-data network input I = (I1, I2) consists of a concatenation of one-dimensio-
nal fixed point metocean data I1 and two-dimensional spatial simulated bathymetric
data I2. The model output Y consists of the two-dimensional SWAN-modeled Hm0

data. Y is represented by a matrix containing zeros at the respective geographic
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positions above the water level of an event, so-called dry points. All dry points were
excluded from further performance evaluation since they were learned correctly by
the networks. Due to the need of simulating the ETD sandbanks, time series based
on buoy measurements could not be obtained. Thus, all predictions were made for
the respective time step of the input data.
A fixed number of 30 epochs for training was set for all neural networks and every
model was trained and tested in an ensemble of three independent runs to validate
the robustness of the prediction performance by its standard deviation with respect
to random variations by data shuffling or the optimization algorithm during train-
ing. All calculations were performed with Python 3.8 and TensorFlow 2 on an Intel
Xeon Gold 6146 CPU 12 Core 3.2Ghz, 64GB RAM, and a Quadro P1000 4GB GPU.

4.2.8 Loss function, optimizer, and error metrics

A mean squared error (MSE) loss function L for all models in this study was com-
puted as follows:

L(I) =
1

b
· 1

113 · 161
·

b∑
i=1

113·161∑
j=1

| ŷi,j − yi,j |2 (4.7)

where b ≤ n is the tunable size of a mini batch of a power of 2 applied for weight
updates. n is the total number of two-dimensional input data, ŷi,j and yi,j the jth
pixel of the ith predicted and original reshaped output matrix of size 113 × 161,
respectively. Adaptive moment estimation (Adam) (Kingma and Ba, 2015) was used
as an optimization algorithm for the backpropagation computation of the gradient
of the loss function. Both, the learning rate α and decay of α for a robust con-
vergence of the optimization were tunable network parameters underlying Bayesian
hyperparameter optimization.

Error metrics root mean squared error (RMSE), mean absolute error (MAE), mean
error or bias, mean arctangent absolute percentage error (MAAPE) (Kim and Kim,
2016), Pearson correlation coefficient r, and the coefficient of determination R2 were
computed to assess the accuracy of the models as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (4.8)
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MAE =
1

n

n∑
i=1

| ŷi − yi | (4.9)

bias =
1

n

n∑
i=1

(ŷi − yi) (4.10)

MAAPE =
1

n

n∑
i=1

arctan

(∣∣∣∣ ŷi − yiyi

∣∣∣∣) (4.11)

r =
cov(ŷ, y)√

(var(ŷ)var(y)
(4.12)

R2 = 1−
∑n

i=1 (ŷi − yi)2∑n
i=1 (yi − ȳ)2

(4.13)

where cov(x, y) is the covariance of x and y, var(x) the variance of x, and ȳ the
mean of the original values. All error metrics presented in this study refer to rescaled
(spatial) predictions and do not underlie any normalization.

4.2.9 Hyperparameter tuning

Bayesian hyperparameter optimization was conducted on the training data to find
the best network hyperparameters for the proposed model (Bergstra et al., 2011;
Snoek et al., 2012). The hyperparameters number of filters in each convolution
layer, kernel size of convolution layer, number of nodes in the final fully-connected
layer, mini batch size b, learning rate α, decay of learning rate α, and the dropout
rate were considered during tuning. 50 tuning iterations were computed for the
CNN, ED-CNN, and DFFNN neural networks, respectively, by maximizing the scale-
independent R2 objective function. Since it is not possible to adjust all parameters
in the benchmark models, the optimized parameters have been adopted here.
Bayesian hyperparameter optimization evaluates the CNN model as a random black-
box function of the hyperparameters and estimates the best parameters by perform-
ing only a small number of the expensive objective function evaluations (Brochu
et al., 2010). By prior laying a Gaussian process over the objective function, param-
eters can be selected by likelihood, and after each function evaluation, the next hy-
perparameters can be chosen by building a posterior (Cabrera et al., 2020; Cornejo-
Bueno et al., 2018; Snoek et al., 2012).
Tab. 4.2 gives the respective search domains and results of the Bayesian hyperpa-
rameter optimization for CNN, ED-CNN, and DFFNN.
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Table 4.2: Hyperparameter tuning values and results.

Parameter Search interval CNN ED-CNN DFFNN

# CNN filter [8, 128] 32 64 –
kernel size [2, 10] 3 4 –
# nodes final layer [5, 10 000] 100 100 50
mini batch size b [1, 128] 32 64 32
learning rate α [1e-4, 1e-2] 0.0025 0.025 0.035
decay of learning rate α [1e-6, 1e-2] 0.0005 0.005 0.005
dropout rate [0, 0.5] 0.25 0.25 0.35

4.3 Results and discussion

We first present the comparison of the performance results for the spatial predic-
tion of Hm0 of the different model architectures. Subsequently, the proposed models
have been validated with in-situ buoy measurements as well as the SWAN numerical
model. Results of the wave height prediction uncertainty are then shown and dis-
cussed in detail for the Norderney coastline. In a final step, the proposed prediction
model is applied to an exemplary scenario of sea level rise driven by climate change.

4.3.1 Model performance of spatial prediction

The proposed CNN and ED-CNN architectures of this study were compared to the
Resnet-50v2, VGG-19, Inception-v3, and Densenet-121 models. As the performance
on the test data of any of these alternative models was consistently weak with an
RMSE > 1 m, they were not considered for further analysis. These models were
initially designed for classification problems with single value outputs and showed
a highly overfitting during the training process. Therefore, we cannot recommend
these models for image-to-image predictions with mixed-data input.
Tab. 4.3 provides details of the performance of the CNN, ED-CNN, and DFFNN
models. The overall performance of the tuned CNN-based models was very good and
in range with the performance of the studies mentioned in the introduction, while the
tuned DFFNN had a worse performance. The best prediction results were achieved
by the CNN model with an RMSE of 0.097 m for the entire wave field area on av-
erage for the three independent model runs. The variance of the different ensemble
runs was sufficiently small to be negligible, proving the robustness of the predictive
model. The proposed CNN model reached the highest R2 of 0.977, a MAAPE of
0.067, and a MAE of 0.068 m on the spatial test data. On average proper time
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consumption of about 91 min for training and 4 s for predicting the spatial test data
was obtained. Similar good results were achieved with the ED-CNN model. While
the spatial mean RMSE, R2, and MAAPE of the test data were 0.103 m, 0.974, and
0.069, respectively, the mean computational time was about 376 min for training
and 35 s for predicting. The CNN has a slimmer architecture, thus fewer weights
need to be trained. The very similar performance of the ED-CNN and CNN models
can be explained by the final fully-connected layer which provides a bottleneck in
the CNN-based models. Both models showed relatively high variability in the bias
error, probably due to its sign sensitivity. In contrast to the CNN-based models,
the DFFNN showed a much higher spatial mean error with an RMSE of 0.265 m,
an R2 of 0.807, and a MAAPE of 0.191. However, the computational time for the
training was only about 2 min and for the prediction only about 1 s. Not only the
errors were higher for the DFFNN, but also the variance of the three computational
runs was greater than for the CNN-based models. Thus, it can be stated that the
CNN model can be recommended due to its good computational time and superior
performance, and both CNN and ED-CNN models showed very robust results.
Fig. 4.8 shows the prediction results of the proposed CNN model for the four exem-
plary cases described in Fig. 4.6. By comparing the SWAN-modeled true values of
Fig. 4.6 with the CNN-predicted significant wave heights of Fig. 4.8 an overall good
agreement was obtained. Interactions of the waves with the simulated bathyme-
tries were quite apparent and the CNN was able to surrogate the numerical SWAN
method (Fig. 4.8). Both severe (A and B) and gentle (C and D) sea state events
could be spatially predicted using the machine learning method (Fig. 4.8).
To provide a proper comparison of the SWAN-modeled and CNN-predicted wave
fields, the bias between them was calculated, where a positive bias indicates an
overestimation and a negative bias indicates an underestimation of the Hm0 wave
field by the CNN. It can be seen from Fig. 4.9 that the prediction bias of the CNN
model had a spatial pattern depending on the simulated bathymetry. While exem-
plary cases A, B, and D showed underestimations at the northern beach, event C
showed overestimations at the northern beach area. Significant biases were mostly
found around the area of the simulated ETD sandbanks. The areas of the sand-
banks were mostly underestimated, while the rest of the nearshore area tended to
be overestimated.
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Table 4.3: Spatial prediction of SWH performance results. The mean value and standard deviation of the three independent runs are given,
respectively.

Model Training
Time [min]

Prediction
Time [s] RMSE [m] R2 r MAAPE MAE [m] bias [m]

CNN 91.5 ± 0.5 4.4 ± 0.0 0.097 ±
0.001

0.977 ±
0.001

0.989 ±
0.001

0.067 ±
0.003

0.068 ±
0.002

-0.013 ±
0.005

ED-CNN 376.2 ± 2.3 35.4 ± 0.5 0.103 ±
0.003

0.974 ±
0.002

0.987 ±
0.001

0.069 ±
0.003

0.071 ±
0.002

0.016 ±
0.014

DFFNN 2.1 ± 0.0 0.7 ± 0.0 0.265 ±
0.086

0.807 ±
0.126

0.930 ±
0.037

0.191 ±
0.053

0.187 ±
0.063

-0.059 ±
0.071
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Figure 4.8: Example of the four CNN-predicted spatial wave fields described in Fig. 4.6.
All Hm0 values are given in m.

Figure 4.9: Spatial bias for the four exemplary events presented in Fig. 4.6 and Fig.
4.11. Positive values (blue) indicate an overestimation and negative values (reds) indicate
an underestimation at the respective position. All bias values are given in m.
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Fig. 4.10 shows the spatial RMSE of the entire model area of the test data. It
indicates strong interactions with the shape of the simulated bathymetries. The
largest RMSE of about 0.25 m was found in the area of the ETD sandbanks and the
northern coastline. On average, the highest RMSE was obtained at the transition
area between the ETD sandbanks and the deeper shipping channel (Fig. 4.1, Fig.
4.10). The RMSE of the ETD sandbank area was mostly less than 0.15 m, which is
satisfactorily low compared to the mean significant wave height. North of the ETD
sandbanks the RMSE was mainly about 0.06 m. The lowest spatial mean RMSE of
about 0.02 m was in the southeast region of the model area. Due to the higher sig-
nificant wave heights in the northern model area, also higher errors were expected.
The RMSE at the Norderney coastline has a heterogeneous structure with small
errors in the south, moderate errors at the western beach, and the highest errors
at the northern beach. In general, regions of higher errors of the CNN model can
be explained by the greater morphodynamic variations of the simulated ETD sand-
banks and resulting complex wave interactions in the respective area. Boundary
regions that were held constant over all bathymetries therefore tend to have smaller
prediction errors. Wave propagation over the ETD sandbanks was accurately pre-
dicted by the CNN.

Figure 4.10: Spatial RMSE of the CNN model for the entire test data. All values are
given in m.
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4.3.2 CNN neural networks vs. SWAN numerical model

Compared to SWAN modeling, the computational efficiency of the mixed-data CNN
neural networks proposed in this study was greatly higher. Both methods were
computed on the same hardware, thus a comparison of the computation time was
reasonable. SWAN required about 15.8 days or 22 755 min to model the entire test
dataset, while the trained CNN model required only about 4.4 s for the spatial pre-
diction of the same dataset. Training of the mixed-data CNN neural network needed
about 91.5 min but had to be performed only once for the study area. Therefore, the
proposed machine learning method was able to reduce the computational cost by a
factor of more than 300 000 compared to the numerical SWAN model. Feng et al.
(2020) obtained an acceleration of computational time by a factor of up to 20 000
with a fully-connected neural network compared to SWAN modeling for the area of
Lake Michigan, while James et al. (2018) reached a factor of up to 1 000 for the
area of Monterey Bay with a similar setting. Also, Wei and Davison (2022) reached
a 22.5 times faster computation with a CNN model compared to SWASH numerical
model. It must be noted that the spatial SWAN model was computed on 29 347
nodes, while the CNN model reached a resolution of 113 × 161 pixels resulting in
18 193 nodes. A higher resolution of the CNN model caused memory issues on the
hardware during training, resulting in the need for high-performance computers for
huge datasets as well. Furthermore, the training dataset had to be modeled first
using the computationally expensive numerical method of SWAN, but nevertheless,
the predictions on new data were performed significantly faster by machine learning,
providing an accurate real-time operational surrogate model.
The SWAN-modeled spatial wave fields served as ground truth for the machine
learning methods. However, the performance of the CNN models evaluated on the
in-situ buoy measurements is crucial in the end. Tab. 4.4 compares the prediction
performance of the proposed CNN and ED-CNN models to the performance of the
SWAN numerical model validated on 59 buoy-measured events at position Coast II
(Fig. 4.1). While SWAN achieved an RMSE of 0.218 m and a MAAPE of 14.3%,
the CNN and ED-CNN models performed very well with an RMSE of 0.23 m and
0.243 m, and a MAAPE of 15.3% and 16.3%, respectively. Thus, the errors of the
CNN models were roughly equal to the error of SWAN, highlighting the power of the
CNN models to efficiently provide a substitute to SWAN modeling for the research
area.
Fig. 4.11 demonstrates the performance of the SWAN and CNN model by compar-
ing their values to the buoy-measured data at position Coast II for the 59 reference
events. The data points of SWAN and CNN were close around the bisector. Both,
small and high Hm0 values, were modeled or predicted with an unbiased small error.
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Figure 4.11: Comparison between buoy-measured and SWAN-modeled (left) and
buoy-measured and CNN-predicted (right) significant wave height Hm0 at position Coast
II for 59 reference events.

Both techniques showed a minor tendency to underestimate higherHm0 values, as in-
dicated by the solid red line below the bisector. The validation with buoy-measured
data was only performed for position Coast II. Since this position is located south
of the ETD sandbanks with a medium RMSE, it provided a proper representation,
though. For areas having higher prediction errors (Fig. 4.10), no validation could
be performed due to a missing data base.

Table 4.4: Validation of CNN model and SWAN numerical model on 59 Coast II buoy
data.

Model Error Metric

RMSE [m] R2 r MAAPE MAE [m] bias [m]

SWAN 0.218 0.725 0.891 0.143 0.180 -0.090
CNN 0.230 0.704 0.885 0.153 0.191 0.081
ED-CNN 0.243 0.669 0.885 0.163 0.204 0.127

4.3.3 High-resolution uncertainty estimation on the coastline

Small-scale predictions along the coastline are of particular interest due to a high
variance in sea state conditions over small areas depending on the boundary condi-
tions and the prevailing bathymetry. In order to provide precise and rapid coastal
protection (e.g. sandbags or warning of the affected population), a special focus
was set on the bias prediction error along the coastline. The mean bias error (Eq.
4.10) and its standard deviation (SDB) were calculated for 80 points on the test
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data along the Norderney coastline below 0 m NHN (Fig. 4.1) and are shown in
Fig. 4.12. By using 0 m NHN as an upper limit, water-covered areas for THW
± 1.5 h can be ensured. Again, a positive bias indicates an overestimation and a
negative bias indicates an underestimation of Hm0 . To obtain more robust results,
an average of the surrounding points was calculated for each coastline point. In
general, the bias along the coastline was quite small with huge variability. While
the wave heights tended to be overestimated in the far east, the model was more
likely to underestimate Hm0 between points 7 and 10 and points 19 and 29. Be-
tween point 30 on the north coast and point 80 on the west coast, no clear pattern
of overestimation or underestimation could be observed. On the southern coastline
between points 60 and 80, the bias was much lower, which can be explained by the
overall lower Hm0 there.
The SDB was significantly greater than the bias in most cases, indicating very high
variability of the bias along the coastline. This can be explained by the high vari-
ability in the various sea state events, simulated bathymetries, and other metocean
boundary conditions in the test data. Although a spatial pattern could be iden-
tified in the coastline points, whether the proposed model under- or overestimates
the SWH at the coastline seems to depend more on the specific bathymetric and
metocean boundary conditions than on the particular coastline position. Thus, a
generalized estimate of model uncertainty is not sufficient for use in coastal protec-
tion and any boundary conditions, as well as bathymetry, must be considered for
uncertainty estimation.
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Figure 4.12: Mean error (bias) and bias standard deviation (SDB) between the
CNN-predicted and SWAN-modeled SWH at 80 points along the Norderney coastline. The
spatial reference of the points can be seen from the map in Fig. 4.1. Positive values
(blues) indicate an overestimation and negative values (reds) indicate an underestimation
at the respective points. The grey line indicates the SDB. All bias values are given in m.
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4.3.4 Application of the proposed method for a climate change scenario

The proposed method and CNN prediction model developed in this study can be
used as a rapid tool to explore various sea level rise scenarios or morphodynamic
changes of the ETD sandbanks in the study area. Furthermore, possible increases
in wind speed can be conducted, or coupling to climate change scenarios can be
enforced. In the following, the proposed model is applied exemplarily for an event
to be studied. The event was created assuming a sea level rise of 1 m in addition to
the 5-year-MHW from 2016–2020 of 1.26 m, a wind surge of +3.01 m for a reference
event of 1962, and a spring increase of +0.46 m. The resulting water level of 5.73 m
represents the so-called design-basis water level according to the single value method,
which is taken into account for the construction of coastal protection structures in
the study area (Berkenbrink and Wurpts, 2019). A corresponding wind speed of
30 ms−1 with a wind direction of 315◦ was assumed for the maximal wind surge
(Witting et al., 2014). According to these boundary conditions, a SWH Hm0 of 10
m with a Tm0,1 of 12 s, a Tm−1,0 of 13.5 s, and a TP of 15 s was chosen (Niemeyer,
2001; Niemeyer and Kaiser, 2001). To account for sandbank variability, the event
was predicted for all simulated bathymetries and averaged afterwards, resulting in a
mean ETD sandbank shape. Due to the simulation method, the synthetic sandbanks
do not represent predictions of future morphodynamic developments and therefore
do not replace the need to conduct accurate bathymetric surveys. However, they
allow for exploration and simulation of various scenarios.
Results are shown in Fig. 4.13 and indicate significant differences in the SWH of the
designed reference event along the Norderney coastline. It was found that the high
waves coming from the north were uniformly dampened at the northern boundary
of the ETD sandbanks, as expected for an averaged ETD bathymetry. Most wave
energy affected the island’s beach in the northwest and northeast of the study area,
with a SWH of up to about 4 m. In between, an area with a SWH up to only
about 3.5 m was identified. On the west coast, SWH was measured only up to
about 2 m, and the shipping channel showed significantly smaller SWH compared
to the surrounding area. The further east, the smaller the SWH became, with a
relatively small SWH of about 3 m in the far east. Thus, differences in wave energy
were evident in the study area and especially along the coast, even without the
availability of bathymetric surveys (e.g., due to high costs) and the assumption of a
mean ETD sandbank morphology.
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Figure 4.13: Spatial SWH prediction of a severe event averaged over all simulated
bathymetries. All Hm0 values are given in m.

4.4 Conclusions

This study investigated the two-dimensional regional prediction of SWH considering
continuously morphodynamically changing ETD sandbanks in the nearshore area of
Norderney using a novel mixed-data CNN deep neural network approach. The spa-
tial machine learning model was trained and tested on simulated bathymetries and
in-situ measured metocean data from 2004–2011 and 2015–2017, respectively.
For the first time, variogram analysis and random field simulation were used to
generate various synthetic spatial ETD sandbank morphologies. Due to the ran-
dom generation technique, further verification of the applicability of the simulated
bathymetries for specific events should be considered in future studies covering the
same study area. Accurate bathymetric data are still required for accurate predic-
tions, nevertheless exploration of various morphodynamics has been made available.
SWAN-modeled spatial SWH data were used as ground truth for the different mixed-
data CNN models tested in the experiments, with hyperparameters tuned by a
Bayesian optimization approach. The proposed CNN model architecture achieved
an RMSE of 0.097 m, an R2 of 0.977, and a MAAPE of 6.7% on the test data for
the two-dimensional SWH prediction, and performed best among other benchmark

124



RESEARCH STUDY III

models. The prediction accuracy was within the range of similar studies. Regional
variations in RMSE were obtained in the forecast area, with the highest RMSE
above the ETD sandbanks.
Further validation on 59 in-situ buoy measurements of SWH showed that the ac-
curacy of the proposed CNN model was very similar to that of the SWAN model.
The CNN performed with an RMSE of 0.23 m and a MAAPE of 15.3%, while the
numerical SWAN computation achieved only a slightly better performance of 0.218
m RMSE and 14.3% MAAPE on the in-situ buoy data. Since SWAN was used as
ground truth for the machine learning model, it was not expected that the CNN
would outperform the SWAN model on the in-situ measurements. This suggests
that the proposed CNN predictive model is a valid alternative to SWAN in the spa-
tial investigation of SWH.
Compared to the commonly used numerical SWAN model, the computational cost of
prediction was reduced by a factor of more than 300 000 by the trained CNN model,
with prediction times for the entire test data of 4.4 s and 22 755 min for the CNN
and SWAN models, respectively. Thus, despite the need to compute SWAN-modeled
ground truth data for model training at a specific region of interest, the proposed
CNN model based on simulated bathymetries is an efficient two-dimensional sur-
rogate prediction model for SWH. By applying our proposed model on forecasts of
boundary conditions and using the current bathymetry, it is now possible to spatially
optimize targeted coastal protection operations in the Norderney area for upcoming
storm surges in the short term. Although it is valid only for the specified study
area, a transfer of the methodological approach to other regions as well is feasible.
However, much computational time would be required to model the ground truth
data with SWAN, and the assumption of random morphodynamic sandbank changes
further limits rapid transferability.
Based on the overall promising results, more research is needed to investigate spatio-
temporal forecasts with longer lead times considering time series data with simulated
bathymetries, e.g., using a CNN-LSTM model. Considerations of including addi-
tional wave parameters like wave periods and wave direction or the utilization of the
entire wave spectrum, including processes like sediment transport and dune erosion,
would also be promising. Furthermore, more advanced machine learning simula-
tion techniques like conditional generative adversarial networks (cGANs) should be
investigated.
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5 Synopsis

This chapter investigates the impact and value of the conducted research with re-
spect to their contributions to the improvement of spatio-temporal SWH predictions
under particular consideration of coastal morphodynamics. To accomplish this, a
general discussion linking all three studies and the state of the art from Section 1 is
performed. Overall conclusions are drawn and an outlook for future research direc-
tions is given. A summary of the objectives and major findings of this dissertation
is provided in Chapter 6.

5.1 Discussion

The following section discusses the three overarching research questions a–c intro-
duced in Section 1.4. A linkage of all studies is given in each subsection, as well
as a general discussion of the central results, contributions, and limitations that go
beyond the discussions of the respective papers.

5.1.1 Coastal morphodynamics, ETD variability, and damping effect

ETDs are vital morphological features in many coastal areas around the world. They
are a natural coastal protection by sea state damping, provide huge sand reservoirs
for nourishment, form shipping channels for navigation, and influence coastal change
(Fitzgerald et al., 1984; Pearson et al., 2022). The morphodynamics of ETDs and
their sandbanks are mainly determined by the power of tides and waves, while the
tidal prism, which is linked to the total sediment volume, as well as local geology,
anthropogenic modifications, and sediment supply also affect the morphodynam-
ics (Ford and Dickson, 2018). Since these drivers lead to significant variability in
the coastal morphodynamics, a quantification (c.f. Chapter 2) and simulation (c.f.
Chapter 4) of the ETD sandbank variability in the nearshore area of Norderney was
conducted in this dissertation. A mean velocity of 435–491 my−1, depending on the
plates position, was obtained in Chapter 2, which is in the upper range of previous
studies (c.f. Section 1.3.3). For further reference, Bezzi et al. (2021) reconstructed
a 200-year period of morphodynamic evolution of the Mula di Muggia Bank in the
northern Adriatic, Italy. Based on historical cartography, topographic maps, aerial
photos, and topo-bathymetric surveys, a migration rate of 12.6 my−1 was derived,
indicating a much faster migration of the ETD sandbanks in the southern North
Sea.
Due to the absence of observations at a high temporal resolution over long periods
(c.f. Section 5.1.2), long- and short-term evolution of ETD morphodynamics have
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yet been studied by only a few researchers on a global scale (Pearson et al., 2022;
Zhang et al., 2020). Elias and van der Spek (2006) analyzed a unique 400-years
morphodynamic time series of the Texel Inlet and its ETD. They found a significant
influence of human activity (e.g. coastal defense structures) on the ETD evolution.
Dallas and Barnard (2011) figured out that the San Francisco Bar, the ETD at the
opening of the San Francisco Bay estuary, changed significantly over time and suf-
fered from sand loss in recent years, caused by anthropogenic activities. Due to SLR
and other hazards (c.f. Section 1.2), the East Frisian Islands also suffer from sand
loss, which is why sand nourishments are carried out (c.f. Section 1.2.3). Zhang
et al. (2020) used a half-century time series of remote sensing data to investigate
the evolution of the Xincun Lagoon ETD in Hainan Island, China. Considering
these worldwide case studies, it becomes clear that potential risks will increase in
the future not only for the East Frisian North Sea, but for most coastal regions in
the world. Since only few examples of local studies exist, it is important to perform
such analyses on a broader variety of coastal areas that take local variations and
the complex interactions of the different influencing factors as described above into
account. Also, the coastal response and adaption to SLR is assumed to variate on
a local scale (Bezzi et al., 2021; Ford and Dickson, 2018; Zhang et al., 2020).
Predictions of future morphodynamics and ETD evolution in the nearshore area
of Norderney were not yet taken into account due to the complex interactions and
the few measurements available. Processes still remain in the ETD development,
evolution, and interaction with adjacent beaches that are not yet fully understood
(Harrison et al., 2017). For example, even single severe storm surges can lead to
rapid morphodynamic changes of ETD sandbanks (Castelle et al., 2007; Dallas and
Barnard, 2011; Wang et al., 2012). However, the mean eastward migration rate can
be used as an estimate for future evolution (c.f. Chapter 2). The geostatistical ETD
simulation in Chapter 4 is therefore the best way to consider possible future ETD
sandbank evolution, without the need to fully understand the complex processes
behind. Alternatives to the hydrographic survey data from Chapter 2 are presented
in the discussion Section 5.1.2.

Besides the morphodynamic variability of the ETD sandbanks and their evolution
over time, the impact of these variations on the nearshore sea state is of particu-
lar interest and is the focus of Chapter 2. Since the sediment transport of ETDs
and, thus, their influence on the nearshore wave climate, is highly complex and
non-linear, numerical modeling using SWAN had to be performed to isolate the
morphodynamic signal. A mean sea state damping effect, defined as the ratio of
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wave heights seaward and coastside of the ETD sandbanks, of about 41 ± 11%
for different representative coastal morphodynamics (bathymetries) and metocean
boundary conditions was found for the Norderney nearshore area. The variability
of the damping effect along the different bathymetries was 14 ± 2% on average,
indicating a strong correlation of the damping effect to the shape, size, and volume
of the ETD sandbanks (c.f. Chapter 2). This also implies that the damping effect
is difficult to predict due to its variation, but considering coastal morphodynamics
is essential for accurate predictions and modeling of the sea state. The pessimistic
assumption of adverse bathymetries for future developments is therefore often used.
Similar to this research, Ambrosio et al. (2020) analyzed the influence of the ETD
morphology on incoming waves in the Cananéia Inlet, São Paulo, Brazil. They
used the numerical model MIKE 21 Spectral Waves with four different bathyme-
tries from 1939–2004 to isolate decadal morphological impacts on the wave power
distribution, analyzed on eight different incident wave events. Ambrosio et al. (2020)
also observed wave energy dissipation at the ETD by refraction and breaking waves.
Similar to the conclusion of Chapter 2 and Chapter 3, they also proposed to consider
ETD sandbanks for future coastal protection decisions regarding sea state erosion
patterns.
Furthermore, it was found in Chapter 2 that the damping effect increased with
increasing incident waves, which is beneficial for coastal protection, focusing on se-
vere events. Westerly winds and low water levels also increased the damping effect,
while no reliable inferences can be made for changes in the wind direction and SLR
counteracts this increase.

5.1.2 Bathymetric data and observation methods for improving predic-
tive sea state modeling

The crucial importance of ETD morphodynamics for proper sea state predictions
and coastal protection in the East Frisian North Sea due to its high natural variabil-
ity and sea state damping was discussed in Section 5.1.1. Based on this, for the first
time ML models considering bathymetric data for the SWH reconstruction and pre-
diction in the nearshore area of Norderney were designed (c.f. Section 3). Different
algorithms such as random forest (RF), support vector regression (SVR), multiple
linear regression (MLR), FFNN, and LSTM as well as a parallel LSTM structure
(P-LSTM) were compared, while the LSTM and P-LSTM performed best (Tab. 3.4,
Tab. 3.5). Including bathymetric data improved the reconstruction performance of
the LSTM and P-LSTM by 16.7% and 12.7% to RMSEs of 0.07 m and 0.069 m, re-
spectively. Also the short-term predictions were improved by including bathymetric
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data. Hence, the minimization of the prediction error by considering bathymetries
is considerable compared to the respective influences of wind and water level (c.f.
Section 3.3.4). Even though extreme events were satisfactorily predicted, a tendency
to underestimate high SWHs was observed (c.f. Section 3.3.1). Due to their low
frequency in the training data, it is difficult for most ML models to accurately fit
extreme events (Qi and Majda, 2019).
Since the models considered highly dynamic morphology, their training relies greatly
on accurate and representative bathymetric data (Salameh et al., 2019). However,
only few and infrequently sampled observations of the ETD morphodynamics in
the nearshore area of Norderney and other ETDs in general exist (Harrison et al.,
2017). This insufficient availability of bathymetric data can lead to inaccuracies in
the predictions.

Traditionally, single- or multibeam echo-sounder hydrographic surveys are perfor-
med by ship to obtain bathymetric data with sonar. For example, the Norderney
nearshore area was hydrographically surveyed perpendicular to the depth contours
with a sampling rate of 3–10 kHz and different spatial resolutions (up to 5 m) in
1950, 1995, 2005–2008, and 2015 (Bremermann and Meyer, 2012; Meyer, 2014). The
entire dataset was used in this dissertation. Although ship-based hydrographic sur-
veys provide very accurate bathymetry retrieval at a high spatial resolution of up to
0.05 m, these missions suffer from limited spatial coverage and low temporal resolu-
tion sampling (Salameh et al., 2019). Due to logistical constraints such as the need
of low water and calm wind conditions with small sea states, hydrographic surveying
is time- and cost-intensive (Bremermann and Meyer, 2012; Spicer et al., 2019). To
track rapid morphodynamic changes of the ETD (e.g. impacts of storm surges),
high temporal resolution observations are fundamental. Furthermore, there is a
great need for accurate and up-to-date bathymetric data for morphodynamic mod-
eling, flood and storm surge forecasting, and coastal management (Pearson et al.,
2022; Salameh et al., 2019).

Remote sensing offers alternative methods for surveying bathymetries with ground-
based, airborne, and spaceborne approaches and counteracts the problem of insuffi-
cient temporal resolution and spatial coverage of in-situ hydrographic surveyed data
(Harrison et al., 2017; Lubac et al., 2022; Rogowski et al., 2018). One ground-based
approach are monitoring methods like video observations, which are adjustable,
easy to install, and provide continuous data automatically (Aarninkhof et al., 2003;
Gallop et al., 2009; Holman and Stanley, 2007). Harrison et al. (2017) used video
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observations of depth-limited wave breaking at the Raglan ETD at the west coast of
New Zealand to identify morphodynamic features over a period of five years. Two
video cameras with overlapping views capturing half-hourly averaged RGB-images
were installed. The pixel intensity of depth-limited wave breaking allowed for the
calculation of wave energy dissipation, which in turn was used to infer the position
of shallow sandbanks. No significant correlation of inter-annual morphodynamics
and environmental parameters of waves and tides was obtained by Harrison et al.
(2017), because some influences or complex interactions were probably not consid-
ered. This complexity has also been observed in the analysis of the Norderney ETD
(c.f. Sections 2.3 & 5.1.1).
Another high-spatial and high-temporal remote sensing observation technique for
ETD mapping is the ground-based coastal radar (Bell et al., 2016; Bird et al., 2017).
Rogowski et al. (2018) investigated X-band radar (frequency of 8–12 GHz) for rapid
and high-resolution mapping of a shallow ETD and morphodynamics from ground-
based and ship-based platforms in the New River Inlet, North Carolina, USA. By
averaging the signal response over a specific period (e.g. 5–20 min.), a proxy for
underlying bathymetry and shoals was given. Again, best results were obtained for
tidal-dominated small sea states (Rogowski et al., 2018). Bird et al. (2017) also
used a radar for a waterline elevation mapping for bathymetry retrieval and mor-
phodynamic evolution monitoring. The NLWKN successfully applied this approach
with a ground-based radar platform set up for test purposes on the western beach
of Norderney as well (NLWKN, 2019). However, the temporal coverage is currently
low, so the data were not included in this work.

Besides ground-based remote sensing, air- and spaceborne earth observation (EO)
methods are used for bathymetry mapping. Laser scan (LiDAR) flights are peri-
odically conducted to measure the heights of dry areas (topography), because this
method is not able to detect data under the sea surface. Airborne LiDAR provides
high spatial resolution data, but, similar to echo-sounder, lacks from rather small
spatial coverage and low temporal frequency sampling due to costly data acqui-
sition for the investigators by flight missions (Lubac et al., 2022; Salameh et al.,
2019). In 2010, the ETD of the Norderney research area was surveyed by airborne
missions, while hydrographic surveys of the deeper channels had to be performed
timely after the flights due to the laser scan limitations (Meyer, 2014). Data of these
cost-intensive mission were used in all studies of this dissertation.
Unmanned aerial vehicles (UAV) introduce a highly automated low-cost airborne EO
method with high-resolution acquisition. Nevertheless, the disadvantage of UAVs
is their very small spatial coverage due to the limitations of batteries, flight speed,
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and weather conditions, as well as regulations and flight restrictions (Salameh et al.,
2019).
Spaceborne EO for bathymetry observation is a partial alternative to airborne laser
scan flights. Ford and Dickson (2018) used 17 years of records of cloud-masked
multispectral Landsat 7 and Landsat 8 satellite images from the Manukau ETD
near Auckland, New Zealand, to observe persistent depth-limited wave breaking.
Similar to the ground-based video observations, time-averaged scenes were used to
classify into broken and unbroken water classes by thresholding and to calculate
morphodynamic features from the frequency of the detected wave breaking. Lubac
et al. (2022) compared different spaceborne remote bathymetry mapping methods
and their uncertainties by using multispectral satellite data of Landsat 7, Landsat 8,
and Sentinel-2 A/B at the Arcachon Bay inlet, France from 2013–2020. Compared
to echo-sounder ground truth data, they obtained the best performance and highest
robustness with a cluster-based approach using a green band log-linear regression
model. However, uncertainties of satellite-based bathymetry observations have been
poorly studied so far (Lubac et al., 2022).
In general, satellite imaging has the ability to acquire large areas for morphodynamic
evolution monitoring with high temporal frequency at low-cost for the investigators
due to an unprecedented free data access (Salameh et al., 2019; Stewart et al., 2016).
Spatial resolution, on the other hand, is limited e.g. to 30 m for Landsat 8 and 10 m
for Sentinel-2 A/B. High-resolution bathymetry mapping with the required vertical
accuracy, such as with ship-based echo-sounder, is a major limitation of multispec-
tral satellite sensors due to their inability to observe below the sea surface (Ford
and Dickson, 2018; Salameh et al., 2019).
In addition to passive multispectral satellite sensors, active radar satellites, such as
Sentinel-1, also observe the Earth (Salameh et al., 2019). Stewart et al. (2016) used
high-resolution Sentinel-1 synthetic aperture radar (SAR) data and a new inversion
algorithm developed by Renga et al. (2013, 2014) to derive the bathymetry of a
southern North Sea region.
Future new multispectral, hyperspectral and radar satellite missions will significantly
increase the potential of spaceborne bathymetry observation and substantially re-
duce the current problem of low spatial resolution (Lubac et al., 2022; Salameh et al.,
2019).

5.1.3 ML vs. numerical modeling – Spatial wave predictions using syn-
thetic and real bathymetry data

Physics-based numerical wave models for the nearshore area can cope with sparse
and cost-intensive spatio-temporal in-situ wave measurements due to their physi-
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cal representation (c.f. Section 1.3.1). Besides WAM, WAVEWATCH, and SWAN,
XBeach is commonly used for nearshore wave simulation (Roelvink et al., 2009). For
precise modeling, physics-based models require an accurate consideration of initial
states and boundary conditions of the model domain. Often, noisy or even missing
boundary conditions are found in real-world physical problems (ill-posed problem),
which makes it challenging to achieve good simulations even though precise physical
equations exists (Karniadakis et al., 2021; Wang et al., 2022). Generating cumber-
some computational grids for complex study areas like the ETD of the East Frisian
North Sea are time-consuming and prone to errors. Thus, physics-based numerical
models are not suitable for immediate predictions of wave fields, such as now-casting
for marine operations or storm surge protection (Chen et al., 2021a).
However, soft-computing methods such as ANNs are not suitable to fully replace
those physics-based numerical models, which have been successfully applied for
decades and are still under research (c.f. Section 1.3.2). But ANNs can be used
as surrogates to reduce computational costs by handling non-linear and high-dimen-
sional data-driven problems (Wang et al., 2022). Feng et al. (2020) obtained an
acceleration of up to a factor of 20 000 with a FFNN compared to a SWAN model in
the area of Lake Michigan, USA. James et al. (2018) also used a FFNN for spatial
wave field predictions in the area of Monterey Bay, USA and achieved a speed-up
by a factor of 1 000 compared to SWAN, while Chen et al. (2021a) designed a RF
model to reduce the computational time by a factor of 100 compared to SWAN in
a study area of Cornwall, UK. Thus, a few studies exist for oceanic coastal areas,
as well as lakes, which provide a surrogate for numerical simulation with SWAN for
a given study area. As figured out in Section 4, a massive speed-up by a factor of
more than 300 000 was achieved in this dissertation by the proposed CNN surro-
gate compared to SWAN modeling. This factor is very high compared to the other
studies, supposedly showing the efficiency of the CNN model for spatial predictions
used in this work.
Wei and Davison (2022) also developed a CNN surrogate model but only achieved
a speed-up by a factor of 22.5. However, they used SWASH rather than SWAN as
ground truth, hence a comparison is more critical.

Albeit the significant speed-up of the proposed ML approach developed in this disser-
tation, the surrogate model relies on the SWAN modeled ground truth data. Thus,
it must be taken into account, that the speed-up only applies after the cost-intensive
numerical modeling for new and rapid predictions in the study area. Nevertheless,
the predictions on new data in the study area were performed significantly faster
by ML, providing an accurate real-time operational surrogate model for exploring
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various sea state and morphodynamic scenarios. Validation on 59 in-situ buoy and
metocean measurements covering the period 2004–2017 showed similar performance
of the proposed CNN and SWAN model with an RMSE of 0.23 m for the CNN and
0.218 m for SWAN, respectively (c.f. Section 4.3.2).
Applying the approach to other areas, new ground truth modeling is required. Thus,
a challenging drawback of using ANNs for spatial predictions of SWH is the need
for a huge amount of training data for accurate predictions when data availability is
limited (c.f. Section 5.1.2), leading also to a lack of generality for unseen data (out-
of-sample cases). Additionally, the problem that physics are not explicitly learned
during ML training and results may be inconsistent with the laws of physics is even
more challenging (Jia et al., 2019; Wang et al., 2022).

To overcome this limitation of traditional ML methods, some recent studies com-
bined physics-based knowledge with data-driven ML methods (Chen and Sun, 2020;
Chen et al., 2021c, 2022; Willard et al., 2020; Zhang et al., 2019). A common method
are so-called physics-informed neural networks (PINN) (Raissi et al., 2019). While
Jin et al. (2021) proposed a PINN which learned the Navier-Stokes equation of fluid
flows (e.g. ocean waves), Wang et al. (2022) published a study about integrating
physics of nearshore waves coming from the numerical model XBeach to a ML al-
gorithm for wave field prediction. The advantage of PINNs is their ability to solve
ill-posed problems by the consideration of physics-based knowledge during the train-
ing, which compensates for any insufficient training data and leads to robust and
physics-consistent prediction results. The performance of PINNs for wave height
prediction is determined by the user’s decision of how many and which physical
laws (e.g. diffraction, refraction) should be considered during the training.

Even for PINNs, their still remain some general concerns regarding the optimiza-
tion of the solution of ANNs. As for traditional ANNs, non-convex optimization
algorithms are used and local-minimal solutions instead of global-minimal solutions
will be computed (Sun et al., 2020). Also the amount of training data still plays an
essential role for the ML model performance (Wang et al., 2022). Depending on the
spatial extent of the study area, the temporal period of prediction, and the physi-
cal parameters, sampling and generation (e.g. simulated synthetic bathymetries) of
ground truth data can be very time-consuming and cost-intensive.

Another approach to address the problem of limited generality of the ANNs is
transfer learning, which may be a promising method to reuse trained ANNs for the
initialization of other ANNs and save computational time for new domains. Transfer
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learning requires a certain similarity of the boundary conditions (e.g. bathymetry)
between the pre-trained and the new model (Wang et al., 2022). Since bathymet-
ric data were trained within the model presented in this dissertation for the first
time, there is no need to train additional networks for the study area of Norderney
for changes in the bathymetry. This provides a great cost and time saving for this
domain. However, transferability to other areas of the East Frisian North Sea is
still not straightforward, although the proposed models of this dissertation could
be used for transfer learning. The methodological approach, on the other hand, is
generalizable to many regions.

Section 4 focused on the two-dimensional prediction of regional SWH considering
morphodynamics with a mixed-data deep CNN (c.f. Section 1.3.2). Therefore, for
the first time, synthetic bathymetries were simulated by geostatistical variogram
analysis and random fields simulation. The quality and accuracy of the resulting
generated spatial ETD sandbanks morphologies relies on the methodological ap-
proach and was qualitatively validated by experts of the NLWKN. Except for a
general eastward migration of the ETD sandbanks (c.f. Section 2), the complex
interactions and storm surge impacts prevent accurate morphodynamic predictions,
as discussed in Section 5.1.1. Therefore, the random-based generation approach dis-
cussed in Section 4.2.3 was suitable and has made possible the exploration of various
morphodynamic scenarios without the need of cost-intensive bathymetric surveys.
However, accurate bathymetries are still required for accurate predictions of specific
events (Chen et al., 2021a).

A closer look at the accuracy of the single-point prediction (c.f. Section 3) and the
spatial model (c.f. Section 4) revealed that the performance was similarly high for
both approaches, indicating that both methods extract the maximum information
from the data: While the proposed single-point model had an RMSE of 0.069 m, R2

of 0.965, and MAAPE of 9.3% at position Coast II, the proposed spatial CNN model
reached an RMSE of 0.230 m, R2 of 0.704, and MAAPE of 15.3% at the same posi-
tion. The spatial averaged performance of the CNN was an RMSE of 0.097 m, R2 of
0.977, and MAAPE of 6.7%. Since a similar dataset was used for both models, the
scale-dependent RMSE can be compared here. It was expected that the specialized
single-point model fits the prediction at position Coast II better than the spatial
model, which is strongly influenced by the ETD sandbanks. The highest RMSE of
the spatial prediction was observed over the ETD sandbanks, likely caused by the
complex wave interactions and refraction (c.f. Section 4.3.1). Additionally, a huge
variability of the bias error was found along the coastline, mainly due to the high
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variability of the predicted sea state events, simulated bathymetries, and metocean
boundary conditions (c.f. Section 4.3.1). Therefore, using these three sources of
information will be very important for precise predictions.

5.2 Conclusions

The aim of this dissertation was to contribute to the improvement of spatial and tem-
poral predictions of nearshore wave heights with neural networks considering coastal
morphodynamics. For the first time, simulated and surveyed coastal bathymetry
data were included in ML predictions, providing an efficient surrogate to common
numerical modeling with SWAN. The focus was set on ML model development and
optimization for temporal predictions with LSTM neural networks and spatial pre-
dictions with deep mixed-data CNNs, both considering coastal morphodynamics.
Therefore, the highly variable coastal morphodynamics of the East Frisian North
Sea research area of Norderney were studied in detail for a better understanding of
the offshore ETD sandbanks and their influence on nearshore sea states. Based on
this, it was possible to simulate synthetic bathymetries with respect to the almost
random morphological dynamics of the ETD sandbanks.
The research questions a–c from Section 1.4 are answered by the research conducted
in Sections 2, 3, and 4.

Regarding the quantification of the influence of coastal morphodynamics on the
nearshore sea state (RQ-a), great variability in the morphological conditions of the
ETD sandbanks and their influence on the sea state damping was found for the study
area. By proposing validated numerical SWAN modeling, a systematic quantifica-
tion of the isolated influence of the ETD sandbanks was conducted for the first time.
With a mean sea state damping effect of 41 ± 11% for different modeled metocean
boundary conditions, a critical impact was found. Analysis of in-situ buoy-measured
data revealed a mean damping effect of 37 ± 18%, which was within the range of
the numerical model. Variations of the damping effect up to 14 ± 2% due to five
different isolated ETD sandbank conditions were modeled for storm events at tidal
high water. Therefore, it can be concluded that the evolution of the ETD sandbanks
plays a crucial role in nearshore sea state conditions as a natural coastal protection
by sea state damping. Besides eastward migration with an observed mean velocity
of 435–491 my−1, the highly complex and almost random variability of ETD mor-
phology is not yet fully understood. Thus, it is proposed for coastal management
to account for pessimistic ETD sandbank evolution scenarios with changing natural
damping effects.
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Since variability in coastal morphodynamics was found to exert a huge impact on
nearshore wave climate, RQ-b focused on using this finding to improve single-point
predictions of SWH with ANNs. For the first time, LSTM neural networks were
applied to shallow waters with great morphodynamic variability. By including a
transect of bathymetric features of the ETD sandbanks, the single-point reconstruc-
tion and short- and long-term prediction of SWH with the proposed LSTM and an
ensemble of parallel LSTM (P-LSTM) models was significantly improved by 16.7%
and 12.7%, respectively, in terms of RMSE. All models used were improved by in-
cluding bathymetric data, with substantial effects compared to wind and water level.
SWH reconstruction achieved robust performance with RMSEs of 0.07 m and 0.069
m for the LSTM and P-LSTM, respectively. As the accuracy was improved by in-
cluding bathymetric data, consideration of natural coastal morphodynamics is once
again crucial for coastal protection and further sea state predictions in the nearshore
area of the East Frisian North Sea. The good reconstructions and predictions pro-
vide the potential to optimize the cost-intensive operation of the wave buoys or to
completely terminate single positions.
Based on the major finding that consideration of coastal morphodynamics improves
nearshore sea state predictions, RQ-c aimed to transfer the approach to spatial pre-
dictions of SWH. A two-dimensional mixed-data CNN wave height prediction model
was developed for the first time using continuously morphodynamically changing
ETD sandbanks. Since only few bathymetric data were available, synthetic sand-
banks were simulated using the geostatistical methods of variogram analysis and
random fields for the first time. Trained on SWAN-modeled ground truth data, the
proposed CNN surrogate model performed with a spatial averaged RMSE of 0.097
m and thus was within the range of other studies. Highest RMSEs were found above
the ETD sandbanks, probably due to the high morphodynamic changes and complex
wave interactions. Further validation with 59 in-situ buoy measurements revealed
similar accuracy of the CNN (RMSE = 0.23 m) to the SWAN-modeled ground truth
data (RMSE = 0.218 m). Once trained, the CNN model reduced the computation
time by a factor of more than 300 000 compared to the numerical SWAN model.
However, the CNN training required SWAN-modeled ground truth data. Since syn-
thetic coastal morphodynamics were used, accurate bathymetries are still required
for accurate predictions. Nevertheless, the proposed surrogate model enabled real-
time, spatial high-resolution forecasting of SWH for e.g. storm surge events and the
exploration of various synthetic morphodynamic and metocean scenarios for coastal
protection, such as climate-related SLR, wind speed increase, or a pessimistic ETD
morphology.
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5.3 Outlook

Future research may benefit from the ML and geostatistical methods developed in
this dissertation as well as the main finding of prediction improvement by including
coastal morphodynamics in spatio-temporal modeling of SWH with ANNs. While
the morphodynamic influence of the ETD sandbanks is determinant for Norder-
ney, other influences may be crucial in other regions, which is why locally adapted
models are more reliable and accurate than global models. Albeit this dissertation
advanced the scientific understanding of the influence of coastal morphodynamics
on the nearshore sea state in the East Frisian North Sea, still knowledge gaps exist.
Further investigations of the complex dependencies and processes of coastal morpho-
dynamcis and their interactions with waves and currents are required for an advanced
understanding of the system, which allows for a better parameterization of numerical
wave models as well as generalization of data-driven ML methods (Pearson et al.,
2022; Zhang et al., 2020). Sediment transport was not studied in detail in this
work, but is also essential for understanding and modeling coastal morphodynam-
ics. Since traditional bathymetric surveys are time- and cost-intensive, advanced
acquisition methods for sufficient high-temporal and high-spatial resolution data
are needed. Harrison et al. (2017) introduced remote sensing video observations for
bathymetry mapping, which might be also implemented on Norderney, where appro-
priate tall buildings for mounting the cameras are located near the beach. Expanded
research and case-studies on coastal radar for bathymetry observations as conducted
by Rogowski et al. (2018) and Bird et al. (2017) seem very promising. Finally, the
spaceborne EO approaches discussed in Lubac et al. (2022) also provide great poten-
tial. For a better representation of the physical processes behind, physics-informed
neural networks (PINN) may play a major role, as well as transfer learning in light
of an efficient model transfer to other regions (Wang et al., 2022). Additionally,
it would be of interest to consider further wave parameters like wave period and
direction, or to use the entire wave spectrum as an input for ML, as in numerical
models. Optimizing network architectures to better handle spatial mixed-data time
series may lead to longer lead time of the predictions. For example, Chen et al.
(2021b) investigated combined CNN-LSTM neural networks for spatial wind speed
forecasting, which could be transferred to spatial SWH forecasting including the use
of synthetic bathymetries. In order to improve ETD sandbank simulations for sit-
uations where no proper bathymetric observations are available for model training,
sophisticated methods such as conditional generative adversarial networks (cGANs)
can be applied (Willard et al., 2020).
New data and methods will enhance future research, while remaining mandatory
due to climate-related challenges in coastal protection.
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6 Summary

Coastal regions are particularly affected by climate change impacts such as SLR and
changing storms. Accurate predictions of SWH are therefore essential for coastal
protection and marine disaster prevention. Especially for the nearshore areas of the
East Frisian North Sea, proper understanding of the complex coastal morphody-
namics and ETD sandbank evolution is crucial for the consideration of bathymetric
data in ML models. Moreover, by providing ANN surrogate models to the common
numerical wave model SWAN, computational time can be drastically reduced for
real-time spatial wave height forecasts, as required for e.g. storm surge events.

The major objective of this dissertation was therefore to improve spatial and tem-
poral ML predictions of nearshore wave heights in the research area of Norderney,
Germany by considering coastal morphodynamics, as well as a better understanding
of their influence on the sea state.
The following three overarching open research questions were identified and ad-
dressed within this work:

RQ-a. How can the influence of coastal morphodynamics and its variability on the
nearshore sea state be quantified?

RQ-b. How can data of coastal morphodynamics improve the single-point recon-
struction and prediction of significant wave height by neural networks?

RQ-c. How can simulated bathymetries be used to predict two-dimensional signifi-
cant wave height with convolutional neural networks?

Three studies were conducted that addressed these research questions respectively,
focusing on spatial and temporal predictions and the role of coastal morphodynam-
ics. The main results of this work are summarized below:

RQ-a. How can the influence of coastal morphodynamics and its variability on the
nearshore sea state be quantified?

• Validated SWAN numerical models were used to quantify the influence of
ETD sandbanks on the nearshore sea state. A significant impact was found
in the sense of a mean modeled sea state damping effect of 41 ± 11 % for
different metocean boundary conditions.

• A mean buoy-measured damping of the sea state through the ETD sand-
banks was measured of 37 ± 18 % and was thus within the range of the
numerical model.
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• By isolating the morphodynamic influence of five different ETD sandbank
states, variations of the damping effect up to 14 ± 2 % were found for storm
events at tidal high water. The evolution of the ETD sandbanks as natural
coastal protection therefore plays a critical role in wave heights along the
coastline.

• With increasing incoming wave height, the damping effect increased. Conse-
quently, especially during storm surges, the ETD sandbanks provide a great
protection for the island.

• Besides an eastward migration of the ETD sandbanks with a mean velocity
between 435–491 my−1, depending on the plates position, a high variability
of their morphology was found, which leads to the conclusion that changes
can be considered as almost random. Even single storm surges can lead to
strong changes in morphology.

RQ-b. How can data of coastal morphodynamics improve the single-point recon-
struction and prediction of significant wave height by neural networks?

• LSTM neural networks were applied to shallow waters with great morpho-
dynamic influences for the first time. A transect of bathymetric features
was included to account for coastal morphodynamics and therefore improve
single-point predictions of SWH.

• The proposed LSTM and an ensemble of parallel LSTM (P-LSTM) model
performed best among other ML benchmarks. They showed robust results
with RMSEs of 0.07 m and 0.069 m for the reconstruction of SWH, respec-
tively.

• Including bathymetric data to the LSTM and P-LSTM models improved
their performance by 16.7% and 12.7% in terms of RMSE, respectively.
All model predictions were improved by including bathymetric data, with
substantial levels of improvement compared to the effects of wind and water
level.

• The reconstruction and short- and long-term predictions were also per-
formed on deep ocean NOAA buoys for further validation – with satisfactory
results. Extreme events were also predicted well.

• As the accuracy was improved by including bathymetric data, the consid-
eration of the natural sea state damping and its dynamic behavior due to
changing ETD sandbanks is essential for coastal protection.
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RQ-c. How can simulated bathymetries be used to predict two-dimensional signif-
icant wave height with convolutional neural networks?

• A two-dimensional mixed-data CNN wave height prediction model consid-
ering the continuously morphodynamically changing ETD sandbanks was
developed for the first time.

• For the first time, synthetic sandbanks were generated using the geostatis-
tical methods of variogram analysis and random fields.

• The proposed CNN surrogate model had a spatially averaged RMSE of 0.097
m. Highest RMSEs were found above the ETD sandbanks probably due to
the high morphodynamic changes and complex wave interactions.

• Compared to the ground truth SWAN data (RMSE = 0.218 m), the CNN
achieved a similar performance (RMSE = 0.23 m) on in-situ buoy measure-
ments.

• The trained CNN was able to reduce the computational time by a factor
of more than 300 000 compared to the numerical SWAN model. However,
the training of the CNN model required SWAN modeled ground truth data.
Applications include real-time forecasting of wave height and the exploration
of various metocean and morphodynamic scenarios for coastal protection,
e.g. SLR. For accurate predictions still accurate bathymetries are required.

The above findings of this dissertation advanced the scientific understanding of
coastal morphodynamics regarding the influence of ETD sandbanks on the nearshore
sea state and their indispensable consideration in predictive modeling. Future re-
search may also benefit from the methodological approaches of ANNs for wave
height prediction using bathymetric data and the geostatistical simulation of syn-
thetic bathymetries. Operational coastal protection applications may profit from
the trained models and described results, as exploration of various climate and mor-
phodynamic scenarios as well as real-time predictions of high-resolution coastal wave
heights has now been made possible.
Based on the synopsis, a promising path for future advances in ML methods with
consideration of coastal morphodynamics for sea state predictions emerges. For fur-
ther improved representation of physical processes, PINNs may play a major role,
while CNN-LSTM architectures and transfer learning can help to achieve longer lead
times and an efficient transfer to other regions or other wave parameters like wave
period and direction. Since bathymetric data are time- and cost-intensive, sophisti-
cated methods such as spaceborne EO, remote sensing video observations, or coastal
radar are required to better describe, quantify, and understand the complex coastal
morphodynamics.
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Appendix

Appendix I

Figure I.1: Examples of the spectral separation methods performed in this study. The
separation frequency (dashed line) and the wave age function (solid line) are plotted over
the original spectrum and the several partitions calculated by the watershed algorithm are
presented (brown areas). Some spectrums even are not well separated by the wave age
criterion (above) while most spectrums are separated satisfactory by both methods (under).
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Figure I.2: Periodogram of Hm0 time series from 1992–2017 for the three buoys. The
spectral density shows a tidal peak at a period of 12.5 h.
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Figure I.3: Sea state parameter mean wave period Tm−1,0, significant wave height of the
swell Hm0 swell and mean directional spreading DirSpr for the years 1995, 2005, 2006,
2008 and 2015 for the simulation of test case #3 (05-Sep-2015 16:00).
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Figure I.4: Distribution of the buoy-measured relative damping effect for the years
2004–2017. The red line indicates a normal distribution with the respective parameters of
the mean relative damping and the standard deviation given in the figure.
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Appendix II

Figure II.1: Map of the positions of the three NOAA deep ocean wave buoys.
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Table II.1: Basic information of the three NOAA deep ocean wave buoys.

NOAA
Station
ID

SWH
Mean
[m]

SWH
Std.
[m]

SWH
Range
[m]

Mean
wave
period [s]

# Data Location
Water
depth
[m NHN]

46042 2.23 0.93 [0.66; 7.19] 7.57 9 267 N 36.785
W 122.398 1 646

46069 2.07 0.79 [0.66; 6.92] 7.43 9 267 N 33.677
W 120.213 978

46025 1.09 0.44 [0.34; 4.09] 6.55 9 267 N 33.758
W 119.044 890

Table II.2: Feature Selection excluding wind speed. Short-term predictions of SWH in
the nearshore area of Norderney, Germany. The mean value and standard deviation of
the three independent runs are given, respectively.

Problem task Model RMSE [m] R2 r MAAPE MAE [m]

Reconstruction LSTM 0.079 ± 0.002 0.954 ± 0.002 0.979 ± 0.000 0.107 ± 0.001 0.059 ± 0.001
P-LSTM 0.081 ± 0.003 0.953 ± 0.002 0.980 ± 0.000 0.104 ± 0.001 0.060 ± 0.002
FFNN 0.099 ± 0.001 0.928 ± 0.003 0.965 ± 0.000 0.134 ± 0.002 0.073 ± 0.001
SL-FFNN 0.112 ± 0.002 0.907 ± 0.004 0.954 ± 0.002 0.155 ± 0.002 0.083 ± 0.002
SVR 0.118 ± 0.000 0.897 ± 0.001 0.950 ± 0.001 0.194 ± 0.001 0.095 ± 0.000
RF 0.107 ± 0.000 0.916 ± 0.000 0.957 ± 0.000 0.146 ± 0.001 0.080 ± 0.000
MLR 0.152 ± 0.001 0.829 ± 0.002 0.911 ± 0.001 0.213 ± 0.001 0.114 ± 0.000

3h-ahead LSTM 0.105 ± 0.001 0.919 ± 0.001 0.960 ± 0.000 0.139 ± 0.002 0.077 ± 0.000
P-LSTM 0.102 ± 0.001 0.924 ± 0.001 0.963 ± 0.000 0.135 ± 0.002 0.075 ± 0.001
FFNN 0.128 ± 0.002 0.880 ± 0.004 0.939 ± 0.002 0.175 ± 0.004 0.095 ± 0.002
SL-FFNN 0.145 ± 0.002 0.846 ± 0.005 0.924 ± 0.003 0.184 ± 0.003 0.105 ± 0.001
SVR 0.141 ± 0.001 0.855 ± 0.002 0.928 ± 0.001 0.219 ± 0.002 0.111 ± 0.001
RF 0.135 ± 0.000 0.867 ± 0.000 0.931 ± 0.000 0.180 ± 0.000 0.099 ± 0.000
MLR 0.169 ± 0.002 0.791 ± 0.003 0.890 ± 0.002 0.234 ± 0.001 0.127 ± 0.001

6h-ahead LSTM 0.140 ± 0.002 0.859 ± 0.004 0.930 ± 0.002 0.179 ± 0.003 0.102 ± 0.001
P-LSTM 0.133 ± 0.002 0.871 ± 0.006 0.935 ± 0.002 0.173 ± 0.002 0.097 ± 0.001
FFNN 0.165 ± 0.003 0.804 ± 0.004 0.898 ± 0.003 0.215 ± 0.007 0.121 ± 0.002
SL-FFNN 0.187 ± 0.004 0.747 ± 0.013 0.874 ± 0.002 0.239 ± 0.021 0.137 ± 0.006
SVR 0.170 ± 0.002 0.790 ± 0.005 0.892 ± 0.002 0.256 ± 0.002 0.134 ± 0.001
RF 0.168 ± 0.001 0.796 ± 0.003 0.892 ± 0.002 0.225 ± 0.002 0.124 ± 0.000
MLR 0.196 ± 0.002 0.722 ± 0.003 0.849 ± 0.002 0.266 ± 0.001 0.148 ± 0.002

9h-ahead LSTM 0.160 ± 0.001 0.811 ± 0.004 0.905 ± 0.003 0.205 ± 0.004 0.117 ± 0.001
P-LSTM 0.152 ± 0.003 0.832 ± 0.006 0.915 ± 0.001 0.199 ± 0.005 0.112 ± 0.001
FFNN 0.191 ± 0.002 0.728 ± 0.004 0.854 ± 0.001 0.244 ± 0.004 0.140 ± 0.001
SL-FFNN 0.208 ± 0.001 0.679 ± 0.004 0.830 ± 0.003 0.261 ± 0.005 0.152 ± 0.001
SVR 0.195 ± 0.002 0.716 ± 0.005 0.850 ± 0.003 0.283 ± 0.000 0.151 ± 0.001
RF 0.192 ± 0.002 0.726 ± 0.007 0.852 ± 0.004 0.255 ± 0.003 0.142 ± 0.002
MLR 0.219 ± 0.002 0.643 ± 0.005 0.802 ± 0.003 0.295 ± 0.001 0.166 ± 0.001

12h-ahead LSTM 0.179 ± 0.005 0.767 ± 0.014 0.878 ± 0.007 0.230 ± 0.005 0.132 ± 0.004
P-LSTM 0.169 ± 0.002 0.795 ± 0.004 0.894 ± 0.002 0.219 ± 0.001 0.124 ± 0.001
FFNN 0.217 ± 0.002 0.654 ± 0.004 0.811 ± 0.002 0.268 ± 0.001 0.158 ± 0.000
SL-FFNN 0.244 ± 0.005 0.565 ± 0.018 0.772 ± 0.002 0.292 ± 0.015 0.176 ± 0.005
SVR 0.216 ± 0.001 0.660 ± 0.003 0.814 ± 0.003 0.303 ± 0.002 0.166 ± 0.000
RF 0.212 ± 0.002 0.670 ± 0.006 0.819 ± 0.004 0.281 ± 0.001 0.158 ± 0.001
MLR 0.234 ± 0.001 0.599 ± 0.002 0.774 ± 0.002 0.312 ± 0.002 0.178 ± 0.001
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Table II.3: Feature Selection excluding wind direction. Short-term predictions of SWH
in the nearshore area of Norderney, Germany. The mean value and standard deviation of
the three independent runs are given, respectively.

Problem task Model RMSE [m] R2 r MAAPE MAE [m]

Reconstruction LSTM 0.089 ± 0.003 0.940 ± 0.003 0.974 ± 0.001 0.119 ± 0.002 0.067 ± 0.002
P-LSTM 0.088 ± 0.001 0.944 ± 0.001 0.974 ± 0.001 0.115 ± 0.002 0.065 ± 0.001
FFNN 0.088 ± 0.003 0.942 ± 0.004 0.974 ± 0.000 0.127 ± 0.011 0.066 ± 0.002
SL-FFNN 0.091 ± 0.006 0.938 ± 0.008 0.972 ± 0.000 0.131 ± 0.007 0.069 ± 0.006
SVR 0.105 ± 0.001 0.918 ± 0.001 0.958 ± 0.000 0.164 ± 0.002 0.081 ± 0.000
RF 0.104 ± 0.000 0.919 ± 0.000 0.959 ± 0.000 0.143 ± 0.001 0.077 ± 0.000
MLR 0.157 ± 0.002 0.815 ± 0.002 0.903 ± 0.001 0.212 ± 0.002 0.116 ± 0.001

3h-ahead LSTM 0.118 ± 0.002 0.899 ± 0.002 0.950 ± 0.001 0.155 ± 0.004 0.086 ± 0.001
P-LSTM 0.116 ± 0.001 0.902 ± 0.001 0.951 ± 0.000 0.152 ± 0.003 0.085 ± 0.001
FFNN 0.121 ± 0.002 0.893 ± 0.002 0.947 ± 0.001 0.171 ± 0.007 0.090 ± 0.001
SL-FFNN 0.124 ± 0.001 0.887 ± 0.004 0.945 ± 0.002 0.161 ± 0.003 0.090 ± 0.001
SVR 0.132 ± 0.001 0.872 ± 0.001 0.937 ± 0.000 0.206 ± 0.003 0.103 ± 0.001
RF 0.132 ± 0.000 0.871 ± 0.001 0.934 ± 0.001 0.178 ± 0.001 0.097 ± 0.000
MLR 0.176 ± 0.001 0.772 ± 0.004 0.879 ± 0.002 0.240 ± 0.001 0.132 ± 0.000

6h-ahead LSTM 0.155 ± 0.002 0.826 ± 0.003 0.911 ± 0.002 0.198 ± 0.002 0.113 ± 0.001
P-LSTM 0.152 ± 0.001 0.833 ± 0.004 0.914 ± 0.002 0.198 ± 0.003 0.111 ± 0.000
FFNN 0.157 ± 0.002 0.822 ± 0.004 0.908 ± 0.002 0.219 ± 0.005 0.117 ± 0.002
SL-FFNN 0.162 ± 0.002 0.809 ± 0.007 0.904 ± 0.003 0.230 ± 0.015 0.123 ± 0.005
SVR 0.166 ± 0.002 0.802 ± 0.004 0.898 ± 0.002 0.246 ± 0.002 0.127 ± 0.002
RF 0.167 ± 0.001 0.798 ± 0.002 0.894 ± 0.002 0.223 ± 0.001 0.123 ± 0.000
MLR 0.206 ± 0.001 0.693 ± 0.002 0.832 ± 0.001 0.277 ± 0.001 0.155 ± 0.000

9h-ahead LSTM 0.186 ± 0.004 0.748 ± 0.011 0.868 ± 0.002 0.233 ± 0.006 0.135 ± 0.002
P-LSTM 0.179 ± 0.001 0.766 ± 0.001 0.877 ± 0.000 0.230 ± 0.004 0.130 ± 0.001
FFNN 0.187 ± 0.002 0.744 ± 0.006 0.865 ± 0.003 0.247 ± 0.010 0.138 ± 0.000
SL-FFNN 0.190 ± 0.003 0.736 ± 0.004 0.861 ± 0.000 0.240 ± 0.007 0.138 ± 0.000
SVR 0.193 ± 0.002 0.728 ± 0.002 0.854 ± 0.002 0.271 ± 0.004 0.146 ± 0.001
RF 0.192 ± 0.002 0.730 ± 0.004 0.855 ± 0.002 0.255 ± 0.001 0.143 ± 0.001
MLR 0.227 ± 0.002 0.623 ± 0.002 0.790 ± 0.002 0.304 ± 0.002 0.172 ± 0.001

12h-ahead LSTM 0.208 ± 0.002 0.682 ± 0.004 0.833 ± 0.001 0.255 ± 0.005 0.151 ± 0.000
P-LSTM 0.202 ± 0.001 0.701 ± 0.002 0.840 ± 0.001 0.259 ± 0.005 0.148 ± 0.002
FFNN 0.210 ± 0.002 0.678 ± 0.005 0.826 ± 0.001 0.271 ± 0.000 0.154 ± 0.001
SL-FFNN 0.215 ± 0.003 0.660 ± 0.011 0.820 ± 0.001 0.269 ± 0.010 0.157 ± 0.000
SVR 0.216 ± 0.002 0.658 ± 0.003 0.813 ± 0.001 0.297 ± 0.004 0.163 ± 0.002
RF 0.215 ± 0.001 0.663 ± 0.003 0.815 ± 0.002 0.283 ± 0.004 0.160 ± 0.002
MLR 0.242 ± 0.001 0.571 ± 0.004 0.756 ± 0.002 0.321 ± 0.004 0.183 ± 0.001
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Table II.4: Feature Selection excluding water level. Short-term predictions of SWH in
the nearshore area of Norderney, Germany. The mean value and standard deviation of
the three independent runs are given, respectively.

Problem task Model RMSE [m] R2 r MAAPE MAE [m]

Reconstruction LSTM 0.134 ± 0.002 0.866 ± 0.005 0.932 ± 0.001 0.159 ± 0.002 0.096 ± 0.001
P-LSTM 0.132 ± 0.000 0.873 ± 0.000 0.937 ± 0.000 0.157 ± 0.000 0.094 ± 0.000
FFNN 0.178 ± 0.001 0.765 ± 0.004 0.876 ± 0.001 0.195 ± 0.003 0.122 ± 0.000
SL-FFNN 0.201 ± 0.002 0.700 ± 0.008 0.846 ± 0.005 0.221 ± 0.003 0.139 ± 0.001
SVR 0.169 ± 0.000 0.788 ± 0.003 0.889 ± 0.002 0.225 ± 0.000 0.127 ± 0.000
RF 0.161 ± 0.000 0.808 ± 0.002 0.899 ± 0.001 0.190 ± 0.001 0.117 ± 0.000
MLR 0.180 ± 0.000 0.761 ± 0.002 0.872 ± 0.001 0.219 ± 0.002 0.130 ± 0.000

3h-ahead LSTM 0.168 ± 0.001 0.797 ± 0.003 0.894 ± 0.001 0.206 ± 0.002 0.122 ± 0.001
P-LSTM 0.162 ± 0.000 0.807 ± 0.001 0.900 ± 0.002 0.199 ± 0.003 0.118 ± 0.000
FFNN 0.202 ± 0.001 0.708 ± 0.005 0.842 ± 0.003 0.239 ± 0.004 0.145 ± 0.000
SL-FFNN 0.221 ± 0.001 0.650 ± 0.005 0.815 ± 0.003 0.246 ± 0.002 0.156 ± 0.001
SVR 0.197 ± 0.000 0.723 ± 0.003 0.851 ± 0.001 0.265 ± 0.002 0.150 ± 0.001
RF 0.192 ± 0.001 0.736 ± 0.001 0.859 ± 0.001 0.239 ± 0.001 0.142 ± 0.000
MLR 0.205 ± 0.001 0.698 ± 0.001 0.836 ± 0.001 0.260 ± 0.001 0.152 ± 0.001

6h-ahead LSTM 0.196 ± 0.004 0.719 ± 0.011 0.852 ± 0.002 0.239 ± 0.003 0.144 ± 0.002
P-LSTM 0.187 ± 0.004 0.745 ± 0.008 0.865 ± 0.005 0.236 ± 0.005 0.138 ± 0.003
FFNN 0.231 ± 0.002 0.610 ± 0.005 0.783 ± 0.004 0.273 ± 0.006 0.167 ± 0.002
SL-FFNN 0.257 ± 0.009 0.514 ± 0.029 0.740 ± 0.013 0.282 ± 0.011 0.182 ± 0.004
SVR 0.226 ± 0.002 0.624 ± 0.003 0.792 ± 0.002 0.304 ± 0.003 0.174 ± 0.001
RF 0.221 ± 0.001 0.641 ± 0.001 0.801 ± 0.001 0.281 ± 0.001 0.166 ± 0.001
MLR 0.233 ± 0.002 0.602 ± 0.003 0.776 ± 0.002 0.296 ± 0.002 0.174 ± 0.001

9h-ahead LSTM 0.207 ± 0.003 0.688 ± 0.007 0.829 ± 0.004 0.263 ± 0.004 0.153 ± 0.002
P-LSTM 0.201 ± 0.002 0.702 ± 0.004 0.842 ± 0.002 0.249 ± 0.004 0.147 ± 0.001
FFNN 0.238 ± 0.000 0.587 ± 0.005 0.769 ± 0.004 0.286 ± 0.005 0.173 ± 0.001
SL-FFNN 0.259 ± 0.008 0.510 ± 0.035 0.738 ± 0.007 0.313 ± 0.013 0.188 ± 0.005
SVR 0.238 ± 0.001 0.586 ± 0.007 0.767 ± 0.004 0.317 ± 0.004 0.181 ± 0.001
RF 0.234 ± 0.001 0.601 ± 0.005 0.776 ± 0.003 0.299 ± 0.001 0.175 ± 0.001
MLR 0.246 ± 0.001 0.560 ± 0.005 0.748 ± 0.003 0.313 ± 0.001 0.183 ± 0.001

12h-ahead LSTM 0.217 ± 0.001 0.650 ± 0.008 0.809 ± 0.005 0.271 ± 0.004 0.160 ± 0.001
P-LSTM 0.208 ± 0.002 0.678 ± 0.006 0.826 ± 0.004 0.261 ± 0.001 0.153 ± 0.001
FFNN 0.247 ± 0.001 0.548 ± 0.006 0.742 ± 0.003 0.301 ± 0.007 0.181 ± 0.002
SL-FFNN 0.270 ± 0.005 0.461 ± 0.017 0.700 ± 0.009 0.323 ± 0.012 0.196 ± 0.005
SVR 0.246 ± 0.001 0.550 ± 0.009 0.743 ± 0.005 0.327 ± 0.000 0.187 ± 0.000
RF 0.245 ± 0.001 0.557 ± 0.007 0.747 ± 0.005 0.313 ± 0.001 0.183 ± 0.001
MLR 0.255 ± 0.001 0.519 ± 0.006 0.721 ± 0.004 0.325 ± 0.003 0.189 ± 0.001

174



APPENDIX

Table II.5: Feature Selection with SWH only. Short-term predictions of SWH in the
nearshore area of Norderney, Germany. The mean value and standard deviation of the
three independent runs are given, respectively.

Problem task Model RMSE [m] R2 r MAAPE MAE [m]

Reconstruction LSTM 0.175 ± 0.001 0.779 ± 0.003 0.884 ± 0.002 0.207 ± 0.003 0.126 ± 0.001
P-LSTM 0.173 ± 0.000 0.780 ± 0.001 0.884 ± 0.001 0.200 ± 0.001 0.125 ± 0.000
FFNN 0.172 ± 0.001 0.781 ± 0.003 0.884 ± 0.002 0.205 ± 0.002 0.124 ± 0.000
SL-FFNN 0.170 ± 0.000 0.781 ± 0.000 0.884 ± 0.000 0.207 ± 0.000 0.124 ± 0.000
SVR 0.176 ± 0.001 0.772 ± 0.001 0.880 ± 0.000 0.233 ± 0.001 0.131 ± 0.000
RF 0.173 ± 0.001 0.779 ± 0.003 0.883 ± 0.002 0.204 ± 0.001 0.125 ± 0.000
MLR 0.194 ± 0.002 0.722 ± 0.002 0.850 ± 0.001 0.246 ± 0.002 0.141 ± 0.001

3h-ahead LSTM 0.197 ± 0.001 0.720 ± 0.002 0.850 ± 0.001 0.247 ± 0.007 0.146 ± 0.001
P-LSTM 0.198 ± 0.000 0.711 ± 0.001 0.843 ± 0.000 0.239 ± 0.004 0.145 ± 0.001
FFNN 0.195 ± 0.001 0.724 ± 0.002 0.852 ± 0.001 0.248 ± 0.010 0.145 ± 0.002
SL-FFNN 0.195 ± 0.002 0.725 ± 0.004 0.852 ± 0.002 0.244 ± 0.006 0.145 ± 0.002
SVR 0.200 ± 0.002 0.712 ± 0.004 0.846 ± 0.002 0.272 ± 0.003 0.151 ± 0.001
RF 0.197 ± 0.001 0.718 ± 0.003 0.848 ± 0.002 0.244 ± 0.001 0.146 ± 0.001
MLR 0.216 ± 0.001 0.663 ± 0.002 0.814 ± 0.001 0.278 ± 0.001 0.160 ± 0.01

6h-ahead LSTM 0.232 ± 0.002 0.606 ± 0.002 0.781 ± 0.001 0.282 ± 0.007 0.171 ± 0.001
P-LSTM 0.231 ± 0.001 0.609 ± 0.003 0.781 ± 0.001 0.284 ± 0.001 0.172 ± 0.000
FFNN 0.230 ± 0.002 0.612 ± 0.003 0.784 ± 0.000 0.282 ± 0.007 0.170 ± 0.001
SL-FFNN 0.230 ± 0.002 0.613 ± 0.004 0.785 ± 0.001 0.285 ± 0.002 0.170 ± 0.001
SVR 0.233 ± 0.002 0.600 ± 0.001 0.777 ± 0.000 0.313 ± 0.003 0.177 ± 0.001
RF 0.231 ± 0.002 0.609 ± 0.003 0.780 ± 0.002 0.290 ± 0.001 0.172 ± 0.001
MLR 0.247 ± 0.001 0.551 ± 0.005 0.743 ± 0.003 0.321 ± 0.002 0.185 ± 0.000

9h-ahead LSTM 0.249 ± 0.004 0.549 ± 0.008 0.742 ± 0.004 0.304 ± 0.001 0.183 ± 0.002
P-LSTM 0.251 ± 0.000 0.548 ± 0.000 0.740 ± 0.000 0.307 ± 0.000 0.185 ± 0.000
FFNN 0.248 ± 0.004 0.554 ± 0.008 0.746 ± 0.004 0.306 ± 0.004 0.183 ± 0.002
SL-FFNN 0.246 ± 0.003 0.558 ± 0.004 0.748 ± 0.003 0.313 ± 0.004 0.184 ± 0.001
SVR 0.249 ± 0.004 0.547 ± 0.006 0.742 ± 0.004 0.327 ± 0.003 0.187 ± 0.002
RF 0.245 ± 0.003 0.560 ± 0.007 0.749 ± 0.004 0.306 ± 0.003 0.182 ± 0.002
MLR 0.263 ± 0.002 0.497 ± 0.004 0.705 ± 0.003 0.337 ± 0.002 0.195 ± 0.002

12h-ahead LSTM 0.254 ± 0.001 0.528 ± 0.003 0.727 ± 0.002 0.325 ± 0.003 0.189 ± 0.001
P-LSTM 0.256 ± 0.003 0.517 ± 0.002 0.720 ± 0.001 0.318 ± 0.005 0.189 ± 0.000
FFNN 0.253 ± 0.001 0.533 ± 0.002 0.731 ± 0.001 0.324 ± 0.005 0.188 ± 0.000
SL-FFNN 0.254 ± 0.004 0.529 ± 0.011 0.732 ± 0.001 0.318 ± 0.011 0.188 ± 0.002
SVR 0.255 ± 0.001 0.527 ± 0.001 0.727 ± 0.001 0.335 ± 0.002 0.191 ± 0.000
RF 0.253 ± 0.001 0.535 ± 0.001 0.732 ± 0.001 0.323 ± 0.001 0.188 ± 0.000
MLR 0.268 ± 0.000 0.475 ± 0.002 0.690 ± 0.002 0.350 ± 0.001 0.200 ± 0.000
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