Studien zur Totalsynthese von Tetrafibricin, Formalsynthese von Bastimolide A und Totalsynthesen von Cryptoconcatone D und Aureosurfactin

Dissertation

Zur Erlangung des Grades Dr. rer. nat.

Angefertigt an der Fakultät für Mathematik und Naturwissenschaften

der Bergischen Universität Wuppertal

von Fabia Mittendorf

geboren am 16.08.1994 in Velbert

Die vorliegende Arbeit wurde in der Zeit von Januar 2020 bis Februar 2023 unter der Leitung von Prof. Stefan F. Kirsch an der Bergischen Universität Wuppertal angefertigt.

Teile dieser Arbeit wurden veröffentlicht:

F. Mittendorf, I. E. Celik, S. F. Kirsch, Total Synthesis of Cryptoconcatone D via Construction of 1,3-Diol Units Using Chiral Horner-Wittig Reagents. J. Org. Chem. 2022, 87, 14899-14908.

Weitere Veröffentlichungen der Autorin:

F. Mittendorf, F. Mohr, S. F. Kirsch, Ring Expansion of 2-Azido-2-phenyl-indan-1,3-dione for Generation of Heterocyclic Scaffolds. *J. Org. Chem.* **2020**, *85*, 12760-12769.

F. Borghi, I. E. Celik, P. Biallas, F. Mittendorf, Expanding the Versatile Reactivity of Diazido Malonic Acid Esters and Amides: Decarboxylation and Imine Formation. *Eur. J. Org. Chem.* **2020**, *28*, 4389-4398.

Danksagung

Zuerst möchte ich mich ganz besonders bei meinem Doktorvater Prof. Stefan F. Kirsch für die Aufnahme in den Arbeitskreis und die Bereitstellung des sehr interessanten Themas der Naturstoffsynthese bedanken. Vielen Dank für das Vertrauen, das es mir ermöglichte, mit größtmöglicher Freiheit an den Themen forschen zu können. Ich möchte mich außerdem für die stetige Unterstützung und die Motivation bedanken, auch bei Rückschlägen weiterzumachen und nicht aufzugeben.

Ein besonderer Dank gilt ebenfalls Prof. Jürgen Scherkenbeck und Prof. Uli Kazmaier für die Anfertigung des zweiten und dritten Gutachtens und den weiteren Mitgliedern meiner Prüfungskommission Prof. Fabian Mohr und Prof. Ullrich Scherf.

Ich möchte mich des Weiteren bei den Mitgliedern der Arbeitsgruppe: Dr. Markus Roggel, Dr. Andreas Kotthaus, Dr. Hülya Aldemir, Christine Schneidereit, Andreas Siebert, Ilka Polanz, Simone Bettinger und Boris Ihmenkamp für die hilfreichen Ratschläge und vielen Messungen bedanken. Ich danke außerdem Adrián Gómez Suárez für die Leitung des Arbeitsgruppenseminars und die damit verbundenen wissenschaftlichen Diskussionen.

Mein Dank geht auch an die Doktorandinnen und Doktoranden: Federica Borghi, Ibrahim Celik, Kevin Alexander Kunz, Bastian Springer, Srashti Chaudhary, Mohit Chotia, Michael Tapera, Kathrin Bensberg, Athanasios Savvidis, Anastasiia Krupka, Frederic Ballaschk, Yasemin Özkaya, Marcel Jaschinski, Timo Zschau, Kay Merkens, Francisco Aguilar Troyano und Khadijah Anwar. Es war eine ganz besondere Zeit und ich bin dankbar für jeden Ratschlag und jeden lustigen Moment, den wir gemeinsam erlebt haben.

Auch möchte ich mich bei meinen Freunden: Federica Borghi, Ibrahim Celik, Kevin Alexander Kunz und Bastian Springer für die gemeinsame Zeit bedanken. Danke, dass ihr immer für mich da wart, in guten und in schlechten Zeiten.

Besonders hervorheben möchte ich noch einmal Federica Borghi, die während meiner Promotion zu einer sehr guten Freundin geworden ist. Danke für all die besonderen Momente, in denen wir gemeinsam lachen konnten und dafür, dass du immer für mich da warst, auch in den schwierigen Zeiten. Ein ganz besonderer Dank geht auch an meinen Teamkollegen Ibrahim Celik, von dem ich sehr viel lernen konnte. Danke, dafür dass du mich immer wieder motiviert hast und das Beste aus mir herausgeholt hast. Du hast es bis zum Ende geschafft mich trotz aller Schwierigkeiten zum Lachen zu bringen und hast immer an mich geglaubt.

Ich möchte mich auch noch einmal bei meinen Laborkollegen aus Labor 3: Ibrahim Celik, Kevin Alexander Kunz, Tim Berking, Srashti Chaudhary, Jan Mayer-Figge und Moritz Quambusch für die vielen lustigen Momente und den Support bedanken.

Zuallerletzt möchte ich mich bei meiner Familie und meinen Freunden bedanken, die mich stets auf meinem Weg begleitet und mich immer unterstützt haben. Vielen Dank!

Inhaltsverzeichnis

I) Studien zur Totalsynthese von Tetrafibricin	2
1. Einleitung	2
1.1 Die Naturstoffklasse der Polyketide	2
1.2 Tetrafibricin	
1.3 Vorarbeiten der Arbeitsgruppe	
2. Zielsetzung	
3. Ergebnisse und Diskussion	
3.1 Synthetische Arbeiten zu Fragment A	
3.2 Synthetische Arbeiten zu Fragment B	
3.3 Synthetische Arbeiten zu Fragment C	
3.4 Synthetische Arbeiten zu Fragment D	
3.5 Synthetische Arbeiten zu Fragment E	
3.6 Finale Verknüpfung der Fragmente	
4. Zusammenfassung und Ausblick	61
II) Formalsynthese von Bastimolide A	74
1. Einleitung	74
1.1 Bastimolide A und B	
2. Zielsetzung	
3. Ergebnisse und Diskussion	
4. Zusammenfassung und Ausblick	
III) Totalsynthese von Cryptoconcatone D	
1. Einleitung	
1.1 Isolierung und Strukturaufklärung	
1.2 Biologische Aktivität	110
1.3 Totalsynthesen verwandter Naturstoffe	110
2. Zielsetzung	
3. Ergebnisse und Diskussion	
4. Zusammenfassung und Ausblick	
IV) Totalsynthese von Aureosurfactin	
1. Einleitung	
1.1 Tenside	
1.2 Biotenside	124

1.3 Aureosurfactin	125
1.4 Totalsynthesen verwandter Naturstoffe	126
2. Zielsetzung	
3. Ergebnisse und Diskussion	131
3.1 Synthese von (3 <i>R</i> ,5 <i>R</i> ,3' <i>R</i> ,5' <i>R</i>)-Aureosurfactin	131
3.2 Synthese von (3 <i>S</i> ,5 <i>S</i> ,3 <i>S</i> ,5 <i>S</i>)-Aureosurfactin	
4. Zusammenfassung und Ausblick	
V) Experimenteller Teil	
1. Allgemeine Informationen	141
1.1 Allgemeine Arbeitstechniken	141
1.2 Reagenzien und Lösungsmittel	141
1.3 Chromatographie	142
1.4 Analytik	143
2. Synthesevorschriften	144
2.1 Studien zur Totalsynthese von Tetrafibricin	144
2.2 Formalsynthese von Bastimolide A	237
2.3 Totalsynthese von Cryptoconcatone D	269
2.4 Totalsynthese von Aureosurfactin	279
VI) Anhang	
1. Tabellenverzeichnis	
2. Abkürzungsverzeichnis	
3. Literaturverzeichnis	

Studien zur Totalsynthese von Tetrafibricin

I) Studien zur Totalsynthese von Tetrafibricin

1. Einleitung

1.1 Die Naturstoffklasse der Polyketide

Polyketide bilden eine der größten Gruppen bioaktiver Naturstoffe und zeichnen sich durch eine außerordentlich große strukturelle Vielfalt aus. Aufgrund ihrer biologischen Aktivität finden diese Verbindungen häufig Anwendung in der Medizin.^[1,2–5] Nennenswerte Vertreter der Polyketide sind das Antibiotikum Erythromycin A (I-1)^[4], das Krebsmedikament Doxorubicin (I-2)^[5], das Antiparasitikum Ivermectin B_{1a} (I-3)^[6] und das Antimykotikum Amphidinol 3 (I-4)^[7,8] (Abbildung I-1).

Abbildung I-1: Vertreter der Naturstoffklasse Polyketide.^[4–8]

Aufgrund der vielfältigen und komplexen Strukturen, sowie der pharmakologischen Bedeutung stellen Polyketide eine attraktive synthetische Herausforderung in der organischen Chemie dar.^[2,3] Trotz der enormen Vielfalt in Funktion und Struktur basiert die Naturstoffklasse der Polyketide auf einem gemeinsamen Biosyntheseweg. Ähnlich zur Biosynthese von Fettsäuren, werden Polyketide aus einfachen, natürlichen Bausteinen, wie Acetat und Propionat, in iterativen decarboxylierenden Claisen-Thioester-Kondensationen aufgebaut. Zunächst wird das durch die β-Ketoacyl-Synthase (KS) aktivierte Acetyl-Coenzym A mit einer am Acyl-Carrier-Protein (ACP) verankerten Malonyl-Coenzym A-Verlängerungseinheit unter CO₂-Abspaltung kombiniert. Das gebildete 1,3-Dion kann im Anschluss eine weitere Claisen-Kondensation eingehen oder mithilfe weiterer Enzyme modifiziert werden. Dies beinhaltet eine enantioselektive Reduktion mit Ketoreduktasen (KR) zum Alkohol, eine anschließende Dehydratisierung mit Dehydratasen (DH) zu α , β -ungesättigten Thioestern und schließlich deren Umsetzung zu den entsprechenden gesättigten Thioestern durch Enoylreduktasen (ER). Im Gegensatz zur Fettsäure-Biosynthese können die am Prozess der Polyketid-Biosynthese beteiligten Enzyme (Polyketid-Synthasen) auf ein erweitertes Spektrum an Biosynthesebausteinen zugreifen. Zusätzliche Komplexität wird durch optionale Enzymreaktionen, wie z.B. Methylierung, Oxygenierung oder Zyklisierung von Polyketonen zu Polyphenolen ermöglicht. Die Polyketide können sowohl als Zyklus als auch als azyklisches Makromolekül vorliegen oder ein aromatisches Grundgerüst besitzen. Bei der Biosynthese der Fettsäuren wird durch die Fettsäuren-Synthasen nach jeder Verlängerung ein reduktiver Katalysezyklus initiiert (Schema I-1).^[2,9,10]

Schema I-1: Biosynthese der Polyketide und Fettsäuren.^[2]

1.2 Tetrafibricin

1.2.1 Allgemein

Im Jahre 1993 konnte der Naturstoff Tetrafibricin (I-5) erstmals von *Kamiyama et al.*^[11] als Fermentationsprodukt des Bakterienstammes *Streptomyces neyagawaensis* NR0577 in Kiinagashima (Japan) isoliert werden. Verschiedene analytische Methoden zeigten, dass Tetrafibricin (I-5) eine Aminosäure mit einem C₄₀-Grundgerüst mit elf Stereozentren und einer Ketofunktion ist (Abbildung I-2). Bei den stereogenen Zentren handelt es sich bis auf eine Methylgruppe ausschließlich um sekundäre Hydroxygruppen, die entweder in 1,3- oder 1,5-Diol-Einheiten vorliegen. Neben dem konjugierten Tetraensystem, weist das lineare Polyketid auch drei isolierte Doppelbindungen auf, wobei alle Alken-Einheiten in (*E*)-Konfiguration vorliegen. Die vollständige Aufklärung der Stereochemie von Tetrafibricin (I-5) gelang erst zehn Jahre später durch *Kishi et al.*^[12] Dazu wurden NMR-Spektren des stabileren Derivats *N*-Acetyldihydrotetrafibricinmethylester (I-6) mit NMR-Spektren aus Datenbanken von Diolen und Triolen mit bekannter Konfiguration verglichen. Eine Analyse von (*S*)- und (*R*)-*Mosher*-Estern von Tetrafibricin-Abbauprodukten erlaubte die Vorhersage der relativen und absoluten Stereochemie der vier Stereocluster C11-C19, C23-C29, C33 und C37. Die Zuordnung der absoluten und relativen Konfiguration von *N*-Acetyldihydrotetrafibricinmethylester (I-**6**) wurde zudem durch die Totalsynthese von *Roush et al.*^[13] und den Vergleich mit den publizierten spektroskopischen Daten bestätigt (Abbildung I-2).

Abbildung I-2: Grundstruktur von Tetrafibricin (I-**5**) und *N*-Acetyldihydrotetrafibricinmethylester (I-**6**).^[13]

Wie für viele andere Vertreter der Polyketide wurde auch für Tetrafibricin (I-5) eine biologische Aktivität gefunden. Tetrafibricin (I-5) wurde als kompetitiver Antagonist des Integrins αIIb/βIIIa (auch bekannt als Fibrinogen-Rezeptor) mit einem IC₅₀-Wert von 46 nM für die Bindung von Fibrinogen identifiziert. Die Interaktion mit dem Integrin αIIb/βIIIa ist selektiv, da die Bindung von Fibrinogen an das eng verwandte Integrin $\alpha V/\beta III$ nur bei hohen Konzentrationen inhibiert wird. Das Glykoprotein $\alpha IIb/\beta IIIa$ ist in der Membran von Thrombozyten lokalisiert und spielt eine Schlüsselrolle bei der Thrombozyten-Aggregation und der Thrombus-Bildung. allb/BIIIa-Antagonisten besitzen daher ein Potential als antithrombotische Wirkstoffe.^[14] Bei der Blutgerinnung wird die Aggregation von Blutplättchen durch die Aktivierung durch Collagen, ADP oder Thrombin gesteuert. Der dadurch ebenfalls aktivierte, konformationsveränderte α IIb/ β IIIa-Rezeptor bindet das im Blut vorhandene Fibrinogen, welches von Thrombin zu Fibrin gespalten wird. Die polymere Vernetzung von Fibrin bewirkt schließlich die Bildung eines Thrombus, der aus aggregierten Thrombozyten und Fibrinpolymeren besteht. Für die Wundheilung ist die Blutgerinnung unerlässlich, allerdings können unerwünschte Thromben Herzinfarkte oder Schlaganfälle verursachen. Tetrafibricin (I-5) inhibiert Collagen-, Thrombin- und ADP-induzierte Blutplättchenaggregation mit IC₅₀-Werten von 11.0, 7.6 und 5.6 µM. Die Zugabe von Tetrafibricin (I-5) zu Thrombozyten, die vorher durch ADP aktiviert und aggregiert wurden, bewirkt eine schnelle und vollständige Deaggregation. Weitere Untersuchungen zeigten, dass Fibrinogen unter anderem über die Aminosäuresequenz Arg-Gly-Asp (RGS) an den Rezeptor bindet. **Bisher** bekannte. meist peptidische Fibrinogen-Antagonisten nutzen diese Erkennungssequenz, um den Rezeptor zu inhibieren. Dazu gehören beispielsweise die auf peptidische Komponenten von Schlangengiften basierenden Substanzen Eptifibatide und Tirofiban. Diese werden unter anderem als peptidische αIIb/βIIIa-Antagonisten bei Patienten mit akutem Herzinfarkt eingesetzt. Tetrafibricin (I-5) ist im Gegensatz zu anderen Fibrinogen-Rezeptor-Antagonisten einzigartig, da es keine peptidischen oder enthält.^[10,11,14,15] peptidomimetischen Sequenzen Eine Totalsynthese von Tetrafibricin (I-5) könnte zu einem besseren Verständnis der Bindung an den Fibrinogen-Rezeptor und der komplexen Aktivierungsmechanismen des aIIb/BIIIa-Integrins beitragen. Sie könnte die Grundlage bilden für Struktur-Aktivitäts-Untersuchungen, sowie der Identifizierung eines für die biologische Aktivität erforderlichen, minimalen Pharmakophors, z. B. durch Hydrierung der instabilen Elemente, wie das Tetraen und das Keton.[10,16]

1.2.2 Bisherige Syntheseansätze

Die anspruchsvolle, komplexe Struktur und die interessante biologische Aktivität von Tetrafibricin (I-5) waren der Grund dafür, dass zahlreiche totalsynthetische Arbeiten initiiert wurden. Die ersten Fragmentsynthesen wurden im Jahre 2004 von *Cossy et al.*^[16] berichtet, wobei die drei Fragmente I-7 (C1-13, 13% über acht Schritte), I-8 (C15-25, 21% über sechs Schritte) und I-9 (C27-40, 19% über acht Schritte) zwar erfolgreich synthetisiert, jedoch bisher nicht verknüpft wurden. Die 1,3- und 1,5-Polyoleinheiten wurden hier mit einer iterativen Strategie ausgehend von den Aldehyden I-10, I-11 und I-12 durch enantioselektive Allyltitanierungen^[17] und anschließende chemoselektive Kreuzmetathesen mit Acrolein eingeführt (Schema I-2). Bei der Verknüpfung steht die stereoselektive Installation der Substituenten an Position C15, C25 und C27 noch aus. Die Doppelbindungen des Tetraenfragments I-7 wurden in einer eleganten Strategie durch Elimierungsreaktionen und Kreuzmetathesen eingeführt.

Schema I-2: Retrosynthetische Darstellung der geplanten Synthese von Tetrafibricin (I-5) nach Cossy et al.^[16]

veröffentlichten Curran et al.^[18] die Synthese Im Jahre 2011 der beiden Fragmente I-13 (C1-20) und I-14 (C21-40), die über eine Julia-Kocienski-Olefinierung^[19] verknüpft werden sollten (Schema I-3). Das erste Fragment I-**13** wurde ausgehend von den drei kleineren Fragmenten I-(15-17) synthetisiert. Das Iodid I-16 und das Dithian I-17 wurden dabei über eine Corey-Seebach-Reaktion^[20] verknüpft, während die anschließende Verknüpfung mit I-15 über eine Horner-Wadsworth-Emmons-Reaktion^[21] verlief. Das zweite Fragment I-14 wurde ebenfalls aus drei kleineren Fragmenten I-(18-20) hergestellt, wobei der Aufbau der Doppelbindungen über eine Sequenz aus Julia-Kocienski-Olefinierungen gelang. Die Chiralitätszentren beider Fragmente wurden entweder ausgehend von (L)-Äpfelsäure als Chiral-Pool-Baustein oder über Evans-Auxiliar-Aldolreaktionen^[22] bzw. über eine hydrolytische kinetische Racematspaltung nach Jacobsen^[23] eingeführt. Die Verknüpfung der beiden Hauptfragmente I-13 und I-14 war jedoch nicht erfolgreich.

Schema I-3: Retrosynthetische Darstellung der geplanten Synthese von Tetrafibricin (I-5) nach *Curran et al.*^[18]

Friestad et al.^[24-26] starteten im Jahre 2010 ebenfalls einen Syntheseversuch von Tetrafibricin (I-5). Dazu wurde der Naturstoff in die drei Fragmente I-21 (C1-7), I-22 (C8-14) und I-23 (C15-40) aufgeteilt (Schema I-4). Die Verknüpfung der einzelnen Fragmente sollte über eine Aldol- und eine Kreuzkupplungsreaktion verlaufen. Für die 1,5-Polyol-Einheiten entwickelte Herstellung der die Gruppe eine iterative Synthesestrategie ausgehend von den über eine katalytische, asymmetrische Cyanhydrinsynthese leicht zugänglichen α -Siloxy- γ -sulfonitril-Bausteinen I-27 und I-28. Diese können über Julia-Kocienski-Olefinierungen und anschließende Reduktionen der Nitrile zu Aldehyden zu 1,5-Polyol-Einheiten mit exzellenter Stereokontrolle umgesetzt werden. Die Synthese des Fragments I-23 (C15-40) wurde erfolgreich durchgeführt, allerdings wurden die Synthesen der übrigen Fragmente, sowie die endgültige Verknüpfung zum Naturstoff I-5 nicht beschrieben.

Schema I-4: Retrosynthetische Darstellung der geplanten Synthese von Tetrafibricin (I-5) nach *Friestad et al.*^[24,26]

Im Jahre 2011 publizierten *Krische et al.*^[27] eine eigens entwickelte Synthesestrategie zur Herstellung des Fragments I-**29** (C21-40). Die Kombination aus asymmetrischen, Iridium-katalysierten Carbonylallylierungen^[28], die eine Transfer-Hydrierung enthalten und die eine *in situ*-Generierung der Aldehydkomponente aus einem Alkoholvorläufer ermöglichen, sowie Kreuzmetathesen lieferte das Fragment I-**29** ausgehend von 4-Aminobutan-1-ol (I-**34**) und 1,3-Propandiol (I-**35**) in 12 Stufen. Später entwickelte die Gruppe eine Methode zur Synthese von Fragment I-**30** (C9-20), die eine reduktive, Kupfer-katalysierte Kupplung des Epoxids I-**36** mit dem Bromid I-**37** umfasst.^[29] Die stereogenen Zentren wurden ebenfalls über die asymmetrischen Carbonylallylierungen, sowie über eine Ruthenium-katalysierte *syn*-Crotylierung^[30] eingeführt. Die Synthese des Fragments I-**31** (C1-8) wurde nicht berichtet. Die Fragmente I-**30** und I-**31** sollten über eine *Horner-Wadsworth-Emmons*-Reaktion und die Fragmente I-**29** und I-**30** über eine *Julia-Kocienski*-Olefinierung verknüpft werden (Schema I-5).

Schema I-5: Retrosynthetische Darstellung der geplanten Synthese von Tetrafibricin (I-5) nach Krische et al.^[27]

Die Arbeitsgruppe *Roush et al.*^[31-33] entwickelte eine stereoselektive Allylborierungsstrategie zum Aufbau von ungesättigten 1,5-Diol-Einheiten ausgehend von zwei Aldehyden. Diese wurde dann 2013 dazu verwendet den, im Gegensatz zu Tetrafibricin (I-5), stabileren *N*-Acetyldihydrotetrafibricinmethylester (I-6) zu synthetisieren. Tetrafibricin (I-5) konnte über die erarbeitete Methode nur in unsauberer Form isoliert werden, was auf die mehrfach berichtete Instabilität des Naturstoffs zurückgeführt wurde.^[11–13] Bei der doppelten Allylborierungsstrategie konnten unter Verwendung des chiralen γ -Borylallylboronats I-**38** und des γ -Borylallylborans I-**41** das (*E*)-*anti*-1,5-Diol I-**40** und das (*Z*)-*syn*-1,5-Diol I-**43** erhalten werden (Schema I-6).^[32]

Schema I-6: Diastereoselektive, doppelte Allylborierungen zur Synthese von verschiedenen 1,5-Diol-Einheiten nach *Roush et al.*^[32]

Unter Verwendung des γ -Borylallylborans I-**44** gelang es *Roush et al.*^[33] später auch gezielt das (*E*)-*syn*-1,5-Diol I-**46** in einer doppelten Allyborierungsreaktion herzustellen (Schema I-7).

Schema I-7: Diastereoselektive Allylborierung unter Verwendung des chiralen γ -Borylallylborans I-44 zur Synthese des (*E*)-*syn*-1,5-Diols I-46 nach *Roush et al*.^[33]

Für die Totalsynthese wurde Tetrafibricin (I-**5**) in die drei Fragmente I-**47** (C1-8), I-**48** (C9-19) und I-**49** (C23-40) aufgeteilt. Fragment I-**47** sollte aufgrund der instabilen Tetraen-Einheit zuletzt eingebaut werden, da in vorherigen Arbeiten bei einem frühen Einbau Probleme bei weiteren Syntheseschritten vermerkt wurden. Die Polyol-Fragmente I-**48** und I-**49** wurden über die oben beschriebenen doppelten Allylborierungsreaktionen aufgebaut und auch deren Verknüpfung gelang stereoselektiv durch doppelte Allylborierung und gleichzeitiger Einführung der fehlenden Propen-Einheiten. Die Verknüpfung mit Fragment I-**47** sollte über eine *Horner-Wadworth-Emmons*-Reaktion verlaufen (Schema I-8). *Roush et al.*^[13] scheiterten letztendlich bei der Entfernung des Allylesters, der Alloc- und der neun TBS-Schutzgruppen. Sie konnten nur eine geringe Menge von Tetrafibricin (I-5), die unrein und nicht vollständig charakterisiert war (¹H-NMR und LCMS), isolieren. Alle Reinigungsversuche der Probe von I-5 führten zur Zersetzung. Aufgrund der Instabilität von Tetrafibricin (I-5), die schon zuvor beschrieben wurde und neben der Polyen-Einheit mit dem Keton an C13-Position in Zusammenhang gebracht werden kann, beschäftigte sich die Gruppe anschließend mit der Synthese des stabileren Derivats I-6, das bereits bei der Strukturanalyse von *Kishi et al.*^[12] verwendet wurde. Die Synthese von *N*-Acetyldihydrotetrafibricinmethylester (I-6) gelang in einer Gesamtausbeute von 2% über 21 Stufen in der längsten linearen Sequenz.

Schema I-8: Retrosynthetische Analyse von Tetrafibricin (I-5) nach Roush et al.^[13]

Bis heute ist eine vollständige Synthese des Naturstoffs Tetrafibricin (I-**5**) nicht gelungen, sodass es sich noch immer um ein interessantes Syntheseziel handelt. Die größte Herausforderung stellt dabei die finale Abspaltung aller Schutzgruppen dar. Andererseits konnten *Kamiyama et al.*^[11] 210 mg des Naturstoffs nach zahlreichen chromatographischen Reinigungsschritten mit den Lösungmitteln Wasser, Methanol und Ethanol in reiner Form isolieren. *Kishi et al.*^[12] gelang die Überführung von Tetrafibricin (I-**5**) in *N*-Acetyldihydrotetrafibricinmethylester (I-**6**) in drei Stufen in einer Gesamtausbeute von 60%, wobei im ersten Schritt bei der Behandlung von Tetrafibricin (I-**5**) mit Natriumborhydrid in Wasser keine signifikante Zersetzung

beobachtet wurde. Beides zeigt, dass eine Totalsynthese von Tetrafibricin (I-5) grundsätzlich möglich und die Auswahl der Schutzgruppen essentiell ist.

1.3 Vorarbeiten der Arbeitsgruppe

1.3.1 Iterative Synthesestrategien zum Aufbau von Polyketiden

Die Arbeitsgruppe Kirsch et al.^[34–37] begann 2007 mit der Ausarbeitung eines iterativen Synthesewegs zum Aufbau polyketidartiger Strukturen. Dabei wurde die im Jahre 2005 von Kirsch und Overman entwickelte katalytische asymmetrische Overman-Veresterung zur Synthese von 1,3-Polyol-Einheiten eingesetzt.^[38] Der Iterationszyklus beginnt mit der Synthese des Methylesters I-56 durch eine (Z)-selektive Horner-Wadsworth-Emmons-Reaktion ausgehend vom Aldehyd I-55. Es folgt die Bildung des (Z)-Allyltrichloracetimidats I-57 durch Reduktion von I-**56** und Addition von Trichloracetonitril. Das Acetimidat I-57 wurde anschließend in einer enantioselektiven Overman-Veresterung durch Einsatz des Kobalt-Katalysators I-58 und Benzoesäure zum Benzoat I-59 umgesetzt wird. Dieser wird nach Entfernung der Benzoyl-Schutzgruppe, TBS-Schützung der freien Hydroxygruppe und Hydroborierung des terminalen Alkens in den Aldehyd I-61 überführt wird, der den nächsten Iterationszyklus initiiert. Pro Zyklus wurde in einer achtstufigen Synthesesequenz ein stereogenes Zentrum aufgebaut (Schema I-9).

Schema I-9: Iterative Synthesestrategie zum Aufbau von 1,3-Polyol-Einheiten über die Overman-Veresterung nach Kirsch et al.^[34–37]

Die Methode wurde bereits erfolgreich zur Synthese verschiedener Polyketide, wie Solistatin^[37], Rugolacton^[34], Chloriolid^[34,39], sowie Polyrhacitid A und B^[40] eingesetzt.

Später wurde im Arbeitskreis eine deutlich kürzere, iterative Synthesestrategie zum Aufbau von 1,3-Polyol-Einheiten basierend auf den chiralen Diphenylphosphanoxid-Bausteinen I-62 und I-63 entwickelt (Schema I-10).^[41–45] In einer vierstufigen Synthesesequenz können ausgehend vom Aldehyd I-55 zwei stereogene Zentren aufgebaut werden. Das erste Chiralitätszentrum wird in einer *Horner-Wittig*-Reaktion aus den chiralen Bausteinen I-62 oder I-63 mitgebracht. Die Einführung des zweiten Chiralitätszentrums erfolgt über etablierte diastereoselektive *syn-* oder *anti*-Reduktionen des β -Hydroxyketons I-64. Der nach Acetalbildung mit 2,2-Dimethoxypropan und Ozonolyse aufgebaute Aldehyd I-67 kann im nächsten Iterationszyklus zur Einführung weiterer stereogener Zentren eingesetzt werden.

Schema I-10: Iterative Polyolsynthse über die Horner-Wittig-Reaktion nach Kirsch et al.[41-45]

Über die *Horner-Wittig*-Variante zum Aufbau von 1,3-Polyol-Einheiten konnten bisher die Polyketide (+)-Cryptocaryol^[43] und Harzialactone A^[46] erfolgreich synthetisiert werden .

1.3.2 Vorarbeiten zur Totalsynthese von Tetrafibricin

Die ersten Vorarbeiten zur Synthese von Tetrafibricin (I-5) lieferten *J. T. Binder* und *T. Harschneck* in ihren Dissertationen.^[35,41] Dazu wurde der Naturstoff retrosynthetisch in die fünf Fragmente **A** (C1-8), **B** (C9-20), **C** (C21-30), **D** (C31-34) und **E** (C35-40) aufgeteilt. Über die oben beschriebenen Iterationszyklen mit einer *Overman*-Veresterung

als Schlüsselschritt konnten die Fragmente **B-E** erfolgreich hergestellt werden. Fragment **A** wurde ausgehend von Vinyliodid I-**69** und Stannan I-**70** über eine *Stille*-Kupplung^[47] aufgebaut. Im Gegensatz zu den Arbeiten von *Curran et al.*^[18] und *Roush et al.*^[13] sollte das Phosphonat-Fragment **A** als 2-(Trimethylsilyl)ethylester geschützt werden, da dieser zusammen mit anderen silylbasierten Schutzgruppen auf einer späteren Stufe unter milden Bedingungen abgespalten werden kann. Die Fragmente **B-E** wurden über *Julia-Kocienski*-Olefinierungen und das Fragment **A** anschließend über eine *Horner-Wadsworth-Emmons*-Reaktion erfolgreich zur Tetrafibricin-Vorstufe I-**68** verknüpft (Schema I-11). Diese Vorstufe, die das vollständige Kohlenstoffgerüst von Tetrafibricin (I-**5**) enthält konnte in einer Menge von 1.3 mg erhalten werden. Die Isolierung und Charakterisierung von Tetrafibricin (I-**5**) nach einer *Staudinger*-Reduktion mit anschließender globaler Abspaltung aller TBS-Schutzgruppen und der Entschützung des 2-(Trimethylsilyl)ethylesters durch Behandlung von I-**68** mit TBAF in THF gelang allerdings nicht.

Schema I-11: Retrosynthetische Darstellung der geplanten Totalsynthese von Tetrafibricin (I-5) nach *Kirsch et al.*^[35,41]

Einige Jahre später konnte *C. Wagner* in seiner Dissertation die Synthesewege der Fragmente **D** (C31-34) und **E** (C34-40) ausgehend vom β -Hydroxyester I-**71** als zentralem Baustein verkürzen und bessere Gesamtausbeuten erzielen.^[48] Die Vorstufe I-**74** von Fragment **D** wurde ausgehend vom β -Hydroxyester I-**71** über eine enzymatische Racematspaltung, eine anschließende TBS-Schützung und Reduktion, sowie eine Benzoyl-Schützung des Alkohols I-**73** hergestellt. Die Vorstufe I-**76** von Fragment E wurde durch eine Kreuzmetathese aus Methylacrylat (I-72) und Alken I-73 gefolgt von einer Hydrierung der C-C-Doppelbindung und eine anschließende *Mitsunobu*-Reaktion^[49] des Alkohols I-75 erhalten. Die finalen Stufen zur Synthese der Fragmente D und E wurden aufgrund möglicher Instabilitäten nicht durchgeführt (Schema I-12).

Schema I-12: Optimierte Synthesen der Fragmente D (C34-31) und E (C35-40) nach C. Wagner.^[48]

P. Biallas sollte anschließend in seiner Dissertation die Synthesen der Fragmente B (C9-20) und C (C21-30) optimieren, wozu er anstelle des achtstufigen Iterationszyklus mit der Overman-Veresterung als Schlüsselschritt die vierstufige iterative Synthesestrategie unter Einsatz des chiralen Diphenylphosphanoxid-Bausteins I-62 verwenden sollte.^[50] Es gelang ihm die Synthese der Vorstufe I-79 von Fragment C um neun Syntheseschritte zu verkürzen. Die Ozonolyse zu Fragment C sollte dabei aufgrund der Instabilität von Aldehyden kurz vor der Verknüpfung durchgeführt werden. Ebenso gelang es P. Biallas ausgehend von Baustein I-62 die Vorstufe I-78 von Fragment B über zwanzig Stufen aufzubauen. Zur Vollendung des Fragments B fehlen lediglich Schutzgruppenchemie und eine oxidative Spaltung der Doppelbindung. Bei einem erfolgreichen Verlauf der geplanten, weiteren Stufen würde sich die Synthese dieses Fragments verglichen mit bisherigen Arbeiten der Gruppe um zehn Schritte verkürzen (Schema I-13).

Schema I-13: Synthesen der Polyolfragmente B und C unter Verwendung der *Horner-Wittig*-Methode nach *P. Biallas*.^[50]

Auch die Synthesen der Fragmente A und E konnten reproduziert werden. Die Totalsynthese von Tetrafibricin konnte aufgrund der nicht vollendeten Synthese von Fragment B nicht abgeschlossen werden.

2. Zielsetzung

Aufbauend auf den Arbeiten von *P. Biallas* sollten die Synthesen der Fragmente **A**, sowie **C-E** reproduziert werden und die Herstellung des Fragments **B** über den vierstufigen Iterationszyklus (s. Schema I-10) vollendet werden.^[50] Kritische Stufen bzw. Sequenzen sollten dabei optimiert werden. Schließlich sollten die fertiggestellten Fragmente über *Julia-Kocienski*-Olefinierungen und eine *Horner-Wadsworth-Emmons*-Reaktion verknüpft und nach Abspaltung der Schutzgruppen die Totalsynthese von Tetrafibricin (I-5) abgeschlossen werden (Schema I-14).

Schema I-14: Retrosynthetische Darstellung der geplanten Totalsynthese von Tetrafibricin (I-5).

Aufgrund von Lieferbeschränkungen des krebserregenden Acroleins (I-82), das neben *tert*-Butylacetat (I-83) als Ausgangsmaterial zur Synthese des chiralen Intermediats I-80 benötigt wird, sollte eine alternative Route zum Aldehyd I-80 entwickelt werden. Dieser Aldehyd wird zum Aufbau des für die *Horner-Wittig*-Methode essentiellen Bausteins I-62a sowie des zentralen Intermediats I-73 zur Synthese der Fragmente D und E benötigt (Schema I-15).

Schema I-15: Synthese des chiralen Bausteins I-62a und des Alkohols I-73 ausgehend von Acrolein (I-82).

3. Ergebnisse und Diskussion

3.1 Synthetische Arbeiten zu Fragment A

3.1.1 Retrosynthese

Fragment **A** (C1-8) sollte ausgehend vom Vinyliodid I-**69** und dem Stannan I-**84** über eine *Stille*-Kupplung synthetisiert werden. Wie bereits durch *T. Harschneck* beschrieben, sollte das Vinyliodid I-**69** durch Iodierung von Propiolsäure I-**90** mit wässrigem Iodwasserstoff unter Kupfer(I)-Katalyse und anschließender Veresterung der gebildeten (*E*)-2-Iodacrylsäure I-**89** unter *Steglich*-Bedingungen aufgebaut werden.^[41] Das Stannan I-**84** sollte beginnend mit der Öffnung von Epichlorhydrin I-**88** durch Natriumacetylid, anschließender Hydrostannylierung des gebildeten Alkins I-**87** zum Stannylalkohol I-**86**, einer *Appel*-Reaktion^[51] zum Bromid I-**85** sowie einer nukleophilen Substitution mit Diethylphosphit zum Phosponat I-**84** hergestellt werden (Schema I-16).

Schema I-16: Retrosynthetische Darstellung der geplanten Synthese von Fragment A (C1-8).

3.1.2 Synthese

Da das Vinyliodid I-**69** bereits von *P. Biallas* in großen Mengen hergestellt wurde, musste lediglich die Synthese des Stannans I-**84** für die finale *Stille*-Kupplung reproduziert werden.^[50] Aufgrund der niedrigen und variierenden Ausbeuten bei den beiden Schritten zur Synthese des Stannylalkohols I-**86** wurde eine robustere, vierstufige Synthese dieses Bausteins ausgehend von Propargylalkohol (I-**91**) verwendet.^[52] Zunächst wurde Propargylalkohol (I-**91**) über eine radikalische Hydrostannylierung zum Stannan I-**92** in einer Ausbeute von 77% umgesetzt. Der Aldehyd I-**93** konnte anschließend in einer Ausbeute von 72% nach Oxidation von I-**92** mit Mangan(IV)oxid erhalten werden. Die folgende *Horner-Wadsworth-Emmons*-Reaktion ergab den Ester I-**94** in einer Ausbeute von 72%. Eine Reduktion des Esters I-**94** mit DIBAL-H unter Standardbedingungen lieferte den Stannylalkohol I-**89** in einer Ausbeute von 65%.

In der nachfolgenden Appel-Reaktion konnte das instabile Bromid I-85 nach der säulenchromatographischen Reinigung des Rohprodukts sowohl über Kieselgel als auch über mit Wasser deaktiviertem Aluminiumoxid nicht isoliert werden. Eine Verwendung des Rohprodukts ohne weitere Aufreinigung kam nicht in Frage, da das für die Appel-Reaktion eingesetzte Triphenylphosphin die folgende nukleophile Substitution mit Diethylphosphit störte. Daher wurde die Bromierung des Allylalkohols I-86 unter Corey-Kim-Bedingungen^[53] in Erwägung gezogen, da dort keine die Folgereaktion störenden Reagenzien eingesetzt werden und somit das Rohprodukt ohne weitere Reinigung im nächsten Schritt eingesetzt werden könnte. Dazu wurde der Allylalkohol I-86 mit N-Bromsuccinimid und Dimethylsulfid in Dichlormethan für insgesamt 20 Minuten bei -20 °C gerührt. Das gebildete Bromid I-85 wurde nach wässriger Aufarbeitung ohne weitere Reinigung im nächsten Schritt mit Triethylphosphit umgesetzt und das Stannan I-84 in einer Ausbeute von 76% über zwei Stufen erhalten. Somit konnte die Gesamtausbeute der Synthesesequenz des Stannans I-84 von 6% über vier Stufen verbessert werden auf 20% über sechs Stufen, die sich zudem hinsichtlich der Ausbeuten und deren Variabilität als robuster erwiesen (Schema I-17).^[50]

Schema I-17: Synthese des Stannans I-84 ausgehend von Propargylalkohol (I-91).

Die finale *Stille*-Kupplung zwischen dem Vinyliodid I-**69** und dem Stannan I-**84** lieferte Fragment **A** in einer Ausbeute von 82% (Schema I-18).

Schema I-18: Finale Stille-Kupplung zur Synthese von Fragment A.

3.2 Synthetische Arbeiten zu Fragment B

3.2.1 Retrosynthese

Fragment **B** sollte wie bereits durch *P. Biallas* beschrieben aus den Bausteinen I-**77a** und I-**97** über eine Verknüpfung durch eine *Horner-Wittig*-Reaktion aufgebaut werden.^[50] *P. Biallas* konnte das dabei in einer Ausbeute von 22% gebildete β -Hydroxyketon I-**96** über eine *syn*-Reduktion und anschließende TBS-Schützung in das Acetal I-**95** in einer Ausbeute von lediglich 13% über zwei Stufen und mit einer moderaten Diastereoselektivität von 72:28 überführen. Auch die selektive Öffnung des *para*-Methoxybenzylidenacetals mit DIBAL-H zum PMB-Ether I-**78** gelang in einer niedrigen Ausbeute von 23%, wobei allerdings aufgrund der geringen erhaltenen Menge eine eindeutige Bestätigung dieses Regioisomers noch aussteht. In den weiteren Schritten sollte Fragment **B** in einer fünfstufigen Synthesesequenz, bestehend aus einer TBS-Schützung, einer doppelter PMB-Entschützung, einer selektiver Benzoat-Schützung des primären Alkohols, einer TES-Schützung der freien sekundären Hydroxygruppe, die später oxidativ in das Keton überführt werden sollte, und einer abschließenden *Lemieux-Johnson*-Oxidation^[54] erhalten werden (Schema I-19).

Schema I-19: Retrosynthetische Darstellung der geplanten Synthese von Fragment B.

Der Baustein I-97 sollte retrosynthetisch durch eine TBS-Entschützung, eine Acetalisierung und eine nachfolgende *Lemieux-Johnson*-Oxidation der Doppelbindung des *syn*-1,3-Diols I-98 erhalten werden. Der Allylalkohol von I-98 sollte durch diastereoselektive *Grignard*-Addition^[55] von Vinylmagnesiumbromid (I-99) an den Aldehyd I-100 aufgebaut werden. Die Synthese des Aldehyds I-100 sollte über eine stereoselektive *Evans-Aldol*-Reaktion zwischen dem auf (*D*)-Phenylalanin (I-104) basierenden *Evans*-Auxiliar I-102 und dem aus 1,3-Propandiol (I-105) erhaltenen

Aldehyd I-103 erfolgen. Auch diese Synthese sollte in Analogie zu den Vorarbeiten von *P. Biallas* durchgeführt werden (Schema I-20).^[50]

Schema I-20: Retrosynthetische Darstellung der geplanten Synthese von Baustein I-95.

Die Retrosynthese des Bausteins I-**77a** beinhaltet in den Schlüsselschritten eine *Horner-Wittig*-Reaktion des zentralen Phosphanoxid-Bausteins I-**62a** mit dem Aldehyd I-**110** und einer selektiven *syn*-Reduktion des β -Hydroxyketons I-**109** zum Diol I-**108**. Der Aldehyd I-**110** sollte ausgehend von (4-Methoxyphenyl)methanol (I-**111**) synthetisiert werden. Die weitere Überführung des *syn*-1,3-Diols I-**108** in den Baustein I-**77a** beinhaltet zunächst eine selektive TBS-Schützung des potentiell sterisch weniger gehinderten Allylalkohols und eine nachfolgende Acetylierung der zweiten Hydroxygruppe von I-**108**. Im weiteren Verlauf sollten eine Entschützung und eine Oxidation des primären Alkohols von Acetat I-**107** den Aldehyd I-**106** liefern. Nach Addition von Diphenylphosphanoxid, Acetathydrolyse und Acetalisierung sollte dieser in den Baustein I-**77a** überführt werden (Schema I-21). Die Synthese sollte in Analogie zu den Vorarbeiten von *P. Biallas* durchgeführt werden.^[50] Dabei sollten die geringen Ausbeuten bei der *Horner-Wittig*-Reaktion und der *mono*-TBS-Schützung optimiert werden.

Schema I-21: Retrosynthetische Darstellung der geplanten Synthese von Baustein I-77a.

Der für die iterative Synthesestrategie zum Aufbau von 1,3-Polyol-Einheiten entwickelte zentrale Baustein I-62a wurde bisher nach einer Vorschrift von A. Bredenkamp in acht Stufen über eine Aldol-Reaktion von tert-Butylacetat (I-83) mit Acrolein (I-82) aufgebaut.^[42–45] Das racemische Aldolprodukt I-81 wird dabei in einer enzymkatalytischen Racematspaltung und anschließender Acetatentschützung in den entsprechenden (S)-Hydroxyester I-114 überführt. Nach TBS-Schützung und Reduktion des Esters zum Aldehyd I-80 wird dieser in einer Additionsreaktion mit Diphenylphosphanoxid in das Hydroxyphosphanoxid I-112 überführt. Das Dimethylacetal I-62a wird schließlich über eine zweistufige Umschützung erhalten (Schema I-22). Da Acrolein (I-82) aufgrund der Toxizität kommerziell nicht mehr verfügbar ist und auch im Labor nicht mehr verwendet werden sollte, war die Ausarbeitung einer Alternativsynthese für den chiralen Aldehyd I-80 unerlässlich.

Schema I-22: Retrosynthetische Darstellung von Baustein I-62a nach Bredenkamp et al. [42-45]

3.2.2 Synthese des Bausteins I-97

Für die Synthese von Baustein I-97 wurde zunächst das *Evans*-Auxiliar I-102 ausgehend von (*D*)-Phenylalanin (I-104) hergestellt. Die Reduktion der Aminosäure I-104 mit Lithiumaluminiumhydrid ergab den Aminoalkohol I-115 in einer Ausbeute von 94%.^[56] Bei der Umsetzung mit Chlorameisensäuremethylester konnte das Oxazolidinon I-116 in einer Ausbeute von 82% erhalten werden.^[57] Die folgende *N*-Acylierung mit Propionylchlorid lieferte schließlich das acetylierte *Evans*-Auxiliar I-102 in einer Ausbeute von 93% (Schema I-23).^[58]

Schema I-23: Synthese des acetylierten Evans-Auxiliars I-102 ausgehend von (D)-Phenylalanin (I-104).

Die Synthese des Aldehyds I-100 erfolgte nach einem Protokoll von Laschat et al.^[59] über eine asymmetrische Evans-Aldol-Reaktion^[60]. Der literaturbekannte Aldehyd I-103 wurde über eine mono-PMB-Schützung von 1,3-Propandiol (I-105) und folgende Swern-Oxidation^[61] in einer Gesamtausbeute von 34% über zwei Stufen erhalten.^[62] Die Evans-Aldol-Reaktion lieferte anschließend das ß-Hydroxyamid I-118 in einer guten Ausbeute von 81% und mit hoher Diastereoselektivität (d.r. 94:6). Nach TBS-Schützung und Abspaltung des Evans-Auxiliars mit Lithiumborhydrid konnte der Alkohol I-119 in einer Gesamtausbeute von 65% über zwei Stufen hergestellt werden. Eine Swern-Oxidation lieferte anschließend den Aldehyd I-100 in einer Ausbeute von 70%. Eine Grignardsyn-Diastereomer I-120a Reaktion lieferte das gewünschte nach säulenchromatographischer Diastereomerentrennung in einer Ausbeute von 64%. Die Diastereoselektivität (d.r. 78:22) dieser Reaktion war basierend auf den isolierten Ausbeuten moderat. Eine Trennung der Diastereomere wäre theoretisch nicht notwendig, da die eingeführte Hydroxy-Gruppe später in das Keton an Position C13 überführt wird und das Stereozentrum somit keine Rolle spielt. Aufgrund der vereinfachten Auswertung der Analytik aller Folgeverbindungen wurde die diastereomerenreine Verbindung I-120a bevorzugt (Schema I-24).

Schema I-24: Synthese des Allylalkohols I-120 als Vorstufe von Baustein I-97.

Die *syn*-1,3-Diol-Konfiguration wurde bereits von *P. Biallas* nach der Methode von *Rychnovsky et al.*^[63] durch ¹³C-NMR-Spektroskopie des entsprechenden Dimethylacetals bestätigt.^[50]

Die Stereochemie der *Grignard*-Reaktion steht im Einklang mit dem *Felkin-Anh*-Modell.^[64] Demnach sollte die Reaktion über den Übergangszustand I-**121** verlaufen und die Bildung des *syn*-Hauptdiastereomers I-**120a** begünstigen. Dabei wird angenommen, dass aufgrund der sterischen Hinderung durch die TBS-Schutzgruppe eine Chelatisierung durch das Magnesium-Ion nicht zum Reaktionsverlauf beiträgt (Schema I-25).

Schema I-25: Stereochemischer Verlauf der Grignard-Reaktion gemäß dem Felkin-Ahn-Modell.

Eine TBS-Entschützung des Allylalkohols I-**120a** mit *para*-Toluolsulfonsäure und eine folgende Acetalschützung des Diols I-**98** mit 1-(Dimethoxymethyl)-4-methoxybenzol lieferte das diastereomerenreine PMP-Acetal I-**122** in einer Ausbeute von 95% und einer Reinheit von 95% (der als Nebenprodukt entstandene *para*-Methoxybenzaldehyd konnte säulenchromatographisch nicht vollständig abgetrennt werden) über zwei Stufen. Eine folgende *Lemieux-Johnson*-Oxidation ergab den Baustein I-**97** in einer Ausbeute von 66% (Schema I-26).

Schema I-26: Synthese des Bausteins I-97.

Ein Vergleich der ¹H-NMR-Spektren ähnlicher 2-Phenyl-4-methyl-1,3-dioxolane bestätigt die relative Konfiguration aller vier Substituenten von Baustein I-**97**.^[65] So werden die für die Sesselkonformation mit axialer Methylgruppe an C5-Position zu erwartenden Kopplungskonstanten von ca. 2.7 Hz und 2.2 Hz für die *syn*-äquatorialaxiale Konfiguration von H_b und H_d bzw. H_c und H_d beobachtet. Zudem spricht die chemische Verschiebung von 5.55 ppm für H_a im ¹H-NMR-Spektrum und von 101.7 ppm für C-2 im ¹³C-NMR-Spektrum für eine äquatoriale Stellung des 2-Aryl-Substituenten (Abbildung I-3).^[66]

Abbildung I-3: Darstellung der Sesselkonformation von I-97 zur Bestätigung der relativen Konfiguration der Substituenten.

3.2.3 Synthese des Bausteins I-77a

3.2.3.1 Synthese des Bausteins zentralen Bausteins I-62a

Zunächst wurde das Diphenylphosphanoxid I-**62a** wie von *A. Bredenkamp* beschrieben, ausgehend von vorhandenen Restmengen Acrolein (I-**82**) synthetisiert.^[43–45] Der Baustein I-**62a** sollte anschließend durch Verlängerung um ein Stereozentrum in den
Baustein I-77a überführt werden. Dazu wurde Acrolein (I-82) in einer Aldol-Reaktion mit *tert*-Butylacetat (I-83) in einer Ausbeute von 61% zum racemischen β -Hydroxyester I-81 umgesetzt. Eine enzymkatalysierte Racematspaltung ergab unter Verwendung von Amano-Lipase und Vinylacetat das benötigte Acetat-geschützte (*S*)-Enantiomer I-123 in einer Ausbeute von 50%. Nach Verseifung des Acetats I-123 konnte *tert*-Butyl-(*S*)-3-hydroxypent-4-enoat (I-114) in einer moderaten Ausbeute von 73% und mit einer hohen Enantioselektivität von 95% erhalten werden. Eine TBS-Schützung, eine Reduktion zum Aldehyd I-80 und eine anschließende Additionsreaktion mit Diphenylphosphanoxid ergaben das Phosphanoxid I-112 mit einem Diastereomerenverhältnis von 60:40 und in einer Ausbeute von 73% über drei Stufen. Eine TBS-Entschützung und eine Acetalschützung lieferten schließlich den Baustein I-62a in einer Ausbeute von 96% und mit einem Diastereomerenverhältnis von 56:44 über zwei Stufen. Somit konnte das Diphenylphosphanoxid I-62a in einer Gesamtausbeute von 16% über acht Stufen erhalten werden (Schema I-27).

Schema I-27: Synthese des zentralen Bausteins I-62a ausgehend von *tert*-Butylacetat (I-83) und Acrolein (I-82) in einer Gesamtausbeute von 16% über acht Stufen.

Wie bereits beschrieben, ist seit längerer Zeit das Ausgangsmaterial Acrolein (I-82) aufgrund der hohen Toxizität und der krebserregenden Eigenschaften nicht mehr kommerziell erhältlich. Da die Synthese von Acrolein sehr aufwendig und eben aufgrund der giftigen Eigenschaften nicht ratsam ist, wurde nach einer alternativen Route zum Aufbau des Bausteins I-62a gesucht. Für einen als Zwischenprodukt geeigneten Silyl-geschützten, enantiomerenreinen (*S*)- β -Hydroxyester vom Typ I-113 bzw. der

entsprechenden Carbonsäure wurden zahlreiche Methoden beschrieben. Diese umfassen unter anderem eine Route über eine organokatalysierte asymmetrische MacMillan-Epoxidierung^[67] eines aus Butan-1,4-diol erhaltenen Aldehyds und eine nachfolgende Umwandlung in einen Allylalkohol mit Trimethylsulfoxoniumiodid und n-Butyllithium^[68], sowie Chiral-Pool-Synthesen basierend auf (L)-Äpfelsäure^[69], D-Aspartat^[70] und 2-Deoxy-D-ribose (I-124)^[71]. Besonders attraktiv erschien dabei eine vierstufige Chiral-Pool-Synthese des TBS-geschützten (S)-\beta-Hydroxyaldehyds I-80 ausgehend von 2-Deoxy-D-ribose (I-124)^[72,73] über eine Zink-vermittelte reduktive Eliminierung^[74] des Iodids I-127 im Schlüsselschritt. Nach einer Vorschrift von Nugent et al.^[72] wurde zunächst das Acetal I-125 in quantitativer Ausbeute als Anomerengemisch (d.r. 58:42) ausgehend von 2-Deoxy-D-ribose (I-124) synthetisiert. Durch Reaktion mit Triphenylphosphin, Imidazol und elementarem Iod wurde das Iodid I-126 in einer Ausbeute von 91% (d.r. 67:33) erhalten. Dieses wurde anschließend unter Standardbedingungen in den Silvlether I-127 mit einer Ausbeute von 95% (d.r. 54:46) überführt. Im letzten Schritt sollte nach einer Vorschrift von Evans et al.^[73] in einer reduktiven Eliminierung mit aktiviertem Zinkpulver der Aldehyd I-80 erhalten werden. Dies konnte mit Zinkpulver, das vorher mit Salzsäure (1 M) aktiviert wurde, reproduziert werden und der Aldehyd I-80 nach säulenchromatographischer Reinigung in einer Ausbeute von 98% erhalten werden. Die folgende Additionsreaktion mit Diphenylphosphanoxid ergab das Phosphanoxid I-112 in einer Ausbeute von 96% mit einer Diastereoselektivität von 60:40. Eine Acetalschützung lieferte schließlich den Baustein I-62a in einer Ausbeute von 96% und mit einem Diastereomerenverhältnis von 56:44 (Schema I-28). Die Anzahl der Stufen bis zum Phosphanoxid I-62a konnte so im Vergleich zur Synthese ausgehend von Acrolein (I-82) (s. Schema I-27) um eine Stufe verringert und die Gesamtausbeute von 16% auf 78% erhöht werden.

Schema I-28: Synthese des zentralen Bausteins I-62a ausgehend von 2-Deoxy-D-ribose (I-124) in einer Gesamtausbeute von 78% über sieben Stufen.

3.2.3.2 Synthese des verlängerten Bausteins I-77a

Zur Verlängerung des Bausteins I-**62a** wurde zunächst der literaturbekannte Aldehyd I-**110** in einer Ausbeute von 94% über zwei Stufen ausgehend von (4-Methoxyphenyl)methanol (I-**111**) hergestellt (Schema I-29).^[75]

Schema I-29: Synthese des Aldehyds I-110 ausgehend von (4-Methoxyphenyl)methanol (I-111).

Der Aldehyd I-**110** wurde in einer *Horner-Wittig*-Reaktion unter Verwendung des zentralen Bausteins I-**62a** nach saurer Aufarbeitung in das β -Hydroxyketon I-**109** überführt. Im Vergleich zu den Vorarbeiten konnte die Ausbeute von 70% auf 89% verbessert werden.^[50] Über eine *Narasaka-Prasad*-Reduktion^[76] mit Diethylmethoxyboran und Natriumborhydrid konnte das *syn*-Diol I-**108** in sehr guter Ausbeute von 96% und mit einem exzellenten Diastereomerenverhältnis von >99:1 erhalten werden (Schema I-30).

Schema I-30: Synthese des Diols I-108 zum Aufbau des Bausteins I-77a.

Die folgende selektive TBS-Schützung des Allylalkohols von I-108 erwies sich als Herausforderung. Schon durch P. Biallas konnte das mono-Silylierungsprodukt I-129 nach zahlreichen Optimierungsversuchen mit tert-Butyldimethylsilylchlorid (1.75 Äq.) und Imidazol (3.0 Äq.) nach 48 Stunden Reaktionszeit bei 0°C in DMF lediglich in einer Ausbeute von 55% erhalten werden.^[50] Das Problem bestand darin, dass entweder kein vollständiger Umsatz oder vermehrt die Bildung des bisilylierten Nebenprodukts vermerkt wurde. Durch Reduzierung der Temperatur auf -20 °C und Beibehaltung der langen Reaktionszeit von 48 Stunden konnte die Ausbeute des Silylethers I-129 leicht auf 62% verbessert werden. Dies gelang allerdings nur im kleinen Maßstab (0.38 mmol), da im größeren Maßstab (9.76 mmol) ausschließlich die Bildung des bisilylierten Nebenprodukts beobachtet wurde (Tabelle I-1, Eintrag 1 und 2). Bei der Verwendung von tert-Butyldimethylsilyltriflat (1.05 Äq.) als alternativem Silylierungsreagenz konnte das Produkt I-129 nach einer Vorschrift von Bach et al.^[77] lediglich in einer geringen Ausbeute von 44% erhalten werden (Tabelle I-1, Eintrag 3). In einem weiteren Optimierungsversuch wurde das Diol I-129 nach einer Vorschrift von Roush et al.^[78] nach Deprotonierung mit *n*-Butyllithium (1.0 Äq.) mit *tert*-Butyldimethylsilylchlorid (1.2 Äq.) und katalytischen Mengen Imidazol umgesetzt, wobei der Silvlether I-129 in einer guten Ausbeute von 80% im großen Maßstab (6.01 mmol) isoliert werden konnte (Tabelle I-1, Eintrag 4).

 Tabelle I-1: Optimierungsversuche zur Synthese des mono-silylierten Diols I-129.

Eintrag	Reagenz	Base	Lösungs-	Temperatur	Reaktions-	Ansatzmenge	Ausbeute
	(Äq.)	(Äq.)	mittel	[°C]	zeit [h]	[mmol]	[%]
1	TBSC1 (1.75)	Imidazol (3.50)	DMF	-20 → 0	48	0.38	62
2	TBSC1 (1.75)	Imidazol (3.50)	DMF	-20 → 0	48	9.76	a)
3	TBSOTf (1.05)	2,6- Lutidin (3.00)	DCM	-78	4	1.24	44
4	TBSCl (1.20)	<i>n</i> -BuLi (1.00) Imidazol (0.05)	THF	-78 → RT	18	5.86	80

^{a)} Es entstand ausschließlich das bisilylierte Nebenprodukt.

Für die Acetylierung der verbliebenen freien Hydroxygruppe des Silylethers I-**129** wurden zunächst die von *P. Biallas* beschriebenen Bedingungen verwendet.^[50] Unter Einsatz von Essigsäureanhydrid (5.0 Äq.) und Pyridin (1.0 Äq.) konnte das Acetat I-**107** nach einer Reaktionszeit von 12 Stunden in einer moderaten Ausbeute von 59% erhalten werden. Allerdings konnte diese Ausbeute bei einer größeren Ansatzmenge (1.58 mmol) nicht reproduziert werden. Wurde der Silylether I-**129** hingegen nach einer Vorschrift von *Ren et al.*^[79] mit Acetylchlorid (2.5 Äq.), Pyridin (20 Äq.) und DMAP (20 mol%) behandelt, konnte das Acetat I-**107** nach einer verkürzten Reaktionszeit von zwei Stunden auch im größeren Maßstab (8.40 mmol) in einer hohen Ausbeute von 94% erhalten werden (Schema I-31).

Schema I-31: Optimierung der Synthese des Acetats I-107 ausgehend vom Silylether I-129.

Die folgende PMB-Entschützung mit DDQ lieferte den primären Alkohol I-130 in hoher Ausbeute. Um die von P. Biallas beschriebenen Probleme bei der säulenchromatographischen Reinigung des Aldehyds I-106 zu vermeiden, wurde dieser nach IBX-Oxidation und wässriger Aufarbeitung direkt mit Diphenylphosphanoxid umgesetzt. Das Phosphanoxid I-131 wurde so in einer hohen Ausbeute von 88% Ausbeute über zwei Stufen (d.r. 70:30) erhalten.^[50] Eine Acetat-Entschützung mit Kaliumcarbonat und eine nachfolgende Acetonid-Schützung des Diols I-132 lieferte den Baustein I-77a in einer Ausbeute von 69% (d.r. 60:40) über zwei Stufen (Schema I-32). Die Synthese des Bausteins I-77a gelang somit in 15 Stufen in der längsten linearen Sequenz. Die Gesamtausbeute konnte dabei im Vergleich zu den Vorarbeiten von 3% über 16 Stufen auf 29% über 15 Stufen verbessert werden.^[50]

Schema I-32: Finale Synthese des Bausteins I-77a ausgehend vom Acetat I-107.

3.2.4 Finale Synthese von Fragment B

Zur Fertigstellung der Synthese von Fragment **B** wurde zunächst der Aldehyd I-97 in einer *Horner-Wittig*-Reaktion mit dem Baustein I-77a verknüpft. Dabei konnte das β -Hydroxyketon I-96 in einer guten Ausbeute von 76% erhalten werden. Eine anschließende *syn*-Reduktion mit Diethylmethoxyboran und Natriumborhydrid lieferte das Pentaol I-133 in einer Ausbeute von 80% und mit exzellenter Diastereoselektivität (*d.r.* > 99:1) (Schema I-33).

Schema I-33: Herstellung des Pentaols I-133 zur Synthese von Fragment B über eine *Horner-Wittig*-Reaktion mit anschließender *syn*-Reduktion ausgehend vom Phosphanoxid I-77a.

Die folgende TBS-Schützung der beiden freien Hydroxygruppen des Pentaols I-133 den Silylether I-95 in hoher Ausbeute. Anschließend lieferte wurde mit DIBAL-H (3.5 Äq.) das PMP-Acetal selektiv zur sterisch gehinderteren Seite geöffnet und der PMB-Ether I-78 in einer Ausbeute von 80% erhalten (Schema I-34). Die Bestätigung des dargestellten Regioisomers erfolgte über 2D-NMR-Spektroskopie. Im Vergleich zu den explorativen Vorarbeiten im kleinen Maßstab konnte die Ausbeute dieser vierstufigen Sequenz von 0.7% auf 45% und die Diastereoselektivität der syn-Reduktion von 72:28 auf >99:1 erhöht werden.^[50]

Schema I-34: TBS-Schützung des Pentaols I-133 und eine nachfolgende selektive PMP-Acetal-Öffnung zur Synthese des PMB-Ethers I-78.

Über eine TBS-Schützung der freien Hydroxygruppe mit TBS-Triflat sowie eine doppelte PMB-Entschützung konnte das Diol I-**135** in einer Ausbeute von 77% über zwei Stufen erhalten werden (Schema I-35).

Schema I-35: TBS-Schützung der freien Hydroxygruppe und anschließende doppelte PMB-Entschützung zur Synthese des Diols I-135.

Es folgten eine selektive Benzoat-Schützung des primären Alkohols in einer Ausbeute von 88% und eine TES-Schützung der verbliebenen Hydroxygruppe. Die vollständig geschützte Alken-Vorstufe von Fragment **B** I-**137** wurde dabei in einer Ausbeute von 97% isoliert. Eine abschließende *Lemieux-Johnson-Oxidation* lieferte schließlich das Fragment **B** in einer Ausbeute von 83% und in einer Menge von 251 mg (Schema I-36). Die spektroskopischen Daten stimmen hier mit denen von *T. Harschneck* berichteten Daten überein. Die Synthese von Fragment **B** konnte somit im Vergleich zu den Vorarbeiten von 35 auf 24 Stufen in der längsten linearen Sequenz verkürzt und die Gesamtausbeute von 1.6% auf 7% erhöht werden.^[41]

Schema I-36: Finale Synthese von Fragment B über eine selektive Benzoat-Schützung, TES-Schützung und *Lemieux-Johnson*-Oxidation ausgehend vom Diol I-137.

3.3 Synthetische Arbeiten zu Fragment C

3.3.1 Retrosynthese

Fragment **C** sollte ausgehend von den Bausteinen I-**62a** und I-**140** aufgebaut werden. Dazu sollten die Bausteine zunächst in einer *Horner-Wittig*-Reaktion zum β-Hydroxyketon I-**139** verknüpft werden. Eine darauffolgende *anti*-Reduktion, eine Acetonid-Entschützung und eine TBS-Schützung sollten den Silylether I-**138** ergeben, der schließlich über eine Sequenz bestehend aus einer PMB-Entschützung, einer Benzoat-Schützung und einer nachfolgenden *Lemieux-Johnson*-Oxidation in das Fragment **C** überführt werden sollte (Schema I-37). *P. Biallas* konnte bei den jeweiligen *Horner-Wittig*-Reaktionen zwischen dem Phosphanoxid I-**62a** und den entsprechenden Benzoatgeschützten Aldehyden zum Aufbau des β-Hydroxyketons I-**139** und des Bausteins I-**109** lediglich Ausbeuten von 39% bzw. 52% erreichen.^[50] Da die niedrigen Ausbeuten vermutlich auf die Instabilität der Benzoate unter den Reaktionsbedingungen zurückgeführt werden kann, wurde die Benzoat-Schutzgruppe durch eine PMB-Schutzgruppe ausgetauscht. Diese hatte den Vorteil, dass sich das bereits bei der Synthese von Fragment **B** in acht Stufen in der längsten linearen Sequenz aufgebaute β-Hydroxyketon I-**109** (s. Schema I-30) durch eine dreistufige Synthesesequenz bestehend aus selektiver *anti*-Reduktion, Acetalisierung und *Lemieux-Johnson*-Oxidation in den Aldehyd-Baustein I-**140** überführen lassen sollte.

Schema I-37: Retrosynthetische Darstellung der geplanten Synthese von Fragment C.

3.3.2 Synthese des Bausteins I-140

Zunächst wurde das für die Herstellung von Fragment **B** bereits synthetisierte β -Hydroxyketon I-**109** (s. Schema I-30) in einer *anti*-Reduktion in das Diol I-**141** überführt. Dazu wurden zwei verschiedene Reagenzien getestet. Unter Verwendung von Tetramethylammoniumtriacetoxyborhydrid (5.0 Äq.) konnte in einer *Evans-Saksena*-Reaktion^[80] das *anti*-Diol I-**141** in schwankenden Ausbeuten von 51% bis 70% und Diastereoselektivitäten von 77:23 bis 95:5 isoliert werden. Bessere und weniger variierende Ergebnisse wurden durch eine *Evans-Tishchenko*-Reaktion^[81] mit SmI₂ und Acetaldehyd in THF bei -50 °C und nachfolgender Hydrolyse des intermediär entstandenen Acetats erzielt. Das *anti*-Diol I-**141** konnte so in 86% Ausbeute über zwei Stufen und mit exzellenter Diastereoselektivität (*d.r.* > 99:1) erhalten werden (Schema I-38).

Schema I-38: *anti*-Reduktion des β-Hydroxyketons I-109 unter Verwendung verschiedener Reagenzien zur Synthese des *anti*-Diols I-141.

Die folgende Acetonid-Schützung und *Lemieux-Johnson*-Oxidation lieferten den Aldehyd I-**140** schließlich in einer Ausbeute von 79% über zwei Stufen (Schema I-39).

Schema I-39: Acetonid-Schützung des *anti*-Diols I-141 und nachfolgende *Lemieux-Johnson*-Oxidation zur Synthese des Bausteins I-140.

3.3.3 Finale Synthese von Fragment C

Für den Aufbau von β -Hydroxyketon I-**139** wurde der bereits beschriebene zentrale Baustein I-**62a** (s. Schema I-28) in einer *Horner-Wittig*-Reaktion mit dem Aldehyd I-**140** umgesetzt. Das Produkt I-**139** konnte dabei in einer Ausbeute von 72% isoliert werden (Schema I-40).

Schema I-40: *Horner-Wittig*-Reaktion zum Aufbau des β-Hydroxyketons I-139 ausgehend vom zentralen Baustein I-62a und dem Aldehyd I-140.

Für die folgende *anti*-Reduktion wurden auch hier sowohl das Borreagenz als auch die Methode mit SmI₂ und Acetaldehyd getestet. Es zeigte sich, dass unter Verwendung von Tetramethylammoniumtriacetoxyborhydrid die Diastereoselektivität deutlich geringer ausfiel und auch die Ausbeute bei einer größeren Ansatzmenge (1.78 mmol) abnahm. Bei der Umsetzung von β -Hydroxyketon I-**139** (1.20 mmol) mit SmI₂ und Acetaldehyd und nachfolgender Hydrolyse mit Kaliumcarbonat konnte das *anti*-Diol I-**143** in einer Ausbeute von 70% über zwei Stufen und mit einer exzellenten Diastereoselektivität (*d.r.* >99:1) erhalten werden (Schema I-41).

Schema I-41: Anti-Reduktion des β-Hydroxyketons I-139 unter Verwendung verschiedener Reagenzien.

Anschließend folgte eine Acetonid-Entschützung des Diols I-143 sowie eine TBS-Schützung der vier freien Hydroxygruppen. Der Silylether I-138 konnte dabei in hoher Ausbeute über zwei Stufen erhalten werden. Eine Synthesesequenz bestehend aus einer PMB-Entschützung, einer Benzoat-Schützung und einer *Lemieux-Johnson*-Oxidation ergab das finale Fragment **C** in einer hohen Ausbeute über mehrere Stufen (Schema I-42). Im Vergleich zu den Vorarbeiten konnte die Gesamtausbeute des Alkens I-79 von 2% auf 16% erhöht werden.^[50] Der Nachteil einer von 15 auf 18 erhöhten Zahl der Stufen in der längsten linearen Sequenz wird durch die höhere Gesamtausbeute und die Verwendung des für Fragment **B** benötigten Intermediats I-109 mehr als ausgeglichen.

Schema I-42: Finale Synthese von Fragment C ausgehend vom Acetonid I-143.

3.4 Synthetische Arbeiten zu Fragment D

3.4.1 Retrosynthese

Fragment **D** sollte in retrosynthetisch ausgehend vom TBS-geschützten (*S*)- β -Hydroxyaldehyd I-**80** hergestellt werden, der wiederum wie bereits beschrieben, ausgehend von 2-Deoxy-*D*-ribose (I-**124**) über vier Stufen synthetisiert werden sollte (s. Schema I-28). Der Aldehyd I-**80** sollte in Analogie zu den Vorarbeiten von *P. Biallas* und *C. Wagner* über eine Reduktion zum Alkohol I-**73**, Benzoat-Schützung und folgende *Lemieux-Johnson*-Oxidation in das Fragment **D** überführt werden (Schema I-43).^[48,50]

Schema I-43: Retrosynthetische Darstellung der geplanten Synthese von Fragment D.

3.4.2 Synthese von Fragment D

Zunächst wurde ausgehend von 2-Deoxy-*D*-ribose (I-**124**) der TBS-geschützte (*S*)- β -Hydroxyaldehyd I-**80** synthetisiert (s. Schema I-28). Dieser wurde mit DIBAL-H in einer Ausbeute von 92% zum Alkohol I-**73** reduziert. Eine *Steglich*-Veresterung^[82] mit Benzoesäure lieferte das Benzoat I-**74** in einer Ausbeute von 89%. Nach einer *Lemieux-Johnson*-Oxidation konnte schließlich das Fragment **D** in ebenfalls hoher Ausbeute erhalten werden (Schema I-44). Im Vergleich zu den Vorarbeiten konnte die Gesamtausbeute vom Alken I-**74** von 34% auf 58% in sechs Stufen verbessert werden.^[50]

Schema I-44: Synthese von Fragment D ausgehend von 2-Deoxy-D-ribose (I-124) über eine Sequenz aus Reduktion, Benzoat-Schützung und *Lemieux-Johnson*-Oxidation.

3.5 Synthetische Arbeiten zu Fragment E

3.5.1 Erste Retrosynthese

Fragment **E** sollte ausgehend vom bereits beschriebenen Alken I-73 (s. Schema I-44) in Analogie zu den Vorarbeiten von *P. Biallas* und *C. Wagner* hergestellt werden.^[48,50] Das Alken I-73 sollte in einer Kreuzmetathese mit Methylacrylat (I-72) zum Alken I-75 umgesetzt und anschließend hydriert werden. Eine Synthesesequenz bestehend aus *Mitsunobu*-Reaktion mit 1-Phenyl-1*H*-tetrazol-5-thiol, Reduktion der Esterfunktion, PMB-Schützung und Oxidation zum Sulfon sollte schließlich das Fragment **E** liefern (Schema I-45).

Schema I-45: Erste retrosynthetische Darstellung der geplanten Synthese von Fragment E ausgehend von Alken I-73 und Methylacrylat (I-72).

3.5.2 Erster Syntheseversuch

Zunächst wurde das ausgehend von 2-Deoxy-*D*-ribose (I-**124**) synthetisierte Alken I-**73** in einer Kreuzmetathese mit Methylacrylat (I-**72**) umgesetzt (Schema I-46). Allerdings konnten nach 48 Stunden nur Spuren des Produkts per Dünnschichtchromatographie nachgewiesen werden. Da für diese frühe Stufe die Durchführung im Multi-Gramm-Maßstab in Gegenwart des teuren *Hoveyda-Grubbs*-II-Katalysators^[83] notwendig war, sollte im Folgenden ein robusterer und kostengünstigerer Syntheseweg für Fragment **E** ausgearbeitet werden.

Schema I-46: Kreuzmetathese des Alkens I-73 mit Methylacrylat (I-72).

3.5.3 Zweite Retrosynthese

In einem weiteren Syntheseversuch sollte Fragment E über eine *Wittig*-Reaktion^[84] im Schlüsselschritt synthetisiert werden. Im Gegensatz zu den Vorarbeiten von *C. Wagner* sollte die *Wittig*-Reaktion mit dem Aldehyd I-**147** nach Einführung des Tetrazolylsulfons und nicht auf einer potentiell instabileren Mesylat-Vorstufe erfolgen. Das Alken I-**145** sollte über eine Hydrierung der C-C-Doppelbindung, eine Reduktion des Esters und eine PMB-Schützung schließlich in das Fragment E überführt werden.^[48] Der Aldehyd I-**147** sollte ausgehend vom Alken I-**73** über einer Sequenz bestehend aus einer *Mitsunobu*-Reaktion mit 1-Phenyl-1*H*-tetrazol-5-thiol, einer Oxidation zum Sulfon und einer *Lemieux-Johnson*-Oxidation aufgebaut werden (Schema I-47).

Schema I-47: Zweite retrosynthetische Darstellung der geplanten Synthese von Fragment E ausgehend von Ethyl(triphenylphosphoanyliden)acetat (I-146) und Aldehyd I-147.

3.5.4 Zweiter Syntheseversuch

Zunächst wurde der Alkohol I-73 in einer dreistufigen Synthesesequenz bestehend aus einer *Mitsunobu*-Reaktion mit 1-Phenyl-1*H*-tetrazol-5-thiol und einer Oxidation zum Sulfon gefolgt von einer *Lemieux-Johnson*-Oxidation zum Aldehyd I-147 umgesetzt. Der Aldehyd I-147 konnte dabei in einer Gesamtausbeute von 60% über drei Stufen erhalten werden (Schema I-48).

Schema I-48: Synthese des Aldehyds I-147 ausgehend vom Alkohol I-73 über eine dreistufige Synthesesequenz.

Der Aldehyd I-147 wurde anschließend Wittig-Reaktion in einer mit Ethyl(triphenylphosphoanyliden)acetat (I-146) umgesetzt. Das Alken I-145 konnte dabei in einer Ausbeute von 81% und einer E/Z-Selektivität von >99:1 erhalten werden. Bei der Reduktion des Esters I-145 zum Allylalkohol I-149 mit DIBAL-H bzw. zum gesättigten Alkohol I-150 mit Lithiumborhydrid^[85] konnte kein Produkt isoliert werden. Das Sulfonyltetrazol ist offensichtlich nicht stabil unter den Reduktionsbedingungen (Schema I-49).

Schema I-49: Synthese des Esters I-145 ausgehend vom Aldehyd I-147 über eine *Wittig*-Reaktion und anschließender Versuch zur Reduktion zu den Alkoholen I-149 und I-150.

3.5.5 Dritte Retrosynthese

Der dritte retrosynthetische Ansatz für die Synthese von Fragment E wurde gemeinsam mit *I. Celik* ausgearbeitet. Fragment E sollte dabei ausgehend von (*D*)-Asparagin-

säure (I-155) über eine 12-stufige Synthesesequenz hergestellt werden. Zunächst sollte (*D*)-Asparaginsäure (I-155) über eine Diazotierung und Bromierung unter Retention der Konfiguration sowie eine anschließende Reduktion in das Bromid I-154 überführt werden. Die Reaktion mit Natriumhydrid in Gegenwart von *para*-Methylbenzylbromid sollte das Epoxid I-153 liefern. Das *mono*-TBS-geschützte Diol I-152 sollte durch Epoxid-Öffnung mit Vinylmagnesiumbromid (I-99), TBS-Schützung und PMB-Entschützung erhalten werden. Eine anschließende Sequenz bestehend aus einer Benzoat-Schützung, Hydroborierung und PMB-Schützung sollte den PMB-Ether I-151 liefern. Eine Benzoat-Entschützung gefolgt von einer *Mitsunobu*-Reaktion mit 1-Phenyl-1*H*-tetrazol-5-thiol und einer Oxidation sollte das Fragment E liefern (Schema I-50).

Schema I-50: Dritte retrosynthetische Darstellung der geplanten Synthese von Fragment E ausgehend von (D)-Asparaginsäure (I-155).

3.5.6 Synthese

Zunächst wurde (*D*)-Asparaginsäure (I-**155**) nach einer Vorschrift von *Altmann et al.*^[70] in einer dreistufigen Synthesesequenz in das Epoxid I-**153** überführt. Dazu wurde die Aminosäure I-**155** zunächst durch Diazotierung und Bromierung unter Retention der

Konfiguration in die 2-Brom-1,4-dicarbonsäure I-**156** überführt und in einer anschließenden Reduktion mit Boran-Dimethylsulfid-Komplex zum Diol I-**154** umgesetzt. Dies gelang in einer Gesamtausbeute von 76% über zwei Stufen. Anschließend erfolgte die Bildung des Epoxids I-**153** über eine intramolekulare nukleophile Substitution mit gleichzeitiger PMB-Schützung durch Reaktion mit Natriumhydrid in Gegenwart von 4-Methoxybenzylbromid (I-**157**). Das Epoxid I-**153** konnte dabei in einer Ausbeute von 93% isoliert werden (Schema I-51).

Schema I-51: Synthese des Epoxids I-153 ausgehend von (D)-Asparaginsäure (I-155).

Das Epoxid I-153 wurde nach einer Vorschrift von *Mohapatra et al.*^[86] mit Vinylmagnesiumbromid (I-99) umgesetzt und der Homoallylalkohol I-158 in einer Ausbeute von 91% erhalten. Eine TBS-Schützung unter Standardbedingungen lieferte den Silylether I-159 in einer Ausbeute von 93%. Die folgende Entschützung der PMB-Schutzgruppe mit DDQ ergab den Alkohol I-152 in einer Ausbeute von 75% und in einer Reinheit von 63% (der als Nebenprodukt entstandene *para*-Methoxybenzaldehyd konnte säulenchromatographisch nicht vollständig abgetrennt werden). Eine Sequenz bestehend aus einer Benzoat-Schützung, einer Hydroborierung mit 9-BBN und einer säurekatalysierten PMB-Schützung mit *para*-Methoxybenzyltrichloracetimidat (I-162) lieferte den PMB-Ether I-151 in einer Ausbeute von 57% über 3 Stufen (Schema I-52).

Schema I-52: Synthese von PMB-Ether I-151 ausgehend vom Epoxid I-153.

Anschließend wurde der PMB-Ether I-**151** in einer Sequenz bestehend aus einer Benzoat-Entschützung, einer *Mitsunobu*-Reaktion mit 1-Phenyl-1*H*-tetrazol-5-thiol und einer Oxidation mit Ammoniummolybdat-Tetrahydrat in das Fragment **E** überführt. Dies gelang in einer Gesamtausbeute von 48% über drei Stufen (Schema I-53).

Schema I-53: Synthese von Fragment E ausgehend vom Benzoat I-151.

Somit konnte das Fragment **E** in einer Gesamtausbeute von 11% über 12 Stufen ausgehend von (*D*)-Asparaginsäure (I-**155**) hergestellt werden. Damit konnte die Gesamtausbeute im Vergleich zu den Vorarbeiten verdoppelt werden, auch wenn zwei zusätzliche Stufen nötig waren. Bei der Sequenz handelt es sich zudem um eine robustere und kostengünstigere Synthese von Fragment **E**, da die Kreuzmetathese umgangen wird.^[50]

3.6 Finale Verknüpfung der Fragmente

3.6.1 Retrosynthese

Die Verknüpfung der Fragmente und die Fertigstellung der Synthese von Tetrafibricin (I-5) sollte in Analogie zu den Vorarbeiten von T. Harschneck durchgeführt werden.^[41] Um das potentiell instabile Polyen-Fragment A (C1-8) möglichst spät einzuführen, sollten zunächst die Fragmente E-B linear ausgehend von Fragment E (C34-40) über Julia-Kocienski-Olefinierungen zum Fragment I-165 (C9-40) verknüpft werden. Das Azid sollte nach der Fragmentverknüpfung über eine Mitsunobu-Reaktion mit Diphenylphosphorylazid (DPPA) und das Keton an Position C13 nach einer selektiven TES-Entschützung über eine Swern-Oxidation erhalten werden, wobei gleichzeitig auch der primäre Alkohol an Position C9 zum Aldehyd oxidiert werden sollte. Eine Horner-Wadsworth-Emmons-Reaktion dieses Aldehyds mit Fragment A sollte schließlich die Zwischenstufe I-68 mit dem kompletten Kohlenstoffgerüst C1-40 ergeben. Dieses sollte nach einer Staudinger-Reduktion der Azid-Funktion zum Amin und gleichzeitiger globaler Entschützung der Silylether-Schutzgruppen und des Trimethylsilylethylesters in den Naturstoff I-5 überführt werden (Schema I-54). Die Synthese des Azids I-68 gelang T. Harschneck in 15 Stufen. Kritisch erwiesen sich dabei die selektive Abspaltung der TES-Schutzgruppe an Position C13 und die zweifache Swern-Oxidation an den Positionen C9 und C13, bei denen Ausbeuten von lediglich 51% bzw. 23% erreicht wurden.

Schema I-54: Retrosynthetische Darstellung der geplanten Synthese von Tetrafibricin (I-5) ausgehend von den Fragmenten A-E.

3.6.2 Synthetische Arbeiten zur Verknüpfung der Fragmente

Im ersten Schritt wurden Fragment **E** (C35-40) und Fragment **D** (C34-31) über eine *Julia-Kocienski*-Olefinierung unter Ausbildung einer isolierten (*E*)-konfigurierten Doppelbindung verknüpft. Dabei konnte das Alken I-**166** in einer Ausbeute von 80% und einem sehr guten E/Z-Verhältnis von >99:1 isoliert werden. Anschließend wurde die für die weitere Verknüpfung benötigte Sulfon-Einheit über eine Sequenz bestehend aus einer Benzoat-Entschützung, einer *Mitsunobu*-Reaktion mit 1-Phenyl-1*H*-tetrazol-5-thiol und einer Oxidation mit Ammoniummolybdat-Tetrahydrat eingeführt. Das Sulfon I-**169** konnte dabei in einer Ausbeute von 89% über drei Stufen erhalten werden (Schema I-55).

Schema I-55: Aufbau der isolierten Doppelbindung zwischen Fragment E und D über eine *Julia-Kocienski*-Olefinierung mit anschließender Modifizierung des Olefins I-166.

Das Sulfon I-169 wurde in einer weiteren *Julia-Kocienski*-Olefinierung mit Fragment C zum Benzoat I-170 in einer Ausbeute von 78% und mit einem exzellenten *E*/*Z*-Verhältnis von >99:1 umgesetzt. Es folgte auch hier die Überführung des Benzoats I-170 zum Sulfon I-173 nach der oben beschriebenen dreistufigen Synthesesequenz, bei der das Sulfon I-173 in einer Ausbeute von 75% über drei Stufen erhalten werden konnte (Schema I-56).

Schema I-56: Einführung des Fragments C über eine *Julia-Kocienski*-Olefinierung und anschließende Modifizierung des Benzoats I-170.

Zur Vervollständigung der Polyol-Einheit von Tetrafibricin (I-5) wurde das Sulfon I-173 über eine dritte *Julia-Kocienski*-Olefinierung mit Fragment **B** umgesetzt. Dabei konnte das Alken I-174 in einer Ausbeute von 61% als reines (*E*)-Isomer isoliert werden, wenn die Reaktion im kleinen Maßstab (52 μ mol) durchgeführt wurde. Anschließend wurde die PMB-Schutzgruppe unter Verwendung von DDQ abgespalten und der primäre Alkohol I-175 in einer Ausbeute von 75% erhalten (Schema I-57).

Schema I-57: *Julia-Kocienski*-Olefinierung des Sulfons I-173 mit Fragment B zum Aufbau der vollständigen Polyol-Einheit von Tetrafibricin, sowie PMB-Entschützung des Olefins I-174.

Der primäre Alkohol I-175 wurde anschließend in einer Mitsunobu-Reaktion mit DPPA in das entsprechende Azid I-176 in einer Ausbeute von 73% überführt. Für die folgende **TES-Entschützung** wurden durch T. Harschneck selektive bereits mehrere Reaktionsbedingungen getestet.^[41] Die beste Ausbeute wurde bei Verwendung von vier Äquivalenten TFA in einem Lösungsmittelgemisch aus THF und Wasser bei Raumtemperatur beobachtet. Der Alkohol I-177 konnte so in einer Ausbeute von 51% erhalten werden und 35% des Startmaterials I-176 konnten reisoliert werden. Für einen Optimierungsversuch wurde die Äquivalente von TFA auf vier erhöht und das Reagenz bei 0 °C zugegeben. Die Ausbeute konnte dabei leicht auf 54% gesteigert werden, jedoch konnte kein Startmaterial reisoliert werden (Schema I-58). Vermutlich wurden hier neben der TES-Schutzgruppe auch einzelne TBS-Schutzgruppen abgespalten.

Schema I-58: Einführung der Stickstoffeinheit an Position C40 über eine *Mitsunobu*-Reaktion mit DPPA und anschließende TES-Entschützung zur Synthese des sekundären Alkohols I-177.

Bei der Benzoat-Entschützung, die hier wegen der Reaktivität des Azids nicht durch eine Reduktion mit DIBAL-H, sondern durch eine Hydrolyse mit Kaliumcarbonat durchgeführt wurde, konnte das Produkt I-**178** in einer Ausbeute von 82% erhalten werden.

Vorarbeiten von T. Harschneck zur Herstellung der 1,5-Dicarbonylverbindung I-165 zeigten, dass bei einer Reaktion mit Dess-Martin-Periodinan^[87] offensichtlich zuerst der primäre Alkohol oxidiert wird und dieser durch einen Angriff auf das Keton das entsprechende Lactol bildet, das weiter zum Lacton oxidiert wird.^[41] Bei einer Swern-Oxidation sollte dieses Problem nicht auftreten, weil beide Hydroxygruppen zunächst quantitativ und bei niedrigen Temperaturen mit dem aus DMSO und Oxalylchlorid gebildeten Chlordimethylsulfoniumchlorid in die jeweiligen Alkoxy-Dimethylsulfoniumionen überführt werden, die erst bei der Zugabe von Triethylamin zeitgleich zu den jeweiligen Carbonylverbindungen weiter reagieren. Da T. Harschneck als mögliche Ursache für die geringe Ausbeute von 23% bei der doppelten Swern-Oxidation des 1,5-Diols I-178 eine Zersetzung des Produkts bei der Erwärmung der Reaktionslösung auf Raumtemperatur diskutierte, wurde in diesem Fall die Reaktion nach der Zugabe der Base bereits bei -40 °C durch Zugabe einer gesättigten, wässrigen Ammoniumchlorid-Lösung beendet. Die Bildung des 1,5-Dicarbonyls I-165 konnte per Dünnschichtchromatographie nachgewiesen werden. Aufgrund der Instabilität des Aldehyds I-165 wurde das Produkt nach einer säulenchromatographischen Reinigung ohne weitere Charakterisierung in der nächsten Stufe eingesetzt. Die folgende HWE-

Reaktion mit Fragment **A** (7 Äq.) wurde unter Lichtausschluss durchgeführt und ergab das Tetraen I-**68** in einer Ausbeute von 55% über zwei Stufen ausgehend vom Diol I-**178** (Schema I-59). Für eine erfolgreiche Durchführung der *HWE*-Reaktion war es wichtig, dass Fragment **A** aufgrund der Lagerinstabilität vor Verwendung säulenchromatographisch gereinigt wurde.

Schema I-59: Benzoat-Entschützung mit anschließender zweifachen *Swern*-Oxidation und *HWE*-Reaktion mit Fragment A zur Synthese von Tetraen I-68.

Das Tetraen I-68 wurde anschließend in einer *Staudinger*-Reduktion^[88] unter Verwendung von polymergebundenem Triphenylphosphin in THF/H₂O umgesetzt. Nach Filtration wurde das Rohprodukt ohne weitere Charakterisierung einer globalen Abspaltung der Silylether unterzogen, die unter Verwendung von 50 Äquivalenten TBAF durchgeführt wurde. Allerdings konnte nach Reinigung des Rohprodukts mittels präparativer HPLC das gewünschte Produkt I-5 nicht erhalten werden, sondern lediglich ein nicht identifizierbares Zersetzungsprodukt von Tetrafibricin (I-5). Der verwendete Überschuss an Tetrabutylammonium-Salzen erschwerte die Aufreinigung und Charakterisierung der Probe, da eine Abtrennung trotz zweifacher Reinigung mittels präparativer HPLC nicht möglich war (Schema I-60).

Schema I-60: Versuch zur Herstellung von Tetrafribrin (I-5) nach *Staudinger-Reduktion* und golobaler Entschützung der Silyl-Schutzgruppen.

In einem weiteren Versuch sollte zunächst die Entschützung der Silyl-Schutzgruppen und anschließend die *Staudinger*-Reduktion durchgeführt werden, da so unerwünschte Nebenreaktionen durch die Amin-Funktion vermieden werden könnten. Da im vorherigen Versuch zur Abspaltung der Silylether mit TBAF eine Abtrennung der Tetrabutylammonium-Salze über präparative HPLC nicht möglich war, wurde in diesem Fall ein HF-Et₃N-Komplex verwendet, dessen Einsatz bereits von *Roush et al.*^[13] bei Studien zur Entschützung ähnlicher Tetrafibricin-Vorstufen beschrieben wurde. Jedoch konnte Azido-Tetrafibricin (I-**179**) nach Reinigung des Rohprodukts mittel präparativer HPLC nicht isoliert werden (Schema I-61).

Schema I-61: Syntheseansatz zur Herstellung von Azido-Tetrafibricin (I-179).

Anschließend wurde das Tetraen I-68 erneut in einer *Staudinger*-Reaktion umgesetzt, um zunächst das Amin I-180 vollständig zu charakterisieren und sich dann im zweiten Schritt der globalen Entschützung unter möglichst milden Bedingungen zu widmen. Dafür wurde das Startmaterial I-68 (19 mg) mit polymergebundenem Triphenylphosphin in THF/H₂O

umgesetzt. Nach 48 Stunden Reaktionszeit wurde dünnschichtchromatographisch ein vollständiger Umsatz des Edukts beobachtet. Nach Abfiltrieren des Polymers konnte jedoch kein Produkt isoliert werden. Dies deutet daraufhin, dass die Hydrolyse der Polymer-gebundenen Iminophosphoran-Zwischenstufe und damit auch die Abspaltung des Produkts vom Polymer nicht stattgefunden hat (Schema I-62).

Schema I-62: Versuchte Umsetzung des Azids I-68 unter Staudinger-Bedingungen.

Zur genaueren Untersuchung der Azid-Reduktion wurde als Modellverbindung die stabilere Vorstufe I-**176** gewählt. Auch hier wurde bei der *Staudinger*-Reduktion mit Triphenylphosphin in THF/H₂O dünnschichtchromatographisch zwar eine vollständige Umsetzung des Edukts, aber im ¹H-NMR-Spektrum des Rohprodukts keine Produktbildung beobachtet (Tabelle I-2, Eintrag 1). Auch bei erhöhter Temperatur oder bei der Verwendung des sterisch weniger anspruchsvollen Trimethylphosphins wurde kein Produkt I-**181** erhalten (Tabelle I-2, Eintrag 2-3). Probleme bei der Reduktion von Aziden in größeren, geschützten Naturstoffvorstufen wurden auch in anderen Fällen beobachtet.^[89,90] Basierend auf diesen Ergebnissen und einer publizierten qualitativen Reaktivitäts-Rangordnung verschiedener Azid-Reduktionsmethoden^[91] wurde die Modellverbindung I-**176** mit weiteren Reagenzien umgesetzt (Tabelle I-2).

Tabelle I-2: Behandlung von Azid I-176 mit verschiedenen Reagenzien zur Herstellung von Amin I-181.

Eintrag	Reagenz	Lösungsmittel	Temperatur	Reaktionszeit	Ausbeute
			[°C]	[h]	[%]
1	PPh ₃	THF/H ₂ O	RT	48	a)
2	PPh ₃	THF/H ₂ O	100	48	a)
3	PMe ₃	THF/H ₂ O	RT	48	a)
4	SeHPh	Et ₃ N	60	18	^{b)}
5	<i>Lindlar</i> -Kat./H ₂	EtOH	RT	18	b)
6	<i>Lindlar</i> -Kat./H ₂	MeOH	RT	18	c)
7	FeCl ₃ /NaI	ACN	RT	1	c)
8	$SnCl_2$	MeOH	RT	1	C)
9	Zn/NH4Cl	MeOH/H ₂ O	RT	3	b)
10	LiAlH ₄	THF	RT	1	d)

^{a)} Keine Produktbildung. ^{b)} Kein Umsatz. ^{c)} Zersetzung. ^{d)} Reduktion der Esterfunktion.

Die Reduktion eines Azido-Taxol-Derivats, bei dem sowohl die *Staudinger*-Reduktion als auch eine Pd-katalysierte Hydrierung versagten, gelang in guten Ausbeuten durch Umsetzung mit Benzolselenol bei 60 °C in Triethylamin.^[89] Im Gegensatz dazu wurde bei der entsprechenden Reaktion von I-**176** mit Benzolselenol kein Umsatz beobachtet (Tabelle I-2, Eintrag 4). Eine Hydrierung unter Einsatz des *Lindlar*-Katalysators^[92] in Ethanol ergab keinen Umsatz, während bei der entsprechenden Reaktion in Methanol zwar eine partielle Reduktion der Doppelbindungen jedoch keine Reduktion der Azid-Funktion beobachtet wurde (Tabelle I-2, Eintrag 5 und 6). Eine Behandlung des Azids I-**176** mit FeCl₃/NaI^[93] oder mit dem niedervalenten Metallchlorid SnCl₂^[94] führte zur Zersetzung des Startmaterials. Dies lässt sich auf die Instabilität der TBS- Schutzgruppen in Gegenwart dieser Lewis-Säuren zurückzuführen (Tabelle I-2, Eintrag 7 und 8). Bei der Umsetzung mit Zink/Ammoniumchlorid erfolgte kein Umsatz des Startmaterials (Tabelle I-2, Eintrag 9). Wurde das Azid I-**176** hingegen mit Lithiumaluminiumhydrid (4.0 Äq.) versetzt, konnte lediglich die Reduktion des Esters jedoch keine Reduktion des Azids beobachtet werden (Tabelle I-2, Eintrag 10). Die Azide I-**68** und I-**176** zeigen in der Konstellation mit silylierten Polyolketten offensichtlich eine geringe Reaktivität unter Reduktionsbedingungen, die mit den anderen Funktionalitäten kompatibel sind.

Angesichts der Probleme bei der Reduktion des terminalen Azids in I-68 und I-176, sollten in weiteren Versuchen andere Methoden zur Einführung des terminalen Amins von Tetrafibricin (I-5) in Erwägung gezogen werden. Dazu sollte der primäre Alkohol der Vorstufe I-175 in einer *Mitsunobu*-Reaktion mit dem literaturbekannten und in zwei Stufen erhältlichen Bis-2-(trimethylsilyl)ethylcarbamat I-184^[95] zur Herstellung des Imids I-185 umgesetzt werden. In der Literatur wurden bereits *Mitsunobu*-Reaktionen mit dem korrespondierenden Diallylimidodicarbonat beschrieben.^[96,97] Die Abspaltung der beiden TEOC-Schutzgruppen sollte auf der letzten Stufe zusammen mit der Entschützung des Trimethylsilylethylesters mit Fluorid-Quellen gelingen.

Zunächst wurde das Bis-2-(trimethylsilyl)ethylcarbamat (I-184) ausgehend von 2-(Trimethylsilyl)ethanol (I-182) hergestellt. Dazu wurde der Alkohol I-182 mit TFA (2.0 Äq.) und Natriumcyanat (2.0 Äq.) behandelt^[98] und das entsprechende Carbamat I-183 in einer Ausbeute von 92% erhalten. Anschließend wurde I-183 mit 2-(Trimethylsilyl)ethanol (I-182) und Diphosgen umgesetzt^[95] und das Bis-(2-(trimethylsilyl)ethyl-2-imidodicarbonat (I-**184**) in einer Ausbeute 66% von isoliert (Schema I-63).

Schema I-63: Synthese von Bis-2-(trimethylsilyl)ethylcarbamat (I-184) ausgehend von 2-(Trimethylsilyl)ethanol (I-182).

Das Carbamat I-184 wurde dann in einer *Mitsunobu*-Reaktion nach einer Vorschrift von *Kobayashi et al.*^[96] mit dem Alkohol I-175 umgesetzt, wobei jedoch kein Umsatz des

Startmaterials per Dünnschichtchromatographie festgestellt werden konnte (Schema I-64).

Schema I-64: Versuchte Mitsunobu-Reaktion von Carbamat I-184 mit Alkohol I-185.

In einem weiteren Versuch zur Einführung der terminalen Amin-Funktion von Tetrafibricin (I-5) sollte der Alkohol I-175 nach einer Literaturvorschrift von *Williams et al.*^[99] mit 2-Nitrobenzolsulfonamid (I-186) in einer *Fukayama-Amin-*Synthese^[100] umgesetzt werden. Allerdings konnte auch in diesem Fall kein Umsatz des Startmaterials dünnschichtchromatographisch nachgewiesen werden (Schema I-65).

Schema I-65: Versuchte Umsetzung von Alkohol I-175 mit 2-Nitrobenzolsulfonamid (I-186).

4. Zusammenfassung und Ausblick

Im Rahmen der Studien zur Synthese von Tetrafibricin (I-5) konnte das für Fragment **A** benötigte Stannan I-**84** erfolgreich in einer verbesserten Gesamtausbeute von 20% im Vergleich zu den zuvor beschriebenen 6% synthetisiert werden.^[50] Insbesondere der Ersatz der *Appel*-Reaktion durch eine Bromierung unter *Corey-Kim*-Bedingungen ermöglicht eine robustere Synthese des Stannans I-**84**. Im nächsten Schritt erfolgte die *Stille*-Kupplung des Stannans I-**84** mit dem bereits von *P. Biallas* in großer Menge synthetisierten Vinyliodid I-**69**.^[50] Dabei konnte Fragment **A** in einer Ausbeute von 82% erhalten werden. Die Gesamtausbeute für die Synthese von Fragment **A** über sieben Stufen in der längsten linearen Sequenz lag somit bei 16% (Schema I-66).

Schema I-66: Synthese des Stannans I-84 und *Stille*-Kupplung mit dem Vinyliodid I-69 zur Synthese von Fragment A.

Für das Fragment **B** konnte die bereits von *P. Biallas* beschriebene Synthese der Zwischenstufe I-78 ausgehend von den Bausteinen I-77a und I-97 erfolgreich reproduziert und die Bildung des dargestellten Regioisomers durch selektive Ringöffnung des Acetals I-95 über 2D-NMR-Spektroskopie bestätigt werden.^[50] Außerdem konnten die selektive TBS-Schützung und die Acetat-Schützung bei der Synthese des Bausteins I-77a optimiert werden. Die Fertigstellung des Fragments **B** in einer Menge von 250 mg gelang ausgehend von I-78 über eine fünfstufige Sequenz bestehend aus Schutzgruppenchemie und einer finalen *Lemieux-Johnson*-Oxidation. Die Synthese von Fragment **B** konnte somit im Vergleich zu den Vorarbeiten von 35 auf 24 Stufen in der

längsten linearen Sequenz verkürzt und die Gesamtausbeute von 1.6% auf 7% erhöht werden (Schema I-67).^[41]

Schema I-67: Synthese von Fragment B ausgehend von Baustein I-77a und I-97.

Für die Herstellung des Bausteins I-**77a** wurde zunächst der zentrale Baustein I-**62a** über die etablierte Route ausgehend von Acrolein (I-**82**) und eine enzymkatalysierte Racematspaltung synthetisiert. Da Acrolein (I-**82**) aufgrund seiner krebserregenden Eigenschaften kommerziell nicht mehr erhältlich ist, bestand die Notwendigkeit eine alternative Syntheseroute für den Aldehyd I-**80** auszuarbeiten, zumal I-**80** auch als Vorstufe für den entsprechenden primären Alkohol in der Synthese der Fragmente **D** und **E** eingesetzt werden kann. In einer Chiral-Pool-Synthese konnte ausgehend von kommerziell erhältlicher 2-Deoxy-*D*-Ribose (I-**124**) eine effiziente Alternativsynthese für den Aldehyd I-**80** über eine Zink-induzierte *Vasella*-Fragmentierung^[73,74] des Iodids I-**127** ausgearbeitet werden. Der Baustein I-**62a** konnte so in sieben Stufen in einer Gesamtausbeute von 78% erhalten werden, wodurch die Stufen im Gegensatz zur Syntheseroute über das krebserregende Acrolein (I-**82**) um einen Schritt verringert und die ineffiziente Racematspaltung mit Amano-Lipase vermieden werden konnte. Die bisherige Gesamtausbeute von 16% konnte so deutlich gesteigert werden konnte (Schema I-68).

Schema I-68: Synthesen des zentralen Bausteins I-62a ausgehend von Acrolein (I-82) und *tert*-Butylacetat (I-83) bzw. von 2-Deoxy-*D*-ribose (I-124).

Bei der Synthese von Fragment C wurde anstelle der von P. Biallas verwendeten Benzoat-Schutzgruppe am primären Alkohol von I-109 eine PMB-Schutzgruppe installiert, um die geringe Ausbeute bei der Horner-Wittig-Reaktion des Phosphanoxids I-62a mit dem Aldehyd I-140 zur Synthese des Bausteins I-55 zu verbessern. Die Diastereoselektivität von zwei anti-Diol-Reduktionen mit Tetramethylammoniumtriacetoxyborhydrid konnte durch eine wesentlich robustere Evans-Tishchenko-Reaktion mit SmI₂/Acetaldehyd und nachfolgender Hydrolyse des intermediären Acetats auf >99:1 verbessert werden. Im Vergleich zu den Vorarbeiten konnte die Gesamtausbeute des Alkens I-79 von 2% auf 16% erhöht werden.^[50] Der Nachteil einer von 15 auf 18 erhöhten Zahl der Stufen in der längsten linearen Sequenz wird durch die höhere Gesamtausbeute und die Verwendung des auch für Fragment B benötigten Intermediats I-109 mehr als ausgeglichen (Schema I-69).

Schema I-69: Synthese von Fragment C ausgehend von Baustein I-62a und I-140.

Die Herstellung des Fragments **D** gelang ausgehend von 2-Deoxy-*D*-ribose (I-**124**). Dazu wurde der ausgehend von I-**124** synthetisierte, TBS-geschützte (*S*)- β -Hydroxyaldehyd I-**80** über eine Synthesesequenz bestehend aus einer Reduktion zum Alkohol I-**73**, einer Benzoat-Schützung und einer finalen *Lemieux-Johnson*-Oxidation in das Fragment **D** überführt. Im Vergleich zu den Vorarbeiten in der Arbeitsgruppe konnte die Gesamtausbeute von Fragment **D** von 23% in neun Stufen auf 54% in sieben Stufen verbessert werden (Schema I-70).^[48]

Schema I-70: Synthese von Fragment D ausgehend von 2-Deoxy-D-ribose (I-124).

Für die Herstellung von Fragment **E** wurde eine neue Syntheseroute entwickelt, da die in den Vorarbeiten beschriebene Kreuzmetathese im größeren Maßstab nicht reproduziert werden konnte und zudem durch den Einsatz des *Hoveyda-Grubbs*-II-Katalysators mit einem sehr hohen Kostenfaktor verbunden wäre.^[48,50] Für die neu entwickelte Sequenz wurde (*D*)-Asparaginsäure (I-**155**) als Ausgangsmaterial eingesetzt. Fragment **E** konnte mit einer Gesamtausbeute von 11% über 12 Stufen erfolgreich synthetisiert werden. In den Schlüsselschritten wurde die (*D*)-Asparaginsäure (I-**155**) über eine Diazotierung mit nachfolgender Bromierung, Reduktion und intramolekularer Substitutionsreaktion bei gleichzeitiger PMB-Schützung in das Epoxid I-**153** überführt und dieses in einer *Grignard*-Reaktion mit Vinylmagnesiumbromid (I-**99**) geöffnet (Schema I-71).

Schema I-71: Synthese von Fragment E ausgehend von (D)-Asparaginsäure (I-155).

Nach der Fertigstellung aller Fragmente sollten diese in Analogie zu Vorarbeiten von *T. Harschneck* miteinander verknüpft werden.^[41] Die Verknüpfung der Fragmente **E-C** über zwei *Julia-Kocienski*-Olefinierungsreaktionen mit anschließender Umsetzung des Benzoats I-**170** über drei Stufen in das korrespondierende Sulfon I-**173** konnte erfolgreich reproduziert werden (Schema I-72).

Schema I-72: Verknüpfung der Fragmente E-C über zwei Julia-Kocienski-Olefinierungen und anschließende Synthese des Sulfons I-173 ausgehend vom Benzoat I-170.

Bei der C-C-Bindungsknüpfung des Sulfons I-**173** mit Fragment **B** traten jedoch Probleme auf. Die *Julia-Kocienski*-Olefinierung konnte hier nur im kleinen Maßstab

(52 μmol) durchgeführt werden, da ansonsten geringe Ausbeuten erzielt wurden. Die folgende PMB-Entschützung und *Mitsunobu*-Reaktion lieferten schließlich das Azid I-**176** in moderaten bis guten Ausbeuten. Die Ausbeute bei der selektiven TES-Entschützung konnte durch Verwendung von vier Äquivalenten TFA bei 0 °C im Vergleich zu den Vorarbeiten leicht verbessert werden. Nach erfolgreicher Hydrolyse der Benzoat-Schutzgruppe konnte schließlich das 1,5-Diol I-**178** erhalten werden (Schema I-73).

Schema I-73: Synthese des Diols I-178 ausgehend vom Sulfon I-173 und Fragment B.

Eine gleichzeitige *Swern*-Oxidation der beiden entschützten Alkohole mit anschließender *HWE*-Reaktion zwischen dem 1,5-Dicarbonyl I-**165** und Fragment **A** ergab das Tetraen I-**68** in einer Ausbeute von 55% über zwei Stufen. Somit konnte das komplette C40-Grundgerüst von Tetrafibricin (I-**5**) aufgebaut werden (Schema I-74). Im Vergleich zu den Vorarbeiten wurde die *Swern*-Oxidation durch Zugabe einer gesättigten, wässrigen Ammoniumchlorid-Lösung bei -40 °C statt bei Raumtemperatur beendet, wodurch die Ausbeute über zwei Stufen von 18% auf 55% gesteigert werden konnte.

Schema I-74: Synthese von Tetraen I-68 ausgehend von Diol I-178 über eine doppelte *Swern*-Oxidation und anschließende *HWE*-Reaktion mit Fragment A.

Die bisherigen Versuche zur Vollendung der Totalsynthese von Tetrafibricin (I-5) blieben erfolglos. Angesichts der in diesem fortgeschrittenen Stadium der Synthesesequenz vorhandenen geringen Mengen, konnten nur wenige Versuche zur Azid-Reduktion und zur globalen Entschützung durchgeführt werden. Im ersten Versuch wurde das Tetraen I-68 zunächst mit polymergebundenem Triphenylphosphin und anschließend mit TBAF umgesetzt. Jedoch konnte das Produkt I-5 nach Reinigung mittels präparativer HPLC nicht isoliert werden. Auch in einem weiteren Versuch, bei dem zunächst die Entschützung der Silyl-Schutzgruppen und anschließend die *Staudinger*-Reduktion durchgeführt werden sollte, lieferte die Behandlung von I-68 mit einem HF-Et₃N-Komplex nicht das gewünschte Produkt I-179 (Schema I-75).

Schema I-75: Versuche zur Herstellung von Tetrafibricin (I-5) und Azido-Tetrafibricin (I-179).

In einem dritten Experiment wurde das Tetraen I-68 erneut einer Staudinger-Reduktion mit polymergebundenem Triphenylphosphin in THF/H₂O umgesetzt. Auch hier wurde dünnschichtchromatographisch zwar ein vollständiger Umsatz des Edukts beobachtet, allerdings konnte nach Abfiltrieren des Polymers kein Produkt I-180 erhalten werden. Die Ergebnisse könnten daraufhin deuten, dass die Hydrolyse der polymergebundenen Iminophosphoran-Zwischenstufe und damit auch die Abspaltung des Produkts vom Polymer nicht stattgefunden hat (Schema I-76).

Schema I-76: Versuchte Umsetzung des Azids I-68 mit polymergebundenem Triphenylphosphin.

Aufgrund der geringen Mengen der Tetrafibricin-Vorstufe I-**68** wurden weitere Versuche zur Azid-Reduktion mit der stabileren Vorstufe I-**176** als Modellverbindung durchgeführt. Auch in diesem silylierten Polyol zeigte das Azid bei der *Staudinger*-Reduktion, der Hydrierung mit dem *Lindlar*-Katalysator und weiteren Reaktionsbedingungen, die mit den anderen Funktionalitäten kompatibel sind, nur eine geringe Reaktivität. Das entsprechende Amin I-**181** konnte auch in diesen Modellreaktionen nicht isoliert werden, wobei selbst mit dem starken Reduktionsmittel Lithiumaluminiumhydrid keine Azid-Reduktion beobachtet wurde (Schema I-77).

Schema I-77: Versuche zur Reduktion der Azid-Funktion bei der stabileren Vorstufe I-176.

Aufgrund der problematischen Reduktion des terminalen Azids in I-68 und I-176, wurden in weiteren Versuchen andere Methoden zur Einführung des terminalen Amins von Tetrafibricin (I-5) in Betracht gezogen werden. Eine Alternative stellte die *Mitsunobu*-Reaktion des primären Alkohols I-175 mit dem in zwei Stufen erhältlichen Bis-2-(trimethylsilyl)ethylcarbamats I-184 zur Herstellung des Imids I-185 dar. Jedoch konnte nach einer Reaktionszeit von zwei Stunden kein Umsatz des Startmaterials dünnschichtchromatographisch nachgewiesen werden. Eine weitere Möglichkeit zur Einführung der terminalen Amin-Einheit bot die *Fukayama-Amin*-Synthese, bei der der Alkohol I-175 mit dem Sulfonamid I-186 umgesetzt wurde. Allerdings konnte auch hier kein Umsatz des Edukts festgestellt werden (Schema I-78).

Schema I-78: Versuchte Umsetzung von Alkohol I-175 in einer *Mitsunobu*-Reaktion mit Carbamat I-184 und in einer *Fukayama-Amin*-Synthese.

Im Rahmen einer weiteren Strategie zur Umgehung der problematischen Azid-Reduktion in der silvlierten Vorstufe I-68, sowie zur Vermeidung der TBS-Entschützung mit einem großen Überschuss des schwer abtrennbaren TBAF, könnte zunächst die globale Abspaltung der Silvlether von I-68 mit einem HF-Pyridin-Komplex nach Burke et al.^[101] durchgeführt werden. Burke et al.^[101] gelang so, unter milden, nahezu pH-neutralen Bedingungen, die Abspaltung mehrerer Silvlschutzgruppen in einem hochkomplexen Molekül mit hoher Ausbeute. Die Reaktion von I-68 mit dem HF-Pyridin-Komplex sollte den Polyhydroxyester I-188 liefern, da unter diesen Bedingungen keine Abspaltung der Trimethylsilyl-Gruppe möglich ist. Im nächsten Schritt sollte eine Staudinger-Reduktion des Azids mit polymergebundenen Triphenylphosphin den Tetrafibricin-Ester I-189 liefern. Hierbei wird angenommen, dass die beobachtete, geringe Reaktivität des Azids in dem TBS-geschützten Polyol auf einer konformativen Abschirmung des Azids basiert. In der deutlich polareren, entschützten Ester-Vorstufe I-188 sollte die Abschirmung des Azids weniger ausgeprägt sein. Im letzten Schritt sollte die Spaltung des TMSE-Esters mit Tetramethylammoniumfluorid erfolgen.^[102] Im Gegensatz zur globalen Entschützung von I-68 sollten hier deutlich geringere Mengen an Tetramethylammoniumfluorid eingesetzt werden, was insgesamt die Aufreinigung erleichtern sollte. Die Abtrennung der im Vergleich zu TBAF kleineren Tetramethylammoniumsalze und die Isolierung von Tetrafibricin (I-5) könnte über eine Größenausschlusschromatographie mit Sephadex LH-20 erfolgen (Schema I-79).^[103]

Schema I-79: Geplante Synthese von Tetrafibricin (I-5) ausgehend von Azid I-68.

Formalsynthese von Bastimolide A

II) Formalsynthese von Bastimolide A

1. Einleitung

1.1 Bastimolide A und B

1.1.1 Isolierung und Strukturaufklärung

Eine wichtige Gruppe von Polyketiden bilden die durch ein makrozyklisches Lacton gekennzeichneten Polyhydroxy-Makrolide,^[104] die sich oftmals durch interessante biologische Aktivitäten auszeichnen und zahlreiche Anwendungen in der Medizin insbesondere als Antibiotika gefunden haben.^[105] Bekanntester Vertreter ist der Proteinbiosynthese-Inhibitor Erythromycin, der seit 1952 erfolgreich zur Behandlung von Infektionen mit gram-positiven Bakterien eingesetzt wird.^[106]

In den letzten Jahren wurden mehrere pharmakologisch aktive Makrolide aus marinen Cyanobakterien isoliert, die neben 40-gliedrigen Lactonen mit gesättigten 1,5 und 1,5,7-Polyol-Eineiten einen (*Z*)- α , β -ungesättigten Carbonsäure-Ester und eine benachbarte und in Naturstoffen selten vorkommende *tert*-Butylgruppe als Gemeinsamkeiten aufweisen (Abbildung II-1).^[10,107] Die aus grauen Cyanobakterien in der Nähe von Guam isolierten Amantelide A (II-1) und B (II-2) zeigen antiproliferative Aktivitäten in verschiedenen Tumorzelllinien.^[108] Für das 2015 vor der Küste von Hawaii isolierte Nuiapolide (II-3) wurden interessante anti-chemotaktische Aktivitäten berichtet.^[109] *Gerwick et al.*^[107] berichteten 2020 über die Isolierung von Palstimolide A (II-4) aus tropischen Cyanobakterien im Palmyra Atoll sowie dessen potente anti-Malaria-Aktivität. Die Bestimmung der exakten Stereostruktur aller vier Substanzen steht noch aus. *Gerwick et al.*^[110] gelang auch die Isolierung von Bastimolide A (II-5) als weiteren Vertreter dieser Gruppe aus dem Cyanobakterium *Okeana hirsuta* vor der Küste von Panama (Abbildung II-1).

Abbildung II-1: Struktur der 40-gliedrigen Polyhydroxy-Makrolide Amantelide A (II-1) und B (II-2), Nuiapolide (II-3), Palstimolide A (II-4) und Bastimolide A (II-5).^[107-110]

Die Bestimmung der planaren Struktur sowie der relativen Konfigurationen von Bastimolide A (II-**5**) erfolgte durch NMR-spektroskopische Studien und verschiedener Acetonid-Derivate unter Verwendung von *Kishi´s* NMR Datenbank.^[111] Die Strukturbestätigung, inkl. der Aufklärung der absoluten Konfiguration, gelang durch eine Röntgenkristallstruktur-Analyse des entsprechenden nona-*p*-Nitrobenzoat-Derivats II-**6** (Abbildung II-2).^[110]

Abbildung II-2: Röntgenkristallstruktur-Analyse des nona-p-Nitrobenzoat-Derivats II-6.[110]

Aus dem gleichen Bakterienstamm wurde drei Jahre später der Naturstoff Bastimolide B (II-7) isoliert.^[112] Die Strukturaufklärung von Bastimolide B (II-7) gelang durch NMR-spektroskopische Analysen und insbesondere durch einen Vergleich der identischen Methanolyse-Produkte mit Bastimolide A (II-5). Im Vergleich zu Bastimolide A (II-5) wird das Lacton von Bastimolide B (II-7) mit dem Alkohol an Position C23 und nicht dem an Position C39 gebildet. Bastimolide B (II-7) ist damit der erste aus marinen Cyanobakterien isolierte Naturstoff mit einem 24-gliedrigen Makrozyklus. Beide Naturstoffe besitzen eine 1,5-Diol-, eine 1,3,5-Triol- und sechs 1,5-Diol-Einheit, sowie eine (*Z*)-konfigurierte Doppelbindung in α , β -Position des jeweiligen Lactons (Abbildung II-3).

Abbildung II-3: Grundstruktur von Bastimolide B (II-7).[112]

1.1.2 Biologische Aktivität

Im Rahmen einer Testung auf die Wirkung gegen verschiedene humane Parasiten wurden bei Bastimolide A (II-5) potente Aktivitäten mit IC₅₀-Werten zwischen 80 nM und 270 nM gegen vier multirestente Stämme des Malaria-Erregers *Plasmodium falciparum* (TM90-C2A, TM90-C2B, W2 und TM91-C235) gefunden.^[110] Bastimolide A (II-5) und B (II-7) zeigten auch anti-Malaria Aktivität gegen den Chloroquin-resistenten Stamm *Plasmodium falciparum* HB3 mit IC₅₀-Werten von 2.6 μ M bzw. 5.7 μ M.^[112]

In 2017 wurden weltweit ca. 219 Millionen Menschen mit Malaria infiziert. Mit etwa 435.000 Todesfällen in 2017 ist Malaria damit eine der Hauptursachen für Mortalität und die häufigste Krankheit in Afrika und Teilen Asiens.^[113] Da bisher kein Impfstoff gegen die parasitäre Infektionskrankheit gefunden wurde, sind Medikamente, wie Chloroquin (II-**8**) oder Artesiminin (II-**9**), essentiell für die Bekämpfung von Malaria (Abbildung II-4).^[114–116]

Abbildung II-4: Strukturen der Malaria-Medikamente Chloroquin (II-8) und Artemisinin (II-9).[115,116]

Allerdings verdeutlicht die Entwicklung von Resistenzen von *Plasmodium falciparum* insbesondere gegen Artesiminin-Derivate den Bedarf an neuen effektiven anti-Malaria-Wirkstoffen, vor allem zur parenteralen Notfallbehandlung lebensbedrohlicher, akuter Infektionen.^[114,117] Vor diesem Hintergrund stellen die beiden Naturstoffe Bastimolide A (II-5) und B (II-7) vielversprechende Leitstrukturen für neue Malaria-Medikamente dar.

1.1.3 Totalsynthesen

Im Jahre 2018 wurde die Synthese des Pentaol-Fragments II-10 (C15-27) von *Ouintard et al.*^[118] durch über eine Bastimolide A (II-5) enantioselektive, didecarboxylative bis-halo-Aldolreaktion im Schlüsselschritt ausgehend von den drei Komponenten II-(12-14) beschrieben. Das dabei erhaltene Dichlorid II-11 wurde durch eine diastereoselektive Reduktion der Keto-Funktion, eine radikalische Dehalogenierung und eine Entfernung der Silyl-Schutzgruppen in das Pentaol-Fragment II-10 überführt (Schema II-1).

Schema II-1: Aufbau des Pentaol-Fragments II-10 (C15-27) über eine enantioselektive, didecarboxylative *bis*-halo-Aldolreaktion ausgehend von den drei Komponenten II-(12-14) im Schlüsselschritt.

Gosh et al.^[119] berichteten 2021 über die Synthese des C19-39-Fragments (II-**15**) von Bastimolide A (II-**5**). Die Schlüsselschritte beinhalten hier die Ringöffnung bekannter,

terminaler Epoxide wie II-**18** mit Alkinen und die diastereoselektive Addition des funktionalisierten C19-C26-Alkinfragments (II-**16**) an das C27-C39-Aldehyd-fragment (II-**17**, Schema II-2).

Schema II-2: Synthese des C19-39-Fragments (II-15) nach Gosh et al.^[119]

Im Jahre 2022 wurde die erste Totalsynthese von Bastimolide B (II-7) durch Aggarwal et al.^[120] beschrieben. Die erste Totalsynthese von Bastimolide A (II-5) wurde *Smith et al.*^[121] veröffentlicht. Bei kurz danach von der Synthese von Bastimolide A (II-5) wurde der Naturstoff retrosynthetisch in die beiden Hauptfragmente II-21 und II-22 aufgeteilt. Diese sollten über eine Phenylsulfon-Iodid-Kupplung, mit anschließender Reduktion der Phenylsulfon-Einheit mit Natriumamalgam, miteinander verknüpft werden. Die Einführung der (Z)- α , β -ungesättigten Carbonsäure sollte durch Hydroborierung der terminalen Doppelbindung des Alkens II-20 und einer nachfolgenden Suzuki-Kupplung mit dem Iodid II-19 erfolgen. Eine Makrolactonisierung nach selektiver TES-Entschützung und Verseifung der Esterfunktion sollte nach globaler TBS-Entschützung den Naturstoff II-5 liefern (Schema II-3).

Schema II-3: Retrosynthetische Darstellung von Bastimolide A (II-5) nach *Smith et al.*^[121] ausgehend von den beiden Hauptfragmenten II-21 und II-22.

Das Hauptfragment II-21 sollte ebenfalls über eine Phenylsulfon-Iodid-Kupplung zwischen dem Iodid II-23 und dem Sulfon II-24 mit anschließender Sulfon-Reduktion mit Natriumamalgam erhalten werden. Die Abspaltung der PMB-Schutzgruppe und die Überführung des primären Alkohols in ein Iodid unter *Appel*-Bedingungen sollte das Fragment II-21 liefern. Die Synthese des Sulfons II-24 sollte ausgehend von (*S*)-Nona-1,8-dien-4-ol (II-26) über die *Barlett-Smith*-Epoxidsynthese, eine folgende Addition von Methylphenylsulfon (II-25) und TBS-Schützung erfolgen. Für den Aufbau des Iodids II-23 sowie für die Synthese des Iodids II-27 und des Epoxids II-28 zum Aufbau des 1,5-Polyol-Fragments II-22 sollte die von *Smith et al.*^[122] entwickelte Strategie der Anion Relay Chemistry (ARC) Typ I zum stereoselektiven Aufbau von 1,5-Diolen und 1,3,5-Triolen dienen (Schema II-4).

Schema II-4: Retrosynthetische Darstellung der beiden Hauptfragmente II-21 und II-22.

Die Anion Relay Chemistry (ARC) Typ I ermöglicht die stereoselektive Einführung einer 1,5- bzw. einer 1,3,5-Polyol-Einheit. Dazu wird das Dithian II-**29** nach Lithiierung mit *n*-Butyllithium nacheinander mit den chiralen Epoxiden II-**30** und II-**33** umgesetzt. Dabei erfolgt nach der Reaktion mit dem ersten Epoxid II-**30** eine HMPA-induzierte 1,4-*Brook*-Umlagerung zum Intermediat II-**32**, das mit dem zweiten Epoxid II-**33** zum 3-Komponenten-Addukt II-**34** reagiert. Dieses Addukt kann nun mit *Raney*-Nickel zum 1,5-Diol II-**35** reduziert werden oder nach Hydrolyse des Dithians in Gegenwart von Quecksilberperchlorat und einer folgenden stereoselektiven *Evans-Saksena*-Reduktion zum 1,3,5-Triol II-**36** reagieren (Schema II-5).

Schema II-5: Methode zum stereoselektiven Aufbau von 1,5-Diolen und 1,3,5-Triolen nach *Smith et al.*^[122] unter Verwendung von Anion Relay Chemistry (ARC) Typ I.

Basierend auf dieser Retrosynthese-Strategie gelang Smith et al.[121] der Aufbau der azyklischen Vorstufe II-20 in 15 Stufen in der längsten linearen Sequenz in einer Gesamtausbeute von 6%. Die Hydroborierung der terminalen Doppelbindung von II-20 mit 9-BBN und eine anschließende Suzuki-Reaktion der Organoboran-Zwischenstufe mit dem bekannten Iodid II-19 lieferte den (Z)-a, \Beta-ungesättigten Ester II-37 mit dem vollständigen Kohlenstoffgerüst von Bastimolide A (II-5). Die TES-Entschützung erforderte einige Optimierungsversuche und lieferte schließlich den Alkohol II-38 durch Behandlung mit PPTS in CHCl₃/MeOH in einer Ausbeute von 50%. Die Ausbeute konnte durch Rückgewinnung von Startmaterial auf 87% erhöht werden, wenn die Reaktion bei ca. 50% Umsatz abgebrochen wurde. Die Verseifung des Methylesters mit Trimethylzinnhydroxid liefert die Carbonsäure II-39 in einer Ausbeute von 87%. Für die Makrozyklisierung von II-39 wurden verschiedene Methoden getestet. Unter und *Boden-Keck*^[124]-Bedingungen wurden lediglich komplexe Yamaguchi^[123]-Mischungen beobachtet und bei der Yonemitsu^[125]-Variante der Yamaguchi-Reaktion konnte der Makrozyklus nur als 1:1-Gemisch von E- und Z-Isomeren erhalten werden. Die besten Ergebnisse konnten mit der von Evans modifizierten Mukaivama-Methode^[126] mit 2-Brom-1-ethylpyridiniumtetrafluoroborat (II-40) erzielt werden. Nach säulenchromatographischer Trennung des Z/E-Isomerengemischs (10:1) wurde der TBSgeschützte Makrozyklus II-41 mit der gewünschten Z-Konfiguration in einer Ausbeute von 56% isoliert. Auch die finale Entschützung erforderte Optimierung und gelang schließlich mit 48% aq. HF, wobei Bastimolide A (II-5) nach säulenchromatographischer Reinigung in einer Ausbeute von 65% erhalten wurde. Die Totalsynthese von Bastimolide A (II-5) gelang somit in 20 Stufen in der längsten linearen Sequenz in einer Gesamtausbeute von 0.05% (Schema II-6).

Schema II-6: Finalen Schritte zur Totalsynthese von Bastimolide A (II-5) nach Smith et al.^[121]

2. Zielsetzung

Die Totalsynthese von Bastimolide A (II-5) sollte in Zusammenarbeit mit I. Celik erfolgen. Dazu wurde der Naturstoff II-5 retrosynthetisch in die zwei Hauptfragmente A und B unterteilt, die über eine Julia-Kocienski-Olefinierung miteinander verknüpft werden sollten. Über eine Hydrierung der Doppelbindungen und simultane Abspaltung der PMB-Schutzgruppe mit anschließender Oxidation des primären Alkohols sollte der Aldehyd II-43 erhalten werden. Der terminale (Z)- α , β -ungesättigte Methylester sollte über eine dreistufige Synthesesequenz bestehend aus einer Seyferth-Gilbert-Homologierung des Aldehyds II-43, einer Acylierung des resultierenden terminalen Alkins und einer (Z)-selektiven 1,4-Addition von Dimethylcuprat eingeführt werden. Nach der Hydrolyse des Esters II-42 sollte eine selektive Entschützung, eine Makrolactonisierung und eine globale **TBS-Entschützung** schließlich Bastimolide A (II-5) ergeben (Schema II-7).

Schema II-7: Retrosynthetische Darstellung der geplanten Totalsynthese von Bastimolide A (II-5) ausgehend von den zentralen Fragmenten A (C3-25) und B (26-43).

Die Synthese von Fragment **A** (C3-25) sollte von *I. Celik* durchgeführt werden. Die Herstellung von Fragment **B** (C26-43) sollte über eine konvergente Synthese mit dem Sulfon II-48 (C26-29 und C34-37) als zentralem Baustein und zweifach verwendetem Baustein ablaufen. Das Sulfon II-48 sollte aus dem bereits in Kapitel I beschriebenen Fragment **D** (II-47) synthetisiert werden (s. Kapitel I.3.4). Der in vier Stufen aus 2-Deoxy-*D*-ribose (I-124) leicht erhältliche (*S*)- β -Hydroxyaldehyd II-47 sollte bei dieser Strategie insgesamt drei Mal in Fragment **B** integriert werden (C26-29, C30-33, C34-37). In zwei *Julia-Kocienski*-Olefinierungen sollte das zentrale Sulfon II-48 dann mit dem TBS-geschützten (*S*)- β -Hydroxyaldehyd II-47 bzw. dem Aldehyd II-49 umgesetzt werden. Die Produkte II-46 und II-50 sollten in das jeweilige Sulfon II-44 (C26-33) bzw. den Aldehyd II-45 (C34-43) überführt werden, die anschließend in einer weiteren *Julia-Kocienski*-Olefinierung verknüpft werden sollten. Über eine PMB-Entschützung und eine Oxidation des primären Alkohols sollte schließlich das Fragment **B** erhalten werden (Schema II-8).

Schema II-8: Retrosynthetische Darstellung der geplanten Synthese von Fragment B.

3. Ergebnisse und Diskussion

3.1 Synthese des Sulfons II-48

3.1.1 Retrosynthese

Das Sulfon II-48 (C26-29 und C34-37) sollte retrosynthetisch ausgehend von 2-Deoxy-D-ribose (I-124) aufgebaut werden. Zunächst sollte die Ribose I-124 wie bereits in Kapitel I beschrieben in den Aldehyd II-47 überführt werden (s. Kapitel I.3.4). Dieser sollte in einer Synthesesequenz bestehend aus einer Reduktion, einer PMB-Schützung und einer Benzoat-Entschützung in den primären Alkohol II-51 umgesetzt werden. Das Sulfon II-48 sollte schließlich in einer zweistufigen Synthesesequenz bestehend aus einer *Mitsunobu*-Reaktion mit Phenyl-1*H*-tetrazol-5-thiol und einer anschließenden Oxidation mit Ammoniummolybdat-Tetrahydrat hergestellt werden (Schema II-9).

Schema II-9: Retrosynthetische Darstellung der geplanten Synthese des Sulfons II-48 ausgehend von 2-Deoxy-*D*-ribose (I-124).

3.1.2 Synthese

Zunächst wurde der bereits in Kapitel I beschriebene Aldehyd II-47 durch eine Reduktion mit DIBAL-H in den primären Alkohol II-52 überführt. Dieser wurde anschließend mit dem *in situ* hergestellten *para*-Methoxybenzyltrichloracetimidat (I-162) säurekatalysiert

zum PMB-Ether II-53 umgesetzt, der in einer Ausbeute von 65% über zwei Stufen erhalten wurde. Es folgte eine Benzoat-Entschützung mit DIBAL-H, die den Alkohol II-51 in einer Ausbeute von 75% und mit einer Reinheit von 76% lieferte (der als Nebenprodukt entstandene Benzylalkohol konnte säulenchromatographisch nicht vollständig abgetrennt werden). Durch Umsetzung des Alkohols II-51 mit Phenyl-1*H*-tetrazol-5-thiol in einer *Mitsunobu*-Reaktion und anschließende Oxidation des Thioethers II-54 mit Ammoniummolybdat-Tetrahydrat, konnte das Sulfon II-48 in einer Ausbeute von 65% über zwei Stufen hergestellt werden. Die Synthese des Sulfons II-48 gelang somit in einer Gesamtausbeute von 14.5% über 12 Stufen (Schema II-10).

Schema II-10: Synthese des Sulfons II-48 ausgehend von 2-Deoxy-D-ribose (I-124).

3.2 Synthese des TBS-geschützten tert-Butylglykolaldehyds II-47

3.2.1 Retrosynthese

Die Synthese des Aldehyds II-49 (C38-43) sollte retrosynthetisch ausgehend von (*D*)-*tert*-Leucin (II-56) ablaufen. Dafür sollte die unnatürliche Aminosäure II-56 über eine Diazotierung unter Retention der Konfiguration und eine anschließende Veresterung in den Methylester II-55 überführt werden. In einer dreistufigen Sequenz, bestehend aus einer TES-Schützung, einer Reduktion des Methylesters II-55 zum Alkohol und einer anschließenden Oxidation, sollte der Aldehyd II-49 erhalten werden (Schema II-11).

Schema II-11: Retrosynthetische Darstellung der geplanten Synthese des Aldehyds II-49 ausgehend von (D)-tert-Leucin (II-56).

3.2.2 Synthese

Die Umsetzung von (D)-tert-Leucin (II-56) zur α-Hydroxycarbonsäure II-57 unter Retention der Konfiguration gelang nach einer Vorschrift von Aldrich et al.^[127] mit Natriumnitrit und Schwefelsäure in einer Ausbeute von 90%. Der Methylester II-55 wurde durch Erhitzen der α -Hydroxycarbonsäure II-57 in Methanol nach Zugabe katalytischer Mengen Acetylchlorid in einer Ausbeute von 85% erhalten.^[128] Die folgende Sequenz bestehend aus einer TES-Schützung der sekundären Hydroxygruppe,^[129] einer Reduktion des Esters II-58 zum Alkohol II-59 mit DIBAL-H und einer IBX-Oxidation unter Standardbedingungen lieferte schließlich den Aldehyd II-49 in einer Ausbeute von 73% über drei Stufen. Die Synthese des Aldehyds II-47 gelang somit in einer Gesamtausbeute von 56% über fünf Stufen (Schema II-12). Die Reduktion des Esters II-58 zum Aldehyd II-49 mit DIBAL-H als einstufige Variante gelang in diesem Fall nicht, da lediglich der Alkohol II-59 isoliert werden konnte.

Schema II-12: Synthese des Aldehyds II-49 ausgehend von (D)-tert-Leucin (II-56).

3.3 Finale Synthese von Fragment B

3.3.1 Retrosynthese

Für die Synthese von Fragment **B** (C26-43) sollte das Sulfon II-**48** als zentraler Baustein sowohl für den rechten als auch den linken Teil in einer konvergenten Synthese mit den Aldehyden II-**47** und II-**49** über *Julia-Kocienski*-Olefinierungen verknüpft werden. Auf der linken Seite sollte das Benzoat II-**46** in einer Sequenz bestehend aus einer Benzoat-Entschützung, einer *Mitsunobu*-Reaktion mit Phenyl-1*H*-tetrazol-5-thiol und einer anschließenden Oxidation in das Sulfon II-**44** (C26-33) überführt werden. Auf der rechten Seite sollte der gebildete PMB-Ether II-**50** nach PMB-Entschützung und IBX-Oxidation den Aldehyd II-**45** (C34-43) liefern. Das Sulfon II-**44** sollte dann mit dem Aldehyd II-**45** in einer weiteren *Julia-Kocienski*-Olefinierung verknüpft werden. Nach einer Hydrierung der Doppelbindungen mit simultaner Abspaltung der PMB-Schutzgruppe und folgender IBX-Oxidation sollte schließlich Fragment **B** (C26-43) erhalten werden (Schema II-13).

Schema II-13: Retrosynthetische Darstellung der geplanten konvergenten Synthese von Fragment B (C26-43) ausgehend vom Sulfon II-48.

3.3.2 Synthese

Das Sulfon II-48 wurde zunächst in einer *Julia-Kocienski*-Olefinierung mit dem bereits in Kapitel I beschriebenen Aldehyd II-47 umgesetzt (s. Kapitel I.3.4). Dabei konnte das Olefin II-46 als reines (*E*)-Isomer in einer Ausbeute von 83% erhalten werden. Die Doppelbindungsisomerie spielt zwar im weiteren Verlauf keine Rolle, da die Doppelbindungen am Ende hydriert werden, allerdings wird durch die selektive Bildung der (*E*)-Isomere die Auswertung der Analytik erleichtert und ein einheitliches Produkt in die jeweiligen Folgestufen eingesetzt. Da bei der folgenden Benzoat-Entschützung mit DIBAL-H zum primären Alkohol II-60 lediglich eine niedrige Ausbeute von 30% erzielt werden konnte, wurde in einem weiteren Ansatz eine Hydrolyse mit Kaliumcarbonat in Methanol durchgeführt. Dabei wurde der Alkohol II-60 in einer deutlich höheren Ausbeute von 87% erhalten. Eine zweistufige Sequenz, bestehend aus einer *Mitsunobu*-Reaktion mit Phenyl-1*H*-tetrazol-5-thiol und einer Oxidation mit Ammoniummolybdat-Tetrahydrat, lieferte das Sulfon II-44 (C26-33) in einer Ausbeute von 92% über zwei Stufen (Schema II-14).

Schema II-14: Synthese des Sulfons II-44 ausgehend vom Aldehyd II-47 über eine *Julia-Kocienski*-Olefinierung mit dem Sulfon II-48 und anschließender Benzoat-Entschützung, *Mitsunobu*-Reaktion und Oxidation.

In der entsprechenden *Julia-Kocienski*-Olefinierung des Aldehyds II-**49** mit dem Sulfon II-**48** konnte der PMB-Ether II-**50** in einer Ausbeute von 70% in einem

exzellenten *E*/Z-Verhältnis von >99:1 erhalten werden. Die folgende Sequenz, bestehend aus einer PMB-Entschützung mit DDQ und einer IBX-Oxidation, lieferte den Aldehyd II-**45** (C34-43) in einer Ausbeute von 53% über zwei Stufen (Schema II-15).

Schema II-15: Synthese des Aldehyds II-45 ausgehend vom Aldehyd II-49 über eine *Julia-Kocienski*-Olefinierung mit dem Sulfon II-48 mit anschließender PMB-Entschützung und IBX-Oxidation.

Für die finale Synthese von Fragment B wurde der Aldehyd II-45 (C34-43) mit dem Sulfon II-44 (C26-33) in einer dritten Julia-Kocienski-Olefinierung umgesetzt. Das Trien II-63 konnte dabei in einer Ausbeute von 66% und einem exzellenten E/Z-Verhältnis von >99:1 mit einer Reinheit von 77% erhalten werden (der nicht abreagierte Aldehyd II-45 konnte säulenchromatographisch nicht vollständig abgetrennt werden). Für die Hydrierung der Doppelbindungen, bei gleichzeitiger Abspaltung der PMB-Schutzgruppe, wurde das Trien II-63 zunächst mit Palladium (10% auf Aktivkohle, 0.25 Äq.) in Cyclohexan unter Wasserstoffatmosphäre (35 bar) umgesetzt. Nach einer Reaktionszeit von 18 Stunden konnte zwar eine vollständige Hydrierung der Doppelbindungen durch ¹H-NMR-Spektrokopie beobachtet werden, allerdings wurde die PMB-Schutzgruppe noch nicht vollständig abgespalten. Eine weitere Umsetzung des Rohprodukts mit Palladiumhydroxid (10% auf Aktivkohle, 0.15 Äq.) in Ethylacetat unter Wasserstoffatmosphäre (35 bar) lieferte nach einer Reaktionszeit von 48 Stunden schließlich das gewünschte Produkt II-64 in einer Ausbeute von 75%. Eine IBX-Oxidation lieferte schließlich das Fragment B (C26-43) in einer Ausbeute von 77% (Schema II-16). Die Synthese von Fragment **B** gelang somit in 19 Stufen in der längsten linearen Sequenz und in einer Gesamtausbeute von 3.6%.

Schema II-16: Synthese von Fragment B (C26-43) ausgehend vom Aldehyd II-45 über eine *Julia-Kocienski*-Olefinierung mit dem Sulfon II-44 und folgender PMB-Entschützung und IBX-Oxidation.

3.4 Finale Verknüpfung der Fragmente

3.4.1 Erste Retrosynthese

Retrosynthetisch sollte Bastimolide A (II-5) aus den beiden Fragmenten A (C3-25) und B (C26-43) hergestellt werden. Nach einer Verknüpfung durch eine *Julia-Kocienski*-Olefinierung und anschließender Hydrierung unter Abspaltung der PMB-Schutzgruppe sollte der primäre Alkohol oxidiert werden. Eine *Seyferth-Gilbert*-Homologisierung^[130], gefolgt von einer Acylierung der terminalen Alkin-Einheit^[131–133] und einer Addition von Dimethylcuprat (Me₂CuLi)^[134] an den Ester II-66 oder II-67, sollte nach Hydrolyse der Esterfunktion die (*Z*)-Alkencarbonsäure II-65 liefern. Nach selektiver TES-Entschützung, Makrolactonisierung und globaler TBS-Entschützung sollte schließlich der Naturstoff II-5 erhalten werden (Schema II-17).

Schema II-17: Retrosynthetische Darstellung der geplanten Synthese von Bastimolide A (II-5) ausgehend von den Fragmenten A und B.

3.4.2 Erster Syntheseversuch

Zunächst wurde das Fragment **B** (C26-43) in einer *Julia-Kocienski*-Olefinierung mit dem von *I. Celik* erfolgreich synthetisierten Fragment **A** (C3-25) umgesetzt, wobei das Produkt II-68 in einer Ausbeute von 84% als reines (*E*)-Isomer isoliert werden konnte. Für die Hydrierung der Doppelbindungen und simultane Abspaltung der PMB-Schutzgruppe unter Hydrierungsbedingungen wurde das Trien II-68 zunächst mit Palladiumhydroxid (0.25 Äq.) in Ethylacetat unter Wasserstoffatmosphäre (35 bar) und einer Reaktionszeit von 18 Stunden umgesetzt. Zwar konnte eine vollständige Abspaltung der PMB-Schutzgruppe durch ¹H-NMR-Spektrokopie beobachtet werden, allerdings wurden auch in diesem Fall nicht alle Doppelbindungen vollständig reduziert. Eine weitere Umsetzung des Rohprodukts mit Rhodium auf Aluminiumoxid (0.5 Äq.) in Ethylacetat unter Wasserstoffatmosphäre (35 bar) und schutzgruppe durch ¹H-NMR-Spektrokopie beobachtet werden, allerdings wurden auch in diesem Fall nicht alle Doppelbindungen vollständig reduziert. Eine weitere Umsetzung des Rohprodukts mit Rhodium auf Aluminiumoxid (0.5 Äq.) in Ethylacetat unter Wasserstoffatmosphäre (35 bar) lieferte nach einer längeren Reaktionszeit von 48 Stunden das gewünschte Produkt II-69 in einer Ausbeute von 79%.

Der Alkohol II-**69** wurde anschließend mit IBX (2.0 Äq.) in THF/DMSO zum Aldehyd II-**43** in einer Ausbeute von 85% oxidiert (Schema II-18).

Schema II-18: Synthese des Aldehyds II-43 ausgehend vom Fragment B über eine *Julia-Kocienski*-Olefinierung mit dem Fragment A mit folgender Hydrierung und IBX-Oxidation.

Der Aldehyd II-**43** sollte dann in einer *Seyferth-Gilbert*-Homologisierung mit dem *Ohira-Bestmann*-Reagenz^[135] (II-**71**) umgesetzt werden. Dieses wurde durch Reaktion des Phosphonats II-**70** mit 4-Acetamidobenzolsulfonylazid in einer Ausbeute von 57% synthetisiert (Schema II-19).

Schema II-19: Synthese des Ohira-Bestmann-Reagenz II-71.

Die Umsetzung des Aldehyds II-43 mit dem *Ohira-Bestmann*-Reagenz (II-71) lieferte das Alkin II-72 in einer Ausbeute von 93%. Das Alkin II-72 sollte anschließend in einer Acylierung umgesetzt werden (Schema II-20).

Schema II-20: Synthese des Alkins II-72 über eine *Seyferth-Gilbert*-Homologierung ausgehend von Aldehyd II-43 und Versuch zur Herstellung der Ester II-66 und II-67.

Für die folgende Acylierung des terminalen Alkins II-**72** wurden verschiedene Bedingungen getestet. Bei der Reaktion mit Chlorameisensäureallylester, nach einem Protokoll von *Evans et al.*^[131], unter Verwendung von *n*-Butyllithium als Base bei -78 °C wurde kein Umsatz des Startmaterials II-**72** festgestellt (Tabelle II-1, Eintrag 1). Die spätere Hydrolyse des Allylesters sollte durch Pd(0)-Katalyse gelingen und dabei eine Abspaltung der unter Hydrolyse-Bedingungen möglicherweise instabilen TES-Schutzgruppe verhindern.^[136] Auch bei dem Versuch die Acylierung mit Chlorameisensäuremethylester durchzuführen, wurde sowohl bei der Deprotonierung des Alkins mit *n*-Butyllithium^[132] als auch mit *tert*-Butyllithium^[133] kein Umsatz vermerkt (Tabelle II-1, Eintrag 2 und 3).

Eintrag	Reagenz	Base	Lösungsmittel	Temperatur	Zeit	Ausbeute
	(Äq.)	(Äq.)		[°C]	[h]	[%]
1	Chlorameisensäure- allylester (1.1)	<i>n</i> -BuLi (1.0)	THF	-78	1	a)
2	Chlorameisensäure- methylester (1.3)	<i>n</i> -BuLi (3.0)	THF	-78	1	a)
3	Chlorameisensäure- methylester (1.3)	<i>t</i> -BuLi (3.0)	THF	-78 → RT	1	a)
hein Lingetz						

Tabelle II-1: Versuch zur Herstellung der Ester II-66 und II-67 über Acylierung des Alkins II-72.

^{a)} kein Umsatz.

Ein möglicher Grund für das Scheitern der Acylierung des Alkins II-72 zur Synthese der Ester II-66 und II-67 könnte eine Verknäuelung des Moleküls und eine daraus resultierende Abschirmung des Alkins durch die sterisch anspruchsvollen Silyl-Schutzgruppen sein. Aufgrund der fehlgeschlagenen Alkin-Acylierung sollte im Folgenden eine neue Route für die Synthese von Bastimolide A (II-5) ausgearbeitet werden.

3.4.3 Zweite Retrosynthese

Retrosynthetisch sollte Bastimolide A (II-5) diesmal aus dem modifizierten, um eine CH₂-Einheit verkürzten Fragment A1 (C4-25) und Fragment B (C26-43) hergestellt werden. Die Synthese des Fragments A1 sollte von *I. Celik* durchgeführt werden. Nach einer Verknüpfung der Fragmente durch eine *Julia-Kocienski*-Olefinierung und anschließender Hydrierung unter Abspaltung der PMB-Schutzgruppe sollte der primäre Alkohol über eine *Grieco*-Eliminierung in das Alken II-20 überführt werden. Damit wäre eine Formalsynthese von Bastimolide A (II-5) erreicht. Die weiteren Schritte zur Synthese des Naturstoffs II-5 sollten analog zur Totalsynthese von *Smith et al.*^[121] erfolgen und beinhalten eine fünfstufige Sequenz, bestehend aus einer Hydroborierung des terminalen Alkens II-20 mit nachfolgender *Suzuki*-Kupplung des Organoboran-Intermediats mit dem entsprechenden Vinyliodid II-19, einer selektiven TES-

Entschützung an Position C39, einer Verseifung der Esterfunktion, einer Makrolactonisierung und schließlich einer globalen TBS-Entschützung (Schema II-21).

Schema II-21: Retrosynthetische Darstellung der geplanten Synthese von Bastimolide A (II-5) ausgehend von Fragment A1 und Fragment B.

3.4.4 Zweiter Syntheseversuch

Das von I. Celik erfolgreich synthetisierte Fragment A1 (C4-25) wurde in einer Juliamit dem Fragment **B** (C26-43) umgesetzt, Kocienski-Olefinierung wobei das Produkt II-73 in einer Ausbeute von 63% als reines (E)-Isomer isoliert werden konnte. Die Hydrierung des Triens II-73 erfolgte wiederum zunächst mit Palladiumhydroxid (20% auf Aktivkohle, 0.25 Äg.) in Ethylacetat unter Wasserstoffatmosphäre (35 bar). Das Rohprodukt wurde zur vollständigen Hydrierung der Doppelbindungen in Gegenwart von Rhodium (5% auf Aluminiumoxid, 0.50 Äq.) in Ethylacetat unter Wasserstoffatmosphäre (35 bar) und mit einer Reaktionszeit von 48 Stunden umgesetzt. Der primäre Alkohol II-74 wurde dabei in einer Ausbeute von 76% erhalten. Für die Grieco-Eliminierung^[137] wurde der Alkohol II-74 zunächst mit ortho-Nitrophenylselenocyanat (2.0 Äq.) und Tributylphosphin (2.0 Äq.) zur Selenoverbindung II-**75** umgesetzt. Die folgende Oxidation des Selenids mit Wasserstoffperoxid (35% in Wasser, 20 Äq.) in THF ergab nach Eliminierung des Selenoxids das Alken II-**20** in einer Ausbeute von 73% über zwei Stufen (Schema II-22).

Schema II-22: Synthese des Alkens II-20 über eine *Julia-Kocienski*-Olefinierung zwischen Fragment A1 und Fragment B, gefolgt von einer Hydrierung und einer *Grieco*-Eliminierung.

Eine Formalsynthese von Bastimolide A (II-5) war damit erreicht. Die spektroskopischen Daten stimmen mit denen von *Smith et al.*^[121] veröffentlichten Daten überein (s. Anhang, Tabelle VI-1). Die Synthese des Alkens II-**18** gelang mit einer Gesamtausbeute von 2.6% über 22 Stufen in der längsten linearen Sequenz. Im Vergleich zur Synthese des Alkens II-**18** durch *Smith et al.*^[121] (6% über 15 Stufen), ist die Gesamtzahl der Stufen höher und die Gesamtausbeute niedriger, jedoch wurden bei der hier beschriebenen Synthese keine toxischen und krebserregenden Reagenzien wie HMPA,

Quecksilberperchlorat und Natriumamalgam verwendet. Zur Veranschaulichung der wurden das aufgenommene ¹H-NMR-Spektrum des synthetisierten Alkens II-**20** und das von *Smith et al.*^[121] aufgenommene ¹H-NMR-Spektrum des Alkens II-**20** zusammen dargestellt. Die beiden ¹H-NMR-Spektren wurden in CDCl₃ als Lösungsmittel aufgenommen (Abbildung II-5).

¹H-NMR-Spektrum des synthetisierten Alkens II-20 (gemessen in CDCl₃):

Abbildung II-5: Vergleich der ¹H-NMR-Spektren von Alken II-20.

Die letzten Schritte zur Vervollständigung der Totalsynthese von Bastimolide A (II-5) wurden in Analogie zu denen von Smith et al.^[121] ausgehend vom Alken II-20 bereits beschriebenen Schritten zur Herstellung des Naturstoffs II-5 durchgeführt. Dazu wurde das Alken II-20 zunächst in einer Hydroborierung mit 9-BBN und in einer folgenden Suzuki-Reaktion mit dem Iodid II-19 in einer Ein-Topf-Reaktion umgesetzt, wobei der Ester II-37 in einer Ausbeute von 40% erhalten wurde. Die von Smith et al.^[121] für diese Reaktion angegebene Ausbeute von 70% konnte damit im ersten Versuch nicht reproduziert werden. Eine selektive TES-Entschützung lieferte unter Verwendung von PPTS (2.0 Åq.) in einem Gemisch aus CHCl₃/MeOH (2.1:1) und bei einer Reaktionszeit von genau einer Stunde den Alkohol II-38 in einer Ausbeute von 72%. Die von Smith et al.^[121] erreichte Ausbeute von 50% (bis zu 87% bei entsprechender Rückgewinnung des Edukts und Abbruch der Reaktion bei 50% Umsatz) konnte somit verbessert werden. Die anschließende Hydrolyse α,β -ungesättigten des Methylesters II-38 mit Trimethylzinnhydroxid (60 Äq.) in Toluol unter Rückfluss ergab die Carbonsäure II-39 nach einer Reaktionszeit von insgesamt 50 Stunden in einer Ausbeute von 69% (*Smith et al.*^[121]: 87%, Schema II-23).

Schema II-23: Synthese der Carbonsäure II-39 ausgehend vom Alken II-20.

Die Carbonsäure II-**39** wurde dann nach dem Makrolactonisierungsprotokoll von *Smith et al.*^[121] mit 2-Brom-1-ethylpyridiniumtetrafluoroborat (II-**40**, 20 Äq.) und Natriumhydrogencarbonat (250 Äq.) in Dichlormethan unter Lichtausschluss umgesetzt. Nach mehrfacher säulenchromatographischer Reinigung konnte das Lacton II-**41** als reines (*Z*)-Isomer in einer Ausbeute von 66% erhalten werden und die von *Smith et al.*^[121] beschriebene Ausbeute von 56% verbessert werden. Im letzten Schritt wurde das Lacton II-**41** mit aq. HF (48%) zur globalen Abspaltung der TBS-Schutzgruppen behandelt. Nach säulenchromatographischer Reinigung (EA/MeOH 8:2) analog zur Vorschrift von Smith et al.^[121] konnten 1.5 mg einer Substanz isoliert werden, bei der die Signale im ¹H-NMR-Spektrum zum großen Teil mit denen des isolierten Naturstoffs II-**5**^[110] übereinstimmten. Allerdings konnte Bastimolide A (II-**5**) auch nach erneuter säulenchromatographischer Reinigung nicht in sauberer Form isoliert und vollständig charakterisiert werden (Schema II-24).

Schema II-24: Makrolactonisierung der Carbonsäure II-39 zur Synthese des Lactons II-41 und anschließender Versuch zur globalen Abspaltung der TBS-Schutzgruppen.
Zur Veranschaulichung wurden das aufgenommene ¹H-NMR-Spektrum des synthetisierten Naturstoffs II-5 und das von *Gerwick et al.*^[110] publizierte ¹H-NMR-Spektrum des Naturstoffs II-5 zum besseren Vergleich zusammen dargestellt. Die beiden ¹H-NMR-Spektren wurden in Pyridin-*d*5 als Lösungsmittel aufgenommen. Die Signale im Bereich 2.5-3.0 ppm, sowie 5.0-6.5 ppm zeigen eine Übereinstimmung. Bei den anderen Signalen ist eine Übereinstimmung aufgrund der Verunreinigungen schwer erkennbar (Abbildung II-6).

¹H-NMR-Spektrum des isolierten Naturstoffs II-**5**^[110] (gemessen in Pyridin-d5):

Abbildung II-6: Vergleich der ¹H-NMR-Spektren von Bastimolide A (II-5).

4. Zusammenfassung und Ausblick

Das für die Synthese von Fragment **B** (C26-43) zweifach benötigte Sulfon II-48 (C26-29 und C34-37) konnte in einer Gesamtausbeute von 14.5% über 12 lineare Stufen ausgehend von 2-Deoxy-*D*-ribose (I-124) erfolgreich synthetisiert werden. Dabei konnte der bereits in Kapitel I beschriebene Aldehyd II-47 verwendet werden. Ebenfalls gelang die Synthese des Aldehyds II-49 ausgehend von (D)-*tert*-Leucin (II-56) in einer Gesamtausbeute von 56% über fünf lineare Stufen (Schema II-25).

Schema II-25: Synthese des Sulfons II-48 ausgehend von der Ribose I-124 und des Aldehyds II-49 ausgehend von der Aminosäure II-56.

Das Sulfon II-48 wurde anschließend in einer konvergenten Synthese mit den beiden Aldehyden II-47 und II-49 in Julia-Kocienski-Olefinierungen zu den Intermediaten II-46 und II-50 umgesetzt. Das Benzoat II-46 wurde über eine Benzoat-Entschützung mit Kaliumcarbonat, eine Mitsunobu-Reaktion und eine Oxidation in das Sulfon II-44 (C26-33) überführt. Der Aldehyd II-45 (C34-43) wurde über eine PMB-Entschützung mit folgender IBX-Oxidation aus dem Intermediat II-50 synthetisiert. Eine weitere Julia-Kocienski-Olefinierung gefolgt von einer Hydrierung und einer IBX-Oxidation lieferte das Fragment B, das somit in einer Gesamtausbeute von 5% über 19 lineare Stufen ausgehend von 2-Deoxy-D-ribose (I-124) erhalten werden konnte (Schema II-26). Dabei verdeutlicht die dreifache Verwendung des in Gramm-Mengen in vier Stufen aus 2-Deoxy-D-ribose (I-124) erhältlichen Bausteins II-47 dessen Vielseitigkeit zum enantioselektiven Aufbau von 1,5-Polyolen mit entsprechender Konfiguration.

Schema II-26: Synthese von Fragment B (C26-43) ausgehend von 2-Deoxy-D-ribose (I-124).

Die Verknüpfung von Fragment **B** (C26-43) mit dem von *I. Celik* erfolgreich synthetisierten Fragment **A** (C3-25) gelang in einer *Julia-Kocienski*-Olefinierung. Eine anschließende Sequenz bestehend aus einer Hydrierung der Doppelbindungen mit simultaner PMB-Abspaltung, einer IBX-Oxidation des primären Alkohols und folgende *Seyferth-Gilbert*-Homologierung ergab schließlich das Alkin II-**72** in einer Gesamtausbeute von 52% über vier lineare Stufen ausgehend von den beiden Fragmenten **A** und **B** (Schema II-27).

Schema II-27: Synthese des Alkins II-72 ausgehend von Fragment A und Fragment B.

Anschließend sollte eine Acylierung des Alkins II-**72** durchgeführt werden gefolgt von einer stereoselektiven Addition von Dimethylcuprat (Me₂CuLi) zum Aufbau des (*Z*)- α , β ungesättigten Esters, der in vier Stufen zum Naturstoff Bastimolide A (II-**5**) überführt werden sollte. Die Synthese von Bastimolide A (II-**5**) über diese Route gelang allerdings nicht, weil bereits die Acylierung des Alkins II-**72** mit Chlorameisensäureallylester bzw. -methylester nach Deprotonierung mit *n*-Butyllithium bzw. *tert*-Butyllithium scheiterte. In allen Versuchen konnte kein Umsatz des Startmaterials II-**72** festgestellt werden. Eine mögliche Hypothese für das Scheitern dieser Reaktion ist eine Verknäuelung des langgestreckten Moleküls und eine resultierende Abschirmung des deprotonierten Alkins durch die sterisch anspruchsvollen Silyl-Schutzgruppen (Schema II-28).

Schema II-28: Syntheseversuch zur Acylierung des Alkins II-72 und geplante Synthese von Bastimolide A (II-5).

Als neuer Ansatz zum Aufbau von Bastimolide A (II-5) wurde das von *I. Celik* modifizierte, um eine CH₂-Einheit verkürzte Fragment A1 (C4-25) mit dem Fragment B (C26-43) über eine *Julia-Kocienski*-Olefinierung verknüpft. Eine Synthesesequenz bestehend aus einer Hydrierung der Doppelbindung mit simultaner

Abspaltung der PMB-Schutzgruppe und einer *Grieco*-Eliminierung ergab das Alken II-**20** in einer Gesamtausbeute von 35% über vier lineare Stufen (Schema II-29). Somit konnte die formale Synthese von Bastimolide A (II-**5**) basierend auf der von dieser Stufe aus bereits veröffentlichten Totalsynthese von *Smith et al.*^[121] vollendet werden. Die Gesamtausbeute bei der Herstellung von Alken II-**20** betrug 2.6% über 22 Stufen in der längsten linearen Synthesesequenz. Im Vergleich zur Synthese des Alkens II-**20** durch *Smith et al.*^[121] (6% über 15 Stufen) ist die Gesamtzahl der Stufen höher und die Gesamtausbeute niedriger, allerdings kamen keine toxischen und krebserregenden Reagenzien wie HMPA, Quecksilberperchlorat und Natriumamalgam zum Einsatz.

Schema II-29: Synthese des Alkens II-20 als Vorstufe von Bastimolide A (II-5) ausgehend von Fragment A1 und Fragment B.

Die letzten fünf Stufen zur Vollendung der Totalsynthese von Bastimolide A (II-5) wurden in Analogie zu *Smith et al.*^[121] durchgeführt. Dazu konnte die Synthesesequenz bestehend aus einer Hydroborierung mit nachfolgender *Suzuki*-Kupplung des Organoboran-Intermediats mit dem Iodid II-19 in einer Ein-Topf-Reaktion, einer selektiven TES-Entschützung, einer Hydrolyse des Esters und Makrolactonisierung zum Makrozyklus II-41 reproduziert werden. Die Gesamtausbeute für die Sequenz war mit 13% etwas niedriger als die von *Smith et al.*^[121] berichteten 17%, wobei die Ausbeuten für die TES-Entschützung und die Makrolactonisierung verbessert werden konnten. Bei der globalen Entschützung der TBS-Schutzgruppen mit HF konnten zwar 1.5 mg einer Substanz nach säulenchromatographischer Reinigung isoliert werden, wobei die Signale im ¹H-NMR-Spektrum im Bereich 2.5-3.0 ppm und 5.0-6.0 ppm mit denen des isolierten Naturstoffs II-5^[110] übereinstimmten, allerdings konnte Bastimolide A (II-5) auch nach erneuter säulenchromatographischer Reinigung nicht in sauberer Form isoliert und vollständig charakterisiert werden (Schema II-30).

Schema II-30: Synthese des Makrozyklus II-41 und Versuch zur globalen TBS-Entschützung.

Alternativ könnte für die globale Entschützung statt aq. HF (48%) der HF-Pyridin-Komplex als milderes Desilylierungsreagenz nach einer Vorschrift von *Burke et al.*^[101] verwendet werden. Für die Reinigung sollte statt einer säulenchromatographischer Reinigung über Kieselgel eine präparative HPLC eingesetzt werden, wobei die Bedingungen (C18 RP HPLC-Säule, 70% ACN/H₂O bei 3 mL/min, Detektion bei 210, 230 und 250 nm) aus dem Isolierungspaper von Bastimolide A (II-**5**) genutzt werden könnten.^[110]

Die beschriebene Strategie zur Synthese von Bastimolide A (II-5) könnte nach einem Austausch der TES- und TBS-Schutzgruppen an Position C39 bzw. C23 auch für die Synthese von Bastimolide B (II-7) genutzt werden. Die TES-Schutzgruppe, die am Ende durch selektive Entschützung die Hydroxygruppe für die Makrolactonisierung liefern sollte, würde demnach an Position C23 im modifizierten Fragment **A2** (C4-25) eingeführt werden. Die TES-Schutzgruppe sollte dann folglich im modifizierten Fragment **B1** (C26-43) durch eine TBS-Schutzgruppe ersetzt werden (Schema II-31).

Schema II-31: Möglicher Syntheseansatz für Bastimolide B (II-7) nach demselben Protokoll wie für Bastimolide A (II-5).

Für die Synthese des modifizierten Fragments A2 könnte nach dem Protokoll von *I. Celik* vorgegangen werden,^[138] bei der Fragment A2 aus den drei Teilfragmenten II-77, II-78 und II-79 aufgebaut wird. Der Austausch einer TBS-Schutzgruppe durch eine TES-Schutzgruppe im Teilfragment II-79 sollte über die von *I. Celik* ausgearbeitete Route gelingen. Für die Herstellung des modifizierten Fragments B1 müsste lediglich der Aldehyd II-80, der statt einer TES- eine TBS-Schutzgruppe trägt, in die ausgearbeitete Sequenz integriert werden (Schema II-32).

Schema II-32: Möglicher Syntheseansatz für Fragment A2 und Fragment B1.

Totalsynthese von Cryptoconcatone D

III) Totalsynthese von Cryptoconcatone D

1. Einleitung

1.1 Isolierung und Strukturaufklärung

Im Jahre 2016 gelang es *Luo et al.*^[139] die acht neuartigen Arylalkenyl- α , β -ungesättigten δ -Lactone Cryptoconcatone A-H (III-(**1**-**8**)) und die zwei Arylalkenyl- α , β -ungesättigten γ -Lactone Cryptoconcatone I (III-**9**) und J (III-**10**) aus den Rohextrakten der Blätter und Zweige von *Cryptocarya Concinna* zu isolieren (Abbildung III-1). Die Pflanzengattung *Cryptocarya* gehört zur Familie der Lorbeergewächse (*Lauraceae*) und ist vor allem in den tropischen und subtropischen Gebieten der Welt verbreitet.^[140,141] Die Art *Cryptocarya Concinna* wächst vorwiegend in den subtropischen Gebieten auf dem chinesischen Festland. Bei Untersuchungen der Rohextrakte der Blätter und Zweige dieser immergrünen Pflanze wurden entzündungshemmende Wirkungen festgestellt.^[139,140,142]

Cryptoconcatone A (III-1): $R^1 = H$; $R^2 = OAc$; $R^3 = OH$ Cryptoconcatone B (III-2): $R^1 = H$; $R^2 = OH$; $R^3 = OAc$ Cryptoconcatone C (III-3): $R^1 = H$; $R^2 = OAc$; $R^3 = OAc$ **Cryptoconcatone D (III-4):** $R^1 = H$; $R^2 = OH$; $R^3 = OH$ Cryptoconcatone E (III-5): $R^1 = OH$; $R^2 = OH$; $R^3 = OH$ Cryptoconcatone F (III-6): $R^1 = OH$; $R^2 = OAc$; $R^3 = OH$ Cryptoconcatone G (III-7): $R^1 = OH$; $R^2 = OH$; $R^3 = OAc$

Cryptoconcatone J (III-**10**): $R^1 = OH; R^2 = OAc$

Abbildung III-1: Struktur von Cryptoconcatone A-J (III-(1-10)).^[139]

Die Strukturaufklärung von Cryptoconcatone D (III-4) erfolgte durch NMRspektroskopische Studien. Die Relativkonfigurationen an C2', C4'und C6' wurden mithilfe von *Kishi*'s Methode^[110,111] bestimmt, nach der die chemische Verschiebung des zentralen Kohlenstoffs in einer 1,3,5-Trioleinheit von der 1,3und 3.5-Relativkonfiguration, aber nicht von anderen Funktionalitäten außerhalb dieser 1,3,5-Trioleinheit abhängig ist. Somit konnten die anti-1.3und anti-3,5-Realtivkonfigurationen von Cryptoconcatone D (III-4) durch einen Vergleich der chemischen Verschiebung von 66.4 ppm des zentralen Kohlenstoffs C4⁻ im ¹³C-NMR-Spektrum (gemessen in Methanol- d_4) mit Kishi's Datenbank hergeleitet werden.^[139] Die absolute Konfiguration an C2', C4'und C6' wurde nach der Methode von *Riguera et al.*^[143] über die Derivatisierung von Cryptoconcatone A (III-1) und B (III-2) mit (R)- und (S)- α -Methoxy- α -trifluormethylphenacetylchlorid (MTPA-Cl) zu den entsprechenden bis-(*R*)und (S)-MTPA-Estern bestimmt. Nach einer Identitätsbestätigung der Acetylierungsprodukte von Cryptoconcatone A (III-1), B (III-2) und D (III-4) wurde die absolute Konfiguration von Cryptoconcatone D (III-4) als 6R, 2'R, 4'R, 6'S bestimmt. Cryptoconcatone D (III-4) ist damit ein Diastereomer von Cryptomoscatone E3 (III-11), das im Jahre 2000 aus dem Stamm und der Rinde von Cryptocarya moschata isoliert wurde (Abbildung III-2).[139,144,145]

Abbildung III-2: Strukturen von Cryptoconcatone D (III-4) und Cryptomoscatone E3 (III-11).^[139,144]

1.2 Biologische Aktivität

Da für die Extrakte von *Cryptocarya concinna* potente entzündungshemmende Aktivitäten beschrieben wurden,^[142] testeten *Luo et al.*^[139] die in Abbildung III-1 beschriebenen Cryptoconcatone-Verbindungen III-(**1-10**) auf die Inhibition der Lipopolysaccharid-induzierten NO-Produktion in den Makrophagen RAW 264.7. Cryptoconcatone D (III-**4**) zeigte mit einem IC₅₀-Wert von $3.2 \pm 0.2 \,\mu$ M die beste Wirkung.^[139]

1.3 Totalsynthesen verwandter Naturstoffe

Während bereits Totalsynthesen von Cryptoconcatone I (III-9)^[140] und Cryptomoscatone E3 (III-11)^[145] in der Literatur beschrieben wurden, gibt es bisher keine veröffentlichte Totalsynthese von Cryptoconcatone D (III-4).

Csokas et al.^[146] synthetisierten die von *Luo et al.*^[139] vorgeschlagene Struktur von Cryptoconcatone H (III-**8**, Abbildung III-1). Ein Vergleich der NMR-spektroskopischen Daten zeigte allerdings keine Übereinstimmung. *Pilli et al.*^[147] konnten durch die Synthese von dem Enantiomer von Cryptoconcatone H (*ent*-III-**8a**) zeigen, dass Cryptoconcatone H (III-**8a**) ein Stereoisomer mit 6*R*, 2'*R*, 4'*R*, 6'*R*-Konfiguration ist (Abbildung III-3).

Abbildung III-3: Revidierte Struktur von Cryptoconcatone H (III-8a).^[147]

Mit quantenchemischen Methoden berechneten Pilli et al.^[147] 2017 die NMR-Spektren der acht plausiblen Diastereomere von Cryptoconcatone H (III-8a) und synthetisierten den Kandidaten mit der größten Übereinstimmung mit den NMR-Daten des Naturstoffs. Zusätzlich wurde das Enantiomer ent-III-8a des zweitbesten Kandidaten synthetisiert, NMR-spektroskopische Daten mit den des Naturstoffs schließlich dessen übereinstimmten und zur Revision der ursprünglich vorgeschlagenen Struktur durch Luo et al.^[139] führten. Die α,β -ungesättigte δ -Lacton-Einheit von ent-III-**8a** wurde dazu Ringschlussmetathese ausgehend von Dien III-12 über eine gebildet. Die Stereoinformation an C6, sowie an den Positionen C2´ und C4´ wurde über Iridiumkatalysierte asymmetrische Krische-Allylierungen eingeführt. Der Tetrahydropyran-Ring wurde mittels einer stereoselektiven Palladium(II)-katalysierten, intramolekularen Zyklisierung vom Acetat III-13 aufgebaut. Die Installation der Allylacetat-Funktion erfolgte über eine Kreuzmetathese zwischen dem Alken III-14 und (S)-1-Phenylallylacetat (III-15). Ausgehend von Alkohol III-17 konnte das Enantiomer von Cryptoconcatone H (ent-III-8a) somit in einer Gesamtausbeute von 5% über 12 Stufen erhalten werden (Schema III-1).

Schema III-1: Retrosynthetische Darstellung der Totalsynthese des Enantiomers von Cryptoconcatone H (*ent*-III-**8a**) nach *Pilli et al.*^[147]

Die Totalsynthese von Cryptomoscatone E3 (III-11) wurde im Jahre 2015 von *Pilli et al.*^[145] publiziert. Die Lacton-Einheit wurde über eine Ringschlussmetathese eingeführt, während die dafür benötigten Allyl-Funktionen zum einen über eine asymmetrische *Brown*-Allylierung und zum anderen über eine Veresterung des Alkohols mit Acryloylchlorid an C6-Position des β -Hydroxyketons III-18 installiert wurden. Die Einführung der Styrol-Einheit, sowie der Hydroxygruppe an Position C10 gelang über eine stereoselektive *Mukaiyama-Aldol*-Reaktion zwischen dem TMS-Enolether III-19 und dem Aldehyd III-20, wobei der Aldehyd I-20 ausgehend vom *mono*-TBS geschützten Diol III-21 über eine asymmetrische *Keck*-Allylierung im Schlüsselschritt hergestellt wurde. Somit konnte Cryptomoscatone E3 (III-11) in einer Gesamtausbeute von 9% über 14 lineare Stufen erhalten werden (Schema III-2).

Schema III-2: Retrosynthetische Darstellung der Totalsynthese von Cryptomoscatone E3 (III-11) nach *Pilli et al.*^[145]

2. Zielsetzung

Als Schlüsselintermediat für die Totalsynthese von Cryptoconcatone D (III-4) sollte das für die Studien zur Totalsynthese von Tetrafibricin synthetisierte Fragment C aus Kapitel I (s. Kapitel I.3.3) dienen. Das Fragment C wurde über die von Kirsch et al.^[43,44] entwickelten Methode zum Aufbau von 1,3-Polyolen ausgehend vom Aldehyd I-110 und (S)-Diphenylphosphanoxid I-62a synthetisiert. Die Styrol-Funktion sollte dann über eine Julia-Kocienski-Reaktion eingebaut werden. Nach einer Reduktion der Benzoat-Schutzgruppe mit folgender IBX-Oxidation sollte über eine HWE-Reaktion der α,β ungesättigte Ester III-22 hergestellt werden. Ein säurekatalysierter, simultaner Ringschluss mit Spaltung der Silylether sollte den Naturstoff III-4 ergeben (Schema III-3).

Schema III-3: Retrosynthetische Darstellung der geplanten Totalsynthese von Cryptoconcatone D (III-4) ausgehend von Aldehyd I-110 und (S)-Diphenylphosphanoxid I-62a.

3. Ergebnisse und Diskussion

3.1 Synthese von Cryptoconcatone D

3.1.1 Retrosynthese

Der retrosynthetische Ansatz für die Herstellung von Cryptoconcatone D (III-4) wurde gemeinsam mit *I. Celik* ausgearbeitet. Cryptoconcatone D (III-4) sollte ausgehend von Fragment C aus Kapitel I (s. Kapitel I.3.3) synthetisiert werden. Dazu sollte das

Fragment **C** in einer *Julia-Kocienski*-Reaktion mit dem Sulfon III-**23** zur Einführung der Styrol-Einheit umgesetzt werden. Die Installation der (*Z*)- α , β -ungesättigten Esterfunktion sollte, nach einer Benzoat-Entschützung mit anschließender IBX-Oxidation über eine *HWE*-Reaktion mit dem *Ando*-Phosphonat III-**24** erfolgen. Eine säurekatalysierte Entschützung der vier TBS-Schutzgruppen und eine nachfolgende Zyklisierung zum Lacton, sollte den Naturstoff III-**4** in einer Ein-Topf-Reaktion ergeben (Schema III-4).

Schema III-4: Retrosynthetische Darstellung der geplanten Totalsynthese von Cryptoconcatone D (III-4).

3.1.2 Synthese

Zunächst wurde das für die *Julia-Kocienski*-Reaktion benötigte Sulfon III-**23** in zwei Schritten ausgehend von 1-Phenyl-1*H*-tetrazol-5-thiol (III-**25**) synthetisiert.^[148] Durch die Umsetzung von III-**25** mit Benzylbromid und Kaliumcarbonat wurde das Sulfid III-**26** in einer Ausbeute von 94% erhalten. Eine anschließende Oxidation mit Ammoniummolybdat-Tetrahydrat ergab das Sulfon III-**23** in einer Ausbeute von 89% (Schema III-5).

Schema III-5: Synthese des Sulfons III-23 ausgehend von 1-Phenyl-1H-tetrazol-5-thiol (III-25).

Im nächsten Schritt wurde das Sulfon III-23 mit dem Fragment C in einer *Julia-Kocienski*-Reaktion in einer Ausbeute von 94% zum (*E*)-Alken III-27 umgesetzt. Nach einer Benzoat-Entschützung mit DIBAL-H und einer nachfolgenden IBX-Oxidation

konnte der Aldehyd III-**29** in einer Ausbeute von 87% über zwei Stufen isoliert werden. Der Aldehyd III-**29** wurde anschließend in einer (*Z*)-selektiven *HWE*-Reaktion mit dem *Ando*-Phosphonat III-**24** zum Ester III-**30** umgesetzt.^[149] Dieser konnte in einer exzellenten Ausbeute von 94% und mit einer *Z*/*E*-Selektivität von >99:1 erhalten werden (Schema III-6).

Schema III-6: Synthese des Esters III-30 ausgehend von Sulfon III-23 und Fragment C.

Die Spaltung der Silvlether und die Lactonisierung des Esters III-30 erforderten eine zur globalen TBS-Entschützung Optimierung. Versuche und gleichzeitiger Lactonisierung unter sauren Bedingungen gelangen nicht. So lieferte die Reaktion mit katalytischen Mengen *p*-Toluolsulfonsäure in Methanol/Benzol^[150] statt des gewünschten Produkts das 6'-Methoxyderivat III-31 als Diastereomerengemisch in einer Ausbeute von (d.r. 54:46). Die Diastereomere des S_N1-Reaktionsprodukts III-31 wurden 79% säulenchromatographisch getrennt und einzeln charakterisiert. Die Behandlung des Esters III-30 mit HF in Acetonitril^[151] führte zu einem Gemisch aus Lacton III-32 und einer nicht näher charakterisierten Vorstufe von III-32. Nachfolgendes Erhitzen des Reaktionsgemischs in Gegenwart von *p*-Toluolsulfonsäure in Toluol unter Rückfluss^[152] führte zur vollständigen Umsetzung des unidentifizierten Zwischenprodukts zum Tetrahydropyran III-32, das als reines Diastereomer in einer Ausbeute von 63% erhalten wurde. Ein Vergleich der entsprechenden ¹H- und ¹³C-NMR-Daten ergab, dass die Struktur von III-32 mit der Struktur des bereits publizierten cis-Tetrahydropyran-Epimers von Cryptoconcatone H^[146] übereinstimmt (Schema III-7).

Schema III-7: Umsetzung des Esters III-30 zum 6´-Methoxyderivat III-31 und zum Tetrahydropyran III-32 unter sauren Bedingungen.

Die 2´,4´,6´-*cis*-Konfiguration von Tetrahydropyran III-**32** wurde durch ein NOESY-Experiment und durch Analyse der Kopplungskonstanten bestätigt. Im ¹H¹H-NOESY-Spektrum werden die erwarteten NOE-Wechselwirkungen zwischen den axialen Protonen an C2´, C4´und C6´ sowie zwischen C6´und den beiden olefinischen Protonen beobachtet (Abbildung III-4).

Abbildung III-4: NOESY-Spektrum von Tetrahydropyran III-32.

Die Kopplungskonstanten der Protonen an C2['], C4[']und C6[']mit den benachbarten Methylengruppen zeigen in allen drei Fällen die typischen Werte für eine axial-axiale $(J_{ax-ax} = 11.0 - 11.9 \text{ Hz})$ und eine axial-äquatoriale $(J_{ax-äq} = 1.8 - 4.6 \text{ Hz})$ Kopplung sowie die typischen Werte für die Kopplung des axialen C-6[']-Protons mit einem äquatorialen Vinylsubstituenten $(J_{ax-1} = 6 \text{ Hz}, J_{ax-2} = 1.8 \text{ Hz})$, was insgesamt ebenfalls die *cis*-Konfiguration der drei Substituenten des Tetrahydropyrans III-**32** bestätigt. Unter den sauren Reaktionsbedingen erfolgt somit eine S_N1-Cyclisierung unter Retention der Konfiguration an C6[°] zum thermodynamisch stabileren Diastereomer III-**32** mit drei äquatorialen Substituenten (Abbildung III-5).

Abbildung III-5: Zuordnung und Angabe der Kopplungskonstanten von Tetrahydropyran III-32 im NOESY-Spektrum.

Die beobachtete Labilität der 6'-Hydroxygruppe unter sauren Bedingungen ist überraschend, denn ähnliche Reaktionen in dieser Substanzklasse deuten auf eine größere Stabilität hin.^[145,151]

Im nächsten Versuch sollten die Abspaltung der TBS-Schutzgruppen und die Lactonisierung getrennt voneinander stattfinden. Dazu wurde der Ester III-30 zunächst mit dem weniger saurem HF-Pyridin-Komplex^[101] behandelt, wodurch das Tetraol III-**33** in einer Ausbeute von 79% erhalten werden konnte. Bei Versuchen zur Lactonisierung von III-33 unter basischen Bedingungen durch Behandlung mit Kaliumcarbonat in Methanol oder tert-Butanol konnte lediglich Zersetzung oder keine Umsetzung des Startmaterials vermerkt werden. Bessere Ergebnisse wurden mit Dibutylzinnoxid als Katalysator für die Lactonisierung erzielt.^[153,154] Die Reaktion des Tetraols III-33 mit Dibutylzinnoxid^[153] 0.6 Äquivalenten in Toluol unter Rückfluss lieferte Cryptoconcatone D (III-4) in einer Ausbeute von 72% (Schema III-8).

Schema III-8: Synthese von Cryptoconcatone D (III-4) ausgehend vom Ester III-30 über eine Abspaltung der TBS-Schutzgruppen und eine Lactonisierung.

Alle spektroskopischen Daten des synthetisch hergestellten Cryptoconcatone D (III-4) stimmen mit den veröffentlichten Daten zum isolierten Naturstoff überein (s. Anhang, Tabelle VI-2).^[139] Die absolute Konfiguration von Cryptoconcatone D (III-4) wurde durch den Vergleich des Drehwerts ($[\alpha]_D^{20} = +34.0 (c = 0.7, MeOH)$) mit dem publizierten Wert für den Naturstoff ($[\alpha]_D^{20} = +12.0 (c = 0.1, MeOH)$)^[139] bestätigt. Der niedrigere positive Drehwert des Naturstoffs könnte auf Verunreinigungen, die in den publizierten NMR-Spektren zu beobachten sind, zurückzuführen sein. Insgesamt konnte die von *Luo et al.*^[139] vorgeschlagene relative und absolute Konfiguration bestätigt werden.

4. Zusammenfassung und Ausblick

Der Naturstoff Cryptoconcatone D (III-4) konnte ausgehend vom (*S*)-Diphenylphosphanoxid I-**62a** und dem Aldehyd I-**110** in einer Gesamtausbeute von 6% über 18 Stufen in der längsten linearen Sequenz synthetisiert werden. Dabei diente das in Kapitel I bereits erwähnte Fragment C (s. Kapitel I.3.3) als Schlüsselintermediat. Die von *Luo et al.*^[139] vorgeschlagene relative und absolute Konfiguration konnte dabei bestätigt werden (Schema III-9).

Schema III-9: Erfolgreiche Synthese von Cryptoconcatone D (III-4).

Außerdem konnten bei der Umsetzung des intermediären Esters III-**30** unter sauren Bedingungen das 6'-Methoxy-Derivat III-**31** und das Tetrahydropyran III-**32** durch S_N 1-Reaktionen der C6'-Hydroxygruppe erhalten werden (Schema III-10).

Schema III-10: Synthese des 6´-Methoxy-Derivats III-31 und des Tetrahydropyrans III-32 (Epimer von Cryptoconcatone H) ausgehend von Ester III-30 unter sauren Reaktionsbedingungen.

Die beschriebene Methode zur Synthese von Cryptoconcatone D (III-4) könnte auch zur Synthese anderer Naturstoffe aus dieser Klasse angewendet werden. Ein interessantes Zielmolekül wäre hier beispielsweise (*Z*)-Cryptofolione (III-34). Der Naturstoff III-34 wurde als ein potenter G2-Checkpoint-Inhibitor beschrieben und könnte damit eine potentielle Leitstruktur für neue Krebsmedikamente darstellen (Abbildung III-11).^[155] Bisher wurde lediglich eine Teilsynthese aber noch keine Totalsynthese von (*Z*)-Cryptofolione (III-34) veröffentlicht.^[156]

Abbildung III-11: Struktur von (Z)-Cryptofolione (III-34).

Im Gegensatz zu Cryptoconcatone (III-4) sollte die Synthese (Z)von Cryptofolione (III-34) nicht vom (S)-Diphenylphosphanoxid-Baustein I-62a, sondern vom (R)-Diphenylphosphanoxid-Baustein I-62b starten. Da dieser bisher ausgehend vom kommerziell nicht mehr verfügbaren Acrolein hergestellt wurde, müsste auch für dieses Enantiomer ein neuer synthetischer Zugang ausgearbeitet werden. Die für eine analoge Synthese notwendige 2-Deoxy-L-ribose (III-39) ist zwar auch kommerziell erhältlich aber sehr teuer. Einen Ausweg könnte hier die Umwandlung von 2-Deoxy-Dribose (I-124) zur 2-Deoxy-L-ribose (III-39) nach einer Vorschrift von Meng et al.^[157] darstellen. In einer fünfstufigen Sequenz ohne säulenchromatographische Reinigungsschritte gelingt die Synthese von 2-Deoxy-L-ribose (III-39) dabei in einer Gesamtausbeute von 30%. Der ausgehend von 2-Deoxy-L-ribose (III-39) in sieben Stufen (R)-Diphenylphosphanoxid-Baustein I-62b erhältliche (s. Kapitel I.3.2.3) sollte anschließend in einer Horner-Wittig-Reaktion mit dem Aldehyd I-110 und in einer nachfolgenden stereoselektiven Evans-Tishchenko-Reduktion zum anti-Diol III-38 umgesetzt werden. Nach einer Sequenz bestehend aus einer Lemieux-Johnson-Oxidation, *Sonogashira*-Kupplung^[158] Seyferth-Gilbert-Homologisierung, einer mit einer Phenyliodid und einer folgenden (Z)-selektiven Hydrierung der Alkin-Einheit^[156,159] sollte das (Z)-Alken III-37 erhalten werden. Eine weitere Sequenz bestehend aus einer PMB-Entschützung, einer Oxidation des primären Alkohols und einer HWE-Reaktion mit Ethyl-2-(diethoxyphosphoryl)acetat sollte den Ester III-36 ergeben. Nach Reduktion des Esters III-36 zum Aldehyd sollte eine enantioselektive Maruoka-Allylierung^[156,160,161] und eine nachfolgende Acrylierung das Dien III-35 ergeben. In den letzten Schritten sollte über eine Ringschlussmetathese^[160] gefolgt von einer Acetonid-Entschützung der Naturstoff III-34 erhalten werden (Schema III-12).

Schema III-12: Mögliche Syntheseroute zur Herstellung von (Z)-Cryptofolione (III-34).

Totalsynthese von Aureosurfactin

IV) Totalsynthese von Aureosurfactin

1. Einleitung

1.1 Tenside

Bei Tensiden handelt es sich um eine Stoffklasse, die die Fähigkeit besitzt die Oberflächenspannung einer Flüssigkeit oder die Grenzflächenspannung zwischen zwei Phasen zu verringern.^[162] Ihre Struktur zeichnet sich durch einen amphiphilen Charakter aus, was bedeutet, dass sie sowohl einen hydrophoben als auch einen hydrophilen Anteil besitzen.^[163] Ihre Anwendung finden Tenside in vielen Bereichen der Industrie, wie beispielweise bei der Ölgewinnung, in der Landwirtschaft oder bei der Herstellung von Reinigungsmitteln, Kosmetika, Lebensmitteln und Medikamenten.^[164,165] Sie werden dabei unter anderem als Emulgatoren, De-Emulgatoren, Netz- und Schaumbildner oder funktionelle Lebensmittelzutaten eingesetzt.^[164] Synthetische Tenside lassen sich aufgrund ihrer chemischen Struktur in anionische, kationische, amphotere oder nicht-ionische Tenside einteilen.^[166] Ein bekanntes Beispiel für ein anionisches Tensid ist Natriumlaurylsulfat (IV-1), das als Reinigungsmittel oder Emulgator eingesetzt wird.^[167]

Abbildung IV-1: Struktur des anionischen Tensids Natriumlaurylsulfat (IV-1).

1.2 Biotenside

Seit mehreren Jahren haben besonders die Biotenside aufgrund ihrer biologischen Abbaubarkeit und ihrer geringen Toxizität an Bedeutung gewonnen.^[168] Es handelt sich dabei um Tenside, die aus Mikroorganismen isoliert werden. Während synthetische Tenside nach ihrer Polarität klassifiziert werden, ist bei den Biotensiden der mikrobielle Ursprung für die Einteilung ausschlaggebend.^[169] Bekannte Vertreter der Biotenside sind unter anderem Surfactin^[170] (IV-**2**) und Rhamnolipid^[171] (IV-**3**), die die Oberflächenspannung von Wasser von 72 mN/m auf 27 mN/m bzw. auf 30 nM/m herabsetzen können (Abbildung IV-2).

Abbildung IV-2: Struktur der beiden Biotenside Surfactin (IV-2) und Rhamnolipid (IV-3).

1.3 Aureosurfactin

Im Jahre 2016 isolierten Yun et al.^[172] die neuartigen Biotenside Aureosurfactin (IV-4) und 3-Deoxyaureosurfactin (IV-5) aus Aureobasidium pullulans L3-GPY. Bei Aureobasidium pullulans handelt es sich um einen hefeähnlichen, weitverbreiteten Pilz.^[173] Die Biotenside IV-4 und IV-5 haben eine vergleichbare Aktivität zur Reduzierung der Oberflächenspannung wie Rhamnolipid (IV-3). Die Bestimmung der Struktur von Aureosurfactin (IV-4) und 3-Deoxyaureosurfactin (IV-5) gelang mithilfe von NMR-Studien. Die Relativkonfiguration wurde über den Abgleich der ¹³C-NMR-Spektren mit denen von (3R,5R)- oder (3S,5S)-3,5-Dihydroxy-decansäure (IV-6)^[174-177], Exophilin A (IV-9)^[178,179] und Halymecin A (IV-10)^[180] bestimmt. Somit wurde Aureosurfactin (IV-4) als azyklisches Dimer des Methylesters von (3R, 5R)- oder (3S, 5S)-3,5-Dihydroxydecansäure (IV-6) charakterisiert. Die Struktur von 3-Deoxyaureosurfactin (IV-5) unterscheidet sich lediglich durch eine fehlende Hydroxygruppe an Position C3. Die Absolutkonfiguration beider Substanzen wurde nicht bestimmt und es wurden auch keine Drehwerte angegeben.^[172] Allerdings kann basierend auf der Isolierung (3*R*,5*R*)-3,5-Dihydroxydecansäure (IV-6a) von aus Aureobasidium pullulans^[177] und dem Vorkommen dieser Einheit in Naturstoffen, wie Verbalactone (IV-7)^[174-177,179,181]. (+)-(3R,5R)-3-Hydroxy-5-decanolide (IV-8)^[182],

Exophilin A (IV-9)^[178,179], Halymecin A (IV-10)^[180] eine (3*R*,5*R*,3*R*,5*R*)-Konfiguration als wahrscheinlich erachtet werden (Abbildung IV-3).

Abbildung IV-3: Struktur von Aureosurfactin (IV-4), 3-Deoxyaureosurfactin (IV-5), (3*R*,5*R*)-3,5-Dihydroxydecansäure (IV-6), Verbalactone (IV-7), Decanolide IV-8, Exophilin A (IV-9) und Halemycin A (IV-10).

Bisher sind keine Totalsynthesen von Aureosurfactin (IV-4) und 3-Deoxyaureosurfactin (IV-5) veröffentlicht worden.

1.4 Totalsynthesen verwandter Naturstoffe

Es wurden bereits zahlreiche Totalsynthesen des zyklischen Dimers der (3R,5R)-3,5-Dihydroxydecansäure (IV-**6a**), auch bekannt als Verbalactone^[174-177,179,181] (IV-**7**), veröffentlicht. Die erste Totalsynthese wurde im Jahre 2004 von *Barua et al.*^[174] beschrieben. Dabei wurde zunächst (3R,5R)-3,5-Dihydroxydecansäure (IV-**6a**) ausgehend von Hexanal (IV-**13**) synthetisiert. Über die Addition eines *in situ* erzeugten Allylzinkreagenz in einer *Barbier*-Reaktion und einer nachfolgenden kinetischen Racematspaltung durch eine Amano-Lipase katalysierte Acetylierung wurde das Acetat IV-12 mit einem Enantiomerenüberschuss von 94% erhalten. Eine Sequenz bestehend aus einer asymmetrischen *Sharpless*-Dihydroxylierung, einer selektiven *mono*-Tosylierung und einer baseninduzierter Zyklisierung lieferte das Epoxid IV-11. Nach Öffnung des Epoxids IV-11 mit Natriumcyanid, Abspaltung der Acetat-Schutzgruppe und Hydrolyse der Nitrilgruppe wurde schließlich die (3*R*,5*R*)-3,5-Dihydroxydecansäure (IV-6a) erhalten. Eine intermolekulare *Yamaguchi*-Veresterung lieferte das Verbalactone (IV-7) in einer Ausbeute von 58% zusammen mit 30% des entsprechenden monomeren Lactons IV-8 (Schema IV-1).

Schema IV-1: Retrosynthetische Darstellung der ersten Totalsynthese von Verbalactone (IV-7) nach Barua et al.^[174]

Fünf Jahre später gelang es *Wu et al.*^[179] neben Verbalactone (IV-7) auch das azyklische Trimer der (*3R*,*5R*)-3,5-Dihydroxydecansäure (IV-**6a**) Exophilin A (IV-**9**) herzustellen. Ausgehend von *D*-Glucono-1,5-lactone (IV-**20**) wurde zunächst das Lacton IV-**19** über fünf Stufen hergestellt. Über eine Mesylierung und folgende Reduktion mit Natriumborhydrid wurde das Epoxid IV-**18** erhalten, das nach einer Benzyl-Schützung und Öffnung des Epoxids mit lithiiertem 1,3-Dithian zum Alkohol IV-**17** umgesetzt wurde. Eine Sequenz bestehend aus einer TBS-Schützung, einer Hydrolyse des Acetals, einer oxidativer Spaltung des vicinalen Diols und einer *Wittig*-Reaktion lieferte das (*Z*)-Alken IV-**16**. Nach einer Hydrolyse des Dithians und einer *Pinnick*-Oxidation des Aldehyds IV-**15** wurde die orthogonal geschützte Säure IV-**14** als einer der monomeren Bausteine von Verbalactone (IV-**7**) und Exophilin A (IV-**9**) erhalten (Schema IV-2).

Schema IV-2: Synthese der Säure IV-14 und des Aldehyds IV-15 ausgehend von *D*-Glucono-1,5lactone (IV-20) nach *Wu et al.*^[179]

Für die anderen monomeren Bausteine wurde der Aldehyd IV-15 zunächst als Dimethylacetal geschützt und die C-C-Doppelbindung bei gleichzeitiger Abspaltung der Eine Yamaguchi-Veresterung des entstandenen Benzyl-Schutzgruppe hydriert. sekundären Alkohols IV-23 mit der Säure IV-14 ergab das azyklische Dimer IV-22. Aus diesem gelang die Synthese von Verbalactone (IV-7) in einer fünfstufigen Sequenz bestehend aus einer Hydrolyse des Dimethylacetals, einer Pinnick-Oxidation des Aldehyds zur entsprechenden Carbonsäure, einer Hydrierung der C-C-Doppelbindung bei gleichzeitiger Benzyletherspaltung, einer Shiina-Makrolactonisierung mit 2-Methyl-6-nitrobenzoesäureanhydrid in Gegenwart von DMAP und einer abschließenden Abspaltung der TBS-Schutzgruppen mit einem HF-Pyridin-Komplex. Für die Synthese des Trimers Exophilin A (IV-9) wurde die Dimer-Vorstufe IV-22 nach einer Hydrierung der C-C-Doppelbindung und einer Benzyletherspaltung in einer weiteren Yamaguchi-Veresterung mit der Säure IV-14 zur geschützten Trimer-Vorstufe IV-21 umgesetzt. Nach Hydrolyse des Dimethylacetals und einer Pinnick-Oxidation wurde die entstandene Carbonsäure zunächst als Benzylester geschützt. Nach Entschützung der Silylether und Hydrierung der C-C-Doppelbindung bei gleichzeitiger Abspaltung der Benzylkonnte schließlich auch Exophilin A (IV-9) Schutzgruppen erhalten werden (Schema IV-3).^[179]

Schema IV-3: Letzten Schritte zur Totalsynthese von Verbalactone (IV-7) und Exophilin A (IV-9) nach Wu et al.^[179]

2. Zielsetzung

Ausgehend von den variablen 1,3-syn-Diolen I-108 und IV-27 sollten beide Enantiomere von Aureosurfactin (IV-4) über eine bidirektionale Synthese hergestellt werden. Die beiden Diole I-108 und IV-27 sollten dazu ausgehend von dem chiralen Phosphanoxid I-62a und den variablen Aldehyden I-110 bzw. IV-28 über die von Kirsch et al.^[43,44] entwickelte Methode zum Aufbau von 1,3-Polyolen synthetisiert werden (s. Kapitel I.1.3). Ausgehend von I-108 und IV-27 sollten die beiden differenziell geschützten Enantiomere IV-24a und IV-24b der syn-3,5-Dihydroxydecansäure als Schlüsselintermediate synthetisiert werden. Zur Herstellung von (3R, 5R, 3'R, 5'R)-Aureosurfactin (IV-4a) sollte nach selektiver TES-Schützung des syn-Diols I-108 gefolgt von einer TBS-Schützung des verbliebenen Alkohols zunächst das Alken IV-25 erhalten werden. Die Pentyl-Seitenkette sollte dann durch eine Lemieux-Johnson-Oxidation gefolgt von einer Julia-Kocienski-Olefinierung aufgebaut werden. Die Hydrierung der C-C-Doppelbindung mit simultaner Entschützung des PMB-Ethers und eine anschließende Oxidation des entstandenen primären Alkohols sollte schließlich die (3*R*,5*R*)-3,5-Dihydroxydecansäure IV-24a ergeben. Als Intermediat für die Synthese von (3*S*,5*S*,3'*S*,5'*S*)-Aureosurfactin (IV-**4b**) die (3*S*,5*S*)-3,5-Dihydroxysollte

decansäure IV-24b dienen. Ausgehend vom *syn*-Diol IV-27 sollte zunächst das Alken IV-26 über eine selektive TBS-Schützung und eine folgende TES-Schützung des sekundären Alkohols hergestellt werden. Eine Hydroborierung der C-C-Doppelbindung mit folgender Oxidation zum entsprechenden primären Alkohol und einer Oxidation des primären Alkohols sollte schließlich die Carbonsäure IV-24b liefern. Die Wahl der Schutzgruppen sollte zum einen die Synthese der jeweiligen Methylester-Fragmente von Aureosurfactin (IV-4) durch Veresterung und selektive TES-Entschützung der Enantiomere IV-24a und IV-24b sowie die gleichzeitige Abspaltung aller Silyl-Schutzgruppen nach Verknüpfung der Fragmente durch eine *Yamaguchi*-Veresterung ermöglichen (Schema IV-4). Die bidirektionale Synthese beider Enantiomere von Aureosurfactin IV-4a und IV-4b ausgehend von 2-Deoxy-*D*-ribose (I-124) als Chiral-Pool-Edukt für die Synthese der zentralen *Horner-Wittig*-Bausteine I-108 und IV-27 würde die Vielseitigkeit der von *Kirsch et al.*^[43,44] entwickelten Methode zum asymmetrischen Aufbau von 1,3-Polyolen demonstrieren.

Schema IV-4: Retrosynthetische Darstellung der geplanten Synthese von (3R, 5R, 3'R, 5'R)- und (3S, 5S, 3'S, 5'S)-Aureosurfactin (IV-4a) und (IV-4b).

3. Ergebnisse und Diskussion

3.1 Synthese von (3*R*,5*R*,3'*R*,5'*R*)-Aureosurfactin

3.1.1 Retrosynthese

Für die Synthese von (3R,5R,3'R,5'R)-Aureosurfactin (IV-4a) sollte das in Kapitel I bereits synthetisierte *syn*-Diol I-108 (s. Kapitel I.3.2.3) nach selektiver TES-Schützung des Allylalkohols und TBS-Schützung der verbleibenden Hydroxygruppe in einer *Lemieux-Johnson*-Oxidation zum Aldehyd IV-31 überführt werden. Eine *Julia-Kocienski*-Olefinierung zwischen dem Aldehyd IV-31 und *n*-Butylsulfon IV-32 sollte anschließend das (*E*)-Alken IV-30 ergeben. Eine Hydrierung der C-C-Doppelbindung mit simultaner Abspaltung der PMB-Schutzgruppe gefolgt von einer Oxidation des primären Alkohols sollte die (3R,5R)-3,5-Dihydroxydecansäure IV-24a liefern. Nach einer Veresterung und selektiver TES-Abspaltung sollte eine *Yamaguchi*-Veresterung zwischen dem resultierendem Methylester IV-29a und der Säure IV-24a den Naturstoff IV-4a nach einer abschließenden Abspaltung der Silyl-Schutzgruppen ergeben (Schema IV-5).

Schema IV-5: Retrosynthetische Darstellung der geplanten Totalsynthese von (3R, 5R, 3'R, 5'R)-Aureosurfactin (IV-4a).

3.1.2 Synthese

Zunächst wurde das *syn*-1,3-Diol I-**108** (s. Kapitel I.3.2.3) in einer selektiven *mono*-TES-Schützung nach einer Vorschrift von *Roush et al.*^[183] unter Verwendung von TESCl, 2,6-Lutidin und DMAP zum Silylether IV-**33** in einer Ausbeute von 58% umgesetzt. Nach einer TBS-Schützung und folgender *Lemieux-Johnson*-Oxidation wurde der Aldehyd IV-**31** in einer Ausbeute von 90% über zwei Stufen erhalten (Schema IV-6).

Schema IV-6: Synthese des Aldehyds IV-31 ausgehend vom syn-1,3-Diol I-108.

Zur Herstellung des für die *Julia-Kocienski*-Reaktion benötigten Sulfons IV-**32** wurde *n*-Butanol (IV-**35**) mit Phenyl-1*H*-tetrazol-5-thiol in einer *Mitsunobu*-Reaktion zum Sulfid IV-**36** in einer Ausbeute von 97% umgesetzt. Die folgende Oxidation mit Ammoniummolybdat-Tetrahydrat lieferte das Sulfon IV-**32** in einer Ausbeute von 70% (Schema IV-7).^[184]

Schema IV-7: Synthese des Sulfons IV-32 ausgehend von Butylalkohol (IV-35).

Die *Julia-Kocienski*-Olefinierung zwischen dem Aldehyd IV-**31** und dem Sulfon IV-**32** ergab selektiv das (*E*)-Alken IV-**37** in einer Ausbeute von 93%. Eine anschließende Hydrierung der Doppelbindung bei gleichzeitiger Abspaltung der PMB-Schutzgruppe lieferte nach einer Reaktionszeit von 48 Stunden den primären Alkohol IV-**38a** in einer Ausbeute von 72%. Im Anschluss sollte der Alkohol IV-**38a** mit IBX zum Aldehyd IV-**39** oxidiert werden und dieser in einer *Pinnick*-Oxidation^[185] zur (*3R*,*5R*)-*3*,*5*-Dihydroxydecansäure IV-**24a** umgesetzt werden. Während die IBX-Oxidation den Aldehyd IV-**39** lediglich in einer Ausbeute von 31% lieferte, ergab die folgende *Pinnick*-Oxidation die Carbonsäure IV-**24a** in einer hohen Ausbeute von 97%. Auch eine *Swern*-Oxidation des Alkohols IV-**38a** lieferte den Aldehyd IV-**39** nur in einer geringen Ausbeute von 30% (Schema IV-7).

Schema IV-7: Synthese der Carbonsäure IV-24a über eine *Julia-Kocienski*-Olefinierung, Hydrierung, IBX-Oxidation und *Pinnick*-Oxidation ausgehend vom Aldehyd IV-31.

Aufgrund der geringen Ausbeuten bei der Synthese des Aldehyds IV-39 wurde in einem weiteren Versuch der Alkohol IV-38a nach einem Protokoll von Paterson et al.^[186] unter Verwendung von RuO₂•H₂O (0.1 Äq.) und $NaIO_4(3.0 \text{ Åg.})$ direkt zur Carbonsäure IV-24a oxidiert, wobei IV-24a und damit einer der beiden Bausteine des dimeren Naturstoffs IV-4a in einer Ausbeute von 83% erhalten werden konnte. Die Veresterung von IV-24a mit Kaliumcarbonat und Methyliodid lieferte den Methylester IV-40a in einer Ausbeute von 90%. Die folgende selektive TES-Entschützung erforderte eine Optimierung. Bei Verwendung von CSA, PPTS oder TFA konnte lediglich eine Zersetzung des Edukts festgestellt werden. Wurde der Methylester IV-40a hingegen mit fünf Äquivalenten des HF-Pyridin-Komplexes^[101] bei 0 °C und in einer Reaktionszeit von einer Stunde umgesetzt, konnte der Alkohol IV-29a als zweiter Baustein des Naturstoffs IV-4a in einer Ausbeute von 67% erhalten werden (Schema IV-8).

Schema IV-8: Synthese des Methylesters IV-29a ausgehend vom primären Alkohol IV-38a.

Der Alkohol IV-**29a** wurde anschließend mit der Carbonsäure IV-**24a** in einer *Yamaguchi*-Veresterung zum Dimer IV-**41a** in einer Ausbeute von 93% verknüpft. Die Abspaltung der Silyl-Schutzgruppen mit 20 Äquivalenten des HF-Pyridin-Komplexes ergab schließlich den Naturstoff IV-**4a** in einer Ausbeute von 79%. Die spektroskopischen Daten vom synthetisch hergestellten (3R,5R,3'R,5'R)-Aureosurfactin (IV-**4a**) stimmen mit denen des isolierten Naturstoffs überein (s. Anhang, Tabelle VI-3)^[172] Basierend auf der optischen Aktivität mit einem Drehwert von -19.7 (c = 1.03, CH₂Cl₂) handelt es sich bei (3R,5R,3'R,5'R)-Aureosurfactin (IV-**4a**) um das (–)-Enantiomer (Schema IV-9).

Schema IV-9: Finale Schritte zur Synthese von (-)-Aureosurfactin (IV-4a).

3.2 Synthese von (3*S*,5*S*,3*′S*,5*′S*)-Aureosurfactin

3.2.1 Retrosynthese

(3S,5S,3'S,5'S)-Aureosurfactin (IV-4b) sollte ausgehend von dem chiralen Phosphanoxid I-62a und Valeraldehyd (IV-28) hergestellt werden. Dazu sollten I-62a und IV-28 zunächst in einer *Horner-Wittig*-Reaktion zum β -Hydroxyketon IV-42 umgesetzt werden. Nach *syn*-Reduktion, selektiver TBS-Schützung des Allylalkohols und TES-Schützung der verbleibenden Hydroxygruppe sollte der Silylether IV-26 erhalten werden. Eine Hydroborierung mit anschließender Oxidation des primären Alkohols sollte die (3S,5S)-3,5-Dihydroxydecansäure IV-24b liefern. Die weiteren Schritte zur Synthese von (3S,5S,3'S,5'S)-Aureosurfactin (IV-4b) sollten analog zur Synthese von (3R,5R,3'R,5'R)-Aureosurfactin (IV-4a) erfolgen (Schema IV-10).

Schema IV-10: Retrosynthetische Darstellung der geplanten Totalsynthese von (3*S*,5*S*,3'*S*,5'*S*)-Aureosurfactin (IV-4b).

3.2.2 Synthese

Zunächst wurde das Phosphanoxid I-**62a** mit Valeraldehyd (IV-**28**) in einer *Horner-Wittig*-Reaktion zum β -Hydroxyketon IV-**42** in einer Ausbeute von 86% umgesetzt. Die anschließende *syn*-Reduktion unter *Narasaka-Prasad*-Bedingungen ergab das *syn*-Diol IV-**27** in einer Ausbeute von 81% und mit exzellenter Diastereoselektivität (> 99:1). Eine selektive TBS-Schützung des Vinylalkohols lieferte unter Verwendung von *n*-Butyllithium, TBSCl und Imidazol^[78] den *mono*-Silylether IV-**43** in einer Ausbeute von 67%. Dieser wurde anschließend mit TESCl und Imidazol in den Silylether IV-**26** überführt (Schema IV-11).

Schema IV-11: Synthese des Silylether IV-26 ausgehend von Phosphanoxid I-62a.

Das Alken IV-26 wurde in einer Hydroborierung mit anschließender Oxidation zum primären Alkohol IV-39b in 80% Ausbeute umgesetzt. Die weiteren Schritte zur Synthese von (3*S*,5*S*,3′*S*,5′*S*)-Aureosurfactin (IV-4b) erfolgten in Analogie zur Herstellung des (–)-Enantiomers IV-4a. Die Oxidation des Alkohols IV-39b mit RuO₂•H₂O (0.1 Äq.) und NaIO₄ (3.0 Äq.) lieferte die (3*S*,5*S*)-3,5-Dihydroxy-decansäure IV-24b in einer Ausbeute von 70%. Durch Veresterung mit Methyliodid und Kaliumcarbonat wurde der Methylester IV-40b in einer Ausbeute von 86% erhalten. Die folgende selektive TES-Entschützung lieferte mit fünf Äquivalenten des HF-Pyridin-Komplexes bei 0 °C den Alkohol IV-29b in einer Ausbeute von 78% (Schema IV-12).

Schema IV-12: Synthese des Alkohols IV-29b ausgehend von Silylether IV-26.

(3S,5S,3'S,5'S)-Aureosurfactin (IV-4b) wurde nach der *Yamaguchi*-Veresterung der Carbonsäure IV-24b mit dem Alkohol IV-29b und anschließender Abspaltung aller Silyl-Schutzgruppen mit dem HF-Pyridin-Komplex in einer Ausbeute von 91% über zwei Stufen erhalten. Auch für dieses Enantiomer stimmen die spektroskopischen Daten vom synthetisch hergestellten Naturstoff IV-4b mit denen des isolierten Naturstoffs überein (s. Anhang, Tabelle VI-4).^[172] Basierend auf der optischen Aktivität mit einem Drehwert von +20.6 (c = 0.70, CH₂Cl₂) handelt es sich bei (3S,5S,3'S,5'S)-Aureosurfactin um das (+)-Enantiomer (Schema IV-13).

Schema IV-13: Finalen Schritte zur Synthese von (+)-Aureosurfactin (IV-4b).

Zur Bestätigung der Tensid-Aktivität von (+) und (–)-Aureosurfactin (IV-4), wurden in Analogie zu *Yun et al.*^[172] jeweils 50 µL der in destilliertem Wasser gelösten Enantiomere in einer Konzentration von 1 mg/100 mL auf Parafilm gegeben (Abbildung IV-4). Als Kontrolle wurden 50 µL destilliertes Wasser verwendet. Die deutlich erhöhte Ausbreitung der Tropfen bestätigt, dass beide Enantiomere die Oberflächenspannung von destilliertem Wasser herabsetzen. Interessanterweise zeigt das ebenfalls gemessene, racemische Gemisch von (+)- und (-)-Aureosurfactin (IV-4) eine tendenziell noch stärkere Reduktion der Oberflächenspannung. Genauere Daten sollten durch eine Messung der Oberflächenspannung mit einem Ring-Tensiometer erhalten werden.

Abbildung IV-4: Erste Untersuchungen zur Reduktion der Oberflächenspannung von Aureosurfactin (IV-4).

Der Versuch (3S,5S,3'S,5'S)-Aureosurfactin (IV-**4b**) mit Dibutylzinnoxid (0.6 Äq.) über eine Lactonisierung zum Naturstoff Verbalactone (IV-**7**) umzusetzen, gelang nicht. Stattdessen wurde nach einer Reaktionszeit von einer Stunde unter Rückfluss in Toluol das unnatürliche Enantiomer des Naturstoffs (*S*)-Massoialactone (IV-**44**) in einer Ausbeute von 42% erhalten (Schema IV-14). Bei dem Naturstoff (*R*)-Massoialactone *ent*-(IV-**44**) handelt es sich um einen Aromastoff, der einen wichtigen Bestandteil des *Massoia*-Rindenöls ausmacht, das aus *Cryptocarya massioa* isoliert wird.^[176]

Schema IV-14: Synthese von (S)-Massioalactone (IV-44) ausgehend von (+)-Aureosurfactin (IV-4b).

4. Zusammenfassung und Ausblick

Die beiden Enantiomere des Naturstoffs Aureosurfactin (IV-4) konnten erfolgreich ausgehend von (*S*)-Diphenylphosphanoxid I-62a hergestellt werden. Die Synthese beider Enantiomere eines Naturstoffs ausgehend von einem Enantiomers des *Horner-Wittig*-Bausteins I-108 bzw. IV-27 und damit auch ausgehend von 2-Deoxy-*D*-Ribose (I-124)

als einem Chiral-Pool-Edukt verdeutlich die Vielseitigkeit der von Kirsch et al.^[43,44] entwickelten Methode zur Synthese von 1,3-Polyolen. Für die Synthese von (3R,5R,3'R,5'R)-Aureosurfactin (IV-4a) diente neben dem Baustein I-62a der 2-((4-Methoxybenzyl)oxy)-acetaldehyd (I-110) als Ausgangsmaterial. Der Naturstoff IV-4a wurde schließlich in einer Ausbeute von 13.5% über 12 Stufen in der längsten linearen Synthesesequenz erhalten. der Herstellung (3S, 5S, 3'S, 5'S)-Bei von Aureosurfactin (IV-4b) wurde Valeraldehyd (IV-28) als Startmaterial verwendet und der Naturstoff in einer Ausbeute von 18% über zehn Stufen in der längsten linearen Synthesesequenz isoliert. Die von Yun et al.^[172] vorgeschlagene relative Konfiguration konnte dabei bestätigt werden (Schema IV-15).

Abbildung IV-15: Erfolgreiche Synthese von (-)- und (+)-Aureosurfactin (IV-4a) und (IV-4b) ausgehend vom chiralen Phosphanoxid I-62a und den Aldehyden I-101 bzw. IV-28.

Über die bidirektionale Synthese sollte es möglich sein ausgehend vom (*S*)-Diphenylphosphanoxid I-**62a** auch die 14 weiteren, möglichen Stereoisomeren von Aureosurfactin (IV-**4**) herzustellen. Für die Synthese der monomeren *anti*-3,5-Dihydroxydecansäure müsste lediglich die *syn*-Reduktion der entsprechenden β -Hydroxyketon-Vorstufe unter *Narasaka-Prasad*-Bedingungen durch eine *anti*-Reduktion unter *Evans-Tishchenko*-Bedingungen mit SmI₂ und Acetaldehyd ersetzt werden. Durch Variation der Länge der Alkylseitenkette und der verschiedenen Stereozentren könnten zahlreiche Derivate des Naturstoffs IV-**4** synthetisiert und der Einfluss auf die Oberflächenspannung untersucht werden.

Experimenteller Teil

V) Experimenteller Teil

1. Allgemeine Informationen

1.1 Allgemeine Arbeitstechniken

Reaktionen, in denen sauerstoff- bzw. feuchtigkeitsempfindliche Reagenzien verwendet wurden, wurden in mehrfach ausgeheizten Glasgeräten und unter Argonatmosphäre durchgeführt. Zum inerten Einbringen von Substanzen wurden Flüssigkeiten über Spritzen und Kanülen durch Septen und Feststoffe im Argongegenstrom hinzugefügt. Zur Einstellung der Temperatur bei Reaktionen wurden verschiedene Kältemischungen bzw. Ölbäder verwendet. Es wurden Eis-Wasserbäder für Temperaturen bis 0 °C eingesetzt sowie eine Mischung aus Aceton und Trockeneis für Temperaturen bis -78 °C. Bei Temperaturen größer als 25 °C wurden Paraffinölbäder mit Kontaktthermometern verwendet.

1.2 Reagenzien und Lösungsmittel

Alle kommerziell erworbenen Chemikalien wurden, falls nicht anders beschrieben, ohne Reinigung verwendet. Lösungsmittel für Dünnschichtchromatographie, weitere Säulenchromatographie, Aufarbeitungen und feuchtigkeitsunempfindliche Reaktionen wurden ebenfalls ohne Reinigung eingesetzt. Lösungsmittel mit einem hohen Reinheitsgrad und für feuchtigkeitsempfindliche Reaktionen wurden kommerziell bei den Firmen Sigma-Aldrich, Acros Organics, Fisher Scientific und Merck erworben. Trockene Lösungsmittel THF. ACN. DCM) wurden einem $(Et_2O,$ Lösungsmittelreinigungssystem (MB SPS-800) der Firma M. Braun entnommen.

1.3 Chromatographie

Dünnschichtchromatographie (DC)

Für die qualitative Dünnschichtchromatographie (DC) wurden DC-Karten aus Kieselgel der Firma *Merck* (0.25 mm Kieselgel 60) verwendet. Der Nachweis der Substanzen erfolgte durch Fluoreszenzdetektion mit UV-Licht ($\lambda = 254$ nm, $\lambda = 366$ nm) oder durch Eintauchen in Anfärbereagenzien und anschließende Wärmebehandlung. Als Reagenzien wurden eine Kaliumpermanganat-Lösung (KMnO₄: 3 g KMnO₄, 20 g Kaliumcarbonat, 5 g Natriumhydroxid in 1 L H₂O) und eine Ninhydrin-Lösung (300 mg Ninhydrin, 3 mL CH₃COOH, 100 mL *n*-Butanol).

Säulenchromatographie

Säulenchromatographische Reinigungen wurden in Glassäulen mit Kieselgel (KG60, Korngröße 40-63 µm) der Firma *VWR* verwendet. Die Laufmittel und das jeweilige Verhältnis wird bei den einzelnen Versuchsdurchführungen beschrieben.

Chirale Hochleistungsflüssigkeitschromatographie (HPLC)

Über eine chirale HPLC der Firma *Agilent Technologies* mit einer chiralen Säule (*CHIRALPAK IA*) der Firma *Daicel Chemicals Industries ltd.* wurden Enantiomerenüberschüsse (*ee*) bestimmt.

Qualitative und präparative Hochleistungsflüssigkeitschromatographie (HPLC)

Die Methodenentwicklung erfolgte über eine analytische HPLC der Firma *Agilent Technologies* unter Verwendung von Chromatographiesäulen der Firma *Macherey Nagel (NUCLEODUR* C8 oder C18 RP). Die Trennung wurde dann an einer präparativen HPLC der Firma *Agilent Technologies* mit Chromatographiesäulen der Firma *Macherey Nagel (NUCLEODUR* C8 oder C18 RP) durchgeführt.

1.4 Analytik

Kernresonanzspektroskopie (NMR)

Die Kernresonanzspektroskopie (NMR) wurde an Geräten der Firma *Bruker* (*Avance III 600, Avance 400*) aufgenommen durchgeführt. ¹H-NMR-Spektren wurden bei 400 oder 600 MHz während ¹³C-NMR-Spektren bei 101 oder 151 MHz aufgenommen wurden. Die Auswertung erfolgte über das Programm *MestreNova*. Die chemischen Verschiebungen wurden in ppm angegeben und die Kopplungskonstanten *J* in Hz.

Infrarotspektroskopie (IR)

Für die Infrarotspektroskopie (IR) wurde ein Gerät der Firma *Bruker (ALPHA FTIR)* verwendet. Die IR-Spektren wurden im Bereich von 400 - 4000 cm⁻¹ gemessen und die Auswertung erfolgte über das Programm *OPUS* 8.

Niederaufgelöste Massenspektrometrie (LRMS)

Die niederaufgelöste Massenspektren (LRMS) wurden mit ESI (Elektrosprayionisation) an einem *6120 Quadrupole* Massenspektrometer mit einem *1260 Infinity* Flüssigkeitschromatographen der Firma *Agilent Technologies* aufgenommen.

Hochaufgelöste Massenspektrometrie (HRMS)

Die hochaufgelöste Massenspektren (HRMS) wurden mit ESI (Elektrosprayionisation) oder APCI (chemische Ionisation bei Atmosphärendruck) an einem Gerät der Firma *Bruker (microTOF)* mit vorgeschaltetem Flüssigkeitschromatographen der Firma *Agilent Technologies* (1100 Series) durchgeführt.

Spezifische Drehwerte ($[\alpha]_D$)

Die spezifischen Drehwerte ($[\alpha]_D$) wurden an einem *P8000-T* Polarimeter der Firma *A. Krüss Optronic GmbH* gemessen. Die Konzentration *c* in [g/100 mL] und das Lösungsmittel sind beim jeweiligen Experiment angegeben.

2. Synthesevorschriften

2.1 Studien zur Totalsynthese von Tetrafibricin

2.1.1 Synthese von Fragment A (C1-8)

(E)-3-(Tributylstannyl)prop-2-en-1-ol (I-92)

Bu₃Sn OH

$C_{15}H_{32}OSn$

347.1 g/mol

15.3 mL (16.5 g, 55.1 mmol, 1.30 Äq.) Tributylzinnhydrid in 42.0 mL Toluol wurden unter Argonatmosphäre vorgelegt. Anschließend wurden 2.50 mL (2.28 g, 42.4 mmol) Propargylalkohol (I-**91**) und 366 mg (2.12 mmol, 5.0 mol%) AIBN nacheinander zugegeben. Das Reaktionsgemisch wurde für drei Stunden unter Rückfluss gerührt und das Lösungsmittel am Rotationsverdampfer *in vacuo* entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA/TEA 88:10:2) gereinigt und der Allylalkohol I-**92** in einer Ausbeute von 77% (11.3 g, 32.4 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.31$ (CH/EA/TEA = 88:10:2) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 6.22 - 6.16 (m, 1H), 4.34 - 4.24 (m, 1H), 4.24 - 4.05 (m, 2H), 3.05 (bs, 1H), 1.58 - 1.44 (m, 6H), 1.40 - 1.18 (m, 6H), 0.99 - 0.76 (m, 15H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 147.2, 128.6, 123.1, 29.2, 27.4, 13.8, 9.6. Die spektroskopischen Daten stimmen mit der Literatur überein.^[52]

(E)-3-(Tributylstannyl)acrylaldehyd (I-93)

Bu₃Sn O

 $C_{15}H_{30}OSn$

345.1 g/mol

11.0 g (31.7 mmol, 1.00 Äq.) des Allylalkohols I-**92** wurden unter Argonatmosphäre in 423 mL Aceton gelöst und 61.2 g (0.634 mol, 20.0 Äq.) Mangan(IV)-oxid wurden zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und

anschließend über Celite filtriert, wobei der Rückstand mehrmals mit Aceton (3 x 20 mL) gewaschen wurde. Das Filtrat wurde am Rotationsverdampfer unter vermindertem Druck eingeengt. Das Rohprodukt wurde säulenchromatographisch (CH/EA 95:5) gereinigt und der Aldehyd I-**93** in einer Ausbeute von 72% (7.82 g, 22.7 mmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.53$ (CH/EA = 95:5) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 9.42 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 19.2 Hz, 1H), 6.63 (dd, J = 19.2, 7.6 Hz, 1H), 1.58 – 1.46 (m, 6H), 1.32 (m, 6H), 0.90 (m, 15H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 193.8, 163.3, 147.8, 29.3, 27.1, 13.8, 9.7.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[187]

Ethyl-(2E,4E)-5-(tributylstannyl)penta-2,4-dienoat (I-94)

 $C_{19}H_{36}O_2Sn$

415.2 g/mol

1.17 g (60 wt.% in Mineralöl, 29.1 mmol, 1.5 Äq.) Natriumhydrid wurden unter Argonatmosphäre in 41.0 mL trockenem THF vorgelegt und 6.01 mL (6.01 g, 29.1 mmol, 1.5 Äq.) Ethyl-2-(diethoxyphosphoryl)acetat, gelöst in 21.0 mL trockenem THF, wurden langsam bei 0 °C zugetropft. Anschließend wurden 6.70 g (19.4 mmol, 1.0 Äq.) des Aldehyds I-93, gelöst in 21.0 mL trockenem THF, zugegeben. Nachdem die Reaktionsmischung für vier Stunden bei 0 °C gerührt wurde, erfolgte die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (50 mL). Das Gemisch wurde mit Ethylacetat extrahiert (3 x 50 mL) und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Produkt säulenchromatographisch (CH/EA 9:1 \rightarrow 7:3) gereinigt. Das Produkt I-94 wurde in einer Ausbeute von 72% (5.79 g, 14.0 mmol) in Form einer gelbfarbenen Flüssigkeit erhalten.

DC: $R_f = 0.48$ (CH/EA = 95:5) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.25 – 7.09 (m, 1H), 6.86 – 6.76 (m, 1H), 6.69 – 6.55 (m, 1H), 5.87 – 5.71 (m, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.55 – 1.44 (m, 6H), 1.36 – 1.21 (m, 6H), 0.98 – 0.92 (m, 15H), 0.89 (t,

J = 7.3 Hz, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 167.6, 147.3, 146.5, 144.4, 120.1, 60.4, 29.3, 27.4, 13.8, 9.8.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[52]

(2E,4E)-5-(Tributylstannyl)penta-2,4-dien-1-ol (I-86)

$C_{17}H_{34}OSn$

373.2 g/mol

6.32 g (15.2 mmol, 1.00 Äq.) des Esters I-**94** wurden in 32 mL Dichlormethan gelöst und bei -78 °C wurden 35.5 mL (1.2 M in Toluol, 30.1 g, 42.6 mmol, 2.80 Äq.) einer Diisobutylaluminiumhydrid-Lösung über einen Zeitraum von 40 Minuten zugegeben. Nachdem das Gemisch für weitere 30 Minuten bei -78 °C gerührt wurde, erfolgte die Zugabe von gesättigter, wässriger Kalium/Natrium-Tartrat-Lösung (60 mL) und die Lösung wurde auf Raumtemperatur aufgewärmt. Es wurden 7.1 mL Glycerin (0.2 mL/mL DIBAL-H) zugegeben und die Lösung für 18 Stunden gerührt. Die Phasen wurden getrennt, die wässrige Phase wurde mit Diethylether (3 x 25 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1 \rightarrow 8:2) gereinigt. Der Alkohol I-**86** wurde in einer Ausbeute von 65% (3.70 g, 9.92 mmol) in Form einer farblosen Flüssigkeit erhalten.

DC: $R_f = 0.19$ (CH/EA = 8:2) [UV, KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 6.62 – 6.44 (m, 1H), 6.33 – 6.14 (m, 2H), 5.80 (dt, J = 15.2, 5.9 Hz, 1H), 4.20 (td, J = 6.1, 3.0 Hz, 2H), 1.54 – 1.42 (m, 6H), 1.36 – 1.16 (m, 6H), 0.96 – 0.72 (m, 15H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 146.1, 135.3, 134.8, 130.9, 63.5, 29.2, 27.4, 13.8, 9.7.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[187]

((1E,3E)-5-Bromopenta-1,3-dien-1-yl)tributylstannan (I-85)

Bu₃Sn Br

 $C_{17}H_{33}BrSn$

436.1 g/mol

0.62 g (3.5 mmol, 1.30 Äq.) *N*-Bromsuccinimid wurden in 19 mL trockenem Dichlormethan unter Argonatmosphäre gelöst und die Lösung wurde auf -20 °C gekühlt. Anschließend wurden 0.21 mL (0.31 g, 4.9 mmol, 1.83 Äq.) Dimethylsulfid über fünf Minuten langsam zugegeben. Nachdem die Reaktionsmischung für 15 Minuten bei -20 °C gerührt wurde, wurden 1.00 g (2.68 mmol, 1.00 Äq.) des Alkohols I-**86**, gelöst in 4.0 mL trockenem Dichlormethan, über 10 Minuten zugegeben. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (10 mL) beendet. Das Gemisch wurde auf Raumtemperatur erwärmt, die Phasen getrennt und die organische Phase mit Wasser (3 x 20 mL) gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt von I-**85** ohne weitere Aufreinigung im nächsten Schritt umgesetzt.

DC: R_f = 0.86 (CH/EA = 9:1) [UV, KMnO₄].

Diethyl-((2E,4E)-5-(tributylstannyl)penta-2,4-dien-1-yl)phosphonat (I-84)

Bu₃Sn PO(OEt)₂

 $C_{21}H_{43}O_3PSn$

494.2 g/mol

1.51 g (3.46 mmol, 1.00 Äq.) des Bromids I-**85** wurden in 49.0 mL Acetonitril gelöst und 0.930 mL (900 mg, 5.19 mmol, 1.50 Äq.) Triethylphosphit zugegeben. Die Lösung wurde für 18 Stunden bei 50 °C gerührt und das Lösungsmittel anschließend am Rotationsverdampfer *in vacuo* entfernt. Das Rohprodukt wurde säulenchromatographisch (CH/EA 7:3) gereinigt und das Produkt I-**84** in einer Ausbeute von 76% (1.00 g, 2.03 mmol) über zwei Stufen in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.35$ (CH/EA = 3:7) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 6.59 – 6.42 (m, 1H), 6.25 – 6.05 (m, 2H), 5.68 – 5.49 (m, 1H), 4.25 – 3.79 (m, 4H), 2.63 (ddd, J = 22.4, 7.7, 1.4 Hz, 2H), 1.55 – 1.40 (m, 6H), 1.39 – 1.19 (m, 12H), 0.94 – 0.79 (m, 15H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 146.1 (d, J = 4.6 Hz), 138.5 (d, J = 14.8 Hz), 134.1 (d, J = 4.4 Hz), 120.9 (d, J = 12.3 Hz), 62.1 (d, J = 6.7 Hz), 29.2, 27.4, 16.6 (d, J = 6.0 Hz), 13.8, 9.7. **IR** (ATR): \tilde{v} [cm⁻¹] = 2955, 2924, 2871, 2852, 1717, 1638, 1561, 1462, 1417, 1391, 1376, 1288, 1251, 1163, 1096,1023, 999, 957, 869, 837, 799, 777, 748, 690, 658, 594, 512, 450, 431. **HRMS** (ESI): berechnet für C₂₁H₄₄O₃PSn⁺ [M+H⁺]: 495.2074, gefunden 495.2045.

2-(Trimethylsilyl)ethyl-(2*E*,4*E*,6*E*)-8-(diethoxyphosphoryl)octa-2,4,6trienoat (Fragment A)

$C_{17}H_{31}O_5PSi$

374.5 g/mol

500 mg (1.01 mmol, 1.0 Äq.) des Stannans I-**84** und 333 mg (1.12 mmol, 1.1 Äq.) des Iodids I-**69** wurden unter Argonatmosphäre in 8.20 mL trockenem, entgastem DMF vorgelegt. Anschließend wurden 129 mg (3.04 mmol, 3.0 Äq.) Lithiumchlorid, 47.8 mg (50.7 μ mol, 5 mol%) Pd₂(dba)₃ und 35.3 mg (152 μ mol, 15 mol%) Tri(2-furyl)phosphin, gelöst in 1.40 mL trockenem, entgastem DMF, zugegeben und die Suspension für 30 Minuten bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von Ammoniumchlorid-Lösung und Ethylacetat (je 10 mL) beendet. Die Phasen wurden getrennt, die wässrige Phase wurde mit Ethylacetat (3 x 10 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2 \rightarrow 1:1, dann DCM/MeOH 100:0 \rightarrow 98:2) gereinigt. Fragment **A** wurde in einer Ausbeute von 82% (312 mg, 833 µmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.41$ (DCM/MeOH = 98:2) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.35 - 7.15 (m, 1H), 6.63 - 6.38 (m, 1H), 6.33 - 6.16 (m, 2H), 5.95 - 5.77 (m, 2H), 4.29 - 4.18 (m, 2H), 4.17 - 3.98 (m, 4H), 2.78 - 2.56 (m, 2H), 1.38 - 1.20 (m, 6H), 1.08 – 0.89 (m, 2H), 0.10 – -0.06 (m, 9H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 167.2, 144.1 (d, J = 2.7 Hz), 139.6 (d, J = 5.3 Hz), 134.4 (d, J = 15.0 Hz), 129.8 (d, J = 4.6 Hz), 127.3 (d, J = 13.0 Hz), 121.7 (d, J = 2.3 Hz), 62.6, 62.3 (d, J = 6.8 Hz), 31.3 (d, J = 139.6 Hz), 17.5, 16.6 (d, J = 5.9 Hz), -1.3. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 1704, 1617, 1589, 1444, 1392, 1378, 1299, 1248, 1231, 1181, 1153, 1130, 1097, 1020, 958, 857, 833, 784, 695. **HRMS** (ESI): berechnet für C₁₇H₃₁NaO₅PSi⁺ [M+H⁺]: 397.1571, gefunden 397.1580.

2.1.2 Synthese von Fragment B (C9-20)

(R)-2-Amino-3-phenylpropan-1-ol (I-115)

 $C_9H_{13}NO$

151.2 g/mol

13.9 g (366 mmol, 2.02 Äq.) Lithiumaluminiumhydrid wurden in 542 mL trockenem THF unter Argonatmosphäre vorgelegt. Die Suspension wurde auf 0 °C gekühlt und 30.0 g (182 mmol, 1.00 Äq.) (*D*)-Phenylalanin (I-**104**) wurden hinzugegeben. Das Reaktionsgemisch wurde für eine Stunde bei 0 °C und anschließend für weitere 18 Stunden unter Rückfluss gerührt. Die Suspension wurde erneut auf 0 °C gekühlt und 200 mL einer wässrigen NaOH-Lösung (1 M) wurden hinzugetropft. Die Reaktionsmischung wurde filtriert und der Rückstand mit Ethylacetat (3 x 100 mL) gewaschen. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde *in vacuo* entfernt. Bei der Zugabe von Diethylether (100 mL) kristallisierte der Rückstand unter Kühlung aus. Das Produkt wurde abfiltriert, mit Diethylether (3 x 100 mL) gewaschen II-OI (I-**115**) wurde in einer Ausbeute von 94% (25.8 g, 170 mmol) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.05$ (CH/EA = 7:3) [KMnO₄, UV]. $[\alpha]_D^{20}$: +18.2 (*c* = 1.04, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.32 - 7.28 (m, 2H), 7.24 - 7.17 (m, 3H), 3.65 (dd,

J = 10.7, 3.9 Hz, 1H), 3.40 (dd, J = 10.7, 7.2 Hz, 1H), 3.18 – 3.01 (m, 1H), 2.80 (dd, J = 13.5, 5.5 Hz, 1H), 2.61 – 2.53 (m, 1H), 2.15 (bs, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 138.6, 129.4, 128.8, 126.6, 66.3, 54.4, 40.9. IR (ATR): \tilde{v} [cm⁻¹] = 3356, 3297, 3021, 2874, 2819, 2785, 2740, 2701, 1643, 1574, 1492, 1464, 1453, 1435, 1379, 1360, 1337, 1121, 1088, 1063, 1029, 992, 960, 905, 854, 831, 751, 696, 591, 552, 484, 461, 417. HRMS (ESI): berechnet für C₉H₁₄NO⁺[M+H⁺]: 152.1070, gefunden 152.1071. Die spektroskopischen Daten stimmen mit der Literatur überein.^[188]

(R)-4-Benzyloxazolidin-2-on (I-116)

C₁₀H₁₁NO₂ 177.2 g/mol

11.3 g (74.6 mmol, 1.0 Äq.) (R)-2-Amino-3-phenylpropan-1-ol (I-115) wurde in 149 mL Toluol gelöst und 57.0 mL einer wässrigen KOH-Lösung (2.6 M) wurden zugegeben. Bei 0 °C wurden 11.5 mL (14.1 g, 149 mmol, 2.0 Äq.) Chlorameisensäuremethylester, gelöst in 50 mL Toluol, zugetropft. Anschließend wurde die Reaktionsmischung für zwei Stunden bei Raumtemperatur gerührt. Die Phasen wurden getrennt und die wässrige Phase wurde dreimal mit Toluol (3 x 100 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Die Lösung wurde auf 100 mL eingeengt und es wurden 1.03 g (7.46 mmol, 10 mol%) Kaliumcarbonat hinzugefügt. Die Suspension wurde für 18 Stunden unter Rückfluss gerührt. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand in Ethylacetat (100 mL) aufgenommen. Die Lösung wurde mit Wasser und gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand durch Zugabe von Petrolether/Ethylacetat (8:2) auskristallisiert. Das Produkt I-116 wurde in einer Ausbeute von 82% (10.8 g, 61.1 mmol) in Form eines farblosen Feststoffs erhalten. **DC**: $R_f = 0.42$ (CH/EA = 3:7) [KMnO₄, UV]. $[\alpha]_D^{20}$: +49.8 (*c* = 1.03, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.37 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 7.20 – 7.12 (m, 2H), 5.00 (s, 1H), 4.48 (t, *J* = 8.3 Hz, 1H), 4.20 – 4.02 (m, 2H), 2.90 (dd, *J* = 13.6, 5.8 Hz, 1H), 2.85 (dd, *J* = 13.5, 5.8 Hz, 1H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 136.1, 129.2, 129.1, 127.4, 69.8, 53.9, 41.7. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3281, 3259, 2980, 2949, 2922, 1749, 1706, 1495, 1474, 1454, 1403, 1365, 1299, 1243, 1095, 1062, 1019, 942, 899, 772, 756, 706, 642, 549, 527, 483, 430. **HRMS** (ESI): berechnet für C₁₀H₁₁NNaO₂⁺ [M+Na⁺]: 200.0682, gefunden 200.0688.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[57]

(R)-4-Benzyl-3-propionyloxazolidin-2-on (I-102)

Es wurden 21.7 g (122 mmol, 1.0 Äq.) (*R*)-4-Benzyloxazolidin-2-on (I-**116**) in 544 mL trockenem THF unter Argonatmosphäre gelöst. Bei -78 °C wurden 53.9 mL (2.5 M in Hexan, 37.3 g, 135 mmol, 1.1 Äq.) *n*-Butyllithium zugetropft und die Lösung für 20 Minuten gerührt. Anschließend wurden 11.8 mL (12.5 g, 135 mmol, 1.1 Äq.) Propionylchlorid, gelöst in 61.0 mL trockenem THF, bei -78 °C zugetropft und die Lösung für 90 Minuten bei Raumtemperatur gerührt. Durch Zugabe von 200 mL gesättigter, wässriger Ammoniumchlorid-Lösung wurde die Reaktion abgebrochen. Die Phasen wurden getrennt, die wässrige Phase wurde mit Diethylether (3 x 100 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9/1 \rightarrow 7:3) gereinigt. Das Produkt I-**102** wurde in einer Ausbeute von 93% (26.6 g, 114 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.40$ (CH/EA = 8:2) [KMnO₄, UV]. $[\alpha]_D^{20}$: -75.2 (*c* = 1.11, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.40 - 7.34 (m, 2H), 7.33 - 7.27 (m, 1H), 7.26 - 7.21 (m, 2H), 4.79 - 4.60 (m, 1H), 4.31 - 4.01 (m, 2H), 3.34 (dd, *J* = 13.4, 3.4 Hz, 1H), 3.10 -

2.89 (m, 2H), 2.80 (dd, J = 13.4, 9.6 Hz, 1H), 1.24 (t, J = 7.3 Hz, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 174.2, 153.6, 135.5, 129.6, 129.1, 127.5, 66.4, 55.3, 38.1, 29.3, 8.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 3028, 2980, 2940, 2881, 1771, 1697, 1604, 1496, 1480, 1453, 1371, 1290, 1209, 1135, 1116, 1077, 1050, 1006, 955, 918, 840, 804, 760, 741, 700, 626, 593, 561, 503. **HRMS** (ESI): berechnet für C₁₃H₁₅NNaO₃⁺ [M+Na⁺]: 256.0944, gefunden 256.0945.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[58]

3-((4-Methoxybenzyl)oxy)propan-1-ol (I-117)

но ормв

$C_{11}H_{16}O_3 \\$

196.2 g/mol

12.3 mL (12.9 g, 0.170 mol, 1.0 Äq.) Propan-1,3-diol (I-105) wurden in 170 mL DMF unter Argonatmosphäre gelöst. Anschließend wurden bei 0 °C portionsweise 6.80 g (60 wt.% in Mineralöl, 0.170 mmol, 1.0 Äq.) Natriumhydrid zugegeben und die Suspension für 20 Minuten gerührt. 22.9 mL (0.170 mmol, 1.0 Äq.) 4-Methoxybenzylchlorid und 1.88 g (5.10 mmol, 3 mol%) Tetrabutylammoniumiodid wurden hinzugefügt und das Reaktionsgemisch für weitere 15 Minuten bei 0 °C gerührt. Die Lösung wurde auf Raumtemperatur erwärmt und für 18 Stunden gerührt. Durch die Zugabe von 500 mL Wasser wurde die Reaktion beendet und es folgte eine Extraktion mit Diethylether (3 x 200 mL). Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und (CH/EA 7:3 \rightarrow 1:1) gereinigt. das Rohprodukt säulenchromatographisch Der Alkohol I-117 wurde in einer Ausbeute von 43% (14.3 g, 72.9 mmol) in Form einer gelbfarbenen Flüssigkeit erhalten.

DC: $R_f = 0.19$ (CH/EA = 7:3) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.31 – 7.22 (m, 2H), 6.96 – 6.84 (m, 2H), 4.48 (s, 2H), 3.84 (s, 3H), 3.80 (t, J = 5.8 Hz, 2H), 3.67 (t, J = 5.8 Hz, 2H), 2.15 (bs, 1H), 1.88 (p, J = 5.8 Hz, 2H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.4, 130.3, 129.4, 114.0, 73.1, 69.3, 62.2, 55.4, 32.3. **IR** (ATR): \tilde{v} [cm⁻¹] = 3394, 2999, 2935, 2861, 2837, 1611, 1585, 1511, 1463, 1441, 1421, 1363,

1301, 1243, 1210, 1173, 1081, 1030, 972, 816, 754, 708, 637, 579, 512. **HRMS** (ESI): berechnet für $C_{11}H_{16}NaO_3^+$ [M+Na⁺]: 219.0998, gefunden 219.0992. Die spektroskopischen Daten stimmen mit der Literatur überein.^[62]

3-((4-Methoxybenzyl)oxy)propanal (I-103)

 $C_{11}H_{14}O_3 \\$

194.2 g/mol

9.26 mL (13.7 g, 110 mmol, 1.5 Äq.) Oxalylchlorid wurden unter Argonatmosphäre in 220 mL trockenem Dichlormethan gelöst. Anschließend wurden 12.8 mL (14.0 g, 179 mmol, 2.5 Äq.) DMSO, gelöst in 43.0 mL trockenem Dichlormethan, bei -78 °C zugetropft und die Lösung für 30 Minuten gerührt. Danach wurden eine Lösung von 14.1 g (71.9 mmol, 1.0 Äq.) 3-((4-Methoxybenzyl)oxy)propan-1-ol (I-117), gelöst in 55.0 mL trockenem Dichlormethan, zugetropft und das Reaktionsgemisch für weitere 30 Minuten bei -78 °C gerührt. Nach der Zugabe von 39.8 mL (29.1 g, 0.287 mol, 4.0 Äq.) Triethylamin wurde die Lösung für 10 Minuten bei -78 °C und 30 Minuten bei Raumtemperatur gerührt. Nach Beendigung der Reaktionszeit wurde das Gemisch mit Dichlormethan (100 mL) verdünnt und nacheinander mit Wasser, Salzsäure (2 M), gesättigter, wässriger Natriumhydrogencarbonat-Lösung und mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer in vacuo entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA 9:1 \rightarrow 7:3) gereinigt und der Aldehyd I-103 in einer Ausbeute von 78% (10.9 g, 56.3 mmol) in Form einer gelbfarbenen Flüssigkeit erhalten.

DC: $R_f = 0.42$ (CH/EA = 7:3) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 9.81 (t, J = 1.9 Hz, 1H), 7.56 – 7.02 (m, 2H), 6.99 – 6.66 (m, 2H), 4.48 (s, 2H), 3.97 – 3.35 (m, 5H), 2.70 (td, J = 6.1, 1.9 Hz, 2H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 201.3, 159.5, 130.1, 129.5, 114.0, 73.1, 63.7, 55.4, 44.1. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2998, 2958, 2935, 2904, 2862, 2836, 1723, 1696, 1611, 1585, 1510, 1463, 1442, 1422, 1394, 1362, 1301, 1243, 1173, 1157, 1139, 1083, 1029, 957, 814, 756, 708, 637, 569, 514. **HRMS** (ESI): berechnet für C₁₁H₁₄NaO₃⁺ [M+Na⁺]: 217.0837, gefunden 217.0835.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[62]

(*R*)-4-Benzyl-3-((2*R*,3*S*)-3-hydroxy-5-((4-methoxybenzyl)oxy)-2-methyl-pentanoyl)oxazolidin-2-on (I-118)

C₂₄H₂₉NO₆ 427.5 g/mol

In einem ausgeheizten Dreihalskolben mit Tropftrichter und Innenthermometer wurden 14.4 g (61.9 mmol, 1.1 Äq.) (R)-4-Benzyl-3-propionyloxazolidin-2-on (I-102) in 125 mL trockenem Dichlormethan unter Argonatmosphäre vorgelegt. Bei 0 °C wurden 67.5 mL (67.5 mmol, 1 M in Dichlormethan, 1.2 Äq.) Dibutyl(((trifluoromethyl)sulfonyl)oxy)boran so zugegeben, dass die Innentemperatur 2 °C nicht überstieg, wobei die Lösung eine weinrote Farbe annahm. Anschließend wurden 12.8 mL (13.1 g, 73.2 mmol, 1.3 Äq.) DIPEA erneut so zugegeben, dass die Innentemperatur 2 °C nicht überstieg, wobei die Farbe von weinrot zu hellgelb wechselte. Die Lösung wurde auf -78 °C gekühlt und 10.9 g (56.3 mmol, 1.0 Äq.) 3-((4-Methoxybenzyl)-oxy)propanal (I-103), gelöst in 25 mL trockenem Dichlormethan, wurden so zugetropft, dass die Innentemperatur -75 °C nicht überstieg. Das Reaktionsgemisch wurde für eineinhalb Stunden bei -78 °C gerührt und anschließend innerhalb von 30 Minuten auf 0 °C erwärmt und weitere 30 Minuten bei 0 °C gerührt. Die Reaktion wurde durch die Zugabe einer pH7-Puffer-Lösung (50 mL) gefolgt von Methanol (170 mL) abgebrochen. Es wurde eine Mischung aus einer Wasserstoffperoxid-Lösung (35% in Wasser, 30 mL) und Methanol (55 mL) hinzugefügt und für eine Stunde bei 0 °C gerührt. Das Gemisch wurde am Rotationsverdampfer unter vermindertem Druck eingeengt und der Rückstand mit Ethylacetat (3 x 300 mL) extrahiert. Die vereinten organischen Phasen wurden mit Salzsäure (1 M), gesättigter, wässriger Natriumhydrogencarbonat-Lösung und gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2 \rightarrow 1:1) gereinigt. Der Alkohol I-**118** wurde in einer Ausbeute von 81% (19.6 g, 45.7 mmol, *d.r.* 94:6) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.21$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_D^{20}$: -46.9 (c = 1.28, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.44 – 7.04 (m, 5H), 6.97 – 6.70 (m, 4H), 4.75 – 3.77 (m, 1H), 4.46 (s, 2H), 4.25 – 4.09 (m, 3H), 3.88 – 3.77 (m, 4H), 3.75 – 3.55 (m, 2H), 3.42 (s, 1H), 3.29 (d, J = 3.4 Hz, 1H), 3.25 (d, J = 3.4 Hz, 1H), 2.10 – 1.95 (m, 1H), 1.94 – 1.84 (m, 1H), 1.30 (d, J = 7.0 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 176.7, 159.4, 153.2, 135.3, 130.2, 129.5, 129.5, 129.0, 127.5, 113.9, 73.0, 70.6, 68.1, 66.3, 55.4, 55.3, 42.7, 37.9, 33.8, 11.3. **IR** (ATR): \tilde{v} [cm⁻¹] = 3479, 2934, 2862, 2837, 1774, 1691, 1611, 1585, 1512, 1479, 1454, 1382, 1364, 1301, 1242, 1206, 1176, 1090, 1030, 1011, 968, 818, 760, 749, 700, 637, 589, 571, 506. **HRMS** (ESI): berechnet für C₂₄H₂₉NNaO₆⁺ [M+Na⁺]: 450.1887, gefunden 450.1887.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[59]

(*R*)-4-Benzyl-3-((2*R*,3*S*)-3-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)-2-methylpentanoyl)oxazolidin-2-on (I-101)

C₃₀H₄₃NO₆Si

541.8 g/mol

19.6 g (0.045 mol, 1.00 Äq.) des Alkohols I-118 wurden in 23 mL DMF gelöst und mit 18.7 g (0.274 mol, 6.00 Äq.) Imidazol versetzt. Anschließend wurden 20.7 g (0.137 mol, 3.00 Äq.) tert-Butyldimethylsilylchlorid zugegeben und die Reaktionsmischung für 18 Stunden bei Raumtemperatur gerührt. Durch die Zugabe von Wasser (200 mL) wurde die Reaktion beendet und anschließend wurde die Lösung mit Diethylether (150 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1 \rightarrow 8:2) gereinigt. Der Silvlether I-101 wurde in einer Ausbeute von 93% (23.1 g, 42.6 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.61$ (CH/EA = 7:3) [KMnO₄]. [α]²⁰_D: -60.0 (*c* = 1.03, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.37 - 7.14 (m, 7H), 6.89 - 6.80 (m, 2H), 4.57 - 4.46 (m, 1H), 4.43 - 4.27 (m, 2H), 4.14 - 4.08 (m, 1H), 4.05 (dd, *J* = 9.0, 2.2 Hz, 1H), 3.93 - 3.81 (m, 2H), 3.78 (s, 3H), 3.59 (dt, *J* = 9.3, 6.3 Hz, 1H), 3.48 (dt, *J* = 9.3, 6.3 Hz, 1H), 3.23 (dd, *J* = 13.4, 3.3 Hz, 1H), 2.74 (dd, *J* = 13.3, 9.6 Hz, 1H), 1.98 - 1.75 (m, 2H), 1.24 (d, *J* = 6.9 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 175.7, 159.2, 153.1, 135.6, 130.9, 129.6, 129.4, 129.0, 127.4, 113.9, 72.7, 71.2, 66.1, 66.0, 55.7, 55.4, 43.3, 37.9, 35.3, 26.0, 18.2, 13.8, -4.2, -4.6. IR (ATR): \tilde{v} [cm⁻¹] = 2953, 2929, 2884, 2855, 1778, 1693, 1612, 1585, 1512, 1461, 1381, 1360, 1349, 1300, 1245, 1207, 1179, 1103, 1034, 1005, 968, 938, 833, 773, 701, 665, 636, 591, 571, 506. HRMS (ESI): berechnet für C₃₀H₄₃NNaO₆Si⁺ [M+Na⁺]: 564.2752, gefunden 564.2748.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[59]

(2S,3S)-3-((*tert*-Butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)-2-methylpentan-1-ol (I-119)

 $C_{20}H_{36}O_4Si$

368.5 g/mol

Es wurden 1.40 g (1.90 mmol, 1.0 Äq.) des Silylethers I-101 in einem Gemisch aus 22 mL Diethylether und 1.4 mL Methanol unter Argonatmosphäre gelöst. Das Reaktionsgemisch wurde auf 0 °C gekühlt und 169 mg (7.75 mmol, 4.0 Äq.) Lithiumborhydrid zugegeben. Die Lösung wurde für zwei Stunden bei 0 °C gerührt, anschließend auf Raumtemperatur erwärmt und für eine weitere Stunde gerührt. Anschließend wurde das Gemisch erneut auf 0 °C gekühlt und die Reaktion durch die Zugabe von Salzsäure (0.25 M, 10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1 \rightarrow 7:3)

gereinigt. Der primäre Alkohol I-**119** wurde in einer Ausbeute von 70% (490 mg, 1.33 mmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.55$ (CH/EA = 7:3) [KMnO₄]. [α]²⁰_D: -9.6 (c = 1.04, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.30 – 7.17 (m, 2H), 6.91 – 6.83 (m, 2H), 4.48 – 4.28 (m, 2H), 3.97 – 3.87 (m, 1H), 3.81 (s, 3H), 3.69 (dd, J = 10.7, 8.7 Hz, 1H), 3.56 – 3.41 (m, 3H), 2.01 – 1.89 (m, 1H), 1.85 – 1.70 (m, 2H), 0.91 – 0.83 (m, 9H), 0.81 (d, J = 7.0 Hz, 3H), 0.10 (s, 3H), 0.06 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 130.7, 129.4, 113.9, 73.0, 72.8, 67.0, 65.9, 55.4, 40.1, 32.5, 26.0, 18.1, 12.6, -4.3, -4.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3453, 2954, 2929, 2883, 2856, 1612, 1586, 1513, 1462, 1442, 1406, 1385, 1360, 1301, 1248, 1173, 1089, 1037, 939, 835, 774, 668, 567, 515. **HRMS** (ESI): berechnet für C₂₀H₃₆NaO₄Si⁺[M+Na⁺]: 391.2275, gefunden 391.2278. Die spektroskopischen Daten stimmen mit der Literatur überein.^[59]

(2*S*,3*S*)-3-((*tert*-Butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)-2-methylpentan-1-ol (I-100)

C₂₀H₃₄O₄Si 366.6 g/mol

1.13 mL (1.67 g, 13.1 mmol, 1.5 Äq.) Oxalylchlorid wurden unter Argonatmosphäre in 27 mL trockenem Dichlormethan gelöst, 1.56 mL (1.71 g, 21.9 mmol, 2.5 Äq.) DMSO, gelöst in 5.0 mL trockenem Dichlormethan, bei -78 °C zugegeben und die Lösung für 30 Minuten gerührt. Anschließend wurde eine Lösung von 3.23 g (8.76 mmol, 1.00 Äq.) des Alkohols I-**119**, gelöst in 7.0 mL trockenem Dichlormethan, zugetropft und das Reaktionsgemisch für weitere 30 Minuten bei -78 °C gerührt. Nach der Zugabe von 4.86 mL (3.55 g, 35.1 mmol, 4.0 Äq.) Triethylamin wurde die Lösung für 10 Minuten bei -78 °C und 30 Minuten bei Raumtemperatur gerührt. Die Lösung wurde mit 50 mL Dichlormethan verdünnt und nacheinander mit Wasser, Salzsäure (2 M), gesättigter, wässriger Natriumhydrogencarbonat-Lösung und mit gesättigter, wässriger Natriumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer *in vacuo* entfernt.

Der Rückstand wurde säulenchromato-graphisch (CH/EA 9:1 \rightarrow 7:3) gereinigt und der Aldehyd I-**100** in einer Ausbeute von 70% (2.25 g, 6.14 mmol) in Form einer farblosen Flüssigkeit erhalten.

DC: $R_f = 0.62$ (CH/EA = 9:1) [KMnO₄]. [α]²⁰_D: +1.2 (*c* = 1.12, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 9.77 (d, *J* = 0.9 Hz, 1H), 7.32 – 7.08 (m, 2H), 6.92 – 6.79 (m, 2H), 4.44 (d, *J* = 11.5 Hz, 1H), 4.38 (d, *J* = 11.5 Hz, 1H), 4.33 – 4.23 (m, 1H), 3.81 (s, 3H), 3.59 – 3.03 (m, 2H), 2.49 – 2.42 (m, 1H), 1.85 – 1.64 (m, 2H), 1.05 (d, *J* = 7.0 Hz, 3H), 0.86 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 205.3, 159.4, 130.5, 129.4, 114.0, 72.8, 69.5, 66.5, 55.4, 51.8, 34.8, 25.9, 18.2, 8.1, -4.3, -4.4. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2929, 2884, 2855, 1725, 1688, 1612, 1586, 1512, 1462, 1442, 1386, 1361, 1301, 1246, 1173, 1081, 1034, 1004, 954, 940, 832, 772, 667, 514. **HRMS** (ESI): berechnet für C₂₀H₃₄NaO₄Si⁺ [M+Na⁺]: 389.2119, gefunden 389.2120. Die spektroskopischen Daten stimmen mit der Literatur überein.^[59]

(3*R*,4*S*,5*S*)-5-((*tert*-Butyldimethylsilyl)oxy)-7-((4-methoxybenzyl)oxy)-4-methylhept-1-en-3-ol (I-120a)

$C_{22}H_{38}O_4Si$

394.6 g/mol

Zunächst wurden 19.9 mL (19.5 g, 19.9 mmol, 1 M in THF, 1.3 Äq.) einer Vinylmagnesiumbromid-Lösung (I-**99**) unter Argonatmosphäre in 46 mL trockenem THF vorgelegt. Bei 0 °C wurden 5.60 g (15.3 mmol, 1.0 Äq.) des Aldehyds I-**100**, gelöst in 36 mL trockenem THF, zugetropft. Das Reaktionsgemisch wurde für zwei Stunden bei 0 °C gerührt und anschließend durch die Zugabe von gesättigter, wässriger Natriumchlorid-Lösung beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Allylalkohol I-**120a** wurde in einer Ausbeute von 64% (3.88 g, 9.83 mmol) in Form einer farblosen

Flüssigkeit erhalten. Das andere Diastereomer I-**120b** konnte in einer Ausbeute von 18% (1.10 g, 2.79 mmol) in Form einer farblosen Flüssigkeit erhalten werden.

DC: $R_f = 0.52$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_D^{20}$: +10.2 (c = 1.06, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.25 – 7.20 (m, 2H), 6.91 – 6.85 (m, 2H), 5.83 (ddd, J = 17.2, 10.6, 5.2 Hz, 1H), 5.26 (dt, J = 17.2, 1.7 Hz, 1H), 5.12 (dt, J = 10.6, 1.7 Hz, 1H), 4.44 (d, J = 11.6 Hz, 1H), 4.38 (d, J = 11.6 Hz, 1H), 4.34 – 4.26 (m, 1H), 4.01 (ddd, J = 7.5, 5.6, 3.5 Hz, 1H), 3.81 (s, 3H), 3.44 (t, J = 6.4 Hz, 2H), 2.60 (s, 1H), 1.93 – 1.73 (m, 2H), 1.70 – 1.59 (m, 1H), 0.89 (s, 9H), 0.88 (d, J = 7.1 Hz, 3H), 0.09 (s, 3H), 0.09 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 140.3, 130.6, 129.4, 114.5, 114.0, 75.0, 74.0, 72.8, 66.7, 55.4, 41.7, 34.7, 26.0, 18.2, 7.3, -3.8, -4.3. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3445, 2954, 2929, 2885, 2855, 1612, 1586, 1512, 1462, 1441, 1386, 1361, 1301, 1246, 1172, 1085, 1034, 1003, 920, 832, 773, 666, 570, 513. HRMS (ESI): berechnet für C₂₂H₃₈NaO₄Si⁺ [M+Na⁺]: 417.2432, gefunden 417.2433.

(3R,4R,5S)-7-((4-Methoxybenzyl)oxy)-4-methylhept-1-ene-3,5-diol (I-98)

 $C_{16}H_{24}O_4$

280.4 g/mol

6.70 g (16.9 mmol, 1.0 Äq.) des Alkohols I-**120a** wurden in 170 mL Methanol gelöst und 420 mg (2.21 mmol, 13 mol%) *para*-Toluolsulfonsäure Monohydrat zugegeben. Das Gemisch wurde für zwei Stunden bei 40 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt, das Reaktionsgemisch in 50 mL Dichlormethan aufgenommen und mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung gewaschen. Die wässrige Phase wurde mit Dichlormethan (3 x 50 mL) extrahiert, die vereinten organischen Phasen wurden über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter verminderten Druck entfernt und das Rohprodukt säulenchromatographisch (CH/EA 1:1) gereinigt. Das Diol I-**98** wurde in einer Ausbeute von 90% (4.30 g, 15.3 mmol) in Form einer farblosen Flüssigkeit erhalten.

DC: $\mathbf{R}_f = 0.37$ (CH/EA = 6:4) [KMnO4]. $[\alpha]_D^{20}$: +30.4 (c = 1.06, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.26 – 7.22 (m, 2H), 6.91 – 6.85 (m, 2H), 5.85 (ddd, J = 17.3, 10.6, 5.0 Hz, 1H), 5.27 (td, J = 17.2, 1.7 Hz, 1H), 5.14 (dt, J = 10.6, 1.7 Hz, 1H), 4.46 (s, 2H), 4.45 – 4.38 (m, 1H), 4.12 (td, J = 9.5, 2.2 Hz, 1H), 3.81 (s, 3H), 3.70 (dt, J = 9.5, 4.0 Hz, 1H), 3.63 (dt, J = 9.3, 3.9 Hz, 1H), 2.91 (bs, 2H), 2.00 – 1.86 (m, 1H), 1.62 – 1.50 (m, 2H), 0.93 (s, 1H), 0.92 (d, J = 7.0 Hz, 2H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.5, 139.9, 130.1, 129.5, 114.5, 114.1, 77.0, 76.1, 73.2, 69.4, 55.4, 42.6, 34.8, 5.4. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3396, 2940, 2861, 2837, 1611, 1585, 1511, 1461, 1440, 1422, 1359, 1301, 1244, 1210, 1173, 1151, 1087, 1031, 993, 973, 922, 817, 756, 798, 637, 570, 513. **HRMS** (ESI): berechnet für C₁₆H₂₄NaO₄⁺ [M+Na⁺]: 303.1567, gefunden 303.1568.

(4*S*,5*R*,6*R*)-4-(2-((4-Methoxybenzyl)oxy)ethyl)-2-(4-methoxyphenyl)-5-methyl-6-vinyl-1,3-dioxan (I-122)

C₂₄H₃₀O₅ 398.5 g/mol

4.07 g (14.5 mmol, 1.0 Äq.) des Diols I-**98** wurden in 77 mL Dichlormethan gelöst. Anschließend wurden 3.71 mL (3.97 g, 21.8 mmol, 1.5 Äq.) 1-(Dimethoxymethyl)-anisol und 268 mg (1.04 mmol, 7 mol%) PPTS nacheinander zugegeben. Die Reaktionsmischung wurde für 18 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2) gereinigt. Das Produkt I-**122** wurde in einer Ausbeute von 95% (5.77 g, 13.1 mmol, 95% Reinheit, *d.r.* >99:1) in Form einer farblosen Flüssigkeit erhalten.

DC: $R_f = 0.58$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_D^{20}$: -27.2 (c = 1.01, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.46 - 7.33 (m, 2H), 7.30 - 7.22 (m, 2H), 6.94 - 6.72 (m,

4H), 5.82 (ddd, J = 17.1, 10.4, 5.7 Hz, 1H), 5.53 (s, 1H), 5.32 (dd, J = 17.4, 1.7 Hz, 1H), 5.20 (dd, J = 17.4, 1.7 Hz, 1H), 4.45 (q, J = 11.5 Hz, 3H), 4.15 – 4.05 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.64 – 3.58 (m, 1H), 3.58 – 3.51 (m, 1H), 1.99 – 1.87 (m, 1H), 1.78 – 1.62 (m, 1H), 1.58 – 1.51 (m, 1H), 0.96 (dd, J = 6.9, 1.5 Hz, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 160.0, 159.3, 136.9, 132.1, 130.7, 129.4, 127.6, 115.3, 114.5, 113.7, 101.3, 81.3, 77.4, 72.8, 66.2, 55.4, 55.4, 35.9, 33.3, 6.5. IR (ATR): \tilde{v} [cm⁻¹] = 3066, 2954, 2935, 2903, 2857, 2836, 1697, 1684, 1612, 1587, 1511, 1461, 1441, 1423, 1394, 1361, 1346, 1301, 1244, 1214, 1169, 1160, 1097, 1066, 1029, 927, 870, 786, 757, 735, 702, 635, 596, 576, 515, 440. HRMS (ESI): berechnet für C₂₄H₃₀NaO₅⁺ [M+Na⁺]: 421.1985, gefunden 421.1985.

(4*S*,5*R*,6*S*)-6-(2-((4-Methoxybenzyl)oxy)ethyl)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxane-4-carbaldehyd (I-97)

 $C_{23}H_{28}O_{6}$

400.5 g/mol

5.50 g (10.1 mmol, 1.0 Äq.) des Alkens I-**122** wurden in einem Gemisch aus 77 mL 1,4-Dioxan und 25 mL Wasser (3:1) gelöst. Anschließend wurden nacheinander 2.36 mL (2.17 g, 20.0 mmol, 2.0 Äq.) 2,6-Lutidin, 8.65 g (40.0 mmol, 4.0 Äq.) Natriumperiodat und 1.22 mL (4% in Wasser, 0.20 mmol, 2.0 mol%) einer OsO4-Lösung zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und dann über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 20 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumthiosulfat-Lösung (50 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurde mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Produkt I-**97** wurde in einer Ausbeute von 66% (2.64 g, 6.59 mmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.41$ (CH/EA = 6:4) [KMnO₄]. $[\alpha]_D^{20}$: -58.6 (c = 1.16, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃) $\delta = 9.69$ (s, 1H), 7.54 – 7.33 (m, 2H), 7.31 – 7.18 (m, 2H), 6.98 – 6.58 (m, 4H), 5.55 (s, 1H), 4.50 – 4.38 (m, 2H), 4.32 (d, J = 2.7 Hz, 1H), 4.11 (ddd, J = 8.9, 4.5, 2.2 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.61 (ddd, J = 9.4, 8.3, 4.9 Hz, 1H), 3.53 (dt, J = 9.4, 5.5 Hz, 1H), 2.03 (qt, J = 6.9, 2.3 Hz, 1H), 1.99 – 1.86 (m, 1H), 1.78 – 1.67 (m, 1H), 1.01 (d, J = 6.9 Hz, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 202.4, 160.3, 159.4, 130.6, 130.5, 129.4, 129.4, 129.4, 127.7, 113.9, 113.9, 113.8, 101.7, 84.9, 72.8, 65.8, 55.4, 55.4, 33.5, 32.8, 7.2. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2955, 2934, 2911, 2857, 2836, 1735, 1612, 1586, 1512, 1461, 1441, 1402, 1370, 1345, 1301, 1243, 1171, 1148, 1107, 1092, 1070, 1028, 1009, 997, 883, 826, 771, 757, 735, 710, 655, 634, 571, 545, 514, 479, 442, 415. **HRMS** (ESI): berechnet für C₂₃H₂₈NaO₆⁺ [M+Na⁺]: 423.1778, gefunden 423.1777.

tert-Butyl 3-hydroxypent-4-enoat (I-81)

 $C_9H_{16}O_3$

172.2 g/mol

Zunächst wurden 57.3 mL (0.409 mol, 1.37 Äq.) Diisopropylamin in 500 mL THF vorgelegt und die Lösung wurde auf -78 °C gekühlt. Anschließend wurden 163 mL (2.5 M in Hexan, 113 g, 0.409 mol, 1.37 Äq.) *n*-Butyllithium über zehn Minuten zugegeben. Nachdem das Reaktionsgemisch für 30 Minuten bei -78 °C gerührt wurde, wurden 40.0 mL (0.298 mol, 1.00 Äq.) *tert*-Butylacetat (I-83) zugegeben und die Lösung für eineinhalb Stunden bei -78 °C gerührt. Nach Zugabe von 21.9 mL (0.328 mmol, 1.10 Äq.) Acrolein (I-82), wurde das Gemisch erneut für eine Stunde bei -78 °C gerührt. Durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (100 mL) wurde die Reaktion beendet. Die wässrige Phase wurde mit Diethylether (3 x 100 mL) extrahiert und die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung sewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt. Eine Vakuumdestillation (120 °C, 4 mbar)

lieferte das Produkt I-**81** in einer Ausbeute von 61% (31.2 g, 181 mmol) in Form einer farblosen Flüssigkeit.

DC: $R_f = 0.26$ (CH/EA = 8:2) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 5.87 (ddd, J = 17.2, 10.5, 5.4 Hz, 1H), 5.30 (dt, J = 17.2, 1.5 Hz, 1H), 5.14 (dt, J = 10.5, 1.4 Hz, 1H), 4.57 – 4.30 (m, 1H), 3.10 (bs, 1H), 2.50 (dd, J = 16.2, 4.0 Hz, 1H), 2.42 (dd, J = 16.2, 8.2 Hz, 1H), 1.46 (s, 9H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 171.8, 139.1, 115.3, 81.6, 69.2, 42.2, 28.3.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[189]

tert-Butyl-(S)-3-acetoxypent-4-enoat (I-123)

 $C_{11}H_{18}O_4$

214.3 g/mol

15.00 g (87.1 mmol, 1.00 Äq.) *tert*-Butyl 3-hydroxypent-4-enoat (I-**81**) wurden unter Argonatmosphäre in 300 mL Pentan gelöst. Anschließend wurden 14.40 g Molekularsieb (4 Å, 165 mg pro mmol Substrat, 1.00 Äq.), 9.60 g Amano-Lipase (55 mg pro mmol Substrat, 2.00 Äq.) und 24.2 mL (22.5 g, 0.261 mmol, 3.00 Äq.) Vinylacetat nacheinander zugegeben. Die Suspension wurde für drei Stunden bei 30 °C gerührt. Der Feststoff wurde abfiltriert und das Filtrat am Rotationsverdampfer unter vermindertem Druck eingeengt, wobei die Wasserbadtemperatur 45 °C und der Druck mindestens 40 mbar betrug. Nach säulenchromatographischen Reinigung (CH/EA 9:1 → 1:1) des Rückstands wurde das Produkt I-**123** in einer Ausbeute von 50% (9.35 g, 43.6 mmol) in Form einer farblosen Flüssigkeit erhalten. Der Enantiomerenüberschuss wurde nach der nächsten Stufe bestimmt.

DC: $R_f = 0.51$ (CH/EA = 8:2) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 5.82 (ddd, J = 17.0, 10.5, 6.2 Hz, 1H), 5.62 – 5.57 (m, 1H), 5.33 – 5.26 (m, 1H), 5.23 – 5.17 (m, 1H), 2.59 (dd, J = 15.3, 8.1 Hz, 1H), 2.52 (dd, J = 15.3, 5.7 Hz, 1H), 2.05 (s, 3H), 1.43 (s, 9H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 169.9, 169.1, 135.4, 117.4, 81.2, 71.2, 40.9, 28.2, 21.2.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[190]

tert-Butyl-(S)-3-hydroxypent-4-enoat (I-114)

 $C_9H_{16}O_3$

172.2 g/mol

8.41 g (39.3 mmol, 1.00 Äq.) *tert*-Butyl-(*S*)-3-acetoxypent-4-enoat (I-**123**) wurden in 81 mL Methanol vorgelegt. Die Lösung wurde auf 0 °C gekühlt und 10.8 g (78.4 mmol, 2.00 Äq.) Kaliumcarbonat wurden dazugegeben. Die Suspension wurde 30 Minuten bei 0 °C gerührt, filtriert und mit Ethylacetat (50 mL) gewaschen. Das Filtrat wurde mit Wasser und gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und erneut filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Produkt I-**114** konnte in einer Ausbeute von 73% (4.92 g, 28.6 mmol, 95% ee) in Form einer farblosen Flüssigkeit erhalten werden.

DC: $R_f = 0.25$ (CH/EA = 8:2) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 5.87 (ddd, J = 17.3, 10.5, 5.5 Hz, 1H), 5.30 (dt, J = 17.2, 1.5 Hz, 1H), 5.14 (dt, J = 10.5, 1.4 Hz, 1H), 4.59 – 4.40 (m, 1H), 3.02 (s, 1H), 2.51 (dd, J = 16.2, 4.0 Hz, 1H), 2.43 (dd, J = 16.2, 8.2 Hz, 1H), 1.46 (s, 9H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 171.8, 139.1, 115.3, 81.6, 69.2, 42.3, 28.3. **HPLC**: Säule: CHIRALPAK IA, Heptan/EtOH 95:5, flow 0.8 mL/min, 220 nm; 95% *ee* ((*S*)-Enantiomer $t_r = 6.75$ min; (*R*)-Enantiomer $t_r = 7.65$ min; Racemat: 6.81 min; 7.71 min).

Die spektroskopischen Daten stimmen mit der Literatur überein.^[191]

tert-butyl-(S)-3-((tert-butyldimethylsilyl)oxy)pent-4-enoat (I-113)

 $C_{15}H_{30}O_3Si$

4.93 g (28.6 mmol, 1.00 Äq.) des Alkohols I-**114** wurden in 29 mL DMF vorgelegt. Nacheinander wurden 5.85 g (85.9 mmol, 3.00 Äq.) Imidazol und 6.47 g (42.9 mmol, 1.50 Äq.) *tert*-Butyldimethylsilylchlorid zugegeben. Das Gemisch wurde für 18 Stunden bei Raumtemperatur gerührt, die Reaktion durch Zugabe von Wasser (50 mL) beendet und die wässrige Phase mit Ethylacetat (3 x 50 mL) extrahiert. Die vereinten Phasen wurden über Natriumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck entfernt. Eine säulenchromatographische Reinigung (CH/EA 9:1) des Rückstands ergab den Silylether I-**113** in einer Ausbeute von 91% (7.47 g, 26.1 mmol) in Form einer farblosen Flüssigkeit.

DC: $R_f = 0.51$ (CH/EA = 95:5) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 5.84 (ddd, J = 17.2, 10.4, 6.2 Hz, 1H), 5.21 (dt, J = 17.2, 1.5 Hz, 1H), 5.05 (dt, J = 10.4, 1.7 Hz, 1H), 4.63 – 4.44 (m, 1H), 2.46 (dd, J = 14.7, 7.3 Hz, 1H), 2.34 (dd, J = 14.7, 5.8 Hz, 1H), 1.44 (s, 9H), 0.88 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 170.5, 140.7, 114.5, 80.6, 71.0, 45.0, 28.3, 26.0, 18.3, -4.2, -4.8. Die spektroskopischen Daten stimmen mit der Literatur überein.^[192]

(S)-3-((tert-Butyldimethylsilyl)oxy)pent-4-enal (I-80)

 $C_{11}H_{22}O_2Si$

214.4 g/mol

8.58 g (29.9 mmol, 1.00 Äq.) des Silylethers I-**113** wurden in 300 mL Dichlormethan unter Argonatmosphäre gelöst. Die Lösung wurde auf -78 °C gekühlt und 27.5 mL (1.2 M in Toluol, 23.6 g, 32.9 mmol) einer Diisobutylaluminiumhydrid-Lösung wurden langsam zugetropft. Nachdem die Lösung eine Stunde bei -78 °C gerührt und anschließend auf Raumtemperatur aufgewärmt wurde, wurde die Reaktion durch die Zugabe einer gesättigten wässrigen Kalium/Natrium-Tartrat-Lösung (110 mL) und Ethylacetat (30 mL) beendet. Es wurden 5.5 mL Glycerin (0.2 mL/mL DIBAL-H) zugegeben und die Lösung für 18 Stunden gerührt. Nach Extraktion mit Dichlormethan (3 x 50 mL) wurden die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1 → 8:2) gereinigt. Der Aldehyd I-**80** wurde in einer Ausbeute von 84% (5.40 g, 25.2 mmol) in Form einer farblosen Flüssigkeit erhalten. **DC**: $R_f = 0.49$ (CH/EA = 8:2) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 9.78 (t, J = 2.2 Hz, 1H), 5.88 (ddd, J = 17.2, 10.4, 5.8 Hz, 1H), 5.26 (dt, J = 17.1, 1.4 Hz, 1H), 5.12 (dt, J = 10.4, 1.4 Hz, 1H), 4.73 – 4.49 (m, 1H), 2.61 (ddd, J = 15.7, 6.8, 2.7 Hz, 1H), 2.52 (ddd, J = 15.7, 5.0, 2.2 Hz, 1H), 0.88 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 201.6, 140.2, 115.0, 69.6, 51.4, 25.9, 18.3, -4.2, -4.9. Die spektroskopischen Daten stimmen mit der Literatur überein.^[193]

(S)-3-((tert-Butyldimethylsilyl)oxy)-1-(diphenylphosphoryl)pent-4-en-1-on (2-7)

 $C_{23}H_{33}O_3PSi$

416.6 g/mol

5.40 g (25.2 mmol, 1.00 Äq.) des Aldehyds I-**80** wurden unter Argonatmosphäre in 63 mL THF gelöst und 4.94 g (24.4 mmol, 1.00 Äq.) Diphenylphosphanoxid wurden zugegeben. Das Reaktionsgemisch wurde für 18 Stunden unter Rückfluss gerührt. Das Lösungsmittel wurde anschließend am Rotationsverdampfer *in vacuo* entfernt. Der Rückstand wurde säulenchromatographisch (DCM/EA 4:6) gereinigt und das Phosphanoxid I-**112** wurde in einer Ausbeute von 96% (10.1 g, 24.3 mmol, *d.r.* 60:40) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.31$ (DCM/EA = 4:6) [KMnO₄, UV]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 8.01 – 7.65 (m, 4H), 7.60 – 7.38 (m, 6H), 5.84 (ddd, J = 17.1, 10.5, 4.9 Hz, 0.6H), 5.75 (ddd, J = 17.2, 10.3, 6.9 Hz, 0.4H), 5.27 (dt, J = 17.2, 1.6 Hz, 0.6H), 5.22 – 5.12 (m, 1H), 5.06 (dt, J = 10.4, 1.2 Hz, 0.4H), 4.82 (dt, J = 11.7, 2.1 Hz, 0.6H), 4.68 (ddd, J = 11.0, 3.8, 1.5 Hz, 0.4H), 4.63 – 4.55 (m, 0.6H), 4.52 – 4.43 (m, 0.4H), 2.18 – 2.10 (m, 0.4H), 2.03 – 1.96 (m, 0.6H), 1.92 – 1.83 (m, 0.6H), 1.79 – 1.68 (m, 0.4H), 0.87 (s, 3H), 0.86 (s, 6H), 0.08 (s, 1H), 0.04 (s, 1H), 0.02 (s, 2H), 0.02 (s, 2H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 140.7, 139.0, 132.4, 132.4, 132.4, 132.4, 132.1, 132.0, 131.8, 131.7, 131.7, 131.7, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 115.5, 115.5, 75.7, 75.6, 72.6, 72.5, 70.5, 69.9, 68.5, 67.9, 37.8, 36.3, 26.0, 25.9, 18.2, 18.2, -3.9, -4.5, -4.6, -5.3. Die spektroskopischen Daten stimmen mit der Literatur überein.^[44]

((6S)-2,2-Dimethyl-6-vinyl-1,3-dioxan-4-yl)diphenylphosphanoxid (I-62a)

$C_{20}H_{23}O_{3}P$

342.4 g/mol

10.0 g (24.0 mmol, 1.00 Äq.) des Phosphanoxids I-112 wurden in 240 mL Methanol gelöst und 594 mg (3.12 mmol, 0.13 Äq.) p-Toluolsulfonsäure Monohydrat wurden hinzugefügt. Die Lösung wurde für zweieinhalb Stunden bei 40 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer unter verminderten Druck entfernt und der Rückstand in 75.3 mL (75.3 g, 0.600 mol, 25.0 Äq.) 2,2-Dimethoxypropan gelöst. Das Reaktionsgemisch wurde zwei Stunden bei einem Druck von 330 mbar und einer Wasserbadtemperatur von 45 °C am Rotationsverdampfer rotiert. Das Gemisch wurde Dichlormethan (50 mL) verdünnt mit mit und gesättigter, wässriger Natriumhydrogencarbonat-Lösung gewaschen. Die wässrige Phase wurde mit Dichlormethan (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden über Natriumsulfat getrocknet, filtriert und das Lösungsmittel wurde am Rotationsverdampfer entfernt. Der Rückstand wurde säulenchromatographisch (DCM/EA 4:6) gereinigt. Das Produkt I-62a wurde in einer Ausbeute von 96% (7.88 g, 23.0 mmol, d.r. 56:44) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.64$ (DCM/EA = 4:6) [KMnO₄, UV]. ¹**H-NMR** (600 MHz, C₆D₆): δ [ppm] = 8.25 – 7.93 (m, 4H), 7.15 – 7.06 (m, 6H), 5.67 (ddd, J = 17.3, 10.6, 5.3 Hz, 0.3H), 5.58 (ddd, J = 17.3, 10.6, 5.1 Hz, 0.7H), 5.13 – 4.99 (m, 1H), 4.93 – 4.81 (m, 1H), 4.78 – 4.65 (m, 1H), 4.26 – 4.15 (m, 0.3H), 4.15 – 4.01 (m, 0.7H), 2.42 – 2.30 (m, 0.3H), 2.12 – 2.04 (m, 0.7H), 2.03 – 1.93 (m, 0.3H), 1.76 – 1.62 (m, 0.7H), 1.37 (s, 2H), 1.24 (s, 1H), 1.22 (s, 1H), 1.14 (s, 2H). ¹³C NMR (151 MHz, C₆D₆) δ [ppm] = 138.6, 138.4, 132.9, 132.9, 132.8, 132.7, 131.9, 131.9, 131.8, 131.8, 131.7, 131.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 128.4, 128.3, 114.8, 114.5, 101.5, 101.4, 99.5, 99.5, 70.2, 70.1, 69.7, 69.1, 67.7, 67.7, 66.4, 65.7, 31.1, 30.2, 30.0, 25.1, 25.0, 19.1.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[44]

(2R,3S)-2-(hydroxymethyl)-5-methoxytetrahydrofuran-3-ol (I-125)

3.00 g (22.4 mmol, 1.0 Äq.) 2-Deoxy-*D*-ribose (I-**124**) wurden in 38 mL Methanol gelöst und 0.111 mL (1.57 mmol, 7 mol%) Acetylchlorid wurden hinzugefügt. Nachdem das Reaktionsgemisch für eine Stunde bei Raumtemperatur gerührt wurde, wurden 1.32 g (15.7 mmol, 0.7 Äq.) Natriumhydrogencarbonat zugegeben und die Suspension für weitere fünf Minuten gerührt. Anschließend wurde das Reaktionsgemisch über Celite filtriert, wobei der Rückstand mehrmals mit Methanol (3 x 10 mL) gewaschen und das Filtrat am Rotationsverdampfer *in vacuo* bei einer Wasserbadtemperatur von 40 °C eingeengt wurde. Das Produkt I-**125** wurde ohne weitere Aufreinigung in quantitativer Ausbeute (3.30 g, 22.3 mmol, *d.r.* 58:42) in Form eines orangefarbenen Öls erhalten.

DC: $R_f = 0.23$ (DCM/MeOH = 9:1) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 5.14 – 5.05 (m, 2H), 4.54 – 4.43 (m, 1H), 4.19 – 4.08 (m, 2H), 4.03 (q, *J* = 3.8 Hz, 1H), 3.74 – 3.57 (m, 4H), 3.38 (s, 3H), 3.37 (s, 3H), 3.03 – 2.53 (m, 4H), 2.26 (ddd, *J* = 13.9, 6.9, 2.1 Hz, 1H), 2.18 – 2.04 (m, 2H), 2.05 – 1.93 (m, 1H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 105.7, 105.6, 87.6, 87.4, 72.9, 72.2, 63.7, 63.2, 55.5, 55.0, 42.6, 41.7. Die spektroskopischen Daten stimmen mit der Literatur überein.^[194]

(2S,3S)-2-(Iodomethyl)-5-methoxytetrahydrofuran-3-ol (I-126)

$C_6H_{11}IO_3$

258.1 g/mol

11.0 g (74.3 mmol, 1.0 Äq.) des Alkohols I-**125** wurden in 220 mL THF gelöst und 29.2 g (111 mmol, 1.5 Äq.) Triphenylphosphin, 10.1 g (148 mmol, 2.0 Äq.) Imidazol und 28.3 g (111 mmol, 1.5 Äq.) elementares Iod nacheinander zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend über Celite filtriert, wobei der

Rückstand mehrmals mit Ethylacetat (3 x 30 mL) gewaschen wurde. Das Filtrat wurde am Rotationsverdampfer *in vacuo* eingeengt und das Rohprodukt säulenchromatographisch (CH/EA 7:3) gereinigt. Das Iodid I-**126** wurde in einer Ausbeute von 91% (17.4 g, 67.4 mmol, *d.r.* 67:33) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.19$ (CH/EA = 7:3) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 5.13 (d, J = 4.7 Hz, 1H), 5.10 (dd, J = 5.4, 1.8 Hz, 1H), 4.46 (ddd, J = 10.7, 6.7, 4.1 Hz, 1H), 4.14 – 4.06 (m, 3H), 3.38 (s, 3H), 3.35 (s, 3H), 3.30 (dd, J = 9.8, 5.7 Hz, 1H), 3.25 (dd, J = 10.5, 4.9 Hz, 1H), 3.21 – 3.16 (m, 2H), 2.31 (ddd, J = 13.6, 6.9, 1.7 Hz, 1H), 2.23 (ddd, J = 14.0, 6.6, 4.7 Hz, 1H), 2.12 (ddd, J = 13.6, 6.2, 5.4 Hz, 1H), 2.00 (dd, J = 14.0, 1.3 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ [ppm] = 105.9, 105.5, 86.2, 86.1, 75.8, 75.6, 55.4, 55.1, 42.0, 41.0, 7.9, 6.7.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[194]

tert-Butyl(((2*S*,3*S*)-2-(iodomethyl)-5-methoxytetrahydrofuran-3-yl)oxy)dimethylsilan (I-126)

012122320381

372.3 g/mol

16.7 g (64.8 mmol, 1.0 Äq.) des Iodids I-**126** wurden in 263 mL DMF gelöst und die Lösung wurde auf 0 °C gekühlt. Anschließend wurden 5.29 g (77.7 mmol, 1.2 Äq.) Imidazol und 11.7 g (77.7 mmol, 1.2 Äq.) *tert*-Butyldimethylsilylchlorid, gelöst in 78 mL Dichlormethan, nacheinander zugegeben. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Heptan (100 mL) verdünnt. Die organische Phase wurde mit Wasser und gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Silylether I-**127** ohne weitere Aufreinigung in einer Ausbeute von 95% (22.9 g, 61.4 mmol, *d.r.* 54:46) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.59$ (CH/EA = 9:1) [KMnO₄, UV]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 5.10 (dd, J = 5.4, 1.9 Hz, 0.5H), 5.00 (dd, J = 5.9, 3.0 Hz, 0.5H), 4.43 – 4.29 (m, 0.5H), 4.00 - 3.87 (m, 1H), 3.60 - 3.54 (m, 0.5H), 3.47 (dd, J = 10.8, 3.6 Hz, 0.5H), 3.39 (s, 1.5H), 3.37 (s, 1.5H), 3.33 - 3.18 (m, 1.5H), 2.48 (ddd, J = 13.6, 8.6, 5.9 Hz, 0.5H), 2.21 (ddd, J = 13.2, 6.6, 1.9 Hz, 0.5H), 2.06 (ddd, J = 13.2, 6.2, 5.4 Hz, 0.5H), 1.84 (ddd, J = 13.6, 6.0, 3.0 Hz, 0.5H), 0.88 (s, 9H), 0.11 (s, 1.5H), 0.08 (d, J = 0.9 Hz, 3H), 0.07 (s, 1.5H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 105.4, 104.2, 86.0, 80.8, 75.7, 75.4, 55.4, 55.4, 42.6, 42.1, 25.9, 25.9, 18.1, 18.0, 8.0, 7.9, -4.4, -4.4, -4.5, -4.5. Die spektroskopischen Daten stimmen mit der Literatur überein.^[72]

(S)-3-((tert-Butyldimethylsilyl)oxy)pent-4-enal (I-80)

214.4 g/mol

14.0 g (37.6 mmol, 1.0 Äq.) des Silylethers I-**127** wurden in einem Gemisch aus THF und Wasser (150 mL, 4:1) gelöst und 24.6 g (376 mmol, 10.0 Äq.) aktiviertes Zinkpulver wurden hinzugegeben. Das Gemisch wurde für 90 Minuten unter Rückfluss gerührt und der Feststoff über Celite abfiltriert. Der Rückstand wurde mit Diethylether (3 x 50 mL) gewaschen und das Filtrat mit Wasser (100 mL) verdünnt. Die Phasen wurden getrennt, und die wässrige Phase mit Diethylether (3 x 50 mL) extrahiert. Die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt. Der Aldehyd I-**80** wurde nach säulenchromatographischer Reinigung in einer Ausbeute von 98% (7.90 g, 36.8 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.58$ (CH/EA = 9:1) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 9.77 (dd, J = 2.7, 2.2 Hz, 1H), 5.87 (ddd, J = 17.1, 10.4, 5.8 Hz, 1H), 5.26 (dt, J = 17.2, 1.5 Hz, 1H), 5.12 (dt, J = 10.4, 1.4 Hz, 1H), 4.70 – 4.60 (m, 1H), 2.60 (ddd, J = 15.7, 6.8, 2.7 Hz, 1H), 2.52 (ddd, J = 15.7, 5.0, 2.2 Hz, 1H), 0.88 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 201.7, 140.1, 115.0, 69.6, 51.4, 25.9, 18.2, -4.2, -4.9.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[190]

1-((Allyloxy)methyl)-4-methoxybenzol (I-128)

 $C_{11}H_{14}O_2$

178.2 g/mol

4.63 g (60 wt.% in Mineralöl, 0.115 mol, 1.60 Äq.) Natriumhydrid wurden in 217 mL trockenem THF vorgelegt und die Suspension auf 0 °C gekühlt. 10.0 g (72.4 mmol, 1.00 Äq.) (4-Methoxyphenyl)methanol (I-**111**), gelöst in 29 mL trockenem THF, wurden zugegeben und die Kühlung für 30 Minuten entfernt. Das Gemisch wurde wieder auf 0 °C gekühlt und 18.8 mL (26.3 g, 0.217 mol, 3.00 Äq.) Allylbromid und 1.36 g (3.62 mmol, 5 mol%) TBAI wurden nacheinander zugegeben. Die Reaktionsmischung wurde auf Raumtemperatur erwärmt und für 18 Stunden gerührt. Anschließend wurden Dichlormethan (200 mL) und Wasser (100 mL) zugegeben. Die Phasen wurden getrennt und die organische Phase mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Produkt I-**128** wurde in einer Ausbeute von 97% (12.5 g, 70.1 mmol) in Form einer gelbfarbenen Flüssigkeit erhalten.

DC: $R_f = 0.60$ (CH/EA = 7:3) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.30 – 7.26 (m, 2H), 6.92 – 6.83 (m, 2H), 6.01 – 5.90 (m, 1H), 5.30 (dd, J = 17.2, 1.6 Hz, 1H), 5.20 (dd, J = 10.3, 1.4 Hz, 1H), 4.46 (s, 2H), 4.01 (dt, J = 5.6, 1.4 Hz, 2H), 3.81 (s, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.4, 135.0, 130.6, 129.5, 117.2, 113.9, 71.9, 71.0, 55.4.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[195]

2-((4-Methoxybenzyl)oxy)acetaldehyd (I-110)

О ОРМВ

$C_{10}H_{12}O_3$

180.2 g/mol

12.7 g (71.7 mmol, 1.00 Äq.) des Alkohols 3-**27** wurden unter Argonatmosphäre in einer Mischung aus 500 mL Dichlormethan und 180 mL Methanol gelöst. 9.93 mL (7.25 g,

71.7 mmol, 1.00 Äq.) Triethylamin wurden zugegeben und die Lösung auf -78 °C gekühlt. Es wurde Ozon durch die Reaktionsmischung geblasen, bis eine Blaufärbung zu erkennen war. Anschließend wurde solange Sauerstoff durch die Lösung geblasen, bis die entstandene Blaufärbung verblasst war. 41.1 mL (34.8 g, 560 mmol, 7.81 Äq.) Dimethylsulfid wurden zugegeben und die Lösung für 30 Minuten bei -78 °C gerührt. Dann wurde die Kühlung entfernt und eine weitere Stunde bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (100 mL) versetzt und die Phasen getrennt. Die wässrige Phase wurde mit gesättigter, wässriger Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA 7:3) gereinigt und das Produkt I-110 in einer Ausbeute von 92% (11.9 g, 65.9 mmol) in Form einer gelbfarbenen Flüssigkeit erhalten.

DC: $R_f = 0.39$ (CH/EA = 7:3) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 9.71 (t, J = 0.9 Hz, 1H), 7.31 – 7.26 (m, 2H), 6.92 – 6.84 (m, 2H), 4.56 (s, 2H), 4.06 (d, J = 0.9 Hz, 2H), 3.81 (s, 3H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 200.8, 159.8, 129.9, 129.0, 114.2, 75.2, 73.5, 55.4.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[26]

(S)-5-Hydroxy-1-((4-methoxybenzyl)oxy)hept-6-en-3-on (I-109)

 $C_{15}H_{20}O_4 \\$

264.3 g/mol

6.53 mL (4.72 g, 36.2 mmol, 2.1 Äq.) Diisopropylamin wurden unter Argonatmosphäre in 221 mL THF vorgelegt und bei -78 °C wurden 23.3 mL (2.5 M in Hexan, 16.2 g, 46.6 mmol, 2.1 Äq.) *n*-Butyllithium zugegeben. Anschließend wurde die Kühlung für 15 Minuten entfernt und die Lösung dann wieder auf -78 °C gekühlt. Es wurden 7.60 g (22.2 mmol, 1.0 Äq.) des Phosphanoxids I-**62a**, gelöst in 74 mL trockenem THF, zugegeben und die dunkelrote Lösung wurde für eine Stunde bei -78 °C gerührt. 12.0 g (66.6 mmol, 3.0 Äq.) des Aldehyds I-**110**, gelöst in 37 mL trockenem THF, wurden
hinzugefügt und die Reaktion wurde innerhalb einer Stunde auf Raumtemperatur erwärmt, wobei das Gemisch sich gelb färbte. Zur Reaktionsmischung wurden 2.62 g (22.2 mmol, 1.0 Äq.) Kalium-*tert*-butanolat zugegeben und die Lösung für weitere 60 Minuten bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (100 mL) beendet und mit Dichlormethan (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit Salzsäure (2 M, 2 x 100 mL) gewaschen. Die wässrige Phase wurde erneut mit Dichlormethan extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 6:4) gereinigt. Das Produkt I-**109** wurde in einer Ausbeute von 89% (5.21 g, 19.7 mmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.34$ (CH/EA = 1:1) [KMnO₄]. $[\alpha]_D^{20}$: -11.9 (c = 1.06, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.25 – 7.20 (m, 2H), 6.91 – 6.83 (m, 2H), 5.85 (ddd, J = 17.2, 10.5, 5.5 Hz, 1H), 5.28 (dt, J = 17.2, 1.5 Hz, 1H), 5.12 (dt, J = 10.5, 1.4 Hz, 1H), 4.64 – 4.51 (m, 1H), 4.43 (s, 2H), 3.80 (s, 3H), 3.71 (td, J = 6.1, 2.0 Hz, 2H), 2.74 – 2.63 (m, 4H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 209.7, 159.5, 139.2, 130.1, 129.5, 115.1, 114.0, 73.1, 68.7, 64.9, 55.4, 49.7, 43.9. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3421, 3000, 2952, 2935, 2905, 2867, 2837, 1708, 1644, 1611, 1585, 1511, 1463, 1441, 1421, 1392, 1365, 1301, 1243, 1173, 1090, 1030, 992, 925, 816, 755, 693, 636, 569, 514, 418. **HRMS** (ESI): berechnet für C₁₅H₂₀NaO₄⁺ [M+Na⁺]: 287.1254, gefunden 287.1259.

(3S,5S)-7-((4-methoxybenzyl)oxy)hept-1-ene-3,5-diol (I-108)

 $C_{15}H_{22}O_4$

266.3 g/mol

Unter Argonatmosphäre wurden 2.20 g (8.32 mmol, 1.0 Äq.) des β -Hydroxyketons I-**109** in einer Mischung aus 67 mL trockenem THF und 17 mL trockenem Methanol gelöst. Die Lösung wurde auf -78 °C gekühlt und 2.50 mL (4 M in THF, 2.03 g, 10.0 mmol, 1.2 Äq.) einer Diethylmethoxyboran-Lösung wurden zugegeben. Nachdem das Gemisch

für 20 Minuten gerührt wurde, wurden 346 mg (9.16 mmol, 1.1 Äq.) Natriumborhydrid hinzugefügt und die Reaktion für zwei Stunden bei -78 °C gerührt. Nach Zugabe einer Natriumhydroxid-Lösung (2 M, 26 mL) und einer Wasserstoffperoxid-Lösung (35% in Wasser, 13 mL) wurde die Reaktionsmischung für weitere 45 Minuten bei Raumtemperatur gerührt. Es wurde Wasser (100 mL) zugegeben und anschließend mit Ethylacetat (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 1:1) gereinigt. Das Diol I-**108** wurde in einer Ausbeute von 96% (2.13 g, 8.00 mmol, *d.r.* >99:1) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.50$ (CH/EA = 3:7) [KMnO₄]. $[\alpha]_D^{20}$: +10.7 (c = 1.22, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.26 – 7.22 (m, 2H), 6.92 – 6.86 (m, 2H), 5.86 (ddd, J = 17.2, 10.5, 5.8 Hz, 1H), 5.26 (dt, J = 17.2, 1.5 Hz, 1H), 5.08 (dt, J = 10.5, 1.4 Hz, 1H), 4.45 (s, 2H), 4.41 – 4.35 (m, 1H), 4.13 – 4.07 (m, 1H), 3.81 (s, 3H), 3.70 (ddd, J = 9.5, 5.9, 4.4 Hz, 1H), 3.63 (ddd, J = 9.4, 8.2, 4.2 Hz, 1H), 2.84 (bs, 2H), 1.85 – 1.70 (m, 2H), 1.70 – 1.57 (m, 2H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.5, 140.9, 130.0, 129.5, 114.3, 114.1, 73.4, 73.2, 72.3, 68.7, 55.4, 43.4, 37.0. **IR** (ATR): \tilde{v} [cm⁻¹] = 3317, 3081, 3001, 2938, 2911, 2865, 2837, 1733, 1711, 1644, 1611, 1585, 1462, 1455, 1441, 1422, 1363, 1301, 1244, 1174, 1075, 1030, 992, 925, 845, 818, 755, 678, 636, 568, 514. **HRMS** (ESI): berechnet für C₁₅H₂₂NaO₄⁺ [M+Na⁺]: 289.1410, gefunden 289.1411.

(3*S*,5*S*)-5-((*tert*-Butyldimethylsilyl)oxy)-1-((4-methoxybenzyl)oxy)hept-6-en-3-ol (I-129)

 $C_{21}H_{36}O_4Si$

380.6 g/mol

1.56 g (5.86 mmol, 1.0 Äq.) des Alkohols I-**108** wurden unter Argonatmosphäre in 41 mL trockenem THF gelöst und die Reaktionsmischung auf -78 °C gekühlt. Anschließend wurden 2.94 mL (1.99 M in Hexan, 2.04 g, 5.86 mmol, 1.0 Äq.)

n-Butyllithium tropfenweise zugegeben und die Lösung innerhalb einer Stunde auf Raumtemperatur erwärmt. 1.06 g (7.03 mmol, 1.20 Äq.) *tert*-Butyldimethylsilylchlorid, gelöst in 18 mL trockenem THF, wurden hinzugegeben und die Lösung für 30 Minuten gerührt. Anschließend wurden 19.0 mg (290 μ mol, 5 mol%) Imidazol zugegeben und das Reaktionsgemisch für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung beendet. Die wässrige Phase wurde mit Diethylether (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden über Natriumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA 8:2) gereinigt und der Silylether I-**129** in einer Ausbeute von 80% (1.79 g, 4.70 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -0.2 (c = 1.11, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.26 - 7.23 (m, 2H), 6.89 - 6.85 (m, 2H), 5.82 (ddd, J = 17.1, 10.4, 6.7 Hz, 1H), 5.17 (dt, J = 17.2, 1.4 Hz, 1H), 5.10 - 4.96 (m, 1H), 4.44 (s, 2H), 4.37 - 4.29 (m, 1H), 4.00 - 3.89 (m, 1H), 3.80 (s, 3H), 3.68 - 3.55 (m, 2H), 1.78 - 1.66 (m, 2H), 1.63 - 1.49 (m, 2H), 0.90 (s, 9H), 0.09 (s, 3H), 0.05 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.4, 141.5, 130.6, 129.4, 114.5, 114.0, 74.1, 73.0, 68.9, 68.0, 55.4, 45.0, 37.3, 26.0, 18.2, -3.9, -4.7. **IR** (ATR): \tilde{v} [cm⁻¹] = 3462, 2953, 2929, 2898, 2856, 1643, 1613, 1586, 1513, 1463, 1441, 1420, 1389, 1361, 1301, 1247, 1173, 1083, 1035,1005, 922, 864, 833, 774, 708, 681, 664, 637, 580, 568, 514. **HRMS** (ESI): berechnet für C₂₁H₃₆NaO₄Si⁺ [M+Na⁺]: 403.2275, gefunden 403.2283.

(3*S*,5*S*)-5-((*tert*-Butyldimethylsilyl)oxy)-1-((4-methoxybenzyl)oxy)hept-6-en-3-yl acetat (I-107)

 $C_{23}H_{38}O_5Si$

422.6 g/mol

Unter Argonatmosphäre wurden 2.15 g (5.65 mmol, 1.0 Äq.) des Silylethers I-**129** in 36 mL Dichlormethan gelöst. Es wurden 9.14 mL (8.93 g, 112 mmol, 20 Äq.) Pyridin und 138 mg (1.13 mmol, 0.20 Äq.) DMAP nacheinander zugegeben und die Lösung auf 0 °C gekühlt. Anschließend wurden 1.00 mL (1.10 g, 14.1 mmol, 2.5 Äq.) Acetylchlorid

tropfenweise hinzugegeben. Die Reaktionsmischung wurde für zwei Stunden bei Raumtemperatur gerührt und dann mit 100 mL Hexan verdünnt. Der gebildete Feststoff wurde abfiltriert und mit Hexan (3 x 50 mL) gewaschen. Das Filtrat wurde über Natriumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck entfernt. Das Rohprodukt wurde säulenchromatographisch (CH/EA 8:2) gereinigt. Das Acetat I-**107** wurde in einer Ausbeute von 94% (2.54 g, 5.30 mmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.70$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: +0.2 (c = 1.05, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.26 – 7.21 (m, 2H), 6.90 – 6.82 (m, 2H), 5.79 (ddd, J = 17.2, 10.4, 6.2 Hz, 1H), 5.23 – 5.00 (m, 3H), 4.39 (s, 2H), 4.21 – 4.08 (m, 1H), 3.80 (s, 3H), 3.53 – 3.37 (m, 2H), 1.98 (s, 3H), 1.93 – 1.83 (m, 3H), 1.70 (ddd, J = 14.0, 7.5, 4.8 Hz, 1H), 0.89 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 170.5, 159.3, 140.8, 130.7, 128.8, 114.6, 113.9, 72.8, 71.2, 69.4, 66.6, 55.4, 43.1, 34.9, 26.0, 21.3, 18.4, -4.2, -4.8. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2954, 2929, 2885, 2856, 1736, 1643, 1613, 1586, 1512, 1470, 1463, 1441, 1422, 1405, 1361, 1301, 1241, 1173, 1087, 1032, 992, 925, 833, 774, 708, 681, 664, 638, 607, 578, 515, 441. **HRMS** (ESI): berechnet für C₂₃H₃₈NaO₅Si⁺ [M+Na⁺]: 445.2381, gefunden 445.2396.

(3S,5S)-5-((tert-Butyldimethylsilyl)oxy)-1-hydroxyhept-6-en-3-yl acetat (I-130)

 $C_{15}H_{30}O_4Si$

302.5 g/mol

530 mg (1.25 mmol, 1.0 Äq.) des Acetats I-**107** wurden in einem Gemisch aus jeweils 6 mL Dichlormethan und einer pH7-Puffer-Lösung gelöst. Anschließend wurden 440 mg (1.88 mmol, 1.5 Äq.) DDQ hinzugegeben und das Reaktionsgemisch für 45 Minuten gerührt. Der Feststoff wurde über Celite abfiltriert, wobei mehrmals mit Dichlormethan (3 x 10 mL) gewaschen wurde, das Filtrat mit Wasser (30 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Der Alkohol I-**130** wurde in einer Ausbeute von 93% (353 mg, 1.17 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.35$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -2.2 (c = 1.03, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 5.93 – 5.59 (m, 1H), 5.19 – 4.98 (m, 3H), 4.28 – 4.05 (m, 1H), 3.67 – 3.57 (m, 1H), 3.55 – 3.45 (m, 1H), 2.40 (dd, J = 8.5, 4.6 Hz, 1H), 2.06 (s, 3H), 1.95 (ddd, J = 13.8, 8.5, 5.2 Hz, 1H), 1.90 – 1.81 (m, 1H), 1.74 – 1.61 (m, 2H), 0.92 – 0.83 (m, 9H), 0.19 – -0.05 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 171.9, 140.6, 114.8, 71.2, 68.7, 58.5, 43.1, 38.1, 26.0, 21.2, 18.3, -4.3, -4.8. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3461, 3080, 2954, 2929, 2886, 2857, 1736, 1719, 1644, 1472, 1463, 1422, 1403, 1373, 1362, 1241, 1133, 1081, 1052, 1024, 992, 937, 924, 856, 834, 809, 774, 681, 663, 640, 609, 582, 514, 497. HRMS (ESI): berechnet für C₁₅H₃₀NaO₄Si⁺ [M+Na⁺]: 325.1806, gefunden 325.1841.

(3R,5S)-5-((tert-Butyldimethylsilyl)oxy)-1-oxohept-6-en-3-yl acetat (I-106)

 $C_{15}H_{28}O_4Si$

300.5 g/mol

353 mg (1.17 mmol, 1.0 Äq.) des Alkohols I-**130** wurden in 2 mL DMSO gelöst und 490 mg (1.75 mmol, 1.5 Äq.) IBX wurden hinzugegeben. Die Reaktionsmischung wurde drei Stunden bei Raumtemperatur gerührt und anschließend mit Dichlormethan (10 mL) verdünnt. Die Lösung wurde solange gerührt, bis ein weißer Feststoff ausgefallen ist, der dann abfiltriert wurde und mehrmals mit Dichlormethan (2 x 10 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (30 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt I-**106** ohne weitere Reinigung im nächsten Schritt verwendet.

DC: $R_f = 0.60$ (CH/EA = 8:2) [KMnO₄].

(3*R*,5*S*)-5-((*tert*-Butyldimethylsilyl)oxy)-1-(diphenylphosphoryl)-1-hydroxyhept-6en-3-yl-acetat (I-131)

C₂₇H₃₉O₅PSi

502.7 g/mol

Es wurden 2.00 g (6.66 mmol, 1.0 Äq.) des Aldehyds I-**106** in 17 mL THF gelöst und 1.35 g (6.66 mmol, 1.0 Äq.) Diphenylphosphinoxid wurden hinzugefügt. Das Reaktionsgemisch wurde für 18 Stunden bei 80 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (DCM/EA 4:6) gereinigt. Das Produkt I-**131** wurde in einer Ausbeute von 88% (2.88 g, 5.73 mmol, *d.r.* 70:30) über zwei Stufen in Form eines farblosen Öls erhalten.

DC: $R_f = 0.41$ (DCM/EA = 4:6) [KMnO₄]. [α]_D²⁰: +9.9 (*c* = 1.07, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.06 – 7.62 (m, 4H), 7.60 – 7.38 (m, 6H), 5.84 – 5.59 (m, 1H), 5.24 – 4.94 (m, 3H), 4.55 (d, *J* = 11.0 Hz, 0.5H), 4.30 – 4.14 (m, 1H), 3.91 – 3.68 (m, 0.5H), 2.22 – 2.11 (m, 1H), 2.07 (s, 1.5H), 1.98 (s, 1.5H), 1.96 – 1.72 (m, 1H), 1.70 – 1.56 (m, 2H), 0.97 – 0.68 (m, 9H), 0.10 – -0.18 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 173.0, 171.0, 140.6, 140.3, 132.5, 132.5, 132.4, 132.3, 132.3, 132.3, 132.2, 132.2, 132.1, 132.1, 131.8, 131.7, 131.7, 131.6, 131.5, 128.9, 128.8, 128.8, 128.7, 128.6, 128.6, 128.5, 114.9, 114.7, 71.1, 70.9, 70.4, 70.3, 69.6, 68.7, 68.2, 68.1, 67.5, 66.6, 43.1, 42.5, 36.3, 36.3, 35.9, 35.8, 26.0, 25.9, 21.4, 21.3, 18.3, 18.3, -4.3, -4.8, -4.9. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3179, 3079, 3060, 2954, 2928, 2886, 2855, 1736, 1644, 1591, 1471, 1462, 1437, 1403, 1372, 1361, 1239, 1157, 1118, 1086, 1071, 1045, 1027, 1005, 924, 860, 834, 808, 775, 746, 722, 692, 636, 608, 536, 507, 463. **HRMS** (ESI): berechnet für C₂₇H₃₉NaO₅PSi⁺ [M+Na⁺]: 525.2197, gefunden 525.2193.

((3*R*,5*S*)-5-((*tert*-Butyldimethylsilyl)oxy)-1,3-dihydroxyhept-6-en-1-yl)diphenylphosphinoxid (I-132)

C25H37O4PSi

460.6 g/mol

2.07 g (4.12 mmol, 1.0 Äq.) des Acetats I-**131** wurden in 41 mL Methanol vorgelegt und 1.14 g (8.24 mmol, 2.0 Äq.) Kaliumcarbonat wurden hinzugefügt. Das Reaktionsgemisch wurde für 30 Minuten bei Raumtemperatur und anschließend mit Ethylacetat (50 mL) verdünnt. Die Suspension wurde filtriert und das Filtrat mit gesättigter, wässriger Ammoniumchlorid-Lösung (1 x 50 mL) gewaschen. Die wässrige Phase wurde mit Ethylacetat (3 x 20 mL) extrahiert und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck entfernt. Das Rohprodukt **I-132** wurde ohne weitere Reinigung im nächsten Schritt verwendet.

DC: $R_f = 0.34$ (DCM/MeOH = 95:5) [KMnO₄].

((6*R*)-6-((*S*)-2-((*tert*-Butyldimethylsilyl)oxy)but-3-en-1-yl)-2,2-dimethyl-1,3-dioxan-4-yl)diphenylphosphinoxid (I-77a)

C₂₈H₄₁O₄PSi 500.7 g/mol

2.00 g (4.34 mmol, 1.0 Äq.) des Diols I-**132** wurden in 22 mL 2,2-Dimethoxypropan gelöst. 111 mg (434 μ mol, 10 mol%) PPTS wurden hinzugefügt und die Lösung für zwei Stunden bei 45 °C gerührt. Das Reaktionsgemisch wurde mit Ethylacetat (20 mL) verdünnt und das Lösungsmittel anschließend am Rotationsverdampfer unter vermindertem Druck entfernt. Nach säulenchromatographischer Reinigung (DCM/EA 4:6) wurde das Produkt I-**77a** in einer Ausbeute von 69% (1.42 g, 2.84 mmol) über zwei Stufen in Form eines farblosen Öls erhalten.

DC: $R_f = 0.46$ (DCM/EA = 4:6) [KMnO₄]. $[\alpha]_D^{20}$: -14.6 (*c* = 1.08, CH₂Cl₂). ¹**H-NMR** $(400 \text{ MHz}, C_6D_6): \delta \text{[ppm]} = 8.30 - 7.89 \text{ (m, 4H)}, 7.14 - 6.99 \text{ (m, 6H)}, 5.67 \text{ (dddd, } J =$ 20.1, 17.1, 10.3, 6.7 Hz, 1H), 5.07 (dddd, *J* = 17.1, 4.8, 1.9, 1.1 Hz, 1H), 4.91 (dddd, *J* = 22.5, 10.3, 2.0, 1.0 Hz, 1H), 4.79 – 4.57 (m, 1H), 4.29 – 4.09 (m, 1H), 4.01 – 3.72 (m, 1H), 2.32 (dddd, J = 17.2, 13.1, 10.2, 5.9 Hz, 0.6H), 2.05 (dtd, J = 13.0, 2.5, 1.1 Hz, 0.4H, 1.94 - 1.84 (m, 1.2H), 1.78 (ddd, J = 13.7, 8.0, 5.8 Hz, 0.4H), 1.70 - 1.62 (m, 0.4H), 1.49 (ddd, J = 13.7, 7.3, 5.0 Hz, 0.6H), 1.44 – 1.38 (m, 0.4H), 1.36 (s, 1.2H), 1.24 (s, 1.8H), 1.19 (s, 1.8H), 1.15 (s, 1.2H), 1.01 – 0.76 (m, 9H), 0.33 – -0.48 (m, 6H). ¹³**C-NMR** (101 MHz, C_6D_6): δ [ppm] = 141.6, 141.5, 132.9, 132.9, 132.8, 132.7, 131.8, 131.8, 131.7, 131.7, 131.6, 128.6, 128.5, 128.5, 128.4, 128.2, 127.9, 114.5, 114.3, 101.5, 99.4, 71.3, 71.0, 70.3, 69.4, 66.7, 66.6, 66.5, 65.8, 63.8, 63.7, 44.7, 44.6, 32.1, 30.4, 30.0, 26.1, 24.9, 24.5, 19.1, 18.4, -4.1, -4.1, -4.7, -4.7. **IR** (ATR): \tilde{v} [cm⁻¹] = 3077, 3058, 2982, 2953, 2928, 2886, 2856, 1738, 1643, 1591, 1482, 1471, 1462, 1437, 1380, 1371, 1314, 1248, 1221, 1193, 1165, 1117, 1099, 1073, 1045, 1028, 1005, 975, 965, 922, 897, 869, 856, 834, 774, 748, 721, 694, 641, 618, 553, 517, 430, 423. HRMS (ESI): berechnet für C₂₈H₄₁NaO₄PSi⁺ [M+Na⁺]: 523.2404, gefunden 523.2407.

(4R,6S)-6-((*tert*-Butyldimethylsilyl)oxy)-4-hydroxy-1-((4R,5R,6S)-6-(2-((4-methoxybenzyl)oxy)ethyl)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl)oct-7-en-2-on (I-96)

 $C_{36}H_{54}O_8Si$

642.9 g/mol

In 20 mL trockenem THF wurden 0.588 mL (0.424 g, 4.19 mmol, 2.1 Äq.) Diisopropylamin unter Argonatmosphäre gelöst. Bei -78 °C wurden 1.68 mL (2.5 M in Hexan, 1.16 g, 4.19 mmol, 2.1 Äq.) *n*-Butyllithium hinzugefügt und die Kühlung für 15 Minuten entfernt. Anschließend wurde die Lösung erneut auf -78 °C gekühlt und 1.00 g (2.00 mmol, 1.0 Äq.) des Phosphonats I-**77a**, gelöst in 7.0 mL trockenem THF,

wurden tropfenweise hinzugegeben. Die dunkelrote Lösung wurde für eine Stunde gerührt. 2.40 g (5.99 mmol, 3.0 Äq.) des Aldehyds I-97, gelöst in 3.5 mL trockenem THF, wurden tropfenweise hinzugegeben und die Lösung wurde unter Rühren über einen Zeitraum von einer Stunde auf Raumtemperatur erwärmt (die Lösung verfärbte sich orange). Anschließend wurden 235 mg (2.00 mmol, 1.0 Äq.) Kalium-*tert*-butanolat hinzugegeben und die Lösung für eine Stunde bei Raumtemperatur gerührt. Durch Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit Salzsäure (2 M, 2 x 20 mL) gewaschen und die wässrige Phase erneut mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten Organischen Phasen wurden schließlich mit gesättigter, wässriger Phase Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Produkt I-96 wurde in einer Ausbeute von 76% (0.978 g, 1.52 mmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.44$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_{D}^{20}$: -22.8 (c = 1.01, CH₂Cl₂). ¹H-NMR $(600 \text{ MHz}, C_6D_6): \delta \text{ [ppm]} = 7.49 - 7.40 \text{ (m, 2H)}, 7.25 - 7.20 \text{ (m, 2H)}, 6.87 - 6.65 \text{ (m, 2H)}, 6.87 -$ 4H), 5.75 (ddd, *J* = 17.0, 10.4, 6.5 Hz, 1H), 5.43 (s, 1H), 5.13 (dt, *J* = 17.2, 1.5 Hz, 1H), 4.94 (dt, J = 10.4, 1.5 Hz, 1H), 4.39 – 4.27 (m, 4H), 4.21 (tq, J = 9.0, 3.2 Hz, 1H), 3.98 (ddd, J = 9.1, 4.2, 2.2 Hz, 1H), 3.52 (td, J = 8.7, 5.4 Hz, 1H), 3.46 – 3.37 (m, 2H), 3.35 (s, 3H), 3.30 (s, 3H), 2.66 (dd, J = 16.1, 8.4 Hz, 1H), 2.44 (dd, J = 16.6, 8.3 Hz, 1H), 2.26 (dd, J = 16.6, 3.9 Hz, 1H), 2.13 (dd, J = 16.1, 4.6 Hz, 1H), 1.92 (ddt, J = 14.2, 9.0, 5.3 Hz, 1H), 1.77 (ddd, J = 13.8, 9.2, 6.8 Hz, 1H), 1.64 (dddd, J = 14.2, 8.3, 6.1, 4.1 Hz, 1H), 1.48 (ddd, J = 13.8, 6.5, 3.3 Hz, 1H), 1.27 – 1.15 (m, 1H), 0.95 (s, 9H), 0.91 (d, J = 6.9Hz, 3H), 0.08 (s, 3H), 0.05 (s, 3H). ¹³C-NMR (151 MHz, C₆D₆): δ [ppm] = 208.2, 160.4, 159.7, 141.5, 132.1, 131.3, 129.4, 128.0, 114.5, 114.2, 114.1, 113.8, 113.7, 101.9, 77.7, 77.1, 73.1, 72.8, 66.3, 66.0, 54.9, 54.8, 51.1, 46.5, 45.0, 35.0, 33.6, 26.1, 18.3, 6.5, -4.0, -4.0, -4.7. **IR** (ATR): \tilde{v} [cm⁻¹] = 3510, 2953, 2930, 2886, 2856, 2279, 1709, 1613, 1587, 1513, 1462, 1404, 1389, 1361, 1349, 1301, 1246, 1171, 1094, 1066, 1030, 1009, 923, 863, 829, 811, 775, 739, 680, 578, 515, 498. HRMS (ESI): berechnet für C₃₆H₅₄NaO₈Si⁺ [M+Na⁺]: 665.3480, gefunden 665.3474.

(2R,4S,6S)-6-((*tert*-Butyldimethylsilyl)oxy)-1-((4R,5R,6S)-6-(2-((4-methoxybenzyl)oxy)ethyl)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl)oct-7-en-2,4-diol (I-133)

$C_{36}H_{56}O_8Si$

644.9 g/mol

961 mg (1.49 mmol, 1.0 Äq.) des β-Hydroxyketons I-96 wurden unter Argonatmosphäre in einem Gemisch aus 12 mL trockenem THF und 3 mL trockenem Methanol gelöst. Die Lösung wurde auf -78 °C gekühlt und 448 µL (365 mg, 1.79 mmol, 4 M in THF, 1.2 Äg.) einer Diethylmethoxyboran-Lösung wurden zugegeben. Die Reaktionsmischung wurde 20 Minuten gerührt. Anschließend wurden 62.2 mg (1.64 mmol, 1.1 Äq.) für Natriumborhydrid hinzugegeben und das Reaktionsgemisch für zwei Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe einer wässrigen Natriumhydroxid-Lösung (2 M, 5 mL) und einer Wasserstoffperoxid-Lösung (35% in Wasser, 5 mL) beendet. Die Lösung wurde für 30 Minuten bei Raumtemperatur gerührt und anschließend mit Wasser (10 mL) versetzt. Die wässrige Phase wurde mit Ethylacetat (3 x 10 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 7:3) gereinigt. Das Diol I-133 wurde in einer Ausbeute von 80% (766 mg, 1.19 mmol, *d.r.* >99:1) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.46$ (CH/EA = 6:4) [KMnO₄]. $[\alpha]_D^{20}$: -17.9 (c = 1.04, CH₂Cl₂). ¹H-NMR (400 MHz, C₆D₆): δ [ppm] = 7.52 - 7.42 (m, 2H), 7.28 - 7.21 (m, 2H), 6.89 - 6.70 (m, 4H), 5.88 (ddd, J = 17.0, 10.3, 6.5 Hz, 1H), 5.45 (s, 1H), 5.23 (ddd, J = 17.3, 1.9, 1.2 Hz, 1H), 5.00 (ddd, J = 10.4, 1.9, 1.0 Hz, 1H), 4.51 - 4.37 (m, 1H), 4.39 - 4.26 (m, 2H), 4.13 - 3.99 (m, 3H), 3.97 - 3.89 (m, 2H), 3.81 (s, 1H), 3.62 - 3.51 (m, 1H), 3.47 - 3.42 (m, 2H), 4.13 - 3.99 (m, 3H), 3.97 - 3.89 (m, 2H), 3.81 (s, 1H), 3.62 - 3.51 (m, 1H), 3.47 - 3.42 (m, 2H), 4.13 - 3.99 (m, 2H), 3.97 - 3.89 (m, 2H), 3.81 (s, 1H), 3.62 - 3.51 (m, 1H), 3.47 - 3.42 (m, 2H)

1H), 3.32 (s, 3H), 3.27 (s, 3H), 2.02 – 1.81 (m, 3H), 1.76 – 1.62 (m, 2H), 1.56 (ddd, J = 13.7, 6.4, 3.2 Hz, 1H), 1.42 – 1.36 (m, 1H), 1.28 (dt, J = 14.3, 3.4 Hz, 1H), 1.21 – 1.12 (m, 1H), 1.04 – 0.92 (m, 12H), 0.13 (s, 3H), 0.10 (s, 3H). ¹³**C-NMR** (101 MHz, C₆D₆): δ [ppm] = 160.5, 159.8, 141.9, 132.0, 131.3, 129.5, 127.9, 114.3, 114.2, 113.9, 102.0, 81.0, 78.1, 73.5, 72.9, 71.7, 70.3, 66.3, 54.8, 54.8, 46.3, 44.7, 40.5, 35.4, 33.7, 26.1, 18.4, 6.5, -3.9, -4.6. **IR** (ATR): \tilde{v} [cm⁻¹] = 3472, 2951, 2930, 2855, 1613, 1513, 1347, 1301, 1171, 1095, 1067, 1030, 832, 775. **HRMS** (ESI): berechnet für C₃₆H₅₆NaO₈Si⁺ [M+Na⁺]: 667.3637, gefunden 667.3641.

(5S,7S,9S)-7-((tert-Butyldimethylsilyl)oxy)-5-(((4R,5R,6S)-6-(2-((4-methoxybenzyl)oxy)ethyl)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl)methyl)-2,2,3,3,11,11,12,12-octamethyl-9-vinyl-4,10-dioxa-3,11-disilatridecan (I-95)

 $C_{48}H_{84}O_8Si_3$

873.4 g/mol

760 mg (1.18 mmol, 1.0 Äq.) des Diols I-**133** wurden in 12 mL DMF gelöst. Anschließend wurden nacheinander 802 mg (11.7 mmol, 10 Äq.) Imidazol und 1.07 g (7.07 mmol, 6.0 Äq.) *tert*-Butyldimethylsilylchlorid zugeben und die Reaktionsmischung für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von Wasser (100 mL) beendet. Nach Verdünnung der Lösung mit Dichlormethan (50 mL) wurden die Phasen getrennt und die wässrige Phase mit Dichlormethan (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 95:5) gereinigt. Der Silylether I-**95** wurde in einer Ausbeute von 93% (954 mg, 1.09 mmol) in Form eines farblosen Öls erhalten. **DC**: $\mathbf{R}_f = 0.81$ (CH/EA = 8:2) [KMnO4]. [α]²⁰: +6.5 (c = 1.46, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.40 – 7.31 (m, 2H), 7.31 – 7.18 (m, 2H), 6.96 – 6.67 (m, 4H), 5.80 (ddd, J = 16.9, 10.4, 6.3 Hz, 1H), 5.44 (s, 1H), 5.17 (dt, J = 17.2, 1.5 Hz, 1H), 5.03 (ddd, J = 10.4, 1.9, 1.1 Hz, 1H), 4.52 – 4.38 (m, 2H), 4.28 (q, J = 6.9 Hz, 1H), 4.03 (dddd, J = 14.5, 8.4, 4.0, 2.2 Hz, 2H), 3.90 (dq, J = 7.6, 2.6 Hz, 1H), 3.85 – 3.74 (m, 7H), 3.61 (ddd, J = 9.4, 8.1, 5.4 Hz, 1H), 3.54 (dt, J = 9.3, 5.7 Hz, 1H), 1.94 (ddt, J = 14.4, 9.1, 5.3 Hz, 1H), 1.82 (ddd, J = 14.2, 8.4, 4.3 Hz, 1H), 1.77 – 1.63 (m, 5H), 1.57 (ddd, J = 14.2, 6.5, 3.7 Hz, 1H), 1.41 – 1.35 (m, 1H), 0.95 (d, J = 6.9 Hz, 3H), 0.92 – 0.83 (m, 27H), 0.08 – -0.06 (m, 18H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.8, 159.3, 141.5, 131.9, 130.8, 129.4, 127.5, 114.4, 113.9, 113.6, 101.4, 77.8, 77.5, 72.8, 71.2, 67.1, 67.0, 66.4, 55.4, 55.4, 46.3, 46.2, 41.2, 35.7, 33.3, 26.1, 26.1, 26.0, 18.4, 18.1, 6.4, -3.7, -3.9, -4.1, -4.2, -4.6. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2928, 2886, 2855, 1614, 1587, 1514, 1470, 1462, 1440, 1420, 1405, 1387, 1360, 1346, 1301, 1247, 1171, 1109, 1089, 1066, 1035, 1004, 969, 938, 922, 832, 806, 772, 739, 676, 664, 575, 513, 451. **HRMS** (ESI): berechnet für C₄₈H₈₄NaO₈Si₃⁺ [M+Na⁺]: 895.5366, gefunden 895.5367.

(3*S*,4*R*,5*R*,7*S*,9*S*,11*S*)-7,9,11-Tris((*tert*-butyldimethylsilyl)oxy)-1,5-bis((4-methoxybenzyl)oxy)-4-methyltridec-12-en-3-ol (I-78)

C₄₈H₈₆O₈Si₃ 875.4 g/mol

In 11 mL trockenem Dichlormethan wurden unter Argonatmosphäre 954 mg (1.09 mmol, 1.0 Äq.) des Silylethers I-**95** gelöst und die Reaktionsmischung auf 0 °C gekühlt. 3.18 mL (2.70 g, 3.82 mmol, 1.2 M in Toluol, 3.5 Äq.) einer Diisobutylaluminiumhydrid-Lösung wurden tropfenweise hinzugegeben und die Lösung für 20 Minuten bei 0 °C gerührt. Die Reaktion wurde durch die Zugabe von Methanol (5 mL) abgebrochen. Anschließend wurde das Reaktionsgemisch mit Dichlormethan (10 mL) und Kalium/Natrium-Tartrat-Lösung (10 mL) versetzt. Die Lösung wurde 30 Minuten bei Raumtemperatur gerührt. Dann wurden die Phasen getrennt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten organischen Phase wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Produkt I-**78** wurde in einer Ausbeute von 80% (766 mg, 875 µmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.43$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -28.1 (c = 1.13, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.32 - 7.20 (m, 4H), 6.93 - 6.83 (m, 4H), 5.84 (ddd, J = 17.0, 10.3, 6.4 Hz, 1H), 5.20 (dt, J = 17.2, 1.5 Hz, 1H), 5.08 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 4.57 (d, J = 11.0 Hz, 1H), 4.51 - 4.43 (m, 2H), 4.37 (d, J = 10.9 Hz, 1H), 4.25 (q, J = 6.5 Hz, 1H), 4.02 - 3.92 (m, 1H), 3.90 - 3.77 (m, 9H), 3.65 - 3.50 (m, 2H), 1.93 - 1.58 (m, 10H), 0.98 (d, J = 7.1 Hz, 3H), 0.96 - 0.82 (m, 27H), 0.19 - -0.05 (m, 18H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.3, 159.3, 141.6, 130.8, 130.5, 129.4, 129.4, 129.3, 114.4, 114.0, 113.9, 113.9, 113.9, 81.2, 73.6, 72.9, 71.4, 70.5, 68.3, 67.1, 66.9, 55.4, 46.8, 46.8, 39.8, 38.5, 35.5, 26.1, 26.1, 26.1, 18.3, 18.1, 18.1, 6.7, -3.8, -3.8, -3.9, -4.0, -4.1, -4.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3502, 2952, 2928, 2886, 2855, 1613, 1586, 1513, 1462, 1441, 1420, 1404, 1386, 1360, 1301, 1247, 1173, 1083, 1035, 1004, 952, 937, 924, 880, 832, 806, 772, 678, 663, 637, 571, 513. **HRMS** (ESI): berechnet für C₄₈H₈₆NaO₈Si₃⁺ [M+Na⁺]: 897.5523, gefunden 897.5523.

```
(5S,6S,7R,9S,11S,13S)-9,11-Bis((tert-butyldimethylsilyl)oxy)-7-((4-methoxybenzyl)oxy)-5-(2-((4-methoxybenzyl)oxy)ethyl)-2,2,3,3,6,15,15,16,16-nonamethyl-13-vinyl-4,14-dioxa-3,15-disilaheptadecan (I-134)
```


$C_{54}H_{100}O_8Si_4$

989.7 g/mol

766 mg (875 µmol, 1.0 Äq.) Alkohols I-78 wurden des in 9 mL trockenem Dichlormethan unter Argonatmosphäre gelöst und die Lösung auf -78 °C gekühlt. Anschließend wurden nacheinander 309 µL (2.62 mmol, 3.0 Äg.) 2,6-Lutidin und 299 µL (1.31 mmol, 1.5 Äq.) tert-Butyldimethylsilyltrifluoromethanesulfonat zugegeben und die Lösung für 45 Minuten bei -78 °C gerührt. Die Reaktion wurde durch die Zugabe von Methanol (5 mL) beendet und auf Raumtemperatur aufgewärmt. Eine gesättigte, wässrige Natriumhydrogencarbonat-Lösung (5 mL) wurde hinzugefügt und die Phasen getrennt. Die wässrige Phase wurde mit Dichlormethan (3 x 5 mL) extrahiert und die vereinten organischen Phasen über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der Silvlether I-134 wurde in einer Ausbeute von 95% (826 mg, 835 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.59$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +25.1 (c = 1.33, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.24 – 7.18 (m, 4H), 6.88 – 6.79 (m, 4H), 5.80 (ddd, J = 16.9, 10.4, 6.3 Hz, 1H), 5.19 (ddd, J = 17.2, 1.9, 1.2 Hz, 1H), 5.04 (ddd, J = 10.4, 1.9, 1.0 Hz, 1H), 4.43 – 4.28 (m, 5H), 3.85 – 3.76 (m, 9H), 3.52 – 3.42 (m, 3H), 1.87 (dtd, J = 14.0, 7.1, 5.2 Hz, 1H), 1.81 – 1.62 (m, 8H), 0.94 (d, J = 7.0 Hz, 3H), 0.91 – 0.83 (m, 36H), 0.09 – -0.05 (m, 24H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 159.1, 141.4, 131.4, 130.9, 129.3, 129.1, 114.5, 113.9, 113.9, 77.4, 72.7, 71.7, 71.2, 71.1, 67.6, 67.1, 67.0, 55.4, 46.7, 46.4, 43.0, 42.5, 34.9, 26.2, 26.2, 26.1, 26.1, 18.4, 18.3, 18.1, 18.1, 11.3, -3.5, -3.6, -3.9, -3.9, -4.1, -4.2, -4.3, -4.6. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2928, 2886,

2855, 1613, 1513, 1247, 1172, 1037, 1004, 922, 862, 833, 772. **HRMS** (ESI): berechnet für C₅₄H₁₀₁O₈Si₄⁺ [M+H⁺]: 989.6568, gefunden 989.6567.

(3*S*,4*S*,5*R*,7*S*,9*S*,11*S*)-3,7,9,11-Tetrakis((*tert*-butyldimethylsilyl)oxy)-4methyltridec-12-ene-1,5-diol (I-135)

 $C_{38}H_{84}O_6Si_4$

749.4 g/mol

In einem Gemisch aus jeweils 8 mL Dichlormethan und einer pH7-Puffer-Lösung wurden 826 mg (835 μ mol, 1.0 Äq.) des Silylethers I-**134** gelöst und 586 mg (2.50 mmol, 3.0 Äq.) DDQ wurden hinzugefügt. Das Reaktionsgemisch wurde für 1.5 Stunden bei Raumtemperatur gerührt und anschließend über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 10 mL) gewaschen wurde. Das Filtrat wurde mit Wasser (20 mL) versetzt, die Phasen getrennt und die wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Diol I-**135** wurde in einer Ausbeute von 81% (509 mg, 679 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.53$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -20.4 (c = 1.18, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 5.85 – 5.70 (m, 1H), 5.15 (dtd, J = 17.1, 3.6, 1.8 Hz, 1H), 5.08 – 4.97 (m, 1H), 4.17 – 4.11 (m, 1H), 4.09 – 4.03 (m, 1H), 3.94 – 3.87 (m, 2H), 3.83 – 3.75 (m, 2H), 3.74 – 3.58 (m, 1H), 1.97 – 1.83 (m, 1H), 1.80 – 1.44 (m, 8H), 1.04 – 0.72 (m, 39H), 0.18 – -0.06 (m, 24H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 141.7, 114.2, 74.5, 71.4, 71.2, 71.1, 66.9, 60.1, 47.2, 46.6, 43.2, 42.0, 35.7, 26.1, 26.1, 26.1, 26.0, 26.0, 26.0, 18.3, 18.1, 18.1, 18.0, 9.8, -3.8, -3.9, -3.9, -4.0, -4.1, -4.3, -4.4, -4.5. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3457, 2953, 2929, 2886, 2856, 1252, 1047, 1003, 922, 832, 806, 771. HRMS (ESI): berechnet für C₃₈H₈₅O₆Si₄⁺ [M+H⁺]: 749.5418, gefunden 749.5423.

(3*S*,4*S*,5*R*,7*S*,9*S*,11*S*)-3,7,9,11-Tetrakis((*tert*-butyldimethylsilyl)oxy)-5-hydroxy-4-methyltridec-12-en-1-ylbenzoat (I-136)

 $C_{45}H_{88}O_7Si_4$

853.5 g/mol

509 mg (679 μ mol, 1.0 Äq.) des Diols I-**135** wurden in 3.5 mL trockenem Dichlormethan unter Argonatmosphäre gelöst. Bei 0 °C wurden anschließend nacheinander 282 μ L (206 mg, 2.04 mmol, 3.0 Äq.) Triethylamin, 94.6 μ L (114 mg, 815 μ mol, 1.2 Äq.) Benzoylchlorid und 8.30 mg (67.0 mol, 10 mol%) DMAP zugegeben. Das Reaktionsgemisch wurde für eine Stunde bei Raumtemperatur gerührt und dann mit Dichlormethan (10 mL) verdünnt. Die Lösung wurde nacheinander mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung, Wasser und gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt säulenchromatographisch (CH/EA 95:5) gereinigt. Das Benzoat I-**136** wurde in einer Ausbeute von 88% (508 mg, 595 μ mol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.49$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +10.9 (c = 1.21, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.00 – 7.88 (m, 2H), 7.51 – 7.40 (m, 1H), 7.38 – 7.30 (m, 2H), 5.70 (ddd, J = 16.9, 10.3, 6.5 Hz, 1H), 5.06 (dt, J = 17.2, 1.4 Hz, 1H), 4.94 (ddd, J = 10.4, 1.8, 1.0 Hz, 1H), 4.36 – 4.19 (m, 2H), 4.11 – 4.03 (m, 1H), 4.01 – 3.91 (m, 2H), 3.84 (q, J = 5.6 Hz, 1H), 3.71 (tt, J = 7.5, 4.8 Hz, 1H), 2.99 (s, 1H), 1.96 (q, J = 6.6 Hz, 2H), 1.73 – 1.43 (m, 7H), 0.90 – 0.72 (m, 39H), 0.06 – -0.12 (m, 24H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 166.6, 141.8, 132.9, 130.7, 129.7, 128.5, 114.2, 73.2, 71.4, 70.6, 70.5, 66.9, 62.3, 47.1, 46.6, 43.8, 42.8, 33.1, 26.1, 26.1, 26.0, 18.3, 18.2, 18.1, 18.0, 9.1, -3.8, -3.9, -3.9, -4.1, -4.2, -4.3, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3533, 2953, 2928, 2887, 2856, 1722, 1251, 1215, 1109, 1067, 1050, 1026, 1003, 922, 833, 806, 772. **HRMS** (ESI): berechnet für C₄₅H₈₉O₇Si₄⁺ [M+H⁺]: 853.5680, gefunden 853.5680.

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*)-3,7,9,11-Tetrakis((*tert*-butyldimethylsilyl)oxy)-4-methyl-5-((triethylsilyl)oxy)tridec-12-en-1-ylbenzoat (I-137)

C₅₁H₁₀₂O₇Si₅

967.8 g/mol

In 4 mL trockenem DMF wurden unter Argonatmosphäre 500 mg (586μ mol, 1.0 Åq.) des Alkohols I-**136** gelöst. Anschließend wurden nacheinander 319 mg (4.69 mmol, 8.0 Åq.) Imidazol und 393 μ L (353 mg, 2.34 mmol, 4.0 Åq.) Chlortriethylsilan zugegeben. Die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt. Durch die Zugabe von Wasser (10 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan ($3 \times 5 \text{ mL}$) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Produkt I-**137** wurde in einer Ausbeute von 97% (551 mg, 596 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.58$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +14.2 (c = 1.05, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 8.18 – 7.89 (m, 2H), 7.59 – 7.48 (m, 1H), 7.49 – 7.36 (m, 2H), 5.82 (ddd, J = 16.9, 10.3, 6.3 Hz, 1H), 5.26 – 5.15 (m, 1H), 5.05 (ddd, J = 10.4, 1.9, 1.1 Hz, 1H), 4.39 (t, J = 7.2 Hz, 2H), 4.32 – 4.21 (m, 1H), 3.91 – 3.80 (m, 3H), 3.75 (p, J = 6.2 Hz, 1H), 2.12 (dtd, J = 13.9, 7.6, 4.5 Hz, 1H), 1.92 (dq, J = 13.4, 6.6 Hz, 1H), 1.80 (dt, J = 13.9, 6.2 Hz, 1H), 1.73 – 1.52 (m, 6H), 1.01 – 0.81 (m, 48H), 0.60 (q, J = 8.0 Hz, 6H), 0.17 – -0.05 (m, 24H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 166.7, 141.4, 132.9, 130.7, 129.7, 128.4, 114.5, 71.1, 70.8, 70.5, 67.2, 67.0, 62.3, 47.0, 46.7, 44.3, 43.8, 34.5, 26.2, 26.1, 26.0, 18.3, 18.3, 18.2, 18.0, 11.3, 7.2, 5.7, -3.6, -3.7, -3.7, -3.8, -3.9, -4.0, -4.2, -4.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2929, 2884, 2856, 1723, 1314, 1271, 1107, 1096, 1004, 883, 833, 806, 772, 736, 709. **HRMS** (ESI): berechnet für C₅₁H₁₀₂NaO₇Si₅⁺ [M+Na⁺]: 989.6364, gefunden 989.6349.

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*)-3,7,9,11-Tetrakis((*tert*-butyldimethylsilyl)oxy)-4-methyl-12oxo-5-((triethylsilyl)oxy)dodecylbenzoat (Fragment B)

 $C_{50}H_{100}O_8Si_5$

969.8 g/mol

300 mg (310 µmol, 1.0 Äq.) des Alkens 3-49 wurden in einem Gemisch aus 3.1 mL THF und 1.6 mL Wasser gelöst. Anschließend wurden nacheinander 182 mg (1.55 mmol, 5.0 Äq.) NMO und 189 µL (4% in Wasser, 31.0 µmol, 10 mol%) einer OsO₄-Lösung zugegeben. Die Reaktionsmischung wurde für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumthiosulfat-Lösung (5 mL) beendet und das Gemisch wurde mit Wasser und Ethylacetat (jeweils 30 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand über Kieselgel filtriert (Laufmittel: Ethylacetat). Das Rohprodukt wurde ohne weitere Reinigung in 2.7 mL Dichlormethan gelöst und bei -40 °C wurden nacheinander 92.0 mg (870 µmol, 3.2 Äq.) Natriumcarbonat und 191 mg (409 µmol, 1.5 Äq.) Blei(IV)acetat zugegeben. Das Reaktionsgemisch wurde langsam auf 5 °C erwärmt und anschließend mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (5 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Fragment B wurde in einer Ausbeute von 83% (251 mg, 259 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.47$ (CH/EA = 9:1) [KMnO₄]. [α]_D²⁰: +7.6 (c = 1.02, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 9.61 (d, J = 1.7 Hz, 1H), 8.07 – 7.90 (m, 2H), 7.60 – 7.50 (m, 1H), 7.47 – 7.37 (m, 2H), 4.38 (t, J = 7.1 Hz, 2H), 4.14 (ddt, J = 6.3, 3.0, 1.7 Hz, 1H),

4.02 (tt, J = 8.7, 4.5 Hz, 1H), 3.87 (dtd, J = 21.8, 6.0, 4.1 Hz, 2H), 3.80 – 3.71 (m, 1H), 2.12 (dtd, J = 13.9, 7.5, 4.8 Hz, 1H), 2.05 – 1.87 (m, 2H), 1.83 – 1.55 (m, 6H), 1.01 – 0.81 (m, 48H), 0.60 (q, J = 7.9 Hz, 6H), 0.19 – -0.09 (m, 24H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 203.6, 166.6, 132.9, 130.7, 129.7, 128.4, 74.9, 70.7, 70.5, 67.2, 65.6, 62.2, 46.6, 43.9, 43.8, 41.7, 34.6, 26.2, 26.1, 26.0, 18.3, 18.1, 18.0, 11.4, 7.2, 5.7, -3.8, -3.8, -3.8, -3.9, -3.9, -4.1, -4.5, -4.6. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2929, 2884, 2857, 1723, 1314, 1272, 1108, 1068, 1026, 1003, 879, 833, 806, 772. **HRMS** (ESI): berechnet für C₅₀H₁₀₀NaO₈Si₅⁺[M+Na⁺]: 991.6157, gefunden 991.6121.

2.1.3 Synthese von Fragment C (C21-30)

(3*S*,5*R*)-7-((4-Methoxybenzyl)oxy)hept-1-ene-3,5-diol (I-141)

 $C_{15}H_{22}O_4 \\$

266.3 g/mol

5.20 g (19.7 mmol, 1.0 Åq.) des β -Hydroxyketons I-**109** und 3.88 mL (3.05 g, 68.9 mmol, 3.5 Äq.) Acetaldehyd wurden in 39 mL trockenem THF unter Argonatmosphäre gelöst. Bei -50 °C wurden unter Lichtausschluss 147 mL (14.8 mmol, 136 g, 0.1 M in THF, 0.75 Äq.) einer Samariumdiiodid-Lösung langsam zugetropft und die Reaktionslösung langsam auf -20 °C erwärmt. Die Lösung wurde 18 Stunden bei -20 °C gerührt und anschließend mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (100 mL) versetzt und auf Raumtemperatur erwärmt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1) gereinigt. 5.35 g (17.3 mmol, 1.0 Äq.) des Zwischenprodukts wurden in einem Gemisch aus 39 mL Methanol und 13 mL Wasser gelöst. Die Lösung wurde auf 0 °C gekühlt und 4.79 g (34.7 mmol, 2.0 Äq.) Kaliumcarbonat wurden zugegeben. Die Reaktionsmischung wurde für eine Stunde bei Raumtemperatur gerührt und anschließend mit Wasser (20 mL) und Ethylacetat (jeweils

20 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Nachdem das Lösungsmittel am Rotationsverdampfer *in vacuo* entfernt wurde, konnte das Diol I-**141** in einer Ausbeute von 86% (4.52 g, 16.9 mmol, *d.r.* > 99:1) über zwei Stufen in Form eines farblosen Öls isoliert werden.

DC: $R_f = 0.21$ (CH/EA = 1:1) [KMnO₄]. $[\alpha]_D^{20}$: -2.9 (c = 1.07, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.24 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 5.91 (ddd, J = 17.2, 10.5, 5.4 Hz, 1H), 5.29 (dt, J = 17.2, 1.6 Hz, 1H), 5.11 (dt, J = 10.5, 1.5 Hz, 1H), 4.45 (s, 2H), 4.45 – 4.41 (m, 1H), 4.15 (tt, J = 8.9, 2.9 Hz, 1H), 3.80 (s, 3H), 3.70 (ddd, J = 9.7, 5.5, 4.5 Hz, 1H), 3.63 (td, J = 9.1, 4.0 Hz, 1H), 3.17 (s, 2H), 1.87 (dtd, J = 14.6, 8.9, 4.5 Hz, 1H), 1.75 (ddd, J = 14.4, 8.7, 3.4 Hz, 1H), 1.69 (dddd, J = 14.5, 5.5, 4.0, 2.7 Hz, 1H), 1.64 (ddd, J = 14.3, 7.7, 3.1 Hz, 1H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.5, 141.0, 130.0, 129.5, 114.2, 114.0, 73.2, 70.5, 69.4, 69.1, 55.4, 42.6, 36.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 3363, 3075, 3002, 2936, 2912, 2861, 2837, 1643, 1611, 1585, 1511, 1462, 1440, 1421, 1361, 1301, 1244, 1173. 1081, 1031, 992, 920, 846, 817, 755, 667, 637, 567, 513. **HRMS** (ESI): berechnet für C₁₅H₂₂NaO₄⁺ [M+Na⁺]: 289.1410, gefunden 289.1409.

(4R,6S)-4-(2-((4-Methoxybenzyl)oxy)ethyl)-2,2-dimethyl-6-vinyl-1,3-dioxan (I-142)

 $C_{18}H_{26}O_4$

306.4 g/mol

5.83 g (21.9 mmol, 1.0 Äq.) des Diols I-141 wurden in 129 mL Dichlormethan gelöst. Es 131 mmol, 6 Äq.) 2,2-Dimethoxypropan wurden 16.5 mL (14.0 g, und 43 mg (0.23 mmol, 5.0 mol%) *p*-Toluolsulfonsäure-Monohydrat zugegeben und das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt. Anschließend wurde Reaktion Zugabe die durch die von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (100 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Produkt I-**142** wurde in einer Ausbeute von 83% (5.55 g, 18.1 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.34$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -22.8 (c = 1.18, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.25 (d, J = 8.1 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.88 (ddd, J = 17.3, 10.5, 5.8 Hz, 1H), 5.21 (dt, J = 17.3, 1.5 Hz, 1H), 5.11 (dt, J = 10.5, 1.4 Hz, 1H), 4.43 (s, 2H), 4.33 (dtt, J = 8.9, 6.2, 1.4 Hz, 1H), 4.03 (ddt, J = 9.4, 7.9, 5.5 Hz, 1H), 3.80 (d, J = 1.5 Hz, 3H), 3.56 – 3.49 (m, 2H), 1.82 – 1.63 (m, 4H), 1.37 (s, 3H), 1.36 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 138.9, 130.8, 129.4, 115.1, 114.0, 100.5, 72.9, 68.1, 66.4, 63.7, 55.4, 37.7, 36.2, 25.6, 24.9. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3077, 2986, 2937, 2857, 2837, 1646, 1612, 1586, 1512, 1462, 1442, 1422, 1378, 1301,1244, 1222, 1170, 1144, 1090, 1033, 987, 921, 888, 819, 755, 707, 679, 637, 569, 518, 439, 410. **HRMS** (ESI): berechnet für C₁₈H₂₆NaO₄⁺ [M+Na⁺]: 329.1723; gefunden 329.1724.

(4*S*,6*R*)-6-(2-((4-Methoxybenzyl)oxy)ethyl)-2,2-dimethyl-1,3-dioxan-4-carbaldehyde (I-140)

 $C_{17}H_{24}O_5$

308.4 g/mol

In einem Gemisch aus 64 mL 1,4-Dioxan und 21 mL Wasser (3:1) wurden 2.55 g (8.32 mmol, 1.0 Äq.) des Alkens I-**142** gelöst. Anschließend wurden nacheinander 1.96 mL (2.17 g, 16.7 mmol, 2.0 Äq.) 2,6-Lutidin, 7.19 g (40.0 mmol, 4.0 Äq.) Natriumperiodat und 1.02 mL (4% in Wasser, 0.17 mmol, 2.0 mol%) einer OsO₄-Lösung zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt. Der Rückstand wurde abfiltriert und mit Dichlormethan (3 x 15 mL) gewaschen. Das Filtrat wurde mit gesättigter, wässriger Natriumthiosulfat-Lösung (20 mL) versetzt und die

wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 7:3) gereinigt. Der Aldehyd I-**140** wurde in einer Ausbeute von 95% (2.44 g, 7.91 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.19$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -16.6 (c = 1.07, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 9.81 (s, 1H), 7.24 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.42 (s, 1H), 4.41 (s, 1H), 4.25 (dd, J = 7.3, 6.1 Hz, 1H), 3.99 – 3.94 (m, 1H), 3.80 (s, 3H), 3.55 – 3.47 (m, 2H), 2.03 (ddd, J = 13.2, 6.1, 4.4 Hz, 1H), 1.80 – 1.75 (m, 2H), 1.74 (ddd, J = 13.2, 10.6, 7.2 Hz, 1H), 1.41 (s, 3H), 1.37 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 202.6, 159.3, 130.7, 129.4, 114.0, 100.4, 73.9, 72.9, 65.9, 63.4, 55.4, 36.2, 30.7, 27.3, 23.9. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2990, 2936, 2860, 2837, 2721, 1732, 1612, 1585, 1512, 1463, 1442, 1422, 1379, 1301, 1244, 1223, 1203, 1170, 1124, 1032, 992, 879, 846, 818, 756, 707, 682, 637, 595, 571, 556, 518, 506, 445. **HRMS** (ESI): berechnet für C₁₇H₂₄NaO₅⁺ [M+Na⁺]: 331.1516; gefunden 331.1515.

(S)-4-Hydroxy-1-((4S,6R)-6-(2-((4-methoxybenzyl)oxy)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)hex-5-en-2-on (I-139)

 $C_{22}H_{32}O_6$

^{392.5} g/mol

In 8.5 mL trockenem THF wurden unter Argonatmosphäre 249 μ L (180 mg, 1.78 mmol, 2.1 Äq.) Diisopropylamin gelöst und die Lösung auf -78 °C gekühlt. Es wurden 712 μ L (2.5 M in Hexan, 493 mg, 1.78 mmol, 2.1 Äq.) *n*-Butyllithium hinzugegeben und das Reaktionsgemisch für 15 Minuten ohne Kühlung gerührt. Anschließend wurde das Gemisch erneut auf -78 °C gekühlt und 290 mg (847 μ mol, 1.0 Äq.) des Phosphanoxids I-**62a**, gelöst in 2.8 mL trockenem THF, wurden zugetropft. Die dunkelrote Lösung wurde für eine Stunde bei -78 °C gerührt. Dann wurden 784 mg (2.54 mmol, 3.0 Äq.) des Aldehyds I-**140**, gelöst in 1.4 mL trockenem THF, zugetropft

und die Lösung innerhalb einer Stunde auf Raumtemperatur erwärmt. Schließlich wurden 100 mg (847 µmol, 1.0 Äq.) Kalium-*tert*-butanolat zugegeben und die Lösung für weitere 60 Minuten bei Raumtemperatur gerührt. Durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (10 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit Salzsäure (2 M, 2 x 10 mL) gewaschen. Die wässrige Phase wurde erneut mit Dichlormethan (2 x 10 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 6:4) gereinigt. Das Produkt I-**139** wurde in einer Ausbeute von 72% (240 mg, 611 µmol) in Form eines gelbfarbenen Öls erhalten.

DC: $\mathbf{R}_f = 0.40$ (CH/EA = 1:1) [KMnO₄]. $[\alpha]_D^{20}$: -7.6 (c = 1.05, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.24 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 5.85 (ddd, J = 17.3, 10.5, 5.5 Hz, 1H), 5.29 (dt, J = 17.2, 1.5 Hz, 1H), 5.13 (dt, J = 10.5, 1.4 Hz, 1H), 4.56 (dddt, J = 7.3, 5.9, 4.6, 1.5 Hz, 1H), 4.41 (s, 1H), 4.41 (s, 1H), 4.28 (dddd, J = 9.5, 8.5, 6.1, 4.6 Hz, 1H), 4.02 – 3.93 (m, 1H), 3.80 (s, 3H), 3.55 – 3.46 (m, 3H), 3.06 (s, 1H), 2.73 – 2.66 (m, 2H), 2.46 (dd, J = 15.7, 4.6 Hz, 1H), 1.80 – 1.71 (m, 2H), 1.68 (ddd, J = 12.8, 9.5, 6.1 Hz, 1H), 1.58 (ddd, J = 12.8, 9.5, 6.1 Hz, 1H), 1.32 (s, 3H), 1.29 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 209.5, 159.3, 139.2, 130.7, 129.4, 115.1, 113.9, 100.8, 72.9, 68.9, 66.3, 63.7, 63.6, 55.4, 50.1, 49.5, 38.2, 36.0, 24.8, 24.7. IR (ATR): \tilde{v} [cm⁻¹] = 3442, 2986, 2937, 2860, 2838, 1710, 1612, 1585, 1512, 1462, 1442, 1421, 1379, 1369, 1301, 1244, 1222, 1171, 1119, 1085, 1031, 989, 924, 875, 845, 818, 755, 707, 660, 637, 571, 516, 477, 445. HRMS (ESI): berechnet für C₂₂H₃₂NaO₆⁺ [M+Na⁺]: 415.2091; gefunden 415.2093.

(2S,4S)-1-((4R,6R)-6-(2-((4-Methoxybenzyl)oxy)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)hex-5-en-2,4-diol (I-143)

 $C_{22}H_{34}O_{6}$

394.5 g/mol

1.0 Äg.) In 2.4 mL trockenem THF wurden 470 mg (1.20 mmol, des β-Hydroxyketons I-139 und 236 μL (186 mg, 4.19 mmol, 3.5 Äq.) Acetaldehyd unter Argonatmosphäre gelöst. Die Lösung wurde auf -50 °C gekühlt und unter Lichtausschluss 8.98 mL (0.1 M in THF, 898 µmol, 0.75 Äg.) einer Samariumdiiodid-Lösung langsam zugetropft. Das Gemisch wurde langsam auf -20 °C erwärmt und anschließend für 18 Stunden gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (10 mL) beendet und die Lösung auf Raumtemperatur erwärmt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1) gereinigt. 373 mg (855 µmol, 1.0 Äq.) des Zwischenprodukts wurden in einem Gemisch aus 2 mL Methanol und 0.6 mL Wasser gelöst. Die Lösung wurde auf 0 °C gekühlt und 236 mg (1.71 mmol, 2.0 Äq.) Kaliumcarbonat wurden zugegeben. Die Reaktionsmischung wurde für eine Stunde bei Raumtemperatur gerührt und anschließend mit Wasser und Ethylacetat (jeweils 5 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel am Rotationsverdampfer in vacuo entfernt. Das Produkt I-143 wurde in einer Ausbeute von 70% (330 mg, 837 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.31$ (CH/EA = 1:1) [KMnO₄]. $[\alpha]_D^{20}$: -0.3 (c = 1.00, CH₂Cl₂). ¹H-NMR (400 MHz, C₆D₆): δ [ppm] = 7.23 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 5.85 (ddd, J = 17.2, 10.5, 5.1 Hz, 1H), 5.31 (dt, J = 17.2, 1.8 Hz, 1H), 5.02 (dt, J = 10.5, 1.7 Hz,

1H), 4.42 (dddt, J = 8.1, 4.9, 3.1, 1.5 Hz, 1H), 4.34 (s, 2H), 4.24 (tt, J = 8.4, 3.2 Hz, 1H), 4.08 (ddt, J = 13.6, 6.2, 3.5 Hz, 1H), 4.04 – 3.97 (m, 1H), 3.59 – 3.38 (m, 2H), 3.32 (s, 3H), 3.13 (s, 1H), 2.73 (s, 1H), 1.93 – 1.59 (m, 3H), 1.59 – 1.41 (m, 4H), 1.41 – 1.31 (m, 1H), 1.33 (s, 3H), 1.28 (s, 3H). ¹³**C-NMR** (101 MHz, C₆D₆): δ [ppm] = 159.8, 142.0, 131.4, 129.5, 114.2, 113.6, 100.6, 73.0, 70.4, 66.5, 66.4, 64.7, 64.1, 54.8, 43.5, 42.6, 38.4, 36.7, 25.1, 24.9. **IR** (ATR): \tilde{v} [cm⁻¹] = 3427, 2985, 2938, 2859, 1612, 1513, 1458, 1442, 1380, 1301, 1247, 1224, 1171, 1126, 1092, 1035, 990, 924, 821. **HRMS** (ESI): berechnet für C₂₂H₃₄NaO₆⁺ [M+Na⁺]: 417.2248; gefunden 417.2260.

(5R,7S,9R,11S)-7,9-Bis((tert-butyldimethylsilyl)oxy)-5-(2-((4-methoxybenzyl)oxy)ethyl)-2,2,3,3,13,13,14,14-octamethyl-11-vinyl-4,12-dioxa-3,13-disilapentadecan (I-138)

 $C_{43}H_{86}O_6Si_4$

811.5 g/mol

600 mg (1.52 mmol, 1.0 Äq.) des Diols I-143 wurden in 76 mL Methanol gelöst und 97.5 mg (380 µmol, 25 mol%) PPTS wurden hinzugefügt. Das Reaktionsgemisch wurde für zwei Stunden bei Raumtemperatur gerührt und anschließend das Lösungsmittel am Rotationsverdampfer in vacuo entfernt. Der Rückstand wurde in 15 mL DMF gelöst und nacheinander wurden 2.07 g (30.4 mmol, 20 Äq.) Imidazol und 2.75 g (18.3 mmol, 12 Äq.) tert-Butyldimethylsilylchlorid zugegeben. Die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser und Diethylether (jeweils 50 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt Rohprodukt säulenchromatographisch (CH/EA 95:5) gereinigt. Das und das Produkt I-138 wurde in einer Ausbeute von 97% (1.20 g, 1.48 mmol, d.r. > 99:1) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.58$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +7.7 (*c* = 1.14, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.25 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.78 (ddd, *J* = 17.3, 10.2, 7.1 Hz, 1H), 5.12 (ddd, *J* = 17.1, 1.7, 1.0 Hz, 1H), 5.01 (ddd, *J* = 10.2, 1.8, 0.8 Hz, 1H), 4.41 (s, 2H), 4.21 – 4.15 (m, 1H), 3.94 – 3.81 (m, 3H), 3.80 (s, 3H), 3.49 (t, *J* = 6.9 Hz, 2H), 1.82 (dtd, *J* = 14.1, 7.1, 5.1 Hz, 1H), 1.76 – 1.66 (m, 2H), 1.62 (t, *J* = 6.5 Hz, 2H), 1.59 – 1.48 (m, 3H), 0.97 – 0.80 (m, 36H), 0.10 – 0.01 (m, 24H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.2, 142.1, 131.0, 129.3, 114.3, 113.9, 72.7, 71.7, 67.6, 67.3, 67.1, 66.9, 55.4, 46.8, 46.6, 46.2, 37.8, 26.2, 26.1, 26.1, 18.4, 18.2, -3.4, -3.6, -3.6, -3.7, -4.1, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2887, 2855, 1613, 1513, 1471, 1462, 1441, 1406, 1386, 1360, 1301, 1248, 1180, 1172, 1093, 1071, 1038, 1004, 937, 920, 861, 832, 805, 709, 678, 664, 570, 514. **HRMS** (ESI): berechnet für C₄₃H₈₆NaO₆Si₄⁺ [M+Na⁺]: 833.5394; gefunden 833.5396.

(3R,5S,7R,9S)-3,5,7,9-Tetrakis((tert-butyldimethylsilyl)oxy)undec-10-en-1-ol (I-144)

C35H78O5Si4

691.3 g/mol

520 mg (641 μmol, 1.0 Äq.) des Ethers I-**138** wurden in einem Gemisch aus jeweils 3 mL Dichlormethan und einer pH7-Puffer-Lösung gelöst. 225 mg (961 μmol, 1.5 Äq.) DDQ wurden zugegeben und das Gemisch für 90 Minuten gerührt. Die Suspension wurde über Celite filtriert, wobei mehrmals mit Dichlormethan (10 mL) gewaschen wurde. Das Filtrat wurde mit Wasser (10 mL) versetzt und die Phasen getrennt. Die wässrige Phase wurde mit Dichlormethan (3 x 5 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1) gereinigt. Der Alkohol I-**144** wurde in einer Ausbeute von 90% (400 mg, 588 μmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.57$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: +21.0 (c = 1.25, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 5.78 (ddd, J = 17.2, 10.2, 7.1 Hz, 1H), 5.13 (ddd, J = 17.2, 1.8, 1.0 Hz, 1H), 5.03 (ddd, J = 10.2, 1.7, 0.8 Hz, 1H), 4.20 – 4.09 (m, 1H), 3.97 (dtd,

J = 7.2, 6.0, 4.4 Hz, 1H), 3.90 - 3.76 (m, 3H), 3.71 (ddd, J = 11.0, 6.1, 5.1 Hz, 1H), 2.18 (s, 1H), 1.86 (ddt, J = 14.2, 7.8, 4.8 Hz, 1H), 1.78 - 1.47 (m, 7H), 0.97 - 0.76 (m, 36H), 0.18 - 0.08 (m, 24H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 141.8, 114.5, 71.8, 69.7, 67.4, 67.1, 60.4, 47.1, 46.2, 45.6, 38.4, 26.1, 26.1, 26.1, 26.0, 18.4, 18.2, 18.1, -3.4, -3.5, -3.6, -3.6, -3.8, -4.1, -4.4, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 3409, 2952, 2928, 2886, 2856, 1471, 1462, 1406, 1386, 1360, 1252, 1069, 1033, 1004, 937, 920, 832, 805, 771, 710, 678, 664, 571, 503, 471, 433. **HRMS** (ESI): berechnet für C₃₅H₇₈NaO₅Si₄⁺ [M+Na⁺]: 713.4819; gefunden 713.4824.

(3*R*,5*S*,7*R*,9*S*)-3,5,7,9-Tetrakis((*tert*-butyldimethylsilyl)oxy)undec-10-en-1-ylbenzoat (I-79)

$C_{42}H_{82}O_6Si_4$

795.4 g/mol

400 mg (588 µmol, 1.0 Äq.) des Alkohols I-**144** wurden in 3 mL trockenem Dichlormethan unter Argonatmosphäre gelöst. Bei 0 °C wurden nacheinander 187 µL (183 mg, 2.31 mmol, 4.0 Äq.) Pyridin, 134 µL (163 mg, 1.16 mmol, 2.0 Äq.) Benzoylchlorid und 7.1 mg (57.9 µmol, 0.10 Äq.) DMAP zugegeben und die Lösung für zwei Stunden bei Raumtemperatur gerührt. Das Gemisch wurde anschließend mit Dichlormethan (20 mL) verdünnt. Die Lösung wurde nacheinander mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung, Wasser und gesättigter, wässriger Natriumchlorid-Lösung (jeweils 10 mL) gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 95:5) gereinigt. Das Benzoat I-**79** wurde in einer Ausbeute von 87% (400 mg, 503 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.65$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +4.1 (c = 1.12, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.07 – 8.01 (m, 2H), 7.57 – 7.52 (m, 1H), 7.46 – 7.39 (m, 2H), 5.79 (ddd, J = 17.3, 10.3, 7.2 Hz, 1H), 5.13 (ddd, J = 17.2, 1.8, 1.0 Hz, 1H), 5.02 (ddd, J = 10.3, 1.7, 0.8 Hz, 1H), 4.38 (td, J = 6.7, 2.8 Hz, 2H), 4.23 – 4.15 (m, 1H), 4.05 – 3.97 (m, 1H), 3.95 – 3.82 (m, J = 6.8, 1.6 Hz, 2H), 1.97 (dtd, J = 14.0, 7.0, 5.0 Hz, 1H),

1.91 – 1.81 (m, 1H), 1.77 – 1.46 (m, 6H), 0.96 – 0.79 (m, 36H), 0.14 – -0.02 (m, 24H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 166.7, 142.1, 132.9, 130.6, 129.7, 128.4, 114.4, 71.7, 67.4, 67.1, 66.9, 62.0, 46.8, 46.5, 46.0, 36.7, 26.2, 26.1, 26.1, 18.4, 18.2, 18.2, -3.3, -3.5, -3.6, -3.6, -3.6, -4.0, -4.2, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2928, 2893, 2856, 1793, 1723, 1601, 1471, 1462, 1406, 1387, 1360, 1314, 1272, 1252, 1212, 1173, 1107, 1097, 1069, 1037, 1005, 997, 936, 920, 832, 805, 771, 708, 685, 616. **HRMS** (ESI): berechnet für C₄₂H₈₂NaO₆Si₄⁺ [M+Na⁺]: 817.5081; gefunden 817.5077.

(3*R*,5*S*,7*R*,9*S*)-3,5,7,9-Tetrakis((*tert*-butyldimethylsilyl)oxy)-10-oxodecylbenzoat (Fragment C)

$C_{41}H_{80}O_7Si_4$

797.4 g/mol

In einem Gemisch aus 6.3 mL THF und 3.1 mL Wasser wurden 500 mg (629 µmol, 1.0 Äq.) des Alkens I-79 gelöst. Es wurden 368 mg (3.14 mmol, 5.0 Äq.) NMO und 0.384 mL (4% in Wasser, 62.9 µmol, 10 mol%) einer OsO4-Lösung zugegeben und die Reaktionsmischung für 18 Stunden bei Raumtemperatur gerührt. Durch die Zugabe von gesättigter, wässriger Natriumthiosulfat-Lösung (10 mL) wurde die Reaktion beendet. Das Gemisch wurde mit Wasser und Ethylacetat (jeweils 50 mL) verdünnt und die Phasen getrennt. Die wässrige Phase wurde mit Ethylacetat (3 x 20 mL) extrahiert und die vereinten organischen Phasen anschließend mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand über Kieselgel filtriert (Laufmittel: Ethylacetat). Das Rohprodukt wurde ohne weitere Reinigung in 5.5 mL Dichlormethan gelöst und bei -40 °C wurden nacheinander 186 mg (1.76 mmol, 3.2 Äg.) Natriumcarbonat und 384 mg (822 µmol, 1.5 Äq.) Blei(IV)-acetat zugegeben. Das Reaktionsgemisch wurde langsam auf 5 °C erwärmt und anschließend mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (10 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Fragment **C** wurde in einer Ausbeute von 75% (375 mg, 470 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.61$ (CH/EA = 9:1) [KMnO4]. [α]²⁰_D: -20.4 (c = 1.18, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 9.59 (d, J = 1.7 Hz, 1H), 8.06 – 8.00 (m, 2H), 7.59 – 7.51 (m, 1H), 7.47 – 7.40 (m, 2H), 4.46 – 4.32 (m, 2H), 4.16 (ddd, J = 6.8, 5.3, 1.8 Hz, 1H), 4.00 (dp, J = 16.6, 6.1 Hz, 2H), 3.91 – 3.83 (m, 1H), 2.00 – 1.83 (m, 2H), 1.78 – 1.69 (m, 4H), 1.68 – 1.57 (m, 2H), 0.95 – 0.80 (m, 36H), 0.14 – 0.03 (m, 24H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 203.4, 166.7, 133.0, 130.6, 129.7, 128.5, 75.6, 67.4, 67.0, 66.8, 61.9, 46.7, 45.8, 40.7, 36.8, 26.1, 26.1, 26.0, 18.3, 18.2, -3.3, -3.6, -3.6, -4.0, -4.1, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2928, 2887, 2856, 1723, 1471, 1462, 1387, 1361, 1272, 1252, 1108, 1097, 1069, 1042, 1027, 1004, 937, 832, 805, 771, 709, 686, 676, 665. **HRMS** (ESI) berechnet für C₄₁H₈₀NaO₇Si₄⁺ [M+Na⁺]: 819.4873; gefunden 819.4883.

2.1.4 Synthese von Fragment D (C31-34)

(S)-3-((tert-Butyldimethylsilyl)oxy)pent-4-en-1-ol (I-73)

216.4 g/mol

8.42 g (39.3 mmol, 1.0 Äq.) des Aldehyds I-**80** wurden in 69 mL Dichlormethan vorgelegt. Die Lösung wurde auf -78 °C gekühlt und 39.3 mL (33.3 g, 47.1 mmol, 1.2 M in Toluol, 1.2 Äq.) einer Diisobutylaluminiumhydrid-Lösung langsam zugetropft. Das Gemisch wurde für 30 Minuten gerührt und die Reaktion dann durch die Zugabe von gesättigter, wässriger Kalium/Natrium-Tartrat-Lösung (50 mL) beendet. Die Lösung wurde auf Raumtemperatur aufgewärmt, 7.9 mL Glycerin (0.2 mL/mL DIBAL-H) wurden zugegeben und die Lösung für 18 Stunden gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am

Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 7:3) gereinigt. Der Alkohol I-**73** wurde in einer Ausbeute von 92% (7.79 g, 36.0 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.33$ (CH/EA = 7:3) [KMnO₄]. [α]²⁰_D: +2.7 (*c* = 1.06, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 5.85 (ddd, *J* = 17.2, 10.4, 5.8 Hz, 1H), 5.22 (dt, *J* = 17.2, 1.5 Hz, 1H), 5.10 (dt, *J* = 10.5, 1.5 Hz, 1H), 4.42 (tdt, *J* = 6.0, 4.6, 1.4 Hz, 1H), 3.82 (ddd, *J* = 10.8, 8.1, 4.0 Hz, 1H), 3.72 (ddd, *J* = 10.8, 6.1, 4.5 Hz, 1H), 2.39 (s, 1H), 1.86 (ddt, *J* = 14.3, 8.1, 4.5 Hz, 1H), 1.72 (dtd, *J* = 14.3, 6.2, 4.0 Hz, 1H), 0.94 – 0.81 (m, 9H), 0.14 – -0.08 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 140.8, 114.5, 73.3, 60.3, 39.4, 26.0, 18.3, -4.3, -4.9. **IR** (ATR): \tilde{v} [cm⁻¹] = 3393, 2953, 2929, 2886, 2856, 1252, 1084, 1069, 961, 858, 833. **HRMS** (ESI) berechnet für C₁₁H₂₄NaO₂Si⁺ [M+Na⁺]: 239.1438; gefunden 239.1432.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[196]

(S)-3-((tert-Butyldimethylsilyl)oxy)pent-4-en-1-yl-benzoat (I-74)

 $C_{18}H_{28}O_3Si$

320.5 g/mol

976 mg (4.51 mmol, 1.0 Äq.) des Alkohols I-**73** wurden in 40 mL Dichlormethan vorgelegt. Anschließend wurden 1.49 g (7.22 mmol, 1.6 Äq.) DCC, 881 mg (7.22 mmol, 1.6 Äq.) Benzoesäure und 110 mg (902 µmol, 0.20 Äq.) DMAP nacheinander zugegeben und das Reaktionsgemisch für 18 Stunden bei Raumtemperatur gerührt. Die Suspension wurde filtriert und das Filtrat mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (20 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt säulenchromatographisch (CH/EA 95:5) gereinigt. Das Benzoat I-**74** wurde in einer Ausbeute von 89% (1.28 g, 3.99 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.51$ (CH/EA = 9:1) [KMnO₄]. [α]²⁰_D: -3.8 (c = 1.00, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.11 – 7.99 (m, 2H), 7.61 – 7.52 (m, 1H), 7.48 – 7.39 (m, 2H), 5.86 (ddd, J = 17.2, 10.4, 6.1 Hz, 1H), 5.21 (dt, J = 17.2, 1.5 Hz, 1H), 5.08 (ddd, J = 10.4, 1.7, 1.2 Hz, 1H), 4.46 – 4.30 (m, 3H), 2.03 – 1.83 (m, 2H), 0.93 – 0.88 (m, 9H), 0.14 – -0.11 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.7, 141.2, 133.0, 130.6, 129.7, 128.5, 114.5, 70.9, 61.8, 37.2, 26.0, 18.3, -4.2, -4.8. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2955, 2929, 2894, 2886, 2856, 1719, 1251, 1175, 1069, 1025, 1004, 990, 921, 870, 834, 774, 708. HRMS (ESI) berechnet für C₁₈H₂₈NaO₃Si⁺ [M+Na⁺]: 343.1700; gefunden 343.1699.

(S)-3-((*tert*-Butyldimethylsilyl)oxy)-4-oxobutyl-benzoat (Fragment D)

OTBS O OBz

$C_{17}H_{26}O_4Si$

322.5 g/mol

500 mg (1.56 mmol, 1.0 Äq.) des Alkens 1-**74** wurden in einem Gemisch aus 12 mL 1,4-Dioxan und 4 mL Wasser (3:1) gelöst. Anschließend wurden nacheinander 367 μ L (338 mg, 20.0 mmol, 2.0 Äq.) 2,6-Lutidin, 1.35 g (6.24 mmol, 4.0 Äq.) Natriumperiodat und 191 μ L (4% in Wasser, 31.2 μ mol, 2.0 mol%) einer OsO₄-Lösung zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 10 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumthiosulfat-Lösung (10 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Fragment **D** wurde in einer Ausbeute von 84% (420 mg, 1.30 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.49$ (CH/EA = 8:2) [KMnO₄]. [α]_D²⁰: -13.3 (c = 1.13, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 9.68 (d, J = 1.4 Hz, 1H), 8.04 – 7.95 (m, 2H), 7.59 – 7.52 (m, 1H), 7.48 – 7.38 (m, 2H), 4.50 (ddd, J = 10.9, 6.6, 5.3 Hz, 1H), 4.41 (ddd, J = 11.1,

7.2, 5.1 Hz, 1H), 4.23 (ddd, J = 7.0, 4.9, 1.4 Hz, 1H), 2.22 – 2.01 (m, 2H), 0.99 – 0.85 (m, 9H), 0.20 – 0.07 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 203.8, 166.4, 133.2, 130.2, 129.7, 128.6, 74.8, 60.3, 32.2, 25.9, 18.3, -4.5, -4.9. IR (ATR): \tilde{v} [cm⁻¹] = 2954, 2929, 2896, 2886, 2857, 1719, 1254, 1175, 1069, 1026, 1005, 957, 938, 894, 835, 777, 708. HRMS (ESI) berechnet für C₁₇H₂₆NaO₄Si⁺ [M+Na⁺]: 345.1493; gefunden 345.1503.

2.1.5 Synthese von Fragment E (C35-40)

(S)-5-((3-((*tert*-butyldimethylsilyl)oxy)pent-4-en-1-yl)thio)-1-phenyl-1*H*-tetrazol (I-148)

$C_{18}H_{28}N_4OSSi$

376.6 g/mol

121 mg (559 µmol, 1.0 Äq.) des Alkohols I-**73** wurden in 8.3 mL trockenem THF unter Argonatmosphäre gelöst und 199 mg (1.12 mmol, 2.0 Äq.) 1-Phenyl-1*H*-tetrazol-5-thiol, sowie 219 mg (838 µmol, 1.5 Äq.) Triphenylphosphin wurden bei 0 °C zugegeben. Anschließend wurden 210 µL (217 mg, 1.01 mmol, 1.5 Äq.) DIAD zugetropft und die Lösung für 90 Minuten bei 0 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Thioether I-**148** wurde in einer Ausbeute von 94% (198 mg, 525 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.23$ (CH/EA = 9:1) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.64 – 7.44 (m, 5H), 5.80 (ddd, J = 17.1, 10.4, 5.9 Hz, 1H), 5.21 (dt, J = 17.2, 1.5 Hz, 1H), 5.09 (dt, J = 10.4, 1.4 Hz, 1H), 4.28 (tdt, J = 6.3, 5.1, 1.3 Hz, 1H), 3.52 – 3.32 (m, 2H), 2.10 – 1.88 (m, 2H), 0.96 – 0.57 (m, 9H), 0.10 – -0.10 (m, 6H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 154.6, 140.4, 133.9, 130.2, 129.9, 124.0, 115.1, 72.4, 37.2, 29.3, 26.0, 18.3, -4.2, -4.7.

(S)-5-((3-((*tert*-Butyldimethylsilyl)oxy)pent-4-en-1-yl)sulfonyl)-1-phenyl-1*H*-tetrazol (I-149)

 $C_{18}H_{28}N_4O_3SSi$

408.6 g/mol

In 16 mL Ethanol wurden 198 mg (525 µmol, 1.0 Äq.) des Sulfids I-148 gelöst und die 0 °C Lösung auf gekühlt. Es wurden 130 mg (105 µmol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 450 μ L (511 mg, 5.26 mmol, 35% in H₂O, 10 Äq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (10 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 10 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Sulfon I-149 wurde in einer Ausbeute von 84% (181 mg, 443 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.21$ (CH/EA = 9:1) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.72 – 7.65 (m, 2H), 7.64 – 7.51 (m, 3H), 5.78 (ddd, J = 17.2, 10.4, 5.4 Hz, 1H), 5.28 (dt, J = 17.1, 1.6 Hz, 1H), 5.17 (dt, J = 10.4, 1.5 Hz, 1H), 4.47 – 4.31 (m, 1H), 3.85 – 3.65 (m, 2H), 2.22 – 2.03 (m, 2H), 0.94 – 0.79 (m, 9H), 0.12 – 0.02 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 153.6, 139.2, 133.2, 131.5, 129.8, 125.2, 116.0, 70.8, 52.1, 29.8, 25.9, 18.2, -4.4, -4.9.

(S)-2-((*tert*-Butyldimethylsilyl)oxy)-4-((1-phenyl-1*H*-tetrazol-5-yl)sulfonyl)butanal (I-147)

 $C_{17}H_{26}N_4O_4SSi$

410.6 g/mol

175 mg (428 µmol, 1.0 Äq.) des Alkens I-149 wurden in einem Gemisch aus 3 mL 1,4-Dioxan und 1 mL Wasser (3:1) gelöst. Anschließend wurden nacheinander 101 µL (92.7 mg, 856 µmol, 2.0 Äq.) 2,6-Lutidin, 370 mg (1.71 mmol, 4.0 Äq.) Natriumperiodat und 52.4 µL (4% in Wasser, 8.57 mmol, 2.0 mol%) einer OsO₄-Lösung zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und dann über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 10 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumthiosulfat-Lösung (20 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Produkt I-147 wurde in einer Ausbeute von 76% (134 mg, 326 µmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.34$ (CH/EA = 7:3) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 9.62 (d, J = 0.8 Hz, 1H), 7.70 – 7.65 (m, 2H), 7.63 – 7.56 (m, 3H), 4.24 (ddd, J = 6.4, 5.4, 0.9 Hz, 1H), 3.98 – 3.57 (m, 2H), 2.45 – 2.16 (m, 2H), 0.97 – 0.88 (m, 9H), 0.18 – -0.03 (m, 6H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 201.8, 153.4, 133.1, 131.6, 129.9, 125.2, 75.0, 51.7, 25.8, 25.4, 18.2, -4.5, -4.8.

(S)-2-((*tert*-Butyldimethylsilyl)oxy)-4-((1-phenyl-1*H*-tetrazol-5-yl)sulfonyl)butanal (3-57)

$C_{21}H_{32}N_4O_5SSi$

480.7 g/mol

82.0 mg (199 µmol, 1.0 Äq.) des Aldehyds I-147 wurden in 0.75 mL trockenem Toluol unter Argonatmosphäre gelöst und 104 mg (300 µmol, 1.5 Äq.) Ethyl(triphenylphosphoanyliden)acetat (I-146) wurden zugegeben. Die Reaktionslösung wurde für 18 Stunden bei 60 °C gerührt. Anschließend wurde das Lösungsmittel wurde am Phosphonat I-145 Rotationsverdampfer in vacuo entfernt. Das wurde nach säulenchromatographischer Reinigung (CH/EA 9:1) in einer Ausbeute von 81% (78.0 mg, 162 µmol) in Form eines farblosen Flüssigkeit erhalten.

DC: $R_f = 0.37$ (CH/EA = 8:2) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.71 – 7.65 (m, 2H), 7.63 – 7.56 (m, 3H), 6.86 (dd, J = 15.5, 4.4 Hz, 1H), 6.05 (dd, J = 15.5, 1.7 Hz, 1H), 4.69 – 4.55 (m, 1H), 4.28 – 4.11 (m, 2H), 3.89 – 3.77 (m, 1H), 3.72 – 3.65 (m, 1H), 2.38 – 2.14 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 0.98 – 0.80 (m, 9H), 0.16 – 0.03 (m, 6H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 166.0, 153.5, 147.8, 133.2, 131.6, 129.9, 125.2, 122.3, 69.0, 60.8, 51.8, 29.4, 27.1, 25.9, 25.9, 18.3, 14.3, -4.6, -4.9.

(R)-2-Brom-1,4-Butandisäure (I-156)

$C_4H_5BrO_4$

196.9 g/mol

10.0 g (75.1 mmol, 1.0 Äq.) (*D*)-Asparaginsäure (I-**155**) wurden in einem Gemisch aus 26 mL konzentrierter Schwefelsäure und 198 mL Wasser gelöst. Bei -5 °C wurden 40.2 g (338 mmol, 4.5 Äq.) Kaliumbromid zugegeben. Anschließend wurden 9.33 g (135 mmol, 1.8 Äq.) Natriumnitrit, gelöst in 19 mL Wasser, innerhalb von einer Stunde zugetropft. Die Lösung wurde für drei Stunden bei 0 °C gerührt. Das braune Reaktionsgemisch wurde

mit Ethylacetat (3 x 100 mL) extrahiert und die vereinten organischen Phasen über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Produkt I-**156** wurde ohne weitere Aufreinigung in einer Ausbeute von 86% (12.7 mg, 64.5 mmol) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.48$ (CH/EA/AcOH = 1:1:0.05) [KMnO₄]. [α]_D²⁰: +58.2 (*c* = 1.08, MeOH). ¹**H**-**NMR** (600 MHz, DMSO-d₆): δ [ppm] = 12.93 (s, 2H), 4.51 (dd, *J* = 8.5, 6.3 Hz, 1H), 3.07 (dd, *J* = 17.0, 8.5 Hz, 1H), 2.88 (dd, *J* = 17.0, 6.2 Hz, 1H). ¹³**C**-**NMR** (151 MHz, DMSO-d₆): δ [ppm] = 171.0, 170.2, 40.6, 39.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3009, 2900, 2644, 2528, 1720, 1419, 1403, 1305, 1285, 1245, 933, 647. **HRMS** (ESI) berechnet für C₄H₅BrNaO₄⁺ [M+Na⁺]: 218.9263; gefunden 218.9261.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[70]

(*R*)-2-Brom-butan-1,4-diol (I-154)

C₄H₉BrO₂

169.0 g/mol

Es wurden 12.6 g (64.1 mmol, 1.00 Äq.) der Carbonsäure I-**156** in 160 mL trockenem THF unter Argonatmosphäre gelöst. Die Lösung wurde auf -78 °C gekühlt und 19.5 mL (15.6 g, 193 mmol, 3.02 Äq.) Borandimethylsulfid-Komplex innerhalb von 90 Minuten zugetropft. Das Reaktionsgemisch wurde für zwei Stunden bei -78 °C und anschließend für weitere 60 Stunden bei Raumtemperatur gerührt. Die Lösung wurde auf 0 °C gekühlt und 100 mL Methanol wurden langsam hinzugegeben. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand erneut in Methanol aufgenommen. Die Prozedur wurde dreimal wiederholt. Das Diol I-**154** wurde in einer Ausbeute von 88% (9.5 g, 56.2 mmol) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.29$ (CH/EA/MeOH = 6:6:1) [KMnO₄]. [α]²⁰_D: +27.8 (*c* = 1.10, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 4.34 – 4.23 (m, 1H), 3.89 – 3.83 (m, 3H), 3.78 (ddd, *J* = 11.0, 8.1, 4.3 Hz, 1H), 3.05 (s, 2H), 2.20 – 2.01 (m, 2H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 67.2, 60.1, 54.9, 38.0. **IR** (ATR): \tilde{v} [cm⁻¹] = 3300, 2933, 2884, 1451,
1234, 1050, 1020, 819, 638. **HRMS** (APCI) berechnet für $C_4H_{10}BrO_2^+$ [M+H⁺]: 168.9859; gefunden 168.9879.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[70]

1-(Brommethyl)-4-methoxybenzol (I-157)

C₈H₉BrO

2.50 g (18.1 mmol, 1.0 Äq.) (4-Methoxyphenyl)methanol (I-**111**) wurden in 33 mL Dichlormethan gelöst. Anschließend wurden bei 0 °C 1.72 mL (18.1 mmol, 1.0 Äq.) PBr₃ zugetropft. Die Lösung wurde für 20 Minuten bei 0 °C gerührt und die Reaktion anschließend durch die Zugabe von Eis beendet. Die Phasen wurden getrennt und die organische Phase wurde mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (10 mL) gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt ohne weitere Reinigung im nächsten Schritt eingesetzt.

DC: $R_f = 0.54$ (CH/EA = 8:2) [KMnO₄].

(S)-2-(2-((4-Methoxybenzyl)oxy)ethyl)oxiran (I-153)

 $C_{12}H_{16}O_3$

208.2 g/mol

Bei -16 °C wurden 17.8 g (105 mmol, 1.0 Äq.) von Diol I-**154**, gelöst in 62 mL trockenem THF, unter Argonatmosphäre zu einer Suspension bestehend aus 12.6 g (316 mmol, 60 wt.% in Mineralöl, 3.0 Äq.) Natriumhydrid in 192 mL trockenem THF gegeben. Das Reaktionsgemisch wurde für eine Stunde bei -5 °C gerührt. Anschließend wurden 33.9 g (168 mmol, 1.6 Äq.) 4-Methoxybenzylbromid, gelöst in 124 mL trockenem DMF, bei -16 °C hinzugegeben. Die Lösung wurde für drei Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter,

wässriger Ammoniumchlorid-Lösung und Ethylacetat (jeweils 50 mL) beendet und die Phasen getrennt. Die wässrige Phase wurde mit Ethylacetat (3 x 50 mL) extrahiert und die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Epoxid I-**153** wurde in einer Ausbeute von 93% (20.3 g, 97.7 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.35$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -12.3 (c = 1.22, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.29 - 7.24 (m, 2H), 6.90 - 6.85 (m, 2H), 4.46 (d, J = 1.9 Hz, 2H), 3.80 (s, 3H), 3.64 - 3.53 (m, 2H), 3.11 - 3.02 (m, 1H), 2.77 (dd, J = 5.1, 4.0 Hz, 1H), 2.52 (dd, J = 5.0, 2.7 Hz, 1H), 1.90 (dddd, J = 14.4, 7.3, 6.0, 4.7 Hz, 1H), 1.77 (dq, J = 14.4, 6.0 Hz, 1H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.4, 130.5, 129.4, 114.0, 72.9, 66.9, 55.4, 50.2, 47.2, 33.1. **IR** (ATR): \tilde{v} [cm⁻¹] = 2997, 2922, 2858, 2837, 1611, 1585, 1511, 1481, 1301, 1173, 1086, 954, 817, 755. **HRMS** (ESI) berechnet für C₁₂H₁₆NaO₃⁺ [M+Na⁺]: 231.0992; gefunden 231.0994.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[70]

(*R*)-1-((4-Methoxybenzyl)oxy)hex-5-en-3-ol (I-158)

C₁₄H₂₀O₃ 236.3 g/mol

765 mg (3.67 mmol, 1.0 Äq.) des Epoxids I-**153** und 140 mg (735 μmol, 0.20 Äq.) Kupfer(I)-iodid wurden in 18 mL trockenem THF unter Argonatmosphäre vorgelegt. Die Lösung wurde auf -78 °C gekühlt und 5.51 mL (5.40 g, 5.51 mmol, 1 M in THF, 1.5 Äq.) einer Vinylmagnesiumbromid-Lösung wurden zugetropft. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt und für 30 Minuten gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, Ammoniumchlorid-Lösung und Ethylacetat (jeweils 10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Der Alkohol I-**158** wurde in einer Ausbeute von 91% (788 mg, 3.33 mmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.23$ (CH/EA = 8:2) [KMnO₄]. [α]²⁰_D: +2.1 (c = 1.08, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.27 – 7.22 (m, 2H), 6.90 – 6.80 (m, 2H), 5.83 (ddt, J = 16.8, 10.4, 7.1 Hz, 1H), 5.18 – 5.00 (m, 2H), 4.45 (s, 2H), 3.91 – 3.82 (m, 1H), 3.80 (s, 3H), 3.69 (ddd, J = 9.3, 5.7, 5.0 Hz, 1H), 3.65 – 3.57 (m, 1H), 2.24 (ddt, J = 7.5, 6.2, 1.3 Hz, 2H), 1.84 – 1.67 (m, 2H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 159.5, 135.1, 130.3, 129.4, 117.6, 114.0, 73.1, 70.6, 68.8, 55.4, 42.1, 36.0. **IR** (ATR): \tilde{v} [cm⁻¹] = 3419, 3074, 3000. 2934, 2912, 2862, 2837, 1611, 1585, 1245, 1172, 1081, 1031, 996, 914, 820. **HRMS** (ESI) berechnet für C₁₄H₂₀NaO₃⁺ [M+Na⁺]: 259.1305; gefunden 259.1309. Die spektroskopischen Daten stimmen mit der Literatur überein.^[86]

(R)-tert-Butyl((1-((4-methoxybenzyl)oxy)hex-5-en-3-yl)oxy)dimethylsilan (I-159)

 $C_{20}H_{34}O_3Si$

350.6 g/mol

761 mg (3.22 mmol, 1.0 Äq.) des Alkohols I-**158** wurden in 4 mL DMF vorgelegt. Anschließend wurden nacheinander 658 mg (9.66 mmol, 3.0 Äq.) Imidazol und 728 mg (4.83 mmol, 1.5 Äq.) *tert*-Butyldimethylsilylchlorid zugegeben. Die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt. Es wurden 5 mL Wasser hinzugegeben und das Gemisch mit Dichlormethan (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der Silylether I-**159** wurde in einer Ausbeute von 93% (1.05 g, 3.00 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -17.4 (c = 1.18, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.30 - 7.19 (m, 2H), 6.94 - 6.79 (m, 2H), 5.86 - 5.75 (m, 1H), 5.07 - 4.96 (m, 2H), 4.50 - 4.22 (m, 2H), 3.91 - 3.86 (m, 1H), 3.80 (s, 3H), 3.55

- 3.44 (m, 2H), 2.31 – 2.11 (m, 2H), 1.77 (dtd, J = 14.2, 7.2, 4.4 Hz, 1H), 1.69 (ddt, J = 13.8, 7.7, 5.9 Hz, 1H), 0.88 (s, 9H), 0.05 (d, J = 6.6 Hz, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 135.1, 130.9, 129.4, 117.1, 113.9, 72.8, 69.2, 66.9, 55.4, 42.4, 36.9, 26.0, 18.2, -4.2, -4.6. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2928, 2886, 2855, 1613, 1512, 1246, 1087, 1037, 1003, 910, 832, 773. **HRMS** (ESI) berechnet für C₂₀H₃₄NaO₃Si⁺ [M+Na⁺]: 373.2169; gefunden 373.2174.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[86]

(R)-3-((tert-Butyldimethylsilyl)oxy)hex-5-en-1-ol (I-152)

 $C_{12}H_{26}O_2Si$

230.4g/mol

1.00 g (2.85 mmol, 1.0 Äq.) des PMB-Ethers I-**159** wurden in einem Gemisch aus jeweils 15 mL Dichlormethan und einer pH7-Puffer-Lösung gelöst. Anschließend wurden 1.00 g (4.28 mmol, 1.5 Äq.) DDQ hinzugegeben und das Gemisch für 60 Minuten bei Raumtemperatur gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 10 mL) gewaschen wurde. Das Filtrat wurde anschließend mit Wasser (20 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der Alkohol I-**152** wurde in einer Ausbeute von 75% (780 mg, 2.13 mmol, 63% Reinheit) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.55$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_D^{20}$: -19.1 (c = 1.08, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 5.77 (ddt, J = 17.4, 10.3, 7.2 Hz, 1H), 5.14 – 4.99 (m, 2H), 4.00 – 3.94 (m, 1H), 3.82 (ddd, J = 10.8, 8.1, 4.4 Hz, 1H), 3.72 (ddd, J = 10.8, 5.9, 5.0 Hz, 1H), 2.30 (ddt, J = 7.4, 6.2, 1.3 Hz, 2H), 2.04 (s, 1H), 1.81 (dddd, J = 14.4, 8.2, 5.0, 4.0 Hz, 1H), 1.67 (dddd, J = 14.4, 6.9, 5.9, 4.4 Hz, 1H), 0.98 – 0.78 (m, 9H), 0.12 – 0.03 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 132.1, 114.5, 71.4, 60.3, 41.8, 37.9, 26.0, 18.1, -4.2, -4.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3445, 2953, 2929, 2887, 2856, 1697, 1682,

1598, 1510, 1256, 1159, 1067, 1025, 830, 773. **HRMS** (ESI) berechnet für $C_{12}H_{26}NaO_2Si^+$ [M+Na⁺]: 253.1594; gefunden 253.1600.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[86]

(R)-3-((tert-Butyldimethylsilyl)oxy)hex-5-en-1-ylbenzoat (I-160)

C19H30O3Si

334.5 g/mol

In 35 mL trockenem Dichlormethan wurden unter Argonatmosphäre 767 mg (2.10 mmol, 63% Reinheit, 1.0 Äq.) des Alkohols I-152 vorgelegt. Anschließend wurden nacheinander 692 mg (3.36 mmol, 1.6 Äq.) DCC, 410 mg (3.36 mmol, 1.6 Äq.) Benzoesäure und 51.2 mg (419 µmol, 20 mol%) DMAP zugegeben. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 10 mL) gewaschen wurde. Das Filtrat wurde anschließend mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (20 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der Ester I-160 wurde in einer Ausbeute von 94% (661 mg, 1.98 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.61$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -25.0 (c = 1.33, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 8.07 - 7.99 (m, 2H), 7.59 - 7.50 (m, 1H), 7.48 - 7.40 (m, 2H), 5.83 (ddt, J = 16.7, 10.5, 7.1 Hz, 1H), 5.12 - 5.00 (m, 2H), 4.45 (ddd, J = 10.9, 6.7, 5.4 Hz, 1H), 4.36 (ddd, J = 10.9, 8.0, 6.1 Hz, 1H), 4.00 - 3.92 (m, 1H), 2.37 - 2.21 (m, 2H), 1.96 (dddd, J = 14.5, 8.0, 6.7, 4.2 Hz, 1H), 1.85 (dddd, J = 14.1, 7.8, 6.1, 5.4 Hz, 1H), 0.95 - 0.85 (m, 9H), 0.11 - 0.02 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 166.7, 134.6, 133.0, 130.6, 129.7, 128.5, 117.5, 68.9, 62.1, 42.4, 35.7, 26.0, 18.2, -4.2, -4.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2954, 2928, 2887, 2856, 1719, 1270, 1252, 1108, 1096, 1069,

1003, 912, 833, 773, 708. **HRMS** (ESI) berechnet für $C_{19}H_{30}NaO_3Si^+$ [M+Na⁺]: 357.1856; gefunden 357.1857.

(R)-3-((tert-Butyldimethylsilyl)oxy)-6-hydroxyhexylbenzoat (I-161)

 $C_{19}H_{32}O_4Si$

17.4 g (52.1 mmol, 1.0 Äq.) des Alkens I-**160** wurden in 521 mL trockenem THF unter Argonatmosphäre gelöst. Bei 0 °C wurden 208 mL (187 g, 104 mmol, 0.5 M in THF, 2.0 Äq.) einer 9-BBN-Lösung zugetropft und die Lösung zunächst für 15 Minuten bei 0 °C und dann für 18 Stunden bei Raumtemperatur gerührt. Anschließend wurden 34.7 mL (38.9 g, 104 mmol, 3 M in H₂O, 2.0 Äq.) einer Natriumhydroxid-Lösung und 34.4 mL (38.9 g, 401 mmol, 35% in H₂O, 7.7 Äq.) einer Wasserstoffperoxid-Lösung bei 0 °C zugegeben und die Lösung zunächst für 15 Minuten bei 0 °C und dann für weitere 4 Stunden bei Raumtemperatur gerührt. Es wurde Wasser (50 mL) zugegeben und die Phasen getrennt. Die wässrige Phase wurde mit Diethylether (3 x 50 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Alkohol I-**161** wurde in einer Ausbeute von 71% (12.9 g, 36.8 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.49$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -9.9 (c = 1.10, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.11 – 7.93 (m, 2H), 7.62 – 7.52 (m, 1H), 7.50 – 7.36 (m, 2H), 4.46 (dt, J = 10.9, 6.2 Hz, 1H), 4.37 (ddd, J = 11.0, 7.3, 6.5 Hz, 1H), 4.05 – 3.94 (m, 1H), 3.73 – 3.59 (m, 2H), 2.08 – 1.85 (m, 3H), 1.71 – 1.56 (m, 4H), 0.98 – 0.82 (m, 9H), 0.20 – -0.04 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.7, 133.0, 130.5, 129.6, 128.5, 69.1, 63.1, 62.1, 35.7, 33.9, 28.2, 26.0, 18.2, -4.3, -4.6. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3385, 2951, 2928, 2856, 1719, 1272, 1253, 1096, 1069, 832, 773, 709. HRMS (ESI) berechnet für C₁₉H₃₂NaO₄Si⁺ [M+Na⁺]: 375.1962; gefunden 375.1956.

4-Methoxybenzyl-2,2,2-trichloracetimidat (I-162)

 $C_{10}H_{10}Cl_3NO_2$

282.6 g/mol

17.0 g (120 mmol, 1.0 Äq.) (4-Methoxyphenyl)methanol (I-111) wurden zu einer Suspension bestehend aus 482 mg (12.1 mmol, 60 wt.% in Mineralöl, 1.0 Äq.) Natriumhydrid in 130 mL Diethylether gegeben. Das Reaktionsgemisch wurde für 30 Minuten bei Raumtemperatur gerührt und anschließend wurden 12.3 mL (17.8 g, 120 mmol, 1.0 Äq.) Trichloracetonitril zugegeben. Die Lösung wurde für vier Stunden bei Raumtemperatur gerührt und das Lösungsmittel dann am Rotationsverdampfer *in vacuo* entfernt. Es wurden Petrolether (60 mL) und Methanol (2 mL) zugegeben und die Suspension für 30 Minuten bei Raumtemperatur gerührt, über Celite filtriert und der Rückstand mit Petrolether (3 x 10 mL) gewaschen. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt ohne weitere Reinigung im nächsten Schritt eingesetzt.

DC: $R_f = 0.57$ (CH/EA = 8:2) [KMnO₄].

(R)-3-((tert-Butyldimethylsilyl)oxy)-6-hydroxyhexylbenzoat (I-151)

 $C_{27}H_{40}O_5Si$

472.7 g/mol

12.5 g (35.5 mmol, 1.0 Åq.) des Alkohols I-**161** wurden in 354 mL trockenem Dichlormethan unter Argonatmosphäre gelöst. Anschließend wurden 20.0 g (70.9 mmol, 2.0 Äq.) 4-Methoxybenzyl-2,2,2-trichloracetimidat (I-**162**) und 823 mg (3.55 mmol, 10 mol%) CSA zugegeben und die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (100 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 100 mL) extrahiert. Die vereinten, organischen

Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der PMB-Ether I-**151** wurde in einer Ausbeute von 78% (13.0 g, 27.5 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.55$ (CH/EA = 9:1) [KMnO₄]. [α]²⁰_D: -7.4 (c = 1.03, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.15 – 7.95 (m, 2H), 7.64 – 7.53 (m, 1H), 7.50 – 7.40 (m, 2H), 7.32 – 7.20 (m, 2H), 6.99 – 6.77 (m, 2H), 4.50 – 4.32 (m, 4H), 3.94 (dq, J = 6.9, 5.4 Hz, 1H), 3.82 (s, 3H), 3.47 (t, J = 6.3 Hz, 2H), 2.02 – 1.83 (m, 2H), 1.75 – 1.59 (m, 4H), 0.98 – 0.84 (m, 9H), 0.13 – 0.02 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.7, 159.3, 133.0, 130.9, 130.6, 129.7, 129.3, 128.5, 113.9, 72.7, 70.3, 69.2, 62.2, 55.4, 36.0, 34.2, 26.0, 25.5, 18.2, -4.2, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2929, 2855, 1718, 1512, 1271, 1246, 1096, 1067, 1026, 832, 773, 709. **HRMS** (ESI) berechnet für C₂₇H₄₀NaO₅Si⁺ [M+Na⁺]: 495.2537; gefunden 495.2531.

(R)-3-((tert-Butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hexan-1-ol (I-163)

 $C_{20}H_{36}O_4Si$

368.6 g/mol

13.0 g (27.5 mmol, 1.0 Äq.) des Benzoats I-**151** wurden in 275 mL trockenem Dichlormethan unter Argonatmosphäre vorgelegt. Bei -78 °C wurden 68.8 mL (58.3 g, 82.5 mmol, 1.2 M in Toluol, 3.0 Äq.) einer Diisobutylaluminiumhydrid-Lösung langsam zugetropft. Nachdem das Reaktionsgemisch für 60 Minuten bei -78 °C gerührt wurde, wurde die Reaktion durch die Zugabe von gesättigter, wässriger Kalium/Natrium-Tartrat-Lösung (100 mL) beendet und auf Raumtemperatur aufgewärmt. Es wurden 13.7 mL Glycerin (0.2 mL/mL DIBAL-H) zugegeben und die Lösung für 18 Stunden gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 50 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Alkohol I-**163**

wurde in einer Ausbeute von 80% (8.10 g, 21.9 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.31$ (CH/EA = 8:2) [KMnO₄]. [α]_D²⁰: -10.8 (c = 1.11, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.39 – 7.13 (m, 2H), 6.95 – 6.63 (m, 2H), 4.45 (s, 2H), 3.95 (tt, J = 5.9, 4.3 Hz, 1H), 3.82 (s, 4H), 3.76 – 3.68 (m, 1H), 3.46 (ddd, J = 6.2, 3.9, 2.0 Hz, 2H), 2.31 (s, 1H), 1.83 (dddd, J = 14.3, 8.0, 5.1, 4.2 Hz, 1H), 1.72 – 1.56 (m, 5H), 0.94 – 0.88 (m, 9H), 0.16 – 0.03 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 130.8, 129.3, 113.9, 72.7, 71.6, 70.2, 60.3, 55.4, 38.1, 33.6, 26.0, 25.8, 18.1, -4.3, -4.5. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3422, 2950, 2929, 2855, 1512, 1246, 1090, 1060, 1034, 832, 773. HRMS (ESI) berechnet für C₂₀H₃₆NaO₄Si⁺ [M+Na⁺]: 391.2275; gefunden 391.2271.

(*R*)-5-((3-((*tert*-Butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hexyl)thio)-1-phenyl-1*H*-tetrazol (I-164)

 $C_{27}H_{40}N_4O_3SSi$

528.8 g/mol

3.80 g (10.3 mmol, 1.0 Äq.) des Alkohols I-**163** wurden in 155 mL trockenem THF unter Argonatmosphäre gelöst. Bei 0 °C wurden nacheinander 3.67 g (20.6 mmol, 2.0 Äq.) 1-Phenyl-1*H*-tetrazol-5-thiol und 4.06 g (15.5 mmol, 1.5 Äq.) Triphenylphosphin hinzugegeben. Anschließend wurden 3.87 mL (3.99 g, 18.6 mmol, 1.8 Äq.) DIAD zugetropft und die Lösung für 90 Minuten gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Thioether I-**164** wurde in einer Ausbeute von 90% (4.93 g, 9.32 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.43$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -8.0 (c = 1.01, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.63 – 7.51 (m, 5H), 7.33 – 7.22 (m, 2H), 6.95 – 6.70 (m, 2H), 4.44 (s, 2H), 3.91 – 3.84 (m, 1H), 3.82 (s, 3H), 3.56 – 3.35 (m, 4H), 2.10 – 1.88 (m, 2H), 1.72 – 1.52 (m, 4H), 0.96 – 0.81 (m, 9H), 0.17 – -0.05 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 154.5, 133.9, 130.8, 130.2, 129.9, 129.3, 124.0, 113.9, 72.6,

217

70.8, 70.1, 55.4, 36.2, 33.6, 29.6, 26.0, 25.5, 18.2, -4.2, -4.4. **IR** (ATR): \tilde{v} [cm⁻¹] = 2951, 2928, 2854, 1511, 1499, 1245, 1172, 1086, 1073, 1035, 1014, 831, 773, 759. **HRMS** (ESI) berechnet für C₂₇H₄₀NaN₄O₃SSi⁺ [M+Na⁺]: 551.2483; gefunden 551.2483.

(*R*)-5-((3-((*tert*-Butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hexyl)sulfonyl)-1-phenyl-1*H*-tetrazol (Fragment E)

 $C_{27}H_{40}N_4O_5SSi$

560.8 g/mol

In 287 mL Ethanol wurden 4.93 g (9.32 mmol, 1.0 Åq.) des Sulfids I-**164** gelöst und die Lösung auf 0 °C gekühlt. Es wurden 2.30 g (1.86 mmol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 7.98 mL (9.06 g, 93.2 mmol, 35% in H₂O, 10 Åq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (100 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 100 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Fragment **E** wurde in einer Ausbeute von 67% (3.50 g, 6.24 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.40$ (CH/EA = 9:1) [KMnO₄]. [α]²⁰_D: +2.7 (*c* = 1.13, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.74 – 7.68 (m, 2H), 7.66 – 7.57 (m, 3H), 7.30 – 7.23 (m, 2H), 6.95 – 6.88 (m, 2H), 4.45 (s, 2H), 3.98 – 3.90 (m, 1H), 3.89 – 3.72 (m, 5H), 3.52 – 3.37 (m, 2H), 2.22 – 2.00 (m, 2H), 1.69 – 1.50 (m, 4H), 0.95 – 0.86 (m, 9H), 0.12 – -0.02 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 153.7, 133.3, 131.6, 130.7, 129.8, 129.4, 125.2, 114.0, 72.7, 69.9, 69.9, 55.4, 52.6, 33.6, 28.9, 26.0, 25.7, 18.2, -4.3, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2929, 2883, 1246, 1208, 1149, 1074, 1035, 1005, 955, 939, 774, 760, 731. **HRMS** (ESI) berechnet für C₂₇H₄₀NaN₄O₅SSi⁺ [M+Na⁺]: 583.2381; gefunden 583.2386.

2.1.6 Verknüpfung der Fragment E-A

(3*S*,7*R*,*E*)-3,7-Bis((*tert*-butyldimethylsilyl)oxy)-10-((4-methoxybenzyl)oxy)dec-4-en-1-yl-benzoat (I-166)

 $C_{37}H_{60}O_6Si_2$

657.0 g/mol

739 mg (1.32 mmol, 1.18 Äq.) von Fragment E wurden unter Argonatmosphäre in 22 mL trockenem 1,2-Dimethoxyethan gelöst. Die Lösung wurde auf -78 °C gekühlt und 2.70 mL (0.5 M in Toluol, 2.78 g, 1.35 mmol, 1.21 Äq.) einer KHMDS-Lösung wurden langsam zugetropft. Das Gemisch wurde für 30 Minuten bei -78 °C gerührt. 360 mg 1.0 Äq.) (1.12 mmol, von Fragment **D**, gelöst in 11 mL trockenem 1,2-Dimethoxyethan, wurden zugetropft und die Lösung anschließend für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 10 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Alken I-166 wurde in einer Ausbeute von 80% (584 mg, 889 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.49$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -2.5 (c = 1.19, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.09 – 7.91 (m, 2H), 7.60 – 7.49 (m, 1H), 7.48 – 7.35 (m, 2H), 7.29 – 7.20 (m, 2H), 6.92 – 6.82 (m, 2H), 5.68 – 5.56 (m, 1H), 5.54 – 5.43 (m, 1H), 4.44 – 4.26 (m, 4H), 4.36 – 4.26 (m, 1H), 3.79 (s, 3H), 3.75 – 3.64 (m, 1H), 3.42 (t, J = 6.7 Hz, 2H), 2.25 – 2.12 (m, 2H), 2.03 – 1.81 (m, 2H), 1.74 – 1.39 (m, 4H), 0.97 – 0.77 (m, 18H), 0.11 – -0.01 (m, 12H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.6, 159.3, 135.3, 132.9, 131.0, 130.7, 129.7, 129.3, 128.5, 127.1, 113.9, 72.6, 72.0, 70.6, 70.4, 62.0, 55.4, 40.3, 37.5, 33.3, 26.0, 26.0, 25.8, 18.3, 18.2, -4.0, -4.2, -4.4, -4.8. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2855, 1720, 1585, 1272, 1247, 1091, 1068, 1037, 832,

709. **HRMS** (ESI) berechnet für $C_{37}H_{60}NaO_6Si_2^+$ [M+Na⁺]: 679.3821; gefunden 679.3831.

(3*S*,7*R*,*E*)-3,7-Bis((*tert*-butyldimethylsilyl)oxy)-10-((4-methoxybenzyl)oxy)dec-4-en-1-ol (I-167)

 $C_{30}H_{56}O_5Si_2 \\$

552.9 g/mol

522 mg (795 μ mol, 1.0 Äq.) des Benzoats I-**166** wurden in 40 mL trockenem Dichlormethan unter Argonatmosphäre gelöst und das Gemisch auf -78 °C gekühlt. Anschließend wurden 1.99 mL (1.2 M in Toluol, 1.68 g, 2.38 mmol, 3.0 Äq.) einer Diisobutylaluminiumhydrid-Lösung langsam zugetropft und die Lösung für 45 Minuten bei -78 °C gerührt. Durch die Zugabe von gesättigter, wässriger Kalium/Natrium-Tartrat-Lösung (20 mL) wurde die Reaktion beendet und die Lösung auf Raumtemperatur aufgewärmt. Es wurden 0.4 mL Glycerin (0.2 mL/mL DIBAL-H) zugegeben und die Lösung für 18 Stunden gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2) gereinigt. Der Alkohol I-**167** wurde in einer Ausbeute von 95% (416 mg, 752 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.36$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -14.3 (c = 1.11, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.29 – 7.17 (m, 2H), 6.94 – 6.75 (m, 2H), 5.67 – 5.57 (m, 1H), 5.48 (ddt, J = 15.5, 6.3, 1.1 Hz, 1H), 4.42 (s, 2H), 4.38 – 4.26 (m, 1H), 3.83 – 3.77 (m, 4H), 3.69 (ddd, J = 10.8, 6.3, 4.5 Hz, 2H), 3.42 (t, J = 6.5 Hz, 2H), 2.25 – 2.11 (m, 2H), 1.88 – 1.44 (m, 6H), 0.91 – 0.80 (m, 18H), 0.09 – -0.03 (m, 12H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 135.0, 130.9, 129.3, 127.0, 113.9, 73.2, 72.6, 72.0, 70.4, 60.4, 55.4, 40.2, 39.8, 33.3, 26.0, 26.0, 25.8, 18.2, -4.0, -4.3, -4.4, -4.8. IR (ATR): \tilde{v} [cm⁻¹] = 3429, 2951, 2928, 2855, 1512, 1209, 1081, 1061, 1037, 938, 832, 772. HRMS (ESI) berechnet für C₃₀H₅₆NaO₅Si₂⁺ [M+Na⁺]: 575.3558; gefunden 575.3567.

5-(((3*S*,7*R*,*E*)-3,7-Bis((*tert*-butyldimethylsilyl)oxy)-10-((4-methoxybenzyl)oxy)dec-4-en-1-yl)thio)-1-phenyl-1*H*-tetrazol (I-168)

$C_{37}H_{60}N_4O_4SSi_2 \\$

713.1 g/mol

416 mg (752 µmol, 1.0 Äq.) des Alkohols I-**167** wurden in 11 mL trockenem THF unter Argonatmosphäre gelöst. Bei 0 °C wurden nacheinander 269 mg (1.50 mmol, 2.0 Äq.) 1-Phenyl-1*H*-tetrazol-5-thiol und 296 mg (1.13 mmol, 1.5 Äq.) Triphenylphosphin zugegeben. Anschließend wurden 283 µL (291mg, 1.35 mmol, 1.8 Äq.) DIAD zugetropft und das Gemisch für 90 Minuten bei 0 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Sulfid I-**168** wurde in einer Ausbeute von 99% (531 mg, 745 µmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.61$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -8.5 (c = 1.13, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.65 – 7.38 (m, 5H), 7.30 – 7.09 (m, 2H), 6.92 – 6.61 (m, 2H), 5.68 – 5.55 (m, 1H), 5.50 – 5.35 (m, 1H), 4.41 (s, 2H), 4.29 – 4.17 (m, 1H), 3.79 (s, 3H), 3.74 – 3.63 (m, 1H), 3.41 (td, J = 6.7, 2.9 Hz, 4H), 2.23 – 2.09 (m, 2H), 1.99 (dddd, J = 7.3, 6.3, 4.8, 1.6 Hz, 2H), 1.71 – 1.33 (m, 4H), 0.93 – 0.73 (m, 18H), 0.06 – -0.07 (m, 12H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 159.3, 154.6, 134.6, 134.0, 131.0, 130.2, 129.9, 129.3, 127.7, 124.0, 113.9, 72.6, 72.1, 71.9, 70.4, 55.4, 40.3, 37.6, 33.3, 29.5, 26.0, 26.0, 25.8, 18.3, 18.2, -4.0, -4.3, -4.4, -4.7. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2951, 2928, 2854, 1512, 1500, 1246, 1084, 1074, 1038, 833, 774, 760. **HRMS** (ESI) berechnet für C₃₇H₆₀N₄NaO₄SSi₂⁺ [M+Na⁺]: 735.3766; gefunden 735.3758.

5-(((3*S*,7*R*,*E*)-3,7-Bis((*tert*-butyldimethylsilyl)oxy)-10-((4-methoxybenzyl)oxy)dec-4-en-1-yl)sulfonyl)-1-phenyl-1*H*-tetrazol (I-169)

 $C_{37}H_{60}N_4O_6SSi_2$

745.1 g/mol

In 23 mL Ethanol wurden 525 mg (736 μ mol, 1.0 Äq.) des Sulfids I-**168** gelöst und die Lösung auf 0 °C gekühlt. Es wurden 182 mg (147 μ mol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 630 μ L (35% in Wasser, 716 mg, 7.36 mmol, 10 Äq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (20 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 10 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Sulfon I-**169** wurde in einer Ausbeute von 95% (521 mg, 699 μ mol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.61$ (CH/EA = 8:2) [KMnO₄]. [α]²⁰_D: -7.6 (c = 1.03, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.73 – 7.52 (m, 5H), 7.27 – 7.21 (m, 2H), 6.93 – 6.78 (m, 2H), 5.79 – 5.60 (m, 1H), 5.41 (ddt, J = 15.3, 5.8, 1.2 Hz, 1H), 4.42 (s, 2H), 4.38 – 4.29 (m, 1H), 3.83 – 3.66 (m, 6H), 3.42 (t, J = 6.6 Hz, 2H), 2.26 – 2.01 (m, 4H), 1.71 – 1.37 (m, 4H), 0.96 – 0.79 (m, 18H), 0.20 – -0.10 (m, 12H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 153.7, 133.5, 133.3, 131.5, 131.0, 129.8, 129.3, 128.7, 125.2, 113.9, 72.6, 71.8, 70.8, 70.4, 55.4, 52.5, 40.2, 33.4, 30.4, 26.0, 26.0, 25.8, 18.3, 18.2, -4.2, -4.3, -4.4, -4.8. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2855, 1247, 1076, 1037, 1006, 833, 774, 761, 727. **HRMS** (ESI) berechnet für C₃₇H₆₀N₄NaO₆SSi₂⁺ [M+Na⁺]: 767.3664; gefunden 767.3671.

(3*R*,5*S*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis((*tert*-butyldimethyl-silyl)oxy)-20-((4-methoxybenzyl)oxy)icosa-10,14-dien-1-yl-benzoat (I-170)

 $C_{71}H_{134}O_{10}Si_6$

1316.3 g/mol

In 10 mL trockenem 1,2-Dimethoxyethan wurden 441 mg (502 µmol, 1.18 Äq.) des Sulfons I-**169** unter Argonatmosphäre gelöst. Die Lösung wurde auf -78 °C gekühlt und 1.21 mL (0.5 M in Toluol, 1.07 g, 607 µmol, 1.21 Äq.) einer KHMDS-Lösung wurden langsam zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt und anschließend 400 mg (592 µmol, 1.0 Äq.) von Fragment **C**, gelöst in 5 mL trockenem 1,2-Dimethoxyethan, zugetropft. Die Lösung wurde für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 5 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Produkt I-**170** wurde in einer Ausbeute von 78% (515 mg, 391 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.51$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -9.9 (c = 1.09, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.09 – 7.95 (m, 2H), 7.59 – 7.49 (m, 1H), 7.47 – 7.36 (m, 2H), 7.30 – 7.20 (m, 2H), 6.95 – 6.73 (m, 2H), 5.55 (dq, J = 14.8, 7.1 Hz, 2H), 5.43 (td, J = 15.3, 14.8, 6.9 Hz, 2H), 4.44 – 4.33 (m, 4H), 4.18 (td, J = 7.7, 4.1 Hz, 1H), 4.10 – 4.00 (m, 2H), 3.90 (dt, J = 11.0, 4.1 Hz, 2H), 3.80 (s, 3H), 3.73 – 3.65 (m, 1H), 3.42 (t, J = 6.7 Hz, 2H), 2.28 – 2.10 (m, 4H), 2.01 – 1.78 (m, 2H), 1.77 – 1.38 (m, 10H), 0.97 – 0.78 (m, 54H), 0.13 – -0.07 (m, 36H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.7, 159.3, 136.3, 135.6, 132.9, 131.0, 130.6, 129.7, 129.3, 128.4, 126.9, 126.6, 113.9, 73.7, 72.6, 72.0, 71.2, 70.5, 67.4, 67.1, 66.9, 62.0, 55.4, 46.8, 46.8, 45.7, 41.7, 40.3, 36.9, 33.1, 27.1, 26.2, 26.1, 26.1, 26.1, 25.9, 18.4, 18.3, 18.2, 18.2, -3.2, -3.2, -3.4, -3.7, -4.0, -4.1, -4.1, -4.2, -4.4, -4.4, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2893, 2855, 1723, 1249, 1068,

1027, 1004, 832, 806, 771, 709. **HRMS** (ESI) berechnet für C₇₁H₁₃₄NaO₁₀Si₆⁺ [M+Na⁺]: 1338.8485; gefunden 1338.8484.

(3*R*,5*S*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis((*tert*-butyldimethylsilyl)oxy)-20-((4-methoxybenzyl)oxy)icosa-10,14-dien-1-ol (I-171)

In 49 mL trockenem Dichlormethan wurden 1.30 g (987 µmol, 1.0 Äq.) des Benzoats I-170 unter Argonatmosphäre gelöst und die Lösung auf -78 °C gekühlt. Anschließend wurden 2.47 mL (1.2 M in Toluol, 2.09 g, 2.96 mmol, 3.0 Äq.) einer Diisobutylaluminiumhydrid-Lösung langsam zugetropft und die Reaktionsgemisch für 45 Minuten bei -78 °C gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Kalium/Natrium-Tartrat-Lösung (30 mL) abgebrochen und die Lösung auf Raumtemperatur aufgewärmt. Es wurden 0.5 mL Glycerin (0.2 mL/mL DIBAL-H) zugegeben und die Lösung für 18 Stunden gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2) gereinigt. Der Alkohol I-171 wurde in einer Ausbeute von 86% (1.03 g, 849 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: +3.3 (c = 1.36, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.29 – 7.13 (m, 2H), 6.93 – 6.80 (m, 2H), 5.54 (tt, J = 14.6, 7.0 Hz, 2H), 5.43 (dtd, J = 13.8, 7.4, 6.9, 4.5 Hz, 2H), 4.42 (s, 2H), 4.13 (td, J = 7.3, 5.2 Hz, 1H), 4.07 (q, J = 6.2 Hz, 1H), 4.02 – 3.94 (m, 1H), 3.90 – 3.76 (m, 6H), 3.74 – 3.62 (m, 2H), 3.41 (t, J = 6.8 Hz, 2H), 2.26 – 2.11 (m, 4H), 1.85 (ddt, J = 14.1, 7.8, 4.9 Hz, 1H), 1.76 – 1.37 (m, 11H), 0.93 – 0.78 (m, 54H), 0.16 – -0.19 (m, 36H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 136.1, 135.3, 131.0, 129.3, 126.9, 126.7, 113.9, 73.6, 72.6, 72.1, 71.2, 70.5, 69.6, 67.5, 67.2, 60.3, 55.4, 47.3, 46.5, 45.4, 41.7, 40.5, 38.6,

33.3, 26.2, 26.1, 26.1, 26.1, 25.8, 18.4, 18.3, 18.2, 18.2, 18.2, 18.1, -3.4, -3.5, -3.5, -4.1, -4.1, -4.1, -4.2, -4.2, -4.3, -4.4, -4.4, -4.4, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 3480, 2952, 2928, 2886, 2855, 1249, 1065, 1043, 1004, 831, 806, 771. **HRMS** (ESI) berechnet für C₆₄H₁₃₀NaO₉Si₆⁺ [M+Na⁺]: 1233.8223; gefunden 1233.8269.

5-(((3*S*,5*R*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis((*tert*-butyldimethyl-silyl)oxy)-20-((4-methoxybenzyl)oxy)icosa-10,14-dien-1-yl)thio)-1-phenyl-1*H*-tetrazol (I-172)

$C_{71}H_{134}N_4O_8SSi_6$

1372.4 g/mol

In 4 mL trockenem THF wurden 344 mg (284 μ mol, 1.0 Äq.) des Alkohols I-**171** unter Argonatmosphäre gelöst und das Reaktionsgemisch auf 0 °C gekühlt. Nacheinander wurden 101 mg (568 μ mol, 2.0 Äq.) 1-Phenyl-1*H*-tetrazol-5-thiol und 111 mg (425 μ mol, 1.5 Äq.) Triphenylphosphin zugegeben. Anschließend wurden 107 μ L (110 mg, 511 μ mol, 1.8 Äq.) DIAD zugetropft und das Gemisch für 90 Minuten bei 0 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (9:1) gereinigt. Das Sulfid I-**172** wurde in einer Ausbeute von 95% (370 mg, 270 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.49$ (CH/EA = 9:1) [KMnO₄]. [α]²⁰_D: -9.3 (c = 1.03, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.68 – 7.39 (m, 5H), 7.31 – 7.19 (m, 2H), 6.98 – 6.64 (m, 2H), 5.68 – 5.15 (m, 4H), 4.42 (s, 2H), 4.18 (td, J = 7.8, 4.0 Hz, 1H), 4.07 (q, J = 6.2 Hz, 1H), 4.00 – 3.92 (m, 1H), 3.92 – 3.81 (m, 2H), 3.80 (s, 3H), 3.69 (dq, J = 6.9, 5.4 Hz, 1H), 3.50 – 3.34 (m, 4H), 2.19 (dt, J = 12.1, 6.6 Hz, 4H), 1.98 (dt, J = 8.5, 6.1 Hz, 2H), 1.78 – 1.38 (m, 10H), 0.97 – 0.74 (m, 54H), 0.15 – -0.19 (m, 36H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 154.5, 136.3, 135.6, 134.0, 131.0, 130.1, 129.9, 129.3, 126.9, 126.6, 124.0, 113.9, 73.6, 72.6, 72.0, 71.1, 70.5, 68.4, 67.4, 67.0, 55.4, 46.9, 46.8, 45.0, 41.7, 40.3, 37.1, 33.1, 29.3, 26.2, 26.1, 26.1, 25.9, 18.4, 18.3, 18.2, 18.2, -3.2, -3.2, -3.4, -3.7, -3.7, -4.0, -4.1, -4.1, -4.2, -4.4, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2928, 2893,

2855, 1776, 1247, 1070, 1004, 832, 807, 772. **HRMS** (ESI) berechnet für $C_{71}H_{134}N_4NaO_8SSi_6^+$ [M+Na⁺]: 1393.8430; gefunden 1393.8373.

5-(((3*S*,5*R*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis((*tert*-butyldimethyl-silyl)oxy)-20-((4-methoxybenzyl)oxy)icosa-10,14-dien-1-yl)sulfonyl)-1-phenyl-1*H*-tetrazol (I-173)

 $C_{71}H_{134}N_4O_{10}SSi_6$

1404.4 g/mol

370 mg (270 μ mol, 1.0 Äq.) des Sulfids I-**172** wurden in 8 mL Ethanol gelöst und bei 0 °C wurden 67 mg (54 μ mol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 231 μ L (35% in Wasser, 262 mg, 2.70 mmol, 10 Äq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (20 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 10 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 8:2) gereinigt. Das Sulfon I-**173** wurde in einer Ausbeute von 92% (350 mg, 249 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.49$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -13.1 (c = 1.21, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.73 – 7.66 (m, 2H), 7.64 – 7.55 (m, 3H), 7.30 – 7.15 (m, 2H), 6.94 – 6.64 (m, 2H), 5.62 – 5.49 (m, 2H), 5.45 – 5.31 (m, 2H), 4.42 (s, 2H), 4.20 (td, J = 8.1, 3.7 Hz, 1H), 4.07 (q, J = 6.3 Hz, 2H), 3.91 – 3.85 (m, 1H), 3.86 – 3.74 (m, 6H), 3.69 (dq, J = 7.1, 5.4 Hz, 1H), 3.42 (t, J = 6.7 Hz, 2H), 2.28 – 2.13 (m, 5H), 2.11 – 2.00 (m, 1H), 1.76 – 1.35 (m, 10H), 0.96 – 0.74 (m, 54H), 0.14 – -0.21 (m, 36H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 153.6, 136.3, 135.6, 133.3, 131.5, 130.9, 129.8, 129.3, 127.0, 126.6, 125.2, 113.9, 73.6, 72.6, 72.0, 71.1, 70.5, 67.5, 67.3, 66.9, 55.4, 52.3, 47.0, 46.6, 44.8, 41.6, 40.3, 33.1, 30.1, 26.2, 26.1, 26.1, 26.1, 25.9, 18.4, 18.3, 18.2

18.2, 18.2, -3.1, -3.1, -3.3, -3.7, -3.7, -4.1, -4.1, -4.2, -4.4, -4.4, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2928, 2893, 2855, 1249, 1070, 1041, 1004, 832, 806, 772, 733. **HRMS** (ESI) berechnet für C₇₁H₁₃₄N₄NaO₁₀SSi₆⁺ [M+Na⁺]: 1425.8328; gefunden 1425.8371.

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-3,7,9,11,15,17,19,21,25,29-Decakis(*tert*-butyldimethylsilyloxy)-32-(4methoxybenzyloxy)-4-methyl-5-(triethylsilyl-oxy)-dotriaconta-12,22,26trienylbenzoat (I-174)

C₁₁₄H₂₂₈O₁₅Si₁₁ 2147.9 g/mol

76.0 mg (54.1 µmol, 1.05 Äq.) des Sulfons I-**173** wurden in 1.03 mL trockenem 1,2-Dimethoxyethan unter Argonatmosphäre vorgelegt. Die Lösung wurde auf -78 °C gekühlt und 113 µL (0.5 M in Toluol, 99.5 mg, 56.7 µmol, 1.10 Äq.) einer KHMDS-Lösung wurden sehr langsam zugetropft. Das Gemisch wurde für 30 Minuten bei -78 °C gerührt und anschließend 50.0 mg (51.6 µmol, 1.00 Äq.) von Fragment **B**, gelöst in 0.62 mL trockenem 1,2-Dimethoxyethan, sehr langsam zugetropft. Die Lösung wurde zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 5 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (Pentan/Et₂O 99:1) gereinigt. Das Alken I-**174** wurde in einer Ausbeute von 61% (68.0 mg, 31.7 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.57$ (Pentan/Et₂O = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: -7.9 (c = 1.01, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.12 – 7.88 (m, 2H), 7.63 – 7.50 (m, 1H), 7.43 (dd, J = 8.4, 7.0 Hz, 2H), 7.25 (dd, J = 6.8, 1.8 Hz, 2H), 7.05 – 6.83 (m, 2H), 5.70 – 5.14 (m, 6H), 4.41

227

(d, J = 11.2 Hz, 4H), 4.20 (dq, J = 7.9, 5.3, 3.5 Hz, 2H), 4.07 (q, J = 6.3 Hz, 1H), 3.93 – 3.65 (m, 11H), 3.42 (t, J = 6.7 Hz, 2H), 2.35 – 2.05 (m, 7H), 1.93 (dt, J = 13.8, 6.8 Hz, 1H), 1.81 (dt, J = 12.9, 6.1 Hz, 1H), 1.75 – 1.36 (m, 16H), 1.00 – 0.80 (m, 102H), 0.61 (q, J = 8.0 Hz, 6H), 0.15 – -0.08 (m, 60H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 166.6, 159.3, 136.5, 135.9, 135.6, 132.9, 131.0, 130.7, 129.7, 129.3, 128.4, 127.1, 126.8, 126.5, 113.9, 73.7, 72.6, 72.1, 71.1, 70.8, 70.5, 70.4, 69.5, 67.3, 67.2, 67.1, 67.1, 62.3, 55.4, 47.3, 47.1, 47.1, 46.9, 46.4, 44.7, 44.5, 43.8, 43.0, 41.7, 41.5, 40.3, 34.5, 33.1, 26.3, 26.2, 26.2, 26.2, 26.2, 26.1, 26.1, 26.1, 25.9, 18.4, 18.4, 18.3, 18.3, 18.2, 18.2, 18.0, 11.2, 7.2, 5.7, -3.1, -3.2, -3.2, -3.3, -3.6, -3.6, -3.7, -3.7, -3.8, -3.8, -3.9, -3.9, -4.1, -4.2, -4.4, -4.4, -4.5, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2929, 2886, 2856, 1725, 1513, 1471, 1462, 1360, 1272, 1252, 1070, 1005, 971, 938, 834, 807, 773, 710, 666. **HRMS** (ESI) berechnet für C₁₁₄H₂₂₈NaO₁₅Si₁₁⁺ [M+Na⁺]: 2168.4432; gefunden 2168.4531.

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-3,7,9,11,15,17,19,21,25,29-Decakis(*tert*-butyldimethylsilyloxy)-32-hydroxy-4methyl-5-(triethylsilyloxy)dotriaconta-12,22,26-trienylbenzoat (I-175)

2027.8 g/mol

In einem Gemisch aus 587 μ L Dichlormethan und 59.0 μ L einer pH7-Puffer-Lösung wurden 126 mg (58.6 μ mol, 1.0 Äq.) des Ethers **I-174** gelöst. 20.6 mg (88.0 μ mol, 1.5 Äq.) DDQ wurden hinzugegeben und das Reaktionsgemisch für 45 Minuten bei Raumtemperatur gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 5 mL) gewaschen wurde. Das Filtrat wurde anschließend mit Wasser (10 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 5 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/MTBE 95:5) gereinigt. Der Alkohol **I-175** wurde in einer Ausbeute von 75% (89.0 mg, 43.9 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.15$ (CH/MTBE = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -11.0 (c = 1.03, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.09 – 7.97 (m, 2H), 7.60 – 7.49 (m, 1H), 7.47 – 7.39 (m, 2H), 5.68 – 5.32 (m, 6H), 4.46 – 4.33 (m, 2H), 4.27 – 4.14 (m, 2H), 4.08 (q, J = 6.0 Hz, 1H), 3.99 – 3.72 (m, 8H), 3.68 – 3.51 (m, 2H), 2.34 – 2.03 (m, 7H), 2.00 – 1.32 (m, 18H), 1.02 – 0.82 (m, 102H), 0.61 (q, J = 7.9 Hz, 6H), 0.12 – -0.06 (m, 60H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.6, 136.6, 135.9, 135.8, 132.9, 130.7, 129.7, 128.4, 127.0, 126.7, 126.4, 73.6, 72.1, 71.1, 70.8, 70.4, 69.5, 67.4, 67.2, 67.1, 67.1, 63.2, 62.3, 47.1, 47.1, 46.8, 46.5, 44.7, 44.5, 43.8, 41.7, 41.4, 39.9, 34.5, 32.9, 28.5, 26.3, 26.2, 26.2, 26.2, 26.1, 26.1, 26.0, 18.4, 18.4, 18.3, 18.2, 18.2, 18.0, 11.2, 7.2, 5.7, -3.1, -3.2, -3.3, -3.6, -3.6, -3.7, -3.8, -3.8, -3.9, -3.9, -4.2, -4.2, -4.4, -4.5, -4.5, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 3401, 2953, 2928, 2886, 2856, 1725, 1471, 1462, 1252, 1108, 1068, 1027, 1004, 971, 921, 832, 806, 772, 737, 710, 665. **HRMS** (ESI): berechnet für C₁₀₆H₂₂₀NaO₁₄Si₁₁⁺ [M+Na⁺]: 2048.3857, gefunden 2048.3858.

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19,21,25,29-decakis(*tert*-butyldimethylsilyloxy)-4-methyl-5-(triethylsilyloxy)dotriaconta- 12,22,26-trienylbenzoat (I-176)

 $C_{106}H_{219}N_3O_{13}Si_{11}$

2052.8 g/mol

13.8 mg (52.8 μ mol, 2.0 Äq.) Triphenylphosphin wurden in 56.0 μ L trockenem THF unter Argonatmosphäre gelöst. Anschließend wurden 10.4 μ L (10.7 mg, 52.8 μ mol, 2.0 Äq.) DIAD bei 0 °C zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei 0 °C gerührt. Nacheinander wurden 53.5 mg (26.4 μ mol, 1.0 Äq.) des Alkohols I-**175**, gelöst in 187 μ L trockenem THF, und 10.2 μ L (13.1 mg, 47.5 μ mol, 1.8 Äq.) DPPA zugetropft. Die Lösung wurde langsam auf Raumtemperatur erwärmt und für zwei

Stunden gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 99:1) gereinigt. Das Azid I-**176** wurde in einer Ausbeute von 73% (39.5 mg, 12 µmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.58$ (CH/EA = 99:1) [KMnO₄]. $[\alpha]_D^{20}$: -10.6 (c = 1.07, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 8.11 – 7.93 (m, 2H), 7.60 – 7.50 (m, 1H), 7.43 (t, J = 7.7 Hz, 2H), 5.69 – 5.29 (m, 6H), 4.41 (dt, J = 14.3, 7.4 Hz, 2H), 4.21 (p, J = 8.0, 7.4 Hz, 2H), 4.09 (q, J = 6.2 Hz, 1H), 3.99 – 3.64 (m, 8H), 3.25 (t, J = 6.8 Hz, 2H), 2.38 – 2.07 (m, 7H), 2.00 – 1.22 (m, 18H), 1.02 – 0.78 (m, 102H), 0.61 (q, J = 8.0 Hz, 6H), 0.23 – -0.17 (m, 60H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.6, 136.6, 135.9, 135.9, 132.9, 130.7, 129.7, 128.4, 127.1, 126.6, 126.1, 73.5, 71.7, 71.1, 70.8, 70.4, 69.5, 67.4, 67.2, 67.1, 67.1, 62.3, 51.8, 47.1, 47.1, 46.9, 46.5, 44.7, 44.5, 43.8, 41.7, 41.5, 40.3, 34.5, 33.5, 26.3, 26.2, 26.2, 26.2, 26.2, 26.1, 26.1, 26.1, 26.1, 26.0, 25.0, 18.4, 18.4, 18.3, 18.3, 18.2, 18.2, 18.0, 11.2, 7.2, 5.7, -3.1, -3.2, -3.3, -3.6, -3.6, -3.7, -3.7, -3.8, -3.8, -3.9, -3.9, -4.2, -4.2, -4.4, -4.4, -4.5, -4.5. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2928, 2885, 2856, 2096, 1724, 1471, 1252, 1176, 1108, 1068, 1027, 1004, 909, 832, 806, 771, 733, 710, 675, 665. HRMS (ESI): berechnet für C₁₀₆H₂₁₉N₃NaO₁₃Si₁₁⁺ [M+Na⁺]: 2073.3922, gefunden 2073.3879.

(3*S*,4*S*,5*R*,7*S*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19,21,25,29-decakis(*tert*-butyldimethylsilyloxy)-5-hydroxy-4methyldotriaconta-12,22,26-trienylbenzoat (I-177)

R = TBS

 $C_{100}H_{205}N_3O_{13}Si_{10}\\$

1938.6 g/mol

34.4 mg (16.8 μ mol, 1.0 Äq.) des Triethylsilylethers I-**176** wurden in einem Gemisch aus 603 μ L THF und 102 μ L Wasser gelöst. Bei 0 °C wurden 5.1 μ L (7.6 mg, 67 μ mol, 4.0 Äq.) TFA zugegeben und die Lösung anschließend für 18 Stunden bei

Raumtemperatur gerührt. Durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung und Ethylacetat (jeweils 5 mL) bei 0 °C wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 98:2) gereinigt. Der Alkohol I-177 wurde in einer Ausbeute von 54% (17.6 mg, 9.08 µmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.30$ (CH/EA = 98:2) [KMnO₄]. $[\alpha]_D^{20}$: -18.1 (c = 1.32, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 8.15 – 7.82 (m, 2H), 7.60 – 7.49 (m, 1H), 7.48 – 7.38 (m, 2H), 5.60 – 5.31 (m, 6H), 4.46 – 4.31 (m, 2H), 4.18 (td, J = 7.8, 3.8 Hz, 1H), 4.13 – 4.02 (m, 4H), 3.95 – 3.77 (m, 5H), 3.71 (ddd, J = 9.3, 6.6, 4.6 Hz, 1H), 3.25 (t, J = 6.8 Hz, 2H), 3.15 (s, 1H), 2.30 – 1.99 (m, 8H), 1.81 – 1.35 (m, 17H), 1.06 – 0.63 (m, 93H), 0.23 – -0.12 (m, 60H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.6, 136.5, 136.2, 135.9, 132.9, 130.8, 129.7, 128.5, 126.9, 126.6, 126.1, 73.5, 73.1, 71.7, 71.4, 71.1, 70.9, 70.4, 69.4, 67.4, 67.1, 66.9, 62.4, 51.8, 47.7, 46.8, 46.6, 44.8, 44.0, 42.7, 41.7, 41.0, 40.3, 33.5, 33.0, 26.3, 26.2, 26.2, 26.1, 26.1, 26.1, 26.0, 25.0, 18.4, 18.3, 18.2, 18.1, 18.0, 9.3, -3.2, -3.3, -3.3, -3.7, -3.7, -3.8, -3.9, -4.0, -4.1, -4.2, -4.2, -4.2, -4.4, -4.4, -4.4, -4.5, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3530, 2954, 2929, 2894, 2857, 2095, 1723, 1471, 1462, 1314, 1273, 1254, 1186, 1111, 1070, 1026, 1005, 972, 938, 919, 835, 807, 774, 711, 667. **HRMS** (ESI): berechnet für C₁₀₀H₂₀₅N₃NaO₁₃Si₁₀⁺ [M+Na⁺]: 1959.3957, gefunden 1959.3056.

(3*S*,4*S*,5*R*,7*S*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19,21,25,29-decakis((tert-butyldimethylsilyl)oxy)-4methyldotriaconta-12,22,26-triene-1,5-diol (I-178)

C93H201N3O12Si10

1834.5 g/mol

39.0 mg (20.0 μ mol, 1.0 Äq.) des Benzoats I-**177** wurden in einem Gemisch aus 402 μ L THF und 402 μ L Methanol (1:1) gelöst und 27.8 mg (201 μ mol, 10 Äq.) Kaliumcarbonat wurden zugegeben. Das Reaktionsgemisch wurde für vier Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung und Ethylacetat (jeweils 10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 5 mL) extrahiert. Die organische Phase wurde mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) über neutrales Aluminiumoxid gereinigt. Das Diol I-**178** wurde in einer Ausbeute von 82% (30.3 mg, 16.5 μ mol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.39$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -19.8 (c = 1.06, CH₂Cl₂). ¹H-NMR (400 MHz, C₆D₆): δ [ppm] = 5.97 – 5.46 (m, 6H), 4.56 (td, J = 8.1, 3.3 Hz, 1H), 4.44 – 4.30 (m, 2H), 4.30 – 4.00 (m, 8H), 3.77 – 3.57 (m, 2H), 2.91 – 2.76 (m, 2H), 2.56 – 2.31 (m, 4H), 2.21 (t, J = 6.3 Hz, 2H), 2.13 – 1.66 (m, 13H), 1.57 – 1.28 (m, 6H), 1.19 (d, J = 6.9 Hz, 3H), 1.14 – 0.90 (m, 90H), 0.29 – -0.18 (m, 60H). ¹³C-NMR (101 MHz, C₆D₆): δ [ppm] = 137.0, 136.8, 136.3, 127.2, 127.2, 126.4, 74.5, 73.8, 71.9, 71.8, 71.7, 71.0, 71.0, 69.9, 67.9, 67.6, 67.5, 59.7, 51.6, 48.2, 47.5, 47.1, 47.0, 45.2, 43.9, 43.2, 42.1, 41.7, 40.5, 36.8, 33.8, 26.5, 26.5, 26.4, 26.4, 26.4, 26.3, 26.3, 26.3, 26.2, 26.2, 26.1, 25.1, 18.6, 18.5, 18.5, 18.4, 18.3, 18.3, 18.2, 9.6, -2.8, -3.0, -3.1, -3.4, -3.5, -3.6, -3.7, -3.7, -4.0, -4.0, -4.0, -4.1, -4.1, -4.2, -4.2, -4.2, -4.4, -4.4. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3527, 2952, 2928, 2886, 2856, 2095, 1471, 1462, 1378, 1360, 1252, 1068, 1004, 971, 938, 918, 832,

806, 771, 665. **HRMS** (ESI): berechnet für $C_{93}H_{201}N_3NaO_{12}Si_{10}^+$ [M+Na⁺]: 1855.2795, gefunden 1885.2783.

(3*S*,4*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19,21,25,29-decakis(*tert*-butyldimethylsilyloxy)-4-methyl-5oxodotriaconta-12,22,26-trienal (I-165)

R = TBS

C93H197N3O12Si10

1830.5 g/mol

7.3 µL (10 mg, 84 µmol, 5.0 Äq.) Oxalylchlorid wurden in 85 µL trockenem Dichlormethan gelöst und 12 µL (13 mg, 0.17 mmol, 10 Äq.) trockenes DMSO, gelöst in 85 µL trockenem Dichlormethan, wurden bei -78 °C zugegeben. Die Lösung wurde für 30 Minuten bei -78 °C gerührt. Anschließend wurden 31 mg (17 µmol, 1.0 Äq.) des Diols I-178, gelöst in 0.34 mL trockenem Dichlormethan, zugetropft und das Reaktionsgemisch für zwei Stunden bei -78 °C gerührt. Dann wurden 28 µL (21 mg, 0.20 mmol, 12 Äq.) Triethylamin zugegeben und die Lösung langsam auf -40 °C erwärmt. Die Reaktion wurde durch Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung und Ethylacetat (jeweils 2 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 2 mL) extrahiert. Die organische Phase wurde mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 98:2) gereinigt. Die 1,5-Dicarbonylverbindung I-165 wurde in einer Ausbeute von 69% (21.4 mg, 11.7 µmol) in Form eines farblosen Öls erhalten und aufgrund der Instabilität ohne weitere Charakterisierung in der nächsten Stufe eingesetzt.

DC: $R_f = 0.52$ (CH/EA = 95:5) [KMnO₄].

R = TBS

$C_{106}H_{217}N_3O_{13}Si_{11}$

2050.8 g/mol

Es wurden 28.3 mg (81.8 µmol, 7.0 Äq.) von Fragment **A** unter Argonatmosphäre in 1.3 mL trockenem THF vorgelegt und bei -78 °C wurden 35 µL (30 mg, 35 µmol, 3.0 Äq.) einer LiHMDS-Lösung unter Lichtausschluss zugetropft, wobei die Lösung sich rot färbte. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt. Anschließend wurden 21.4 mg (11.6 µmol, 1.0 Äq.) des Aldehyds I-**165**, gelöst in 1.3 mL trockenem THF, zugegeben und die Lösung für zehn Minuten bei -78 °C und für 30 Minuten bei 0 °C gerührt. Die Reaktion wurde durch die Zugabe einer pH7-Puffer-Lösung und Ethylacetat (jeweils 10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 5 mL) extrahiert. Die organische Phase wurde mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) über neutrales Aluminiumoxid gereinigt. Das Produkt I-**68** wurde in einer Ausbeute von 79% (19 mg, 9.3 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.52$ (CH/EA = 95:5) [UV, KMnO₄]. $[\alpha]_D^{20}$: -19.2 (*c* = 1.90, CH₂Cl₂). ¹H-NMR (600 MHz, C₆D₆): δ [ppm] = 7.57 (dd, *J* = 15.2, 11.4 Hz, 1H), 6.26 (dd, *J* = 14.8, 10.9 Hz, 1H), 6.19 – 5.98 (m, 5H), 5.88 (dt, *J* = 14.5, 7.0 Hz, 1H), 5.82 – 5.66 (m, 5H), 5.64 – 5.52 (m, 1H), 4.71 (dtd, *J* = 10.8, 6.6, 3.5 Hz, 1H), 4.57 (td, *J* = 8.2, 3.4 Hz, 1H), 4.42 (td, *J* = 7.6, 5.1 Hz, 1H), 4.38 – 4.30 (m, 2H), 4.18 (dddd, *J* = 51.1, 27.0, 11.9, 5.8 Hz, 8H), 3.64 (p, *J* = 5.6 Hz, 1H), 2.92 – 2.81 (m, 3H), 2.73 (tt, *J* = 12.5, 5.4 Hz, 1H), 2.55 – 2.32 (m, 5H), 2.21 (t, *J* = 6.4 Hz, 2H), 2.14 – 1.72 (m, 10H), 1.58 – 1.39 (m, 6H), 1.22

(d, J = 7.1 Hz, 3H), 1.15 - 0.95 (m, 90H), 0.33 - 0.04 (m, 69H). ¹³C-NMR (151 MHz, C₆D₆): δ [ppm] = 209.8, 166.8, 144.4, 140.6, 137.0, 136.9, 136.8, 136.3, 133.5, 133.4, 131.1, 130.3, 127.2, 127.2, 126.4, 121.7, 73.8, 73.0, 71.9, 71.8, 71.7, 69.8, 67.9, 67.6, 67.4, 66.9, 62.3, 53.1, 51.6, 50.4, 47.8, 47.5, 47.1, 45.1, 42.1, 41.7, 40.5, 39.6, 33.8, 30.2, 26.5, 26.4, 26.4, 26.4, 26.3, 26.3, 26.2, 26.2, 26.1, 25.1, 18.6, 18.5, 18.5, 18.4, 18.3, 18.3, 17.7, 12.3, -1.5, -2.8, -3.0, -3.0, -3.1, -3.4, -3.5, -3.5, -3.7, -3.8, -4.0, -4.0, -4.0, -4.1, -4.1, -4.3, -4.4, -4.4. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2954, 2928, 2895, 2093, 1712, 1621, 1598, 1471, 1462, 1386, 1377, 1360, 1253, 1122, 1074, 1005, 859, 834, 806, 773, 666. **HRMS** (ESI): berechnet für C₁₀₆H₂₁₇N₃NaO₁₃Si₁₁⁺ [M+Na⁺]: 2071.3766, gefunden 2071.3786.

2-(Trimethylsilyl)ethylcarbamat (I-183)

$C_6H_{15}NO_2Si$

161.3 g/mol

Es wurden 355 mg (300 mmol, 1.0 Äq.) des Alkohols I-**182** und 406 mg (6.00 mmol, 2.0 Äq.) Natriumcyanat unter Argonatmosphäre in 3.0 mL trockenem Dichlormethan gelöst und 0.482 mL (718 mg, 6.30 mmol, 2.1 Äq.) Trifluoressigsäure, gelöst in 3.0 mL trockenem Dichlormethan, langsam hinzugetropft. Das Reaktionsgemisch wurde für fünf Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von Wasser und Dichlormethan (jeweils 10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Carbamat I-**183** in einer Ausbeute von 92% (443 mg, 2.75 mmol) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.35$ (CH/EA = 1:1) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 4.57 (s, 2H), 4.27 - 3.72 (m, 2H), 1.19 - 0.59 (m, 2H), 0.04 (s, 9H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 152.3, 63.5, 17.8, -1.3.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[197]

Bis-(2-(trimethylsilyl)ethyl-2-imidodicarbonat (I-184)

305.5 g/mol

Es wurden 0.219 mL (326 mg, 1.65 mmol, 0.6 Äq.) Diphosgen unter Argonatmosphäre in 11 mL trockenem Dichlormethan vorgelegt. Bei 0 °C wurden nacheinander 443 mg (2.75 mmol, 1.0 Äq.) des Carbamats I-183 und 0.444 mL (435 mg, 5.49 mmol, 2.0 Äq.) Pyridin zugegeben und das Reaktionsmisch wurde für drei Stunden bei Raumtemperatur gerührt. Anschließend wurden 0.787 mL (650 mg, 5.49 mmol, 2.0 Äg.) des Alkohols I-182 bei 0 °C zugegeben und die Lösung wurde für weitere zwei Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe einer gesättigter, wässriger Ammoniumchlorid-Lösung und Dichlormethan (jeweils 10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 7:3) gereinigt. Das Bis-2(-(trimethylsilyl)ethylcarbamat (I-184) wurde in einer Ausbeute von 66% (550 mg, 1.80 mmol) in Form eines farblosen Feststoffs erhalten.

DC: $R_f = 0.65$ (CH/EA = 7:3) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 6.89 (s, 1H), 4.57 – 3.73 (m, 4H), 1.45 – 0.65 (m, 4H), 0.04 (s, 18H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 151.1, 64.9, 17.7, -1.4. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3288, 2953, 2898, 1801, 1778, 1729, 1713, 1518, 1310, 1249, 1172, 1081, 935, 855, 831, 767, 692, 608. **HRMS** (ESI): berechnet für C₁₂H₂₇NNaO₄Si₂⁺ [M+Na⁺]: 328.1371, gefunden 328.1372.

2.2 Formalsynthese von Bastimolide A

2.2.1 Synthese von Fragment B (C36-43)

(S)-3-((tert-Butyldimethylsilyl)oxy)-4-hydroxybutylbenzoat (II-52)

$C_{17}H_{28}O_4Si$

324.5 g/mol

128 mg (396 μ mol, 1.0 Äq.) von Fragment **D** aus Kapitel I wurden in 4 mL trockenem Methanol unter Argonatmosphäre gelöst. Die Lösung wurde auf -20 °C gekühlt und 15.0 mg (396 μ mol, 1.0 Äq.) Natriumborhydrid wurden hinzugegeben. Das Gemisch wurde für eine Stunde bei -20 °C gerührt und anschließend durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (5 mL) beendet. Die wässrige Phase wurde mit Ethylacetat (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung (5 mL) gewaschen, über Natriumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer unter vermindertem Druck entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA 8:2) gereinigt und der Alkohol II-**52** in einer Ausbeute von 77% (99 mg, 310 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.52$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_D^{20}$: -16.9 (c = 1.02, CHCl₃). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 8.09 – 7.93 (m, 2H), 7.60 – 7.51 (m, 1H), 7.49 – 7.36 (m, 2H), 4.45 (dt, J = 11.6, 5.9 Hz, 1H), 4.36 (ddd, J = 11.1, 7.4, 6.1 Hz, 1H), 4.05 – 3.93 (m, 1H), 3.66 (dd, J = 11.2, 3.9 Hz, 1H), 3.56 (dd, J = 11.2, 4.7 Hz, 1H), 2.07 – 1.93 (m, 2H), 0.91 (s, 9H), 0.10 (, 3H), 0.10 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 166.6, 133.1, 130.4, 129.7, 128.5, 70.0, 66.6, 61.7, 33.1, 26.0, 18.2, -4.4, -4.6. **IR** (ATR): \tilde{v} [cm⁻¹] = 3475, 2953, 2929, 2885, 2856, 1718, 1272, 1108, 1069, 1046, 1026, 1004, 974, 834, 775, 709, 686. **HRMS** (ESI): berechnet für C₁₇H₂₈NaO₄Si⁺ [M+Na⁺]: 347.1649, gefunden 347.1648.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[198]

(S)-3-((tert-Butyldimethylsilyl)oxy)-4-((4-methoxybenzyl)oxy)butylbenzoat (II-53)

578 mg (1.78 mmol, 1.0 Äq.) des Alkohols II-**52** wurden in 17 mL trockenem Dichlormethan unter Argonatmosphäre gelöst. Anschließend wurden 1.00 g (3.56 mmol, 2.0 Äq.) 4-Methoxybenzyl-2,2,2-trichloracetimidat (I-**162**) und 41 mg (0.18 mmol, 10 mol%) CSA zugegeben und die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (50 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 50 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der PMB-Ether II-**53** wurde in einer Ausbeute von 85% (674 mg, 1.52 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.44$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -14.9 (c = 1.08, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 8.07 – 7.98 (m, 2H), 7.55 (ddt, J = 8.0, 6.9, 1.4 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.30 – 7.19 (m, 2H), 6.92 – 6.83 (m, 2H), 4.51 – 4.31 (m, 4H), 4.05 (dtd, J = 7.9, 5.5, 4.1 Hz, 1H), 3.80 (s, 3H), 3.45 (dd, J = 9.6, 5.5 Hz, 1H), 3.40 (dd, J = 9.6, 5.5 Hz, 1H), 2.07 (dddd, J = 14.5, 8.2, 6.5, 4.1 Hz, 1H), 1.87 (ddt, J = 13.9, 7.9, 5.7 Hz, 1H), 0.89 (s, 9H), 0.06 (s, 6H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 166.7, 159.3, 133.0, 130.6, 130.5, 129.7, 129.4, 128.5, 113.9, 74.7, 73.2, 68.6, 61.8, 55.4, 33.9, 26.0, 18.3, -4.2, -4.8. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2928, 2897, 2855, 1717, 1512, 1271, 1245, 1140, 1070, 11035, 1026, 832, 774, 709. **HRMS** (ESI): berechnet für C₂₅H₃₆NaO₅Si⁺ [M+Na⁺]: 467.2224, gefunden 467.2218.

(S)-3-((*tert*-Butyldimethylsilyl)oxy)-4-((4-methoxybenzyl)oxy)butan-1-ol (II-51)

 $C_{18}H_{32}O_4Si$

340.5 g/mol

674 mg (1.52 mmol, 1.0 Äq.) des Benzoats II-**53** wurden in 76 mL trockenem Dichlormethan unter Argonatmosphäre vorgelegt. Die Lösung wurde auf -78 °C gekühlt und 3.79 mL (1.2 M in Toluol, 3.21 g, 4.55 mmol, 3.0 Äq.) einer Diisobutylaluminiumhydrid-Lösung wurden tropfenweise zugegeben. Die Lösung wurde für 45 Minuten gerührt und anschließend durch die Zugabe von gesättigter, wässriger Kalium/Natrium-Tartrat-Lösung (20 mL) beendet und auf Raumtemperatur aufgewärmt. Es wurden 0.76 mL Glycerin (0.2 mL/mL DIBAL-H) zugegeben und das Gemisch für 18 Stunden bei Raumtemperatur gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung (10 mL) gewaschen, über Natriumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer *in vacuo* entfernt. Die säulenchromatographische Reinigung des Rohprodukts (CH/EA 8:2) ergab den Alkohol II-**51** in einer Ausbeute von 75% (510 mg, 1.50 mmol, 76% Reinheit) in Form eines farblosen Öls.

DC: $R_f = 0.31$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_D^{20}$: -12.2 (c = 1.06, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.26 – 7.22 (m, 2H), 6.90 – 6.81 (m, 2H), 4.46 (d, J = 3.5 Hz, 2H), 4.04 (tt, J = 6.2, 5.0 Hz, 1H), 3.81 (s, 3H), 3.78 – 3.67 (m, 2H), 3.49 – 3.24 (m, 2H), 1.87 (ddt, J = 14.4, 7.8, 4.9 Hz, 1H), 1.75 (dtd, J = 14.4, 6.0, 4.3 Hz, 1H), 0.89 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.4, 130.2, 129.5, 114.0, 74.0, 73.2, 70.7, 59.9, 55.4, 37.1, 26.0, 18.2, -4.3, -4.8. IR (ATR): \tilde{v} [cm⁻¹] = 3380, 2953, 2929, 2885, 2856, 1612, 1513, 1497, 1302, 1248, 1208, 1173, 1092, 835, 777, 735. HRMS (ESI): berechnet für C₁₈H₃₂NaO₄Si⁺ [M+Na⁺]: 363.1962, gefunden 363.1963.

(S)-5-((3-((*tert*-Butyldimethylsilyl)oxy)-4-((4-methoxybenzyl)oxy)butyl)thio)-1-phenyl-1*H*-tetrazol (II-54)

 $C_{25}H_{36}N_4O_3SSi$

500.7 g/mol

510 mg (1.50 mmol, 76% Reinheit, 1.0 Äq.) des Alkohols II-**51** wurden in 23 mL trockenem THF unter Argonatmosphäre gelöst. Bei 0 °C wurden nacheinander 533 mg (3.00 mmol, 2.0 Äq.) 1-Phenyl-1H-tetrazol-5-thiol und 589 mg (2.25 mmol, 1.5 Äq.) Triphenylphosphin zugegeben. Anschließend wurden 0.563 mL (580 mg, 2.70 mmol, 1.8 Äq.) DIAD langsam zugetropft und die Lösung für zwei Stunden bei 0 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Sulfid II-**54** wurde in einer Ausbeute von 83% (620 mg, 1.24 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.56$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -15.2 (c = 1.35, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.61 – 7.46 (m, 5H), 7.26 – 7.19 (m, 2H), 6.91 – 6.74 (m, 2H), 4.44 (d, J = 1.6 Hz, 2H), 3.97 (dtd, J = 7.4, 5.6, 4.0 Hz, 1H), 3.80 (s, 3H), 3.58 – 3.26 (m, 4H), 2.10 (dddd, J = 14.0, 8.6, 7.2, 4.1 Hz, 1H), 1.99 (dddd, J = 13.9, 8.3, 7.4, 5.5 Hz, 1H), 0.87 (s, 9H), 0.05 (s, 3H), 0.05 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.4, 154.5, 133.9, 130.4, 130.2, 129.9, 129.4, 124.0, 113.9, 73.9, 73.2, 70.1, 55.4, 34.1, 29.5, 26.0, 18.2, -4.2, -4.7. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2894, 2854, 1612, 1597, 1512, 1499, 1462, 1301, 1245, 1173, 1106, 1085, 1074, 1034, 1014, 976, 831, 775, 759, 693. HRMS (ESI): berechnet für C₂₅H₃₆N₄NaO₃SSi⁺ [M+Na⁺]: 523.2170, gefunden 523.2178.

(S)-5-((3-((*tert*-Butyldimethylsilyl)oxy)-4-((4-methoxybenzyl)oxy)butyl)sulfonyl)-1-phenyl-1*H*-tetrazol (II-48)

 $C_{25}H_{36}N_4O_5SSi$

532.7 g/mol

In 46 mL Ethanol wurden 745 mg (1.49 mmol, 1.0 Äq.) des Thioethers II-**54** vorgelegt. Bei 0 °C wurden 367 mg (297 μ mol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 1.27 mL (35% in Wasser, 1.45 g, 14.8 mmol, 10 Äq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (20 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 20 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Sulfon II-**48** wurde in einer Ausbeute von 66% (526 mg, 988 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.55$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -12.2 (c = 1.02, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.70 – 7.65 (m, 2H), 7.65 – 7.49 (m, 3H), 7.28 – 7.18 (m, 2H), 6.95 – 6.84 (m, 2H), 4.45 (q, J = 11.6 Hz, 2H), 4.02 (tt, J = 6.4, 4.7 Hz, 1H), 3.82 – 3.75 (m, 5H), 3.42 (dd, J = 9.6, 5.0 Hz, 1H), 3.30 (dd, J = 9.6, 6.7 Hz, 1H), 2.26 – 2.08 (m, 2H), 0.88 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.5, 153.6, 133.2, 131.5, 130.1, 129.8, 129.5, 125.3, 114.0, 73.2, 73.0, 69.0, 55.4, 52.4, 27.1, 25.9, 18.2, -4.4, -4.8. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2930, 2897, 2857, 1612, 1513, 1498, 1342, 1173, 1150, 1121, 1111, 1089, 1035, 835, 778, 762. **HRMS** (ESI): berechnet für C₂₅H₃₆N₄NaO₅SSi⁺ [M+Na⁺]: 555.2068, gefunden 555.2069.

(*R*)-2-Hydroxy-3,3-dimethylbutansäure (II-57)

3.15 g (45.7 mmol, 6.0 Äq.) Natriumnitrit wurden in 10 mL Wasser vorgelegt und die Lösung auf 0 °C gekühlt. Anschließend wurden 1.00 g (7.62 mmol, 1.0 Äq.) (*D*)-tert-Leucin (II-56), gelöst in 31 mL Schwefelsäure (0.5 M), über 30 Minuten zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt. Es wurde Wasser (10 mL) hinzugegeben und mit Diethylether (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 1:1) gereinigt. Der Alkohol II-57 wurde in einer Ausbeute von 90% (902 mg, 6.83 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.23$ (CH/EA = 1:1) [KMnO₄]. $[\alpha]_D^{20}$: -12.0 (c = 1.00, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 3.90 (s, 1H), 1.03 (s, 9H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 179.0, 78.5, 35.4, 25.9. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3429, 2959, 2910, 2874, 1711, 1479, 1466, 1368, 1276, 1216, 1180, 1078, 1022, 931, 878, 703. **HRMS** (ESI): berechnet für C₆H₁₁O₃⁻ [M-H⁺]: 131.0714, gefunden 131.0705.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[199]

Methyl-(*R*)-2-hydroxy-3,3-dimethylbutanoat (II-55)

 $C_7H_{14}O_3$

902 mg (6.83 mmol, 1.0 Äq.) der Säure II-**57** wurden in 9 mL Methanol vorgelegt. Es wurden 48.5 μL (53.6 mg, 682 μmol, 10 mol%) Acetylchlorid zugegeben und die Lösung

für vier Stunden bei 65 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (Pentan/Et₂O 8:2) gereinigt. Der Methylester II-**55** wurde in einer Ausbeute von 85% (845 mg, 5.78 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.30$ (Pentan/Et₂O = 8:2) [KMnO₄]. [α]²⁰_D: -40.3 (c = 1.00, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 3.85 (s, 1H), 3.82 (s, 3H), 1.00 (d, J = 0.7 Hz, 9H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 175.1, 78.7, 52.2, 35.4, 25.9. **IR** (ATR): \tilde{v} [cm⁻¹] = 3508, 2956, 2908, 2872, 1728, 1479, 1438, 1397, 1367, 1272, 1217, 1171, 1083, 1023, 1008, 985, 936, 922, 905, 883, 846, 801, 748, 677. **HRMS** (ESI): berechnet für C₇H₁₄NaO₃⁺ [M+Na⁺]: 169.0835, gefunden 169.0839.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[200]

Methyl-(*R*)-3,3-dimethyl-2-((triethylsilyl)oxy)butanoat (II-58)

 $C_{13}H_{28}O_3Si$

260.4 g/mol

Es wurden 771 mg (5.27 mmol, 1.0 Äq.) des Alkohols II-**55** in 6.6 mL Dichlormethan vorgelegt. Zunächst wurden 503 mg (7.38 mmol, 1.4 Äq.) Imidazol zugegeben und die Lösung auf 0 °C gekühlt. 0.974 mL (0.874 g, 5.80 mmol, 1.1 Äq.) Chlortriethylsilan wurden zugegeben und die Lösung für zehn Minuten bei 0 °C und anschließend für weitere 60 Minuten bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von Dichlormethan und Wasser (jeweils 5 mL) beendet. Die Phasen wurden getrennt und die organische Phase nacheinander mit Wasser und gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der Silylether II-**58** wurde in einer Ausbeute von 90% (1.24 g, 4.76 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +23.9 (c = 1.09, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 3.86 (s, 1H), 3.69 (s, 3H), 1.00 - 0.89 (m, 18H), 0.59 (qd,

J = 7.9, 2.7 Hz, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 173.4, 80.1, 51.3, 35.5, 26.0, 6.8, 4.7. **IR** (ATR): \tilde{v} [cm⁻¹] = 2955, 2911, 2878, 1754, 1736, 1160, 1121, 1036, 1008, 865, 746, 728. **HRMS** (ESI): berechnet für C₁₃H₂₈NaO₃Si⁺ [M+Na⁺]: 283.1700, gefunden 283.1707.

(R)-3,3-Dimethyl-2-((triethylsilyl)oxy)butan-1-ol (II-59)

$C_{12}H_{28}O_2Si$

232.4 g/mol

1.24 g (4.76 mmol, 1.0 Äq.) des Methylesters II-58 wurden in 48 mL trockenem Dichlormethan unter Argonatmosphäre vorgelegt. Die Lösung wurde auf -78 °C gekühlt und 11.9 mL (1.2 M in Toluol, 10.1 g. 14.3 mmol, 3.0 Äq.) einer Diisobutylaluminiumhydrid-Lösung wurden zugetropft. Das Reaktionsgemisch wurde für eine Stunde bei -78 °C gerührt und anschließend durch die Zugabe von gesättigter, wässriger Kalium/Natrium-Tartrat-Lösung (20 mL) beendet und auf Raumtemperatur aufgewärmt. Die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt. Nachdem die Phasen getrennt wurden, erfolgte eine Extraktion der wässrigen Phase mit Diethylether (3 x 20 mL). Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1 \rightarrow 8:2) gereinigt. Der Alkohol II-59 wurde in einer Ausbeute von 96% (1.06 g, 4.56 mmol) in Form einer farblosen Flüssigkeit erhalten.

DC: $R_f = 0.39$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -5.7 (c = 1.05, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 3.65 (d, J = 11.0 Hz, 1H), 3.58 (d, J = 6.7 Hz, 1H), 3.40 (dd, J = 5.9, 3.5 Hz, 1H), 1.71 (bs, 1H), 0.99 (t, J = 8.0 Hz, 9H), 0.90 (s, 9H), 0.66 (q, J = 8.0 Hz, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 80.7, 63.9, 34.9, 26.6, 7.1, 5.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3429, 2955, 2912, 2867, 1479, 1460, 1415, 1394, 1238, 1111, 1004, 946, 772, 738, 726. **HRMS** (ESI): berechnet für C₁₂H₂₈NaO₂Si⁺ [M+Na⁺]: 255.1751, gefunden 255.1747.
(R)-3,3-Dimethyl-2-((triethylsilyl)oxy)butanal (II-49)

 $C_{12}H_{26}O_2Si$

230.4 g/mol

1.06 g (4.56 mmol, 1.0 Äq.) des Alkohols II-**59** wurden in 18 mL DMSO gelöst und 2.55 g (9.12 mmol, 2.0 Äq.) IBX wurden hinzugefügt. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Dichlormethan (10 mL) verdünnt. Die Lösung wurde solange gerührt, bis ein weißer Feststoff ausgefallen ist, der dann abfiltriert wurde und mehrmals mit Dichlormethan (2 x 10 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (30 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 95:5) gereinigt. Der Aldehyd II-**49** wurde in einer Ausbeute von 85% (894 mg, 3.88 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.61$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +103.6 (c = 1.18, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 9.61 (d, J = 3.3 Hz, 1H), 3.49 (d, J = 3.3 Hz, 1H), 1.02 – 0.83 (m, 18H), 0.60 (q, J = 8.0 Hz, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 205.0, 84.4, 35.9, 25.9, 6.9, 5.0. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2956, 2911, 2877, 1713, 1480, 1460, 1414, 1366, 1289, 1236, 1121, 1073, 1004, 846, 728. **HRMS** (ESI): berechnet für C₁₂H₂₆NaO₂Si⁺ [M+Na⁺]: 253.1594, gefunden 253.1594.

(3S,7S,E)-3,7-bis((*tert*-Butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)oct-4-en-1-ylbenzoat (II-46)

 $C_{35}H_{56}O_6Si_2$

628.9 g/mol

526 mg (988 μmol, 1.15 Äq.) des Sulfons II-**48** wurden in 17.1 mL trockenem 1,2-Dimethoxyethan unter Argonatmosphäre gelöst. Die Lösung wurde auf -78 °C gekühlt und 2.06 mL (0.5 M in Toluol, 1.07 g, 1.03 mmol, 1.20 Äq.) einer KHMDS-Lösung wurden langsam zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt und anschließend 277 mg (859 μmol, 1.00 Äq.) von Fragment **D** aus Kapitel I, gelöst in 8.5 mL trockenem 1,2-Dimethoxyethan, zugetropft. Die Lösung wurde für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 10 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Benzoat II-**46** wurde in einer Ausbeute von 83% (446 mg, 709 μmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.53$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +3.7 (c = 1.04, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 8.10 – 7.93 (m, 2H), 7.64 – 7.55 (m, 1H), 7.50 – 7.42 (m, 2H), 7.34 – 7.20 (m, 2H), 6.92 – 6.83 (m, 2H), 5.71 – 5.59 (m, 1H), 5.57 – 5.45 (m, 1H), 4.47 (s, 2H), 4.40 (t, J = 6.7 Hz, 2H), 4.32 (q, J = 6.4 Hz, 1H), 3.88 (td, J = 5.6, 1.3 Hz, 1H), 3.82 (s, 3H), 3.40 – 3.35 (m, 2H), 2.32 (dt, J = 13.3, 6.4 Hz, 1H), 2.29 – 2.21 (m, 1H), 1.94 (qd, J = 6.4, 1.3 Hz, 2H), 0.94 – 0.83 (m, 18H), 0.12 – 0.02 (m, 12H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 166.6, 159.3, 135.6, 132.9, 130.8, 130.7, 129.7, 129.3, 128.5, 126.9, 113.9, 73.9, 73.1, 71.4, 70.6, 62.0, 55.4, 37.6, 37.5, 26.0, 26.0, 18.3, 18.3, -4.0, -4.3, -4.6, -4.7. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2954, 2929, 2896, 2856, 1721, 1273, 1249, 1111, 1098, 835, 811, 776, 711. **HRMS** (ESI): berechnet für C₃₅H₅₆NaO₆Si₂⁺ [M+Na⁺]: 651.3508, gefunden 651.3507.

(3*S*,7*S*,*E*)-3,7-bis((*tert*-Butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)oct-4-en-1-ol (II-60)

524.9 g/mol

3.73 g (5.91 mmol, 1.0 Äq.) des Benzoats II-**46** wurden in 13.8 mL Methanol vorgelegt. Es wurden 2.45 g (17.7 mmol, 3.0 Äq.) Kaliumcarbonat zugegeben und das Reaktionsgemisch für zwei Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von Wasser (10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Alkohol II-**60** wurde in einer Ausbeute von 87% (2.71 g, 5.16 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA = 8:2) [KMnO₄]. [α]²⁰_D: -8.9 (c = 1.08, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.34 – 6.99 (m, 2H), 6.90 – 6.57 (m, 2H), 5.61 (dtd, J = 15.4, 7.1, 1.1 Hz, 1H), 5.53 – 5.42 (m, 1H), 4.44 (s, 2H), 4.37 – 4.30 (m, 1H), 3.86 (p, J = 5.6 Hz, 1H), 3.80 (s, 4H), 3.68 (ddd, J = 10.7, 6.3, 4.3 Hz, 1H), 3.36 – 3.27 (m, 2H), 2.35 – 2.15 (m, 2H), 1.78 (ddt, J = 14.3, 7.8, 4.4 Hz, 1H), 1.69 (dtd, J = 14.2, 6.5,4.0 Hz, 1H), 0.98 – 0.73 (m, 18H), 0.15 – -0.10 (m, 12H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 135.3, 130.7, 129.3, 126.7, 113.9, 73.7, 73.3, 73.1, 71.3, 60.5, 55.4, 39.8, 37.6, 26.0, 18.3, 18.2, -4.0, -4.4, -4.6, -4.8. **IR** (ATR): \tilde{v} [cm⁻¹] = 3417, 2952, 2928, 2894, 1513, 1247, 1080, 1037, 1005, 971, 831, 774. **HRMS** (ESI): berechnet für C₂₈H₅₂NaO₅Si₂⁺ [M+Na⁺] 547.3245, gefunden 547.3247.

5-(((3*S*,7*S*,*E*)-3,7-bis((*tert*-Butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)oct-4en-1-yl)thio)-1-phenyl-1*H*-tetrazol (II-61)

 $C_{35}H_{56}N_4O_4SSi_2$

685.1 g/mol

2.71 g (5.16 mmol, 1.0 Äq.) des Alkohols II-**60** wurden in 77 mL trockenem THF unter Argonatmosphäre gelöst. Die Lösung wurde auf 0 °C gekühlt und nacheinander 1.84 g (10.3 mmol, 2.0 Äq.) 1-Phenyl-1H-tetrazol-5-thiol und 2.03 g (7.74 mmol, 1.5 Äq.) Triphenylphosphin zugegeben. Anschließend wurden 1.94 mL (1.99 g, 9.29 mmol, 1.8 Äq.) DIAD langsam zugetropft und die Lösung für zwei Stunden bei 0 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Thioether II-**61** wurde in einer Ausbeute von 99% (3.47 g, 5.07 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.59$ (CH/EA = 8:2) [KMnO₄]. [α]²⁰_D: -3.9 (c = 1.02, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.63 – 7.52 (m, 5H), 7.31 – 7.18 (m, 2H), 6.93 – 6.84 (m, 2H), 5.64 (dtd, J = 15.4, 7.1, 1.0 Hz, 1H), 5.52 – 5.34 (m, 1H), 4.45 (s, 2H), 4.24 (q, J = 6.1 Hz, 1H), 3.87 (p, J = 5.6 Hz, 1H), 3.81 (s, 3H), 3.43 (td, J = 7.0, 2.2 Hz, 2H), 3.36 (d, J = 5.6 Hz, 2H), 2.39 – 2.19 (m, 2H), 2.05 – 1.88 (m, 2H), 0.90 (s, 9H), 0.89 (s, 9H), 0.08 – 0.01 (m, 12H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 154.6, 134.9, 134.0, 130.7, 130.2, 129.9, 129.3, 127.4, 124.0, 113.9, 73.8, 73.1, 72.2, 71.3, 55.4, 37.6, 37.6, 29.5, 26.0, 26.0, 18.3, -4.0, -4.4, -4.6, -4.6. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2928, 2895, 2855, 1587, 1513, 1248, 1085, 1038, 834, 776, 760. **HRMS** (ESI): berechnet für C₃₅H₅₆N₄NaO₄SSi₂⁺ [M+Na⁺]: 707.3453, gefunden 707.3451.

5-(((3S,7S,E)-3,7-bis((*tert*-Butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)oct-4en-1-yl)sulfonyl)-1-phenyl-1*H*-tetrazol (II-44)

$C_{35}H_{56}N_4O_6SSi_2$

717.1 g/mol

3.47 g (5.07 mmol, 1.0 Äq.) des Thioethers II-**61** wurden in 156 mL Ethanol gelöst. Bei 0 °C wurden 1.25 g (1.01 mmol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 4.33 mL (35% in Wasser, 4.92 g, 50.7 mmol, 10 Äq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (50 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 50 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Sulfon II-**44** wurde in einer Ausbeute von 93% (3.41 g, 4.76 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.57$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -5.3 (c = 1.05, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.71 – 7.65 (m, 2H), 7.64 – 7.53 (m, 3H), 7.25 – 7.21 (m, 2H), 6.92 – 6.79 (m, 2H), 5.72 – 5.62 (m, 1H), 5.41 (ddt, J = 15.5, 6.2, 1.5 Hz, 1H), 4.44 (s, 2H), 4.31 (q, J = 5.8 Hz, 1H), 3.87 (p, J = 5.5 Hz, 1H), 3.78 (d, J = 20.2 Hz, 5H), 3.38 – 3.22 (m, 2H), 2.38 – 2.18 (m, 2H), 2.15 – 2.00 (m, 2H), 0.94 – 0.81 (m, 18H), 0.09 – 0.01 (m, 12H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 153.6, 133.8, 133.3, 131.6, 130.7, 129.8, 129.4, 128.3, 125.2, 113.9, 73.7, 73.1, 71.1, 70.9, 55.4, 52.5, 37.5, 30.4, 26.0, 26.0, 18.3, 18.3, -4.1, -4.3, -4.6, -4.7. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2929, 2896, 2856, 1513, 1341, 1301, 1094, 1077, 834, 776, 762. **HRMS** (ESI): berechnet für C₃₅H₅₆N₄NaO₆SSi₂⁺ [M+Na⁺]: 739.3351, gefunden 739.3351.

(5*S*,9*S*,*E*)-5-(*tert*-Butyl)-3,3-diethyl-9-(((4-methoxybenzyl)oxy)methyl)-11,11,12,12-tetramethyl-4,10-dioxa-3,11-disilatridec-6-en (II-50)

 $C_{30}H_{56}O_4Si_2$

536.9 g/mol

In 78 mL trockenem 1,2-Dimethoxyethan wurden 2.37 g (4.46 mmol, 1.15 Äg.) des Sulfons II-48 unter Argonatmosphäre gelöst. Bei -78 °C wurden 9.31 mL (0.5 M in Toluol, 8.17 g, 4.66 mmol, 1.20 Äq.) einer KHMDS-Lösung langsam zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt und anschließend 894 mg (3.88 mmol, 1.0 Äq.) des Aldehyds II-49, gelöst 39 mL in trockenem 1,2-Dimethoxyethan, zugetropft. Die Lösung wurde für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 30 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) gereinigt. Das Alken II-50 wurde in einer Ausbeute von 70% (1.46 g, 2.72 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.58$ (CH/EA = 99:1) [KMnO₄]. $[\alpha]_D^{20}$: +3.1 (c = 1.06, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.27 – 7.22 (m, 2H), 6.90 – 6.80 (m, 2H), 5.52 (dt, J = 15.6, 6.8 Hz, 1H), 5.45 (dd, J = 15.5, 7.5 Hz, 1H), 4.44 (s, 2H), 3.87 (td, J = 11.1, 10.4, 4.8 Hz, 1H), 3.81 (s, 3H), 3.62 (d, J = 7.4 Hz, 1H), 3.34 (qd, J = 9.6, 5.5 Hz, 2H), 2.25 (ddt, J = 40.6, 13.9, 6.2 Hz, 2H), 0.93 (t, J = 7.9 Hz, 9H), 0.89 (s, 9H), 0.82 (s, 9H), 0.55 (q, J = 8.2 Hz, 6H), 0.06 (s, 3H), 0.05 (s, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.3, 133.5, 130.8, 129.3, 127.6, 113.9, 81.8, 74.0, 73.1, 71.5, 55.4, 37.9, 35.7, 26.1, 26.0, 18.3, 7.1, 5.3, -4.3, -4.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2934, 2905, 2857, 1513, 1247, 1098, 1062, 1039, 1006, 977, 833, 776, 739, 725, 668. **HRMS** (ESI): berechnet für C₃₀H₅₆NaO₄Si₂⁺ [M+Na⁺]: 559.3609, gefunden 559.3610.

(2S,6S,E)-2-((*tert*-Butyldimethylsilyl)oxy)-7,7-dimethyl-6-((triethylsilyl)oxy)oct-4-en-1-ol (II-62)

 $C_{22}H_{48}O_3Si_2$

416.8 g/mol

1.46 g (2.72 mmol, 1.0 Äq.) des PMB-Ethers II-**50** wurden in einem Gemisch aus 18 mL Dichlormethan und 5.4 mL einer pH7-Puffer-Lösung gelöst. Anschließend wurden 954 mg (4.08 mmol, 1.5 Äq.) DDQ hinzugegeben und das Reaktionsgemisch für 45 Minuten gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 10 mL) gewaschen wurde, das Filtrat mit Wasser (30 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der Alkohol II-**62** wurde in einer Ausbeute von 75% (850 mg, 1.66 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.43$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +12.2 (c = 1.13, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 5.50 – 5.44 (m, 2H), 3.80 – 3.73 (m, 1H), 3.63 (d, J = 6.1 Hz, 1H), 3.56 (ddd, J = 10.6, 6.7, 3.6 Hz, 1H), 3.45 (dt, J = 11.4, 5.8 Hz, 1H), 2.33 – 2.19 (m, 2H), 1.82 (t, J = 6.4 Hz, 1H), 0.94 (t, J = 8.0 Hz, 9H), 0.91 (s, 9H), 0.83 (s, 9H), 0.56 (q, J = 8.2 Hz, 6H), 0.11 (s, 3H), 0.10 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 134.1, 126.8, 81.6, 72.9, 66.1, 37.3, 35.7, 26.1, 26.0, 18.2, 7.1, 5.3, -4.3, -4.5. IR (ATR): \tilde{v} [cm⁻¹] = 3441, 2952, 2932, 2909, 2876, 2859, 1462, 1360, 1253, 1099, 1059, 1005, 976, 835, 776, 739, 724. HRMS (ESI): berechnet für C₂₂H₄₈NaO₃Si₂⁺ [M+Na⁺]: 439.3034, gefunden 439.3037.

(2S,6S,E)-2-((*tert*-Butyldimethylsilyl)oxy)-7,7-dimethyl-6-((triethylsilyl)oxy)oct-4-enal (II-45)

 $C_{22}H_{46}O_3Si_2$

414.7 g/mol

840 mg (2.02 mmol, 1.0 Äq.) des Alkohols II-**62** wurden in 8.1 mL DMSO gelöst und 1.13 g (4.03 mmol, 2.0 Äq.) IBX wurden hinzugegeben. Die Reaktionsmischung wurde 18 Stunden bei Raumtemperatur gerührt und anschließend mit Dichlormethan (10 mL) verdünnt. Die Lösung wurde solange gerührt, bis ein weißer Feststoff ausgefallen ist, der dann abfiltriert wurde und mehrmals mit Dichlormethan (2 x 10 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (30 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 95:5) gereinigt. Der Aldehyd II-**45** wurde in einer Ausbeute von 70% (583 mg, 1.41 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.55$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: -3.3 (c = 1.25, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 9.59 (d, J = 1.6 Hz, 1H), 5.53 (dd, J = 5.0, 2.8 Hz, 2H), 4.02 (td, J = 5.8, 1.7 Hz, 1H), 3.64 (dd, J = 4.4, 2.0 Hz, 1H), 2.41 (t, J = 5.4 Hz, 2H), 0.96 – 0.88 (m, 18H), 0.82 (s, 9H), 0.55 (q, J = 7.9 Hz, 6H), 0.10 – 0.08 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 204.1, 135.0, 125.3, 81.4, 77.7, 36.3, 35.7, 26.0, 25.9, 18.3, 7.1, 5.3, -4.5, -4.7. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2934, 2909, 2876, 1738, 1462, 1361, 1253, 1098, 1061, 1005, 975, 938, 834, 777, 737, 724, 670. **HRMS** (ESI): berechnet für C₂₂H₄₆NaO₃Si₂⁺ [M+Na⁺]: 437.2878, gefunden 437.2884.

(5S,6E,9S,10E,13S,14E,17S)-5-(tert-Butyl)-9,13-bis((tert-butyldimethylsilyl)oxy)-3,3-diethyl-17-(((4-methoxybenzyl)oxy)methyl)-19,19,20,20-tetramethyl-4,18-dioxa-3,19-disilahenicosa-6,10,14-trien (II-63)

$C_{50}H_{96}O_6Si_4$

905.6 g/mol

In 16 mL trockenem 1,2-Dimethoxyethan wurden 641 mg (894 µmol, 1.15 Äq.) des Sulfons II-44 unter Argonatmosphäre gelöst. Bei -78 °C wurden 1.87 mL (0.5 M in Toluol, 1.63 g, 933 µmol, 1.20 Äg.) einer KHMDS-Lösung langsam zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt und anschließend 323 mg (778 µmol, 1.0 Äq.) des Aldehyds II-45, gelöst in 7.8 mL trockenem 1,2-Dimethoxyethan, zugetropft. Die Lösung wurde für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 20 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) gereinigt. Das Alken II-63 wurde in einer Ausbeute von 66% (604 mg, 667 µmol, 77% Reinheit) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.53$ (CH/EA = 95:5) [KMnO₄]. [α]²⁰_D: +4.7 (c = 1.23, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.28 – 7.19 (m, 2H), 6.96 – 6.77 (m, 2H), 5.66 – 5.26 (m, 6H), 4.44 (s, 2H), 4.11 – 3.98 (m, 2H), 3.89 – 3.82 (m, 1H), 3.80 (s, 3H), 3.68 – 3.56 (m, 1H), 3.35 (dd, J = 5.5, 2.2 Hz, 2H), 2.49 – 2.34 (m, 1H), 2.33 – 2.09 (m, 5H), 1.06 – 0.73 (m, 45H), 0.55 (q, J = 7.6 Hz, 6H), 0.20 – -0.19 (m, 18H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 159.1, 135.6, 135.4, 133.0, 130.6, 129.1, 128.0, 126.5, 126.1, 113.7, 81.7, 73.8, 73.7, 73.4, 73.0, 71.3, 55.2, 41.8, 41.5, 37.5, 35.5, 25.9, 25.9, 25.9, 25.7, 18.2, 18.2, 18.2, 6.9, 5.1, -4.1, -4.3, -4.7, -4.8, -4.9. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2929, 2857, 1513, 1462, 1249, 1098, 1062, 1005, 972, 938, 833, 775, 739, 725, 669. **HRMS** (ESI): berechnet für C₅₀H₉₆NaO₆Si₄⁺ [M+Na⁺]: 927.6176, gefunden 927.6175.

(2S,6S,10R,14S)-2,6,10-Tris((*tert*-butyldimethylsilyl)oxy)-15,15-dimethyl-14-((triethylsilyl)oxy)hexadecan-1-ol (II-64)

C42H94O5Si4

791.5 g/mol

400 mg (442 μmol, 77% Reinheit, 1.0 Äq.) des Triens II-**63** wurden in 22 mL Cyclohexan gelöst und 118 mg (10% auf Aktivkohle, 110 μmol, 0.25 Äq.) Palladium wurden zugegeben. Das Reaktionsgemisch wurde für 48 Stunden bei Raumtemperatur unter Wasserstoffatmosphäre (35 bar) gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand in 44 mL Ethylacetat gelöst. Anschließend wurden 46 mg (20% auf Aktivkohle, 66.3 μmol, 0.15 Äq.) Palladiumhydroxid hinzugegeben und das Reaktionsgemisch für 24 Stunden bei Raumtemperatur unter Wasserstoffatmosphäre (35 bar) gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Produkt II-**64** wurde in einer Ausbeute von 75% (262 mg, 331 μmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.51$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -3.2 (c = 1.06, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 3.77 - 3.69 (m, 1H), 3.66 - 3.60 (m, 2H), 3.56 (dd, J = 11.0, 3.6 Hz, 1H), 3.44 (dd, J = 11.0, 5.5 Hz, 1H), 3.27 - 3.16 (m, 1H), 1.57 - 1.18 (m, 18H), 1.04 - 0.76 (m, 45H), 0.61 (q, J = 7.9 Hz, 6H), 0.18 - 0.09 (m, 18H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 81.4, 73.1, 72.6, 72.3, 66.4, 37.9, 37.6, 37.5, 37.4, 35.9, 34.5, 33.8, 26.5, 26.1, 26.1, 26.0, 23.7, 21.3, 21.1, 18.3, 18.3, 18.2, 7.3, 5.8, -4.2, -4.2, -4.2, -4.3, -4.4. **IR** (ATR): \tilde{v} [cm⁻¹] = 3465, 2951, 2876, 2857, 1461, 1252, 1104, 1046, 1029, 1004, 823, 807, 771, 735, 723. **HRMS** (ESI): berechnet für C₄₂H₉₄NaO₅Si₄⁺ [M+Na⁺]: 813.6071, gefunden 813.6071.

(2*S*,6*S*,10*R*,14*S*)-2,6,10-Tris((*tert*-butyldimethylsilyl)oxy)-15,15-dimethyl-14-((triethylsilyl)oxy)hexadecanal (Fragment B)

OTBS OTBS OTBS OTES

C42H92O5Si4

789.5 g/mol

In einem Gemisch aus jeweils 4.4 mL DMSO und 4.4 mL THF wurden 262 mg (331 µmol, 1.0 Äq.) des Alkohols II-64 vorgelegt. Es wurden 241 mg (861 µmol, 2.6 Äq.) IBX hinzugegeben und das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt. Anschließend wurde die Suspension mit Dichlormethan (10 mL) verdünnt. Die Lösung wurde solange gerührt, bis ein weißer Feststoff ausgefallen ist, der dann abfiltriert wurde und mehrmals mit Dichlormethan (2 x 10 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (30 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und das Rohprodukt säulenchromatographisch (CH/EA 99:1) gereinigt. Das Fragment B wurde in einer Ausbeute von 77% (200 mg, 253 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.23$ (CH/EA = 98:2) [KMnO₄]. [α]²⁰_D: -15.3 (c = 1.00, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 9.59 (d, J = 1.7 Hz, 1H), 3.96 (ddd, J = 7.1, 5.0, 1.7 Hz, 1H), 3.63 (dq, J = 9.4, 5.4 Hz, 2H), 3.29 – 3.15 (m, 1H), 1.82 – 1.17 (m, 18H), 1.01 – 0.77 (m, 45H), 0.61 (q, J = 7.9 Hz, 6H), 0.12 – -0.08 (m, 18H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 204.3, 81.4, 77.9, 72.6, 72.2, 37.9, 37.6, 37.5, 37.1, 35.9, 33.8, 33.2, 26.5, 26.1, 26.1, 25.9, 23.7, 21.1, 20.7, 18.3, 18.3, 18.3, 7.3, 5.8, -4.2, -4.2, -4.3, -4.5, -4.7. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2929, 2857, 1737, 1471, 1462, 1361, 1252, 1104, 1029, 1005, 833, 808, 772, 735, 723, 666. **HRMS** (ESI): berechnet für C₄₂H₉₂NaO₅Si₄⁺ [M+Na⁺]: 811.5914, gefunden 811.5926.

2.2.1 Verknüpfung der Fragmente A und B

(5*S*,7*R*,9*E*,11*R*,13*E*,15*S*,17*R*,19*R*,21*E*,23*S*,27*S*,31*R*,35*S*)-35-(*tert*-Butyl)-7,11,15,17,19,23,27,31-octakis((tert-butyldimethylsilyl)oxy)-37,37-diethyl-5-(6-((4-methoxybenzyl)oxy)hexyl)-2,2,3,3-tetramethyl-4,36-dioxa-3,37-disilanonatriaconta-9,13,21-trien (II-68)

116 mg (80.1 μ mol, 1.15 Äq.) von Fragment **A** wurden in 1.4 mL trockenem 1,2-Dimethoxyethan unter Argonatmosphäre gelöst. Bei -78 °C wurden 167 μ L (0.5 M in Toluol, 146 mg, 83.6 μ mol, 1.20 Äq.) einer KHMDS-Lösung langsam zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt und anschließend wurden 55 mg (69.7 μ mol, 1.00 Äq.) von Fragment **B**, gelöst in 1.2 mL trockenem 1,2-Dimethoxyethan, zugetropft. Die Lösung wurde für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 5 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (Pentan/Et₂O 99:1) gereinigt. Das Alken II-**68** wurde in einer Ausbeute von 84% (117 mg, 58.2 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.56$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: -8.1 (c = 1.03, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.31 – 7.23 (m, 2H), 6.97 – 6.72 (m, 2H), 5.69 – 5.38 (m, 6H), 4.46 (s, 2H), 4.19 (q, J = 6.7 Hz, 1H), 4.08 (dq, J = 11.0, 6.1 Hz, 2H), 3.91 – 3.72 (m, 7H), 3.69 – 3.62 (m, 2H), 3.46 (t, J = 6.7 Hz, 2H), 3.31 – 3.20 (m, 1H), 2.41 – 2.11 (m, 6H), 1.95 – 1.14 (m, 34H), 1.00 (t, J = 8.0 Hz, 9H), 0.95 – 0.87 (m, 90H), 0.65 (q, J = 7.9 Hz, 6H), 0.22 – -0.25 (m, 54H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3, 136.3, 136.1, 135.8, 131.0, 129.3, 126.9, 126.3, 113.9, 81.4, 73.7, 73.6, 72.7, 72.6, 72.5, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 69.7, 69.6, 69.5, 67.2, 55.4, 47.8, 46.1, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 71.4, 70.4, 71.4,

37.4, 37.3, 35.9, 33.8, 30.5, 30.0, 30.0, 29.9, 26.5, 26.4, 26.2, 26.1, 26.1, 26.1, 26.1, 26.1, 25.9, 25.3, 23.7, 21.5, 21.1, 18.4, 18.4, 18.3, 18.3, 18.2, 18.2, 18.2, 7.3, 5.8, -3.5, -3.7, - 3.8, -3.9, -3.9, -4.0, -4.1, -4.1, -4.1, -4.2, -4.2, -4.2, -4.2, -4.2, -4.4, -4.5, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2928, 2855, 1471, 1462, 1360, 1249, 1068, 1043, 1004, 938, 832, 806, 771, 736, 664. Der ESI-Massenanalyse konnte kein Fragment von II-**68** zugeordnet werden.

(7*S*,9*R*,13*S*,17*R*,19*R*,21*R*,25*S*,29*R*,33*R*,37*S*)-7,9,13,17,19,21,25,29,33-Nonakis((*tert*-butyl(dimethyl)silyl)oxy)-38,38-dimethyl-37-((triethylsilyl)oxy)nonatriacontan-1-ol (II-69)

C₁₀₁H₂₂₄O₁₁Si₁₀ 1895.7 g/mol

103 mg (51.3 µmol, 1.0 Äq.) des Triens II-**68** wurden in 5.1 mL Ethylacetat gelöst und 8.90 mg (20% auf Aktivkohle, 12.8 µmol, 0.25 Äq.) Palladiumhydroxid wurden zugegeben. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur unter Wasserstoffatmosphäre (35 bar) gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand in 5.1 mL Ethylacetat gelöst. Anschließend wurden 52.7 mg (5% auf Aluminiumoxid, 25.6 µmol, 0.50 Äq.) Rhodium hinzugegeben und das Reaktionsgemisch für 24 Stunden bei Raumtemperatur unter Wasserstoffatmosphäre (35 bar) gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Produkt II-**69** wurde in einer Ausbeute von 79% (76.5 mg, 40.4 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.34$ (CH/EA = 9:1) [KMnO₄]. [α]_D²⁰: +0.3 (c = 1.10, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 3.83 – 3.68 (m, 4H), 3.66 – 3.57 (m, 5H), 3.27 – 3.18 (m, 1H), 1.74 – 1.19 (m, 54H), 0.97 (t, J = 8.0 Hz, 9H), 0.93 – 0.79 (m, 90H), 0.62 (q, J = 8.0

Hz, 6H), 0.14 – -0.10 (m, 54H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 81.4, 72.7, 72.6, 72.5, 70.3, 69.8, 69.8, 67.9, 63.2, 46.7, 46.4, 45.1, 38.4, 38.0, 37.9, 37.9, 37.8, 37.7, 37.7, 37.6, 37.6, 37.5, 37.3, 35.9, 33.8, 33.0, 32.1, 29.9, 29.9, 26.5, 26.2, 26.2, 26.1, 26.1, 26.1, 26.0, 25.2, 23.7, 22.9, 21.7, 21.3, 21.2, 21.2, 21.0, 18.3, 18.3, 18.2, 18.2, 18.2, 7.3, 5.8, -3.6, -3.8, -3.9, -3.9, -3.9, -4.0, -4.1, -4.2, -4.2, -4.2, -4.2. **IR** (ATR): \tilde{v} [cm⁻¹] = 3382, 2951, 2928, 2856, 1471, 1462, 1253, 1108, 1044, 1004, 938, 833, 805, 771, 735, 662. Der ESI-Massenanalyse konnte kein Fragment von II-**68** zugeordnet werden.

(7*S*,9*R*,13*S*,17*R*,19*R*,21*R*,25*S*,29*R*,33*R*,37*S*)-7,9,13,17,19,21,25,29,33-Nonakis((*tert*-butyl(dimethyl)silyl)oxy)-38,38-dimethyl-37-((triethylsilyl)oxy)nona-triacontanal (II-43)

In einem Gemisch aus jeweils 530 µL DMSO und 530 µL THF wurden 75.4 mg (39.8 µmol, 1.0 Äq.) des Alkohols II-69 vorgelegt. Es wurden 28.9 mg (103 µmol, 2.6 Äq.) IBX hinzugegeben und das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt. Die Lösung wurde mit gesättigter. wässriger Natriumhydrogencarbonat-Lösung und Dichlormethan (jeweils 2 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 2 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und das Rohprodukt säulenchromatographisch (CH/EA 99:1) gereinigt. Der Aldehyd II-43 wurde in einer Ausbeute von 85% (64.0 mg, 33.8 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.51$ (CH/EA = 95:5). [KMnO₄]. $[\alpha]_D^{20}$: -0.4 (c = 1.11, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 9.76 (d, J = 2.0 Hz, 1H), 3.84 – 3.69 (m, 5H), 3.65 – 3.54 (m, 4H), 3.30 – 3.10 (m, 1H), 2.41 (td, J = 7.4, 1.8 Hz, 2H), 1.72 – 1.17 (m, 50H), 0.97 (t, J = 8.0 Hz, 9H), 0.93 – 0.77 (m, 90H), 0.62 (q, J = 8.0 Hz, 6H), 0.12 – -0.02 (m, 54H).

¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 202.7, 81.4, 72.7, 72.6, 72.5, 70.3, 69.8, 69.8, 69.7, 67.9, 46.7, 46.4, 45.1, 44.0, 38.4, 38.0, 37.9, 37.9, 37.8, 37.7, 37.7, 37.6, 37.6, 37.5, 37.1, 35.9, 33.8, 29.7, 26.5, 26.2, 26.2, 26.1, 26.1, 26.1, 25.0, 23.7, 22.3, 21.7, 21.3, 21.2, 21.2, 21.0, 18.3, 18.3, 18.2, 18.2, 7.3, 5.8, -3.6, -3.8, -3.9, -3.9, -4.0, -4.0, -4.2, -4.2, -4.2, -4.3. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2951, 2928, 1471, 1462, 1360, 1252, 1108, 1042, 1004, 938, 907, 832, 805, 770, 733, 662. **HRMS** (ESI): berechnet für C₁₀₁H₂₂₂NaO₁₁Si₁₀⁺ [M+Na⁺]: 1914.4397, gefunden 1914.4384.

Dimethyl-(1-diazo-2-oxopropyl)phosphonat (II-71)

$C_5H_9N_2O_4P$

192.1 g/mol

2.50 g (15.1 mmol, 1.1 Äq.) Dimethyl-2-oxopropylphosphat (II-**70**) wurden in 16 mL trockenem Toluol unter Argonatmosphäre gelöst und 548 mg (60% in Mineralöl, 13.7 mmol, 1.0 Äq.) Natriumhydrid wurden portionsweise bei 0 °C zugegeben. Die Suspension wurde für 30 Minuten bei 0 °C gerührt und danach wurden 3.29 g (13.7 mmol, 1.0 Äq.) *p*-Acetamidobensulfonylazid zugegeben. Das Reaktionsgemisch wurde für drei Stunden bei 0 °C gerührt und anschließend auf Raumtemperatur erwärmt. Nach der Zugabe von Diethylether (100 mL) wurde die Suspension über Celite filtriert, wobei der Rückstand mehrmals mit Diethylether (3 x 30 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 1:1) gereinigt. Das Produkt II-**71** wurde in einer Ausbeute von 57% (1.50 g, 7.81 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.42$ (CH/EA = 1:1) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 3.81 (d, J = 12.0 Hz, 6H), 2.24 (d, J = 2.0 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 189.9 (d, J = 13.2 Hz), 53.7 (d, J = 5.6 Hz), 27.2.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[201]

(5*S*,7*R*,11*S*,15*R*,17*R*,19*R*,23*S*,27*R*,31*R*,35*S*)-35-*tert*-Butyl-7,11,15,17,19,23,27,31octakis((*tert*-butyl(dimethyl)silyl)oxy)-37,37-diethyl-5-(hept-6-yn-1-yl)-2,2,3,3tetramethyl-4,36-dioxa-3,37-disilanonatriacontan (II-72)

C₁₀₂H₂₂₂O₁₀Si₁₀ 1889.7 g/mol

14.7 mg (76.5 μ mol, 2.3 Äq.) des Phosphonats II-**71** wurden unter Argonatmosphäre in 0.133 mL trockenem Methanol gelöst und 24.9 mg (76.5 μ mol, 2.3 Äq.) Cäsiumcarbonat bei 0 °C zugegeben. Die Suspension wurde für 30 Minuten bei 0 °C gerührt und 63.0 mg (33.3 μ mol, 1.0 Äq.) des Aldehyds II-**43**, gelöst in 665 μ L trockenem Dichlormethan, wurden zugegeben. Das Reaktionsgemisch wurde für eine Stunde bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung und Hexan (je 2 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Hexan (3 x 2 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 99:1) gereinigt. Das Alkin II-**72** wurde in einer Ausbeute von 93% (58.5 mg, 30.9 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.75$ (CH/EA = 95:5) [KMnO₄]. [α]²⁰_D: +1.3 (c = 1.11, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 3.75 (ddt, J = 31.3, 11.4, 5.8 Hz, 5H), 3.65 – 3.57 (m, 4H), 3.29 – 3.18 (m, 1H), 2.18 (td, J = 7.1, 2.7 Hz, 2H), 1.93 (t, J = 2.6 Hz, 1H), 1.76 – 1.21 (m, 50H), 0.97 (t, J = 8.0 Hz, 9H), 0.94 – 0.78 (m, 90H), 0.62 (q, J = 7.9 Hz, 6H), 0.12 – -0.03 (m, 54H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 84.8, 81.4, 72.7, 72.6, 72.5, 70.3, 69.9, 69.8, 69.7, 68.3, 67.9, 46.7, 46.4, 45.1, 38.4, 38.0, 37.9, 37.9, 37.8, 37.7, 37.6, 37.6, 37.5, 37.2, 35.9, 33.8, 29.2, 28.7, 26.5, 26.2, 26.2, 26.1, 26.1, 26.1, 24.7, 23.7, 21.7, 21.3, 21.2, 21.2, 21.0, 18.5, 18.3, 18.3, 18.2, 18.2, -3.6, -3.8, -3.9, -3.9, -3.9, -4.0, -4.2, -4.2, -4.2, -4.3. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2951, 2928, 2856, 1471, 1253, 1107, 1043,

1004, 938, 833, 805, 771, 736, 662. **HRMS** (ESI): berechnet für $C_{102}H_{223}O_{10}Si_{10}^+$ [M+H⁺]: 1888.4628, gefunden 1888.4614.

(5*S*,7*R*,9*E*,11*R*,13*E*,15*S*,17*R*,19*R*,21*E*,23*S*,27*S*,31*R*,35*S*)-35-(*tert*-Butyl)-7,11,15,17,19,23,27,31-octakis((*tert*-butyldimethylsilyl)oxy)-37,37-diethyl-5-(5-((4-methoxybenzyl)oxy)pentyl)-2,2,3,3-tetramethyl-4,36-dioxa-3,37-disila-nonatriaconta-9,13,21-trien (II-73)

PMBO

 $C_{108}H_{224}O_{12}Si_{10}$

1995.8 g/mol

322 mg (225 μ mol, 1.24 Äq.) von Fragment **A1** wurden in 3.6 mL trockenem 1,2-Dimethoxyethan unter Argonatmosphäre gelöst. Bei -78 °C wurden 460 μ L (0.5 M in Toluol, 403 mg, 230 μ mol, 1.27 Äq.) einer KHMDS-Lösung langsam zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt und anschließend wurden 143 mg (181 μ mol, 1.00 Äq.) von Fragment **B**, gelöst in 1.8 mL trockenem 1,2-Dimethoxyethan, zugetropft. Die Lösung wurde für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 5 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und die Rückstand säulenchromatographisch (Pentan/Et₂O 99:1) gereinigt. Das Alken II-**73** wurde in einer Ausbeute von 63% (228 mg, 114 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.40$ (Pentan/Et₂O = 98:2) [KMnO₄]. $[\alpha]_D^{20}$: -8.3 (c = 1.02, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.29 – 7.15 (m, 2H), 6.92 – 6.79 (m, 2H), 5.68 – 5.37 (m, 6H), 4.43 (s, 2H), 4.17 (q, J = 6.6 Hz, 1H), 4.06 (p, J = 6.3 Hz, 2H), 3.80 (s, 7H), 3.64 (q, J = 5.4 Hz, 2H), 3.44 (t, J = 6.6 Hz, 2H), 3.28 – 3.20 (m, 1H), 2.31 – 1.97 (m, 6H), 1.75 – 1.20 (m, 32H), 0.98 (t, J = 7.9 Hz, 9H), 0.92 – 0.82 (m, 90H), 0.63 (q, J = 7.9 Hz, 6H), 0.15 – -0.11 (m, 54H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 159.3, 136.2, 136.1,

135.8, 130.9, 129.3, 126.9, 126.3, 113.9, 81.4, 73.6, 73.6, 72.7, 72.6, 72.5, 71.4, 70.3, 69.6, 69.5, 69.5, 67.2, 55.4, 47.7, 46.0, 44.7, 42.0, 40.5, 40.1, 39.0, 37.9, 37.6, 37.4, 37.3, 35.9, 33.8, 30.5, 30.0, 29.9, 26.7, 26.5, 26.2, 26.1, 26.1, 26.1, 26.1, 25.2, 23.7, 21.5, 21.1, 18.4, 18.4, 18.3, 18.3, 18.3, 18.2, 18.2, 18.2, 7.4, 5.8, -3.5, -3.7, -3.8, -3.9, -4.0, -4.1, -4.1, -4.2, -4.2, -4.2, -4.2, -4.3, -4.4, -4.5, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2895, 2856, 1513, 1250, 1069, 1041, 1004, 972, 938, 907, 832, 805, 771, 732, 664. **HRMS** (ESI): berechnet für C₁₀₈H₂₂₄NaO₁₂Si₁₀⁺ [M+Na⁺]: 2016.4503, gefunden 2016.4502.

(6*S*,8*R*,12*S*,16*R*,18*R*,20*R*,24*S*,28*R*,32*R*,36*S*)-6,8,12,16,18,20,24,28,32-Nonakis((*tert*-butyl(dimethyl)silyl)oxy)-37,37-dimethyl-36-((triethylsilyl)oxy)octatriacontan-1-ol (II-74)

 $C_{100}H_{222}O_{11}Si_{10} \\$

228 mg (114 µmol, 1.0 Äq.) des Triens II-**73** wurden in 11 mL Ethylacetat gelöst und 16.0 mg (20% auf Aktivkohle, 22.9 µmol, 0.25 Äq.) Palladiumhydroxid wurden zugegeben. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur unter Wasserstoffatmosphäre (35 bar) gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand in 11 mL Ethylacetat gelöst. Anschließend wurden 118 mg (5% auf Aluminiumoxid, 57.1 µmol, 0.50 Äq.) Rhodium hinzugegeben und das Reaktionsgemisch für 24 Stunden bei Raumtemperatur unter Wasserstoffatmosphäre (35 bar) gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Produkt II-**74** wurde in einer Ausbeute von 76% (164 mg, 87.2 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.39$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +1.1 (*c* = 1.09, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 3.83 - 3.68 (m, 4H), 3.65 - 3.56 (m, 5H), 3.30 - 3.12 (m,

1H), 1.78 - 1.13 (m, 52H), 0.97 (t, J = 7.9 Hz, 9H), 0.91 - 0.82 (m, 90H), 0.61 (q, J = 7.9 Hz, 6H), 0.15 - 0.04 (m, 54H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 81.4, 72.7, 72.6, 72.5, 72.5, 70.3, 69.8, 69.8, 69.7, 67.9, 63.1, 46.6, 46.4, 38.3, 38.0, 37.9, 37.8, 37.8, 37.7, 37.6, 37.6, 37.6, 37.4, 37.3, 35.9, 33.8, 33.0, 26.5, 26.2, 26.1, 26.1, 26.1, 25.0, 23.7, 21.7, 21.3, 21.3, 21.2, 21.2, 21.1, 21.0, 18.3, 18.3, 18.2, 18.2, 7.4, 5.8, -3.7, -3.8, -3.9, -3.9, -4.0, -4.1, -4.2, -4.2, -4.2, -4.3. **IR** (ATR): \tilde{v} [cm⁻¹] = 3402, 2951, 2928, 2856, 1471, 1252, 1108, 1043, 1004, 937, 907, 832, 805, 770, 733, 662. **HRMS** (ESI): berechnet für C₁₀₀H₂₂₂NaO₁₁Si₁₀⁺ [M+Na⁺]: 1902.4397, gefunden 1902.4396.

(5*S*,7*R*,11*S*,15*R*,17*R*,19*R*,23*S*,27*R*,31*R*,35*S*)-35-*tert*-Butyl-7,11,15,17,19,23,27,31octakis((*tert*-butyl(dimethyl)silyl)oxy)-37,37-diethyl-2,2,3,3-tetramethyl-5-(5-((2nitrophenyl)selanyl)pentyl)-4,36-dioxa-3,37-disilanonatriacontan (II-75)

 $C_{106}H_{222}NO_{12}SeSi_{10}$

2065.7 g/mol

164 mg (87.2 μ mol, 1.0 Äq.) des Alkohols II-**74** wurden in 2.9 mL trockenem THF unter Argonatmosphäre gelöst. Anschließend wurden 43.0 μ L (35.3 mg, 174 μ mol, 2.0 Äq.) Tributylphosphin und 40.0 mg (174 μ mol, 2.0 Äq.) *ortho*-Nitrophenylselenocyanat nacheinander zugegeben. Das Reaktionsgemisch wurde für eine Stunde bei Raumtemperatur gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) gereinigt. Das Produkt II-**75** wurde in einer Ausbeute von 87% (157 mg, 76.0 μ mol) in Form eines gelbfarbenen Öls erhalten und ohne weitere Charakterisierung in der nächsten Stufe eingesetzt.

DC: $R_f = 0.51$ (CH/EA = 99:1) [KMnO₄].

(5*S*,7*R*,11*S*,15*R*,17*R*,19*R*,23*S*,27*R*,31*R*,35*S*)-35-*tert*-Butyl-7,11,15,17,19,23,27,31octakis((*tert*-butyl(dimethyl)silyl)oxy)-37,37-diethyl-2,2,3,3-tetramethyl-5-(pent-4en-1-yl)-4,36-dioxa-3,37-disilanonatriacontan (II-20)

 $C_{100}H_{220}O_{10}Si_{10}$

1863.7 g/mol

157 mg (76.0 μ mol, 1.0 Äq.) der Selenoverbindung II-**75** wurden in 1.5 mL THF gelöst und 130 μ L (35% in Wasser, 148 mg, 1.52 mmol, 20 Äq.) einer Wasserstoffperoxid-Lösung wurden bei 0 °C zugegeben. Die Lösung wurde für vier Stunden bei Raumtemperatur gerührt und das Lösungsmittel anschließend am Rotationsverdampfer *in vacuo* entfernt. Der Rückstand wurde säulenchromatographisch (Pentan/Et₂O 99:1) gereinigt und das Alken II-**20** in einer Ausbeute von 84% (119 mg, 63.9 μ mol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.51$ (Pentan/Et₂O 98:2) [KMnO₄]. [α]²⁰_D: +2.2 (c = 1.30, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 5.80 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.00 (ddd, J = 17.1, 1.7 Hz, 1H), 4.95 (ddt, J = 10.2, 2.3, 1.3 Hz, 1H), 3.83 – 3.68 (m, 5H), 3.67 – 3.58 (m, 4H), 3.24 (d, J = 6.7 Hz, 1H), 2.10 – 1.87 (m, 2H), 1.76 – 1.13 (m, 46H), 0.97 (t, J = 7.9Hz, 9H), 0.91 – 0.86 (m, 81H), 0.85 (s, 9H), 0.62 (q, J = 8.0 Hz, 6H), 0.16 – -0.08 (m, 54H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 139.1, 114.6, 81.4, 72.6, 72.6, 72.5, 70.3, 69.8, 69.8, 69.7, 67.9, 46.6, 46.4, 45.0, 38.3, 38.0, 37.9, 37.8, 37.8, 37.7, 37.7, 37.6, 37.6, 37.4, 36.8, 35.9, 34.1, 33.8, 26.5, 26.1, 26.1, 26.1, 26.1, 24.5, 23.8, 21.7, 21.3, 21.2, 21.1, 21.0, 18.3, 18.3, 18.3, 18.2, 18.2, 18.2, 7.4, 5.8, -3.7, -3.8, -3.9, -3.9, -4.0, -4.0, -4.1, -4.2, -4.2, -4.2, -4.2, -4.3. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2856, 1471, 1253, 1109, 1045, 1005, 938, 834, 806, 772, 737, 724, 664. **HRMS** (ESI): berechnet für C₁₀₀H₂₂₀NaO₁₀Si₁₀⁺ [M+Na⁺]: 1884.4291, gefunden 1884.4283.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[121]

Methyl-(2Z,9S,11R,15S,19R,21R,23R,27S,31R,35R,39S)-9,11,15,19,21,23,27,31,35nonakis((*tert*-butyl(dimethyl)silyl)oxy)-3,40,40-trimethyl-39-((triethylsilyl)oxy)hentetracont-2-enoat (II-37)

 $C_{105}H_{228}O_{12}Si_{10}$

1963.8 g/mol

Es wurden zunächst 140 µL (0.5 M in THF, 126 mg, 79.2 µmol, 1.1 Äq.) einer 9-BBN-Lösung unter Argonatmosphäre zu 119 mg (63.9 µmol, 1.0 Äq.) des Alkens II-20 gegeben. Das Reaktionsgemisch wurde für eine Stunde bei Raumtemperatur gerührt. Anschließend wurde für 15 Minuten Argon durch eine Lösung, bestehend aus 7.40 mg (6.40 µmol, 10 mol%) Pd(PPh₃)₄ und 15.9 mg (70.2 µmol, 1.1 Äq.) des Iodids II-19, gelöst in 319 µL entgastem, trockenem 1,4-Dioxan, geblubbert, bevor diese Lösung zum Reaktionsgemisch gegeben wurde. Es folgte die Zugabe 14.9 mg (70.2 µmol, 1.1 Äq.) Kaliumphosphat und die Suspension wurde für 12 Stunden unter Argonatmosphäre bei 105 °C gerührt. Die orangefarbene Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel Rotationsverdampfer in vacuo wurde am entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) gereinigt. Das Produkt II-37 wurde in einer Ausbeute von 40% (50.0 mg, 25.5 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA 97:3) [KMnO₄]. $[\alpha]_D^{20}$: -2.2 (c = 0.58, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 5.65 (s, 1H), 3.87 – 3.46 (m, 12H), 3.24 (d, *J* = 6.0 Hz, 1H), 2.72 – 2.49 (m, 2H), 1.88 (s, 3H), 1.73 – 1.16 (m, 50H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.93 – 0.87 (m, 81H), 0.85 (s, 9H), 0.61 (q, *J* = 8.0 Hz, 6H), 0.26 – -0.06 (m, 54H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 166.9, 161.3, 115.7, 81.4, 72.7, 72.6, 72.5, 70.3, 69.8, 69.8, 67.9, 50.9, 46.6, 46.4, 45.1, 38.3, 38.0, 37.9, 37.8, 37.7, 37.6, 37.6, 37.6, 37.4, 37.4, 35.9, 33.8, 33.6, 30.2, 29.9, 28.4, 26.5, 26.1, 26.1, 26.1, 25.3, 25.2, 23.7, 21.7, 21.3, 21.2, 21.1, 21.0, 18.3, 18.3, 18.2, 18.2, 7.3, 5.8, -3.7, -3.8, -3.9, -3.9, -4.0, -4.1, -4.1, -4.2, -4.2. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 1724, 1471, 1253, 1155, 1108, 1043, 1005, 938, 834, 806,

772, 737, 727, 662. Der ESI-Massenanalyse konnte kein Fragment von II-**37** zugeordnet werden.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[121]

Methyl-(2Z,9S,11R,15S,19R,21R,23R,27S,31S,35S,39S)-9,11,15,19,21,23,27,31,35nonakis((*tert*-butyl(dimethyl)silyl)oxy)-39-hydroxy-3,40,40-trimethylhentetracont-2-enoat (II-38)

C99H214O12Si9

1849.5 g/mol

48 mg (24.4 μmol, 1.0 Äq.) des Silylethers II-**37** wurden in einem Gemisch aus 5.1 mL Chloroform und 2.4 mL Methanol gelöst und 12.3 mg (48.9 μmol, 2.0 Äq.) PPTS wurden zugegeben. Die Lösung wurde für eine Stunde bei Raumtemperatur gerührt. Nach der Zugabe einer gesättigten, wässrigen Natriumhydrogencarbonat-Lösung (10 mL) wurde die Lösung für weitere 20 Minuten bei Raumtemperatur gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 98:2) gereinigt. Der Alkohol II-**38** wurde in einer Ausbeute von 72% (32.5 mg, 17.6 μmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.27$ (CH/EA 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +0.5 (c = 0.39, CH₂Cl₂). ¹H-NMR (600 MHz, C₆D₆): δ [ppm] = 5.74 (s, 1H), 4.18 – 4.01 (m, 3H), 3.99 – 3.90 (m, 2H), 3.87 – 3.71 (m, 4H), 3.45 (s, 3H), 3.08 (d, J = 10.3 Hz, 1H), 2.82 – 2.69 (m, 2H), 2.02 (dt, J = 13.0, 6.1 Hz, 1H), 1.98 – 1.80 (m, 4H), 1.80 – 1.36 (m, 46H), 1.30 (qd, J = 11.7, 11.2, 7.2 Hz, 2H), 1.14 – 0.99 (m, 81H), 0.86 (s, 9H), 0.26 – 0.13 (m, 54H). ¹³C-NMR (151 MHz, C₆D₆): δ [ppm] = 166.4, 160.6, 116.3, 79.7, 73.0, 72.9, 72.8, 70.7, 70.2, 70.2, 68.4, 50.4, 47.0, 47.0, 45.6, 39.0, 38.4, 38.3, 38.2, 38.1, 38.1, 38.0, 38.0, 37.8, 37.7, 35.1, 33.5, 32.2, 30.4, 28.7, 26.4, 26.3, 26.3, 26.3, 25.9, 25.5, 24.9, 23.4, 22.0, 21.6, 21.5, 21.5, 21.4, 18.5, 18.4, 18.4, -3.4, -3.5, -3.6, -3.7, -3.7, -3.9, -3.9, -4.0, -4.0, -4.0. **IR** (ATR):

 \tilde{v} [cm⁻¹] = 3488, 2951, 2929, 2856, 1724, 1471, 1462, 1361, 1253, 1109, 1074, 1043, 1005, 834, 805, 772, 662. **HRMS** (ESI): berechnet für C₉₉H₂₁₅O₁₂Si₉⁺ [M+H⁺]: 1848.4131, gefunden 1848.4135.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[121]

(2Z,9S,11R,15S,19R,21R,23R,27S,31S,35S,39S)-9,11,15,19,21,23,27,31,35nonakis((*tert*-butyl(dimethyl)silyl)oxy)-39-hydroxy-3,40,40-trimethylhentetracont-2-enosäure (II-39)

C98H212O12Si9

1835.5 g/mol

Es wurden 30.6 mg (16.5 µmol, 1.0 Äq.) des Methylesters II-38 in 1.2 mL Toluol unter Argonatmosphäre gelöst und 89.8 mg (496 µmol, 30 Äq.) Trimethylzinnhydroxid zugegeben. Das Reaktionsgemisch wurde für 24 Stunden unter Argonatmosphäre bei 120 °C gerührt. Es wurden erneut 89.8 mg (496 µmol, 30 Äq.) Trimethylzinnhydroxid zugegeben und die Lösung für weitere 36 Stunden unter Rückfluss gerührt. Anschließend wurde die Lösung auf Raumtemperatur abgekühlt und 2.4 mL einer KHSO₄-Lösung (5% in Wasser), 2.4 mL Wasser und 4.8 mL Ethylacetat wurden hinzugegeben. Das Reaktionsgemisch wurde für fünf Minuten gerührt und die Phasen getrennt. Die wässrige Phase wurde mit Ethylacetat (3 x 3 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA/AcOH 94:5:1) gereinigt. Die Carbonsäure II-39 wurde in einer Ausbeute von 69% (20.9 mg, 11.4 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.15$ (CH/EA/AcOH 94:5:1) [KMnO₄]. $[\alpha]_D^{20}$: -0.2 (c = 0.98, CH₂Cl₂). ¹H-NMR (400 MHz, C₆D₆): δ [ppm] = 5.73 (d, J = 1.5 Hz, 1H), 4.20 – 3.89 (m, 5H), 3.87 – 3.71 (m, 4H), 3.10 (dd, J = 10.4, 1.7 Hz, 1H), 2.83 – 2.61 (m, 2H), 2.15 – 1.81 (m, 6H), 1.79 – 1.25 (m, 47H), 1.14 – 0.95 (m, 81H), 0.87 (s, 9H), 0.35 – -0.00 (m, 54H). ¹³C-NMR (101 MHz, C₆D₆): δ [ppm] = 170.8, 163.4, 116.1, 79.7, 73.0, 72.9, 72.8, 72.8, 70.7, 70.2, 70.1, 68.4, 47.0, 46.9, 45.6, 38.9, 38.3, 38.2, 38.2, 38.1, 38.1, 38.0, 38.0, 37.8, 37.7, 35.1, 33.6, 32.1, 30.4, 28.6, 26.4, 26.3, 26.3, 26.3, 25.9, 25.5, 25.1, 23.4, 22.0, 21.5, 21.4, 18.5, 18.4, -3.4, -3.5, -3.6, -3.7, -3.9, -3.9, -3.9, -4.0, -4.0, -4.0. **IR** (ATR): \tilde{v} [cm⁻¹] = 3363, 2950, 2928, 2856, 1693, 1641, 1471, 1462, 1361, 1253, 1109, 1045, 1005, 938, 834, 806, 772, 711, 663. **HRMS** (ESI): berechnet für C₉₈H₂₁₂NaO₁₂Si₉⁺ [M+Na⁺]: 1856.3794, gefunden 1856.3792.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[121]

(10*S*,12*R*,16*S*,20*R*,22*R*,24*R*,28*S*,32*S*,36*S*,40*S*,*Z*)-40-(*tert*-Butyl)-10,12,16,20,22,24,28,32,36-nonakis((*tert*-butyldimethylsilyl)oxy)-4-methyloxacyclotetracont-3-en-2-on (II-41)

 $C_{98}H_{210}O_{11}Si_9$

1817.5 g/mol

10.0 mg (5.45 µmol, 1.0 Äq.) der Säure II-**39** wurden in 12 mL trockenem Dichlormethan unter Argonatmosphäre gelöst und 29.8 mg (109 µmol, 20 Äq.) 2-Brom-1-ethylpyridinium-tetrafluoroborat (II-**40**) und 114 mg (1.36 mmol, 250 Äq.) Natriumhydrogencarbonat wurden nacheinander zugegeben. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur unter Lichtausschluss gerührt. Die Suspension wurde über Kieselgel filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 5 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (Hexan/EA 95:5) gereinigt. Zur Trennung der *E/Z*-Isomere wurde das Produkt II-**41** erneut säulenchromatographisch (Hexan/EtO₂ 99:1 \rightarrow 98:2) gereinigt. Das Produkt II-**41** wurde somit in einer Ausbeute von 66% (6.5 mg, 3.6 µmol) als reines (*Z*)-Isomer in Form eines farblosen Öls erhalten.

DC: $R_f = 0.56$ (CH/EA 97:3) [KMnO₄]. $[\alpha]_D^{20}$: +5.8 (c = 0.60, CH₂Cl₂). ¹H-NMR (600 MHz, C₆D₆): δ [ppm] = 5.83 (s, 1H), 5.08 (d, J = 9.7 Hz, 1H), 4.02 (ddt, J = 55.0, 30.8, 6.6 Hz, 5H), 3.89 – 3.68 (m, 4H), 3.01 – 2.90 (m, 1H), 2.63 (dt, J = 12.0, 7.2 Hz,

1H), 2.10 – 1.84 (m, 6H), 1.77 – 1.23 (m, 47H), 1.11 – 1.04 (m, 81H), 0.96 (s, 9H), 0.32 – 0.13 (m, 54H). ¹³C-NMR (151 MHz, C₆D₆): δ [ppm] = 166.1, 160.1, 117.0, 79.0, 73.0, 72.8, 72.6, 70.3, 70.2, 70.1, 70.1, 68.3, 46.9, 46.8, 45.7, 38.6, 38.3, 38.3, 38.2, 38.1, 38.0, 38.0, 37.9, 37.5, 34.8, 33.7, 30.6, 30.4, 30.2, 28.8, 26.3, 26.3, 26.3, 26.3, 25.6, 25.1, 22.3, 22.2, 21.9, 21.4, 21.3, 21.3, 18.5, 18.4, 18.4, 18.4, -3.5, -3.6, -3.7, -3.7, -3.8, -3.9, -4.0, -4.0. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2951, 2927, 2855, 1716, 1647, 1471, 1462, 1406, 1377. 1361, 1253, 1104, 1042, 1004, 937, 832, 805, 770, 718, 662. **HRMS** (ESI): berechnet für C₉₈H₂₁₀NaO₁₁Si₉⁺ [M+Na⁺]: 1838.3689, gefunden 1838.3696. Die spektroskopischen Daten stimmen mit der Literatur überein.^[121]

2.3 Totalsynthese von Cryptoconcatone D

5-(Benzylthio)-1-phenyl-1*H*-tetrazole (II-26)

268.3 g/mol

500 mg (1.49 mmol, 1.00 Äq.) 1-Phenyl-1*H*-tetrazol-5-thiol (III-**25**) und 582 mg (4.21 mmol, 1.50 Äq.) Kaliumcarbonat wurden unter Argonatmosphäre in 11 mL trockenem DMF vorgelegt. Nach Zugabe von 0.350 mL (504 mg, 2.95 mmol, 1.05 Äq.) Benzylbromid wurde die Lösung für 4.5 Stunden bei 80 °C gerührt. Anschließend wurden Wasser und Ethylacetat (jeweils 20 mL) hinzugegeben und die Phasen getrennt. Die wässrige Phase wurde mit Ethylacetat (3 x 20 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Thioether II-**26** wurde in einer Ausbeute von 94% (710 mg, 2.65 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.56$ (CH/EA = 8:2) [KMnO₄]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.56 - 7.48 (m, 5H), 7.46 - 7.39 (m, 2H), 7.36 - 7.27 (m, 3H), 4.63 (s, 2H). ¹³**C-NMR**

(101 MHz, CDCl₃): δ [ppm] = 154.0, 135.4, 133.8, 130.2, 129.9, 129.4, 129.0, 128.3, 124.0, 37.9.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[202]

5-(Benzylsulfonyl)-1-phenyl-1*H*-tetrazol (II-23)

$C_{14}H_{12}N_4O_2S$

300.3 g/mol

In 13 mL Ethanol wurden 700 mg (2.61 mmol, 1.0 Äq.) des Thioethers II-**26** vorgelegt. Bei 0 °C wurden 645 mg (522 µmol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 2.23 mL (35% in Wasser, 26.1 mmol, 10 Äq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (20 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 20 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Sulfon II-**23** wurde in einer Ausbeute von 89% (695 mg, 2.31 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.55$ (CH/EA = 8:2) [KMnO₄]. ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.59 – 7.52 (m, 1H), 7.50 – 7.46 (m, 2H), 7.43 – 7.39 (m, 1H), 7.38 – 7.29 (m, 6H), 4.93 (s, 2H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 153.1, 133.0, 131.8, 131.5, 130.0, 129.5, 129.3, 125.4, 124.9, 62.5.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[203]

(3*R*,5*S*,7*R*,9*S*,*E*)-3,5,7,9-Tetrakis((*tert*-butyldimethylsilyl)oxy)-11-phenylundec-10en-1-ylbenzoat (III-27)

 $C_{48}H_{86}O_6Si_4$

871.6 g/mol

109 mg (363 µmol, 1.5 Äq.) des Sulfons III-**23** wurde in 4.8 mL trockenem THF unter Argonatmosphäre gelöst. Anschließend wurden 303 µL (1 M in THF, 265 mg, 302 µmol, 1.25 Äq.) einer LiHMDS-Lösung bei 0 °C zugetropft und die Lösung für 20 Minuten bei 0 °C gerührt. Nachdem das Reaktionsgemisch auf -78 °C gekühlt wurde, erfolgte die Zugabe von 193 mg (, 242 µmol, 1.0 Äq.) von Fragment C aus Kapitel I, gelöst in 4.8 mL trockenem THF. Die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt und die Reaktion durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (5 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 5 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) gereinigt. Das Alken III-**27** wurde in einer Ausbeute von 94% (198 mg, 227 µmol) in Form eines farblosen Öls erhalten.

DC: R_f = 0.68 (CH/EA = 95:5) [KMnO₄]. [α]²⁰_D: -14.1 (c = 1.15, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 8.10 – 8.05 (m, 2H), 7.60 – 7.53 (m, 1H), 7.49 – 7.43 (m, 2H), 7.41 – 7.31 (m, 4H), 7.25 (tt, J = 6.2, 1.5 Hz, 1H), 6.50 (d, J = 15.9 Hz, 1H), 6.18 (dd, J = 15.9, 7.6 Hz, 1H), 4.46 – 4.40 (m, 3H), 4.07 (td, J = 6.8, 3.5 Hz, 1H), 4.04 – 3.98 (m, 1H), 3.98 – 3.91 (m, 1H), 2.11 – 1.69 (m, 6H), 1.65 (dddd, J = 13.4, 7.3, 5.2, 2.7 Hz, 2H), 1.01 – 0.85 (m, 36H), 0.18 – 0.04 (m, 24H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 166.6, 137.1, 133.6, 132.9, 130.5, 129.7, 129.5, 128.7, 128.4, 127.6, 126.5, 71.2, 67.4, 66.9, 66.8, 62.0, 46.9, 46.6, 45.7, 36.7, 26.2, 26.2, 26.1, 26.1, 26.0, 18.4, 18.2, 18.2, 18.2, -3.3, -3.4, -3.5, -3.6, -3.7, -4.1, -4.1, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2928, 2886, 2855, 1722, 1471, 1462, 1386, 1360, 1272, 1252, 1109, 1097, 1067, 1026, 1004, 981, 937, 909,

832, 805, 771, 746, 733, 709, 691, 676. **HRMS** (ESI): berechnet für C₄₈H₈₆NaO₆Si₄⁺ [M+Na⁺]: 893.5394; gefunden 893.5393.

(3R,5S,7R,9S,E)-3,5,7,9-Tetrakis((*tert*-butyldimethylsilyl)oxy)-11-phenylundec-10en-1-ol (III-28)

C₄₁H₈₂O₅Si₄ 767.4 g/mol

198 mg (227 μ mol, 1.0 Äq.) des Benzoats III-**27** wurden in 11 mL trockenem Dichlormethan gelöst und 568 μ L (1.2 M in Toluol, 481 mg, 681 μ mol, 3.0 Äq.) einer Diisobutylaluminiumhydrid-Lösung wurden bei -78 °C zugegeben. Die Lösung wurde für eine Stunde bei -78 °C gerührt und anschließend mit gesättigter, wässriger Natrium-Kalium-Tartrat-Lösung (5 mL) versetzt. Das Gemisch wurde auf Raumtemperatur aufgewärmt und für 18 Stunden gerührt. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 5 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Der Alkohol III-**28** wurde in einer Ausbeute von 97% (169 mg, 220 μ mol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.35$ (CH/EA = 9:1) [KMnO₄]. [α]²⁰_D: -0.2 (c = 1.08, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.41 – 7.38 (m, 2H), 7.37 – 7.33 (m, 2H), 7.29 – 7.25 (m, 1H), 6.51 (d, J = 15.9 Hz, 1H), 6.19 (dd, J = 15.9, 7.4 Hz, 1H), 4.40 (q, J = 6.6 Hz, 1H), 4.01 (tt, J = 12.0, 5.4 Hz, 2H), 3.87 (dp, J = 14.1, 4.7 Hz, 2H), 3.75 (dt, J = 11.1, 5.5 Hz, 1H), 2.42 (s, 1H), 1.90 (ddt, J = 14.1, 9.0, 5.5 Hz, 1H), 1.87 – 1.81 (m, 1H), 1.81 – 1.61 (m, 6H), 1.08 – 0.79 (m, 36H), 0.21 – 0.01 (m, 24H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 137.1, 133.4, 129.7, 128.7, 127.6, 126.6, 71.3, 69.6, 67.4, 67.0, 60.3, 47.3, 46.4, 45.6, 38.5, 26.2, 26.1, 26.1, 26.1, 26.0, 26.0, 18.4, 18.2, 18.2, 18.1, -3.5, -3.5, -3.6, -4.1, -4.3, -4.4. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2952, 2928, 2886, 2856, 1471, 1462, 1386, 1360,

1252, 1066, 1028, 1004, 982, 966, 922, 832, 805, 771, 746, 736, 677, 665. **HRMS** (ESI): berechnet für C₄₁H₈₂NaO₅Si₄⁺ [M+Na⁺]: 789.5132; gefunden 789.5131.

Ethyl (2Z,5R,7S,9R,11S,12E)-5,7,9,11-tetrakis((*tert*-butyldimethylsilyl)oxy)-13-phenyltrideca-2,12-dienoat (III-29)

C₄₅H₈₆O₆Si₄ 835.5 g/mol

478 mg (622 μmol, 1.0 Äq.) des Alkohols III-**28** wurden in einem Gemisch bestehend aus jeweils 1.8 mL THF und DMSO gelöst und 453 mg (1.62 mmol, 2.6 Äq.) IBX wurden hinzugegeben. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (2 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 2 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt ohne weitere Reinigung weiter umgesetzt.

DC: $R_f = 0.23$ (CH/EA = 9:1) [KMnO₄].

Ethyl (2Z,5R,7S,9R,11S,12E)-5,7,9,11-tetrakis((*tert*-butyldimethylsilyl)oxy)-13-phenyltrideca-2,12-dienoat (III-30)

C45H86O6Si4 835.5 g/mol

992 mg (2.85 mmol, 5.0 Äq.) des Phosphonats III-**24** wurden in 38 mL trockenem THF unter Argonatmosphäre gelöst und 109 mg (60% in Mineralöl, 2.73 mmol, 4.8 Äq.) Natriumhydrid wurden bei 0 °C zugegeben. Die Suspension wurde für 15 Minuten bei

0 °C gerührt und anschließend auf -78 °C gekühlt. Nach der Zugabe von 436 mg (569 μmol, 1.0 Äq.) des Aldehyds III-**29**, gelöst in 4 mL trockenem THF, wurde das Reaktionsgemisch innerhalb von zwei Stunden auf Raumtemperatur erwärmt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (10 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) gereinigt. Der Ester III-**30** wurde in einer Ausbeute von 84% (436 mg, 522 μmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.57$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: -52.6 (*c* = 1.05, CH₂Cl₂). ¹**H-NMR** (400 MHz, C₆D₆): δ [ppm] = 7.35 - 7.29 (m, 2H), 7.15 - 7.09 (m, 2H), 7.05 - 7.00 (m, 1H), 6.62 (d, *J* = 15.9 Hz, 1H), 6.38 - 6.33 (m, 1H), 6.33 - 6.28 (m, 1H), 5.95 (dt, *J* = 11.5, 1.7 Hz, 1H), 4.68 (td, *J* = 7.8, 3.9 Hz, 1H), 4.26 (tt, *J* = 7.0, 3.3 Hz, 1H), 4.22 - 4.18 (m, 1H), 4.14 (dt, *J* = 11.4, 5.8 Hz, 1H), 4.01 (q, *J* = 7.1 Hz, 2H), 3.34 (dddd, *J* = 15.3, 7.9, 4.5, 1.7 Hz, 1H), 2.98 (dtd, *J* = 15.2, 6.5, 1.9 Hz, 1H), 2.13 - 2.05 (m, 1H), 1.98 (t, *J* = 6.8 Hz, 3H), 1.95 - 1.88 (m, 1H), 1.87 - 1.71 (m, 3H), 1.40 - 1.24 (m, 1H), 1.11 - 0.93 (m, 36H), 0.31 - 0.07 (m, 24H). ¹³**C-NMR** (101 MHz, C₆D₆): δ [ppm] = 165.9, 146.0, 137.3, 133.8, 130.3, 128.9, 126.8, 121.9, 71.7, 69.2, 68.0, 67.5, 59.7, 47.5, 47.1, 45.6, 37.5, 26.4, 26.3, 26.3, 18.5, 18.4, 18.4, 14.4, -3.0, -3.1, -3.2, -3.5, -3.6, -3.7, -4.2, -4.2. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2928, 2887, 2856, 1721, 1644, 1471, 1462, 1387, 1360, 1253, 1179, 1111, 1084, 1067, 1004, 982, 966, 923, 833, 805, 772, 747, 691. **HRMS** (ESI): berechnet für C₄₅H₈₆NaO₆Si₄+ [M+Na⁺]: 857.5394; gefunden 857.5393.

(6*R*)-6-((2*R*,4*R*,*E*)-2,4-dihydroxy-6-methoxy-8-phenyloct-7-en-1-yl)-5,6-dihydro-2H-pyran-2-on (III-31)

$C_{20}H_{26}O_5$

346.4 g/mol

Es wurden 54 mg (65 μ mol, 1.0 Äq.) des Esters III-**30** in 0.9 mL Methanol gelöst und 1.2 mg (6.5 μ mol, 10 mol%) *p*-Toluolsulfonsäure Monohydrat hinzugegeben. Die Lösung wurde für eine Stunde bei Raumtemperatur gerührt und das Lösungsmittel anschließend am Rotationsverdampfer *in vacuo* entfernt. Der Rückstand wurde säulenchromatographisch (DCM/MeOH 99:1) gereinigt und das Produkt III-**31** in einer Ausbeute von 79% (17.7 mg, 51.1 μ mol) in Form eines farblosen Öls erhalten. Die Diastereomere konnten säulenchromatographisch getrennt und einzeln charakterisiert werden.

Diastereomer A: **DC**: $\mathbf{R}_f = 0.39$ (DCM/MeOH = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +2.9 (c = 0.38, CH₂Cl₂). ¹**H-NMR** (400 MHz, CD₃OD): δ [ppm] = 7.44 – 7.41 (m, 2H), 7.33 – 7.28 (m, 2H), 7.25 – 7.20 (m, 1H), 7.03 (ddd, J = 9.7, 5.9, 2.5 Hz, 1H), 6.64 (d, J = 15.9 Hz, 1H), 6.06 (dd, J = 16.0, 8.3 Hz, 1H), 5.96 (ddd, J = 9.8, 2.6, 1.1 Hz, 1H), 4.70 (dddd, J = 11.5, 9.6, 4.2, 2.9 Hz, 1H), 4.13 (qd, J = 7.8, 2.7 Hz, 1H), 4.04 – 3.96 (m, 1H), 3.97 – 3.90 (m, 1H), 3.31 (s, 3H), 2.43 (dddd, J = 18.6, 5.7, 4.2, 1.1 Hz, 1H), 2.33 (ddt, J = 18.6, 11.5, 2.6 Hz, 1H), 1.93 – 1.82 (m, 2H), 1.71 – 1.60 (m, 2H), 1.59 – 1.54 (m, 2H). ¹³**C-NMR** (101 MHz, CD₃OD): δ [ppm] = 166.9, 148.5, 137.9, 134.7, 130.5, 129.6, 128.8, 127.6, 121.4, 82.0, 76.7, 66.6, 64.8, 56.3, 46.5, 44.8, 44.2, 30.9. **IR** (ATR): \tilde{v} [cm⁻¹] = 3423, 2924, 2854, 1712, 1448, 1423, 1390, 1250, 1095, 1072, 1054, 970, 956, 827, 809, 751,695, 553. **HRMS** (ESI): berechnet für C₂₀H₂₆NaO₅⁺ [M+Na⁺]: 369.1672; gefunden 369.1675.

Diastereomer B: **DC**: $R_f = 0.38$ (DCM/MeOH = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +9.3 (c = 0.46, CH₂Cl₂). ¹**H-NMR** (400 MHz, CD₃OD): δ [ppm] = 7.44 – 7.38 (m, 2H), 7.35 – 7.27 (m, 2H), 7.25 – 7.20 (m, 1H), 7.04 (ddd, *J* = 9.8, 5.9, 2.6 Hz, 1H), 6.60 (d, *J* = 15.9 Hz, 1H), 6.10 (dd, *J* = 16.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 16.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 16.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 16.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 10.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 10.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 10.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 10.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 10.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 10.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd, *J* = 10.0, 7.9 Hz, 1H), 5.98 (ddd, *J* = 9.7, 2.6, 1.1 Hz, 1H), 4.72 (dddd, *J* = 11.5, 6.10 (dd), 4.10 (dd), 4.1

9.7, 4.4, 3.0 Hz, 1H), 4.20 – 4.06 (m, 2H), 4.02 (dddd, J = 9.2, 7.9, 3.5, 0.9 Hz, 1H), 3.33 (s, 3H), 2.45 (dddd, J = 18.6, 5.8, 4.3, 1.1 Hz, 1H), 2.36 (ddt, J = 18.7, 11.5, 2.6 Hz, 1H), 1.89 (ddd, J = 14.5, 9.7, 2.8 Hz, 1H), 1.81 – 1.58 (m, 3H), 1.58 – 1.52 (m, 2H). ¹³C-NMR (101 MHz, CD₃OD): δ [ppm] = 166.9, 148.5, 138.1, 133.5, 131.0, 129.6, 128.7, 127.5, 121.4, 80.5, 76.7, 65.8, 65.0, 56.6, 46.7, 45.4, 44.2, 30.9. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3423, 2924, 2854, 1708, 1448, 1421, 1390, 1250, 1104,1071, 956, 827, 808, 750, 695, 552. **HRMS** (ESI): berechnet für C₂₀H₂₆NaO₅⁺ [M+Na⁺]: 369.1672; gefunden 369.1675.

(*R*)-6-(((2*R*,4*R*,6*S*)-4-Hydroxy-6-((*E*)-styryl)tetrahydro-2H-pyran-2-yl)methyl)-5,6-dihydro-2H-pyran-2-on (III-32)

$C_{19}H_{22}O_4$

314.4 g/mol

50 mg (60 µmol, 1.0 Äq.) des Esters III-**30** wurden in 1.5 mL Acetonitril in einem Teflon-Vial gelöst und 410 µL (38% in H₂O, 472 mg, 8.98 mmol, 150 Äq.) einer HF-Lösung wurden hinzugegeben. Das Reaktionsgemisch wurde für eine Stunde bei Raumtemperatur gerührt und die Reaktion anschließend durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (5 mL) beendet. Nach der Zugabe von Ethylacetat (5 mL) wurden die Phasen getrennt und die wässrige Phase mit Ethylacetat (3 x 5 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und das Rohprodukt in 0.8 mL Toluol gelöst. Anschließend wurde 1 mg (5 µmol, 10 mol%) *p*-Toluolsulfonsäure Monohydrat zugegeben und die Lösung für eine Stunde unter Rückfluss gerührt. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand säulenchromatographisch (DCM/MeOH 99:1) gereinigt. Das Tetrahydropyran III-**32** wurde in einer Ausbeute von 63% (12 mg, 38 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.43$ (DCM/MeOH = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: -52.6 (*c* = 0.43, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.40 - 7.35 (m, 2H), 7.34 - 7.28 (m, 2H), 7.26 - 7.20 (m,

1H), 6.88 (ddd, J = 9.8, 5.7, 2.8 Hz, 1H), 6.58 (dd, J = 16.0, 1.3 Hz, 1H), 6.19 (dd, J = 16.0, 6.0 Hz, 1H), 6.02 (ddd, J = 9.7, 2.5, 1.2 Hz, 1H), 4.78 (dddd, J = 11.0, 9.6, 4.8, 2.8 Hz, 1H), 4.05 (ddt, J = 11.1, 6.0, 1.8 Hz, 1H), 3.93 (tt, J = 11.0, 4.6 Hz, 1H), 3.82 (ddt, J = 11.9, 10.1, 2.2 Hz, 1H), 2.48 – 2.24 (m, 2H), 2.10 (ddt, J = 12.3, 4.4, 2.1 Hz, 1H), 2.00 – 1.89 (m, 2H), 1.83 (ddd, J = 14.7, 10.0, 2.8 Hz, 1H), 1.67 (s, 1H), 1.37 (dt, J = 12.5, 11.3 Hz, 1H), 1.31 – 1.18 (m, 1H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 164.6, 145.3, 136.7, 130.8, 129.4, 128.7, 127.9, 126.6, 121.6, 76.0, 74.6, 71.0, 67.9, 41.8, 41.4, 41.2, 30.1. **IR** (ATR): \tilde{v} [cm⁻¹] = 3411, 2940, 2919, 2853, 1712, 1385, 1369, 1252, 1123, 1053, 1032, 968, 912, 818, 749, 694. **LRMS** (ESI): m/z (%) 332.2 (100) [M+NH₄⁺]. **HRMS** (ESI): berechnet für C₁₉H₂₂NaO₄⁺ [M+Na⁺]: 337.1410; gefunden 337.1410.

Ethyl (2Z,5R,7S,9R,11S,12E)-5,7,9,11-tetrahydroxy-13-phenyltrideca-2,12dienoat (III-33)

$C_{21}H_{30}O_6$

Zunächst wurden 342 µL (70% HF, 338 mg, 2.39 mmol, 20 Äq.) eines HF-Pyridin-Komplexes in einem Gemisch aus 1.0 mL Pyridin und 0.2 mL MeOH (6:1) bei 0 °C in einem Teflon-Vial vorgelegt. In einem weiteren Teflon-Vial wurden 100 mg (119 µmol, 1.0 Äq.) des Silylethers III-**30** in 1.0 mL THF gelöst und die Lösung auf 0 °C gekühlt. Die vorbreitete HF-Pyridin-Lösung wurde anschließend bei 0 °C mithilfe einer Spritze in die andere THF-Lösung überführt und das Reaktionsgemisch für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von MeOTMS (5 mL) bei 0 °C beendet und mit Toluol (5 mL) verdünnt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand erneut in Toluol (5 mL) gelöst. Die Prozedur wurde dreimal wiederholt, um Pyridin vollständig zu entfernen. Anschließend wurde der Rückstand säulenchromatographisch (DCM \rightarrow DCM:MeOH 98:2 \rightarrow DCM:MeOH 95:5) gereinigt. Das Tetraol III-**33** wurde in einer Ausbeute von 79% (36 mg, 95 µmol) in Form eines farblosen Öls erhalten. **DC**: $R_f = 0.25$ (DCM/MeOH = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +0.5 (c = 1.78, CH₂Cl₂). ¹H-NMR (400 MHz, CD₃OD): δ [ppm] = 7.42 – 7.36 (m, 2H), 7.35 – 7.26 (m, 2H), 7.24 – 7.16 (m, 1H), 6.60 (dd, J = 15.9, 1.3 Hz, 1H), 6.41 (dt, J = 11.6, 7.4 Hz, 1H), 6.29 (dd, J = 15.9, 6.3 Hz, 1H), 5.87 (dt, J = 11.6, 1.8 Hz, 1H), 4.49 (dddd, J = 7.4, 6.1, 5.0, 1.4 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 4.18 – 4.05 (m, 2H), 3.97 (tt, J = 7.5, 5.0 Hz, 1H), 2.88 (dddd, J = 15.5, 7.3, 5.3, 1.8 Hz, 1H), 2.79 (dtd, J = 15.5, 7.3, 1.8 Hz, 1H), 1.73 – 1.65 (m, 2H), 1.62 – 1.50 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C-NMR (101 MHz, CD₃OD): δ [ppm] = 167.9, 147.9, 138.5, 134.1, 130.4, 129.6, 128.4, 127.4, 121.9, 70.3, 68.9, 66.3, 66.2, 61.0, 46.7, 46.2, 45.9, 38.5, 14.6. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3287, 2938, 1715, 1644, 1447, 1416, 1299, 1188, 1126, 1070, 1039, 967, 922, 817, 748, 694. HRMS (ESI): berechnet für C₂₁H₃₀NaO₆⁺ [M+Na⁺]: 401.1935; gefunden 401.1935.

(*R*)-6-((2*R*,4*R*,6*S*,*E*)-2,4,6-Trihydroxy-8-phenyloct-7-en-1-yl)-5,6-dihydro-2H-pyran-2-on (III-4)

 $C_{19}H_{24}O_5$

332.4 g/mol

11 mg (29 µmol, 1.0 Äq.) des Tetraols III-**33** wurden in 0.5 mL Toluol vorgelegt und 4.3 mg (17 µmol, 0.6 Äq.) Dibutylzinnoxid hinzugeben. Das Reaktionsgemisch wurde für eine Stunde unter Rückfluss gerührt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (DCM \rightarrow DCM:MeOH 98:2 \rightarrow DCM:MeOH 95:5) gereinigt. Cryptoconcatone D (III-4) wurde in einer Ausbeute von 72% (7.0 mg, 21 µmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.26$ (DCM/MeOH = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +34.0 (c = 0.70, CH₂Cl₂). ¹**H-NMR** (600 MHz, CD₃OD): δ [ppm] = 7.45 – 7.42 (m, 2H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.27 – 7.23 (m, 1H), 7.09 (ddd, *J* = 9.7, 6.0, 2.5 Hz, 1H), 6.65 (dd, *J* = 15.9, 1.3 Hz, 1H), 6.34 (dd, *J* = 15.9, 6.2 Hz, 1H), 6.02 (ddd, *J* = 9.7, 2.7, 1.0 Hz, 1H), 4.81 – 4.74 (m, 1H), 4.57 – 4.51 (m, 1H), 4.21 (dddd, *J* = 19.6, 12.4, 5.8, 3.5 Hz, 2H), 2.50 (dddd, *J* = 18.5, 5.7, 4.2, 1.1 Hz, 1H), 2.41 (ddt, *J* = 18.6, 11.7, 2.6 Hz, 1H), 1.95 (ddd, *J* = 14.5, 9.7, 2.8 Hz, 1H), 1.79 – 1.70 (m, 3H), 1.64 (dd, J = 7.0, 5.5 Hz, 2H). ¹³C-NMR (151 MHz, CD₃OD): δ [ppm] = 166.9, 148.5, 138.5, 134.1, 130.5, 129.6, 128.4, 127.4, 121.4, 76.8, 70.3, 66.2, 65.1, 46.6, 46.2, 44.2, 30.9. **IR** (ATR): \tilde{v} [cm⁻¹] = 3384, 2924, 1704, 1393, 1258, 1056, 968, 809, 751, 695, 419. **HRMS** (ESI): berechnet für C₁₉H₂₄NaO₅⁺[M+Na⁺]: 355.1516; gefunden 355.1513.

2.4 Totalsynthese von Aureosurfactin

2.4.1 Synthese von (3R,5R,3'R,5'R)-Aureosurfactin

(35,55)-1-((4-Methoxybenzyl)oxy)-5-((triethylsilyl)oxy)hept-6-en-3-ol (IV-33)

$C_{21}H_{36}O_4Si$

380.6 g/mol

1.90 g (7.13 mmol, 1.0 Äq.) des Diols I-**108** aus Kapitel I wurden unter Argonatmosphäre in 24 mL trockenem Dichlormethan gelöst und 2.52 mL (2.32 g, 21.4 mmol, 3.0 Äq.) 2,6-Lutidin und 87.2 mg (0.713 mmol, 10 mol%) DMAP wurden nacheinander zugegeben. Nach der Zugabe von 1.45 mL (1.29 g, 8.56 mmol, 1.2 Äq.) Chlortriethylsilan bei -78 °C wurde die Lösung zunächst zwei Stunden bei -78 °C und anschließend eine Stunde bei 0 °C gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (20 mL) beendet. Es wurde Diethylether (20 mL) zugegeben und die Phasen getrennt. Die wässrige Phase wurde mit Diethylether (3 x 20 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Produkt III-**33** wurde in einer Ausbeute von 58% (1.59 g, 4.18 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.31$ (CH/EA = 8:2) [KMnO₄]. [α]_D²⁰: -1.7 (c = 1.01, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.25 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 5.82 (ddd, J = 17.3, 10.3, 7.1 Hz, 1H), 5.17 (dt, J = 17.2, 1.3 Hz, 1H), 5.06 (dt, J = 10.4, 1.2

279

Hz, 1H), 4.44 (s, 2H), 4.38 – 4.30 (m, 1H), 3.98 – 3.90 (m, 1H), 3.80 (s, 3H), 3.64 (ddd, J = 9.4, 6.6, 5.5 Hz, 1H), 3.59 (ddd, J = 9.4, 6.8, 5.6 Hz, 1H), 3.54 (d, J = 1.8 Hz, 1H), 1.80 – 1.67 (m, 3H), 1.59 – 1.52 (m, 1H), 0.95 (t, J = 8.0 Hz, 9H), 0.62 (q, J = 8.0 Hz, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.4, 141.4, 130.6, 129.4, 114.7, 114.0, 74.3, 73.0, 69.0, 67.9, 55.4, 45.0, 37.4, 6.9, 5.1. **IR** (ATR): \tilde{v} [cm⁻¹] = 3507, 2951, 2911, 2875, 1612, 1512, 1245, 1084, 1034, 1004, 921, 845, 819, 740, 725. **HRMS** (ESI): berechnet für C₂₁H₃₇O₄Si⁺ [M+H⁺]: 381.2456; gefunden 381.2456.

(5*S*,7*S*)-9,9-Diethyl-5-(2-((4-methoxybenzyl)oxy)ethyl)-2,2,3,3-tetramethyl-7-vinyl-4,8-dioxa-3,9-disilaundecan (IV-34)

 $C_{27}H_{50}O_4Si_2$

494.8 g/mol

1.90 g (4.99 mmol, 1.0 Äq.) des Alkohols IV-**33** wurden in 30 mL DMF gelöst und 1.36 g (19.9 mmol, 4.0 Äq.) Imidazol und 1.50 g (9.98 mmol, 2.0 Äq.) *tert*-Butyldimethylsilylchlorid wurden nacheinander zugegeben. Das Reaktionsgemisch wurde für 12 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von Wasser (20 mL) und Dichlormethan (20 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA 95:5) gereinigt und der Silylether IV-**34** in einer Ausbeute von 95% (2.34 g, 4.73 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.59$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -1.4 (c = 1.12, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 7.25 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 5.80 (ddd, J = 17.1, 10.4, 6.5 Hz, 1H), 5.14 (ddt, J = 17.2, 7.6, 1.5 Hz, 1H), 5.02 (ddt, J = 10.4, 5.6, 1.4 Hz, 1H), 4.49 – 4.34 (m, 2H), 4.24 – 4.16 (m, 1H), 3.96 – 3.87 (m, 1H), 3.80 (s, 3H), 3.51 (t, J = 6.7 Hz, 2H), 1.84 (dtd, J = 13.8, 7.0, 5.0 Hz, 1H), 1.74 (tt, J = 13.2, 6.5 Hz, 2H), 1.61 – 1.53 (m, 1H), 0.94 (t, J = 7.9 Hz, 9H), 0.89 – 0.85 (m, 9H), 0.58 (q, J = 7.9 Hz, 6H), 0.14 – -0.04 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 159.3,
141.8, 130.9, 129.3, 114.1, 113.9, 72.8, 71.2, 67.1, 66.8, 55.4, 46.3, 37.5, 26.0, 18.2, 7.0, 5.1, -4.2, -4.3. **IR** (ATR): \tilde{v} [cm⁻¹] = 2952, 2930, 2876, 2856, 1613, 1513, 1247, 1087, 1039, 1005, 834, 773. **HRMS** (ESI): berechnet für C₂₇H₅₀NaO₄Si₂⁺ [M+Na⁺]: 517.3140; gefunden 517.3125.

(2*S*,4*S*)-4-((*tert*-Butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)-2-((triethylsilyl)oxy)hexanal (IV-31)

 $C_{26}H_{48}O_5Si_2$

496.8 g/mol

2.34 g (4.73 mmol, 1.0 Äq.) des Alkens IV-**34** wurden in einer Mischung aus 85 mL 1,4-Dioxan und 13 mL Wasser gelöst. Es wurden 1.11 mL (2.17 g, 16.7 mmol, 2.0 Äq.) 2,6-Lutidin, 7.19 g (40.0 mmol, 4.0 Äq.) Natriumperiodat und 1.02 mL (4% in H₂O, 1.06 g, 0.17 mmol, 2.0 mol%) einer OsO₄-Lösung nacheinander zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und dann über Celite filtriert, wobei der Rückstand mehrmals mit Dichlormethan (3 x 20 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumthiosulfat-Lösung (50 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurde mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Produkt IV-**31** wurde in einer Ausbeute von 95% (2.44 g, 7.91 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.46$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -2.4 (c = 1.01, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 9.58 (s, 1H), 7.24 (d, J = 8.2 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 4.51 – 4.22 (m, 2H), 4.14 – 4.01 (m, 2H), 3.80 (s, 3H), 3.49 (td, J = 6.5, 2.3 Hz, 2H), 1.90 – 1.73 (m, 4H), 1.03 – 0.80 (m, 18H), 0.61 (q, J = 7.9 Hz, 6H), 0.10 – -0.13 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 203.8, 159.3, 130.8, 129.4, 113.9, 74.8, 72.8, 66.5, 66.0, 55.4, 40.9, 37.2, 26.0, 18.1, 6.8, 4.9, -4.2, -4.4. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2930, 2877, 2856, 1735, 1613, 1512, 1246, 1091, 1037, 1004, 834, 807, 774. **HRMS** (ESI): berechnet für C₂₆H₄₈NaO₅Si₂⁺ [M+Na⁺]: 519.2932; gefunden 519.2935.

5-(Butylthio)-1-phenyl-1*H*-tetrazol (IV-36)

 $C_{11}H_{14}N_4S$

234.3 g/mol

3.00 mL (2.43 g, 32.8 mmol, 1.0 Äq.) *n*-Butanol (IV-**35**) wurden in 492 mL trockenem THF unter Argonatmosphäre gelöst. Bei 0 °C wurden nacheinander 11.7 g (65.6 mmol, 2.0 Äq.) 1-Phenyl-1H-tetrazol-5-thiol und 12.9 g (49.2 mmol, 1.5 Äq.) Triphenyl-phosphin zugegeben. Anschließend wurden 12.3 mL (12.7 g, 59.0 mmol, 1.8 Äq.) DIAD langsam zugetropft und die Lösung für zwei Stunden bei 0 °C gerührt. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Der Thioether IV-**36** wurde in einer Ausbeute von 97% (7.5 g, 32.0 mmol) in Form eines gelbfarbenen Öls erhalten.

DC: $R_f = 0.56$ (CH/ EA = 9:1) [KMnO₄]. ¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.72 – 7.42 (m, 5H), 3.42 – 3.37 (m, 2H), 1.80 (tt, J = 9.0, 6.9 Hz, 2H), 1.54 – 1.39 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃): δ [ppm] = 154.7, 133.9, 130.2, 129.9, 124.0, 33.2, 31.2, 21.9, 13.6. **HRMS** (ESI): berechnet für C₁₁H₁₄N₄NaOS⁺ [M+Na⁺]: 257.0831; gefunden 257.0828.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[184]

5-(Butylsulfonyl)-1-phenyl-1*H*-tetrazol (IV-32)

^{266.3} g/mol

In 160 mL Ethanol wurden 7.5 g (32.0 mmol, 1.0 Äq.) des Thioethers IV-**36** vorgelegt. Bei 0 °C wurden 7.91 g (6.40 mmol, 20 mol%) Ammoniummolybdat-Tetrahydrat, gelöst in 27.4 mL (35% in Wasser, 31.1 g, 320 mmol, 10 Äq.) einer Wasserstoffperoxid-Lösung, zugetropft. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (100 mL) versetzt. Die Lösung wurde mit Dichlormethan (3 x 100 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 95:5) gereinigt. Das Sulfon IV-**32** wurde in einer Ausbeute von 70% (6.00 g, 22.5 mmol) in Form eines farblosen Feststoff erhalten.

DC: $R_f = 0.55$ (CH/ EA = 95:5) [KMnO₄]. ¹**H** NMR (400 MHz, CDCl₃): δ [ppm] = 7.85 – 7.43 (m, 5H), 3.91 – 3.46 (m, 2H), 2.09 – 1.68 (m, 2H), 1.65 – 1.33 (m, 2H), 1.12 – 0.75 (m, 3H). ¹³**C** NMR (101 MHz, CDCl₃): δ [ppm] = 153.6, 133.2, 131.6, 129.8, 125.2, 55.9, 24.0, 21.6, 13.6. **HRMS** (ESI): berechnet für C₁₁H₁₄N₄NaO₂S⁺[M+Na⁺]: 289.0730; gefunden 289.0728.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[184]

(5S,7S)-9,9-Diethyl-5-(2-((4-methoxybenzyl)oxy)ethyl)-2,2,3,3-tetramethyl-7-((*E*)-pent-1-en-1-yl)-4,8-dioxa-3,9-disilaundecan (IV-37)

 $C_{30}H_{56}O_4Si_2$

536.9 g/mol

919 mg (3.54 mmol, 1.15 Äq.) des Sulfons IV-32 wurden unter Argonatmosphäre in 60 mL trockenem 1,2-Dimethoxyethan gelöst. Die Lösung wurde auf -78 °C gekühlt und 7.20 mL (0.5 M in Toluol, 6.31 g, 3.60 mmol, 1.20 Äq.) einer KHMDS-Lösung wurden langsam zugetropft. Das Gemisch wurde für 30 Minuten bei -78 °C gerührt. 1.49 g 1.0 Äq.) (3.00 mmol, des Aldehyds IV-**31**, gelöst in 30 mL trockenem 1,2-Dimethoxyethan, wurden zugetropft und die Lösung anschließend für zwei Stunden bei -78 °C gerührt. Durch die Zugabe einer pH7-Puffer-Lösung und Diethylether (jeweils 30 mL) wurde die Reaktion beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 15 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten, wässrigen Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 99:1) gereinigt. Das Produkt IV-**37** wurde in einer Ausbeute von 93% (1.50 g, 2.79 mmol) in Form eines farblosen Öls erhalten.

DC: $\mathbf{R}_f = 0.53$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -10.2 (c = 1.12, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 7.25 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.52 (ddt, J = 19.5, 13.0, 6.7 Hz, 1H), 5.41 – 5.33 (m, 1H), 4.46 – 4.34 (m, 2H), 4.15 (dq, J = 13.1, 6.8 Hz, 1H), 3.89 (tt, J = 11.5, 5.8 Hz, 1H), 3.80 (s, 3H), 3.51 (t, J = 6.9 Hz, 2H), 2.02 – 1.91 (m, 2H), 1.83 (dtd, J = 13.9, 7.1, 5.3 Hz, 1H), 1.74 (ddt, J = 15.7, 13.3, 6.6 Hz, 2H), 1.60 – 1.50 (m, 1H), 1.42 – 1.31 (m, 2H), 1.01 – 0.81 (m, 21H), 0.57 (q, J = 8.0 Hz, 6H), 0.13 – -0.10 (m, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 159.2, 133.7, 131.0, 129.3, 113.9, 72.7, 71.1, 67.2, 66.9, 55.4, 46.6, 37.5, 34.5, 26.1, 22.5, 18.2, 13.9, 7.0, 5.2, -4.2, -4.2. **IR** (ATR): \tilde{v} [cm⁻¹] = 2954, 2930, 2875, 2856, 1613, 1513, 1462, 1247, 1089, 1040, 1004, 835, 774. **HRMS** (ESI): berechnet für C₃₀H₅₆NaO₄Si₂⁺ [M+Na⁺]: 559.3609; gefunden 559.3610.

(3S,5R)-3-((tert-Butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)decan-1-ol (IV-38a)

500 mg (931 μ mol, 1.0 Äq.) des Alkens IV-**31** wurden in 18 mL Cyclohexan gelöst und 248 mg (10% auf Aktivkohle, 233 μ mol, 0.25 Äq.) Palladium wurden zugegeben. Das Reaktionsgemisch wurde für 48 Stunden bei Raumtemperatur unter Wasserstoffatmosphäre (35 bar) gerührt. Die Suspension wurde über Celite filtriert, wobei der Rückstand mehrmals mit Ethylacetat (3 x 10 mL) gewaschen wurde. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand säulenchromatographisch (CH/EA 9:1) gereinigt. Das Produkt IV-**38a** wurde in einer Ausbeute von 72% (279 mg, 666 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.18$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: -9.6 (c = 0.81, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 4.15 - 4.02 (m, 1H), 3.84 (ddd, J = 11.8, 8.1, 4.2 Hz, 1H),

3.69 (dtd, J = 29.7, 9.6, 8.2, 5.3 Hz, 2H), 2.52 (s, 1H), 1.90 (ddt, J = 13.4, 8.9, 4.7 Hz, 1H), 1.74 – 1.68 (m, 1H), 1.67 – 1.60 (m, 2H), 1.43 (tt, J = 14.4, 7.4 Hz, 2H), 1.34 – 1.28 (m, 3H), 1.28 – 1.21 (m, 3H), 0.96 (t, J = 8.4 Hz, 9H), 0.91 – 0.85 (m, 12H), 0.59 (q, J = 7.7 Hz, 6H), 0.16 – -0.07 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 69.8, 69.6, 60.4, 44.2, 38.0, 37.9, 32.2, 26.0, 24.9, 22.8, 18.1, 14.2, 7.1, 5.4, -4.3, -4.5. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3383, 2954, 2930, 2876, 2857, 1462, 1254, 1083, 1058, 1005, 835, 774. HRMS (ESI): berechnet für C₂₂H₅₀NaO₃Si₂⁺ [M+Na⁺]: 441.3191; gefunden 441.3192.

(3R,5R)-3-((tert-Butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)decanal (IV-39)

$C_{22}H_{48}O_3Si_2$

416.8 g/mol

268 mg (640 μ mol, 1.0 Äq.) des Alkohols IV-**38a** wurden in 2.6 mL DMSO unter Argonatmosphäre gelöst. Anschließend wurden 358 mg (1.28 mmol, 2.0 Äq.) IBX hinzugegeben. Das Reaktionsgemisch wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Dichlormethan (5 mL) verdünnt. Die Lösung wurde solange gerührt bis ein weißer Feststoff ausgefallen ist, der dann abfiltriert wurde und mehrmals mit Dichlormethan (2 x 5 mL) gewaschen wurde. Das Filtrat wurde mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung (10 mL) versetzt und die wässrige Phase mit Dichlormethan (3 x 10 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 9:1) gereinigt. Der Aldehyd IV-**39** wurde in einer Ausbeute von 31% (82.0 mg, 197 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.35$ (CH/EA = 9:1) [KMnO₄].

(3R,5R)-3-((tert-Butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)decansäure (IV-24a)

$C_{22}H_{48}O_4Si_2 \\$

432.8 g/mol

Es wurden 82.0 mg (197 μ mol, 1.0 Äq.) des Aldehyds IV-**39** in einer Mischung aus 1.7 mL THF, 1.7 mL *tert*-Butanol und 0.59 mL Wasser gelöst und nacheinander 419 μ L (276 mg, 3.49 mmol, 20 Äq.) 2-Methyl-2-buten, 123 mg (787 μ mol, 4.0 Äq.) Natriumdihydrogenphosphat Dihydrat und 53.4 mg (590 μ mol, 3.0 Äq.) Natriumchlorit zugegeben. Die Lösung wurde für eine Stunde bei Raumtemperatur gerührt und anschließend mit gesättigter, wässriger Natriumhydrogencarbonat-Lösung, gesättigter, wässriger Natriumthiosulfat-Lösung und Ethylacetat (jeweils 5 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Ethylacetat (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2) gereinigt. Die Carbonsäure IV-**24a** wurde in einer Ausbeute von 97% (83.0 mg, 192 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.39$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -3.9 (c = 1.10, CH₂Cl₂). ¹H-NMR (400 MHz, C₆D₆): δ [ppm] = 4.53 – 4.37 (m, 1H), 3.85 – 3.65 (m, 1H), 2.64 – 2.41 (m, 2H), 1.88 (ddt, J = 13.5, 7.3, 5.0 Hz, 1H), 1.78 – 1.67 (m, 1H), 1.56 – 1.43 (m, 2H), 1.42 – 1.20 (m, 6H), 1.11 – 0.98 (m, 18H), 0.94 – 0.88 (m, 3H), 0.66 (q, J = 8.0 Hz, 6H), 0.20 – 0.07 (m, 6H). ¹³C-NMR (101 MHz, C₆D₆): δ [ppm] = 177.0, 69.7, 67.4, 45.2, 42.7, 37.9, 32.5, 26.1, 25.1, 23.1, 18.2, 14.3, 7.3, 5.6, -4.3, -4.6. IR (ATR): \tilde{v} [cm⁻¹] = 2954, 2929, 2857, 1712, 1471, 1254, 1081, 1004, 834, 808, 774. HRMS (ESI): berechnet für C₂₂H₄₈NaO₄Si₂⁺ [M+Na⁺]: 455.2983; gefunden 455.2983.

(3R,5R)-3-((tert-Butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)decansäure (24a)

$C_{22}H_{48}O_4Si_2$

432.8 g/mol

Es wurden 238 mg (568 µmol, 1.0 Äq.) des Alkohols IV-**38a** in einer Mischung aus 3.1 mL Acetonitril, 3.1 mL Tetrachlorkohlenstoff und 4.5 mL einer pH7-Puffer-Lösung gelöst und nacheinander wurden 368 mg (1.70 mmol, 3.0 Äq.) Natriumperiodat und 14.0 mg (57 µmol, 10 mol%) Ruthenium(IV)-oxid Hydrat zugegeben. Die Lösung wurde für drei Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (10 mL) und Diethylether (10 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2) gereinigt. Die Carbonsäure IV-**24a** wurde in einer Ausbeute von 83% (204 mg, 471 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.39$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -3.9 (c = 1.10, CH₂Cl₂). ¹H-NMR (400 MHz, C₆D₆): δ [ppm] = 4.53 – 4.37 (m, 1H), 3.85 – 3.65 (m, 1H), 2.64 – 2.41 (m, 2H), 1.88 (ddt, J = 13.5, 7.3, 5.0 Hz, 1H), 1.78 – 1.67 (m, 1H), 1.56 – 1.43 (m, 2H), 1.42 – 1.20 (m, 6H), 1.11 – 0.98 (m, 18H), 0.94 – 0.88 (m, 3H), 0.66 (q, J = 8.0 Hz, 6H), 0.20 – 0.07 (m, 6H). ¹³C-NMR (101 MHz, C₆D₆): δ [ppm] = 177.0, 69.7, 67.4, 45.2, 42.7, 37.9, 32.5, 26.1, 25.1, 23.1, 18.2, 14.3, 7.3, 5.6, -4.3, -4.6. IR (ATR): \tilde{v} [cm⁻¹] = 2954, 2929, 2857, 1712, 1471, 1254, 1081, 1004, 834, 808, 774. HRMS (ESI): berechnet für C₂₂H₄₈NaO₄Si₂⁺ [M+Na⁺]: 455.2983; gefunden 455.2983.

Methyl-(3*R*,5*R*)-3-((*tert*-butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)-decanoat (IV-40a)

$C_{23}H_{50}O_4Si_2$

446.8 g/mol

47.0 mg (109 μ mol, 1.0 Äq.) der Carbonsäure IV-**24a** wurden in 0.2 mL DMF gelöst und 27.0 mg (195 μ mol, 1.8 Äq.) Kaliumcarbonat und 30.4 μ L (69.4 mg, 488 μ mol, 4.5 Äq.) Methyliodid wurden nacheinander zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit gesättigter, wässriger Ammoniumchlorid-Lösung (5 mL) und Diethylether (5 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 98:2) gereinigt. Der Methylester IV-**40a** wurde in einer Ausbeute von 90% (43.5 mg, 97.4 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.56$ (CH/EA = 95:5). [KMnO₄]. [α]²⁰_D: -10.5 (c = 1.14, CH₂Cl₂). ¹H-NMR (600 MHz, C₆D₆): δ [ppm] = 4.47 (p, J = 6.4 Hz, 1H), 3.82 (dp, J = 48.9, 5.9 Hz, 1H), 3.38 (s, 3H), 2.61 – 2.41 (m, 2H), 1.98 – 1.85 (m, 1H), 1.80 – 1.70 (m, 1H), 1.64 – 1.48 (m, 2H), 1.46 – 1.35 (m, 2H), 1.35 – 1.21 (m, 4H), 1.08 – 0.97 (m, 18H), 0.91 (t, J = 7.1 Hz, 3H), 0.68 (q, J = 7.9 Hz, 6H), 0.36 – 0.13 (m, 6H). ¹³C-NMR (151 MHz, C₆D₆): δ [ppm] = 171.6, 69.8, 67.7, 51.0, 45.5, 43.0, 37.9, 32.5, 26.1, 25.2, 23.1, 18.2, 14.3, 7.3, 5.7, -4.3, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2929, 2857, 1742, 1254, 1165, 1081, 1004, 835, 774, 742. **HRMS** (ESI): berechnet für C₂₃H₅₀NaO₄Si₂⁺ [M+Na⁺]: 469.3140; gefunden 469.3141.

Methyl-(3*R*,5*R*)-3-((*tert*-butyldimethylsilyl)oxy)-5-hydroxydecanoat (IV-29a)

$C_{17}H_{36}O_4Si$

332.6 g/mol

Zunächst wurden 80.1 µL (70% HF, 79.2 mg, 559 µmol, 5.0 Äq.) eines HF-Pyridin-Komplexes in einem Gemisch aus 0.91 mL Pyridin und 0.18 mL Methanol bei 0 °C in einem Teflon-Vial vorgelegt. In einem weiteren Teflon-Vial wurden 50 mg (112 µmol, 1.0 Äq.) des Triethylsilylethers IV-**40a** in 0.98 mL THF gelöst und die Lösung auf 0 °C gekühlt. Die vorbreitete HF-Pyridin-Lösung wurde anschließend bei 0 °C mithilfe einer Spritze in die andere THF-Lösung überführt und das Reaktionsgemisch für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von MeOTMS (5 mL) bei 0 °C beendet und mit Toluol (5 mL) verdünnt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand erneut in Toluol (5 mL) gelöst. Die Prozedur wurde dreimal wiederholt, um Pyridin vollständig zu entfernen. Anschließend wurde der Rückstand säulenchromatographisch (CH:EA 9:1) gereinigt. Der Alkohol IV-**29a** wurde in einer Ausbeute von 67% (25.0 mg, 75.2 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -3.2 (c = 0.37, CH₂Cl₂). ¹H-NMR (600 MHz, C₆D₆): δ [ppm] = 4.46 (p, J = 6.2 Hz, 1H), 3.65 – 3.54 (m, 1H), 3.37 (s, 3H), 2.58 – 2.42 (m, 2H), 1.75 (s, 1H), 1.70 (ddd, J = 13.9, 9.1, 6.1 Hz, 1H), 1.63 (ddd, J = 14.0, 6.5, 2.9 Hz, 1H), 1.45 – 1.16 (m, 8H), 0.96 (s, 9H), 0.89 (t, J = 7.1 Hz, 3H), 0.14 – 0.09 (m, 6H). ¹³C-NMR (151 MHz, C₆D₆): δ [ppm] = 171.7, 69.4, 68.9, 51.1, 45.2, 42.8, 38.5, 32.3, 26.0, 25.6, 23.1, 18.2, 14.3, -4.5, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 3453, 2953, 2928, 2856, 1740, 1462, 1437, 1255, 1081, 1006, 836, 810. 776. **HRMS** (ESI): berechnet für C₁₇H₃₆NaO₄Si⁺ [M+Na⁺]: 355.2275; gefunden 355.2379.

C39H82O7Si3

747.3 g/mol

Es wurden 20 mg (46 μ mol, 1.0 Äq.) der Carbonsäure IV-**24a** in 1.5 mL trockenem Toluol gelöst und 7.7 μ L (5.6 mg, 55 μ mol, 1.2 Äq.) Triethylamin und 8.1 μ L (12 mg, 51 μ mol, 1.1 Äq.) 2,4,6-Trichlorbenzoylchlorid wurden nacheinander zugegeben. Das Reaktionsgemisch wurde für 30 Minuten bei Raumtemperatur gerührt und anschließend wurden 28.4 mg (55.5 μ mol, 1.2 Äq.) des Alkohols IV-**29a**, gelöst in 0.5 mL trockenem Toluol, zugegeben gefolgt von 7.9 mg (65 μ mol, 1.4 Äq.) DMAP. Die Lösung wurde für eine Stunde bei Raumtemperatur gerührt und das Lösungsmittel anschließend am Rotationsverdampfer *in vacuo* entfernt. Das Rohprodukt wurde säulenchromatographisch (CH/EA 99:1) gereinigt und das Produkt IV-**41a** in einer Ausbeute von 93% (32 mg, 43 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.61$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: -5.0 (c = 1.03, CH₂Cl₂). ¹H-NMR (400 MHz, C₆D₆): δ [ppm] = 5.21 (ddd, J = 12.4, 7.6, 5.0 Hz, 1H), 4.48 (h, J = 6.1 Hz, 1H), 4.40 (tt, J = 7.2, 5.0 Hz, 1H), 3.92 (dt, J = 27.9, 5.8 Hz, 1H), 3.39 (s, 3H), 2.74 – 2.45 (m, 4H), 2.07 – 1.76 (m, 4H), 1.69 – 1.42 (m, 6H), 1.37 – 1.20 (m, 10H), 1.08 (t, J = 7.9 Hz, 6H), 1.04 – 0.98 (m, 27H), 0.70 (q, J = 7.8 Hz, 6H), 0.25 – 0.01 (m, 12H). ¹³C-NMR (101 MHz, C₆D₆): δ [ppm] = 171.4, 170.8, 71.3, 69.8, 67.3, 67.2, 51.1, 45.4, 43.1, 42.4, 42.3, 37.7, 35.1, 32.6, 32.1, 26.2, 26.0, 25.4, 25.2, 23.1, 23.0, 18.3, 18.2, 14.3, 14.3, 7.3, 5.7, -4.2, -4.4, -4.4, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2928, 2856, 1737, 1462, 1253, 1167, 1080, 1004, 835, 775. **HRMS** (ESI): berechnet für C₃₉H₈₂NaO₇Si₃⁺[M+Na⁺]: 769.5261; gefunden 769.5270.

$C_{21}H_{40}O_7$

404.5 g/mol

Zunächst wurden 123 µL (70% HF, 121 mg, 856 µmol, 20.0 Äq.) eines HF-Pyridin-Komplexes in einem Gemisch aus 375 µL Pyridin und 61 µL Methanol bei 0 °C in einem Teflon-Vial vorgelegt. In einem weiteren Teflon-Vial wurden 23 mg (43 µmol, 1.0 Äq.) des Silvlethers IV-41a in 375 µL THF gelöst und die Lösung auf 0 °C gekühlt. Die vorbreitete HF-Pyridin-Lösung wurde anschließend bei 0 °C mithilfe einer Spritze in die andere THF-Lösung überführt und das Reaktionsgemisch für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von MeOTMS (5 mL) bei 0 °C beendet und mit Toluol (5 mL) verdünnt. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand erneut in Toluol (5 mL) gelöst. Die Prozedur wurde dreimal wiederholt, um Pyridin vollständig zu entfernen. Anschließend säulenchromatographisch wurde der Rückstand $(DCM \rightarrow$ DCM/MeOH = 98:2 \rightarrow DCM/MeOH = 95:5) gereinigt. (-)-Aureosurfactin (IV-4a) wurde in einer Ausbeute von 79% (13.6 mg, 33.6 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.19$ (CH₂Cl₂/MeOH = 98:2) [KMnO₄]. $[\alpha]_D^{20}$: -19.7 (c = 1.03, CH₂Cl₂). ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 5.14 – 5.06 (m, 1H), 4.27 (tt, J = 8.4, 4.3 Hz, 1H), 4.19 – 4.01 (m, 1H), 3.92 – 3.81 (m, 1H), 3.71 (s, 3H), 2.53 (dd, J = 16.5, 3.5 Hz, 1H), 2.48 – 2.39 (m, 3H), 1.86 (dt, J = 14.6, 8.4 Hz, 1H), 1.68 – 1.61 (m, 1H), 1.61 – 1.53 (m, 4H), 1.51 – 1.35 (m, 3H), 1.35 – 1.21 (m, 11H), 0.92 – 0.77 (m, 6H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] = 173.2, 172.4, 73.0, 72.4, 69.8, 66.5, 52.0, 42.9, 42.6, 41.3, 40.9, 37.9, 34.7, 32.0, 31.7, 25.2, 25.0, 22.8, 22.6, 14.2, 14.1. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3410, 2954, 2928, 2858, 1727, 1437, 1264, 1193, 1163, 1071. **LRMS** (ESI): m/z (%) 405.3 (100) [M+H⁺]. **HRMS** (ESI): berechnet für C₂₁H₄₀NaO₇⁺ [M+Na⁺]: 427.2666; gefunden 427.2665.

2.4.2 Synthese von (3*S*,5*S*,3*′S*,5*′S*)-Aureosurfactin

(S)-3-Hydroxydec-1-en-5-on (IV-42)

$C_{10}H_{18}O_2 \\$

170.3 g/mol

1.72 mL (1.24 g, 12.3 mmol, 2.1 Äq.) Diisopropylamin wurden unter Argonatmosphäre in 58 mL trockenem THF vorgelegt und bei -78 °C wurden 4.91 mL (2.5 M in Hexan, 3.40 g, 12.3 mmol, 2.1 Äq.) n-Butyllithium zugegeben. Anschließend wurde die Kühlung für 15 Minuten entfernt und die Lösung dann wieder auf -78 °C gekühlt. Es wurden 2.00 g (5.84 mmol, 1.0 Äg.) des Phosphanoxids I-62a, gelöst in 19 mL trockenem THF, zugegeben und die dunkelrote Lösung wurde für eine Stunde bei -78 °C gerührt. 1.86 mL (1.51 g, 17.5 mmol, 3.0 Äq.) Valeraldehyd (IV-28) wurden hinzugefügt und die Reaktion wurde innerhalb einer Stunde auf Raumtemperatur erwärmt, wobei das Gemisch sich gelb färbte. Zur Reaktionsmischung wurden 690 mg (5.84 mmol, 1.0 Äq.) Kalium-tertbutanolat zugegeben und die Lösung für weitere 60 Minuten bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Ammoniumchlorid-Lösung (20 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit Salzsäure (2 M, 2 x 20 mL) gewaschen. Die wässrige Phase wurde erneut mit Dichlormethan (3 x 20 mL) extrahiert und die vereinten organischen Phasen mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch (CH/EA 6:4) gereinigt. Das Produkt IV-42 wurde in einer Ausbeute von 86% (850 mg, 4.99 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.51$ (CH/EA = 7:3) [KMnO₄]. $[\alpha]_D^{20}$: -19.0 (c = 1.13, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 5.85 (ddd, J = 17.1, 10.5, 5.5 Hz, 1H), 5.28 (dt, J = 17.2, 1.5 Hz, 1H), 5.12 (dt, J = 10.5, 1.4 Hz, 1H), 4.56 (dddd, J = 7.9, 5.7, 4.2, 1.4 Hz, 1H), 2.78 – 2.75 (m, 1H), 2.65 – 2.60 (m, 2H), 2.42 (t, J = 7.5 Hz, 2H), 1.57 (p, J = 7.4 Hz, 2H), 1.34 – 1.20 (m, 4H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm]

= 211.6, 139.2, 115.1, 68.8, 48.8, 43.8, 31.4, 23.4, 22.5, 14.0. **IR** (ATR): \tilde{v} [cm⁻¹] = 3417, 2957, 2931, 2872, 1708, 1465, 1406, 1377, 1127, 1073, 1028, 992, 922. **HRMS** (ESI): berechnet für C₁₀H₁₈NaO₂⁺ [M+Na⁺]: 193.1199; gefunden 193.1199.

(3S,5S)-Dec-1-ene-3,5-diol (IV-27)

 $C_{10}H_{20}O_2$

172.3 g/mol

3.20 g (18.8 mmol, 1.0 Åq.) des β-Hydroxyketons IV-**42** wurden in einem Gemisch aus 150 mL THF und 38 mL Methanol gelöst. Die Lösung wurde auf -78 °C gekühlt und 5.64 mL (4 M in THF, 4.58 g, 22.6 mmol, 1.2 Äq.) einer Diethylmethoxyboran-Lösung wurden zugegeben. Nachdem das Gemisch für 20 Minuten gerührt wurde, erfolgte die Zugabe von 782 mg (20.7 mmol, 1.1 Äq.) Natriumborhydrid und die Reaktion wurde für zwei Stunden bei -78 °C gerührt. Nach Zugabe einer wässrigen Natriumhydroxid-Lösung (2 M, 58 mL) und einer Wasserstoffperoxid-Lösung (35% in Wasser, 29 mL) wurde das Reaktionsgemisch für weitere 45 Minuten bei Raumtemperatur gerührt. Es wurde Wasser (50 mL) zugegeben und anschließend mit Ethylacetat (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 6:4) gereinigt. Das Diol IV-**27** wurde in einer Ausbeute von 81% (6.25 g, 23.5 mmol, *d.r.* >99:1) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.23$ (CH/EA = 4:6) [KMnO₄]. $[\alpha]_D^{20}$: +5.7 (c = 1.02, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 5.88 (ddd, J = 16.8, 10.4, 5.9 Hz, 1H), 5.25 (d, J = 17.2 Hz, 1H), 5.10 (d, J = 10.4 Hz, 1H), 4.37 (ddd, J = 9.7, 5.4, 3.1 Hz, 1H), 3.88 (dddd, J = 9.8, 7.3, 4.9, 2.3 Hz, 1H), 2.63 (s, 2H), 1.66 (dt, J = 14.5, 2.7 Hz, 1H), 1.58 (dt, J = 14.5, 9.9 Hz, 1H), 1.53 – 1.35 (m, 3H), 1.37 – 1.23 (m, 5H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 140.9, 114.5, 74.0, 72.7, 43.2, 38.3, 32.0, 25.2, 22.8, 14.2. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3335, 2954, 2929, 2858, 1457, 1422, 1314, 1135, 1068, 989, 921, 850. **HRMS** (ESI): berechnet für $C_{10}H_{20}NaO_2^+$ [M+Na⁺]: 195.1356; gefunden 195.1359.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[204]

(3S,5S)-3-((tert-Butyldimethylsilyl)oxy)dec-1-en-5-ol (IV-43)

 $C_{16}H_{34}O_2Si$

286.5 g/mol

2.50 g (14.5 mmol, 1.0 Äq.) des Diols IV-27 wurden in 101 mL trockenem THF gelöst und 7.56 mL (2.5 M in Hexan, 5.24 g, 14.5 mmol, 2.1 Äq.) *n*-Butyllithium wurden bei -78 °C langsam zugetropft. Die Lösung wurde innerhalb einer Stunde auf Raumtemperatur erwärmt und anschließend wurden 2.62 g (17.4 mmol, 1.2 Äq.) *tert*-Butyldimethylsilylchlorid zugegeben. Nachdem die Lösung für weitere 30 Minuten bei Raumtemperatur gerührt wurde, erfolgte die Zugabe von 49 mg (0.73 mmol, 5.0 mol%) Imidazol. Das Reaktionsgemisch wurde für weitere 12 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von gesättigter, wässriger Natriumhydrogencarbonat-Lösung (50 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 30 mL) extrahiert. Die vereinten, organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA 8:2) gereinigt und der Silylether IV-**43** in einer Ausbeute von 67% (2.80 g, 9.77 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.53$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: -14.2 (c = 1.05, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 5.82 (ddd, J = 17.2, 10.4, 6.8 Hz, 1H), 5.16 (d, J = 17.2 Hz, 1H), 5.05 (d, J = 10.7 Hz, 1H), 4.35 (td, J = 7.7, 5.0 Hz, 1H), 3.79 (dddd, J = 9.3, 7.0, 4.6, 2.4 Hz, 1H), 1.68 – 1.55 (m, 2H), 1.51 – 1.44 (m, 1H), 1.43 – 1.36 (m, 2H), 1.35 – 1.22 (m, 5H), 0.96 – 0.70 (m, 12H), 0.20 – -0.11 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 141.7, 114.5, 75.2, 71.0, 44.6, 37.8, 32.1, 26.0, 25.2, 22.8, 18.2, 14.2, -3.7, -4.7.

IR (ATR): \tilde{v} [cm⁻¹] = 3454, 2955, 2929, 2857, 1463, 1252, 1071, 921, 834, 774. **HRMS** (ESI): berechnet für C₁₆H₃₄NaO₂Si⁺ [M+Na⁺]: 309.2220; gefunden 309.2227.

(5*S*,7*S*)-9,9-Diethyl-2,2,3,3-tetramethyl-7-pentyl-5-vinyl-4,8-dioxa-3,9disilaundecan (IV-26)

C₂₂H₄₈O₂Si₂ 400.8 g/mol

1.63 g (5.69 mmol, 1.0 Äq.) des Alkohols IV-**43** wurden in 38 mL DMF vorgelegt und 3.10 g, 45.5 mmol, 8.0 Äq.) Imidazol und 3.82 mL (3.43 g, 22.8 mmol, 4.0 Äq.) Chlortriethylsilan nacheinander zugegeben. Die Lösung wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (20 mL) und Dichlormethan (20 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase wurde mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer unter vermindertem Druck entfernt. Der Rückstand wurde säulenchromatographisch (CH/EA 95:5) gereinigt und der Silylether IV-**26** in einer Ausbeute von 94% (2.15 g, 5.36 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.58$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: -1.0 (c = 1.32, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 5.80 (ddd, J = 16.9, 10.3, 6.4 Hz, 1H), 5.14 (ddd, J = 17.2, 1.8, 1.2 Hz, 1H), 5.03 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 4.24 – 4.14 (m, 1H), 3.85 – 3.69 (m, 1H), 1.71 (ddd, J = 13.5, 7.1, 6.3 Hz, 1H), 1.61 – 1.44 (m, 2H), 1.44 – 1.19 (m, 7H), 1.02 – 0.80 (m, 21H), 0.59 (q, J = 7.6 Hz, 6H), 0.09 – -0.02 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 141.9, 114.0, 71.6, 69.5, 46.2, 37.4, 32.2, 26.0, 25.0, 22.8, 18.3, 14.2, 7.1, 5.4, -4.1, -4.7. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2954, 2929, 2876, 2857, 1461, 1251, 1079, 1004, 922, 865, 834, 774, 723. **HRMS** (ESI): berechnet für C₂₂H₄₈NaO₅Si₂⁺ [M+Na⁺]: 423.3085; gefunden 423.2081.

(3R,5S)-3-((tert-Butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)decan-1-ol (IV-39b)

 $C_{22}H_{50}O_3Si_2$

418.8 g/mol

2.10 g (5.24 mmol, 1.0 Äq.) des Silylethers IV-**26** wurden in 52 mL trockenem THF gelöst und 20.9 mL (0.5 M in THF, 18.7 g, 10.5 mmol, 2.0 Äq.) einer 9-BBN-Lösung wurden bei 0 °C hinzugegeben. Die Lösung wurde zunächst für 15 Minuten bei 0 °C und anschließend für 18 Stunden bei Raumtemperatur gerührt. Nach Zugabe einer wässrigen Natriumhydroxid-Lösung (3 M, 3.5 mL) und einer Wasserstoffperoxid-Lösung (35% in Wasser, 3.5 mL) bei 0 °C wurde die Reaktionsmischung für weitere vier Stunden bei Raumtemperatur gerührt. Es wurde Wasser (20 mL) zugegeben, die Phasen getrennt und die wässrige Phase anschließend mit Diethylether (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 6:4) gereinigt. Das Diol IV-**39b** wurde in einer Ausbeute von 80% (1.75 g, 4.18 mmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.18$ (CH/EA = 9:1) [KMnO₄]. $[\alpha]_D^{20}$: +14.8 (c = 1.30, CH₂Cl₂). ¹H-NMR (600 MHz, CDCl₃): δ [ppm] = 4.12 – 4.03 (m, 1H), 3.87 – 3.80 (m, 1H), 3.76 – 3.61 (m, 2H), 2.51 (s, 1H), 1.99 – 1.83 (m, 1H), 1.76 – 1.55 (m, 4H), 1.50 – 1.39 (m, 2H), 1.32 – 1.14 (m, 5H), 0.99 – 0.85 (m, 21H), 0.59 (q, J = 7.8 Hz, 6H), 0.14 – 0.02 (m, 6H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] = 69.8, 69.6, 60.4, 44.2, 38.0, 37.9, 32.2, 26.0, 24.9, 22.8, 18.1, 14.2, 7.1, 5.4, -4.3, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3433, 2953, 2930, 2867, 2857, 1462, 1253, 1080, 1056, 1004, 835, 773, 740, 724. **HRMS** (ESI): berechnet für C₂₂H₅₀NaO₃Si₂⁺ [M+Na⁺]: 441.3191; gefunden 441.3195.

(3S,5S)-3-((tert-Butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)decansäure (IV-24b)

 $C_{22}H_{48}O_4Si_2$

432.8 g/mol

Es wurden 500 mg (1.19 mmol, 1.0 Äq.) des Alkohols IV-**39b** in einer Mischung aus 6.6 mL Acetonitril, 6.6 mL Tetrachlorkohlenstoff und 9.5 mL einer pH7-Puffer-Lösung gelöst und nacheinander wurden 774 mg (3.58 mmol, 3.0 Äq.) Natriumperiodat und 30.0 mg (120 µmol, 10 mol%) Ruthenium(IV)-oxid Hydrat zugegeben. Die Lösung wurde für drei Stunden bei Raumtemperatur gerührt und anschließend mit Wasser (10 mL) und Diethylether (10 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 8:2) gereinigt. Das Diol IV-**24b** wurde in einer Ausbeute von 70% (363 mg, 839 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.39$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: +12.8 (c = 1.32, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 4.25 (p, J = 6.2 Hz, 1H), 3.76 (p, J = 6.0 Hz, 1H), 2.60 (dd, J = 15.0, 5.1 Hz, 1H), 2.47 (dd, J = 15.0, 6.6 Hz, 1H), 1.76 – 1.60 (m, 2H), 1.51 – 1.38 (m, 2H), 1.35 – 1.21 (m, 6H), 1.00 – 0.84 (m, 21H), 0.60 (q, J = 8.0 Hz, 6H), 0.12 – -0.09 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ [ppm] = 176.8, 69.5, 67.1, 44.6, 42.4, 37.6, 32.2, 25.9, 24.9, 22.8, 18.0, 14.1, 7.1, 5.3, -4.4, -4.7. IR (ATR): \tilde{v} [cm⁻¹] = 2954, 2930, 2876, 1711, 1462, 1252, 1082, 1004, 835, 775. HRMS (ESI): berechnet für C₂₂H₄₈NaO₄Si₂⁺ [M+Na⁺]: 455.2983; gefunden 455.2982.

Methyl-(3*S*,5*S*)-3-((*tert*-butyldimethylsilyl)oxy)-5-((triethylsilyl)oxy)-decanoat (IV-40b)

$C_{23}H_{50}O_4Si_2$

446.8 g/mol

195 mg (450 μ mol, 1.0 Äq.) der Carbonsäure IV-**24b** wurden in 0.9 mL DMF gelöst und 112 mg (811 μ mol, 1.8 Äq.) Kaliumcarbonat und 126 μ L (288 mg, 2.03 mmol, 4.5 Äq.) Methyliodid wurden nacheinander zugegeben. Die Suspension wurde für 18 Stunden bei Raumtemperatur gerührt und anschließend mit gesättigter, wässriger Ammoniumchlorid-Lösung (5 mL) und Diethylether (5 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit gesättigter, wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und das Rohprodukt säulenchromatographisch (CH/EA 98:2) gereinigt. Das Diol IV-**40b** wurde in einer Ausbeute von 86% (174 mg, 389 μ mol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.56$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +12.5 (c = 1.08, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 4.23 (p, J = 6.3 Hz, 1H), 3.75 (p, J = 6.1 Hz, 1H), 3.66 (d, J = 1.2 Hz, 3H), 2.53 (dd, J = 14.6, 4.9 Hz, 1H), 2.43 (dd, J = 14.6, 7.4 Hz, 1H), 1.69 (dt, J = 13.0, 6.3 Hz, 1H), 1.61 (dt, J = 13.4, 6.2 Hz, 1H), 1.48 (dq, J = 15.6, 5.2 Hz, 1H), 1.44 – 1.38 (m, 1H), 1.37 – 1.22 (m, 6H), 1.01 – 0.86 (m, 21H), 0.60 (q, J = 7.9, 7.4 Hz, 6H), 0.08 – -0.03 (m, 6H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 172.2, 69.5, 67.2, 51.5, 45.2, 43.0, 37.4, 32.2, 25.9, 25.0, 22.8, 18.1, 14.2, 7.1, 5.3, -4.3, -4.6. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2953, 2930, 2876, 2857, 1742, 1461, 1436, 1254, 1193, 1165, 1081, 1004, 835, 775, 741. **HRMS** (ESI): berechnet für C₂₃H₅₀NaO₄Si₂⁺ [M+Na⁺]: 469.3140; gefunden 469.3140.

Methyl-(35,55)-3-((tert-butyldimethylsilyl)oxy)-5-hydroxydecanoat (IV-29b)

$C_{17}H_{36}O_4Si$

332.6 g/mol

Zunächst wurden 80.1 µL (70% HF, 79.2 mg, 559 µmol, 5.0 Äq.) eines HF-Pyridin-Komplexes in einem Gemisch aus 0.91 mL Pyridin und 0.18 mL Methanol bei 0 °C in einem Teflon-Vial vorgelegt. In einem weiteren Teflon-Vial wurden 50 mg (112 µmol, 1.0 Äq.) des Triethylsilylethers IV-**40b** in 0.98 mL THF gelöst und die Lösung auf 0 °C gekühlt. Die vorbreitete HF-Pyridin-Lösung wurde anschließend bei 0 °C mithilfe einer Spritze in die andere THF-Lösung überführt und das Reaktionsgemisch für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von MeOTMS (5 mL) bei 0 °C beendet und mit Toluol (5 mL) verdünnt. Das Lösungsmittel wurde am Rotationsverdampfer *in vacuo* entfernt und der Rückstand erneut in Toluol (5 mL) gelöst. Die Prozedur wurde dreimal wiederholt, um Pyridin vollständig zu entfernen. Anschließend wurde der Rückstand säulenchromatographisch (CH:EA 9:1) gereinigt. Der Alkohol IV-**29b** wurde in einer Ausbeute von 78% (29.0 mg, 87.2 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.45$ (CH/EA = 8:2) [KMnO₄]. $[\alpha]_D^{20}$: +3.2 (c = 0.47, CH₂Cl₂). ¹H-NMR (600 MHz, C₆D₆): δ [ppm] = 4.46 (p, J = 6.2 Hz, 1H), 3.60 (dt, J = 8.6, 4.3 Hz, 1H), 3.37 (s, 3H), 2.59 – 2.43 (m, 2H), 1.83 (s, 1H), 1.70 (td, J = 9.0, 8.6, 4.5 Hz, 1H), 1.63 (ddd, J = 14.1, 6.6, 2.8 Hz, 1H), 1.50 – 1.14 (m, 8H), 1.01 – 0.75 (m, 12H), 0.17 – 0.02 (m, 6H). ¹³C-NMR (151 MHz, C₆D₆): δ [ppm] = 171.7, 69.3, 68.9, 51.1, 45.2, 42.8, 38.5, 32.3, 26.0, 25.6, 23.1, 18.2, 14.3, -4.5, -4.5. **IR** (ATR): \tilde{v} [cm⁻¹] = 3445, 2954, 2929, 2857, 1741, 1462, 1255, 1165, 1082, 836, 810, 776. **HRMS** (ESI): berechnet für C₁₇H₃₆NaO₄Si⁺ [M+Na⁺]: 355.2275; gefunden 355.2273.

C₃₉H₈₂O₇Si₃

747.3 g/mol

Es wurden 55.0 mg (127 µmol, 1.0 Äq.) der Carbonsäure IV-**24b** in 4.2 mL trockenem Toluol gelöst und 21.1 µL (15.4 mg, 153 µmol, 1.2 Äq.) Triethylamin und 22.5 µL (35.2 mg, 140 µmol, 1.1 Äq.) 2,4,6-Trichlorbenzoylchlorid wurden nacheinander zugegeben. Das Reaktionsgemisch wurde für 30 Minuten bei Raumtemperatur gerührt und anschließend wurden 50.7 mg (153 µmol, 1.2 Äq.) des Alkohols IV-**29b**, gelöst in 1.4 mL trockenem Toluol, zugegeben gefolgt von 21.7 mg (178 µmol, 1.4 Äq.) DMAP. Die Lösung wurde für eine Stunde bei Raumtemperatur gerührt und das Lösungsmittel anschließend am Rotationsverdampfer *in vacuo* entfernt. Das Rohprodukt wurde säulenchromatographisch (CH/EA 99:1) gereinigt und das Produkt IV-**41b** in einer Ausbeute von 92% (87.0 mg, 116 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.61$ (CH/EA = 95:5) [KMnO₄]. $[\alpha]_D^{20}$: +5.7 (c = 1.21, CH₂Cl₂). ¹**H-NMR** (600 MHz, C₆D₆): δ [ppm] = 5.22 (td, J = 7.9, 3.9 Hz, 1H), 4.50 (p, J = 6.1 Hz, 1H), 4.40 (td, J = 7.1, 3.6 Hz, 1H), 3.97 (p, J = 6.0 Hz, 1H), 3.39 (s, 3H), 2.72 – 2.62 (m, 2H), 2.56 (qd, J = 15.0, 6.0 Hz, 2H), 2.03 – 1.87 (m, 3H), 1.82 (ddd, J = 14.0, 7.4, 4.8 Hz, 1H), 1.70 – 1.18 (m, 16H), 1.08 (t, J = 8.0 Hz, 6H), 1.04 – 0.88 (m, 27H), 0.70 (q, J = 8.0 Hz, 6H), 0.26 – 0.01 (m, 12H). ¹³**C-NMR** (151 MHz, C₆D₆): δ [ppm] = 171.4, 170.8, 71.3, 69.8, 67.3, 67.2, 51.1, 45.4, 43.2, 42.5, 42.3, 37.8, 35.1, 32.6, 32.1, 26.2, 26.0, 25.4, 25.2, 23.1, 23.0, 18.3, 18.2, 14.3, 14.2, 7.3, 5.7, -4.2, -4.4, -4.4, -4.5. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2954, 2929, 2857, 1738, 1462, 1254, 1167, 1081, 1005, 957, 835, 809, 775. **HRMS** (ESI): berechnet für C₃₉H₈₂NaO₇Si₃⁺ [M+Na⁺]: 769.5261; gefunden 769.5261.

(3*S*,5*S*)-3-Hydroxy-1-methoxy-1-oxodecan-5-yl (3*S*,5*S*)-3,5-dihydroxydecanoat (IV 4b)

 $C_{21}H_{40}O_7$

404.5 g/mol

Zunächst wurden 280 µL (70% HF, 277 mg, 1.95 mmol, 20.0 Äq.) eines HF-Pyridin-Komplexes in einem Gemisch aus 0.83 mL Pyridin und 0.17 mL Methanol bei 0 °C in einem Teflon-Vial vorgelegt. In einem weiteren Teflon-Vial wurden 73 mg (97.7 µmol, 1.0 Äq.) des Silylethers IV-41b in 0.85 mL THF gelöst und die Lösung auf 0 °C gekühlt. Die vorbreitete HF-Pyridin-Lösung wurde anschließend bei 0 °C mithilfe einer Spritze in die andere THF-Lösung überführt und das Reaktionsgemisch für 18 Stunden bei Raumtemperatur gerührt. Die Reaktion wurde durch die Zugabe von MeOTMS (5 mL) bei 0 °C beendet und mit Toluol (5 mL) verdünnt. Das Lösungsmittel wurde am Rotationsverdampfer in vacuo entfernt und der Rückstand erneut in Toluol (5 mL) gelöst. Die Prozedur wurde dreimal wiederholt, um Pyridin vollständig zu entfernen. Anschließend wurde der Rückstand säulenchromatographisch $(DCM \rightarrow$ DCM/MeOH = 98:2 \rightarrow DCM/MeOH = 95:5) gereinigt. (+)-Aureosurfactin (IV-4b) wurde in einer Ausbeute von 99% (39.0 mg, 96.4 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.19$ (DCM/MeOH = 98:2) [KMnO4]. $[\alpha]_D^{20}$: +20.6 (c = 0.70, CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 5.15 – 4.99 (m, 1H), 4.27 (tt, J = 8.4, 4.3 Hz, 1H), 4.19 – 4.03 (m, 1H), 3.94 – 3.82 (m, 1H), 3.71 (s, 3H), 2.53 (dd, J = 16.5, 3.5 Hz, 1H), 2.47 – 2.38 (m, 3H), 1.85 (dt, J = 14.6, 8.4 Hz, 1H), 1.70 – 1.65 (m, 1H), 1.64 – 1.54 (m, 4H), 1.51 – 1.38 (m, 3H), 1.36 – 1.18 (m, 11H), 0.96 – 0.79 (m, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] = 173.2, 172.4, 73.0, 72.4, 69.8, 66.5, 52.0, 42.9, 42.6, 41.3, 40.9, 37.9, 34.7, 32.0, 31.7, 25.2, 25.0, 22.8, 22.6, 14.2, 14.1. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3403, 2954, 2928, 2858, 1727, 1437, 1263, 1163, 1130, 1070. HRMS (ESI): berechnet für C₂₁H₄₀NaO₇⁺ [M+Na⁺]: 427.2666; gefunden 427.2666.

(S)-6-Pentyl-5,6-dihydro-2H-pyran-2-on (IV-44)

 $C_{10}H_{16}O_2$

168.1 g/mol

10 mg (25 µmol, 1.0 Äq.) des Naturstoffs IV-4b wurden in 0.5 mL Toluol gelöst und 0.6 Äq.) Dibutylzinnoxid 3.7 mg (15 µmol, wurden hinzugegeben. Das Reaktionsgemisch wurde für eine Stunde unter Rückfluss gerührt und das Lösungsmittel Rotationsverdampfer entfernt. Der in vacuo Rückstand wurde am säulenchromatographisch (DCM/MeOH = 98:2) gereinigt. Das Produkt IV-44 wurde in einer Ausbeute von 42% (3.5 mg, 10 µmol) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.69$ (DCM/MeOH = 98:2) [KMnO₄]. $[\alpha]_D^{20}$: +78.6 (c = 0.35, CH₂Cl₂). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] = 6.87 (ddd, J = 9.2, 5.4, 3.0 Hz, 1H), 6.02 (dt, J = 9.7, 1.8 Hz, 1H), 4.42 (ddt, J = 10.3, 7.2, 5.3 Hz, 1H), 2.38 – 2.26 (m, 2H), 1.86 – 1.75 (m, 1H), 1.69 – 1.60 (m, 1H), 1.59 – 1.48 (m, 2H), 1.45 – 1.37 (m, 1H), 1.36 – 1.28 (m, 3H), 0.90 (t, J = 6.8 Hz, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] = 164.7, 145.1, 121.7, 78.2, 35.0, 31.7, 29.6, 24.7, 22.6, 14.1. **IR** (ATR): \tilde{v} [cm⁻¹] = 2953, 2927, 2858, 1720, 1463, 1387, 1520, 1118, 1058, 1039, 945, 815. **HRMS** (ESI): berechnet für C₁₀H₁₆NaO₂⁺ [M+Na⁺]: 191.1043; gefunden 191.1041.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[205]

VI) Anhang

VI) Anhang

1. Tabellenverzeichnis

Tabelle VI-1: Vergleich der NMR-Daten des synthetisierten Alkens II-**20** mit dem von *Smith et al.*^[121] publizierten Alken II-**20**.

Vergleichstabelle der ¹H-NMR-Daten (δ in ppm, *J* in Hz):

δΗ II- 20 (<i>Smith et al.</i>)	δH II-20 (synthetisiert)	Δ
(500 MHz, CDCl ₃) ^[121]	(400 MHz, CDCl ₃)	
5.79, ddd (16.9,10.9, 5.5), 1H	5.80, ddt (16.9, 10.2, 6.6), 1H	0.01
4.99, d (16.9), 1H	5.00, ddd (17.1, 1.7), 1H	0.01
4.94, d (10.9), 1H	4.95, ddd (10.2, 2.3, 1.3), 1H	0.01
3.85 – 3.68, m, 5H	3.83 – 3.68, m, 5H	0.02
3.62, bs, 4H	3.67 – 3.58, m, 4H	-
3.24, d (6.7), 1H	3.24, d (6.7), 1H	-
2.04, d (6.6), 2H	2.10 – 1.87, m, 2H	-
1.74 – 1.18, m, 47H	1.76 – 1.13, m, 46H	0.02
0.97, t, (8.0), 9H	0.97, t (7.9), 9H	-
0.88, s, 81H	0.91 – 0.86, m, 81H	-
0.85, s, 9H	0.85, s, 9H	-
0.61, q (8.0), 6H	0.62, q (8.0), 6H	0.01
0.14 – -0.06, m, 54H	0.16 – -0.08, m, 54H	0.02

Referenziert auf CDCl3 bei 7.26 ppm.

δC II- 20 (Smith et al.)	δC II- 20 (synthetisiert)	Δ
(125 MHz, CDCl ₃) ^[121]	(101 MHz, CDCl ₃)	
139.1	139.1	-
114.6	114.6	-
81.4	81.4	-
72.4 (4C)	72.6 (3C) (überlappend)	0.2
	72.5	0.1
70.2	70.3	0.1
69.8 (2C)	69.8 (2C)	-
69.6	69.7	0.1
67.8	67.9	0.1
46.6	46.6	-
46.4	46.4	-
45.0	45.0	-
38.3	38.3	-
38.0	38.0	-
37.9 (2C)	37.9 (2C)	-
37.8	37.8	-
37.7 (2C)	37.7 (2C)	-
37.6 (3C)	37.6 (3C) (überlappend)	-
37.4	37.4	-
36.7	36.8	0.1
35.8	35.9	0.1
34.1	34.1	-
33.7	33.8	0.1
26.5	26.5	-
26.1 (9C)	26.1 (9C) (überlappend)	-
24.5	24.5	-
23.7	23.8	0.1
21.7	21.7	-
21.3	21.3	-
21.2	21.2	-
21.1	21.1	-
21.0	21.0	-
18.3 (5C)	18.3 (5C) (überlappend)	-
18.2 (4C)	18.2 (4C) (überlappend)	-
7.4	7.4	-
5.8	5.8	-
-3.67 (2C)	-3.65 (2C) (überlappend)	0.2
-3.85	-3.82	0.3
-3.9 (2C)	-3.9 (2C) (überlappend)	-
-4.0 (2C)	-4.0 (2C)	-
-4.1	-4.1	-
-4.2 (9C)	-4.2 (überlappend)	-
-4.3	-4.3	-

Vergleichstabelle der ¹³C NMR-Daten: (δ in ppm, J in Hz)

Referenziert auf CDCl₃ bei 77.2 ppm.

Tabelle VI-2: Vergleich der NMR-Daten des isolierten und des synthetisierten Naturstoffs III-4:^[139]

Vergleichstabelle der ¹H-NMR-Daten (δ in ppm, *J* in Hz):

δH III-4 (isoliert)	δH III-4 (synthetisch)	Δ
(500 MHz, CD ₃ OD) ^[139]	(600 MHz, CD ₃ OD)	
7.41, d (7.4), 2H	7.39, m, 2H	0.02
7.31, t (7.4), 2H	7.29, m, 2H	0.02
7.22, t (7.4), 1H	7.21, m, 1H	0.01
7.06, m, 1H	7.04, ddd (9.7, 6.0, 2.5), 1H	0.02
6.63, d (15.9), 1H	6.60, dd (15.9, 6.2), 1H	0.03
6.31, dd (15.9, 6.2), 1H	6.29, dd (15.9, 6.2), 1H	0.02
6.00, dd (9.8, 1.8), 1H	5.98, ddd (9.7, 2.7, 1.0), 1H	0.02
4.75, m, 1H	4.73, ddt (11.9, 9.7, 3.6), 1H	0.02
4.52, m, 1H	4.50, m, 1H	0.02
4.18, m, 2H	4.16, m, 2H	0.02
2.43, m, 2H	2.46, dddd (18.5, 5.7, 4.2, 1.1), 1H	-
	2.37, ddt (18.6, 11.7, 2.6), 1H	
1.93, m, 1H	1.91, ddd (14.5, 9.7, 2.8), 1H	0.02
1.74, m; 1.70, m, 3H	1.70, m, 3H (überlappend)	-
1.61, m, 2H	1.59, m, 2H	0.02

Referenziert auf CD₃OD bei 3.31 ppm.

Vergleichstabelle der	¹³ C NMR-Daten:	(δ in pj	pm, J in Hz)

δC III-4 (isoliert)	δC III-4 (synthetisch)	Δ
(126 MHz, CD ₃ OD) ^[139]	(151 MHz, CD ₃ OD)	
167.1	166.9	0.2
148.6	148.5	0.1
138.7	138.5	0.2
134.3	134.1	0.2
130.7	130.5	0.2
129.7	129.6	0.1
128.6	128.4	0.2
127.6	127.4	0.2
121.6	121.4	0.2
77.0	76.8	0.2
70.5	70.3	0.2
66.4	66.2	0.2
65.3	65.1	0.2
46.7	46.6	0.1
46.4	46.2	0.2
44.4	44.2	0.2
31.0	30.9	0.1

Referenziert auf CD₃OD bei 49.0 ppm.

Tabelle VI-3: Vergleich der NMR-Daten des isolierten Naturstoffs und des synthetisierten(-)-Aureosurfactins (IV-4a):

Vergleichstabelle der ¹H-NMR-Daten (δ in ppm, *J* in Hz):

δH IV-4a (isoliert)	δH IV-4a (synthetisiert)	Δ
(500 MHz, CDCl ₃) ^[172]	(400 MHz, CDCl ₃)	
5.05, m, 1H	5.10, m, 1H	0.05
4.23, m, 1H	4.27, tt (8.4, 4.3), 1H	0.04
4.08, m, 1H	4.10, m, 1H	0.02
3.81, m, 1H	3.85, m, 1H	0.04
3.66, s, 3H	3.71, s, 3H	0.05
2.47, m, 1H	2.53, dd (16.5, 3.5), 1H	0.06
2.42, m, 2H	2.44, m, 3H	0.02
2.41, m, 1H		
1.80, m, 1H	1.86, dt (14.6, 8.4), 1H	0.06
1.62, m, 1H	1.65, m, 1H	0.03
1.53, m, 4H	1.56, m, 4H	0.03
1.43, m, 1H	1.43, m, 3H	-
1.37, m, 2H		
1.26, m, 2H	1.28, m, 11H	0.02
1.25, m, 8H		
1.24, m, 1H		
0.84. m. 6H	0.85. m. 6H	0.01

Das ¹H-NMR-Spektrum des synthetisierten Naturstoffs IV-**4a** wurde auf CDCl₃ bei 7.26 ppm referenziert.

δC IV-4a (isoliert)	δC IV-4a (synthetisiert)	Δ
(150 MHz, CDCl ₃) ^[172]	(101 MHz, CDCl ₃)	
172.8	173.2	0.4
172.1	172.4	0.3
72.7	73.0	0.3
72.1	72.4	0.3
69.5	69.8	0.3
66.2	66.5	0.3
51.8	52.0	0.2
42.7	42.9	0.2
42.3	42.6	0.3
41.3	41.3	-
40.7	40.9	0.2
37.7	37.9	0.2
34.4	34.7	0.3
31.7	32.0	0.3
31.5	31.7	0.2
25.0	25.2	0.2
24.7	25.0	0.3
22.5	22.8	0.3
22.4	22.6	0.2
14.0	14.2	0.2
13.9	14.1	0.2

Vergleichstabelle der ¹	³ C-NMR-Daten (δ in ppm,	J in Hz):
------------------------------------	-------------------------------------	-----------

13.914.10.2Das ¹³C-NMR-Spektrum des synthetisierten Naturstoffs IV-4a wurde auf CDCl3 bei 77.2 ppm referenziert.

Tabelle IV-4: Vergleich der NMR-Daten des isolierten Naturstoffs und des synthetisierten(+)-Aureosurfactins (IV-4b):

Vergleichstabelle der ¹H-NMR-Daten (δ in ppm, *J* in Hz):

δH IV-4b (isoliert)	δ H IV- 4b (synthetisiert)	Δ
(500 MHz, CDCl ₃) ^[172]	(400 MHz, CDCl ₃)	
5.05, m, 1H	5.10, m, 1H	0.05
4.23, m, 1H	4.27, tt (8.4, 4.3), 1H	0.04
4.08, m, 1H	4.12, m, 1H	0.04
3.81, m, 1H	3.86, m, 1H	0.05
3.66, s, 3H	3.71, s, 3H	0.05
2.47, m, 1H	2.53, dd (16.5, 3.5), 1H	0.06
2.42, m, 2H	2.44, m, 3H	0.02
2.41, m, 1H		0.03
1.80, m, 1H	1.85, dt (14.6, 8.4), 1H	0.05
1.62, m, 1H	1.67, m, 1H	0.05
1.53, m, 4H	1.59, m, 4H	0.06
1.43, m, 1H	1.43, m, 3H	-
1.37, m, 2H		0.06
1.26, m, 2H	1.29, m, 11H	0.03
1.25, m, 8H		0.04
1.24, m, 1H		0.05
0.84, m. 6H	0.88. m. 6H	0.04

Das ¹H-NMR-Spektrum des synthetisierten Naturstoffs IV-**4b** wurde auf CDCl₃ bei 7.26 ppm referenziert.

δC IV- 4b (isoliert)	δC IV- 4b (synthetisiert)	Δ
(150 MHz, CDCl ₃) ^[172]	(101 MHz, CDCl ₃)	
172.8	173.2	0.4
172.1	172.4	0.3
72.7	73.0	0.3
72.1	72.4	0.3
69.5	69.8	0.3
66.2	66.5	0.3
51.8	52.0	0.2
42.7	42.9	0.2
42.3	42.6	0.3
41.3	41.3	-
40.7	40.9	0.2
37.7	37.9	0.2
34.4	34.7	0.3
31.7	32.0	0.3
31.5	31.7	0.2
25.0	25.2	0.2
24.7	25.0	0.3
22.5	22.8	0.3
22.4	22.6	0.2
14.0	14.2	0.2
13.9	14.1	0.2

Vergleichstabelle der	^{- 13} C-NMR-Daten (δ in ppm,	J in Hz):
-----------------------	--	-----------

13.914.10.2Das ¹³C-NMR-Spektrum des synthetisierten Naturstoffs IV-4b wurde auf CDCl3 bei 77.2 ppm referenziert.

2. Abkürzungsverzeichnis

Å	Angström
Ac	Acetyl
ACN	Acetonitril
[α] _D	spezifischer Drehwert
ADP	Adenosindiphosphat
AIBN	Azobis(isobutyronitril)
Alloc	Allyloxycarbonyl
aq.	aqua (engl.: wässrige Lösung)
APCI	Atmospheric pressure chemical ionization (engl.: chemische Ionisation bei Atmosphärendruck)
Äq.	Äquivalente
Ar	Aryl
9-BBN	9-Borabicyclo[3.3.1]nonan
Bn	Benzyl
Boc	tert-Butyloxycarbonyl
bs	broad singulett (engl.: breites Singulett)
Bz	Benzoyl
bzw.	beziehungsweise
c	centi
c	Konzentration
° C	Grad Celsius
ca.	circa
СН	Cyclohexan
CSA	Camphersulfonsäure

d	Duplett
dba	Dibenzylidenaceton
DCM	Dichlormethan
DC	Dünnschichtchromatographie
DCC	N,N'-Dicyclohexylcarbodiimid
DCM	Dichlormethan
DDQ	2,3-Dichlor-5,6-dicyano-1,4-benzochinon
DIAD	Diisopropylazodicarboxylat
DIBAL-H	Diisobutylaluminiumhydrid
DIPA	Diisopropylamin
DIPEA	Diisopropylethylamin
DMAP	4-(Dimethylamino)pyridin
DME	1,2-Dimethoxyethan
DMF	Dimethylformamid
DMPM	Dimethoxybenzyl
DMSO	Dimethylsulfoxid
DMTr	Dimethoxytrityl
DPPA	Diphenylphosphonoazid
d.r.	diastereomeric ratio (engl.: Diastereomerenverhältnis)
EA	Ethylacetat
ee	enantiomeric excess (engl.: Enantiomerenüberschuss)
engl.	englisch
ESI	Elektrosprayionisation
Et	Ethyl
et al.	et alia (lat.: und andere)
g	Gramm

ges.	gesättigt
h	hour (engl.: Stunde)
HMPA	Hexamethylphosphorsäuretriamid
HPLC	high performance liquid chromatography (engl.: Hochleistungsflüssigkeitschromatographie
HRMS	high resolution massspectrometry (engl.: hochaufgelöste Massenspektrometrie)
HWE	Horner-Wadsworth-Emmons- Reaktion
Hz	Hertz
IBX	2-Iodoxybenzoesäure
IC ₅₀	mittlere inhibitorische Konzentration
IR	Infrarot
J	Kopplungskonstante
К	Kelvin
KHMDS	Kaliumhexamethyldisilazid
lat.	lateinisch
LiHMDS	Lithiumhexamethyldisilazid
LRMS	low resolution massspectrometry (engl.: niederaufgelöste Massenspektrometrie)
m	Milli
mN/m	Millinewton/Meter
m	Multiplett
М	Molarität
Me	Methyl
min	minutes (engl.: Minuten)
MHz	Megahertz

MS	Molsieb
MTBE	Methyl-tert-butylether
MTPA	α -Methoxy- α -trifluormethylphenylessigsäure
NMO	N-Methylmorpholin-N-oxid
NMR	nuclear magnetic resonance (engl.:
	Kernspinresonanzspektroskopie)
р	para
Ph	Phenyl
Piv	Pivaloyl
PMB	para-Methoxybenzyl
PMP	para-Methoxyphenyl
ppm	parts per million (engl.: Anteile pro Million)
PPTS	Pyridiniumtoluol-4-sulfonat
q	Quartett
R	Rest (Substituent)
\mathbf{R}_{f}	Retentionsfaktor
RF	reflux (engl.: Rückfluss)
RP	reversed phase (engl.: Umkehrphase)
RT	Raumtemperatur
S	Singulett
t	Triplett
TBAF	Tetrabutlylammoniumfluorid
TBAI	Tetrabutylammoniumiodid
TBS	tert-Butyldimethylsilyl
TBDPS	tert-Butyldiphenylsilyl
TEA	Triethylamin

TEOC	Trimethylsilylethoxycarbonyl
TES	Triethylsilyl
Tf	Triflat
TFA	Trifluoressigsäure (engl.: trifluoroacetic acid)
<i>t</i> Bu	tert-Butyl
THF	Tetrahydrofuran
TMS	Trimethylsilyl
TMSE	Trimethylsilylethyl
UV	Ultraviolettstrahlung
z.B.	zum Beispiel
δ	chemische Verschiebung
μ	Mikro

3. Literaturverzeichnis

- a) S. Chen, X. Huang, X. Zhou, L. Bai, J. He, K. J. Jeong, S. Y. Lee, Z. Deng, *Chem. Biol.* 2003, 10, 1065; b) Y. Sun, X. Zhou, J. Liu, K. Bao, G. Zhang, G. Tu, T. Kieser, Z. Deng, *Microbiology* 2002, 148, 361; c) A. Nivina, K. P. Yuet, J. Hsu, C. Khosla, *Chem. Rev.* 2019, 119, 12524; d) L. Zhang, T. Hashimoto, B. Qin, J. Hashimoto, I. Kozone, T. Kawahara, M. Okada, T. Awakawa, T. Ito, Y. Asakawa, M. Ueki, S. Takahashi, H. Osada, T. Wakimoto, H. Ikeda, K. Shin-Ya, I. Abe, *Angew. Chem. Int. Ed.* 2017, 56, 1740.
- [2] C. Hertweck, Angew. Chem. Int. Ed. 2009, 48, 4688.
- [3] D. O'Hagan, The polyketide metabolites, Ellis Horwood, 1991.
- [4] J. Staunton, K. J. Weissman, Nat. Prod. Rep. 2001, 18, 380.
- [5] P. J. Burke, T. H. Koch, J. Med. Chem. 2004, 47, 1193.
- [6] A. Crump, J. Antibiot. 2017, 70, 495.
- [7] M. Satake, M. Murata, T. Yasumoto, T. Fujita, H. Naoki, J. Am. Chem. Soc. 1991, 113, 9859.
- [8] Y. Wakamiya, M. Ebine, N. Matsumori, T. Oishi, J. Am. Chem. Soc. 2020, 142, 3472.
- [9] a) M. A. Fischbach, C. T. Walsh, Chem. Rev. 2006, 106, 3468; b) A. Miyanaga, Biosci. Biotechnol. Biochem. 2017, 81, 2227; c) B. J. Rawlings, Nat. Prod. Rep.

1998, 15, 275; d) S. Smith, S.-C. Tsai, Nat. Prod. Rep. 2007, 24, 1041; e) M.

Grote, S. Kushnir, N. Pryk, D. Möller, J. Erver, A. Ismail-Ali, F. Schulz, *Org. Biomol. Chem.* **2019**, *17*, 6374.

- [10] R. M. Friedrich, G. K. Friestad, Nat. Prod. Rep. 2020, 37, 1229.
- [11] T. Kamiyama, T. Umino, N. Fujisaki, K. Fujimori, T. Satoh, Y. Yamashita, S. Ohshima, J. Watanabe, K. Yokose, J. Antibiot. 1993, 46, 1039.
- [12] Y. Kobayashi, W. Czechtizky, Y. Kishi, Org. Lett. 2003, 5, 93.
- [13] P. Nuhant, W. R. Roush, J. Am. Chem. Soc. 2013, 135, 5340.
- [14] D. Cox, M. Brennan, N. Moran, Nat. Rev. Drug Discov. 2010, 9, 804.
- [15] a) T. Kamiyama, Y. Itezono, T. Umino, T. Satoh, N. Nakayama, K. Yokose, J. Antibiot. 1993, 46, 1047; b) T. Satoh, Y. Yamashita, T. Kamiyama, M. Arisawa, *Thromb. Res.* 1993, 72, 401; c) T. Satoh, Y. Yamashita, T. Kamiyama, J. Watanabe, B. Steiner, P. Hadváry, M. Arisawa, *Thromb. Res.* 1993, 72, 389.
- [16] S. BouzBouz, J. Cossy, Org. Lett. 2004, 6, 3469.
- [17] BouzBouz, Cossy, Org. Lett. 2000, 2, 501.
- [18] V. Gudipati, D. P. Curran, Tetrahedron Lett. 2011, 52, 2254.
- [19] a) P. R. Blakemore, W. J. Cole, P. J. Kocieński, A. Morley, *Synlett* 1998, *1998*, 26;
 b) J. B. Baudin, G. Hareau, S. A. Julia, O. Ruel, *Tetrahedron Lett.* 1991, *32*, 1175;
 c) M. Julia, J.-M. Paris, *Tetrahedron Lett.* 1973, *14*, 4833.
- [20] D. Seebach, Angew. Chem. 1969, 81, 690.
- [21] W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83, 1733.
- [22] a) J. R. Gage, D. A. Evans, Org. Synth. 1990, 68, 77; b) D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127.
- [23] S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307.
- [24] R. M. Friedrich, J. Q. Bell, A. Garcia, Z. Shen, G. K. Friestad, J. Org. Chem. 2018, 83, 13650.
- [25] G. K. Friestad, G. Sreenilayam, Org. Lett. 2010, 12, 5016.
- [26] R. M. Friedrich, G. K. Friestad, Eur. J. Org. Chem. 2017, 2017, 1961.
- [27] E. T. T. Kumpulainen, B. Kang, M. J. Krische, Org. Lett. 2011, 13, 2484.
- [28] a) A.-M. R. Dechert-Schmitt, D. C. Schmitt, M. J. Krische, *Angew. Chem. Int. Ed.* 2013, *52*, 3195; b) D. C. Schmitt, A.-M. R. Dechert-Schmitt, M. J. Krische, *Org. Lett.* 2012, *14*, 6302; c) A. Hassan, Y. Lu, M. J. Krische, *Org. Lett.* 2009, *11*, 3112; d) Y. Lu, I. S. Kim, A. Hassan, D. J. Del Valle, M. J. Krische, *Angew. Chem.* 2009, *121*, 5118; e) I. S. Kim, M.-Y. Ngai, M. J. Krische, *J. Am. Chem. Soc.* 2008, *130*, 6340; f) I. S. Kim, M.-Y. Ngai, M. J. Krische, *J. Am. Chem. Soc.* 2008, *130*, 14891.
- [29] T. Itoh, T. P. Montgomery, A. Recio, M. J. Krische, Org. Lett. 2014, 16, 820.
- [30] a) J. R. Zbieg, J. Moran, M. J. Krische, J. Am. Chem. Soc. 2011, 133, 10582; b) J.
 R. Zbieg, E. Yamaguchi, E. L. McInturff, M. J. Krische, Science 2012, 336, 324; c)
 E. L. McInturff, E. Yamaguchi, M. J. Krische, J. Am. Chem. Soc. 2012, 134, 20628.
- [31] a) R. Lira, W. R. Roush, Org. Lett. 2007, 9, 533; b) E. M. Flamme, W. R. Roush, Org. Lett. 2005, 7, 1411.
- [32] E. M. Flamme, W. R. Roush, J. Am. Chem. Soc. 2002, 124, 13644.
- [33] J. Kister, P. Nuhant, R. Lira, A. Sorg, W. R. Roush, Org. Lett. 2011, 13, 1868.
- [34] S. Kirsch, P. Klahn, H. Menz, Synthesis 2011, 2011, 3592.
- [35] J. T. Binder, Dissertation, 2008, Technische Universität München.
- [36] H. Menz, Dissertation, 2010, Technische Universität München.
- [37] J. T. Binder, S. F. Kirsch, Chem. Commun. 2007, 4164.
- [38] a) A. M. Stevens, C. J. Richards, *Organometallics* 1999, 18, 1346; b) S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2005, 127, 2866; c) S. F. Kirsch, L. E. Overman, N. S. White, Org. Lett. 2007, 9, 911; d) J. S. Cannon, S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2010, 132, 15185; e) J. S. Cannon, S. F. Kirsch, L. E. Overman, H. F. Sneddon, J. Am. Chem. Soc. 2010, 132, 15192.
- [39] T. T. Haug, S. F. Kirsch, Org. Biomol. Chem. 2010, 8, 991.
- [40] H. Menz, S. F. Kirsch, Org. Lett. 2009, 11, 5634.
- [41] T. Harschneck, *Dissertation*, 2012, Technische Universität München.
- [42] K. Holzschneider, Masterarbeit, 2015, Bergische Universität Wuppertal.
- [43] A. Bredenkamp, M. Wegener, S. Hummel, A. P. Häring, S. F. Kirsch, *Chem. Commun.* 2016, 52, 1875.
- [44] A. Bredenkamp, Z.-B. Zhu, S. F. Kirsch, Eur. J. Org. Chem. 2016, 2016, 252.
- [45] A. Bredenkamp, *Dissertation*, **2016**, Bergische Universität Wuppertal.
- [46] F. Ballaschk, Y. Özkaya, S. F. Kirsch, Eur. J. Org. Chem. 2020, 2020, 6078.
- [47] a) J. K. Stille, Angew. Chem. Int. Ed. 1986, 25, 508; b) D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
- [48] C. Wagner, Dissertation, 2017, Bergische Universität Wuppertal.
- [49] a) O. Mitsunobu, Synthesis 1981, 1981, 1; b) O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380.
- [50] P. Biallas, Dissertation, 2019, Bergische Universität Wuppertal.
- [51] R. Appel, Angew. Chem. Int. Ed. 1975, 14, 801.
- [52] H. J. Kim, S. Choi, B. Jeon, N. Kim, R. Pongdee, Q. Wu, H. Liu, Angew. Chem. 2014, 126, 13771.
- [53] Y. Huang, M. Fañanás-Mastral, A. J. Minnaard, B. L. Feringa, *Chem. Commun.* 2013, 49, 3309.
- [54] R. Pappo, J. D. Allen, R. Lemieux, W. Johnson, J. Org. Chem. 1956, 21, 478.
- [55] V. Grignard, Comp. Rend., 1900, 1322.
- [56] K. J. Sparrow, S. Carley, T. Söhnel, D. Barker, M. A. Brimble, *Tetrahedron* 2015, 71, 2210.
- [57] V. I. Tararov, N. Y. Kuznetzov, V. I. Bakhmutov, N. S. Ikonnikov, Y. N. Bubnov, V. N. Khrustalev, T. F. Saveleva, Y. N. Belokon, *J. Chem. Soc., Perkin Trans.* 1997, 3101.
- [58] F. Ding, M. L. Leow, J. Ma, R. William, H. Liao, X.-W. Liu, *Chem. Asian J.* 2014, 9, 2548.
- [59] T. Anderl, L. Nicolas, J. Münkemer, A. Baro, F. Sasse, H. Steinmetz, R. Jansen, G. Höfle, R. E. Taylor, S. Laschat, *Angew. Chem. Int. Ed.* 2011, 50, 942.
- [60] D. A. Evans, J. M. Takacs, L. R. McGee, M. D. Ennis, D. J. Mathre, J. Bartroli, *Pure Appl. Chem.* **1981**, *53*, 1109.

- [61] a) K. Omura, D. Swern, *Tetrahedron* 1978, 34, 1651; b) A. J. Mancuso, D. S. Brownfain, D. Swern, J. Org. Chem. 1979, 44, 4148; c) A. J. Mancuso, S.-L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480; d) A. J. Mancuso, D. Swern, Synthesis 1981, 1981, 165.
- [62] F. M. Cordero, F. Pisaneschi, M. Gensini, A. Goti, A. Brandi, *Eur. J. Org. Chem.* 2002, 2002, 1941.
- [63] S. D. Rychnovsky, D. J. Skalitzky, Tetrahedron Lett. 1990, 31, 945.
- [64] a) M. Chérest, H. Felkin, N. Prudent, *Tetrahedron Lett.* 1968, 9, 2199; b) Nguyen Trong Anh, O. Eisenstein, J. M. Lefour, M. E. Tran Huu Dau, *J. Am. Chem. Soc.* 1973, 95, 6146.
- [65] a) A. Rossini, L. Dias, *J. Braz. Chem. Soc.* 2019; b) M. M. Ahmed, M. S. Mortensen, G. A. O'Doherty, *J. Org. Chem.* 2006, 71, 7741; c) J. Tholander, E. M. Carreira, *Helv. Chim. Acta* 2001, 84, 613.
- [66] T. Grindley, V. Gulasekharam, Carbohydr. Res. 1979, 74, 7.
- [67] M. Amatore, T. D. Beeson, S. P. Brown, D. W. C. MacMillan, Angew. Chem. 2009, 121, 5223.
- [68] B. Subba Reddy, P. Sivaramakrishna Reddy, B. Phaneendra Reddy, J. Yadav, *Synlett* **2014**, *25*, 501.
- [69] H. M. Meshram, D. A. Kumar, P. Ramesh, Helv. Chim. Acta 2010, 93, 1422.
- [70] F. Glaus, K.-H. Altmann, Angew. Chem. Int. Ed. 2012, 51, 3405.
- [71] J. Song, R. I. Hollingsworth, Tetrahedron: Asymmetry 2001, 12, 387.
- [72] D. Wang, W. A. Nugent, J. Org. Chem. 2007, 72, 7307.
- [73] P. A. Evans, M.-H. Huang, M. J. Lawler, S. Maroto, Nat. Chem. 2012, 4, 680.
- [74] B. Bernet, A. Vasella, Helv. Chim. Acta 1979, 62, 2400.
- [75] S. Ghilagaber, W. N. Hunter, R. Marquez, Org. Biomol. Chem. 2007, 5, 97.
- [76] a) K. Narasaka, H. C. Pai, *Chem. Lett.* **1980**, *9*, 1415; b) K. Narasaka, F.-C. Pai, *Tetrahedron* **1984**, *40*, 2233; c) K.-M. Chen, G. E. Hardtmann, K. Prasad, O. Repič, M. J. Shapiro, *Tetrahedron Lett.* **1987**, *28*, 155; d) K.-M. Chen, K. G. Gunderson, G. E. Hardtmann, K. Prasad, O. Repic, M. J. Shapiro, *Chem. Lett.* **1987**, *16*, 1923.
- [77] P. Lu, T. Bach, Angew. Chem. Int. Ed. Engl. 2012, 51, 1261.
- [78] W. R. Roush, H. R. Gillis, A. P. Essenfeld, J. Org. Chem. 1984, 49, 4674.
- [79] K. Ren, M. Zhao, B. Hu, B. Lu, X. Xie, V. Ratovelomanana-Vidal, Z. Zhang, J. Org. Chem. 2015, 80, 12572.
- [80] a) A. K. Saksena, P. Mangiaracina, *Tetrahedron Lett.* 1983, 24, 273; b) D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc. 1988, 110, 3560.
- [81] D. A. Evans, A. H. Hoveyda, J. Am. Chem. Soc. 1990, 112, 6447.
- [82] B. Neises, W. Steglich, Angew. Chem. Int. Ed. 1978, 17, 522.
- [83] a) S. Gessler, S. Randl, S. Blechert, *Tetrahedron Lett.* 2000, *41*, 9973; b) S. B.
 Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, *J. Am. Chem. Soc.* 2000, *122*, 8168.
- [84] a) G. G. G. Wittig, *Liebigs Ann. Chem.*, 1953, 44; b) U. S. G. Wittig, *Chem. Berichte*, 1954, 1318.

- [85] K. Lumyong, B. Kongkathip, N. Chuanopparat, N. Kongkathip, *Tetrahedron* 2019, 75, 533.
- [86] N. A. Mallampudi, U. M. Choudhury, D. K. Mohapatra, J. Org. Chem. 2020, 85, 4122.
- [87] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155.
- [88] H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635.
- [89] S.-H. Chen, V. Farina, D. M. Vyas, T. W. Doyle, B. H. Long, C. Fairchild, J. Org. Chem. 1996, 61, 2065.
- [90] J. Hartung, B. J D Wright, S. J. Danishefsky, Chem. Eur. J. 2014, 20, 8731.
- [91] M. Bartra, F. Urpí, J. Vilarrasa, Tetrahedron Lett. 1987, 28, 5941.
- [92] H. Lindlar, Helv. Chim. Acta 1952, 35, 446.
- [93] A. Kamal, K. Ramana, H. B. Ankati, A. Ramana, *Tetrahedron Lett.* 2002, 43, 6861.
- [94] S. N. Maiti, M. P. Singh, R. G. Micetich, Tetrahedron Lett. 1986, 27, 1423.
- [95] S. N. Greszler, Dissertation, 2010, Universität North Carolina, USA.
- [96] Y.-G. Wang, R. Takeyama, Y. Kobayashi, Angew. Chem. Int. Ed. 2006, 45, 3320.
- [97] R. Shen, T. Inoue, M. Forgac, J. A. Porco, J. Org. Chem. 2005, 70, 3686.
- [98] D. Gwon, H. Hwang, H. K. Kim, S. R. Marder, S. Chang, *Chemistry*, 2015, 21, 17200.
- [99] D. R. Williams, P. K. Mondal, S. A. Bawel, P. P. Nag, Org. Lett. 2014, 16, 1956.
- [100] T. Fukuyama, C.-K. Jow, M. Cheung, Tetrahedron Lett. 1995, 36, 6373.
- [101] B. C. Wilcock, M. M. Endo, B. E. Uno, M. D. Burke, J. Am. Chem. Soc. 2013, 135, 8488.
- [102] A. M. DiLauro, W. Seo, S. T. Phillips, J. Org. Chem. 2011, 76, 7352.
- [103] X.-Y. Zhou, P. Yang, S. Luo, J.-S. Yang, Chem. Asian J. 2019, 14, 454.
- [104] J. G. Napolitano, A. H. Daranas, M. Norte, J. J. Fernández, Anti-Cancer Agents Med. Chem. 2009, 9, 122.
- [105] M. Wang, J. Zhang, S. He, X. Yan, Mar. Drugs 2017, 15.
- [106] V. V. Belakhov, A. V. Garabadzhiu, Russ. J. Gen. Chem. 2015, 85, 2985.
- [107] L. Keller, J. L. Siqueira-Neto, J. M. Souza, K. Eribez, G. M. LaMonte, J. E. Smith, W. H. Gerwick, *Molecules* 2020, 25.
- [108] L. A. Salvador-Reyes, N. Engene, V. J. Paul, H. Luesch, J. Nat. Prod. 2015, 78, 486.
- [109] S. Mori, H. Williams, D. Cagle, K. Karanovich, F. D. Horgen, R. Smith, C. M. H. Watanabe, *Mar. Drugs* 2015, 13, 6274.
- [110] C.-L. Shao, R. G. Linington, M. J. Balunas, A. Centeno, P. Boudreau, C. Zhang, N. Engene, C. Spadafora, T. S. Mutka, D. E. Kyle, L. Gerwick, C.-Y. Wang, W. H. Gerwick, J. Org. Chem. 2015, 80, 7849.
- [111] Y. Kobayashi, C.-H. Tan, Y. Kishi, Helv. Chim. Acta 2000, 83, 2562.
- [112] C.-L. Shao, X.-F. Mou, F. Cao, C. Spadafora, E. Glukhov, L. Gerwick, C.-Y. Wang, W. H. Gerwick, *J. Nat. Prod.* **2018**, *81*, 211.
- [113] J. Talapko, I. Škrlec, T. Alebić, M. Jukić, A. Včev, Microorganisms 2019, 7.
- [114] A. F. Cowman, J. Healer, D. Marapana, K. Marsh, Cell 2016, 167, 610.
- [115] N. Ma, Z. Zhang, F. Liao, T. Jiang, Y. Tu, Pharmacol. Ther. 2020, 216, 107658.

- [116] S. R. Vippagunta, A. Dorn, H. Matile, A. K. Bhattacharjee, J. M. Karle, W. Y. Ellis, R. G. Ridley, J. L. Vennerstrom, J. Med. Chem. 1999, 42, 4630.
- [117] a) A. Mbengue, S. Bhattacharjee, T. Pandharkar, H. Liu, G. Estiu, R. V. Stahelin, S. S. Rizk, D. L. Njimoh, Y. Ryan, K. Chotivanich, C. Nguon, M. Ghorbal, J.-J. Lopez-Rubio, M. Pfrender, S. Emrich, N. Mohandas, A. M. Dondorp, O. Wiest, K. Haldar, *Nature* 2015, *520*, 683; b) M. Ouji, J.-M. Augereau, L. Paloque, F. Benoit-Vical, *Parasite* 2018, *25*, 24; c) A. M. Thu, A. P. Phyo, J. Landier, D. M. Parker, F. H. Nosten, *FEBS J.* 2017, *284*, 2569; d) G. Pasvol, *Br. Med. Bull.* 2005, *75-76*, 29.
- [118] A. Quintard, C. Sperandio, J. Rodriguez, Org. Lett. 2018, 20, 5274.
- [119] N. S. Kumar, B. J. Ramulu, S. Ghosh, SynOpen 2021, 05, 285.
- [120] D. Fiorito, S. Keskin, J. M. Bateman, M. George, A. Noble, V. K. Aggarwal, J. Am. Chem. Soc. 2022, 144, 7995.
- [121] J. B. Cox, A. A. Kellum, Y. Zhang, B. Li, A. B. Smith, Angew. Chem. Int. Ed. 2022, 61, e202204884.
- [122] Y. Deng, A. B. Smith, Acc. Chem. Res. 2020, 53, 988.
- [123] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989.
- [124] E. P. Boden, G. E. Keck, J. Org. Chem. 1985, 50, 2394.
- [125] a) Y. Okuno, S. Isomura, A. Nishibayashi, A. Hosoi, K. Fukuyama, M. Ohba, K. Takeda, *Synth. Commun.* 2014, 44, 2854; b) M. Hikota, Y. Sakurai, K. Horita, O. Yonemitsu, *Tetrahedron Lett.* 1990, 31, 6367.
- [126] a) T. Mukaiyama, M. Usui, K. Saigo, *Chem. Lett.* 1976, 5, 49; b) D. A. Evans, J. T. Starr, *J. Am. Chem. Soc.* 2003, *125*, 13531.
- [127] Z. Xu, W. Yin, L. K. Martinelli, J. Evans, J. Chen, Y. Yu, D. J. Wilson, V. Mizrahi, C. Qiao, C. C. Aldrich, *Bioorg. Med. Chem.* 2014, 22, 1726.
- [128] D. Nitsch, S. M. Huber, A. Pöthig, A. Narayanan, G. A. Olah, G. K. S. Prakash, T. Bach, J. Am. Chem. Soc. 2014, 136, 2851.
- [129] W. Adam, L. Hadjarapoglou, X. Wang, Tetrahedron Lett. 1991, 32, 1295.
- [130] a) D. Seyferth, R. S. Marmor, *Tetrahedron Lett.* 1970, *11*, 2493; b) D. Seyferth,
 R. S. Marmor, P. Hilbert, *J. Org. Chem.* 1971, *36*, 1379; c) J. C. Gilbert, U.
 Weerasooriya, *J. Org. Chem.* 1979, *44*, 4997; d) J. C. Gilbert, U. Weerasooriya, *J. Org. Chem.* 1979, *44*, 4997; d) J. C. Gilbert, U. Weerasooriya, *J. Org. Chem.* 1982, *47*, 1837.
- [131] E. E. Kwan, J. R. Scheerer, D. A. Evans, J. Org. Chem. 2013, 78, 175.
- [132] H. Nemoto, M. Shiraki, K. Fukumoto, J. Org. Chem. 1996, 61, 1347.
- [133] M. Obringer, M. Barbarotto, S. Choppin, F. Colobert, Org. Lett. 2009, 11, 3542.
- [134] a) E. J. Corey, J. A. Katzenellenbogen, J. Am. Chem. Soc. 1969, 91, 1851; b) K. Mori, P. Puapoomchareon, Liebigs Ann. Chem. 1990, 1990, 159; c) J. She, J. W. Lampe, A. B. Polianski, P. S. Watson, Tetrahedron Lett. 2009, 50, 298; d) D. A. Candito, J. Panteleev, M. Lautens, J. Am. Chem. Soc. 2011, 133, 14200; e) L. Fang, H. Xue, J. Yang, Org. Lett. 2008, 10, 4645.
- [135] a) S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, *Synlett* 1996, 1996, 521; b)
 S. Ohira, *Synth. Commun.* 1989, 19, 561.

- [136] A. Migita, Y. Shichijo, H. Oguri, M. Watanabe, T. Tokiwano, H. Oikawa, *Tetrahedron Lett.* 2008, 49, 1021.
- [137] a) K. B. Sharpless, M. W. Young, J. Org. Chem. 1975, 40, 947; b) P. A. Grieco,
 S. Gilman, M. Nishizawa, J. Org. Chem. 1976, 41, 1485.
- [138] I. Celik, *Dissertation* **2022**, Bergische Universität Wuppertal.
- [139] B.-Y. Yang, L.-Y. Kong, X.-B. Wang, Y.-M. Zhang, R.-J. Li, M.-H. Yang, J.-G. Luo, J. Nat. Prod. 2016, 79, 196.
- [140] R. K. Acharyya, P. Pal, S. Chatterjee, S. Nanda, Org. Biomol. Chem. 2019, 17, 3552.
- [141] W. Huang, W.-J. Zhang, Y.-Q. Cheng, R. Jiang, W. Wei, C.-J. Chen, G. Wang, R.-H. Jiao, R.-X. Tan, H.-M. Ge, *Planta Med.* 2014, 80, 925.
- [142] C. T. Lin, F. H. Chu, Y. H. Tseng, J. B. Tsai, S. T. Chang, S. Y. Wang, *Pharm. Biol.* 2007, 45, 638.
- [143] a) J. M. Seco, E. Quiñoá, R. Riguera, *Chem. Rev.* 2012, *112*, 4603; b) F. Freire, J. M. Seco, E. Quiñoá, R. Riguera, *J. Org. Chem.* 2005, *70*, 3778; c) J. M. Seco, E. Quiñoá, R. Riguera, *Chem. Rev.* 2004, *104*, 17.
- [144] A. J. Cavalheiro, M. Yoshida, *Phytochemistry* 2000, 53, 811.
- [145] L. F. T. Novaes, A. M. Sarotti, R. A. Pilli, J. Org. Chem. 2015, 80, 12027.
- [146] D. Csókás, R. Bates, Synlett 2019, 30, 178.
- [147] F. Della-Felice, A. M. Sarotti, R. A. Pilli, J. Org. Chem. 2017, 82, 9191.
- [148] a) M. Pellecchia, WO2008118626 A2; b) K. Ando, J. Hattori, *Tetrahedron Lett.* **2019**, 60, 151017.
- [149] D. S. Huang, H. L. Wong, G. I. Georg, ChemMedChem 2017, 12, 520.
- [150] G. Sabitha, P. Gopal, J. S. Yadav, Synth. Commun. 2007, 37, 1495.
- [151] Y. Guindon, F. Soucy, C. Yoakim, W. W. Ogilvie, L. Plamondon, J. Org. Chem. 2001, 66, 8992.
- [152] M. Oizumi, M. Takahashi, K. Ogasawara, Synlett 1997, 1997, 1111.
- [153] I. Carrera, M. Brovetto, G. A. Seoane, Tetrahedron: Asymm. 2013, 24, 1467.
- [154] I. Gavrila, P. Raffa, F. Picchioni, Polymers 2018, 10.
- [155] C. M. Sturgeon, B. Cinel, A. R. Díaz-Marrero, L. M. McHardy, M. Ngo, R. J. Andersen, M. Roberge, *Cancer Chemother. Pharmacol.* 2008, 61, 407.
- [156] S. Nagendra, V. Krishna Reddy, B. Das, Helv. Chim. Acta 2015, 98, 520.
- [157] Q. Ji, M. Pang, J. Han, S. Feng, X. Zhang, Y. Ma, J. Meng, Synlett 2006, 2006, 2498.
- [158] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467.
- [159] L. F. Tietze, A. Fischer-Beller, Carbohydr. Res. 1994, 254, 169.
- [160] R. N. Kumar, H. M. Meshram, Tetrahedron Lett. 2011, 52, 1003.
- [161] a) H. Hanawa, T. Hashimoto, K. Maruoka, *J. Am. Chem. Soc.* 2003, *125*, 1708; b)
 H. Hanawa, D. Uraguchi, S. Konishi, T. Hashimoto, K. Maruoka, *Chem. Eur. J.* 2003, *9*, 4405.
- [162] a) J. D. van Hamme, A. Singh, O. P. Ward, *Biotechnol. Adv.* 2006, 24, 604; b) S.
 Hosseinpour, V. Götz, W. Peukert, *Angew. Chem. Int. Ed.* 2021, 60, 25143.
- [163] a) E. Z. Ron, E. Rosenberg, *Environ. Microbiol.* 2001, *3*, 229; b) Y. Zhang, H. Zhao, *Langmuir* 2016, *32*, 3567.

- [164] A. Singh, J. D. van Hamme, O. P. Ward, *Biotechnol. Adv.* 2007, 25, 99.
- [165] M. I. van Dyke, H. Lee, J. T. Trevors, Biotechnol. Adv. 1991, 9, 241.
- [166] E. Olkowska, Ż. Polkowska, J. Namieśnik, Chem. Rev. 2011, 111, 5667.
- [167] I. Effendy, H. I. Maibach, Clin. Dermatol. 1996, 14, 15.
- [168] a) I. M. Banat, R. S. Makkar, S. S. Cameotra, *Appl. Microbiol. Biotechnol.* 2000, 53, 495; b) J. D. Desai, I. M. Banat, *Microbiol. Mol. Biol. Rev.* 1997, 61, 47; c) C. N. Mulligan, *Environ. Pollut.* 2005, 133, 183.
- [169] I. M. M. Vieira, B. L. P. Santos, D. S. Ruzene, D. P. Silva, J. Ind. Eng. Chem. 2021, 100, 1.
- [170] D. G. Cooper, C. R. Macdonald, S. J. Duff, N. Kosaric, *Appl. Environ. Microbiol.* 1981, 42, 408.
- [171] S. Kong, C. Shen, Y. Li, Q. Meng, ACS omega 2021, 6, 15750.
- [172] J.-S. Kim, I.-K. Lee, D.-W. Kim, B.-S. Yun, J. Antibiot. 2016, 69, 759.
- [173] Z. Chi, F. Wang, Z. Chi, L. Yue, G. Liu, T. Zhang, *Appl. Microbiol. Biotechnol.* 2009, 82, 793.
- [174] S. Gogoi, N. C. Barua, B. Kalita, Tetrahedron Lett. 2004, 45, 5577.
- [175] a) F. Allais, M.-C. Louvel, J. Cossy, *Synlett* 2007, 2007, 451; b) A. Garg, V. K. Singh, *Tetrahedron* 2009, 65, 8677; c) L. Carosi, D. G. Hall, *Can. J. Chem.* 2009, 87, 650; d) G. B. Salunke, I. Shivakumar, M. K. Gurjar, *Tetrahedron Lett.* 2009, 50, 2048; e) M. Madala, B. Raman, K. V. Sastry, S. Musulla, *Monatsh. Chem.* 2016, 147, 1985; f) A. Venkatesham, R. Srinivasa Rao, K. Nagaiah, *Tetrahedron: Asymm.* 2012, 23, 381; g) A. Harbindu, P. Kumar, *Synthesis* 2011, 2011, 1954; h) S. Vanjivaka, K. Ramanakumar, M. Rajeswari, J. Vantikommu, G. Sridhar, S. Palle, *Arkivoc* 2019, 2018, 50; i) B. Das, K. Laxminarayana, M. Krishnaiah, D. N. Kumar, *Helv. Chim. Acta* 2009, 92, 1840.
- [176] I. V. Mineeva, Russ. J. Org. Chem. 2012, 48, 977.
- [177] H. G. Choi, J. W. Kim, H. Choi, K. S. Kang, S. H. Shim, Molecules 2019, 24.
- [178] J. Doshida, H. Hasegawa, H. Onuki, N. Shimidzu, J. Antibiot. 1996, 49, 1105.
- [179] J.-Z. Wu, J. Gao, G.-B. Ren, Z.-B. Zhen, Y. Zhang, Y. Wu, *Tetrahedron* 2009, 65, 289.
- [180] C. Chen, N. Imamura, M. Nishijima, K. Adachi, M. Sakai, H. Sano, J. Antibiot. 1996, 49, 998.
- [181] G. Sharma, C. Govardhan Reddy, Tetrahedron Lett. 2004, 45, 7483.
- [182] Y. Romeyke, M. Keller, H. Kluge, S. Grabley, P. Hammann, *Tetrahedron* 1991, 47, 3335.
- [183] J. R. Dunetz, W. R. Roush, Org. Lett. 2008, 10, 2059.
- [184] R. Chen, L. Li, N. Lin, R. Zhou, Y. Hua, H. Deng, Y. Zhang, Org. Lett. 2018, 20, 1477.
- [185] a) B. O. Lindgren, T. Nilsson, S. Husebye, Ø. Mikalsen, K. Leander, C.-G. Swahn, *Acta Chem. Scand.* 1973, 27, 888; b) G. A. Kraus, B. Roth, *J. Org. Chem.* 1980, 45, 4825; c) G. A. Kraus, M. J. Taschner, *J. Org. Chem.* 1980, 45, 1175.
- [186] S. M. Dalby, J. Goodwin-Tindall, I. Paterson, Angew. Chem. Int. Ed. 2013, 52, 6517.
- [187] M. Altendorfer, D. Menche, Chem. Commun. 2012, 48, 8267.

- [188] D. A. Quagliato, P. M. Andrae, E. M. Matelan, J. Org. Chem. 2000, 65, 5037.
- [189] E. D. Shepherd, M. S. Hallside, J. L. Sutro, A. Thompson, M. Hutchings, J. W. Burton, *Tetrahedron* 2020, 76, 130981.
- [190] C.-H. Tan, A. B. Holmes, Chem. Eur. J. 2001, 7, 1845.
- [191] Q.-Y. Chen, P. R. Chaturvedi, H. Luesch, Org. Process Res. Dev. 2018, 22, 190.
- [192] P. Sawant, M. Maier, Synlett 2011, 2011, 3002.
- [193] M. Bock, R. Dehn, A. Kirschning, Angew. Chem. Int. Ed. 2008, 47, 9134.
- [194] E. M. Dangerfield, C. H. Plunkett, B. L. Stocker, M. S. M. Timmer, *Molecules* 2009, 14, 5298.
- [195] X. Ma, H. Dang, J. A. Rose, P. Rablen, S. B. Herzon, J. Am. Chem. Soc. 2017, 139, 5998.
- [196] Y. Nagai, T. Tanami, J. Abe, H. Nagai, T. Hamamizu, K. Kominato, K. Iida, K. Nagasawa, Asian J. Org. Chem. 2014, 3, 994.
- [197] S. Liu, R. Achou, C. Boulanger, G. Pawar, N. Kumar, J. Lusseau, F. Robert, Y. Landais, *Chem. Commun.* 2020, 56, 13013.
- [198] Y. Norimura, D. Yamamoto, K. Makino, Org. Biomol. Chem. 2017, 15, 640.
- [199] T. D. Nelson, C. R. LeBlond, D. E. Frantz, L. Matty, J. V. Mitten, D. G. Weaver, J. C. Moore, J. M. Kim, R. Boyd, P.-Y. Kim, K. Gbewonyo, M. Brower, M. Sturr, K. McLaughlin, D. R. McMasters, M. H. Kress, J. M. McNamara, U. H. Dolling, J. Org. Chem. 2004, 69, 3620.
- [200] N. Kurono, K. Ohtsuga, M. Wakabayashi, T. Kondo, H. Ooka, T. Ohkuma, J. Org. Chem. 2011, 76, 10312.
- [201] M. Kitamura, N. Tashiro, S. Miyagawa, T. Okauchi, Synthesis 2011, 2011, 1037.
- [202] X. Han, J. Wu, Org. Lett. 2010, 12, 5780.
- [203] A. de Fátima, L. K. Kohn, M. A. Antônio, J. E. de Carvalho, R. A. Pilli, *Bioorg. Med. Chem.* 2005, 13, 2927.
- [204] Z.-L. Wan, G.-L. Zhang, H.-J. Chen, Y. Wu, Y. Li, *Eur. J. Org. Chem.* 2014, 2014, 2128.
- [205] S. Bartlett, D. Böse, D. Ghori, B. Mechsner, J. Pietruszka, *Synthesis* **2013**, *45*, 1106.