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1 Introduction

The origin of period domains lies in the work of Griffiths 116]. He introduced

them as certain open subspaces of generalized flag varities over C which parametrize
polarized R-Hodge structures of a given type. Afterwards, Rapoport and Zink as
well as Rapoport introduced period domains over finite and local fields. Especially
the case over p-adic fields is of particular interest for this thesis.

Let p be a prime and K = Q,. Given a reductive group G over K, a period domain

over K parametrizes weakly admissible filtrations on a G-isocrystal of fixed type. It is
an open admissible rigid-analytic subset of a generalized flag manifold .# (cf. section



The prototype for a p-adic period domain over K is Drinfeld’s upper half space Q1)

which is the complement of all K-rational hyperplanes in the projective space P, i.e.

Q) =pr\ | P(H).
HganLl

The same definition applies to arbitrary fields. In the p-adic case it arises from the trivial
GL,,+1-isocrystal inside the projective space .# = P.

Given an appropriate cohomology theory, it is a natural problem to determine the
cohomology groups for period domains. The starting point is the work of Schneider
and Stuhler [55]. They computed the cohomology groups of Q1) in the p-adic case
for “good” cohomology theories. This includes the étale cohomology with torsion coef-
ficients, not including p-torsion, and the de Rham cohomology. So far, the only results
for coherent sheaf cohomology are known for Drinfeld’s upper half space (over p-adic
fields and finite fields). After the work of Schneider and Stuhler, it was Schneider again,
together with Teitelbaum, who made the beginning and considered at first coefficents in
the canonical bundle [56]. Shortly aftwards, Pohlkamp [46] computed the sheaf coho-
mology with respect to the structure sheaf. Finally, Orlik was able to generalize these
results to arbitrary GL,-equivariant vector bundles on Drinfeld’s upper half space over
p-adic fields [39]. Moreover, he could apply his methods to compute its pro-étale co-
homology [42] and the coherent sheaf cohomology of Q1) in the case of finite fields
[38]. It was Kuschkowitz, a student of Orlik, who computed the rigid cohomology of
Drinfeld’s upper halfspace over finite fields with similar methods [31].

The goal of this thesis is to investigate the coherent sheaf cohomology of period
domains over p-adic fields, other than Q1. Let G be a split connected reductive
group over K with split maximal torus T. Further let B O T a Borel subgroup of
G associated to a cocharacter p € X.(G) defined over K. Then, we consider period
domains .#"“* which parametrize weakly admissible filtrations of the trivial G-isocrystal
inside the complete flag variety .# := G/B. Thereafter, we study the sheaf cohomology
of these spaces with respect to the restriction of a homogeneous line bundle &, :=
Ly ®wgz on %. Here, wg denotes the canonical bundle on .% and £, the line bundle
associated to a dominant weight A € X*(T) (cf. section [3.1). For this purpose we
use the techniques of [39] and the theory developed in [44]. Under the assumption of
a hypothesis concerning the density of some local cohomology groups (cf. Assumption
, we prove the following result.

Theorem 1.1 (Theorem [3.28). Let igp := dim.# — |A|. The homology of the (chain)

complex
Co: P Viw) ... P VEw) VEWN)
wEQ@ ’LUEQ@
l(w)=dim Y} l(w)=1

starting in degree ig coincides with H*(FY2, &), i.e. H;(Co) = HY(FV2,E)).

Here, A is the set of simple roots of the root system of G with respect to B. Further,
Qy is a subset of the Weyl group W of G defined by some numerical conditions (cf. (3.5))
and Y a union of Schubert cells in .# indexed by €}y which is closed in .# (cf. subsection
. Moreover, Vg (w) are twisted generalized locally analytic Steinberg representations
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(cf. Definition [2.38) and H*(.Z%*,&,) denotes the strong dual of H!(.Z" &)).

In order to compute the Jordan-Holder factors for some homology groups of the latter
complex we prove, under the Assumption a generalization of [43, Theorem 4.6].

Theorem 1.2 (Theorem [2.40). Fiz w,v € W and let Iy := I(w) respectively I := I(v)

(cf. ) For a subset J C A with J C I, let vg be the generalized smooth Stein-

berg representation of Lp,. Then, the multiplicity of the irreducible G-representation
P, . .

]:gl(L(v “A),vpl) in VE (w) is

Z (_1)f(w’)+|JﬂIo|m(w/w’ v)

w'ew
supp(w’)=JNIo

and we obtain in this way all the Jordan-Hdélder factors of Vg(w).

Then, we will make use of the fact that the morphism p,s,, : VS (w') — V§(w) in
the differentials of C, is surjective for w’,w € W with w’ < w (cf. Lemma [3.30).

The thesis is divided into two parts. The first half is about the main ingredients that
we will use afterwards. In detail, this starts in Section with some basics of a split
reductive group G over a finite extension of Q,. We then recall the BGG category O for
the p-adic case in Section and locally analytic representations in Section which
are related by the functor ]:Ig; in Section In this section we also prove Theorem |1.2
Last but not least, we give an overview of p-adic period domains in Section

In the second half, we first introduce our setup in Section This includes the
period domain .#"? inside the complete flag variety .# over K and the line bundle £y
on .% associated to a dominant character A of G with respect to the Borel pair (T, B).
In the next section, we make some geometric observations for the complement Y of .
in .#24. In particular, (generalized) Schubert cells and unions of Schubert varieties will
appear there. Then, in Section [3.3] we determine the algebraic local cohomology groups
of # with support in these (locally) closed subsets and coefficients in £,. We relate
them to analytic local cohomology groups of .8 in Section In Section we use
this relation to deduce Theorem For this we also use Orlik’s fundamental complex
(cf. [11, Section 6.2.2]) and a resulting spectral sequence. Moreover, we determine
the Jordan-Hoélder factors of the dual of H*(.#%*,£)) in examples with the help of the
computer. In the last section we explain why our strategy does not automatically transfer
to the general parabolic case.

In the Appendix [A we list the code we use to determine the Jordan-Holder factors of
the terms in the chain complexes in the examples given. The Jordan-Hélder factors can
also be found in the appendix.

1.1 Notations

Let p be a prime and K a finite extensions of Q,. Further let L be a complete exten-
sion of Q, with K C L. We let Og and O, respectively, be the ring of integers of K
and L, respectively. Moreoever, let | | be the absolute value of K and L, respectively,

such that |p| = p~L.



1.2 Acknowledgements

We use bold letters for algebraic group schemes over K, e.g. G, B. The corresponding
groups of K-valued points are denoted by normal letters, e.g. G, B and the associated
Lie algebras by Gothic letters, e.g. g, b. We write U(h) for the universal enveloping
algebra of a Lie algebra b over K.

We consider L as the field of coefficents. The base change of a K-vector space or a
scheme over K to L is indicated by L in the subscript, e.g. gr = g ®x L. We make
an exception when considering a univeral enveloping algebra, i.e. we will write U(h) for

Uh)L =U(hr).

We denote by Repzo’adm(H ) the category of smooth admissible representations of a
locally profinite group H on L-vector spaces, as in [10, Section 2.1].

For a locally convex L-vector space V', we denote by V' the strong dual, i.e. the L-
vector space of continous linear forms equipped with the strong topology of bounded
convergence.

For an algebraic variety X over K, we write X™® for the rigid analytic variety and
by X2 the adic space attached to X, respectively. If £ is a sheaf on such a variety X,
we also write £ for the associated sheaf on X8 X34 and its restriction to any subspace,
respectively.
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2 Preliminaries

2.1 Split reductive groups

We recall the datum that comes along with a split connected reductive group which
will be essential throughout the whole thesis.

Therefore, let K be a finite extension of Q, and G a split connected reductive group
over K. Any split maximal torus T C G of rank d defines the split pair (G, T) of rank
d to which we associate the root datum

(X*(T),®(G, T), X.(T),®" (G, T))
with the natural pairing
(,): X*(T)g x X«(T)g — Q (2.1)

(cf. [23, Part II, 1.13]). Furthermore, there exists an invariant inner product on G,
abbreviated by IIP (cf. [11, Section 5.2.1]). That means we have a non-degenerate
positive definite symmetric bilinear form ( , ) on X,(T)q for all maximal tori T (defined
over K) of G such that the maps

X.(T)g — Xu(9Tg Mo,
X.(T)g — X.(rT7 Y)q,

are isometries for all g € G(K) and 7 € Gal(K/K).

Example 2.1. |12, Example 6.2.3] Let G be semi-simple and T a maximal torus of G.
Then, the Killing form

(1, :U’/) = Z (1, @) <:u/7 )

acd
is a natural choice of an ITP on X, (T).
A chosen ITP on G, for any split pair (G, T), together with the natural pairing ([2.1))
induces an isomorphism of (Q-vector spaces
X*(T)g — X«(T)o,
X — X7
such that

(X 1) = (6 m) (22)
for all p € X, (T).

For the rest of the subsection, we fix a split maximal torus T of G and an IIP ( ,)
on G. Using ® := ®(G,T) for the root system and fixing a Borel subgroup B inside
G containing T, we get a set of corresponding positive roots ® C ® and simple roots
A C ®* as explained in [58, Section 16.3.1]. We call such a tuple (T, B) a Borel pair.

Then, as in [12, p. 177], after choosing an invariant inner product (, ) on X*(T)q,
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we identify the coroot a¥ € @V := &V (G, T) of a root a € ¢ by

a’l = . (2.3)

There is the following relation between simple roots and coroots.
Lemma 2.2. [58, Lemma 8.2.7] For o, 3 € A, a # 3, we have {a, 3Y) < 0.

Furthermore, let W = Ng(T)/T be the Weyl group of G with longest element wy
with respect to B. The natural action of W on T by conjugation induces an action on
X*(T). Then by, [23, Part II, 1.5], there is a set of generators S := {s4}aea C W, the
simple reflections, such that

Sad=A— () a")a (2.4)

for A € X*(T)g and o¥ € ®Y(G, T). But there also is another action of W on X*(T).
Namely, for w € W and A € X*(T), the dot action is given by

w-A=w.A+p)—p (2.5)

where p = %Zaeqﬁ a. For w € W, the support supp(w) of w is the set of simple
reflections contained in a (thus in any) reduced expression of w.

Each I C A defines a root system ®; C ® with positive roots <I>I+ C ®; and a Weyl
group Wi C W generated by the {s,}aecr (cf. [23, Part II, 1.7]). We denote by W/ the
right Kostant representatives, i.e. the set of minimal length right coset representatives

in Wi\W. It can be described as (cf. [5, (2.2)])
W!={weW |l(sqw) >Il(w) for all a € T}.
Lemma 2.3. [22, Section 0.3 (4)] Let w € W and I C A. Then, w € W if and only
ifwla € T for all a € OF.
Additionally, for w € W let

I(w) :={ae A|l(sqw) >Il(w)} C A (2.6)

be the unique maximal subset such that w € W/ (cf. [44, p. 663]). Moreover, we
have an inclusion preserving bijection (cf. [35, Proposition 12.2])

P(A) «— {parabolic subgroups P D B} (2.7)
I— BW;B =:P;

where the subgroups P; denote the standard parabolic subgroups of G with respect to
B, eg. Py = B, Po = G. Furthermore, each P := P admits a Levi decomposition
P =Lp-Up (cf. [23, Part II, 1.8]). Here, Lp denotes the standard Levi factor containing
T and Up the unipotent radical of P. Additionally, we let Up be its opposite unipotent
radical.

Remark 2.4. Let I,J C A. Since Wy " Wj; = Winy, one sees that Py NPy = Prny.
Additionally, we define

xX1(T)f = {A e x*(T) ] (A,a¥) >0 forall a € I} (2.8)
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for I C A to be the set of Lp,-dominant weights. For I = A, we just write X*(T)" and
call it the set of dominant weights.

Proposition 2.5. [32, p. 502] Let A € X*(T)", we W and I C A. If w € W, then
w- A€ X*(T)}.

Remark 2.6. If ) is additionally regular, i.e. (A4 p,a¥) # 0 for all « € ® (cf. [22
Section 1.8]), then also the converse holds (cf. [5, Proposition 2.4]).

The derived group Gger is a connected semi-simple subgroup of G with maximal
torus
Ther := {Im(a”) |a €®) C T (2.9)

(cf. [58, Proposition 8.1.8/ Section 16.2.5]). Moreover, Tqe splits by [6, Proposition
8.2.(c¢)]. The natural map

X*(T) — X*(Tger) (2.10)

A— Aoy,

induced by the inclusion ¢ , is injective after restriction to ® (cf. [58, Section 8.1,
p. 135]). Thus, we identify ® with its image. Therefore, the split pair (Gger, Tqer) has
the root datum

(X*(Tder)7 (1)7 X*(Tder)v q)\/)

(cf. [58, Corollary 8.1.9]) and we denote the associated pairing by (, )ger- Then, by
semi-simplicity of Gqer, the simple roots A form a basis of X*(Tger)g (cf. [23, Part II,
1.6]). Thus, we can define the dual basis

{wa | a € A} C Xi(Tder)Qs (2.11)

ie. (B, Wa)der = 0a,p for all a, B € A. Naturally, {wq}aca C X«(T)g. By dualitiy, the
corresponding set of coroots {aV | & € A} forms a basis of X, (Tqer)g (cf. [23, Part II,
1.6]) and we analogously define the dual basis

{a | @ € A} C X*(Tger)o

whose elements are known as fundamental weights. Then, a helpful oberservation for
later is the following.

Lemma 2.7. Let p = Y cn o’ € Xi(Taer)g C Xo(T)g with ng € Q, and 8 € A.
Then,
(, @) > 0 if and only if (Og, t)der > 0.

Proof. Let a € A. We have by (2.3 and (2.2))

2 2

(a”,wp) = ((70‘*’@@ = m(@@ﬁ%

a, Q)

As the natural pairings are induced by the composition of a cocharacter with a character
(cf. [23, Part II, Section 1.3]), we see that

(a, g) = (00, 8) der-
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Thus,
(av,w/g) = (a,2a) (@, @g)der = ( ,2a) a,B-
Hence,
(Z naav,w[g) = (5726)715 > 0 if and only if (cog, Znaav>der =ng > 0.
O
Further, since the fundamental weights form a basis of X*(Tqer)g, we notice that
a=> {a,8)dertop (2.12)

BeA

for « € A. After we fix an ordering on A = {a; < as < ... < oy}, the Cartan matriz is
defined as
Ce QlA‘XIAI with Cji = <ai704;‘/>der- (2.13)

Hence, by ([2.12), it is the base change matrix from {a}qea t0 {wwa }aea. For the inverse
of C', we will need the following fact.

Lemma 2.8. Let ® be irreducible. Then, all entries of C™1 are positive rational num-
bers.

Proof. This is explained in [34, Section 5, p. 19]. O

With the definition of , we also obtain an alternative description of the standard
parabolic subgroups of G. For a one-parameter subgroup u € X.(G) defined over some
field extension L of K, we denote by P () the parabolic subgroup of G, whose K-valued
points are given by

P(u)(K) = {g € G(K) | lim u(t)gpu(t) ™" exists in G(K)} (2.14)

(cf. [36], Definition 2.3 /Proposition 2.6]). We have seen that (3, w.) = dq, for a, f € A.
Thus, [58, Proof of Proposition 8.4.5/Lemma 15.1.2] implies that

Pa\{a} = P(@a)-
Hence, we deduce from Remark [2.4] that

Pr= () Paya} = [ ) P(@a) (2.15)
agl agl

for I C A.
Jantzen states in |23 Introduction and Part II, Section 1] that split reductive groups
and constructions like Borel und Parabolic subgroups can be carried out over Z, and

therefore, by base change, over any integral domain. This is based on the following
theorem.

10
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Theorem 2.9. [53, Exp. XXV, Corollary 1.3] Let K be a field. Then, for any split
connected reductive group G over K exists a reductive Z-group G so that

Gz K=G.

As remarked in [53, Exp. XXV, Section 1] after the above statement, G can be as-
sumed to be split.

In the case that K is a local field with ring of integers O and G a split connected
reductive group over K, this implies that there is a split reductive group Gg over Ok
such that (Go)x = G. Furthermore, (Gg)r and G have the same root datum for k the
residue field of Og. We call Gg a split reductive group model of G over Og.

Last but not least, we will consider an example that can be kept in mind for the
upcoming chapters.

Example 2.10. Let K = Qp, n € N and G = GL,, over K. We let T be the algebraic
subgroup of diagonal matrices. Then, we identify X*(T) with Z™ by associating the
character

At (.. ota) — [t

to (A1,...,An) € Z". Similiarly, Z" = X,(T) by mapping (p1,...,4n) € Z" to the
cocharacter
Wz (2P ZE).

Then, the pairing is the usual inner product of Q™. Furthermore,
P=0"={e;—e;|1<i#j<n}
with e; the i-th standard unit vector of Q™. Hence,
1
p= i(n—1,n—3,...,—(n—3),—(n—1)) e Z".
If we choose B to be the algebraic subgroup of upper triangular matrices, then
A={a;:=e;—e€11|1<i<n-—1}.

Moreover, W = S,, and s; := s,, is the transposition (¢,7 + 1). Then, W acts on X, (T)
and X*(T) by permuting entries, respectively. Let I C A and A\l = {o,, iy, ..., i, }

with 0 = 49 < i1 < iy < ... < 4,. Then, Py is the algebraic subgroup such that P;(K)
consists of matrices with GL;, , _;; (K)-blocks along the main diagonal (ordered by the
i), zeros below and arbitrary entrys above. Furthermore,

X?(T)+ = {()\1, .. ,)\n) ez | A > >‘i+1 for all o € I}
The derived subgroup Gge; of G is SL,,, with Tqe(K) = T(K) N SL,(K). In addition,
=—n—-4....,n—%,—1...,—1% "
n(n Qbyeoeyn— i, —0...,—1) €
with (wai)i =n —1i and (wai)i-i-l = —1i.

11
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2.2 The BGG categories O and OF

Let the ground field K be a finite extension of Q, and (G, T) a split pair over K of
rank d (cf. section [2.1)). Further, let (T,B) be a fixed Borel pair and L a finite extension
of K.

Over the complex numbers, the BGG category O and its parabolic version OF provide
powerful tools to investigate (infinite dimensional) representations of Lie algebras. A
good reference for this topic is [22]. The goal of this chapter is to recall the adaption of
these notions to the case where the coefficient field L is not algebraically closed. For our
setting, this was considered in detail in |44 Section 2.5] by Orlik and Strauch.

Definition 2.11. [44, Section 2.5, p. 105] The category O is defined to be the full
subcategory of Mod U(g) whose objects M satisfy the following conditions:

(O1) M is a finitely generated U (g)-module.
(02) M is tr-semisimple, i.e. M = e M.

(0O3) M is locally by-finite, i.e. for each v € M one has that U(b) -v C M is a finite
dimensional L-vector space.

Here, for A € t; = Homp(tz, L), we denote by
My={veM]|t-v=At)vforalltet}

the A-eigenspace of M. Furthermore, by derivation we consider X*(T) as a subgroup of
7.

Definition 2.12. |22, Section 1.15] Let M € O. The formal character of M is defined
as

ch(M) : t; — Z*
A — dimyp (M)).

Remark 2.13. It is also common to write

ch(M) = Z dimyp (M)y)e(N)
et

for the formal character of M € O. Here, e()\) is the characteristic function which is 1
for A and zero else.

Moreover, Orlik and Strauch defined a certain subcategory of O which will play an
important role for upcoming sections.

Definition 2.14. [44, Definition 2.6] Let 0,15 be the full subcategory of O whose objects
are U(g)-modules M such that all A appearing in (O2), for which M) # 0, are contained
in X*(T) C }.

Example 2.15. [44, Example 2.7] Let A € t7. The action of t;, on L given by X defines
the tz-module Ly which extends uniquely to a by-module. Then,

M(A) =Ul(g) ®u) La

12
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is the Verma module corresponding to A and L(A) € O is its unique simple quotient.
Notice that M (X) and L(A), respectively, lies in Oyig if and only if A € X*(T).

Lemma 2.16. /8, Lemma 1] Let \, p € t7 and M a U(g)-submodule of M(X), such that
ch(M) = ch(M(u)). Then, M is isomorphic to M(u).

There is also a parabolic version of the category O. To define it, let P be a standard
parabolic subgroup of G with respect to B.

Definition 2.17. [44, p. 106] By OP we denote the full subcategory of Mod U (g) whose
objects M satisfy the following conditions:

(OP1) M is a finitely generated U (g)-module.

(OP2) Viewed as an Ip r-module, M is the direct sum of finite dimensional simple mod-
ules.

(OP3) M is locally up p-finite.

First, notice that @ = O° and that OF is the category of all finite dimensional
(semisimple) U(g)-modules. Moreover, for a standard parabolic Q D P, we have that
0% C OPF. Hence, O is a full subcategory of O and contains all finite dimensional
U(g)-modules. Additionally, O is an L-linear, abelian, artinian and noetherian cate-
gory which is closed under taking submodules and quotients. Again, the Jordan-Ho6lder
series of an object of OF lies in OF.

Letting Irr((p, ) be the set of isomorphism classes of finite dimensional irreducible
[p,r-modules, we have for M € OP that

M= & M,

aGIrr([RK)fd

by property (OF2) in Definition [2.17, with M, C M being the a-isotypic part of the
representation a. Similiar to before there is an algebraic subcategory in OF.

Definition 2.18. [44, p. 106] Let (’)glg be the full subcategory of OF with objects
M € OPF satisfying the following property: whenever M, # 0, then, a is induced by a
finite dimensional algebraic Lp r-representation.

Then, (’)glg = O,g and furthermore, Oslg is an abelian, artinian, noetherian category
which is closed under taking submodules and quotients.

Definition 2.19. |44, Definition 5.2] Let M € O. A parabolic subalgebra p (and the
corresponding parabolic subgroup P, respectively) is called maximal for M if M € OP
and M ¢ O1 for all parabolic subalgebras q strictly containing p.

Example 2.20. [44, Example 2.10] Let I C A and P :=P;. For A € X*(T)7, thereis a
corresponding finite dimensional irreducible algebraic Lp r-representation V7(X), which
can be viewed as a P-representation by letting Up ; act trivially on it. Then,

Mr(A) =U(g) @up) V(D)
is the generalized Verma module associated to A, which lies in C’)glg. We have a surjection

qr M()\) — M[(A)

13
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with the kernel being the image of @,c; M (sq - A) — M(X) (cf. |33, Proposition 2.1}).

Furthermore, for J C I, there is a transition map
qrr: My(X) — Mr(X) (2.16)

such that qr = qr,7 0 ¢ (cf. [43] Section 2, p. 653]).

2.3 The category of locally analytic representations

Let K and L be fields as in the previous section and G a locally K-analytic group. In
this subsection, we take a look at Repffz(G), the category of locally analytic representa-
tions of G on a certain class of L-vector spaces introduced by Schneider and Teitelbaum
in [57].

We start by recalling some definitions concerning topological L-vector spaces.

Definition 2.21. i) A topological L-vector space V is locally convez if it has a fun-
damental system of open 0-neighbourhoods consisting of Og-submodules (cf. [57,
Section 1, p. 444]).

ii) A locally convex L-vector space is barelled if every closed lattice is open (cf. [57,
Section 1, p. 444]).

iii) A locally convex L-vector space is of compact type if it is the inductive limit of
countably many L-Banach spaces (V},)nen with transition maps being injective and
compact (cf. [57, Section 1, p. 445]).

iv) A locally convex L-vector space is called an L-Fréchet space if it is metrizable and
complete (cf. |54, Section 8, p. 46]).

Theorem 2.22. [57, Theorem 1.1] Any space V' of compact type is Hausdorff, complete,
bornological and reflexive. Its dual is a Fréchet space and satisfies V' = @n V.

Let V be a Hausdorff barelled locally convex L-vector space. Then, C**(G, V) is the
locally convex L-vector space of locally L-analytic functions on G with values in V (see
[57, Section 2, p. 447] for a detailed description). Further,

D(G) := C*(G, L)

is the locally convex vector space of L-valued distributions on G (cf. [57, Section 2,
Definition, p. 447]). Additionally, with convolution as multiplication, it is an associative
L-algebra (cf. |57, Proposition 2.3]). A prominent class of elements of D(G) is that of
Dirac distributions d4, for g € G, defined by

Definition 2.23. [57, Section 3, p. 451, Definition]| A locally analytic G-representation
V (over L) is a Hausdorff barelled locally convex L-vector space V' equipped with a G-
action by continous linear endomorphisms such that, for each v € V', the orbit map
pu(g) = gv lies in C*"(G,V). We denote the category of such representations by
Repf(G).

14
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Definition 2.24. [44, Section 2.1, p. 103] A locally analytic G-representation V is called
strongly admissible if V is of compact type and V’ is a finitely generated D(K)-module
for any compact open subgroup K of G.

As in the algebraic or smooth case, we also have the induction functor.

Definition 2.25. [44, Section 2.2, p. 103] Let H be a closed subgroup of G and (V, p) a
locally analytic representation of H. The locally analytic induced representation Ind%(V)
is defined as

Indf (V) = {f € C*(G,V) | f(gh) = p(h™")f(9) Vh € H,Vg € G}.

The group G acts on Ind% (V) by (g.f)(z) = f(g'x).

2.4 The functor ]-‘fj

We remain in the setting of section 2.2} Let G = G(K) and P = P(K) for some
standard parabolic subgroup P of G. As mentioned in [57, p. 443], G and P are locally
K-analytic groups. We will introduce the functor ]-"]Cj defined by Orlik und Strauch in
[44], which links the category Oglg with the category Rep%(G) from the last two sub-
sections.

Due to the results of [44], we have at some point to make the following assumption.

Asssumption 2.26. (44, Assumption 5.1] If the root sytem ®(G,T) has irreducible
components of type B, C, or Fy, we assume p > 2, and if ®(G,T) has irreducible
components of type Ga, we assume that p > 3.

Let M € Oglg. Then, by the very definition of the category Oglg, there is a finite-
dimensional representation (W, p) C M of py, which generates M as U(g)-module. We
call such a tuple (M,W) an Oglg-pair. Hence, such a pair comes with a short exact
sequence of U(g)-modules

0—=0—-U(g) @uepyW —M —0 (2.17)

with 0 being the kernel of the natural map U(g) @,y W — M. By the following lemma,
we see why it is helpful to restrict to the algebraic part of the category OP.

Lemma 2.27. (44, Lemma 3.2] The representation p lifts uniquely to an algebraic Pr,-
representation on W (which we denote again by p).

Thus, we have a locally analytic representation of P on the dual space W' denoted
by p’. Then, Orlik and Strauch considered the pairing

<, >Can(G7L) . D(G) ®D(P) w Xr Indg(W') h— Can(G, L) (218)
Gow e fr— [g— (34 (FO)®))©)
with (5 - (f()(w)))(g) =d(xz — f(gz)(w)) in [44, p. 108, (3.2.2)]. Besides D(P), we

can also consider U(g) as a subring of D(G), as explained in [57, Section 2, p. 449/450],
and similiarly U(p) C D(P). Then, it turns out that the canonical map

U(g) ®u@py W+ D(G) @ppy W

15
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is injective (cf. [44, p.108]). Therefore, with the notation of (2.17)), we consider
Ind(W')° := {f € IndB(W’) | (3, f)can(c,ry = 0 for all § € d}
from [44, p.108, (3.2.3)]. It is a G-equivariant subspace of Ind%(W").

Proposition 2.28. [{4, Proposition 3.3. (i)] The representation IndG(W')? is a strongly
admissible locally analytic G-representation. In particular, the underlying topological
vector space is reflexive.

Moreover, D(g, P) denotes the subring of D(G) generated by U(g) and D(P). The
following lemma explains which D(g, P)-module structure we will use on any object
M e Ozlg from now on.

Lemma 2.29. [/4, Corollary 3.6] There is on any object M € (’)slg a unique D(g, P)-
module structure with the following properties:

i) The action of U(p), as a subring of U(g), coincides with the action of U(p) as a
subring of D(P).

ii) The Dirac distributions 0, € D(P) act like group elements g € P (the latter action
given by Lemma|2.27).

Moreover, any morphism My — Ma in Ozlg is automatically a homomorphism of D(g, P)-
modules.

Proposition 2.30. [44, Proposition 3.7] There is an isomorphism of D(G)-modules
G \0 !
D(G) @p(g,py M = (IndG(W')) .
Based on this, Orlik and Strauch defined the following contravariant functor
F§ : Oy — Rep(G)
M — (D(G) @p(q, p) M)".
in |44} Section 4.1].
Proposition 2.31. [/4, Proposition 4.2] The functor F$ is exact.

They also gave an alternative description of this functor |44, Section 3.8] which we
would like to recall.

Let Gg be a split reductive group model of G over Ok (cf. section with Borel
pair (T, Bg) and parabolic Py containing By such that the base change to K yields the
pair (T, B) and P respectively. Let 7 € O, be an uniformizer. For any positive number
m € N, we consider the reduction map

Pm s Go(Op) — Go(Or/(7™)).

We set Gg = Go(Or) and define P™ := p}(Po(Or/(7™)) C Go. Let <I>u; ={a1,...,a,}

be the set of roots appearing in up (under the adjoint action of T) and ya,, ..., Ya, be
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a basis of the L-vector space up. Then, for € € |[K*|, the norm | |_on U(up) is given by

it (2.19)

= sup ‘il! st aqy

E ) Y i
all,mﬂryal e yO;rr
(ilv-“air)eNa

(’L'l,A..,iT)GNE

€

Completing U(up) with respect to | | yields the L-Banach space

Ulup)e := { Yo i Yyl |, € L
(il,...,ir)ENS
il i) - agy g €T — 0 for iy 4. i — 0}. (2.20)

Let m € N and €, := |7|™. We will write U(up ), for U(up) 1 . For M € (’)glg, we have
seen in ([2.17) that there is a short exact exact sequence

0—=0—U(g) @uepyW — M — 0

of U(g)-modules with a finite dimensional p-representation W which can be lifted. By
the PBW-Theorem, we know that

Ul(g) QU (p) W =U(up) @ W.

For that reason, we consider ? as a submodule of U(up) ® W and denote by 0,, its
topological closure in U(up),, @ W. The latter object also has a natural P™-action
induced by the action

p-(z @ w) = Ad(p)(z) @ w

of Py on U(g) @y W (cf. [44} p.113/114]). Finally, this leads to the following identifi-
cation.

Proposition 2.32. [/4, Corollary 3.12] Let M € (’)glg. With the preceeding notation we
have that

FHON = (im0 (0 1W/00))

Inspired by Proposition Orlik und Strauch extended the functor J-"g to a bi-
functor on O}, x Rep>®™(Lp) (cf. [44, Section 4.4]). For this, let V € Rep;™ ™ (Lp).
By inflation, we consider V as a representation of P. Equipping V with the finest locally
convex L-vector space topology, it is of compact type and carries the structure of a locally
analytic P-representation (cf. [44, p. 117]). For an Oglg—pair (M, W), Orlik und Strauch
consider W @, V' as the projective (or inductive) tensor product which is complete and
a locally analytic P-representation via the diagonal action (cf. [44, p. 117]). Then, they

defined

FE(M,W,V) := Indg(W' @ V)°
= {f €emdE(W' @ V) | (8, f)can(c,r) = 0 for all § € d}

with the pairing (, )can(q vy being defined completely analogous to (2.18). However,
the definition is independent of the chosen (’)zlg—pair (M, W) (cf. [44] Section 4.6]).
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2.4 The functor ]-_g

Therefore, we write ]-"g(M , V) for any fg(M , W, V). We recap some properties of the
bi-functor ]:Ig.

Proposition 2.33. [/4, Proposition 4.7] FS is a bi-functor
OF),  Rep?™™™(Lp) — Repf*(G)
(M, V) — FE(M,V)
which is contravariant in M and covariant in V.
In case V is the trivial representation 1, we will write F§(M).

Proposition 2.34. [/4, Proposition 4.9/

i) The bi-functor .7-“1(3; is exact in both arguments.

it) If Q@ D P is a parabolic subgroup, q = Lie(Q), and M € Oglg, then

.L
Fg(M7 V)= ]:g(Mv ZLg(LQmUp)(V))

where iéi(LQﬂUp)(V) = ig(V) denotes the corresponding induced representation in
the category of smooth representations.

Theorem 2.35. [44, Theorem 5.8] Assume that Assumption |2.26 holds. Let M € Oyq
be simple and assume that p is maximal for M (cf. Deﬁm’tion%}. Let V' be a smooth
and irreducible Lp-representation. Then, fg(M, V') is topologically irreducible as a G-
representation.

We devote the last part of this subsection to an application of the functor ]-"]Cj. Let
I C A and Py be the associated parabolic subgroup of G. Then, we notice that

Ind@, (1) = 7§, (M;(0))

where 0 is the weight sent to the zero vector under the identification X*(T) = Z¢. More
generally, for A\ € X*(T)* (cf. (2.8)), we have

I5,(A) == Ind®, (V7(N)') = Fp,(M;(\)) (2.21)

since the Og{g-pair (Vi(M\), M1(X\)) has trivial kernel ® (cf. (2.17)). For I C J C A, the
morphism ¢y ; (cf. (2.16)) induces, by Proposition [2.33 and [2.34] a map

Fg (QI,J, incl.)

par: I8, (\) = FE (Ms(\),1) — FE(Mi(\),ip)) = Fp (Mi(N) = I§,(\)

of locally analytic G-representations. Furthermore, the map p; is injective and has
closed image (cf. [43, p. 660]).

Definition 2.36. [43, p. 661] For I C A,

VEO) =I5/ > 18,0
JoI

is the twisted generalized Steinberg representation.

18
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It has the following resolution in Repf(G).

Theorem 2.37. [43, Theorem 4.2] Let A € X*(T)* and I C A. Then, the following
complex is a resolution of Vlgj(/\) by locally analytic G-representations,

0=IEN— P IE.N— P IEN—...

ICKCA ICKCA

|A\K|=1 |[A\K[=2
= P IE.(N) =I5 (N = V(N —o0.

ICKCA

|[K\I|=1

Here, the differentials dg/ g : Iqu/()‘) — IgK (M) are defined as follows. We fix an
ordering on A. Let K, K’ C A with |[K| =|K'| =1 and K/ = {a; < ... < a,}. Then,

J | (-Dpgr g K'=KU{w}
KK = ) -
0 K¢ K

We like to stress a relative version which was shown in [43] p. 663] in the proof of the
previous theorem. For this we follow the notion of |43, p. 661].

Definition 2.38. Let A € X*(T)*, I ¢ A and w € W!. By Proposition we know
that w - A € X*(T)7. Then, we set

If (w) :== Indf (Vi(w - \)) = F§ (Mr(w - \)), (2.22)
VE (w) = IE (w) / 3 I§ (w).

J2I

weWw/

Corollary 2.39. Let A € X*(T)*, I C A and w € W!. Then, the following complex is
acyclic

0— I,@f](w)(w) —.= P IE (w) = IE (w) — VE (w) — 0.
ICKCI(w
|K\I|:(1)

In [43, Theorem 4.6], it was shown that the Jordan-Hoélder factors of VS (\) are of the

form .7-"191 (L(w N, v;[] ) for suitable I, J C A and w € W. This is related to Theorem

We will use Corollary m to get a similar statement for V§(w) which partially
generalizes |43, Theorem 4.6].

For w,v € W, we denote by m(w,v) € Z>¢ the multiplicity of L(v-0) in M (w-0). It is
well known that m(w,v) > 0 if and only if w < v with respect to the Bruhat order < on
W. Moreover, the multiplicities can be computed using Kazhdan-Lusztig polynomials
(cf. 3] or |9]) which is in general only possible in a timely manner with the help of a
computer.

Theorem 2.40. Assume that Assumption|2.26 holds. Fix w,v € W and let Iy := I(w)
and I := I(v), respectively, be as above. For a subset J C A with J C I, let U£§ be
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the generalized smooth Steinberg representation of Lp,. Then, the multiplicity of the
irreducible G-representation fg}(L(v “A), vg) in V§ (w) is

Z (71)Z(w/)+|JﬁIO\m(w/w,v)

w'e
supp(w’)=JNIo

and in this way we obtain all the Jordan-Hélder factors of Vg(w).

Proof. We only have to slightly modify the proof of [43| Theorem 4.6]. From the resolu-
tion for V§(w) by Corollary we obtain the multiplicity

VS (w) : FE(L(v- ), vp)] = S (=)FIIE (w) : FE(L(v- ), vp!)]
KClyp

of the simple object ]:gl(L(U - A), vg) in V§(w). By the arguments mentioned in loc.
cit, it follows that [IEK (w) : }"gI(L(v - A), vg)] # 0 if only if K C J N Iy. In that case
we have

(15 (w) : FB (L(v- ), vp)] = [Mg(w-X) : L(v- ).

From the character formula

ch(Mg(w-A) = > (=1)"™ch(M(w'w - N)),

w' eWg

(cf. [22, Section 9.6, p. 189, Proposition]), we obtain

[VE (w) : FE (LA, vp)] = > (=D)ED S (=) ™) [M(w'w- A) : L(v- \)]

KcJnlp w' EWg
= Y (D[ Mww-N):Lw-N] Y (~DEL
w'eW KcJnlip

supp(w’)CK
Finally, we have

Z (—D)IE = (_1)supp(w’)(1 — 1)l(JnTo)\supp(w’)]
supp(w’)CKCJNIp

which is non-zero if and only if supp(w’) = J N Iy. Hence, the formula follows.

The natural morphism V§(\) — V& (w) is surjective for all w € W as it is induced
by an injective morphism M (w-\) — M (A) (cf. Lemma [3.30). Therefore, |43, Theorem
4.6] implies that we obtain all Jordan-Hélder factors of V,§'(w) in this manner. O

2.5 Period domains

In this section we give a brief introduction to our central object of study, the p-adic
period domain (cf. [41] and [11]). For a more general setting and detailed presentation,
we refer the reader to [12].

Let F be an algebraically closed field of characteristic p and Ky = Quot(W (F)), the
quotient field of the ring of Witt vectors of F. Be K = Q, with algebraic closure K
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and absolute Galois group I'x = Gal(K/K). We denote by C the p-adic completion of
K. Moreover, let 0 € Aut(Ky/K) be the Frobenius homomorphism and G a quasi-split
connected reductive group over K.

2.5.1 Filtered isocrystals

An isocrystal over F' is a pair (V, ®) with a finite-dimensional Ky-vector space V and
a o-linear bijective endomorphism ® of V. Then, an isocrystal with G-structure (also
referred to as a G-isocrystal) is an exact faithful tensor functor

Repr (G) — Isoc(F)

from the category of finite-dimensional algebraic K-representations to the category of
isocrystals over F. In view of [49, Remark 3.4] there exists a very concrete description
of G-isocrystals which we will sketch. Every G-isocrystal is induced by an element
b € G(Kp). Namely, to a finite-dimensional algebraic K-representation (V,p) of G, we
associate

Nb(V) = (V ®Kr Ko, p(b)(ldv X 0’))

which defines an isocrystal over F'. The morphisms are mapped under N, as expected.
Thus, N, is a G-isocrystal and b,0’ € G(Kj) yield the same G-isocrystal if and only if
there exists a ¢ € G(Kjp) such that b’ = gbo(g)~!, i.e. if they are o-conjugated. The
set of o-equivalence classes [b] in G(K)) is denoted by B(G) and was introduced by
Kottwitz 28] [29]. In |11, Section 3] the authors give several interpretations of this set.
Additionally, the G-isocrystal IV, comes along with its automorphism group Jp. It is an
algebraic group over K with

Jp(A) = {g € G(Ko @K A) | gbo(g)~' = b}

for every K-algebra A. It depends only on [b] in view of [50, Section 2.1, p. 280]. As G
is quasi-split, we know by [28, Section 6] that J} is an inner form of a Levi subgroup of
G hence J;, is reductive.

Let L be a field extension of K¢. A filtered isocrystal (V, ®, F*®) over L is an isocrystal
(V,®) over F' with a Q-filtration F* (decreasing, exhaustive and separated) on V7. The
filtered isocrystal over L form a K-linear quasi-abelian tensor category Fillsock(®) (cf.
[12, Section VIII, p. 192]). Then, we say that a filtered isocrystal (V, ®, F®) over L is
weakly admissible if the inequality

> idim griz. ) (N @k, L) < ord,, det(P|N")

i
holds for every subisocrystal N’ of (V,®) and with equality in case N’ = (V, ®).

Any 1-PS X : G,,, — G, defined over L induces a Z-graded L-vector space

V=P

1EL

for a finite-dimensional algebraic K-representation (V, p), where the grading comes from
the weight spaces VA = {v € V1, | p(A(s))v = sv}. Thus, we naturally have a decreasing
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exhaustive separated Z-filtration F3 (V) on V, given by

V)=V
j>i
Therefore, a tuple (b, \) € G(Kp) x X.(Gr) defines a tensor functor
Repj(G) — Fillsok(®)
(Vi p) — (Np(V), FX(V)).

Such a pair (b, \) is weakly admissible if (Ny(V'), Fy(V)) is weakly admissible for all
(Vi p) € Repy (G).

2.5.2 Slope homomorphism and Newton map

A technical issue, which will be important in the upcoming sections, is the slope
homomorphism vy. Let DD be the algebraic pro-torus over K with character group Q.
Kottwitz showed in |28, Section 4] that there exists a unique morphism

v, Di, — Gk,
for b € G(Kp) which, by the Tannakian formalism, induces the tensor functor

Repr (G) — Grad(Vecg,, Q)
(V,p) — PV

1€Q
from Repy (G) to the category of Q-graded Ky-vector spaces, where the grading comes
from the slope decomposition of N,. Further, it has the properties
Vgba(g)—1 = gupg ! for all g € G(Ky), (2.23)
VU(b) = U(l/b) (224)
(cf. |28, Section 4.4]). By employing both, one obtains v, = bo(1)b~! and thus, we have
a well-defined map
B(G) - [HomKo (]D)Km GKO)/Int(G(KO))]UZIa
[b] — [ve]

the so called Newton map. We will follow [11, Section 3.2.1] and denote the codomain
by .4 (G), which is also referred to as set of Newton vectors.

An element b € G(K)) is basic if v, factors through the center of G which is equivalent
to Jp being an inner form of G by [28| Section 5.1/5.2]. Moreover, by |28} Section 5.1], 1,
is already defined over K. We say that [b] € B(G) is basic if it contains a basic element.
Let s be a positive integer. An element b € G(K)y) is s-decent if sv, factors through the
quotient Gy, i, of Dg, and the equality

(bo)® = (s1)(p)o®
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holds in G(Ko) xo”. The equivalence class [b] € B(G) is decent if it contains an s-decent
element for some positive integer s (cf. |51, Definition 1.8]). By our assumptions on G
and the algebraically closedness of F', every class [b] € B(G) is decent (cf. [12, Remark
9.1.34]). In particular, there exists a positive integer s and an s-decent element b € [b]
such that b € G(Qps) and v, is defined over Qps (cf. |51, Corollary 1.9]).

2.5.3 Parameterization of weakly admissible filtrations on isocrystals

In the following, we fix together with G an element b € G(K) and a conjugacy class
{u} C X.(G) over K.

The conjugacy class {u} defines the Shimura field F := E(G,{u}) C K. It is the
fixed subfield of K under the stabilizer ', of {u} in ' and is a finite extension of K.
As G is quasi-split, {u} contains an element p defined over E by [30, Lemma 1.1.3].
Therefore, the associated flag variety .7 := % (G, {u}), defined over E, can be identified

F =Gg/P(p).

Let us point out that the K-valued points of .% are given by

{n}/ ~

where ~ is the par-equivalence relation explained in |11} Section 4.1.2], which identifies
the elements of {u} defining the same filtration on Repy (G). Hence, for a field extension
L of E, a point x € % (L) gives rise to a cocharacter u, € {u} defined over L up to
par-equivalence (cf. [12, Remark 6.1.6] for more details).

Setting E := EKj, we write .# for the adic analytification of .% - According to [51,
Proposition 1.361)], the set . := .7 (G, {u}, b)" of weakly admissible filtrations with
respect to b in %, i.e.

Fy* (L) ={z € F(L) | (b, uy) weakly admissible}

for any field extension L of E, has the structure of a partially proper open subset of Z.
The space .} is the period domain attached to the triple (G, {u},b). First, we note
that %" only depends on [b] € B(G). Secondly, the natural action of J,(K) C G(Kj)

v

on .# restricts to an action on %" (cf. [51, 1.35 and 1.361)]).

In the case that b is s-decent, we can regard .%," as a partially proper open subset
defined over E, := EQps (cf. |51, Proposition 1.36ii)]).

2.5.4 Existence of weakly admissible filtrations

Let B be a Borel subgroup in G and T a maximal torus contained in B. Further, let
X (T)a be the set of dominant rational cocharacters of T with respect to B. The chosen
B induces a partial order < on X, (T)g where N < Xifand only if A\— )\ = Y oaeA naa
with all n, € Q>0. According to [50, Section 2.1/2.2] (cf. [11, Remark 3.3]), there is a
unique p € {p} and a unique representative vy € [13] for [b] € B(G) lying in X (T)(éf
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Rapoport and Viehmann associated in [50, Definition 2.3] the set of acceptable ele-
ments to a conjugacy class {u} by setting

A(G, {p}) = {[b] € B(G) | vy < 1}

where 71 := m > rergr, T(H) € X (T)a We remark that this set is non-empty and

finite by [50, Lemma 2.5]. Finally, one obtains the following result.

Theorem 2.41. [12, Theorem 9.5.10] The period domain % (G,{u},b)" is non-empty
if and only if [b] € A(G, {u}).

2.5.5 Geometric invariant theory

We recall some notation from |11} Section 5.2.3]. Let [b] € B(G) be decent and fix an
ITP on G (cf. section . Then, there is an ample line bundle 2 := Zg 1,1 ), (,) on
F » together with the slope function p(, ) (cf. [36, Definition 2.2]) which characterizes
weakly admissible points.

Theorem 2.42 (Totaro, |59, Theorem 3], [12, Theorem 9.7.3]). Let L/E be a field
extension and x € F(L). Then, x € F¥*(L) if and only if u? (x,\) > 0 for all
Ae X, (Jy) e,

2.5.6 Synopsis

The definition of a period domain involves a lot of data which we summarize at this
point. Therefore, we recap the notion of a local Shtuka datum from |11, Definiton 4.4]
which we adjust to the quasi-split case.

Definition 2.43. |11} Definiton 4.4] A local Shtuka datum over K is a triple (G, {u}, [b])
consisting of a quasi-split connected reductive group G defined over K, a geometric
conjugacy class {u} of cocharacters of G defined over K and a o-conjugacy class [b] €

A(G, {n}) € B(G).
Associated to a local Shtuka datum (G, {u}, [0]), we have seen
1. the reductive group J := J;, over K for b € [b],
2. the Newton vector [vy] € A (G),
3. the Shimura field E := E(G, {u}),
4. the flag variety .# = % (G,{p}) = Gg/P(n) over E,
5

. the period domain .7} := .7 (G, {u},b)** over E with a J(K)-action.
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3 Cohomological computations

3.1 Setup

In order to apply the results of [43] 44] and ideas of |37], we choose a local Shtuka
datum (G, {pu},[1]) over K = Q, with the additional conditions that G is split over K
and B := P(u) is a Borel subgroup of G.

This entails a lot of simplifications. Notice first that 1 € [1] is basic and 1-decent as
v := vy is trivial. Furthermore, J := J; = G by [12, Remark 9.5.9] and E = K since the
action of 'k is trivial on {u}. Hence, .# and .#"* := .Z"* are defined over K.

We set n := dim.# and choose a uniformizer = of K. Further, we fix an IIP on G (cf.
section [2.1)). We choose a split maximal torus T of G of rank d such that p € X,(T)g.
Since all Borel subgroups over K of G are G (K )-conjugated (cf. [6, Theorem 20.9]), we
can assume that (T, B) is a Borel pair (cf. section[2.1]). This gives rise to a set of simple

roots (cf. section [2.1)
A:={aq,...,aq} C X*(T)g.

After conjugating p with an element of W, if necessary, we can assume that p lies in the
positive Weyl chamber with respect to B, i.e.

(o, ) >0 (3.1)

for all @ € A (here we used that P(u) = B to get >). Notice that since G is split over K
we have I'), = I', so i = p. By the definition of a local Shtuka datum, [1] € A(G, {x})

(cf. section [2.5.4), i.e.
UW=p—v= Znaav (3.2)
a€A

with n, € on.
Lemma 3.1. For p =3 ,canae”, we have ng € Q.
Proof. Let € A and consider

0< (ﬁ,,u) = Z na<ﬁaav> = 2”5 + Z na<ﬁaav> < 2”5

aEA acA\{B}

where we used that (3,a") <0 for all simple roots o # 3 (cf. Lemma [2.2)). O

Furthermore, let Gy be a split reductive group model of G over Ok (cf. section
with Borel pair (Tg,Bg) and for each I C A a standard parabolic subgroup Py g
containing By such that the base change to K yields the pair (T, B) and P respectively.
As in section for any positive number m € N let

Pm : Go(Ok) — Go(Ok /(7))
be the natural reduction map. Then, we set G := Go(Ox) and define

PIm = p:nl(P[,()(OK/(ﬂ'm)) C GO-
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3.2 Geometrical properties of the complement of %"

Notice that Gy is compact. Moreover, let %o, = Go/Bo.
For a weight A € X*(T), let £, be the sheaf on .# with
L(U) = {f € 0c(x7 (V) | f(gb) = =A(B) () for all g € G(K),b € B(K)} (3.3)

for U C .F open (cf. |23 Part I, 5.8]; note the sign in the definition). Here, 7 : G — %
is the natural projection. It is a locally free sheaf of rank 1 (cf. [23, Part II, 4.1]). For
example, L9, = wz. We fix a dominant A € X*(T)" and set £y := L) Qwz.

3.2 Geometrical properties of the complement of .7"2

Following [41, Section 3, p. 536], each 7 € X, (G)g defines, with respect to section
a closed subvariety of .% by setting
Y, i={ze.Z | uZ(x,7) <0}

Then, for I C A, we set

V= () Ya, (3.4)
agl

which is again a closed subvariety of .%.

Lemma 3.2. /41, Lemma 3.1] Let I C A. The variety Y7 is defined over K. The
natural action of G(K) on .F restricts to an action of Pr(K) on Y7.

Let YV := .2\ . V2 For I C A and any subset W C G/P;(K), we set

z = ¥
geW

which, in view of the previous lemma, is indeed well-defined.

Lemma 3.3. [/1, Lemma 3.2] The subset Z}/V is a closed pseudo-adic subspace of F24
for every compact open subset W C G/P(K).

Then, by [41, Corollary 2.4], we have the following stratification

Y = U ZF/PI(K).
ICA
|A\I|=1
For an alternative description of the Y7, which will be important hereinafter, we set
Qri={weW | (wp,wy) >0foral agl} (3.5)

for I C A (cf. [41, p. 530]). Reformulating Lemma we get the following statement.
Lemma 3.4. Let I C A. Then, w € Qy if and only if (oo, wi)ger > 0 for all a & 1.

Definition 3.5. Let I C A and w € W!. The generalized Schubert cell in .F associated
to w is
Cr(w) :=PrwB/B = U C(vw).
veWr

If I = (), we omit the subscript and call it Schubert cell.
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First, it turns out that the Y7 are a union of Schubert cells.
Proposition 3.6. 41, Proposition 4.1] For I C A, we have

Yr = |_| C(w).

weN

But for our purposes, we need a description in terms of generalized Schubert cells.

Proposition 3.7. For I C A, we have

Y = |_| Cr(w).

wGW’ﬂ Q[

Proof. We know by [12, Proposition 11.1.6] that Y7 = U,cq, PrwB/B. For v’ € Q
exist unique w € W' and v € Wy such that w’ = vw and I(w') = I(v) + I(w). Hence, we
have

P;w'B/B = ProwB/B = P;wB/B.

Since Y7 is closed, this implies that

Y = U Cr(w).

'LUGWIm Q[

That the union is disjoint follows from the unique decompostion of w’ € Q; mentioned
above and that Schubert cells are disjoint for distinct Weyl group elements. O

In addition, we make the following observation for the complement of the Y; in .%.
Lemma 3.8. Let I C A and wyg € W the longest element. Then,

F\Yr = U vwC(wop).
’UGW\Q[

Proof. Let v € W. We first notice that vwoC(wp) = vwoBwov~'vB/B is the ,coordi-
nate neighbordhood* of vB/B in .#, which Kempf describes in |26, Section 3] (cf. [26,
Corollary 3.5]). Then, by |26, Proposition 6.3 a)],

C(v) C vweC(wy).

Hence,
F\Yr = |_| C(v) C U vwC(wop).
vEW\Q; veEWN\Q

For the other inclusion, let w € 7 and v & ;. Then, we consider
X =07 C(w) NwoC(wp).

It is a closed T-invariant subset of woC(wg). By [26, Theorem 3.1], this is in bijection
to a closed T-invariant subset
Hc Ug.

Here T acts by conjugation. We suppose that X is non-empty. Thus, H is non-empty.
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Furthermore, by [58, Exercise 8.4.6 (5)],
Ug(K) = {g € G(K) | lim(wop) ()g(wop)(t) " =1}.

As H is closed and T-invariant, this description implies that 1 € H (cf. [27, Lemma
9]). Therefore, B/B € X and vB/B € C(w), respectively. This implies that v < w and
therefore v € )5 since Y7 is closed. That is a contradiction. Hence,

C(w) NvweC(wy) =0

which implies
Yrn U vwoC(wo) = .
UEW\Q[

3.3 Algebraic local cohomology
In this subsection, we consider the local cohomology groups of .% with support in a

(generalized) Schubert cell and the Y7, respectively, with coefficents in &.

For that purpose, we follow the theory of local cohomology as described in 19, Section
1]. Concretely, let X be a topological space and Z C X a locally closed subset, i.e. there
is an open subset V such that Z is closed in V. Further, let £ € Ab(X) be an abelian
sheaf on X. Then, I'z(X, £) is the subgroup of £(V') defined by the sections with support
in Z. The definition of I'z (X, £) is independent of the chosen open subset V' and

Ab(X) — Ab
Fr—T4(X,€)

defines a left exact covariant functor. Thus, we let the local cohomology groups H(.F, )
be the right derived functors of I'z(X, —). An essential property that we take advantage
of is the following.

Proposition 3.9. [19, Proposition 1.3] Let Z be locally closed in X, and let V' be open
in X and such that Z CV C X. Then, for any € € Ab(X),

Hy(X,€) = Hy(V.E|v).
For two closed subsets Z1, Zo C X with Z1 C Zs, we let
FZl/Zg(Xag) = FZl(X7g)/F22(X75)'

Then, H, . (X, &) denotes the right derived functor of I'z, /7, (X, —) as defined in |26}
Section 7, p. 349/350]. It comes with the following property.

Lemma 3.10. /26, Lemma 7.7] Let Z1 D Zy be two closed subsets of a topological space
X. Let £ be any abelian sheaf on X. Then, there is a natural isomorphism

Hél/ZQ (X,&) — H%l\ZQ (X\Z2,€)

for all integers i.
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Next, we state a rather technical result which will be helpful afterwards. It seems
somehow standard as it is for example used in [37] and |13 Section 2.1], but we could
not find a precise statement fitting our purposes.

Lemma 3.11. Let X D Zy D Z1 D ... D Zy, be a filtration of X by closed subsets and
E an abelian sheaf on X. Then, there is a spectral sequence

+ +
EY = HLY, (X,€) = HY (X, ),

where the morphisms on the E1-page are the natural ones.

Proof. We associate to £ a complex of flasque sheaves G*(£) on X together with an
augmentation map & — G%(&) such that £ — G*(&) is a resolution of £ (cf. [14]). As
Kempf pointed out in [26, Section 7, p. 350], we can use this resolution to compute the
local cohomology groups in question.

The given filtration on X naturally defines a filtration of complexes
Iz,(X,6%°(€)) OoI'z(X,G%(€)) D ... O I'z,(X,G%(&))
from which we form the following quotient complexes
0—Tz,,(X,G%¢&)) = T'z(X,6°(€)) — K — 0. (3.6)
Notice that by [26, Section 7], one has K? =Tz /. (X,G*(£)) such that
HYK?) = H%j/ZjH(X,S).
Then, by the procedure explained in |52} Section 3], we get an exact complex of complexes

0— Tz (F,6°(F) = K — K[1] - K3[2] ... > K2[n] — 0 (3.7)

where K 5 Is a complex quasi-isomorphic to K7. Moreover, the morphisms IN(; — f(; 1]

. . q q+1 : :
induces the natural homomorphisms H Z;/%541 (X,&) = H Zyi1/Z; 42 (X, &) which are given
by the connecting homomorphisms coming from the long exact sequence in cohomology

of (cf. (3.6)) followed by the quotient maps.

Thus, (3.7) yields a double complex
c**: R’S — R'l'[l] — KE[Z] — ... R;[n]
Then, by combining the properties mentioned above with the usual theory of spectal

sequences associated to a double complex, we obtain the result we were looking for. [J

We come back to our setting. We have seen in section that there is a split
connected reductive algebraic group ¢ over Z with split maximal torus .7 and Borel %
such that ¥x = G, Ik = T and $Bx = B. Let Fy := Y /P and

C(w)Z = %w%/% C yZ
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for w € W. They are flat Z-schemes by [23, Part I, Section 5.7 (2)]. Moreover,
F = (#z)k and C(w) = (C(w)z) K-

The first identity follows from the fact that the base change commutes with the quotient
(cf. [23, Part I, Section 5.5 (4)]). The latter one can be seen after idenditifying both sides
with affine spaces (cf. [23| Part II, Section 13.3 (1)]). In [25, Section 3] it is mentioned
that the flag varieties and Schubert cells admit ,flat lifts to Z-schemes®. Furthermore, as
described in [26, Section 13, p. 389] (cf. |23| Part I, Section 5.8]), we have an invertible
sheaf €, 7 on %7z which is defined similarly to £,. The same arguments apply if we
assume that G and all introduced objects are defined over Q and C, respectively. We
denote the ground field, if it is not K, as a subscript in the following proof.

Then, we have the following two identifications of local cohomology groups on .%.
They are already known over C (cf. [37, (3.3)] and [37, Theorem 1 & Theorem 3]).

Lemma 3.12. For w € W, one has

Mw-A) i=n—I(w),

HZC(w)(yag)\) = {O else

in Oalg-

Proof. As C(w) is affine, it follows that Hé(w)(ﬂ,é',\) =0 for i # n —Il(w) (cf. [26,
Theorem 10.9]). Since &y has a natural g-module structure (cf. [39, Section 1.2]), we see

by functoriality that Hg(:j,()w) (&, E&)) is a g-module. Furthermore, by [26, Lemma 12.8.],

we have that Hg(_lf)()w) (F,E)) is t-semisimple and

h(HE S (F,63)) = ch(M(w - V).

This implies that ngligw) (F,€&,) lies in the category O, (cf. |1, Example 1.1]). In
particular for w = e, we see by the last remark in |26 Section 12] and the proof of [39,
Proposition 1.4.2] that

Hpo(F,6)) 2 Hpyo)(F,05) @q, (Qp)2pia = M(=2p)" @g, (Qp)2p+a
= M(=2p) ©q, (Qp)2pta = M(A)
holds in the category O,j. Here, we used [8, Proposition 7] for the second isomorphism

and the fact that —2p is antidominant for the third. Thus, by Lemma [2.16] it remains
to prove that there is a non-trivial injective morphism

Hg(:i()w)(y,gk) — HEo(F,60). (3.8)

For this, let k € {K,Q,C}. Further, we let X; := C(w)z and X5 := X;\C(w)z. By
Lemma |3.10/and Proposition |3.9) we have
Hg’(w)z (ﬁz,c‘b\,z@k) = Hgfl/XQ (9Z,SA7Z®k) and Hg(w)k(ﬂk,g)\’k) = chl,k/XQ,k (g]{ng}\,k)'
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Then, by [26, Lemma 13.8], we obtain an isomorphism
Hg’(w)z(y\ZJ EA,Z & k) = Hgv(w)k(yk, (c/’)\?k)

of k-vector spaces. As Og, is flat over Z and &) 7 is locally free, it follows that £, 7 is
flat over Z since it is a local property. Following [25, Section 4], this yields a spectral

sequence

Eg’q = Tor%p(Hg(w)z (Fz, g/\vZ)’ k) = Hg—é_g)k (Fk, g)"k)'

Since k is flat over Z, we have an isomorphism

n—I(w ~ n—I(w
HC(w()Z)(th»f‘:A,Z) @k = Hc(w()k)(c%m&,k)

of k-vector spaces. This implies
H o (Fe, Eac) = Hg s (P, 600) 9 C (3.9)
and
Hpyo(Z,60) = HE S (P, €00) 9 K. (3.10)

If we choose X = .%7 and X5 = () instead, then using the same arguments as before,
we get that

Hq(f(c,f:)\@) = Hq(gz(@,g,\@) ®C (3.11)

for all integers q. Next, let Z; C Fg be the union of the closure of Schubert cells of
codimension greater than or equal to j. This defines a filtration on .#g by closed subsets

Fo=20D721D...D Zy,=Cle). (3.12)
Furthermore,
Z\Zj= || Clw)g
weWw
l(w)=n—j

Then, we get, by Lemma and Proposition (cf. [26, p. 385]), that

H%j\zﬂl(g?@,g)\’@)g @ Hé‘(w)(‘%@a&@)
weW
l(w)=n—j

for all integers i. Thus, by Lemma|3.11 and Lemma [3.12| we can compute H* (%, € q)
by the complex

@ Hg(w)(@(ﬂ@y&,@) — ... @ Hg(fii)@(g@,g)\@) — Hg«(e)Q(fQ,é‘)\Q). (3.13)
tfuyn T

On the other hand, we have by Serre duality (cf. [23| Part II, 4.2 (9)], note that the
setting in loc. cit. induces different signs) that

H'(Fq,E0q) = H (g, Lrg ®wzy) = (H (Fg, (L)) = (H" (Fg. Lxq))
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For the latter one, the Borel-Weil-Bott theorem (cf. [23, Part II, Corollary 5.5], note
again the setting in loc.cit) gives H‘(Q%@,E A,0) = 0 for i # 0. Hence, the complex

is a resolution of H"(%q,&x0). By . (3.11) and (faithfully) flatness of field

extens10ns we get an acyclic complex

0— @ HC y(c,g)\(c .= @ Hn 1 Jc,g,\#c)
weW weW
l(w)=n l(w)=1

— Hi (Fe,Enc) = H'(Fe,Eac) — 0. (3.14)

Again by the Borel-Weil-Bott theorem, we know that H"(Fc,Exc) = L(A)c. Here
L(X)c is the unique simple quotient of the Verma module M (M)¢ in the usual BGG
Category O over the complex numbers (cf. [22, Section 1.3]). Then, by [37, (3.3)], we
have l

Hg(_w()z) (Fe, ) = M(w- A

for all w € W. Therefore, the complex (3.14) is a BGG resolution of L(\)¢ (cf. [22,
Section 6.1]). Thus, by |22, Theorem, Section 6.8], the natural morphism

Hg—l(w) (9(?7 g/\v(c) — Hg,(_qusi)li:)(ﬁca SA,C)

(w)c
is non-trivial for w’ < w with I(w) = [(w) + 1. Moreover, it is injective by [22, Theorem,
Section 4.2]. This implies that the morphism
-1 —l(w
He o (Fa, E0) — He (P, €x0)

in the complex (3.13) was already injective by the faithfully flatness of field extensions.
Again by the faithfully flatness and by (3.10), we get an injective morphism

n—Il(w n—I(w
HE (T, 63) — Heol ) (7,€)

for all w,w" € W with v’ < w and l(w) = l(w")+ 1. Let w € W with reduced expression
w = s1...5 and let w; := s1...5s;, i.e. w = wy. Then, we get the desired morphsim
(3.8) from the sequence of injections

n—Il(w n—I(w n
HE (T 63) = HE M(F L 60) — .= HE () (F,En).

O]

Similiar to Lemma we have the following identification for generalized Schubert
cells.

Lemma 3.13. For I C A and w € W', one has

Mi(w-X) i=n—Il(w),

Hél(w) (78 = {0 else

Pr
n Oalg

Proof. Over C this is [37, Theorem 1/Theorem 3]. The arguments of loc. cit. are appli-
cable as well. For completeness, we will recall them.
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Let Z; be the union of the closure of Schubert cells of codimension greater than or
equal to j and Uy, = .Z\(Cr(w)\Cr(w)). Hence, Cr(w) is closed in the open subset U,.
Let rr := dim(P;/B) and t := n — [(w) — r;. Then, we consider the filtration on U,, by
closed subsets

Uy D C[(U)) D C[('w) NZiy1D...D C[(w) N ZT[+t = C’(w) (3.15)

(C1(w) N Zip)\(C1(w) N Zyg ) = Cr(w) N (Zipj\Zurjrr) = || Clow),
veWr
l(v)=r;—j

we get, as in Lemma [3.12, that

Hic, (w)nZes ) /(Crw)nZeg 1) Uws €3) = GVBV He ) U, €3)
veWr
l(v)=r;—j

for all integers i. Notice that by Proposition we have
Hé'(vw) (Uwv 5/\) = Hé’(vw) (ﬁv 5}\)

Then, applying Lemma [3.11 to (3.15) and taking Lemma into account, we see that
the cochain complex

P Muv-A)—...— P Mw-A)— M), (3.16)
veWr veWr
l(v)=rr l(v)=1

starting in degree t, computes Hé‘;(w)(Uw’ Ey), and therefore, by Proposition also
HE ) (Z,E\). Then, by the work of Lepowsky (cf. [32, p. 506, Proof of Theorem 4.3]),
we get

n—l(w)
Hey ()

On the other hand, the complex (3.16) is obtained from the BGG-resolution of Vi(\)

by Verma modules for Lp, by tensoring with U(g) over U(pr). This functor preserves
exactness. Therefore, Hél(w)(ﬁ, Ex) =0fori#n—Il(w).

(Z,62) = Mi(w- \).

O]

Another application of Lemma|3.11]is the computation of the local cohomology groups

Hy (7,€).

Lemma 3.14. Let I C A, dy := dim(Y7) and r; := dim(P;/B). Then, the cochain
complex

. -1 —1
ot @ HyS(ZE) - D HE(FE) o HE (7).
weWInQy weWwinQ;
Hw)=dr—ry l(w)=d;—r;—1
with the natural morphisms starting in degree n + r; — dy, computes the cohomology
groups Hy, (F,Ex). More specifically, H(C}) = Hy, (F,E)).
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Proof. Let Z; be the closure of the union of those Pr-orbits C7(w) whose codimension
is greater or equal to j. This defines a filtration

F=20D7Z1D...D Zn_y

by closed subsets. Then, we consider the filtration of closed subsets on Y7 induced by
setting Zj =YrN Zn—d1+j

Y[:ZODle...DZdI (317)
where, by Lemma one has
Z\Za= | Ciw).
weWinQ;
Ww)=d;—rr—j

Therefore, as in the proof of Lemma [3.12], we obtain that

Héj/ZjJrl (976’)\) = @ Hé'[(w)(‘gv‘c/’)\)
’LUGWIO Q[
Ww)=d;—r1—j

for all integers 7. Applying Lemma to the filtration (3.17) and &), and taking
Lemma into account, we see that the induced spectral sequence

EY' = H)'T, (X&) = HY (X, &)

degenerates at the Fo-page. Thus, the result follows. O
Remark 3.15. As pointet out in [37, Theorem 2|, the morphisms

—l(w’)

n—Il(w n
HE o (F.63) = Ho ) (7,63)

for w' < w with I(w) = l(w') + 1 that appear in the differentials are those from the
Lepowsky BGG resolution (cf. [32, Theorem 4.3]).

Corollary 3.16. For each i € Ny, the U(g)-module H{}I (ZF,E\) lies in ngg.

Proof. As the category ng is closed under taking submodules and quotients, this follows
immediately from Lemma and |3.14. O

3.4 Analytic local cohomology

In the following, we would like to relate the algebraic local cohomology groups of %
with support in the Y7 and coeffficients in £ to some analytic local cohomology groups
of Frie,

For this, we recall first from [39, Section 1.3] what we mean by analytic local coho-
mology. Let X be a rigid analytic variety over K and U C X an admissible open subset
with Z := X\U, the set theoretical complement. Further, be £ be a coherent sheaf on
X. Then, similar to the last section, we define

I'7(X,€) ==ker(T(X,&) — T(U,E))
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and Hy (X, G) to be the right derived functors. In case X is a separated rigid analytic
variety of countable type, the local cohomology groups carry a natural structure of a
locally convex K-vector space which is in general not Hausdorff (cf. [39, Section 1.3],
[47, Section 1.6]).

For our purposes, we fix an embedding
L F o PY
defined by the vanishing ideal .# C Og|Ty,...,TN].

Now, we introduce, adapted from [42, Section 2, p. 1398], the notion of special
neighborhoods of a closed subvariety of .#. They play a crucial role in the computation
of the cohomology of a period domain.

Definition 3.17. Let € € |FX| Let Y C % be a closed subvariety and f1,..., fr €
Ok/[To, . .., Tn]| homogeneous polynomials such that they generate the vanishing ideal of
the Zariski closure of Y in .Zp, . Additionally, each f; has at least one coefficent in Oj.

i) We call a tuple (z0,...,2nv) € AR TH(C) unimodular if z; € O¢ for all i and there
exists an ¢ such that z; € OF.

ii) We define the open e-neighborhood of Y in .#™& by

for any unimodular representative Z of z, we have

|f5(2)| < € for auj}.

Y(e) := {z c Frie

iii) We define the closed e-neighborhood of Y in .Z"& by

for any unimodular representative Z of z, we have

£i(2)] < e for all j}.

Y7 (e) := {z c .Fme

Let I € A and i € Ng. We know from Corollary [3.16 that H{}I (Z7,E\) € ngg. Thus,
we have an Og{g—pair (H@I(ﬁ ,Ex), W) with a short exact sequence

0—0—Ulup,) @ W — Hy, (F,E5) — 0. (3.18)

Let €, := |1™| for m € N. In section we equipped U(up,) with a norm | |1 (cf.

(2.19)). This naturally defines a norm on U(up,) ®x W and induces, by (3.18), the
quotient norm on H{G (Z,Ey). Since the quotient map is open, it is strict (cf. |7, Section
1.1.9, Proposition 3 ii)]) and we obtain, by [7, Section 1.1.9, Corollary 6], a short exact
sequence of K-Banach spaces

0— 0y — Ulup, )Jm @x W — f[ffhm —0 (3.19)

cf. (2.20) for the notation). Here H? denotes the completion of Hi (F,&)) with
YI,m Y[
respect to the quotient norm.
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Moreover, we define D,, := wwoC(wg) and H,, := F\D,, for w € W. By Lemma
[3.8] we know that
Z\Yi= |J Du (3.20)
weW\Qy

which is an affine open covering of the complement because C(wy) is affine open. Thus,
we can compute H*(Z\Y7,Ey) by the Cech-complex

B rDuw.&)— P TDwNDy,&)—...—T( [ Duw&r)
weW\Qy w,w EW\Qr weW\Qr
wHw’

Furthermore, we can easily deduce from 1} that for e € |[K*|, we have

Yr(e= [ Hylo.

weW\Q;
Therefore, we consider the subset
Dy, := F8\H, (¢)
for w e W.
Lemma 3.18. Let w € W. The subset D,, . is affinoid.

Proof. Since H,, is of codimension 1, there is f € Ok|[Ty, ..., Tn] homogenous of degree
t with at least one coefficent in Oy and generating the vanishing ideal of the Zariski
closure of H,, in Zp,.. Let Ny := ("jt) —1. We embed P¥ into IP)I]\(IO via the ¢t-th Veronese
embedding. Then, by substituting monomials, f yields a homogeneous linear polynomial
g € Ok|To,...,Tn,] defining a hyperplane Hy C IP’%O, such that

H, =% N H,.

It is known that (PR°)"€\ Hy (€) is affinoid (cf. [55, Section 1, Proof of Proposition 4])
and we notice that

FUEN(FE 0 Hy () = F50 (PR #\H; ().

Thus, ﬁrig\(ﬂrig N Ho_(e)) is also affinoid since it is a zero set in (PR°)"&\ Hy (e).
However, we have .78 N H (e) = H,, (e). O
This results in the affinoid covering
ﬁrig\Yf (6) — U _Dw,6
wEW\Q[

which has two consequences. On the one hand we get an admissible covering

F\Y (em) = |J  FUEY] (¢)

em<e€|KX|

by quasi-compact admissible open subsets (cf. [39, Section 1.3, p. 601]). On the other
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hand we can compute H*(Z8\Y; (e),£)) by the Cech-complex

@ P(Dw76, g)\) — @ F(l)w75 N Dw/7€, 5)\) — ... — F( m Dw75, 5)\)
weW\Qy w,w eW\Qr weW\Qr
ww’
which terms are K-Banach spaces. So far, we have to make the following assumption
and conjecture (cf. [39, Lemma 1.3.1]).

Assumption/Conjecture 3.19. Let I C A and i € Ny. Both, the cohomology groups
HY(FHe\Y[ (€),€y), and H;,_(E) (FTie £)) are K-Banach spaces in which the algebraic
I

cohomology group H'(F\Y7,E)) and H{}I (F,E\), respectively, is a dense subspace. More-
over, we have an isomorphism of topological K -vector spaces

. ) arrig ~ 1: )
lﬂl Hy]*(em)(J vg)\) = l&l HYI,m'
meN meN

Corollary 3.20. Let I C A. For i € Ny, we have the following isomorphisms of
topological K -vector spaces:

HY(F"\Yi(em), €)= lim  H'(F"E\Y] (€),€))

em<e€|KX|

and

Hyy o) (F56) = lm - Hy- (T Ey).

em<e€|KX|
Proof. The proof is same as that of [39, Lemma 1.3.2]. O
Lemma 3.21. Let I C A and m € N. Then, the subset Y(ey,) is PJ"- invariant.

Proof. We identify .#"8 with the closed points of .Z, i.e. for z € '8 exists a finite
extension L := k(x) of K such that x € .#(L). Denote by | |1 be the unique absolute

value on L which extends the valuation on K. Since Fp, is proper over Ok, we have
Fo,(0r) = Fo, (L) =% (L). Let

Im,L : F0,(01) = Fo, (Or/m™0Or)

be the natural projection. The (free) action of Gy on #p, induces the commutative
diagram
Go(Or) x Fo,(Or) S F0,(01)

(pm,L:(Im,L)l lQm,L
Go(OL/7™mOL) x Fo, (Op/7m0O) 2y Zo (O /7mOL).

Moreover, it is clear that Y7o := UwGQI BowB /By is the Zariski closure of Y7 in Zp,
defined by homogenous polynomial f1,..., f, € Ok[To,...,Tn] as in Definition
Then, Y7 is Py invariant (cf. Proposition . Therefore, the above diagram implies
that

P - gy, (Y10(OL/7™OL)) = 4311, (Y1,0(O1 /7™ OL) ). (3.21)
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Next we will show that
G, (Y10(OL/7™OL)) = {y € Zo, (OL) | |fi(y)|L< em for all i} = Yi(em)(L).

Let y € Z0,(Or). Ity € q;%lL(YLo(OL/meL)), it follows that f;(¢m.(y)) = 0 for all
7. But

filgm,L(y)) = [fi(y)] € Or /7™ OL.

Hence, fi(y) € 7O and |fi(y)|r < € for all i. If, on the other hand, |fi(y)|z
for all i, we deduce that f;(y) € 7™ Oy, for all i. Thus, fi(¢m,r(y)) = [fi(y)] = 0 for all i
and (TRS q'l’:L:,LL (YLQ(OL/ﬂmOL)).

From that we conclude that Y7(€,,)(L) is Py*-invariant for all finite extensions L of K.
This implies that Y7 (e, ) is P*-invariant. O

The previous lemma yields a P;"-module structure on Hf,l (Em)(ﬂ’ rig £3).

Lemma 3.22. For I C A and i € Ny, we have
: Go (ryi g ! G (i (7
(%Indp?n(HYI(em)(J 5.6))) = F (Hy, (7))
me

Proof. We know from ([3.19), that

lim (U(up, )m ®x W/0m) = lim Ay, ,
meN meN

Furthermore, by Assumption [3.19]and in view of Corollary [3.20} we have

%H%&m)(yrig’g)‘) = llrll\l (U(uf,[)m ©K W/Dm)
me me

compatible with the action of lim P = Prg (cf. |39, Proposition 1.3.10 + Proof]).
Then, we get (cf. [39} p. 633])

lim IndB5 (Hy, () (F"%, €)= lim Ind 3 (U (up, )m @k W/0m).
meN meN

Passing to the dual, which is exact on K-Fréchet spaces (cf. [2, Section I, Corollary
1.4]), the required statement follows from Proposition m
O

3.5 Results

We start by recalling Orlik’s fundamental complex on Yy, the étale site on Y. This
is taken from |11} Section 6.2.1/6.2.2] which is based on [41, Section 3].

For the constant étale sheaf Z € Sh( et) and a closed pseudo-adic subspace Z of YV’
with inclusion i : Z — Y, define Zz := i,.i*(Z).

Definition 3.23. [11} Definition 6.7] Let I C A. Define Z; € Sh(Y) as the subsheaf of
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locally constant sections of [[jeq/p, (k) Zgylad, ie.

Zi = h_n)l L
CELT

the limit being taken over the (pseudo-filtered) category %7 of compact open disjoint
coverings of G/P(K) ordered by refinement where Z. denotes the image of the natural

embedding ¢ 4 ZZITJ. = [lgea/p, (k) Lgya for ¢ = {T}jca € €.

Let I CI' C A and nrp : G/Pr(K) — G/Pp(K) be the natural surjection. Then,
for all g € G/P;(K) and h € G/P(K), we have a natural morphism Lgysa = Lpysa
I/

which is trivial if 7 ;/(g) # h and otherwise, it coincides with the map induced by the
closed embedding gY7 < hYp. Then, by definition, we get a natural morphism

prr Ly — 7.

Fix, an ordering on A. Assuming that|I'| — [I| =1 and I’ = {ag < ... < a,} we set

PR (=VDiprp if I' =TU{a;},
LI'=19 o else.

This defines by standard procedure the following complex

0 —7Z— @ Ly — @ Zy — ... — @ Zy — Zy — 0 (3.22)

ICA ICA ICA
A\T]=1 A\T|=2 [AVII=]A|-1

on Yz which is acyclic by |11, Theorem 6.9]. It is referred to as the fundamental complex.
Denote by ¢ : Y — .#3 the closed embedding. Then, by [17, Exp. I, Proposition

2.3], we have
Ext*(1+(Zy), €x) = Hy (779, E)).

By applying Ext*(t.(—), ) to the complex (3.22]), we get the spectral sequence

El—p,q = Ext?( @ 1(Z1),Ex) = Bxt™PT(1,(Zy), &) = H;PJrq(ﬂad,E)\). (3.23)
ICA
|A\T]=p+1

For the E)-terms, we have the following identification.

Proposition 3.24. For all I C A, there exists an isomorphism

% ~ 1: G * Ti]
Bt (o0 (Z0),£2) 2 lim WndGh (i, (7% E3))

Proof. This is essentially the proof of |39, Proposition 2.2.1], where the Drinfeld case is
treated. The family
{9P(" | g € Go, m € N}

of compact open subsets in G/ Py yields

Zr = lim @ Zng;n.
meNgeGO/pIm
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Then, by choosing an injective resolution Z*® of £, we have

Ext!(.(Z)), &) = B (Hom(1.(Z1), %)) = H (Hom(ix(lim @ Z_yep ). T%))
mENgGGo/P}m Zr
= H'(lim P Hom(L*(Zng}n),I'))
meNgeGO/P}n I
:Hz(lin @ HOgP}”(yad>Z.))'
mENgeGO/P}”’l 1

We set Zr,, == P/ - Y]rig C "8 for m € N. Then, we have chains of open admissible
subsets
. yrlg\Z[,m C yrlg\ZLm_H ...

and

TV () C TV (1) C ..

which each cover .Z18\Y; '8 Then, we know from the proof of [55, Section 2, Proposition
4] that ' , .

liln H%I,m (yrlg71—p) = H;O/;ig (yr1g7Ip) = lln H}O/I(em)(’gzrlgazp)'
meN meN

The same holds for translates of Z ., and Y7(e,,). Hence, we get (cf. [42, p. 1415])

liln @ ngl,m (9rig’zp) = lﬂl @ H3Y1(6m)(9rig’zp)
meN g€Go /P meN geGo /P

for all injective sheafs of the resolution Z°®. Therefore, using that .Z"8 and .#*1 have
equivalent topoi (cf. [20, Proposition 2.1.4]), we get by functoriality an isomorphism of
complexes

. 0 d o\ ~ 1: 0 i ®
i @ HLp (FUT) lm @© Hy (FET)
meN geGo /P I meN geGo /P

This implies

Bt (280 = H(lm @ Hyye, (F75,T)).
meN geGo /P

Before we can continue, we need a technical lemma where @7(7?61\1 denote the r-th
right derived functor of liinmeN.
Lemma 3.25. Let T be an injective sheaf on F21. Then,

@(T)( b HSYI(Em)(ﬂrig,I)) =0 forallr > 1.
meN  geGo/ PP

Proof. Tt is sufficent to reproduce the proof of |39, Lemma 2.2.2]. O

Then, with the two standard hypercohomology spectral sequences

EY = liLn(q)( D Hy, () (F8TP) =B m ( @ Hpy,., ) (F" 1),
meN ge€Go /P meN g€Go /P
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BP = @l(p)Hq( D Hy,()(FI%) =B m( D Hpy,, ) (F", 1),
meN g€Go/P™ meN geGo/Pp

and by knowing that }iLnfs)eN =0 for p > 2 (cf. [24]), we get the following short exact
sequence (cf. |55 Section 2, Proof of Proposition 4])

0—tm® @ Hl, (F7 ) = Bxti(is(Z1), €2)
meN g€Go/ P

- th @ H;Yl(em)(yrigvgk) —0
mENgeGO/PIm

for all © € N. Moreover, Assumption and Corollary respectively, imply that
the projective system of K-Fréchet spaces (@geGo /pm H;YI( Em)(ﬁ rig 5>\))m cn Satisties
the topological Mittag-Leffler property for all ¢ > 0 (cf. [39, p. 626]). Therefore, by [18|

Remark 13.2.4], the lim (M_term vanishes, i.e.
<——meN

EXti(L*(ZI)yg)\) = lﬂl @ H;YI(em)(LO%‘rig’g)\)_
meN geGy /P

The statement of the proposition is then just rewriting the latter term. O

Proposition 3.26. We have a spectral sequence

- Y __ : G
B = @ lim ndf (HY, |
IcA meN
|A\I|=p

(F18.£))) = HPYY(F™ £))

where we use the abbreviation YA for & .

Proof. We follow the arguments used in the proof of [40, Proposition 4.2]. First, we
consider the second quadrant double complex (E7**,d**®, d'**) defined by

EPY — HY(F"e &) ifp=0
! 0 else,

with all differentials being trivial. Hence, it defines a spectral sequence converging to
H*(#"8 £)). Further, let I C A such that [A\I| = 1 and m € N. The inclusion
gYi(€en) C #'8 induces a morphism (cf. |47, Lemma 1.3])

H;YI(Em)(‘ngig7 &) — H* (yrig’ EN)
for g € G/P[". Then, by the universal property of the direct sum we get a morphism

@ H;YI(em)rig(ﬁrig,r‘:A) — H*(F"8 &)).
gEGo/P}”

Thus, the functorialty of llnmeN yields

Di:lim @ Hoy, o F.60) = lim HY(F,63) = H'(F™, 1),
meNgego/p}n meN
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Then, we consider the morphism of double complexes (cf. (3.23)))
f1.7. . EIv. s EI7.

given by

fp’q _ @[D? ifp=20
! 0 else.
It induces the morphism of total complexes
Tot(f1*) : Tot(E}*®) — Tot(E}*)

where we denote the mapping cone of Tot(f;®) by Cone(Tot(f;’*))®. By the definitions,
the triangle for this mapping cone induces a long exact sequence which identifies with

= HL(FUE €)= HI(FUE E\) — HI(F &) — ...

Hence, the cohomology of Cone(Tot(f;®))® coincides with H*(.#" &,). Furthermore,
the total complex of the double complex E7*® in the statement is exactly Cone(Tot(f;"*))®
which finishes the proof. O

Before stating and proving the main theorem we need the following lemma.
Lemma 3.27. Let I C A and w € WINQ;. Then, w € Q.

Proof. By Lemma |3.1] we know that

W= Z nao”

aEA

for n, € Qs¢. As W acts by permutation on ®, we have that

wp = Z meao”
aEA

with m, € Q for w € W/ N Q. Then, by Lemma it is enough to show that
(o, W) der = Mg > 0 for all a € I. By (2.12)), we have

o = Z <047 6v>der7vﬂ,8

BeA

for a € A. Moreover, from Lemma we know that w™'a®™ for all o € I. Since we
assumed y to lie in the positive Weyl chamber (cf. (3.1)), we have

() = (Wl 1) > 0
for a € I. By the very definition of ( , )ger it follows that
(o, wit) ger > 0

for all @« € I. Furthermore, for o, € A and a # [, we know by Lemma that
(o, BY)qer < 0. Recall that w € W1 N Q; implies that (g, w)der > 0 for € A\I by

42



Christoph Spenke

Lemma Thus, for o € I and w € W1 N Qy, we have that

ba 1= Z<aaﬁv>der<ﬁﬂvw/~5>der = (@, Wit)der — Z <aﬂﬂv>der<ﬁ57wﬂ’>der >0. (3.24)
pel BeAN\T

We fix an ordering on I = {a; > as > ... > «a,} and define

Ce mem with Cij = <Oé7;,a;~/>der,
T = (mai)ie{l,...,r} € Qul,
b:= (bai)iE{l,...,r} € Qm-
Then,
Cx =b. (3.25)

After reordering the simple roots, if necessary, we can assume that C' has blocks C, ..., C;
on the main diagonal and has zeroes everywhere else. Then, the C;’s are the (transposed)
Cartan matrices (cf. (2.13)) of the irreducible components of the Dynkin diagram of ®;.
Thus, C~! has blocks C’[l on the main diagonal and has zeroes everywhere else. The
entries of the Ci_1 are, by Lemma known to be positive rational. Then, and
(3.25) imply immediately that m, > 0 for all o € 1. O

Theorem 3.28. Let iy := dim.# — |A|. The homology of the (chain) complex

Co: P VEw) —...— P V5w —VEN

weRy weNy
l(w)=dim Y} l(w)=1

starting in degree ig coincides with H*(F¥2, £y, i.e. Hi(Cy) = H/(FV2,E,).

Proof. We consider the double complex D, o, similar to the one from [43} p. 662], defined
as a second quadrant double chain complex, given by

D= @ B Bw(= & G Fiug,(7.6)

ICA  weWw!nQ; ICA  wewinQy
|ANI|=—p l(w)=n—gq |A\I|=—p l(w)=n—q

(cf. (2.22)) for the objects). The vertical differentials are the ones coming from Lemma
The horizontal ones come from the transition maps

He, () (72 83) = HE, ) (7 63)

for I ¢ I’ and w € W induced by the fact that C;(w) C Cp(w) is a closed subset.
They are the same as in Example The commutativity is shown as in the proof of
[43, Theorem 4.2].

We are especially interested in the two spectral sequences converging towards the
homology of the total complex Tot(D, ) associated to D, .. Namely,

]Ezg,q = Dpvq = HP+Q(TOt(Do,o)),
IIESJI = DQJJ = Hp-i-q(TOt(-Do o))

)
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Then, by Lemma and Lemma [3.22] in combination with the functoriality and the
exactness of the functor F§ (cf. Proposition M and 2.34}, we see that IE.l’. = (ET*Y
(cf. Proposition . We know from Proposition that the entrys of E}** are K-
Fréchet spaces. Furthermore, the duality functor is exact on the category of K-Fréchet
spaces (cf. [2, Section I, Corollary 1.4]). Hence, Hp(Tot(Ds o)) = HP(F™?,E)) . Due to

Lemma we have
ITE0 0,
Ep7. - @ Ep7:U
U)GQ@
l(w)=n—p
with chain complexes
Epd:Ig,, (w) = @ I§w) —...— @ I (w) - I5(w) (3.26)
ICI(w) ICI(w)
[T (w)\I|=1 [7]=1

ending in degree —|A|. From Corollary we know that these complexes are exact
except at the very right position where the cokernel is VBG (w). Thus, we get

Il 69 wey Vg(w) ifq:_‘A|7
Ep7q = l(w)=n—p
else.

Therefore, 1 E?2 = I/ E>° and we are done. O

Corollary 3.29. Let ig := dim .# — |A|. Then, H(FY2 &) # 0.
Proof. We know from [43, Corollary 4.3] that

v§) =Ker (VE0) = @@ VEw)).
weW
l(w)=1

But then it follows from the previous theorem that

vg(N) =Ker (VEQN) = @@ VEw)) CKer (VEQN) — @ VE(w)) = H(F, &)
weWw wGQ@
(w)=1 w)=1

Therefore, H(#" £)) cannot be trivial. O

Lemma 3.30. Let w,w' € Qy with w' < w and l(w) = l(w') + 1. Then, the morphism
Puta : VE (') = VE (w)
appearing in the differentials of Cq is surjective.

Proof. As seen in the proof of Theorem |3.28, the morphism py 4, : VE(w') — V§ (w) is
induced by a morphism ¢ : I§(w') — I§(w). This one in turn comes from a non-trivial
morphism

war * M(w - X) = HEN(F,63) — HE W) (F,€) = M(w' - \)
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(cf. Remark [3.15). Thus, iy, is injective (cf. [8, p. 46]) and therefore ¢ = F§ (iyu)
is surjective (cf. Proposition [2.34). Then, we have the following commutative diagram

G / ]:g (iw,w’) G
Ig(w') ——— Ig(w)

Ik Ik
Puw! w
Vi) 2 Vg (w)
where 7 denote the natural projection onto the quotient. Since all morphism except py 4,
in the commutative diagram are surjective, it follows that p, ,, is also surjective. 0

In the following examples, we will compute the composition factors of the homology
groups of the complex Co of Theorem for G = SLy and some p € X, (T). The
strategy is first to compute all composition factors with multiplicities of the objects in
C, with the help of Theorem This is done with a small program in SAGE (cf.
Appendix . Then, we can deduce the composition factors of the homology groups
by knowing by the previous lemma that the morphism py ., : VS (w') — V§(w) in the
complex C is surjective for w’,w € W with v’ < w and how composition factors behave
under short exact sequences.

Definition 3.31. Let D be a composition factor of V§()\) and n,, := [V§ (w) : D] the
multiplicity of D in V§(w) for w € W. Then, we define the distribution type of D in
the complex C, by

Q
(n€7 {nw}weﬂw,l(w)=17 A {nw}wEQ@,l(w):dimY@) 6 N‘O 0|'

Remark 3.32. The distribution type depends on an ordering on £}y. We will implicitely
give such an ordering in each example and hope that causes no confusion with the
notation.

Example 3.33. Let G = SLy, A = {ag,a9,a3}, S = {s1,892,83} C W with s; cor-

responding to «;, and s; commutes with s3. We set P; = P,y and P;; = P{ai,aj}.

Furthermore let yu = (z1, 22, 23, 74) € X4(T) & Z* with 1 > 29 > 23 > 24 (cf. Example
2.10).

a) p=(x1,x2,x3,24) with > x; =0 and x3 > 0. Then
Qp = {e, 51, 52, 5152, 5251, 515251 }

and
Co:VEW L @ VEw & @ VEw) & VE (siss).
wEQ@ wEQ@
l(w)=1 l(w)=2

The appearing distribution types of Cy (cf. Appendix are
({2}, {2, 15, {1,13,{1}), ({2341, 2}, {1, 1}, {1}),
{1341, 1341, 13, {1}), ({1}, {1, 1}, {1,0},{0}),
({1}, {1,1},{0, 1},{0}), ({1}, {1,0},{0,0},{0}),
({1}.{0,1},{0,0},{0}), ({1},{0,0},{0,0},{0}).
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As an example for the computations, we consider the distribution type
({2342, 1}, {1,1},{1})
and denote a corresponding factor by D. Then,
[Ker(f) : D] < [Ker (VE(A) = V§ (s1)) : D] =0.
This implies that [Im(f) : D] = 2. Moreover, [Im(h) : D] = 1 since
Vg(slsg) — Vg(513231)

is surjective. Thus, [Ker(h): D] = 1. As the composition

D VEw S D VEwW) D VE(s1s2)
wely weNy
l(w)=1 l(w)=2
is surjective, we have the chain of inequalities
1 < [Im(g) : D] < [Ker(h) : D] = 1.
Therefore, [Im(g) : D] = 1 and [Ker(g) : D] = 2. Finally, we see that
[Hi(C,e) : D] =0

for all 7. The same arguments applied to all distribution types show that H;(Ce) = 0
for i # dim(#) — |A] = 3 and that H3(C.) = Ker(f) has composition factors
precisely

P
vE ), Ff, (Lss - 0),05),
P
flcjl,3 (L(5253 : )\)7 UP;’S), .7'—]%73 (L(818283 . )\), 1>

each with multiplicity one.

= (x1, e, 3, 4) with 3" z; = 0 and x3 = 0. Then,
Qg = {e, 51,52, 5251}

and
Co: VEN L @ VEw) L VE (s21).
U}EQ@
l(w)=1

The appearing distribution types in Cq (cf. Appendix [A.2)) are

{2}, {2, 11,{1}), ({2}, {1, 2}, {1}),
{13 L 11 {1}), ({1}, {1, 1},{0}),
{13, {1,0},{0}), ({1} {0, 1},{0}),
{1},{0,0}, {0}).
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With the same arguments as above, we get that H;(Co) = 0 for i # 2,3. Further-
more, H3(C,) has composition factors precisely

VBN FE, (Llss - A)vg?),
‘7:163;1’3([/(3253-)\) vp, ) fP23( (515253-)\),1)

each with multiplicity one. Moreover, Ha(C,) has composition factors precisely

.7:165;’3< (s152 - N), P“) fp23< (s15283 - A), P23),
.7:]%( (s35182 - \), v ) ]:p2( (s1525352 - )‘)7U§2>7
.7-"%3 (L(32333132 ), 1), ]:Pl,s (L(32333152 ), vllj; 3),

]:1% (L($1$2538182 . )\), 1)

each with multiplicity one as well.

¢) u=(x1,29,23,24) with > x; =0, 9 > 0,23 < 0,21 + 24 > 0,29 + x3 < 0. Then,
Qp = {e, 51, 52, 53, 5153, 5253}

and

Co: VEW L P VE(w) L VG (s183) @ VE (s253).
wEQ@
l(w)=1

The appearing distribution types in Cy (cf. Appendix |A.2|) are

({2542, 1,2},{2,1}), ({2}, {1,2, 1}, {1, 1}), ({1}, {1, 1,1}, {1, 1}
({13 {1,1,1},{1,0}), ({1},{1,0,1},{1,0}), ({1},{0,1,1},{0, 1}
( ( (
( (

I

)

{1},{1,1,0},{0,0}), ({1},{0,1,1},{0,0}), ({1},{1,0,0},{0,0}
{1},{0,1,0},{0,0}), ({1},{0,0,1},{0,0}), ({1},{0,0,0},{0,0}).

First, we notice that g is surjective since Vi (s1) and V§(s2) map onto a single but
distinct direct summand. Then, we can apply the same arguments as before. We
compute that H;(Cs) = 0 for i # 2,3. Furthermore, H3(C,) = v§(\). Moreover,
H>(C,) has composition factors precisely

) )

~— — — ~—
\_/\_/\_/\_/
vvvv

PG,y (Llsase - V.0 ). L (Lisast - 0, o),
7§, (Llsasa- N, vp?), FE (Llsisast - ), of).
7§ (Llsasass - X).vp?), FE, (L(sasass - N).vpi?),
FG, (Lisasiss- V)02 ), P (L(sasasisz - 1).1),
~F§%;;( (2835152 + \), vp. )7-7}5<1483313231- A),l),

]:}% (L(83818281 - A), ’UBQ), ]:gl (L(5253515251 - A), 1)
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each with multiplicity one.

3.6 Outlook to the parabolic case

Last but not least, we would like to illustrate why the arguments of the last section
are not so easily transferable to the case where {u} is arbitrary. Even if we make the
Assumption adjusted to this case.

One crucial point in the previous computations is Lemma namely, the fact that
H¢, (w)(ﬁ ,€x) has only non-trivial cohomology in degree n — I(w). This made it possi-
ble to compute Hy (F,&€)) with a suitable chain complex (cf. Lemma [3.14). We will
see in this section that in the general parabolic case, the local cohomology groups with
support in a generalized Schubert cell with coefficients in a line bundle £y, analogous
to the Borel case, do not have this vanishing property. For this, we first define gener-
alized Schubert cells for the general situation and show a result similar to Proposition 3.7}

Therefore, we consider a local Shtuka-datum (G, {u}, [1]) with arbitrary {u}; G is
still assumed to be split. As before, we fix an IIP on G and choose a split maximal torus
T of G of rank d such that p € X,(T)g. Let (T,B) be a Borel pair of rank d which
gives rise to a set of simple roots (cf. section

A:={aq,...,aq} C X*(T)g.

Again, we can assume that p lies in the positive Weyl chamber with respect to B,
so P := P(u) D B, ie. it is a standard parabolic subgroup with respect to B. Let
# := G/P which is defined over K. Further, we let W, be the stabilizer of y under the
action of W. Then, it can be easily shown that W, = W, for

Jy={aec Al (o, =0}CA

(cf. [21, Section 10.3, Lemma B and Proof]). We denote by “»W the left Kostant
representatives, i.e. the set of minimal length left coset representatives in W/W;,. Then,
adjusted to this case, we let

Qr = {w e "W | (wp,wa) > 0 for all o & I} (3.27)

for I C A (cf. |41, p. 530]). Again, we have the following useful lemma induced by
Lemma 2.7

Lemma 3.34. Let I C A. Then, w € Qy if and only if (0o, wi)ger > 0 for all o & 1.

The definition of Y7 C .Z is still the same (cf. (3.4)) and furthermore, similar to the
Borel case, Y7 is also a union of Schubert cells in .%.

Proposition 3.35. [/1, Proposition 4.1] For I C A, we obtain

;= |J BwP/P.

weN
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For I ¢ A and w € W, we have (cf. [45, Section 2.1])

P;wP/P = U BuwuP /P.
(v,u)eWr xWy,

From [4, Proposition 2.7], we know that each double coset W \W /W, contains a unique
element of minimal length which can be found in /#W/ := %W N W!. That motivates
the following definition.

Definition 3.36. Let I C A and w € "=/,
i) The generalized Schubert cell in .% associated to I and w is
Cl(w) :=PrwP/P.
If I = (), we omit the subscript.

ii) For J C A,let Sy ={sq €S| ae J} (cf. (2.4)). For w e W we define H,, C A to
be the subset such that
SHw =5rn wSJwal.

Then, we let ##TW; be the set of left Kostant representatives of Wy /W,
Lemma 3.37. [{, Corollary 2.8] Let I C A and w € 7»W!. Then, vw € »W for

v € Wt if and only if v € HeW;. Consequenty, every element of WiwW, can be written
uniquely as vwu, where v € ToWr, uw e Wy, and l(vwu) = I(v) + 1(w) + 1(u).

Lemma 3.38. Let I C A and w € 7*W!. Then,

Ct(w) = |_| CH(vw).

veHw Wi
Proof. We have seen that

Cl(w) = U BowuP /P.
(v,u)eWy ><WJM

Therefore, one inclusion is obvious. For the other inclusion, notice that u € W, implies
uP = P. Furthermore, if v/ € Wy, there exist unique v € #«W; and v" € Wy, such
that v’ = vv” and I(v) = I(v) + 1(v"). As V" € Wy, we can write v" = wu'w™! with
u' € Wy,. Thus,

Bv'wP /P = Bywu'w 'wP /P = BowP /P

and
Cl(w) = U BowuP /P C U CH(vw).

(U,U)EW]XWJM veHw Wi

Then, the disjointness follows by [26, Proposition 6.2] as the C*(vw) are Schubert cells
of 7. O

Proposition 3.39. For I C A, we have

Y[ = I_l C’?(w)

welbWINQ;
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Proof. We know from [12, Proposition 11.1.6] that Y7 = U,cq, PrwP/P. For v’ € Q;
exist, by Lemma @, unique w € W, v € HeW;, and u € W, such that w' = vwu
with I(w') = I(v) + I(w) + (u), and vw € ‘»W. Since w’ € »W (cf. ), we have
that v = e. Then, we see that

P;w'P/P = ProwP /P = P;wP/P.

Since Y7 is closed, we get

vi= U Crw).
welrWINQy
The union is disjoint for the same reason as in the proof of Proposition (3.7 O

Let A € X*(T)" be a dominant weight and £, = £) ® wg, analogously defined to
. Then, one could ask if we can compute Hy, (Z,E\) by a similar complex as in
Lemma The following example at least gives the answer that these cohomology
groups are not so easy to deduce as in the Borel case.

Example 3.40. We are in the situation of Example for n = 3. Further, we let
p=(2,-1,-1) € X,(T). Then, F = G/P(u) 2 P% and J, = {az}. Let I = {a}.
Hence, W = {e, 59, 5951}, "W = {e, 51, 5251}, and thus #W! = {e, s351}. We choose
w = e € /#W!. This implies S; N wS;w™! = {e} and therefore H,, = (). From that, it
follows that

Cl(e) = C*(e) L CH(s1).

Let A = (0,...,0) € X*(T). Then, £\ = wz and ng(e)(ﬂ,wg) is the cohomology of
I
the cochain complex
Héu(sl)(ﬁ>wﬁ) - ng(e)(ﬁ,wg)

by Lemma Here we used that the Schubert cell C*(w) is affine for w € J»W.
Hence, Héw(w)(ﬁ, wg) is only non-trivial in degree n — I(w). As
F = CH(e) U CH(s1) LU CH(s281),

we see, by the same arguments as before, that the cochain complex

Hg‘ﬂ( F wg) = Hé’#( (F wg) — Hé#(e)(f}:wﬂ‘)

8281)( s1)

computes H*(#,wy) and the morphism are the same as for H/ . © (#,wz). Hence, we
I

have

Moreover, as shown in [39, Proposition 3.2.1], H.., (% ,wz) # 0.

Ci(e)

By the previous example, we see that in contrast to the Borel case, the cohomology
groups Hé‘“(w),(ﬁ’&) can be non-trivial in more than one degree. As in the proof of
Lemma the covering of Y7 from Lemma [3.39] induces a filtration on Y7 by closed
subspaces with disjoint union of generalized Schubert cells as differences. Therefore,
the associated F1-page of the spectral sequence of Lemma can have more than one
non-trivial line. Hence, the proof of Lemma [3.14 breaks down at this point.
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A Appendix

A.1 Code for composition factors

Here, we present the code used for the computation of the Jordan-Hélder factors of
V§ (w) with multiplicities from Example The chosen language is SAGE:

compositionfactors.sage:

R.<g>=LaurentPolynomialRing (QQ)
KL=KazhdanLusztigPolynomial (W,q)

=W N =

def supp(W,w):
supp=set ([])
ref=W.bruhat_interval (1,w)
for v in ref:
if v.length()==1:
supp .add (v)
10 return Set (supp)
11

12 def I(W,w):

© 0w g D »,

13 I=set ({})

14 for s in W.simple_reflections ():
15 if (s*w).length()>w.length():
16 I.add(s)

17 return Set (I)

18
19 def multiplicity(W,w,v,J):

20 x=W.long_element ()

21 H=I(W,w)

22 M=H.intersection (J)

23 c=M.cardinality ()

24 mult=0

25 ref=W.bruhat_interval (W.one(),v)
26 refi1=[]

27 for t in ref:

28 refl.append(t*w.inverse ())
29 for t in refil:

30 if supp(W,t)==M:

31 mult=mult+pow(-1,t.length()+c)*KL.P(x*t*w*x,x*xv*x) (1)
32 return mult

33
3¢ def multiplicitytot(W,w):

35 res=[]

36 c=0

37 L=W.bruhat_interval (W.one(),W.long_element ())
38 for v in L:

39 H=I(W,v)

40 S=Subsets (H)

41 for J in S:

42 m=multiplicity(W,w,v,J)
43 if m !'= 0:

44 c=c+1

45 h=[]

46 h.append (v)

47 h.append (H)

48 h.append (J)

49 h.append (m)

50 res.append (h)

51 return res, c

Then, we applied this part to the relevant Weyl group elements.

1 sage: W = weylGI’Oup("AS"’prefix=|lsn
> sage: [s1,s2,s3]=W.simple_reflections ()
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A.1 Code for composition factors

sage:
sage:

([[s1*s2*s3*s1*xs2*s1,

{3},

{},

[s2*xs3*s1*xs2%*s1,
[s2*%s3*s1*xs2%*s1,
[s1*xs2%s3*xs2%*s1,
[s1*s2*s3*xs2%*s1,
[s1*xs2%s3*xs1%s2,
[s1*s2*s3*xs1*s2,
[s3xs1*s2*s1,
[s3*s1*s2*s1,
[s2*xs3*s2*s1,
[s2*%s3%s2*s1,

{s1},
{s1},
{s2},
{s2}%},
{s3},
{s33%,

{}, 1]
{s1},
{}, 2]
{s2}%},
{}, 1]
{s33%,

{s2},
{s2},
{s1},
{s1},

{r, 11,
{s2}, 11,
{r, 11,
{s1}, 11,

[s2*xs3*s1*s2,
[s2*s3*s1*s2,
[s2*xs3*s1*s52,
[s2*s3*s1*s2,

{s1,
{s1,
{s1,
{s1,

s3},
s3},
s3},
s3},

{1,
{s1},
{s3},
{s1,

[s1*xs2*s3*s1,
[s1*s2%s3*s1,
[s1*s2%s3%s2,
[s1*s2%s83*s52,

[s1*s2%*s1,
[s3*s2%*s1,
[s3%s2%*s1,
[s3*s2%*s1,
[s3%s2%*s1,
[s3*s1%s2,
[s3%s1%s2,
[s2*s3%*s1,
[s2%s3%*s1,
[s2*s3%*s1,
[s2%s3%*s1,
[s2%s3%s2,
[s1%*s2%s3,
[s1*s2%s3,
[s1*s2%s3,
[s1*s2%s3,

[s2%*s1,
[s2*s1,
[s1%*s2,
[s1*s2,
[s3*s1,
[s3*s2,
[s3*s2,
[s2%s3,
[s2%*s3,

{s3},
{s3},
{s2},
{s2},

{s3},
{s1,
{s1,
{s1,
{s1,
{s2},
{s2},
{s1,
{s1,
{s1,
{s1,
{s1},
{s3,
{s3,
{s3,
{s3,

{1,
s2},
s2},
s2%},
s2},

{1,

{s2},

s3%},
s3},
s3%},
s3},

{1,
s2},
s2%},
s2},
s2%},

{}, 11,
{s3}, 11,
{}, 11,
{s2}, 11,
1],

{}, 11,
{s1}, 1]
{s2}, 1]
{s1, s2}
17,
1],
{}, 11,
{s1}, 1]
{s33}, 1]
{s1, s3}
171,
{}, 11,
{s33}, 1]
{s2}, 1]
{s3, s2}

{s1,
{s1,
{s3,
{s3,
{s2},
{s1,
{s1,
{s1,
{s1,

s3},
s37},
s2},
s2%},

{1},
s2%},
s2},
s37},
s3},

[s1,
[s2,
[s3,
[1,
48)
sage:

([[s1*s2*s3*s1*s2%*s1,

{s3,

{s1,

{s1,
{s1,

s2%},
s3}, {7},
s2}, {1},
s3, s2},

{3,

{},
{s1},
{},
{s2},
1],
{},
{s2},
{},
{s3},
1],
1],
1],
{},

multiplicitytot(W,sl)

{1,

11,

1],

11,

1],

1],

11,

1],

11,

111,

{},

[s2*%s3*s1*xs2%*s1,
[s2*xs3*s1*xs2%*s1,
[s1*s2*s3*xs2%*s1,
[s1*xs2%s3*xs2%s1,
[s1*s2*s3*xs1*s2,
[s1*xs2%s3*xs1%s2,
[s3*s1*s2*s1,
[s3xs1*s2*s1,
[s2*s3*s2*s1,
[s2*xs3*s2*s1,

{s1},
{s1},
{s2}%},
{s2},
{s3}%,
{s3},

{}, 11
{s1},
{}, 21
{s2},
{}, 11
{s3},

{s2},
{s2},
{s1},
{s1},

{r, 11,
{s2}, 11,
{r, 11,
{s1}, 11,

[s2*s3*s1*s2,
[s2*s3%s1%*s2,

{s1,
{s1,

s3},
s3},

{3},
{s1},

load("compositionfactors.sage")
multiplicitytot (W,W.one())
11,

11,
11,

>

11,

2],

1],
1],
s3},

>

>

b 1]’

>

>

b 1]’

>

>

] 1]5

11,

11,
11,

>

11,

1]’

11,

11,
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108

126
127
128
129
130
131
132

[s2*s3*s1*s2,
[s2%s3%s1%s2,
[s1*s2*s3*s1,
[s1*s2*s3*s1,
[s1*s2%s83*s52,
[s1*s2*s1, {s3},
[s3*xs2*s1, {s1,
[s3*xs2*s1, {s1,
[s3*xs2*s1, {s1,
[s3*xs2xs1, {s1,
[s3*xs1%xs2, {s2},
[s2*xs3*s1, {s1,
[s2*xs3%s1, {s1,
[s2*xs3*s1, {s1,
[s2*xs3%*s1,
[s1*xs2%s3, {s3,
[s1*s2%s3, {s3,
[s2%s1, {s1l, s3},
[s2xs1, {s1l, s3}%},
[s1*xs2, {s3, s2},
[s3*s1, {s2}, {7},
[s1, {s3,
35)
sage:

([[s1*s2*xs3*s1*s2*s1,

[s2%s3*s1*s2%*s1,
[s2*s3*s1*s2%*s1,
[s1*s2%s3*s2%*s1,
[s1*s2*s3*s2%*s1,
[s1*s2%s3%s1%s2,
[s1*s2%s3*s1%s2,

{s1,
{s1,
{s3},
{s3},
{s2},

s2},
s2},
s2},
s2},

s3},
s3},
s3},
{s1,
s2},
s2},

s2}, {1},

s3},
s3%},
{1},
{s3%}, 11,
{1,

{s3}, 11,
{s1, s3}, 11,
171,

11,

{}, 11,

{}, 11,

{s1}, 17,
{s2}, 11,
{s1,

s2}, 11,

{}, 11,

{},

{1,
1]!

multiplicitytot (W,s2)
{1},

{s1},
{s1},
{s2},
{s2},
{s3}%},
{s3},

{r, 11,
{s1}, 11,
{s3}, 11,
s3},
{r, 11,
{s3}, 11,
1],
{s1},
1],

1117,

{s1, s3%}, 11,

1]’

{3, 11,
{3, 11,
{s1}, 11,
{3, 11,
{s2}, 11,
{3, 11,
{s3}, 11,

[s3*s1xs2*xs1, {s2}, {}, 11,
[s3*s1*s2*s1, {s2}, {s2}, 11,
[s2*s3*xs2*xs1, {s1}, {}, 11,
[s2*s3*s1*s2, {s1, s3}, {}, 2],
[s2*xs3*s1*xs2, {s1, s3},
[s2*s3*s1%s2, {s1, s3%},
[s2*xs3*s1*xs2, {s1, s3}, {si1,
[s1*s2*s3%s1, {s3}, {}, 11,
[s1*s2*s3xs2, {s2}, {}, 11,
[s1*s2%s3%*s2, {s2}, {s2}, 1],

{s1}, 1],
{s3}, 11,
s3},

11,

[s1*xs2*s1, {s3},
[s3*s2*s1, {s1,
[s3*xs2*s1, {s1,
[s3*s1%xs2, {s2},
[s3*xs1%xs2, {s2},
[s2%s3%s1, {s1,
[s2*xs3%s2, {si1},
[s1*xs2%s3, {s3,
[s1*s2%s3, {s3,
[s2*xs1, {s1l, s3},
[s1*xs2, {s3, s2},
[s1*xs2, {s3, s2},
[s3xs2, {s1l, s2}%},
[s3xs2, {s1l, s2},
[s2*xs3, {s1l, s3}%},
[s2, {s1,
33)

sage:

([[s1*s2*s3*s1*xs2*s1,

[s2*s3*s1*xs2*s1,
[s2*s3*s1*xs2%*s1,
[s1*s2%s3*s2*s1,
[s1*s2%s3*xs2%*s1,
[s1*s2%s3*s1*s52,

s2%},
s2},

s3},

s27},
s2},

s3}, {1},

{}, 11,

{3, 11,
{s2}, 1],

{3, 11,

{s2},

11,

{3, 11,

{}, 1],

{},
{},

{},
{},

{s1},
{s1},
{s2},
{s2},
{s3},

{r, 11,
{s2}, 11,

1],

1],
{s2},
1],
{s2},
1],
1117,

11,

11,

multiplicitytot (W,sl%*s2)
{1,

{r, 11,
{r, 11,
{s1}, 11,
{r, 11,
{s2}, 11,
{r, 11,
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133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

161
162
163
164
165

167
168
169
170
171
172
173
174
175
176
177
178

180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
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[s1*xs2*s3*xs1%*s2, {s3}, {s3}, 1],
[s3*xs1*s2x*s1, {s2}, {}, 11,
[s3*xs1*s2*xs1, {s2}, {s2}, 1],
[52*53*31*32, {31: SS}, {}5 1])
[s2*s3*s1*xs2, {s1, s3}, {s1}, 1],
[s2*xs3*s1*xs2, {s1, s3}, {s3}, 1],
[s2*s3*s1*xs2, {s1, s3}, {s1, s3},
[s1*s2*s3*s1, {s3}, {3}, 11,
[s1*s2*s3*s2, {s2}, {}, 11,
[s1*s2*s1, {s3}, {}, 11,
[s3xs1*xs2, {s2}, {}, 11,
[s1*s2%s3, {s3, s2}, {3}, 1],
[s1*xs2, {s3, s2}, {}, 111,

19)

sage: multiplicitytot(W,s2*s1)
([[s1*xs2*s3*xs1x*s2*xs1, {}, {3}, 1],

[s2*s3*sl1*xs2*s1, {st1}, {3}, 11,
[s2*xs3*sl1*xs2*s1, {s1}, {st1}, 11,
[s1*s2*s3*s2*s1, {s2}, {}, 1],
[s1*s2*s3*s2*s1, {s2}, {s2}, 11,
[s1*s2*s3*xs1*s2, {s3}, {}, 1],
[s3*xs1*s2*s1, {s2}, {3}, 11,
[s3xs1*s2xs1, {s2}, {s23}, 11,
[s2%s3*s2*s1, {s1}, {3}, 1],
[s2*s3*s1xs2, {s1, s3}, {}, 11,
[s2*s3*s1*xs2, {s1l, s3}, {s1}, 11,
[s1*s2*s3*s1, {s3}, {}, 11,
[s1*s2*s1, {s3}, {3}, 1],
[s3*xs2*s1, {s1, s2}, {}, 11,
[s3xs2*s1, {s1, s2}, {s2}, 11,
[s2*s3*s1, {s1, s3}, {3}, 11,
[s2*xs1, {s1, s3}, {}, 111,

17)

sage: multiplicitytot(W,sl*xs2%*sl)
([[s1*xs2*s3*xs1x*s2*xs1, {}, {3}, 1],

[s2*s3*s1*xs2x*xs1, {s1}, {}, 11,
[s2*s3*s1*s2*s1, {s1}, {s1}, 11,
[s1*xs2*s3*xs2*s1, {s2}, {}, 11,
[s1*xs2*s3*xs2*s1, {s2}, {s2}, 11,
[s1*s2*s3*s1*s2, {s3}, {}, 11,
[s3*s1*s2*s1, {s2}, {3}, 11,
[s3*xs1*s2*xs1, {s2}, {s2}, 1],
[s2*s3*s1*s2, {s1, s3}, {}, 11,
[s2*s3*s1*xs2, {s1, s3}, {s1}, 1],
[s1*s2*s3*s1, {s3}, {}, 11,
[s1xs2*xs1, {s3}, {}, 111,

12)

sage: multiplicitytot(W,s3)
([[s1*xs2*s3*xs1x*xs2*xs1, {}, {3}, 1],

[s2*s3*s1*xs2x*s1, {s1}, {}, 11,
[s2*xs3*sl1xs2*s1, {s1}, {st1}, 11,
[s1*xs2*s3*xs2x*s1, {s2}, {}, 21,
[s1*xs2*s3xs2x*s1, {s2}, {s2}, 11,
[s1*s2*s3*xs1x*xs2, {s3}, {}, 11,
[s1*xs2*s3xs1x*s2, {s3}, {s3}, 11,
[s3*s1*s2*s1, {s2}, {}, 11,
[s2*s3*s2*s1, {s1}, {3}, 1],
[s2*s3*s2*s1, {s1}, {s1}, 11,
[s2*s3*s1%s2, {s1, s3}, {}, 11,
[s2*s3*s1*s2, {s1, s3}, {s1}, 11,
[s2*xs3*s1*xs2, {s1, s3}, {s3}, 1],
[s2*s3*s1*xs2, {s1, s3}, {s1, s3},
[s1*s2*s3*s1, {s3}, {}, 11,
[s1*s2*s3*s1, {s3}, {s3}, 1],
[s1*s2*s3*s2, {s2}, {3}, 11,

11,

11,
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198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254
255

257
258
259
260
261
262

[s1*s2*s3%s2,
[s3*xs2%*s1,
[s3*s2%*s1,
[s3*xs1%*s2,
[s2*s3%*s1,
[s2*xs3%*s1,
[s2*s3%*s1,
[s2*xs3%*s1,
[s2*s3%*s82,
[s1*s2%s3,
[s1*s2%s83,
[s1*s2%s3,
[s1*s2%s83,
[s3*s1, {s2},
[s3*s2, {s1,
[s2*xs3, {s1,
[s2*s3, {s1,
[s3, {s1,
35)

sage:

{s1,
{s1,
{s2},
{s1,
{s1,
{s1,
{s1,
{s1},
{s3,
{s3,
{s3,
{s3,

s2},
s3},
s3},
s27},

{s2},

{},

{},

([[s1*s2*s3*s1*xs2*s1,

[s2*s3*s1*xs2%*s1,
[s2*s3*s1*xs2%*s1,
[s1*s2%s3*xs2%*s1,
[s1*s2%s3*xs2%*s1,
[s1*s2%s3*xs1%*s2,
[s1*s2*s3*s1%s2,

[s3*xs1*s2*s1,
[s2*xs3*s2*s1,
[s2*s3*s2%s1,
[s2*xs3*s1*s2,
[s2*s3*s1*s2,
[s2*xs3*s1*s2,
[s2*s3*s1*s2,
[s1*xs2*s3*s1,
[s1*s2%s3%s1,
[s1*s2%s3*s2,
[s3*s2%*s1,
[s3*xs2%*s1,
[s3*s1%s82,
[s2*xs3%*s1,
[s2*s3%*s1,
[s2*xs3%*s1,
[s2*s3%*s1,
[s1*xs2%s3,
[s1*s2%s83,
[s3*s1, {s2},
27)

sage:

{s1,
{s1,
{s2},
{s1,
{s1,
{s1,
{s1,
{s3,
{s3,

{s2},
{s1},
{s1},
{s1,
{s1,
{s1,
{s1,
{s3},
{s3},
{s2},

{3,

([[s1*s2*s3*s1*xs2*s1,

[s2*s3*s1*xs2*s1,
[s1*s2%s3*xs2%*s1,
[s1*s2%s3*s2*s1,
[s1*s2%s3*xs1*s2,
[s1*s2%s3*s1%s52,

[s2*s3*s2%*s1,
[s2*s3*s1%*s2,
[s2*s3*s1%s2,
[s1*s2%s3%*s1,
[s1*s2*s3%s2,
[s1*s2%s3%s2,
[s2*s3%*s1,
[s2*xs3%*s2,
[s1*s2%s83,
[s1*xs2%s3,

{s1,
{s1},
{s3,
{s3,

{s1},
{s1,
{s1,
{s3},
{s2},
{s2},

s27},
s2},
{3,
s37},
s3},
s37},
s37},
{31,
s27},
s2},
s27},
s2},
171,
{1,
{},
{s3},
1171,

{s1},
{s1},
{s2},
{s2},
{s3},
{s3},

s3},
s3},
s3},
s3},

s2},
s2%},

{1},
s3%},
s3},
s37},
s3},
s2%},
s2},

{s1},
{s23%},
{s2},
{s33%,
{s3},

s3},
s3},

s3},

{1},
s2%},
s27},

{s2}, 11,
{}, 11,
{s13}, 11,
1],

{3, 11,
{s1}, 11,
{s33}, 11,
{s1, 83},
1],

{r, 11,
{s3}, 11,
{s2}, 1],
{s3, s2},

1],

1],

1:]’
171,
171,

multiplicitytot (W,s1*s3)

{3, {3, 11,
{r, 11,
{s1}, 11,
{r, 21,
{s23}, 1],
{r, 11,
{s33}, 1],
{r, 11,
{3, 11,
{s1}, 11,
{}, 11,
{s13}, 11,
{s33}, 1],
{s1, 83},
{3, 11,
{s3}, 11,
{3, 11,
{, 11,
{s1}, 11,
11,
{3}, 11,
{s13}, 11,
{s3}, 11,
{s1, 83},
{3, 11,
{s33}, 11,

1],

1],

117,

multiplicitytot (W,s2%s3)

{3, {1,
{3, 11,
{r, 11,
{s2}, 1],
{r, 11,
{s3}, 11,
1],

{3, 11,
{s3}, 11,
{3, 11,
{3, 11,
{s2}, 11,

{r, 11,

1],

{r, 11,
{s2}, 1],

1],

{1,
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263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

[s2*s3,
17)
sage: multiplicitytot(W,s3*s2)
([[s1*s2*xs3*s1*xs2*xs1, {},
[s2*%s3*xs1*xs2*s1, {si1},
[s2*xs3*s1*xs2*s1, {sl1},
[s1*s2*s3*xs2*s1, {s2},
[s1*xs2*s3*xs2*s1, {s2},
[s1*s2*s3*xs1*s2, {s3},
[s1*xs2*s3*xs1%s2, {s3},
[s3xs1*s2*xs1, {s2}, {7},
[s2*s3*s2*s1, {s1}, {},
[s2*s3*s1*s2, {s1, s3},
[s2*xs3*s1*xs2, {sl1l, s3},
[s2*s3*s1*s2, {s1, s3},
[s2*xs3*s1*xs2, {sl1, s3},
[s1*s2*s3*xs2, {s2}, {7},
[s1*s2%s3*s2, {s2}, {s2},
[s3*s2*s1, {s1, s2}, {},
[s3*s1*s2, {s2}, {}, 11,
[s2*s3*s2, {s1}, {}, 11,
[s3*xs2, {s1, s2}, {}, 111,
19)

{s1, &3}, {3}, 111,
{3,
{3,

{},

A.2 Distribution types

We list the distribution types of all Jordan-Hoélder factors that appear in Example

{1},
{s1},
{s2},

{s3},
1],
1],
{1},
{s1},
{s3},
{s1,
1],
1],

1:])

11,
11,
11,
11,
11,
11,
11,

11,
1],
11,

s3}, 11,

B33
Example@:
Jordan-Holder factor Distribution type

FG(L(sisasgsrsast - A),1) | ({11 {11}, {1,1},{1})

R (Lsasasiszst - N vgt) | ({1141 13 {111 {1})

FE (Lsasgsrsast - N),1) | ({1}, {1,1},{1,1},{1})

FE (Lisisasssast - N o) | ({21, 42,13, {1,1}, {1})
FE,(Llsisasgsast - N),1) | ({1}, {1,13,{1,1},{1})

FE (Lisisasssisa - Ao ) | ({11 {11}, {1,13, {1})
FE,(Llsisasgsis - A),1) | ({1}, {1,1},{1,0},{0})

FE (Lisssisast - A)vg?) | ({11 {113, 1,13, {1})
FE,(L(sss1s251 - V), 1) ({1}, {1,1},{1,1},{1})

FE (L(sasssast - Aot ) | ({11, {1,131, {0,1}, {0})

PR (Llsasssasi -2, 1) | ({1}, {1,0},{0,0},{0})

FE (Llsasasisa - V), v ") | ({2}, 1,2}, {1,1}, {1})

FE ,(Llsaszsisz - N, o) | ({11 1,13, 41,13, {1})
Continued on next page
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Jordan-Holder factor

Distribution type

G Py 3
.7:P13(L(32333132 A), vp,

)

{1}, {1,1},{1,0}, {0}

{1}, {1,1},{1,0},{0}

]:P13( §2838152 - )\ )
.FP3 (L 5159283871 - )\ )

{1} {11}, {1, 1}, {1}

L 5182838571 - )\ )

{1}, {1,0}, {0, 0}, {0}

{1},{1,1},{1,0},{0}

F§ Py
F§ B
F§ B

L 5182838592 - )\

{1},{0,1},{0,0}, {0}

(
((
(L(s1sa8352 - ), v37)
((
(L

)
]:P3 L(s1s281 - A), )
P

{1 A1 1 {1, 13, {1}

{1}, {1,1},{0,1}, {0}

{1},{1,0},{0,0}, {0}

{1}, {1,1},{0,1}, {0}

{1},{1,0},{0,0}, {0}

F, (L(sssrs2- N, vf) {1},{1,1},{1,0},{0}
F5 <L(838182 “A)s ) {1},{0,1},{0,0}, {0}
FE o (Llsasasy - A)vg™) | ({1}41,1},{0,1},{0}
J§§3(14525351-A),U§23)

7, (Llsasas - N.op®) | ({13,410}, {0,0}, {0}
J¥%3(14525351-A),1) {1},{1,0},{0,0}, {0}
7 (Lisasssz - ), vf}) (13,10, 1}, {0,0}, {0}
76 (Lsisass - 0, 0p) | ({13 (1,13, {1,0}, {0}
Ff, (Llsisoss - M) vpr®) | ({1),{1,01,{0,0}, {0}
76 (Lsisass - 0,0p2°) | ({13.{0,1}, {0,0}, {0}
FG,, (Lisisass - 2),1) {1},{0,0},{0,0}, {0}
FG , (Lsas1 - ), v (1}.{1,1}, {0, 1}, {0}
FE o (Lisas1 - A), v {1}, {1,0},{0,0}, {0}
7§, (Lis1s2 - \), v (1}, {1,1},{1,0},{0}
F o (Llsisa - ), v {1}.{0,1}.{0,0}. {0}

{1}, {1,0},{0,0}, {0}

1},{0,1},{0,0}, {0}

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
({1},{1,0},{0,0},{0})
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
({ )
( )

{1},{0,1}, {0, 0}, {0}

Continued on next page

57



A.2 Distribution types

58

Example @

Jordan-Holder factor

Distribution type

F ,(L(s2ss - V), v5) {1},{0,1},{0,0}, {0}
FE (Llsass - V), vp?) {1},{0,0},{0,0}, {0}
.7:]%73 L(s1- M) vgm)

{1},{0,1},{0,0}, {0}

{1},{0,0},{0,0}, {0}

( )
( )
({1},{1,0},{0,0},{0})
( )
( )
( )

{1}, {0,04, {0, 0}, {0}

Jordan-Holder factor

Distribution type

]:B( (s152583815251 + A), 1)

({13, {1, 1}, {1}

)
F§ (L(sasgsrsass - N, vt ) | ({13,{1,1},{1})
FE (L(sasssisast - M), 1) ({1}, {1,1},{1})
FE, (Llsisoszsost - N, v?) | ({21{2,1),{1})
P& (L(s1sasgsast - M), 1) ({1}, {1,1},{1})
FE (Lisisasasisa - N),vp) | ({11 {1,1},{1})
FE (L(sisasssisa - M), 1) ({1}, {1,1},{0})
]-"192 (L(53315231 . )\),v?) ({1}, {1,1},{1})
FE (Lsssisas1 - M), 1) ({13, {1, 1}, {1})
.7-"1(3;1 (L(82838281 . )\),fugl) ({1}, {1,1},{1})
7§ (L(sasssass - V). 1) ({1},{1,0},{0})
FE,, (Llsasasisa - N, ) | ({25412}, {1})
FE o (Llsasssisa - N, o) | ({11 {11, (1)
PR (Lsasssise- X)) | ({10,113, {0))
7 (L(sasss1s2 - V), 1) ({1} {1.1}.{0})
Fh(Lsisesgst Nvg) | (1L 11 {1)
F§, (Ls1sas9s1 - 1), 1) ({1}, {1,0}, {0})
Fh(Lsisesss Moy ) | ({1h {11110}
FE (L(s1sasys2 - ), 1) ({1},{0,1},{0})

Continued on next page
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Jordan-Holder factor

Distribution type

]:]CJ; (L(slsgsl “A), v?’

(N

({13, {1, 1}, {1}

.7:192 (L(5133 “A),v

{1}, {1,0}, {0}

5y
¥ N———"

)

7§, (Llsasasi-N.vp?) | (1) (1,13, (1))
Ffio(Llssszst- N,vp?) | ({11,{1,04,{0})
7§, (L(535231 ‘A), vg’?) ({1}, {1,1}, {1})
J-“%Q( (s35251 - ), 1) ({1}, {1,0}, {0})
FE (Lisssiso - \), 05 ({1} {1, 1}.{0})
FE, (Lsssisa- M), 1) ({1},{0,1},{0})
FE , (L(saszs - V), v5) ({1}, {11}, {1})
Ff o (Llszsas- N,op®) | ({11,{1,0},{0})
F o (Llsasast - N),op°) | ({11{1,0},{0})
Ff , (L(ssgs1 - 2),1) ({13,{1,0}, {0})
FE, (L(sas355 - ), v5) ({1}.{0,1}.{0})
FG o (Llsisass - N, opt) | (111111, {0})
Fa(Llsisoss - N),0p) | ({1},{1,0},{0})
Ff o (Llsisasy - N,vpr®) | ({11,{0,13,{0})
FE,, (Llsisas3-2),1) ({1},{0,0},{0})
F (L5251 - X)) ({1}, {11}, {1})
FE ,(L(sas1 - ), vpt ) ({1}.{1,0}.{0})
F§ o (Llsrsa - X)) ({1}, {11}, {0})
7§, (Llsisa - ), 052 ({1}.{0,1}.{0})
( )

( )

( )

( )

( )

( )

( )

( )

( )

PG, (L(ssz - ), v5?) {1}.{0, 1}, {0}
F§, ,(Lisss2 - N), ) {1}.{0,1}. {0}
PG (L(sass - ), v5) {1}.{0, 1}, {0}
FEG o (Lsass - 2,01t ) {1},{0.0}. {0}
Fh o (Lls1-0),05") {1}.{1,0}. {0}
F§ o (L(s2 - 0),v5) {1}.{0.1}. {0}
N CTPIRTY {1},{0,0}, {0}
g {1}.{0,0}. {0}
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Example @:

Jordan-Holder factor

Distribution type

fg (L(81828381$2$1 . )\) )

{1 {1, 1,1}, {1, 1}

FE (Lsasssisost - Aot ) | ({11 {1,113, {1,1)
FE (L(sasssisast - M), 1) {1},{1,1,1},{1,0}
FE (Lisisasssost - Vo) | ({21,42,1,2), {2, 1)
FE, (L(s152535251 - 1), 1) (1}, {1,1,1},{1,1}
FE (Lisisasssiso - Ao ) | ({11 {1,113, {1,1)
FE, (L(s1s2535182 - A), 1) (1}, {1,1,1},{1,1}
FE (Lisssisast - A, vg? ) {1},{1,1,1},{1,0}
FE, (L(sss1s2s1 - 1), 1) {1},{1,1,01, {0,0}
FE (L(sasgsast - N, vg ) {1}, {1,1,1},{1,1}
FE (L(sasssas1 - M), 1) {1},{1,0,1},{1,0}

FE (Llsasgsisr - N, v ") | ({2}, {1,213, {1, 1)
-7:1(5173 (L(52333132 A)s Ug?’) {1},{1,1,1},{1,0}
fgm (L(52535152 )\),UI};; 3)

7, (L(sassisz - V), 1) {1},{1,1,1},{1,0}

FE (L(s1sasssr - A),vg ) {1},{1,1,1},{1,1}
FE (L(s1sasss1 - M), 1) {1},{1,0,1},{1,0}
FE (L(s1sas352 - A), v ) (1}, {1,1,1},{1,1}
fg(L(51525382 )\),1) {1},{0,1,1},{0,1}
FE (L5951 - A), vpf) {1},{1,1,0}, {0,0}

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
({1}, {1, 1,1},{1,1})
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
({ )
( )

Fh, (L(535251 A, vg" ) {1},{1,1,1},{1,0}
7§, (Llsasass - Novp?) | ((13.{1.0,1}. {10}
FE,(Llsssasi- V), v0?) | ({11,{1,1,0},{0,0}
7, (L(sssast - ), 1) {1},{1,0,0},{0,0}
FG (L(sss1s2- N), 037 (1}, {1,1,1}, {1,0}
7 (Lsssisz - N, ) {1},{0,1,0},{0,0}
FE , (L(saszsr - V), v5) 1}, {1,1,1},{1,1}
F (E(sasssn - ), vp) | ({111,013, {1,0}

Continued on next page
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Jordan-Holder factor

Distribution type

.7-"]65‘1’3 (L(323331 ), v£;’3)

{1},{1,0,1},{1,0}

‘FFG’l,s (L(828381 . )\), 1)

{1},{1,0,1},{1,0}

.7-"]91 (L(523332 “A), vgl)

{1},{0,1,1},{0,1}

{1}, {1,1,1},{1,1}

{1},{1,0,1},{1,0}

{1},{0,1,1},{0,1}

b Ne—

{1},{0,0,1},{0,0}

{1},{1,1,0},{0,0}

{1},{1,0,0},{0,0}

<
W

w

[V2)

[\

»
S~— N— \>_// N—
: z ;
o] R o o [
\_/\_/vw N——"

W
o
TN
t~
w
=
V)
w
R
(4
w3
N———

{1},{1,0,1},{1,0}

[¥]

{1},{0,1,1},{0,0}

<
o

{1},{0,1,0},{0,0}

<

{1},{0,1,1},{0,1}

w w

S || w3 s

{1},{0,0,1},{0,0}

P
w

{1},{1,0,0},{0,0}

{1},{0,1,0},{0,0}

e
w
b(
v
(V)
=
[ \.C
| Wy
N N N

{1},{0,0,1},{0,0}

(
(
(
(
(
(
(
(
(
({1},{1,1,0},{0,0}
(
(
(
(
(
(
(
(
(
({1}, {0, 0,0}, {0,0}

)
)
)
)
)
)
)
)
)
)
{1},{0,1,0},{0,0})
)
)
)
)
)
)
)
)
)
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