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1 Introduction

The origin of period domains lies in the work of Gri�ths [15, 16]. He introduced
them as certain open subspaces of generalized flag varities over C which parametrize
polarized R-Hodge structures of a given type. Afterwards, Rapoport and Zink [51] as
well as Rapoport [48] introduced period domains over finite and local fields. Especially
the case over p-adic fields is of particular interest for this thesis.

Let p be a prime and K = Qp. Given a reductive group G over K, a period domain
over K parametrizes weakly admissible filtrations on a G-isocrystal of fixed type. It is
an open admissible rigid-analytic subset of a generalized flag manifold F (cf. section
2.5).
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The prototype for a p-adic period domain over K is Drinfeld’s upper half space �(n+1),
which is the complement of all K-rational hyperplanes in the projective space Pn

K
, i.e.

�(n+1) = Pn

K\

€

H(Kn+1
P(H).

The same definition applies to arbitrary fields. In the p-adic case it arises from the trivial
GLn+1-isocrystal inside the projective space F = Pn

K
.

Given an appropriate cohomology theory, it is a natural problem to determine the
cohomology groups for period domains. The starting point is the work of Schneider
and Stuhler [55]. They computed the cohomology groups of �(n+1) in the p-adic case
for “good” cohomology theories. This includes the étale cohomology with torsion coef-
ficients, not including p-torsion, and the de Rham cohomology. So far, the only results
for coherent sheaf cohomology are known for Drinfeld’s upper half space (over p-adic
fields and finite fields). After the work of Schneider and Stuhler, it was Schneider again,
together with Teitelbaum, who made the beginning and considered at first coe�cents in
the canonical bundle [56]. Shortly aftwards, Pohlkamp [46] computed the sheaf coho-
mology with respect to the structure sheaf. Finally, Orlik was able to generalize these
results to arbitrary GLn-equivariant vector bundles on Drinfeld’s upper half space over
p-adic fields [39]. Moreover, he could apply his methods to compute its pro-étale co-
homology [42] and the coherent sheaf cohomology of �(n+1) in the case of finite fields
[38]. It was Kuschkowitz, a student of Orlik, who computed the rigid cohomology of
Drinfeld’s upper halfspace over finite fields with similar methods [31].

The goal of this thesis is to investigate the coherent sheaf cohomology of period
domains over p-adic fields, other than �(n+1). Let G be a split connected reductive
group over K with split maximal torus T. Further let B ∏ T a Borel subgroup of
G associated to a cocharacter µ œ Xú(G) defined over K. Then, we consider period
domains F

wa which parametrize weakly admissible filtrations of the trivial G-isocrystal
inside the complete flag variety F := G/B. Thereafter, we study the sheaf cohomology
of these spaces with respect to the restriction of a homogeneous line bundle E⁄ :=
L⁄ ¢ ÊF on F . Here, ÊF denotes the canonical bundle on F and L⁄ the line bundle
associated to a dominant weight ⁄ œ Xú(T) (cf. section 3.1). For this purpose we
use the techniques of [39] and the theory developed in [44]. Under the assumption of
a hypothesis concerning the density of some local cohomology groups (cf. Assumption
3.19), we prove the following result.

Theorem 1.1 (Theorem 3.28). Let i0 := dim F ≠ |�|. The homology of the (chain)

complex

C• :
n

wœ�ÿ
l(w)=dim Yÿ

V G

B (w) . . .
n

wœ�ÿ
l(w)=1

V G

B (w) V G

B (⁄)

starting in degree i0 coincides with Hú(F wa, E⁄)Õ
, i.e. Hi(C•) = H i(F wa, E⁄)Õ

.

Here, � is the set of simple roots of the root system of G with respect to B. Further,
�ÿ is a subset of the Weyl group W of G defined by some numerical conditions (cf. (3.5))
and Yÿ a union of Schubert cells in F indexed by �ÿ which is closed in F (cf. subsection
3.2). Moreover, V G

B
(w) are twisted generalized locally analytic Steinberg representations
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(cf. Definition 2.38) and H i(F wa, E⁄)Õ denotes the strong dual of H i(F wa, E⁄).

In order to compute the Jordan-Hölder factors for some homology groups of the latter
complex we prove, under the Assumption 2.26, a generalization of [43, Theorem 4.6].

Theorem 1.2 (Theorem 2.40). Fix w, v œ W and let I0 := I(w) respectively I := I(v)
(cf. (2.6)). For a subset J µ � with J µ I, let vPI

PJ
be the generalized smooth Stein-

berg representation of LPI
. Then, the multiplicity of the irreducible G-representation

F
G

PI
(L(v · ⁄), vPI

PJ
) in V G

B
(w) is

ÿ

w
Õ
œW

supp(wÕ)=JflI0

(≠1)¸(wÕ)+|JflI0|m(wÕw, v)

and we obtain in this way all the Jordan-Hölder factors of V G

B
(w).

Then, we will make use of the fact that the morphism pwÕ,w : V G

B
(wÕ) ! V G

B
(w) in

the di�erentials of C• is surjective for wÕ, w œ W with wÕ
Æ w (cf. Lemma 3.30).

The thesis is divided into two parts. The first half is about the main ingredients that
we will use afterwards. In detail, this starts in Section 2.1 with some basics of a split
reductive group G over a finite extension of Qp. We then recall the BGG category O for
the p-adic case in Section 2.2 and locally analytic representations in Section 2.3 which
are related by the functor F

G

P
in Section 2.4. In this section we also prove Theorem 1.2.

Last but not least, we give an overview of p-adic period domains in Section 2.5.
In the second half, we first introduce our setup in Section 3.1. This includes the

period domain F
wa inside the complete flag variety F over K and the line bundle E⁄

on F associated to a dominant character ⁄ of G with respect to the Borel pair (T, B).
In the next section, we make some geometric observations for the complement Y of F

wa

in F
ad. In particular, (generalized) Schubert cells and unions of Schubert varieties will

appear there. Then, in Section 3.3, we determine the algebraic local cohomology groups
of F with support in these (locally) closed subsets and coe�cients in E⁄. We relate
them to analytic local cohomology groups of F

rig in Section 3.4. In Section 3.5, we use
this relation to deduce Theorem 1.1. For this we also use Orlik’s fundamental complex
(cf. [11, Section 6.2.2]) and a resulting spectral sequence. Moreover, we determine
the Jordan-Hölder factors of the dual of Hú(F wa, E⁄) in examples with the help of the
computer. In the last section we explain why our strategy does not automatically transfer
to the general parabolic case.

In the Appendix A we list the code we use to determine the Jordan-Hölder factors of
the terms in the chain complexes in the examples given. The Jordan-Hölder factors can
also be found in the appendix.

1.1 Notations

Let p be a prime and K a finite extensions of Qp. Further let L be a complete exten-
sion of Qp with K µ L. We let OK and OL, respectively, be the ring of integers of K
and L, respectively. Moreoever, let | | be the absolute value of K and L, respectively,
such that |p| = p≠1.
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1.2 Acknowledgements

We use bold letters for algebraic group schemes over K, e.g. G, B. The corresponding
groups of K-valued points are denoted by normal letters, e.g. G, B and the associated
Lie algebras by Gothic letters, e.g. g, b. We write U(h) for the universal enveloping
algebra of a Lie algebra h over K.

We consider L as the field of coe�cents. The base change of a K-vector space or a
scheme over K to L is indicated by L in the subscript, e.g. gL = g ¢K L. We make
an exception when considering a univeral enveloping algebra, i.e. we will write U(h) for
U(h)L

≥= U(hL).

We denote by RepŒ, adm
L

(H) the category of smooth admissible representations of a
locally profinite group H on L-vector spaces, as in [10, Section 2.1].

For a locally convex L-vector space V , we denote by V Õ the strong dual, i.e. the L-
vector space of continous linear forms equipped with the strong topology of bounded
convergence.

For an algebraic variety X over K, we write Xrig for the rigid analytic variety and
by Xad the adic space attached to X, respectively. If E is a sheaf on such a variety X,
we also write E for the associated sheaf on Xrig, Xad and its restriction to any subspace,
respectively.
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2 Preliminaries

2.1 Split reductive groups

We recall the datum that comes along with a split connected reductive group which
will be essential throughout the whole thesis.

Therefore, let K be a finite extension of Qp and G a split connected reductive group
over K. Any split maximal torus T µ G of rank d defines the split pair (G, T) of rank

d to which we associate the root datum

(Xú(T), �(G, T), Xú(T), �‚(G, T))

with the natural pairing

È , Í : Xú(T)Q ◊ Xú(T)Q �! Q (2.1)

(cf. [23, Part II, 1.13]). Furthermore, there exists an invariant inner product on G,
abbreviated by IIP (cf. [11, Section 5.2.1]). That means we have a non-degenerate
positive definite symmetric bilinear form ( , ) on Xú(T)Q for all maximal tori T (defined
over K) of G such that the maps

Xú(T)Q ! Xú(gTg≠1)Q,

Xú(T)Q ! Xú(·T·≠1)Q,

are isometries for all g œ G(K) and · œ Gal(K/K).

Example 2.1. [12, Example 6.2.3] Let G be semi-simple and T a maximal torus of G.
Then, the Killing form

(µ, µÕ) =
ÿ

–œ�
Èµ, –ÍÈµÕ, –Í

is a natural choice of an IIP on Xú(T).

A chosen IIP on G, for any split pair (G, T), together with the natural pairing (2.1)
induces an isomorphism of Q-vector spaces

Xú(T)Q �! Xú(T)Q,

‰ 7�! ‰ú,

such that
(‰ú, µ) = È‰, µÍ (2.2)

for all µ œ Xú(T).

For the rest of the subsection, we fix a split maximal torus T of G and an IIP ( , )
on G. Using � := �(G, T) for the root system and fixing a Borel subgroup B inside
G containing T, we get a set of corresponding positive roots �+

µ � and simple roots
� µ �+ as explained in [58, Section 16.3.1]. We call such a tuple (T, B) a Borel pair.

Then, as in [12, p. 177], after choosing an invariant inner product ( , ) on Xú(T)Q,
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2.1 Split reductive groups

we identify the coroot –‚
œ �‚ := �‚(G, T) of a root – œ � by

–‚ = –ú

(–, –) . (2.3)

There is the following relation between simple roots and coroots.
Lemma 2.2. [58, Lemma 8.2.7] For –, — œ �, – ”= —, we have È–, —‚

Í Æ 0.

Furthermore, let W = NG(T)/T be the Weyl group of G with longest element w0
with respect to B. The natural action of W on T by conjugation induces an action on
Xú(T). Then by, [23, Part II, 1.5], there is a set of generators S := {s–}–œ� µ W , the
simple reflections, such that

s–.⁄ = ⁄ ≠ È⁄, –‚
Í– (2.4)

for ⁄ œ Xú(T)Q and –‚
œ �‚(G, T). But there also is another action of W on Xú(T).

Namely, for w œ W and ⁄ œ Xú(T), the dot action is given by

w · ⁄ = w.(⁄ + fl) ≠ fl (2.5)

where fl := 1
2

q

–œ�+ –. For w œ W , the support supp(w) of w is the set of simple
reflections contained in a (thus in any) reduced expression of w.

Each I µ � defines a root system �I µ � with positive roots �+
I µ �I and a Weyl

group WI µ W generated by the {s–}–œI (cf. [23, Part II, 1.7]). We denote by W I the
right Kostant representatives, i.e. the set of minimal length right coset representatives
in WI\W . It can be described as (cf. [5, (2.2)])

W I = {w œ W | l(s–w) > l(w) for all – œ I}.

Lemma 2.3. [22, Section 0.3 (4)] Let w œ W and I µ �. Then, w œ W I
if and only

if w≠1– œ �+
for all – œ �+

I
.

Additionally, for w œ W let

I(w) := {– œ � | l(s–w) > l(w)} µ � (2.6)

be the unique maximal subset such that w œ W I(w) (cf. [44, p. 663]). Moreover, we
have an inclusion preserving bijection (cf. [35, Proposition 12.2])

P(�) ! {parabolic subgroups P ∏ B} (2.7)
I 7�! BWIB =: PI

where the subgroups PI denote the standard parabolic subgroups of G with respect to
B, e.g. Pÿ = B, P� = G. Furthermore, each P := PI admits a Levi decomposition

P = LP·UP (cf. [23, Part II, 1.8]). Here, LP denotes the standard Levi factor containing
T and UP the unipotent radical of P. Additionally, we let U≠

P be its opposite unipotent

radical.
Remark 2.4. Let I, J µ �. Since WI fl WJ = WIflJ , one sees that PI fl PJ = PIflJ .

Additionally, we define

Xú(T)+
I

:=
Ó

⁄ œ Xú(T)
-

-

-
È⁄, –‚

Í Ø 0 for all – œ I
Ô

(2.8)

8



Christoph Spenke

for I µ � to be the set of LPI
-dominant weights. For I = �, we just write Xú(T)+ and

call it the set of dominant weights.

Proposition 2.5. [32, p. 502] Let ⁄ œ Xú(T)+
, w œ W and I µ �. If w œ W I

, then

w · ⁄ œ Xú(T)+
I

.

Remark 2.6. If ⁄ is additionally regular, i.e. È⁄ + fl, –‚
Í ”= 0 for all – œ � (cf. [22,

Section 1.8]), then also the converse holds (cf. [5, Proposition 2.4]).

The derived group Gder is a connected semi-simple subgroup of G with maximal
torus

Tder := ÈIm(–‚) | – œ �Í µ T (2.9)

(cf. [58, Proposition 8.1.8/ Section 16.2.5]). Moreover, Tder splits by [6, Proposition
8.2.(c)]. The natural map

Xú(T) �! Xú(Tder) (2.10)
⁄ 7�! ⁄ ¶ ÿ,

induced by the inclusion ÿ (2.9), is injective after restriction to � (cf. [58, Section 8.1,
p. 135]). Thus, we identify � with its image. Therefore, the split pair (Gder, Tder) has
the root datum

(Xú(Tder), �, Xú(Tder), �‚)

(cf. [58, Corollary 8.1.9]) and we denote the associated pairing by È , Íder. Then, by
semi-simplicity of Gder, the simple roots � form a basis of Xú(Tder)Q (cf. [23, Part II,
1.6]). Thus, we can define the dual basis

{È– | – œ �} µ Xú(Tder)Q, (2.11)

i.e. È—, È–Íder = ”–,— for all –, — œ �. Naturally, {È–}–œ� µ Xú(T)Q. By dualitiy, the
corresponding set of coroots {–‚

| – œ �} forms a basis of Xú(Tder)Q (cf. [23, Part II,
1.6]) and we analogously define the dual basis

{È̌– | – œ �} µ Xú(Tder)Q

whose elements are known as fundamental weights. Then, a helpful oberservation for
later is the following.

Lemma 2.7. Let µ =
q

–œ� n––‚
œ Xú(Tder)Q µ Xú(T)Q with n– œ Q, and — œ �.

Then,

(µ, È—) > 0 if and only if ÈÈ̌—, µÍder > 0.

Proof. Let – œ �. We have by (2.3) and (2.2)

(–‚, È—) =
! 2
(–, –)–ú, È—

"

= 2
(–, –)È–, È—Í.

As the natural pairings are induced by the composition of a cocharacter with a character
(cf. [23, Part II, Section 1.3]), we see that

È–, È—Í = È–, È—Íder.

9



2.1 Split reductive groups

Thus,
(–‚, È—) = 2

(–, –)È–, È—Íder = 2
(–, –)”–,—.

Hence,

(
ÿ

n––‚, È—) = 2
(—, —)n— > 0 if and only if ÈÈ̌—,

ÿ

n––‚
Íder = n— > 0.

Further, since the fundamental weights form a basis of Xú(Tder)Q, we notice that

– =
ÿ

—œ�
È–, —‚

ÍderÈ̌— (2.12)

for – œ �. After we fix an ordering on � = {–1 < –2 < . . . < –r}, the Cartan matrix is
defined as

C œ Q|�|◊|�| with Cji := È–i, –‚

j Íder. (2.13)

Hence, by (2.12), it is the base change matrix from {–}–œ� to {È–}–œ�. For the inverse
of C, we will need the following fact.

Lemma 2.8. Let � be irreducible. Then, all entries of C≠1
are positive rational num-

bers.

Proof. This is explained in [34, Section 5, p. 19].

With the definition of (2.11), we also obtain an alternative description of the standard
parabolic subgroups of G. For a one-parameter subgroup µ œ Xú(G) defined over some
field extension L of K, we denote by P(µ) the parabolic subgroup of GL whose K-valued
points are given by

P(µ)(K) =
)

g œ G(K) | lim
t!0

µ(t)gµ(t)≠1 exists in G(K)
*

(2.14)

(cf. [36, Definition 2.3/Proposition 2.6]). We have seen that È—, È–Í = ”–,— for –, — œ �.
Thus, [58, Proof of Proposition 8.4.5/Lemma 15.1.2] implies that

P�\{–} = P(È–).

Hence, we deduce from Remark 2.4 that

PI =
‹

– ”œI

P�\{–} =
‹

– ”œI

P(È–) (2.15)

for I µ �.

Jantzen states in [23, Introduction and Part II, Section 1] that split reductive groups
and constructions like Borel und Parabolic subgroups can be carried out over Z, and
therefore, by base change, over any integral domain. This is based on the following
theorem.
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Theorem 2.9. [53, Exp. XXV, Corollary 1.3] Let K be a field. Then, for any split

connected reductive group G over K exists a reductive Z-group G so that

G ¢Z K ≥= G.

As remarked in [53, Exp. XXV, Section 1] after the above statement, G can be as-
sumed to be split.

In the case that K is a local field with ring of integers OK and G a split connected
reductive group over K, this implies that there is a split reductive group G0 over OK

such that (G0)K
≥= G. Furthermore, (G0)k and G have the same root datum for k the

residue field of OK . We call G0 a split reductive group model of G over OK .

Last but not least, we will consider an example that can be kept in mind for the
upcoming chapters.

Example 2.10. Let K = Qp, n œ N and G = GLn over K. We let T be the algebraic
subgroup of diagonal matrices. Then, we identify Xú(T) with Zn by associating the
character

⁄ : (t1, . . . , tn) 7�!
Ÿ

t⁄i

i

to (⁄1, . . . , ⁄n) œ Zn. Similiarly, Zn ≥= Xú(T) by mapping (µ1, . . . , µn) œ Zn to the
cocharacter

µ : z 7�! (zµ1 , . . . zµn).

Then, the pairing (2.1) is the usual inner product of Qn. Furthermore,

� = �‚ = {ei ≠ ej | 1 Æ i ”= j Æ n}

with ei the i-th standard unit vector of Qn. Hence,

fl = 1
2(n ≠ 1, n ≠ 3, . . . , ≠(n ≠ 3), ≠(n ≠ 1)) œ Zn.

If we choose B to be the algebraic subgroup of upper triangular matrices, then

� = {–i := ei ≠ ei+1 | 1 Æ i Æ n ≠ 1}.

Moreover, W = Sn and si := s–i
is the transposition (i, i + 1). Then, W acts on Xú(T)

and Xú(T) by permuting entries, respectively. Let I µ � and �\I = {–i1 , –i2 , . . . , –ir
}

with 0 = i0 < i1 < i2 < . . . < ir. Then, PI is the algebraic subgroup such that PI(K)
consists of matrices with GLij+1≠ij

(K)-blocks along the main diagonal (ordered by the
ij), zeros below and arbitrary entrys above. Furthermore,

Xú

I (T)+ = {(⁄1, . . . , ⁄n) œ Zn
| ⁄i Ø ⁄i+1 for all –i œ I}.

The derived subgroup Gder of G is SLn, with Tder(K) = T(K) fl SLn(K). In addition,

È–i
= È̌–i

= 1
n

(n ≠ i, . . . , n ≠ i, ≠i . . . , ≠i) œ Zn

with (È–i
)i = n ≠ i and (È–i

)i+1 = ≠i.
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2.2 The BGG categories O and O
p

2.2 The BGG categories O and O
p

Let the ground field K be a finite extension of Qp and (G, T) a split pair over K of
rank d (cf. section 2.1). Further, let (T, B) be a fixed Borel pair and L a finite extension
of K.

Over the complex numbers, the BGG category O and its parabolic version O
p provide

powerful tools to investigate (infinite dimensional) representations of Lie algebras. A
good reference for this topic is [22]. The goal of this chapter is to recall the adaption of
these notions to the case where the coe�cient field L is not algebraically closed. For our
setting, this was considered in detail in [44, Section 2.5] by Orlik and Strauch.

Definition 2.11. [44, Section 2.5, p. 105] The category O is defined to be the full
subcategory of Mod U(g) whose objects M satisfy the following conditions:

(O1) M is a finitely generated U(g)-module.

(O2) M is tL-semisimple, i.e. M =
m

⁄œtú
L

M⁄.

(O3) M is locally bL-finite, i.e. for each v œ M one has that U(b) · v µ M is a finite
dimensional L-vector space.

Here, for ⁄ œ tú
L

= HomL(tL, L), we denote by

M⁄ = {v œ M | t · v = ⁄(t)v for all t œ t}

the ⁄-eigenspace of M . Furthermore, by derivation we consider Xú(T) as a subgroup of
tú
L

.

Definition 2.12. [22, Section 1.15] Let M œ O. The formal character of M is defined
as

ch(M) : túL �! Z+

⁄ 7�! dimL(M⁄).

Remark 2.13. It is also common to write

ch(M) =
ÿ

⁄œtú
L

dimL(M⁄)e(⁄)

for the formal character of M œ O. Here, e(⁄) is the characteristic function which is 1
for ⁄ and zero else.

Moreover, Orlik and Strauch defined a certain subcategory of O which will play an
important role for upcoming sections.

Definition 2.14. [44, Definition 2.6] Let Oalg be the full subcategory of O whose objects
are U(g)-modules M such that all ⁄ appearing in (O2), for which M⁄ ”= 0, are contained
in Xú(T) µ tú

L
.

Example 2.15. [44, Example 2.7] Let ⁄ œ tú
L

. The action of tL on L given by ⁄ defines
the tL-module L⁄ which extends uniquely to a bL-module. Then,

M(⁄) = U(g) ¢U(b) L⁄

12
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is the Verma module corresponding to ⁄ and L(⁄) œ O is its unique simple quotient.
Notice that M(⁄) and L(⁄), respectively, lies in Oalg if and only if ⁄ œ Xú(T).

Lemma 2.16. [8, Lemma 1] Let ⁄, µ œ tú
L

and M a U(g)-submodule of M(⁄), such that

ch(M) = ch(M(µ)). Then, M is isomorphic to M(µ).

There is also a parabolic version of the category O. To define it, let P be a standard
parabolic subgroup of G with respect to B.

Definition 2.17. [44, p. 106] By O
p we denote the full subcategory of Mod U(g) whose

objects M satisfy the following conditions:

(Op1) M is a finitely generated U(g)-module.

(Op2) Viewed as an lP,L-module, M is the direct sum of finite dimensional simple mod-
ules.

(Op3) M is locally uP,L-finite.

First, notice that O = O
b and that O

g is the category of all finite dimensional
(semisimple) U(g)-modules. Moreover, for a standard parabolic Q ∏ P, we have that
O

q
µ O

p. Hence, O
p is a full subcategory of O and contains all finite dimensional

U(g)-modules. Additionally, O
p is an L-linear, abelian, artinian and noetherian cate-

gory which is closed under taking submodules and quotients. Again, the Jordan-Hölder
series of an object of O

p lies in O
p.

Letting Irr(lP,L)fd be the set of isomorphism classes of finite dimensional irreducible
lP,L-modules, we have for M œ O

p that

M =
n

aœIrr(lP,K)fd
Ma,

by property (Op2) in Definition 2.17, with Ma µ M being the a-isotypic part of the
representation a. Similiar to before there is an algebraic subcategory in O

p.

Definition 2.18. [44, p. 106] Let O
p
alg be the full subcategory of O

p with objects
M œ O

p satisfying the following property: whenever Ma ”= 0, then, a is induced by a
finite dimensional algebraic LP,L-representation.

Then, O
b
alg = Oalg and furthermore, O

p
alg is an abelian, artinian, noetherian category

which is closed under taking submodules and quotients.

Definition 2.19. [44, Definition 5.2] Let M œ O. A parabolic subalgebra p (and the
corresponding parabolic subgroup P, respectively) is called maximal for M if M œ O

p

and M /œ O
q for all parabolic subalgebras q strictly containing p.

Example 2.20. [44, Example 2.10] Let I µ � and P := PI . For ⁄ œ Xú(T)+
I

, there is a
corresponding finite dimensional irreducible algebraic LP,L-representation VI(⁄), which
can be viewed as a PL-representation by letting UP,L act trivially on it. Then,

MI(⁄) = U(g) ¢U(p) VI(⁄)

is the generalized Verma module associated to ⁄, which lies in O
p
alg. We have a surjection

qI : M(⁄)!MI(⁄)

13
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with the kernel being the image of
m

–œI
M(s– · ⁄) ! M(⁄) (cf. [33, Proposition 2.1]).

Furthermore, for J µ I, there is a transition map

qJ,I : MJ(⁄)!MI(⁄) (2.16)

such that qI = qI,J ¶ qJ (cf. [43, Section 2, p. 653]).

2.3 The category of locally analytic representations

Let K and L be fields as in the previous section and G a locally K-analytic group. In
this subsection, we take a look at Rep¸a

L (G), the category of locally analytic representa-
tions of G on a certain class of L-vector spaces introduced by Schneider and Teitelbaum
in [57].

We start by recalling some definitions concerning topological L-vector spaces.

Definition 2.21. i) A topological L-vector space V is locally convex if it has a fun-
damental system of open 0-neighbourhoods consisting of OK-submodules (cf. [57,
Section 1, p. 444]).

ii) A locally convex L-vector space is barelled if every closed lattice is open (cf. [57,
Section 1, p. 444]).

iii) A locally convex L-vector space is of compact type if it is the inductive limit of
countably many L-Banach spaces (Vn)nœN with transition maps being injective and
compact (cf. [57, Section 1, p. 445]).

iv) A locally convex L-vector space is called an L-Fréchet space if it is metrizable and
complete (cf. [54, Section 8, p. 46]).

Theorem 2.22. [57, Theorem 1.1] Any space V of compact type is Hausdor�, complete,

bornological and reflexive. Its dual is a Fréchet space and satisfies V Õ = lim �n
V Õ

n.

Let V be a Hausdor� barelled locally convex L-vector space. Then, Can(G, V ) is the
locally convex L-vector space of locally L-analytic functions on G with values in V (see
[57, Section 2, p. 447] for a detailed description). Further,

D(G) := Can(G, L)Õ

is the locally convex vector space of L-valued distributions on G (cf. [57, Section 2,
Definition, p. 447]). Additionally, with convolution as multiplication, it is an associative
L-algebra (cf. [57, Proposition 2.3]). A prominent class of elements of D(G) is that of
Dirac distributions ”g, for g œ G, defined by

”g(f) = f(g).

Definition 2.23. [57, Section 3, p. 451, Definition] A locally analytic G-representation

V (over L) is a Hausdor� barelled locally convex L-vector space V equipped with a G-
action by continous linear endomorphisms such that, for each v œ V , the orbit map
flv(g) := gv lies in Can(G, V ). We denote the category of such representations by
Rep¸a

L (G).

14
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Definition 2.24. [44, Section 2.1, p. 103] A locally analytic G-representation V is called
strongly admissible if V is of compact type and V Õ is a finitely generated D(K)-module
for any compact open subgroup K of G.

As in the algebraic or smooth case, we also have the induction functor.

Definition 2.25. [44, Section 2.2, p. 103] Let H be a closed subgroup of G and (V, fl) a
locally analytic representation of H. The locally analytic induced representation IndG

H(V )
is defined as

IndG

H(V ) = {f œ Can(G, V ) | f(gh) = fl(h≠1)f(g) ’h œ H, ’g œ G}.

The group G acts on IndG

H(V ) by (g.f)(x) = f(g≠1x).

2.4 The functor F
G
P

We remain in the setting of section 2.2. Let G = G(K) and P = P(K) for some
standard parabolic subgroup P of G. As mentioned in [57, p. 443], G and P are locally
K-analytic groups. We will introduce the functor F

G

P
defined by Orlik und Strauch in

[44], which links the category O
p
alg with the category Rep¸a

L (G) from the last two sub-
sections.

Due to the results of [44], we have at some point to make the following assumption.

Asssumption 2.26. [44, Assumption 5.1] If the root sytem �(G, T) has irreducible

components of type B, C, or F4, we assume p > 2, and if �(G, T) has irreducible

components of type G2, we assume that p > 3.

Let M œ O
p
alg. Then, by the very definition of the category O

p
alg, there is a finite-

dimensional representation (W, fl) µ M of pL which generates M as U(g)-module. We
call such a tuple (M, W ) an O

p
alg-pair. Hence, such a pair comes with a short exact

sequence of U(g)-modules

0! d! U(g) ¢U(p) W !M ! 0 (2.17)

with d being the kernel of the natural map U(g)¢U(p) W !M . By the following lemma,
we see why it is helpful to restrict to the algebraic part of the category O

p.

Lemma 2.27. [44, Lemma 3.2] The representation fl lifts uniquely to an algebraic PL-

representation on W (which we denote again by fl).

Thus, we have a locally analytic representation of P on the dual space W Õ denoted
by flÕ. Then, Orlik and Strauch considered the pairing

È , ÍCan(G,L) : D(G) ¢D(P ) W ¢L IndG

P (W Õ) �! Can(G, L) (2.18)

(” ¢ w) ¢ f 7�!
Ë

g 7�!
1

” ·r

!

f(·)(w)
"

2

(g)
È

with
1

” ·r

!

f(·)(w)
"

2

(g) = ”
!

x 7! f(gx)(w)
"

in [44, p. 108, (3.2.2)]. Besides D(P ), we
can also consider U(g) as a subring of D(G), as explained in [57, Section 2, p. 449/450],
and similiarly U(p) µ D(P ). Then, it turns out that the canonical map

U(g) ¢U(p) W 7�! D(G) ¢D(P ) W

15
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is injective (cf. [44, p.108]). Therefore, with the notation of (2.17), we consider

IndG

P (W Õ)d := {f œ IndG

P (W Õ) | È”, fÍCan(G,L) = 0 for all ” œ d}

from [44, p.108, (3.2.3)]. It is a G-equivariant subspace of IndG

P (W Õ).

Proposition 2.28. [44, Proposition 3.3. (i)] The representation IndG

P (W Õ)d is a strongly

admissible locally analytic G-representation. In particular, the underlying topological

vector space is reflexive.

Moreover, D(g, P ) denotes the subring of D(G) generated by U(g) and D(P ). The
following lemma explains which D(g, P )-module structure we will use on any object
M œ O

p
alg from now on.

Lemma 2.29. [44, Corollary 3.6] There is on any object M œ O
p
alg a unique D(g, P )-

module structure with the following properties:

i) The action of U(p), as a subring of U(g), coincides with the action of U(p) as a

subring of D(P ).

ii) The Dirac distributions ”g œ D(P ) act like group elements g œ P (the latter action

given by Lemma 2.27).

Moreover, any morphism M1 !M2 in O
p
alg is automatically a homomorphism of D(g, P )-

modules.

Proposition 2.30. [44, Proposition 3.7] There is an isomorphism of D(G)-modules

D(G) ¢D(g, P ) M ≥=
1

IndG

P (W Õ)d
2Õ

.

Based on this, Orlik and Strauch defined the following contravariant functor

F
G

P : O
p
alg �! Rep¸a

L (G)
M 7�! (D(G) ¢D(g, P ) M)Õ.

in [44, Section 4.1].

Proposition 2.31. [44, Proposition 4.2] The functor F
G

P
is exact.

They also gave an alternative description of this functor [44, Section 3.8] which we
would like to recall.

Let G0 be a split reductive group model of G over OK (cf. section 2.1) with Borel
pair (T0, B0) and parabolic P0 containing B0 such that the base change to K yields the
pair (T, B) and P respectively. Let fi œ OL be an uniformizer. For any positive number
m œ N, we consider the reduction map

pm : G0(OL)! G0(OL/(fim)).

We set G0 = G0(OL) and define P m := p≠1
m (P0(OL/(fim)) µ G0. Let �u≠

P
= {–1, . . . , –r}

be the set of roots appearing in u≠

P (under the adjoint action of T) and y–1 , . . . , y–r
be

16
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a basis of the L-vector space u≠

P. Then, for ‘ œ |Kú|, the norm | |
‘

on U(u≠

P) is given by
-

-

-

-

-

ÿ

(i1,...,ir)œNr

0

ai1,...,ir
yi1

–1 · · · yir

–r

-

-

-

-

-

‘

= sup
(i1,...,ir)œNr

0

-

-

-
i1! · · · ir! · ai1,...,ir

-

-

-
‘i1+...+ir . (2.19)

Completing U(u≠

P) with respect to | |
‘

yields the L-Banach space

U(u≠

P)‘ :=
I

ÿ

(i1,...,ir)œNr

0

ai1,...,ir
yi1

–1 · · · yir

–r

-

-

-

-

ai1,...,ir
œ L,

|i1! · · · ir! · ai1,...,ir
|‘i1+...+ir ! 0 for i1 + . . . + ir ! 0

J

. (2.20)

Let m œ N and ‘m := |fi|
m. We will write U(u≠

P)m for U(u≠

P) 1
‘m

. For M œ O
p
alg, we have

seen in (2.17) that there is a short exact exact sequence

0! d! U(g) ¢U(p) W !M ! 0

of U(g)-modules with a finite dimensional p-representation W which can be lifted. By
the PBW-Theorem, we know that

U(g) ¢U(p) W ≥= U(u≠

P) ¢L W.

For that reason, we consider d as a submodule of U(u≠

P) ¢L W and denote by dm its
topological closure in U(u≠

P)m ¢L W . The latter object also has a natural P m-action
induced by the action

p.(x ¢ w) = Ad(p)(x) ¢ w

of P0 on U(g) ¢U(p) W (cf. [44, p.113/114]). Finally, this leads to the following identifi-
cation.

Proposition 2.32. [44, Corollary 3.12] Let M œ O
p
alg. With the preceeding notation we

have that

F
G

P (M) =
1

lim �
m

IndG0
P m

!

U(u≠

P)m ¢L W/dm

"

2Õ

.

Inspired by Proposition 2.30, Orlik und Strauch extended the functor F
G

P
to a bi-

functor on O
p
alg ◊RepŒ,adm

L
(LP ) (cf. [44, Section 4.4]). For this, let V œ RepŒ, adm

L
(LP ).

By inflation, we consider V as a representation of P . Equipping V with the finest locally
convex L-vector space topology, it is of compact type and carries the structure of a locally
analytic P -representation (cf. [44, p. 117]). For an O

p
alg-pair (M, W ), Orlik und Strauch

consider W ¢L V as the projective (or inductive) tensor product which is complete and
a locally analytic P -representation via the diagonal action (cf. [44, p. 117]). Then, they
defined

F
G

P (M, W, V ) := IndG

P (W Õ
¢ V )d

:= {f œ IndG

P (W Õ
¢ V ) | È”, fÍCan(G,L) = 0 for all ” œ d}

with the pairing È , ÍCan(G,V ) being defined completely analogous to (2.18). However,
the definition is independent of the chosen O

p
alg-pair (M, W ) (cf. [44, Section 4.6]).

17
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Therefore, we write F
G

P
(M, V ) for any F

G

P
(M, W, V ). We recap some properties of the

bi-functor F
G

P
.

Proposition 2.33. [44, Proposition 4.7] F
G

P
is a bi-functor

O
p
alg ◊ RepŒ,adm

L
(LP ) �! Rep¸a

L (G)
(M, V ) 7�! F

G

P (M, V )

which is contravariant in M and covariant in V .

In case V is the trivial representation 1, we will write F
G

P
(M).

Proposition 2.34. [44, Proposition 4.9]

i) The bi-functor F
G

P
is exact in both arguments.

ii) If Q ∏ P is a parabolic subgroup, q = Lie(Q), and M œ O
q
alg, then

F
G

P (M, V ) = F
G

Q

!

M, i
LQ

LP (LQflUP )(V )
"

where i
LQ

LP (LQflUP )(V ) = iQ

P
(V ) denotes the corresponding induced representation in

the category of smooth representations.

Theorem 2.35. [44, Theorem 5.8] Assume that Assumption 2.26 holds. Let M œ Oalg
be simple and assume that p is maximal for M (cf. Definition 2.19). Let V be a smooth

and irreducible LP -representation. Then, F
G

P
(M, V ) is topologically irreducible as a G-

representation.

We devote the last part of this subsection to an application of the functor F
G

P
. Let

I µ � and PI be the associated parabolic subgroup of G. Then, we notice that

IndG

PI
(1) = F

G

PI
(MI(0))

where 0 is the weight sent to the zero vector under the identification Xú(T) ≥= Zd. More
generally, for ⁄ œ Xú(T)+ (cf. (2.8)), we have

IG

PI
(⁄) := IndG

PI
(VI(⁄)Õ) = F

G

PI
(MI(⁄)) (2.21)

since the O
pI

alg-pair (VI(⁄), MI(⁄)) has trivial kernel d (cf. (2.17)). For I µ J µ �, the
morphism qI,J (cf. (2.16)) induces, by Proposition 2.33 and 2.34, a map

pJ,I : IG

PJ
(⁄) = F

G

PJ
(MJ(⁄), 1)

F
G

PJ
(qI,J , incl.)

���������! F
G

PJ
(MI(⁄), iPJ

PI
) ≥= F

G

PI
(MI(⁄)) = IG

PI
(⁄)

of locally analytic G-representations. Furthermore, the map pJ,I is injective and has
closed image (cf. [43, p. 660]).

Definition 2.36. [43, p. 661] For I µ �,

V G

PI
(⁄) := IG

PI
(⁄)

O

ÿ

J)I

IG

PJ
(⁄)

is the twisted generalized Steinberg representation.

18
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It has the following resolution in Rep¸a

L (G).

Theorem 2.37. [43, Theorem 4.2] Let ⁄ œ Xú(T)+
and I µ �. Then, the following

complex is a resolution of V G

PI
(⁄) by locally analytic G-representations,

0! IG

G (⁄)!
n

IµKµ�
|�\K|=1

IG

PK
(⁄)!

n

IµKµ�
|�\K|=2

IG

PK
(⁄)! . . .

. . .!
n

IµKµ�
|K\I|=1

IG

PK
(⁄)! IG

PI
(⁄)! V G

PI
(⁄)! 0.

Here, the di�erentials dKÕ,K : IG

P
KÕ (⁄) ! IG

PK
(⁄) are defined as follows. We fix an

ordering on �. Let K, K Õ
µ � with |K| = |K Õ

| ≠ 1 and K Õ = {–1 < . . . < –r}. Then,

dKÕ,K =
I

(≠1)ipKÕ,K K Õ = K fi {–i}

0 K ”µ K Õ
.

We like to stress a relative version which was shown in [43, p. 663] in the proof of the
previous theorem. For this we follow the notion of [43, p. 661].

Definition 2.38. Let ⁄ œ Xú(T)+, I µ � and w œ W I . By Proposition 2.5, we know
that w · ⁄ œ Xú(T)+

I
. Then, we set

IG

PI
(w) := IndG

PI
(VI(w · ⁄)Õ) = F

G

PI
(MI(w · ⁄)), (2.22)

V G

PI
(w) := IG

PI
(w)

O

ÿ

J)I

wœW
J

IG

PJ
(w).

Corollary 2.39. Let ⁄ œ Xú(T)+
, I µ � and w œ W I

. Then, the following complex is

acyclic

0! IG

PI(w)(w)! . . .!
n

IµKµI(w)
|K\I|=1

IG

PK
(w)! IG

PI
(w)! V G

PI
(w)! 0.

In [43, Theorem 4.6], it was shown that the Jordan-Hölder factors of V G

B
(⁄) are of the

form F
G

PI

1

L(w · ⁄), vPI

PJ

2

for suitable I, J µ � and w œ W . This is related to Theorem
2.35. We will use Corollary 2.39 to get a similar statement for V G

B
(w) which partially

generalizes [43, Theorem 4.6].

For w, v œ W , we denote by m(w, v) œ ZØ0 the multiplicity of L(v ·0) in M(w ·0). It is
well known that m(w, v) > 0 if and only if w Æ v with respect to the Bruhat order Æ on
W . Moreover, the multiplicities can be computed using Kazhdan-Lusztig polynomials
(cf. [3] or [9]) which is in general only possible in a timely manner with the help of a
computer.

Theorem 2.40. Assume that Assumption 2.26 holds. Fix w, v œ W and let I0 := I(w)
and I := I(v), respectively, be as above. For a subset J µ � with J µ I, let vPI

PJ
be
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the generalized smooth Steinberg representation of LPI
. Then, the multiplicity of the

irreducible G-representation F
G

PI
(L(v · ⁄), vPI

PJ
) in V G

B
(w) is

ÿ

w
Õ
œW

supp(wÕ)=JflI0

(≠1)¸(wÕ)+|JflI0|m(wÕw, v)

and in this way we obtain all the Jordan-Hölder factors of V G

B
(w).

Proof. We only have to slightly modify the proof of [43, Theorem 4.6]. From the resolu-
tion for V G

B
(w) by Corollary 2.39, we obtain the multiplicity

#

V G

B (w) : F
G

PI
(L(v · ⁄), vPI

PJ
)
$

=
ÿ

KµI0

(≠1)|K|
#

IG

PK
(w) : F

G

PI
(L(v · ⁄), vPI

PJ
)
$

of the simple object F
G

PI
(L(v · ⁄), vPI

PJ
) in V G

B
(w). By the arguments mentioned in loc.

cit, it follows that
#

IG

PK
(w) : F

G

PI
(L(v · ⁄), vPI

PJ
)
$

”= 0 if only if K µ J fl I0. In that case
we have

#

IG

PK
(w) : F

G

PI
(L(v · ⁄), vPI

PJ
)
$

=
#

MK(w · ⁄) : L(v · ⁄)
$

.

From the character formula

ch(MK(w · ⁄)) =
ÿ

wÕœWK

(≠1)¸(wÕ)ch(M(wÕw · ⁄)),

(cf. [22, Section 9.6, p. 189, Proposition]), we obtain
#

V G

B (w) : F
G

PI
(L(v · ⁄), vPI

PJ
)
$

=
ÿ

KµJflI0

(≠1)|K|
ÿ

wÕœWK

(≠1)¸(wÕ)#M(wÕw · ⁄) : L(v · ⁄)
$

=
ÿ

wÕœW

(≠1)¸(wÕ)#M(wÕw · ⁄) : L(v · ⁄)
$

ÿ

KµJflI0
supp(wÕ)µK

(≠1)|K|.

Finally, we have
ÿ

supp(wÕ)µKµJflI0

(≠1)|K| = (≠1)supp(wÕ)(1 ≠ 1)|(JflI0)\ supp(wÕ)|

which is non-zero if and only if supp(wÕ) = J fl I0. Hence, the formula follows.

The natural morphism V G

B
(⁄) ! V G

B
(w) is surjective for all w œ W as it is induced

by an injective morphism M(w · ⁄)!M(⁄) (cf. Lemma 3.30). Therefore, [43, Theorem
4.6] implies that we obtain all Jordan-Hölder factors of V G

B
(w) in this manner.

2.5 Period domains

In this section we give a brief introduction to our central object of study, the p-adic
period domain (cf. [41] and [11]). For a more general setting and detailed presentation,
we refer the reader to [12].

Let F be an algebraically closed field of characteristic p and K0 = Quot(W (F )), the
quotient field of the ring of Witt vectors of F . Be K = Qp with algebraic closure K
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and absolute Galois group �K = Gal(K/K). We denote by C the p-adic completion of
K. Moreover, let ‡ œ Aut(K0/K) be the Frobenius homomorphism and G a quasi-split
connected reductive group over K.

2.5.1 Filtered isocrystals

An isocrystal over F is a pair (V, �) with a finite-dimensional K0-vector space V and
a ‡-linear bijective endomorphism � of V . Then, an isocrystal with G-structure (also
referred to as a G-isocrystal) is an exact faithful tensor functor

RepK(G) �! Isoc(F )

from the category of finite-dimensional algebraic K-representations to the category of
isocrystals over F . In view of [49, Remark 3.4] there exists a very concrete description
of G-isocrystals which we will sketch. Every G-isocrystal is induced by an element
b œ G(K0). Namely, to a finite-dimensional algebraic K-representation (V, fl) of G, we
associate

Nb(V ) :=
!

V ¢K K0, fl(b)(idV ¢ ‡)
"

which defines an isocrystal over F . The morphisms are mapped under Nb as expected.
Thus, Nb is a G-isocrystal and b, bÕ

œ G(K0) yield the same G-isocrystal if and only if
there exists a g œ G(K0) such that bÕ = gb‡(g)≠1, i.e. if they are ‡-conjugated. The
set of ‡-equivalence classes [b] in G(K0) is denoted by B(G) and was introduced by
Kottwitz [28, 29]. In [11, Section 3] the authors give several interpretations of this set.
Additionally, the G-isocrystal Nb comes along with its automorphism group Jb. It is an
algebraic group over K with

Jb(A) = {g œ G(K0 ¢K A) | gb‡(g)≠1 = b}

for every K-algebra A. It depends only on [b] in view of [50, Section 2.1, p. 280]. As G
is quasi-split, we know by [28, Section 6] that Jb is an inner form of a Levi subgroup of
G; hence Jb is reductive.

Let L be a field extension of K0. A filtered isocrystal (V, �, F
•) over L is an isocrystal

(V, �) over F with a Q-filtration F
• (decreasing, exhaustive and separated) on VL. The

filtered isocrystal over L form a K-linear quasi-abelian tensor category FilIsocL

F (�) (cf.
[12, Section VIII, p. 192]). Then, we say that a filtered isocrystal (V, �, F

•) over L is
weakly admissible if the inequality

ÿ

i

i dim gri

F•(V )(N
Õ
¢K0 L) Æ ordp det(�|N Õ)

holds for every subisocrystal N Õ of (V, �) and with equality in case N Õ = (V, �).

Any 1-PS ⁄ : Gm �! GL defined over L induces a Z-graded L-vector space

VL =
n

iœZ
V ⁄

i

for a finite-dimensional algebraic K-representation (V, fl), where the grading comes from
the weight spaces V ⁄

i
= {v œ VL | fl(⁄(s))v = siv}. Thus, we naturally have a decreasing
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2.5 Period domains

exhaustive separated Z-filtration F
•

⁄
(V ) on VL given by

F
i

⁄(V ) =
n

jØi

V ⁄

j .

Therefore, a tuple (b, ⁄) œ G(K0) ◊ Xú(GL) defines a tensor functor

RepK(G) �! FilIsoL

F (�)
(V, fl) 7�! (Nb(V ), F

•

⁄(V )).

Such a pair (b, ⁄) is weakly admissible if (Nb(V ), F
•

⁄
(V )) is weakly admissible for all

(V, fl) œ RepK(G).

2.5.2 Slope homomorphism and Newton map

A technical issue, which will be important in the upcoming sections, is the slope

homomorphism ‹b. Let D be the algebraic pro-torus over K with character group Q.
Kottwitz showed in [28, Section 4] that there exists a unique morphism

‹b : DK0 �! GK0

for b œ G(K0) which, by the Tannakian formalism, induces the tensor functor

RepK(G) �! Grad(VecK0 ,Q)
(V, fl) 7�!

n

iœQ
Vi

from RepK(G) to the category of Q-graded K0-vector spaces, where the grading comes
from the slope decomposition of Nb. Further, it has the properties

‹gb‡(g)≠1 = g‹bg
≠1 for all g œ G(K0), (2.23)

‹‡(b) = ‡(‹b) (2.24)

(cf. [28, Section 4.4]). By employing both, one obtains ‹b = b‡(‹b)b≠1 and thus, we have
a well-defined map

B(G) �! [HomK0(DK0 , GK0)/Int(G(K0))]‡=1,

[b] 7�! [vb]

the so called Newton map. We will follow [11, Section 3.2.1] and denote the codomain
by N (G), which is also referred to as set of Newton vectors.

An element b œ G(K0) is basic if ‹b factors through the center of G which is equivalent
to Jb being an inner form of G by [28, Section 5.1/5.2]. Moreover, by [28, Section 5.1], ‹b

is already defined over K. We say that [b] œ B(G) is basic if it contains a basic element.
Let s be a positive integer. An element b œ G(K0) is s-decent if svb factors through the
quotient Gm,K0 of DK0 and the equality

(b‡)s = (s‹b)(p)‡s
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holds in G(K0)o‡Z. The equivalence class [b] œ B(G) is decent if it contains an s-decent
element for some positive integer s (cf. [51, Definition 1.8]). By our assumptions on G
and the algebraically closedness of F , every class [b] œ B(G) is decent (cf. [12, Remark
9.1.34]). In particular, there exists a positive integer s and an s-decent element b œ [b]
such that b œ G(Qps) and ‹b is defined over Qps (cf. [51, Corollary 1.9]).

2.5.3 Parameterization of weakly admissible filtrations on isocrystals

In the following, we fix together with G an element b œ G(K0) and a conjugacy class
{µ} µ Xú(G) over K.

The conjugacy class {µ} defines the Shimura field E := E(G, {µ}) µ K. It is the
fixed subfield of K under the stabilizer �µ of {µ} in �K and is a finite extension of K.
As G is quasi-split, {µ} contains an element µ defined over E by [30, Lemma 1.1.3].
Therefore, the associated flag variety F := F (G, {µ}), defined over E, can be identified
as

F = GE/P(µ).

Let us point out that the K-valued points of F are given by

{µ}/ ≥

where ≥ is the par-equivalence relation explained in [11, Section 4.1.2], which identifies
the elements of {µ} defining the same filtration on RepK(G). Hence, for a field extension
L of E, a point x œ F (L) gives rise to a cocharacter µx œ {µ} defined over L up to
par-equivalence (cf. [12, Remark 6.1.6] for more details).

Setting Ĕ := EK0, we write F̆ for the adic analytification of F
Ĕ

. According to [51,
Proposition 1.36 i)], the set F

wa
b

:= F (G, {µ}, b)wa of weakly admissible filtrations with
respect to b in F , i.e.

F
wa
b (L) = {x œ F (L) | (b, µx) weakly admissible}

for any field extension L of Ĕ, has the structure of a partially proper open subset of F̆ .
The space F

wa
b

is the period domain attached to the triple (G, {µ}, b). First, we note
that F

wa
b

only depends on [b] œ B(G). Secondly, the natural action of Jb(K) µ G(K0)
on F̆ restricts to an action on F

wa
b

(cf. [51, 1.35 and 1.36 i)]).

In the case that b is s-decent, we can regard F
wa
b

as a partially proper open subset
defined over Es := EQps (cf. [51, Proposition 1.36 ii)]).

2.5.4 Existence of weakly admissible filtrations

Let B be a Borel subgroup in G and T a maximal torus contained in B. Further, let
Xú(T)+

Q be the set of dominant rational cocharacters of T with respect to B. The chosen
B induces a partial order Æ on Xú(T)Q where ⁄Õ

Æ ⁄ if and only if ⁄ ≠ ⁄Õ =
q

–œ� n––‚

with all n– œ QØ0. According to [50, Section 2.1/2.2] (cf. [11, Remark 3.3]), there is a
unique µ œ {µ} and a unique representative ‹[b] œ [‹b] for [b] œ B(G) lying in Xú(T)+

Q.
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2.5 Period domains

Rapoport and Viehmann associated in [50, Definition 2.3] the set of acceptable ele-

ments to a conjugacy class {µ} by setting

A(G, {µ}) := {[b] œ B(G) | v[b] Æ µ}

where µ := 1
[�K :�µ]

q

·œ�K/�µ
·(µ) œ Xú(T)+

Q. We remark that this set is non-empty and
finite by [50, Lemma 2.5]. Finally, one obtains the following result.

Theorem 2.41. [12, Theorem 9.5.10] The period domain F (G, {µ}, b)wa
is non-empty

if and only if [b] œ A(G, {µ}).

2.5.5 Geometric invariant theory

We recall some notation from [11, Section 5.2.3]. Let [b] œ B(G) be decent and fix an
IIP on G (cf. section 2.1). Then, there is an ample line bundle L := LG,{µ},[b], ( , ) on
F

Ĕ
together with the slope function µL ( , ) (cf. [36, Definition 2.2]) which characterizes

weakly admissible points.

Theorem 2.42 (Totaro, [59, Theorem 3], [12, Theorem 9.7.3]). Let L/Ĕ be a field

extension and x œ F (L). Then, x œ F
wa
b

(L) if and only if µL (x, ⁄) Ø 0 for all

⁄ œ Xú(Jb)�Qp .

2.5.6 Synopsis

The definition of a period domain involves a lot of data which we summarize at this
point. Therefore, we recap the notion of a local Shtuka datum from [11, Definiton 4.4]
which we adjust to the quasi-split case.

Definition 2.43. [11, Definiton 4.4] A local Shtuka datum over K is a triple (G, {µ}, [b])
consisting of a quasi-split connected reductive group G defined over K, a geometric
conjugacy class {µ} of cocharacters of G defined over K and a ‡-conjugacy class [b] œ

A(G, {µ}) µ B(G).

Associated to a local Shtuka datum (G, {µ}, [b]), we have seen

1. the reductive group J := Jb over K for b œ [b],

2. the Newton vector [vb] œ N (G),

3. the Shimura field E := E(G, {µ}),

4. the flag variety F := F (G, {µ}) = GE/P(µ) over E,

5. the period domain F
wa
b

:= F (G, {µ}, b)wa over Ĕ with a J(K)-action.
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3 Cohomological computations

3.1 Setup

In order to apply the results of [43, 44] and ideas of [37], we choose a local Shtuka
datum (G, {µ}, [1]) over K = Qp with the additional conditions that G is split over K
and B := P(µ) is a Borel subgroup of G.

This entails a lot of simplifications. Notice first that 1 œ [1] is basic and 1-decent as
‹ := ‹1 is trivial. Furthermore, J := J1 = G by [12, Remark 9.5.9] and E = K since the
action of �K is trivial on {µ}. Hence, F and F

wa := F
wa
1 are defined over K.

We set n := dim F and choose a uniformizer fi of K. Further, we fix an IIP on G (cf.
section 2.1). We choose a split maximal torus T of G of rank d such that µ œ Xú(T)Q.
Since all Borel subgroups over K of G are G(K)-conjugated (cf. [6, Theorem 20.9]), we
can assume that (T, B) is a Borel pair (cf. section 2.1). This gives rise to a set of simple
roots (cf. section 2.1)

� := {–1, . . . , –d} µ Xú(T)Q.

After conjugating µ with an element of W , if necessary, we can assume that µ lies in the
positive Weyl chamber with respect to B, i.e.

È–, µÍ > 0 (3.1)

for all – œ � (here we used that P(µ) = B to get >). Notice that since G is split over K
we have �µ = �K , so µ = µ. By the definition of a local Shtuka datum, [1] œ A(G, {µ})
(cf. section 2.5.4), i.e.

µ = µ ≠ ‹ =
ÿ

–œ�
n––‚ (3.2)

with n– œ QØ0.

Lemma 3.1. For µ =
q

–œ� n––‚
, we have n– œ Q>0.

Proof. Let — œ � and consider

0 < È—, µÍ =
ÿ

–œ�
n–È—, –‚

Í = 2n— +
ÿ

–œ�\{—}

n–È—, –‚
Í Æ 2n—

where we used that È—, –‚
Í Æ 0 for all simple roots – ”= — (cf. Lemma 2.2).

Furthermore, let G0 be a split reductive group model of G over OK (cf. section
2.1) with Borel pair (T0, B0) and for each I µ � a standard parabolic subgroup PI,0
containing B0 such that the base change to K yields the pair (T, B) and PI respectively.
As in section 2.4, for any positive number m œ N let

pm : G0(OK)! G0(OK/(fim))

be the natural reduction map. Then, we set G0 := G0(OK) and define

P m

I := p≠1
m (PI,0(OK/(fim)) µ G0.
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3.2 Geometrical properties of the complement of F
wa

Notice that G0 is compact. Moreover, let FOK
:= G0/B0.

For a weight ⁄ œ Xú(T), let L⁄ be the sheaf on F with

L⁄(U) =
Ó

f œ OG(fi≠1(U)) | f(gb) = ≠⁄(b)f(g) for all g œ G(K), b œ B(K)
Ô

(3.3)

for U µ F open (cf. [23, Part I, 5.8]; note the sign in the definition). Here, fi : G! F

is the natural projection. It is a locally free sheaf of rank 1 (cf. [23, Part II, 4.1]). For
example, L2fl = ÊF . We fix a dominant ⁄ œ Xú(T)+ and set E⁄ := L⁄ ¢ ÊF .

3.2 Geometrical properties of the complement of F
wa

Following [41, Section 3, p. 536], each · œ Xú(G)Q defines, with respect to section
2.5.5, a closed subvariety of F by setting

Y· := {x œ F | µL (x, ·) < 0}.

Then, for I ( �, we set
YI :=

‹

– ”œI

YÈ–
(3.4)

which is again a closed subvariety of F .

Lemma 3.2. [41, Lemma 3.1] Let I ( �. The variety YI is defined over K. The

natural action of G(K) on F restricts to an action of PI(K) on YI .

Let Y := F
ad

\F
wa. For I ( � and any subset W µ G/PI(K), we set

ZW

I :=
€

gœW

gY ad
I

which, in view of the previous lemma, is indeed well-defined.

Lemma 3.3. [41, Lemma 3.2] The subset ZW

I
is a closed pseudo-adic subspace of F

ad

for every compact open subset W µ G/PI(K).

Then, by [41, Corollary 2.4], we have the following stratification

Y =
€

Iµ�
|�\I|=1

ZG/PI(K)
I

.

For an alternative description of the YI , which will be important hereinafter, we set

�I := {w œ W | (wµ, È–) > 0 for all – ”œ I} (3.5)

for I ( � (cf. [41, p. 530]). Reformulating Lemma 2.7, we get the following statement.

Lemma 3.4. Let I ( �. Then, w œ �I if and only if ÈÈ̌–, wµÍder > 0 for all – ”œ I.

Definition 3.5. Let I µ � and w œ W I . The generalized Schubert cell in F associated
to w is

CI(w) := PIwB/B =
€

vœWI

C(vw).

If I = ÿ, we omit the subscript and call it Schubert cell.
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First, it turns out that the YI are a union of Schubert cells.

Proposition 3.6. [41, Proposition 4.1] For I ( �, we have

YI =
h

wœ�I

C(w).

But for our purposes, we need a description in terms of generalized Schubert cells.

Proposition 3.7. For I ( �, we have

YI =
h

wœW Ifl �I

CI(w).

Proof. We know by [12, Proposition 11.1.6] that YI =
t

wœ�I
PIwB/B. For wÕ

œ �I

exist unique w œ W I and v œ WI such that wÕ = vw and l(wÕ) = l(v) + l(w). Hence, we
have

PIwÕB/B = PIvwB/B = PIwB/B.

Since YI is closed, this implies that

YI =
€

wœW Ifl �I

CI(w).

That the union is disjoint follows from the unique decompostion of wÕ
œ �I mentioned

above and that Schubert cells are disjoint for distinct Weyl group elements.

In addition, we make the following observation for the complement of the YI in F .

Lemma 3.8. Let I ( � and w0 œ W the longest element. Then,

F\YI =
€

vœW \�I

vw0C(w0).

Proof. Let v œ W . We first notice that vw0C(w0) = vw0Bw0v≠1vB/B is the „coordi-
nate neighbordhood“ of vB/B in F , which Kempf describes in [26, Section 3] (cf. [26,
Corollary 3.5]). Then, by [26, Proposition 6.3 a)],

C(v) µ vw0C(w0).

Hence,
F\YI =

h

vœW \�I

C(v) µ

€

vœW \�I

vw0C(w0).

For the other inclusion, let w œ �I and v ”œ �I . Then, we consider

X := v≠1C(w) fl w0C(w0).

It is a closed T-invariant subset of w0C(w0). By [26, Theorem 3.1], this is in bijection
to a closed T-invariant subset

H µ U≠

B.

Here T acts by conjugation. We suppose that X is non-empty. Thus, H is non-empty.
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Furthermore, by [58, Exercise 8.4.6 (5)],

U≠

B(K) =
)

g œ G(K) | lim
t!0

(w0µ)(t)g(w0µ)(t)≠1 = 1
*

.

As H is closed and T-invariant, this description implies that 1 œ H (cf. [27, Lemma
9]). Therefore, B/B œ X and vB/B œ C(w), respectively. This implies that v Æ w and
therefore v œ �I since YI is closed. That is a contradiction. Hence,

C(w) fl vw0C(w0) = ÿ

which implies
YI fl

€

vœW \�I

vw0C(w0) = ÿ.

3.3 Algebraic local cohomology

In this subsection, we consider the local cohomology groups of F with support in a
(generalized) Schubert cell and the YI , respectively, with coe�cents in E⁄.

For that purpose, we follow the theory of local cohomology as described in [19, Section
1]. Concretely, let X be a topological space and Z µ X a locally closed subset, i.e. there
is an open subset V such that Z is closed in V . Further, let E œ Ab(X) be an abelian
sheaf on X. Then, �Z(X, E) is the subgroup of E(V ) defined by the sections with support
in Z. The definition of �Z(X, E) is independent of the chosen open subset V and

Ab(X) �! Ab
F 7�! �Z(X, E)

defines a left exact covariant functor. Thus, we let the local cohomology groups Hú

Z
(F , E)

be the right derived functors of �Z(X, ≠). An essential property that we take advantage
of is the following.

Proposition 3.9. [19, Proposition 1.3] Let Z be locally closed in X, and let V be open

in X and such that Z ™ V µ X. Then, for any E œ Ab(X),

H i

Z(X, E) ≥= H i

Z(V, E|V ).

For two closed subsets Z1, Z2 µ X with Z1 µ Z2, we let

�Z1/Z2(X, E) := �Z1(X, E)/�Z2(X, E).

Then, Hú

Z1/Z2
(X, E) denotes the right derived functor of �Z1/Z2(X, ≠) as defined in [26,

Section 7, p. 349/350]. It comes with the following property.

Lemma 3.10. [26, Lemma 7.7] Let Z1 ∏ Z2 be two closed subsets of a topological space

X. Let E be any abelian sheaf on X. Then, there is a natural isomorphism

H i

Z1/Z2(X, E) �! H i

Z1\Z2(X\Z2, E)

for all integers i.
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Next, we state a rather technical result which will be helpful afterwards. It seems
somehow standard as it is for example used in [37] and [13, Section 2.1], but we could
not find a precise statement fitting our purposes.

Lemma 3.11. Let X ∏ Z0 ∏ Z1 ∏ . . . ∏ Zn be a filtration of X by closed subsets and

E an abelian sheaf on X. Then, there is a spectral sequence

Epq

1 = Hp+q

Zp/Zp+1
(X, E) ∆ Hp+q

Z0 (X, E),

where the morphisms on the E1-page are the natural ones.

Proof. We associate to E a complex of flasque sheaves G
•(E) on X together with an

augmentation map E ! G
0(E) such that E ! G

•(E) is a resolution of E (cf. [14]). As
Kempf pointed out in [26, Section 7, p. 350], we can use this resolution to compute the
local cohomology groups in question.

The given filtration on X naturally defines a filtration of complexes

�Z0(X, G
•(E)) ∏ �Z1(X, G

•(E)) ∏ . . . ∏ �Zn
(X, G

•(E))

from which we form the following quotient complexes

0! �Zj+1(X, G
•(E))! �Zj

(X, G
•(E))! K•

j ! 0. (3.6)

Notice that by [26, Section 7], one has K•
j

= �Zj/Zj+1(X, G
•(E)) such that

Hq(K•

j ) = Hq

Zj/Zj+1
(X, E).

Then, by the procedure explained in [52, Section 3], we get an exact complex of complexes

0! �Z0(F , G
•(F))! K̃•

0 ! K̃•

1 [1]! K̃•

2 [2]! . . .! K̃•

n[n]! 0 (3.7)

where K̃•
j

is a complex quasi-isomorphic to K•
j
. Moreover, the morphisms K̃•

j
! K̃•

j+1[1]
induces the natural homomorphisms Hq

Zj/Zj+1
(X, E)! Hq+1

Zj+1/Zj+2
(X, E) which are given

by the connecting homomorphisms coming from the long exact sequence in cohomology
of (cf. (3.6)) followed by the quotient maps.

Thus, (3.7) yields a double complex

C•,• : K̃•

0 ! K̃•

1 [1]! K̃•

2 [2]! . . .! K̃•

n[n].

Then, by combining the properties mentioned above with the usual theory of spectal
sequences associated to a double complex, we obtain the result we were looking for.

We come back to our setting. We have seen in section 2.1 that there is a split
connected reductive algebraic group G over Z with split maximal torus T and Borel B

such that GK = G, TK = T and BK = B. Let FZ := G /B and

C(w)Z := BwB/B µ FZ
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for w œ W . They are flat Z-schemes by [23, Part I, Section 5.7 (2)]. Moreover,

F = (FZ)K and C(w) = (C(w)Z)K .

The first identity follows from the fact that the base change commutes with the quotient
(cf. [23, Part I, Section 5.5 (4)]). The latter one can be seen after idenditifying both sides
with a�ne spaces (cf. [23, Part II, Section 13.3 (1)]). In [25, Section 3] it is mentioned
that the flag varieties and Schubert cells admit „flat lifts to Z-schemes“. Furthermore, as
described in [26, Section 13, p. 389] (cf. [23, Part I, Section 5.8]), we have an invertible
sheaf E⁄,Z on FZ which is defined similarly to E⁄. The same arguments apply if we
assume that G and all introduced objects are defined over Q and C, respectively. We
denote the ground field, if it is not K, as a subscript in the following proof.

Then, we have the following two identifications of local cohomology groups on F .
They are already known over C (cf. [37, (3.3)] and [37, Theorem 1 & Theorem 3]).

Lemma 3.12. For w œ W , one has

H i

C(w)(F , E⁄) ≥=
I

M(w · ⁄) i = n ≠ l(w),
0 else

in Oalg.

Proof. As C(w) is a�ne, it follows that H i

C(w)(F , E⁄) = 0 for i ”= n ≠ l(w) (cf. [26,
Theorem 10.9]). Since E⁄ has a natural g-module structure (cf. [39, Section 1.2]), we see
by functoriality that Hn≠l(w)

C(w) (F , E⁄) is a g-module. Furthermore, by [26, Lemma 12.8.],
we have that Hn≠l(w)

C(w) (F , E⁄) is t-semisimple and

ch
!

Hn≠l(w)
C(w) (F , E⁄)

"

= ch
!

M(w · ⁄)
"

.

This implies that Hn≠l(w)
C(w) (F , E⁄) lies in the category Oalg (cf. [1, Example 1.1]). In

particular for w = e, we see by the last remark in [26, Section 12] and the proof of [39,
Proposition 1.4.2] that

Hn

C(e)(F , E⁄) ≥= Hn

C(e)(F , OF ) ¢Qp
(Qp)2fl+⁄

≥= M(≠2fl)‚
¢Qp

(Qp)2fl+⁄

≥= M(≠2fl) ¢Qp
(Qp)2fl+⁄

≥= M(⁄)

holds in the category Oalg. Here, we used [8, Proposition 7] for the second isomorphism
and the fact that ≠2fl is antidominant for the third. Thus, by Lemma 2.16, it remains
to prove that there is a non-trivial injective morphism

Hn≠l(w)
C(w) (F , E⁄) �! Hn

C(e)(F , E⁄). (3.8)

For this, let k œ {K,Q,C}. Further, we let X1 := C(w)Z and X2 := X1\C(w)Z. By
Lemma 3.10 and Proposition 3.9, we have

Hq

C(w)Z(FZ, E⁄,Z¢k) ≥= Hq

X1/X2
(FZ, E⁄,Z¢k) and Hq

C(w)k

(Fk, E⁄,k) ≥= Hq

X1,k/X2,k

(Fk, E⁄,k).
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Then, by [26, Lemma 13.8], we obtain an isomorphism

Hq

C(w)Z(FZ, E⁄,Z ¢ k) ≥= Hq

C(w)k

(Fk, E⁄,k)

of k-vector spaces. As OFZ is flat over Z and E⁄,Z is locally free, it follows that E⁄,Z is
flat over Z since it is a local property. Following [25, Section 4], this yields a spectral
sequence

Ep,q

2 = TorZ≠p

!

Hq

C(w)Z(FZ, E⁄,Z), k
"

∆ Hp+q

C(w)k

(Fk, E⁄,k).

Since k is flat over Z, we have an isomorphism

Hn≠l(w)
C(w)Z (FZ, E⁄,Z) ¢ k ≥= Hn≠l(w)

C(w)k

(Fk, E⁄,k)

of k-vector spaces. This implies

Hn≠l(w)
C(w)C (FC, E⁄,C) ≥= Hn≠l(w)

C(w)Q (FQ, E⁄,Q) ¢Q C (3.9)

and

Hn≠l(w)
C(w) (F , E⁄) ≥= Hn≠l(w)

C(w)Q (FQ, E⁄,Q) ¢Q K. (3.10)

If we choose X1 = FZ and X2 = ÿ instead, then using the same arguments as before,
we get that

Hq(FC, E⁄,C) ≥= Hq(FQ, E⁄,Q) ¢ C (3.11)

for all integers q. Next, let Zj µ FQ be the union of the closure of Schubert cells of
codimension greater than or equal to j. This defines a filtration on FQ by closed subsets

FQ = Z0 ∏ Z1 ∏ . . . ∏ Zn = C(e)Q. (3.12)

Furthermore,
Zj\Zj+1 =

h

wœW

l(w)=n≠j

C(w)Q.

Then, we get, by Lemma 3.10 and Proposition 3.9 (cf. [26, p. 385]), that

H i

Zj\Zj+1(FQ, E⁄,Q) ≥=
n

wœW

l(w)=n≠j

H i

C(w)(FQ, E⁄,Q)

for all integers i. Thus, by Lemma 3.11 and Lemma 3.12, we can compute Hú(FQ, E⁄,Q)
by the complex

n

wœW

l(w)=n

H0
C(w)Q(FQ, E⁄,Q)! . . .!

n

wœW

l(w)=1

Hn≠1
C(w)Q(FQ, E⁄,Q)! Hn

C(e)Q(FQ, E⁄,Q). (3.13)

On the other hand, we have by Serre duality (cf. [23, Part II, 4.2 (9)], note that the
setting in loc. cit. induces di�erent signs) that

H i(FQ, E⁄,Q) = H i(FQ, L⁄,Q ¢ ÊFQ) ≥= (Hn≠i(FQ, (L⁄,Q)‚))Õ = (Hn≠i(FQ, L≠⁄,Q))Õ.
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For the latter one, the Borel-Weil-Bott theorem (cf. [23, Part II, Corollary 5.5], note
again the setting in loc.cit) gives H i(FQ, L≠⁄,Q) = 0 for i ”= 0. Hence, the complex
(3.13) is a resolution of Hn(FQ, E⁄,Q). By (3.9), (3.11) and (faithfully) flatness of field
extensions, we get an acyclic complex

0!
n

wœW

l(w)=n

H0
C(w)C(FC, E⁄,C)! . . .!

n

wœW

l(w)=1

Hn≠1
C(w)C(FC, E⁄,C)

! Hn

C(e)C(FC, E⁄,C)! Hn(FC, E⁄,C)! 0. (3.14)

Again by the Borel-Weil-Bott theorem, we know that Hn(FC, E⁄,C) = L(⁄)C. Here
L(⁄)C is the unique simple quotient of the Verma module M(⁄)C in the usual BGG
Category O over the complex numbers (cf. [22, Section 1.3]). Then, by [37, (3.3)], we
have

Hn≠l(w)
C(w)C (FC, E⁄,C) ≥= M(w · ⁄)C

for all w œ W . Therefore, the complex (3.14) is a BGG resolution of L(⁄)C (cf. [22,
Section 6.1]). Thus, by [22, Theorem, Section 6.8], the natural morphism

Hn≠l(w)
C(w)C (FC, E⁄,C) �! Hn≠l(wÕ)

C(wÕ)C (FC, E⁄,C)

is non-trivial for wÕ
Æ w with l(w) = l(w) + 1. Moreover, it is injective by [22, Theorem,

Section 4.2]. This implies that the morphism

Hn≠l(w)
C(w)Q (FQ, E⁄,Q) �! Hn≠l(wÕ)

C(wÕ)Q (FQ, E⁄,Q)

in the complex (3.13) was already injective by the faithfully flatness of field extensions.
Again by the faithfully flatness and by (3.10), we get an injective morphism

Hn≠l(w)
C(w) (F , E⁄) Ò�! Hn≠l(wÕ)

C(wÕ)Õ (F , E⁄)

for all w, wÕ
œ W with wÕ

Æ w and l(w) = l(wÕ) + 1. Let w œ W with reduced expression
w = s1 . . . st and let wi := s1 . . . si, i.e. w = wt. Then, we get the desired morphsim
(3.8) from the sequence of injections

Hn≠l(w)
C(w) (F , E⁄) Ò�! Hn≠l(wt≠1)

C(wt≠1) (F , E⁄) Ò�! . . . Ò�! Hn

C(e)(F , E⁄).

Similiar to Lemma 3.12, we have the following identification for generalized Schubert
cells.

Lemma 3.13. For I µ � and w œ W I
, one has

H i

CI(w)(F , E⁄) ≥=
I

MI(w · ⁄) i = n ≠ l(w),
0 else

in O
pI

alg.

Proof. Over C this is [37, Theorem 1/Theorem 3]. The arguments of loc. cit. are appli-
cable as well. For completeness, we will recall them.
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Let Zj be the union of the closure of Schubert cells of codimension greater than or
equal to j and Uw = F\

!

CI(w)\CI(w)
"

. Hence, CI(w) is closed in the open subset Uw.
Let rI := dim(PI/B) and t := n ≠ l(w) ≠ rI . Then, we consider the filtration on Uw by
closed subsets

Uw ∏ CI(w) ∏ CI(w) fl Zt+1 ∏ . . . ∏ CI(w) fl ZrI+t = C(w). (3.15)

As

(CI(w) fl Zt+j)\(CI(w) fl Zt+j+1) = CI(w) fl (Zt+j\Zt+j+1) =
h

vœWI

l(v)=rI≠j

C(vw),

we get, as in Lemma 3.12, that

H i

(CI(w)flZt+j)/(CI(w)flZt+j+1)(Uw, E⁄) ≥=
n

vœWI

l(v)=rI≠j

H i

C(vw)(Uw, E⁄)

for all integers i. Notice that by Proposition 3.9, we have

H i

C(vw)(Uw, E⁄) ≥= H i

C(vw)(F , E⁄).

Then, applying Lemma 3.11 to (3.15) and taking Lemma 3.12 into account, we see that
the cochain complex

n

vœWI

l(v)=rI

M(v · ⁄)! . . .!
n

vœWI

l(v)=1

M(v · ⁄)!M(⁄), (3.16)

starting in degree t, computes Hú

CI(w)(Uw, E⁄), and therefore, by Proposition 3.9, also
Hú

CI(w)(F , E⁄). Then, by the work of Lepowsky (cf. [32, p. 506, Proof of Theorem 4.3]),
we get

Hn≠l(w)
CI(w) (F , E⁄) ≥= MI(w · ⁄).

On the other hand, the complex (3.16) is obtained from the BGG-resolution of VI(⁄)
by Verma modules for LPI

by tensoring with U(g) over U(pI). This functor preserves
exactness. Therefore, H i

CI(w)(F , E⁄) = 0 for i ”= n ≠ l(w).

Another application of Lemma 3.11 is the computation of the local cohomology groups
Hú

YI
(F , E).

Lemma 3.14. Let I ( �, dI := dim(YI) and rI := dim(PI/B). Then, the cochain

complex

C•

I :
n

wœW
I
fl �I

l(w)=dI≠rI

Hn≠l(w)
CI(w) (F , E⁄)!

n

wœW
I
fl �I

l(w)=dI≠rI≠1

Hn≠l(w)
CI(w) (F , E⁄)! . . .! Hn

CI(e)(F , E⁄),

with the natural morphisms starting in degree n + rI ≠ dI , computes the cohomology

groups Hj

YI
(F , E⁄). More specifically, Hj(C•

I
) = Hj

YI
(F , E⁄).
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Proof. Let Z̃j be the closure of the union of those PI -orbits CI(w) whose codimension
is greater or equal to j. This defines a filtration

F = Z̃0 ∏ Z̃1 ∏ . . . ∏ Z̃n≠r

by closed subsets. Then, we consider the filtration of closed subsets on YI induced by
setting Zj := YI fl Z̃n≠dI+j

YI = Z0 ∏ Z1 ∏ . . . ∏ ZdI
(3.17)

where, by Lemma 3.7, one has

Zj\Zj+1 =
h

wœW
I
fl �I

l(w)=dI≠rI≠j

CI(w).

Therefore, as in the proof of Lemma 3.12 , we obtain that

H i

Zj/Zj+1(F , E⁄) ≥=
n

wœW
I
fl �I

l(w)=dI≠rI≠j

H i

CI(w)(F , E⁄).

for all integers i. Applying Lemma 3.11 to the filtration (3.17) and E⁄, and taking
Lemma 3.13 into account, we see that the induced spectral sequence

Epq

1 = Hp+q

Zp/Zp+1
(X, E⁄) ∆ Hp+q

YI
(X, E⁄)

degenerates at the E2-page. Thus, the result follows.

Remark 3.15. As pointet out in [37, Theorem 2], the morphisms

Hn≠l(w)
CI(w) (F , E⁄)! Hn≠l(wÕ)

CI(wÕ) (F , E⁄)

for wÕ
Æ w with l(w) = l(wÕ) + 1 that appear in the di�erentials are those from the

Lepowsky BGG resolution (cf. [32, Theorem 4.3]).

Corollary 3.16. For each i œ N0, the U(g)-module H i

YI
(F , E⁄) lies in O

pI

alg.

Proof. As the category O
pI

alg is closed under taking submodules and quotients, this follows
immediately from Lemma 3.13 and 3.14.

3.4 Analytic local cohomology

In the following, we would like to relate the algebraic local cohomology groups of F

with support in the YI and coe�ficients in E⁄ to some analytic local cohomology groups
of F

rig.

For this, we recall first from [39, Section 1.3] what we mean by analytic local coho-
mology. Let X be a rigid analytic variety over K and U µ X an admissible open subset
with Z := X\U , the set theoretical complement. Further, be E be a coherent sheaf on
X. Then, similar to the last section, we define

�Z(X, E) := ker(�(X, E)! �(U, E))
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and Hú

Y
(X, G) to be the right derived functors. In case X is a separated rigid analytic

variety of countable type, the local cohomology groups carry a natural structure of a
locally convex K-vector space which is in general not Hausdor� (cf. [39, Section 1.3],
[47, Section 1.6]).

For our purposes, we fix an embedding

ÿ : F Ò! PN

K

defined by the vanishing ideal I µ OK [T0, . . . , TN ].

Now, we introduce, adapted from [42, Section 2, p. 1398], the notion of special
neighborhoods of a closed subvariety of F . They play a crucial role in the computation
of the cohomology of a period domain.

Definition 3.17. Let ‘ œ |K
◊

|. Let Y µ F be a closed subvariety and f1, . . . , fr œ

OK [T0, . . . , TN ] homogeneous polynomials such that they generate the vanishing ideal of
the Zariski closure of Y in FOK

. Additionally, each fi has at least one coe�cent in O
◊

K
.

i) We call a tuple (z0, . . . , zN ) œ AN+1
K

(C) unimodular if zi œ OC for all i and there
exists an i such that zi œ O

◊

C
.

ii) We define the open ‘-neighborhood of Y in F
rig by

Y (‘) :=
Ó

z œ F
rig

-

-

-
for any unimodular representative z̃ of z, we have

|fj(z̃)| Æ ‘ for all j
Ô

.

iii) We define the closed ‘-neighborhood of Y in F
rig by

Y ≠(‘) :=
Ó

z œ F
rig

-

-

-
for any unimodular representative z̃ of z, we have

|fj(z̃)| < ‘ for all j
Ô

.

Let I ( � and i œ N0. We know from Corollary 3.16 that H i

YI
(F , E⁄) œ O

pI

alg. Thus,
we have an O

pI

alg-pair (H i

YI
(F , E⁄), W ) with a short exact sequence

0! d! U(u≠

PI
) ¢K W �! H i

YI
(F , E⁄)! 0. (3.18)

Let ‘m := |fim
| for m œ N. In section 2.4 we equipped U(u≠

PI
) with a norm | | 1

‘m

(cf.
(2.19)). This naturally defines a norm on U(u≠

PI
) ¢K W and induces, by (3.18), the

quotient norm on H i

YI
(F , E⁄). Since the quotient map is open, it is strict (cf. [7, Section

1.1.9, Proposition 3 ii)]) and we obtain, by [7, Section 1.1.9, Corollary 6], a short exact
sequence of K-Banach spaces

0 �! dm �! U(u≠

PI
)m ¢K W �! Ĥ i

YI ,m �! 0 (3.19)

(cf. (2.20) for the notation). Here Ĥ i

YI ,m
denotes the completion of H i

YI
(F , E⁄) with

respect to the quotient norm.
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Moreover, we define Dw := ww0C(w0) and Hw := F\Dw for w œ W . By Lemma
3.8, we know that

F\YI =
€

wœW \�I

Dw (3.20)

which is an a�ne open covering of the complement because C(w0) is a�ne open. Thus,
we can compute Hú(F\YI , E⁄) by the �ech-complex

n

wœW \�I

�(Dw, E⁄)!
n

w,w
Õ
œW \�I

w ”=w
Õ

�(Dw fl DwÕ , E⁄)! . . .! �(
‹

wœW \�I

Dw, E⁄).

Furthermore, we can easily deduce from (3.20) that for ‘ œ |K◊|, we have

Y ≠

I
(‘) =

‹

wœW \�I

H≠

w (‘).

Therefore, we consider the subset

Dw,‘ := F
rig

\H≠

w (‘)

for w œ W .

Lemma 3.18. Let w œ W . The subset Dw,‘ is a�noid.

Proof. Since Hw is of codimension 1, there is f œ OK [T0, . . . , TN ] homogenous of degree
t with at least one coe�cent in O

◊

K
and generating the vanishing ideal of the Zariski

closure of Hw in FOK
. Let N0 :=

!

n+t

t

"

≠1. We embed PN

K
into PN0

K
via the t-th Veronese

embedding. Then, by substituting monomials, f yields a homogeneous linear polynomial
g œ OK [T0, . . . , TN0 ] defining a hyperplane H0 µ PN0

K
, such that

Hw = F fl H0.

It is known that (PN0
K

)rig
\H≠

0 (‘) is a�noid (cf. [55, Section 1, Proof of Proposition 4])
and we notice that

F
rig

\

1

F
rig

fl H≠

0 (‘)
2

= F
rig

fl

1

(PN0
K

)rig
\H≠

0 (‘)
2

.

Thus, F
rig

\

1

F
rig

fl H≠

0 (‘)
2

is also a�noid since it is a zero set in (PN0
K

)rig
\H≠

0 (‘).
However, we have F

rig
fl H≠

0 (‘) = H≠
w (‘).

This results in the a�noid covering

F
rig

\Y ≠

I
(‘) =

€

wœW \�I

Dw,‘

which has two consequences. On the one hand we get an admissible covering

F
rig

\YI(‘m) =
€

‘!‘m

‘m<‘œ|K◊|

F
rig

\Y ≠

I
(‘)

by quasi-compact admissible open subsets (cf. [39, Section 1.3, p. 601]). On the other
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hand we can compute Hú(F rig
\Y ≠

I
(‘), E⁄) by the �ech-complex

n

wœW \�I

�(Dw,‘, E⁄)!
n

w,w
Õ
œW \�I

w ”=w
Õ

�(Dw,‘ fl DwÕ,‘, E⁄)! . . .! �(
‹

wœW \�I

Dw,‘, E⁄)

which terms are K-Banach spaces. So far, we have to make the following assumption
and conjecture (cf. [39, Lemma 1.3.1]).

Assumption/Conjecture 3.19. Let I ( � and i œ N0. Both, the cohomology groups

H i(F rig
\Y ≠

I
(‘), E⁄), and H i

Y
≠

I
(‘)(F

rig, E⁄) are K-Banach spaces in which the algebraic

cohomology group H i(F\YI , E⁄) and H i

YI
(F , E⁄), respectively, is a dense subspace. More-

over, we have an isomorphism of topological K-vector spaces

lim �
mœN

H i

Y
≠

I
(‘m)(F

rig, E⁄) ≥= lim �
mœN

Ĥ i

YI ,m.

Corollary 3.20. Let I ( �. For i œ N0, we have the following isomorphisms of

topological K-vector spaces:

H i(F rig
\YI(‘m), E⁄) ≥= lim �

‘!‘m

‘m<‘œ|K◊|

H i(F rig
\Y ≠

I
(‘), E⁄)

and

H i

YI(‘m)(F
rig, E⁄) ≥= lim �

‘!‘m

‘m<‘œ|K◊|

H i

Y
≠

I
(‘)(F

rig, E⁄).

Proof. The proof is same as that of [39, Lemma 1.3.2].

Lemma 3.21. Let I ( � and m œ N. Then, the subset YI(‘m) is P m

I
- invariant.

Proof. We identify F
rig with the closed points of F , i.e. for x œ F

rig exists a finite
extension L := k(x) of K such that x œ F (L). Denote by | |L be the unique absolute
value on L which extends the valuation on K. Since FOK

is proper over OK , we have
FOK

(OL) = FOK
(L) = F (L). Let

qm,L : FOK
(OL)! FOK

(OL/fim
OL)

be the natural projection. The (free) action of G0 on FOK
induces the commutative

diagram
G0(OL) ◊ FOK

(OL) mult.����! FOK
(OL)

(pm,L, qm,L)
`

`

˘

`

`

˘

qm,L

G0(OL/fim
OL) ◊ FOK

(OL/fim
OL) mult.����! FOK

(OL/fim
OL).

Moreover, it is clear that YI,0 :=
t

wœ�I
B0wB0/B0 is the Zariski closure of YI in FOK

defined by homogenous polynomial f1, . . . , fr œ OK [T0, . . . , TN ] as in Definition 3.17.
Then, YI,0 is PI,0 invariant (cf. Proposition 3.7). Therefore, the above diagram implies
that

P m

I · q≠1
m,L

!

YI,0(OL/fim
OL)

"

= q≠1
m,L

!

YI,0(OL/fim
OL)

"

. (3.21)
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Next we will show that

q≠1
m,L

!

YI,0(OL/fim
OL)

"

= {y œ FOK
(OL) | |fi(y)|LÆ ‘m for all i} = YI(‘m)(L).

Let y œ FOK
(OL). If y œ q≠1

m,L

!

YI,0(OL/fim
OL)

"

, it follows that fi(qm,L(y)) = 0 for all
i. But

fi(qm,L(y)) = [fi(y)] œ OL/fim
OL.

Hence, fi(y) œ fim
OL and |fi(y)|L Æ ‘m for all i. If, on the other hand, |fi(y)|L Æ ‘m

for all i, we deduce that fi(y) œ fim
OL for all i. Thus, fi(qm,L(y)) = [fi(y)] = 0 for all i

and y œ q≠1
m,L

!

YI,0(OL/fim
OL)

"

.

From that we conclude that YI(‘m)(L) is P m

I
-invariant for all finite extensions L of K.

This implies that YI(‘m) is P m

I
-invariant.

The previous lemma yields a P m

I
-module structure on H i

YI(‘m)(F
rig, E⁄).

Lemma 3.22. For I ( � and i œ N0, we have

1

lim �
mœN

IndG0
P

m

I

!

H i

YI(‘m)(F
rig, E⁄)

"

2Õ

= F
G

PI

!

H i

YI
(F , E⁄)

"

.

Proof. We know from (3.19), that

lim �
mœN

!

U(u≠

PI
)m ¢K W/dm

"

≥= lim �
mœN

Ĥ i

YI ,m.

Furthermore, by Assumption 3.19 and in view of Corollary 3.20, we have

lim �
mœN

H i

YI(‘m)(F
rig, E⁄) ≥= lim �

mœN

!

U(u≠

PI
)m ¢K W/dm

"

compatible with the action of lim �mœN P m

I
= PI,0 (cf. [39, Proposition 1.3.10 + Proof]).

Then, we get (cf. [39, p. 633])

lim �
mœN

IndG0
P

m

I

!

H i

YI(‘m)(F
rig, E⁄)

"

≥= lim �
mœN

IndG0
P

m

I

!

U(u≠

PI
)m ¢K W/dm

"

.

Passing to the dual, which is exact on K-Fréchet spaces (cf. [2, Section I, Corollary
1.4]), the required statement follows from Proposition 2.32.

3.5 Results

We start by recalling Orlik’s fundamental complex on Yét, the étale site on Y . This
is taken from [11, Section 6.2.1/6.2.2] which is based on [41, Section 3].

For the constant étale sheaf Z œ Sh(Yét) and a closed pseudo-adic subspace Z of Y
with inclusion i : Z ! Y , define ZZ := iúiú(Z).

Definition 3.23. [11, Definition 6.7] Let I ( �. Define ZI œ Sh(Yét) as the subsheaf of
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locally constant sections of
r

gœG/PI(K) ZgY
ad

I

, i.e.

ZI = lim�!
cœCI

Zc

the limit being taken over the (pseudo-filtered) category CI of compact open disjoint
coverings of G/PI(K) ordered by refinement where Zc denotes the image of the natural
embedding

m

jœA
Z

Z
Tj

I

Ò!
r

gœG/PI(K) ZgY
ad

I

for c = {Tj}jœA œ CI .

Let I µ I Õ ( � and fiI,IÕ : G/PI(K) ! G/PIÕ(K) be the natural surjection. Then,
for all g œ G/PI(K) and h œ G/PIÕ(K), we have a natural morphism Z

gY
ad

I

! Z
hY

ad
IÕ

which is trivial if fiI,IÕ(g) ”= h and otherwise, it coincides with the map induced by the
closed embedding gYI Ò! hYIÕ . Then, by definition, we get a natural morphism

pI,IÕ : ZIÕ ! ZI .

Fix, an ordering on �. Assuming that|I Õ
| ≠ |I| = 1 and I Õ = {–1 < . . . < –r} we set

dI,IÕ :=
I

(≠1)ipI,IÕ if I Õ = I fi {–i},
0 else.

This defines by standard procedure the following complex

0 �! Z �!
n

Iµ�
|�\I|=1

ZI �!
n

Iµ�
|�\I|=2

ZI �! . . . �!
n

Iµ�
|�\I|=|�|≠1

ZI �! Zÿ �! 0 (3.22)

on Yét which is acyclic by [11, Theorem 6.9]. It is referred to as the fundamental complex.

Denote by ÿ : Y Ò! F
ad the closed embedding. Then, by [17, Exp. I, Proposition

2.3], we have
Extú(ÿú(ZY ), E⁄) ≥= Hú

Y (F ad, E⁄).

By applying Extú(ÿú(≠), E⁄) to the complex (3.22), we get the spectral sequence

Ê≠p,q

1 = Extq(
n

I(�
|�\I|=p+1

ÿú(ZI), E⁄) ∆ Ext≠p+q(ÿú(ZY ), E⁄) = H≠p+q

Y
(F ad, E⁄). (3.23)

For the Ê1-terms, we have the following identification.

Proposition 3.24. For all I ( �, there exists an isomorphism

Extú(ÿú(ZI), E⁄) ≥= lim �
mœN

IndG0
P

m

I

!

Hú

YI(‘m)(F
rig, E⁄)

"

.

Proof. This is essentially the proof of [39, Proposition 2.2.1], where the Drinfeld case is
treated. The family

{gP m

I | g œ G0, m œ N}

of compact open subsets in G0/PI yields

ZI = lim�!
mœN

n

gœG0/P
m

I

Z
Z

gP
m

I
.
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Then, by choosing an injective resolution I
• of E⁄, we have

Exti(ÿú(ZI), E⁄) = H i
!

Hom(ÿú(ZI), I
•)

"

= H i
!

Hom(ÿú( lim�!
mœN

n

gœG0/P
m

I

Z
Z

gP
m

I

I

), I
•)

"

= H i
!

lim �
mœN

n

gœG0/P
m

I

Hom(ÿú(Z
Z

gP
m

I

I

), I
•)

"

= H i
!

lim �
mœN

n

gœG0/P
m

I

H0
Z

gP
m

I

I

(F ad, I
•)

"

.

We set ZI,m := P m

I
· Y rig

I
µ F

rig for m œ N. Then, we have chains of open admissible
subsets

. . . F rig
\ZI,m µ F

rig
\ZI,m+1 µ . . .

and
. . . F rig

\YI(‘m) µ F
rig

\YI(‘m+1) µ . . .

which each cover F
rig

\Y rig
I

. Then, we know from the proof of [55, Section 2, Proposition
4] that

lim �
mœN

H0
ZI,m

(F rig, I
p) = H0

Y
rig

I

(F rig, I
p) = lim �

mœN
H0

YI(‘m)(F
rig, I

p).

The same holds for translates of ZI,m and YI(‘m). Hence, we get (cf. [42, p. 1415])

lim �
mœN

n

gœG0/P
m

I

H0
gZI,m

(F rig, I
p) ≥= lim �

mœN

n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I
p)

for all injective sheafs of the resolution I
•. Therefore, using that F

rig and F
ad have

equivalent topoi (cf. [20, Proposition 2.1.4]), we get by functoriality an isomorphism of
complexes

lim �
mœN

n

gœG0/P
m

I

H0
Z

gP
m

I

I

(F ad, I
•) ≥= lim �

mœN

n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I
•).

This implies

Exti(ÿú(ZI), E⁄) = H i
!

lim �
mœN

n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I
•)

"

.

Before we can continue, we need a technical lemma where lim �
(r)
mœN denote the r-th

right derived functor of lim �mœN.

Lemma 3.25. Let I be an injective sheaf on F
ad

. Then,

lim �
mœN

(r)! n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I)
"

= 0 for all r Ø 1.

Proof. It is su�cent to reproduce the proof of [39, Lemma 2.2.2].

Then, with the two standard hypercohomology spectral sequences

Epq

1 = lim �
mœN

(q)! n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I
p)

"

∆ Hp+q lim �
mœN

!

n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I
•)

"

,
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Epq

2 = lim �
mœN

(p)Hq
!

n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I
•)

"

∆ Hp+q lim �
mœN

!

n

gœG0/P
m

I

H0
gYI(‘m)(F

rig, I
•)

"

,

and by knowing that lim �
(p)
mœN = 0 for p Ø 2 (cf. [24]), we get the following short exact

sequence (cf. [55, Section 2, Proof of Proposition 4])

0! lim �
mœN

(1) n

gœG0/P
m

I

H i≠1
gYI(‘m)(F

rig, E⁄)! Exti(iú(ZI), E⁄)

! lim �
mœN

n

gœG0/P
m

I

H i

gYI(‘m)(F
rig, E⁄)! 0

for all i œ N. Moreover, Assumption 3.19 and Corollary 3.20, respectively, imply that
the projective system of K-Fréchet spaces

!

m

gœG0/P
m

I

H i

gYI(‘m)(F
rig, E⁄)

"

mœN satisfies
the topological Mittag-Le�er property for all i Ø 0 (cf. [39, p. 626]). Therefore, by [18,
Remark 13.2.4], the lim �mœN

(1)-term vanishes, i.e.

Exti(ÿú(ZI), E⁄) ≥= lim �
mœN

n

gœG0/P
m

I

H i

gYI(‘m)(F
rig, E⁄).

The statement of the proposition is then just rewriting the latter term.

Proposition 3.26. We have a spectral sequence

E≠p,q

1 =
n

Iµ�
|�\I|=p

lim �
mœN

IndG0
P

m

I

!

Hq

YI(‘m)(F
rig, E⁄)

"

∆ H≠p+q(F wa, E⁄)

where we use the abbreviation Y� for F .

Proof. We follow the arguments used in the proof of [40, Proposition 4.2]. First, we
consider the second quadrant double complex (Ẽ•,•

1 , d•,•, dÕ•,•) defined by

Ẽp,q

1 =
I

Hq(F rig, E⁄) if p = 0
0 else,

with all di�erentials being trivial. Hence, it defines a spectral sequence converging to
Hú(F rig, E⁄). Further, let I µ � such that |�\I| = 1 and m œ N. The inclusion
gYI(‘m) µ F

rig induces a morphism (cf. [47, Lemma 1.3])

Hú

gYI(‘m)(F
rig, E⁄)! Hú(F rig, E⁄)

for g œ G/P m

I
. Then, by the universal property of the direct sum we get a morphism

n

gœG0/P
m

I

Hú

gYI(‘m)rig(F rig, E⁄)! Hú(F rig, E⁄).

Thus, the functorialty of lim �mœN yields

Dú

I : lim �
mœN

n

gœG0/P
m

I

Hú

gYI(‘m)rig(F rig, E⁄)! lim �
mœN

Hú(F rig, E⁄) = Hú(F rig, E⁄).
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Then, we consider the morphism of double complexes (cf. (3.23))

f•,•

1 : Ê•,•

1 ! Ẽ•,•

1

given by

fp,q

1 =
I

üIDq

I
if p = 0

0 else.

It induces the morphism of total complexes

Tot(f•,•

1 ) : Tot(E•,•

1 )! Tot(Ẽ•,•

1 )

where we denote the mapping cone of Tot(f•,•

1 ) by Cone(Tot(f•,•

1 ))•. By the definitions,
the triangle for this mapping cone induces a long exact sequence which identifies with

. . .! Hq

Y
(F rig, E⁄)! Hq(F rig, E⁄)! Hq(F wa, E⁄)! . . . .

Hence, the cohomology of Cone(Tot(f•,•

1 ))• coincides with Hú(F wa, E⁄). Furthermore,
the total complex of the double complex E•,•

1 in the statement is exactly Cone(Tot(f•,•

1 ))•

which finishes the proof.

Before stating and proving the main theorem we need the following lemma.

Lemma 3.27. Let I ( � and w œ W I
fl �I . Then, w œ �ÿ.

Proof. By Lemma 3.1, we know that

µ =
ÿ

–œ�
n––‚

for n– œ Q>0. As W acts by permutation on �, we have that

wµ =
ÿ

–œ�
m––‚

with m– œ Q for w œ W I
fl �I . Then, by Lemma 3.4 it is enough to show that

ÈÈ̌–, wµÍder = m– > 0 for all – œ I. By (2.12), we have

– =
ÿ

—œ�
È–, —‚

ÍderÈ̌—

for – œ �. Moreover, from Lemma 2.3 we know that w≠1–�+ for all – œ I. Since we
assumed µ to lie in the positive Weyl chamber (cf. (3.1)), we have

È–, wµÍ = Èw≠1–, µÍ > 0

for – œ I. By the very definition of È , Íder it follows that

È–, wµÍder > 0

for all – œ I. Furthermore, for –, — œ � and – ”= —, we know by Lemma 2.2 that
È–, —‚

Íder Æ 0. Recall that w œ W I
fl �I implies that ÈÈ̌—, wµÍder > 0 for — œ �\I by
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Lemma 3.4. Thus, for – œ I and w œ W I
fl �I , we have that

b– :=
ÿ

—œI

È–, —‚
ÍderÈÈ̌—, wµÍder = È–, wµÍder ≠

ÿ

—œ�\I

È–, —‚
ÍderÈÈ̌—, wµÍder > 0. (3.24)

We fix an ordering on I = {–1 > –2 > . . . > –r} and define

C œ Q|I|◊|I| with Cij := È–i, –‚

j Íder,

x := (m–i
)iœ{1,...,r} œ Q|I|,

b := (b–i
)iœ{1,...,r} œ Q|I|.

Then,
Cx = b. (3.25)

After reordering the simple roots, if necessary, we can assume that C has blocks C1, . . . , Ct

on the main diagonal and has zeroes everywhere else. Then, the Ci’s are the (transposed)
Cartan matrices (cf. (2.13)) of the irreducible components of the Dynkin diagram of �I .
Thus, C≠1 has blocks C≠1

i
on the main diagonal and has zeroes everywhere else. The

entries of the C≠1
i

are, by Lemma 2.8, known to be positive rational. Then, (3.24) and
(3.25) imply immediately that m– > 0 for all – œ I.

Theorem 3.28. Let i0 := dim F ≠ |�|. The homology of the (chain) complex

C• :
n

wœ�ÿ
l(w)=dim Yÿ

V G

B (w) . . . 
n

wœ�ÿ
l(w)=1

V G

B (w) V G

B (⁄)

starting in degree i0 coincides with Hú(F wa, E⁄)Õ
, i.e. Hi(C•) = H i(F wa, E⁄)Õ

.

Proof. We consider the double complex D•,•, similar to the one from [43, p. 662], defined
as a second quadrant double chain complex, given by

Dp,q =
n

Iµ�
|�\I|=≠p

n

wœW
I
fl�I

l(w)=n≠q

IG

PI
(w)

1

=
n

Iµ�
|�\I|=≠p

n

wœW
I
fl�I

l(w)=n≠q

F
G

PI

!

Hq

CI(w)(F , E⁄)
"

2

(cf. (2.22) for the objects). The vertical di�erentials are the ones coming from Lemma
3.14. The horizontal ones come from the transition maps

Hq

CI(w)(F , E⁄)! Hq

C
IÕ (w)(F , E⁄)

for I µ I Õ and w œ W I
Õ induced by the fact that CI(w) µ CIÕ(w) is a closed subset.

They are the same as in Example 2.20. The commutativity is shown as in the proof of
[43, Theorem 4.2].

We are especially interested in the two spectral sequences converging towards the
homology of the total complex Tot(D•,•) associated to D•,•. Namely,

IE0
p,q = Dp,q ∆ Hp+q(Tot(D•,•)),

IIE0
p,q = Dq,p ∆ Hp+q(Tot(D•,•)).
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Then, by Lemma 3.14 and Lemma 3.22 in combination with the functoriality and the
exactness of the functor F

G

P
(cf. Proposition 2.33 and 2.34), we see that IE1

•,• = (E•,•

1 )Õ

(cf. Proposition 3.26). We know from Proposition 3.24 that the entrys of E•,•

1 are K-
Fréchet spaces. Furthermore, the duality functor is exact on the category of K-Fréchet
spaces (cf. [2, Section I, Corollary 1.4]). Hence, Hp(Tot(D•,•)) ≥= Hp(F wa, E⁄)Õ. Due to
Lemma 3.27, we have

IIE0
p,• =

n

wœ�ÿ
l(w)=n≠p

E0,w

p,•

with chain complexes

E0,w

p,• : IG

PI(w)(w)!
n

IµI(w)
|I(w)\I|=1

IG

PI
(w)! . . .!

n

IµI(w)
|I|=1

IG

PI
(w)! IG

B (w) (3.26)

ending in degree ≠|�|. From Corollary 2.39, we know that these complexes are exact
except at the very right position where the cokernel is V G

B
(w). Thus, we get

IIE1
p,q =

Y

_

]

_

[

m

wœ�ÿ
l(w)=n≠p

V G

B
(w) if q = ≠|�|,

0 else.

Therefore, IIE2 = IIEŒ and we are done.

Corollary 3.29. Let i0 := dim F ≠ |�|. Then, H i0(F wa, E⁄) ”= 0.

Proof. We know from [43, Corollary 4.3] that

vG

B(⁄) = Ker
1

V G

B (⁄)!
n

wœW

l(w)=1

V G

B (w)
2

.

But then it follows from the previous theorem that

vG

B(⁄) = Ker
1

V G

B (⁄)!
n

wœW

l(w)=1

V G

B (w)
2

µ Ker
1

V G

B (⁄)!
n

wœ�ÿ
l(w)=1

V G

B (w)
2

= H i0(F wa, E⁄)Õ.

Therefore, H i0(F wa, E⁄) cannot be trivial.

Lemma 3.30. Let w, wÕ
œ �ÿ with wÕ

Æ w and l(w) = l(wÕ) + 1. Then, the morphism

pwÕ,w : V G

B (wÕ)! V G

B (w)

appearing in the di�erentials of C• is surjective.

Proof. As seen in the proof of Theorem 3.28, the morphism pwÕ,w : V G

B
(wÕ)! V G

B
(w) is

induced by a morphism Ï : IG

B
(wÕ)! IG

B
(w). This one in turn comes from a non-trivial

morphism

iw,wÕ : M(w · ⁄) = Hn≠l(w)
C(w) (F , E⁄)! Hn≠l(wÕ)

C(wÕ) (F , E⁄) = M(wÕ
· ⁄)
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(cf. Remark 3.15). Thus, iw,wÕ is injective (cf. [8, p. 46]) and therefore Ï = F
G

B
(iw,wÕ)

is surjective (cf. Proposition 2.34). Then, we have the following commutative diagram

IG

B
(wÕ)

F
G

B
(i

w,wÕ )
������! IG

B
(w)

`

`

˘

fi

`

`

˘

fi

V G

B
(wÕ)

p
wÕ,w

����! V G

B
(w)

where fi denote the natural projection onto the quotient. Since all morphism except pwÕ,w

in the commutative diagram are surjective, it follows that pwÕ,w is also surjective.

In the following examples, we will compute the composition factors of the homology
groups of the complex C• of Theorem 3.28 for G = SL4 and some µ œ Xú(T). The
strategy is first to compute all composition factors with multiplicities of the objects in
C• with the help of Theorem 2.40. This is done with a small program in SAGE (cf.
Appendix A.1). Then, we can deduce the composition factors of the homology groups
by knowing by the previous lemma that the morphism pwÕ,w : V G

B
(wÕ) ! V G

B
(w) in the

complex C• is surjective for wÕ, w œ W with wÕ
Æ w and how composition factors behave

under short exact sequences.

Definition 3.31. Let D be a composition factor of V G

B
(⁄) and nw :=

#

V G

B
(w) : D

$

the
multiplicity of D in V G

B
(w) for w œ W . Then, we define the distribution type of D in

the complex C• by
!

ne, {nw}wœ�ÿ, l(w)=1, . . . , {nw}wœ�ÿ, l(w)=dim Yÿ

"

œ N|�ÿ|

0 .

Remark 3.32. The distribution type depends on an ordering on �ÿ. We will implicitely
give such an ordering in each example and hope that causes no confusion with the
notation.

Example 3.33. Let G = SL4, � = {–1, –2, –3}, S = {s1, s2, s3} µ W with si cor-
responding to –i, and s1 commutes with s3. We set Pi = P{–i}

and Pi,j = P{–i,–j}.
Furthermore let µ = (x1, x2, x3, x4) œ Xú(T) ≥= Z4 with x1 > x2 > x3 > x4 (cf. Example
2.10).

a) µ = (x1, x2, x3, x4) with
q

xi = 0 and x3 > 0. Then

�ÿ = {e, s1, s2, s1s2, s2s1, s1s2s1}

and
C• : V G

B (⁄) f
�!

n

wœ�ÿ
l(w)=1

V G

B (w) g
�!

n

wœ�ÿ
l(w)=2

V G

B (w) h�! V G

B (s1s2s1).

The appearing distribution types of C• (cf. Appendix A.2) are
!

{2}, {2, 1}, {1, 1}, {1}
"

,
!

{2}, {1, 2}, {1, 1}, {1}
"

,
!

{1}, {1, 1}, {1, 1}, {1}
"

,
!

{1}, {1, 1}, {1, 0}, {0}
"

,
!

{1}, {1, 1}, {0, 1}, {0}
"

,
!

{1}, {1, 0}, {0, 0}, {0}
"

,
!

{1}, {0, 1}, {0, 0}, {0}
"

,
!

{1}, {0, 0}, {0, 0}, {0}
"

.
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As an example for the computations, we consider the distribution type
!

{2}, {2, 1}, {1, 1}, {1}
"

and denote a corresponding factor by D. Then,

[Ker(f) : D] Æ [Ker
!

V G

B (⁄)! V G

B (s1)
"

: D] = 0.

This implies that [Im(f) : D] = 2. Moreover, [Im(h) : D] = 1 since

V G

B (s1s2)! V G

B (s1s2s1)

is surjective. Thus, [Ker(h) : D] = 1. As the composition
n

wœ�ÿ
l(w)=1

V G

B (w) g
!

n

wœ�ÿ
l(w)=2

V G

B (w) fi1! V G

B (s1s2)

is surjective, we have the chain of inequalities

1 Æ [Im(g) : D] Æ [Ker(h) : D] = 1.

Therefore, [Im(g) : D] = 1 and [Ker(g) : D] = 2. Finally, we see that

[Hi(C•) : D] = 0

for all i. The same arguments applied to all distribution types show that Hi(C•) = 0
for i ”= dim(F ) ≠ |�| = 3 and that H3(C•) = Ker(f) has composition factors
precisely

vG

B(⁄), F
G

P1,2

1

L(s3 · ⁄), v
P1,2
B

2

,

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
P3

2

, F
G

P2,3

1

L(s1s2s3 · ⁄), 1
2

each with multiplicity one.

b) µ = (x1, x2, x3, x4) with
q

xi = 0 and x3 = 0. Then,

�ÿ = {e, s1, s2, s2s1}

and
C• : V G

B (⁄) f
�!

n

wœ�ÿ
l(w)=1

V G

B (w) g
�! V G

B (s2s1).

The appearing distribution types in C• (cf. Appendix A.2) are
!

{2}, {2, 1}, {1}
"

,
!

{2}, {1, 2}, {1}
"

,
!

{1}, {1, 1}, {1}
"

,
!

{1}, {1, 1}, {0}
"

,
!

{1}, {1, 0}, {0}
"

,
!

{1}, {0, 1}, {0}
"

,
!

{1}, {0, 0}, {0}
"

.
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With the same arguments as above, we get that Hi(C•) = 0 for i ”= 2, 3. Further-
more, H3(C•) has composition factors precisely

vG

B(⁄), F
G

P1,2

1

L(s3 · ⁄), v
P1,2
B

2

,

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
P3

2

, F
G

P2,3

1

L(s1s2s3 · ⁄), 1
2

each with multiplicity one. Moreover, H2(C•) has composition factors precisely

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
B

2

, F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
B

2

,

F
G

P2

1

L(s3s1s2 · ⁄), vP2
B

2

, F
G

P2

1

L(s1s2s3s2 · ⁄), vP2
B

2

,

F
G

P1,3

1

L(s2s3s1s2 · ⁄), 1
2

, F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P3

2

,

F
G

P3

1

L(s1s2s3s1s2 · ⁄), 1
2

each with multiplicity one as well.

c) µ = (x1, x2, x3, x4) with
q

xi = 0, x2 > 0, x3 < 0, x1 + x4 > 0, x2 + x3 < 0. Then,

�ÿ = {e, s1, s2, s3, s1s3, s2s3}

and
C• : V G

B (⁄) f
�!

n

wœ�ÿ
l(w)=1

V G

B (w) g
�! V G

B (s1s3) ü V G

B (s2s3).

The appearing distribution types in C• (cf. Appendix A.2) are
!

{2}, {2, 1, 2}, {2, 1}
"

,
!

{2}, {1, 2, 1}, {1, 1}
"

,
!

{1}, {1, 1, 1}, {1, 1}
"

,
!

{1}, {1, 1, 1}, {1, 0}
"

,
!

{1}, {1, 0, 1}, {1, 0}
"

,
!

{1}, {0, 1, 1}, {0, 1}
"

,
!

{1}, {1, 1, 0}, {0, 0}
"

,
!

{1}, {0, 1, 1}, {0, 0}
"

,
!

{1}, {1, 0, 0}, {0, 0}
"

,
!

{1}, {0, 1, 0}, {0, 0}
"

,
!

{1}, {0, 0, 1}, {0, 0}
"

,
!

{1}, {0, 0, 0}, {0, 0}
"

.

First, we notice that g is surjective since V G

B
(s1) and V G

B
(s2) map onto a single but

distinct direct summand. Then, we can apply the same arguments as before. We
compute that Hi(C•) = 0 for i ”= 2, 3. Furthermore, H3(C•) = vG

B
(⁄). Moreover,

H2(C•) has composition factors precisely

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
B

2

, F
G

P1,3

1

L(s2s1 · ⁄), v
P1,3
B

2

,

F
G

P1,2

1

L(s3s2 · ⁄), v
P1,2
B

2

, F
G

P3

1

L(s1s2s1 · ⁄), vP3
B

2

,

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
B

2

, F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
P2

2

,

F
G

P2

1

L(s3s1s2 · ⁄), vP2
B

2

, F
G

P1,3

1

L(s2s3s1s2 · ⁄), 1
2

,

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P1

2

, F
G

P2

1

L(s3s1s2s1 · ⁄), 1
2

,

F
G

P2

1

L(s3s1s2s1 · ⁄), vP2
B

2

, F
G

P1

1

L(s2s3s1s2s1 · ⁄), 1
2
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each with multiplicity one.

3.6 Outlook to the parabolic case

Last but not least, we would like to illustrate why the arguments of the last section
are not so easily transferable to the case where {µ} is arbitrary. Even if we make the
Assumption 3.19 adjusted to this case.

One crucial point in the previous computations is Lemma 3.13, namely, the fact that
Hú

CI(w)(F , E⁄) has only non-trivial cohomology in degree n ≠ l(w). This made it possi-
ble to compute Hú

YI
(F , E⁄) with a suitable chain complex (cf. Lemma 3.14). We will

see in this section that in the general parabolic case, the local cohomology groups with
support in a generalized Schubert cell with coe�cients in a line bundle E⁄, analogous
to the Borel case, do not have this vanishing property. For this, we first define gener-
alized Schubert cells for the general situation and show a result similar to Proposition 3.7.

Therefore, we consider a local Shtuka-datum (G, {µ}, [1]) with arbitrary {µ}; G is
still assumed to be split. As before, we fix an IIP on G and choose a split maximal torus
T of G of rank d such that µ œ Xú(T)Q. Let (T, B) be a Borel pair of rank d which
gives rise to a set of simple roots (cf. section 2.1)

� := {–1, . . . , –d} µ Xú(T)Q.

Again, we can assume that µ lies in the positive Weyl chamber with respect to B,
so P := P(µ) ∏ B, i.e. it is a standard parabolic subgroup with respect to B. Let
F := G/P which is defined over K. Further, we let Wµ be the stabilizer of µ under the
action of W . Then, it can be easily shown that Wµ = WJµ

for

Jµ := {– œ � | È–, µÍ = 0} µ �

(cf. [21, Section 10.3, Lemma B and Proof]). We denote by JµW the left Kostant

representatives, i.e. the set of minimal length left coset representatives in W/WJµ
. Then,

adjusted to this case, we let

�I := {w œ
JµW | (wµ, È–) > 0 for all – ”œ I} (3.27)

for I ( � (cf. [41, p. 530]). Again, we have the following useful lemma induced by
Lemma 2.7.

Lemma 3.34. Let I ( �. Then, w œ �I if and only if ÈÈ̌–, wµÍder > 0 for all – ”œ I.

The definition of YI µ F is still the same (cf. (3.4)) and furthermore, similar to the
Borel case, YI is also a union of Schubert cells in F .

Proposition 3.35. [41, Proposition 4.1] For I ( �, we obtain

YI =
€

wœ�I

BwP/P.
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For I µ � and w œ W , we have (cf. [45, Section 2.1])

PIwP/P =
€

(v,u)œWI◊WJµ

BvwuP/P.

From [4, Proposition 2.7], we know that each double coset WI\W/WJµ
contains a unique

element of minimal length which can be found in JµW I := JµW fl W I . That motivates
the following definition.

Definition 3.36. Let I µ � and w œ
JµW I .

i) The generalized Schubert cell in F associated to I and w is

Cµ

I
(w) := PIwP/P.

If I = ÿ, we omit the subscript.

ii) For J µ �, let SJ = {s– œ S | – œ J} (cf. (2.4)). For w œ W we define Hw µ � to
be the subset such that

SHw
= SI fl wSJµ

w≠1.

Then, we let HwWI be the set of left Kostant representatives of WI/WHw
.

Lemma 3.37. [4, Corollary 2.8] Let I µ � and w œ
JµW I

. Then, vw œ
JµW for

v œ WI if and only if v œ
HwWI . Consequenty, every element of WIwWJµ

can be written

uniquely as vwu, where v œ
HwWI , u œ WJµ

, and l(vwu) = l(v) + l(w) + l(u).

Lemma 3.38. Let I µ � and w œ
JµW I

. Then,

Cµ

I
(w) =

h

vœHw WI

Cµ(vw).

Proof. We have seen that

Cµ

I
(w) =

€

(v,u)œWI◊WJµ

BvwuP/P.

Therefore, one inclusion is obvious. For the other inclusion, notice that u œ WJµ
implies

uP = P. Furthermore, if vÕ
œ WI , there exist unique v œ

HwWI and vÕÕ
œ WHw

such
that vÕ = vvÕÕ and l(vÕ) = l(v) + l(vÕÕ). As vÕÕ

œ WHw
, we can write vÕÕ = wuÕw≠1 with

uÕ
œ WJµ

. Thus,
BvÕwP/P = BvwuÕw≠1wP/P = BvwP/P

and
Cµ

I
(w) =

€

(v,u)œWI◊WJµ

BvwuP/P µ

€

vœHw WI

Cµ(vw).

Then, the disjointness follows by [26, Proposition 6.2] as the Cµ(vw) are Schubert cells
of F .

Proposition 3.39. For I ( �, we have

YI =
h

wœ
Jµ W Ifl�I

Cµ

I
(w).
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Proof. We know from [12, Proposition 11.1.6] that YI =
t

wœ�I
PIwP/P. For wÕ

œ �I

exist, by Lemma 3.37, unique w œ
JµW I , v œ

HwWI , and u œ WJµ
such that wÕ = vwu

with l(wÕ) = l(v) + l(w) + l(u), and vw œ
JµW . Since wÕ

œ
JµW (cf. (3.27)), we have

that u = e. Then, we see that

PIwÕP/P = PIvwP/P = PIwP/P.

Since YI is closed, we get
YI =

€

wœ
Jµ W Ifl�I

Cµ

I
(w).

The union is disjoint for the same reason as in the proof of Proposition 3.7.

Let ⁄ œ Xú(T)+ be a dominant weight and E⁄ = L⁄ ¢ ÊF , analogously defined to
(3.3). Then, one could ask if we can compute Hú

YI
(F , E⁄) by a similar complex as in

Lemma 3.14. The following example at least gives the answer that these cohomology
groups are not so easy to deduce as in the Borel case.

Example 3.40. We are in the situation of Example 2.10 for n = 3. Further, we let
µ = (2, ≠1, ≠1) œ Xú(T). Then, F = G/P(µ) ≥= P2

K
and Jµ = {–2}. Let I = {–1}.

Hence, W I = {e, s2, s2s1}, JµW = {e, s1, s2s1}, and thus JµW I = {e, s2s1}. We choose
w = e œ

JµW I . This implies SI fl wSJw≠1 = {e} and therefore Hw = ÿ. From that, it
follows that

Cµ

I
(e) = Cµ(e) Û Cµ(s1).

Let ⁄ = (0, . . . , 0) œ Xú(T). Then, E⁄ = ÊF and Hú

C
µ

I
(e)(F , ÊF ) is the cohomology of

the cochain complex
H1

Cµ(s1)(F , ÊF )! H2
Cµ(e)(F , ÊF )

by Lemma 3.11. Here we used that the Schubert cell Cµ(w) is a�ne for w œ
JµW .

Hence, Hú

Cµ(w)(F , ÊF ) is only non-trivial in degree n ≠ l(w). As

F = Cµ(e) Û Cµ(s1) Û Cµ(s2s1),

we see, by the same arguments as before, that the cochain complex

H0
Cµ(s2s1)(F , ÊF )! H1

Cµ(s1)(F , ÊF )! H2
Cµ(e)(F , ÊF )

computes Hú(F , ÊF ) and the morphism are the same as for Hú

C
µ

I
(e)(F , ÊF ). Hence, we

have
H2

C
µ

I
(e)(F , ÊF ) = H2(F , ÊF ) ”= 0.

Moreover, as shown in [39, Proposition 3.2.1], H1
C

µ

I
(e)(F , ÊF ) ”= 0.

By the previous example, we see that in contrast to the Borel case, the cohomology
groups Hú

C
µ

I
(w),(F , E⁄) can be non-trivial in more than one degree. As in the proof of

Lemma 3.14, the covering of YI from Lemma 3.39 induces a filtration on YI by closed
subspaces with disjoint union of generalized Schubert cells as di�erences. Therefore,
the associated E1-page of the spectral sequence of Lemma 3.11 can have more than one
non-trivial line. Hence, the proof of Lemma 3.14 breaks down at this point.
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A Appendix

A.1 Code for composition factors

Here, we present the code used for the computation of the Jordan-Hölder factors of
V G

B
(w) with multiplicities from Example 3.33. The chosen language is SAGE:

compositionfactors.sage:
1 R.<q >= LaurentPolynomialRing (QQ)

2 KL= KazhdanLusztigPolynomial (W,q)

3
4 def supp(W,w):

5 supp=set ([])

6 ref=W. bruhat_interval (1,w)

7 for v in ref:

8 if v. length ()==1:

9 supp.add(v)

10 return Set(supp)

11
12 def I(W,w):

13 I=set ({})

14 for s in W. simple_reflections ():

15 if (s*w). length ()>w. length ():

16 I.add(s)

17 return Set(I)

18
19 def multiplicity (W,w,v,J):

20 x=W. long_element ()

21 H=I(W,w)

22 M=H. intersection (J)

23 c=M. cardinality ()

24 mult =0

25 ref=W. bruhat_interval (W.one (),v)

26 ref1 =[]

27 for t in ref:

28 ref1. append (t*w. inverse ())

29 for t in ref1:

30 if supp(W,t)==M:

31 mult=mult+pow(-1,t. length ()+c)*KL.P(x*t*w*x,x*v*x)(1)

32 return mult

33
34 def multiplicitytot (W,w):

35 res =[]

36 c=0

37 L=W. bruhat_interval (W.one (),W. long_element ())

38 for v in L:

39 H=I(W,v)

40 S= Subsets (H)

41 for J in S:

42 m= multiplicity (W,w,v,J)

43 if m != 0:

44 c=c+1

45 h=[]

46 h. append (v)

47 h. append (H)

48 h. append (J)

49 h. append (m)

50 res. append (h)

51 return res , c

Then, we applied this part to the relevant Weyl group elements.
1 sage: W = WeylGroup ("A3",prefix ="s")

2 sage: [s1 ,s2 ,s3]=W. simple_reflections ()
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3 sage: load(" compositionfactors .sage")

4 sage: multiplicitytot (W,W.one ())

5 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

6 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

7 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

8 [s1*s2*s3*s2*s1 , {s2}, {}, 2],

9 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

10 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

11 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

12 [s3*s1*s2*s1 , {s2}, {}, 1],

13 [s3*s1*s2*s1 , {s2}, {s2}, 1],

14 [s2*s3*s2*s1 , {s1}, {}, 1],

15 [s2*s3*s2*s1 , {s1}, {s1}, 1],

16 [s2*s3*s1*s2 , {s1 , s3}, {}, 2],

17 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

18 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

19 [s2*s3*s1*s2 , {s1 , s3}, {s1 , s3}, 1],

20 [s1*s2*s3*s1 , {s3}, {}, 1],

21 [s1*s2*s3*s1 , {s3}, {s3}, 1],

22 [s1*s2*s3*s2 , {s2}, {}, 1],

23 [s1*s2*s3*s2 , {s2}, {s2}, 1],

24 [s1*s2*s1 , {s3}, {}, 1],

25 [s3*s2*s1 , {s1 , s2}, {}, 1],

26 [s3*s2*s1 , {s1 , s2}, {s1}, 1],

27 [s3*s2*s1 , {s1 , s2}, {s2}, 1],

28 [s3*s2*s1 , {s1 , s2}, {s1 , s2}, 1],

29 [s3*s1*s2 , {s2}, {}, 1],

30 [s3*s1*s2 , {s2}, {s2}, 1],

31 [s2*s3*s1 , {s1 , s3}, {}, 1],

32 [s2*s3*s1 , {s1 , s3}, {s1}, 1],

33 [s2*s3*s1 , {s1 , s3}, {s3}, 1],

34 [s2*s3*s1 , {s1 , s3}, {s1 , s3}, 1],

35 [s2*s3*s2 , {s1}, {}, 1],

36 [s1*s2*s3 , {s3 , s2}, {}, 1],

37 [s1*s2*s3 , {s3 , s2}, {s3}, 1],

38 [s1*s2*s3 , {s3 , s2}, {s2}, 1],

39 [s1*s2*s3 , {s3 , s2}, {s3 , s2}, 1],

40 [s2*s1 , {s1 , s3}, {}, 1],

41 [s2*s1 , {s1 , s3}, {s1}, 1],

42 [s1*s2 , {s3 , s2}, {}, 1],

43 [s1*s2 , {s3 , s2}, {s2}, 1],

44 [s3*s1 , {s2}, {}, 1],

45 [s3*s2 , {s1 , s2}, {}, 1],

46 [s3*s2 , {s1 , s2}, {s2}, 1],

47 [s2*s3 , {s1 , s3}, {}, 1],

48 [s2*s3 , {s1 , s3}, {s3}, 1],

49 [s1 , {s3 , s2}, {}, 1],

50 [s2 , {s1 , s3}, {}, 1],

51 [s3 , {s1 , s2}, {}, 1],

52 [1, {s1 , s3 , s2}, {}, 1]],

53 48)

54 sage: multiplicitytot (W,s1)

55 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

56 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

57 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

58 [s1*s2*s3*s2*s1 , {s2}, {}, 2],

59 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

60 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

61 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

62 [s3*s1*s2*s1 , {s2}, {}, 1],

63 [s3*s1*s2*s1 , {s2}, {s2}, 1],

64 [s2*s3*s2*s1 , {s1}, {}, 1],

65 [s2*s3*s2*s1 , {s1}, {s1}, 1],

66 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

67 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],
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68 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

69 [s2*s3*s1*s2 , {s1 , s3}, {s1 , s3}, 1],

70 [s1*s2*s3*s1 , {s3}, {}, 1],

71 [s1*s2*s3*s1 , {s3}, {s3}, 1],

72 [s1*s2*s3*s2 , {s2}, {}, 1],

73 [s1*s2*s1 , {s3}, {}, 1],

74 [s3*s2*s1 , {s1 , s2}, {}, 1],

75 [s3*s2*s1 , {s1 , s2}, {s1}, 1],

76 [s3*s2*s1 , {s1 , s2}, {s2}, 1],

77 [s3*s2*s1 , {s1 , s2}, {s1 , s2}, 1],

78 [s3*s1*s2 , {s2}, {}, 1],

79 [s2*s3*s1 , {s1 , s3}, {}, 1],

80 [s2*s3*s1 , {s1 , s3}, {s1}, 1],

81 [s2*s3*s1 , {s1 , s3}, {s3}, 1],

82 [s2*s3*s1 , {s1 , s3}, {s1 , s3}, 1],

83 [s1*s2*s3 , {s3 , s2}, {}, 1],

84 [s1*s2*s3 , {s3 , s2}, {s3}, 1],

85 [s2*s1 , {s1 , s3}, {}, 1],

86 [s2*s1 , {s1 , s3}, {s1}, 1],

87 [s1*s2 , {s3 , s2}, {}, 1],

88 [s3*s1 , {s2}, {}, 1],

89 [s1 , {s3 , s2}, {}, 1]],

90 35)

91 sage: multiplicitytot (W,s2)

92 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

93 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

94 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

95 [s1*s2*s3*s2*s1 , {s2}, {}, 1],

96 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

97 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

98 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

99 [s3*s1*s2*s1 , {s2}, {}, 1],

100 [s3*s1*s2*s1 , {s2}, {s2}, 1],

101 [s2*s3*s2*s1 , {s1}, {}, 1],

102 [s2*s3*s1*s2 , {s1 , s3}, {}, 2],

103 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

104 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

105 [s2*s3*s1*s2 , {s1 , s3}, {s1 , s3}, 1],

106 [s1*s2*s3*s1 , {s3}, {}, 1],

107 [s1*s2*s3*s2 , {s2}, {}, 1],

108 [s1*s2*s3*s2 , {s2}, {s2}, 1],

109 [s1*s2*s1 , {s3}, {}, 1],

110 [s3*s2*s1 , {s1 , s2}, {}, 1],

111 [s3*s2*s1 , {s1 , s2}, {s2}, 1],

112 [s3*s1*s2 , {s2}, {}, 1],

113 [s3*s1*s2 , {s2}, {s2}, 1],

114 [s2*s3*s1 , {s1 , s3}, {}, 1],

115 [s2*s3*s2 , {s1}, {}, 1],

116 [s1*s2*s3 , {s3 , s2}, {}, 1],

117 [s1*s2*s3 , {s3 , s2}, {s2}, 1],

118 [s2*s1 , {s1 , s3}, {}, 1],

119 [s1*s2 , {s3 , s2}, {}, 1],

120 [s1*s2 , {s3 , s2}, {s2}, 1],

121 [s3*s2 , {s1 , s2}, {}, 1],

122 [s3*s2 , {s1 , s2}, {s2}, 1],

123 [s2*s3 , {s1 , s3}, {}, 1],

124 [s2 , {s1 , s3}, {}, 1]],

125 33)

126 sage: multiplicitytot (W,s1*s2)

127 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

128 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

129 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

130 [s1*s2*s3*s2*s1 , {s2}, {}, 1],

131 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

132 [s1*s2*s3*s1*s2 , {s3}, {}, 1],
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133 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

134 [s3*s1*s2*s1 , {s2}, {}, 1],

135 [s3*s1*s2*s1 , {s2}, {s2}, 1],

136 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

137 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

138 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

139 [s2*s3*s1*s2 , {s1 , s3}, {s1 , s3}, 1],

140 [s1*s2*s3*s1 , {s3}, {}, 1],

141 [s1*s2*s3*s2 , {s2}, {}, 1],

142 [s1*s2*s1 , {s3}, {}, 1],

143 [s3*s1*s2 , {s2}, {}, 1],

144 [s1*s2*s3 , {s3 , s2}, {}, 1],

145 [s1*s2 , {s3 , s2}, {}, 1]],

146 19)

147 sage: multiplicitytot (W,s2*s1)

148 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

149 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

150 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

151 [s1*s2*s3*s2*s1 , {s2}, {}, 1],

152 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

153 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

154 [s3*s1*s2*s1 , {s2}, {}, 1],

155 [s3*s1*s2*s1 , {s2}, {s2}, 1],

156 [s2*s3*s2*s1 , {s1}, {}, 1],

157 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

158 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

159 [s1*s2*s3*s1 , {s3}, {}, 1],

160 [s1*s2*s1 , {s3}, {}, 1],

161 [s3*s2*s1 , {s1 , s2}, {}, 1],

162 [s3*s2*s1 , {s1 , s2}, {s2}, 1],

163 [s2*s3*s1 , {s1 , s3}, {}, 1],

164 [s2*s1 , {s1 , s3}, {}, 1]],

165 17)

166 sage: multiplicitytot (W,s1*s2*s1)

167 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

168 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

169 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

170 [s1*s2*s3*s2*s1 , {s2}, {}, 1],

171 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

172 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

173 [s3*s1*s2*s1 , {s2}, {}, 1],

174 [s3*s1*s2*s1 , {s2}, {s2}, 1],

175 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

176 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

177 [s1*s2*s3*s1 , {s3}, {}, 1],

178 [s1*s2*s1 , {s3}, {}, 1]],

179 12)

180 sage: multiplicitytot (W,s3)

181 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

182 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

183 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

184 [s1*s2*s3*s2*s1 , {s2}, {}, 2],

185 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

186 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

187 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

188 [s3*s1*s2*s1 , {s2}, {}, 1],

189 [s2*s3*s2*s1 , {s1}, {}, 1],

190 [s2*s3*s2*s1 , {s1}, {s1}, 1],

191 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

192 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

193 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

194 [s2*s3*s1*s2 , {s1 , s3}, {s1 , s3}, 1],

195 [s1*s2*s3*s1 , {s3}, {}, 1],

196 [s1*s2*s3*s1 , {s3}, {s3}, 1],

197 [s1*s2*s3*s2 , {s2}, {}, 1],
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198 [s1*s2*s3*s2 , {s2}, {s2}, 1],

199 [s3*s2*s1 , {s1 , s2}, {}, 1],

200 [s3*s2*s1 , {s1 , s2}, {s1}, 1],

201 [s3*s1*s2 , {s2}, {}, 1],

202 [s2*s3*s1 , {s1 , s3}, {}, 1],

203 [s2*s3*s1 , {s1 , s3}, {s1}, 1],

204 [s2*s3*s1 , {s1 , s3}, {s3}, 1],

205 [s2*s3*s1 , {s1 , s3}, {s1 , s3}, 1],

206 [s2*s3*s2 , {s1}, {}, 1],

207 [s1*s2*s3 , {s3 , s2}, {}, 1],

208 [s1*s2*s3 , {s3 , s2}, {s3}, 1],

209 [s1*s2*s3 , {s3 , s2}, {s2}, 1],

210 [s1*s2*s3 , {s3 , s2}, {s3 , s2}, 1],

211 [s3*s1 , {s2}, {}, 1],

212 [s3*s2 , {s1 , s2}, {}, 1],

213 [s2*s3 , {s1 , s3}, {}, 1],

214 [s2*s3 , {s1 , s3}, {s3}, 1],

215 [s3 , {s1 , s2}, {}, 1]],

216 35)

217 sage: multiplicitytot (W,s1*s3)

218 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

219 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

220 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

221 [s1*s2*s3*s2*s1 , {s2}, {}, 2],

222 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

223 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

224 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

225 [s3*s1*s2*s1 , {s2}, {}, 1],

226 [s2*s3*s2*s1 , {s1}, {}, 1],

227 [s2*s3*s2*s1 , {s1}, {s1}, 1],

228 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

229 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

230 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

231 [s2*s3*s1*s2 , {s1 , s3}, {s1 , s3}, 1],

232 [s1*s2*s3*s1 , {s3}, {}, 1],

233 [s1*s2*s3*s1 , {s3}, {s3}, 1],

234 [s1*s2*s3*s2 , {s2}, {}, 1],

235 [s3*s2*s1 , {s1 , s2}, {}, 1],

236 [s3*s2*s1 , {s1 , s2}, {s1}, 1],

237 [s3*s1*s2 , {s2}, {}, 1],

238 [s2*s3*s1 , {s1 , s3}, {}, 1],

239 [s2*s3*s1 , {s1 , s3}, {s1}, 1],

240 [s2*s3*s1 , {s1 , s3}, {s3}, 1],

241 [s2*s3*s1 , {s1 , s3}, {s1 , s3}, 1],

242 [s1*s2*s3 , {s3 , s2}, {}, 1],

243 [s1*s2*s3 , {s3 , s2}, {s3}, 1],

244 [s3*s1 , {s2}, {}, 1]],

245 27)

246 sage: multiplicitytot (W,s2*s3)

247 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

248 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

249 [s1*s2*s3*s2*s1 , {s2}, {}, 1],

250 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

251 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

252 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

253 [s2*s3*s2*s1 , {s1}, {}, 1],

254 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

255 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

256 [s1*s2*s3*s1 , {s3}, {}, 1],

257 [s1*s2*s3*s2 , {s2}, {}, 1],

258 [s1*s2*s3*s2 , {s2}, {s2}, 1],

259 [s2*s3*s1 , {s1 , s3}, {}, 1],

260 [s2*s3*s2 , {s1}, {}, 1],

261 [s1*s2*s3 , {s3 , s2}, {}, 1],

262 [s1*s2*s3 , {s3 , s2}, {s2}, 1],
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263 [s2*s3 , {s1 , s3}, {}, 1]],

264 17)

265 sage: multiplicitytot (W,s3*s2)

266 ([[ s1*s2*s3*s1*s2*s1 , {}, {}, 1],

267 [s2*s3*s1*s2*s1 , {s1}, {}, 1],

268 [s2*s3*s1*s2*s1 , {s1}, {s1}, 1],

269 [s1*s2*s3*s2*s1 , {s2}, {}, 1],

270 [s1*s2*s3*s2*s1 , {s2}, {s2}, 1],

271 [s1*s2*s3*s1*s2 , {s3}, {}, 1],

272 [s1*s2*s3*s1*s2 , {s3}, {s3}, 1],

273 [s3*s1*s2*s1 , {s2}, {}, 1],

274 [s2*s3*s2*s1 , {s1}, {}, 1],

275 [s2*s3*s1*s2 , {s1 , s3}, {}, 1],

276 [s2*s3*s1*s2 , {s1 , s3}, {s1}, 1],

277 [s2*s3*s1*s2 , {s1 , s3}, {s3}, 1],

278 [s2*s3*s1*s2 , {s1 , s3}, {s1 , s3}, 1],

279 [s1*s2*s3*s2 , {s2}, {}, 1],

280 [s1*s2*s3*s2 , {s2}, {s2}, 1],

281 [s3*s2*s1 , {s1 , s2}, {}, 1],

282 [s3*s1*s2 , {s2}, {}, 1],

283 [s2*s3*s2 , {s1}, {}, 1],

284 [s3*s2 , {s1 , s2}, {}, 1]],

285 19)

A.2 Distribution types

We list the distribution types of all Jordan-Hölder factors that appear in Example
3.33:

Example a):

Jordan-Hölder factor Distribution type

F
G

B

1

L(s1s2s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P1

1

L(s2s3s1s2s1 · ⁄), vP1
B

2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P1

1

L(s2s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P2

1

L(s1s2s3s2s1 · ⁄), vP2
B

2

!

{2}, {2, 1}, {1, 1}, {1}
"

F
G

P2

1

L(s1s2s3s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P3

1

L(s1s2s3s1s2 · ⁄), vP3
B

2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P3

1

L(s1s2s3s1s2 · ⁄), 1
2

!

{1}, {1, 1}, {1, 0}, {0}
"

F
G

P2

1

L(s3s1s2s1 · ⁄), vP2
B

2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P2

1

L(s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P1

1

L(s2s3s2s1 · ⁄), vP1
B

2

!

{1}, {1, 1}, {0, 1}, {0}
"

F
G

P1

1

L(s2s3s2s1 · ⁄), 1
2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
B

2

!

{2}, {1, 2}, {1, 1}, {1}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P1

2

!

{1}, {1, 1}, {1, 1}, {1}
"

Continued on next page
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Jordan-Hölder factor Distribution type

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P3

2

!

{1}, {1, 1}, {1, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), 1
2

!

{1}, {1, 1}, {1, 0}, {0}
"

F
G

P3

1

L(s1s2s3s1 · ⁄), vP3
B

2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P3

1

L(s1s2s3s1 · ⁄), 1
2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P2

1

L(s1s2s3s2 · ⁄), vP2
B

2

!

{1}, {1, 1}, {1, 0}, {0}
"

F
G

P2

1

L(s1s2s3s2 · ⁄), 1
2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P3

1

L(s1s2s1 · ⁄), vP3
B

2

!

{1}, {1, 1}, {1, 1}, {1}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
B

2

!

{1}, {1, 1}, {0, 1}, {0}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
P1

2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
P2

2

!

{1}, {1, 1}, {0, 1}, {0}
"

F
G

P1,2

!

L(s3s2s1 · ⁄), 1
2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P2

1

L(s3s1s2 · ⁄), vP2
B

2

!

{1}, {1, 1}, {1, 0}, {0}
"

F
G

P2

1

L(s3s1s2 · ⁄), 1
2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
B

2

!

{1}, {1, 1}, {0, 1}, {0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
P1

2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
P3

2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), 1
2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P1

1

L(s2s3s2 · ⁄), vP1
B

2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
B

2

!

{1}, {1, 1}, {1, 0}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
P3

2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
P2

2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), 1
2

!

{1}, {0, 0}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2s1 · ⁄), v
P1,3
B

2

!

{1}, {1, 1}, {0, 1}, {0}
"

F
G

P1,3

1

L(s2s1 · ⁄), v
P1,3
P1

2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
B

2

!

{1}, {1, 1}, {1, 0}, {0}
"

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
P2

2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P2

1

L(s1s3 · ⁄), vP2
B

2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P1,2

1

L(s3s2 · ⁄), v
P1,2
B

2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P1,2

1

L(s3s2 · ⁄), v
P1,2
P2

2

!

{1}, {0, 1}, {0, 0}, {0}
"

Continued on next page
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Jordan-Hölder factor Distribution type

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
B

2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
P3

2

!

{1}, {0, 0}, {0, 0}, {0}
"

F
G

P2,3

1

L(s1 · ⁄), v
P2,3
B

2

!

{1}, {1, 0}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2 · ⁄), v
P1,3
B

2

!

{1}, {0, 1}, {0, 0}, {0}
"

F
G

P1,2

1

L(s3 · ⁄), v
P1,2
B

2

!

{1}, {0, 0}, {0, 0}, {0}
"

vG

B

!

⁄
" !

{1}, {0, 0}, {0, 0}, {0}
"

Example b):

Jordan-Hölder factor Distribution type

F
G

B

1

L(s1s2s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1}
"

F
G

P1

1

L(s2s3s1s2s1 · ⁄), vP1
B

2

!

{1}, {1, 1}, {1}
"

F
G

P1

1

L(s2s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1}
"

F
G

P2

1

L(s1s2s3s2s1 · ⁄), vP2
B

2

!

{2}, {2, 1}, {1}
"

F
G

P2

1

L(s1s2s3s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1}
"

F
G

P3

1

L(s1s2s3s1s2 · ⁄), vP3
B

2

!

{1}, {1, 1}, {1}
"

F
G

P3

1

L(s1s2s3s1s2 · ⁄), 1
2

!

{1}, {1, 1}, {0}
"

F
G

P2

1

L(s3s1s2s1 · ⁄), vP2
B

2

!

{1}, {1, 1}, {1}
"

F
G

P2

1

L(s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1}, {1}
"

F
G

P1

1

L(s2s3s2s1 · ⁄), vP1
B

2

!

{1}, {1, 1}, {1}
"

F
G

P1

1

L(s2s3s2s1 · ⁄), 1
2

!

{1}, {1, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
B

2

!

{2}, {1, 2}, {1}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P1

2

!

{1}, {1, 1}, {1}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P3

2

!

{1}, {1, 1}, {0}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), 1
2

!

{1}, {1, 1}, {0}
"

F
G

P3

1

L(s1s2s3s1 · ⁄), vP3
B

2

!

{1}, {1, 1}, {1}
"

F
G

P3

1

L(s1s2s3s1 · ⁄), 1
2

!

{1}, {1, 0}, {0}
"

F
G

P2

1

L(s1s2s3s2 · ⁄), vP2
B

2

!

{1}, {1, 1}, {0}
"

F
G

P2

1

L(s1s2s3s2 · ⁄), 1
2

!

{1}, {0, 1}, {0}
"

Continued on next page
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Jordan-Hölder factor Distribution type

F
G

P3

1

L(s1s2s1 · ⁄), vP3
B

2

!

{1}, {1, 1}, {1}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
B

2

!

{1}, {1, 1}, {1}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
P1

2

!

{1}, {1, 0}, {0}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
P2

2

!

{1}, {1, 1}, {1}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), 1
2

!

{1}, {1, 0}, {0}
"

F
G

P2

1

L(s3s1s2 · ⁄), vP2
B

2

!

{1}, {1, 1}, {0}
"

F
G

P2

1

L(s3s1s2 · ⁄), 1
2

!

{1}, {0, 1}, {0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
B

2

!

{1}, {1, 1}, {1}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
P1

2

!

{1}, {1, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
P3

2

!

{1}, {1, 0}, {0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), 1
2

!

{1}, {1, 0}, {0}
"

F
G

P1

1

L(s2s3s2 · ⁄), vP1
B

2

!

{1}, {0, 1}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
B

2

!

{1}, {1, 1}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
P3

2

!

{1}, {1, 0}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
P2

2

!

{1}, {0, 1}, {0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), 1
2

!

{1}, {0, 0}, {0}
"

F
G

P1,3

1

L(s2s1 · ⁄), v
P1,3
B

2

!

{1}, {1, 1}, {1}
"

F
G

P1,3

1

L(s2s1 · ⁄), v
P1,3
P1

2

!

{1}, {1, 0}, {0}
"

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
B

2

!

{1}, {1, 1}, {0}
"

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
P2

2

!

{1}, {0, 1}, {0}
"

F
G

P2

1

L(s1s3 · ⁄), vP2
B

2

!

{1}, {1, 0}, {0}
"

F
G

P1,2

1

L(s3s2 · ⁄), v
P1,2
B

2

!

{1}, {0, 1}, {0}
"

F
G

P1,2

!

L(s3s2 · ⁄), v
P1,2
P2

2

!

{1}, {0, 1}, {0}
"

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
B

2

!

{1}, {0, 1}, {0}
"

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
P3

2

!

{1}, {0, 0}, {0}
"

F
G

P2,3

1

L(s1 · ⁄), v
P2,3
B

2

!

{1}, {1, 0}, {0}
"

F
G

P1,3

1

L(s2 · ⁄), v
P1,3
B

2

!

{1}, {0, 1}, {0}
"

F
G

P1,2

1

L(s3 · ⁄), v
P1,2
B

2

!

{1}, {0, 0}, {0}
"

vG

B

!

⁄
" !

{1}, {0, 0}, {0}
"
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A.2 Distribution types

Example c):

Jordan-Hölder factor Distribution type

F
G

B

1

L(s1s2s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P1

1

L(s2s3s1s2s1 · ⁄), vP1
B

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P1

1

L(s2s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1, 1}, {1, 0}
"

F
G

P2

1

L(s1s2s3s2s1 · ⁄), vP2
B

2

!

{2}, {2, 1, 2}, {2, 1}
"

F
G

P2

1

L(s1s2s3s2s1 · ⁄), 1
2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P3

1

L(s1s2s3s1s2 · ⁄), vP3
B

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P3

1

L(s1s2s3s1s2 · ⁄), 1
2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P2

1

L(s3s1s2s1 · ⁄), vP2
B

2

!

{1}, {1, 1, 1}, {1, 0}
"

F
G

P2

1

L(s3s1s2s1 · ⁄), 1
2

!

{1}, {1, 1, 0}, {0, 0}
"

F
G

P1

1

L(s2s3s2s1 · ⁄), vP1
B

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P1

1

L(s2s3s2s1 · ⁄), 1
2

!

{1}, {1, 0, 1}, {1, 0}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
B

2

!

{2}, {1, 2, 1}, {1, 1}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P1

2

!

{1}, {1, 1, 1}, {1, 0}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), v
P1,3
P3

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P1,3

1

L(s2s3s1s2 · ⁄), 1
2

!

{1}, {1, 1, 1}, {1, 0}
"

F
G

P3

1

L(s1s2s3s1 · ⁄), vP3
B

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P3

1

L(s1s2s3s1 · ⁄), 1
2

!

{1}, {1, 0, 1}, {1, 0}
"

F
G

P2

1

L(s1s2s3s2 · ⁄), vP2
B

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P2

1

L(s1s2s3s2 · ⁄), 1
2

!

{1}, {0, 1, 1}, {0, 1}
"

F
G

P3

1

L(s1s2s1 · ⁄), vP3
B

2

!

{1}, {1, 1, 0}, {0, 0}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
B

2

!

{1}, {1, 1, 1}, {1, 0}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
P1

2

!

{1}, {1, 0, 1}, {1, 0}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), v
P1,2
P2

2

!

{1}, {1, 1, 0}, {0, 0}
"

F
G

P1,2

1

L(s3s2s1 · ⁄), 1
2

!

{1}, {1, 0, 0}, {0, 0}
"

F
G

P2

1

L(s3s1s2 · ⁄), vP2
B

2

!

{1}, {1, 1, 1}, {1, 0}
"

F
G

P2

1

L(s3s1s2 · ⁄), 1
2

!

{1}, {0, 1, 0}, {0, 0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
B

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
P1

2

!

{1}, {1, 0, 1}, {1, 0}
"

Continued on next page
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Jordan-Hölder factor Distribution type

F
G

P1,3

1

L(s2s3s1 · ⁄), v
P1,3
P3

2

!

{1}, {1, 0, 1}, {1, 0}
"

F
G

P1,3

1

L(s2s3s1 · ⁄), 1
2

!

{1}, {1, 0, 1}, {1, 0}
"

F
G

P1

1

L(s2s3s2 · ⁄), vP1
B

2

!

{1}, {0, 1, 1}, {0, 1}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
B

2

!

{1}, {1, 1, 1}, {1, 1}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
P3

2

!

{1}, {1, 0, 1}, {1, 0}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), v
P2,3
P2

2

!

{1}, {0, 1, 1}, {0, 1}
"

F
G

P2,3

1

L(s1s2s3 · ⁄), 1
2

!

{1}, {0, 0, 1}, {0, 0}
"

F
G

P1,3

1

L(s2s1 · ⁄), v
P1,3
B

2

!

{1}, {1, 1, 0}, {0, 0}
"

F
G

P1,3

1

L(s2s1 · ⁄), v
P1,3
P1

2

!

{1}, {1, 0, 0}, {0, 0}
"

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
B

2

!

{1}, {1, 1, 0}, {0, 0}
"

F
G

P2,3

1

L(s1s2 · ⁄), v
P2,3
P2

2

!

{1}, {0, 1, 0}, {0, 0}
"

F
G

P2

1

L(s1s3 · ⁄), vP2
B

2

!

{1}, {1, 0, 1}, {1, 0}
"

F
G

P1,2

1

L(s3s2 · ⁄), v
P1,2
B

2

!

{1}, {0, 1, 1}, {0, 0}
"

F
G

P1,2

1

L(s3s2 · ⁄), v
P1,2
P2

2

!

{1}, {0, 1, 0}, {0, 0}
"

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
B

2

!

{1}, {0, 1, 1}, {0, 1}
"

F
G

P1,3

1

L(s2s3 · ⁄), v
P1,3
P3

2

!

{1}, {0, 0, 1}, {0, 0}
"

F
G

P2,3

1

L(s1 · ⁄), v
P2,3
B

2

!

{1}, {1, 0, 0}, {0, 0}
"

F
G

P1,3

1

L(s2 · ⁄), v
P1,3
B

2

!

{1}, {0, 1, 0}, {0, 0}
"

F
G

P1,2

1

L(s3 · ⁄), v
P1,2
B

2

!

{1}, {0, 0, 1}, {0, 0}
"

vG

B

!

⁄
" !

{1}, {0, 0, 0}, {0, 0}
"
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